


MOLECULAR BIOLOGY 
INTELUGENCE 
UNIT 

Power Laws, 
Scale-Free Networks 
and Genome Biology 

Eugene V. Koonin, Ph.D. 

Yuri I. Wolf, Ph.D. 

Georgy E Karev, Ph.D., D.Sci. 
National Center for Biotechnology Information 

National Library of Medicine 
National Institutes of Health 
Bethesda, Maryland, U.S.A. 

L A N D E S BIOSCIENCE / EUREKAH.COM SPRINGER SciENCEtBUSINESS M E D I A 

GEORGETOWN, TEXAS NEW YORK, NEW YORK 

U.S.A. U.SA 



POWER LAWS, SCALE-FREE 
NETWORKS AND GENOME BIOLOGY 

Molecular Biology Intelligence Unit 

Landes Bioscience / Eurekah.com 
Springer Science+Business Media, Inc. 

ISBN: 0-387-25883-3 Printed on acid-free paper. 

Copyright ©2006 Eurekah.com and Springer Science+Business Media, Inc. 

All rights reserved. This work may not be translated or copied in whole or in part without the written 
permission of the publisher, except for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic adaptation, computer software, or 
by similar or dissimilar methodology now known or hereafter developed is forbidden. 
The use in the publication of trade names, trademarks, service marks and similar terms even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights. 
While the authors, editors and publisher believe that drug selection and dosage and the specifications and 
u s ^ e of equipment and devices, as set forth in this book, are in accord with current recommendations and 
practice at the time of publication, they make no warranty, expressed or implied, with respect to material 
described in this book. In view of the ongoing research, equipment development, changes in governmental 
r^;ulations and the rapid accumulation of information relating to the biomedical sciences, the reader is urged to 
carefidly review and evaluate the information provided herein. 

Springer Science+Business Media, Inc., 233 Spring Street, New York, New York 10013, U.S A . 
http://www.springer.com 

Please address all inquiries to the Publishers: 
Landes Bioscience / Eurekah.com, 810 South Church Street, Georgetown, Texas 78626, U.S.A. 
Phone: 512/ 863 7762; FAX: 512/ 863 0081 
http://www.eurekah.com 
http://www.landesbioscience.com 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1 

Library of Congress Cataloging-in-Publication Data 

Power laws, scale-free networks and genome biology / [edited by] Eugene V. Koonin, Yuri I. Wolf, Georgy P. 
Karev. 

p. ; cm. ~ (Molecular biology inteUigence unit) 
Includes bibliographical references and index. 
ISBN 0-387-25883-3 (alk paper) 
1. Genomics. 2. Genomics—Mathematical models. 3. Computational biology. 4. Biological models. I. 

Koonin, Eugene V. II. Wolf, Yuri I. III. Karev, Georgy P. IV. Tide. V. Series. 
[DNLM: 1. Genomics. 2. Algorithms. 3. Computational Biology. 4. Models, Biological. Q U 58.5 P887 

2006] 
QH447.P69 2006 
572.8'6~dc22 

2006001285 



About the Editors*. 

EUGENE v. KOONIN is a Senior Investigator and 
Group Leader at the National Center for Biotechnology 
Information, within the National Institutes of Health in 
Bethesda, Maryland. His research interests include all 
aspects of comparative and evolutionary genomics, 
including, in particular, mathematical modeling of 
genome evolution and evolutionary systems biology. He 
received his PhD in Molecular Biology from the 
Department of Biology of Moscow State University 
(then USSR) and moved to Bethesda in 1991. 

YURI I. WOLF is a Staff Scientist at the National 
Center for Biotechnology Information, within the 
National Institutes of Health in Bethesda, Maryland. His 
research is focused on quantitative aspects of evolution
ary and comparative genomics. He received his MS in 
Molecular Biology from the Department of Biology of 
Moscow State University and his PhD in Genetics from 
the Institute of Cytology and Genetics in Novosibirsk, 
Russia. 

GEORGY P KAREV is a Research Scientist at the 
National Center for Biotechnology Information, within 
the National Institutes of Health in Bethesda, Maryland. 
His research is focused on mathematical modeling in 
biology. Main research interests include modeling of 
genome evolution, dynamics of heterogeneous popula
tions and communities (demographic models, forest 
ecosystems), bifurcation approach to modeling complex 
biological system (epidemiological models, cancer mod
eling, neuron firing model), structural individual-based 
models, and stochastic theory of populations. He received 
his PhD in Mathematics from the Institute of Electronic 
Engineering in Moscow, Russia and Dr. Sci. degree in 
Biophysics from the Institute of Biophysics, Krasnoyarsk, 
Russia. He is a member of The Society for Mathematical 
Biology (SMB) and The European Society for Mathemati
cal and Theoretical Biology (ESMTB). 



CONTENTS 

Preface xiii 

1. Power Laws in Biological Netw^orks 1 
EivindAlmaas and Albert-Ldszld Barabdsi 

Power Laws in Network Topology 2 
Network Models 3 
Power Laws in Network Utilization 6 

2. Graphical Analysis of Biocomplex Networks 
and Transport Phenomena 12 
Kwang'Il Gohy Byungnam Kahng and Doochul Kim 

The Degree Distribution, the Degree Correlation 
Function and the Clustering Coefficient 13 

Graph Theoretic Analysis of the Yeast Protein 
Interaction Network 14 

Classification of Scale-Free Networks 16 

3 . Large-Scale Topological Properties of Molecular Networks 25 
Sergei Maslov and Kim Sneppen 

Topological Properties of Protein Networks 26 
Multi-Node Properties: Correlation Profile 33 
Robustness of the Correlation Profile with Respect 

to Potential Errors in the Data 36 
Discussion: What It May All Mean? 37 

4. The Connectivity of Large Genetic Networks: 
Design, History, or Mere Chemistry? 40 
Andreas Wagner 

Metabolic Networks and Planetary Atmospheres 42 
Protein Interaction Networks 44 
Connectivity and Protein Age 46 

5. The Drosophila Protein Interaction Network 
May Be neither Power-Law nor Scale-Free 53 
J.S. Bader 

Observed Vertex Degree Distribution 55 
Vertex Degree Distributions and Power-Law Fits 56 
Bait and Prey Distributions Reconciled 58 
Determining the Length Scale of the Network 59 



6. Birth and Death Models of Genome Evolution 65 
Georgy P. Karev, Yuri I. Wolf and Eugene V. Koonin 

Power Laws, Scale-Free Networks, and Models 
of Genome Evolution 65 

Definitions, Assumptions and Empirical Data 67 
Asymptotic Behaviors of the Ergodic Distribution 

of the Model 69 
Linear Stochastic BDIM and Its Applications 71 
Nonlinear Modifications of the Model: Polynomial BDIM 73 
Nonlinear Rational BDIM 75 
Simulation of Gene Family Evolution under BDIMs 

of Different Degrees 79 
The Mean Number of Elementary Events before Family 

Extinction and Formation 79 

7. Scale-Free Evolution: From Proteins to Organisms 86 
Nikolay V. Dokholyan and Eugene I. Shakhnovich 

Protein Evolutionary Relationships 
from Structure Similarities 88 

Protein Structure-Function Relations 
from an Evolutionary Perspective 89 

Protein Evolutionary Relations within 
and between Individual Proteomes 89 

Sequence Divergence 90 
Why It May Be Impossible to Reconstruct Hereditary 

Relations between Proteins Based Solely 
on Their Sequence Similarity? 91 

The Underlying Scenario of Protein Evolution 92 
Reconstructing Evolutionary Relations between Proteins 93 
Properties of the Protein Domain Universe Graphs 94 
Evolution of Proteins and Organisms 97 
Reconstruction of Protein Structure-Function Relations 98 
The Importance of Independent Functional 

Hierarchical Description 99 
Divergent Evolution Observed 100 

8. Gene Regulatory Networks 106 
T. Gregory Dewey and David J. Galas 

Inferring Gene Expression Networks 
from Microarray Data 107 

Global Properties of Gene Expression Networks I l l 
Gene Duplication Model of Expression Networks 113 
Transcription Factor Networks 115 



9. Power Law Correlations in DNA Sequences 123 
Sergey V. Buldyrev 

Critical Plienomena and Long Range Correlations 124 
One-Dimensional Ising Model 125 
Markovian Processes 126 
Exponential versus Power Law Correlations 128 
Correlation Analysis of DNA Sequences 131 
Correlation Function 132 
Fourier Power Spectrum 136 
Discrete Fourier Transform 137 
Detrended Fluctuation Analysis (DFA) 140 
A Relation between DFA and Power Spectrum 141 
Duplication-Mutation Model of DNA Evolution 144 
Alternation of Nucleotide Frequencies 145 
Models of Long Range Anti-Correlations 149 
Analysis of DNA Sequences 151 
Distribution of Simple Repeats 154 

10. Analytical Evolutionary Model for Protein Fold Occurrence 
in Genomes, Accounting for the Effects of Gene Duplication, 
Deletion, Acquisition and Selective Pressure 165 
Michael Kamal Nicholas M. Luscombcy Jiang Qian 

and Mark Gerstein 
Minimal Model: Gene Duplication and New Fold Acquisition 167 
Extended Model: Including the Effects of Random 

Gene Deletion 170 
The Effects of Selection Pressure 174 
Fitting the Models to Genomic Data 176 
Appendix A: Analytic Solution of the Minimal Model 180 
Appendix B: Crossover Behavior 182 
Appendix C: Arbitrary Initial Distribution 184 
Appendix D: Solution to the Extended Model 

W h e n O < Q < 1 a n d R = 0 184 
Appendix E: Analytical Results for Higher Moments 185 
Appendix F: Perturbation Theory Approximation 

for the Extended Model 186 
Appendix G: The Effects of Selection Pressure 189 
Appendix H: A Useful Normalization Identity 192 

11. The Protein Universes: Some Informatic Issues 
in Protein Classification 194 
S. Rackovsky 

General Methodology 195 
Protein Sequences 196 
Protein Structures 198 



12. The Role of Computation in Complex Regulatory Networks 206 
Pau Femdndez and Ricard V. SoU 

The Evidence for Computing Networks 208 
ModeUng 209 
Irreducibihty 211 
The Boolean Idealization 212 
The Evolutionary Point of View 216 
Redundanq/^ 218 
Degeneracy 219 
Evolvability 220 
Modularity 221 

13. Neutrality and Selection in the Evolution of Gene Families 226 
Itai Yanai 

Gene Family Sizes (GFS) Distributions 226 
Modeling Genome Evolution 227 
Comparative Deconstruction of the Gene Family 

Sizes Distribution 228 
Pleiotropy —> Duplication —^ Subfunctionalization 232 

14. Scaling Laws in the Functional Content of Genomes: 
Fundamental Constants of Evolution? 236 
Erik van Nimwegen 

Power Laws in Genomic Quantities 236 
Comparing Genomic Features across Genomes 236 
Scaling in Functional Gene-Content Statistics 237 
Principle Component Analysis 243 
Evolutionary Interpretation 247 
Methods 251 

Index 255 



EDITORS 

Eugene V. Koonin 
Email: koonin@ncbi.iilin.nih.gov 

Chapter 6 

Yuri I. Wolf 
Email: wolf@ncbi.nlm.nili.gov 

Chapter 6 

Georgy P. Karev 
Email: karev@ncbi.nlm.nili.gov 

Chapter 6 

National Center for Biotechnology Information 
National Library of Medicine 
National Institutes of Health 
Bethesda, Maryland, U.S.A. 

CONTRIBUTORS 
Eivind Almaas 
Department of Physics 
University of Notre Dame 
Notre Dame, Indiana, U.S.A. 
Email: aimaas.l@nd.edu 
Chapter 1 

J.S. Bader 
Department of Biomedical Engineering 
Johns Hopkins University 
Baltimore, Maryland, U.S.A. 
Email: joel.bader@jhu.edu 
Chapter 5 

Albert-Laszlo Barabasi 
Department of Physics 
University of Notre Dame 
Notre Dame, Indiana, U.S.A. 
Email: alb@nd.edu 
Chapter 1 

Sergey V. Buldyrev 
Department of Physics 
Yeshiva University 
New York, New York, U.S.A. 
Email: buldyrev@yu.edu 
Chapter 9 

T. Gregory Dewey 
Keck Graduate Institute 

of Applied Life Sciences 
Claremont, California, U.S.A. 
Email: greg_dewey@kgi.edu 
Chapter 8 

Nikolay V. Dokholyan 
Department of Biochemistry 

and Biophysics 
The University of North Carolina 

at Chapel Hill, School of Medicine 
Chapel Hill, North Carolina, U.S.A. 
Email: dokh@med.unc.edu 
Chapter 7 



Pau Fernandez 
ICREA-Complex Systems Lab 
Universitat Pompeu Fabra (GRIB) 
Barcelona, Spain 
Email: pau.duran@gmail.com 
Chapter 12 

David J. Galas 
Keck Graduate Institute 

of Applied Life Sciences 
Claremont, California, U.S A. 
Email: greg_dewey@kgi.edu 
Chapter 8 

Mark Gerstein 
Department of Molecular Biophysics 

and Biochemistry 
and 
Department of Computer Science 
Yale University 
New Haven Connecticut, U.S.A. 
Email: mark.gerstein@yale.edu 
Chapter 10 

Kwang-Il Goh 
School of Physics 
Seoul National University 
Seoul, Korea 
Email: kwangil.goh@gmail.com 
Chapter 2 

Byungnam Kahng 
School of Physics 
Seoul National University 
Seoul, Korea 
Email: kahng@phya.snu.ac.kr 
Chapter 2 

Michael Kamal 
Whitehead Institute 

for Biomedical Research 
Center for Genome Research 
Cambridge, Massachusetts, U.S A. 
Email: kamal@broad.mit.edu 
Chapter 10 

Doochul Kim 
School of Physics 
SeoiJ National University 
Seoul, Korea 
Email: dkim@snu.ac.kr 
Chapter 2 

Nicholas M. Luscombe 
Department of Molecular Biophysics 

and Biochemistry 
Yale University 
New Haven Connecticut, U.S.A. 
Email: nick@csb.yale.edu 
Chapter 10 

Sergei Maslov 
Department of Physics 
Brookhaven National Laboratory 
Upton, New York, U.S.A. 
Email: maslov@bnl.gov 
Chapter 3 

Jiang Qian 
Department of Molecular Biophysics 

and Biochemistry 
Yale University 
New Haven Connecticut, U.S.A. 
Email: jiang.qian@jhmi.edu 
Chapter 10 

S. Rackovsky 
Department of Pharmacology 

and Biological Chemistry 
and 
Center for Biomathematics 
Mount Sinai School of Medicine 

of New York University 
New York, New York, U.S.A 
Email: shelly@camelot.mssm.edu 
Chapter 11 



Eugene I. Shakhnovich 
Department of Chemistry 

and Chemical Biology 
Harvard University 
Cambridge, Massachusetts, U.S.A. 
Email: eugene@belok.harvard.edu 
Chapter 7 

Kim Sneppen 
Neils Bohr Institute 
Blegdamsvej 17 
Copenhagen, Denmark 
Email: sneppen@nbi.dk 
Chapter 3 

Ricard V. Sole 
ICREA-Complex Systems Lab 
Universitat Pompeu Fabra (GRIB) 
Barcelona, Spain 
and 
Santa Fe Institute 
Santa Fe, New Mexico, U.S.A. 
Email: ricard.sole@upf.edu 
Chapter 12 

Erik van Nimwegen 
Division of Bioinformatics, Biozentrum 
University of Basel 
Basel, Switzerland 
Email: erik.vannimwegen@unibas.ch 
Chapter 14 

Andreas Wagner 
The Santa Fe Institute 
and 
Department of Biology 
University of New Mexico 
Albuquerque, New Mexico, U.S.A 
Email: wagnera@unm.edu 
Chapter 4 

Itai Yanai 
Department of Molecular 

and Cellular Biology 
Harvard University 
Cambridge, Massachusetts, U.S.A. 
Email: yanai@mcb.harvard.edu 
Chapter 13 



P R E F A C E 

The Genomic Revolution, Systems Biology, 
Power Laws, and Scale-Free Networks 

T he decade between 1995 and 2004 witnessed an ongoing revolution in 
biology. Certainly, sequencing of the human genome^ serves as a legitimate 
symbol of this new revolution whereas its beginning is marked by the appear

ance of the first complete genome sequence of a cellular life form, the bacterium 
Haemophilus influenzae? Indeed, comparative genomics is the core and foundation of 
the new biology. It brought about the appreciation of previously unimagined plasticity 
of genomes and the fundamental role of horizontal gene transfer and lineage-specific 
gene loss in evolution. However, equally importantly, genome comparisons corrobo
rated and expanded the notion of fundamental conservation of the building blocks of 
life (genes and proteins) even as they are mixed and matched, and modified, and lost in 
the course of evolution.^ 

As the collection of sequenced genomes continues to expand at an ever increasing 
rate, gradually saturating the major branches of the tree of life (and changing this very 
concept in the process), the post-genomic phase of biology is taking shape. The advent 
of post-genomic biology has been made possible by the development of a new genera
tion of experimental techniques which allow, at least in principle, an exhaustive analysis 
of various aspects of a cell or tissue, such as the complete repertoire of mRNAs, proteins 
or small molecules, or the complete set of protein-protein interactions or metabolite 
fluxes. These days, microarrays, proteomics methods, and large-scale protein-protein 
interaction measurements strive to study not just mRNAs, proteins or interactions but, 
respectively, the transcriptome, the proteome or the interactome of the given cell, tissue 
or whole organism. Even if the proliferation of various "omes" and "omics" irks many 
biologists brought up in the traditions of classical biochemistry and molecular biology,"̂ '̂  
the gist of the new biology is clear and defensible: only by knowing all components and 
all connections in an organism can we hope to "understand" it. The latest buzzword to 
denote this new direction is Systems Biology, an awkward phrase, perhaps, but rather 
appropriate as it captures the idea of understanding a cell or an organism as a system 
through a complete inventory of its parts and the interactions between them. '̂̂  

This latest revolution in biology has been ushered in by new technologies, firsdy, 
efficient whole-genome sequencing, and then, transcription microarrays, proteomics, 
and others. The corresponding conceptual developments have been quick to announce 
themselves. The key words for these concepts are complexity, network, and power law. 
Complexity with respect to biology has been defined in a variety of ways, and this is 
hardly the place to discuss these diverse definitions in any detail (e.g., see ref 8). Intu
itively, however, it is obvious that biological systems differ gready in their organizational 
complexity which is a function of the number of distinct components and their interac
tions. Thus, the human proteome with -20 thousand distinct gene products, many of 
which are represented by midtiple alternative splice forms, is, arguably, much more com
plex than the proteome of the parasitic bacterium Mycoplasma genitalium with its 470 



proteins, which is compatible with our intuition that humans are more complex than 
bacteria. However, we feel almost as strongly that humans are more complex than the 
tiny worm Caenorhabditis elegans, while the number of genes in the human and worm 
genomes is about the same.^ Thus, beyond doubt, there are crucial aspects of biological 
complexity that we do not understand well at all. 

A simple but potentially powerful insight into the nature of biological complexity 
is that, essentially, any complex system can be abstracted in the form of a network graph 
in which the vertices are the elements of the systems and the edges are interactions 
(connections) between them. The latter can be, in the most straightforward case, physi
cal interactions between proteins, but also similarities between expression profiles of 
genes, relationships between regulators and the regulated genes, links between neurons 
or other cells, and a variety of other types of links between biological entities. These 
biological networks share with each other and with other types of networks, e.g., the 
World Wide Web, the networks of relationships (business, friendly or sexual) between 
members of human society, and others, certain simple but interesting mathematical 
properties. The distribution of the number of connections per node (node connectivity) 
in these networks more or less precisely follows a power law, i.e., described by the simple 
function P{i) = ci'^ where P{t) is the frequency of nodes with exactly / connections or sets 
with exacdy / members, y is a parameter which typically assumes values between 1 and 3, 
and r is a normalization constant. Obviously, in double-logarithmic coordinates, the 
plot of Pas a fiinction of/ is close to a straight line with a negative slope. An implication 
that has become widely known is that the networks with a power-law distribution of 
node connectivity are scale-free, i.e., show the same properties at different scales. This 
connects the study of networks with another famous and powerful concept, that of 
fractals. ̂ ° Probably, the most remarkable feature of the scale-free networks is that, unlike 
random networks, they are resistant to error but vulnerable to attack. ̂ ^ In other words, if 
nodes are taken out randomly, the structure of the network will remain generally the 
same because most nodes have very few connections and are, in a sense, unimportant. 
However, if highly connected nodes, the so-called hubs, are specifically targeted, the 
network as a whole might not survive even the first hit. 

The power law distributions transcend networks as such. The quantities that are so 
distributed include the number of genes in a family, the number of pseudogenes per 
gene, the number of people per city, the number of published papers per scientist, the 
number of citations per paper, and much, much more. In fact, the first distributions 
where power laws have been noticed are the distribution of people in a society by wealth 
(the Pareto law^ )̂ and the distributions of words in a text by frequency (Zipf law^^). 

A natural question is: why are power laws so common in so many widely different 
areas? Clearly, there are some general organizational principles behind these similar dis
tributions, but are these principles just superficial or do they reflect profound common
alities between all these disparate systems? A simple but powerftil insight has been offered 
by Barabasi and coworkers who noticed that power law distributions often appeared in 
evolving systems, be it the Internet or the biological networks. ̂ "̂  One of the major modes 
of evolution in such systems is accretion of nodes under the so-called preferential attach
ment principle according to which the probability that a new node forms a connection 
with a preexisting one is proportional to the nimiber of links the latter already had. In 
anthropomorphic terms, the rich get richer; using Darwinian terminology, which is likely 
to better reflect the situation, at least as far as biology is concerned, the fit get fitter. ̂^ 
Importandy, random networks described in the classic work of Erdos and Renyî ^ never 



show the power law distribution of node connectivity but instead have a distribution that 
is close to Poisson. Notably, power law distributions as asymptotic solutions are also 
readily produced by birth-and-death models which can be naturally applied to processes 
of genome evolution such as evolution of gene families. ̂ ^ 

Evolution of networks via preferential attachment or a birth-and-death process lead
ing to power laws is an important concept but is too general to be of much epistemologi-
cal value in itself. The real question is: can we learn something new, preferably, some
thing not readily discernible by other approaches, about life, through the analysis of 
power law distributions and scale-free networks in biological systems? Again, the first 
strong hint at a positive answer has been obtained by Barabasi and colleagues. They 
reasoned that, if scale-free networks indeed reflect biological reality, their hubs should 
be, in some meaningful sense, more important for the organism than the nodes with 
fewer connections. Indeed, the results of biological experiments on the effect of gene 
knockouts on the survival of yeast are compatible with this notion: the hubs of the yeast 
protein-protein interaction network (characterized in genome-scale two-hybrid experi
ments) are more likely to correspond to essential genes (those that cannot be knocked 
out without killing the organism) than weakly connected nodes.^^ Along the same lines, 
it has been observed that the hubs of the human gene coexpression network are, on 
average, genes that evolve slower than genes with low connectivity.^^ The connectivity of 
a gene (protein) in expression or interaction network seems to be a distinct property 
which is not readily reducible to anything else we can learn about that gene or protein. 
Therefore, the observations that this property correlates with empirically measurable 
quantities of clear biological significance, such as knockout eff̂ ect or evolutionary rate, 
suggest that connectivity is, indeed, biologically important. Accordingly, these findings 
provide the rationale for deeper exploration of the biological counterparts of network 
organization. However, it also has been noticed that, while such correlations are ofi:en 
statistically significant, they are usually not overwhelmingly strong and explain but a 
small part of the variation of the respective quantity. Accordingly, debates abound in the 
literature as to which of the observed correlations are truly significant and which are 
secondary or even might arise from artifacts in the data.^^^'' 

While the realization of the general importance of power law distributions is at 
least as old as the classic work of Pareto on the foundations of economics, the applica
tion to genome-wide analysis started in earnest only in the 21" century and so is still in 
its infancy. Even in this short time, excellent reviews on properties of scale-free and other 
networks and their role in biology have appeared^ '̂̂ ^ as well as several books, aimed 
either at lay readers (or, at least, "lay scientists")̂ '̂̂ '̂̂ ^ or specialists.̂ "^ Arguably, however, 
these works fall short of presenting a coherent, reasonably complete picture of the role, 
promise, and potential pitfalls of the analysis of power-law distributions and scale-free 
networks in its specific capacity as a major part of theoretical systems biology. Hence we 
replied with enthusiasm to the suggestion of Ron Landes to put together this book. 
Surely, most scientists today will agree that there are too many multi-author books around, 
while too few of them have any measurable impact. Understandably, every group of 
editors believes that their book is going to be different, and we are no exception. Our 
justification is twofold. From the beginning, we felt that the research field that we could 
define as "power laws and scale-free networks in genome biology" could gain from a 
multi-faceted overview in which different viewpoints, methodological approaches, and 
scientific cultures would be represented. What is more, we thought that compiling such 
an overview could be a relatively straightforward task because there were no existing 



comprehensive treatises to compete with. We approached with this idea a number of 
scientists known for pioneering contributions in this new field and were struck by their 
almost invariable willingness to contribute to the projected book; very few people de
clined, and then, for a good reason. Thus, we simply had to go ahead with the book, and 
here is the resulting collection. 

A few words about each of the chapters, to give the reader an idea of the diversity of 
the contributions, and—we hope—the emerging synthesis. Almaas and Barabasi discuss 
the occurrence of power laws in biological systems and the scale-free and hierarchical 
properties of biological networks. They emphasize the inhomogeneity and complexity 
of these networks, noting that "network biology" is still in its infancy. Goh, Kahng, and 
Kim describe graph-theoretic analysis of protein-protein interaction and metabolic net
works and elucidate certain subtle structural properties of these networks, such as 
"dissortative mixing" whereby proteins with a small number of interaction partners tend 
to connect to the hubs of the network, and vice versa. The result is a distinctive network 
modularity. Maslov and Sneppen compare the large-scale organizations of two types of 
networks, protein-protein interaction and transcription-regulatory ones, and discover a 
remarkable, consistent effect of suppression of links between hubs in each of these net
works, which results in distinct network modularity. Maslov and Sneppen observe that 
this property increases network robustness, and they suggest that, in the course of evolu
tion, this could be a selected feature. Clearly, these results are very similar to those of 
Goh et al, even as the methodological approaches used by these authors are quite differ
ent. Bader investigates the protein-protein interaction network of the fruit fly and comes 
up with the unexpected observation that, when only reliable, biologically relevant inter
actions are considered, the network displays neither scale-free properties nor a power-law 
distribution of connectivity. When analyzed in this fashion, the number of connection 
per node decays faster than it would under power law and approaches an exponential 
distribution. This work emphasizes the caution that is due in interpreting the math
ematical properties of networks. 

Several chapters make the next key step of abstraction by analyzing models of 
evolution that lead to power law distributions. Dokholyan and Shakhnovich reveal the 
scale-free structure of the so-called protein domain universe graph (PDUG) and show 
that this organization could have evolved under a divergence but not under a conver
gence evolutionary model. Wagner examines the structure of protein-protein interac
tion networks and addresses the question whether their organization reflected in the 
power-law distribution of node connectivity was shaped and is maintained by natural 
selection. Wagner s answer is that the role of natural selection had been minor at best, 
with the structure of the network determined largely by physicochemical properties of 
proteins (but then, again, are these properties not a product of natural selection.**) Karev, 
Wolf and Koonin describe Birth, Death and Innovation models of gene family evolu
tion (BDIMs) and show that only nonlinear BDIMs, which include "interactions" be
tween genes in a family, can produce evolutionary rates compatible with the observed 
distribution of family size. Again, as in Wagner s work, there is no explicit selection in 
BDIMs, but the "interactions" between genes in nonlinear models might actually rep
resent a selective force. Yanai also addresses the interplay between neutral and selective 
forces in the evolution of genes families and concludes that selection does not need to 
be invoked to explain the general shape of the family size distribution. However, a more 
detailed analysis of the heavy tail of the distribution suggests that evolution of the larg
est families still might have evolved under positive selection. Dewey and Galas discuss 



expression networks derived from microarray data and transcription factor networks 
constructed from the data on gene regulation by specific transcription factors. An evo
lutionary model based on gene duplication seems to account nicely for the global prop
erties of these networks. Kamal, Luscombe, Qian, and Gerstein present an evolutionary 
model that explains the observed distributions of protein fold frequencies on the basis 
of stochastic gene duplication, deletion, and acquisition of new fold. 

Fernandez and Sole consider regulatory networks at a higher level of abstraction by 
treating them as devices that perform computations. They note that the resistance of 
network to noise is achieved through redundant connections which are also the means 
for evolution to rewire a network without losing its function. Fernandez and Sole posit 
that robustness of biological networks must be not maximum but optimal to ensure the 
necessary level of evolvability. 

Van Nimwegen describes simple but truly remarkable observations on scaling of 
genes in different functional categories with genome size. The number of genes in each 
category increases as a power-law function of the total number of genes in the genome. 
It turns out, however, that the exponents are very different for different biological func
tions. In particular, regulatory and signal-transduction proteins tend to scale with the 
square of the total number of genes, which could be an important factor in limiting the 
complexity attainable by organisms. These trends await deeper explanations. 

Rackovsky applies the network concepts to the analysis of the organization of the 
universes of proteins sequences and strucmres and describes substantial differences in the 
properties of these two virtual spaces. In Chapter 9, Buldyrev presents a review of the 
substantial body of work done on the power law properties of long-range correlations in 
DNA sequences and links these studies to more general physical models of critical phe
nomena. Somewhat paradoxically, although this avenue of research is at least 20 years 
older than systems biology and produced a number of elegant mathematical results, the 
biological implications are far from clear. Buldyrev makes the provocative but, we believe, 
plausible suggestion that long-range correlations in DNA sequences are, largely, a conse
quence of neutral evolution of junk DNA in complex genomes. 

One way to conclude these introductory notes would be to quote the chapter by 
Fernandez and Sole: "In summary, we are still very much puzzled by the question of how 
complex... networks are organized." On a more constructive note, however, we believe 
that the chapters collated in this book make it abundandy clear that theoretical systems 
biology has moved from the pure stamp collection phase (in this case, collection of 
examples of power law distributions and scale-free organization) to physics, i.e., search 
for models capable of explaining these observations. What is less clear although, prob
ably, more important, is what new biology, if any, comes out of these analyses. Several 
examples oudined above may provide initial clues and more are to be found in the 
chapters comprising this book. 

In the early days of computational molecular biology (bioinformatics), Gunnar 
von Heijne, one of the eminent practitioners in that field, provocatively entitled his 
book Sequence Analysis in Molecular Biology: Treasure Trove or Trivial Pursuit?"^ In the 
years since, the question had been answered definitively: blind alleys notwithstanding, 
bioinformatics is no trivial pursuit by any means. In the beginning of the 21st century, 
the same question lurks with regard to theoretical systems biology. It is our hope that 
this books suggests the same answer. 

Hopefully, the book will be of interest and use to many biologists and physicists 
who already practice systems biology or think about venturing into this area, including 



graduate students. When soliciting contributions, we asked authors to follow Einstein's 

famous dictum and present their subjects as simply as possible but not simpler. We 
believe that everyone complied and, as a result, the book is not heavily mathematical 
although it does contain many equations; but such is the nature of the beast. 

We are grateful to our publisher Ron Landes who came up with the idea of this 
book, to Cynthia Conomos and Celeste Carlton for expert help at all stages of the pub

lication process and, certainly, to all the contributors for delivering their chapters with
out undue delays. Obviously, the coherence of the whole is the sole responsibility of the 

editors. The reader will judge whether or not we succeeded in reaching this objective. 

Eugene V. Kooniriy Ph.D. 
Yuri I. Wolf Ph.D. 

Georgy P. KareVy Ph.D., D.Sci. 
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CHAPTER 1 

Power Laws in Biological Networks 

Eivind Almaas and Albert-Laszlo Barabasi* 

Abstract 

The rapidly developing dieory of complex networks indicates that real networks are 
not random, but have a highly robust large-scale architecture, governed by strict 
organizational principles. Here, we focus on the properties of biological networks, 

discussing their scale-free and hierarchical features. We illustrate the major network charac
teristics using examples from the metabolic network of the bacterium Escherichia coli. We 
also discuss the principles of network utilization, acknowledging that the interactions in a 
real network have unequal strengths. We study the interplay between topology and reaction 
fluxes provided by flux-balance analysis. We find that the cellular utilization of the metabolic 
network is both globally and locally highly inhomogeneous, dominated by "hot-spots", rep
resenting connected high-flux pathways. 

Introduction 
The tremendous progress in the natural sciences we witnessed in the last century was 

based on the reductionist approach, allowing us to predict the behavior of a system from the 
understanding of its (often identical) elementary constituents and their individual interac
tions. However, our ability to understand simple ftindamental laws governing individual "build
ing blocks" is a far cry from being able to predict the overall behavior of a complex system. 
Additionally, the building blocks of most complex systems, and hence the nature of their inter
actions, vary dramatically, rendering the traditional approaches obsolete. During the last few 
years, network approaches have shown great promise as a new tool to analyze and understand 
complex systems.̂ '̂ '̂ '̂̂ ^ For example, technological information systems like the internet and 
the world-wide web are naturally modeled as networks, where the nodes are routers ' or 
web-pages ' ' ^ and the links are physical wires or UREs respectively. The analysis of societies 
also lends itself naturally to a network description, with people as nodes and the connections 
between the nodes as friendships,^^ collaborations, sexual contacts ^ or coauthorship of 
scientific papers ' to name a few possibilities. It seems that the closer we look at the world 
surrounding us, the more we realize that we are hopelessly entangled in myriads of interacting 
webs, and to describe them we need to understand the architecture of the various networks 
nature and technology offers us. 

In biology, networks appear in many disparate systems, ranging from food webs in ecol
ogy to biochemical interactions in molecular biology. In particular in the cell the variety of 
interactions between genes, proteins and metabolites are well captured by networks. During 

*Corresponding author: Albert-Laszlo Barabasi—Department of Physics, University of Notre 
Dame, Notre Dame, Indiana 46556, U.S.A. Email: alb@nd.edu 
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Figure 1. Charaaerizing degree distributions. For the power-law degree distribution (A), there exists no 
typical node, while for single peaked distributions (B), most nodes are well represented by the average 
(typical) node with degree {k ). 

the last decade, genomics has unleashed a downright flood of molecular interaction data. The 
nascent field of transcriptomics and proteomics have followed suit with analysis of protein 
levels imder various conditions and genome wide analysis of gene expression at the mRNA 

protein-protein interaction maps have been generated for a variety of organ
isms mcluding viruses,̂ ^ prokaryotes like H.pylorf^ and eukaryotes like S. cerevisia^^'^'^'^'^'^ '̂̂ '̂ ̂  
and C. elegans. In this chapter we will discuss recent residts and developments in the study and 
characterization of naturally occurring networks, with focus on cellular ones. 

Power Laws in Network Topology 
The complex network representation of different systems as networks has revealed sur

prising similarities, many of which are intimately tied to power laws. The simplest network 
measure is the average number of nearest neighbors of a node, or the average degree. However, 
this is a rather crude property, and to gain further insight into the topological organization of 
real networks, we need to determine the variation in the nearest neighbors, given by the degree 
distribution. For a surprisingly large number of networks, this degree distribution is best char
acterized by the power law fiinctional form^ (Fig. lA), 

m - k"" (1) 

Important examples include the metabolic network of 43 organisms, ^ the protein inter
action network of 5. cerevisiae and various food webs.^^ If the degree distribution instead was 
single-peaked (e.g., Poisson or Gaussian) as in Figure IB, the majority of the nodes would be 
well described by the average degree, and hence the notion of a "typical" node. In contrast for 
networks with a power-law degree distribution, the majority of the nodes have only one or two 
neighbors while coexisting with many nodes with hundreds and some even with thousands of 
neighbors. For these networks there exists no typical node, and they are therefore often referred 
to as "scale-free". 

The clustering of a node, the degree to which the neighborhood of a node resembles a 
complete subgraph, is another measure which sheds light on the structural organization of a 
network.^ For a node / with degree ki the clustering is defined as, 

C. = ^"- (2) 

representing the ratio of the number of actual connections between the neighbors of node i 
to the number of possible connections. For a node which is part of a fully interlinked cluster 
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Figure 2. Properties of the metabolic network oi Escherichia coli. A) The degree distribution displays a power 
law in both the in- and the out degrees. B) The clustering coefficient varies with ̂  as a power law. The solid 
line corresponds to k'^. C) Three dimensional representation of the reduced metabolic network.̂  

Q = 1, while Q = 0 for a node which acts as a bridge between different clusters. Accordingly, the 
overall clustering coefficient of a network with Â  nodes is given by (C) = S CJN, and repre
sents a measure of a network's potential modidarity. By studying the clustering of nodes with a 
given degree k, information about the actual modular organization of a network can be 
gleaned: ' For all metabolic networks available, this behaves like the power law. 

C{k) (3) 

suggesting the existence of a hierarchy of nodes with different degrees of modularity (as 
measured by the clustering coefficient) overlapping in an iterative manner. In Figure 2, we 
show the degree distribution (Fig. 2A) and the clustering as function of k (Fig. 2B) for the 
bacterium Escherichia coli. They both clearly adhere to a power-law behavior, suggesting that 
biological networks are both scale-free and hierarchical. Panel 2C is a three dimensional 
representation of a cleaned up version of the metabolic network,^ demonstrating that mod
ules are not clearly separated. Furthermore, the likelihood that a node appears in the shortest 
paths between other nodes on the network, the so-called betweenness-centrality^, ' is also 
characterized by a power law distribution following P(g) >- g^ for both biological and 
nonbiological networks,^^ suggesting that a few nodes act as bridges or linkers between the 
different parts of the network. In summary, we have seen strong evidence that biological 
networks are both scale-free ' and hierarchical.^^ 

Network Models 
An important question now arises—^we can characterize networks using the above men

tioned quantities, but why is the power law behavior so pervasive? Several models building on 
very different principles are able to explain these observed features. 
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Figure 3. Graphical representation of three network models: A,D) The ER (random) model, B,E) the BA 
(scale-free) model and (C) and (F) the hierarchical model. The random network model is constructed by 
starting from TV nodes before the possible node-pairs are connected with probability/?. Panel (A) shows 
a particular realization of the ER model with 10 nodes and connection probability/> = 0.2. In panel (B) 
we show the scale-free model at time t (green links) and at time (? + 1) when we have added a new node 
(red links) using the preferential attachment probability (see Eq. (4)). Panel (C) demonstrates the iterative 
construction of a hierarchical network, starting from a fully connected cluster of four nodes (blue). This 
cluster is then copied three times (green) while connecting the peripheral nodes of the replicas to the 
central node of the starting cluster. By once more repeating this replication and connection process (red 
nodes), we end up with a 64-node scale-free hierarchical network. In panel (D) we display a larger version 
of the random network, and it is evident that most nodes have approximately the same number of links. 
For the scale-free model, (E) the network is clearly inhomogeneous: while the majority of nodes has one 
or two links, a few nodes have a large number of links. We emphasize this by coloring the five nodes with 
the highest number of links red and their first neighbors green. While in the random network only 27% 
of the nodes are reached by the five most connected nodes, we reach more than 60% of the nodes in the 
scale-free network, demonstrating the key role played by the hubs. Note that the networks in (D) and (E) 
consist of the same number of nodes and links. Panel (F) demonstrates that the standard clustering 
algorithms are not that successfiil in uncovering the modular structure of a scale-free hierarchical net
work. A color version of this figure is available online at http://www.Eurekah.com. 

Random Network Models 
While graph theory initially focused on regular graphs, since the 1950s large networks with 

no apparent design principles were described as random graphs,^ proposed as the simplest and 
most straightforward realization of a complex network According to the Erdos-Renyi (ER) model 
of random networks, we start with A'̂  nodes and connect every pair of nodes with probability/), 
creating a graph with approximately/>7Vf7V-iJ/2 randomly distributed edges (Fig. 3A,D). For this 
model the degrees follow a Poisson distribution (Fig. 4A), and as a consequence, the average 
degree ijz) of the network describes the typical node. Furthermore, for this "democratic" network 
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Figure 4. Properties of the three network models. A) The ER model sports a Poisson degree distribution P(k) 
(the probability that a randomly seleaed node has exacdy k links) which is strongly peaked at the average 
degree {k ) and decays exponentially for large k. The degree distributions for the scale-free (B) and the 
hierarchical (C) network models do not have a peak, they instead decay according to the power-law P(k) 
- '̂̂ . The average clustering coefficient for nodes with exactly k neighbors, C(k), is independent of ̂  for both 
the ER (D) and the scale-free (E) network model. F) In contrast, C{k) - k~^ for the hierarchical network 
model (c£ Fig. 2). 

model, the clustering is independent of the node degree k (Fig. 4D). As we have just seen in 
Figure 2, the ER model does not capture the properties of biological networks. 

Scale-Free Network Model 
In the network model of Barabasi and Albert (BA), two crucial mechanisms, which both 

are absent from the classical random network model, are responsible for the emergence of a 
power-law degree distribution. First, networks grow through the addition of new nodes link
ing to nodes already present in the system. Second, there is a higher probability to link to a 
node with a large number of connections in most real networks, a property called preferential 
attachment. These two principles are implemented as follows: starting from a small core graph 
consisting of mo nodes, a new node with m links is added at each time step and connected to 
the already existing nodes (Fig. 3B,E). Each of the m new links are then preferentially attached 
to a node / (with ki neighbors) which is chosen according to the probability 

n,-- ,̂/!^; (4) 

The simultaneous combination of these two network growth rules gives rise to the ob
served power-law degree distribution (Fig. 4B). In panel 3B, we illustrate the growth process of 
the scale-free model by displaying a network at time t (green links) and then at time {t + 1), 
when we have added a new node (red links) using the preferential attachment probability. 
Compared to random networks, the probability that a node is highly connected is statistically 
significant in scale-free networks. Consequently, many network properties are determined by a 
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relatively small number of highly connected nodes, often called "hubs". To make the effect of 
the hubs on the network structure visible, we have colored the five nodes with largest degrees 
red in Figure 3D,E and their nearest neighbors green. While in the ER network only 27% of 
the nodes are reached by the five most connected ones, we reach more than 60% of the nodes 
in the scale-free network, demonstrating the key role played by the hubs. Another consequence 
of the hub's dominance of the network topology is that scale-free networks are highly tolerant 
of random failures (perturbations) while being extremely sensitive to targeted attacks. Com
paring the properties of the BA network model with those of the ER model, we note that the 
clustering of the BA network is larger, however C{k)\s approximately constant (Fig. 4E), indi
cating the absence of a hierarchical structure. 

Hierarchical Network Model 
Many real networks are expected to be fundamentally modular, meaning that the net

work can be seamlessly partitioned into a collection of modules where each module per
forms an identifiable task, separable from the ftmction(s) of other modules.^^'^ '̂ '̂ ' '̂ '̂ ^ 
Therefore, we must reconcile the scale-free property with potential modularity. In order to 
account for the modularity as reflected in the power-law behavior of Figure 2B and a simul
taneous scale-free degree distribution Figure 2A, we have to assume that clusters combine 
in an iterative manner, generating a hierarchical network.^^'^^ Such a network emerges from 
a repeated duplication and integration process of clustered nodes,^ which in principle can 
be repeated indefinitely. This process is depicted in panel 3c, where we start from a small 
cluster of four densely linked nodes (blue). We next generate three replicas of this hypo
thetical initial module (green) and connect the three external nodes of the replicated clus
ters to the central node of the old cluster, thus obtaining a large 16-node module. Subse
quently, we again generate three replicas of this 16-node module (red), and connect the 16 
peripheral nodes to the central node of the old module, obtaining a new module of 6A 
nodes. This hierarchical network model seamlessly integrates a scale-free topology with an 
inherent modular structure by generating a network that has a power law degree distribu
tion (Fig. 4C) with degree exponent 7= 1 + In4/ln3 ~ 2.26 and a clustering coefficient C(k) 
which proves to be dependent on k'^ (Fig. 4F). However, note that modularity does not 
imply clear-cut sub-networks linked in well-defined ways. '̂  In fact, the boundaries of 
modules are often blurred (see Fig. 3F), bridged by highly connected nodes which intercon
nect modules. 

Power Laws in Network Utilization 
Despite their successes, purely topologic approaches have important intrinsic limitations. 

For example, the activity of the various metabolic reactions or regulatory interactions differs 
widely, some being highly active under most growth conditions while others are switched on 
only for some rare environmental circumstances. Therefore, an idtimate description of cellular 
networks requires us to consider the intensity (i.e., strength), the direction (when applicable) 
and the temporal aspects of the interactions. While so far we know little about the temporal 
aspects of the various cellular interactions, recent results have shed light on how the strength of 
the interactions is organized in metabolic and genetic-regulatory networks. 

In metabolic networks the flux of a given metabolic reaction, representing the amount 
of substrate being converted to a product within unit time, offers the best measure of inter
action strength. Recent metabolic flux-balance approaches (FBA)^ '̂̂ '̂̂ '̂̂ ^ that allow us to 
calculate the flux for each reaction, have significantly improved our ability to generate quan
titative predictions on the relative importance of the various reactions, leading to experimen
tally testable hypotheses. Starting from a stoichiometric matrix of the K12 MG1655 strain 
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of E. colt, containing 537 metabolites and 739 reactions,^ '̂"^ '̂̂ ^ the steady state concentra
tions of all metabolites satisfy, 

where Sij is the stoichiometric coefficient of metabolite A[ in reaction j and Vj is the flux of 
reaction/ We use the convention that if metabolite ̂ i is a substrate (product) in reactiony, Sij 
< 0 {Sij > 0 ) and we constrain all fluxes to be positive by dividing each reversible reaction into 
two "forward" reactions with positive fluxes. Any vector of positive fluxes {V̂ } which satisfies 
Eq. (5) corresponds to a state of the metabolic network, and hence, a potential state of opera
tion of the cell. 

Assuming that cellular metabolism is in a steady state and optimized for the maximal 
growth rate,^ '̂̂ ^ FBA allows us to calculate the flux for each reaction using linear optimization, 
providing a measure of each reactions relative activity. A striking feature of the flux distribu
tion of E. coli is its overall inhomogeneity: reactions with fluxes spanning several orders of 
magnitude coexist under the same conditions (Fig. 5A). This is captured by the flux distribu
tion for E. coliy which follows (the by now familiar) power law where the probability that a 
reaction has flux V is given hy P(y) -- (v -/- Vo)~". The flux exponent is predicted to be a = 1.5 
by FBA methods. In a recent experiment^^ the strength of the various fluxes of the central 
metabolism was measured, revealing the power-law flux dependence P{v) ^ V~" with a = 1 
(Fig. 5B). This power law behavior indicates that the vast majority of reactions have quite small 
fluxes, while coexisting with a few reactions with extremely large flux values. 

The observed flux distribution is compatible with two quite different potential local flux 
structures. A homogeneous local organization would imply that all reactions producing (con
suming) a given metabolite have comparable fluxes. On the other hand, a more delocalized 
"hot backbone" is expected if the local flux organization is heterogeneous, such that each me
tabolite has a dominant source (consuming) reaction. To distinguish between these two sce
narios for each metabolite / produced (consumed) by k reactions, we define the measiure '̂ 

w „ \' 
U w ^ ' V 

(6) 

where v- is the mass carried by reactiony which produces (consumes) metabolite /. If all reac
tions producing (consuming) metabolite / have comparable v- values, Y{k,i) scales as \lk. If, 
however, a single reactions activity dominates Eq. (6), we expect Y{k,t) ^ 1, \..e,.Y{k,i), is inde
pendent of ^. For the E. coli metabolism optimized for succinate and glutamate uptake (Fig. 5) 
we find that both the in and out degrees follow the power law Y{k,i) ^ k' '^'^, representing an 
intermediate behavior between the two extreme cases. This indicates that the large-scale in
homogeneity observed in the overall flux distribution is increasingly valid at the level of the 
individual metabolites as well: the more reactions consume (produce) a given metabolite, the 
more likely it is that a single reaction carries the majority of the flux. This implies that the 
majority of the metabolic flux is carried along linear pathways—the metabolic high flux back
bone (HFB).^ 

A power law pattern is also observed when one investigates the strength of the various 
genetic regulatory interactions provided by microarray datasets. Assigning each pair of genes a 
correlation coefficient which captures the degree to which they are coexpressed, one finds that 
the distribution of these pair-wise correlation coefficients follows a power law. ' That is, 
while the majority of gene pairs have only weak correlations, a few gene pairs display a signifi
cant correlation coefficient. These highly correlated pairs likely correspond to direct regulatory 
and protein interactions. This hypothesis is supported by the finding that the correlations are 
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Figure 5. Flux distribution for the metabolism off. coli. A) Flux distribution for optimized biomass 
produaion on succinate (black) and glutamate (red) rich uptake substrates. The solid line corresponds to 
the power law fit P(v) - (v+ VQ)'" with VQ = 0.00003 and a = 1.5. B) The distribution of experimentally 
determined fluxes (see ref 21) from the central metabolism of ̂ . coli also displays power-law behavior with 
a best fit to P(v) ̂  V'"witha= 1. A color version of this figure is available online at http://www.Eurekah.com. 

larger along the links of the protein interaction network and between proteins occurring in the 
same complex than for pairs of proteins that are not known to interact directly. ' 

Taken together, these results indicate that the biochemical activity in both the metabolic 
and genetic networks is dominated by several 'hot links' that represent a few high activity 
interactions embedded into a web of less active interactions. This attribute does not seem to be 
a unique feature of biological systems: hot links appear in a wide range of nonbiological net
works where the activity of the links follows a wide distribution. ̂ '̂̂ ^ The origin of this seem
ingly imiversal property is, again, likely rooted in the network topology. Indeed, it seems that 
the metabolic fluxes and the weights of the links in some nonbiological system are uniquely 
determined by the scale-free nature of the network A more general principle that could explain 
the correlation distribution data as well is ciu-rendy lacking. 

Conclusions 
Power laws are abundant in nature, affecting both the construction and the utilization of 

real networks. The power-law degree distribution has become the trademark of scale-free net
works and can be explained by invoking the principles of network growth and preferential 
attachment. However, many biological networks are inherently modular, a fact which at first 
seems to be at odds with the properties of scale-free networks. However, these two concepts can 
coexist in hierarchical scale-free networks. In the utilization of complex networks, most links 
represent disparate connection strengths or transportation thresholds. For the metabolic net
work of ̂ . coliyfc can implement a flux-balance approach and calculate the distribution of link 
weights (fluxes), which (reflecting the scale-free network topology) displays a robust power-law, 
independent of exocelliJar perturbations. Furthermore, this global inhomogeneity in the link 
strengths is also present at the local level, resulting in a connected "hot-spot" backbone of the 
metabolism. Similar features are also observed in the strength of various genetic regulatory 
interactions. Despite the significant advances witnessed the last few years, network biology is 
still in its infancy, with futiu-e advances most notably expected from the development of theo
retical tools, development of new interactive databases and increased insights into the interplay 
between biological function and topology. 
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Figure 6. Characterizing the local inhomogeneity of the metabolic flux distribution. The measured kY{k) 
(see Eq. (6)) shown as function of k for incoming and outgoing reaaions for fluxes calculated on both 
succinate and glutamate rich substrates, averaged over all metabolites, indicating, Y{k) ^ ̂ " '̂̂ ^as the straight 
line in the figure has slope /= 0.73. Inset: The nonzero mass flows v • producing (consuming) flavin adenine 
dinucleotide (FAD) on a glutamate rich substrate. 
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CHAPTER 2 

Graphical Analysis of Biocomplex Networks 
and Transport Phenomena 

Kwang-Il Goh, Byungnam Kahng* and Doochul Kim 

M any biocomplex networks such as the protein interaction networks and the 
metabolic networks exhibit an emerging pattern that the distribution of the number 
of connections of a protein or substrate follows a power law. As the network theory 

is developed recently, several quantities describing network structure such as modularity and 
degree-degree correlation have been introduced. Here we investigate and compare the struc
tural properties of the yeast protein networks for different datasets with those quantities. More
over, we introduce a new quantity, called the load, characterizing the amount of signal passing 
through a vertex. It is shown that the load distribution also follows a power law, and its charac
teristics are related to the structure of the core part of the biocomplex networks. 

Introduction 
Recendy biocomplex systems have drawn considerable attentions since their emergent be

haviors, arising from diverse interactions and adaptations, are more than the sum of individual 
components. ' Such complex systems may be described in terms of graphs, consisting of vertices 
and edges, where vertices and edges represent substrate or proteins, and their mutual reactions or 
interactions in metabolic networks or protein interaction networks, respectively. In the last 
century, biologists mainly focused their interests on the identification of individual molecules 
and their functions in relation to macroscopic biological phenomena. However, it is recendy 
believed that thousands of genes and their products such as proteins, RNA and small molecules, 
function in a complete and concerted way.̂  Thus it is natural to invoke the graph theory which 
helps us to visualize how molecides in a given organism function together in concerted ways. 

The cellular components such as genes, proteins, and other molecules, connected by all 
physiologically relevant interaaions, form a full weblike molecular architecture in a cell.^ In such 
an architecture, genes are known to play a structural role, determining the scope and passing the 
information in a hereditary manner to subsequent generations. The funaional role of gene is 
expressed through protein. At the biological level, proteins rarely act alone; rather they interact 
with other proteins to perform particular cellular functions. Thus protein-protein interactions 
play pivotal roles in various aspects of the structural and functional organization of the cell and 
their complete description is indispensible to thorough understanding of the cell. Proteins can be 
viewed as vertices of a protein-protein interaction network in which two proteins are connected if 
they can physically attach to each other, forming a complex network called the protein interaction 
network (PIN). Recendy, high-throughput data-collection methods such as protein chips or 
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semi-automated yeast two-hybrid screens have been introduced, that help to determine which 
proteins interact with each other in large scale. In particular, organisms with sequenced genomes 
such as the yeast Saccharomyces cerevisiae provide important test beds for analyzing such a PIN. 

In this manuscript, we investigate the structural property of the PIN in graph theoretic 
aspect and also the transport phenomena on such complex networks. We first introduce several 
quantities describing network structure in the following section. Then we specifically analyze 
the structural properties of the S. cerevisiae PIN and we consider a transport problem on com
plex networks. The final section is devoted to the conclusions and discussions. 

The Degree Distribution, the Degree Correlation Function 
and the Clustering Coefficient 

Retrospectively, the graphical approach was initiated by Erdos and Renyi (ER) in I960, 
who were the first to study the statistical aspect of random graphs using the probabilistic method. 
Thus, modeling random networks has a long history, and has been particularly active as a 
branch of combinatorial graph theory. In graph theory, one of interesting quantities is the 
degree, defined as the number of edges connecting to a given vertex. The degree distribution of 
the ER network follows a Poisson distribution. Recently, however, there were findings that the 
degree distribution of the PIN follows a power law, 

pdk) - k-i (1) 

where k means degree and y is the degree exponent. The network displaying a power-law de
gree distribution is called scale-free (SF) network. Besides the PIN, SF networks^ ̂  are ubiqui
tous in real-world networks such as the world-wide web (WWW),^^'^^ the Internet,^^'^^ the 
citation network^ ̂  and the author collaboration network of scientific papers, ̂ '̂̂ ^ and the meta
bolic networks in biological organisms. The SF behavior of the degree distribution can be 
generalized into the Pareto form, 

PD{k)^(k^k^n (2) 
with a constant k^. 

In fact, the degree distribution of the yeast PIN fits better to this Pareto form, which will 
be discussed later. 

It is known that the degrees of the two vertices located at the ends of an edge are correlated 
to each other. As the first step, such degree-degree correlation can be quantified in terms of the 
average of the degrees over neighbors of proteins with degree ŷ  as a fiinction of k, denoted by 
{knn}{k). In most biological networks, the function (>̂ nn)(̂ ) exhibits a decreasing behavior with 
increasing k. The decaying behavior is expressed roughly by another power law as 

{k.n)ik) ^ k-\ (3) 

On the other hand, the degree-degree correlation can also be described in terms of the 
assortativity coefficient introduced by Newman, which is defined as 

{(kf+ki)l2)-{{k,+k2)l2f' 
(4) 

where ki and ^2 are the degree of two end vertices, respectively, of an edge, and (...) denotes the 
average over all edges. It is nothing but the Pearson correlation coefficient for the degrees of two 
end vertices over all edges, normalized so that -1 < r < 1. r is negative when the fimction (^nn)(^) 
exhibits decreasing behavior like the case of the PIN. In fact, the assortativity coefficient was 
introduced to characterize social networks, which have positive values of r in general. Thus vertices 
with higher degree tend to connect to those with lesser (similar) degrees in PIN (social networks). 
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Many real-world biocomplex networks have modular structures within them. Such modular 
structures are characterized in terms of the clustering coefficient. Let Q be the local clustering 
coefficient of a vertex /, defined as Q = 2eilki{ki - 1), where ei is the number of edges present 
among the neighbors of vertex /, out of its maximum possible number ki{ki -1)/2. The cluster
ing coefficient of a network, C, is the average of Q over all vertices. C{k) means the mean 
clustering coefficient over the vertices with degree k. When a network is modular and hierar
chical, the clustering function follows a power law, 

ak) - M (5) 
for large ^, and Cis independent of system size MP"^^ 

Graph Theoretic Analysis of the Yeast Protein Interaction Network 
There are a number of existing databases^ "̂̂^ or large-scale data sets '̂̂ '̂ ^ that store the 

information on the protein interactions in yeast. As all biological data are subject to some 
errors and incompleteness, which database to use is not a trivial problem. Without having a 
unified one only, we have tried to access as many data as we can, including those from the four 
major large-scale datasets, (i) the large-scale yeast two-hybrid data by Uetz et al̂ '̂ ^ and (ii) by 
Ito et al as well as the curated databases, (iii) the Munich Information Center for Protein 
Sequences (MIPS)^ and (iv) the database of the interacting proteins (DIP)"^^ as of March 
2003. We also collected data from following additional sources: (a) Two-hybrid data by Tong et 
al. (b) Mass spectrometry protein complexes analysis data (filtered one) by Ho et al. After 
trimming the synonyms and other redundant entries manually, the residting network consists 
of 16174 interactions (excluding self-interactions) between 5002 vertices in terms of distinct 
open reading frames. We denote this data as "integrated" one. Topological features of the re
sulting integrated network are summarized in Table 1 and Figiu-e 1, which contain the com
parison with topological features from individual databases. We measure various quantities 
describing the structural properties of the PIN based on our dataset as follows: 

i. Giant cluster—^Among 5002 proteins, as many as 4927 (98%) forms a giant cluster, 
ii. Mean d^ee—The mean degree {k), i.e., the averse number of interaction partners per 

protein, is {k) « 6.44 excluding self-interactions, which is larger than previous estimates, {k) 
« 2-3 based on references 9,27,31. 

iii. Degree distribution—It has been reported that Poik) follows a power law, Eq. (1), with y 
« 2.4-2.7^^ or a power law with exponential cutoff in the form ofPoik) -^ {k + koY^cxpi-kl 
kc) with Y ~ 2.45, ô = 1> and kc ~ 20.̂ ^ Based on our dataset, we found, however, that the 
connectivity distribution fits better to the generalized Pareto function, Eq. (2) with Y~ 3.5 
and ko « 8.4. That is, the PIN is scale-free. Note that the exponent y « 3.5 is rather larger 
than previous measured values, y~ 2.4-^2.7. 

iv. Assortativity—The assortativity coefficient r̂ ^ is negative as r = -0.137, i.e., the PIN is 
dissortatively mixed, meaning that proteins with a small number of interaction partner are 
likely to connect to those with a large number of interaction partner, and vice versa, com
pared with its random counterpart whose r value is typically null, 

v. Average of neighbor's degree—The function (/&nn)(̂ ) exhibits a decreasing behavior with 
increasing ky a common behavior to dissortatively mixed networks. The decaying behavior 
is expressed roughly by another power law, Eq. (3), with V ~ 0.2 -- 0.3, where the value V is 
smaller than a previous estimated value 0.5 - 0.6̂ "̂  based on the dataset by Ito et al. 

vi. Clustering—The clustering coefficient, C, is obtained to be C = 0.131, larger than the 
values based on the data by Uetz et al and by Ito et al. 

vii. Hierarchical modularity—^The average clustering function C{k) is likely to be constant 
for small k, while it decreases with increasing k for large k. Such a behavior is comparable to 
the ones measured from other databases as shown in Figure 1. 
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Table /. Topological characteristics of the Yeast PIN for various datasets 

Uetz ITO JEONG MIPS DIP Integrated 

N 

<fc> 
r 
C 
N^ 
N2 

1331 
2.10 

-0.145 
0.071 
924 

8 

3279 
2.68 

-0.1 76 
0.037 
2839 

6 

1846 
2.39 

-0.162 
0.153 
1458 

7 

1991 
2.66 

0.055 
0.271 
1439 

11 

4713 
6.30 

-0.136 
0.122 
4626 

3 

5002 
6.44 

-0.137 
0.131 
4927 

3 

N is the number of proteins with at least one interacting partner, (k) the mean degree, r the assortativity 
coefficient, Cthe clustering coefficient, Ni the size of the giant cluster, and N2 the size of the second 
giant cluster. Self-interactions are eliminated throughout the analysis. 

Putting all these together, the yeast protein interaction network is scale-free, dissortatively 
mixed, highly clustered, and organized in a highly modular manner. The topological character
istics from our dataset and its comparison to other ones are summarized in Table 1 and in 
Figure 1. Such structural properties are universal for different species, so that they could be 
used as a test bed to find incomplete protein interaaions. 

Classification of Scale-Free Networks 
While the emergence of the scale-free behavior in complex networks is intriguing and has 

a number of important consequences in its own right, there may exist other hidden orders in 
the scale-free networks. In this section, we introduce a candidate for this, the load distribution, 
and show that we can classify a range of real-world and model-generated scale-free networks 
into two distinct classes. We argue that such classification is rooted from the distinct topologi
cal features of the shortest pathways in the network. 

Load Distribution 
Let us suppose that a signal is sent from a vertex / to^ (/ —>/), along the shortest pathway 

between them. In the information network such as the Internet, data packet is normally 
transmitted along the shortest pathways, however, for biological networks, it is not, even though 
the shortest pathways are the major flux canal. Nevertheless, here we consider the signal trans
port along the shortest pathways for simplicity. If there exist more than one shortest pathways, 
the signal would encounter one or more branching points. In this case, the signal is presumed 
to take one of them with equal probability, and the signal is effectively divided evenly over the 
branches at each branching point as it travels. Then the load tu ^ at a vertex k is defined as the 
amount of signals passing through that vertex k. Note that l\ ^ = 0 for vertices which do not 
fall on the shortest pathway (/->;). Also note that the contribution from the pathway (/-^/), 
may be different from that of (/-^/), ^\ ^ , even for undirected networks. Then we define the 
load ik of a vertex k as the accumulated sum of ^̂^ ^ over all pairs of senders and receivers: 

id 
Here, we do not take into account the time delay of signal transfer at each vertex or edge, 

so that all signals are delivered in a unit time, regardless of the distance between any two 
vertices. So the load is a static variable for a given number of vertices Â . The definition of the 
load is illustrated in Figure 2. Since the packets are conserved, the total load contributed by one 
pair is simply related to the shortest pathway length dy between them, by 
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Figure 2. Illustration of the definition of load: The load at each vertex due to a unit packet transfer from 
the vertex / to the vertex/ In this diagram, only the vertices along the shortest paths between (/,/) are shown. 
The quantity in parenthesis is the load due to the one firom^ to /'. 

k 

Thus we have the sum rule for : 

Y.ik^J.(dij+\)^N{N-l){D+\)^N^D, (6) 

where D is called the diameter. The quantity we defined as load is closely related to the one 
used in sociology called "betweenness centrality" (BC) which quantifies how much power is 
centralized to a person in social networks.^^'^^ 

We focus our interest on the manner how ik are distributed. Once a SF network is gener
ated artificially or adopted from the real world, we select an ordered pair of vertices (/', j) on the 
network, and identify the shortest pathway(s) between them and measure the load on each 
vertex along the shortest pathway using the modified version of the breath-first search algo
rithm introduced by Newman^^ and independently by Brandes.^^ 

We have measured load Ik of each vertex k for SF networks with various y. It is found 
numerically that the load distribution PL{() follows the power law,̂ ^ 

r8 PM) (7) 

When the indices of the vertices are ordered according to the rank of the load, we have 
^i> ... >iM' Then, the power-law behavior of the load distribution implies that 

Î -
1 1 

with 

5 = l + l/a. 

The relation, Eq. (8), is valid in the region,^^ 

\ND ifa<l 

^ n . i n - ^ n , . v / A ^ " - l A ^ ^ / l n 7 V i f « = 1 

A^^~"D i f a > l . 

(8) 

(9) 

(10) 
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Based on numerical measurements of load exponents for a variety of SF networks, we find 
that the load exponent is likely to be robust, independent of the details of network structure 
such as the degree exponent y as long as y is in the range 2 < y < 3 and other details such as the 
mean degree, the directionality of edge, and so on.^^ Thus we may categorize the SF networks 
according to the load distributions of them. We found two classes, say, class I and II. ^ For the 
class I, the load exponent is 8 « 2.2(1) and for the class II, it is 8 « 2.0(1). We conjecture the 
load exponent for the class II to be exacdy 8 = 2 since it can be derived analytically for simple 
models. We will show that such different universal behaviors in the load distribution originate 
from different generic topological features of networks. 

Real' World and Artificial Networks Investigated 
A few network examples that we find to belong to the class I with 8 « 2.2(1) include: 
i. The protein interaction network of the yeast S. cerevisiae compiled by Jeong et al̂ ^ (PINi), 

where vertices represent proteins and the two proteins are connected if they interact. 
ii. The core of protein interaction network of the yeast S. cerevisiae obtained by Ito et al (PIN2) P 
iii. The metabolic networks for 5 species of eukaryotes and 32 species of bacteria in reference 

21, where vertices represent substrates and they are connected if a reaction occurs between 
two substrates via enzymes. The reaction normally occurs in one direction, so that the 
network is directed. 

iv. The Barabdsi-Albert (BA) model"̂ ^ when the number of incident edges of an incoming 
vertex m>2. 

V. The stochastic model for the protein interaction networks introduced by Sol̂  et al.̂ ^ 
For both (i) and (v), the degree distribution is likely to follow a generalized power-law 

with a cut-off. Despite this abnormal behavior in the degree distribution for finite system, the 
load distribution follows a pure power law with the exponent 8 « 2.2(1) . The representative 
load distributions for real world networks (ii) and (iii) are shown in Figure 3A 
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Figure 3. Load distributions for the two classes: A) The PIN of the yeast (ii) and the metabolic network of 
a eukaryote Emericella nidulans (iii), belonging to the class I. B) WWW within www.nd.edu domain (xi) 
and the Internet ASes (xiii) which belong to the class II. From Goh KI et al, Proc Nad Acad Sci USA 
99:12583-8, ©2002 National Academy of Sciences, USA, with permission."̂ ^ 
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The networks that we find to belong to the class II with 5 = 2.0 include: 
vi. The Internet at the autonomous systems (AS) level as of October, 2001.^^ 
vii. The metabolic networks for 6 species of archaea in reference 21. 
viii.The WWW within www.nd.edu domain.^^ 
ix. The BA model with m= \^^ 
X. The deterministic model by Jung et al."^ 
In particular, the networks (ix) and (x) are of tree structure, where the edge load distribu

tion can be solved analytically. The load distributions for real-world networks (vi) and (viii) are 
shown in Figure 3B. 

Topology of the Shortest Pathways 
To understand the generic topological features of the networks in each class, we particu

larly focus on the topology of the shortest pathways between two vertices separated by a dis
tance d. We define the mass-distance relation M{d) as the mean nimiber of vertices on the short
est pathways between a given pair of vertices, averaged over all pairs separated by the same 
distance d. If the shortest pathway topolo^ is simple and resembles a fractal with the fractal 
dimension Dp, M(d) woidd behave like ^ dp for large d^ while if is tree-like, one would expect 
M{d) " d. We find that the mass-distance relation behaves differently for each class; for the class 
I, M{d) behaves nonlinearly (Fig. 4A-B), while for the class II, it is roughly linear (Fig. 4C-D). 

For the networks belonging to the class I such as the PIN2 (iii) and the metabolic network 
for eukaryotes (iv), M{d) exhibits a nonmonotonic behavior (Fig. 4A,B), viz., it exhibits a 
hump 2xdh-\0 for (iii) or ^/,« 14 for (iv). To understand why such a hump arises, we visualize 
the topology of the shortest pathways between a pair of vertices, taken from the metabolic 
network of a eukaryote organism, Emericella nidulans {EN), as a prototypical example for the 
class I. Figure 5A shows such a graph with linear size 26 edges {d= 26), where an edge between 
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Figure 4. Mass-distance relation for prototypical SF networks: The yeast PIN (A), the metabolic networks of 
eukaryotes (B), the Internet at the AS level (C), and the WWW within nd.edu domain (D). From Goh KI 
et al, Proc Nad Acad Sci USA 99:12583-8, ©2002 National Academy of Sciences, USA, with permission.'̂ ^ 
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Figure 5. Topology of the shortest pathways: A) The metabolic network of a eukaryote E. nidulans of length 
26. B) The Internet at AS level of length 10. C) The metabolic network of an archae Methanococcusjannaschii 
of length 20. D) WWW ofwww.nd.edu with length 20. In (A) and (C), circles denote substrates and 
rectangles denote intermediate states. From Goh KI et al, Proc Nad Acad Sci USA 99:12583-8, ©2002 
National Academy of Sciences, USA, with permission.'̂ ^ 
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Figure 6. Global snapshot of the metabolic network of £. nidulans. The metabolites are shown in blue and 
the enzymes in light blue. Highlighted in orange (metabolites) and yellow (enzymes) are the shortest 
pathways of longest length, d = 26, whose starting and end points are indicated in green. A color version 
of this figure is available online at www.Eurekah.com. 

a substrate and an enzyme is taken as the unit of length. From Figure 5 A, one can see that there 
exists a blob structure inside which vertices are multiply connected, while vertices outside are 
singly connected. The characteristic of the class I is that the blob is localized in a small region. 
To give a visual image of the existence of the localized blob, we show the global snapshot of the 
shortest pathways in the £A/̂  metabolic network in Figure 6. 

