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Figure 1: Being literal about the phrase “bathtub model”: A whimsical representation
of the positive feedback in Sel’kov’s model for glycolysis, equation (5.2). Water is
added to the top tub at a constant rate, from which it drains into the lower tub. As
the water level in the lower tub rises, the float in the tub also rises, which opens the
gate wider and lets water drain faster from the upper tub. (Drawn by Jeff Poe, 2013.
Copyright 2014 by D.G. Schaeffer and J.W. Cain.)
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Preface

What’s special about this book? In writing it we had four goals in mind:

1. To guide students through the theory of ordinary differential equations (ODEs)
from an introductory level up through fairly advanced material at the graduate
level, including bifurcation theory but not chaos, in a one-semester course;

2. to support the theory with meaningful examples of ODEs drawn from diverse
other fields;

3. to enable students to read it profitably on their own,1 outside of a course, with
no more frustration than is inherent in learning any mathematics;

4. to make the book enjoyable to read.2

� Regarding our first goal, you do not need any previous exposure to ODEs
to read this book. The only prerequisites are some experience in the analytical
foundations of calculus and a course in linear algebra. Moreover, you need not be
completely comfortable with either of these subjects—we believe that applying them
to ODEs, a task that demonstrates their utility, will help you to master them.3

While we succeeded in making the transition from introductory theory to ad-
vanced topics, we failed spectacularly in writing a book that can be covered in a
one-semester course—we couldn’t shut off the spigot. (In the “Notes to the Profes-
sor” below, we offer guidance about what topics may be cut to fit a one-semester
course.)

� Regarding our second goal, we apply the theory of ODEs to help the student
understand equations from the following fields.

1Professors, please take note: we believe that because of this feature the book can be comfortably
used in an inverted classroom. (See “Notes for the Professor” below.)

2Hey, we had fun writing it . . .mostly.

3And to facilitate your task, in Appendices B and C we review the information from analysis
and linear algebra that we actually use.

vii



viii Preface

• Biology: interacting-species population models, activator–inhibitor systems in-
cluding a toy model for the Turing instability, the chemostat, Sel’kov’s model
for glycolysis, simple models for biological switches and clocks, some neurolog-
ical models including the Morris–Lecar equations.

• Physics: various mechanical systems including systems based on the pendulum,
Duffing’s equation, the Lorenz equations.

• Chemistry: the Michaelis–Menten reaction rate for enzymatic reactions.

• Chemical engineering: the continuous stirred tank reactor.

• Electrical engineering: van der Pol’s equation.

A knowledge of high-school science is sufficient preparation for these applications.
Indeed, we believe that math students can learn much of the science through ODEs,
transferring intuition from one application to another.4

� Regarding our third goal: We draw on our years of teaching courses on this
material to try to anticipate as many confusions of the beginning student as possi-
ble.5 We supplement many of the exercises with long discussions that explain their
significance. We include in the written text the kind of parenthetical remarks that
typically are part of the classroom experience. We distinguish between dull tasks
that really are necessary (yes, learning the subject does require some of these) and
those that can be omitted or at least postponed.6 This readability comes at some
cost: it makes the book more wordy than the usual mathematician’s minimalist style,
and this fact might put off some readers.

� Regarding our fourth goal, we write in an informal style, as though we were
speaking to a student in the room with us. If being understandable and being rigorous
are in conflict, we lean toward the former. We strive to give counterexamples that

4Please forgive us a folksy story in support of this point. A graduate student in biology was
explaining his research to one of us. The student began by asking what he thought was a rhetorical
question: “Should I give you the equations, or should I explain the biology?” He had already
launched into the latter and was astounded when we answered, “Just give us the equations, we’ll
make up our own story to go along with it.” And after having seen and discussed the equations,
we found that our story was pretty much on target.

5Dear Reader, please let us know at

http://www.math.duke.edu/ode-book/contact-us

where we have failed in this attempt. We’ll put a better explanation on our web site and, so
twentieth-century, fix it in the second edition.

6We use the euphemism “a task for the dedicated reader” to describe the latter.
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are as dramatic as possible.7 We make connections to interesting scientific problems
related to ODEs, such as the surprising fact that a pendulum can be stabilized
in an inverted, straight-up, position by rapidly vibrating its pivot point. We even
try for the occasional joke.8 For example, we call the more advanced problems
“PHD exercises,” not because they relate in any way to the doctorate, but as an
acronym for “piled higher and deeper.” (If you are not familiar with the mildly
vulgar misinterpretation of the usual sequence of degrees, B.S., M.S., Ph.D., from
which this phrase derives, ask an older colleague.) Similarly, we call the notes at the
end of the chapters “Pearls of wisdom.” (Trust us, we don’t really take ourselves
that seriously.)

Here are some other pedagogical features of the book:

• A dedicated website

http://www.math.duke.edu/ode-book

containing software templates for solving many ODEs in this book, some prob-
lem solutions, supplementary readings, a list of known errors, and a link to
contact us.

• Very detailed references within this book and to other sources, including specific
sections or even specific pages, which can be easily followed.

• Consistent color conventions in figures9 for nullclines, periodic orbits, stable
and unstable manifolds, which enhance their value greatly.

• Great attention to consistent notation, including a detailed overview of our
conventions in Appendix A.10

• An extensive collection of exercises, some of which we are vain enough to regard
as creative, along with explanations of why they matter.

7For instance, the absolute value function is typically cited as an example of a Lipschitz continu-
ous function on the line that is not differentiable (at the one point x = 0). However, in Section 3.6.1
we construct an example of a Lipschitz continuous function that is not differentiable on any open
interval in R. Besides being more interesting, the construction exercises the “analysis muscle.”

8Attempted humor nipped in the bud: the publishers vetoed the title “Come romp with Dave
and John across ODE land.”

9If you are reading a black-and-white version of this book, color figures are available on the web
site.

10We recommend that readers skim this appendix before starting the book and review it from
time to time.
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• An epilogue (Chapter 10) that gives an overview and references to ODE topics
that continue the work begun in this book.

This book contains a great deal of information about properties of specific ODE
models drawn from applications. Typically, after introducing an analytical tech-
nique, we illustrate it on one or more particular ODEs. The same equation may be
used repeatedly in support of different techniques. For example, regarding activator–
inhibitor systems, global existence is derived in Chapter 4 for such equations, scaling
is used in Chapter 5 to reduce the equations to the simplest possible form, the stabil-
ities of equilibria are determined in Chapter 6, the bifurcation of periodic solutions is
analyzed in Chapter 8, and global bifurcation of solutions is considered in Chapter 9.
This style of organization makes the theory less dry, but it also creates a problem:
how to learn what’s known about any specific equation without paging through the
whole book. Well, here’s a workaround: in the index under each specific ODE we
list the pages where that equation is studied, and you can follow these references to
focus on the behavior of a particular equation.

Notes for the Student

We are delighted that you are joining us for a journey through the study of
ODEs, a subject that your authors love dearly. Part of the allure of ODEs is the
“something for everyone” aspect of the field—whether you are theory-oriented or
application-oriented, whether you prefer geometric reasoning or analytical reasoning,
and whether you prefer computer-based or pen-and-paper-based calculations, your
preferences will have a useful role in understanding ODEs.

At the same time, we urge you not to neglect the techniques you may find less
congenial. You will achieve a deeper, more flexible, more portable understanding
of the subject if you can synthesize theory, application, and numerics/asymptotics.
Building on your current strengths, you can use this subject to enlarge your mathe-
matical tool kit.

Let’s talk about exercises, beginning with an inconvenient truth: you don’t under-
stand the material in a chapter until you can do some of the exercises! To help you
derive maximal benefit from the exercises, we often include generous commentary
on the significance of the problem. We tried to hold routine “apply the definition”
exercises to a minimum. This makes the problems that remain more interesting, but
it also means that lengthy hints may be needed (and are given).
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In case you feel discouraged by the many pages of exercises following each chapter,
let us point out that besides the obvious fact that you needn’t do every problem,
the problems are actually a lot shorter than they may appear—only a fraction of
the exercise (in normal-sized type) actually asks you to do anything. Much of the
physical space on the page is devoted to hints and commentary (in smaller type).

To help you focus your efforts, the exercises are divided into subsections as follows:

• core exercises,

• a group of exercises focused on a common theme,

• PHD exercises.

The core exercises give you a chance to practice using the basic ideas in the chapter;
their specific purposes are listed at the start of the subsection. Focused subsections
contain several related, not-to-be-neglected, exercises that may probe an area more
thoroughly or may introduce ideas to be studied later. PHD exercises may be more
difficult or develop some related topic not studied elsewhere in the text. (We won’t
refer to PHD exercises later in the text, except in other PHD exercises or in the
Pearls, so these may be skipped without bad consequences.)

