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Preface

“At last I said—Lincoln, you never can make a lawyer if you do not understand what

demonstrate means; and I left my situation in Springfield, went home to my fathers

house, and stayed there till I could give any proposition in the six books of Euclid at

sight. I then found out what demonstrate means, and went back to my law studies.”

–Abraham Lincoln, quoted by Henry Ketcham, in The Life of Abraham Lincoln.

For centuries, the study of Euclidean geometry has been considered an essential

part of a literate person’s education, both for the practical knowledge obtained

and, more importantly, as an example of a deductive system in which non-obvious

conclusions may be drawn from a collection of accepted statements. One of our

esteemed colleagues has remarked to us that in view of the influence that Euclidean

geometry has had on western civilization, “someone should do it right.” This book

is an attempt to do so.

Even though Hilbert’s development of Euclidean geometry Foundations of

Geometry (1899) [10] has been judged by some as only partially successful, it

has set a standard for subsequent treatments, including this one. Our axioms are

patterned largely after his, except that we base our treatment of congruence on

reflections, rather than on congruence axioms.

Indeed, this book might well be regarded as a completion, updating, and

expansion of the core of Hilbert’s book. It began in the 1970s as a set of lecture notes

for the teaching of an upper division undergraduate geometry course, and over the

v



vi Preface

years has grown into a complete development of Euclidean geometry, emphasizing

plane geometry. It is our intention to be completely rigorous, take no shortcuts, and

“sweat the details.”

We have used independent axioms, even though doing so means that getting to

interesting theorems can be a daunting task. This is particularly evident in the last

part of Chapter 4 and in the early part of Chapter 5, where extensive arguments

are required to show that the behavior of lines, segments, rays, and their end points

conforms to what we intuitively expect.

We present a total of 13 axioms in sequence, at each stage proving as many

theorems as possible. The different geometric structures built up in this way are

called subgeometries, and eventually we attain a full set of axioms for Euclidean

geometry.

Chapter 1 introduces eight incidence axioms to form incidence geometry.

From here, the development consists of two threads. The shorter of these threads

(Chapters 2 and 3) is concerned with incidence-parallel or affine geometry. The

second thread (incidence-betweenness geometry) consists of Chapters 4–10, with

minor contributions from Chapter 3. Chapters 11–20 invoke the parallel Axiom PS

and combine the two threads to produce Euclidean geometry.

Within the scheme just outlined, Chapter 5 (Pasch geometry) and Chapter 8

(neutral geometry) are pivotal. We want to develop as much theory as possible at

each stage, so in Chapter 9 we create a rudimentary arithmetic on the set of free

segments1 using the machinery of neutral geometry alone. In this arithmetic, there

is a natural definition for addition and for ordering, and for subtraction of a “smaller”

free segment from a “larger” one. This arithmetic is eventually shown to coincide

with the ordinary arithmetic of “positive” points on a line, which has been identified

with the real numbers.

Indeed, a major goal is to identify the line with the real numbers, and to

“coordinatize” the plane. To do this, we first define (in Chapter 14) the addition

of points using translations and multiplication using dilations. (See the discussion

of mappings on the next page.) This is completed in Chapters 17 and 18, where

we construct isomorphisms between a subset of a line on the plane and the rational

numbers, and also between a line and the real numbers, using the LUB axiom.

1A free segment is a congruence class of closed segments; two segments belong to the same free
segment if they have the same “length.”
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Chapter 20 finishes the main development with two classical theorems, due to

Menelaus and Ceva. In Chapter 21, we show that our axioms are consistent by

showing that they are all true in ordinary coordinate space. It also shows (with two

exceptions) that each of the axioms on our list is independent of the ones introduced

earlier.

We give extensive study to bijections of a plane which preserve betweenness;

we call these belineations. They are introduced in Chapter 7, and are a type of

collineation. We list here the various types of belineation; their relationships are

summarized in the last section of Chapter 19.

Isometry (a type of belineation) is defined in Chapter 8; the following types of

belineations are isometries:

Reflection Chs 8, 10, 12, 13;

Translation Chs 3, 12, 14, 18;

Rotation Chs 10, 12, 13, 18;

Glide reflection Ch 12.

The following types of belineation are not isometries:

Dilation Chs 3, 13, 14, 15, 17, 18;

Similarity (non-identity) Ch 15.

The following type of belineation may or may not be an isometry:

Axial affinity Chs 3, 12, 16, 19.

Two online collections of supplementary materials may be accessed from the

home page of this book at www.springer.com. One of these contains solutions to

starred exercises. The other includes an expanded treatment of coordinatization

of the Euclidean plane; a development of complex numbers; an exploration of

properties of polygons in the Pasch plane leading to a proof of the Jordan Curve

Theorem; a development of arc length; a development of the circular functions (in a

treatment originated by the first author, Specht); and a treatment of angle measure.

If used as a textbook, a one-semester course might consist of Chapters 1

through 5, emphasizing the detailed and rigorous proofs of Chapters 4 and 5 at

the expense of omitting many standard results of geometry, which are contained in

Chapter 8, neutral geometry. A different kind of course might summarize the last

few theorems of Chapter 4 and the principal results of the early part of Chapter 5,

omitting the detailed arguments, and move on to Chapter 8. This course would not

be so rigorous as the first, but the student could see how to remedy the loss of rigor

by revisiting the omitted or summarized sections.

www.springer.com
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Ch 1 I I.0–I.5

Ch 2 IP PS

Ch 3 Thms CAP Defs

Chs 11–17 EUC, ISM, DLN, OF, SIM, AX, QX PS

Chs 18–20 REAL, RR, AA, RS LUB

Ch 4 IB BET

Chs 5–6 PSH, ORD PSA

Ch 7 COBE

Ch 8–10 NEUT, FSEG, ROT REF

Fig. 1 Dependency chart for the main development

Notes on the dependency chart

(a) A rising arrow indicates that the upper depends on the lower.

(b) In each box, the first entry is a listing of chapters; the second lists acronyms

used in these chapters; the third, in italics, names any axioms added in these

chapters.

(c) The definitions in Chapter 3, as well as the first four theorems, might have been

included in Chapter 1, and do not depend on Chapter 2. This division is shown

by dividing the Chapter 3 box into a “Thms” section and “Defs” section; the

former depends on Chapter 2, the latter on Chapter 1.

(d) Chapters 7–20 depend on the “Defs” part of Chapter 3; Chapters 11–20 depend

on the “Thms” part; thus the placement of the arrows.

(e) Chapter 21 is not shown on the chart, as it is not part of the main development.
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Edward J. Specht, the chief author of this work, was known to his friends for

his devotion to mathematics and science. He received a B.S. degree from Walla

Walla College, an M.S. from the University of Colorado, and, in 1949, a Ph.D. from

the University of Minnesota. He chaired the Department of Mathematics at what

is now Andrews University from 1947 to 1972, and was Professor of Mathematics

at Indiana University South Bend from 1972 until his retirement in 1986. In 1984,

Andrews University conferred upon him the honorary degree of Doctor of Science

(D.Sc.). He began this project while at Indiana University and remained the force

behind it until his death in 2011 at the age of 96.

Harold T. Jones, Ed’s colleague for many years at Andrews University, assisted

in this project during its initial years. Harold received an A.B. from what is now

Washington Adventist University, an A.M. from Lehigh University, and in 1958 a

Ph.D. from Brown University. He taught at Andrews University from 1952 until his

retirement in 1991. His participation in this geometry project was, sadly, cut short

by his death in 1995. Harold was doubtless responsible for many of the clarifying

and sometimes lighthearted explanatory remarks in the early parts of the work.

Keith G. Calkins received his B.S., two M.S. degrees, and an M.A.T. degree from

Andrews University; he received an M.S., as well as a Ph.D. in Physics (in 2005)

from the University of Notre Dame. Keith was on the staff and faculty at Andrews

for 32 years in several teaching and management capacities. Since 2011, he has

taught a wide variety of courses in the Physical Sciences and Mathematics depart-

ments at Ferris State University. Keith keyboarded this entire work into LaTeX

from Ed’s hand-written manuscript, making corrections, establishing notational and

editorial conventions, and frequently consulting with Ed. As a matter of interest, he

took a geometry course at Andrews University in the 1980s in which an early draft

of this book was used as a text.

Donald H. Rhoads received his B.A. from Andrews University, his M.A. from

Rice University, and in 1968 a Ph.D. from the University of Michigan. Don taught

mathematics at Andrews University from 1962 to 1964, from 1967 to 1972, and

again from 1998 to 2006, during which time he served for six years as chair of the

Department of Mathematics. He was drafted by Ed Specht to complete a chapter of

this book, and subsequently has read the entire work, making corrections to proofs

and references, and extensively revising and reorganizing several chapters.

As can be seen from these biographical sketches, all of the authors have been

colleagues at one time or another at Andrews University—at least one of us (in

many years two or three of us) worked there every year from 1947 to 2011, a span

of 64 years.
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Chapter 1
Preliminaries and Incidence Geometry (I)

Acronym: I

Dependencies: none

New Axioms: incidence Axioms I.0–I.5

New Terms Defined (Section 1.6 and following): universe, space, collinear,

noncollinear, coplanar, noncoplanar, concurrent; the terms point, line, and plane

are introduced, but not defined

Abstract: This chapter contains a brief summary of several types of mathematical

knowledge needed to read this book, including the elements of logic, set theory,

mapping theory, and algebraic structures such as number systems and vector

spaces. Definitions of basis, dimension, linear mappings, isomorphism, matrices and

determinants are given; there is also discussion of the roles of axioms, theorems, and

definitions in a mathematical theory. The main development of the book begins here

with the statement of eight incidence axioms and proof of a few theorems including

one from Desargues.

1.1 Introduction

Geometry began as a very practical subject. It was used, for example, to settle

disputes regarding the sizes and shapes of parcels of land and to deal with

other questions involving spatial relationships among concrete objects such as

architectural elements and mechanical devices.

© Springer International Publishing Switzerland 2015
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
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2 1 Preliminaries and Incidence Geometry (I)

As the Greek mathematicians carried out the task of organizing geometrical

knowledge, they observed a structure in the interrelationships among the statements

in geometry. To study this structure in detail, the geometers pursued a course of

abstraction. For example, rectangular plots of land, rectangular pieces of wood, and

rectangular pieces of cloth were replaced by the abstract concept of a rectangle,

which was defined so as to embody those common characteristics of the concrete

objects which were essential to a geometrical discussion about them. Hence,

geometry became a collection of statements about relationships among such abstract

concepts as points, lines, planes, triangles, rectangles, circles, cylinders, spheres,

and polyhedra.

In a further step toward emphasizing structure, Euclid of Alexandria (active c.

300–265 BC), in his Elements, [6]1 identified certain statements which seemed to

him to be “self-evident truths.” He then undertook to show how each statement in

geometry is a logical consequence of these “truths” together with other statements

already shown to follow from them. Euclid’s Elements set the tone for all subsequent

development of geometry up to the present day, and is generally acknowledged to

be one of the great triumphs of the human intellect.

Today, Euclid’s “self-evident truths” are usually called axioms, and our attitude

toward them has changed. Instead of regarding them as “self-evident truths,” we treat

them as mere starting points. We must start somewhere, and we agree that when we

speak of “Euclidean geometry,” we are starting with a set of statements similar to

these. This book is a step in the task of determining how the various theorems in

Euclidean geometry depend on these statements and on each other. We do not try to

decide whether or not the axioms are “true,” except in Chapter 21 where the whole

point is to determine whether various axioms are true or false on models.

We employ what is sometimes referred to as a synthetic method of development.

Our procedure is to begin with a few axioms which are in some sense more

fundamental than the rest, proving as many theorems as we can from these. Then we

add new axioms in sequence and at each stage see how many theorems we can prove.

We continue this process until we come to the full set of axioms. At each stage, we

call the structure we have developed up to that point a geometry or subgeometry.

Thus we speak of “incidence geometry,” “affine geometry,” “Pasch geometry,” and

“neutral geometry,” among others. The final result is, of course, Euclidean geometry.

As Euclid said, there is no “royal road” to take us there—the difficult journey is the

reward.

1Square bracketed numbers refer to entries in References, just before the Index.



1.1 Introduction 3

The axioms we use for Euclidean geometry are not exactly those used by Euclid.

As our understanding and standards of rigor have evolved over the centuries,

gaps have been found in Euclid’s structure. These have been remedied, and some

of his concepts have been sharpened to conform to modern usage. Several such

modernizations of Euclid’s axioms have become widely known. Probably the three

most significant are those set forth by David Hilbert (1862–1943) in his Foundations

of Geometry (1899) [10]; George David Birkhoff (1824–1944) in 1932 (included in

his Basic Geometry (1940))[3]; and Alfred Tarski (1901–1983) in 1959 [20].

The various sets of axioms have their associated advantages and disadvantages;

Birkhoff’s axioms are based on metric notions and angle measure; Tarski’s axioms

are encoded in the predicate calculus. We should also mention the modification of

Birkhoff’s axioms developed in the early 1960s by the School Mathematics Study

Group (SMSG), one of the most successful aspects of the curricular reform known

as the “New Math.” The SMSG axioms are typically used in high school geometry

textbooks, and are redundant, i.e. not independent, to facilitate rapidly proving

significant results; they thus avoid the careful but sometimes tortuous development

seen here.

Our incidence, betweenness, and plane separation axioms are close to those of

Hilbert, but are stated somewhat differently. We access congruence using reflection

mappings, yielding what we think is a more elegant and satisfying development than

do Hilbert’s axioms of congruence. As we stated in the Preface, this book could be

regarded as a completion, updating, and expansion of the core of Hilbert’s book.

The appeal of modern geometry, as we see it, lies in the fact that it reflects

both aspects of its historical development. On the one hand, a person studying

geometry gets ideas from drawing pictures, something not always possible when

studying other mathematical subjects. On the other hand, the intuitive ideas gained

from the pictures must then be subjected to the discipline of logic and proof. This

interplay between imagination and intellectual discipline is not only a model for

the way much of mathematical research proceeds, but also has long been a source

of pleasure and fascination for mathematical intellects, from beginners to mature

mathematicians.

Before we begin, we summarize a collection of facts about logic, sets, mappings

and functions, algebraic structures, and the basic building blocks of axiomatic
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theory. We provide this material for reference; much of it may be familiar to the

reader. At the end of this material we provide some discussion of the structure of

this particular book, including the role of figures and exercises.

1.2 Elementary logic

Statements, propositions: In this discussion, a statement is a declarative statement

(in the usual grammatical sense) which is either true or false—that is, it has truth

value. In many treatments of logic, these are called propositions.

Logical operations: not, and, or: If p is a statement, the symbol :p denotes

the negation of p, the exact contrary of p, which is false whenever p is true and true

whenever p is false.

If p and q are statements, the statement p and q (the conjunction of p and q) is

true when both p and q are true, and false otherwise.

The statement p or q (the disjunction of p and q) is true when p is true, when q

is true, and when both p and q are true; it is false when both p and q are false. This

is the standard inclusive use of the word or.

To indicate the exclusive or (true in case one of p or q is true, but false when

both or neither are true), we will often say either p or q. We never use the term xor.

We may at times indicate the exclusive or by appending the words but not both to

either: : : or or to or.

Logical operations: conditional, biconditional: The statement if p then q (the

conditional) is true when both p and q are true, and is false when p is true and q

is false. The conditional is always (vacuously) true when p is false. The statement

p is called the antecedent or hypothesis of the conditional if p then q, and q is

its consequent or conclusion. The converse of the conditional if p then q is the

statement if q then p, its inverse is if :p then :q, and its contrapositive is if :q

then :p. A conditional statement has the same truth value as its contrapositive, but

there is no relation between the truth value of a conditional and either its converse or

inverse. The converse and inverse of a conditional have the same truth value, since

each is the contrapositive of the other.

The statement p if and only if q (the biconditional) means (if p then q) and

(if q then p) and is often written p iff q.
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Complex statements, logical equivalences: Many statements are constructed

from other statements using the connectives not, and, or, and if: : : then; such

statements are called complex statements. If p and q are complex statements

constructed from a common set of simpler statements, p and q are said to be

logically equivalent if they have the same truth value (either true or false) regardless

of the contents of the simple statements that comprise them. In proofs, logically

equivalent statements may be substituted freely for one another as needed to

complete the argument.

Many of the most important logical equivalences involve negation; some of these

are as follows:

:.:p) is logically equivalent to p.

:.p and q) is logically equivalent to (:p or :q);

:.p or q) is logically equivalent to (:p and :q);

.p exclusive or q) is logically equivalent to ((p or q) and :.p and q)), that is, to

((p or q) and (:p or :q));

:.p exclusive or q) is logically equivalent to ((:p and :q) or (p and q)); (this

will be needed in Chapter 5);

:(if p then q) is logically equivalent to (p and :q);

Since the contrapositive of a conditional is equivalent to it, :(if p then q) is

logically equivalent to : (if :q then :p) which in turn is equivalent to (:q and

::p), or (:q and p).

Predicates, quantifiers: A predicate p.x/ is a statement that contains a

variable, which can be thought of as a symbol for which various objects may

be substituted. In the predicate p.x/ the symbol x denotes the variable, and

different values of the variable yield different statements. The reader will need some

acquaintance with what is called the “predicate calculus” involving the quantifiers,

that is, for all and for some (including the customary variant of the latter involving

the term there exists).

The negation of a quantified statement is obtained by interchanging the quanti-

fiers “for all” and “for some” and negating the statement. Thus, the negation of for

all x; p.x/ is the statement for some x;:p.x/.

Proofs: The reader will need to be familiar with the basic schemes for construc-

tion of proofs using rules of inference based on the above, such as direct proof and

indirect proof (proof by contraposition or proof by contradiction).
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Occasional use will be made of proof by mathematical induction in the

following form: a predicate p.n/ defined on the natural numbers is true for all natural

numbers, if it is proved that: 1) p.1/ is true, and 2) for every natural number m, if

p.m/ is true then p.m C 1/ is true. The method of proof is to 1) show that the

statement p.1/ is true (the base case); then 2) assume that p.m/ (the induction

hypothesis) is true for an arbitrary m and infer from this the truth of p.mC 1/.
An equivalent form (sometimes called the “strong form”) of mathematical

induction is as follows: a predicate p.n/ on the natural numbers is true for all natural

numbers if it is proved that: 1) p.1/ is true, and 2) for every natural number m, if

p.k/ is true for all k < m, then p.m/ is true.

A common variant on the method of mathematical induction is to prove that a

statement p.m/ is true for all m � n0, where n0 > 1, by simply beginning the process

at m D n0 rather than at m D 1. This is easily shown to be valid by rewriting the

predicate as p0.m/ D p.mC n0 � 1/ so that p0.1/ D p.n0/.

Mathematical induction may also be used for definitions: a predicate p.n/ is

defined on all the natural numbers if 1) p.1/ is defined, and 2) for every natural

number m if p.m/ is defined then p.mC 1/ is defined.

Notation: The statement that “if p then q is true” will sometimes be symbolized

by a double-lined arrow, as in p ) q, and the statement that “p if and only if q is

true” by “p , q.” In definitions, “if” will have the definitional meaning of “if and

only if” unless otherwise indicated, and the symbol ut will be used to designate the

end of a proof.

For more complete information about logic and its use in the construction of

proofs, the reader may wish to consult a text on discrete mathematics such as

Rosen, K., Discrete Mathematics and Its Applications (2003) [18].

1.3 Set theory

The Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC) provides an

adequate foundation for this work.

Membership and inclusion: The symbol x 2 A says that the object x is a

member of or belongs to the set A. x … A says that the object x does not belong to

set A (nonmembership), or, equivalently, :.x 2 A/.
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If A and B are mathematical objects, A D B means they are the same object, or

are equal. A ¤ B means that they are not equal or unequal. Two sets A and B are

equal iff they contain the same members, and are not equal otherwise.

A � B means that for all x, if x 2 A, then x 2 B. A is said to be a subset of B.

If A is a subset of B and there exists an x 2 B such that x 62 A, then A is a proper

subset of B. A D B means that A and B contain exactly the same elements, that is,

A � B and B � A. The symbolism A � B indicates that it is possible for the two

sets to be the same.

The symbol ; denotes the null or empty set, the set containing no elements.

A singleton is a set having exactly one member; a doubleton is a set having exactly

two members.

Truth sets of predicates: If p.x/ is a predicate, fx j p.x/g is the set of all x for

which the statement p.x/ is true. This set is commonly called the truth set of the

predicate p.x/ and this type of construction is often referred to as the set builder

notation.

Intersection, union, difference: A\ B is the set fx j x 2 A and x 2 Bg and is

called the intersection of A and B.

A [ B is the set fx j x 2 A or x 2 Bg and is called the union of A and B.

A n B is the set fx j x 2 A and x … Bg and is called the difference of A and B;

informally, this operation is called set subtraction.

Listing elements and -tuples: When a set which has n elements is described

by listing its elements, as in A D f3; 5; 7; 9g, the order of the elements listed is

irrelevant to the description; for example, f3; 5; 7; 9g D f5; 3; 7; 9g D f9; 5; 7; 3g.
Frequently, however, we will need to list the elements of a set and at the same time

specify which element is the first element, which one is second, and so on. The set

whose elements are a1; a2; : : : ; an where for each k D 1; 2; : : : ; n, ak is specified as

the “k-th” element is known as an ordered n-tuple, and is denoted by the symbol

.a1; a2; : : : ; an/. If order is understood, we may refer to an ordered n-tuple simply

as an n-tuple. Two (ordered) n-tuples .a1; a2; : : : ; an/ and .b1; b2; : : : ; bn/ are equal

iff a1 D b1, a2 D b2; : : :, and an D bn.

An ordered 2-tuple is called an ordered pair and is written .a; b/, where a is

the first element and b is the second element of the pair. Note that .a; b/ ¤ .b; a/

unless a D b. Occasionally we may speak of an “unordered pair” meaning simply a

set with two elements.
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An ordered 3-tuple is called an ordered triple and is written .a; b; c/, where a is

the first element, b is the second element, and c the third element of the triple.

The set of all n-tuples .a1; a2; : : : ; an/, where for all i D 1; 2; : : : ; n, ai 2 Ai is

called the Cartesian product2 of the sets A1,A2; : : : ;An, and is denoted

A1 �A2 � : : : �An:

Distinct and disjoint: When we say A1, A2, and A3 are distinct sets, we

mean A1 ¤ A2, A1 ¤ A3, and A2 ¤ A3. Expanding a bit on this theme, if

fA1;A2;A3; : : : ;Ang is any collection of mathematical objects (such as points,

lines, planes, or what have you), saying that they are distinct, or pairwise distinct

means that if 1 � k ¤ l � n;Ak ¤ Al. That is, no two objects in the collection are

the same.

Two sets A and B are disjoint if A \ B D ;. If A \ B ¤ ;, that is, A \ B
contains some element x, A and B are said to intersect. A collection of sets

fA1;A2;A3g is said to be pairwise disjoint if A1 \ A2 D ;, A1 \ A3 D ;, and

A2 \A3 D ;, with obvious extensions to larger collections of sets. A collection of

pairwise disjoint nonempty sets will clearly be distinct, but a collection of distinct

sets is not necessarily pairwise disjoint.

1.4 Mappings, functions, cardinality, and relations

Mappings: A mapping (or map, for short) is a set of ordered pairs .x; f .x// with

the property that each first element x appears in exactly one pair .x; f .x//—that is,

each x is “paired” with only one f .x/.3

The words function and transformation are synonyms for mapping. Function

is commonly used in calculus where the emphasis is on mappings whose first and

second elements are members of a number system, such as the set of real or complex

numbers. Transformation is often used for mappings on vector spaces (to be defined

later). In this book we will generally use the term mapping; here in the introduction

we will use letters such as f , g, h to denote mappings even though they suggest the

word function.

2After the French mathematician and philosopher René Descartes (1596–1650), inventor of the
Cartesian coordinate system, which we will explore in the later chapters of this work. He has been
called “the father of modern philosophy.”
3You might prefer to think of a mapping as a rule which associates a single second element f .x/
with each first element x. Our definition is a bit more formal, as it does not depend on the undefined
notion of a “rule.”
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Domain, range, and restriction: The set of all first elements of a mapping is

its domain, and the set of all second elements is its range. We may state that “f is a

mapping with domain A whose range is a subset of a set B” by writing the symbol

f W A! B or by saying that f maps A to (or into) B.

If E � A, the restriction of f to E is the mapping (denoted by f jE) consisting of

the set of all ordered pairs of f whose first elements are members of E ; that is, the

set f.x; f .x// j x 2 Eg.
Argument, value, image, and pre-image: If f .x/ D y, we may say that f maps

or carries x to y, or that y is the image of x under f , or that y is the value of f at

x; in this case, x is sometimes said to be an argument for y. There may be more

than one argument for a given value y. In some quarters it has become stylish, in

this situation, to refer to x as an input for the mapping f , and to y as the output

corresponding to x—a possible influence from the computer culture.

If f is a mapping with domain A, and E � A, then the set ff .x/ j x 2 Eg is the

image of the set E under f , and is denoted by f .E/. If F � E , then f .F/ � f .E/.
The range of a mapping f is the image f .A/ of its domain.

If G is any set, then fx j f .x/ 2 Gg is the pre-image of G under f , and is denoted

by f�1.G/. (There are some subtleties to be observed here—see the paragraph below

titled “Tricky notation.”)

Composition of mappings: If f W A! B and g W B! C the composition g ı f

is the mapping which maps A to C whose value for each x 2 A is g.f .x//. In the case

that A D B D C, it is not necessarily true that gıf D f ıg (composition of mappings

is not commutative). As an example, let f and g be defined as follows for each real

number x: f .x/ D xC2 and g.x/ D x2; then for each x, .f ıg/.x/ D f .g.x// D x2C2,

whereas .gıf /.x/ D g.f .x// D .xC2/2 D x2C4xC4which is not the same as x2C2.

However, if f W A ! B, g W B ! C, and h W C ! D, it is always the case that

.h ı g/ ı f D h ı .g ı f / (composition of mappings is associative). For if x 2 A then

..h ı g/ ı f /.x/ D .h ı g/.f .x// D h.g.f .x/// D h..g ı f /.x// D h ı .g ı f /.x/:

The notion of composition may easily be extended to any finite collection of

mappings, provided that the domains and ranges match up properly. Thus, the

composition of mappings f1; f2; : : : ; fn is the mapping whose value at each x is

f1.f2.: : : .fn.x// : : : //.

For definitions of the terms commutative and associative see the next section,

elementary algebraic structures.
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Onto, one-to-one, bijection: We say that a mapping f maps A onto, or is a

surjection onto a set B iff for every y 2 B there exists an x 2 A such that f .x/ D y.

By definition, a mapping always maps its domain A onto its range f .A/, that is, onto

the image of A under f . A mapping f is said to be one-to-one (sometimes written

1-1), or an injection, in the case that for any two elements x and y belonging to its

domain A, if x ¤ y then f .x/ ¤ f .y/: If a mapping f with domain A is both one-

to-one and onto the set B, we say it is a bijection of A onto B, or is a one-to-one

correspondence between A and B. If f is a bijection of A onto itself, we say f is a

bijection of A.

The composition of two mappings that are one-to-one is one-to-one, and the

composition of two mappings of a set A onto itself is also a mapping of A onto

itself. Thus if f and g are bijections of A, f ı g is also a bijection of A. To see this,

let x and y be any distinct members of A. Since g is a bijection of A, it is one-to-one

and g.x/ ¤ g.y/. Similarly, since f is a bijection of A, .f ı g/.x/ D f .g.x// ¤
f .g.y// D .f ı g/.y/, so that f ı g is one-to-one. If z 2 A, since f is onto, there is an

element y 2 A such that f .y/ D z; similarly, there exists an element x 2 A such that

g.x/ D y so that f .g.x// D z and f ı g is onto A. Therefore f ı g is a bijection of A.

Inverses and the identity: If f is one-to-one, the set f.f .x/; x/ j .x; f .x// 2 f g
is a mapping called its inverse f�1. Its domain is the same as the range of f , and its

range is the same as the domain of f . The inverse of a bijection is a bijection.

If A is any set, the identity map is the mapping { with the property that for every

x 2 A, {.x/ D x. The identity map is a bijection and is its own inverse. Note that if

f is a one-to-one mapping with domain A and range B, then f ı f�1 is the identity

mapping on B and f�1 ı f is the identity mapping on A.

Tricky notation: In an earlier paragraph we defined the pre-image of a set G
under f as the set fx j f .x/ 2 Gg. But things get slightly tricky here: we use the

notation f�1.G/ to designate this set, even if f�1 does not exist as a mapping, that

is, when f is not one-to-one—the pre-image of a set with only one element might

contain many elements. Also, there is no necessity for G to be a subset of the range

of f , or even to intersect it. In the latter case, f�1.G/ D ;.
Elementary mapping theory: There are some relations between set theory and

mappings that will be of particular importance to us in Chapter 8 where we deal

with reflections and isometries, both of which are bijections.



1.5 Elementary algebraic structures 11

Let f be a mapping and let A and B be subsets of the domain of f . Then it is

always true that f .A [ B/ D f .A/ [ f .B/. But for intersection, all we can claim is

that f .A\B/ � f .A/\ f .B/. To illustrate this, let f be a mapping on the set of real

numbers and define f .1/ D 1 and f .2/ D 1, and let A D f1g and B D f2g. Then

f .A \ B/ D f .;/ D ; ¤ f1g D f .A/ \ f .B/.
The situation is quite different for bijections, which are one-to-one and onto.

Then it is always true that f .A \ B/ D f .A/ \ f .B/. Thus, when we map a disjoint

union of sets using a bijection, the image will be a disjoint union of the images of

each of the individual sets in the union. We will sometimes also refer to these facts

by the words “elementary set theory.”

Finite and infinite sets: If there exists a one-to-one correspondence between

two sets A and B, then A and B are said to have the same cardinal number (the

two sets have the same number of elements). A set A is said to be finite if it

is empty (in which case it has zero elements), or if for some integer n > 0, there

exists a one-to-one correspondence between A and the set f1; 2; 3; : : : ; ng of natural

numbers. We will normally express this fact by saying that the set has n members.

Every subset of a finite set is finite. If A � B are finite sets, A has m members, and

B has n members, then A is a proper subset of B iff m < n. A set A is infinite if

and only if it is not finite. A set A is infinite if it has an infinite subset.

Relations and their properties: A relation on a set X is a set of ordered pairs

.x; y/, where x and y are members of X . If R is a relation on X we write x R y to

indicate that the pair .x; y/ 2 R. If a relation R satisfies the following three criteria,

it is called an equivalence relation: 1) for every x 2 X , x R x (R is reflexive); 2) if

x R y then y R x (R is symmetric); and 3) if x R y and y R z, then x R z (R is transitive).

If R is an equivalence relation on X and x 2 X , the equivalence class (denoted Œx�)

of x is {y j x R yg. The collection of all equivalence classes forms a partition of

the underlying set X—that is, every element of X belongs to exactly one of the

equivalence classes.

1.5 Elementary algebraic structures

In modern mathematics, both group and field theory play a prominent role. In this

work we will not be using these theories to any extent, but it will be convenient

to have the following definitions on hand. We will use them principally for

summarizing and organizing our knowledge.
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Operations: An operation, or a binary operation on a set E is a mapping

which maps E � E into E ; the image of .x; y/ is indicated by writing the symbols x

and y together, or with some symbol in between them, as in x � y, xC y, or x ı y.

Groups and their operations: A group is a nonempty set G together with an

operation “�” such that conditions (G1) through (G4) are satisfied:

(G1) for every two elements x and y of G, x � y 2 G (the group is closed under the

operation �);4
(G2) for any three elements x, y, and z of G, x � .y � z/ D .x � y/ � z (the operation �

is associative);

(G3) there exists an element e 2 G such that for every x 2 G, e � x D x � e D x

(e is the identity element for the operation �); and

(G4) for any element x 2 G there exists another element x�1 2 G such that x �
x�1 D x�1 � x D e (x�1 is the inverse of x under the operation �).
If, in addition, the following condition (G5) is satisfied, G is said to be a

commutative or abelian5 group.

(G5) for any two elements x and y in G x�y D y�x (the operation � is commutative).

A subset H of a group G is a subgroup of G if it forms a group under the

operation of G. To prove that a nonempty subset H is a subgroup of G, it is sufficient

to show that for every x and y in H, both x�1 and x � y are members of H.

A semigroup is a nonempty set G together with an operation “�” such that

conditions (G1) and (G2) are satisfied.

Bijections forming a group: The following fact will come in handy in later

chapters.

If F is any set of bijections on a set A such that a) the composition of any two

bijections in F is again in F or is the identity {, and b) the inverse of any member

of F is in F , then F [ f{g is a group.

To see this, note that for any mapping f mapping A onto A, f ı { D { ı f D f .

G1 follows immediately from this and a); G2 follows from the associativity of

functions under composition; G3 is true because { 2 F [ f{g; and G4 follows from

observation b) just above and the fact that the inverse of { is {.

4Technically, the condition (G1) is redundant here because the definition of an operation requires
that the result be a member of the same set.
5After the Norwegian mathematician Niels Henrik Abel (1802–1829).
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In various contexts, different symbols are used in place of the � we have used

here; the real numbers form a group under the operation C and the set of nonzero

real numbers form a group under the operation of multiplication. Both of these are

abelian groups. In situations where the composition of functions is possible, we

use ı for this operation, and later in this book we will come upon several examples

where sets of functions of particular types form groups under this operation. Very

often, too, where the operation is well understood, we will not use any symbol at

all, using juxtaposition instead; rather than writing x � y we will write simply xy.

Fields and their operations: A field is a nonempty set F together with two

operations, which for convenience we will designate as C (addition) and “�”
(multiplication), such that all the following conditions are satisfied:

(F1) F forms an abelian group under the operationC (it is customary here to call

F an additive group, to use the symbol 0 for the additive identity, and for each

x 2 F use the symbol �x for its inverse);

(F2) F n f0g forms an abelian group under the operation “�” (that is, F n f0g is a

multiplicative group); we will generally use the symbol 1 for the multiplicative

identity; and

(F3) for any three elements x, y, and z of F , x � .y C z/ D .x � y/ C .x � z/ (the

distributive law of multiplication over addition holds).

If F is a field, then a subset E of F is a subfield of F if it is itself a field under

the operations of F . To prove that E is a subfield of F , it is sufficient to show that

both 0 and 1 are members of E , and for every x and y in E , �x, x C y, x�1 (where

x ¤ 0), and x � y are all members of E .

Number systems: The reader should be familiar with the set Z of integers and

its subset N D f1; 2; 3; : : :g, the natural numbers. If m and n are any integers such

that m < n, the symbol ŒmI n� will denote the set of all integers greater than or equal

to m and less than or equal to n. Thus, for example, Œ3I 7� D f3; 4; 5; 6; 7g.
The reader will also need to be familiar with the field R of real numbers and its

subfield Q of rational numbers. Between any two real numbers in R there is both

a rational number and a nonrational (irrational) number. The numbers � , e (the base

of natural logarithms), and
p
2 are examples of irrational numbers.
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Another subfield of the real numbers which will be important in the last chapter

of the book is the set of real algebraic numbers,6 denoted by the symbol A.

This is the set of real numbers that are roots of polynomial equations having rational

coefficients. The real number � is not an algebraic number, as it is not the solution

of any polynomial equation with rational coefficients.

The sets N, Z, Q, A, and R are naturally ordered by defining a < b iff there

exists a number c > 0 such that b D aC c. For these number systems, there is also

a natural concept of betweenness: b is said to be between the numbers a and c iff

either a < b < c or c < b < a. In symbols, this is written as either a b c or c b a.

Anticipating later developments, we point out that this order relation satisfies

the properties of ordering as in Definition ORD.1 (Chapter 6), and this notion

of betweenness satisfies Definition IB.1 (Chapter 4). Moreover, R has the LUB

property, meaning that every set of real numbers which is bounded above has a

least upper bound (the formal definition of which is given in Chapter 18). Every

irrational number x is the least upper bound of the set of all rational numbers r such

that r < x.

In these number systems the square of any (nonzero) number is positive. The

square root of a number a � 0 is denoted by
p

a and is the solution to the polynomial

equation x2 D a, and thus is an algebraic number if a is rational. Both the fields R

of real numbers and A of real algebraic numbers contain the square roots of their

non-negative members.

Vector spaces: A vector space (or linear space) over a field F consists of a

set V of elements called vectors together with the field F , whose members may

be called either numbers or scalars; an operation “+” which denotes addition of

vectors; and an operation “�” which multiplies a scalar times a vector, all satisfying

the following conditions:

6More generally, an algebraic number is a complex number that is a root of a polynomial
equation with rational coefficients. (A treatment of complex numbers is available in a supplement
accessible from the home page of this book at www.springer.com.) The set of all algebraic numbers
is a subfield of the complex numbers, as is the set of real numbers, and their intersection is the
subfield of real algebraic numbers described here. The field of algebraic numbers is algebraically
closed, meaning that any root of a polynomial with coefficients from the field is also a member of
the field. The field of real algebraic numbers is not algebraically closed, as is readily seen from the
fact that the polynomial equation x2 D �1 has no real solution.

www.springer.com
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(V1) V forms an abelian group with respect to the operation C, with identity

element O; the inverse of any vector A is �A.

(V2) The scalar product “�” obeys the following rules: for any scalars x and y

belonging to F and any vectors A and B of V , x.yA/ D .xy/A, 1A D A,

x.AC B/ D xAC xB, and .xC y/A D xAC yA.

It is customary to omit the dot symbol for scalar product, as we have done, and,

where no confusion arises, to refer to the vector space by the name of its set of

vectors.

If V is a vector space, then a subset U of V (equipped with the same field) is a

subspace of V if it is itself a vector space under the operations of V . A subset U is a

subspace of V iff for all A and B in U and every x 2 F , both ACB 2 U and xA 2 U .

A subspace U is a proper subspace of V if there exists at least one point A 2 V such

that A 62 U . V is a subspace of itself, and fOg is the trivial subspace of V .

Linear independence and dimension: A set {A1;A2; : : : ;Ang of vectors is

linearly dependent iff there exists a set fx1; x2; : : : ; xng of field elements, not

all zero, such that x1A1 C x2A2 C : : : C xnAn D O. A set that is not linearly

dependent is linearly independent; that is, if x1A1 C x2A2 C : : :C xnAn D O then

xi D 0 for all i 2 f1; 2; : : : ; ng. If for some numbers (field elements) x1, x2; : : : ; xn,

X D x1A1 C x2A2 C : : :C xnAn, X is said to be a linear combination of the vectors

A1, A2; : : : ;An. If every vector X 2 V is a linear combination of the vectors in

fA1;A2; : : : ;Ang, we say that this set spans the space V . A set of nonzero vectors

which is both linearly independent and spans V is called a basis for V , and every

vector space has a basis.

Basis Theorem. If fB1;B2; : : : ;Bmg is a set of vectors that spans V , and

fA1;A2; : : : ;Ang is a set of linearly independent vectors in V , then n � m; if n D m,

fA1;A2; : : : ;Ang spans V .

Proof. We outline the proof7 of this result, which will be of basic importance to our

development in Chapter 21.

Note first that for some numbers x1; x2; : : : ; xm;An D x1B1C x2B2C : : :C xmBm

and at least one of the xis is nonzero. Dividing through by this xi we see that Bi is a

linear combination of the other Bs together with An. It follows that if, in the spanning

set, this Bi is replaced by An, the resulting set fB1;B2; : : : ;Bi�1;An;BiC1C : : : ;Bmg
spans V .

7The proof is essentially that found in Halmos, Finite Dimensional Vector Spaces [9], pp. 9–14.
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Then An�1 is a linear combination of this new spanning set, and the coefficient of

at least one of the Bs in the combination must be nonzero, for otherwise, the linear

independence of the As would be contradicted. This B can be replaced by An�1 in

the spanning set, and the resulting set will span V .

Repeat this process as many times as possible; if n > m, the Bs will be used

up before the As, resulting in a spanning set that contains no Bs, and a list A1,

. . . , Aj of As that have not yet been incorporated into the spanning set. In this

case, the “un-substituted” As are linear combinations of the spanning set, which

consists entirely of As; this contradicts our initial assumption that the As are linearly

independent.

Therefore n � m, and the replacement process will stop when all the As have

been used to replace Bs in the spanning set, leaving (possibly) some unreplaced

Bs. It follows that in any vector space, the number of linearly independent vectors

cannot exceed the number of vectors in a spanning set. Moreover, if n D m,

fA1;A2; : : : ;Ang spans V , since all the Bs have been displaced by As. ut
Dimension: By the Basis Theorem, any two bases for a space have the same

number of elements, because each basis is a linearly independent set and also spans

the space. The number of elements in a basis is called the dimension of the space.

Dimension Criterion: If U is a subspace of V , then U D V iff the dimension of

U is equal to the dimension of V . Suppose the dimension of U is the same as that of

V; then a basis B for U is a linearly independent set in V , having the same number

of elements as a basis for V , which is a spanning set for V . By the Basis Theorem,

B spans V , so that every vector in V is a linear combination of the vectors of B, and

hence is a member of U . Conversely, if U and V are the same space, they have the

same dimensions.

In this work we will be mainly concerned with vector spaces of dimension 1,

2, or 3.

Since the vector space axioms are a subset of the field axioms, F is a vector space

over itself, having dimension 1. If A ¤ O is a point of a vector space V , fxA j x 2 Fg
(that is, a “line” through the origin) is a vector subspace of V having dimension 1.

Thus, the word space in vector space may at times mean “line”; it may also mean

“plane,” although not all lines (or planes) in a vector space are vector spaces.

The word vector in the term vector space does not include the notion of a “bound”

vector as used in science, often visualized as an arrow whose tail can be located at

any desired point. Vector, to us, means a point in a vector space, nothing more,
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nothing less; if we visualize it as an arrow, the tail of the arrow is always at the

origin O and its head is at the point specified.

Linear mappings: A linear mapping (or linear transformation or linear

operator) ˛ on a vector space V is a mapping of V into V such that for all A

and B in V , and all field elements x and y, ˛.xA C yB/ D x˛.A/ C y˛.B/. The

mapping O is the mapping such that O.A/ D O for every A 2 V . The “negative”

of the mapping ˛ is the mapping �˛, which maps every A 2 V to �.˛.A//. The

sum of two linear mappings ˛ and ˇ on V is the mapping ˛C ˇ such that for every

A 2 V , .˛ C ˇ/.A/ D ˛.A/ C ˇ.A/. The product or scalar product of a field

element x and a linear mapping ˛ on V is the mapping x˛ such that for every A 2 V ,

.x˛/.A/ D x.˛.A//. Any sum of linear mappings, and any scalar multiple of a linear

mapping, is a linear mapping, as are the mapping O and the negative of any linear

mapping. The set of all linear mappings on a vector space with the definitions of

sum and scalar product as above is itself a vector space over the same field.

Vector spaces of n-tuples: Let F be a field and denote by Fn the set of

all n-tuples .a1; a2; : : : ; an/ of elements of F . Define the sum of two n-tuples

.a1; a2; : : : ; an/ and .b1; b2; : : : ; bn/ in Fn as

.a1; a2; : : : ; an/C .b1; b2; : : : ; bn/ D .a1 C b1; a2 C b2; : : : ; an C bn/;

and for any t 2 F define the scalar product

t.a1; a2; : : : ; an/ D .ta1; ta2; : : : ; tan/:

With these definitions, Fn is a vector space, called coordinate space over the

field F .

If the additive identity of F is 0 and the multiplicative identity is 1, then

.0; 0; : : : ; 0/ is the origin, or zero element of Fn, and will often be denoted O. The

set {f.1; 0; 0; : : : ; 0/; .0; 1; 0; : : : ; 0/; .0; 0; 1; : : : ; 0/; : : : ; .0; 0; 0; : : : :; 1/g forms a

basis for Fn, so that Fn has dimension n.

Coordinate spaces will be explored further in Chapter 21, where they are used to

show consistency and independence of our axioms.

More advanced vector space theory extends the notion of dimension to include

spaces of infinite dimension. For example, the set of all real-valued functions defined

on the unit interval [0,1] is a vector space having infinite dimension, where the sum

f C g of two functions f and g is defined by .f C g/.x/ D f .x/ C g.x/ for all
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x 2 Œ0; 1�, and for any real number t, .tf /.x/ D tf .x/. This is only a hint at the

extent and applicability of vector space theory; in this work, we will only scratch

the surface.8

Isomorphisms: If G and G0 are groups, an isomorphism (more elaborately, a

group isomorphism) of G onto G0 is a bijection ˚ which preserves operations—

that is, for every x and y in G, ˚.x � y/ D ˚.x/ˇ˚.y/, where “�” is the operation of

G andˇ is the operation of G0. If F and F 0 are fields, then an isomorphism (or field

isomorphism) of F onto F 0 is a bijection ˚ which preserves both field operations.

If V and U are vector spaces, then an isomorphism (or vector space isomorphism)

of V onto U is a bijection˚ which preserves both addition and scalar multiplication.

We could also define isomorphisms between other types of algebraic systems.

If A and B are two isomorphic algebraic systems, we may say that B is

an isomorphic image or copy of A, and vice versa. Isomorphic systems are

indistinguishable as to their algebraic structures. In particular, two vector spaces

which are isomorphic have the same dimension.

It is well known that the isomorphic image of a group is a group, the isomorphic

image of a field is a field, and the isomorphic image of a vector space is a vector

space. Thus, if one can establish (as we do in later chapters) an isomorphism

between a field F and another set F 0 which is equipped with two operations C
and “�” , the set F 0 is automatically a field, and likewise for a vector space. This

relieves us of the tedium of proving all the various field (or vector space) properties

on the second set. All that is necessary is to show that the mapping (isomorphism)

is a bijection onto the second set, and that the operations are preserved.

Matrices, determinants, and Cramer’s rule: (1) A matrix is a rectangular

array of numbers (members of F) such as

 
a11 a12

a21 a22

!
; it may also be denoted as

"
a11 a12

a21 a22

#
. This one would be called a “square 2 by 2 matrix.”

The array

0
BB@

a11 a12; a13

a21 a22; a23

a31 a32; a33

1
CCA is a “square 3 by 3 matrix.”

8There are a number of good books on vector space theory; Finite Dimensional Vector Spaces [9],
by Paul Halmos (1916–2006), remains a classic. Originally published by Van Nostrand in 1958, it
is still in print from Springer.
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(2) The determinant

ˇ̌̌
ˇ̌a11 a12

a21 a22

ˇ̌̌
ˇ̌ of a 2 � 2 matrix

 
a11 a12

a21 a22

!
is defined to be

a11a22 � a12a21.

The determinant

ˇ̌̌
ˇ̌̌
ˇ̌
a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ̌̌
ˇ̌̌
ˇ̌ of the 3 � 3 matrix

0
BB@

a1 b1 c1

a2 b2 c2

a3 b3 c3

1
CCA is

a1b2c3 � a1b3c2 � b1a2c3 C b1a3c2 C c1a2b3 � c1a3b2:

Cramer’s rule: If a1, a2, b1, b2, c1, and c2 are members of the field F, and if

the determinant

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌ ¤ 0, then the simultaneous solution s; t to the equations

a1sC b1t D c1 and a2sC b2t D c2 is

s D

ˇ̌̌
ˇ̌c1 b1

c2 b2

ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌

and t D

ˇ̌̌
ˇ̌a1 c1

a2 c2

ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌
:

There is a version of Cramer’s rule that solves three linear equations if the

determinant of coefficients is nonzero, but we will not have occasion to use it.

The reader should be familiar with the addition and multiplication of matrices

using the row by column rule, with scalar multiplication, as well as with the use of

matrices to describe the behavior of linear mappings. We may occasionally use the

method of calculating a determinant of a square matrix in which each ijth entry in

an arbitrary row (or column) is multiplied by .�1/iCj times the determinant of the

matrix obtained by deleting the ith row and jth column, and summing over all the

entries in that row (or column).

1.6 The basic building blocks of axiomatic theory

It is impossible to assign meaning to every term9 in a theory. To assign meaning to a

term, we must use other terms, and the meanings of these in turn must be stated using

yet other terms. This leads either to an infinite regression of terms and definitions

or, more likely, to a circular “definition” (as in a dictionary).

9 We use the words “term” and “word” interchangeably.
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To avoid this, it is customary in mathematics to begin with certain undefined

terms or primitive notions. By calling them “undefined” we mean that they

are initially undefined; they acquire meaning when axioms are invoked, so in a

sense, the axioms define them. Here, “point,” “line,” and “plane” are undefined

terms. These are the primary building blocks of our theory, which is constructed

using definitions, axioms, and theorems. Since it makes little sense to talk about

nonexistent entities, we shall assume that points, lines, and planes exist, even though

initially we do not know what they are.10

A definition assigns meaning to a word or symbol using undefined or previously

defined words. Definitions do not add new content to our theory, but provide

names and symbols which serve as shortcuts in our discourse, sparing us the

trouble of writing out full descriptions which otherwise would quickly become very

cumbersome. Be warned that in definitions we will often write “if” to mean “iff,”

and that some definitions are unacceptable. (See “On ‘good’ and ‘bad’ definitions”

below.)

An axiom is a statement that gives meaning to undefined terms, states the

relationship of such terms to other terms, or declares the existence of defined objects.

Axioms are the starting points of our theory and are given without any justification

or logical argument. Indeed, the set of axioms could be said to contain the entire

theory.

The axioms must be consistent—meaning that the entire set of axioms does not

give rise to any contradictions. Consistency of a set of axioms may be demonstrated

by exhibiting an example (model) of a mathematical system in which all the axioms

are true.

In this work we aim to make our axioms independent—meaning that no one

of them can be derived from others that have been stated. Building a theory from

independent axioms requires a lot more work (some of it tedious) than building

10“When we set out to construct a given discipline, we distinguish, first of all, a certain small group
of expressions of this discipline that seem to us to be immediately understandable; the expressions
in this group we call PRIMITIVE TERMS or UNDEFINED TERMS, and we employ them without
explaining their meanings. At the same time we adopt the principle: not to employ any of the other
expression[s] of the discipline under consideration, unless its meaning has first been determined
with the help of primitive terms and of such expressions of the discipline whose meanings have
been explained previously: : :” Alfred Tarski, Introduction to Logic: and to the Methodology of
Deductive Sciences, 4th ed., page 118, Dover (1995) [21].
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it from a carefully chosen set of axioms that are not independent. An extended

discussion of consistency and independence of axioms will be found in Chapter 21.

In an axiomatic system, a statement is said to be “true” if and only if it can

be deduced from the given axioms using the rules of logic. It is “false” if and

only if its negation is true. Axioms are logical consequences of themselves, so are

automatically considered true.

Within a given axiomatic system, it may be possible to construct a statement

whose truth value cannot be determined. That is to say, the system of axioms may

be incomplete.

A theorem is a statement about undefined or previously defined terms which

has been proved, meaning that it has been shown to be a logical consequence of

the axioms, set theory (which we have assumed), and previously proved theorems.

Many theorems having special importance to the development will have names or

descriptive labels.

A theorem that is a more or less immediate consequence of another theorem

is called a corollary of the main theorem. A theorem that is used mainly for the

proofs of other theorems is sometimes called a lemma. Items labeled remark are

less formal in character and may contain easily proved theorems (and their proofs),

which in turn may be cited in other proofs. An unproved statement that someone

thinks is true is a conjecture.

What is possible to prove as a theorem in our axiomatic theory is entirely

determined by the set of axioms we start with. This is why mathematicians fuss

so much over the choice of axioms.

On “good” and “bad” definitions: Definitions must be succinct and concise.

But it is inevitable that they will sometimes contain or imply statements. Any such

statements must be true in order for the definition to be acceptable. If a statement is

included that can’t be proved, the definition is “bad” and must be discarded.

Suppose, for example, a definition specifies a name for “the plane which satisfies

some property p.” Implicit in this definition is the statement that there is only one

such plane. If this can be proved to be true, the definition is “good.” Otherwise, the

definition is “bad.”
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1.7 Advice for the reader: labels, notation, figures,
and exercises

Item labels and reference numbers: Theorems and their corollaries, lemmas,

remarks, and definitions are usually (but not always) labeled with an acronym and a

number, as in “Theorem NEUT.15.” The acronym is intended to suggest the subject

for the chapter (in this case, neutral geometry). In some cases, different parts of

a chapter will have different acronyms. After the title of each chapter (except for

Chapter 21) the acronyms used therein are listed in parentheses.

Numbers are assigned consecutively; occasionally, especially where it has been

necessary to insert items late in the writing process, we have added decimal

extensions, as in “Remark PLGN.4.1” and “Definition PLGN.4.2.” Informal

explanatory notes are often not given an acronym or number.

Numbers in square brackets [n] at the end of citations refer to the corresponding

entry in “References.”

Notational conventions: Points will be denoted by slanted capital Roman

letters: A;B;C; : : : ;X;Y;Z. Both lines and planes will be denoted by calligraphic

script capitals such as E , L, M, N , P , or Q, etc. Space will be denoted by letters in

the form U or by calligraphic script, for instance S . These symbols may also be used

for other purposes–for instance, in later chapters RM routinely denotes a reflection

over the line M.

Figures: All four authors agree that the reader of a mathematical book should

draw his or her own figures as an aid to understanding. But they have adhered to

this ideal with varying degrees of rigor. There are some parts of the development in

which it might be easy to construct figures, but doing so could be misleading; for

instance, in Chapter 4 sides of a line are defined. At this point in the development, a

line might could more than two sides, but any graphical portrayal would inevitably

show a line having exactly two sides. This situation is not resolved until well

into Chapter 5 after the Plane Separation Theorem is proved and its consequences

explored. Thus there are no figures in Chapter 4 or the first part of Chapter 5.

In the final editing process we have removed some figures that now seem to us to

deprive the reader of the proper pleasure of constructing his or her own, and we have

inserted figures in other parts of the book where we think they might add clarity.

Exercises: Exercises in this book provide much more than routine practice of

techniques learned in preceding sections. Each requires careful thought and possibly
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some ingenuity. The starred ones (*) (for which we provide solutions online at the

home page for this book at www.springer.com) usually are an integral part of the

development of the theory in the book. You cannot routinely skip them without

missing much of what this book is about.

Even in those chapters (notably Chapters 5 on Pasch geometry, and Chapter 8 on

neutral geometry) where there are a great many exercises, you will find it worthwhile

to read each one, make a sketch and get in mind how to prove it, even if you don’t

actually put the details together. You can justify skipping an occasional exercise

only if you are quite sure you could construct the proof if you had to, and feel it is a

waste of your time to supply all the details. But beware that supplying all the details

may look deceptively simple when you give a theorem a cursory glance.

It is often possible by exercising a certain amount of ingenuity to cut through a

long and boring consideration of a list of cases. Indeed, much of what is beautiful

and satisfying in mathematics has been motivated by a desire to avoid boring

work. So, even if you can outline a “straightforward” proof of an exercise, and are

therefore tempted to skip it, once in a while you might sharpen your mathematical

insight by looking for a clever and more aesthetically satisfying proof. It is possible

that you may, by such means, create new proofs of theorems and solutions for

exercises that are more elegant than the ones we have given.

If that happens, please let us know. The authors are not geniuses, nor do we walk

on water.11

1.8 Axioms for incidence geometry

Undefined terms: For our geometry, the words point, line, and plane are

undefined terms. For now, the reader should try to avoid thinking of a point as a dot,

a line as something long, straight, and thin, a plane as a flat expanse, or space as a

solid. The familiar characteristics of lines and planes will emerge from the axioms

to follow, and are entirely determined thereby.12

Definition I.0. Space U is the set of all points. We may think of space as the

universe or the universe of discourse.

11Except for the third named author who, living in Michigan, routinely walks on (solidified) water.
12 The following has been attributed to David Hilbert, as a way of saying that in proving geometric
theorems we must use only the axioms, rather than any “real” interpretation of geometric objects:
“One must be able to say at all times—instead of points, straight lines, and planes—tables, beer
mugs, and chairs.”

www.springer.com
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Axiom I.0. Lines and planes exist and are subsets of space U.

Thus, U is the set of “everything.” We may, as we have already done, employ

the usual terminology of set theory which was introduced in Section 1.3, including

the terms member, belongs to, subset, union, intersection, disjoint, and the like. It

is quite correct to say things like “point A is a member of line L” or “point A is a

member of plane P” when we mean A 2 L or A 2 P . But this is geometry, so we

may also say “point A lies on line L (or plane P)” or sometimes “line L (plane P)

goes through (contains) point A.” If L � P , we will often say “L is contained in P”

or “P contains L.”

Definition I.0.1. (A) “Points A, B, and C are collinear” means that there is a line

L such that A, B, and C all lie on line L. More generally, if E is any set of

points, then E is collinear iff there exists a line L such that E � L. A set E is

noncollinear iff there is no line containing all the points of E .

(B) “Points A, B, C, and D are coplanar” means that there is a plane P such that

A, B, C, and D all lie on P . More generally, if E is any set of points, then E is

coplanar iff there exists a plane P such that E � P . A set E is noncoplanar

iff there is no plane containing all the points of E .

(C) If E is a set of two or more lines, the lines in E are said to be concurrent at a

point O if and only if the intersection of all members of E is fOg.
(D) A space on which the incidence axioms I.0 through I.5 are true is an incidence

space, and a plane therein is an incidence plane. The geometry these axioms

generate is incidence geometry.

Axiom I.1. There exists exactly one line through two distinct points.

Axiom I.2. There exists exactly one plane through three noncollinear points.

Axiom I.3. If two distinct points lie in a plane, then any line through the points is

contained in the plane.

Axiom I.4. If two distinct planes have a nonempty intersection, then their intersec-

tion has at least two members.

Axiom I.5. (A) There exist at least two distinct points on every line.

(B) There exists at least one noncollinear set of three points on every plane.

(C) There exists at least one noncoplanar set of four points in space.
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To visualize the meaning of these axioms you should feel free to draw pictures—

this is, after all, geometry. In Chapter 21 we will exhibit a model in which all 13

axioms in this book are true. Thus, an incidence space and incidence planes actually

exist, and incidence geometry is not vacuous.

What makes incidence geometry a new and interesting object is the fact that we

must now get along without many of the familiar ideas of Euclid. For example,

there is no concept of distance, so we must remember always to have the mental

reservation that, even though two points in our picture seem to be farther apart than

two other points, that has no meaning in the present context. Line segments do

not have length either. In this strange world, we cannot tell whether two lines are

perpendicular, whether two planes are perpendicular, whether a line is perpendicular

to a plane, or even whether or not a point on a line is between two other points on

the line. It may seem that there is very little we can do under such heavy restrictions,

but we will find and prove a number of theorems.

Before we start, we have some comments about the axioms. Axiom I.1 really

says two things: (1) if we have two points, there is a line containing both of them

(existence), and (2) no other line contains these two points (uniqueness). Similarly,

Axiom I.2 postulates both the existence and uniqueness of such a plane.

You might wonder why Axiom I.4 doesn’t say: “If two planes intersect, their

intersection is a line.” To tell the truth, initially we had it that way. Later we saw,

in light of Axiom I.1, it was enough to assume only the intersection contains two

points. One of the properties of a good set of axioms is leanness, so we removed the

unnecessary assumption, and will prove it as Theorem I.4.

1.9 A finite model for incidence geometry

Before we state any theorems about incidence geometry, it might be appropriate to

give an example of a geometry which satisfies these axioms. It will help show just

how seriously we take every word in the above definitions and axioms. According

to Axiom I.0, three essential ingredients of a geometry are space, lines, and planes.

It says space is a set of points. In this example, which is called a model, space is a

set of eight points. Lacking originality, we will call them A;B;C;D;E;F;G; and H.

Hence U D fA;B;C;D;E;F;G;Hg.
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Now we will list which subsets of U are lines:

fA;Bg fA;Cg fA;Dg fA;Eg fA;Fg fA;Gg fA;Hg
fB;Cg fB;Dg fB;Eg fB;Fg fB;Gg fB;Hg
fC;Dg fC;Eg fC;Fg fC;Gg fC;Hg
fD;Eg fD;Fg fD;Gg fD;Hg
fE;Fg fE;Gg fE;Hg
fF;Gg fF;Hg and

fG;Hg:
That is to say, every line contains exactly two points and every set containing

exactly two points is a line in this geometry. Now we must specify which subsets of

U are planes. They are:

fA;B;C;Dg fA;B;E;Fg fA;B;G;Hg fA;C;E;Gg
fA;C;F;Hg fA;D;E;Hg fE;F;G;Hg fC;D;G;Hg
fC;D;E;Fg fB;D;F;Hg fB;D;E;Gg fB;C;F;Gg
fA;D;F;Gg and fB;C;E;Hg.

The sets which are planes do not lend themselves to as succinct a description

as do those which are lines. However, the diagram in Figure 1.1 is a device for

remembering which sets are lines and which sets are planes in this model.

If you think of this cube as a solid in Euclidean space—in other words, a cube

like the ones you studied in high school geometry—then a set of points is a line in

this new geometry iff the points lie on a line in Euclidean geometry. The planes you

expect from Euclidean geometry are the first 12 listed. However, Axiom I.2 requires

the last two which are otherwise unexpected.

If you don’t find this memory device helpful or useful, forget it; nothing we say

here depends on it. In fact, it has some inherent dangers. For example, you must

avoid thinking there is anything on the line fA;Bg other than the two points A and B.

The line segments joining A and B and other pairs of points in the picture are parts of

the memory device, but are not part of our geometry. Finally, we must avoid thinking

there are any other points on the plane fA;B;C;Dg other than the points A, B, C,

and D, or that there is any concept here of congruence or perpendicularity—which

might be inferred if one takes the display of a cube too seriously.

It is an illuminating exercise to verify that the incidence axioms are satisfied by

this geometry. A quick check on Axiom I.1 might be to choose several pairs of
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Fig. 1.1 Illustrating an 8
point model.

A B

FE

C D

HG

points, such as B and F, for example, and note that there is a line containing these

two points and only one such line. A check for Axiom I.2 would be to choose sets

of three points (which are noncollinear because no line contains three points) and

verify that there is only one plane containing them. For instance, the only plane

containing B, D, and H is fB;D;F;Hg.
Checking all such possibilities is a tedious process that might best be left as an

exercise; hopefully, we may find the memory device helpful in carrying it out. For

example, if we choose the two points A and B, then there are three planes which

contain these two points: fA;B;C;Dg, fA;B;E;Fg, and fA;B;G;Hg. Of course, the

line containing A and B, fA;Bg, is a subset of each of these as required by Axiom I.3.

To address Axiom I.4, we look for two planes with a nonempty intersection;

fA;C;F;Hg and fB;D;F;Hg will do. Their intersection, fF;Hg, contains at least

two points as required by Axiom I.4. For Axiom I.5, it is not hard to check that

every line has at least two different points and that each plane has as least three

points which do not belong to the same line. Also, it is possible to find four points,

A, B, C, and F, for example, which are not in the same plane.

As we state and prove some theorems in incidence geometry, we may want to

look back at this model from time to time. It will often be an illuminating experience,

but sometimes we will find it disappointing because the model is so simple.

1.10 Theorems for incidence geometry

Remark I.1 (Easy consequences of the axioms).

(A) Axiom I.5(C) says that space contains at least four points, therefore points

exist, and space is nonempty. Axiom I.0 says that lines and planes exist and

are subsets of space; Axiom I.5(A) and (B) says that each line contains at least

two distinct points, and each plane contains at least three noncollinear points,

so lines and planes are nonempty.
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(B) Given any distinct points A and B there exists a point C such that A, B, and C

are noncollinear. To see this, let L be the line through A and B guaranteed by

Axiom I.1; if there were no point off L then all points of space would belong

to L, and every set of three points would be collinear. By Axiom I.0 planes

exist, and by Axiom I.5(B) each one contains a set of three noncollinear points,

a contradiction.

(C) There is a plane through any two points A and B of space. For by part (B) above

there exists a point C not on the line L containing A and B. By Axiom I.2 there

exists a plane Q containing A, B and C.

(D) (Criterion for noncollinear sets) If Axiom I.1 holds, to show that a set E is

noncollinear it is sufficient to show that there is a line L containing two points

of E which does not contain all the points of E . For if E were collinear, there

would be a line M containing E ; by Axiom I.1, M D L, so that L would

contain all of E , a contradiction.

(E) (Criterion for noncoplanar sets) If Axiom I.2 holds, then to show that a set E
is noncoplanar, it is sufficient to show that there is a plane P containing three

noncollinear points A, B, and C of E which does not contain all the points

of E . For if E were coplanar, there would be a plane Q containing E , and by

Axiom I.2 Q D P , so that P would contain all of E , a contradiction.

Several of the exercises at the end of this chapter are similar to the statements

just above and are about as easy to prove.

Definition I.2. (A) Let P and Q be distinct points. The line whose existence is

asserted in Axiom I.1 is denoted by
 !
PQ; this symbol is read “line PQ.”

(B) Let P, Q, and R be noncollinear points. The plane whose existence is asserted

in Axiom I.2 is denoted by
 �!
PQR.

Theorem I.3. If E and F are distinct planes both of which contain line L, then

E \ F D L.

Proof. Because both E and F contain L, L � E \ F . Suppose there were some

point A belonging to E \ F but not to L. By Axiom I.5, there exist points B and

C on L. Then A, B, and C would all lie on E , and they would all lie on F . Hence

by Axiom I.2 E would equal
 �!
ABC and F would equal

 �!
ABC, from which it would

follow that E would equal F . But this contradicts the fact that E and F are distinct.

This shows that there is no such point A, and we must conclude that L D E\F . ut
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Theorem I.4. If the intersection of two distinct planes is nonempty, then it is a line.

Proof. Let the two distinct planes be E and F . By Axiom I.4, there are two points,

A and B, such that fA;Bg � E \ F . By Axiom I.1, there is one and only one line, !
AB, containing A and B. By Axiom I.3,

 !
AB � E and

 !
AB � F , so by Theorem I.3,

E \ F D !AB. ut
Theorem I.5. Given a plane E and a point A belonging to E , there exists a line L
such that L � E and A … L.

Proof. By Axiom I.5 there exist three noncollinear points P, Q, and R belonging

to E . By Axiom I.1 there are three lines,
 !
PQ,
 !
QR, and

 !
PR; by Axiom I.3, these lines

are all contained in E ; and since P, Q, and R are noncollinear, the lines are distinct.

The proof now splits into two cases.

(Case 1: The given point A happens to be one of the three points P, Q, or R,

whose existence is assured by Axiom I.5.) In this case, the line determined by the

other two points can be taken to be L. This line does not contain A because if it did,

P, Q, and R would be collinear.

(Case 2: The given point A does not coincide with any of the points P, Q, or R.)

Then A cannot lie on more than one of the lines
 !
PQ,
 !
QR, and

 !
PR. To see this,

suppose for example that A belonged to both
 !
PQ and

 !
QR. Then these two lines

would have points A and Q in common, and hence by Axiom I.1 they would be the

same line, contradicting the fact that they are distinct. Therefore L can be taken to

be either of the two lines not containing A. ut
Theorem I.6 (Two intersecting lines determine a plane). Given lines L and M
such that L ¤M and L\M ¤ ;, there exists one and only one plane E such that

L � E and M � E .

Proof. There are two things to be proved: (1) there is such a plane E (existence),

and (2) there is not more than one such plane (uniqueness).

We first prove that there is such a plane E . Since L ¤M and L \M ¤ ;, by

Exercise I.1 below, L\M is a singleton fAg. By Axiom I.5 there exists a point B on

L and distinct from A, and there exists a point C on M distinct from A. Since A, B,

and C are noncollinear (if they were collinear, L and M would coincide, contrary

to our assumption), by Axiom I.2 there is a plane E such that fA;B;Cg � E . By

Axiom I.3, L � E and M � E .
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To prove that there is not more than one such plane, suppose on the contrary that

there were a second plane E 0 containing both L and M. Then all of the points A, B,

and C defined above would belong to E 0. Hence by Axiom I.2, E D E 0. ut
Theorem I.7. Let E be a plane. There exists a point P such that P … E .

Proof. By Axiom I.5 there exist points A, B, C, and D which are noncoplanar. If

fA;B;C;Dg were a subset of E , then A, B, C, and D would be coplanar. Hence at

least one member of fA;B;C;Dg does not belong to E , proving the theorem. ut
Theorem I.8. Let S and T be distinct planes whose intersection is the line L, and

let P be a member of L; then there exist lines M and N such that M � S , N � T ,

M ¤ L, N ¤ L, and M \ N D fPg. If M and N are any two lines satisfying

these conditions, then there is exactly one plane E such that M[N � E . Moreover,

E \ L D fPg.
Proof. Since S and T are distinct, there is at least one point S and at least one point

T such that S 2 S , T 2 T , S … T , and T … S . By Axiom I.1, there is one and only

one line M containing P and S, and one and only one line N containing P and T . By

Axiom I.3, M � S and N � T . Since S ¤ T , M ¤ N . Therefore by Exercise I.1

below, M\N contains one point. By the way M and N were defined, P 2M and

P 2 N , so M\N D fPg. Moreover, since S … T , and S 2M, M ¤ L; similarly,

N ¤ L.

Now let M and N be any two lines satisfying the conditions in the first part of

the theorem. These lines are distinct because if M were equal to N , then M \N
would be equal to M, for example, and hence by Axiom I.5 would contain at least

two points, which contradicts the fact that M \N D fPg.
By Theorem I.6, there is one and only one plane E such that M [N � E . Now

if S and E were equal then N would be a subset of S as well as a subset of T .

Therefore by Theorem I.3, S\T would be N . But S\T is L by definition, and we

have defined N so that N ¤ L. This contradiction shows that S and E are distinct

planes. Therefore by Theorem I.3, S \ E DM because M � S and M � E . By a

similar argument, T \E D N . Hence L\E D .S\T /\E D .S\E/\ .T \E/ D
M \N D fPg. ut
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Theorem I.9. Let P1, P2, and P3 be distinct planes such that each of the sets

P1 \ P2, P1 \ P3, P2 \ P3 is nonempty. Then there exist lines L1, L2, and L3
such that P2 \P3 D L1, P1 \P3 D L2, and P1 \P2 D L3. Furthermore, one and

only one of the following statements is true:

(1) L1 \ L2 D L1 \ L3 D L2 \ L3 D ;,
(2) L1 D L2 D L3, and

(3) L1 \ L2 \ L3 is a singleton.

Fig. 1.2 For Theorem I.9, showing alternative (1) at left, alternative (2) in the middle, and
alternative (3) on the right.

Proof. For a visualization, refer to Figure 1.2. By Theorem I.4, P2\P3 is a line L1,
P1 \ P3 is a line L2, and P1 \ P2 is a line L3. By set theory,

P1 \ P2 \ P3 D .P1 \ P2/ \ .P2 \ P3/ \ .P1 \ P3/ D L1 \ L2 \ L3:

Moreover, if X is any member of L1 \ L2, then X 2 ..P2 \ P3/ \ .P1 \ P3// D
P1 \ P2 \ P3 � L3. Hence L1 \ L2 � L3.

Now there are two mutually exclusive possibilities: either

(A) L1 \ L2 D L1 \ L3 D L2 \ L3 D ; (so that (1) is true), or

(B) .L1 \ L2/ [ .L1 \ L3/ [ .L2 \ L3/ ¤ ;.
In the latter case, at least one of the intersections is nonempty, and we can choose

the notation so that L1 \ L2 ¤ ;. Then either this set is a singleton or it is not. If it

is a singleton, then from what we have said above, L1 \ L2 \ L3 � L1 \ L2 � L3,
and hence L1 \ L2 \ L3 is also a singleton, and (3) is true. If L1 \ L2 is not a

singleton, then by Exercise I.2, L1 D L2, and since L1 \ L2 � L3, by Exercise I.3

L1 D L2 D L3, and (2) is true. ut
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Girard Desargues (1591–1661) lived in France and is especially known for his

work with projective geometry.

Theorem I.10 (Proposition of Desargues, nonplanar version). Let A, B, C, A0,
B0, and C0 be distinct points of the space U such that A, B, C are noncollinear, A0,
B0, and C0 are noncollinear,

 �!
ABC ¤ ��!A0B0C0, !AB and

 !
A0B0 are concurrent at C1 (i.e.,

these two lines are distinct and have only the point C1 in common),
 !
AC and

 �!
A0C0 are

concurrent at B1, and
 !
BC and

 �!
B0C0 are concurrent at A1. Then:

(A) A1, B1, and C1 are distinct and collinear. Moreover, none of the points A, B, C,

A0, B0, or C0 is on the line containing A1, B1, and C1.

(B) Either
 !
AA0 \ !BB0 D  !AA0 \ !CC0 D  !BB0 \ !CC0 D ; or

 !
AA0 \ !BB0 \ !CC0 is a

singleton.

Proof. See Figure 1.3. (A) By Axiom I.3,
 !
AB,
 !
AC, and

 !
BC are subsets of

 �!
ABC;

and
 !
A0B0,

 �!
A0C0, and

 �!
B0C0 are subsets of

 ��!
A0B0C0. Hence fA1;B1;C1g is a subset of �!

ABC \  ��!A0B0C0 (this follows from the properties of subsets and of the operation of

intersection which one learns in elementary set theory). By Theorem I.4,
 �!
ABC \ ��!

A0B0C0 is a line L. Thus A1, B1, and C1 are collinear, and members of both
 �!
ABC and ��!

A0B0C0.

Claim 1: None of the points A, B, C, A0, B0, or C0 belong to L. We show first that

A 62 L; similar arguments show the other assertions.

If A 2 L �  ��!A0B0C0, since C1 2  ��!A0B0C0, by Axiom I.3 B 2  !AC1 �  ��!A0B0C0.
Arguing similarly with A and B1, we get that C 2  ��!A0B0C0. Therefore the plane

Fig. 1.3 For Theorem I.10.
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 ��!
A0B0C0 contains the three noncollinear points A, B, and C, so by Axiom I.2, ��!
A0B0C0 D  �!ABC, contradicting our hypothesis that

 �!
ABC ¤  ��!A0B0C0. Therefore

A 62 L.

Claim 2: A1, B1, and C1 are distinct. If A1 D B1, then
 !
A1B D  !A1C D  !B1C D  !B1A

so that A, B, and C are collinear. This contradicts our hypothesis that they are

noncollinear. Similar arguments show that A1 ¤ C1 and B1 ¤ C1.

(B) We continue to use the notation of part (A) and we use its results.

Claim 3: The lines
 !
AA0,
 !
BB0, and

 !
CC0 are pairwise distinct. If

 !
AA0 D  !BB0, then A,

B, A0, and B0 would be collinear, and hence
 !
AB D  !A0B0, contrary to the (given)

fact that
 !
AB and

 !
A0B0 are concurrent (only) at C1. Hence

 !
AA0 ¤  !BB0. By similar

arguments,
 !
AA0 ¤ !CC0, and

 !
BB0 ¤ !CC0, proving the claim.

By Theorem I.6 there exist unique planes S , T , and U such that
 !
AB[ !A0B0 �

S ,
 !
AC [ �!A0C0 � T , and

 !
BC [ �!B0C0 � U .

Claim 4: S , T , and U are distinct. If S D T , then A, B, and C would lie in the

same plane as A0, B0, and C0, which would contradict the hypothesis that
 �!
ABC ¤ ��!

A0B0C0. Similar arguments show that S ¤ U and T ¤ U .

Claim 5: S \ T D  !AA0, S \ U D  !BB0, and T \ U D  !CC0. By Theorem I.4 S \ T
is a line, and this line contains both A and A0. Therefore S \ T �  !AA0 and by

Exercise I.3 S\T D !AA0. The other two assertions follow by similar arguments.

Claim 6:
 !
AB ¤ L,

 !
BC ¤ L,

 !
AC ¤ L,

 !
A0B0 ¤ L,

 �!
A0C0 ¤ L, and

 �!
B0C0 ¤ L. These

assertions follow immediately from the observation (see Claim 1) that none of

the points A, B, C, A0, B0, or C0 belong to L.

Claim 7: S \ L D fC1g, T \ L D fB1g, and U \ L D fA1g. Again, we argue only

the first of these assertions, as the others follow similarly. Since S is the unique

plane containing
 !
AB [ !A0B0, by the last assertion of Theorem I.8, S \L D fC1g.

We can now complete the proof. By Claim 5, S \ T D  !AA0, S \ U D  !BB0, and

T \ U D  !CC0. Thus we may apply Theorem I.9. Conclusion (2) of this theorem

is ruled out by Claim 3, so that either !
AA0 \ !BB0 D !AA0 \ !CC0 D !BB0 \ !CC0 D ;

or  !
AA0 \ !BB0 \ !CC0 is a singleton. ut

For a discussion of the significance of Desargues’ Theorem, see David Hilbert,

The Foundations of Geometry, Chapter V [10].
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1.11 Exercises for incidence geometry

The following set of exercises consists of further theorems which can be proved

from the incidence axioms alone. We strongly suggest that you review the item

“Exercises” in Section 1.7 above, which explains the role of exercises in this book,

which is different from their role in most textbooks. Answers to starred (*) exercises

may be accessed from the home page for this book at www.springer.com.

Exercise I.1�. If L and M are distinct lines and if L \M ¤ ;, then L \M is a

singleton.

Exercise I.2�. (A) If A and B are distinct points, and if C and D are distinct points

on
 !
AB, then

 !
CD D !AB.

(B) If A, B, and C are noncollinear points, and if D, E, and F are noncollinear points

on
 �!
ABC, then

 �!
DEF D �!ABC.

Exercise I.3�. If L and M are lines and L �M, then L DM.

Exercise I.4�. Let A and B be two distinct points, and let D, E, and F be three

noncollinear points. If
 !
AB contains only one of the points D, E, and F, then each of

the lines
 !
DE,
 !
EF, and

 !
DF intersects

 !
AB in at most one point.

Exercise I.5�. If E is a plane, L is a line such that E\L ¤ ;, and L is not contained

in E , then E \ L is a singleton.

Exercise I.6. Let D and E be distinct planes such that D \ E ¤ ;, so that (by

Theorem I.4) D \ E is a line L; let P be a point on D but not on L; and let Q be a

point on E but not on L. Then
 !
PQ and L are not coplanar.

Exercise I.7�. Given a line L and a point A not on L, there exists one and only one

plane E such that A 2 E and L � E .

Exercise I.8�. Let A, B, C, and D be noncoplanar points. Then each of the triples

fA;B;Cg, fA;B;Dg, fA;C;Dg, and fB;C;Dg is noncollinear.

Exercise I.9. There exist four distinct planes such that no point is common to all of

them.

Exercise I.10. Every plane E contains at least three lines L, M, and N such that

L \M \N D ;.
Exercise I.11. Every plane contains (at least) three distinct lines.

Exercise I.12. Space contains (at least) six distinct lines.

www.springer.com
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Exercise I.13�. If L is a line contained in a plane E , then there exists a point A

belonging to E but not belonging to L.

Exercise I.14. If P is a point in a plane E , then there is a line L such that P 2 L
and L � E .

Exercise I.15. If a plane E has (exactly) three points, then each line contained in E
has (exactly) two points.

Exercise I.16. If a plane E has exactly four points, and if all of the lines contained

in E have the same number of points, then each line contained in E has (exactly) two

points.

Exercise I.17. If each line in space has at least three points, then:

(1) Each point of a plane is a member of at least three lines of the plane;

(2) Each plane has at least seven points;

(3) Each plane contains at least seven lines.

Exercise I.18. In this exercise we will use the symbolism “P k Q” to indicate that

two planes P and Q do not intersect.

Consider what can happen if the restrictions of P1 \ P2, P1 \ P3, and P2 \ P3
being nonempty are removed in Theorem I.9. Sketch at least four possibilities (P1 k
P2 k P3 and P1, P2, and P3 are mutually disjoint, P1 D P2 k P3, P1 D P2 D P3,
P1 \ P2 D ;, but P1 \ P3 D L2 and P2 \ P3 D L1) and in each case determine

what (if anything) similar to Theorem I.9 can be proved within incidence geometry.

Exercise I.19. Count the number of lines in the 8-point model. Compare this with

Tn D n.nC1/
2

, triangular numbers, for n D 7. Compare it also with nCr D nŠ
rŠ.n�r/Š , the

number of combinations of n items taken r at a time, where n D 8 and r D 2.

Exercise I.20. Count the number of planes in the 8-point model. Compare this with

nCr for n D 8 and r D 3. Note the reduction by a factor of four due to the fact that

each plane has four points. Can you form a similar argument with r D 4?

Exercise I.21. Consider a 4-point model with the four points configured like the

vertices of a tetrahedron. Label these points A, B, C, and D. Specify six lines

and four planes and verify that this model satisfies the axioms and theorem of

incidence geometry. Compare this with Exercises I.7, I.10, I.12, and I.13. How does

Theorem I.9 apply in this geometry?



Chapter 2
Affine Geometry: Incidence
with Parallelism (IP)

Acronym: IP

Dependencies: Chapter 1

New Axioms: Axiom PS (strong parallel)

New Terms Defined: parallel, pencil, focal point, affine

Abstract: This brief chapter introduces the notion of parallelism, discusses the two

forms of the parallel axiom, defines affine geometry, and proves five elementary

theorems relating to intersecting planes and parallel lines.

2.1 Parallelism and parallel axioms

The early part of the main development of this book (Chapters 4 through 10) does

not invoke a parallel axiom, but does need the terminology of parallelism. For this

reason (and to further our understanding of the history of geometry), we take this

opportunity to digress for two chapters to discuss the parallel axiom and prove what

can be proved at this stage.

There are two forms of the parallel axiom; one of them claims more than the

other. We state both forms here, and whenever we use one, we will specify which

one. Before we give these axioms, we need to define parallelism.

Definition IP.0. (A) Lines L and M are parallel (notation: L kM) iff there is a

plane that contains them both and L \M D ;.

© Springer International Publishing Switzerland 2015
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(B) A line L and a plane P are parallel (notation: L k P) iff L \ P D ;.
(C) Two planes P and P 0 are parallel (notation: P k P 0) iff P \ P 0 D ;.
(D) A set E of two or more distinct lines on a plane P is a pencil iff either (1) the

members of E are concurrent at some point O, or (2) every member of E is

parallel to every other member of E. In case (1), the point O is the focal point

of E.

Notice that, by (A) alone, if two lines L and M are nonparallel (symbolically,

L 6k M) and lie in the same plane, they are intersecting (this is Exercise I.1), and

by (C), two planes are intersecting iff they are nonparallel. But beware that two

nonparallel lines do not necessarily intersect—there may not be a plane that contains

them both.

Axiom PS (Strong Form of the Parallel Axiom). Given a line L and a point P

not belonging to L, there exists exactly one line M such that P 2M and L kM.

(If such a line exists, it is denoted par.P;L/.)

Axiom PW (Weak Form of the Parallel Axiom). Given a line L and a point P

not belonging to L, there exists at most one line M such that P 2M and L kM.

Note that Axiom PW does not guarantee that such a line exists.

Axioms PS and PW have an interesting history. Euclid had an axiom in his

Elements which is equivalent to PW, but it appears he wasn’t sure it was as fully

self-evident as his other “self-evident truths,” since he postponed using it in his

development as long as he could. His contemporaries and others who followed

apparently felt the same way and tried to dispense with it as an axiom entirely

by showing it to be a consequence of the other axioms. For the next 2,000 years,

a favorite pastime was to try to prove it from the other axioms. It can be said that

almost every great mathematician to live during those 20 centuries tried his hand

at this proof. All these “proofs” turned out to be fallacious. Our Axiom PW was

formulated in the fifth century by Proclus Lycaeus (412–485), but its equivalence

to Euclid’s original parallel postulate was most widely publicized by the Scotsman

John Playfair (1748–1819) in the eighteenth century, so it is generally known as

“Playfair’s Axiom.”

Saccheri (1667–1733) thought of dealing with the mystery by considering the

collection of all the other axioms and the negation of Axiom PW, hoping to get

a contradiction, which would prove PW to be a consequence of the other axioms.

This new collection of axioms led to some really repugnant conclusions, but not to
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a contradiction. It isn’t completely clear exactly how or when the truth of the matter

dawned on the mathematical world, but it apparently happened during the first

third of the nineteenth century, and it is quite clear that Gauss (1777–1855), Bolyai

(1802–1860), and Lobachevsky (1792–1856) were all involved. For a very readable

account of the whole matter, see The History of Mathematics: An Introduction by

David M. Burton, 7th ed, McGraw Hill (2010) [4].

These three mathematicians (Gauss, Bolyai, and Lobachevsky) were apparently

the first to recognize explicitly the idea upon which this development of geometry is

founded: everyone is free to choose whatever axiom system pleases him/her, as long

as the axioms in it are consistent (i.e., don’t contradict each other). You have already

seen an example of this in incidence geometry. The geometry we get by choosing a

particular system may seem weird to us, but that is not sufficient logical grounds for

rejecting it.

Recall again the language of Axiom PS: given a line L and point P 62 L, there

is a line through P parallel to L and this is the only such line. A negation of

Axiom PS, then, would say either 1) there is no such line through P parallel to

L or 2) there is more than one such line. Either statement, separately, is a denial

of Axiom PS. Adjoining denial 1) to the rest of Euclid’s axioms yields elliptic

geometry; adjoining denial 2) yields hyperbolic (Lobachevskian) geometry; both

are non-Euclidean geometries.

This classification resulted from the way geometry developed in the nineteenth

century. In it, Euclidean geometry is parabolic. Historically, elliptic geometry

was also known as Riemannian, but modern usage tends to identify Riemannian

geometry as a branch of differential geometry.

In Chapter 8, neutral geometry, we will prove that parallel lines exist, so that

neutral geometry as we develop it there will be incompatible with elliptic geometry.

In hyperbolic geometry, there can be two coplanar intersecting lines M and N
and a third line L lying in the same plane which intersects neither M nor N , so

that the intuitively appealing claim that any line must intersect one of two lines that

intersect each other is false.

In this chapter we adopt Axiom PS rather than Axiom PW to explore a geometry

involving only incidence and parallelism.
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Definition IP.1. A plane P is an affine plane iff it is a subset of space where the

incidence axioms1 and Axiom PS hold. Affine geometry is the term used to describe

the geometry of such a plane.

2.2 Theorems of affine geometry

Theorems IP.2 and IP.3 do not use either Axiom PS or Axiom PW, and could have

been proved in incidence geometry. They do, however, use the terminology and

notation just introduced in Definition IP.0.

Theorem IP.2. Let E be a plane, and let M and L be parallel lines; if L � E and

M 6� E , then M k E .

Proof. By the definition of parallel lines (Definition IP.0(A)), there exists a plane F
containing L and M. Since L � E , L � F , and E ¤ F (because M 6� E), we have

L D E \ F , by Theorem I.3 and Exercise I.3.

Now suppose there is a point P such that P 2 .M \ E/. Since P 2M � F and

P 2 E , P 2 .E \ F/ D L, so P 2 .M \ L/. This contradicts the fact that M k L.

This contradiction shows that there is no such point P, so M k E . ut
Theorem IP.3. Let L be a line in a plane F and suppose L is parallel to a plane E
that intersects F . Then E \ F is a line M which is parallel to L.

Fig. 2.1 For Theorem IP.3.

F

E M L

Proof. For a visualization, see Figure 2.1. That E \ F is a line M follows

immediately from Theorem I.4. If L and M were not parallel, then, since they both

1Not all the incidence axioms apply to what goes on within a single plane; the ones that don’t are
Axiom I.2, Axiom I.4, and Axiom I.5(C); if later on we say that the incidence axioms hold for a
plane we will mean that the relevant axioms hold.
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are contained in F , they would intersect in some point A, say. This A would belong

to both L and M and since M D E \ F , this would contradict the fact that L k E .

Hence L kM. ut
Note that the proof of the next theorem depends on a parallel axiom.

Theorem IP.4. If F is a plane containing two lines L and M which intersect at a

point P, and if E is a plane which is parallel to both L and M, then E k F .

Proof. Suppose E and F were intersecting. Then by Theorem I.4 their intersection

would be a line N . If N were parallel to both L and M, we would have two

lines through P which are both parallel to N , which contradicts Axiom PS (and

Axiom PW). Hence N is not parallel to both L and M, and therefore must intersect

at least one of them, since all three lines lie in F . Suppose the notation is chosen so

that L intersects N . By Exercise I.1 their intersection is some point Q. Then Q 2 L
and Q 2 N � E , so that L\ E ¤ ;. This contradicts the hypothesis of the theorem

that L k E . Hence our assumption that E and F intersect is false, which means

E k F . ut
Theorem IP.5. Given a plane E and a point P not on E , there exists exactly one

plane F such that P 2 F and E k F .

Proof. There are two things to prove: (I, existence) that there is such a plane F , and

(II, uniqueness) that there is not more than one such plane.

(I: existence) By Axiom I.5(B) there exist noncollinear points Q, R, and S belonging

to E . By Axiom I.1 there exist lines L D  !QR and M D  !QS, and by Exercise I.1

L \M D fQg. By Axiom I.3, L and M are contained in E . By Exercise I.7

there exist planes G and H such that P 2 G, L � G, P 2 H, and M � H. By

Theorem I.3, G \ E D L and H \ E DM. By Axiom PS, there exists exactly

one line J such that P 2 J and J k L, and there exists exactly one line K such

that P 2 K and K kM. Now since J k L, J and L must lie in the same plane

(Definition IP.0), and by Exercise I.7, there is only one such plane, we have that

J � G. Similarly K � H.

Now J and K are distinct lines because if they were the same line, then L and

M would be two different lines through Q, both parallel to this line, contradicting

Axiom PS. Moreover, P 2 J \ K. Therefore by Theorem I.6 there is a plane F
such that J � F and K � F ; by Theorem IP.2 L k F and M k F , and by

Theorem IP.4, F k E .
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(II: uniqueness) We now show that there is not more than one plane satisfying the

conditions in the theorem. To this end, suppose there were a plane F 0 such that

P 2 F 0, E k F 0, and F 0 ¤ F . Then F \ F 0 ¤ ;, so by Theorem I.4 F \ F 0 is

a line. Call it M. By Exercise I.13 there is a point Q on F such that Q …M. By

Axiom I.5(B) there exists a point R on E . By Axiom I.2 there exists exactly one

plane G containing P, Q, and R. By Theorem I.4, G \ E , G \ F , and G \ F 0 are

lines we will call N , J , and J 0, respectively. By Exercise IP.7 below, J k N
and J 0 k N . Because of the way Q was chosen, J ¤ J 0. Since both J and J 0

contain P, this is a contradiction of Axiom PS, so our assumption that the plane

F 0 exists is false, and the only plane through P parallel to E is F . ut
Theorem IP.6 (Transitivity of Parallelism). If L, M, and N are distinct lines

such that L kM and M k N , then L k N .

Proof. If L, M, and N all lie in a plane, then this theorem is Exercise IP.2.

Suppose then that no plane contains all three lines. By Definition IP.0(A), there

exist planes F and G such that L � F , M � F , M � G, and N � G. By

hypothesis L ¤ N so there is a point P on N which does not belong to L; then by

Exercise I.7 there is a plane H such that L � H and P 2 H.

We now show that M is not contained in H. We know by hypothesis that M � G,

so if M � H, it follows that M � .G \H/ which is a line by Theorem I.4, and by

Exercise I.3, G \ H D M. Hence P would belong to M, which would contradict

the fact that M k N . So M is not contained in H, and we can apply Theorem IP.2

to get M k H.

This permits us to apply Theorem IP.3 to get G\H is a line N 0 and that N 0 kM.

Since P 2 H by the way H was constructed, and P 2 N � G we have that

P 2 G \H D N 0. By Axiom PS there can be only one line through P which is

parallel to M, so N D N 0, and N � H.

Now we have that L � H and N � H. So by Definition IP.0 of parallel lines, if L
and N were not parallel, they would intersect in some point A. But then there would

be two different lines through A, both parallel to M, which contradicts Axiom PS.

So L and N must be parallel. ut
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2.3 Exercises for affine geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise IP.1�. If L and M are parallel lines, then there is exactly one plane

containing both of them.

Exercise IP.2�. Let L, M, and N be distinct lines contained in a single plane.

(A) If L kM and M k N , then L k N .

(B) If L intersects M, then N must intersect L or M, possibly both.

Exercise IP.3�. Let E be a pencil of lines on the plane P . If L and M are distinct

members of E which intersect at the point O, then the members of E are concurrent

at O.

Exercise IP.4�. Let L, M, and N be distinct lines in a plane E such that L kM.

Then if L \N ¤ ;, M \N ¤ ;.
Exercise IP.5�. Let L1, L2, M1, and M2 be lines on the plane P such that L1 and

L2 intersect at a point, L1 k M1, and L2 k M2, then M1 and M2 intersect at a

point.

Exercise IP.6�. Let E and F be planes such that E k F , and let L be a line in E .

Then L k F .

Exercise IP.7�. Let E , F , and G be planes such that E k F , E \ G ¤ ;, and

F \G ¤ ;. Then E \G is a line L, F \G is a line M, and L kM. See Figure 2.2.

Fig. 2.2 For Exercise IP.7.

F

E

G
M

L

www.springer.com
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Exercise IP.8. If E , F , and G are distinct planes such that E k F and F k G, then

E k G.

Exercise IP.9. If E , F , and G are distinct planes such that E k F and E \ G ¤ ;,
then F \ G ¤ ;.
Exercise IP.10. If L and M are noncoplanar lines, then there exist planes E and F
such that E k F and L � E , and M � F .

Exercise IP.11. Let E and F be parallel planes, and let L be a line which is parallel

to E and which is not contained in F . Then L \ F D ;.
Exercise IP.12. Let E and F be parallel planes, and let L be a line which is not

parallel to E and which is not contained in E . Then L \ F ¤ ;.
Exercise IP.13. Given a plane E and a line L parallel to E , there exists a plane F
containing L and parallel to E .

Exercise IP.14. Let n be a natural number greater than 1. If there exists a line which

has exactly n points, then:

(1) Every line has exactly n points.

(2) For any point P and any plane E containing P, there are exactly n C 1 lines

through P and contained in E .

(3) For any line L and any plane E containing L, there exist exactly n � 1 lines

L1; : : : ;Ln�1 such that Lk k L for each k in Œ1I n � 1�.
(4) Each plane contains n.nC 1/ lines.

(5) Each plane contains n2 points.

(6) Given any plane E , there exists exactly n � 1 planes E1; : : : ; En�1 such that

Ek k E for each k in Œ1I n � 1�.
(7) There are n3 points in space.

(8) There are n2.n2 C nC 1/ lines in space.

(9) There are n2 C nC 1 lines through each point.

(10) There are nC 1 planes containing a given line.

(11) There are n2 C nC 1 planes through each point.

(12) There are n.n2 C nC 1/ planes in space.



Chapter 3
Collineations of an Affine Plane (CAP)

Acronym: CAP

Dependencies: Chapters 1 and 2

New Axioms: none

New Terms Defined: collineation, fixed point, fixed line, translation, parallel

relation, dilation, axial affinity, stretch, shear

Abstract: Collineations are bijections of a plane onto itself which map lines to lines;

this chapter explores the elementary properties of collineations on an incidence

plane on which the parallel axiom holds. Several types of collineations are studied,

among them translations, dilations, and axial affinities.

This chapter consists of two parts which, in the dependency chart in the Preface, are

called “Defs” and “Thms”; these parts are not labeled as such in this chapter, but are

mixed together.

The part designated “Defs” includes Theorems CAP.1 through CAP.4, Def-

initions CAP.0 (collineation), CAP.6 (translation), CAP.10 (parallel relation),

CAP.17 (dilation), and CAP.25 (axial affinity), together with Remark CAP.30, which

anticipates the later definition of two subclasses of axial affinity, the stretch and the

shear. These definitions and theorems are all valid on an incidence plane (that is,

one on which the incidence axioms hold),1 and thus depend only on Chapter 1.

1Again we remind the reader that this means the incidence axioms that apply to planes.
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The part designated “Thms” includes all other theorems and remarks in the

chapter. The proofs of these theorems need a parallel axiom; thus, they are valid

on an affine plane, and depend on Chapter 2. This need for a parallel axiom is why

we included “affine plane” as part of the name of the chapter.

Later, Chapter 4 defines betweenness, and Chapter 7 introduces a type of

collineation that preserves betweenness, called a belineation. The various types

of mappings listed above, as well as isometries, are eventually shown to be

belineations. These developments are briefly outlined in the Preface; Chapter 19

Section 19.2 contains a summary of the properties of these mappings and a chart

comparing them.

We do not show the existence of collineations in this chapter. This will be done

in later chapters, perhaps most importantly in Chapter 8 (neutral geometry), where

the existence of isometries follows from Axiom REF.

In this chapter we are indebted to Fundamentals of Mathematics, Volume II,

Behnke, et al, eds., published by MIT Press, Chapter 3, Affine and Projective Planes,

by R. Lingenberg and A. Bauer [2].

3.1 Collineations of an incidence plane

In order to fully appreciate the following definition it might be well to review the

terminology for images of sets mapped by functions, given briefly in Chapter 1,

Section 1.4.

We use lowercase Greek letters, especially ˛, ˇ, � , ı, �, �, � , ', and  for

collineations. We have already used E for a set of lines and will also use G and

M similarly.

Definition CAP.0. Let P be any plane containing points and lines, and let ˛ be any

mapping of P into itself.

(A) The mapping ˛ is a collineation of P iff

(i) ˛ is a bijection of P onto itself and

(ii) for every line L on P , ˛.L/ is a line on P .

(B) Q is a fixed point of ˛ iff ˛.Q/ D Q.

(C) L is a fixed line of ˛ iff ˛.L/ D L.
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Remark CAP.0.1. (A) The identity map { is a collineation.

(B) A fixed line does not necessarily contain any fixed points, nor does a fixed point

necessarily belong to some fixed line.

Theorem CAP.1. Let P be a plane containing points and lines and let ˛, ˇ, and �

be collineations of P .

(A) If A and B are distinct points on P , then ˛.
 !
AB/ D �����!˛.A/˛.B/.

(B) If L and M are lines on P , and if Q is a point on P such that L \M D fQg,
then ˛.L/ \ ˛.M/ D f˛.Q/g.

(C) ˇ ı ˛ is a collineation of P . (The set of collineations is closed under the

operation ı.)
(C’) � ı .ˇ ı ˛/ D .� ı ˇ/ ı ˛ (The operation ı is associative.)

(D) The identity { is a collineation, and is an identity for the operation ı.
(D’) ˛�1 is a collineation of P . (For each collineation ˛, there exists a collineation

which is its inverse.)

Proof. (A) Since ˛ is one-to-one, ˛.A/ and ˛.B/ are distinct points. Since ˛ is a

collineation, ˛.
 !
AB/ is a line. Since ˛.A/ and ˛.B/ belong to ˛.

 !
AB/ and to �����!

˛.A/˛.B/, by Axiom I.1, ˛.
 !
AB/ D �����!˛.A/˛.B/.

(B) By elementary mapping theory, since ˛ is a bijection,

˛.L/ \ ˛.M/ D ˛.L \M/ D ˛.fQg/ D f˛.Q/g:
(C) By elementary mapping theory, ˇ ı ˛ is a bijection of P . If L is a line on P ,

then so is ˛.L/ because ˛ is a collineation. Then since ˇ is a collineation,

ˇ.˛.L// is a line on P . By Definition CAP.0 ˇ ı ˛ is a collineation of P .

(C’) Immediate from associativity of mappings (see Chapter 1, Section 1.4).

(D) Proof is trivial.

(D’) Let L be any line on P . By Axiom I.5, there are two distinct points, A and

B say, on L. By the elementary theory of mappings, ˛�1 is a one-to-one

mapping of P onto itself because ˛ is, so ˛�1.A/ ¤ ˛�1.B/. By part (A)

above, ˛.
 ���������!
˛�1.A/˛�1.B// D  ��������������!˛.˛�1.A//˛.˛�1.B// D  !AB. On the other hand,

˛.˛�1. !AB// D  !AB. Thus ˛.
 ���������!
˛�1.A/˛�1.B// D ˛.˛�1. !AB//, so that (since ˛

is one-to-one) ˛�1. !AB/ D ˛�1.L/ D  ���������!˛�1.A/˛�1.B/. We have shown that if

L is any line on P then ˛�1.L/ is a line on P . By Definition CAP.0, ˛�1 is a

collineation on P . ut
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Corollary CAP.2. The set of collineations of a plane P onto itself forms a group

under composition of mappings.

Proof. This Corollary is an immediate consequence of Theorem CAP.1 and the

definition of a group (see Chapter 1, Section 1.5). ut
Theorem CAP.3. Let P be a plane containing points and lines, and let ˛ be a

collineation on P . If L and M are lines on P such that L kM, then ˛.L/ k ˛.M/.

Proof. Since L \M D ;, then by elementary mapping theory, ˛.L/ \ ˛.M/ D
˛.L \M/ D ˛.;/ D ; so that ˛.L/ and ˛.M/ are disjoint, ˛.L/ k ˛.M/. Here

we have used Definition IP.0. ut
Theorem CAP.4. Let P be a plane containing points and lines, and let ˛ be a

collineation on P .

(A) If A and B are fixed points of ˛, then
 !
AB is a fixed line of ˛.

(B) If L and M are fixed lines of ˛ which intersect at Q, then Q is a fixed point of ˛.

Proof. (A) By Definition CAP.0, ˛.A/ D A and ˛.B/ D B. By Theorem CAP.1(A),

˛.
 !
AB/ D �����!˛.A/˛.B/ D !AB. Hence by Definition CAP.0

 !
AB is a fixed line of ˛.

(B) By Theorem CAP.1(B) and Exercise I.1,

f˛.Q/g D ˛.L/ \ ˛.M/ D L \M D fQg
which completes the proof. ut

Again, we emphasize that up to this point, we have not used a parallel axiom; the

above development is valid in any space containing points, lines, and planes.

3.2 Collineations: mostly on translations

Theorem CAP.5. Let ˛ be a collineation on the affine plane P . If L is a fixed line

of ˛, and if Q is a fixed point of ˛ such that Q … L, then there exists a unique fixed

line M of ˛ containing Q such that M k L.

Proof. By Axiom PS, there exists a line M on P such that Q 2M and M k L. By

Theorem CAP.3, ˛.M/ k ˛.L/ D L. Since ˛.Q/ D Q;Q 2 ˛.M/. By Axiom PS,

there is only one line through Q parallel to L, so ˛.M/ DM. By Definition CAP.0,

M is a fixed line of ˛. ut
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Definition CAP.6. Let P be a plane, and let ˛ be a collineation of P . ˛ is a

translation of P iff ˛ has no fixed point, and for every line L on P either ˛.L/ k L
or ˛.L/ D L. If L is a line, ˛ is a translation, and ˛.L/ D L, then ˛ is said to be a

translation along L. That is to say, ˛ is a translation along any of its fixed lines.

Remark CAP.7. (1) If ˛.L/ D L, then L is a fixed line of ˛. A translation which

has a fixed line is a translation along that line.

(2) The identity { is not a translation, since it has fixed points.

(3) Definition CAP.6 is valid even in the absence of a parallel axiom.

Theorem CAP.8. Let P be an affine plane, and let ˛ be a translation of P . Then:

(A) If L is a fixed line of ˛, then for every point Q on L, L D ��!Q˛.Q/.

(B) If Q is any point on P , then
 ��!
Q˛.Q/ is a fixed line of ˛.

(C) The set of all fixed lines of ˛ is H˛ D f ��!X˛.X/ j X 2 Pg; every member of H˛

is parallel to all other members.

Proof. (A) Let Q be any member of L. Since, by Definition CAP.6, ˛ has no fixed

points, Q is not a fixed point of ˛, and therefore ˛.Q/ ¤ Q. Since L is a fixed

line of ˛, ˛.Q/ 2 L. By Exercise I.2(A), L D ��!Q˛.Q/.

(B) By Definition CAP.6, ˛.
 ��!
Q˛.Q// D  ��!Q˛.Q/ or ˛.

 ��!
Q˛.Q// k  ��!Q˛.Q/. By

Theorem CAP.1, ˛.
 ��!
Q˛.Q// D  ��������!˛.Q/˛.˛.Q//. Hence

 ��!
Q˛.Q/ and ˛.

 ��!
Q˛.Q//

are not parallel because they have the point ˛.Q/ in common. Therefore

˛.
 ��!
Q˛.Q// D ��!Q˛.Q/.

(C) Every fixed line for ˛ is a member of H˛ by part (A), and every member of H˛

is a fixed line for ˛ by part (B). Let A be any member of P , and let B be a point

off of
 ��!
A˛.A/, so that

 ��!
A˛.A/ ¤  ��!B˛.B/. If

 ��!
A˛.A/ and

 ��!
B˛.B/ were to intersect

at a point Q, say, then by Theorem CAP.4(B), Q would be a fixed point of ˛,

contrary to the fact that ˛ has no fixed points. Hence
 ��!
A˛.A/ k  ��!B˛.B/. ut

Theorem CAP.9. If A and B are distinct points on the affine plane P , there can

exist no more than one translation ˛ such that ˛.A/ D B.

Proof. Suppose that ˛ and ˇ are translations of P such that ˛.A/ D B and ˇ.A/ D
B, and let X be any member of P n fAg.

(Case 1: X 2 P n  !AB.) By Theorem CAP.8,
 ��!
X˛.X/ k  !AB and

 ��!
Xˇ.X/ k  !AB. By

Axiom PS,
 ��!
X˛.X/ D  ��!Xˇ.X/. By Theorem CAP.1, ˛.

 !
AX/ D  �����!˛.A/˛.X/ D  ��!B˛.X/

and ˇ.
 !
AX/ D �����!ˇ.A/ˇ.X/ D ��!Bˇ.X/. By Definition IP.0, ˛.X/ …  !AB and ˇ.X/ …  !AB.
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If
 !
AX D  ��!B˛.X/, then B D ˛.A/ (which is not equal to A) must belong to

 !
AX

and by Exercise I.2
 !
AX D  !AB; but this is impossible because X 62  !AB. Thus

 !
AX ¤ ��!

B˛.X/ and similarly
 !
AX ¤  ��!Bˇ.X/, so by Definition CAP.6,

 !
AX k  ��!B˛.X/ and

 !
AX k ��!

Bˇ.X/.

By Axiom PS,
 ��!
B˛.X/ D  ��!Bˇ.X/. Since

 ��!
X˛.X/ \  ��!B˛.X/ D f˛.X/g,  ��!Xˇ.X/ \ ��!

Bˇ.X/ D fˇ.X/g,  ��!X˛.X/ D  ��!Xˇ.X/ and
 ��!
B˛.X/ D  ��!Bˇ.X/, it follows from

Exercise I.1 that ˛.X/ D ˇ.X/.
(Case 2: X 2  !AB n fAg.) By Theorem CAP.8,

 !
AB is a fixed line of both ˛ and

ˇ so ˛.X/ 2  !AB and ˇ.X/ 2  !AB. Since X ¤ A and ˛ and ˇ are both one-to-one

(injective), ˛.X/ ¤ ˛.A/ D B and ˇ.X/ ¤ ˇ.A/ D B. By Exercise I.2,
 !
AB D ��!

B˛.X/ D  ��!Bˇ.X/. Let Y be any member of P n  !AB. Let Z D ˛.Y/, which, by

Case 1, is equal to ˇ.Y/. By Theorem CAP.1, ˛.
 !
XY/ D  �����!˛.X/˛.Y/ D  ��!˛.X/Z and

ˇ.
 !
XY/ D �����!ˇ.X/ˇ.Y/ D ��!ˇ.X/Z.

By essentially the argument used in Case 1,
 ��!
˛.X/Z ¤  !XY ¤  ��!ˇ.X/Z, so by

Definition CAP.6,
 !
XY k  ��!˛.X/Z and

 !
XY k  ��!ˇ.X/Z. By Axiom PS,

 ��!
˛.X/Z D  ��!ˇ.X/Z,

so ˛.X/ D ˇ.X/. ut
Definition CAP.10. If L and M are lines on a plane P , we will write L PE M iff

L D M or (L ¤ M and L k M). That is, L PE M if and only if L and M are

parallel or equal to each other. We will call PE the parallel relation. Note that this

definition is valid even in the absence of a parallel axiom.

Remark CAP.11. Let P be an affine plane.

(A) The relation PE defined in Definition CAP.10 just above is an equivalence

relation on the set of all lines on P and the set MM D fL j L � P and

L PE Mg is the equivalence class of M. To see this, note that reflexivity and

symmetry of PE are quite obvious, and transitivity is Exercise CAP.1.

(B) If ˛ is a collineation on P , ˛ is a translation of P iff ˛ has no fixed point and

for every L, ˛.L/ PE L. This is just a re-statement of Definition CAP.6.

Theorem CAP.12. Let P be an affine plane.

(A) Under composition of mappings, the set of translations of P , together with

the identity mapping, is a group. (For definition of a group, see Chapter 1,

Section 1.5)
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(B) Let M be a line on P and let MM D fL j L � P and L PE Mg, then

GM D f˛ j ˛ is a translation whose set of fixed lines is MM, or ˛ D {g is a

group under composition of mappings; that is to say, for any given line, the set

of all translations along that line, together with the identity {, is a group.

Proof. In Chapter 1, Section 1.4 we showed that the composition of mappings is

associative, so that in particular, composition of translations is associative.

(A) First we show that if ˛ is a translation, so is ˛�1. By Theorem CAP.1

˛�1 is a collineation on P , and hence by Definition CAP.0 ˛�1.L/ is

a line. Furthermore, ˛.˛�1.L// D L, and since ˛ is a translation, by

Remark CAP.11(B), ˛�1.L/ PE L. Since ˛ has no fixed points, ˛�1 has none,

so is a translation on P .

Now let L be any line on P , and let ˛ and ˇ be translations on P; then .ˇ ı
˛/.L/ D ˇ.˛.L//. By Remark CAP.11(B), ˛.L/ PE L and ˇ.˛.L// PE ˛.L/.
By Exercise CAP.1, ˇ.˛.L// PE L.

Suppose that ˇ ı ˛ has a fixed point X, and let Y D ˛.X/. Then ˇ.˛.X// D
ˇ.Y/ D X. We have just shown that ˛�1 is a translation and we know that

˛�1.Y/ D X; by Theorem CAP.9 there can be only one translation mapping Y

to X; it follows that ˇ D ˛�1 and ˇ ı ˛ D {. Therefore if ˇ ı ˛ ¤ {, ˇ ı ˛ has

no fixed point, and thus is a translation by Remark CAP.11(B).

The proof of (A) is complete once we observe that {�1 D { and { ı ˛ D
˛ ı { D ˛ for any translation ˛.

(B) To show that GM is a group, we need only show that if ˛ and ˇ are members

of GM, then so are ˇ ı ˛ and ˛�1. By hypothesis, { 2 GM, so if ˇ ı ˛ D {,

there is nothing to prove.

For every member L of MM, ˛�1.L/ D ˛�1.˛.L// D {.L/ D L and

ˇ.˛.L// D ˇ.L/ D L. This shows that every line in MM is fixed for these

mappings.

Now let � be any translation (either ˛�1 or ˇ ı ˛) for which every line

in MM is fixed. Suppose that L is a fixed line that does not belong to MM.

Then L is not parallel to M, and by Definition IP.0, there exists a point P

such that L \M D fPg. By Theorem CAP.4 P is a fixed point of � , and

by Definition CAP.6 this is impossible, since translations have no fixed points.

Thus L cannot be a fixed line for � , the set of fixed lines for � is exactly MM,

and � 2 GM. ut
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Theorem CAP.13. Let P be an affine plane, M be a line on P , and let MM D
fL j L � P and L PE Mg. If ˛ is a translation of P whose set of fixed lines is MM,

and ˇ is a collineation on P , then ˇ ı ˛ ı ˇ�1 is a translation whose set of fixed

lines is Mˇ.M/.

Proof. Let Q be any point on P . If Q were a fixed point of ˇ ı ˛ ı ˇ�1, then

ˇ.˛.ˇ�1.Q/// would be equal to Q and ˛.ˇ�1.Q// would be equal to ˇ�1.Q/ and

thus ˇ�1.Q/ would be a fixed point of ˛. This would contradict the fact that ˛ has

no fixed point. Hence ˇ ı ˛ ı ˇ�1 has no fixed point.

Let L be any line on P . Since ˛ is a translation, ˛.ˇ�1.L// PE ˇ�1.L/ by

Remark CAP.11(B). By Theorem CAP.3, ˇ.˛.ˇ�1.L/// PE ˇ.ˇ�1.L// D L. By

Remark CAP.11, ˇ ı ˛ ı ˇ�1 is a translation of P . If L is a fixed line of ˛, then

˛.L/ D L, and so .ˇ ı ˛ ı ˇ�1/.ˇ.L// D ˇ.˛.ˇ�1.ˇ.L//// D ˇ.L/. Thus ˇ.L/
is a fixed line of ˇ ı ˛ ı ˇ�1. Conversely, if ˇ.L/ is a fixed line of ˇ ı ˛ ı ˇ�1, so

that .ˇ ı ˛ ı ˇ�1/ˇ.L/ D ˇ.L/, then ˇ.˛.L// D ˇ.˛.ˇ�1.ˇ.L//// D ˇ.L/. Thus

˛.L/ D L and L is a fixed line of ˛. Summarizing, L is a fixed line of ˛ iff ˇ.L/ is

a fixed line of ˇ ı˛ ıˇ�1. Hence the set of fixed lines of ˇ ı˛ ıˇ�1 is Mˇ.M/. ut
Corollary CAP.14. Let P be an affine plane and let ˛ and ˇ be translations of P .

If L is a fixed line of ˛, then L is also a fixed line of ˇı˛ıˇ�1, and ˛ and ˇı˛ıˇ�1
have the same fixed lines.

Proof. By Theorem CAP.13, ˇ.L/ is a fixed line of ˇı˛ıˇ�1. By Theorem CAP.8,

ˇ.L/ PE L, so that L is a fixed line of ˇ ı ˛ ı ˇ�1. By the same argument, if M is

a fixed line for ˇ ı ˛ ı ˇ�1 it is also a fixed line for ˛ D ˇ�1 ı ˇ ı ˛ ı ˇ�1 ı ˇ. ut
Theorem CAP.15. (A) Let P be an affine plane and let ˛ and ˇ be translations of

P having different fixed lines. Then the fixed lines of ˇ ı ˛ are different from

the fixed lines of both ˛ and ˇ.

(B) If there exist translations on an affine plane P with different (non-parallel)

fixed lines, then for any translations ˛ and ˇ of P , ˛ ı ˇ D ˇ ı ˛.

Proof. (A) Let X 2 P . By Theorem CAP.8(B),
 ��!
X˛.X/ is a fixed line of ˛, ��������!

˛.X/ˇ.˛.X// is a fixed line for ˇ, and
 �����!
Xˇ.˛.X// is a fixed line for ˇ ı ˛

which intersects both
 ��!
X˛.X/ and

 ��������!
˛.X/ˇ.˛.X//. By assumption

 ��!
X˛.X/ ¤ ��������!

˛.X/ˇ.˛.X// and they are not parallel, so that by Exercise I.1
 ��!
X˛.X/ \ ��������!

˛.X/ˇ.˛.X// D f˛.X/g. Then ˇ.˛.X// 62  ��!X˛.X/, so that
 �����!
Xˇ.˛.X// is not

equal to either
 ��!
X˛.X/ or

 ��������!
˛.X/ˇ.˛.X// and is not parallel to either one.
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(B) The proof divides into two cases:

(Case 1: ˛ and ˇ have different fixed lines which are not parallel.) Let X be

any point of P . We show that ˇ.˛.X// D ˛.ˇ.X//.
(i) By Theorem CAP.8(B),

 ��������!
˛.X//ˇ.˛.X// and

 ��!
Xˇ.X/ are both fixed lines for

ˇ. Hence these two lines are parallel or equal by Theorem CAP.8(C).

But they cannot be equal, for then X, ˛.X/, and ˇ.X/ would be collinear,

contradicting our hypothesis that ˛ and ˇ have different fixed lines.

By Theorem CAP.1 ˛.
 ��!
Xˇ.X// D  ��������!˛.X/˛.ˇ.X// which is parallel to ��!

Xˇ.X/ by Definition CAP.6. Since both
 ��������!
˛.X/˛.ˇ.X// and

 ��������!
˛.X/ˇ.˛.X//

are parallel to the same line, by Theorem IP.6 they are parallel or equal to

each other. They both contain the point ˛.X/, so by Axiom PS they are the

same line, which we will call M. This is a fixed line for ˛.

(ii) By a similar argument both
 ��������!
ˇ.X/ˇ.˛.X// and

 ��������!
ˇ.X/˛.ˇ.X// are parallel

or equal to
 ��!
X˛.X/, and by Theorem IP.6 they are parallel or equal to each

other. They both contain the point ˇ.X/, so by Axiom PS they are the same

line, which we will call L. This is a fixed line for ˇ.

The lines L and M are distinct and not parallel, so by Exercise I.1 their

intersection is a single point. Both ˇ.˛.X// and ˛.ˇ.X// belong to both

L and to M, therefore ˇ.˛.X// D ˛.ˇ.X//, which is what we wanted to

prove.

(Case 2: ˛ and ˇ are translations with the same set ML of fixed lines.) There

exists a translation � having a fixed line M that is not in ML. Otherwise, all

translations would have the same fixed lines, contradicting our hypothesis that

there exist translations with different (nonparallel) fixed lines.

Now L and M are distinct and nonparallel. By part (A) L is not a fixed line

of either of the translations � ıˇ or � , so by case 1, � ı .ˇ ı˛/ D .� ıˇ/ı˛ D
˛ ı .� ıˇ/ D .˛ ı �/ ıˇ D .� ı˛/ ıˇ D � ı .˛ ıˇ/. Thus ˇ ı˛ D ˛ ıˇ. ut

Theorem CAP.16. Let P be an affine plane and let ˛ be a collineation of P . If ˛

has no fixed point and if its set E of fixed lines is the pencil of all lines parallel to

some given line M, then ˛ is a translation of P .

Proof. Let L be any line on P which is not a member of E and therefore intersects

the lines of E. Since ˛ has no fixed point, for every member X of L, ˛.X/ ¤ X.

Suppose there exists a point Q such that L\˛.L/ D fQg. If Q 62M, by Axiom PS,

there exists a unique line N parallel to M containing Q; if Q 2M let N DM. By
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hypothesis, N 2 E. Since N is a fixed line of ˛, ˛.Q/ 2 N . Since L\˛.L/\N D
fQg, and ˛.Q/ is in both ˛.L/ and N , ˛.Q/ D Q.

This contradicts our hypothesis that ˛ has no fixed point, so the supposition that

L and ˛.L/ are not parallel is false and L k ˛.L/. By Definition CAP.6, ˛ is a

translation of P . ut

3.3 Collineations: dilations

Definition CAP.17. Let P be a plane and let ˛ be a collineation of P . ˛ is a dilation

of P iff ˛ ¤ {, ˛ has a fixed point, and for every line L on P , either ˛.L/ k L, or

˛.L/ D L, i.e. ˛.L/ PE L.

Note (A) that this definition is valid even in the absence of a parallel axiom; and

(B) this definition is identical to that for a translation, except that a translation has

no fixed point.

Theorem CAP.18. Let P be an affine plane and let ˛ be a dilation of P such that

O is a fixed point of ˛; then

(A) every line through O is a fixed line of ˛,

(B) ˛ has no fixed point different from O,

(C) for every fixed line L of ˛, O 2 L, and

(D) if A is any point of P n fOg, then ˛.A/ is collinear with O and A.

Fig. 3.1 Showing action of a
dilation; double-headed
arrows show fixed lines.

There is only one fixed point O

Proof. For a visualization, see Figure 3.1.

(A) Let L be any line through O. Since ˛ is a collineation of P , ˛.L/ is a line on P .

Since O is a fixed point of ˛, O 2 ˛.L/, so that by Definition IP.0, L and ˛.L/
are not parallel to each other. By Definition CAP.17, ˛.L/ D L.
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(B) Suppose that ˛ has a fixed point P distinct from O and let X be any point distinct

from O and from P.

(Case 1: X 62  !OP.) By part (A),
 !
OX is a fixed line of ˛. Again, using part (A)

but substituting P for O,
 !
PX is a fixed line of ˛. Thus by Theorem CAP.4(B),

X is a fixed point of ˛.

(Case 2: X 2  !OP.) By Exercise I.13 there exists a point Q not on
 !
OP. By

Case 1, Q is a fixed point for ˛. Then X 62  !QP and substituting Q for P in

Case 1, we have that X is a fixed point of ˛.

It follows that every X in P is a fixed point for ˛, and therefore ˛ is the

identity mapping {, contradicting our assumption that ˛ ¤ {. Therefore ˛ has

no fixed point P distinct from O.

(C) If L were a fixed line of ˛ such that O … L, then by part (A) for every point Q of

L,
 !
OQ would be a fixed line of ˛ and fQg D L \ !OQ. By Theorem CAP.4(B),

Q would be a fixed point of ˛, contradicting the fact that O is the only fixed

point of ˛.

(D) Let A be any point of P and A ¤ O, and let L D  !AO. Since O is a fixed point,

O2˛.L/, so that ˛.L/ 6 k L; then, ˛.A/2˛.L/DL by Definition CAP.17. ut
Theorem CAP.19. Let P be an affine plane and let ˛ be a collineation of P such

that for every line L on P , ˛.L/ PE L. Then either ˛ D {, ˛ is a translation of P ,

or ˛ is a dilation of P .

Proof. If ˛ ¤ {, and if ˛ has no fixed point, it is a translation by Definition CAP.6.

If ˛ has a fixed point, it is a dilation by Definition CAP.17. ut
Theorem CAP.20. Let ı be a dilation of an affine plane P with fixed point O.

(A) A line L is a fixed line for ı iff O 2 L.

(B) A line L is a fixed line for ı iff for some Q 2 P n fOg, L D ��!Qı.Q/.

Proof. (A) This is Theorem CAP.18, parts (A) and (C), included for completeness.

(B) If L is a fixed line, by part (A), O 2 L; for any Q 2 L, ı.Q/ 2 L
so that by Exercise I.2 L D  ��!Qı.Q/. Conversely, let Q 2 P n fOg, and

suppose L D  ��!Qı.Q/ is not a fixed line, so that ı.
 ��!
Qı.Q// ¤  ��!Qı.Q/. By

Theorem CAP.1(A), ı.
 ��!
Qı.Q// D �������!ı.Q/ı.ı.Q//, which is not parallel to

 ��!
Qı.Q/.

Therefore by Definition CAP.17, ı.
 ��!
Qı.Q// D ��!Qı.Q/, and

 ��!
Qı.Q/ is a fixed line

for ı, contradicting our original assumption. ut
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Theorem CAP.21. Let P be an affine plane. The set of dilations of P with fixed

point O, together with { form a group under the operation of composition of

mappings. (For the definition of a group, see Chapter 1, Section 1.5.)

Proof. In Chapter 1, Section 1.4 we showed that composition of mappings is

associative, so that in particular the composition of dilations is associative. Let ˛ and

ˇ be dilations of P with fixed point O and let L be any line on P . O is a fixed point

of ˛�1 and of ˇ ı˛. Since L D ˛.˛�1.L// by Definition CAP.17, ˛�1.L/ PE L. By

Definition CAP.17, ˛�1 is a dilation of P . Since ˛.L/ PE L and ˇ.˛.L// PE ˛.L/,
by Theorem IP.6, ˇ.˛.L// PE L. By Definition CAP.17, either ˛ ıˇ is a dilation of

P , or ˛ ı ˇ D {. ut
Theorem CAP.22. Let P be an affine plane and let ˛ be a collineation of P such

that ˛ has one and only one fixed point O. If every line containing O is a fixed line

for ˛, then

(A) every fixed line M for ˛ contains O, and

(B) ˛ is a dilation of P .

Proof. (A) We prove the contrapositive: suppose M is a fixed line of ˛ not

containing the point O. If Q is any point on M, then by hypothesis
 !
OQ is a

fixed line of ˛, and by Theorem CAP.4(B), Q is a fixed point of ˛. But Q ¤ O

so is not a fixed point, a contradiction. Hence our supposition is false and M is

not a fixed line of ˛.

(B) If J is any line on P such that O 62 J , then by part (A), J is not a fixed line of

˛, so is distinct from ˛.J /. Since ˛.O/ D O and ˛ is a bijection, O is the only

point X such that ˛.X/ D O. Therefore, since O 62 J , O 62 ˛.J /. By part (A)

˛.J / is not a fixed line for ˛.

Assume J and ˛.J / are not parallel, so that they intersect at a point G. By

hypothesis
 !
OG is a fixed line of ˛, and so is distinct from either J or ˛.J /.

Thus J , ˛.J / and
 !
OG are distinct lines which are concurrent at the point G.

Since
 !
OG is a fixed line, ˛.G/ belongs to

 !
OG; it also belongs to ˛.J /, so

by Exercise I.1 ˛.G/ D G, and G is a fixed point of ˛. This contradicts the

hypothesis that there are no fixed points other than O. Hence our assumption is

false, and J k ˛.J /. By Definition CAP.17, ˛ is a dilation of P . ut
Theorem CAP.23. Let P be an affine plane, O be a point on P , and ı a dilation of

P with fixed point O.
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(A) Let ' be a collineation of P such that '.O/ D P (that is, '�1.P/ D O), where

P is some point of P . Then ' ı ı ı '�1 is a dilation with fixed point P.

(B) If ' is a collineation of P with fixed point O, then ' ı ı ı '�1 is a dilation of P
with fixed point O.

(C) If P ¤ O is a point of P and � is a translation such that �.P/ D O, then

��1 ı ı ı � is a dilation with fixed point P.

Proof. (A) First we show that '�1.P/ is a fixed point of ı iff P is a fixed point for

' ı ı ı '�1.
If '�1.P/ is a fixed point of ı, ' ıı ı'�1.P/ D ' ı'�1.P/ D P, so that P is

a fixed point for 'ııı'�1. If P is a fixed point for 'ııı'�1, 'ııı'�1.P/ D P

so that ı ı '�1.P/ D '�1 ı ' ı ı ı '�1.P/ D '�1.P/ and '�1.P/ is a fixed

point for ı.

Since ' is one-to-one, if ' ı ı ı '�1 were to have another fixed point, there

would be another fixed point for ı, which is impossible since by assumption ı

is a dilation (cf Theorem CAP.18(B)). Thus ' ı ı ı '�1 has exactly one fixed

point P.

Let M be any line containing P, and define L D '�1.M/. Since ' is a

collineation, so is '�1, and L is therefore a line. Since P 2M, O D '�1.P/ 2
'�1.M/ D L; by Theorem CAP.18(A), L is a fixed line for ı.

Then ' ı ı ı '�1.M/ D ' ı ı.L/ D '.L/ DM so that M is a fixed line

for ' ıı ı'�1. By Theorem CAP.22, ' ıı ı'�1 is a dilation with fixed point P.

(B) To prove (B), let P D O in part (A).

(C) To prove (C), let ' D ��1 in part (A). Then '�1 D � , and '�1.P/ D �.P/ D O.

The translation � is a collineation, so that ' is also a collineation. The result

follows from part (A). ut
Theorem CAP.24. Let P be an affine plane, O be a point on P , and let A and B

be distinct points distinct from and collinear with O. Then there exists at most one

dilation ˛ of P with fixed point O such that ˛.A/ D B.

Proof. If ˛ and ˇ are dilations of P each with fixed point O such that ˛.A/ D B

and ˇ.A/ D B, then A is a fixed point of ˇ�1 ı ˛. By Theorem CAP.21 ˇ�1 ı ˛ is a

dilation; by Theorem CAP.18, if ˇ�1 ı ˛ ¤ { it has no fixed point¤ O. Since it has

such a fixed point, it must be {, so that ˇ D ˛. ut
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3.4 Collineations: axial affinities

Definition CAP.25. Let P be a plane and let ˛ be a collineation of P . Then ˛ is

an axial affinity of P iff ˛ ¤ { and there exists a line M (the axis of ˛) such that

every point on M is a fixed point of ˛ (and therefore M is a fixed line).

Note that this definition is valid even in the absence of a parallel axiom. Later

(Remark CAP.30) we anticipate the definition in Chapter 16 of two subclasses of

axial affinities, stretches and shears.

Theorem CAP.26. Let P be an affine plane and let ˛ be an axial affinity of P with

axis M.

(A) If N is a fixed line of ˛ such that N and M are distinct and not parallel and if

L k N , then L is a fixed line of ˛.

(B) The set of fixed points of ˛ is M.

(C) For every point Q on M, there exists at most one fixed line L ¤M of ˛ such

that Q 2 L.

(D) If L and N are fixed lines of ˛ such that M, L, and N are distinct, then L k N .

Proof. (A) By Theorem CAP.3, ˛.L/ k ˛.N /. Since N is a fixed line of ˛,

˛.N / D N . Thus L k N D ˛.N / k ˛.L/, and by Exercise IP.2(A),

L PE ˛.L/.
Again by Exercise IP.2(A), L and M are not parallel; therefore there exists

a point A such that L \M D fAg. By Definition CAP.25, ˛.A/ D A, and thus

A 2 ˛.L/. By Axiom PS, ˛.L/ D L.

(B) If ˛ had a fixed point off of M, then by Exercise CAP.3, ˛ would be the identity

mapping {. This contradicts Definition CAP.25. Hence ˛ has no fixed point off

of M.

(C) Suppose there exist two distinct fixed lines L and N of ˛ such that Q 2 L and

Q 2 N and let X be any member of P nM. By Axiom PS, there exist unique

lines G and H on P such that X 2 G, X 2 H, G k L, and H k N . By part

(A), each of the lines G or H is a fixed line of ˛. By Theorem CAP.4, X is a

fixed point of ˛. Since X is any member of P nM, and since every member of

M is a fixed point of ˛, ˛ D {. This contradicts definition CAP.25. Hence our

supposition that distinct fixed lines L and M exist is false.
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(D) By part (C), L and N cannot intersect at a point on M. If L and N were to

intersect at a point off of M, then by Theorem CAP.4, that point would be a

fixed point of ˛, contrary to part (B). Hence L k N . ut
Theorem CAP.27. Let P be an affine plane and let ˛ be an axial affinity of P with

axis M.

(A) If L is a fixed line of ˛ distinct from M, then for every point Q 2 .L nM/,

L D ��!Q˛.Q/.

(B) If there exists a fixed line L of ˛ such that L and M are not parallel, then the

set of fixed lines of ˛ is fJ j J is a line on P and J PE Lg [ fMg.
(C) If there exists a fixed line L of ˛ such that L kM, then the set of fixed lines of

˛ is fJ j J is a line on P and J PE Mg.
Proof. (A) Since L is a fixed line of ˛, ˛.Q/ 2 L. By Axiom I.1, L D ��!Q˛.Q/.

(B) If J is a line on P such that J k L, then by Theorem CAP.26(A), J is

a fixed line of ˛. If J ¤ L is a fixed line of ˛ other than M, then by

Theorem CAP.26(D), J k L.

(C) If N is a fixed line of ˛ distinct from both L and M, then by

Theorem CAP.26(D) N k L, and by Theorem IP.6 N kM.

Conversely, if N k M and N is not a fixed line, ˛.N / ¤ N so that for

some point Q 2 N , ˛.Q/ 62 N . If
 ��!
Q˛.Q/ were parallel to M, then both

 ��!
Q˛.Q/

and N would be lines through Q parallel to M, contrary to Axiom PS.

Therefore
 ��!
Q˛.Q/ and M are not parallel, and there exists a point X such that

fXg D M \ ��!Q˛.Q/. By Theorem CAP.1 ˛.
 ��!
Q˛.Q// D  ��������!˛.Q/˛.˛.Q// so that

˛.Q/ 2 ˛. ��!Q˛.Q//; also ˛.X/ D X so that by Axiom I.1 ˛.
 ��!
Q˛.Q// D  ��!Q˛.Q/,

which therefore is a fixed line.

But
 ��!
Q˛.Q/ intersects M at the point X, contradicting the first part of part

(C) of this proof, which says that every fixed line is parallel to M. Therefore if

N kM, N is a fixed line. ut

Theorem CAP.28. Let P be an affine plane and M be a line on P .

(A) Let A.M/ be the set of axial affinities with axis M, then under composition

of mappings A.M/ [ f{g is a group. (For definition of a group, see Chapter 1,

Section 1.5.)
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(B) Let L be a line on P distinct from M and let A�.M;L/ be the set of affinities

of P with axis M such that L is a fixed line of every member ˛ of A�.M;L/,

then A�.M;L/ [ f{g is a group under composition of mappings.

Proof. In Chapter 1, Section 1.4 we showed that the composition of mappings is

associative.

(A) Let ˛ and ˇ be axial affinities of P with axis M. The set of fixed points of ˛�1

is M, so ˛�1 is an affinity with axis M. (cf Definition CAP.25) Furthermore,

every member of M is a fixed point of ˇ ı˛. If ˇ ı˛ has a fixed point Q which

is a member of P nM, then by Exercise CAP.3, ˇ ı ˛ D {.
Otherwise if ˇ ı ˛ has no fixed point which is a member of P nM, then by

Definition CAP.25 ˇ ı ˛ is an axial affinity of P with axis M. Hence A.M/ is

a group under composition of mappings.

(B) Let ˛ and ˇ be axial affinities of P , each with axis M and with fixed line L.

By part (A) the set of fixed points for both ˛�1 and ˇ ı ˛ is M, and the set

A.M/ is a group. Thus to show that A�.M;L/ is a subgroup, all we need to

do is show that L is a fixed line for both ˇ ı ˛ and ˛�1.
L is a fixed line of ˛ so that ˛.L/ D L, hence ˛�1.L/ D ˛�1.˛.L// D L,

and L is a fixed line for ˛�1. Since L is a fixed line of both ˛ and ˇ, ˇ.˛.L// D
ˇ.L/ D L so L is a fixed line of ˇ ı ˛, as required. ut

Theorem CAP.29. Let P be an affine plane, M be a line on P , and A and B be

distinct members of P n M, then there exists at most one axial affinity ˛ of P with

axis M such that ˛.A/ D B.

Proof. Let ˛ and ˇ be axial affinities of P with axis M such that ˛.A/ D B

and ˇ.A/ D B. Since A.M/ [ f{g is a group (cf Theorem CAP.28), ˇ�1 ı ˛ is a

member of A.M/ [ f{g. Since ˇ�1.˛.A// D A, A is a fixed point of ˇ�1 ı ˛, i.e.

.ˇ�1 ı ˛/.A/ D A. By Exercise CAP.3, ˇ�1 ı ˛ D {, i.e., ˛ D ˇ. ut

Remark CAP.30. In Chapter 16 (Axial affinities of a Euclidean plane) we will

define two types of axial affinity with axis M: ' will be a stretch if there exists a

line L which is a fixed line for ' but is not parallel to M, and the set of fixed lines

of ' is fMg [ fJ j J PE Lg; ' will be a shear if the set of fixed lines of ' is

fJ j J PE Mg. For a visualization see Figure 3.2.
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Axes of fixed points

M

M

Fig. 3.2 Showing action of a stretch (left) and a shear (right); double-headed arrows show fixed
lines.

In Chapter 8 (neutral geometry) we will meet a type of collineation called a

reflection, which is a stretch. In Chapter 16 we will show the existence of stretches

other than reflections.

3.5 Exercises for collineations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise CAP.1�. Let P be an affine plane and let L, M, and N be lines on P . If

L PE M and M PE N, then L PE N.

Exercise CAP.2�. Let P be any plane where the incidence axioms hold, ' be a

collineation of P , and A, B, and C be points on P .

(A) If A, B, and C are collinear, then '.A/, '.B/, and '.C/ are collinear.

(B) If A, B, and C are noncollinear, then '.A/, '.B/, and '.C/ are noncollinear.

(C) A, B, and C are collinear iff '.A/, '.B/, and '.C/ are collinear.

(D) A, B, and C are noncollinear iff '.A/, '.B/, and '.C/ are noncollinear.

Exercise CAP.3�. Let ' be a collineation of an affine plane P , M a line on P
such that every point on M is a fixed point of ', and Q a fixed point of ' such that

Q 2 .P nM/. Then ' D {.
Exercise CAP.4�. Let P be an affine plane, L1, and L2 be parallel lines on P , O1 be

a member of L1, O2 be a member of L2, and � be the translation (cf Theorem CAP.9)

of P such that �.O1/ D O2, then �.L1/ D L2.

Exercise CAP.5�. Let P be an affine plane, ' be a dilation of P with fixed point

O, and  be a stretch of P with axis M through O, then ' ı  D  ı '. (We take

Remark CAP.30 as a definition of a stretch.)

www.springer.com


Chapter 4
Incidence and Betweenness (IB)

Acronym: IB

Dependencies: Chapter 1

New axiom: Axiom BET (betweenness)

New Terms Defined: between, segment, ray, open, closed, endpoint, triangle, edge,

opposite edge, convex, Q-side, halfplane, opposite side

Abstract: This chapter defines a betweenness relation and uses it to define seg-

ments, rays, and triangles. A few theorems are proved in the resulting IB geometry.

These are foundational for the rest of the development.

We now temporarily suspend the parallel Axioms PS and PW. This will launch us

on a new “thread” of inquiry separate from that of Chapters 2 and 3, which will take

us through Chapter 10, developing as much geometry as possible without invoking

any parallel axiom. In Chapter 11 we will re-invoke Axiom PS, and combine the

results of this new thread with that of Chapters 2 and 3 to get Euclidean geometry.

Meanwhile, in this chapter we will use only the axioms and results from

Chapter 1, Theorems CAP.1 through CAP.4, the definitions from Chapter 3 that

do not depend on a parallel axiom, and concepts we introduce here.
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4.1 Definition and properties of betweenness

One of the major defects in Euclid’s treatment of geometry was his failure to deal

with betweenness. As a result, if we take his axioms literally, it is possible to prove,

for example, that all triangles are isosceles (having two edges of equal length).

To avoid such pitfalls, we construct a definition of betweenness to conform with

our intuitive notion of that term. We do this by specifying a set called a betweenness

relation. We do not describe this set by saying exactly what its members are; instead,

we state various properties that describe how its members interact with points and

lines, and with each other.

In this section, U is space as defined in Definition I.0, in which Axioms I.0

through I.5 hold. In this context, collinearity has meaning—that is, U contains

subsets that are lines.

Definition IB.1. A betweenness relation on U (or one of its subsets) is a nonempty

set B of ordered triples .A;B;C/ of points having the following Properties B.0

through B.3. To indicate that a triple .A;B;C/ is a member of B we will write

A B C; this is read “B is between A and C.”

B.0 (distinctness and collinearity): For any points A, B, and C, if A B C, then

A, B, and C are distinct collinear points.

B.1 (symmetric property): For any points A, B, and C, if A B C, then C B A.

B.2 (trichotomy property): If A, B, and C are any distinct collinear points,

exactly one of the following statements is true:

A B C, B A C, A C B.

B.3 (extension property): If A and B are any two distinct points, there exists a

point C such that A B C.

You may wish to check the properties in this definition with a sketch or mental

picture to assure yourself that this is indeed the betweenness you have known all

your life.

Axiom BET. There exists a betweenness relation.

Definition IB.1.1. A space on which all the incidence axioms and Axiom BET are

true is called Incidence-Betweenness space or simply IB space. A plane in this

space will be called an IB plane, and the geometry of IB space IB geometry.
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IB geometry is sufficiently rich to allow us to introduce several concepts that will

be with us throughout the rest of the book, such as triangle, convex set, and opposite

sides of a line in a plane. But we can prove only a few new theorems.

(A) Sets and ordered triples: Be sure to read this part carefully if you are unsure

of your understanding of the term ordered triple. (cf Chapter 1 Section 1.3.)

There are six different ways to describe an (unordered) set containing

exactly three points A, B, and C; we list them here: fA;B;Cg D fB;A;Cg D
fA;C;Bg D fC;B;Ag D fC;A;Bg D fB;C;Ag.

An ordered triple is a set fA;B;Cg of points together with a one-to-one cor-

respondence between this set and the set f1; 2; 3g. We denote such an ordered

triple by listing the elements in the order specified by this correspondence, and

enclosing the list in ordinary parentheses.

Thus the ordered triple .A;B;C/ is the set fA;B;Cg where A corresponds

to 1, B to 2, and C to 3; the ordered triple .C;A;B/ is the same set where A

corresponds to 2, B to 3, and C to 1. Any set fA;B;Cg can be “ordered” into

six distinct (different) ordered triples, namely .A;B;C/, .B;A;C/, .A;C;B/,

.C;B;A/, .C;A;B/, and .B;C;A/.

(B) Implications of Properties B.0–B.3: According to Definition IB.1, a between-

ness relation B on space U is a collection of ordered triples of members of U,

which satisfies conditions B.0 through B.3. But not every set fA;B;Cg can be

“ordered” by the process described in part (B) into an ordered triple that is a

member of B. Property B.0 says that this can be done only for sets fA;B;Cg
consisting of distinct collinear points. Thus, our definition of betweenness is

essentially a definition on lines.

In the coordinate plane it is not possible to get a member of B by ordering

the points .0; 0; 0/, .1; 0; 0/, and .0; 1; 0/ because these points are not collinear.

Also, it makes no sense to say that a point B is “between” A and A. One object

cannot be “between” another (single) object.

On the other hand, Property B.2 says that if a set fA;B;Cg consists of distinct

collinear points, these can be ordered in such a way that the resulting ordered

triple (call it .D;E;F/) belongs to B. In this case, Property B.1 says that the

ordered triple .F;E;D/ also belongs to B. Thus, if fA;B;Cg can be ordered

into a triple in B, there are exactly two ways to do it.

(C) A betweenness relation is nonempty: We state in the first sentence of

Definition IB.1 that a betweenness relation is nonempty, but this require-
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ment is actually redundant. For by Axiom I.0, space U contains lines; by

Axiom I.5(A) every line contains at least two points A and B; by property B.3

of Definition IB.1 there exists a point C 2  !AB such that A B C, so that the

ordered triple .A;B;C/ belongs to B, which is therefore nonempty.

It is tempting to apply Property B.3 again to show that there exists another

point D 2  !AB and eventually that there are infinitely many points in
 !
AB. But

the argument breaks down because it does not follow from A B C and A C D

that A B D, as we will shortly discuss in Remark IB.4.2. Thus we may not

conclude at this stage that D 2  !AB. That there are infinitely many points on a

line will be established later in Chapter 5 as Corollary PSH.22.2.

(D) Alterations to a betweenness relation: A certain amount of freedom is

possible in defining a betweenness relation. Given a betweenness relation B

containing .A;B;C/ (and, by Property B.1, also containing .C;B;A/), we could

define a new set C to be the same as B except that it contains .B;A;C/

and .C;A;B/ instead of .A;B;C/ and .C;B;A/. Then C would also be a

betweenness relation.

For example, the standard betweenness relation for the integers includes the

triples .2; 3; 4/ and .4; 3; 2/. If we let C contain the same ordered triples, with

the exception that .3; 2; 4/ is substituted for .2; 3; 4/ and .4; 2; 3/ for .4; 3; 2/, it

is quite easy to verify that all the Properties B.0 through B.3 hold for C. Thus C

is also a betweenness relation on the integers, even though it does not agree with

our intuition. We will use this possibility in Chapter 21, Section 21.8, where,

on the basis of models constructed there, we justify a number of the assertions

made later in this chapter, particularly those in Remarks IB.3.1 and IB.4.2.

Definition IB.2. The symbol “A B C D” means that A, B, C, and D are points

such that A B C, A B D, A C D, and B C D.

Remark IB.2.1. By virtue of Property B.2, A B C D is equivalent to the conjunc-

tion of :.B A C/, :.A C B/, :.A D B/, :.B A D/, :.A D C/, :.C A D/,

:.B D C/, and :.C B D/.

By Property B.0, if A B C D, then the points in each of the triples fA;B;Cg,
fA;B;Dg, fA;C;Dg, and fB;C;Dg are distinct and collinear. By Exercise I.2, A, B,

C, and D are collinear.

Definition IB.3. A set E of points is a segment if there exist distinct points U and

V such that one of the following holds:
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E D fX j U X Vg, in which case E is called the open segment UV and is

symbolized by
qy px

UV;

E D fX j X D U or X D V or U X Vg, in which case E is called the closed

segment UV and is symbolized by
px qy

UV;

E D fX j X D U or U X Vg, or E D fX j X D V or U X Vg, in which cases

E is denoted by
px px

UV or
qy qy

UV , respectively. In these cases E is said to be a half-

open segment (for the less optimistic, half-closed). There is no widely accepted

verbiage to distinguish between
px px

UV and
qy qy

UV .

The points U and V in this definition are called endpoints of E .

Remark IB.3.1. Note that in this definition we did not say the endpoints—there’s

no guarantee here that a given segment does not have two different sets of

endpoints.1 Note also that there is nothing in Definition IB.3 that guarantees that

an open segment is nonempty, or that there are any points between the endpoints of

a closed segment. The proof that there are such points must wait until Chapter 5,

Theorem PSH.22 (Denseness).

Definition IB.4. A set E of points is called a ray iff there exist distinct points A

and B such that either E D fX j X D A or A X B or X D B or A B Xg or

E D fX jA X B or X D B or A B Xg. In the first case, E is denoted by
px!
AB, which

is read “the closed ray AB.” In the second case, E is denoted by
qy!
AB, which is read

“the open ray AB.” If E is a ray, then a point U is an endpoint, or initial point, of

E iff there exists a point V such that V ¤ U and either E D qy!
UV or E D px!

UV .

Remark IB.4.1. If we make use of elementary logic and set theory, we can get the

following simple relationships involving the above definitions:

(a)
qy px

AB D px qy

AB nfA;Bg D qy qy

AB nfBg D px px

AB nfAg
(b)

px px

AB D px qy

AB nfBg D qy px

AB[fAg
(c)

qy qy

AB D px qy

AB nfAg D qy px

AB[fBg
(d)

px qy

AB D qy qy

AB[fAg D px px

AB[fBg D qy px

AB[fAg [ fBg
(e)

qy!
AB D px!

AB nfAg

1In Chapter 21 we will construct Model DZIII for IB geometry and prove, in Theorem DZIII.4(A)
that it is possible to have two segments

px qy

AB and
px qy

CD such that
px qy

AB D px qy

CD and yet fA;Bg ¤ fC;Dg,
i.e., two segments which are equal but have different endpoints.
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(f)
px!
AB D qy!

AB[fAg
(g)

px!
AB D px qy

AB[fX jA B X}D fAg [ fBg [ qy px

AB[fX jA B X}

(h)
qy!
AB D qy qy

AB[fX jA B X}D qy px

AB[fBg [ fX jA B X}

(i)
px qy

AB\fX jA B X}D ;
(j)

qy qy

AB\fX jA B X}D ;
There may be a few others like this that we’ve missed, but hopefully we’ve listed

more than enough of them to give the general idea. We’ll be using these as well as

the missing ones casually, without further reference, from now on.

Remark IB.4.2. Beware, however, of some relationships among these ideas that

may seem just as appealing as those above but which are not consequences of the

properties of betweenness we have stated so far. For example, it may seem obvious

that a ray has a unique endpoint, and that if A B C, then
px!
BA[ px!

BC D  !AC and
px qy

AB[ px qy

BC D px qy

AC. But it is not possible to prove any of these statements from what

we have so far.2

These strange circumstances tell us that the properties of Definition IB.1 are

inadequate to define a betweenness relation which conforms to our intuitive ideas

of what betweenness means. One way to deal with this difficulty would be to add

another property (B.4) to Definition IB.1, as follows:

Property B.4 (Not invoked). Let A, B, C, and D be collinear points.

(A) If A B C and A C D, then B C D.

(B) If A B C and B C D, then A B D.

Invoking this additional property as part of Definition IB.1 would provide a

shortcut to the result of Theorem PSH.8 in Chapter 5, which is now a consequence

of the Plane Separation Axiom (PSA). In our development, Theorem PSH.8 is

fundamental to solving all the difficulties mentioned above. However, invoking

Property B.4 would be only a partial measure that would not address the critical

issues having to do with the “sides” of a line; we will meet these shortly.

Moreover, Subsection 21.8.1 of Chapter 21 shows that Property B.4 would not imply

“Denseness” (cf Theorem PSH.22).

2In Chapter 21 we will construct Model DZII for IB geometry and prove, in Theorem DZII.4, that
all these statements are false.
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While some treatments of geometry do invoke Property B.4, we do not take this

path, preferring instead to invoke PSA, which, with some effort, will yield much

more than this property would yield. So we put Property B.4 aside, and for now,

content ourselves with proving a few theorems in IB geometry.

4.2 Theorems of Incidence-Betweenness geometry

In incidence geometry, lines are sets of points which interact with other sets in

certain prescribed ways, but there is no language in that geometry to describe their

internal structure. The introduction of betweenness gives them an internal structure,

of which the next theorem gives us a first glimpse.

Theorem IB.5. Let A and B be distinct points. Then
 !
AB D fX jX A Bg [ fAg [ fX jA X Bg [ fBg [ fX jA B Xg
D fX jX A Bg [ px qy

AB[fX jA B Xg
D fX jX A Bg [ px!

AB

D fX jX A Bg [ fAg [ qy!
AB

and the sets in the unions are disjoint.

Proof. A point X belongs to
 !
AB iff A, B, and X are collinear. By Property B.2 of

Definition IB.1, X 2  !AB iff exactly one of X A B or X D A or A X B or X D
B or A B X holds. The first line in the formula given is an exact translation of

this statement into set language, and the second, third, and fourth lines come from

Definition IB.4.

The sets in the first line of the theorem are disjoint because A and B are distinct,

and they do not belong to any of the sets fX jX A Bg, fX jA X Bg, fX jA B Xg
by reason of Property B.0 of Definition IB.1; these latter are disjoint because, by

Property B.2, no X can belong to more than one of them. It follows that the sets

listed in each of the subsequent lines are disjoint. ut
Corollary IB.5.1. Let A, B, and C be distinct collinear points. Then

(A) A … px!
BC iff A B C and

(B) A … qy!
BC iff A B C.

Proof. First of all, since
px!
BC D fBg [ qy!

BC (see Remark IB.4.1 part(f)), A … px!
BC is

equivalent to A ¤ B and A … qy!
BC. Since we are assuming to begin with that A ¤ B,

this conjunction is equivalent to A … qy!
BC. So we need only prove the first statement

in the corollary.
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Since A, B, and C are collinear, A 2  !BC. In the third line of the statement of

Theorem IB.5 substitute A for X, B for A, and C for B. Since the sets in the theorem

are disjoint, a point A 62 px!
BC iff A B C. This is what we wished to prove. ut

Corollary IB.5.2. Let A and B be distinct points. Then
px!
AB and

qy!
AB are both proper

subsets of
 !
AB,

px qy

AB is a proper subset of
px!
AB, and

qy px

AB and
qy qy

AB are proper subsets of
qy!
AB.

Proof. Exercise IB.6. ut
Theorem IB.6. For any two distinct points A and B,

qy!
AB[ qy!

BA D !AB.

Proof. Applying Remark IB.4.1 (h), (b), (c), and (d) and line 2 of Theorem IB.5,
qy!
AB[ qy!

BA D qy qy

AB[fX jA B X}[ qy qy

BA[fX jB A X}

D qy px

AB[fAg [ fBg [ fX jA B X}[fX jB A X}

D px qy

AB[fX jX A B}[fX jA B X}

D !AB. ut
Corollary IB.6.1. For any two distinct points A and B,

px!
AB[ px!

BA D !AB.

Proof. Exercise IB.7. ut
With the concepts we have at our disposal at this time, we can define a triangle

and prove one theorem about triangles.

Definition IB.7. A set E of points is a triangle iff there exist noncollinear points

A, B, and C such that E D px qy

AB[ px qy

BC[ px qy

AC. This set is denoted by 4ABC, which is

read “triangle ABC.” A point U is a corner of E iff there exist points V and W such

that U, V , and W are noncollinear and E D 4UVW. A segment J is an edge of E
iff there exist corners U and V of E such that J D px qy

UV . A corner U and an edge
px qy

VW

are opposite each other iff U …  !VW.