For the class II, the mass depends on distance linearly, M(d) ^ A/for large d (Fig. 4C,D). 
Despite the linear dependence, the shortest pathway topology for the case of ^ > 1 is more 
complicated than that of the simple tree structure where v4 = 1. Therefore, the SF networks in the 
class II are subdivided into two types, called the class Ila and lib, respectively. For the class Ila, A 
> 1 and the topology of the shortest pathways includes multiply connected vertices (Fig. 5B and 
C), while for the class lib, A=\ and the shortest pathway is almost singly connected (Fig. 5D). 
Examples in real world networks in the class Ila are the Internet at the AS level {A - 4.5) and the 
metabolic network for archaea (A-2.0), while that in the class lib is the WWW (A ^ 1.0). 

The WWW is an example belonging to the class lib. For this network, the mass-distance 
relation exhibits M{d) - l.Od, suggesting that the topology of the shortest pathway is almost 
singly connected, which is confirmed in Figure 5D. When a SF network is of tree structure, 
one can solve the distribution of load running through each edge analytically, and obtain the 
load exponent to be 5 = 2. 
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Figure 7. Mass-distance relations for the metabolic networks of the three domains of life: 6 archaea, 32 
bacteria, and 5 eukaryotes, respectively, are plotted. In the bottom-right panel, M{d) averaged over all species 
in each domain are compared. + stands for the data for archaea, ^ for bacteria, and ° for eukayotes. The 
straight lines have slopes 1.25 (black) and 0.5 (orange), respeaively, drawn for the eye. Note that since we 
count only the metabolites in M{d), M{d) = 0.5^ for singly-connected shortest pathways. From Goh KI et 
al, Proc Nad Acad Sci USA 99:12583-8, ©2002 National Academy of Sciences, USA, widi permission.'^^ 
A color version of this figure is available online at www.Eurekah.com. 

Application to the Metabolic Networks 
In biological perspectives, the power of the shortest pathway analysis and the resulting 

classification is exemplified by the success in the categorizing the domains of life. In Figure 7, 
we show the mass-distance relations of the metabolic networks of all 43 species that we consid
ered, grouped by the domains. Evidently, M{d) for archaea behave differently from that for 
bacteria and eukaryotes. The eukaryotes have the class I-type metabolic networks and the archaea 
have the class Il-type ones. The existence of the blob in eukaryotes and lack thereof in archaea 
implies the formation of such architectiu-e might be driven by evolutionary pressure. One 
advantage of having the class I-type topology is that it is more resilient to the targeted attack on 
highly connected vertices. It would be interesting to extend such idea to a more realistic 
situation for the metabolic stability. 
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Conclusion and Discussion 
We have studied die structural properties of the yeast protein interaction networks and 

the transport phenomena along the shortest pathways on biocomplex networks from the graph 
theoretic viewpoint. Thanks to recent development of data collection and graph analysis meth
ods, the structural properties of the yeast protein interaction networks have been unveiled 
rapidly. Here we analyzed the degree distribution, the degree-degree correlation, and the clus
tering coefficient of the yeast interaction networks for several different datasets available ' 
and also for an integrated data we constructed. The yeast PIN is found to be strongly dissortative 
and highly modular. We believe that such analysis could be helpful for understanding the 
evolution of the protein interaction networks and finding protein interactions yet undiscov
ered. Moreover, we investigate the transport problem along the shortest pathways on biocomplex 
networks such as metabolic networks. We found that the load distribution follows a power law, 
and its exponent is robust, insensitive to detailed structural properties. We could classify 
real-world networks into two classes based on this property and also on the topological features 
of the shortest pathways. In particular, we find the metabolic networks for archaea belongs to 
the different class from that for bacteria and eukaryotes. The shortest pathway structure is 
simple for archaea. While further theoretical understandings are needed in relation to the ro
bustness of the load distribution, at the moment, it would be interesting to notice that the load 
distribution is closely related to the structure of the core part of biocomplex networks. 
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CHAPTER 3 

Large-Scale Topological Properties 
of Molecular Networks 

Sergei Maslov* and Kim Sneppen 

Abstract 

B io-molecular networks lack the top-down design. Instead, selective forces of biological 
evolution shape them from raw material provided by random events such as gene 
duplications and single gene mutations. As a result individual connections in these 

networks are characterized by a large degree of randomness. One may wonder which connec
tivity patterns are indeed random, while which arose due to the network growth, evolution, 
and/or its fundamental design principles and limitations? 

Here we introduce a general method allowing one to construct a random null-model 
version of a given network while preserving the desired set of its low-level topological features, 
such as, e.g., the number of neighbors of individual nodes, the average level of modularity, 
preferential connections between particular groups of nodes, etc. Such a null-model network 
can then be used to detect and quantify the nonrandom topological patterns present in large 
networks. 

In particular, we measured correlations between degrees of interacting nodes in protein 
interaction and regulatory networks in yeast. It was found that in both these networks, links 
between highly connected proteins are systematically suppressed. This effect decreases the like
lihood of cross-talk between different functional modules of the cell, and increases the overall 
robustness of a network by localizing effects of deleterious perturbations. It also teaches us 
about the overall computational architecture of such networks and points at the origin of large 
differences in the number of neighbors of individual nodes. 

Introduction 
Complex networks appear in biology on many different levels: 
• All biochemical reactions taking place in a single cell constitute its metabolic network, 

where nodes are individual metabolites, and edges are metabolic reactions converting them 
to each other. 

• Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this 
catalytic function is ensured by the key and lock principle of the physical interaction with 
its substrate. Often the functional enzyme is formed by several mutually interacting pro
teins. Thus the structure of the metabolic network is shaped by the network of physical 
interactions of cell's proteins with their substrates and each other. 

*Corresponding author: Sergei Maslov—Department of Physics, Brookhaven National 
Laboratory, Upton, New York 11973, U.S.A. Email: maslov@bnl.gov 
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• The abundance and the level of activity of each of the proteins in the physical interaction 
network in turn is controlled by the regulatory network of the cell. Such regulatory network 
includes all of the multiple mechanisms in which proteins in the cell exert control on each 
other including transcriptional and translational regulation, regulation of mRNA editing 
and its transport out of the nucleus, specific targeting of individual proteins for degrada
tion, modification of their activity e.g., by phosphorylation/dephosphorylation or allos-
teric regulation, etc. 

• On yet higher level individual cells in a multicellular organism exchange signals with each 
other. This gives rise to several new networks such as e.g., nervous, hormonal, and immune 
systems of animals. The inter-cellular signaling network st^es the development of a multi
cellular organism fi*om the fertilized egg. 

• Finally, on the grandest scale, the interactions between individual species in ecosystems 
determine their food webs. 

In this review we concentrate on large-scale topological properties of complex biological 
networks operating on the levels of physical protein-protein interactions and transcriptional 
regidation. 

Topological Properties of Protein Networks 

Single-Node Topological Properties 
An interesting property of many biological networks that was recendy brought to atten

tion of the scientific community^ is an extremely broad distribution of nodes' degrees (often 
called connectivities in the network literature) defined as the niunber of immediate neighbors 
of a given node in the network. While the majority of nodes have just a few edges connecting 
them to other nodes in the network, there exist some nodes, that we will refer to as "hubs", with 
an unusually large number of neighbors. The degree of the most connected hub in such a 
network is typically several orders of magnitude larger than the average degree in the network. 
Often the number of nodes N{K) with a given degree A" can be approximated by a scale-free 
power law form N{K) = K^'in which case the network is referred to as scale-free.^ 

In this review we concentrate on large-scale properties of physical interaction and regida-
tory protein networks. In Figiure 1 we show the presently known"^ set of transcriptional regula
tions in a procaryotic bacterium Escherichia coli. For comparison, Figure 2 shows the presendy 
known transcriptional regulations in a simple single-cell eucaryote, Saccharomyces cerevisiae 
(bakers yeast). 

Both yeast and E. coli regulatory networks are characterized by the above mentioned broad 
distribution of out-degrees K^ut of its protein-nodes defined as the number of directed arrows 
emanating from individual regulatory proteins. Clearly visible in Figures 1 and 2 are the hub 
regulatory proteins that control the expression level of an unusually large number other pro
teins. For example, in the E. coli network one can see an extremely highly connected node in 
the lower half of Figure 1. It is the CAP protein that senses the glucose level, and in response to 
it orchestrates a cooperative action of a large battery of other proteins related to its utilization. 

By comparing Figures 1 and 2 one gets an impression that the apparent growth in complex
ity of the transcription regulatory network from procaryotes to eucaryotes is achieved mosdy by 
the virtue of an increase in the typical number of regulatory inputs of a protein (in-degree) A „̂. 

To quantify this further in Figure 3A we compare distributions of nodes' in-degrees in 
transcriptional regulatory networks of yeast (diamonds, dashed-line) and E. coli (circles, 
solid-line). This figure also includes the set of currendy known transcriptional regulations in 
human {Homo sapiens) as extracted by Ariadne Genomics from abstracts of publications cited 
in MEDLINE. One can clearly see that the distribution of in-degrees in human is broader than 
that in yeast, which in its turn is significandy broader than that in the E. coli. Indeed, while in 
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Figure 1. Presently known transcriptional regulations in E. coli. Green and red arrows denote positive and 
negative regulations correspondingly. Nodes in this network represent operons (groups of genes transcribed 
onto a single mRNA) and arrows (edges) - direct transcriptional regulation of a downstream operon by a 
transcription factor encoded in the upstream operon. This network consists of 606 regulations of 424 
operons by transcription faaors contained in 116 different operons. A color version of this figure is available 
online at http://www.Eurekah.com. 

the E. coli Ki„ has an exponential distribution ranging only between 0 and 6, in yeast its range 
is already between 0 and 15 and in human—between 0 and 18 and the tails of the Ki„ distribu
tion in both eucaryots start to significantly deviate from the exponential functional form. 

The above observations are in agreement with two recent empirical studies: C.K. Stover et 
al found that the number of transcription factors (Â ^̂ .) in procaryotic organisms grows as a 
square of the number of genes (AO: A'^ °^ N^. Very recendy E. van Nimwegen^ has extended this 
resiJt to eucaryotes where he also observed a superlinear scaling Â ^ oc JV^- . The exact equation 

7 V ^ / 7 V = ( ^ „ ) / < A ; „ , > (1) 
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Figure 2. Presently known^ transcriptional regulations in baker s yeast S. cerevisiae. This network consists 
of 1289 regulations of 682 proteins by 125 transcription factors. Green and red arrows denote positive and 
negative regulations correspondingly. Vertices corresponding to transcription factors are filled while those 
of remaining proteins are left empty. Apart from the absence of clear signs of modularity (the network has 
a unique giant connected component or module and only a few small small disconnected modules), one 
notices several striking features related to hub proteins that each regulate many other proteins: (1) They tend 
to regulate genes with just a few regulatory inputs. As a result of this they are well separated form each other, 
and positioned on a periphery of the network. This will be later quantified in the correlation profile of this 
network (Figs. 7, 9). (2) It is much more fi-equent for a protein to regulate many other proteins, than to be 
regulated by many. 

relates the fraction of transcription factors in the genome of an organism to the average in- and 
out-degrees of its transcription regidatory network. Thus a direct consequence of the growth of 
the ratio Nfrl A^with A^is the increase in complexity of regulation of individual genes: (A!i„). 
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Figure 3. A) The histogram N(Kift) of nodes' in-degrees Ki„ in transcription regulatory networks of 
human (squares, soHd line), yeast (diamonds, dot-dashed line), and E. coli (circles, solid line). This 
histogram in human is noticeably broader than in yeast, which in its term broader than in the E. coli. 
B) The histogram N{Kout) of nodes' out-degrees Kg^t ^^ transcription regulatory network in human 
(squares, solid line), yeast (diamonds, dot-dashed line), and E. coli (circles, solid line). Overall, these 
three histograms are rather similar to each other. Straight lines are power law fits with the slope - 2 (solid) 
and -1 (dashed). To improve the statistics all histograms in this panel were logarithmically binned into 
3 bins per decade. 

The distribution ofK^ut shown in Figure 3B appears to be about equally broad in E. coli, 
yeast and human. It ranges between 1 and about 70 regulations in all three networks. The 
power-law fit N{Kout) -̂  K'l^ gives y « 2 in E-coli and human, while in yeast the distribution 
seems to have an initial slope characterized by y « 1 followed by a sharper decay for Kgut > 30. 
Fiowever, due to a limited range and an incomplete and possibly anthropogenically biased 
nature of the data (databases of research articles) one should not take these fits too seriously: at 
the very least they all indicate an imusually broad distribution of out-degrees in transcriptional 
regulatory networks. 

Comparison of the Figiu"e 3A and B also shows that in all organisms the in-degree distri
bution is much more narrow than that of the out-degree. That is a simple consequence of the 
fact that regulatory proteins (those with a nonzero Kg^t) constitute just a small fraction of all 
proteins in the cell. 

Apart from transcriptional regulatory networks, metabolic networks, and protein-protein 
physical interaction networks^ are characterized by a very broad distribution in the number of 
neighbors of their individual nodes. A small part of such physical interaction network in baker's 
yeast is visualized in Figure 4. 

One aspect of a broad distribution of node degrees in protein interaction and regulatory 
networks, is the possibility of amplification and exponential spread of signals propagating in 
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the network. The upper bound of the one step amplification of some biochemical signal propa
gating in a directed network is given by 

Adir) _ \^in^out) 

{Kin) 
(2) 

This amplification factor A^*^^ measures the average number of neighbors to which the 
signal can be potentially broadcasted in one propagation step. The above formula, derived by 
Newman in reference 9 follows from the observation that a signal enters a given node with a 
probability proportional to its in-degree A „̂, and leaves along any of its A!̂ ^̂  outgoing links. For 
A^ *^' < 1 any signal eventually dies out and hence affects only a small fraction of nodes in the 
network. On the other hand, for A^ ' > 1 signals propagating in the network might be expo
nentially amplified, and thus each of them could influence (and possibly interfere with) other 
signals over the entire network. 

The degree A în undirected networks cannot be decomposed into in- and out- compo
nents. Hence the upper bound on amplification of signals is given by the amplification factor 
Aundir),^ 

^ --(IT- '̂̂  
In the above equation we take into account the fact that the signal cannot reach new 

nodes along the edge by which it came to a given node. Hence the use of AT- / in the enumera
tor. The amplification factor j^^^^^f in scale-free networks with y < 3 is very large and sensitive 
to the degrees of the highest connected hub-nodes. Here the borderline case 
separates two different regimes. For A^^^*^^ < 1 the network breaks into many components 
isolated from each other, while {OTA^^^^^ > 1 it consists of a unique "giant" component, con
taining the majority of all nodes, and a few small disconnected components. 

The direct calculation of the directed amplification ratio .4̂ ^̂ '"̂  in the transcription regu
latory network gives A^^ ^^ = 1.08 in the E. coli and ^L^^/ = 0.58. Hence as directed networks 
they are both below or approximately at (in E. coli) the critical point Ac = \. Therefore, 
signals propagating in these networks cannot exponentially amplify, which limits the extent 
of cross-talk between them. However if both these regulatory networks are treated as undi
rected (i.e., one temporarily forgets about the arrows on their edges) one gets significantly 
overcritical amplification ratios v4 '̂'"^ '̂'̂ » 1: Aj^"""^''^ = 10.5 in the E, coli and A^^^J'^ = 13.4 
in yeast. This explains why the majority of nodes in Figures 1 and 2 belong to the largest 
connected component, and why the size of disconnected components is so small. Apparendy 
the cross-talk presents much bigger potential problem in the network of physical interac
tions between yeast proteins (Fig. 4), where A^ppi = 26.3. In the last chapter of this review 
we would return to the question of cross-talk and demonstrate how higher-level topological 
properties detected in both physical and regulatory networks in yeast^^ help to reduce such 
undesirable interference between signals. 

Local Reufiring Algorithm: Constructing a Randomized NuU-Model Network 
The set of degrees of individual nodes is an example of a low-level (single-node) topologi

cal property of a network. While it answers the question about how many neighbors a given 
node has, it gives no information about the identity of those neighbors. It is clear that most 
functional properties of networks are defined at a higher topological level in the exact pattern 
of connections of nodes to each other. However, such multi-node connectivity patterns are 
rather difficult to quantify and compare between networks. 

In this chapter we concentrate on multi-node topological properties of protein networks. 
These networks (as any other biological networks) lack the top-down design. Instead, selective 
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Figure 4. Network of physical interaaions between nuclear proteins in yeast. Here we show the subset of 
protein-protein physical interactions reponed in the full set of reference 8 consisting of 318 interactions 
between proteins that are known to be localized in the yeast nucleus. The resulting network involves 329 
proteins. Note that most neighbors of highly connected proteins have rather low connectivity. This feature 
will be later quantified in the correlation profile of this network (Figs. 6, 8). 

forces of biological evolution shape them from raw material provided by random events such as 
mutations within individual genes, and gene duplications. As a result their connections are 
characterized by a large degree of randomness. One may wonder which connectivity patterns 
are indeed random, and which arose due to the network growth, evolution, ans/or its funda
mental design principles and limitations? 

To this end we first construct a proper randomized version (null model) of a given network. 
As was pointed out in the general context of complex scale-free networks, a broad distribution 
of degrees indicates that the degree itself is an important individual characteristic of a node and 
as such it shoidd be preserved in the randomized null-model network. ̂ ^ In addition to degrees 
one may choose to preserve some other low-level topological properties of the network in ques
tion. ̂ ^ Any measurable topological quantity, such as e.g., the total number of edges connecting 
pairs of nodes with given degrees, the number of loops of a certain type, the number and sizes of 
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Figure 5. One step of the random local rewiring algorithm. A pair of edges A->B and C->D is randomly 
seleaed. The two edges are then rewired in such a way that A becomes conneaed to D, while C to B, 
provided that none of these new edges already exist in the network, in which case the rewiring step is aborted 
and a new pair of edges is selected. An independent random network is obtained when the above local switch 
move is performed a large number of times, say several times in excess of the total number of edges in the 
system. Note that for directed networks this rewiring algorithm separately conserves both the in- and out-
degrees of each individual node. 

components, the diameter of the network, can then be measured in the real complex network 
and separately in its randomized version. One then concentrates only on those topological prop
erties of the real network that significantly deviate from its null model counterpart. 

An algorithm giving rise to a random network with the same set of individual node de
grees as in a given complex network was proposed in references 10, 14 and 15. It consists of 
multiple repetitions of the following simple switch move (elementary rewiring step) illustrated 
in Figure 5: 

Randomly select a pair of edges A—>B and C—>D and rewire them in such a way that A 
becomes connected to D, while C to B. 

To prevents the appearance of multiple edges connecting the same pair of nodes, the 
rewiring step is aborted and a new pair of edges is selected if one or two of the new edges 
already exist in the network. A repeated application of the above rewiring step leads to a ran
domized version of the original network. The set of MATLAB programs generating such a 
randomized version of any complex network can be downloaded from. 

Sometimes it is desirable that the null-model random network in addition to nodes' de
grees conserves some other topological quantity of the real network. In this case one could 
supplement the random rewiring algorithm described above with the Metropolis acceptance/ 
rejection criterion^'^ of a switch move. 

For the sake of concreteness let's assume that one wants to generate a random network 
with the same set of nodes' degrees and the same number Â  of triangles as the real undirected 
network. Indeed, the number of triangles in a network is related to its "clustering coefficient" 
routinely used as a measure of its modularity. ̂ ^ Hence, by conserving N one generates a 
null-model with the same average level of modularity as the original complex network. 

The Metropolis version^ ̂  of the random rewiring algorithm uses an artificial energy func
tion H that favors the number of triangles in a random network Â '̂ ^ to be as close as possible 
to its value A^in the real network: 

H = — - ^ (4) 
A^ 
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The Metropolis rules in this case allow for any local rewiring step that lowers the energy H 
or leaves it unchanged. However, those steps that lead to a A// increase in the "energy" H are 
accepted only with a probability exp(-A///7). Here the exact rules of the algorithm depend on 
(typically very small) "temperature" T introduced to prevent the sequence of rewiring steps 
from getting stuck in a local (often suboptimal or nonrepresentative) energy minimum. In 
order to get a random network with Â '̂ ^ sufFiciendy close to N the temperature should be 
selected to be as small as possible without sacrificing the ergodicity of the problem. In the end 
one could always "prune" the resulting ensemble of random networks by leaving only networks 
widiA^''^ = Â . 

Multi-Node Properties: Correlation Profile 
The correlation profile of any large complex network quantifies correlations between de

grees of its neighboring nodes. We have calculated correlation profiles of: 
1. The protein interaction network consisting of 4475 physical interactions between 3279 

yeast proteins as measured in the most comprehensive high-throughput yeast two-hybrid 
screen.̂  A subset of this network is shown in Figure 4. 

2. The transcriptional regulatory network in yeast (Fig. 2), consists of 1289 (1047 positive 
and 242 negative) regulations by 125 transcription factors^ within the set of 682 proteins. 

3. While the regulatory network is naturally directed, the network of physical interactions 
among proteins in principle lacks directionality. Randomized versions of these two molecu
lar networks were constructed by randomly rewiring their edges, while preventing 
"unphysical" multiple connections between a given pair of nodes, as described in the previ
ous chapter. By construction this algorithm separately conserves the in- and out-degrees of 
each node. Therefore, in a randomized version of the regulatory network each protein has 
the same numbers of regulators and regulated proteins as in the original network. Taking in 
consideration the bait-prey asymmetry mentioned in,̂ ® when generating random counter
part of the interaction network we chose to separately conserve numbers of interaction 
partners of the bait-hybrid and the prey-hybrid of every protein. 

The topological property of the network giving rise to its correlation profile is the number 
edges N{Ko,Ki) connecting pairs of nodes with degrees KQ and Ki. To find out if in a given 
complex network the degrees of interacting nodes are correlated, N{KQ,K\) shoidd be com
pared to its value NXKo.Ki) ± ANr{Ko,K\) in a randomized network, generated by the edge 
rewiring algorithm. Wlien normalized by the total number of edges E, N{KQ,K\) defines the 
joint probability distribution P{KQyK\) - N{Ko,Ki)/E of degrees of interacting nodes. Any cor
relations would manifest themselves as systematic deviations of the ratio 

R{Ko.Ki) = P{Ko,K{)IPr{Ko.Ki) (5) 

away from 1. Statistical significance of such deviations is quantified by their Z-score 

Z{Ko.Ki) = (PiKo^Ki) - Pr{Ko,Kx))lGr{Ko,K,\ (6) 

where OXKQ^KX) = ANXKoyKij/N is the standard deviation of Pr(Ko,Ki) in an ensemble of 
randomized networks. 

Figures 6 and 7 show the ratio R{KQ,K\) as measured in yeast interaction and transcription 
regulatory networks, respectively. In the interaction network KQ and Ki are numbers of neigh
bors of the two interacting proteins, while in the regulatory network KQ is the out-degree of the 
regulatory protein and Kj—^the in-degree of its regulated partner. Thus by its very construction 
P{KQyK\) is symmetric for the physical interaction network but not for the regulatory network. 
Figures 8 and 9 plot the statistical significance Z{KoyKj) of deviations visible in Figures 6 and 7 
correspondingly. To arrive at these Z-scores 1000 randomized networks were sampled and 
degrees were logarithmically binned into two bins per decade. 
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Figure 6. Correlation profile of the protein interaaion network in yeast. The ratio R{KQJC\)=P{KQJC\)I 
Pr(KoyKi), where P(KQyK\) is the probability that a pair of proteins with KQ and Ki interaction partners 
correspondingly, direcdy interaa with each other in the full set of reference 8 while Pr{KoyK\) is the same 
probability in a randomized version of the same network, generated by the random rewiring algorithm 
described in the text. Note the logarithmic scale of both axes. 

Figure 7. Correlation profile of the transcription regulatory network in yeast. The ratio R{Kout>Kir!} = 
P(Kout,Kir!)/Pr{Kout>Kir!)y where P(K^t>^i„) is the probability that a protein node with the out-degree K^^t 
transcriptionally regulates the protein node with the in-degree Ki„ in the transcription regulatory network 
obtained firom the YPD database^ (Fig. 2), while PJiKoupKi^ is the same probability in a randomized version 
of the same network, generated by the random rewiring algorithm described in the text. Note the logarith
mic scale of both axes. 

The combination of R- and Z^profiles reveals the regions on the K^ - K\ plane, where 
connections between proteins in the real network are significantly enhanced or suppressed, 
compared to the null model. In particular, the blue/green region in the upper right corner of 
Figures 6-9 reflects the reduced likelihood that two hubs are directly linked to each other, while 
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Figure 8. Statistical significance of correlations present in the protein interaaion network in yeast. The Z-score 
of correlations Z{KQ,KX) = {P{KQ,KI) - PXKQ,Ki))/Gr{KQ,K\), where P{KQ,KI) is the probability that a pair of 
proteins with KQ and K\ interaction partners correspondingly, direcdy interaa with each other in the fiill set 
of reference 8 while Pr(Ko,K\) is the same probability in a randomized version of the same network, generated 
by the random rewiring algorithm described in the text, and OV(Ai,A"i) is the standard deviation o(Pf(Ko,K\) 
measured in 1000 realizations of a randomized network. Note the logarithmic scale of both axes. 

Figure 9. Statistical significance of correlations present in the transcription regulatory network in yeast. The 
ratio Z(A;ut>^n) = (^(^ut»^n) -/'r(^ut>^n))/0"r(A;ut>^n). where/^(A^uD^n) is the probability that a protein 
node with the out-degree A^ut transcriptionally regulates the protein node with the in-degree Kin in the 
network from the YPD database,^ while PriKouv^in) is the same probability in a randomized version of the 
same network, generated by the random rewiring algorithm described in the text, and CT;.(Â uf A!in) is the 
standard deviation of PXA^uo^n) measured in 1000 realizations of a randomized network. Note the loga
rithmic scale of both axes. 

red regions in the upper left and the lower right corners of these figures reflect the tendency of 
hubs to associate with nodes of low degree. One should also note a prominent feature on the 
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diagonal of the Figure 6 and 8 corresponding to an enhanced affinity of proteins with between 
4 and 9 physical interaction partners towards each other. This feature can be tentatively attrib
uted to members of multi-protein complexes interacting with other proteins from the same 
complex. The above range of degrees thus correspond to a typical number of direct interaction 
partners of a protein in a multi-protein complex. When we studied pairs of interacting proteins 
in this range of degrees we found 39 of such pairs to belong to the same complex in the recent 
high-throughput study of yeast protein complexes. ̂ ^ This is about 4 times more than one 
would expect to find by pure chance alone. 

Robustness of the Correlation Profile with Respect to Potential 
Errors in the Data 

When analyzing molecular networks one should consider possible sources of errors in the 
underlying data. Two-hybrid experiments in particular are known to contain a significant number 
of false positives and probably even more of false negatives. 

The evidence of a significant number of false negatives lies in the fact that only a small 
fraction of fiinctionally plausible interactions were detected in both directions (the bait-hybrid 
of a protein A interacting the prey-hybrid of a protein B as well as the prey-hybrid of a protein 
A interacting the bait-hybrid of a protein B). It is also attested by a relatively small overlap in 
interactions detected in the two independent high-throughput two hybrid experiments. ' 
There exist a number of plausible explanations of these false negatives. First of all, binding may 
not be observed if the conformation of the bait or prey chimeric protein blocks relevant inter
action sites or if it altogether fails to fold properly. Secondly, it is not entirely clear if the 
number of cells in batches used in high-throughput two hybrid experiments is sufficient for 
any given bait-prey pair to meet in at least one cell. Finally, 391 out of potential 5671 baits in 
reference 8 were not experimentally tested because they were found to activate the transcrip
tion of the reporter gene in the absence of any prey proteins. 

Several sources of false positives are also commonly mentioned in the literature: 
• In one scenario spurious interactions of highly connected baits are thought to arise due to a 

low-frequency indiscriminate activation of the reporter gene in the absence of any prey 
proteins. Such false positives (if they exist) are easy to eliminate by using curated 
high-throughput datasets which contain only protein pairs that were observed, say, at least 
3 times in the course of the experiment. We have shown that all qualitative features of the 
correlation profile of the protein interaction network reported above remain unchanged 
when one uses such curated datasets.̂ ^ 

• In another scenario the interaction between proteins is real but it never happens in the 
course of the normal life cycle of the cell due to spatial or temporal separation of participat
ing proteins. However, it is hard to believe that such nonfunctional interactions would be 
preserved for a long time in the course of evolution. Hence, it is dubious that such 
false-positives would be ubiquitous. 

• In yet another scenario an indirect physical interaction is mediated by one or more un
known proteins localized in the yeast nucleus. However, since in two-hybrid experiments 
bait and prey proteins are typically highly overexpressed, it is only very abundant interme
diate proteins that can give rise to an indirect binding. The relative insignificance of indi
rect bindings is attested by a relatively small number of triangles (178 vs - 100 in a random
ized version) in the protein interaction network. Indeed, an indirect interaction of a protein 
A with a protein B effectively closes the triangle of direct interactions A - C and C - B with 
an intermediate protein C. 
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Discussion: What It May All Mean? 
The large-scale organization of molecular networks deduced from correlation profiles of 

protein interaction and transcription regulatory networks in yeast is consistent with compart-
mentalization and modularity characteristic of many cellular processes."̂ "̂  Indeed, the suppres
sion of connections between highly-connected proteins (hubs) suggests the picture of 
semi-independent modules centered around or regulated by individual hubs. On the other 
hand, the very fact that these molecular networks do not separate into many isolated compo
nents but are dominated by one "giant component" suggests that this tendency towards modu
larity is not taken to its logical end. The observed patterns can in fact be characterized as "soft 
modularity", where interactions between individual modules are suppressed but not completely 
eUminated. Thus on sufficiendy large scale molecular networks exhibit system-wide properties 
making their behavior different from that of a set of mutually independent modules. 

A further implication of the deficit of connections between highly connected proteins 
(Figs. 6, 7) is in the suppression of propagation of deleterious perturbations over the network. 
It is reasonable to assume that certain perturbations such as e.g., a significant change in the 
concentration of a given protein (including it vanishing altogether in a null-mutant cell) with 
a ceratin probability can affect its first, second, and sometimes even more distant neighbors in 
the corresponding network. While the number of immediate neighbors of a node is by defini
tion equal to its own degree KQ, the average number of its second neighbors is bound from 
above by KQ{{K\ - \))KO and thus depends on the correlation profile of the network. Since 
highly connected nodes serve as powerful amplifiers for the propagation of deleterious pertur
bations it is especially important to suppress this propagation beyond their immediate neigh
bors. It was argued that scale-free networks in general are very vulnerable to cascading failures 
started at individual hubs."^ '̂ The deficit of edges direcdy connecting hubs to each other 
reduces the branching ratio around these nodes and thus provides a certain degree of protec
tion against such accidents. 

Finally, we would like to mention that the tendency of highly connected proteins to be 
positioned at the periphery of signaling and regulatory networks teaches us something about 
the overall computational architecture of such networks and origins of their broad degree dis
tributions. Indeed, the peripheral position of hubs indicates that they presumably execute col
lective orders of other more "computationally-involved" regulators, rather than performing 
computations and making decision on their own. This principle is nicely illustrated in the 
lambda-phage regulatory network (see Fig. 10), where the decision making/computation is 
done by CI , CII, and Cro proteins, which (with the exception of CI) are characterized by 
low-to-intermediate out-degrees and high in-degrees. Their orders on the other hand are ex
ecuted through the N and LexA hub-proteins which have high out-degree and low in-degree. 

Broad degree distributions observed in molecular networks presumably reflect the widely 
different needs associated with different fixnctions that a living cell needs to cope with changes in 
its environment. Thus highly connected regulatory proteins usually correspond to rather com
plicated tasks such as e.g., the heat shock response, where about 40 chaperones are controlled by 
a single sigma factor, or the chemotaxis where a few regulatory proteins switch on a large number 
of proteins associated with flagella, flagellar motor, and sensing of the environment. 

To summarize the above discussion, it is feasible that molecular networks operating in 
living cells have organized themselves in a particular computational architecture that makes 
their dynamical behavior both robust and specific. Topologically the specificity of different 
functional modules is enhanced by limiting interactions between hubs and suppressing the 
average degree of their neighbors. On a larger scale there is evidence for interconnections 
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Figure 10. Lambda-phage regulatory network. The aaual computation is done by centrally positioned Cro 
and CII that have low-to-intermediate out-degree and relatively large in-degree. Their decision is transmit
ted to peripherally positioned, highly connected hub-proteins such as N and LexA, which in their turn 
broadcast it to the whole battery of response genes. As a curiosity, note that the HflB protease from E. coifs 
heat-shock response network interacts with the lambda-phage regulatory network. Another curiosity: the 
HflB direcdy regulates DnaK, which at least indirecdy has substantial influence on the overall transcription 
of ribosomal RNAs of the E. colt. Thus the lambda network integrates as a small subnetwork in the overall 
bacterial regulatory network o(E. colt. The notation used in this figure: I indicates positive regulation, J_ 
indicates passive negative regulation; ± indicates active degradation through the protease activity. 

between these modules, although the principles of such global organization of living cells 
remain unclear from the present day data and analysis tools. 
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CHAPTER 4 

The Connectivity of Large Genetic Networks: 

Design, History, or Mere Chemistry? 

Andreas Wagner* 

Abstract 

I review evolutionary explanations of broad-tailed connectivity or degree distributions 
observed in metabolic networks and protein interaction networks. Self-assembled chemical 
reaction networks show degree distributions similar to those observed for metabolic net

works, which argues against the postulated role of natural selection in maintaining this degree 
distribution. In addition, metabolic networks contain traces of their ancient history in the 
form of highly connected metabolites. Similarly to the degree distribution of metabolic net
works, that of protein interaction networks can be explained without resorting to natural selec
tion on the network level. I present data suggesting that highly connected proteins are not 
distinguishably older than other proteins, and explain this finding with a simple model of how 
a proteins degree changes in evolutionary time. 

Introduction 
Graph representations of biological networks have become popular with the recent accu

mulation of functional genomic data on such networks. Graphs are mathematical objects con
sisting of nodes and edges connecting these nodes. The degree or connectivity d oi 2i node is the 
niunber of edges emanating from it, or, equivalendy, the nmnber of its neighbors in the graph. 
Multiple biological networks show a connectivity or degree distribution that is broad-tailed 
and often consistent with a power-law. That is, when choosing a node from such a network at 
random, the probability P(d) that it has d interaction partners is proportional to d^, y being 
some constant that is characteristic of the network. Most prominendy, this holds for metabolic 
networks, whose nodes can be substrates, reactions, or both, depending on the network repre
sentation one chooses, and protein interaction networks, where two nodes (proteins) are con
nected if they interaa physically inside the cell. Broad-tailed degree distributions have also 
been demonstrated for other cellular networks. ̂ '̂  

The degree distribution of a genetic network can be viewed as a feature of an organism like 
any other feature. It raises the same basic question: Why this and not some other degree distri
bution? There are three possible answers. First, a network's degree distribution could be a mere 
consequence of chemistry, the chemistry of DNA, RNA, and proteins, and the patterns of 
molecidar interactions this chemistry allows. This possibility may seem far-fetched, given that 
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molecular networks have many biological functions which may constrain their structure. How
ever, this possibility is not without precedent. An illustrative example exists on a lower level of 
biological organization, protein structure. The thousands of currently known protein struc
tures have a highly skewed distribution. There is a small number of Trequent' tertiary struc
tures, such as theTIM-barrel or the Rossman fold, found in nucleotide-binding proteins. While 
these folds are small in number, many proteins adopt them. Conversely, the majority of tertiary 
structures are *unifolds' that may have originated only once in evolution, and are adopted by 
few proteins. '^ Does this skewed distribution of protein structures contain important infor
mation about design principles of proteins? For instance, do frequent structures have superior 
properties that lead to their frequent occurrence in proteins? The likely answer is no. Similarly 
skewed distributions of structures—a small number of excessively frequent structures and a 
vast majority of rare structures—occur in simple models of protein folding, models where 
polymers composed of parts with properties similar to amino acids fold into three-dimensional 
structures.'^'^ The distribution of protein structures may be a mere consequence of polymer 
chemistry. 

The second possibility is that the degree distribution of genetic networks might somehow 
reflect their history, much like the jumble of streets in a medieval city reflects the city's growth 
over centuries. An important class of mathematical models, originally devised to explain 
power-law degree distributions in growing networks like the internet, do indeed link a network's 
history to its degree distribution. In their original and simplest incarnation, such models in
volve only two simple rules that change the structure of a network.^ First, the network grows 
through addition of nodes. Second, newly added nodes connect to previously existing nodes, 
such that already highly connected nodes are more likely to receive a new connection than 
nodes of lesser connectivity. Over many cycles of node addition and linking to existing nodes, 
a power law degree distribution emerges. A great variety of variations to this model have been 
proposed (reviewed in ref 10). They differ gready in detail but retain in some way or another 
the rule that new connections preferably involve highly connected nodes. Importandy, most 
such models make a key prediction: Highly connected nodes are old nodes, nodes having been 
added very early in a network's history. In this sense, they link a network' degree distribution to 
its history. 

The third possibility is that molecular networks have their degree distribution, because 
this structure is somehow best suited to the network's biological function. From an 'organismal 
design perspective, this is the most interesting possibility. It means that natural selection has 
shaped the global connectivity pattern of a network, and that network structure reveals some
thing about the design principles of biological networks. 

A recent hypothesis postulates that the observed broad-tailed degree distribution of 
biological networks is indeed a product of natural selection.^ ̂ '̂ ^ This ^selectionist' hypoth
esis is based on the following observation. In networks with a broad-tailed degree distribu
tion, the mean distance between network nodes that can be reached from each other (via a 
path of edges) is very small and it increases only very little upon random removal of nodes. 
(In contrast, this mean distance or mean path length increases drastically when highly con
nected nodes are removed.) A network's mean path length can be thought of as a measure of 
how ^compact' the network is. In graphs with other degree distributions, mean path length 
increases more substantially upon random node removal, and the network becomes more 
easily fragmented into disconnected components. These observations have led to the propo
sition that robustly compact networks confer some advantages on cells, and that a broad-tailed 
degree distribution reflects the action of natural selection on the degree distribution itself 
The nature of this advantage is unknown, except in the case of metabolic networks, where 
one can venture an informed guess. A possible advantage of small mean path lengths in 
metabolic networks stems from the importance of minimizing transition times between 
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metabolic states in response to environmental changes.^^'^^ Networks with robustly small 
diameter may adjust more rapidly to environmental perturbations. 

Metabolic Networks and Planetary Atmospheres 
While the above speculation makes a weak case for a selectionist explanation of broad-tailed 

degree distributions in metabolic networks, another line of evidence makes a more solid case 
against it. One can ask whether power-law degree distributions might not be features of many 
or all large chemical reaction networks, whether or not part of an organism, whether or not 
they have a biological function which benefits from a robust network diameter. If so, then 
metabolic network degree distributions would join the club of other power-laws (such as ZipPs 
law of word frequency distributions in natural languages) whose existence does not owe credit 
to a benefit they provide. There is indeed evidence supporting this possibility. 

Gleiss and collaborators^^ have compiled publicly available information on a class of large 
chemical reaction networks that exist not only outside the living, but on spatial scales many 
orders of magnitude larger than organisms. These are the chemical reaction networks of plan
etary atmospheres, networks whose structure is largely determined by the photochemistry of 
their component substrates. The available data stems not only from earth's atmosphere, but 
also from other solar planets including Venus and Jupiter, planets with chemically diverse at
mospheres. These planets' atmospheres have been explored through remote spectroscopic sens
ing methods and by planetary probes. The chemical reaction networks in these atmospheres, 
despite being vasdy different in chemistry, have a degree distribution consistent with a power 
law. This suggests that power-law distributions may be very general features of chemical 
reaction networks. The reasons why we observe them in cellular reaction networks may have 
nothing to do with the robustness they may provide. 

Although such comparisons to *self-assembled' networks suggest an important influence 
of chemistry on metabolic network structure, another aspect of metabolic networks should not 
be overlooked. Metabolic networks have a history. They have not been assembled in their 
present state at once. They have grown, perhaps over a billion years, as organisms increased 
their metabolic and biosynthetic abilities. In understanding their structure, we have to take this 
history of biological networks into account. 

We may never know enough about the history of life and metabolism to distinguish be
tween different ways in which metabolism might have grown. However, we can address the key 
prediction of many network growth models I discussed above. Are highly connected metabolites 
old metabolites? The answer will contain a speculative element, because the oldest metabolites 
are those that arose in the earliest days of the living, close to life's origins. In addition, life forms 
as different as bacteria and humans have core metabolisms with a very similar structure. This 
suggests that the growth of metabolism has essentially been completed at the time the common 
ancestor of extant life emerged. Because this common ancestor does no longer exist, the de
tailed structure of its metabolism will remain in the dark forever. However, various hypotheses 
about life's origin make predictions on the chemical compounds expected to have been part of 
early organisms. There are several of these hypotheses, and they are complementary in the 
respect most important here: They emphasize the origins of different aspects of life's chemistry. 
Some emphasize the origins of the earliest genetic material, RNA. Others make postulates 
about the composition of the earliest proteins. Yet others ask about the earliest metabolites in 
energy metabolism. Each of them makes a statement about a different aspect of early life's 
chemistry. 

Figure 1 shows the twelve most highly connected metabolites of the E. coli metabolic 
network graph. Every single one of them has been part of early organisms according to at 
least one origin-of-life hypothesis. Colored in green are compounds such as coenzyme A thought 
to have been a part of early RNA-based organisms.^^ The RNA moieties such compounds 
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Twelve key metabolites in E. coli 
ranked by degree ("connectivity^) 

gilltamute (51) 
pyriiviitc (29) 

a-ketogliitarate (27) 
gliitamiiie (22) 

siicciitate (14) 
3-phosphoghcerate (13) 
serine (13) 

Figure 1. Highly conneaed metabolites in Escherichia coli are evolutionarily old. The list shows the 12 most 
highly connected metabolites in the E. coli core intermediary metabolic network. The numbers in paren
theses show the degree (number of neighbors) of a metabolite in the substrate network as defined by Wagner 
and Fell.̂  Green indicates proposed remnants of a surface metabolism or an RNA world. Red indicates 
proposed early amino acids. Blue indicates proposed early metabolites (in the tricarboxylic acid cycle or 
glycolysis). The network was generated after the elimination of the compounds NAD, ATP, and their 
derivatives. These are even more highly connected than the compounds shown here. They are also evolu
tionarily ancient. A color version of this figure is available online at http://www.Eurekah.com. 

contain are present in all organismal lineages. Some compounds in this group, such as 
tetrahydrofolate and coenzyme A, are thought to have played a role in precellular life that may 
have taken place on polykationic surfaces. These compounds are elongate molecules with one 
anionic terminus. They are therefore able to flexibly tether other molecules to the substrate, 
thus localizing them while simidtaneously increasing their potential to react with other com
pounds.'^^ Colored in red in Figure 1 are amino acids that were part of early proteins, based on 
likely scenarios for the early evolution of the genetic code.'^^ Shown in blue are compounds 
likely to have been a part of early energy and biosynthetic metabolism. Glycolysis and theTCA 
cycle are perhaps the most ancient metabolic pathways, and various of their intermediates 
(a-ketoglutarate, succinate, pyruvate, 3-phosphoglycerate) occur in Figure 1. ' ' The po
tential relation between evolutionary history and connectivity of metabolites corroborates a 
postulate put forth by Morowitz,^^ namely that intermediary metabolism recapitulates the 
evolution of biochemistry. 

In sum, the observation that power law degree distributions occur in self-assembled chemical 
reaction networks that were never under the influence of natural selection suggests that such 
distributions are a rather common feature of such networks. Natural selection on the level of 
this degree distribution is thus unnecessary to understand their origin. Metabolic networks 
have grown by addition of new metabolites, and their degree distribution is in tentative agree
ment with a general prediction of many network growth models: Highly connected metabo
lites tend to be phylogenetically old metabolites, metabolites that have been added very early in 
the evolution of metabolism. 
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Protein Interaction Networks 
In contrast to chemical reaction networks, large and self-assembled protein interaction 

networks do not exist outside living cells. Thus, we can not hope to use arguments from 
self-assembled networks to argue for or against the role of natural selection in explaining a 
protein networks degree distribution. However, two different lines of evidence speak to this 
question for protein networks. The first class of evidence regards a corollary of the hypothesis 
that the degree distribution observed in genetic networks is a by-product of selection for 'ro
bust compactness'. In networks with a broad-tailed degree distribution, mean path length in
creases drastically upon removal of highly connected nodes, as opposed to the removal of lowly 
connected nodes, which does not change dramatically. If it is network compactness that mat
ters to the organism, then removal of highly connected nodes should have more severe effects 
on the fitness of the organism than removal of less highly connected nodes. This prediction of 
the selectionist hypothesis can be tested with a publicly available collection of yeast gene-knockout 
(synthetic-null) mutant strains.^^ Each strain of this collection lacks one gene, and the result
ing change in growth rate has been measured under a variety of environmental conditions. 
Jeong and collaborators^^ first showed that a correlation between the effect of a gene-knockout 
mutation and the encoded proteins degree exists. Figure 2 illustrates this correlation with more 
recent data."̂ ^ 

The interpretation of data like that shown in Figure 2 faces multiple problems, aside from 
the fact that the association between protein degree and mutational effect is weak. The first 
problem is conceptual. While removal of highly connected proteins may have more severe 
effects on a cell, the reasons might have nothing to do with an altered network topology. For 
example, high connectedness may simple be an indicator that a protein acts in a variety of 
different cellular processes, hence the more severe defect when the protein is eliminated from a 
cell. Other problems in interpreting associations like that shown in Figure 2 are technical. First, 
the resolution at which the effect of a gene knock-out mutation on growth rate can be mea
sured is very low. Much smaller fitness differences between wild-type and mutant cells than one 
can observe in the laboratory may lead to elimination of a mutant in the wild. Second, gene 
knock-out effects are usually measured only in one or a few laboratory environments, not in 
the myriad of conditions in which they could manifest themselves in the wild. Third, labora
tory assays of gene knock-out effects usually measure only one or a few components of fit
ness—most prominendy growth rate—and leave others, such as cell survival under starvation 
untouched. Because of these problems, it is not clear whether laboratory gene knock-out ex
periments measure quantities that reliably indicate the effects of such mutations on an organism's 
ability to survive and reproduce in the wild. 

These technical problems—but not the previous, conceptual one—could be overcome 
with an evolutionary approach. Here, one assesses not gene knockout effects but the rate at 
which different proteins in a protein interaction network evolve. Specifically, one asks whether 
highly connected proteins have evolved more slowly than lowly connected proteins. If this is 
the case, then one can argue that their evolution is more severely constrained. Several pertinent 
studies are available.^ '̂̂ ^ Their results differ in details, pardy because they are sensitive to which 
of several available protein interaction data sets one uses.^^ However, their main conclusion is 
the same. If there are differences in the evolutionary rates of proteins in a network, they are not 
due to the differential effects these proteins have on a network's compactness. Thus, evolution
ary studies do not support the notion that natural selection for robust compactness is respon
sible for the broad-tailed degree distribution of protein interaction networks. 

A completely different approach to testing the selectionist hypothesis is encapsulated in 
the following question. Can we explain the structure of protein interaction networks from processes 
of molecular evolution whose rates we can estimatey without resorting to natural selection acting on 
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Figure 2. A weak but significant correlation between protein degree and gene knockout effect. Information 
on protein degrees shown here was obtained by pooHng data from three independent sources, two large-scale 
protein interaaion studies,̂ '̂ and a public data base of protein interactions^^ from which all interactions 
generated with the yeast two-hybrid assay had been eliminated. The horizontal axis shows the difference in 
the growth rate of a gene knock-out strain between the growth medium (among five different media) in 
which the strain grew at the highest rate, and the medium in which it grew at the lowest rate, as reported 
by Steinmetz and collaborators."^^ Growth rates are measured relative to a large pool of yeast gene deletion 
strains.̂ ^ For most genes, the growth rate difference is an indicator of the largest gene knockout effect among 
the tested growth media. An analogous analysis using the growth rate change of a gene knockout mutation 
in only rich medium (YPD) yields the same results (not shown). 

the network as a whole^. The answer is yes.^^ Such an explanation may still involve natural 
selection, but on a local instead of a global scale. For example, whenever a mutation causes a 
new interaction between two proteins to occur, natural selection may determine whether this 
interaction becomes fixed in a popidation or eliminated from it, depending on whether the 
interaction is beneficial, neutral, or deleterious. However, this is selection acting on individual 
interactions rather than global properties of an entire network. 

In a previous contribution, I have proposed an explanation of the protein interaction 
networks degree distribution from purely local processes such as gene duplications and muta
tions that generate new interactions and cause others to disappear.^ The rate at which some of 
these processes occur can be roughly estimated from available protein interaction data, and 
based on these estimates, one can establish a quantitative mathematical model that explains the 
networks structure. This explanation falls within a class of models for network evolution that 
involve preferential attachment, that is, highly connected proteins are more likely to evolve 
new interactions than other proteins. Empirical data supports the notion that preferential at
tachment occurs in protein interaction networks, as shown in Figure 3. Others have also pro
posed models of protein network evolution,^^ models that differ in important details but that 
have one key commonality: They do not require natural selection on a global network feature. 
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Figure 3. Preferential attachment in protein interaction networks. The horizontal axis shows protein degree 
d. The vertical axis shows the likelihood P^that a protein of degree devolves new interactions. This likelihood 
can be estimated from the number of newly evolved interaaions between products of paralogous genes, as 
detailed in reference 34. For all member genes of a paralogous gene pair with a newly evolved interaction 
since their duplication, I determined the number /^ of those genes whose encoded proteins had ^interac
tions to proteins different from its paralogue. To account for the faa that proteins of difiFerent degree occur 
at different frequencies in the network, I then divided this number by the relative frequency^ of proteins 
of degree ̂ in the network, and normalized the resulting quantity to obtain Pj, i.e., Pd = {Idffdi)^^{Id/fd)' 
There is a strong, approximately linear association between protein degree and the likelihood to evolve new 
interactions. From Figure 5 in reference 34. 

but they explain the networks structure from evolutionary events on the small, local scale of 
individual proteins. 

Many models of network evolution based on preferential attachment predict that highly 
connected network nodes should be old nodes, nodes that were added very early in a network's 
history. They should have arisen early in the evolution of the network. Because the protein 
interaction network shows preferential attachment (Fig. 3), the question arises whether such an 
association between protein age and connectivity exists. Specifically, one can ask whether highly 
connected proteins are phylogenetically old. Phylogenetically old proteins should have a wider 
taxonomic distribution than more recently arisen proteins. In two complementary analyses, I 
thus asked whether highly connected proteins have a wider phylogenetic distribution than less 
highly connected proteins. 

Connectivity and Protein Age 
For the first of these analyses, I used the fully sequenced genomes of six maximally diverse 

species. They represent fungi {Schizosaccharomyces pombe), protists {Plasmodium falciparum)^ 
plants (Arabidopsis thaliand), animals (Drosophila melanogaster), eubacteria {Escherichia colt), 
and archaea {Methanococcus janaschit). For each of the proteins in the protein interaction net
work of baker s yeast {Saccharomyces cerevisiae) I used gapped BLAST '̂̂  to ask how many of 
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Figure 4. The vertical axis shows the average number of genomes (± one s.d.) among six fully sequenced 
genomes that contain at least one protein homologous to proteins whose degree is indicated on the hori
zontal axis. The analysis is based on two different data sets on yeast protein interactions, one ('two hybrid') 
from a high-throughput experiment using the yeast-two hybrid assay to identify such interactions, the 
other ('non-two hybrid') from a publicly available database on protein interactions from which I eliminated 
all data generated with the two-hybrid assay.̂ ^ Protein comparisons are based on the following six maximally 
diverse fully sequenced and publicly available genomes: Schizosaccharomyces pombe (www.sanger.ac.uk), 
Plasmodium falciparum (www.plasmodb.org), ̂ m /̂̂ /̂>5/5 thaliana (www.tigr.org), Drosophila melanogaster 
(www.fruitfly.org), Escherichia coli K12-MG1655 (www.tigr.org), Methanococcus janaschii DSM2661 
(www.tigr.org). I used gapped BLAST^^ with a threshold protein alignment score of E < 10 to identify 
homology. Results (not shown) are qualitatively identical for threshold scores ofE< 10-2 and E< ^Q-IO^ 

these six species contain a recognizable homologue of the yeast proteins. The data in Figure 4 
show the results of this analysis for a BLAST protein alignment score threshold of E < 10 to 
identify homology. Specifically, the figure shows the average number of taxa that contain at 
least one homologue to a yeast protein (vertical axis) plotted against the degree of this protein 
in the protein interaction network. The analysis shown is based on two different data sets of 
yeast protein interactions.^^'^^ If highly connected proteins are phylogenetically old, then highly 
connected proteins should occur in significantly more of the six taxa than lowly connected 
proteins. The data of Figure 4, however, does not support this pattern. Figure 5 shows a comple
mentary analysis, where I plotted average protein degree against the number of the six taxa in 
which a proteins homologue is found. If more widely distributed proteins are more highly 
connected, then they should have a higher degree. The data does not support this association 
either. Alignment score thresholds of E < lO'^ and E < 10'^^ yield the same conclusion (data not 
shown). 

In a second analysis, I cast my net wider than just the above six fully sequenced genome. 
I arbitrarily chose 15 highly connected proteins (degree > 4) and 15 proteins with low connec
tivity (degree one) from the yeast protein interaction network.^^ For each of these thirty pro
teins, I asked whether it has at least one homologue in any of six broad taxonomic groups: 
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Figure 5. The vertical axis shows the average degree (± one s.d.) of proteins in the yeast protein interaaion 
network as a flinaion of the number of genomes—among six fully sequenced genomes—in which these 
proteins contain homologues, as shown on the horizontal axis. The analysis is based on two different data 
sets on yeast protein interaaions, one ('two hybrid') using the yeast-two hybrid assay to identify such 
interactions,̂ ^ the other ('non-two hybrid') a publicly available database on protein interactions from which 
I eliminated all data generated with the two-hybrid assay.̂ ^ Protein comparisons are based on the following 
six maximally diverse fully sequenced and publicly available genomes: Schizosaccharomyces pombe 
(www.sanger.ac.uk), Plasmodium falciparum (www.plasmodb.org), Arabidopsis thaliana (www.tigr.org), 
Drosophila melanogaster (www.fruitfly.org), Escherichia colt K12-MG1655 (www.tigr.org), Methanococcus 
janaschii DSM2661 (www.tigr.org). For the data shown, I used gapped BLAST^^ with a threshold protein 
alignment score of E < 10'̂  to identify homology. Results (not shown) are qualitatively identical for 
direshold scores of E < 10'̂  and E < lO'̂ .̂ 

metazoa, plants, protists, fungi (exclusive Saccharomyces spp.), eubacteria, and archaea. Table 1 
summarizes the results. Seven out of 15 highly connected proteins and six out of 15 proteins 
with degree one have homologues in all eukaryotes. The same proportion (12 out of 15) of 
highly connected proteins and proteins with degree one have homologues in fungi outside the 
genus Saccharomyces. The same holds also for proteins that have no homologues outside this 
genus (3 out of 15 proteins). Based on this data, it appears that highly connected yeast proteins 
are not phylogenetically older than proteins of low degree. 

While this finding is at first sight puzzling, the following analysis suggests a mundane 
explanation. This explanation emerges from a stochastic model of how the number of a proteins 
interaction partners changes over time. Consider one protein in a protein interaction network 
and denote as Dt the number of proteins this protein interaas with. If time t is measured in 
suitable discrete units, such as million years, then the change of this variable over time can be 
represented by a first order Markov process. Specifically, designate as pi the probability that 
the protein gains an interaction, that is, that its degree increases by one (through a mutation 
that has become fixed in a population). Formally/>/ = Prob(2)^ = i-\-l\Dt-i = i). Similarly, denote 
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Table 1. Taxonomic distribution of proteins with different connectivity in the yeast 
protein interaction network 
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Low Degree Proteins 

Name Degree M Pr Ar 
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The upper and lower parts of the table show the phylogenetic distribution of 15 arbitrarily chosen high 
and low degree proteins from publicly available yeast protein interaction data.-^^ Gapped BLAST^ 
was used tosearchforhomologs to these yeast proteins in the GenBankdatabase(www.ncbi.nlm.nih.gov). 
Columns in the table correspond to the following broad taxonomic groups. Metazoa (M), Protists (Pr), 
Plants (P), Fungi (F, exclusive of the genus Saccharomyces), Eubacteria (E) and Archaea (Ar). A '+' 
indicates that the respective protein has at least one putative homologue within the respective 
taxonomic group with a BLAST amino acid alignment score of E < 10"^^.'++' and '+++' indicate at 
least one homologue with E < 10'^^ and E < 10"^^, respectively. 
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the probability that the protein loses an interaaion by qi {qi = ProbfZ)^ = i'l\Df.j = i)). Finally, 
let ri denote the probability that D^ does not change between t-l and t. This simple framework 
can capture a variety of observations. For instance, in an earlier contribution I suggested that 
the rate at which interactions get added and eliminated from the network must be approxi
mately balanced, because of the high observed rate of interaction turnover.^ This translates 
into pi« qi for all /'. In addition, the observation that proteins with more interaction partners 
show a greater turnover of interactions (Fig. 3) can be captured as a dependency o(pi on /, e.g., 
pi = ixcy where cis some constant. 

A quantity of interest in this stochastic process is the expected waiting time until a 
protein first returns to the state D^ = /, i.e., mi = E(Ti\Do = i), where E indicates the expected 
value of the random variable 7/: = mm{t>0: Df = /}, which measures the time until the 
protein first visits state i. For / = 0, this expected time mi is closely related to the residence 
time of a protein in the network, that is, the time during which a protein has a degree greater 
than zero. Quantities like mi are difficult to calculate because we do not know how pi, qi and 
Ti depend on /*, especially for large /. However, it is noteworthy that if the above assumptions 
held for arbitrarily large /', then this stochastic process would belong in the class of 
null-recurrent Markov processes, whose expected waiting time to return to any state (not 
only / = 0) is infinite, and can thus not be calculated. We can, however, calculate related 
quantities that may explain why highly connected proteins are not necessarily phylogeneti-
cally old. Consider a protein with degree 1. What is the expected time until such a protein 
loses this interaction—and thus ceases to be part of the network—assuming that this protein 
never attains a degree higher than one? If we denote as T the random variable measuring this 
time, then its distribution is given by Prob(T = k) = qiri^'\ which is essentially a geometric 
distribution. Its mean and variance are given by E(T) = qil(l-rif, and Var(T) = nqiKl-rif. 
Order-of-magnitude estimates for upper bounds on the probabilities pi and qi suggest that 
they are of the order of 6 x lO'"̂  per protein and million year.^^ Using these values, E(T) 
calculates as 416 million years, and its standard deviation as 588 million years. In other 
words, even a protein of low degree that does not acquire any further interactions through 
mutations takes more than an expected 400 million years to lose its only interaction, with an 
enormous standard deviation. For proteins that acquire more interactions in the course of 
evolution, this expected time would be much larger. Considering the standard deviation in 
and by itself, it is then hardly surprising that we can not distinguish proteins of different 
degrees by their phylogenetic distribution. The time for which even low degree proteins 
reside in the network can vary over an enormous range, a range greater than the time elapsed 
since the Cambrian radiation. A statistical test could not distinguish between the age of high 
and low-connectivity proteins if their residence time in a network can vary so widely. 

Conclusions 
In sum, I have reviewed evidence pertaining to the hypothesis that natural selection acts 

on the global structure of cellular networks and is responsible for their broad-tailed degree 
distribution. While associations between gene knock-out effects and protein degree weakly 
support this hypothesis for protein interaction networks, evolutionary studies and explana
tions of network structure based on purely local processes argue against it. I showed that the 
great dispersion of time for which proteins may reside in a network can obscure expected 
differences in the taxonomic distribution of highly and lowly connected proteins. Similar to 
metabolic reaction networks, where chemistry itself is an important factor shaping a network's 
structure, the minor role for natural selection in optimizing a network's degree distribution 
suggests an important role for protein chemistry in determining this distribution. Which of a 
proteins chemical features, such as domain composition or surface properties, renders some 
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proteins highly connected? What aspect of protein chemistry is responsible for the observation 
that highly connected proteins show a greater evolutionary turnover of interactions? The an
swers to these and other questions are contained in accumiJating structural data on thousands 
of proteins. 
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CHAPTER 5 

The Drosophila Protein Interaction Network 
May Be neither Power-Law nor Scale-Free 

J.S. Bader* 

Abstract 

S cale-free networks have become a topic of intense interest because of the potential to 
develop theories universally applicable to networks representing social interactions, internet 
connectivity, and biological processes. Scale-free topology is associated with power-law 

distributions of connectivity, in which most network components have only few connections 
while a very few components are extremely highly-connected. Here we investigate the power-law 
and scale-free properties of the network corresponding to protein-protein interactions in Droso
phila melanogaster. We examine power-law behavior with a standard statistical technique de
signed to distinguish whether a power-law fit is adequate to describe the vertex degree distribu
tion. We find that the degree distribution for the entire network, consisting of baits and preys, 
decays faster than power law. This fit may be confounded by artifacts of the screening proce
dure. The prey-only degree distribution is less likely to be confoimded by the screening proce
dure, and is fit adequately by a power-law. When only the biologically relevant interactions are 
considered, however, the degree distribution again decays faster than power-law. Thus, power-law 
behavior may reflect interactions that are observed in vitro but not in vivo. We next describe an 
algorithm that may be able to extract the true distribution from the incomplete data. Finally, 
we investigate scale-free properties by characterizing organizational patterns over increasing 
spatial scales. We provide evidence for the existence of a length-scale that characterizes organi
zation in the network. The existence of such a correlation length stands in contrast to scale-free 
networks, in which no length scale is special. These results suggest that the Drosophila protein 
interaction network may not be power-law and is not scale-free. 

Introduction 
Technological advances now permit the elucidation of biological networks on a genome 

scale. A recent report described using the two-hybrid method to identify the protein-protein 
interactions that underlie the protein complexes and multi-complex pathways in Drosophila 
melanogaster. This was the first large-scale protein-protein interaction network determined for 
a metazoan and builds on earlier screens conducted for Saccharomyces cerevisiae?'^ Protein in
teraction networks have also been probed using mass spectrometry of protein complexes. '̂  
Chromatin immunoprecipitation experiments provide analogous data to support the identifi
cation of protein-DNA interactions and transcriptional regulatory networks. 

*J.S. Bader—Department of Biomedical Engineering, Johns Hopkins University, 201C Clark 
Hall, 3400 N. Charles St., Baltimore, Maryland 21218, U.S.A. Email: joel.bader@jhu.edu 
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and Georgy P. Karev. ©2006 Eurekah.com and Springer Science+Business Media. 
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The advent of these large-scale data sets has stimulated interest in developing theories that 
explain how biological networks are organized, and how they continue to be shaped by evolu
tion. Biological networks are examples of small-world networks, which occupy the middle 
ground between completely regular networks and random networks/ Like regular networks, 
small-world networks have clusters of interconnected vertices; like random networks, most 
pairs of vertices are connected by a short path of links. 

A notable feature of biological networks, also represented in social networks and air travel 
networks, is the existence of hubs, a colloquial term for vertices with a high number of connec
tions compared to typical vertices. In many examples of networks, the vertex degree distribu
tion shows a decay much slower than the Gaussian-like distribution for random networks; the 
tail end of this distribution corresponds to hubs. A preferential or rich-get-richer model, in 
which new connections are biased towards vertices that are already highly connected, leads to a 
power-law vertex degree distribution and also leads to scale-free self-organization. 

Much is known about the statistical physics of self-organized networks and self-organized 
criticality. If biological networks are a realization of self-organized criticality, then universal 
results and scaling laws from physics should apply. Alternately, if biological networks have 
properties that differ from scale-free networks, then new theoretical developments may be 
required to describe their properties and behavior. Thus, there is great interest in determin
ing whether evolution has shaped biological networks to resemble self-organized, scale-free 
networks. 

Two testable hypotheses of a scale-free model are a power-law distribution of connections 
per vertex and the lack of a characteristic length scale for network organization. Here we examine 
whether the topology of the Drosophila protein interaction network follows these hypotheses. 

One possible test for power-law behavior is to calculate the empirical vertex degree distri
bution, then check whether a power-law functional form provides a better fit than an alternate 
fiinctional form, typically exponential or normal. This type of test does not confirm that the 
distribution follows a power law; instead, it indicates that a power law fits less poorly than 
other functional forms. We describe how a vertex degree distribution may be fit by a family of 
functions with terms corresponding to power-law decay, exponential decay, and even faster 
decay. We use standard statistical procedures to decide whether the optimal fit is a power law, 
or whether it is faster than power law. 

These statistical tests are not straightforward due to experimental limitations in sampling 
the Drosophila network. First, at most 96 colonies were sequenced for each bait, which artifi
cially limits the vertex degree observed for a bait protein. Next, some prey libraries were often 
obtained from mRNA libraries with power-law distributions of transcript abundances, which 
influences the bait-prey combinations that are sampled. Finally, analysis of the entire network 
is questionable as only 25% of the network was judged to be high-confidence for biological 
relevance. We address each of these factors in turn in an analysis of the Drosophila vertex degree 
distribution. We then describe an approach to predict the true vertex degree distribution from 
the incomplete distribution derived from partial sampling of the network. 

We investigate structure in the network by characterizing motifs that represent order. A 
simple motif is the existence of a triangle, three vertices connected one to the next. The ratio of 
the number of observed to expected triangles is synonymous with the standard definition of 
the clustering coefficient for a small world network. This statistic is sensitive to organization 
over short length scales. To investigate organization over longer length scales, we investigate the 
distribution of longer cycles. This distribution may be measured for an empirical network We 
introduce a simple mathematical model for a network organized to have one level of clustering 
and show that this model is sufficient to explain the observed cycle distribution. Thus, there is 
no need to invoke a continuous distribution of length scales. Moreover, the one-level model 
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immediately yields a characteristic, testable scaling length for the network, which again stands 
in contrast to scale-free behavior. 

We conclude with a discussion of models that may provide an improved theoretical frame
work for understanding the properties of biological networks and the evolutionary forces that 
have shaped them. 

Observed Vertex Degree Distribution 
The empirical network that serves as the basis of this study was obtained by a two-hybrid 

screen for protein-protein interactions in Drosophila melanogaster} This work describes 20,405 
pair-wise interactions involving 7046 proteins. One of the difficulties in analyzing topological 
properties of this network is that some properties are biased by the screening procedure. For 
example, the number of preys for each bait is limited by the number of colonies sequenced for 
each mating, typically 96 (see ref. 1 and references therein for background on the two-hybrid 
system). Furthermore, screens conducted with a prey library obtained direcdy from mRNA 
may be biased for highly-expressed proteins. Finally, interactions identified by the two-hybrid 
method often have questionable biological relevance. '̂̂ ^ 

To address each of these points, we constructed a series of three vertex degree distribu
tions. The first degree distribution considered all of the interactions observed for Drosophila, 
excluding a small number of self-interactions. This network included 20,278 interactions be
tween 7000 proteins. 

Next, we addressed the limited number of colonies sequenced for each bait by considering 
only the degree distribution for prey proteins. While each bait participates in at most 96 inter
actions due to the limited sampling, there should be no such limitation for the number of 
times a prey is observed as an interaction partner. 

One possible limitation on observing a prey, however, is that it is not represented in the 
prey library. Or, if it is present, its abundance may be low. These preys may be systemati
cally under-represented in two-hybrid screens that use prey libraries obtained directly from 
mRNA isolated from cells. Indeed, mRNA abundances may themselves follow a power-law 
distribution, with a few highly-represented species being responsible for the majority of the 
mRNA mass. 

The screens in reference 1 attempted to avoid this limitation by conducting two-hybrid 
screens with two independent prey libraries. One library was obtained by isolating mRNA 
from Drosophila embryonic and adult developmental stages, then using these transcripts to 
generate a prey library. The second library was obtained by individually amplifying every pre
dicted Drosophila gene from a cDNA library, with a 75% success rate in generating a prey with 
verified insert sequence and size. The resulting 10,787 preys were then pooled to yield a nearly 
perfecdy normalized library. This pool was mated to each of 10,623 baits, yielding 31,270 
bait-prey pairs whose sequences could be mapped to release 3.1 of the gene annotations from 
the Berkeley Drosophila Genome Project. After removing a small number of self-interactions, 
these 31,270 pairs corresponded tol0,l61 unique prey-bait pairs between 3001 preys and 
2657 baits. 

One of the challenges in interpreting two-hybrid data is that many of the interactions 
observed are spurious, with questionable biological relevance. The biological relevance of the 
interactions reported in reference 1 was modeled statistically. Each interaction was assigned a 
confidence score in the range from 0 to 1, with 0.5 as the approximate dividing point between 
low-confidence (< 0.5) and high-confidence (> 0.5) of biological relevance. Starting with the 
preys from the normalized screen described above, we obtained a third degree distribution by 
considering only the high-confidence interactions. This network corresponded to 3574 unique 
prey-bait pairs between 2093 preys and 2130 baits. 
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Vertex Degree Distributions and Power-Law Fits 
We write N{k) as the number of proteins in a network with exactly k neighbors. A typical 

procedure used to assess power-law behavior is to fit N{k) by a power-law, exponential, or 
Gaussian decay, each corresponding to different random models, 

exp(^ + UQ log^) 

M^)= exp(y4 + îy ĵ 

where A in each case is an appropriate normalization constant. Typically, the fit is performed 
on a log-scale to minimize the quantity Xy'^ 

z'=l[logA^W-log7V(^)]'. 

and the fixnctional form giving the smallest ^ is accepted as describing the decay. In certain 
cases, it may be preferable to normalize each term by its anticipated variance \IN{k) or con
struct bins on a logarithmic scale to avoid small coimts. 

Rather than comparing three separate fits, a standard statistical procedure is to assess the 
significance of a series of models of increasing complexity. The log-scale, exponential, and 
Gaussian functional forms for N{k) can be considered as the first three terms in a Taylor series 
expansion, 

N{k) = exp( v4 + ao logk + a\k-\-aik^ +. .1 

Using forward regression, we can build models of increasing complexity. The first model 
(power-law decay) fits uses only the terms y4 and ^ , with all higher order coefficients set equal 
to 0; the second model (power-law truncated by exponential decay) usesy4, ̂ , and a\, with all 
higher order coefficients set to 0; and so on. We then assess the significance of each model 
relative to the preceding model using analysis of variance, an Fttst of the reduction of ;|^. 