Besides the explicit exercises, every statement in the text is a sort of implied
exercise—you should be able to prove these. (Sometimes we include a specific par-
enthetical remark like “Prove this!” or “Why?” at places where we think a reader
might be tempted to move on without sufficient reflection, to the detriment of un-
derstanding.)

Notes for the Professor

This book is suited to a variety of courses. Because of its length, the most
obvious fit is a two-semester graduate course covering the entire book, along with
a supplemental foray into chaos.11 However, to accommodate other options, large
portions of the text could be cut without significant loss of continuity, such as:

→ Some longer proofs, like Sections 4.6.4–4.6.7 and 8.5.2.
→ The longer applications, like Sections 6.4, 8.6, and 9.8.
→ Perturbation-theory calculations, like Sections 7.5–7.7.
→ All appendices.
→ The discussion of scaling (Chapter 5).
→ The epilogue (Chapter 10).

11Appropriate chaos references are given in Section 10.6.
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For additional savings, one could:
→ Assign Section 1.6 as independent reading.12

→ Cover fewer examples (of trapping regions in Sections 4.3 and 4.4
and of bifurcation in Chapters 8 and 9).

To make this quantitative: the book contains just over 300 pages of regular text.13

What’s left after the above cuts—a little over 150 pages of material14—can be covered
in a reasonably paced one-semester course, perhaps with time left over for end-of-
term projects or to reinstate some of the cut topics.

The book is also suited to a variety of students, not just the obvious audience of
math graduate students. We believe that the level of exposition will be challenging,
but still accessible, for strong upper-level undergrads in math,15 all the more so
if the primary focus is restricted to either theory or applications. The wealth of
applications in the book should make it appealing to theoretically inclined graduate
students in science or engineering.

In some semesters we used the book in an inverted classroom in which students
were assigned reading before class and class time was freed up for more active learn-
ing. We liked the result.

To conclude, if you are weighing adoption of this text for a course at your in-
stitution, feel free to contact us (via the website) with questions regarding how, or
whether, our book might serve the needs of your students.

Acknowledgments

We are greatly indebted to Tom Beale, Jim Nolen, and Steve Schecter, who
tested early drafts of this book in their ODE courses. Please know that their careful
reading and attention to detail has shielded you, dear reader, from many errors (not

12This section illustrates what the qualitative theory of ODEs, the focus of Chapters 6–9 of this
book, can say about one specific ODE model. While students may benefit from a quick look at
things to come, detailed understanding of the phenomena in this section will not be needed until
Chapter 6.

13Plus roughly 65 pages of appendices, 35 pages of Pearls, and 110 pages of exercises.

14Moreover, the first four items on the cut list contain some of the densest writing in the book,
so omitting them lightens the text more than a mere page count indicates.

15We are inordinately proud of our treatment of bifurcation theory, which leads us to make the
following suggestion: a seminar, to follow a first course in ODEs, in bifurcation phenomena based
on Chapters 8 and 9.
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to mention patches of clunky exposition) that your authors may not have caught
otherwise.

We are grateful to John Guckenheimer, whose feedback helped reshape our think-
ing about the book, and to Marty Golubitsky and Tom Witelski, who were most
helpful consultants on multiple occasions. Thanks also to Michael Peper, the math
librarian at Duke, for tracking down various obscure references we sent his way.

We are privileged to be acquainted with two talented artists who granted us
permission to print/reprint several of their works. Jeff Poe sketched the frontispiece
as well as three of the figures in Chapter 8. Fiona Ross allowed us to reprint her
intricate example of a Jordan curve, appearing in Appendix B.

Bard Ermentrout facilitated creation of this book in ways he may not realize. His
freely available XPPAUT software frequently saved the day when we needed to plot
stable/unstable manifolds or bifurcation diagrams. Without XPPAUT, we shudder
to contemplate how many hours would have been squandered writing our own (highly
inferior) computer code to perform such computations.

Durham, NC, USA David G. Schaeffer
Cambridge, MA, USA John W. Cain
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Chapter 1

Introduction

This chapter summarizes various ideas that an introductory course in ordinary dif-
ferential equations (ODEs) usually covers. Because of this wide focus, the exposition
may seem somewhat diffuse—a small price to be paid for our not requiring previous
training in ODEs.

1.1 Some Simple ODEs

1.1.1 Examples

An ordinary differential equation (ODE) is an equation involving an unknown func-
tion of one variable and some of its derivatives. We hasten to assure you that this
bland phrase has meaning for us primarily through examples, so let’s proceed to
these immediately.

Most simply,1 we have the equation for exponential growth or decay,

x′ = ax, (1.1)

where the growth rate a is a constant (let’s say real), x(t) is the unknown function,
and x′ denotes the derivative of x with respect to t. The logistic equation modifies
this equation, in case a > 0, by scaling the growth rate to unity and adding a negative
term that limits growth as x becomes large:

x′ = x− x2. (1.2)

The equation
x′′ + x = 0 (1.3)

1Well, x′ = f(t) is simpler, but this equation belongs to calculus, not ODEs.
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2 Chapter 1. Introduction

arises in what is called simple harmonic motion. In physical terms, which will be
introduced in Section 1.4, equation (1.3) describes the motion of a mass pulled back
toward equilibrium by a frictionless spring. Here, of course, x′′ denotes the second
derivative. A useful point of comparison for (1.3) is

x′′ + sin x = 0, (1.4)

which describes the motion of a frictionless pendulum under gravity, given some
simplifying assumptions about units (cf. Section 1.4). Two other noteworthy modi-
fications of (1.3) are

(a) x′′ − tx = 0 and (b) x′′ + (κ+ 2ε cos t)x = 0, (1.5)

known as Airy’s equation and Mathieu’s equation, respectively.

We conclude our first round of examples with a Riccati equation

x′ = x2 − t (1.6)

and a purely pedagogical example

1 + (x′)2 = x2. (1.7)

1.1.2 Descriptive Concepts

The most basic concept used to describe ODEs is order, which refers to the order
of the highest derivative that appears in the equation. Thus equations (1.1), (1.2),
(1.6), and (1.7) are of first order, while (1.3), (1.4), and (1.5a,b) are of second order.
Here is an example of a third-order equation:2

d3y

dx3
=

αy + β

y3
, (1.8)

where y(x) is the unknown function of the variable x. This example also illustrates
the following three points: (i) Usually, the independent variable in the ODEs we
study is time, but other choices also occur—in this equation, x represents a spatial
coordinate. (The dependent variable y(x) represents the thickness of a thin film as
a function of position.) (ii) We have written the derivative using the d/dx-notation
rather than with primes; no mathematical significance should be attached to this
choice; it is only a matter of taste as to which notation seems more attractive to us
in a given situation (at the time of writing). (iii) An ODE need not be defined for

2We resist the temptation to dazzle you with interesting higher-order ODEs drawn from nu-
merous fields. Truth to tell, higher-order equations play a smaller role in the theory than systems
of several coupled ODEs, which we introduce in Section 1.5.
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all values of either the dependent or independent variable. For example, (1.8) is not
defined for y = 0. Incidentally, much information can be gained by focusing on such
exceptional points of an equation—called singularities in the usual terminology.

Normally we will solve for the highest derivative of the dependent variable as a
function of lower-order derivatives and of t: thus, for an equation of order n, we
obtain

x(n) = f(x, x′, . . . , x(n−1), t). (1.9)

The value of this convention is illustrated by equation (1.7), which may be rewritten

x′ = ±
√
x2 − 1. (1.10)

Several problems in (1.7) become evident from rewriting the equation in this way:
(i) Two different ODEs are in fact hidden in (1.7); to get an unambiguous ODE,
we need to choose between the plus and minus signs in (1.10). (ii) For some values
of x—specifically for |x| < 1—equation (1.7) has no real-valued solutions. (iii) The
right-hand side (RHS) of the equation,

√
x2 − 1, is not a differentiable function.

(Item (iii) has unpleasant consequences—see Exercise 4(b).)

Next we define the vitally important notion of linearity. We shall call an ODE
linear 3 if it may be written in the form

x(n) = a1(t)x
(n−1) + a2(t)x

(n−2) + . . .+ an−1(t)x
′ + an(t)x+ g(t); (1.11)

i.e., the unknown function x and its derivatives appear only raised to the first power.
Thus equations (1.1), (1.3), and (1.5a,b) are linear. Equations (1.2), (1.6), and (1.7)
are nonlinear; perhaps less obviously, (1.4) is also nonlinear, because

sin x = x− x3

3!
+

x5

5!
+ . . .

has higher powers of x hidden in it. Note that x′′ = x′x is also nonlinear, because of
the product on the RHS of the equation.