Remark IB.7.1. Notice that a triangle is just the union of three segments; it does

not include any points “inside” (whatever that means). Also, two edges of a triangle

can intersect only at their common corner, for if these edges should intersect at some

additional point, the lines they define would be the same by Axiom I.1, contradicting

the noncollinearity of the corners. Here we are using the term edge in place of the

more traditional “side,” a term which we reserve for a “side” of a line, to be defined

shortly.
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Theorem IB.8. Let A, B, and C be noncollinear points. Then

 !
AB \4ABC D px qy

AB :

Proof. If A, B, and C are any noncollinear points, then by Definition IB.7,4ABC D
px qy

AB[ px qy

BC[ px qy

AC. Hence
 !
AB \4ABC D !AB \ .px qy

AB[ px qy

BC[ px qy

AC/

D . !AB \ px qy

AB/ [ . !AB \ px qy

BC/ [ . !AB \ px qy

AC/: (*)

Since A, B, and C are noncollinear, we have by Exercise I.1 that
 !
AB \ !BC D fBg and

 !
AB \ !AC D fAg:

From Theorem IB.5,
px qy

BC �  !BC and
px qy

AC �  !AC, so that
 !
AB \ px qy

BC D fBg and
 !
AB \ px qy

AC D fAg:
Also, from Theorem IB.5,

 !
AB \ px qy

AB D px qy

AB. Rewriting (*) we have
 !
AB \4ABC D px qy

AB[fBg [ fAg D px qy

AB : ut
It would be nice to be able to prove more about triangles, but at this point it is

impossible to prove much more. For example, it is impossible to prove the “obvious”

fact that if 4ABC D 4DEF, then fA;B;Cg D fD;E;Fg. Indeed, in Chapter 21

Section 21.8 we will prove Theorem DZIII.4(B), which exhibits, in a model for IB

geometry, two triangles which are equal to each other but have different corners.

In the face of such strange circumstances, it seems prudent to take evasive action

and postpone any further theorems about triangles until we have stronger axioms

to deal with them. We will discover this more congenial environment in Pasch

geometry, to be introduced in the next chapter.

At this point we are in a position to introduce the important concept of convexity,

but, as is the case with triangles, we can prove very little that is interesting about it.

Since it is appropriate to the geometry we are discussing here, we now define it, and

even though there are not many theorems or exercises about it, we leave you with

the warm assurance that you will encounter these later.

Definition IB.9. Let E be a set of points. Then E is convex iff either (1) E is a

singleton, or (2) E contains more than one point, and for every pair of points P and

Q belonging to E ,
qy px

PQ � E .

Theorem IB.10. Every line is convex.

Proof. Let L be a line, and let A and B be any points on L. Then by Axiom I.1,

L D !AB; by Remark IB.4.1(d) and Theorem IB.5,
qy px

AB � px qy

AB �  !AB. ut
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The scenario for the next series of theorems—the last ones in IB geometry—is

one which is familiar to anyone who has studied plane geometry: a plane with a

line in it. The picture that comes to mind, of course, is a large (actually infinite) flat

expanse with a line that separates the expanse into two “pieces,” which we call the

sides of L; the segment joining two points lying on the same side does not intersect

the line, whereas the segment joining a point on one side and a point on the other

side does intersect the line. While the incidence and betweenness axioms impose

certain restrictions on the behavior of points and lines in our geometry, they are not

sufficient in themselves to force points and lines in a plane to behave according to

this picture.

We deal now with an interesting question: Which of the features of the above

“picture” are consequences of the axioms of IB geometry, and which features can

be proved only after additional axioms have been introduced? As always, we start

with the introduction of some terminology.

Definition IB.11. Let P be a plane, and let L be a line contained in P . For any

point Q in P n L, the Q-side of L is the set

fX j X D Q or .X 2 P n fQg and
px qy

XQ\L D ;/g:
Note that this criterion is equivalent to

fX j X D Q or .X 2 P n fQg and X 62 L and
qy px

XQ\L D ;/g
because for X 62 L and Q 62 L,

qy px

XQ\L D ; iff
px qy

XQ\L D ;.
A subset E of P is a side of L iff there exists a point Q belonging to P n L such

that E is the Q side of L. We say that L is an edge of E iff E is a side of L. A subset

H of a plane P is a halfplane of P iff there exists a line L in P such that E is a side

of L and H D E [ L.

If E and F are sides of a line L, they are opposite sides iff there exist points

P 2 E , Q 2 L, and R 2 F such that P Q R (that is to say,
qy px

PR\L D fQg).
If A, B, and Q are noncollinear points, then

qy !
ABQ denotes the Q side of

 !
AB.

Remark IB.11.1. Every line is disjoint from any of its sides; for if X is a member

of the Q side of L,
px qy

XQ\L D ; so that in particular, X 62 L.

Be careful not to be misled by the terminology introduced in Definition IB.11,

which is heavily loaded toward the way things will eventually turn out. In Remark

IB.12.1 below, we will point out several conclusions one might be tempted to draw,

but which, at this point, are false.
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Theorem IB.12. Suppose P and Q are two distinct points not on L.

(A) P 2 Q-side of L iff P D Q or (P ¤ Q and
qy px

PQ\L D ;) iff Q 2 P-side of L.

(B) P fails to be in the Q-side of L (and Q fails to be in the P-side of L) iff (P ¤ Q

and
qy px

PQ\L ¤ ;).
(C) If P fails to be in the Q-side of L (and Q fails to be in the P-side of L), then the

Q-side of L and the P-side of L are opposite.

Proof. Part (A) is an immediate consequence of Definition IB.11 and elementary

logic, and part (B) is logically equivalent to (A).

(C) If P fails to be in the Q-side of L, then by (B) P ¤ Q and
qy px

PQ\L ¤ ;. Now

P 2 P-side of L and Q 2 Q-side of L, so by Definition IB.11 the Q-side and P-side

of L are opposite. ut
Remark IB.12.1. (I) Theorem IB.12 does not include a converse of part (C)

because at this stage it can’t be proved. We cannot show that if the Q-side

of L and the P-side of L are opposite then P fails to be in the Q-side of L.

Indeed it may be that the Q-side of L and the P-side of L are opposite and at

the same time P 2 Q-side of L! That is,
qy px

PQ\L D ;, but there exist points

A 2 P-side of L and B 2 Q-side of L with
qy px

AB\L ¤ ;.
(II) As an illustration for this and subsequent assertions, we anticipate Chapter 21.

There, in Subsection 21.6.3, Definition DZI.1 defines Model DZI as the set Z3

of all ordered triples of integers, and Theorem DZI.5 proves this to be an IB

space. The set P of all triples .a; b; 0/ (which we denote here as pairs .a; b/),

where a and b are integers, is a plane in this model. We suggest making a

simple sketch of the following to help keep things straight. Let A D .�1; 0/,
B D .0; 0/, C D .1; 0/; D D .�1; 1/, E D .0; 1/, F D .1; 1/; G D .�1;�1/,
H D .0;�1/, I D .1;�1/; then

the D-side of
 !
AB contains D, E, F, and H but not G or I;

the E-side of
 !
AB contains D, E, F, G and I but not H;

the G-side of
 !
AB contains G, H, I, and E but not D or F;

the H-side of
 !
AB contains G, H, I, D and F but not E.

(III) Returning to the assertion of part (I): in the illustration above, the D-side is

opposite to the G-side because
qy px

GD\ !AB ¤ ;; but both these sides contain the

point H. Thus the H-side is opposite the D-side since it contains G, and also

belongs to the D-side.
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This also shows that given two sides E and F of L, we cannot simply pick

two arbitrary points, P 2 E and Q 2 F , and determine whether or not E and F
are opposite by checking whether or not

qy px

PQ\L ¤ ;. To be sure, if we should

find that
qy px

PQ\L ¤ ;, that would show that E and F are opposite; but finding

that
qy px

PQ\L D ; would tell us nothing at all. Such a test must wait for the

invocation of the Plane Separation Axiom in the next chapter.

(IV) It is also tempting to conclude that if a point Q belongs to the P side of L, then

the Q side of L is the same as the P side of L. But this is not so. Referring

again to our illustration of part (II), the point H belongs to the D-side, but

G, which also belongs to the H-side, does not belong to the D-side; hence,

the D-side and the H-side are not the same. Again, once we have the Plane

Separation Axiom at our disposal, this anomalous situation will be resolved.

(V) The term “opposite sides” might seem to imply that there are just two sides

of a line (or at least that they come in pairs); but we can’t prove that in IB

geometry—at this point there is no way of telling how many sides a line in a

plane has. In our illustration (II),
 !
AB has at least four sides, since none of the

sides listed are the same.

Moreover, if L is a line in plane P , and E is a side of L, it is not correct to

conclude that P n .E [ L/ is a side of L. We can’t even prove in IB geometry

that opposite sides of a line are disjoint. Indeed, in our illustration from part

(II), the D-side and the G-side of
 !
AB are opposite but not disjoint, as both

contain the points E and H.

All the intuitively correct statements listed above, which we have shown to be

false, will be provable after we introduce the Plane Separation Axiom. For now it

is important not to assume they are true just because the terminology suggests that

they might be.

Now that we’ve dwelt on some things we can not prove about a line in a plane,

let’s get to some of the things we can prove. First, it should be noted that by

definition, a side of a line is nonempty.

Theorem IB.13. Let L be a line in a plane P . Then there is at least one side E of L,

and there is at least one side of L which is opposite to E .
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Proof. By Exercise I.13, there is a point A in P which is not on L. Then the set E
defined by

E D fX j X D A or .X 2 P n fAg and
px qy

XA\L D ;/g
is nonempty and is a side of L.

By Axiom I.5(A), there is a point B on L, and by Property B.3 of Definition IB.1,

there is a point C such that A B C. By Definition IB.11, the C side of L is

opposite E . ut
Theorem IB.14 and its corollaries, which we prove next, probably seem plausible

to anyone who has studied a little geometry and who takes the time to look at the

appropriate pictures; what may not seem plausible is why we chose these particular

things to prove.

There are two reasons for our choices: (1) these particular theorems will come in

very handy when we get around to proving the more “obvious” things (this becomes

clear in retrospect, but don’t be discouraged if you can’t see the connection now),

and (2) we tried to prove quite a few things, and these were the ones we succeeded

in proving.

The following theorem is a fundamental building-block in the structure of

theorems to follow. It will also make it possible to show later, as a consequence

of Corollary PSH.22.2, that each side of a line in a plane contains a lot of points—in

fact, an infinite number.

Theorem IB.14 (Side contains a ray). Let L be a line in plane P , and let P and

Q be points such that P 2 L and Q … L. Then
qy!
PQ is a subset of the Q side of L.

Proof. Since Q … L,
 !
PQ \ L D fPg by Axiom I.1. If R 2 qy!

PQ, by Definition IB.4

and Property B.2 of Definition IB.1 exactly one of P R Q, R D Q, or P Q R is

true. If P R Q, P … px qy

RQ by Definition IB.3 and Property B.2. If P Q R, P … px qy

RQ for

the same reasons. Thus
px qy

RQ\L D ; and R belongs to the Q-side of L. ut
Corollary IB.14.1. Let P , L, P, and Q be as in Theorem IB.14. Then

qy!
PQ\L D ;.

Proof. Exercise IB.10. ut
Corollary IB.14.2. Let P , L, P, and Q be as in Theorem IB.14. Then

qy qy

PQ and
qy px

PQ

are subsets of the Q side of L.

Proof. Exercise IB.11. ut
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Corollary IB.14.3. For any triangle 4ABC, the edges
qy px

AB and
qy px

AC are subsets of
qy !
BCA,

qy px

AB and
qy px

BC are subsets of
qy !
ACB, and

qy px

AC and
qy px

BC are subsets of
qy !
ABC.

Proof. Exercise IB.12. ut
The following corollary will be useful in the next chapter.

Corollary IB.14.4. Let P be an IB plane, L a line in P , P a point of P not on L,

and let X and Y be distinct points belonging to the P side of L. Then there exists a

point Q 2 the P side of L such that fX;Y;Qg is noncollinear.

Proof. If fX;Y;Pg is noncollinear, let Q D P. If fX;Y;Pg is collinear, we choose a

point Z 2 L as follows: if
 !
XY \ L D ;, let Z be any point of L; if

 !
XY intersects L,

then since
 !
XY ¤ L by Exercise I.1, there exists one point W such that

 !
XY \ L D

fWg; choose Z to be any point of L such that Z ¤ W.

In either case, by Theorem IB.14 the ray
qy!
ZX � the P side of L, and

qy!
ZX\ !XY D

fXg. Let Q be any point of
qy!
ZX other than X. Then fX;Y;Qg is noncollinear, and

Q 2 the P side of L. ut

4.3 Exercises for Incidence-Betweenness geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise IB.1. If A and B are distinct points, then there exist points E and F such

that E B A and B A F.

Exercise IB.2�. Let A, B, C, and D be distinct collinear points, then A B C D iff

D C B A.

Exercise IB.3. If A and B are any two distinct points, then
px qy

AB D px qy

BA and
qy px

AB D qy px

BA.

Exercise IB.4�. If A and B are any two distinct points, then
qy px

AB � qy qy

AB � qy!
AB �  !AB,

qy px

AB � px px

AB � px!
AB �  !AB, and

px qy

AB � px!
AB �  !AB.

Exercise IB.5. If
px!
AB D px!

CD or
px qy

AB D px qy

CD, then
 !
AB D !CD.

Exercise IB.6�. Prove Corollary IB.5.2. (See also Exercise IB.4.)

Exercise IB.7�. Prove Corollary IB.6.1.

www.springer.com
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Exercise IB.8�. If A and B are any two distinct points, then

(A)
px!
AB\ px!

BA D px qy

AB,

(B)
qy!
AB\ qy!

BA D qy px

AB,

(C)
px!
AB\ qy!

BA D px px

AB, and

(D)
qy!
AB\ px!

BA D qy qy

AB.

Exercise IB.9�. Let L be a line, and let A and B be distinct points such that L ¤ !
AB. If

qy px

AB\L D fRg, then
 !
AB \ L D fRg.

Exercise IB.10�. Prove Corollary IB.14.1.

Exercise IB.11�. Prove Corollary IB.14.2.

Exercise IB.12. Prove Corollary IB.14.3.

Exercise IB.13. Space is convex.

Exercise IB.14. Every plane is convex.

Exercise IB.15�. If G is any collection of convex sets, and if the intersection of the

members of G is nonempty, then the intersection is convex.

Exercise IB.16. Let L be a line and let E be a nonempty proper subset of L such

that E is not a singleton. Then:

(1) E is not a segment iff for every pair of distinct points A and B on L, there exists

a point U such that A U B and U … E , or there exists a point V such that

A B V and V 2 E , or there exists a point W such that B A W and W 2 E .

(2) E is not a ray iff for every pair of distinct points A and B on L, there exists a

point U such that A U B and U … E , or there exists a point V such that A B V

and V … E and there exists a point W such that B A W and W 62 E .

Exercise IB.17�. Let P be an IB plane, L and M be lines on P , and O be a point

such that L\M D fOg, then there exist points P and Q on L such that P and Q are

on opposite sides of M.

Exercise IB.18 (True or False?). Let P be an IB plane, and let J , K, and L be

distinct lines on P such that J \ L ¤ ; and K \ L ¤ ;. Then if U is a point on J
but not on L, there is a point V on K such that U and V are on opposite sides of L.



Chapter 5
Pasch Geometry (PSH)

Acronym: PSH

Dependencies: Chapters 1 and 4

New Axioms: Plane Separation Axiom PSA

New Terms Defined: Postulate of Pasch, Pasch plane, denseness, opposite rays,

angle; quadrilateral, corner, edge, opposite edge, diagonal, rotund; trapezoid;

inside, outside, enclosure, exclosure (of angle, triangle, and quadrilateral)

Abstract: The first part of this chapter uses the Plane Separation Axiom to show

that a line in a plane has two disjoint sides, and to prove the basic properties of

segments, rays, and lines that are needed for a coherent geometry. The remainder of

the chapter is a study of the basic interactions between lines, angles, triangles, and

quadrilaterals, comprising Pasch geometry.

So far, we have not seen much in this book that most people would recognize as

“real” geometry. To remedy this we need to surmount the difficulties we inherited

from the previous chapter (IB geometry) where we could not prove several things

that seem so natural to us—for instance, that a line has only two sides or that a

triangle has only one set of corners (cf Remarks IB.4.2 and IB.12.1, and the note

after Theorem IB.8). These anomalies arise in planes, and must be fixed in that

context; indeed, most of the rest of the book is about the geometry of planes that are

subsets of an IB space.

© Springer International Publishing Switzerland 2015
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We start by invoking the Plane Separation Axiom (PSA) on such planes; this will

open the way to develop basic properties of angles, triangles, quadrilaterals and the

like,1 which most people think of as the “stuff” of geometry. But first a bit of history.

5.1 The Postulate of Pasch

In 1882 Moritz Pasch (1843–1930) published Vorlesungen Über Neuere Geometrie,

(Lectures Over More Recent Geometry [17]) which embodied the beginnings of

the modern axiomatization of geometry. Pasch documented many assumptions that

were in Euclid and made clear many of the difficulties in his work that were due

to intuition rather than sound mathematical reasoning from the stated assumptions.

One of the cornerstones of his work is the following statement that has become

known to geometers as the “Postulate of Pasch,” or the “Pasch Postulate,” or, in our

proofs, simply as “Pasch.”

The Postulate of Pasch If A, B, and C are noncollinear points on an IB plane

P , and if L is a line on P such that L ¤  !AB, L \ qy px

AB ¤ ;, and C … L, then either

L \ qy px

AC ¤ ; or L \ qy px

BC ¤ ; (but not both).

Alternate form of the Postulate of Pasch Suppose A, B, and C are noncollinear

points on plane P and L is a line on P containing none of these points. If
qy px

AC\L D
; and

qy px

BC\L D ;, then
qy px

AB\L D ;.
The alternate form as stated above is not quite equivalent to Pasch, but is implied

by it. To see this, let the overall hypothesis be A, B, and C are noncollinear points,

L is a line not equal to
 !
AB, and C 62 L. Then Pasch says

if L \ qy px

AB ¤ ;, then (L \ qy px

AC ¤ ; exclusive or L \ qy px

BC ¤ ;).
The contrapositive says (cf Chapter 1, Section 1.2)

if (L \ qy px

AC D ; and L \ qy px

BC D ;) or (both L \ qy px

AC ¤ ; and L \ qy px

BC ¤ ;),
then L \ qy px

AB D ;.
Thus, any time we have Pasch, this alternate form will also be true.

1The process for doing this is somewhat complex and involves some subtleties. A reader desiring
an overview of Pasch geometry (cf Definition PSH.7) without indulging in the details of a strict
development may proceed as follows: first, peruse the statements below of the Postulate of Pasch
and the Plane Separation Axiom; then accept Theorem PSH.12 (the Plane Separation Theorem) as
an axiom, and go on from there. It must be noted, however, that Theorem PSH.8 is needed in the
development following Theorem PSH.12.
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The following proof has interest in its own right, and we will use it in the section

titled “Pasch geometry,” after the definition of the Pasch plane. We place it here

because it is needed to facilitate the proof of Theorem PSH.6. It shows, among

other things, that in a plane where the Pasch postulate holds, if two sides of a line

have nonempty intersection, then they are the same side.

Theorem PSH.1. Let L be a line in an IB plane P on which the Postulate of Pasch

holds. Then if S is a point not on L, and Q 2 the S side of L, the Q side of L D the

S side of L.

Proof. Let X be any point of the S side of L. By Definition IB.11
qy px

XS\L D ;; since

Q 2 the S side of L,
qy px

QS\L D ;.
(Case 1: X, Q, and S are noncollinear.) Then we may apply the alternate form of

Pasch to4XQS to get
qy px

XQ\L D ;, and therefore X 2 the Q side of L.

(Case 2: X, Q, and S are collinear.) By Corollary IB.14.4, there exists a point

Y 2 the S side of L such that Y 62  !QS D  !XS . Apply the alternate form of Pasch to

4YSX. Since
qy px

XS\L D ; and
qy px

YS\L D ;, qy px

XY \L D ;. Again apply the alternate

form of Pasch to4YQS. Since
qy px

QS\L D ;, qy px

YQ\L D ;. Finally, apply the alternate

form of Pasch to4YQX, to get
qy px

XQ\L D ;. Therefore X 2 the Q side of L.

From these two cases, we see that the S side of L � the Q side of L. By

Theorem IB.12(A) S 2 the Q side of L. Reversing the roles of S and Q, the same

proof shows that the Q side of L � the S side of L, and hence the S side of L D the

Q side of L. ut

5.2 The Plane Separation Axiom (PSA)

We do not base our development directly on the Pasch Postulate, but rather on

an equivalent assumption called the “the Plane Separation Axiom” which appears

(to us, at least) to deal with more fundamental ideas. The resulting geometry

will be far richer than any we have seen so far. Many theorems that suggested

themselves earlier but could not be proved, as well as a host of new ones, will now

be within our reach. To celebrate this milestone in our development, we christen

the new geometry this creates as Pasch geometry; without further hesitation, we

add the Plane Separation Axiom (PSA) to the incidence (I.0–I.5) axioms and the

betweenness Axiom BET.
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Plane Separation Axiom (PSA). If L is any line, and if Q and R are points in

opposite sides of L, then
qy px

QR\L ¤ ;.
The following statement is an almost trivial extension of Axiom PSA, and any

citation of Axiom PSA should be understood to include it:

If E and F are opposite sides of L, Q 2 E , and R 2 F , then by Definition IB.3

there exists a point S 2 L with Q S R. By Exercise I.1 and elementary set theory !
QR \ L D fSg, so that S is the single point of intersection of

 !
QR and L. By

Theorem IB.14,
qy!
SQ is a subset of E and

qy!
SR is a subset of F .

Notice that Axiom PSA asserts something quite subtle: it says that if E and F
are opposite sides of L, that is, if there exist points Q0 2 E and R0 2 F such that
qy px

Q0R0\L ¤ ;, then the same must be true for all points Q 2 E and R 2 F .

In particular, this axiom neatly solves the quandary we were in the last chapter

(cf Definition IB.11 and following discussion), where it was awkward to determine

if two sides E and F of a line were opposite. Now, in the presence of Axiom PSA, all

we need to do is pick arbitrary points in E and F and see if the segment connecting

them intersects the line.

Thus, a line “separates” the plane; this is consistent with Hilbert’s axiom

system, in which the Postulate of Pasch is grouped with other axioms dealing with

“betweenness.”2

In Chapter 21 we will exhibit a model in which all our axioms are true (cf

Subsection 21.5.8); this will show, among other things, that Pasch planes actually

do exist, and Pasch geometry is not vacuous. Also, in Subsection 21.6.3 we will see

a model for an IB plane on which PSA is false, showing that PSA is independent

of the incidence and betweenness axioms. When axioms are chosen so they are

independent of each other, an intricate logical development is usually required to

reach key theorems. This is well illustrated by the rather complex path we must

undertake to show Theorem PSH.12, which is fundamental to the rest of the book.

2It could be interesting to construct a theory in which space is divided into two half-spaces by a
plane, in a manner analogous to the theory developed here which treats division of the plane into
two half-planes by a line. We have not pursued this, but it is said to have been carried out by B. L.
van der Waerden, in De logische grondslagen der Euklidische meetkunde (Dutch), Chr. Huygens
13, 65–84, 257–274 (1934) [22]. Axiomatizations of Pasch-like statements for hyperplanes (i.
e., statements that hyperplanes divide the space into two half-spaces) have been presented by
E. Sperner in Die Ordnungsfunktionen einer Geometrie, Math. Ann. 121, 107–130, (1949) [19].
For the significance of Sperner’s work in ordered geometries, see H. Karzel, Emanuel Sperner:
Begründer einer neuen Ordnungstheorie, Mitt. Math. Ges. Hamburg 25, 33–44 (2006) [12].
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Theorem PSH.2 (Opposite sides of a line are disjoint). Let P be an IB plane

in which PSA holds, and let E and F be opposite sides of a line L in P . Then

E \ F D ;.
Proof. By Definition IB.11, since E and F are opposite sides of L, there exists a

point P such that E D the P side of L. Suppose E \ F ¤ ;, so that there exists a

point A 2 E \ F . By Definition IB.11,
px qy

AP\L D ;. Since A 2 F , P 2 E and F is

opposite to E , by PSA
px qy

AP\L ¤ ;, a contradiction. ut
Theorem PSH.3. Let P be an IB plane in which PSA holds. Let A, B, and C be

noncollinear points of P , and let D, E, and F be points of P such that A D B,

B E C, and A F C. Then D, E, and F are noncollinear.

Proof. By Property B.0 of Definition IB.1, fA;D;Bg, fB;E;Cg, and fA;F;Cg are

collinear. We show that D, E, and F are distinct points. If two of D, E, and F were

the same, say D D E, then by Axiom I.1,
 !
AB D !BC. This line contains A, B, and C,

contradicting the hypothesis that these points are noncollinear.

Now assume that D, E, and F are collinear. Then by Property B.2 of Defini-

tion IB.1 one and only one of the following is true: D E F, or E D F, or D F E.

We show that each of these possibilities leads to a contradiction.

If D E F, since E 2  !BC, the D side of
 !
BC is opposite the F side. By

Theorem IB.14 and Definition IB.3, A 2 qy!
BD � .D side of

 !
BC/, so A belongs

to a side of
 !
BC which is opposite the F side. Now recall that A F C, so by

Definition IB.3 and Theorem IB.14, A 2 qy!
CF � .F side of

 !
BC/. We have shown

that A belongs both to the F side of
 !
BC and to a side opposite the F side. This

contradicts Theorem PSH.2, so the assumption that D E F is false.

In a similar way, we can show that both E D F and D F E lead to contradic-

tions, so the proof is complete. ut
Theorem PSH.4. Let P be an IB plane in which PSA holds. Let A, B, and C be

noncollinear points of P and let L be a line in P such that for some distinct points

D and E, L \ qy px

AB D fDg and L \ qy px

AC D fEg. Then L \ px qy

BC D ;.
Proof. If B 2 L, then both the points B and D would belong to both

 !
AB and to L, and

by Axiom I.1
 !
AB D L. This contradicts the assumption that L \ qy px

AB is a singleton,

so that B 62 L. Similarly C … L. If X is any member of
qy px

BC, then by Theorem PSH.3,

X, D, and E are noncollinear, so that X … L. This shows that L \ px qy

BC D ;. ut
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At the beginning of the next section we will define a Pasch plane, and in

Theorem PSH.11 we will prove that a line drawn in such a plane has only two

sides. We haven’t found a way to prove this in one easy step. The next theorem

comes close to saying that the points off a line in a Pasch plane are the union of a

pair of opposite sides of the line, but there is an interesting twist—a second line is

involved.

Theorem PSH.5. Let P be an IB plane in which PSA holds, L a line in P , and let

P, Q, and R be points on P such that Q 2 L,
 !
PQ ¤ L, and P Q R. If X is any point

not on L and not on
 !
PQ, then X belongs to either the P-side or the R-side of L.

That is

P n .L [ !PQ/ D Œ.P side of L/ [ .R side of L/� n !PQ:

Moreover, .P side of L/ \ .R side of L/ D ;.
Proof. The last statement in the theorem is an obvious consequence of Theo-

rem PSH.2 and is included for completeness.

Let X be any member of P n .L[ !PQ/. We wish to show that either X 2 .P side

of L/ or X 2 .R side of L/.
If

qy px

XP\L D ;, then since X ¤ P, by Definition IB.11, X belongs to the P side

of L.

Otherwise, if
qy px

XP\L ¤ ;, observe first that the line
 !
XP is distinct from both L

and from
 !
PR, since X belongs to neither of these lines. Then by Exercise I.1, there

exists a point S such that
qy px

XP\L D fSg, and, since the only point of intersection of !
XP and

 !
PR is P, S ¤ Q. By hypothesis we know that Q 2 qy px

PR, so we may apply

Theorem PSH.4 to conclude that
px qy

XR\L D ;. By Definition IB.11, X belongs to

the R side of L.

This shows that P n .L [  !PQ/ � Œ.P side of L/ [ .R side of L/� n  !PQ. The

reverse inclusion is immediate from Definition IB.11, which defines a side of L to

be disjoint from L. ut
The next theorem shows that if we add the Postulate of Pasch to the list of axioms

(incidence and betweenness) for an IB plane, we get the same geometry as if we add

the Plane Separation Axiom.

Theorem PSH.6 (Pasch is equivalent to PSA). In the presence of Axioms I.0–I.5

and Axiom BET, the Postulate of Pasch is equivalent to the Plane Separation

Axiom PSA.
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Proof. All points and lines in this proof will be in P , an IB plane on which Axiom

BET holds. In each case, the reader will find it helpful to sketch a figure.

(I: PSA) Pasch) Let A, B, and C be noncollinear points in P , and let L be a line

such that L ¤ !AB, L \ qy px

AB ¤ ;, and C … L.

If L were to intersect
 !
AB in more than one point, then by Exercise I.2, L

would be equal to
 !
AB, which is false by hypothesis. Hence L\ !AB is a singleton.

By Definition IB.11, A and B are on opposite sides of L. C belongs neither to L
nor to

 !
AB, so by Theorem PSH.5 C belongs either to the A-side or to the B-side

of L, but not to both.

If C belongs to the A side of L but not to the B-side, by Definition IB.11,
qy px

AC\L D ; and by PSA,
qy px

BC\L ¤ ;. If C belongs to the B side of L but not

to the A-side,
qy px

BC\L D ; and
qy px

AC\L ¤ ;. This proves that the Pasch Postulate

holds on P .

(II: Pasch) PSA) Let E D the U side of L and F D the V side of L be opposite

sides of a line L. By Definition IB.11, there exist points S in the U-side and T

in the V-side of L such that
qy px

ST \L ¤ ;. By Theorem PSH.1, S-side D U-side,

and T-sideD V-side of L.

Let Q be any member of E D the U side of L, and R any member of F D the

V side of L. Again, by Theorem PSH.1, Q-side D U-side D S-side, and R-side

D V-sideD T-side of L.

We show, from
qy px

ST \L ¤ ;, and repeated applications of the Proposition of

Pasch, that
qy px

QR\L ¤ ;.
Now Q and S are on the same side, and R and T are on the opposite side of L.

If the points Q, R, S, and T are not distinct, then either Q D S or R D T or both

(in which case there is nothing to prove). The case where Q D S but R ¤ T is

covered in Cases 2 and 4 below. The case where Q ¤ S but R D T is covered in

Cases 3 and 5 below.

(Case 1: No three of the points Q, R, S, and T are collinear.) In this case, all

points are distinct. Apply Pasch to 4QST; since
qy px

ST \L ¤ ; and
qy px

QS\L D ;,
qy px

QT \L ¤ ;.
Now apply Pasch to 4RQT; since

qy px

QT \L ¤ ; and
qy px

RT \L D ;, then
qy px

QR\L ¤ ;, which is the desired result.

(Case 2: Q, R, and S are collinear but T is not collinear with these points.)

Apply Pasch to 4SRT; since
qy px

ST \L ¤ ; and
qy px

RT \L D ;, qy px

SR\L ¤ ;. If the

points are not all distinct, Q D S, which completes the proof.
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Otherwise, apply Pasch to 4QST; since
qy px

ST \L ¤ ; and
qy px

QS\L D ;,
qy px

QT \L ¤ ;. Then apply Pasch to 4QRT; since
qy px

QT \L ¤ ; and
qy px

RT \L D ;,
qy px

QR\L ¤ ;, the desired result.

(Case 3: Q, R, and T are collinear but S is not collinear with these points.)

Interchange Q with R and interchange S with T , and the proof of this case is

word-for-word as in Case 2.

(Case 4: Q, S, and T are collinear but R is not collinear with these points.)

Apply Pasch to 4SRT; since
qy px

ST \L ¤ ; and
qy px

RT \L D ;, qy px

RS\L ¤ ;. If not

all the points are distinct, then Q D S, which completes the proof.

Otherwise, apply Pasch to 4QRS; since
qy px

RS\L ¤ ; and
qy px

QS\L D ;,
qy px

QR\L ¤ ;, which is the desired result.

(Case 5: R, S, and T are collinear but Q is not collinear with these points.)

Interchange Q with R and interchange S with T , and the proof of this case is

word-for-word as in Case 4.

(Case 6: Q, R, S and T are collinear and distinct.) By Corollary IB.14.4, there

exists a point X 2 the S side of L D E such that X 62  !ST D !QR.

Apply the alternate form of Pasch to4QSX. Since
qy px

SQ\L D ; and
qy px

SX\L D
;, qy px

QX\L D ;.
Apply Pasch to4STX:

qy px

ST \L ¤ ; and
qy px

SX\L D ; imply
qy px

TX\L ¤ ;.
Apply Pasch to4RTX:

qy px

TX\L ¤ ; and
qy px

RT \L D ; imply
qy px

RX\L ¤ ;.
Finally, apply Pasch to 4QRX; since

qy px

RX\L ¤ ; and
qy px

QX\L ¤ ;,
qy px

QR\L ¤ ;, which is the desired result. ut

5.3 Pasch geometry

Definition PSH.7. An IB plane P for which the incidence, betweenness, and Plane

Separation Axioms are true is called a Pasch plane. The geometry of such a plane

is called Pasch geometry.

Theorem PSH.6 showed that the Postulate of Pasch holds in a Pasch plane! From

now on all planes will be Pasch planes.

The following Theorem PSH.8 shows that the two statements labeled “Prop-

erty B.4” in Chapter 4 (following Definition IB.1) are consequences of the other

axioms adopted so far. This theorem, with its several corollaries, comprises a
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fundamental result about the behavior of line segments. This will be needed to prove

the results leading to the Plane Separation Theorem (Theorem PSH.12), after which

we will return to Theorem PSH.8 and use it in a more extensive exploration of the

behavior of segments, rays, and lines.

Theorem PSH.8. Let A, B, C, and D be distinct points in a Pasch plane P .

(A) If A B C and A C D, then A, B, C, and D are collinear and both

(1) B C D and (2) A B D

are true; that is, if A B C and A C D, then A B C D.

(B) If A B C and B C D, then A, B, C, and D are collinear and both

(1) A B D and (2) A C D

are true; that is, if A B C and B C D, then A B C D.3

Proof. If A B C, by Property B.0 of Definition IB.1, B 2  !AC; similarly, if A C D,

D 2  !AC so that A, B, C, and D are collinear. Thus if (A) is true, by Axiom I.5 there

exists a point E on P not belonging to
 !
AB. By Theorem IB.14,

qy!
CA � .the A side of !

CE/. Since A B C, by Definition IB.4 B belongs to
qy!
CA and hence to the A side of !

CE. Since A C D, the A side and the D side are opposite sides of
 !
CE. Therefore B

and D are on opposite sides of
 !
CE. By Axiom PSA, there exists a point Q such that !

BD \ !CE D fQg and B Q D. But C 2  !BD and C 2  !CE, so by Exercise I.1 Q D C

and hence B C D. This proves (A)(1).

Before proving statement (A)(2) we turn to the proof of (B). The argument for

collinearity is similar to that for (A). The argument for (B)(1), if A B C and B C D

then A B D, is very much like but not exactly similar to the argument just above;

the main point to note is that
 !
BE is used in place of

 !
CE. We leave the details of this

proof to the reader as Exercise PSH.1.

The conclusion A B D for (B)(1) is also part (A)(2), so part (A) is proved.

To prove part (B)(2) apply this result where A and D are interchanged, and B and C

are interchanged. The statement then becomes “if D C B and C B A then D C A,”

that is “if B C D and A B C then A C D.” This is the result for part (B)(2). ut

3Part (B) is sometimes called “Pasch’s Theorem.”
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Corollary PSH.8.1. Let A, B, C, and D be distinct coplanar points. If A B D and

B C D, then A B C and A C D. In other words, if A B D and B C D, then

A B C D.

Proof. From A B D and B C D it follows by Property B.1 of Definition IB.1

that D C B and D B A. Hence from Theorem PSH.8(A)(1), C B A. Another

application of Property B.1 gives the first result. The proof of the second is similar,

using Theorem PSH.8(A)(2). ut
Corollary PSH.8.2. Let A, B, C, and D be distinct coplanar points. If A B C and

A B D, then exactly one of the following two statements is true:

(1) A D C and B D C; (2) A C D and B C D.

In other words, if A B C and A B D, then either A B D C or A B C D.

Proof. By Property B.3 of Definition IB.1, either A D C, or A C D, or C A D.

But if C A D and A B D, then by Corollary 1 C A B, which by Property B.3

contradicts A B C. Hence the assumption C A D is untenable, and we have either

A D C or A C D, but not both, showing that alternatives (1) and (2) are mutually

exclusive. The proof now splits into two parts.

(i) Suppose A D C. Together with A B D, this implies B D C by Theorem

PSH.8(A)(1).

(ii) Suppose A C D. Together with A B C, this implies B C D by Theorem

PSH.8(A)(1). ut
Corollary PSH.8.3. Let A, B, C, and D be distinct coplanar points. If A C D and

B C D, then exactly one of the following two statements is true:

(1) A B C and A B D; (2) B A C and B A D.

In other words, if A C D and B C D, then either A B C D or B A C D.

Proof. Exercise PSH.2(A). ut
Corollary PSH.8.4. Let A, B, C, and D be distinct coplanar points. If A B D and

A C D, then exactly one of the following two statements is true:

(1) A B C and B C D; (2) A C B and C B D.

In other words, if A B D and A C D, then either A B C D or A C B D.

Proof. Exercise PSH.2(B). ut
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Corollary PSH.8.5. Let X, Y, and Z be distinct coplanar points. If X Z Y, then

(A)
qy px

XZ � qy px

XY; (B)
qy px

ZY � qy px

XY; (C)
px qy

XZ � px qy

XY; and (D)
px qy

ZY � px qy

XY.

Proof. (A) Let W 2 qy px

XZ, so that X W Z; by Theorem PSH.8(A) X W Y and W 2
qy px

XY .

(B) Follows immediately from (A) by interchanging the roles of X and Y .

(C) If W 2 px qy

XZ either W 2 qy px

XZ � qy px

XY � px qy

XY or W D X or W D Z; both X and Z

belong to
px qy

XY so the result follows.

(D) The argument is similar to that for (C). ut
Theorem PSH.9. If L is a line in the plane P , then each side of L is convex.

Proof. Let P be a point on P off of L, and let X and Y be distinct members of the

P side of L. By Theorem PSH.1 the X side of L D the P side of L D the Y side of

L Thus X 2 the Y side of L. By Definition IB.11, L\ px qy

XY D ;. This proves that the

P side of L is convex. ut
The next theorem fills a large gap in our picture. It finally assures us that any

two opposite sides of a line in a Pasch plane constitute all of the points on the plane

which are not on the line.

Theorem PSH.10. If L is a line on plane P and if D and E are opposite sides of

L, then D \ E D ;, and D [ E D P n L.

Proof. The fact that D \ E D ; is just a restatement of Theorem PSH.2 and is

included for completeness.

Since D and E are opposite sides of L, by Definition IB.11 there exist points P,

Q, and R such that Q 2 L, P Q R, D is the P side of L, and E is the R side of L. By

Theorem PSH.5, we know that any point not on L and not on
 !
PQ belongs either to

D or to E . Hence we need only prove that every point not on L and on
 !
PQ belongs

either to D or to E .

Let S be any point on L different from Q. There exists a point Y such that P S Y .

Since Y 62 L and Y 62  !PQ, Y is a member of either D or E . By Definition IB.11, Y is

on a side opposite D and hence is in E , which is therefore the Y side of L.

Applying Theorem PSH.5 again, every point not on L and not on
 !
PY is a member

of either D or E . Every point on
 !
PR other than P and Q fails to be on

 !
PY and

therefore belongs to either D or E . We know already that P 2 D, so every point of !
PR not on L is a member of either D or E . ut



90 5 Pasch Geometry (PSH)

Corollary PSH.10.1. With the same hypotheses as in Theorem PSH.10, L [ E D
P nD, L [D D P n E , E D P n .L [D/ and D D P n .L [ E/.

This corollary (which is easily proved using elementary set theory) says that a

side of a line L completely determines the side opposite to it.

Theorem PSH.11. There can be only one pair .H1;H2/ of sides for a line L in a

Pasch plane.

Proof. Let H1 be a side of L, and H2 a side opposite to H1. Suppose K1 is a side of

L and K2 is an opposite side. Let A be a point of K1; by Theorem PSH.1 K1 D the

A side of L. By Theorem PSH.10, since A 62 L, either A 2 H1 or A 2 H2. Choose

the notation so that A 2 H1. Then, again by Theorem PSH.1, K1 D the A side of

L D H1. By Theorem PSH.10, K2 D P n .H1 [ L/ D H2. ut
We may now speak of the two sides of a line L in a plane P . This legitimizes

the use of the word “same” in connection with sides of a line. If two sides have a

point in common, they are the same set (by Theorem PSH.1) and if two sides are

both opposite to the same side, they are the same set. Thus we may speak of “the”

opposite side of a side.

We might define a relation � on P n L as follows: for any two points P and Q

in P n L, P � Q iff P and Q belong to the same side of L. By Definition IB.11, �
is reflexive; by Theorem PSH.1,� is symmetric; and by the observation just above,

� is transitive. Therefore� is an equivalence relation. But it isn’t a very interesting

one, since it has only two equivalence classes, which are the two sides of L.

The next theorem summarizes the results we have obtained so far in completing

the picture we described at the beginning of this chapter. We mark it as a major

milestone here because it is sometimes called the Plane Separation Axiom and

used as an axiom by geometers who are not concerned—as we are here—with

the detailed logical relationships between its various provisions and the axioms of

incidence and betweenness.

Theorem PSH.12 (Plane Separation Theorem). If L is a line on a Pasch plane

P , then there exists a unique pair (H1, H2) of convex subsets of P such that

(I) P D H1 [H2 [ L;

(II) the sets H1, H2, and L are pairwise disjoint;

(III) H1 and H2 are the opposite sides of L;
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(IV) If P1 and P2 are any points in P n L, then

(A)
qy px

P1P2 \L D ; iff P1 and P2 belong to the same side (either H1 or H2) of

L; or equivalently

(B)
qy px

P1P2 \L ¤ ; iff one of the points P1, P2 belongs to H1 and the other to

H2.

Proof. By Axiom I.5, there exists a point A belonging to P n L. Let H1 D the

A side of L. Let B be any point of L. Then by Property B.3 of Definition IB.1

there exists a point C such that A B C. Let H2 D the C side of L. Then by

Definition IB.11, H1 and H2 are opposite sides of L, showing (III). (I) and (II)

are true by Theorem PSH.10.

The uniqueness of the two sides is Theorem PSH.11, and this theorem also shows

that H2 is the only side opposite H1 (and, mutatis mutandis, H1 is the only side

opposite H2). The convexity of the sides is Theorem PSH.9.

Finally, Definition IB.11 (combined with Theorem PSH.1) says that
px qy

P1P2 \L D
; iff P1 and P2 belong to the same side of L. Since these two points do not belong

to L, this is equivalent to saying that
px qy

P1P2 \L D ;. This shows (IV)(A); (IV)(B) is

the contrapositive of part (IV)(A). ut

Remark PSH.12.1. We conclude this section by observing that if
 !
AB and

 !
CD are

parallel lines in a Pasch plane P , each of them is a subset of a single side of the other;

in particular, the points A and B are on the same side of
 !
CD, and C and D are on the

same side of
 !
AB.

For if
 !
AB, say, does not lie entirely in one side of

 !
CD, by Theorem PSH.12(I)

it must contain a point of
 !
CD, or a point on the other side, so that, by

Theorem PSH.12(IV)(B) it contains a point of
 !
CD. In either case the lines are

not parallel (cf Exercise PSH.14).

5.4 Segments, rays, lines, and their properties

We now enter into a detailed consideration of the behavior of segments, rays, and

lines. This development depends largely on Theorem PSH.8 and its corollaries.
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Theorem PSH.13. Let A, B, and C be points such that A B C. Then

(A) fX jA B Xg D qy!
BC,

(B)
px!
AB D px qy

AB[ qy!
BC D fAg [ fBg [ qy px

AB[ qy!
BC,

(C)
px qy

AB\ qy!
BC D ;, and

(D)
qy!
AB D fBg [ qy px

AB[ qy!
BC D qy px

AB[ px!
BC.

Proof. By Corollary PSH.8.2, A B X, in the presence of A B C, implies one and

only one of the following statements is true: (1) B X C; (2) X D C; (3) B C X.

By Definition IB.4,
qy!
BC D fX jB X C, or X D C, or B C Xg, so we have shown

fX jA B Xg � qy!
BC.

To show the reverse inclusion we start with the overarching assumption A B C.

Let X 2 qy!
BC and use Definition IB.4 as stated above. If B X C by Corol-

lary PSH.8.1, A B X. If X D C, then A B X. If B C X by Theorem 8(B) A B X.

This completes the proof of fX jA B Xg D qy!
BC.

By part (A) and Remark IB.4.1(g),
px!
AB D px qy

AB[ qy!
BC; by part (A) and

Remark IB.4.1(i),
px qy

AB\ qy!
BC D ;; and by part (A) and Remark IB.4.1(h)

qy!
AB D qy px

AB[fBg [ fX jA B Xg D qy px

AB[fBg [ qy!
BC. ut

Corollary PSH.13.1. Let A and B be distinct points and let C and D be points such

that A B C and A B D. Then
qy!
BC D qy!

BD and
px!
BC D px!

BD.

Proof. By Theorem PSH.13(B),
px!
AB D px qy

AB[ qy!
BC D px qy

AB[ qy!
BD. From Definition IB.3

and Property B.2 of Definition IB.1,
px qy

AB\ qy!
BC D px qy

AB\ qy!
BD D ;, so from elementary

set theory
qy!
BC D qy!

BD. By Remark IB.4.1(e) we get
px!
BC D px!

BD. ut
Theorem PSH.14. Let A, B, C, and D be distinct collinear points. Then exactly one

of the following twelve statements is true:

A B C D A D B C B C A D

A B D C A D C B B D A C

A C B D B A C D C A B D

A C D B B A D C C B A D.

Proof. By Definition IB.2 and Property B.2 of Definition IB.1, not more than one

of the above statements is true. By Property B.2 one and only one of the following

three statements is true:

A B C A C B B A C;
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and one and only one for the following statements is true:

A B D A D B B A D.

This gives rise to nine mutually exclusive and exhaustive possibilities:

(1) A B C and A B D. By Corollary PSH.8.2, either A B C D or A B D C.

(2) A B C and A D B. By Theorem PSH.8(A), A D B C.

(3) A B C and B A D. By Property B.1 of Definition IB.1, D A B and A B C, so

by Theorem PSH.8(B), D A B C and by Exercise IB.2, C B A D.

(4) A C B and A B D. By Theorem PSH.8(A), A C B D.

(5) A C B and A D B. By Corollary PSH.8.4, either A C D B or A D C B.

(6) A C B and B A D. By Property B.1 of Definition IB.1, B C A and B A D, so

by Theorem PSH.8(A), B C A D.

(7) B A C and A B D. By Property B.1, D B A and B A C, so by Theorem PSH.8

(B) D B A C, and by Exercise IB.2, C A B D.

(8) B A C and A D B. By Property B.1, B D A and B A C, so by Theo-

rem PSH.8(A), B D A C.

(9) B A C and B A D. By Corollary PSH.8.2, either B A C D or B A D C.

A perusal of this list shows at least one of the twelve possibilities in the theorem

must occur. Putting this together with the statement at the beginning that at most

one can occur, we have the statement in the theorem. ut
The proof of the preceding theorem involved a lot of tedious checking and can

hardly be called elegant. But the theorem is worth the work. One reason is that,

until now, our concept of line has had serious limitations because it has given us no

insight into the “internal structure” of a line. Lines have been special sets of points

that satisfied certain axioms which described how these sets relate to each other and

to other special kinds of sets, such as planes. It can be quite difficult to tell whether

or not a particular set of points is a line unless we have a complete list of all the sets

that are lines in the geometry, as in our model of incidence geometry. As we will see

in Theorem PSH.15 (a consequence of Theorem PSH.14) we can now identify a line

if we know something about its internal structure as described by the betweenness

relation.

Theorem PSH.15. If A, B, and C are points such that A B C, then

(A)
 !
AB D !BC D !AC.

(B)
 !
AB is the union of the disjoint sets

qy!
BA, fBg, and

qy!
BC.
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(C)
px qy

AC is the union of the disjoint sets fA;B;Cg, qy px

AB, and
qy px

BC.

(D)
qy px

AC is the union of the disjoint sets fBg, qy px

AB, and
qy px

BC.

Proof. (A) Follows from Property B.0 of Definition IB.1 and Exercise I.2.

(B) By Theorem IB.5 line 4,
 !
AB D  !BC D fX jX B Cg [ fBg [ qy!

BC, and the sets

in the union are disjoint. By Definition IB.4,
qy!
BA D fX jB X A or X D A or

B A X}.

If X B C and X ¤ A, by Corollary PSH.8.3 either X A B or A X B, so

that fX jX B Cg � qy!
BA.

Conversely, suppose X 2 qy!
BA; we know that A B C. If B X A, that is

A X B, by Theorem PSH.8(A)(1) X B C. If B A X, that is, X A B, by

Theorem PSH.8(B)(2), X B C. If X D A, then X B C. Therefore
qy!
BA �

fX jX B Cg, so that
 !
AB D qy!

BA[fBg [ qy!
BC.

(C) First note that by Definition IB.3, X 2 px qy

AC iff X D A or A X C or X D C.

If A X C (together with the assumption A B C), by Corollary PSH.8.4, either

A X B, B X C, or X D B; then if X 2 px qy

AC, exactly one of X D A, A X B,

X D B, B X C or X D C is true, so that
px qy

AC � fA;B;Cg [ qy px

AB[ qy px

BC.

Conversely, if A X B, then by Theorem PSH.8(A)(2), A X C. If B X C by

Corollary PSH.8.1, A X C. Since fA;B;Cg � px qy

AC, it follows that fA;B;Cg [
qy px

AB[ qy px

BC � px qy

AC so that (C) is proved. The sets are disjoint by Property B.2 of

Definition IB.1.

(D) By Remark IB.4.1(d),
qy px

AC D px qy

AC nfA;Cg, so by part (C)
qy px

AC is the union of the

disjoint sets fBg, qy px

AB, and
qy px

BC. ut
Theorem PSH.16. Let A, B, and C be points such that C 2 qy!

AB. Then
qy!
AB D qy!

AC

and
px!
AB D px!

AC.

Proof. Since C 2 qy!
AB, by Definition IB.4, either C D B, A C B, or A B C. If

B D C, then clearly
qy!
AB D qy!

AC and
px!
AB D px!

AC.

Suppose that A C B. By Properties B.3 and B.1 of Definition IB.1 there is a point

P such that P A C. By Theorem PSH.8(B)(1), P A B. By the Corollary PSH.13.1,

P A C and P A B together imply
qy!
AB D qy!

AC and
px!
AB D px!

AC, the desired conclusion.

If A B C, interchanging the roles of B and C in the above argument yields the

conclusion
qy!
AC D qy!

AB and
px!
AC D px!

AB, again the desired conclusion. ut
Theorem PSH.17. Let A, B, C, and D be points on a Pasch plane P such that

A ¤ B and C ¤ D. Then
px!
CD � px!

AB iff
�
.C D A and D 2 qy!

AB/ or .C 2 qy!
AB and A C D/

�
.
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Proof. I:
px!
CD � px!

AB) �
.C D A and D 2 qy!

AB/ or .C 2 qy!
AB and A C D/

�
.

By Definition IB.4, C and D belong to
px!
CD � px!

AB. Either C D A or C ¤ A.

(I.1) If C D A, D ¤ A so that by Remark IB.4.1(f) D 2 qy!
AB, which is the first

half of the disjunction we wish to prove.

(I.2) Now suppose C ¤ A. Then by Theorem IB.4.1(f) C 2 qy!
AB, and by

Theorem PSH.16,
qy!
AB D qy!

AC and
px!
AB D px!

AC.

Claim: D ¤ A. For suppose D D A. Then since C ¤ D, by Property B.3

of Definition IB.1 there exists a point X with C D X; by Definition IB.4

X 2 px!
CD � px!

AB which is equal to
px!
AC as we have seen. Since D D A,

C A X. But X 2 px!
AC which by Definition IB.4 means that either X D A

or X D C (both of which we know to be false by the definition of X) or

A X C or A C X, which are in contradiction to C A X by Property B.2

of Definition IB.1. This proves the claim.

From Theorem IB.4.1(f) it follows that D 2 qy!
AB so that by Theo-

rem PSH.16,
qy!
AD D qy!

AB D qy!
AC, and

px!
AD D px!

AB D px!
AC.

Since C ¤ A, C ¤ D, and D ¤ A, by Property B.2 of Definition IB.1

one and only one of A C D, C A D, or C D A is true.

C A D is not true because by Definition IB.4 and Property B.2 of

Definition IB.1, it implies C 62 px!
AD D px!

AB, contradicting our hypothesis
px!
CD � px!

AB.

C D A is not true either. To see this note first that by Property B.3 of

Definition IB.1 there is a point P such that D A P. Now on the one hand,

C D A and D A P imply by Theorem PSH.8(B)(1) C D P, which means

P 2 px!
CD � px!

AB. But on the other hand, D A P implies by Definition IB.4

and Property B.2 P … px!
AD D px!

AB. This contradiction shows C D A is false.

We are left with only the first alternative which we wished to prove.

II.
px!
CD � px!

AB( �
.C D A and D 2 qy!

AB/ or .C 2 qy!
AB and A C D/

�
.

(II.1) If C D A and D 2 qy!
AB, then by Theorem PSH.16,

qy!
CD D qy!

AB and
px!
CD D

px!
AB.

(II.2) If C 2 qy!
AB, then by Theorem PSH.16,

px!
AC D px!

AB. By Theorem PSH.13, if

A C D, then fX jA C Xg D qy!
CD and

px!
AC D px qy

AC[ px!
CD, so

px!
CD � px!

AB. ut
The proof of Theorem PSH.19 becomes much easier once we know that rays are

convex sets. Therefore we will prove the following theorem at this point.
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Theorem PSH.18 (Convexity of segments and rays). Let A and B be distinct

points on a Pasch plane P . Then each of the following sets is convex: (1)
qy!
AB, (2)

px!
AB, (3)

qy px

AB, (4)
px px

AB, (5)
qy qy

AB, and (6)
px qy

AB.

Proof. (1) Let U and V be distinct members of
qy!
AB. By Definition IB.9 we must

show
qy px

UV � qy!
AB. To do this we let X be any member of

qy px

UV and show X 2 qy!
AB.

The points A, B, U, and V are collinear, and by Property B.2 of Definition IB.1,

exactly one of A U V , U A V , or A V U is true.

If U A V , by Theorem PSH.15(B)
 !
AB D qy!

AU[fAg [ qy!
AV and these sets

are disjoint; therefore B 2 qy!
AU or B 2 qy!

AV but not both. If B 2 qy!
AU, by

Theorem PSH.16
qy!
AU D qy!

AB so that V 2 qy!
AU and either A U V or A V U,

in contradiction to our assumption. (A similar proof holds if B 2 qy!
AV .)

Therefore by Property B.2 of Definition IB.1 either A U V or A V U.

Choose the notation so that A U V . Since V 2 qy!
AB, by Theorem PSH.16,

qy!
AV D

qy!
AB. If X is any point of

qy px

UV , by Definition IB.3, U X V . By Corollary PSH.8.1,

A U V and U X V imply A X V . By Definition IB.4, X 2 qy!
AV D qy!

AB. This

shows
qy px

UV � qy!
AB and completes the proof of this part.

(2) Let U and V be distinct members of
px!
AB. As above, we must show

qy px

UV � px!
AB.

If U and V both belong to
qy!
AB, then, since

px!
AB is convex by part (1) above,

qy px

UV � qy!
AB � px!

AB, and we are done.

If either U D A or V D A, choose the notation so U D A. Since U and V

are distinct, V 2 qy!
AB and by Theorem PSH.16

px!
AV D px!

AB. By Remark IB.4.1(g),
px qy

AV � px!
AV . Since U D A we have shown

px qy

UV � px!
AB, which is what we wished to

prove in this part.

(3) Let U and V be distinct members of
qy px

AB. We show
px qy

UV � qy px

AB. By Property B.2

of Definition IB.1 exactly one of A U V , U A V , or A V U is true.

We show that U A V is impossible. We know that both U and V are

members of
qy px

AB so that by Definition IB.3 A U B and A V B. If U A V

by Theorem PSH.8(B) B U V and also U V B, which are incompatible by

Property B.2 of Definition IB.1.

Therefore either A U V or A V U is true. Choose the notation so A U V .

Let X be any member of
qy px

UV , so U X V . By Corollary PSH.8.1 A X V .

Since V 2 qy px

AB we have A V B. Putting this with A X V and using Theo-

rem PSH.8(A)(2), we get A X B, which is to say X 2 qy px

AB. We have shown
qy px

UV � qy px

AB, and since we already know that U 2 qy px

AB and V 2 qy px

AB, the desired

result is proved.

The proof of parts (4–6) is left to the reader as Exercise PSH.48. ut
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Theorem PSH.19. Let A, B, C, and D be points such that A ¤ B and C ¤ D. Then
px!
AB\ px!

CD is a ray iff .
px!
AB � px!

CD or
px!
CD � px!

AB/.

Proof. (I)
px!
AB\ px!

CD is a ray) .
px!
AB � px!

CD or
px!
CD � px!

AB/.

We prove the equivalent statement: .
px!
AB 6� px!

CD and
px!
CD 6� px!

AB/) px!
AB\ px!

CD

is not a ray (the contrapositive).

Since
px!
AB 6� px!

CD and
px!
CD 6� px!

AB,

there exists a point S 2 px!
AB such that S 62 px!

CD (1)

and there exists a point T 2 px!
CD such that T 62 px!

AB. (2)

By Property B.2 of Definition IB.1 either S C T , C S T , or C T S. We

will show that the first is true by showing that the second and third are false.

If C S T , since C and T are members of
px!
CD, S 2 px!

CD by Theorem PSH.18

(convexity of rays), contradicting (1). Now suppose C T S; both C 2 px!
CD

and T 2 px!
CD so T 2 qy!

CD. By Theorem PSH.16
px!
CD D px!

CT . It follows from

Definition IB.4 that S 2 px!
CD, again contradicting (1), so that S C T .

Similarly, either S A T , A S T , or A T S. If A T S, since A and S are

members of
px!
AB, T 2 px!

AB by convexity of rays, contradicting (2). Now suppose

A S T; both A 2 px!
AB and S 2 px!

AB; so S 2 qy!
AB and by Theorem PSH.16

px!
AB D

px!
AS. It follows from Definition IB.4 that T 2 px!

AB, again contradicting (2), so that

S A T; therefore both end points of the rays belong to
px qy

ST .

There is no point X of
px!
CD such that T S X, for if there were, S 2 px!

CD

because the ray is convex (cf Theorem PSH.18), and this contradicts (1).

Neither is there a point Y 2 px!
AB such that S T Y by a similar argument.

Therefore there is no point Z 2 px!
AB\ px!

CD with T S Z or S T Z; neither S nor

T is in
px!
AB\ px!

CD, so if Z 2 px!
AB\ px!

CD, S Z T . Therefore by Exercise PSH.4(A),
px!
AB\ px!

CD is not a ray.

(II) .
px!
AB � px!

CD or
px!
CD � px!

AB/) px!
AB\ px!

CD is a ray.

By set theory, if
px!
AB � px!

CD, then
px!
AB\ px!

CD D px!
AB, and if

px!
CD � px!

AB, then
px!
AB\ px!

CD D px!
CD. ut

Theorem PSH.20. Let A, B, P, and Q be points on a Pasch plane such that A ¤ B,

P ¤ Q, and
px!
AB\ px!

PQ is a ray. If R 2 qy!
QP, then

px!
AB\ px!

QR is not a ray.

Proof. Since
px!
AB\ px!

PQ is a ray, by Theorem PSH.19,
px!
AB � px!

PQ or
px!
PQ � px!

AB.

(I) If
px!
AB � px!

PQ and R 2 qy!
QP, then

px!
AB\ px!

QR is not a ray.

By Theorem PSH.17, if
px!
AB � px!

PQ, then .A D P and B 2 qy!
PQ/ or .A 2 qy!

PQ and

P A B).
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(I.1) If A D P, B 2 qy!
PQ, and R 2 qy!

QP, then
px!
AB\ px!

QR is not a ray.

By Theorem PSH.16, if A D P and B 2 qy!
PQ, then

px!
AB D px!

PQ, and if

R 2 qy!
QP, then

px!
QR D px!

QP. By Exercise IB.8,
px!
PQ\ px!

QP D px qy

PQ. Hence
px!
AB\ px!

QR D px qy

PQ, which by Definition IB.4 is not a ray.

(I.2) If A 2 qy!
PQ, P A B, and R 2 qy!

QP, then
px!
AB\ px!

QR is not a ray.

By Theorem PSH.16, if A 2 qy!
PQ, then

px!
PA D px!

PQ, and if R 2 qy!
QP, then

px!
QR D px!

QP. By Theorem PSH.13, if P A B, then
px!
AB � qy!

PA D qy!
PQ. By

set theory,
px!
AB � px!

PQ implies
px!
AB\ px!

QR � px!
PQ\ px!

QR D px!
PQ\ px!

QP. By

Exercise IB.8
px!
PQ\ px!

QP D px qy

PQ. Since
px!
AB\ px!

QR is a subset of
px qy

PQ, by the

Exercise PSH.4(B), it is not a ray.

(II) If
px!
PQ � px!

AB and R 2 qy!
QP, then

px!
AB\ px!

QR is not a ray.

By Theorem PSH.17, if
px!
PQ � px!

AB, then .P D A and Q 2 qy!
AB/ or .P 2 qy!

AB and

A P Q).

(II.1) If P D A, Q 2 qy!
AB, and R 2 qy!

QP, then
px!
AB\ px!

QR is not a ray.

The proof of this statement is similar to that of (I.1) above.

(II.2) If P 2 qy!
AB, A P Q, and R 2 qy!

QP, then
px!
AB\ px!

PR is not a ray.

By Theorem PSH.16, P 2 qy!
AB implies

px!
AP D px!

AB and R 2 qy!
QP implies

px!
QR D px!

QP. By Definition IB.4, A P Q implies A 2 qy!
QP and Q 2 qy!

AP.

Hence by Theorem PSH.16
px!
QA D px!

QP and
px!
AQ D px!

AP. By Exercise IB.8
px!
AQ\ px!

QR D px qy

AQ. Thus summarizing the above statements,
px!
AB\ px!

QR D
px!
AQ\ px!

QA D px qy

AQ. By Exercise PSH.4(B)
px!
AB\ px!

QR is not a ray. ut
Corollary PSH.20.1. Let A, B, P, and Q be points on a Pasch plane P such that

A ¤ B, P ¤ Q, and
px!
AB\ px!

PQ is a ray. If R is a point distinct from Q such that
px!
AB\ px!

QR is a ray, then P Q R.

We undertake a detailed proof of this corollary as an illustration of the way the

contrapositive may be used in proofs.

Proof. We rewrite both statements in such a way that each is the contrapositive of

the other.

Theorem PSH.20 says that
px!
AB\ px!

PQ is a ray, so by Theorem PSH.19,
px!
AB � px!

PQ

or
px!
PQ � px!

AB; hence A, B, P, and Q are collinear. It also says R 2 qy!
QP so that R is

collinear with A, B, P, and Q and R ¤ Q. Thus it does not change the meaning of

Theorem PSH.20 to re-write it as follows:

Let A, B, P, Q, and R be collinear points on a Pasch plane such that A ¤ B,

P ¤ Q, R ¤ Q and
px!
AB\ px!

PQ is a ray. If R 2 qy!
QP, then

px!
AB\ px!

QR is not a ray.
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Now the corollary says (as does the Theorem) that
px!
AB\ px!

PQ is a ray, so again A,

B, P, and Q are collinear. It also says
px!
AB\ px!

QR is a ray so R is collinear with A, B,

Q, and P.

For such an R, P Q R means that R 62 qy!
QP. For R 2 qy!

QP by Definition IB.4 means

that either R D P, Q R P, or Q P R. If P Q R, by Property B.2 of Definition IB.1

none of these can be true so R 62 qy!
QP. Conversely, since R ¤ Q by Property B.2

exactly one of Q R P, Q P R, or P Q R is true; if R 62 qy!
QP both Q R P and

Q P R are false, so P Q R is true.

The corollary now reads Let A, B, P, Q and R be collinear points on a Pasch

plane P such that A ¤ B, P ¤ Q, R ¤ Q, and
px!
AB\ px!

PQ is a ray. If
px!
AB\ px!

QR is a

ray, then R 62 qy!
QP.

The first sentence in Theorem PSH.20 is identical to that in the corollary; the

second sentence of each is the contrapositive of the other, and thus the theorem and

its corollary are logically equivalent. ut
Theorem PSH.21. (A) Let A, B, and C be points such that A B C. Then

qy px

AB � qy px

AC.

(B) Let A and B be distinct points. If C 2 qy!
AB, then

qy px

AB\ qy px

AC is an open segment.

(C) Let A, B, and C be points such that B A C, and let D be any member of
 !
BC n

fAg. Then
qy px

AD\ qy px

BC is an open segment.

We remind the reader that according to Definition IB.3 an open segment is

always nonempty. Thus part (C) of the above theorem says that if one of two open

segments has an end point belonging to the other, then the intersection of the two

segments is nonempty, and is an open segment.

Proof. (A) This is Corollary PSH.8.5, and is included here for completeness.

(B) If B D C, then
qy px

AB\ qy px

AC D qy px

AB, which is an open segment. If B ¤ C, then

by Definition IB.4, either A B C, or A C B. If A B C, then by part (I),
qy px

AB �
qy px

AC, and hence
qy px

AB\ qy px

AC D qy px

AB, an open segment. If A C B, then by part (A),
qy px

AB\ qy px

AC D qy px

AC, again, an open segment.

(C) By Theorem PSH.15(D), elementary set theory, and the fact that
qy px

AD\fAg D ;,
qy px

AD\ qy px

BC D qy px

AD\.qy px

AB[ qy px

AC[fAg/ D .qy px

AD\ qy px

AB/ [ .qy px

AD\ qy px

AC/ (1)

By Theorem PSH.15(B),
qy!
AB[ qy!

AC D  !BC n fAg and
qy!
AB\ qy!

AC D ;. Since D 2 !
BC n fAg, either D 2 qy!

AB or D 2 qy!
AC.

Suppose D 2 qy!
AB. By Theorem PSH.16,

qy!
AD D qy!

AB and by Remark IB.4.1(h)
qy px

AD � qy!
AD D qy!

AB which is disjoint from
qy!
AC and thus from

qy px

AC. Hence
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qy px

AD\ qy px

AC D ;, and (1) becomes
qy px

AD\ qy px

BC D qy px

AD\ qy px

AB, which is an open

segment by part (B), since D 2 qy!
AB.

The case where D 2 qy!
AC can be treated similarly. ut

Theorem PSH.22 (Denseness property). If A and B are distinct points, then

there exists a point C such that A C B. That is,
qy px

AB ¤ ;.
Proof. By Axiom I.5(B) there exists a point D not belonging to

 !
AB. By Property B.3

of Definition IB.1 there exists a point E such that A D E and a point F such that

E B F. Note that F cannot be on the line
 !
AE because then A D B; the intersections

of the lines
 !
DF and

 !
EF with

 !
AE are not the same, and so they are distinct lines.

Hence by Axiom I.1 they have only one point (F) in common.

Also, by Property B.2 it is false that E F B, since it is true that E B F. Therefore

by Definition IB.3
qy px

EB has no point in common with
 !
DF, and F ¤ B so that B 62  !DF.

Now
 !
DF \ qy px

AE D fDg ¤ ; and it follows from the Postulate of Pasch (which

applies by Theorem PSH.6) that the line
 !
DF must intersect

qy px

AB at some point C, and

by Definition IB.3 A C B. ut
Corollary PSH.22.1. Let

qy px

AB be any open segment. For every natural number n,

there exists a subset B � qy px

AB containing 2n�1 points, that is, there exists a bijection

f W f1; 2; 3; : : : ; 2n � 1g ! B.

Proof. We give a proof by induction. By Theorem PSH.21 there exists a point

belonging to
qy px

AB, so the assertion is true for n D 1. Suppose now it is true for n D k,

i.e.
qy px

AB contains a subset with 2k � 1 points. We call these points P1;P2; : : : ;Pm,

where m D 2k � 1, and we will suppose their names have been chosen so that

A P1 P2 : : : Pm B. Now by Theorem PSH.21, there exist points Q1; : : : ;QmC1
such that A Q1 P1 Q2 P2 Q3 : : : Qm Pm QmC1 B. That is to say,

qy px

AB contains

at least 2mC 1 D 2.2k � 1/C 1 D 2kC1� 2C 1 D 2kC1� 1 points. We have shown

that if the statement in the theorem is true for n D k, then it is true for n D k C 1,

which completes the induction. ut
Corollary PSH.22.2. Every open segment

qy px

AB contains an infinite number of

points.

Proof. Suppose
qy px

AB is a finite set having n elements; by two applications of

Theorem PSH.22 there exist points M and M0 of
qy px

AB such that A M M0 B. Thus

if there are n elements of
qy px

AB, n � 2. By Corollary PSH.22.1, there exists a subset B
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of
qy px

AB having 2n � 1 elements; if B is a proper subset of
qy px

AB, 2n � 1 < n; if B D qy px

AB,

then 2n � 1 D n; in either case, 2n � 1 � n which is false. Therefore
qy px

AB is an

infinite set. ut
Corollary PSH.22.3. Every convex set which is not a singleton is infinite.

Proof. This is immediate from Corollary PSH.22.2 above and Definition IB.9. ut

5.5 Uniqueness of endpoints and edges

We said in IB geometry that it is possible to have a single ray with more than one

endpoint or a single segment with two different sets of endpoints. The next set of

theorems proves these situations can’t happen in Pasch geometry.

The thoughtful reader might ask why it is necessary to prove that the endpoint of

a ray is unique, or the set of endpoints of a segment is unique. After all, these matters

seem “intuitively obvious,” being well specified in Definitions IB.3 and IB.4. The

answer lies in the fact that we may define rays and segments either geometrically,

as we do in their definitions, or as sets of points without reference to endpoints.

If in a proof, two segments are shown to have exactly the same points it may

become important to know that the endpoints of one are the same as the endpoints

of the other. The particular circumstances of a given proof may or may not make it

easy to show this; but it would be better to have settled the issue once and for all.

The method we use to do this is to first identify those points designated as end-

points in the definitions of rays and segments; then prove (in Theorem PSH.23) that

these endpoints have certain properties, and finally (Theorems PSH.24 and PSH.25)

prove that no points other than the original endpoints have those properties.

In an analogous manner, Theorem PSH.32 proves certain properties of corners

(of angles, triangles, or quadrilaterals) and Theorems PSH.33, PSH.34, and PSH.35

show that no other points have these properties.

Theorem PSH.23. Let P be a Pasch plane, let E be a ray or a segment on P , let

L be the line containing E , and let U be an endpoint of E . Then there exist points V

and W such that W U V,
qy px

UV � E , and
qy px

WU � L n E .

Proof. If E is a ray, let V be any point of the ray other than U. If E is a segment,

let V be the other endpoint of E . Definitions IB.3, IB.4, and Theorem PSH.16 show

that exactly one of the following statements is true:

(1) E D qy!
UV , (2) E D px!

UV , (3) E D qy px

UV , (4) E D px px

UV , (5) E D qy qy

UV , (6) E D px qy

UV .
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(I) By Remark IB.4.1,
qy px

UV is a subset of each of the above six sets.

(II) By Properties B.1 and B.3 of Definition IB.1 there exists a point W such that

W U V . Let Y be any member of
qy px

WU, so that by Definition IB.3 W Y U.

By Theorem PSH.8(A), W Y U and W U V imply Y U V . By Property B.0

Y 2 L, but referring to Definitions IB.3 and IB.4, we see Y doesn’t belong

to any of the six sets enumerated above. Hence Y 2 .L n E/. That is to say,
qy px

WU � L n E . ut
Theorem PSH.24. Let A and B be distinct points on a Pasch plane P .

(A) A is the unique endpoint of
px!
AB and of

qy!
AB; and

(B) if A, B, C, and D are points on P such that A ¤ B, C ¤ D, and
px!
AB D px!

CD, then

A D C and B 2 qy!
CD.

Proof. (A) Let E D qy!
AB or E D px!

AB. We note first that if U is an endpoint of E , then

U 2  !AB. For by Exercise PSH.47(A), if U …  !AB, then for every point V in P ,
qy!
UV is not a subset of

 !
AB. By Theorem PSH.15, E �  !AB, so by Definition IB.4,

U is not an endpoint of E . Hence our task is to prove: if U is any member of !
AB n fAg, then U is not an endpoint of E .

By Properties B.1 and B.3 of Definition IB.1 there exists a point C such that

C A B. By Theorem PSH.15
qy!
AB\ qy!

AC D ;. Assume that U is an endpoint for
qy!
AB or

px!
AB, and U ¤ A; by Theorem PSH.15 either U 2 qy!

AB or U 2 qy!
AC.

(Case 1: U 2 qy!
AB.) By Theorem PSH.22 there exists a point P such that

A P U, and by Property B.3 there exists a point Q such that A U Q. By

Theorem PSH.8(A) A P U Q. By Definition IB.4 both P 2 qy!
AU and Q 2 qy!

AU,

so by Theorem PSH.18 (convexity)
qy px

PQ � qy!
AU. Also by Theorem PSH.16

qy!
AU D qy!

AB.

Since U is an endpoint of E , then by Theorems PSH.23 and PSH.15, there

is a point W such that
qy px

WU � qy!
AC.

Since P U Q and W ¤ U, we may apply Theorem PSH.21 to conclude that
qy px

UW \ qy px

PQ is a (nonempty) open segment. And since
qy px

PQ � qy!
AB,

qy px

UW \ qy px

PQ �
qy!
AB, which is disjoint from

qy!
AC, and hence from

qy px

UW so we have a contradiction,

showing that U is not an endpoint for E .

(Case 2: U 2 qy!
AC.) Since U is an endpoint of E , by Theorem PSH.23 there

is a point V such that
qy px

UV � E � px!
AB.

By Property B.3 we may let X be a point such that X U A. By Theo-

rem PSH.21
qy px

UV \ qy px

AX is a nonempty open segment. Since X 2 qy!
AC,

qy!
AX D qy!

AC
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and hence by Remark IB.4.1(h)
qy px

AX � qy!
AX D qy!

AC and
qy px

UV \ qy px

AX � qy!
AC, which is

disjoint from
qy!
AB, hence from

qy px

UV . This is a contradiction, so again, U is not an

endpoint for E .

Therefore no point other than A can be an endpoint for
qy!
AB or

px!
AB.

(B) Asserting A D C is simply a restatement of part (A). Since B ¤ A and A D C,

B ¤ C. But then by Definition IB.4, B 2 qy!
CD. ut

We may henceforth refer to the endpoint of a ray.

Theorem PSH.25. If A and B are distinct points on a Pasch plane P , then fA;Bg
is the set of endpoints of each of the segments

qy px

AB,
qy qy

AB,
px px

AB, and
px qy

AB. This can also be

stated as follows: If A, B, C, and D are points on a Pasch plane P such that A ¤ B,

C ¤ D, and
px qy

AB D px qy

CD, then fA;Bg D fC;Dg.
Proof. By Exercise PSH.47(B), if a point U does not belong to the line

 !
AB, then

it is not an endpoint of any of the segments in the theorem. Therefore, yet another

way of stating the theorem is: If U is any member of
 !
AB n fA;Bg, then U is not an

endpoint of any of the segments
qy px

AB,
qy qy

AB,
px px

AB, or
px qy

AB.

Let E D qy px

AB, or E D qy qy

AB, or E D px px

AB, or E D px qy

AB, and assume U is an

endpoint of E different from A or B. By Property B.3 of Definition IB.1 there exist

points C and D such that C A B (or B A C) and A B D. By Theorem PSH.15(B), !
AB D qy!

BA[ qy!
BD[fBg, and the sets in this union are disjoint. Since B A C, by

Theorem PSH.13(D) and Exercise IB.3,
qy!
BA D fAg [ qy px

AB[ qy!
AC, and these sets

are disjoint by Theorem PSH.15(B). Putting this into the preceding equality gives !
AB D fA;Bg [ qy!

AC[ qy px

AB[ qy!
BD and the sets in this union are disjoint.

Since U is an endpoint of E and U 62 fA;Bg; there are three cases: U 2 qy px

AB,

U 2 qy!
AC, and U 2 qy!

BD. We show that these are all impossible.

(Case I: U 2 qy px

AB.) By Theorem PSH.23 there exists a point W such that
qy px

WU � !
AB n E �  !AB n qy px

AB, that is,
qy px

WU\ qy px

AB D ;. On the other hand, since A U B, and

W ¤ U, we may apply Theorem PSH.21(C) to conclude that
qy px

WU\ qy px

AB is an open

segment, and thus nonempty. This contradicts the previous sentence; therefore U

cannot be an endpoint for E .

(Case II: U 2 qy!
AC.) By Theorem PSH.16

qy!
AC D qy!

AU. By Property B.3 of

Definition IB.1 there exists a point P such that P U A; then P 2 qy!
AU so

qy!
AP D

qy!
AU D qy!

AC.
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By Theorem PSH.23 there exists a point V ¤ U such that
qy px

UV � E � px qy

AB. By

Remark IB.4.1(d) and (h)
px qy

AB � px!
AB and by Theorem PSH.15(B)

px!
AB\ qy!

AC D ;, so
qy px

UV and
qy!
AC are disjoint.

On the other hand, since P U A, and V ¤ U, we may apply Theorem PSH.21(C)

to conclude that
qy px

UV \ qy px

AP is an open segment, and thus nonempty. But by

Remark IB.4.1(h)
qy px

AP � qy!
AP D qy!

AC so that
qy px

UV \ qy!
AC is nonempty. This contradicts

the fact that
qy px

UV and
qy!
AC are disjoint, and therefore U cannot be an endpoint for E .

(Case III: U 2 qy!
BD.) The proof in this case is just like that for Case II and can be

obtained from it by replacing every “A” by “B” and every “C” by “D.” ut
We may henceforth refer to the endpoints of a segment.

The next theorem goes back to the scenario involving a line L in a Pasch plane

E and the two sides of L. It confirms some concepts we ordinarily carry in our

intuitive picture of this situation. In particular it assures us we may refer to the edge

of a given halfplane.

Theorem PSH.26. If L is a line in plane P , and if H is a side of L, then:

(A) H contains at least three noncollinear points; and

(B) L is uniquely determined by H, i.e., there exists no line distinct from L which

is an edge of H.

Proof. (A) By Axiom I.5 there exist distinct points P and Q on L. By Defini-

tion IB.11 there exists a point R belonging to H. By Theorem IB.14
qy!
PR and

qy!
QR

are each contained in H. By Theorem PSH.22 (denseness) there exist points S

and T such that P S R and Q T R. By Definition IB.4 S 2 qy!
PR and T 2 qy!

QR.

Hence S 2 H and T 2 H by Theorem IB.14.

By Theorem IB.5 S 2  !PR. Now if R, S, and T were collinear we would have

T 2  !PR. Since T 2  !QR by definition we would then have T 2  !PR \ !QR. But

by Exercise I.1,
 !
PR \  !QR D fRg. This contradicts the definition of T so our

assumption that R, S, and T are collinear is false, hence they are noncollinear.

(B) Let H be a side of a line L, and suppose L0 ¤ L is another edge of H.

Since L ¤ L0, there is at least one point P on L0 which is not on L. By

Theorem PSH.12 L has another side H�. We have assumed that L0 is an edge

of H, so by Definition IB.11, P … H. By Theorem PSH.12, P 2 H�. Also

by Theorem PSH.12 there exists a point Q in H such that for some point R,
qy px

PQ\L D fRg, since P and Q are on different sides of L.
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By Theorem IB.14,
qy!
PQ � the Q side of L0 and since R 2 qy px

PQ � qy!
PQ, R

belongs to the Q side of L0 D H. Here we have used Theorem PSH.13(D).

Since Q 2 H (the Q side of L0), R 2 H by Theorem PSH.12. But since R 2 L,

and L is an edge of H, R 62 H, a contradiction.

Hence our assumption L ¤ L0 is false. ut

5.6 Uniqueness of corners of angles, etc

Definition PSH.27. Let A, B, C, and D be points such that A ¤ B and C ¤ D. The

rays
px!
AB and

px!
CD are opposite iff A D C and B A D.

Theorem PSH.28. Let A, B, and C be distinct points such that
px!
AB ¤ px!

AC. Then
px!
AB

and
px!
AC are opposite iff A, B, and C are collinear. This is equivalent to saying that

px!
AB and

px!
AC are nonopposite iff A, B, and C are noncollinear.

Proof. If
px!
AB and

px!
AC are opposite, then B A C by Definition PSH.27, and therefore

A, B, and C are collinear. Conversely, if A, B, and C are collinear and
px!
AB ¤ px!

AC, by

Theorem PSH.16 B … px!
AC and C … px!

AB. Therefore neither A B C norA C B so that

by the Trichotomy Property B.2 of Definition IB.1, B A C. ut
Definition PSH.29. An angle is the union of two distinct nonopposite rays having

the same endpoint. The common endpoint of the rays is the corner of the angle.

By Theorem PSH.28, E is an angle iff there exist noncollinear points A, B, and C

such that E D px!
AB[ px!

AC. In this case, E is denoted by †BAC.

Notice how our definition excludes both what are sometimes called a “straight

angle” and a “zero angle” in high-school geometry. What is usually called a “reflex

angle” could be considered as a kind of “complement” to what we call an angle. The

inside of a reflex angle would correspond to the outside of the “complementary”

angle. Here we are using the terminology to be introduced in Definition PSH.36.

Theorem PSH.30. If A, B, and C are noncollinear points and if D and E are points

such that D 2 qy!
AB and E 2 qy!

AC, then †DAE D †BAC.

Proof. This theorem is an immediate consequence of Theorem PSH.16 and Defini-

tion PSH.29. ut
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Definition PSH.31. A subset E of a Pasch plane P is a quadrilateral iff there exist

points A, B, C, and D on P such that all three of the following are true:

(1) each of the triples fA;B;Cg, fB;C;Dg, fC;D;Ag, and fD;A;Bg is a set of

noncollinear points;

(2)
px qy

AB\ px qy

CD D px qy

BC\ px qy

DA D ;;
(3) E D px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA.

If E is a quadrilateral, then it is denoted by tuABCD or hA;B;C;Di. A point U is

a corner of E iff there exist points V , W, and X such that E D tuUVWX.

A segment J is an edge of E iff there exist corners U and V in E D tuABCD

such that J D px qy

UV � E . Edges J and K in a given representation of E are opposite

iff J \K D ;.
Corners U and W are opposite iff

qy px

UW \E D ;. A segment J is a diagonal of E
iff there exist corners U and W of E such that U and W are opposite and J D px qy

UW.

E is rotund iff for every line L containing an edge of E , the corners of E not on

L are on the same side of L.

A quadrilateral E is a trapezoid iff there exist opposite edges E1 and E2 of E such

that if L1 is the line containing E1 and L2 is the line containing E2, then L1 k L2.
Theorem PSH.32. Let E be an angle, a triangle, or a quadrilateral in a Pasch

plane P , and let U be a corner of E . Then there exist points V and W such that U, V,

and W are noncollinear, and
px qy

UV [ px qy

UW � E . Furthermore, there exist points V 0 and

W 0 such that V 0 U V, W 0 U W, and
qy px

UV 0 [ qy px

UW 0 � P n E . That is, .
qy px

UV 0 [ qy px

UW 0/\
E D ;.
Proof. (Case 1: E is an angle and U is a corner of E .) By the remark following

Definition PSH.29 there exist points V and W such that U, V , and W are noncollinear

and E D †VUW D px!
UV [ px!

UW. By Corollary IB.5.2
px qy

UV [ px qy

UW � px!
UV [ px!

UW D E ,

which is half of what we wished to prove in this case.

By Property B.3 of Definition IB.1 there exist points V 0 and W 0 such that V U V 0

and W U W 0. By Theorem PSH.15 and Remark IB.4.1(f)
 !
UV n px!

UV D qy!
UV 0 and !

UW n px!
UW D qy !

UW 0. Hence
qy!
UV 0 [ qy !

UW 0 D . !UV [ !UW/ n .px!UV [ px!
UW/ D !UV [ !UW n E � P n E ;

here we have used a number of facts about unions, relative complements, and

subsets from elementary set theory, as well as the fact that
 !
UV \ !UW D fUg. By

Corollary IB.5.2,
qy px

UV 0 [ qy px

UW 0 � P n E .
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(Case 2: E is a triangle and U is a corner of E .) By Definition IB.7 there exist

points V and W such that U, V , and W are noncollinear and E D px qy

UV [ px qy

UW [ px qy

VW.

Hence
px qy

UV [ px qy

UW � E , which is the first statement we wished to prove in this case.

By Property B.3 of Definition IB.1 there exist points V 0 and W 0 such that V U V 0

and W U W 0. By Theorem PSH.15 and Remark IB.4.1(f),
 !
UV n px!

UV D qy!
UV 0 and !

UW n px!
UW D qy !

UW 0. By Corollary IB.5.2
px qy

UV [ px qy

UW � px!
UV [ px!

UW and
qy px

UV 0 [ qy px

UW 0 �
qy!
UV 0 [ qy !

UW 0. Using an argument similar to Case 1 above we get
qy px

UV 0 [ qy px

UW 0 � P nE .

(Case 3: E is a quadrilateral and U is a corner of E .) By Definition PSH.31 there

exist points U, V , W, and X such that U, V , and W are noncollinear; V , W, and X

are noncollinear; W, X, and U are noncollinear;
px qy

UV \ px qy

XW D px qy

UX\ px qy

VW D ;; and

E D px qy

UV [ px qy

VW [ px qy

WX[ px qy

XU. Hence
px qy

UV [ px qy

UX � E , which completes the first part of

the proof in this case.

We now show that there exists a point V 0 such that V U V 0 and
qy px

UV 0 � .P n E/.
First note by the noncollinearity conditions above and Exercise I.1

 !
UV\ !UX D fUg

and
 !
UV\ !VW D fVg. By Property B.3 of Definition IB.1 there exists a point T such

that V U T . If W and X are on the same side of
 !
UV , then by Theorem PSH.12

px qy

WX

is a subset of a side of
 !
UV , so

px qy

WX\ !UV D ;. If we put these statements together

we get E \ !UV D px qy

UV . By Theorem PSH.15(C)
px qy

UV \ qy px

UT D ;. Hence if we take

V 0 D T , we have
qy px

UV 0 � .P n E/.
If W and X are on opposite sides of

 !
UV , then by Theorem PSH.12 there exists

a point S such that
 !
UV \ qy px

WX D fSg. Then by Property B.2 of Definition IB.1

S U V , or U S V , or U V S. But the second of these possibilities is ruled out by

the definition of a quadrilateral (PSH.31). The same definition tells us E \ !UV D
px qy

UV [fSg. Now if U V S we take V 0 to be the point T defined above, so that by

Theorem PSH.8(B) V 0 U V S and by virtue of what has just been said,
qy px

UV 0 �
P n E , and we are done. In case S U V we know by Theorem PSH.22 (denseness)

there is a point V 0 such that S V 0 U. Then by Theorem PSH.8(A) S V 0 U V , and

by reasoning similar to that above, we again get
qy px

UV 0 � P n E . ut
Theorem PSH.33 (The corner of an angle is unique). Every angle has exactly

one corner.

Proof. By Definition PSH.29, an angle is the union of two distinct nonopposite rays

having the same endpoint. The corner of the angle is defined to be this point of

intersection.

Each of these rays defines a line; the two lines so defined are distinct because

the rays defining them are distinct and nonopposite; they must intersect because the
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rays intersect. A corner of the angle must be a point of intersection of the rays, and

therefore a point of intersection of the two lines. By Exercise I.1 there is only one

such point. ut
Theorem PSH.34. Let A, B, and C be noncollinear points on a Pasch plane P;

then the set of corners of4ABC is fA;B;Cg.
Proof. By Definition IB.7, a point U is a corner of a triangle 4ABC iff there exist

points V and W such that U, V , and W are noncollinear and4UVW D 4ABC. This

shows immediately that A, B, and C are corners of4ABC.

If U is any corner of 4ABC, U, V , and W are noncollinear and 4UVW D
4ABC, then by definition the edge

px qy

UV is a subset of 4ABC. By two successive

applications of Theorem PSH.22 we see that
px qy

UV contains at least four points, so

that at least two of them belong to the same line
 !
AB,
 !
AC, or

 !
BC. Therefore by

Exercise I.2,
px qy

UV is a subset of one of these lines. Similarly,
px qy

UW is a subset of one

of these lines. Since U, V , and W are noncollinear, these segments are subsets of

different lines.

It follows that any corner of 4ABC belongs to two of the lines
 !
AB,
 !
AC, or

 !
BC.

The only points which satisfy this criterion are A, B, and C. Therefore these are the

only possible corners for the triangle. ut
It is possible to construct a different proof of Theorem PSH.34 using

Theorem PSH.32. See Exercise PSH.58.

Theorem PSH.35. Let A, B, C, and D be points on a Pasch plane P such that A, B,

and C are noncollinear, B, C, D are noncollinear, C, D, and A are noncollinear, D,

A, B are noncollinear, and that
px qy

AB\ px qy

CD D px qy

AD\ px qy

BC D ;. Then the set of corners

of tuABCD is fA;B;C;Dg.
Proof. All the points A, B, C, and D are corners of tuABCD by Definition PSH.31,

and every corner of tuABCD is a point of tuABCD. Therefore all that is needed to

prove the theorem is to show that no member of
qy px

AB[ qy px

BC[ qy px

CD[ qy px

DA is a corner of

tuABCD.

Choose the notation so that U 2 qy px

AB, that is, A U B, and assume U is a corner of

tuABCD. From this point on the proof is identical to that of Theorem PSH.34. ut
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5.7 Mostly about angles

Definition PSH.36. Let A, B, and C be noncollinear points in a Pasch plane P D �!
ABC.

(A) The inside of †BAC (notation: ins†BAC) is
qy !
ABC\ qy !

ACB.

The outside of †BAC (out†BAC) is
 �!
ABC n .†BAC [ ins†BAC/.

The enclosure of †BAC (enc†BAC) is †BAC [ ins†BAC .

The exclosure of †BAC (exc†BAC) is †BAC [ out†BAC.

(B) The inside of4ABC (ins4ABC) is
qy !
ABC\ qy !

ACB\ qy !
BCA.

The outside of4ABC (out4ABC) is
 �!
ABC n .4ABC [ ins4ABC/.

The enclosure of4ABC (enc4ABC) is4ABC [ ins4ABC.

The exclosure of4ABC (exc4ABC) is4ABC [ out4ABC.

A consequence of this definition, which we will state as part (B) of Theo-

rem PSH.41, is that †BAC, ins†BAC, and out†BAC are disjoint sets whose union

is P . Similarly, the consequence that4ABC, ins4ABC, and out4ABC are disjoint

sets whose union is P is part (B) of Theorem PSH.46. The next theorem shows that

a segment connecting a point on each ray of an angle must intersect its inside.

Theorem PSH.37. Let A, B, and C be noncollinear points, let P 2 qy!
AB, and Q 2

qy!
AC. Then

qy px

PQ � ins†BAC.

Proof. By Theorem IB.14, Q 2 qy!
AC � the C side of

 !
AB D qy !

ABC and likewise P 2
qy!
AB � the B side of

 !
AC D qy !

ACB. By the same theorem
qy!
PQ � qy !

ABC and
qy!
QP � qy !

ACB.

By Exercise IB.8, Definition PSH.36, and elementary set theory,
qy px

PQ D qy!
PQ\ qy!

QP �
qy !
ABC\ qy !

ACB D ins†BAC. See Figure 5.1. ut
Corollary IB.37.1. Let A, B, and C be noncollinear points. Then ins†BAC ¤ ;.
Proof. Since P and Q are distinct points, by Theorem PSH.22 there is a point R such

that P R Q and R 2 qy px

PQ � ins†BAC. ut

Fig. 5.1 For
Theorem PSH.37.

C

B

Q

P

A PQ ⊆ ins∠BAC
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Theorem PSH.38. Let A, B, and C be noncollinear points.

(A)
 !
AC \ qy !

ABC D qy!
AC; that is, if P is on a side of a line,

qy!
AP is the intersection of !

AP with that side.

(B) If P 2 ins†BAC, then
qy!
AP D !AP \ ins†BAC D !AP \ qy !

ABC\ qy !
ACB.

(C) If P is on the C-side of
 !
AB, and if B and C are on opposite sides of

 !
AP, then

P 2 ins†BAC.

Proof. (A) By Property B.2 of Definition IB.1 there exists a point C0 such that

C A C0. By Theorem IB.14,
qy!
AC � qy !

ABC and
qy!
AC0 � qy !

ABC0. By Definition IB.11

the C-side and the C0-side are opposite sides of
 !
AB and therefore by Theo-

rem PSH.12 these two sides are disjoint. Hence
qy!
AC0\ qy !

ABC D ;. Also A 2  !AB

and again by PSH.12
 !
AB \ qy !

ABC D ; so A … qy !
ABC. By Theorem PSH.15 and

the distributive laws for union and intersection, !
AC \ qy !

ABC D .qy!AC[fAg [ qy!
AC0/ \ qy !

ABC

D .qy!AC\ qy !
ABC/ [ .fAg \ qy !

ABC/ [ .qy!AC0\ qy !
ABC/

D qy!
AC[ .fAg \ qy !

ABC/ [ .qy!AC0 \ qy !
ABC/

D qy!
AC[; [ ; D qy!

AC.

(B) By Definition PSH.36 P 2 ins†CAB D qy !
ABC\ qy !

ACB. By part (A),
qy!
AP D !AP \

qy !
ABC and

qy!
AP D !AP\qy !

ACB so by elementary set theory,
qy!
AP D !AP\qy !

ABC\ qy !
ACB.

(C) Since B and C are on opposite sides of
 !
AP by Axiom PSA there exists a point

Q such that fQg D  !AP \ qy px

BC. By Theorem IB.14,
qy!
BC � C-side of

 !
AB, so that

Q, C, and P are on the same side of
 !
AB. By part (A)

qy!
AP D  !AP \ qy !

ABC so that

Q 2 qy!
AP. By Theorem PSH.37,

qy px

BC � ins†BAC, hence Q 2 †BAC and by part

(B) P 2 ins†BAC.

ut
Theorem PSH.39 (Crossbar theorem). Let A, B, and C be noncollinear points. If

P is any member of ins†BAC,
qy!
AP\ qy px

BC is nonempty and therefore a singleton fQg.
Proof. For a visualization see Figure 5.2. By Property B.3 of Definition IB.1 there

exists a point B0 such that B A B0. By Axiom I.1,
 !
AB D !B0B.

Observe first that B, B0, and C are noncollinear, for if they were collinear, A 2 px qy

BB0

would be collinear with B and C. Since P …  !AB, P …  !BB0; and
 !
AP \ !BB0 D fAg.

Therefore
 !
AP intersects

qy px

BB0, and by Theorem PSH.6,
 !
AP must intersect either

qy px

CB or
qy px

CB0. By Corollary IB.14.2, both these sets lie on the C side of
 !
BB0. Also, P

lies on the same side, since P 2 ins†BAC, and by Theorem IB.14, so does
qy!
AP, the

intersection of
 !
AP with the C side of

 !
BB0. Thus

qy!
AP must intersect either

qy px

CB or
qy px

CB0.
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Fig. 5.2 For
Theorem PSH.39.

B C

A

B

Q

P ∈ ins BAC

By Definition IB.11, B and B0 are on opposite sides of
 !
AC, and by Theo-

rem PSH.10 the B-side and B0-side are disjoint. By Corollary IB.14.2,
qy px

CB0 lies on

the the B0 side of
 !
AC, whereas

qy px

CB lies on the B-side. Since P also lies on the B-side,
qy!
AP is also on that side and hence intersects

qy px

CB at some point Q.

If there were a second such point Q0, both would belong to
 !
AP \  !BC and by

Exercise I.1
 !
AP D !BC which is impossible since A, B, and C are not collinear. ut

Corollary PSH.39.1. If, in Theorem PSH.39, Q is the point such that
qy!
AP\ qy!

BC D
fQg, then

 !
AP \ qy px

BC D fQg and Q 2 ins†BAC.

Proof. By Corollary IB.5.2,
px!
AP is a subset of

 !
AP and

qy px

BC is a subset of
 !
BC so that

Q 2 qy!
AP\ qy px

BC �  !AP \ !BC. By Exercise I.1
 !
AP \  !BC D fQg, since

 !
AP ¤  !BC.

Q 2 ins†BAC by Theorem PSH.37. ut
Corollary PSH.39.2. If A, B, and C are noncollinear points and if P 2 ins†BAC,

then B and C are on opposite sides of the line
 !
AP.

Proof. By Theorem PSH.39,
px!
AP intersects

qy px

BC at some point Q. By Definition IB.11,

B and C are on opposite sides of
 !
AP. ut

Theorem PSH.40. Let A, B, and C be noncollinear points, let P 2 qy!
AB and Q 2 qy!

AC.

Then
 !
PQ \ ins†BAC D qy px

PQ.

Proof. By Theorem PSH.37
qy px

PQ � ins†BAC, and since
qy px

PQ �  !PQ,
qy px

PQ �  !PQ \ ins†BAC.

Conversely, if X 2  !PQ \ ins†BAC, by the Crossbar theorem PSH.39 there is

a single point Y such that fYg D qy!
AX\ qy px

PQ �  !AX \ !PQ. Since X 2  !AX and X 2 !
PQ;X 2  !AX \ !PQ so that by Exercise I.1, X D Y 2 qy px

PQ. ut
The following theorem says that insides and outsides of angles behave “as they

should.” It says (A) the lines containing the edges of an angle do not intersect its

inside (but they do intersect its outside); (B) an angle is disjoint from its inside and

outside, and the inside and outside are disjoint. (C) The inside of an angle is defined
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in PSH.36 as the intersection of two half-planes; here we show that its outside is

the union of the opposite halfplanes. Part (D) states that when we make an angle

“smaller,” the inside does indeed get “smaller” and the outside gets “bigger.”

Theorem PSH.41. Let A, B, and C be noncollinear points. Then

(A) .
 !
AB [ !AC/ \ ins†BAC D ;;

(B) ins†BAC [ †BAC [ out†BAC D P; and the sets in this union are pairwise

disjoint; that is to say, an angle, its inside and its outside are mutually disjoint;

(C) out†BAC D E [ F ; where E is the side of
 !
AB opposite C and F is the side of !

AC opposite B; and

(D) if D 2 qy!
AB[ ins†BAC and E 2 qy!

AC[ ins†BAC, then ins†DAE � ins†BAC

and out†BAC � out†DAE.

Proof. (A) By Definition PSH.36, ins†BAC D qy !
ABC\ qy !

ACB. By Theorem PSH.12, !
AB \ qy !

ABC D ; and
 !
AC \ qy !

ACB D ;. Hence a point on either of these lines

fails to belong to at least one of the sides listed, and thus fails to belong to their

intersection ins†BAC.

(B) That the union of the sets equals P follows immediately from Defini-

tion PSH.36 (A). We examine each pair of sets to see that each pair is disjoint:

(1) †BAC \ ins†BAC D ; since †BAC �  !AB [ !AC and by part (A), .
 !
AB [ !

AC/ \ ins†BAC D ;;
(2) by Definition PSH.36, out†BAC\ .†BAC[ ins†BAC/ D ; and therefore

out†BAC \ ins†BAC D ; and out†BAC \ ins†BAC D ;.
(C) To prove this part we consider two cases:

(Case 1: X …  !AB [ !AC.) Then X … †BAC and since by definition

out†BAC D P n .†BAC [ ins†BAC/,

X 2 out†BAC, X … ins†BAC, X … qy !
ABC\ qy !

ACB

, X 2 E or X 2 F , X 2 E [ F .

(Case 2: X 2  !AB [ !AC.) Then

X 2 out†BAC, X … †BAC,X A B or X A C,

which follows from part (A) above and Definition PSH.29.

Now by Definition IB.11, X A B means that X is on the side of
 !
AC opposite

B, that is, X 2 F . By a similar argument, X A C means that X 2 E . Thus

X 2 out†BAC, X 2 E [ F .

(D) First we will show that ins†DAE � ins†BAC.
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C

E

B

P
A

Case 2: If P ∈ ins ∠BAE
then P ∈ ins ∠BAC

PB

C

E

D

B

P
A

Case 3: If P ∈ ins ∠DAE
then P ∈ ins ∠BAC

Fig. 5.3 For Theorem PSH.41(D).

(Case 1: Both points D and E belong to †BAC.) (Note that by hypothesis D

and E cannot belong to the same ray in †BAC). In this case the proof is trivial.

(Case 2: Either D 2 qy!
AB and E 2 ins†BAC, or E 2 qy!

AC and D 2 ins†BAC.)

Since the two alternatives are symmetric it should be sufficient entertainment

to prove only the first one. For a visualization see Figure 5.3.

E 2 ins†BAC � qy !
ABC so by Theorem PSH.12

qy !
ABE D qy !

ABC. That is, the

E-side and the C-side of
 !
AB are the same.

Let P 2 ins†BAE D qy !
ABE\ qy !

AEB D qy !
ABC\ qy !

AEB. Then P belongs to the

B-side of
 !
AE.

P is also on the E D C-side of
 !
AB. If

qy px

PB were to intersect
 !
AC, it would

necessarily intersect
qy!
AC because the intersection would lie on the C-side of !

AB and
 !
AC \ qy !

ABC D qy!
AC by Theorem PSH.38. But

qy!
AC is on the side of

 !
AE

opposite B because C and B are on opposite sides of
 !
AE by Corollary PSH.39.2.

Therefore
qy px

PB\ !AC D ;.
It follows from Definition IB.11 that P and B are on the same side of

 !
AC, so

P 2 qy !
ACB and hence P 2 ins†BAC.

(Case 3: Both D and E belong to ins†BAC.) We may choose the notation so

that E 2 C-side of
 !
AD. By Theorem PSH.12

both D and E belong to
qy !
ABC so that

qy !
ABC D qy !

ABD D qy !
ABE,

and

both D and E belong to
qy !
ACB so that

qy !
ACB D qy !

ACD D qy !
ACE.

Since E 2 qy !
ACD and by our choice of notation E 2 qy !

ADC, E 2 ins†DAC.
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Also, by Corollary PSH.39.2, C and D are on opposite sides of
 !
AE, and

by assumption E 2 ins†BAC so by the same corollary, C is on the side of
 !
AE

opposite B. Therefore D is on the B-side of
 !
AE, (D 2 qy !

AEB) and since D 2 qy !
ABE,

D 2 ins†BAE.

Then if P 2 ins†DAE, we apply Case 2 to †DAC to get P 2 ins†DAC. We

apply Case 2 again to †CAB to get P 2 ins†CAB, proving Case 3.

Finally, we show that out†BAC � out†DAE. We have already shown that

ins†DAE � ins†BAC. By definition of D and E, we know that †DAE �
†BAC [ ins†BAC. Taking unions, we have

†DAE [ ins†DAE � †BAC [ ins†BAC,

and taking complements, we have by Definition PSH.36

out†BAC � out†DAE,

which is the desired result. ut
Corollary PSH.41.1. Every angle is nonconvex.

Proof. Let †BAC be any angle, and let P 2 qy!
AB, and Q 2 qy!

AC; then by

Theorem PSH.37 and Theorem PSH.22 there is a point R 2 qy px

PQ � ins†BAC,

and by Theorem PSH.41(B) ins†BAC and †BAC are disjoint so that R … †BAC.

Then
qy px

PQ is not a subset of †BAC and by Definition IB.9, †BAC is not convex. ut

Theorem PSH.42. Let P and Q be distinct points, and let H be a side of
 !
PQ. Let

A and B be members of H [  !PQ such that A, B, and P are noncollinear. Then

ins†APB � H.

Proof. Exercise PSH.30. See Figure 5.4. ut

Q

P

A

B

Q

P

A

B

Case 1: A and B in H Case 2: A ∈ H and B ∈ ←−
PQ

→

Line ←−
PQ

→ Line ←−
PQ

−→

Fig. 5.4 For Theorem PSH.42.
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The following theorem summarizes the possible ways that a line can intersect an

angle.

Theorem PSH.43. On a Pasch plane, let L be a line and †BAC be an angle; if

L \ †BAC ¤ ;, then L \ †BAC is exactly one of the following alternatives:

(1) the single point A where L \ ins†BAC D ;; in this case, the sets †BAC n
fAg; qy!AB;

qy!
AC, and ins†BAC all are subsets of the B-side (D C-side) of L;

(2) a single point P where L \ ins†BAC ¤ ;; in this case, P may be any point of

†BAC; let Q ¤ P and Q 2 L \ ins†BAC; then

(a)
qy!
PQ D L \ ins†BAC,

(b) fX jX P Q} = L \ out†BAC, and

(c) L D !PQ D fX jX P Q}[fPg [ qy!
PQ;

(3) exactly two points P and Q, in which case

(a) no ray of †BAC contains both P and Q,

(b) P ¤ A ¤ Q,

(c)
qy px

PQ D L \ ins†BAC,

(d) fX jX P Qg [ fX jP Q Xg D L \ out†BAC, and

(e) L D !PQ D fX jX P Qg [ fPg [ qy px

PQ[fQg [ fX jP Q X};

(4) more than two points, in which case

(a) L contains an entire ray of †BAC, and

(b) L \ ins†BAC D ;.

Proof. It is clear that exactly one of the alternatives (1), (2), (3), or (4) holds. For a

visualization see Figure 5.5.

A
A

A
A

B B B B

C C C C

L

L
L

L

Alt. (1) Alt. (2) Alt. (3) Alt. (4)

Fig. 5.5 For Theorem PSH.43.
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(1) Suppose the intersection is the single point A and L \ ins†BAC D ;. If there

are points P and Q 2 †BAC that are on different rays of the angle and are on

opposite sides of L, then by Axiom PSA there exists a point R 2 qy px

PQ\L. By

Theorem PSH.40 R 2 ins†BAC which is impossible by hypothesis.

If there are points P and Q 2 †BAC that are both on one ray of the angle,

and are on opposite sides of L, then by Theorem PSH.12(IV)(B) there is a point

R 2 L belonging to that ray, and R ¤ A. But by hypothesis, there is only one

point of intersection between †BAC and L, so this is impossible.

Therefore all the points of
qy!
AB and

qy!
AC are on the same side of L, and by

Theorem PSH.42, ins†BAC is on that same side.

(2) Since Q 2 ins†BAC, by Theorem PSH.41(A) Q … †BAC; Q is a member of

both
qy !
ABC and

qy !
ACB by Definition PSH.36, so by Theorem IB.13,

qy!
PQ � qy !

ABC

and
qy!
PQ � qy !

ACB; thus
qy!
PQ � ins†BAC (Definition PSH.36) and

qy!
PQ � L \

ins†BAC. Similarly, if X P Q, X belongs to at least one of the sides opposite

to
qy !
ABC or

qy !
ACB and hence (PSH.41(C)) to out†BAC, so that fX jX P Q}

� L \ out†BAC. Equality (c), and consequently (a) and (b) follow from

Theorem IB.5.

(3) If L \ †BAC contains exactly two points P and Q, not both of them can be

in the same ray because then L would contain that ray by Axiom I.1 and their

intersection would contain more than two points. Hence neither P nor Q is

equal to A, establishing (a) and (b).

Assume for convenience that P 2 qy!
AB and Q 2 qy!

AC. If X P Q, then X

is on the side of
 !
AB opposite Q, that is, opposite C. Likewise, if P Q X,

then X is on the side of
 !
AC opposite P, that is, opposite B. It follows that

fX jX P Qg [ fX jP Q Xg � L \ out†BAC, by Theorem PSH.41(C). Also,

by Theorem PSH.40,
qy px

PQ D L \ ins†BAC. The equalities (d) and (e) follow

immediately from Theorem IB.5.

(4) If L \ †BAC contains more than two points, at least two of them must lie on

the same ray and hence that ray is a subset of L. Then (b) follows immediately

from Theorem PSH.41(A). ut
Theorem PSH.44. Let A, B, C, P, and Q be distinct points where A, B, and C are

noncollinear.

(A) If P 2 ins†BAC and Q 2 out†BAC, then
qy px

PQ\†BAC is a singleton.

(B) If A … px qy

PQ, and if
qy px

PQ\†BAC D fRg for some point R, then P 2 ins†BAC if

and only if Q 2 out†BAC.
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See Figure 5.6. Notice that there is nothing in Theorem PSH.44 that guarantees

that every line intersecting ins†BAC must intersect †BAC. This, however, is true

for a Pasch plane where Axiom PS holds, as will be proved in Theorem EUC.2.

Fig. 5.6 Showing four
possible locations for a
segment.

Q

Q

Q

Q

B

C

A
P

Proof. (A) The line
 !
PQ contains a point of ins†BAC which rules out alternatives

(1) and (4) of Theorem PSH.43.

If alternative (2) holds,
 !
PQ\†BAC D fRg for some point R; P 2 ins†BAC

and Q 2 out†BAC so by Theorem PSH.43(2)(b) Q R P so R 2 qy px

PQ, and there

is only one point of intersection of †BAC with
qy px

PQ because there is only one

with
 !
PQ.

If (3) holds,
 !
PQ contains exactly 2 points R and S of †BAC, which must

belong to two different rays, say R 2 px!
AB and S 2 px!

AC. Then by Theo-

rem PSH.43(3)(c) R P S, since P 2 ins†BAC. By part (3)(d) either Q R P S

or R P S Q, because Q 2 out†BAC. In the first case,
qy px

PQ\†BAC D fRg and

in the second case
qy px

PQ\†BAC D fSg and in either case the intersection is a

singleton.

(B) We look first at
 !
PQ. Note first that A …  !PQ, for otherwise

 !
PQ would contain

a ray of †BAC and
px qy

PQ would then contain many elements of †BAC, which

contradicts the hypothesis that
px qy

PQ\†BAC D fRg. Therefore alternative (1) of

Theorem PSH.43 is ruled out. If
 !
PQ contains more than two points of †BAC,

then it would contain one of the rays and hence A, so alternative (4) is also

ruled out; thus either alternative (2) or (3) holds.

If alternative (2) of Theorem PSH.43 holds,
 !
PQ \ †BAC D fRg. Now

Q R P so by (2)(b), if P 2 ins†BAC;Q 2 out†BAC. Conversely, if

Q 2 out†BAC, then there exists some P0 2 ins†BAC such that Q R P0 (in

alternative (2), the line intersects the inside of the angle). By Corollary PSH.8.2

we have either Q R P P0 or Q R P0 P. In either case, P 2 qy!
RP0 D  !RP0 \

ins†BAC by Theorem PSH.43(a).
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If alternative (3) holds, there is a point S ¤ R such that
 !
PQ \ †BAC D

fR; Sg. If P 2 ins†BAC, by (c) P 2 qy px

RS, then R P S. We know that Q R P so

Q R P S and Q R S and hence, by (3)(d), Q 2 out†BAC.

Conversely, suppose Q 2 out†BAC. By hypothesis, P ¤ R and

P ¤ S because
px qy

PQ\†BAC D fRg ¤ fSg. Since Q is outside, by

Theorem PSH.43(3)(d) we have either Q R S or R S Q. The last is impossible

because Q R P yields P R S Q which would force two intersections of
px qy

PQ

and †BAC.

Therefore Q R S and again using Q R P either Q R P S or Q R S P, by

Corollary PSH.8.2. Again, Q R S P is impossible, because it would force two

intersections of
px qy

PQ and †BAC. Therefore we have Q R P S which shows that

P 2 ins†BAC, by Theorem PSH.43(3)(c). ut
Theorem PSH.45. Let A, B, and C be noncollinear points; let D be a point such

that A C D, thus extending the edge
px qy

AC of4ABC. Choose a point F 2 qy px

BC (so that

B F C) and let G be a point such that A F G. Then G 2 ins†BCD.

Later, in Definition NEUT.79, †BCD will be designated as an outside angle of

4ABC.)

Fig. 5.7 Showing G on the
inside of an outside angle of
4ABC.

G

A

F

B

C

D

Proof. By Definition IB.11 A and G are on opposite sides of
 !
BC and A and D are

on opposite sides of
 !
BC. By Theorem PSH.12 G and D are on the same side of !

BC, i.e., G 2 qy !
BCD. By Definition IB.4 B 2 qy!

CF and G 2 qy!
AF. By Theorem IB.14

B 2 qy !
ADF so that the F-side and the B-side of

 !
AD are the same. By the same theorem,

G 2 qy !
ADF D qy !

ADB. By Definition PSH.36, G 2 ins†BCD, proving the theorem. See

Figure 5.7. ut
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5.8 Mostly about triangles

Theorem PSH.46 (Analogous to Theorem PSH.41 for angles). Let A, B, and C

be noncollinear points. Then

(A) .
 !
AB [ !BC [ !CA/ \ ins4ABC D ;;

(B) ins4ABC [4ABC [ out4ABC D P and the sets in this union are pairwise

disjoint;

(C) ins4ABC D ins†BAC \ ins†ABC D ins†BAC \ qy !
BCA;

(D) out4ABC D E [ F [ G, where

E D the side of
 !
AB opposite C,

F D the side of
 !
BC opposite A, and

G D the side of
 !
CA opposite B.

Proof. (A) By Definition PSH.36 (B), ins4ABC D qy !
ABC\ qy !

BCA\ qy !
CAB. By

Theorem PSH.12,
 !
AB \ qy !

ABC D ;; !BC \ qy !
BCA D ;, and

 !
CA \ qy !

CAB D ;.
Hence a point on any of these lines fails to belong to at least one of the sides

listed, and thus fails to belong to their intersection ins4ABC.

(B) Exercise PSH.49.

(C) Exercise PSH.50.

(D) To prove this part we consider two classes of points in P:

If X …  !AB [ !BC [ !CA, then X … 4ABC and since by definition

out†BAC D P n .4ABC [ ins4ABC/,

it follows that

X 2 out4ABC, X … ins4ABC

, X … qy !
ABC\ qy !

BCA\ qy !
CAB

, X 2 E or X 2 F or X 2 G
, X 2 E [ F [ G.

If X 2  !AB [ !BC [ !CA, then

X 2 out4ABC, X … 4ABC

, X … px qy

AB[ px qy

BC[ px qy

CA

, one of the following holds:

X A B, A B X, X B C, B C X, X C A, or C A X. This fact follows from

Definition IB.7 and Theorem IB.5. By Definition IB.11,

X B C or C A X iff X belongs to the side of
 !
AB opposite C or X 2 E ;

A B X or X C A iff X belongs to the side of
 !
BC opposite A or X 2 F ; and

X A B or B C X iff X belongs to the side of
 !
AC opposite B or X 2 G.

Thus X 2 out4ABC if and only if X 2 E [ F [ G. ut
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The next three theorems embark on an analysis of the possible ways a line can

intersect a triangle. Theorem PSH.47 says that a line that intersects a triangle in

exactly two points also intersects its inside; when this happens, the intersection of

the line with the inside is the open segment connecting the two points of intersection.

The next two theorems provide a converse for PSH.47. Theorem PSH.48 shows

that if a line contains a corner of a triangle, and also intersects its inside, then it

intersects the triangle in exactly two points. PSH.49 shows that if a line does not

contain any corner of a triangle, the same result follows. Finally, Theorem PSH.50

combines all these results, adds detail, and summarizes the possibilities for the

intersection of a line and a triangle.

Theorem PSH.47 (Analogous to PSH.37, but for triangles). Let A, B, and C be

noncollinear points, and let P and Q belong to4ABC. If no edge of4ABC contains

both P and Q, then
qy px

PQ � ins4ABC.

Proof. Exercise PSH.24. ut
Corollary PSH.47.1. For any triangle 4ABC, ins4ABC ¤ ;, and 4ABC is

nonconvex.

Proof. Using Theorem PSH.22 let P and Q be members (not endpoints) of two

different edges of 4ABC. By the same theorem there is a point R such that

P R Q and R 2 qy px

PQ � ins4ABC. This shows that ins4ABC ¤ ;. By

Theorem PSH.46(B), ins4ABC \ 4ABC D ;, so that R … 4ABC and
qy px

PQ is

not a subset of4ABC. By Definition IB.9,4ABC is not convex. ut
Theorem PSH.48. Let A, B, and C be noncollinear points. If P is any member of

ins4ABC, there exists a point Q 2 qy px

BC such that

(1)
qy!
AP\ qy px

BC D fQg,
(2)
 !
AP \4ABC D fA;Qg,

(3)
qy px

AQ � ins4ABC, and

(4)
qy!
AQ n px qy

AQ � out4ABC.

Note: In the summary Theorem PSH.50 we will show that the intersection of
 !
AQ

and ins4ABC is exactly
qy px

AQ, which shows that P 2 qy px

AQ and A P Q.
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Fig. 5.8 For
Theorem PSH.48.

A

B

C

P
Q

Proof. See Figure 5.8. (1) By Theorem PSH.46(C), P 2 ins†BAC so that by the

Crossbar theorem PSH.39, there exists Q 2 qy px

BC such that
qy!
AP\ qy px

BC D fQg.
(2) If there were more than two points in the intersection, two of them would

lie on one edge of 4ABC and that edge would be a subset of
 !
AP and P

would belong to one of the lines containing an edge which is ruled out by

Theorem PSH.46(A).

(3)(4) Proofs are Exercise PSH.19. ut
Theorem PSH.49. Let A, B, and C be noncollinear points and let L be a line such

that L \ ins4ABC ¤ ; and L \ fA;B;Cg D ;. If P 2 L \ ins4ABC and Q ¤ P

is any point of L, then

(1)
qy!
PQ intersects exactly one of the segments

qy px

AC;
qy px

BC or
qy px

AB in exactly one point,

(2) L D  !PQ intersects exactly two of the segments
qy px

AC;
qy px

BC or
qy px

AB, and thus L
intersects4ABC in exactly two points D and E, and

(3)
qy px

DE � ins4ABC.

In the summary Theorem PSH.50 we will show that the intersection of L D  !PQ

and ins4ABC is exactly
qy px

DE, which shows that P 2 qy px

DE and D P E.

Proof. To prove part (1), note that Q …  !AP, for otherwise
 !
AP D L so that A 2 L,

which is false by hypothesis. By similar arguments, Q is not a member of any of the

lines
 !
AP;
 !
BP, and

 !
CP, and by Theorem PSH.12, Q is a member of one side or the

other of each of these lines. Thus, Q belongs to

either
qy !
APC or

qy !
APB, and

either
qy !
BPA or

qy !
BPC, and

either
qy !
CPB or

qy !
CPA.

There are eight possible intersections of a side from each pair listed, as follows:
qy !
APC\ qy !

BPA\ qy !
CPB

qy !
APC\ qy !

BPA\ qy !
CPA � qy !

APC\ qy !
CPA D ins†APC

qy !
APC\ qy !

BPC\ qy !
CPB � qy !

BPC\ qy !
CPB D ins†BPC
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qy !
APC\ qy !

BPC\ qy !
CPA � qy !

APC\ qy !
CPA D ins†APC

qy !
APB\ qy !

BPA\ qy !
CPB � qy !

APB\ qy !
BPA D ins†APB

qy !
APB\ qy !

BPA\ qy !
CPA � qy !

APB\ qy !
BPA D ins†APB

qy !
APB\ qy !

BPC\ qy !
CPB � qy !

BPC\ qy !
CPB D ins†BPC

qy !
APB\ qy !

BPC\ qy !
CPA

If we can show that
qy !
APC\ qy !

BPA\ qy !
CPB and

qy !
APB\ qy !

BPC\ qy !
CPA are empty, it will

follow that Q will be a member of exactly one of the sets ins†APC; ins†BPC, and

ins†APB. Then by the Crossbar theorem PSH.39,
qy!
PQ intersects exactly one of the

segments
qy px

AC;
qy px

BC or
qy px

AB in exactly one point.

Let A0, B0, and C0 be the points such that
qy!
AP\ qy px

BC D fA0g; qy!BP\ qy px

AC D fB0g,
and

qy!
CP\ qy px

AB D fC0g as guaranteed by Theorem PSH.48(1). Since B0 2 qy !
APC and

also B0 2  !BP;
qy !
APC\ qy !

BPA D qy !
APB0 \ qy !

B0PA D ins†APB0. Both A and B0 2 qy !
CPA so

that by Theorem PSH.42, ins†APB0 � qy !
CPA, which is disjoint from

qy !
CPB. Therefore

qy !
APC\ qy !

BPA\ qy !
CPB D ;. A similar argument shows that

qy !
APB\ qy !

BPC\ qy !
CPA D ;.

This completes the proof of part (1).

The proof of (2) is Exercise PSH.25. By Theorem PSH.47,
qy px

DE � ins4ABC,

thus proving part (3). ut
Theorem PSH.50. If the intersection of a line L with a triangle 4ABC is

nonempty, then

(A) L \ enc4ABC is either a single point or a closed segment, and

(B) L \4ABC is exactly one of the following alternatives:

(1) a single point S, in which case

(a) S 2 fA;B;Cg, the set of corners of4ABC,

(b) L \ ins4ABC D ; and L \ ins†TSU D ; where T and U are the

corners of4ABC other than S, and

(c) 4ABC n fSg, qy!
ST,

qy!
SU, ins4ABC and ins†TSU all are subsets of the

T-side (= U-side) of L;

(2) exactly two points P and Q, in which case

(a) no edge of4ABC contains both P and Q, and at least one of P and Q

is not a corner,

(b) L \ ins4ABC D qy px

PQ,
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(c) L \ out4ABC D fX jX P Qg [ fX jP Q Xg, and

(d) L D !PQ D fX jX P Qg [ fPg [ qy px

PQ[fQg [ fX jP Q X};

(3) more than two points, in which case

(a) L contains an edge E of4ABC, and

(b) L \ ins4ABC D ;.

A

B

C

L

Alt. (1)

A

B

C

L
L

Alt. (2)

A

B

C

L Alt. (3)

Fig. 5.9 For Theorem PSH.50(B).

Proof. (A) Follows immediately from (B).

(B) Clearly exactly one of the alternatives (1), (2), or (3) holds. For a visualization,

see Figure 5.9.

(1) If the intersection is a single point S, suppose S … fA;B;Cg. Then S is a

member of either
qy px

AB,
qy px

BC, or
qy px

CA. Suppose for the moment S 2 qy px

AB. Then

C … L since there is only one point of intersection, so Theorem PSH.6

applies and there is a second intersection, which is a contradiction. Similar

proofs will show that S is not a member of
qy px

BC or
qy px

CA. Hence S D A or B

or C.

Now T and U are defined to be the corners of 4ABC other than S; if

T and U are on different sides of L, by Axiom PSA, L \ qy px

TU ¤ ;, where
qy px

TU is an edge of 4ABC and this contradicts the assumption that there is

only one point of intersection. Then by Theorem IB.13 both
qy!
ST and

qy!
SU are

subsets of the T-side of L, and by Theorem PSH.42, ins†TSU is a subset

of the T-side of L which is disjoint from L.

Finally,
qy px

TU � ins†TSU (by Theorem PSH.37) and ins4ABC �
ins†TSU (Definition PSH.36) and both these sets are disjoint from L.

From these observations all the conclusions of alternative (1) follow.
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(2) If L \ 4ABC contains exactly two points P and Q, not both of them can

be in the same edge, and not both can be corners, for in either case by

Axiom I.1
 !
PQ D L would contain an edge and there would be more than

two points of intersection. This proves (a). Result (d) follows immediately

from Theorem IB.5.

The points P and Q both belong to the (open) rays of at least one of

†BAC, †ABC, or †ACB. We shall prove part (b) in the case where they

both belong to †BAC (the proofs where they belong to other angles are

similar). This includes the following possibilities: where P and Q are in
qy px

AB and
qy px

AC, where one of these points is B and the other is in
qy px

AC, and

where one of them is C and the other is in
qy px

AB.

The points P and Q are exactly the points of intersection of L with

†BAC, for if there were any additional points of intersection with †BAC,

L would contain an entire edge of the triangle, which is ruled out by

hypothesis.

By Theorem PSH.46(C) ins4ABC D ins†BAC \ qy !
BCA � ins†BAC,

so that L \ ins4ABC � L \ ins†BAC D qy px

PQ (Theorem PSH.40). Then,

by Theorem PSH.47,
qy px

PQ � ins4ABC, so that L \ ins†BAC D qy px

PQ D
L \ ins4ABC, proving part (b).

By Theorem PSH.46(B), P D ins4ABC[4ABC[out4ABC and the

sets in this union are pairwise disjoint. Intersecting this with L, we get

L D L\P D .L\ ins4ABC/[ .L\4ABC/[ .L\out4ABC/ (*)

and all sets in parentheses are disjoint. We know that L\4ABC D fP;Qg;
using (b) and (d),

L D fX jX P Qg [ fPg [ qy px

PQ[fQg [ fX jP Q X}

D fX jX P Qg [ .L \4ABC/ [ .L \ ins4ABC/ [ fX jP Q X}.

From this equation and equation (*), and the fact that all the sets

in parentheses (or braces) are disjoint, out4ABC D fX jX P Qg [
fX jP Q X} proving part (c).

(3) If L \4ABC contains more than two points, they are collinear and hence

must all belong to one edge of4ABC so that edge is a subset of L, and by

Theorem PSH.46(A), L is disjoint from ins4ABC. ut
Lemma PSH.51. Let A, B, and C be noncollinear points and let P 2 ins4ABC.

Let B0 and C0 be points such that P B0 B and P C0 C. Then P 2 qy !
B0C0A.
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Fig. 5.10 For Lemma
PSH.51.

A

C B

P

C B

Proof. See Figure 5.10. Since P 2 ins4ABC;P 2 ins†BAC by Definition PSH.36,

so by the Crossbar theorem PSH.39,
px!
AP has a single point of intersection with

qy px

BC,

which we will call Q. By Theorem PSH.37, Q 2 qy px

BC � ins†BPC and again by the

Crossbar theorem, there exists a unique point P0 such that
qy!
PQ\ �!B0C0 D fP0g.

Now
px qy

AP[ qy!
PQ D px!

AQ �  !AQ has only a single intersection with
 �!
B0C0 by

Exercise I.1, and P0 is that single intersection. Since
px qy

AP\ qy!
PQ D ; by Theorem IB.5,

there can be no intersection of
 �!
B0C0 with

px qy

AP. By Definition IB.11, P 2 qy !
B0C0A. ut

For those who have studied general topology, the following result may be of

some interest. Together with the result of Exercise PSH.52(A), it is what is needed

to show that the set of all insides of triangles in a Pasch plane forms a base for some

topology on the plane, thus enabling continuity arguments. Actually it shows a bit

more —all that is really needed is that ins4ABC � ins T \ insS .

Theorem PSH.52. Let T and S be triangles in a Pasch plane and let P be a point

such that P 2 T \S . Then there exists a triangle4ABC such that P 2 enc4ABC �
ins T \ insS .

Fig. 5.11 For
Theorem PSH.52.

L

W

Y = Z
A

P

D

W = Z

Y

M

B C

S

T
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Proof. (I) For a visualization see Figure 5.11. Let L be a line containing P. By

Theorem PSH.50 L intersects T in exactly two points W and W 0 (because

P 2 ins T ), and ins T \ L D qy px

WW 0. Likewise, we can find points Y and Y 0

such that insS \ L D qy px

YY 0. For convenience we can label Y and Y 0 so that Y

and W are on the same side of P, that is, either P Y W or P W Y; in the first

case let Z D Y , in the second let Z D W. Likewise either P Y 0 W 0 or P W 0 Y 0;
in the first case let Z0 D Y 0, in the second let Z0 D W 0. Then

qy px

ZZ0 D qy px

WW 0\ qy px

YY 0,
and P 2 qy px

ZZ0 � .ins T \ insS/. Let A and D be points on L with Z A P D Z0.
Then P 2 px qy

DA � .ins T \ insS/.
(II) Let M ¤ L be a line containing D. We may now apply the reasoning of part

(I) to M (in place of L) and point D (in place of P) to obtain points B and C on

M such that B D C and D 2 px qy

BC � ins T \ insS .

Then A, B, and C are all members of ins T \ insS . By two applications of

Exercise PSH.42, enc4ABC � .ins T \ insS/. ut

5.9 Mostly about quadrilaterals

Theorem PSH.53. A quadrilateral is not rotund iff exactly one of its corners

belongs to the inside of the triangle whose corners are the other three corners of

the quadrilateral.

Proof. By Definition PSH.31 tuABCD is not rotund iff at least one of the following

statements is true:

(1) A and B are on opposite sides of
 !
CD;

(2) C and D are on opposite sides of
 !
AB;

(3) A and D are on opposite sides of
 !
BC;

(4) B and C are on opposite sides of
 !
AD.

Statements (1) and (2) cannot both be true. If they were we would have by

Axiom PSA
qy px

AB\ !CD ¤ ; and
qy px

CD\ !AB ¤ ; and then, since, by Corollary IB.5.2,
qy px

AB �  !AB and
qy px

CD �  !CD, we have that
 !
AB \ !CD ¤ ;. Since by Definition PSH.29

A, B, C, and D are noncollinear, Exercise I.1 implies there is exactly one point P

such that
 !
AB \ !CD D fPg. But P must belong to

qy px

AB because if it did not, the above

relationships would imply
 !
AB intersected

 !
CD in some other point besides P, so A, B,

C, and D would be collinear, a contradiction. In a similar way we can infer P 2 qy px

CD.

Therefore
qy px

AB and
qy px

CD would intersect, contradicting Definition PSH.31(2).
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Similar reasoning shows (3) and (4) cannot both be true.

If (1) is true, by Axiom PSA there exists a point P such that
qy px

AB\ !CD D fPg. By

Property B.2 of Definition IB.1, exactly one of C D P, D C P, or C P D holds.

The last of these contradicts
qy px

AB\ px qy

CD D ;, which we know to be true by Definition

PSH.31(2); so this is ruled out.

Suppose that C D P. Since A 62  !CD D  !CP, †PAC D †BAC is defined. By

Theorem PSH.40, since C 2 qy!
AC and P 2 qy!

AB,
qy px

CP � ins†BAC, and since D 2 qy px

CP,

D 2 ins†BAC. By Theorem PSH.39, there exists a point Q such that
qy!
AD\ qy px

BC D
fQg, and thus by Definition IB.3, B Q C. By Theorem IB.5 Q 2  !AD. By Definition

IB.11 statement (4) is true. Moreover, since P 2 qy px

AB by Corollary IB.14.2 P 2 qy !
BCA

and D 2 qy !
BCA follows by the same corollary. Therefore by Theorem PSH.46(C)

D 2 ins4ABC.

On the other hand if D C P, then by arguments similar to those just used, C 2
ins4BAD and (3) is true.

Again, similar reasoning shows that if (2) is true, then either (3) is true and B 2
ins4ACD, or (4) is true and A 2 ins4BCD. Thus there are four mutually exclusive

possibilities:

(i) Statement (1) and (4) are true, (2) and (3) are false, and D 2 ins4ABC.

(ii) Statement (1) and (3) are true, (2) and (4) are false, and C 2 ins4ABD.

(iii) Statement (2) and (3) are true, (1) and (4) are false, and B 2 ins4ACD.

(iv) Statement (2) and (4) are true, (1) and (3) are false, and A 2 ins4BCD.

Fig. 5.12 For Theorem
PSH.53 alternative (i).

A

B

D

C

Figure 5.12 illustrates alternative (i) above. The reader will find it quite easy to

construct figures for the other alternatives (ii) through (iv). ut
Theorem PSH.53.1. If a quadrilateral is a trapezoid, then it is rotund.
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Proof. Let T be a trapezoid on a Pasch plane P . By Definition PSH.31 there exist

points A, B, C, and D such that T D tuABCD and
 !
AD k  !BC or

 !
AB k  !CD.

Suppose T were not rotund. By Theorem PSH.53, exactly one of its corners

belongs to the inside of the triangle whose corners are the other three corners of T .

Without loss of generality assume that C 2 ins4ABD. By Theorem PSH.46(C)

ins4ABD � ins†ABD and ins4ABD � ins†ADB. Then by the Crossbar

theorem PSH.39,
 !
BC \ qy px

AD ¤ ;, contradicting
 !
AD k  !BC, and

 !
CD \ qy px

AB ¤ ;,
contradicting

 !
AB k  !CD. Therefore T is rotund. ut

Theorem PSH.54. (A) The diagonals of a quadrilateral intersect iff the quadri-

lateral is rotund.

(B) A quadrilateral is rotund iff every corner P is inside the “opposite” angle

†XYZ, where Y is the corner opposite P and X and Z are the corners adjacent

to Y.

Proof. (A) Let A, B, C, and D be the corners of a quadrilateral.

(I: If tuABCD is rotund, then
qy px

AC and
qy px

BD intersect at a point.) By Defini-

tion PSH.31 C 2 qy !
ABD and C 2 qy !

ADB. By Definition PSH.36 C 2 ins†BAD.

By Theorem PSH.39
qy!
AC\ qy px

BD D fEg for some point E. By a similar

argument
qy!
CA\ qy px

BD D fE0g. By Exercise IB.4
qy px

BD � qy!
BD �  !BD and

qy px

CA � qy!
CA �  !CA. Using this and Exercise I.1 we get

 !
BD\ !CA D fEg D fE0g,

whence E D E0 and
qy px

AC\ qy px

BD D fEg.
(II: If

qy px

AC and
qy px

BD intersect at a point, then tuABCD is rotund.) Suppose
qy px

AC\ qy px

BD D fPg for some point P; by Theorem IB.5
qy px

AC �  !AC and
qy px

BD �  !BD, so that by Exercise I.1,
 !
AC \ !BD D fPg. By Exercise IB.4 P is a

member of each of the open rays
qy!
AC,

qy!
CA,

qy!
DB, and

qy!
BD. By Corollary IB.14.2

qy px

AC � qy !
ABC,

qy px

AC � qy !
ADC,

qy px

CA � qy !
CBA,

qy px

CA � qy !
CDA,

qy px

BD � qy !
BCD,

qy px

BD � qy !
BAD,

qy px

DB � qy !
ADB, and

qy px

DB � qy !
DCB. Since P 2 qy px

AC D qy px

CA and P 2 qy px

BD D qy px

DB we

get

(1) P and C both belong to
qy !
ABC, and P and D both belong to

qy !
ABD;

(2) P and C both belong to
qy !
ADC, and P and B both belong to

qy !
ADB;

(3) P and B both belong to
qy !
CDB, and P and A both belong to

qy !
CDA;

(4) P and A both belong to
qy !
BCA, and P and D both belong to

qy !
BCD.

As was noted in the paragraph after the proof of Theorem PSH.11, if two

sides of a line intersect they are the same side. Both the C side of
 !
AB and

the D side of
 !
AB contain the point P, so these are the same, and C and D are
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on the same side of
 !
AB; likewise, B and C are on the same side of

 !
AD, A and

B are on the same side of
 !
CD, and A and D are on the same side of

 !
BC. By

Definition PSH.31 tuABCD is rotund.

(B) If a quadrilateral is rotund and P is one of its corners, let Y be the corner

opposite P, and let X and Z be the corners adjacent to Y . Then by rotundity,

X and P belong to the same side of
 !
YZ ; also P and Z belong to the same side

of
 !
YX ; therefore P 2 ins†XYZ.

Conversely, let
 !
XY be any line containing an edge

px qy

XY of a quadrilateral; let

P be the corner opposite X, and Q be the corner which is neither X, Y , nor P.

Neither P nor Q is on
 !
XY . Then by hypothesis,

P 2 ins†QXY D the Q side of
 !
XY \ the Y side of

 !
QX;

hence P and Q are on the same side of
 !
XY . Since

px qy

XY can be chosen to be any

edge, this shows that tuABCD is rotund, by Definition PSH.31. ut
Definition PSH.55. Let A, B, C, and D be points on a Pasch plane P such that

the sets fA;B;Cg, fB;C;Dg, fC;D;Ag, fD;A;Bg are noncollinear, and
px qy

AB\ px qy

CD D
px qy

AD\ px qy

BC D ;.
If tuABCD is rotund, then the inside of tuABCD (instuABCD) is

qy !
ABC\ qy !

BCD\ qy !
BCA\ qy !

DAB.

If tuABCD is nonrotund, then using Theorem PSH.53 we choose the notation so

that C 2 ins4ABD.

The inside of nonrotund tuABCD (instuABCD/ is ins4ABD n enc4BCD.

The enclosure of tuABCD (enctuABCD) is tuABCD [ instuABCD.

The outside of tuABCD (outtuABCD) is P n enctuABCD.

The exclosure of tuABCD (exctuABCD) is P n instuABCD.

Theorem PSH.56 (Mapping Segments). Let A, B, C, and D be points such that

A ¤ B and C ¤ D. Then there exists a one-to-one mapping˚ of
px qy

AB onto
px qy

CD having

the following properties:

(I) ˚.A/ D C and ˚.B/ D D;

(II) if R, S, and T are members of
px qy

AB then R S T iff ˚.R/ ˚.S/ ˚.T/;

(III) if U and V are distinct members of
px qy

AB then ˚.
px qy

UV/ D px qy

˚.U/˚.V/ and

˚.
qy px

UV/ D qy px

˚.U/˚.V/.

Proof. The proof we give will be something more than a sketch, leaving several sub-

arguments to the reader. We consider several different cases reflecting the various
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possible relationships among the points A, B, C, and D, being careful to ensure these

cases cover all the possibilities. First, either (1) C 2  !AB or (2) C …  !AB. If (1) is

true then there are two possible subcases: either (1a): D …  !AB or (1b): D 2  !AB.

The subcase (1a) can be further subdivided into two “sub-subcases": subcase (1a1)

where A D C, or (1a2) where A ¤ C. Case (2) breaks into two subcases: either (2c),

D 2  !BC or (2d), D …  !BC.

(Subcase (1a1): A D C and D …  !AB.) Using Properties B.3 and B.1 of Definition

IB.1 let Q be a point such that Q D B. A simple argument involving Theorem

PSH.37, which is left to the reader, shows
qy px

AB � ins†AQD. Hence we may use

Theorem PSH.39 (Crossbar) to construct a mapping ˚ by letting ˚.A/ D A and

˚.B/ D D, and by letting˚.X/ be the member of
qy px

AD such that
qy!
QX\ qy px

AD D f˚.X/g
for each X in

qy px

AB. This shows property (I) for ˚ in this subcase.

It is possible to interchange the roles of
qy px

AD and
qy px

AB in the above argument and

then construct a mapping � by letting �.A/ D A and �.D/ D B, and by letting

�.Y/ be the member of
qy px

AB such that
qy!
QY \ qy px

AB D f�.Y/g for each Y in
qy px

AD.

From these definitions of ˚ and � it follows that �.˚.X// D X for every

X in
qy px

AB, and ˚.�.Y// D Y for every Y in
qy px

AD. To prove the first of these

statements let X be any member of
qy px

AB. Then by the definition of ˚ above and

Theorem PSH.16 ˚.X/ 2 qy!
QX D qy !

Q˚.X/. Therefore by the definition of � above
qy!
QX\ qy px

AB D qy !
Q˚.X/\ qy px

AB D f�.˚.X/g. We save this fact in our memory and notice

that since X 2 qy px

AB by the definition of X, and X 2 qy!
QX by Definition IB.4, we have

fXg � qy!
QX\ qy px

AB. Elementary arguments left to the reader show A, B, and Q are

noncollinear and therefore
qy!
QX\ qy px

AB is a singleton. Hence fXg D qy!
QX\ qy px

AB.

Putting this together with the statement we saved above gives fXg D f�.˚.X//g,
or X D �.˚.X//, which is what we wished to prove. A similar proof shows

˚.�.Y// D Y for every Y in
qy px

AD. From these facts it follows by elementary mapping

theory that ˚ is a one-to-one mapping of
qy px

AB onto
qy px

AD, that � is a one-to-one

mapping of
qy px

AD onto
qy px

AB, and that ˚ and � are inverses of each other.

To prove property (II) for subcase (1a1), let R, S, and T be any members of
px qy

AB

such that R S T , and let Q be as above. Then arguing as above we get
qy!
QR and

qy!
QT

intersect
qy px

AD in points ˚.R/ and ˚.T/, respectively. Since S 2 qy px

RT , S 2 ins†RQT

follows by Theorem PSH.37. But †RQT D †˚.R/Q˚.T/ by Theorem PSH.30 so

S 2 ins†˚.R/Q˚.T/ and by Theorem PSH.39
qy!
QS intersects

qy px

˚.R/˚.T/ in a point

˚.S/. Hence ˚.R/ ˚.S/ ˚.T/.

Suppose now that R, S, and T belong to
px qy

AB, that ˚.R/ ˚.S/ ˚.T/, and Q is as

above. An argument similar to those above shows R S T , proving property (II).
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Property (III) is an immediate consequence of (II) and Definition IB.3. This

completes the argument for subcase (1a1).

(Subcase (1a2): C 2  !AB and D …  !AB, and A ¤ C.) Let E be a member

of ins†ACD. By subcase (1ai) there exist one-to-one mappings ˚1, ˚2, and ˚3
such that ˚1.

px qy

AB/ D px qy

AE, ˚1.A/ D A, ˚1.B/ D E, ˚2.
px qy

AE/ D px qy

CE, ˚2.A/ D C,

˚2.E/ D E, ˚3.
px qy

CE/ D px qy

CD, ˚3.C/ D C, and ˚3.E/ D D. Furthermore, each of

the mappings ˚1, ˚2, and ˚3 can be constructed so that it has the properties (II)

and (III). Let ˚ D ˚3 ı˚2 ı˚1. Then from the definition of composition and from

its elementary properties it follows that ˚ is a one-to-one mapping of
px qy

AB onto
px qy

CD

such that ˚.A/ D C, ˚.B/ D D, and ˚ has properties (II) and (III).

(Subcase (1b): C 2  !AB and D 2  !AB.) Let E be any point off of
 !
AB. By subcase

(1a1) there exist one-to-one mappings ˚1, ˚2, and ˚3 such that ˚1.
px qy

AB/ D px qy

AE,

˚1.A/ D A, ˚1.B/ D E, ˚2.
px qy

AE/ D px qy

CE, ˚2.A/ D C, ˚2.E/ D E, ˚3.
px qy

CE/ D px qy

CD,

˚3.C/ D C, and ˚3.E/ D D. The remainder of the proof of this case is similar to

that of the preceding case and the details are left to the reader.

(Subcase (2c): C …  !AB and D 2  !BC.) By subcase (1aii) there exists a one-to-one

mapping ˚1 such that ˚1.
px qy

AB/ D px qy

BC, ˚1.A/ D C, and ˚1.B/ D B, and by subcase

(1b) there exists a one-to-one mapping ˚2 such that ˚2.
px qy

BC/ D px qy

CD, ˚2.C/ D C,

and ˚2.B/ D D. The remainder of the proof is similar to those above and the details

are left to the reader.

(Subcase (2d): C …  !AB and D …  !BC.) It is left to the reader to introduce

appropriate mappings ˚1 and ˚2 whose composition will provide the required

mapping as in the above cases.

Theorem PSH.57. Let L be a line on a Pasch plane P and let A, B, and C be

distinct collinear points on P , none of which is on L. If L and
qy px

AB intersect at

the point P, then either L \ qy px

AC D fPg and L \ qy px

BC D ;, or L \ qy px

AC D ; and

L \ qy px

BC D fPg.
Proof. By Exercise I.1 L \  !AB D fPg. By Property B.2 of Definition IB.1 one

and only one of the following statements is true: A B C, B A C, A C B. By

Exercise I.2,
 !
AB D !AC D !BC.

(A) If A B C, then by Theorem PSH.15
qy px

AB � qy px

AC and
qy px

AB\ qy px

BC D ;. By

Theorem IB.5
px qy

AC �  !AC D  !AB. If we put these statements together with the

fact L \ qy px

AB D fPg, we get by elementary set theory L \ qy px

AC D fPg and

L \ qy px

BC D ;.
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(B) If B A C, then an argument similar to (A) shows L \ qy px

BC D fPg and

L \ qy px

AC D ;.
(C) If A C B, then by Theorem PSH.15

qy px

AC and
qy px

BC are both subsets of
qy px

AB and
qy px

AC\ qy px

BC D ;. Hence by elementary set theory either L D qy px

AC D fPg and

L \ qy px

BC D ; or L D qy px

AC D ; and L \ qy px

BC D fPg. ut

5.10 Exercises for Pasch geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

In the following exercises, all points and lines are in a Pasch plane.

Exercise PSH.0�. (A) Let P be a Pasch plane, L and M be lines, O be a point on

P such that L \M D fOg. If H is a side of L, then M \H ¤ ;.
(B) Let P be a Pasch plane and let J , K, and L be distinct lines on P such that

J \ L ¤ ; and K \ L ¤ ;. If U is a point on J but is not on L, then there is

a point V on K such that U and V are on opposite sides of L.

Exercise PSH.1�. Complete the details of the proof of Theorem PSH.8, part

(B)(1).

Exercise PSH.2�. (A) Prove Corollary PSH.8.3.

(B) Prove Corollary PSH.8.4.

Exercise PSH.3�. Let A, B, C, and D be points such that A B C D and let P and

Q be points such that P A B and C D Q. Then:

(A)
 !
AB D !AC D !AD D !BC D !BD D !CD; the points A, B, C, and D are collinear;

(B)
 !
BC is the union of the disjoint sets fB;Cg, qy!

BA,
qy px

BC, and
qy!
CD;

(C)
 !
BC is the union of the disjoint sets fA;B;C;Dg, qy!

AP,
qy px

AB,
qy px

BC,
qy px

CD, and
qy!
DQ;

(D)
px qy

AD is the union of the disjoint sets fA;B;C;Dg, qy px

AB,
qy px

BC, and
qy px

CD;

(E)
 !
AD is the union of the sets fX jX A Dg, px qy

AD, and fX jA D Xg, which are all

disjoint.

Exercise PSH.4�. (A) Let A and B be distinct points on a Pasch plane P and let E
be a nonempty subset of

qy px

AB. Then E is not a ray.

(B) Let A and B be distinct points on a Pasch plane P and let E be a nonempty

subset of
px qy

AB. Then E is not a ray.

www.springer.com
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Exercise PSH.5�. Let A, B, C, D, and E be points on plane P such that A, B, and

C are noncollinear, A B D, and A C E. Then D 2 ins†BCE.

Exercise PSH.6. Let A, B, C, D, and E be as in Exercise PSH.5. Then
 !
AB \

.ins†BCE/ D qy!
BD and

 !
AB \ .out†BCE/ D qy!

BA.

Exercise PSH.7. Let A, B, C, D, and E be as in Exercise PSH.5. Then there exists

a point F such that
qy px

BE\ qy px

CD D fFg.
Exercise PSH.8�. Let O, A, B, A0, and B0 be points on P such that O, A, and B are

noncollinear, B O B0, and A O A0. Let X be any member of ins†AOB, and let X0

be any point such that X O X0. Then
 !
OX \ ins†A0OB0 D qy!

OX0.

Exercise PSH.9�. Let O, A, B, A0, and B0 be points on a Pasch plane P such that O,

A, and B are noncollinear, B0 O B, and A0 O A, let X be any member of ins†AOB

and X0 be any point such that X0 O X.

(A)
 !
OX \ qy px

A0B0=
qy!
OX0\ qy px

A0B0 is a singleton, i.e., there exists a point Y such that
 !
OX \

qy px

A0B0 D fYg.
(B) Let X 2 px qy

AB; if X 2 qy px

AB define ˝.X/ D Y , where Y is as in part (A); if X D A

define Y D A0, and if X D B define Y D B0. Then the mapping˝ maps
px qy

AB onto
px qy

A0B0 and is one-to-one, hence is a bijection.

Exercise PSH.10. If A and B are distinct points, then fA;Bg is nonconvex.

Exercise PSH.11. Let P be a Pasch plane, L be a line on P , and let J be a side of

L. If P 2 L and Q 2 J , then
qy px

PQ � J .

Exercise PSH.12�. Let A, B, and C be noncollinear points on a Pasch plane. If

D 2 ins†BAC, by Corollary PSH.39.2 B and C are on opposite sides of
 !
AD. Prove

that
qy!
AB � qy !

ADB,
qy!
AC � qy !

ADC, B 2 out†CAD, and C 2 out†BAD.

Exercise PSH.13�. Let A, B, and C be noncollinear points on a Pasch plane, and

let P and Q be members of ins†BAC. Then if P 2 ins†BAQ, Q 2 ins†CAP.

Exercise PSH.14 (Key exercise)�.

(A) Let E be a convex subset of plane P and let L be a line on P . If E \ L D ;,
then E is a subset of a side of L.

(B) If a line M, or a segment or a ray does not intersect L, then that line, segment,

or ray lies entirely on one side of L.
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Exercise PSH.15�. Let A, B, and C be noncollinear points on a Pasch plane P and

let L be a line on P . If fA;B;Cg\L D ;, then either L\4ABC D ; or L intersects

two and only two edges of4ABC. Moreover, L \4ABC is a doubleton.

Exercise PSH.16�. The inside of every angle is convex and the inside of every

triangle is convex.

Exercise PSH.17�. Let P be a Pasch plane and let A, B, and C be noncollinear

points on P .

(A) If D 2 ins†BAC, then
qy!
AD � ins†BAC.

(B) ins†BAC D S
D2qy px

BC

qy!
AD

Exercise PSH.18 (Angle analog for Exercise PSH.32)�. Let A, B, and C be

noncollinear points on a Pasch plane P and let D be a member of ins†BAC. Then

ins†BAC is the union of the disjoint sets
qy!
AD, ins†BAD and ins†DAC.

Exercise PSH.19�. Prove parts (3) and (4) of Theorem PSH.48.

Exercise PSH.20�. The union of a line and one of its sides is convex (i.e., a

halfplane is convex).

Exercise PSH.21�. Let A be any subset of plane P having at least two members

and let B be the union of all segments
px qy

PQ such that P 2 A and Q 2 A. Is B
necessarily convex?

Exercise PSH.22�. If A, B, and C are noncollinear points, then both enc†ABC and

enc4ABC are convex sets.

Exercise PSH.23�. Construct a proof of part (A) of Theorem PSH.44 without

referring to Theorem PSH.43; that is, using principally the definitions of inside,

outside, and Theorem PSH.41(C).

Exercise PSH.24�. Prove Theorem PSH.47.

Exercise PSH.25�. Prove part (2) of Theorem PSH.49.

Exercise PSH.26�. Let A, B, and C be noncollinear points, let E be any member of
qy px

AC, and let F be any member of
qy px

AB. Then
qy px

BE and
qy px

CF intersect in a point O which

belongs to ins4ABC.
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Exercise PSH.27�. Let A, B, and C be noncollinear points on plane P , let Q be a

member of ins†ABC, and R a member of ins†ACB. Then
qy!
BQ and

qy!
CR intersect at

a point O which belongs to ins†ABC.

Exercise PSH.28�. Let A, B, and C be noncollinear points and suppose P 2 qy!
AB

and Q 2 ins†BAC. Then
qy qy

PQ � ins†BAC.

Exercise PSH.29�. Let A, B, and C be noncollinear points and suppose P 2 4ABC

and Q 2 ins4ABC. Then
qy qy

PQ � ins4ABC.

Exercise PSH.30�. Prove Theorem PSH.42.

Exercise PSH.31�. Let P and Q be distinct points on plane P , let H be a side of !
PQ in P , and let A and B be members of H such that A, B, and P are noncollinear.

Then either B 2 ins†APQ or A 2 ins†BPQ.

Exercise PSH.32 (Side analog for Exercise PSH.18). Let P, O, and Q be points

such that P O Q, and let R be a point off of
 !
OP. Then

qy !
OPR is the union of the

disjoint sets ins†POR,
qy!
OR, and ins†QOR.

Exercise PSH.33. Let A, B, and C be noncollinear points and let B0 and C0 be points

such that B A B0 and C A C0. Then out†BAC is the union of the disjoint sets
qy!
AB0,

qy!
AC0, ins†BAC0, ins†CAB0, and ins†B0AC0.

Exercise PSH.34. Let A, B, and C be noncollinear points and let E be a member of

out†BAC. Then
qy!
AE is a subset of out†BAC.

Exercise PSH.35. Let A, B, and C be noncollinear points and let P and Q be mem-

bers of .enc†BAC n fAg/ such that P, Q, and A are noncollinear. Then ins†PAQ �
ins†BAC. Note: try solving this before reading the proof of Theorem PSH.41(D).

Exercise PSH.36�. Let L be a line and let H be a side of L. If A, B, and C are

noncollinear members of H, then enc4ABC � H.

Exercise PSH.37. Let A, B, C, R, and S be points such that A, B, and C are

noncollinear, R 2 qy px

AB, and S 2 qy px

AC. Then
 !
RS \ px qy

BC D ; and
 !
BC \ px qy

RS D ;.
Exercise PSH.38. Let T be a triangle, let P be a member of ins T , and let Q be

a point distinct from P. Then there exists a point R such that T \ px!
PQ D fRg,

ins T \ px!
PQ D px px

PR, and out T \ px!
PQ D px!