We used bins of width 1 for simplicity. To account for bins with a small number of counts, 
including empty bins where log N{k) is undefined, we performed a series of fits. First, we 
excluded bins with 0 counts. Next, we excluded bins with 0 or 1 counts and refit the model. 
Next, we excluded bins with 0, 1, or 2 counts and refit the model. We reasoned that power-law 
behavior is typically defined only when at least 3 orders of magnitudes of power-law decay are 
observed. Thus, shaving off the tail of the distribution should not affect our ability to define a 
power-law exponent. Equivalendy, a robust power-law fit should not require inclusion of the 
bins with the fewest number of counts. 

The empirical vertex degree distributions are depicted in Figure 1 A. The values estimated 
for the power-law decay parameter a^ and the exponential decay parameter a\ are depicted in 
Figures 1B,C. We note first that the degree distribution for the entire network has a highly 
significant exponential decay component when the bins with count 1 are excluded from the fit. 
The estimate for the exponent is approximately -0.03. The inverse of this exponent is of the 
same magnitude as the 48 to 96 clones sequenced for each bait, which supports the hypothesis 
that the experimental design has contributed to a decay that is faster than power law. 

In contrast to baits, preys do not have an interaction count that is limited by the experi
mental design. Thus, we hypothesize that the degree distribution of preys (for each prey, the 
number of unique baits that identified it as an interaction partner) is less affected by sampling 
limitations. The vertex degree distribution for preys appears to be a power-law distribution 
(Fig. lA). This appearance is borne out statistically with a power-law parameter ranging from 
-2.0 to -2.3 (Fig. IB) and an exponential decay parameter that is indistinguishable from 0 at a 
p-value of 0.05 (Fig. IC). These parameter estimates are stable over a range of minimum bin 
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Figure 1. Vertex degree distributions and fits. 

counts used for the fit. Thus, the network obtained from highly-normalized preys is described 
well by power-law decay. 

The interactions that contribute to the prey degree distribution are not all biologically 
relevant. Some may reflect assay-specific artifacts having to do with the two-hybrid reporter 
system; other false-positive interactions may arise from weak or nonspecific interactions; other 
interactions may be highly reproducible in vitro but involve proteins that are restricted to 
different developmental stages or tissues and never interact in vivo. We hypothesize that the 
power-law distribution may reflect overall properties of the distribution of binding constants 
between proteins rather than the number of biologically-relevant interaction partners for a 
given protein. To test this hypothesis, we eliminated low-confidence interactions from the prey 
vertex degree distribution and refit the distribution. While the power-law decay parameter is 
close to the previous estimate of-2 (Fig. IB), the exponential-decay parameter is now signifi
cantly different from 0. The value of the exponential-decay parameter ranges from -0.15 to 
-0.2 depending on the minimum bin count, at a p-value of 0.05 to 0.005. 

Synthesizing these results, we propose that the power-law distribution reflects the distri
bution of binding constants observed between proteins in vitro, while an exponential distribu
tion reflects the number of interaction partners that are relevant in vivo. We note that if the 
preferential attachment model is modified to restrict the potential interaction partners of a 
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node, an exponential-decay degree distribution may result.^ Restriction may occur naturally 
in a biological system due to temporal or spatial restrictions to protein expression. 

We temper the strength of our conclusion by noting that the number of interaction part
ners of a protein was used as one of the explanatory variables in deriving the statistical confi
dence scores.^ 

Bait and Prey Distributions Reconciled 
How far are we in identifying the complete set of protein-protein interactions that consti

tute the Drosophila protein interaction network? Answering this question has practical impor
tance for estimating the cost of generating complete maps for other metazoan species, includ
ing human. Knowledge of the estimated complexity of metazoan protein interaction networks 
provides necessary input and tests for developing theories of biological network evolution. 

Ideally, we would want to see consistency for the list of interaction partners for a protein 
when used as a bait and when used as a prey. A discrepancy in the interaction partners may 
indicate assay artifacts, for example DNA-binding activity in a protein that is used as part of 
the activation-domain fusion in the two-hybrid system. Unfortunately, when the number of 
interaction partners identified for a bait protein is limited by the number of clones selected for 
sequencing, it is not possible to compare the list of bait interaction partners and prey interac
tion partners direcdy. Even the simple summary statistic of the number of interaction partners 
may not be comparable. 

Here we describe an approach that may be successful in reconciling the counts of interac
tion partners for a protein that is used as both a bait and a prey by inferring the true distribu
tion of interaction partners for a protein when used as a bait based on the limited experimental 
evidence. Using the subscript / to label the bait, we sequence ki clones that correspond to xi 
unique prey proteins. Our goal is to estimate the total number of interaction partners mi from 
which the xi observed prey species have been drawn. Thus, we wish to estimate 

Pr(m|x,k) = XPr(m,^|x,k) = XPr(m|a,x,k)Pr(0|x,k) 
d e 

where m represents the underlying interaction counts { mi} for each bait, x represents the 
observed counts {x^}, k represents the number of clones sequenced for each bait, and 6 repre
sents the set of parameters describing the vertex degree distribution. 

To simplify the following discussion, will make the assumption that the probability distri
bution for 0 is highly peaked near its maximum likelihood estimate 9^^, 

Q^^ = argmaxPr(0|x,k) = argmaxPr(x|e,k), 

which corresponds to a flat prior distribution for 9. In this case. 

The maximum likelihood estimate for q can itself be obtained as 

Q^^ = a rgmaxn iPr(x,K,/&,)Pr(;«,|0). 
0 i m~\ 

Once functional forms for Pr(w|6') and Pr(x|w,^) have been specified, the maximum like
lihood estimate for 0 may be found by direct maximization or expectation maximization; then, 
Pr(in|x,k) is readily calculated. 
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Guided by die results for die prey vertex degree distribution, we suggest that an appropri
ate functional form for Pr(w|^) is 

Pr(w|e) = exp(-aolnw - a^m)l\a^''~^T{\ - ao,«i)] ' 

where Q is defined by the pair of parameters (00,0:1), we have moved to a continuous distribu
tion for w > 1, and we have recognized that the normalization constant is simply related to the 
standard definition of the incomplete gamma function. 

Finally, we require the probability distribution Pr(X;|wp^;). We again make a simplifying 
assumption, that each of the mi interaction partners is equally likely to yield a clone. While this 
assumption is unlikely to be true even for a normalized prey library, it provides a necessary 
starting point for more advanced analysis. We make a second simplifying assumption that the 
presence or absence of each of the mi prey species in the ki clones is independent. In this case, 
VT{x\mi,ki) is given by a binomial distribution, 

^ ' ^ x\{m-xyX. ^ / J ^ J 
We speculate that the parameters (XQ and Oi determined by the approach outlined above 

for the baits should agree with the power-law decay and exponential decay parameters ob
tained by fitting the vertex degree distribution for the preys. We further suggest that a dis
crepancy between the number of interaction partners estimated for a bait and the number 
observed when the same protein is used as a prey could signal an assay-dependent artifact. 
The value of the formulas provided above is that they provide a quantitative method for 
making such a determination. These formulas also provide a link between the amount of 
work done, measured by the parameter k, and the completeness of the map, measured by the 
factor xlm. 

Note also that the prey vertex degree distribution is also affected by the finite sampling of 
each bait. The approach described here for the bait distribution could be modified to yield an 
improved estimate for the number of interaction partners for each prey. 

Determining tlie Length Scale of the Network 
We move now from examining the properties of the vertices to more global measures of 

network organization. A defining property of small-world networks is clustering: a pair of 
vertices connected to a third vertex has an enhanced likelihood of being connected to each 
other. This property has been used to infer unobserved connections in protein interaction 
networks. ̂ ^ 

Clustering as typically defined measures the ratio of the number of triangles in a network 
(three vertices connected together) to the number of triangles observed in an equivalent ran
domized network. To examine clustering over longer length scales, we defined a more general
ized measure by counting the number of higher-order cycles in a network, and comparing this 
count to the distribution observed in an equivalent randomized network. 

Solutions to the cycle-count distribution may also be obtained from mathematical models 
of random networks. The mathematical models we describe below permit closed-form ana
lytic solutions for the cycle-count distribution. The key simplifying assumption of the math
ematical models are simplified vertex degree distributions. As described below, we check 
these assumptions by also performing simulation studies of an ensemble of randomized net
works. Agreement between theory and simulation bolsters the credibility of the theory and 
suggests that the cycle-count distribution may be insensitive to certain details of the vertex 
degree distribution. 
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Figure 2. Illustration of enhanced conneaivity within protein complexes. 

We start with a mathematical model in which pairs of proteins in a network with Â  total 
proteins are connected with probability//(A^-1). W h e n / i s much smaller than Â , which is 
expected for biological networks, this yields a Poisson vertex degree distribution with mean / 
The number of cycles of length Z, N(L), is equal to the number of ways to select L proteins 
times the probability that each is connected to the next, divided by the symmetry factor 2L for 
a closed loop of length Z, 

^ ^ {N-Ly\N-l) 2L 

The initial combinatorial factor is, A^-[l + O(Z^/A0], where O is the symbol for asymp
totic order, and the factor involving/is (J/N)^-[\ + 0{L/N)]. The simplified result for the 
cycle-count distribution for a random network is 

N{L) = ( /^ /2Z) • [l+0(Z^ / A^)]. 

We anticipate, however, that biological networks will be characterized by structure corre
sponding to protein complexes, with enhanced connectivity for proteins within a complex. 
This picture is illustrated in Figiue 2. We incorporated this behavior in a random model in 
which each protein is assigned to one of several protein complexes, and the probability of an 
interaction is enhanced for proteins residing in the same complex. 

To make the model explicit, we define A^complexes with P proteins in each complex, giving 
A^= KP total proteins. Proteins within a complex are connected with probability, JwH^- 1) 
yielding/flj^ within-complex neighbors on average, and proteins in different complexes are con
nected with probability, JB/{N-K) yielding/^g between-complex neighbors on average. 

Cycles in this model can exist entirely within a single complex, or can cross between 
complexes. We first calculate the cycle-count distribution for single-complex cycles. 
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Here we keep the first two terms for the combinatorial factor, 
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Multiplying this expression with the remaining terms yields the final expression 
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for the within-complex cycles. 
The expected number of between-complex cycles may be estimated as 
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We have assumed that a pair of proteins in the cycle is from the same complex with 
probability {P-\)l{N-\) and from different complexes with probabiUty {N-K)l{N-\). To lowest 
order, the final combined expression for the cycle-count distribution is 

N{L) = N^{L)^N,{L) = K^^^ 
L^-L 

IP IL 

These mathematical models for unstructured and structured random networks were used 
to describe high-confidence protein-protein interaction networks obtained experimentally for 
Drosophila and also for Saccharomyces (Fig. 3). In both cases, the unstructured model failed to 
fit the experimental data, while the structured model provided an excellent fit. 

Details of the fit are available in the original publications.^'^ ̂  In particular, the approxima
tions used in deriving the analytical formulas for the mathematical models were checked 
computationally by simulating a series of random structured and unstructured networks, and 
calculating the cycle-count distribution for an ensemble of random networks. The 
numerically-converged simulation results were indistinguishable from the analytic theory. 

The existence of structure in the network immediately suggests the existence of a length-scale 
that is characteristic of the structure. The elements of structure are A" protein complexes, each 
with an average of P proteins and an average of/pt?'within-complex neighbors. From a central 
protein in a complex, there are approximately/\^;^ proteins within 1 link, J^^ proteins within 2 
links, and J}^ proteins within blinks. As ^approaches the typical number of links separating 
pairs of proteins in a complex, /yt/ should approach the total number P of proteins in the 
complex. This relationship leads to the scaling law 

for an appropriate topological correlation length in the network. The meaning of the correla
tion length is that proteins within d links of each other are likely to be in the same complex, 
and hence should have correlated properties. 

We have checked this behavior for the Saccharomyces protein interaction network for cor
relations described by protein annotations and gene expression measurements. The cycle-count 
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Figure 3. Structured network models provide an excellent fit to cycle-count distributions for experimental 
protein-protein interaction networks; unstructured network models do not fit the experimental data at all. 

distribution suggested that typical protein complexes had 13-17 proteins, with 8-9 
within-complex neighbors as determined by two-hybrid interactions or coimmunoprecipitation. 
This leads to a topological correlation length of 1.2 to 1.3 links. Next, correlations between all 
pairs of proteins in the network were calculated and averaged as a function of the number of 
links separating the pair. Correlations derived from database annotations and transcript profil
ing decayed exponentially with a decay constant of 1.2-2.0 links, which suggests that the topo
logical properties of the network reflect biologically-relevant organization. 

Although the cycle-count distribution may be fit adequately using a simple model for 
network structure, this does not rule out more complicated structure. A more elaborate model 
may be generated by assiuning additional levels of structure with sub-complexes intermediate 
between proteins and complexes, or pathways represented by aggregates of complexes. Evi
dence for sub-complexes is provided by genetic interactions, which decay over a length scale 
that is about half the topological correlation length. ̂ ^ The levels of organization may also 
become quasi-continuous, as in fractal models for network organization. 

Conclusion 
We have described approaches for a quantitative analysis of the topological properties of 

biological networks, with a focus on protein interaction networks revealed by recent large-scale 
experimental screens. 

One of the much-discussed properties complex networks is an apparent power-law distri
bution of connectivity. We have employed a standard statistical approach to determine whether 
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a vertex-degree distribution follows a power law, or whether it decays more rapidly. Employing 
this method, we show that the full network does not follow a power law, likely because the 
experimental design truncates the power-law decay prematurely. We then show that a subset of 
the data, in which the connectivity is less likely to be truncated by the experimental design, is 
described by power-law decay. 

Before concluding that the biological network is characterized by a power-law degree 
distribution, we then focus on the subset of interactions predicted to be biologically-relevant 
based on a statistical model. The vertex-degree distribution again decays faster than a power 
law, and is described instead by power-law decay truncated by exponential decay. 

We suggest that a reason for this behavior is that the experimental data contains a mixture 
of in vitro binding events, which follow a power-law distribution, and biologically-relevant 
binding events, which follow a faster-decaying distribution. This type of mixture model was, in 
fact, used in developing the statistical model that predicted biological relevance. 

We have also provided a method for extracting the true vertex degree distribution (per
haps including interactions corresponding to false-positive artifacts from the in vitro method) 
from the limited experimental observations. We are currently attempting to use this method to 
predict how much of the actual network has been revealed by the experiments to date. 

Finally, we have described a property, the existence of cycles in a network, that is sensitive 
to large-scale organization. We have used this property to extract a topological correlation 
length from protein interaction networks. Correlations based on biological properties appear 
to decay exponentially according to the same correlation length. The existence of a topological 
length scale would appear to exclude scale-free models of biological organization, which by 
definition lack a characteristic length scale. A better description may be given by models in 
which a constraint limits the evolution of a network, ̂ "̂ '̂ ^ or in scale-rich models in which the 
cost of satisfying a constraint depends on its scale. 
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CHAPTER 6 

Birth and Death Models of Genome Evolution 

Georgy P. Karev, Yuri I. Wolf and Eugene V. Koonin* 

Abstract 

G ene duplication is the primary avenue of genome evolution. The gene repertoire of 
any species can be described as an ensemble of paralogous gene families, ranging in 
size from one to large numbers that amount to a substantial fraction of genes in the 

respective genome. Evolution of such an ensemble is naturally represented by a birth-and-death 
process, the birth of a gene being duplication, and death being gene inactivation and elimina
tion. In addition to gene duplication and loss, evolution of gene families involves "true" inno
vation, i. e., appearance of genes new to the given lineage through horizontal gene transfer, 
emergence of genes from noncoding sequences, and change of preexisting genes beyond recog
nition. Assuming these three elementary processes, we developed a simple theoretical frame
work for analysis of genome evolution, the Birth, Death and Innovation Models (BDIMs). 
Comparison of the predictions made by different versions of BDIMs with empirical distribu
tions of paralogous family size in genomes allows one to choose the adequate models. Stable 
family size distributions can evolve only under balanced BDIMs, in which duplication and 
deletion rates are asymptotically equal up to the second order. The linear BDIM, in which 
there is almost no dependence between the family size and birth-death rates, readily approxi
mates the observed family size distribution at equilibrium. However, the stochastic version of 
this model yields unrealistic times for evolution of the large paralogous families that were 
detected in all genomes. In order to produce reasonable rates of family evolution, one needs to 
turn to nonlinear higher-degree BDIMs, which imply "interactions" between paralogs. These 
interactions may be interpreted as a proxy for natural selection, which should drive evolution 
of large paralogous families if their emergence is to be viewed as an adaptive reaction. 

Power Laws, Scale-Free Networks, and Models of Genome Evolution 
Power law distributions appear in an enormous variety of fundamentally different con

texts. These distributions are described by the simple function P{i) = ct^ where P{i) is the 
frequency of nodes with exacdy / connections or sets with exactly / members, y is a parameter 
which typically assumes values between 1 and 3, and r is a normalization constant. Obviously, 
in double-logarithmic coordinates, the plot of Pas a function of/ is close to a straight line with 
a negative slope. The utility of these distributions was first noticed by Pareto who employed 
them to characterize the spread of wealth in society and later by Zipf for the description of 
word usage in texts. ' However, it took another century after Pareto s groundbreaking work for 
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the power laws to take off in earnest. This happened largely in the context of network analysis, 
which was brought to prominence by the explosive growth of the Internet and rapidly moved 
into other areas, above all, biology and sociology.^' The important biological examples include 
metabolic, expression, and protein-protein interaction networks. '̂  The crucial property shared 
by the Internet, social, and biological networks is their scale-free character, i.e., independence 
of the node degree distribution on scaling. ̂ '̂̂ ^ Because the node degrees in a scale-free net
work are distributed according to a power law, such a network is resistant to error (i.e., random 
elimination of nodes) but sensitive to attack (i.e., directed removal of a highly connected node).^^ 
Biological networks, imlike social ones, are unlikely to be deliberately attacked, so this property 
seems to ensure their robustness. 

Once multiple complete genomes of organisms from diverse walks of life have been se
quenced, genome analyses showed that the distributions of a broad variety of genome-associated 
quantities followed the power laws, at least within some approximation.^'^ Examples include 
the distribution of the number of transcripts per gene, the number of interactions per protein, 
the number of genes or pseudogenes in paralogous families, the number of connections per 
node in metabolic networks, and more y^^^'^^ Barabasi and coworkers realized that the mode of 
network evolution leading to the power law distributions and, accordingly, scale-free networks 
is preferential node attachment, whereby, at any moment in a network evolution, the probabil
ity of a node acquiring a new connection is proportional to the number of connections this 
node already has. Metaphorically (and in the spirit of the classical work of Pareto), this prin
ciple may be described as "the rich get richer" or, if one implies that nodes get highly connected 
through an evoluitonary process involving selection, "the fit get fitter". ' ' 

However, preferential attachment, being an extremely general (and important) principle 
associated with power law type distributions and scale-free phenomena, does not actually "ex
plain" the emergence of these phenomena. In a sense, this explanation is almost tautological: 
preferential attachment seems to be the "nature" of the systems with power law distributions, 
which is independent of the physical identity of these systems or any specific evolutionary 
mechanisms. A genuine physical or biological explanation involves deciphering these mecha
nisms or at least identifying the simplest models of evolution that include realistic elementary 
events and are compatible with the observations. 

Under this logic, families of paralogous genes seem to represent a perfect object for evolu
tionary modeling. Indeed, for these families, elementary evolutionary processes are defined natu
rally. By definition, paralogous families evolve by gene duplication. It has been long suspected 
and, with the advent of genomics, established beyond reasonable doubt that genome evolution 
proceeds largely by duplication of genes, gene segments, and even long genomic segments or 
entire genomes. ̂ '̂ All sequenced genomes contain numerous paralogous genes, and in more 
complex genomes, the majority of genes have at least one paralog. ^'^ Duplication is followed by 
mutational diversification and gradually leads to fimctional differentiation of the paralogs. It is 
thought that such differentiation occurs via the routes of neofiinctionalization (emergence, in 
one of the paralogs, of a new fiinction nonexistent in the ancestral gene) and, perhaps predomi-
nandy, subfiinctionalization, i.e., distribution of the partitioning of subfimctions of the ancestral 
genes among the paralogs. '̂ Hence, duplication obviously is the first elementary process of 
genome evolution. Genomes and gene families not only grow but ofi:en shrink or, probably most 
of the time, persist in equilibrium. Therefore, duplication is coimter-balanced by the opposite 
elementary process, gene loss. Again, comparative genomics has shown that gene loss occurs in 
all species and may be extensive in certain lineages, particularly in parasites. '"̂ ^ Finally, genes 
new to a given lineage may emerge either as a result of a dramatic change after duplication 
obliterating all "memories" of a gene's origin, or via horizontal gene transfer, or by evolution of a 
protein-coding gene from a noncoding sequence (rare as this latter process might be). Collec
tively, the contribution of these processes to genome evolution may be termed innovation. It 
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seems plausible that gene duplication, gene loss, and innovation might comprise a reasonable 
minimal set of elementary events for modeling genome evolution. The only potential major 
addition could be gene rearrangement whereby genes accrete or lose domains. However, at least 
for first approximation modeling, these changes could fit either under duplication if they do not 
yield new genes without detectable relationships to preexisting families, or under innovation if 
they do. We should fiirther note that evolutionary analysis of paralogous gene families can be 
naturally construed as a smdy of the evolution of genomes themselves if all genes are viewed as 
members of paralogous families, ranging in size (number of members) from \ to N (the size of 
the largest family). 

A natural framework for modeling evolution of gene families is a birth-and-death process, 
a concept well explored in many physical and chemical contexts.^^ Duplication constitutes a 
gene birth, and gene loss is a death event; innovation also can be readily incorporated in this 
context. The birth-and-death approach has been applied to modeling the evolution of paralogous 
genome family sizes, ̂ '̂̂ '̂̂ ^ the distribution of folds and families in the entire protein uni
verse, and protein-protein interaction networks.^ '̂ ^ 

In a series of recent studies, we explored a very general class of models of genome evolu
tion, which we dubbed BDIMs, after birth-death-innovation models.̂ '̂̂ '̂̂ '̂  We found that 
BDIMs comprise a flexible and rich theoretical framework which allows one to explain both 
static (distribution of family) size and dynamic (the time required or the evolution of families of 
the observed size) aspects of genome evolution. Most importandy, it turned out to be possible 
to distinguish between different versions of BDIMs in terms of their agreement with the data. 

Definitions, Assumptions and Empirical Data 
We treat a genome as a "bag" of genes (gene fragments), coding for protein domains, 

which we will simply call domains for brevity (see ref 32 for additional details and rationale). 
Domains are treated as independendy evolving units disregarding the dependence between 
domains that tend to belong to the same multidomain protein. Each domain is considered to 
be a member of a family, which may have one or more members. Three classes of elementary 
events are considered: 

i. domain birth which generates a new member in the same family as a result of gene 
duplication 

ii. domain deadi, i.e., inactivation and/or deletion, and 
iii. imiovadon which generates a new family with one member. Innovation may occur via 

domain evolution from a noncoding sequence or a sequence of a nonglobular protein, via 
horizontal gene transfer from another species, or via radical modification of a domain fol
lowing a duplication. The rates of elementary events are considered to be independent of 
time (only homogeneous models are considered) and of the nature (structure, biological 
function, and other features) of individual families. 

The data on the size of domain families in sequenced genomes were from the previous 
work. Briefly, the domains were identified by comparing the CDD library of position-specific 
scoring matrices (PSSMs), which includes the domains from the Pfam and SMART data
bases, to the protein sequences from completely sequenced eukaryotic and prokaryotic ge
nomes (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome) using the RPS-BLAST 
program. ̂ ^ 

We assume that: (i) time is continuous and more than one elementary event is unlikely to 
occur in a short time interval, (ii) all elementary events are independent of each other, and (iii) 
the rates of domain birth and death, respectively, Xi and 5̂ ; depend on family size / only. 

In a finite genome, the maximal number of domains in a family obviously cannot exceed 
the total number of domains and, in reality, is probably much smaller. Let N be the maximal 
possible number of domain family members (note that almost all of the results below are valid 



68 Power Laws, Scale-Free Networks and Genome Biology 

with N=oo under certain well defined conditions, which provide the existence of the ergodic 
distribution of the birth-and-death process). Let^ be the number of domain families in /-th 
class, i.e., families that have exacdy / domains in the given genome, / = 1,2,...A^. Originally,^^ 
we examined exclusively the deterministic version of BDIM: 

d/;w/d^ = v-(Ai+5i)yJW+52/2W 

d/< )̂/d^ = Xi.xfi-i{t) -a- ^Sdfl(th SuxfiAf) for Ui<N, (1) 

dfN{t)/dt=XN-\fN-l(t) -8NfN{t). 

The innovation rate, which we designate V, is considered constant for a given genome in 
this model. 

In the new version of the model, we also consider "virtual" families consisting of 0 do
mains. In this model, newborn domains are drawn from the 0 class and "dead" domains return 
to it. Introduction of the 0 class "closes" the model and, accordingly, transforms it into a Markov 
process. This provides for the possibility to explore the stochastic properties of the system. In 
these stochastic models, innovation was not introduced explicidy but is implied in the form of 
emergence of domains from the 0 class. 

Let pi{i) be the frequency of a domain family of size /. Then pi{t) satisfy a well known 
system of forward Kolmogorov equations for birth-and-death process (see, e.g., ref. 39) which 
actually differs from model (1) only in the first equation: 

d;>oW/d^= ->ao;>oW+5i/>iW, 

Apx{t)ldt = Xo pQ{t)-{Xi+8x)px{t)^&2pi{t\ 

dpi{t)/dt = Uipi-\{tH^i +S,)p,{t)+Si,ipui{t) for 1</<A ,̂ (2) 

dp!sj{t)/dt= Xis[.\pN-\(t)-8M pN^t). 

The evolution of individual trajectories of the birth-and-death process X{i), whose state 
probabilities satisfy the system (2), can be described as follows. At the starting time, the system 
is in some initial state XQ. The time axis {t> 0} can be subdivided to intervals [0,Ti), [Xi, X-i), [X2> 
T3)... such that ^ / ) is a constant on each of these intervals. If, at the moment X„, the system 
occupied the point x„ = /, then, at the moment X„+i, it moves either to the state /+1 with the 
probability fii = A /̂(A/ + 5i) or to the state /-I with the probability jU/ = 5/ l{Xi + Sj). The sojourn 
time ti = X„+i - X„ from arrival at point Xn = / to exit from this point is a random variable indepen
dent of the previous history of the system and is distributed according to the exponential law V{ti 
> X"} = exp(-(A^ + 5;)x). Note that the mean sojourn time in the state / is E{t^ = l/(Ai + 5̂ ). 

It is well known that process (2) has a unique stationary ergodic distribution/>o>-..> pN 
defined by the equalities dpt{t)ldt =OforO<i<N: 

Pi = Potl(^j-ilSj) for all / = 1,...7V, (3) 

We consider also the variant of the model (2) without the 0-state; this model describes 
evolution of the size of a domain family that includes an indispensable (essential) gene and is 
not allowed to go extinct. Mathematically, the system (2) describes the state probabilities of 
well-known birth-and-death processes with a finite number of states and reflecting boimdaries. 
Although this classical process has been studied in detail, it has not been previously noticed 
that it is a natural source of the power-law distributions. 
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Asymptotic Behaviors of the Ergodic Distribution of the Model 
The ergodic distribution (2) is globally stable and is approached exponentially with re

spect to time from any initial state. We proved that the asymptotic behavior of this distribu
tion is completely defined by the "asymptotic balance" between the birth and death rates, Aj 
and 8i y as functions of /'. Let us suppose that, for large /, the following expansion is valid: 

XiJ5i = i'e{\-yfi + 0{\li^)) (4) 

where s and /are real numbers and 0 is positive. Then 
i. ifs^O (nonbalanced BDIM), then pi - T{t)^Q^ />'where T{t) is the F-function; 

ii. ifs = 0 andQ^ 1 (first-order balanced BDIM), then pi - 0'/'̂ ; 
iii. //j = 0; ^ = 1 and / ^ 0 (second-order balanced BDIM), then pi - /'̂ ; 
iv. //i = 0; 0 = 1 and y= 0 (high-order balanced BDIM), then pi - 1. 
Then, equilibrium frequencies of a BDIM have a power asymptotic behavior if and only 

if the BDIM is second-order balanced. Precise formulas for pi can be obtained for specific 
forms of A/ and 5i (see refs. 32, 37 for details) and several of them will be considered below. 

If the per-family birth and death rates linearly depend on the number of domains in a 
family 

Xi = A(/+^), 8i = 5{i+b) for />0, a and b are constants (5) 

(linear BDIM), the equilibrium distribution of domain family sizes is defined by: 

^ = ^ o ^ i ^ 0 ' > ^ ? i ^ - e ' r ^ where0 = Ay5, y-Uh-a. (6) 
1(1 + ̂ ) A r[t-\-l-\-b) 

A linear BDIM is, by definition, at least first-order balanced; if A = 6 (so that 0= 1), the 
resulting second-order balanced linear BDIM has a power asymptotic with 7= 1 + ^ - ^. Thus, 
the linear BDIM is the simplest model which yields provides the power asymptotic of the 
stationary state. 

Previously, we applied deterministic BDIMs to approximate the observed distribution of 
protein domains in a variety of prokaryotic and eukaryotic genomes by minimizing the % 
value for the observed and predicted distributions. The simplest model that resulted in a good 
fit to the observed domain family size distributions for all analyzed genomes was the second-order 
balanced linear BDIM (Fig. 1). For all analyzed genomes, P{X^) ^^^ ̂ ^^ model was >0.05, i.e., 
no significant difference between the model predictions and the observed data was detected. 

Since the deterministic, linear, second-order balanced BDIM gave an excellent fit to the 
stationary distribution of gene family sizes for all analyzed genomes, we expanded the study by 
exploring the dynamic behavior of ensembles of gene families using stochastic versions of BDIM. 
Specifically, the following problems were analyzed: 

1. probability of formation of the largest family from a singleton before getting to extinction; 
2. mean and variance of the time required for formation of a family of a given size from a 

singleton, particularly, the largest identified family; 
3. mean and variance of extinction time for a family of a given size; 
4. mean and variance of the number of elementary events (gene duplication and elimination) 

prior to extinction or formation of a family of a given size. 
These problems are readily solved within the framework of birth-and-death processes (see, 

e.g., refs. 39,40; all relevant formulas are compiled in ref 41 (Mathematical Appendix)). Natu
rally, we first addressed these problems using the linear, second order balanced, stochastic BDIM, 
the direct counterpart of the model that successfiiUy explained the stationary distribution of 
family sizes. However, as discussed below, we foimd that this model yielded evolutionary param
eters incompatible with empirical data, which prompted us to examine more complex versions 
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Figure 1. Fit of empirical domain family size distributions to the second-order balanced linear BDIM: 
Homo sapiens, 

of BDIMs. We explored polynomial, rational, and logistic BDIMs with die aim of selecting the 
model that is best compatible with the data imder a critical constraint: the stationary ergodic 
distribution of all models should be the same as it is for the original linear BDIM. 

It follows from (3) diat the following modification of any form of BDIM: 

?c*y=)i; /̂X8*, = 8,^/- l ) (7) 

where ̂ i ) , / = 1,... Â , is a positive function, ^0 ) = 1, results in a BDIM with the same ergodic 
distribution of the family sizes as the original one. We studied the class of modification (7) for 
the linear second order balanced BDIM widi Xi = X(/ + a), 5/ = X{i + b) for / >0, which produce 
the stationary distribution/>, - T̂ , where Y=\ + h-a.ln particular, modifications of a linear 
BDIM widi g(i) = (/ + l)'^'^ or g(/) = (i + iy'\\ - i/{N+ c)) define, respectively, broad classes of 
rational or logistic BDIMs with the same stationary distribution as the original linear BDIM, 
but with very different dynamic properties. 

All stochastic models of genome evolution face an important "time imit" problem. If mod
els (1), (2) are second order balanced, such that X = 8, then X is a time-scaling constant and the 
models have a natural "innate" time scale measured in 1/A. imits (hereinafter internal time units). 
However, if we wish to measure the time in real time units, such as years, we must estimate the 
parameter X using available estimations of the duplication rate. For this piurpose, we choose the 
average duplication rate, Vdw An estimate of the average duplication rate was produced by Lynch 
and Conery^^ by counting the number of recent duplicates in three eukaryotic genomes and 
dividing this number by the estimated rate of silent nucleotide substitutions. They obtained the 
value Tdu "2x10'^ duplications/gene/year, which we used for our calculations. The estimations of 
X based on the empirical average duplication rate vary for different nonlinear BDIMs. Indeed, 
in terms of the model (2), the average duplication rate is, by definition, 

N-\ 

Let us introduce coefficient c^u = r^JX, which connects the internal model parameter X 
with the empirical value of r̂ « such that 
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Figure 2. Probabilities of formation of families starting from a singleton, P^{\yn), versus family size {n) for 
the linear BDIM .The plot is in double logarithmic scale. The model parameters are for D. melanogaster 
(blue), C elegans (purple), H. sapiens (red), A. thaliana (green). A color version of this figure is available 
online at http://www.Eurekah.com. 

X = 2X\0-^I Cdw (8) 

For all transformations (7) of the linear BDIM, the stationary probabilities/)/ are the same 
as for the original linear model, but the birth rates Xi and, accordingly, ĉ « vary. We show that 
the internal time unit becomes smaller with the increase of the "model degree" which results in 
some interesting effects discussed below. 

Linear Stochastic BDIM and Its Applications 
The probability of formation of a family of size n starting from a family of size / before 

getting to extinction can be computed with the help of known formulas for the birth-and-death 
process to reach state n before reaching state 0. 

For the linear 2nd order balanced BDIM, the probability that a singleton expands to a 
family of size n before dying, /*^(1,«), is 

P\l.n) ^M±^ 
r(i+^) 

where 'Y=\ + b-Uy with the same power /as the equilibrimn frequencies of the families. The 
values of probabilities P^{\,n) for different species are shown in Figure 2. These probabilities 
are rather small, /^(1,A0 - 10'^ 

The random birth-and-death process (2) certainly visits the state 0 in the course of 
time; this means that any domain family will eventually go extinct (and then formally can be 
"reborn", returning from the 0 class). The mean time of extinction of the largest family is an 
important characteristic of the evolutionary process described by these models. The plot of 
E „y the mean time of extinction of the family of initial size n for the linear 2nd order 
balanced BDIM (measured in internal time units), versus n for different species is shown in 
Figure 3. 

The formation time of a family of a given size was computed for the version of BDIM (2) 
that describes evolution of an essential gene (no 0-state). For the linear BDIM, plots of the 
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Figure 3. Mean time of extinaion (f^J depending on family size (w) for die linear BDIM. Time is in 1/ 
X units. The model parameters are for D. melanogaster (blue), H. sapiens (red),y4. thaliana (green), C. elegans 
(purple). A color version of this figure is available online at http://www.Eurekah.com. 

mean time of formation Af ̂ „ (in internal time units) are shown in Figure 4. The times of 
formation and extinction of a family of a given size under stochastic BDIM are random vari
ables. Thus, the questions remains how well do the mean values represent these variables. To 
address this issue, we calculated the variances and coefficients of variation of the extinction and 
formation times, /^V» and Ĝ V̂> for the Unear BDIM. It should be noticed that coefficient of 
variation does not depend on the model parameter \ and therefore is an important and infor
mative characteristic of the process. We found that both coefficients are very large, e.g., r 3̂35 
= 194.11 and 0̂ ^̂ 335 = 81.79 for D. melanogaster, and /^\i5i = 649.8 and 0^^\i5i = 308.4 for 
H. sapiens. 

Summarizing the results obtained for the stochastic characteristics of the linear BDIM, we 
found that, firsdy, the probability of formation of a large family from a singleton is quite small 
(--10' for large genomes), and, secondly, the ratio of the mean times of formation and extinc
tion of the largest families is very large (-0.5 ^ 1 X 10^). Thirdly, the coefficient Cdu is in the 
range of 1 -?- 3 for the linear model and all considered species (e.g., r̂ « = 1.8 for Dme and c^u -
2.7 for Hsd). Using the values of this coefficient and the available estimates of gene duplication 
rates to estimate the internal time unit, 1/X,, with formula (8), gives the mean time of forma
tion of the largest families M^{\\N) -^ 10^^- 10^^ yrs, which is three to four orders of magni
tude greater than the current estimate for the age of the Universe. Thus, the mean family 
formation times given by the linear BDIM would become realistic only if the recent analyses 
underestimated the gene duplication rate by a factor of -10^, which does not seem plausible. 
Accordingly, the linear BDIM cannot provide an adequate description of genome evolution, at 
least when only the mean time of family formation is considered. As mentioned above, the 
coefficient of variation of the family formation time is extremely large (--100), so large devia
tions from the mean time, up to 2 orders of magnitude, are not improbable. At the end of this 
chapter (see Conclustions and Perspective), this issue is addressed with an alternative approach, 
namely computer simulations, which exploit the large number of families in evolving genomes 
and the substantial variance of the times of their formation. First, however, we consider nonlin
ear, higher order models that have the potential to yield faster evolution, allowing for the 
formation of large families observed in complex genomes. 
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Figure 4. Mean time of formation M^n (in 1/A, units) depending on family size («) for the linear BDIM (in 
double logarithmic scale). The model parameters are for D. melanogaster (blue), H. sapiens (red), y4. thaliana 
(green), C. elegans (purple). A color version of this figure is available online at http://www.Eurekah.com. 

Nonlinear Modifications of the Model: Polynomial BDIM 
Now our goal is to modify the linear BDIM in such a way that: 
i. the stationary distribution of the family sizes stays the same 

ii. the modified models account for much more rapid evolution of family sizes for realistic 
values of duplication rates 

iii. the ratio of the mean times of family formation and extinction is substantially greater than 
it is under the Unear model. 

To provide for fast evolution of gene families, the mean sojourn times ti in each state /, 
ti= 11 {Xi + 5/), should be substantially shorter than those in the linear model. The appropri
ate models can be constructed through the transformation of birth and death rates (7); it 
should be emphasized that the values of parameters a and b that have been previously deter
mined for the linear BDIM to fit empirical data for different species can be employed for the 
modified models. 

We show that nonUnear BDIM modifications with the function^/) = (/ + 1) satisfy the 
requirements (i) and (ii) and partially solve the problem (iii). Informally, polynomial BDIMs 
with ^= 2,3, etc. can be introduced as follows. Under the Unear BDIM, the dependence of the 
birth and death rates on family size is very weak such that the growth rate is almost propor
tional to the family size (and asymptotically tends to exact proportionality for large t) and there 
is no significant feedback between the family size and growth rate. In contrast, the quadratic 
model {d= 2) includes dependence of birth and death rates of individual domains on pairwise 
interactions, whereas higher order models imply more complex interactions. In general, if in
teractions of the order d are postulated, then the second order balanced BDIM has Â  and Sj, 
which are polynomials on /with the same degree ^and the same higher coefficients. Nonlinear 
polynomial BDIMs predict evolutionary rates that are dramatically greater then those for the 
linear BDIM; in particular, the quadratic BDIM with birth and death rates defined as 

^/= kit + a){i + 1), 5/ = X{i + l?)iy (9) 

is close to the best (in an exact sense explained below) modification of the initial linear BDIM 
for achieving the fastest possible evolution rate. The probability of formation of a family of size 
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Figure 5. Probability of formation of families starting from a singleton, P^^\\,ri), versus family size {n) for 
the quadratic BDIM. The plot is in double logarithmic scale. The model parameters are for D. melanogaster 
(blue), C. elegans (purple), H. sapiens (red), A. thaliana (green). A color version of this figure is available 
online at http://www.Eurekah.com. 

n from a singleton before extinction is much greater for the quadratic model than for the linear 
model, P^^\\,N)AQ-^ (Fig. 5). The mean time of extinction for the quadratic BDIM, E^^^n> 
measured in internal time unitSy is much shorter than that for the linear model (Fig. 6). The 
mean time of formation of families from an essential singleton, Af ̂^ „, is also much shorter 
than that for the linear model (Fig. 7). For the largest family, the mean time of formation is 
approximately two orders of magnitude greater than the mean extinction time; thus, the tran
sition from the linear to the quadratic BDIM lowers the ratio of extinction to formation time 
by about an order of magnitude, thus partially solving the problem (iii). 

The coefficient c^^ for the quadratic model is in the range 5 -5- 25 for all considered species 
(e.g., Cdu = 11.67 for Dme and c^u = 24.48 for Hsd). Using these values to estimate the value of 
the internal time unit, l/X, with formula (8), gives the mean time of formation of the largest 
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Figure 6. Mean time of extinaion (in \IX units) depending on family size for the quadratic BDIM. The 
model parameters are for D. melanogaster (blue), H. sapiens (red), A. thaliana (green), C elegans (purple). 
A color version of this figure is available online at http://www.Eurekah.com. 
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Figure 7. Mean time of formation (in 1/A. units) depending on family size for the quadratic BDIM. The 
model parameters are for D. melanogaster (blue), H. sapiens (red), A thaliana (green), C elegans (purple). 
A color version of this figure is available online at http://www.Eurekah.com. 

families Af̂ ^ (̂l;AO - 10^^ yrs [120.4 Ga (billion years) for Dma and 573.9 Gafor Hsa), which 
is still two orders of magnitude greater than the actual evolution time (-l billion years). Al
though the variance of family formation time for the quadratic BDIM was significantly lower 
than for the linear BDIM, the coefficients of variation of the formation time and extinction 
time for the largest family under the quadratic BDIM were -1.3 - 1.5 times greater than the 
respective coefficients for the linear BDIM. Due to the large variation coefficients, the actual 
values of the formation/extinction times of the largest family could differ from the mean value 
by up to two orders of magnitude with a relatively high probability (see discussion below). 

We further examined the cubic BDIM and showed that this model is characterized by 
extremely high, apparently unrealistic evolutionary rates compared to atively with the linear 
and even the quadratic models.^^ Thus, the optimal degree of the model probably lies between 
2 and 3. We.investigated the stochastic behavior of the system and its characteristics within the 
broader framework of rational BDIMs where birth and death rates, X(/) and 8(/), are rational 
functions of the family size /. 

Nonlinear Rational B D I M 
We will examine models represented as transformed linear BDIM with 

h- Ui + a){i + \f\ bi= Ui + b)i'^-\ (10) 

where ^ >1 is the model degree (the "degree of interactions"). Let us recall that the highest 
degrees and the corresponding coefficients of the birth and death rates must be equal to pro
vide for the power asymptotics of the stationary distribution, P{i) - i'^. The power y of this 
distribution is completely determined by the degree d and the coefficients at / ' (a and b in 
(10)). Thus, the model (2), (10) is representative of all rational BDIMs of the degree ^with a 
given power asymptotic of the stationary distribution; this distribution for model (10) is ex
actly the same as for the corresponding linear model with Xj = X(i + a), Sj = X{i + h) as described 
in reference 32. In this section we analyze the dependence of the main stochastic characteristics 
of model (10) on the model degree d. The probability of formation of the largest family from a 
singleton before extinction increases along with the model degree (Fig. 8). Conversely, the 
mean times of extinction and formation of the largest family (in internal time units) decrease 
with the increase of model degree (Figs. 9, 10). 
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Figure 8. Probability of formation of the largest family starting from a singleton, P^(1,A0, for rational 
BDIMs depending on model degree d. The model parameters are for D. melanogaster (blue), H. sapiens (red), 
A. thaliana (green), C eUgans (purple). A color version of this figure is available online at http:// 
www.Eurekah.com. 

A comparison of the mean times of formation and extinction for rational BDIMs reveals 
an interesting property of nonlinear BDIMs: for any given family of size «, there exists such a 
model degree that the times of family formation and extinction are equal. Accordingly, at 
higher model degrees, the mean time of formation becomes shorter than the mean time of 
extinction. For the rational model with model parameters taken for H. sapiens, this ratio is <1 
foralU>3.1 (Fig. 11). 

One woidd expect that increasing the degree (the "order of interaction") of BDIM should 
residt in much faster family evolution; this is, indeed, the case under a fixed value of the param
eter X. However, we have also shown that this effect is offset by the rapid growth of the 
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Figure 9. Mean time of extinction (in 1/A, units) of the largest family for the rational BDIM depending on 
the model degree d. The plot is in double logarithmic coordinates. The model parameters are for D. 
melanogaster (blue), C. elegans (violet), H. Sapiens (red) and A thaliana (green). A color version of this figure 
is available online at http://www.Eurekah.com. 
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Figure 10. Mean time of formation (in MX units) of the largest family for the rational BDIM depending 
on the model degree d. The plot is in double logarithmic coordinates. The model parameters are for D. 
melanogaster (blue), C elegans (violet), H. apiens (red) andv4. thaliana (green). A color version of this figure 
is available online at http://www.Eurekah.com. 

internal time unit. Accordingly, l/X = Q«/r^« = cdJlQ Ga (assuming rdu^lY, 10'^, after ref. 26) 
increases with the model degree (Fig. 12). For the model parameters taken for H. sapience^ the 
internal time unit is 0.136 Ga for ^ = 1, 1.22 Ga for ^ = 2, and 146.9 Ga for /̂ = 3. Thus, 
although the mean times of formation (and extinction), when measured in internal time units 
dramatically decrease with the increase of the model degree, the evolution time in years does 
not decrease indefinitely, but rather passes through a minimum at ^between 2 and 3 (Fig. 13). 
Specifically, the lvalues resulting in the fastest gene family evolution are 2.67 for D. melanogaster 
and 2.71 for H. sapiens. Even the minimum mean time of the largest family formation achiev
able with the rational BDIMs of the optimal degree is on the order of 10^^ years (56.55 Ga for 
D. melanogaster and 204 Ga for H. sapiens?^) ̂  which is incompatible with the age of life on 
Earth. Thus, a rational BDIM of any degree cannot provide an adequate description of genome 
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Figure 11. Ratio of the mean times of extinaion and formation of the largest family depending on the model 
degree; the model parameters are for H. sapiens. The plot is in double logarithmic coordinates. 
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Figure 12. Internal time unit depending on model degree (logarithmic scale). The model parameters are for 
D. melanogaster (blue), C elegans (violet), H. Sapiens (red) and^. thaliana (green). A color version of this 
figure is available online at http://www.Eurekah.com. 

evolution when only the mean time of family formation is considered. Accordingly, for assess
ing the feasibility of the formation of the largest families under a given model, the coefficient of 
variation of the formation time should be taken into account. As shown above, this coefficient 
is quite large (>100 for all considered genomes) such that the actual formation time of the 
largest family could differ from its mean value by two orders of magnitude or more, which 
would bring the time required for the formation of families of the observed size close to realistic 
spans o f -10^ yrs. In order to investigate this problem further, we turned to computer simula
tion analysis. 

Figure 13. Dependence of the time (in years,Ga) required for the formation of the largest family on the 
model degree ̂ for the rational BDIM. The plot is in semi-logarithmic coordinates. The model parameters 
are for D. melanogaster (blue), C elegans (violet), H. Sapiens (red) and A thaliana (green). A color version 
of this figure is available online at http://www.Eurekah.com. 
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Simulation of Gene Family Evolution under BDIMs 
of Different Degrees 

In the previous section, we determined the mean time of family formation for BDIM of 
different degrees and found that even the shortest mean time obtained with the optimal model 
degree was substantially greater than the time available for genome evolution. However, for 
assessing the feasibility of the formation of the largest families during the evolution of real 
genomes, the more relevant value is not the mean but the minimum time of family formation 
over the entire ensemble of genes. Given the large variance of the family formation time esti
mates, this minimum value is likely to be much less than the mean. Analytic determination of 
this value is hard so we resorted to Monte Carlo simulation analysis. Model parameters esti
mated for human genome evolution were employed for this analysis. 

The simulated evolution started from 3000 families of size one and continued until the 
largest family reached 1024 members (a convenient number to approximate the size of the 
largest family in eukaryotic genomes). The time scale was adjusted such that r̂ « =2 X 10' 
duplications/gene/year. A series of simulations was performed for nonlinear rational BDIMs 
of different degrees. 

At each discrete time step, for each family, a birth or death of a domain belonging to the 
family was simulated by (respeaively) increasing or decreasing the family size counter; addition
ally, a new family of size 1 was created with the probability proportional to the innovation rate V 
(the resulting process is analogous to the classical model of Karlin and McGregor ). The prob
abilities of a birth or death for a given family of size k were, respeaively, proportional to \k ^̂ nd hk. 

A series of simulations with rational BDIM of different degrees was run until the largest 
family reached 1024 members. For the linear BDIM, the median time required to produce the 
first family of this size was 49.5 Ga and the mean (± standard deviation) was 52.6 ±21.1 Ga. 
The quadratic BDIM reached this level much faster, with the median time of 2.52 Ga and the 
mean of 2.64 ± 0.78 Ga. Not unexpectedly, these values are orders of magnitude smaller than 
the mean values estimated above. 

As shown in Figure 14, the time at which the largest family in a genome reaches 1024 
members depends on ^/in a similar fashion as the mean time for a single family, i.e., there is a 
clear minimum at a specific value of ^. At the optimal value of ^ « 2.2, the model reaches this 
family size in 2.2 ±0.5 Ga, which is compatible with the timescale of evolution of eukary-
otes. ' Compared to the minimal evolution time predicted for a single family, the genome-size 
ensemble of gene families reached the threshold size much faster (by 1.5-2.5 orders of magni
tude), and the optimum values of ^ was lower by -0.5 (Fig. 14). 

The Mean Number of Elementary Events before Family Extinction 
and Formation 

Comparing the mean family formation and extinction times predicted by BDIMs with 
the actual evolutionary timescale allowed us to choose the model with the best fit to the empiri
cal data. The number of elementary evolutionary events, namely, gene duplications and dele
tions, predicted by BDIMs is of interest in itself as an approximation of an important charac
teristic of genome evolution. 

To calculate the mean number of elementary events during evolution of gene families, 
we employed the embedding clizms {Y{n)} instead of the original BDIM. The embedding 
chain {1^} for a particular BDIM is a random walk with discrete time on the same set of 
states and transition probabilities/>/,^+i = ^i = A;7(A/ + di),pij.\ = )Û  = 5;/(A; + 5/) and/>;y = 0 for 
all other cases. The transition from state / to state / + 1 (/' - 1) corresponds to duplication 
(deletion) of a domain in a family of size /'. The only difference between the original 
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Figure 14. Simulation of gene family evolution depending on model degree. A) The minimal time required 
for the formation of a family with 1024 members determined by Monte Carlo simidation starting from an 
ensemble of 3000 singletons. The standard deviation is shown for each point. B) The minimal time required 
for the formation of a family with 1024 members. The upper curve shows the prediaion of the respective 
BDIM and the lower curve shows the simulation results (the same as in (A) but in the logarithmic scale). 

birth-and-death process and the embedding chain is that the sojourn time for the embed
ding chain is equal to 1 for any state / instead of a random variable which is exponentially 
distributed with the mean equal to l/{Xi + 8/). The ratio P/ Hi (= A/5;) characterizes the 
trend of family evolution from the state /*, i.e., is the family more likely to grow or to shrink; 
for a symmetric random walk, j8/jU, = 1 for all /. For the rational models, P/ Hi= 1 for large 
/*. Using embedded chains, we calculated the mean number of elementary events occurring 
before the formation of a family of the given size, f„^^ depending on the rational BDIM 
degree, d (Fig. 15). As expected, these numbers drop with the increase of the model degree 
but remain quite large even for the optimal degree. For example, for D. melanogasterf^^-^^^ = 
734725, 3̂35̂ ^̂  = 127567,/335^^^ = 60755, and for K Sapiens, fn5\^^^ = 1.29*10^,/i 15/^^ = 
1.68*10 ,yi 15/^^ = 756238. The coefficient of variation ZA/"^ of the number of events before 
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Figure 15. The mean number of elementary events (duplications and deletions) required, under the rational 
BDIM, for the formation of the largest family, dependent on the model degree. The model parameters are 
for/). melanogaster(^\MQ)y C. elegans (violet), H. sapiens (red) and A thaliana (green). A color version of this 
figure is available online at http://www.Eurekah.com. 

the formation of a family of the largest size is large and only slightly decreases when the 
model degree increase; for example, X335̂ ^̂  = 87, 5̂335̂ "̂^ = 86.6 and 3̂35̂ ^̂  = 80 for for D. 
melanogaster 2ind 2:115/̂ ^ = 299.31, 2115/^^ = 296.4 and 2:115/̂ ^ = 276.23 for K sapiens. The 
mean number of elementary events occurring before the extinction of a family of the given 
size, / \ , is always greater than fj^^ but the ratio e^'^^jfj^ is close to 1 (< 1.1, in a sharp 
contrast to the ratio of the mean times of formation and extinction discussed above) for all 
genomes and all model degrees rapidly and monotonically tends to 1 as ^ increases. 

Given that all the analyzed BDIMs are balanced, i.e., the birth and death rates are asymp
totically equal, it was not unexpected that the mean number of events required for the forma
tion of a large family (or the number of events preceding the extinction of such a family) was 
orders of magnitude greater than the size of the family. This suggests a highly dynamic picture 
of genome evolution where numerous duplications counterbalanced by gene losses are typi
cally involved in the evolution of large families. However, the number of events required for 
the formation of a family of the given size quickly drops with the increase of a model degree 
(Fig. 15), which may be construed as reflection of positive selection leading to proliferation of 
families that are of adaptive value to the organism. 

Conclusions and Perspective 
Fiere and in the previous publications,^" '̂̂ '̂̂ ^ we describe a rather general class of mod

els, which are based on the classical concept of a birth-and-death process and seem to be 
applicable to the genome evolution process. Similar, although not identical and apparently 
less general, modeling approaches have been considered by others. '̂ '̂ Even earlier, evolu
tion of gene families has been modeled within the distinct mathematical framework of mul
tiplicative processes. 

The utility of birth-and-death type models in evolutionary genomics in itself is not a 
trivial matter and stems from fundamental features of genome evolution which, in part, have 
been presciently envisaged by classic geneticists and, in part, became apparent after the advent 
of genomics. As captured in the title of Ohno's famous book,^^ although foreseen even in the 
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early days of genetics/'^'^^ gene duplication probably is the principal mechanism of genome 
evolution. Of course, genomes cannot grow ad infinitum and, through most of the evolution
ary history, the number of genes within a given phylogenetic lineage probably remains roughly 
constant. Hence duplication is intrinsically coupled to gene loss. The results of comparative 
genomics further show that many genes in each lineage cannot be obviously linked to other 
genes through dupUcation. Without necessarily specifying the biological mechanisms (these 
could involve rapid change after duplication, gene acquisition via horizontal transfer, and pos
sibly, birth of genes from noncoding sequences), it is reasonable to view these unique genes as 
resulting from innovation. For genomes to maintain equilibrium, the combined rates of dupli
cation and innovation over the entire ensemble of gene families should equal the rate of gene 
loss, at least when averaged over long time spans. Furthermore, the observed distribution of 
family sizes, which asymptotically tends to a power law, dictates a much more specific connec
tion between the gene birth and death rates, namely, the second order balance (4). 

The incentive to examine these models in detail stems from at least three rather funda
mental questions: (i) are the above elementary evolutionary mechanisms sufficient to account 
for the empirically observed characteristics of genomes, (ii) what is the contribution of natural 
selection to the general quantifiable features of genomes, such as the size distribution of gene 
families, and (iii) how similar or how different are the models describing evolution of phyloge-
netically distant genomes, such as those of prokaryotes and eukaryotes. The analysis of BDIMs 
starts to provide some answers, although it is premature to consider these final in any sense. 
The critical observation made in the course of BDIM analysis was that different versions of 
these models coidd be readily distinguished on the basis of goodness of fit to the empirical data. 
This being the case, we foimd that the simplest possible model in which all paralogs are consid
ered independent does not explain the data well. Thus, turning to the first of the above ques
tions, we have to conclude the "something else" is required to model genome evolution, on top 
of the three elementary processes. This "something" is dependence or "interaction" between 
gene family members which results in self-accelerating family growth. In order to accoimt for 
the observed stationary distribution of family sizes, it is sufficient to introduce a very weak 
dependence as embodied in the linear BDIM. However, when we switched from the determin
istic to the stochastic version of BDIMs which provide for the possibility of analysis of the 
dynamics of the systems evolution, we found that evolution under the linear BDIM was much 
too slow to account for the emergence of the large families of paralogs found in all genomes 
during the time of life s evolution. Only higher order BDIMs, with degrees between 2 and 3, 
i.e., with "strong interactions" between family members were found to provide for sufficiendy 
fast evolution to be compatible with the real biological timescale. 

Obviously, these findings beg the question: what is the nature of the mysterious "interac
tions" between paralogs? This brings us to the second of the above major problems. BDIMs do 
not explicidy include the notion of selection. However, the simplest interpretation of the inter
actions implied by the higher order BDIMs seems to be that these reflect adaptive evolution of 
gene families driven by positive selection. Should that be the case, we are justified to conclude 
that very weak selection would suffice to explain the stationary distribution of family sizes, but 
much stronger selective pressure is needed to account for the dynamics of genome evolution. 
However, the interpretation of BDIM degree as a manifestation of selection is, at this point, no 
more than a guess. One of the further developments of genome evolution modeling involves 
introducing selection explicidy and determining whether the resulting more sophisticated models 
will be equivalent to the higher order BDIMs explored here. 

BDIMs worked well in describing evolution of all analyzed genomes, from the smallest 
prokaryotic ones to the most complex genomes of plants and animals. However, the param
eters of the resulting models, i.e., the duplication, deletion, and innovation rates differed 



Birth and Death Models of Genome Evolution 83 

significantly, suggesting some tantalizing answers to the third of the questions posed above. 
In particular, we found that the innovation rates in prokaryotes were an order of magnitude 
greater than those in eukaryotes.^^ An optimistic interpretation of this difference is that the 
relatively high innovation rates detected for prokaryotes reflect rampant horizontal gene 
transfer, an increasingly recognized defining feature in the evolution of bacteria and 
archaea. Should that be the case, we might be justified to conclude that BDIMs are 
telling us something new regarding the extent of this phenomenon. However, it would be 
premature to rule out the pessimistic explanation, i.e., that the observed differences are due 
to some cryptic modeling artifacts. The issue definitely deserves further investigation, through 
refined modeling approaches and analysis of additional comparative-genomic data. 

In conclusion, it makes sense to ask the $64K question: do the models discussed in this 
chapter (and similar ones) reveal something new about biology? So far we seem to have only 
rather equivocal answers. Earlier in this section, we discuss some interesting hints on new 
aspects of the role of selection in genome evolution and on distinct regimes of evolution in 
different domains of life. Realistically, however, the principal conclusions seem to be quite 
general and mosdy methodological. Indeed, it was observed in these and related analyses that 
important aspects of genome evolution can be realistically modeled with simple, straightfor
ward approaches. Perhaps more importandy, the work summarized here makes the next step by 
showing (to paraphrase Einstein's famous aphorism) that models of genome evolution should 
be as simple as possible but not simpler and that we seem to be able to identify the minimal 
required level of complexity. Future developments will show whether or not a path exists from 
these general findings to new biology. 
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CHAPTER 7 

Scale-Free Evolution: 

From Proteins to Organisms 

Nikolay V. Dokholyan* and Eugene I. Shakhnovich 

Introduction 

O ne of the most intriguing problems in molecular biology is the origin of the vast 
population diversity of protein families. ̂  Following the assumption that the protein 
families are populated at random, one woiJd expect a multinomial distribution of 

the family populations.^ However, it has been discovered^'^ that distribution of the family 
populations is by far nonexponential, but has a long tail, which signifies that some specific 
mechanisms govern populations of protein families. To explain such diversity, there emerged 
two views of conyergent and divergent evolution (Fig. 1). 

In the convergent evolution scenario, ̂ ^ it is postulated that the present population distri
bution of protein fold families is the result of convergent processes in the course of evolution 
which were seleaively populating folds. In the simplest scenario, it is presumed that evolution 
has reached equilibriimi in the protein structural space.** Due to the underlying physical nature 
of evolutionary processes, i.e., the physical nature of amino acid interactions that underlie the 
properties of specific folds, the expected equilibrium distribution of family population follows 
the Boltzman distribution. Thus, more "designable** folds, that can be encoded by many se
quences, have a higher representation in genomes.̂ '̂̂ '̂̂ ^ This assumption, called the "designability 
principle", is based on phenomenological considerations^^ and on observations drawn from 
exhaustive enumeration of all sequences in simplified two- and three-dimensional lattice protein 
models. In the course of evolution more designable folds become more populated than less 
designable folds, which results in the uneven distribution of observed populations of protein 
families.̂ '̂̂ ^ 

There have been several arguments^^'^^'^^'^^ based on various observations favoring con
vergent evolution. Teichmann et al proposed that structural similarities arise solely due to physical 
interactions that favor particular packing and chain topologies.^^ Functional pressure was pro
posed to be the paladin of protein structural convergence. One of the most striking example 
is that of the Ser/His/Asp catalytic triad,^^'^^ which is found in a number of folds that have 
no significant sequence similarity. Antifreeze proteins (AFP) provide a crucial defense for 

** Stricdy speaking the equilibrium may have not been reached, nevertheless protein families can still be 
populated according to some "attractive" features such as designability.̂ '̂̂ ^ 
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Figure 1. Schemes of the convergent and divergent evolution scenarios. 

organisms against sub-zero temperatures. The beetles Dendroides Canadensis and Tenebrio Molitor 
AFP have dissimilar sequences from known plant and fish AFP,"̂ "̂ '̂ ^ indicating functional con
vergence of AFP proteins. Another striking example is of Zn-dependent carboxypeptidases 
that cleave off the C-terminal amino acid residues from proteins and peptides. ' Two fami
lies of nonhomologous carboxypeptidases—thermolysin and mitochondrial processing pepti
dase"̂  —show functional and structural similarity, although the topologies—the arrangement 
of the secondary structure elements in these folds—are different. In general, most of the obser
vations of convergent evolution have relied on finding functional similarity (and structure of 
the active site) between proteins with low sequence similarity.^^' 

The arguments of protein hereditary relation based solely on their sequence similarity are 
questionable. It was shown that a sequence is not a robust feature of proteins. In fact, a 
protein structure often remains stable after a single amino acid substitution. Amino acid substi
tutions may accumulate in the course of evolution: some of them will be destabilizing, some 
will be stabilizing. However, as long as a protein itself is stable in its environment, there may be 
no reasons for it to be eliminated from the genome of a corresponding organism. One can 
argue that amino acid substitutions, that affect protein folding kinetics and function, may be 
more damaging for the viability of a protein in a cell. However, many single-domain proteins 
have just a few amino acids—^protein folding nudeuŝ '̂̂ "^—that govern fast folding kinetics. 
In a lowest approximation, multi-domain protein folding kinetics is also governed by a few 
amino acids—he nuclei of each individual domain. Thus, even though the evolutionary may 
exert pressure to preserve imponant amino acids for protein folding kinetics, the small number 
of them may not prevent proteins diverge strongly in the course of evolution. 

The evolutionary pressure to preserve functionally important amino acids (e.g., the active 
site) may depend on the number of alternative proteins in cells that are capable of performing the 
same function. Even if a protein were to lose completely its function, it may still survive in a cell 
and acquire a new function later on in the course of evolution. For example, both enoyl-CoA 
hydratase and 4-chlorobenzoyl-CoA dehalogenase show significant sequence and structure simi
larities, but they catalyze different reactions.^^ In addition, in proteins, that play a structural role 
in the cell, such as fibronectin, functionally important amino acids are the same as those that 
stabilize these proteins. In proteins, with a binding site, the niunber of amino acids that consti
tute a binding site is small. Therefore, the evolutionary pressure to preserve functionally impor
tant amino acids may not affect strongly the ability of proteins to diverge during evolution. 

It is possible that the evolutionary pressure to preserve a proteins sequence in a more 
"designable" fold family is not strong enough for protein sequences to diverge from each other 



88 Power Laws, Scale-Free Networks and Genome Biology 

up to the point when their sequence similarity becomes of the order of randomly chosen pro
teins. Thus, the sequence may not be a robust measure of hereditary relation between proteins. 

In the divergent evolution scenario, the present day proteins are the pra-children of a 
small set of prebiotic proteins. They diverge from a few "original" proteins by duplication, 
deletion, and accumulating amino acid substitutions. ̂ '̂̂ '̂̂ ^ Crucial support for divergent evo
lution came when the gene duplication was documented. ̂ ^ The principal advantage of the 
divergent over convergent evolution scenario is that the former does not rely on the "designability" 
principle.* Of course, there still are examples of proteins^^ that have similar structure function 
but vasdy different sequence, which are disputed to be an indication of the convergent evolu
tion. However, since the sequence may not be indicative of hereditary relation, such argument 
is unsupported. If structure is more conserved in the course of evolution, it is important to 
retrace the evolutionary relation based on structure for those proteins that have sequence simi
larity below the accepted level for the homologous proteins (approximately 25%). 

Gerstein and Levitt pioneered the struaural census of protein sequences ^ and discovered 
that most popular folds—that are most often used in proteins of various organisms—consti
tute the largest fold families. '̂ ^ This fact, however, can also be interpreted from both conver
gent and divergent evolution scenarios. Based on convergent evolution scenario, those folds 
that are most adaptive to a new function are more populated than more "rigid" folds are popu
lated. From the divergent evolution perspective, the more often a given fold is used in the cell, 
the more often it is expressed and, therefore, the more often it varies in the course of evolution. 

The absence of the experimental crux makes it challenging tests strongly support one 
scenario versus another. Despite the large number of examples that favor divergent or conver
gent scenarios, there is no unified biophysical theory that would combine into a single theoreti
cal framework for understanding apparendy disconnected observations within a single evolu
tionary concept. 

Protein Evoludonaiy Relationships from Structure Similarities 
One step towards a unifying theory of protein evolution is the reconstruction of protein 

relationships based on their structural similarity. There have been several efforts made in quan
tifying structural similarities between proteins. ''̂ '̂ The ambiguity in all of these efforts arises 
from complications in rigorous quantitative definition of structural similarity. Semi-intuitive 
definitions of folds have been employed to construct two popular databases, SCOP and 
CATH.^^The main drawback of these databases is that they are somewhat subjective. 

The FSSP database based on the DALI structure comparison algorithm^ defines a quan
titative measure of structural similarity, the Z-score. However, selection of the threshold value 
^min of die Z-score, beyond which proteins are considered structurally similar, also introduces 
an element of ambiguity into FSSP-based family classification. In a recent paper, Getz and 
coauthors provided a quantitative relationship between FSSP, CATH and SCOP classifica
tions. These authors noted that the matrix of pairwise Z-scores can be viewed as a weighted 
graph, where each two proteins that have similarity Z > 2 (Z = 2 is the minimal Z-score re
ported in FSSP) are connected by an edge that carries weight corresponding to the Z-score 
similarity between these two proteins. Getz et al employed clustering algorithms, developed 
for weighted graphs, to identify fold families. However, clustering of weighted graphs is not 
exact as it may depend on the chosen algorithm and other factors. Another well-known prob
lem with structural classification of whole proteins presented in FSSP is so-called "floats" where 
two structurally unrelated proteins having a common "promiscuous" domain are identified as 
structurally similar. It is, therefore, crucial to reconstruct protein structural relationships taking 
into account the problem of "floats". 

* The divergent evolution and prevalence of more designable structures do not contradia each other. ̂ ^ 
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Protein Structure-Function Relations from an Evolutionary Perspective 
Functional annotation of proteins is crucial for our understanding of how the cooperative 

organization of proteins in cells relates to the specific cell anatomy and function. Under
standing cell anatomy and function is, in turn, important for understanding the evolution of 
organisms. On a practical side, the ability to alter a celFs function and/or development may aid 
rational drug development. However, one of the challenging tasks of structural genomics is the 
determination of protein function based on its structure. 

The determination of the function of a hypothetical protein is currendy based on three 
strategies. ^ The first strategy is based on identifying any sequence similarity to known pro
teins. Even at low sequence similarities, there may be a set of conserved amino acids constitut
ing an active site. These amino acids may indicate the function of a hypothetical protein. ' ^ 
The principal limitation of this strategy is the extent to which functionally important amino 
acids are conserved. It has been demonstrated on five various fold families, that evolutionary 
pressure to preserve functionally important amino acids may not be as strong as the pressure to 
preserve amino acids responsible for protein stability in cells. Therefore, the determination of 
"true" conservation of amino acids due to their functional role may be arduous. 

The second strategy for functional assignments of hypothetical proteins is the search for 
protein surface cavities using sequence and structural similarities to proteins with known func
tion. As in the first strategy the extent of the success of this methodology depends strongly on 
the conservation of local sequence and structural motifs. The driving assumption for such 
strategy is the possible similarity of the active sites between proteins sharing the same or similar 
function. There have been several mechanisms proposed to search for local functional 
motifs by comparison to libraries of three-dimensional structural templates'̂ '̂ '̂ '̂̂ '̂̂ '̂̂ ^ and the 
analysis of the physical properties of protein siufaces.^^ Teichmann et al ^ described two ex
amples of structural genomics leading the funaional annotation of hypothetical proteins: the 
HdeA protein from Escherichia coli and the protein corresponding to gene 226 from 
Methaococcus janaschiiP"^ 

The third strategy is based on the crystallographic studies of boimd cofactors in the native 
protein structure. The main limitation of this strategy is that it requires experimental recon
struction of the three-dimensional structure of protein-ligand complexes, which may be unsuc
cessful. Even in successful cases, the time scale for the experimental structure determination is 
much larger than that by using bioinformatics approaches described above. 