The linear equation (1.11) is called homogeneous if g(t) ≡ 0, and it is said to
have constant coefficients if the functions aj(t), j = 1, . . . , n, actually do not depend
on t. A closely related concept for nonlinear equations: (1.9) is called autonomous
if the function f does not depend on t. Solutions of an autonomous equation are
translationally invariant: if x(t) is a solution of x(n) = f(x, x′, . . . , x(n−1)) for some
time interval, then for every constant t0, the shifted function x̃(t) = x(t− t0) is also
a solution.

3More formally, we may say that equation (1.9) is linear if the function f is linear in its first n
arguments; no restriction on the t-dependence is implied.
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1.2 Solutions of ODEs

1.2.1 Examples and Discussion

Being mathematicians, we must define our terms, even when the definition is more
tautological than informative, as in the following: A function x(t) is called a solution
of (1.9) if the two sides of the equation become equal when this function is substituted
into the equation. An understanding of this term will emerge from the examples.

As you may readily check, for every constant C, x(t) = Ceat is a solution of the
first equation (1.1). (In Exercise 1(a) we show you how to prove that this is the most
general solution of (1.1).) The general solution of the second equation (1.2) will be
determined in Section 1.3.3 below, using a technique introduced there.

Regarding the third equation (1.3), for constants C1, C2 ∈ R, the formula

x(t) = C1 cos t+ C2 sin t (1.12)

provides a solution. This solution provides an instance of the principle of linear super-
position for a linear homogeneous ODE. Specifically, if x1(t) and x2(t) are solutions
of (1.11) (with g(t) ≡ 0), then for constants C1, C2, the linear combination

C1x1(t) + C2x2(t)

is also a solution. In the language of linear algebra, the set of solutions of a homoge-
neous linear ODE forms a vector space. As we shall see in Chapter 2, every solution
of (1.3) can be written in the form (1.12); this means that the set of solutions of
(1.3) is a two-dimensional vector space for which {cos t, sin t} is a basis.

The above examples of solutions illustrate one of the most fundamental points
in the whole subject: ODEs have infinitely many solutions. Thus, some auxiliary
information must be given to pick out exactly one solution from the infinite set of
solutions. The most common such auxiliary information is an initial condition (IC).
For example, if one seeks a solution of (1.1) subject to the auxiliary condition

x(0) = b,

where b is a real constant, then x(t) = beat is the unique solution of this more
specific problem. (To show that it is unique, we need to know that Ceat is the
general solution of (1.1), as you prove in Exercise 1(a).) Similarly, regarding (1.3),
given real constants b0, b1, there is a unique function of the form (1.12) that satisfies
the initial condition

x(0) = b0, x′(0) = b1.
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For a general equation, given constants b0, b1, . . . , bn−1, the initial value problem
(IVP) seeks a solution of (1.9) such that

x(0) = b0, x
′(0) = b1, . . . , x

(n−1)(0) = bn−1. (1.13)

The initial conditions may be imposed at any point t = t0, but we will usually impose
these conditions at t = 0 as in (1.13). Of course the general case is easily reduced to
(1.13) without loss of generality.

We can exhibit the general solutions of equations (1.1)–(1.3). However, it is a
rare and pleasant occurrence when one is able to find any explicit solution of an
ODE. In Section 1.3 we shall describe three classes of equations that can be solved
explicitly.

Warning: The symbol x may refer simply to a generic real variable, or it may
refer to a function x(t) that satisfies an ODE. Both usages may occur in the same
sentence! For example, the first usage is intended in the italicized, initial part of
the sentence, “If f(x) is not a differentiable function, then uniqueness issues for the
equation x′ = f(x) may be quite subtle,” while the second usage is intended in the
remainder of the sentence. Also, in connection with writing arguments of a function,
please read Note 1 in Section A.2.

1.2.2 Geometric Interpretation of Solutions

The geometric interpretation of ODEs is an essential part of the subject. The in-
terpretation is clearest for first-order equations. We illustrate this with the help of
Figure 1.1, which shows the direction field for the Riccati equation (1.6). Imag-
ine that at every point in the t, x plane a line segment with slope x2 − t is drawn.
A function x(t) is a solution of (1.6) iff at every point (t, x(t)), the graph of this
function is tangent to the line segment at that point. This interpretation makes it
seem natural that ODEs have many solutions and that a unique solution may be
selected by specifying a starting point for the curve at t = 0.

Besides the direction field, Figure 1.1 also shows several solutions of the ODE
(1.6). Although we have used the computer to draw these solutions, useful approxi-
mations may be sketched by hand by choosing a starting point t = 0, x(0) = b and
drawing a curve that is everywhere tangent to the direction field. (Try this yourself !)

From studying the curves shown in Figure 1.1, we make the following conjecture:

Conjecture 1.2.1. (i) If the initial condition x(0) is large and positive, a solution
of (1.6) grows without bound as t increases. (ii) If x(0) is negative, or positive but
not too large, the solution is asymptotic to a curve in the half-plane {x < 0}.

See Section 1.8.3 to pursue this conjecture analytically.
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x

t

b
*

Figure 1.1: Direction field for the Riccati equation (1.6), with several solution tra-
jectories corresponding to different choices of initial condition x(0).

1.3 Snippets of Solution Techniques

1.3.1 Computer Solutions

If your primary interest in ODEs is in applications, numerical solutions are more
important than any analytical solution technique. Even if your primary interest is
theory, it is foolish not to take advantage of the numerical solutions that are readily
available with the computer. On frequent occasions in this book we will expect you
to compute numerical solutions. Any software, commercial or free, that you wish to
employ will probably be adequate. Moreover, on the book’s website we introduce
you to one specific (free) software package—please visit

http://www.math.duke.edu/ode-book/computing/intro .

In particular, we include code for solving many of the equations in this chapter. We
also include some words of caution about what can go wrong in numerical work.

Get started on the computer right away! For example, in Exercise 9 we invite
you to verify Conjecture 1.2.1 and to locate the special initial condition x(0) = b∗ at
the boundary between the two different asymptotic behaviors.

In the remainder of this section we introduce three analytical methods for finding
explicit solutions of certain ODEs. These methods are part of the elementary theory
of ODEs, and we shall assume that you can use them when needed. No other ideas
from the elementary theory will be assumed.
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1.3.2 Linear Equations with Constant Coefficients

If the coefficients aj in (1.11) are independent of t and g(t) ≡ 0, then one may find
explicit solutions of this equation using exponentials. This method will be developed
extensively in Chapter 2, so here we limit ourselves to applying it in a simple example,

x′′ + βx′ + x = 0. (1.14)

(This equation differs from (1.3) by the first-order term βx′. As discussed in
Section 1.4, this new term represents friction, and normally β > 0.) Let’s look
for solutions of (1.14) of the form x(t) = eλt. Substituting into (1.14), we see that
eλt satisfies (1.14) if

(λ2 + βλ+ 1)eλt = 0. (1.15)

In other words, because the derivative of the exponential is a multiple of itself,
finding an exponential solution of (1.14) reduces to solving the algebraic equation
λ2 + βλ + 1 = 0. This polynomial, which is called the characteristic polynomial of
(1.14), has roots

λ± =
−β ±√

β2 − 4

2
.

Thus, eλ±t is a solution of (1.14), and by linear superposition, for any constants
C+, C−,

C+e
λ+t + C−eλ−t (1.16)

is also a solution. (If β = 2, then λ+ = λ−, so these two terms are multiples of
each other; see Exercise 2 for how to generalize (1.16) in this case.) As follows from
our work in Chapter 2, apart from the exceptional case β = 2, (1.16) is in fact the
general solution of (1.14).

If the friction coefficient β is positive, then the solutions eλ±t decay as t increases.
If 0 < β < 2, then the roots λ± are complex. In this case, we may separate the real
and imaginary parts of the roots,

λ± = −β/2± i
√
1− β2/4,

and use Euler’s formula eiθ = cos θ + i sin θ to rewrite the solution

eλ+t = e−βt/2
(
cos

√
1− β2/4 t+ i sin

√
1− β2/4 t

)

and similarly for eλ−t. Alternatively, we may form linear combinations of the complex-
valued solutions eλ±t to produce real-valued functions that constitute a different basis
for the set of solutions of (1.14):

e−βt/2 cos
√
1− β2/4 t, e−βt/2 sin

√
1− β2/4 t.
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This calculation illustrates a tension that exists in this text: usually, we are
interested in real-valued solutions of an ODE, but often it is convenient to consider
complex-valued solutions in order to take advantage of the complex exponential. In
general, as here, a complex exponent indicates oscillatory behavior of real-valued
solutions of an ODE.