PQ n px qy

PR.
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Exercise PSH.39. Let A, B, and C be noncollinear points on plane P , let P be a

member of 4ABC, let Q be a member of ins4ABC, and let R be a point such that

Q P R. Then R 2 out4ABC,
qy!
QP\ ins4ABC D px px

QP, and
qy!
QP\ out4ABC D

qy!
QP n px qy

PQ.

Exercise PSH.40. Let T be a triangle, let P be a member of ins T and Q be a

member of out T . Then there exists a point R such that
 !
PQ \ T D fRg, px px

PR D
px qy

PQ\ ins T , and
qy qy

RQ D px qy

PQ\ out T .

Exercise PSH.41. Let T be a triangle and let P, Q, and R be noncollinear members

of enc T . Then ins4PQR � ins T .

Exercise PSH.42�. Let A, B, and C be noncollinear points and let P, Q, and R be

noncollinear members of ins4ABC. Then enc4PQR � ins4ABC.

Exercise PSH.43. Let A, B, and C be noncollinear points on Pasch plane P , let O

be a member of ins4ABC, let A0 be any point between O and A, let B0 be any point

between O and B, and let C0 be any point between O and C. Then O 2 ins4A0B0C0,
and enc4A0B0C0 � ins4ABC.

Exercise PSH.44. Let A, B, and C be noncollinear points. Then:

(a) There exist points P and Q such that A is between P and Q, †BAC\ px qy

PQ D fAg,
and P and Q are both members of out†BAC.

(b) If P and Q are any points satisfying the conditions in (a) above, then B and C

are on the same side of
 !
PQ.

Exercise PSH.45�. Let E be a nonempty convex subset of the plane P , and let A,

B, and C be noncollinear members of E . Then enc4ABC � E .

Exercise PSH.46. Let A, B, and C be noncollinear points and let O be a member of

ins4ABC. Then:

ins4ABC D px px

OA[ qy px

OB[ qy px

OC[ ins4OAB [ ins4OAC [ ins4OBC.

Exercise PSH.47�. Let P be a Pasch plane and A, B, and U be noncollinear points.

Then for every point V in P ,

(A)
qy!
UV is not a subset of

 !
AB; and

(B)
qy px

UV is not a subset of
 !
AB.

Exercise PSH.48�. Prove parts 4–6 of Theorem PSH.18.

Exercise PSH.49�. Prove Theorem PSH.46(B).

Exercise PSH.50�. Prove Theorem PSH.46(C).
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Exercise PSH.51�. Let P be a Pasch plane, O, B, and R be noncollinear points on

P , C be a member of ins†ROB and B0 be a point on
 !
OB such that B O B0, then

R 2 ins†COB0.

Exercise PSH.52�. (A) Let X be any point on a Pasch plane P , then there exists a

triangle T such that X 2 ins T .

(B) Let P and Q be distinct points on plane P . Then there exist triangles T and U
such that P 2 ins T , Q 2 insU , enc T � outU , and encU � out T .

Exercise PSH.53�. Let P be a Pasch plane, L and L0 be distinct lines on P , O be

a member of P n .L [ L0/, A, B, and C be points on L such that A B C and A0, B0,
and C0 be points on L0 such that A O A0, B O B0, and C O C0, then A0 B0 C0.

Exercise PSH.54�. Let A, B, and C be points on a Pasch plane P such that A B C.

Then
qy!
AB\ qy!

CB D qy px

AC.

Exercise PSH.55 (Sets bounded by two parallel lines). Let P be the plane con-

taining parallel lines L1 and L2, let P1 and P2 be points on L1 and L2, respectively,

and let Q1 and Q2 be points on
 �!
P1P2 such that Q1 P1 P2 and P1 P2 Q2, Q1 be the

Q1 side of L1, let Q�1 be the P2 side of L1, let Q2 be the Q2 side of L2, let Q�2 be

the P1 side of L2, and let Q D Q�1 \Q�2 . Then Q1\Q2 D Q1\Q D Q2\Q D ;;
each of the sets Q1, Q�1 , Q2, Q�2 , and Q is convex; and Q1[Q2[Q D Pn.L1[L2/.

Fig. 5.13 For
Exercise PSH.56(I).

O A B

A

B

Exercise PSH.56�. See Figure 5.13; note also that the symbol “k” is defined in

Chapter 2, Definition IP.1.

Let O, A, B, A0, and B0 be distinct points on a Pasch plane P such that
 !
AB\ !A0B0 D

fOg and
 !
AA0 k  !BB0, then

(I) O A B iff O A0 B0,
(II) O B A iff O B0 A0, and

(III) A O B iff A0 O B0.
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Exercise PSH.57�. Let L and M be distinct lines in a Pasch plane, let A, B, and C

be points of L, and let D, E, and F be points of M such that
 !
AD k  !BE k  !CF. Then

A B C iff D E F.

Exercise PSH.58�. Prove Theorem PSH.34 using the result of Theorem PSH.32.

That is, show that if A, B, and C are noncollinear points on a Pasch plane P , then

the set of corners of4ABC is fA;B;Cg.
Exercise PSH.59�. Let A, B, C, and D be points on a Pasch plane P such that
px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA is a quadrilateral; then if
 !
AB k  !CD, this quadrilateral is rotund.

Exercise PSH.60. Consult a book on projective geometry and compare/contrast

those axioms of separation with those involving the open sets used to classify

topological spaces.



Chapter 6
Ordering a Line in a Pasch Plane (ORD)

Acronym: ORD

Dependencies: Chapters 1, 4, and 5

New Axioms: none

New Terms Defined: less than, greater than, less or equal, greater or equal,

bounded above, bounded below, bounded, unbounded, maximum, minimum

Abstract: This chapter defines order relations on lines and derives their properties,

including transitivity and trichotomy. The concepts of maximum, minimum, upper

bound, and lower bound of a subset of an ordered line are developed, as well as

the connections between order, segments, and rays. Ordering will assume great

importance in later chapters which develop the correspondence between a line and

the set of all rational (or real) numbers.

Up to this point, we have never spoken of one point on a line being to the right

or to the left of another point on the same line. It may seem silly to discuss this

because one can usually settle the question for any two points on any nonvertical

line (whatever that is) by just looking at a picture. But we want to continue to make

our treatment of geometry independent of particular pictures, and this chapter is an

attempt to deal with such questions in the same spirit of logical precision to which

we have adhered thus far.

We do this by introducing a relation among the points of a line which is similar

to the relation is less than (symbolized by “<”) among the rational numbers and the

real numbers. In fact, we will use the same symbol for this geometrical relation as

© Springer International Publishing Switzerland 2015
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the one for the numerical relation. Hence we will be writing such things as “A < B,”

where A and B are points on a line. When you read this symbol to yourself, you

can say “A is less than B,” or “A is to the left of B,” or “B is to the right of A,” or

whatever other expression is most comfortable for you. Of course, if you choose “A

is less than B,” you must be careful to remember that this does not necessarily mean

that the point A is less than the point B in some numerical sense. The reason that

the above three verbalizations of the relation are appealing is that the relation we

will define has two important properties that the relations is less than, is to the left

of, is to the right of also have, namely, transitivity and trichotomy. The fact that our

relation “<” has these two properties will be the subject of two early theorems in

this chapter. We start with some definitions.

Definition ORD.1. Let L be a line, let E be a convex subset of L which is not a

singleton, and let O and P be distinct members of E .

(A) For any two distinct points X and Y of E , X is less than Y (notation: X < Y)

iff
px!
XY \ px!

OP is a ray. When two such points O and P have been chosen and the

relation “<” has been defined in this way, we describe this situation by saying

that the points of E are ordered by the relation “<” so that O < P.

(B) Let the points of E be ordered by the relation “<” so that O < P. Then for any

two distinct points X and Y of E , X is greater than Y (notation: X > Y) iff

Y < X; X is less than or equal to Y (notation: X � Y) iff X < Y or X D Y;

and X is greater than or equal to Y (notation: X � Y) iff Y � X.

Remark ORD.2. The initial choice of two points (here O and P) on which to base

the definition of ordering is entirely arbitrary. There is nothing sacred about ordering

E so that O < P. We could just as well reverse the roles of O and P in the above

definition and define P < O, and then for any two distinct points X and Y , define X

to be less than Y (notation: X < Y) iff
px!
YX\ px!

OP is a ray. Then we could infer all the

properties of “<” from the properties of “>” by the fact that X < Y iff Y > X.

Remark ORD.3. It should be noted that the meaning of the symbol “<” for a

particular geometry depends heavily on the particular betweenness relation in that

geometry because the definition of a ray depends on betweenness. Hence, if, on

a particular Pasch plane P , a new betweenness relation is introduced, this could

conceivably change which sets are rays and which are not, and that, in turn, could

change which points are less than others.
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6.1 Theorems for ordering

Theorem ORD.4 (Transitivity of the relation “<”). Let L be a line, E be a

convex subset of L which is not a singleton, O and P be distinct members of E ,

and suppose that the members of E are ordered by “<” so that O < P. If X, Y, and

Z are any three distinct members of E such that X < Y and Y < Z, then X < Z.

Proof. Suppose X < Y and Y < Z, so that by Definition ORD.1,
px!
OP\ px!

XY and
px!
OP\ px!

YZ are rays. If
px!
OP\ px!

XY is a ray, by the contrapositive of Theorem PSH.20

Z … px!
YX. Since Z 2  !YX , by Theorem IB.5 and Property B.1 of Definition IB.1,

X Y Z, and therefore Z 2 px!
XY . By Theorem PSH.16,

px!
XZ D px!

XY . Hence
px!
OP\ px!

XZ D
px!
OP\ px!

XY , and we already know that the latter intersection is a ray. Therefore by

Definition ORD.1, X < Z. ut
Theorem ORD.5 (Trichotomy for ordering “<”). Let L be a line, E be a convex

subset of L which is not a singleton, O and P be distinct members of E , and suppose

that the members of E are ordered by “<” so that O < P. If X and Y are any two

members of E , then one and only one of the following statements is true:

X D Y; X < Y; Y < X:

Proof. If X ¤ Y , then either
px!
OP\ px!

XY is a ray or it is not. If it is, then by

Definition ORD.1 X < Y . If it is not, we wish to show that Y < X, i.e., that
px!
OP\ px!

YX

is a ray.

By the contrapositive of Theorem PSH.19,
px!
XY 6� px!

OP and
px!
OP 6� px!

XY . This means

that there exist points S and T such that S 2 px!
XY , S … px!

OP, T 2 px!
OP, and T …

px!
XY . By Theorem PSH.16,

px!
XS D px!

XY and
px!
OT D px!

OP. Since S … px!
OP D px!

OT and

T … px!
XY D px!

XS, but all of these points belong to L, we have by Theorem IB.5 that

S O T , T X S, and T X Y , whence T O S and Y X T . Then by Definition IB.4

O 2 px!
TS, X 2 px!

TS, and T 2 px!
YX. Theorem PSH.16 then gives

px!
TO D px!

TS,
px!
TX D px!

TS, and
px!
YX D px!

YT , so that
px!
TO D px!

TX. We will use these assorted facts freely in what follows.

Since S O T , by Theorem PSH.13,
qy!
TO D qy px

TO[fOg [ qy!
OS, and the sets in this

union are mutually disjoint, so we may use this as a basis for splitting the proof into

three cases at this point.

(Case 1: Y D O.) If Y D O, then T X O, and by Theorem PSH.16,
px!
YX D px!

OX D
px!
OT D px!

OP. Hence
px!
YX\ px!

OP D px!
OP, which is a ray, as we wished to prove.
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(Case 2: Y 2 qy!
OS.) If Y 2 qy!

OS, then by Theorem PSH.16,
px!
OY D px!

OS. Since

T O S, by Theorem IB.5 T … px!
OS D px!

OY and therefore T O Y . By Theorem PSH.13
px!
OT � px!

YT . Hence
px!
YX\ px!

OP D px!
YT \ px!

OT D px!
OT , which is a ray, as we wished to

prove.

(Case 3: Y 2 qy px

TO.) If Y 2 qy px

TO D qy px

OT , then by (i) following Definition IB.4,

Y 2 px!
OT , so by Theorem PSH.16,

px!
OT D px!

OY . Also from Y 2 qy px

OT it follows that

O Y T , whence by Theorem PSH.13,
px!
YT � px!

OY .

From these we can say that
px!
YX\ px!

OP D px!
YT \ px!

OT D px!
YT \ px!

OY D px!
YT , which is a

ray, as we wished to prove. ut
Theorem ORD.6. Let L be a line, E be a convex subset of L which is not a

singleton, O and P be distinct members of E , and suppose that the members of E
are ordered by “<” so that O < P. Then for all points X, Y, and Z of E , X Y Z iff

X < Y < Z or Z < Y < X.

Proof. (I: If X Y Z, then X < Y < Z or Z < Y < X.) By Property B.0 of

Definition IB.1, X, Y , and Z are distinct. By Theorem ORD.5 either X < Y

or Y < X, so we may split the proof into two cases.

(Case I.A: X < Y .) By definition
px!
XY \ px!

OP is a ray. Since X Y Z,
px!
XZ D px!

XY

so
px!
XZ \ px!

OP is a ray. Now Y 2 px!
ZX so by Theorem PSH.20,

px!
OP\ px!

ZY is not a ray.

Thus Z is not less than Y . Hence by Trichotomy (ORD.5), Y < Z.

(Case I.B: Y < X.) Suppose Y < X. Then
px!
YX\ px!

OP is a ray. By Theo-

rem PSH.19, either
px!
YX � px!

OP or
px!
OP � px!

YX. Suppose
px!
OP � px!

YX. Then
px!
OP � px!

ZY

since
px!
YX � px!

ZY by Theorem PSH.13. Hence Theorem PSH.19 implies that
px!
OP\ px!

ZY is a ray, so that Z < Y .

Now suppose
px!
YX � px!

OP; if Y D O, then by Theorem PSH.16
px!
YX D px!

OP and

by Theorem PSH.13 since Z Y X,
px!
ZY \ px!

YX D px!
ZY \ px!

OP is a ray, hence Z < Y .

If Y ¤ O, by Theorem PSH.17 Y 2 px!
OP and O Y X. By Property B.2 of

Definition IB.1 and Corollary PSH.8.3 the following three possibilities exist.

(a) If O D Z, then
px!
OP D px!

OY D px!
ZY so

px!
OP\ px!

ZY D px!
ZY .

(b) If Z O Y X, then
px!
OP\ px!

ZY D px!
OY \ px!

ZY D px!
OY by Theorem PSH.17.

(c) If O Z Y X, then
px!
OP\ px!

ZY D px!
OY \ px!

ZY D px!
ZY by Theorem PSH.17.

In each of (a) through (c), Z < Y .

(II: If X < Y < Z or Z < Y < X, then X Y Z.) We deal with each of the possibilities

in the hypothesis as separate cases.
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(Case II.A: X < Y < Z.) If X < Y < Z, then by Definition ORD.1, X and Y

are distinct, Y and Z are distinct, and
px!
XY \ px!

OP and
px!
YZ\ px!

OP are both rays. By

Corollary PSH.20.1, X Y Z.

(Case II.B: Z < Y < X.) If Z < Y < X, X and Y are distinct, Y and Z

are distinct, and
px!
ZY \ px!

OP and
px!
YX\ px!

OP are both rays. By Corollary PSH.20.1,

Z Y X, that is, X Y Z. ut
Theorem ORD.7. Let O and P be distinct points on a Pasch plane P and suppose

the points of
 !
OP are ordered so that O < P.

(I) If A and B are points on
 !
OP such that A < B, then there exist points C, D, and

E such that D < A < C < B < E.

(II) If A and B are points on
 !
OP such that A < B, then

qy px

AB D fXjA < X < Bg D fXjB > X > Ag,
px px

AB D fXjA � X < Bg D fXjB > X � Ag,
qy qy

AB D fXjA < X � Bg D fXjB � X > Ag,
px qy

AB D fXjA � X � Bg D fXjB � X � Ag,
qy!
AB D fXjA < Xg D fXjX > Ag,
px!
AB D fXjA � Xg D fXjX � Ag;

while if A and B are points on
 !
OP such that B < A, then

qy px

AB D fXjA > X > Bg D fXjB < X < Ag,
px px

AB D fXjA � X > Bg D fXjB < X � Ag,
qy qy

AB D fXjA > X � Bg D fXjB � X < Ag,
px qy

AB D fXjA � X � Bg D fXjB � X � Ag,
qy!
AB D fXjA > Xg D fXjX < Ag,
px!
AB D fXjA � Xg D fXjX � Ag.

(III) Let C be any member of
 !
OP.

(A) If D D fXjX > Cg and D is nonempty, then there exists a member D of !
OP such that D > C and D D qy!

CD;

(B) If E D fXjX < Cg and E is nonempty, then there exists a member E of
 !
OP

such that E < C and E D qy!
CE.

Proof. (I) Since A and B are distinct, by Theorem PSH.22 (Denseness) there exists

a point C such that A C B. By Theorem ORD.6, either A < C < B or

B < C < A. But the alternative B < C < A implies that B < A by

Theorem ORD.4, and by Theorem ORD.5 this contradicts our assumption that
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A < B, so we must conclude that A < C < B. By Properties B.3 and B.1 of

Definition IB.1, there exist points D and E such that D A C and C B E. If we

put these relationships together with the assumptions that A < C and C < B

and argue as above, we get D < A < C and C < B < E. This conjunction can

be written D < A < C < B < E.

(II) Exercise ORD.6.

(III) Let D and E be any members of D and E , respectively. Then by part (II) above,

D D qy!
CD and E D qy!

CE. ut

Definition ORD.8. Let O and P be distinct points on a Pasch plane P , let the points

on
 !
OP be ordered so that O < P, and let E be a nonempty subset of

 !
OP. Then:

(A) E is bounded above iff there exists a member A of
 !
OP such that X � A for all

X in E . Such a point A is an upper bound of E .

(B) E is bounded below iff there exists a member A of
 !
OP such that A � X for all

X in E . Such a point A is an lower bound of E .

(C) E is bounded iff E is bounded above and bounded below. E is unbounded iff

it is not bounded.

(D) E has a maximum (largest element) iff there exists a member A of E such that

X � A for all X 2 E . If E has a maximum, it is denoted by max E .

(E)) E has a minimum (smallest element) iff there exists a member A of E such that

X � A for all X 2 E . If E has a minimum, it is denoted by min E .

Remark ORD.9. Let M be a line in a Pasch plane which is ordered by the order

relation <. Let E be a nonempty subset of M.

(A) If D is an upper bound of E , and E > D, then E is an upper bound of E .

(B) If F is a lower bound of E , and G < F, then G is a lower bound of E .

(C) Every segment in M is bounded.

(D) Every ray which is a subset of M is unbounded, and is either bounded above

or bounded below.

(E) Let A and B be distinct points on the line M. If A < B, then max
px qy

AB D B,

min
px qy

AB D A, min
px!
AB D A.

(F) Using Theorem ORD.7(I), the reader may easily confirm that if A < B, each of

the sets
qy px

AB,
qy qy

AB,
qy!
BA, and

px!
BA has no minimum, and each of the sets

qy px

AB,
px px

AB,
px!
AB,

and
qy!
AB has no maximum.
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Theorem ORD.10 (Finite sets are bounded). Let L be a line which is ordered

according to Definition ORD.1. Then every nonempty finite subset of L has a

maximum and a minimum.

Proof. Let E be a nonempty finite subset of L. In elementary set theory (see

Chapter 1) a nonempty set S is defined to be finite iff there exists a natural number

p such that the number of elements in S is p. It is also shown that every subset of a

finite set is finite.

We propose to prove the following statement by mathematical induction. If E is

any subset of L having n members, where n is any natural number, then E has a

maximum and a minimum.

(I) If n D 1, so that there exists a point A such that E D fAg, then by

Definition ORD.8, max E D min E D A. Hence the above statement is true

when n D 1.

(II) If n D 2, then there exist distinct points A and B such that E D fA;Bg. Since

A ¤ B, by Theorem ORD.5, either A < B or A > B. If A < B, then by

Definition ORD.8, min E D A and max E D B. Similarly, if B < A, then

min E D B and max E D A. Hence the above statement is true for n D 2.

(III) To complete the proof by induction, we must show that if the above statement

is true for any natural number k, say, then it must be true for kC 1. To do this,

we suppose that it is true for some k, i.e., we suppose that every subset E of

L having k members has a maximum and a minimum, and we use this (the

induction assumption) to prove that every subset S of L having kC1members

has a maximum and a minimum. Let A be any member of S , which member

we keep fixed for the remainder of this argument. Then the set S nfAg contains

k members, so the induction assumption says that S nfAg has both a maximum

U and a minimum V .

From (II) above, fA;Ug has a maximum M, and fA;Vg has a minimum N.

We will have completed the induction argument when we have shown that M

is a maximum of S and N is a minimum of S . To this end, let X be any member

of S . Since S D .S n fAg/ [ fAg, and the sets in this union are disjoint, either

X D A or X 2 .S n A/. If X D A, then directly from the definition of M and N

X � M and N � X. On the other hand, if X 2 .S n A/, then by the definitions

of U, V , M, and N, X � U � M and N � V � X, so by Theorem ORD.4,

X � M and N � X. We have shown that every member X of S satisfies the

requirements in Definition ORD.8, so M D maxS and N D minS . ut
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Theorem ORD.11. Let L be a line which is ordered according to Defini-

tion ORD.1. Let E be a nonempty subset of L.

(I) If E is bounded above and U is the set of its upper bounds, and if E has a

maximum, then U has a minimum and minU D max E .

(II) If E is bounded below and L is its set of lower bounds, and if E has a minimum,

then L has a maximum and maxL D min E .

(III) If E is bounded above, and if the set of upper bounds of E has a minimum M,

and M 2 E , then E has a maximum and max E D M.

(IV) If E is bounded below, and if the set of lower bounds of E has a maximum N,

and N 2 E , then E has a minimum and min E D N.

Proof. The proof of item (I) is a direct application of Definition ORD.8. Suppose U

is the maximum of E ; U is a member of U , since it is an upper bound. If there were

a member V 2 U with V < U, V would not be an upper bound of E and hence not

a member of U . Hence U is the minimum of the set U of upper bounds of E . Proofs

of (II)–(IV) are also easy consequences of Definition ORD.8. ut
Theorem ORD.12. Let A and B be distinct points in a line L which is ordered

according to Definition ORD.1. Then each of the following sets is infinite:
 !
AB,

qy!
AB,

px!
AB,

qy px

AB,
px px

AB,
qy qy

AB, and
px qy

AB.

Proof. From elementary set theory we recall that a set is infinite if it is not finite, and

every set having an infinite subset is infinite. Since
qy px

AB is a subset of all of the sets

listed above, we need only show that
qy px

AB is infinite. This has already been proved in

Corollary PSH.22.2. The alternative proof we give here uses ordering.

By Theorem PSH.22,
qy px

AB is nonempty. Order the points on L so that A < B.

Assume
qy px

AB is finite. Then by Theorem ORD.10,
qy px

AB has a minimum Q. By the

definition of a minimum, Q 2 qy px

AB. By Theorem ORD.7(II), A < Q < B. By

Theorem ORD.7(I), there exists a point R such that A < R < Q < B. Using

Theorem ORD.7(II) again shows that R 2 qy px

AB. Hence we have found an element

of
qy px

AB which is smaller than Q, which is a minimum of
qy px

AB. This is a contradiction

of Definition ORD.8, so our assumption that
qy px

AB is finite is false. ut
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6.2 Exercises for ordering

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise ORD.1�. Let A, B, C, and D be points such that A B C D. If the points

on
 !
AD are ordered so that A < D, then A < B < C < D.

Exercise ORD.2. Let O and P be distinct points, and let E be a nonempty finite

subset of
 !
OP which has n elements. Then there exists a mapping 	 of Œ1I n� onto E

such that for every member k of Œ1I n � 1�, 	.k/ < 	.k C 1/, and every member of

f	.j/jj 2 Œ1I k�g is less than every member of E n f	.j/jj 2 Œ1I k�g.
Exercise ORD.3. Let D be the field of dyadic rational numbers,1 let D0 be equal

to D \ Œ0I 1�, and let A and B be distinct points on a Pasch plane P . Then there

exists a mapping 	 of D0 into
px qy

AB such that, for all members r and s of D0, r < s iff

	.r/ < 	.s/.

Exercise ORD.4�. Let E be a convex subset of a line M. If E is not a singleton,

then E is infinite.

Exercise ORD.5. Let E be an infinite convex subset of a line M. If A is a member

of E , B is a member of MnE, and C is a point such that A B C, then
px!
BC is a subset

of M n E.

Exercise ORD.6�. Prove Theorem ORD.7 part (II).

Exercise ORD.7�. Let A and B be distinct points on a Pasch plane P and let C

and D be distinct members of
px qy

AB, then
qy px

CD � qy px

AB and
px qy

CD � px qy

AB.

Exercise ORD.8�. Let O, A, B, and C be collinear points on a Pasch plane P such

that O < A < B and O < A < C, then there exists a point D such that D >

maxfB;Cg.
Exercise ORD.9�. Let P be a Pasch plane, and let L and L0 be distinct lines on P ,

O be a member of P n .L [ L0/. Suppose further that a line through O intersects L
iff it intersects L0, and that each of the intersections of every such line with L or L0

is a singleton.

1Dyadic rationals are numbers that can be written in the form
a

2b
where a is an integer and b is a

natural number greater than 0.

www.springer.com
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Let A and B be distinct points on L, A0 be the point such that
 !
OA \ L0 D fA0g

and B0 be the point such that
 !
OB \ L0 D fB0g. Order the points on L so that A < B,

and order the points on L0 so that A0 < B0.
For every X 2 L let '.X/ be the point on L0 such that

 !
OX \ L0 D f'.X/g.

(A) ' is a bijection of L onto L0.
Let X, Y , and Z be any distinct points on L.

(B) X Y Z iff '.X/ '.Y/ '.Z/.

(C) '.
px qy

XY/ D px qy

'.X/'.Y/.

(D) '.
px!
XY/ D px !

'.X/'.Y/.

(E) '.L/ D '. !XY/ D �����!'.X/'.Y/ D L0.
(F) If X < Y , then '.X/ < '.Y/.



Chapter 7
Collineations Preserving Betweenness (COBE)

Acronym: COBE

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1– CAP.4), 4, 5, and 6

New Axioms: none

New Terms Defined: belineation

Abstract: A belineation is a bijection of a plane that preserves betweenness. This

chapter shows that every belineation on a Pasch plane is a collineation, and explores

the interactions between belineations and segments, rays, lines, sides of a line,

angles, and triangles.

The principal result of this chapter is Theorem COBE.5, which establishes that

a belineation on a Pasch plane carries segments to segments, rays to rays, and

angles to angles, etc. In Chapter 8 we define reflections and isometries, which are

belineations, and restate Theorem COBE.5 in that context as Theorem NEUT.15;

this result is essential to the development of neutral geometry. Many citations of

Theorem COBE.5 are interchangeable with citations of Theorem NEUT.15.

In later chapters we show that dilations, symmetries, and axial affinities are belin-

eations (cf Theorem DLN.8, Theorem SIM.2, and Theorem AX.4). Applications

are found in Chapter 14, where the properties of a line as an ordered field are

established (cf Theorem OF.10(C)), in Chapter 15 in the proof of Theorem SIM.9,

and in Chapter 17 (Theorem QX.2) where multiplication on a line is defined.

It has been conjectured that every collineation on a Pasch plane where Axiom

PS holds is a belineation; if this were true, it would be unnecessary to prove
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either Theorem DLN.8 (Chapter 13) or Theorem AX.4 (Chapter 16). We have not

succeeded either in proving this conjecture or in constructing a counterexample, that

is, a model of a Pasch plane with Axiom PS in which there is a collineation which

is not a belineation. The authors would be grateful to anyone who could provide

either.

Definition COBE.1. A bijection ' on a Pasch plane P is a belineation1 if it

preserves betweenness; that is, for any points A, B, and C on P , if A B C, then

'.A/ '.B/ '.C/.

Theorem COBE.2. Let P be a Pasch plane; then every belineation ' on P is a

collineation. More specifically, for any distinct points A and B on P , '.
 !
AB/ D �����!

'.A/'.B/.

Proof. (I: '.
 !
AB/ �  �����!'.A/'.B/) Let X 2  !AB. By Theorem IB.5, exactly one of

X A B, X D A, A X B, X D B or A B X is true. Since ' preserves betweenness,

exactly one of '.X/ '.A/ '.B/, '.X/ D '.A/, '.A/ '.X/ '.B/, '.X/ D '.B/,
or '.A/ '.B/ '.X/ is true. Thus by Theorem IB.5, '.X/ 2  �����!'.A/'.B/, so that

'.
 !
AB/ �  �����!'.A/'.B/.

(II:
 �����!
'.A/'.B/ � '. !AB/) Suppose that

 �����!
'.A/'.B/ 6� '. !AB/; then there exists a point

D 2  �����!'.A/'.B/ such that D 62 '. !AB/; since ' is a bijection, there exists a point

C 2 P such that '.C/ D D 2  �����!'.A/'.B/, and C 62  !AB (for if C 2  !AB, then

'.C/ D D 2 '. !AB/, which is false by assumption). By Exercise I.2 �����!
'.A/'.C/ D �����!'.A/'.B/ D �����!'.B/'.C/.

By Part I,

'.
 !
AC/ �  �����!'.A/'.C/ D �����!'.A/'.B/ and

'.
 !
BC/ �  �����!'.B/'.C/ D �����!'.A/'.B/.

Now let X be any point of P n . !AB [  !AC [  !BC/, and let Y 2 qy px

AB, so that

'.Y/ 2 '. !AB/ �  �����!'.A/'.B/.

Then
 !
XY intersects

qy px

AB but does not contain any of the points A, B, or C. By

the Postulate of Pasch,
 !
XY must intersect either

qy px

AC or
qy px

BC; let Z be this point

of intersection. Since both '.
 !
AC/ and '.

 !
BC/ are subsets of

 �����!
'.A/'.B/, and Z

is a member of either
 !
AC or

 !
BC, '.Z/ 2  �����!'.A/'.B/. Since X 2  !YZ , by Part I

1 We hope the reader is not offended by this rather odd name; believe it or not, we bandied about
some other names that were even stranger—such as betweeneation.
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'.X/ 2 '. !YZ / �  �����!'.Y/'.Z/ which by Exercise I.2 is equal to
 �����!
'.A/'.B/, because

both '.Y/ and '.Z/ are members of
 �����!
'.A/'.B/.

We have shown that '.
 !
AC/, '.

 !
BC/, and '.

 !
AB/ are all subsets of

 �����!
'.A/'.B/,

and that '.X/ 2  �����!'.A/'.B/. Therefore '.P/ �  �����!'.A/'.B/. By assumption ' is a

bijection, so that P D '.P/ �  �����!'.A/'.B/. But Axiom I.5(B) says that P contains

at least three noncollinear points. This is a contradiction; therefore,
 �����!
'.A/'.B/ �

'.
 !
AB/. ut

Theorem COBE.3. If ' is a belineation on a Pasch plane P , so is '�1.

Proof. Assume that ' is a belineation; by definition, it is a bijection, and by

elementary mapping theory, its inverse is also a bijection.

Let A, B, and C be any points on P; we show that if A B C, then

'�1.A/ '�1.B/ '�1.C/.
By Theorem COBE.2 ' is a collineation, and by Theorem CAP.4(D’) '�1 is a

collineation, so that '�1.A/, '�1.B/, and '�1.C/ are collinear, and we may apply

the trichotomy Property B.2 of Definition IB.1.

If '�1.A/ '�1.C/ '�1.B/, then

'.'�1.A// '.'�1.C// '.'�1.B// ,

that is, A C B. This is false by the trichotomy Property B.2 of Definition IB.1.

By a similar argument, '�1.B/ '�1.A/ '�1.C/ is false; hence by the trichotomy

property, '�1.A/ '�1.B/ '�1.C/. ut
Remark COBE.4. Summarizing Theorem COBE.2 and Theorem COBE.3, ' is

a belineation iff its inverse is a belineation, in which case both it and its inverse

are collineations. We have already seen in Theorem CAP.1(D’) that a bijection is a

collineation iff its inverse is a collineation.

Theorem COBE.5. Let P be a Pasch plane, A, B, and C be noncollinear points on

P , and let ' be a belineation of P; then:

(1) '.
 !
AB/ D �����!'.A/'.B/.

(2) '.
qy!
AB/ D qy !

'.A/'.B/,

(3) '.
px!
AB/ D px !

'.A/'.B/,

(4) '.
qy px

AB/ D qy px

'.A/'.B/,

(5) '.
px qy

AB/ D px qy

'.A/'.B/,

(6) '.
qy qy

AB/ D qy qy

'.A/'.B/,

(7) '.
px px

AB/ D px px

'.A/'.B/,
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(8) '.†ABC/ D †'.A/'.B/'.C/,
(9) '.the C side of

 !
AB/ D the '.C/ side of

 �����!
'.A/'.B/,

(10) '.4ABC/ D 4'.A/'.B/'.C/,
(11) '.ins†BAC/ D ins†'.B/'.A/'.C/,
(12) '.ins4ABC/ D ins4'.A/'.B/'.C/.
(13) If A, B, C, and D are points on P and tuABCD is a quadrilateral, then

'.tuABCD/ is a quadrilateral, and '.tuABCD/ D tu'.A/'.B/'.C/'.D/.
Proof. (1) This is Theorem COBE.2.

(2) We first prove that '.
qy!
AB nfBg/ D qy !

'.A/'.B/ nf'.B/g. Let Y be any mem-

ber of '.
qy!
AB nfBg/; then there exists a member X of

qy!
AB nfBg such that

Y D '.X/. By Definition IB.4, either A X B or A B X. By Definition

COBE.1, '.A/ '.X/ '.B/ or '.A/ '.B/ '.X/. By Definition IB.4, Y 2
qy !
'.A/'.B/ nf'.B/g. Thus

'.
qy!
AB nfBg/ � qy !

'.A/'.B/ nf'.B/g.
By this result, since '�1 is a belineation,

'�1.
qy !
'.A/'.B/ nf'.B/g/ � qy !

'�1.'.A//'�1.'.B// nf'�1.'.B//g
D qy!

AB nfBg
Applying ' to both sides, we have

qy !
'.A/'.B/ nf'.B/g � '.qy!AB nfBg/.

Combining these results, '.
qy!
AB nfBg/ D qy !

'.A/'.B/ nf'.B/g. Now ' is one-to-

one and
px!
AB nfBg and fBg are disjoint, so by elementary set theory,

'.
px!
AB/ D '.px!AB nfBg [ fBg/ D '.px!AB nfBg/ [ '.fBg/
D qy !
'.A/'.B/ nf'.B/g [ f'.B/g D qy !

'.A/'.B/ :

(3) Using part (2) and elementary set theory,

'.
px!
AB/ D '.fAg [ qy!

AB/ D f'.A/g [ '.qy!AB/

D '.A/ [ qy !
'.A/'.B/ D px !

'.A/'.B/.

(4) Let Y be any member of '.
qy px

AB/; then there exists a member X of
qy px

AB

such that Y D '.X/. By Definition IB.3, A X B. By Definition COBE.1,

'.A/ '.X/ '.B/. By Definition IB.3, Y 2 qy px

'.A/'.B/. Thus '.
qy px

AB/ �
qy px

'.A/'.B/. Since '�1 is a belineation,

'�1.
qy px

'.A/'.B// � qy px

'�1.'.A//'�1.'.B// D qy px

AB,

and applying ' to both sides,
qy px

'.A/'.B/ D '.'�1.qy px

'.A/'.B/// � '.qy px

AB/.

Therefore '.
qy px

AB/ D qy px

'.A/'.B/.
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(5) Since '.A/ and '.B/ both belong to '.
px qy

AB/ and to
px qy

'.A/'.B/, using part (5) we

get '.
px qy

AB/ D px qy

'.A/'.B/.

(6) By part (4) and elementary set theory,

'.
qy qy

AB/ D '.qy px

AB[fBg/ D '.qy px

AB/ [ f'.B/g
D qy px

'.A/'.B/[f'.B/g D qy qy

'.A/'.B/.

(7) The argument is similar to that for part (6).

(8) By Definition PSH.29 and elementary set theory,

'.†BAC/ D '.px!AB[ px!
AC/ D '.px!AB/ [ '.px!AC/

D px !
'.A/'.B/[ px !

'.A/'.C/ D †'.B/'.A/'.C/.
(9) Let Y be any member of '.C side of

 !
AB n fCg/; then there exists a member

X of .C side of
 !
AB n fCg/ such that Y D '.X/. By Definition IB.11,

px qy

CX\ !AB D ;. By elementary set theory and part (5), ; D '.
px qy

CX\ !AB/ D
px qy

'.C/'.X/\ �����!'.A/'.B/. By Definition IB.11, Y belongs to '.C/ side of �����!
'.A/'.B/ n f'.C/g. Thus

'.C side of
 !
AB n fCg/ � .'.C/ side of

 �����!
'.A/'.B// n f'.C/g.

Now '�1 is a belineation, so in the above we may substitute '�1 for ', '.A/

for A, '.B/ for B, and '.C/ for C. Then

'�1.'.C/ side of
 �����!
'.A/'.B/ n f'.C/g/

� .'�1.'.C// side of
 ��������������!
'�1.'.A//'�1.'.B/// n f'�1.'.C//g

D C side of
 !
AB n fCg.

Applying ' to both sides we have

'.C/ side of
 �����!
'.A/'.B/ n f'.C/g � '.C side of

 !
AB/ n fCg.

Therefore,

'.C side of
 !
AB/ n fCg D .'.C/ side of

 �����!
'.A/'.B/ n f'.C/g/.

By elementary set theory, '.C side of
 !
AB/ D '.C/ side of

 �����!
'.A/'.B/.

(10) By Definition IB.7, part (5) above, and elementary set theory,

'.4ABC/ D '.px qy

AB[ px qy

BC[ px qy

AC/

D '.px qy

AB/ [ '.px qy

BC/ [ '.px qy

AC/

D px qy

'.A/'.B/[ px qy

'.B/'.C/[ px qy

'.A/'.C/

D 4'.A/'.B/'.C/.
(11) By Definition PSH.36(A) and elementary set theory,

'.ins†BAC/ D '.the B side of
 !
AC \ the C side of

 !
AB/

D the '.B/ side of
 �����!
'.A/'.C/ \ the '.C/ side of

 �����!
'.A/'.B/

D ins.4'.B/'.A/'.C//.
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(12) By parts (9), (11), Theorem PSH.46(C) and elementary set theory,

'.ins4ABC/ D '..ins†BAC/ \ .the A side of
 !
BC//

D ins†'.B/'.A/'.C/ \ .the '.A/ side of
 �����!
'.B/'.C//,

D ins4'.B/'.A/'.C/.
(13) By Definition PSH.31, since tuABCD is a quadrilateral, tuABCD D

px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA, all the triples fA;B;Cg, fB;C;Dg, fC;D;Ag, and

fD;A;Bg are noncollinear, and
px qy

AB\ px qy

CD D px qy

BC\ px qy

DA D ;. By part (5)

above and elementary set theory,

'.tuABCD/ D '.px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA/

D '.px qy

AB/ [ '.px qy

BC/ [ '.px qy

CD/ [ '.px qy

DA/

D px qy

'.A/'.B/[ px qy

'.B/'.C/[ px qy

'.C/'.D/[ px qy

'.D/'.A/

D tu'.A/'.B/'.C/'.D/.
By Exercise CAP.2, all the triples f'.A/; '.B/; '.C/g, f'.B/; '.C/; '.D/g,
f'.C/; '.D/; '.A/g, and f'.D/; '.A/; '.B/g are noncollinear. Since ' is a

bijection,
px qy

'.A/'.B/\ px qy

'.C/'.D/ D px qy

'.B/'.C/\ px qy

'.D/'.A/ D ;.
By Definition PSH.31, '.tuABCD/ is a quadrilateral. ut

Theorem COBE.6. Let P be a Pasch plane, ' a belineation of P , and let A and

B be distinct points on P . Let the points on
 !
AB be ordered so that A < B (cf

Definition ORD.1), and let the points on
 �����!
'.A/'.B/ be ordered so that '.A/ < '.B/.

Then for any points X and Y of
 !
AB, X < Y iff '.X/ < '.Y/.

Proof. If X < Y , by Definition ORD.1 (and the fact that A < B)
px!
XY \ px!

AB is a ray.

By Theorem PSH.19
px!
XY � px!

AB or
px!
AB � px!

XY .

By the elementary properties of mappings, '.
px!
XY/ � '.px!AB/ or '.

px!
AB/ � '.px!XY/.

By Theorem COBE.5(3)
px !
'.X/'.Y/ � px !

'.A/'.B/ or
px !
'.A/'.B/ � px !

'.X/'.Y/.

By Theorem PSH.19
px !
'.X/'.Y//\ px !

'.A/'.B/ is a ray. By Definition ORD.1 (and

the fact that '.A/ < '.B/) '.X/ < '.Y/.

Conversely, if '.X/ < '.Y/, applying '�1 to both sides, the argument above

yields X < Y . ut
There are no exercises for this chapter.



Chapter 8
Neutral Geometry (NEUT)

Acronym: NEUT

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1–CAP.4), 4, 5, and 6

New axiom: Axiom REF

New Terms Defined: mirror mapping over a line, reflection set (of mirror map-

pings), reflection over a line, angle reflection, fixed segment, line of symmetry,

isometry, congruent, midpoint, neutral plane, complementary mapping of a reflec-

tion, perpendicular, vertical angles, supplementary angles, bisecting ray, right

angle, perpendicular bisecting line, kite; smaller, larger, smaller or congruent,

larger or congruent (angle ordering); outside angle of a triangle; right, obtuse,

acute (angle); right, obtuse, acute (triangle); maximal angle, maximal edge (of a

triangle); hypotenuse, leg (of a triangle); altitude, base (of a triangle); foot (of a

line)

Abstract: This chapter deals with neutral geometry, which is central to the entire

book. It begins with definitions of mirror mappings and reflections over lines.

Every line is an axis for some reflection. A line of symmetry for a set is a line

whose reflection maps that set onto itself. Every angle has a line of symmetry, its

angle bisector. Compositions of reflections are isometries, and isometric sets are

congruent. These concepts provide access to the standard congruence theorems.

Reflections are used to define perpendicularity, the perpendicular bisector and

midpoint of a segment, and to prove the existence of a line (not necessarily unique)

through a given point parallel to a given line. Ordering of angles is defined, leading

to the notions of acute angle, obtuse angle, and maximal angle of a triangle.

© Springer International Publishing Switzerland 2015
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
DOI 10.1007/978-3-319-23775-6_8
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156 8 Neutral Geometry (NEUT)

As can be seen by surveying either the abstract above or the list of new terms

defined, this is a wide-ranging chapter; it is the place where many of the most

familiar results of plane geometry are developed, and where we deal, finally, with

congruence.

The geometry in this chapter is called neutral geometry1 since no commitment

is made regarding a parallel axiom. It builds on Pasch geometry, invoking Axioms

I.0 through I.5 (the incidence axioms), Axiom BET (betweenness), and the Plane

Separation Axiom.

In contrast with Hilbert’s axioms in which congruence is an undefined term

given meaning by axioms, we use reflections to define congruence, taking a two-

step approach. First, in Definition NEUT.1 we define a mirror mapping as a type

of bijection on a Pasch plane P which is both an axial affinity and a belineation,

and is its own inverse. Its properties are based on our everyday observations about

reflection in a physical mirror (cf Remark NEUT.1.0).

Unfortunately, we cannot base neutral geometry on mirror mappings—one

reason being that, as shown in Exercise NEUT.0, there can be more than one mirror

mapping over a line in a coordinate plane.2 Our notion of perpendicularity arises

from the behavior of reflections, and allowing multiple reflections over a line would

lead to the existence of many perpendiculars to a line at a point; this would not be

helpful. Nor do we have, for mirror mappings, any assurance about several other

kinds of behavior that are essential to our development, involving characteristics

not of just one mapping, but of the entire family of mirror mappings.

Therefore, in Definition NEUT.2 we specify a subset of the collection of all

possible mirror mappings, called a reflection set, which is defined by the six

Properties R.1 through R.6 of Definition NEUT.2. Members of the reflection set

are called reflections. We wish this list of properties could be shorter, but we

haven’t succeeded in proving any of them from the others. Finally, we state a single

reflection Axiom REF, which asserts simply that a reflection set exists.

Even though we take no stand in neutral geometry with regard to a parallel axiom,

in Theorem NEUT.48(B) we will prove Property PE:

1Historically, geometry developed without regard to a parallel axiom was referred to as absolute
geometry.
2A coordinate plane is a Pasch plane, satisfying the incidence, betweenness, and Plane Separation
axioms; this will be shown in Chapter 21, Sections 21.5.1 through 21.5.4.
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Property PE (Parallel Existence). Given a neutral plane P and a line L on P ,

for every point Q belonging to P n L, there exists a line M through Q which is

parallel to L.

There is no claim of uniqueness—Property PE falls short of Axiom PS. However,

if PE is joined with PW, then we get PS; the reader may wish to compare this with

the discussion of Axioms PS and PW following Definition IP.0 in Chapter 2.

Since the incidence, betweenness, plane separation axioms, and the reflection

axiom to be introduced here imply Property PE, they are incompatible with elliptic

geometry, in which there are no parallel lines; to make them so, we would have

to weaken our definition of reflection. Once we have developed neutral geometry,

we may accept the Parallel Axiom by accepting either Axiom PW or PS, yielding

Euclidean geometry, as in Chapter 11. Or we may deny it by saying that given a

line L and a point P not on that line, there may exist more than one line through P

parallel to L. This denies both Axioms PW and PS and yields hyperbolic geometry,

which we do not pursue.

This chapter is loosely based on the development in Fundamentals of Mathemat-

ics, Volume II, Behnke, et al, eds., published by MIT Press; particularly Chapter 4

by J. Diller and J. Boczeck, and Chapter 5 by F. Bachmann, W. Pejas, H. Wolff, and

A. Bauer [2].3

8.1 Mirror mappings and their elementary properties

Definition NEUT.1. Let L be any line contained in a Pasch plane P . A mirror

mapping over the line L is a mapping ' of P into P which satisfies

(A) if X is any point on L, '.X/ D X; that is, every point of L is a fixed point for ';

(B) for every member X of P n L, X and '.X/ are on opposite sides of L;

(C) for every member X of P n L, '.'.X// D X; and

(D) for all points A, B, and C on P such that A B C, '.A/ '.B/ '.C/; that is to

say, betweenness is preserved by '.

3Other authors introduce axioms on motions of an ordered plane to develop neutral geometry.
See Doneddu, A., Étude de géométries planes ordonnées, Rend. Circ. Mat. Palermo, II. Ser. 19,
27–68 (1970) [5], and Lumiste, U., Foundations of geometry, Estonian Mathematical Society,
Tartu, 2009 [13].
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The line L is the axis of the mirror mapping '.

Remark NEUT.1.0. We have based the properties of a mirror mapping on our

observations of reflections in a physical mirror. Property (A) of Definition NEUT.1

says that the reflecting surface of a mirror appears stationary. Property (B) says

the objects seen in a mirror appear to be on the opposite side of the reflecting

surface from their actual positions. Property (C) hints that the original objects are

themselves reflections of their images (a slightly mind-twisting thought!). Property

(D) says that the images of objects lined up in order are in the same order as the

objects themselves.

Items NEUT.1.1 through NEUT.1.8 use the terminology and notation of Defini-

tion NEUT.1, and describe the elementary properties of mirror mappings. They are

stated and proved somewhat informally.

Remark NEUT.1.1. A mirror mapping has only one axis of fixed points. If ' is a

mirror mapping over L, by Property (A) of Definition NEUT.1, every point of L is a

fixed point of '. If A 62 L, by Property (B) A cannot be a fixed point for '. Therefore

L is the set of all fixed points for '. If there were a second axis N , at least one of

its points would not belong to L and hence would not be a fixed point, contradicting

the assumption that N is an axis.

Remark NEUT.1.2. The identity map { is not a mirror mapping. This follows from

Property (B) of Definition NEUT.1.

Remark NEUT.1.3. For any mirror mapping ', ' ı ' D {, and ' is a bijection

of P . Let A be any point of P . If A 2 L, by Property (A) of Definition NEUT.1,

'.'.A// D '.A/ D A; if A 62 L, by Property (C) '.'.A// D A. This shows that

' ı ' D {, and also that ' maps P onto P .

Note that A 2 L iff '.A/ 2 L; for if A 2 L, by Property (A) '.A/ D A 2 L; if

A 62 L, by Property (B), '.A/ 62 L. To show that ' is one-to-one, let '.A/ D '.B/. If

A 2 L, '.A/ D '.B/ 2 L and hence B 2 L. Thus A D '.A/ D '.B/ D B. If A 62 L,

by Property (C) A D '.'.A// D '.'.B//. Then '.'.B// 62 L so that '.B/ 62 L and

B 62 L; by Property (C) '.'.B// D B so that A D B. Thus ' is a bijection of P .

Remark NEUT.1.4. A B C iff '.A/ '.B/ '.C/. Let A, B, and C be any points

of P; by Property (D), if A B C then '.A/ '.B/ '.C/. If '.A/ '.B/ '.C/, by

Property (D) '.'.A// '.'.B// '.'.C//, and by Remark NEUT.1.3 above, this is

A B C.
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Remark NEUT.1.5. A mirror mapping ' is both a belineation and a collineation.

This follows immediately from Remark NEUT.1.4 above and Theorem COBE.2.

Remark NEUT.1.6. A mirror mapping is an axial affinity. This follows immedi-

ately from Definition CAP.25 using Remark NEUT.1.2, Remark NEUT.1.5, and

Property (A) of Definition NEUT.1.

Remark NEUT.1.7. It can be shown that if every point O of L is contained in some

line
 ��!
A'.A/ (A 62 L), where ' is a mapping obeying properties (B) through (D) of

Definition NEUT.1, then Property (A) holds. This is Exercise NEUT.83.

Theorem NEUT.1.8. A mirror mapping maps endpoints of segments and rays to

end points.

Proof. We show this for closed segments. Let A;B;C, and D be points of P where

A ¤ B and C ¤ D. If ' is a mirror mapping and '.
px qy

AB/ D px qy

CD, then either '.A/ D C

and '.B/ D D or '.A/ D D and '.B/ D C. For if '.A/ 2 px qy

CD and is not an endpoint,

C '.A/ D; by Property (D) of Definition NEUT.1, '.C/ '.'.A// '.D/, and by

Remark NEUT.1.3, '.C/ A '.D/. This is impossible since A is an endpoint of
px qy

AB,

and both '.C/ and '.D/ are members of
px qy

AB (again by Remark NEUT.1.3). ut

8.2 Reflection sets and the reflection axiom

Definition NEUT.2. A set E of mirror mappings on a Pasch plane is said to be a

reflection set if it satisfies Properties R.1 through R.6 listed below.

R.1 (Existence) For every line L in the plane P , E contains a mirror mapping RL

over L.

R.2 (Uniqueness) E contains no more than one mirror mapping RL over a line L
in P .

R.3 (Closure) If ' is a mirror mapping over a line L and ' is the composition of

two or more mirror mappings in E , then ' 2 E .

R.4 (Linear scaling) If A, B, and C are distinct points on the plane such that C 2 qy!
AB,

and for some composition ˛ of mirror mappings in E , ˛.
px qy

AB/ D px qy

AC, then

B D C.

R.5 (“Angle reflection”) For every angle†AOB in the plane P , there exists a mirror

mapping RL 2 E such that RL.†AOB/ D †AOB.
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R.6 (“Existence of a midpoint”) For any closed segment
px qy

AB 2 P there exists a

point M 2 px qy

AB and a composition ˛ of mirror mappings belonging to E such

that ˛.
px qy

AM/ D px qy

MB.

Since we have not yet officially defined either angle reflection or midpoint we put

“Angle reflection” and “Existence of a midpoint” in quotation marks to emphasize

that at this point they are only labels.

In Chapter 21 (Subsection 21.7.3) we will show the independence of various of

the Properties R.1 through R.6 by exhibiting sets of mirror mappings that are not

reflection sets.

Axiom REF. There exists a reflection set REF.

Definition NEUT.3. (A) A member of a reflection set REF will be called a line

reflection, or simply a reflection over L, and will be denoted by the symbol

RL.

A mapping ˛ of a Pasch plane P into P is an isometry of P iff either ˛ is the

identity mapping of P , or is the composition of a finite number (at least one)

of reflections over lines in P; that is, for some natural number n � 1 and every

k D 1; 2; :::; n, RLk is a reflection over a line Lk in P , and ˛ D RL1 ı� � �ıRLn .

(B) Let S and T be nonempty subsets of a Pasch plane P . S is congruent to T
(notation: S Š T ) iff there exists an isometry ˛ of P such that ˛.S/ D T .

(C) Let A and B be distinct points on the plane P . M is a midpoint of
px qy

AB iff A M B

and
px qy

AM Š px qy

BM.

(D) A line L in a Pasch plane P is a line of symmetry for a nonempty set S iff

RL.S/ D S , where RL is a reflection over the line L. The reflection RL

may sometimes be referred to as the reflection implementing the symmetry.

It should be noted that since all the points of the line L are fixed points, L is

trivially a line of symmetry for any of its subsets.

If S D †AOB, we will say that RL is the angle reflection for †AOB. An

angle reflection is also a line reflection; the terminology merely reminds us that

it is being applied in a certain way.

A ray
px!
OD is a bisecting ray of †AOB iff

 !
OD is a line of symmetry for

†AOB and D 2 ins†AOB.

Remark NEUT.4 (Partial restatement of Definition NEUT.2). Using Defini-

tion NEUT.3 we may state some of the properties of Definition NEUT.2 more

succinctly. Let P be a Pasch plane on which mirror mappings and reflections are

defined.
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R.4 (Linear scaling) may be restated as: If A, B, and C are distinct points on P such

that C 2 qy!
AB and

px qy

AB Š px qy

AC, then B D C.

R.5 (Angle reflection) may be restated as: For any angle †AOB in the plane P ,

there exists an angle reflection RL 2 REF for †AOB.

R.6 (Existence of a midpoint) may be restated as: For any closed segment
px qy

AB � P
there exists a point M 2 px qy

AB such that
px qy

AM Š px qy

MB; that is, M is a midpoint

of
px qy

AB.

Remark NEUT.5. (A) Property R.3 (closure) may appear a bit puzzling at first;

if it were applied to a single mirror mapping, it would be vacuous. But it

specifies that if the mirror mapping in question is a composition of two or

more mirror mappings that belong to E , then it must belong to E . This imposes

a requirement.

(B) Property R.4 (linear scaling) may also appear a bit mysterious. However, it

is absolutely pivotal to the development, being as close as we can come to

declaring that isometry preserves distance, without actually having a notion of

distance.4

(C) Property R.6 of Definition NEUT.2 does not imply uniqueness of a midpoint of

a segment; for now we will assume that it can have more than one. The proof

that it can have only one midpoint is Theorem NEUT.50.

(D) Throughout the remainder of the book, any citation of one of Properties R.1

through R.6 of Definition NEUT.2 will be understood to include a reference to

Axiom REF, which establishes that the cited property is in force.

Remark NEUT.6 (On angle reflections).

(A) Property R.5 of Definition NEUT.2 by itself does not imply uniqueness of lines

of symmetry or angle reflections; for now we will assume that there could be

two reflections RL and RL0 such that

RL.†AOB/ D †AOB D RL0.†AOB/.

In Theorem NEUT.26 we will show that there is only one angle reflection

for an angle, and hence, by Remark NEUT.1.1, there can be only one line of

symmetry.

(B) If O, A, and B are noncollinear points and RL.
px!
OA/ D px!

OB, then by

Remark NEUT.1.3 RL.
px!
OB/ D RL.RL.

px!
OA// D px!

OA. By Definition PSH.29

4In a conversation many years ago a theologian friend cracked “you mathematicians have humor
without humor.” Here we have “distance without distance.”
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†AOB D px!
OA[ px!

OB. Thus RL maps †AOB onto itself, and therefore by

Definition NEUT.3(D) RL is an angle reflection and L a line of symmetry for

†AOB. However at this stage there is no guarantee that RL.O/ D O (cf part

(C) below).

(C) Property R.5 of Definition NEUT.2 says only that RL.†AOB/ D †AOB in the

sense of set equality; at this stage, there is no guarantee that RL.
px!
OA/ D px!

OB

or RL.
px!
OB/ D px!

OA, or, for that matter, that O 2 L. These things will be shown

in Theorem NEUT.20, and once they have been established, any citation of

Property R.5 will be understood to include these facts.

Remark NEUT.7. (A) Since the identity mapping { of P is an isometry, every

nonempty set T of P is congruent to itself, that is, T Š T .

(B) Even though we know by assumption that there is only one reflection over

a given line, the possibility will still exist that two sets S and T might be

congruent to each other by means of two different isometries. That is, we might

have ˛.S/ D T and ˇ.S/ D T where ˛ ¤ ˇ. Thus in some situations (for

instance in the congruence Theorems NEUT.62, NEUT.64, and NEUT.65), to

achieve complete clarity it will be necessary to specify the isometry by which

the congruence is achieved. See also Remark NEUT.61.

Definition NEUT.8. P is a neutral plane if it is a Pasch plane in which Axiom

REF holds. The geometry resulting from applying Axiom REF to a Pasch plane is

neutral geometry.

Remark NEUT.9. In Chapter 21 (Theorem LC.33) we will show that neutral

geometry is not vacuous, by showing that in a coordinate plane (which is a Pasch

plane) it is possible to construct a set of reflections that satisfies all the properties of

both Definitions NEUT.1 and NEUT.2.

Throughout the remainder of this chapter (except for Section 8.6, Constructed

mirror mappings) our universe of discourse is a neutral plane P; all lines, rays, and

segments will be subsets of this plane. It should be noted, however, that when we

invoke a neutral plane as the universe in a theorem, there is no presumption that all

the properties of Definition NEUT.2 will be used.

The only property of Definition NEUT.2 that we invoke immediately is Property

R.1, existence of a reflection over a given line; the first uses of Property R.2 (unique-

ness) and of Property R.3 (closure) occur in the proof of Theorem NEUT.30. The
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first use of Property R.4 (linear scaling) will be in the proof of Theorem NEUT.23; of

Property R.5 (angle reflection), in the proof of Theorem NEUT.35; and of Property

R.6 (existence of midpoint), in Theorem NEUT.50.

8.3 Congruence, isometries, and lines of symmetry

While we state the theorems of this section in terms of reflections, isometry, and

other notions defined in Definition NEUT.3, their proofs do not depend on Properties

R.2 through R.6 of Definition NEUT.2, and remain valid if “mirror mapping’ is

substituted for “reflection,” “composition of mirror mappings” is substituted for

“isometry,” and the definitions of congruence and midpoint are altered accordingly.

Theorem NEUT.10. Let E be a nonempty subset of the neutral plane P , M a line

on P , and let RM be a reflection over M. If either RM.E/ � E or E � RM.E/,
then RM.E/ D E , so that M is a line of symmetry for E .

Proof. By Remark NEUT.1.3, RM.RM.E// D E .

If RM.E/ � E , we may apply RM to both sides to get E D RM.RM.E// �
RM.E/, and E D RM.E/. Likewise, if E � RM.E/, RM.E/ � RM.RM.E// D
E , and again RM.E/ D E . In either case, M is a line of symmetry for E . ut
Theorem NEUT.11. Let ˛ be an isometry of the neutral plane P; then ˛ is a

bijection of P onto itself, and ˛�1 is an isometry of P . Furthermore, any finite

composition of isometries of P is an isometry of P .

Proof. By Definition NEUT.3(A), if ˛ is an isometry other than the identity {, there

exists a natural number n � 1 such that for every k 2 Œ1I n�, Mk is a line on P and

˛ D RM1 ı � � � ıRMn . Then ˛�1 exists and equals RMn ı � � � ıRM1 . Hence ˛�1 is

an isometry of P . By Remark NEUT.1.3, each of the mappings RM is a bijection,

and every composition of bijections is a bijection.

A finite composition of finite compositions of reflections is a finite composition

of reflections, so a finite composition of isometries is an isometry. ut
Corollary NEUT.12. The set of isometries of a neutral plane is a group under

composition of mappings.
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Proof. This follows directly from Theorem NEUT.11 and the note Bijections

forming a group in Chapter 1, Section 1.5. ut
Theorem NEUT.13. Let S and T be any nonempty subsets of the neutral plane P
such that S Š T and let ˛ be any isometry of P . Then ˛.S/ Š ˛.T /.
Proof. By Definition NEUT.3(B) there exists an isometry ˇ of P such that T D
ˇ.S/, so that ˛.T / D ˛.ˇ.S// D .˛ ı ˇ/.S/ D .˛ ı ˇ ı ˛�1/.˛.S//. By

Theorem NEUT.11, ˛ ı ˇ ı ˛�1 is an isometry of P , so ˛.S/ Š ˛.T /. ut

Theorem NEUT.14 (Congruence is an equivalence relation). Let S , T , and U
be nonempty subsets of the neutral plane P . Then

(1) S Š S (congruence is reflexive);

(2) If S Š T , then T Š S (congruence is symmetric);

(3) If S Š T and T Š U , then S Š U (congruence is transitive).

Proof. (1) Since the identity mapping { is an isometry and S D {.S/, S Š S .

(2) If S Š T , then by Definition NEUT.3(B) there exists an isometry ˛ of P such

that ˛.S/ D T , but then S D ˛�1.T /. Since by Theorem NEUT.11, ˛�1 is an

isometry of P , T Š S .

(3) If S Š T and T Š U , then by Definition NEUT.3(B) there exist isometries ˛

and ˇ of P such that T D ˛.S/ and U D ˇ.T /. But then U D ˇ.˛.S// D
.ˇı˛/.S/. By Theorem NEUT.11 ˇı˛ is an isometry of P . Hence S Š U . ut

Since isometries play such a major role in neutral geometry, we now restate

Theorem COBE.5 (from Chapter 7) explicitly for them.

Theorem NEUT.15 (Properties of isometry). Let A, B, and C be noncollinear

points on the neutral plane P . If ' is an isometry, or, for that matter, a mirror

mapping, or any finite composition of mirror mappings of P , ' is a belineation, and

hence a collineation. Moreover, the following properties hold.

(1) '.
 !
AB/ D �����!'.A/'.B/.

(2) '.
qy!
AB/ D qy !

'.A/'.B/,

(3) '.
px!
AB/ D px !

'.A/'.B/,

(4) '.
qy px

AB/ D qy px

'.A/'.B/,

(5) '.
px qy

AB/ D px qy

'.A/'.B/,

(6) '.
qy qy

AB/ D qy qy

'.A/'.B/,

(7) '.
px px

AB/ D px px

'.A/'.B/,
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(8) '.†ABC/ D †'.A/'.B/'.C/,
(9) '.the C side of

 !
AB/ D the '.C/ side of

 �����!
'.A/'.B/,

(10) '.4ABC/ D 4'.A/'.B/'.C/,
(11) '.ins†BAC/ D ins†'.B/'.A/'.C/,
(12) '.ins4ABC/ D ins4'.A/'.B/'.C/.
(13) If A, B, C, and D are points on P and tuABCD is a quadrilateral, then

'.tuABCD/ is a quadrilateral, and '.tuABCD/ D tu'.A/'.B/'.C/'.D/.
Proof. By Remarks NEUT.1.3 and NEUT.1.4, every mirror mapping is a belin-

eation, and hence, by Theorem COBE.2, a collineation. By a simple induction

argument, every composition of a finite number of belineations is a belineation.

Each of the above properties, then, follows directly from the corresponding property

listed in Theorem COBE.5. ut
Remark NEUT.16. This extends Theorem NEUT.1.8 to isometries. Let A and B

be distinct points of P . If ' is an isometry of P , then by Theorem NEUT.15(5)

'.
px qy

AB/ D px qy

'.A/'.B/. Thus the end points of the image of the closed segment
px qy

AB

under the isometry ' are the images of the end points A and B. In other words, an

isometry maps end points of a closed segment to end points of the image segment.

Also, if X is a point interior to
px qy

AB, an isometry ' maps X to a point interior to the

image segment. For if A X B then '.A/ '.X/ '.B/, since by Theorem NEUT.15,

' is a belineation.

Remark NEUT.17. A closed segment
px qy

AB cannot be congruent to an open segment
qy px

CD; neither an open or a closed segment can be congruent to a half-open-half-closed

segment such as
px px

EF or
qy qy

EF. This follows easily from Theorem NEUT.15(4) through

(7). It can also be proved independently of these results, using only the fact that an

isometry preserves betweenness. This is Exercise NEUT.81.

Definition NEUT.18. A segment
px qy

PQ is a fixed segment for a mapping ˛ iff

˛.
px qy

PQ/ D px qy

PQ; in particular, by Theorem NEUT.15(4), if ˛.P/ D Q and ˛.Q/ D P,

then
px qy

PQ is a fixed segment for ˛.

Remark NEUT.19. Let P be a neutral plane, L and M be lines on P , and ' be an

isometry of P , which by Theorem NEUT.15 is a collineation and a belineation.

(A) From Theorem CAP.1(B), if L and M intersect at the point O, then '.L/ and

'.M/ intersect at '.O/.

(B) From Theorem CAP.3, if L kM, then '.L/ k '.M/.
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(C) From Theorem CAP.4(A), if A and B are fixed points of ',
 !
AB is a fixed line

of '.

(D) From Theorem CAP.4(B), if L and M are fixed lines of ' which intersect at

the point Q, then Q is a fixed point of '.

8.4 Lines of symmetry and fixed lines

Theorems NEUT.20 and NEUT.22 establish important properties of angle reflec-

tions and line reflections, respectively; however, as in the previous section (Sec-

tion 8.3) none of the proofs in this section call upon Properties R.2 through R.6

of Definition NEUT.2. Thus these theorems and proofs remain valid if “mirror

mapping” is substituted for “reflection,” “composition of mirror mappings” is

substituted for “isometry,” and the definitions of congruence and midpoint are

altered accordingly.

Theorem NEUT.20 (Angle reflection properties). Let A, B, and C be non-

collinear points on the neutral plane P . Then M is a line of symmetry and RM

an angle reflection for †BAC iff RM.A/ D A, RM.B/ 2 qy!
AC, and RM.C/ 2 qy!

AB.

In this case the following are all true:

(A) A 2M, RM.
qy!
AB/ D qy!

AC and RM.
qy!
AC/ D qy!

AB,

(B) RM.
 !
AB/ D ����!ARM.B/ D !ACandRM.

 !
AC/ D �����!ARM.C/ D !AB;

(C) RM.
px qy

AB/ D px qy

ARM.B/ and RM.
px qy

AC/ D px qy

ARM.C/;

(D) RM maps only points of
 !
AB to

 !
AC, and only points of

 !
AC to

 !
AB;

(E) there exists a point D 2M such that

(1) M \ qy px

BRM.B/ D fDg, so that B D RM.B/,

(2) RM.
px qy

BD/ D px qy

RM.B/D, so that
px qy

BD Š px qy

RM.B/D, that is, D is a midpoint

of
px qy

BRM.B/,

(3)
qy!
AD � ins†BAC, and

(4) RM.†DAB/ D †DAC, so that †DAB Š †DAC.

Proof. By Definition NEUT.3(D) M is a line of symmetry for†BAC iff there exists

a line reflection RM over M such that RM.†BAC/ D †BAC. If this is true, by

Theorem NEUT.15(8)

†BAC D RM.†BAC/ D †RM.B/RM.A/RM.C/,
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so that RM.A/ and A are both the corner of this angle, which by Theorem PSH.33

is unique, and RM.A/ D A. Since M is the set of all fixed points for RM, A 2M.

Also by Theorem NEUT.15(2),

RM.
qy!
AB/ D qy !RM.A/RM.B/ D qy !

ARM.B/, and

RM.
qy!
AC/ D qy !RM.A/RM.C/ D qy !

ARM.C/.

By Exercise NEUT.4, neither
 !
AB nor

 !
AC is a line of symmetry for †BAC, hence

each can intersect the line of symmetry M in only the one point A, so neither B nor

C belongs to M. By Definition NEUT.1(B), B and RM.B/ are on opposite sides

of M.

If B and C were on the same side E of M, then by Theorem IB.14
qy!
AB and

qy!
AC

would be subsets of E , and their images under RM would be on the other side of M,

so that RM could not map †BAC into itself, contradicting our hypothesis that RM

is an angle reflection for †BAC. Thus B and C are on opposite sides of M. Since B

and RM.B/ are on opposite sides of M, by Theorem PSH.12 (plane separation), C

and RM.B/ are on the same side.

Now RM.B/ is in †BAC but not in
qy!
AB, so RM.B/ 2 qy!

AC, and by Theo-

rem PSH.16 RM.
px!
AB/ D px !

ARM.B/ D px!
AC. By similar reasoning, interchanging

the roles of B and C, RM.C/ 2 qy!
AB, and RM.

px!
AC/ D px!

AB. This proves half of the

main assertion of the theorem, and also proves part (A).

Conversely, suppose RM.A/ D A, RM.B/ 2 qy!
AC, and RM.C/ 2 qy!

AB. Then

by Theorem NEUT.15(3) RM.
px!
AB/ D px !RM.A/RM.B/ D px!

AC and RM.
px!
AC/ D

px !RM.A/RM.C/ D px!
AB, so that RM.†BAC/ D †BAC. Thus RM is an angle

reflection for †BAC.

Parts (B) and (C) follow directly from Theorem NEUT.15 and part (A).

If Y is any point of the plane, since RM maps onto the plane, there exists a

point X such that Y D RM.X/. Then if Y 2  !AB, RM.Y/ 2  !AC. But RM.Y/ D
RM.RM.X// D X so X 2  !AC. Therefore the only points that map to

 !
AB are those

of
 !
AC; a similar argument shows that the only points that map to

 !
AC are those of !

AB, proving assertion (D).

Since RM.B/ and B are on opposite sides of M, by Theorem PSH.12 (plane

separation) there exists a point D such that
qy px

BRM.B/\M D fDg. Since RM.D/ D
D, RM.

px qy

BD/ D px qy

RM.B/RM.D/ D px qy

RM.B/D. This, together with Defini-

tion NEUT.3(C), shows parts (1) and (2) of (E).
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By Theorem PSH.37
qy px

BRM.B/ � ins†BA.RM.B// D ins†BAC so that

D 2 ins†BAC. By Theorem PSH.38(B),
qy!
AD � ins†BAC, showing (E)(3). Finally,

since RM.
px!
AB/ D px!

AC and RM.
px!
AC/ D px!

AB, RM.†DAB/ D †DAC, proving part

(E)(4). ut

Remark NEUT.20.1. (A) In part (E) above, we were careful to speak of D as “a”

midpoint of
px qy

BRM.B/; since we have not yet proved that midpoints are unique

(which we will do in Theorem NEUT.50), we cannot speak of the midpoint of

a segment. Also, we have not yet proved (we will do so in Theorem NEUT.26)

that lines of symmetry for angles and angle reflections are unique, so we have

taken care to speak of M as “a” line of symmetry and RM as ‘an” angle

reflection for †BAC.

(B) (Important convention!) From this point forward, the reader should assume that

whenever Property R.5 of Definition NEUT.2 is invoked, Theorem NEUT.20

is also invoked without reference. Thus, whenever we state that there exists a

line M of symmetry or angle reflection RM for an angle †BAC, it will be

understood that RM.A/ D A, RM.B/ 2 qy!
AC and RM.C/ 2 qy!

AB.

(C) In the following, we will frequently use results (1) through (13) from The-

orem NEUT.15, and while these will often be referenced, there will be a

tendency to do so less and less as we assume the reader’s habits are established.

This will be especially true of the lower-numbered results involving lines, rays,

and segments. Be warned!

Theorem NEUT.21. Let A, B, and C be noncollinear points on the neutral plane

P and let M be a line of symmetry of †BAC. Then M is a line of symmetry of

ins†BAC.

Proof. By Theorem NEUT.20 RM.B/ 2 qy!
AC and RM.C/ 2 qy!

AB, so that †BAC D
†BARM.B/ and †BAC D †RM.C/AC. Let X be any member of ins†BAC; then

by Definition PSH.36(A), X 2 RM.B/ side of
 !
AB. By Theorem NEUT.15(9), and

the fact that RM.A/ D A,

RM.X/ 2 RM.RM.B// side of
 ����������!RM.A/RM.B/ D B side of

 !
AC

Also X 2 RM.C/ side of
 !
AC, and by the same theorem

RM.X/ 2 RM.RM.C// side of
 ����������!RM.A/RM.C/ D C side of

 !
AB.

Thus RM.X/ 2 ins†BAC; by Theorem NEUT.10, M is a line of symmetry for

ins†BAC. ut
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Theorem NEUT.22 (Behavior of line reflections). Let M be a line on the neutral

plane and let RM be a reflection over M.

(A) If A 62M,
 ����!
ARM.A/ is a fixed line for RM,

px qy

ARM.A/ is a fixed segment, and ������!
A.RM.A// ¤M.

(B) If L is a fixed line and L ¤M, then for some A 62M, L D ����!ARM.A/.

(C) For any line L such that L ¤M, the following statements are equivalent; the

equivalence of (1) and (2) summarizes (A) and (B):

(1) L is a fixed line for RM;

(2) for some A 62M, L D ����!ARM.A/;

(3) for some A 2 L such that A 62M, RM.A/ 2 L;

(4) for every A 2 L such that A 62M, L D ����!ARM.A/.

(5) M is a line of symmetry for L.

(D) There is at most one fixed line L ¤M for RM through a point A.

(E) Let
 ����!
ARM.A/ ¤M and

 ����!
BRM.B/ ¤M be distinct fixed lines for RM. Then ����!

ARM.A/ k  ����!BRM.B/.

(F) Every fixed line L D  ����!ARM.A/ for RM intersects M at exactly one point D;

moreover, A D RM.A/, and D is a midpoint of the fixed segment
px qy

ARM.A/.

Notice that there is no claim here that every line which is parallel to a fixed

line for RM is a fixed line. This will be proved (on a Euclidean plane) as

Corollary EUC.3.1.

Proof. (A) By Theorem NEUT.15(1) and Definition NEUT.1(C),

RM.
 ������!
A.RM.A/// D ������������������!.RM.A//.RM.RM.A/// D ������!A.RM.A//;

by Definition CAP.0(C),
 ������!
A.RM.A// is a fixed line for RM. By Defini-

tion NEUT.18,
px qy

ARM.A/ is a fixed segment for RM.

(B) Pick A 2 L such that A 62M. Since L is a fixed line, RM.A/ 2 L. Since both

A and RM.A/ belong to L, by Exercise I.2, L D ������!A.RM.A//.

(C) Part (A) is “(2) implies (1)”; part (B) is “(1) implies (2).” (3) is equivalent to

(2): if A 2 L and RM.A/ 2 L, by Exercise I.2, L D  ����!ARM.A/; conversely, if

L D ����!ARM.A/, then RM.A/ 2 L.

That (4) implies (2) is trivial; conversely, if (1) is true, L is a fixed line; then

for every A 2 L, RM.A/ 2 L.

(5) is equivalent to (1): since L ¤M, by Definition CAP.0(C), L is a fixed

line for RM iff RM.L/ D L; by Definition NEUT.4, this is true iff M is a

line of symmetry for L.
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Fig. 8.1 For the
construction in
Theorem NEUT.22(D).

B A

RM(C) C

A B

M

(D) If
 ����!
ARM.A/ and

 ����!
BRM.B/ are distinct fixed lines for RM which intersect at

some point Q, then by Theorem CAP.4(B) Q is a fixed point for RM, so that

Q 2M.

We may choose the notation so that A and B are on the same side of M.

(See Figure 8.1 for a visualization.) Let A0 D RM.A/ and B0 D RM.B/; then

A0 and B0 are on the same side of M. Since A and A0 are on opposite sides

of M, and B and B0 are on opposite sides of M, by Theorem PSH.12 (PSA)

A Q A0 and B Q B0.
B is on the opposite side of

 !
AA0 from B0, and

qy px

BA0 � qy!
A0B which is a subset

of the B-side of
 !
AA0. Likewise, B0 is on the opposite side of

 !
AA0 from B, and

qy px

B0A � qy!
AB0 which is a subset of the side of

 !
AA0 opposite B.

Then by Theorem NEUT.15(4) RM.
qy px

BA0/ D qy px

B0RM.A0// D qy px

B0A so that

RM.
qy px

BA0/ and
qy px

BA0 are on opposite sides of
 !
AA0. Since B and A0 are on opposite

sides of M, by Theorem PSH.12 there is a point C such that fCg D qy px

BA0 \M.

Then RM.C/ is on the opposite side of
 !
AA0 from C, a contradiction to the fact

that C 2M is a fixed point of RM.

(E) If
 ����!
ARM.A/ and

 ����!
BRM.B/ are not parallel, then they intersect, and this is

impossible by part (D).

(F) If L ¤ M is a fixed line, by part (A)(3) there is a point A 62 M such that

L D  ����!ARM.A/. By Definition NEUT.1(B) A and RM.A/ are on opposite

sides of M; hence by Theorem PSH.12 there exists a point D such that
qy px

ARM.A/\M D fDg. By Exercise I.1, D is the only such point of intersection.

By Theorem NEUT.15(5) RM.
px qy

AD/ D px qy

RM.A/RM.D/ D px qy

RM.A/D so that
px qy

RM.A/D Š px qy

AD; therefore D is a midpoint of
px qy

ARM.A/. ut
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In part (F) above, we were careful to speak of D as “a” midpoint of
px qy

ARM.A/;

since we have not yet proved that midpoints are unique (which we will do in

Theorem NEUT.50), we cannot speak of the midpoint of a segment.

8.5 Uniqueness of angle reflections

The proof of the next theorem is our first use of Property R.4 of Definition NEUT.2

(linear scaling). This theorem strengthens Theorem CAP.4; not only is
 !
AB a fixed

line, but every point on it is a fixed point.

Theorem NEUT.23. Let ' be an isometry of the neutral plane P . If A and B are

distinct fixed points of ', then every point on
 !
AB is a fixed point of '.

Proof. (I) Let X be any member of
qy!
AB nfBg. Since '.

qy!
AB/ D qy !

'.A/'.B/ D qy!
AB,

'.X/ 2 qy!
AB. Since '.

px qy

AX/ D px qy

A'.X/, by Definition NEUT.3(B)
px qy

AX Š px qy

A'.X/.

By Property R.4 of Definition NEUT.2, '.X/ D X.

(II) By Property B.3 of Definition IB.1 there exists a point B0 such that B A B0. Let

X be any member of
qy!
AB0. Reasoning as in (I) we get '.X/ D X.

By (I) and (II) every point on
 !
AB is a fixed point of '. ut

Theorem NEUT.24. Let ' be an isometry of the neutral plane P . If ' has three

noncollinear fixed points, then ' D {.
Proof. Let A, B, and C be noncollinear fixed points of '. By Theorem NEUT.23

every member of
 !
AB [ !AC [ !BC is a fixed point of '.

Let X be any member of P n . !AB [ !AC [ !BC/. By Theorem PSH.22 (Denseness

property for betweenness) there exists a point D between A and B. By Theo-

rem PSH.6 (Pasch) there exists a point E such that
 !
XD \ qy qy

AC D fEg or
 !
XD \ qy qy

BC D
fEg. Since both D and E are fixed points of ', by Theorem NEUT.23 every point of !
DE D !XD is a fixed point of ', and X is a fixed point of P . ut
Theorem NEUT.25. Let each of ˛ or ˇ be an isometry of the neutral plane P . If ˛

and ˇ are equal at three noncollinear points of P , then ˛ D ˇ.

Proof. Since the set of isometries is a group (cf Corollary NEUT.12) under

composition of mappings and since ˛ and ˇ are isometries, ˛�1 ı ˇ is an isometry.

Since there exist three noncollinear points A, B, and C, such that ˛.A/ D ˇ.A/,

˛.B/ D ˇ.B/, and ˛.C/ D ˇ.C/, each of A, B, and C is a fixed point of
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˛�1 ı ˇ. By Theorem NEUT.24 ˛�1 ı ˇ D { (the identity mapping). But then

˛ ı .˛�1 ı ˇ/ D .˛ ı ˛�1/ ı ˇ D { ı ˇ D ˇ and ˛ ı { D ˛. Hence ˛ D ˇ. ut
Corollary NEUT.25.1. Two distinct isometries which agree at two points A and B

cannot agree at any point off
 !
AB.

In Theorem NEUT.15 we showed that every isometry is a collineation and a

belineation. In Chapter 19 (Theorems AA.10 and AA.11), Theorems NEUT.24

and NEUT.25 will be generalized to all belineations of a Euclidean/LUB plane.

Theorem NEUT.26 (Uniqueness of angle reflection and line of symmetry). For

any angle †AOB in a neutral plane, there exists at most one angle reflection

mapping the angle onto itself, only one line of symmetry, and only one bisecting

ray. Thus it is proper to speak of THE reflection mapping †AOB to †AOB, THE

line of symmetry of †AOB, and THE bisecting ray of †AOB.

Proof. Suppose there exist two reflections RL and RM (the lines L and M may or

may not be the same) such that RL.†AOB/ D †AOB and RM.†AOB/ D †AOB.

By Theorem NEUT.20, RL.O/ D RM.O/ D O, RL.A/ 2 qy!
OB and RM.A/ 2 qy!

OB.

Since a reflection is its own inverse (cf Definition NEUT.1(C)),

.RM ıRL/.RL.A// D RM.RL.RL.A/// D RM.A/;

thus, by Theorem NEUT.15(5) and Definition NEUT.3(B),
px qy

ORL.A/ Š
px qy

ORM.A/;

by Property R.4 of Definition NEUT.2 (linear scaling), RL.A/ D RM.A/. It follows

that

RM.RL.A// D RM.RM.A// D A D RL.RL.A//,

so that RL and RM are isometries which agree at the three noncollinear points A,

RL.A/, and O; hence by Theorem NEUT.25 RL D RM. From Remark NEUT.1.1,

L D M. There can be only one bisecting ray, since it is the intersection L \
ins†AOB. ut

8.6 Constructed mirror mappings

The following two theorems do not need Axiom REF and are the exception to the

blanket invocation of the neutral plane in Remark NEUT.9.
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Theorem NEUT.27. Let M and L be lines on a Pasch plane, and let RM and RL

be mirror mappings over these lines. Then the mapping ' D RL ıRM ıRL is a

mirror mapping over the line RL.M/.

Proof. We show that ' satisfies Properties (A) through (D) of Definition NEUT.1.

(A) Suppose Y 2 RL.M/. Then there exists a point X 2M such that Y D RL.X/.

Then

'.Y/ D RL.RM.RL.Y/// D RL.RM.RL.RL.X////

D RL.RM.X// D RL.X/ D Y .

(B) Suppose Y 62 RL.M/; we show that '.Y/ and Y are on opposite sides of

RL.M/. There exists a point X 62 M such that Y D RL.X/. By Property

(B), RM.X/ and X are on opposite sides of M, and by Theorem PSH.12 there

exists a point D 2M such that D 2 qy px

X.RM.X//. Then RL.D/ 2 RL.M/ and

RL.D/ 2 RL.
qy px

X.RM.X/// D qy px

.RL.X//.RL.RM.X///

D qy px

.RL.X//.RL.RM.RL.RL.X/////

D qy px

Y.RL.RM.RL.Y////

so that Y and RL.RM.RL.Y/// are on opposite sides of RL.M/.

(C) RL ıRM ıRL ıRL ıRM ıRL D RL ıRM ıRM ıRL D RL ıRL D {.
(D) Since each of the mappings RM and RL preserves betweenness, so does ' D

RL ıRM ıRL. ut
Corollary NEUT.27.1. Let M be a line on a Pasch plane, RM be a mirror

mapping over M, and suppose ˛ is a composition of mirror mappings of the plane.

Then the mapping ' D ˛ ıRM ı ˛�1 is a mirror mapping over the line ˛.M/.

Proof. By Definition NEUT.3(A), either ˛ is (1) the identity {, (2) a mirror mapping,

or (3) the composition RM1 ı� � �ıRMn of a finite number of mirror mappings RMk

over lines Mk in the plane.

In case (1), ' D RM which is already a mirror mapping; case (2) follows from

Theorem NEUT.27. For case (3), note first that ˛�1 D RMn ı � � � ıRM1 ; then

' D ˛ ıRM ı ˛�1
D RM1 ı � � � ı

�
RMn�1 ı

�
RMn ıRM ıRMn

� ıRMn�1

� ı � � � ıRM1 .

By Theorem NEUT.27, RMn ı RM ı RMn is a mirror mapping over RMn.M/;

applying the same theorem again
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RMn�1 ı
�
RMn ıRM ıRMn

� ıRMn�1

is a mirror mapping over RMn�1 .RMn.M//; successive repetitions of this process

produce the final result. ut

8.7 Complementary mappings and perpendicularity

Remark NEUT.28. Up to this point we have not invoked Property R.2 of Defini-

tion NEUT.2, which states that there can be only one reflection over a line. We now

invoke this property in the following definition, when we speak of the reflection

RM over M. We also invoke Property R.3 of Definition NEUT.2 (closure) for the

first time.

Definition NEUT.29. Let M be a line on a neutral plane, let L ¤M be a fixed line

for the reflection RM over M, and let fOg DM\L. By Theorem NEUT.22(D) L
is the only fixed line (other than M) for RM that passes through O. Let A and B be

two points distinct from O, such that
px!
OA �M and

px!
OB � L. By Theorem NEUT.26

there is exactly one line of symmetry S for †AOB, and exactly one reflection RS

over S such that RS.A/ 2 px!
OB.

The mapping CO.RM/ D RS ıRM ıRS is called a complement or a comple-

mentary mapping of RM at the point O. By Property R.2 of Definition NEUT.2,

RM is uniquely determined by the choice of M; by Theorem NEUT.26, S and

RS are uniquely determined by the choice of M, L,
px!
OA, and

px!
OB. Thus by

Theorem NEUT.27, CO.RM/ is completely determined by the choices of M, L,
px!
OA, and

px!
OB.

Theorem NEUT.30. Let M be a line on a neutral plane, let L ¤M be a fixed line

for the reflection RM over M; and let fOg DM \ L. Let A and B be points, not

O, such that,
px!
OA �M and

px!
OB � L, and let S be the line of symmetry of †AOB.

(I) The complementary mapping CO.RM/ D RS ı RM ı RS is the reflection

over L having M as a fixed line. Hence CO.RM/ D RL.

(II) CO.CO.RM// D RM. That is, CO.RL/ D RM, the reflection over M
having L as a fixed line.
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Proof. (I) Let A0 and B0 be points such that A O A0 and B O B0. By Exer-

cise NEUT.10 S is a line of symmetry for †A0OB0, so that RS.
qy!
OA/ D qy!

OB,

RS.
qy!
OB/ D qy!

OA, RS.
qy!
OA0/ D qy!

OB0, and RS.
qy!
OB0/ D qy!

OA0.
Since RM is a reflection with fixed line L, Property (B) of Defini-

tion NEUT.1 says that RM.
qy!
OB/ D qy!

OB0 and RM.
qy!
OB0/ D qy!

OB. If X 2 qy!
OA,

RS.X/ 2 qy!
OB so RM.RS.X// 2

qy!
OB0 and

CO.RM/.X/ D RS.RM.RS.X/// 2
qy!
OA0.

Similarly, if X 2 qy!
OA0,

CO.RM/.X/ D RS.RM.RS.X// 2 qy!
OA.

This shows that CO.RM/ maps M onto M, which is then a fixed line for

CO.RM/.

By Theorem NEUT.27, CO.RM/ D RS ıRM ıRS is a mirror mapping

over RS.M/ D L. By Property R.3 of Definition NEUT.2 (closure) CO.RM/

is a reflection over L. By Property R.2 of Definition NEUT.2 there is only one

reflection RL over L, so CO.RM/ D RL, proving (I).

(II) CO.CO.RM// D CO.RS ıRM ıRS/ D RS ıRS ıRM ıRS ıRS D RM

since RS ıRS D { by Remark NEUT.1.3. ut

Definition NEUT.31. Two lines L and M on the neutral plane P are perpendicu-

lar to each other (notation L ?M) iff L and M are distinct and each of them is a

line of symmetry of the other.

Theorem NEUT.32. Let M and L be distinct lines on the neutral plane. Then the

following are equivalent:

(a) M is a line of symmetry for L;

(b) L is a line of symmetry for M;

(c) RM.L/ D L is a fixed line for RM which is not M;

(d) RL.M/ DM is a fixed line for RL which is not L;

(e) M and L are perpendicular.

Proof. By Definition NEUT.4 and Definition CAP.0(C), (a), (c) and (b), (d).

By Theorem NEUT.30(I), (c)) (d); by part (II) of the same theorem, (d)) (c).

Now (a), (b) so (a), ((a) and (b)), L ?M, by Definition NEUT.31. ut
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Remark NEUT.32.1 (On temptations). (A) It is tempting to think that if O is a

point on M there should be a complementary mapping CO.RM/ for RM

which is a reflection over a line through O. However, at this point, we do not

know that there is a fixed line for RM through an arbitrary point O on M—this

will be proved in Theorem NEUT.47.

(B) Let M and L be lines on the neutral plane, RM a reflection over M with fixed

line L, and CO.RM/ a reflection over L, so that by Theorem NEUT.30, M is

a fixed line for CO.RM/. It is tempting to speculate that CO.RM/ maps fixed

lines of RM into fixed lines of RM. That is, for every fixed line
 ����!
ARM.A/ of

RM, CO.RM/.
 ������!
A.RM.A/// is a fixed line for RM. The following argument

shows that this is indeed the case if Axiom PS holds.

For notational convenience, we denote CO.RM/ as RL. By Theo-

rem NEUT.22, L k  ����!ARM.A/, because both L and
 ����!
ARM.A/ are fixed lines for

RM. Then by Theorem CAP.3 and Theorem NEUT.15(1),

L D RL.L/ k RL.
 ����!
ARM.A// D ���������������!RL.A/.RL.RM.A///.

The right side of this is a line containing the point RL.A/, and is the image of ����!
ARM.A/ under mapping by RL. Applying RM to

 ���������������!RL.A/.RM.RL.A/// and

using Theorem NEUT.15(1), we again get
 ���������������!RL.A/.RM.RL.A/// so this is a

fixed line for RM, hence is parallel to L by Theorem NEUT.22(E).

Thus both
 ���������������!RL.A/.RL.RM.A/// and

 ���������������!RL.A/.RM.RL.A/// are parallel to

L and contain the point RL.A/, so by Axiom PS, they are the same line. Thus

the image under RL of a fixed line for RM is a fixed line for RM.

Theorem NEUT.33. (A) Let M be a line on the neutral plane P , and let O be a

point of P . Then there is at most one line L through O which is perpendicular

to M.

(B) If L is a line in the neutral plane, and O 2 L, there is no more than one line

M ¤ L containing O such that L is a fixed line for RM.

Proof. (A) By Theorem NEUT.32, L ?M iff L is a fixed line for RM and L ¤
M. By Theorem NEUT.22(D) there is at most one fixed line L for RM through

a point O. Therefore there is at most one perpendicular to M through O.

(B) If L is a fixed line for RM, then by Theorem NEUT.32 L ?M; thus if both

M and M0 contain O and L is a fixed line for both RM and RM0 , both M
and M0 are perpendicular to L at O, contradicting part (A). ut
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8.8 Properties of certain isometries; Pons Asinorum

The following lemma is used to prove Theorem NEUT.35; it will also be used for

Theorem NEUT.50, which proves uniqueness of midpoints of arbitrary segments.

Lemma NEUT.34 (Midpoints of fixed segments of reflections are unique). Let

L be a line on a neutral plane and let A and B be distinct points such that

RL.A/ D B.

(A) Let fDg D L \ !AB, and let D0 be a point such that A D0 B and
px qy

AD0 Š px qy

BD0.
Then D D D0.

(B) If L0 is any line such that RL0.A/ D B, then L0 D L so that by Property R.2 of

Definition NEUT.2, RL0 D RL.

Proof. (A) By Definition NEUT.1(D), since A D0 B, RL.A/ RL.D0/ RL.B/,

that is, B RL.D0/ A. By Theorem NEUT.15(5) RL.
px qy

AD0/ D px qy

RL.A/RL.D0/ D
px qy

BRL.D0/. By Definition NEUT.3(B)
px qy

AD0 Š px qy

BRL.D0/. By hypothesis,
px qy

AD0 Š
px qy

BD0 so that
px qy

BD0 Š px qy

BRL.D0/, by Theorem NEUT.14 (congruence is an

equivalence relation).

Also RL.D0/ 2
qy!
BD0. Since

px qy

BRL.D0/ Š
px qy

BD0, RL.D0/ D D0 by Property R.4

of Definition NEUT.2. Therefore D0 is a fixed point for RL, so that D0 2 L.

Since D0 2  !AB and fDg D L \ !AB, it follows that D0 D D.

(B) If L0 is a line such that RL0.A/ D B,
 !
AB is a fixed line for RL0 , as well

as for RL. By Theorem NEUT.33(B), L0 D L, hence by Property R.2 of

Definition NEUT.2, RL0 D RL. ut
The proof of the following theorem contains our first use of Property R.5 of

Definition NEUT.2, which says that every angle has an angle reflection and a line of

symmetry.

Theorem NEUT.35 (Side-preserving isometry (A)). Suppose ˛ is an isometry of

a neutral plane P , A and B are fixed points of ˛, and C 62  !AB. If ˛.C/ 2 qy !
ABC (that

is, ˛.C/ is on the C-side of
 !
AB), then ˛ D {.

Proof. By Theorem NEUT.23 every point on
 !
AB is a fixed point for ˛.

(Case 1: ˛.C/ D C.) By Theorem NEUT.24, ˛ D {.
(Case 2: ˛.C/ ¤ C and the line

 ��!
C˛.C/ intersects

 !
AB at some point X.) Then by

Theorem NEUT.15(5) ˛.
px qy

XC/ D px qy

˛.X/˛.C/ D px qy

X˛.C/. By Definition NEUT.3(B)
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px qy

XC Š px qy

X˛.C/, and by definition ˛.C/ 2 qy!
XC. Then by Property R.4 of Defini-

tion NEUT.2 ˛.C/ D C and by Theorem NEUT.24 ˛ D {.
(Case 3: ˛.C/ ¤ C and the line

 ��!
C˛.C/ does not intersect

 !
AB.) Then

 ��!
C˛.C/ k !

AB. In particular, the line
 !
AC does not contain ˛.C/. By Property R.5 of Defini-

tion NEUT.2, †CA˛.C/ has a line L of symmetry, and there exists a reflection RL

such that RL.˛.C// 2 qy!
AC.

If B 2 L, then
 !
AB D L and then C and ˛.C/ would be on opposite sides of

 !
AB

which is false by hypothesis; therefore B 62 L.

By Definition NEUT.3(A) � D RL ı ˛ is an isometry of P . By Defini-

tion NEUT.1(A) �.A/ D RL.˛.A// D RL.A/ D A. By Theorem NEUT.15(5)

�.
px qy

AC/ D px qy

�.A/�.C/ D px qy

A�.C/. By Definition NEUT.3(B) (congruence)
px qy

AC Š
px qy

A�.C/. By Property R.4 of Definition NEUT.2, C D �.C/, i.e., .RL ı ˛/.C/ D C.

Thus RL maps ˛.C/ to C, so that
 ��!
C˛.C/ is a fixed line for RL.

Now choose A0 ¤ A to be any other point on
 !
AB. The same argument shows that

there is another line L0 such that RL0 maps ˛.C/ to C, so that
 ��!
C˛.C/ is a fixed line

for RL0 .

Thus we have two distinct lines L and L0, such that both RL.˛.C// D C and

RL0.˛.C// D C. By Lemma NEUT.34(B) L D L0, so that the lines are not distinct,

but the same line, a contradiction. Thus case 3 is ruled out, and ˛ D {. ut
Theorem NEUT.36 (Side-preserving isometry (B)). Let A, B, C, and D be points

on the neutral plane P such that C and D are on the same side of
 !
AB and †BAC Š

†BAD. Then
px!
AC D px!

AD.

Proof. By Definition NEUT.3 there exists an isometry ˛ of P such that ˛.†BAC/ D
†BAD. Statements (1) through (13) of Theorem NEUT.15 are true for ˛. We will

use these without further reference in this proof.

Then †BAD D ˛.†BAC/ D †˛.B/˛.A/˛.C/, and by Theorem PSH.33

˛.A/ D A. By Definition PSH.29 there are exactly two possibilities: ˛.B/ 2 px!
AB or

˛.B/ 2 px!
AD.

(Case 1: ˛.B/ 2 px!
AB.) In this case, ˛.C/ 2 px!

AD. Since ˛ is an isometry, by

Definition NEUT.3,
px qy

AB Š px qy

A˛.B/ and by Property R.4 of Definition NEUT.2,

˛.B/ D B. Thus A and B are fixed points for ˛. By hypothesis ˛.C/ is on the

C-side of
 !
AB, so by Theorem NEUT.35 ˛ D { and C D ˛.C/ 2 px!

AD. Therefore
px!
AC D px!

AD, again using Theorem PSH.16.
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(Case 2: ˛.B/ 2 px!
AD.) In this case, ˛.C/ 2 px!

AB, so that by Theorem PSH.16,

˛.
px!
AB/ D px !

˛.A/˛.B/ D px !
A˛.B/ D px!

AD and

˛.
px!
AC/ D px !

˛.A/˛.C/ D px !
A˛.C/ D px!

AB.

By Property R.5 of Definition NEUT.2 there exists an angle reflection RM

and line M of symmetry for †BAC, so that RM.A/ D A, RM.
px!
AB/ D px!

AC and

RM.
px!
AC/ D px!

AB. The mapping ˛ ı RM is an isometry (by Definition NEUT.3)

which maps †BAC onto †BAD, such that

.˛ ıRM/.
px!
AB/ D ˛.px!AC/ D px!

AB and

.˛ ıRM/.
px!
AC/ D ˛.px!AB/ D px!

AD.

Thus .˛ıRM/.B/ 2 px!
AB, and we may apply Case 1 to conclude that ˛ıRM D {

and C D ˛ ıRM.C/ 2 px!
AD. Therefore

px!
AC D px!

AD. ut

Theorem NEUT.37 (An isometry with two fixed points is the identity or a

reflection). Let ˛ be an isometry of the neutral plane such that A and B are distinct

fixed points of ˛; then either ˛ D { or ˛ D R !
AB

.

Proof. (I) If ˛ has a fixed point C not belonging to
 !
AB, then by Theorem NEUT.24

˛ D {.
(II) If ˛ has no fixed point off of

 !
AB, let X be any member of P n  !AB,

then by Theorem NEUT.15(8) ˛.†BAX/ D †˛.B/˛.A/˛.X/ D †BA˛.X/.

By Definition NEUT.3(B) †BAX Š †BA˛.X/. By the contrapositive of

Theorem NEUT.35, X and ˛.X/ are on opposite sides of
 !
AB. Let R !

AB
be a

reflection over
 !
AB and define � D R !

AB
ı ˛. Then � is an isometry of P with

distinct fixed points A and B, and X and �.X/ are on the same side of
 !
AB; by

Theorem NEUT.35 � D {. By elementary mapping theory, ˛ D R !
AB

. ut
Theorem NEUT.38 (Isometry construction for angles). Let A, B, C, D, E, and

F be points on the neutral plane P such that A, B, and C are noncollinear, D, E,

and F are noncollinear, and †BAC Š †EDF. Then there exists an isometry ' of P
such that '.

px!
AB/ D px!

DE and '.
px!
AC/ D px!

DF.

Proof. By Definition NEUT.3(B) there exists an isometry ˛ of P such that

˛.†BAC/ D †EDF. By Theorem NEUT.15(8), ˛.†BAC/ D †˛.B/˛.A/˛.C/
so that †˛.B/˛.A/˛.C/ D †EDF. By Theorem PSH.33 ˛.A/ D D so

†˛.B/D˛.C/ D †EDF. By Definition PSH.29 there are two cases.



180 8 Neutral Geometry (NEUT)

(Case 1: ˛.B/ 2 qy!
DE and ˛.C/ 2 qy!

DF.) Let ' D ˛. Then by Theorem PSH.16,

'.
px!
AB/ D ˛.px!AB/ D px !

˛.A/˛.B/ D px !
D˛.B/ D px!

DE

and

'.
px!
AC/ D ˛.px!AC/ D px !

˛.A/˛.C/ D px !
D˛.C/ D px!

DF.

(Case 2: ˛.B/ 2 qy!
DF and ˛.C/ 2 qy!

DE.) By Theorem PSH.16 we have
px !
D˛.B/ D

px!
DF and

px !
D˛.C/ D px!

DE. Then let M be the line of symmetry of †EDF, and RM

its angle reflection, so that D 2 M, RM.
px!
DE/ D px!

DF and RM.
px!
DF/ D px!

DE. Let

' D RM ı ˛. Then

'.
px!
AB/ D RM.˛.

px!
AB// D RM.

px !
˛.A/˛.B//

D RM.
px !
D˛.B/ D RM.

px!
DF/ D px!

DE,

and

'.
px!
AC/ D RM.˛.

px!
AC// D RM.

px !
˛.A/˛.C//

D RM.
px !
D˛.C/ D RM.

px!
DE/ D px!

DF. ut

Theorem NEUT.39 (Line of symmetry angle criterion). Let A, B, and C be

noncollinear points on the neutral plane P , and let D be a member of ins†BAC.

Then
 !
AD is the line of symmetry of †BAC (so that

px!
AD is the bisecting ray) iff

†BAD Š †CAD.

Proof. (I) If
 !
AD D M is the line of symmetry of †BAC, then by Theo-

rem NEUT.20(E) †BAD Š †CAD.

(II) Conversely, let †BAD Š †CAD. By Theorem NEUT.38 there exists an

isometry ' mapping†BAD to†CAD such that '.
px!
AD/ D px!

AD and '.
px!
AB/ D px!

AC.

A is a fixed point for ' and by Theorem NEUT.15(3)
px!
AD D '.

px!
AD/ D

px !
'.A/'.D/ D px !

A'.D/ so by Theorem PSH.24 '.D/ 2 qy!
AD. Now '.

px qy

AD/ D
px qy

'.A/'.D/ D px qy

A'.D/ so by Definition NEUT.3
px qy

AD Š px qy

A'.D/. By Property R.4

of Definition NEUT.2 '.D/ D D so D is a fixed point for '.

Let M be the line of symmetry of †BAC. By Definition NEUT.3,

RM.
px!
AB/ D px!

AC and RM.
px!
AC/ D px!

AB.

Let � D RM ı ', which is an isometry by Definition NEUT.3. Note that

�.A/ D A because A is a fixed point for both RM and '. Now '.B/ 2 qy!
AC

and RM.
qy!
AC/ � qy!

AB, so �.B/ D RM.'.B// 2 qy!
AB. By Theorem NEUT.15(5)

�.
px qy

AB/ D px qy

�.A/�.B/ D px qy

A�.B/ so that by Definition NEUT.3(B)
px qy

A�.B/ Š px qy

AB

and by Property R.4 of Definition NEUT.2, �.B/ D B.
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Recapitulating, we see that A and B are both fixed points for � , and �.C/ D
RM.'.C// 2 RM.

qy!
AB/ � qy!

AC so that �.C/ and C are on the same side of

the line
 !
AB. Then by Theorem NEUT.35, � D {, and by elementary mapping

theory, ' D RM.

Since D is a fixed point for RM, by Remark NEUT.1.1 D 2 M so by

Exercise I.2
 !
AD DM. ut

Theorem NEUT.40. (A) (Pons Asinorum or Isosceles Triangle theorem)5 If A,

B, and C are noncollinear points on the neutral plane P such that
px qy

AB Š px qy

AC,

then †ABC Š †ACB.

(B) (Converse of Pons Asinorum) If A, B, and C are noncollinear points on the

neutral plane P such that †ABC Š †ACB, then
px qy

AB Š px qy

AC.

Proof. In this proof we will apply Theorem NEUT.15 without reference.

(A) Let M be the line of symmetry of †BAC, so that A 2 M, RM.
px!
AB/ D px!

AC,

and RM.B/ 2 qy!
AC. Since RM.

px qy

AB/ D px qy

A.RM.B//,
px qy

AB Š px qy

A.RM.B//. Since
px qy

AB Š px qy

A.RM.B// and
px qy

AB Š px qy

AC,
px qy

A.RM.B// Š px qy

AC. By Property R.4 of

Definition NEUT.2 RM.B/ D C so by Definition NEUT.1(C), RM.C/ D B.

Therefore RM.†ABC/ D †.RM.A//.RM.B//.RM.C// D †ACB, and by

Definition NEUT.3(B), †ABC Š †ACB.

(B) By Theorem NEUT.38 there exists an isometry ' of P such that '.†ABC/ D
†ACB,

'.
px!
BA/ D px!

CA (1) and '.
px!
BC/ D px!

CB. (2)

Then '.†ABC/ D †'.A/'.B/'.C/ D †ACB, so by Theorem PSH.32

'.B/ D C. (3)

Combining (1) and (3),
px!
CA D '.

px!
BA/ D px !

'.B/'.A/ D px !
C'.A/. By Theo-

rem PSH.24, '.A/ 2 qy!
CA.

Likewise, combining (2) and (3),
px!
CB D '.

px!
BC/ D px !

'.B/'.C/ D px !
C'.C/

so that by Theorem PSH.24 '.C/ 2 qy!
CB. Then '.

px qy

CB/ D px qy

'.C/'.B/ D
px qy

'.C/C so that by Definition NEUT.3
px qy

CB Š px qy

C'.C/. By Property R.4 of

Definition NEUT.2

'.C/ D B. (4)

5Literally, bridge for donkeys in Latin. This term has come to mean any problem that severely
tests the ability of a person, such as Euclid’s 5th postulate. The name may have come from the
bridgelike appearance of Euclid’s figure, including the construction lines, used in his complicated
proof of this theorem.
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Now †ABC Š †ACB Š '.†ACB/ D †'.A/'.C/'.B/ D †'.A/BC, so

that by Theorem NEUT.14 (congruence is an equivalence relation) †ABC Š
†'.A/BC. A and '.A/ are on the same side of

 !
BC because '.A/ 2 qy!

CA. Then

by Theorem NEUT.36,
px!
BA D px !

B'.A/ and by Theorem PSH.24 '.A/ 2 qy!
BA.

Hence '.A/ 2 qy!
BA\ qy!

CA D fAg and '.A/ D A. Combining this with (3)

above, '.
px qy

AB/ D px qy

'.A/'.B/ D px qy

'.A/C D px qy

AC. By Definition NEUT.3(B),
px qy

AB Š px qy

AC. ut

8.9 Vertical and supplementary angles; more
perpendicularity

Definition NEUT.41. Let D and E be angles on the neutral plane P .

(A) D and E are vertical to each other iff there exist points A, B, C, B0, and C0

such that A, B, and C are noncollinear, B A B0, C A C0, D D †BAC and

E D †B0AC0.
(B) D and E are supplementary angles iff there exist points A, B, C, and D on P

such that B A C, D 2 .P n  !AB/, D D †BAD and E D †CAD. We may also

say that the angles are supplemental or that each is a supplement of the other.

(C) An angle on the neutral plane P is right iff it is congruent to a supplement

of itself. That is to say, if A, O, and A0 are collinear points on the plane, and

C 62  !AA0, then †AOC (†A0OC) is a right angle iff †AOC Š †A0OC.

Theorem NEUT.42 (Vertical angles). Let D and E be angles on the neutral

plane P . If D and E are vertical to each other, then D Š E .

Proof. By Definition NEUT.41 there exist points A, B, C, B0, and C0 such

that A, B, and C are noncollinear, B A B0, C A C0, D D †BAC and E D
†B0AC0. By Theorem NEUT.26 †B0AC has a unique line M of symmetry and

RM.
px!
AC/ D px!

AB0. By Exercise NEUT.10 M is the line of symmetry of†BAC0. Then

RM.
px!
AB/ D px!

AC0.
By Definition PSH.29 †BAC D px!

AB[ px!
AC. Hence RM.†BAC/ D †B0AC0 and

so †BAC Š †B0AC0. ut
Remark NEUT.42.1. If E, F, and O are noncollinear points on the neutral plane

P and if E0 and F0 are points on P such that E0 O E and F O F0, then each of

the angles †EOF0 or †FOE0 is a supplement of †EOF. By Theorem NEUT.42,

†EOF0 Š †FOE0, since they are vertical angles.
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Theorem NEUT.43 (Supplements of congruent angles are congruent). Let C,

G, C0, and G0 be angles on the neutral plane P such that C and C0 are supplements

of each other and G and G0 are supplements of each other. If C Š G, then C0 Š G0.

Proof. By Definition NEUT.41(B) there exist points A, B, B0, C, E, F, F0 and G

on P such that B C B0, A …  !BC, F G F0, E …  !FG, C D †BCA, G D †FGE,

C0 D †B0CA, and G0 D †F0GE. Since †BCA Š †FGE, by Theorem NEUT.38

there exists an isometry ˛ of P such that ˛.†BCA/ D †FGE, ˛.
px!
CB/ D px!

GF,

˛.
px!
CA/ D px!

GE, and ˛.
 !
CB/ D  !GF. By Theorem NEUT.15(1) and (3) ˛.

px!
CB/ D

px !
˛.C/˛.B/, ˛.

px!
CA/ D px !

˛.C/˛.A/, and ˛.
 !
CB/ D �����!˛.C/˛.B/.

By Theorem PSH.24 ˛.C/ D G, ˛.B/ 2 qy!
GF, ˛.B0/ 2 qy!

GF0, and ˛.A/ 2 qy!
GE.

By Theorem PSH.15
 !
GF is the union of the disjoint sets

qy!
GF, fGg, and

qy!
GF0. Since

B0 C B and the fact that ˛.C/ D G, ˛.B/ G ˛.B0/. By Theorem PSH.16
px !
G˛.B/ D

px!
GF, and

px !
G˛.B0/ D px!

GF0. Thus

˛.†B0CA/ D †˛.B0/˛.C/˛.A/ D †˛.B0/G˛.A/ D px !
G˛.A/[ px !

G˛.B0/
D px!

GE[ px!
GF0 D †F0GE (cf Definition PSH.29.)

By Definition NEUT.3 C0 D †B0CA Š †F0GE D G0. ut
We now deal with perpendicularity from the point of view of angles. The next

theorem is an extension of Theorem NEUT.32 to include the concept of right angle.

Theorem NEUT.44. Suppose M and L are distinct lines on a neutral plane. Then

the following statements are equivalent.

(A) There exists a point O such that L\M D fOg; if Q 2 LnfOg and P 2MnfOg,
then †POQ is a right angle.

(B) There exists a point O such that L\M D fOg; if Q 2 LnfOg and P 2MnfOg,
and P O P0 and Q O Q0, then all the angles †POQ, †P0OQ, †P0OQ0, and

†POQ0 are congruent, and are all right angles.

(C) M is a line of symmetry for L.

(D) L is a line of symmetry for M.

(E) L is a fixed line for RM which is not M.

(F) M is a fixed line for RL which is not L.

(G) M ? L.

Proof. First, note that if (B) is true then (A) is true.
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By Theorem NEUT.32, statements (C) through (G) are equivalent. We will

show that (E) implies both (B) and (A), and conversely, that statement (A)

implies statement (D). First note that if any of (C) through (G) is true, then by

Theorem NEUT.22(F) L intersects M at some point O.

Let Q 2 L n fOg and P 2M n fOg, and P O P0 and Q O Q0.

(I) Assuming (E) is true, RM is a reflection which has L as a fixed line. Then

RM.
px!
OQ/ D px!

OQ0 and RM.†POQ/ D †POQ0 so that †POQ Š †POQ0, its

supplement. Therefore by Definition NEUT.41(C) both †POQ and †POQ0 are

right angles. By Theorem NEUT.42 †P0OQ0 Š †POQ Š †POQ0 Š †P0OQ

so all the angles are right; hence both (A) and (B) are true.

(II) To prove the converse it suffices to prove that (A) implies (D). If (A) is

true, then †POQ Š †P0OQ or †POQ Š †POQ0. If the latter is true,

by Definition NEUT.41(A), †P0OQ is vertical to †POQ0 and hence by

Theorem NEUT.42 and the transitivity of congruence (cf Theorem NEUT.14),

†P0OQ Š †POQ0 Š †POQ.

In either case, there exists an isometry ˛ mapping P onto P such that

˛.†POQ/ D †˛.P/˛.O/˛.Q/ D †P0OQ.

Here we have used Theorem PSH.33 to show that ˛.O/ D O.

Either ˛.
px!
OQ/ D px!

OQ or ˛.
px!
OQ/ D px!

OP0. If the latter holds, we may let N be

the line of symmetry (cf Property R.5 of Definition NEUT.2) of †P0OQ; then

the mapping ˇ D RN ı ˛ is an isometry that satisfies ˇ.
px!
OQ/ D px!

OQ. Thus

there is no loss of generality to assume that ˛.
px!
OQ/ D px!

OQ and ˛.
px!
OP/ D px!

OP0.
Then

px!
OQ D ˛.

px!
OQ/ D px !

˛.O/˛.Q// D px !
O˛.Q/ so by Theorem PSH.24

˛.Q/ 2 qy!
OQ. Also, ˛.

px qy

OQ/ D px qy

˛.O/˛.Q/ D px qy

O˛.Q/ so that
px qy

OQ Š px qy

O˛.Q/

and by Property R.4 of Definition NEUT.2, ˛.Q/ D Q.

Therefore both Q and O are fixed points of ˛. By Theorem NEUT.37, since

˛ ¤ {, ˛ D R !
OQ
D RL. Since P, O, and P0 are members of M, L ¤M, and

RL.
px!
OP/ D ˛.px!OP/ D px!

OP0, RL.M/ DM and L is a line of symmetry for M,

so that (D) holds. ut
Corollary NEUT.44.1. Let L and M be lines on the neutral plane P and let ˛ be

an isometry of P . Then L ?M iff ˛.L/ ? ˛.M/.
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Proof. If L ?M by Theorem NEUT.44, there exists a point O such that L\M D
fOg; let Q 2 L n fOg and P 2M n fOg, and let Q O Q0; then †POQ Š †POQ0.
By Theorem NEUT.13 ˛.†POQ/ Š ˛.†POQ0/ and by Theorem NEUT.15(8)

˛.†POQ/ Š †˛.P/˛.O/˛.Q/ and ˛.†POQ0/ Š †˛.P/˛.O/˛.Q0/,
Therefore

†˛.P/˛.O/˛.Q/ Š ˛.†POQ/ Š ˛.†POQ0/ Š †˛.P/˛.O/˛.Q0/.
Now ˛.P/ 2 ˛.M/, ˛.Q/ and ˛.Q0/ 2 ˛.L/, and f˛.O/g D ˛.M/ \ ˛.L/;
therefore by Theorem NEUT.44 ˛.L/ ? ˛.M/. The converse is proved by a similar

proof, applying ˛�1 (an isometry by Theorem NEUT.11) to ˛.L/ ? ˛.M/. ut
Corollary NEUT.44.2. Let †BAC Š †EDF; then †BAC is right iff †EDF is

right.

Proof. By Definition NEUT.3(B) †BAC Š †EDF means that there exists an

isometry ˛ such that ˛.†BAC/ D †EDF, and hence ˛ maps the set f !AB;
 !
ACg

onto the set f !DE;
 !
DFg. By Theorem NEUT.44 †BAC is a right angle iff

 !
AB ?  !AC,

which by Corollary NEUT.44.1 is true iff
 !
DE ?  !DF which by Theorem NEUT.44

is true iff †EDF is right. ut

Theorem NEUT.45 (Lines of symmetry of supplementary angles are perpen-

dicular.). Let P be a neutral plane, O, P, and Q noncollinear points on P , P0 a

point such that P0 O P; let M be the line of symmetry of †POQ and L be the line

of symmetry of †P0OQ. Then L ?M.

Fig. 8.2 For
Theorem NEUT.45; dashed
lines are the lines of
symmetry.

POP

Q
L

M

Proof. See Figure 8.2 for a visualization. Let Q0 be a point such that Q0 O Q.

By Exercise NEUT.10 M is the line of symmetry of †P0OQ0 and L is the line

of symmetry of †POQ0. By Theorem NEUT.20 and Corollary PSH.39.2, P and

Q are on opposite sides of M and P0 and Q are on opposite sides of L. By

Theorem PSH.12 (plane separation) there exist points R and S such that
qy px

PQ\M D
fRg and

qy px

P0Q\L D fSg.
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By Theorem NEUT.20 and Definition NEUT.1(A), RM.
px!
OQ/ D px!

OP and

RM.
px!
OP0/ D px!

OQ0. By the elementary theory of mappings, Theorem NEUT.15(8),

and the definition of an angle (cf Definition PSH.29),

RM.†P0OQ/ D RM.
px!
OP0 [ px!

OQ/ D RM.
px!
OP0/ [RM.

px!
OQ/

D px!
OQ0 [ px!

OP D †Q0OP.

Since L is the line of symmetry of†P0OQ, by Theorem NEUT.39†P0OS Š †QOS.

Then

RM.
px!
OS/ D px !

.RM.O//.RM.S// D px !
O.RM.S//.

By Definition PSH.29, Definition NEUT.1(A), and the elementary theory of map-

pings,

RM.†QOS/ D RM.
px!
OQ[ px!

OS/ D RM.
px!
OQ/ [RM.

px!
OS/

D px!
OP[ px !

O.RM.S// D †PO.RM.S//, and

RM.†P0OS/ D RM.
px!
OP0 [ px!

OS/ D RM.
px!
OP0/ [RM.

px!
OS/

D px!
OQ0[ px !

O.RM.S// D †Q0O.RM.S//.

Since †QOS Š †P0OS, by Theorem NEUT.13 RM.†QOS/ Š RM.†P0OS/.

Combining this with the last two equalities, †PO.RM.S// Š †Q0O.RM.S//.

By Theorem NEUT.39,
px !
O.RM.S// is the line of symmetry of †POQ0, which we

know already to be L. Therefore RM.L/ D L, so by Theorem NEUT.44 (or

NEUT.32) L is a fixed line for RM and L ?M. ut

Theorem NEUT.46 (A line has a unique perpendicular through each of its

points). Let M be a line on the neutral plane P and let O be any point on M.

(A) There exists a line L containing O which is a line of symmetry for M, and

L ?M (i.e., L is a fixed line for RM).

(B) M can have at most one line of symmetry L containing the point O.

Proof. (A) Let P 2 PnM. If RM.P/ is collinear with O and P, then RM.P/ O P,

and O 2  ����!PRM.P/. By Theorem NEUT.22 this is a fixed line for RM. Hence

by Theorem NEUT.44 L ?M.

Otherwise, let Q D RM.P/, and let P0 and Q0 be points such

that P O P0 and Q O Q0. M is the line of symmetry of †POQ since

RM.P/ D Q and RM.
px!
OP/ D px!

OQ by Theorem NEUT.15(3). By Property

R.5 of Definition NEUT.2 there exists a line of symmetry L for †POQ0.
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By Theorem NEUT.45 since †POQ0 and †POQ are supplementary, L ?M.

By Theorem NEUT.44 each of L and M is a line of symmetry of the other.6

(B) By Theorem NEUT.44 (or for that matter Theorem NEUT.32) a line L (not

equal to M) is a line of symmetry for M iff it is a fixed line for RM, which

is true iff L ?M. By Theorem NEUT.22(D) there can be only one such line

through any point O 2M. ut
Corollary NEUT.46.1. If O, P, and Q are noncollinear points on the neutral plane

P , there exists a point R on the Q side of
 !
OP such that †ROP is right.

Proof. By Theorem NEUT.46 there exists a unique line L such that L\ !OP D fOg
and L ?  !OP. By Exercise IB.17 there exists a point R on L which is on the Q side

of
 !
OP. By Theorem NEUT.44, †POR is a right angle. ut

Theorem NEUT.47. Let P be a neutral plane, and let L be a line on P .

(A) If two distinct lines M and N are perpendicular to L, then they are parallel.

(B) Given a point A 2 P there can be only one line through A which is

perpendicular to L.

Proof. (A) By Theorem NEUT.44 (or Theorem NEUT.32) both M and N are fixed

lines for the reflection RL. By Theorem NEUT.22, if these lines are distinct,

they are parallel.

(B) If there are two lines M and N containing A, both perpendicular to L, by part

(A) they are parallel and therefore cannot intersect, a contradiction. ut

Theorem NEUT.48. Let M be a line on a neutral plane P , and let P be any

member of P .

(A) There exists a unique line L such that P 2 L and M ? L. If P 62 M, L D ������!
P.RM.P//.

(B) (Property PE) For every point Q belonging to P nM, there exists a line L
through Q which is parallel to M.

Proof. (A) If P 2M, this is Theorem NEUT.46. If P 62M, by Theorem NEUT.22,

L D  ����!
PRM.P/ is a fixed line for RM. Hence by Theorem NEUT.44,

6If Axiom PS were in force, we could replace this paragraph by the observation that
 ����!
PRM.P/ is

a fixed line for RM that does not contain O; then by Theorem CAP.5, there exists a unique fixed
line of RM through O.
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L is perpendicular to M. The uniqueness follows immediately from Theo-

rem NEUT.47(B).

(B) By part (A) there exists a line N such that N ? M; then again by part (A)

there exists a line L containing Q which is perpendicular to N . Since Q 62M,

L ¤M. By Theorem NEUT.47 L kM. ut
Remark NEUT.49. (A) From Theorem NEUT.48(B), it might be tempting to

think that L is the only line through Q which is parallel to M. But this is not

the case; using the notation of the proof of part (B), the possibility exists that

there could be a different line L0 through Q which is also parallel to M. What

is ruled out is that L0 could be perpendicular to N . We still have ambiguity as

to parallelism, because we have not invoked either Axiom PS or PW.

(B) It is a big step forward to eliminate ambiguity about perpendicularity (which is

defined entirely by our notion of reflection), by proving that there can be only

one line perpendicular to another at a point. We will soon confront many of

the standard congruence theorems of geometry, and a well-defined notion of

perpendicularity will be essential.

From the basic properties of mirror mappings and the first five properties of

Definition NEUT.2, we have proved that reflections (and isometries) behave in

respectably decent ways.

In Theorem NEUT.24 we proved that an isometry having three noncollinear

fixed points is the identity; in Theorem NEUT.26 that angle reflections are

unique; Theorem NEUT.36 showed that if an isometry maps an angle †AOB

to an angle †AOC, where B and C are on the same side of
 !
AO, then

px!
OB D px!

OC.

We have now added to this list a usable notion of perpendicularity, and

proceed forthwith to deal with midpoints.

8.10 Midpoints of segments

Before this point we have not invoked Property R.6 of Definition NEUT.2, stating

the existence of midpoints of segments. We now do so, and this property will remain

in force throughout the rest of the chapter.
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Theorem NEUT.50. If A and B are distinct points on the neutral plane P , then
px qy

AB

has a unique midpoint. Thus it is legitimate to speak of THE midpoint of a segment.

Proof. Existence: by Property R.6 of Definition NEUT.2, there exists a midpoint

of
px qy

AB.

Uniqueness: suppose there are two midpoints M and N for
px qy

AB. By Defini-

tion NEUT.3(C)
px qy

MA Š px qy

MB. Using Theorem NEUT.48 let L be the line on P such

that M 2 L and L ?  !AB; then fMg D L \  !AB. By Theorem NEUT.15(5) and

Definition NEUT.1(A), RL.
px qy

AM/ D px qy

.RL.A//.RL.M// D
px qy

.RL.A//M so that by

Definition NEUT.3(B),
px qy

MA Š px qy

M.RL.A//. By Definition NEUT.1(B), A and RL.A/

are on opposite sides of L so that A M RL.A/. By Theorem PSH.13, since A M B,

RL.A/ 2 qy!
MB. Since

px qy

M.RL.A// Š px qy

MA and
px qy

MA Š px qy

MB, by Theorem NEUT.14
px qy

M.RL.A// Š px qy

MB. By Property R.4 of Definition NEUT.2, RL.A/ D B.

We have already seen that fMg D L\ !AB. By assumption, N is also a midpoint of
px qy

AB, so by Definition NEUT.3(C),
px qy

AN Š px qy

BN and A N B. By Lemma NEUT.34(A),

N D M. ut

Definition NEUT.51. Let A and B be distinct points on the neutral plane P and let

M be the midpoint of
px qy

AB. The perpendicular bisector of
px qy

AB is the line M such

that M 2M and M ?  !AB.

Theorem NEUT.52. Let A and B be distinct points on the neutral plane P , and let

M be the midpoint of
px qy

AB. Then

(A) there exists a unique line M containing M which is perpendicular to
 !
AB (the

perpendicular bisector of
px qy

AB);

(B) RM.A/ D B and RM.B/ D A;

(C) RM.
px qy

AB/ D px qy

BA, so that M is a line of symmetry of
px qy

AB; and

(D) M is the unique line of symmetry of
px qy

AB.

Proof. (A) follows immediately from Theorem NEUT.48. Then by Theorem

NEUT.44,
 !
AB is a fixed line for RM, and M is a line of symmetry for

 !
AB.

Then RM.A/ 2  !AB, and RM.A/ is on the opposite side of M from A, that is,

A M RM.A/, and since A M B, RM.A/ 2 qy!
MB. Also, by Theorem NEUT.15,

RM.
px qy

AM/ D px qy

.RM.A//.RM.M// D px qy

.RM.A//M

so that by Definition NEUT.3(C)
px qy

BM Š px qy

AM Š px qy

.RM.A//M. By Property R.4 of

Definition NEUT.2 (linear scaling), RM.A/ D B, and by Definition NEUT.1(C)

RM.B/ D A. This proves part (B).
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By Theorem NEUT.15(5),

RM.
px qy

AB/ D px qy

.RM.A//.RM.B// D px qy

AB

so that
px qy

AB Š px qy

BA, proving (C).

To prove (D), suppose that L is a line of symmetry for
px qy

AB; then
px qy

AB 6� L, and

RL.
px qy

AB/ D px qy

AB. By Remark NEUT.16 RL.A/ D B, and by Definition NEUT.1(B)

A and B are on opposite sides of L; by Axiom PSA there exists a point D 2 qy px

AB such

that D 2 L; then

RL.
px qy

AD/ D px qy

.RL.A//.RL.D// D px qy

BD

so that
px qy

BD Š px qy

AD, and D is a midpoint of
px qy

AB. By Theorem NEUT.50, there is only

one midpoint of
px qy

AB, so that D D M. Since L ?  !AB and M ?  !AB and both L
and M contain the point M, by Theorem NEUT.48, L DM, which is therefore the

unique line of symmetry for
px qy

AB, proving part (D). ut
Theorem NEUT.53. Let A and B be distinct points on the neutral plane P , and let

M be the perpendicular bisector of
px qy

AB. Then for every C 2M,
px qy

AC Š px qy

BC.

Proof. If C 2M, C is a fixed point for RM; by Theorem NEUT.52(B), RM.A/ D
B; then by Theorem NEUT.15(5),

RM.
px qy

AC/ D px qy

.RM.A//.RM.C// D px qy

BC;

thus
px qy

AC Š px qy

BC, proving the theorem. ut
Theorem NEUT.54. Let M be a line on the neutral plane P and let Q be a member

of P nM; then M is the perpendicular bisector of
px qy

Q.RM.Q//.

Proof. By Theorem NEUT.22(A),
 ������!
Q.RM.Q// is a fixed line for RM. By part (E)

of the same theorem,
 ������!
Q.RM.Q// intersects M at exactly one point D, and D is the

midpoint of
px qy

Q.RM.Q//. By Theorem NEUT.32 (or NEUT.44)
 ������!
Q.RM.Q// ?M,

so M is its perpendicular bisector. ut
Theorem NEUT.55. Let A, B, and C be noncollinear points on the neutral plane P
such that

px qy

AB Š px qy

AC, and let M be the line of symmetry of†BAC. Then M is the line

of symmetry of
px qy

BC. Furthermore, there exists a point D such that fDg DM \ px qy

BC,

and D is the midpoint of
px qy

BC.

Proof. By Theorem NEUT.20 A 2 M and RM.
qy!
AB/ D qy!

AC, so RM.B/ 2
qy!
AC. Since

px qy

AB Š px qy

AC, by Property R.4 of Definition NEUT.2, RM.B/ D C.

By Theorem NEUT.22(A)
 ������!
A.RM.B// D  !BC is a fixed line for RM, and by

Theorem NEUT.32 (or NEUT.44)
 !
BC ?M.
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By Theorem NEUT.20 there exists a point D such that
qy px

BRM.B/\M D fDg
and (by part (E)(2))

px qy

BD Š px qy

CD. Therefore, by Definition NEUT.51, M is the

perpendicular bisector and the line of symmetry of
px qy

BC. ut

Theorem NEUT.56. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B, C ¤ D, and
px qy

AB Š px qy

CD. Then there exists an isometry ˛ of P such that

˛.
px qy

AB/ D px qy

CD, ˛.A/ D C, and ˛.B/ D D.

Proof. By Definition NEUT.3(B) there exists an isometry 
 of P such that 
.
px qy

AB/ D
px qy

CD. By Remark NEUT.16, f
.A/; 
.B/g D fC;Dg. Hence either 
.A/ D C and


.B/ D D or 
.A/ D D and 
.B/ D C. In the first case we take ˛ D 
. In the

second case using Theorem NEUT.52 let L be the line of symmetry of
px qy

CD and

take ˛ D RM ı 
. Since ˛ is an isometry of P (cf Theorem NEUT.11) and since

˛.A/ D C and ˛.B/ D D, the theorem is proved. ut
Theorem NEUT.57. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B, C ¤ D, and
px qy

AB Š px qy

CD.

(A) If E and F are points such that A E B, F 2 qy!
CD and

px qy

AE Š px qy

CF, then C F D.

(B) If G and H are points such that A B G, H 2 qy!
CD and

px qy

AG Š px qy

CH, then C D H.

Proof. Since
px qy

AB Š px qy

CD, by Theorem NEUT.56 there exists an isometry ˛ of P
such that ˛.

px qy

AB/ D px qy

CD, ˛.A/ D C, and ˛.B/ D D. By Definition NEUT.1(D),

˛.A/ ˛.E/ ˛.B/ and ˛.A/ ˛.B/ ˛.G/, so that C ˛.E/ D and C D ˛.G/. By

Theorem NEUT.15(5) ˛.
px qy

AE/ D px qy

˛.A/˛.E/ D px qy

C˛.E/ and ˛.
px qy

AG/ D px qy

˛.A/˛.G/ D
px qy

C˛.G/. By Definition IB.4 ˛.E/ 2 qy!
CD and ˛.G/ 2 qy!

CD. By Property R.4 of

Definition NEUT.2, ˛.E/ D F and ˛.G/ D H. Thus C F D and C D H. ut
Theorem NEUT.58. Let A, B, C, D, E, and F be points on the neutral plane P such

that A, B, and C are noncollinear, D, E, and F are noncollinear, and
px qy

AB Š px qy

DE. Then

there exists an isometry ˛ of P such that ˛.
px qy

AB/ D px qy

DE, ˛.A/ D D, ˛.B/ D E, and

˛.C/ 2 qy !
DEF.

Proof. By Theorem NEUT.56 there exists an isometry ' of P such that '.
px qy

AB/ D
px qy

DE, '.A/ D D, and '.B/ D E. If '.C/ 2 qy !
DEF, then we take ˛ D '. If '.C/

does not belong to the F side of
 !
DE, then since '.C/ does not belong to

 !
DE, it

belongs to .the side of
 !
DE opposite the F side/. In this case we take ˛ D R !

DE
ı '.

By Theorem NEUT.11 ˛ is an isometry of P and furthermore ˛.C/ 2 qy !
DEF. ut
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Definition NEUT.59. A kite is a quadrilateral with two distinct pairs of consecu-

tive edges that are congruent.

Theorem NEUT.60 (Kite). Let A, B, C, and D be points on the neutral plane P
such that

px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA is a quadrilateral (cf Definition PSH.31),
px qy

AB Š px qy

AD

and
px qy

BC Š px qy

DC. Then
 !
AC is the line of symmetry of†BAD,†BCD,

px qy

BD, andtuABCD.

Furthermore, †BAC Š †DAC, †BCA Š †DCA, †ABC Š †ADC, and4ABC Š
4ADC.

Fig. 8.3 Showing a kite. B

C

DA

L

Proof. See Figure 8.3. Using Theorem NEUT.26 let L be the line of symmetry

of †BAD and let L0 be the line of symmetry of †BCD. By Theorem NEUT.55

each of these lines is the line of symmetry of
px qy

BD, so L D L0 D  !AC and

RL.B/ D D. Furthermore, RL.†BAC/ D †DAC, RL.
px qy

AB/ D px qy

AD, RL.
px qy

CB/ D px qy

CD,

and RL.†ABC/ D †ADC. By Definition NEUT.3(B) †BAC Š †DAC, †BCA Š
†DCA, and†ABC Š †ADC. Moreover, RL.tuABCD/ D tuADCB D tuABCD. ut

8.11 Congruence of triangles and angles

Remark NEUT.61. Let P be a neutral plane. According to Definition NEUT.3(B),

two triangles4ABC and4DEF on P are congruent iff there exists an isometry ' of

P such that '.4ABC/ D 4DEF. This means, referring back to Definition IB.7, that

'.
px qy

AB[ px qy

BC[ px qy

CA/ D px qy

DE[ px qy

EF[ px qy

FD.

However, this equality simply means the set on the left side is equal to the set on

the right; it gives no information about which edge of 4ABC maps to which edge

of4DEF. We used this equality to prove Theorem NEUT.15(10).

Stating that there is an isometry ' mapping a triangle to another triangle implies

a pairing of the corners and of the edges of the respective triangles. That is to say,

the mapping ' maps each of the corners A, B, and C to one of the corners E, F, or

G. We express this by saying that if two triangles are congruent, then corresponding
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edges are congruent and the corresponding angles are congruent. Sometimes it is

necessary to specify which corners map to which corners.

If we choose the notation so that '.A/ D D, '.B/ D E, and '.C/ D F, then

'.†BAC/ D †EDF, '.†ABC/ D †DEF, and '.†ACB/ D †DFE,

so that

†BAC Š †EDF, †ABC Š †DEF, and †ACB Š †DFE

and

'.
px qy

AB/ D px qy

DE, '.
px qy

BC/ D px qy

EF, and '.
px qy

CA/ D px qy

FD.

Then
px qy

AB Š px qy

DE,
px qy

BC Š px qy

EF, and
px qy

CA Š px qy

FD.

In order to make the “congruence theorems” (NEUT.62, NEUT.64, and

NEUT.65) completely clear, we will express their conclusions not only in terms

of congruence but also in terms of specific corner pairings.

Theorem NEUT.62 (EEE congruence theorem for triangles). Let A, B, C, D,

E, and F be points on the neutral plane P such that A, B, and C are noncollinear

and D, E, and F are noncollinear,
px qy

AB Š px qy

DE,
px qy

AC Š px qy

DF, and
px qy

BC Š px qy

EF. Then

there exists an isometry ˛ such that ˛.4ABC/ D 4DEF, ˛.A/ D D, ˛.B/ D E,

and ˛.C/ D F. Thus 4ABC Š 4DEF, and corresponding angles are congruent.

(Corresponding edges are congruent by hypothesis).

Proof. By Theorem NEUT.58 there exists an isometry ˇ of P such that ˇ.
px qy

AB/ D
px qy

DE, ˇ.A/ D D, ˇ.B/ D E, and ˇ.C/ D F0, where F0 is a member of the side of
 !
DE

opposite
qy !
DEF (cf Definition IB.11).

Then by Theorem NEUT.15(5) ˇ.
px qy

AC/ D px qy

ˇ.A/ˇ.C/ D px qy

DF0 so by hypothesis and

Definition NEUT.3(B)
px qy

DF Š px qy

AC Š px qy

DF0. Likewise ˇ.
px qy

BC/ D px qy

ˇ.B/ˇ.C/ D px qy

EF0 so
px qy

EF Š px qy

BC Š px qy

EF0. Then by Theorem NEUT.60 (Kite)
 !
DE is the line of symmetry of

px qy

FF0, so that F D R !
DE
.F0/.

Let ˛ D R !
DE
ıˇ. Then ˛.A/ D D, ˛.B/ D E, and ˛.C/ D F. By hypothesis we

know that
px qy

AB Š px qy

DE,
px qy

AC Š px qy

DF, and
px qy

BC Š px qy

EF. By Theorem NEUT.15(8)

˛.†BAC/ D †˛.B/˛.A/˛.C/ D †EDF,

˛.†ABC/ D †˛.A/˛.B/˛.C/ D †DEF, and

˛.†ACB/ D †˛.A/˛.C/˛.B/ D †DFE, so that
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†BAC Š †EDF, †ABC Š †DEF, and †ACB Š †DFE.

Finally, by Theorem NEUT.15(10),

˛.4ABC/ D 4˛.A/˛.B/˛.C/ D 4DEF, and4ABC Š 4DEF. ut
Theorem NEUT.63. Let P be a neutral plane, A and B be distinct points on P , M

be the midpoint of
px qy

AB and Q be a member of P n !AB such that
px qy

AQ Š px qy

BQ. Then
 !
MQ

is the line of symmetry of †AQB and of
px qy

AB.

Proof. Since M is the midpoint of
px qy

AB, by Definition NEUT.3(C)
px qy

AM Š px qy

BM.

Moreover
px qy

MQ Š px qy

MQ. Since
px qy

AQ Š px qy

BQ, by Theorem NEUT.62 (EEE) †AMQ Š
†BMQ and †AQM Š †BQM (cf Remark NEUT.61). By Theorem NEUT.39

 !
MQ

is the line of symmetry of †AQB.

By Property B.3 of Definition IB.1 let Q0 be a point such that Q M Q0; by

Theorem NEUT.42 (vertical angles), since†AMQ Š †BMQ,†BMQ0 Š †AMQ Š
†BMQ Š †AMQ0. By Theorem NEUT.44 (parts (B) and (G))

 !
MQ ?  !AB. By

Theorem NEUT.52
 !
MQ is the line of symmetry of

px qy

AB. ut

Theorem NEUT.64 (Isometry construction for angles). Let A, B, C, D, E, and F

be points on the neutral plane P such that A, B, and C are noncollinear, D, E, and F

are noncollinear,
px qy

AB Š px qy

DE,
px qy

AC Š px qy

DF, and †BAC Š †EDF. Then there exists an

isometry ˛ such that ˛.4ABC/ D 4DEF, ˛.A/ D D, ˛.B/ D E, and ˛.C/ D F.

Thus4ABC Š 4DEF, and corresponding edges and angles are congruent.

Proof. By Theorem NEUT.58 there exists an isometry ˛ of P such that

˛.
px qy

AB/ D px qy

DE, ˛.A/ D D, ˛.B/ D E, and ˛.C/ is a member of
qy !
DEF.

By Theorem NEUT.15(8) ˛.†BAC/ D †˛.B/˛.A/˛.C/ D †ED˛.C/. By

Definition NEUT.3(B) †BAC Š †ED˛.C/. By Theorem NEUT.14 (congruence

is an equivalence relation), †EDF Š †ED˛.C/. By Theorem NEUT.36
px!
DF D px !

D˛.C/. By Theorem PSH.24 ˛.C/ 2 qy!
DF. By Theorem NEUT.15(8)

˛.
px qy

AC/ D px qy

˛.A/˛.C/ D px qy

D˛.C/. By Definition NEUT.3(B)
px qy

AC Š px qy

D˛.C/. Since

congruence is an equivalence relation (Theorem NEUT.14)
px qy

D˛.C/ Š px qy

DF. By

Property R.4 of Definition NEUT.2 ˛.C/ D F. Since ˛.A/ D D, ˛.B/ D E, and

˛.C/ D F, by Theorem NEUT.15(5) ˛.
px qy

BC/ D px qy

EF so that
px qy

BC Š px qy

EF; the other

corresponding edges are congruent by hypothesis.

We may now apply Theorem NEUT.62 (EEE Congruence theorem), completing

the proof. ut
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Theorem NEUT.65 (AEA congruence theorem for triangles). Let A, B, C, D,

E, and F be points on the neutral plane P such that A, B, and C are noncollinear, D,

E, and F are noncollinear,
px qy

AB Š px qy

DE,†BAC Š †EDF, and†ABC Š †DEF. Then

there exists an isometry ˛ such that ˛.4ABC/ D 4DEF, ˛.A/ D D, ˛.B/ D E,

and ˛.C/ D F. Thus 4ABC Š 4DEF, and corresponding edges and angles are

congruent.

Proof. By Theorem NEUT.58 there exists an isometry ˛ of P such that ˛.
px qy

AB/ D
px qy

DE, ˛.A/ D D, ˛.B/ D E, and ˛.C/ 2 qy !
DEF. By Theorem NEUT.15(8)

˛.†BAC/ D †˛.B/˛.A/˛.C/ D †ED˛.C/

and

˛.†ABC/ D †˛.A/˛.B/˛.C/ D †DE˛.C/.

By Definition NEUT.3(B) †BAC Š †ED˛.C/ and †ABC Š †DE˛.C/.

Since congruence is an equivalence relation (Theorem NEUT.14) and since

†BAC Š †EDF and †ABC Š †DEF, †ED˛.C/ Š †EDF and †DEF Š
†DE˛.C/. By Theorem NEUT.36

px !
D˛.C/ D px!

DF and
px !
E˛.C/ D px!

EF. By Theo-

rem PSH.24(B) ˛.C/ 2 qy!
DF and ˛.C/ 2 qy!

EF. By Theorem I.5
qy!
DF is a subset of

 !
DF

and
qy!
EF is a subset of

 !
EF. By Exercise I.1

 !
DF \ !EF D fFg. Therefore ˛.C/ D F.

Since ˛.A/ D D, ˛.B/ D E, and ˛.C/ D F, by Theorem NEUT.15(5) ˛.
px qy

AC/ D px qy

DF

and ˛.
px qy

BC/ D px qy

EF so that
px qy

AC Š px qy

DF and
px qy

BC Š px qy

EF;
px qy

AB Š px qy

DE by hypothesis.

We may now apply Theorem NEUT.62 (EEE Congruence theorem), completing

the proof. ut

Theorem NEUT.66. On a neutral plane P every angle congruent to a right angle

is a right angle.

Proof. Let A, B, C, D, E, and F be points on P such that A, B, and C are

noncollinear, D, E, and F are noncollinear, †EDF is a right angle and †BAC Š
†EDF. Using Property B.3 of Definition IB.1 let B0 and E0 be points such that

B A B0 and E D E0. By Definition NEUT.41(C) †EDF Š †E0DF.

Since †BAC Š †EDF, †E0DF Š †B0AC by Theorem NEUT.43 (supplements

of congruent angles are congruent). Since congruence is an equivalence relation,

†B0AC Š †E0DF Š †EDF Š †BAC, and by Definition NEUT.41(C) †BAC is a

right angle. ut
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Theorem NEUT.67 (segment construction). Let A, B, C, and D be points on the

neutral plane P such that A ¤ B and C ¤ D. Then there exists a unique point P

belonging to
qy!
CD such that

px qy

CP Š px qy

AB.

Proof. (I: Existence) There are four cases:

(Case 1: A D C and B 2 qy!
CD.) Then P D B.

(Case 2: A D C and B C D.) Let Q be a member of P n  !AB. Using

Theorem NEUT.26 let M be the line of symmetry of †BCQ and let N be

the line of symmetry of †DCQ. Let ˛ D RN ı RM. By Theorem NEUT.20,

Theorem NEUT.15(3), and Definition NEUT.1(A), ˛.
px!
CB/ D RN .RM.

px!
CB// D

RN .
px!
CQ/ D px!

CD and ˛.
px qy

CB/ D px qy

˛.C/˛.B/ D px qy

C˛.B/. By Definition NEUT.3(B)
px qy

C˛.B/ Š px qy

CB. Letting P D ˛.B/ we have P 2 qy!
CD and

px qy

CP Š px qy

CB Š px qy

AB.

(Case 3: A D C and D 2 .P n  !AB/.) Using Theorem NEUT.26 let L be the

line of symmetry of †BAD. By Theorem NEUT.20 C 2 L and RL.
px!
CB/ D px!

CD.

By Theorem NEUT.15(5) and Definition NEUT.1(A),

RL.
px qy

CB/ D px qy

RL.C/RL.B/ D
px qy

CRL.B/.

By Theorem NEUT.20
px !
CRL.B/ D px!

CD so by Theorem PSH.24 RL.B/ 2 qy!
CD.

By Theorem NEUT.15(5) and Definition NEUT.1(A),

RL.
px qy

CB/ D px qy

RL.C/RL.B/ D
px qy

CRL.B/.

By Definition NEUT.3(B)
px qy

CRL.B/ Š px qy

CB. Let P D RL.B/, then P 2 qy!
CD and

px qy

CP Š px qy

CB Š px qy

AB.

(Case 4: A ¤ C.) Using Theorem NEUT.52 let J be the line of symmetry

of
px qy

AC, then RJ .A/ D C and RJ .C/ D A. Let RJ .B/ D B0. By Theo-

rem NEUT.15(5) RJ .
px qy

AB/ D px qy

RJ .A/RJ .B/ D
px qy

CB0. By Definition NEUT.3(B)
px qy

AB Š px qy

CB0. By whichever applies, case 1, case 2, or case 3, there exists a point

P such that P 2 qy!
CD and

px qy

CB0 Š px qy

CP. By Theorem NEUT.14 (congruence is an

equivalence relation)
px qy

AB Š px qy

CP.

(II: Uniqueness) Let P and P0 be points such that P 2 qy!
CD, P0 2 qy!

CD,
px qy

CP Š px qy

AB,

and
px qy

CP0 Š px qy

AB. By Theorem NEUT.14
px qy

CP0 Š px qy

CP. By Property R.4 of

Definition NEUT.2, P0 D P. ut

Theorem NEUT.68 (Angle construction). Let A, B, and C be noncollinear points

on the neutral plane P , P and Q be distinct points on P , H be a side of
 !
PQ. Then

there exists a point R belonging to H such that †QPR Š †BAC. Furthermore, if S

is a member of H such that †QPS Š †BAC, then
px!
PR Š px!

PS and †QPR D †QPS.
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Proof. (I: Existence) Let H0 be the side of
 !
PQ opposite H. There are six cases.

(Case 1:
px!
PQ D px!

AB and C 2 H.) Take R D C.

(Case 2:
px!
PQ D px!

AB and C 2 H0.) Take R D R !
AB
.C/; then by Theo-

rem NEUT.14, Definition NEUT.1(A) and Definition PSH.29,

R !
AB
.†BAC/ D †R !

AB
.B/R !

AB
.A/R !

AB
.C/

D †BAR D px!
AB[ px!

AR D px!
PQ[ px!

PR D †QPR.

By Definition NEUT.3(B) †BAC Š †QPR. Furthermore, by Defi-

nition NEUT.1(B), R and C are on opposite sides of
 !
AB D  !

PQ. By

Theorem PSH.12 (plane separation) R 2 H.

(Case 3: P D A, Q P B, and C 2 H0.) Then
px!
AB and

px!
PQ are opposite

rays. Using Theorem NEUT.26 let M be the line of symmetry of †QPC. Let

C0 be a point such that C P C0. Then †QPC and †BPC0 are vertical angles

and by Exercise NEUT.10 M is the line of symmetry for †BPC0. Then by

Theorem NEUT.20 RM.
px!
PB/ D px!

PC0 and RM.
px!
PC/ D px!

PQ.

Let R D RM.B/; then
px!
PR D px!

PC0, and by Theorem PSH.24 R 2 qy!
PC0. By

Definition IB.11 C and C0 are on opposite sides of
 !
PQ. Since C 2 H0, C0 2 H.

By Theorem PSH.38
qy!
PC D  !CC0 \ H0 and

qy!
PC0 D  !CC0 \ H. Therefore R D

RM.B/ 2 H.

By Definition PSH.29, Definition NEUT.1(A), and Theorem NEUT.15(3),

RM.†BPC/ D RM.
px!
PC[ px!

PB/ D RM.
px!
PC/ [RM.

px!
PB/

D RM.
px!
PC/ [ px !RM.P/RM.B/ D RM.

px!
PC/ [ px!

PR

D px!
PQ[ px!

PR D †QPR,

so that †BAC D †BPC Š †QPR.

(Case 4: P D A, Q P B, and C 2 H.) By Case 3 there exists a point

R0 belonging to H0 such that †BAC Š †QPR0. Let R D R !
PQ
.R0/. Then by

Theorem NEUT.15(8) and Definition NEUT.1(A),

R !
PQ
.†QPR0/ D †R !

PQ
.Q/R !

PQ
.P/R !

PQ
.R0/ D †QPR.

By Definition NEUT.3(B) †QPR0 Š †QPR. Since †BAC Š †QPR0, by

Theorem NEUT.14 (congruence is an equivalence relation), †BAC Š †QPR.

By Definition NEUT.1(B), R and R0 are on opposite sides of
 !
PQ. Since R0 2 H0

by Theorem PSH.12 (plane separation), R 2 H.
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(Case 5: P D A and Q 2 .P n  !AB/.) Using Theorem NEUT.26 let L
be the line of symmetry of †BAQ. By Theorem NEUT.20 A D P 2 L,

and RL.
px!
PB/ D px!

PQ. By Theorem NEUT.15(5) and Definition NEUT.1(A),

RL.
px qy

PB/ D px qy

RL.P/RL.B/ D
px qy

PRL.B/.

By Theorem NEUT.20
px !
PRL.B/ D px!

PQ, by Theorem PSH.24(B), RL.B/ 2 qy!
AQ.

By Definition PSH.29, Theorem NEUT.15(3), and Definition NEUT.1(A),

RL.†BPC/ D RL.
px!
PB[ px!

PC/ D RL.
px!
PB/ [RL.

px!
PC/

D px!
PQ[ px !RL.P/RL.C/ D px!

PQ[ px !
PRL.C/ D †QPRL.C/.

By Definition NEUT.3(B) †BPC Š †QPRL.C/. If RL.C/ 2 H, then by

case 1 we take R D RL.C/. If RL.C/ 2 H0, then by case 2 there exists a point R

belonging to H such that †QPR Š †QPRL.C/. Since †QPRL.C/ Š †BPC,

by Theorem NEUT.14 †QPR D †BPC D †BAC.

(Case 6: P ¤ A.) Using Theorem NEUT.51 let N be the line of symmetry

of
px qy

PA. By Theorem NEUT.15(8) RN .†BAC/ D †RN .B/RN .A/RN .C/ D
†RN .B/PRN .C/. By Definition NEUT.3(B) †BAC Š †RN .B/PRN .C/. By

whichever of the cases 1, 2, 3, 4, or 5 applies, there exists a point R belonging to

H such that †QPR Š RN .B/PRN .C/. Since †RN .B/PRN .C/ Š †BAC, by

Theorem NEUT.14 †QPR Š †BAC.

(II: Uniqueness) If R and S are points belonging to H such that †BAC Š †QPR

and †BAC Š †QPS, then †QPR Š †QPS. By Theorem NEUT.36
px!
PR D px!

PS,

so †QPR D †QPS. ut
We are finally ready to prove Euclid’s Fourth Postulate.

Theorem NEUT.69. On a neutral plane P any two right angles are congruent.

Proof. Let A, B, C, D, E, and F be points on the neutral plane such that A, B, and

C are noncollinear, D, E, and F are noncollinear, †BAC is right and †EDF is right.

By Theorem NEUT.68 there exists a point P belonging to the C side of
 !
AB such

that †EDF Š †BAP. By Theorem NEUT.66 †BAP is right. By Theorem NEUT.44 !
AB ?  !AP, and

 !
AB ?  !AC. By Theorem NEUT.47(B),

 !
AC D  !AP. Since C and P

belong to the same side of
 !
AB by Theorem PSH.38(A),

px!
AC D px!

AP so †BAC D
†BAP. Since †BAP Š †EDF, †BAC Š †EDF. ut
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Definition NEUT.70. (A) Let A, B, C, and D be points on the neutral plane P
such that A ¤ B and C ¤ D. Then

px qy

AB <
px qy

CD iff there exists a point P such that

C P D and
px qy

AB Š px qy

CP.
px qy

AB >
px qy

CD iff
px qy

CD <
px qy

AB.

(B) Let A, B, C, D, E, and F be points on the neutral plane P such that A, B, and

C are noncollinear, and D, E, and F are noncollinear. Then †BAC < †EDF

iff there exists a point P belonging to ins†EDF such that †BAC Š †EDP.

†BAC > †EDF iff †EDF < †BAC.

(C) The symbol < is read “is smaller than.”

(D) The symbol > is read “is larger than.”