Due to the severe limitations of all three strategies, it is, thus, crucial to develop a novel 
technique to rigorously relate protein structure to protein function. Shakhnovich et al pro
posed a strategy that is based on the assumption of evolutionary relation of proteins that may 
be so distant that neither structural nor sequence similarities direcdy are able to identify the 
function of a given protein. This strategy is to identify a divergent evolutionary pathway—a set 
of structurally similar proteins that link two dissimilar proteins.^^ 

Protein Evolutionary Relations within and between Individual 
Proteomes 

An overwhelming amount of various experimental observations, DNA sequencing data, 
and resolved protein structures in the past few decades open inviting opportunity to under
stand the cell machinery at a molecular level. This opportunity, however, is hampered by the 
fact that there is no unifying view that would serve as a framework for a theoretical basis to 
explain all available data from molecular to cellular levels of descriptions. Present knowledge 
offers us understanding of biological processes at various scales: from small molecules living at 
the Angstrom scale (10' m) to organisms living at the meter scale. It is an enticing challenge 
then to bridge these scales by developing a unifying theory. 
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One step to create a bridge between the nano- and hundred-nano-scales is to reconstruct 
cell organization at the molecular level. To construct such a bridge it is necessary to reconstruct 
the cell protein-protein interaction network. A large number of techniques have been devel
oped for the systematic analysis of protein interactions,^^ such as yeast two-hybrid-based 
methods, ' surface plasmon resonance biosensors,^^ isothermal titration calorimetry, opti
cal spectroscopy,^^ mass spectrometry of protein complexes,^^'^^ protein chips,^^ and other 
methods that combine computational and experimental approaches.'^^ These methods aim to 
reconstruct full-scale protein interaction networks in primitive organisms, such as yeast ' 
and Helicobacter pylori. These methods indeed offer novel insight on protein interactions, 
although their application is currendy limited to the simpler unicellular organisms. 

Computational methods are alternative approaches to experimental ones. Large amounts 
of available biological data and cost-effectiveness made computadonal approaches recendy bloom. 
There have been undertaken several principal computational efforts. The phylogenetic profile 
method is based on comparison of complete genomes of various organisms. Such compari
son can be correlated with the set of specific fimctions present in one organism and absent in 
another. The principal drawbacks of this method are that (1) it can be used only for complete 
genomes, (2) some fiinctions may be redundant and not represented by the same set of pro
teins, and (3) it can not be used for most common and essential proteins to most organisms. 
The conservation of gene neighborhoods has been utilized to predict functional genes in bacte
rial genomes.^ ' The applicability of this approach though is limited to bacterial genomes. A 
search for domain fusion events"^ '̂̂ '̂̂ ^ has been used to find the functional role of promiscuous 
domains incorporated in various larger proteins across the phyla. Such a search, though, is 
limited to multi-domain proteins. Other methods, such as mirrortree^^ and in silico two-hybrid 
methods to search for protein interaction networks are sensitive to coverage of species under 
study, since they are dependent on multiple sequence alignments. It is crucial to develop a 
theoretical basis for techniques that would reconstruct the protein relations within individual 
proteomes and reconstruct the evolutionary relations between them based on available data. 

Sequence Divergence 
There are several principal facts about protein sequence-structure relation ob

served: ' ' ' ' ' ' (i) proteins taken from various species and having sequence identity, 
/D, at least ID = 25-30% have similar three-dimensional structures (native state) and are 
said to belong to the same fold family; (ii) some pairs of proteins sharing the same fold have 
sequence similarity as low as expected for random sequences ID --8-9%; (iii) within the 
same fold family, protein sequences have only 3-4% "anchored" amino acids.^^ 

In 1987, eleven leading evolutionary biologists^^ made a statement asking the scientific 
community for the appropriate usage of the term "homology". Two proteins are said to be 
homologous if they possess a common evolutionary origin (e.g., ref. 100). Because many pro
teins that have high sequence similarity are homologous, this term has been used loosely in the 
discussion of any proteins with high sequence identity. Proteins that have no common ances
tor, but possess structural similarity, are called analogs. 

If the sequence identity of two structurally similar proteins is high {ID > 25-30%), there 
is a high probability that these proteins share a common ancestor, and thus, statistically, one 
would rarely be mistaken when calling these two proteins homologs. If the sequence similarity 
of two structurally similar proteins is low {ID < 25%), it is difficult to establish whether these 
proteins are homologs or analogs.^ '̂̂ ^ In fact, despite clever efforts,^^ it is still questionable 
whether there is a unique solution to the problem of determining whether two proteins with 
low sequence identity are homologs or analogs, i.e., whether they evolved in divergent or con
vergent evolution. 



Scale-Free Evolution: From Proteins to Organisms 91 

Two proteins are likely to be homologs that diverged from the same root if they still carry 
the same function (i.e., if the evolutionary time elapsed from their common divergence point is 
smaller than functional relaxation time Xp). However, if two structurally similar proteins with 
low sequence identity have significantly different functions, then there is little information 
with which to identify them as homologs or analogs. These two proteins might be homologs, 
although one of them has evolved to possess a new function.^^ However, these two proteins can 
also be analogs and their similarity in structure is purely accidental or, for example, is due to a 
potential similarity of the structure of the binding site. The question then becomes - how can 
we retrace the history of these two proteins? 

Our results suggested that it may be impossible to retrace the history of two structurally 
similar proteins with low sequence identity based purely on sequence analysis. In this case, the 
ancestral relation classification terms—homologs and analogs—become meaningless. There 
are two reasons we believe this to be so. To explain these reasons, in reference 29 we proposed 
a model of evolution (Energy Gap Model) that attempts to reproduce the principal protein 
observations (i-iii) described above. The Energy Gap Model is based on the design of a set of 
structurally identical sequences by the Z-score minimization.^^^'^^ The idea is to find the 
similarities in the sequences of such a set and to recover those residues that are conserved across 
this set. The protein folding theory^ ̂ '̂̂  suggests that Z-score minimization is equivalent to 
maximizing the energy gap between misfolded or unfolded conformations and the native state 
of a protein. It has been pointed out that such maximization results in stable and fast-folding 
proteins. ' Thus, by designing sequences that have the same fold, we attempt to mimic 
evolution in diversifying protein sequences for the same fold family. In addition, the Energy 
Gap Model is a dynamical model, i.e., there is an implicit time scale that allows one to follow 
the evolution of sequences during the design procedure. The model is discussed in detail in 
reference. "̂^ 

Why It May Be Impossible to Reconstruct Hereditary Relations 
between Proteins Based Solely on Their Sequence Similarity? 

Firstly, the correlation function C(T), which measures the probability of an amino acid 
not to be affected by mutations in time X, decays exponentially, so that beyond the correla
tion function relaxation time one can not relate the sequences—original, and the one ob
served at time T later. Secondly, it did not make a difference if we started our design proce
dure from one sequence or from two unrelated sequences. These sequences diverged so much 
from each other in a short design simulation time, that one could not identify which initial 
sequence we used in the design procedure. Furthermore, our results suggested that some 
degree of homology may occur even between sequences that converged from unrelated root 
to the same structure, i.e., in clear analogs. The reason for that is that as we showed in 
reference 29 some positions may feature conserved residues due to physical requirement of 
stability of a common fold. Physical conservation of certain classes of amino acids at some 
positions in protein folds may be reflected on the genetic level due to the specifics of genetic 
code. Such conservation in some cases may be confused with homology due to the origin of 
sequences in divergent evolution. A rigorous definition of analogs and homologs can there
fore come only either from the understanding of the correlation times T between consecu
tive mutations or by reconstructing the actual structural and/or functional evolutionary path
ways. If the time scale is smaller than the typical time scale for the formation of a family of 
homologs, To, then the homology is well-defined: the homologous sequences in this case 
have high sequence similarity, while the analogous sequences have low sequence similarity. 
At a longer time scale T » To, unless there is a high sequence similarity between se
quences, the notion of homology and analogy becomes meaningless. 



92 Power Laws, Scale-Free Networks and Genome Biology 

"EVOLUTIONARY- REACTION COORDINATE 

ANALOGS 
«-2 ^ - :J -2 «-s -2 

Q I&. CJU lA. C/5 <ZS m 

un 
O 

ac a : £C isi :rf 2:: 

ija ixj sQ &3 D ^ 

> ^ > ^ j g : ^ 

Q uTi xn zn ^ ^jn ^ 

o 
X 

! > > > > > > ! 
H H 
*-J »-.5 

> > 

r-
»-2 

> 

r- - r-
^ - 3 *-2 

> ^ 5-, 

J2 < O •** >-5 

^ 4 i ^ -6 
«2 « i i i i 

^ «s ^ 

5) > 3̂  3̂  3̂  3̂  
ss ^ ^ 2:̂  cŝ  c0 
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Figure 2. A schematic representation of the evolutionary processes that result in conservation patterns of 
amino acids. For a given family of folds, e.g., immunoglobulin (Ig) fold in this diagram, there are several 
alternative minima (3) in the hypothetical free energy landscape in the sequence space as a ftinction of the 
"evolutionary" reaaion coordinate (e.g., time). Each of these minima are formed by mutations in protein 
sequences at some typical time scales, to, that do not alter the protein s thermodynamically and/or kinetically 
important sites, forming families of homologous proteins. Transitions from one minimum to another occur 
at time scales, T=To exp{AG/T) where AG" is the free energy barrier separating one family of homologous 
proteins from another. At time scale T mutations occur that would alter several amino acids at the important 
sites of the proteins in such a way that the protein properties are not compromised. At time scale T the family 
of analogs is formed. In three minima we present three families of homologs (ITEN, IFNF, and ICFB) each 
comprised of six homologous proteins. We show 8 positions in the aligned proteins: from 18 to 28. It can 
be observed that at position 4 (marked by blocks) in each of the families presented in the diagram amino 
acids are conserved within each family of homologs, but vary between these families. This position corre
sponds to position 21 in Ig fold alignment (to iTEN) and is conserved. 

The Underlying Scenario of Protein Evolution 
We conjecture that the hierarchical organization of structurally similar proteins may be 

the result of the separation of the evolutionary time scales, shown schematically in Figure 2. 
O n a time scale TQ, a set of mutations occur that do not affect those amino acids that play 
crucial thermodynamic, kinetic and/or functional roles. As a result, there is little variation in 
sequences at the important sites of proteins. If a mutation occurs at the thermodynamically, 
kinetically and/or functionally important sites, it usually substitutes amino acids with close 
physical properties so that core, nucleus and/or functional site are not disrupted and the pro
tein folds into its family fold, is stable in this fold, and its function is preserved. At this time 
scale, a family of homologs is born. 

Rarely, at time scale T, correlated mutations or larger-scale sequence rearrangements oc
cur ' that modify several amino acids at the core, nucleus and/or functional site, so that 
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the stability and kinetics of proteins are not altered. Such a set of mutations can drastically 
modify the sequence of the protein. However, within the time scale TQ, a family of homologs is 
born within which there is conservation of (already new) amino acids in the specific (impor
tant) sites of homologous proteins. Although there are alternations in the specific sites of the 
proteins at the time scale X, these sites are more preserved than the rest of the sequence. The 
proposed view of protein evolution is consistent with the observations of the hierarchical orga
nization of structurally similar proteins in families of homologs. Sets of families of homologs 
are organized, in turn, in super-families of (possible) analogs. The evolutionary time in our 
analysis is associated with the number of mutations that accumulate in the course of evolution. 
Because the rates may vary between families and even proteins, the relation of evolutionary 
time to physical time is not straightforward. Evolutionary time can be rigorously defined statis
tically as the number of mutations that occur in a fold family, averaged over all family mem
bers. The real time for one family may be different from that of another. These considerations 
complicate interpretation of sequence-based approaches to organismic phylogeny and calls for 
more robust, structure based approaches to phylogeny (Deeds, Hennesey, Shakhnovich, in 
preparation). 

Support for such a scenario comes from several studies reporting observations of corre
lated mutations in proteins in the course of evolution.̂ ^ '̂̂ ^ '̂̂ ^^ In addition. Axe et al have 
demonstrated that random substitution of core residues in ribonuclease barnase by hydropho
bic residues preserves the activity of barnase in a significant number of cases. They produced 
barnase mutants in which 12 of 13 hydrophobic core residues have together been randomly 
replaced by hydrophobic alternatives. A strikingly high proportion (23%) of mutants main
tained structural integrity enough to support enzymatic activity of barnase. 

Murzin proposed an elegant scenario of the evolution of protein architecture while main
taining its function. He argued that protein folding pathways may be altered by mutations. As 
a result, a local free energy minimum of the wild type protein may become a global free energy 
minimum of a mutant protein. The conformations at these states—global free energy minima 
of mutant and wild type proteins—may have no structural resemblance. However, these states 
may maintain the same fiinction. As an example, Murzin argued that catalytic domain of the 
carboxypeptidase G2^ is structurally similar to aminopeptidase from Aeromonas Proteolytica. 
However, these enzymes fold into two topologically different topoisomers. 

Reconstructing Evolutionary Relations between Proteins 
To overcome difficulties of reconstructing the evolutionary relation of proteins based on 

their sequences, we resort to the analysis of structural relationships between proteins. We em
ployed a graph representation of the protein domain universe, in which we considered only 
protein domains that do not exhibit pairwise sequence similarity in excess of 25% and each 
such protein domain represented a node of the graph.^ We used protein domains as identified 
by Dietmann and Holm in the FSSP database of protein domains.^^^ Structural similarity 
between each pair of protein domains was characterized by their DALI Z-score.^ We defined 
a structural similarity threshold Z^jn and connected any two domains on our graph that had 
DALI Z-score Z > Z^in by an edge. This way we created the protein domain universe graph 
(PDUG). It is crucial to note that, in contrast to weighted graphs considered in reference 45, 
the PDUG, is an unweighted graph where each edge that made it above threshold is considered 
equally. Clustering of such an unweighted graph represents its partitioning into disjoint clus
ters which can be carried out exacdy using the classical depth-first search algorithm. Each 
disjoint cluster represents a family of structurally related proteins in which each protein is 
presented only once (Fig. 3). Disjoint PDUG clusters are, in principle, equivalent to the fold 
classification level of the SCOP database. 
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Figure 3. An example of a large cluster ofTIM-barrel fold protein domains. Protein domains whose DALI 
similarity Z-score is greater than Zmin = 9 are connected by lines. 

Properties of the Protein Domain Universe Graphs 
We computed the size of the largest cluster in PDUG and random control graph as a 

function of Z^in.^ We found a pronounced transition of the size of the largest cluster in 
PDUG at Zmin = Zf« 9. The random graphs feature a similar transition, but at a higher value 
of Zjnjn = Zf« 11. The distribution of cluster sizes depends significantly on whether Zmin > Zc 
or Zmin < ^c for both the PDUG and random graphs. We also found that the probability 
density P(M) of cluster sizes Af for both the PDUG and random graphs follows a power-law 
at their respective Z^: PiAf) «= Af̂ "̂ . The observed power-law behavior of P{Af) is simply a 
consequence of criticality at Z^as it is featured prominently both for the PDUG and random 
graphs. The power-law probability density of cluster sizes is a generic percolation phenom
enon that has been observed and explained in both percolation^ ^̂ ' and random graph 
theories.^^^ Gerstein and coworkers also reported a power-law distribution for fold family 
sizes derived from the SCOP database'^ and attributed the observed power-law distribution 
to a certain evolutionary mechanism. However, we showed in reference 8 that random graphs 
featured the same power-law distribution for fold family sizes and were simply explained by 
percolation theory.̂ ^" '̂̂ ^^ 

In order to characterize the structiu-al properties of the PDUG we computed the probabil
ity ^(k) of the number of edges per node k taken at Zmin = ^c for individual clusters. It is 
known that p (k) distinguishes random graphs from various graphs observed in science and 
technology. ̂ "̂^ In drastic contrast with the equivalent random graph, the PDUG is scale-free 
with p{k) oc ^'^-^with a high degree of statistical significance (/;-value less than 10'^). The 
power law fit of p (k) is most accurate at Zmin ~ Z^, and noticeably deteriorates above and 
below Zc. The fit at Zmin > Zc quickly becomes meaningless as the range of values of connectiv
ity k rapidly diminishes as greater Zmin l^d to mostly disconnected domains. At Zmin < Zc the 
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power law fit also becomes problematic in the whole range of k because at large values of k 
(50-100) p{k) shows some nonmonotonic behavior which can be interpreted as a maximum 
at large k (the data are insufficient to conclude that with certainty). However the remarkable 
property of a maximum ^(^) at ^ = 0 i.e., dominance of orphans remains manifest at allZmin 
values. This is in striking contrast with random graph which is not scale-free at any value of 
Zttim and where p{k) allows almost perfect Gaussian fit with a maximum at higher values o^k. 

The discovery of the scale-free character of the protein domain universe is striking. It has 
immediate evolutionary implication by pointing out the possible origin of all proteins from a 
single or a few precursor folds—a scenario parallel to the origin of the Universe from Big Bang. 
An alternative scenario, whereby protein folds evolved de novo and independently, would have 
resulted in random PDUG rather than the observed scale-free one. 

The rigorous method of clustering protein structures^ provides a number of insights. 
First of all, using graph theory for protein structure classification removes the ambiguities that 
are inherent in the highly usefiil, albeit manual, approaches to structural classification of pro
teins. ' Perhaps not surprisingly we observed that the structure of the graph representing the 
protein domain universe depends on the Z^in threshold value of Z-score above which protein 
domains are considered structurally similar and are connected by an edge of the graph. How
ever, at a certain critical value Zmin = Z^, the structure of the PDUG becomes remarkably 
universal, simple and amenable to theoretical understanding from an evolutionary standpoint. 

An important component of the analysis presented in reference 29 is random control 
where PDUG was compared with random graph. Our results showed that random weighted 
graph having the same weight (Z-score) distribution as PDUG featured same cluster size distri
bution. Since clusters in PDUG can be associated with fold level classification of protein struc
ture, this observation suggested that nonuniform distribution of nonhomologous proteins over 
folds may not be due to special features of "most popular" protein folds as suggested previously 
by some researchers. ̂ '̂̂ ^ However that does not necessarily imply that observed protein folds 
are not selected based on their physical properties.^^^ It is possible that the divergent evolution 
scenario described here occurs only on these selected folds while unfeasible ones are not ob
served in nature. However the analysis presented in reference 29 points out that explanation of 
the nonuniform distribution of nonhomologous proteins over observed folds does not require 
invoking the "designability principle"^^ or related conjectures about the nonuniform density of 
sequences in space of protein folds.^^ 

We discovered that the structure of the PDUG is by far nonrandom, but rather represents 
a scale-free network featuring power-law distribution of the number of edges per node. The 
most striking qualitative aspect of the observed distribution is the much greater number of 
"orphans" (i.e., domains that are not structurally similar to any other domains) compared with 
random graph control. Importandy this qualitative feature remains prominent at any value of 
threshold Zmin despite the fact that power-law fits of p {k) gets worse when Zmin deviates from 
Zc. A natural explanation of this finding is from a divergent evolution perspective. The model 
of divergent evolution presented in reference 8 is in qualitative agreement with PDUG as it 
produces a large (compared with random graph) number of orphans (Fig. 4). 

Besides reproducing the scale-free behavior of the PDUG, the divergent evolution model 
also quantitatively captures more specific graph properties of PDUG. In particular it was shown 
that the distribution of clustering coefficients '̂̂ ^ of nodes of PDUG is almost exacdy matched 
by the divergent evolution model. This is in contrast to the random control where the scale-free 
PDUG has been randomly rewired while connectivity of each node is kept intact (Deeds and 
Shakhnovich, unpublished results). 

Orphans are created in the model mosdy via gene duplication and their subsequent diver
gence from a precursor. This may be meaningfiil biologically because duplicated genes may be 
under less pressure and hence prone to struaural and fiinctional divergence. The divergent 
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Figure 4. A cartoon representation of the divergent evolution model presented in reference 8. In this model, 
proteins diverge through a number of gene duplication events and point mutations (I—>II—>III—>IV). 
While a single amino acid substitution may not significandy alter the protein structure, a number of them 
may result in drastic changes in protein structure. If these changes result in a fiinaional and, most impor-
tandy, stable protein, a new fold family is born. In the model, each protein is represented by a node. Nodes 
representing proteins with significant structural similarity are conneaed by edges with a weight. If in the 
course of evolution an edge's weight lowers below the threshold value, the nodes become disconneaed. At 
each evolutionary step, a randomly chosen node is duplicated and an edge with a weight (chosen from 
uniform distribution) is created that connects progeny to its parent. If the weight is below a threshold value, 
the nodes become disconnected and a new protein family is born. In addition, at each evolutionary step, 
after gene duplication a newly created node may become conneaed to its pra-parent. 

evolution model presented in reference 8 is a schematic one as it does not consider many 
structural and functional details and its assumptions about the "geometry" of the protein do
main space in which structural diffusion of proteins occurs may be simplistic. However, its 
success in explaining the qualitative and quantitative features of PDUG supports the view that 
all proteins might have evolved from a few precursors. 

An important aspect of the model proposed in the reference 8 is that it provides only a 
conceptual framework for reconstructing protein structural space. The fine details of evolution 
contain crucial ingredients that underlie selective pressiu"e in the model proposed in reference 
8. Recendy Deeds et al̂  uncovered how the features of an underlying protein structural space 
might impact protein structural evolution using lattice polymers as a completely characterized 
model of this space. In reference 123 we developed a measure of the structural comparison of 
lattice structures in analogy to the one used to understand structural similarities between real 
proteins. We used this measure of structural relatedness to create a graph of lattice structures 
and compared this graph (in which nodes were lattice structiu-es and edges were defined using 
structural similarity) to the graph obtained for real protein structures. In reference 123 we 
found that the graph obtained from all compact lattice structures exhibited a distribution of 
structural neighbors per node consistent with a random graph. We also found that subgraphs 
of 3500 nodes chosen either at random or according to physical constraints, such as selective 
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protein designability,^ also represented random graphs. We developed a divergent evolution 
model based on the lattice space which produces graphs that were capable of recapitulating the 
scale-free behavior observed in similar graphs of real protein structures. Indeed, in contrast to 

this universal behavior, we observed subgraphs with power-law degree distributions only as the 
result of a very specific evolutionary sampling procedure. This not only demonstrated that 

scale-free graphs may be derived from such spaces but also that the rules underlying divergent 
graph evolution models are sufficient to produce this behavior. 

Evolution of Proteins and Organisms 
An important observation has been made by Deeds et al̂ "̂  who determined the structural 

content of 59 fixlly sequenced bacterial proteomes. Deeds et al identified structural proteomes— 
subgraphs of P D U G that belong to a specific organism through mapping of the P D U G repre
sentative domains on to a homologous domain of a given organism. Each such proteome con
tains a subset of domains from the P D U G . Strikingly, Deeds et al^ found that these subgraphs 
are themselves scale-free-networks (Fig. 5). 

Deeds et al explored two convergent evolutionary models to explain the scale-free orga
nization of proteoms and concluded that such models were unlikely to explain the P D U G struc
tural patterns. Addition of speciation events to a divergent model, however, resulted in model 
organisms that exhibit nonrandom subgraphs similar to those observed for real organisms. Deed 
et al^^ demonstrated that any divergent model must include some ingredient of speciation in 
order to account for the nonrandom overlap between structural proteomes. Such analysis of 
structural proteomes allowed authors to discount convergent models of structural evolution in 
favor of a specific divergent view that includes both organismal and structural evolution. 
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Figure 5. Degree distributions for nine bacterial subgraphs.^^"^ The degree distributions were shifted by 
a degree of 1 to allow display of orphan (degree 0) nodes on a log-log plot. Notably all proteomes exhibit 
similar to PDUG P(k) behavior: the power-law fits of these organisms yielded exponents that were 
approximately -1.6. 
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An important consequence of this study was the observed correlation between the Dar
winian divergent evolution of organisms and the evolution of proteins. Such correlation 
couples two basic biological scales—microscopic (proteins) and macroscopic (organisms). 
The fact that these scales are coupled suggests a truly scale-free evolution of molecules and 
organisms. It also signifies of the single unifying law that governs evolution of proteins and 
organisms. 

Reconstruction of Protein Structure-Function Relations 
Most evolutionary models concede some form of relationship between protein struaure and 

function. ' Understanding this relationship is central not only to evolutionary biology, but 
also to structural genomics. ̂ ^̂  However, despite many efforts, the establishment of a clear rela
tionship between structure and function has been elusive. This is in part due to the fact that 
neither structural nor functional relationships are well defined. The structure-function relation
ship between proteins can be understood in light of an evolutionary prospeaive. Two views on 
protein evolution have previously been su^ested to account for the uneven distribution of se
quences in fold space: that of convergent evolution '̂̂ '̂ ^ '̂̂ ^^ and divergent evolution. 

Convergent evolution posits that different folds evolved independendy and the same ("most 
poptdar") protein structures are recycled many times by proteins having different functions. 
According to this model, new proteins may not be related by evolution to their orthologues as 
new proteins with similar function are rediscovered anew in many organisms. New proteins 
spawn by chance, but some structures are more populated than others because they are sug
gested to be more advantageous (thermodynamically, kinetically, evolutionarily). Such a sce
nario would suggest little relationship between structure and function. ̂ ^̂  

An alternative scenario is that of divergent evolution that suggests that a single or a few 
progenitor proteins give rise to many different, perhaps even unrelated offspring via processes 
of gene duplication and mutation. ̂ ^̂  These offspring can differ significandy from each other, 
either in sequence or structure, and can perform a varied array of functions many generations 
later. It was shown recendy that divergent evolution scenario implies important, observable 
structural relationships between domains: namely a scale-free organization of the protein uni
verse that relays the history of how proteins are related to each other and would suggest a strong 
relationship between structure and function.^ 

It is important to note that divergent evolution implies a structure-function relationship 
that mirrors the structural hierarchy of PDUG. As protein structures diverged from progenitor 
proteins, so did functions. This relationship is necessitated by the requirement that the protein 
domain and all its descendants remain both funaional^^^ and structurally stable during the 
progression of evolution. Since evolution of funaion is similar in spirit and timeframe to that 
of structure, the structure-function relationship can also be observed in the context of a hierar
chical functional annotation that allows comparison of protein functions at various levels of 
specificity of description. The level of hierarchical description is important, as it is the focal 
lens of functional evolution. Such hierarchical functional description is provided to the 
bioinformatics community by the Gene Ontology (GO) consortium. ̂ "̂̂  

The main result of reference 135 is a striking finding that the corollary relationship between 
structural evolution and acquisition of new function by protein domains necessitated by a diver
gent evolution scenario can be quantitatively observed on the PDUG. Looking at PDUG through 
a hierarchical description of structural comparisons we find that we can characterize different 
clusters by the "functional fingerprint*' that they display. A functional fmgerprint is the distribu
tion of functions within a particular cluster. We find that this distribution is quite imique to a 
given fold family at certain levels of functional annotation provided by GO. If we relax the Zmin 
threshold, we can also see an influx of protein domains into structurally similar clusters. These 
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newly joined domains do not destroy the functional fingerprint of these clusters. This preserva
tion of unique functional fingerprints through evolutionary dynamics further highlights the close 
relationship between structure and function necessitated by divergent evolution. 

The Importance of Independent Functional Hierarchical Description 
The simplistic divergent evolution model^ that explains the nonrandom behavior of the 

PDUG is based solely on the premise that a protein has an ancestor that is its closest struc
tural homologue. This model fits the data observed on the PDUG. The model characterizes 
the "oldest" proteins as those having the largest number of descendants and consequently the 
number of descendants for each protein depends on the protein s evolutionary age. We can 
therefore argue from our divergent evolution model that the older clusters and proteins are 
more populated and have more connections in PDUG. Of course, there is a significant 
stochastic component evolution of proteins that may drastically affect both family popula
tions and their connectivity. 

To detect mutual evolution between structure and function, in reference 135 we indepen
dently annotated proteins based on their function. By considering the function of all the pro
teins that are annotated and disregarding sequence homologues, we found that proteins have, 
in general, diverse functional descriptors. These descriptors are unique such as Methionine 
synthase, bl2-binding domains or methylmalonyl-coa-mutase. On the other hand, all proteins 
can be broken up into just six or seven major functional categories such as enzyme, ligand 
binding, transporter. It seems apparent that the elucidation of a functional relationship be
tween proteins depends on the system of description. Some medium specificity of functional 
description must be used if we are to quantitatively measure functional relationships between 
proteins. Since we do not know the coarseness of the needed annotation, we clearly need a 
hierarchical system. 

A hierarchical system of functional annotation was recendy developed by the GO consor
tium. The GO system of annotation is well suited for measuring functional relationships 
between proteins because it defines a machine language where we can compare protein func
tions with litde ambiguity based on their unique GO identifiers at different levels of specificity 
of annotation. The GO hierarchical language is organized as a directed acyclic graph. Each 
node in this graph is an annotation, a functional descriptor that we can assign to a gene or gene 
product. As the graph is traversed down, more precise functional descriptions populate the 
nodes. In this graph, the parent-leaf relationship of the nodes has an "all children are a subset of 
the parent" conjecture. For example, all adolases are enzymes as are CoA ligases because there is 
an edge from enzymes to both categories. In reference 135 we independendy mapped protein 
function onto the whole of PDUG. 

In order to carry out a completely machine based annotation, we used a direct mapping of 
the genes found in SwissProt Database that coded for the PDB entry of the protein domain in 
PDUG. We mapped the SwissProt entries to the curated annotation of SwissProt by the Gene 
Ontology Consortium. Each such annotation was mined independendy by the GO consortium 
primarily from literature searches (http://www.geneontology.org). This yielded a nontrivial map
ping from PDB to GO, thus giving each protein its functional assignment. The assignment is 
nontrivial because some SwissProt entries had many functional annotations corresponding to 
large, multifunctional, multi-domain proteins, from which our domain was only one. In this 
case, we kept all functional annotations. Working with domains alleviates the problems of "flow 
of structure" inside the clusters.^ Flow of structure can happen when proteins A and B share a 
common domain C. Proteins A and B could then have highly nonrandom structural similarity, 
but different functions due to the noncommon domain being active. This way, domains may be 
erroneously classified as functionally equivalent while this may not actually be the case. 
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Divergent Evolution Observed 
In reference 135 we presented strong evidence for divergent evolution of structure and 

function in protein domains by relating proteins' structures to their functions. We observed a 
homogeneity of function within structural clusters: the functional fingerprint. Functional fin
gerprints differ between the structural clusters. We observed the phenomenon of older, more 
populated clusters diffusing more in the functional space than newer, less populated clusters. 
For example, the largest structural cluster mainly populated by proteins with the distinctive 
Rossman fold, is mainly localized in the guanile nucleotide binding GO annotation. 

When we considered less populated and therefore presumably younger clusters, we ob
served that the fiinction is more localized. This is probably because the domain family had less 
time to diverge in structure and consequendy fimction. The TIM barrel fold mainly has the 
function of hydrolases. Immunoglobulin (Ig) folds are very specialized folds performing mostly 
B-cell receptor fiinctions. Interestingly, globins localize 95% into the "oxygen transporter" 
functional category. The probability that a set of randomly chosen proteins falls into one par
ticular category at the fifth level of the GO ontology is diminishingly small. For example, for all 
globins this probability was foimd to be of the order of 10'^^. 

It has been known for a long time that there are specialized folds. For example, the Ig folds 
are known to perform immunity/defense functions, and it is not surprising to find that its 
functional annotation differed significandy from all other structural clusters. We still found 
significant homogeneity even in more ubiquitous and less specialized folds such as TIM barrel 
and Rossman. Using the analysis of reference 135 it may be possible to identify a fold family by 
deciphering its functional fingerprint. 

In reference 135 as we attached newly diverged protein domains to their ancestral clusters, 
the proteins attached with matching functional descriptions and complemented the functional 
fingerprint of their ancestors. We also noticed that there are functional categories that are more 
populated in the PDUG. These were the functions of many structiu-ally similar, but sequen
tially different proteins. We therefore asked why some functions are more redundant than 
other ones. We speculated that these are the older functions (those that older proteins started 
with) that evolved much earlier and consequendy have close descendant proteins performing 
similar function. 

The PDUG functional annotations^^^ revealed an interesting phenomenon related to the 
origin of orphans: as we increased the amount of strucniral evolutionary time, that we con
trolled by decreasing the threshold Zmin (higher Zmin represents a more recent snapshot of 
evolution), the orphans join ancestral clusters. Approximately half of the proteins are not or
phans even at Z^in = 9. As we decreased Z^in from 9 to 2, we found that a half of the orphans 
join ancestral clusters, however the nucleus of the functional annotation within each cluster 
also grew almost proportionally. The functional nucleus is the collection of nonhomologous 
proteins that dominate functional annotations inside clusters. They are visibly seen as propa
gating together through the GO directed acyclic graph. This is in stark difference to random 
sampling of the protein domain universe where no such "nucleus" can be foimd and where we 
observe a more random distribution of functional annotation across all levels of GO. Notably, 
as we decreased Zmin, many functions peripheral to the nucleus diffuse into the fingerprint. 

Conclusion 
Refinement of the methodologies of protein structure determination yielded a massive 

amount of important information about protein structure. Due to the fundamental develop
ments in the field of molecular evolution, this information unveiled a peculiar picture of the 
protein structural, sequence, and functional spaces. In particular, graph-theoretical approaches 
enable us to decipher specific characteristics of these spaces. 
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It has been suggested that protein thermodynamics is one of the important evolutionary 
driving forces that shape the protein sequence space and govern the architecture of the protein 
structural space. This force relates protein sequence and structural spaces. 

One striking observation is the scale-free organization of the PDUG^—protein structural 
space—which is signified by hierarchical relations between structurally similar proteins. The 
emergence of power-law scaling of the PDUG connectivity p{k) is the result of evolutionary 
dynamics that is as robust at the scale of specific proteomes or at the scale of all organisms. The 
correlation between structural organization of proteomes and appearance of new organisms 
(speciation) also suggest a truly universal "scale-free" evolutionary dynamics, whereby the 
appearance of new protein fold families is parallel to appearance of new species. 

Distributions of function and structure over the PDUG act as two evolutionary lenses. It 
is evident that the evolution of structure and function is mutual and governed by the same 
underlying principles. ̂ ^ Since according to divergent evolution, aside from the biochemical 
consideration of function structure correlation, there is also biological pressure for proteins to 
retain close functional as well as structural similarity to their ancestors upon mutation and 
duplication. This implies a possibility to trace protein lineages via structural comparisons and 
further identify a possible function of putative proteins. 
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CHAPTER 8 

Gene Regulatory Networks 

T. Gregory Dewey* and David J. Galas 

Abstract 

Two gene regulatory networks inferred from different types of data are considered in this 
chapter. Gene expression networks are networks inferred from microarray time series 
data and transcription factor networks are networks obtained from a new genome-wide 

technique that allows an identification of all of the DNA binding sites for each transcription 
factor (TF). While addressing the same underlying questions, these networks reflect different 
properties of gene regulation and provide different insights. The gene expression network is 
inferred from dynamic analysis of time series data of gene expression profiles. The TF net
works, on the other hand, are a direct result of experimental observation of a physical associa
tion between a TF and a DNA binding site, which (except for experimental noise) is unique. 
While our knowledge of the transcription factor networks is limited, these networks provide 
insights into a regulatory core network of TFs that regulate each other, and drive all network 
interconnectivity. In both cases, the resulting networks show features that may be universal to 
biological systems. The global properties of such networks show the scale-free distributions of 
node connectivity indicative of a hierarchical network and also exhibit small world graph prop
erties. We discuss a network growth model based on gene duplication that provides excellent 
agreement with the global network parameters derived from the analysis of experimental ex
pression data. In addition to these global properties, the local properties of these gene expres
sion networks can be used in data mining and classification. 

Introduction 
High throughput technologies allow a genome-wide interrogation of biological systems. 

These technologies permit the measurement of the many parameters and variables associated 
with life processes and reveal, in many cases, the inherent complexities of these processes. The 
current era of systems biology is marked by ongoing efforts to assimilate and integrate this 
avalanche of information into models of biological functions. To do this, the detailed informa
tion about molecular species cannot be considered in isolation but rather must be related to all 
of the other components of the system. These relationships are most easily represented by 
network structures or graphs. Thus, systems biology invariably means network analysis. To this 
end, systems-wide investigations have focused on specific functional network structures such as 
metabolic, signaling and gene regulatory networks. In this chapter we review progress in infer
ring and interpreting gene expression networks and transcription factor networks. 
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An emerging problem in bioinformatics is to identify the relationships between the vari
ous components of a system and infer how one component influences another. To understand 
the mechanism of gene expression, a detailed molecular picture of gene regulatory networks is 
required. Such a picture can be developed by probing the interactions between signaling path
ways, transcription factors and theTF binding sites of the cis regulatory region of a gene. These 
interactions constitute the molecular circuitry that describes how external influences can trig
ger signal transduction pathways to activate transcription factors for a specific set of genes. The 
molecular circuitry not only reveals how the expression of individual genes are controlled but 
also how one effector or agent influences the entire network. 

Two very different types of networks associated with gene expression are considered here. 
First, we consider gene expression networks. These are networks derived from microarray data 
through the measurement of time series of mRNA levels on a genome-wide scale. The second 
network to be discussed is the transcription factor network. These networks are derived from a 
genome-wide identification of all of the DNA binding sites for each transcription factor (TF). 
This network allows the direct interaction and control of each gene to be identified from the 
observation of TF binding at elements upstream from DNA coding regions. While these two 
networks address the same underlying questions, the regulation of gene expression, they are, by 
their nature, very different, and represent different manifestations of the underlying regulatory 
mechanism. The gene expression network, being inferred from dynamic analysis of time series 
data of gene expression profiles, must be considered phenomenological, reflecting dynamical 
observations from the data and an inherendy incomplete modeUng of this data. These networks 
describe how the mRNA level of one gene influences the level of another. These are not true, gene 
regulatory networks in the strict sense because they are correlative, and not necessarily causal, 
networks. The transcription factor networks, on the other hand, are a direct result of experimen
tal observation of a physical association between a TF and a DNA binding site. No line of infer
ence is required to generate these networks and they lead to direct mechanistic interpretation. 
However, these networks are silent as to the dynamics of the network, they are stricdy structural 
and do not the indicate the extent of control exerted by the TFs. The two complementary ap
proaches provide a dynamical, but incomplete, phenomenological model of the structure of the 
network and a precise structural model with imknown dynamical properties. 

We discuss how gene regulatory networks are inferred from time series data using simple 
linear dynamical models. The resulting networks show features that may be universal to bio
logical systems. The global network properties are discussed and it is seen that these inferred 
networks are scale-free and exhibit small world properties. A network growth model based on 
gene duplication is described that provides excellent agreement with the global network pa
rameters derived from the experimental data. In addition to the global properties, the local 
properties of these networks provide powerful data mining tools. There is a limited literature 
on transcription factor networks thus far, but early results show intriguing network features for 
these as well. While these networks are of limited size, they also appear to show the scale-free 
behavior seen in the expression networks.We conclude with a discussion of how these two 
networks can be compared and used in concert to create more complete quantitative models of 
gene regulation. 

Inferring Gene Expression Networks from Microarray Data 
Often high throughput methods, such as gene expression arrays, focus on genome-wide 

profiles of individuals from a population. From a dynamic point of view, this represents a 
"snapshot in time" of a potentially heterogeneous population. The complexity of this snapshot 
arises from two influences. First, no two organisms are alike, even in the same species, and 
genetic variation will influence the expression profile. Second, each organism has its own 
history and this history can lead to a wide range of dynamic states of the system with very 
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different expression profiles. To distinguish between intrinsic genetic variation and the dy
namic variation is a challenging task. 

To discriminate between effects of history versus generic variation requires that expression 
profiles be monitored over time. There are real advantages to determining and analyzing time 
series expression data. Just as chemical kinetics yields mechanistic information in a more straight
forward fashion than chemical thermodynamics, expression time series data are more ame
nable to network modeling than expression data from a population. In time series data, the 
system is prepared in a given physiological state at the initial time point and changes in gene 
expression levels are measured as it moves to a new state. These experiments have some similar
ity to traditional perturbation-relaxation experiments in physics and chemistry. Time series 
profiles have been measured in a wide range of systems including responses to media growth 
conditions (diauxic shift in yeast^), cell cycle synchronization,^ exposure to vaccines, signaling 
responses to cytokines and mechanical stimulation and insect feeding in Arabidopsis. 

Linear Models of Gene Expression 
Perhaps the simplest model for analyzing expression time series is the linear response 

model. ' Two forms of the model have been used in the literature to analyze microarray data: 
the differential form ' and the difference or Markovian model. ''̂  The differential form fol
lows a series of coupled equations given by: 

where ai(f) is the expression level of the /th gene at time Rafter some exposure or treatment, the 
dot presents a time derivative, Ŵy is a matrix of first order rate constants showing the influence 
of the jth gene on the production of the ith gene, blj^ is an external forcing fiinction and ^i(f) 
is a noise term. The sum is over all m different genes that are measured. 

Alternatively, a simple form of a linear finite difference model has also been employed: 

^^w=iv.(^-i) (2) 
>=i 

The transition coefficients A^ are the respective elements of the rmnn transition matrix (referred 
to as the A matrix). The matrix elements again represent the influence of the expression level of 
the/th gene on that of the ith gene. The A matrix is calculated from a time series data set using 
a generalized matrix inversion technique.^'^ One could also add noise and forcing function 
terms to the difference equation, but such models have not appeared in the literature. 

While these models may appear quite different, they can be direcdy related to each other. 
Equation 1 can be solved in closed form using standard methods. Such solutions can be substi
tuted into Equation 2 and a complicated relationship between A^ and Wij is obtained. In our 
work, we chose to deal with the finite difference form because it required no data manipulation 
such as calculation of time derivatives (cf 10) and no assumptions on the nature of the noise or 
the driving forces. Under the current technology, the noise and driving forces are not experi
mentally accessible quantities. 

Phenomenological networks of gene interactions are derived from the transition matri
ces.^ The wxw transition matrix, A calculated from the linear model can be viewed as a 
weighted graph showing the influence of one expression level on another. This is the starting 
point for the description of the genetic circuitry. Rather than work with these weighted 
graphs, we consider a simpler approach in which A is converted into an adjacency matrix for 
digraphs, indicating the connectivity but not the strengths of the influence. We describe the 
operation (adj) as: 

r(e) = ^y(A) (3) 



Gene Regulatory Networks 109 

Randon Equivalent 

Expression Network 

Figure 1. Comparison of gene expression network with random network. A small experimentally-derived 
gene expression network (left) shows more structure than the equivalent random network (right) 

where the entries in A are set equal to 1 if the absolute values are above a certain threshold, £, 
and are set equal to 0 below this threshold. For high values of the threshold, the resulting r(e) 
matrix will be a sparse adjacency matrix with a small network. As the value of £ is lowered, we 
can "grow" the network to include more nodes (genes). This threshold parameter is an adjust
able parameter of the model. At this time we do not differentiate between positive and negative 
values for members in the transition matrix, as we are only interested in the underlying connec
tivity. Figure 1 gives an example of the type of network we obtain with this methodology. This 
network derived from the analysis of the diauxic shift in yeast shows a network characterized by 
central hubs connecting a large number of nodes of low connectivity. These networks are seen 
to be distinctly different from the equivalent random network (Fig. 1). 

Validating Gene Expression Networks 
A number of challenges are faced when inferring gene networks from linear models of 

microarray time series. First, the computation time to obtain the optimal coefficient matrix is 
prohibitive if the system gets larger than a few thousand genes. Secondly, the number of mea
surements in a gene expression time series is usually much smaller than the number of genes-
the models are under determined. Both Dewey et al and Yeung et al̂ ^ took advantage of 
singular value decomposition (SVD) to solve the under determined problem. While this repre
sents a least squares solution, it is not unique. Yeung et al̂ ^ amend the SVD model by con
structing a family of solutions and then use robust regression to identify solutions that create 
the sparsest network. In addition to the SVD solution, one has a class of solutions to Equation 
3 that are governed by: 

A' = A + CV^ (4) 

where A is the SVD solution obtained from Eq. 2 and V is the matrix of eigenvectors 
obtained from the SVD and Cis a matrix to be determined from a constraint imposed on the 
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problem. In the previous work, sparseness of the network was assumed, A' = 0, and Cwas 
determined from the computationally intense problem of optimizing the zeros in solving: 
CV = -A. Simulations on model networks showed that this solution provided a more accu
rate reconstruction of the network. Our preliminary results show that networks generated 
using Equation 4 are essentially indistinguishable from those obtained with just the SVD. 
This suggests that the family of solutions all have a similar underlying network structure. 

Currendy, the networks inferred from gene expression time series cannot be considered 
quantitative predictive networks. The simplicity of the models, the quality of microarray data 
and the limited number of time measurements preclude a rigorous physico-chemical model. 
These shortcomings suggest that the inferred networks might best be used as data mining 
devices or as starting points for model development. Like other biological networks, such as 
protein-protein interaction maps, some expression networks doubtless suffer from a significant 
number of false positives and false negative connections. Thus, it is prudent to use these net
works in an iterative loop with ongoing experimental efforts. It is important to identify con
straints on the networks from independent experimental data. Simulations show that the addi
tion of constraints can greatly enhance the accuracy of an inferred network. ̂ ^ 

Networks as Classification Schemes 
Currendy the most popular way to analyze time series microarray data is cluster analysis. 

Based on the fundamental premise that genes having similar expression profiles may share similar 
functions, interesting genes and their functions can be inferred from clustering the relative ex
pression profiles through the time course. Such simple clustering approaches are not easily ex
tended to consider more complicated dynamics characteristic of the system. However, cluster 
analysis can be combined with dynamic modeling to show how dynamic characteristics of a 
biological system, such as the cell cycle, can be explored. By choosing a model parameter as a 
metric, one can extend the level of inference of the cluster analysis. Conversely, cluster displays 
provide a facile method for visualizing genome-wide parameters obtained from specific models. 

Using the linear model parameter Xy as a metric, two-way clustering can be performed 
that shows how influencing genes affected the expression levels of responding genes. The 
application of this unsupervised method to the cell cycle data in yeast shows strikingly strong 
clustering of cell cycle regulated genes. Figiu-e 2 shows a two-way clustering of Xy obtained 
from an analysis of yeast cell cycle data. The two-way clustering is about 7, the influencing 
genes and about / the response genes. The striking observation is that the blocks crossing 
clusters in columns (influencing genes) and rows (responding genes) can be used to infer the 
relationship between cell cycle phases. For example, if we look down the column representing 
S phase in Figure 2, we can see that S phase genes influence S and M phase genes positively (red 
color in image), but influence genes in M/Gl and Gl phase negatively (green color in image). 

A schematic presentation of interaction between genes among different cell cycle phases, 
as well as alpha pheromone and heat shock activated genes, is shown in Figure 3. The influ
ences are defined by the mean value of clustered blocks in Figure 2. We found that genes in 
one cell cycle phase activate genes in next phase (solid lines), and sometimes inhibit genes in 
the previous phase (dotted lines). Genes responding to alpha pheromone activate genes in S/ 
G2 and G2/M, driving the cells into the cell cycle. Similar observations can be found with 
heat shock activated genes, which activate genes in M/Gl phase to drive the cells into the 
cell cycle. Interestingly, it is well known that alpha pheromone arrests cells in G1 phase while 
low temperature arrests cdc-15 strains in late mitosis.^ Cells tend to reenter the cell cycle in 
the next phase beyond which they are arrested. The serial regulation of genes forms a con
nected regulatory network that is a cycle, as discovered by Simon et al.̂ "̂  Note that our result 
was obtained in an unsupervised fashion without any prior knowledge of chronological char
acteristics of the cell cycle. These results show how linear models can be used, not in a fully 
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Figure 2. Hierarchical clustering of linear transition matrix. Clustering result of lambda matrix is shown on 
the left. Influencing genes are across the top and responding genes are along the side of the figure. Expression 
profile of genes in the same order as in clustering are shown on the right. Genes with similar expression 
profiles are grouped together, and they are labeled with the cell cycle phases. Alpha is alpha pheromone 
regulated genes. Reprinted with permission from WuX, Dewey TG J Bioinf Comp Biol 2003;1:447-458. 
A color version of this figure is available online at http://www.Eurekah.com. 

quantitative capacity, but rather in a qualitative, descriptive fashion. Considering the quality 
of the data and the phenomenological nature of the model, this is perhaps a more appropri
ate use of these models than as tools for quantitative prediction of expression levels. 

Global Properties of Gene Expression Networks 
There has been considerable recent interest in the network structure of a diverse range of 

systems, including the Internet, communities of actors, scholarly citations, metabolic networks 
and ecological systems, among others.^^-^^ Three main categories of networks have been used 
to model these various systems. They are random networks, '"̂  small world networks ' and 
growing random networks (GRNs).̂ '̂̂ '̂'̂ '̂̂ '̂  Random graphs have been extensively studied 
and are constructed by randomly connecting a set of nodes. Small world graphs are generated 
from a regular starting lattice. Edges in this lattice are then randomly "rewired" to remote 
nodes. This provides strong local structiue as well as global connectivity. Graphs can also be 
constructed from nonequilibrium growth models that start with a seed graph and add nodes 
and connections according to some prescribed set of preferences. Such models are referred to as 
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Figure 3. Interaction of genes among cell cycle phases. A) Alpha data set; B) cdc-15 data set. Cell cycle phases 
are shown in colored boxes, as well as alpha pheromone activated genes (Alpha) and heat shock activated 
genes (HSP). Solid lines indicate positive influence or activation, while dotted lines indicate negative 
influence or inactivation. Numbers along the edges are the mean value of transition matrix entries of each 
clustering blocks corresponding to the interaction strength between cell cycle phases. Reprinted with 
permission from Wu X, Dewey TG J Bioinf Comp Biol 2003;1:447-458. 

growing random networks (GRN). Often a "rich get richer" set of preferences is used, where 
the newly added nodes are preferentially connected to nodes of high connectivity. 

Global graph parameters can be used to characterize different types of networks. The 
cluster coefficient characterizes the extent to which vertices adjacent to any vertex are adjacent 
to each other. The cluster coefFicient is calculated by averaging over all vertices, the fraction of 
vertices adjacent to a given vertex that are adjacent to each other. The cluster coefFicient varies 
from 0 to 1 with 1 indicating that all the neighboring nodes are connected to one another. A 
second parameter, the characteristic path length is found by determining the number of edges 
on the shortest path connecting any two vertices and averaging this number over all pairs of 
vertices. This is a measure of the "connectedness** of the network. Finally, we will consider a 
third parameter, the scaling exponent for the node connectivity. Hierarchical networks often 
show scale-free or power law behavior between the number of nodes, N(k)y and the connectiv
ity or degree per node, k. Such scale-free networks are hierarchical because a few nodes have 
many connection and many nodes have few conneaions. 

Gene expression networks have a number of interesting properties. They have short mean 
pathlengths characteristic of highly connected networks and high clustering coefficients associ
ated with very "clique-ish** graphs. Additionally, they show a scale-free distribution of 
connectivities with scaling exponents that are less than 2. This combination of graph traits is 
unique and is not observed in other real world networks analyzed to date. Studies of previous 
models for the growth of networks have elucidated the behavior of some properties of real 
networks such as the Internet, but they do not explain the biological networks represented by 
genetic regulatory networks. These models fail because they cannot yield exponents below 2 
and because they often do not have either high cluster coefficient or low mean pathlengths. 

Recently, the properties of a number of biological networks have been explored. Meta
bolic networks showing the connectivity of substrates show high cluster coefficient and a scal
ing exponent of 1.6.̂ ^ Other studies of metabolic networks show a higher scaling exponent of 
2.2. The yeast protein-protein interaction map has been reported also to have high cluster 
coefficients and a higher exponent of 2.5. Our analysis of the protein-protein data however. 
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Figure 4. Plot of the distribution of number of nodes N(k)y plotted versus degree k. Networks for three 
different gene expression data sets were used: cell cycle data (cdc-28), •; cell cycle data (alpha), A; diauxic 
shift data, D. Dashed line is drawn with a slope of-3/2. Threshold parameter was set so that the adjacency 
matrix has 2 X 10̂  connections out of a possible 36 X 10 connections. Reprinted with permission from 
Bhan A, Galas DJ, Dewey TG Bioinformatics 2002;18:1486-1493. 

using a composite of all the existing databases,^^'^^ gives an exponent of 1.5. The results ob
tained here suggest that some biological networks show lower scaling than other observed 
networks and may obey a -3/2 power law (Fig. 4). 

Gene Duplication Model of Expression Networks 
Gene duplication provides a natural and compelling model for the growth of genetic 

regulatory networks. There is now abundant evidence from recent genome analysis from 
yeast^^ to human^^ that Ohno's original hypothesis that new genes are almost always created 
by duplication is largely valid. Gene duplication is now widely accepted as the single most 
important mechanism for generating new functions and processes.^^ This evolutionary mecha
nism must be at work in shaping the structure and function of interactions between genes 
and regulatory networks. We may be seeing evidence of this in the scaling law evident in the 
yeast expression data. 

Specific duplication models can simulate the graph properties of the networks con
structed from expression data. Figure 5 illustrates how a duplication event can afFect a net
work. Duplication results in the creation of a new node that has inherited all the connectiv
ity of the parent node, as would be true of a duplicated gene (including its cis regulatory 
elements). This results in an increase by one of the number of vertices with the degree of the 
parent. It also results in an increase of one in the degree of each of the neighbors. In a "pure" 
duplication model, this is the only event that occurs. This kind of growth model by itself has 
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Figure 5. Schematic representation of network growth through gene duplication. A) shows pure gene 
dupHcation where a new node is created by dupHcating the conneaivity of the parent. This results in an 
increase in degree of the neighboring nodes. Node / is duplicated to give /'. Nodes y, k, /are neighbors. B) 
the partial duplication model where node / is duplicated to /"but not all the original connections are retained. 
C) shows a rewiring process where edge^^/ is rewired to becomê —>;̂ . Reprinted with permission from 
Bhan A, Galas DJ, Dewey TG Bioinformatics 2002;18:1486-1493. 

some interesting properties but it does not support a scale-free distribution of connectivities. 
We have, therefore, examined a number of "mixed" models that include gene duplication 
plus a second event. Features of two such models are illustrated in Figure 5. The "partial 
duplication" model (Fig. 5B) consists of duplication plus random removal of edges from the 
daughter node. A second model, "duplication plus preferential rewiring" (Fig. 5C) involves 
duplication followed by random rewiring of one of the edges in the network. In our prefer
ential rewiring model, the new node to which the edge is rewired is chosen at random 
according to the same preference function in the previous CRN models,^^'^^ i.e., the prob
ability of connecting the edge to a node is proportional to the fraction of edges in the 
network that are incident at that node. These mixed models have formal similarity to a 
previous model used to describe the effect of gene duplication on protein-protein interac
tion networks.^ Recently, a network growth model that yields scale-free networks has been 
described that involves gene duplication events.^^ This is a specific model involving domain 
shuffling and is distinctly different from the ones presented in this work. In all of these 
models, gene duplication is followed by a second event that breaks the parent-daughter 
symmetry inherent in a pure gene duplication model. This results in a broader range of node 
connectivities. 

The results of the computer simulations of network growth are shown in Figure 6 for a 
variety of growth models and for the two different starting networks (network seeds). As can be 
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Figure 6. Plot of the distribution of number of nodes with degree k, plotted versus k for simulated networks. 
(See text for details.) Graphs correspond to three equally spaced time periods during network growth are 
shown. Leftmost graph is earliest time and rightmost is latest time. Top row are results from simulations with 
the duplication plus preferential rewiring model. Bottom row is from simulations with the partial duplica
tion model. 

seen, these networks reproduced a scaling exponent that is consistent with the experimental 
data (Fig. 4). Table 1 compares the clustering coefficient and the pathlength of the experimen
tal data with the partial duplication model simulation. For comparison, we also show the re
sults for the GRN model, originally introduced by Barabasi and coworkers. ̂ ^ As can be seen, 
the GRN model produces lower cluster coefficients and longer pathlengths than the experi
mental data. The simulation, on the other hand, faithfully reproduces the experimental data. 
Thus, it is seen that this biologically motivated, gene duplication model does account for the 
global network statistics of yeast gene expression networks. 

Transcription Factor Networks 
Recently, new array technologies have made it possible to determine where in the genome 

various TFs bind. Since transcription factor binding to the cis regidatory region of the gene 
strongly influences the expression level of a given gene, this data provides linkages between the 
expression of TFs and other yeast genes and allows construction of a network. When 100 yeast 
TFs (out of an estimated 300) were examined in this fashion, it was foimd that there are many 
promoters that bind several factors. For example, there are about 100 promoters that bind four 
of these factors and about 40 that bind five, and several that bind even more. This statistic 
reveals the degree of complexity of the gene regulatory network in yeast, and the distribution of 
multiple binding sites on promoters (Fig. 7), also suggests a kind of hierarchy in the structure 
of the network. This hierarchy is implied by the distribution shown in Figure 7—that a minor
ity of promoters bind a large number of regulatory factors, while a large number of promoters 
bind only a few factors. 



116 Power Laws, Scale-Free Networks and Genome Biology 

Table 1, Statistical graph parameters for gene expression 

Data Set 

Diauxic shift 
Original 
Random 

Cell cycle-alpha factor 
Original 
Random 

Cell cycle-cdc 28 
Original 
Random 

Gene duplication model 

Cluster 
Coefficient 

0.58 
0.17 

0.66 
0.06 

0.88 
0.07 

0.8 

Ai 

Average 
Pathlength 

3.0 
1.9 

2.6 
2.5 

2.2 
2.4 

2.0 

networks 

A2* 

cluster 
Coefficient 

0.67 
0.19 

0.46 
0.15 

0.71 
0.07 

Average 
Pathlength 

2.3 
1.9 

3.5 
1.9 

2.4 
2.4 

Consider now only the network that is formed by the regulatory regions of transcription 
factor genes and the transcription factors themselves. This network can have mutual interac
tions, rather than the one way interactions between the transcription factor and other gene 
promoter links. This transcription factor network is at the heart of the regulatory processes of 
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Figure 7. Distribution of number of promoters vs number of different TF binding sites in Saccharomyces 
cerevisiae. This is a log-log plot of data taken direcdy from Lee et al.^^ The red lines represents a least-squares 
fit to a power law. The resulting power-law exponent is 2.44 as indicated. A color version of this figure is 
available online at http://www.Eurekah.com. 



Gene Regulatory Networks 117 

the cell, because while other information is fed into this network by signaling from outside the 
cell, by coupling to the metabolic networks and by other proteins interacting with the tran
scription complex, the transcription factor network provides the sequence recognition mecha
nisms that processes all external information. The manner in which binding data implies a 
network is illustrated in Figure 8 A If we restrict our attention only to the transcription factors 
that form a single connected graph (no isolated nodes or pieces of two or three factors uncon
nected to the net) we can get a better view of the interlinking of the functional categories. This 
connected graph is shown in the figure. The directed graph representing this network depicts 
well the information derived from the experiments, but does not represent the network in 
detail. For example, no information about whether a given factor represses or activates a gene 
when it binds a given region, or the strength of such effects, is represented. Nonetheless, the 
basic structure of the graph, sometimes referred to as its "topological" structure, is well repre
sented. Bear in mind that the graph in the figure is inherendy a directed graph because the 
factors bind the regulatory regions of other's genes, giving a direction to each link. 

Since this network includes a large number of transcription factors and is the most exten
sive such network known to date, we will examine it further, recognizing that it is incomplete 
in several different ways. The most important shortcoming is that genetic regulatory interac
tions can occur in ways other than just by transcription factor binding to cis-acting regulatory 
regions. The processing and translation of transcripts is often regulated, the binding of theTF 
proteins themselves may be regulated by modifications and protein cofactors that bind tran
scription factors, but do not bind DNA sites themselves also play important roles in regulation. 
The TF network by itself is only a pan of the active regulatory network, albeit an important 
and well defined part. This network illustrates the strong degree of inter-linkage of different 
functional categories of TFs. While the Environmental Response category (green nodes) has 
some significant links within the category (see the tight coupling of Yap6, Roxl and Cin5, for 
example) they are all direcdy linked to all other categories except the Development Processes 
one. The Cell Cycle category is coupled in multiple ways to all of the others. The Yap6 cou
plings just mentioned appear to be the only examples of mutual linkage between pairs of factor 
genes in this network. Each of the factors in such a pair (Yap6 - Cin5, and Yap6-Roxl) bind to 
the regulatory region of the other's gene, thereby creating a direct feedback loop of some kind. 
There are also several instances of self-regulation (Rapl, Rcsl, Nrgl, Yap6, Smpl and Swi4). A 
glance at the graph in the figure reveals a major feature seen in most biological networks stud
ied to date—the existence of a niunber of highly linked "hubs". For example, Sfll, Abfl, Swi4, 
Swi5, Fkh2, Phdl and Rapl, all have 5 or more links to other factors. The existence of hubs is 
a feature of a more general, mathematical property of many large networks as described in a 
previous section. 

If we examine the distribution of conneaions of TF network, that is the number of nodes 
with k connections as a function of k, we must consider both the "in" connections as well as the 
"out" connections of these nodes. These form two distinct distributions, albeit with similar expo
nents. If we compare these distributions with the overall "in" distribution for the whole network 
(the nontranscription factor genes clearly have only "in" connections) we see that they are also 
power laws, but they have a different exponent (Fig. 8B). A smaller exponent indicates more 
highly connected nodes in the network than a higher exponent. One qualitative conclusion, then, 
is simply that the ttanscription faaor network (the "core" network, as we are calling it) is more 
highly connected (in this statistical sense) than the other, peripheral, genes that it regulates. The 
conclusion has some intutitive appeal—the regulatory circuit, the computer, is more highly con
nected than the downstream output network of linkages to the "effectors" (Fig. 8C). It is also 
interesting that the "in" and "out" distributions of the network look to be the same. 

Other genomes have now been sequenced and it is possible to make some preliminary 
comparisons between the yeast network and some others. While the transcription circuitry has 
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Figure 8. Transcription faaor network o£ Saccharomyces cerevisiae. A) Diagram of the connections between 
106 TF s. This graph is implied by the data reported in Lee et al.̂ ^ The connections were inferred from the 
data using the thresholding criteria used in the original paper. Only the connected graph is shown. The 
characterization of theTFs into categories (color coding) is according to the paper. B) Power law fit of both 
the "core" network amongTFs (described in the text and diagramed in A) for both "in" (round, pink-center 
points, pink line) and "out" (square points, blue line) networks. This is compared on the same graph to the 
overall promoter distribution (shown in A). C) Conceptual diagram showing how the "core" network and 
the "effeaor" network are related. A color version of this figure is available online at http://www.Eurekah.com. 
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not yet been fully elucidated for E. colt there is enough information to make a preliminary 
comparison. Although the data for this comparison is not obtained by the same methods, there 
is reasonable evidence for the overall structure of the regulatory network based on the integra
tion of wide variety of approaches. Babu andTeichman have made such an integration in their 
presentation of the transcription network '̂̂  based on comparative genomics of the transcrip
tion factors in E. coli and a detailed survey of the literature reporting regulatory relationships. 
When we analyze this inferred network using the same statistical approach as for the yeast 
system we find (albeit with less statistical strength because of the smaller niunber of genes) that 
the picture is remarkably similar. We have represented the data in Figure 9A. 

The transcription factor regulatory network comparison between yeast and E. coli then 
suggests an overall structure that has a central core network, consisting of transcription factors 
regulating each others expression, and an external, "effector gene" network, regulated by the 
outputs from this core (Fig. 9B). The central cores are both more highly connected, as indi
cated by their lower exponent in the power-law fit, than the effector networks. What is more 
surprising than this, however, is that the exponents are very similar for the two organisms even 
though one is a prokaryote and the other a eukaryote. 

This similarity is surprising, since yeast is much more complex in a variety of ways than 
E. coli. This raises the question of how an organism as complex as yeast is (relative to E. coli 
in any case) can have the same overall topological structure of its core regulatory network. 
The increased complexity may arise from several sources outside of the TF network. First, 
there are more transcription factors in yeast, and genes are regulated individually, rather than 
in operons, as in E. coli. Second, it is becoming clear, but is not yet fully understood, that 
there are a number of transcription cofactors (proteins that regulate gene transcription by 
binding to transcription factors, but not to DNA) that regulate genes by binding to mul
tiple, bound TF's. This can lead to a large increase in regulatory complexity in yeast, and 
these kinds factors are not found (or are exceptional) in E. coli. Third, it is likely, judging 
from the number of RNA-binding proteins, that expression is regulated at the level of the 
RNA (post-transcriptional regulation) much more in yeast than in E. coli. Clearly the TF 
network comparison is only part of the story, yet it is significant that the core TF networks 
are very similar in structure. 

Conclusions and Summary 
We have discussed two substantially different methods and views of transcription net

works, one based on correlative, "influence" analysis using time series analysis, and another 
based on direct TF binding analysis. While they are different and complementary in many 
ways, they are connected through the underlying mechanism of global gene regulation and 
control. Both methods provide insights into the structure of gene expression networks as well 
as powerful frameworks for data mining. All genes are regulated directly by TF's binding 
cis-regulatory regions. Thus, when a nontranscription factor gene is seen to "influence" an
other by time series analysis, we know that it does so through a "hidden" set of interactions that 
involve TFs, perhaps through regulated chemical modifications of TFs or transcription of TF 
genes. Most TF's are too weakly expressed, relative to the "effector genes" for the mRNA levels 
to be followed by array experiments. Thus the "central computer " we discussed as the core 
network plays the role, in some sense, as a set of "hidden variables" for the effector genes that 
are followed in a time series analysis. 

Clearly a variety of methods must be used to elucidate fiiUy the structure and fiinction of 
gene expression networks, even in single celled organisms as "simple" as yeast and E. coli. The 
next stage of analysis of these networks should bring the details of the regulatory interactions, 
and a full picture of the network to the point where the dynamics, stable states and state 
transitions of the networks can be predicted and compared with experiment. 
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Figure 9. Transcription fac
tor network for E. coli. A) 
Power-law plot of informa
tion reported in reference 37 
for genes and operons (sev
eral, coregulated genes). The 
fit was done the same as in 
Figure 8. B) Power law fits 
for the core TF network, the 
"in" (red) and "out" (blue) 
networks. Combining the 
"in" and "out" networks to 
get a more statistically mean-
ingfiil exponent gives a value 
of 1.8 (yellow). C) Concep
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lated. A color version of this 
figure is available online at 
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CHAPTER 9 

Power Law Correlations in DNA Sequences 

Sergey V. Buldyrev* 

Introduction 

Awide variety of natural phenomena is characterized by power law behavior of their 
parameters. This type of behavior is also called scaling. The first observation of scaling 
probably goes back to Kepler^ who empirically discovered that squares of the periods of 

planet revolution around the Sun scale as cubes of their orbits radii. This empirical law allowed 
Newton to discover his famous inverse-square law of gravity. 

In the nineteenth century, it was realized that many physical phenomena, for example 
diffusion, can be described by partial differential equations. In turn, the solutions of these 
equations give rise to universal scaling laws. For example, the root mean square displacement of 
a diffusing particle scales as the square root of time. 

In the twentieth century, power laws were found to describe various systems in the vicinity 
of critical points. These include not only systems of interacting particles such as liquids and 
magnets but also purely geometric systems, such as random networks. Scaling is also found to 
hold for polymeric systems, including both linear and branched polymers. Since then, the list 
of systems characterized by power laws has grown rapidly including models of rough surfaces, 
turbidence and earthquakes. Empirical power laws are found to characterize also many physi
ological, ecological, and socio-economic systems. These facts give rise to the increasingly ap
preciated "fractal geometry of nature". 

A major puzzle concerning genomes of eukaryotic organisms, is that the large percent of 
their DNA is not used to code proteins or RNA. In human genome, this "junk" DNA consti
tutes 97% of the total genome length which is equal to 3 billion nucleotides also called 
base-pairs (bp). The role of non-coding DNA is poorly understood. It seems that it evolves by 
its own laws not restricted by a specific biological function. These laws are based on prob
abilities of various mutations and as such resemble the laws governing other complex systems 
listed above. In this chapter, I will review the degree to which power laws can characterize 
fluctuating nucleotide content of the DNA sequences, see also a critical review of W. Li. 

The term "long range correlations" is often misunderstood, implying some mystical 
long-range interactions or information propagation in space. Therefore, I will start with a 
brief introduction in the theory of critical phenomena, in which this concept has been 
developed. An impatient reader can jump directly to section "Correlation Analysis of DNA 
Sequences". 

*Sergey V. Buldyrev—Department of Physics, Yeshiva University, 500 West 185th Street, 
New York, New York 10033, U.S.A. Email: buldyrev@yu.edu 

Power LawSy Scale-Free Networks and Genome Biobg)/, edited by Eugene V. Koonin, Yuri I. Wolf 
and Georgy P. Karev. ©2006 Eurekah.com and Springer Science+Business Media. 
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Figure 1. A snapshot of a two-dimensional system near its critical point. Black pixels represent gas particles. 
One can see density fluctuations of all different scales from a single particle to patches comparable with the 
entire system. This picture also represents an Ising magnetic near the Curie point, where black pixels are spins 
in positive orientation and white pixels are spins in negative orientation. The picture is obtained by com
puter simidations using the Metropolis algorithm at r = T̂  = 2.269185. 

Critical Phenomena and Long Range Correlations 
One of the greatest advances in physics in the second half of twentieth century was the 

development of modern theory of critical phenomena.^ The central paradigm of this theory is 
the importance of local fluctuations of the order parameter (Fig. 1). For a gas-liquid critical 
point, the order parameter is simply density. For the Curie point of a ferromagnetic, it is mag
netization. Near the critical point 7"̂ , the characteristic length scale B, of the fluctuations, also 
known as the correlation length, grows according to a power law 

^-|r-r,|""'. (1) 

The difference between the order parameters in the two phases (e.g., densities of gas and 
liquid) pi - pg vanishes as the temperature approaches the critical point also according to a 
power law 

pi-p,-{T,-Tf'. (2) 
The positive quantities Vc and jŜ  are called critical exponents. There are many other criti

cal exponents a^ y^ 5^ ^o etc., which characterize critical behavior of other parameters of the 
system. 

The most spectacular manifestation of critical phenomena is critical opalescence. If one 
heats a closed transparent container filled by one third with water, the pressure inside it increases 
so that water and vapor remain at equilibrium: the water-vapor boundary is clearly visible and 
both phases are transparent. However, when the temperature approaches Tc = 374°C within 
I 'C, the phase boundary disappears, and the substance in the container becomes milky: the 
density fluctuations scatter light because their average size becomes larger than the wave length 
of light which is about half a micron. Thus the correlation length becomes more than thousand 
times larger than the average distance between molecules which is about 0.3 nanometers. 