1.3.3 First-Order Linear Equations

For a first-order linear ODE, say

x′ + a(t)x = g(t), (1.17)

one can find explicit solutions even if the coefficients are variable. In Exercise 1(b) we
ask you to verify the following claim: Let ā(t) =

∫ t

0
a(s) ds; then for every constant C,

x(t) = Ce−ā(t) +

∫ t

0

eā(s)−ā(t) g(s) ds (1.18)

satisfies (1.17). Moreover, since x(0) = C, (1.18) also provides a solution to the
initial value problem. (This solution is in fact unique, which will fall out from the
general theory below.)

For interested readers: the derivation of (1.18) is based on asking whether you can
multiply (1.17) by some function φ(t) such that the left-hand side (LHS) becomes
an exact derivative. Well, yes, choose φ(t) = eā(t) and observe that

eā(t) [x′ + a(t)x] =
d

dt
[eā(t) x].

The function φ(t) is called an integrating factor (cf. Section 1.2 of [10].). The same
idea is the basis of the proof in Exercise 1(a) that Ceat is the general solution of
(1.1).

1.3.4 Separable Equations

A first-order ODE is called separable if the RHS may be factored as

x′ = f(x)g(t). (1.19)

For example, equations (1.2) and (1.7) are separable,4 where in both cases, the
factor g(t) is trivial. On the other hand, (1.6) is not separable. Let’s illustrate how
to exploit separability by solving (1.2). In the following derivation, we temporarily
suspend concerns of rigor—we shall freely perform manipulations that might seem

4Equation (1.1) is also separable, but usually this term is reserved for nonlinear equations.
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problematic in order to obtain a formula for the solution. After it has been derived,
we may verify that the formula actually does provide a solution. Given such a
verification, there is no need to justify questionable intermediate steps, even though
this may be possible.

We write the LHS of (1.2) using the notation x′ = dx/dt, and we treat dx and
dt as separate factors. Let’s bring all x-dependence in the equation to the LHS and
all t-dependence to the RHS, obtaining

dx

x− x2
= dt. (1.20)

The LHS of (1.20) may be expanded in partial fractions:

1

x− x2
=

1

x
+

1

1− x
.

Integrating (1.20), we derive

ln |x| − ln |1− x| = t+ C,

where C is an arbitrary constant of integration. Exponentiation of this equation
yields ∣∣∣∣

x

1− x

∣∣∣∣ = C ′et, (1.21)

where C ′ = eC . According to (1.21), x/(1−x) cannot pass through zero or infinity, so
it cannot change sign. We may remove the annoying absolute value signs by defining
C ′′ = +C ′ if x/(1 − x) is positive and C ′′ = −C ′ if this quantity is negative. Then
(1.21), thus simplified, may be solved for x(t):

x(t) =
C ′′

C ′′ + e−t
. (1.22)

In Exercise 1(c) we ask you to verify that the above manipulations actually produce
solutions of (1.2).

To solve the IVP, we seek a value of C ′′ in (1.22) that will satisfy the initial
condition x(0) = b. Please check that apart from the problematic value b = 1, the
initial condition is satisfied if and only if

C ′′ =
b

1− b
. (1.23)

It is ironic that (1.22) runs into trouble precisely in the case that the original ODE
has the trivial solution x(t) ≡ 1. This behavior arises from one of the gaps in rigor
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in the above derivation: if x(t) ≡ 1, then the term dx/(1−x) is undefined and hence
cannot be integrated.5

Note that if C ′′ < 0, the solution (1.22) is not defined for all t. This is a warning:
an IVP may have a solution only for a finite time. (We explore this issue in a more
serious way beginning in Chapter 3.)

Despite the above nonexistence problem, (1.22) gives acceptable predictions re-
garding the future evolution of a population, for which x ≥ 0. Specifically, in Exer-
cise 1(c) we ask the you to show that if b ≥ 0, then the solution of the IVP—obtained
from (1.22), (1.23) if b �= 1 and from x(t) ≡ 1 if b = 1—exists for all t ≥ 0. You may
also verify that the solution x(t) tends to 1 as t → ∞. (In Exercise 6, we ask you to
extract this latter conclusion geometrically from the direction field.)

1.4 Physically Based Second-Order ODEs

Many phenomena in ODEs can be seen already in certain second-order ODEs that
arise in physical applications. In this section we explain the derivation of a few of
these historically important equations, which are a rich source of intuition about
ODEs. Some math students resist the introduction of such material into an ODE
course with rationalizations like, “I never could understand physics.” If you buy
into such sentiments, we urge you to get beyond these self-limiting preconceptions.
Although this material may seem like a distraction, the gain in insight from a modest
investment is enormous.

1.4.1 Linear Spring–Mass Systems

The motion of spring–mass systems is governed by Newton’s second law of motion,

mass× acceleration = sum of all forces,

or more compactly and more famously, F = ma. Consider for example the system
illustrated in Figure 1.2. The mass is constrained to move along a single axis. If
we let x measure the displacement of the mass from a reference position, then the
acceleration is simply the second derivative d2x/dt2.

There are two forces acting on the mass: (i) the restoring force Fspring from
the spring and (ii) the drag Ffriction. The restoring force opposes any displace-
ment from the equilibrium position. The simplest assumption, called Hooke’s law, is
that the force is proportional to the displacement from equilibrium. If we measure

5Observe that x ≡ 0 also satisfies (1.2). Thus, in the derivation, dx/x is likewise meaningless
for this solution, but the final answer nevertheless captures the solution. This behavior reminds us
that solutions obtained using separability always need to be examined carefully.
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− b x’

= − k xspringF

x

m

equilibrium

=frictionF

Figure 1.2: Schematic diagram of the mass–spring–dashpot system corresponding
to (1.24). The spring pulls the mass back toward its equilibrium at x = 0, i.e., to the
left for the displacement shown in the figure. Friction acts in the direction opposite
the current velocity of the mass, which is not indicated in the figure.

displacements relative to the equilibrium position, we have the simple formula for
the restoring force Fspring = −kx, where k is the constant of proportionality.

While the restoring force depends on the displacement, the drag depends on the
velocity, the derivative of the displacement. The simplest assumption is that this
force opposes the motion of the mass with a strength proportional6 to its speed: in
symbols, Ffriction = −b dx/dt, where b ≥ 0. Truth to tell, this formula is a rather
poor approximation of dry friction,7 i.e., friction of a mass sliding over a dry surface.
Despite this inaccuracy, friction is widely approximated by such a term, because of
the appealing fact that this leads to linear ODEs.

Combining the above forces in Newton’s equation, we get the ODE for the motion
of the mass

mx′′ = −bx′ − kx. (1.24)

Equation (1.14) is a special case of this equation.8 As for (1.14), the general
solution of (1.24) is a linear combination of exponentials (apart from the exceptional

6You may groan that we use the same letter b for the constant of proportionality as for the
initial conditions. Please trust us—in the larger scheme of things, this conflict of notation will not
cause confusion.

7This formula is more typical of the drag from a viscous fluid at low to moderate velocities—
see Section 5.4 in [72] or look online. Reflecting this situation, in Figure 1.2 friction is represented
by a “dashpot”: i.e., a piston sliding through a viscous fluid.

8In fact, the more general equation (1.24) can be reduced to (1.14) by scaling the variables
appropriately. The uses of scaling will be developed systematically in Chapter 5.
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case b2 = 4mk). Substituting into the equation, we find that eλt is a solution of
(1.24) if

λ =
−b±√

b2 − 4mk

2m
. (1.25)

This formula for the roots contains interesting information about how friction changes
the behavior of the system. If there is no friction (i.e., b = 0), the roots (1.25) are pure
imaginary, and the solutions eλt of (1.24) are trigonometric functions with (angular)
frequency ω =

√
k/m; thus, oscillations continue forever. As b increases from zero,

these exponential solutions retain their oscillatory character, with some decrease
in the frequency, but are confined within a decaying exponential envelope. This
behavior continues as b increases, the decay becoming more rapid, until b2 = 4mk.
After this point, both roots (1.25) are real, and the solution x(t) will cross x = 0 at
most once in the course of its decay. The cases b2 < 4mk, b2 = 4mk, and b2 > 4mk
are called underdamped, critically damped, and overdamped, respectively.