(E) Let A, B, C, and D be points on the neutral plane P such that A ¤ B and C ¤ D.

Then

(1)
px qy

AB � px qy

CD iff
px qy

AB <
px qy

CD or
px qy

AB Š px qy

CD, and

(2)
px qy

AB � px qy

CD iff
px qy

CD � px qy

AB.

(F) Let A, B, C, D, E, and F be points on the neutral plane P such that A, B, and C

are noncollinear and D, E, and F are noncollinear.

(1) †BAC � †EDF iff †BAC < †EDF or †BAC Š †EDF.

(2) †BAC � †EDF iff †EDF � †BAC.

(G) The symbol � is read “is smaller than or congruent to.”

(H) The symbol � is read “is larger than or congruent to.”

Theorem NEUT.71. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B and C ¤ D. Then
px qy

AB >
px qy

CD iff there exists a point V such that C D V and
px qy

AB Š px qy

CV.

Proof. (I) If
px qy

AB >
px qy

CD, then by Definition NEUT.70
px qy

CD <
px qy

AB and there exists

a point U such that A U B and
px qy

CD Š px qy

AU. By Theorem NEUT.67 (segment

construction) there exists a point V belonging to
qy!
CD such that

px qy

AB Š px qy

CV . By

Theorem NEUT.57 C D V .

(II) Suppose that there exists a point V such that C D V . and
px qy

AB Š px qy

CV . By

Theorem NEUT.67 (segment construction) there exists a point U such that U 2
qy!
AB and

px qy

AU Š px qy

CD. By Theorem NEUT.57 A U B. By Definition NEUT.70
px qy

CD <
px qy

AB, i.e.,
px qy

AB >
px qy

CD. ut
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Theorem NEUT.72 (Trichotomy for segments). Let A, B, C, and D be points on

the neutral plane P such that A ¤ B and C ¤ D. Then one and only one of the

following statements holds:

(1)
px qy

AB Š px qy

CD, (2)
px qy

AB <
px qy

CD, (3)
px qy

AB >
px qy

CD.

Proof. Using Theorem NEUT.67 (segment construction) let P be the point on
qy!
CD

such that
px qy

AB Š px qy

CP. By Definition IB.4 one and only one of the following statements

(A), (B), or (C) holds:

(A: P D D) Then
px qy

AB Š px qy

CP D px qy

CD, i.e.,
px qy

AB Š px qy

CD.

(B: C P D) Then by Definition NEUT.70
px qy

AB <
px qy

CD.

(C: C D P) Then by Definition NEUT.70
px qy

AB >
px qy

CD. ut

Theorem NEUT.73 (Transitivity for segments). Let A, B, C, D, E, and F be

points on the neutral plane P such that A ¤ B, C ¤ D, and E ¤ F.

(A) If
px qy

AB <
px qy

CD and
px qy

AB Š px qy

EF, then
px qy

EF <
px qy

CD.

(B) If
px qy

AB <
px qy

CD and
px qy

CD Š px qy

EF, then
px qy

AB <
px qy

EF.

(C) If
px qy

AB <
px qy

CD and
px qy

CD <
px qy

EF, then
px qy

AB <
px qy

EF.

(D) If
px qy

AB >
px qy

CD and
px qy

AB Š px qy

EF, then
px qy

EF >
px qy

CD.

(E) If
px qy

AB >
px qy

CD and
px qy

CD Š px qy

EF, then
px qy

AB >
px qy

EF.

(F) If
px qy

AB >
px qy

CD and
px qy

CD >
px qy

EF, then
px qy

AB >
px qy

EF.

Proof. (A) If
px qy

AB <
px qy

CD, then by Definition NEUT.70 there exists a point J such

that C J D and
px qy

AB Š px qy

CJ. Since
px qy

AB Š px qy

CJ and
px qy

AB Š px qy

EF,
px qy

EF Š px qy

CJ. By

Definition NEUT.70
px qy

EF <
px qy

CD.

(B) By Theorem NEUT.72 (trichotomy for segments) one and only one of the

following statements is true:

(1)
px qy

AB Š px qy

EF, (2)
px qy

AB <
px qy

EF, (3)
px qy

AB >
px qy

EF.

If
px qy

AB Š px qy

EF were true, then since
px qy

CD Š px qy

EF, we would have
px qy

AB Š px qy

CD,

contrary to the fact that
px qy

AB <
px qy

CD. If
px qy

AB >
px qy

EF were true, then by part (A)
px qy

CD <
px qy

AB would be true, contrary to the fact that
px qy

AB <
px qy

CD. Since
px qy

AB Š px qy

EF is

false and
px qy

AB >
px qy

EF is false, by Theorem NEUT.72 (trichotomy for segments),
px qy

AB <
px qy

EF.

(C) Since
px qy

AB <
px qy

CD and
px qy

CD <
px qy

EF, by Definition NEUT.70 there exists a

point P such that C P D and
px qy

AB Š px qy

CP and there exists a point Q such

that E Q F and
px qy

CD Š px qy

EQ. By Theorem NEUT.56 there exists an isometry

˛ of P such that ˛.
px qy

CD/ D px qy

EQ, ˛.C/ D E, and ˛.D/ D Q. Since
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C P D by Definition NEUT.1(D) E ˛.P/ Q. Since E ˛.P/ Q and E Q F, by

Theorem PSH.12 E ˛.P/ Q F so that E ˛.P/ F. By Theorem NEUT.15(5)

˛.
px qy

CP/ D px qy

˛.C/˛.P/ D px qy

E˛.P/. By Definition NEUT.3(B)
px qy

CP Š px qy

E˛.P/. Since
px qy

AB Š px qy

CP and
px qy

CP Š px qy

E˛.P/,
px qy

AB Š px qy

E˛.P/. By Definition NEUT.70
px qy

AB <
px qy

EF.

This completes the proof of (C).

In the next three parts, we use the fact, from Definition NEUT.70(A), that for any

A ¤ B and C ¤ D,
px qy

AB >
px qy

CD iff
px qy

CD <
px qy

AB.

(D) Interchange
px qy

AB and
px qy

CD in part (B) and we have (D).

(E) Interchange
px qy

AB and
px qy

CD in part (A) and we have (E).

(F) Interchange
px qy

AB and
px qy

EF in part (C) and we have (F). ut
Theorem NEUT.74. Let A and B be distinct points on a neutral plane P , and let O

and Q be distinct points on P such that
px qy

OQ Š px qy

AB; then for any X 2 qy!
OQ,

(1) O X Q iff
px qy

OX <
px qy

OQ Š px qy

AB and (2) O Q X iff
px qy

OX >
px qy

OQ Š px qy

AB.

Proof. (1) If O X Q, then by Definition NEUT.70
px qy

OX <
px qy

OQ. (Theorem NEUT.73

(transitivity for segments) says that
px qy

OX <
px qy

AB.)

Conversely, if
px qy

OX <
px qy

OQ Š px qy

AB (cf Definition NEUT.70), there exists a

point U such that O U Q and
px qy

OX Š px qy

OU; by Property 4 of Definition NEUT.2,

X D U, so O X Q.

(2) If O Q X, then by Theorem NEUT.71
px qy

OX >
px qy

OQ Š px qy

AB. (By transitivity for

segments
px qy

OX >
px qy

AB.)

Conversely, if
px qy

OX >
px qy

OQ Š px qy

AB by Theorem NEUT.71 there exists a point V

such that O Q V and
px qy

OX Š px qy

OV; by Property 4 of Definition NEUT.2, X D V ,

so O Q X. ut

Theorem NEUT.75 (Trichotomy for angles). Let A, B, C, D, E, and F be points

on the neutral plane P such that A, B, and C are noncollinear and D, E, and F are

noncollinear. Then one and only one of the following statements is true:

(1) †BAC Š †EDF, (2) †BAC < †EDF, (3) †BAC > †EDF.

Proof. Using Theorem NEUT.68 (angle construction) let P be a point such that
qy!
EP

is a subset of the F side of
 !
DE and †BAC Š †EDP. By Exercise PSH.32 one and

only one of the following statements is true:

(A) P 2 qy!
DF, (B) P 2 ins†EDF, (C) F 2 ins†EDP.
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If P 2 qy!
DF, then by Theorem PSH.30 †EDP D †EDF and by

Remark NEUT.7(A) †EDP Š †EDF. By Theorem NEUT.14, since †BAC Š
†EDP, †BAC Š †EDF.

If P 2 ins†EDF, then since†BAC Š †EDP, by Definition NEUT.70, †BAC <

†EDF.

If F 2 ins†EDP, then since†BAC Š †EDP, by Definition NEUT.70,†EDF <

†BAC, i.e. †BAC > †EDF. ut

Theorem NEUT.76 (Transitivity for angles). Let A, B, C, D, E, P, Q, and R be

points on the neutral plane P such that A, B, and C are noncollinear, D, E, and F

are noncollinear, and P, Q, and R are noncollinear.

(A) If †BAC < †EDF and †BAC Š †QPR, then †QPR < †EDF.

(B) If †BAC < †EDF and †EDF Š †QPR, then †BAC < †QPR.

(C) If †BAC < †EDF and †EDF < †QPR, then †BAC < †QPR.

(D) If †BAC > †EDF and †BAC Š †QPR, then †QPR > †EDF.

(E) If †BAC > †EDF and †EDF Š †QPR, then †BAC > †QPR.

(F) If †BAC > †EDF and †EDF > †QPR, then †BAC > †QPR.

Proof. (A) If †BAC < †EDF, then by Definition NEUT.70 there exists a point

S such that S 2 ins†EDF and †BAC Š †EDS. Since †BAC Š †QPR,

†QPR Š †EDS. Hence by Definition NEUT.70 †QPR < †EDF.

(B) If †BAC < †EDF, then there exists a point T such that T 2 ins†EDF

and †BAC Š †EDT . Since †EDF Š †QPR, by Theorem NEUT.38 there

exists an isometry ' such that '.
px!
DE/ D px!

PQ and '.
px!
DF/ D px!

PR. Then by

Theorem NEUT.15(11) '.ins†EDF/ D ins†'.E/'.D/'.F/ D ins†QPR.

Let U D '.T/. Then since T 2 ins†EDF, U 2 ins†QPR, and '.†EDT/ D
†QPU so that †EDT Š †QPU by Definition NEUT.3(B). Since congruence

is an equivalence relation (Theorem NEUT.14), †BAC Š †QPU, thus

†BAC < †QPR.

(C) Since †BAC < †EDF, by Definition NEUT.70, there exists a point V such

that V 2 ins†EDF and †BAC Š †EDV . Since †EDF < †QPR, by

Definition NEUT.70 there exists a point W such that W 2 ins†QPR and

†EDF Š †QPW.

By Theorem NEUT.38 there exists an isometry ' such that '.
px!
DE/ D px!

PQ,

'.
px!
DF/ D px!

PW. By Theorem NEUT.15(11)
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'.ins†EDF/ D ins†'.E/'.D/'.F/ D ins†QPW.

Let X D '.V/. Then since V 2 ins†EDF, X 2 ins†QPW which is a

subset of ins†QPR by Theorem PSH.41(D) (or Exercise PSH.18), so that

X 2 ins†QPR.

Now by Definition PSH.29 and Theorem NEUT.15(3)

'.†EDV/ D '.px!DE[ px!
DV/ D '.px!DE/ [ '.px!DV/ D px!

PQ[ px!
PX D †QPX.

Therefore by Definition NEUT.3(B) †EDV Š †QPX, and since †BAC Š
†EDV , by Theorem NEUT.14 †BAC Š †QPX.

We have seen that X 2 ins†QPR so that by Definition NEUT.70 †BAC <

†QPR; this completes the proof of (C).

In the next three parts we will use the fact, from Definition NEUT.70(B), that

for any noncollinear points A, B, and C, and any noncollinear points D, E, and F,

†BAC > †EDF iff †EDF < †BAC.

(D) Interchange †BAC and †EDF in part (B) and we have (D).

(E) Interchange †BAC and †EDF in part (A) and we have (E).

(F) Interchange †BAC and †QPR in part (C) and we have (F). ut
Theorem NEUT.77. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear and A0, B0, and C0 are noncollinear. Then

†B0A0C0 > †BAC iff there exists a point D such that B 2 ins†CAD and †CAD Š
†C0A0B0.

Proof. (I) If †C0A0B0 > †CAB, then by Definition NEUT.70 †CAB < †C0A0B0

and there exists a point E belonging to ins†C0A0B0 such that†CAB Š †C0A0E.

By Theorem NEUT.68 (angle construction) there exists a point D belonging to

the B side of
 !
AC such that †CAD Š †C0A0B0. By Exercise NEUT.14 B 2

ins†CAD.

(II) Conversely, if such a point D exists, then by Theorem NEUT.38 there exists

an isometry ' such that '.†CAD/ D †C0A0B0, '.
px!
AC/ D px !

A0C0 and '.
px!
AD/ D

px !
A0B0. B 2 ins†CAD so by Theorem NEUT.15(11) '.B/ 2 ins†C0A0B0, and

'.†CAB/ D †C0A0'.B/ so that†CAB Š †C0A0'.B/. By Definition NEUT.70

†CAB < †C0A0B0, i.e., †C0A0B0 > †CAB or †B0A0C0 > †BAC. ut
Theorem NEUT.78. Let A, B, C, and D be points on the neutral plane P such that

A, B, and C are noncollinear, D 2 qy !
ABC and †BAD < †BAC. Then D 2 ins†BAC.
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Proof. By Definition NEUT.70 there exists a point D0 belonging to ins†BAC

such that †BAD0 Š †BAD. By Definition PSH.36 D and D0 both belong to
qy !
ABC. By Theorem NEUT.36

qy!
AD D qy!

AD0. By Theorem PSH.24 D 2 qy!
AD0. By

Exercise PSH.17(A)
qy!
AD D qy!

AD0 � ins†BAC. Thus D 2 ins†BAC. ut

Definition NEUT.79. Let T D 4ABC be a triangle on the neutral plane P; let B0

and C0 be points such that B A B0 and C A C0. Then each of the angles †CAB0 or

†BAC0 is said to be an outside angle with corner A of T .

Remark NEUT.79.1. By Theorem NEUT.41 (vertical angles), the pair of outside

angles of T with corner A are congruent to each other. By Definition NEUT.79, if

D is an angle of triangle T and E is an outside angle of T with the same corner as

D, then D and E are supplementary angles (cf Definition NEUT.41(B)).

Theorem NEUT.80 (Outside angles). Let P be a neutral plane and let T be a

triangle on P . Any angle E of T is smaller than an outside angle whose corner is

not the corner of E .

Fig. 8.4 For Theorem
NEUT.80.

A

C B

M

D

R

Q

Proof. For a visualization, see Figure 8.4. Let F be an outside angle of T whose

corner is not the corner of E . By Remark NEUT.79.1 it will suffice to show that

either F or its vertical angle is greater than E . We choose notation so that T D
4ABC, E D †ABC, and F has A as its corner.

In the following we will use Definition IB.4 and associated facts without further

reference. By Theorem NEUT.50 let M be the midpoint of
px qy

AB; by Property B.3 of

Definition IB.1 let D0 be a point on
qy!
CM such that C M D0, and let Q be a point such

that C A Q, so that Q 2 qy!
CA.

By Theorem NEUT.67 (segment construction) there exists a point D 2 qy !
MD0 such

that
px qy

MD Š px qy

MC. Again by Property B.3 let R be a point such that M D R. Then D,

M, and R are members of
qy!
CM D qy!

CR, and D 2 qy !
MD0 D qy!

MR.
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By Theorem PSH.45 R 2 ins†QAB; by Definition PSH.36 R 2 qy !
CAB D qy !

QAB

and by Theorem PSH.38
qy!
CR � qy !

QAB. Also, R 2 qy !
ABQ so by the same theorem

qy!
MR � qy !

ABQ. Since
qy!
MR � qy!

CR then
qy!
MR � qy !

AQB and hence by Definition PSH.36
qy!
MR � ins†BAQ. Therefore D 2 ins†BAQ.

By Definition NEUT.3(C)
px qy

MB Š px qy

MA. By Theorem NEUT.42 (vertical angles),

†CMB Š †DMA. By Theorem NEUT.64 (EAE) 4BMC Š 4AMD, so that

corresponding angles are congruent; since C corresponds to D and A to B,

†ABC D †MBC Š †MAD. Since D 2 ins†BAQ, †ABC < †MAQ (cf

Definition NEUT.70). ut

8.13 Acute and obtuse angles

Definition NEUT.81. On a neutral plane an angle is acute iff it is smaller than a

right angle, an angle is obtuse iff it is larger than a right angle.

By Theorem NEUT.75 (trichotomy for angles) an angle is one and only one of

the following: (1) right, (2) acute, (3) obtuse.

Theorem NEUT.82. Let P be a neutral plane.

(A) If an angle on P is acute, then its supplement is obtuse.

(B) If an angle on P is obtuse, then its supplement is acute.

Proof. Let A, B, and C be noncollinear points on the neutral plane P and let B0 be

a point such that B A B0. By Corollary NEUT.46.1 there exists a point R on the

C side of
 !
BB0 such that †BAR is right. By Definition NEUT.41(C) †BAR Š †B0AR

and †B0AR is right.

(A) If †BAC is acute, then by Definition NEUT.81 †BAC < †BAR, and by

Theorem NEUT.78 C 2 ins†BAR. By Exercise PSH.51 R 2 ins†B0AC. By

Definition NEUT.70 †B0AR < †B0AC. By Definition NEUT.81, since †B0AR

is right, †B0AC is obtuse.

(B) If †BAC is obtuse, then by Definition NEUT.81 †BAC > †BAR, and by

Theorem NEUT.78 R 2 ins†BAC. By Exercise PSH.51 C 2 ins†B0AR. By

Definition NEUT.70 †B0AC < †B0AR. By Definition NEUT.81, since †B0AR

is right, †B0AC is acute. ut
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Theorem NEUT.83. Let P be a neutral plane.

(A) Every angle on P congruent to an acute angle is acute.

(B) Every angle on P congruent to an obtuse angle is obtuse.

(C) Every angle on P smaller than an acute angle is acute.

(D) Every acute angle on P is smaller than every obtuse angle on P .

Proof. To prove (A), let D be an acute angle on P , E an angle on P congruent to

D and let G be a right angle on P . By Definition NEUT.81 D < G. Since D < G
and D Š E , by Theorem NEUT.76 (transitivity for angles) E < G. By Definition

NEUT.81, E is acute.

The proof of assertions (B), (C), and (D) is Exercise NEUT.81. ut
Theorem NEUT.84. Let T be a triangle on the neutral plane P . If an angle of T
is right or is obtuse, then the other angles of T are acute.

Proof. Let E be an angle of T . If E is right, then by Definition NEUT.41(C) and

Remark NEUT.79.1, an outside angle of T with the same corner as E is also right.

By Theorem NEUT.80 (outside angles) the other angles are smaller than a right

angle and are therefore acute by Definition NEUT.81. If E is obtuse, then the outside

angle with the same corner is acute (cf Theorem NEUT.82). By Theorem NEUT.80

(outside angles) each of the other angles of T is acute. ut

Definition NEUT.85. Let T be a triangle on the neutral plane P .

(A) Triangle T is right iff an angle of T is right.

(B) Triangle T is obtuse iff an angle of T is obtuse.

(C) Triangle T is acute iff each angle of T is acute.

(D) An edge of T is maximal iff each of the other edges is smaller than or

congruent to it.

(E) An angle of T is maximal iff each of the other two angles is congruent to or

smaller than it.

Theorem NEUT.86. Let A, B, and C be noncollinear points on the neutral plane

P . If †ACB is a maximal angle of4ABC, then each of †ABC or †CAB is acute.

Proof. If †ABC or †CAB were right or obtuse, then †ACB would be acute by

Theorem NEUT.84 and thus by Definition NEUT.81 and Theorem NEUT.83 would

not be a maximal angle of4ABC. ut
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Theorem NEUT.87 (Alternate interior angles). Let P be a neutral plane, P and

Q be distinct points on P , and T and R be distinct points on P which are on opposite

sides of
 !
PQ such that †RQP Š †TPQ. Then

 !
PT k  !QR.

Fig. 8.5 Alternate interior
angles.

P Q

R

T

Proof. For a visualization, see Figure 8.5. If
 !
PT and

 !
QR were to intersect at a

point U which is on the R side of
 !
PQ, then by Theorem NEUT.80 (outside angles)

†RQP would be smaller than †TPQ contrary to the fact that these two angles are

congruent. If
 !
PT and

 !
QR were to intersect at a point U which is on the T side of

 !
PQ,

then by Theorem NEUT.80 (outside angles) †TPQ would be smaller than †RQP,

contrary to the fact that †RQP Š †TPQ. Hence
 !
PT k  !QR. ut

Remark NEUT.88. Theorem NEUT.87 is a generalization of Theorem NEUT.47(A).

We next use Theorem NEUT.87 to give a second proof for Theorem NEUT.48(B)

(Property PE), which is Theorem NEUT.89. See also Remark NEUT.49.

Theorem NEUT.89. Let P be a neutral plane, L be a line on P , and let Q be a

member of P n L. Then there exists a line M such that Q 2M and M k L.

Proof. Let P and T be distinct points on L and let H be the side of
 !
PQ opposite T .

By Theorem NEUT.68 (angle construction) there exists a point R belonging to H
such that †PQR Š †QPT . Let M D !QR. By Theorem NEUT.87 M k L. ut
Theorem NEUT.90. Let A, B, and C be noncollinear points on the neutral plane

P such that
px qy

BC <
px qy

AC; then †CAB < †CBA.

Proof. Using Theorem NEUT.67 (segment construction), let B0 be the point on
qy!
CB such that

px qy

B0C Š px qy

AC, so that
px qy

BC <
px qy

AC Š px qy

B0C and by Theorem NEUT.73

(transitivity for segments),
px qy

BC <
px qy

B0C; by Definition NEUT.70(A) C B B0, so that

by Theorem PSH.37 B 2 ins†CAB0, and by Definition NEUT.70(B), †CAB <

†CAB0.
By Theorem NEUT.40(A) (Pons Asinorum) †CAB0 Š †CB0A. By Defini-

tion NEUT.79 †ABC is an outside angle at corner B for 4ABB0. By Theo-
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rem NEUT.80 (outside angles) †CB0A D †BB0A < †ABC. Then †CAB <

†CAB0 Š †CB0A < †ABC so that by Theorem NEUT.76 (transitivity for angles)

†CAB < †ABC. ut
Theorem NEUT.91. If A, B, and C are noncollinear points on a neutral plane P
such that †CAB < †CBA, then

px qy

BC <
px qy

AC.

Proof. By Theorem NEUT.72 (trichotomy for segments) one and only one of the

following statements holds: (1)
px qy

BC Š px qy

AC, (2)
px qy

BC <
px qy

AC, (3)
px qy

BC >
px qy

AC. If
px qy

BC

and
px qy

AC were congruent, then by Theorem NEUT.40A (Pons Asinorum),†CAB and

†CBA would be congruent contrary to the fact that †CAB is smaller than †CBA (cf

Theorem NEUT.75 (trichotomy for angles)). If
px qy

BC were larger than
px qy

AC, then
px qy

AC

would be smaller than
px qy

BC and by Theorem NEUT.90 †CBA would be smaller than

†CAB contrary to the fact that †CAB is smaller than †CBA. Hence
px qy

BC <
px qy

AC. ut
Theorem NEUT.92. Let P be a neutral plane and let A, B, and C be noncollinear

points on P . Then
px qy

AB is a maximal edge of 4ABC iff †ACB is a maximal angle of

4ABC.

Proof. (I: If
px qy

AB is a maximal edge of 4ABC, then †ACB is a maximal angle of

4ABC.) If
px qy

AB >
px qy

BC by Theorem NEUT.90 †ACB > †BAC; if
px qy

AB Š px qy

BC by

Theorem NEUT.40(A) (Pons Asinorum) †ACB Š †BAC. Therefore if
px qy

AB �
px qy

BC, then †ACB � †BAC. A similar argument shows that if
px qy

AB � px qy

AC then

†ACB � †ABC. Therefore by Definition NEUT.85 if
px qy

AB is maximal, †ACB is

maximal.

(II: If†ACB is a maximal angle of4ABC, then
px qy

AB is a maximal edge of4ABC.) If
px qy

AB is a not a maximal edge of4ABC, then
px qy

AB <
px qy

AC or
px qy

AB <
px qy

BC. If
px qy

AB <
px qy

AC,

then by Theorem NEUT.90 †ACB < †ABC so that †ACB is not a maximal

angle of 4ABC. Similarly, if
px qy

AB <
px qy

BC, †ACB < †BAC so that †ACB is not

maximal. By the contrapositive, if †ACB is a maximal angle,
px qy

AB is a maximal

edge. ut
Theorem NEUT.93. Let P be a neutral plane and let A, B, and C be noncollinear

points on P . If †ACB is right or is obtuse, then
px qy

AB >
px qy

AC and
px qy

AB >
px qy

BC.

Proof. Exercise NEUT.17. ut
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Definition NEUT.94. Let P be a neutral plane and let T be a right triangle on P .

The hypotenuse of T is the maximal edge of T . The other two edges of T are its

legs.

Theorem NEUT.95. Let A, B, and C be noncollinear points on a neutral plane P
such that

px qy

AC � px qy

AB. If P is a member of
qy px

BC, then
px qy

AP <
px qy

AB.

Proof. By Theorem NEUT.90 †ABP D †ABC � †ACB. By Theorem NEUT.80

(outside angles) †APB > †ACB D †ACP. Then †APB > †ACB � †ABP and by

Theorem NEUT.76 (transitivity for angles)†ABP < †APB. By Theorem NEUT.91,
px qy

AP <
px qy

AB. ut

Theorem NEUT.96 (Hypotenuse-leg). Let A, B, C, D, E, and F be points on

a neutral plane P such that A, B, and C are noncollinear, D, E, and F are

noncollinear, †ACB is right, †DFE is right,
px qy

AB Š px qy

DE and
px qy

AC Š px qy

DF. Then there

exists an isometry ˛ of P such that ˛.A/ D D, ˛.B/ D E, and ˛.C/ D F so that

˛.4ABC/ D 4DEF; i.e.4ABC Š 4DEF.

Proof. By Theorem NEUT.58 there exists an isometry ˛ of P such that ˛.
px qy

AC/ D
px qy

DF, ˛.A/ D D, ˛.C/ D F, and ˛.B/ 2 qy !
DFE. By Theorem NEUT.15(8)

˛.†ACB/ D †˛.A/˛.C/˛.B/ D †DF˛.B/. By Definition NEUT.3(B) †ACB Š
†DF˛.B/ and

px qy

AB Š px qy

D˛.B/. By Theorem NEUT.69 †ACB Š †DFE. By

Theorem NEUT.14 (congruence is an equivalence relation) †DF˛.B/ Š †DFE.

By Theorem NEUT.36
px!
FE D px !

F˛.B/, so that ˛.B/ 2 qy!
FE. By Theorem NEUT.15(3)

˛.
px qy

AB/ D px qy

˛.A/˛.B/ D px qy

D˛.B/ so that by Definition NEUT.3,
px qy

AB Š px qy

D˛.B/.

By Definition IB.4 there exist three and only three possibilities: F ˛.B/ E,

F E ˛.B/, or ˛.B/ D E.

(A) Suppose F ˛.B/ E. By Exercise NEUT.17
px qy

DF <
px qy

DE. By Theorem NEUT.95
px qy

D˛.B/ <
px qy

DE Š px qy

AB, so
px qy

D˛.B/ <
px qy

AB by Theorem NEUT.73. This contradicts
px qy

AB Š px qy

D˛.B/. Thus F ˛.B/ E is false.

(B) If F E ˛.B/, then By Exercise NEUT.17
px qy

DF <
px qy

D˛.B/. By Theorem NEUT.95
px qy

DE <
px qy

D˛.B/ Š px qy

AB. This contradicts our hypothesis that
px qy

DE Š px qy

AB. Thus

F E ˛.B/ is false.

Since F ˛.B/ E and F E ˛.B/ are both false, ˛.B/ D E. It follows that

˛.
px qy

BC/ D px qy

.˛.B//.˛.C// D px qy

EF and ˛.
px qy

AB/ D px qy

DE so by Definition IB.7 ˛.4ABC/ D
4DEF, and4ABC Š 4DEF. ut
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Theorem NEUT.97 (EAA). Let A, B, C, D, E, and F be points on the neutral

plane P such that A, B, and C are noncollinear, D, E, and F are noncollinear,
px qy

AB Š px qy

DE, †ABC Š †DEF, and †ACB Š †DFE. Then there exists an isometry ˛

of P such that ˛.A/ D D, ˛.B/ D E, and ˛.C/ D F so that4ABC Š 4DEF.

Proof. By Theorem NEUT.67 (segment construction) there exists a point F0 on
qy!
EF

such that
px qy

EF0 Š px qy

BC. Then
px qy

AB Š px qy

DE,
px qy

BC Š px qy

EF0, and †ABC Š †DEF0, so

by Theorem NEUT.64 (EAE), there exists an isometry ˛ such that ˛.4ABC/ D
4DEF0, ˛.A/ D D, ˛.B/ D E and ˛.C/ D F0. Then 4ABC Š 4DEF0, hence

†ACB Š †DF0E. By hypothesis †ACB Š †DFE, so by Theorem NEUT.14

†DFE Š †DF0E.

By Definition IB.4 and Property B.2 of Definition IB.1, one and only one of the

following possibilities holds: (1) E F0 F, (2) E F F0, or (3) F0 D F.

If E F0 F, then †DF0E would be an outside angle of 4DF0F with corner F0.
By Theorem NEUT.80 (outside angles) †DFE < †DF0E, contradicting †DFE Š
†DF0E.

If E F F0, then †DFE would be an outside angle of 4DFF0 with corner F.

By Theorem NEUT.80 (outside angles) †DFE > †DF0E, contradicting †DFE Š
†DF0E.

Hence neither E F0 F nor E F F0, so that F D F0, i.e. ˛.C/ D F and4ABC Š
4DEF. ut

Theorem NEUT.98 (Hinge). Let P be a neutral plane, A, B, C, D, E, and F be

points on P such that A, B, and C are noncollinear, D, E, and F are noncollinear,
px qy

AB Š px qy

DE, and
px qy

AC Š px qy

DF. Then
px qy

EF <
px qy

BC iff †EDF < †BAC.

Proof. In this proof we will freely use Theorem NEUT.14 (congruence is an

equivalence relation), Theorem NEUT.73 (transitivity for segments), and Theo-

rem NEUT.76 (transitivity for angles) without further reference. For visualizations

see Figures 8.6 and 8.7.

(I: If †EDF < †BAC, then
px qy

EF <
px qy

BC.) Using Theorem NEUT.68 (angle

construction), let V be a member of
qy !
DFE such that †FDV Š †CAB. Using

Theorem NEUT.67 (segment construction), let G be the point on
qy!
DV such that

px qy

DG Š px qy

AB. Let U be a point on
qy!
DV such that D G U; then †FDU Š †FDV Š

†CAB. Since
px qy

AB Š px qy

DE it follows that
px qy

DG Š px qy

DE and by Theorem NEUT.40

(Pons Asinorum) †DGE Š †DEG. We will use this fact in both Case A and

Case C below.
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Since †BAC Š †GDF,
px qy

AC Š px qy

DF, and
px qy

AB Š px qy

DG, by Theorem NEUT.64

(EAE) there exists an isomorphism ˛ of P such that ˛.4ABC/ D 4DGF,

˛.A/ D D, ˛.B/ D G, and ˛.C/ D F, and corresponding angles and edges

are congruent.

By hypothesis, †EDF < †BAC Š †GDF, so †EDF < †GDF. By

Theorem NEUT.78 E 2 ins†GDF. By Theorem PSH.39 (Crossbar)
qy!
DE and

qy px

FG

intersect at a point H. By Theorem PSH.37
qy px

FG � ins†GEF, so H 2 ins†GEF.

By Definition IB.4 there are three possibilities: (A) D H E, (B) H D E, (C)

D E H.

Fig. 8.6 For Theorem
NEUT.98 (I) Case A.

A C

B

D F

G

E

H

U

(Case A: D H E.) By Theorem PSH.37 H 2 qy px

DE � ins†DGE, and by

Definition NEUT.70
px qy

DH <
px qy

DE and †HGE D †FGE < †DGE.

Again by Theorem PSH.37 H 2 qy px

GF � ins†FEG, so by Exercise PSH.17,
qy!
EH � ins†FEG, so D 2 ins†FEG and by Definition NEUT.70 †DEG <

†FEG.

Putting this together, we have †FGE < †DGE Š †DEG < †FEG so that

†FGE < †FEG. Then by Theorem NEUT.91
px qy

FE <
px qy

FG Š px qy

BC.

(Case B: H D E.) Then G E F and by Definition NEUT.70
px qy

EF <
px qy

GF Š px qy

BC.

CA

B

FD

G

E

H

U

Fig. 8.7 For Theorem NEUT.98 (I) Case C.

(Case C: D E H.) By Theorem PSH.37 H 2 qy px

GF � ins†GEF, so by

Definition NEUT.70 †GEH < †GEF.
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Since D E H and D G U, H 2 qy !
GEU. Also, by Theorem PSH.38(A)

H 2 qy!
DE � qy !

GUE and hence H 2 ins†EGU D qy !
GEU\ qy !

GUE and by

Definition NEUT.70 †EGF D †EGH < †EGU.

Also, by Theorem NEUT.43 (congruence of supplements of congruent

angles), since †DGE Š †DEG it follows that †EGU Š †GEH.

Putting this together we have †EGF < †EGU Š †GEH < †GEF so that

by Theorem NEUT.91
px qy

EF <
px qy

GF Š px qy

BC.

(II: If
px qy

EF <
px qy

BC, then †EDF < †BAC.) By Theorem NEUT.75 (trichotomy for

angles), one and only one of the following statements holds: (1)†EDF Š †BAC,

(2) †EDF > †BAC, or (3) †EDF < †BAC. If †EDF and †BAC were

congruent, then by Theorem NEUT.64 (EAE)
px qy

EF and
px qy

BC would be congruent

contrary to the fact that
px qy

EF <
px qy

BC (cf Theorem NEUT.72 (trichotomy for

segments)). If †EDF were larger than †BAC, then by part (I)
px qy

BC would be

smaller than
px qy

EF contrary to the fact that
px qy

EF <
px qy

BC. Hence †EDF < †BAC. ut
Definition NEUT.99. Let P be a neutral plane, A be a point on P , and M be a line

on P . Then

(A) pr.A;M/ denotes the line L such that A 2 L and L ?M, and

(B) ftpr.A;M/ denotes the point of intersection of pr.A;M/ and M. This point is

called the foot of the line L.

(C) If A, B, and C are noncollinear points, the altitude of 4ABC from corner A

is
px qy

AD where D D ftpr.A;
 !
BC/. Its base (belonging to that altitude) is the

edge
px qy

BC.

Theorem NEUT.100. If P is a neutral plane and T is any triangle on P , then the

bisecting rays of the angles of T intersect at a point inside the triangle.

Proof. Let T D 4ABC. Let S and T be points such that S ¤ A,
px!
AS is the bisecting

ray of †BAC, T ¤ B, and
px!
BT is the bisecting ray of †ABC. Then

px!
AS � ins†CAB

and
px!
BT � ins†ABC.

By Theorem PSH.39 (Crossbar)
px!
AS and

qy px

BC intersect at a point D. By the

same theorem
px!
BT intersects

qy px

AD at a point O. By Theorem PSH.38 and Theo-

rem PSH.46(C) fOg D qy!
BT \ qy!

AS � ins†ABC \ ins†CAB D ins4ABC.

Let P D ftpr.O;
 !
BC/, Q D ftpr.O;

 !
AC/, and R D ftpr.O;

 !
AB/. Then

px qy

OB Š px qy

OB

by Remark NEUT.7(A); by Theorem NEUT.69 †ORB Š †OPB; since
px!
BT is the

bisecting ray of †ABC, by Theorem NEUT.39 †OBR Š †OBP. Thus 4ORB and

4OPB are right triangles which share a hypotenuse, and have a congruent angle.

By Theorem NEUT.97(EAA),4ORB Š 4OPB and hence
px qy

OR Š px qy

OP.
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By similar reasoning,
px qy

OR Š px qy

OQ, so
px qy

OQ Š px qy

OP by Theorem NEUT.14.

By Theorem NEUT.69 †OQC Š †OPC since they are both right angles.
px qy

OC Š
px qy

OC and
px qy

OQ Š px qy

OP so by Theorem NEUT.96 (hypotenuse-leg) 4OQC Š 4OPC.

Thus†OCQ Š †OCD so by Theorem NEUT.39
px!
CO is the bisecting ray for†ACB.

Therefore all the bisecting rays intersect at the point O. ut
In conclusion, we should mention that in the presence of Axiom PW it is possible

to prove, independently of Property R.6 of Definition NEUT.2, that every segment
px qy

AB has a midpoint. This proof is part of the online Supplement which may be

accessed from the home page for this book at www.springer.com.

We would be most grateful if a reader with more perspicacity than we should

come up with such a proof without invoking parallelism, thus making it possible to

dispense with Property R.6 of Definition NEUT.2. Alternatively, creation of a model

(in which parallelism does not hold) showing that Property R.6 is independent of the

other properties would confirm that Property R.6 is essential. This is discussed more

in Chapter 21, Section 21.7.3 (Independence of reflection properties) Remark RSI.4.

8.14 Exercises for neutral geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise NEUT.0�. There can be more than one mirror mapping over a line in the

(real) coordinate plane R2. More specifically, if for each pair .u1; u2/ of real numbers

on the plane, we define ˚.u1; u2/ D .u1;�u2/ and �.u1; u2/ D .u1� u2;�u2/, both

˚ and � are mirror mappings over the x-axis.

Exercise NEUT.1�. Let P be a neutral plane and let L and M be parallel lines

on P , then RL.M/ is a line which is contained in the side of L opposite the side

containing M and M k RL.M/.

Exercise NEUT.2�. Let M be any line on the neutral plane P . If X is any point on

P such that RM.X/ D X, then X 2M.

Exercise NEUT.3�. Let P be a neutral plane and let L and M be lines on P .

If RL D RM, then L D M. This may be restated in its contrapositive form as

follows: If L ¤M, then RL ¤ RM.

www.springer.com
www.springer.com
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Exercise NEUT.4�. Let A, B, and C be noncollinear points on the neutral plane P ,

then neither
 !
AB nor

 !
AC is a line of symmetry of †BAC.

Exercise NEUT.5�. Let S be a nonempty subset of P which has a line M of

symmetry, H1 and H2 be the sides of M, S1 D S \ H1 and S2 D S \ H2, then

RM.S2/ D S1.

Exercise NEUT.6�. (A) Let ˛ be an isometry of the neutral plane P and let L be

a line on P such that every point on L is a fixed point of ˛ and no point off of

L is a fixed point of ˛, then ˛ D RL.

(B) Let ˛ be an isometry of the neutral plane P which is also an axial affinity with

axis L. Then ˛ D RL.

Exercise NEUT.7�. Let L and M be distinct lines on the neutral plane P , then

RM ıRL ¤ { (the identity mapping of P onto itself).

Exercise NEUT.8�. If L and M are distinct lines on the neutral plane P , then there

exists a unique line J such that RL ıRM ıRL D RJ . Moreover, J D RL.M/.

Exercise NEUT.9�. Let O, A, and B be noncollinear points on the neutral plane

P and let L be a line such that RL.
px!
OA/ D px!

OB. By Remark NEUT.6(B), L
is a line of symmetry of †AOB, RL is an angle reflection for †AOB, and by

Theorem NEUT.20, RL.O/ D O. Construct a proof that RL.O/ D O, using

Theorem NEUT.15, but not Theorem NEUT.20 or Theorem PSH.33 (uniqueness

of corners).

Exercise NEUT.10�. Let A, B, and C be noncollinear points on the neutral plane

P , B0 and C0 be points such that B A B0, C A C0, and M be a line of symmetry of

†BAC, then M is a line of symmetry of †B0AC0.

Exercise NEUT.11�. Let O, P, and Q be noncollinear points on the neutral plane

P such that
 !
OP is a line of symmetry of

 !
OQ and let Q0 be a point such that Q0 O Q.

If we let L D !OP, then RL.
px!
OQ/ D px!

OQ0 and RL.Q/ 2
qy!
OQ0.

Exercise NEUT.12�. Let P be a neutral plane and let O, A, A0, B, and B0 be points

such that: (1) A O A0, (2) B and B0 are on opposite sides of
 !
OA (so that fA;O;Bg

and fA0;O;B0g are noncollinear), and (3) †AOB Š †A0OB0. Then B O B0.
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Exercise NEUT.13�. Let A, B, C, D, A0, B0, C0, and D0 be points on the neutral

plane P such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear,

D 2 ins†BAC, D0 2 qy !
B0A0C0, †BAC Š †B0A0C0, and †BAD Š †B0A0D0; then

qy !
A0D0 � ins†B0A0C0.

Exercise NEUT.14�. Let A, B, C, D, A0, B0, C0, and D0 be points on the neutral

plane P such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear,

B 2 ins†CAD (so that by Corollary PSH.39.2 C and D are on opposite sides of
 !
AB),

B0 2 qy !
C0A0D0, †CAB Š †C0A0B0, and †CAD Š †C0A0D0, then B0 2 ins†C0A0D0

(so that C0 and D0 are on opposite sides of
 !
A0B0.

Exercise NEUT.15�. Let A and B be distinct points on the neutral plane P , M be

the midpoint of
px qy

AB, C and D be points on the same side of
 !
AB such that

 !
AC ?  !AB

and
 !
BD ?  !AB and M be the perpendicular bisector of

px qy

AB, then RM.
 !
AC/ D  !BD

and RM.
 !
BD/ D !AC.

Exercise NEUT.16�. Let O, P, Q, and R be points on the neutral plane P such that

†POQ is right, †ROQ is right, and P and R are on opposite sides of
 !
OQ, then P, O,

and R are collinear.

Exercise NEUT.17�. Prove Theorem NEUT.93: let A, B, and C be noncollinear

points on the neutral plane P . If †ACB is right or is obtuse, then
px qy

AC <
px qy

AB and
px qy

BC <
px qy

AB.

Exercise NEUT.18�. Let O, P, and S be noncollinear points on the neutral plane P
such that†POS is acute, U be a member of

qy!
OP, and V D ftpr.U;

 !
OS/, then V 2 qy!

OS.

Exercise NEUT.19�. Let A, B, and C be noncollinear points on the neutral plane

P; by Definition NEUT.2 (Property R.5) there exists an angle reflection RM for

†BAC, and by Theorem NEUT.20(E) a point P 2M such that
qy!
AP � ins†BAC. By

Definition NEUT.3(D)
px!
AP is a bisecting ray for †BAC. Show that †BAP is acute.

Exercise NEUT.20�. Let A, B, and C be noncollinear points on the neutral plane

P . If †BAC and †ABC are both acute, and if D D ftpr.C;
 !
AB/, then D 2 qy px

AB.

Exercise NEUT.21�. Let A, B, and C be noncollinear points on the neutral plane

P , if
px qy

AB is the maximal edge of4ABC and if D D ftpr.C;
 !
AB/, then D 2 qy px

AB.



216 8 Neutral Geometry (NEUT)

Exercise NEUT.22�. Let L be a line on the neutral plane P and let P be a point

such that P 62 L.

(I) Let Q D ftpr.P;L/; if X is any point on L distinct from Q, then
px qy

PQ <
px qy

PX.

(II) If Q is a point on L with the property that for every point X on L which is

distinct from Q,
px qy

PQ <
px qy

PX, then Q D ftpr.P;L/.

Exercise NEUT.23�. Let P be a neutral plane, A, B, and C be noncollinear points

on P , P be a member of ins†BAC, Q D ftpr.P;
 !
AB/, and R D ftpr.P;

 !
AC/.

(1) If
px!
AP is the bisecting ray of †BAC, then

px qy

PQ Š px qy

PR.

(2) If Q 2 qy!
AB, R 2 qy!

AC, and
px qy

PQ Š px qy

PR, then
px!
AP is the bisecting ray of †BAC.

Exercise NEUT.24�. Let P be a neutral plane and let A, B, C, and D be points on

P such that
px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA is a quadrilateral, and suppose that
 !
AB ?  !AD and !

AB ?  !BC. Then

(1) tuABCD is rotund;

(2)
px qy

BC Š px qy

AD iff †ADC Š †BCD; and

(3)
px qy

BC <
px qy

AD iff †ADC < †BCD.

Exercise NEUT.25�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear, both †ACB

and †A0C0B0 are right,
px qy

BC Š px qy

B0C0 and
px qy

AC <
px qy

A0C0, then †ABC < †A0B0C0,
px qy

AB <
px qy

A0B0, and †B0A0C0 < †BAC.

Exercise NEUT.26�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear, †ACB and

†A0C0B0 are both right,
px qy

BC <
px qy

B0C0 and
px qy

AC >
px qy

A0C0, then †ABC > †A0B0C0 and

†BAC < †B0A0C0.

Exercise NEUT.27�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear, both †ACB

and †A0C0B0 are right,
px qy

BC <
px qy

B0C0, and
px qy

AC <
px qy

A0C0, then
px qy

AB <
px qy

A0B0.

Exercise NEUT.28�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear, both †ACB

and †A0C0B0 are right,
px qy

BC <
px qy

B0C0 and
px qy

AB Š px qy

A0B0, then
px qy

A0C0 <
px qy

AC, †BAC <

†B0A0C0 and †ABC > †A0B0C0.
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Exercise NEUT.29�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that both †ACB and †A0C0B0 are right,

px qy

AB Š px qy

A0B0 and †A0B0C0 < †ABC,

then
px qy

A0C0 <
px qy

AC,
px qy

BC <
px qy

B0C0 and †BAC < †B0A0C0.

Exercise NEUT.30�. Let A, B, C, A0, B0, and C0 be points on the neutral plane P
such that A, B, and C are noncollinear, A0, B0, and C0 are noncollinear, both †ACB

and †A0C0B0 are right,
px qy

BC Š px qy

B0C0, and †ABC < †A0B0C0, then
px qy

AC <
px qy

A0C0,
px qy

AB <
px qy

A0B0, and †B0A0C0 < †BAC.

Exercise NEUT.31�. Let P, O, and T be noncollinear points on the neutral plane

P , let S be a member of ins†POT such that†POS < †TOS, and let M be a member

of ins†POT such that
px!
OM is the bisecting ray of †POT , then M 2 ins†TOS.

Exercise NEUT.32�. Let P, O, and T be noncollinear points on the neutral plane

P , S and V be members of ins†POT such that †POS < †TOS and †POV Š
†TOS, and M be a member of ins†POT such that

px!
OM is the bisecting ray of

†POT . Then

(1) S 2 ins†POV and V 2 ins†TOS,

(2)
px!
OM is the bisecting ray of †SOV ,

(3) †TOV Š †POS, and

(4) M 2 ins†TOS \ ins†POV .

Exercise NEUT.33�. Let P be a neutral plane and let A1, B1, M1, A2, B2, and M2

be points on P such that A1 ¤ B1 and A2 ¤ B2, M1 is the midpoint of
px qy

A1B1 and M2

is the midpoint of
px qy

A2B2, then
px qy

A1B1 Š px qy

A2B2 iff
px qy

A1M1 Š px qy

A2M2.

Exercise NEUT.34�. Let P be a neutral plane, O and P be distinct points on P , let

the points on
 !
OP be ordered so that O < P, and let A and B be distinct points on

qy!
OP.

Let M be the midpoint of
px qy

OA and N be the midpoint of
px qy

OB, then A < B iff M < N.

Exercise NEUT.35�. Let P be a neutral plane, O and P be distinct points on P , A

and B be distinct members of
qy!
OP, M be the midpoint of

px qy

OA, and N be the midpoint

of
px qy

OB, then O A B iff O M N.

Exercise NEUT.36�. Let P be a neutral plane and let A1, B1, M1, A2, B2, and M2

be points on P such that A1 ¤ B1, A2 ¤ B2, M1 be the midpoint of
px qy

A1B1 and M2 be

the midpoint of
px qy

A2B2, then
px qy

A1B1 <
px qy

A2B2 iff
px qy

A1M1 <
px qy

A2M2.
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Exercise NEUT.37�. Let A1, B1, A2, and B2 be points on the neutral plane P such

that A1 ¤ B1, A2 ¤ B2, and
px qy

A1B1 Š px qy

A2B2 and let C1 and C2 be points such that

A1 C1 B1, C2 2 qy !
A2B2 and

px qy

A1C1 Š px qy

A2C2, then A2 C2 B2.

Exercise NEUT.38�. Let A1, B1, A2, B2, C1, and C2 be points on the neutral plane

P such that A1 ¤ B1, A2 ¤ B2, C1 2 qy px

A1B1, and C2 2 px qy

A2B2.

(A) If
px qy

A1C1 Š px qy

A2C2 and
px qy

C1B1 Š px qy

C2B2, then
px qy

A1B1 Š px qy

A2B2.

(B) If
px qy

A1C1 Š px qy

A2C2 and
px qy

A1B1 Š px qy

A2B2, then
px qy

C1B1 Š px qy

C2B2.

Exercise NEUT.39�. Let P be a neutral plane and let A, B, C, D, A0, B0, C0, and

D0 be points on P such that: (1) A, B, and C are noncollinear, (2) A0, B0, and C0 are

noncollinear, (3)
px!
AD is the bisecting ray of †BAC, (4)

px !
A0D0 is the bisecting ray of

†B0A0C0. Then †BAC Š †B0A0C0 iff †BAD Š †B0A0D0.

Exercise NEUT.40�. Let P be a neutral plane and let A, B, C, D, A0, B0, C0, and

D0 be points on P such that: (1) A, B, and C are noncollinear, (2) A0, B0, and C0 are

noncollinear, (3) D 2 ins†BAC and D0 2 ins†B0A0C0.

(A) If †BAD Š †B0A0D0 and †CAD Š †C0A0D0, then †BAC Š †B0A0C0.
(B) If †BAD Š †B0A0D0 and †BAC Š †B0A0C0, then †CAD Š †C0A0D0.

Exercise NEUT.41�. Let P be a neutral plane and let A1, B1, C1, D1, A2, B2, C2,

and D2 be points on P such that: (1) A1, B1, and C1 are noncollinear, (2) D1 2
ins†B1A1C1, (3) A2, B2, and C2 are noncollinear, (4) D2 2 ins†B2A2C2, and (5)

†B1A1D1 Š †B2A2D2. Then †B1A1C1 < †B2A2C2 iff †D1A1C1 < †D2A2C2.

Exercise NEUT.42�. Let P be a neutral plane and let A1, B1, C1, D1, A2, B2, C2,

and D2 be points on P such that: (1) A1, B1, and C1 are noncollinear, (2) D1 2
ins†B1A1C1, (3) A2, B2, and C2 are noncollinear, and (4) D2 2 ins†B2A2C2. Then

†B1A1C1 < †B2A2C2 if †B1A1D1 < †B2A2D2 and †D1A1C1 < †D2A2C2.

Exercise NEUT.43�. Let P be a neutral plane and let A1, B1, C1, D1, A2, B2, C2,

and D2 be points on P such that: (1) A1, B1, and C1 are noncollinear, (2)
px !
A1D1 is the

bisecting ray of †B1A1C1, (3) A2, B2, and C2 are noncollinear, and (4)
px !
A2D2 is the

bisecting ray of †B2A2C2. Then †B1A1C1 < †B2A2C2 iff †B1A1D1 < †B2A2D2.

Exercise NEUT.44�. Let P be a neutral plane and let A, B, C, P, and Q be points

on P such that: (1) A, B, and C are noncollinear, (2) P 2 ins†BAC, and (3) Q 2
ins†BAP. Then †QAP < †BAC.
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The reader will note that the next exercise is identical to Exercise NEUT.42, and

at one point we thought to eliminate it. We decided to leave it in, since the method

of proof is different from that for Exercise NEUT.42.

Exercise NEUT.45�. Use Exercise NEUT.44 to prove the following: Let P be a

neutral plane and let A, B, C, D, A0, B0, C0, and D0 be points on P such that: (1) A,

B, and C are noncollinear, (2) A0, B0, and C0 are noncollinear, (3) D 2 ins†BAC

and (4) D0 2 ins†B0A0C0. If †BAD < †B0A0D0 and †CAD < †C0A0D0, then

†BAC < †B0A0C0.

Exercise NEUT.46�. Let A and B be distinct points on the neutral plane P , L be

the perpendicular bisector of
px qy

AB, and ˛ be an isometry of P such that ˛.
px qy

AB/ D px qy

AB,

then one and only one of the following statements is true: (A) ˛ is the identity

mapping { of P onto itself, (B) ˛ D R !
AB

, (C) ˛ D RL, or (D) ˛ D RL ıR !AB
.

Exercise NEUT.47�. Let A, B, and C be distinct points on the neutral plane P and

let ˛ be an isometry of P such that A is a fixed point of ˛ and B is not a fixed point

of ˛. Then A is the midpoint of
px qy

BC iff B A C and ˛.B/ D C.

Exercise NEUT.48�. Let P be a neutral plane, let L and M be distinct lines on

P through the point O, and let L1 and M1 be lines on P such that L1 ? L and

M1 ?M, then L1 and M1 are distinct.

Exercise NEUT.49�. Let P, O, and T be noncollinear points on the neutral plane P
and let S and V be members of ins†POT such that †POS < †TOS and †POV Š
†TOS. Furthermore, let X be any member of ins†TOV and let W be a point such

that †POW < †POX and †XOW Š †POS, then W 2 ins†POV .

Exercise NEUT.50�. Let P be a neutral plane, L and M be lines on P such that

L ?M, and E be a side of L. Then M is a line of symmetry of E .

Exercise NEUT.51�. Let P be a neutral plane and let A, B, and C be noncollinear

points on P such that †ACB is a maximal angle of4ABC.

(A) If D is any member of
qy px

BC, then
px qy

AD <
px qy

AB.

(B) If †ACB is acute, then there exists a point D 2 qy px

BC such that
px qy

AC >
px qy

AD.

(C) If †ACB is right or obtuse, then for every D 2 qy px

BC,
px qy

AC <
px qy

AD.

Exercise NEUT.52�. Let P be a neutral plane, A, B, and C be points on P such

that B A C, and D be a member of P n !AB such that †BAD < †CAD, then †BAD

is acute and †CAD is obtuse.
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Exercise NEUT.53�. Let P be a neutral plane, A, B, and C be noncollinear points

on P such that
px qy

AC <
px qy

AB and D be the point of intersection of the bisecting ray of

†BAC and
px qy

BC (so †BAD Š †CAD), then †ADC is acute, †ADB is obtuse, and
px qy

DC <
px qy

DB.

Exercise NEUT.54�. Let P be a neutral plane and let A, B, and M be distinct

collinear points on P such that
px qy

AM Š px qy

BM, then M is the midpoint of
px qy

AB.

Exercise NEUT.55�. Let P be a neutral plane, A and B be distinct points on P , M

be the midpoint of
px qy

AB, and C be a member of
qy px

AB. Then C 2 qy px

AM iff
px qy

AC <
px qy

BC.

Exercise NEUT.56�. Let P be a neutral plane, A, B, and C be noncollinear points

on P , P be a member of ins†BAC such that
px!
AP is the bisecting ray of †BAC, and

let Q also be a member of ins†BAC. Then Q 2 ins†BAP iff †BAQ < †CAQ.

Exercise NEUT.57�. Let P be a neutral plane, A, B, and C be noncollinear points

on P such that
px qy

AC <
px qy

AB, and D be the midpoint of
px qy

BC.

(A) †ADC is acute and †ADB is obtuse.

(B) If E is the point of intersection of the bisecting ray of †BAC and segment
qy px

BC,

then C E D B and †BAD < †CAD.

Exercise NEUT.58�. Let P be a neutral plane and let A, B, C, D, E, and F be points

on P such that: (1) A, B, and C are noncollinear, (2) D, E, and F are noncollinear,

(3) †BAC Š †EDF and †CBA Š †FED, and (4)
px qy

AB <
px qy

DE. Then
px qy

AC <
px qy

DF and
px qy

BC <
px qy

EF.

Exercise NEUT.59�. Let P be a neutral plane, A, B, and C be noncollinear points

on P , F be the midpoint of
px qy

AB, E be the midpoint of
px qy

AC, and O be the point of

intersection of
qy px

BE and
qy px

CF. If
px qy

AB Š px qy

AC, then
px qy

BE Š px qy

CF,†CBE Š †BCF,†ABE Š
†ACF,

 !
AO is the perpendicular bisector of

px qy

BC and
px qy

AO is the bisecting ray of†BAC.

Exercise NEUT.60�. Let P be a neutral plane and let A, B, and C be noncollinear

points on P , E be the midpoint of
px qy

AC, and F be the midpoint of
px qy

AB. If
px qy

AC <
px qy

AB,

then †ABE < †ACF.

Exercise NEUT.61�. Let P be a neutral plane and let A, B, C, E, and F be points on

P such that: (1) A, B, and C are noncollinear, (2) E is the point where the bisecting

ray of †ABC and
qy px

AC intersect, (3) F is the point where the bisecting ray of †ACB

and
qy px

AB intersect. If
px qy

AB <
px qy

AC, then
px qy

BE <
px qy

CF.



8.14 Exercises for neutral geometry 221

Exercise NEUT.62 (Steiner-Lehmus)�. Let P be a neutral plane and let A, B, C,

E, and F be points on P such that:

(1) A, B, and C are noncollinear,

(2) E is the point of intersection of the bisecting ray of †ABC, and
qy px

AC, and

(3) F is the point of intersection of the bisecting ray of †ACB and
qy px

AB.

If
px qy

BE Š px qy

CF, then
px qy

AB Š px qy

AC.

Exercise NEUT.63�. (A) Let P be a neutral plane and let A, B, C, and D be points

on P such that:

(1) A, B, and C are noncollinear,

(2) †BAC is acute,

(3) B and D are on opposite sides of
 !
AC,

(4) †CAD Š †CAB.

Then D is on the C side of
 !
AB.

(B) Let P be a neutral plane and let A, B, C, and D be points on P such that:

(1) A, B, and C are noncollinear,

(2) †BAC is acute,

(3) B and D are on opposite sides of
 !
AC,

(4) †CAD is acute or right.

Then D is on the C side of
 !
AB.

Exercise NEUT.64�. Let P be a neutral plane and let A1, B1, C1, D1, A2, B2, C2,

and D2 be points on P such that:

(1) A1, B1, and C1 are noncollinear,

(2) A2, B2, and C2 are noncollinear,

(3) B1 and D1 are on opposite sides of
 �!
A1C1,

(4) B2 and D2 are on opposite sides of
 �!
A2C2,

(5) †D1A1C1 Š †B1A1C1,

(6) †D2A2C2 Š †B2A2C2,

(7) †B1A1C1 < †B2A2C2, and †B2A2C2 is acute.

Then †B1A1D1 < †B2A2D2.

Exercise NEUT.65�. Let P be a neutral plane and let A, B, and C be noncollinear

points on P such that each angle of 4ABC is acute, D D ftpr.B;
 !
AC/ and E D

ftpr.C;
 !
AB/, then

qy px

BD and
qy px

CE intersect at a point O which belongs to ins4ABC.
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Exercise NEUT.66�. Let P be a neutral plane and let A, B, C, D, E, and F be

points on P such that: (1) A, B, and C are noncollinear, †ABC and †ACB are both

acute, and
px qy

AC <
px qy

AB, (2) D is the midpoint of
px qy

BC, E is the point of intersection of the

bisecting ray of†BAC and
qy px

BC, and F D ftpr.A;
 !
BC/. If the points on

 !
BC are ordered

so that B < C, then B < D < E < F < C. Moreover,
px qy

AF <
px qy

AE <
px qy

AD <
px qy

AB.

Exercise NEUT.67�. Let P be a neutral plane and let A, B, C, D, E, and F be

points on P such that: (1) A, B, and C are noncollinear, (2) D is the midpoint of
px qy

BC, (3) E is the point of intersection of the bisecting ray of †BAC and
qy px

BC, and (4)

F D ftpr.A;
 !
BC/. If

px qy

AB Š px qy

AC, then D D E D F.

The following exercise will strike the reader as decidedly odd, because we can

hardly imagine a triangle such that the perpendicular bisectors of the sides do not

intersect. But this is all we can prove at this stage of our development. The issue

will be resolved in Chapter 11, Theorem EUC.9.

Exercise NEUT.68�. Let P be a neutral plane, A, B, and C be noncollinear

points on P . Let L, M, and N be the perpendicular bisectors of
px qy

AB,
px qy

AC, and
px qy

BC

respectively. Then either (1) L, M, and N are concurrent at a point O or (2) L kM,

L k N , and M k N .

Exercise NEUT.69�. Let L be a line on a neutral plane P; let A, B, and C be points

on L such that B A C, and let M be the line such that A 2 M and M ? L. We

order the points on L such that A < B. Let X and Y be points on L. Then X < Y iff

RM.Y/ < RM.X/.

Exercise NEUT.70�. Let P be a neutral plane, L and M be lines on P which

intersect at the point O, A be a point on L distinct from O, and X and Y be points on

M distinct from O such that X and Y are on the same side of L. Let the points on

M be ordered so that O < X. Then O < X < Y iff †OAX < †OAY .

Exercise NEUT.71�. Let P be a neutral plane, A, B, and C be noncollinear points

on P , and D be a member of
 !
BC n fB;Cg. Then B D C iff †ACB < †ADB and

†ABC < †ADC.

Exercise NEUT.72�. Let A, B, C, and M be points on the neutral plane P such that

A ¤ B, A ¤ C, M is the midpoint of
px qy

AB and M is the midpoint of
px qy

AC. Then B D C.

Exercise NEUT.73�. Let A and M be distinct points on the neutral plane P . Then

there exists a unique point B such that M is the midpoint of
px qy

AB.
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Exercise NEUT.74�. Let P be a neutral plane, L be a line on P , and 	 be the

mapping of P into P such that: (1) For every member X of L, 	.X/ D X. (2) For

every member X of P n L, 	.X/ is the point such that ftpr.X;L/ is the midpoint of
px qy

X	.X/. Then 	 D RL.

Exercise NEUT.75�. Let P be a neutral plane and let 	 be an isometry of P .

Then:

(A) If A and B are distinct points of P and if M is the midpoint of
px qy

AB, then 	.M/ is

the midpoint of
px qy

	.A/	.B/.

(B) Let A, B, and C be noncollinear points on P . If H is a member of ins†BAC

such that
px!
AH is the bisecting ray of †BAC, then

px !
	.A/	.B/ is the bisecting ray

of †	.B/	.A/	.C/ and if D is the point of intersection of
qy!
AH and

qy px

BC, then

	.D/ is the point of intersection of
qy !
	.A/	.H/ and

qy px

	.B/	.C/.

(C) If L is line on P , Q is a member of P nL, M D pr.Q;L/, and F D ftpr.Q;L/,
then 	.M/ D pr.	.Q/; 	.L// and 	.F/ D ftpr.	.Q/; 	.L//.

Exercise NEUT.76�. Let P be a neutral plane and let A1, B1, C1, D1, E1, F1, A2,

B2, C2, D2, E2, and F2 be points on P such that:

(1) A1, B1, and C1 are noncollinear; A2, B2, and C2 are noncollinear; and

4A1B1C1 Š 4A2B2C2.

(2) 	 is an isometry of P such that 	.4A1B1C1/ D 4A2B2C2, 	.A1/ D A2,

	.B1/ D B2, and 	.C1/ D C2.

(3) D1 is the midpoint of
px qy

B1C1 and D2 is the midpoint of
px qy

B2C2.

(4) E1 is the point of intersection of the bisecting ray of †B1A1C1 and
qy px

B1C1; and

E2 is the point of intersection of the bisecting ray of †B2A2C2 and
qy px

B2C2.

(5) F1 D ftpr.A1;
 �!
B1C1/ and F2 D ftpr.A2;

 �!
B2C2/.

Then 	.D1/ D D2, 	.E1/ D E2, and 	.F1/ D F2.

Exercise NEUT.77�. Let A, B, C, D, and E be points on the neutral plane P such

that A B C, A B D, A D E, and
px qy

BC Š px qy

DE, then A C E.

Exercise NEUT.78�. Let P be a neutral plane and let F , G, and H be distinct

lines on P concurrent at the point O such that no two of them are perpendicular

to each other, Q be a member of F n fOg, R D ftpr.Q;G/, S D ftpr.R;H/ and

T D ftpr.Q;H/. Then S ¤ T .
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Exercise NEUT.79�. Let A, B, and C be noncollinear points on the neutral plane

P and Q be a member of ins†BAC. Then
px!
AQ is the bisecting ray of †BAC iff for

every member T of
qy!
AQ,

px qy

TD Š px qy

TE, where D D ftpr.T;
 !
AB/ and E D ftpr.T;

 !
AC/.

Exercise NEUT.80�. Prove parts (B), (C), and (D) in Theorem NEUT.83.

Exercise NEUT.81�. Without invoking Theorem NEUT.15 parts (4) through (7),

prove that if A ¤ B are points in a neutral plane,

(A)
px qy

AB 6Š px px

AB and
px qy

AB 6Š qy qy

AB;

(B)
px qy

AB 6Š qy px

AB; and

(C)
qy px

AB 6Š px px

AB and
qy px

AB 6Š qy qy

AB.

Exercise NEUT.82�. Let A, B, and C be points on the neutral plane such that

A ¤ B, C 2 qy!
AB, and

px qy

AB Š px qy

AC. Let ' be the isometry such that '.
px qy

AB/ D px qy

AC.

(A) Using only NEUT.1 through NEUT.20, show that if ' is its own inverse, then

B D C. (B) Discuss why this type of proof will not work in the general case,

where ' is not necessarily its own inverse. If it did, we could prove Property R.4 of

Definition NEUT.2 as a theorem.

Exercise NEUT.83�. Let L be a line on a neutral plane P . Let ' be a mapping

obeying Properties (B) through (D) of Definition NEUT.1. Then if every point O of

L is contained in some line
 ��!
A'.A/, where A 62 L, Property (A) of Definition NEUT.1

holds for '.

The following scrap came from some attempts to show that there is a Pasch plane

in which there is a line over which there exists no reflection. It seemed, somehow,

worth saving, as it gives some insight into the structure of fixed lines.

Exercise NEUT.84�. Let L be a line in a neutral plane P , and let A and B be distinct

points on the same side of L. Then if ' is a reflection over L, the lines
 ��!
'.A/B and ��!

A'.B/ intersect at a point P 2 L.



Chapter 9
Free Segments of a Neutral Plane (FSEG)

Acronym: FSEG

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1–CAP.4), 4, 5, 6, 7,

and 8

New Axioms: none

New Terms Defined: free segment, sum, subtraction, ordering (of free segments)

Abstract: Free segments are defined as congruence classes of segments; these are

ordered in a natural way, and this ordering is shown to be transitive and to have

the trichotomy property. Addition of free segments is defined, and its elementary

properties and interactions with ordering are studied. These developments are

sufficient to prove the triangle inequality, and provide a first step toward defining

distance on a neutral plane.

Whether or not two segments on a neutral plane are congruent has nothing to

do with their position on the plane or their orientation. In the previous chapter,

Theorem NEUT.67 (segment construction) showed that given a segment on the

neutral plane, another segment congruent to it can be constructed anywhere on the

plane. Congruence, therefore, ignores position and orientation, and preserves what

we would like to call “length,” or “distance.”

By Theorem NEUT.14, congruence is an equivalence relation. Thus, given a

closed segment
px qy

AB, the collection of all segments which are congruent to
px qy

AB is an

equivalence class. (The behavior of equivalence classes is briefly outlined at the end

of Section 1.4 of Chapter 1.) Thus each segment of the plane belongs to exactly one

© Springer International Publishing Switzerland 2015
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of these equivalence classes, which can be called congruence classes, and each of

them can be named by any of its members.

We give such an equivalence class the slightly fanciful name of “free segment,”

suggesting that we think of all the segments in the class as the same segment,

moved around to different locations and orientations. Literally, a free segment is

not a segment at all, but a collection of them, and we could just as well call it a

congruence class. But we got started with “free segment” and free segment it shall

remain.

With appropriate definitions, free segments can be treated as algebraic objects.

We can compare them using “<” and “>,” we can add them, and we can subtract

them, but only in the case where a smaller free segment is subtracted from a larger

one. Thus, the algebra of free segments is very rudimentary; there is no additive

identity (no zero segments), there is no additive inverse (no negative segments); and

we do not yet have a definition of multiplication—that will come in Chapter 15

(SIM).

One might think that free segments aren’t good for much, but they are actually

quite useful as temporary surrogates for the concepts of “length” and “distance.”

This will be made clearer in Chapter 14, where we show that every line in a

Euclidean plane is an ordered field, complete with positive and negative elements.

Moreover we will show that the positive elements of such a field can be identified

with free segments using a mapping ˚ which we will define shortly in Defini-

tion FSEG.14. This mapping begins a process that will eventuate, in Chapter 14,

Remark OF.14 and Definition OF.16, in a definition of “length” and “distance” for

which our Cartesian selves yearn most earnestly.

9.1 Theorems for free segments

Theorem FSEG.1. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B and C ¤ D. Then there exist points E, F, and G on P such that E F G,
px qy

AB Š px qy

EF, and
px qy

CD Š px qy

FG.

Proof. Let E and H be points on P such that H ¤ E. Then there exists a unique point

(cf Theorem NEUT.67 (Segment Construction)) F on
qy!
EH such that

px qy

EF Š px qy

AB. Let I

be a point such that E F I (cf Property B.3 of Definition IB.1). By Theorem PSH.13

fXj E F Xg D qy!
FI. By Theorem PSH.15

qy!
EF is the union of the disjoint sets

qy qy

EF and
qy!
FI. Let G be the unique point on

qy!
FI such that

px qy

FG Š px qy

CD, then the proof is complete.
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In the particular case where B D C and A B D, we will satisfy the conclusion of

this theorem by letting E D A, F D B, and G D D. ut
Definition FSEG.2. Let P be a neutral plane, and let A and B be distinct points

on P . The set fpx qy

XY j px qy

XY Š px qy

ABg is denoted Œ
px qy

AB � and called the free segment of
px qy

AB. Œ
px qy

AB � is the congruence class of
px qy

AB, that is, its equivalence class under the

equivalence relation Š (cf Theorem NEUT.14).

Definition FSEG.3. Let P be a neutral plane, A, B, C, and D be points on P such

that A ¤ B and C ¤ D.

(A) By Theorem FSEG.1, let E, F, and G be the points on P such that E F G,
px qy

EF Š px qy

AB, and
px qy

FG Š px qy

CD. Then Œ
px qy

EG � is the sum of Œ
px qy

AB � and Œ
px qy

CD �, and is

denoted by Œ
px qy

AB �˚ Œpx qy

CD �.

(B) Œ
px qy

AB � < Œ
px qy

CD � iff
px qy

AB <
px qy

CD (cf. Definition NEUT.70) and Œ
px qy

AB � > Œ
px qy

CD � iff

Œ
px qy

CD � < Œ
px qy

AB �. Œ
px qy

AB � � Œ
px qy

CD � iff
px qy

AB <
px qy

CD or
px qy

AB Š px qy

CD. Œ
px qy

AB � � Œ
px qy

CD � iff

Œ
px qy

CD � � Œpx qy

AB �.

Remark FSEG.3.1. (A) Given an equivalence relation on a set E , it is traditional

to write the equivalence class of an element x 2 E as Œx�; the notation Œ
px qy

AB � is

an amalgamation of this notation with the notation
px qy

AB for closed segment.

(B) A free segment has many names—one for each segment belonging to it. Thus,
px qy

AB Š px qy

CD iff Œ
px qy

AB � D Œpx qy

CD �.

(C) We need to be able to give free segments names which do not refer to specific

segments. We employ small capital script letters, such as S, T , U, and V for this

purpose.

(D) This chapter will deal exclusively with closed segments of the form
px qy

AB and not

with open or semi-open segments such as
qy px

AB,
qy qy

AB, or
px px

AB.

(E) Notice carefully that Definition FSEG.3(A) does not define sums of segments.

In this book we define sums of points, sums of free segments, but never sums

of segments. Also, observe that Definition FSEG.3(B) defines the ordering of

free segments, based on the ordering of segments already defined in Chapter 8.

Theorem FSEG.4. Let S, T , U, and V be free segments of the neutral plane P such

that S D T and U D V, then

(A) S ˚ U D T ˚ V.

(B) S < U iff T < V.

In other words, addition and ordering of free segments are well defined.
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Proof. (A) By Definition FSEG.3 and Theorem FSEG.1 there exist points A, B,

C, D, E, and F on P such that A B C, D E F, S D Œ
px qy

AB �, U D Œ
px qy

BC �, T D
Œ
px qy

DE �, V D Œ
px qy

EF �, S ˚ U D Œ
px qy

AC �, and T ˚ V D Œ
px qy

DF �. By Exercise FSEG.1
px qy

AB Š px qy

DE and
px qy

BC Š px qy

EF. By Exercise NEUT.38(A)
px qy

AC Š px qy

DF and using

Exercise FSEG.1 again, Œ
px qy

AC � D Œpx qy

DF �, so that S ˚ U D T ˚ V.

(B) By Definition FSEG.3 there exist points A, B, C, D, E, F, G, and H on P such

that S D Œpx qy

AB �, U D Œpx qy

CD �, T D Œpx qy

EF �, V D Œpx qy

GH �. By Definition FSEG.2, since

S D T ,
px qy

AB Š px qy

EF; since U D V,
px qy

CD Š px qy

GH. If S < U by Definition FSEG.3
px qy

AB <
px qy

CD, and by Theorem NEUT.73
px qy

EF <
px qy

GH so that by Definition FSEG.3

again, T < V. Interchanging S with T and U with V proves the converse. ut

Theorem FSEG.5 (Trichotomy property for free segments). Let S and T be free

segments of the neutral plane P . Then one and only one of the following statements

is true:

(1) S D T (2) S < T (3) S > T .

Proof. Taking into account Definition FSEG.2 and Exercise FSEG.1 we need to

show that if S ¤ T , then either S < T , or S > T . There exist points A, B, C, and D

on P such that A ¤ B, C ¤ D, S D Œ
px qy

AB � and T D Œ
px qy

CD �. By Theorem NEUT.72

(trichotomy for segments), either
px qy

AB <
px qy

CD or
px qy

AB >
px qy

CD. Since
px qy

AB <
px qy

CD iff

Œ
px qy

AB � < Œ
px qy

CD � and
px qy

AB >
px qy

CD iff Œ
px qy

AB � > Œ
px qy

CD �, the proof is complete. ut
Remark FSEG.6. At this point it would be possible to develop the idea of rational

multiples of free segments, and we do so partially in Exercise FSEG.3. In the interest

of a more complete development which also would encompass rational multiples

of points on a line, we have elected to defer the main part of this discussion to

Chapter 17, Rational Points on a Line.

Theorem FSEG.7 (Transitivity property for free segments). Let S, T , and U be

free segments of the neutral plane P . If S < T and T < U, then S < U.

Proof. There exist points A, B, C, D, E, and F on P (cf Definition FSEG.2) such

that S D Œ
px qy

AB �, T D Œ
px qy

CD �, and U D Œ
px qy

EF �. Furthermore, S < T iff
px qy

AB <
px qy

CD

and T < U iff
px qy

CD <
px qy

EF. Since Theorem NEUT.73 gives transitivity for segments,

S < U. ut
Theorem FSEG.8. Let S, T , and U be free segments of the neutral plane P , then

(I) S ˚ T D T ˚ S and

(II) .S ˚ T /˚ U D S ˚ .T ˚ U/.
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That is to say, the operation ˚ for free segments of the neutral plane P is

commutative and associative.

Proof. By Theorem FSEG.1 there exist points A, B, and C and points E, F, and

G such that A B C, E F G, S D Œ
px qy

AB �, T D Œ
px qy

BC � D Œ
px qy

EF �, and U D Œ
px qy

FG �.

Thus
px qy

BC Š px qy

EF. By Theorem NEUT.56 there exists an isometry ˛ such that ˛.E/ D
B, ˛.F/ D C. Let ˛.G/ D D; since ˛ preserves betweenness and is a collineation,

˛.E/ ˛.F/ ˛.G/, that is B C D. Then
px qy

FG Š px qy

CD so U D Œpx qy

FG � D Œpx qy

CD �.

Then A B C D, S D Œ
px qy

AB �, T D Œ
px qy

BC �, and U D Œ
px qy

CD �. By Definition FSEG.3

S ˚ T D Œpx qy

AB �˚ Œpx qy

BC � D Œpx qy

AC � and T ˚ S D Œpx qy

CB �˚ Œpx qy

BA � D Œpx qy

CA � D Œpx qy

AC �, so that

S ˚ T D T ˚ S. Moreover

.S ˚ T /˚ U D .Œpx qy

AB �˚ Œpx qy

BC �/˚ Œpx qy

CD � D Œpx qy

AC �˚ Œpx qy

CD � D Œpx qy

AD �

and

S ˚ .T ˚ U/ D Œpx qy

AB �˚ .Œpx qy

BC �˚ Œpx qy

CD �/ D Œpx qy

AB �˚ Œpx qy

BD � D Œpx qy

AD �,

so .S ˚ T /˚ U D S ˚ .T ˚ U/. ut
Theorem FSEG.9. Let S, T , U, and V be free segments of the neutral plane P .

(I) If S < T , then S ˚ U < T ˚ U.

(II) If S < T and U < V, then S ˚ U < T ˚ V.

Proof. (I) By Definition FSEG.3 there exist points A, B, C, D, and E on P such

that A B C, A B D, A D E, S D Œ
px qy

AB �, U D Œ
px qy

BC � D Œ
px qy

DE �, and T D Œ
px qy

AD �.

Furthermore, S ˚ U D Œ
px qy

AC � and T ˚ U D Œ
px qy

AE �. Using Exercises FSEG.1

and NEUT.78 we have A C E. Thus
px qy

AC <
px qy

AE and so Œ
px qy

AC � < Œ
px qy

AE �

(cf Definition FSEG.3) (i.e., S ˚ U < T ˚ U).

(II) By Theorem FSEG.7 and part (I) S˚U < T ˚U and T ˚U D U˚T < V˚T D
T ˚ V. By Theorem FSEG.7 (transitivity) S ˚ U < T ˚ V. ut

Theorem FSEG.10. Let S and T be free segments of the neutral plane P . If S < T ,

then there exists a unique free segment U of P such that T D S ˚ U.

Proof. (I: Uniqueness.) If U1 and U2 are free segments such that T D S ˚ U1 D
S ˚ U2, then if U1 < U2, by Theorem FSEG.9(I) S ˚ U1 < S ˚ U2, a

contradiction. Similarly, if U1 > U2, S ˚ U1 > S ˚ U2, also a contradiction.

By Theorem FSEG.5 (trichotomy), U1 D U2.

(II: Existence.) By Definition FSEG.2 there exist points A, B, C, and D on P
such that A ¤ B, C ¤ D, S D Œ

px qy

AB �, T D Œ
px qy

CD �, and
px qy

AB <
px qy

CD. By
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Definition NEUT.70 there exists a point E such that C E D and
px qy

AB Š px qy

CE.

Let U D Œpx qy

ED �, then by Definition FSEG.3 T D S ˚ U. ut

Definition FSEG.11. The free segment U of Theorem FSEG.10 is denoted by T	S

and is “the subtraction of S from T .” Less formally, T 	 S is T minus S.

Theorem FSEG.12. Let U be any free segment of the neutral plane P . Then there

exist free segments S and T of P such that T < S and U D S 	 T .

Proof. Suppose that U D Œ
px qy

GH �; by Property B.3 of Definition IB.1 there exists

a point I such that G H I. By Definition FSEG.3 Œ
px qy

GH � ˚ Œ
px qy

HI � D Œ
px qy

GI �. By

Definition FSEG.11 Œ
px qy

GH � D Œ
px qy

GI � 	 Œ
px qy

HI �. Let S D Œ
px qy

GI � and T D Œ
px qy

HI �, then

by Definition FSEG.3 T < S and U D S 	 T . ut

Theorem FSEG.13. Let O and Q be distinct points on the neutral plane P , L D !
OQ, and let F be the set of all free segments of P . Then for each free segment S 2 F,

there exists a unique point X 2 qy!
OQ such that

px qy

OX 2 S.

Proof. Let
px qy

EF be a segment belonging to S. By Theorem NEUT.67 (segment

construction), for each free segment S D Œ
px qy

EF � 2 F there exists a unique point

X 2 qy!
OQ such that

px qy

EF Š px qy

OX. ut
Definition FSEG.14. Let O and Q be distinct points on the neutral plane P , L D !
OQ, and let F be the set of all free segments of P . For any points E and F in P define

˚Œ
px qy

EF � to be the point X 2 qy!
OQ (whose existence and uniqueness is guaranteed by

Theorem FSEG.13) such that
px qy

EF Š px qy

OX, that is,
px qy

EF Š
px qy

O.˚Œ
px qy

EF �/.

As a consequence of Definition FSEG.14, we have the rather odd-looking

equality Œ
px qy

EF � D
h px qy

O.˚Œ
px qy

EF �/
i
. If we let Œ

px qy

EF � be denoted by S, this becomes

S D Œpx qy

O.˚.S// �.

Theorem FSEG.15. Let O and Q be distinct points on the neutral plane P , L D !
OQ, and let F be the set of all free segments of P .

(A) The mapping ˚ defined in Definition FSEG.14 is a bijection of F onto
qy!
OQ.

(B) If the points on
 !
OQ are ordered so that O < Q, then S < T iff O ˚.S/ ˚.T /

iff ˚.S/ < ˚.T / .

Proof. (A) By Theorem FSEG.13 ˚ is well defined. If S and T are free segments

in F, and ˚.S/ D ˚.T /, then there exist segments in each of S and T
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both of which are congruent to the same
px qy

OX and hence are congruent by

Theorem NEUT.14, so that S D T ; thus, ˚ is one-to-one. Since every segment
px qy

OX 2 Œpx qy

OX � 2 F, ˚ is onto
qy!
OQ.

(B) By Definition FSEG.14, S < T iff Œ
px qy

O˚.S/ � < Œ
px qy

O˚.T / �. By Definition FSEG.3

this is the same as saying that
px qy

O˚.S/ <
px qy

O˚.T /. By Theorem NEUT.74 this is

O ˚.S/ ˚.T /. By Theorem ORD.6 this is true iff either O < ˚.S/ < ˚.T /

or ˚.T / < ˚.S/ < O. Since O < ˚.S/, O < ˚.S/ < ˚.T /. ut
Remark FSEG.16. The mapping ˚ in Definition FSEG.14 is very significant to

the overall development. It allows us to associate any segment on the plane with a

point on a given ray; eventually, in Chapter 14, this will enable us to associate each

segment with a number, which will be its length (cf Definition OF.16).

Theorem FSEG.17 (Triangle inequality). Let A, B, and C be noncollinear points

on the neutral plane P . Then Œ
px qy

AC � < Œ
px qy

AB � ˚ Œpx qy

BC �. That is to say, any edge of a

triangle is smaller than the sum of the other two edges.

Proof. By Theorem NEUT.67 (segment construction) there exists a point D such

that A B D and
px qy

BD Š px qy

BC. By Theorem PSH.37 B 2 ins†ACD. By Defi-

nition NEUT.70 †BCD < †ACD. By Theorem NEUT.40(A) (Pons Asinorum)

†BCD Š †BDC D †ADC. By Theorem NEUT.76 (Transitivity for Angles)

†ADC < †ACD. By Theorem NEUT.91
px qy

AC <
px qy

AD. By Definition FSEG.3

Œ
px qy

AC � < Œ
px qy

AD � D Œ
px qy

AB � ˚ Œ
px qy

BD �. By Exercise FSEG.1 Œ
px qy

BD � D Œ
px qy

BC �. Thus

Œ
px qy

AC � < Œ
px qy

AB �˚ Œpx qy

BC �. ut
Theorem FSEG.18. Let A, B, and C be distinct points on the neutral plane P . Then

Œ
px qy

AC � � Œpx qy

AB �˚ Œpx qy

BC �.

Proof. If A, B, and C are noncollinear, then by Theorem FSEG.17, Œ
px qy

AC � <

Œ
px qy

AB � ˚ Œpx qy

BC �. If A, B, and C are collinear, then by Property B.2 of Definition IB.1

one and only one of the following statements holds: A B C, A C B, or B A C.

If A B C, then by Definition FSEG.3 Œ
px qy

AC � D Œ
px qy

AB � ˚ Œpx qy

BC �. If A C B, then by

Exercise FSEG.2 Œ
px qy

AC � < Œ
px qy

AB � < Œ
px qy

AB � ˚ Œpx qy

BC �. If B A C, then Œ
px qy

AC � < Œ
px qy

BC � <

Œ
px qy

AB �˚ Œpx qy

BC �. ut
Theorem FSEG.19. Let A, B, and C be noncollinear points on the neutral plane

P such that
px qy

BC <
px qy

AC. Then Œ
px qy

AC �	 Œpx qy

BC � < Œ
px qy

AB �.
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Proof. By Theorem FSEG.17 Œ
px qy

AC � < Œ
px qy

AB �˚ Œpx qy

BC �. By Exercise FSEG.6

Œ
px qy

AC �	 Œpx qy

BC � < .Œ
px qy

AB �˚ Œpx qy

BC �/	 Œpx qy

BC �.

By Exercise FSEG.4 .Œ
px qy

AB �˚ Œpx qy

BC �/	 Œpx qy

BC � D Œpx qy

AB �, so Œ
px qy

AC �	 Œpx qy

BC � < Œ
px qy

AB �. ut
Theorem FSEG.20. Let A, B, and C be distinct points on the neutral plane P . Then

Œ
px qy

AC �˚ Œpx qy

CB � D Œpx qy

AB � iff A C B.

Proof. (I: If A C B, then Œ
px qy

AC � ˚ Œ
px qy

CB � D Œ
px qy

AB �.) If A C B, then by

Definition FSEG.3 Œ
px qy

AC �˚ Œpx qy

CB � D Œpx qy

AB �.

(II: If Œ
px qy

AC � ˚ Œ
px qy

CB � D Œ
px qy

AB �, then A C B.) To prove this half we prove the

equivalent statement (contrapositive): If :(A C B), then Œ
px qy

AC � ˚ Œ
px qy

CB � ¤
Œ
px qy

AB �. By Property B.2 of Definition IB.1, either B A C, or A B C. Using

Theorem FSEG.5 (trichotomy for free segments), we need only show that if

either B A C or A B C, then Œ
px qy

AC �˚ Œpx qy

BC � > Œ
px qy

AB �. However, this is done in

the proof of Theorem FSEG.18. ut

9.2 Exercises for free segments

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise FSEG.1�. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B and C ¤ D. Then Œ
px qy

AB � D Œpx qy

CD � iff
px qy

AB Š px qy

CD.

Exercise FSEG.2�. Let A, B, C, and D be points on the neutral plane P such that

A ¤ B and C ¤ D. Then Œ
px qy

AB � < Œ
px qy

AB �˚ Œpx qy

CD �.

Exercise FSEG.3�. Let A and B be distinct points on the neutral plane P and let

m and n be natural numbers. For the purposes of this exercise, we use mathematical

induction to make the following definitions:

(1): Define 1Œ
px qy

AB � D Œ
px qy

AB �, and for any n, if a point C has been determined so that

nŒ
px qy

AB � D Œpx qy

AC �, define .nC 1/Œpx qy

AB � D Œpx qy

AC �˚ Œpx qy

AB �.

(2): Using Theorem NEUT.50, let M be the midpoint of
px qy

AB. Then define 1
2
Œ
px qy

AB � D
Œ
px qy

AM �, and if for any m, C has been determined so that 1
2m Œ

px qy

AB � D Œ
px qy

AC �, let D

be the midpoint of
px qy

AC and define 1

2mC1 Œ
px qy

AB � D Œpx qy

AD �.

www.springer.com
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(3): For any n and m, define n
2m Œ

px qy

AB � D 1
2m

�
nŒ

px qy

AB �
�
.

Let A, B, C, and D be points on the neutral plane such that A ¤ B and C ¤ D; using

the definitions above show the following:

(I) If Œ
px qy

AB � < Œ
px qy

CD �, then for any natural numbers n and m,

(A) nŒ
px qy

AB � < nŒ
px qy

CD �,

(B) 1
2m Œ

px qy

AB � < 1
2m Œ

px qy

CD �, and

(C) n
2m Œ

px qy

AB � < n
2m Œ

px qy

CD �.

(II) n
2m .Œ

px qy

AB �˚ Œpx qy

CD �/ D n
2m Œ

px qy

AB �˚ n
2m Œ

px qy

CD �.

Exercise FSEG.4�. If S and T are any free segments of the neutral plane P such

that S < T , then .T ˚ S/	 S D T and .T 	 S/˚ S D T .

Exercise FSEG.5�. Let S, T , and U be free segments of the neutral plane P .

(A) If U < S and U < T , then .S ˚ T /	 U D .S 	 U/˚ T D .T 	 U/˚ S.

(B) If T ˚ U < S, then S 	 .T ˚ U/ D .S 	 T /	 U D .S 	 U/	 T .

Exercise FSEG.6�. Let S, T , and U be free segments of the neutral plane P such

that U < S and U < T . If S < T , then S 	 U < T 	 U.

Exercise FSEG.7�. Let S, T , and U be free segments of the neutral plane P such

that S ˚ U < T ˚ U, then S < T .

Exercise FSEG.8�. Let S, T , U, and V be free segments of the neutral plane P such

that T < S and V < U, then .S 	 T /˚ .U 	 V/ D .S ˚ U/	 .T ˚ V/.

Exercise FSEG.9�. Let S, T , U, and V be free segments of the neutral plane P
such that T < S and V < U, then S 	 T D U 	 V iff S ˚ V D T ˚ U.

Exercise FSEG.10�. If S and T are free segments of the neutral plane P such that

T < S, then S 	 T < S and S 	 .S 	 T / D T .

Exercise FSEG.11. If S, T , and U are any free segments of the neutral plane P ,

then .S˚ T /˚ U D S˚ .T ˚ S/ (the operation˚ is associative on the set F of free

segments.

Exercise FSEG.12. Construct a theory FANG of free angles analogous to that

developed in this chapter for free segments, based on the following definition: the

free angle FA.†BAC/ D f†XYZ j †XYZ Š †BACg.



Chapter 10
Rotations About a Point of a Neutral Plane
(ROT)

Acronym: ROT

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1–CAP.4), 4, 5, 6, 7, 8,

and 9

New Axioms: none

New Terms Defined: (point) rotation, point reflection, inverse of a rotation

Abstract: This chapter defines point rotations and point reflections (about a point

O) on a neutral plane, and derives their elementary properties to the extent possible

without a parallel axiom. It ends with a classification of isometries of a neutral plane,

and proof of the existence of a “square root” of a rotation.

A rotation of a neutral plane about a point O is the composition of two reflections

over lines intersecting at O; thus every rotation is a collineation. Rotations were not

discussed in Chapter 3 because reflections had not yet been defined there.

In this chapter we develop those properties of rotations which are not dependent

on a parallel axiom. In Chapter 13, after the parallel axiom is invoked, rotations will

be used to define half-rotations which are collineations but not isometries. These in

turn will be used to prove the existence of dilations (cf Definition CAP.17) in the

Euclidean plane, and in Chapter 14 these will be used to define multiplication of

points on a line.
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236 10 Rotations About a Point of a Neutral Plane (ROT)

10.1 Definitions and theorems for rotations

Definition ROT.1. (A) A mapping ˛ from the neutral plane P onto itself is a

rotation about the point O iff there exist distinct lines L and M which intersect

at O, such that ˛ D RM ıRL. A rotation may sometimes be referred to as a

point rotation. See Figure 10.1.

(B) If, in part (A), L ? M, then the rotation ˛ is a point reflection about O.

A point reflection about O is denoted by RO. See Figure 10.2.

Fig. 10.1 Showing action of
a rotation ˛ D RM ıRL;
M is the line of symmetry of
†AO˛.A/.

M

L
A

α(A)

B

α(B)

O

RL(B)

RLRM

Fig. 10.2 Showing action of
the point reflection
RO D RM ıRL, where M
and L are perpendicular.

RL(B)

O ARO(A)

B

RO(B)

M

L

RM

RL

The rotation (or point reflection) ˛ defined above is a composition of reflections

and thus is a bijection and an isometry (cf Definition NEUT.3(A)). Since there

is exactly one reflection over any line (cf Property R.2 of Definition NEUT.2) a

rotation � D RL ı RM is completely determined by the two lines determining
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the reflections. It will follow from Theorem ROT.20(A) that the action of �.X/ at a

single point X ¤ O determines its action at every point of the plane.

A rotation does not have a “sense”; it does not rotate a point either in the positive

or negative (counterclockwise or clockwise) “direction.” It is determined entirely by

the final position of the points it rotates. Reverting back to the traditional measure

of angle by “degrees”: a 270 degree rotation counterclockwise is the same as a 90

degree rotation clockwise.

Theorem ROT.2. If ˛ is a rotation of the neutral plane P about the point O, then

O is a fixed point of ˛ and ˛ has no other fixed points.

Proof. By Definition ROT.1 there exist distinct lines L and M on P such that

L \ M D fOg and RO D RM ı RL. O is a fixed point of ˛ since by

Definition NEUT.1(A) ˛.O/ D RM.RL.O// D RM.O/ D O.

Suppose X ¤ O is a fixed point for ˛. Then ˛.X/ D RM.RL.X// D X. If

X 2 L, then RL.X/ D X and thus RM.X/ D X, so that X 2 M and X D O, a

contradiction; therefore, X 62 L.

Then the fixed line
 ����!
XRL.X/ for L and the fixed line �������������!RL.X/RM.RL.X// D �������!RL.X/˛.X/ D ����!RL.X/X

of M are the same. By Theorem NEUT.44 both M and L are perpendicular to

this line, and since they both contain O, by Theorem NEUT.48(A) M D L,

contradicting our assumption that M and L are distinct. ut
Theorem ROT.3. Let RO be a point reflection about the point O on a neutral

plane P .

(A) If X 2 PnfOg, then X O RO.X/; also
px qy

OX Š px qy

ORO.X/ so that O is the midpoint

of
px qy

XRO.X/.

(B) Every line L containing O is a fixed line for RO.

Proof. (A) By Definition ROT.1 there exist lines L and M such that L \M D
fOg, L ? M, and RO D RM ı RL. By Definition NEUT.3(A) RO is

an isometry, and by Theorem ROT.2 O is a fixed point for ˛; hence by

Theorem NEUT.15(5), RO.
px qy

OX/ D px qy

RO.O/RO.X/ D
px qy

ORO.X/, so that
px qy

OX Š
px qy

ORO.X/. Thus, to show that O is the midpoint of
px qy

XRO.X/ all we need to show

is that X O RO.X/ (cf Definition NEUT.3(C)).

(Case 1: X 2 .P n L [M/.) By Theorem NEUT.54 L is the perpendicular

bisecting line of
px qy

XRL.X/ so that L ?  ����!XRL.X/. By Theorem NEUT.47(A)

M k  ����!XRL.X/. By Exercise PSH.14
 ����!
XRL.X/ � .X side of M/ so that X and
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RL.X/ belong to the same side of M. By Definition NEUT.1(B) X and RL.X/

are on opposite sides of L; also RL.X/ and RO.X/ D RM.RL.X// are on

opposite sides of M. They are also on the same side of L, which is opposite

X. By Theorem PSH.12 (plane separation) X and RM.RL.X// are on opposite

sides of M and on opposite sides of L.

By Definition IB.11, there exists a point Q such that
px qy

XRL.X/\L D fQg. By

Definition NEUT.1(B) Q and RM.Q/ D RO.Q/ are on opposite sides of M;

thus, by Axiom PSA Q O ˛.Q/. By Theorem NEUT.15(8) and the fact that

RO.O/ D O, RO.†XOQ/ D †RO.X/ORO.Q/, so by Definition NEUT.3(B)

(congruence) †XOQ Š †RO.X/ORO.Q/. Applying Exercise NEUT.12 we

get X O RO.X/.

(Case 2: X 2 L.) Note that RO.X/ D RM.RL.X// D RM.X/; since L is

a fixed line for M, RO.X/ 2 L, and by Definition NEUT.1(B) X and RM.X/

are on opposite sides of M. Then by Axiom PSA X O RO.X/.

(Case 3: X 2M.) The proof is the same as Case 2, with the roles of M and

L interchanged.

(B) Let L be any line containing O, and let X 2 L. Then by part (A), X O RO.X/,

and by Definition IB.1, L D  !XO D  ����!XRO.X/, so RO.X/ 2 L. Therefore L is a

fixed line for RO. ut
The following theorem says that a point reflection about O is the composition of

two line reflections over any two perpendicular lines containing O. That is, the point

reflection does not depend on the choice of the perpendicular lines, and therefore

there is only one point reflection about a given point.

Theorem ROT.4. Let P be a neutral plane and let J , K, L, and M be lines on P
concurrent at O such that J ? K and L ?M. Then RK ıRJ D RM ıRN .

Proof. Let ˛ D RK ı RJ and Let ˇ D RM ı RL, then ˛.O/ D O D ˇ.O/.

Furthermore, if Q is any member of P n fOg, then by Theorem ROT.3 Q O ˛.Q/,

Q O ˇ.Q/,
px qy

OQ Š px qy

O˛.Q/ Š px qy

Oˇ.Q/. By Theorem PSH.13 ˇ.Q/ 2 qy !
O˛.Q/, so that

by Property R.3 of Definition NEUT.2 ˇ.Q/ D ˛.Q/. Since Q is any member of

P n fOg, ˇ D ˛. ut
Corollary ROT.5. If lines L and M on neutral plane P are concurrent at O and if

L ?M, then RM ıRL D RL ıRM.

Proof. In Theorem ROT.4 take K D L and J DM. ut
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Corollary ROT.6. If P is a neutral plane and if O is any point on P , then RO ı
RO D { (the identity mapping of P onto itself).

Proof. Let L and M be any lines on P concurrent at O, then RO ı RO D .RL ı
RM/ ı .RL ıRM/ D .RL ıRM/ ı .RM ıRL/ D .RL ı .RM ıRM// ıRL D
RL ıRL D {. ut
Corollary ROT.7. Let O be a point on the neutral plane P , and let L and M be

perpendicular lines intersecting at O. Then for any X 2 L, RO.X/ D RM.X/. That

is, the restriction of RO to L is equal to the restriction of RM to L.

Proof. By Theorem ROT.4, RO D RM ı RL. If X is any point of L, RO.X/ D
RM.RL.X// D RM.X/. ut
Theorem ROT.8. Let P be a neutral plane, O be a point on P , and ˛ be a mapping

of P such that ˛.O/ D O. If for every member of X of P n fOg, O is the midpoint of
px qy

X˛.X/, then ˛ D RO.

Proof. Let Y be any member of P n  ��!X˛.X/, L D  !OY , and M D pr.O;L/. Let

ˇ D RM ıRL. By Theorem ROT.4 O is the midpoint of
px qy

Xˇ.X/ so that X O ˇ.X/

and
px qy

OX Š px qy

Oˇ.X/. Since O is the midpoint of
px qy

X˛.X/, X O ˛.X/ and
px qy

OX Š px qy

O˛.X/.

Since congruence is an equivalence relation for segments (Theorem NEUT.14),
px qy

O˛.X/ Š px qy

Oˇ.X/. By Theorem PSH.13 ˇ.X/ 2 qy !
O˛.X/ and so by Property R.3

of Definition NEUT.2 ˇ.X/ D ˛.X/. Thus ˛ D RO. ut
Theorem ROT.9. Let P be a neutral plane.

(A) If L and M are lines on P such that O 2 L \M and RM ı RL D {, then

L DM.

(B) Let O and X be any points of P such that X ¤ O; there is no rotation ˛ about

O such that ˛.
px!
OX/ D px!

OX.

Proof. (A) If L and M were distinct, then by Theorem ROT.2 the only fixed point

of RM ıRM would be O. Hence L DM.

(B) If there were such a rotation ˛, then by Theorem NEUT.15(5) ˛.
px qy

OX/ D px qy

O˛.X/

so that
px qy

OX Š px qy

O˛.X/. Since ˛.X/ 2 qy!
OX, by Property R.4 of Definition NEUT.2

˛.X/ D X, so that X is a fixed point for ˛, contradicting Theorem ROT.2. ut
Theorem ROT.10 (A rotation cannot be a line reflection). Let P be a neutral

plane, ˛ be a rotation of P about O, and L be any line on P through O. Then

˛ ¤ RL.
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Proof. Since by Theorem ROT.2 O is the only fixed point of ˛, and whereas every

point on L is a fixed point of RL, ˛ ¤ RL. ut
Theorem ROT.11. Let P be a neutral plane, L, M, and N be distinct lines on P
concurrent at O. Then there exists a unique line J such that RN ıRMıRL D RJ .

Proof. We shall prove that the mapping ˛ D RN ı RM ı RL is a mirror

mapping RJ . Once this is done, by Property R.3 (closure) of Definition NEUT.2

RJ is a reflection. By Remark NEUT.1.1, J is the only possible axis for this

mapping, proving uniqueness.

Let Q be any point on L distinct from O. By Definition NEUT.1(A) ˛.O/ D O

and RL.Q/ D Q. Since Q 2 L, ˛.Q/ D RN .RM.Q//; since RN ı RM is a

rotation, ˛.Q/ ¤ Q by Theorem ROT.2. Let J be the line of symmetry of
px qy

Q˛.Q/

(i.e., the perpendicular bisecting line of
px qy

Q˛.Q/, (cf Theorem NEUT.52(A)). Then

Q is a fixed point of RJ ı ˛.

By Theorem NEUT.15(5) and the fact that ˛.O/ D O, ˛.
px qy

OQ/ D px qy

O˛.Q/. By

Definition NEUT.3(B)
px qy

OQ Š px qy

O˛.Q/. By Theorem NEUT.63 J is the line of

symmetry of †QO˛.Q/ and in particular, O 2 J . Since O and Q are fixed points of

RJ ı ˛, by Theorem NEUT.37 either RJ ı ˛ D { or RJ ı ˛ D R !
OQ
D RL.

If RJ ı ˛ were equal to RL, then RL D RJ ı ˛ D RJ ı RN ı RM ı RL,

and RJ ıRN ıRM D {, that is RN ıRM D RJ . Thus the rotation RN ıRM

is equal to the reflection RJ , which is impossible by Theorem ROT.10. Therefore

RJ ı ˛ D {, that is, ˛ D RJ ut
Theorem ROT.12. If L, M, and N are distinct lines on the neutral plane P
concurrent at O, then RM ıRN ıRL DRL ıRN ıRM.

Proof. By Theorem ROT.11 there exists a unique line J such that RMıRN ıRL D
RJ . By Remark NEUT.1.3 R�1J D RJ . By elementary algebra

R�1J D R�1L ıR�1N ıR�1M D RL ıRN ıRM.

Thus RM ıRN ıRL DRL ıRN ıRM. ut
The following theorem allows any rotation about a point to be written as the

composition of two reflections over lines containing this point, where one of these

lines has been chosen arbitrarily.
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Theorem ROT.13. Let P be a neutral plane, L, M, N be lines on P concurrent

at O such that M ¤ N . Then

(A) There exists a unique line J through O such that RL ıRJ D RN ıRM.

(B) There exists a unique line K through O such that RK ıRL D RN ıRM.

Proof. (A) (Case 1: L D N .) RN ı RJ D RN ı RM iff RJ D RM. By

Remark NEUT.1.1 RJ D RM iff J DM.

(Case 2: L DM.) RM ıRJ D RN ıRM iff RJ D RM ıRN ıRM.

Hence J is the line of Exercise NEUT.8, i.e. J D RM.N /.
(Case 3: L, M, and N are distinct.) RL ı RJ D RN ı RM iff RJ D

RL ıRN ıRM Hence J is the line given by Theorem ROT.11.

(B) By part (A), there exists a unique line K through O such that RL ı RK D
RM ıRN . Then taking inverses, we have RK ıRL D RN ıRM. ut

Remark ROT.14. Parts (A) and (B) of the next theorem provide a standard way

to construct a rotation RM ı RL that carries one ray of an angle into the other.

Thus, specifying these two rays is all we need to determine the action of the rotation

everywhere on the plane.

Theorem ROT.15. Let O, A, and B be noncollinear points on the neutral plane P ,

and let L be the line of symmetry of †AOB.

(A) There exists a unique rotation � about O such that �.
px!
OA/ D px!

OB; and � D
RL ıR !OA

D R !
OB
ıRL.

(B) If B0 is the point on
px!
OB such that

px qy

OB0 Š px qy

OA, L is the line of symmetry (i.e., the

perpendicular bisecting line) of
px qy

AB0.
(C) Let P be a point such that P 62 †AOB, where both †AOP and †POB are

defined, with lines of symmetry M and N , respectively. Then � D RN ıRM

is the rotation that carries
px!
OA to

px!
OB.

Proof. (A) (I: Existence.) By Theorem NEUT.20 RL.
px!
OA/ D px!

OB. Hence if we let

� D RL ıR !OA
by Definition NEUT.1(A), we get

�.
px!
OA/ D RL.R !OA

.
px!
OA// D RL.

px!
OA/ D px!

OB.

(II: Uniqueness.) Suppose � is a rotation of P about O such that �.
px!
OA/ D px!

OB.

By Theorem ROT.13 there exists a line S through O such that RS ıR !OA
D

�. By Definition NEUT.1(A)

�.
px!
OA/ D .RS ıR !OA

/.
px!
OA/ D RS.R !OA

.
px!
OA// D RS.

px!
OA/ D px!

OB.
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By Exercise NEUT.9 S is a line of symmetry for †AOB and by Theorem

NEUT.26, there is only one such line; therefore, S D L so � D RL ıR !OA
.

Now R !
OB
ıRL.

px!
OA/ D px!

OB, so that by the uniqueness argument just above,

R !
OB
ıRL D �.

(B) Follows immediately from Theorem NEUT.63.

(C) Note that the hypotheses of this part are satisfied if P 2 ins†AOB. By

Theorem NEUT.20 RM.
px!
OA/ D px!

OP, and RN .
px!
OP/ D px!

OB. Let � D RN ıRM;

then �.
px!
OA/ D px!

OB. M ¤ N , for otherwise, A, B, and O would be collinear;

thus � is a rotation. ut
Theorem ROT.16. Let ˛ be an isometry of the neutral plane P which has one and

only one fixed point O. Then there exist distinct lines L and M on P such that

L \M D fOg and ˛ D RL ıRM so that ˛ is a rotation of P about O.

Proof. Let X be any member of PnfOg. Since ˛ has only one fixed point, ˛.X/ ¤ X.

By Property R.5 of Definition NEUT.2 (existence of angle reflection), we may let

L be the line of symmetry for the angle †XO.˛.X//; then O 2 L. Then RL is the

reflection such that RL.
px!
OX/ D px !

O˛.X/, and let Y D RL.˛.X//, which is a member

of
px!
OX. Let ˇ D RL ı ˛. Then ˇ.X/ D Y and since X and Y are on the same ray,

and ˇ is an isometry, by Property R.4 of Definition NEUT.2 (linear scaling), Y D X;

therefore X is a fixed point for ˇ. Since O is a fixed point for both RL and ˛, it also

is a fixed point for ˇ.

By Theorem NEUT.37 either ˇ is the identity mapping { of P onto itself, or

ˇ D R !
OX

. If ˇ were equal to {, then ˛ would be equal to RL, contradicting

Theorem ROT.10 (a rotation cannot be a reflection). Hence ˇ D R !
OX

and since

we already know ˇ D RL ı˛, R !
OX
D RL ı˛; applying RL to both sides, we have

˛ D RL ıR !OX
, or ˛ D RL ıRM, where M D !OX. ut

Theorem ROT.17. Let P be a neutral plane, O be a point on P , and ˛1 and ˛2 be

rotations of P about O. Then either ˛2 ı˛1 is the identity mapping { of P onto itself

(in which case ˛1 ı ˛2 D ˛2 ı ˛1 D {) or ˛2 ı ˛1 is a rotation of P about O.

Proof. By Definition ROT.1 there exist distinct lines L1 and M1 as well as distinct

lines L2 and M2 such that L1 \M1 \ L2 \M2 D fOg, ˛1 D RM1 ı RL1 and

˛2 D RM2 ı RL2 , so that ˛2 ı ˛1 D .RM2 ı RL2 / ı .RM1 ı RL1 / D RM2 ı
.RL2 ı .RM1 ıRL1 //. By Theorem ROT.11 there exists a unique line J on P such

that RL2 ıRM1 ıRL1 D RJ , thus ˛2 ı ˛1 D RM2 ıRJ . If J DM2, then by
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Remark NEUT.1.3 ˛2 ı ˛1 D {. If J ¤M2, then by Definition ROT.1 ˛2 ı ˛1 is a

rotation of P about O. ut
Theorem ROT.18. Let O be a point on a neutral plane P , and ˛ a rotation of P
about O. Then there exists a unique rotation ˇ of P about O such that ˇ ı ˛ D {.

That is, ˇ D ˛�1, the inverse of ˛. Moreover, if ˛ D RMıRL, then ˇ D RLıRM.

Proof. (I: Existence.) By Definition ROT.1 there exist distinct lines L and M on P
such that L\M D fOg and ˛ D RM ıRL. Let ˇ D RL ıRM. Then ˇ ı˛ D
.RL ıRM/ ı .RM ıRL/ DRL ı ..RM/ ıRM/ ıRL DRL ı .{ ıRL/ D
RL ıRL D {.

(II: Uniqueness.) This follows immediately from Theorem ROT.15(A), but here is

a purely algebraic proof. If ˇ and ˇ0 are rotations such that ˛ ı ˇ D { and

˛ ı ˇ0 D {, then ˛ ı ˇ D ˛ ı ˇ0. By part I there exists a rotation ˛0 such that

˛0 ı˛ D {. Hence ˛0 ı .˛ ıˇ/ D ˛0 ı .˛ ıˇ0/, that is (˛0 ı˛/ıˇ D .˛0 ı˛/ıˇ0,
so that ˇ D ˇ0. ut

Theorem ROT.19. Let ˛ be a rotation about a point O of a neutral plane P .

(A) If ˛ has a fixed line, then ˛ is a point reflection about O.

(B) If ˛ is not a point reflection, then for every X ¤ O, ˛.
px!
OX/ ¤ px!

OX.

Proof. (A) We prove the contrapositive; that is, if ˛ is not a point reflection, then ˛

has no fixed line. Let L be any line on P .

(Case 1: O 2 L.) Let X be any point on L distinct from O. Since ˛ is not a

point reflection about O, by Exercise ROT.2 ˛.X/ …  !OX. Since ˛.O/ D O by

Theorem NEUT.15(1) ˛.L/ D ˛. !OX/ D ��!O˛.X/. Thus ˛.L/ ¤ L.

(Case 2: O … L.) Let M D pr.O;L/ and let U D ftpr.O;L/. (cf

Theorem NEUT.48(A) and Definition NEUT.99), by case 1, ˛.M/ ¤M. By

Corollary NEUT.44.1 ˛.M/ ? ˛.L/. By Exercise NEUT.48 ˛.L/ ¤ L.

(B) By the contrapositive of part (A), since ˛ is not a point reflection,
 !
OX ¤ ��!O˛.X/

and
px!
OX ¤ px !

O˛.X/. ut
Theorem ROT.20. Let P be a neutral plane.

(A) If O, X, and Y are noncollinear points on P such that
px qy

OX Š px qy

OY, then there

exists a unique rotation ˛ of P about O such that ˛.X/ D Y.

(B) If X and Y are distinct points on P and if O is the midpoint of
px qy

XY, then there

exists a unique point reflection ˇ of P about O such that ˇ.X/ D Y.
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Proof. (A) By Theorem ROT.15 (A) there exists a unique rotation ˛ such that

˛.
px!
OX/ D px!

OY . Since ˛ is an isometry,
px qy

OY Š px qy

OX Š px qy

O˛.X/ and since

˛.X/ 2 qy!
OY , by Property R.4 of Definition NEUT.2, ˛.X/ D Y .

If ˛ and ˇ are rotations of P about O such that ˛.X/ D Y and ˇ.X/ D Y ,

then X is a fixed point of ˇ�1 ı˛. By Theorem ROT.2 ˇ�1 ı˛ is not a rotation;

by Theorem ROT.17 ˇ�1 ı ˛ D { so ˛ D ˇ, thus showing uniqueness.

(B) If J and K are any lines through O which are perpendicular to each other and

if ˇ D RK ıRJ , then by Theorem ROT.3 X O ˇ.X/ and
px qy

OX Š px qy

Oˇ.X/. By

the definition of midpoint,
px qy

OX Š px qy

OY and X O Y so by Theorem PSH.15,

ˇ.X/ 2 qy!
OY . By Theorem NEUT.14,

px qy

Oˇ.X/ Š px qy

OY; by Property R.4 of

Definition NEUT.2 ˇ.X/ D Y . Then ˇ is unique because by Theorem ROT.4

there is only one point reflection about any point O. ut
Theorem ROT.21. Let P be a neutral plane, O be a point on P , and ˛ and ˇ be

rotations of P about O. Then ˇ ı ˛ D ˛ ı ˇ.

Proof. Let M be any line on P through O, then by Theorem ROT.13 there exist

unique lines L and N on P through O such that ˛ D RMıRL and ˇ D RN ıRM,

so that ˇ ı ˛ D .RN ıRM/ ı .RM ıRL/ D RN ıRL. Using Theorem ROT.12

and Remark NEUT.1.3 we get

˛ ı ˇ D .RM ıRL/ ı .RN ıRM/ D RM ı .RL ıRN ıRM/

D RM ı .RM ıRN ıRL/ D .RM ıRM/ ı .RN ıRL/

D { ı .RN ıRL/ D RN ıRL D ˇ ı ˛. ut
The following theorem shows that a rotation is what we think of as a “rigid

motion.”

Theorem ROT.22. Let O, A, and B be points in the neutral plane P , where A ¤ O

and B ¤ O, and let ˛ be a rotation about O. Then †AO˛.A/ Š †BO˛.B/.

Proof. By Theorem ROT.15 there exists a rotation ˇ such that
px!
OB D ˇ.

px!
OA/ D

px !
Oˇ.A/. Then by Theorem NEUT.15(8) and Theorem ROT.21,

ˇ.†AO.˛.A/// D †ˇ.A/Oˇ.˛.A// D †ˇ.A/O˛.ˇ.A//
D px !

Oˇ.A/[ px !
O˛.ˇ.A// D px !

Oˇ.A/[˛.px !
Oˇ.A//

D px!
OB[˛.px!OB/ D px!

OB[ px !
O˛.B/ D †BO˛.B/. ut

Theorem ROT.23. Under composition of mappings the set of rotations of a neutral

plane P about the point O on P , together with the identity mapping { is an abelian

group.



10.1 Definitions and theorems for rotations 245

Proof. By Theorem ROT.17 the set of rotations is closed under composition; by

Theorem ROT.18 inverses exist and are rotations; therefore by Bijections forming a

group in Section 1.5, the rotations form a group. By Theorem ROT.21, the group is

abelian. ut
Theorem ROT.24. Let P be a neutral plane, L be a line on P , A and B be distinct

points on L, M D pr.A;L/, and N D pr.B;L/, then RN ıRM D RB ıRA.

Proof. By Definition ROT.1, Corollary ROT.5, and Remark NEUT.1.3,

RB ıRA D .RN ıRL/ ı .RL ıRM/

D .RN ı .RL ıRL/ ıRM/ D RN ıRM. ut
Theorem ROT.25. On the neutral plane P , let ˛ be an isometry which has no

fixed points. Then either there exist three distinct lines L, M, N on P such that

˛ D RL ı RM ı RN or there exist distinct lines L and M0 on P such that ˛ D
RL ıRM0 .

Proof. Let Q be any point on P . Then ˛.Q/ ¤ Q. Let L be the line of symmetry

(i.e., the perpendicular bisecting line of
px qy

Q˛.Q/ (cf Theorem NEUT.52(A)). Since

RL.˛.Q// D Q, Q is a fixed point of RL ı ˛. If R ı ˛ has no fixed point different

from Q, then by Theorem ROT.16 RL ı ˛ is a rotation of P about Q and there exist

distinct lines M and N which are concurrent at Q such that RL ı ˛ D RM ıRN .

Thus in this case ˛ D RL ıRM ıRN . If RL ı ˛ has a fixed point G distinct from

Q but has no fixed point off of
 !
QG, then by Theorem NEUT.37 RL ı ˛ D R !

QG
so

if M0 D  !QG, then ˛ D RL ıRM0 . If RL ı ˛ had a fixed point off of
 !
QG, then by

Theorem NEUT.24, RL ı ˛ would be the identity mapping { and ˛ would be equal

to RL and this would contradict the fact that ˛ has no fixed points. ut

Theorem ROT.26 (Classification of isometries). Let 	 be an isometry of the

neutral plane P , then one and only one of the following statements is true:

(1) 	 is the identity mapping { of P onto itself.

(2) There exists a line H of P such that 	 D RH.

(3) There exist distinct lines J and K on P such that 	 D RK ıRJ .

(4) There exist distinct lines L, M, and N on P such that

	 D RN ıRM ıRL.

Proof. If 	 has three noncollinear fixed points, then by Theorem NEUT.24 	 D {.

If 	 has two distinct fixed points A and B but no fixed points off of
 !
AB, then by
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Theorem NEUT.37 ˛ D R !
AB

. If 	 has one and only one fixed point O on P , then

by Theorem ROT.16 there exist distinct lines J and K such that J ı K D fOg and

	 D RK ıRJ . If 	 has no fixed point then by Theorem ROT.25, either there exist

distinct lines L, M, such that 	 D RM0 ıRL or there exist three distinct lines L,

M, and N on P such that 	 D RN ı RM ı RL. The proof of Theorem ROT.25

makes clear the fact that these cases are mutually exclusive. ut
Theorem ROT.27. Let P be a neutral plane, O be a point on P , and A, B, and C

be points on P such that either (1) A O B and
 !
OC ?  !OA, or (2) A, O, and B are

noncollinear and C 2 ins†AOB and †AOC Š †COB; let ˛ and ˇ be rotations of

P about O such that ˛.
px!
OA/ D px!

OC and ˇ.
px!
OC/ D px!

OB; then ˛ D ˇ.

Proof. Since ˛ is an isometry, ˛.†AOC/ D †˛.A/˛.O/˛.C/ D †˛.A/O˛.C/ D
†CO˛.C/. By definition of congruence †AOC Š †CO˛.C/; congruence is an

equivalence relation (Theorem NEUT.14) so †CO˛.C/ Š †COB.

If A O B, by Definition IB.11 A and B are on opposite sides of
 !
OC; if C 2

ins†AOB, this is true by Corollary PSH.39.2. By Theorem ROT.15, ˛ D R !
OC
ıRL

where L is the line of symmetry of †AOC. Then RL.C/ is a point on
qy!
OA,

which by Theorem IB.14 lies entirely on the A side of
 !
OC; by Property (B) of

Definition NEUT.1, ˛.C/ D R !
OC
.RL.C// is on the side of

 !
OC opposite to A,

that is, the B-side.

Then by Theorem NEUT.36
px!
OB D px !

O˛.C/ D ˛.
px!
OC/. By hypothesis

px!
OB D

ˇ.
px!
OC/. By the uniqueness part of Theorem ROT.15(A), ˛ D ˇ. ut

Theorem ROT.28 (Existence of square root). Let P be a neutral plane, O be a

point on P , and let ˛ be a rotation of P about O. There exists a rotation ˇ of P
about O such that

(A) ˇ ı ˇ D ˛, and

(B) when ˛ is not a point reflection, for every X 2 P n fOg, ˇ.px!OX/ is the bisecting

ray of †XO˛.X/.

Proof. (A) In this proof, all rotations will be rotations about the point O. Let A be

a point on P distinct from O and let B D ˛.A/. There are two possibilities

(see Exercise ROT.2). Either ˛ is the point reflection RO, or A, ˛.A/, and O are

noncollinear. If ˛ D RO, let C be a point such that †AOC is right and †COB

is right. If ˛ ¤ RO, let C be a point such that
px!
OC is the bisecting ray of †AOB.

By Theorem ROT.15 let ˇ be the rotation such that ˇ.
px!
OA/ D px!

OC; let ı be the

rotation such that ı.
px qy

OC/ D px!
OB. Then .ı ıˇ/.px!OA/ D px!

OB; by Theorem ROT.27

ı D ˇ. Hence ˇ ı ˇ D ˛.
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(B) Since
px!
OC is the bisecting ray of †AOB, by Theorem NEUT.39 †AOC Š

†COB. Again using Theorem ROT.15, let � be the rotation such that �.
px!
OA/ D

px!
OX. Without loss of generality we may assume that �.A/ D X and C D ˇ.A/.

Then

�.B/ D �.˛.A// D ˛.�.A// D ˛.X/ and

�.C/ D �.ˇ.A// D ˇ.�.A// D ˇ.X/.
Therefore by Theorem NEUT.13 �.†AOC/ Š �.†COB/. By Theo-

rem NEUT.15(8)

†XOˇ.X/ D †�.A/O�.C/ D �.†AOC/

Š �.†COB/ D †�.C/O�.B/ D †ˇ.X/O˛.X/.
Since C 2 ins†AOB, by Theorem NEUT.15(11)

ˇ.X/ D �.C/ 2 ins†�.A/O�.B/ D ins†XO˛.X/

and by Theorem NEUT.39,
px !
Oˇ.X/ is the angle bisector of †XO˛.X/. ut

10.2 Exercises for rotations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise ROT.1�. Let P be a neutral plane.

(A) If O is a point on P , and RO is the point reflection about O, then RO.O/ D O

and RO ıRO D {.
(B) If L and M are distinct lines on P and if ˛ D RMıRL, then ˛�1 D RLıRM.

(C) If G and H are points on P and if 	 D RH ıRG, then 	�1 D RG ıRH .

Exercise ROT.2�. Let P be a neutral plane, O be a point on P , and ˛ be a rotation

of P about O which is not a point reflection. If X is any member of P n fOg, then X,

˛.X/, and O are noncollinear.

Exercise ROT.3�. Let P be a neutral plane, O be a point on P , and ˛ and ˇ be

rotations of P about O. If X is any member of P n fOg, then
px qy

O˛.X/ Š px qy

Oˇ.X/.

The following exercise shows that rotations (and half rotations, which we will

meet in Chapter 13) behave as we expect them to—all points “rotate in the same

direction.”

www.springer.com
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Exercise ROT.4�. Let O, X, and Y be noncollinear points on the neutral plane P
and let ˛ be a rotation of P about O which is not a point reflection; we note that ˛

cannot be the identity, as was proved in Theorem ROT.2.

(A1) ˛ rotates X and Y through congruent angles; that is, †XO˛.X/ Š †YO˛.Y/.

(A2) Let ˛ and ˇ be rotations of P about O which are not point reflections. Let X

be a point of P n fOg such that

˛.X/ 2 ins†XO.ˇ ı ˛.X//.
Then for any point U 2 P n fOg,

†UO˛.U/ Š †XO˛.X/;

†˛.U/O.ˇ ı ˛/.U/ Š †˛.X/O.ˇ ı ˛/.X/;
†UO.ˇ ı ˛/.U/ Š †XO.ˇ ı ˛/.U/; and

˛.U/ 2 ins†UO.ˇ ı ˛/.U/.
(B) It cannot be true that both ˛.X/ 2 Y-side

 !
OX and ˛.Y/ 2 X-side

 !
OY .

(C) It cannot be true that both ˛.X/ is on the side of
 !
OX opposite Y and ˛.Y/ is

on the side of
 !
OY opposite X.

(D) ˛.X/ 2 Y-side of
 !
OX iff ˛.Y/ is on the side of

 !
OY opposite X; equivalently,

˛.Y/ 2 X-side of
 !
OY iff ˛.X/ is on the side of

 !
OX opposite Y .

(E) Let W D ˛.X/, and Z D ˛.Y/; let E be a point on the bisecting ray of

†XOW and F a point on the bisecting ray of†YOZ. Then†EOX Š †EOW Š
†FOY Š †FOZ.

(F) E 2 Y-side of
 !
OX iff F is on the side of

 !
OY opposite X; equivalently,

F 2 X-side of
 !
OY iff E is on the side of

 !
OX opposite Y .

Exercise ROT.5�. Let P be a neutral plane, O be a point on P , L and M be lines

on P through O which are not perpendicular to each other, Q and R be points on L
such that Q O R, S and T be points on M such that S O T and � be the rotation

RM ı RL about O. If we choose the notation (using Theorem NEUT.82) so that

†QOS is acute, then �.Q/ is the member of ins†ROS such that Q and �.Q/ are on

opposite sides of M, †SO�.Q/ Š †QOS and
px qy

O�.Q/ Š px qy

OQ.

Exercise ROT.6�. Let A, B, and C be noncollinear points on the neutral plane P
and let L D !AB, M D !AC, and N D !BC. Then there exists a unique point G and a

unique line J such that C 2 J and RN ıRM ıRL D RJ ıRG.

Exercise ROT.7�. Let A and B be distinct points on the neutral plane P . If M is the

midpoint of
px qy

AB, then RM.A/ D B.
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Exercise ROT.8�. Let P be a neutral plane, ˛ be an isometry of P such that ˛ has

one and only one fixed point O, and for every member X of P n fOg, X O ˛.X/,

and
px qy

OX Š px qy

O˛.X/. Then ˛ is the point reflection RO.

Exercise ROT.9�. Let P be a neutral plane, O be a point on P , � be the reflection

of P about O, L be a line on P through O which is ordered according to

Definition ORD.1, and let X and Y be points on L. Then X < Y iff �.Y/ < �.X/.

Exercise ROT.10�. Let P be a neutral plane, A, B, and O noncollinear points on P .

Then there exists a unique rotation ˛ of P about O such that †AO˛.A/ D †AOB.
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New Axioms: Axiom PS recalled from Chapter 2
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segment and a line), parallelogram, circumcenter (of a triangle), center (of a par-

allelogram), adjacent angles (of a quadrilateral), rectangle; orthocenter, median,

centroid (of a triangle); complementary angles, complete triple of angles

Abstract: This chapter combines the axioms of neutral geometry (incidence,

betweenness, plane separation, and reflection) with the strong form of the Parallel

Axiom to arrive at Euclidean geometry. It explores many well-known elementary

results from plane geometry involving parallel lines, perpendicularity, adjacent and

complementary angles, parallelograms and rectangles.

We have completed the development possible without a parallel axiom, either

Axiom PS or PW, and now invoke Axiom PS to arrive at Euclidean geometry. Since

Euclidean geometry includes Pasch and neutral geometry, we may now use any

result from any previous chapter of the book.

The key theorems in this chapter are Theorems EUC.11, EUC.17, and EUC.22.

Several theorems in this chapter are marked with double asterisks (for instance,

Theorem EUC.3��). We encourage the reader to try to construct proofs for these

before reading the proofs we give.
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It should be noted that in the presence of Property PE (which was proved as

Theorem NEUT.48(B)), Axiom PW is equivalent to Axiom PS. For the reader’s

convenience we repeat Axiom PS, which was originally stated in Chapter 2.

Axiom PS (Strong Form of the Parallel Axiom). Given a line L and a point P not

belonging to L, there exists exactly one line M such that P 2M and L kM. This

line is denoted par.P;L/.

Theorem EUC.2 and Theorem EUC.3 below use Exercises IP.2 and IP.4 which

we re-state here.

Exercise IP.2. Let L, M, and N be distinct lines contained in a single plane.

Then (A) if L kM and M k N , then L k N , and (B) if L intersects M, then N
must intersect either L or M.

Exercise IP.4. Let L, M, and N be distinct lines in a plane E such that L kM.

Then if L \N ¤ ;, M \N ¤ ;.

11.1 Definitions and theorems for Euclidean geometry

Definition EUC.1. Euclidean space is IB space in which Axiom PS holds and in

which every plane is a neutral plane. Every such plane is a Euclidean plane, and

the resulting geometry is Euclidean geometry.

Theorem EUC.2. Let A, B, and C be noncollinear points in a Euclidean plane E ,

and let P 2 ins†BAC. Then every line L containing P must intersect †BAC (cf

Theorem PSH.44).

Proof. By Exercise IP.2(B) L intersects one or the other of the lines
 !
AB or

 !
AC. If for

some point Q, fQg D L\ !AB, either Q 2 px!
AB or Q A B (from Theorem PSH.15). If

Q 2 px!
AB, then Q 2 †BAC. If Q A B, then by Theorem IB.14

qy!
QP is a subset of the

C-side of
 !
AB, because P, being in ins†BAC, is on that side of

 !
AB. Q and P are on

opposite sides of
 !
AC because P 2 ins†BAC and therefore is on the B-side of

 !
AC.

By Theorem PSH.12 there exists a point Q0 such that fQ0g D  !AC \ qy!
QP and Q0 is on

the C-side of
 !
AB. Hence Q0 2 qy!

AC, so L intersects †BAC. Similar reasoning holds

if L intersects
 !
AC. ut

Theorem EUC.3��. If L, M, and N are lines on the Euclidean plane P such that

L kM and L ? N , then M ? N .
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Proof. By Definition NEUT.29 and Theorem NEUT.44, L and N intersect at a

point B. By Exercise IP.4 there exists a point A such that M \ N D fAg. By

Theorem NEUT.46(A) there exists a unique line M0 such that A 2 M0 and

M0 ? N . By Theorem NEUT.47(A), M0 k L. By Axiom PS, M0 D M, so that

M ? N . ut
Corollary EUC.3.1. Let RM be the line reflection over M, and let L be a fixed

line for RM. Then N k L iff N is a fixed line for RM.

Proof. The proof is Exercise EUC.7. ut
Corollary EUC.4. Let L, M, and N be distinct lines on the Euclidean plane P
such that M and N intersect at a point O, M and N are not perpendicular to each

other, and L ? N , then L and M intersect at a point Q. That is to say, if two lines

intersect but are not perpendicular, then a line perpendicular to one of them must

intersect the other.

Proof. The proof is Exercise EUC.1. ut

Definition EUC.5. (A) Two segments D and E on the Euclidean plane P are

parallel iff there exist lines L and M on P which are parallel, and D � L
and E �M.

(B) A quadrilateral is a parallelogram iff its opposite edges are parallel.

Theorem EUC.6. A parallelogram is a rotund quadrilateral.

Proof. This follows immediately from Theorem PSH.53.1; see also Exer-

cise EUC.2. ut
Theorem EUC.7��. Let J , K, L, and M be distinct lines on the Euclidean plane

P such that J k K, L ? J , and M ? K, then L kM.

Proof. By Corollary EUC.4, L ? K; by Theorem NEUT.47(A), L kM. ut
Corollary EUC.8. Let J , K, L, and M be distinct lines on the Euclidean plane P
such that L and M intersect at the point O, L ? J , and M ? K, then J and K
intersect at a point Q.

Proof. The proof is Exercise EUC.3. ut
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Theorem EUC.9��. Let A, B, and C be noncollinear points on the Euclidean plane

P and let L, M, and N be the lines of symmetry (i.e., the perpendicular bisecting

lines) of
px qy

AB,
px qy

AC, and
px qy

BC, respectively. Then L, M, and N are concurrent at a

point O.

Proof. L ?  !AB and M ?  !AC and
 !
AB intersects

 !
AC; by Corollary EUC.8, L and

M intersect at a point O. The conclusion follows from Exercise NEUT.68. ut
Definition EUC.10. The point O of Theorem EUC.9 is the circumcenter of

4ABC.

Fig. 11.1 For
Theorem EUC.11.

E D F

B A C

G

H

L

M

Theorem EUC.11 (Congruence of alternate angles of parallel lines). Let L and

M be distinct lines on the Euclidean plane P , and let A, B, C, D, E, F, G, and H be

points on the plane such that

(A) D, E, and F are on M and E D F;

(B) A, B, and C are on L and B A C;

(C) G and H are on
 !
AD and G A D H; and

(D) E and B are on the same side of
 !
AD.

Then the following statements are equivalent:

(1) L kM,

(2) †DAB Š †ADF,

(3) †DAC Š †ADE,

(4) †GAC Š †ADF,

(5) †GAB Š †HDF, and

(6) †GAB Š †ADE.
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Proof. See Figure 11.1. We will proceed by proving statements (1) and (2)

equivalent and then showing in turn that statements (3), (4), (5), and (6) are

equivalent to (2).

(A) ((2)) (1)) cf Theorem NEUT.87.

(B) ((1) ) (2)) By Theorem NEUT.68 (Angle Construction) there exists a point

B0 on the E side of
 !
AB such that †DAB0 Š †ADF. By part (A)

 !
AB0 k M.

By Axiom PS,
 !
AB0 D L.

(C) ((2) ” (3)) Since †DAB and †DAC are supplementary and †ADE and

†ADF are supplementary, (2)” (3) is a consequence of Theorem NEUT.43.

(D) ((2) ” (4)) Since †DAB and †GAC are vertical angles, this is a conse-

quence of Theorem NEUT.42.

(E) ((2) ” (5)) Since †DAB and †GAB are supplements, and †ADF and

†HDF are supplements, this is a consequence of Theorem NEUT.43.

(F) ((2)” (6)) Since†GAB and†DAB are supplements,†ADE and†ADF are

supplements, this is a consequence of Theorem NEUT.43. ut
Theorem EUC.12��. (A) If a quadrilateral tuABCD is a parallelogram, then its

opposite edges are congruent and its opposite angles are congruent.

(B) If a quadrilateral tuABCD has a pair of opposite edges which are parallel (that

is, the lines containing those edges are parallel) and congruent, then it is a

parallelogram.

Proof. (A) tuABCD is a trapezoid, and by Theorem PSH.53.1, is rotund;

by Theorem PSH.54(A), its diagonals
px qy

AC and
px qy

BD intersect at some point O; by

Theorem PSH.12 B and D are on opposite sides of
 !
AC. Since

 !
AB k  !CD, by

Theorem EUC.11 †BAC Š †ACD. Since
 !
AD k  !BC, by Theorem EUC.11

†ACB Š †CAD. By Theorem NEUT.65 (AEA)
px qy

AB Š px qy

CD,
px qy

AD Š px qy

BC, and

†ADC Š †ABC. A similar proof (using the diagonal
px qy

BD instead of
px qy

AC) shows

that †BAD Š †BCD.

(B) tuABCD is a trapezoid; if we assume that
 !
AB k  !CD, we can apply the first

part of the proof for part (A) to get †BAC Š †ACD. Assuming also that
px qy

AB Š px qy

CD, we may apply Theorem NEUT.64 (EAE) to get †CAD Š †ACB.

By Theorem EUC.11
 !
AD k  !BC. By Definition EUC.5(B) tuABCD is a

parallelogram. If
 !
AD k  !BC, a similar proof will apply. ut

Theorem EUC.13. A quadrilateral is a parallelogram iff there exists a point O

which is the midpoint of both its diagonals.
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Proof. (A) Let tuABCD be a parallelogram. It follows from Theorem EUC.6 that

tuABCD is rotund. By Theorem PSH.54(A) there exists a point O such that
qy px

AC\ qy px

BD D fOg. By Theorem EUC.12
px qy

AB Š px qy

CD. By Theorem NEUT.65

(AEA)
px qy

AO Š px qy

CO and
px qy

BO Š px qy

DO. By Definition NEUT.3(C) O is the midpoint

of
px qy

AC and of
px qy

BD.

(B) Let tuABCD be a quadrilateral for which there exists a point O such that O is the

midpoint of
px qy

AC and of
px qy

BD. By Theorem PSH.54(A) tuABCD is rotund. By Def-

inition NEUT.3(C)
px qy

OA Š px qy

OC and
px qy

OB Š px qy

OD. By Theorem NEUT.42 (Vertical

Angles)†AOB Š †DOC and†AOD Š †BOC. By Theorem NEUT.64 (EAE)
px qy

AB Š px qy

CD and
px qy

AD Š px qy

BC. Also by Theorem NEUT.64 (EAE)†OAB Š †OCD

and †OBA Š †ODC. By Theorem EUC.11
 !
AB k  !DC and

 !
AD k BC.

By Definition EUC.5(B) tuABCD is a parallelogram. ut

Definition EUC.14. (A) The center of a parallelogram is the point of intersection

of its diagonals.

(B) The angles of a quadrilateral tuABCD are †DAB, †ABC, †BCD, and †CDA.

Two angles of a quadrilateral are adjacent iff their corners are endpoints of an

edge of the quadrilateral.

(C) A quadrilateral ABCD is a rectangle iff of each the angles †BAD, †ADC,

†DCB, and †CBA is right.

Remark EUC.15. (A) If tuABCD is a rectangle, it follows from Theo-

rem NEUT.47(A) that
 !
AD k  !BC and

 !
AB k  !CD so by Definition EUC.5(B)

tuABCD is a parallelogram.

(B) For any rectangle tuABCD, by Theorem EUC.12
px qy

AB Š px qy

CD and
px qy

AD Š px qy

BC, that

is to say, opposite edges are congruent.

(C) Any rectangle is completely determined by three of its corners. That is, if

tuABCD and tuABCD0 are rectangles, then D D D0. For both
 !
AB ?  !AD and !

AB ?  !AD0 so that by Theorem NEUT.47(B)
 !
AD D !AD0; similarly,

 !
CD D !CD0;

by Exercise I.1, D D D0.

Theorem EUC.16��. Let ˛ be a belineation of the Euclidean plane P and let

tuABCD be a parallelogram on P . Then

(1) ˛.tuABCD/ is a parallelogram on P , and

(2) ˛.tuABCD/ D tu˛.A/˛.B/˛.C/˛.D/, where
 �����!
˛.A/˛.B/ k  �����!˛.C/˛.D/ and �����!

˛.A/˛.D/ k  �����!˛.B/˛.C/.
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Proof. In Chapter 7 Theorem COBE.5(13) we showed that if ˛ is a belineation,

˛.tuABCD/ is a quadrilateral. Since tuABCD is a parallelogram
 !
AB k  !CD

and
 !
AD k  !BC. By Theorem CAP.3 ˛.

 !
AB/ k ˛.

 !
CD/ and ˛.

 !
AD/ k ˛.

 !
BC/.

By Theorem COBE.5(13) ˛.tuABCD/ D tu˛.A/˛.B/˛.C/˛.D/. So
 �����!
˛.A/˛.B/ k �����!

˛.C/˛.D/ and
 �����!
˛.A/˛.D/ k  �����!˛.B/˛.C/. ut

We are now ready to prove an important theorem in Euclidean geometry

involving every collineation of the plane P . Recall that par.C;M/ denotes the line

through a point C which is parallel to the line M.

Theorem EUC.17 (Collineations preserve midpoints). Let A and C be distinct

points on the Euclidean plane P , ' be a collineation of P , and M be the midpoint

of
px qy

AC, then '.M/ is the midpoint of
px qy

'.A/'.C/.

Proof. Let B be any point off of
 !
AC, L D par.C;

 !
AB/, and M D par.A;

 !
BC/.

By Exercise IP.4, L and M intersect at a point D. Since
 !
AB k  !CD and !

BC k  !AD,
px qy

AB\ px qy

CD D ; and
px qy

BC\ px qy

AD D ;, so that by Definition PSH.31,

tuABCD D px qy

AB[ px qy

BC[ px qy

CD[ px qy

DA is a quadrilateral. By Definition EUC.5(B) it is

a parallelogram, hence by Theorem EUC.6, it is rotund. By Theorem EUC.13, the

diagonals
qy px

AC and
qy px

BD intersect at the midpoint of both diagonals, that is, at the

point M.

Using Theorem CAP.1, we get

'.
 !
AB/ D �����!'.A/'.B/; '.

 !
DC/ D �����!'.D/'.C/;

'.
 !
AC/ D �����!'.A/'.C/; and '.

 !
BD/ D �����!'.B/'.D/:

By Theorem CAP.3,
 �����!
'.A/'.B/ k  �����!'.D/'.C/ and
 �����!
'.A/'.D/ k  �����!'.B/'.C/;

hence these pairs of lines do not intersect. Then

px qy

'.A/'.B/[ px qy

'.B/'.C/[ px qy

'.C/'.D/[ px qy

'.D/'.A/

is a parallelogram by Definition EUC.5(B), and by Theorem EUC.6, it is rotund.

Notice that here all we are claiming is that the closed segments whose endpoints

are '.A/, '.B/, '.C/, and '.D/ form a parallelogram; but this parallelogram is not

necessarily the same as '.tuABCD/, and we are not invoking Theorem EUC.16.
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Therefore by Theorem PSH.54(A),
qy px

'.A/'.C/\ qy px

'.B/'.D/ D fNg which by

Theorem EUC.13 is the midpoint of
qy px

'.A/'.C/. By Theorem CAP.1

 �����!
'.A/'.B/ \ �����!'.B/'.D/ D f'.M/g

so that N D '.M/, by Exercise I.1. Thus '.M/ is the midpoint of
px qy

'.A/'.C/. ut
Corollary EUC.17.1. Let A, B, and C be points on the Euclidean plane P such that

A B C and
px qy

AB Š px qy

BC and let ' be a collineation of P; then
px qy

'.A/'.B/ Š px qy

'.B/'.C/.

Proof. Since B is the midpoint of
px qy

AC (cf Definition NEUT.3(C)), by Theorem

EUC.17, '.B/ is the midpoint of
px qy

'.A/'.C/. Hence
px qy

'.A/'.B/ Š px qy

'.B/'.C/. ut
Corollary EUC.17.2. Let A, B, and M be points on the Euclidean plane P , M the

midpoint of
px qy

AB, and let ' be a collineation of P . Then if A and B are fixed points of

', M is a fixed point of '.

Proof. By Definition NEUT.3(C), A M B and
px qy

AM Š px qy

MB. Then by Corol-

lary EUC.17.1,
px qy

A'.M/ D px qy

'.A/'.M/ Š px qy

'.M/'.B/ D px qy

'.M/B and A '.M/ B.

Again by Definition NEUT.3(C), '.M/ is the midpoint of
px qy

AB, and by uniqueness of

midpoints (cf Theorem NEUT.50) '.M/ D M. ut
Corollary EUC.17.3. Let A, B, and M be points on the Euclidean plane P , M the

midpoint of
px qy

AB, and let ' be a belineation of P . Then if A and M are fixed points of

', B is a fixed point of '.

Proof. By Definition NEUT.3(C),
px qy

AM Š px qy

MB; by Corollary EUC.17.1,
px qy

AM D
px qy

'.A/'.M/ Š px qy

'.M/'.B/ D px qy

M'.B/. Then by Definition NEUT.3(C), M is the

midpoint of
px qy

A'.B/, and
px qy

M'.B/ Š px qy

AM Š px qy

MB. Since A M B, '.A/ '.M/ '.B/

and thus A M '.B/ (because ' is a belineation) and '.B/ 2 qy!
MB. By Property R.4

of Definition NEUT.2, '.B/ D B. ut

Theorem EUC.18�� (Criteria for a rectangle (A)). Let tuABCD be a quadrilat-

eral such that
 !
AB ?  !AD and

 !
AB ?  !BC. If any of the conditions (A) through (D)

hold, then tuABCD is a rectangle.

(A)
 !
AB k  !CD;

(B)
 !
AD ?  !CD (that is, the quadrilateral has three right angles);

(C)
px qy

AD Š px qy

BC; or

(D)
px qy

AB Š px qy

CD.
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Proof. By Theorem NEUT.47(A)
 !
AD k  !BC.

(A) By Definition EUC.5(B) tuABCD is a parallelogram. By Theorem EUC.12(A)

its opposite angles are congruent. By hypothesis, †ABC and †BAD are right

angles, hence by Corollary NEUT.44.2 all the angles of tuABCD are right

angles. By Definition EUC.14(C) tuABCD is a rectangle.

(B) By Theorem NEUT.47(A)
 !
AB k  !DC. By part (A), tuABCD is a rectangle.

(C) By Theorem EUC.12(B) tuABCD is a parallelogram and hence by Theo-

rem EUC.12(A) its opposite angles are congruent. The rest of the proof is the

same as in part (A).

(D) Let C0 be a point on
 !
BC such that

 !
DC0 k  !AB and C0 ¤ C. By part (A) tuABC0D

is a rectangle and †DC0B is a right angle; that is,
 !
DC0 ?  !BC0 D  !BC. By

Theorem EUC.12(A),
px qy

DC Š px qy

AB Š px qy

DC0. By Theorem NEUT.40(A) (Pons

Asinorum) †DCC0 Š †DC0C; that is, both
 !
DC ?  !BC and

 !
DC0 ?  !BC. But

this contradicts Theorem NEUT.48(A). Therefore C0 D C,
 !
DC k  !AB, and by

part (A) tuABCD is a rectangle. ut
Theorem EUC.19�� (Criteria for a rectangle (B)). If one of the angles of a

parallelogram tuABCD is right, then tuABCD is a rectangle.

Proof. Without loss of generality, we can select any angle to be a right angle. Let

†DAB be a right angle; by Theorem NEUT.66 and Theorem EUC.12(A) †BCD is

right. Since
 !
AD ?  !AB and

 !
AD k  !BC by Theorem EUC.3

 !
AB ?  !BC so that †ABC

is right. By Theorem EUC.18(B), tuABCD is a rectangle. ut
Recall from Definition NEUT.99(C) that the altitude of4ABC through the point

A is pr .A;
 !
BC/

Theorem EUC.20�� (Concurrence of altitudes of a triangle). Let 4ABC be a

triangle on the Euclidean plane P . Then pr .A;
 !
BC/, pr .B;

 !
AC/, and pr .C;

 !
AB/ are

concurrent at a point O, i.e., the altitudes of a triangle are concurrent at a point O.

Proof. Let L D par .A;
 !
BC/, M D par .B;

 !
AC/, and N D par .C;

 !
AB/. By

Theorem IP.5 points A0, B0, and C0 exist such that M \N D fA0g, L \N D fB0g,
and L \M D fC0g. By Definition EUC.5(B) both quadrilaterals tuAB0CB and

tuAC0BC are parallelograms, so that by Theorem EUC.12(A),
px qy

AB0 Š px qy

BC Š px qy

AC0.
Then by Definition NEUT.3(C) A is the midpoint of

px qy

B0C0. Similar arguments show

that B is the midpoint of
px qy

A0C0 and C is the midpoint of
px qy

A0B0. Thus pr .A;
 !
BC/ is the

perpendicular bisecting line of
 �!
B0C0, pr .B;

 !
AC/ is the perpendicular bisecting line of
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 �!
A0C0, and pr .C;

 !
AB/ is the perpendicular bisecting line of

 !
A0B0. By Theorem EUC.9

L, M, and N are concurrent at a point O. ut
Definition EUC.21. The point O of Theorem EUC.20 is the orthocenter of

4ABC.

Fig. 11.2 For
Theorem EUC.22.

A

N

C

M

B

Theorem EUC.22 (Parallel projection preserves midpoints). Let A, B, and C be

noncollinear points on the Euclidean plane P . Let M be the midpoint of
px qy

AB and

L D par .M;
 !
BC/. Then L and

 !
AC intersect at a point N which is the midpoint

of
px qy

AC.

Proof. See Figure 11.2. By Theorem PSH.6 we may invoke the Postulate of Pasch.

Therefore, since L intersects
qy px

AB, it must intersect exactly one of
qy px

AC,
qy px

BC, or fCg.
The last two possibilities are ruled out because L k  !BC. Hence L intersects

qy px

AC at

some point N.

Using Axiom PS let M D par .N;
 !
AB/; then by the same kind of reasoning as for

the point N, M intersects
 !
BC at a point Q between B and C. By Definition EUC.5(B)

tuBMNQ is a parallelogram. We leave it to the reader (as Exercise EUC.4) to prove

that 4NQC Š 4AMN, so that
px qy

AN Š px qy

CN, proving (cf Definition NEUT.3(C)) that

N is the midpoint of
px qy

AC. ut
Corollary EUC.23. Let P be a Euclidean plane and A, B, and C be noncollinear

points on P . If M is the midpoint of
px qy

AB and N is the midpoint of
px qy

AC, then
 !
MN k  !BC.

Moreover, if L is the midpoint of
px qy

BC, then
px qy

BL Š px qy

MN.

Proof. The proof is Exercise EUC.5. ut
Corollary EUC.24��. Let tuABCD be a parallelogram on the Euclidean plane P .

If M is the midpoint of
px qy

AB and O is the center of the parallelogram, then
 !
MO and !

DC intersect at the midpoint N of
 !
DC.
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Proof. Since M is the midpoint of
px qy

AB and O is the midpoint of
px qy

AC (cf Theo-

rem EUC.13), by Corollary EUC.23
 !
OM k  !BC. By Theorem EUC.22 N is the

midpoint of
px qy

DC. ut
Corollary EUC.25. Let A, B, and C be noncollinear points on the Euclidean plane

P , F be the midpoint of
px qy

AB, G the midpoint of
px qy

AC, H the midpoint of
px qy

BC, and M the

midpoint of
px qy

FG. Then M is the midpoint of
px qy

AH.

Proof. By Corollary EUC.23
 !
FA k  !HG and

 !
FH k  !AG. By Definition EUC.5(B)

tuAGHF is a parallelogram. By Theorem EUC.13
px qy

FG and
px qy

AH intersect at their

common midpoint. ut

Definition EUC.26. The median of triangle ABC through A is the line
 !
AM, where

M is the midpoint of
px qy

BC.

Theorem EUC.27 (Concurrence of medians of a triangle). Let A, B, and C be

noncollinear points on the Euclidean plane P , F the midpoint of
px qy

AB, G the midpoint

of
px qy

AC, H the midpoint of
px qy

BC, O the point of intersection of
qy px

BG and
qy px

CF, I the

midpoint of
px qy

BO, and J the midpoint of
px qy

CO. Then tuIFGJ is a parallelogram and

A, O, and H are collinear. That is to say, the medians of a triangle on a Euclidean

plane intersect at a point inside the triangle.

Proof. Applying Corollary EUC.23 to 4ABC and also to 4OBC we find that
 !
FG

and
 !
IJ are both parallel to

 !
BC. Applying Corollary EUC.23 to4AOC and to4AOB

we have
 !
GJ and

 !
FI are both parallel to

 !
AO. Therefore by Theorem IP.6 the opposite

edges of tuGFIJ are parallel and by Definition EUC.5(B), tuGFIJ is a parallelogram.

Let M be the midpoint of
px qy

FG and N be the midpoint of
px qy

IJ. Note that O is the center

of tuGFIJ, so that by Corollary EUC.24, M, O, and N are collinear.

Applying Corollary EUC.25 to both 4ABC and 4OBC, we find that A, M,

N, and H are collinear.
 !
AH is the median of 4ABC through A. Since

qy px

BG and
qy px

CF are subsets of the inside of 4ABC, O belongs to ins4ABC. This completes

the proof. ut

Definition EUC.28. The point of intersection of the medians of a triangle is the

centroid of the triangle.
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Theorem EUC.29�� (Fixed points of a belineation). Let ' be a belineation of the

Euclidean plane P , A and B be distinct fixed points of ', M be the midpoint of
px qy

AB

and C and D be the points such that C A B D and
px qy

CA Š px qy

BD Š px qy

AB, then M, C,

and D are fixed points of '.

Proof. By Corollary EUC.17.2, M is a fixed point for '. Since B is the midpoint of
px qy

AD, and A is the midpoint of
px qy

BC, by Corollary EUC.17.3 both C and D are fixed

points for '. ut
See also Chapter 20 “Belineations of a Euclidean/LUB plan” for additional

results related to Theorem EUC.29.

Definition EUC.30. Let †BAC and †DEF be acute angles on a Euclidean plane

P . Each of these angles is a complement of the other (and they are said to be

complementary angles) iff there exist noncollinear points G, H, I, and J such that

I 2 ins†GHJ, †BAC Š †GHI, †DEF Š †JHI, and †GHJ is right.

Theorem EUC.31. Let A, B, and C be noncollinear points on the Euclidean plane

P such that †ACB is right, then †ABC and †BAC are complements of each other.

Proof. Let L D pr.B;
 !
BC/ and M D pr.A;

 !
AC/. By Theorem NEUT.44,

 !
BC ?  !AC,

and by Theorem NEUT.47(A), M k  !BC and L k  !AC. By Theorem NEUT.44 there

exists a point D such that L \M D fDg and by Theorem EUC.3 L ?M, so that

†DBC is a right angle.

By Theorem EUC.11, †DBA Š †CAB. Since opposite sides of the quadrilateral

tuACBD are parallel, it is rotund, and by Theorem PSH.54(B), A 2 ins†DBC. Then

by Definition EUC.30, †ABC and †BAC are complementary. ut
Theorem EUC.32. Complements of acute congruent angles are congruent.