Since the fluctuations near the critical point become extremely large, the details of the 
interaction potential which acts on much smaller scales become irrelevant and hence all liquids 
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near the critical point have the same scaling behavior, i.e., they have exactly the same critical 
exponents, namely V̂  ~ 0.64 and j3<. ~ 0.33. Moreover, the theory predicts, that critical expo
nents are connected by several scaling relations, so that knowing any two exponents, for ex
ample V^and ^c one can predict the values of all the others. It turns out, that critical exponents 
depend only on dimensionality of space and some other major characteristics, such as dimen
sionality of spin orientations for magnetics. Thus, all variety of critical points can be classified 
by few universality classes so that all systems belonging to the same universality class have 
exactly the same values of critical exponents. 

One of the simplest models for critical phenomena, the Ising model, belongs to the same 
universality class as the liquid-gas critical point. We will discuss this model in greater detail, since 
it was first used by M. Ya. Azbel to describe possible correlations of nucleotides in the DNA. 

In the Ising model, atoms occupy sites on the ^-dimensional lattice, for example on a 
square or a cubic lattice. In a one-dimensional system, atoms are placed equidistandy on a line. 
Each atom has a magnetic moment or spin, which may have only two orientations: up (5 = +1) 
or down (j = -1). All pairs of spins occupying nearest neighboring sites interact with each other, 
so that they have a tendency to acquire the same orientation. The pair with the same orienta
tions has negative potential energy -e while the pair with different orientations has positive 
potential energy +6. Note that £ < 0 corresponds to the model of anti-ferromagnetic interac
tions. In addition, spins may interact with external magnetic field with energies -h for positive 
spins and +h for negative spins. It can be shown that this model is equivalent to the model of 
lattice gas, in which positive orientation of spins corresponds to the sites occupied by mol
ecules, negative orientation indicates empty sites, two neighboring molecules attract with en
ergy -e, and the external field h corresponds to chemical potential which defines the average 
number of molecules in the system. 

In 1973, M. Ya. Azbel^ mapped a DNA sequence onto a one-dimensional Ising model by 
assigning positive spins s = +\ to strongly bonded pairs cytosine (C) and guanine (G) and 
negative spins ^ = -1 to weakly bonded pairs adenine (A) and thymine (T). (Complimentary 
base-pairs C and G located on the opposite strands of the DNA double helix are bonded by 
three hydrogen bonds, while A and T are boned only by two hydrogen bonds.) 

One-Dimensional Ising Model 
It is easy to solve the one-dimensional Ising model. According to the Boltzmann equation, 

the probability p{ V) to find a thermally equilibrated system in a state with certain potential 
energy is proportional to 

p{U) ^ cxp{-U / ksT), (3) 

where T is absolute temperature and ks is Boltzmann constant. A striking simplicity of this 
equation is that it does not depend on any details of inter-atomic interaction and the details of 
motion of individual molecules. Once we know U and T, we can completely characterize our 
system in terms of the probability theory. 

In the one-dimensional Ising model, a spin at position / can affect a spin at position / + 1 
only through their direct interaction which is either -£ if they orient the same way or +£ if they 
orient in the opposite way. In the absence of magnetic field, the probabilities of these two 
orientations are proportional to exp(-U/kBT)y where U=±£. Hence the probability of the same 
orientation is 

p = cxp{e/ksT)/[txp{e/ksT) + cxp{-e/ksT)] = 1/(1+ )̂, (4) 

where h = exp{-2e/kBT) and the probability of the opposite orientation isq = \ -p = l?/(l + b). 
Clearly, if Tis small enough, b is also very small, and hence the probability for two neighboring 
spins to be in the same orientation is almost equal to one. 
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Do spins at a distant positions /' and (/ + r) affect each other? To answer this question we 
must quantify this affect in mathematical terms. Two random variables s{i) and s(i + r) are 
called independent if the average of their product (s(t)s{i + r)) is equal to the product of their 
averages {s{t)) and {s{i + r)). Here and throughout the entire chapter (...) denotes average taken 
over all possible positions / of the spins or nucleotide positions in a DNA sequence. The differ
ence between these two quantities 

C{r)^{s(i)s{i + r))-{s{i)){s{i + r)) 

characterizes the mutual dependence of two spins and is called correlation function. If C(r) > 0, 
the spins are correlated. If C(r) < 0, the spins are anti-correlated. Note that C(0) coincides with 
the definition of variance of the variable s{i). Note also that in general, for finite system of size 
L, {s(i)) 1^ {s{i + r)), because these two averages are taken over two different sets of positions / = 
1,2...Z - r and / + r = r + l , r + 2,..., L. When r is comparable to Z, this difference becomes 
substantial. 

It can be easily shown (see next section) that for a one-dimensional Ising model the corre
lations decay exponentially C{r) -^ exp{-r/Q at any temperature. The inverse speed of the expo
nential decay ^ is identical to the correlation length. In the one-dimensional model, correlation 
length can diverge only if temperature approaches absolute zero. Thus the critical point for the 
one-dimensional model is Tc = 0. 

In the next section we will show this by making a mathematical excursion into the theory 
of Markovian processes, which is a very useful tool in bioinformatics. This chapter may be 
omitted by a reader who does not want to go deep into mathematical details, but is useful for 
those whose goal is to apply mathematics in biology. 

Markovian Processes 
In order to compute correlation function, we will represent a sequence of spins in the 

Ising model as a Markovian process. Markovian processes are very important in bioinformatics, 
thus we briefly summarize their definition and properties. 

A Markovian process^^ is defined as a process obeying the following rules, (i) A system at 
any time step ty can be in n possible states ei,e2,...e„. (ii) The probability to find a system in a 
certain state at any time step depends only on its state at the previous time step. Thus to fiiUy 
characterize a Markovian process, we must define a « x « set of transition probabilities/)/^ which 
are the probabilities to find a system in a state C/ at time ^ + 1 provided that a time t it was in a 
state ey. Obviously, A^i=\pij= 1. (iii) It is assumed that/>y do not depend on time. 

It is convenient to describe the behavior of a Markovian process in terms of vector algebra, 
so that the probabilities/>/(/) to find a system in any of its n states at time ^ is an w-dimensional 
vector-column p(^). The sum of its components/>X^) is equal to unity. Accordingly, it is natural 
to arrange the transition probabilities/>/^ into a w x « matrix P. The^'-th column of this matrix is 
the set of transitional probabilities pij. Using the rule of matrix midtiplication combined with 
the law of probability multiplication for independent events, we can find 

p(. + r) = P y 4 (6) 
where P'̂  is the r-th power of matrix P, which can be easily found once we determine eigenvec
tors ai and eigenvalues Xi of matrix P. By definition, eigenvectors and eigenvalues satisfy a 
homogeneous system of linear equations 

Pa/=A,a/. (7) 



Power Law Correlations in DNA Sequences 127 

which has a nontrivial solution only if its determinant is equal to zero. Accordingly, the eigen
values satisfy an algebraic equation of w-th power which turns the determinant of the matrix 
P - AI, where I is the unity matrix, into zero. 

Once we have determined the eigenvectors and eigenvalues, we can write 

P'"=AA^A-^ (8) 

where A is the diagonal matrix formed by eigenvalues A/, and A is the matrix whose columns 
are eigenvectors a^ 

Since the sum of elements in every column of matrix P is unity, the determinant of the 
matrix P - I is equal to zero and one of the eigenvalues must be equal to unity: Ai = 1. The 
eigenvector ai, corresponding to this eigenvalue has a very special meaning. Its components 
yield the probabilities to find the system in each of its states for r —> ©<>. We will show it in the 
following paragraph. 

Except in some special degenerate cases, all the eigenvalues of a matrix are different. As
suming this, we can express the state of the system at time /̂  = r as a linear combination of the 
eigenvectors: 

p(^ + r) = n a i -h r2A2a2 + . . . + r^A^a^ 

where c^ are some coefficients, which can be obtained by multiplying the initial state of the 
system p(/) by matrix A'^ It can be easily seen from this equation that all eigenvalues must be 
less or equal to one: K/1< 1. Indeed, if any |^J> 1, the corresponding term in the above 
equation would diverge for r ^ ©o, contradicting inequality/>X^) ^ 1> which must be satisfied 
by the probabilities. Thus for all / > 1, |^/1< 1, and for any initial state of the system, we have 
lim;.^oop(r+ t) = c\2i\. 

Thus, the average probability of finding the system in each of its states in a very long 
process is determined by the vector qai , which can be readily found from the system of linear 
equations: 

P a i = a i . (9) 

Since the determinant of this system is equal to zero, it has a nontrivial solution ciai, 
where C\ is an arbitrary constant. Since the components of the vector c\Z.\ have the mean
ing of the probabilities and, therefore, their sum must be equal to one, the coefficient c\ 
must be the reciprocal of the sum of the elements of an arbitrary non-trivial solution ai of 
Eq. (9). 

The second-largest eigenvalue determines the decay of the correlations: C{r) - A2 = exp(r 
In A2). By definition, the correlation length is the characteristic length of correlation decay 
which is determined by relation C{r) - exp(-r/^. Thus <̂  = 1/ ln(l/A2). 

As an illustration of the Markovian formalism we can apply it to the one-dimensional 
Ising model. The matrix P in this case is simply 

/ ^-^1, (10) 

where/> is determined by Eq. (4). In order to find the eigenvalues, we must find the values of A 
which turn the determinant of the matrix P - A/into zero: 

/>-A l-p 

\- p /> - Al (11) 
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This gives us a quadratic equation (p-X)^ -
2p-\. The corresponding eigenvectors are 

ai 
^1> 

2 a2 
\2J 

Accordingly, we have 

(1 -pf = 0, with two roots Ai = 1, and Xi = 

(12) 

A = 
\ - 1 

I 1 

1 1 

and using Eq.(8), 
f 

P ' 
l+(2/-l) 

1-fa-l)^ 

'-(2/"')' "i 
2 

l+(2;,-l) 

(13) 

(14) 

So we can see that the diagonal elements of this matrix,/^(r) = 1/2 + (2/? - 1)72 exponentially 
converge to 1/2 for r ^ oo. The speed of convergence determines the correlation length: 

^ = - l / l n (2 ;^ - l ) = l/ln{[exp(2€//^5r) + l]/[exp(2e/;^^r)-l]}. (15) 

For r ^ 0 the correlation length diverges ^ « exp(2£/^5T) -^ <», while for T-^ oo the 
correlation length approaches zero: § « 1/ ln(y^577e) ^ 0. For finite temperature the correla
tion length is finite. Hence for one-dimensional Ising model, there is no critical point at posi
tive temperatures, however the absolute zero 7"= T̂  = 0 can be treated as a critical point because 
in its vicinity the correlation length diverges faster than any power. So one can identify expo
nent Vc as being infinite. 

The eigenvector ai gives us equal probabilities for a spin to be in positive and negative 
orientations, thus the spontaneous magnetization being determined as ̂ s(f)) = a\\-a2i = ll2-
1/2 = 0 remains zero for all temperatures. In order to compute correlation function, we must 
compute the average produa {s{t)s{t + r)). With probability ai i the value s{t) = 1. Given s(t) = 
1, the probabilities ofs{t + r) = 1 and s(t+ r)--! are equal to the elements of the first column of 
matrix P'". Analogously for s{t) = -1 , which occurs with probability a2u the probabilities o£s{t + 
r)= 1 and s{t+ r)= A are given by the elements in the second column of matrix P''. So 

{s{t)s{t+r)) = au[pu{r)-p2i{r)]-a2i[p2i{'-)-p22{r)] = {2p-l)'' ^6) 

and, therefore, 

C(r) = (2/>-l)^ (17) 

Exponential versus Power Law Correlations 
In the previous section, we see that the one-dimensional Ising model in the absence of 

magnetic field is equivalent to a two-state Markovian process. In general, it is clear that any 
one-dimensional model with short range interaction is equivalent to a Markovian process with 
a finite number of states, and for such a process correlations must decay exponentially as A2, 
where A2 < 1. Thus the correlation length must be finite and can diverge only for T —> 0. 
Intuitively, we can imagine a one dimensional model as a row of dancing people each holding 
hands with two neighbors: one is on the left: and one is on the right. Once they are holding 
hands, the correlation can pass from one neighbor to the next. No matter how strong they are 
holding hands, there is a finite chance q that they will separate, and the correlation will stop. 
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The probability that the correlation spreads distance r is proportional to (1 - ^)'̂  ~ exp(-^r), 
and hence the correlation length is finite and is inverse proportional to q. 

In contrast, if the number of dimensions is larger than one, the interactions can propagate 
from point A to point B not only along a straight line from one neighbor to the next, but along 
an infinite number of possible paths connecting A and B. Accordingly, the correlation length 
can diverge for T = 7"̂  > 0. Unfortunately, there are very few 2-dimensional models which can 
be solved exacdy ^ and even those models have so complicated solutions that they are far 
beyond the scope of most physics textbooks. The most famous example of an exacdy solvable 
2-dimensional model is the Ising model, which was solved by Onsager in 1949. The solution is 
based on transfer matrices much more complicated than those we use in Section IV to solve the 
one dimensional model. It is much easier to simulate such a model on a computer and find an 
approximate numerical solution. 

It can be shown that two-dimensional Ising model has a critical point at temperature Tc -
2e/ln(l +V2)/y^5 = l.lG^dkB. At die vicinity of this temperature, the correlation function 
acquires a non-exponential behavior 

C{^ - r-" exp( - r / | ) (18) 

where T\- 1/4 is a new critical exponent proposed by M. Fisher in 1964. The correlation length 
^ diverges as u - T̂  r , which means that V̂  = 1. The spontaneous magnetization for T < T̂  is 
not equal to zero, but, for any sample, it can be either positive or negative. 

The absolute value of spontaneous magnetization approaches zero for r - > 7"̂  as (T- T^ , 
so pc= 1/8. If the temperature increases above Tc (also known as Curie point), the sample loses 
its magnetization. This phenomenon can be observed by everyone in a kitchen-style experi
ment: take an arm from a compass, place it into the fire of the burner and keep it there until it 
starts to glow red. The Curie point for Iron is 700 °C. Cool it and place it back into the com
pass. It does not show North any longer! 

Figure 1 shows the results of a computer simulation of a two-dimensional Ising model on 
the Z X Z = 1024 X 1024 square lattice. The program is very simple. At any time step, a 
computer attempts to "mutate" a spin at a randomly chosen lattice site. It first computes the 
energy change At/in such a would be mutation. If A t /< 0 the mutation always happens, ifAU 
> 0, it happens with probability exp{-AU/kBT). This algorithm invented by Metropolis in 
1953, leads to the Boltzmann distribution (3) of the probabilities to find a system in a state 
with total potential energy U. The proof of this fact is based on the theory of Markovian 
processes. Indeed, the set of Metropolis rules of flipping the spins can be represented as a 
transition matrix P with transition probabilities/>yexp(-L^//^57) = pj^x.ip{-UilksT), where Ui 
and Uj are the potential energies of the corresponding states. Obviously, vector ai with compo
nents an = exp{-Ui/kB7) taken from the probability distribution (3) satisfies Eq. (9). 

The system has periodic boundary conditions, so that pixels on the opposite edges of the 
system are in close proximity. In fact, the entire system can be viewed as a single line winded 
around the surface of a bagel. In such a system, site / has 4 neighbors / + 1, / - 1, / + Z, and / - Z, 
so the correlation can make really long jumps of length Z and -Z along the line. 

Black and white pixels show spins with positive and negative orientations respectively. 
One can see patches of irregular shapes and all possible sizes from very small, of one pixel size, 
to the giant one spanning the entire system. This scale-free property of patches is typical for 
systems with long range correlations with power law decay. Indeed, exponential decay of corre
lations C{r) - exp(-r/^ would imply a typical size ^ of patches so that the probability to find 
larger patches is exponentially small. The same picture can describe the behavior of gas par
ticles near critical point. The molecules form clusters of all possible sizes which scatter light. 
Does this picture have anything to do with DNA? 
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It is well known that the D N A sequence has a mosaic structure^^ with patches of high 
concentration of strongly bonded C G base pairs alternating with patches of weakly bonded AT 
base pairs. These patches are called isochores and can span millions of base pairs. O n a smaller 
scale of genes and exons, coding sequences have larger C G content than non-coding sequences. 
Finally there exist C p G islands of several hundred base pairs with high C G content. 

May these patches have anything to do with Ising model? Of course D N A is not at thermal 
equilibrium and the concepts of temperature and potential energy cannot be applied to the study 
of its evolution. However, the evolution of D N A may be thought of as a Markovian process, 
similar to the Metropolis algorithm described above with mutation probabilities depending on 
the nature of neighboring nucleotides and on the pool of the surrounding nucleotides during 
replication process, which may be viewed as an external field or chemical potential. 

There are several main objections to this idea: 

1. First objection: the DNA chain is one dimensional. As we have seen above, long range 
correlations cannot exist in a one dimensional system. 

This objection can be easily overcome by the argument that the DNA molecule has an 
extremely complex three dimensional stmcture in which distant elements along the chain 
are in close geometrical proximity. Thus the correlation may propagate not only along the 
chain but may jump many steps ahead as in a toroidal Ising model shown in Figure 1. In 
1993 Grosberg et al̂ "̂  proposed a model based on the distribution of loops in the polymer 
chain crumpled into a dense globular conformation. This simple model leads to the long 
range correlations decaying as a power law r^, where 7 ~ 2/3. 

2. Second objection. The long-range correlations emerge only in the narrow vicinity of the 
critical point. Why in the biological system such as DNA, the probabilities of mutations are 
such that they correspond to the vicinity of the critical point? 

This objection is more difficult to overcome. However there are examples of simple models 
which drive themselves to the critical behavior. The most relevant example is a polymer 
chain in the solvent, ̂ ^ in which the probability to find a monomer in a unit volume at 
distance r from a given monomer decays as r^'^"^, where V « 0.59 is the correlation length 
exponent first determined by a Nobel prize winner P. Flory in 1949. In 1972, another 
Nobel prize winner P. G. de Gennes"^ mapped the problem of self-avoiding walks (which are 
believed to describe the behavior of polymers) to a model of a magnetic similar to an Ising 
model. He showed that the inverse polymer chain length lINvs equivalent to the distance 
to the critical point T -T^, and hence the correlation length ^ (which is equivalent to the 
radius of the polymer coil) grows as W. A polymer chain has also a power law distribution 
of loops, determined by Des Cloiseaux.^^ 

In recent years, many models have been proposed that have a tendency of self organization 
(SOC) toward their critical points without any tuning of external parameters.^^'-^^ These 
models give rise to scaling, and produce sudden avalanche-like bursts of activity distributed 
according to a power law. Some SOC models are one-dimensional systems and have been 
applied to biological evolution.^^'^® Such models are of great interest and they might be 
relevant in studies of DNA sequences. 

3. Third objection. Biological evolution is an extremely complex process which is governed 
by many different mechanisms acting at difierent length and time scales. The interplay of 
several characteristic length scales may lead to apparent power-law correlations, which thus 
lack universality of critical phenomena."^^ 
This objection is most probably correct. Indeed, the values of the correlation exponent are 
different for different species and change with distance r between the nucleotides (See sec
tion "Analysis of DNA Sequences"). Never the less, in the beginning of 1990s when the first 
long DNA sequences became publicly available, the idea to smdy them by correlation analysis 
attracted lot of attention.^^"^^ 
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Correlation Analysis of DNA Sequences 
Can correlation analysis be applied to DNA sequences? For a physicist or mathematician 

a DNA sequence looks like a text written in an unknown language, which is encoded in a 
4-letter alphabet A, C, G, T. Each letter in this text corresponds to a DNA base pair. The first 
question one might ask is what is the overall firaction or fi-equency of each letter in this text. For 
example the fi-equency of letter "A",/i is defined as / i = NAIN, where NA is the number of 
letters "A" and N is the total length of the sequence. This question is easy to answer, especially 
these days, when the total human genome is sequenced. In human genome,/i = ^ ~ 0.295 and 
fG=fc~ 0.205. Note that these numbers strongly depend on the organism under study. The 
second question one might ask: "Is there any apparent structure in this text, or it is indistin
guishable from a text that would be typed by throwing a 4-sided dice?" (This dice can be made 
in the form of a Jewish toy, dreidel, with letters A, C, G, T on its sides which have sUghtly 
different surface areas, so that the probability of getting a letter on the top is equal to its 
frequency in the genome). For a text created by throwing such a dice, the events of getting any 
two letters at positions k andy are believed to be independent, so the probability of simulta
neously getting letter X at position k and letter Fat position ^ is equal to the produc t^^ . If 
there is any structure in the text, the frequency fxy (̂ ) of finding X at position k and Y at 
position y = k + r will deviate significantly from the predicted va lue^^ . 

To fiilly characterize all dependencies among four letters of the DNA alphabet one must 
compute 16 elements of dependence matrix Dxy{r) =fxv{^) -fx/y- These dependence coeffi
cients are equivalent to correlation functions used in the previous section to describe Ising 
model if the nucleotide sequence is replaced by a numerical sequence Sx{k) = 1 if nucleotide X 
is present at position k and Sx(k) = 0 otherwise: 

Dxy{r) = {^x{k)srir + k))-{s^{k)){syik + r)), (19) 

where (...) indicates the average over all k. 
All other measures of correlations including nonlinear measures such as mutual infor

mation ^' ^ can be expressed via dependence coefficients. For example, one can introduce 
Purine-Pyrimidine (RY) correlation measure, in which any purine (A,G) is replaced by 1 and 
any pyrimidine (C,T) is replaced by -1 . The numerical sequence for RY can be expressed as 
a linear combination of numerical sequences for each nucleotide sj^y = ^A — ^C + ^G — ^T-
Accordingly, 

CRy{r) = {sj,Y{k) SRy{k + r)) - {sRY{k)){sRY{k + r)) ^^^^ 

= DAA-^ Dec + DGG + DTT-^2{DAG + DCT - DGT - DTT - DAC - DAT\ 

Analogously, one can introduce Csw^ (^ = QG-y W=A,T) or CKM{K=A,C',M= G,T) or 
any other correlation fiinction based on a Unear combination of the elementary measures SA^ scy 
SG and ST' ^ The coefficients of this linear combination can be presented in the form of a 
vector m = (^^4,^0^(7,^7) which we will call a mapping rule. For example, for /?F mapping 
rule, we define m = (1,-1,1,-1), and for C mapping rule we define m = (0,1,0,0). Accordingly, 
any correlation measure could be expressed as a quadratic form (m • Dm), where D is the 
dependence matrix. 

Definitely, some of these correlation measures such as Q^^are not zero for at least the size 
of the isochore i.e., a chromosomal region with high or low C + G content. Isochores have a 
typical size of about 10^ base pairs, so the correlations would be non-zero for at least r = 10 . 

A physicist whose goal is to understand some general principles of DNA organization 
may attempt to fit the behavior Dswi^") by a power law function. A mathematical biolo
gist ' would rather try to characterize the size distribution of the isochores and their 
nucleotide content for various chromosomes and species and try to answer questions of 
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biological relevance rather than to measure some power law exponent, which has an ambigu
ous biological meaning and characterize isochores in a very indirect fashion. 

In general, DNA is known for its complex mosaic structure,̂ '̂"^^ with structural elements 
such as isochores, intergenic sequences, CpG islands, LINE(long interspersed elements) and 
SINE (short interspersed elements) repeats, genes, exons, introns, and tandem repeats.^ '̂̂ '̂̂ ^ 
Each of these structural elements has its different size distribution, nucleotide frequencies, and 
laws of molecular evolution, so the correlations in the DNA sequence have very complex struc
ture, are different for different spices and can not be characterized by a universal power-law 
exponent, in a way it is observed in critical phenomena. Correlation studies by their nature 
involve averaging over large portions of a sequence, so they have a tendency to gloss over 
partictdar details. This is the main reason why they are not very popular in bioinformatics 
whose main tool is the search for sequence similarities^ analogous to finding in an unknown 
language some already known words or names, which may shed some light on the meaning of 
their neighbors. 

Never the less, characterization of correlations in DNA sequences has some intellectual 
merit and even practical importance for a biologist whose goal is to understand molecular 
evolution of DNA sequences.^^ There are several reasonable models of DNA evolution in which 
exact power-law correlations emerge.^ The values of the exponents of these power laws 
depend on the parameters of the model, such as mutation rates and thus can be used to test 
certain assumptions of the models. These models are discussed in the three sections starting 
with section "Mutation DupUcation Model of DNA Evolution". 

Another problem with correlation studies, is that they can be affected by many character
istics of the system, for example sequence length. In order to avoid many potential pitfalls it is 
very important to understand basic properties of correlation measures and fine-tune them on 
the well known systems which can serve as golden standards. In the next sections we will 
introduce various correlation measures and illustrate their usage, applying them to the Ising 
model, whose correlation properties are well known. Again, an impatient reader may proceed 
to "Mutation DupUcation Model of DNA Evolution". 

Correlation Function 
In the next four sections we will describe several methods of correlation analysis. To de

velop some intuition on their advantages and disadvantages, we will apply them to the 
one-dimensional and two-dimensional Ising models, whose correlation properties are known 
theoretically. 

The most straightforward analysis is the direct computation of the correlation function 
C{T) defined in Eq. (5). Figure 2 shows the behavior of InC(r) for the one-dimensional Ising 
model consisting of Z = 2 spins for several values of 7"approaching zero. For small values of r, 
the graphs are straight lines with the slope equal to the inverse correlation length in complete 
agreement with Eq. (17). Figure 3 shows the behavior for the two-dimensional Ising model 
consisting of I? = 2^ X 2^ spins above and below critical point. Figure 4 presents the corre
sponding snapshots of the system. The correlation length increases while temperature decreases 
toward 7"̂ « 2.27 and then very quickly goes down again, as temperature continues to decrease. 

This behavior may seem coimterintuitive. Indeed, one can argue that correlations below 
Tc are so strong that the majority of spins acquire the same orientation. However, from a 
mathematical point of view, the majority of spins, say fraction/>, has the same orientation. (In 
Fig. 4, T = 2.17, it is positive, but in other simulations, it may appear negative). White patches, 
indicating the negative orientation are small, isolated, and randomly distributed in the sample. 
These patches of the opposite orientation may be regarded as defects in the crystalline struc
ture. Thus one can regard two spins at distant positions r and r + ^ to be two independent 
random variables taking value 1 with probability p and value -1 with probability 1 - />• 
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Figure 2. Logarithms of the correlation functions for the one-dimensional Ising model with L = 2^^ spins 
at three different temperatures T= l.O (O), T= 0.6 (D) and r = 0.5 (0). The lines are drawn according to 
theoretical predictions of Eq. (17). 
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Figure 3. Logarithms of the correlation functions for the two-dimensional Ising model with L = 2^ x2 
spins at five different temperatures T= 2.97, r = 2.47, T= 2.37, T= Tc = 2.27, and T= 2.17. The straight 
horizontal lines show 68% and 95% confidence level for apparent correlations expected to be observed in 
an uncorrelated data of this length. Away from critical point, the behavior of correlations is well approxi
mated by straight lines indicating exponential decay of correlations. The slopes of these lines are inverse 
proportional to the correlation length. Close to critical point, correlation length becomes extremely large. 
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Figure 4. Snapshots of the Ising model far above the critical point T= 2.97, close to the critical point T= 
137, at the critical point T= 2.27, and below the critical point T=2.17. One can see that the patch sizes 
are the largest at the critical point. 

Although/>» 1 -p, the average product {s(k)s(r + k)) of two independent variables s{k) and s{k 
+ r) must be equal to the product of their averages {s{k)){s{k + r)), so the total correlation C(r) 
= 0. Note that C(0) = Ap{\ -p), thus correlation function is small even for small r. Indeed, the 
graph corresponding to r = 2.17 starts at positions much below the graphs for T> Tc, for 
which C(0) = 1, since/> = 1/2. 

Note that calculations of InQj) become very inacciu^ate as Oj) approaches zero. This is 
because the statistical error of calculating the correlation function becomes comparable with its 
value. Indeed, simple probabilistic analysis shows that for two independent variables x and j / , the 
variable {x - {x))(y - (y)) has variance equal to the product of the variances of the variables x and 
y. When we compute correlation function, we average {{x- {x))(y-{y))) = {s{k)s{r+ k)) - {s{k)){s{k 
+ r)) over N= Lx L positions. In the best possible case, assimiing all these measurements are 
independent, the standard error is the square root of variance divided by the square root of Â . 
Since the variables x = s(k) and j / = s{k + r) both have the variance C(0) = 4p{l -/>), where/) is the 
probability of a positive spin, we get this error (T = 4p{l -p)l ^JN. Since for T> Tc the probabili
ties of positive and negative spins are roughly equal, we have <7 = 1/256. The horizontal lines 
indicate levels of (7, and 2(7 corresponding to 68% and 95% confidence levels. Since in reality x 
and y are correlated, the nimiber of independent measurements have to be divided by a factor 
proportional to < ,̂ where d=2\s the dimensionality. The calculations of C(r) become extremely 
inacciu*ate when we approach the critical point at which the correlation length diverges. 

One can see that the values of the correlation function can be well approximated by the 
straight lines above the estimated standard error level, except for T= 2.27 and T= 2.37, when 
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Figure 5. A) Double logarithmic plot of the correlation functions for the two-dimensional Ising model with 
Z = 2̂ ° X 2̂ ° spins at critical temperature T= Tc = l.l^G for two realizations of the ferromagnetic model 
(dash and dotted lines) and the antiferromagnetic model (bold line). The straight line indicates theoretical 
fit C{r) ^ r~^'^l V2 . B) Logarithm of correlation function, multiplied by r^^^ V2 . The linearity of the graph 
demonstrates exponential behavior of the correaed correlation funaion. The inverse slopes give values ^ 
= 400, ^ = 270, ^ = 220 comparable to half of the system size L/2 = 512. 

the graphs start to bend upward as r decreases. This behavior may indicate a power law decay. 
To see this more clearly, we simulate a much larger system L = 1024 exactly at T^. Figure 5A 
shows the behavior of correlation function on a double logarithmic plot. For small r the graph 
is approximately linear with slope -0.25 in agreement with the exact result for an infinite 
system However, one can see that the deviations rapidly increase with r and 
the agreement breaks down at about r = 10. Analyzing such a data, one can easily dismiss the 
possibility of power law correlations on the basis that their range is so small. In fact, this early 
deviation from the power law can be well explained by the finite size of the system L = 1024. 
Indeed, in a finite system, the correlation length cannot be larger than the radius of the system. 
In Figure 5B, we show that the correlation function can be well approximated by C{r) « r~ 
exp(-r/<^/ V2 , where ^ have different values comparable with the system radius « 512. This 
example demonstrates difficulties associated with correct identification of power law correla
tions in a finite system. 

It is illuminating to study also the anti-ferromagnetic Ising model, in which neighboring 
spins prefer to stay in the opposite direction, or be anti-correlated. At low temperatures, an 
anti-ferromagnetic system looks like a checker board. Mathematically, ferromagnetic and 
anti-ferromagnetic Ising models are identical, so that any configuration of the anti-ferromagnetic 
model corresponds to exacdy one configiu-ation of the ferromagnetic model which can be 
obtained by flipping all the spins according to a simple deterministic rule. Thus in both mod
els, correlation length has the same finite value at any temperature, except at the critical point 
at which the correlation length in both models diverges. Nevertheless, the behaviors of correla
tion functions are totally different. In the anti-ferromagnetic case, correlation function is nega
tive for all odd r and is positive for all even r (Fig. 6A.) 

For T> Tc, the behavior of the absolute value of the correlation function is similar to that 
of the ferromagnetic model, both decaying exponentially with r, but below Tc in the 
anti-ferromagnetic case, the absolute values of correlations do not decay at all (Fig. 6B). How
ever, if one average odd and even values of the correlation function, this averaged correlation 
function decays exponentially to zero as expected. This shows that the correlation length is 
finite and that there is no true long range correlations. 
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Figure 6. A) Correlation flinaion for the two-dimensional anti-ferromagnetic Ising model. B) Absolute 
values of the correlation funaion below Tc (solid line), at Tc (dotted line) and above T̂ , (dashed line). 

The behavior of the anti-ferromagnetic model below critical temperature is similar to the 
behavior of coding sequences in DNA, which have a fixed reading frame (see section "Models 
of Long Range Anti-Correlations*). For a totally imcorrelated sequence of codons in which 
codon frequencies are taken from real codon usage tables (i.e., no true long range correlations), 
certain correlation functions oscillate with period 3 with a fixed amplitude till the end of the 
reading frame. However, after averaging three successive values C{r) + C(r + 1) + C{r + 2), the 
apparent correlations disappear. 

Fourier Power Spectrum 
In addition to large statistical errors in computation of C{r), these calculations are also 

very slow, since the amount of operations is proportional to rXN, where N\s total number of 
points in the sample. An alternative way to study the correlations is to compute a power spec
trum S{f) which is the square of the absolute value of the Fourier transform of the function 
s{k). This technique goes back to X-ray crystallography, in which the intensity of scattered X-
rays at certain angle, appears to be a Fourier transform of the density correlation function in 
the sample imder study. ̂ ^ It may also help to understand the Foiuier transform technique in 
terms of a musical record. Imagine that s{k) is a record of a melody. Now ^ is a continuum 
variable playing the role of time. Then S(f) tells how much energy is carried by frequency 
(pitch)/. Unfortunately, applications of Fourier transform technique require substantial knowl
edge in mathematics involving complex munbers and trigonometry. In the following section, 
we give a brief review of the properties of Fourier transforms. Throughout this section we will 
use standard notations / = V-1 for imaginary unity and K = 3.14159.... To simplify notations, 
we will also introduce an angtdar frequency 0D=27Cf. 

Mathematically, the Fourier transform of an infinitely long record is a result of an inte
gral operator F acting on the function s{x): 

s{(o) = Ts{co) = j^e^^s{x)dx = j'^cos{cCK)s{x)dx + ij^ sm{oJK)s{x)dc. (21) 

Since / is the imaginary imity, the result of a Foiuier transform is a complex function s {(O) 
= a{fj + ii?{(0). The power spectrum S(co) is defined as the square of the absolute value of the 
Fourier transform: S{(0) = \s {co)\^ = s (co) J(fi)), where s(co) = a(co) - ib{(0) is a complex 
conjugate of s {co). The signal s{x) can be restored from s (ft)) by the inverse Fourier transform 

s{x) = F-'J(<») = —iy-'^s{(o)d0). (22) 
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Fourier transforms have many interesting functional properties which make them a useful 
tool in data analysis. For example, Vds{x)ldx = -/0> J (ft)) and F J s{x)clx = is ((0)/(0. An impor
tant property of the Fourier transform is to turn a convolution of two functions into a product 
of their Fourier transforms: 

^\Zo 1̂ (̂ )̂ 2 {x + r)dx = F̂ i {(O)FS2 {-CO). (23) 

Due to this property, the power spectrum of a function with zero average is equal to the 
Foiu"ier transform of its autocorrelation function. 

S{o>) = FC{r) (24) 

For example, if the correlations decay exponentially with correlation length ^ as for the 
one-dimensional Ising model or a one-step Markovian process, C{r) = C(0)exp(-r/(^, we have 

S{(o) = 2C{0)^l[l + o)'4'\ (25) 

SO the power spectrum is almost constant for low frequencies C0< \/^ and decays as 1/fir for 
high frequencies (0» lit,. 

If the correlations decay as a power law (as at the critical point), C{r) - |r|"^, where 0 < / < 
1, the power spectrum also decays as a power law 5(0)) = cifjor", where 

13 = 1-7, (26) 

and c{y) = 2cos[ Y ( 1 - y)]T{l - ^ does not depend o n / . Here T is Euler*s gamma-function. ^ 
The case of approximately constant power spectrum is called white noise, since in this case 

all the frequencies carry the same energy (as in white light which is mixture of the colors of the 
rainbow corresponding to all different frequencies). The case S(f) - 1//^ is nicknamed "brown" 
noise since it describes Brownian motion and the case S(f) - 1/ / is called 1//-noise or "red" 
noise. The case S(f) -- l / / s with 0 < j3 < 1 corresponds to long range power-law correlations in 
the signal and is often called fractal noise. The power spectrum of the fractal noise looks like a 
straight line with slope -j3 on a log-log plot. 

In case of long range anti-correlations (as in the anti-ferromagnetic Ising model. Fig. 6) 
the correlation function oscillates with certain angular frequency COQ. In this case, the behavior 
of the correlation function can be modeled as C(r) ^ \r\~^ cos{cOor). Analogous calculations 
lead to S{(0) = r(^(|fflb - Oj\'^ +\cOo + Qj\~^)/2, This expression is analytical at ft) = 0, but it has 
power law singularities at ft) = ±(0o. Thus in case of anti-correlations, the graph of power spec
trum does not look like a straight line on a simple log-log plot. One must plot \nP{(0) versus 
\n\o)Q -ca\ in order to see a straight line with the slope -p. 

If the correlation function decays for r —> oo faster than r~\ its Fourier transform must be 
a continuous function limited for/—> ©o and, therefore, cannot have singularity at a n y / The 
log-log graph of such a ftmction plotted a g a i n s t / - / has zero slope in the limit l n | / - / | -^ ± 
00, so one can conclude that j3 = 0 i f /> 1. If 7= 1, the Fourier transform may have logarithmic 
singularities, which also corresponds to zero slope j3 = 0. 

Discrete Fourier Transform 
In reality, however, we never deal with infinitely long time series. Usually we have a system 

of A'^equidistant measurements. In this case, a sequence of A'̂  measurements s{k), k - 0,1,...A^-
1, can be regarded as vector s of the A^-dimensional space. Accordingly, one can define a dis
crete Fourier transform, ' of this vector not as an integral but as a sum 
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which can also be regarded as a vector in A'^dimensional space widi components s {q), q = 
0,1,...A^- 1. The fractional quantity/= q/N phys the role of frequency. As one can see, the 
discrete Fourier transform can be expressed in a matrix form s = Fs, where F is the matrix with 
elements ^^ = exp(2mkq/N). Analogously, vector s can be restored by applying an inverse 
Fourier transform: 

s = F-'s = —Y%K"^'"^- (28) 

If one assumes that the sequence s{k) is periodic, i.e., s(k+ N) = s{k), then the square of the 
discrete Fourier transform is proportional to the discrete Fourier transform of the correlation 
function as in case of the continuum Fourier transform.^ '̂̂ ^ Indeed, U (/)P = F J^^^Js{k)s{k + r). 

It is natural to define the discrete power spectrum S(f) to be exactly equal to the 
Fourier transform of the correlation function. Since the correlation function is defined as 
C(r) - \INYjk=o s{k)s{k + r) - (s)^, which involves division by A^and subtraction of the 
average value, S{f) = \s (f)\^lNforf> 0 and 5(0) = 0, because s (0) = N{s(k)). 

The correlation function can be thus obtained as an inverse discrete Fourier transform of 
a power spectrum. Since frequencies -q/N2nd l-^/A/^are equivalent (due to 2n- periodicity of 
sines and cosines) and, for real signal, s {-/) and s (f) ^ULC complex conjugates, the values S{q/ 
N) and S{1 - qlN) are equal to each other, so we can compute power spectra only up to the 
highest frequency qlN = 1/2. 

If A'̂  is a natural power of two, A^= 2", the discrete Fourier transform can be computed by 
a very efficient algorithm known as the Fast Fourier Transform (FFT).^^'^^ The amount of 
operations in this algorithm grows linearly with N. This makes FFT a standard tool to analyze 
correlation properties of the time series. 

Since the sequences we study are formed by random variables, the power spectra of such 
sequences are random variables themselves. Before proceeding further, it is important to calcu
late the power spectrum of a completely uncorrelated sequence of length N. As we have seen in 
section "Correlation Function", Ofi) > 0 has the meaning of the average square amplitude 
(variance) of the original signal, while for r > 0, the values of C{r) are Gaussian random vari
ables with zero mean and standard deviation equal to C{0)l ^jN . Analogous conclusions can 
be made for S(f). According to the central Umit theorem,*^^ the sum of A^random uncorrelated 
variables s(k)exp{2i7i:kf) converges to a Gaussian distribution with mean equal to the sum of 
means and variance equal to the sum of variances of individual terms. Thus, we can conclude 
(after some algebra) that all S(f) are identically distributed independent random variables with 
an exponential probability density P{S(f)) = l/[C(0)]exp[-5(/)/C(0)]. So the power spectrum 
of an uncorrected sequence has an extremely noisy graph. To reduce the noise one can average 
power spectra for many sequences, and the average value of the power spectrum will converge 
to a horizontal line {S(f)) = C(0) which is called the white noise level. An equivalent method is 
to average the values S(f) for k neighboring frequencies^/+ \/Nyf+ 2IN,...,f+klN. Note that 
{S(f)) is equal to the Fourier transform of {C{r))y direcdy computed using Eq.(27), since as we 
see above, {C{r)) = 0 for r ^ 0. 

In the following, we will illustrate the usage of FFT computing power spectrum for a one-
and two-dimensional Ising models near critical points. 

Figure 7 shows the power spearum for the one-dimensional Ising model consisting of Z = 
2^^ spins for 7= 0.5 ( | = 27.3), T= 0.6 ((̂  = 14.01), T= 1.0 (^ = 3.67). The power spectrum 
of the entire system for A =̂ Z is very noisy so we show the running averages of the original data 
using window of 32 adjacent frequencies (gray fluctuating curves). The averages of 32 power 
spectra computed for 32 non-overlapping windows each of size N=2^^ produce a very similar 
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Figure 7. A) Power Spectrum of the one-dimensional king model with L = 2^^ spins for T= 0.5 {^ = 27.5) y 
T= 0.6 (^ = 14.0), and T= 1.0 (^ = 3.67). Smooth lines show analytical result Eq. (29). B) Inverse power 
spectrum of the same data plotted versus/^. The slopes at/^ = 0 are proportional to the values of the 
correlation length. 

graph (not shown). The smooth bold lines represent exact discrete Fourier transform of the 
correlation function computed using Eqs. (4), (17) and (27) 

s{f) = 
l-X' 2$ 

l + 2.^-2Xcos{2Kf) l + {2K^f 
(29) 

where A = 2/> - 1 = exp( - l /^ . These analytical results give excellent agreement with the 
numerical data. One way to estimate the correlation length is to measure a limit of S(f) for 
/ - ^ 0. This quantity can be applied to detect a characteristic patch size in the DNA sequence 
(see sections "Alternation of Nucleotide Frequencies" and "Models of Long Range 
Anti-Correlations"). Another, more accurate method is to plot the inverse power spectrum 
l/S{f) versus/2 (Fig. 7B) and to measure the slope of this graph for/"^ -> 0. Indeed, accord
ing to Eq.(29), this slope is equal to 2^;r^. These two methods give consistent results for 
exponentially decaying correlations, but technically speaking they measure two different prop
erties of the power spectrum. In fact, the latter method gives the so called Debye persistence 
length Ic -- 1°^ C{r)r^dr, which is not the same as correlation length ^, but is proportional to 
t, for exponentially decreasing correlations, C{r) - exp(-r/(^. 

Figure 8A shows the power spectrum for a two-dimensional Ising model on a Z X Z = 2 
X 2 square lattice computed averaging power spectra for L horizontal rows each consisting of 
N=L = 2 points. The figure shows a remarkable straight line indicating long range power law 
correlations. However, the slope of the line p = 0.86 corresponds to 7= 0.14 which is almost 
two times smaller than the theoretical exact value Y= Tf = 0.25. The discrepancy shows that the 
power spectrum analysis of a finite system may often give inaccurate values of the correlation 
exponents. 

Figure SB shows a log-log plot of the power spectrum for a two-dimensional anti-ferro
magnetic Ising model, plotted versus 1/2 - / T h e analysis in the previous section shows that 
since 1/2 is the frequency of the anti-ferromagnetic correlations, the power spectrum must 
have a power-law singularity in this point. Indeed, the graph gives an approximately straight 
line with slope -p = -0.84 similar to the case of ferromagnetic interactions. 
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Figure 8. A) Power spectrum of the 2̂ ^ X 2̂ ^ Ising model at the critical point. The slope of the straight 
Hne gives j3= 0.86. B) Power spectrum ofthe 2 ̂ °X 2 ̂ ^anti-ferromagneticlsing model at the critical point 
plotted versus 1/2 - / The slope of the straight line gives P = 0.84. 

Detrended Fluctuation Analysis (DFA) 
A somewhat more intuitive way to study correlations was proposed in the studies of the 

fluctuations of environmental records by Hurst in 19647 This method is especially useful for 
short records. The idea is based on comparison of the behavior of the standard deviation of the 
record averaged over increasing periods of time with the analogous behavior for an uncorrelated 
record. According to the law of large numbers, the standard deviation of the averaged uncorrelated 
time series must decrease as the square root of the number of measurements in the averaging 
interval. This method naturally emerges when the goal is to determine an average value of a 
quantity (e.g., magnetization in the Ising model, or concentration of a certain nucleotide type 
in a DNA sequence) obtained in many successive measurements and to asses an error bar of 
this averaged value. Since the average is equal to the siun divided by the number of measure
ments, the same analysis can be performed in terms of the sum. In addition to its analytical 
merits, this method provides a useful graphical description of a time series which otherwise is 
difficult to see due to high frequency fluctuations. 

A variant of Hurst analysis was developed in reference 64 under the name of detrended 
fluctuation analysis (DFA). The DFA method comprises the following steps: 

1. For a numerical sequence s{k)y k = 1,2,...Z compute a running siun: 

y{n)^ts{k), (30) 
k=i 

which can be represented graphically as a one dimensional landscape, (see Fig. 9A). 
2. For any sliding observation box of length r which includes r + 1 vaiuts y(k)yy{k + 1),...;^^ + r) 

define a linear (unctionyk(x) = Uk+hpc which provides the least square fit for these values, i.e., 
dk and b^ are such that the sum of r + 1 squares 

f,'{r)=l[y{r')-n{n)f (31) 

has a minimal possible value ^^,niin('')- Note that hk has the meaning of the average value 
{s{k)) for this observation box, which is the local trend of the values 7(^). For a non-stationary 
sequence, the local average values {s{k)) can change with time. Since these trends are sub-
traaed in each observation box, this analysis is called detrended. Note that fk,imn (1) = 0> so 
it is a trivial value which can be excluded from the analysis. 
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Figure 9. A) Low frequency Fourier approximation of the detrended landscape ̂ /)(w) for the one-dimen
sional Ising model. All the frequencies/ > 1/r are removed. Fourier DFA computes the average square 
deviation of this approximation from the landscape. B) Linear DFA of the same landscape. Straight lines 
show least square linear fits obtained for different windows of size r = 512. Linear DFA computes the average 
square deviation of these fits from the landscape. 

3. For r > 1, compute the average value of Fj^ ^ 
deternded fluctuation function as 

Fl{r)^ 
1 

{L-T + \\r-\)t:, 

L-r 

(r) from k=\ to k = L-r and define the 

(32) 

It can be shown, that for a long enough sequence Z —> <» of uncorrelated values s{k) (i.e., 
C{r) = 0 for r > 1) with finite mean and variance C(0), we must have FD (r) —> (r + 3) C(0)/ 
15. Thus the graph o{Fj){r) for such a sequence on a log-log plot is a straight line with slope 
the a = 1/2 if plotted versus r + 3. Any deviation from the straight line behavior indicates 
the presence of correlations or anti-correlations. It can be also shown that for a sequence 
with long range power law correlations C(r) -- r" f̂or 0 < / < 1, the detrended fluctuation 
also grows as a power law F^ir) - r" as r ^ «», where 

a = 1 - 7 / 2 > 1/2, (33) 

is called the Hurst exponent of the time series. 

A Relation between DFA and Power Spectrum 
There are many different ways to subtract local trends in Eq. (31). One can subtract 

polynomials of various powers or linear combinations of sines and cosines of certain frequency 
instead of linear functions. All these different types of DFA have certain advantages and disad
vantages. One way to subtract local trends is first to subtract a global trend and plot a sequence 
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yoik) =y{k) - ky{L)/L. Next, compute a discrete Fourier transform with A^= L of this function 
y(f) = Fyo and subtract from the function j/£)(/t) a low frequency approximation 

yr{k) = l/Lj^^^^^,f/y{f)exp{-2mfk). 

(see Fig. 9B). A visual comparison of Figures 9A and 9B, suggests that these two procedures of 
subtracting local trends are equivalent. Thus we can define a Fourier detrended fluctuation as 

PMr)-ji[yD{k)-yr{k)f. (34) 
^ k = l 

According to Eq. (28), the residuals in the right hand side of Eq. (34) are equal to the high 
frequency part of the inverse Fourier transform: 

Ji)W->W = l/^I|/|>i/,5(/)exp(-2;#). 
The Fourier basis vectors are mutually orthogonal, i.e., ^k=i ^^p{2mqk/L)eKp{-2niqk/L) = 

LSp^ where 4*̂  = 1 if/> = ^ and Sp^ = 0, otherwise. Thus, according to the Z-dimensional analogy 
of the Pythagorean theorem, the square of the vector yD(>̂ ) - yX^) is equal to the sum of the 
squares of its orthogonal components and therefore, 

1/1^1/r |/ |>l/r 

The latter sum is nothing but the sum of all the high frequency components of the power 
spectrum Syifj of the integrated signal. 

Equation (35) allows us to derive the relation (33) between the exponents a and y. Indeed, 
in continuum limit, this sum corresponds to the integral } f=i/ r^yif)^/'' i f=\i r^^f~^4f'^^^^^ 
S(f) is the power spectrum of the original, non-integrated sequence s(x) and the factor/" comes 
from the fact that the Fourier transform of the integrated sequence is proportional to the Fourier 
transform of the original sequence divided b y / . As we see above (26), in case of power law 
correlations with exponent /, we have S{f) - - / ^^ Thus 

If we assume that FDA^) - FD(X) = r" as visual inspection of Figure 9 suggests, we have 
a = 1 - 7^2. 

Figure lOA shows linear DFA and Foiuier DFA for a one-dimensional Ising model on a 
double logarithmic plot. These two methods are graphically introduced in Figure 9. One can 
see a sharp transition from the correlated behavior for r «<^ with slope oir) > 1 to an uncorrelated 
behavior for r » ^ with slope oir) « 1/2. The change of the slope can be also studied by 
plotting the local slope oir) versus r (Fig. lOB). This graph shows that Fourier DFA can detect 
the correlation length more accurately than the linear DFA. 

Figure 11 shows analogous plots for the two-dimensional Ising model with long range 
correlations / = 1/4. One can see again that the Fourier DFA is more accurate in finding the 
correct value of the exponent a = 1 - yl2 - 0.875 than linear DFA. 

In summary, we introduce three methods to study correlations: autocorrelation function 
C{r)y power spectrum S(f), and DFA or Hurst analysis Frkr). For a signal with long range 
power law correlations / < 1, all three quantities behave as power law: 

C{r) ^ r"̂  r-^oo 

S[f)^r^ f-^0 (36) 

Foir) - r" r-^oo 
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Figure 11. Linear detrended fluauation (O) and Fourier detrended fluctuation (D) of the two dimensional 
Ising model for ( r = Tc. L = l}^). The slopes of linear fits give local values of a = 0.95 (thin Une) and a = 
0.88 (bold line) for small r<L. The steep jump in Fourier DFA at Z = 2^^, indicates quasi-periodicity with 
period Z = 2 due to the "bagel" geometry of the model. 

where the exponents a, ^ , and / a r e related via the following linear relations: 

j8 = l - 7 

a = 1 - 7 / 2 (37) 

a = (j3 + l ) / 2 . 

If 7> 1, the exponents j3 = 0, a = 1/2 are the same as for a short range correlated sequence 
with finite correlation length ^. 
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Duplication-Mutation Model of DNA Evolution 
In 1991, W. Li proposed a duplication-mutation model of DNA evolution which pre

dicted long-range power law correlations among nucleotides. As we see above, in a one di
mensional system with finite range interactions, correlations must decay exponentially with 
distance. So in order to produce a power law decay of correlations, one must assume long-range 
interactions among nucleotides. In the model of W. Li, such interactions are provided by the 
fact that the time axes serves as an additional spatial dimension which connects distant seg
ments of DNA developed from a single ancestor. The model is based on two assumptions both 
of which are well biologically motivated: 

1. Every nucleotide can mutate with certain probability. 
2. Every nucleotide can be duplicated or deleted with certain probability. 
First phenomenon is known as point mutation which can be caused by random chemical 

reactions such as methylation.^^ Second phenomenon often happens in the process of cell 
division (mitosis and meiosis) when pairs of sister chromosomes exchange segments of their 
DNA (genetic crossover). If the exchanging segments are of identical length the duplication 
does not happen. However, if two segments differ in length by n nucleotides, the chromosome 
that acquires larger segment obtains an extra sequence of length n which is identical to its 
neighbor, while another chromosome loses this sequence. In many cases, duplications can be 
more evolutionary advantageous than deletions. This process leads to creation of large families 
of genes developed from the same ancestor. For simplicity, we will start with a model similar to 
the original model of Lî  which neglects deletions and deals only with duplication of a single 
nucleotide (« = 1). Next, we will discuss the implications of deletions. Schematically, this model 
can be illustrated by Figure 12. For simplicity, we assume only two types of nucleotides Xand 
F(say purine vs. pyrimidine o r ^ vs. noty4). Each level of the tree-like structure represents one 
step of the evolutionary process during which every nucleotide duplicates, a nucleotide A'can 
mutate with probability/>>^ into Y, and a nucleotide Fcan mutate with probability/^A'into X. 
This model can be illustrated by a "family** tree in which every nucleotide is connected to its 
parent in the previous generation and eventually to a single ancestor at the root of the tree. 

After k duplication steps, this process will lead to a sequence of total 2 nucleotides. The 
frequencies of nucleotides X and Y in this sequence can be computed using the theory of 
Markovian processes. Indeed, the sequence of mutations along any brunch of the tree connect-

Figure 12. Mutation duplication model of W. Li.̂ ^ At each time step, nucleotides or genes Xand Y 
duplicate and may mutate with probability Px + Py- 1/12. Mutations are indicated by dashed lines. The 
correlations can spread along solid lines. Thus nucleotides that are far away along the chain are still closely 
correlated since they descend from the same ancestor. The above values of mutation probabilities corre
spond to the long range power-law correlations with y= 0.25. 
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ing a nucleotide to a single ancestor can be regarded as a one-step Markovian process with a 
matrix of transition probabilities 

P = P " ^ "̂̂  I (38) 
V PY ^-px) 

Simple calculations of the eigenvector corresponding to the largest eigenvalue A = 1 de
scribed in section "Markovian Processes" gives the frequencies of nucleotides X and Y after 
many steps: fx = pxUpx + pv) and /^ = py^ipx + py)- In addition, Markovian analysis predicts 
that all dependence coefficients along any branch of the tree decay as A2, where k is number of 
generations, and ^2= I -px-pY^s the second largest eigenvalue. 

Let us compute the dependence coefficients between two nucleotides which are at dis
tance r from each other in the resulting sequence. The reason of why the correlations are now 
long-range is obvious. Indeed, the nucleotides which are r = 2^ apart from each other in space 
are only 2k' apart from each other in time, since they are both descendants of one common 
ancestor k' = log2r generations before. As we see above, the correlations decay exponentially 
with k' and hence as a power law with r. After some elementary algebra, we get that all depen
dence coefficients Dxxy ^xvy ^YXy and Z)}^ decay as power law 

£>(r) - r-T^ (39) 

where 

2 ln | ;>x+/>r- l | 

ln2 
(40) 

If the deletions may occur with some probability P^ < 111, the number of descendants of 
one common ancestor grows as 2r where z = 2(1 - P^) and k' is the number of generations. 
Thus, replacing ln2 by \nz in the denominator of the expression for (40), we get 

l\r\px+PY-\\ (4j) 

\ri2{\-pd) 

The true long range correlations correspond to the case /< 1, or {px-^py- 1)'̂ (1 -pd!i > 1/ 
2, which means that the mutation rates must be very small: />x + /^r ~ 0 or alternatively very 
large:/>;^ + />}̂ « 2, while the deletion rate must be small. This simple example shows that the 
exponent of the power law crucially depends on the parameters of the model. 

In real DNA sequences, the duplication unit is rather a gene or a part of a gene coding for 
a protein domain. One can generalize this model assuming that coding sequences X and Y can 
duplicate, and with some probability jump from place to place effectively mimicking muta
tions ^ to Fand YxoXiw the above scheme. One can also introduce various point mutation 
rates for nucleotides in the sequences Xand Y. These alternations may change the formula for 
7, but the model will still produce power law decaying correlations Z)(r) - (r/(«))~^, where («) 
is the average length of sequences Xand Y. The problem with the application of this model to 
a real situation is that the model has many parameters, describing point mutations, duplica
tions and deletions, while resulting in a single observable parameter y. 

Alternation of Nucleotide Frequencies 
Let us assume that a nucleotide sequence consists of two types of patches, in one of 

which the frequency of nucleotide X is/ii while in the other it is/x2. The patches can alternate 
at random, so that after a patch of type 1 a patch of type 2 can follow with probability 1/2 and 
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Figure 13. Purine-pyrimidine landscape representation (excess of purines over pyrimidines) of the human 
beta globin chromosomal region (GenBank accession HUMHBB) of the total length L = 73,308. The 
overall frequency of purines (50.27%) is almost equal to the frequency of pyrimidines (49.73%). HUMHBB 
contains a Kpnl repeat from position 67071 to position 73195. This region is very purine rich with 
58.57% of purines. Kpnl repeat belongs to the LlNEl family of repetitive elements. A region from 
23,137 to 29,515 is very purine poor (41.43%). It contains 3 segments of LINE 1 repetitive elements 
inserted into the opposite DNA strand, so that all purines are exchanged with pyrimidines. 

vice versa. Let us assume that the lengths of these patches / are distributed according to the 
same probability distribution P(l). 

The motivation for this model coidd be the insertion of transposable elements, ' e.g., 
LINEs and SINEs into the opposite strands of the DNA molecule. It is known that LINE-1 
sequence has 59% purines (A,G) and 41% pyrimidines (T,C).^'^^ Obviously, due to A-T and 
C-G complementarity, if LINE-1 is inserted into the opposite strand, it will have 4 1 % purines 
and 59% pyrimidines (see Fig. 13). 

Of course, much more complex models with many parameters can be introduced. These 
types of models are similar to hidden Markov processes. However we will study only the 
above simple case in order to understand under which conditions this model can lead to power-
law correlations. 

Let us compute the correlation function for this model. Obviously, the average fre
quency of a nucleotide in the entire sequence i s ^ = (fxi +fx2)f^y so if both nucleotides k and 
k + r belong to the same patch their correlation Dxxi^) will be fxi - fx if it is a patch of type 
1 or fx2 - fx otherwise. Since both events have the same probability 1/2, the overall corre-
lation D^{r) = (fh/2 + fh/2)n{r) = n{r){fxi - /x2)' /4> where 

n(r)=I/>(r + /)//XP(/)/ (42) 
1=1 1=1 

is the probability that a randomly chosen pair of nucleotides at distance r belongs to the same 
patch. 

If the distribution of patch sizes is exponential P(l) = X^~^{\ - A), the overall correlation is 
easy to compute using summation of geometric series Dx)M = ( ^ -fxi) A74, which decays 
exponentially with r. However, this correlation can be extremely small comparatively to the 
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"white noise level" DxA^) = ^ 1 -fid^ and thus can be very difficult to detect. For example, if 
fxv = 0.3 and/;a = 0.2 Z^A^O) = 3/16, while Dxx'iX) = Ay400, which is almost 100 times smaller 
even for very large A -^ 1. 

If we have the distribution of patch sizes decaying for / - ^ ©o as a power law 

/>(/)-/-", (43) 

where jU > 2, one can show that YMr) - r^~^. This can be easily seen if one approximates summa
tion by integration in the expression (42) for Y{{r). Thus, in this case the correlations are indeed 
power law with 

7 = ^-2. (44) 

For jU > 3, we have / > 1 and the power spectrum of the model is finite f o r / ^ 0, 

which means j3 = 0, a = 1/2. The value lim 5 ( / ) - X/ l /^^W^X/ l i^^W ^ ^ ^^^ meaning 

of the weighted average patch length, i.e., the average length of the patch containing a 

randomly selected base pair. 
The case 2 < /X < 3 is equivalent to the behavior of the displacement in the so called Levy 

walks,'̂  '̂ ^ i.e., walks in which distribution of step lengths are taken from a power law with 
exponent jl. In this case, j3 = 3-jU, a = 2 - /i/2. 

If jU < 2, the sums in (42) do not converge, this means that summation in Eq. (42) must 
be taken up to the largest / « Z, where L is the total sequence length. Thus IK^) - (^ - r)/L = 
1 - rIL and we can assume 7 = 0 , j 3 = l , a = l . 

Figure 14A shows the behavior of the correlation function of a sequence for which/>xi 
= 0.3, / ;a = 0.2 and P{1) = t^'^ - (/+ 1)"^^^ corresponding to ^ = 2.5. In this case ll{r) = 
X/lr+i "̂̂ ^ ^ ^^7=1 ^~^' ^ " r"^'"^. We present the residts of correlation analysis for a very long 
sequence of Z = 2 ^ ~ 8-10^. One can see good agreement with Eq. (44). For a short se
quence, Z = 2^^ = 8192, there is no agreement: the correlations sink below random fluctua
tions, whose amplitude is equal to C(0)/Vz. This means that the sequence must be very 
long so that the long range correlations can be seen on top of random noise. 

Figure 14B shows the power spectrum for the case o(N= L = 2^^ obtained by averaging 
power spectra for 2048 non-overlapping windows of size Â  = 4096. The power spectrum is 
almost flat corresponding to the white noise level C(0) = 3/16. If the white noise level is sub
tracted, the long-range correlations become apparent (Fig. 14C). Indeed the graph o{\S(f) -
C(0)| on a log-log scale is a perfect straight line with slope -0.57 in a good agreement with the 
theoretical prediction. The DFA method gives exponent (x{r) monotonically increasing from 
an uncorrelated value 0.5 for small r to a = 1 - y/2 = 0.75 for large r. Similar situation is 
observed in coding DNA, in which the long range correlations may exist but are weak com
paratively to the white noise level. These correlations are limited to the third nucleotide in each 
codon and can be detected if the white noise level is subtracted. 

If the length of the largest patch is comparable with the length of the entire sequence as in 
case jU < 2, j8 = 1, the global average frequency/A' of a nucleotide cannot be accurately deter
mined no matter how large is the entire sequence length. The average frequency we obtain will 
be always the frequency of the largest patch. This behavior known as non-stationarity is ob
served in many natural systems in which different parts are formed under different conditions. 
Non-stationarity makes the correct subtraction of the white noise level problematic, since its 
calculation involves estimation of C(0) -^/A^I -fx)^ which depends onfx. 

Applying subtraction of the white noise level procedure, Richard Voss^ '̂̂ ^ found that 
both coding and noncoding DNA sequences from any organism, have exponent )3 ~ 1, corre
sponding to the 1//noise. Note that j3 = 1 is exacdy the case when this procedure is not quite 
reliable. Earlier^^ he applied the same type of analysis to the music of different composers from 
J.-S. Bach to the Beatles and showed that all their music is just 1//noise! No matter how 
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Figure 14. A) Correlation funaions for the L6y walk model for a long L = iP and a short L = 2̂ ^ sequences. 
The lower and upper horizontal lines show random noise levels for the long and short sequences, respec
tively. B) The power spearum for the long sequence. The spectrum is almost flat indicating that long-range 
correlations are small comparatively to the white noise level. Effective exponent J3 = 0.12 is very small. C) 
After the white noise level is subtraaed, the power spectrum shows long-range correlations with exponent 
)8 = 0.57. D) The effective exponent a(r) obtained by the DFA method. 

intriguing this observation might seem, the explanation is somewhat trivial. The case /X < 2, (j3 
= 1) i.e., the case when the length of the largest patch is comparable with the entire sequence 
length is indeed likely to be true for music as well as for DNA. In music, fast pieces follow slow 
pieces, while in DNA, CG rich isochores follow CG poor ones. 

It is interesting to note that similar long range correlations with exponent a = 0.57 have 
been found in human writings.'^ '̂ ^ These correlations can be explained by the changes in local 
frequenies of letters caused by changes in the narrative which excessively uses the names of 
currently active characters. 

In DNA, these patches may represent different structural elements of 3 D chromosome 
organization, e.g., the D N A double helix with period 10.5 bp,^^ nucleosomes about 200 bp 
long,'^ 30 nm fiber, looped domains of about 10^ bp, and chromatin bands or isochores^^'^^ 
that may consist of several million nucleotides. Such hierarchical structure of several length-
scales may produce effective long-range power law correlations. In fact,'̂ '̂'̂ ^ it is enough to have 
three discrete sizes r = 100, r = 1000 and r = 10000 of these patches in the distribution P(x) in 
order to get a sufficiently straight double logarithmic plot of the power spectrum over three 
decades in the frequency range. 
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Figure 15. A) Power spectrum of the "chromosome" of length L = 2 ^ (upper curve) in comparison with 
the power spectrum of the insened "transposon" i =2^^ (lower curve) in the insertion-deletion model. 
Dotted lines indicate peaks present in both sequences. B) Power spectra of the "chromosome" after 1024 
iterations (lower curve) and after 16384 iterations (upper curve) showing that the model reaches steady 

An interesting model can reproduce some feature of the human genome, namely the 
abundance of interspersed repeats or retroposons,^^ virus-like sequences that can insert them
selves into diflFerent places of the chromosomes by reverse transcriptase. An example of such a 
sequence is LINE-1, which we discussed earlier in this section. 

Suppose, we have an initially uncorrelated "chromosome" consisting of Z base-pairs with 
equal concentration of purines and pyrimidines and a "transposon" of length £ « L with 
strong strand bias (60% purines) and no correlations (Fig. 15A). Let us assume that at every 
simulation step our "transposon" can be inserted at random places into one of the two opposite 
strands of the "chromosome" with equal probabilities. In order to keep the length of the chro
mosome constant, let us delete exactly i nucleotides selected at random after each insertion. 
After approximately L/ i insertions, the power spectrum of the "chromosome" reaches a steady 
state shown in Figure 15B. In this example, we use L = 2^^, i = 2^^. Note the presence of 
strong peaks in the flat spectral part for/> 0.01 and a steep slope with average slope j8 « 0.8 for 
0.0005 < /< 0.01. One can easily see (Fig. 15A) that the power spectrum of the "transposon" 
which is kept unchanged during the entire simulation has strong peaks coinciding with the 
peaks of the resulting "chromosome". This example shows that the presence of many copies of 
interspersed repeats (some of which have partially degraded) can lead to the characteristic peaks 
at high frequencies larger than the inverse length of the retroposons and strong power-law like 
correlations at low frequencies comparable with the inverse length of the retroposons. 

Models of Long Range Anti-Correlations 
Another interesting situation may exist in coding DNA which preserves the reading 

frame. The reading frame is a non-interrupted sequence of codons each consisting of three 
nucleotides. One of the most fundamental discoveries of all time, is the discovery of the 
universal genetic code, i.e., that in all leaving organisms, with very few exceptions, each of 
the twenty amino acids is encoded by the same combinations of three nucleotides or codons. 
Since there are 4^ = 64 diff̂ erent codons and only 20 amino acids, some amino acids are en
coded by several codons. In the diff̂ erent codons used for coding the same amino acid, the first 
letter is usually preserved. Since the amino acid usage is non-uniform, the same is true for the 
codon usage, particularly for the frequency of the first letter in the codon. It is known^^ that for 
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all coding sequences in the GenBank, there is a preference for purine in the first position in the 
codon (32% G and 28% A) and for weakly bonded pair in the second position (31% A and 
28% T). This preference exists for any organism in the entire phylogenetic spectrum and is the 
basis for the species independence of mutual information. 

Accordingly, let us generate many patches of different length /in which the frequencies of 
a certain nucleotide at positions 3k + \ + Cy 3k + 2 + c, and 3k + c are/1,/2 and/3. Here f is a 
random offset which is constant within each patch and can take values 0,1,2 with equal prob
abilities. Following Herzel and Grosse, we will call this construction a random exon model. 

All the correlation properties of the random exon model can be computed analytically. But 
even without lengthy algebra, it is clear that the correlation function will oscillate with period 
three being positive at positions r= 3k and negative at positions r= 3k + 1 and r = 3^ + 2. The 
envelope of these oscillations will decay, either exponentially if the patch length is distributed 
exponentially or as a power law if the distribution of patches is a power law P{1) - t^. Accordingly, 
in the power spectrum, there will be either a finite strong peak at frequency/= 1/3 with intensity 
proportional to the weighted average patch length or a power law singularity \f- 1/3|^ if 2 < /i 
< 3. If/X < 2, it will be l//singularity \f- 1/3|"^ 

Figure 16A,B shows the correlation function for the random exon model with/i =0.29, 
/2 =/3 = 0-2 and a power law distribution of reading frame lengths with /i = 2.5. Figure 16C 
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Figure 16. A) Correlation function for the random exon model with power-law distribution of reading frame 
lengths P(l) -^ t^"^ oscillates with period three. B) The log-log plot of the absolute value of the correlation 
flinaion for the same sequence. The power-law correlations with exponent 7= 0.57 are clearly seen. C) The 
power spectrum of the same sequence. It is almost flat with a strong peak at/= 1/3. D) The log-log plot of the 
power spectrum with the subtraaed white noise level. The power law correlations with j8 = 0.64 are clearly seen. 
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shows the power spectrum of this sequence and finally Figure 16D shows the log-log plot of 
\P(f) - C(0)| versus \f- 1/3|. One can see approximate straight line behavior with the slope 0.6. 
The DFA analysis fails to show the presence of any power law correlations except for a small 
bump at r = 3 (not shown). 

Analysis of DNA Sequences 
In this section, we finally present the analysis of real DNA sequences. The examples of the 

previous sections show us that among different methods of analysis, the power spectrum usu
ally gives the best results. In contrast to C{r) method, it provides natural averaging of the long 
range correlations from a broad interval of large distances [r,r + Ar] adding them up into a 
narrow range of low frequencies [1/r - Ar/r'^il/r]. Thus, the power spectrum restores useful 
information which cannot be seen from C{r) quickly sinking below the white noise level for 
large r. On the other hand, the power spectrum does not smooth out the details on the short 
length scales corresponding to high frequencies as DFA does. Also it is much less computationally 
intensive than the two other methods. Once the intuition on how to use the power spectrum 
analysis is developed, it can be applied to DNA sequences with the same success as in X-ray 
crystallography, especially, today when the length of the available DNA sequences becomes 
comparable with the number of atoms in the nano-scale experimental systems. Not surpris
ingly, power spectra of the DNA from different organisms have distinct characteristic peaks, 
similarly to the X-ray diffraction patterns of different substances. Accordingly, in this section, 
we will use only the power spectrum analysis. 