These ideas have a practical consequence in the automotive world. The shock
absorbers of a car can be crudely modeled by (1.24). As the name suggests, one
wants shock absorbers to have a lot of damping, i.e., to be overdamped. This gives
rise to the following quick test for whether shock absorbers are worn out. Depress
the car and release it from rest. If the car returns monotonically to equilibrium
(overdamped), then the shock absorbers are OK. If, on the other hand, the car
oscillates up and down during its return to equilibrium (underdamped), then the
shock absorbers need to be replaced.

A few words of reassurance in case you are feeling uncomfortable with this level
of mechanics. You have a perfectly adequate grasp of the physics when you can
combine the following three themes in your head:

• Intuition about the response of the system on the level of, “If I pull on the mass
and release it, it will drift back toward equilibrium, possibly with oscillations.”

• The derivation of (1.24) from Newton’s law, including the formulas for the
forces.

• Finding exponential solutions of (1.24) and seeing that the behavior of these
solutions conforms with your intuition.

1.4.2 Nonlinearity, Part I: The Restoring Force

It is easy to imagine springs in which the restoring force is not exactly proportional
to the displacement; indeed, exact linearity is the unlikely behavior. For example,
although the restoring force is gravity rather than a spring, consider a pendulum
as illustrated in Figure 1.3(a). The mass is confined to move on a circle by a rigid
(massless) arm, say of length 
, and its position is specified by a single coordinate,
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mg  (gravity)

x

m
tangF

−π

Ftang

F lin = −mgx

force

ba

= −mg sin x

= −mg sin x

x
π

Figure 1.3: (a) Schematic diagram of the pendulum corresponding to (1.26).
(b) Comparison of the tangential component of gravity acting on a pendulum,
Ftang = −mg sin x, with its linear approximation Flin = −mgx.

let’s say an angle rather than a displacement. If x, the angle that the pendulum
makes with the vertical, is measured in radians, then 
x equals the displacement of
the mass along the circumference, 
 dx/dt equals its velocity, and 
 d2x/dt2 equals its
tangential acceleration.9 The tangential component of gravity is Ftang = −mg sin x.
Thus, if there is no friction, Newton’s equation of motion may be written

x′′ + (g/
) sin x = 0, (1.26)

where we have divided both terms bym
. This derivation explains the origin of (1.4),
but our purpose here is simply to illustrate how this restoring force deviates from
linearity. If x is small, then sin x ≈ x, so in this range, the force is approximately
linear, but as x increases, the force falls behind this linear growth (see Figure 1.3(b)).
Of course, it is also possible for a force to grow more rapidly than linearly.

A more extreme deviation from Hooke’s law occurs in the cantilever beam (i.e.,
supported at one end only) placed between two magnets indicated in Figure 1.4. If
the beam bends so that its tip is displaced slightly to the right, the beam is closer
to the magnet on the right and hence more strongly attracted to it than to the
magnet on the left. If the magnetic forces dominate the bending resistance of the
beam, then following such a small displacement, the net force on the beam will be
to the right; i.e., the beam is pulled away from the equilibrium at the centerline
rather than toward it. However, if the beam moves beyond the magnet to the right,
then both magnetic forces and the bending resistance all pull the beam back toward
the center line. Suppose we naively describe the bending of the beam by a single

9The mass also experiences a radial acceleration, −�(dx/dt)2, from which the tension in the arm
may be calculated. However, the motion of the pendulum is determined by the tangential equation
(1.26), without consideration of radial forces.



14 Chapter 1. Introduction

N N

S S

x

Figure 1.4: Schematic diagram of a cantilever beam between two magnets.

variable x, say the displacement of the tip. The simplest force law reproducing the
above behavior is

F (x) = +k1x− k2x
3, (1.27)

where both k1, k2 are positive. Despite its crudeness as a physical model, (1.27)
is often used in applications, and mathematically it provides a useful illustrative
example; indeed, the ODE

x′′ + βx′ − x+ x3 = 0, (1.28)

called Duffing’s equation,10 has been extensively studied. The force law (1.27) is
called a double-well potential, which leads us to the concept of potential energy,
which we need to define.

1.4.3 Energy

The potential energy V (x) associated with a force law F (x) is defined as the work
that must be done against the force to move the mass from a reference position,
typically equilibrium, to the position specified by x; in symbols,

V (x) = −
∫ x

0

F (s) ds. (1.29)

10For now, you may regard (1.28) as a particular case of the force law (1.27), but in fact, the
general case may be reduced to (1.28) through appropriate scaling (see Chapter 5).
You may wonder why we have used different letters—β in (1.28) and b in (1.24)—for analogous

coefficients. As we will explore in Chapter 5, in ODEs arising in applications, most parameters
have units (such as length, mass, inverse time) associated with them. Although we are not com-
pletely consistent, we try to use Latin letters for parameters with nontrivial dimensions and reserve
Greek letters for dimensionless parameters. The latter usually are derived as composites of several
dimensional parameters.
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The potential functions for Hooke’s law, for the pendulum, and for (1.27) are graphed
in Figure 1.5; the figure explains the name double-well potential for (1.27). Of course,
(1.29) is equivalent, apart from an additive constant, to F (x) = −∂V/∂x(x), so the
equation of motion of a particle moving in a force field11 with potential energy V (x) is

mx′′ + bx′ +
∂V

∂x
(x) = 0, (1.30)

where we have assumed linear friction. Note that this equation is nonlinear except
in the special case that V (x) is quadratic.

As we will discuss in Section 1.8.1, one may loosely visualize solutions of (1.30) as
the motion of a marble rolling in the x, z-plane along a curve given by the equation
z = V (x), with gravity pointing in the negative z-direction. Although this analogy is
quantitatively inaccurate, it nonetheless provides useful qualitative understanding.12

Moreover, the analogy may help resolve the inevitable confusion arising from the
minus sign in (1.29). For example, is the potential energy of a linear attractive
restoring force F = −kx given by V (x) = +kx2/2 or V (x) = −kx2/2? It has to be
the former, whose graph may be described as a bowl that would confine a rolling
marble.

Let us also define the total energy of a mass moving in a force field. This quantity
is the sum of the potential energy of the particle and its kinetic energy, in symbols

E =
m

2
(x′)2 + V (x). (1.31)

The key property of E is that if x(t) satisfies (1.30), then energy is dissipated at the
rate

dE

dt
= −b (x′)2. (1.32)

In particular, if there is no friction, then energy is conserved (i.e., it remains constant
as time evolves).

11Although we introduced forces in connection with spring–mass systems, we want to consider
more general force laws than can reasonably be associated with any spring. For that reason, we
adopt the physicists’ phrase, “a particle in a force field.” If you are interested in mechanics, you
should probably learn about the Lagrangian approach to this subject—see Chapter 7 in [88]. With
this formalism, it is easy to derive equations of motion when there are constraints, e.g., a particle
sliding along a curve in the plane.

12One is reminded of the aphorism, “A simple lie may be more useful than a complicated truth”
(adapted from de Tocqueville).
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Figure 1.5: The potential functions for (a) Hooke’s law; (b) the pendulum; and (c)
the double-well potential.
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1.4.4 Nonlinearity, Part II: The Frictional Force

We have assumed b ≥ 0 in (1.24), since friction normally dissipates energy. However,
in certain electrical circuits, what amounts to negative friction can arise over a limited
region of state space. The most famous ODE exhibiting such behavior is van der
Pol’s equation

x′′ + β(x2 − 1)x′ + x = 0, (1.33)

where x measures a voltage in a circuit. If x is small (specifically, |x| < 1), the
coefficient of x′ is negative, leading to growth, while if x is large, this coefficient has
the usual positive sign. Historically, van der Pol’s equation arose in modeling circuits
with vacuum tubes,13 but of much greater current interest, it also arises in modeling
semiconductor circuits.

By way of background, a second-order linear ODE arises from the description of
an electrical circuit containing linear elements: an inductor (L), a resistor (R), and
a capacitor (C). Specifically, the voltage x(t) across the capacitor in Figure 1.6 at
time t satisfies14

Lx′′ +
L

RC
x′ +

1

C
x = 0. (1.34)

(Note that apart from the interpretation of the coefficients, this is exactly the same
ODE (1.24) that describes a spring–mass system.) The van der Pol equation arises
if the linear resistor in the figure is replaced by an appropriate nonlinear element,
including a battery, in which current depends nonmonotonically on voltage. It may
appear that with “negative friction,” energy is being created out of nowhere, but the
derivation explains how (1.33) is consistent with conservation of energy.