Proof. The proof is left to the reader as Exercise EUC.6. ut

Definition EUC.33. A triple of angles f†BAC;†DEF;†GHIg on the Euclidean

plane P is complete iff there exists a line L on P , points Q, O, and R on L with

Q O R, and distinct points S and T on a side of L such that †QOS Š †BAC,

†SOT Š †DEF, and †GHI Š †ROT .

Theorem EUC.34. Let A, B, and C be noncollinear points on the Euclidean plane

P , then the triple of angles of4ABC is complete.
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Fig. 11.3 For
Theorem EUC.34.

B C

AQ R

Proof. See Figure 11.3. Let L D pr.A;
 !
BC/ and let Q and R be points on L such

that Q is on the side of
 !
AB opposite the C-side, and R is on the C side of

 !
AB. By

Axiom PSA Q A R. By Theorem EUC.11 †ABC Š †BAQ, and †ACB Š †CAR.

By Definition EUC.33 f†BAC;†ABC;†ACBg is complete. ut
Suppose a triangle T has two angles that are congruent to two angles of another

triangle S . Theorem EUC.34 suggests that the third angle of each of these triangles

must also be congruent to each other. The next theorem proves this.

Theorem EUC.35. On a Euclidean plane, let A, B, and C be noncollinear points

and A0, B0, and C0 be noncollinear points. If †ABC Š †A0B0C0 and †BAC Š
†B0A0C0, then †ACB Š †A0C0B0.

Proof. By Theorem NEUT.67 (segment construction) there exist points A00 2 qy!
BA

and C00 2 qy!
BC such that

px qy

BA00 Š px qy

B0A0 and
px qy

BC00 Š px qy

B0C0. Since †ABC Š †A0B0C0,
by Theorem NEUT.64 (EAE) 4A0B0C0 Š 4A00BC00 and corresponding angles are

congruent. That is, †BA00C00 Š †B0A0C0 and †A00C00B Š †A0C0B0.
Then †BAC Š †B0A0C0 Š †BA00C00. Using the equivalence of (1) and (4) in

Theorem EUC.11, we have
 �!
A00C00 k  !AC. Again by Theorem EUC.11, †ACB Š

†A00C00B Š †A0C0B0. ut

11.2 Exercises for Euclidean geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise EUC.1�. Prove Corollary EUC.4, using Theorem EUC.3.

www.springer.com
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Exercise EUC.2�. Using Definition PSH.31 and Theorem PSH.12, prove Theo-

rem EUC.6: A parallelogram is a rotund quadrilateral.

Exercise EUC.3�. Prove Corollary EUC.8.

Exercise EUC.4�. Refer to the statement and proof of Theorem EUC.22; show that

4NQC Š 4AMN and
px qy

AN Š px qy

CN, so that N is the midpoint of
px qy

AC, thus completing

that proof.

Exercise EUC.5�. Prove Corollary EUC.23.

Exercise EUC.6�. Prove Theorem EUC.32: Complements of acute congruent

angles are congruent.

Exercise EUC.7�. Prove Corollary EUC.3.1: let RM be the line reflection over

M, and let L be a fixed line for RM. Then N k L iff N is a fixed line for RM.
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Abstract: This chapter gives a complete classification of isometries on a Euclidean

plane, proves a technical theorem to be used later to develop the properties of

dilations, and describes a method for constructing a translation with a given action.

Until now, we have studied isometries mainly in the context of neutral geometry,

where they were defined. In Euclidean geometry, we can give a complete clas-

sification of isometries; we do this in Theorem ISM.17. Theorem ISM.19 is the

technical theorem referred to in the abstract, which will be used in the proof of

the properties of half-rotations, which, in turn, are used in Chapter 13 to prove

properties of dilations (cf Theorems DLN.4 and DLN.7).

In this chapter we will loosely follow J. Diller and J. Boczeck, in Euclidean

Planes, Chapter 4 in Fundamentals of Mathematics, Volume 2, H. Behnke,

F. Bachmann, K. Fladt, and H. Kunle, eds, translated by S. Gould, MIT Press,

1974 [2]. See also F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff,

2nd ed., Grundlehren der mathematischen Wissenschaften, Springer (1973) [1].
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266 12 Isometries of a Euclidean Plane (ISM)

12.1 Properties and classification of isometries

Remark ISM.1. In this chapter a plane is a Euclidean plane, that is, a neutral

plane for which Axiom PS holds. We will occasionally use the notation (from

Definition CAP.10) L PE M to mean that either L kM or L DM.

Remark ISM.2. If ˛ is an isometry of the Euclidean plane, and has three non-

collinear fixed points, then by Theorem NEUT.24 ˛ D {, the identity mapping of P
onto P .

If ˛ has distinct fixed points A and B, but no fixed point off of
 !
AB, then by

Exercise NEUT.6, ˛ D R !
AB

. Moreover, if ˛ has one and only one fixed point O,

then by Theorem ROT.16, ˛ is a rotation of P about O.

The parallel Axiom PS is required for an adequate treatment of the case where ˛

has no fixed point, and it is this case we particularly address in this chapter. First we

do some preliminary explorations.

Theorem ISM.3. Let O be a point on the Euclidean plane P , and let RO be a point

reflection about O.

(A) O is a fixed point of RO, which has no other fixed point.

(B) Every line through O is a fixed line of RO.

(C) If L is a line and O … L, then RO.L/ k L, so that by Definition CAP.17, RO is

a dilation of P .

Proof. (A) The proof is Theorem ROT.2.

(B) The proof is Theorem ROT.3.

(C) Let L be any line on P such that O … L and let X and Y be distinct points on L.

By Theorem ROT.3 X O RO.X/, Y O RO.Y/,
px qy

OX Š px qy

ORO.X/, and
px qy

OY Š
px qy

ORO.Y/. By Theorem NEUT.42 (vertical angles) and Theorem NEUT.64

(EAE) †XYO Š †RO.X/RO.Y/O. By Theorem EUC.11 L k RO.L/. By

Definition CAP.17 RO is a dilation of P . ut
Theorem ISM.4. (A) Let P be a Euclidean plane and let A and B be distinct points

on P , then RB ıRA is a translation of P .

(B) Let P be a Euclidean plane and let L and M be parallel lines on P . Then

˛ D RM ıRL is a translation of P . Moreover, the set of fixed lines of ˛ is the

set of lines each of which is perpendicular to L (and M).
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(C) If P is a Euclidean plane and if A and B are points on P such that RA D RB,

then A D B.

Proof. (A) Let L be any line on P . By Theorem ISM.3 RA and RB are dila-

tions of P . By Definition CAP.17 RA.L/ PE L and .RB ı RA/.L/ D
RB.RA.L// PE RA.L/. Therefore by Theorem IP.6 .RB ıRA/.L/ PE L.

Let M D pr.A;
 !
AB/ (cf Definition NEUT.99) and N D pr.B;

 !
AB/. Using

Definition ROT.1, by Theorem ROT.4 RA D R !
AB
ıRM and RA D RN ıR !AB

,

so that

RB ıRA D RN ıR !AB
ıR !

AB
ıRM D RN ıRM:

By Theorem NEUT.47(A) M k N .

If RN ıRM.X/ D X, RN .X/ D RM.X/. By Theorem NEUT.48(A) and

Theorem EUC.3,
 ����!
XRN .X/ and

 �����!
XRM.X/ are both perpendicular to both N

and M. Hence by Theorem NEUT.48(A) these are the same line, which we

will call J .

Let fCg D J \N and let fDg D J \M. If X is either C or D, X would be

a fixed point for RN or RM but not both, so that RN .X/ ¤ RM.X/. If X ¤ C

and X ¤ D, then since RN .X/ D RM.X/,
px qy

XRN .X/ D
px qy

XRM.X/. Since

RN .C/ D C by Theorem NEUT.15(5) we have RN .
px qy

CX/ D px qy

RN .C/RN .X/ D
px qy

CRN .X/ so that
px qy

CX Š px qy

CRN .X/ and C is therefore the midpoint of
px qy

XRN .X/.

Similarly, D is the midpoint of
px qy

XRM.X/ D px qy

XRN .X/. By Theorem NEUT.50,

C D D; but C 2 N and D 2 M so that N and M are not parallel, a

contradiction. Therefore RN ıRM has no fixed point, and by Definition CAP.6

is a translation.

(B) Let A be any point on L, let B 2 M be a point such that N D  !AB is

perpendicular to both L and M. (Here we have used Theorem NEUT.48(A)

and Theorem EUC.3.) By Theorem ROT.24, RM ıRL D RB ıRA, which by

part (A) above, is a translation.

Let J be any line perpendicular to L (and hence by Theorem EUC.3 to M).

By Theorem NEUT.44 J is a fixed line of RL and RM. Hence J is a fixed

line of RM ıRL.

Note that .RM ı RL/.A/ D RM.RL.A// D RM.A/ D C, where C is

the point on N such that A B C and
px qy

BC Š px qy

AB. By Theorem CAP.8(B)
 !
AC

is a fixed line of RM ı RL. Let J be any fixed line of RM ıRL. By Theo-

rem CAP.8(A) there exists a point Q on P such that J D �����������!Q.RM ıRL.Q//. By
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Theorem CAP.8(C) J k  !AC. Therefore the set of fixed lines of ˛ D RM ıRL

is fJ j J is a line on P and J PE
 !
ACg D fJ j J is a line on P and J ? Lg.

(C) If RA D RB, then B would be a fixed point of RA; by Theorem ISM.3, RA has

no fixed point other than A; therefore A D B. ut

Fig. 12.1 For
Theorem ISM.5.

A BM

L M

Theorem ISM.5. Let P be a Euclidean plane and let A and B be distinct points

on P . Then there exists a unique translation � of P such that �.A/ D B. Moreover,

there exist parallel lines L and M on P such that � D RM ıRL.

Proof. (A: Uniqueness.) This is Theorem CAP.9. See Figure 12.1.

(B: Existence.) Let M be the midpoint of
px qy

AB (by Theorem NEUT.50), C be the

midpoint of
px qy

AM, and D be the midpoint of
px qy

MB. Let L D pr.C;
 !
AB/ and

M D pr.D;
 !
AB/. By Theorem NEUT.47(A) L k M. Let � D RM ı RL.

By Theorem NEUT.52 RL.A/ D M and RM.M/ D B so that �.A/ D B. By

Theorem ISM.4 � is a translation of P . ut
Theorem ISM.6. Let P be a Euclidean plane and let � be a translation of P . Then

� is an isometry of P .

Proof. For any translation � , and any point A in the plane, �.A/ is a point on the

plane; once this is specified, Theorem ISM.5 constructs � as the composition of two

reflections. Hence � is an isometry by Definition NEUT.3(A). ut
Theorem ISM.7. Let P be a Euclidean plane.

(A) For every line L on P there exists a translation � of P whose set of fixed lines is

fJ j J � P and J PE Lg:
(B) If � and � are translations of P , then � ı � D � ı � .
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Proof. (A) Let A and B be distinct points on L, M D pr .A;L/, and N D pr .B;L/.
By Theorem ISM.4 � D RN ıRM is a translation of P whose set of fixed lines

is fJ j J is a line on P and J PE Lg.
(B) By part (A) and Theorem CAP.15(B), � ı � D � ı � . ut

Theorem ISM.8. Let P be a Euclidean plane.

(A) The set of translations of P , together with { is an abelian group with respect to

composition of mappings.

(B) Let M be a line on P and let ˘M D fJ j J is a line on P and J PE Mg.
Then �M D f� j � is a translation of P whose set of fixed lines is ˘M or

� D {g is an abelian group with respect to composition of mappings.

Proof. Follows from Theorem CAP.12 and Theorem ISM.7. ut
Theorem ISM.9. Let P be a Euclidean plane, � be a translation of P , and A and

B be distinct points on P . Then
px qy

A�.A/ Š px qy

B�.B/.

Proof. By Theorem ISM.5 there exists a translation � of P such that �.A/ D B.

Thus
px qy

B�.B/ D px qy

�.A/�.�.A// D px qy

�.A/�.�.A// D �.px qy

A�.A//:

Here we have used Theorems COBE.5(5) and ISM.8. By Definition NEUT.3(B)
px qy

B�.B/ Š px qy

A�.A/. ut
Theorem ISM.10. Let P be a Euclidean plane and let A, B, and C be distinct

points on P . Then there exists a unique point D on P such that RC ıRBıRA D RD.

Moreover, D 2  ����������!A.RC ıRB.A//.

Proof. (A: Uniqueness.) If D and D0 are points on P such that RC ıRB ıRA D RD

and RC ıRBıRA D RD0 , then RD D RD0 and by Theorem ISM.4(C) D D D0.
(B: Existence.) Since RCıRB is a translation of P (cf Theorem ISM.4(A)) and since

a translation has no fixed points (Definition CAP.6), by Exercise ROT.1(A)

.RC ıRB ıRA/.A/ D .RC ıRB/.A/ ¤ A. By Theorem NEUT.50 there exists

a unique midpoint D of
px qy

A.RC.RB.A///. By Exercise ROT.7 RD.A/ D RC

.RB.A//, so that RD.RA.A// D RC.RB.A//. By Theorem ISM.4(A) RD ıRA

and RC ıRB are translations of P . By Theorem ISM.5 RD ıRA D RC ıRB.

Multiplying on the right by RA and using Exercise ROT.1(A) again, RD D
RC ıRB ıRA. ut
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Fig. 12.2 For
Theorem ISM.11.
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Theorem ISM.11. Let P be a Euclidean plane and let L, M, and N be lines on

P such that L k M k N . Then there exists a unique line J such that J k L and

RN ıRM ıRL D RJ .

Proof. See Figure 12.2.

(I: Existence.) Let A be a point on L and let K D pr .A;L/. By Corollary EUC.4

K ? M and K ? N . Let B D ftpr .A;M/ and C D ftpr .A;N /. By

Definition ROT.1, Remark NEUT.1.3, and Theorem ROT.4,

RN ıRM ıRL D RN ıRK ıRK ıRM ıRL ıRK ıRK

D RC ıRB ıRA ıRK:

By Theorem ISM.10 there exists a point Q on K such that RC ı RB ı
RA D RQ. Thus RN ı RM ı RL D RQ ı RK. Let J D pr .Q;K/. By

Theorem NEUT.47(A) J k L. Thus RQ ı RK D RJ ı RK ı RK D RJ so

RN ıRM ıRL D RJ .

(II: Uniqueness.) If J and J 0 are lines on P such that RN ıRM ıRL D RJ and

RN ıRMıRL D RJ 0 , then RJ D RJ 0 ; by Remark NEUT.1.1 J D J 0. ut

Definition ISM.12. Let P be a Euclidean plane, ˛ a mapping of P into P , and L
a line on P . ˛ is a glide reflection of P over L iff there exists a translation � of P
such that L is a fixed line of � and ˛ D RL ı � .

A glide reflection is an isometry because it is the composition of two isometries.

Theorem ISM.13. Let P be a Euclidean plane, and let ˛ D RL ı � be a

glide reflection of P , where � is a translation and L is a fixed line for � . Then

˛ D RL ı � D � ıRL, ˛ has no fixed point, and L is the only fixed line of ˛.
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Proof. (A) Let X be any point on P . (Case 1: X 2 L.) Since every point on L is a

fixed point of RL, �.RL.X// D �.X/. Since L is a fixed line of � , �.X/ 2 L,

so that RL.�.X// D �.X/ D �.RL.X//. This also shows that no point on L
can be a fixed point of RL ı � , because � has no fixed point.

(Case 2: X 2 .P n L/.) By Theorem CAP.8
 ��!
X�.X/ and

 �����������!RL.X/�.RL.X//

are fixed lines of � and since L is a fixed line of � , each is parallel to

L. By Theorem IP.6
 ��!
X�.X/ k  �����������!RL.X/�.RL.X//. By Theorem NEUT.15(1)

�.
 ����!
XRL.X// D  ���������!�.X/�.RL.X//. By Theorem CAP.8(C) and Definition CAP.6 ����!

XRL.X/ k  ���������!�.X/�.RL.X//. Thus tuX�.X/�.RL.X//RL.X/ is a parallelogram,

by Definition EUC.5(B).

By Theorem NEUT.48(A) L ?  ����!
XRL.X/ and L ?  ���������!

�.X/RL.�.X//.

By Theorem NEUT.47(A)
 ����!
XRL.X/ k  ���������!�.X/RL.�.X//. Since

 ��!
X�.X/ k L,

by Exercise NEUT.1
 ��!
X�.X/ k  �����������!RL.X/RL.�.X//. By Definition EUC.5(B),

tuX�.X/RL.�.X//RL.X/ is a parallelogram.

Since L ?  ����!XRL.X/ and L k  ��!X�.X/, by Theorem EUC.3
 ����!
XRL.X/ ? ��!

X�.X/, and by Theorem NEUT.44 †RL.X/X�.X/ is right. By Theo-

rem EUC.19 both tuX�.X/�.RL.X//RL.X/ and tuX�.X/RL.�.X//RL.X/ are

rectangles. By Remark EUC.15(C), RL.�.X// D �.RL.X//. This construction

also shows that no point of P n L can be a fixed point of RL ı � , because

RL.�.X// is on the side of L opposite X.

(B) Since L is a fixed line of both � and RL, it is a fixed line of RL ı � . If M
is a line parallel to L, then by Theorem CAP.8 M is a fixed line of � . Since

RL.M/ is a line which is a subset of the side of L which is opposite the side

containing M, M is not a fixed line of RLı� . Let J be any line on P such that

J and L intersect at the point Q. Since �.Q/ ¤ Q and RL.�.Q// D �.Q/ 2 L,

RL.�.J // ¤ J . Thus J is not a fixed line of RL ı � . ut
Corollary ISM.13.1. A mapping ˛ on a Euclidean plane P is a glide reflection iff

there exists a translation � of P such that L is a fixed line of � and ˛ D � ıRL.

Theorem ISM.14. Let P be a Euclidean plane and let L, M, and N be distinct

lines on P which are nonconcurrent and nonparallel (i.e., any two of the three lines

intersect at a point and that point is not on the third line), then there exists a line

J and a point Q on P such that RN ı RM ı RL D RQ ı RJ . Furthermore,

RN ıRM ıRL is a glide reflection of P .
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Proof. Any two of the three lines intersect at a point and that point is not on the

third line. Thus we have three cases:

(Case 1: M and L intersect at the point G and G … N .) We will refer to N as

the “odd” line that does not contain G. Let K D pr .G;N / and Q D ftpr .G;N /.
By Theorem ROT.13 there exists a unique line J such that G 2 J and RK ıRJ D
RM ı RL. By Definition ROT.1 RN ı RK D RQ. Hence RN ı RM ı RL D
RN ıRK ıRJ D RQ ıRJ .

To show that this mapping is a glide reflection, let S D par .Q;J / and

T D pr .Q;J /. By Theorem EUC.3 S ? T . By Definition ROT.1 and Theo-

rem ROT.4 RQ D RT ıRS D RN ıRK. Thus

RN ıRM ıRL D RQ ıRJ

D RT ıRS ıRJ D RT ı .RS ıRJ / D RT ı �
where � D RS ıRJ is a translation, since S k J . Moreover, T is perpendicular to

both S and J , so is a fixed line for � . Therefore RN ıRM ıRL is a glide reflection

by Definition ISM.12.

If we interchange M and L throughout, the proof also shows that RN ıRLıRM

is a glide reflection; we will refer to this result as the “alternate” result of Case 1.

(Case 2: N and L intersect at the point G and G … M.) By Exercise IP.2, M
intersects either N or L, possibly both. If M intersects L at some point H, we have

Case 1 again, with H substituted for G. If M intersects N at some point H, then L
is the “odd” line and substituting H for G, and interchanging N and L in Case 1,

we see that RL ıRM ıRN is a glide reflection. That is, there exists a line T and

a translation � , where T is a fixed line for � , such that RL ıRM ıRN D RT ı � .

The inverse of this mapping is

RN ıRM ıRL D R�1N ıR�1M ıR�1L D ��1 ıR�1T D ��1 ıRT .

By Theorem CAP.12(A), ��1 is a translation � , and the fixed lines of � and � are

the same, so by Corollary ISM.13.1, this mapping is RT ı � , a glide reflection.

(Case 3: M and N intersect at the point G and G … L.) By Exercise IP.2, L
intersects either M or N , possibly both. If L intersects M at some point H, we

have Case 1 again, with H substituted for G. If L intersects N at some point H, then

M is the “odd” line and substituting H for G, L for N , N for M, and M for L,

and using the alternate conclusion for Case 1, we have RL ıRM ıRN is a glide

reflection; reasoning as at the end of Case 2, RN ıRM ıRL is a glide reflection.

ut
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Theorem ISM.15. Let P be a Euclidean plane and let ˛ be an isometry of P which

has no fixed point. Then ˛ is either a translation of P , or ˛ is a glide reflection of P .

Proof. By Theorem ROT.25 either there exist two distinct lines L and M on P such

that ˛ D RM ıRL, or there exist three distinct lines H, J , and K on P such that

˛ D RK ıRJ ıRH.

(Case 1: ˛ D RM ı RL.) If M and N were concurrent at O on P , then by

Definition NEUT.1(A) and Definition CAP.0, O would be a fixed point of ˛, contrary

to the given fact that ˛ has no fixed point. Hence L kM and by Theorem ISM.4(B)

˛ is a translation of P .

(Case 2: ˛ D RK ıRJ ıRH.) If H, J , and K were concurrent at the point O,

then O would be a fixed point for ˛ contrary to our assumption that it has no fixed

point. If K k J k H, then by Theorem ISM.11 there would exist a line T such that

RT D RK ıRJ ıRH and every point on T would be a fixed point of ˛, contrary

to the given fact that ˛ has no fixed point. Thus two of the three lines intersect at

a point and that point is not on the third line and by Theorem ISM.14, ˛ is a glide

reflection of P . ut
Theorem ISM.16. Let P be a Euclidean plane and let L, M, and N be distinct

lines on P . fL;M;N g is a pencil by Definition IP.1(D) iff there exists a line J on

P such that RN ıRM ıRL D RJ .

Proof. (I: If fL;M;N g is a pencil, then there exists a line J on P such that RN ı
RM ıRL D RJ .) If there exists a point O on P such that L\M\N D fOg,
then by Theorem ROT.4 J exists. If L kM k N , then by Theorem ISM.11,

J exists.

(II: If there exists a line J on P such that RN ıRM ıRL D RJ , then fL;M;N g
is a pencil.) We will proceed by proving the contrapositive: If fL;M;N g is not

a pencil, then two of the three lines intersect at a point and that point is not on

the third line. By Theorem ISM.14 ˛ D RN ıRM ıRL is a glide reflection.

By Theorem ISM.13 ˛ has no fixed point and thus is not a reflection. ut

Theorem ISM.17. Let P be a Euclidean plane and let ˛ be an isometry of P . Then

˛ is one and only one of the following:

(1) the identity,

(2) a line reflection,

(3) a rotation of P about a point,

(4) a translation of P ,

(5) a glide reflection of P .
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Proof. If ˛ has three noncollinear fixed points, then by Theorem NEUT.24 ˛ D {.

If ˛ has distinct fixed points A and B, but no fixed points off of
 !
AB, then by

Exercise NEUT.6(A) ˛ is the line reflection R !
AB

. If ˛ has one and only one fixed

point O, then by Theorem ROT.16 ˛ is a rotation of P about O. If ˛ has no fixed

point, then by Theorem ISM.15 ˛ is either a translation of P , or ˛ is a glide

reflection of P . ut

Fig. 12.3 For
Theorem ISM.18.
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Theorem ISM.18. Let P be a Euclidean plane, L be a line on P , and G and H

be distinct points on P neither of which is on L. Furthermore, let S D pr .G;L/
and T D pr .H;L/. Then there exists a line F such that RH ıRL ıRG D RF iff

S D T .

Proof. See Figure 12.3. By Theorem NEUT.47(A) and Definition CAP.10 S PE T .

Let M D par .G;L/ and N D par .H;L/. By Theorem EUC.3 N ? S , N ? T ,

M ? S , and M ? T . By Theorem IP.6 M k N . By Theorem ISM.11 there exists

a line J such that J k L and RJ D RN ı RL ı RM. By Definition ROT.1 and

Theorem ROT.4, RH D RT ıRN and RG D RM ıRS . Therefore

RH ıRL ıRG D RT ıRN ıRL ıRM ıRS D RT ıRJ ıRS :

But since T ? J , by Corollary ROT.5 RT ıRJ D RJ ıRT , and

RH ıRL ıRG D RJ ıRT ıRS :

If T ¤ S , then T and S are parallel and so by Theorem ISM.4 RT ı RS is

a translation of P . Since T ? J , J is a fixed line for this translation, and by

Definition ISM.12 RJ ı RT ı RS is a glide reflection, which has no fixed points

(cf Theorem ISM.13) and hence is not a reflection.

If T D S , then by Property R.2 of Definition NEUT.2 and Defini-

tion NEUT.1(C), RT ıRS D RT ıRT D { so RH ıRL ıRG D RJ . ut
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The following theorem is essential to the proof of Theorem DLN.4, in

Chapter 13, which is important in the development of half-rotations and dilations.

The reader may wish to get a feeling for what it says by choosing an arbitrary

point on the figure, then reflecting it successively in M, L, and N , and observing

that the result is the same as reflecting it in J . We have printed the figure a bit larger

than usual to facilitate such an exercise.

H

G

Q

pr(G, L) = pr(H, L) M

J

L

NO

M N

Fig. 12.4 For Theorem ISM.19.

Theorem ISM.19. Let P be a Euclidean plane and let L, M, and N be distinct

lines on P which are concurrent at O. Moreover, let G be a point on M distinct from

O and H be a point on N distinct from O such that pr .G;L/ D pr .H;L/. Finally,

let M0 D pr .G;M/, N 0 D pr .H;N /, and let J be the line (cf Theorem ROT.11)

such that RJ D RN ıRL ıRM. Then M0, J , and N 0 are concurrent at a point Q.

Proof. See Figure 12.4. By Theorem ISM.18 there exists a line F such that RH ı
RL ıRG D RF . By Definition ROT.1 and Theorem ROT.4 RH ıRL ıRG DRN 0 ı
RN ıRL ıRM ıRM0 . Thus RF D RH ıRL ıRG DRN 0 ıRJ ıRM0 . If M0, J ,

and N 0 were not concurrent at a point Q, then by Theorem ISM.14 RN 0 ıRJ ıRM0

would be a glide reflection and would not be equal to RF , a contradiction. Therefore

M0, J , and N 0 are concurrent at Q. ut
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Theorem ISM.20. Let P be a Euclidean plane and let ı be a dilation of P with

fixed point O, and also an isometry of P . Then ı is a point reflection of P over O.

Proof. Let X be any member of P n fOg, then by Property B.3 of Defini-

tion IB.1 (extension property) there exists a point X0 such that X O X0. By

Theorem PSH.15
 !
OX is the union of the disjoint sets

qy!
OX; fOg; and

qy!
OX0.

By Theorem NEUT.15(2) ı.
qy!
OX/ D qy !

ı.O/ı.X/ D qy !
Oı.X/. By Definition NEUT.3(B)

px qy

OX Š px qy

Oı.X/. By Theorem CAP.18
 !
OX is a fixed line of ı. If ı.X/ were to belong

to
qy!
OX, then by Property R.4 of Definition NEUT.2, ı.X/ would be equal to X,

contrary to the fact that ı.X/ ¤ X (Theorem CAP.18). Therefore ı.X/ 2 qy!
OX0. By

Exercise ROT.8 ı is a point reflection of P over O. ut
Theorem ISM.21. Let P be a Euclidean plane and let L be a line on P . If 	 is an

isometry and also an axial affinity of P with axis L, then the set of fixed lines of 	

is L [ fM jM is a line on P and M ? Lg.
Proof. Let N be a line on P such that N ? L, Q be the point such that L \N D
fQg, S be a point on L distinct from Q, and T be a point on N distinct from Q. By

Definition CAP.25 both Q and S are fixed points of 	 . By Theorem NEUT.15(1)

	.
 !
QT/ D �����!	.Q/	.T/ D ��!Q	.T/ and

	.†SQT/ D †	.S/	.Q/	.T/ D †SQ	.T/:

By Definition NEUT.3(B)
px qy

QT Š px qy

Q	.T/ and †SQT Š †SQ	.T/. By Theorem

NEUT.44, †SQT is right. By Theorem NEUT.66 †SQ	.T/ is right. By Theorem

NEUT.44
 ��!
Q	.T/ ? L. By Theorem NEUT.48(A)

 ��!
Q	.T/ D  !QT . By Defini-

tion CAP.0 N is a fixed line of 	 . By Theorem CAP.27(B), the set of fixed lines

of 	 is fLg [ fM jM is a line on P and M ? Lg. ut
Theorem ISM.22. Let P be a Euclidean plane and let L be a line on P .

(A) RL is an axial affinity of P with axis L.

(B) If 	 is an axial affinity of P with axis L such that 	 is also an isometry of P ,

then 	 D RL.

That is, the set of all reflections is identical to the set of all isometries which are

axial affinities.

Proof. (A) By Remark NEUT.1.3 RL is a bijection of P onto itself. By Def-

inition NEUT.1(D) and Remark NEUT.1.5 RL is a collineation of P . By

Definition NEUT.1(A), every point on L is a fixed point of RL. By Defini-

tion CAP.25 RL is an axial affinity of P with axis L.
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(B) If X is any member of L, then by Definition CAP.25 and Definition NEUT.1(A)

	.X/ D RL.X/ D X.

If X is any member of P n L, let M D pr .X;L/ and let U D ftpr .X;L/.
By Theorem ISM.21 M is a fixed line of 	 , so 	.X/ 2 M. If 	.X/ were on

the X side of L, then by Theorem PSH.38(A) 	.X/ would belong to
qy!
UX. By

Theorem NEUT.15(5) and Definition NEUT.1(A) we would have 	.
px qy

UX/ D
px qy

	.U/	.X/ D px qy

U	.X/ and by Definition NEUT.3(B) we would have
px qy

UX Š
px qy

U	.X/ and by Property R.4 of Definition NEUT.2, 	.X/ would equal X. This

would contradict the fact from Theorem CAP.26 that X is not a fixed point of

	 . By Theorem PSH.12 (Plane Separation), 	.X/ and X are on opposite sides

of L. Using Property B.3 of Definition IB.1 let X0 be a point such that X U X0.
By Theorems PSH.15 and PSH.38(A) 	.X/ 2 qy!

UX0. By Definition NEUT.3(C)

U is the midpoint of
px qy

X	.X/. By Exercise NEUT.74 	 D RL. ut

Theorem ISM.23 (Construction of a translation). Let P be a Euclidean plane, O

a member of P , A a member of P nfOg, �A the translation of P such that �A.O/ D A,

and let X be any member of P n fOg. Then �A.X/ is constructed as follows:

(Case 1: X 2 P n !OA.) �A.X/ is the point of intersection of par .X;
 !
OA/ and

par .A;
 !
OX/. Furthermore A and �A.X/ are on the same side of

 !
OX.

(Case 2: X 2  !OA n fOg.) Let Y be any member of .P n  !OA/ and using case 1

find �A.Y/. Then �A.X/ is the point of intersection of
 !
OA and par .�A.Y/;

 !
XY/.

Moreover, if the points on
 !
OA are ordered so that O < A (see Remark ORD.2),

then for every X belonging to
 !
OA, X < �A.X/.

Proof. (Case 1: X 2 .P n  !OA/.) We will freely use Theorem CAP.8(B) and (C)

without further reference. Since
 !
OA D ���!O�A.O/, it is a fixed line for �A, as is

 ���!
X�A.X/,

and these lines are parallel. By definition,
 !
OA k par .X;

 !
OA/; both par .X;

 !
OA/

and
 ���!
X�A.X/ contain X, so by Axiom PS, par .X;

 !
OA/ D  ���!X�A.X/ and this is a

fixed line. The lines
 !
OX and

 !
OA are not parallel because they intersect at O, so !

OX is not a fixed line for �A and by Definition CAP.6 and Theorem CAP.1 (or

Theorem NEUT.15(1)), �A.
 !
OX/ D  ���!A�A.X/ k  !OX. Then

 ���!
A�A.X/ D par .A;

 !
OX/; this

line intersects par .X;
 !
OA/ D ���!X�A.X/ at �A.X/. By Exercise PSH.14 A and �A.X/ are

on the same side of
 !
OX.

(Case 2: X 2 . !OA n fOg.) By Theorem CAP.8(B)
 ���!
Y�A.Y/ and

 !
OA D  ���!O�A.O/

are both fixed lines of �A, and by Theorem CAP.8(C) they are parallel. Since X 2 !
OA, �A.X/ 2  !OA.

 !
XY is not a fixed line of �A so by Definition CAP.6, �A.

 !
XY/ D
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 ������!
�A.X/�A.Y/ is parallel to

 !
XY , so is the same line as par .�A.Y/;

 !
XY/. Therefore �A.X/

is the point of intersection of par .�A.Y/;
 !
XY/ and

 !
OA, as required.

We now show that X < �A.X/ in case 2 above. The following may seem like a lot

of fuss to prove something so intuitively obvious, but it seems to be what is required.

There are four subcases: since X ¤ O either O A X, X D A, O X A, or X O A.

(Case 2A: O A X.) By Exercise PSH.14 (which in the following we will use

many times without further reference), Y 2 O-side of
 ���!
A�A.Y/, which is opposite the

X-side by Definition IB.11. Therefore
qy px

XY \ ���!A�A.Y/ ¤ ;: Hence by Definition IB.11

�A.Y/ is on the side of
 !
XY opposite to O and A. Let fWg D par .O;

 !
XY/ \ ���!Y�A.Y/,

and let fQg D par .W;
 !
OY/ \ !OA. Because W is on the O-side of

 !
XY , W Y �A.Y/;

and since Q is on the W-side of
 !
OY , Q O A X. �A.X/ is on the �A.Y/-side of !

XY so A X �A.X/, and hence Q O A X �A.X/. Since O < A it follows from

Theorem ORD.6 that A < X and hence that X < �A.X/.

(Case 2B: X D A.) tuOY�A.Y/X is a parallelogram by Definition EUC.5(B) and

is rotund by Theorem EUC.6. By Theorem PSH.54(A) its diagonals intersect, so

that O and �A.Y/ are on opposite sides of
 !
XY , by Definition IB.11. Let fWg D

par .O;
 !
XY/ \  ���!Y�A.Y/; then W 2 O-side of

 !
XY by Exercise PSH.14, so that

W Y �A.Y/ and hence by Exercise PSH.57 O X �A.X/. Then since O < A D X by

Theorem ORD.6 X < �A.X/.

(Case 2C: O X A.) Since O < A, O < X by Theorem ORD.6. Let fWg D
par .O;

 !
XY/ \  ���!Y�A.Y/, and let fZg D par .X;

 !
OY/ \  ���!Y�A.Y/. tuOYZX is a par-

allelogram and reasoning as in case 2B, O and Z are on opposite sides of
 !
XY .

Since W and O are on the same side of
 !
XY , W is on the side opposite Z of

 !
XY ,

and by Definition IB.11 W Y Z. Since O X A, by Exercise PSH.57 Y Z �A.Y/.

Therefore W Y Z �A.Y/. Again by Exercise PSH.57, O X �A.X/, and X < �A.X/

by Theorem ORD.6.

(Case 2D: X O A.) Since O < A by Theorem ORD.6, X < O. Let fWg D
par .X;

 !
OY/ \  ���!Y�A.Y/, and let fQg D par .W;

 !
XY/ \  !OA. Then tuOYWX is a

parallelogram and reasoning as in case 2B, O and W are on opposite sides of
 !
XY .

Since W and Q are on the same side of
 !
XY , Q and O are on opposite sides of

 !
XY ,

and by Definition IB.11 Q X O. Since X < O, Q < X by Theorem ORD.6.

Since X O A, by Exercise PSH.57W Y �A.Y/; again by Exercise PSH.57,

Q X �A.X/. Since Q < X, X < �A.X/ by Theorem ORD.6. ut
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12.2 Exercises for isometries

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise ISM.1�. Let P be a Euclidean plane.

(A) There is no translation � of P such that � ı � D {.
(B) For any translation � of P , � ı � is a translation, having no fixed point.

Exercise ISM.2�. Let P be a Euclidean plane, � and � be translations of P such

that L is a fixed line of � , M is a fixed line of � , L and M are not parallel, and let

Q be any point on P . Then tuQ.�.Q//.�.�.Q///.�.Q// is a parallelogram.

Exercise ISM.3�. Let P be a Euclidean plane, A and B be distinct points on P , and

� be a translation of P such that
 !
AB is not a fixed line of � . Then

px qy

A�.A/ and
px qy

B�.B/

are opposite edges of a parallelogram.

Exercise ISM.4�. Let P be a Euclidean plane, L1 and L2 be parallel lines on P ,

A1 be a point on L1, A2 be the point of intersection of pr .A1;L1/ and L2, and � be

the translation of P such that �.A1/ D A2 (cf Theorem ISM.5). Then �.L1/ D L2.

Exercise ISM.5�. Let M be a line on a Euclidean plane P and let � be a translation

along M; that is, M is a fixed line for � . Let RM be the reflection with axis M.

Then RM ı � D � ıRM.

Exercise ISM.6. Prove, disprove, or improve: let P be a Euclidean plane, � a

translation, and L a line on P . Then R�.L/ ı � D � ıRL.

Exercise ISM.7. In Theorem ISM.23 Case 2, create a simpler proof of the fact that

X < �A.X/.

Exercise ISM.8�. Let P be a Euclidean plane, and let ˛ D RL ı � be a glide

reflection, where � is a translation and L is the single fixed line for ˛ according to

Theorem ISM.13.

(A) If N k L, then ˛.N / k L.

(B) If N ? L, then ˛.N / ? L and ˛.N / k N .

www.springer.com


Chapter 13
Dilations of a Euclidean Plane (DLN)

Acronym: DLN

Dependencies: all prior Chapters 1 through 12

New Axioms: none

New Terms Defined: half-rotation, associated rotation, group generated by a union

of three sets

Abstract: This chapter establishes a rich array of properties for dilations, which

were defined in Chapter 3. These play a key role in the development of Euclidean

geometry, both in the definition of multiplication and in the development of

similarity. Half-rotations are defined and their properties developed in an intricate

process; these, in turn, are used to define dilations, which are shown to be

belineations. A method is provided for point-wise construction of a dilation having

a given action. A classical proposition attributed to Pappus of Alexandria is proved.

Intuitively, a dilation is a uniform expansion (or contraction) of the plane in all

directions from (or toward) a fixed point O. Dilations are not isometries, as are most

of the mappings we’ve worked with so far.1

It is fairly simple to construct a dilation that contracts the plane; this is done

(and illustrated) in Theorem DLN.5, using half-rotations which, like dilations,

are not isometries, although they are derived from rotations. For the general case

1Dilations would be easy to construct if we had a notion of distance, but we don’t; indeed, we need
dilations in order to construct a definition of distance, which we do in Chapter 14, Definition OF.16.

© Springer International Publishing Switzerland 2015
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282 13 Dilations of a Euclidean Plane (DLN)

(both expansion and contraction) we must deal both with half-rotations and with

their inverses. Theorem DLN.7 gives the details for this process, and includes a

figure which, hopefully, will be helpful in clarifying the proof. The most difficult

part of the whole process of defining and developing the properties of dilations is

proving the properties of half-rotations; this is done mainly in Theorems DLN.2 and

Theorem DLN.4.

In this chapter we will generally follow J. Diller and J. Boczeck, in Euclidean

Planes, Chapter 4 in Fundamentals of Mathematics, Volume 2, H. Behnke,

F. Bachmann, K. Fladt, and H. Kunle, eds, translated by S. Gould, MIT Press,

1974 [2].

13.1 Half-rotations and dilations

Recall from Definition CAP.17 that a collineation ˛ ¤ { is a dilation iff it has a

fixed point, and for every line L on P , either ˛.L/ k L, or ˛.L/ D L. Alternatively,

by Theorem CAP.22, a collineation is a dilation if O is its only fixed point, and

every line containing O is a fixed line. Recall also from Theorem CAP.21 that the

set of dilations with fixed point O (together with the identity) form a group under

composition. In particular, the inverse of a dilation with fixed point O is a dilation

with fixed point O.

Definition DLN.1. Let P be a Euclidean plane, O a point on P , and � a rotation

about O which is not a point reflection. Define ˛.O/ D O and for every X 2 P nfOg
define ˛.X/ to be the midpoint of

px qy

X�.X/. Then ˛ is called the half-rotation of P
about O associated with the rotation �, and � is the rotation associated with ˛.

We will sometimes denote the associated rotation by �˛ .

Theorem ROT.9(B) shows that there can be no half-rotation about O that maps a

ray
px!
OA to itself, because no rotation maps

px!
OA to itself.

Theorem DLN.2. Let O be a point on the Euclidean plane P , � a rotation of P
about O, and ˛ the half-rotation about O associated with P . For any member A of

P n fOg, by Property R.5 of Definition NEUT.2, and Theorem NEUT.26 there exists

a unique line of symmetry GA for †AO�.A/. Then

(A) � D RGA ıR !OA
, and GA is the only line with this property.

(B) GA 6?  !OA;
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and “multiplying” on the left by R ��!
O˛.X/

we have

R !
OX
D R ��!

O˛.X/
ıR ��!

O˛.P/
ıR !

OP
: .

/

Moreover, if there were a second line K such that

� D R ��!
O˛.X/

ıRK D R ��!
O˛.X/

ıR !
OX

then multiplying on the left by R ��!
O˛.X/

yields RK D R !
OX

, so that
 !
OX is the

only line such that (*) above is true.

We now re-label the points and lines in this proof to correspond with points

and lines in Theorem ISM.19, as in the table below:

DLN.4 ISM.19 DLN.4 ISM.19

Z H T D !PX
 !
GQ DM0

P G
 ��!
O˛.P/ L

X Q
 !
OZ D ��!O˛.X/

 !
OH D N

 !
OX

 !
OQ D J  !

XZ
 !
QH D N 0

 !
OP

 !
OG DM  !

PZ D ��!P˛.P/
 !
GH

Using these new labels, equality (**) above becomes RJ D RN ıRL ı
RM, as in Theorem ISM.19.

(B3) At this stage in the proof, we know from (B1) that the lines
 ��!
O˛.X/ and

 ��!
P˛.P/

intersect at some point Z; however, we don’t know whether this point is ˛.X/.

The following argument will prove that it is.

By Theorem NEUT.48(A) let N 0 be the perpendicular to
 ��!
O˛.X/ D N at

the point Z. We summarize the perpendicularity relations between the various

lines in the following table:

DLN.4 ISM.19
 !
OP ? T M ?M0
 ��!
O˛.P/ ?  !PZ L ?  !GH
 !
OZ D ��!O˛.X/ ?  !XZ N ? N 0

From Theorem ISM.19, the three lines N 0, M0, and J intersect at a single

point. Since M0 D T and J D !OX intersect at Q D X, this point is X.

So now we have two lines,
 ��!
X˛.X/ and

 !
XZ , both of which contain X and

both of which are perpendicular to N D ��!O˛.X/. One of them intersects N at

˛.X/ and the other at Z. By Theorem NEUT.48(A) there can only be one such

line; hence Z D ˛.X/ and thus ˛.X/ 2  ��!P˛.P/.

This completes the proof that ˛.T / �  ��!P˛.P/.
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(B4)
 ��!
P˛.P/ � ˛.T /. Here, P, ˛.P/, L, M, and T D M0 are defined as before.

Again we use Theorem ISM.19.

Suppose Z is any point of
 ��!
P˛.P/ other than P or ˛.P/. Then define N D !

OZ, and let N 0 D pr.Z;N /, so that Z 2 N 0 and N 0 ? N . By Lemma DLN.3,

there exists a point Y 2 N 0 such that N is the line of symmetry of †YO�.Y/.

Define J D !OY . Then J \N 0 D fYg.
By Theorem DLN.2(A), RN ıRJ D � D RL ıRM. Multiplying on the

left by RN we have RJ D RN ıRL ıRM. Since T DM0, M0 ?M; by

Theorem ISM.19, M0, N 0, and J intersect at a point Q. But J \N 0 D fYg,
so Q D Y . Y 2 T and ˛.Y/ D Z, showing that Z is a member of ˛.T ). Thus ��!
P˛.P/ D ˛.T /.

(C) follows immediately from the construction used in part (B). ut

Theorem DLN.5 (Dilation contracting the plane). Let P be a Euclidean plane,

O a point on P , and let ˛ be a half-rotation of P about O with associated rotation

�. Using Theorem ROT.28 let 	 be the rotation of P about O such that 	 ı 	 D �.

Then 	�1 ı ı is a dilation of P with fixed point O. Moreover, for every X ¤ O,

	.
px!
OX/ D ˛.px!OX/.

Fig. 13.3 For
Theorem DLN.5 showing a
dilation contracting the plane.

O
X

δ(X) = θ−1(α(X))

α(X)

ρ(X)

line of symmetry

L

Proof. See Figure 13.3. Let L be any line such that O 2 L, and let X 2 L
and X ¤ O. By Theorem DLN.2(D) ˛.L/ is the line of symmetry of †XO�.X/.

By Exercise ROT.4(A), †XO	.X/ Š †	.X/O	.	.X// D †	.X/O�.X/ so that

by Theorem NEUT.39, 	.L/ is the line of symmetry of †XO�.X/. Therefore

	.L/ D ˛.L/ and .	�1 ı ˛/.L/ D L. Therefore every line through O is a fixed

line for 	�1 ı ˛.
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Let Y D 	�1ı˛.X/. Then Y ¤ X, because
px qy

OY Š px qy

O	.Y/ D px qy

O˛.X/ and
px qy

O˛.X/ <
px qy

OX by Theorem NEUT.93 (a leg of a right triangle is smaller than the hypotenuse).

Hence X is not a fixed point of 	�1 ı ˛, which mapping is not the identity.

Since 	�1 ı˛ is the composition of two collineations, by Theorem CAP.1(C) it is

a collineation with no fixed point other than O; since every line through O is a fixed

line, we may apply Theorem CAP.22, showing that 	�1 ı ˛ is a dilation of P with

fixed point O.

This last might also be proved as follows: if T is a line not containing O and L is

a line through O such that L ? T , then by Theorem DLN.4(C), ˛.T / ? ˛.L/. Now

	�1 is an isometry, so 	�1.˛.T // ? 	�1.˛.L// D L so both T and 	�1.˛.T // are

perpendicular to L; hence by Theorem NEUT.47(A), if these lines are distinct, they

are parallel. By Definition CAP.17 	�1 ı ˛ is a dilation. ut
Theorem DLN.6. Let P be a Euclidean plane and O be a point on P .

(A) If ˛ and ˇ are half-rotations of P about O, then ˇ ı ˛ D ˛ ı ˇ.

(B) If ˛ is a half-rotation and � a rotation of P about O, then � ı ˛ D ˛ ı � .

(C) If ˛ and ˇ are bijections of P (in particular, rotations or half-rotations) and

ˇ ı ˛ D ˛ ı ˇ, then ˇ ı ˛�1 D ˛�1 ı ˇ.

(D) Here we anticipate the proof of Theorem DLN.7 below. If ˛, ˇ, and � are half-

rotations of P about O, and � is a rotation of P about O, then � ı��1 ıˇı˛ D
��1 ı ˇ ı ˛ ı � .

Proof. (A) (Two half-rotations commute.) Let X be any member of P n fOg and

let K D  !OX. If �˛ is the rotation of P about O associated with ˛ and if �ˇ is

the rotation of P about O associated with ˇ, then by Theorem DLN.2(A) and

(D), �˛ D R˛.K/ ıRK and �ˇ D Rˇ.K/ ıRK. These are true for any line K
containing the point O, so in particular they are true for the lines ˇ.K/, ˛.K/,
etc. Therefore, R˛.K/ ıRK D �˛ D R˛.ˇ.K// ıRˇ.K/ and Rˇ.K/ ıRK D �ˇ D
Rˇ.˛.K// ıR˛.K/. Thus R˛.ˇ.K// D R˛.K/ ıRK ıRˇ.K/ and

Rˇ.˛.K// D Rˇ.K/ ıRK ıR˛.K/. (*)

By Theorem ROT.12 R˛.ˇ.K// D Rˇ.˛.K//. By Remark NEUT.1.1 ˛.ˇ.K// D
ˇ.˛.K//.

It remains to prove that .ˇ ı ˛/.X/ D .˛ ı ˇ/.X/. To accomplish this, first

rewrite equation (*) above by multiplying on the left by Rˇ.K/ and on the right

by R˛.K/ to get

Rˇ.K/ ıRˇ.˛.K// ıR˛.K/ D RK.
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In Theorem ISM.19, let M D ˛.K/ so that ˛.X/ 2M, and N D ˇ.K/ so that

ˇ.X/ 2 N ; and let L D ˇ.˛.K// D ˛.ˇ.K//. By Definition DLN.1, the line ��������!
˛.X/ˇ.˛.X// ? L at the point ˇ.˛.X//. By Corollary EUC.4,

 ��������!
˛.X/ˇ.˛.X//

intersects N at some point P. Let N 0 be the line perpendicular to N at the

point P. Let M0 D ��!X˛.X/; this is perpendicular to M at the point ˛.X/.

By Theorem ISM.19, N 0, M0, and K intersect at a point Q; since the point

of intersection of M0 and K is the point X, Q D X. Since N 0 is perpendicular to

N , as is
 ��!
Xˇ.X/, and both N 0 and

 ��!
Xˇ.X/ contain X, by Theorem NEUT.48(A),

N 0 D ��!Xˇ.X/ and P D ˇ.X/.
We know that ˛.ˇ.X// lies on L, and since

 ��������!
˛.X/ˇ.˛.X// is perpendicular to

L, ˛.ˇ.X// is the point of intersection of these two lines; but we already know

this is ˇ.˛.X//. Therefore ˛.ˇ.X// D ˇ.˛.X//, and since X is any member of

P n fOg, ˇ ı ˛ D ˛ ı ˇ, completing the proof of part (A).

(B) (Half-rotations commute with rotations.) Let ˛ be any half-rotation about O

with associated rotation � and let X 2 P n fOg. By Theorem ROT.15(A) (or

Theorem DLN.5) let 	 be the rotation about O such that 	.X/ 2 qy !
O˛.X/. Since

for any X 2 P nfOg, both ˛.X/ and 	.X/ lie in the angle bisector of †XO�.X/,
qy !
O˛.X/ D qy !

O	.X/.

Let � be a rotation of the plane about O. Then by Theorem ROT.21, for any

X 2 P n fOg, �.	.X// D 	.�.X// and by Theorem NEUT.15(2)

�.˛.X// 2 �.qy !
O.	.X/// D qy !

O.�.	.X/// D qy !
O.	.�.X/// D qy !

O.˛.�.X///.

Therefore
qy !
O.�.˛.X/// D qy !

O.˛.�.X/// and ˛.�.X// 2 qy !
O.�.˛.X///.

Consider now triangle �.4XO˛.X// D 4�.X/O�.˛.X//. By Defini-

tion NEUT.3(B)4XO˛.X/ Š 4�.X/O�˛.X/.
Since ˛ is a half-rotation, we know that †O˛.X/X is a right angle; hence

by Corollary NEUT.44.1, †O�.˛.X//�.X/ is also right. Since ˛.�.X// is

a member of
qy !
O�.˛.X//, ˛.�.X// D ftpr .�.X/;

 �����!
O�.˛.X///, and (by Theo-

rem NEUT.47(B)) there can be only one perpendicular from a point to a line,

it follows that ˛.�.X// D �.˛.X//. Again, since X is any member of P n fOg,
˛ ı � D � ı ˛, completing the proof of part (B).

(C) If ˇ ı ˛ D ˛ ı ˇ, then since ˛�1 ı ˛ D {,
ˇ ı ˛�1 D ˛�1 ı ˛ ı ˇ ı ˛�1 D ˛�1 ı ˇ ı ˛ ı ˛�1 D ˛�1 ı ˇ.

(D) Let ˛, ˇ, and � be half-rotations about O and let � be a rotation about O. By

part (B), � ı � D � ı � , and by part (C) � ı ��1 D ��1 ı � . Then, applying

this, and part (B) twice, we have

� ı ��1 ıˇ ı˛ D ��1 ı� ıˇ ı˛ D ��1 ıˇ ı� ı˛ D ��1 ıˇ ı˛ ı� . ut
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Theorem DLN.7 (Structure of dilations). Let O, A, and B be distinct collinear

points on a Euclidean plane P .

(A) There exist half-rotations ˛, ˇ, and � about O such that the mapping ı D
��1 ı ˇ ı ˛ is a collineation and maps A to B.

(B) For any point A0 ¤ O in P , the mapping ı defined in part (A) maps
 !
OA0 to

itself, so that every line through O is a fixed line for ı.

(C) There exists exactly one dilation ı with fixed point O such that ı.A/ D B, and

it is the mapping defined in part (A).

(D) Every dilation ı of P with fixed point O can be written as in part (A).

(E) If ı is a dilation of P with fixed point O, and � is a rotation about O, then

� ı ı D ı ı � .

Proof. (A) Note that there may be many possible choices for ˛, ˇ, and � such

that the mapping ��1 ı ˇ ı ˛ carries A to B. This will become obvious in the

following construction. We now undertake the basic construction for the proof.

All rotations and half-rotations have fixed point O. See Figure 13.4.

Let Q be a member of P n  !OA D P n J , K D  !OQ, C D ftpr .A;K/,
˛ be the half-rotation associated with the rotation �˛ D RK ı RJ . Then by

Theorem DLN.2(D) ˛.A/ D C.

Let M D !BC, N D pr .O;M/, D D ftpr .O;M/, and ˇ be the half-rotation

associated with the rotation �ˇ D RN ı RK. Then by Theorem DLN.2(D)

ˇ.C/ D D.

Let � be the half-rotation associated with the rotation �� D RN ıRJ . Then

by Theorem DLN.2(D) �.B/ D D. By Theorem DLN.2(D) �.J / D N . Thus

��1.D/ D B, and ��1.N / D J . Therefore, if we let ı D ��1 ı ˇ ı ˛, then

ı.A/ D B.

N

K

J
O A B

= D
γ(B) = β(C)

C = α(A)

N K

B AO A

γ(B) = β(C) = D C = α(A)

Fig. 13.4 For the construction of Theorem DLN.7. The left-hand figure is for the case O A B;
the right-hand figure is for the case B O A. It might be instructive to construct a figure for the case
where O B A, as in Theorem DLN.5.
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By Theorem DLN.4, each of ˛, ˇ, and � is a bijection and a collineation, and

by Theorem CAP.1(D’) ��1 is a collineation. By elementary mapping theory

ı D ��1 ı ˇ ı ˛ is a bijection and collineation.

(B) We now show that for every point A0 ¤ O, ı.A0/ 2  !OA0. Let C0 D ˛.A0/,
D0 D ˇ.C0/, and let B0 D ��1.D/.

(Case 1: A0 2  !OA.) By Theorem DLN.2, both C D ˛.A/ and C0 D ˛.A0/
are members of the line of symmetry for the rotation � associated with ˛. Thus

C0 D ˛.A0/ 2  !OC. Similarly, D0 D ˇ.C0/ 2  !OD and D0 D �.B0/ 2  !OD. Since

� maps
 !
OA onto

 !
OD, ��1 maps

 !
OD onto

 !
OA. Therefore ı D ��1 ı ˇ ı ˛ maps

A0 to a point of
 !
OA, which is therefore a fixed line.

(Case 2: A0 62  !OA.) By Theorem ROT.15 there exists a rotation � such that

�.
px!
OA/ D px!

OA0, so that �.A/ 2 qy!
OA0. Without loss of generality we may choose

A so that �.A/ D A0. Then by Theorem DLN.6(B), C0 D ˛.A0/ D ˛.�.A// D
�.˛.A// D �.C/. Similarly, D0 D ˇ.C0/ D ˇ.�.C// D �.ˇ.C// D �.D/.

Since � ı � D � ı � , by Theorem DLN.6(B) and (C), � ı ��1 D ��1 ı � , so

that we have also B0 D ��1.D0/ D ��1.�.D// D �.��1.D// D �.B/. Since

B 2  !OA, �.B/ 2 �. !OA/ D ��!O�.A/ D !OA0, so that B0 D ı.A0/ 2  !OA0. Therefore

ı maps every point A0 on the plane into
 !
OA0, which is a fixed line for ı.

(C) To show that ı D ��1 ı ˇ ı ˛ is a dilation, we need only show that it has no

fixed point other than O. Suppose that for some X 2 PnfOg, ı.X/ D X. Then X

is both the argument for ı (shown in the figure for part (A) as A) and the image

ı.X/ (shown as B), and
 ��!
X˛.X/ and

 ��!
X�.X/ are the same line, because they both

contain ˛.X/. By Theorem NEUT.47(B) there is only one line containing O

which is perpendicular to
 ��!
X˛.X/ D  ��!X�.X/; moreover, both ˛.X/ and �.X/

belong to this line, so that ˛.X/ D �.X/. Since .ˇ ı˛/.X/ D �.X/ and ˛.X/ D
�.X/, ˇ must map

px !
O˛.X/ to itself.

But this is impossible; by Theorem ROT.19(B), Definition DLN.1, and

Theorem DLN.2, a half-rotation must map a ray
px!
OP to the angle bisector of

†PO�.P/ (where � is its associated rotation) which is not equal to
px!
OP. Thus,

ˇ cannot map
px !
O˛.X/ to itself, and ı has no fixed point other than O.

By Theorem CAP.22, ı is a dilation, and by Theorem CAP.24 it is the only

dilation mapping A to B.

(D) If  is a dilation with fixed point O, let A be any point of P n fOg. Since O is

the only fixed point, B D .A/ ¤ A. By Theorem CAP.18(D), B, A, and O are
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collinear. By parts (A) and (C) there exists a dilation ı D ��1 ı ˇ ı ˛ where ˛,

ˇ, and � are half-rotations about O, and ı.A/ D B, and this is the only dilation

mapping A to B, so ı D .

(E) Follows directly from part (D) above and Theorem DLN.6(D). ut
Remark DLN.7.1. The preceding two results (Theorems DLN.6 and DLN.7) show

that half-rotations, their inverses, as well as dilations commute with rotations. Thus,

speaking intuitively, if we define one of these mappings by its action on a specific

line, rotating that line to a new position rotates the entire “picture” and replicates it

in the new position. This assures us that such a construction is a global one, even if

we specify it on a specific line.

This last result, Theorem DLN.7(E) shows that a dilation ı expands or shrinks

the plane equally in all directions. (It may also “mirror” it about the point O, in the

case where X O ı.X/.) Applying a dilation to a point X moves it along the line
 !
OX

to some point; rotating X to another line through O, then applying the dilation, then

rotating back to the original line, accomplishes exactly the same thing.

Theorem DLN.8. Every dilation ı of a Euclidean plane P

(A) is a collineation, and

(B) is a belineation; that is, if A, B, and C are any points of P , and A B C, then

ı.A/ ı.B/ ı.C/.

Proof. From Theorem DLN.7, ı D ��1 ı ˇ ı ˛ where each of � , ˇ, and ˛ is half-

rotations about O.

(A) By Theorem DLN.4, half-rotations are collineations. By Theorem CAP.1(D’),

��1 is a collineation. Since a composition of collineations is a collineation, ı

is a collineation.

(B) Assume that O is a fixed point for ı, and let A, B, and C be any points on P
such that A B C.

(Case 1: A, B, C, and O are collinear.) Since ˛ is a collineation, and has fixed

point O, ˛.A/, ˛.B/, ˛.C/, and O are collinear, and all these points are members

of
 ��!
O˛.A/. By Theorem NEUT.47(A), the lines

 ��!
A˛.A/,

 ��!
B˛.B/, and

 ��!
C˛.C/ are

all parallel, since they are perpendicular to
 ��!
O˛.A/ by Theorem DLN.2(D).

(See Figure 13.4, for Theorem DLN.7.) By Exercises PSH.57 and PSH.58,

˛.A/ ˛.B/ ˛.C/. Thus ˛ is a belineation. Similar proofs show that ˇ and �
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preserve betweenness and are belineations. By Theorem COBE.3, ��1 is a

belineation. Thus

��1.ˇ.˛.A/// ��1.ˇ.˛.B/// ��1.ˇ.˛.C///:

That is, ı.A/ ı.B/ ı.C/, showing that ı is a belineation.

(Case 2: A, B, and C are not collinear with O.) By Theorem CAP.18(D),

ı.A/ 2  !OA, ı.B/ 2  !OB, and ı.C/ 2  !OC.

Since A B C and O 62  !AC, by Theorem IB.14 B 2 qy!
AC and B 2 the C side

of
 !
OA/. Similarly, B 2 the A side of

 !
OC, so that by Definition PSH.36 B 2

ins†AOC, and by Theorem PSH.38(B)
qy!
OB � ins†AOC.

There are two subcases. In subcase (a), ı.A/ 2 qy!
OA; by Exercise DLN.5(II)

ı.B/ 2 qy!
OB and ı.C/ 2 qy!

OC. In subcase (b), by the same exercise, each of ı.A/,

ı.B/, and ı.C/ belongs to the opposing ray.

If subcase (a) holds, ı.A/ 2 qy!
OA and ı.C/ 2 qy!

OC, so that †ı.A/Oı.C/ D
†AOC, and ı.B/ 2 qy!

OB 2 ins†AOC. By Corollary PSH.39.2 ı.A/ and ı.C/

are on opposite sides of the line
 !
OB and by Definition IB.11

 !
OB intersects

qy px

ı.A/ı.C/ �  ����!ı.A/ı.C/ at some point P. By part (A) dilations are collineations,

so that ı.B/ 2  ����!ı.A/ı.C/, and
 ��!
Oı.B/ D  !OB intersects

 ����!
ı.A/ı.C/ at the point

ı.B/. By Exercise I.1, ı.B/ D P 2 qy px

ı.A/ı.C/, or ı.A/ ı.B/ ı.C/.

If subcase (2b) holds, then †ı.A/Oı.C/ is vertical to †AOC, and ı.B/ 2
qy!
OB 2 ins†ı.A/Oı.C/. An argument similar to that for subcase (2a) above

shows the same result. ut

Theorem DLN.9 (Point-wise construction of the dilation of Theorem DLN.7.).

Let P be a Euclidean plane, O, A, and B be distinct collinear points on P and ı be

the dilation of P such that ı.A/ D B.

(A) If X is any member of P n  !OA, then ı.X/ is the point such that par .B;
 !
AX/ \ !

OX D fı.X/g.
(B) Let X be any member of

 !
OA n fO;Ag. Let Q be a member of P n  !OA, so that

ı.Q/ 2  !OQ. Then ı.X/ is the point such that par .ı.Q/;
 !
QX/ \ !OA D fı.X/g.

Proof. (A) By Theorem CAP.18
 !
OX is a fixed line of ı but

 !
AX is not. By

Theorem CAP.1(A) ı.
 !
AX/ D ����!ı.A/ı.X/ D ��!Bı.X/. By Remark CAP.11

 ��!
Bı.X/ k !

AX so that
 ��!
Bı.X/ D par .B;

 !
AX/. (cf Axiom PS.) By Exercises IP.4 and I.1,

ı.X/ is the point such that
 !
OX \ par .B;

 !
AX/ D fı.X/g.
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(B) By part (A) we may locate ı.Q/ on
 !
OQ. Then since neither A or X is in !

OQ we may apply part (A) again to locate ı.X/ as the point of intersection

of par .ı.Q/;
 !
QX/ and

 !
OA. Since we know already that ı is a well-defined

mapping, this completes the proof. ut

Remark DLN.10. If we were using the construction in the proof of part (B) of

Theorem DLN.9 as a definition of the mapping ı, it would be necessary, in order for

the mapping to be well-defined, to prove that two different choices for Q would yield

the same value for ı.X/. However, Theorem DLN.9 assumes that ı is a well-defined

mapping and is a dilation. Parts (A) and (B) of the proof merely use the properties

of the dilation to show that for a given X, these constructions give the correct value

of ı.X/. This is true for the proof of part (B), even though Q is chosen arbitrarily.

It follows that the end result of the construction of part (B) is independent of the

choice of Q (and of the line
 !
OQ).

The following theorem is credited to Pappus of Alexandria (c. 290–350).

Theorem DLN.11 (The Proposition of Pappus). Let P be a Euclidean plane, O

a point on P , and let L and L0 be lines on P such that L\L0 D fOg. Let Q, R, and

S be points on L and let Q0, R0, and S0 be points on L0 such that:

(1) the points O, Q, R, S, Q0, R0, and S0 are distinct;

(2) there exist points T and V such that
 !
QR0 \ !RS0 D fTg and

 !
RQ0 \ !SR0 D fVg;

and

(3)
 !
QR0 k  !RQ0 and

 !
RS0 k  !SR0.

Then
 !
QS0 k  !SQ0.

Fig. 13.5 For
Theorem DLN.11.

T
V

O Q R S L

S

R

Q
L
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Proof. See Figure 13.5. Using Theorem DLN.7 let ı be the dilation of P with fixed

point O such that ı.Q/ D R and let � be the dilation of P with fixed point O

such that �.R/ D S. Then S D .� ı ı/.Q/. Since ı.Q/ D R and
 !
QR0 k  !RQ0,

by Definition CAP.17, ı.
 !
QR0/ D  !RQ0. Thus ı.R0/ D Q0. Likewise since �.R/ D S,

�.S0/ D R0; combining these results, .ıı�/.S0/ D Q0. By Exercise DLN.3 �ıı D ıı�
and thus .� ı ı/.S0/ D .ı ı �/.S0/ D Q0. By this equality and Theorem CAP.1

.� ı ı/. !QS0/ D �������������!.� ı ı/.Q/.� ı ı/.S0/ D !SQ0:

Definition CAP.17 says that a dilation maps a line to a line parallel to it, so the

composition of two dilations does the same. Therefore
 !
QS0 k  !SQ0. ut

13.2 Properties of dilations

Theorem DLN.12. Let P be a Euclidean plane and let ı be a dilation of P with

fixed point O. If L is a line on P through O, then ı ıRL D RL ı ı.
Proof. L is a fixed line of ı and is pointwise fixed for RL. Thus if X 2
L RL.ı.X// D ı.X/ D ı.RL.X//. Let X be any member of P n L.

By Theorem NEUT.15(3) and Definition NEUT.1(A) RL.
px!
OX/ D px !

ORL.X/. By

Theorem CAP.18 both
 !
OX and

 ����!
ORL.X/ are fixed lines of ı.

By Theorem ROT.15 there exists a unique rotation � about O such that �.
px!
OX/ D

px !
ORL.X/. For any point Y 2 qy!

OX, �.Y/ 2 qy !
ORL.X/, and since � is an isometry,

�.
px qy

OY/ D px qy

O�.Y/, so that
px qy

OY Š px qy

O�.Y/. Also,
px qy

OY Š px qy

ORL.Y/, so that
px qy

O�.Y/ Š
px qy

ORL.Y/, and by Property R.4 of Axiom NEUT.2,

�.Y/ D RL.Y/ .
/:
By Theorem DLN.7(D) ı ı � D � ı ı. Then ı.RL.X// D ı.�.X// D �.ı.X// D
RL.ı.X//. Here we have used (*) where Y D X for the first equality, and have used

(*) where Y D ı.X/ in the last equality. This completes the proof that ı ı RL D
RL ı ı. ut
Theorem DLN.13. Let P be a Euclidean plane, O, A, B, and C points on P , and

let ı be a dilation of P with fixed point O.

(A) ı.
px!
AB/ D px !

ı.A/ı.B/ and ı.
px qy

AB/ D px qy

ı.A/ı.B/ (corresponding statements are true

for open rays and open and half-open intervals)
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(B) If A, B, and C are noncollinear, ı.†BAC/ D †ı.B/ı.A/ı.C/.
(C) If A, B, and C are noncollinear, ı.ins†BAC/ D ins†ı.B/ı.A/ı.C/.
Proof. By Theorem DLN.8, ı is a belineation; the results follow immediately from

Theorem COBE.5, parts (2) through (10), and part (11). ut
Theorem DLN.14. Let P be a Euclidean plane, O, A, B, and C be points on P
such that A, B, and C are noncollinear, ı be a dilation of P with fixed point O. Then

ı.†BAC/ Š †BAC.

Proof. (Case 1: A D O, ı.B/ 2 qy!
OB.) By Exercise DLN.5(III)(A) ı.C/ 2 qy!

OC. By

Theorem PSH.16
px !
Oı.B/ D px!

OB and
px !
Oı.C/ D px!

OC. Hence by Definition PSH.29

†BOC D †ı.B/Oı.C/. By Theorem DLN.13(B), ı.†BOC/ D †ı.B/ı.O/ı.C/ D
†ı.B/Oı.C/. Since angles that are equal are congruent, †BOC Š ı.†BOC/.

(Case 2: A D O, B0 is a point such that B0 O B and ı.B/ 2 qy!
OB0.) Let

C0 be a point such that C0 O C. By Exercise DLN.5(III)(B) ı.C/ 2 qy!
OC0. By

Theorem DLN.13(B), ı.†BOC/ D †ı.B/Oı.C/. By the reasoning in Case 1,

†ı.B/Oı.C/ D †B0OC0. By Theorem NEUT.42 (vertical angles) †B0OC0 Š
†BOC. By Theorem NEUT.14 (congruence is an equivalence relation) †BOC Š
ı.†BOC/.

(Case 3: A ¤ O; O, A, and B are collinear; and O, A, and C are noncollinear.)

By Theorem CAP.18
 !
OA is a fixed line of ı. By Theorem DLN.13(A) ı.

px!
AB/ D

px !
ı.A/ı.B/ �  !OA. By Theorem CAP.1(A) ı.

 !
AC/ D  ����!ı.A/ı.C/. By Definition CAP.17

and Theorem CAP.18 ı.
 !
AC/ k  !AC, so that

 ����!
ı.A/ı.C/ k  !AC. By Property B.2

of Definition IB.1 one and only one of the following statements is true: O A B,

O B A, or A O B.

(I) If O A B, then by Theorem DLN.8 and the fact that O is a fixed point of ı,

O ı.A/ ı.B/.

(A) If ı.A/ 2 qy!
OA, then by Exercise DLN.5(III)(A), ı.C/ belongs to the

C side of
 !
AB. By Theorem CAP.18

 !
AC is not a fixed line of ı. By

Theorem EUC.11 †BAC Š †ı.B/ı.A/ı.C/. By Theorem DLN.13(B)

†ı.B/ı.A/ı.C/ D ı.†BAC/, so that by Theorem NEUT.14 †BAC Š
ı.†BAC/.

(B) If A0 is a point such that A0 O A and if ı.A/ 2 qy!
OA0, then by Exer-

cise DLN.5(III)(B) ı.C/ 2 the side of
 !
AB opposite the C-side. As in part

(A),
 ����!
ı.A/ı.C/ k  !AC, †ı.B/ı.A/ı.C/ Š †BAC and †ı.B/ı.A/ı.C/ D

ı.†BAC/.
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(II) If O B A, then as in part (I) O ı.B/ ı.A/, ı.C/ 2 C side of
 !
AB and †BAC Š

†ı.B/ı.A/ı.C/ D ı.†BAC/.

(III) If A O B, then ı.A/ O ı.B/.

(A) If ı.A/ 2 qy!
OA, then by Exercise DLN.5(III)(A) ı.C/ belongs to the C side

of
 !
AB and as in parts (I) and (II), †BAC Š ı.†BAC/.

(B) If ı.A/ O A, then ı.C/ belongs to the side of
 !
OA D  !AB opposite the

C side: Again as in parts (I) and (II), †BAC Š ı.†BAC/.

(Case 4: O, A, and B are noncollinear and O, A, and C are collinear.) Interchange

“B” and “C” in Case 3.

(Case 5: O, A, and B are noncollinear, O, A, and C are noncollinear, and B and

C are on the same side of
 !
OA.) Let A0 be a point such that A0 O A. We choose the

notation so that B 2 ins†A0AC. By cases 3 and 4 and Theorem DLN.13(B)

†A0AB Š ı.†A0AB/ D †ı.A0/ı.A/ı.B/; and

†A0AC Š ı.†A0AC/ D †ı.A0/ı.A/ı.C/:
By Theorem DLN.13(C) ı.B/ is a member of ins†ı.A0/ı.A/ı.C/. By Exer-

cise NEUT.40(B)

†BAC Š †ı.B/ı.A/ı.C/ D ı.†BAC/:

(Case 6: O, A, and B are noncollinear, O, A, and C are noncollinear, and

B and C are on opposite sides of
 !
OA.) By Theorem PSH.12 (Plane Separa-

tion) there exists a point Q such that
qy px

BC\ !OA D fQg. By Theorem PSH.37

Q 2 ins†BAC. By cases 3 and 4 †QAB Š ı.Q/ı.A/ı.B/ and †QAC Š
ı.Q/ı.A/ı.C/. By Exercise NEUT.40(A) and Theorem DLN.13(B),

†BAC Š †ı.B/ı.A/ı.C/ D ı.†BAC/: ut
The next theorem is a generalization of Theorem DLN.12.

Theorem DLN.15. Let P be a Euclidean plane, O a point on P , L any line on P ,

and let ı be a dilation of P with fixed point O. Then ı ıRL D Rı.L/ ı ı.
Proof. If O 2 L, then by Theorem CAP.18, L is a fixed line for ı so this is

Theorem DLN.12.

If O … L, let M D pr .O;L/, Q D ftpr .O;L/, and let X be any point on P .

(Case 1: X D Q.) .ı ıRL/.Q/ D ı.RL.Q// D ı.Q/ and Rı.L/.ı.Q// D ı.Q/.

Here we have used Definition NEUT.1(A).
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(Case 2: X 2 .MnfQg/.) By Theorem NEUT.54 L is the perpendicular bisecting

line of
px qy

XRL.X/ so that Q is the midpoint of
px qy

XRL.X/. By Theorem DLN.4(B) and

Theorem EUC.17 ı.Q/ is the midpoint of ı.
px qy

XRL.X// D
px qy

ı.X/ı.RL.X// (here we

have used Theorem DLN.13(A)).

Now ı.L/ is the perpendicular bisecting line of
px qy

ı.X/Rı.L/.ı.X// (by

Theorem NEUT.54), and the intersection is the midpoint of the segment.

By Theorem CAP.18 L is not a fixed line of ı, and by Definition CAP.17

ı.L/ k L, so by Theorem EUC.3 ı.L/ ? M. Then ı.X/ is a member

of both M and
px qy

ı.X/Rı.L/.ı.X// both of which are perpendicular to ı.L/.
By Theorem NEUT.47(B),

px qy

ı.X/Rı.L/.ı.X// � M. Hence ı.Q/ is the point of

intersection of ı.L/ with both
px qy

ı.X/ı.RL.X// and
px qy

ı.X/Rı.L/.ı.X// and hence is the

midpoint of both. By Exercise NEUT.72 ı.RL.X// D Rı.L/.ı.X//.

(Case 3: X 2 .L n fQg/.) By Definition NEUT.1(A) .ı ıRL/.X/ D ı.RL.X// D
ı.X/ and .Rı.L/ ı ı/.X/ D Rı.L/.ı.X// D ı.X/. Therefore .ı ıRL/.X/ D .Rı.L/ ı
ı/.X/.

(Case 4: X 2 .P n .L [ M//.) Let Y be the midpoint of
px qy

XRL.X/. By

Theorem NEUT.54 L is the perpendicular bisecting line of
px qy

XRL.X/ and Y is the

point of intersection. By Theorem EUC.17 ı.Y/ is the midpoint of ı.
px qy

XRL.X// D
px qy

ı.X/ı.RL.X//.

As in Case 2, ı.L/ is the perpendicular bisecting line of
px qy

ı.X/Rı.L/.ı.X//

(by Theorem NEUT.54), and the intersection is the midpoint of the segment. By

an argument similar to that in Case 2, both
px qy

XRL.X/ and
px qy

ı.X/Rı.L/.ı.X// are

perpendicular to ı.L/ and since both contain ı.X/, their lines are the same, so that

ı.Y/ is the point of intersection of ı.L/ with both ı.
px qy

XRL.X// and
px qy

ı.X/Rı.L/.ı.X//,

and hence is the midpoint of both. By Exercise NEUT.72 ı.RL.X// D Rı.L/.ı.X//.

ut
Theorem DLN.16. Let P be a Euclidean plane, O be a point on P , ı be a dilation

of P with fixed point O, and 	 be an isometry of P . Then there exist isometries !

and  of P such that ı ı 	 D ! ı ı and 	 ı ı D ı ı  .

Proof. First we show that there exists an isometry ! such that ı ı 	 D ! ı ı.
By Theorem ROT.26 there are four cases.

(Case 1: 	 D {, the identity mapping.) If 	 D {, take ! D {. Then ı ı 	 D ı D
! ı ı.
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(Case 2: There exists a line H on P such that 	 D RH.) Using Theorem DLN.15

let ! D Rı.H/. Then ı ıRH D Rı.H/ ı ı.
(Case 3: There exist distinct lines J and K on P such that 	 D RK ıRJ .) Using

Theorem DLN.15

ı ı .RK ıRJ / D .ı ıRK/ ıRJ D .Rı.K/ ı ı/ ıRJ D Rı.K/ ı .ı ıRJ /

D Rı.K/ ı .Rı.J / ı ı/ D .Rı.K/ ıRı.J // ı ı:
Hence we may take ! D Rı.K/ ıRı.J /.

(Case 4: There exist three distinct lines L, M, and N such that 	 D RN ıRM ı
RL.) The proof of this case is Exercise DLN.8.

The proof that there exists an isometry  such that 	 ı ı D ı ı  is

Exercise DLN.9. ut

Theorem DLN.17. Let P be a Euclidean plane, D and E be nonempty subsets of

P such that D Š E , and ı be a dilation of P with fixed point O. Then ı.D/ Š ı.E/.
Proof. By Definition NEUT.3(B) there exists an isometry 	 of P such that E D
	.D/. Hence ı.E/ D .ı ı 	/.D/. By Theorem DLN.16 there exists an isometry !

of P such that ı ı 	 D ! ı ı so that ı.E/ D !.ı.D//. By Definition NEUT.3(B)

ı.E/ Š ı.D/. ut
Corollary DLN.18. Let P be a Euclidean plane, ı be a dilation of P with fixed

point O, and let O, A, and B be distinct points on P such that
px qy

OA Š px qy

OB. Then

(A) ı.
px qy

OA/ Š ı.px qy

OB/ and
px qy

Oı.A/ Š px qy

Oı.B/.

(B)
px qy

Aı.A/ Š px qy

Bı.B/.

Proof. (A) By Theorem DLN.17 since
px qy

OA Š px qy

OB, ı.
px qy

OA/ Š ı.
px qy

OB/. By Theo-

rem COBE.5(5) ı.
px qy

OA/ D px qy

ı.O/ı.A/ D px qy

Oı.A/ and ı.
px qy

OB/ D px qy

ı.O/ı.B/ D
px qy

Oı.B/. Hence by Theorem NEUT.14
px qy

Oı.A/ Š px qy

Oı.B/.

(B) If O A ı.A/, then by Exercise DLN.5(II)(A), O B ı.B/. By Exer-

cise NEUT.38(B)
px qy

Aı.A/ Š px qy

Aı.A/.

If O ı.A/ A, then by Exercise DLN.5(II)(B), O ı.B/ B. By Exer-

cise NEUT.38(B)
px qy

Aı.A/ Š px qy

Aı.A/.

If A O ı.A/, then by Exercise DLN.5(II)(C), B O ı.B/. By Exer-

cise NEUT.38(A)
px qy

Aı.A/ Š px qy

Aı.A/. ut
Theorem DLN.19. Let P be a Euclidean plane, O be a point on P , � be a rotation

of P about O that is not the identity {, and let ı be a dilation of P with fixed point

O. Then ı ı � is a collineation of P whose sole fixed point is O.



13.2 Properties of dilations 301

Proof. Let X be any member of P n O. By Exercise ROT.2 O, X, and �.X/

are noncollinear. By Theorem CAP.18
 ��!
O�.X/ is a fixed line of ı and thus

ı.�.X// 2  ��!O�.X/. Since ı ı � is a one-to-one mapping, ı.�.X// ¤ O and so O,

X, and ı.�.X// are noncollinear. Thus ı.�.X// ¤ X. Since O is a fixed point of

ı ı �, it is the sole fixed point of ı ı �. ut
Theorem DLN.20. Let P be a Euclidean plane, O a point on P , R� the set of

rotations of P about O and let D� be the set of dilations of P with fixed point O.

Then

(A) G D f� ı ı j � 2 .R� [ f{g/ and ı 2 .D� [ f{g/g is an abelian group under

composition of mappings;

(B) R� [D� [ f{g � G; and

(C) if H is any group such that R� [D� [ f{g � H, then G � H. That is, G is the

minimal group that contains R� [D� [ f{g.
Proof. (A) By Theorem ROT.23 R� [ f{g is an abelian group under composition

of mappings so if � 2 R� then ��1 2 R�. By Theorem ROT.2 O is the sole

fixed point of every member of R�.
By Theorem CAP.21 D� [ f{g is a group under composition and by

Exercise DLN.3 it is abelian (cf Exercise DLN.4). Therefore if ı 2 D�,
ı�1 2 D�. By Theorem CAP.18 O is the sole fixed point of every member

of D�.
If � 2 R�[f{g and ı 2 D�[f{g, then by Theorem DLN.7(E), � ı ı D ı ı�

so that G is the set of all ıı� as well as the set of all �ıı, where � 2 .R�[f{g/
and ı 2 .D� [ f{g/.

If �1 and �2 are any members of R� [ f{g and if ı1 and ı2 are any members

of D� [ f{g, then .�1 ı ı1/ ı .�2 ı ı2/ D .�1 ı �2/ ı .ı1 ı ı2/ 2 G since

.�1 ı �2/ 2 R� [ f{g/ and .ı1 ı ı2/ 2 D� [ f{g. Also by Theorem DLN.7(E),

.�1 ı ı1/ ı .�2 ı ı2/ D �1 ı .ı1 ı �2/ ı ı2 D �1 ı .�2 ı ı1/ ı ı2
D .�1 ı �2/ ı .ı1 ı ı2/ D .�2 ı �1/ ı .ı2 ı ı1/
D �2 ı .�1 ı ı2/ ı ı1 D �2 ı .ı2 ı �1/ ı ı1
D .�2 ı ı2/ ı .�1 ı ı1/

so that any two elements of G commute.

If � 2 .R� [ f{g/ and ı 2 .D� [ f{g/, then .��1 ı ı�1/ 2 G because

��1 2 .R� [ f{g/ and ı�1 2 .D� [ f{g/. Then by Theorem DLN.7(E)
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.��1 ı ı�1/ ı .� ı ı/ D .ı�1 ı ��1/ ı .� ı ı/ D ı�1 ı .��1 ı �/ ı ı
D ı�1 ı { ı ı D ı�1 ı ı D {

so that ��1 ı ı�1 D .� ı ı/�1; hence any member of G has an inverse in G.

It follows that G is an abelian group under composition of mappings.

(B) If � 2 R� [ f{g and ı 2 D� [ f{g, then � D � ı { 2 G, ı D ı ı { 2 G, and

{ D { ı { 2 G, proving (B).

(C) If H is any group containing R� [ D� [ f{g, then H must contain all

the compositions of elements of R� [ f{g and D� [ f{g, and all possible

compositions and inverses of those elements, that is, all elements comprising

G, so that G � H. ut

Definition DLN.21. The group G defined in the statement of Theorem DLN.20 is

called the group generated by the set (R� [D� [ f{g).
Theorem DLN.22. Let P be a Euclidean plane, O be a point on P , and let R�,
D�, and G be the sets defined in Theorem DLN.20. For any distinct members A and

B of P n fOg, there is a unique member ˛ of G such that ˛.A/ D B.

Proof. (I: Existence.)

(Case 1: O, A, and B are noncollinear and
px qy

OA Š px qy

OB.) Then by Theo-

rem ROT.15(A) there exists a rotation ˛ of P about O such that ˛.
px!
OA/ D px!

OB.

Since a rotation is an isometry
px qy

OA Š px qy

O˛.A/, and since congruence is an

equivalence relation
px qy

OB Š px qy

O˛.A/. By Property R.4 of Definition NEUT.2

˛.A/ D B, and since R� � G, ˛ 2 G.

(Case 2: O, A, and B are collinear.) Then by Theorem DLN.7 there exists a

dilation ˛ of P with fixed point O such that ˛.A/ D B. Since D� � G, ˛ 2 G.

Note here that in the case where A O B and
px qy

OA Š px qy

OB, the point reflection

RO maps A to B; by Theorem ISM.3, RO is a dilation, hence is the unique dilation

guaranteed by Theorem DLN.7 which maps A to B.

(Case 3: O, A, and B are noncollinear and
px qy

OA 6Š px qy

OB.) Then by Theo-

rem ROT.15(A) there exists a rotation � of P about O such that �.
px!
OA/ D px!

OB.

Since
px qy

OA 6Š px qy

OB, �.A/ ¤ B. By Theorem DLN.7 there exists a dilation ı of

P such that ı.�.A// D B. If we let ˛ D ı ı �, then ˛.A/ D B, and since

˛ D ı ı � D � ı ı, ˛ 2 G.

(II: Uniqueness.) Let ˛ and ˇ be members of G (cf Theorem DLN.20), such that

˛.A/ D B and ˇ.A/ D B. Then ˛.A/ D ˇ.A/ and .˛ ı ˇ�1/.A/ D A. By
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Theorem DLN.20 ˛ ıˇ�1 is a member of G, so ˛ ıˇ�1 D ı ı� where ı is either

a dilation or {, and � is either a rotation or {.

Now � is an isometry so by Definition NEUT.3(B)
px qy

O�.A/ Š px qy

OA.

Also, ı.�.A// D A. Since every line through O is a fixed line for ı, O, �.A/,

and A must be collinear. Then either
px !
O�.A/ D px!

OA or
px !
O�.A/ D px!

OA0 where

A O A0.
In the first case, by Property R.4 of Definition NEUT.2, �.A/ D A and hence

ı.A/ D A, and A is a fixed point for ı, a contradiction to Theorem CAP.18. In the

second case, �.A/ is the point such that (i)
px qy

O�.A/ Š px qy

OA and (ii) A O �.A/.

By Theorem ROT.3 the point reflection RO has properties (i) and (ii) just

above, and since by Theorem ROT.15(A) there is a unique rotation mapping A to
qy !
O�.A/ (that is, property (ii)), � D RO.

By Corollary ROT.6 � ı � D RO ı RO D {, so that �.�.A// D A. By

Theorem ISM.3, � D RO is a dilation, and by Theorem DLN.7 there is a

unique dilation ı such that ı.RO.A// D ı.�.A// D A. Therefore ı D RO,

and ˛ ı ˇ�1 D � ı � D RO ıRO D {, so that ˛ D ˇ. ut

13.3 Exercises for dilations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise DLN.1�. Let O be a point on a Euclidean plane P , and let ˛ be a half-

rotation of P about O. If X and Y are members of P n fOg such that O, X, and Y are

noncollinear, then †XO˛.X/ Š †YO˛.Y/.

Exercise DLN.2�. Let O be a point on a Euclidean plane P , and let ˛ and ˇ be half-

rotations of P about O; let R, S, and T be members of P n fOg such that ˛.R/ D S,

ˇ.S/ D T , and S 2 ins†ROT . Then for every member U of P n fOg †UO˛.U/ Š
†ROS, †˛.U/O.ˇ ı ˛/.U/ Š †SOT †UO.ˇ ı ˛/.U/ Š †ROT , and ˛.U/ 2
ins†UO.ˇ ı ˛/.U/.
Exercise DLN.3�. Let O be a point on a Euclidean plane P , and let ı1 and ı2 be

dilations of P with fixed point O. Then ı1ıı2 D ı2ıı1, i.e. composition of dilations

with a common fixed point is commutative.

www.springer.com
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Exercise DLN.4�. Let O be a point on a Euclidean plane P , and let D D f˛ j ˛ be

a dilation of P with fixed point O, or ˛ D {g. Then under composition of mappings

D is an abelian group.

Exercise DLN.5�. Let O be a point on a Euclidean plane P , and let ı be a dilation

of P with fixed point O.

(I) If X and Y are members of P n fOg such that O, X, and Y are noncollinear,

then ı.X/ and ı.Y/ are on the same side of
 !
XY .

(II) Let A be any member of P n fOg and let X be any member of P n fO;Ag.
(A) If O A ı.A/, then O X ı.X/.

(B) If O ı.A/ A, then O ı.X/ X.

(C) If ı.A/ O A, then ı.X/ O X.

(III) Let A be any member of P n fOg and let X be any member of P n fO;Ag.
(A) If ı.A/ 2 qy!

OA, then ı.X/ 2 qy!
OX.

(B) If A0 is a point such that A0 O A, X0 is a point such that X0 O X, and if

ı.A/ 2 qy!
OA0, then ı.X/ 2 qy!

OX0.

(IV) Let A be any member of P n fOg and let C be any member of P n !OA.

(A) If ı.A/ 2 qy!
OA, then ı.C/ is on the C side of

 !
OA.

(B) If ı.A/ O A, then ı.C/ is on the side of
 !
OA opposite the C side.

Exercise DLN.6�. Let O be a point on a Euclidean plane P; let ı be a dilation of

P with fixed point O and let � be a rotation of P about O. Then ��1 ı ı ı � D ı and

ı�1 ı � ı ı D �.

Exercise DLN.7�. Let O be a point on a Euclidean plane P; let ı be a dilation on

P with fixed point O, and let L be any line on P . Then

RL ı ı D ı ıRı�1.L/:

Exercise DLN.8�. Let O be a point on a Euclidean plane P , and let ı be a dilation

of P with fixed point O. Let L, M, and N be distinct lines on P . Then ı ı .RN ı
RM ıRL/ D .Rı.N / ıRı.M/ ıRı.L// ı ı.
Exercise DLN.9�. Let O be a point on a Euclidean plane P; let ı be a dilation of

P with fixed point O, and let 	 be an isometry of P . Then there exists an isometry

 of P such that 	 ı ı D ı ı  :
Exercise DLN.10. Using the construction of Theorem DLN.4, prove that for any

half-rotation ˛, if A B C, then ˛.A/ ˛.B/ ˛.C/.



Chapter 14
Every Line in a Euclidean Plane Is an Ordered
Field (OF)

Acronym: OF

Dependencies: all prior Chapters 1 through 13

New Axioms: none

New Terms Defined: origin, zero, unit; sum, product (of points on a line); inverse

(additive, multiplicative), subtraction, division; positive, negative points (on the

line); the positive half (of the line), absolute value; distance, length

Abstract: This chapter is concerned with an arbitrary line in a Euclidean plane.

It uses translations to define an operation of addition, and dilations to define

multiplication on such a line; when equipped with these operations, the line becomes

a field (defined in Chapter 1 Section 1.5). An ordering of the line is defined, so

that the line becomes an ordered field. These concepts are used to define distance

between points, and the length of a segment.

When we try to think about how to make an arbitrary line into an ordered field, we

naturally think of the real numbers—the archetypical ordered field. When adding the

numbers 2 and �3, we might first “do” the translation that takes 0 to 2, then follow

that with another translation that takes 0 to �3, so that the composite translation

takes 0 to �1. Thinking about multiplication in this way is harder, since it involves

stretching the real numbers outward from the origin, rather than translating them.

Such intuitions suggest a way for defining addition and multiplication on a line in

the Euclidean Plane. To accomplish addition, we invoke translation; to accomplish

multiplication, we invoke dilation.
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Some formal difficulties arise from the fact that according to the definitions for

translations and dilations (CAP.6 and CAP.17, respectively), the identity { is neither

a translation nor a dilation, and the “zero” mapping, which takes the whole line to

the origin, is not a dilation because dilations are collineations and this mapping takes

everything to a single point. But we need both these mappings in order to make the

arithmetic work correctly.

One way around the problem would have been to anoint both the identity and

the “zero” mapping as “honorary” translations or dilations, as the case might be, but

that would have brought another set of problems. In the following definition we will

solve our current problem by simply making special definitions for the identity and

the “zero” mapping.

In this chapter we follow Geometry: An Introduction, Chapter 3, by Günter

Ewald, Ishi Press, Wadsworth, 2013 [7].

14.1 Building a line into an ordered field

Definition OF.1. Let P be a Euclidean Plane, L a line on P , and let O be a point

on L.

(A) For each A 2 L n fOg define �A to be the translation of P such that �A.O/ D A.

Theorem ISM.5 (Chapter 12) says that such a translation exists and is unique.

Define �O to be the identity mapping {.

(B) Let U be a member of L n fOg; for each A 2 L n fO;Ug, define ıA to be the

dilation with fixed point O such that ıA.U/ D A. Theorem DLN.7 says that

such a dilation exists and is unique. Define ıU D {, and define ıO to be the

mapping such that for every X 2 L, ıO.X/ D O.

(C) If A and B are members of L, define

A˚ B D .�B ı �A/.O/ D �B.�A.O// D �B.A/;

The operation˚ is called addition and A˚ B is the sum of A and B.

(D) If A and B are any members of L, define

AˇB D .ıBııA/.U/ D ıB.ıA.U// D ıB.A/. The operationˇ is called

multiplication and Aˇ B is the product of A and B. The point U is called the

unit, and O is called the zero or origin of L.
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In Theorem OF.2(A) and (B) it will be seen that we could just as well have

defined A ˚ B D .�A ı �B/.O/ D �A.B/, since the composition of translations is

commutative, and AˇB D .ıA ııB/.U/ D ıA.B/, since the composition of dilations

is commutative.

Throughout this chapter, L is a line on the Euclidean plane P; O, U, �A, ıA,˚ and

ˇ are as defined in Definition OF.1. In this and in the rest of the main development

of this book (Chapters 15, 17, 18, the first section of Chapter 19, and Chapter 20)

we acknowledge the newly exalted status of a line by changing its notation to L,

rather than L, as previously.

Theorem OF.2. (A) L is an abelian group under the operation ˚. (See the

definition of group in Chapter 1, Section 1.5.)

(B) L n fOg is an abelian group under the operation ˇ.

Proof. In Theorem CAP.12(A) we showed that the set of all translations, together

with the identity {, is an abelian group under composition. By Theorem CAP.21 and

Exercise DLN.3, the set of all dilations with fixed point O, together with the identity

{, is also an abelian group under composition. Associativity of ˚ and ˇ follows

immediately from the associativity of composition of mappings (cf Chapter 1,

Sections 1.4 and 1.5.).

(A) Let A and B be points in L. Then by Definition OF.1, A ˚ B D �B.A/ 2 L.

For any A 2 L; the translation �A has an inverse, which is also a translation

�C, for some C 2 L; then A ˚ C D .�C ı �A/.O/ D {.O/ D O. Finally,

A˚B D .�B ı �A/.O/ D .�A ı �B/.O/ D B˚A. This shows that L is an abelian

group under ˚.

(B) Let A and B be points in L n fOg. Then by Definition OF.1,

Aˇ B D .ıB ı ıA/.U/ D ıB.ıA.U// D ıB.A/ 2 L:

Now ıB.ıA.O// D O; both ıB and ıA are one-to-one mappings, so their

composition is one-to-one, so that ıB.ıA.U// ¤ O. Therefore AˇB 2 Ln fOg.
For any A 2 LnfOg the dilation ıA has an inverse ıC, for some C 2 LnfOg.

Then Aˇ C D .ıC ı ıA/.U/ D {.U/ D U. Finally,

Aˇ B D .ıB ı ıA/.U/ D .ıA ı ıB/.U/ D Bˇ A.

This shows that L n fOg is an abelian group under ˇ. ut
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Theorem OF.3. For every A 2 L,

A˚ O D O˚ A D A, O˚ O D O,

U ˇ A D Aˇ U D A, and

Aˇ O D Oˇ A D Oˇ O D O.

Proof. By Definitions OF.1(A) and (C), for every A 2 L,

A˚ O D .{ ı �A/.O/ D {.�A.O// D {.A/ D A;

O˚ A D .�A ı {/.O/ D �A.{.O// D �A.O/ D A; and

O˚ O D .{ ı {/.O/ D O.

By Definitions OF.1(B) and (D), for every A 2 L,

U ˇ A D .ıA ı {/.U/ D ıA.U/ D A and Aˇ U D .{ ı ıA/.U/ D {.A/ D A;

Aˇ O D .ıO ı ıA/.U/ D ıO.ıA.U// D ıO.A/ D O

since ıO maps L to O; likewise

Oˇ A D .ıA ı ıO/.U/ D ıA.ıO.U// D ıA.O/ D O and Oˇ O D O. ut
Definition OF.4. (A) For every member A of L, define �A to be the unique

member of L, which is guaranteed by Theorem OF.2(A) above, such that

A˚ �A D �A˚ A D O. �A is the additive inverse of A. Note that �O D O

and �.�O/ D O.

(B) For every member A of LnfOg, define A�1 to be the unique member of LnfOg,
guaranteed by Theorem OF.2(B) above, such that A ˇ A�1 D A�1 ˇ A D
U. A�1 is the multiplicative inverse of A. Again, note that U�1 D U and

.U�1/�1 D U.

Theorem OF.5. Let ' be a collineation of P with fixed line L such that '.O/ D O.

(For example, ' may be a dilation of P with fixed point O.) Then for all points S

and T on L '.SC T/ D '.S/C '.T/.
Proof. (Case 1: S D 0.) By Definition OF.1 each side of the given equality is '.T/.

(Case 2: S ¤ 0.) By Theorem CAP.13, ' ı �S ı '�1 is a translation of P . Since

.' ı �S ı '�1/.O/ D '.�S.'
�1.O/// D '.�S.O// D '.S/,

' ı �S ı '�1 D �'.S/, and multiplying on the right by ', we have ' ı �S D �'.S/ ı ',

so that '.�S.T// D �'.S/.'.T//. But �S.T/ D SCT and �'.S/.'.T// D '.S/C'.T/.
This, together with the last equality yields '.SCT/ D '.�S.T// D '.S/C'.T/. ut
Theorem OF.6 (Distributive property). For all points A, B, and C of L, Aˇ .B˚
C/ D .Aˇ B/˚ .Aˇ C/ and .A˚ B/ˇ C D .Aˇ C/˚ .Bˇ C/.



14.1 Building a line into an ordered field 309

Proof. (Case 1: A D O.) Each side of the given equality is O.

(Case 2: A ¤ O.) By Theorem OF.2(B), A ˇ .B ˚ C/ D ıA.B ˚ C/.

By Theorem OF.5 ıA.B ˚ C/ D ıA.B/ ˚ ıA.C/. By Definition OF.1 ıA.B/ ˚ ıA

.C/ D .A ˇ B/ ˚ .A ˇ C/. Thus A ˇ .B ˚ C/ D .A ˇ B/ C .A ˇ C/. That

.A ˚ B/ ˇ C/ D .A ˇ C/ ˚ .B ˇ C/ follows directly from commutativity of the

operations ˚ andˇ, which was proved in Theorem OF.2. ut
Theorem OF.7. L is a field under the operations˚ and ˇ.

Proof. The proof is simply a synthesis of Theorems OF.2 and OF.6. For the

definition of field, see Chapter 1 Section 1.5. ut
Definition OF.8. (A) For all members A and B of L, A 	 B D A ˚ �B. The

operation 	 is called subtraction and “A 	 B” is read “A less B” or “A

minus B.”

(B) For every member A of L and for every member B of LnfOg, A��B D AˇB�1.
The operation �� is called division, and “A��B” is read “A divided by B.”

(C) For every member A of L, A is positive iff A 2 qy!
OU and A is negative iff

A O U.

(D) The points on L are ordered (cf Definition ORD.1) so that O < U.

Theorem OF.9. Let A be any member of L n fOg. Then A is positive iff A > O and

A is negative iff A < O.

Proof. By Definition OF.8 U > O and A is positive iff A 2 qy!
OU, which, by

Theorem ORD.7, equals fX j X > Og; thus A is positive iff A > O. Again by

Definition OF.8, A is negative iff A O U; by Theorem ORD.6 A O U iff either

A < O < U or A > O > U; but O < U so the latter case is ruled out. Therefore, A

is negative iff A < O. ut
Theorem OF.10. Let A and B be any members of L n fOg.
(A) (1) �A D RO.A/; (2) A O .�A/; (3) �.�A/ D RO.RO.A// D A; and (4)

px qy

O.�A/ Š px qy

OA.

(B) If A is positive, then �A is negative and if A is negative, then �A is positive.

(C) If A and B are positive, then A˚ B is positive and Aˇ B is positive.

(D) (1) .�U/ˇA D �A; (2) �.Aˇ B/ D .�A/ˇB D Aˇ .�B/; and (3) AˇB D
.�A/ˇ .�B/.

(E) (1) If one of A or B is positive and the other negative, then Aˇ B is negative;

and (2) A and A�1 are both positive or both negative.
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(F) .�A/˚ .�B/ D �.A˚ B/.

(G) A�1 ˇ B�1 D .Aˇ B/�1.
(H) Let A and B be any members of L; then Aˇ B D O iff A D O or B D O.

(I) If A and B are negative, then A˚ B is negative and Aˇ B is positive.

Proof. (A) First note that O D A ˚ .�A/ D .�A ı ��A/.O/ D �A.
�A/, and

�A.O/ D A. By Theorem ISM.6, every translation is an isometry, so by

Theorem COBE.5(5) (or Theorem NEUT.15(5)),
px qy

O.�A/ Š px qy

OA.

If �A 2 qy!
OA, then by Property R.4 of Definition NEUT.2, A D �A, so that

O D A˚A D �A.�A.O// and O is a fixed point of �Aı�A which is impossible by

Exercise ISM.1(B). Then �A 62 qy!
OA and hence A O �A and O is the midpoint

of
px qy

A.�A/. By Theorem ROT.3 A O RO.A/ and O is the midpoint of
px qy

ARO.A/.

By Exercise NEUT.33
px qy

ARO.A/ Š
px qy

A.�A/, and since both �A and RO.A/ are

members of
qy!
AO, by Property R.4 of Definition NEUT.2, �A D RO.A/. Then

�.�A/ D RO.RO.A// D A by Corollary ROT.6.

(B) By Theorem OF.9, if A is positive, then A > O and by Theorem ORD.6, since

.�A/ O A, �A < O < A, and thus �A is negative. Similarly, if A is negative,

then A < O and �A > O so that �A is positive.

(C) If A and B are positive, by Theorem ISM.23, �A.B/ > B > O; by

Theorem OF.2, A ˚ B D �A.B/, so that A ˚ B > O is positive. To prove

the second assertion, note that A ˇ B D ıA.B/. By Theorem DLN.8 ıA is a

belineation so by Theorem COBE.5(2), ıA.
qy!
OU/ D qy !

ıA.O/ıA.U/ D qy!
OA. By

Theorem PSH.16,
px!
OA D px!

OU D px!
OB; since B 2 qy!

OU, Aˇ B D ıA.B/ 2 qy!
OU and

Aˇ B > O.

(D) By Theorem OF.3 and Theorem OF.6,

..�U/ˇ A/˚ A D ..�U/ˇ A/˚ .U ˇ A/

D .�U ˚ U/ˇ A D Oˇ A D O,

so that .�U/ˇ A D �A.

Since ..�A/ˇ B/˚ .Aˇ B/ D ..�A/˚ A/ˇ B D Oˇ B D O, it follows

that �.Aˇ B/ D .�A/ˇ B. Applying Theorem OF.2(B) (commutativity), we

have
�.Aˇ B/ D �.Bˇ A/ D .�B/ˇ A D Aˇ .�B/.

The next equality follows from Theorem OF.2(B), part (A) of this theorem,

and two applications of what we just proved:

.�A/ˇ .�B/ D �.Aˇ .�B// D �.�.Aˇ B// D Aˇ B.
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(E) Choose the notation so that A is negative and B is positive. Then by part (D)

.�A/ˇ B D �.Aˇ B/. By part (B) �.Aˇ B/ is positive so again by part (B)

its additive inverse Aˇ B is negative. If one of A or A�1 were positive and the

other negative, A ˇ A�1 D U would be negative, which is impossible since

U 2 qy!
OU and hence is positive.

(F) ..�A/˚ .�B//˚ .A˚ B/ D .�B/˚ ..�A/˚ A/˚ B

D .�B/˚ O˚ B D �BC B D O.

Hence .�A/˚ .�B/ is the additive inverse of A˚ B so

.�A/˚ .�B/ D �.A˚ B/.

(G) .A�1 ˇ B�1/ˇ .Aˇ B/ D .A�1 ˇ B�1/ˇ .Bˇ A/

D A�1 ˇ .B�1 ˇ B/ˇ A

D A�1 ˇ U ˇ A D A�1 ˇ A D U.

Hence A�1 ˇ B�1 is the multiplicative inverse of Aˇ B and

A�1 ˇ B�1 D .Aˇ B/�1.
(H) If B D O, by Definition OF.1(D), A ˇ O D ıO.A/ D O. If A D O, then

OˇB D BˇO D O. Given AˇB D O, if A ¤ O then O D A�1ˇ .AˇB/ D
.A�1 ˇ A/ˇ B D U ˇ B D B. Similarly if B ¤ O, then A D O.

(I) From part (F), A˚ B D �.�A/˚ �.�B/ D �..�A/˚ .�B//. Since �A and
�B are positive, by part (C), .�A/˚ .�B/ is positive. So by part (B) �..�A/˚
.�B// D A˚ B is negative.

Since A is negative, �A is positive by part (B). So �A ˇ B is negative by

part (E). Then by part (B), �..�A/ ˇ B/ is positive. By parts (D) and (A),
�..�A/ˇB/ D .�U/ˇ ..�A/ˇB/ D ..�U/ˇ .�A//ˇB D .�.�A//ˇB D
Aˇ B. ut

Theorem OF.11. Let P be a Euclidean plane, L be a line on P , O be a point on L,

and A, B, and C be members of L. Then

(A) A < B iff B	 A > O iff .�B/ < .�A/.

(B) A < B iff A˚C < B˚C; also O < B iff C < B˚C and A < O iff A˚C < C.

(C) If A < B and C > O, then Aˇ C < Bˇ C.

(D) If A < B and C < O, then Bˇ C < Aˇ C.

Proof. In this proof we will write A ˚ .�B/ as A 	 B, as permitted by Defini-

tion OF.8(A).
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(A) If A < B and B	A 6> O, by trichotomy for<, either B	A D O or B	A < O.

If B 	 A D O, then B D A which contradicts A < B. If B 	 A < O, then by

Theorem OF.10(F) and (A),

�.B	 A/ D .�B/˚ .�.�A// D .�B/˚ A D A	 B

which is greater than O by Theorem OF.10(B). Then �A�B.B/ D .A	B/˚B D
A˚.�B˚B/ D A˚O D A; by the last statement of Case 2 of Theorem ISM.23,

B < A, which contradicts A < B. Therefore if A < B, B	 A > O.

Conversely, if B	 A > O, then

�B�A.A/ D .B	 A/˚ A D .B˚ .�A//˚ A

D B˚ ..�A/˚ A/ D B˚ O D B

so that again by Theorem ISM.23 A < B.

The proof that B	 A > O iff .�B/ < .�A/ is Exercise OF.9.

(B) Using Theorem OF.10(F),

.B˚ C/	 .A˚ C/ D .B˚ C/˚ �.A˚ C/

D .B˚ C/˚ ..�A/˚ .�C//

D B˚ C˚ .�A/˚ .�C/

D .B˚ .�A//˚ .C˚ .�C//

D .B˚ .�A//˚ O D B	 A.

By part (A) this is greater than O iff B > A, so that

.B˚ C/	 .A˚ C/ > O iff B > A.

That O < B iff C < B˚ C follows by substituting O for A in the above; that

A < O iff A˚ C < C follows by substituting O for B.

(C) If A < B, then by part (A) B 	 A > O. Since C > O, by Theorem OF.10(C)

Cˇ .B	 A/ > O. Then by Theorem OF.10(D) and Theorem OF.6,

Cˇ .B	 A/ D Cˇ .B˚ �A/ D .Cˇ B/˚ .Cˇ �A/

D .Cˇ B/	 .Cˇ A/ > O

Therefore by part (A) Cˇ A < Cˇ B.

(D) The proof of part (D) is Exercise OF.7. ut
Theorem OF.12. Let P be a Euclidean plane, L be a line on P , O be a point on L,

and U be a member of L n fOg. If the operations ˚ and ˇ are established on L in

accordance with Definition OF.1 and if the relation < is established on L with the

properties listed in Theorem OF.11, then L is an ordered field.

Proof. This is simply a synthesis of Theorems OF.7 and OF.11. ut
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Definition OF.13. (A) The ray
qy!
OU is the positive half of L n fOg.

(B) For any member X of L, the absolute value of X is

jXj D
n X if X � O
�X if X < O

:

Remark OF.14 (Identification of F and
qy!
OU). Early in Chapter 9 (Defini-

tion FSEG.3) we defined addition and ordering of free segments. Doubtless the

reader has noted that the arithmetic of free segments is very limited, since there is

no “zero” segment and no “negative” segments, or any definition of multiplication.

(This kind of algebraic system is known as a semigroup.)

So far in this chapter we have shown how a line L in the Euclidean plane can be

“built” into a field, complete with addition ˚ and multiplication ˇ, so that it has

a complete system of arithmetic. Also in Definition OF.8(D) we have specified an

ordering for this field.

In Theorem FSEG.15, we showed that the mapping˚ (from Definition FSEG.14)

is a bijection of the set F of all free segments onto
qy!
OU, and this mapping also

preserves order. (Here O and U are distinct points of the line, O being the origin,

and the unit U replaces Q in Theorem FSEG.15.) Thus it makes sense to define

length and distance as positive members of L; we will do this in Definition OF.16.

In Theorem OF.17, we will show that ˚ preserves addition, and later on in

Theorem SIM.8 (after products of free segments have been defined), it will be shown

that ˚ also preserves products. Thus ˚ allows us to identify F with
qy!
OU, meaning

that these two sets are algebraically indistinguishable.

Note carefully that we use the symbol ˚ both for addition of free segments and

for addition of points on the line L; its meaning in these two situations is quite

different, the first being derived from pasting two free segments together end-to-

end, the second from translations.

Theorem OF.15. Let A, B, C, and D be distinct points on the line L on the

Euclidean plane P (where L is equipped with origin O and unit U as in Defini-

tion OF.1).

(A)
px qy

AB Š px qy

O.B	 A/ Š px qy

OjB	 Aj.
(B) jB	 Aj D jD	 Cj iff px qy

AB Š px qy

CD.

(C) Let ˚ be the mapping defined in Definition FSEG.14, where U takes the place

of Q in that definition. Then ˚Œ
px qy

AB � D jB	 Aj.
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Proof. (A) (I) For the moment, choose the notation so that A < B; by Theorem

OF.11 (A), B	 A > O.

Then ��A.A/ D A 	 A D O and ��A.B/ D B 	 A; since ��A

is an isometry, we may use Theorem NEUT.15(5) to get ��A.
px qy

AB/ D
px qy

O.B	 A/, and
px qy

AB Š px qy

O.B	 A/.

(II) On the other hand, if A > B, by Theorem OF.11(A) A 	 B > O,

and by (I) above,
px qy

BA Š px qy

O.A	 B/. By Theorem NEUT.15(5) and

Theorem OF.10(A)

RO.
px qy

O.A	 B// D px qy

O.RO.A	 B// D px qy

O.�.A	 B// D px qy

O.B	 A/,

so that
px qy

O.A	 B/ Š px qy

O.B	 A/. Again using (I),
px qy

BA Š px qy

O.A	 B/ Š
px qy

O.B	 A/, and since by Definition IB.3
px qy

AB D px qy

BA,
px qy

AB Š px qy

O.B	 A/.

(III) By the result just above and Definition IB.3,
px qy

O.B	 A/ Š px qy

AB D px qy

BA Š px qy

O.A	 B/ Š px qy

O�.B	 A/,

and jB 	 Aj is either B 	 A or A 	 B. Hence
px qy

AB Š j px qy

O.B	 A/ j. This

completes the proof of part (A).

(B) If jB	 Aj D jD	 Cj, then
px qy

OjB	 Aj D px qy

OjD	 Cj; by part (A) above,
px qy

AB Š px qy

OjB	 Aj D px qy

OjD	 Cj Š px qy

CD,

and
px qy

AB D px qy

CD.

Conversely, if
px qy

AB Š px qy

CD, then applying part (A) twice, we have
px qy

OjB	 Aj Š px qy

AB Š px qy

CD Š px qy

OjD	 Cj.
Since both jB 	 Aj and jD 	 Cj are members of

qy!
OU, by Property R.4 of

Definition NEUT.2, jB	 Aj D jD	 Cj.
(C) Since X D ˚Œpx qy

AB � is defined to be the point of
qy!
OU such that Œ

px qy

OX � D Œpx qy

AB �, we

know that
px qy

OX Š px qy

AB. By part (B), and using the fact that X>O,

jB	 Aj D jX 	 Oj D jXj D X D ˚Œpx qy

AB �: ut
Definition OF.16. Define the distance between two points A and B, or the length

of
px qy

AB to be jB	 Aj D ˚Œpx qy

AB �.

Theorem OF.17. Let P be a Euclidean plane, L be the ordered field of Theo-

rem OF.12, O be the origin of L, and let S, T, and V be positive members of L

(i.e., members of
qy!
OU). Let ˚ be as in Definition FSEG.14. Then

(A) Œ
px qy

OT � D Œpx qy

S.S˚ T/ �, that is,
px qy

OT Š px qy

S.S˚ T/; this is true for any S and T in L;

(B) Œ
px qy

OS �˚ Œpx qy

S.S˚ T/ � D Œpx qy

OS �˚ Œpx qy

OT � D Œpx qy

O.S˚ T/ �;
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(C) ˚.Œ
px qy

OS �˚ Œpx qy

OT �/ D ˚Œpx qy

OS �˚ ˚Œpx qy

OT �; and

(D) Œ
px qy

OS �˚ Œpx qy

OT � D Œpx qy

OV � iff S˚ T D V.

Proof. (A) By Definition OF.1 and using Theorem COBE.5(5), �S.
px qy

OT/ D
px qy

�S.O/�S.T/ D
px qy

S.S˚ T/. Since �S is an isometry, by Definition NEUT.3(B)
px qy

OT Š px qy

S.S˚ T/ (cf Definition FSEG.2); this proves part (A) for any T and

S in L.

(B) By Theorem OF.11(B) S˚ T > S so that O S .S˚ T/. By Definition FSEG.3

and part (A), Œ
px qy

OS �˚ Œpx qy

OT � D Œ
px qy

OS �˚ Œpx qy

S.S˚ T/ � D Œ
px qy

O.S˚ T/ �. This proves

part (B).

(C) In this part, Œ
px qy

OS � ˚ Œpx qy

OT � means addition of free segments, while ˚Œ
px qy

OS � ˚
˚Œ

px qy

OT � means addition of points on the line L. Since S, T , and V are positive,

so is S ˚ T . Then by part (B) ˚.Œ
px qy

OS � ˚ Œpx qy

OT �/ D ˚.Œ
px qy

O.S˚ T/ �/ D S ˚ T ,

˚Œ
px qy

OS � D S, and ˚Œ
px qy

OT � D T . Here we have used Definition FSEG.14 three

times.

(D) The proof that if S ˚ T D V then Œ
px qy

OS �˚ Œpx qy

OT � D Œ
px qy

OV � follows immediately

from part (B). Conversely, if Œ
px qy

OS � ˚ Œ
px qy

OT � D Œ
px qy

OV �, by part (B) Œ
px qy

OV � D
Œ
px qy

O.S˚ T/ � so that by Definition FSEG.2
px qy

OV Š px qy

O.S˚ T/; since V and S˚ T

are positive, V 2 qy !
O.S˚ T/ and by Definition NEUT.2 Property R.4 (linear

scaling), V D S˚ T . ut
Corollary OF.18. Assume the hypotheses of Theorem OF.17. In addition, assume

that there is a second line M which has been made into an ordered field with unit

U0, and which intersects L at their common point O of origin. Let S0 and T 0 be

positive members of M (i.e., members of
qy !
OU0). If

px qy

OS Š px qy

OS0 and
px qy

OT Š px qy

OT 0, then
px qy

O.S˚ T/ Š px qy

O.S0 ˚ T 0/.

Proof.
px qy

OS Š px qy

OS0 and
px qy

OT Š px qy

OT 0 iff Œ
px qy

OS � D Œ
px qy

OS0 � and Œ
px qy

OT � D Œ
px qy

OT 0 �;
by Theorem OF.17(B), if this is true then Œ

px qy

O.S˚ T/ � D Œ
px qy

O.S0 ˚ T 0/ �, that is,
px qy

O.S˚ T/ Š px qy

O.S0 ˚ T 0/. ut

Remark OF.19. Note that by Theorem OF.17 we may add two positive points A

and B on L by first constructing the two segments
px qy

OA and
px qy

OB, then constructing a

point C such that O A C and
px qy

AC Š px qy

OB. Then A ˚ B D C. This observation will

be pivotal in our development in Chapter 17 (QX) of rational multiples of points

on a line.
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14.2 Exercises for ordered fields

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise OF.1�. Let P be a Euclidean plane; let L be an ordered field on P with

origin O, and �A be the translation of P such that �A.O/ D A, where A is any member

of L n fOg. Then for every member X of L, �A.X/ D X ˚ A.

Exercise OF.2�. Let P be a Euclidean plane; let L be an ordered field on P with

origin O and unit U (where U 2 .Ln fOg/) and let ıA be the dilation of P with fixed

point O such that ıA.U/ D A. Then for every member X of Ln fOg, ıA.X/ D XˇA.

Exercise OF.3�. (A) If A, B, and C are members of the ordered field L (cf.

Definition OF.1) such that A˚ C D B˚ C, then A D B.

(B) If A and B are members of L and if C is a member of LnfOg such that AˇC D
Bˇ C, then A D B.

Exercise OF.4�. (A) If A, B, and C are members of the field L such that A˚ B D
A˚ C, then B D C.

(B) If A is a member of L n fOg, and if B and C are members of L such that

Aˇ B D Aˇ C, then B D C.

Exercise OF.5�. Let A, B, and C be members of the field L; then .B	 A/ˇ C D
.Bˇ C/	 .Aˇ C/.

Exercise OF.6�. Let ı be a dilation of the Euclidean plane P with fixed point O,

and let L be an ordered field with origin O and unit U. If K and T are any members

of L, then ı.K ˇ T/ D K ˇ ı.T/.
Exercise OF.7�. Let A and B be members of L. Complete the proof of Theo-

rem OF.11(A), by showing that B	 A iff .�B/ < .�A/.

Exercise OF.8�. Prove part D of Theorem OF.11: If A < B and C < O, then

Bˇ C < Aˇ C.

Exercise OF.9�. Let A and B be negative members of L. Then A < B iff jBj < jAj.
Exercise OF.10�. (A) Let T D f�A j A 2 Lg; then the mapping ˛:A ! �A is a

bijection of L onto T.

www.springer.com


14.2 Exercises for ordered fields 317

(B) Let M D fıA j A 2 Lg; then the mapping :A ! ıA is a bijection of L onto

M; furthermore  maps L n fOg onto M n fOg.
Exercise OF.11�. (This result is analogous to Theorem CAP.23.) Let P be a

Euclidean plane, and let L1 and L2 be parallel lines on P , where L1 has been built

into an ordered field with origin O1 and unit U1. Let O2 be a point of L2, and let

� be the translation of P such that �.O1/ D O2. (The existence and uniqueness

of this translation is guaranteed by Theorem ISM.5.) Let A 2 L1 n fO1;U1g. Then

� ı ıA ı ��1 is a dilation of P with fixed point O2. In fact, � ı ıA ı ��1 D ı�.A/ so

that � ı ıA D ı�.A/ ı � .

Exercise OF.12�. Let P be a Euclidean plane; let L be an ordered field on P with

origin O and unit U, A be a member of L n fO;Ug, and let �A and ıA be as in

Definition OF.1. Then ıA ı �A D �ıA.A/ ı ıA.



Chapter 15
Similarity on a Euclidean Plane (SIM)

Acronym: SIM

Dependencies: all prior Chapters 1 through 14

New Axioms: none

New Terms Defined: similar, similarity, similarity mapping, unit free segment;

product, ratio (of free segments)

Abstract: This chapter defines a similarity mapping on a Euclidean plane as a

dilation, an isometry, or a composition of a dilation and an isometry. Such mappings

are used to define the similarity of two sets. Similarity is shown to be an equivalence

relation, and criteria are developed for similarity of triangles. The chapter concludes

with a proof of the Pythagorean Theorem, and a proof that the product of the base

and altitude of a triangle is constant.

15.1 Theorems on similarity

Definition SIM.1. (A) Let P be a Euclidean plane; if ı is either a dilation, or the

identity {, and ' is an isometry of P , then ı ı ' is a similarity mapping (or

simply a similarity).

(B) If D and E are any nonempty subsets of P , they are said to be similar (notation:

D � E) iff there exists a similarity mapping ı ı ' such that .ı ı '/.D/ D
ı.'.D// D E .
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Theorem SIM.2. (A) Every dilation and every isometry (including the identity {)

is a similarity mapping.

(B) For any similarity mapping ı ı ', where ı is a dilation and ' is an isometry,

there exists an isometry  such that  ı ı D ı ı '.

Therefore a mapping is a similarity mapping iff it is either of the form ' ı ı or ı ı',

where ı is either a dilation or the identity, and ' is an isometry.

(C) The inverse of a similarity mapping is a similarity mapping.

(D) The composition of two similarity mappings is a similarity mapping.

(E) Every similarity mapping is a belineation.

Proof. (A) Since the identity { is an isometry, by Definition SIM.1, { ı { D { is a

similarity mapping; if ' is any isometry, then by the same definition, { ı ' is a

similarity mapping. If ı is any dilation, then ı D ı ı { is a similarity mapping.

(B) This follows immediately from Theorem DLN.16.

(C) .' ı ı/�1 D ı�1 ı '�1; by Theorem CAP.21, ı�1 is a dilation, and by

Theorem NEUT.11 '�1 is an isometry; by part (B) above, ı�1 ı '�1 is a

similarity mapping.

(D) Let ı ı ' and ı0 ı '0 be similarity mappings, where ' and '0 are isometries, ı

is either a dilation with fixed point O or the identity {, and ı0 is either a dilation

with fixed point O0 or {. We show that ! D ı ı ' ı ı0 ı '0 is a similarity

mapping.

(I) If ı D {, then ! D ' ı ı0 ı '0. By part (B) above, there exists an isometry

 such that  ı ı0 D ı0 ı '0, so that ! D .' ı  / ı ı0; since ' ı  is an

isometry, by part (B) ! is a similarity mapping.

If ı0 D {, ! D ı ı .' ı '0/ and since ' ı '0 is an isometry, by part (B)

! is a similarity mapping.

(II) Now suppose that both ı and ı0 are dilations, with, as noted above, fixed

points O and O0, respectively. By Theorem ISM.5, there exists a translation

� such that �.O0/ D O. By Theorem CAP.23(C), � D ��1 ı ı0 ı � is a

dilation with fixed point O. Thus

! D ı ı ' ı ı0 ı '0 D ı ı ' ı � ı .��1 ı ı0 ı �/ ı ��1 ı '0
D ı ı .' ı �/ ı � ı .��1 ı '0/

where ' ı � and ��1 ı '0 are both isometries. By Theorem DLN.16 there

exists an isometry '00 such that ' ı � ı � D � ı '00, so that
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! D ı ı � ı .'00 ı ��1 ı '0/
and '00 ı ��1 ı '0 is an isometry. By Theorem CAP.21, ı ı � is either the

identity or a dilation with fixed point O, so that by Definition SIM.1, ! is

a similarity mapping.

(E) This is an immediate consequence of Theorem DLN.8 and the fact that every

isometry is a belineation. ut
Theorem SIM.3. Similarity is an equivalence relation on the set O of nonempty

subsets of the Euclidean plane P .

Proof. Let D, E , and F be members of O.

(I: D � D.) {.D/ D D, and by Theorem SIM.2(A), the identity is a similarity

mapping, so D � D.

(II: If D � E , then E � D.) If D � E , there exists a similarity mapping ! such that

!.D/ D E ; then !�1.E/ D D and by Theorem SIM.2(C), !�1 is a similarity

mapping.

(III: If D � E and E � F , then D � F .) By Definition SIM.1, there exist similarity

mappings � and ! such that �.D/ D E and !.E/ D F ; By Theorem SIM.2(D),

! ı � is a similarity mapping, and ! ı �.D/ D !.�.D// D !.E/ D F so that

D � F . ut
Remark SIM.4. (A) Definition SIM.1(B) can be stated as follows: if D and E are

any nonempty sets, then D � E iff there exists a nonempty set G and a dilation

ı such that G Š D and ı.G/ D E . By Theorem SIM.2(B), this is the same as

saying that there exist a nonempty set G and a dilation ı such that ı.D/ D G
and G Š E .

(B) Notice that our definition of similarity provides a generalization of congruence;

if two sets are congruent, they are similar; that is, an isometry is a similarity

mapping. But the converse is not true.

Theorem SIM.5. Let P be a Euclidean plane.

(A) Let A, B, and C be noncollinear points on P and let ! be a similarity mapping

of P . Then †BAC Š †!.B/!.A/!.C/, †CBA Š †!.C/!.B/!.A/, and

†ACB Š †!.A/!.C/!.B/.
(B) If A1, B1, C1, A2, B2, and C2 are points on P such that A1, B1, and C1

are noncollinear, A2, B2, and C2 are noncollinear, †B1A1C1 Š †B2A2C2,

†C1B1A1 Š †C2B2A2, and †A1C1B1 Š †A2C2B2, then

4A1B1C1 � 4A2B2C2.
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Proof. (A) By Theorem SIM.2(A) and (B) either ! is an isometry of P , or there

exist an isometry ' and a dilation ı such that ! D ' ı ı. If ! is an isometry,

then by Theorem NEUT.15(8), the congruences stated are true. If ! D ' ı
ı, where ' is an isometry and ı is a dilation, then by Theorem DLN.14 and

Theorem NEUT.15(8) the congruences stated are true.

(B) By Theorem NEUT.67 (Segment construction) there exist points B02 and C02
such that B02 2

qy !
A2B2, C02 2

qy !
A2C2,

px qy

A1B1 Š
px qy

A2B
0
2, and

px qy

A1C1 Š
px qy

A2C
0
2. By

Theorem NEUT.64 (EAE), 4A1B1C1 Š 4A2B
0
2C
0
2, †A2B

0
2C
0
2 Š †A1B1C1,

†A2C
0
2B
0
2 Š †A1C1B1, and

px qy

B02C02 Š
px qy

B1C1. Since †A1B1C1 Š †A2B2C2
by Theorem NEUT.14 (congruence is an equivalence relation), †A2B

0
2C
0
2 Š

†A2B2C2.

If B02 D B2, then by Theorem NEUT.65 (AEA)
px qy

A2C
0
2 Š

px qy

A2C2. By

Property R.4 of Definition NEUT.2, C02 D C2 so that 4A2B02C02 D 4A2B2C2
and thus4A1B1C1 � 4A2B2C2.

If B02 ¤ B2, then using Theorem DLN.7 let ı be the dilation of P with fixed

point A2 such that ı.B02/ D B2. By Theorem CAP.1(A)

ı.
 �!
B02C02/ D

 ������!
ı.B02/ı.C02/ D

 ���!
B2ı.C

0
2/.

By Definition CAP.17
 ���!
B2ı.C

0
2/ k
 �!
B02C02. Since

†A2B2ı.C02/ D †ı.A2/ı.B02/ı.C02/ D ı.†A2B2C2/

Š †A2B2C2 Š †A2B02C02,

by Theorem EUC.11,
 �!
B2C2 k  �!B02C02. By Axiom PS

 �!
B2C2 D  ���!B2ı.C

0
2/ so that

ı.C02/ D C2.

Summarizing, we have ı.B02/ D B2 and ı.C02/ D C2 so that ı.4A2B02C02/ D
4A2B2C2. Also 4A1B1C1 Š 4A2B

0
2C
0
2, so that 4A1B1C1 � 4A2B2C2, by

Definition SIM.1. ut

Theorem SIM.6. Let P be a Euclidean plane and let A1, B1, C1, A2, B2, and

C2 be points on P such that A1, B1, and C1 are noncollinear, A2, B2, and C2 are

noncollinear, †B1A1C1 Š †B2A2C2 and †A1B1C1 Š †A2B2C2, then4A1B1C1 �
4A2B2C2.

Proof. An immediate consequence of Theorem SIM.5 and Theorem EUC.35. ut
In the following, we will use smaller typeface script letters to denote free

segments of P , as in Chapter 9 (FSEG). We will use the symbol < and its natural

variants for the order relation on free segments that we defined in that chapter.
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Definition SIM.7. Let P be a Euclidean plane, O a point on P , and U a member

of P n fOg. Let A and B be any free segments of P , and let A and B be points on
qy!
OU

such that Œ
px qy

OA � D A and Œ
px qy

OB � D B.

(A) Define the unit free segment to be U D Œpx qy

OU �. It will remain fixed throughout

our development.

(B) Define the product A ˇ B D Œ
px qy

OA � ˇ Œpx qy

OB � of A and B as the free segment

Œ
px qy

O.Aˇ B/ �, where (as in Definition OF.1) Aˇ B D ıB.ıA.U// D ıB.A/.

Theorem SIM.8. Let P be a Euclidean plane.

(A) Under the operation ˇ, the set of free segments of P is an abelian group with

identity element U.

(B) If A, B, and C are free segments of P , then Aˇ .B˚ C/ D .Aˇ B/˚ .Aˇ C/.

(C) The mapping ˚ which is an order and sum-preserving bijection of F onto
qy!
OU

(cf Definition FSEG.14 and Theorem OF.17) also preserves products. That is,

for any free segments A and B, ˚.Aˇ B/ D ˚.A/ˇ ˚.B/.
Proof. (A) Let A, B, and C be members of

qy!
OU such that Œ

px qy

OA � D A, Œ
px qy

OB � D
B, and Œ

px qy

OC � D C. In the following reasoning we use Definition SIM.7 and

Theorem OF.7.

(I) (Existence of identity) Aˇ U D Œpx qy

O.Aˇ U/ � D Œpx qy

OA � D A.

(II) (Existence of inverses) Let D D Œpx qy

OA�1 �. Then

Aˇ D D Œpx qy

OA �ˇ Œpx qy

OA�1 � D Œpx qy

O.Aˇ A�1/ � D Œpx qy

OU � D U.

Hence D D A�1.
(III) (Commutativity)

Aˇ B D Œpx qy

OA �ˇ Œpx qy

OB � D Œpx qy

O.Aˇ B/ � D Œpx qy

O.Bˇ A/ � D Bˇ A.

(IV) (Associativity)

.Aˇ B/ˇ C D Œpx qy

O..Aˇ B/ˇC/ � D Œpx qy

O.Aˇ .Bˇ C// � D Aˇ .Bˇ C/.

(B) (Distributivity) In addition to Definition SIM.7 and Theorem OF.7, in this part

we use Theorem OF.17.

Aˇ .B˚ C/ D Œpx qy

O.Aˇ .B˚ C// � D Œpx qy

O..Aˇ B/˚ .Aˇ C// �

D Œpx qy

O.Aˇ B/ �˚ Œpx qy

O.Aˇ C/ � D .Aˇ B/˚ .Aˇ C/.

(C) Let A and B be members of
qy!
OU such that A D Œ

px qy

OA � and B D Œ
px qy

OB �. By

Definition SIM.7, AˇB D Œpx qy

O.Aˇ B/ � so ˚.AˇB/ D AˇB D ˚.A/ˇ˚.B/.
ut
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Remark SIM.8.1. (A) Theorem SIM.8, in combination with Theorem FSEG.15,

Theorem OF.17, and Theorem OF.7 fulfills the promise we made in

Remark OF.14. It shows that the product defined on the set of free segments

does turn that set into a group under the operation ˇ, and that the mapping

˚ is a group isomorphism with respect to that operation. Thus the set of free

segments may be identified with
qy!
OU as to sums, products, and order.

(B) We should make clear exactly what the objects being defined here are. The

product of two free segments is again a free segment; later on, in Defini-

tion SIM.12, we will define the ratio of two free segments, which again will

be a free segment. Intuitively we are used to thinking of ratios as numbers. It

is possible to do that here, too, since we have mapped the set of free segments

onto
qy!
OU using the mapping ˚ defined in Definition FSEG.14.

Theorem SIM.9. Let A, B, and C be free segments of P .

(I) If B < C, then Aˇ B < Aˇ C.

(II) If B > C, then Aˇ B > Aˇ C.

Proof. (I) Let A, B, and C be points on
qy!
OU such that Œ

px qy

OA � D A, Œ
px qy

OB � D B, and

Œ
px qy

OC � D C; and let ı, �, and 	 be dilations of P with fixed point O such that

ı.U/ D A, �.U/ D B, and 	.U/ D C.

By Definitions SIM.7 and OF.1, A ı B D Œ
px qy

O..� ı ı/.U// � and A ı C D
Œ
px qy

O..	 ı ı/.U// �. By Exercise DLN.3 A ı B D B ı A D Œ
px qy

O..ı ı �/.U// � D
Œ
px qy

Oı.B/ � and A ı C D C ı A D Œ
px qy

O..ı ı 	/.U// � D Œ
px qy

Oı.C/ �. If B < C,

then by Definition FSEG.3,
px qy

OB <
px qy

OC. By Theorem NEUT.74 O B C. By

Theorem SIM.2(E) (every similarity is a belineation), and the fact that O is a

fixed point of ı, O ı.B/ ı.C/. By Definition NEUT.70
px qy

Oı.B/ <
px qy

Oı.C/. By

Definition FSEG.3 Œ
px qy

Oı.B/ � < Œ
px qy

Oı.C/ �. Thus Aˇ B < Aˇ C.

(II) If B > C, then by Definition FSEG.3, C < B. By part (I) .Aˇ B/ > Aˇ C. ut
Definition SIM.10. Let P be a Euclidean plane and let T be a free segment of P ,

then T 2 D T ˇ T .

The reader may find the following theorem easier to visualize in its re-statement

as Theorem SIM.13, which deals with ratios of “lengths” of segments.

Theorem SIM.11. Let P be a Euclidean plane and let O, A, and B be noncollinear

points on P; let C and D be points such that C 2 . !OA n fAg/ and D 2 . !OB n fBg/,
A D Œpx qy

OA �, B D Œpx qy

OB �, C D Œpx qy

OC �, and D D Œpx qy

OD �.
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(A) If
 !
AB k  !CD, then Aˇ D D Bˇ C.

(B) If Aˇ D D Bˇ C, then
 !
AB k  !CD.

Proof. Using Theorem NEUT.67 and Exercise FSEG.1, define U as the unit for
 !
OA

and U0 as the unit for
 !
OB; that is, U and U0 are those points on their respective

lines such that Œ
px qy

OU0 � D Œ
px qy

OU � D U, where U is the unit free segment as in

Definition SIM.7(A).

Using Theorem DLN.7 let ˛, ˇ, � , and ı be the dilations of P with fixed point O

such that ˛.U/ D A, ˇ.U0/ D B, �.U/ D C, and ı.U0/ D D. By Definitions SIM.7

and OF.1

Aˇ D D Œpx qy

O.ı ı ˛/.U/ � D Œpx qy

Oı.˛.U// � and

Bˇ C D Œpx qy

O.� ı ˇ/.U0/ � D Œpx qy

O�.ˇ.U0// �.

Since A D ˛.U/, U D ˛�1.A/ and so C D �.U/ D .� ı˛�1/.A/. Since B D ˇ.U0/,
U0 D ˇ�1.B/ and so D D ı.U0/ D .ı ı ˇ�1/.B/. By Theorem CAP.21 � ı ˛�1 is

either { (the identity mapping), or it is a dilation of P . If � ı ˛�1 were equal to {,

then � D ˛, contrary to the fact that ˛.U/ D A ¤ C D �.U/. Hence � ı ˛�1 is a

dilation of P . The same kind of reasoning shows that ı ı ˇ�1 is a dilation of P .

(A) (If
 !
AB k  !CD, then Aˇ D D C ˇ B.) First note that .� ı ˛�1/.A/ D C and by

Definition CAP.17, .� ı ˛�1/. !AB/ k  !AB. By Axiom PS there is only one line

through C parallel to
 !
AB, so that .� ı ˛�1/. !AB/ D !CD and .� ı ˛�1/.B/ D D.

Since .ı ı ˇ�1/.B/ D D, by Theorem CAP.24 � ı ˛�1 D ı ı ˇ�1. Multiplying

both sides on the right by ˛ ı ˇ D ˇ ı ˛ we have ˇ ı � D � ı ˇ D ı ı ˛. Here

we have used Exercise DLN.3. By Definitions SIM.7 and OF.1, AˇD D CˇB.

(B) (If A ˇ D D C ˇ B, then
 !
AB k  !CD.) By Definition SIM.7 A ˇ D D

Œ
px qy

O.ı ı ˛/.U/ � and B ˇ C D Œ
px qy

O.� ı ˇ/.U0/ �. If A ˇ D D C ˇ B, we have
px qy

O.ı ı ˛/.U/ Š px qy

O.� ı ˇ/.U0/, and since
px qy

OU Š px qy

OU0, by Corollary DLN.18(A)
px qy

O.� ı ˇ/.U0/ Š px qy

O.� ı ˇ/.U/, so that
px qy

O.ı ı ˛/.U/ Š px qy

O.� ı ˇ/.U/. Since

ı.˛.U// and �.ˇ.U// both belong to
qy!
OU, we may apply Property R.4 of

Definition NEUT.2 to get .ı ı ˛/.U/ D .� ı ˇ/.U/. By Theorem CAP.24,

ı ı ˛ D � ı ˇ. Multiplying on the right by ˛�1 ı ˇ�1 D ˇ�1 ı ˛�1, we have

� ı ˛�1 D ı ı ˇ�1. Define 	 to be this dilation, which has fixed point O.

Then 	.A/ D .� ı ˛�1/.A/ D C and 	.B/ D .ı ı ˇ�1/.B/ D D; by

Theorem CAP.1(A) and Definition CAP.17 	.
 !
AB/ D  �����!	.A/	.B/ D  !CD, and

	.
 !
AB/ k  !AB. Thus

 !
AB k  !CD. ut
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Definition SIM.12. Let P be a Euclidean plane and let A and B be free segments

of P . Then A�� B D Aˇ B�1 D B�1 ˇ A. A�� B is the ratio of A to B.

Theorem SIM.13 (Restatement of Theorem SIM.11.). Let P be a Euclidean

plane, O, A, and B be noncollinear points on P , C and D be points such that

C 2 . !OA n fAg/ and D 2 . !OB n fBg/, A D Œ
px qy

OA �, B D Œ
px qy

OB �, C D Œ
px qy

OC �, and

D D Œpx qy

OD �. Then A�� B D C��D iff
 !
AB k  !CD.

(A) If
 !
AB k  !CD, then A�� B D C��D.

(B) If A�� B D C��D, then
 !
AB k  !CD.

Theorem SIM.14. Let P be a Euclidean plane; O and A be distinct points on P;

B 2 .qy!OA nfAg/; U1 and U2 be free segments of P; U1 and U2 be the points on
qy!
OA

such that Œ
px qy

OU1 � D U1 and Œ
px qy

OU2 � D U2; and ı1, ı2, �1, and �2 be the dilations

of P such that ı1.U1/ D A, ı2.U2/ D A, �1.U1/ D B, and �2.U2/ D B. Then

�1 ı ı�11 D �2 ı ı�12 (i.e. �1�� ı1 D �2�� ı2).
Proof. Since ı1.U1/ D A, U1 D ı�11 .A/. Thus B D �1.U1/ D �1.ı

�1
1 .A// D

.�1ıı�11 /.A/. In the same manner B D .�2ıı�12 /.A/. By Theorem CAP.24 �1ıı�11 D
�2 ı ı�12 (i.e., �1�� ı1 D �2�� ı2/. ut
Remark SIM.15. Theorem SIM.14 means that the ratio of two free segments is

independent of the unit free segment that has been chosen. To see this most clearly

(using Theorem SIM.13 and its notation), let A D Œ
px qy

OA � and B D Œ
px qy

OB �. Then by

Theorem SIM.14 A�� B D Œ
px qy

O.�1 ı ı�11 /.U1/ � D Œ
px qy

O.�2 ı ı�12 /.U2/ �. Thus the ratio

A�� B is the same for either U1 or U2.

Theorem SIM.16. Let P be a Euclidean plane and let A1, B1, C1, A2, B2, and

C2 be points on P such that A1, B1, and C1 are noncollinear and A2, B2, and

C2 are noncollinear. Furthermore, let A1 D Œ
px qy

B1C1 �, B1 D Œ
px qy

A1C1 �, C1 D Œ
px qy

A1B1 �,

A2 D Œ
px qy

B2C2 �, B2 D Œ
px qy

A2C2 �, and C2 D Œ
px qy

A2B2 �. Then †B1A1C1 Š †B2A2C2 and

†A1B1C1 Š †A2B2C2 iff A1��A2 D B1�� B2 D C1�� C2.

Proof. (I: If †B1A1C1 Š †B2A2C2 and †A1B1C1 Š †A2B2C2, then A1��A2 D
B1�� B2 D C1�� C2.) By Theorem EUC.35

†A1C1B1 Š †A2C2B2.

(Case 1:
px qy

A1B1 Š px qy

A2B2.) By Theorem NEUT.65 (AEA)
px qy

A1C1 Š px qy

A2C2 and
px qy

B1C1 Š px qy

B2C2. By Exercise FSEG.1 A1 D A2, B1 D B2, and C1 D C2. Hence

A1��A2 D B1�� B2 D C1�� C2 D U.
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(Case 2:
px qy

A1B1 6Š px qy

A2B2.) Using Theorem NEUT.67 (segment construction)

let B01 and C01 be the points such that B01 2
qy !
A1B1, C01 2

qy !
A1C1,

px qy

A1B01 Š
px qy

A2B2 and
px qy

A1C01 Š
px qy

A2C2. By Theorem NEUT.64 (EAE), †A1B01C01 Š †A2B2C2. Since

†A1B1C1 Š †A2B2C2, by Theorem NEUT.14 (congruence is an equivalence

relation), †A1B
0
1C
0
1 Š †A1B1C1. By Theorem EUC.11

 �!
B01C01 k

 �!
B1C1. By

Theorem SIM.13 B1�� B2 D C1�� C2. Using Theorem NEUT.67 (segment

construction), let A01 and C001 be the points such that A01 2
qy !
B1A1, C001 2

qy !
B1C1,

px qy

B1A01 Š
px qy

B2A2 and
px qy

B1C001 Š
px qy

B2C2. By Theorem NEUT.64 (EAE), †B1A
0
1C
00
1 Š

†B2A2C2. Since †B1A1C1 Š †B2A2C2, by Theorem NEUT.14, †B1A
0
1C
00
1 Š

†B1A1C1. By Theorem EUC.11
 �!
A01C002 k

 �!
A1C1. By Theorem SIM.11 A1��A2 D

C1�� C2. Hence A1��A2 D B1�� B2 D C1�� C2.

(II: If A1��A2 D B1�� B2 D C1�� C2, then †B1A1C1 Š †B2A2C2 and †A1B1C1 Š
†A2B2C2.) Using Theorem NEUT.67 (segment construction) let B01 be the point

on
qy !
C1B1 such that

px qy

C1B01 Š
px qy

C2B2 2 A2. By Exercise FSEG.1 A2 D Œ
px qy

C1B
0
1 �.

Using Axiom PS, let J D par .B01;
 �!
A1B1/. By Exercise IP.4 J and

 �!
A1C1 intersect

at a point A01. By Theorem EUC.11 †C1B
0
1A
0
1 Š †C1B1A1 and †C1A

0
1B
0
1 Š

†C1A1B1. By part (I)

A1�� Œ
px qy

C1B
0
1 � D B1�� Œ

px qy

C1A
0
1 � D C1�� Œ

px qy

A01B01 �.

By assumption

A1��A2 D B1�� B2 D C1�� C2,

and we have already seen that Œ
px qy

C1B01 � D A2. Therefore

B1�� Œ
px qy

C1A01 � D A1�� Œ
px qy

C1B01 � D A1��A2 D B1�� B2

so that B1 ˇ B2 D B1 ˇ Œ
px qy

C1A01 � and hence Œ
px qy

C1A01 � D B2. A similar calculation

shows that C1�� Œ
px qy

A01B01 � D C1�� C2 and Œ
px qy

A01B01 � D C2.

By Exercise FSEG.1
px qy

C1A
0
1 Š

px qy

C2A2 and
px qy

A01B01 Š
px qy

A2B2. By Theorem NEUT.62

(EEE), 4A01B01C1 Š 4A2B2C2, †B01A01C1 Š †B2A2C2, and †A01B01C1 Š
†A2B2C2. By Theorem EUC.11 †A01B01C1 Š †A1B1C1 and †B01A01C1 Š
†B1A1C1. By Theorem NEUT.14 (congruence is an equivalence relation),

†B1A1C1 Š †B2A2C2 and †A1B1C1 Š †A2B2C2. ut
Theorem SIM.17. Let P be a Euclidean plane, let A1, B1, C1, A2, B2, and C2 be

points on P such that A1, B1, and C1 are noncollinear, and A2, B2, and C2 are

noncollinear. Furthermore, let B1 D Œ
px qy

A1C1 �, B2 D Œ
px qy

A2C2 �, C1 D Œ
px qy

A1B1 �, and

C2 D Œ
px qy

A2B2 �. If †B1A1C1 Š †B2A2C2, B1 ¤ B2, and B1�� B2 D C1�� C2, then

†A1B1C1 Š †A2B2C2 and †A1C1B1 Š †A2C2B2.
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Proof. Using Theorem NEUT.67 (segment construction) let B01 and C01 be the

points such that B01 2
qy !
A1B1, C01 2

qy !
A2C2,

px qy

A1B
0
1 Š

px qy

A2B2 and
px qy

A1C
0
1 Š

px qy

A2C2. By

Exercise FSEG.1 Œ
px qy

A1B
0
1 � D C2 and Œ

px qy

A1C
0
1 � D B2. Since B1 ¤ B2 and B1�� B2 D

C1�� C2, C1 ¤ C2. Multiplying both sides of B1�� B2 D C1�� C2 by B2 ˇ C1
�1, (or by

Exercise SIM.4) we have B1�� C1 D B2�� C2.

We may now apply Theorem SIM.13, by substituting, in the statement of that

theorem, A1 for O, C1 for A, B1 for B, C01 for C, and B01 for D. Then in the statement

of Theorem SIM.13, A becomes Œ
px qy

A1C1 � D B1, B becomes Œ
px qy

A1B1 � D C1, C becomes

Œ
px qy

A1C01 � D Œ
px qy

A2C2 � D B2, and D becomes Œ
px qy

A1B01 � D Œ
px qy

A1B2 � D C2. Then A�� B D
C��D in Theorem SIM.13 becomes B1�� C1 D B2�� C2, which we have seen earlier

to be true.

Thus, by Theorem SIM.13,
 !
AB k  !CD, that is,

 �!
B1C1 k  �!B01C01. By Theorem EUC.11

†A1B
0
1C
0
1 Š †A1B1C1 and †A1C

0
1B
0
1 Š †A1C1B1. By Theorem NEUT.64 (EAE)

†A1B
0
1C
0
1 Š †A2B2C2 and †A1C

0
1B
0
1 Š †A2C2B2. By Theorem NEUT.14

(congruence is an equivalence relation) †A1B1C1 Š †A2B2C2 and †A1C1B1 Š
†A2C2B2. ut
Theorem SIM.18. Let P be a Euclidean plane and let T1 and T2 be triangles on P .

Then all the following statements are equivalent:

(I) T1 � T2
(II) There exists a matching of the angles of T1 with the angles of T2 such that pairs

of matched angles are congruent to each other.

(III) There exists a matching of the edges of T1 with the edges of T2 such that the

ratios of matched edges are equal.

(IV) There exists a matching of the corners A1, B1, C1 of T1 with the corners A2,

B2, C2 of T2 such that †B1A1C1 Š †B2A2C2 and

Œ
px qy

A1B1 ��� Œ
px qy

A2B2 � D Œpx qy

A1C1 ��� Œ
px qy

A2C2 �.

(V) There exists a matching of the corners A1, B1, C1 of T1 with the corners A2,

B2, C2 of T2 such that †B1A1C1 Š †B2A2C2 and †A1B1C1 Š †A2B2C2.

Proof. By Theorem SIM.5 part (A) and Theorem SIM.6 statements (I) and (II) are

equivalent.

By Theorem SIM.16 statements (II) and (III) are equivalent. By Theo-

rems SIM.17 and SIM.16 statements (II) and (IV) are equivalent. Therefore

statements (I), (II), (III), and (IV) are equivalent. By Theorem EUC.35, statement

(V) implies statement (II), which implies statement (V). ut
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Theorem SIM.19. Let P be a Euclidean plane and let O, A, B, C, and D be points

on P such that O A C,
 !
BD and

 !
AC are concurrent at O, and

 !
AB k  !CD. Then

Œ
px qy

OA ��� Œ
px qy

OB � D Œpx qy

OC ��� Œ
px qy

OD � and Œ
px qy

OA ��� Œ
px qy

OB � D Œpx qy

AC ��� Œ
px qy

BD �.

Proof. (Case 1: O A C.) See Figure 15.1. Let A D Œpx qy

OA �, B D Œpx qy

OB �, C D Œpx qy

OC �, and

D D Œ
px qy

OD �. By Exercise PSH.56 O B D. By Definition FSEG.2 A < C and B < D.

By Definition FSEG.11 C 	 A D Œ
px qy

AC � and D 	 B D Œ
px qy

BD �. By Theorem SIM.13

A�� B D C��D so that Œ
px qy

OA ��� Œ
px qy

OB � D Œ
px qy

OC ��� Œ
px qy

OD �. By Exercise SIM.5 A�� B D
.C 	 A/��.D	 B/, so that Œ

px qy

OA ��� Œ
px qy

OB � D Œpx qy

AC ��� Œ
px qy

BD �.

Fig. 15.1 For
Theorem SIM.19 Case 1.

O B D

A

C

(Case 2: A O C.) By Exercise PSH.56 B O D. By Theorem SIM.13

Œ
px qy

OA ��� Œ
px qy

OB � D Œpx qy

OC ��� Œ
px qy

OD �.

Let L D par .D; .
 !
OC//, and let B0 be the point such that fB0g D L \ !AB. Then

tuACDB0 is a parallelogram, and therefore by Theorem EUC.12(A)
px qy

AC Š px qy

B0D. By

Theorem SIM.18(II), 4BDB0 � 4DOC, because †BDB0 Š †DOC, †DB0B Š
†OCD, and †DBB0 Š †ODC, all of these being true from Theorem EUC.11.

Again, by Theorem SIM.18(III), Œ
px qy

B0D ��� Œ
px qy

OC � D Œ
px qy

BD ��� Œ
px qy

OD �, so that by Exer-

cise SIM.4 Œ
px qy

B0D ��� Œ
px qy

BD � D Œpx qy

OC ��� Œ
px qy

OD �; since we already know that
px qy

AC Š px qy

B0D,

Œ
px qy

AC ��� Œ
px qy

BD � D Œpx qy

B0D ��� Œ
px qy

BD � D Œpx qy

OC ��� Œ
px qy

OD �.

By an argument similar to that above, 4OAB � 4OCD and by Theo-

rem SIM.18(III) and Exercise SIM.4, Œ
px qy

OC ��� Œ
px qy

OD � D Œpx qy

OA ��� Œ
px qy

OB � so that

Œ
px qy

AC ��� Œ
px qy

BD � D Œpx qy

OC ��� Œ
px qy

OD � D Œpx qy

OA ��� Œ
px qy

OB �,

which was to be proved. ut
Corollary SIM.20. With the assumptions and notation of Theorem SIM.19

Œ
px qy

OA �

Œ
px qy

OC �
D Œ

px qy

OB �

Œ
px qy

OD �
and Œ

px qy

OA �

Œ
px qy

AC �
D Œ

px qy

OB �

Œ
px qy

BD �
,

where Œ
px qy

OA �

Œ
px qy

OC �
is equal to Œ

px qy

OA ��� Œ
px qy

OC � and Œ
px qy

OB �

Œ
px qy

OD �
is equal to Œ

px qy

OB ��� Œ
px qy

OD �.

Proof. Follows immediately from Exercise SIM.4. ut
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Corollary SIM.21. With the assumptions and notation of Theorem SIM.19, if A is

the midpoint of
px qy

OC, then B is the midpoint of
px qy

OD.