In the beginning of 1990, when the first long DNA sequences became available, an im
portant practical question was to find coding regions in the "sea" of noncoding DNA which 
constitutes 97% of human genome. The problem was not only to determine genes, i.e., the 
regions which are transcribed in the process of RNA transcription, but also the exons, the 
smaller segments of genes which remain in the messenger RNA after the noncoding introns are 
spliced out. Only the information from exons is translated into proteins by the ribosomes. ' 
That is why, the claim of reference 31 that the non-coding DNA sequences have stronger 
power law correlations than the coding ones attracted much attention and caused a lot of 
controversy.^ The results of reference 31 were based on the studies of a small subset of se
quences using DNA landscape technique (see Fig. 13). Later these results were confirmed by 
the DFA method, the wavelet,̂ '̂'̂ '̂ '̂ ^ the power spectrum^^ and modified standard deviation 
analyses. ̂ ^ However, the difference between coding and noncoding DNA appeared to be not as 
dramatic as it was originally proposed. In Figure 17 we present the results of the analysis of 
33301 coding and 29453 noncoding sequences of the eukaryotic organisms. These were all the 
genomic DNA sequences published in the GenBank release of August 15th, 1994 whose length 
was at least 512 nucleotides. The power spectrum is obtained by averaging power spectra calcu
lated by FFT of all non-overlapping intervals of length A =̂ 2^ = 512 contained in the analyzed 
sequences. The conclusions hold not only for the average power spectrum of all eukaryotes but 
also for the average power spectra of each organism analyzed separately. 

Unlike the graphs for Ising model, the log-log graphs for coding and non-coding DNA are 
not straight but have three distina regimes for high (H) (f> 0.09), medium (M) 0.012 </< 0.09 
and low (L)/< 0.012 frequencies. The slopes PM in the region of medium frequencies can be 
obtained by the least square linear fit. For RY mapping rule (see section "Correlation Analysis of 
DNA Sequences") presented in Figure 17 for coding DNA, we see PM = 0.03 which corresponds 
to the white noise, while for non-coding DNA we see weak power-law correlations with PM = 0.21. 
Reference 80 contains the tables of the exponents j3̂ f obtained for various eukaryotic organisms for 
seven different mapping rules (RY, SW, KM, A, C, G, T). For all the rules and all the organisms, 
the exponent jS^ for the averaged power spectra of non-coding regions is always larger than jS^for 
coding regions. For some rules, such as SW, the exponent PM is negative for coding DNA and 
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Figure 17. The RY power spearum obtained by averaging power spectra of all eukaryotic sequences longer 
than 512 bp, obtained by FFT with window size 512. Upper curve is average over 29,453 coding sequences; 
lower curve is average over 33,301 noncoding sequences. For clarity, the power speara are shifted vertically 
by arbitrary quantities. The straight lines are least squares fits for second decade (Region M). The values of 
pM for coding and noncoding DNA obtained from the slopes of the fits are 0.03 and 0.21, respectively. 
(From re£ 80.) 

is close to zero for non-coding DNA, But the algebraic values of the exponents for non-coding 
DNA is always larger than for coding DNA. The histogram of values of jŜ f computed for 
individual 512-bp sequences has a roughly Gaussian shape with standard deviation G = 0.3 
which is several times larger than the difference between mean values of ^M for coding and 
non-coding DNA. This makes the use of fractal exponent ^M impractical for finding coding 
regions. 

A much more important characteristic of the power spectrum is the height of the peak at 
the codon frequency/= 1/3, which was included in the standard gene finding tool boxes.^ ' 
Figure 17 shows that the peak for coding regions is several times higher than for non-coding 
ones. The presence of the weak peak in the noncoding regions can be attributed to the non-
identified genes or to pseudo-genes which have recendy (on the evolutionary time scale) be
come inactive (like olfactory genes for humans). The presence of the peak can be explained by 
the non-imiform codon usage, (see section "Models of Long Range Anti-Correlations**, Fig. 16). 

Another interesting and distinctive feature of non-coding DNA is the presence of the 
peak a t / = 1/2 as in the anti-ferromagnetic Ising model. This peak can be attributed to the 
presence of long tandem repeats ...CACACA... and .. .TGTGTG... which are prolific in non-
coding DNA but very rare in the coding (see next section). 

Presendy, when several complete or almost complete genomes are just a mouse-click away, it 
is easy to test if the true power-law long-range correlations do exist in the chromosomes of 
different species. Figure 18A,B shows power spectra of the 88 million base-pair contig of the 
human chromosome XIV computed according to the seven mapping rules described in section 
"Correlation Analysis of DNA Sequences**. A very interesting feature of the human genome is the 
presence of the strong peaks at high frequencies. These peaks are much stronger than the peak at 
/ = 1/3 for coding DNA. It is plausible that these peaks are due to the himdreds of thousands 
almost identical copies of the SINE and LINE repeats,^^ which constitute a major portion of 
human genome. If one compares the peaks in the power spectrum of the chromosome, with 
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Figure 18. A) Power spectra for seven difiFerent mapping rules computed for the Homo sapiens chromo
some XIV, genomic contig NT_026437. The result is obtained by averaging 1330 power spectra com
puted by FFT for non-overlapping segments of length TV = 2^^ = 65536. B) Power spectra for SW, RY, 
and KM mapping rules for the same contig extended to the low frequency region characterizing extremely 
long range correlations. The extension is obtained by extracting low frequencies from the power spectra 
computed by FFT with A/̂ = 2^ = 16Af base pairs. Three distinct correlation regimes can be identified. 
High frequency regime {f< 0.003) is characterized by small sharp peaks. Medium frequency regime 
(0.5-10"^ </< 0.003) is characterized by approximate power-law behavior for RY and SW mapping rules 
with exponent J3M= 0.57. Low frequency regime {f< 0.5-10"^) is characterized by J3 = 1.00 for SW rule. 
The high frequency regime for RY rule can be approximated by J3// = 0.16 in agreement with the data of 
Figure 17. C) RY Power spectra for the entire genome of £. coli (bacteria), S. cerevisae (yeast) chromosome 
IV, H. sapiens (human) chromosome XIV and the largest contig (NT_032977.6) on the chromosome I; 
and C.elegans (worm) chromosome X. It can be clearly seen that the high frequency peaks for the two 
different human chromosomes are exacdy the same, while they are totally different from the high 
frequency peaks for other organisms. One can also notice the presence of enormous peaks for/= 1/3 in 
E. coli and yeast, indicating that their genomes do not have introns, so that the lengths of coding segments 
are very large. The C elegans data can be very well approximated by power law correlations Sif)'- f^' 
for 10 </< 10~ .̂ D) Log-log plot of the RY power spectrum for E. coli with subtracted white noise level 
versus j / ' - 1/3|. It shows a typical behavior for a signal with finite correlation length, indicating that the 
distribution of the coding segments in E. coli has finite average square length. 

the peaks in the power spectra of various SINE and LINE sequences, one can find that some of 
these peaks coincide as in the model of insertion-deletion discussed in section "Alternation of 
Nucleotide Frequencies". The absence of these peaks in the genomes of primitive organisms (see 
Fig. 18C) is in agreement with the fact that these organisms lack interspersed repeats. 



154 Power Laws, Scale-Free Networks and Genome Biology 

It is clear that the long-range correlations lack universality, i.e., they are different for dif
ferent species and strongly depend on the mapping rule. The slopes of the power spectra change 
with frequency and undergo sharp crossovers which do not coincide for different organisms. 
The strongest correlations with the spectral exponent ^ = 1 are present for SW rule at low 
frequencies, indicating the presence of the isochores. The middle frequency regime which can 
be particularly well approximated by power law correlations in C elegans can be explained by 
the generalized duplication-mutation model of W. Li in which duplications and mutations 
occur on the level genes, consisting of several hundred base pairs. The high frequency correla
tions, sometimes characterized by small positive slopes of the power spectra can be attributed 
to the presence of simple sequence repeats (see next section). In contrast, the high frequency 
spectrum of the bacterium E. coli is almost flat with the exception of the huge peak a t /= 1/3. 
Bacterial DNA practically does not have noncoding regions, thus (in agreement with refs. 
31,72,80,82) it does not have long range correlations on the length scales smaller than the 
length of a typical gene. Large peaks at \f- 1/3| in the power spectra of ^. coli and yeast are 
consistent with fact that these primitive organisms do not have introns and therefore their 
open reading frames are very long. The spectrum of ^. coli printed versus \f~ 1/3| shows a 
horizontal line (orf-^ 1/3 on a double logarithmic plot indicating that the length distribution 
of the open reading frames has finite second moment. 

Distribution of Simple Repeats 
The origin, evolution, and biological role of tandem repeats in DNA, also known as 

microsatellites or simple sequence repeats (SSR), are presendy one of the most intriguing puzzles 
of molecular biology. The expansion of such SSR has recendy become of great interest due to 
their role in genome organization and evolutionary processes.^^'^^ It is known that SSR con
stitute a large fraction of noncoding DNA and are relatively rare in protein coding sequences. 

SSR are of considerable practical and theoretical interest due to their high polymorphism. 
The formation of a hairpin struaure during replication is believed to be the cause of the CAG 
and CTG repeat expansions, which are associated with a broad variety of genetic diseases. 
Among such diseases are fragile X syndrome,^^^ myotonic dystrophy, and Huntington's dis
ease^ ' ^̂  SSR of the type (G4) ^ are also known to expand due to slippage in the replication 
process. These errors are usually eliminated by the mismatch-repair enzyme MSH2. However, 
a mutation in the MSH2 gene leads to an uncontrolled expansion of repeats—a common cause 
of ovarian cancers. ̂ ^̂  Similar mechanisms are attributable for other types of cancer. ' ' 
Telomeric SSR, which control DNA sequence size during replication, illustrate another crucial 
role of tandem repeats.^^ 

Specifically, let us consider the distribution of the most simple case of SSR—repeats of 
identical dlmersXYXY..Xy^Cdimenc tandem repeats"). Here A'and Fdenotes one of the four 
nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). Dimeric tandem repeats 
are so abundant in noncoding DNA that their presence can even be observed by global statis
tical methods such as the power spectrum. For example. Figures 17 and 18A-C show presence 
of a peak at (l/2)bp~^ in the power spectrum of noncoding DNA (corresponding to repetition 
of dimers) and the absence of this peak in coding DNA. The abundance of dimeric tandem 
repeats in noncoding DNA suggests that these repeats may play a special role in the organiza
tion and evolution of noncoding DNA. 

First, let us compute the number of repeats in an uncorrelated sequence. Suppose that we 
have a random uncorrelated sequence of length 2L which is a mixture of all 16 possible types of 
dimers XV, each with a given frequency/AT> The probability that a randomly selected dimer 
belongs to a dimeric tandem repeat (XY) £ of length ^ can be written as 

Pxv{i) = fk-{l-fxrfe, (45) 
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where (1 - /AT) is the terminating factor responsible for not producing an additional unitXFat 
the beginning (or end) of the repeating sequences and the factor ^ takes into account ^ pos
sible positions of a dimer XY m a repeat {XY) i. Since the total number of dimers in our 
sequence is Z, the number of dimers in the repeats 0(^)1 is LPxA^) = ^^xy{^)-> where 
NXY{ ^) is the total number of repeats {XY) ^ in a sequence of length 2Z. Finally, 

Nxr{i) = f^il-fxYf-L^ r^l'"/-l, (46) 

which decreases exponentially with the length of the tandem repeat. Thus, a semi-logarithmic 
plot ofNxYi^) versus £ must be a straight line with the slope 

- - ^ u n c ^ i ^ ^ y ) . (47) 

In order to compare the prediction of this simple model with real DNA data, we estimate 

/xyfor the real DNA as follows: (i) divide the DNA sequence into L non-overlapping dimers, 

(ii) count nxYy the total number of occurrences of a dimer AT in this sequence, and calculate 

Indeed, most dimeric tandem repeats in coding DNA produce linear semilogarithmic 
plots, (Fig. 19A) but with slopes significantly different from those predicted by (47). The 
deviation of the slopes from prediction (47) can be explained by the short order Markov corre-
lations.'<^''"7 

On the other hand, semilogarithmic plots of the length distributions of dimeric repeats 
for noncoding parts (Fig. 19C) are usually not straight, but display negative slope with con-
standy decreasing absolute value which indicates that their probability decays less rapidly than 
exponentially. Indeed, these distributions can be better fit by straight lines on a double loga
rithmic plot (Fig. 19D) 

A simple model to explain the power law behavior (49) was presented in references 106 
and 108. The mechanism proposed in references 106 and 108 is based on random multiplica
tive processes, which can reproduce the observed non-exponential distribution of repeats. The 
increase or decrease of repeat length can occur due to unequal crossover '̂ ^̂  or slippage during 
replication.̂ '̂̂ ^ '̂̂ ^ '̂̂ ^^ It is reasonable to assume (see re£ 110 and refs. therein) that in these 
types of mutations, the new length i ' of the repeat is not a stepwise increase or decrease of the 
old length £, but is defined as a product ^' = ^ r, where r is some random variable. 

For simplicity, we neglect point mutations and assume that with conditional probability 
;r(r, ^) in a single mutation, a repeat of length i can expand or shrink to a repeat of length r ^, 
where the function ;r(r, i) is normalized: 

i;K{rj)dr = \. (50) 

After t steps of evolution the length of the repeat is given by 

£t = tlrU (51) 

where r/ is a random variable taken from a distribution with probability density 7C(r, i). Such a 
process is called a random multiplicative process and, in many cases, leads in the long time 
limit (̂ —> oo) to a stable distribution of repeat length P{£). According to Eq. (51), repeats may 
fluctuate in length and even disappear. Thus, to prevent the extinction of repeats, one can 
either set a non-zero probability for a repeat to reappear, or set Ttir, i) = 0 when r^ < 1. Both 
ways are mathematically equivalent and might be biologically controlled by point mutations. 
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Figure 19. The combined plot of the normalized number NQ{ ^) = Nxri ^ )INXY{ 1) of repeats for six groups 
of dimeric tandem repeats in human genome averaged over analogous repeats in each group: {AA) (_ and 
{TDi (O); {TA)i and {AT) ^ (A); {CA) iMQ iXTG) i and {GT) i (•); {GA)u(AG)i. {TQ i and 
(CI) i (0); {CQ £ and (GG) £ (•); {GQ £ and (CG) £ (D). Semi-iogaridimic plot for coding DNA (A), 
double-logarithmic plot for coding DNA (B), semi-logarithmic plot for noncoding DNA (C), and double-
logarithmic plot for noncoding DNA (D). For clarity, we separate plots for these six groups by shifting them 
by a factor of 100 on the ordinate. The values of/x for six groups of repeats in (D) are 3.6,3.3,3.2,4.1,6.7, 
and 5.4 from top to bottom, fitting range is ^ > 5. The values of jU for strongly bonded repeats GC, CG and 
CC,GG are significandy larger than for other repeats. (From re£ 107.) 

If we take the logarithm of both parts of Eq. (51) and change variables to JZ = In^, the 
process becomes a random diffusion process in semi-infinite space z > 0 in which a particle 
makes steps Vj = Inr .̂ The distribution of steps 7C {v^z) can be related to the original distribution 
of growth-rates, 7t(r,i). Indeed, in the continuimi limit K{VyZ)dv = nir,^)dr, or ^(v,z) = 
; r ( ^ ^ ^ ^ ^ 

A classical example of such a process is Brownian motion in a potential field U{z), which 
leads for ^ —> oo to a Boltzmann probability distribution (3). The strength and the direction of 
the potential force/(^j) = -dUldz depends on the probability distribution 7t {VyZ). If probabil
ity to go up is larger than the probability to go down, the force acts upward, so the particle 
travels upward indefinitely and no stable probability distribution is observed. (This situation 
corresponds to the imcontroUable expansion of repeats as in some types of cancers.) If the 
distribution K {v,z) does not depend on z, the force is constant. If the force is constant and 
acting down as the gravitational force on the Earth, the final probability distribution decays 
exponentially with z as the density of Earth's atmosphere 
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P{z)^e-^, (52) 

where ^ is a positive constant which depends on the distribution TT {y,z) = ^ (v). 
Using the theory of Markovian processes (Section III), one can show that the final prob-

abihty distribution P{z) must satisfy an equation analogous to (9) in which P{z) plays the role 
of eigenvector ai and 7t (v,z) plays the role of transition matrix P. In the continuum, limit we 
have P{z) = lZx>P{z-v)7i {v,z- V)dv, which in case n {v,z) = n (v) has solution (52) and k > 
0 must satisfy equation 

J^exp(;^v)^(vyv = 1. (53) 

After transforming back to our original variables, the solution (52) can be rewritten in the 
form of a power law, 

P{£) = r^ (54) 

where jl- k+\ > 1. Accordingly (53) must be rewritten in the form 

I'^r"-' Kiryr (55) 

Equation (55) always has a trivial solution )U = 1 (due to the normalization (50)). How
ever, Eq. (55) may also have additional roots, /X > 1. If it does not have such roots then the final 
distribution does not exist. This case corresponds to the uncontrollable expansion of repeats. 

Let us discuss two examples, in which Eq. (55) has simple solutions. For example, if 7r(r) 
is a step-function 

n{r) = \"'' '^'^' (56) 
^^ [ 0, r < l , r > 2 , 

equation (55) becomes 

1 9̂ ^ 
-• — = L (57) 
2 /x 

Eq. (57) has a solution 11 = 2. The above case can serve as the simplest model of unequal 
crossover,̂ ^^ after which a repeat of length i becomes of length ^-(1 + r) in the first allele and 
of length ^ •(! - r) in the second allele. If both alleles have equal probability of becoming fixed 
in the population, we arrive to Eq. (56). 

In another simple example we take 

jt{r) = 7ti'S{r-\/2)-\-K2- S{r - 2), (58) 

where Tti + 7t2= I and S{r) is the Dirac delta-fiinction, i.e., with probability Tti the repeat can 
shrink by factor of two and with probability K2 it can grow by factor of two. In this case, 
Eq. (55) can be written as 

^ i f ^ T + ; r 2 - 2 ' ' - ' = l , (59) 

which has a root jU = 1 + log2(7ri/7r2). If probability to grow is larger than probability to shrink, 
7t2> TCiy we have jU < 1, which, as we see above, leads to an uncontrollable expansion of repeats 
as in some diseases. These simple examples show that our multiplicative model is capable to 
explain the power law distribution of simple repeats with any exponent jU > 1. 

In the general case of discrete multiplicative processes, one cannot obtain analytical solu
tions. However, numerical simulations show that Eq. (54) still provides a good approxima
tion for large £. The deviation of the actual distributions (Fig. 19) from an exact power law can 
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Figure 20. RY power spectra of the random dimeric tandem repeat model for coding and noncoding DNA 
for the mammalian sequences. 

be explained if one takes into account that the distribution of growth rates J^r, i) may depend 
on the length of the repeat i}^'^''^^^ This is especially plausible for the slippage during replica
tion mechanism, since the ability for a DNA molecule to form hairpins clearly depends on the 
length of a segment involved in the slippage and on its biophysical properties and thus must 
depend on the type of repeat. Therefore, it is not surprising that different types of repeats have 
different length distribution. For example, the distribution of {AQ i and (TG) i repeats in 
vertebrates have plateaus in the range 10 < ^ < 30. In contrast, the distributions of (CC) £, 
(CG) i and {GG) £, and repeats decay much faster than other repeats which include weakly 
bonded base pairs. 

A different model proposed by reference 113 can also reproduce long tails in the repeat 
length distribution. This model assiunes the stepwise change in repeat length with the muta
tion rate proportional to the repeat length. It is possible to map this model to a random multi
plicative process with a specific form of distribution ;r(r, i), where r = tl £, £ is the original 
length and €' is a repeat length after a time interval during which several stepwise mutations 
can occur. 

From the analysis in section "Alternation of Nucleotide Frequencies", it follows that simple 
tandem repeats randomly distributed along the sequence can produce long-range power-law 
correlations if, and only if, jU < 3. However, in almost all real DNA sequences )U > 3, which 
means that simple tandem repeats alone cannot explain long-range correlations. On the other 
hand, simple tandem repeats may be the primary source of the difference in correlation prop
erties of coding and noncoding sequences at relatively short length scales of ^ « 100 bp.^ In 
order to test such a possibility, we construct a random dimeric repeat model by randomly 
selecting all possible repeats (XY) £ from the empirically observed distribution NXY(^) and 
concatenating them into an artificially constructed sequence of nucleotides. Figure 20 shows 
the power spectra of two sequences produced by random concatenations of various dimeric 
repeats taken from the noncoding and coding mammalian DNA. These power spectra show a 
slight difference in the spectral exponent PM in the region of medium frequencies analogous to 
Figure 17. Note that the difference in the spectral exponents in the random repeat model is 
smaller than in real sequences. However, here we consider only dimeric tandem repeats, thus 
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Figure 21. Log-log plot of the frequency of 6-letter words (hexamers) versus their rank for invertebrate 
coding and non-coding sequences in comparison with the same graphs produced by the random dimeric 
repeat model. 

neglecting the repeats of other types. We also neglect the possibility of imperfect repeats inter
rupted by several point mutations. 

Finally, dimeric tandem repeats can explain the difference observed in the distribution of 
w-letter words in coding and non-coding DNA (see Fig. 21). As an example, we show the rank-
frequency of the 6-letter words (hexamers) for invertebrate coding and noncoding sequences in 
the form of the so called Zipf plots. ̂ ^ For natiural languages, Zipf graphs show that the fre
quency of a word in a text is inverse proportional to its rank. For example, in an English text, 
the most frequent word is "the" (rank 1), the second most frequent word is "oP (rank 2), the 
third most frequent word is V (rank 3) and so on. Accordingly, the frequency of word "of" is 
roughly two times smaller than the frequency of word "the" and the frequency of word "a" is 
roughly three times smaller than the frequency of "the". Thus on the log-log scale, the Zipf 
graph is a straight line with the slope -1 . In a DNA sequence, there is no precise definition of 
the "word", so one can define "word" as any string of the fixed number of consecutive nucle
otides that can be found in the sequence. One can notice that the Zipf graph for non-coding 
DNA is approximately straight but with a slope smaller than 1, while for coding DNA, the 
graph is more curvy and is less steep. This observation led Mantegna et al ^̂ '̂̂ ^ to conclude 
that noncoding DNA have some properties of natural languages, namely redundancy. Accord
ingly, noncoding DNA may contain some "hidden language". However, this conjecture was 
strongly opposed by the bioinformatics community.^ ̂ ^ Indeed, Zipf graphs of coding and non-
coding DNA can be trivially explained by the presence of dimeric tandem repeats (Fig. 21). 

To conclude, noncoding DNA may not contain any hidden "language" but it definitely 
has lot of hidden biological information. For example, it contains transcription regidatory 
information which is very difficult to extract. Application of correlation analysis may help to 
solve this problem. 

Conclusion 
Long range correlations of different length scales may develop due to different mutational 

mechanisms. The longest correlations, on the length scales of isochores may originate due to 



160 Power Laws, Scale-Free Networks and Genome Biology 

base-substitution mutations during replication (see ref. 77). Indeed, it is known tliat different 
parts of chromosomes replicate at different stages of cell division. The regions rich in C+G 
repUcate earUer than those rich in A+T. On the other hand, the concentration of C+G precur
sors in the cell depletes during replication. Thus the probability of substituting A/T for C/G is 
higher in those parts of the chromosome that replicate earlier. These unequal mutation rates 
may lead to the formation of isochors. '̂̂  Correlations on the intermediate length scale of thou
sands of nucleotides may originate due to DNA shuffling by insertion or deletion '̂̂ '̂  of trans-
posable elements such as LINES and SINES^'^^'^^^ or due to a mutation-duplication process 
proposed by W. Lî ^ (see also ref 120). 

Finally, the correlations on the length scale of several hundreds of nucleotides may evolve 
due to simple repeat expansion ̂ ^̂ '̂ ^̂  As we have seen in the previous section, the distributions 
of simple repeats are dramatically different in coding and noncoding DNA. In coding DNA 
they have an exponential distribution; in noncoding DNA they have long tails that in many 
cases may be fit by a power law function. The power law distribution of simple repeats can be 
explained if one assumes a random multiplicative process for the mutation of the repeat length, 
i.e., each mutation leads to a change of repeat length by a random factor with a certain distri
bution (see ref 106). Such a process may take place due to errors in replication^ ̂ ^ or unequal 
crossing over (see ref 108 and refs. therein). Simple repeat expansion in the coding regions 
would lead to a loss of protein functionality (as, e.g., in Huntington's disease^ ̂  ) and to the 
extinction of the organism. 

Thus the weakness of long-range correlations in coding DNA is probably related to the 
coding DNA's conservation during biological evolution. Indeed, the proteins of bacteria and 
humans have many common templates, while the noncoding regions can be totally different 
even for closely related species. The conservation of protein coding sequences and the weakness 
of correlations in the amino acid sequences^^^ are probably related to the problem of protein 
folding. Monte-Carlo simulations of protein folding on the cubic lattice suggest that the statis
tical properties of the sequences that fold into a native state resemble those of random se-
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quences. 
The higher tolerance of noncoding regions to various mutations, especially to mutations 

involving the growth of DNA length—e.g., duplication, insertion of transposable elements, 
and simple repeat expansion—lead to strong long-range correlations in the noncoding DNA. 
Such tolerance is a necessary condition for biological evolution, since its main pathway is be
lieved to be gene duplication by chromosomal rearrangements, which does not affect coding 
regions.^ However, the payoff for this tolerance is the growth of highly correlated junk DNA. 
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CHAPTER 10 

Analytical Evolutionary Model for Protein 
Fold Occurrence in Genomes, Accounting 
for the Effects of Gene Duplication, Deletion, 
Acquisition and Selective Pressure 

Michael Kamal, Nicholas M. Luscombe, Jiang Qian and Mark Gerstein 

Abstract 

Motivation 

G lobal surveys of protein folds in genomes measure the usage of essential molecular 
parts in different organisms. In a recent survey, we showed that the occurrence of 
protein folds in 20 completely sequenced genomes follow a power-law distribution; 

i.e., the number of folds (F) with a given genomic occurrence (V) decays 2isF{V)= aV , with 
a few occurring many times and most occurring infrequently. Clearly, such a distribution re
sults from the way in which genomes have evolved into their current states. 

Results 
Here we develop and discuss a minimal, analytically tractable model to explain these ob

servations. In particular, we demonstrate that (i) stochastic gene duplication and (ii) overall 
acquisition of new folds are sufficient to accurately replicate the power-law distributions. Fur
thermore by optimizing the model using genomic data, we gain a quantitative insight into 
otherwise unattainable data. In particular, as the rate at which genomes acquire new folds is 
direcdy related to the power-law exponent-b, we can easily estimate this rate by measuring the 
gradient of the distribution on a log-log graph. In addition, extensions to the model suggest 
that gene deletion and selective pressure are important to the fate of individual genes, but do 
not significantly affect the final power-law distribution. That is, although gene deletion and 
selective pressure will affect the choice of the most common fold type in an organism, it will 
not change the overall power-law distribution found across different genomes. Finally, we gain 
an indication of the initial sizes of genomes, from the starting states of the simulations. We find 
that the power-law dependence of the fold distribution is independent of the composition of 
the starting genome. 
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Availability 
Additional data pertaining to this work is found at http://www.partslist.org/poweriaw. 

Introduction 
The power-law behavior is frequendy found in many different population distributions. 

Also referred to as Zipf s law, a well-documented example is the usage of words in text docu
ments.^ By grouping words that have similar occurrences, it was noted that a small selection 
such as "the" and "oP are used many times, while most occur infrequendy. When the size of 
each group is plot against its usage, the distribution is described by a power-law function: the 
number of words (F) with a given occurrence (V) decays with the equation F = a/V' . The 
distribution is linear when plotted on log-log axes, where-b describes the slope. Such distribu
tions are also found for the relative sizes of cities, income levels and the niunber of papers 
published by scientists in a field of research.^ 

Significantly, the power-law behavior is also prevalent in many aspects of genomic biol
ogy. It is found in the usage of short nucleotide sequences,^'^ the populations of gene fami
lies, '̂  the occurrence of protein superfamilies and folds in genomes^ '̂̂ ^ and several biological 
networks. ' The distribution extends even further to the number of distinct protein func
tions associated with a particular fold, the number of protein-protein interactions that are 
made by each fold type, and the variations in expression levels between genes present in the 
yeast genome. These observations have been made in at least 20 prokaryotic and eukaryotic 
genomes, and so are likely to be universal to most other genomes that are yet to be analyzed. 
Given the prevalence of this behavior, we suggest that all of these biological distributions arise 
because of a common mechanism for genomic evolution, primarily by duplicating existing 
genes to increase the presence of particular types of proteins. ̂ ^ 

The current study focuses on the distribution of protein folds in different organisms (Fig. 
lA). Most proteins encoded in a genome have a defined three-dimensional structure that can 
be classified into distinct protein folds. Although these folds are defined by the topology of the 
peptide chain, it is possible to determine whether two proteins adopt the same fold by se
quence comparison. So even if structures are unavailable for all the genes, we can classify them 
into equivalent folds by sequence similarity. Using these classifications, one way of representing 
the contents of a genome is to count the number of times different folds occiu" and then group 
together those with similar occurrences (Fig. IB). Like word usage, the number of folds (F) 
with a certain genomic occurrence (V) decays according to the power-law function; we display 
the distribution for the E. coli genome in Figure lA, and plots for 19 further organisms is 
available from our supplementary website. 

There have been several efforts to imderstand this nonuniform distribution of protein 
families. A number of models suggested that the observation of non-uniform population dis
tributions of protein families depends on the "designability" of the protein structure; that is, 
the relative size of a family depends on the fraction of all sequences that coidd successfully fold 
into any particular protein fold.^ '̂ Others have modelled the occurrence of non-uniform 
distributions by simulating the evolution of genomes. In the model of Huynen and van 
Nimwegen, families expand or shrink in size through successive multiplications by a random 
factor, which represents duplication or deletion events depending on its value. More recendy, 
Yanai et al ''̂  introduced a model in which a genome evolves from a set of precursor genes to a 
mature size by iterative gene duplications and gradual accumulation of modifications through 
point mutations. When an individual family member acquires enough random mutations, it 
breaks away to form a new family. 

We recently presented an equally minimal, but more biologically realistic model. Here 
genomes evolve through stochastic gene duplications and steady acquisition of new protein 
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Figure 1. The occurrence of protein folds in genomes. A) The structural contents of a genome can be 
represented by counting the number of times different protein folds occur and grouping together those with 
similar occurrences. B) The relationship is described by a power-law fiinaion. 

folds, either by ab initio creation or horizontal gene transfer. ̂ '̂̂ ^ Simulations replicated the 
genomic distributions very accurately, and provided insight into the rate at which different 
organisms acquired new folds and the origins of a common ancestral genome. Although our 
work focused on the distribution of protein fold populations, the model applied equally well 
for other gene classifications such as sequence families, and SCOP superfamilies."^^ The behav
ior also applies for alternative protein classification systems such as Interpro families and pro
tein superfamilies. 

The purpose of the current work is two-fold. First, we propose new models based on our 
previous model by fully incorporating two additional processes in evolution: gene deletion and 
selective pressure. These major biological processes were beyond the scope of our previous 
work, and it is important to test their effects on the outcome of the model. Second, we provide 
full analytical and numerical analyses; in doing so we explore the mathematical and biological 
significance of the model, and explore the relative effects that the different evolutionary pro
cesses (gene duplication, acquisition, deletion and selective pressure) have on the final appear
ance of different genomes. In the previous paper, our results are only based on simulations. In 
contrast, the analytical approach is also employed in this work. 

Minimal Model: Gene Duplication and New Fold Acquisition 
Suppose that the initial genome consists of A/Q distinct folds at time ^ = 0, i.e., the number 

of genes equal the number of folds. The growth of the genome in our model occurs by ran
domly duplicating existing genes, and by incorporating new folds into the genome at a con
stant rate. Both of these processes are assumed to operate independendy and continually over 
time. We assume that at every instant, all genes are equally likely to be chosen for duplication 
and that on average, one duplication event happens per unit time. As a result, large folds, i.e., 
ones that are coded by many genes, are more likely to grow over time than smaller folds. We 
assume that R new folds of size 1 are always incorporated in to the genome per unit time, i.e., 
the acquisition of new folds is not stochastic. 
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Let F{my t) be the expected number of folds of a given size m at time t. The fold histogram 
determines both the expected total number of distinct folds F{t) and the expected total num
ber of genes G{t): 

F{t)='£F{m,t) 

(1) 
G{t)= '^mF{m,t) 

m=l 

Under these growth assumptions, the Markovian dynamics governing F{m, t) are given by: 

dF(rn,t) _ (m - l)F{m - l ,t) mF{m,t) 

dt ' ~ G{t) G{t) ^"^ ^ ^ (2) 
^nht) ^ F{i,t) 

dt G{t) 

Although duplication occurs at the gene level, it is more convenient mathematically to work 
direcdy with the fold histogram F{m, t). 

The intuition behind these equations is as follows. If the gene selected for duplication that 
originally is a member of a fold of size w - 1, then after duplication that fold will now be a fold 
of size niy and the population o(F{m -l,t) and F{m, t), will decrease and increase, respectively, 
by one. The probability for this particular gene selection is {m - l)F{m -\,t)IG{t). « 

These equations ensure the appropriate expected growth rates for the total number of 
folds. A direct summation of (2) leads to: 

m=l 

= R 

and hence: F{i)= NQ + Rt. Similar manipulations show that the expect number of genes also 
grows as required: G{i)= No+{R+l)t. It is important to note that evolution equations enforce 
the correct overall normalization for the histogram; there is no need to impose normalization 
conditions separately. 

The complete analytical solution for the coupled equations (2) can be found by standard 
methods. Full details are included in Appendix A. 

The biological interpretation of the analytical solution is best appreciated by examining 
two important limiting cases. If there is no acquisition of new genes (R = 0), the solution 
simplifies considerably: 

F{m,t) = Nor'{^~<l>~T'' (4) 
where 0(/) relates the passage of time to the expected number of genes: 

G{t) {R+l)t 

Therefore, gene duplication alone leads to an exponential distribution of fold occurrence: log F 
(m, t) = mlogil - 0"̂ ) + y/{t), with y/it) independent of m. 

The other revealing limit concerns the behavior for large times (t —> oo)when new genes 
are acquired at a nonzero rate (R^O). The asymptotic limit is given by: 

F{m,t) - . Arr^m = Am(l+ ' ^ ^ ) ^ t (6) 
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with coefficients Am that depend only on R and A'o, and not on time: 

z = l 

Consequendy, the probability distribution of fold sizes, i.e., the normalized histogram, is de
termined by solely by the A^. 

F{m,t) Am R + l m—1 

and furthermore this asymptotic probability distribution depends only on R—^the dependence 
on initial cluster size Â o is removed by the normalization. 

An examination of the leading large m behavior of ̂ 4;̂ ^ reveals that 

l o g A ^ - - ( J R + 2)Iogm (9) 

Therefore, for large m, the terminal probability distribution (8) resembles a power-law 
with exponent R + 2. For small w, the coefficients decrease less rapidly with m and do not 
resemble power-law dependence. This observation is relevant for estimating R from empirical 
data or even numerical results. 

It is also worth pointing that a power-law distribution that decays too slowly will lead to an 

infinite expected number of genes. A power-law distribution will that holds asymptotically for 

large m: N{m) -- l/w"has to be described by an exponent a > 2 for the sum G{t) = X mN{m) to 

converge. The asymptotic limit of the exact solution, a power-law with exponent /? + 2, satisfies 

this condition. 
For nonzero R and times other than zero and infinity, the fold distribution will not be 

strictly exponential, nor will it conform to the limiting distribution (8). For small times, the 
analytic solution confirms what would be expected intuitively: the histogram behavior is domi
nated by duplication events involving the initial Âo genes. To characterize the "crossover" be
havior of the solution from the exponential to approximate power-law regime we have calcu
lated the similarity of the exact probability distribution at different times to both the best 
fitting exponential distribution and to the limiting asymptotic distribution (8). The difference 
between any two probability distributions is measured by the sum of squared differences (the 
standard I? metric). 

We have characterized the crossover time Tc for a range of values for both R and A'o and find 
that the crossover time displays two distinct regimes. Within each regime it is approximately 
inversely proportional to R and direcdy proportional NQ: TC ^ NQ/R^ with a different proportion
ality constant for each regime. Details of this analysis can be found in Appendix B. The numeri
cal results indicate that crossover occurs roughly when the number of new fold introductions: 
RTc, becomes comparable to the initial genome size A'o, as might be expected intuitively. 

So far, we have assumed that the starting genome contains just one copy of each fold. In 
fact, it is reasonable to expect the initial genome to have several copies of particular fold types 
(for example those involved in protein synthesis) when the evolutionary process described by 
the model was initiated. By definition, genomes in our model have a comparatively small start
ing state, and so the difference between the most and least common folds would be minimal, 
i.e., some occurring three or four times at most. However, it is nonetheless of interest to inves
tigate the effect that the appearance of the initial genome would have on the final distribution. 

The solution we have derived for a particular initial genomic configuration—NQ distinct 
folds consisting of one gene—can be extended to describe the evolution of an arbitrary initial 
fold distribution Ninuiin) that is made up of AQ genes: Sw ̂ ^iniJ<V^ = ^o- The solution is similar 
to the special initial condition of A/Q distinct folds and is presented in detail in Appendix C. 
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A. Minimal model 
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Figure 2. Three models: A) minimal model widi uniform initial distribution, B) minimal model with an 
arbitrary initial distribution, C) gene deletion, and D) seleaive pressure. 

One important conclusion may be drawn from the generalized model: all initial distribu
tions ultimately lead to the same limiting distribution determined by they4;;^. Just as before, the 
dependence on the initial fold distribution Niniljn) decays with time, leading to the same 
asymptotic distribution as was found for an initial distribution of TVQ folds of size 1 in (9), 
reflecting the dominance of fold introduction over gene duplication for large times. Of course, 
the details of how and when the crossover happens will depend on the particidar form of 

Extended Model: Including the Effects of Random Gene Deletion 
Gene deletion is a major factor in evolution and is discussed briefly by Qian et al.̂  ̂  In this 

section we incorporate an additional parameter, Q, that represents gene deletion. 
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The most natural extension of (2) that accounts for random gene deletion at rate Q would 
be the following: 

dF{7n,t) _{m- l)F{m - l,t) mF{m,t) ^(m + l)F(m + l,t) ^mF{m,t) 
at - Git) ^ ( t T " ^ ^ G{t) ^ G{t) ^^"^'^ 

The terms proportional to Q encode the dynamics for gene deletion, which are very simi
lar to gene duplication: on average, Q deletions occur for every duplication event and the gene 
to be deleted is chosen randomly from all the genes in the genome. In this way the population 
of a given bin m can either decrease due to gene deletion if the gene to be deleted is from bin m 
itself, or it can increase as a result of a deletion in the neighboring bin w +1. 

In this extended model, gene growth occurs at the uniform rate one would expect: G{t) -
Âo + (1 + ̂ - Q)^- In contrast, the behavior of the expected number of folds is more compli
cated: 

m=l (11) 

Folds of size 1 that are deleted disappear from the genome so F(i) depends explicidy on the 
population of 7 (̂1,̂ ); unlike the Q= 0 case, the dynamics of/^(/)can not be determined without 
knowing the full solution to (10). 

The extended model is much more complicated mathematically, primarily because the 
difference equations are now second order. In the minimal model, the behavior of larger folds 
depends only on the behavior of smaller folds, so the full solution can be constructed induc
tively starting from the solution for w = 1. With gene deletion operating as well, the dynamics 
of different fold sizes are coupled together. In many respects, these dynamics are like those 
describing diffusion phenomena; when Q = 0 the genome exhibits growth due to drift, or 
directed movement alone, while nonzero Q introduces diffusive, or non-directional movement 
as well. 

Analytic Results 
We were able to derive a full analytical solution only in the absence of any new fold 

introduction: /? = 0. In this case, only stochastic gene deletion and duplication operate. We will 
restrict our discussion to when gene duplication occurs at a higher rate than gene deletion, 
which requires 0 < Q < 1, so the genome will still grow in size, at least in terms of number of 
genes: G{t) =No+(l~Q)t. Note that since /? = 0, equation (11) shows that the number of folds 
will actually decrease with time. Losing folds while gaining genes is possible if the larger folds 
make up for the loss of genes from smaller folds. 

An analytic solution exists for an initial distribution of Â o different folds of size 1 and is 
worked out in detail in Appendix D. Once again, the distribution is exponential. Figure 3A 
shows histograms F{m,t) corresponding to three values of Q and a fixed time. 

Remarkably, the normalized distribution of fold size (the probability distribution) is inde
pendent of the gene deletion rate Q: 

m 1 (12) 

~No-{-t [No-^t] 
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Figure 3. The effects of gene deletion: A) fold histogram F{m, t) for NQ= 100 and t = 1000 plotted for 
Q = 0, 0.4, 0.8 and /? = 0; B) normalized large-time limiting fold distribution and C) the total number 
of folds as a function of time when /? = 1.0 and Q = 0, 0.2, 0.4, 0.6; D) normalized large-time fold 
distribution and E) the total number of folds as a function of time for fixed overall gene growth: 1 + /? 
- Q= 1.6 and Q= 0, 0.2, 0.3, 0.4; F) analytic approximation, shown using solid lines, for parameters 
plotted in (A). 

Hence gene deletion does not affea the shape of the distribution at all when R =0, only 
the overall normalization is changed. This can also be seen directly from Figure 3B. 

Although an exact analytical solution does not seem possible for arbitrary R and Q, it is 
nonetheless possible to derive analytic expressions for the higher moments of the fold distribu
tion. Appendix E discusses how this is done and particular, includes an expression for the 
second moment that will prove useful when fitting the model to genomic data. 
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Numerical Results for Nonzero R and Q< 1 
Numerical solution of (10) reveals for that large times, the normalized histograms of fold 

size approach a time-invariant limit that depends solely on R and Q. Figure 3B shows the 
probability distributions for a fixed rate of new fold acquisition, R=\.0, and increasing rates of 
gene deletion: Q = 0, 0.2, 0.4, 0.6. The power-law character of the distributions is retained 
even for large values of Q. Quite reasonably, higher rates of gene deletion encourages the domi
nance of smaller folds, leading to a more rapid decline ofp{m) with fold size m. Common folds 
require repeated gene duplication and an avoidance of gene deletion events to proliferate. As 
the probability of avoidance is proportional to 1 - Q, the probability of multiple avoidance is 
suppressed as a power of 1 - Q. 

Figure 3D explores the effect of deletion when the overall gene growth rate is kept con
stant: l + 7 ? - Q = 1 . 6 . In this way, we can contrast the effects of deletion and fold acquisition 
in a controlled manner. Note that a commensurate increase in R does not overcome an increase 
in Q, as large folds are suppressed more than small folds. This means that the exponent that 
best describes the power-law decay is not merely a function of/? - Q. 

On the other hand, the effect of gene deletion is not dramatic; not only is similarity to a 
power-law retained the actual change in exponent is not large. Even for fold of large size, there 
isn't much difference between the curves even for a fairly large gene deletion rate. In practice, 
this makes it difficult to estimate Q statistically from the shape of fold histograms derived 
empirically from genomic data. While the effective gene introduction rate: 1 + 7? - Q, shoidd 
be easy to deduce from the data, an identification of Q itself from the rate of decay would 
require reliable occurrence data for very large folds. 

When there is no gene deletion, the expected number of folds increases linearly with time 
at rate R. Equation (11) suggests gene deletion will lead to a less simple time dependence for 
F{t). Perhaps surprisingly, F{t) remains, to a good approximation, linear in time, with a slope 
that is no longer /?, as can be seen in the numerical results of Figure 3C. Here F{t) is plotted for 
fixed R= l.O and different values of the gene deletion rate: Q = 0.0, 0.2, 0.4, 0.6. In fact, the 
slope in each of these cases is less than R and decreases with Q, which is consistent with the 
analytic solution for F{t) when R = 0, derived in Appendix D (see equation (42)). 

If again we choose parameters that fix the growth rate for the expected number of genes (1 
+ /? - Q), a commensurate increase in both R and Q leads to a greater increase in the expected 
number of folds, as can be seen in Figure 3E. This is entirely reasonable: in our model, the new 
folds that are continually acquired at rate R are all distinct, so a genome with large R and Q will 
end up with many small folds, each coded by only a few genes. In contrast, a genome with 
small R and Q will lead to fewer but larger folds. 

Analytic Approximation Based on Perturbation Theory 
The numerical results show that gene deletion, even for fairly large values of Q does not 

dramatically change the growth pattern of the genome, certainly qualitatively and to some 
extent, even quantitatively. Moreover, the analytic results when 7? = 0 showed that gene dele
tion is remarkably benign: in the absence of new gene acquisition, but with gene duplication 
operating, gene deletion does not change the probability distribution of fold occurrences, but 
does change expected total number of folds in the genome. 

Here we consider an analytic approximation that attempts to capture the effects of gene 
deletion perturbatively by constructing an approximation around the Q = 0, 7? > 0 solution as 
an expansion in powers of Q. The perturbation expansion has to be handled carefully since a 
naive expansion, one that considers contributions only up to some finite power of Q, will not 
converge for all fold sizes m. The failure of conventional perturbation theory is explored in 
Appendix F. 
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To go beyond naive perturbation theory, we have adopted the following approach: (1) the 
dominant contribution at every order (or power) of Qis identified, (2) the dominant contribu
tion is approximated, and (3) the resulting new infinite series in Q is summed exacdy to arrive 
at an approximate solution that remains finite for all Q and m. The details are presented in 
Appendix R Although not rigorous, this type of rescue or augmentation of perturbation theory 
is practiced routinely and ofi:en quite successfiilly on a variety physical models, such as models 
of phase transitions from statistical physics. 

This approach leads to the following approximation for the limiting fold distribution: 

^R+l + QR^ i 

^"^ R + 2 + QRi-\R + 2 + QR + i ^ ' 

Note that the approximation includes as a special case the exact distribution derived pre
viously for Q= 0 (8). In fact, the approximate distribution for Qnonzero is obtained from the 
exact solution for Q = 0 by the substituting R-^ R+ QR. This correspondence also makes it 
clear that for large w, the Q^O probability distribution will resemble a power law with expo
nent R + QR +2, just as Q = 0 distribution approached a power-law with exponent R+2, 

The true test of the effectiveness of the approximation rests with a comparison to the 
numerical results, which is done in Figure 3F. There seems to be good qualitative agreement, 
and fairly good quantitative agreement as well, even for Q = 0.4. As expected from the nature 
of the approximation, there is better agreement for large m in all cases. An approximation for 
the expected number of folds F{t) within the same framework is given in Appendix F. 

The Effects of Selection Pressure 
Selective pressure plays an important role in evolution. It is well known that different 

genes have different duplication rates due to the selective pressure.^^ So far we have assumed 
that when genes are duplicated, or deleted, the target gene is chosen with equal probability 
from all the genes in the genome. A more realistic model would of course allow for favoritism 
in the selection process: presumably, genes that are useful or necessary are less likely to be 
deleted and perhaps more likely to be duplicated than genes that are less important. Note, 
however, that our model is not a differential survival model. 

We explore the effects of selection pressure by extending the minimal model to allow for 
different duplication rates among genes. Suppose now that genes are not only identified with 
particular folds but also by their duplication types. For simplicity, assume that there are only 
two types: type "A" and type "B", and that "B" genes are y times more likely to be chosen for 
duplication than "A" genes. There will still be one duplication event, on average, per unit time, 
so the total expected number of genes will remain the same, but the allocation of the total 
between types "B" and "A" will depend on y. We will assume that y > 1, so it is the "B" types 
that are more likely to be duplicated. 

To keep track of the fold population we now need two histograms: FA{m, t) and F^f^n, t) 
to distinguish between the duplication types. The full fold histogram is the sum of both sub-
histograms: F{my t) = F^(w, t) + Fsimy t). Similarly, let GA(t) and G^t) represent the total 
number of genes for each type and define a new variable Gy{t): 

G^{t) = GA{t)+jGB{t) (14) 
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The evolution equations that extend (2) are: 

dFAJm.t) _ {m-l)FA{m-l,t) mFAJm.t) 
dt ~ G^{t) G^{t) 

( m > 1) 

dFAJht) ^ FAJht) 
at ^ G^{t) 

dFB{m,t) {m-l)FB{m-l,t) mFB{m,t) , ^, ^^^^ 
^ d ^ = ^ OM ^ G,{t) ( ^ ^ ' ^ 
dFBJht) ^ ^FBJht) 

dt ^ ^ G^{t) 

Note that we allow new folds to be acquired at different rates for each type: RA can be different 
from RB although we will restrict our numerical examples to the when they are equal. 

The equations for the total number of genes of both types follow from the full dynamics 
(15) and are given in Appendix G. These confirm that the overall duplication rate is still one 
gene per imit time. 

Once again, analytical solutions are possible for the two special parameter values addressed 
previously: (1) when there is no introduction of new folds, so RA = RB= 0; and (2) the limiting 
distribution when t-^ oo. When there is no introduction of new folds, a simple extension of 
the methodology employed in Appendix A establishes that the each of the sub-histograms 
pAirriy t) and /^^(w, t) follows an exponential distribution for all times. The full histogram is 
consequendy a sum of exponential distributions: 

FA{m,t)-¥FB{m,t) 
p{m,t) 

T.iFA{ht)+FB{ht) 
MA ^ pjB , (16) 

>e "[l_e-"]'"-^ + -^f-5e-^"[l-e--'']' N^ + N^ L J N^ + NB 
A B 

The number of distinct folds of each type, present at ^ = 0 is given by NQ and Â o • The 
variable «(/) is a rescaled time variable related to G'y(/); the exact form of the dependence ap
pears in Appendix G but is unimportant for the present discussion. 

Of greater interest is the other special case: the ultimate evolutionary fate of the genome. 
The analytic behavior for large times is much easier to derive than an exact solution itself For 
large t, Gj{t) will grow linearly with time: Gy^ t, according to a constant Cj^that depends on the 
rate of fold acquisition and the differential rate of duplication (see Appendix G for details). 

In a similar fashion, we define coefficients Cm and Cm, akin to the coefficients A^ of the 
solution to the minimal model (7), that describe the ultimate linear growth of the histogram 
bins: FA{m, t) - Cmty and similarly for /^^(w, ^). The normalized probabiUty distribution corre
sponding to this limit is given by: 

= ^7 ^A T-r I C^ RB T-r n 
~ C^ + IRA + RB^\ C^^i + l C^ + ^RA + RB^\c^^-i{i^-l) 

The important conclusion to be drawn from (17) is that powerlaw-like distributions de
scribe the ultimate fate of the genome even when there are different rates of gene duplication. 
The probability distribution is the sum of two powerlaw-like distributions, each similar to the 
powerlaw-like distributions of the minimal model, but characterized by its own effective expo
nent. Figure 4 shows a comparison of the predicted distribution and numerical results when RA 
= /?5 = 0.5 for Y = 1, which is corresponds to the minimal model, and y = 10, so type "B" genes 
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Figure 4. The effect of selective pressure on the model. Larger values of y indicate larger differences in 
duplication rates between favored and unfavored protein folds. Large time limit for the fold probability 
distribution for y = 1 and 7=10. Numerical results are plotted as symbols; analytic results from Equation 
(16) as lines. 

are ten times more likely to be selected for duplication. The two distributions are remarkably 
close to each other, even when there is an order of magnitude difference between the relative 
duplication rates of type "B" genes. We have found that the parameter has much less of an 
effect than differences between the gene introduction rates RA and RB. 

We have also briefly considered the case of more than two duplication types. When there 
is no introduction of new folds into the genome equation (6) generalizes: the subhistogram for 
each duplication type is exponential. Furthermore, we have confirmed numerically that the 
terminal distribution is not dramatically affected by selection pressure, even when there are 
several families with significandy different rates of duplication. One particular example, in
volving four duplication types appears in Appendix G. 

Fitting the Models to Genomic Data 
Clearly, of greatest interest is to observe how our model compares with the genomic distri

butions. We start with the minimal model, for which we require estimates for the parameters t. 
No and R for each organism. 

Fitting the minimal model requires estimating three parameters: ty NQ and R. We have 
determined these parameters separately for each organism by insisting that the minimal model 
match the number of folds: F , the number of genes: G, and the second moment of the actual 
fold histogram: Hjy to those predicted by the minimal model. The fitting procedure is greatly 
simplified by the linear relation that exists between the variables {NQ, t) and (i% G): 

No = {R-^ 1)F • 
t = G-F 

RG 
(18) 
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Table 1. Fit of the minimal model using genomic 

Genome 

SA. genitalium 

M. pneumonia 

R. prowazel<i 

C. trachomatis 

T. pallidum 

C. pnemoniae 

A. aeolicus 

H. pylori 

B. burgdorferi 

H. influenzae 

M. jannaschii 

M. thermoautotrophicum 

P. horikoshii 

A. fulgidus 

Synechocystis sp. 

M. tuberculosis 

B. subtilis 

E. coli 

S. cerevisiae 

C. elegans 

Genes 

481 

688 

834 

894 

1031 

1052 

1522 

1553 

1638 

1709 

1715 

1869 

2064 

2420 

3169 

3918 

4100 

4289 

6269 

19099 

Folds 

200 

277 

322 

344 

367 

390 

357 

477 

559 

457 

358 

374 

450 

419 

558 

491 

584 

610 

575 

605 

G/F 

2.40 

2.49 

2.59 

2.60 

2.81 

2.70 

4.26 

3.26 

2.93 

3.74 

4.79 

5.00 

4.59 

5.78 

5.68 

7.98 

7.02 

7.04 

10.9 

31.6 

data from 20 organisms 

t 

281 

411 

512 

550 

664 

662 

1165 

1076 

1079 

1252 

1357 

1495 

1614 

2001 

2611 

3427 

3516 

3679 

5694 

18494 

No 

7 

15 

26 

29 

31 

34 

68 

52 

13 

70 

34 

35 

91 

72 

108 

118 

153 

141 

128 

120 

R 

0.69 

0.637 

0.576 

0.574 

0.505 

0.538 

0.249 

0.395 

0.506 

0.31 

0.239 

0.227 

0.223 

0.173 

0.172 

0.109 

0.123 

0.127 

0.078 

0.026 

Mismatch of 
of Third 

Moment (%) 

9.9 

3.6 

-13.1 

-8.0 

-14.1 

-10.2 

-3.0 

0.6 

4.5 

0.9 

3.8 

-10.5 

-5.7 

-3.2 

0.3 

-2.2 

-12.4 

-5.2 

2.8 

-18.4 

The estimation of 7? is aided by recasting the expression for H2 (Eq. 47 in Appendix D) so that 
t no longer appears explicidy. Instead, the second moment can be expressed so that it depends 
direcdy on F, G and the unknown R: 

H2 
G 

R-\-l 
R-l R 

G 
F 

R-\-l-R§ 

l-R 
1 + R 

(19) 

This equation is well behaved and can be easily solved numerically. What threatened to be a 
coupled, nonlinear three dimensional estimation problem is actually nothing more than a single 
nonlinear equation and two linear equations. We have verified that this fitting procedure accu
rately recovers parameters values from distributions generated both numerically and from the 
exact solution. 

The results appear in Table 1. As a measure of the quality of the fit, we also report the 
mismatch of between the third moment predicted by the minimal model and observed in the 
data, as a percentage of the observed value; a positive value indicates that the model moment is 
larger. Plots of the actual fits appear in Figure 5. 

The parameter values are in fact very similar to those obtained in our previous work. The 
mismatch values range -13.1% to 9.9% and indicate that the distributions resulting from our 
model closely resembles the genomic distribution. 



178 Power Laws, Scale-Free Networks and Genome Biology 

6 

5 

4 

Q̂  3 

2 

1 

0 

T 1 1 1 1 1 1 1 r-

+ -4ff-H- + 

J I I I I I 

6 

5 

4 

E" 

Q̂  3 

o 
2 

1 

•T r 

-

-
-

1 1 

— I - 1 1 1 1 

^ + + 
...> 
+• >̂̂  + ^ 

1 1 1 1 

— 1 1 

~ 

" 
-

-lii-tl i f -

, \ 1 1 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

logm 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

log m 

B 
6 

5 

4 

'E 
^ 3 
jO 

2 

1 

0 

1 1 1 1 1 1 1 1 r 

4-I tl; 

••K--|-H-flTl}--i-t 

_j I I ' I 

5 

4 

'E 
Q̂  3 
o 

2 

1 

"J 1 1 r 

+.,+ 

-t 
1 1 1 1 

1 1 1 

1 . 1 1 — 1 

1 

-

1. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
log m 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
logm 

Figure 5. Minimal model fits for A) C. elegans, B) AJulgiduSy C) M. tuberculosis, and D) M. genitalium using 
parameters fi"om Table 1. 

Our attempts to fit the models that included gene deletion were not that infiarmative. 
This is partly because, as we have seen already, the gene deletion parameter Q does not have a 
dramatic effect on the shape of the distribution. We had diflficulties even trying to fit distribu
tions generated numerically from the extended model. Unlike the equations describing the 
minimal model, these coupled equations are also nonlinear. Furthermore, since there is no 
exaa analytic expression for F{t), one of the variables itself has to be calculated numerically 
(We found that our analytic approximation for the number of folds given in Appendix F was 
not accurate enough to carry out the root-finding). We have found that naive multidimen
sional root-finding algorithms are either unable to distinguish between many approximate 
solutions, or find no solution at all at with increased sensitivity. The same difficulties were 
encountered in trying to discern evidence for selection pressure—there was too little depen
dence on the selection parameter y to allow reliable estimation. 

Conclusions 
Here we propose two new models based on our previous model by fully incorporating two 

major processes in evolution: gene deletion and selective pressure. Both mathematically and 
biologically, including these effects are not slight. Mathematically, the derivations clearly show 
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they are not trivial. Biologically, these effects provide a much more realistic model for genomic 
evolution than has been presented in any previous publications.^'^ ̂ '̂ '̂  Furthermore, we provide 
analytical and numerical analyses of the original model and its extensions to explore the math
ematical and biological significance of the models and to demonstrate the effects that the dif
ferent evolutionary processes (gene duplication, acquisition, deletion and selective pressure) 
have on the final appearance of different genomes. 

The field of the power-law distributions is controversial. ̂ '̂ '̂̂ '̂̂ ^ A number of fitting func
tions other than the power law were proposed to explain the observation. Our argument is that 
the question of which fitting function is the best should not be the central problem, because 
one can always find a function with more parameters fits the observation better than others. 
Instead, we think biologically meaningful models are more helpful for understanding the ori
gin of distribution and the analytical and numerical solutions shown in this work are vital for 
explaining the observation and further predicting the behaviour of the system. 

The fiill analytical solution to this basic model revealed new facts that were unattainable 
from simulations only. As observed previously, gene duplication alone gives rise to an exponen
tial distribution. However, the combined effect of duplication and acquisition changes the 
nature of genomic growth dramatically; beyond a sufficient length of evolutionary time, the 
fold distribution undergoes a transition from the exponential form, to a time-invariant limit
ing distribution that resembles a power law. The rate of fold acquisition (R) and the size of the 
initial genome (Â o) ^̂ v̂e distinct effects. Firstly, the cross-over time from the exponential to 
power-law phases is proportional to AQ and approximately inversely proportional to R. This 
implies that the transition occius when the number of new fold acquired becomes comparable 
to the initial size of the genome. Secondly, the decay rate of the power-law distribution i.e., the 
slope on a log-log plot is equal to R + 2 for large fold sizes. In fact, the final appearance of the 
distribution is independent of AQ, and is unaffected by the nature of the fold distribution in 
the starting genome. We find that the decay rate of the power-law distribution i.e., the slope on 
a log-log plot is equal to R + 2 for large fold sizes. 

Note that we take R as a constant, and we regard this as the average rate of fold acquisition 
throughout the entire course of evolution. In reality, the value of R is likely to vary with time 
owing to a number of factors such as the decrease of available new protein folds. Further effects 
might be the increasing difficulty in horizontally transferring genes as the organism becomes 
more complex. These effects would generally lead to a decrease in rate of fold acquisition with 
time and this is perhaps reflected in the lower values of R for larger genomes. 

We also studied extended models that fully incorporate the effects of random gene dele
tion and selective pressure. Gene deletion, represented by the parameter Q, does not significandy 
alter the qualitative behaviour found in the minimal model. The analytic solution showed that 
when there is no fold acquisition (i? = 0), the distribution is again exponential and surprisingly, 
completely independent of Q. For cases where there is fold acquisition (7? > 0), gene deletion 
had two main effects: firsdy the final genome contained fewer fold types, and secondly all fold 
groups had smaller occurrences. Unsurprisingly, the extent of these effects was dependent on 
the size of Q. The final distribution nonetheless remains close to a power law, with a decay rate 
of7?+2 + Q/?. 

The effects of selective pressure were incorporated into the minimal model by introducing 
favouritism into the gene selection process. This was done by having two groups of genes, one 
with a higher probability of selection than the other. In this case, the two sets of genes effec
tively evolve with two distributions, each undergoing a transition from the exponential to 
power-law phases. Therefore, the final fold distribution is the sum of two power-law distribu
tions, which in fact still closely resembles the distribution when no selective pressure is present. 
This is true even for large differences in duplication probabilities between the two sets of genes. 
More generally, we could imagine an array of finer differences in duplication probabilities 
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representing the full range of selection pressures for genes of distinct biological functions. For 
this, we conjecture that selective pressure, at least when modelled as a duplication bias, will lead 
to folds that co-exist and compete for prominence in the genome, each undergoing separate, 
but linked distributional transformation. 

We compared our minimal model compares with the genomic data by fitting parameter 
values. Figure 5 and the mismatch values in Table 1 show, the fits between the model and 
genomic data are good. As discussed in our earlier work, the parameters can be interpreted in a 
biologically meaningful way.̂ ^ We did not use the new models for simulating biological data 
for two reasons: (1) they do not greatly affect the final appearance of the distribution; (2) if we 
would be trying to fit a model with three additional free parameters, this would detract from 
the main results of the paper. 

In conclusion, although our model considers a few of the many important processes 
underlying genomic evolution, it is significant that a simplistic model based on gene duplica
tion and fold acquisition leads to distributions close to those observed in genomic data. The 
current genomes provide only a snapshot in evolutionary time, but through our model, we 
gain a glimpse into the biological processes that are most important. Furthermore, by estimat
ing parameter values, we obtain quantitative estimates such as the rate of gene acquisition, 
which would be otherwise unattainable. Interesting expansions to our model in future may 
include allowing parameter values to vary during the course of evolution, and modelling the 
evolution of different genomes simultaneously and simulating their divergence into different 
organisms. 

Appendix A: Analytic Solution of the Minimal Model 
It helps to introduce a new parameterization of time: 

„ = log^(*) = l o g ( l + ( ^ ) (20) 

with associated derivative: 

d jR + 1 d 
dt iVoe^ du 

(21) 

With this definition, « = 0 corresponds to /̂  = 0. 
This new variable helps rid the differential equations (2) of explicit time dependence: 

dF{m,u) mF{m,u) {m — l)F(m— l,u) , .. 

—d^^-R^r- = RVI ^"^'^ ,,,. 
dF{l,u) F( l ,u) ^ ^Vo^ ^ ^^^^ 

du R + \ R + l^ 

Note that the equation the special bin F(l,«) does not depend on any other F{my u), so it can 
be solved separately. Once it is known, the solution for any other m can be found by successive 
integration: 

F ( m + l , « ) = e x p ( ^ - ^ « ) j f " - ^ m F ( m , i ; ) e x p ( g i i ^ ) for m+1 = 2,3,•• • (23) 

The solution for m serves as a "source" for w + 1. The relation (23) follows by multiplying both 
sides of (22) by exp (-fjf«) and integrating. Note that this solution ensures that F{m > 1, /̂  = 0) 
= 0, so the initial conditions are automatically satisfied. Our method of solving the differential 
equation is elementary and standard, see reference 26 for more details. 
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The solution for w = 1 can be found in the same way: 

d 
exp du 

F( l ,u) = Aroexp(-

(i^)^"-
w It 

exp w — exp 1 + r 

(24) 

(25) 

The full solution follows by successive application of (22). There are two types of integrals 
that come up: 

( m + l \ r dv ^ , / m + 1 \ 

i? + 2 + m exp u — exp 

/ m + n + l \ /•" dw , , 

r / mw \ / / '̂  A \ " l / m + n + 1 \ 

(26) 

(27) 

m-\-n 
n-\- 1 

exp i ? + l 
1 — exp 

i? + l 

The coefficients that emerge from these integrations define the recursion relations for74;̂  
and j3^: 

^m+l R-\-2-\-m 

on 
+ 1 

m-\-n 
-3^ 
1 Mn 

(28) 

(29) 
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The full solution to (22), taking into account the initial conditions, is given by: 

1 / 1 \Tn—1 m v - ^ t / 1 \ yyt 

t= i 

, RNo"i^' i r(m)r(fl + 2) 

c=n m + /c - 1 _ (m + n — 1)! 

m—1 - — -

^̂ ^ fc (m - l)!n! 

with the understanding that an empty product is unity, i.e., 11/=i f{i) = 1. 
Note that the coefficients A^ and j3^ do not depend on time, and furthermore has no 

dependence on R or A/Q. The product of coefficients AiPm-l can be simplified: 

i ( m - 1 ) ! 

but it will be useful keep these coefficients separate when considering the solution for more 
general initial conditions. Note that we use the standard definition for the gamma function 
T{x); see Appendix H. 

Appendix B: Crossover Behavior 
For nonzero R and times other than zero and infinity, the fold distribution will not be 

strictly exponential, nor will it conform to the Umiting distribution (9). For small times, we 
would intuitively expect the histogram to be dominated by duplication events involving the 
initial NQ genes. This is confirmed by the behavior of the analytic solution for small t: 

F(„,„»«.(i-i)(i)"" 

From this approximation, it is clear that the terms involving NQ dominate for small times. 
Consequendy, the fold distribution will resemble an exponential distribution more than the 
limiting distribution early on in the evolution of the genome. It is also clear that the histogram 
F{m, t) will not approach the limiting distribution uniformly; the rate of convergence will 
depend on cluster size. 

There are many possible ways of characterizing this transformation of the fold distribution, 
each suggesting a different notion of a "^crossover" time. We have looked at the convergence of 
the probability distribution as a whole. To quantify the extent to which the actual distribution 
p{m) resembles a second distribution, say/>yi(w), we adopt the sum of the squared differences as 
our metric: 

rjA = ^{p{m) - PA{m))'^ (33) 
m 

52p(m) = ^p^(m) = l (34) 
m m 

Figure 7 tracks the evolution ofp{m) according to this metric when R= \,0 and NQ = 100. At 
each time, the closeness ofp{m) to the limiting distribution (9) is shown, as is the closeness to 
the best fitting exponential distribution for that time, obtained by a least-squares regression of 
logp against m. For times greater than t« 70, the distribution of fold sizes resembles the final 
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distribution more than any exponential distribution, this defines the crossover time for this set 
of parameters. The sum extends to cluster sizes large enough to ensure numerical convergence. 

Figure 8 plots the crossover time as a function of 7? for two values of Â .̂ The range of/? is 
chosen so that new fold acquisitions occur less frequently than (or as often as) gene duplica
tion. The crossover time displays two distinct regimes. Within each regime it is approximately 
inversely proportional to R and direcdy proportional NQ. A different proportionality constant 
applies in each regime: Tc - NQ/R. These numerical results confirm that crossover occurs roughly 
when the number of new fold introductions: RTc becomes comparable to the initial genome 
size Â o- The details of the dependence are not that important, as they are no doubt strongly 
affected by the choice of metric. 
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Appendix C: Arbitrary Initial Distribution 
The solution for an arbitrary initial distribution: Ninuim), requires solving (2) subject to 

different boundary conditions at ^ = 0; the terms proportional to Am are the same, the term 
proportional to TVQ is replaced by the superposition of new terms describing the propagation of 
each bin of initial histogram: 

oo m—1 

F{m,t) = ^Niuu{i)'ilJi{m,t) + Arn{(t> - (t>~^') - ^ Ai'^i{m,t) 
t = i 1=1 

!

0 if m < ^ (35) 
L_ / i_\m-i 

Pln-i^ "̂̂ ^ (1 - 0 i+« j for m > 2 

with the same definitions for A^ and j3^ as before. These are derived by following by succes
sive integration in the same way as was done in Appendix A. 

The fact that V /̂(w,/) = 0 for w < / reflects the fact that there is no gene deletion; genes that 
start in bin / may either stay put or advance to bins corresponding to larger fold sizes, but will 
never populate bins of fold size less than /. 

One important conclusion may be drawn from the full solution: all initial distributions 
ultimately lead to the same limiting distribution determined by the A^. Just as before, the 
dependence on the initial fold distribution Ni„iJim) decays with time, leading to the same 
asymptotic distribution as was found for an initial distribution of Âo folds of size 1 in Appen
dix A. Of course, the details of how the crossover happens will depend on the particular form 

Appendix D: Solution to the Extended Model When 0 < Q < 1 
andi?=0 

As one done in the solution for the minimal model, define 0(/): 

^(*) = ^ + ^ ^ ' (36) 

and keep the association: u = log 0(/). In terms of the time-like variable «, the fimdamental 
evolution equations (10) now are: 

(1 - Q)^^^^^ = {m- l)F(m - 1,i) - (1 + Q)mF{m, t) + Q{m + l)F{m + 1,u) (m > 1) 

{l-Q)^^ = -{l^Q)F(hu)^QF{2,t) 

Substituting the ansatz: F{m, u)- f{u)^'^(u) into the equation for w > 1 leads to the 
following relation: 

( 1 - Q ) g-\-(m- 1) = (m - 1) + (1 + Q)mg + Q{m + 1)^^ (38) 
du du\ 

Since neither ^«) nor/(«) depend on w, this identity can only be satisfied if: 

( 1 - Q ) ^ = l - ( 1 + Q)s + Qs2 
(39) 
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These equations can be solved by integration, together with the restriction ^axf{t = 0) = 1 and 
^t=(i) = 0. It is easy to verify that the ansatz also works when m =\. 