1.5 Systems of ODEs

All of the examples of ODEs considered above contained a single unknown function.
The advanced theory of ODEs is most efficiently formulated in terms of systems—i.e.,
several simultaneous equations—of ODEs, which involve several unknown functions.
Moreover, many physical and biological systems are most naturally modeled by sys-
tems of ODEs.15

13Reference [90] is one of the original papers. Modern derivations of van der Pol’s equation are
available online.

14Equation (1.34) may be derived from Kirchhoff’s laws—see [72] or look online. Incidentally,
a circuit with the elements in series, rather than in parallel, is probably more familiar to most
readers. We consider the parallel circuit because it relates more directly to van der Pol’s equation.

15There is an unfortunate conflict between different fields in the use of the word system. At its
first occurrence in this sentence, “system” is used in its biological sense “a group of interacting,
interrelated, or interdependent elements forming a complex whole.” At its second occurrence,
“system” is used in its more restricted mathematical sense, “several simultaneous equations.”
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Figure 1.6: An inductor, a resistor, and a capacitor in parallel. The voltage x

across each of the elements satisfies (1.34). If the linear resistor is replaced by a
suitably chosen “nonlinear resistor,” then x satisfies van der Pol’s equation (1.33).

One of the best-known biological models is the Lotka–Volterra system

x′ = ax− bxy,
y′ = cxy − dy,

(1.35)

where the parameters a, b, c, d are all positive. Let us describe the physical assump-
tions underlying (1.35), since in our view, such understanding is an essential part of
acquiring facility with ODEs. This system describes the evolution of two interacting
populations, a predator (say sharks, represented by y) and a prey (say regular fish
or teleosts,16 represented by x). In the absence of predators (i.e., y = 0), the prey
population satisfies x′ = ax, the equation for exponential growth. However, their
growth rate is reduced by predation, which is assumed to occur at a rate proportional
to each population.17 Similarly, the predator equation for y represents a balance be-
tween two effects: the predator population increases by a term proportional to the
amount of food the predators consume and decreases by a “death” term proportional
to their population. Perhaps surprisingly, in the full equation for the evolution of
y, these two effects are simply added ! In general, when several effects occur in a
physical system, typically the ODE describing its evolution is obtained simply by

16Teleost is the biologists’ term for what one normally thinks of as “fish.” Teleosts have a bony
skeleton, in contrast to sharks, whose skeleton is made of cartilage. Teleosts appeared later in
evolution, so they are sometimes called “modern” fish or “bony” fish. For purposes of the Lotka–
Volterra model, teleost means “fish that are good to eat”—the model was developed to understand
perplexing changes in fish harvests during World War I. (See Exercise 22.)

17For greater realism, the underlying process should be modeled probabilistically. An ODEmodel
provides a useful approximation for the evolution of average populations, provided the populations
are large. The rate term proportional to xy may be derived from the probability that members of
the two species encounter one another. For more detail, see Section 10.2 and the references therein.
In chemical kinetics, the corresponding approximation is called the law of mass action.
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adding the contributions of each individual effect in the ODE. Of course, although
the equations may be simple to formulate, solving them is anything but simple.

Besides arising naturally, systems of ODEs also arise as a mathematical conve-
nience. For example, we claim that van der Pol’s equation (1.33) is equivalent to the
2× 2 first-order system

y′1 = y2,

y′2 = −β(y21 − 1)y2 − y1.
(1.36)

To see this, suppose x(t) is a solution of (1.33). Then let y1(t) = x(t) and y2(t) =
x′(t); it is easily seen that the two-component vector (y1(t), y2(t)) satisfies (1.36).
Conversely, if (y1(t), y2(t)) satisfies (1.36), then a trivial calculation shows that x(t) =
y1(t) satisfies (1.33).

This construction is quite general. Specifically, the nth-order ODE (1.9) is equiv-
alent to the n× n system for functions y1(t), . . . , yn(t),

y′1 = y2,

y′2 = y3,

...
...

...

y′n−1 = yn,
y′n = f(y1, y2, . . . , yn, t).

(1.37)

The proof of this statement is completely analogous to the above calculation with
van der Pol’s equation. The presentation of the theory is simplified using vector
notation. Thus, for example, if we write y = (y1, y2, . . . , yn), then (1.37) can be
written compactly as y′ = F(y, t), where the vector-valued function F(y, t) has the
components on the RHS of (1.37).

The theory of first-order systems of ODEs is enriched by the geometric interpre-
tation of such equations. For instance, Figure 1.7 illustrates the geometric interpre-
tation18 of van der Pol’s equation (1.36). The figure shows the vector field

F(y) =

[
y2

−β(y21 − 1)y2 − y1

]
(1.38)

defined by the RHS of (1.36). A curve y(t) is a solution of (1.36) iff for every t, the
tangent to the curve at the point y(t) equals F(y). A few typical solution curves

18This figure is our first instance of a phase plane plot : i.e., graphs of a few well-chosen trajectories
for a two-dimensional equation that indicate the behavior of the general solution.
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Figure 1.7: The vector field associated with van der Pol’s system (1.36), with β = 1,
and several sample solution trajectories. All nonzero solutions of this equation con-
verge to the periodic solution (green curve).

are also shown in the figure. As t → ∞, every nonzero solution converges to the
periodic trajectory, shown in green. (A nonconstant solution is called periodic if
there exists a time T > 0 such that y(t + T ) = y(t) for all t.) We invite you to use
the computer to verify this claim numerically. Considerable theory, which we will
develop in Chapter 7, is needed in order to verify it analytically.

We conclude this section with some terminology regarding systems of ODEs. A
system y′ = F(y, t) is called linear if F has the special form F(y, t) = A(t)y +
g(t), where A(t) and g(t) are matrix-valued and vector-valued functions of time,
respectively. It has constant coefficients if the matrix A does not depend on t, and
it is homogeneous if g(t) ≡ 0. A general system y′ = F(y, t) is called autonomous if
F is independent of t.

Given an autonomous system y′ = F(y), we call a point b∗ an equilibrium of this
system if F(b∗) = 0. For such a point, the constant function y(t) ≡ b∗ is a solution
of this system.

1.6 Topics Covered in This Book

1.6.1 General Overview

In a first course in ODEs, finding explicit solutions of equations is primary. This is
a fascinating subject that offers boundless opportunities for ingenuity. However, the
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sad fact is that for most equations, explicit solutions cannot be found,19 and we are
forced to develop understanding in the absence of explicit solutions.

The book divides naturally into three parts. The first part, Chapters 2–4, provides
the theoretical underpinning for the initial value problem. Chapter 2 prepares the
way for this with a careful study of linear systems of ODEs with constant coefficients.
In Chapters 3–4, we address three fundamental issues regarding the IVP for nonlinear
systems of ODEs:

• existence of solutions (local in Section 3.2, global in Section 4.2);

• uniqueness of solutions (Section 3.3);

• continuous dependence on the initial data (Section 4.5).

The first two phrases are probably self-explanatory; we shall wait till Chapter 4 to
flesh out the third.

The middle part, Chapter 5, explores how ODEs may be rendered more trans-
parent by clever scalings of the variables. This chapter is less theoretical than those
before or after it, and it connects strongly with ODEs from applications.

In the third part, Chapters 6–9, we develop what is called the qualitative theory
of ODEs. The goal of this subject is to predict the behavior of solutions of ODEs
without knowing explicit solutions. You may well wonder what kind of information
can be obtained under these circumstances. We think this question is best answered
through example. Therefore, to conclude this introductory chapter, in the next
subsection we identify a class of ODEs, an elaboration of the Lotka–Volterra equation
(1.35), and illustrate what the qualitative theory can say about such equations. It is
not necessary to understand the specific results in detail—for present purposes the
spirit of these results is more important than the results themselves.

In a final, supplemental, chapter we indicate some directions for further study,
including references.

1.6.2 A Case Study in the Qualitative Theory of ODEs

A central question in the qualitative theory of ODEs is to characterize the asymptotic
behavior of solutions as t → ∞. For the Lotka–Volterra equation (1.35), the large-
time behavior of solutions is easily described. Let’s consider the simplified equation20

x′ = x− xy,

y′ = ρ(xy − y),
(1.39)

19Approximate solutions, obtained either from numerical computations or asymptotic analysis,
sometimes provide an adequate substitute. We will touch briefly on both kinds of approximate
solutions, but they are not the main focus in this book.