Proof. If A is the midpoint of
px qy

OC, then by Definition NEUT.3(C),
px qy

OA Š px qy

AC and

O A C. Then if U is the unit free segment, Œ
px qy

OA �

Œ
px qy

AC �
D U D Œ

px qy

OB �

Œ
px qy

BD �
; so that

px qy

OB Š px qy

BD;

by Exercise PSH.56, O B D, so B is the midpoint of
px qy

OD. ut
Theorem SIM.22. Let P be a Euclidean plane and let T1 and T2 be right triangles

on P . If an acute angle of T1 and an acute angle of T2 are congruent to each other,

then T1 � T2.

Proof. By Theorem NEUT.69 the right angle of T1 and the right angle of

T2 are congruent to each other. Hence T1 � T2 by Theorem SIM.16 and

Theorem SIM.18. ut
Pythagoras of Samos (c. 570–495 BC), for whom the following theorem is named

(although it is disputed whether he had anything at all to do with it), was an Ionian

Greek philosopher and mathematician. He also was the founder of a religious sect

called Pythagoreanism. In 1955 the town of Tigani, located on the south side of the

island of Samos, was renamed Pithagoreio in his honor. On the jetty extending into

its harbor there is a statue of Pythagoras “illustrating” this theorem.

Theorem SIM.23 (Pythagorean Theorem). Let A, B, and C be noncollinear

points on the Euclidean plane P , A D Œ
px qy

BC �, B D Œ
px qy

AC �, and C D Œ
px qy

AB �. Then

†ACB is right iff A2 ˚ B2 D C2.

Proof. (I: If †ACB is right, then A2 ˚ B2 D C2.) Let L D pr .C;
 !
AB/ and let D D

ftpr .C;
 !
AB/. By Exercise NEUT.20 D 2 qy px

AB. Let T D Œ
px qy

AD � and S D Œ
px qy

BD �.

Then by Definition FSEG.3 S ˚ T D C. By Theorem SIM.22, since 4ABC and

4ACD have †BAC in common, they are similar, and since 4ABC and 4CBD

have †ABC in common, they are similar. By Theorem SIM.16 A�� C D S��A

and B�� C D T �� B. Hence A2 D C ˇ S and B2 D C ˇ T . By Theorem SIM.8

A2 ˚ B2 D C ˇ S ˚ C ˇ T D C ˇ .S ˚ T / D C2.

(II: If A2 ˚ B2 D C2, then †ACB is right.) Let D, E, and F be points on P such that
px qy

DF Š px qy

AC and
px qy

EF Š px qy

BC and †DFE is a right angle. Let D D Œ
px qy

EF �, E D Œ
px qy

DF �,

and F D Œpx qy

DE �. By part (I), D2 ˚ E2 D F2.

By assumption, A2 ˚ B2 D C2; then F2 D D2 ˚ E2 D A2 ˚ B2 D C2.

By Exercise SIM.2 C D F, so that by Exercise FSEG.1
px qy

AB Š px qy

DE. By
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Theorem NEUT.62 (EEE) 4ABC Š 4DEF, and therefore †ACB Š †DFE.

Since †DFE is right, by Theorem NEUT.66 †ACB is right. ut
Theorem SIM.23.1 (Second form of the Pythagorean Theorem). Let A, B, and

C be noncollinear points on the Euclidean plane P , Let OA D ˚Œ
px qy

BC �, OB D ˚Œ
px qy

AC �,

and OC D ˚Œ
px qy

AB � be the points of
qy!
OU such that Œ

px qy

BC � D Œ
px qy

O OA �, Œpx qy

AC � D Œ
px qy

O OB �, and

Œ
px qy

AB � D Œ
px qy

O OC �. Then †ACB is right iff OA2 ˚ OB2 D OC2.

Proof. By Theorem SIM.23 †ACB is right iff Œ
px qy

O OA �
2

˚ Œ
px qy

O OB �
2

D Œ
px qy

O OC �
2

. By

Definition SIM.7 this is Œ
px qy

O. OA2/ � ˚ Œ
px qy

O. OB2/ � D Œ
px qy

O. OC2/ �. By Theorem OF.17 this

is Œ
px qy

O. OA2 ˚ OB2/ � D Œ
px qy

O. OC2/ �. By Property R.4 of Definition NEUT.2, since OA, OB, and
OC are all in

qy!
OU, this is true iff OA2 ˚ OB2 D OC2. ut

Fig. 15.2 For
Theorem SIM.24: the product
of any altitude and its base is
constant.

B D C

A

E

Theorem SIM.24 (Product of base and altitude). Let P be a Euclidean plane, A,

B, and C be noncollinear points on P , and
px qy

AD,
px qy

BE, and
px qy

CF be the altitudes (see

Definition NEUT.99) of4ABC, respectively, from A, B, and C. Then Œ
px qy

AD �ˇŒpx qy

BC � D
Œ
px qy

BE �ˇ Œpx qy

AC �.

Proof. See Figure 15.2.

(Case 1: †ACB is right.) By Theorem NEUT.44
 !
AC ?  !BC. Thus D D E D C.

Therefore Œ
px qy

AD �ˇ Œpx qy

BC � D Œ
px qy

AC �ˇ Œpx qy

BC � and Œ
px qy

BE �ˇ Œpx qy

AC � D Œpx qy

AC �ˇ Œpx qy

BC � and so

Œ
px qy

AD �ˇ Œpx qy

BC � D Œpx qy

BE �ˇ Œpx qy

AC �.

(Case 2: †ACB is acute and †ABC is right.) By Exercise NEUT.20 and Defini-

tion IB.3 A E C and by Theorem NEUT.48(A) B D D. Then †ABC Š †BEC are

both right angles, and †ACB is an angle of both 4BEC and 4ADC D 4ABC. By

Theorem SIM.16

Œ
px qy

BE ��� Œ
px qy

AB � D Œpx qy

BE ��� Œ
px qy

AD � D Œpx qy

BC ��� Œ
px qy

AC �,

so that Œ
px qy

BC �ˇ Œpx qy

AD � D Œpx qy

BE �ˇ Œpx qy

AC �.

(Case 3: †ACB is right and †ABC is acute.) The proof is the same as Case 2,

with the roles of A and B interchanged.
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(Case 4: Each angle of 4ABC is acute.) By Exercise NEUT.20 and Defi-

nition IB.3 B D C and A E C. Since 4BEC and 4ADC are right and since

†BCE D †ACD, by Theorem SIM.16 Œ
px qy

BE ��� Œ
px qy

AD � D Œ
px qy

BC ��� Œ
px qy

AC �, so that

Œ
px qy

BC �ˇ Œpx qy

AD � D Œpx qy

BE �ˇ Œpx qy

AC �.

(Case 5: †ACB is acute, †BAC is obtuse, and †ABC is acute.) By Exer-

cise NEUT.20 B D C. Let C0 be a point of
qy!
AC such that C0 A C. Since †BAC

is obtuse, †BAC0 is acute, by Theorem NEUT.82. Now E D ftpr .B;
 !
AC/ and by

Exercise NEUT.15, since B 2 qy!
AB, E 2 qy!

AC0 and hence C A E.

Since 4BEC and 4ADC are right and since †ACB is common to them, they

are similar to each other. By Theorem SIM.16 Œ
px qy

BC ��� Œ
px qy

AC � D Œ
px qy

BE ��� Œ
px qy

AD �. Thus

Œ
px qy

AD �ˇ Œpx qy

BC � D Œpx qy

BE �ˇ Œpx qy

AC �.

(Case 6: †ACB is acute, †ABC is obtuse, and †BAC is acute.) The proof is the

same as Case 5 with the roles of A and B interchanged.

(Case 7: †ACB is obtuse.) By Theorem NEUT.84, both †BAC and †ABC are

acute.) By the same reasoning as in Case 5, both B C D and A C E. †ADC and

†CEB are both right, hence congruent by Theorem NEUT.69. †ACD Š †BCE

by Theorem NEUT.42 (vertical angles). By Theorem SIM.16 Œ
px qy

BC ��� Œ
px qy

AC � D
Œ
px qy

BE ��� Œ
px qy

AD �. Thus Œ
px qy

AD �ˇ Œpx qy

BC � D Œpx qy

BE �ˇ Œpx qy

AC �. ut

Remark SIM.25. The standard definition of area of a triangle is “1=2 the product

of the altitude and the base,” where the base is the length of the edge which is a

subset of the line perpendicular to the altitude. Theorem SIM.24 shows that such a

definition is a “good” definition. Our only problem is the “1=2”—to which we so far

have not given meaning. We will develop the topic of rational multiples of segments

and of points on the line in Chapter 17, and then will state the definition for area of

a triangle.

15.2 Exercises for similarity

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise SIM.1�. Let P be a Euclidean plane and let A and B be free segments

of P .

(I) If A < B, then A2 < B2.

(II) If A > B, then A2 > B2.

www.springer.com
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Exercise SIM.2�. Let P be a Euclidean plane and let A and B be free segments of

P . If A2 D B2, then A D B.

Exercise SIM.3�. Let P be a Euclidean plane and let A, B, and C be free segments

of P such that C < B. Then Aˇ .B	 C/ D .Aˇ B/	 .Aˇ C/.

Exercise SIM.4�. Let P be a Euclidean plane and let A, B, C, and D be free

segments on P . Then the following statements are equivalent to each other.

(1) Aˇ D D Bˇ C.

(2) A�� B D C��D.

(3) A�� C D B��D.

(4) B��A D D�� C.

(5) .A˚ B/�� B D .C ˚ D/��D.

Exercise SIM.5�. Let P be a Euclidean plane and let A, B, C, and D be free

segments on P such that A < C, B < D, and A�� B D C��D. Then A�� B D
.C 	 A/��.D	 B/.

Exercise SIM.6�. Let P be a Euclidean plane and let A1, B1, C1, A2, B2, and

C2 be points on P such that A1, B1, and C1 are noncollinear and A2, B2, and C2
are noncollinear. Furthermore, let A1 D Œ

px qy

B1C1 �, B1 D Œ
px qy

A1C1 �, C1 D Œ
px qy

A1B1 �,

A2 D Œ
px qy

B2C2 �, B2 D Œ
px qy

A2C2 �, and C2 D Œ
px qy

A2B2 �. Then: †B1A1C1 Š †B2A2C2
and †C1B1A1 Š †C2B2A2 iff A1�� B1 D A2�� B2, A1�� C1 D A2�� C2, and

B1�� C1 D B2�� C2.

Exercise SIM.7�. Let P be a Euclidean plane, O be a point on P , ı be a dilation

of P with fixed point O, and X and Y be distinct members of P n fOg such that O,

X, and Y are collinear. Then Œ
px qy

OX ��� Œ
px qy

Oı.X/ � D Œpx qy

OY ��� Œ
px qy

Oı.Y/ �.



Chapter 16
Axial Affinities of a Euclidean Plane (AX)

Acronym: AX

Dependencies: all prior Chapters 1 through 15

New Axioms: none

New Terms Defined: projection map, stretch, shear

Abstract: The main results of this short chapter are Theorems AX.3 and AX.4.

The first of these shows that every axial affinity (defined in Chapter 3, Definition

CAP.25) on a Euclidean plane is either a stretch or a shear; the second proves that

every axial affinity is a belineation.

16.1 Theorems for axial affinities

We begin by defining stretches and shears, temporarily reverting back to the use of

script letters L and M for lines.

Definition AX.0. (A) A stretch ' of a plane P is an axial affinity of P with axis

M such that there exists a line L on P which is a fixed line for ', is not parallel

to M, and the set of fixed lines of ' is fMg [ fJ j J PE Lg.
It is easy to see that a reflection is a stretch. In Theorem AX.1 we will prove

the existence of stretches other than reflections.

(B) A shear  of the affine plane P is an axial affinity of P with axis M such that

the set of fixed lines of  is fJ j J PE Mg.

© Springer International Publishing Switzerland 2015
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
DOI 10.1007/978-3-319-23775-6_16
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Theorem AX.1. Let P be a Euclidean plane, M be a line on P , and A and B be

distinct members of P nM such that
 !
AB\M ¤ ;. Then there exists a unique axial

affinity ' of P with axis M, such that '.A/ D B; this axial affinity is also a stretch.

Fig. 16.1 For
Theorem AX.1: showing
action of a stretch ', where
A O '.A/.

M

MX

Mδ(π(X))

O

X

ϕ(X)

π(X)

δ(π(X))

LXL = ←−
AB

→

Proof. For a visualization see Figure 16.1. The reader should not be put off by the

length of this proof; the bulk of the proof is in parts (VII) through (VII(c)), showing

that the mapping ' is a collineation.

We first construct an axial affinity ' of P with axis M such that '.A/ D B.

(I: There can be no more than one such axial affinity.) This is Theorem CAP.29.

(II: Notation.) We first adopt some notation which is specific to the following

construction. Let L D  !AB and let O be the point such that fOg D L \M.

For every X 2 P , define LX D par .X;L/ (in case X 2 L, let LX D L), and

define MX D par .X;M/ (in case X 2 M, let MX D M). Then for every

X 2 P , fXg D LX \MX .

Define the projection map � so that for each X 2 P , f�.X/g DMX \ L.

Then for any X0 2 MX , �.X0/ D �.MX/ D �.X/. That is, � has the same

value everywhere on each line parallel to M.

(III: The construction.) Let ı be the unique dilation on P with fixed point O,

such that ı.A/ D B. The existence and uniqueness of ı are guaranteed by

Theorem DLN.7. For every X 2 P , define '.X/ to be the point of intersection

of Mı.�.X// and LX; that is, f'.X/g D Mı.�.X// \ LX . Then in particular, if

X 2 M, f'.X/g D Mı.�.X// \ LX D M \ LX D fXg; and if X 2  !AB D L,

then f'.X/g D Mı.X/ \ L D fı.X/g, that is, '.X/ D ı.X/. In particular,

'.A/ D ı.A/ D B.
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(IV: '.MX/ DMı.�.X//.) From the construction, if X0 2MX , then �.X0/ D �.X/
and ı.�.X0// D ı.�.X//, so that Mı.�.X0// DMı.�.X// and '.X0/ 2Mı.�.X//.

Therefore '.MX/ �Mı.�.X//.

Now let Y be any point of Mı.�.X//. Then �.Y/ D ı.�.X// and

ı�1.�.Y// D ı�1.ı.�.X/// D �.X/.
Let fX0g DM�.X/ \ LY so that �.X0/ D �.X/. Then

f'.X0/g DMı.�.X// \ LY D fYg,
and Mı.�.X// � '.MX/.

Since we can choose X arbitrarily, this also shows that for every line N
which is parallel to M, '.N / is a line parallel to M. It also shows that ' is

onto P , since Y can be chosen arbitrarily.

(V: LX D '.LX/.) By the construction, both X and '.X/ are members of LX so

that '.LX/ � LX . The argument in part (IV) shows that if Y 2 P , there exists

a point X0 2 LY such that '.X0/ D Y . Therefore, LX � '.LX/ and hence

LX D '.LX/. Thus every line LX is a fixed line for '.

(VI: ' is one-to-one, hence a bijection.) If X and X0 are points of P , and '.X/ D
'.X0/, then both X 2 LX and X0 2 LX , since LX is a fixed line. Also, ı.�.X// D
ı.�.X0//, since '.X/ D '.X0/ belongs both to Mı�.X// and Mı�.X0//. Since ı

is one-to-one, �.X/ D �.X0/, and hence both X and X0 are in the intersection

MX \LX , which is a single point. Hence X D X0, and ' is shown to be one-to-

one.

(VII: ' is a collineation.) We already know that the lines MX map into other lines

parallel to themselves, and that the lines LX map into themselves.

Now let J be any line on P which is neither parallel to
 !
AB nor to M and

let Q and R be the points such that J \M D fQg and J \ !AB D fRg. Since

'.Q/ D Q, Q 2 '.J /. In this part we prove that '.J / �  ��!Q'.R/.

Let X be any member of J n fQ;Rg. In part (V) we showed LX is a fixed

line of ', so that '.X/ 2 LX . Let S be the point such that LX \M D fSg and

let Y be the point such that
 ��!
Q'.R/ \ LX D fYg.

(VII(a): '.X/ and Y are on the same side of M.) Since '.R/ D ı.R/, we may apply

Exercise DLN.5(II) as follows:

if R O '.R/, then �.X/ O ı.�.X//, hence X S '.X/

by Exercise PSH.56 and the fact that �.S/ D O. By similar reasoning,

if O R '.R/, then O �.X/ ı.�.X// hence S X '.X/; and

if R '.R/ O, then �.X/ ı.�.X// O hence X '.X/ S.
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Fig. 16.2 For the proof of
Theorem AX.1, part (VII(a))
Case 1, where R and '.R/ are
on opposite sides of M.

M

MX

O

X

S

LX

L = ←−
AB

−→

R

Q

J
ϕ(J )

ϕ(R) = δ(R)

Y

Using Definition IB.11 we see that if R and '.R/ are on opposite sides of

M, then X and '.X/ are on opposite sides of M. Using Definition IB.4 and

Theorem IB.14 we see that if R and '.R/ are on the same side of M, then X

and '.X/ are on the same side of M. Since O, Q, and S are distinct points on

M, by Property B.2 of Definition IB.1 there are three cases.

(Case 1: O Q S.) For a visualization of this case see Figure 16.2. By

Exercise PSH.56 R Q X and '.R/ Q Y . By Definition IB.11 R and X are on

opposite sides of M and '.R/ and Y are on opposite sides of M. Thus by

Theorem PSH.12 (plane separation), if R and '.R/ are on the same side of M,

then X and Y are on the same side of M, and from the argument above, X and

'.X/ are on the same side, so that Y and '.X/ are on the same side of M.

On the other hand, if R and '.R/ are on opposite sides of M, then X and

Y are on opposite sides of M; from the argument above, X and '.X/ are on

opposite sides of M, so that again '.X/ and Y are on the same side of M. By

Theorem PSH.38(A) '.X/ 2 qy!
SY .

(Case 2: O S Q.) By Exercise PSH.56 R X Q and '.R/ Y Q. By Defini-

tion IB.4 and Theorem IB.14 R and X are on the same side of M and Y and

'.R/ are on the same side of M. Using Theorem PSH.12 (plane separation),

we see that if R and '.R/ are on the same side of M, then X and Y are on the

same side of M, whereas if R and '.R/ are on opposite sides of M, then X and

Y are on opposite sides of M. Reasoning as in Case 2, either way Y and '.X/

are on the same side of M and by Theorem PSH.38(A) '.X/ 2 qy!
SY .
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(Case 3: S O Q.) By Exercise PSH.56 X R Q and Y '.R/ Q. By Defini-

tion IB.4 and Theorem IB.14 R and X are on the same side of M and '.R/ and

Y are on the same side of M. Using Theorem PSH.12 (plane separation) we

see that if R and '.R/ are on the same side of M, then X and Y are on the same

side of M, whereas if R and '.R/ are on opposite sides of M, then X and Y

are on opposite sides of M. Either way Y and '.X/ are on the same side of M
and by Theorem PSH.38(A) '.X/ 2 qy!

SY .

(VII(b): '.X/ D Y .) In all of Cases 1 through 3 in part (VII(a)) above, by

Theorem EUC.11 †QXS Š †QRO and †QYS Š †Q'.R/O. Since †RQO D
†XQS and †'.R/QO D †YQS, by Theorem SIM.6 4XQS � 4RQO and

4YQS � 4'.R/QO. By Theorem SIM.16

Œ
px qy

SX ��� Œ
px qy

OR � D Œpx qy

QS ��� Œ
px qy

QO � and Œ
px qy

SY ��� Œ
px qy

O'.R/ � D Œpx qy

QS ��� Œ
px qy

QO �.

We may restate these equalities as

Œ
px qy

SX �

Œ
px qy

OR �
D Œ

px qy

QS �

Œ
px qy

QO �
and Œ

px qy

SY �

Œ
px qy

O'.R/ �
D Œ

px qy

QS �

Œ
px qy

QO �
.

From these, by Exercise SIM.4 we have

Œ
px qy

QO �

Œ
px qy

QS �
D Œ

px qy

OR �

Œ
px qy

SX �
and Œ

px qy

QO �

Œ
px qy

QS �
D Œ

px qy

O'.R/ �

Œ
px qy

SY �
.

Therefore

Œ
px qy

OR �

Œ
px qy

SX �
D Œ

px qy

O'.R/ �

Œ
px qy

SY �
,

that is,

Œ
px qy

SY �

Œ
px qy

SX �
D Œ

px qy

O'.R/ �

Œ
px qy

OR �
.

Since '.R/ D ı.R/ and �.X/ is collinear with O and R, by Exercise SIM.7

Œ
px qy

Oı.�.X// �

Œ
px qy

O�.X/ �
D Œ

px qy

O'.R/ �

Œ
px qy

OR �
.

The quadrilaterals tuOSX�.X/ and tuOS'.X/ı.�.X// are parallelograms, so by

Theorem EUC.12(A)
px qy

O�.X/ Š px qy

SX and
px qy

Oı.�.X// Š px qy

S'.X/.
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Thus

Œ
px qy

S'.X/ �

Œ
px qy

SX �
D Œ

px qy

Oı.�.X// �

Œ
px qy

O�.X/ �
D Œ

px qy

O'.R/ �

Œ
px qy

OR �
D Œ

px qy

SY �

Œ
px qy

SX �

and multiplying both sides by Œ
px qy

SX � we have Œ
px qy

S'.X/ � D Œ
px qy

SY �, that is,
px qy

S'.X/ Š px qy

SY . In all three cases above, '.X/ 2 qy!
SY , so by Property R.4 of

Definition NEUT.2, '.X/ D Y .

This completes the proof that '.J / �  ��!Q'.R/.

(VII(c): '.J / D ��!Q'.R/.) Let Z be any member of
 ��!
Q'.R/ n fQ; '.R/g, and let W be

the point such that fWg D J \LZ . Since by part (VII) '.W/ 2  ��!Q'.R/ and also

'.W/ 2 LZ , by Exercise I.1 '.W/ D Z. Therefore
 ��!
Q'.R/ � '.J / and hence

'.J / D ��!Q'.R/.

Summarizing, parts (VII) through (VII(c)) show that ' is a collineation; by the

construction in part (III), all points of M are fixed points for ' and '.A/ D B; thus

' ¤ {, since A ¤ B. This proves that ' is an axial affinity, as defined in Definition

CAP.25.

It remains only to show that ' is a stretch. By part (V) all the lines LX , where

X 2 P are fixed lines for '. If X 62M then MX is not a fixed line, because ı has

only O as a fixed point. If J D !QR is any line not parallel to either L or M (here we

are using the notation of part (II) and the construction of part (VII)), '.J / contains

the point '.R/which is not in J , so J is not a fixed line. Hence the set of fixed lines

for ' is fLX jX 2 Pg [ fMg, as required by Definition AX.0, and ' is a stretch. ut
Theorem AX.2. Let P be a Euclidean plane, M be a line on P , and A and B be

distinct points such that
 !
AB k M. Then there exists a shear  of P with axis M

such that  .A/ D B, and the set of fixed lines for  is fLX jX 2 Pg [ fMg, where

LX is the line through X parallel to M.

Proof. For a visualization see Figure 16.3.

Fig. 16.3 For
Theorem AX.2: showing
action of a shear.

A

B M
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(I: Construction of  .) For every X belonging to M let  .X/ D X. Let C D
ftpr .A;M/. For every member X of P n .M [ !AC/, let T D ftpr .X;M/,

and define  .X/ as the point such that par .X;M/ \ par .T;
 !
BC/ D f .X/g. If

X 2  !ACnfCg, then let  .X/ be the point such that par .X;M/\ !BC D f .X/g.
(II: Lines parallel to M are fixed lines of  .) Let L be any line which is parallel to

M and let X be any member of L. By the construction,  .X/ 2 par .X;M/ D
L so  .L/ � L.

Let Y be any member of L, S be the point such that par .Y;
 !
BC/\M D fSg,

and let X be the point such that pr .S;M/ \ L D fXg. By the construction of

part (I)  .X/ D Y so that L �  .L/. Therefore  .L/ D L and L is a fixed

line of  .

(III:  is a bijection.) Since Y can be chosen arbitrarily, the second argument of

part (II) also shows that  is onto P .

Now suppose X and X0 are points of P n  !AC such that  .X/ D  .X0/; let

T D ftpr .X;M/ and T 0 D ftpr .X0;M/. Then par .X;M/ \ par .T;
 !
BC/ D

f .X/g D par .X0;M/ \ par .T 0; !BC/ so both par .T;
 !
BC/ and par .T 0; !BC/

contain the point  .X/ and by Axiom PS must be the same line. Hence T D T 0

and again by Axiom PS, X D X0. (If X 2  !AC modify the proof by substituting

C for T and
 !
BC for par .T;

 !
BC/ to show the same result.) Thus  is one-to-one,

and a bijection.

(IV:  is a collineation.) Let J be any line on P such that J and M are not

parallel, Q be the point such that M \ J D fQg, and R be any member of

J n fQg. Let U D ftpr .R;M/, so that S D  .R/ is the point of intersection of

par .R;M/ and par .U;
 !
BC/.

First we prove that  .J / �  !QS. Let X ¤ R be any member of J n fQ;Rg.
Let T D ftpr .X;M/, and let Y be the point such that

 !
QS \ par .T;

 !
BC/ D fYg.

(In case X 2  !AC so that T D C, let Y be the point such that
 !
QS \ !BC D fYg.)

By the construction we know that f .X/g D par .X;M/ \ par .T;
 !
BC/.

(Case 1: R and X are on the same side of M.) We will use the following

facts:

(i)
 !
TY k  !US since they are both parallel to

 !
BC.

(ii)
 !
RS k  ���!X .X/ since they are both parallel to M.

(iii) †URS, †TX .X/, †QUR, and †QTX are right angles, hence are congru-

ent by Theorem NEUT.69.
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By Theorem SIM.6, 4QSU � 4QYT , since †UQS is shared by both

triangles and by Theorem EUC.11 †QUS Š †QTY . By the same theorem,

4TQX � 4UQR, since †QUR Š †QTX and †UQR is shared by both

triangles. And finally, 4RSU � 4X .X/T since †URS Š †TX .X/ and

by Theorem EUC.11 †SUR Š † .X/TX.

Using Theorem SIM.16, we have from the first of these similarities that

Œ
px qy

TY �

Œ
px qy

SU �
D Œ

px qy

TQ �

Œ
px qy

UQ �
.

from the second similarity, we have

Œ
px qy

TQ �

Œ
px qy

UQ �
D Œ

px qy

XT �

Œ
px qy

RU �
and from the third,

Œ
px qy

XT �

Œ
px qy

RU �
D Œ

px qy

T .X/ �

Œ
px qy

SU �
.

Combining these three equalities we have

Œ
px qy

TY �

Œ
px qy

SU �
D Œ

px qy

T .X/ �

Œ
px qy

SU �

and multiplying both sides by Œ
px qy

SU � we have Œ
px qy

TY � D Œ
px qy

T .X/ �, that is
px qy

TY Š
px qy

T .X/.  .X/ and Y are on the same side of T , for by Exercise PSH.14, R and

S are on the same side of M, and X and  .X/ are on the same side of M. By

Theorem PSH.38(A), Y 2 qy !
T .X/ and by Property R.4 of Definition NEUT.2,

 .X/ D Y 2  !SQ.

(Case 2: R and X are on opposite sides of M.) Then (i), (ii), and (iii)

hold as in Case 1. By Theorem NEUT.42, †UQS Š †TQY and †UQR Š
†TQX, because they are vertical angles. Then the triangles listed in Case 1 are

congruent, and we conclude that Œ
px qy

TY � D Œpx qy

T .X/ �, just as before.

Now by assumption X Q R, so by Exercise PSH.56 T Q U and Y Q S; by

Exercise PSH.14, S and R are on the same side of M and X and  .X/ are on

the same side of M. Then S and R are on the opposite side from X and  .X/,

and on the opposite side from Y , so that  .X/ and Y are on the same side of M.

By Theorem PSH.38(A), Y 2 qy !
T .X/. By Property R.4 of Definition NEUT.2,

 .X/ D Y 2  !SQ. This completes the proof that  .J / �  !QS.

Now let Z be any member of
 !
QS n fQ; Sg, let K D par .Z;

 !
RS/, and let W

be the point such that K \ J D fWg. Since  .W/ 2  !QS, by Exercise I.1

 .W/ D Z. Therefore
 !
QS �  .J /, and  .J / D !QS.

(V:  is a shear of P .) By part (II) of this proof, Theorem CAP.27, and

Definition AX.0,  is a shear of P . ut
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Theorem AX.3. Let M be a line on a Euclidean plane P .

(A) Every axial affinity ' on P with axis M is either a stretch or a shear, but not

both.

(B) If A and B are any two points of P nM, there exists a unique axial affinity '

on P with axis M such that '.A/ D B.

Proof. (A) If an axial affinity has a fixed line L ¤ M that intersects M, by

Theorem CAP.27 all its fixed lines (other than M) are parallel to L, and all

intersect M. By the same theorem, if it has a fixed line parallel to M all its

fixed lines are parallel (or equal) to M, hence none except M can intersect M.

By Definition AX.0, in the first case ' is a stretch and not a shear; in the second

it is a shear and not a stretch. This proves part (A).

(B) Note first that if A 2 P nM, and ' is an axial affinity on P , B D '.A/ 62M,

since ' is a one-to-one mapping.

If
 !
AB is not parallel to M, by Theorem AX.1 there exists an axial affinity '

of P such that '.A/ D B and
 !
AB is a fixed line of ', so that ' is a stretch.

If
 !
AB is parallel to M, then by Theorem AX.2 there exists an axial affinity

' of P such that '.A/ D B,
 !
AB is a fixed line of ', which is a shear.

In either case, by Theorem CAP.29 there is only one axial affinity ' such

that '.A/ D B. ut
Theorem AX.4. Let ' be an axial affinity with axis M on a Euclidean plane P;

then for any A, B, and C in P , if A B C, then '.A/ '.B/ '.C/. Thus ' preserves

betweenness and is a belineation.

Proof. By Theorem AX.3, ' is either a stretch or a shear. By Theorem CAP.27, if it

is a stretch, there is a fixed line L that intersects M, and the fixed lines of ' (other

than M) are the lines parallel to L, all of which intersect M. If it is a shear, its fixed

lines (other than M) are the lines parallel to M. Now assume that A B C.

(A) If
 !
AC D M, the theorem is trivially true since all members of M are fixed

points.

(B) Suppose now that
 !
AC is not a fixed line for '.

(Case 1: ' is a stretch.) Then there exists a fixed line L which intersects

M, and all fixed lines other than M are parallel to L. Thus
 !
AC 6k L (else it

would be a fixed line) so intersects all fixed lines other than M, and possibly

M as well. By Axiom PS there are lines LA, LB, and LC containing A, B, and

C, respectively, which are parallel to L and therefore are fixed lines.
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(Case 2: ' is a shear.) Then
 !
AC is not parallel to M or to any fixed line,

and so intersects all of them. By Axiom PS there are lines LA, LB, and LC

containing A, B, and C, respectively, which are parallel to M and therefore are

fixed lines.

In either case '.A/ 2 LA, '.B/ 2 LB, and '.C/ 2 LC, and since ' is a

collineation, all these points belong to the line '.
 !
AC/which by Theorem CAP.1

is
 �����!
'.A/'.C/. If one of the points A, B, or C is a member of M, it is the common

point of
 !
AC and

 �����!
'.A/'.C/, so by Exercise PSH.56, '.A/ '.B/ '.C/; if none

of A, B, or C is a member of M, the same result follows from Exercise PSH.57.

(C) Suppose
 !
AC is a fixed line for ' but

 !
AC ¤M. Define L D !AC. Then L ¤M,

and all the points A, B, C, '.A/, '.B/, and '.C/ are members of L. Let A0

be a point off of L and define NA D  !AA0; by Axiom PS let NB and NC be

lines parallel to NA containing B and C, respectively. Let O be a point of L
such that O A B C and O 62M, and let K D  !OA0. Since K intersects NA, by

Exercise IP.4 it must intersect NB at a point B0 and NC at a point C0, so that

NB D !BB0 and NC D !CC0. By Exercise PSH.57 A0 B0 C0.
Since K intersects L, K is not parallel to L, nor to any fixed line parallel

to L, and K ¤ M because K contains the point O which is not in M. Thus

K D �!A0C0 is not a fixed line; moreover, not all of A0, B0, and C0 are in M, for if

they were, K would be equal to M. Thus we may apply part (B) to the points

A0, B0, and C0 giving us '.A0/ '.B0/ '.C0/.
Since

 !
AA0 k  !BB0 k  !CC0 it follows from Theorem CAP.1(A) and The-

orem CAP.3 that
 �����!
'.A/'.A0/ k  �����!'.B/'.B0/ k  ������!'.C/'.C0/ so that by Exer-

cise PSH.57, '.A/ '.B/ '.C/. ut
Remark AX.5. In a Euclidean/LUB plane, Theorem AA.8 in Chapter 20 is a

converse for Theorem AX.4. This is stated formally as Theorem AA.11.

16.2 Exercises for axial affinities

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise AX.1�. Let M be a line on a Euclidean plane P; let A and B be distinct

points such that
 !
AB k M. By Theorem AX.2 there exists a shear  with axis M

such  .A/ D B. Let L be a line parallel to M; either L D  !AB or L k  !AB. Let

www.springer.com
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C D ftpr.A;M/, let D be the point of intersection of
 !
AC and L, and let E be

the point of intersection of
 !
BC and L. Then by Theorem AX.2  .D/ D E. Using

Theorem ISM.5 let � be the translation of P such that �.D/ D E. Show that for

every X 2 L,  .X/ D �.X/. This shows that the action of a shear on a line parallel

to its axis is the same as that of a translation.

Exercise AX.2�. Let P be a Euclidean plane, and let ' be an axial affinity with

axis M on P , and let L be a line distinct from M. Then L is a fixed line for ' iff

for some Q 62M, L D ��!Q'.Q/.



Chapter 17
Rational Points on a Line (QX)

Acronym: QX

Dependencies: all prior Chapters 1 through 16

New Axioms: none

New Terms Defined: dilation ın, rational point, polygonal domain

Abstract: This chapter is concerned with an arbitrary line in a Euclidean plane,

where this line has been built into an ordered field. It defines the meaning of a

rational multiple of a point on this line, develops the arithmetical properties of such

multiples, and uses these to show the existence of an order-preserving isomorphism

between the set of all rational numbers and a subset of the line.

At this point we begin in earnest the process of identifying a line in a Euclidean

plane with a number system. In Chapter 18, we will complete this process by

defining real multiples of points on a line, and establishing an order-preserving iso-

morphism between the set of real numbers and any line in the plane. (Isomorphism

is defined in Chapter 1, Section 1.5.)

In Chapter 14 we proved that a line in a Euclidean plane could be built into an

ordered field, but this did not provide a way to relate points on the line to integers

or to rational numbers. Thus, at that stage of the development, we could not create

a correspondence between the set of rational numbers and some subset of the line.

To construct such a correspondence, we define integral multiples, then rational

multiples of an arbitrary point A ¤ O of the ordered field. The greater part of the

chapter is given to showing that the algebraic properties of the rational multiples

© Springer International Publishing Switzerland 2015
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
DOI 10.1007/978-3-319-23775-6_17
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of A mimic those of rational numbers. Then, in Theorem QX.16, we show that the

natural correspondence between a rational number r and rU is an order preserving

isomorphism of the rational numbers and the set of all rational multiples of U.

17.1 Integral multiples of a point

In this entire chapter, P will be a Euclidean plane, and L will be a line in P
which has been made into an ordered field as described in Definition OF.1 and

Theorem OF.2, with origin O and unit U.

Definition QX.1. Let P be a Euclidean plane, L a line in P which has been

developed as an ordered field according to Chapter 14, with origin O and unit U,

and let A 2 L. Define multiples of A as follows:

(A) 0A D O.

(B) For every rational number r, rO D O.

(C) Let n be a natural number and let A 2 L n fOg. Define 1A D A. Assuming nA

has been defined, define .nC 1/A D nA˚ A.

(D) Let n be a negative integer (n < 0) so that �n is a natural number, and let

A 2 L n fOg. Define nA D �..�n/A/.

Definition QX.1(C) inductively defines the product of a natural number n and a

member A, and part (D) extends that definition to any integer n.

Theorem QX.2. Let A and B be distinct points of L n fOg.
(A) If n is a natural number, and ı is the unique dilation with fixed point O such

that ı.A/ D nA; then for any other B 2 L n fOg, ı.B/ D nB.

(B) If n is a nonzero integer, and ı is the unique dilation with fixed point O such

that ı.A/ D nA, then for any other B 2 L n fOg, ı.B/ D nB.

Proof. (A) Note first that the existence of the dilation ı is guaranteed by Theo-

rem DLN.7. By Theorem CAP.24 ı is unique. For each natural number n, define

An D nA and Bn D nB; then A1 D A and B1 D B. By Definition QX.1(C),

for every natural number n, An D An�1 ˚ A1, and Bn D Bn�1 ˚ B1. By Theo-

rem OF.17(A), for every natural number n,
px qy

OA1 Š
px qy

An�1.An�1 ˚ A1/ D px qy

An�1An

and
px qy

OB1 Š
px qy

Bn�1.Bn�1 ˚ B1/ D px qy

Bn�1Bn. If A1 > 0, by Theorem OF.11(B)

An > An�1 > 0; if A1 < 0, An < An�1 < 0 (and likewise for B1 and Bn). Thus

by Theorem ORD.6, O An�1 An and O Bn�1 Bn.
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Let ˛ be the dilation with fixed point O such that ˛.A1/ D B1. By

Theorem DLN.8 every dilation is a belineation, and by Theorem COBE.5(5)

and Theorem DLN.19,
px qy

OB1 D
px qy

O˛.A1/ D ˛.px qy

OA1/ Š ˛.px qy

An�1An/ D
px qy

˛.An�1/˛.An/. (*)

By Exercise DLN.3 ı ı ˛ D ˛ ı ı, so that ˛.An/ D ˛.nA1/ D ˛.ı.A1// D
ı.˛.A1// D ı.B1/. Therefore by (*),

px qy

OB1 Š
px qy

˛.An�1/ı.B1/.
By definition, ˛.A1/ D B1; assume that we have proved that ˛.An�1/ D

Bn�1; then the above becomes
px qy

OB1 Š
px qy

Bn�1ı.B1/. We have already seen, by

construction, that
px qy

OB1 Š px qy

Bn�1Bn, so that
px qy

Bn�1ı.B1/ Š px qy

Bn�1Bn.

We know that O An�1 An. By Theorem DLN.19, O ˛.An�1/ ˛.An/. Since

˛.An�1/ D Bn�1 and An D ı.A1/, this is O Bn�1 ˛.ı.A1//. By Exer-

cise DLN.3, O Bn�1 ı.˛.A1// that is, O Bn�1 ı.B1/.
Since O Bn�1 Bn, Bn D nB1 and ı.B1/ are on the same side of Bn�1.

Thus ı.B1/ 2 qy !
Bn�1Bn, and because

px qy

Bn�1ı.B1/ Š px qy

Bn�1Bn, by Property R.4

of Definition R.2 (linear scaling), ı.B1/ D nB1 as required.

(B) If n > 0, this is Part (A). If n < 0, let ı be the dilation such that ı.A/ D nA

which is equal to �..�n/A/ by Definition QX.1(D). Let ı0 be the dilation such

that ı0.A/ D .�n/A. Then ı.A/ D �.ı0.A// D RO ı ı0.A/, where RO is the

point reflection about O, and by Theorem ISM.3, RO is a dilation, so that by

Theorem CAP.21 RO ı ı is a dilation, and by uniqueness (Theorem CAP.24)

ı.X/ D �.ı0.X// for every X 2 L n fOg. By part (A) above, ı0.B/ D .�n/B,

and ı.B/ D �ı0.B/ D �..�n/B/ D nB, by Definition QX.1(D). ut
Definition QX.3. For any integer n ¤ 0, ın is the dilation with fixed point O such

that ın.U/ D nU (and hence, for every A ¤ O, ın.A/ D nA).

Theorem QX.4. Let n ¤ 0 and m ¤ 0 be integers, and let A and B be points of

L n fOg.
(A) n.Aˇ B/ D nAˇ B D Aˇ nB.

(B) nA D U ˇ nA D Aˇ nU D nU ˇ A.

(C) If n is any integer, then .�n/A D �.nA/.

(D) .�1/A D �A.

Proof. (A) By Theorem QX.2(B), Definition QX.3, the commutativity of dilations

(Exercise DLN.3), and Definition OF.1(D),
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n.Aˇ B/ D ın.Aˇ B/ D ın.ıA.B// D ıA.ın.B// D Aˇ nB.

By this result, and the commutativity ofˇ on L (Theorem OF.2(B)),

n.Aˇ B/ D n.Bˇ A/ D Bˇ nA D nAˇ B.

(B) The first and last equalities of (B) follow immediately from Theorem OF.3. For

the second equality, let B D U in part (A).

(C) If n > 0, by Definition QX.1(D), .�n/A D �..�.�n//A/ D �.nA/. If n < 0,

by the same definition, nA D �..�n/A/; taking the negative of both sides,

we have �.nA/ D �.�..�n/A//; by Theorem OF.10(A), this is the same as

.�n/A.

(D) In part (C) let n D 1. ut
Theorem QX.5 (Associativity for integer multiplication). Let n ¤ 0 and m ¤ 0
be integers, and let A 2 L n fOg.
(A) .nm/A D .mn/A D n.mA/ D m.nA/.

(B) ımn D ım ı ın.

Proof. (A) (Case 1: m > 0 and n > 0.) By Definition QX.1(C),

.mn/A D A˚ A˚ : : :˚ A

where there are mn D nm terms. The corresponding sum for nA has n terms,

and for m.nA/ the sum has mn D m.n/ terms, so that .mn/A D m.nA/.

Reversing m and n yields .nm/A D n.mA/.

(Case 2: m < 0 and n > 0.) Since mn < 0,

.mn/A D �.�.mn/A/ by Definition QX.1(D)

D �...�m/n/A/ by arithmetic

D �..�m/.nA// by Case 1, since both �m > 0 and n > 0

D m.nA/ by Definition QX.1(D) applied to m and nA.

On the other hand,

.nm/A D �.�.nm/A/ by Definition QX.1(D)

D �..n.�m//A/ by arithmetic

D �.n..�m/A// by Case 1, since both �m > 0 and n > 0

D .�n/..�m/A/ by Theorem QX.4(C) applied to n and .�m/A

D n.�1/..�m/A/ by arithmetic

D n.�..�m/A/ by Theorem QX.4(D)

D n.mA/ by Definition QX.1(D) applied to m and A.

(Case 3: m > 0 and n < 0.) This is just Case 2 with m and n reversed.
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(Case 4: m < 0 and n < 0.)

.mn/A D ..�m/.�n//A/ by arithmetic

D .�m/..�n/A/ by Case 1

D .m/.�1/..�n/A/ by arithmetic

D m.�..�n/A// by Theorem QX.4(D)

D m.nA/ by Definition QX.1(D).

Likewise, .mn/A D .nm/A D n.mA/.

(B) By part (A) and Definition QX.3, ımn.A/ D .mn/A D m.nA/ D m.ın.A// D
ım.ın.A//; hence ımn D ım ı ın, by Theorem DLN.7(C). ut

Theorem QX.6 (Distributive property for integer multiplication). Let n ¤ 0

and m ¤ 0 be integers, and let A be a point of L n fOg. Then .nCm/A D nA˚mA.

Proof. (Case 1: m > 0 and n > 0.) By Definition QX.1(C),

mA D A˚ A˚ : : :˚ A

where there are m terms. The corresponding sum for nA has n terms and for .mCn/A

has mC n terms, so that .mC n/A D mA˚ nA.

(Case 2: m < 0 and n > 0, where nC m > 0.) Since �m > 0, by Case 1,

.mC n/A˚ .�m/A D .mC nC .�m//A D nA, so that

.mC n/A D �..�m/A/ ˚ nA D mA ˚ nA. This uses Definition QX.1(D)

applied to m and A.

(Case 3: m < 0 and n > 0, where n C m < 0.) First, note that �.n C m/ D
�n � m > 0, and �n < 0 and �m > 0. We then have by Case 2

.�n � m/A D .�n/A˚ .�m/A, so that

�U ˇ .�n � m/A D .�U ˇ .�n/A/˚ .�U ˇ .�m/A/

by Theorem OF.10(D) and distributivity for L (Theorem OF.6). Applying Theo-

rem QX.4(C) three times we have

�U ˇ .�.nC m/A/ D .�U ˇ .�nA//˚ .�U ˇ .�mA//

which, by Theorem OF.10(D), yields

�.�.nC m/A/ D �.�nA/˚ �.�mA/.

By Theorem OF.10(A) .nC m/A D nA˚ mA.

(Case 4: m < 0 and n < 0.) By Case 1, .�m � n/A D .�m/A˚ .�n/A. Then

�U ˇ .�m � n/A D .�U ˇ .�m/A/˚ .�U ˇ .�n/A/
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by Theorem OF.10(D) and distributivity for L (Theorem OF.6). Applying Theo-

rem QX.4(C) three times we have

�U ˇ .�.mC n/A/ D .�U ˇ .�mA//˚ .�U ˇ .�nA//

which, by Theorem OF.10(D), yields

�.�.mC n/A/ D .�.�mA//˚ .�.�nA//.

By Theorem OF.10(A) .mC n/A D mA˚ nA. ut

17.2 Rational multiples of a point

Recall from Definition QX.1(B) that for every rational number r 2 Q, r ¤ 0,

rO D O.

Definition QX.7. Let n be a natural number, m ¤ 0 an integer, and A 2 L n
fOg. In this definition we shall refer to the dilation ın, the dilation defined by

Definition QX.3 such that for every A 2 P n fOg, ın.A/ D nA. The existence of

ın is guaranteed by Theorem QX.2 and its uniqueness by Theorem CAP.24.

(A) Define ı 1
n
D ı�1n ; this mapping exists and is a dilation by Theorem CAP.21.

(B) Define 1
n A D ı 1

n
.A/.

(C) Define ı m
n
D ım ı ı 1

n
D ı 1

n
ı ım. This is a dilation by Theorem CAP.21.

(D) Define m
n A D ı m

n
.A/.

Theorem QX.8. Let n be a natural number, m ¤ 0 an integer, and A 2 L n fOg.
(A) n. 1n A/ D A D 1

n .nA/.

(B) m. 1n A/ D m
n A D 1

n .mA/.

Proof. (A) n. 1n A/ D ın.ı 1
n
.A// D ın.ı

�1
n .A// D A and 1

n .nA/ D ı 1
n
.ın.A// D

ı�1n .ın.A// D A.

(B) By Exercise DLN.3,

m. 1n A/ D ım.ı 1
n
.A// D ı m

n
.A// D ı 1

n
.ım.A// D 1

n .mA/. ut
Theorem QX.9. Let n be a natural number, m ¤ 0 be an integer and let A and B

be members of L n fOg.
(A) 1

n .Aˇ B/ D . 1n A/ˇ B D Aˇ . 1n B/.

(B) 1
n A D U ˇ . 1n A/ D . 1n U/ˇ A.
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(C) m
n A D U ˇ .m

n A/ D .m
n U/ˇ A.

(D) If n and q are any natural numbers, ı 1
nq
D ı 1

n
ı ı 1

q
.

Proof. (A) By Theorem QX.4(A) and Theorem QX.8(A), n.. 1n A/ ˇ B/ D
.n. 1n A// ˇ B D A ˇ B. Multiplying both sides by 1

n , then 1
n .n..

1
n A/ ˇ B// D

. 1n A/ˇ B D 1
n .Aˇ B/. By this result and commutativity of ˇ,

1
n .Aˇ B/ D 1

n .Bˇ A/ D . 1n B/ˇ A D Aˇ . 1n B/.

(B) The first equality is immediate from Theorem OF.3 and the second from part

(A) and commutativity by setting B D U.

(C) The first equality follows immediately from Theorem OF.3. By Defini-

tion QX.7(D), Theorem QX.4(B), and part (A) of this theorem,

m
n A D 1

n .mA/ D 1
n ..mU/ˇ A/ D . 1n .mU//ˇ A D .m

n U/ˇ A,

which proves the second equality.

(D) For every A ¤ O,

nq.ı 1
n
.ı 1

q
.A/// D nq.ı 1

q
.ı 1

n
.A/// by Exercise DLN.3

D ınq.ı 1
q
.ı 1

n
.A/// by Definition QX.3

D ın.ıq.ı 1
q
.ı 1

n
.A//// by Theorem QX.5(B)

D ın..ıq ı ı 1
q
/.ı 1

n
.A/// by associativity of functions

D ın.ı 1
n
.A// D A by inverses.

Multiplying both sides by 1
nq , ı 1

q
.ı 1

n
.A// D 1

nq .A/ D ı 1
nq
.A/, and ı 1

q
ıı 1

n
D ı 1

nq
,

by Definition QX.7(A). ut
Theorem QX.10 (Associative properties for rational multiples). Let r D m

n and

s D p
q be nonzero rational numbers, where n and q are natural numbers, m and p

are integers. Let A and B be members of L n fOg.
(A) r.Aˇ B/ D .rA/ˇ B D Aˇ .rB/.

(B) .rs/A D r.sA/.1

(C) rAˇ sB D .rs/.Aˇ B/.2

1This may appear to be obvious, but there is no a priori assurance that multiplication of a point
on the plane by two rational numbers successively is the same as a single multiplication by their
product. The proof will use the fact that successive multiplication of a point by two natural numbers
is the same as multiplication by their product.
2Strictly speaking, this is not an associative property, but it seems to fit here.



354 17 Rational Points on a Line (QX)

Proof. (A) By Theorem QX.9(C) and the associative property for points of L (see

Theorem OF.2), r.A ˇ B/ D .rU/ ˇ .A ˇ B/ D .rU ˇ A/ ˇ B D .rA/ ˇ B.

Using this result and commutativity, r.Aˇ B/ D .rB/ˇ A D Aˇ .rB/.

(B) .rs/A D .m
n

p
q /A D mp

nq A by arithmetic

D 1
nq .mpA/ by Theorem QX.8(B)

D 1
n .
1
q .m.pA/// by arithmetic and Theorem QX.5(A)

D ı 1
n
.ı 1

q
.ım.ıp.A//// by Theorem QX.5(B) and part (A)

D ı 1
n
..ı 1

q
ı ım/ıp.A// by associativity of mappings

D ı 1
n
..ım ı ı 1

q
/ıp.A// by Exercise DLN.3

D ı 1
n
.ım.ı 1

q
.ıp.A//// by associativity of mappings

D .ı 1
n
.ım.ı p

q
.A// by Theorem QX.8(B)

D ı m
n
.ı p

q
.A// by Theorem QX.8(B)

D m
n .

p
q .A// D r.sA/ renaming numbers.

(C) By two applications of part (A), one application of part (B), and commutativity

ofˇ in L (Theorem OF.2(B)), we have

rAˇ sB D r.Aˇ sB/ D r.sBˇ A/ D r.s.Bˇ A// D
.rs/.Bˇ A/ D .rs/.Aˇ B/. ut

Theorem QX.11 (Distributive properties for rational multiples). Let r D m
n and

s D p
q be nonzero rational numbers, where n and q are natural numbers, m and p

are integers. Let A and B be members of L n fOg.
(A) .rC s/A D rA˚ sA.

(B) r.A˚ B/ D rA˚ rB.

Proof. (A) nq.m
n A˚ p

q A/ D nq.m
n A/˚ nq. p

q A/ by Theorem QX.6

D .nq m
n /A˚ .nq p

q /A by Theorem QX.10

D .qm/A˚ .np/A by arithmetic

D .qmC np/A by Theorem QX.6.

Then by Theorem QX.8(A), Theorem QX.10 and arithmetic,

.m
n A˚ p

q A/ D 1
nq ..qmC np/A/ D . 1nq .qmC np//A

D . qmCnp
nq /A D .m

n C p
q /A

so .rC s/A D rA˚ sA.

(B) r.A˚ B/ D rU ˇ .A˚ B/ by Theorem QX.9(C)

D .rU ˇ A/˚ .rU ˇ B/ by Theorem OF.6

D rA˚ rB by Theorem QX.9(C). ut
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Corollary QX.12. For every A and B belonging to L n fOg and every rational

number r,

(A) .�1/A D �A.

(B) .�r/A D �.rA/.

(C) .�r/.�A/ D rA.

(D) rA D �.r.�A//, that is, �.rA/ D r.�A/.

(E) r.A	 B/ D rA	 rB.

Proof. (A) O D .1 � 1/A D A˚ .�1/A, hence �A D .�1/A.

(B) By Theorem QX.10(B) and part (A),

.�r/A D ..�1/r/A D .�1/.rA/ D �.rA/.

(C) By part (A), Theorem QX.10(B), and Theorem OF.10(A),

.�r/.�A/ D ..r/.�1//.�A/ D .r/..�1/.�A// D r.�.�A// D rA.

(D) By part (A), part (C) and Theorem QX.10(B),

rA D .�r/.�A/ D ..�1/r/.�A/ D .�1/.r.�A// D �.r.�A//.

(E) Using, in succession, Definition OF.8(A), Theorem OF.6, part (D) above, and

again, Definition OF.8(A), we have r.B	 A/ D r.B˚ �A/ D rB˚ r.�A/ D
rB˚ �rA. ut

Theorem QX.13. Let r D m
n be a nonzero rational number, where m is an integer

and n is a natural number. Let A 2 L n fOg.
(A) If r is positive and A is positive, then rA is positive.

(B) If r is negative and A is positive, then rA is negative.

(C) If r is positive and A is negative, then rA is negative.

(D) If r is negative and A is negative, then rA is positive.

Proof. Since n is a natural number, by Definition QX.1(C)

n. 1n A/ D 1
n A˚ 1

n A˚ : : :˚ 1
n A D A

(where there are n terms in the sum). By Theorem OF.10(C) if 1
n A > O then A > O,

and if 1
n A < O, by Theorem OF.10(I) A < O. Hence 1

n A > O (< O) iff A > O

(< O).

By a similar argument, if r D m
n > 0, since n > 0, m > 0 (a natural number),

and mU > O because U > O. If r D m
n < 0, m < 0, �m > 0, .�m/U > O, so that

by Definition QX.1(D), mU D �.�m/U which is < O by Theorem OF.10(B).
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By Theorem QX.8(B) and Theorem QX.4(B)

rA D m
n A D m. 1n A/ D mU ˇ . 1n A/.

If r > 0 and A > O, mU > O, by Theorem OF.10(C) rA D mU ˇ . 1n A/ > O.

If r < 0 and A < O, mU < O, by Theorem OF.10(I), rA D mU ˇ . 1n A/ > O.

If r > 0 and A < O, then mU > O; if r < 0 and A > O, then mU < O; in either

case, by Theorem OF.10(E), rA D mU ˇ . 1n A/ < O. ut
Corollary QX.14. Let r be a nonzero rational number and A < B be points other

than O on L. Then r > 0 iff rA < rB, and r < 0 iff rA > rB.

Proof. By Theorem OF.11(A) since A < B, B	 A > O. By Theorem QX.13, r > 0

iff O < r.B	 A/ D rB	 rA, which is true iff rB > rA. Again by Theorem QX.13,

r < 0 iff r.B	 A/ D rB	 rA < O which is true iff rB < rA. ut
Definition QX.15. Let U be the unit in the line L. Define the set LQ D frU j r 2 Q}

be the set of rational points of L.

Theorem QX.16. (A) LQ is an ordered field under the operations ˚ and ˇ and

the order relation <, and is a subfield of L.

(B) There exists an order-preserving field isomorphism � mapping Q, the field of

rational numbers, onto LQ.

Proof. (A) Let r and s be rational numbers. By Theorem QX.11, rU˚sU D .rCs/U

and by Theorem QX.10(C), .rU/ˇ .sU/ D rs.UˇU/ D rsU. This shows that

LQ is closed under both˚ andˇ.

.�r/U is the additive inverse of rU, since .�r/U ˚ rU D .�r C r/U D
0U D O (cf Definition QX.1(A)). If r ¤ 0, then by Theorem QX.9(A), the

commutativity ofˇ, and Theorem QX.10(B) we have

. 1r U/ˇ .rU/ D 1
r .U ˇ rU/ D 1

r .rU ˇ U/ D 1
r r.U ˇ U/ D 1 � U D U,

so that 1r U is the multiplicative inverse of rU.

Both˚ andˇ are commutative and associative in L and therefore have these

same properties in LQ. The distributive property holds in LQ since it holds in

L; thus, if r, s,and t are rational numbers,

rU ˇ .sU ˚ tU/ D .rU ˇ sU/˚ .rU ˇ tU/ D rsU ˚ rtU D .rsC rt/U.

Therefore LQ is a group under˚ and LQ nfOg is a group underˇ; since the

distributive law holds, LQ is a field, a subfield of L. Since L is ordered by the

ordering “<", so is its subset LQ.
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(B) Define the mapping � as follows: for each rational number r, let �.r/ D rU.

It is obvious that � maps onto LQ.

Let r be a rational number. Then by Definition QX.1, if r D 0 then rU D O.

If r ¤ 0 then either r > 0 or r < 0 so by Theorem QX.13(A) or (B), rU > O or

rU < O, and rU ¤ O. By the contrapositive, if rU D O, then r D 0; therefore

rU D O iff r D 0. It follows that if rU D sU,

.r � s/U D .rC .�s//U D rU ˚ .�s/U

D rU ˚ �.sU/ D rU ˚ �.rU/ D O

so that r � s D 0 and r D s. Hence � is one-to-one, and is a bijection.

By Theorem QX.11(A), �.rC s/ D .rC s/U D rU C sU D �.r/˚ �.s/.
If r and s are both nonzero, �.rs/ D .rs/U D rU ˇ sU D �.r/ ˇ �.s/ by

Theorem QX.10(C). Furthermore �.0/ D 0U D O and �.1/ D 1U D U.

Thus � fulfills all the requirements to be an isomorphism of Q onto LQ.

Finally, by Exercise QX.2, r < s iff rU < sU, so � is order-preserving. ut
Corollary QX.16.1. Let H be any member of L such that H > O, and let LH D
frH j r 2 Qg. Then

(A) LH is an ordered field under the operations˚ andˇ and the order relation <,

and is a subfield of L.

(B) There exists an order-preserving field isomorphism � mapping Q, the field of

rational numbers, onto LH.

Proof. The proof is exactly the proof of Theorem QX.16, where H has been

substituted for U. That is, the unit U can be chosen arbitrarily to be any point greater

than O. ut
Remark QX.17. The existence of an isomorphism between Q and LQ means that

these cannot be distinguished as algebraic objects.

17.3 Applications of rational multiples

Theorem QX.18 (Midpoint of a segment). Let A and B be distinct members of

the ordered field L, then 1
2
.A˚ B/ D A˚B

2
is the midpoint of

px qy

AB.

Proof. Choose the notation so that A < B; by Corollary QX.14 A
2
< B

2
. Using

Theorem OF.11(B) and Theorem QX.11(B),

A D A
2
˚ A

2
< A

2
˚ B

2
D A˚B

2
< B

2
˚ B

2
D B
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so that by Theorem ORD.6, A˚B
2

is between A and B. Since A˚B
2
> A and B > A˚B

2
,

jA˚B
2
	 Aj D B�A

2
D 1

2
.B	 A/ D B�A

2

and
jB	 A˚B

2
j D 1

2
.B	 A/ D B�A

2
.

Therefore by Theorem OF.15(B)
px qy

A A˚B
2
Š

px qy

B A˚B
2

. Since A˚B
2
2 qy px

AB, by Defini-

tion NEUT.3(C) A˚B
2

is the midpoint of
px qy

AB. ut
Remark QX.19 (On free segments). In Chapter 15 (Definition SIM.7) we gave

meaning to the product of two free segments A D Œ
px qy

OA � and B D Œ
px qy

OB � by defining

A ˇ B D Œ
px qy

O.Aˇ B/ �. We can also define a (positive) rational multiple of a free

segment, as follows.

Definition QX.20 (Rational multiple of a free segment). If A D Œpx qy

OA � is any free

segment and r > 0 is any rational number, define rA D Œpx qy

O.rA/ �.

Remark QX.21 (On the product of altitude and base of a triangle). Recall

from Definition NEUT.99(C) the definitions of altitude and base of a triangle.

Theorem SIM.24 shows that if
px qy

AD and
px qy

BE are two altitudes and
px qy

BC and
px qy

AC are

the respective bases for those altitudes, Œ
px qy

AD �ˇ Œpx qy

BC � D Œpx qy

BE �ˇ Œpx qy

AC �.

Let X, X0, Y , and Y 0 be points of
qy!
OU such that Œ

px qy

AD � D Œ
px qy

OX �, Œ
px qy

BC � D Œ
px qy

OY �,

Œ
px qy

BE � D Œ
px qy

OX0 �, and Œ
px qy

AC � D Œ
px qy

OY 0 �. By Theorem OF.15 and Definition OF.16, the

lengths of these free segments are, respectively, X, Y , X0, and Y 0.
We can re-state the result of Theorem SIM.24 as: If X is the length of an altitude

of a triangle, and Y is the length of its base, and X0 is the length of another altitude

of the same triangle, and Y 0 is the length of its base, then Œ
px qy

OX �ˇ Œpx qy

OY � D Œpx qy

OX0 �ˇ
Œ
px qy

OY 0 �. By Definition SIM.7 this is Œ
px qy

O.X ˇ Y/ � D Œ
px qy

O.X0 ˇ Y 0/ �, or
px qy

O.X ˇ Y/ Š
px qy

O.X0 ˇ Y 0/, which by Property R.4 of Definition NEUT.2 is X ˇ Y D X0 ˇ Y 0.
Thus for any triangle, the product of the lengths of an altitude and its base is

independent of the choice of altitude, so that the following definition is a “good”

one.

Definition QX.22. The area of a triangle is half the product of the length of an

altitude and its base. More formally, if
px qy

AD is an altitude of a triangle, and if
px qy

BC is

the base of that altitude, and if Œ
px qy

AD � D Œpx qy

OX � and Œ
px qy

BC � D Œpx qy

OY �, then the area of the

triangle is 1
2
.X ˇ Y/. For a visualization see Figure 17.1.
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Fig. 17.1 For
Definition QX.22.

B C D

A

Remark QX.23 (Area of a polygonal domain). In Definition QX.20 we defined

the area of a triangle. This provides a basis for defining the area of a polygonal

domain, a union
S
H2T

encH, where T is a finite set of triangles on the Euclidean

plane, and the intersection of any two sets encS and enc T is empty, or is a common

corner or common edge of S and T .

Chapter 10 of Geometry, A Metric Approach with Models (R. S. Millman and

G. D. Parker, Springer-Verlag, 1981 [15]) develops this approach, using the positive

real numbers; thus Axiom LUB is required. However, their development carries over

verbatim to our situation if free segments and their lengths (defined in Chapter 14,

Definition OF.16) are used in lieu of the positive real numbers. Thus the concept of

area for polygonal domains does not depend on Axiom LUB.

17.4 Exercises for rational points on a line

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise QX.1�. Let r be a nonzero rational number, and let A 2 L n fOg.
(A) If A is positive, then rA is positive iff r is positive.

(B) If A is negative, then rA is negative iff r is positive.

Exercise QX.2�. Let A be a positive member of L and r and s be rational numbers.

Then rA < sA iff r < s.

Exercise QX.3�. Let A be a negative member of L and r and s be rational numbers.

Then rA > sA iff r < s.

Exercise QX.4�. Let P be a Euclidean plane, L be an ordered field on P , T be a

member of L and r be a rational number. Then .�r/T D �.rT/.

Exercise QX.5�. Let L be an ordered field with origin O on a Euclidean plane P ,

and let X and Y be positive members of L. Then there exist noncollinear points A,

B, and C on P such that 1
2
X ˇ Y is the area of4ABC.

www.springer.com
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Acronyms: REAL, RR

Dependencies: all prior Chapters 1 through 17

New Axioms: Axiom LUB

New Terms Defined: least upper bound (lub), greatest lower bound (glb), com-

plete (ordered field); rational, irrational members of a complete ordered field;

Archimedean property; sequence, limit; sum of two subsets of an ordered field;

addition of points on a plane; scalar multiple of a point on a plane; coordinatization,

coordinatization map, axes, origin, first and second coordinates on a plane, right-

handed system

Abstract: This chapter derives basic properties of least upper bounds and explores

their relationship with the Archimedean property. On an arbitrary line in a

Euclidean/LUB plane (which has been built into an ordered field) real multiples

of points are defined and their algebraic properties derived. These properties are

used to show the existence of an order-preserving isomorphism between the set of

all real numbers and the whole line. The chapter ends with coordinatization of a

Euclidean/LUB plane.

We continue the project of embedding number systems in lines on a plane. In

order to carry this out, it is necessary for the plane to have the LUB property, a

property of the set of real numbers. We show that every line L in such a plane

is order-isomorphic to the set R of real numbers, and finally, in a process called

coordinatization, that the plane itself is a copy of the coordinate plane R
2.
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Lines are built into ordered fields in Chapter 14, ordering is defined in Chapter 6,

and in Definition ORD.8 of that chapter, upper and lower bounds are defined.

Isomorphism is defined in Chapter 1 Section 1.5.

18.1 The basics of least upper bounds

Definition REAL.1. Let L be a line in a Euclidean plane P . Suppose that L has

been built into an ordered field, and that E is a nonempty subset of L.

(A) If E is bounded above, and if the set of all upper bounds of E has a minimum,

then this minimum is called the least upper bound of E , and is denoted lub E .

(B) If E is bounded below, and if the set of all lower bounds of E has a maximum,

then this maximum is called the greatest lower bound of E , and is denoted

glb E .

Axiom LUB. Let L be a line which is equipped with an order relation as defined

in Definition ORD.1. Every nonempty subset E of L which is bounded above has a

least upper bound lub E .

Strictly speaking, Axiom LUB applies to lines, or ordered fields; however, we

will freely speak of this axiom as being true “on space" or “on a plane," meaning

that the Axiom is true for all lines in that space (or plane).

Definition REAL.2. (A) A Euclidean space or plane on which Axiom LUB is true

is called a Euclidean/LUB space (or plane); Euclidean/LUB geometry is the

resulting geometry on such a plane or line.

(B) An ordered field for which Axiom LUB holds is a complete ordered field.

(C) For notational convenience, for any set E � L, where L is an ordered field, we

define �E D f�X j X 2 Eg.
Remark REAL.3. (A) The least upper bound of a set E may or may not be a

member of E ; if it is a member of E , then it is the maximum element of E (cf

Definition ORD.8).

(B) It is well known that the set R of real numbers is an ordered field for which

Axiom LUB holds.
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Theorem REAL.4 (GLB). Let E be a subset of an ordered field L (which is a

subset of a Euclidean/LUB plane) with origin O and unit U. If E is nonempty and is

bounded below, then

(A) E has a greatest lower bound—that is, glb E exists, and

(B) glb E D� lub.�E/.
(C) glb .�E/ D� lub E .

Proof. If B is a lower bound of E , then �B is an upper bound of �E . By Axiom LUB

the set of upper bounds of �E has a minimum lub.�E/. We show that � lub.�E/
is the maximum of the lower bounds of E . If D is any lower bound of E , then for

every member X of E , D � X and so �D � �X. Since �D is an upper bound of �E ,

lub.�E/ � �D, but this means that D �� lub.�E/. So � lub.�E/ is the maximum

of the lower bounds of E , that is, glb E . This proves both parts (A) and (B).

The proof of (C) follows from (B) by substituting �E for E . ut
Theorem REAL.5. Let P be a Euclidean/LUB plane and let L be an ordered field

on P with origin O and unit U, and let E � L.

(A) If lub E exists, it is unique.

(B) If glb E exists, it is unique.

Proof. (A) Suppose A and B both are least upper bounds for E . Since A is an upper

bound, then A � B; since B is an upper bound, B � A. By Theorem ORD.5, if

A ¤ B then either A > B or B > A both of which are impossible.

(B) The proof is similar to part (A) and is left to the reader. ut

Definition REAL.6. Let P be a Euclidean/LUB plane, and let L be an ordered field

on P with origin O and unit U.

(A) A function whose domain is the set N of all natural numbers and whose values

are members of L is a sequence. The customary notation for a sequence whose

value at each natural number n is Sn is fSng.
(B) A sequence fSng is said to have a limit L iff for every � > O which is a member

of L, there exists a natural number m such that for every n > m, �� < Sn	L <

�. If there exists a limit L for fSng, we write L D lim Sn.
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Theorem REAL.7. Let P be a Euclidean/LUB plane, L an ordered field on P , and

fSng a sequence with values in L such that for every natural number n, SnC1 � Sn.

If fSn j n is a natural numberg is bounded above, and if B D lubfSn j n is a natural

numberg, then lim S exists and equals B.

Proof. Let � be any positive member of L such that B 	 � is positive. By Axiom

LUB there exists a natural number m such that Sm > B	 �. Then �� < Sm	B < O

(since B is an upper bound for fSng). If n � m, then Sn � Sm so B	Sn � B	Sm < �

and �� < Sn 	 B < O. But this means that lim Sn exists and equals B. ut

18.2 Archimedes, Eudoxus, and least upper bounds

Remark REAL.8. Archimedes of Syracuse (c. 287–212 BC) is commonly listed

with Newton and Gauss as one of the three greatest mathematicians of all time,

having all but invented calculus to solve various problems. This next property still

bears his name, although some say that Archimedes attributed it to Eudoxus of

Cnidus, whom we will encounter shortly.

The Archimedean property has meaning (is either true or false) for any ordered

field L that is equipped with an origin O and a unit U, where for any A 2 L and

any natural number n, nA is defined to be A ˚ A ˚ : : : ˚ A (with n terms in the

summation), as in Definition QX.1(C).

Archimedean property For any H > O and any K > O there exists a natural

number n such that nH > K. Alternatively, the set D D fnH j n is a natural numberg
is unbounded above.

We will sometimes say “the plane P is Archimedean” to mean that the

Archimedean property holds on every ordered field in the plane P .

Theorem REAL.9 (Every Euclidean/LUB plane is Archimedean). Let P be a

Euclidean/ LUB plane, L an ordered field on P , and suppose that for every A 2 L,

nA has been defined as in Definition QX.1. Then if H is a positive member of L, and

D D fnH j n is a natural numberg, D is unbounded above.

Proof. Assume D is bounded above. By Axiom LUB the set of upper bounds of D
has a minimum B D lubD. By Theorem PSH.22 there exists a member V of L such

that O V H and by Theorem ORD.6, O < V < H.



18.2 Archimedes, Eudoxus, and least upper bounds 365

If all members of D were less than or equal to B 	 V , this would be an upper

bound for D, and since B	V < B, B would not be the least upper bound. Thus there

exists a member of D which is greater than B	 V , that is, for some natural number

m, mH > B	 V . Hence .mC 1/H D mH˚H > B	 V ˚H D B˚ .H	 V/ > B,

because H 	 V > O. But .m C 1/H 2 D so that .m C 1/H � B, a contradiction.

Therefore D is unbounded above. ut
Corollary REAL.9.1. Assuming that the hypotheses of Theorem REAL.9 are true,

the set frH j r is a rational numberg is unbounded above.

Proof. D � frH j r is a rational numberg. ut

Remark REAL.10 (LUB and the Archimedean property). As we saw in The-

orem REAL.9, the LUB property of an ordered field implies the Archimedean

property. But in general, the Archimedean property does not imply the LUB

property, as will be established in the next two theorems.

Theorem REAL.11 (Q is Archimedean). The Archimedean property holds on the

set Q of rational numbers.

Proof. Let r D p
q and b D s

t , where r and b are positive rational numbers and p, q,

s, and t are natural numbers. We show that there exists a natural number n such that

nr > b. Note first that q � q
p and s � s

t . Let n D sqC 1 > sq; then n > sq � q
p

s
t .

Multiplying both sides by r D p
q , nr D n p

q >
s
t D b. ut

Theorem REAL.12 (Axiom LUB does not hold on Q). The set E D fr j r is a

rational number and r2 < 2g has no least upper bound in Q.

Proof. Suppose the contrary, that p
q is the least upper bound for E , where p and q are

natural numbers. By trichotomy for numbers, there are three cases; we show that all

these cases lead to contradictions.

(Case 1: p2

q2
< 2.) Then 2q2 > p2 and 2q2�p2 > 0. By the Archimedean property,

there exists a natural number n0 such that n0 > 4pq
2q2�p2

, so 1
n0
< 2q2�p2

4pq . Also there

exists a natural number n00 such that n00 > 2q2

2q2�p2
, so 1

.n00/2
< 1

n00
< 2q2�p2

2q2
. Let

n D maxfn0; n00g. Then� p
q C 1

n

�2 D p2

q2
C 2p

qn C 1
n2
< p2

q2
C 2p

q

�
2q2�p2

4pq

�C 2q2�p2

2q2

D p2

q2
C 2q2�p2

2q2
C 2q2�p2

2q2
D 4q2

2q2
D 2.

Therefore p
qC 1

n is a member of E , and is greater than p
q , and p

q is not an upper bound

for E , contradicting our hypothesis.
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(Case 2: p2

q2
> 2.) Then 2q2 < p2 and p2 � 2q2 > 0. Let n0 be a natural number

such that n0 > q
p , so that 0 < 1

n0
< p

q , p
q � 1

n0
> 0, and

� p
q � 1

n0

�2
< p2

q2
. Also let n00 be

a natural number such that n00 > 2qp
p2�2q2

, so 1
n00
< p2�2q2

2qp . Let n D maxfn0; n00g. Then
p2

q2
� 2p

qn >
p2

q2
� 2p

q

� p2�2q2

2qp

� D p2

q2
� p2�2q2

q2
D 2q2

q2
D 2

so that
� p

q � 1
n

�2 D p2

q2
� 2p

qn C 1
n2
> 2 C 1

n2
> 2. Therefore, for every r 2 E ,� p

q � 1
n

�2
> 2 > r2, and p

q � 1
n > r; hence p

q � 1
n is an upper bound for E . Since

p
q � 1

n <
p
q , p

q is not the least upper bound for E , contradicting our hypothesis.

(Case 3: p2

q2
D 2.) The following proof is well known: reduce p

q to lowest terms,

so that p and q have no common factor. Then p2 D 2q2 so that 2 is a factor of p2,

hence is a factor of p, and there exists a natural number a such that p D 2a. Then

4a2 D 2q2 and 2a2 D q2, so 2 is a factor of q2, and therefore a factor of q. This

shows that 2 is a common factor of both p and q, in contradiction to our original

assumption that p2

q2
is in lowest terms. ut

The geometries we develop from here on are Archimedean geometries. The study

of non-Archimedean geometries has been an active field of research.

Theorem REAL.13. Let P be a Euclidean/LUB plane, A, B, C, and D be points

on P such that A ¤ B and C ¤ D. Then there exists a natural number m such that

mŒ
px qy

AB � > Œ
px qy

CD �, where mŒ
px qy

AB � is defined as in Definition QX.20.

Proof. In the following, let ˚ be as in Definition FSEG.14. If Œ
px qy

AB � > Œ
px qy

CD �, then

m D 1 satisfies the inequality. If Œ
px qy

AB � � Œ
px qy

CD �, then by Theorem FSEG.13 there

exists a unique point H D ˚Œ
px qy

AB � on an ordered field L with origin O such that

H > O and Œ
px qy

OH � D Œ
px qy

AB �. Let V > O be the point on L such that V D ˚Œ
px qy

CD �

and Œ
px qy

OV � D Œ
px qy

CD �. By Theorem REAL.11 there exists a natural number m such

that mH > V . Since by Theorem FSEG.15(B) ˚ preserves order, mH > V iff

mŒ
px qy

AB � > Œ
px qy

CD �. ut

Remark REAL.14. Eudoxus of Cnidus (c. 408–355 BC) lived between the times

of Pythagoras and Euclid and was contemporary with Plato. Part of Eudoxus’

work amounted to a rigorous definition of real numbers and Richard Dedekind

(1831–1916) was inspired by his ideas. (This is the Dedekind who originated the

now-standard method of “Dedekind cuts” for completing the set of real numbers to

include irrational numbers.) The following theorem bears Eudoxus’ name.
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Theorem REAL.15 (Eudoxus). Let H be a positive member of L, and let A and B

be members of L such that B < A. Then there exists a rational number r such that

B < rH < A.

Proof. (Case 1: A > B > O.) By the Archimedean property (Theorem REAL.5)

choose a natural number q such that q.A	 B/ > H. Then multiplying both sides by
1
q , we have 1

q H < A	 B. Adding B and subtracting 1
q H yields B < A	 1

q H.

By the Archimedean property choose a natural number p so that p
q H > B, and let

p be the smallest such number.

Then p
q H < A, for otherwise, p

q H � A and p�1
q H D p

q H 	 1
q H � A	 1

q H > B,

so that p
q is not the smallest integer such that p

q H > B, contradicting the definition

of p. Therefore B < p
q H < A.

(Case 2: A > O > B.) Let r D 0.

(Case 3: O > A > B.) By Theorem OF.10(B) and Exercise OF.9, �B and �A are

both positive and O < �A < �B. By Case 1, let r be such that �A < rH < �B.

Then B < �.rH/ D .�r/H < A. Here we have used Corollary QX.12(B). ut

18.3 Real multiples of members of L

Remark REAL.16. (A) Unless explicitly stated otherwise, in the remainder of

this chapter P will denote a Euclidean/LUB plane, L will be an ordered field

on P with origin O and unit U, in which rational multiples of points have been

defined as in Chapter 17.

(B) Unless explicitly stated otherwise, the letters r, s, and t will denote rational

numbers. So we will routinely (but not always) omit the reminder that “r 2 Q”.

Remark REAL.17. Let x be any real number, and H > O a member of L; let

LH D frH j r 2 Qg (as in Corollary QX.16.1).

(A) Let E and F be subsets of LH . If E and F are bounded above (below) and

have the same set of upper (lower) bounds in LH , then lub E D lubF (glb E D
glbF). This is obviously true by the plain meaning of the words upper and

lower bound, least and greatest, etc.

(B) Let a, a0, b, and b0 be rational numbers such that a < x < b and a0 < x < b0.

(1) frH j a < r < xg, frH j a0 < r < xg, and frH j r < xg are bounded above,

have a common set of upper bounds, and a common least upper bound.
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(2) frH j x < r < bg, frH j x < r < b0g, and frH j x < rg are bounded below,

have a common set of lower bounds, and a common greatest lower bound.

(3) fr.�H/ j a < r < xg, fr.�H/ j a0 < r < xg, and fr.�H/ j r < xg
are bounded below, have a common set of lower bounds and a common

greatest lower bound.

(4) fr.�H/ j x < r < bg, fr.�H/ j x < r < b0g, and fr.�H/ j x < rg are

bounded above, have a common set of upper bounds and a common least

upper bound.

To see part (B)(1), note that there exists a rational number s such that a <

r < x < s. By Exercise QX.2, if H > O, rH < xH < sH so sH is an upper

bound for frH j a < r < xg and the other sets in the list, which obviously have

the same set of upper bounds; part (A) says that their least upper bounds are the

same. The proofs of the other parts of (B) are similar, and are left to the reader.

(C) Part (B) above shows that in most cases involving least upper bounds or greatest

lower bounds, it is legitimate to write frH j r < xg instead of frH j a < r < xg,
or frH j x < rg instead of frH j x < r < bg.

(D) Theorem REAL.18, which follows, provides the basis for general application

of Definition REAL.19, which will define xH where x is an irrational number

and H is any point of L. It also facilitates the proofs of future theorems. The

proof is long, but the reader should not be daunted by it.

Theorem REAL.18. Let H > O be a member of L; let LH D frH j r 2 Qg (as in

Corollary QX.16.1).

(A) If x is rational, then xH D lubfrH j r < xg D glbfrH j x < rg.
(B) If x is any real number, lubfrH j r < xg D glbfrH j x < rg.
(C) If x is any real number, lubfr.�H/ j x < rg D glbfr.�H/ j r < xg.
(D) If x is rational, x.�H/ D lubfr.�H/ j x < rg D glbfr.�H/ j r < xg.
Proof. Let x be any real number; if r and s are rational numbers such that r < x < s,

by Exercise QX.2 rH < sH, so frH j r < xg < fsH j x < sg and frH j r <

xg \ fsH j x < sg D ;. Then every member of frH j r < xg is a lower bound for

fsH j x < sg, and every member of fsH j x < sg is an upper bound for frH j r < xg.
Moreover, for any real x, fsH j x < sg has no least (minimum) element and

frH j r < xg has no greatest (maximum) element, because fs j x < sg has no least

element and fr j r < xg has no greatest element. These facts will be used several

times in the rest of this proof.
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There can be at most one rational number t such that r < t < s for all r < x and

all s > x; if there is such a t, then t D x, so that in this case x is rational. Therefore,

if x is rational,

frH j r < xg [ fsH j x < sg [ fxHg D LH (*)

and the sets in this union are disjoint. If x is irrational, then every rational number is

either greater or less than x, so that

frH j r < xg [ fsH j x < sg D LH .

Again, all r, s, and t are rational numbers, but for brevity we omit the reminders

r 2 Q, etc.

Claim 1. For any real number x, neither lubfrH j r < xg nor glbfsH j x < sg can

be a member of either frH j r < xg or fsH j x < sg. Also,

frH j r < xg < lubfrH j r < xg < frH j x < rg
and

frH j r < xg < glbfrH j x < rg < frH j x < rg.
Proof of Claim 1. lubfrH j r < xg is an upper bound for frH j r < xg, so frH j r <
xg � lubfrH j r < xg. If lubfrH j r < xg 2 frH j r < xg, it would be an upper

bound for that set and hence this set would contain a maximum element, which does

not exist; therefore lubfrH j r < xg 62 frH j r < xg, and frH j r < xg < lubfrH j
r < xg.

All the members of frH j x < rg are upper bounds for frH j r < xg, so lubfrH j
r < xg � frH j x < rg. If lubfrH j r < xg 2 frH j x < rg, it would be less than or

equal to all members of frH j x < rg and thus its least element, which does not exist;

therefore lubfrH j r < xg 62 frH j x < rg, and lubfrH j r < xg < frH j x < rg.
glbfrH j x < rg is a lower bound for frH j x < rg, so glbfrH j x < rg � frH j

x < rg. If glbfrH j x < rg 2 frH j x < rg, it would be a lower bound for that set

and hence its minimum element, which does not exist; so glbfrH j x < rg 62 frH j
x < rg, and glbfrH j x < rg < frH j x < rg.

All the members of frH j r < xg are lower bounds for frH j x < rg, so glbfrH j
x < rg � frH j r < xg. If glbfrH j x < rg 2 frH j r < xg, it would be greater

than or equal to all members of frH j r < xg and thus would be its greatest element,

which does not exist; so glbfrH j x < rg 62 frH j r < xg, and frH j r < xg <
glbfrH j x < rg. This completes the proof of Claim 1.

Claim 2. For any real number x, lubfrH j r < xg � glbfrH j x < rg.
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Proof of Claim 2. As we have already noted, all points of frH j x < rg are upper

bounds for frH j r < xg; therefore they are all greater or equal to the least upper

bound of frH j x < rg; that is, frH j x < rg � lubfrH j r < xg. Then lubfrH j
r < xg is a lower bound for frH j x < rg hence is less or equal to glbfrH j x < rg.
Therefore lubfrH j r < xg � glbfrH j x < rg.

Note that up until this point we have assumed that x is an arbitrary real number.

Now the proof splits.

(A) Assume that x is a rational number. If lubfrH j r < xg ¤ glbfrH j x < rg,
then by Claim 2 lubfrH j r < xg < glbfrH j x < rg. By Theorem REAL.15

(Eudoxus) there exists a rational number s such that lubfrH j r < xg < sH <

glbfrH j x < rg; then neither sH nor xH is a member of either frH j r < xg
or glbfrH j x < rg; therefore by (*), sH D xH, or s D x, showing that

lubfrH j r < xg < xH < glbfrH j x < rg.
Again by Theorem REAL.15 there exists a rational number t such that

lubfrH j r < xg < tH < xH. Then t < x so tH 2 frH j r < xg and

tH � lubfrH j r < xg < tH, a contradiction. Therefore lubfrH j r < xg D
glbfrH j x < rg and by Claim 2, lubfrH j r < xg D xH D glbfrH j x < rg.

(B) If x is irrational, again from Claim 2 we know that lubfrH j r < xg � glbfrH j
x < rg. If lubfrH j r < xg < glbfrH j x < rg, by Theorem REAL.15 there

exists a rational number s such that lubfrH j r < xg < sH < glbfrH j x < rg.
Since x is irrational either s < x or x < s; hence sH is either a member of

frH j r < xg or of frH j x < rg, both of which are impossible by the definition

of sH. Therefore lubfrH j r < xg D glbfrH j x < rg where x is an irrational

number. From part (A) this is true for all real numbers x, proving part (B).

(C) Applying, in order, Theorem QX.12(D), Theorem REAL.4(B), Part (B) above,

Theorem REAL.4(C), and Theorem QX.12(D), we have

lubfr.�H/ j x < rg D lubf�.rH/ j x < rg
D � glbfrH j x < rg
D � lubfrH j r < xg
D glb �frH j r < xg
D glbfr.�H/ j r < xg.

(D) If x is rational, by part (A) xH D glbfrH j x < rg D lubfrH j r < xg. From

Corollary QX.12(D)

x.�H/ D �.xH/ D � glbfrH j x < rg D � lubfrH j r < xg.
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Thus x.�H/ is equal to the second and third lines in the calculation above for

part (C), so that

x.�H/ D glbfr.�/ j r < xg D lubfr.�H/ j x < rg. ut
Definition REAL.19. (A) Let x be a real number and let H be a member of L.

(1) If x D 0 or H D O, then xH D O.

(2) If r is a nonzero rational number and if H ¤ O, then rH is given by

Definition QX.1.

(3) If x is any irrational number and H is a positive member of L, then xH D
lubfrH j r 2 Q and b < r < xg, where b is any number such that b < x.

(4) If x is any irrational number and J is a negative member of L, then xJ D
�.x.�J//.

(B) H is a rational member of L iff there exists a rational number r such that

H D rU.

(C) H is an irrational member of L iff there exists an irrational number a such that

H D aU.

Theorem REAL.20 (Summary of Theorem REAL.18 and Definition REAL.19).

Let x be any real number, and let H be any positive member of L.

(A) xH D lubfrH j r < xg D glbfrH j x < rg.
(B) x.�H/ D �.xH/ D lubfr.�H/ j x < rg D glbfr.�H/ j r < xg.
Proof. (A) If x is rational, this is Theorem REAL.18(A). For irrational numbers the

proof follows from Definition REAL.19(A)(3) and Theorem REAL.18(B).

(B) If x is rational, this follows from Theorem REAL.18(D) and Corollary

QX.12(D). If x is irrational, by Definition REAL.19(A)(4) x.�H/ D �.xH//;

by Definition REAL.19(A)(3) this is
� lubfrH j r < xg D glb�frH j r < xg

D glbf�.rH/ j r < xg
D glbfr.�H/ j r < xg
D lubfr.�H/ j x < rg.

The first equality is by Theorem REAL.4(C), the third by Theorem QX.12(D),

the last by Theorem REAL.18(C). ut
Theorem REAL.21. Let P be a Euclidean/LUB plane and let L be an ordered

field on P with origin O and unit U, in which rational multiples of points have been

defined as in Chapter 17. Let x be any real number and S any member of L.
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(A) .�x/S D �.xS/ (so .�1/S D �S, as in Theorem QX.4(D)).

(B) .�x/.�S/ D xS.

(C) xS D �.x.�S//, that is, �.xS/ D x.�S/.

Proof. If x is rational, this is Corollary QX.12, parts (B), (C), and (D). If S D O,

they are all true by Definition REAL.19(A)(1).

(A) (Case 1: x is an irrational number and S > O.) Applying, in sequence,

Definition REAL.19(A)(3), re-naming variable, Theorem QX.12(B), Defini-

tion REAL.2(C), Theorem REAL.4(C), and Theorem REAL.20(A), we have

.�x/S D lubfrS j r < �xg D lubf.�r/S j �r < �xg
D lubf�.rS/ j x < rg D lub �frS j x < rg
D � glbfrS j x < rg.
D �.xS/.

(A) (Case 2: x is an irrational number and S < O.) Applying, in sequence,

Theorem REAL.20(B), re-naming variable, Theorem QX.12(B), Defini-

tion REAL.2(C), Theorem REAL.4(C), and Theorem REAL.20(B), we have

.�x/S D lubfrS j �x < rg D lubf.�r/S j �x < �rg
D lubf�.rS/ j r < xg D lub �f.rS/ j r < xg
D � glbfrS j r < xg D �.xS/.

(B) (Case 1: x is an irrational number and S > O.) Applying, in sequence,

Theorem REAL.20(B), re-naming variable, Theorem QX.12(C), and Defini-

tion REAL.19(A)(3), we have

.�x/.�S/ D lubfr.�S/ j �x < rg D lubf.�r/.�S/ j �x < �rg
D lubfrS j r < xg D xS.

(B) (Case 2: x is any irrational number and S < O.) Applying, in sequence,

Definition REAL.19(A)(3), re-naming variable, Theorem QX.12(C), and The-

orem REAL.20(B), we have

.�x/.�S/ D lubfr.�S/ j r < �xg D lubf.�r/.�S/ j �r < �xg
D lubfrS j x < rg D xS.

(C) We have now proved that (A) and (B) are true for all irrational x and all points

S 2 L. Applying part (A) first, and then part (B) we have, for any S 2 L,
�.xS/ D .�x/S D .�.�x//.�S/ D x.�S/. ut

Corollary REAL.21.1. Let x be any nonzero real number, and let A 2 qy!
OU. Then

px qy

O.xU/ Š px qy

OA iff jxjU D A. That is to say, ˚Œ
px qy

OA � D A D jxjU, where ˚ is as in

Definition FSEG.14.



18.3 Real multiples of members of L 373

Proof. Assume
px qy

O.xU/ Š px qy

OA. If x > 0, then xU 2 qy!
OU and by Property R.4 of

Definition NEUT.2, jxjU D xU D A. If x < 0, then .�x/U 2 qy!
OU and jxjU D

.�x/U D A. Conversely, if jxjU D A either x > 0 in which case
px qy

O.xU/ D px qy

OA, or

x < 0 in which case �x > 0 and A D .�x/U D �.xU/ by Theorem REAL.21(A).

Then �A D xU and by Theorem OF.10(A),
px qy

O.xU/ D px qy

O.�A/ Š px qy

OA. ut
Lemma REAL.22. Suppose x > 0 and y > 0 are real numbers; then r is a rational

number such that 0 < r < xy iff there exist rational numbers s and t such that

0 < s < x, 0 < t < y and st D r.

Proof. This proof uses the property that between every two distinct real numbers,

there exists a rational number. Since 0 < r < xy, r
y < x so we may choose a rational

number s such that r
y < s < x. Then r D y r

y < ys < xy so that r
s < y. Let t D r

s .

Then 0 < t < y and st D s r
s D r. Conversely, if 0 < s < x and 0 < t < y, then

0 < st < xy. ut
We call Theorems REAL.23 and REAL.25 “Associative” properties, even though

that stretches the language somewhat.

Theorem REAL.23 (Associative property I for scalar product). If x is any real

number, and S is any member of L, then x.yS/ D .xy/S D y.xS/.

Proof. Again in this proof we will denote rational numbers by the letters r, s, or t; x

and y may be any real numbers, rational or irrational.

(Case 1: Either x D 0, y D 0, or S D O.) The proof follows immediately from

Definition REAL.19(A)(1).

(Case 2: x > 0, y > 0, and S > O.) By Lemma REAL.22, and Theo-

rem QX.10(A), B is an upper bound for frS j 0 < r < xyg iff

B � frS j 0 < r < xyg D f.st/S j 0 < s < x and 0 < t < yg
D fs.tS/ j 0 < s < x and 0 < t < yg,

Thus, for every s such that 0 < s < x, B � fs.tS/ j 0 < t < yg, and the following

statements are equivalent:

(a) B � fs.tS/ j 0 < t < yg D s.f.tS/ j 0 < t < yg/;
(b) B

s � ftS j 0 < t < yg;
(c) B

s � lubftS j 0 < t < yg D yS (by Definition REAL.19(A)(3));

(d) B D s B
s � s.yS/.

Therefore B is an upper bound for frS j 0 < r < xyg iff it is an upper bound for

fs.yS/ j 0 < s < xg. By Remark REAL.17(A), the least upper bounds for these sets

are the same. Thus, using Definition REAL.19(A)(3),
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.xy/S D lubfrS j 0 < r < xyg D lubfs.yS/ j 0 < s < xg D x.yS/.

(Case 3: x > 0, y < 0, and S > O.) Using, successively, arithmetic,

Theorem REAL.21(A), Theorem REAL.21(C), Case 2 above, arithmetic, and

Theorem REAL.21(A), we have

x.yS/ D x.�.�y//S D x.�..�y/S// D �.x..�y/S//

D �..x.�y//S/ D �..�.xy//S/ D .xy/S.

(Case 4: x < 0, y > 0, and S > O.) The proof is Exercise REAL.6.

(Case 5: x < 0 and y < 0 are any real numbers and S > O.) Using, in

succession, arithmetic, Theorem REAL.21(A), Case 3 above, arithmetic, Theo-

rem REAL.21(A), and Theorem OF.10(A), we have

x.yS/ D .�.�x//.yS/ D �..�x/.yS// D �...�x/y/S/

D �.�.xy/S/ D �.�..xy/S// D .xy/S.

Cases 2 through 5 show that .xy/S D x.yS/ for all real numbers x and y where

S > O.

(Case 6: x and y are any real numbers and S < O.) Using, in succession,

two applications of Theorem REAL.21(C), Cases 2 through 5 above, and Theo-

rem REAL.21(C), we have

x.yS/ D x.�.y.�S/// D �.x.y.�S/// D �..xy/.�S// D .xy/S.

This shows that x.yS/ D .xy/S for all real numbers x and y and all members S of

L. By commutativity, x.yS/ D .xy/S D .yx/S D y.xS/. ut
Lemma REAL.24. If E is a subset of L which is bounded above, and T > O is a

member of L, then .lub E/ˇ T D lub.E ˇ T/.

Proof. The proof is Exercise REAL.4. ut
Theorem REAL.25 (Associative property II for scalar product). Let S and T be

members of L, and let x be any real number. Then .xS/ˇT D x.SˇT/ D Sˇ .xT/.

In particular, .xU/ˇ T D xT D U ˇ .xT/, where U is the unit for L.

Proof. In this proof we will use Theorem OF.10(A) (�.�A/ D A) without reference.

We will first show that .xS/ˇ T D x.Sˇ T/.

(Case 0: x is rational.) This is Theorem QX.10(A).

(Case 1: x is any irrational number, S > O, and T > O.) Applying, in

succession, Definition REAL.19(A)(3), Lemma REAL.24, Theorem QX.10(A), and

Definition REAL.19(A)(3), we have

xSˇ T D lubfrS j r < xg ˇ T D lubf.rS/ˇ T j r < xg
D lubfr.Sˇ T/ j r < xg D x.Sˇ T/.
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(Case 2: x is any irrational number, S < O and T < O.) Applying, in succession,

Theorem REAL.21(C), Theorem OF.10(D), Case 1 above, and Theorem OF.10(D),

we have

.xS/ˇ T D �.x.�S//ˇ T D .x.�S//ˇ .�T/

D .x..�S/ˇ .�T// D x.Sˇ T/.

(Case 3: x is any irrational number, S < O and T > O.) The proof is

Exercise REAL.7.

(Case 4: x is any irrational number, S > O and T < O.) Applying, in succession,

Theorem OF.10(A), Theorem OF.10(D), Case 1 above, Theorem OF.10(D), and

Theorem REAL.21(C).

.xS/ˇ T D .xS/ˇ �.�T/ D �..xS/ˇ .�T//

D �.x.Sˇ .�T/// D �.x.�.Sˇ T///

D x.Sˇ T/.

Cases 1 through 4 show that for all real numbers x and all members S and T of L,

.xS/ˇ T D x.Sˇ T/. Using this result, by commutativity, x.Sˇ T/ D x.T ˇ S/ D

.xT/ˇ S D Sˇ .xT/, completing the proof. ut
Theorem REAL.26. If x and y are real numbers, and U is the unit for L, then

.xU/ˇ .yU/ D .xy/U D x.yU/ D y.xU/.

Proof. Applying Theorem REAL.25 twice, then Theorem REAL.23, we have

.xU/ˇ .yU/ D x.U ˇ .yU// D x.y.U ˇ U// D x.yU/ D .xy/U D y.xU/. ut

Definition REAL.27 (Notation for addition of sets).

(A) If both S and T are subsets of L, we will denote the set fX ˚ Y j X 2 S and

Y 2 T g by S ˚ T .

(B) If S is a subset of, and H is a point of L we denote the set fX˚H j X 2 Sg by

S ˚ H.

Note that if either of the sets S or T is empty, then S ˚ T D ;. Likewise, if

S D ;, S ˚ H D ;.
Theorem REAL.28. (A) If S and T are nonempty subsets of L which are bounded

above, S ˚ T is bounded above and lub.S ˚ T / D lubS ˚ lub T .

(B) if S and T are nonempty subsets of L which are bounded below, S ˚ T is

bounded below and glb.S ˚ T / D glbS ˚ glb T .



376 18 A Line as Real Numbers (REAL); Coordinatization of a Plane (RR)

Proof. (A) (I) Let B be an upper bound of S and let D be an upper bound of

T . For all X and Y , if X 2 S and Y 2 T , then by two applications of

Theorem OF.11(B), X ˚ Y � B ˚ D, so S ˚ T is bounded above. By

Axiom LUB, lub.S ˚ T / exists. Moreover, since for all members X of S
and all members Y of T , X � lubS and Y � lub T . X˚Y � lubS˚lub T ,

and lubS˚ lub T is an upper bound for S˚ T . Thus the least such upper

bound lub.S ˚ T / � lubS ˚ lub T .

(II) Suppose now that lub.S ˚ T / < lubS ˚ lub T ; there exists � > O such

that lub.S ˚ T / < lubS ˚ lub T 	 �. By Exercise REAL.5, there is a

member X of S such that X > .lubS/	 �
2

and a member Y of T such that

Y > .lub T /	 �
2
. Since X ˚ Y 2 S ˚ T ,

lub.S˚T / � X˚Y > ..lubS/	 �
2
/˚..lub T /	 �

2
/ D lubS˚ lub T 	�,

a contradiction. Thus lub.S˚T / � lubS˚ lub T . Together with part (I),

this shows that lub.S ˚ T / D lubS ˚ lub T .

(B) Let B be a lower bound of S and let D be a lower bound of T . For all X and Y ,

if X 2 S and Y 2 T , then by Theorem OF.11(B) X ˚ Y � B ˚ D, S ˚ T is

bounded below, and by Theorem REAL.4(A) glb.S ˚ T / exists. Then

glb.S ˚ T / D � lub.�.S ˚ T // D � lub..�S/˚ .�T //
D �.lub.�S/˚ lub.�T // D .�lub.�S//˚ .�lub.�T //
D glbS ˚ glb T ,

where the first equality in this string is by Theorem REAL.4(B), the second by

Theorem OF.10(F), the third by part (A), the fourth by Theorem OF.10(F), and

the last is by Theorem REAL.4(B). ut
Remark REAL.29. The proof of Theorem REAL.31 consists of several cases; we

initially thought we might state it as a series of theorems, but finally decided on

the structure given here. To complete this proof, we need the following numerical

result, which is quite intuitive but oddly complex to prove.

Lemma REAL.30. Let x and y be irrational numbers such that x > 0 and y > 0.

Then r is a rational number such that 0 < r < xC y iff there exist rational numbers

s and t such that 0 < s < x, 0 < t < y, and r D sC t.

Proof. Suppose r is a rational number such that 0 < r < xC y; then �y < r� y < x

so r � y < x; since y > 0, r � y < r. Therefore minfr; xg > r � y.



18.3 Real multiples of members of L 377

Also, both r > 0 and x > 0, so minfr; xg > 0 and minfr; xg > maxfr � y; 0g.
Choose s to be a rational number such that minfr; xg > s > maxfr � y; 0g, and

define t D r � s.

By definition, s > 0 and s < x. Since s < r,�s > �r so that t D r�s > r�r D 0.

Also s > r � y implies that �s < y � r, so that t D r � s < r C y � r D y, that is,

t < y. Therefore, r D sC t where 0 < s < x and 0 < t < y.

Conversely, suppose there exist rational numbers s and t such that 0 < s < x,

0 < t < y, and r D sC t; then 0 < r < xC y. ut
Theorem REAL.31 (Distributive property I). Let x and y be any real numbers,

and let H be any member of L. Then .xC y/H D xH ˚ yH.

Proof. (Case 0: x D 0 or y D 0 or H D O.) If x D 0, then .x C y/H D yH D
0H˚ yH D xH˚ yH. Similarly for y D 0. If H D O, then .xC y/H D .xC y/O D
O˚ O D xH ˚ yH. Here we have used Definition REAL.19(A)(1).

In the remainder of the proof we assume that x and y are nonzero, and H ¤ O.

(Case 1: x and y are both rational numbers.) This is Theorem QX.11(A).

(Case 2: One of x or y is a rational number and the other is irrational, and

H > O.) Without loss of generality we choose x to be the rational number s,

and y to be irrational. As usual we denote rational numbers by r, s, and t. By

Definition REAL.19(A)(3),

.sC y/H D lubfrH j r 2 Q and 0 < r < sC yg
D lubf.sC t/H j 0 < t < yg.

We now apply Theorem QX.11(A), Theorem REAL.28(A), and Defini-

tion REAL.19(A)(3) to get

D lubfsH ˚ tH j 0 < t < yg
D sH ˚ lubfrH j 0 < r < yg D sH ˚ yH.

(Case 3: x > 0 and y > 0 are irrational numbers, and H > O.) By

Definition REAL.19(A).3, .x C y/H D lubfrH j 0 < r < x C yg. By

Lemma REAL.30,

frH j 0 < r < xC yg D f.sC t/H j 0 < s < x and 0 < t < yg,
and by Theorem QX.11(A) this is

fsH ˚ tH j 0 < s < x and 0 < t < yg.
By Definition REAL.27(A), this is

fsH j 0 < s < xg ˚ ftH j 0 < t < yg.
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Thus by Theorem REAL.28(A),

.xC y/H D lubfrH j 0 < r < xC yg
D lub.fsH j 0 < s < xg ˚ ftH j 0 < t < yg/
D lub.fsH j 0 < s < xg ˚ ftH j 0 < t < yg/
D xH ˚ yH.

(Case 4: x > 0 and y > 0 are irrational numbers, and H < O.) Applying Theo-

rem REAL.21(C), Case 3 above, Theorem REAL.21(C), and Theorem OF.10(F), in

that order, we have
�..xC y/H/ D .xC y/.�H/ D x.�H/˚ y.�H/

D �.xH/˚ �.yH/ D �.xH ˚ yH/.

By Theorem OF.10(A), .xC y/H D xH ˚ yH.

Cases 3 and 4 combined say that for irrational numbers x > 0 and y > 0,

.xC y/H D xH ˚ yH for any H 2 L.

(Case 5: x < 0 and y < 0 are irrational numbers, and H is any member of L.)

The proof is Exercise REAL.8.

(Case 6: x and y are irrational numbers, one of which is greater than 0 and the

other less than 0, and H is any member of L.) Without loss of generality, we assume

that x > 0 and y < 0.

(Subcase 6A: x C y > 0.) Then �y > 0 so we may apply Cases 3 and 4 and

Theorem REAL.21(A) to get

xH D .xC y � y/H D .xC y/H ˚ .�y/H D .xC y/H ˚ �.yH/.

Adding yH to both sides we have, by Definition OF.4, xH ˚ yH D .xC y/H.

(Subcase 6B: x C y < 0.) Then �x < 0 so we may apply Case 5 and

Theorem REAL.21(A) to get

yH D .�xC xC y/H D .�x/H ˚ .xC y/H D �.xH/˚ .xC y/H.

Adding xH to both sides we have xH ˚ yH D .xC y/H. ut
Theorem REAL.32 (Distributive property II). Let x be any real number, and let

S and T be members of L. Then x.S˚ T/ D xS˚ xT.

Proof. By Theorem OF.3, S ˚ T D U ˇ .S ˚ T/; then applying this, Theo-

rem REAL.25, Theorem OF.6, Theorem REAL.25 again, and Theorem OF.3, we

have

x.S˚ T/ D x.U ˇ .S˚ T// D .xU/ˇ .S˚ T//

D .xU ˇ S/˚ .xU ˇ T/ D x.U ˇ S/˚ x.U ˇ T/

D xS˚ xT . ut
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The above theorem may also be proved directly from Definition REAL.19; the

proof is Exercise REAL.9.

Theorem REAL.33. Let H > O be a member of L, and let x and y be real

numbers.

(A) x < y iff xH < yH iff y.�H/ < x.�H/.

(B) x > 0 iff xH > O iff x.�H/ < O.

(C) x < 0 iff xH < O iff x.�H/ > O.

Proof. (B) Let s be a rational number such that 0 < s < x; by Theorem QX.13(A)

sH > O. Then sH 2 frH j r < xg so that O < sH � lubfrH j r < xg; by

Definition REAL.19(A)(3) this is xH. If xH D lubfrH j r < xg > O, there must

be some member sH 2 frH j r < xg such that sH > O; by Theorem QX.13

s > 0, and therefore x > s > 0. By Theorem REAL.21(C) x.�H/ D �.xH/

which is negative iff xH > O, by Theorem OF.10(B).

(A) x < y iff y � x > 0 and by part (B) above, this is true iff .y � x/H > O iff

.y � x/.�H/ > O. By Theorem REAL.31 and Theorem REAL.21(A), .y � x/

H > O is equivalent to

O < .y � x/H D .yH/˚ ..�x/H/ D .yH/˚ .�.xH// D .yH/	 .xH/.

By Theorem OF.11(A), this is true iff .xH/ < .yH/. By the same theorem, it is

also true iff �.yH/ < �.xH/, and by Theorem REAL.21(C) this is y.�H/ <

x.�H/.

(C) x < 0 iff �x > 0 which by part (B) is true iff .�x/H > O iff .�x/.�H/ < O.

By Theorem REAL.21(A) �.xH/ D .�x/H > O which by Theorem OF.10(B)

is true iff xH < O. By Theorem REAL.21(C) and Theorem OF.10(B) x.�H/ D
�.xH/ > O. ut

Corollary REAL.34. Let H be any member of L other than O, and let x and y be

real numbers.

(A) x ¤ 0 iff xH ¤ O.

(B) x D 0 iff xH D O.

(C) x D y iff xH D yH.

Proof. (A) x ¤ 0 iff either x > 0 (in which case, by Theorem REAL.33(B), xH >

O and x.�H/ < O), or x < 0 (in which case xH < O and x.�H/ > O). In

either case, xH ¤ O and x.�H/ ¤ O.
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Conversely, if xH ¤ O or x.�H/ ¤ O, then x ¤ 0 by Defini-

tion REAL.19(A)(1).

(B) If x D 0 by Definition REAL.19(A)(1) xH D O and x.�H/ D O. If x ¤ 0 by

part (A) xH ¤ O.

(C) x D y iff x � y D 0 iff .x � y/H D xH 	 yH D O, by part (B). Since by

Theorem OF.2(A) L is a group under “˚”, xH 	 yH D O iff xH D .xH 	
yH/˚ yH D yH. ut

Theorem REAL.35. Let P be a Euclidean/LUB plane, and let L � P be an

ordered field with origin O and unit U. Define a mapping � from the set R of all

real numbers to L, as follows: for each real number x define �.x/ D xU. Then � is

an order-preserving isomorphism of R onto L. That is,

(A) For every A 2 L there exists a unique real number x such that xU D A; and �

is a bijection of R onto L;

(B) for every x and y in R, x < y iff �.x/ < �.y/;

(C) for every x and y in R, �.xC y/ D �.x/˚�.y/; and

(D) for every x and y in R, �.x � y/ D �.x/ˇ�.y/.
Proof. (B) is Theorem REAL.33(A). (C) is Theorem REAL.31. (D) is Theorem

REAL.26.

What remains to be proved is part (A). That � is one-to-one (and hence x is

unique) is easy to see from part (B); for if x ¤ y then either x < y or y < x so that

either �.x/ < �.y/ or �.y/ < �.x/, hence �.y/ ¤ �.x/.
To prove that � is onto L we must show that for every A 2 L there exists a real

number x such that xU D A.

(Case 1: A > O.) Define D D fr j r 2 Q and rU < Ag; by Exercise REAL.3, D
is bounded above. Let x D lubD. We will prove that xU D A.

(I) If xU < A, by Eudoxus’ theorem there exists a rational number r such that

xU < rU < A. By Theorem REAL.33(A) x < r, and by rU < A, x is not an

upper bound for D D fr j r 2 Q and rU < Ag, contradicting the definition

of x.

(II) If xU > A, by Eudoxus’ theorem there exists a rational number r such that

A < rU < xU. If s 2 D then sU < A < rU and hence s < r by

Theorem REAL.33(A). Thus r is an upper bound for D, which is smaller than

x, and x is not the least upper bound for D. Hence A D xU.
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(Case 2: A < O.) By Case 1, there exists a real number x such that �A D xU. By

Theorem REAL.21(A), .�x/U D �.xU/ D �.�A/ D A. ut
Corollary REAL.35.1. For any two points A and B of L which are distinct from O,

there exists a unique real number t such that tA D B.

Proof. By Theorem REAL.35(A) for all A and B in LnfOg, there exist real numbers

r and s such that rU D A and sU D B. By Theorem REAL.23 U D . 1s s/U D
1
s .sU/ D 1

s B, so

A D r. 1s B/ D .r 1s /B D r
s B.

Let t D r
s . Then tA D B.

To show uniqueness, suppose that u is any real number such that uA D B. Then

by Theorem REAL.21 .�u/A D �.uA/ D �B. By Theorem REAL.31

.t � u/A D .tC .�u//A D tA˚ .�u/A D B˚ �B D O;

by Corollary REAL.34, t � u D 0 so that u D t. ut
Remark REAL.36. (A) Eudoxus’ theorem (Theorem REAL.15) moves a well-

known property of the real numbers (that between any two real numbers, there

is a rational number) over to the line L. If Theorem REAL.35 had been proved

before Theorem REAL.15, the latter would have become a consequence of

Theorem REAL.33(A) and the fact that Eudoxus’ theorem holds in the real

numbers.

As it is, Theorem REAL.15 is needed to prove Theorem REAL.35, by

showing that the mapping � is onto L.

(B) Theorem REAL.35 shows that L is isomorphic to the set R of real numbers, so

that these two sets cannot be distinguished algebraically, and can be identified.

Thus our axioms, even though they seem to have nothing to do with real

numbers, provide a plane in which the set of all real numbers can be embedded.

Because of this isomorphism it would be possible, when discussing points

on a line L, to use lowercase italic letters a; b; c; : : : both for real numbers

and for points on the line, treating them all as real numbers. In the interest

of conceptual clarity in some circumstances, we will not do this, instead

maintaining for the time being the notational distinction between real numbers

and points, using lowercase letters for the former and capital letters for the

latter. We do, however, at this point abandon the symbols˚,	, andˇ in favor

of the ordinary C, �, and “�” or juxtaposition, using the same symbols for
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operations on both points and real numbers. We will revert to the use of ˚,

	, or ˇ only in cases where we need two symbols to distinguish between two

different operations.

The product of two points on a line is defined using dilations; the product of

a real number and a point on a line is defined differently. The following theorem

shows that the product of a real number and a point can also be expressed using a

dilation.

Theorem REAL.37. If U is the unit in L, T is any point of L, x is any real number,

and ıx is a dilation of the plane P with fixed point O, then ıx.U/ D xU iff ıx.T/ D
xT. That is, there is a single dilation ıx such that ıx.T/ D xT for every T 2 L.

Proof. Let ıx and ıT be dilations with fixed point O such that ıx.U/ D xU and

ıT.U/ D T . Then by Exercise DLN.3 (commutativity of dilations)

ıx.T/ D ıx.ıT.U// D ıT.ıx.U// D ıT.xU/ D T ˇ xU D xU ˇ T ,

and by Theorem REAL.25 this is xT .

Conversely, if ıx.T/ D xT , and ıT�1 is the dilation with fixed point O such that

ıT�1 .U/ D T�1,
ıx.U/ D ıx.ıT�1 .T// D ıT�1 .ıx.T//

D ıT�1 .xT/ D T�1 ˇ xT D xT ˇ T�1,
which by Theorem REAL.25 is xU. ut

Definition REAL.38. Let x be any real number. Define ıx as the dilation on P with

fixed point O such that for all T 2 L, ıx.T/ D xT .

Remark REAL.39. In Theorem REAL.37 we established that for points A and

B on a given line through O, if x is a real number, there is a single dilation

ıx (with fixed point O) such that both xA D ıx.A/ and xB D ıx.B/. This

establishes that the dilation ıx given by Definition REAL.38 is a “good” definition.

In Theorems REAL.40, REAL.41, and REAL.42 we extend this result to the entire

plane, showing that even if A and B are on different lines L1 and L2 through O,

xA D ıx.A/ and xB D ıx.B/.

Theorem REAL.40. Let P be a Euclidean/LUB plane, and let O be a point (the

origin) on P . Suppose that L1 and L2 are distinct lines which intersect at the point

O, their common origin, and that each has been built into an ordered field, with

units U1 and U2, respectively. Let � be the rotation with fixed point O such that
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�.U1/ 2 qy !
OU2, and let A 2 qy !

OU1 and B 2 qy !
OU2 be two points such that �.A/ D B.

Then for any rational number r D m
n > 0, �.rA/ D rB and

px qy

OrA Š px qy

OrB.

Proof. (I) We prove that for any natural number n, �.nA/ D nB D n�.A/, so that
px qy

OnA Š px qy

OnB. This is trivially true for n D 1 because �.A/ D B. Suppose we

have proved it for n. By Definition QX.1(C), .nC1/A D nACA and .nC1/B D
nB C B. Then

px qy

O.nC 1/A D px qy

O.nAC A/ and
px qy

O.nC 1/B D px qy

O.nBC B/. By

Corollary OF.18,
px qy

O.nAC A/ Š px qy

O.nBC B/ since
px qy

OnA Š px qy

OnB and
px qy

OA Š px qy

OB.

Then
px qy

O.nBC B/ Š px qy

O.nAC A/ Š px qy

O�.nAC A/, and since both �.nA C A/

and nB C B are members of
qy !
OU2, �.nA C A/ D nB C B by Property R.4 of

Definition NEUT.2. This proves (I) by induction.

(II) Next we show from �.A/ D B, that �. 1n A/ D 1
n B. For if �. 1n A/ ¤ 1

n B, by

Theorem ORD.5 (Trichotomy) either �. 1n A/ < 1
n B or �. 1n A/ > 1

n B.

Assume that �. 1n A/ < 1
n B. Claim: for every natural number m, �.m

n A/ <
m
n B. This is true by assumption for m D 1. Assume we have proved it for

m. Applying (I) to 1
n A and using Theorem OF.11(C) and our assumption that

�. 1n A/ < 1
n B,

�.mC1
n A/ D �..mC 1/ 1n A/ D .mC 1/�. 1n A/ < .mC 1/ 1n B D mC1

n B.

This proves the claim. The claim holds, in particular for m D n, so that �.A/ D
�. n

n A/ < n
n B D B, contradicting our original assumption that �.A/ D B.

By similar methods, a contradiction follows also from the other alternative.

Therefore �. 1n A/ D 1
n B, and

px qy

O�. 1n A/ Š
px qy

O 1
n B.

(III) It follows from (I) and (II) above, that if �.A/ D B, for any rational number

r D m
n > 0, �.rA/ D rB and

px qy

OrA Š px qy

OrB. ut
Theorem REAL.41. Assume the hypotheses of Theorem REAL.20. As in that

theorem, let � be the rotation with fixed point O such that �.U1/ 2 qy !
OU2, and let

A 2 qy !
OU1 and B 2 qy !

OU2 be such that �.A/ D B. Then for any real number x,

�.xA/ D xB, so that
px qy

OxA Š px qy

O�.xA/ D px qy

OxB.

Proof. (Case 1: x > 0.) We consider only irrational x, since for rational x the result

is already proved by Theorem REAL.40. Let

E1 D frA j r 2 Q and 0 < r < xg, and

E2 D frB j r 2 Q and 0 < r < xg.
By Definition REAL.19(A)(3), xA D lub E1 and xB D lub E2. By Theo-

rem REAL.40, for every rational r > 0, �.rA/ D rB, and therefore �.E1/ D E2.
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Suppose Y is any upper bound for �.E1/ D E2, that is, for every rational r

with 0 < r < x, Y > �.rA/ > O. Now � and ��1 are isometries, so by

Theorem NEUT.15, each is a belineation; hence by Theorem ORD.6, ��1.Y/ >
��1.�.rA// D rA > O. It follows that ��1.Y/ is an upper bound for E1 and therefore

��1.Y/ � lub E1. By definition of least upper bound, ��1.lub E2/ � lub E1.
By a similar argument, if X is an upper bound for E1, �.X/ is an upper bound for

E2 and thus �.X/ � lub E2, hence �.lub E1/ � lub E2.
It follows that �.lub E1/ D lub E2, that is, �.xA/ D xB.

(Case 2: x < 0.) Then �x > 0 and by Case 1, �..�x/A/ D .�x/B. By

Theorem REAL.21(A) this is �.�xA/ D �xB. By Theorem OF.10(A), �.xA/ D
RO.xA/ and �.xB/ D RO.xB/. Because rotations commute, we have RO.�.xA// D
�.RO.xA// D �.�.xA// D �xB D RO.xB/, and applying RO to both sides, we

have �.xA/ D xB. Since � is an isometry,
px qy

O.xA/ Š px qy

O.xB/. ut

Theorem REAL.42. Let P be a Euclidean/LUB plane, and let O be a point (the

origin) on P . Let A and B be points of P such that A, B, and O are noncollinear, and

suppose that
 !
OA D L1 and

 !
OB D L2 have been built into ordered fields with units

U1 and U2, respectively. Suppose further that ıx is the dilation of Definition REAL.38

such that for all T 2 L1, ıx.T/ D xT. Then ıx.A/ D xA iff ıx.B/ D xB.

Proof. By Theorem REAL.37, if ıx.A/ D xA then ıx.U1/ D xU1. Let � be

the rotation about O such that �.U1/ 2 qy !
OU2, and let C D �.U1/. Then by

Theorem REAL.41 and the commutativity of dilations and rotations (Theorem

DLN.7(E)),

xC D �.xU1/ D �.ıx.U1// D ıx.�.U1// D ıx.C/

and again by Theorem REAL.37, for every B 2 L2, ıx.B/ D xB. Thus if ıx.A/ D xA

then ıx.B/ D xB. The converse follows from reversing the roles of A and B. This

establishes that multiplication by a real number x on the plane is implemented by a

single dilation ıx for all points on the plane. ut
Remark REAL.43. Finally, we make an important connection between free seg-

ments and real numbers. Let P be a Euclidean/LUB plane, and let L be a line in

P which has been built into an ordered field and identified with R, the set of real

numbers. If O is the origin and U the unit of L, and if A D aU and B D bU are

points of L such that a and b are both positive, then the following are true.

(A) Œ
px qy

O.aU/ � C Œpx qy

O.bU/ � D Œ
px qy

O.aU C bU/ � D Œ
px qy

O..aC b/U/ � by Theorem OF.17

and Theorem REAL.31.
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(B) Œ
px qy

O.aU/ � � Œpx qy

O.bU/ � D Œpx qy

O..aU/.bU// � D Œpx qy

O..ab/U/ � by Definition SIM.7 and

Theorems REAL.23 and REAL.25.

(C) By part (B) Œ
px qy

O.aU/ � � Œ
px qy

O. 1a U/ � D Œ
px qy

O.a 1a /U � D Œ
px qy

OU � so that Œ
px qy

O. 1a U/ � D
Œ
px qy

O.aU/ ��1. Then by Definition SIM.12,

Œ
px qy

O.aU/ �

Œ
px qy

O.bU/ �
D Œpx qy

O.aU/ � � Œ
px qy

O. 1b U/ � D Œ
px qy

O..a 1b /U/ � D Œ
px qy

O. a
b U/ �.

18.4 Coordinatizing the plane

So far in this chapter we have shown how to assign a real number to each point on

a line in a Euclidean/LUB plane; this could be called coordinatizing the line. Now

we go one step farther: we coordinatize the Euclidean plane, assigning to each point

on it a pair .a; b/ of numbers. It would be possible to coordinatize Euclidean space,

assigning to each point a triple .a; b; c/ of real numbers, but we do not pursue this.

Our treatment is necessarily somewhat sketchy, and we rely on the reader’s prior

familiarity with vector spaces, in particular with the vector space consisting of

ordered pairs .a; b/ of real numbers—that is, the coordinate plane. A summary of

these matters is found in Chapter 1, Section 1.5; the reader who desires more detail

may wish to consult the supplementary material online which may be accessed from

the home page for this book at www.springer.com.

Here we shall use the acronym “RR” to suggest the coordinate plane, consisting

of the Cartesian product of the real line with itself. We also remind the reader that

we have abandoned the symbols˚,	, andˇ in favor of the ordinaryC, �, and “�”
or juxtaposition, and will use the same symbols for operations on both points and

real numbers.

Definition RR.1. (A) For each A 2 P n fOg, define �A to be the translation of P
such that �A.O/ D A. Theorem ISM.5 says that such a translation exists and is

unique.

(B) Define �O D {, the identity.

(C) For any A and B in P , define

AC B D .�B ı �A/.O/ D �B.�A.O// D �B.A/.

The operationC is called addition and AC B is the sum of A and B.

www.springer.com
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Remark RR.2. (A) The operation C from Definition RR.1 applied to points on a

line L through O is identical to the operation ˚ from Definition OF.1(A) and

(C). It is quite easy to see (from Theorem ISM.8(A)) that the Euclidean/LUB

plane P is an abelian group under the operation C.

(B) It is also easy to see, from Exercise ISM.2, that if O, A, and B are noncollinear

points, then ACB is the fourth corner of the parallelogram whose other corners

are O, A, and B.

(C) The translation �A not only maps O to A but also maps B to A C B, and

�A�B.B/ D .A � B/C B D A so �A�B maps B to A.

(D) If A and B are any two points, then ��B.B/ D O and ��B.A/ D A � B. By

Theorem NEUT.15(5) (since ��B is an isometry) ��B.
px qy

AB/ D px qy

.A � B/O and

hence
px qy

AB Š px qy

O.A � B/.

(E) Since the line L D  !OA is built into an ordered field using the machinery of

Chapter 14, by Theorem OF.10(A), for each A 2 P , �A D RO.A/. Hence for

any A, RO.
px qy

OA/ D px qy

ORO.A/ D
px qy

O.�A/. It follows that
px qy

AB Š px qy

O.A � B/ Š
px qy

O.B � A/.

Definition RR.3. For every point A 2 P , and every real number x, define xA as in

Definition REAL.19, where the line
 !
OA has been built into an ordered field. xA is

called the scalar product of x and A, and the number x is called a scalar.

Theorem RR.4. (A) For every A 2 P n fOg, !OA D fxA 2 P j x 2 Rg. That is,

every line through the origin is the set of all scalar multiples of any point in

that line which is distinct from O.

Moreover, if A and B are any points in P and x and y are any real numbers,

(B) x.yA/ D .xy/A (scalar multiplication is associative)

(C) x.A C B/ D xA C xB (scalar multiplication is distributive with respect to

addition of points)

(D) .xCy/A D xACyA (scalar multiplication is distributive with respect to addition

of scalars)

(E) 1A D A, and

(F) xA D O iff x D 0 or A D O.

Proof. The proof is Exercise RR.2. ut
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Remark RR.5. The above result, together with our previous observation that P
forms an abelian group under “C”, shows that P forms a vector space over the

field R of real numbers, when equipped with the addition and scalar multiplication

operations specified in Definitions RR.1 and RR.3.

Theorem RR.6. Let P be a Euclidean/LUB plane, and let O be its origin. Let L1
and L2 be lines in P such that L1 \ L2 D fOg and L1 ? L2. Let U1 2 L1 and

U2 2 L2 be points (distinct from O) chosen so that '.U1/ D U2, where ' is the

angle reflection for †U1OU2.1

Using the machinery of Chapter 14 (OF) and the earlier part of this chapter

(REAL), build each of the lines L1 and L2 into an ordered field which is isomorphic

to R, the set of all real numbers, with U1 and U2, respectively, as their units, so that

U1 and U2 correspond to the real number 1 under their respective isomorphisms.

(A) For every A 2 P , there exist unique real numbers a and b such that A D
aU1 C bU2.

(B) aU1 C bU2 D O iff a D b D 0.

(C) If A 62 L1 [ L2, so that both a ¤ 0 and b ¤ 0,
px qy

O.aU1/ Š
px qy

.bU2/A and
px qy

O.bU2/ Š
px qy

.aU1/A.

Proof. First, note that the requirement that '.U1/ D U2 is not needed for the

algebraic proof (nor, for that matter, is the requirement that L1 ? L2). But this

is geometry, and it seems only reasonable that a reflection carrying L1 to L2 should

carry a point one unit from the origin into another such point, thus establishing the

same scale on both lines. Moreover, '.U1/ D U2 implies that
px qy

OU1 Š px qy

OU2, as

required for the development of complex numbers. For more detail, the reader may

wish to consult the Supplemental materials which may be accessed from the home

page for this book at www.springer.com.

If A is any point on P , by Axiom PS there exists a unique line M1 containing the

point A such that either M1 D L1 (in case A 2 L1) or M1 k L1; and there exists a

unique line M2 such that either M2 D L2 (in case A 2 L2) or M2 k L2.
By Exercise I.1, M1 intersects L2 in exactly one point, which we shall call A2,

and M2 intersects L1 in exactly one point which we call A1. By Theorem REAL.35,

there exists a unique real number a such that A1 D aU1 and a unique real number

b such that A2 D bU2. Since A uniquely determines M1 and M2, and these lines

1The existence of ' is guaranteed by Property R.5 of Definition NEUT.2 and Axiom REF.

www.springer.com
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uniquely determine the points A1 and A2, which in turn uniquely determine a and b,

a and b are uniquely determined by A.

Moreover, A 2 L1 iff A2 D O iff b D 0, in which case

A D A1 C O D A1 C A2 D aU1 C bU2;

A 2 L2 iff A1 D O iff a D 0, in which case

A D OC A2 D A1 C A2 D aU1 C bU2;

and A D O iff A 2 L1 \ L2 iff a D b D 0, and again in this case

A D OC O D aU1 C bU2.

If A 2 P n .L1 [ L2/, by Theorem RR.4, aU1 C bU2 is the fourth corner of

the parallelogram of which O, aU1, bU2 are the other three corners. Since M1

contains the point A2 and M2 contains the point A1 and are parallel to L1 and

L2, respectively, they are the same, respectively, as the sides
 ������������!
.aU2/.aU1 C bU2/

and
 ������������!
.aU1/.aU1 C bU2/ of this parallelogram. Since both M1 and M2 contain A,

A D aU1 C bU2. This completes the proof of parts (A) and (B).

(C) The quadrilateral tuO.aU1/A.bU2/ is a parallelogram because M1 k L1 and

M2 k L2. The result follows from Theorem EUC.12(A). ut
Definition RR.7. (A) In Theorem RR.6, the two units U1 and U2, together with

their lines L1 and L2 will be referred to as a coordinatization of P . L1 and L2

are the axes of this coordinatization, and O is its origin.

(B) For every A 2 P , by Theorem RR.6(A) there exist unique real numbers a and

b such that A D aU1 C bU2. For each such A 2 P , define 
.A/ D 
.aU1 C
bU2/ D .a; b/. This mapping is called the coordinatization map belonging to

the coordinatization .U1;U2/ (cf part (A)).

Remark RR.8. It is a fairly routine matter to verify that the mapping 
 defined just

above is a (vector space) isomorphism of P onto

R � R D f.a; b/ j a and b are both members of Rg,
that is, onto R

2, the Cartesian product of R and R (cf Chapter 1 Section 1.3).

Definition RR.9. For any point .a; b/ 2 R
2, we will refer to a as the first

coordinate of .a; b/, and to b as its second coordinate. The point .0; 0/ is the

origin.

Remark RR.10. It is customary, when visualizing points of the plane, to show the

first coordinate on the horizontal axis (commonly called the x-axis), with positive

numbers to the right of the origin; and the second coordinate on the vertical

axis (commonly called the y-axis), with positive numbers above the origin. This
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visualization yields what is termed a right-handed system. Then the rotation � of

P such that �.
qy !
OU1/ D qy !

OU2 is counterclockwise.

At this point, we have established the identity of the Euclidean/LUB plane with

the well-known coordinate plane, and we are free to invoke notions such as slope

of a line and generally to indulge in what is called “analytic” geometry. Linear

transformations (as well as affine mappings) on the plane may be characterized

using matrices, and determinants may be used to study their properties. Several

interesting results relating affine mappings, collineations, and isometries are set

forth in the Supplementary materials, which may be accessed from the home page

for this book at www.springer.com.

18.5 Exercises for real numbers and the coordinate plane

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise REAL.1�. Let A, B, C, and D be points on the Euclidean plane P such

that A ¤ B and C ¤ D. Then there exists a natural number n such that Œ
px qy

AB �

2n < Œ
px qy

CD �.

Note: in the following exercises REAL.2 through REAL.9, P will denote a

Euclidean/LUB plane and L will be a line in P having origin O and unit U.

Exercise REAL.2�. If T and V are positive members of L, there exists a natural

number n such that 1n T < V .

Exercise REAL.3�. If T is a positive member of L, fs j s 2 Q and sU < Tg is

bounded above.

Exercise REAL.4�. Prove Lemma REAL.24: if E is a subset of L which is

bounded above, and T > O is a member of L, then .lub E/ˇ T D lub.E ˇ T/.

Exercise REAL.5�. Prove Lemma REAL.24: let S be a subset of L which is

bounded above, and suppose A is an upper bound for S . Then A D lub S iff the

following property holds: for every � > O in L, there exists x 2 L such that

x > A	 �.
Exercise REAL.6�. Complete the proof of Case 4 of Theorem REAL.23: let S >

O be a member of L. Then if x < 0 and y > 0 are irrational numbers, x.yS/ D .xy/S.

www.springer.com
www.springer.com
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Exercise REAL.7�. Complete the proof of Theorem REAL.25, Case 3: let S < O

and T > O be members of L. If x is an irrational number, then .xS/ˇT D x.SˇT/.

Exercise REAL.8�. Complete the proof of Case 5 of Theorem REAL.31: let x < 0

and y < 0 be irrational numbers, and let H be any member of L; then .xC y/H D
xH ˚ yH.

Exercise REAL.9 (Alternative proof of Theorem REAL.32)�. Let x be any real

number, and let S and T be members of L. Prove, using Definition REAL.19 and

other theorems from this chapter and previous ones, including Theorem REAL.21,

that x.S˚ T/ D xS˚ xT .

Exercise RR.1�. Complete the computations necessary to prove Remark RR.2(A)

from Theorem ISM.8(A), that is, show that P is an abelian group under the

operation C.

Exercise RR.2�. Prove Theorem RR.4: (A) For every A 2 P n fOg, !OA D fxA 2
P j x 2 Rg. That is, every line through the origin is the set of all scalar multiples of

any point in that line which is distinct from O.

Moreover, if A and B are any points in P and x and y are any real numbers, (B)

x.yA/ D .xy/A, (C) x.ACB/ D xAC xB, (D) .xC y/A D xAC yA, (E) 1A D A, (F)

xA D O iff x D 0 or A D O (or both).



Chapter 19
Belineations on a Euclidean/LUB Plane (AA)

Acronym: AA

Dependencies: all prior Chapters 1 through 18

New Axioms: none

New Terms Defined: set of midpoints generated by a segment

Abstract: This brief chapter shows that on a Euclidean/LUB plane, any non-identity

belineation which has more than one fixed point and is not the identity, is an axial

affinity; it concludes with a classification of belineations. To prove the main result

of this chapter we need Axiom LUB; this explains its placement after the chapter on

real numbers.

19.1 Belineations with two fixed points are axial affinities

Theorem AA.1. Let P be a Euclidean/LUB plane, L be an ordered field on P with

origin O and unit U. If A and B are members of L such that A < B, for every

integer n let An D A C n.B � A/, so that A0 D A, A1 D B, A�1 D A � .B � A/,

A2 D AC 2.B � A/, A�2 D A � 2.B � A/, etc.

Let J D fAn j n is an integerg D f: : : ;A�2;A�1;A0;A1;A2; : : :g.
(1) If m and n are distinct integers, m < n iff Am < An.

(2) If n is any integer, then X 2 qy px

An�1An iff An�1 < X < An.

(3) For every integer n,
px qy

An�1An \ px qy

AnAnC1 D fAng.
(4) For all integers m and n,

px qy

AmAmC1 Š px qy

AnAnC1.

© Springer International Publishing Switzerland 2015
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(5) For all integers m and n such that mC 1 < n,
px qy

AmAmC1 \ px qy

AnAnC1 D ;.
(6) Every member of J is the midpoint of a segment whose endpoints belong to J.

In particular, An is the midpoint of the segment
px qy

An�1AnC1.
(7) For every natural number n,

nS
kD1

px qy

Ak�1Ak D px qy

A0An and
nS

kD1
px qy

A�kC1A�k D px qy

A0A�n.

Proof. (1) Am < An iff AC m.B � A/ < AC n.B � A/ iff m < n.

(2) Follows immediately from Theorem ORD.7.

(3) Follows immediately from the observation that An is a member of both

segments, and if X 2 px px

An�1An and Y 2 qy qy

AnAnC1 then X < An < Y .

(4) For all integers n,

AnC1 � An D AC .nC 1/.B � A/ � .AC n.B � A//

D AC .nC 1/.B � A/ � A � n.B � A// D B � A,

so that by Theorem OF.15(B),
px qy

AmAmC1 Š px qy

AB Š px qy

AnAnC1.
(5) If X 2 px qy

AmAmC1 and Y 2 px qy

AnAnC1, then X � AmC1 < An � Y , showing that these

two segments are disjoint.

(6) By Theorem QX.18,
1
2
.An�1 C AnC1/ D 1

2
.AC .n � 1/.B � A/C AC .nC 1/.B � A//

D 1
2
.2AC ..n � 1/C .nC 1//.B � A//

D 1
2
.2AC 2n.B � A//

D 1
2
.2.AC n.B � A/// D AC n.B � A/ D An

is the midpoint of the segment
px qy

An�1AnC1.
(7) We use induction on n. Both equalities are trivially true for n D 1. Assume that

the equalities are true for any natural number n. Then
nC1S
kD1

px qy

Ak�1Ak D
nS

kD1
px qy

Ak�1Ak [ px qy

AnAnC1

D px qy

A0An[ px qy

AnAnC1 D px qy

A0AnC1,
and

nC1S
kD1

px qy

A�.k�1/A�k D
nS

kD1
px qy

A�.k�1/A�k [ px qy

A�nA�.nC1/

D px qy

A0A�n [ px qy

A�nA�.nC1/ D px qy

A0A�.nC1/.
Hence statement (7) holds for every natural number n. ut

Theorem AA.2. Let L be an ordered field on a Euclidean/LUB plane P with origin

O and unit U, and suppose A and B are members of L such that A < B. Let

E D fAC m
2n .B � A/ j m is an integer and n is a natural numberg.
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As in Theorem AA.1, for every integer n let An D AC n.B� A/, and let J D fAn j n
is an integerg. Then E has the following properties:

(1) J � E.

(2) Every member of E is the midpoint of a segment whose endpoints belong to E.

(3) If T1 and T2 are members of E such that T1 < T2, then the midpoint of
px qy

T1T2
belongs to E.

(4) A is the midpoint of
px qy

.AC m
2n .B � A//.A � m

2n .B � A//. and thus E is symmetric

with respect to A. Moreover, RA.AC m
2n .B � A// D A � m

2n .B � A/, where RA

is the point reflection about A.

Proof. (1) For every integer n, An D AC n
20
.B � A/

(2) Let m be any integer and let n be any natural number. Since

AC m
2n .B � A/ D 1

2
.AC m�1

2n .B � A/C AC mC1
2n .B � A//,

by Theorem QX.18 AC m
2n .B � A/ is the midpoint of

px qy

.AC m�1
2n .B � A//.AC mC1

2n .B � A//.

(3) There exist integers m1 and m2 and there exist natural numbers n1 and n2 such

that T1 D AC m1
2n1 .B � A/ and T2 D AC m2

2n2 .B � A/. By Theorem QX.18 the

midpoint of
px qy

T1T2 is

H D 1
2
.AC m1

2n1 .B � A/C AC m2
2n2 .B � A// D AC m12n2Cm22n1

2n1Cn2
.B � A/.

Since m12
n2Cm22

n1 is an integer and n1Cn2 is a natural number, H is a member

of E.

(4) By Theorem QX.18 the midpoint of
px qy

.AC m
2n .B � A//.AC �m

2n .B � A//

is 1
2

�
A C m

2n .B � A/ C A � m
2n .B � A/

� D A. Let AC D A C m
2n .B � A/ and

A� D A � m
2n .B � A/. Then by Definition NEUT.3(C)

px qy

AAC Š px qy

AA� and .A�/ A AC.

By Theorem ROT.3, the point reflection RA maps AC to a point Y such

that
px qy

AAC Š px qy

AY and .AC/ A Y . Thus Y 2 qy !
AA� and by Property R.4 of

Definition NEUT.2, Y D A�. Therefore RA.AC/ D A� as required. ut
Definition AA.3. The set E of Theorem AA.2 is the set of midpoints generated

by
px qy

AB.

Theorem AA.4. Let L be an ordered field on a Euclidean/LUB plane P with origin

O and unit U, and suppose A and B are members of L such that A < B. As in
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Theorem AA.1, for every integer n let An D A C n.B � A/, and let J D fAn j n is

an integerg. If ' is a belineation of P such that A and B are fixed points of ', then

every member of J is a fixed point of '.

Proof. We use mathematical induction. Let T1 D fA�1;A0;A1g, and for every

natural number n > 1 let Tn D fA�n;Ang [ Tn�1. Since A0 D A and A1 D B

are fixed points of ', and since by Theorem AA.1(6), A0 is the midpoint of
px qy

A�1A1,
by Corollary EUC.17.3, A�1 is a fixed point, hence every member of T1 is a fixed

point of '.

Assume that we have shown that every member of Tn�1 is a fixed point of '.

Then again by Theorem AA.1(6), A�.n�1/ is the midpoint of
px qy

A�nA�.n�2/ and An�1 is

the midpoint of
px qy

AnAn�2, so that by Corollary EUC.17.3, A�n and An are both fixed

points, and every member of Tn is a fixed point of '. Since J is the union of all the

sets Tn, every member of J is a fixed point of '. ut

Theorem AA.5. Let L be an ordered field on a Euclidean/LUB plane P with origin

O and unit U. Let A < B be fixed points of a belineation ' of P . As in Theorem AA.2

let E D fA C m
2n .B � A/ j m is an integer and n is a natural numberg. Then every

member of E is a fixed point of '.

Proof. For every natural number n let

Fn D fAC m
2n�1 .B � A/ j m is an integerg.

By Theorem AA.4 every member of F1 is a fixed point of '. Assume now that we

have proved that every member of Fn is a fixed point of '. By Corollary EUC.17.2,

the midpoint of
px qy

.AC m
2n�1 .B � A//.AC mC1

2n�1 .B � A//

is a fixed point of '. By Theorem QX.18 that midpoint is AC 2mC1
2n .B � A/, so all

points of this form are fixed points.

Now FnC1 D fAC k
2n .B�A/ j k 2 Zg, (Z is the set of all integers) where k is either

even or odd, that is, for some integer m, k D 2m or k D 2m C 1. If k D 2m, then

AC 2m
2n .B�A/ D AC m

2n�1 .B�A/ 2 Fn. Thus FnC1 D Fn[fAC 2mC1
2n .B�A/ j m 2 Zg.

We know already that every member of Fn is a fixed point, so every member of

FnC1 is a fixed point of '. By mathematical induction, this shows that for all natural

numbers n, every member of Fn is a fixed point. Since E D S
n2N

Fn, every member

of E is a fixed point of '. ut
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Theorem AA.6. Let L be an ordered field on a Euclidean/LUB plane P with origin

O and unit U, and suppose A and B are members of L such that A < B. As in

Theorem AA.1, for every integer n let An D AC n.B � A/. Then
S

n2Z
px qy

An�1An D !AB.

Proof. Let T 2  !AB. By Theorem IB.5 either T 2 px!
AB or T A B.

(I) If T 2 px!
AB either T D A or by Theorem ORD.7, T > A. In this latter case, both

T �A > O and B�A > O so by the Archimedean property Theorem REAL.9,

there exists a natural number n such that n.B � A/ > T � A. Thus A0 D A <

T < AC n.B � A/ D An, and by Theorem AA.1(7) T 2 px qy

A0An D
nS

kD1
px qy

Ak�1Ak.

Therefore, for some integer k, T 2 px qy

Ak�1Ak.

(II) If T A B by Theorem ORD.6 T < A. Then both A � T > O and B � A >

O so by the Archimedean property, there exists a natural number n such that

n.B � A/ > A � T , or �n.B � A/ < T � A. Then

A0 D A > T > A � n.B � A/ D A�n,

and by Theorem AA.1(7)

T 2 px qy

A0A�n D
nS

kD1
px qy

A�kC1A�k.

Then for some natural number k, T 2 px qy

A�kC1A�k, and if we let l D �kC 1, we

have T 2 px qy

AlAl�1 D px qy

Al�1Al, where l is an integer. ThereforeS
n2Z

px qy

An�1An D !AB. ut

Theorem AA.7. Let P be a Euclidean/LUB plane, L be an ordered field on P with

origin O and unit U. As in Theorem AA.1, for every integer k let Ak D AC k.B�A/,

and as in Theorem AA.2 let E D fAC m
2n .B�A/ j m is an integer and n is a natural

numberg. Let T1 < T2 be members of L. Then there exist members V1, V2, and V3 of

the set E such that V1 < T1 < V2 < T2 < V3.

Proof. (I) Existence of V1 and V3. By Theorem AA.6, for some integers k and l

with k � l, T1 2 px qy

Ak�1Ak and T2 2 px qy

Al�1Al. Let V1 D Ak�2 and V3 D AlC1. Then

V1 D Ak�2 < T1 < T2 < AlC1 D V3 and both V1 and V3 belong to E.

(II) Existence of V2.

(Case 1: there is no integer k such that both T1 and T2 belong to
px qy

Ak�1Ak.)

Then for some integers k and l, T1 2 px qy

Ak�1Ak, T2 2 px qy

Al�1Al, and k < l. If

k C 1 D l, neither T1 nor T2 can belong to
px qy

Ak�1Ak \ px qy

Al�1Al because then both

would belong to the same segment, either
px qy

Ak�1Ak or
px qy

Al�1Al. Let V2 D Vk. Then

T1 < V2 < T2, and V2 2 E.
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(Case 2: there exists an integer k such that both T1 and T2 belong to
px qy

Ak�1Ak.)

Then T2 � T1 � Ak � Ak�1 D B � A. By Theorem REAL.9 (Archimedean

property) choose n so that 2n.T2 � T1/ > n.T2 � T1/ > B � A, so that

0 < 1
2n .B � A/ < T2 � T1 < Ak � Ak�1 D B � A.

Then Ak�1 C 1
2n .B � A/ < Ak and 1

2n .B � A/ < T2 � T1.

(Subcase A: T1 D Ak�1.) Then

T1 < T1 C 1
2n .B � A/ < T1 C .T2 � T1/ D T2.

Choose V2 D Ak�1 C 1
2n .B � A/. Then V2 2 E and T1 < V2 < T2.

(Subcase B: T2 D Ak.) Choose V2 D Ak � 1
2n .B� A/, so that V2 < Ak. Then

T2 � V2 D T2 � .T2 � 1
2n .B � A// D 1

2n .B � A/ < T2 � T1
so �V2 < �T1, that is V2 > T1. Then V2 2 E and T1 < V2 < T2.

(Subcase C: T1 > Ak�1 and T2 < Ak.) Then since

Ak�1 C 2n

2n .B � A/ D Ak�1 C .B � A/ D Ak > T1,

there exists a smallest natural number m such that Ak�1 C m
2n .B � A/ > T1.

Choose V2 D Ak�1 C m
2n .B � A/, so that V2 > T1.

Claim: V2 < T2. Otherwise, V2 � T2, and

Ak�1 C m�1
2n .B � A/ D .Ak�1 C m

2n .B � A// � 1
2n .B � A/

D V2 � 1
2n .B � A/

� T2 � 1
2n .B � A/ > T2 � .T2 � T1/ D T1

(since 1
2n .B � A/ < T2 � T1). Thus m is not the smallest integer such that

Ak�1 C m
2n .B � A/ > T1, a contradiction. Thus V2 2 E and T1 < V2 < T2. ut

Theorem AA.8. Let P be a Euclidean/LUB plane and let ' be a belineation of P
such that ' has distinct fixed points A and B and ' is not the identity of P . Then '

is an axial affinity of P with axis
 !
AB.

Proof. Using Chapters 14 (ordered fields) and 18 (real numbers), build
 !
AB D L

into an ordered field where A < B. Assume there exists a point X on L which

is not a fixed point of '. Then X ¤ '.X/, and either X < '.X/ or '.X/ < X.

In the first case, use Theorem AA.7 to choose V1 and V2, both fixed points for

', so that V1 < X < V2 < '.X/; in the second case, choose V1 and V2 so that

'.X/ < V2 < X < V1. By Theorem ORD.6, in either case we have V1 X V2 '.X/.

Since ' is a belineation (it preserves betweenness), '.V1/ '.X/ '.V2/; since

V1 and V2 are fixed points for ', this becomes V1 '.X/ V2. By the trichotomy

property for betweenness (Definition IB.1 Property B.2), this is a contradiction to

V1 X V2 '.X/.
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Therefore every point of L is a fixed point for ', and by Definition CAP.25 ' is

an axial affinity with axis L. ut
Theorem AA.9. Let P be a Euclidean/LUB plane and let ' be a belineation of P
which has three noncollinear fixed points. Then ' D { (the identity mapping of P).

Proof. Let A, B, and C be noncollinear fixed points of '. By Theorem AA.8 every

point on
 !
AB is a fixed point of '. Since by Theorem COBE.2 every belineation is a

collineation, we may apply Exercise CAP.3 to get ' D {. ut
Theorem AA.10. Let P be a Euclidean/LUB plane. If ˛ and ˇ are belineations

of P and if A, B, and C are noncollinear points on P such that ˛.A/ D ˇ.A/,

˛.B/ D ˇ.B/, and ˛.C/ D ˇ.C/, then ˛ D ˇ.

Proof. By Theorem COBE.3 ˇ�1 is a belineation; therefore ˛ıˇ�1 is a belineation.

Moreover .˛ ı ˇ�1/.A/ D A, .˛ ı ˇ�1/.B/ D B, and .˛ ı ˇ�1/.C/ D C. By

Theorem AA.9 ˛ ı ˇ�1 D {, but that means ˛ D ˇ. ut
Theorems AA.9 and AA.10 are generalizations (to all belineations) of Theo-

rems NEUT.24 and NEUT.25 (Chapter 8), which are valid for isometries in a neutral

plane.

Theorem AA.11. Let P be a Euclidean/LUB plane and let ' be a nonidentity

collineation of P which has distinct fixed points A and B. Then ' is an axial affinity

iff ' is a belineation.

Proof. If ' is an axial affinity, by Theorem AX.4 ' is a belineation. It is interesting

to note (but not needed for the proof) that by Theorem CAP.26, both A and B are

members of the axis of '. Conversely, if ' is a belineation, by Theorem AA.8, ' is

an axial affinity having M D !AB as its axis. ut

19.2 Summaries for belineations

Remark AA.12. We have shown a number of relationships between the princi-

pal types of belineations, namely isometries, axial affinities, dilations, and their

subcategories, and have explored their characteristics. These results are scattered

throughout the book, mainly in Chapters 3 (CAP), 8 (NEUT), 10 (ROT), 12 (ISM),

and 16 (AX). To make more of this information conveniently available in one place,
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we display it here in a way that we hope is helpful. The following theorems are

needed to justify the diagram below.

Theorem AA.13. A nonidentity belineation ˛ on a Euclidean/LUB plane P is a

line reflection iff it is a stretch and an isometry.

Proof. Suppose ˛ is a line reflection with axis M; by Remark NEUT.1.5 it is a

belineation; if Q 62 M, by Theorem NEUT.22
 ��!
Q˛.Q/ is a fixed line intersecting

M, so by Definition AX.0, ˛ is a stretch. By Definition NEUT.3 it is an isometry.

Conversely, suppose ˛ is a stretch and an isometry; since it is not the identity,

by Theorem ISM.17 it must be either a rotation, translation, glide reflection, or a

line reflection. The first three of these have either one or no fixed point; since ˛ is a

stretch, it has a whole line of fixed points, so these options are ruled out. The only

choice left is a line reflection. ut
Theorem AA.14. A nonidentity belineation ˛ on a Euclidean/LUB plane P is a

point reflection about a point O iff it is a rotation about O and a dilation with fixed

point O.

Proof. Let ˛ be a point reflection about O. By Definition ROT.1, ˛ is a rotation

about O. By Theorem ISM.3(C) ˛ is a dilation with fixed point O.

Conversely, suppose ˛ is a dilation and a rotation (both with fixed point O).

Since ˛ is a dilation, by Theorem CAP.18 every line containing O is a fixed line. By

Theorem ROT.19, a rotation with a fixed line is a point reflection. Therefore ˛ is a

point reflection. ut
Remark AA.15 (Justification for Figure 19.1). Throughout we assume that all

mappings are nonidentity belineations of a Euclidean/LUB plane.

(A) By Theorem ISM.17, an isometry is one of the following types:

(1) a line reflection: by Definition NEUT.1 this is an axial affinity, having a

line M of fixed points.

(2) a rotation: by Theorem ROT.2 this has exactly one fixed point.

(3) a translation or a glide reflection: these have no fixed point, by Defini-

tion CAP.6 and Theorem ISM.13.

(B) By Definition CAP.17 and Theorem CAP.18, a dilation has exactly one fixed

point.
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(C) By Definition CAP.25, an axial affinity has a line M (its axis) of fixed points;

by Theorem AX.3 this is either a stretch or a shear.

(D) By Theorem AA.13 the set of all line reflections is the intersection of the set

of all stretches and the set of all isometries.

(E) By Theorem AA.14 the set of all point reflections about a point O is the

intersection of the set of rotations about O and the set of dilations with fixed

point O.

Figure 19.1 illustrates these relationships with a Venn diagram; the bold boxes

represent the sets of isometries, axial affinities, and dilations. Definitions NEUT.1

and NEUT.3, Theorem AX.4, and Theorem DLN.8 show that all these mappings are

belineations.

Nonidentity belineations

no fixed points one fixed point line of fixed points

isometries

dilations

axial affinities

translations
and

glide reflections

rotations

stretches shears

point
reflections

reflections
line

Fig. 19.1 Showing relationships between different types of nonidentity belineation.

Remark AA.16 (Summaries of actions of belineations). In this remark, L, N ,

and M will denote lines, and ˛ a nonidentity belineation on a Euclidean/LUB

plane P .

If ˛ is a translation:

L is fixed iff L is parallel to a fixed line (Theorem CAP.8);

L is fixed iff for some Q 2 P , L D ��!Q˛.Q/ (Theorem CAP.8); and

if L is not fixed, then ˛.L/ k L (Definition CAP.6).
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If ˛ is a glide reflection:

˛ D RL ı � where � is a translation and L is a fixed line for �

(Definition ISM.12);

L is the only fixed line (Theorem ISM.13);

if M k L, then ˛.M/ k L (Exercise ISM.8(A)); and

if M ? L, then ˛.M/ ? L (Exercise ISM.8(B)).

If ˛ is a rotation, not a point reflection:

there is exactly one fixed point O (Theorem ROT.2);

thus if O 2 L then O 2 ˛.L/; and

there are no fixed lines (contrapositive of Theorem ROT.19(A)).

If ˛ is a dilation:

there is exactly one fixed point O (Theorem CAP.18(B));

if O 62 L, then ˛.L/ k L (Definition CAP.17); and

O 2 L iff L is a fixed line (Theorem CAP.20(A));

L is fixed iff for some Q 2 P n fOg, L D ��!Q˛.Q/ (Theorem CAP.20(B)).