F(m,t) = Nof{t)g"'-\t) 

m i-Q 
1 - Q^-1 

Âo 
No + t 

^^' l-Q<f>-^ No+t 

In fact, it is easy to solve for F{t) in this special case: 

which can be integrated directly: 

m-No^^^^ (42) 
iVo -\-t 

The large-time asymptotic limit for F{t) is (1 - Q)No folds, which reflects the fact that 
some of the initial NQ folds will ultimately be lost due to gene deletion. Equation (42) leads to 
a simple relation between the number of folds and the number of genes: 

Although F{t) and G(t) both depend on Q, their ratio does not. 
The solution (40) we have derived for 0 < Q < 1 is also the solution for Q = 1, which 

means that gene deletion and duplication occur at the same rate. Equations (42) and (43) for 
the total number of folds F{t) are still valid for Q = 1, but now the expected number of genes is 
constant: G{t) = A'o. Although we will not do so here, analytic solutions can be derived when 
deletion dominates duplication so the genome shrinks in size. 

Appendix E: Analytical Results for Higher Moments 
Higher moments of the distribution, defined as H„{t) = Y,m m"F{m, t), for n>2 in the 

extended model satisfy the following differential equation: 

G{t)-^ = RG{t) + Y. ^ ( ^ ) [^ (^ + ^T - (1 + Q)m"'^^ + Q(m - iTm] (44) 
T n = l 

In particular, the equations for the second and third moment are: 

G{t)^ = RG(t) + 2(1 - Q)H2{t) + (1 + Q)G{t) (45) 
crt 

G{t)-^ = RG{t) + 3(1 - Q)H3{t) + 3(1 + Q)3H2(t) + (1 - Q)G{t) (46) 

Higher moments depend on all lower moments except for the zeroth moment, the expected 
niunber of folds F{t). This is fortuitous, since equation //for F{t) could not be solved analyti
cally due to its explicit dependence on the population of smallest folds: F{l,t). 
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The solution for the second moment is given by: 

H (t) = h"''P ( ^ ^ " ( * ) ) + ^ " ^ ^ h P " W - ^ ^ ( r f e ^ « W ) ] ^ ^ 1 - « (47) 
'^^ |AroexpWt))fl + ^ l i ? = l - Q 

(48) 

where the variable u{t) is related to the expected number of genes: 

{R + 1-Q)t] 
u{t) = log 1 + No 

This result will be important in fitting actual genomic data to the models. 

Appendix F: Perturbation Theory Approximation 
for the Extended Model 

As before, relate time and the number of genes through 0(/): 

This extends the previous definition (36); the variable u is still defined as before: 
u = log 0(/). 

Recall that when Q = 0 and 7? > 0 the long-term behavior ofF{m, t) is determined by the 
coefficients y4;;„ as shown in equation (30). Assume that the large-time solution in the presence 
of gene deletion is determined by new coefficients Bf„: 

F{m, t) —> Bm4>{t) = Bm exp (u) as t —> oo 
(50) 

Substituting this ansatz into the fundamental equations (10) leads to: 

(l + R- Q)Bi = RNo - (1 + Q)Bi + 2QB2 

{l + R-Q)Bm = (m-l)Bm-i-{l-^Q)mBm-hQ{m + l)Bm-^i 

Motivated by the numerical results, we will develop the perturbation around a new vari
able Yml 

Bm = Im^m (52) 

that relates Bj^ to the Q = 0 solution {Ar^ as closely as possible. Using the explicit form of ̂ 4;;̂  
from (30) in (51) leads to: 

2 
^^- + ( E + 2)(E + 3)^2 

^ ( 1 - m ) m(m 4-1) ^ ^ 
R-\-l-\~m (it + 1 + m) ( i t+ 2 + m) 

It is easy to see that when Q = 0, 7;̂^ =1, which means B^ = ^w for all m. The perturbation 
theory approach expands 7^ for each w as a power series in Q. 

00 

1m = J2Q'7S (54) 
i=0 
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From the solution when Q = 0 we immediately know the first term in the expansion: y\n = 1. 
The remaining terms are determined order-by-order by substituting into (53) and collecting 
terms with the same power of Q: 

^1 ^ ( i ? + 2)(i? + 3)^2 

^ii) = Ji) . ( 1 - ^ ) . / i- i) . m{m^l) (,-1) 

The first-order (/' = 1) equations are easy to solve since the zeroth-order solutions are just 
unity: 

7{̂ ' = l + (i? + 2)(i? + 3) 
m 

7^'=7r'+E5« (56) 

5W = 

t=2 

2 + 2i? + /22 2 + 3i? + it!^ 

l + i? + i 2 + jR + i 

An important limitation of the perturbation expansion is revealed by the first order solu
tion. Consider the behavior of the sum: 

y^g{i)^ I dxg{x) 
i=2 -̂ 2 (57) 

For large m, the sum increases in magnitude logarithmically with m: 

m 

"^g{i)^-R\ogm (58) 
i=2 

This means that no matter how small Qis, for large enough m the first order expansion 
will fail. This reflects a limitation of the perturbation expansion itself for this problem— 
stopping the expansion at any finite order will lead to a series valid only up to some maxi
mum size m. 

The only way to obtain a consistent expansion is to sum all orders of the series. Unfortu
nately, the equations (55) are difficult to solve exacdy, and even if they were possible to solve, it 
would be even more difFicult to carry out the summation. However, it isn't difficult to figure 
out the dominant contribution at each order. It helps to first look at the equations for / = 2: 

(59) 
m i m V I 1^ 

-7S'=7f'+E.(i)g»o-)+g yfrrrwTo"'+" 
The first summation dominates the second in the above equation; the first grows like log"̂  w, 
while the second grows like m log m. 
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The same pattern emerges at all orders—the dominant contribution can be isolated as: 

m j \ ji-i 

7 '̂ ~ 7?' + E 9ih) E 9ih) • • • E 9ih) 

(60) 

«,« + KsH' 
The sum of the dominant contributions remains finite: 

'exp{-QR\ogm) (61) ' exp 
J - 2 

and suggests that for large w, y^ will decay as a power-law with exponent QR. 
Motivated by this observation, and recalling that for large m, A^ -^ l/n^^^ (from equation 

(8)), we suggest the following approximation for B^y valid for all values of m, not just when m 
is large: 

RNQ Tr ^ 
"̂  " ^R^2 + QR IJ R^2^QR^i ^̂ ^̂  

where C is a constant that is independent of m. The above expression for B^ is derived by 
replacing Rhy R+ QR in the denominator of the product that defines A^f^ (equation (8)) This 
is really nothing more than informed guesswork; this is the simplest expression for B^ that 
recovers a power-law with exponent R + QR for large m and reduces to Af„ when Q = 0. 

In order to determine /^(/), the total number of folds at time ty equation (11) has to be 
solved using the approximate solution (62). First, the a choice has to be made for the constant 
C—since the equation is an approximation, there is freedom in the choice. One way is to 
enforce the consistency of equation (53) for w = 1: 

Bi ^ R + 2 AD _ ^ _ c ^^^ - 1 + 
Ai R + 2 + QR {R-h2){R^S) 

( 2 \ / OR \ 

^ ^ (i? + 2)(i2 + 3 ) j V ^ R^2 + QRJ 
As F{t) is direcdy affected by 5i, it is natural to focus on w = 1. Note that for small Q, C « 1 + 
2/(R + 2)(R+5). 

Equation (11) can be integrated to give an approximation for F{t): 

Fit)^No + R{l-^y (64) 

Using the identity of Appendix H, the normalized coefficients are given by: 

Bm R-\-l -\- QR T-r i /̂ ^x 
1 1 7? 1 94-0/?4-9 E m ^ i B m R + 2 + QR f^\ R + 2-{-QR-}-i 



Analytical Model for Genome Evolution 189 

Figure 9. Analytic approximation for the total number of folds compared to numerical results of Figure 3. 

1 + 
QR 

(.(^^) 

R-\-2 + QRj 

In the presence of gene deletion, the approximation for F(t) shows linear growth with time at 
a rate less than R. As expected, a greater rate of gene deletion reduces the growth of F{t). 
However the approximation predicts that the number of folds will always increase with time, 
which can be verified by taking the uppermost limit, Q = 1. For small Q, the constant C itself 
can be approximated more simply: C~ 1 + 2 /(/? + 2)(/? + 3). 

Figure 9 confirms these observations. The approximation for the expected number of 
folds seems to work quite well and could be useful in trying to infer both R and Q from 
genomic data. Certainly the impact of gene deletion is easier to identify through F(t) and 
(7(/) than through the shape of the histogram F{my t). 

Appendix G: The Effects of Selection Pressure 
Recall that we have assumed that there are only two duplication types: type "A" and type 

"B", and that "B" genes are /times more likely to be chosen for duplication than "A" genes. 
There will still be one duplication event, on average, per unit time, so the total expected num
ber of genes will remain the same, but the allocation of the total between types "B" and "A" will 
depend on y. We will assume that / > 1, so it is the "B" types that are more likely to be 
duplicated. 

To keep track of the fold population we now need two histograms: i^^(w, t) and FB {my t) 
to distinguish between the duplication types. The full fold histogram is the sum of both sub-
histograms: F{my t) = FA{m, t) + FB{m, t). Similarly, let GAM and GB{i) represent the total 
number of genes for each type and define a new variable Gy{^: 

G^{t) = GA{t)+^GB{t) im 
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The evolution equations that extend (2) are: 

dFA{m,t) _ (m - \)FA{m - 1,t) mFAJm,t) 
dt ~ Gy(t) Gy{t) 

( m > l ) 

dFAJht) _ FAJht) 
dt -* Gy{t) 

dFB{m,t) {m - l)FB{m - l,t) mFB{m,t) . ,, ^^^^ 
-^r-=^ oM "̂  Gy{t) ("*>'^ 
dFBJht) p FBJht) 
—dt- = ^ ^ - ^ - G ^ 

Note that we allow new folds to be acquired at diiFerent rates for each type: RA can be different 
from RB although we will restrict our numerical examples to the when they are equal. 

As before, we derive equations for the total nimiber of genes from the full dynamics (68): 

dGA{t) ^ V - p , ,s ^ . GA{t) 

dt dt^^ " ' ' ' "̂  ' GA[t)-^^GB{t) 
m—l 

^ - I E mFsim,t) = RB . .,,Jl%^,, (69) 
^ 9 i £ - "^ ' ' ° ' 'GA{t)+'yGB{t) 

m=l 

dG{t) dGAJt) dGBJt) p ^ p ^ , 

This confirms that the overall duplication rate is still one gene per unit time. The evolution of 
G/r) is more complicated: 

dGJt) „ 
— ^ = RA + -yRB + l+l 

1 _ ^(*) 
Gj{t)\ 

(70) 

It is possible to establish the distributional properties of the genome without having to 
solve (68) explicidy for the special parameter values encountered previously: (1) the case when 
there is no introduction of new folds, so RA = RB = 0; and (2) the limiting distribution when 
/^^ oo. When there is no introduction of new folds, a simple extension of the repeated integra
tion employed in Appendix A establishes that the each of the sub-histograms -Fyi(w, t) and 
fsi^y t) follows an exponential distribution for all times: 

FA{m,t) = N^e^i-u{t)) [1 - exp(-«(t))] '"-^ 

Fsim, t) = < exp (-7w(f)) [1 - exp (-7«(t))] '"- ' 

The number of distinct folds of each type, present at ^ = 0 is given by Â o and A ô . The 
variable u{t) is determined by G'J^t): 

JQ G^{s) 

The full histogram is consequendy a sum of exponential distributions: 

_ FA{m,t)+FB{m,t) 
''^'^'''-j:iFA{i,t) + FB{i,t) 

N^ , - u n . - u i — i > ^0^ 
(73) 

N^ + Ni ^ ^ N^ + N^ 
u - i m - l -"0 -7M [i 

The large time behavior of the solution is much easier to derive than an exact solution. For 
large t, G^^t) will grow linearly with time: Gy - Cyt, according to a constant Cy that depends on 
the rate of fold acquisition and the differential rate of duplication: 
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Figure 10. Large time limit for the fold probability distribution for the minimal model (one duplication 
type) and four duplication types: 5 = 4, C = 8, Z) = 16. The total rate of new fold acquisition is the same 
for both genomes. 

C^ = \ {RA + 7-RB + 1 + 7 )+^ V (̂î A + 7^B + 1 + 7 ) ' - ^liRA + i?B + 1) (74) 

In a similar fashion, we define coefficients Cm and Cm, akin to the coefficients 4̂;;̂  of the solution 
to the minimal model (7), that describe the iJtimate linear growth of the histogram bins: pAim, t) 
" Cmty and similarly for Fsim, t). The form of the coefficients is very similar to the minimal 
model s Am'. 

RA 

RB 

^7 + 7 i 

- T T -
m—1 (75) 

HcCT 
^7 
7(i + 1) 

The normalized probability distribution corresponding to this limit can be found using the 
same normalization identity that was helpful in deriving the probability distribution in the 
minimal model (Appendix H): 

p{m,t) = 

O-y RA 

C^-^1RA-\-RB ^^ C^ + z + 1 n RE 

C^^-^RA + RB fj^ C^ + 7(i + 1) n ^7 
{76) 

We have also briefly considered the case of more than two duplication types. When there is no 
introduction of new folds into the genome, the same argument behind equations (72) and (73) 
generalizes: the sub-histogram for each duplication type is exponential. Furthermore, we have 
confirmed numerically that the terminal distribution is not dramatically affected by selection 
pressure, even when there are several families with significandy different rates of duplication. 
One particular example, involving a four duplication types appears in Figure 10. In this rather 
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extreme case, types "B", "C" and "D" are 4.0, 8.0 and 16.0 times more likely to be duplicated 
than type "A". The total rate of new fold acquisition is the same for both genomes. 

Appendix H: A Useful Normalization Identity 
A series whose terms -Z;;,, w =1, 2 , " are defined by a recursion relation: 

(77) 

can be summed exacdy as follows. 
Rewrite «„ as: 

r(m)r(Q + i) 

with the usual definition for the gamma ftmaion: 

roo 

r{z)= / dtt'-^e-' (79) 

The integral representation of the beta function B(x, y) provides the key identity to carry 
out the sum: 

r(x + y) Jo 

Combining these relations leads to: 

OO - 1 (X) 

= a f {1- t)^-'^ 
Jo 

a - l 

(80) 

(81) 

(82) 

(83) 
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CHAPTER 11 

The Protein Universes: 

Some Inforaiatic Issues in Protein Classification 

S. Rackovsky* 

Abstract 

We discuss some informatic problems in protein classification. We first address a 
neglected problem in sequence classification—information loss resulting fi-om 
alphabet contraction. Since the use of reduced alphabets is a standard bioinformatic 

tool, this is a significant issue. We review recent work in which it was shown that information 
theoretic methods can be used to quantitate the amount of structural information carried by a 
specified sequence representation. These tools are then used to construct reduced alphabets of 
specified size which retain the maximum possible amount of structural information. We then 
turn to structure classification. After briefly reviewing previous work in this field, we discuss 
the fact that sequence and structure classification give different pictures of the protein space. 
We oudine ongoing research in which new parameters are sought which explicidy encode 
architecture choice by protein sequences. 

Introduction 
Within the last few years, the quantitative classification of protein structures and sequences 

has progressed from being an area of great interest to being an area of critical importance. 
When there were a couple of thousand sequences available, and the structures of 400-500 
proteins had been experimentally determined, it became clear that there is considerable scien
tific merit in this exercise. With the advent of genome-scale sequencing and high-throughput 
structure determination, workers in bioinformatics and proteomics are faced with a very prac
tical problem- the need to organize a vast and growing body of data, so that information of 
interest and important correlations are readily accessible. 

Progress on several problems of fundamental biological importance depends on the devel
opment of appropriate classification methodology. The first is the delineation of functional 
relationships between sequences. The completion of any new genome yields a flood of se
quences of proteins whose structure and function are unknown. The most reliable method of 
assigning a fiinction to a new protein is to demonstrate appropriate relationships to known 
molecules. A second problem is the prediction of protein structure. Although significant progress 
has been made in ab initio methods for protein structiue prediction, the most reliable methods 
remain those in which a model can be constructed based on a demonstrated homology to a 
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protein of known structure. A third problem is the elucidation of the factors which determine 
fold choice in proteins.^ While this problem is very fundamental, its solution has important 
practical implications for genome analysis.^ 

One can classify either structures^ or sequences/'^ ̂  A central observation in this field is 
the fact that the two classifications do not give the same results. Sequences which have no 
demonstrable homology are observed to occur in the same fold. In fact, a general problem in 
the classification of proteins is that the structure one observes for the protein universe as a 
whole depends on the features which one uses to classify the molecules. It is therefore useful to 
think of proteins in a "many worlds" context, and to ask how the structure of the space of 
proteins depends on classification criteria. It is intended in this chapter to concisely survey 
some topics of current importance in the protein classification problem. We first give a broad 
oudine of the methods which have been developed. Recent work on some underlying prob
lems will then be highlighted. 

General Methodology 
The first requirement for the classification of a set of objects is a function which de

fines a degree of difference between the objects. Once such a function has been defined, it 
is possible to organize the differences in a distance matrix, each element of which gives the 
degree of dissimilarity between two members of the set. [An alternative approach, which 
has found some application in sequence studies, is the use of a measure of similarity rather 
than difference. These two approaches are essentially equivalent, and it is possible to con
vert from similarity to difference representations in a straightforward manner.] Once a dis
tance matrix is available, it is both possible and conceptually useful to think of the set of 
proteins as occupying of a set of points in a space. This space will, in general, be of high 
dimensionality, and the specified set of distances may not obey the constraints which 
characterise a Euclidean space. The study of such systems is the province of Multivariate 
Analysis, which provides several approaches which can be used to delineate the structure of 
this type of space. Among those which have proven useful in various protein contexts are 
clustering (both hierarchical and partitioning methods), principal component analysis^ and 
graph-theoretical methods.^'^^ Whichever tools are utilized, this analysis reveals the under
lying organization of the set of proteins under consideration. This organization must be 
rationalized, by relating it to some set of known properties of the proteins. Properties which 
may be reflected in the organization of a given space include biochemical function, fold 
family, and evolutionary relationship. 

Another way of thinking about the structure revealed by the foregoing approach is to 
regard the resulting space as a network of nearest-neighbor relationships between the proteins 
in the database. The physical significance of the network depends on the meaning of the dis
tances between molecules. Furthermore, the structure of a network encodes important infor
mation about the process which gave rise to it. It is therefore important to develop precise 
descriptions of networks. The statistical mechanics of networks has been studied extensively in 
recent work, and several general classes of network have been delineated, with strikingly 
different mathematical properties, carrying correspondingly diverse physical implications. A 
surprising result of this work is the demonstration of the widespread occurence of scale-free 
networks in diverse systems. 

Scale-free networks are characterized by a power-law distribution of the number of links 
experienced by network nodes. ̂ ^ This indicates the presence in these systems of a small num
ber of nodes with many links and a large number with only a few, a fact which has significant 
implications both for the mechanism of network generation (which is specific to a particular 
system) and for the resistance of the network to disruption (a general property of scale-free 
systems). These properties of scale-free networks have been reviewed in detail. 
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Protein Sequences 
Sequence alignment is one of the cornerstones of bioinformatics. It forms the basis for 

homology searching, in which the structure and/or function of a protein whose sequence alone 
is known is surmised by detecting similarity with other molecules of known structiue and 
function. The ultimate objective of alignment is to blur the distinction between sequence and 
structure, by making it possible to relate three-dimensional structures using one-dimensional 
information. The alignment of sequence pairs can be used to produce quantitative descriptors 
of the similarity between them, and can therefore be used to produce distance matrices and to 
delineate the organization of sequence space. It is clear that the structure of the space (or 
equivalendy of the network of protein sequences) depends entirely on the detailed characteris
tics of the individual modules which together comprise the alignment process. 

Sequence alignment is a modular task.^ ' The modules are: 
An equivalence matrix—^An objective function is necessary to determine the quality of 

an alignment. This function is calculated as the sum of similarities between residues which are 
declared to be in some sense equivalent. The investigator must therefore choose criteria for 
assigning a degree of similarity to amino acids in different sequences. These criteria are deter
mined by those amino acid characteristics which are considered to be important in the context 
of the specific problem. Historically, the view was taken that one measured the probability that 
a given amino acid would be replaced by another in an evolutionary/mutation process. This led 
to the development of the PAM250 matrices. ̂ ^ The use of a large number of blocks of aligned 
sequence segments to count replacements gave the BLOSUM substitution matrices. Other 
criteria are possible. Those based on physical rather than evolutionary properties are of particu
lar interest, since they don t presuppose specific models or degrees of evolutionary distance. 
These criteria include similarity with respect to a specified physical property, or similarity in 
some structural sense.'̂ '̂̂ '̂  It should be noted that alignment can be performed using either 
similarity or distance matrices. The advantage of the former is that they make possible local 
alignment, which is the preferred approach to database searching. 

A set of gap parameters—It is often found that better correspondence between two 
sequences is obtained if account is taken of the presence of insertions and deletions in one or 
both. Such indels must be accounted for in calculating the alignment objective function, and 
this is usually done by means of a gap penalty function.^ ' A common form of the penalty is 
the affine penalty function, in which a fixed penalty is counted for the initiation of a gap, and 
a length-dependent propagation penalty is added to account for the size of the gap. 

An alignment algorithm—^A method is required by which alignments between sequences 
are generated, a corresponding figure of merit calculated from the objective function, and the 
best alignment (and some of the runners-up^^'^^) selected. There are two general types of align
ment- global, in which entire sequences are aligned, and local, in which a region of one se
quence is matched with a region of another. The classical algorithm is some variant of dynamic 
programming. More recent methods include FASTA^^ and BLAST, ̂  hidden Markov mod-
els,^5.36^j 

variants of these. Simultaneous consideration of multiple sequences introduces a 
set of additional problems into the alignment algorithm, which are rapidly exacerbated as the 
number of sequences grows. This problem has been addressed in several ways. Methods of 
calculating limited subsets of the dynamic programming matrix have been developed, and 
genetic algorithms have been investigated.^^ 

A criterion for success—^A broadly accepted standard for successful sequence align
ment is given by structure alignment. '"̂ "̂  If a sequence alignment method, applied to two 
proteins with known structure, produces an alignment similar to that resulting from an 
independent, structurebased identification of equivalent residues, the sequence alignment 
method is considered able to identify biophysically (or evolutionarily) relevant correspon
dences in the two sequences. An alternative, alignment-free approach to defining a distance 
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between sequences is based on counting N-residue fragments. ' In this approach a finger
print for each sequence is provided by the distribution of frequencies of N-mers, and a 
distance function is constructed which measures the similarity of two frequency distribu
tions. This approach has certain advantages over the alignment approach. 

Since normalized distributions are compared, it is straightforward to define a distance 
between sequences of different molecular weight. 

No gap parameters need be defined, since the comparison method automatically includes 
the effects of insertions and deletions. 

On the other hand, this approach does not identify residues which mav be functionally or 
structurally equivalent, since no alignment is produced. It has been shown that the distances 
produced by this approach are equivalent to those arising from alignmentbased methods. There 
have been several classifications of large databases of protein sequences. ' These have been 
directed almost entirely toward the goal of structure and function elucidation, and little if any 
attention has been paid to the network organization of the space. This is an important distinc
tion because, as we remarked above, and will note again in connection with structure classifica
tion, the overall structure of a protein network is believed to carry important information 
about evolutionary processes. 

In this section we wish to devote particular attention to some recent studies of an impor
tant but neglected aspect of sequence classification- the problem of information loss in se
quence comparison. This point direcdy concerns the first module in the sequence alignment 
algorithm, and is equally relevant to alignment-free distance methods. We note that the con
struction of an equivalence matrix between amino acids is closely related to the use of reduced 
amino acid alphabets in protein studies. Adoption of an equivalence matrix is an implicit dec
laration that two amino acids, hitherto considered to be informatically distinct, are to some 
degree interchangeable. This step leads to the loss of information, and information loss must 
inevitably distort the structure of the sequence space/network. It is therefore of extreme interest 
to ask whether reduced alphabets (or amino acid equivalency matrices) can be constructed 
which are optimized to retain maximal information. The first point which must be decided is 
what kind of information one wishes to retain. Since we are considering information content 
in sequences, the natural choice is to maximize the retention of structural information. In 
recent publications, we have developed methods for constructing reduced alphabets which 
encode the maximum possible amount of local structural information. 

In our initial studies on the structural information content of sequence representations 
we used information theoretic and statistical methods, and protein sequence and structure 
data, to demonstrate the following points: 

It is possible to quantitatively calculate the amount of structural information made avail
able by knowledge of local sequence alone.This number depends on the representations used 
for both sequence and structure. 

A contracted amino acid alphabet of any specified size can be constructed in a manner 
which retains maximal structural information. The loss of information resulting from opti
mized alphabet contraction was calculated, and it was shown that, in practical applications, 
this loss is offset by statistical improvements resulting from the greatly decreased number of 
distinct sequence fragments. 

The optimal mapping of the 20 amino acids onto the reduced alphabet depends on the 
structure representation used. Structurally optimized alphabets as a function of size were pro
duced for both the DSSP (secondary structure) and GBM (alpha-carbon backbone) represen
tations. Examination of details of the clustering optimization process reveals that the former 
representation is only able to detect low-resolution properties of the amino acids, related to 
secondary structure preference and hydrophobicity. The GBM representation, on the other 
hand, gives reduced alphabets which reflect subde conformational nuances of the amino acids. 
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In subsequent work, '̂ ^ we have extended this approach to consider the constraints imposed 
on the optimization of representations by the finite size of the databases from which we derive 
information. A serious problem in this regard is the presence of rare sequence fragments, for 
which it is not possible to construct statistically meaningful structure distributions. This prob
lem was addressed by representing the structure distribution associated with a given sequence 
fragment as the superposition of two distributions- one specific to the sequence in question, 
and the other a background distribution with lower sequence specificity. The relative weights 
of these two components in the final structure distribution depend on the number of rare 
sequence fragments in the data set. When there are few rare fragments, the actual observed 
distribution is heavily weighted. When there are many, the background distribution is weighted 
more heavily, reflecting the lack of sequence-specific information. A Monte Carlo procedure 
was developed which makes it possible to simultaneously optimize distribution weights and 
amino acid clustering for a given alphabet size. The information-theoretic and statistical ma
chinery developed in the course of these studies give optimized reduced alphabets, and associ
ated structm-al distributions, which have the following characteristics: 

1. They compensate for the scarcity of structural data; 
2. They use multi-residue (context specific) information; 
3. They contain the maximum amount of local structure information which the underlying 

data set allows. 
It was demonstrated that the maximum structural information is encoded in sequence 

fragments six residues long. This length scale represents the optimal compromise between ad
ditional sequence information, intrinsic in longer fragments, and statistical deterioration due 
to the finite size of the protein database. The distribution of the amount of structural informa
tion encoded in local sequences was analyzed, and it was shown that there is at least a 35% 
variance in structural entropy among different sequence fragments. The result of these investi
gations is a set of contracted amino acid alphabets optimized to encode the maximum possible 
amount of structural information available in several commonly used structural representa
tions. By construction, the structure of a sequence space based on these alphabets should rep
resent struaural relationships between sequences as accurately as possible. In work currendy in 
progress, these alphabets are being incorporated into both alignment-based and alignment-free 
sequence distance functions, and the effect of this optimization on sequence classification is 
being explored. 

Protein Structures 
Structure comparison, like sequence comparison, is one of the cornerstones of protein 

bioinformatics. The need for appropriate tools is clear in both the experimental and theoretical 
domains. It is of obvious interest to compare a newly determined structure to those which have 
already been solved, in order to correcdy trace evolutionary and functional relationships be
tween molecules. The efficacy of a structure prediction algorithm can only be evaluated by 
comparing the predicted and actual structures of test molecules. An elegant and perceptive 
review of conformational comparison methods has been given by Brown et al.̂ ^ The earliest 
approaches to structiu'e comparison were based on optimal superposition. One structure is 
translated and rotated relative toanother, fixed structure until a chosen figure of merit is opti
mized. In most cases, the figiu'e of merit is the root-mean-square deviation (RMSD) between 
corresponding atoms of the two structures. This approach continues to be widely used in vari
ous incarnations. There are, however, a number of alternative metrics which can be used, and 
these have been compared recendy by Wallin et al.̂ ^ 

There are several important concerns which should be noted here. The first is a general 
problem in the comparison of structures: The result which one obtains for a structure compari
son depends critically on the method which is adopted, because structure comparison is a 
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length-scale-dependent problem. The meaning of this point can be made clear by a simple 
example. Consider a protein consisting of two domains, and imagine generating an alternative 
conformation of the molecule by rotating one of the domains relative to the other around a 
single connecting bond. An attempt to compare the resulting conformation to the original 
conformation of the protein by optimized superposition will give a poor result, because it is no 
longer possible to bring the two domains into superposition simultaneously. Superposition 
algorithms are designed to operate on a length scale approximating the size of the molecules 
being compared. 

Imagine, however, comparing the two conformations using an algorithm which compares 
local conformations along the two chains. The result will be a chain plot which indicates 
identity of the two conformations everywhere except at the single bond around which rotation 
occurred. A qualitatively different answer is generated by a method which considers the prob
lem at a different length scale. This is a feature of the comparison problem which investigators 
must keep in mind. 

The second point which must be made is specific to the superposition method. While the 
method gives meaningful results when the molecules being compared are reasonably similar, it 
is somewhat difficult to know how to interpret results for the comparison of proteins which 
differ significandy in moleciJar weight and/or structure. 

What are the corresponding atoms in two unrelated structures? What is the meaning of a 
RMSD for such molecule pairs? It is in fact a question, as Godzik has pointed out, whether 
there is a unique answer to the optimal superposition problem. In order to address these prob
lems, other methods of comparison have been developed. An early alternative was based on the 
application of differential geometric (DG) methods to the description of protein conforma
tion. It was first demonstrated that a DG-based representation of chain structure can be 
defined, and that it is possible to base a distance function on that representation which describes 
local differences in chain folding. The output of the algorithm is a chain plot in which conforma
tional differences at corresponding sites are revealed. This approach makes possible the detailed 
comparison of chain fragments of equal length, and can be used to compare chains of different 
lengths using a moving-window method. It was then demonstrated that the distribution of 
differential-geometric parameters can be used to define a length-independent fingerprint for any 
chain of known structure, and that these fingerprints can be used to compare the structures of 
proteins of different molecular weights. The method was used to carry out an all-against-all 
comparison of a small group of structures, giving a sparse description of the structure of structure 
space. This was the earliest quantitative comparison of protein structures, and the earliest at
tempt to quantitatively delineate the characteristics of structure space, known to this author. A 
limiting characteristic of the DG approach is the fact that it operates on a single, defined length 
scale within the molecule- the 4-alpha-carbon scale. All parameters are calculated from the coor
dinates of successive fragments of that size, and all information is therefore limited to structure at 
that scale. Attempts to create a representation in which the length scale is a definable parameter 
led to the development of the Generalized Bond Matix (GBM) representation. This representa
tion of backbone structure is far more flexible than the differential geometric representation, in 
that fragments of any length, defined using any chemical or virtual bonds of interest, can be used 
as a basis for structure description and comparison. It shares with the DG representation several 
advantages over superposition methods. Both allow the definition of normalized (molecular 
weight independent) structure fingerprints, making it possible to compare chains of arbitrarily 
different molecular weight. Both representations share with the alignment-free sequence com
parison methods discussed above the characteristic that the presence of insertions and deletions 
is accounted for automatically, without the necessity for defining gap initiation and propagation 
penalties. At the same time, sequence ordering information present in superposition algorithms 
is lost, or at least obscured, in the distribution-based methods. (There is some evidence that, if 
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the sequence fragments considered are sufficiently long, the correlations necessary to reconstruct 
the sequence from the fragment distribution are, in fact, preserved.^^) The GBM representation 
was used^' ^ to carry out a detailed classification of a database of structures which well repre
sented the known structure universe at the time. This involved the used of techniques from 
graph theory to study clustering in the space. One hundred and twenty three structures were 
classified, and it was shown that structure space can be represented as a nonuniform continuum 
of structures, grading from all-helical structures at one edge of the space to sheet/barrel structures 
at the other. Details of the distribution of structures were investigated, as were the effect of the 
length scale and resolution of the chosen representation on the structure of the space. 

A method for comparing structures based on intramolecular distance matrices was devel
oped by Yee and Dill, and used to reanalyze structure space. Although this method is very 
different from the GBM approach, the anatomy of structure space which it revealed is substan
tially similar to that discussed in our own work.^ Holm and Sander^^'^ have also used distance 
matrices to compare structures. An excellent summary and review of earlier studies of protein 
classification, together with a discussion of the coarse-grained statistical properties of protein 
space, has been given by Brenner et al.̂ ^ Nussinov, Wolfson and collaborators have developed 
an approach to structure comparison based on tools of pattern recognition. The method is 
based on a hashing algorithm first applied to computer vision studies, and is able to carry out 
sequenceorder- independent comparisons. This method has been used^^ to construct a 
nonredundant dataset of structures and investigate characteristics of the resulting space. In 
later work, the same group has used hashing methods to carry out multiple alignments ' and 
detect common structural motifs.^^ Recendy, Hou et al̂  have revisited the structure of fold space 
using a method based on the DALI comparison algorithm,^^ which is distance-matrix-based. Us
ing a factor analysis of the resulting protein-protein distances, they constructed a picture in which 
the high-dimensional fold space was contracted to its three most significant dimensions. The 
folds cluster into disjoint regions corresponding to the classical low resolution definition of 
fold types- a, p, a/p and a+p. The authors report that domain size is an important determi
nant of the structure of the space. 

The statistical significance of a given comparison is an important point to address. Levitt 
and Gerstein ^ have given a general framework for the statistical validation of both sequence 
and structure comparisons. A number of workers have investigated the network properties of 
structure space, which carries important implications for fold evolution. One approach to this 
question is to analyze the distribution of domain family sizes, and this has been studied by 
Qian et al, Kuznetsov and Karev et al.^^ The network of domain relationships has also been 
constructed direcdy by Dokholyan et al̂ ^ using DALI-generated distances. All evidence sug
gests that the distribution of contact numbers follows the power law characteristic of scale-free 
networks. Several dynamic simulations of the evolutionary process have been developed^ '̂  '̂ ^ 
which give this type of scale-free behavior in an model proteome. Perhaps the central problem 
in protein science is the fact that sequence and structure classifications do not give the same 
picture of protein space. Various manifestations of this fact have been known for many years. It 
is widely recognized, for example, that some of the more common architectures are adopted by 
large groups of protein sequences, many of which exhibit no detectable mutual sequence simi
larity. An understanding of the mechanism which determines architecture choice will lead 
direcdy to a solution of the classical folding problem- the prediction of structure from se
quence. This would therefore seem to be a problem worth study. In recent work we have 
addressed this question. Our approach is based on the following observations: 

The set of proteins folding to a specified architecture frequently includes molecules which 
are not only unrelated by homology, but also differ widely in molecular weight. 

The choice of architecture must be determined by physical properties of the amino acids 
in the sequence. 
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The second of these points suggests that the architecture signal is expressed in some pat
tern of physical characteristics. The first suggests that the signal must scale with sequence length. 
In order to investigate this problem, we therefore need to express protein sequences in terms of 
amino acid properties. There are many property sets available, and an arbitrary choice of prop
erties leads to a twofold problem: The set chosen can be simultaneously incomplete and corre
lated. This problem has been solved by Scheraga and collaborators, ' who carried out a 
factor analysis of all available sets of amino acid attributes. They showed that the entire at
tribute dataset can be described by 10 property factors. Four major factors correspond essen
tially to individual amino acid properties, and the remaining six are superpositions of a limited 
number of properties. The 10 factors together carry 86% of the variance for the entire dataset. 
In mathematical terms this result means that the physics of the amino acids can be embodied in 
a set of 20 10-vectors, each of which gives the weights of the 10 factors for a particular amino 
acid. It follows that an N-residue protein sequence can be described by a set of 10 N-number 
strings, each of which traces the value of a particular property factor along the chain. 

The next step is to construct a database of proteins suitable for the problem. Our ap
proach is to assemble sets of proteins which fold to a common architecture but exhibit low 
sequence homology. We chose two architectures which are sufficiently populated that statisti
cally meaningful samples of this type can be constructed- the TIM barrel and Immunoglobulin 
folds. For each of these folds, an ensemble of sequences was chosen with pairwise similarities 
well below the homology limit. Having written the amino acid sequence in a property-related 
numerical form, we wish to extract scalable signals which can be associated with protein archi
tecture. We therefore carried out a Fourier analysis of the property strings for each protein in a 
specified architecture group. Note that the Fourier transform of a property string, for any wave 
number, is a function of the entire string. A consequence of this fact is that chain length is not 
a relevant variable in Fourier space, and the Fourier power spectra of chains of different se
quence length can be direcdy compared. The Fourier analysis was followed by signal averaging 
over all proteins in the architecture group, which enabled us to distinguish Fourier compo
nents which are common to all members of the group from those which are characteristic of 
specific sequences. It is important to ask whether the common Fourier components detected 
are statistically significant. In order to address this concern, randomized protein sequence groups 
were generated, by independendy permuting the sequences of each of the proteins in the origi
nal architecture group. The entire Fourier analysis/signal averaging process was repeated on the 
permuted sequence groups. This was iterated 10,000 times for each architecture group, and 
each Fourier component arising from the actual sequence was compared to the average Fourier 
coefficient and standard deviation arising from the ensemble of random sequence groups. Only 
those Fourier components of the actual sequences which exceeded the average by two standard 
deviations were regarded as significant. It was found^' that Fourier components which satisfy 
this requirement do indeed exist. A particularly dramatic result is observed in the TIM barrel 
group, in which a composite power spectrum signal was found at k = 21 which is 1 %(5 above the 
average. A set of signals in the range 5G-6a was also found in the Immunoglobulin group. A 
particularly fascinating insight into the mechanism of architecture selection emerges when we 
ask in which physical properties these signals are expressed. It is found that, while essentially all 
the proteins in a given architecture group exhibit statistically significant signals at the values of 
k identified by the signal averaging procedure, these signals are expressed in different properties 
in the various proteins of the group. This suggests that an architecture can be generated by a 
well-defined set of periodicities, but that these periodicities can be expressed in a wide variety 
of physical properties. This constitutes a degeneracy in the architecture code. The existence 
and characteristics of the architectural signals provide an understanding of certain fundamen
tal observations about protein architecture and folding. The fact that proteins with no appar
ent sequence homology fold to common architectures'^^ is an immediate consequence of the 
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degeneracy of architecture signals, which guarantees that there are many, dissimilar ways to 
produce a given architecture. It has also been noted^^^^ that proteins with similar architecture 
but no mutual homology fold with similar rates. A connection between this observation and 
the properties of architecture signals is readily made. The wavelength associated with a sinusoi
dal signal of wave number k in a sequence of length N is N/k. The sequence is composed of a 
set of k segments of this length, each of which contains a region in which the associated physi
cal property of the amino acids is strongly expressed, flanked by regions in which it is weakly 
expressed. Note that, while the relevant physical property and the length of the segments differ 
in the various proteins of an architectiu*al group, the number of segments is the same in all the 
sequences. These observations are consistent with a scenario^^' in which folding is governed 
by a number of early nucleation events, distributed over the entire sequence, each of which 
takes place in a relatively short, localized region—the segments delimited by the architectural 
signal. In each protein of a particular architeaure group, the nature of these events is deter
mined by the properties in which the folding signal is expressed. This su^estion is supported 
by the experimental demonstrations 5 that proteins of similar architecture can fold by different 
mechanisms. It is possible 1, but not mandatory, that the segments defined by the architectural 
signals might be correlated with structures visible in the native fold. This possibility, and other 
implications of the present results, will be explored in forthcoming work. These results suggest 
an alternate view of the classification problem. The reason that sequence and structure classifi
cation reveal different, parallel universes is that sequence classification, as currendy practiced, is 
based on "incorrect** parameters. If one takes the reasonable (and widely held) view that 
structure classification is the more fundamental process, it becomes clear that we should be 
searching for those sequence-related variables which give the closest correspondence possible 
between the two protein spaces. The approach we have just outlined, in looking for physical 
signals which encode architecture in sequence, represent a step in this direction, and away from 
a search for codes based on residue identity. 
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CHAPTER 12 

The Role of Computation in Complex 
Regulatory Networks 

Pau Ferndndez and Ricard V. Sol̂ * 

Abstract 

B iological phenomena differ significantly fi-om physical phenomena. At the heart of this 
distinction is the fact that biological entities have computational abilities and thus they 
are inherently difficult to predict. This is the reason why simplified models that provide 

the minimal requirements for computation turn out to be very useful to study networks of 
many components. In this chapter, we briefly review the dynamical aspects of models of regu
latory networks, discussing their most salient features, and we also show how these models can 
give clues about the way in which networks may organize their capacity to evolve, by providing 
simple examples of the implementation of robustness and modularity. 

Introduction 
As has been highlighted by John Hopfield, several key features of biological systems are 

not shared by physical systems. The origin of such difference stems from the relevance that 
information plays in the first, which is not shared by the second.^ Although living entities 
follow the laws of physics and chemistry, the fact that organisms adapt and reproduce intro
duces an essential ingredient that is missing in the physical sciences.^ Due to this fact, biologi
cal struaiu-es result from evolutionary pathways and as such they are contingent.^ 

Perhaps the clearest consequence of the role of information is the observation that biologi
cal entities perform computations: there is an evolutionary payoff placed on being able to 
predict the future. Typically, more complex organisms are better able to cope with environ
mental imcertainty because they can compute, i.e., they have memory or some form of internal 
plasticity, and they can also make calculations that determine the appropriate behavior using 
what they sense from the outside world. 

Computation thus becomes a crucial ingredient when dealing with the description of 
biocomplexity and its evolution, because it tiuns out to be much more relevant than the under
lying physics. Its dynamics is governed mainly by the transmission, storage and manipulation 
of information, a process which is highly nonlinear. This nonlinearity is well illustrated by the 
nature of signaling in cells: local events involving a few molecules can produce a propagating 
cascade of signals through the whole system to yield a global response. If we try to make 
predictions about the outcomes of these signaling events in general, we are faced with the 
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inherent unpredictability of computational systems. It is at this level where computation be
comes central and where idealized models of regulatory networks seem appropriate enough to 
capture the essential features at the global scale. 

Cells are probably the most complete example of this traffic of signals at all levels. They 
comprise millions of molecules that act coherendy persisting far from equilibrium by the ex
change of matter, energy and information with the environment. All this molecular processes, 
ultimately controlled by genes, take place at different points in space and time and involve the 
leading participation of proteins, which act as the nanomachines that drive cellular dynamics. 
The cellular network can be divided into three major self-regulated sub-webs: 

• the genome, in which genes can affect each other s level of expression; 
• the proteome, defined by the set of proteins and their interactions by physical contact; and 
• the metabolic network (or the metabolome), integrated by all metabolites and the path

ways that link each other. 
All this subnetworks are very much intertwined since, for instance, genes can only affect 

other genes through special proteins, and some metabolic pathways, regulated by proteins 
themselves, may be the very ones to catalyze the formation of nucleotides, in turn affecting the 
process of translation. 

It is not difficult to appreciate the enormous complexity that these networks can achieve 
in multicellular organisms, where large genomes have structural genes associated with at least 
one regulatory element and each regulatory element integrates the activity of at least two other 
genes. The nature of such networks started to be understood from the analysis of small prokaryotic 
regulation subsystems and the current picture indicates that even the smallest known webs that 
shape celltdar behavior are indeed very complex. ̂ '̂  

Luckily, all this extraordinary complexity can be abstracted, at least at some levels, to 
simplified models which can help in the study of the inner-workings of cellular networks. 
Overall, irrespective of the particular details, biological systems show a common pattern: some 
low-level units produce complex, high-level dynamics coordinating their activity through local 
interactions. Thus, despite the many forms of interaction found at the cellular level, all come 
down to a single fact: the state of the elements in the system is a function of the state of the 
other elements it interacts with. What models of network functioning try, therefore, is to un
derstand the basic properties of general systems composed of units whose interactions are gov
erned by nonlinear functions. These models, being simplifications, do not allow to make pre
dictions at the level of the precise state of particular units. Their average overall behavior, 
however, can shed light into the way real cells behave as a system. 

On the other hand, whereas the question of how networks of many components can 
achieve global order is very important, it is no less important to gain an understanding of how 
such networks could have been assembled step by step throughout the evolutionary process. It 
seems sensible to expect some properties of these networks to direcdy influence their capacity 
to smoothly integrate the changes that can make them fitter in the next generation. In this 
context, technology should immensely benefit from a deep knowledge of the processes behind 
biological evolution, since by design, engineered systems are not at all susceptible of blind 
tinkering. It is interesting, therefore, to explore how the same simplified models used to under
stand global dynamics can give hints as to how "evolvability" could be put into practice. 

In summary, in this chapter we will explore the computational dimension of cellular net
works. We will see that biological networks may be computationally irreducible, and hence 
why Boolean units are appropriate to understand their global properties. We will also briefly 
review the most important features of the Kauffman model, and their implications for compu
tation. Finally, taking advantage of the Boolean approximation, we will show how important 
aspects of the capacity to evolve such as robustness and innovation could be implemented, 
through the use of simple, clear examples. 



208 Power Laws, Scale-Free Networks and Genome Biology 

The Evidence for Computing Networks 
Molecules, proteins and genes interact with each other in many ways, and the result of 

their interactions is the coordinated behavior we observe. The first step is, therefore, to identify 
the different kinds of elements which make up regulatory networks and to describe their forms 
of interaction. 

Perhaps the most important units in regulatory networks are genes, which interact through 
gene regulation. Genes are translated into proteins by means of a transcription machinery that is 
controlled by multiple mechanisms. Interference with these mechanisms allows certain mol
ecules to alter the level of expression of specific genes, as the diagram of Figure 1.2 shows. 
Transcription is basically initiated at the promoter region, which has usually a "TATA" sequence, 
marking the binding site ofTBP ("TATA"-binding protein). This protein is the first of a series of 
proteins, known as general transcription factors, that help to position the RNA polymerase 
correcdy at the promoter. The most basic regulation, therefore, involves DNA binding proteins, 
or regular transcription factors, that either block the promoter, obstructing transcription or 
increase the probability of attachment of the RNA polymerase, enhancing it. These proteins 
operate in the vicinity of the promoter and in a majority of cases form complexes made of many 
units that combinatorially bind to DNA. 

In addition to the close binding of transcription factors, other mechanisms are known 
that play a significant role in transcription regulation, including modifications of this basic 
scheme like downstream and distal enhancers or totally different mechanisms such as insula
tion,^ alternative splicing or post-transcriptional modification.^ All this mechanisms affect 
translation and therefore determine the level of expression of a certain gene at a given in
stant, given the concentration of its multiple regulators. This level of expression produces a 
certain concentration of the protein molecules that are the products of translation. Actually, 
different proteins can be produced from the activation of a certain gene due to 
post-translational modifications, giving rise to different regulatory elements in the network. 
Figure 1.3 shows an example in which the direct product of a gene can turn into two differ
ent proteins, depending on the presence of another "scissor"-like protein that cleaves the 
initial molecule. 

The concentration of each protein molecule is, however, not only regulated at the level 
of transcription. Very many of them have structures that can be gready modified in the 
presence of other molecules such as metabolites or other proteins. This requires their sepa
rate treatment as regulatory elements, since the different shapes usually carry out different 
tasks. Figure 1.1 shows a transmembrane protein which, in the presence of some metabolite, 
changes its conformation and becomes active at another site. These processes are the basis of 
the functioning of the signaling network, which comprises membrane receptors, intracellu
lar signaling proteins and the receivers of the messages, for instance enzymes and regulatory 
or cytoskeletal proteins. Many of the components of this network are proteins that can only 
be in one of two states, active or inactive. Other proteins are inactive alone but active while 
bound to others in complexes, as shown in Figure 1.4, up to very high levels of complication. 
As regulatory elements in their own right, these complexes also qualify as units in the regu
latory network. 

To summarize, many entities in cellular networks can be identified as the basic units of 
regulation, mainly distinguished by their unique roles with respect to interaction with other 
units. These basic units are genes, each of the proteins that the genes can produce, each of the 
forms of a protein, protein complexes, and all related metabolites. These units have associated 
values that either represent concentrations or levels of activation. These values depend on the 
values of the units that affect them due to the mechanisms discussed, plus some parameters 
that govern each special form of interaction. 
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Figure 1. Several ways in which the units of cellular networks interact. 1) Signal transduction: a membrane 
protein becomes aaive if a certain metabolite is present outside the cell. 2) Gene regulation: genes are 
transcribed starting at the +1 site and are aflFeaed positively by an upstream aaivator sequence and negatively 
by a silencer sequence. Both sequences can be bound by protein complexes. 3) Postranslational modifica
tion: a given protein can be modified after transcription to yield two different forms depending on the 
presence of other proteins. 4) Complex formation: the union of two proteins exposes a new active site that 
makes the complex active only then. 

Modeling 
To make the description more concrete, is interesting to look at a complete, real example. 

In Figure 2 the circuit of the segment polarity network of Drosophila melanogaster is shown. 
The genes in this network are expressed throughout the life of the fly, and its pattern defines 
and, more importantly, maintains the borders of the segments since the first stages of develop
ment. This is a network in which all the elements discussed are present, displaying many forms 
of interaction, and in particular, the same 4 different mechanisms depicted in Figure 1 are 
highlighted by 4 boxes numbered accordingly. For example, wg {wingless) interacts with en 
{engrailed) in the neighboring cells by secreting a protein, WG^ that binds to a membrane 
receptor / ^ which, when activated, enhances the transcription oi en. It is perhaps easier, look
ing at this diagram, to imagine how complex the dancing concentrations of genes, proteins or 
complexes are, all regulated through their input links and in turn regulating other elements. 

Computer modeling of this network, however, has provided insight into various ques
tions. A very important result is the fact that this network seems to be a conserved module. 
Evidence for this has been obtained by simulations demonstrating its robustness against the 
change of parameters. If the regulatory elements are modeled using a continuous-valued ap
proach, a set of equations can be defined governing the rates of change in their populations, 
levels of expression, etc. Altogether, the unknown kinetic constants that have to be specified 
amounts to 48: half-lives of messenger RNAs and proteins, binding rates, cooperativity coefFi-
cients, etc. Surprisingly, from a huge number of possible combinations of parameters, many of 
them have actually a stable pattern that corresponds to the known pattern of activity of the 
genes, thus suggesting that the module is very robust. ̂ ^ In fact, other work has come to similar 
conclusions with respect to other mechanisms, such as adaptive responses in bacterial chemo-
taxis. It seems that the topology of the network plays, in some cases, a more important role 
than the exact mechanisms at each node. 
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Figure 2. The network of interactions between the segment polarity genes (modified from ref. 9). Rectangles 
represent proteins, circles genes, and hexagons protein complexes, respectively. Special, thick arrows are for 
transmembrane links. Examples of different types of interaction are numbered from 1 to 4. 1) Signaling 
network: W^Gprotein binds receptor FZ. 2) Transcription control: wg.ptCy and M transcription is controlled 
by the activation of other genes. 3) Postranslational control: after translation, C/is transformed into CIR 
or CIA depending on the presence of 5MO. 4) Complex formation: the complex PH'is formed only when 
HH and PTC are present. 

This is precisely the thesis of another work:^ "our purpose here is to demonstrate that in 
one well-characterized system, knowledge of the interactions together with their signatures, by 
which we mean whether an interaction is activating or inhibiting, is enough to reproduce the 
main characteristics of the network dynamics". The Boolean network presented, albeit a sim
plification, seems to capture the essential features because it matches the patterns of activity not 
only of the wild-type embryo, but of some known mutants, and it also points to other possible 
effects of mutations that have not been observed. This is done through an exhaustive analytical 
treatment of the resulting equations, as well as simulations, that in addition reveal the impor
tant roles of some of the genes involved.^ In addition to this, other work approaches gene 
networks within the context of the evolution of development.^^ It is true that the network may 
not be so crucial in other cases, but the results nevertheless suggest the importance of aggre
gated behavior. 

In brief, the modeling of regulatory networks involves different methods that give answers 
to different questions, ̂ ^ but ultimately, these methods also illustrate that there is a deep, com
mon pattern: simulation by computer seems to be the key to the solutions. As Venter puts it: 
"If we hope to understand biology, instead of looking at one little protein at a time, which is 
not how biology works, we will need to understand the integration of thousands of proteins in 
a dynamically changing environment. A computer will be the biologist's number one tool".* A 
crucial question, then, arises: Why do we need a computer to be able to study biology at all? 
Some insights into this question are in fact given by the theory of computation. 

" As quoted in reference 14. 
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Irreducibility 
One of the most important problems in the theory of computation is the halting prob

lem. It concerns the automatic verification of software in the following terms: one is given a 
computer program A and what the program is supposed to do, and the task is to design an 
automatic process that verifies the correctness of the program. In other words, another pro
gram B has to be written that, given a description of ̂ 4 and the correct outputs, predicts what 
are the outputs for each set of inputs, and just checks that the answers are correct. As simple as 
the problem seems, it is unsolvable: there is no such program B. The trap lies in the fact that, to 
solve it, a computer has to be "smarter" than another computer. Instead of testing the execution 
of program A by explicidy following it through, B has to be able to make some kind of shortcut 
that enables it to predict the outcome without having to follow each step, to avoid, for in
stance, the fact that^ may enter a very long or complicated loop. Since B cannot exist, there are 
no such shortcuts to the long-term dynamics of computers, and their step-by-step evolution 
must be followed perforce. This impossibility to predict is called irreducibility, and has been 
hypothesized to be much more common that usually acknowledged. 

The fact that regulatory networks may be irreducible seems to be a plausible hypothesis, 
since computer modeling of regulatory networks seems to be the only way to deal with their 
complexity. Apart from that, there seems to be some awareness of this fact, since some authors 
have treated cellular networks with the tools of electronic design, and compared molecules 
with computational elements:^'' "Putting aside for the moment the question of whether it is 
usefiil or even sensible to view them in this manner, it is nevertheless true that protein mol
ecules are in principle able to perform a variety of logical or computational tasks". An addi
tional reason may be seen in the fact that multistability (or bistability) is very ofi:en the mecha
nism behind some genetic circuits, ̂ ^ and that this switching behavior is the base for 
computational capabilities. As a consequence, the assumption that computational irreducibil
ity characterizes regulatory networks makes simplified Boolean models sufficient to under
stand their relevant properties, since they have the minimal, essential ingredients. This is the 
view that we favor in this work. It is important, nevertheless, to emphasize two important 
points. 

On the one hand, this kind of modeling consciously neglects the details of the precise 
fiinctioning of particular units, not because they are irrelevant, but because they inherendy 
cannot contribute to the understanding of the whole. The exact strengths of certain interac
tions are indeed very important to some physiology processes,^^ because these processes deter
mine important aspects of cell functioning that need fine timing. But in general, the details of 
the switching behavior of networks of many elements do not seem to be crucial to the overall 
patterns of activity, which otherwise would make the network too sensitive to particular pa
rameters. Furthermore, irreducibility makes impossible to gain any understanding whatsoever 
of a process which involves big numbers of components: "Even if an ideal parameter set was 
provided (say, by software for automatic parameter optimization), the numerical solutions 
churned out by the computer would be just as inscrutable as the cell itself".^^ 

On the other hand, in our opinion, no thorough understanding of all the processes in the 
cell can give hints as to why higher level behavior does occur. After all, understanding means the 
ability to explain a phenomenon, which is equivalent to be able to predict its behavior in all 
situations. In the case of the whole network, this seems virtually impossible. Moreover, even if all 
cell processes were known in detail, the resulting cell map would be useful for many purposes, 
such as designing very complex and specific drugs, but would otherwise leave open the question 
of how such a wonderflil organization arose through the accumulation of small variations. An 
evolutionary explanation of the assembly of such a complex structure will surely be aided more by 
an understanding at the global level of the general dynamics of idealized Boolean networks than 
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by a detailed study of all the real, discovered subnetworks. Essentially, there seems to be two levels 
of approach in regulatory networks, either at the level of small modules, or at the level of the 
whole system, with exclusive goals and providing answers to qualitatively different behavior. We 
will focus on Boolean dynamics as the main tool for whole-system study. 

The Boolean Idealization 
In order to properly address the role of computation in regulatory networks, a exactly 

defined model is required. One possible approach is to see the networks as devices performing 
a definite task in an automatic, orderly manner. Given a set of inputs, such a device would react 
by performing a number of predefined operations, and yielding some output. If the device, 
either biological or artificial, has a minimal amount of memory, an appropriate description is 
provided by the so called discrete finite automata (DFA), a kind of abstract machines com
monly used in the theory of computation.^^ These automata are also used in the design of logic 
circuits because they allow the designer to explicidy state the requirements of a circuit and they 
serve as the basis for optimization processes that minimize various parameters of it, including 
wiring and the number of memory units.^^ 

Figure 3 A, depicts the state diagram of a DFA, in this simple case an example of a machine 
that recognizes the pattern "011 **. This means that given a string of binary digits as input it will 
return as output a 1 whenever it detects this pattern and 0 otherwise. For this purpose, the 
automaton has three different states A, B and C and at each time step, it is given an input that 
makes it jump to another state, and yield some output value. For each state, two possible 
transitions are possible, denoted with an arrow in the diagram. On each arrow two values a/b 
are drawn, representing the input value of the transition, a, and the resulting value delivered by 
the machine, b. In our case, the A state represents the initial phase of the detection, in which 
the first 0 is detected. In faa, all states go to y4 if a 0 is given. Accordingly, B represents the 
middle phase of the detection and C the final one, being the initial state as well. 

In Figiu^e 3B, The simplest network that performs the task defined by the above automa
ton is shown. It has one input unit, /, one output unit, o, and two internal units, a and b. Given 
an initial state with all units set to 0, at each time step, all units compute their next output as a 
function of their present inputs, and switch to the new values at once. For units that have no 
inputs, the next value is assumed to be specified. It is not difficult to trace the values of the 
units through the detection sequence. First, upon the reception of a 0, ^ switches to 1, and the 
other units remain at 0. The unit a is then a testimony of a 0 in the input at the last time step. 
At the next time step, provided then that a is active, b turns to 1 only if the input was 1, thus 
implicidy detecting a 01 by means of the temporary memory of ^. Finally, if ^ is 1 and the 
input is again 1, the output turns to 1, ending the detection process. 

This network is a simple example of a general class of networks called Boolean net
works, in which inputs perform Boolean functions.^'^ The basic ingredients have been used 
already in the example: Boolean (i.e., on-off) states for the units, discrete time steps (syn
chrony), and general Boolean functions (a different specified output for each combination 
of inputs) at each unit. Its introduction was motivated by the questions raised in the model
ing of the gene regulatory network by Kauffman,^^ although with a somewhat different 
perspective. In the last section, we have seen examples of the modeling of real networks with 
the aim of understanding particular parts of the cellular network. Kauffman adopted the 
complementary perspective of studying Boolean networks wired at random, with the hope 
of finding properties that would apply to the system in its entirety.^ As we will see, he 
mostly succeeded. 

Currendy known as the Kauffman model, a system composed of N genes gi interacting 
through Boolean functions^, with discrete time steps, has a dynamics defined by the following 
equation: 
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Figure 3. A) State diagram of a DFA (Discrete Finite Automaton) recognizing the sequence "Oil". The C 
state represents the initial and the final state of the recognition sequence and the labels at the links connecting 
states represent inputs/outputs of the automaton. B) Minimum Boolean network implementing the task 
defined by the automaton. Each unit in the Boolean network computes its next value using a table that tells, 
for each input combination, what should be the output. 

To fully specify the network, the K inputs of each node are chosen at random among the Â  
units of the system, and the functions are chosen so that the outputs have a 1 with probability 
p and a 0 with probability \ -p, with no special units as inputs or outputs. Since it is specified 
at random, the network only has two parameters of interest: K, which defines the average 
connectivity between nodes; and p, which actually tunes the susceptibility of the function to 
changes in the input values: the closer/) to 0.5, the easier it is that^J changes if input k is 
reversed. 

The global dynamics of Kauffman networks can be made clearer making the following 
observation. As already mentioned, at each time step, all nodes are updated synchronously 
using equation 1 from the values of their inputs. Therefore, we can treat the whole system as 
having a global state 5, given by the composite state of all the units (or genes), that is. 
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Figure 4. A) Basins of attraction of the circuit shown in Figure 3. The nodes in this graph are represented 
as the corresponding states of the Boolean network. B) Examples of the basins of attraaion of a randomly 
generated network with 9 units and average conneaivity (K) = 2. 

This global state S represents a point in the space S of all possible states, and at each time step 
it jumps to a different point following a trajectory given by the network configuration, starting 
at the chosen initial state. 

Eventually, as time goes on, a state will be reached that has already been visited before, 
closing the trajectory into either a loop or a single state, if this state maps onto itself. To see the 
dynamics of a Boolean network at a glance, it is useful to examine a graph in which all the 
possible states of the network are linked to their successors in the dynamics. In such a chart, 
disjoint subgraphs represent different subsets of states that end in the same loop, called basins 
of attraction. Figure 4 depicts precisely the basin of attraction field of two networks: the 
example of Figure 3 in case A, and a random Boolean network with 9 units and connectivity K 
= 2 in case B. All points of the dynamics of the network are present, followed by their succes
sors, and all possible trajectories are implicit in them, making the graph a very useful map. 
Indeed, software tools exist to draw basins of attraction fields for any specified network. 

Kauffinan associated these basins of attraction with the different cell types specified by the 
underlying gene network, and made some arguments regarding the number of cell types (ba
sins of attraction) present as a function of the network size A'̂ and the average connectivity K 
But the most important finding in relation with our discussion involves the dynamical proper
ties of the system, and in particular, the propagation of errors. An important property of Bool
ean networks is, in fact, that depending on the connectivity A", errors have only three possible 
fates: either they die out, propagate to the whole system, or maintain themselves in the exact 
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border between fading and exploding. This kind of behavior is a good example of a so called 
critical phase transition, a phenomenon well known in statistical physics."^^ 

A simple explanation to understand this behavior can be given by means of a percolation 
argument, ^ and is general enough to include networks with a nonuniform distribution of 
links of average {K). Consider a given gene gi in a Kauffman network of connectivity {K), and 
let us assume that the gene is externally flipped to the opposite state. The question asked is: 
how is this change going to be propagated through the network? Since the connectivity is {K)y 
the change in ̂ ^ will arrive, on average, at the inputs of its {K) neighbors. It remains to be seen 
with which probability these nodes will propagate the change, which is the same as asking with 
what probability a random Boolean function changes its output when a single input is changed. 
Two possible propagation situations can take place, either the original output was 0 and shifts 
to 1 or the opposite occurs. Each of this situations has a probability P = p{\ - p) (given the 
independence between values in the function^) and two of them are possible, thus the propa
gation probability is P* = 2p{\ - p). The average number of changes will be, then, 

K,^P*{K) = 2p{l-p){K). (2) 

The three phases of behavior can be understood making the observation that Nch represents the 
factor with which errors will multiply. If A/̂ /, < 1 then changes will tend to disappear, at each 
time step the average number of changes diminishes. This is the so-called ordered phase, in 
which robustness is enough to cancel errors in the long term. IfNc/, > 1 then errors will multi
ply and eventually the whole system will be affected by the avalanche. This is the chaotic 
phase, in which the state of the system in the future is governed by the uniform amplification 
of small events. 

At the critical point, that is Nc/j = 1, the number of errors does not have a tendency, so it 
will be impossible to predict what shall happen in the long run. In practice, this means that 
there will be a mixture of effects: some errors will die out, and some will propagate to the whole 
system. Using the equation 2, the critical point dictates the critical connectivity, 

which simply leads to Kc = 2 for the case p = 0.5, as considered by Kauffman in its initial 
formulation. One simple implication of this formula is the fact that connectivity is rather low, 
i.e., that the network is sparse, an observed property in real networks.^^ It is also important to 
note that the connectivity (K) and the probability/> alone determine the global behavior of the 
system. Although it does not make much sense to think that evolution can tune Korp direcdy, 
the accumulation of mutations will surely affect them, in turn affecting its mode of behavior 
with respect to the phase transition. 

The importance of this transition lies in its intimate relationship with computation, and 
in particular, with the characteristics that computation requires to systems that implement it. 
These requirements have to do with the ability to process information, or in the words of 
Langton:^ "First, the physics must support the storage of information, which means that the 
dynamics must preserve local state information for arbitrarily long times. Second, the physics 
must support the transmission of information, which means that the dynamics must provide 
for the propagation of information in the form o^ signals over arbitrarily long distances. Third, 
stored and transmitted information must be able to interact with one another, resulting in a 
possible modification of one or the other".* In addition, the issue of irreducibility plays an 
important role, because systems whose behavior can be predicted in the long run may not be 
able to implement complex tasks. 

* Italics from the original. 
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In the light of these ideas, it does not seem probable that Boolean networks with compu
tational utility could be in the ordered phase. Signals do not seem to be able to travel as far as 
needed, that is arbitrarily long distances. Although the analysis proposed is seen from the 
viewpoint of errors, a single unit that serves as input to the system and flips its state can be also 
seen as an external signal rather than an error, and then, the propagation of this error can be 
regarded as a signaling cascade. If the signal is unable to reach some parts of the system due to 
the networks inherent dynamics, many computations cannot be performed. On the other 
hand, computing Boolean networks do not seem to live in the chaotic phase either. Since 
regulatory networks are very noisy,^^ any computation that did work in the absence of noise 
would be surely disrupted by a single error. The critical phase, therefore, seems to have the 
suitable balance: it has the possibility of communicating any pair of units in the system, and it 
is not too sensitive to the values of all of them. ̂ ^ 

Many authors have drawn attention to the fact that criticality in the dynamics of Boolean 
networks or cellular automata have desirable properties, and in two cases, properties direcdy 
related with computation. The major arguments in favor of criticality are the following: 

• the capacity of systems at the critical point to exhibit arbitrarily large correlation lengths in 
space and time, supporting the basic mechanisms of storage, transmission and modification 
of information;-^^ 

• the undecidability (or the incapacity to predict without explicidy simulating the system) of 
the properties of systems in the critical phase as a basic characteristic of systems capable of 
computation;^^ and, 

• that emergence of order "for free" in networks which are critical.̂ "̂  
There are also some arguments against this hypothesis. In reference 33, it is demonstrated 

that many cellular automata (a type of regular Boolean network embedded in space) with 
computational capabilities exist in the ordered and chaotic regions defined in reference 32. 
Their existence is indeed a significant result, but it does not say anything about the density of 
automata with computational capabilities in each phase, which may influence drastically the 
probability of reaching them by an evolutionary process. In reference 34, it is argued that 
Boolean networks with a scale-free degree distribution may provide, through their uneven 
distribution of connectivity, ways of making changes that have a significant impact on func
tion, but allowing the network to remain in the ordered phase at the global scale. 

Finally, in reference 35, an example of simulation of the evolution of cellular automata is 
shown that does not select automata with critical properties, suggesting that the critical phase 
does not have a higher density of systems with computational capabilities. In all cases, it is 
apparent that evolutionary properties are a very important ingredient in addition to dynamics. 
Overall, however, we are still ignorant about the applicability of these ideas in real regulatory 
networks, because current information includes more data with regard to the presence or ab
sence of interactions than with their function. 

The Evolutioiiaiy Point of View 
To complement current understanding of the dynamics of Boolean networks, we also 

want to focus on the functional aspects of network evolution, again using Boolean networks. 
Very litde is known about this subject, and yet simple examples can demonstrate the subde 
differences in evolvability between variants of the same circuit. 

Figure 5A shows a Boolean network implementing the discrete machine shown in Figure 
3A. To make drawings simpler, we have chosen to follow the notation used by von Neumann,^ 
which eliminates the use of Boolean tables. Although this notation also implies loosing some 
richness in the repertoire of Boolean functions, von Neumann proved its completeness in the 
specification of any computational device, and it is somewhat closer to actual regulation in 
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Figure 5. Several Boolean networks implemented with threshold units. Excitatory inputs end in a black 
arrow, and inhibitory ones in a terminating segment. The threshold is specified inside each unit, and the units 
are in gray when they represent changes made to another network. A) The equivalent of the network of Figure 
3B. B) The same functional circuit as in A with two delay units c and d added. C) An example of the use 
of redundancy by the multiplication of lines. D) Several modifications to B that maintain functionality. 

cells. The new units are also Boolean and synchronous, but determine their output by com
parison to a threshold h. Inputs can either excite or inhibit a given unit, and the output of the 
unit at the time t + I will be in the excited state only if the sum of the number of excitatory 
inputs minus the number of inhibitory inputs at t is greater than or equal to h. This threshold 
h is represented as an integer number inside the circle that represents the unit. As usual in 
diagrams of genetic regidatory circuits, excitation is represented by a black arrowhead and 
inhibition by a terminating segment. 

To complete this rather simple scheme we must augment it with the introduction of a 
simple unit assumed to be in a permanent excitatory state, denoted by a smaller black circle, to 
allow the possibility of negation. This is in fact what happens with unit a in the diagram of 
Figure 5A, to be compared with the circuit of Figure 3B. With respect to the new notation, it 
is not difficult to see how the "AND" gate behavior of units b and o is now implemented with 
units that have two excitatory states and a threshold h = 2, since "AND" gates are active only if 
both inputs are active. Conversely, an "OR" unit would be the same as an "AND" but with h = 

1. Finally, before any discussion of the circuit properties we want to introduce a slight modifi
cation to the simplest implementation. The modification is shown in Figure 5B, and it just 
adds a delay of one time unit to the prior circuit, needing the introduction of units c and d 

whose role is simply to retransmit the values at their inputs. The behavior of the circuit is thus 
unaltered except for the one time step delay.* 

*To make the discussion less involved, we have made some appropriate choices. First, to omit the initial state 
of the network, which might give positive output values in the intermediate steps of the detection. Starting 
from random values, it is sufficient to neglect the output in the first steps of the process, and after that all 
of it is correct. Second, we have chosen excitation links with preference, because they make the exposition 
clearer, although in all circuits the units can be made to function in reverse with a few changes. 
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Let us, then, examine this new circuit. One of the first evident properties is its complete 
lack of robustness: if the link connecting c and o happens to fail when transmitting the activa
tion signal at the final steps of the detection process, o will never activate, and the overall result 
will be the failure at recognizing the input sequence "Oil". So it happens with the link from b 
to c, and many others in the circuit. Boolean logic is unable to cope with the failure of single 
components provided that the circuit represents a minimal implementation, as is the case the 
circuits we have seen. This fragility is also displayed by many man-made systems, in which the 
failure of individual components is assumed to be very infrequent. When a failure finally hap
pens, the system is ofiien not able to fiinction at all. However, natural systems, and in our case 
cells, do have a great deal of robustness, motivated, basically, by two important sources of 
distress. 