20We show in Chapter 5 that by scaling the variables, (1.35) can be reduced to (1.39). In the
meantime, you may simply regard (1.39) as a special case of (1.35).
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Figure 1.8: Several solution curves of the Lotka–Volterra system (1.39), with ρ = 1.
The solutions are periodic and encircle the equilibrium at (1, 1).

where ρ is a positive constant. One particular solution of (1.39) is the constant
(equilibrium) solution x(t) ≡ 1, y(t) ≡ 1, which describes a steady balance between
the two species, or coexistence. In Exercise 3, we guide you through a proof that every
other solution in the open first quadrant21 {x > 0, y > 0} circles this equilibrium
point in a periodic fashion, as indicated in Figure 1.8. Indeed, the orbits are level
sets of the function

L(x, y) = ρ(x− ln x) + y − ln y, (1.40)

which has a global minimum at (1, 1). (Don’t forget that you can use the computer
to check this claim numerically!)

However, the Lotka–Volterra model is too simplistic for accurate modeling of
predator–prey systems. Without unleashing all the complexities of a realistic model,
let’s correct two unsatisfactory consequences of the linear growth rate of the prey
in (1.39):

• Solutions of the prey-only equation x′ = x grow indefinitely as time evolves.
As in (1.2), logistic growth—say x′ = x − x2/K = x(1 − x/K), where K is a
constant—would be a more realistic prey-only equation. We may interpret K
as the carrying capacity of the environment.22

21Food for thought: How do solutions on the boundary of the first quadrant, {x ≡ 0} or {y ≡ 0},
behave?

22You may wonder why we should not choose K equal to unity, as in (1.2). We could in fact
do this, but only at the expense of either losing some generality or making the y-equation in the
system less transparent. The mystery surrounding this and other applications of scaling arguments
should be dispelled by Chapter 5.
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• No matter how small x(0) may be, the prey never become extinct. This defect
may be corrected in an ad hoc manner by replacing the linear growth term23 by
x(x− ε)/(x+ ε). Then for x < ε, the growth rate is negative; thus if x(0) < ε,
the prey will die out. On the other hand, for large x, the growth rate is close
to x, as in the original equations.

Inserting both of these modifications of the prey growth rate into the system (1.39)
gives us the equations

(a) x′ = x

(
x− ε

x+ ε

)
(1− x

K
)− xy,

(b) y′ = ρ(xy − y),
(1.41)

which we call the augmented Lotka–Volterra equations. If ε = 0 and K = ∞, then
we obtain the unmodified Lotka–Volterra equations (1.39). In studying (1.41), we
assume that24

0 < ε < min{K, 1}. (1.42)

In contrast to the continuing oscillations of (1.39), solutions of (1.41) typically
converge to a steady state with populations independent of time. The solution may
converge to a coexistence equilibrium, to a prey-only equilibrium, or to total extinc-
tion. Not surprisingly, which asymptotic behavior is selected depends on the initial
conditions and on the parameters ε,K, ρ. However, as we will see shortly, some
surprising behavior is hidden in the details.

To elaborate, let us calculate the equilibrium solutions of this system25—i.e.,
points where x′ = y′ = 0. From (1.41b), we find that ρ(xy − y) = 0 if either y = 0
or x = 1. Substituting y = 0 into (1.41a) gives the three equilibria

(i) (0, 0) Extinction,
(ii) (ε, 0) Extinction threshold,
(iii) (K, 0) Prey-only equilibrium.

(1.43)

Substituting x = 1 gives a fourth,

(iv) (1, ycoeq) Coexistence equilibrium (1.44)

where
ycoeq = (1− 1/K)(1− ε)/(1 + ε). (1.45)

Note that if K < 1, then ycoeq < 0; i.e., coexistence is physically possible only if
K > 1.

23A growth rate that depends on the population size is called the Allee effect.

24We want ε < K, so that the carrying capacity exceeds the threshold for extinction, and when
K > 1, we want ε < 1, so that the prey population at the coexistence equilibrium (1.44) exceeds
the threshold for extinction.

25Note that there are multiple equilibria—we shall see that this is typical for nonlinear systems.



24 Chapter 1. Introduction

Figure 1.9 encapsulates information about solutions of (1.41). In the lower-right
panel, the parameter set (1.42) is divided into three regions by the curves

K = 1 (between Regions I and II)
K = (1 + 2ε− ε2)/2ε (between Regions II and III).

(1.46)

In Chapter 8, we will invoke the qualitative theory to predict that solutions of (1.41)
exhibit qualitatively different asymptotic behavior for (ε,K) belonging to different
regions, behavior that we can characterize without solving the equations, either an-
alytically or numerically. At this point, without understanding the basis for (1.46),
we choose one set of parameter values within each region and solve (numerically)
the IVP for two choices of initial conditions. Specifically, in each of the other three
panels in Figure 1.9, for ρ = 1 and ε = 1/5, trajectories are shown for initial condi-
tions (x(0), y(0)) = (1.5, 0.5) and (2, 2). We may summarize the observed asymptotic
behavior as follows: In all regions, if there are too many predators at the start, ev-
erybody dies. If there are fewer predators initially, different behavior is possible,
depending on the region. In Region I, the carrying capacity K is too small to sustain
both populations, but solutions may converge to a prey-only equilibrium. If resources
are somewhat more abundant (Region II), solutions may converge to a coexistence
equilibrium. But here’s the shocker: if the carrying capacity is too large (Region III),
both species are driven to extinction, even if initially the number of predators is very
small (but positive)! Although increasing the carrying capacity seems like it should
promote the overall health of the system, a worse fate results—greater resources lead
to growing oscillations that spiral to disaster.

While this behavior is interesting in its own right, we remind you that our main
point here is to illustrate the power of the qualitative theory.

1.7 Exercises

Preamble: You may feel discouraged to find yourself staring at ten pages of exercises, but we all
know that they are an essential part of learning the subject. Moreover, the situation is not as bad
as it may seem. The problems are actually a lot shorter than they may appear—only the text
in normal-sized type actually asks you to do anything, the text in smaller type consists of ample
hints and commentary. Believing that a “divide and conquer” strategy may reduce the intimidation
factor, we have grouped these exercises into several categories according to their primary purposes,
as follows: (1) core exercises to give you practice with the ideas in the chapter, (2) computational
exercises, (3) anticipatory exercises that introduce themes that will be important later in the book
(not to be skipped), and (4) “PHD exercises” that may be more difficult or develop some related
topic.

You may think that there is a large number of computational exercises, but you will be doing
yourself a favor if you do enough of them (in this and later chapters) so that you become as com-
fortable using the computer as using pencil and paper.26 In addition to the explicit computational

26Perhaps, for a computer-savvy generation, we should be giving pencil and paper a plug.
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Figure 1.9: The lower-right panel shows three regions in the ε-K parameter
space (1.42) for which solutions of (1.41) have different asymptotic behavior. The
boundaries between regions are formed by the curves (1.46). The other three panels
illustrate typical (or “generic”—see Section 1.8.2) behaviors of solution trajectories
for each region, using parameters and initial conditions as described in the text. The
periodic trajectories of the unperturbed system (1.35), which are shown in Figure 1.8,
are completely changed by the seemingly minor perturbation in (1.41); moreover, the
change depends in a nonobvious way on parameters.



26 Chapter 1. Introduction

exercises below, we invite you to use the software to check any statements made in the text. For
example, although Exercise 3 gives an analytical proof that every solution of (1.39) (in the first
quadrant) is periodic, it may be reassuring to see this behavior in computed solutions.

1.7.1 Core Exercises

The goal of the Core exercises is as follows:

To deal with unfinished business 1–3
To practice solving separable ODEs 4
To increase your general facility with ODEs 5–7

1. (a) Show that every solution of x′ = ax equals Ceat for some constant C.

Hint: Show that for a solution x(t), the derivative of e−atx is zero.

(b) Verify that formula (1.18) solves the first-order linear equation (1.17).

Hint: Write eā(s)−ā(t) = eā(s)e−ā(t) and move e−ā(t) outside the integrand.
Then differentiate using the product rule.

(c) Prove the following claims about the logistic equation made in the text.

• The function (1.22) satisfies (1.2).

• Provided b �= 1, equation (1.22) with C ′′ given by (1.23) satisfies the
initial condition x(0) = b.

• If b ≥ 0, the explicit solution and its exceptional case provide a solu-
tion of the IVP for all positive time.

(d) Derive (1.32), the equation for energy dissipation in a spring–mass system.

2. Show that if β = 2 in (1.14), then for every choice of constants C1, C2,

x(t) = C1e
−t + C2te

−t (1.47)

is a solution of this equation.