If ˛ is a point reflection, (so is a rotation and a dilation):

its action is the same as for dilations, just above.

If ˛ is a stretch (an axial affinity):

there is a line M consisting of fixed points (Definition CAP.25);

there is a fixed line L which intersects M (Definition AX.0);

a line N ¤M is fixed iff N k L or N D L
(Theorem CAP.26(A) and (D));

a line N ¤M is fixed iff for some Q 62M, N D ��!Q˛.Q/

(Exercise AX.2); and

if L kM then ˛.L/ k ˛.M/ DM (Theorem CAP.3);

If ˛ is a line reflection (so is an isometry, an axial affinity, and a stretch):

its action is the same as for stretches, just above; and

a line N ¤M is a fixed line iff N ?M (Theorem NEUT.44).

If ˛ is a shear (an axial affinity):

there is a line M consisting of fixed points (Definition CAP.25);

a line is a fixed line iff it is parallel (or equal) to M (Definition AX.0);

and

a line N ¤M is fixed iff for some Q 62M, N D ��!Q˛.Q/

(Exercise AX.2).

There are no exercises for this chapter.



Chapter 20
Ratios of Sensed Segments (RS)

Acronym: RS

Dependencies: all prior Chapters 1 through 19

New Axioms: none

New Terms Defined: sensed segment; initial, final point, sensed length (of a sensed

segment); ratio in which X separates the points A and B

Abstract: This chapter proves two classical theorems of geometry, due to Menelaus

of Alexandria (c. 70–140) and to Giovanni Ceva (1647–1734). The proofs use the

machinery of ratios of sensed segments.

20.1 Basic theorems on sensed segments

The development in this chapter is based on that of Martin, Transformation

Geometry: An Introduction to Symmetry, Chapter 14 (Springer, 1982) [14].

Up through Remark RS.7, we assume that L is a line in a Euclidean/LUB plane

P , which has been built into a complete ordered field with origin O and unit U. A,

B, C, and D are points of L; by Corollary REAL.35.1 there exist real numbers a, b,

c, and d such that A D aU, B D bU, C D cU, and D D dU.

For Theorems RS.1 through RS.3 we add the further assumptions (together

comprising the “blanket hypotheses” for them) that L has also been equipped with

another origin O0 and another unit U0; then by Corollary REAL.35.1 there exist real

© Springer International Publishing Switzerland 2015
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
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numbers h and u such that O0 D hU and U0 D uU, and real numbers a0, b0, c0, and d0

such that A D aU D a0U0, B D bU D b0U0, C D cU D c0U0, and D D dU D d0U0.

Theorem RS.1. Under the blanket hypotheses, for any distinct points A D aU D
a0U0 and B D bU D b0U0 in L, b0 � a0 D u.b � a/.

Proof. B � A D bU � aU D .b � a/U. Also

B � A D b0U0 � a0U0 D .b0 � a0/U0 D .b0 � a0/uU

so that .b � a/U D .b0 � a0/uU and

O D .b � a/U � .b0 � a0/uU D ..b � a/ � .b0 � a0/u/U
D ..b � a/ � .b0 � a0/u/U.

By Corollary REAL.34(C), .b � a/ � .b0 � a0/u D 0 and .b � a/ D u.b0 � a0/. ut
Theorem RS.2. Under the blanket hypotheses,

px qy

OU Š px qy

O0U0 iff u � h D 1 or

u � h D �1.

Proof. U0 D O0C .U0 �O0/ D �O0.U0 �O0/. Applying ��O0 to both sides, we have

��O0.U0/ D ��O0.O0 C .U0 � O0// D ��O0.�O0.U0 � O0//
D U0 � O0 D uU � hU D .u � h/U D ıu�h.U/

where ıu�h is as in Definition REAL.38. Since ��O0 is an isometry, by Theo-

rem NEUT.15(5)

��O0.
px qy

O0U0/ D px qy

.��O0.O0//.��O0.U0// D px qy

O.��O0.U0// D
D px qy

O.U0 � O0/ D px qy

O.uU � hU/ D px qy

O.ıu�h.U//.

Thus
px qy

O0U0 Š px qy

O.ıu�h.U// since ��O0 is an isometry.

(Case 1: ıu�h.U/ 2  !OU.) If
px qy

O0U0 Š px qy

OU then
px qy

O.ıu�h.U// Š px qy

OU and by Property

R.4 of Definition NEUT.2, U D ıu�h.U/ D .u�h/U so that u�h D 1. Conversely,

if u � h D 1 then ıu�h.U/ D U and
px qy

O0U0 Š px qy

OU.

(Case 2: ıu�h.U/ 2  ����!ORO.U/.) We know that
px qy

ORO.U/ Š px qy

OU because RO is an

isometry with O as a fixed point. If
px qy

O0U0 Š px qy

OU, then
px qy

ORO.U/ Š px qy

OU Š px qy

ORO.U/ D
px qy

O.�U/,

and by Property R.4 of Definition NEUT.2, �U D .u � h/U so that u � h D �1.

Conversely, if u � h D �1 then ıu�h.U/ D �U D RO.U/ and hence, by our first

calculation,
px qy

O0U0 Š px qy

O.ıu�h.U// D
px qy

ORO.U/ Š px qy

OU.

Here we have used Corollary REAL.34(C) several times. ut
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Theorem RS.3. Under the blanket hypotheses, if A ¤ B and C ¤ D, b0 � a0
d0 � c0 D

b � a
d � c . Therefore the ratio b � a

d � c is independent of the origin and the unit chosen

for L.

Proof. By Theorem RS.1, b0 � a0
d0 � c0 D

u.b � a/
u.d � c/ D

b � a
d � c . ut

Definition RS.4. (A) A sensed segment is an ordered pair .
px qy

AB;A/ where the first

element of the pair is a closed segment
px qy

AB and the second element is one of its

endpoints, called the initial point of the segment. The other endpoint is called

the final point of the segment.

(B) We will denote the sensed segment .
px qy

AB;A/ by the symbol ŒABi.
(C) If an origin O and a unit U has been chosen for the line L D  !AB, and if

A D aU and B D bU for some real numbers a and b, then the sensed length

of ŒABi D Œ.aU/.bU/i will be the real number b � a.

Remark RS.5. Suppose A ¤ B, C ¤ D are collinear points on the plane, an origin

O and a unit U have been chosen for the line L D  !AB, and A D aU, B D bU,

C D cU, and D D dU for some real numbers a, b, c, and d. Then by Theorem RS.3

the ratio of the sensed lengths b � a
d � c is independent of the origin and the unit chosen

for L. Therefore it is legitimate to speak of the ratio b � a
d � c , so long as it is understood

that some origin and some unit have been chosen for L.

Moreover, it is quite legitimate, since their numerators and denominators are real

numbers, to multiply two such ratios and shuffle the numerators and denominators

about as we would in any other fractions; for instance,

b � a
d � c � b0 � a0

d0 � c0 D
b � a
d0 � c0 �

b0 � a0
d � c

and so forth.

Definition RS.6. If X D xU is any point on L other than A or B, x � a
b � x is called the

ratio in which X separates the points A and B.

Remark RS.7. (A) We will indulge now in a bit of what the French call “abuse of

notation.” There will be times when we don’t want to bother saying, before an

argument involving sensed segments, that an origin O and a unit U has been

chosen for the line and A D aU, B D bU, C D cU, and D D dU for some real

numbers a, b, c, and d. In such cases we may, as a notational convention, write

ŒABi when we mean b� a, and
ŒABi
ŒCDi in place of b � a

d � c . Doing so is legitimate
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because this ratio is independent of our choice of origin and unit. The ratio in

which X separates the points A and B may then be written as
ŒAXi
ŒXBi . If there

is virtue in this convention, it is that it keeps the geometric character of the

argument more clearly in view. We will use it at various places in the rest of

this chapter.

(B) Since
ŒABi
ŒCDi means b � a

d � c , several facts become apparent:

(1) Since b � a
d � c D a � b

c � d D �b � a
c � d D �a � b

d � c , we have

ŒABi
ŒCDi D

ŒBAi
ŒDCi D �

ŒABi
ŒDCi D �

ŒBAi
ŒCDi .

(2) For any X D xU, if A X B then a x b, so that either a < x < b or

b < x < a and
ŒAXi
ŒXBi D

x � a

b � x
> 0.

(3) If X A B or A B X, then x a b or a b x, that is, x < a < b, a < b < x,

x > a > b, or a > b > x. In any of these cases
ŒAXi
ŒXBi D

x � a

b � x
< 0.

(4) ŒABi�1 D
1
ŒABi, ŒABi

ŒABi D 1, and
ŒABi
ŒCDi �

ŒCDi
ŒEFi D

ŒABi
ŒEFi .

The following theorem clarifies the relationship between ratios of free

segments and ratios of sensed segments.

Theorem RS.8. Let L and M be intersecting lines in a Euclidean/LUB plane P ,

which have been built into complete ordered fields, where L has unit U and M has

unit U0. Let A, B, C, and D be points of L, and A0, B0, C0, and D0 be points of M, and

suppose that for some real numbers a, b, c, d, a0, b0, c0, and d0, A D aU, B D bU,

C D cU, and D D dU, and A0 D a0U0, B0 D b0U0, C0 D c0U0, and D0 D d0U0.

(A) If ŒABi D ŒCDi or ŒABi D ŒDCi, then Œ
px qy

AB � D Œpx qy

CD �.

(B) If
Œ
px qy

AB �

Œ
px qy

CD �
D Œ

px qy

A0B0 �

Œ
px qy

C0D0 �
, then

ŒABi
ŒCDi D

ŒA0B0i
ŒC0D0i or

ŒABi
ŒCDi D �

ŒA0B0i
ŒC0D0i .

Proof. (A) In the first instance,
px qy

AB D px qy

CD so Œ
px qy

AB � D Œ
px qy

CD �; in the second
px qy

AB D
px qy

DC Š px qy

CD so that in either case Œ
px qy

AB � D Œpx qy

CD �.

(B) Since both the hypotheses and conclusion of this part are expressed in terms

of ratios of sensed segments, it follows from Theorem RS.3 that the choice of

origin and unit is irrelevant. Thus we may, for convenience in the proof, assume

that the point of intersection of both lines is their common origin O, and that
px qy

OU Š px qy

OU0. That is, if K is the line of symmetry of †UOU0, then since RK
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is an isometry, RK.
px qy

OU/ D px qy

ORK.U/; thus
px qy

OU0 Š px qy

OU Š px qy

ORK.U/ and by

Property R.4 of Definition NEUT.2, RK.U/ D U0. By Theorem OF.15

Œ
px qy

AB � D Œpx qy

O.B � A/ � D Œpx qy

O.b � a/U � D Œpx qy

Ojb � ajU �,
Œ
px qy

CD � D Œpx qy

O.D � C/ � D Œpx qy

O.d � c/U � D Œpx qy

Ojd � cjU �,
Œ
px qy

A0B0 � D Œpx qy

O.B0 � A0/ � D Œpx qy

O.b0 � a0/U0 � D Œpx qy

Ojb0 � a0jU0 �, and

Œ
px qy

C0D0 � D Œpx qy

O.D0 � C0/ � D Œpx qy

O.d0 � c0/U0 � D Œpx qy

Ojd0 � c0jU0 �.
By Definition SIM.7, Œ

px qy

CD ��1 D Œpx qy

O.D � C/�1 � D Œ
px qy

O 1
.d�c/U � D Œ

px qy

O 1
jd�cjU �, so

that by Remark REAL.43, Theorem REAL.23, and Theorem REAL.25

Œ
px qy

AB �

Œ
px qy

CD �
D
h px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U
i

and
Œ
px qy

A0B0 �

Œ
px qy

C0D0 �
D
h px qy

O
ˇ̌̌
b0 � a0
d0 � c0

ˇ̌̌
U0
i
.

Putting this with our hypothesis,h px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U
i
D
h px qy

O
ˇ̌̌
b0 � a0
d0 � c0

ˇ̌̌
U0
i
. (*)

By Definition REAL.38 and Theorem REAL.42, define ı be the dilation

with fixed point O such that for all A

ı.A/ D
ˇ̌̌
b � a
d � c

ˇ̌̌
A.

Since K contains the point O, ı.K/ also contains O, so that Theorem DLN.17

says that ı commutes with RK, which is an isometry. Then

RK
�ˇ̌̌

b � a
d � c

ˇ̌̌
U
�
D RK.ı.U// D ı.RK.U//

D ı.U0/ D
ˇ̌̌
b � a
d � c

ˇ̌̌
U0.

By Theorem DLN.8, ı is a belineation so Theorem COBE.5(5) applies, and
px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U0 Š

px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U and

h px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U0
i
D
h px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U
i
.

Combining this with (*), we haveh px qy

O
ˇ̌̌
b � a
d � c

ˇ̌̌
U0
i
D
h px qy

O
ˇ̌̌
b0 � a0
d0 � c0

ˇ̌̌
U0
i
.

By Property R.4 of Definition NEUT.2ˇ̌̌
b � a
d � c

ˇ̌̌
U0 D

ˇ̌̌
b0 � a0
d0 � c0

ˇ̌̌
U0

and by Corollary REAL.34(C)ˇ̌̌
b � a
d � c

ˇ̌̌
D
ˇ̌̌
b0 � a0
d0 � c0

ˇ̌̌
so that b � a

d � c D b0 � a0
d0 � c0 or b � a

d � c D �b0 � a0
d0 � c0 ,

which is to say
ŒABi
ŒCDi D

ŒA0B0i
ŒC0D0i or

ŒABi
ŒCDi D �

ŒA0B0i
ŒC0D0i . ut
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Theorem RS.9. Let L1 and L2 be distinct lines on a Euclidean/LUB plane which

are built into complete ordered fields which have a common origin O and respective

units U1 and U2.

Let A1 D a1U1, B1 D b1U1, and C1 D c1U1 be distinct points on L1 and

A2 D a2U2, B2 D b2U2, and C2 D c2U2 be distinct points on L2 such that
 �!
A1A2 k �!

B1B2 k  �!C1C2; then

(0)
ŒOA1i
ŒOA2i D

ŒOB1i
ŒOB2i D

ŒOC1i
ŒOC2i , or

a1
a2
D b1

b2
D c1

c2
,

(1)
ŒA1B1i
ŒA1C1i D

ŒA2B2i
ŒA2C2i , or

b1 � a1
c1 � a1

D b2 � a2
c2 � a2

,

(2)
ŒB1A1i
ŒB1C1i D

ŒB2A2i
ŒB2C2i , or

a1 � b1
c1 � b1

D a2 � b2
c2 � b2

, and

(3)
ŒC1B1i
ŒC1A1i D

ŒC2B2i
ŒC2A2i , or

b1 � c1
a1 � c1

D b2 � c2
a2 � c2

.

Proof. Let M D par.0;
 �!
A1A2/. Without loss of generality we may assume that U1

and U2 have been chosen so that both are on the same side of M, and so that
px qy

OU1 Š
px qy

OU2. By Exercise PSH.14 both members of each of the pairs fA1;A2g, fB1;B2g, and

fC1;C2g belong to the same side of M.

By Theorem SIM.19,
Œ
px qy

OA1 �

Œ
px qy

OA2 �
D Œ

px qy

OB1 �

Œ
px qy

OB2 �
D Œ

px qy

OC1 �

Œ
px qy

OC2 �
D Œ

px qy

Oa1U1 �

Œ
px qy

Oa2U2 �
.

Let ıa2 be the dilation with fixed point O such that for all points A 2 P , ıa2 .A/ D
a2A. Again, as in the proof of Theorem RS.8 above, ıa2 is a belineation. Let RK be

the reflection over K, the line of symmetry of †U1OU2; then since
px qy

OU1 Š px qy

OU2,

RK.U2/ D U1. From Theorem DLN.17

RK.a2U2/ D RK.ıa2 .U2// D ıa2 .RK.U2// D ıa2 .U1/ D a2U1

and hence
px qy

O.a2U2/ D ıa2 .
px qy

OU2/ Š ıa2 .
px qy

OU1/ D
px qy

O.a2U1/

so that
Œ
px qy

OA1 �

Œ
px qy

OA2 �
D Œ

px qy

Oa1U1 �

Œ
px qy

Oa2U1 �
D Œpx qy

O. a1
a2

U1/ �

by Remark REAL.43. Here we have implicitly used Theorem REAL.42 by assum-

ing that the same dilation accomplishes multiplication by a2 on both lines. By

similar reasoning,

Œ
px qy

OB1 �

Œ
px qy

OB2 �
D Œ

px qy

Ob1U1 �

Œ
px qy

Ob2U1 �
D Œ

px qy

O. b1
b2

U1/ �
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and
Œ
px qy

OC1 �

Œ
px qy

OC2 �
D Œ

px qy

Oc1U1 �

Œ
px qy

Oc2U1 �
D Œpx qy

O. c1
c2

U1/ �

so that

Œ
px qy

O. a1
a2

U1/ � D Œ
px qy

O. b1
b2

U1/ � D Œ
px qy

O. c1
c2

U1/ �

and
px qy

O. a1
a2

U1/ Š
px qy

O. b1
b2

U1/ Š
px qy

O. c1
c2

U1/.

We have already noted that both members of each of the pairs fA1;A2g, fB1;B2g,
fC1;C2g, and fU1;U2g belong to the same side of M; therefore both real numbers

of each of the pairs fa1; a2g, fb1; b2g, and fc1; c2g have the same sign, hence all

their ratios are positive, and all the points a1
a2

U1,
b1
b2

U1, and c1
c2

U1 are points of
qy !
OU1. By Property R.4 of Definition NEUT.2, a1

a2
U1 D b1

b2
U1 D c1

c2
U1. Therefore

by Theorem REAL.34(C),
a1
a2
D b1

b2
D c1

c2
, proving conclusion (0).

By arithmetic,
b1
a1
D b2

a2
, hence

b1
a1
� 1 D b2

a2
� 1 and

b1 � a1
a1

D b2 � a2
a2

;

c1
a1
D c2

a2
, hence

c1
a1
� 1 D c2

a2
� 1 and

c1 � a1
a1

D c2 � a2
a2

;

c1
b1
D c2

b2
, hence

c1
b1
� 1 D c2

b2
� 1 and

c1 � b1
b1

D c2 � b2
b2

; and

b1
c1
D b2

c2
, hence

b1
c1
� 1 D b2

c2
� 1 and

b1 � c1
c1

D b2 � c2
c2

.

(1)
b1 � a1

a1
� a1

c1 � a1
D b2 � a2

a2
� a2

c2 � a2
, and

b1 � a1
c1 � a1

D b2 � a2
c2 � a2

proving

conclusion (1).

(2)
b1 � a1

a1
� b1

c1 � b1
D b2 � a2

a2
� b2

c2 � b2
; since

b1
a1
D b2

a2
,

b1 � a1
c1 � b1

D b2 � a2
c2 � b2

,

proving conclusion (2).

(3)
b1 � c1

c1
� a1

c1 � a1
D b2 � c2

c2
� a2

c2 � a2
; since

a1
c1
D a2

c2
,

b1 � c1
c1 � a1

D b2 � c2
c2 � a2

,

proving conclusion (3). ut

20.2 Theorems of Menelaus and Ceva

Menelaus of Alexandria (c. 70–140) developed spherical geometry in his only extant

work, Sphaerica. This work survived in an Arabic translation, and contains the

following theorem. The lunar crater Menelaus is named after him in recognition

of his contributions to astronomy.
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Theorem RS.10 (Menelaus). Let P be a Euclidean/LUB plane, A, B, and C be

noncollinear points on P , D, E, and F be points such that D 2 .
 !
BC n fB;Cg/,

E 2 .
 !
AC n fA;Cg/, and F 2 .

 !
AB n fA;Bg/, then D, E, and F are collinear iff

ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D �1.

Fig. 20.1 For Menelaus’
Theorem RS.10.

C E A

F
B

D

G

M

L

Proof. See Figure 20.1. We assume that the lines
 !
BC,
 !
CA, and

 !
AB have been

built into ordered fields, each having an origin and a unit, so that the previous

considerations of this chapter apply to them.

(I) If D, E, and F belong to the line L, then let M D par .A;L/. By Exercises I.1

and IP.4 M and
 !
BC intersect at a point G. Applying Theorem RS.9 to the lines !

BC and
 !
CA and to the points D, G, and C on the first of these lines, and to

the points E, A, and B on the second line,
ŒCEi
ŒEAi D

ŒCDi
ŒDGi . Applying the same

theorem to the lines
 !
BC and

 !
AB and to the points D, G, and B on the first of

these lines, and to the points A, F, B on the second line,
ŒBFi
ŒFAi D

ŒBDi
ŒDGi , that is

ŒAFi
ŒFBi D

ŒGDi
ŒDBi . By Remark RS.7 and arithmetic,

ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D

ŒGDi
ŒDBi �

ŒBDi
ŒDCi �

ŒCDi
ŒDGi D

ŒGDi
ŒDGi �

ŒBDi
ŒDBi �

ŒCDi
ŒDCi

D .�1/.�1/.�1/ D �1.

(II) If
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D �1, then

 !
EF and

 !
BC intersect at a point D0. For, if

 !
EF

and
 !
BC were parallel, then by Theorem RS.9 we would have

ŒAFi
ŒFBi D

ŒAEi
ŒECi D
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ŒEAi
ŒCEi , thus

ŒAFi
ŒFBi �

ŒCEi
ŒEAi would be equal to 1 and by our initial assumption,

ŒBDi
ŒDCi would be equal to �1. This would contradict Exercise RS.1. By part (I)

ŒAFi
ŒFBi �

ŒBD0i
ŒD0Ci �

ŒCEi
ŒEAi D

ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi .

Thus
ŒBD0i
ŒD0Ci D

ŒBDi
ŒDCi and by Exercise RS.2 D0 D D, so that D, E, and F are

collinear. ut

Remark RS.11. Giovanni Ceva (1647–1734) was an Italian mathematician who

studied geometry for most of his life. He first published Theorem RS.13 in 1678,

in his work De lineis rectis. According to Audun Holme (Geometry, Our Cultural

Heritage, 2nd ed, Springer, Heidelberg, pp. 193–194 (2010) [11]) the theorem was

proved much earlier by Yusuf Al-Mu’taman ibn Hūd, an eleventh-century king of

Zaragoza. Ceva also rediscovered and published Menelaus’ Theorem.

Definition RS.12. If A is a corner of a triangle and B and C are its other two corners

and D 2  !BC n fB;Cg, then the line
 !
AD is called a Cevian in Ceva’s honor. We shall

call the Cevian
 !
AD an interior Cevian if D 2 qy px

BC, that is B D C, and an exterior

Cevian if D 62 px qy

BC, that is D B C or B C D.

Theorem RS.13 (Ceva). Let P be a Euclidean/LUB plane, A, B, and C be

noncollinear points on P , and D, E, and F be points such that D 2 . !BC n fB;Cg/,
E 2 .

 !
AC n fA;Cg/, and F 2 .

 !
AB n fA;Bg/. Then these two statements are

equivalent:

(1)
 !
AD,
 !
BE, and

 !
CF are either concurrent or are parallel

(2)
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1.

Fig. 20.2 For Ceva’s
Theorem RS.13.

C A

B

E

D F

O
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Proof. See Figure 20.2.

(I) If
 !
AD,
 !
BE, and

 !
CF are concurrent at O, then we apply Theorem RS.10

(Menelaus) to 4ABD and points F, O, C and to 4ACD and points E, O, and

B. Thus
ŒAOi
ŒODi �

ŒBFi
ŒFAi �

ŒDCi
ŒCBi D �1 and

ŒAOi
ŒODi �

ŒCEi
ŒEAi �

ŒDBi
ŒBCi D �1

so that
� ŒAOi
ŒODi �

ŒCEi
ŒEAi �

ŒDBi
ŒBCi

�
=
� ŒAOi
ŒODi �

ŒBFi
ŒFAi �

ŒDCi
ŒCBi

�
D �1�1 D 1.

Rewriting this as a product, we have by Remark RS.7

1 D ŒAOi
ŒODi �

ŒODi
ŒAOi �

ŒCEi
ŒEAi �

ŒFAi
ŒBFi �

ŒDBi
ŒBCi �

ŒCBi
ŒDCi

D ŒCEi
ŒEAi �

ŒFAi
ŒBFi �

ŒBDi
ŒCBi �

ŒCBi
ŒDCi D

ŒCEi
ŒEAi �

ŒFAi
ŒBFi �

ŒBDi
ŒDCi ,

and therefore
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1.

(II) Assume
 !
AD,
 !
BE, and

 !
CF are parallel.

 !
CF k  !BE, so applying Theorem RS.9 to

 !
AB and

 !
AC, we have

ŒAFi
ŒFBi D

ŒACi
ŒCEi .

Likewise since
 !
AD k  !BE, we may apply Theorem RS.9 to

 !
BC and

 !
AC to

get
ŒCAi
ŒAEi D

ŒCDi
ŒDBi , that is (cf Remark RS.7)

ŒBDi
ŒDCi D

ŒAEi
ŒCAi . Hence

ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D

ŒACi
ŒCEi �

ŒAEi
ŒCAi �

ŒCEi
ŒEAi D

ŒACi
ŒCAi �

ŒAEi
ŒEAi �

ŒCEi
ŒCEi

D .�1/.�1/.1/ D 1.

(III) Conversely, assume that
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1. We want to show that if this

is true, either all the Cevians are parallel or they are concurrent. If they are not

all parallel, then two of them must intersect; thus it will suffice to show that

if two of them intersect at a point O, then the third one must also contain this

point. We choose our notation so that
 !
BE \ !CF D fOg.

Suppose the lines
 !
AO and

 !
BC fail to intersect, so are parallel. There are two

cases: either O 2 B-side of
 !
AC, or in the opposite side. We shall give a proof

only in the second case; the proof of the first case is similar, where the roles of

B and C, and the roles of E and F are interchanged.

The quadrangle tuOABC has a pair of opposite sides which are parallel,

hence is a trapezoid, which by Theorem PSH.53.1 is rotund; by Theo-

rem PSH.54 its diagonals
qy px

AC and
qy px

BO intersect at a point which is E, so that !
BE is an interior Cevian.
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If F 2 px qy

AB, the point of intersection O of
qy px

CF with
 !
BE would belong to

enc4ABC and
 !
AO could not be parallel to

 !
BC. Thus F 62 px qy

AB, so that
 !
CF is an

exterior Cevian. By Remark RS.7(B)(2) and (3),
ŒAEi
ŒECi > 0 and

ŒAFi
ŒFBi < 0.

Since O is outside the triangle, we have B E O, as well as A E C. We have

already shown F A B so that F is on the opposite side of
 !
AO from B and C,

and hence F O C.

By Theorem SIM.19,
Œ
px qy

FA �

Œ
px qy

FO �
D Œ

px qy

FB �

Œ
px qy

FC �
so that

Œ
px qy

FA �

Œ
px qy

FB �
D Œ

px qy

FO �

Œ
px qy

FC �
. By

Theorem SIM.18(IV) 4CBF � 4OAF, since †OFA is common to both.

Then by Theorem SIM.19,
Œ
px qy

EA �

Œ
px qy

EC �
D Œ

px qy

EO �

Œ
px qy

EB �
. Since †CEB Š †AEO, then by

Theorem SIM.18(IV)4CEB � 4AEO and hence
Œ
px qy

CE �

Œ
px qy

EA �
D Œ

px qy

CB �

Œ
px qy

OA �
. Also, since

†CFB Š †OFA, then by Theorem SIM.18(IV) 4CFB � 4OFA and hence

Œ
px qy

CB �

Œ
px qy

OA �
D Œ

px qy

BF �

Œ
px qy

AF �
. Therefore

Œ
px qy

CE �

Œ
px qy

EA �
D Œ

px qy

CB �

Œ
px qy

OA �
D Œ

px qy

BF �

Œ
px qy

AF �
.

By Theorem RS.8(B), either
ŒCEi
ŒEAi D

ŒBFi
ŒAFi or

ŒCEi
ŒEAi D �

ŒBFi
ŒAFi . As noted

above,
ŒAEi
ŒECi > 0 and

ŒAFi
ŒFBi < 0, so

ŒFBi
ŒFAi D

ŒBFi
ŒAFi > 0 and

ŒCEi
ŒEAi > 0.

Therefore
ŒCEi
ŒEAi D

ŒBFi
ŒAFi , so that

ŒAFi
ŒFBi �

ŒCEi
ŒEAi D

ŒAFi
ŒFBi �

ŒFBi
ŒFAi D �1.

By Exercise RS.1,
ŒBDi
ŒDCi ¤ �1, so that it is impossible for

ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1.

Therefore
 !
AO intersects

 !
BC at some point D0.

(IV) From part (I),
ŒAFi
ŒFBi �

ŒBD0i
ŒD0Ci �

ŒCEi
ŒEAi D 1.

Since
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1
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by assumption we have
ŒAFi
ŒFBi �

ŒBD0i
ŒD0Ci �

ŒCEi
ŒEAi �

ŒFBi
ŒAFi �

ŒDCi
ŒBDi �

ŒEAi
ŒCEi D

ŒBD0i
ŒD0Ci �

ŒDCi
ŒBDi D 1,

that is
.d0 � b/

.c � d0/
� .c � d/

.d � b/
D 1. By arithmetic this becomes

.d0 � b/.c � d/ D .d � b/.c � d0/,
d0c � d0d � bcC bd D dc � dd0 � bcC bd0,
d0c � d0dC bd D dc � dd0 C bd0,
d0.c � d/C bd D dc � d0.d � b/,

d0.c � d/C d0.d � b/ D dc � bd D d.c � b/,

d0.c � b/ D d.c � b/ and d0 D d.

Thus D D dU D d0U D D0 and the Cevian
 !
AD passes through O, proving the

theorem. ut

20.3 Exercises for ratios of sensed segments

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise RS.1�. If a ¤ b are real numbers, then for any real number x,
x � a

b � x
¤ �1.

Exercise RS.2�. If a ¤ b are real numbers, and x and y are any real numbers,

if
x � a

b � x
D y � a

b � y
then x D y.

Exercise RS.3�. Let A, B, and X be points on a line L in the Euclidean/LUB plane

P , where A ¤ B. Make a graph of the function f .X/ D ŒAXi
ŒXBi .

Exercise RS.4�. If statement (2) of Ceva’s theorem is true, that is if
ŒAFi
ŒFBi �

ŒBDi
ŒDCi �

ŒCEi
ŒEAi D 1, then the number of exterior Cevians is either zero or two, the other

Cevians being interior.

www.springer.com


Chapter 21
Consistency and Independence of Axioms;
Other Matters Involving Models

Acronyms: LA, LB, LC, FM, DZI, MLT, PSM, LE, BI, MMI, RSI, DZII, DZIII

Dependencies: Sections 1.1 through 1.6 of Chapter 1, and other parts of the book

as axioms are shown to hold in a given model

New Axioms: none

New Terms Defined: model, consistent, independent, strongly independent, sequen-

tially independent, coordinate space; the following terms for coordinate space:

line, plane, segment, ray; dot product, orthogonal, c-perpendicular, length, norm,

normalize, distance; c-midpoint; between, quadratic distance, transfer mapping,

induced mirror mapping

Abstract: The first part of this lengthy chapter shows that Cartesian (coordinate)

space satisfies all thirteen of the axioms of the main development of this book.

This means that the axioms are consistent since there is a model, that is, an actual

mathematical system, in which all are valid. The second part constructs, for each

axiom, a model in which all previously listed axioms are true, but the new one is

false. This shows that the newly added axiom is independent of those previously

invoked. In the third part, models are exhibited showing the mutual independence

of various properties of the definitions of betweenness, mirror mappings, and

reflections. The fourth part consists of models showing the insufficiency of the

incidence and betweenness axioms for creation of a satisfactory geometry.

© Springer International Publishing Switzerland 2015
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21.1 Euclid meets Descartes: synthetic vs. coordinate
geometry

We have now traversed most of our intended theory; it has been a long and

rather arduous journey. We have followed a synthetic approach to geometry,

starting with undefined terms point, line, and plane. We then introduced, in order,

axioms I.0, I.1, I.2, I.3, I.4, I.5, BET, PSA, REF, PS, and LUB.

Unlike Euclid, we have not tried to decide whether these axioms are universally

“true” or “self-evident.” In accordance with modern axiomatics, we only explored

the ways that the various theorems in Euclidean geometry depend on these

statements and on each other.

Euclid did not have number systems available to him, and he never made the

connection, so clear to us moderns, between geometry and algebra. It would be

some 1900 years before the French mathematician and philosopher René Descartes

(1596–1650) made this connection by his invention of coordinate (or analytic)

geometry, which laid the foundation for much modern mathematics, including

calculus.

In Descartes’ geometry, space R
3 consists of points which are ordered triples

.x1; x2; x3/ of numbers; these numbers are called the Cartesian coordinates of the

point, and can be interpreted as displacements from the three base planes passing

through an origin. The plane R
2 is made of ordered pairs of numbers describing

displacements from two main axes. To us this approach seems perfectly natural; we

can visualize it easily and it seems “real” to us.

At the end of Chapter 18, we saw that Euclid’s synthetic approach leads to the

conclusion that every plane is essentially a Cartesian coordinate plane. Euclid thus

meets Descartes, and we are the beneficiaries.

21.2 Our models and their implications

In this chapter we will be concerned with creating models, by which we mean actual

“concrete” mathematical systems having certain useful characteristics. In the next

two sections, 21.3 and 21.4, we will develop properties of coordinate space and the

coordinate plane, in preparation for the following sections in which we develop the

models themselves. These models fall into four categories, and each category will

be developed in its own section, as listed below.
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1. Consistency model, Section 21.5: This model will be based on 3-dimensional

Cartesian space, together with its 2-dimensional subspaces, or planes, which

together satisfy all our axioms. The existence of such a model rules out

two embarrassing possibilities: one is that the whole development we have

undertaken is vacuous, in the sense that there is no mathematical system to

which it could apply. Not that our lack of knowledge of such a system would

prove that the theory is vacuous—it might mean merely that our understanding

is inadequate. But happily, that possibility is ruled out by this model.

It also rules out the possibility that our axioms are not consistent—that there

might be contradictions among them. If such contradictions existed, there could

be no mathematical system in which they are all true. The fact that the axioms

lead to useful results does not ensure that they are consistent, because the

possibility exists that there might be contradictions among them that did not

interfere with our development.

2. Axiom independence models, Section 21.6: We use several quite different

models to show independence of the axioms; these are based on sets of numbers

or sets of pairs or triples of numbers such as the natural numbers N, the integers

Z, the rational numbers Q, the real algebraic numbers A, or the real numbers R.

3. Property independence models, Section 21.7: We use linear models based

on Cartesian space or Cartesian planes to show the independence of various

properties of definitions, thus assuring that these definitions are stated with

reasonable economy.

4. Insufficiency models, Section 21.8: Here we will show that the incidence and

betweenness axioms by themselves (as set forth in Chapters 1 and 4) are insuf-

ficient to create a satisfactory geometry—that is, that Axiom PSA is necessary.

More specifically, we show that in a geometry where only the incidence and

betweenness axioms are invoked, there can be several circumstances which are

highly offensive to our intuition; for instance there can be a segment having two

different sets of endpoints.

The models used in this section are based on Model DZI (initially developed

in Subsection 21.6.3), consisting of the set Z3 of all ordered triples .x1; x2; x3/

where x1, x2, and x3 are integers; that is, the set of all points of Cartesian space

having integer coordinates, sometimes called (lattice points).
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21.2.1 List of axioms for reference

For the convenience of the reader, we again list our set of axioms. For a listing of

relevant definitions, see the chapters referenced.

Incidence axioms (Chapter 1).

Axiom I.0. Lines and planes exist and are subsets of space S .

Axiom I.1. There exists exactly one line through two distinct points.

Axiom I.2. There exists exactly one plane through three noncollinear points.

Axiom I.3. If two distinct points lie in a plane, then any line through the points

is contained in the plane.

Axiom I.4. If two distinct planes have a nonempty intersection, then their

intersection has at least two members.

Axiom I.5. (A) There exist at least two distinct points on every line.

(B) There exists at least one noncollinear set of three points on

every plane.

(C) There exists at least one noncoplanar set of four points in space.

Betweenness Axiom BET (Chapter 4). There exists a betweenness relation on

space S , satisfying Properties B.0 through B.3 of Definition IB.1.

Plane Separation Axiom PSA (Chapter 5). Let L be a line and E and F be

opposite sides of L; if Q 2 E and R 2 F , then
qy px

QR\L ¤ ;.
Reflection Axiom REF (Chapter 8). On the Pasch plane P , there exists a set REF

of reflections satisfying Properties R.1 through R.6 of Definition NEUT.2.

Parallel Axiom PS (Chapters 2 and 11). Given a line L and a point P not

belonging to L, there exists exactly one line M such that P 2M and L kM.

Least Upper Bound Axiom LUB (Chapter 18). Let L be an ordered field with

origin O and unit U. Every nonempty subset E of L which is bounded above has a

least upper bound lub E .

21.3 Coordinate space: linear Model LM3

In this chapter, the reader should temporarily put aside essentially everything from

the main development, from Chapter 1 Section 1.8 through Chapter 20. Here we

will use, as a starting point, the basics of coordinate geometry, as briefly outlined

below.
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Nomenclature and notation: In this and following sections, when we speak

of an ordered field F we will mean one of the fields Q, A, or R which has been

equipped with the natural ordering, all as described in Chapter 1, Section 1.5 under

the title “Number systems.”

If F should be specifically one of the fields Q, A, or R, we will attach the

appropriate letter suffix: that is, the 3-dimensional Model LM3 over the real

algebraic numbers A would be called “Model LM3A”; the 2-dimensional Model

LM2 over Q, the rational numbers, would be “Model LM2Q.”

We habitually write ordered pairs and triples horizontally, as .x1; x2/ or

.x1; x2; x3/; however, there will be occasions where we wish to write them vertically,

as

 
x1

x2

!
. The disadvantage of the vertical notation is obvious—it takes up a lot of

space on the page. But when the entries of a pair or triple are long or elaborate, it

sometimes makes things clearer to display them vertically.

We begin by summarizing for n D 3 the definition from Chapter 1, Section 1.5,

under the title “Vector spaces of n-tuples.”

3-dimensional coordinate space: The set F
3 of ordered triples (3-tuples)

.a1; a2; a3/ of elements of F is a vector space called 3-dimensional coordinate space,

where we have defined .a1; a2; a3/C .b1; b2; b3/ D .a1C b1; a2C b2; a3C b3/, and

t.a1; a2; a3/ D .ta1; ta2; ta3/ for t 2 F. The triple O D .0; 0; 0/ is the origin, or zero

element, of F3.

Let E1 D .1; 0; 0/, E2 D .0; 1; 0/, and E3 D .0; 0; 1/. The set E D
f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/g D fE1;E2;E3g is linearly independent and spans F

3,

so the dimension of F3 is 3.

In our main development (Chapters 1 Section 1.8 through Chapter 20) “line” and

“plane” were undefined terms. Here, in our Models LM3 and LM2, they start out

as defined objects. In the first definition we will give the meanings of space, lines,

planes, segments, and rays in our linear Model LM3; these are easily reducible to

Model LM2. Eventually it will be shown that these meanings coincide with those

given in our main development.

Definition LA.1. Space for Model LM3 is the vector space F
3, the set of ordered

triples A D .a1; a2; a3/ of members of an ordered field F. The model also includes

lines, planes, segments, and rays as follows:
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(1) A subset L is a line in F
3 iff there exist distinct points A and B of F3 such that

L D fAC t.B � A/ j t 2 Fg; this line is denoted by
 !
AB.

(2) A subset P is a plane in F
3 iff there exist noncollinear points A, B, and C of F3

such that P D fAC s.B� A/C t.C� A/ j .s; t/ 2 F
2g; this plane is denoted by �!

ABC.

(3) Let A D .a1; a2; a3/, B D .b1; b2; b3/, and X D .x1; x2; x3/ be points of F3,

where A ¤ B; and let t denote a real number.

(3A) The open segment from A to B is
qy px

AB D fAC t.B � A/ j 0 < t < 1g.
(3B) The closed segment from A to B is

px qy

AB D fAC t.B � A/ j 0 � t � 1g.
(3C) The half-open segment from A to B is either

px px

AB D fAC t.B � A/ j 0 � t < 1g or
qy qy

AB D fAC t.B � A/ j 0 < t � 1g.
(3D) The closed ray with initial point A is

px!
AB D fAC t.B � A/ j t � 0g.

(3E) The open ray with initial point A is
qy!
AB D fAC t.B � A/ j t > 0g.

In the following, many of the proofs will be relegated to exercises, the solutions

of which are accessible online from the home page of this book at www.springer.

com.

Remark LA.2. (1)
 !
AB D fAC t.B � A/ j t 2 Fg

D fBC .1 � t/.A � B/ j t 2 Fg D  !BA.

(2)
 �!
ABC is the same plane for any permutation of the points A, B, and C; that is, �!

ABC D �!ACB D �!BAC D �!CAB D �!BCA D �!CBA

We will provide a proof for the first two equalities only:

(A)
 �!
ABC D fAC s.B � A/C t.C � A/ j .s; t/ 2 F

2g
D fAC t.C � A/C s.B � A/ j .t; s/ 2 F

2g D  �!ACB.

(B)
 �!
ABC D fAC s.B � A/C t.C � A/ j .s; t/ 2 F

2g
D fBC .1 � s � t/.A � B/C t.C � B/ j .s; t/ 2 F

2g
D fBC u.A � B/C t.C � B/ j .u; t/ 2 F

2g D  �!BAC.

The other proofs are similar and are left to the reader as Exercise LM.1.

Theorem LA.3. Distinct points A, B, and C in F
3 are collinear iff B�A and C�A

are linearly dependent.

Proof. The proof is Exercise LM.2. ut

www.springer.com
www.springer.com
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Theorem LA.4. Distinct points A, B, C, and D in F
3 are coplanar iff B�A, C�A,

and D � A are linearly dependent.

Proof. The proof is Exercise LM.3. ut
Theorem LA.5. Let A and B be distinct points in F

3. For each t 2 F define '.t/ D
AC t.B�A/, so that ' maps F into

 !
AB. Then ' is a bijection (one-to-one mapping)

of F onto
 !
AB.

Proof. The proof is Exercise LM.4. ut
Theorem LA.6. If A, B, and C are noncollinear points of F3 and if s and t are any

numbers in F, then the equality

'.s; t/ D X D AC s.B � A/C t.C � A/

defines a bijection of F2 onto
 �!
ABC.

Proof. By Definition LA.1(2), for every .s; t/ 2 F
2, '.s; t/ D ACs.B�A/Ct.C�A/

is a member of
 �!
ABC, and every point of this plane is such a point; thus ' maps F2

onto
 �!
ABC.

Suppose that for some .s; t/ and .u; v/ in F
2, '.s; t/ D '.u; v/. Then

AC s.B � A/C t.C � A/ D AC u.B � A/C v.C � A/,

so that .s�u/.B�A/C.t�v/.C�A/ D O. By the contrapositive of Theorem LA.3,

B � A and C � A are linearly independent, so that s D u and t D v, proving that '

is 1–1. ut
Remark LA.7 (On notation). We use the notation ECX to mean fACX j A 2 Eg,
where E is a subset of F3 and X is any member of F3.

For any two subsets E and G of F3, E C X � G C X iff E � G. For if E C X �
G C X, then for every A 2 E there exists a B 2 G such that A C X D B C X, and

A D AC X � X D BC X � X D B, proving that E � G. Showing the converse is

trivial. It follows easily from the fact that two sets are equal iff each is a subset of

the other, that E C X D G C X iff E D G.

Since Y 2 E iff Y CX 2 E CX, it is also true that Y 62 E iff Y CX 62 E CX; thus

E C X is a proper subset of F3 iff E is a proper subset.

In the following Remarks LA.8 and LA.9 we will write each assertion in italics

and follow it with its justification.
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Remark LA.8 (Of lines).

(A) If A D O, the line L D fAC t.B�A/ j t 2 Fg contains the point O. To see this,

let t D 0.

(B) A line L in F
3 containing the origin O is fsC j s 2 Fg for some C 2 F

3.

A line L D fA C t.B � A/ j t 2 Fg contains the origin O iff there exists

a number t0 such that A C t0.B � A/ D O. In this case define s D t � t0, and

C D B�A. Then AC t.B�A/ D AC .sC t0/C D .AC t0C/C sC D OC sC.

(C) A line L in F
3 containing the origin O is a subspace of F3, having dimension

1; a subspace of F3 of dimension 1 is a line containing O.

If X 2 L and Y 2 L, then from part (B), there exist numbers s and t such

that X D sC and Y D tC; then X C Y D sC C tC D .s C t/C 2 L. For any

number u, uX D usC 2 L. Since every member of L is a scalar multiple of

C, its dimension is 1. Conversely, if L is a subspace of F3 having dimension

1, there is a vector C ¤ O such that for every point X 2 L, X D sC for some

number s; thus by Definition LA.1(1), L is a line containing O.

(D) If L is a line and Y a member of F3, then LCY is a line. Here we are using the

notation of Remark LA.7.

Let L D fAC t.B � A/ j t 2 Fg according to Definition LA.1(1). Then

LC Y D fAC t.B � A/ j t 2 Fg C Y

D f.AC Y/C t..BC Y/ � .AC Y// j t 2 Fg
which is a line by Definition LA.1(1).

(E) If Y 2 L, then by part (D) L � Y is a line; it contains the origin O because

Y � Y D O; and by part (C), it is a 1-dimensional subspace of F3.

Remark LA.9 (Of planes).

(A) If A D O, the plane P D fAC s.B � A/C t.C � A/ j .s; t/ 2 F
2g contains the

point O. To see this, let s D t D 0.

(B) A plane P in F
3 containing the origin O is fuE C vF j .u; v/ 2 F

2g for some

linearly independent vectors D and E.

To see this, note that a plane P D fAC s.B � A/C t.C � A/ j .s; t/ 2 F
2g

contains O iff for some numbers s0 and t0, AC s0.B�A/C t0.C�A/ D O. Let

u D sC s0, v D tC t0, E D B � A, and F D C � A. Then

AC s.B � A/C t.C � A/ D AC .u � s0/DC .v � t0/E

D .A� s0D� t0E/C uDC vE D OC uDC vE,

so that P D fuE C vF j .u; v/ 2 F
2g. The vectors D D B � A and E D C � A

are linearly independent by Theorem LA.3.
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(C) A plane P in F
3 containing the origin O is a subspace of F3 having dimension

2; a subspace of F3 of dimension 2 is a plane containing O.

If X 2 P and Y 2 P , then using part (B), there exist linearly independent

vectors E and E and numbers s and t such that X D sDC tE and Y D uDCvE.

Then X C Y D sDC tEC uDC vE D .sC u/DC .tC v/E 2 P , and for any

number w, wX D wsD C wtE 2 P , showing that P is a subspace. Moreover,

the dimension of P is 2, since its members are all the linear combinations of

D and E, which are linearly independent. Conversely, if P is a subspace of

F
3 having dimension 2, there exist linearly independent vectors D and E such

that for every point X 2 P , X D sD C tE for some numbers s and t; thus by

Definition LA.1(2), P is a plane containing O.

(D) If P is a plane as defined in Definition LA.1(2), then for any Y 2 F
3, P C Y is

a plane in F
3.

If P D fA C s.B � A/ C t.C � A/ j .s; t/ 2 F
2g is a plane (as defined in

Definition LA.1(2)), then for any Y 2 F
3,

P C Y D fAC s.B � A/C t.C � A/C Y j .s; t/ 2 F
2g

D f.ACY/Cs..BCY/�.ACY//Ct..CCY/�.ACY// j .s; t/ 2 F
2g

which by definition is a plane containing the points AC Y , BC Y , and CC Y .

(E) If P is a plane in F
3 and Y 2 P , then by part (D) P�Y is a plane; it contains the

origin O because Y � Y D O; and by part (C), it is a 2-dimensional subspace

of F3.

Definition LA.1(1) says that a set is a line iff its points are all the points X D
AC t.B � A/ for some distinct A and B belonging to the set; this begs the question

of whether these two points completely determine the line. Likewise, a set is a plane

iff its points are all the points X D AC s.B � A/C t.C � A/ for some noncollinear

points A, B, and C of the set. Again, it is not immediately clear that these three points

completely determine the plane. These questions are answered in the affirmative by

the following theorem.

Theorem LA.10. (A) Let A and B be any two points of F3; there is exactly one

line
 !
AB containing these two points.

(B) Let A, B, and C be three noncollinear points of F3; there is exactly one plane �!
ABC containing these three points.

Proof. (A) Let C and D be distinct points of F3 such that
 !
CD is a line containing

both A and B. By Definition LA.1(1) there exist distinct numbers t1 and t2
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such that A D C C t1.D � C/ and B D C C t2.D � C/. Then for every X D
AC u.B � A/ 2  !AB,

X D AC u.B � A/

D CC t1.D � C/C u..CC t2.D � C// � .CC t1.D � C///

D CC .t1 C u.t2 � t1//.D � C/ 2  !CD.

If Y is any point of
 !
AB, it is also a point of

 !
CD, and by Remark LA.8(D),

both
 !
AB�Y and

 !
CD�Y are subspaces of F3; by Remark LA.8(C) the dimension

of both subspaces is 1. Since
 !
AB�Y �  !CD�Y , it follows from the Dimension

Criterion (Chapter 1 Section 1.5) that
 !
AB � Y D  !CD � Y; by Remark LA.7, !

AB D !CD.

(B) Let D, E, and F be noncollinear points in F
3 such that A, B, and C are members

of
 �!
DEF; then by Definition LA.1(2) there exist pairwise distinct ordered pairs

.u1; v1/, .u2; v2/, and .u3; v3/ such that

A D DC u1.E � D/C v1.F � D/, (*)

B D DC u2.E � D/C v2.F � D/, (**)

C D DC u3.E � D/C v3.F � D/. (***)

By Definition LA.1(2), if X 2  �!ABC, there exist numbers u and v such that

X D AC u.B�A/C v.C�A/. This becomes, on substitution by equations (*)

through (***)

X D DC u1.E � D/C v1.F � D/

Cu
�
.DCu2.E�D/Cv2.F�D/

�
�u
�

DCu1.E�D/Cv1.F�D/
�

Cv
�

DCu3.E�D/Cv3.F�D/
�
�v
�

DCu1.E�D/Cv1.F�D/
�

D DC u1.E � D/C v1.F � D/

Cuu2.E � D/C uv2.F � D/ � uu1.E � D/ � uv1.F � D/

Cvu3.E � D/C vv3.F � D/ � vu1.E � D/ � vv1.F � D/

D DC .u1 C uu2 � uu1 C vu3 � vu1/.E � D/

C.v1 C uv2 � uv1 C vv3 � vv1/.F � D/ 2  �!DEF.

Hence
 �!
ABC �  �!DEF.

If Y is any point of
 �!
ABC, it is also a point of

 �!
DEF, and by Remark LA.9(D),

both
 �!
ABC � Y and

 �!
DEF � Y are subspaces of F

3; by Remark LA.9(C) the

dimension of both subspaces is 2. Since
 �!
ABC � Y �  �!DEF � Y , it follows from

the Dimension Criterion (Chapter 1 Section 1.5) that
 �!
ABC� Y D �!DEF� Y; by

Remark LA.7,
 �!
ABC D �!DEF. This completes the proof. ut

Corollary LA.10.1. (A) For any line L � F
3, and any distinct points A and B of

L, L D fAC t.B � A/ j t 2 Fg.
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(B) For any plane P � F
3, and any noncollinear points A, B, and C of P , P D

fAC s.B � A/C t.C � A/ j .s; t/ 2 F
2g.

Remark LA.11. (A) Every line L is a proper subset of any plane containing it; for

if a line contains all the points of a plane, that line would, by definition, contain

noncollinear points, a contradiction.

(B) Every plane P is a proper subset of F
3. Again by Remark LA.9(C), the

dimension of P � Y is 2, and by the Dimension Criterion of Chapter 1

Section 1.5, P � Y is a proper subset of F3. Pick X 2 F
3 such that X 62 P � Y;

then X C Y 62 P .

This can also be seen as follows: let A D .0; 0; 0/, B D .1; 0; 0/, C D
.0; 1; 0/, and D D .0; 0; 1/. If some plane should contain the entire space, it

would contain all these points, including A, B, and C, which are noncollinear.

By Definition LA.1(2) a point X belongs to this plane iff for some s and t,

X D AC s.B� A/C t.C � A/, and since A D O, this is just X D sBC tC. The

point D does not belong to this plane, because there are no scalars s and t such

that s.1; 0; 0/C t.0; 1; 0/ D .0; 0; 1/. By Theorem LA.10, this is the only plane

containing A, B, and C; hence no plane contains F3.

Definition/Remark LA.12. (1) If F is one of the fields Q, A, or R the dot

product1 A � B of A D .a1; a2; a3/ and B D .b1; b2; b3/ in F
3 is the scalar

a1b1 C a2b2 C a3b3. It is a straightforward computation to show that for any

vectors A, B, and C of F3 and any scalar s, .A C B/ � C D A � C C B � C,

A � .BC C/ D A � BC A � C, and s.A � B/ D sA � B D A � sB.

(2) Two vectors A and B in F
n are said to be orthogonal iff A � B D 0. We denote

this by A ? B.

(3) If L and M are two lines in a plane, then L is c-perpendicular to M iff

for some distinct points Q and P in L and some distinct points R and S

in M, .Q � P/ � .R � S/ D 0. In this case we write L ? M, just as

we write .Q � P/ ? .R � S/ to indicate that these vectors are orthogonal.

The “c-” added to “perpendicularity” is to remind the reader that this defini-

tion is only for coordinate space, and is different from Definition NEUT.31

(cf Theorem LC.46).

1Sometimes called the inner product. In vector space theory, the inner product of two vectors A
and B is sometimes denoted .A;B/, but we will adhere to the notation A � B.
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Definition/Remark LA.13. (1) If F is one of the fields A or R, so that non-

negative numbers have square roots, define the length or norm of a vector

A D .a1; a2; a3/ as kAk D pA � A D
q

a21 C a22 C a23. Clearly kAk D 0 iff

A D O D .0; 0; 0/. For any vector A D .a1; a2; a3/, k A
kAkk D 1, since

k A
kAkk D

q
. a1kAk /2 C . a2kAk /2 C . ankAk /2 D

r
a21
kAk2 C

a22
kAk2 C

a23
kAk2

D
r

a21Ca22Ca23
kAk2 D

q
kAk2
kAk2 D 1.

We say that the vector A is normalized when it is divided by its norm, thus

acquiring length 1.

(2) If F is one of the fields A or R, and A D .a1; a2; a3/ and B D .b1; b2; b3/ are

two points of F3, the distance dis.A;B/ between A and B is the length of the

difference vector, that is,

kA � Bk Dp.A � B/ � .A � B/ Dp.a1 � b1/2 C .a2 � b2/2 C .a3 � b3/2.

(3) Let F be any ordered field; if A D .a1; a2; a3/ and B D .b1; b2; b3/ are two

points (members) of F3, the c-midpoint of
px qy

AB is the point
ACB
2
D � a1Cb1

2
; a2Cb2

2
; a3Cb3

2

� D AC B�A
2
D BC A�B

2
.

The “c-” added to “midpoint” is intended to remind the reader that this

definition is different from that of Definition NEUT.3(C) (cf Theorem LC.47).

If F is one of the fields A or R, and M D ACB
2

is the c-midpoint of the line

segment connecting A and B,

dis.A;M/ D kA �Mk
D
q
.a1 � . a1Cb1

2
//2 C .a2 � . a2Cb2

2
//2 C .a3 � . a3Cb3

2
//2

D
q
. a1�b1

2
/2 C . a2�b2

2
/2 C . a3�b3

2
/2 D

q
. b1�a1

2
/2 C . b2�a2

2
/2 C . b3�a3

2
/2

D
q
.b1 � . a1Cb1

2
//2 C .b2 � . a2Cb2

2
//2 C .b3 � . a3Cb3

2
//2

D kB �Mk D dis.B;M/.

We now derive two well-known properties for norms.

Theorem LA.13.1. Let F be one of the fields A or R. If A D .a1; a2; a3/ and

B D .b1; b2; b3/ are members of F3 and x 2 F, then

(A) kAC Bk � kAk C kBk (triangle inequality);

(B) kxAk D jxjkAk; and

(C) A D O iff kAk D 0.

This is also true for points of F2.
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Proof. We give a proof for F3, which is easily reducible to F
2. The proof of (A)

depends on the Cauchy-Schwarz-Bunyakovski inequality2 which we derive first.

For any numbers a1, a2, a3, b1, b2, and b3, the following expression is greater or

equal to 0 because it is the sum of squares:

.a1b1 � a1b1/2 C .a1b2 � a2b1/2 C .a1b3 � a3b1/2

.a2b1 � a1b2/2 C .a2b2 � a2b2/2 C .a2b3 � a3b2/2

.a3b1 � a1b3/2 C .a3b2 � a2b3/2 C .a3b3 � a3b3/2

D .a21b21�2a21b
2
1Ca21b

2
1/C .a21b22�2a1a2b1b2Ca22b

2
1/C .a21b23�2a1a3b1b3Ca23b

2
1/

C.a22b21�2a1a2b1b2Ca21b
2
2/C.a22b22�2a22b

2
2Ca22b

2
2/C.a22b23�2a2a3b2b3Ca23b

2
2/

C.a23b21�2a1a3b1b3Ca21b
2
3/C.a23b22�2a2a3b2b3Ca22b

2
3/C.a23b23�2a23b

2
3Ca23b

2
3/

� 0.

In each of the nine groupings above, the first and last term occurs again as a first

or last term in some grouping; in the next equality we combine these into a single

grouping. Likewise, each of the middle terms of these nine groupings that does not

include squared numbers is repeated; in the next equality we combine these in a

second grouping, so that

2.a21b
2
1 C a21b

2
2 C a21b

2
3 C a22b

2
1 C a22b

2
2 C a22b

2
3 C a23b

2
1 C a23b

2
2 C a23b

2
3/

� 2.a21b21 C a22b
2
2 C a23b

2
3 C 2a1a2b1b2 C 2a1a3b1b3 C 2a2a3b2b3/ � 0:

Dividing by 2 this becomes

.a21 C a22 C a23/.b
2
1 C b22 C b23/ � .a1b1 C a2b2 C a3b3/2 � 0

as can be seen by multiplying out the last expression. This is

kAk2kBk2 � .A � B/2 � 0, or kAk2kBk2 � .A � B/2.

Therefore kAkkBk � A � B, the Cauchy-Schwarz-Bunyakovski inequality.

(A) Using this inequality,

kAC Bk2 D .AC B/ � .AC B/ D kAk2 C 2A � BC kBk2
� kAk2 C 2kAkkBk C kBk2 D .kAk C kBk/2

so that kAC Bk � .kAk C kBk, as required.

(B) If x is any number, then

kxAk D
q

x2a21 C x2a22 C x2a23 D
q

x2.a21 C a22 C a23/

D jxj
q

a21 C a22 C a23 D jxjkAk.
(C) kAk D

q
a21 C a22 C a23 D 0 iff a1 D a2 D a3 D 0. ut

2Some sources indicate that Bunyakovski’s contribution was to the integral or infinite-dimensional
form of this inequality. We include his name here out of deference to our late beloved co-author
Harold T. Jones, whom we remember as being quite insistent on its inclusion.
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Theorem LA.14 (Orthogonality and linear independence). If A1, A2, . . . , An are

non-zero members of F3 and are pairwise orthogonal (each is orthogonal to the

others), they are linearly independent.

Proof. Suppose that for some numbers x1, x2, . . . , xn, x1A1Cx2A2C: : :CxnAn D O.

For each i 2 Œ1I n�
0 D Ai � O D Ai � .x1A1 C x2A2 C : : :C xnAn/

D Ai � x1A1 C Ai � x2A2 C : : :C Ai � xnAn/

D x1.Ai � A1/C x2.Ai � A2/C : : :C xn.Ai � An/.

Since Aj � Ak D 0 whenever j ¤ k, this becomes 0C 0C Ai � xiAi D xikAik2. Since

Ai ¤ O, kAik ¤ 0 so that xi D 0. Therefore x1 D x2 D : : : D xn D 0, showing that

the vectors A1, A2, . . . , An are linearly independent. ut
The following theorem is a standard result from elementary linear algebra.

Theorem LA.15.

(A) Let A D .a1; a2/ and B D .b1; b2/ be members of F2. Then A and B are linearly

dependent iff

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌ D 0.

(B) Let A D .a1; a2; a3/, B D .b1; b2; b3/, and C D .c1; c2; c3/ be members of F3.

Then A, B, and C are linearly dependent iff

ˇ̌̌
ˇ̌̌
ˇ̌
a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ̌̌
ˇ̌̌
ˇ̌ D 0.

Proof. The proof is Exercise LM.5. ut
Remark LA.16. In coordinate geometry a plane is usually defined as a set

E D f.x1; x2; x3/ j ax1 C bx2 C cx3 C d D 0g (*)

where a, b, c, and d are numbers in F, and at least one of a, b, or c is nonzero. The

equation ax1 C bx2 C cx3 C d D 0 is an equation of the plane.

Note that if it were true that a D b D c D 0, then d D 0 and every point in F
3

would satisfy ax1C bx2C cx3C d D 0. We rule out this case by requiring one of a,

b, or c to be nonzero.

Most readers, being familiar with coordinate geometry, will not find it difficult

to accept equation (*) as describing a plane; but our Definition LA.1(2) (defining

a plane) is not the same as this, and a somewhat cumbersome proof is required

to show these are equivalent. In the next three Theorems LA.17 through LA.19
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we lay out the argument that this is so: a set E satisfies equation (*) iff it satisfies

Definition LA.1(2). For those who wish to see the details worked out, the proofs of

these theorems are provided (on line) as solutions to Exercises LM.6 through LM.8.

Theorem LA.17. Let a, b, c, and d be members of F, where at least one of a, b, c is

nonzero; let E be the set of all points .x1; x2; x3/ 2 F
3 such that ax1Cbx2Ccx3Cd D

0, as defined in Remark LA.16.

(A) E is a proper subset of F3.

(B) If X D .x1; x2; x3/ 2 E , there exist two other points Y D .y1; y2; y3/ and Z D
.z1; z2; z3/ in E such that X, Y, and Z are noncollinear, which is to say (by

Theorem LA.3) that the vectors Y � X and Z � X are linearly independent.

Proof. The proof is Exercise LM.6. ut
Theorem LA.18. Let X D .x1; x2; x3/, Y D .y1; y2; y3/, and Z D .z1; z2; z3/ be

noncollinear points in F
3, so that

 !
XYZ is a plane as in Definition LA.1(2). Then

there exist numbers a, b, c, and d in F, where not all of a, b, or c are zero, such that !
XYZ D f.w1;w2;w3/ j aw1 C bw2 C cw3 C d D 0g

Proof. The proof is Exercise LM.7. ut
Theorem LA.19. Let a, b, c, and d be numbers in F, where not all of a, b, or c are

zero. Then the set

E D f.w1;w2;w3/ j aw1 C bw2 C cw3 C d D 0g
is a plane in F

3 as defined by Definition LA.1(2). It follows immediately from

Theorem LA.18 that our two definitions of a plane are equivalent.

Proof. The proof is Exercise LM.8. ut
We now turn to a series of theorems which yield, in Theorem LA.22, a criterion

for two lines in F
3 to be parallel. In the next theorem we use the notation for

determinants and matrices set forth in Chapter 1 Section 1.5.

Theorem LA.20. Let the entries in the matrix

0
BB@

a1 b1 c1

a2 b2 c2

a3 b3 c3

1
CCA be numbers (in F) such

that
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ˇ̌̌
ˇ̌̌
ˇ̌
a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ̌̌
ˇ̌̌
ˇ̌ D 0. (*)

If there exist no ordered pairs .s; t/ belonging to F
2 such that all the equations0

BB@
a1sC b1t D c1;

a2sC b2t D c2;

a3sC b3t D c3

1
CCA (**)

are true, then

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌ D 0,

ˇ̌̌
ˇ̌a1 b1

a3 b3

ˇ̌̌
ˇ̌ D 0, and

ˇ̌̌
ˇ̌a2 b2

a3 b3

ˇ̌̌
ˇ̌ D 0.

Proof. By Theorem LA.15(B), equation (*) says the vectors A D .a1; a2; a3/, B D
.b1; b2; b3/, and C D .c1; c2; c3/ are linearly dependent, so there exist numbers s, t,

and u, not all zero, such that sAC tBC uC D 0.

If u ¤ 0, then s
u A C t

u B C C D 0, that is to say, � s
u A � t

u B D C so all of

the equations (**) are true, contradicting our hypothesis. Therefore u D 0 so that

sA C tB D O. All the pairs of vectors (in F
2) .a1; a2/ and .b1; b2/, .a1; a3/ and

.b1; b3/, .a2; a3/ and .b2; b3/ are linearly dependent; thus by Theorem LA.15(A),ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌ D 0,

ˇ̌̌
ˇ̌a1 b1

a3 b3

ˇ̌̌
ˇ̌ D 0, and

ˇ̌̌
ˇ̌a2 b2

a3 b3

ˇ̌̌
ˇ̌ D 0. ut

Theorem LA.21. If A D .a1; a2; a3/ and B D .b1; b2; b3/ are members of F3 such

that A ¤ O, a1b2 � a2b1 D 0, a1b3 � a3b1 D 0, and a2b3 � a3b2 D 0, then there

exists a member k of F such that B D kA.

Proof. Since A ¤ O, at least one of a1, a2, and a3 must be nonzero.

If a1 ¤ 0, then b3 D b1
a1

a3, b2 D b1
a1

a2, and b1 D b1
a1

a1, so in this case k D b1
a1

.

If a2 ¤ 0, then b3 D b2
a2

a3, b2 D b2
a2

a2, and b1 D b2
a2

a1, so in this case k D b2
a2

.

If a3 ¤ 0, then b3 D b3
a3

a3, b2 D b3
a3

a2, and b1 D b3
a3

a1, so in this case k D b3
a3

. ut
Theorem LA.22. Let A D .a1; a2; a3/, B D .b1; b2; b3/, and C D .c1; c2; c3/ be

noncollinear points of F3 and let D D .d1; d2; d3/ be a point distinct from C; then !
CD k  !AB iff there exists a number k different from 0 such that D � C D k.B � A/.

Proof. (I) Assume there exists a number k ¤ 0 such that D� C D k.B� A/; then

D D CC .D � C/ D CC k.B � A/ D AC k.B � A/C .C � A/,

so that by Definition LA.1(2) D 2  �!ABC, and A, B, C, and D are coplanar.

By Definition LA.1(1), a point X 2  !CD iff for some t, X D CC t.D�C/. By

our assumption that D�C D k.B�A/, this becomes X D CC tk.B�A/. Also,
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X 2  !BA iff for some number s, X D AC s.B � A/. If the two lines
 !
CD and

 !
BA

have a point in common, there exist s and t such that both these are true, so that

CC tk.B � A/ � .AC s.B � A// D .tk � s/.B � A/C .C � A/ D O, (*)

By Theorem LA.3, C � A and B� A are linearly independent, so if this is true,

both the coefficient of B � A and the coefficient of C � A must be zero, which

is impossible, since the coefficient of C � A is 1. Therefore, for every choice

of s and t, C C t.D � C/ � .AC s.B � A// ¤ O, and the lines
 !
CD and

 !
AB are

parallel.

Note that in the case where s D t D 0, the left-hand side of (*) reduces to

C � A which is not equal to O because C and A are distinct.

(II) If
 !
AB k  !CD, then (cf Chapter 2 Definition IP.0) A, B, C, D are coplanar.

By Theorem LA.4, B � A, C � A, and D � A are linearly dependent. By

Theorem LA.15(B) ˇ̌̌
ˇ̌̌
ˇ̌
b1 � a1 c1 � a1 d1 � a1

b2 � a2 c2 � a2 d2 � a2

b3 � a3 c3 � a3 d3 � a3

ˇ̌̌
ˇ̌̌
ˇ̌ D 0:

Since
 !
AB \ !CD D ;, there exist no members .s; t/ of F2 such that

AC s.B � A/ � .CC t.D � C// D O, or

s.B � A/ � t.D � C/ � .C � A/ D O.

In other words, there is no member .s; t/ of F2 such that these three equations

hold:

s.b1 � a1/ � t.d1 � c1/ � .c1 � a1/ D 0,

s.b2 � a2/ � t.d2 � c2/ � .c2 � a2/ D 0,

s.b3 � a3/ � t.d3 � c3/ � .c3 � a3/ D 0.

By Theorem LA.20,ˇ̌̌
ˇ̌b1 � a1 d1 � c1

b2 � a2 d2 � c2

ˇ̌̌
ˇ̌ D 0,

ˇ̌̌
ˇ̌b1 � a1 d1 � c1

b3 � a3 d3 � c3

ˇ̌̌
ˇ̌ D 0, and

ˇ̌̌
ˇ̌b2 � a2 d2 � c2

b3 � a3 d3 � c3

ˇ̌̌
ˇ̌ D 0.

Hence by Theorem LA.21 there exists a number k different from 0 such that

D � C D k.B � A/. ut
Theorem LA.23. Let L and M be lines in a plane P � F

3; then if L and M are

c-perpendicular, they intersect.
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Proof. Let A and B be distinct points of L, and let C and D be distinct points of M,

and suppose these two lines are c-perpendicular. By Definition/Remark LA.12(3),

.B � A/ � .D � C/ D 0; if these lines do not intersect, they are parallel, since

both lie in plane P . By Theorem LA.22 there exists a number k ¤ 0 such that

D � C D k.B � A/ D 0; then

0 D .B � A/ � .D � C/ D .B � A/ � k.B � A/

D k.B � A/ � .B � A/ D kkB � Ak2.
Since B � A ¤ O, by Theorem LA.13.1(C) kB � Ak ¤ 0, so that k D 0, a

contradiction. ut

21.4 Coordinate plane: linear Model LM2

Reflections must be done on planes, so we now explore some of the basic structure

on the plane F
2 that will be needed to define them.

Throughout this section F is one of the ordered fields Q, A, or R; we will

routinely refer to a member of F as a number, and to the additive and multiplicative

identities as 0 and 1, respectively. The dot product and norm are defined for any

vector space over one of these fields.

Definition LB.1. Model LM2 is the vector space F
2, the set of ordered pairs A D

.a1; a2/ 2 F
2. The model also includes lines, segments, and rays as defined above in

Definition LA.1, with the substitution of F2 for F3, and the substitution of ordered

pairs for ordered triples.

Remark LB.2. (A) The plane F
2 can be regarded as a subset of F3 by identifying

each point A D .a1; a2/ 2 F
2 with the point A D .a1; a2; 0/ 2 F

3. We will

sometimes call this plane a “base plane” of F3. Lines, segments, and rays in

the plane F
2 are defined as in parts (1) and (3) of Definition LA.1, where it

is understood that points A, B, X, etc. are ordered pairs rather than ordered

triples.

(B) Let E1 D .1; 0/ and E2 D .0; 1/. The set E D f.1; 0/; .0; 1/g D fE1;E2g
is linearly independent; every vector A D .a1; a2/ D a1.1; 0/ C a2.0; 1/ is a

linear combination of the vectors E1 and E2, which therefore constitute a basis

for F2. Hence the dimension of F2 is 2.
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(C) According to Definition LA.1(1) L is a line in F
2 iff there exist distinct points

A D .a1; a2/ and B D .b1; b2/ such that L D fA C t.B � A/ j t 2 Fg. An

equivalent formulation which is sometimes useful is this: L is a line in F
2 iff

there exist points A D .a1; a2/ and C D .c1; c2/ ¤ .0; 0/ such that L D
fAC tC/ j t 2 Fg.

Remark LB.3. In coordinate geometry a line on a plane is usually defined as a set

L D f.x1; x2/ j ax1 C bx2 C c D 0g
where a, b, and c are numbers in F, and at least one of a or b is nonzero; equation

ax1 C bx2 C c D 0 is called an equation of the line.

Note that if it were true that a D b D 0, then c D 0 and every point in F
2 would

satisfy ax1 C bx2 C c D 0. We rule out this case by requiring one of a or b to be

nonzero.

Again, (cf Remark LA.16) most readers will readily accept the equation ax1 C
bx2 C c D 0 as describing a line, and as in the previous section, a somewhat

cumbersome proof is required to show that this equation and our Definition LA.1(1)

are equivalent. In the next three Theorems LB.4 through LB.6 we give the argument

that this is so. For those who wish to see the details worked out, the proofs of these

theorems are provided (online at the home page for this book at www.springer.com)

as solutions to Exercises LM.9 through LM.11.

Theorem LB.4. Let a, b, c, a0, b0, and c be numbers in F, and suppose at least one

of a or b, and at least one of a0 or b0 is nonzero. Then

(A) L D f.x1; x2/ j ax1 C bx2 C c D 0g ¤ F
2;

(B) there exist at least two distinct points in L; and

(C) both ax1 C bx2 C c D 0 and a0x1 C b0x2 C c0 D 0 are equations for L iff there

exists a number k ¤ 0 such that a0 D ka, b0 D kb, and c0 D kc.

Proof. The proof is Exercise LM.9. ut
Theorem LB.5. Let X D .x1; x2/ and Y D .y1; y2/ be distinct points in F

2, and

let
 !
XY be the line containing both X and Y according to Definition LA.1(1). Then !

XY D f.w1;w2/ j aw1 C bw2 C c D 0g, where a D y2 � x2, b D x1 � y1, and

c D x2.y1 � x1/ � x1.y2 � x2/.

Proof. The proof is Exercise LM.10. ut
Theorem LB.6. Let a, b, and c be numbers in F, where at least one of a or b is

nonzero. Then the set

www.springer.com
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L D f.w1;w2/ j aw1 C bw2 C c D 0g
is a line in F

2 as defined by Definition LA.1(1). It follows immediately from

Theorem LB.5 that our two definitions of a line (in a plane) are equivalent.

Proof. The proof is Exercise LM.11. ut
Remark LB.7. In the following we will frequently refer to two lines L and

M as being c-perpendicular. The reader may wish to refer again to Defini-

tion/Remark LA.12(3) where this notion is defined. Again we emphasize that this is

not (yet) the same notion of perpendicularity as was developed in neutral geometry

(cf Definition NEUT.31). In Theorem LC.46, after we have defined the “correct”

reflections over lines on F
2 we shall see that the two notions coincide. We may,

however, use the same symbol L ? M to indicate c-perpendicularity of the lines

L and M as we do to indicate that they are perpendicular in the sense of neutral

geometry.

Theorem LB.8. Let
 !
XY and

 !
ZW be two lines on F

2 according to Defini-

tion LA.1(1), where X D .x1; x2/ ¤ Y D .y1; y2/ and W D .w1;w2/ ¤ Z D .z1; z2/.
Then according to Theorem LB.5 !

XY D f.t1; t2/ j a1t1 C b1t2 C c1 D 0g
where a1 D y2 � x2, b1 D x1 � y1, and c1 D x2.y1 � x1/ � x1.y2 � x2/; also !

ZW D f.t1; t2/ j a2t1 C b2t2 C c2 D 0g,
where a2 D w2 � z2, b2 D z1 � w1, and c2 D z2.w1 � z1/ � z1.w2 � z2/.

Then
 !
XY is c-perpendicular to

 !
ZW iff .X � Y/ � .Z �W/ D 0, which is true iff

a1a2 C b1b2 D 0.

Proof. By Theorem LB.5

.X � Y/ � .Z �W/ D .x1 � y1/.z1 � w1/C .x2 � y2/.z2 � w2/

D b1b2 C .�a1/.�a2/ D b1b2 C a1a2.

By Definition/Remark LA.12(3),
 !
XY ?  !ZW iff .X � Y/ � .Z �W/ D 0 which, by

the calculation, is true iff b1b2 C a1a2 D 0.

Note that if the coefficients a1 and b1 are both multiplied by the same nonzero

number, or if a2 and b2 are multiplied by the same nonzero number, the condition

will remain true. ut
Remark LB.9. In the equation ax1 C bx2 C c D 0, when a D 0, x2 D �c=b. Then

all the second coordinates of points on the line L defined by the equation are the

same. This situation is usually described by saying that the line L is “horizontal.”
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Likewise if b D 0 the line is “vertical.” In the proof of Theorem LB.8, those cases

where a1 D 0 are exactly those where b2 D 0, and those cases where a2 D 0 are

exactly those where b1 D 0. That is, one of the lines is horizontal and the other

(being c-perpendicular to it) is vertical.

Theorem LB.10. Let

L D f.x1; x2/ j a1x1 C b1x2 C c1 D 0g and

M D f.x1; x2/ j a2x1 C b2x2 C c2 D 0g
be two lines in the plane F

2. If they are c-perpendicular, they must intersect.

Proof. This follows directly from Theorem LA.23. A direct proof is possible using

the equations for lines as given here; the proof is Exercise LM.12. ut
Theorem LB.11. Let F be either A or R; let A and B be distinct members of F2,

and let r > 0 be any number. Then there exists a unique point C on
px!
AB such that

dis.A;C/ D r.

Proof. In this proof we use the fact that if F is A or R, norms exist in F
2. By

Definition LA.1(3D) every point C of the ray
px!
AB is of the form C D AC t.B � A/

for some number t � 0. Let t D r
kB�Ak , which is � 0; then

dis.A;C/ D kC � Ak D kAC r
kB�Ak .B � A/ � Ak D k r

kB�Ak .B � A/k.
By Theorem LA.13.1(B) this is j r

kB�Ak jk.B � A/k D r. ut
Theorem LB.12. Let L be any line on F

2; by Theorem LB.5 there exist numbers a,

b, and c in F such that .a; b/ ¤ .0; 0/ and

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c D 0g

Let .u1; u2/ be a point on F
2. Then there is one and only one line M through .u1; u2/

which is c-perpendicular to L, namely

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 � bu1 C au2 D 0g.

Proof. By Theorem LB.8, for every number d,

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 C d D 0g

is a line which is c-perpendicular to L, since a.b/ C b.�a/ D 0. M is the line

through .u1; u2/ which is c-perpendicular to L iff bu1 � au2 C d D 0, which is true

iff d D �bu1 C au2. Hence

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 � bu1 C au2 D 0g. ut

Theorem LB.13. (A) Let a, b, c1, and c2 be numbers in the ordered field F such

that .a; b/ ¤ .0; 0/, and let

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c1 D 0g,
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and

M D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c2 D 0g

Then L and M are parallel iff c1 ¤ c2.

(B) Let L, M, and N be distinct lines on F
2 such that L and M are c-

perpendicular and L and N are c-perpendicular. Then M and N are parallel.

Proof. (A) L 6kM iff there exists a member .x1; x2/ of F2 such that ax1Cbx2Cc1 D
ax1 C bx2 C c2, which is true iff c1 D c2.

(B) Let L D f.x1; x2/ j .x1; x2/ 2 F
2; and ax1Cbx2C c D 0g. By Theorem LB.12

there exist numbers d and e such that

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 C d D 0g

and

N D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 C e D 0g.

Now M D N iff d D e; since these are distinct lines, d ¤ e. If M and N
are not parallel, there exists a member .x1; x2/ of F2 such that bx1 � ax2C d D
bx1 � ax2 C e so that d D e, a contradiction. Thus M k N , completing the

proof. ut
Theorem LB.14. Let

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c D 0g.

Let .u1; u2/ be a point on F
2 and

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 � bu1 C au2 D 0g.

be the line through .u1; u2/ which is c-perpendicular to L, according to

Theorem LB.12. Then

L \M D .y1; y2/ D . b2u1�abu2�ac
a2Cb2

; �abu1Ca2u2�bc
a2Cb2

/.

Proof. By Cramer’s rule the solution to

(
ay1 C by2 D �c

�by1 C ay2 D �bu1 C au2

)
is

y1 D

ˇ̌̌
ˇ̌̌
ˇ
�c b

�bu1 C au2 a

ˇ̌̌
ˇ̌̌
ˇˇ̌̌

ˇ̌̌
ˇ

a b

�b a

ˇ̌̌
ˇ̌̌
ˇ

D �acCb.bu1�au2/
a2Cb2

D b2u1�abu2�ac
a2Cb2

and

y2 D

ˇ̌̌
ˇ̌̌
ˇ

a �c

�b �bu1 C au2

ˇ̌̌
ˇ̌̌
ˇˇ̌̌

ˇ̌̌
ˇ

a b

�b a

ˇ̌̌
ˇ̌̌
ˇ

D a.�bu1Cau2/�bc
a2Cb2

D �abu1Ca2u2�bc
a2Cb2

.



21.4 Coordinate plane: linear Model LM2 (LB) 435

It is a straightforward calculation to verify that the point .y1; y2/ found above

belongs to both the lines L and M. ut
Remark LB.15. We may become more comfortable with the slightly complicated

result of Theorem LB.14 by noting the following:

(A) If a D 0 (L is a “horizontal” line), then y1 D b2u1
b2
D u1, and y2 D �bc

b2
D �c

b .

Thus the line through .u1; u2/ and .y1; y2/ is “vertical.”

(B) If b D 0 (L is a “vertical” line), then y1 D �ac
a2
D �c

a , and y2 D a2u2
a2
D u2,

Thus the line through .u1; u2/ and .y1; y2/ is “horizontal.”

(C) In the case that .u1; u2/ 2 L, if a D 0, u2 D �c
b D y2, and if b D 0,

u1 D �c
a D y1.

(D) If a ¤ 0 and b ¤ 0, and .u1; u2/ 2 L, u2 D �au1
b � c

b and

y1 D b2u1�abu2�ac
a2Cb2

D b2u1�a.�au1�c/�ac
a2Cb2

D a2Cb2

a2Cb2
u1 D u1.

Also, if .u1; u2/ 2 L, u1 D � bu2
a � c

a so that

y2 D �b.�bu2�c/Ca2u2�bc
a2Cb2

D b2u2CcbCa2u2�bc
a2Cb2

D a2Cb2

a2Cb2
u2 D u2.

These calculations assure us that the formulas for the intersection point .y1; y2/

are valid, as they should be, when .u1; u2/ 2 L.

Definition LB.16 (Mirror mapping over a line).

(A) (Coordinate-free form) Let L be a line on F
2 and let U be any point of F2. Let

M be the line (whose existence is guaranteed by Theorem LB.12) such that

U 2 M and M is c-perpendicular to L. By Theorem LB.10, L and M must

intersect at some point Y . Define ˚.U/ D Y C .Y � U/ D 2Y � U. For a

visualization see Figure 21.1 below.

(B) (Coordinate form) Let a, b, and c be numbers in F such that

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c D 0g.

By Theorem LB.12, the unique line M which is c-perpendicular to L and

contains U D .u1; u2/ is

M D f.x1; x2/ j .x1; x2/ 2 F
2 and bx1 � ax2 � bu1 C au2 D 0g.

By Theorem LB.14, the point of intersection between L and M is

Y D .y1; y2/ D
 

b2u1�abu2�ac
a2Cb2

�abu1Ca2u2�bc
a2Cb2

!
.
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Fig. 21.1 Showing action of
the mapping ˚ (to be named
RL in Definition LC.24).

L

M =
←−
UΦ(U)

−→
(u1, u2) = U

(y1, y2) = Y

Φ(U)

Define

˚.U/ D ˚.u1; u2/ D Y C .Y � U/ D 2Y � U

D 2
 

b2u1�abu2�ac
a2Cb2

�abu1Ca2u2�bc
a2Cb2

!
�
 

u1

u2

!
D
 

.b2�a2/u1�2abu2�2ac
a2Cb2

�2abu1C.a2�b2/u2�2bc
a2Cb2

!
.

It is clear that for each line L in F
2, the mapping˚ in Definition LB.16 is defined

on all points X 2 F
2.

Theorem LB.17. In this theorem we use the notation of Definition LB.16.

(A) Every point of L is a fixed point for ˚ .

(B) For every U 2 F
2 nL, the line M D ���!U˚.U/; this line is c-perpendicular to L.

(C) The point Y of intersection of L and M is the c-midpoint of the segment
px qy

U˚.U/.

(D) The line M D ���!U˚.U/ named in Definition LB.16 is a fixed line for ˚ .

(E) A line N is c-perpendicular to L iff it is a fixed line for ˚ .

Proof. (A) If U D Y , ˚.U/ D Y C .Y � U/ D U, so points of L are fixed points

for ˚ . This may also be calculated numerically: if U D .u1; u2/ 2 L, by

Theorem LB.14 c D �au1 � bu2; substituting this value into the coordinate

expression for ˚.U/ shows that ˚.u1; u2/ D .u1; u2/.
(B) Since ˚.U/ D Y C .Y � U/, then ˚.U/ D Y C .�1/.U � Y/ so that by

Definition LA.1(1) ˚.U/ belongs to the line M D  !UY . Then both M and ���!
U˚.U/ contain both U and ˚.U/; by Theorem LA.10(A)

 ���!
U˚.U/ DM; this

line was defined to be c-perpendicular to L.
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(C) The point Y of intersection of L and M is the c-midpoint of the segment
px qy

U˚.U/, since
UC˚.U/

2
D UCYC.Y�U/

2
D YCY

2
D Y .

(D) Let X 2 M but X 62 L; by Definition LB.16, ˚.X/ is on a line M0 which

also contains X and is c-perpendicular to L. By Theorem LB.12 there is only

one line through X which is c-perpendicular to L, so that M0 D M, so that

˚.X/ 2M. Therefore M is a fixed line for ˚ .

(E) If N is c-perpendicular to L, choose U 2 N so that U 62 L; then

Definition LB.16 defines ˚.U/ to be a point on N , and by part (D), N is a

fixed line. Conversely, if N is a fixed line and U 2 NnL,˚.U/ 2 N D ���!U˚.U/

which by part (B) is c-perpendicular to L. ut

21.5 Axiom consistency: a linear model

In this section we show that the incidence, betweenness, parallel, and Plane

Separation axioms hold in Model LM3, that every mapping ˚ (defined by Defi-

nition LB.16) over a line L in F
2 is a mirror mapping, and that the collection of

all such mappings is a reflection set. Using this result we will show that there is

a reflection set on every plane P in F
3. A proof that Axiom LUB holds on Model

LM3R completes the demonstration that our axioms are consistent.

21.5.1 Incidence Axioms I.0–I.5 are valid in a linear model

Remark LC.1. The acronym LC is meant to suggest “consistency using linear

models.”

In this subsection, we will show that the Axioms I.0, I.1, I.2, I.3, I.4, and I.5 are

all true for Model LM3R, and thus consistent; this proof is essential for showing the

consistency of our complete axiom set.3 Most of our theorems do not require that

the underlying field F contain square roots of its non-negative members (as do A

3The proof that the incidence axioms are consistent is actually redundant, since we have already
exhibited a discrete model in Chapter 1, Section 1.9 for which all they are all true.
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and R), so will be stated for the more general context of Model LM3 or Model LM2

and a generic ordered field F, which may be any of Q, A, or R.

Theorem LC.2. For Model LM3, Axiom I.0 and Axiom I.1 are both true.

Proof. Axiom I.0 is true because lines and planes are subsets of space. To see that

Axiom I.1 is true, let A and B be any two points of F3; by Definition LA.1(1) there

exists at least one line containing both, i.e.
 !
AB. That there is only one such line is

immediate from Theorem LA.10(A). ut
Theorem LC.3. Axiom I.2 is true for Model LM3.

Proof. If A, B, and C are any noncollinear points of F3, by Definition LA.1(2) there

exists at least one plane containing all three points, i.e.
 �!
ABC. That there is only one

such plane is immediate from Theorem LA.10(B). ut
Theorem LC.4. Axiom I.3 is true for Model LM3.

Proof. We show that if two points are on a plane, then a line through those points

is a subset of the plane. Let A, B, and C be any noncollinear points in F
3 and let

D and E be any distinct points on the plane
 �!
ABC. By Definition LA.1(1)

 !
DE D

fDC t.E � D/ j t 2 Fg. By Definition LA.1(2) there exist numbers u1, u2, v1, and

v2 such that

D D AC u1.B � A/C u2.C � A/ and

E D AC v1.B � A/C v2.C � A/.

If X is any point of
 !
DE, there exists a number t such that X D DC t.E � D/. Then

X D DC t.E � D/

D AC u1.B � A/C u2.C � A/

C t
�
v1.B � A/C v2.C � A/ � u1.B � A/ � u2.C � A/

�
D AC .u1 C t.v1 � u1//.B � A/C .u2 C t.v2 � u2//.C � A//.

Let s1 D u1 C t.v1 � u1/ and s2 D u2 C t.v2 � u2/; then

X D AC s1.B � A/C s2.C � A/

which is a member of
 �!
ABC. Therefore

 !
DE �  �!ABC. ut

We next prove that Axiom I.5 is true, because it is needed to prove that Axiom I.4

is true.

Theorem LC.5. Axiom I.5 is true for Model LM3.

Proof. (A) By Definition LA.1(1), a line L contains two distinct points A and B.

This shows that Axiom I.5(A) is satisfied.
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(B) By Definition LA.1(2), a plane P contains three noncollinear points A, B, and

C. This shows that Axiom I.5(B) is satisfied.

(C) By Remark LA.11(B), no plane contains all of F3; in particular, the four points

.0; 0; 0/, .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/ are noncoplanar. Therefore F3 contains

four noncoplanar points and Axiom I.5(C) is satisfied. ut
In the next series of results we will habitually refer to “points” (A, B, G1, G2) of

a plane P which is a subset of space F3. In the same discussion we will speak of the

differences between such “points” (B � A, G1 � A, etc.) as “vectors” because this

seems more natural when emphasizing orthogonality and direction.

Lemma LC.6. Let P be a plane in F
3, and let A D .a1; a2; a3/ and B D .b1; b2; b3/

be distinct points of P .

(A) There exists a point C D .c1; c2; c3/ 2 of P , distinct from both A and B, such

that .B � A/ ? .C � A/.

(B) There exists a point C D .c1; c2; c3/ 62 P such that .B � A/ ? .C � A/.

Proof. (A) If all points X 2 P were collinear with A and B, then by Defini-

tion LA.1(2) P would not be a plane; hence there exists a member X of P
which is not collinear with A and B.

(B) By Remark LA.11 P is a proper subset of F3, so there exists a point X 62 P ,

and A, B, and X are noncollinear because
 !
AB � P does not contain X.

The following calculation is the same for both (A) and (B). If .X �A/ ? .B�A/

let C D X, and we are done. If .X � A/ 6? .B � A/, then let C D .c1; c2; c3/ be the

point C D AC s.X � A/C t.B � A/ where

s D � 1

.B � A/ � .X � A/
and t D 1

.B � A/ � .B � A/
.

Note that both s and t are nonzero. Then

.B � A/ � .C � A/ D .B � A/ � .s.X � A/C t.B � A//

D � 1

.B � A/ � .X � A/
.B � A/ � .X � A/

C 1

.B � A/ � .B � A/
.B � A/ � .B � A/ D 0

so that .B � A/ ? .C � A/. Again, we consider the two parts separately.

(A) We have seen that C D AC s.X � A/C t.B� A/; by Definition LA.1(2), since

A, B, and X belong to P , so does C. If C D A, s.X � A/C t.B � A/ D O and

X � A and B � A would be linearly dependent; by Theorem LA.3, X, A, and B

would be collinear; this was ruled out at the beginning of the proof. Therefore

C is a member of P that is distinct from A.
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(B) Again, C D AC s.X � A/C t.B � A/, where s ¤ 0 and t ¤ 0. If C 2 P , we

see that C � A D s.X � A/C t.B � A/ and

X D AC 1
s .C � A/ � t

s .B � A/.

By Definition LA.1(2) X 2 P , contradicting our original choice for X. This

shows that C 62 P . ut
Theorem LC.6.1. Let P be a plane in F

3, and let A D .a1; a2; a3/ and B D
.b1; b2; b3/ be distinct points of P . Then there exist three points G1, G2, and G3,

of F3, all distinct from A, such that

(A) G1 and G2 belong to P , and for every point X 2 P , there exist scalars s and t

in F such that X � A D s.G1 � A/C t.G2 � A/;

(B) the vectors G1 � A, G2 � A, and G3 � A are pairwise orthogonal;,

(C) for every point X 2 F
3, there exist scalars x1, x2, and x3 in F such that X�A D

x1.G1 � A/C x2.G2 � A/C x3.G3 � A/; and

(D) for every point X 2 F
3 such that .X � A/ ? .G3 � A/, X 2 P .

Proof. In this proof we shall frequently use the various statements of Remark LA.7

without further reference.

Let G1 D B. From Lemma LC.6(A) there exists a point G2 2 P such that .G1 �
A/ ? .G2 � A/ and G2 ¤ A. By Remark LA.9(E) P � A is a subspace of F3 having

dimension 2, and the vectors G1�A and G2�A are linearly independent members of

this subspace (because they are orthogonal), thus forming a basis for it. Then X 2 P
iff X � A 2 P � A iff for some scalars s and t, X � A D s.G1 � A/C t.G2 � A/, that

is, X D AC s.G1 � A/C t.G2 � A/.

Moreover, by the Dimension Criterion of Chapter 1 Section 1.5, P � A and P
are proper subsets of F3. By Lemma LC.6(B) there exists a point D 2 F

3 such that

D 62 P , D � A 62 P � A, and .D � A/ ? .G1 � A/.

Since D 62 P , and both G2 and A belong to P , D, A, and G2 are noncollinear; let

Q D  ��!DAG2. By Lemma LC.6(A) there exists a point G3 2 Q such that .G3 � A/ ?
.G2 � A/. Since G3 � A D s.G2 � A/C t.D � A/;

.G3 � A/ � .G1 � A/D s.G2 � A/ � .G1 � A/C t.D � A/ � .G1 � A/D 0C 0D 0;
so that G3�A is orthogonal to both G2�A and G1�A. Since .G1�A/ ? .G2�A/,

G1�A, G2�A, and G3�A are pairwise orthogonal and thus by Theorem LA.14 are

linearly independent; thus they span F
3. This completes the proof of (C) and (B);

the first paragraph proves assertion (A).
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(D) Suppose .X � A/ ? .G3 � A/; by part (C) there exist numbers x1, x2, and x3
such that X � A D x1.G1 � A/C x2.G2 � A/C x3.G3 � A/. Then

0 D .X � A/ � .G3 � A/ D �x1.G1 � A/C x2.G2 � A/C x3.G3 � A/
� � .G3 � A/

D x1.G1 � A/ � .G3 � A/C x2.G2 � A/ � .G3 � A/C x3.G3 � A/ � .G3 � A/

D x1 � 0C x2 � 0C x3.G3 � A/ � .G3 � A/ D x3kG3 � Ak2.
Since kG3 � Ak ¤ 0, x3 D 0, so that X � A D x1.G1 � A/ C x2.G2 � A/. By

Definition LA.1(2), X 2 P . ut
Theorem LC.7. Axiom I.4 is true for Model LM3.

Proof. We show that if two planes intersect, their intersection must contain at least

two points. Let P and Q be any two planes in F
3, and suppose that they intersect

at some point A. By Theorem LC.6.1, there exist points P1, P2, and P3 in F
3, all

distinct from A, such that both P1 and P2 are members of P and the vectors P1 � A,

P2 � A, and P3 � A are pairwise orthogonal.

Similarly, there exist points Q1, Q2, and Q3 in F
3, all distinct from A, such that

both Q1 and Q2 are members of Q, and the vectors Q1 � A, Q2 � A, and Q3 � A are

pairwise orthogonal.

Now if P3 � A and Q3 � A are linearly dependent, one is a scalar multiple of

the other and the two planes P and Q are the same, because for every point X 2 Q,

.X�A/�.P3�A/ D 0 and hence by Theorem LC.6.1(D), X 2 P; likewise every point

of P belongs to Q. In this case, there are infinitely many points in the intersection

and the theorem is proved.

If, on the other hand, P3 � A and Q3 � A are linearly independent, by

Theorem LA.3, A, P3 and Q3 are noncollinear and by Definition LA.1(2) there exists

a plane
 ��!
AP3Q3 containing the points A, P3, and Q3.

Applying Theorem LC.6.1(B) to this plane, there exists a point Y 2 F
3 such that

Y � A ¤ O and is orthogonal to both P3 � A and Q3 � A. By two applications of

Theorem LC.6.1(D), Y 2 P and Y 2 Q so that Y is a point in P \Q distinct from

A. By Theorem LC.4 (Axiom I.3) the line containing A and Y is a subset of both P
and Q, proving the theorem. ut

21.5.2 Betweenness Axiom BET is valid on a linear model

Definition LC.8 (A betweenness relation on F
3). Let X, Y , and Z be collinear

points in F
3, and let A and B be distinct points collinear with these points. Then
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.X;Y;Z/ belongs to the betweenness relation, that is to say Y is between X and Z

(notation: X Y Z) iff there exist distinct numbers t1, t2, and t3 such that

X D AC t1.B � A/, Y D AC t2.B � A/, and Z D AC t3.B � A/

and t1 t2 t3; that is, either t1 < t2 < t3 or t1 > t2 > t3.

Remark LC.9. By Theorem LA.5, X, Y , and Z are distinct since t1, t2, and t3 are

distinct.

Theorem LC.10 (Betweenness is well defined). Betweenness does not depend on

the choice of A and B in Definition LC.8. That is, if A ¤ B, and C ¤ D are points

collinear with X, Y, and Z, then statement (A) below is true iff statement (B) is

true:

(A) there exist distinct numbers t1, t2, and t3 such that

X D AC t1.B � A/, Y D AC t2.B � A/, and Z D AC t3.B � A/

and t1 t2 t3;

(B) there exist distinct numbers s1, s2, and s3 such that

X D CC s1.D � C/, Y D CC s2.D � C/, and Z D CC s3.D � C/

and s1 s2 s3.

Proof. By Definition LA.1(2) there exist numbers t1, t2, t3, s1, s2, and s3 such that

X D AC t1.B � A/ D CC s1.D � C/, (1)

Y D AC t2.B � A/ D CC s2.D � C/, (2)

and Z D AC t3.B � A/ D CC s3.D � C/. (3)

Suppose X Y Z according to Definition LC.8, using the points A and B; then

t1 t2 t3, that is to say, either t1 < t2 < t3 or t1 > t2 > t3. Subtracting (2) from

(1) we have

.t1 � t2/.B � A/ D .s1 � s2/.D � C/ (4)

and subtracting (3) from (2) we have

.t2 � t3/.B � A/ D .s2 � s3/.D � C/. (5)

Since the coefficients t1 � t2 and t2 � t3 are nonzero, there exists a number a such

that a.t1 � t2/ D .t2 � t3/; multiplying through equation (4) by a we get

a.t1 � t2/.B � A/ D a.s1 � s2/.D � C/.

The left-hand side is .t2 � t3/.B � A/, so by (5) we get

a.s1 � s2/.D � C/ D .s2 � s3/.D � C/.

Now t1� t2 and t2� t3 have the same sign because either t1 < t2 < t3 or t1 > t2 > t3,

so a > 0 and hence s1�s2 and s2�s3 have the same sign, that is, either s1 < s2 < s3
or s1 > s2 > s3. Thus X Y Z is true using C and D in Definition LC.8. ut
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Theorem LC.11 (First alternative definition of betweenness). Let X, Y, and Z

be distinct points in F
3. Then X Y Z iff there exist distinct points A and B in F

3

and numbers t1, t2, and t3 with t1 < t2 < t3, such that X D A C t1.B � A/, Y D
AC t2.B � A/, and Z D AC t3.B � A/ are all true.

Proof. If the alternative condition is true, then t1 < t2 < t3; this implies that X Y Z

according to Definition LC.8.

If t1 t2 t3 according to Definition LC.8, either t1 < t2 < t3 or t1 > t2 > t3;

if t1 < t2 < t3, the alternative holds. If t1 > t2 > t3, X D B C .1 � t1/.A � B/,

Y D BC.1� t2/.A�B/, and Z D BC.1� t3/.A�B/, and 1� t1 < 1� t2 < 1� t3 so

that X Y Z according to the alternative. So in either case, the alternative definition

holds. ut
Theorem LC.12 (Second alternative definition of betweenness). Let X, Y, and

Z be distinct points in F
3. Then X Y Z iff for some number s with 0 s 1 (that is,

0 < s < 1), Y D X C s.Z � X/.

Proof. In Definition LC.8 we may choose A and B to be any points collinear with

X, Y , and Z. Let X D A and Z D B; then X D XC 0.Z �X/ and Z D XC 1.Z �X/.

By that definition, X Y Z iff there exists a number s such that Y D X C s.Z � X/

and for some number s, Y D X C s.Z � X/ and 0 s 1 which is the criterion of this

theorem. ut
Theorem LC.13 (Segments and rays). The definitions of segments and rays given

in Definition LA.1(3) are equivalent to those given in Definitions IB.3 and IB.4 of

Chapter 4. Specifically, if we let A and B be distinct points in F
3 and give

px qy

AB,
px!
AB,

etc., their meanings in Definitions IB.3 and IB.4, and if s and t denote numbers in

F, the following statements are true:

(1)
qy px

AB D fAC t.B � A/ j 0 < t < 1g
D fBC .1 � t/.A � B/ j 0 < t < 1g
D fBC s.A � B/ j 0 < s < 1g D qy px

BA.

(2)
px qy

AB D fAC t.B � A/ j 0 � t � 1g
D fBC .1 � t/.A � B/ j 0 � t � 1g
D fBC s.A � B/ j 0 � s � 1g D px qy

BA.

(3)
px px

AB D fAC t.B � A/ j 0 � t < 1g
D fBC .1 � t/.A � B/ j 0 � t < 1g
D fBC s.A � B/ j 0 < s � 1g D qy qy

BA.
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(4)
qy qy

AB D fAC t.B � A/ j 0 < t � 1g
D fBC .1 � t/.A � B/ j 0 < t � 1g
D fBC s.A � B/ j 0 � s < 1g D px px

BA.

(5)
qy!
AB D fAC t.B � A/ j t > 0g.

(6)
px!
AB D fAC t.B � A/ j t � 0g.

Proof. (1) Definition IB.3 states that X 2 qy px

AB iff A X B; by the second alternative

definition of betweenness (Theorem LC.12) this means that for some t with

0 < t < 1, X D AC t.B � A/.

The proofs of (2), (3), and (4) are obvious from (1) and simple set theory

observations about the inclusion of the end points A and B.

(5) Definition IB.4 states that X 2 qy!
AB iff A X B or A B X or X D B. By

Theorem LC.12, A X B means that for some t with 0 < t < 1, X D ACt.B�A/.

Also, A B X means that for some s with 0 < s < 1, B D A C s.X � A/,

that is, B � A � sX C sA D B � AC sA � sX D 0, or sX D B � AC sA. Since

0 < s < 1, we may let t D 1
s , so that t > 1, and X D AC t.B � A/. Therefore

X 2 qy!
AB iff for some t with X D AC t.B� A/, where either 0 < t < 1, t > 1, or

t D 1, that is, where t > 0.

(6) X 2 px!
AB iff X 2 qy!

AB or XDA, that is, for some t with t � 0, XDACt.B�A/. ut
Theorem LC.14. The betweenness relation of Definition LC.8 satisfies Properties

B.0, B.1, B.2, and B.3 of Definition IB.1. This shows that Axiom BET is valid for F3

(and hence for any plane of F3).

Proof. The properties of the betweenness relation follow immediately from Defini-

tion LC.8 and the corresponding properties of betweenness for members of the field

F, as listed in Chapter 1 Section 1.5 under the title “Number systems.” ut

Remark LC.15. Theorems LC.2 through LC.14 show that the incidence

Axioms I.0, I.1, I.2, I.3, I.4, and I.5, and the betweenness Axiom BET are consistent,

since they are all true for Model LM3.

21.5.3 Parallel Axiom PS is valid on a linear model

Theorem LC.16. The parallel axiom PS is true for Model LM3, and therefore for

Model LM2.
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Proof. Let L be any line in F
3 and let A and B be distinct points on L. Let C be any

member of F3 n !AB, let t be any nonzero number, and let D D C C t.B � A/. Then

by Theorem LA.22
 !
CD and

 !
AB are parallel to each other.

If E is a point of F3 distinct from C such that
 !
CE and

 !
AB are parallel to each other,

then by Theorem LA.22 there exists a nonzero number s such that E�C D s.B�A/.

Since B � A D 1
t .D � C/, E D C C s

t .D � C/. By Definition LA.1(1) E 2  !CD.

Hence there is a unique line through C which is parallel to
 !
AB. ut

Remark LC.17. We have inserted the above theorem out of the order of presen-

tation in the development, since we need Axiom PS to prove the next theorem,

Theorem LC.18.

21.5.4 Plane Separation Axiom PSA is valid on a linear model

The following three theorems show that Axiom PSA holds for every plane in F
3.

Theorem LC.18. Let A, B, and C be noncollinear points in P , a plane in F
3. The

C side of
 !
AB is equal to

E D fAC s.B � A/C t.C � A/ j .s; t/ 2 F
2 and t > 0g.

Proof. (I) (E � C side of
 !
AB.) Let X be any member of E ; then there exists a

number s and a positive number t such that X D AC s.B � A/C t.C � A/. By

Definition LA.1(1), A C s.B � A/ is a point on
 !
AB. By Theorem LC.13(5), X

is a member of
qy !
.AC s.B � A//C. Since we know that the incidence axioms

hold, and there exists a betweenness relation on this model, we can apply

Theorem IB.14 to conclude that X D AC s.B� A/C t.C � A/ is a member of

the C side of
 !
AB.

(II) (C side of
 !
AB � E .) Let X be any member of the C side of

 !
AB. By

Theorem LC.16 we may use Axiom PS, the strong form of the Parallel Axiom.

Let L be the line through X which is parallel to
 !
BC. By Exercise IP.4, L and !

AB intersect at a point V . By Definition LA.1(1) there exists a number s such

that V D AC s.B � A/. Using Axiom PS and Exercise IP.4, let M be the line

through C which is parallel to
 !
AB and let W be the point of intersection of

 !
VX

and M. Again using Definition LA.1(1) and Theorem LC.13(5) there exists a

(unique) positive number t such that V C t.W � V/ D X. That is,

X D AC s.B � A/C t.W � V/. (*)
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Since
 !
CW k  !AB, by Theorem LA.22 there exists a number k ¤ 0 such

that W � C D k.B � A/, so that W D C C k.B � A/. Also, since V 2  !AB,

by Definition LA.1(1) there exists a number v such that V D A C v.B � A/.

Substituting into equation (*), we have

X D AC s.B � A/C t.W � V/

D AC s.B � A/C t.CC k.B � A/ � .AC v.B � A///

D AC .sC t.k � v//.B � A/C t.C � A/

so that X 2 E . Thus the C side of
 !
AB is a subset of E . ut

Theorem LC.19. Let A, B, and C be noncollinear points in P , a plane in F
3. Let

C0 be a point such that C0 B C, then the C0 side of
 !
AB (which we denote by E 0) is

equal to fAC s.B � A/C t.C � A/ j .s; t/ 2 F
2 and t < 0g.

Proof. This is word-for-word the proof of LC.18 except that C is replaced by C0 and

the inequality > is replaced by <. ut
Theorem LC.20. Axiom PSA (The Plane Separation Axiom) is true for Model LM3

and Model LM2.

Proof. Let A, B, and C be noncollinear points in F
3, let D be a point on

 !
AB, and let

E be a point such that C D E. By Definition LA.1(2) the points A, B, and C define

the plane
 �!
ABC � F

3.

Then the C side of
 !
AB and the E side of

 !
AB are opposite sides of

 !
AB in the

plane
 �!
ABC (cf Definition IB.11). If X is any member of the C side of

 !
AB and Y is

any member of the E side of
 !
AB, then we show that

 !
AB \ qy px

XY is a singleton (cf the

note following Axiom PSA).

By Theorems LC.18 and LC.19 there exist numbers s1, s2, t1 > 0, and t2 < 0

such that

X D AC s1.B � A/C t1.C � A/ and Y D AC s2.B � A/C t2.C � A/.

By Remark LC.13,
qy px

XY D fX C u.Y � X/ j u 2 F and 0 < u < 1g. By

Definition LA.1(1), a point Z 2  !AB iff there exists a number v such that Z D
AC v.B� A/. We want to find a point U that is in both

qy px

XY and in
 !
AB, that is to say,

we seek numbers u and v such that 0 < u < 1 and

U D X C u.Y � X/

D AC s1.B � A/C t1.C � A/

Cu
�
AC s2.B � A/C t2.C � A/ � .AC s1.B � A/C t1.C � A//

�
D AC s1.B � A/C u.s2 � s1/.B � A/C u.t2 � t1/.C � A/C t1.C � A/

D AC v.B � A/.
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This is true iff�
s1 C u.s2 � s1/ � v

�
.B � A/C �t1 C u.t2 � t1/

�
.C � A/ D O. (*)

Since A, B, and C are noncollinear, by Theorem LA.3 B � A and C � A are linearly

independent. Therefore equation (*) is true iff s1 C u.s2 � s1/ � v D 0 and t1 C
u.t2 � t1/ D 0, that is, iff u D t1

t1�t2
and v D s1 C t1.s2�s1/

t1�t2
. Then

U D X C u.Y � X/ D X C t1
t1�t2

.Y � X/ 2  !XY

and also

U D AC v.B � A/ D AC �s1 C t1.s2�s1/
t1�t2

�
.B � A/ 2  !AB.

Since t1 > 0 and t2 < 0, it follows that 0 < u D t1
t1�t2

< 1; by Remark LC.13,

X C u.Y � X/ 2 qy px

XY , and X U Y . Therefore, the segment
qy px

XY intersects
 !
AB at the

point U; by Exercise I.1, since
 !
XY and

 !
AB are distinct, the point of intersection is a

singleton.

This shows that Axiom PSA holds for F3. ut

Remark LC.21. Theorems LC.2 through LC.20 show that the incidence

Axioms I.0, I.1, I.2, I.3, I.4, and I.5, the betweenness Axiom BET, Axiom PS,

and Axiom PSA are consistent, since they are all true for Model LM3.

21.5.5 Reflection Axiom REF is valid on Model LM2A
and Model LM2R

Remark LC.22. We return to the development of the last section, culminating in

Definition LB.16, which defined a single mapping ˚ over every line L as follows:

for any U 2 F
2, ˚.U/ D YC .Y �U/, where Y is the point of intersection of L and

M, and M is the line containing U that is c-perpendicular to L.

It will sometimes be useful to have the coordinate-wise definition available:

suppose the equation for L is ax1 C bx2 C c D 0, where not both a and b are

zero, and U D .u1; u2/; then

˚.u1; u2/ D
�
.b2�a2/u1�2abu2�2ac

a2Cb2
;
�2abu1C.a2�b2/u2�2bc

a2Cb2

�
,

and the point of intersection

Y D .y1; y2/ D
� b2u1�abu2�ac

a2Cb2
; �abu1Ca2u2�bc

a2Cb2

�
.

Theorem LC.23. Definition LB.16 defines a single mirror mapping over a given

line L in F
2.
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Proof. Clearly Definition LB.16 defines only one mapping over the line L. We show

that the mapping ˚ of Definition LB.16 satisfies Properties (A), (B), (C), and (D) of

Definition NEUT.1, and therefore is a mirror mapping over L. We use the notation

from Definition LB.16, which is cited in Remark LC.22 above.

(A: Every point of L is a fixed point for ˚ .) This is Theorem LB.17(A). See

Exercise LM.14 for a coordinate-wise proof.

(B: If U 62 L, then ˚.U/ is on the opposite side of L from U.) Since Y 2 L and

Y 2 px qy

U˚.U/, and Y ¤ U and Y ¤ ˚.U/, then Y 2 qy px

U˚.U/. Hence U and ˚.U/

are on opposite sides of L, by Definition IB.11.

(C: For every U 2 F
2, ˚.˚.U// D U.) By Theorem LB.17(D) M D  ���!U˚.U/ is a

fixed line for ˚ , so that ˚.˚.U// 2M; Y is the point of intersection of
px qy

U˚.U/

with L; substituting ˚.U/ for U in the definition of ˚ , we have

˚.˚.U// D Y C .Y � ˚.U// D Y C .Y � .Y C .Y � U///

D Y � .Y � U/ D U,

so that ˚ ı ˚ D {, the identity map.

(D: ˚ preserves betweenness.) For this case, we use the coordinate form

of Definition LB.16 and by direct calculation show that for every triple

.u1; u2/, .x1; x2/, .v1; v2/ of points on F
2, if .u1; u2/ .x1; x2/ .v1; v2/, then

˚.u1; u2/ ˚.x1; x2/ ˚.v1; v2/.

If .x1; x2/ is between .u1; u2/ and .v1; v2/, then by the second alternative

definition of betweenness (Theorem LC.12) there exists a number t such that

0 < t < 1 and

 
x1

x2

!
D
 

u1 C t.v1 � u1/

u2 C t.v2 � u2/

!
. Then

˚.x1; x2/ D ˚
 

x1

x2

!
D ˚

 
u1 C t.v1 � u1/

u2 C t.v2 � u2/

!

D
 

b2�a2

a2Cb2
.u1 C t.v1 � u1// � 2ab

a2Cb2
.u2 C t.v2 � u2// � 2ac

a2Cb2

�2ab
a2Cb2

.u1 C t.v1 � u1/C a2�b2

a2Cb2
.u2 C t.v2 � u2// � 2bc

a2Cb2

!

D
 

b2�a2

a2Cb2
u1 � 2ab

a2Cb2
u2 � 2ac

a2Cb2

�2ab
a2Cb2

u1 C a2�b2

a2Cb2
u2 � 2bc

a2Cb2

!

Ct

0
@ b2�a2

a2Cb2
v1 � 2ab

a2Cb2
v2 � 2ac

a2Cb2
�
�

b2�a2

a2Cb2
u1 � 2ab

a2Cb2
u2 � 2ac

a2Cb2

�
�2ab

a2Cb2
v1 C a2�b2

a2Cb2
v2 � 2bc

a2Cb2
�
�
�2ab

a2Cb2
u1 C a2�b2

a2Cb2
u2 � 2bc

a2Cb2

�
1
A

D ˚.u1; u2/C t.˚.v1; v2/ � ˚.u1; u2//.
By Theorem LC.12, ˚.x1; x2/ is between ˚.u1; u2/ and ˚.v1; v2/. ut
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Definition LC.24. From now on we denote the mirror mapping ˚ (defined over a

line L by Definition LB.16) by RL, the symbol we used in our main development

for a mirror mapping or reflection. We will sometimes refer to the mapping RL as

the LB.16 mapping over the line L.

This notation anticipates the proof in the following sequence of theorems that the

set of all such mappings RL is indeed a reflection set (as in Definition NEUT.2) on

A
2 or R2. However, most of these theorems are valid for an arbitrary ordered field F.

Theorem LC.25 (Existence and uniqueness: Properties R.1 and R.2). The set

of all mappings RL on F
2 satisfies Properties R.1 and R.2 of Definition NEUT.2.

Proof. The proof is obvious from the fact that Definition LB.16 defines exactly one

mapping ˚ D RL over each line L. ut
The following definition provides a way around the lack of a notion of distance

in the case that F D Q, and makes it possible to show that the set of all mappings

RL on Q
2 satisfies Properties R.3 and R.4 of Definition NEUT.2.

Definition LC.26. Let F be any ordered field, and let X and Y be any points of F3.

Define qdi.X;Y/ D .X � Y/ � .X � Y/ to be the quadratic distance between X

and Y .

Remark LC.26.1. (A) If X D .x1; x2/ and Y D .y1; y2/ are in F
2, the quadratic

distance between X and Y is qdi.X;Y/ D .x1 � y1/2 C .x2 � y2/2.

(B) If F D A or F D R, so that F contains square roots of its non-negative

members, dis2.X;Y/ D qdi.X;Y/; that is, dis.X;Y/ D p
qdi.X;Y/ Dp

.X � Y/ � .X � Y/ D kX � Yk. (Also, kXk D p
dis.X;O/.) In this

environment a mapping ' preserves quadratic distance iff it preserves distance.

Theorem LC.27 (RL preserves qdi and dis). Let F be an ordered field and let L
be any line in F

2 where

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c D 0g

and .a; b/ ¤ .0; 0/. Let X D .x1; x2/ and Y D .y1; y2/ be any points of F2, and let

RL be the mapping ˚ over L as in Definition LB.16.

(A) Then qdi.RL.X/;RL.Y// D qdi.X;Y/, that is, RL preserves quadratic

distance.

(B) If F D A or F D R (F contains square roots of its non-negative members), then

dis.RL.X/;RL.Y// D kRL.X/ �RL.Y/k D kX � Yk D dis.X;Y/,

that is, RL preserves distance.
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Proof. Let �1 and �2 be the mappings such that for every member .x1; x2/ of F2

�1.x1; x2/ D b2�a2

a2Cb2
x1 � 2ab

a2Cb2
x2 � 2ac

a2Cb2
and

�2.x1; x2/ D �2ab
a2Cb2

x1 � a2�b2

a2Cb2
x2 � 2bc

a2Cb2
.

Then, by Definition LB.16 RL.x1; x2/ D .�1.x1; x2/; �2.x1; x2//. If X D .x1; x2/

and Y D .y1; y2/ are any two points of F2, by Exercise LM.16,

qdi.RL.X/;RL.Y// D qdi.RL.x1; x2/;RL.y1; y2//

D .�1.x1; x2/ � �1.y1; y2//2 C .�2.x1; x2/ � �2.y1; y2//2
D .x1 � y1/2 C .x2 � y2/2 D qdi..x1; x2/; .y1; y2// D qdi.X;Y/.

This proves part (A). Part (B) follows immediately by taking square roots of both

sides. ut
Corollary LC.27.1. Let F be an ordered field and let L be any line in F

2.

(A) Every composition of mirror mappings RM (as in Definition LB.16) over lines

M in F
2 preserves quadratic distance.

(B) If F D A or F D R (F contains square roots of its non-negative members),

every composition of mirror mappings RM (as in Definition LB.16) over lines

M in F
2 preserves distance.

Exercise NEUT.0 shows that on a coordinate plane there can be a mirror mapping

� ¤ RL. The following theorem shows that no such mapping can preserve

quadratic distance.

Theorem LC.28. For any ordered field F, if A D .a1; a2; a3/, B D .b1; b2; b3/, and

C D .c1; c2; c3/ are points in F
3 such that C 2 qy!

AB and qdi.A;B/ D qdi.A;C/, then

C D B.

Proof. By Definition LA.1(3E), since C 2 qy!
AB there exists a number t > 0 such

that C D A C t.B � A/, that is, c1 D a1 C t.b1 � a1/, c2 D a2 C t.b2 � a2/, and

c3 D a3 C t.b3 � a3/. If qdi.A;B/ D qdi.A;C/, then

.a1 � b1/2 C .a2 � b2/2 C .a3 � b3/2 D .a1 � c1/2 C .a2 � c2/2 C .a3 � c3/2

D .a1 � a1 � t.b1 � a1//2 C .a2 � a2 � t.b2 � a2//2

C.a3 � a3 � t.b3 � a3//2

D t2.b1 � a1/2 C t2.b2 � a2/2 C t2.b3 � a3/2

D t2..a1 � b1/2 C .a2 � b2/2/C .a3 � b3/2/:

Hence t2 D 1, so t D 1 and C D AC .B � A/ D B. ut
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Theorem LC.29 (Only RL preserves qdi or dis). Let F be an ordered field and

let L be any line in F
2; let � be a mirror mapping over L such that � ¤ RL, the

mirror mapping of Definition LB.16. Then

(A) � does not preserve quadratic distance, and

(B) if F contains square roots of its non-negative members (is either A or R), �

does not preserve distance.

Fig. 21.2 For
Theorem LC.29

A : (a1, a2)

B : (0, 0)

C = RL(A) : (c1, c2)

D : (d1, d2)

E = Ψ(A) : (e1, e2)

L

Proof. Let A D .a1; a2/ be a point not on L such that �.A/ ¤ RL.A/. Let C D
.c1; c2/ D RL.A/ and E D .e1; e2/ D �.A/. The line

 ����!
ARL.A/ is a fixed line for

RL, is perpendicular to L, and intersects L at some point B which is a fixed point

for RL (and � ). Choose a coordinate system so that B D .0; 0/. For a visualization,

see Figure 21.2.

The line
 ��!
A�.A/ is a fixed line for � , intersects L at some point D D .d1; d2/,

which is a fixed point for � (and RL). All points of L are fixed points for both RL

and � .

We know that the mapping RL preserves quadratic distance, so that

a21 C a22 D qdi.A;B/ D qdi.RL.A/;B/ D c21 C c22.

Assume that � also preserves quadratic distance. Then

.a1 � d1/2 C .a2 � d2/2 D qdi.A;D/ D qdi.E;D/

D .e1 � d1/2 C .e2 � d2/2. (*)

By Definition LA.1(1), since A, D, and E are collinear, there exists a number t

such that E D AC t.D� A/, that is, e1 D a1C t.d1 � a1/ and e2 D a2C t.d2 � a2/.

Substituting into the right-hand side of equation (*),

.a1 � d1/2 C .a2 � d2/2 D .e1 � d1/2 C .e2 � d2/2

D .a1 C t.d1 � a1/ � d1/2 C .a2 C t.d2 � a2/ � d2/2
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D ..1 � t/a1 � .1 � t/d1/2 C ..1 � t/a2 � .1 � t/d2/2

D .1 � t/2..a1 � d1/2 C .a2 � d2/2/

so that .1 � t/2 D 1, which is true iff t D 0 or t D 2. If t D 0, then A D E which

is impossible because A and E are on opposite sides of L. Thus E D AC 2.D� A/,

that is, e1 D a1 C 2.d1 � a1/ and e1 D a2 C 2.d2 � a2/.

Now � maps A to E, and B D .0; 0/ is a fixed point for both RL and � , and �

preserves quadratic distance qdi. Therefore

a21 C a22 D qdi.A;B/ D qdi.E;B/ D e21 C e22
D .a1 C 2.d1 � a1//2 C .a2 C 2.d2 � a2//2

D .2d1 � a1/2 C .2d2 � a2/2

D 4d21 � 4d1a1 C a21 C 4d22 � 4d2a2 C a22
D 4d21 � 4d1a1 C 4d22 � 4d2a2 C .a21 C a22/

so that, canceling a21 C a22 from both sides, we have

d21 � d1a1 C d22 � d2a2 D d1.d1 � a1/C d2.d2 � a2/ D 0.

Therefore the vectors D and D � A are orthogonal and the lines
 !
BD D L and !

AD D  ��!A�.A/ are c-perpendicular. Since L and
 ����!
ARL.A/ are c-perpendicular, and

there is only one c-perpendicular to a line at a point,
 ����!
ARL.A/ D  ��!A�.A/; and A,

B, RL.A/, and �.A/ are collinear. Both RL and � preserve quadratic distance, so

qdi.B;RL.A// D qdi.B;A/ D qdi.B; �.A//; RL.A/ and �.A/ are on the same

side of L and hence �.A/ 2 qy !
BRL.A/. By Theorem LC.28, RL.A/ D �.A/,

contradicting the assumption that RL.A/ ¤ �.A/.
Thus, � does not preserve quadratic distance, and in the case where F contains

square roots of its non-negative members (is either A or R), does not preserve

distance. ut
Corollary LA.29.1 (Closure Property R.3). Let F be an ordered field and let L
be any line in F

2. If � is any mirror mapping over L which is a finite composition

of mirror mappings RMk as in Definition LB.16, then � D RL.

Proof. If � ¤ RL, by Theorem LC.29(A) � does not preserve quadratic distance;

by Corollary LC.27.1(A), � does preserve quadratic distance, a contradiction. ut
Theorem LC.30 (Linear scaling Property R.4). Let F be an ordered field and let

L be any line in F
2. If ˛ is any finite composition of mirror mappings RMk over lines

Mk as in Definition LB.16, and if ˛.
px qy

AB/ D px qy

AC, where A, B, and C are collinear

points such that B 2 qy!
AC, then B D C.
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Proof. By Theorem LC.27(A), each of the mappings RMk preserves quadratic dis-

tance; therefore (by Corollary LC.27.1) the mapping ˛ preserves quadratic distance;

that is, qdi.A;B/ D qdi.A;C/. Since B 2 qy!
AC it follows from Theorem LC.28 that

B D C. ut
Theorem LC.31 (Angle reflection Property R.5). Let F D A or F D R so that

square roots of non-negative numbers exist and distance in F
2 is defined. Then there

exists a line M such that the mirror mapping RM (as defined by Definition LC.24)

over M maps
px!
CA to

px!
CB, and RM.M/ DM; RM is an angle reflection for†ACB,

and dis.A;C/ D dis.RM.A/;C/.

Proof. Let A D .a1; a2/, B D .b1; b2/, and C D .c1; c2/ be noncollinear points

on F
2 so that †ACB is defined. Since in this environment the distance between two

points is defined (as in Definition/Remark LA.13(2)) we may divide A�C and B�C

by their lengths kA � Ck and kB � Ck respectively to locate points on the two rays

of the angle which are a distance 1 from C. Thus, without loss of generality, we may

assume that dis.C;A/ D 1 and dis.C;B/ D 1.

Let L D  !
AB, and let M D . a1Cb1

2
; a2Cb2

2
/ be the c-midpoint of

px qy

AB. By

Exercise LM.13
 !
AB D L is the set of all pairs .x1; x2/ 2 F

2 such that

.b2 � a2/x1 � .b1 � a1/x2 � a1.b2 � a2/C a2.b1 � a1/ D 0.

Let M be the set of all pairs .x1; x2/ 2 F
2 such that

.b1 � a1/x1 C .b2 � a2/x2 C .a1 � b1/c1 C .a2 � b2/c2 D 0.

Claim: M is c-perpendicular to L and contains both C and M.

First, note that .b1 � a1/.b2 � a2/C .�.b1 � a1/.b2 � a2// D 0, so that by the

criterion of Theorem LB.8, M ? L.

To show that C is a point of M, we substitute its coordinates .c1; c2/ into the

formula for M to get

.b1 � a1/c1 C .b2 � a2/c2 C .a1 � b1/c1 C .a2 � b2/c2 D 0.

Finally, we verify by direct calculation that M D . a1Cb1
2
; a2Cb2

2
/ 2 M. From

dis.C;A/ D 1 and dis.C;B/ D 1, it follows that

.a1 � c1/2 C .a2 � c2/2 D 1 and .b1 � c1/2 C .b2 � c2/2 D 1,

so that

2a1c1 C 2a2c2 D a21 C c21 C a22 C c22 � 1 (*)

and

2b1c1 C 2b2c2 D b21 C b22 C c21 C c22 � 1. (**)
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Substituting a1Cb1
2

and a2Cb2
2

for x1 and x2, respectively, into the formula for M, we

have

.b1 � a1/
� b1Ca1

2

�C .b2 � a2/
� b2Ca2

2

�C .a1 � b1/c1 C .a2 � b2/c2
D 1

2
.b21 � a21 C b22 � a22 C 2a1c1 � 2b1c1 C 2a2c2 � 2b2c2/,

and by (*) and (**) this last expression becomes
1
2
.b21 � a21 C b22 � a22 C a21 C c21 C a22 C c22 � 1 � b21 � b22 � c21 � c22 C 1/ D 0,

so that M D � a1Cb1
2
; a2Cb2

2

� 2M. This proves the Claim.

Define RM D ˚ to be the mirror mapping over the line M as in Defini-

tion LB.16. We have already defined M D ACB
2

to be the c-midpoint of
px qy

AB, and

we have defined M so that M is the point of intersection of M and
 !
AB and is thus

a fixed point for RM. By Theorem LB.17(C) M is the c-midpoint of
px qy

ARM.A/, that

is, M D ACRM.A/
2

D ACB
2

. A simple computation shows that RM.A/ D B.

Since RM.C/ D C, by Theorem NEUT.15(3) RM.
px!
CA/ D px!

CB. (Here we are

entitled to use Theorem NEUT.15 because we have already shown that RM is

a mirror mapping.) Since LB.16 mirror mappings preserve distance, dis.A;C/ D
dis.RM.A/;C/. ut
Remark LC.31.1. In Subsection 21.7.3, Theorem RSI.3 will prove that the set of

LB.16 reflections on Model LM2Q (Q2) fails to satisfy Property R.5; the current set

of remarks shows that this set satisfies all the other reflection properties. We will

discuss the significance of this at the beginning of Subsection 21.6.4.

Theorem LC.32 (Midpoint existence Property R.6). Let F be an ordered field,

and let A and B be any distinct points of F2. Let M D ACB
2

be the c-midpoint of
px qy

AB. Then there exists a line M containing M which is c-perpendicular to
 !
AB, and a

mirror mapping RM over M such that RM.A/ D B, RM.M/ D M, RM.
px qy

AM/ D
px qy

BM, and M is a midpoint of
px qy

AB.

Proof. By Theorem LB.12, the line M exists and is c-perpendicular to
 !
AB. Let

RM be the mirror mapping ˚ of Definition LB.16 over M; by Theorem LB.17(D) ����!
ARM.A/ is a fixed line for RM, and by definition is c-perpendicular to M, as is !
AB. By Theorem LB.12

 ����!
ARM.A/ D  !AB since they both contain the point A. By

definition
 ����!
ARM.A/ intersects M at the c-midpoint ACRM.A/

2
and we already know

that
 !
AB intersects M at the c-midpoint ACB

2
. Since these lines are the same, their

intersections with M are the same point M, and ACRM.A/
2

D ACB
2
D M; by a simple

computation, RM.A/ D B.
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Since M 2 M, RM.M/ D M; by Theorem NEUT.15 (which we can use

because we have shown RM to be a mirror mapping), RM.
px qy

AM/ D px qy

BM. Thus

by Definition NEUT.3(C), M is a midpoint of
px qy

AB. ut

Theorem LC.33 (Summary: Axiom REF is valid for Model LM2A and Model

LM2R). Suppose F is either A or R. Then fRL j L is a line in F
2g is a reflection set

on F
2, where each mapping RL is as in Definition LC.24. Thus Axiom REF holds

on Models LM2A and LM2R, and every mirror mapping RL may legitimately be

called a reflection.

Proof. By Theorem LC.25, Properties R.1 and R.2 of Definition NEUT.2 (existence

and uniqueness) hold. By Corollary LA.29.1 Property R.3 (closure) is true. By

Theorem LC.30 Property R.4 (linear scaling) is true. By Theorem LC.31, Property

R.5 (angle reflection) is true provided F is either A or R. Finally, Theorem LC.32

shows that Property R.6 (existence of midpoint) is true. ut

21.5.6 On an arbitrary plane in F
3

Remark LC.34. In this subsection, F is either the field A of real algebraic numbers

or the field R of real numbers, so that norms of vectors exist. This opens the

possibility of adding to part (B) of Theorem LC.6.1 the provision that the norms

of the vectors G1 � A, G2 � A, and G3 � A are all equal to 1. For if we let

Hi D AC Gi�A
kGi�Ak , so that kHi � Ak D k Gi�A

kGi�Akk D 1, Hi � A is a scalar multiple of

Gi � A and orthogonality is not disturbed. For reference we repeat the statement of

Theorem LC.6.1 with this modification:

Modified Theorem LC 6.1. Let P be a plane in F
3, where F is either A or R; let

A D .a1; a2; a3/ and B D .b1; b2; b3/ be distinct points of P . Then there exist three

points G1, G2, and G3, of F3, all distinct from A, such that

(A) G1 and G2 belong to P , and for every point X 2 P , there exist scalars s and t

in F such that X � A D s.G1 � A/C t.G2 � A/;

(B) the vectors G1�A, G2�A, and G3�A are pairwise orthogonal and kG1�Ak D
kG2 � Ak D kG3 � Ak D 1;

(C) for every point X 2 F
3, there exist scalars x1, x2, and x3 in F such that X�A D

x1.G1 � A/C x2.G2 � A/C x3.G3 � A/; and

(D) for every point X 2 F
3 such that .X � A/ ? .G3 � A/, X 2 P .
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Definition LC.35. Let P be a plane in F
3, where F is either A or R. Let A be

a point of P , and let G1 and G2 be the points of F
3 as defined in the Modified

Theorem LC.6.1. That is, G1 � A and G2 � A are orthogonal with norm 1, and for

every X 2 P there exist scalars s and t such that X � A D s.G1 � A/C t.G2 � A/.

(By Theorem LA.3, A, G1, and G2 are noncollinear.)

For each point X D .s; t/ of F2 define '.s; t/ D AC s.G1 � A/C t.G2 � A/. We

shall refer to this mapping as a transfer mapping from F
2 to P .

Remark LC.35.1. (A) By Theorem LA.6, ' is a bijection of F2 onto P . Here G1

takes the place of B in that theorem, G2 takes the place of C, and P takes the

place of
 �!
ABC.

(B) The main application of transfer mappings will be to facilitate the definition

of reflections on an arbitrary plane, using the reflections already defined on

F
2, determine the properties of these reflections, and show that they satisfy the

properties of Definition NEUT.2, thus confirming that Axiom REF holds on

every plane.

(C) Notice that we speak of a transfer mapping, since each choice of P , and of

points A, G1, and G2 on P , defines a different transfer mapping. This will not

cause difficulty, because most of our applications of transfer mappings will

be in a given environment with the plane and the points of the plane already

specified.

(D) For the record, we make no use in the following of G3, which just “goes along

for the ride.”

Theorem LC.36 (' and '�1 preserve lines). Let F be either A or R, and

let ' be the transfer mapping which maps F
2 onto a plane P , as defined in

Definition LC.35.

(A) If L is a line in F
2, then '.L/ is a line in P .

(B) If M is a line in P , then '�1.M/ is a line in F
2.

(C) Let C and D be distinct points on F
2; for any point X 2 F

2, X D CC t.D� C/

iff

'.X/ D '.CC t.D � C// D '.C/C t.'.D/ � '.C//.
Proof. We use the meanings of A, G1, and G2 as given in Definition LC.35.
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(A) Let L be a line in F
2, and let C D .c1; c2/ and D D .d1; d2/ be distinct points

of L. By Definition LA.1(1) and Corollary LA.10.1, X 2 L iff for some t,

X D CC t.D � C/.

Observe first that '.C/ D A C c1.G1 � A/ C c2.G2 � A/ and '.D/ D
AC d1.G1 � A/C d2.G2 � A/. Then for every X 2 L,

'.X/ D '.CC t.D � C// D '..c1; c2/C t..d1; d2/ � .c1; c2///
D '.c1 C t.d1 � c1/; c2 C t.d2 � c2//

D AC .c1 C t.d1 � c1//.G1 � A/C .c2 C t.d2 � c2//.G2 � A/

D .AC c1.G1 � A/C c2.G2 � A//

C t
�
.d1 � c1/.G1 � A/C .d2 � c2/.G2 � A/

�
D .AC c1.G1 � A/C c2.G2 � A//

C t
�
.ACd1.G1�A/Cd2.G2�A//�.ACc1.G1�A/Cc2.G2�A//

�
D '.C/C t.'.D/ � '.C//.

Thus ' maps the line
 !
CD into the line

 �����!
'.C/'.D/; ' also maps onto this line

because every point in it is a point '.C/C t.'.D/ � '.C// for some t, and so

is the image under ' of CC t.D � C/.

(B) With appropriate adjustments for the fact that ' maps F
2 onto P rather than

onto F
2, this is the proof of Theorem CAP.1(D’) from Chapter 3.

(C) By the calculation in part (A), if X D C C t.D � C/, then '.X/ D '.C C
t.D�C// D '.C/C t.'.D/�'.C//. Conversely, suppose that '.X/ D '.C/C
t.'.D/ � '.C//; this is '.C C t.D � C//, and since ' is one-to-one, X D
CC t.D � C/. ut

Theorem LC.37. Let F be either A or R, and let ' be the transfer mapping which

maps F2 onto a plane P , as defined in Definition LC.35.

(A: ' and '�1 preserve intersections of lines.) Two lines L and M in F
2 intersect

at a point X iff the lines '.L/ and '.M/ intersect at '.X/.

(B: ' and '�1 preserve betweenness.) For every X, Y, and Z in F
2, X Y Z iff

'.X/ '.Y/ '.Z/.

(C: ' and '�1 preserve segments and rays.)

(1) For any two points X and Z in F
2, '.

qy px

XZ/ D qy px

'.X/'.Z/, '.
px qy

XZ/ D px qy

'.X/'.Z/,

'.
px px

XZ/ D px px

'.X/'.Z/, and '.
qy qy

XZ/ D qy qy

'.X/'.Z/.

(2) For any two points X and Z in F
2, '.

qy!
XZ/ D qy !

'.X/'.Z/ and '.
px!
XZ/ D

px !
'.X/'.Z/.

(3) Similar results hold where ' is replaced by '�1.
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(D: ' and '�1 preserve c-midpoints.) M is the c-midpoint of
px qy

XZ � F
2 iff '.M/ is

the c-midpoint of '.
px qy

XZ/ D px qy

'.X/'.Z/.

Proof. (A) A point P 2 L\M iff P 2 L and P 2M, which by Theorem LC.36 is

true iff '.P/ 2 '.L/ and '.P/ 2 '.M/, which is true iff '.P/ 2 '.L/\'.M/.

(B) Using Theorem LC.12 (the second alternate definition of betweenness), X Y Z

iff for some number s such that 0 < s < 1, Y D X C s.Z � X/. By

Theorem LC.36(C) Y D X C s.Z � X/ iff '.Y/ D '.X/ C s.'.Z/ � '.X//;
again using Theorem LC.12, this is true iff '.X/ '.Y/ '.Z/.

(C) By Theorem LC.13, the definitions of Definition LA.1 for segments and rays

are equivalent to those of Definitions IB.3 and IB.4 given in Chapter 4, which

use betweenness to define segments and rays.

(1) By Definition IB.3, for any two points X and Z in F
3, Y 2 qy px

XZ iff X Y Z,

which by part (B) is true iff '.X/ '.Y/ '.Z/, which is true iff '.Y/ 2
qy px

'.X/'.Z/. The proofs for closed and half-closed segments follow from the

observation that in those case, endpoints are included.

(2) By Definition IB.4, for any two points X and Z in F
2, Y 2 qy!

XZ iff X Y Z or

X Z Y or Y D Z. Since ' is a bijection that preserves betweenness, this is

true iff '.X/ '.Y/ '.Z/ or '.X/ '.Z/ '.Y/ or '.Y/ D '.Z/, that is, iff

'.Y/ 2 qy !
'.X/'.Z/. For a closed ray the proof follows from the fact that the

endpoint is included.

(3) The arguments for '�1 are similar to those just above.

(D) According to Definition/Remark LA.13(3) the c-midpoint of
px qy

XZ is the point

M D X C 1
2
.Z � X/; also by Theorem LC.36(C), M D X C 1

2
.Z � X/ iff

'.M/ D '.X/ C 1
2
.'.Z/ � '.X//, which is true iff '.M/ is the c-midpoint of

px qy

'.X/'.Z/. ut
Theorem LC.38. Let F be either A or R, and let ' be the transfer mapping which

maps F2 onto a plane P , as defined in Definition LC.35.

(A: ' and dot products.) For every X D .x1; x2/, Y D .y1; y2/, and Z D .z1; z2/ in

F
2, .X � Z/ � .Y � Z/ D .'.X/ � '.Z// � .'.Y/ � '.Z//.

(B: ' and '�1 preserve c-perpendicularity of lines.) Two lines L and M in F
2

are c-perpendicular iff '.L/ and '.M/ are c-perpendicular.

(C: ' and norms.) For every X 2 F
2, kXk D k'.X/ � Ak.

(D: ' and '�1 preserve distance.) For every X and Z in F
2, dis.X;Z/ D kX�Zk D

k'.X/ � '.Z/k D .dis.'.X/; '.Z///.
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Proof. (A) Let X D .x1; x2/, Y D .y1; y2/, and Z D .z1; z2/ be pairwise distinct

points of F2. Then

.X � Z/ � .Y � Z/ D .x1 � z1; x2 � z2/ � .y1 � z1; y2 � z2/

D .x1 � z1/.y1 � z1/C .x2 � z2/.y2 � z2/. (*)

On the other hand,

'.X/ D AC x1.G1 � A/C x2.G2 � A/,

'.Y/ D AC y1.G1 � A/C y2.G2 � A/, and

'.Z/ D AC z1.G1 � A/C z2.G2 � A/,

so that

'.X/ � '.Z/ D .x1 � z1/.G1 � A/C .x2 � z2/.G2 � A/ and

'.Y/ � '.Z/ D .y1 � z1/.G1 � A/C .y2 � z2/.G2 � A/.

Then

.'.X/ � '.Z// � .'.Y/ � '.Z//
D ..x1 � z1/.G1 � A/C .x2 � z2/.G2 � A//

�.y1 � z1/.G1 � A/C .y2 � z2/.G2 � A/

D .x1 � z1/.G1 � A/ � .y1 � z1/.G1 � A/

C.x1 � z1/.G1 � A/ � .y2 � z2/.G2 � A/

C.x2 � z2/.G2 � A/ � .y1 � z1/.G1 � A/

C.x2 � z2/.G2 � A/ � .y2 � z2/.G2 � A/.

The second and third terms of this sum are 0, since G1 � A and G2 � A are

orthogonal; since

.G1 � A/ � .G1 � A/ D 1 D .G1 � A/ � .G2 � A/,

this reduces to

.x1 � z1/.y1 � z1/C 0C 0C .x2 � z2/.y2 � z2/

which by equation (*) is .X � Z/ � .Y � Z/.

(B) Suppose L and M are lines in F
2; by Theorem LA.23 (or LB.10) they

intersect at a point Z. By Theorem LC.37(A) '.L/ and '.M/ intersect at

the point '.Z/. Choose X 2 L and Y 2 M to be distinct from Z; then

by Definition/Remark LA.12(3) these lines are c-perpendicular iff .X � Z/ �
(Y�Z)D 0. By part (A), this is true iff .'.X/ � '.Z// � .'.Y/ � '.Z// D 0,

which is true iff '.L/ and '.M/ are c-perpendicular.

By Theorem LC.36 every line in P is the image under ' of a line in F
2;

thus any two lines in P are images under ' of two intersecting lines in F
2.

If '.L/ and '.M/ are c-perpendicular lines in P by Theorem LA.23 they

intersect at some point '.Z/; and by Theorem LC.37(A) L and M intersect
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at the point Z. Then by the equivalence shown in the preceding paragraph, they

are c-perpendicular, showing that '�1 preserves c-perpendicularity.

(C) We continue to use the notation of Definition LC.35. Let Z D O so that '.Z/ D
A, and let X D Y . Then by part (A) X � X D .'.X/ � A// � .'.X/ � A/, and

taking square roots, kXk D k'.X/ � Ak.
(D) In part (A) let X and Z be any points of F2, and let Y D X. Then for every X

and Z in F
2,

.dis.X;Z//2 D kX � Zk2 D .X � Z/ � .X � Z/

D .'.X/ � '.Z// � .'.X/ � '.Z//
D k'.X/ � '.Z/k2 D .dis.'.X/; '.Z///2;

taking square roots completes the proof. ut

Definition LC.39. Let F be an ordered field A or R, let P be any plane in F
3, and

let L be any line on P . Define SL D ' ı R'�1.L/ ı '�1. We shall refer to this

mapping as the induced mirror mapping for the line L on P . That is, it is induced

by a mirror mapping on F
2 and the mapping '.

We may at times wish to describe an induced mapping in terms of a line on F
2

instead of on the plane P; in such a case we may let N D '�1.L/ or L D '.N /;
then

S'.N / D ' ıR'.'�1.L// ı '�1 D ' ıRL ı '�1.
Theorem LC.40. Let F be either A or R, and let L be a line on the plane P . Then

the induced mirror mapping SL is a mirror mapping over L on the plane P .

Proof. From Theorem LC.23 we know that the mapping R'�1.L/ is a mirror

mapping over the line '�1.L/ � F
2, as it satisfies Properties (A), (B), (C), and

(D) of Definition NEUT.1.

(A: All points of L are fixed under SL.) Let X be any point of L. Then '�1.X/ is a

point of '�1.L/, which consists of fixed points of R'�1.L/, and

SL.X/ D '.R'�1.L/.'
�1.X/// D '.'�1.X// D X.

(B: If X 62 L, SL.X/ is on the opposite side of L from X.) Since ' is a bijection,

'�1.X/ 62 '�1.L/. Since R'�1.L/ is a mirror mapping, R'�1.L/.'
�1.X// is on

the opposite side of '�1.L/ from '�1.X/ and the segment
qy px

.'�1.X//.R'�1.L/.'
�1.X///
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intersects '�1.L/ at some point P. By Theorem LC.37(C)(1),

'
�qy px

.'�1.X//.R'�1.L/.'
�1.X///

�
D qy px

'.'�1.X//'.R'�1.L/.'
�1.X/// D qy px

XSL.X/.

Then '.P/, a member of L, belongs to this segment, so X and SL.X/ are on

opposite sides of L.

(C: SL is its own inverse.) By the definition of SL, and the fact that R'�1.L/ is its

own inverse, being a mirror mapping,

SL ı SL D ' ı .R'�1.L/ ı .'�1 ı '/ ıR'�1.L// ı '�1 D {.
(D: SL preserves betweenness.) SL is the composition of three mappings, one

of which (R'�1.L/) is known to preserve betweenness because it is a mirror

mapping; the other two mappings are ' and '�1 which preserve betweenness

by Theorem LC.37(B). Therefore SL preserves betweenness. ut
Theorem LC.41. Let F be either A or R; then every induced mirror mapping SL

on a plane P preserves distance.

Proof. By Theorem LC.38(D) both ' and '�1 preserve distance. By Theo-

rem LC.27(B), R'�1.L/ preserves distance. Therefore SL D ' ıR'�1.L/ ı '�1, the

composition of these three mappings, preserves distance. ut
Theorem LC.42. If F D A or F D R, the set of all induced mirror mappings SL

on P is a reflection set as in Definition NEUT.2.

Proof. We show that the set of all induced mirror mappings SL on P satisfy

Properties R.1 through R.6 of Definition NEUT.2.

R.1 and R.2 (Existence and uniqueness) For every line L in the plane P ,

Definition LC.39 defines SL to be a single mapping over L; this is shown to

be a mirror mapping by Theorem LC.40.

R.3 (Closure) Every induced mirror mapping SL over a line L belongs to the set of

all such mappings, whether or not it is a composition of other mappings.

R.4 (Linear scaling) By Theorem LC.41 every induced mirror mapping SL, and

thus every composition of such mappings, preserves distance. By the same

argument as in Theorem LC.30, the linear scaling property holds.

R.5 (Angle reflection) Let †ACB be any angle in the plane P . By Theorem

LC.37(C)(2) '�1 is a bijection of P onto F
2 which preserves rays, so

'�1.†ACB/ D †.'�1.A//.'�1.C//.'�1.B//
is an angle in F

2.
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By Theorem LC.31, there exists a line M in F
2 such that the mirror mapping

RM is an angle reflection for †.'�1.A//.'�1.C//.'�1.B//. Then

RM.'�1.A// 2 qy !
'�1.C/'�1.B/. By Theorem LC.37(C)(2),

S'.M/.A/ D '.RM.'�1.A///
2 '.qy !

'�1.C/'�1.B// D qy !
'.'�1.C//'.'�1.B// D qy!

CB.

Therefore S'.M/ is an angle reflection for †ACB.

R.6 (Existence of a midpoint) Let
px qy

AB be any closed segment in P . Then by

Theorem LC.37(C), '�1.
px qy

AB/ D px qy

'�1.A/'�1.B/. By Theorem LC.32 there exists

a midpoint, that is, a point M 2 px qy

'�1.A/'�1.B/ and a line M containing

M such that the mirror mapping RM satisfies RM.'�1.A// D '�1.B/ and

RM.M/ D M. We show that '.M/ is a midpoint for
px qy

AB.

Since S'.M/ D ' ıR'�1.'.M// ı '�1 D ' ıRM ı '�1,
S'.M/.A/ D '.RM.'�1.A/// D '.'�1.B// D B.

Also,

S'.M/.'.M// D '.RM.'�1.'.M//// D '.RM.M// D '.M/.
By Theorem NEUT.15 (which we may use because S'.M/ is a mirror mapping),

S'.M/.
px qy

'.M/A/ D px qy

S'.M/.'.M//S'.M/.A/ D
px qy

'.M/B

showing that '.M/ is a midpoint of
px qy

AB. ut

21.5.7 Least upper bound Axiom LUB is valid on a linear
model

The following theorem is the only one in this part that requires the field F to be

the real numbers R, not merely one that contains square roots of its non-negative

members.

Theorem LC.43 (Axiom LUB in Model LM3R). Axiom LUB holds for any plane

in Model LM3R (based on R
3). In other words, for any line L � R

3 which has been

built into an ordered field, with origin O and unit U, every nonempty subset E of L
which is bounded above has a least upper bound lub E .

Proof. By Definition LA.1(1), L is a line in R
3 iff there exist distinct points A and B

of R3 such that L D fACs.B�A/ j s 2 Rg. If we let s D 0, X D AC0.B�A/ D A; if

we let s D 1, X D AC1.B�A/ D B. For any real numbers s and t, if X D ACs.B�A/

and Y D AC t.B�A/ define XCY D AC.sC t/.B�A/ and X �Y D AC.st/.B�A/.
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With these definitions, L is a field, where A is the origin, and B is the unit. Moreover,

the mapping '.s/ D AC s.B�A/ is an isomorphism from the set R of real numbers

onto L. Define X < Y iff s < t. Then L is an ordered field, and the mapping ' is

order-preserving.

Let E be a nonempty subset of L which is bounded above. That is to say, E
has an upper bound Y 2 L. Equivalently, for some real number t, and every X D
AC s.B � A/ 2 E , X D AC s.B � A/ � Y D AC t.B � A/, which is true iff s � t.

Define

E 0 D fs j s 2 R and AC s.B � A/ 2 Eg.
Then for every s 2 E 0, s � t, so that E 0 is bounded above; we know that the LUB

property holds for real numbers, so there exists a real number t0 which is the least

upper bound of E 0.

Claim. AC t0.B � A/ is the least upper bound of E .

(I) t0 is an upper bound for E 0 means that for every s 2 E 0, s � t0, so ACs.B�A/ �
AC t0.B � A/. Therefore AC t0.B � A/ is an upper bound for E .

(II) If ACu.B�A/ is any upper bound for E , then for every s 2 E 0, AC s.B�A/ �
A C u.B � A/ so that s � u. Now t0 is the least upper bound of E 0, so that

t0 � u, that is AC t0.B�A/ � AC u.B�A/. Thus AC t0.B�A/ is less than or

equal to every upper bound for E , so that AC t0.B�A/ is the least upper bound

of E .

ut

21.5.8 Axioms I.0–I.5, BET, PSA, REF, PS, and LUB
are consistent

Theorem LC.44 (Summary showing consistency).

(A) Axioms I.0, I.1, I.2, I.3, I.4, I.5, BET, PSA, REF, PS, and LUB are all true for

Model LM3R, where space is R3; hence these axioms are consistent.

(B) Model LM3R is a Euclidean/LUB space.

Proof. Theorems LC.2 through LC.7 show that the incidence Axioms I.0, I.1, I.2,

I.3, I.4, and I.5 are all true on Model LM3R.
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Theorem LC.14 shows that there exists a betweenness relation on F
3 satisfying

Properties B.0, B.1, B.2, and B.3 of Definition IB.1, so that Axiom BET is valid for

Model LM3.

Theorem LC.20 shows that the Plane Separation Axiom PSA is true for Model

LM3.

Theorem LC.33 shows that Axiom REF is true on the plane of Model LM2A and

Model LM2R.

Theorem LC.42 shows that Axiom REF is true on any plane in A
3 or in R

3, and

hence for Model LM3A and for Model LM3R.

Theorem LC.16 shows that the parallel Axiom PS is true for Model LM3.

Theorem LC.43 shows that Axiom LUB holds for any line L in R
3 which has

been built into an ordered field; thus Axiom LUB holds for Model LM3R.

Therefore, all the axioms are true in Model LM3R; they are consistent and Model

LM3R is a Euclidean/LUB space. ut

Remark LC.45. (A) In our main development (Chapters 1–20), planes and lines

were initially undefined objects, whose properties were specified entirely by the

axioms they obey. Since all our axioms hold for Model LM3R, every line and

plane defined by Definition LA.1 is a line or plane as specified in the original

development.

(B) Theorem LC.44 shows that all the axioms of our main development are true

for Model LM3R (based on R
3). Thus we can invoke any of the theorems from

Chapters 1 through 20 for our space R
3 and plane R

2.

(C) In Theorem LC.13, we showed that the definitions of segments and rays

given in Definition LA.1(3) are equivalent to their definitions as given in

Definitions IB.3 and IB.4 of Chapter 4. The next theorems will show that the

definitions of c-perpendicular and c-midpoint are equivalent, respectively, to

those of perpendicular and midpoint from the main development.