The first is thermal noise: the same process that makes molecules move and wander inside 
the cytoplasm introduces an inevitable stochasticity in the effects produced by them, for ex
ample at the level of gene expression. ̂ "̂ '̂ ^ The second, a byproduct of the first, is mutation: 
cells inherendy accumulate changes in the genome through time, altering at random the net
works they code for, a source of "permanent" noise. Despite the existence of these two sources 
of noise, cells behave in a very deterministic manner, compensating for its presence in some 
way. Deterministic responses also may include the explicit exploitation of noise to generate 
phenotypic variation, the only exception to its repression. At the level of molecules, cells have 
mechanisms to ensure that signals are received at the appropriate places. ̂ ^ At the level of genes, 
for instance, cells of S. cerevisiae do not display signs of a decrease in fitness in a 40 percent of 
null mutations to all genes in chromosome V.̂ ^ The question is: how can cells achieve this 
powerfij buffering? 

Redundancy 
A similar question was probably asked by von Nemnann, albeit in a more abstract man

ner. He was searching for a logic system composed of unreliable components which worked in 
a reliable manner. Many engineered systems require, in fact, high standards of reliability, such 
as, for instance, computerized bank accounting. The solution proposed by von Neumann, and 
still used today is to put redundancy into the system, or, stated plainly: to put many copies of 
the same thing. The idea is simple: if anyone of the copies fails, the copies that still work can 
compensate. In addition, a mechanism is needed to determine which are the copies that behave 
correcdy. In the simplest case, the majority rule can be applied, which von Neumann imple
mented with his "majority organ".* As the name of the rule implies, in the face of mismatched 
behavior, the expected correct copies are assumed to be the most numerous, disregarding the 
others as wrong. In this way the failure of the whole system will happen only when, by chance, 
a number of copies bigger than half the number of available copies has failed, an event with a 
probability that can be made arbitrarily small as the number of copies grows, compared to the 
probability of failure of a single copy. 

Figure 5C shows our circuit with redundancy implemented. Nodes c and d have been 
duplicated to create two redimdant paths, c and d\ one for each signal.** Upon arrival, o will 
activate with only 3 of them, allowing the failure of exacdy one. As an example, the probability 
of failure of the unit o in this circuit can be calculated if we call/> the probability of failure of its 
input links. Assuming that failure of links means not carrying a positive signal, three possible 

* He called his units "organs". 

** This duplication can be interpreted, in faa, as the duplication of genes c and dy a very usual mechanism 
for the creation of genes in eukaryotes. 
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events can occur that make o fail, which are the failure of 2, 3 or 4 links. Weighting by the 
number of combinations in which they can occur, we have the following equation: 

/ A / A /^ 

{^-pfA\n-pv (3) 
4. 

With/; = 0.1, the formula yields/>' = 0.052. To obtain a higher gain, more parallel units could 
be introduced. It is worth mentioning, nevertheless, that the redundancy introduced is also 
useful to absorb the changes produced by the removal of units, a situation analogous to the 
knockout of genes. In the way this circuit is constructed, anyone of r, c\ d OT d could be 
removed with no functional result whatsoever. In fact, it is clear that many implementations of 
networks detecting the pattern "Oil" are possible, each with some degree of redundancy placed 
in different points of the network. Therefore, it seems that the degree to which redundancy is 
found in biological systems must be the product of selection, at each generation adding or 
removing links that contribute positively or negatively to the robustness of the organism. 

Degeneracy 
But even if simple redundancy seems to suffice for the buffering of noise or mutation, its 

utility is of much less relative value than expected when put in an evolutionary context. Cer
tainly, the introduction of duplicates protects organisms from mutation and noise, and studies 
exist that prove the stability of redundant genes under some conditions. ^ From the perspective 
of evolution, however, such a simple form of robustness would make organisms much less able 
to innovate. The reason for this difficulty is that all the copies of subparts that protect redun
dant systems probably have to be changed if a change in function is needed, making the adap
tation process very awkward and frustrating. In fact, similar mechanisms can provide a source 
of robustness without the drawbacks of redundancy. 

Figure 5D shows all possible circuits that are the same as 5B, but in which a single 
link has been added preserving the global function. In all cases, the new connections added 
basically crosscheck the detection sequence of the units in the simplest circuit. For in
stance, in the fifth one, unit d is modified to not only make sure that the last value of the 
input is 1, but also its coincidence in time with the activation of b, a detector of "01" in 
the past two values. The path leading from b to o is, in a way, duplicated, because the 
meanings of c and d overlap to a certain extent. The other cases involve other parts of the 
circuit but result in very similar modifications. These changes, in fact, can be seen as 
"neutral" mutations. Given the simplest, nude circuit, different combinations of this single 
modifications can provide a great deal of robustness, yet they do so in a different way, 
taking advantage of the multiple connections available that do not modify the behavior of 
the system. They also seem a more probable source of robustness, provided that mutation 
is random in nature. 

This mode of robustness has already been defined and has been called degeneracy: "the 
ability of elements that are structurally different to perform the same function or yield the same 
output". This applies to our system in the sense that different signaling paths can compute 
different subparts of the final pattern without being exact copies. Although first defined in the 
context of the nervous system, degeneracy seems a good candidate for the implementation of 
robustness in biological systems in general. Redundancy, favored initially due to the existence 
of duplication in the genome, was rendered implausible by studies of duplicated genes showing 
an immediate and steady divergence of their sequences, implying that the major source of 
robustness is to be found in unrelated genes. Again, for the same reasons mentioned above, 
the amount of degeneracy can be tuned by evolution to a suitable degree by making the appro
priate changes to the network. 
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Figure 6. A diagram showing sequences and their associated shapes connected by a line. At the left, sequence 
space, at the right, shape space. The neighborhood marked in sequence space has many different sequences 
mapping into all shapes, as the dashed lines reveal. 

Evolvabilily 
This brings us to the issue of the capacity to evolve, or evolvability. Although mentioned 

only in the context of redundancy, the inability to innovate is not only related to the duplica
tion of subparts but also with an excessive display of robustness, even if implemented using 
degeneracy. Evolvability has been discussed by many authors, ' ^ and it is defined as "the 
capacity to generate heritable, selectable, phenotypic variation*. "This capacity may have two 
components: (i) to reduce the potential lethality of mutations and (ii) to reduce the number of 
mutations needed to produce phenotypically novel traits". In relation to our discussion, it is 
clear that robustness contributes to the reduction of lethal mutations, but it is still unclear how 
to reduce the number of mutations needed to produce novelty. 

Although in a somewhat different context, the study of the evolution of populations of 
RNA molecules can provide important insights into this question. In particidar, RNA mol
ecules have the analogs of a genotype and a phenotype in their sequence and folding shape, 
respeaively. Therefore, a genotype space (or sequence space) and a phenotype space (or shape 
space) can be defined. The studies of the landscapes that appear when linking genotype space 
with phenotype space tell us that sequence space is completely traversed by the so called neu
tral networks. This networks comprise all sequences sharing a common shape that can be 
accessed by one point mutations, hence the name. The implications of this fact are more easily 
understood looking at Figure 6, in which sequence space and shape space are next to each 
other. The links that appear between the two spaces connect sequences with their correspond
ing shapes. Due to the existence of neutral networks, all shapes have connections from all of 
sequence space. As is immediately apparent, a very small neighborhood of a given sequence has 
connections with approximately all shapes, implying that many shapes are a few mutations 
away. This corresponds precisely to the idea of reaching novel traits through a small number of 
mutations, oiu" second requirement for evolvability. 

Even if the analogy with RNA has some risks, nothing prevents us in principle from apply
ing these ideas to Boolean networks. In our context, sequence space is the analog of our circuit 
diagram (or genotype), and shape space is our function space (or phenotype). Neutral mutations 
have already been discussed in the context of degeneracy, where we have seen that many changes 
to a network do not alter the network's function. It is therefore a plausible idea that indeed whole 
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Figure 7. An example of a neutral network using simple Boolean circuits. All the circuits in the network 
perform the same task, which is the recognition of the "01" pattern. On each circuit, the input unit is at 
the top and output is at the bottom. Arrows represent mutations to the circuits, such as duplication or 
removal of units, and addition or removal of links, as well as changes in the activation thresholds. 

networks of circuits with the same function can be accessed by single changes in their wiring, 
enabling a circuit to traverse circuit space and at the same time undergoing a complete rewiring. 
This is precisely what Figure 7 shows. The example circuit has been reduced to one signaling path 
that recognizes the subpattern "01". Following the arrows, at each step a single modification is 
made to the network that preserves function, including duplications, deletions, and addition or 
removal of links. Networks separated by many mutations have very few common links, and 
sometimes "homologous" links are part of fimctionally different signaling pathways. 

Modularity 
From another perspective, modularity also seems to contribute to the successful innova

tion in organisms. Many examples from evo-devo show that what makes sense is to study 
groups of genes in subnetworks responsible for traits"^ '̂̂ ^ instead of isolated genes, and from 
an evolutionary viewpoint, modularity allows the adaptation of different traits with little or 
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Figure 8. An example of modularity in Boolean networks. A) Module that makes useful "predetections". B) 
The same module with added robustness. C-F) Various ways to use the basic module to perform different 
functions. 

no interference with each other. ̂ ^ Apart from the separation of functionally distinct traits, 
modularity also pervades molecular biology, with examples such as the recombination of do
mains in proteins,^^ or the combination of DNA sequences allowing the cis-regidation of 
genes.^ In these cases, what matters most is the recombination of basic modules to form new 
structures in a much more rapid fashion, provided that these modules combinatorially allow 
any possible higher-level structure to be built. This gain in speed is widely used in engineer
ing, in which often new systems are built using the components developed for their older 
brothers. Electronics, in particular, is a very good example of this, with the use of integrated 
circuits as building blocks that facilitate the construction of new, more complex circuits. 

In Figure 8, an example of modularity is shown, again using the "Oil" detector circuit. As 
is implied by the shape of their boxes, any combination of upper and lower modides can be 
plugged to form a different circuit, with the upper modides performing basic functions, in this 
case the detection of particular subsequences, and the lower modules recombining the outputs 
of the upper modules to detect different input patterns. Upper modides perform the same 
subfunctions, so as to be compatible with the interface with lower modules, but differ in the 
degree of robustness. This fact illustrates an important point, in relation with the ideas dis
cussed above, which is the following. As we have already seen, the degree of robustness can be 
tuned by an evolutionary process, giving more or less robustness to selected units in the net
work by the addition or removal of "degenerate" links. As the construction of the circuit 
progresses, a subset of units could be found to be useful as building blocks for higher-level 
processing and thus be made more robust, since the modifications necessary to generate a 
complete spectrum of behaviors would not involve this building blocks but the use of their 
precalculations in other parts of the network. Further evolution would be, therefore, speeded 
up by the finding of these modules. In this sense, the module B in Figure 8 could be one 
example of that process, resulting in an increased connectivity within the module. 
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Modularity in the topological sense is, in fact, measured in terms of these uneven patterns 
of connectivity, which produce clusters of nodes more densely connected. This feature, among 
others, is what some methods exploit to detect the modular structure of a network. ' A 
simple enough picture of this kind of modularity, though, can be obtained by a coefficient Q 
which measures the fraction of neighbors of this node that are neighbors themselves, that is, 

In this formula, Ei is the number of edges present between neighbors of/, and ki the actual 
number of neighbours, ki{ki - 1) being the total number of possible links between neighbors of 
/'. The average of Q, that is, (C), describes in general the clustering coefficient of a network. 
This measure has been observed to be much higher in real networks than for random graphs in 
a variety of fields,"^^ and in particular, it has also been shown to display a scale-free distribu
tion.^'' This last fact demonstrates that modularity is indeed hierarchical, with small, strongly 
connected modules assembling into less cohesive, bigger modules in the upper level, and so on 
up to the whole network. 

Discussion 
In summary, we are still very much puzzled by the question of how complex regulatory 

networks are organized. But we think that the study of these networks with Boolean models 
can help understand the properties of general systems which, on the global scale, behave like 
real cells. The reasons for the success of this approximation might be found in the 
unsurmountable irreducibility of cellular processes, which behave in a manner similar to that 
of a computer. In the case of particular subnetworks, the Boolean approximation is successful 
in studying those mechanisms that are more "digital", and do not yield fine, graded responses. 
In the case of the whole system, these models can give important answers to questions regard
ing global, average dynamics. 

In fact, two important aspects can be readily highlighted about Boolean networks. On the 
one hand, their dynamics undergoes a phase transition that enables us to classify its modes of 
behavior in three different zones, depending on a just two global parameters, such as the con
nectivity and the unit susceptibility. Looking at the properties of such modes of functioning, 
we find more probable that Boolean networks are in the critical phase, if they are to be capable 
of computation. As a consequence, networks must be sparse in connectivity, a feature which is 
present in real networks. 

On the other hand, simple models of Boolean functions tell us that the degree of resis
tance to noise can be varied in a given network, mainly with the use of degeneracy, which adds 
neutral connections that perform parallel processing of the same information. Through a suc
cession of single changes of this kind, a network can be rewired completely preserving its 
function at all times. This resistance to noise can also be considered as a resistance to mutation, 
which simply adds a form of coherent noise to the network. Although good for robustness, the 
resistance to change must not be too strong, because variation is also needed in evolution. Since 
degeneracy adds connections and their removal is related to sensitivity, an equilibrium between 
the two tendencies seems also to point to the idea that connectivity in regulatory networks has 
to be finely tuned to achieve evolvability. 

In relation to it, modularity might emerge when parts of the network are found that enable 
further evolution in a quicker way by reusing their existing computations. If a suitable combi
nation of useful modules is found, degeneracy can add protection to them, increasing connec
tivity within their subnetworks. This would implicidy direct the effects of mutations to the 
connections governing the combination of modules, which woidd avoid trying many worthless 
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mutants. Although these ideas can be presented using simple examples, much work has to be 
done to thoroughly quantify them in models of networks with many units. 
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CHAPTER 13 

Neutrality and Selection in the Evolution 
of Gene Families 

Itai Yanai* 

Abstract 

Evolutionary relationships among genes, as revealed by sequence similarity, are used to 
characterize gene families. Surprisingly, a power-law can reasonably describe the dis
tribution of sizes of a genomes gene families. Evolutionary models are able to reproduce 

the size distribution with simulations of a set of genes growing through duplications and modi
fications. Most conspicuously, positive selection is not included in the models, suggesting per
haps, that neutral forces determine gene family sizes. Here I advocate this notion with compara
tive genomic analyses and a review of recent research on the evolution of gene duplicates. I show 
that a power-law also relates the sizes of orthologous gene families across 66 known microbial 
genomes. Furthermore, singletons (gene families of size = 1) in one genome have orthologs that 
are themselves power-law distributed in other genomes. The signature of positive selection, 
however, is revealed in the fact that gene families of size six and more have a more skewed family 
sizes distribution across other genomes. The general pleiotropy of genes and the notion that 
gene duplicates may rapidly subfiinctionalize support the conception of gene family growth 
without positive selection. Such a model runs contrary to Susumu Ohnos famous dictmn that 
only "redundancy created" and suggests a novel view of the evolution of functional novelty. 

Gene Family Sizes (GFS) Distributions 
Unveiling the evolutionary processes that have shaped genomes is an efficient path to

wards their understanding. From such a standpoint, it is clear that the set of genes that com
prise a genome is not arbitrary but contains a specific body of relationships. For example, the 
bacterium E. coli K12 has 3,762 genes which it shares with other sequenced microbes, and 
these can be clustered based upon sequence similarity into 2,131 families.^ These sizes how
ever, are not evenly distributed: most of the family clusters are of size one (one gene) while a 
few have over 30 members (Fig. IB). As the linear relationship in the log-log plot of Figure IB 
shows, the gene family sizes (henceforth, GFS) distribution can be summarized by a power-law 
relationship of the form, y = Ax' . Such a relationship signifies that genomes do not have a 
'typical' family size. Interestingly, the same relationship has been recognized across all genomes 
examined thus far,̂ "̂  although larger genomes tend to have larger gene families, as may be 
expected, and thus a smaller power, b. 
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Figure 1. Gene family sizes (GFS) distributions. A) Based upon the COG database,̂  a matrix is constructed 
where the rows correspond to COGs (Clusters of Orthologous Groups) spread across the represented 
genomes (columns). Black and white here shows presence or absence, respectively, of a gene family in a 
particular genome. B) GFS distribution for the E. coli genome (a column of the matrix shown in A). The 
superimposed fit is of the power -2.27. C) Sum of the GFS histograms constructed for each COG (a row 
of the matrix shown in A). The superimposed fit is of the power -2.44. 

GFS distributions showing power-laws are not limited to families within a genome but are 
found also 'across' genomes. Figure lA shows a matrix of orthologous genes, where each row 
corresponds to a discrete gene family and relates its size in the various genomes (columns). The 
GFS distribution for a given genome corresponds to a histogram of the elements along a col
umn of the matrix (Fig. IB). Analogously, one can examine the distribution of sizes for a given 
gene family across the genomes (rows in the matrix). Since this currendy amounts to a set of 66 
genomes, a meaningful distribution is not possible on the scale of a single gene family. Cumu
latively however, such distributions for all 4,873 gene families add up to another power-law 
distribution (Fig. IC). Surprisingly, typical sizes for a certain gene family across genomes are 
also largely nonexistent. The significance of this distribution is discussed further below. 

The interest in the GFS distributions stems from the ubiquity of power-laws across bio
logical properties. In protein-protein interaction networks, the number of interactions per 
protein is power-law distributed.^'^ In metabolic pathways, the number of enzymes interacting 
with a given metabolite and the number of metabolites related to each enzyme are power-law 
distributed. ' In protein domain networks, where domains are linked if they coappear in at 
least one other protein, the number of links per domain is power-law distributed. ' The 
occurrence of structural folds in genomes also has a power-law relationship as well as the 
number of genes in a genome of a given function—such as transcription factors—across ge
nomes. ̂ ^ Is there a general mechanism common to these observations? Here, we focus on 
modeling and interpreting the GFS distribution, which may turn out to be applicable to other 
power-laws. 

Modeling Genome Evolution 
The most important insight into the composition of genes into gene families is its dy

namic nature. It is clear that to model the phenomena one must include a time component 
by which gene family sizes can change. Gene duplication's role in this affair is uncontested 
and generally attributed to Susumu Ohno. In the context of a growing network, the Barabasi 
and Albert modeP^ has shown that two properties are sufficient to induce scale-free behavior 
in the degree distribution of a network: (1) evolution of the network instead of immediate 
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conception and (2) preferential attachment of new nodes to popular nodes. The elegance of 
this model lies in its simplicity. Consider a network beginning with one node and that one 
by one, new nodes are added, each connecting to an existing node. If each node connects 
randomly, a scale-free network does not emerge. However, if the odds are shifted in favor of 
nodes that are already popular—such that the "rich get richer"—a power-law indeed will 
relate the distribution of connections per nodes. 

The principle of preferential attachment can analogously be employed to model the evo
lution of gene family sizes by choosing for duplication any gene with equal probability. As an 
example, consider that a simidation beginning with two genes of different families, say a and 
p. A random choice of a for duplication results in three genes: a, (J and a'. In the next round, 
when selecting a gene for duplication one has a two-thirds chance of selecting a gene from gene 
family a and one-third of selecting family p. The odds have turned in favor of the larger gene 
family. Thus, when randomly selecting a gene from a growing set, one is essentially invoking 
the principle of preferential attachment. 

The second major issue in modeling GFS distribution is the origin of new gene families. 
Where do new gene families come from? One opportunity for generating new families is by 
importing them. Horizontal transfer is a dominant force in microbial genome evolution ' 
and two models have modeled this kind of ^innovation ^ or *flux'̂  to capture this. However, a 
new family, although horizontally transferred, must have evolved somewhere and a model must 
allow for this if it is to be general. 

An intuitive mechanism for generating new gene families is to evolve them from old 
families. Such instances are ubiquitously identified in the protein world (see the Interpro data
base). ̂ ^ For example, Type II EGF-like signatuie domains and EGF-like calcium-binding 
are two distinct types of protein domains, yet their sequences testify to their strong bond through 
an EGF-like domain ancestor. Such an origin for gene families can be modeled by specifying 
a threshold of similarity beyond which a pair of genes are considered members of distinct 
families. In oiu own model,^ the time steps correspond to a mutation added to a randomly 
selected gene. As a simulation proceeds, mutations add up and consequently form novel fami
lies. Table 1 smnmarizes some features of the published models regarding the GFS distribution. 
In contrast to the universally accepted mechanism of duplication and (almost universally ac
cepted) preferential attachment, the models differ in their mode of innovation. 

What have we learned from the models? Although, the modeling of gene family sizes as a 
stochastic process of duplications and modification seems at first sight intuitive it actually 
corresponds to genomic heresy. A gene may spawn off a large family simply because it is lucky 
in a series of duplications and then by its sheer amount has the odds in its favor to duplicate 
further. In other words, the model seeks to explain family sizes without invoking positive 
selection. One may argue that selection is implied but this does not seem compatible with 
the models. If the duplications are nonrandom but skewed in the form of some probability 
function of gene duplication other than a uniform distribution, the model's predictions are 
drastically altered. 

Is the lack of positive selection in the models indicative of the difficulty involved in mod
eling it? In other words, are the models not unlike Nasruddin looking for the keys he lost in his 
house under the lamppost where there is more light. Or perhaps, are neutral forces actually 
shaping the GFS distribution? 

Comparative Deconstruction of the Gene Family Sizes Distribution 
While the GFS power-law distribution within a genome has received substantial atten

tion, less research has focused on the lineage specific differences of gene families. As shown 
here in Figure IC, a power-law also relates the gene family size of orthologs across genomes. 
This means that when examining the sizes of a gene family across the genomes, the most 
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Figure 2. Gene family sizes distribution of orthologs of £*. colt K12 singletons in 17 microbial genomes 
with over 3,000 genes in COGs. Organisms are abbreviated as in COGs: Mac= Methanosarcina acetivorans 
str.C2A; Sce= Saccharomyces cerevisiae\ Nos= Nostoc sp. PCC 7120; Cac= Clostridium acetohutylicum\ 
Bsu= Bacillus subtilis\ Bha= Bacillus halodurans\ Ecz= Escherichia coli 0157:H7 EDL933; Ecs= Escherichia 
coliO 157:H7; Ype= Yersinia pestis\ Sty= Salmonella typhimurium LT2; Vch= Vibrio cholerae\ Pae= Pseudomo-
nas aeruginosas Rso= Ralstonia solanacearum\ AXM= Agrobacterium tumefaciens stT2xn C58 (Cereon); Sme= 
Sinorhizobium meliloti; Mlo= Mesorhizobium loti; Ccr= Caulobacter vibrioides. 

probable gene family size is one, although the gene family can grow particularly large in a few 
genomes. This is a surprising result since gene families are expected to have a characteristic size. 
However, since the distribution shown in Figure IC is a cumulative histogram for all families, 
its resolution is too low to offer conclusive insight into the evolution of gene families. 

A better view of the fate of orthologous gene families across other genomes comes from an 
'orthology' deconstruction of the GFS power-law distribution for a given genome. There are 
1,513 singletons (genes of family size = 1) in £. coli K12 that are also found in other known 
genomes. What is their family size in those other genomes? If one conceives that genes without 
paralogs are genes with inherently less potential in spawning a gene family, it is expected that 
the orthologs should also appear as singletons in other genomes. Strikingly the family sizes of 
these genes are power-law distributed across all genomes (though more noticeably in larger 
genomes) (Fig. 2). In other words, singletons in one genome may be found as large families in 
other genomes. Furthermore, the families of largest size is not fixed but varies greatly among 
the phyla. 

The behavior of E. colts genes across phyla correlates with the size of the gene families 
examined. Figure 3A shows the deconstruction of the E. coli K12 GFS distribution as reflected 
by its orthologs in the genome of Nostoc spp PCC 7120. The same distribution is not observed 
for all of E. colics family size although its power-law nature appears coherent until family size 
four. With increasing gene family size, the slope of the distribution flattens until it becomes 
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Figure 3. Orthology deconstruction of the E. coli K12 gene family size distribution. A) Each caption shows 
the GFS distribution in the bacteria Nostoc spp PCC 7120 genome of the orthologs of £". coli singletons, 
doublets, triplets, quadruplets, quintuplets, and sextuplets and greater, respeaively. B) The same as in A for 
E. fo//strain K12 deconstructed onto strain Ol57:H7. 

nearly uniform at gene family size six and larger. The change in distributions with increasing 
family size can be unmistakably attributed to selection. That is, larger gene families in E. coli 

also tend to be of larger family sizes in other genomes because of the inherent properties of the 
gene to be advantageous as part of a larger family. 

The situation appears different for genomes of closely related organisms. Figure 3B shows 
the deconstruction of ^ . coli K12 G N F distribution against another strain, E. coli 0 1 5 7 : H 7 . 
These distributions differ markedly and can be characterized as normal distributions. Future 
work coidd be directed at estimating the strength of natiual selection upon duplications from 
such distributions. 
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To summarize, knowing a gene family size in one genome actually confers very little pre
dictive power about its size in a distant organism. Collectively, the results suggest a comprehen
sive model for the GFS distribution. As the simulations summarized in Table 1 suggest, neutral 
forces may be responsible for the persistence of the shape of the GFS distribution as exempli
fied by the distribution of a genome's singletons abroad. A smaller fraction of genes actually do 
depend on the size of the family and these receive special care from positive selection. As the 
sizes of these genes (family size > 6) tend to be uniformly distributed they might only shift the 
amplitude of a power-law distribution set by selectively neutral duplications. Thus, overall, 
neutral duplications may lend the GFS distribution its distinctive shape. 

Pleiotropy -> Duplication -> Subfunctionalizatioti 
The main sticking point of the models is the absuaction from the genes, modeled as 

anonymous entities. It is difficult to imagine that any gene in the genome can be duplicated 
and that the duplicate survives with equal probability. After all, survival is conditioned upon 
the probability of the duplicate finding a new fiinction which presumably should vary gready 
among genes. Such a mode of thought descends from Susumu Ohno who postulated that 
novel ftmctions begins with the genomic redundancy that follows a gene duplication event. 
The duplicated gene, freed from the 'policing' of selection, can then evolve freely and either 
adopt a new ftinction that earns its keep in the genome or degenerate into a pseudogene. 
However, recendy a flurry of research has suggested that Ohnos model of new-functionalization 
requires revision with important implications for the GFS model. 

The main incongruity with Ohno's predictions and reality as reflected by the genome 
sequences is the fraction of duplications that survive and are maintained in the genome."^ '̂̂  
Although Ohnos prediction calls for a vast number of pseudogenized duplications, unaccounted 
for are a substantial fraction of duplicate survivors. What could explain their survival? A par
ticularly persuasive model has been put forth which may shed light on this. Its starting point is 
that genes tend to have numerous functions each. This is supported by metabolic networks, 
protein-protein interaction networks,^^ gene expression data, and transcriptional regiJation 
networks. Consequendy, it is conceivable that, following a duplication event, degenerate 
mutations which normally would be purified by selection, would become accessible in light of 
the duplicate's backup. Certain series of such mutations can be envisaged that yield a situa
tion where the duplicates are no longer completely redundant and that both are necessary to 
carry out the original ftinction.^^ In other words, the original gene's function has been 
subfunctionalized by the duplicates. 

A simple way to picture subfunctionalization is to imagine a gene's functional profile 
encompassing, for example, its context of expression, its protein-protein interactions, the chemi
cal reactions that it aids in catalyzing and so forth (Fig. 4B). A mutation, for instance, in the 
promoter of a gene may disable its expression under a certain condition for which its transcrip
tion has been selected. Such a mutation can still rise to fixation by genetic drift because its 
duplicate acts as a backup. If an additional mutation disables another condition in the dupli
cate and rises in frequency to fixation, under the same logic, the two have now become 
subftinctionalized (Fig. 4A). Thus, a duplicate may avert pseudogenization if the pair manage 
to subfunctionalize. What is particularly convincing about this model is its complete indepen
dence of positive selection—only purifying selection is required to keep the two in survival.'̂ '̂̂ ^ 

The notion of widespread pleiotropy along with the subfunctionalization model en
ables a simple explanation for the neutral forces that may drive neutral proliferation of gene 
families. Interestingly, the notion of subfunctionalization leads to a new model for 
neo-ftinctionalization. Susumu Ohno had envisaged that the main problem involved in evolv
ing a novel function is simultaneously maintaining the old. Genetic redundancy appeared 
the perfect solution to this conundrum. However, as evidence spills forth that genes are 
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Figure 4. Subfiinaionalization following gene duplication. A) Gene 7C undergoes duplication becoming 
genes a and p. B) Functional profiles of genes 71, a, and p where each box represents a possible function (such 
protein-protein funaion with protein y), the square is black if the gene carries out the specific fiinction. A 
series of degenerating mutations can 'knock-out' a fiinction until neither gene a or p is redundant and are 
both required to carry out the fiinction originally carried by 7C. Based upon the model of Force et al. 

fundamentally pleiotropic, a picture emerges that neo-functionalization may generally occur 

before duplication 31-33 [ily later to specialize by subfiinctionalization. A schematic of this 

process is shown in Figure 5. 
In the past few years, genomics has witnessed the rise of a view which encompasses the 

force of neutrality, alongside selection and in particular the fine interplay between them (see for 
example, refs. 34-37). There is no question that Mo too Kimura and King and Juke's neutral 

Figure 5. Alternative paths to neo-functionalization. As in Figure 4, circles represent genes. Solid arrows 
represent neo-fimctionalization and dashed lines represent gene duplication. The traditional Ohno 
model postulated that gene duplication precedes neo-fijnctionalization—the screwdriver fiinction evolves 
from the hammer fiinction following its duplication. An alternative model attractive in light of the 
pleiotropy of genes suggests that neo-fiinctionalization occurs in addition to existing fiinctions. These can 
then subfiinctionalize (see Fig. 4) following gene duplication. 
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mutation theory^ '̂̂ ^ now forms an integral way in which genomes are interpreted. The evolu
tion of gene families has been well studied in the field of population genetics. Here, the 
GNF distribution was studied and it has been argued that a neutral process plays a dominant 
role in its shape. Similarly, Wagner has suggested that the global structure of the protein-protein 
interaction network may be explained by a simple algorithm of duplication and removal of 
interactions without invoking selection. On the local scale, the effects of natural selection can 
be detected by the occurrence of network motifs. However, one may conjecture that a 
large-scale phenomena like the power-law so pervasive in biology, is the hallmark of neutral 
forces. 
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CHAPTER 14 

Scaling laws in the Functional 
Content of Genomes: 
Fundamental Constants of Evolution? 

Erik van Nimwegen* 

Power Laws in Genomic Quantities 

A few years ago it was noticed that the distributions of gene-family sizes in fiilly-sequenced 
genomes follow power-law distributions.^''^ Since then different authors have shown 
that there is in fact a large array of genomic features that show power law distributions. 

Almost all of these concern the distributions of genomic features within a single genome. For 
instance, it is shown in reference 3 that the number of genomic occurrences of DNA words, 
protein folds, superfamiUes, and families all follow power-law distributions. Power-law distri
butions are also found in the structure of the 'protein universe'; the number of protein families 
per fold is power-law distributed, and so is the number of different assigned biological func
tions per fold. Power-laws also appear in the structure of cellular interaction and regidatory 
networks. For example, the number of genes that a given gene interacts with is power-law 
distributed. This holds both when one defines 'interaction' between genes on the level of the 
proteins that they encode^'^ or if one defines it at the level of coregulation of the expression of 
the genes.^ The experimental data on transcription regulatory networks is rather incomplete 
but they also suggest that the number of genes regulated per transcription factor might have 
power-law tails. ' Finally, power-laws also appear in cellular metabolic networks; the number 
of substrates that any given substrate interacts with is power-law distributed.^ '̂̂ '̂  

Comparing Genomic Features across Genomes 
Note that almost all the power-law distributions just mentioned refer to statistics that are 

taken over a single genome or cellular network. The statistics of genomic features across ge
nomes has been much less (if at all) investigated. To a large extent this may be because until 
recendy there simply weren't enough fully-sequenced genomes to obtain meaningful statistics 
across genomes. However, this situation is changing rapidly. 

There are currendy about 150 fiilly-sequenced microbial genomes in genbank and this 
number appears to grow exponentially as I have shown in reference 13. 

Figure 1 shows an updated plot of the number of fully-sequenced microbial genomes as 
a function of time (see Methods section). The current number of available microbial ge
nomes is only large enough to allow for meaningful cross-genome comparisons of the most 
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and Georgy P. Karev. ©2006 Eurekah.com and Springer Science+Business Media. 
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Figure 1. The number of fuUy-sequenced microbial genomes submitted to the genbank database as a 
function of time (in years). The vertical axis is shown on a logarithmic scale. The black line is the least-square 
fit to an exponential, n = 2<<^-'^'^^-^)i'-^^ 

basic statistics of gene-content and organization and this is what I will focus on in this 
chapter. However, the exponential fit in Figure 1 predicts that the number of sequenced 
genomes doubles roughly every 17 months. This implies that by 2010 we may have as many 
as 3000 fully-sequenced microbial genomes available. It is therefore clear that much more 
detailed comparative genomic analyses than the ones presented in this chapter will become 
possible over the next decade. 

In reference 131 compared the number of genes in high-level functional categories across 
all sequenced genomes and showed that they follow power-laws as a function of the total num
ber of genes in the genome. In this chapter I will recapitulate these results and augment them 
in several ways. In particular, I have extended the analysis to all functional categories that are 
represented by at least 1 gene in each bacterial genome and have recalculated the observed 
exponents based on the latest genomic data. Second, I will go into more detail regarding the 
implications of the observed scaling laws for the general organization of gene-content across 
genomes and discuss an evolutionary model that relates the observed scaling behavior in gene 
content to fundamental constants of the evolutionary process. Finally, I will discuss theoretical 
explanations for the category of transcription regulatory genes which shows approximately 
quadratic scaling with the total number of genes in the genome. 

Scaling in Functional Gene-Content Statistics 
To count and compare the number of genes in different functional categories for all se

quenced genomes one needs to first define a set of fiinctional categories and then annotate all 
genomes in terms of these functional categories. I used the biological process hierarchy of the 
Gene Ontology to define fiinctional categories, and Interpro annotations of fiilly-sequenced 
genomes to associate genes with GO categories. The details of the annotation procedure are 
described in the Methods section. The result is a count of the number of genes associated with 
each of the GO categories in the biological process hierarchy for each of the sequenced genomes. 

The set of genomes in this study consists of 116 bacteria, 15 archaea, and 10 eukaryota. In 
this chapter I will focus solely on the bacterial data since this is the only kingdom for which 
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Figure 2. The number of genes involved in (uper panel) signal transduction (red), carbohydrate metabo
lism (blue), and DNA repair (green), and (lower panel) any biological process (blue), transcription 
regulation (red), and protein biosynthesis (green) as a function of the total number of genes in the genome 
that have any functional annotation at all. Each colored dot represents the counts for a single genome. 
Both axis are shown on a logarithmic scale. The straight lines show power-law fits: (upper panel) n = 
0.000015/-^^ (red), n = 0 .063 / ^̂  (blue), n = 0.37/"^^^ (green), and (lower panel) n = 0.000095/ ^̂  
(red), n = 0.92/-^^ (^lue), and n = 30.8/^^ (green). 

there is sufficient data to obtain meaningful statistics. The reader is referred to reference 13 for 
a discussion of the observed scaling laws in archaea and eukaryota. 

There are 154 GO categories in the biological process hierarchy that have at least 1 asso
ciated gene in each of the 116 bacterial genomes. I will refer to these categories as the *ubiqui-
tous' categories. The results for a selection of 6 of these ubiquitous GO categories are shov^n in 
Figure 2. The figure shows the dependence of the number of genes in each category on the total 
number of genes with annotation in the genome. 
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Figure 3. The 99% posterior probability intervals for the scaling exponents of a selection of functional 
categories. The functional categories are indicated on the left of each bar and the dark section of the bar 
indicates the 99% posterior probability interval for the exponent of that category. The categories are ordered 
from top to bottom by increasing lower-bound of the posterior probability interval. 

The upper panel shows the categories "signal transduction" (red), "carbohydrate metabo
lism" (blue), and "DNA repair" (green), while the lower panel shows the categories "transcrip
tion regulation" (red), "biological process" (blue), and "protein biosynthesis" (green). Each 
dot represents the counts in a single bacterial genome and both axes in Figure 2 are shown on 
a logarithmic scale. Note that in reference 13 a similar plot was shown but with the horizontal 
axis representing the total number of genes rather than the total number of annotated genes. 
Since the total number of annotated genes is to a very good approximation proportional the 
total number of genes, the results are virtually identical whether one uses the total number of 
genes or the total number of annotated genes. I decided to use the total number of annotated 
genes on the horizontal axis in Figure 2 partly to illustrate this fact. In addition, the genome 
size in bacteria is also to a very good approximation proportional to the total number of genes 
in the genome. Thus, if we had used the genome size instead of the number of annotated 
genes on the horizontal axis Figure 2 would again have looked virtually identical. 

The dots of each color in Figure 2 fall approximately on a straight line. Thus, the loga
rithms of the number of genes ŵ  in a category c and the total number of genes ̂  (or the number 
of annotated genes or the genome size) are approximately linearly related: 

log(«,) = a,log(^)-h^, (1) 

In other words, the number of genes ric in a category increases as 2Lpower-law in the total 
number of genes g. 

nc=Kg"- (2) 

For the 6 functional categories shown, the exponents of the best power-law fits are 
indicated in the figure caption. The fits were obtained using the procedure described in the 
Methods section. The exponents range from a = 0.16 for protein biosynthesis to a = 1.95 for 
signal transduction. 

To further show the range and variation of the observed exponents Figure 3 shows the 
inferred exponents and their 99% posterior probability intervals for a selection of 20 func
tional categories. 
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The exponents range from close to zero to roughly 2. Note that, for a category c with 
exponent Oc the relative proportion p^ of genes in the genome scales 2iSpc = K^'^- That is, 
when ac < 1 the proportion of genes in the category will decrease with genome size, while for a^ 
>1 the proportion of genes in the category will increase with genome size. Thus, for a category 
c with exponent close to 2, the proportion pc will increase almost linearly with genome size. 
The behavior of different categories thus ranges from categories where the number of genes is 
almost constant with genome size (a^« 0), to categories where the proportion of genes in the 
genome increases linearly with genome size (a^« 2). 

The general picture that emerges from Figure 3 is that the proportion of genes in essential 
low-level functional categories such as protein biosynthesis and DNA replication decreases 
with genome size, whereas the proportion of genes that play regulatory roles such as genes 
involved in signal transduction and transcription regulation increases approximately linearly 
with genome size. In between these extremes is a number of categories, including different 
metabolic functions, for which the exponent is roughly 1, indicating that the genomic percent
age of genes in these categories is roughly independent of genome size. 

Upper Bound on Genome Size 
The observed quadratic scaling of the number of regulatory genes with the total number 

of genes in the genome obviously cannot extend to arbitrarily large genome sizes. If we extend 
the red curves, corresponding to "transcription regulation' and "signal transduction", in Figure 
2 to the right, we will eventually reach a point where the number of signal transducers and 
transcription regulators would be larger than the total number of genes in the genome and this 
is obviously impossible. Thus, if all bacterial genomes obey the relations indicated in our fig
ure, there must be an upper bound on bacterial genome size. A naive upper bound is obtained 
by demanding that the number of genes in any category is less than the total number of genes 
in the genome, i.e., ric = Xc^' < g. If one substitutes the values of the fits for transcription 
regulation into this equation one obtains an upper bound of approximately ̂  < 70000 genes. A 
tighter upper bound is obtained when one demands that ŵ  cannot increase by more than 1 
gene when g is increased by I gene, i.e., ^^(^+1)"' < A^^"' +1 .* One then obtains an upper 
bound of ̂  < 34000 when the values for transcription regulation are substituted. In reference 
15 an upper bound is derived by assuming that the number of genes involved in transcription 
regulation has to be less than half of the genome size, i.e.Wf < ^/2.With our fit this leads to an 
upper bound of about ^< 30000. 

It is clear that all these upper bounds substantially overestimate the approximately 10000 
genes of the largest observed bacterial genomes and that a more realistic theory is needed to 
plausibly explain the apparent size constraint on bacterial genomes. In this regard it is also 
interesting to note that in all the upper bounds just proposed, the proportion of genes that are 
transcription regulators is at least 50% at the maximal genome size, whereas the percentage is at 
most 11% in the currendy sequenced bacterial genomes. 

Consequences for the Topology of the Transcription Regulatory Network 
The approximately quadratic scaling of the number of transcription regulatory genes 

also has some interesting consequences for the structure of the transcription regulatory net
work as a function of genome size. The class of transcription regulatory genes consists for the 
most part of DNA-binding transcription factors that regulate transcription through the bind
ing to specific regulatory motifs in intergenic regions. We can imagine the transcription 

* Note that in principle nothing keeps a genome from increasing «<- by more than 1 gene when g is increased 
by 1 gene. That is, some genes in other categories than c may be removed and replaced by genes in category c. 
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regulatory network by a set of arrows pointing from each of the regulators to each of the 
genes that they regulate. The total number of arrows in this network for a genome of size g is 
the product of the number of genes primes the average number of incoming arrows per gene 
(r(^)), i.e. (r(^)) represents the average number of different regulators regulating each gene in 
a genome of size g. Note that we can also write the total number of arrows as the number of 
transcription factors « ^ ) i n a genome of size ̂  times the average number of genes (w(^)) that 
each regulator regulates. We thus have 

where the equation on the right follows from the quadratic scaling of the number of 
regulators: «^(g)oc^.To elucidate what the equation on the right implies, let us consider what 
follows if we assume that either (w(g)) = constant or (r(g)} = constant. In the first case the 
average number of genes regulated per transcription factor, i.e., the regulon size, is indepen
dent of genome size. In that case the average number of different transcription factors (r(g)) 
regulating each gene must be increasing linearly with genome size, i.e.,(r(^))o<: .̂ If on the other 
hand (r(g)} were constant with genome size, then the average regulon size («(g)) should be 
decreasing with genome size, i.e, {n(g))oc\lg. Between these two extremes there is a continuum 
of solutions where (r(g)) increases more slowly, and {n(g)) decreases more slowly, but such that 
stUl<r(g))/<«(g))«^. 

There is currendy very litde data to decide if real regulatory networks are closer to the 
limit where {r(g)) increases linearly, or closer to the limit where {n(g))oc\lg. One piece of indi
rect evidence is the dependence of the number of operons and the amount of intergenic region 
on genome size. If the average number of transcription factors (r(g)) regulating each gene were 
to increase with genome size, then one might expect that, as genome size increases, the average 
operon size should decrease and that the amount of intergenic region per gene should increase. 
It is of course a nontrivial task to identify the number of operons from genome sequence alone. 
However, as a proxy we may consider runs of consecutive genes that are located on the same 
strand of the DNA (see re£ 16 for a method of estimating operon number using this statistic). 
Since all genes in an operon necessarily have to be transcribed in the same direction, a decrease 
in operon number would likely be reflected by a decrease in the average length of runs of 
consecutive genes on the same strand. Figure 4 (upper panel) shows this average length of 
iso-strand genes as a function of genome size for all bacterial genomes that are currendy in the 
NCBI database of fiilly-sequenced genomes. 

The figure suggests a slight decrease of the length of these runs, consistent with what 
was reported in reference 16, but there is a large amount of variation and the trend is far 
from convincing, i.e,r^=0.23 under simple regression. Note also that the drop in operon size 
is at most a factor of two between the largest and smallest genomes, while total gene number 
increases almost a factor of 20. The lower panel shows the average number of intergenic bases 
per gene as a function of the total number of genes in the genome. In this case a correlation 
between genome size and the amount of intergenic region is completely absent, i.e, r^ = 
0.0005.Thus these two statistics provide little evidence that {r(g)) increases substantially 
with genome size. However, one cannot exclude the possibility that in small genomes a large 
proportion of genes is not transcriptionally regulated at all, and that as genome size increases 
this proportion drops dramatically. This would still lead to a substantial increase of {r(g)) 
with genome size. It does seem plausible, however, that larger genomes may have a larger 
number of'specialized' regulons that typically regulate a smaller number of genes compared 
to the more general regulators that one expects to find in all organisms, and that {n(g)) thus 
decreases with genome size. 



242 Power Laws, Scale-Free Networks and Genome Biobgy 

1 

G 
2 6 
<D 
C 
<U 
00 

• o 

i 5 
</) 
o 
c« 

^ 4 

</5 

3 

350 

iU 

g 300 
bO 

H. 
S 250 
*Sb 
2̂  
•1 200 

p*̂  
.5 150 

100 

' • ~ 

• 
• 

• 
• 

• • 

••• 

• 

/ • 

• 
* 

• 

* • *'• 
: . 

• • • 

«** * ' • 

• • • 

2 0 0 0 

• 

• 

• % • 

. • ; • ' - • 
•*• *• 

• • : . . '• 
• * • • • • % ^•t 

^ 

• , 

2000 

• • • 
• 

. •« \ . * • : 

4000 6000 
number of genes 

, 

• • 
, 

^ • 
• • • 

• • • • 
• • • • • • • • « • 

• * *• • • •• • . 

4000 6000 
number of genes 

' •• 1 

8000 

• 

• 

• 
8000 

Figure 4. The average length of runs of genes that are transcribed from the same strand (upper panel) and 
the average number of intergenic bases per gene (lower panel) as a funaion of the total number of genes in 
the genome. Each dot corresponds to a bacterial genome from the NCBI database. 

Qualiiy of the Fits 
The power-laws observed in Figure 2 are observed for the large majority of the 154 ubiq

uitous functional categories. I assessed the quality of the power-law fits by a measure F that 
measures the fraction of the variance in the data that is explained by the power-law fit (see 
Methods). Figure 5 shows the cumulative distribution of F for all 154 ubiquitous functional 
categories. 

As can be seen from Figure 5 about two thirds of the categories have more than 90% of the 
variance explained by the fit. More than 95% of the categories have more than 80% of the 
variance explained by the fit. We thus see that most ubiquitous fiinctional categories follow 
scaling laws like the ones shown in Figure 2. 
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Figure 5. Cumulative distribution of the quality of the power-law fits for the 154 ubiquitous functional 
categories. The horizontal axis shows the fraction /"of the variance in the data explained by the fit, and 
the vertical axis shows the percentage of categories that have at least a fraction î of their variance explained 
by the fit. 

Principle Component Analysis 
Instead of considering the scaling behavior of one functional category at a time, we can 

consider all functional categories at once. We can consider a 154-dimensional 'function space' 
in which each axis represents an ubiquitous functional category, and represent the Afunctional 
gene content' of a genome by a point in this 154-dimensional space. That is, if we number the 
categories 1 through 154, and ric is the number of genes in category c, then n = («i,«2v.,«i54) 
represents the functional gene content of the genome as a point in the function space. The set 
of all sequenced genomes thus forms a scatter in this function space. 

We can now ask what the shape is of this cloud in function space. To do this, it is conve
nient to again consider all axes on logarithmic scales. That is, we consider the scatter of points 
3c with Xc = log(«c)-The results in the previous section showed that, to a good approximation, 
almost all functional categories obey the linear equations 

x , = a , l o g ( ^ ) + j8, (4) 

where ̂  is the total number of genes in the genome. If this equation were to hold exactly for all 
categories, then the niunbers Xc and x̂ -, for any two categories c and c\ would also be linearly 
related: 

CCc ^ o etc r. 
Xc = Xc' +Pc Pc' (5) 

Thus, the statement that equation (4) holds for all categories is equivalent to the state
ment that the scatter of points in function space falls on a straight line. Of course, since equa
tion (4) holds only approximately for each category, the scatter of points falls only approxi
mately on a line. To illustrate this Figure 6 shows three projections of the scatter of points onto 
three-dimensional subspaces each representing three functional categories. 
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That is, each of these three figures shows the scatter of points with respect to only three of 
the 154 axes. The functional categories that were used for the projections are indicated in each 
of the plots and in the caption. As can be seen, the scatter of points indeed approximately falls 
on a straight line in each of these projections. 

The extent to which the scatter of points falls on a line can be quantified most directly 
using principle component analysis.^'' In principle component analysis one aims to represent 
a scatter of points in a high-dimensional space by a scatter in a much lower dimensional 
space. To this end it finds an ordered set of orthogonal coordinate axes in the ^-dimensional 
space that have the property that, for any m<n, the sum of the squared distances of the data 
points to their projections on the first m axes of the coordinate system is minimized (i.e., no 
set of w axes has a lower sum of squared distances). That is, the first principle axis is chosen 
such that the average squared-distance of the data points to this axis is minimized. The 
second principle axis is chosen such that the average squared-distance of the data points to 
the surface spanned by the first and second principle axis is minimized. And so on for the 
further principle components. 

The ability of this coordinate system to represent the scatter of points is again measured 
by the fraction of the variance in the data that is captured by consecutive axes. For the scatter of 
116 bacterial genomes in the function space of 154 ubiquitous categories, the first principle 
axis captures 22% of all the variance in the data. The second principle axis captures 6% of the 
variance, the third 5% of the variance, etcetera. Thus, the amount of variance explained drops 
sharply between the first and second principle axis. After that, the amount of variance ex
plained by the data decreases smoothly, dropping between 5 and 10 percent between consecu
tive axes. As many as 55 axes are needed to cover 95% of the variance in the data. These 
statistics suggest that only the first principle axis captures an essential characteristic of 
gene-content in bacterial genomes. Once this largest component of the variance is taken into 
accoimt, one needs almost as many dimensions as there are genomes to explain the remaining 
variance in gene-content. 

Table 1 summarizes the statistics of the first three principle axes. Each of the axes is a 
vector 2 whose direction in function space is reflected by the relative sizes of the components 
Uc. In the leftmost column of Table 1 I have listed, for each axis, the 4 categories with the 
highest components Uc and the 4 categories with the lowest components Uc (redundant cat
egories were omitted). The values of these components Uc are shown in the second column. 
The projection of all genomes onto one of the principle axes gives another vector v where Vg 
is the component of genome g in the direction of the principle axis. The third column in 
Table 1 shows, for each principle axis, the 4 genomes with the highest components and the 
4 genomes with the lowest components Vg. The components themselves are shown in col
umn 4. These first three principle axes are also indicated as the red, blue, and green lines in 
Figure 6. 

As can be easily derived from equation (4), the components ^̂  of die first principle axis 
correspond precisely to the inferred exponents of Figure 3. Thus, the entire collection of scaling 
laws is summarized by this single vector. In summary, a large fraction of the variation in func
tional gene-content among all bacterial genomes can be summarized by a single vector 2 which 
encodes how the numbers of genes in different functional categories increase and decrease as 
the total size of the genome varies. That is, as the genome size increases or decreases the num
bers of genes in each functional category c increase or decrease as ̂ " .The vector 2 thus reflects 
a hdisic Junctional architecture of gene-content that holds across all bacterial genomes. 

The meaning of the second and third principle axis is less clear, and given that they only 
capture a relatively small amount of the variance it is not clear that they are very meaningful at 
all. For both these axes the genomes at the extremes tend to be small parasitic organisms. This 
suggests that these axes may reflect different types of parasitic lifestyles. 
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Table 1. Summary of the first three principle axes 

Top and Bottom Categories 

cell communication 
signal transduction 
regulation of transcription 
electron transport 

hydrogen transport 
protein biosynthesis 
ATP metabolism 
rRNA modification 

Comp. 

First 

1.91 
1.91 
1.88 
1.46 

0.25 
0.17 
0.10 
0.06 

Principle 

Second Principl 

Top and Bottom Genomes 

Axis 

Streptomyces coelicolor 
Streptomyces avermitilis 
Bradyrhizobium japonicum 
Rhizobium loti 

Buchnera aphidicola 
Mycoplasma pneumoniae 
Ureaplasma parvum 
Mycoplasma genitalium 

e Axis 

Comp. 

0.15 
0.14 
0.14 
0.14 

-0.19 
-0.22 
-0.24 
-0.24 

porphyrin metabolism 0.28 
fatty acid metabolism 0.20 
carboxylic acid biosynthesis 0.19 

heterocycle metabolism 0.14 

Mycobacterium leprae 0.16 
Prochlorococcus marinus 0.16 
Wigglesworthia glossinidia 0.16 
brevipalpis 
Candidatus Blochmannia 0.15 
floridanus 

DNAalkylation -0.16 
epigenetic regulation of gene -0.17 
expression 
nucleoside metabolism -0.17 
aspartyl-tRNA aminoacylation -0.17 

Mycoplasma penetrans 
Borrelia burgdorferi 

Ureaplasma parvum 
Mycoplasma pulmonis 

-0.22 
-0.22 

-0.22 
-0.3 

Third Principle Axis 

protein secretion 0.31 
cell communication 0.15 
signal transduction 0.13 
DNA dependent DNA replication 0.09 

amino acid biosynthesis -0.16 
ribonucleotide metabolism -0.17 
purine nucleotide metabolism -0.18 

ATP metabolism -0.18 

Borrelia burgdorferi 0.46 
Chlamydia trachomatis 0.26 
Treponema pallidum 0.23 
Chlamydia muridarum 0.23 

Streptococcus pneumoniae -0.13 
Prochlorococcus marinus 0.14 
Wigglesworthia glossinidia -0.15 
brevipalpis 
Candidatus Blochmannia -0.19 
floridanus 

Each principle axis is a vector a in function space with component ac the component of the vector in 
direction of category c. For each principle axis the 4 categories with the highest, and 4 categories with 
the lowest ac are shown (omitting redundant categories) in the leftmost column. The second column 
shows the a^ The location of each genome in function space can be expressed as a linear combination 
of principle axes. For each principle axes shown above the 4 genomes with the highest and 4 genomes 
with the lowest components along the axis are shown in column 3, and the values of the components 
of these genomes are shown in column 4. 
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Evolutionary Interpretation 
What is the origin of the scaling laws discussed in the previous sections? In this section I 

will show that the observed scaling laws in fact suggest that there are fundamental constants in 
the evolutionary dynamics of genomes. 

Consider a particular genome with numbers of genes ric in different functional catego
ries c. Consider next the evolutionary history of this genome. With this I mean that the 
current genome can be followed back in time through the life of the cell the genome was 
taken from, through the cell division that produced it, through the life of its ancestral cell, 
and its ancestors, and so on. In this way the history of the genome can be traced back all the 
way to an ancestral prokaryotic cell from which all currently existing bacteria stem. During 
this evolutionary history the numbers ric have of coursed increased and decreased in ways 
that are unknown to us. That is, there are (unknown) functions of time ricijh that describe 
the evolution of the numbers of genes in each category c in the genome under study. Simi
larly, there will be a function ^i) that describes the evolutionary history of the total number 
of genes in the genome. 

One can now ask what constraints the functions ^i) and ricif) should obey such that the 
observed scaling laws hold. To this end it is convenient to write the dynamics of «f(̂ ) and^^) in 
terms of effective duplication and deletion rates. That is, we write 

and 

^ = &(t)g(t)-8(f)g{f)^p{t)g{t) (7) 

In these equations, jS^ )̂ is the (time-dependent) average duplication rate of genes in 
category c, ̂ {i) is the average duplication rate of all genes, dc(i) is the average deletion rate of 
genes in category c, and 5(f) is the average deletion rate of all genes. I have also defined the 
differences of duplication rates and deletion rates as Pc{f) and p(f). Notice that, since in the 
above equations pff) and p(f) can be arbitrary functions of time, any time-dependent func
tion can still be obtained as the solution of the above equations. Formally solving these 
equations we obtain 

and 

n,{t) = «,(0)exp ]p,{T)dT = n,{0)exp{{p,)t) (8) 

g{t) = ^(0)expf jp(TyT J = ^(0)exp((p)f) (9) 

where I have written the integrals as the time averages of p,. and p times the total time t. Note 
that these averages are a function of the evolutionary history of the genome under study. If we 
now express ndt) in terms of ̂ ^) we obtain 

Note that, although this equation may appear to already imply the general scaling rela
tions that were found, in fact it is completely general and holds for any set of evolutionary 
histories ndt) and g{t). The equation is nothing more than a way of rewriting the relation 
between ndt) and g{t) in terms of the averages (p^) and (p) of this genome s history. 
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Common ancestor genome 

Genome 1 Genome 2 Genome 3 Genome 4 Genome 5 

Figure 7. Example of the evolutionary histories of 5 genomes. Each leaf (ball) represents a genome. Each 
white ball corresponds to a common ancestral genome of two or more of the genomes. The root of the 
tree is the common ancestor genome of all 5 genomes. Each arrow represents the evolutionary history of 
a genome. 

The observed scaling relations only follow from (10) if the same equation holds for all 
genomes. That is, if the variables «c(0), ^ 0 ) and (pr)/(p) are the same for all evolutionary 
histories. This requirement is illustrated in Figure 7. 

The figure shows the evolutionary histories of a set of genomes in a phylogenetic tree. 
Each leaf of the tree represents one of the bacterial genomes, and at the root is the common 
ancestor genome of all the genomes at the leafs. We thus have a separate equation (10) for each 
of the genomes at the leafs. The initial numbers wXO)and^O) in each of these equations are just 
the numbers of genes in category c and in the whole genome of the common ancestor, and it is 
therefore clear that the variables njfi) and ^ 0 ) are indeed the same for all the equations.* 

Much more interesting is the requirement that the ratios {p^Hp) are the same for all 
evolutionary histories. These different evolutionary histories are indicated as colored lines in 
Figure 7. The requirement that {pc)l{p) be equal for all evolutionary histories thus demands 
that if one takes the average of the duplication minus deletion rate of genes in category c over 

* One caveat is that we implicidy assume that ndt) > 0 for all t. A slighdy more complex treatment is needed 
for categories that were not present in the ancestor, or that disappeared and reappeared during the evolu
tionary history of some genomes. 
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the entire evolutionary history of a genome, and divides this by the average dupUcation minus 
deletion rate of all genes in the genome, then this ratio always comes out the same, indepen
dent of what evolutionary history is averaged over. That is, the ratios {p^l{p) are universal 
evolutionaiy constants and correspond precisely to the exponents a^ = {p^l{p) of the ob
served scaling laws. 

So what determines (p^) and (p)? It seems reasonable to assume that the rate at which 
genes are duplicated and deleted mosdy reflects the effects of selection. That is, as a first ap
proximation we may assume that the rate at which duplications and deletions are introduced 
during evolution are approximately the same for all genes but that different genes have differ
ent probabilities of being selectively beneficial when duplicated or deleted. The rate pJJ) is 
then given by some overall rate y at which duplications and deletions are introduced* times the 
difference between the fraction of genes f^(t) in the category that would benefit the organism 
when duplicated and the fraction fc {t) of genes in the category that would benefit the organ
ism when deleted: 

We then have 

^^JP^Aflzf) (12) 
{p) (r-r) 

The fractions fc^{t) and /< (t) of course depend on the selective pressures of the envi
ronment at time t. Thus, as one follows the genome through its evolutionary history, the 
demand for genes of a certain function fluctuates up and down, and this will be reflected in 
the fluctuations oi f^{t) - fc (t). It seems intuitively clear that the size of the fluctuations is 
going to depend strongly on the functional class. That is, one would expect that the de
mand for genes that provide an essential and basic function fluctuates relatively little. For 
instance, one would expect that even as the selective environment changes it is rare that 
existing protein biosynthesis genes become dispensable or that duplicates of these genes 
become desirable. On the other hand, the desirability of transcription regulatory genes and 
signal transducers is going to depend crucially on the selective environment in which the 
organism finds itself It is thus not implausible that, if one averages over sufficiently long 
evolutionary times that the ratio ( / / - fc)t{f^ - f) always reaches the same limit, and that 
this limit is large for highly environment-dependent categories such as transcription regula
tion, and small for environment-insensitive categories such as protein biosynthesis and rep
lication. The main open question that remains is the origin of the precise numerical values 
of the ratios ( / / - fc)l(f^ - f') for different functional categories. 

The Exponent for Transcription Regulatory Genes 
The exponent â . for the category of genes involved in transcription regulation is close 

to 2, with the 99% posterior probability interval running from 1.72 to 1.95. Thus, even 
though the current data suggests that the exponent is slightly less than 2, it is tempting to 
think that the scaling might be simply quadratic. This is especially tempting given that this 
allows one to speculate more easily about the origin of this exponent. That is, it is easier to 
theorize about a quadratic scaling law then about a scaling law with exponent 1.83. Some 

* In reality the rate at which duplications are introduced is unlikely to equal the rate at which delections are 
introduced. We ignore this complication for notational simplicity. The theoretical development with this 
complication would be analogous. 
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theoretical explanations for the quadratic scaling of transcription regulators have recently 
been put forward. ̂ ^ In this section I want to discuss these proposals and contrast them with 
my own suggestions in this regard in reference 13. 

One of the first things that of course come to mind when attempting to explain a scaling 
of the form ŵ  °^S ^^ ̂ ^^^ ^^ ^ genome with g genes, the number of pairs of genes scales 
precisely as ^.That is, there are g{g - l)/2 possible interactions in a genome with g genes. 
Therefore, if one could find and argument that suggests that the number of transcription 
regulators should be proportional to the number of pairs of genes, this would provide an pos
sible explanation. In a recent paper^^ Croft and coworkers put forward two different models 
for the observed quadratic scaling of the number of transcription regulatory genes that both in 
essence argue that the number of regulators shotdd be proportional to the number of potential 
interactions between genes, i.e., the niunber of pairs of genes in the genome. 

Although it is attractive to seek such a simple combinatorial explanation I believe that a 
simple survey of what is known about the regulatory role of transcription factors in bacteria 
shows that such models are in fact highly implausible. If each regulator were to somehow 
'correspond' to one or more pairwise interactions of genes then one would expect that the role 
of most regulatory genes would be to ensure that certain pairs of genes are expressed together or 
to ensure that certain pairs of genes are not expressed together. 

This is, however, not what is observed. To mention just a few known E. coli regulons: the 
factor crp responds to the concentration of cAMP in the cell, and its main role is to make the 
activation of many catabolic pathways conditional on the presence or absence of cAMP. The 
factor lexA responds to single stranded DNA and activates a number of genes that are involved 
in the repair of DNA damage. PurR responds to the concentrations of hypoxanthine and gua
nine and represses a set of genes involved in de novo purine biosynthesis. FadR senses the 
presence of long chain fatty acyl-coA compounds and in response regulates genes that trans
port and synthesize fatty acids. Finally, tyrR responds to the levels of phenylalanine, tyrosine, 
and tryptophan and regulates genes that synthesize and transport aromatic amino-acids. 

In all these cases, the role of the regulator is to sense a particular signal and to respond to 
this signal by activating or repressing a set of genes that implement a specific biological func
tion which is related to the signal. In none of these example does it appear that the role of the 
regulator is to regulate the interactions between pairs of genes. It thus seems that the number of 
different transcription regulators that the cell has is much more a reflection of the number of 
different cellular responses to different environments that the cell is capable of 

In reference 131 provided a qualitative argument for the approximately quadratic scaling 
of the number of transcription regulatory genes. According to equation (12) the average differ
ence ( / / - fc ) between the fractions of transcription regulatory genes that would increase 
fitness when duplicated and those that would increase fitness when deleted is almost twice as 
large as the average difference {f^ ' f ) between the fractions of all genes that would increase 
fitness when duplicated and those that woiJd increase fitness when deleted. This requirement 
will of course be satisfied if both ( / / ) « 2(f^) and (/ , ) ~ 2(/'"). That is, transcription regula
tors are twice as likely to lead to fitness increase when duplicated as average genes, and tran
scription regulators are also twice as likely to lead to fitness increase when deleted. 

I want to suggest that the origin of the factor 2 in these rates is the switch-like function of 
transcription factors. Imagine a gene that has just emerged through a gene duplication. Origi
nally the duplicate will be the same as its parent. At that point, the main change caused by this 
duplication that may affect fitness is a change in the dosage of the gene, i.e., from one to two 
copies. One would expect that the probability for this dosage change to have strong deleterious 
effects is approximately equal for transcription regulators as for genes in general. If the dupli
cated gene is to get fixed in the genome on a longer time scale, then a process of mutation 
and selection should modify the duplicated gene into a gene that increases the fitness of the 
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organism. I suggest that the probabUity for this process to be successful is twice as high in 
transcription regulators as in nonregulatory genes. In nonregulatory genes the only avenue for 
beneficial change is a change in the molecular function of the gene, e.g., a metabolic gene may 
evolve to catalyze a new chemical reaction. Transcription regulators, however, may evolve to 
respond to a signal which the cell was previously insensitive to. They may evolve to affect the 
state of the cell both when this signal is present and when the signal is absent. Since this gives 
twice as many opportunities for a beneficial change, one may expect that there is twice as much 
probability of success. 

A similar argument holds for the rate of deletion. When deleting a nonregulatory gene, 
the cell simply changes to a state without the gene. When a transcription regulator is removed, 
one effectively removes a 'switch' from the genome: the cell becomes insensitive to the signal 
that the regulator responded to. But there are again two 'ways' of implementing this insensitiv-
ity. The genes regulated in response to the signal may be turned constitutively on, or constitu-
tively off. Thus there are two independent ways of removing a transcription factor, and one 
would thus expea the effective rate of transcription factor deletion to be twice the rate of 
deletion of general genes. 

These arguments are of course highly speculative and may well turn out to be incorrect. 
However, they at least seem consistent with what we know about transcription regulation in 
bacteria and the process of evolution through gene duplication and deletion. Note also that 
very similar arguments as the ones just presented for transcription regulatory genes can be put 
forward for the category of signal-transducing genes. These are indeed also observed to scale 
approximately quadratically with genome size. Thus, the argument just presented explains the 
scaling exponent for both the transcription regulation category and the signal transduction 
category. However, I suspect that it will be impossible to come to any solid conclusions regard
ing the cause of the approximately quadratic scaling for transcription regulators and signal 
transducers until we have better data on the genome-wide topology of the transcription regu
latory and signal transduction networks in bacteria of differing sizes. 

Finally, I note that most of the functional categories have exponents that do not appear to 
equal small integers or even simple rational numbers. It is thus clear that simple arguments 
such as the ones discussed above will not be capable of explaining these exponents. What 
determines the average {fc" - fc )/(f^' f ) ^ ^ these categories is a fascinating question that at 
this point is completely open. 

Methods 

The Number of Genomes as a Function of Time 
The data for Figure 1 were obtained by extracting the submission dates of all the microbial 

genomes in genbank at 'ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria' from the 'gbs' file 
for each genome. When there were multiple submission dates the earliest date was taken. The 
logarithm of the number of genomes as a function of time was then fitted to a straight line 
using standard least-square regression. This least-square fit gives the number of genomes n{t) as 
a function of time (in years) as n{i) = 2^̂ '̂ ^̂ '̂̂ ^̂ ^̂ .̂ The exponential provides a reasonable fit, 
i.e. r - 0.98 even though the data clearly suggest a decrease in the rate at which new genomes 
appear for the last 1 to 1.5 years. 

Gathering Functional Gene-Content Statistics 
The numbers of genes in different functional categories for each sequenced genome were 

obtained in the following way. Interpro annotations^^ of fuUy-sequenced genomes were 
obtained from the European Bioinformatics Institute. ̂ ^ Functional categories were taken from 
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the gene ontology biological process hierarchy. A mapping from Interpro to GO-categories 
was also obtained from the gene ontology website. Using this mapping I gathered, for each 
GO-category, all Interpro entries that map to it or to one of its descendants in the biological 
process hierarchy. I then counted, for each gene in each fuUy-sequenced genome and each 
GO-category, the number of Interpro hits h that the gene has to Interpro categories associated 
with the GO-category. A gene with many independent Interpro hits that are associated with 
the same GO-category is of course more likely to be a member of the GO-category than a gene 
with only a single hit. To quantify this, I chose the probability for a gene to be a member of a 
GO-category to which it has h hits to be 1 - exp(-A^), with A = 3. The results presented in this 
chapter are largely insensitive to changes in X (see the discussion in ref 13). 

In this way the number of genes associated with each GO-category in each genome was 
counted. I then selected all GO categories that have a nonzero number of counts in all bacterial 
genomes. There are 154 such ubiquitous GO-categories. I also counted the total number of 
genes that have any annotation at all for each genome. These are defined as genes that have at 
least one Interpro hit. Further discussion of this annotation procedure and its robustness can 
be found in reference 13. 

Power-Law Fitting 
In order to fit the data to power-law distributions I used a Bayesian procedure that is 

described in reference 13. The main advantage of this fitting procedure with respect to simple 
regression is that the results are explicidy rotationally invariant. That is, the best line that the 
fitting procedure produces doesn t depend on the orientation of the coordinate axes with re
spect to the scatter of data points. 

The result is that the posterior distribution P{(x\ D)da for the slope a of the line, given 
the data Z), is given by 

(a^ ^l)^^'^"da 

(a^S^-2(XSy,+Syyy 

where n is the number of genomes in the data, Sxx is the variance in x-values (logarithms of 
the total gene numbers), Syy the variance in y-values (logarithms of the number of genes in the 
category), Syx is the covariance, and Cis a normalizing constant. For each of the 154 ubiqui
tous categories we then calculated the 99% posterior probability interval for the slope from 
equation (13). 

Quality of the Power-Law Fits 
To calculate the quality of the power-law fits, I first log-transform the data points (^p«/) 

to (xi^yi) - (log(^/),log(«,)). The best power-law fit is a straight liney = Ox+p in the (x,y) 
plane. For each data point (x^y/) I then find the distance di(J) to this line, and the distance 
d-^c) to the center of the scatter of points. That is, with (x) the average of the x-values, and {y) 
the average of the y-values, the distance dls) is given by 

and the distance to the line is given by 

/ ( / ) • > - ? • / ) ' (.5) 
' \ a +1 

^«I^V«-^7-^ -J;^^ ^''^ 
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I then define the quality of the fit Fas the fraction of the variance that is explained by the fit. 

F = \-^ (16) 

i 
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