Theorem LC.46 (C-perpendicular = perpendicular). Suppose F D A or F D R,

and let P be any plane in F
3. Then two lines in P are c-perpendicular iff they are

perpendicular.

Proof. By Remark LC.45 just above, we can use any results from the main

development, including the results of Chapter 8 (NEUT). By Theorem LA.23

(or Theorem LB.10), if two lines L and M in the plane F
2 are c-perpendicular

they must intersect.
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(A) By Theorem LB.17(E), a line M in F
2 is c-perpendicular to L iff M is a fixed

line for RL. By Theorem NEUT.32 this is true iff M is perpendicular to L.

(B) The general case: by Theorem LC.38(B) two lines L and M in a plane P are

c-perpendicular iff '�1.M/ is c-perpendicular to '�1.L/. By part (A) this is

true iff '�1.M/ is a fixed line for R'�1.L/, that is,

R'�1.L/.'
�1.M// � '�1.M/.

This is true iff

SL.M/ D '.R'�1.L/.'
�1.M/// � '.'�1.M// DM,

that is, M is a fixed line for SL. By Theorem NEUT.32 this is equivalent

to saying that M is perpendicular to L. We can use this theorem since

Theorems LC.40 and LC.42 show that SL is a reflection. ut

Theorem LC.47 (C-midpoint = midpoint of a segment in F
3). Suppose F D A

or F D R, and let P be any plane in F
3. If X and Y are distinct points in F

3, then a

point M is the c-midpoint of
px qy

XY iff M is the midpoint of this segment.

Proof. Again we can use the results of Chapter 8 (NEUT). Also, we know that the

set of all mirror mappings RL over lines L in F
2 is a reflection set, as is the set of

all induced mappings SL over lines L in a plane P .

(A) We first prove the theorem for two points of F2. If X and Y are distinct points

on F
2, then M D XCY

2
is the c-midpoint of

px qy

XY , so by Theorem LC.32 M is a

midpoint for this segment.

Conversely, if M is a midpoint of
px qy

XY , by Theorem NEUT.52 there exists a

line M containing M such that RM.X/ D Y and RM.M/ D M. Since all our

reflections are defined by Definition LB.16, M is c-perpendicular to
 !
XY , and

by the same definition, M is the c-midpoint of
px qy

XY .

(B) In the general case, let X and Y be two points in F
3, L a line containing these

points, and let P be a plane containing L. Let ' be a transfer mapping from F
2

onto P defined by Definition LC.35.

We first show that if M is the c-midpoint of
px qy

XY , it is a midpoint. By

Theorem LC.37(D), M is the c-midpoint of
px qy

XY iff '�1.M/ is the c-midpoint

of
px qy

'�1.X/'�1.Y/. By part (A) above, this is so iff '�1.M/ is a midpoint of
px qy

'�1.X/'�1.Y/. By Definition NEUT.3(C) and Theorem NEUT.52 this is true

iff there exists a reflection mapping RN such that RN .'
�1.M// D '�1.M/

and RN .'
�1.X// D '�1.Y/. This is true iff

S'.N /.M/ D '.RN .'
�1.M/// D '.'�1.M// D M
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and

S'.N /.X/ D '.RN .'
�1.X/// D '.'�1.Y// D Y ,

so that by Theorem NEUT.15,

S'.N /.
px qy

XM/ D px qy

S'.N /.X/S'.N /.M/ D px qy

YM,

and M is a midpoint of
px qy

XY .

Conversely, suppose M is a midpoint of
px qy

XY; by Theorem LC.42 the set

of all induced mappings SL on lines L of P is a reflection set, so by

Theorem NEUT.52, there exists SL, one of these reflections, such that SL.X/ D
Y and SL.M/ D M. By Definition LC.39,

SL D ' ıR'�1.L/ ı '�1,
where R'�1.L/ is a reflection over the line '�1.L/ in F

2. Then R'�1.L/ D
'�1 ı SL ı '. Since SL.X/ D Y ,

R'�1.L/.'
�1.X// D '�1.SL.'.'

�1.X//// D '�1.SL.X// D '�1.Y/.
Also from SL.M/ D M,

R'�1.L/.'
�1.M// D '�1.SL.'.'

�1.M//// D '�1.SL.M// D '�1.M/;
so that '�1.M/ is a midpoint of

px qy

'�1.X/'�1.Y/.
By part (A), '�1.M/ is the c-midpoint of this interval, and by Theorem

LC.37(D) M is the c-midpoint of
px qy

XY . ut

21.6 Independence of Axioms

In contrast to some other treatments of geometry, this one has taken the hard road of

axiom independence. Much of the detailed and tedious work in our earlier chapters

came about because of our pursuit of this goal.

We say that Axiom A is independent of a set B of axioms iff Axiom A cannot be

logically deduced from any of the axioms in B, or from any combination of them.

If Axiom A were a logical consequence of the set B, it would be impossible

to exhibit a model in which Axiom A is false, but all the axioms in B are true.

Therefore, exhibiting such a model shows that Axiom A cannot be proved from the

axioms in B, that is, Axiom A is independent of the axioms in B.

Ideally, we would like each axiom in our system to be independent of all the

other axioms in the system. We might call this strong independence. But strong

independence is too ambitious a goal.

It is probably not possible to construct a set of axioms equivalent to those on

our list in which no axiom can be proved from any combination of the others.
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This should not surprise us, for axioms that are added to the list often depend on

previously given axioms and may contain language from which a previous axiom

can be inferred. For example, we can’t even state the Plane Separation Axiom (PSA)

without the existence of a betweenness relation, because the definition of PSA uses

segments and their definition depends on betweenness. The same goes for Axiom

REF.

We settle, instead, for something less, called sequential independence, meaning

that each axiom in a list is independent of all those preceding it on the list.

To show this for any particular axiom, we need to find a model in which that

axiom is false, but all its predecessors on the list are true.4 In our case, we

show that each of the Axioms I.0, I.1, I.2, I.3, I.4, I.5, BET, PSA, and LUB

is independent of those preceding it on the list. Axiom REF is independent of

Axioms I.0, I.1, I.5(A), BET, PSA, and LUB. Axiom PS is independent of all

other axioms except possibly for Axiom REF; the resolution of that issue appears to

belong to hyperbolic geometry, which is beyond the scope of this book.

Table of independence models

for Axioms I.0–I.5(C), BET, PSA, REF, PS, and LUB.

Subsection Theorem(s) Model True False

21.6.1 FM.2–.8 Various Each of I.0–I.5(C) is independent

discrete of the others

21.6.2 FM.10 FM.1 I.0–I.5 BET

21.6.3 DZI.5–.8 DZI (Z3) I.0–I.5,BET PSA

21.6.4 MLT.3–.9 MLT I.0,.1,.5(A)(B),BET,PSA,PS,LUB REF

21.6.5 PSM.3–.5 PSM I.0–.5,BET,PSA PS

21.6.7 LE.1 LM3A I.0–.5,BET,PSA,REF,PS LUB

In a later section of the chapter, we give attention to the independence of

the various properties within the definitions for betweenness, mirror mappings,

and reflections. These results are perhaps less important than those showing the

independence of the axioms.

4Sometimes a model constructed for such a purpose may strike the reader as quite strange,
even bizarre; this should not be too surprising, given that we are asking it to have non-standard
properties.
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21.6.1 Incidence Axioms I.0– I.5 are independent (Model FM)

This subsection deals with axiom independence using finite models. We also

include, as a by-product, an “extra” proof of the consistency of the incidence

axioms, which has already been shown using linear models in Theorems LC.2

through LC.7. The models and theorems in this subsection will be named FM.n

(suggesting “finite model”).

Theorem FM.1. The incidence axioms are consistent.

Proof. For Model FM.1, let space S be the set of points f1; 2; 3; 4g; let the lines be

the six doubletons, namely f1; 2g, f1; 3g, f1; 4g, f2; 3g, f2; 4g, f3; 4g, all of which

are subsets of S; and let the planes be the four triples, f1; 2; 3g, f1; 2; 4g, f1; 3; 4g,
f2; 3; 4g, which are subsets of S . Clearly Axiom I.0 is true.

Simple checking verifies that Axioms I.1, I.2, I.3, and I.5 are true. Since

f1; 2; 3g \ f1; 2; 4g D f1; 2g, f1; 2; 3g \ f1; 3; 4g D f1; 3g,
f1; 2; 3g \ f2; 3; 4g D f2; 3g, f1; 2; 4g \ f1; 3; 4g D f1; 4g,
f1; 2; 4g \ f2; 3; 4g D f2; 4g, and f1; 3; 4g \ f2; 3; 4g D f3; 4g,

then I.4 is true. ut
Theorem FM.2. Axiom I.0 is independent of the other incidence axioms.

Proof. For Model FM.2, let space S consist of the set of points f1; 2; 3; 4g;
then space does not contain 0; Definition I.0 says that space is the set of all

points, so that 0 is not a point. Let the lines be f0; 1; 2g; f1; 3g; f1; 4g; f2; 3g;
f2; 4g, and f3; 4g, and let the planes be f0; 1; 2; 3g, f0; 1; 2; 4g, f1; 3; 4g, and f2; 3; 4g.
The first assertion of Axiom I.0 is false because there is a line f0; 1; 2g which is not

a subset of space. The second assertion of Axiom I.0 is false because there is a plane

f0; 1; 2; 3g that is not a subset of space.

It is easy to check that Axioms I.1, I.2, I.3, and I.5 are true. Since

f0; 1; 2; 3g \ f0; 1; 2; 4g D f0; 1; 2g, f0; 1; 2; 3g \ f1; 3; 4g D f1; 3g,
f0; 1; 2; 3g \ f2; 3; 4g D f2; 3g, f0; 1; 2; 4g \ f1; 3; 4g D f1; 4g,
f0; 1; 2; 4g \ f2; 3; 4g D f2; 4g, and f1; 3; 4g \ f2; 3; 4g D f3; 4g,

I.4 is true. ut
Without Axiom I.0, there is nothing in Axioms I.1 through I.5 requiring that all

the members of a line or a plane must be points. The proof just above puts a “non-

point,” namely 0, into a line and a plane but not into S . Axioms I.1 through I.5

then apply to the points that are in the lines and planes of the model, but not to any

non-points.
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Theorem FM.3. Axiom I.1 is independent of the other incidence axioms.

Proof. (A) The following Model FM.3(A) shows that the uniqueness part of

Axiom I.1 is independent of the other axioms and of the existence part of

Axiom I.1. Let space S be the set of points f1; 2; 3; 4; 5; 6g; let the lines be

f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, f2; 3; 4g, f1; 5g, f1; 6g, f2; 5g, f2; 6g, f3; 5g, f3; 6g,
f4; 5g, f4; 6g, and f5; 6g; and let the planes be f1; 2; 3; 4; 5g, f1; 2; 3; 4; 6g,
f1; 5; 6g, f2; 5; 6g, f3; 5; 6g, and f4; 5; 6g. Then I.0 is clearly true.

Since f1; 2; 3g\f1; 2; 4g D f1; 2g, the points 1 and 2 belong to two different

lines, so the uniqueness of I.1 fails; however, every pair of points is contained

in a line, so the existence is true.

The triples of noncollinear points are: f1; 2; 5g, f1; 2; 6g, f1; 3; 5g, f1; 3; 6g,
f1; 4; 5g, f1; 4; 6g, f1; 5; 6g, f2; 3; 5g, f2; 3; 6g, f2; 4; 5g, f2; 4; 6g, f2; 5; 6g,
f3; 4; 5g, f3; 4; 6g, f3; 5; 6g, and f4; 5; 6g. Since each of these triples is a subset

of one and only one plane, Axiom I.2 is true.

Each of the four lines f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, and f2; 3; 4g having three

members has the following property: for each pair of points contained in the

line, if the pair is contained in a plane, then the line is contained in that plane.

Hence Axiom I.3 is true.

Since f1; 2; 3; 4; 5g \ f1; 2; 3; 4; 6g D f1; 2; 3; 4g,
f1; 2; 3; 4; 5g \ f1; 5; 6g D f1; 5g, f1; 2; 3; 4; 5g \ f2; 5; 6g D f2; 5g,
f1; 2; 3; 4; 5g \ f3; 5; 6g D f3; 5g, f1; 2; 3; 4; 5g \ f4; 5; 6g D f4; 5g,
f1; 2; 3; 4; 6g \ f1; 5; 6g D f1; 6g, f1; 2; 3; 4; 6g \ f2; 5; 6g D f2; 6g,
f1; 2; 3; 4; 6g \ f3; 5; 6g D f3; 6g, f1; 2; 3; 4; 6g \ f4; 5; 6g D f4; 6g,
f1; 5; 6g \ f2; 5; 6g D f5; 6g, f1; 5; 6g \ f3; 5; 6g D f5; 6g,
f1; 5; 6g \ f4; 5; 6g D f5; 6g, f2; 5; 6g \ f3; 5; 6g D f5; 6g,
f2; 5; 6g \ f4; 5; 6g D f5; 6g, and f3; 5; 6g \ f4; 5; 6g D f5; 6g,

I.4 is true. Finally, I.5 is clearly true.

(B) The following Model FM.3(B) shows that the existence part of Axiom I.1 is

independent of the other axioms. Let space S be the set of points f1; 2; 3; 4g;
let the lines be f1; 2g and f2; 3g; let the planes be the triples f1; 2; 3g, f1; 2; 4g,
f1; 3; 4g, and f2; 3; 4g. Then I.0 is clearly true.

The existence part of Axiom I.1 is false, since there is no line containing

both the points 1 and 3.
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Every set of three noncollinear points is a plane, so Axiom I.2 is true.

Axiom I.3 is true because each line is a doubleton. In other words, the only

pairs of points that belong to lines are f1; 2g and f2; 3g; each of these pairs is

the line to which it belongs; so if it is a subset of a plane, the line containing it

is a subset of that plane.

Since there are only four points in space, and every plane contains three

points, the intersection of any two planes must contain at least two points, so

that Axiom I.4 is true. Alternatively, we can verify that the intersection of any

two planes contains at least two points. Simple checks verify that Axiom I.5 is

true. ut
Theorem FM.4. Axiom I.2 is independent of the other incidence axioms.

Proof. (A) The following Model FM.4(A) shows that the uniqueness part of

Axiom I.2 is independent of the other axioms and of the existence part of

Axiom I.2. Let space S consist of the set of points f1; 2; 3; 4; 5g; let the

lines be f1; 2g, f1; 3g, f1; 4g, f1; 5g, f2; 3g, f2; 4g, f2; 5g, f3; 4g, f3; 5g, f4; 5g;
and let the planes be f1; 2; 3; 4g, f1; 2; 3; 5g, f1; 4; 5g, f2; 4; 5g, and f3; 4; 5g.
Then Axiom I.0 is true because every point is in S . Axiom I.1, Axiom I.3,

and Axiom I.5(A) are true because each line is a doubleton. Uniqueness of

Axiom I.2 is false since f1; 2; 3; 4g \ f1; 2; 3; 5g D f1; 2; 3g, but existence is

true because every triple is contained in some plane.

Since

f1; 2; 3; 4g \ f1; 2; 3; 5g D f1; 2; 3g, f1; 2; 3; 4g \ f1; 4; 5g D f1; 4g,
f1; 2; 3; 4g \ f2; 4; 5g D f2; 4g, f1; 2; 3; 4g \ f3; 4; 5g D f3; 4g,
f1; 2; 3; 5g \ f1; 4; 5g D f1; 5g, f1; 2; 3; 5g \ f2; 4; 5g D f2; 5g
f1; 2; 3; 5g \ f3; 4; 5g D f3; 5g, f1; 4; 5g \ f2; 4; 5g D f4; 5g,
f1; 4; 5g \ f3; 4; 5g D f4; 5g, and f2; 4; 5g \ f3; 4; 5g D f4; 5g,

I.4 is true. Since every line has two points, I.5(A) is true; since every plane

contains at least three points, I.5(B) is true; the points 1, 2, 4, and 5 are

noncoplanar, so I.5(C) is true.

(B) The following Model FM.4(B) shows that the existence part of Axiom I.2

is independent of the other axioms. Let space S consist of the set of points

f1; 2; 3; 4g; let the lines be f1; 2g, f1; 3g, f1; 4g, f2; 3g, f2; 4g, and f3; 4g; and

let the planes be f1; 2; 3g, f1; 2; 4g, and f1; 3; 4g.
Then f2; 3; 4g is a noncollinear set of three points which is not contained in

a plane, so the existence part of Axiom I.2 is false.
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Axiom I.0 is true because every point is in S . Axioms I.1 and I.3 are

true because each line is a doubleton. Axiom I.4 is true by verifying that the

intersection of any two planes contains at least two points. Simple checks verify

that Axiom I.5 is true. ut
Theorem FM.5. Axiom I.3 is independent of the other incidence axioms.

Proof. For Model FM.5, let space S consist of the set of points f1; 2; 3; 4; 5g; let

the lines be f1; 2; 3g, f1; 4g, f1; 5g, f2; 4; 5g, f3; 4g, and f3; 5g; and let the planes be

f1; 2; 4; 5g, f1; 3; 4g, f1; 3; 5g, and f2; 3; 4; 5g. Then Axiom I.0 is trivially true.

The pairs in S are f1; 2g, f1; 3g, f1; 4g, f1; 5g, f2; 3g, f2; 4g, f2; 5g, f3; 4g, f3; 5g,
and f4; 5g. Since each of these pairs is a subset of one and only one line, Axiom I.1

is true.

The noncollinear triples in S are f1; 2; 4g, f1; 2; 5g, f1; 3; 4g, f1; 3; 5g, f1; 4; 5g,
f2; 3; 4g, f2; 3; 5g, and f3; 4; 5g. Since each of these triples is a subset of one

and only one plane, Axiom I.2 is true, and every plane contains one of them, so

Axiom I.5(B) is true.

Axiom I.3 is false since f1; 2g � f1; 2; 4; 5g, but f1; 2; 3g 6� f1; 2; 4; 5g. Since

f1; 2; 4; 5g \ f1; 3; 4g D f1; 4g, f1; 2; 4; 5g \ f1; 3; 5g D f1; 5g,
f1; 2; 4; 5g \ f2; 3; 4; 5g D f2; 4; 5g, f1; 3; 4g \ f1; 3; 5g D f1; 3g,
f1; 3; 4g \ f2; 3; 4; 5g D f3; 4g, and f1; 3; 5g \ f2; 3; 4; 5g D f3; 5g,

Axiom I.4 is true.

Axiom I.5(A) is true since all lines have at least two points; direct verifica-

tion shows that every plane has at least three points that are not collinear, so

Axiom I.5(B) is true; Axiom I.5(C) is true since f1; 3; 4; 5g is not a subset of any

plane. ut
Theorem FM.6. Axiom I.4 is independent of the other incidence axioms.

Proof. For Model FM.6 let space S consist of the set of points f1; 2; 3; 4; 5g;
let the lines contained in S be f1; 2g, f1; 3g, f1; 4g, f1; 5g, f2; 3g, f2; 4g, f2; 5g,
f3; 4g, f3; 5g, and f4; 5g, i.e. the doubletons in S; and let the planes contained in

S be f1; 2; 3g, f1; 2; 4g, f1; 2; 5g, f1; 3; 4g, f1; 3; 5g, f1; 4; 5g, and f2; 3; 4; 5g. Then

Axiom I.0 is trivially true. Axioms I.1 and I.3 are both true since each line is a pair

of points.

The noncollinear triples in S are f1; 2; 3g, f1; 2; 4g, f1; 2; 5g, f1; 3; 4g, f1; 3; 5g,
f1; 4; 5g, f2; 3; 4g, f2; 3; 5g, f2; 4; 5g, and f3; 4; 5g. Since each of these triples is a

subset of one and only one plane, Axiom I.2 is true.

Axiom I.4 is false, however, since f1; 2; 5g \ f1; 3; 4g D f1g.
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Axiom I.5(A) is true because every line has two points; Axiom I.5(B) is

true because every plane has at least three points which are thus noncollinear;

Axiom I.5(C) is true since f1; 2; 3; 4g is not a subset of any plane. ut
Theorem FM.7. Each of the Axioms I.5(A), I.5(B), and I.5(C) is independent of the

other incidence axioms.

Proof. (A) For Model FM.7(A), let space S be the set of points f1; 2; 3; 4g; let the

lines be the sets f1g, f1; 2g, f1; 3g, f1; 4g, f2; 3g, f2; 4g, and f3; 4g; and let the

planes be the four triples f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, and f2; 3; 4g.
A simple check shows that Axioms I.0, I.1, I.2, I.3, and I.4 are true.

Axiom I.5(A) is false because the line f1g contains only one point;

Axiom I.5(B) is true because the only sets of three noncollinear points are

planes; Axiom I.5(C) is true because there is no plane containing all points of

f1; 2; 3; 4g, so this set is noncoplanar.

(B) For Model FM.7(B), let space S be the set of points f1; 2; 3; 4g; let the lines be

the sets f1; 2g, f1; 3g, f1; 4g, and f2; 3; 4g; and let the planes be the four triples

f1; 2; 3g, f1; 2; 4g, f1; 3; 4g, and f2; 3; 4g.
A simple check shows that Axioms I.0, I.1, and I.2 are true. If a pair of

points is one of f1; 2g, f1; 3g, or f1; 4g, the line containing the pair is the same

set and hence is a subset of any plane containing the pair. If a pair of points is

one of f2; 3g, f2; 4g, or f3; 4g, the only line containing it is f2; 3; 4g, and the

only plane containing it is f2; 3; 4g. Therefore Axiom I.3 is true.

Axiom I.4 is true since the intersection of any two planes contains two

points. Axiom I.5(A) is true since every line is a pair or a triple; Axiom I.5(B)

is false, since the plane f2; 3; 4g is also a line, hence all its points are collinear;

and Axiom I.5(C) is true since every plane is a triple, so that the points in S are

noncoplanar.

(C) For Model FM.7(C), let space S consist of the set of points f1; 2; 3g, let lines

be f1; 2g, f1; 3g, and f2; 3g, and let the one and only one plane be f1; 2; 3g or

all space; then Axioms I.0, I.1, I.2, and I.3 are easily seen to be true.

Axiom I.4 is vacuously true. Axiom I.5(A) is true; Axiom I.5(B) is true since

there is only one plane and it consists of a noncollinear set of three points.

Axiom I.5(C) is false because S is a plane. ut
Remark FM.8. If we let space S consist of a single point 1, and let lines and planes

be the same as S (so there is a single line and a single plane), then Axiom I.0

is obviously true, I.1, I.2, I.3, and I.4 are vacuously true, and all the assertions of

Axiom I.5 are false.
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Remark FM.9. Theorems FM.2 through FM.7 show that the incidence axioms are

strongly independent, hence sequentially independent.

21.6.2 Betweenness Axiom BET is independent
of Axioms I.0–I.5 (Model FM)

Theorem FM.10. Axiom BET is independent of the incidence axioms, so that

by Remark FM.9(B), Axioms I.0, I.1, I.2, I.3, I.4, I.5, and BET are sequentially

independent.

Proof. Here we use Model FM.1, where S D f1; 2; 3; 4g (as in Theorem FM.1),

with the same definitions of lines and planes. That is, the lines are the sets f1; 2g,
f1; 3g, f1; 4g, f2; 3g, f2; 4g, and f3; 4g, planes are the sets f1; 2; 3g, f1; 2; 4g, f1; 3; 4g,
and f2; 3; 4g. By Theorem FM.1, Axioms I.0 through I.5 are true. We show that there

cannot exist a betweenness relation (which has Properties B.0 through B.3) on this

model.

Let us designate the members of S by letters, so that S D fA;B;C;Dg D
f1; 2; 3; 4g. Assume there is a betweenness relation on S which contains at least

one triple .A;B;C/, that is A B C. By Axiom B.0, A, B, and C are collinear and

distinct. By definition of the model, the lines are sets having two points, that is,

doubletons, so that fA;B;Cg cannot be collinear; this contradicts the existence of a

betweenness relation. ut

21.6.3 Plane Separation Axiom PSA is independent
of Axioms I.0–I.5 and BET (Model DZI)

To establish the independence of the Plane Separation Axiom (PSA) from each of

the incidence, parallel, and betweenness axioms, we develop a discrete Model DZI.

We shall use the acronym DZI in this subsection, as well as for the single theorem

to be proved later in Subsection 21.8.1.

Whenever we refer to Model LM3Q in this subsection, it will be understood that

space is Q3, where Q is the field of rational numbers.
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Definition DZI.1. (1) Space S for Model DZI is Z
3, the set of ordered triples of

integers.5 We denote members of Z3 by capital letters, and their coordinates by

subscripted lowercase letters. For example, X D .x1; x2; x3/, where x1, x2, and

x3 are integers.

(2) A nonempty subset P of Z3 is a plane for Model DZI iff for some plane V in

Q
3, P D V \ Z

3. (Here V is as in Definition LA.1(2).) Since the definition

requires that P be nonempty, there must exist at least one point A 2 V such that

all the coordinates a1, a2, and a3 are integers.

(3) A nonempty subset L of Z3 is a line for Model DZI iff for some line M in

Q
3, L DM \ Z

3. (Here M is as in Definition LA.1(1).) Since the definition

requires that L be nonempty, there must exist at least one point A 2 M such

that all the coordinates a1, a2, and a3 are integers, so that A 2 L.

Theorem DZI.2. Let A be a member of Z3, and let B be any member of Q3, and let

M D !AB, a line in Q
3. Then

(A) at least one member C of M n fAg belongs to Z
3, and hence to L DM \ Z

3;

(B) infinitely many members of M belong to L DM \ Z
3.

Proof. By Definition LA.1(1),

M n fAg D fAC t.B � A/ j t 2 Q and t ¤ 0g.
Since B�A is a member of Q3nf.0; 0; 0/g, each of its coordinates b1�a1, b2�a2, and

b3 � a3 is a rational number which can be expressed as the quotient of two integers

whose greatest common divisor is 1. If we let t be the least common multiple of the

denominators of the coordinates of B�A, then each of the coordinates of t.B�A/ is

an integer and t.B�A/ 2 Z
3. Then since A 2 Z

3, the point C D AC t.B�A/ 2 Z
3,

and since t ¤ 0, C ¤ A, proving part (A). Part (B) follows immediately from the

observation that for any integer k, the point AC kt.B � A/ 2 Z
3. ut

Thus, if M is any line in Q
3, M \ Q

3 is a line in Z
3 iff it contains at least one

point of Z3.

Definition DZI.3. Let A, B, and C be distinct members of Z3. Then B is between

A and C (that is, A B C) iff there exist distinct members P and Q of Z and integers

a, b, and c such that A D PC a.Q � P/, B D PC b.Q � P/, C D PC c.Q � P/,

and either a < b < c, or c < b < a.

5“Z” is the first letter of the German word “Zahl” for number.
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Theorem DZI.4. Let A be a member of Z3, and let B and C be any members of

Q
3 such that A, B, and C are noncollinear, so that V D  �!ABC is a plane in Q

3. Let

P D V \ Z
3. Then for any point X 2 V there exists some integer u ¤ 0 such that

AC u.X � A/ 2 P n fAg; moreover, for every integer k, AC ku.X � A/ 2 P .

Proof. Since X 2 V , by Definition LA.1(2), there exist rational numbers s and t

such that X D AC s.B� A/C t.C� A/; then by the proof of Theorem DZI.2, there

exists an integer u ¤ 0 such that AC u.X �A/ ¤ A has integer coordinates, and for

any integer k, AC ku.X � A/ has integer coordinates and is a member of Z3. Then

AC ku.X � A/ D AC ku.AC s.B � A/C t.C � A/ � A/

D AC kus.B � A/C kut.C � A/ 2 P ,

since by Definition LA.1(2), AC ku.X � A/ 2 V . ut
Theorem DZI.5. Each of the Axioms I.0, I.1, I.2, I.3, I.4, I.5, and BET is true for

Model DZI.

Proof. (1) Since lines and planes for Model DZI are subsets of Z3, Axiom I.0 is

true for DZI.

(2) If A and B are distinct members of Z
3, by Theorem LC.2 (or Theo-

rem LA.10(A)) there is exactly one line
 !
AB in Q

3 containing both A and

B. Since every line in Z
3 is the intersection of a line in Q

3 with Z
3, there is

exactly one line in Z
3 containing both A and B. So Axiom I.1 is true for Model

DZI.

(3) Let A, B, and C be noncollinear members of Z
3; by Theorem LC.3 (or

Theorem LA.10(B)) there exists a unique plane
 �!
ABC in Q

3 through these points.

Since every plane in Z
3 is the intersection of a plane in Q

3 with Z
3, there is

exactly one plane in Z
3 containing A, B, and C. So Axiom I.2 is true for Model

DZI.

(4) Let A and B be any points of Z3; let P be any plane for Model DZI containing

A and B. Then by Definition DZI.1(2) there exists a plane V in Q
3 such that

both A and B are members of P D V \Z
3. By Theorem LC.3,

 !
AB � V , so that !

AB \ Z
3 � V \ Z

3. By Definition DZI.1(3),
 !
AB \ Z

3 is the unique line in Z
3

containing both A and B, and this is a subset of P . Thus Axiom I.3 is true for

Model DZI.

(5) Let P1 and P2 be planes for Model DZI, which have the point A in common. Let

V1 and V2 be the planes for Model LM3Q such that Z3\V1 D P1 and Z
3\V2 D

P2. By Theorem LC.7, Axiom I.4 holds for Model LM3Q, so there exists a

member B of V1 \ V2 such that B ¤ A. Then by part (4) above,
 !
AB � V1 \ V2.
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By Theorem DZI.2 there exists a member C of
 !
AB such that C 2 Z

3 n fAg;
therefore

C 2 .V1 \ V2/ \ Z
3 D .V1 \ Z

3/ \ .V2 \ Z
3/ D P1 \ P2,

and C ¤ A. Therefore Axiom I.4 is true for Model DZI.

(6) By Definition DZI.1(3) L is a line in Z
3 iff for some line M in Q

3, L DM\Z3;
L is nonempty so it must contain at least one point A; by Theorem DZI.2, there

is at least one other point in L, so that Axiom I.5(A) is true.

By Definition DZI.1(2) P is a plane in Z
3 iff for some plane V in Q

3,

P D V \ Z
3; P is nonempty so it must contain at least one point A; by

Definition LA.1(2) there exist two points B and C in V such that A, B, and

C are noncollinear. By Theorem DZI.4 there exist integers u ¤ 0 and v ¤ 0

such that D D A C u.B � A/ and E D A C v.C � A/ are members of P , and

D ¤ A and E ¤ A.

Claim: A, D, and E are noncollinear. If E 2  !AD, then for some integer t,

E D AC t.D � A/ D AC t.AC u.B � A/ � A/ D AC tu.B � A/

so that E 2  !AB; but then E D A C v.C � A/ D A C tu.B � A/ and hence

v.C � A/ D tu.B � A/ which is true only if v D tu D 0, since B � A and

C � A are linearly independent by Theorem LA.3. This implies that E D A

which contradicts Theorem DZI.4 which says that E ¤ A. Thus A, D, and E are

noncollinear and Axiom I.5(B) is true.

Finally, the points .0; 0; 0/, .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/ are noncoplanar

showing that Axiom I.5(C) is true.

(7) The proof of Theorem LC.14 holds for Model DZI, where the properties of

betweenness for integers as listed in Chapter 1 Section 1.5 under the title

“Number systems” are substituted for the same properties for the field F. ut
Theorem DZI.6. The parallel axiom PS is true for Model DZI.

Proof. Let L be a line in Z
3 for Model DZI and let H be a member of Z

3 n L.

By Definition DZI.1(3) there exists a line M for Model LM3Q in Q
3 such that

L DM \ Z
3. Since Axiom PS holds for Model LM3Q, there exists a unique line

N � Q
3 through H which is parallel to M. Let J D Z

3\N . By Definition IP.0(B),

N \M D ; and N and M are coplanar. By elementary set theory

L \ J D .M \ Z
3/ \ .N \ Z

3/ D ;
and L and J are coplanar. So L k J . Since N is unique, J is unique. ut



21.6 Independence of Axioms 477

Definition DZI.7. Let P be a plane in Z
3, that is, for Model DZI, and let L be a

line in P , and let M be the line for Model LM3Q such that L DM \ Z
3. Then

(A) a set E is a side of L (contained in Z
3) iff E D F \ Z

3 and F is a side of M
(in Q

3/;

(B) two sets E1 and E2 are opposite sides of L iff F1 and F2 are opposite sides of

M (in Q
3), E1 D F1 \ Z

3, and E2 D F2 \ Z
3.

Theorem DZI.8. The Plane Separation Axiom PSA is false for Model DZI.

Proof. Let L be the line for Model DZI through .0; 0; 0/ and .1; 0; 0/. The points

.0; 1; 0/ and .0;�1; 0/ are on opposite sides of L since
qy px

.0; 1; 0/.0;�1; 0/\L D f.0; 0; 0/g.
The point .1;�1; 0/ is on the .0;�1; 0/ side of L since

px qy

.1;�1; 0/.0;�1; 0/\L D ;.
Therefore .0; 1; 0/ and .1;�1; 0/ are on opposite sides of L. Let M be the line for

Model LM3Q such that L DM \ Z
3; let N D  �����������!.0; 1; 0/.1;�1; 0/, a line in Model

LM3Q, and let J D N \Z
3. Then M\N D f. 1

2
; 0; 0/g 62 Z

3, so that L\J D ;.
Thus the segment (in Model DZI)

qy px

.0; 1; 0/.1;�1; 0/ is empty, and does not intersect

L; therefore Axiom PSA is false for Model DZI. ut
Remark DZI.9. (A) Theorems DZI.5, DZI.6, and DZI.8 show that Axiom PSA is

independent of each of the following axioms: I.0, I.1, I.2, I.3, I.4, I.5, BET,

and PS. This is a stronger result than is needed to show that Axiom PSA is

independent of all preceding axioms.

(B) One additional result based on Model DZI, Theorem DZI.10, is included

later in Subsection 21.8.1; we put it there because it is relevant to the larger

discussion in that section showing that the incidence and betweenness axioms

are not adequate for developing a satisfactory geometry.

21.6.4 Axiom REF is independent of Axioms I.0, I.1, I.5(A),
BET, PSA, PS, and LUB (Model MLT)

In Theorem RSI.3 of Subsection 21.7.3, we will prove that the set of LB.16

reflections on Model LM2Q (Q2) fails to satisfy Property R.5; that this set

satisfies all the other reflection properties was established in Subsection 21.5.5

Theorems LC.25 through LC.33. One might be tempted to think that this establishes
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the independence of Axiom REF, but that is not so; it does not rule out the possibility

that there could exist another set of mirror mappings on Q
2 which would satisfy all

of Properties R.1 through R.6, in which case Axiom REF would hold.

The result we offer with respect to the independence of Axiom REF is the fol-

lowing, in which we display the Moulton plane, invented in 1902 by the American

astronomer Forest Ray Moulton.6 Points in the Moulton plane are the points in the

coordinate plane R
2, and lines are ordinary lines of this plane, with the exception

that lines with a negative slope “break” where they pass from the left side to the

right side of the y-axis, their slope on the right side being double that on the left.

We will show that in such a plane, Axioms I.1, I.5(A), I.5(B), BET, PSA, PS,

and LUB are all true, but Axiom REF is false, thus proving that Axiom REF is

independent of this set of axioms. Axioms I.0, I.2, I.3, I.4, and I.5(C) deal with

space; since we are dealing with a model for a plane we do not consider them. It

could be an interesting challenge to construct a space S in which the Moulton plane

could be embedded, and in which all axioms other than Axiom REF hold. We have

not pursued this possibility.

Definition MLT.1. For Model MLT (the Moulton plane), the plane is the

Euclidean plane R
2, that is, the vector space consisting of all ordered pairs .x; y/ of

real numbers.

(A) A line for Model MLT is a set of one of the following types:

Type V (vertical line): f.c; y/ j y 2 Rg, where c is some real number;

Type H (horizontal line): f.x; d/ j x 2 Rg where d is some real number;

Type P (positive slope line): f.x; y/ j y D axC b and x 2 Rg, where a > 0

and b are real numbers; or

Type N (negative slope broken7 line):

f.x; y/ j y D axC b and x � 0g [ f.x; y/ j y D 2axC b and x � 0g;
where a and b are real numbers and a < 0.

6Moulton, Forest Ray (1902), A Simple Non-Desarguesian Plane Geometry [16], Transactions
of the American Mathematical Society (Providence, R.I.: American Mathematical Society) 3 (2):
192-Ű195, ISSN 0002-9947, JSTOR 1986419. The “non-Desarguesian” property is related to,
but different from the nonplanar “Proposition of Desargues” which we proved in Chapter 1 as
Theorem I.10.
7Here we take “broken” to mean that the line is continuous but its slope is discontinuous at the
point where it crosses the y-axis
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(B) We will need, on occasion, to distinguish lines and segments in the the

coordinate plane Model LM2R from those in Model MLT, and we will do this

by the following notational conventions: lines and segments in Model LM2R

will be designated as Lc,
 !
ABc,

px qy

ABc,
qy px

ABc, and
px px

ABc, etc. Lines and segments in

Model MLT will be designated Lm,
 !
ABm,

px qy

ABm,
qy px

ABm, and
px px

ABm, etc.

(C) If L is a line in either model which intersects the y-axis, then f.x; y/ 2 L j
x � 0g will be called its left-hand ray or simply the left ray (in symbols,

lr.L/), and f.x; y/ 2 L j x � 0g its right-hand ray or simply the right ray

(in symbols, rr.L/). Note that both rays include the point of intersection with

the y-axis. For a type N line, which is the union of two LM2R rays, the slope

of the left (right) ray will mean the slope of the Model LM2R line containing

that ray. The slope of a line L or ray
px!
XY will be denoted by the symbol sl.L/ or

sl.
px!
XY/.

The terminology of right and left ray will often be used for lines of type N,

but will also apply to lines of type P and type H, where the two rays have the

same slope. It should also be observed that for any line L with slope, that is,

of type P, H, or N, sl.lr.L// � sl.rr.L//—equality occurs if L is of type P or

type H.

(D) If a line L in R
2 is not vertical, for every point C D .c1; c2/ 2 R

2 there exists

a point A D .a1; a2/ 2 L with a1 D c1; if a2 < c2, we say that C lies above L
(and above A); if a2 > c2, C lies below L (and below A).

If a line L in R
2 is vertical, then for every point C D .c1; c2/ 2 R

2 there

exists a point A D .a1; a2/ 2 L with a2 D c2; if c1 > a1 we say that C lies to

the right of L (to the right of A); if c1 < a1, C lies to the left of L (to the left

of A). In either case, the line
 !
ACc is a horizontal line.

(E) We shall refer to f.0; y/ j y 2 Rg as the y-axis of the plane, and to f.x; 0/ j x 2
Rg as the x-axis of the plane.

(F) We define an order relation on any line in Model MLT as follows:

(1) If L is a vertical line, and P D .a; b/ and Q D .a; c/ are points on L, P < Q

iff b < c.

(2) If L is of type H or type P, it is a line in Model LM2R; it intersects the

y-axis at some point O, which we take as the origin. Let U be the point a

distance 1 (along the line) to the right of O; this will be the unit. For each

real number r define ˛.r/ D rU. For any two points P and Q on L, define

P < Q iff ˛�1.P/ < ˛�1.Q/. This definition yields an ordering “<” on L
according to Definition ORD.1.
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(3) If Lm is a line of type N in Model MLT, let Mc be the line (in Model

LM2R) containing the left-hand ray of Lm and M0
c the Model LM2R line

containing the right-hand ray. Then Mc \M0
c D fOg where O is a point

on the y-axis. Let O be the origin for both Mc and M0
c, and let U be the

unit for Mc, U0 the unit for M0
c, and V D �U. The left ray of Lm is

px!
OV ,

and the right ray of Lm is
px !
OU0.

Let ˛ be the mapping (as defined in (2)) from R onto Mc and ˛0 the

corresponding mapping from R onto M0
c. Define ˇ as follows: for any

real number r, if r < 0 define ˇ.r/ D ˛.r/; if r > 0 define ˇ.r/ D ˛0.r/;
and define ˇ.0/ D O. Define P < Q iff ˇ�1.P/ < ˇ�1.Q/. Then “<”

orders the line M according to Definition ORD.1. (The proof of this is

Exercise MLT.6.)

Note that if P is on the left ray and Q is on the right, then P < Q.

Remark MLT.1.1. (A) By Exercise MLT.4, every line in coordinate space Model

LM2R or in Model MLT that is not vertical intersects every vertical line.

(B) From Subsections 21.5.1, 21.5.2, 21.5.3, and 21.5.4 we know that in the

coordinate plane the incidence, betweenness, parallel, plane separation, and

LUB axioms hold. We now show that all these axioms (which can be stated for

a plane) hold in the Moulton plane.

Theorem MLT.2. In the Moulton plane, let L and M be distinct lines having

negative slope. Then the left ray of L has the same slope as the left ray of M iff

both right rays have the same slope iff L kM.

Proof. The first equivalence is obvious, since the slope of the right ray is twice that

of the left ray.

Suppose now the left rays have the same slope and the right rays have the same

slope. Distinct lines on the coordinate plane are parallel iff they have the same slope,

so that neither the left rays nor the right rays of L and M can intersect, and hence

L kM.

To prove the converses, assume that L k M; let .0; b/ and .0; c/ be the center

points (that is, the points of intersection of the line with the y-axis) of L and M,

respectively, and choose the notation so that b > c.

If the slope of the left ray of L is less negative than the slope of the left ray of M,

these rays will intersect, contradicting our assumption that the lines are parallel. If

the slope of the left ray of L is more negative than the slope of the left ray of M, the
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rays do not intersect; however, their right rays will intersect, and this contradicts the

parallelism of the two lines. Thus the left rays must have the same slope. A similar

argument shows that the right rays must have the same slope. ut
Theorem MLT.3 (Incidence axioms). The incidence Axioms I.1, I.5(A),

and I.5(B) are true on Model MLT.

Proof. Axiom I.5 (A) is obviously true since every line in the model has more than

one point. Axiom I.5(B) is true because given a line, there exist points not on that

line. (Again, we do not deal with Axioms I.0, I.2, I.3, I.4, or I.5(C), because these

involve space.)

We show that Axiom I.1 holds: there exists exactly one line
 !
ABm through two

distinct points A and B. We know that in the coordinate plane, there is a line
 !
ABc

through two such points. If
 !
ABc is vertical or horizontal or has positive slope, let !

ABm D !ABc.

If the slope of
 !
ABc is negative, it is not a line in Model MLT. In this case, if A and

B are on the same side of (or possibly on) the y-axis, let P be the point of intersection

of
 !
ABc and the y-axis.

If A and B are on the left side of (or possibly on) the y-axis, define
 !
ABm to be

the union of
px!
PA and

px!
PC, where C is on the right side and the slope of

px!
PC is twice

the slope of
px!
PA. Then

 !
ABm is the unique Model MLT line through both A and B. A

similar argument will produce the same result if A and B are on the right side of (or

possibly on) the y-axis.

Now suppose A D .a1; a2/ is on the left side of the y-axis, and B D .b1; b2/ is on

the right side, still assuming that the coordinate line connecting them has negative

slope. Then a1 < 0 and b1 > 0.

Let c D �a1b2 C 2b1a2
2b1 � a1

; then the point P D .0; c/ lies on the Model MLT line

through both A and B. For the slope of the left-hand ray
px!
PA is �c � a2

a1
D b2 � a2
2b1 � a1

,

and the slope of the right-hand ray
px!
PB is

b2 � c

b1
D 2

b2 � a2
2b1 � a1

, which is twice the

left-hand slope.

The proof of uniqueness, that any Model MLT line passing through A and B must

also contain the point P D .0; c/, is Exercise MLT.1. ut
Theorem MLT.4 (Axiom BET). Axiom BET is true on Model MLT; that is, there

exists a betweenness relation on Model MLT.
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Proof. Let A, B, and C be any three collinear points on Model MLT. If these three

points lie on a line of type V, H, or P, or if they all lie on either the left or right

ray of a line of type N, define A B C iff A B C as points in Model LM2R. Since

our definition of ray includes the endpoint with first coordinate 0, this includes the

possibility that one of these points lies on the y-axis.

If A, B, and C lie on a line L of type N, and two of them, say A and B, lie on one

of its rays, whilst C lies in the other ray, there are two cases:

(Case 1: one of A or B is on the y-axis.)

(Subcase 1A: B is on the y-axis.) Define A B C (equivalently, C B A);

(Subcase 1B: A lies on the y-axis.) Define B A C (C A B).

These subcases are mutually exclusive because A and B are distinct points, and

cannot both belong to the y-axis.

(Case 2: neither A nor B lies on the y-axis.) Let W be the point of intersection of

the ray containing A and B with the y-axis;

(Subcase 2A A B W as points in Model LM2R.) Define A B C (C B A);

(Subcase 2B) B A W as points in Model LM2R.) Define B A C, (C A B).

These subcases are mutually exclusive because by trichotomy for Model LM2R, we

cannot have both A B W and B A W. Therefore, in either case, A B C and B A C

are mutually exclusive.

By definition, the betweenness relation described just above satisfies Property

B.0 and Property B.1 of Definition IB.1. To show Property B.2, trichotomy, we

need only consider sets fA;B;Cg of points which are not all on a Model LM2R line,

and are not all on one or the other of the rays of a line of type N—for in these cases,

trichotomy already holds from Model LM2R.

That is, we consider only sets fA;B;Cgwhere two points are on one ray (possibly

on the y-axis) and the remaining point is on the other ray of a line of type N (but not

on the y-axis). The possibilities are:

1) A and B are on one ray (possibly on the y-axis) and C is on the other. In this

case, the possibilities are A B C and B A C.

2) B and C are on one ray (possibly on the y-axis) and A is on the other. In this

case, the possibilities are B C A and C B A.

3) A and C are on one ray (possibly on the y-axis) and B is on the other. In this

case, the possibilities are A C B and C A B.
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As pointed out above, in each possibility the two alternatives are mutually

exclusive. Thus, if A B C, B A C is ruled out by 1) and A C B is ruled out by

2); if B A C, A B C is ruled out by 1) and A C B is ruled out by 3); if A C B,

C A B is ruled out by 3) and C B A is ruled out by 2). It follows that for any

collinear points A, B, and C exactly one of A B C, B A C, and A C B can be true;

this establishes trichotomy, Property B.2.

Finally, we show that Property B.3, extension, holds. If A and B are distinct

points and the slope of the line
 !
AB is positive, or zero, or if

 !
AB is vertical, then by

the extension property for the coordinate plane Model LM2R there exists a point C

such that A B C in Model MLT. If A and B are distinct points on a line Lm of type

N, there are three cases:

(Case 1: both A and B lie on the same side of the y-axis, but neither lies on the

y-axis.) Let X be the point of intersection of Lm with the y-axis. Then either A B X

or B A X; in the first instance, choose C D X; then A B C in Model MLT. In the

second instance, by the extension property for betweenness in Model LM2R choose

C such that A B C in Model LM2R; then C 2 px!
XB so A B C in Model MLT.

(Case 2: both A and B lie on the same side of the y-axis, and one of them lies

on the y-axis.) If A is on the y-axis, by extension for betweenness in Model LM2R

choose C such that A B C in Model LM2R; then C 2 px!
AB so A B C in Model MLT.

If B is on the y-axis, since A and B lie on the same side,
px!
BA is a ray (either left or

right) of Lm. Let C be any point (other than B) of the other ray of Lm. Then A B C.

(Case 3: A and B lie on opposite sides of the y-axis.) Let X be the point of

intersection of Lm and the y-axis. By extension for betweenness in Model LM2R

choose C such that X B C in Model LM2R. Then A B C in Model MLT.

It follows that the betweenness relation defined above satisfies all of Properties

B.0 through B.3 of Definition IB.1. ut

Theorem MLT.5 (Axiom PSA). The Plane Separation Axiom is true in Model

MLT. That is, if we let Lm be a line in Model MLT, and let E and F be opposite

sides of Lm, then if P 2 E , and Q 2 F ,
qy px

PQm \ Lm ¤ ;.
The proof is by a series of claims. The first of these is intuitively quite evident,

and pertains to Model LM2R. We will summarize the results and finish the proof in

the Summary for PSA.

Claim 1. Let Lc be a line in Model LM2R (R2).
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(A) If Lc is nonvertical, and if E is the set of all points above Lc, and F is the set

of all points below the line, conclusions (1)–(3) follow.

(B) If Lc is vertical, and if E is the set of all points to the right of Lc, and F is the

set of all points to the left of the line, conclusions (1)–(3) follow.

(1) If A and B are any distinct points of E , or any distinct points of F ,
px qy

AB\L D ;.
(2) For any A 2 E and B 2 F ,

qy px

AB\L ¤ ;.
(3) E and F are the sides of the line L, are opposite, and E [ F [ Lc D R

2.

The proof of Claim 1 depends on Theorem LC.18 and is Exercise MLT.2.

Claim 2. Let Lm be a nonvertical line in Model MLT, and let O be the point of

intersection of Lm with the y-axis. Let X D .x1; x2/ and Y D .y1; y2/ be distinct

points. If both X and Y are above, or both are below Lm, then
px qy

XYm \ Lm D ;.
Proof. By Axiom I.1 (which is true in Model MLT) there exists a line

 !
XY m

containing both X and Y , which intersects the y-axis at some point P.

(Case 1: Both x1 � 0 and y1 � 0, or both x1 � 0 and y1 � 0.) That is, both

X and Y lie in the same ray (left or right) of
 !
XY m, that is, lying either above (or

below) lr.Lm/ or rr.Lm/ as the case may be. Then X and Y both lie above (or below)

the Model LM2R line containing that ray, Then
px qy

XYc D px qy

XYm, so that by Claim 1,
px qy

XYm \ Lm D px qy

XYc \ Lm D ;.
(Case 2: Both X and Y lie above Lm, x1 < 0, y1 > 0, and P lies above O.) Then

P, X, and Y all lie above Lm. By Case 1,
px qy

XPm \ Lm D ; D px qy

PYm \ Lm, so that
px qy

XYm \ Lm D ;. If X, Y , and P all lie below
 !
XY m a similar argument gives the same

result.

(Case 3: Both X and Y lie above Lm, x1 < 0, y1 > 0, either P D O or P lies

below O, and the slope sl.
px!
PX/ < sl.lr.Lm/.) Thus if Lm is of type N, so is

 !
XY m.

If Lm is of type H or type P, sl.
px!
PY/ � sl.

px!
PX/ < sl.lr.Lm//. If Lm is of type N,

then
 !
XY m is of type N and sl.

px!
PY/ D 2sl.

px!
PX/ < 2sl.lr.Lm// D sl.rr.Lm/. In either

case, since P lies below O, all points of
px!
PY lie below Lm, which is impossible, since

Y is above that line.

(Case 4: Both X and Y lie below Lm, x1 < 0, and y1 > 0, and either P D O or P

lies above O.) This too leads to a contradiction. The proof is Exercise MLT.3.

Thus both cases 3 and 4 are ruled out. ut
Claim 3. If L is a vertical line in Model MLT, and if X and Y both lie to the right,

or both lie to the left of L, then
px qy

XYm \ L D ;.
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Proof. L is a line in Model LM2R as well as in Model MLT.

(Case 1: X and Y have the same first coordinate.) In this case,
 !
XY m is a vertical

line which does not intersect L.

(Case 2: L is the y-axis.) If both X and Y lie on the same side of the y-axis,

and the slope of
 !
XY c is non-negative,

px qy

XYm D px qy

XYc; this is also true if the slope is

negative, since the change in slope for a type N line in Model MLT occurs at the

y-axis. By Claim 1, both X and Y belong to the same Model LM2R side of L, so

that
px qy

XYm \ L D px qy

XYc \ L D ;.
(Case 3: L is not the y-axis, and both X and Y lie on the same side of L.) Let P

be the point of intersection of
 !
XY m and the y-axis.

(Subcase 3a: Both X and Y lie on the same side of the y-axis, or one of them lies

on the y-axis.) Then
px qy

XYm D px qy

XYc which by Claim 1 is disjoint from L.

(Subcase 3b: X and Y lie on opposite sides of the y-axis.) Then both
px qy

XPm D px qy

XPc

and
px qy

PYm D px qy

PYc both of which are disjoint from L by Subcase 3a above;

hence
px qy

XYm D px qy

XPc [ px qy

PYc is disjoint from L. ut
Claim 4. If Lm is a nonvertical line in Model MLT, and one of X or Y lies above

Lm and the other lies below, then
qy px

XYm \ Lm ¤ ;.
Proof. Let O be the point of intersection of Lm and the y-axis.

(Case 1: X and Y have the same first coordinate.) It is a simple matter to calculate

the point between X and Y which belongs to L. In the remaining cases we assume

that
 !
XY is nonvertical.

(Case 2: X and Y both lie on the same side of the y-axis, or on the y-axis.) Then
qy px

XYm D qy px

XYc. Since Axiom PSA holds for Model LM2R, by Claim 1
qy px

XYm \ Lm D
qy px

XYc \ Lm ¤ ;.
(Case 3: X lies to the left of the y-axis and above Lm and Y lies to the right of the

y-axis and below Lm.) Suppose
 !
XY m intersects the y-axis at the point P.

If P is above O, then by Case 2,
qy px

PYm \ Lm ¤ ;. If P D O,
qy px

XYm \ Lm ¤ ;. If

P is below O, then by Case 2,
qy px

XPm \ L ¤ ;. It follows that since
qy px

XPm and
qy px

PYm are

subsets of
qy px

XYm,
qy px

XYm \ Lm ¤ ;.
The proof for the case where X lies to the left of the y-axis and below Lm, and Y

lies to the right of the y-axis and above Lm, is similar to Case 3. ut
Claim 5. If L is a vertical line in Model MLT, and let X D .x1; x2/ and Y D .y1; y2/
be distinct points; if X lies to the left of L and Y lies to the right, then

qy px

XYm\Lm ¤ ;.
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Proof. The proof is Exercise MLT.4, which also proves the observation in

Remark MLT.1.1 that every nonvertical line intersects every vertical line. ut

Summary for Theorem MLT.5 (PSA) Let Lm be any nonvertical line in Model

MLT; every point P not on Lm is either above or below this line. Let P be any point

above, and Q be any point below Lm. By Claim 2 of Theorem MLT.5, every point

above the line is in the P side of Lm and every point below the line is in the Q side

of Lm. These two sides cannot intersect. Therefore they are the only possible sides

for Lm.

By similar reasoning, if Lm is a vertical line in Model MLT, P is a point to the

right of, and Q is a point to the left of Lm, by Claim 3 of Theorem MLT.5, the P side

of Lm and the Q side of Lm are the only possible sides for Lm.

In either case, R2 is the union of these two sides and Lm. Then by Claims 4 and

5 of Theorem MLT.5, for every X 2 the P side of Lm and every Y 2 the Q side of

Lm,
qy px

XY \Lm ¤ ;, showing that these two sides are opposite, and also that Axiom

PSA holds.

Theorem MLT.6 (Axiom PS). The Strong Parallel Axiom PS holds in Model MLT.

That is, given a line L and a point P not belonging to L, there exists exactly one line

M such that P 2M and L kM.

Proof. For any line L other than a type N line, there exists exactly one line not of

type N through P, since Axiom PS holds for lines in the coordinate plane. Moreover,

the only lines parallel to a line of type N are those of type N, so there can be no line

of type N parallel to L. If L is of type N, consider three cases:

(Case 1: P is on the y-axis.) Using Axiom PS on the coordinate plane, choose L1
to be the unique line containing P parallel to the left ray of L, and L2 as the unique

line containing P parallel to the right ray of L; let M be the union of the left ray of

L1 and the right ray of L2; both these rays contain P, so that M is the unique line

of type N which contains P and is parallel to L.

(Case 2: P lies on the negative (left) side of the y-axis.) Using Axiom PS on the

coordinate plane, let L1 be the unique line containing P parallel to the left ray of L;

this line intersects the y-axis at some point Q; let L2 be the (unique) line containing

Q with slope twice that of L1. Let M be the union of the left ray of L1 and the right

ray of L2; both these rays contain Q, so that M is the unique line of type N which

contains P and is parallel to L.
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(Case 3: P lies on the positive (right) side of the y-axis.) The proof is similar to

that of Case 2. ut
Theorem MLT.7 (Axiom LUB). Axiom LUB is true in Model MLT. Let L be a

line which is equipped with the order relation of Definition MLT.1(F). Then every

nonempty subset E of L which is bounded above has a least upper bound lub E .

Proof. Let L be a line of type V, type H, or type P. The ordering of Defini-

tion MLT.1(F) on any lines of these types is just the standard ordering of lines in

Model LM2R, and since Axiom LUB is true on this model, it is true for these lines.

Let Lm be a line of type N in Model MLT. As in Definition MLT.1(F), O is the

origin and U0 the unit; Mc is the Model LM2R line containing the left ray of Lm,

and M0
c is the Model LM2R line containing the right ray. Let E be a nonempty

subset of Lm, which is bounded above. If E \ px !
OU0 ¤ ;, the upper bound for E is

an upper bound for this intersection, and since Axiom LUB holds on M0
c, there is

a least upper bound for E \ px !
OU0, which belongs to

px !
OU0 � M0

c. This is the least

upper bound for E .

If E \ px !
OU0 D ;, then E � px!

OV which is a subset of Mc; then E is bounded above

by O, and since LUB holds for Mc, E has a least upper bound in Mc, and this upper

bound belongs to
px!
OV � Lm.

It follows that every bounded nonempty subset of a line in Model MLT has a

least upper bound, so that Axiom LUB holds. ut
Theorem MLT.8. Suppose Axiom REF holds on Model MLT, and let k and b > 0

be real numbers; suppose further that there exists a reflection ' over the horizontal

line K D f.x; k/ j x is any real number g.
(A) All the fixed lines for ' are vertical.

(B) ' maps every point .x; k�b/ to the point .x; kC bp
2
/, so that the line y D k�b

maps to the line y D kC bp
2

.

Proof. Preamble: since Axiom REF holds, we may apply all the theorems of neutral

geometry. Let L D f.x; k � b/ j x is any real numberg be the horizontal line b units

below and parallel to K. By Exercise NEUT.1, M D '.L/ is a line parallel to K;

by Definition NEUT.1(B) this line is on the opposite side of K from L. Therefore

for some real number c > 0,

M D f.x; kC c/ j x is any real numberg.
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By Theorem NEUT.22(E), all fixed lines for a reflection are parallel. Therefore

(given the numbers b and c as above) there exists a real number d such that for any

real number a,

'.a; k � b/ D .aC d; kC c/. (1)

So if P D .a; k� b/ is an arbitrary point of L, the number d measures the horizontal

offset of '.P/ from P; if d > 0, '.P/ lies to the right of the vertical line through P;

if d < 0, it lies to the left.

We complete our preamble by defining O D .0; k/, the intersection of K with the

y-axis.

Fig. 21.3 For part (A) of
Theorem MLT.8.

L

M

K

y-axis

K

Qa : ((−a − d)/c, k − 1) Pa : (a, k − 1)

O : (0, k)

ϕ(Qa) : ((−a − d + dc)/c, k + c) ϕ(Pa) : (a + d, k + c)

(A) We now prove that d D 0, showing that the fixed lines of ' are vertical. For

this part, let b D 1, so that L is the horizontal line 1 unit below K. '.L/ is a

horizontal line c units above K, but we don’t yet know the value of c—we just

know it is a fixed number determined by b D 1. Again, d is the offset defined

in the preamble, and it is determined by b D 1 and c.

Choose a0 > 0 so that for any a � a0, a C d > 0; for any such a, define

Pa D .a; k � 1/; then '.Pa/ D '.a; k � 1/ D .aC d; k C c/ lies to the right of the

y-axis.

The slope of the line
 ���!
O'.Pa/ is positive, so this line (in Model MLT) is a line

in the coordinate plane. Let Qa D .x; k � 1/ be the point of intersection of
 ���!
O'.Pa/

with L. To determine x we calculate the slope of this line in two different ways: first,

using O and '.Pa/, the slope is
c

aC d
> 0. Using O and Qa the slope is

1

�x
, so that

c

aC d
D 1

�x
and hence x D �a � d

c
; thus Qa D .�a � d

c
; k � 1/.
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By Theorem NEUT.15(1), '.
 ����!
Qa'.Pa// D  ����!'.Qa/Pa, and this line has negative

slope, so it “breaks” at the y-axis. The slope of the ray
px !
OPa (as a line in coordinate

space) is �1=a so the slope of the ray
px !
O'.Qa/ must be � 1

2a
.

Since all fixed lines are parallel (that is, by equation (1) above), the first

coordinate of '.Qa/ is
�a � d

c
C d; since '.Qa/ 2M, Q D ��a � d

c
C d; kC c

�
.

Then the slope of the ray
px !
O'.Qa/ is
�c

aCd
c � d

D �c2

aC d � dc
D � 1

2a
,

so that for all a � a0,

aC d � dc D 2ac2 or a.2c2 � 1/ D d.1 � c/. (2)

If c D 1, equation (2) becomes a.2 � 1/ D a D 0; but a > 0 by hypothesis, so

we have a contradiction. Therefore c ¤ 1.

If 2c2 � 1 ¤ 0, then a D d.1 � c/

2c2 � 1 , and a is completely determined by the values

of c and d, which are fixed numbers for this argument; thus there can be only one

number a for which this can be true, contradicting the fact that equation (2) is true

for all a � a0. Therefore 2c2 � 1 D 0, so that d.1� c/ D 0; since 1� c ¤ 0, d D 0.

Thus all fixed lines are vertical.

Fig. 21.4 For part (B) of
Theorem MLT.8.

L

M

K

y-axis
Q : (−b/c, k − b) P : (1, k − b)

O : (0, k)

ϕ(Q) : (−b/c, k + c) ϕ(P ) : (1, k + c)

(B) Referring again to the preamble, let b > 0 be any real number, so that L is the

horizontal line b units below K. Let a D 1 > 0 (for this argument, a can be

fixed) and let P D .1; k � b/. As in the preamble, there exists a number c > 0

such that '.P/ lies on

M D f.x; kC c/ j x is any real numberg.
By part (A), '.P/ D .1; kC c/.
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As before, let O D .0; k/ be the point of intersection of the y-axis and K;

then
 ��!
O'.P/ intersects L at some point Q. The slope from O to '.P/ is c; the

first coordinate of Q is easily calculated to be �b=c so that Q D .�b=c; k � b/.

Thus '.Q/ D .�b=c; kC c/.

Now the slope of the (right-hand) ray
px!
OP is �b < 0 and the slope of the

left-hand ray will be �b=2. The latter is also � c

b=c
D �c2

b
so that

c2

b
D b

2
, or

2c2 D b2, that is, c D bp
2

. This completes the proof. ut

Theorem MLT.9. Axiom REF does not hold on Model MLT; that is, there is no

reflection set on this model.

Proof. It is possible to show this by invoking properties of non-Desarguesian planes,

but we will give a proof using Theorem MLT.8 above, showing that if Axiom REF

holds on Model MLT, we get a contradiction.

Let A D .�2; 0/, B D .0;�1/, and C D .1;�2/. By our definition of

betweenness (cf Theorem MLT.4) A B C, as the coordinate line
 !
BC has slope �1

and the coordinate line
 !
AB has slope �1=2.

Let ' be the reflection over the x-axis. Since A lies on the x-axis, it is a fixed point

for ', and hence '.A/ D A D .�2; 0/. By Theorem MLT.8, '.B/ D .0; 1=p2/, and

'.C/ D .1; 2=
p
2/. The slopes of

 �����!
'.B/'.C/ and

 �����!
'.A/'.B/ are positive, so that the

ordinary coordinate plane definition of betweenness holds. But '.B/ D .0; 1=
p
2/

does not belong to the line
 �����!
'.A/'.C/, so that these points are not collinear, and '.B/

cannot lie between '.A/ and '.C/.

Hence ' does not preserve betweenness, contradicting Property (D) of Defini-

tion NEUT.1, and ' cannot be a mirror mapping or a reflection.

Therefore there does not exist a reflection mapping over the x-axis, and Axiom

REF does not hold in Model MLT. ut
Remark MLT.10. By Theorems MLT.3 through MLT.7, Axioms I.0, I.1, I.5(A),

BET, PSA, PS, and LUB are all true for Model MLT. By Theorem MLT.9, there can

be no reflection set on Model MLT. This shows that Axiom REF is independent of

this set of axioms.
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21.6.5 Parallel Axiom PS is independent
of Axioms I.0–I.5, BET, PSA (Model PSM)

We now construct a model which establishes the independence of the parallel axiom

PS from the incidence and betweenness axioms and the Plane Separation Axiom

PSA. This model we designate Model PSM.

Definition PSM.1. For Model PSM, space S is an “open” unit cube—that is, the

unit cube which does not include any of its “surface” points. More precisely,

S D fX D .x1; x2; x1/ j X 2 F
3; 0 < x1 < 1; 0 < x2 < 1; and 0 < x3 < 1g,

where F is an ordered field.

We define L to be a line for Model PSM iff for some distinct points X and Y

of S , L D  !XY \ S ¤ ;, where
 !
XY is the line through these two points as in

Definition LA.1(1).

P is a plane for Model PSM iff for some noncollinear members X, Y , and Z

of S , P D  !XYZ \ S ¤ ;, where
 !
XYZ is the plane through these points as in

Definition LA.1(2).

If X, Y , and Z are points of S , then Y is between X and Z iff Y is between X and

Z in Model LM3.

Let P D Q \ S be a plane for Model PSM, where Q is a plane in F
3; let

L DM\ S be a line in P , where M is a line in F
3. Then for any point A 2 P nL,

a set E is the A-side of L for Model PSM iff E D F \ S , where F is the A-side for

the line M in F
3, according to Definition IB.11.

Theorem PSM.2. Let X D .x1; x2; x3/ be any point of S , and let Y D .y1; y2; y3/

be any other point of F3. Then

(A) there exists a number t > 0 such that Z D X C t.Y � X/ 2 S (so that Z ¤ X);

(B) if Y 2 S , there exists a number t > 1 such that Z D X C t.Y � X/ 2 S .

Proof. (A) Since X 2 S , for each i 2 f1; 2; 3g, 0 < xi < 1. For each such i there are

three possible cases:

(Case 1: yi � xi D 0.) Let ti D 2. Then 0 < xi C ti.yi � xi/ D xi < 1.

(Case 2: yi � xi > 0.) Then 1�xi
yi�xi

> 0 since xi < 1. Choose ti > 0 so that

0 < ti <
1�xi
yi�xi

. Then

ti.yi � xi/ <
1�xi
yi�xi

.yi � xi/ D 1 � xi
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so that xiCti.yi�xi/ < 1; since yi�xi > 0, ti > 0 and xi > 0, 0 < xiC
ti.yi�xi/ < 1.

(Case 3: yi � xi < 0.) Then 0 < � xi
yi�xi

; choose ti so that 0 < ti < � xi
yi�xi

.

Then

ti.yi � xi/ > � xi
yi�xi

.yi � xi/ D �xi

so that xi C ti.yi � xi/ > 0; since ti.yi � xi/ < 0 and x1 < 1 it follows that

0 < xi C ti.yi � xi/ < 1.

Let t D minft1; t2; t3g. Then for every i 2 f1; 2; 3g ti > 0 so that t > 0, and

0 < xi C t.yi � xi/ < 1, so that X C t.Y � X/ 2 S . This completes the proof of

part (A).

(B) Now we assume that Y 2 S , so that for all i 2 f1; 2; 3g, 0 < yi < 1. Again we

have three cases:

(Case 1: yi � xi D 0.) Let ti D 2. Then 0 < xi C ti.yi � xi/ D xi < 1.

(Case 2: yi � xi > 0.) Then 1�xi
yi�xi

> 1 because 1 � xi > yi � xi > 0, and we

may choose ti so that 0 < 1 < ti <
1�xi
yi�xi

; as in part (A), 0 < xiC ti.yi� xi/ < 1.

(Case 3: yi � xi < 0.) Then � xi
yi�xi
D xi

xi�yi
> 1 because xi > xi � yi > 0. We

may choose ti so that 0 < 1 < ti < � xi
yi�xi

. Then by the same reasoning as in

Case 3 of part (A), 0 < xi C ti.yi � xi/ < 1.

Let t D minft1; t2; t3g; t > 1 since for every i, ti > 1. Then for every

i 2 f1; 2; 3g, 0 < xiC t.yi � xi/ < 1, so that XC t.Y � X/ 2 S . This completes

the proof of part (B). ut
Theorem PSM.3. S is convex; each of Axioms I.0, I.1, I.2, I.3, I.4, I.5, and BET is

true for Model PSM.

Proof. (A) Convexity: we show that if X D .x1; x2; x1/ and Y D .y1; y2; y3/ are any

two points of S , for any number t such that 0 < t < 1, XC t.Y �X/ 2 S . Since

X and Y belong to S , for every i 2 f1; 2; 3g, 0 < xi < 1 and 0 < yi < 1; then

xi C t.yi � xi/ D .1 � t/xi C tyi > 0, since 1 � t > 0, xi > 0, t > 0 and yi > 0.

Also, since xi < 1 and yi < 1, .1 � t/xi C tyi < .1 � t/ C t D 1. Therefore

X C t.Y � X/ 2 S proving its convexity.

(B) It is trivial to show that Axiom I.0 holds, since all planes and lines are subsets

of S . Two points in S are also points in F
3 and since Axiom I.1 holds for

Model LM3, there is exactly one line in LM3 containing these points, and

the intersection of this line with S is the unique line containing both points.

Therefore Axiom I.1 holds for Model PSM. Similar reasoning shows that

Axiom I.2 holds.
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(C) If two points X and Y lie in a plane P D Q\ S , where Q is a plane in F
3, then

the line
 !
XY � Q since Axiom I.3 holds for Model LM3. Then L D !XY \ S �

Q \ S D P so Axiom I.3 holds for Model PSM.

(D) Let P1 D Q1 \ S and P2 D Q2 \ S be two planes in S , where Q1 and Q2

are planes of F3. Suppose X D .x1; x2; x3/ 2 .P1 \ P2/. Then X 2 .Q1 \Q2/

and since Axiom I.4 holds for Model LM3, there exists at least one other point

Y 2 .Q1 \Q2/. Since Axiom I.3 holds for Model LM3,
 !
XY � .Q1 \Q2/. By

Theorem PSM.2(A) there exists a point Z D X C t.Y � X/ 2 . !XY \ S/ where

Z ¤ X. Hence Z 2 .P1 \ P2/. This shows that Axiom I.4 holds for Model

PSM.

(E) To show that Axiom I.5(A) holds for Model PSM, let L be any line in U . Then

for some line M in F
3, L D M \ S , and by definition there exists a point

X 2 L. By Theorem LC.5, Axiom I.5(A) holds for Model LM3, so there exists

a point Y ¤ X such that Y 2M. By Theorem PSM.2(A), there exists a point

Z D X C t.Y � X/ 2 S such that Z 2 L D  !XY \ S , and Z ¤ X. Thus

Axiom I.5(A) holds for Model PSM.

(F) To show that Axiom I.5(B) holds for Model PSM, let P be any plane in U .

Then for some plane Q in F
3, P D Q \ S . By definition there exists a point

X 2 L; by Theorem LC.5, Axiom I.5(B) holds for Model LM3, so there exist

points Y ¤ X and Z ¤ X such that both Y and Z are members of Q, and X, Y ,

and Z are noncollinear. By Theorem LC.4, Axiom I.3 holds for Model LM3,

so both
 !
XY and

 !
XZ are subsets of Q. By Theorem PSM.2(A) there exist points

Y 0 and Z0 and nonzero numbers s and t such that Y 0 D X C s.Y � X/ 2 S and

Z0 D XC t.Z�X/ 2 S . If Z0 2  !XY 0, that is, X, Y 0, and Z0 are collinear, then for

some number u ¤ 0, Z0 D X C u.Y 0 � X/, so that

.X C s.Z � X/ � X/ � u.X C s.Y � X/ � X/

D t.Z � X/ � us.Y � X/ D 0.

By Theorem LA.3, Y �X and Z �X are linearly independent, hence both t and

us are 0; but by construction, t ¤ 0 so we have a contradiction. Therefore X,

Y 0, and Z0 are noncollinear members of P , and Axiom I.5(B) holds.

(G) Axiom I.5(C) holds, since the points . 1
2
; 1
2
; 1
2
/, . 3

4
; 1
2
; 1
2
/, . 1

2
; 3
4
; 1
2
/, and . 1

2
; 1
2
; 3
4
/

are noncoplanar points in S .

(H) Axiom BET holds for Model PSM. It is easy to see that Properties B.0, B.1,

and B.2 of Definition IB.1 hold in Model PSM, since they hold in Model LM3.

To see that Property B.3 holds, let X D .x1; x2; x1/ and Y D .y1; y2; y1/ be any

two points of S .
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By Theorem PSM.2(B), there exists a point Z D .z1; z2; z3/ 2 S and a

number t > 1 such that Z D XCt.Y�X/, so that X, Y , and Z are collinear points.

Then by Definition LC.8, X Y Z since X D XC 0.Y �X/, Y D XC 1.Y �X/,

and Z D X C t.Y � X/ and 0 1 t. Thus Property B.3 of Definition IB.1 holds

in Model PSM. ut
Theorem PSM.4. The Plane Separation Axiom PSA is true for Model PSM.

Proof. Since S is convex, the proof of Theorem LC.20 is valid for Model PSM, so

the Plane Separation Axiom PSA is true for Model PSM. ut
Theorem PSM.5. Neither the strong nor the weak form of the parallel axiom (PS

or PW) is true for Model PSM.

Proof. Let M1 D
 ����������!
. 1
2
; 0; 1

2
/. 1
2
; 1; 1

2
/, and let the point P D . 1

2
; 1
2
; 3
4
/. Then P 62M1.

Let M2 D
 ����������!
. 1
2
; 1
2
; 3
4
/. 1
2
; 1; 3

4
/ and let M3 D

 ����������!
. 1
2
; 1
2
; 3
4
/. 1
2
; 1; 7

8
/.

Let L1 DM1\S , L2 DM2\S , and L3 DM3\S . Then L2\L3 D fPg and

both L2 and L3 are parallel to L1 (because the parts of the lines M2 and M3 which

lie within S do not intersect M1). This shows that there are distinct lines through

the point P which are parallel to the line L1, and the weak form of the parallel axiom

does not hold. ut
Remark PSM.6. Since the weak form of the parallel axiom is false for Model

PSM, the parallel axioms are independent of each of the incidence axioms,

betweenness axioms, and the Plane Separation Axiom PSA.

21.6.6 Independence of parallel Axiom PS
from Axioms I.0–I.5, BET, PSA, and REF

In Chapter 2 of this book we discussed the parallel axioms and the classification

of geometries into elliptic geometries (no parallel lines), Euclidean geometry, and

hyperbolic geometries. Since parallel lines exist in neutral geometry (Property PE,

Theorem NEUT.48(B)), neutral geometry is incompatible with elliptic geometry.

However, hyperbolic geometry is neutral geometry combined with a denial of

Axiom PW. That is, given a line L, and a point P not on L, there may be multiple

lines through P parallel to L.
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Thus, to show that Axiom PS is independent of Axioms I.0–I.5, BET, and PSA

as well as Axiom REF, it would be sufficient to exhibit a model for a hyperbolic

plane, where Axiom PW is false, in which a reflection set exists over every line.

Hyperbolic geometry is beyond the purview of this book, so we leave this issue to

others.

For a readable account of the history of the parallel axiom and non-Euclidean

geometries, including hyperbolic geometry, we suggest Marvin J. Greenberg’s

Euclidean and non-Euclidean geometries, development and history, 4th ed., W.

H. Freeman, 2008 [8]. Chapter 7 of this volume is devoted to the issue of the

independence of the parallel axiom.

21.6.7 Axiom LUB is independent
of Axioms I.0–I.5, BET, PSA, REF, and PS
(Model LM3A)

Our goal in this subsection is to prove that the LUB axiom is independent of all

the other axioms we have introduced. To do this we build Model LM3A (meaning

Model LM3 built on the field A of real algebraic numbers) for which Axiom LUB

is false but each of the other axioms is true. Here we use the acronym LE.

Theorem LE.1. Axiom LUB is independent of all previous axioms.

Proof. Let space for Model LM3A be A
3, where A is the field of real algebraic

numbers, those real numbers that can be generated by adding, subtracting, multiply-

ing, and dividing rational numbers, and finding roots of polynomial equations with

rational coefficients. As we have pointed out previously, A contains the square roots

of any of its non-negative numbers, so that norms and distances are defined in A
3.

In Model LM3A we assume that reflections have been defined on each plane

according to Definition LB.16 and Definition LC.24. Indeed, the entire development

of Model LM3, up through Theorem LC.42, holds for A
3. In particular, by

Remark LC.21, Axioms I.0–I.5, BET, PS, and PSA hold; by Theorem LC.33 Axiom

REF holds on A
2; by Theorem LC.42, it holds on any plane in A

3, and hence in A
3.

Since � is a transcendental real number (i.e., is nonalgebraic), it is not a member

of the field A. Let X 2 A
2 and let E D ftX j t 2 A and t < �g; then lub E D �X.

Hence E is a nonempty subset of A which is bounded above but lub E does not

belong to A, and Axiom LUB is false for Model LM3A. Since all axioms prior to

this one are true for this model, Axiom LUB is independent. ut
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Remark LE.2 (Summary of axiom independence). In earlier parts of this section

we proved that each of the Axioms I.0–I.5, BET, PSA, and PS is independent of its

predecessors on this list; now, in Theorem LE.1, we have shown that Axiom LUB is

independent of all other axioms. In Subsection 21.6.4 we showed that Axiom REF

is independent of Axioms I.0, I.1, I.5(A), BET, PSA, PS, and LUB.

As we stated above in Subsection 21.6.6, proof of the independence of Axiom

PS from Axiom REF depends on considerations from hyperbolic geometry, which

are beyond the scope of this book.

21.7 Independence of definition properties

In this section we show independence, not of axioms, but of various properties of

definitions. This is done for the definitions of betweenness, mirror mapping, and

reflection by constructing models and equipping them, respectively, with “pseudo”

relations, mappings, or sets of mappings that satisfy some but not all of the required

properties.

Table of independence models

for definition properties.

Subsection Theorem Model Relations/maps/sets True False

21.7.1 BI.0 LM3 various B.1–.3 B.0

BI.1,1.1 LM3 pseudo- B.0 B.1–.3

BI.2,2.1 LM3 betweenness B.0,.1 B.2,.3

BI.3 LM3nxC relations B.1–.3 B.0

21.7.2 MMI.1 LM2 various (A),(C),(D) (B)

MMI.2 LM2 pseudo- (A),(B) (C)

MMI.3 LM2 mirror mappings (A),(B),(C) (D)

21.7.3 RSI.1 LM2R various R.1,.3,.5,.6 R.2,.4

RSI.2 LM2R pseudo- R.1,.2,.6 R.3–.5

RSI.3 LM2Q reflection sets R.1–.4,.6 R.5

21.7.1 Independence of betweenness properties

This subsection deals with independence of the various properties of Definition IB.1,

which defines a betweenness relation. We name our theorems BI.n, suggesting



21.7 Independence of definition properties 497

“betweenness independence.” We will use Model LM3, based on F
3 as our model,

except in the last case, where we use a variant thereof.

Theorem BI.0. Property B.0 is independent of the other betweenness properties of

Definition IB.1.

Proof. (A) Let r, s, and t be numbers, and let L D  ���������!.0; 0; 0/.1; 0; 0/. We define a

“pseudo-betweenness” relation PB on F
3 as follows: first, we include in PB all

the triples of the betweenness relation defined in Definition LC.8. In the proof

below, we will freely use the fact that Properties B.1, B.2, and B.3 hold for this

definition, as shown in Theorem LC.14. We also include in the relation PB the

two triples

..1; 0; 0/; .1; 0; 0/; .2; 0; 0// and ..2; 0; 0/; .1; 0; 0/; .1; 0; 0//.

Then, according to PB,

(1) point .1; 0; 0/ is between .1; 0; 0/ and .2; 0; 0/,

(2) point .1; 0; 0/ is between .2; 0; 0/ and .1; 0; 0/, but

(3) point .2; 0; 0/ is not between .1; 0; 0/ and .2; 0; 0/.

(B) Property B.0 is false for relation PB since the entries in the ordered triple

..1; 0; 0/; .1; 0; 0/; .2; 0; 0// are not distinct.

(C) Property B.1 (symmetry) is true for relation PB, because it holds for all triples

in the relation of Definition LC.8, as well as for the triples

.1; 0; 0/ .1; 0; 0/ .2; 0; 0/ and .2; 0; 0/ .1; 0; 0/ .1; 0; 0/.

(D) Property B.2 (trichotomy) is true for Model BI.0. It holds for all collinear triples

of distinct points, and holds vacuously for any triple comprised only of the

points .1; 0; 0/ and .2; 0; 0//, since these points are not distinct.

(E) Property B.3 is true for relation PB. If A D .1; 0; 0/ and B D .2; 0; 0/, we

may let C D .3; 0; 0/; similarly, if A D .2; 0; 0/ and B D .1; 0; 0/, we may let

C D .0; 0; 0/; in either case, by the definition of betweenness, A B C.

Now suppose no more than one of A or B belongs to f.1; 0; 0/; .2; 0; 0/g.
Then since B.3 is true for the betweenness relation of Definition LC.8, there

exists a C such that A B C. ut
Theorem BI.1. Property B.1 is independent of Property B.0.

Proof. (A) On Model LM3 let A D .0; 0; 0/ and B D .1; 0; 0/ and suppose that the

points Y1, Y2, and Y3 belong to L D  !AB D  ���������!.0; 0; 0/.1; 0; 0/. Define a pseudo-

betweenness relation PC as follows: let

Y1 D AC t1.B � A/, Y2 D AC t2.B � A/, and Y3 D AC t3.B � A/.
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Then define Y1 Y2 Y3 iff t1 < t2 < t3.

If no more than one of the points Y1, Y2, and Y3 belongs to
 !
AB, then define

Y1 Y2 Y3 as in Definition LC.8. Relation PC is then well-defined.

(B) If Y1 Y2 Y3 and the points Y1, Y2, and Y3 belong to L, then t1 < t2 < t3 and

Y1, Y2, and Y3 are distinct and collinear. If no more than one point of Y1, Y2,

or Y3 belong to L, then by Definition LC.8 and Remark LC.9 these points are

distinct and collinear. Therefore Property B.0 holds for relation PC.

(C) Let Y1 D AC 0.B � A/, Y2 D AC 1.B � A/, and Y3 D AC 2.B � A/. Since

0 < 1 < 2, Y1 Y2 Y3. But it is not the case that 2 < 1 < 0 so it is false that

Y3 Y2 Y1. Therefore Property B.1 is false for relation PC. ut
Remark BI.1.1. It may be of some slight interest that for relation PC, Properties

B.2 and B.3 are false.

(A) Property B.2 says that for any collinear points Y1, Y2, and Y3, exactly one of

Y1 Y2 Y3, Y2 Y1 Y3 or Y1 Y3 Y2 is true. Let

Y1 D AC 2.B � A/, Y2 D AC 1.B � A/, and Y3 D AC 0.B � A/.

Then neither 2 < 1 < 0, 1 < 2 < 0, nor 2 < 0 < 1 is true, so that none of the

conditions in the trichotomy property is true, and Property B.2 does not hold.

(B) Property B.3 says that for any two points Y1 and Y2, there exists a third point

Y3 such that Y1 Y2 Y3. If we let Y1 and Y2 be as defined just above, we see that

since 2 < 1 is false, there can be no number t such that 2 < 1 < t, and there

can be no point Y3 satisfying Y1 Y2 Y3.

Theorem BI.2. Property B.2 is independent of Properties B.0 and B.1 of Defini-

tion IB.1.

Proof. (A) On Model LM3, let A D .0; 0; 0/ and B D .1; 0; 0/. Define a pseudo-

betweenness relation PD as follows: if Y1, Y2, and Y3 belong to L D  !AB D ���������!
.0; 0; 0/.1; 0; 0/, let

Y1 D AC t1.B � A/, Y2 D AC t2.B � A/, and Y3 D AC t3.B � A/,

and define Y1 Y2 Y3 iff jt1j < jt2j < jt3j or jt3j < jt2j < jt1j.
If no more than one of Y1, Y2, or Y3 belongs to

 !
AB, then define Y1 Y2 Y3 as

in Definition LC.8. Then relation PD is well-defined.

(B) Property B.2 is false. Let

Y1 D AC .�2/.B � A/, Y2 D AC 2.B � A/, and Y3 D AC 3.B � A/.

Then Y1, Y2, and Y3 are distinct points on L, but j � 2j D j2j. Then

j � 2j < j2j < j3j and j3j < j � 2j < j2j
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are false, so that Y1 Y2 Y3 is false;

j2j < j � 2j < j3j and j3j < j � 2j < j2j,
are false, so that Y2 Y1 Y3 is false; and

j � 2j < j3j < j2j and j2j < j3j < j � 2j
are false, so that Y1 Y3 Y2 is false. Thus trichotomy does not hold for this

particular choice of Y1, Y2, and Y3.

(C) Property B.0 is true for relation PD. If Y1, Y2, and Y3 are members of L and

Y1 Y2 Y3, either jt1j < jt2j < jt3j or jt3j < jt2j < jt1j. Then the numbers t1, t2,

and t3 are distinct and so Y1, Y2, and Y3 are distinct. If not all of Y1, Y2, and Y3
belong to L and Y1 Y2 Y3, the points are distinct because Property B.0 is true

for the betweenness relation of Definition LC.8.

(D) Property B.1 is true for relation PD. If Y1, Y2, and Y3 are members of L and

Y1 Y2 Y3, either jt1j < jt2j < jt3j or jt3j < jt2j < jt1j, and therefore Y3 Y2 Y1.

If not all of Y1, Y2, and Y3 belong to L and Y1 Y2 Y3, then Y3 Y2 Y1 because

Property B.1 holds for the betweenness relation of Definition LC.8. ut
Remark BI.2.1. Property B.3 is false for relation PD. To see this, let

Y1 D AC .�2/.B � A/ and Y2 D AC 2.B � A/.

Since j � 2j D j2j, there is no point Y3 D AC t.B � A/ such that j � 2j < j2j < jtj
or j2j < j � 2j < jtj, hence no point Y3 such that Y1 Y2 Y3.

Theorem BI.3 (Model BI). Property B.3 is independent of the other betweenness

properties of Definition IB.1.

Proof. For Model BI, space is S D F
3 n qy !

.0; 0; 0/.1; 0; 0/. L is a line in S iff there

exists a line M in F
3 (as in Definition LA.1(1)) such that L DM\ S . E is a plane

in S iff there exists a plane P in F
3 (as in Definition LA.1(2)) such that E D P \S .

Betweenness is defined as in Definition LC.8.

Properties B.0, B.1, and B.2 were proved in Theorem LC.14 to be true for

betweenness as in Definition LC.8. These proofs also hold for space S . The only

property that does not carry over to S is the extensibility Property B.3; this property

does not hold since there is no point W such that .0; 0; 0/ is between .�1; 0; 0/
and W. ut
Theorem BI.4 (Summary). (A) Each of the betweenness Properties B.1, B.2, and

B.3 is independent of those preceding it on the list.

(B) Property B.0 is independent of Properties B.1, B.2, and B.3.
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Proof. (A) follows immediately from Theorems BI.1, BI.2, and BI.3, and (B) from

Theorem BI.0. ut

21.7.2 Independence of mirror mapping properties

This subsection deals with independence of the various properties of Defini-

tion NEUT.1, which defines mirror mapping. We name our theorems MMI.n,

suggesting “mirror mapping independence.” We will use Model LM2, based on F
2,

as our model.

Theorem MMI.1. Property (B) of Definition NEUT.1 is independent of Properties

(A), (C), and (D).

Proof. We show that there exists a mapping 'L on F
2 which satisfies Properties (A),

(C), and (D) of Definition NEUT.1, but not Property (B). Let L be any line in F
2,

and define 'L D {, the identity mapping. Then all points of L are fixed points for

{, so that Property (A) is true; { ı { D { so Property (C) is true; and since A B C is

the same as {.A/ {.B/ {.C/, Property (D) is true. Finally, since all points are fixed

points for {, Property (B) is false. ut
Theorem MMI.2. Property (C) of Definition NEUT.1 is independent of Properties

(A) and (B).

Proof. We show that there exists a mapping 'L on F
2 satisfying Properties (A) and

(B) of Definition NEUT.1, but not Property (C). Let L D f.x1; x2/ j x2 D 0.

For all .x1; x2/ such that x2 � 0, define 'L.x1; x2/ to be ˚.x1; x2/ as in

Definition LB.16; for all .x1; x2/ such that x2 < 0, define 'L.x1; x2/ to be �.x1; x2/

as defined in Exercise NEUT.0.

If .x1; x2/ 2 L, 'L.x1; x2/ D ˚.x1; x2/ D .x1; x2/ so that Property (A) holds. If

x2 � 0, then 'L.x1; x2/ D ˚.x1; x2/ D .x1;�x2/ which is on the side of L opposite

to .x1; x2/; if x2 < 0, then 'L.x1; x2/ D �.x1; x2/ D .x1 � x2;�x2/ is on the side of

L opposite to .x1; x2/. Therefore Property (B) holds.

Finally,

'L.'L.0; 1// D �.˚.0; 1// D �.0;�1/
D .0 � .�1/;�.�1// D .1; 1/ ¤ .0; 1/

so that Property (C) does not hold. ut
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Theorem MMI.3. Property (D) of Definition NEUT.1 is independent of Properties

(A), (B), and (C).

Proof. We show that there exists a mapping 'L on F
2 which satisfies Properties

(A), (B), and (C) of Definition NEUT.1, but does not satisfy Property (D).

Let L D f.x1; x2/ j x2 D 0g. For all .x1; x2/ 2 Q
2 n E , where E D

f.1; 1/; .2; 1/; .1;�1/; .2;�1/g, define 'L to be ˚ as in Definition LB.16; define

'L.1; 1/ D .2;�1/, 'L.2; 1/ D .1;�1/, 'L.1;�1/ D .2; 1/, 'L.2;�1/ D .1; 1/.
If .x1; x2/ 2 L, 'L.x1; x2/ D .x1; x2/ so 'L satisfies Property (A) of Defi-

nition NEUT.1. If .x1; x2/ 62 E , .x1; x2/ and 'L.x1; x2/ are on opposite sides of

L by Theorem LC.23; a brief inspection shows that points .x1; x2/ 2 E map

to the opposite side of L; therefore Property (B) is satisfied. If .x1; x2/ 62 E ,

'L.'L.x1; x2// D .x1; x2/ by Theorem LC.23; if .x1; x2/ 2 E , this follows immedi-

ately from the definition of 'L for points of E . Thus 'L satisfies Property (C).

However, Property (D) is not satisfied. For .0; 1/ .1; 1/ .2; 1/, and also

'L.0; 1/ D .0;�1/, 'L.1; 1/ D .2;�1/ and 'L.2; 1/ D .1;�1/; it follows,

then, that .0;�1/ .2;�1/ .1;�1/ is false. ut

21.7.3 Independence of reflection properties

This subsection deals with independence of the various properties of Defini-

tion NEUT.2, which defines reflection set. We name our theorems RSI.n, suggesting

“reflection set independence.” In the statements of the theorems “Property R.n” will

refer to a property of Definition NEUT.2. We will use Model LM2R, based on R
2

as our model, except in the last case, where we use Model LM2Q, based on Q
2.

For the convenience of the reader, we repeat the statement of Exercise NEUT.0,

which will be used in this subsection: If for each pair .u1; u2/ of real numbers on

the plane R2, we define ˚.u1; u2/ D .u1;�u2/ and �.u1; u2/ D .u1�u2;�u2/, then

both ˚ and � are mirror mappings over the x-axis.

Theorem RSI.1. Properties R.2 and R.4 are independent of Properties R.1, R.3,

R.5, and R.6. That is, there is a set E of mirror mappings for which R.2 and R.4 are

false, but R.1, R.3, R.5 and R.6 are true.

Proof. Let E be that set of mirror mappings on R
2 consisting of (A) all LB.16 mirror

mappings over lines in R
2, (B) the mapping � defined as follows: for any point
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.u1; u2/, �.u1; u2/ D .u1 � u2;�u2/ (by Exercise NEUT.0 this is a mirror mapping

over the line L D ������!.0; 0/.1; 0/ and is different from the LB.16 mapping RL over the

same line), together with (C) all mirror mappings formed by composition of these

mappings.

Then Property R.1 is true and Property R.2 is false, since we have more than

one mirror mapping over L. Property R.3 is true because by definition all mirror

mappings formed by composition from the members of E are included in it. Since

E contains all mappings RL defined in Definition LC.24, Property R.5 is true by

Theorem LC.31. Property R.6 is true by Theorem LC.32.

Property R.4 is false. To see this, let RL and � be as defined above. By Property

R.5 let RM be the angle reflection for the angle †.0; 1/.0; 0/.1; 1/; this is an LB.16

mapping so it preserves distance.

Then RM.�.RL.0; 1/// D .0;
p
2/ and RM.�.RL.0; 0/// D .0; 0/; The

mapping RM ı � ı RL is an isometry which carries .0; 0/ to .0; 0/ and .0; 1/ to

.0;
p
2/, and both the latter belong to the same ray from .0; 0/. Therefore Property

R.4 does not hold, since 1 ¤ p2. ut
Theorem RSI.2. Properties R.3, R.4, and R.5 are independent of Properties R.1,

R.2, and R.6.

Proof. Let L D  ������!.0; 0/.1; 0/. Let the set E of mirror mappings over lines in R
2

consist of all LB.16 mirror mappings RM over lines M other than L D ������!.0; 0/.1; 0/,

together with the map � defined in Exercise NEUT.0, which is a mirror map over

L. Then for each point .u1; u2/ 2 R
2, �.u1; u2/ D .u1 � u2;�u2/). In particular,

�.1;�1/ D .2; 1/.
I. Property R.1 and Property R.2 are true since exactly one mapping is defined

for each line on the plane.

II. Property R.3 is false. Let K D  ������!.0; 0/.1; 1/; then K is the line of symmetry

for †.1; 0/.0; 0/.0; 1/ since the LB.16 mapping RK takes .1; 0/ to .0; 1/ and

.0; 0/ to itself. By Theorem NEUT.27, ' D RK ı� ıRK is a mirror mapping

over M D RK.L/ D ������!.0; 0/.0; 1/.

Then RK.1;�1/ D .�1; 1/ so that

'.1;�1/ D RK.�.RK.1;�1/// D RK.�.�1; 1//
D RK.�2;�1/ D .�1;�2/.

But RM.1;�1/ D .�1;�1/ ¤ '.1;�1/, so that ' ¤ RM. This shows that

Property R.3 is false.
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B : (1, −1) = Ψ(A)

A : (2, 1)N

M

C = (−
√

2, 0) = RM(B)

A : (2 2
5 , 2

5 ) = RN (C) = α(A)

E

D

O

Fig. 21.5 Showing action of ˛, where Property R.4 fails.

III. Property R.4 is false. See figure 21.5. Let O D .0; 0/, A D .2; 1/, B D
.1;�1/ D �.A/, let C D .�p2; 0/, and let A0 D .2

p
2p
5
;
p
2p
5
/ so that

dis.O;B/ D dis.O;C/ D dis.O;A0/ D p2.

Let D be the c-midpoint of
px qy

BC and E be the c-midpoint of
px qy

CA0, and let

M D  !OD and N D  !OE. By an argument similar to that in Theorem LC.31,

M is a line of symmetry and RM is an angle reflection for †BOC and N
is a line of symmetry and RN is an angle reflection for †COA D †COA0.
Moreover, RM.B/ D C and RN .C/ D A0.

Now RN .RM.B// is a point on
qy!
OA. Both RM and RN preserve

distance, so dis.RN .RM.B//;O/ D dis.B;O/ D p
2, and therefore

RN .RM.B// D A0. Let ˛ D RN ı RM ı � . Then ˛.A/ D
RN .RM.�.A/// D RN .RM.B// D RN .C/ D A0 which is a member

of
qy!
OA. By Theorem NEUT.15(5), ˛.

px qy

OA/ D px qy

OA0. But dis.O;A0/ D p2 and

dis.O;A/ D p5, contradicting Property R.4.

IV. Property R.5 is false. Let X D .1;�1/ and Y D .1; 1/, and O D .0; 0/; we

show that †XOY has no line of symmetry.

If †XOY has a line of symmetry, it must be either the line L D  ������!.0; 0/.1; 0/

or some other line. If L is a line of symmetry for †XOY , since � is the

mirror mapping over L, � is an angle reflection for this angle. Then �.X/ D
�.1;�1/ D .2; 1/ which is not on

qy!
OX, so � is not an angle reflection for

†AOB contradicting our assumption that L is a line of symmetry for †XOY .

If some line M ¤ L is a line of symmetry for †XOY , then RM is an angle

reflection for this angle, and since RM is an LB.16 mapping, and dis.X;O/ D
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dis.Y;O/, RM.X/ D Y . Then M intersects
px qy

XY at its midpoint, which is the

point .1; 0/ and hence M D L, a contradiction.

Either way we get a contradiction, so †XOY has no line of symmetry or

angle reflection and Property R.5 is false.

V. Property R.6 is true. Let
px qy

AB be any closed segment in the plane, and let O

be its c-midpoint, so that dis.O;A/ D dis.O;B/. Let S be the line through O

which is perpendicular to
 !
AB, and pick a point S on S such that dis.O; S/ D

dis.O;A/ D dis.O;B/. Let C be the c-midpoint of the segment
px qy

AS and let D

be the c-midpoint of
px qy

BS.

In the arguments to follow, we must ensure that all our reflections are LB.16

mappings, so we can use preservation of distance. The cases below are needed

to eliminate the possibility that L might appear as a line of symmetry.

Fig. 21.6 For part V
showing existence of
midpoint O, Case 1A.

C
P

S
O

A

B = RN (RM(A))

M

N

RM(A)

L

(Case 1A: O 2 L and C 2 L.) Let M be the line of symmetry for †AOC

and let P be the point of intersection of
qy px

AC with M, which intersection is

guaranteed by Theorem PSH.39 (crossbar).

Next let N be the line of symmetry for †COB. Since neither N nor M
is L, the mappings RN and RM are LB.16 mirror mappings and hence by

Theorem LC.27 both of them, and hence their composition, preserve distance.

Hence dis.A;O/ D dis.RN .RM.A//;O/.

RM maps A to a point RM.A/ on
qy!
OC � L; RN maps RM.A/ to

a point RN .RM.A// on
qy!
OB. Therefore RN .RM.A// D B, and since

RN .RM.O// D O, by Theorem NEUT.15(5) RN .RM.
px qy

OA// D px qy

OB. Thus
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O is a midpoint of
px qy

AB and Property R.6 of Definition NEUT.2 is satisfied. See

figure 21.6 below.

(Case 1B: O 2 L and D 2 L.) Let M be the line of symmetry for †BOD,

and let P be the point of intersection of
qy px

BD with M.

Then let N be the line of symmetry for †COB. Since neither N nor M
is L, the mappings RN and RM are LB.16 mirror mappings and hence by

Theorem LC.27 both of them, and hence their composition, preserve distance.

Hence dis.B;O/ D dis.RM.RN .B//;O/.

RM maps B to a point RM.B/ on
qy!
OD � L; RN maps RM.B/ to

a point RN .RM.B// on
qy!
OA. Therefore RN .RM.B// D A, and since

RN .RM.O// D O, by Theorem NEUT.15(5) RN .RM.
px qy

OB// D px qy

OA. Thus

O is a midpoint of
px qy

AB and Property R.6 of Definition NEUT.2 is satisfied.

(Case 1C: O 2 L and neither the c-midpoint C of
px qy

AS or the c-midpoint D

of
px qy

BS lies on L.) The proof in this case is similar to that of Case 2 below.

Fig. 21.7 For part V
showing existence of
midpoint O, Case 2.

C

D

O

A

B = RN (RM(A))

M

N

S = RM(A)

(Case 2: O 62 L.) In this case, no line containing O can be L. See figure 21.7

below.

Let M D  !OC and N D  !OD; then M is the line of symmetry for †AOS

and N is the line of symmetry for †SOB. Since both RM and RN are LB.16

mirror mappings, by Theorem LC.27 both of these mappings, and hence their

composition, preserve distance. Hence dis.A;O/ D dis.RN .RM.A//;O/

so that RN .RM.A// D B, and since RN .RM.O// D O, by Theo-

rem NEUT.15(5) RN .RM.
px qy

OA// D px qy

OB, Thus O is a midpoint of
px qy

AB and

Property R.6 of Definition NEUT.2 is satisfied. ut
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Theorem RSI.3. Property R.5 is independent of all other properties of Defini-

tion NEUT.2.

Proof. Model LM2Q is the 2-dimensional linear model based on Q
2, where Q is the

ordered field of rational numbers. Let E D fRL j L is a line in Q
2g, that is, the set

of all LB.16 mirror mappings over lines in Q
2. The development of the linear model

through Theorem LC.32 is valid, with the single exception of Theorem LC.31,

which deals with Property R.5. Thus all the properties of Definition NEUT.2 hold

for this model, except for Property R.5.

We now show that Property R.5 is false, by showing that there is at least one

angle in the plane which has no angle reflection. See Figure 21.8.

Fig. 21.8 For
Theorem RSI.3.

α

(0, 1)

(0, 0) (1, 0)

(1, 1)

(a, 0)

Let ˛ D †.1; 1/.0; 0/.1; 0/ in Q
2. Suppose there exists a line of symmetry M

and an angle reflection RM for ˛. Then RM.
px !
.0; 0/.1; 1// D px !

.0; 0/.1; 0/, and for

some rational number a > 0, RL.1; 1/ D .a; 0/. Note that Exercise LM.16 does not

require that F contain square roots of its non-negative numbers, so is valid for the

mirror mappings specified on Q
2. Applying it to RM, we have

.1 � 0/2 C .1 � 0/2 D .a � 0/2 C .0 � 0/2,
so that 2 D a2. But Q contains no such number a, so this is impossible. Hence there

is no line of symmetry and there is no angle reflection for ˛. ut
Remark RSI.4. (A) It might be tempting to think that the result of Theorem RSI.3

above, together with the proofs in Subsection 21.5.5 that the set of LB.16 mirror

mappings on Model LM2Q (Q2) satisfies all the other reflection properties,

shows the independence of Axiom REF. But that is not so; it does not rule

out the possibility that there could exist another set of mirror mappings on Q
2

which would satisfy all Properties R.1 through R.6, in which case Axiom REF

would hold (cf Subsection 21.6.4).
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(B) We leave the reader with a challenge to find other independence relationships

among the properties of Definition NEUT.2; the ones listed above in Theo-

rems RSI.1–RSI.3 are the ones we have found convenient to prove.

In particular, we would be delighted if it could be shown that Property R.6

is independent of Properties R.1–R.5. We would be even more delighted if

the contrary were shown—that is, if it were proved that in the presence of a

reflection set having Properties R.1–R.5, every segment on a neutral plane has

a midpoint. Our attempts to prove this have not been successful. One of these

attempts eventuated in the result showing that midpoints exist for segments in

the neutral plane, provided Axiom PW also holds. This result is part of the

Supplementary materials, which may be accessed from the home page for this

book at www.springer.com.

21.8 Insufficiency of Incidence and Betweenness axioms

As we stated earlier, in the introduction to Section 21.2, this section will show that

the incidence and betweenness axioms by themselves (as set forth in Chapter 4) are

insufficient to create a satisfactory geometry. To put it more bluntly, IB geometry is

not very useful. Most of this section will use two models (DZII and DZIII) based on

Model DZI, which was developed in Subsection 21.6.3 above.

Much of our work will have to do with the line L in Model DZI which contains

.0; 0; 0/ and .1; 0; 0/. We define betweenness on L by letting P D .0; 0; 0/ and

Q D .1; 0; 0/ in Definition DZI.3. Then for points A D .a; 0; 0/, B D .b; 0; 0/,

and C D .c; 0; 0/ on L (where a, b, and c are integers), A B C iff a < b < c or

c < b < a. If we assign an ordering to L by specifying that A < B iff a < b in

the normal ordering of integers, it becomes apparent that A B C iff a < b < c or

c < b < a iff a b c iff A < B < C or C < B < A.

21.8.1 “Property B.4” does not replace Axiom PSA (DZI)

In this subsection we show that in Model DZI, “Property B.4” is true; but denseness

does not hold for this model since there are no points of the model between .0; 0; 0/

and .1; 0; 0/.

www.springer.com
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This helps complete the argument that even if “Property B.4” had been included

in Definition IB.1, the incidence and betweenness axioms would still be inadequate

for developing a satisfactory geometry, and its presence would not remove the need

for the Plane Separation Axiom (PSA). (cf Remark IB.4.2)

We number this theorem as we do to place it in sequence with items DZI.1

through DZI.9 from Subsection 21.6.3.

Theorem DZI.10. The incidence and betweenness axioms hold for Model DZI, as

does “Property B.4,” which was proposed but not adopted for Definition IB.1.

Proof. Theorem DZI.5 (Subsection 21.6.3) shows that the incidence and between-

ness axioms hold for Model DZI. Let A D .a; 0; 0/, B D .b; 0; 0/ and C D .c; 0; 0/;
then A B C iff a b c, etc.

Assume that A B C and A C D; by the introduction to this section this is true

iff (a < b < c or c < b < a) and (a < c < d or d < c < a). This statement is

equivalent to

(a < b < c and a < c < d) or (c < b < a and d < c < a),

that is to say, (a < b < c < d or d < c < b < a); thus B C D, showing that B.4(a)

is true.

A similar proof shows that if A B C and B C D, then A B D; so B.4(b) is true.

ut

21.8.2 Strange results without Axiom PSA (DZII)

The next model DZII is identical to Model DZI except that the definition of

betweenness is altered. We shall refer to the point .2; 0; 0/ simply as 2, the point

.3; 0; 0/ as 3, etc.

Definition DZII.1. Let B1 denote the betweenness relation defined for Model DZI

in Definition DZI.3. Define the betweenness relation for Model DZII as

B2 D .B1 n f.2; 3; 4/; .4; 3; 2/g/ [ f.3; 2; 4/; .4; 2; 3/g.
That is, substitute the triples .3; 2; 4/ and .4; 2; 3/ for the triples .2; 3; 4/ and

.4; 3; 2/. In yet other words, 3 2 4 and 4 2 3 are true but the other possibilities

forbidden by trichotomy are false.

Theorem DZII.2. The incidence and betweenness axioms hold for Model DZII.
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Proof. The incidence axioms are valid for Model DZII because they are valid

for Model DZI. By Theorem DZI.5 (Subsection 21.6.3) the relation B1 satisfies

Properties B.0, B.1, B.2, and B.3 of Definition IB.1. We must show that B2 satisfies

these properties.

(B.0) If fA;B;Cg is any set of points other than f2; 3; 4g, and one of the ordered

triples .A;B;C/, .B;A;C/, or .A;C;B/ belongs to B2, then that triple belongs

to B1 so that the points A, B, and C are distinct and collinear. The points 2,

3, and 4 are distinct and collinear, so that any ordered triple belonging to B2

consists of distinct and collinear points.

(B.1) For every set fA;B;Cg of collinear points other than f2; 3; 4g, A B C iff

C B A, since this is true for Model DZI. If fA;B;Cg D f2; 3; 4g, and A B C,

then either A D 3, B D 2 and C D 4, or A D 4, B D 2 and C D 3; whichever

it is, the other is true by Definition DZII.1.

(B.2) For every set fA;B;Cg of collinear points other than f2; 3; 4g, exactly one of

A B C, B A C and A C B is true, because this is the case for Model DZI.

For the set f2; 3; 4g, the statement 3 2 4 is true, while 2 3 4 and 3 4 2 are

false; also 4 2 3 is true, while 2 4 3 and 4 3 2 are false. Thus, trichotomy

holds for the set f2; 3; 4g, also.

(B.3) For every set fA;Bg of distinct points such that not both belong to the line L,

Property B.3 holds since it holds for Model DZI. Now suppose both A and

B belong to L; if A < B, let C be a point on L such that C > max.B; 6/.

The set fA;B;Cg contains the point C which is not in f2; 3; 4g so the points

A, B, and C are ordered numerically, that is, A < B < C; therefore A B C.

Similarly, if A > B, let C be a point on L such that C < min.B; 1/; again

the set fA;B;Cg contains the point C which is not in f2; 3; 4g so the points

A, B, and C are ordered numerically, that is, A > B > C; therefore A B C.

Therefore Property B.3 holds for Model DZII. ut
The following theorem shows that “Property B.4” is not a consequence of the

other properties of Definition IB.1.

Theorem DZII.3. Both Property B.4(a) and Property B.4(b) of Definition IB.1 are

false for Model DZII.

Proof. In Model DZII, 1 2 3 and 1 3 4 are both true; if Property B.4(a) were true,

then 2 3 4; by Definition DZII.1 this is false.
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We know from the definition of Model DZII that 4 2 3; since f2; 3; 5g contains

one point not in f2; 3; 4g, this triple is ordered numerically, and 2 3 5 is true. If

Property B.4(b) were true, 4 2 5, which is false by trichotomy. Therefore Property

B.4(b) is false. ut
Next we show decisively that things don’t “work right” without Axiom PSA.

Theorem DZII.4. Let L be the line in Model DZII which contains both .0; 0; 0/

and .1; 0; 0/.

(A) There exist points A, B, and C on L such that A B C and
px!
BA[ px!

BC ¤ !AC. That

is, the union of “opposing” rays is not the whole line.

(B) There exist points A, B, and C on L such that A B C and
px qy

AB[ px qy

BC ¤ px qy

AC.

(C) There exist points A, B, C, and D on L such that A ¤ B and
px!
AC D px!

BD.

(D) There exist points A, B, and C on L such that A ¤ B, C 2 qy!
AB, but

px!
AC ¤ px!

AB.

Proof. (A) By Definition IB.4
px!
24 D f2; 4g [ fx j x 2 Z and (2 x 4 or 2 4 x)g
D f2g [ fx j x 2 Z and x � 4g.

Here we have used the fact that there is no point x such that 2 x 4 (2 3 4 is

false by the definition of Model DZII). On the other hand,
px!
21 D f1; 2g [ fx j x 2 Z and (1 x 2 or 2 1 x/g;
D f1; 2g [ fx j x 2 Z and x < 1g.

Again, we have used the fact that there is no point x such that 1 x 2. It follows

that
px!
24[ px!

21 D Z n f3g, and the union of these two “opposing” rays is not the

whole line.

(B) By Definition IB.3,
px qy

24 D f2; 4g, since in Model DZII, 2 3 4 is false. Also,
px qy

45 D f4; 5g, because there is no point between 4 and 5. Therefore
px qy

24[ px qy

45 D f2; 4; 5g.
But 2 3 5 and 2 4 5, so that

px qy

25 D f2; 3; 4; 5g, and therefore
px qy

24[ px qy

45 ¤ px qy

25.

Thus if A B C, we cannot conclude that
px qy

AC D px qy

AB[ px qy

BC.

(C) By Definition IB.4,
px!
34 D f3; 4g [ fx j x 2 Z and (3 x 4 or 3 4 x)g;
D f2; 3; 4g [ fx j x 2 Z and x > 4g D fx j x 2 Z and x � 2g.
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Here we have used the fact that by definition of Model DZII, 3 2 4. On the

other hand,
px!
25 D f2; 5g [ fx j x 2 Z and (2 x 5 or 2 5 x)g.

By definition of Model DZII, both 2 3 5 and 2 4 5, so this is

D f2; 3; 4; 5g [ fx j x 2 Z and 2 5 xg D fx j x 2 Z and x � 2g.
Therefore

px!
34 D px!

25, and this ray has two different initial points, 2 and 3.

(D) By Definition IB.4,
px!
24 D f2; 4g [ fx j x 2 Z and (2 x 4 or 2 4 x)g;
D f2; 4g [ fx j x 2 Z and 2 4 xg D f2g [ fx j x 2 Z and x � 4g.

On the other hand,
px!
25 D f2; 5g [ fx j x 2 Z and (2 x 5 or 2 5 x)g.

By definition of Model DZII, both 2 3 5 and 2 4 5, so this is

D f2; 5g [ f3; 4g [ fx j x 2 Z and 2 5 xg
D f2; 3; 4; 5g [ fx j x 2 Z and x > 5g D fx j x 2 Z and x � 2g.

Since 3 62 px!
24,

px!
24 ¤ px!

25, even though 4 2 px!
25 and 5 2 px!

24. ut

21.8.3 Segment and triangle strangeness without Axiom PSA
(DZIII)

The next Model DZIII is identical to Model DZI except that the definition of

betweenness is altered. As before, we let B1 denote the betweenness relation defined

for Model DZI, as in Definition DZI.3. We shall refer to the point .2; 0; 0/ simply

as 2, .3; 0; 0/ as 3, etc.

Definition DZIII.1. Define the betweenness relation for Model DZIII as

B3 D .B1 n f.2; 3; 4/; .4; 3; 2/; .3; 4; 5/; .5; 4; 3/g/
[f.3; 2; 4/; .4; 2; 3/; .3; 5; 4/; .4; 5; 3/g.

That is, substitute the triples .3; 2; 4/ and .4; 2; 3/ for the triples .2; 3; 4/ and

.4; 3; 2/, and substitute the triples .3; 5; 4/ and .4; 5; 3/ for the triples .3; 4; 5/ and

.5; 4; 3/. In yet other words, 3 2 4, 4 2 3, 3 5 4, and 4 5 3 are true, and the other

possibilities forbidden by trichotomy are false.
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Theorem DZIII.2. The incidence and betweenness axioms hold for Model DZIII.

Proof. The incidence axioms are valid for Model DZIII because they are valid

for Model DZI. By Theorem DZI.5 (Subsection 21.6.3) the relation B1 satisfies

Properties B.0, B.1, B.2, and B.3 of Definition IB.1. We must show that B3 satisfies

these properties.

(B.0) If fA;B;Cg is any set of points other than f2; 3; 4g or f3; 4; 5g, and one of

the ordered triples .A;B;C/, .B;A;C/, or .A;C;B/ belongs to B3, then that

triple belongs to B1 so that the points A, B, and C are distinct and collinear.

The points 2, 3, and 4 are distinct and collinear, and the points 3, 4, and 5 are

distinct and collinear, so that any ordered triple belonging to B3 consists of

distinct and collinear points.

(B.1) For every set fA;B;Cg of collinear points other than f2; 3; 4g or f3; 4; 5g,
A B C iff C B A, since this is true for Model DZI. The same argument as

given for Property B.1 in Theorem DZII.2 shows that 3 2 4 iff 4 2 3, and a

similar argument shows that 3 5 4 iff 4 5 3.

(B.2) For every set fA;B;Cg of collinear points other than .2; 3; 4/ or .3; 4; 5/,

exactly one of A B C, B A C and A C B is true, because this is the case

for Model DZI. For the set f2; 3; 4g, the statement 3 2 4 is true, while 2 3 4

and 2 4 3 are false; also 4 2 3 is true, while 4 3 2 and 3 4 2 are false. For

the set f3; 4; 5g, the statement 3 5 4 is true, while 5 3 4 and 3 4 5 are false;

also 4 5 3 is true, while 5 4 3 and 4 3 5 are false. Thus, trichotomy holds

for these triples, also.

(B.3) For every set fA;Bg of distinct points such that not both belong to the line L,

Property B.3 holds since it holds for Model DZI. Now suppose both A and

B belong to L; if A < B, let C be a point on L such that C > max.B; 6/.

Since C 62 f2; 3; 4; 5g, the points A, B, and C are ordered numerically, that

is, A < B < C; thus A B C. Similarly, if A > B, let C be a point on L such

that C < min.B; 1/. Again, since 1 62 f2; 3; 4; 5g, the points A, B, and C are

ordered numerically, that is, A > B > C; thus A B C. Therefore Property

B.3 holds for Model DZIII. ut
Remark DZIII.3. In the next theorem we show that in Model DZIII there is a

segment with two different sets of end points. Note that if this is true, the two sets

of end points must be pairwise disjoint. For suppose the contrary, that A, B, and

C are distinct collinear points and
px qy

AC D px qy

BC. Then since B 2 px qy

AC, A B C; also,

since A 2 px qy

BC, B A C. This is a contradiction to the trichotomy Property B.2 of

Definition IB.1.
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Theorem DZIII.4. Let L be the line in Model DZIII which contains both .0; 0; 0/

and .1; 0; 0/.

(A) There exist distinct points A, B, C, and D on L such that
px qy

AB D px qy

CD. That is,

there exists a segment having two different sets of end points.

(B) There exist points A, B, C, U, V, and W such that fA;B;Cg and fU;V;Wg are

noncollinear sets and fA;B;Cg ¤ fU;V;Wg, such that 4ABC D 4UVW.

That is, there exists a triangle that has two different sets of corners.

Proof. (A)
px qy

34 D f2; 3; 4; 5g because by definition of Model DZIII, 3 2 4 and

3 5 4.

In this model, 2 3 5 and 2 4 5 are as in Model DZI. Therefore
px qy

25 D
f2; 3; 4; 5g D px qy

34. Hence both the sets f2; 5g and f3; 4g are endpoints for the

same segment: a segment does not completely determine its endpoints.

(B) Note first that the point A D .2; 1; 0/ is in the plane containing L, and that

there is no point of Model DZIII between A and any of the points of the

segment defined in part (A) above—that is, between A and any of the points

B D .2; 0; 0/, C D .3; 0; 0/, D D .4; 0; 0/, or E D .5; 0; 0/. Therefore
px qy

AB D fA;Bg, px qy

AC D fA;Cg, px qy

AD D fA;Dg, px qy

AE D fA;Eg. Also, from part

(A),
px qy

BE D fB;C;D;Eg D px qy

CD.

It follows that

4ABE D px qy

AB[ px qy

BE[ px qy

EA D fA;B;C;D;Eg
D px qy

AC[ px qy

CD[ px qy

DA D 4ABE.

Thus by Definition IB.7, both the sets fA;B;Eg and fA;C;Dg are sets of

corners for this triangle. Thus, in Model DZIII, specifying a triangle does not

completely determine its corners. ut

21.9 Exercises for models

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise LM.1. Using Definition LA.1(2) complete the proof of Remark LA.2;

that is, prove that
 �!
ABC D �!CAB D �!BCA D �!CBA.

www.springer.com
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Exercise LM.2�. Prove Theorem LA.3: distinct points A, B, and C are collinear iff

B � A and C � A are linearly dependent.

Exercise LM.3�. Prove Theorem LA.4: distinct points A, B, C, and D in F
3 are

coplanar iff B � A, C � A, and D � A are linearly dependent.

Exercise LM.4�. Prove Theorem LA.5: if A and B are distinct points in F
3, define,

for each real number t, '.t/ D AC t.B � A/. Then ' is a one-to-one mapping of F

onto
 !
AB.

Exercise LM.5.

(A) Prove Theorem LA.15: (A) Two points A D .a1; a2/ and B D .b1; b2/ of F2 are

linearly dependent iff

ˇ̌̌
ˇ̌a1 b1

a2 b2

ˇ̌̌
ˇ̌ D 0. A solution is provided for this part.

(B) Three points A D .a1; a2; a3/, B D .b1; b2; b3/, and C D .c1; c2; c3/ of F3 are

linearly dependent iff

ˇ̌̌
ˇ̌̌
ˇ̌
a1 b1 c1

a2 b2 c2

a3 b3 c3

ˇ̌̌
ˇ̌̌
ˇ̌ D 0.

Exercise LM.6�. Prove Theorem LA.17: Let a, b, c and d be members of F , where

at least one of a, b, c is nonzero; let E be the set of all points .x1; x2; x3/ 2 F3 such

that ax1 C bx2 C cx3 C d D 0, as defined in Remark LA.16.

(A) E is a proper subset of F3.

(B) If X D .x1; x2; x3/ 2 E , there exist two other points Y D .y1; y2; y3/ and Z D
.z1; z2; z3/ in E such that X, Y , and Z are noncollinear, which is to say (by

Theorem LA.3) that the vectors Y � X and Z � X are linearly independent.

Exercise LM.7�. Prove Theorem LA.18: Let X D .x1; x2; x3/, Y D .y1; y2; y3/,

and Z D .z1; z2; z3/ be noncollinear points in F
3, so that

 !
XYZ is a plane as in

Definition LA.1(2). Then there exist numbers a, b, c, and d in F, where not all

of a, b, or c are zero, such that !
XYZ D f.w1;w2;w3/ j aw1 C bw2 C cw3 C d D 0g;

Exercise LM.8�. Prove Theorem LA.19: Let a, b, c, and d be numbers in F, where

not all of a, b, or c are zero. Then the set

E D f.w1;w2;w3/ j aw1 C bw2 C cw3 C d D 0g
is a plane in F

3 as defined by Definition LA.1(2).
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Exercise LM.9�. Prove Theorem LB.4: For any numbers a, b, c, a0, b0, and c in F,

where at least one of a or b, and at least one of a0 or b0 is nonzero, then

(A) L D f.x1; x2/ j ax1 C bx2 C c D 0g ¤ F
2;

(B) there exist at least two distinct points in L; and

(C) both ax1 C bx2 C c D 0 and a0x1 C b0x2 C c0 D 0 are equations for L iff there

exists a number k ¤ 0 such that a0 D ka, b0 D kb, and c0 D kc.

Exercise LM.10�. Prove Theorem LB.5: Let X D .x1; x2/ and Y D .y1; y2/ be

distinct points in F
2, and let

 !
XY be the line containing both X and Y according to

Definition LA.1(1). Then
 !
XY D f.w1;w2/ j aw1Cbw2Cc D 0g, where a D y2�x2,

b D x1 � y1, and c D x2.y1 � x1/ � x1.y2 � x2/.

Exercise LM.11. Prove Theorem LB.6: Let a, b, and c be numbers in F, where at

least one of a or b is nonzero. Then the set

L D f.w1;w2/ j aw1 C bw2 C c D 0g
is a line in F

2 as defined by Definition LA.1(1).

Exercise LM.12. Let

L D f.x1; x2/ j a1x1 C b1x2 C c1 D 0g and

M D f.x1; x2/ j a2x1 C b2x2 C c2 D 0g
be two lines in F

2. Using the equations above, show that if they are c-perpendicular,

they must intersect.

Exercise LM.13�. Show that the line L on R
2 through the distinct points .u1; u2/

and .v1; v2/ is

f.x1; x2/ j .x1; x2/ 2 R
2 and .v2 � u2/.x1 � u1/ � .v1 � u1/.x2 � u2/ D 0g.

Exercise LM.14�. Show that for every member .x1; x2/ on the line

L D .x1; x2/ j .x1; x2/ 2 R
2 and ax1 C bx2 C c D 0,

the formula for ˚.x1; x2/ given in Definition LB.16 yields ˚.x1; x2/ D .x1; x2/. For

a coordinate-free proof, see Theorem LC.23(A).

Exercise LM.15�. In the plane F, if a line L is c-perpendicular to a line M and if

line M and line N are parallel, then L is c-perpendicular to line N .

Exercise LM.16�. Let F be an ordered field, and let RL D ˚ be the mapping

defined by Definition LB.16 and Definition LC.24 over the line

L D f.x1; x2/ j .x1; x2/ 2 F
2 and ax1 C bx2 C c D 0g.
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where .a; b/ ¤ .0; 0/. Define �1 and �2 to be the mappings such that RL.x1; x2/ D
.�1.x1; x2/; �2.x1; x2//. Then if X D .x1; x2/ and Y D .y1; y2/ are any points of F2,�

�1.x1; x2/ � �1.y1; y2//2 C
�
�2.x1; x2/ � �2.y1; y2//2

D .x1 � y1/2 C .x2 � y2/2.

In case F contains square roots of its non-negative numbers, so that distance is

defined, this says that dis2.RL.X/;RL.Y// D dis2.X;Y/.

Exercise MLT.1�. Prove the uniqueness of the line found in Theorem MLT.3,

which passes through both points A and B.

Exercise MLT.2�. Prove Claim 1 of the proof of Theorem MLT.5.

Exercise MLT.3�. Prove that Case 4 of Claim 2 of the proof of Theorem MLT.5

leads to a contradiction.

Exercise MLT.4�. Let X D .x1; x2/ and Y D .y1; y2/ be two points in Model MLT,

where x1 < y1, and let d be any real number such that x1 < d < y1. Then there

exists a real number e such that the point Z D .d; e/ is the point of intersection of

L and
 !
XY m; also Z 2 px qy

XYm. This proves that every nonvertical line intersects every

vertical line.

Exercise MLT.5�. Prove that in Model MLT, every line parallel to a line of type N

is a line of type N.

Exercise MLT.6. Prove that the relation “<” defined (for lines of type N) in part

(3) of Definition MLT.1(F) is an order relation according to Definition ORD.1. Note

that this proof will involve Model MLT rays, which may lie partly in one side and

partly on the other side of the y-axis (and hence don’t look like the Model LM2R

rays we considered in the text).
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Index

†BAC, angle, 105
tuABCD, quadrilateral, 105
ıx, dilation, 382
RL, reflection in linear model, 449
RL, reflection over line L, 159
.a; b/, ordered pair, 7
.a; b; c/, ordered triple, 7
.a1; a2; : : : ; an/, ordered n-tuple, 7
<, �, >, 	,

for free segments, 227–229
on a line of a Pasch plane, 140
points in ordered field, 309–313
segments and angles, 208, 199–208

D;¤, equal, unequal, 6
ŒABi, sensed segment, 403
PE , parallel or equal relation, 50
\, intersection, 7
Š, congruence (of sets), 160
[, union, 7
qy px

UV , open segment, 66–67
;, empty set, 7 !
PQ , line through P and Q, 28
px px

UV ,
qy qy

UV , half-open (closed) segment, 66–67

Œ
px qy

AB �, free segment, 227
px qy

UV , closed segment, 66–67
{, identity mapping, 10
2 ; 62 , is, is not a member of, 6
,, equivalence, 6
A, field of real algebraic numbers, 13
N, set of natural numbers, 13
Q, field of rational numbers, 13
R, field of real numbers, 13
Z, set of integers, 13
dis.A;B/, distance on a coordinate plane, 424

qdi.X;Y/, quadratic distance on a coordinate
plane, 449

ftpr.A;M/, foot of pr.A;M/, 212
par.A;M/), line through A parallel to M, 38,

252
pr.A;M/, perpendicular from A to M, 212
��, division of points on a line, 309
:, negation, not, 4–5
ˇ, product of points on a line, 306
�, subtraction of points on a line, 308
˚, sum of points on a line, 306
k ; 6k , parallel, nonparallel, 38
?, perpendicular, 175
qy !
ABQ, Q-side of

 !
AB , 72

qy!
UV , open ray, 67
), implies, 6
px!
UV , closed ray, 67
n, set subtraction, 7

, similarity, 319
�, subset, 7
4ABC, triangle, 70
jXj, absolute value, 313
jjAjj, norm of a vector A, 423
fx j p.x/g, truth set of p.x/, 7
�A, additive inverse of A on a line, 308
A � B, dot (inner) product of vectors A and B,

423
A�1, multiplicative inverse of A on a line, 308
f .E/, image of E by the mapping f , 9
f W A! B, f maps A to B, 9
f ı g, composition of f and g, 9
f �1, inverse of f , 10
f �1.G/, pre-image of G by mapping f , 9
fE , f restricted to E , 9
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Q-side (of a line), 72
A� B, Cartesian product, 8

A
absolute value

in an ordered field, 313
acronym

AA, axial affinity, 391–397
AX, axial affinity, Euclidean plane, 335–344
BI, independence of betweenness

properties, 497–500
CAP, collineations, affine plane, 45–61
COBE, belineations, 149–154
DLN, dilations, 282–303
DZIII, segment and triangle behavior,

511–513
DZII, nonstandard behaviors, 508–511
DZI

and Property B.4, 507–508
independence of Axiom PSA, 473–477

EUC, Euclidean geometry, 252–263
FM, independence with finite models,

468–473
FSEG, free segments, 226–232
IB, incidence-betweenness, 63–76
IP, incidence-parallel, 37–42
ISM, isometries on a Euclidean plane,

266–278
I, incidence, 23–33
LA, linear Model LM3, 417–430
LB, linear Model LM2, 430–437
LC, consistency from a linear model,

437–464
LE, independence of Axiom LUB, 495–496
MLT, independence of Axiom REF,

477–490
MMI, independence of mirror mapping

properties, 500–501
NEUT, neutral geometry, 157–213
OF, ordered field, 306–315
ORD, ordering of line, 139–146
PSH, Pasch, plane separation, 80
PSM, independence of Axiom PS, 491
QX, rational numbers, 348–359
REAL, real numbers, 362–385
ROT, rotation, 236–247
RR, coordinate plane, 385–389
RSI, independence of reflection set

properties, 501–507
RS, Menelaus’ and Ceva’s theorems,

401–412
SIM, similarity, 319–332

addition
of free segments, 227
of points on a line, 306, 375–379
of points on a plane, 385, 386
of sets of points, 375–379

additive inverse, 308
AEA congruence theorem for triangles, 194
affine plane, geometry, 39
algebraic numbers, 13
alternate angles

congruence, 206, 254
altitude (of a triangle), 212

concurrence of altitudes, 259
and (logical connective), 4
angle, 105

acute and obtuse, 205–206
adjacent, in a quadrilateral, 256
alternate, 206, 254
complement of, 262
complete triple of angles, 262
construction of, 196
maximal angle of a triangle, 206
outside angle of a triangle, 204–205
right, 182
supplemental, 182
trichotomy for, 201, 202
vertical, 182

angle reflection, 160
properties, 166
uniqueness of, 172

Archimedean property, 364–366
Archimedes of Syracuse, 364
area

of a triangle, 358–359
argument (of a mapping), 9
arithmetic

on a line, 306–309, 367–379
on a plane, 385, 387

axial affinity, 58, 335–344
is a belineation, 343
on Euclidean/LUB plane, 391–397
related to other belineations, 397–400

Axiom
BET, betweenness, 64
I.0–I.5, incidence, 24
LUB, least upper bound, 362
PS, strong parallel, 38, 252
PSA, Plane Separation, 81
PW, weak parallel, 38
REF, reflection, 160

axiom, 20
consistency, 414

from a linear model, 437–464
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independence, 415, 466–496
sequential vs. strong, 466

validity on a linear model
Axiom REF, 447
betweenness Axiom BET, 444, 441–444
incidence Axioms I.0–I.5, 437–441
least upper bound Axiom LUB,

462–463
parallel Axiom PS, 444
Plane Separation Axiom PSA, 445–447

systems discussed, 2
axis

of a mirror mapping or reflection, 157
of an axial affinity, 58

B
base (of a triangle), 212
belineation, 149–154

fixed point of, 261
is a bijection preserving betweenness, 150
types of, 397–400
is a collineation, 150

betweenness
Axiom BET, 64
for numbers, 14
insufficiency of, 507–513
properties, independence of, 496–500

biconditional, 4
bijection, mapping or function, 10
Birkhoff, George, 3
bisecting ray, 160

of angles of a triangle, 212
Bolyai, János, 39
bound

greatest lower, 362–363
least upper, 362–363
lower, 144
upper, 144

bounded set, 144–146

C
c-midpoint

of a segment in coordinate space, 424
same as midpoint, 465

c-perpendicular
lines in coordinate space, 423
same as perpendicular, 464

cardinal number, 11
Cartesian product, 8
Cartesian space or plane, 414
Cauchy-Schwarz-Bunyakovski inequality, 424

center
of a parallelogram, 256

centroid
of a triangle, 261

Ceva’s Theorem, 409
Ceva, Giovanni, 409
Cevian, interior and exterior (lines), 409
circumcenter of a triangle, 254
collinear, 24
collineation (mapping)

fixed line of, 46
fixed point of, 46
preserves midpoints, 257
that is a belineation, 149–154
types of, 45–46, 397–400

complement
of a reflection, 174
of an acute angle, 262

complete ordered field, 362
composition (of mappings), 9
concurrence

of altitudes of a triangle, 259
of lines, 24
of medians of a triangle, 261

conditional, if...then, 4
congruence

is an equivalence relation, 164
of alternate angles, 206, 254
of right angles, 195, 198
of sets, 160
of triangles and angles, 192–205
theorem AEA for triangles, 194
theorem EAA for triangles, 209
theorem EAE for triangles, 194
theorem EEE for triangles, 193
theorem hypotenuse–leg for triangles, 209

consistency of axioms, 20, 414
from a linear model, 437–464

contrapositive, 4
converse, 4
convex (set), 71
coordinate space

preliminaries, 417
coordinate, first and second, 388
coordinatization

map, an isomorphism, 388
of a Euclidean/LUB plane, 387

coplanar, 24
corner

of a quadrilateral, 106
of a triangle, 70
of an angle, 105

corollary, 21
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Cramer’s rule, 19
Crossbar theorem, 110

D
definition, 20

good and bad, 21
denseness

not a consequence of Property B.4,
507–508

denseness property, 100
Desargues, Girard, 32

Proposition of, 32
Descartes, René, 8, 414
determinant (of a matrix), 18–19
diagonal (of a quadrilateral), 106
dilation, 54, 282–303, 306

action on different lines of a plane, 384
and integral multiples, 348–352
and rational multiples, 352–357
and rotation group, 302
and similarity, 319
existence, 291–295
is a belineation, 293
point-wise construction of, 294
properties of, 296–303
related to other belineations, 397–400

disjoint sets, 8
distance

in an ordered field, 314
in coordinate space, 424
quadratic, on a coordinate plane, 449

distinct, 8
division

of points on a line, 309
domain (of a mapping), 8
dot (inner) product of two vectors, 423
doubleton, 7

E
EAA congruence theorem for triangles, 209
EAE congruence theorem for triangles, 194
edge

maximal edge of a triangle, 206
of a quadrilateral, 106
of a triangle, 70

EEE congruence theorem for triangles, 193
empty set, 7
enc, enclosure

of a quadrilateral, 129
of an angle or triangle, 109

endpoint
of a ray, 67

of a segment, 66–67
of a sensed segment, 403

equivalence
class, 11

of free segments, 225–232
relation, 11

congruence, 164
similarity, 321

Euclid of Alexandria, 2, 414
Fourth Postulate, 198

Euclidean plane, 252
axial affinity on, 335–344

is either a stretch or a shear, 343
dilation of, 282–303
isometries of, 266, 278
isometry classification on, 273
rational points on, 348–359
similarity on, 319–332

Euclidean space, 252
Euclidean/LUB plane, 362–412
Eudoxus of Cnidus, 366
Eudoxus’ theorem, 366
exc, exclosure

of a quadrilateral, 129
of an angle or triangle, 109

extension property (for betweenness), 64

F
field, 13

line as ordered field, 306–315
finite set, 11

is bounded, 145
fixed line

of a mapping, 46
of reflection or mirror mapping, 168
perpendicularity, 183

fixed point
of a mapping, 46
of belineation, 261
of isometry, 171–172

fixed segment of a mapping, 165
free segment, 227–232

identification as point on a ray, 226
identification with point on a ray, 230–231,

313–315, 323–324
product, 323
ratio of, 325
rational multiple of, 358
square of, 324
unit, 323

function, see mapping
function, mapping, 8
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G
Gauss, Johann Carl Friedrich, 39
geometry, 2

Euclidean, 252–412
incidence, 23–33
incidence-betweenness, 76
incidence-parallel, 37–61
neutral, 156–247
Pasch, 80–146
Euclidean/LUB, 412
types of, 2

GLB, greatest lower bound, 362–363
glide reflection, 270
greater than, 140
greatest lower bound, 362–363
group, 12

abelian, 12
Euclidean/LUB plane underC, 385
of axial affinities, 59
of collineations, 47
of dilations, 55
of dilations and rotations, 302
of free segments underˇ, 323
of isometries, 163
of line elements under˚ orˇ, 307
of rotations, 244
of translations, 50, 269
of bijections, 12

H
half-rotation, 282

is a collineation, 284–288
structure of, 282–288

halfplane, 72
Halmos, Paul Richard, 18
Hilbert, David, v, 3
hinge theorem, 210
hypotenuse (of a right triangle), 208
hypotenuse–leg theorem, 209

I
identity map, 10
if...then, conditional, 4
iff, if and only if, 4
image (under a mapping), 9
incidence Axioms I.0–I.5

valid on a linear model, 437, 441
incidence axioms I.0–I.5, 23–24
independence of axioms, 20, 415, 466–496

Axiom LUB, 495–496

Axiom PS, 491–494
Axiom REF, 477–490
betweenness Axiom BET, 473, 477
incidence Axioms I.1–I.5, 468–473
Plane Separation Axiom PSA, 473
sequential vs. strong, 466
table of models, 467
using finite models, 468–473

independence of definition properties, 415,
496–507

betweenness, 496–500
mirror mapping, 500–501
reflection, 501–507
table for, 496

induction, mathematical, 5
infinite set, 11
initial point

of a ray, 67
injection, mapping or function, 9
ins, inside

of a quadrilateral, 129
of an angle or triangle, 109

insufficiency
of incidence and betweenness axioms,

507–513
insufficiency of incidence and betweenness

axioms, 415
integral multiple of a point, 348–352
intersection, 7
inverse

additive, 308
multiplicative, 308

irrational point on a line, 371
isoceles triangle theorem, Pons Asinorum,

181
isometry, 160

classification, 245, 273
construction for angles, 179
construction for segments, 191
fixed points of, 171–172
on a Euclidean plane, 266–278
preserving sides, 177–179
properties of, 164–166
related to other belineations, 397–400
with two fixed points, 179

isomorphism, 18
coordinatization map, 388
of real numbers and a line, 379
vector space, 388

K
kite theorem, 192
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L
least upper bound, 362–363

and Archimedean property, 365
Axiom LUB, 362

valid on a linear model, 462–463
lemma, 21
length

of a segment, 314
less than, 140
limit of sequence, 363
line, 23–25

as a field, 309
as an ordered field, 306–315
has exactly two sides, 89–91
has perpendicular at each point, 186
in linear model, 417
side of, 72

contains a ray, 75
in Model DZI, 477
in Model MLT, 483
is convex, 89

types of
in Model MLT, 478

line of symmetry, 160
angle criterion, 180
for a line, 168
for an angle, 166
uniqueness for angle, 172

linear
mapping (transformation, operator), 17
transformation (mapping, operator), 17

linear model
consistency of axioms on, 437–464
three dimensional (coordinate space),

417–430
two dimensional (coordinate plane),

430–437
linearly independent (vectors)

and orthogonality, 426
lines of symmetry of supplements are

perpendicular, 185
Lobachevsky, Nikolai Ivanovich, 39
logic, 4–6
logical equivalent, equivalence, 5
lower bound (of a set), 144
LUB, least upper bound, 362–363

and Archimedean property, 365

M
mapping

composition, 9
transfer, 456

mapping segments in a Pasch plane, 129
mapping, function

bijection, 10
injection, 9
inverse, 10
one-to-one, 9
onto, 9
elementary theory, 10

mathematical induction, 5
matrix, 18–19

determinant of, 18–19
maximum element (of a set), 144
median (of a triangle, 261
Menelaus of Alexandria, 407
Menelaus’ Theorem, 407
midpoint, 160, 424

and reflections, 168
as A˚B

2
, 357

exists on a linear model, 454
preserved by collineation, 257
same as c-midpoint, 465
uniqueness, 189

minimum element (of a set), 144
mirror mapping, 157–159

axis, 157
exists on a linear model, 447–449
fixed line properties, 168
induced on an arbitrary plane, 460–462
properties of, independence, 500–501
is a belineation, 158
is an axial affinity, 159

mirror mappings
reflection set of, 159

model, 414, see also acronym
for axiom consistency, 417–464
for incidence geometry, 25–27
for independence of

Axiom LUB, 495–496
Axiom REF, 477–490
betweenness Axiom BET, 473, 473
betweenness properties (BI), 496–500
incidence axioms, 468–473
mirror mapping properties (MMI),

500–501
parallel Axiom PS, 491–494
Plane Separation Axiom PSA, 473–477
reflection properties (RSI), 501–507

showing insufficiency of incidence
and betweenness axioms (DZI),
507–508

showing strange results without Axiom
PSA (DZII, DZIII), 508–513

Moulton, Forest Ray, 477
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multiple (of a point)
integral, 348–352
rational, 348
real, 367–389
scalar, 367–386

multiplication
of points on a line, 306, 375

multiplicative inverse, 308

N
n-tuple, 7
negation, 4

of quantified statement, 5
negative point on a line, 309
neutral plane, 162
noncollinear, 24, 28
noncoplanar, 24, 28
norm (length) of a vector

in coordinate space, 423–426
not (logical operator), 4
number systems, 13

O
one-to-one correspondence, 10
one-to-one mapping or function, 9
operation (binary), 11
opposite

corners of a quadrilateral, 106
edges of a quadrilateral, 106
rays, 105
sides of a line, 72

or (logical connective), 4
exclusive, 4

ordered field, 306–315
complete, 362
of rational points, 356

ordered pair, triple, 7
vector space of ordered pairs, 388
vertical and horizontal notation, 417

ordering
a field, 309–313
a line, 140–144
for numbers, 14
free segments, 227–229
segments and angles, 199–208

origin, zero, on a line, 306
orthocenter, 259
orthogonal vectors, 423

are linearly independent in coordinate
space, 426

out, outside
of a quadrilateral, 129
of an angle or triangle, 109

P
pair, ordered, 7
pairwise

disjoint, 8
distinct, 8

Pappus of Alexandria, proposition of, 295
parallel, 37

Axiom PS, 252
Axiom PS, PW, 38

valid on a linear model, 444
fixed lines of mirror mapping, 168
projection preserves midpoints, 260
Property PE, parallels exist, 157
relation (parallel or equal), 50
segments, 253
transitivity of, 42

parallelogram, 253
center of, 256

partition, equivalence relation, 11
Pasch plane, 86
Pasch, Moritz, 80
Pasch, Postulate of, 80
pencil (of lines), 38
perpendicular, 175

and lines of symmetry, 175
bisector, 189
exists for each point of a line, 186
foot of a, 212
lines of symmetry of supplements, 185
right angle, line of symmetry, 183
same as c-perpendicular, 464
to a line from a point, 212
unique at a point, 176, 187

perpendicular (lines), 423
plane, 23–25

in linear model, 418
Plane Separation Axiom PSA, 81

valid on a linear model, 445–447
Plane Separation Theorem, 90
Playfair, John, 38
point, 23–25
polygonal domains, regions, 359
Pons Asinorum, isoceles triangle theorem, 181
positive half (of a line in an ordered field), 313
positive point on a line, 309
Postulate of Pasch, 80
predicate, 5



526 Index

Proclus Lycaeus, 38
product

of points on a line, 306, 375
product (scalar)

of number with point, 367–385
projection map, 335
proof, 5

by contradiction, 5
by contraposition, 5
direct, 5
indirect, 5
inductive, 5

Property PE, parallels exist, 187
proposition, 4
Pythagoras of Samos, 330
Pythagorean Theorem, 330–331

Q
quadratic distance, 449
quadrilateral, 105

parallelogram, 253
rectangle, 256

quantifier, 5

R
range (of a mapping), 9
rational

multiple of a free segment, 358
multiples of a point on a line, 348–357
point on a line, 356, 371

ray
in linear model, 418
closed, 67
open, 67

rectangle, 256
criteria for, 258–259

reflection, see also mirror mapping
Axiom REF valid on a linear model, 447
axis, 157
complement of, 174
fixed line properties, 168
glide, 270
midpoint of fixed segment, 177
on a coordinate plane, 435
point, 236
reflection set, 159

reflection set
exists on a linear model, 455
properties, independence of, 501–507

relation, 11
equivalence, 11
parallel or equal, 50

remark, 21
restriction (of a mapping), 9
right angle, 182

perpendicular, line of symmetry, 183
rotation, 236–247

associated, 282
half, 282

structure of, 282–288
point, 236
point reflection, 236
square root of, 246

rotund (quadrilateral), 106

S
Saccheri, Giovanni Girolamo, 38
scalar

multiple of a point on a plane, 386
scalar product

see also multiple (rational or real), 367
segment

construction, 195
in linear model, 418
parallelism, 253
sensed, 403
transitivity for, 200
trichotomy for, 199
with multiple sets of endpoints, 512
closed, 66–67
half-closed, half-open, 66–67
open, 66–67

sensed segment, 403
initial and final points of, 403
ratio separating points, 403
sensed length of, 403

sequence, and limit, 363
set, 6

convex, 71
finite, 11
infinite, 11
subset, 7

shear (collineation), 60, 335
existence of, 340

side, of a line, 72
similarity

is an equivalence relation, 321
mapping, 319–322
of triangles, criteria for, 328

singleton, 7
SMSG, School Mathematics Study Group, 3
space, 23–25

in linear model, 417
square root (of a rotation), 246
statement, 4
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stretch (collineation), 60, 335
existence of, 335

subgeometry, 2
subtraction

of free segments, 230
of points on a line, 309

sum
of free segments, 227
of points on a line, 306, 375–379
of points on a plane, 385, 386

supplemental angles, 182
of congruent angles, 183

T
Tarski, Alfred, 3

quotation from, 19
theorem, 21
topology, base for, 125
transfer mapping, 456
translation, 49, 306

construction of, 277
trapezoid, 106
triangle, 70

acute and obtuse, 206
altitude of, 212
altitudes are concurrent, 259
base of, 212
centroid of, 261
circumcenter of, 254
hypotenuse of, 208
maximal edge or angle, 206
median of, 261
medians are concurrent at centroid,

261
orthocenter of, 259
with non-unique corners, 512

triangle inequality, 231
for coordinate space, 424

trichotomy
for angles, 201
for betweenness, 64
for free segments, 228

for ordering, 141
for segments, 199

triple, ordered, 7
truth set, 7
truth value, 4

U
undefined terms, 20
union, 7
uniqueness

of angle reflection, 172
of corner of an angle, 107
of endpoints and edges, 101–103
of fixed line of a mirror mapping, 168
of line of symmetry of angle, 172
of midpoints, 189
of perpendicular at a point, 176, 187

unit, multiplicative identity
for free segments, 323
on a line, 306

universe, 23
upper bound (of a set), 144

V
value (of a mapping), 9
vector space

basis, 15
coordinate space over a field, 17

n-tuple space, 17
dimension, 15
isomorphism, 388
over a field, 14–18
over real numbers, 389

vertical angles, 182
are congruent, 182

Z
zero, additive identity

in a line, 306


	Preface
	Contents
	List of Figures
	1 Preliminaries and Incidence Geometry (I) 
	1.1 Introduction
	1.2 Elementary logic
	1.3 Set theory
	1.4 Mappings, functions, cardinality, and relations
	1.5 Elementary algebraic structures
	1.6 The basic building blocks of axiomatic theory
	1.7 Advice for the reader: labels, notation, figures, and exercises
	1.8 Axioms for incidence geometry
	1.9 A finite model for incidence geometry
	1.10 Theorems for incidence geometry
	1.11 Exercises for incidence geometry

	2 Affine Geometry: Incidence with Parallelism (IP) 
	2.1 Parallelism and parallel axioms
	2.2 Theorems of affine geometry
	2.3 Exercises for affine geometry

	3 Collineations of an Affine Plane (CAP) 
	3.1 Collineations of an incidence plane
	3.2 Collineations: mostly on translations
	3.3 Collineations: dilations
	3.4 Collineations: axial affinities
	3.5 Exercises for collineations

	4 Incidence and Betweenness (IB) 
	4.1 Definition and properties of betweenness
	4.2 Theorems of Incidence-Betweenness geometry
	4.3 Exercises for Incidence-Betweenness geometry

	5 Pasch Geometry (PSH) 
	5.1 The Postulate of Pasch
	5.2 The Plane Separation Axiom (PSA)
	5.3 Pasch geometry
	5.4 Segments, rays, lines, and their properties
	5.5 Uniqueness of endpoints and edges
	5.6 Uniqueness of corners of angles, etc
	5.7 Mostly about angles
	5.8 Mostly about triangles
	5.9 Mostly about quadrilaterals
	5.10 Exercises for Pasch geometry

	6 Ordering a Line in a Pasch Plane (ORD) 
	6.1 Theorems for ordering
	6.2 Exercises for ordering

	7 Collineations Preserving Betweenness (COBE) 
	8 Neutral Geometry (NEUT)
	8.1 Mirror mappings and their elementary properties
	8.2 Reflection sets and the reflection axiom
	8.3 Congruence, isometries, and lines of symmetry
	8.4 Lines of symmetry and fixed lines
	8.5 Uniqueness of angle reflections
	8.6 Constructed mirror mappings
	8.7 Complementary mappings and perpendicularity
	8.8 Properties of certain isometries; Pons Asinorum
	8.9 Vertical and supplementary angles; more perpendicularity
	8.10 Midpoints of segments
	8.11 Congruence of triangles and angles
	8.12 Ordering segments and angles
	8.13 Acute and obtuse angles
	8.14 Exercises for neutral geometry

	9 Free Segments of a Neutral Plane (FSEG) 
	9.1 Theorems for free segments
	9.2 Exercises for free segments

	10 Rotations About a Point of a Neutral Plane (ROT) 
	10.1 Definitions and theorems for rotations
	10.2 Exercises for rotations

	11 Euclidean Geometry Basics (EUC)
	11.1 Definitions and theorems for Euclidean geometry
	11.2 Exercises for Euclidean geometry

	12 Isometries of a Euclidean Plane (ISM)
	12.1 Properties and classification of isometries
	12.2 Exercises for isometries

	13 Dilations of a Euclidean Plane (DLN)
	13.1 Half-rotations and dilations
	13.2 Properties of dilations
	13.3 Exercises for dilations

	14 Every Line in a Euclidean Plane Is an Ordered Field (OF)
	14.1 Building a line into an ordered field
	14.2 Exercises for ordered fields

	15 Similarity on a Euclidean Plane (SIM)
	15.1 Theorems on similarity
	15.2 Exercises for similarity

	16 Axial Affinities of a Euclidean Plane (AX)
	16.1 Theorems for axial affinities
	16.2 Exercises for axial affinities

	17 Rational Points on a Line (QX)
	17.1 Integral multiples of a point
	17.2 Rational multiples of a point
	17.3 Applications of rational multiples
	17.4 Exercises for rational points on a line

	18 A Line as Real Numbers (REAL); Coordinatization of a Plane (RR)
	18.1 The basics of least upper bounds
	18.2 Archimedes, Eudoxus, and least upper bounds
	18.3 Real multiples of members of L
	18.4 Coordinatizing the plane
	18.5 Exercises for real numbers and the coordinate plane

	19 Belineations on a Euclidean/LUB Plane (AA)
	19.1 Belineations with two fixed points are axial affinities
	19.2 Summaries for belineations

	20 Ratios of Sensed Segments (RS)
	20.1 Basic theorems on sensed segments
	20.2 Theorems of Menelaus and Ceva
	20.3 Exercises for ratios of sensed segments

	21 Consistency and Independence of Axioms; Other Matters Involving Models
	21.1 Euclid meets Descartes: synthetic vs. coordinate geometry
	21.2 Our models and their implications
	21.2.1 List of axioms for reference

	21.3 Coordinate space: linear Model LM3 (LA)
	21.4 Coordinate plane: linear Model LM2 (LB)
	21.5 Axiom consistency: a linear model (LC)
	21.5.1 Incidence Axioms I.0–I.5
	21.5.2 Betweenness Axiom BET
	21.5.3 Parallel Axiom PS
	21.5.4 Plane Separation Axiom PSA
	21.5.5 Reflection Axiom REF
	21.5.6 On an arbitrary plane in F3
	21.5.7 Least upper bound Axiom LUB
	21.5.8 Axioms are consistent

	21.6 Independence of Axioms
	21.6.1 Incidence Axioms I.0– I.5 (FM)
	21.6.2 Betweenness Axiom BET (FM)
	21.6.3 Plane Separation Axiom PSA (DZI)
	21.6.4 Axiom REF: (MLT)
	21.6.5 Parallel Axiom PS (PSM)
	21.6.6 Independence of parallel Axiom PS
	21.6.7 Axiom LUB (LE)

	21.7 Independence of definition properties
	21.7.1 Independence of betweenness properties (BI)
	21.7.2 Independence of mirror mapping properties (MMI)
	21.7.3 Independence of reflection properties (RSI)

	21.8 Insufficiency of Incidence and Betweenness axioms
	21.8.1 ``Property B.4'' does not replace Axiom PSA (DZI)
	21.8.2 Strange results without Axiom PSA (DZII)
	21.8.3 Segment and triangle strangeness without Axiom PSA (DZIII)

	21.9 Exercises for models

	References
	Index