Discussion: This problem represents a minor special case of what we will prove
in the next chapter. Formula (1.47) is in fact the general solution of (1.14) when
β = 2. Incidentally, the second independent solution te−t can be obtained as a
limit as β → 2 of carefully chosen solutions of (1.14) when β �= 2, specifically,
the limit of

eλ+t − eλ−t

λ+ − λ−
.
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3. Introduction: Although it is not possible to solve the Lotka–Volterra (1.39) equations for x
and y as functions of t, it is possible to eliminate time and derive an implicit relation between
x and y along solution curves. To this end, we derive an ODE for y as a function of x from
the chain rule

dy

dx
=

dy/dt

dx/dt
=

ρ(xy − y)

x− xy
. (1.48)

(a) If L(x, y) is defined by (1.40), derive

L(x, y) = const (1.49)

as an implicit solution of (1.48), using the fact that this equation is sep-
arable.

(b) Verify that the level sets of L(x, y) are closed curves.

Discussion: Combining (a) and (b), we see that the trajectories of (1.39) are
contained in closed curves. To complete the proof that every nonconstant
trajectory is periodic, we would have to rule out the possibility that a trajec-
tory might not complete the entire circuit around the closed curve. You may
either fill this gap on your own, or you may look ahead to Corollary 7.1.2.

Incidentally, in the context of this exercise let us formalize some geomet-
ric language that will be useful later. By a trajectory we mean a specific
parametrized curve {(x(t), y(t)}, where x(t) and y(t) solve the ODE (1.39).
By contrast, the term orbit refers to the curve as a geometric object, in-
dependent of any parametrization. Thus, in this problem we find orbits of
(1.39), but not trajectories.

4. Introduction: Using separability, find the general solutions for the following equations, and
if initial conditions are given, solve the specific IVPs. (Except for (a), each of these problems
raises issues beyond mere practice in finding explicit solutions.)

(a) The Gompertz model for tumor growth, in which the center is starved for
oxygen (see p. 217 of Edelstein-Keshet [19]):

dN/dt = μe−αtN.

(b) An equation based on the pedagogical example (1.7):

x′ =
√
|x2 − 1|, x(0) = 1. (1.50)

Discussion: We have inserted absolute values inside the radical so that the
RHS of the equation is defined for all x. Carry through the usual recipe,
find a solution, and check it. Now, here is another, equally valid, solution:
x(t) ≡ 1; i.e., the solution of (1.50) is not unique! In Chapter 3, we will
give conditions that guarantee that an initial value problem has a unique
solution. In the meantime, you may want to ponder what misbehavior of√|x2 − 1| leads to this nonuniqueness.
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(c) An academic example to stimulate your thinking:

x′ = −1/x, x(0) = 1.

Puzzle: The formula you obtain from separability will not be usable for large
positive t. What went wrong?

(d) A system that will be used frequently as an illustration in later chapters:

x′ = x− y − (x2 + y2)x x(0) = b1,
y′ = x+ y − (x2 + y2)y y(0) = b2.

Hint: Solving this system would be hopeless except for the fact that it may
be rewritten in polar coordinates

r′ = r(1− r2), θ′ = 1,

in which the two equations are uncoupled. (Derive these equations!)

5. Directions: Make up your own ODEs with the following properties. The ODEs should be in
the standard form where the highest derivative has been “solved for.”

(a) A third-order scalar ODE that is nonlinear and nonautonomous.

(b) A fifth-order, linear, homogeneous scalar equation with constant coeffi-
cients such that every solution tends to zero as t → ∞.

Hint: It will proved below, but you may assume for now, that the general
solution of x(5)+a1x

(4)+. . .+a5x = 0 is a linear combination of the exponen-
tials eλkt, k = 1, . . . , 5, where λ1, . . . , λ5 are the roots of the characteristic
polynomial λ5 + a1λ

4 + . . . + a5 = 0, provided these roots are distinct. To
construct your example, make up a fifth-order polynomial with distinct roots
all lying in the left half-plane.

(c) A first-order nonlinear autonomous three-dimensional system.

Remark: After you have constructed your example, we invite you to check
out what is probably the most famous such system in existence, the Lorenz
equations, (8.5).

(d) A first-order 2×2 linear system that is autonomous but not homogeneous.

Remark: This exercise shows that “homogeneous linear system with constant
coefficients” and “autonomous linear system” are slightly different concepts.

(e) A first-order inhomogeneous 3×3 linear system with variable coefficients.
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6. (a) Sketch the direction field for the logistic equation (1.2).

(b) Trace curves tangent to the direction field to argue that for every initial
condition x(0) > 0, the solution of the IVP tends to 1 as t → ∞.

7. Introduction: The following easy exercise illustrates other representations of solutions of (1.3).

(a) Show that if D1, D2 ∈ C, then

x(t) = D1e
it +D2e

−it (1.51)

is a complex-valued solution of (1.3). Also show that if D1 = D̄2, where
bar indicates complex conjugation, then (1.51) is real-valued, and
conversely.

(b) Show that for every solution x(t) of the form (1.12), there exist real con-
stants C, δ such that

x(t) = C sin(t+ δ), (1.52)

and conversely.

1.7.2 Computational Exercises

8. Compare numerical solutions of the logistic equation (1.2) with the analytical
solution (1.22).

Remark: This exercise is more for practice in using software than for any inter-
esting math.

9. (a) For the Riccati equation (1.6), compute numerical solutions to show that
for negative and for small positive values of the initial condition b, the
solution is asymptotic to the parabola x2 − t = 0; and for large positive
values of b, the solution blows up in finite time.

Advice: Blowup may be seen in better detail if you plot x on a log scale.

(b) Estimate b∗, the initial datum that separates the two behaviors.

Remark: In the language of Section 1.8.2, solutions of the Riccati equation
generically either blow up in finite time or are asymptotic to the parabola
x = −√

t. The dividing case with x(0) = b∗ is nongeneric (and hard to
compute).

10. (a) In the van der Pol equation (1.36), set β = 1 and solve the initial value
problem for several choices of initial conditions.

(b) Choose some other values of β—don’t mess around, make a big change,
like β = 10 or 0.1—and repeat the above computation.
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x−A cos(   t)ω

Figure 1.10: Schematic of the vertically vibrated pendulum of Exercise 12.

Discussion: This exercise in intended to show that typical solutions of the
van der Pol equation tend to periodic behavior as t → ∞. As long as the
initial conditions are nonzero, you will see a periodic solution emerge. In
Part (b), changing the value of β will give a different periodic orbit from the
one shown in Figure 1.7.

11. For the augmented Lotka–Volterra equation (1.41), choose various initial con-
ditions to verify the behavior summarized in Figure 1.9.

12. Introduction: This is a fun problem that demonstrates an amazing fact: if the supporting
pin of a pendulum is vibrated vertically sufficiently rapidly (cf. Figure 1.10), the “straight
up” position of the pendulum may be stable! (Look online for a movie.) If the position
of the pin is −A cosωt and if friction is proportional to (angular) speed, then the (angular)
displacement x of the pendulum approximately satisfies an equation of the form (1.53) below,
where α is proportional to A. Note the similarity to Mathieu’s equation (1.5b). In Chapter 7,
we will give an analytical derivation that vibrations can stabilize the inverted equilibrium.

(a) Write the equation

x′′ + βx′ + [1− αω2 cosωt] sin x = 0 (1.53)

as a first-order system.

(b) Start with the pendulum at rest and nearly vertical, say x(0) = 3.1, and
let α = β = 0.1. Solve the IVP for various values of ω, say starting
with ω = 1 and doubling it repeatedly until you reach an ω such that the
pendulum comes to rest in the straight-up position.
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1.7.3 Anticipatory Exercises

13. Introduction: Consider a second-order inhomogeneous linear scalar ODE

x′′ + a1(t)x
′ + a2(t)x = g(t). (1.54)

Let xpartic(t) be some solution of (1.54). Such a solution is called a particular solution, which
provides the mnemonic for the subscript.

(a) Show that for every solution x(t) of (1.54), there is a solution xhomog(t) of
the homogeneous equation (i.e., (1.54) with the inhomogeneous term g(t)
set equal to zero) such that

x(t) = xpartic(t) + xhomog(t).

Remark: It is worth retaining this idea—i.e., you can solve an inhomogeneous
linear equation with a particular solution plus a homogeneous solution. This
technique is taught in all elementary courses on ODEs.

(b) Consider periodic forcing of a spring–mass system

mx′′ + bx′ + kx = Γcosωt. (1.55)

Find a particular solution of this equation by looking for a solution in the
form xpartic(t) = A cosωt+B sinωt.

(c) Graph the amplitude
√
A2 +B2 in xpartic(t) as a function of ω, paying

particular attention to the limit of small b > 0.

Discussion: You will see that if b is small, the amplitude has a large spike
when ω is close to the frequency ω0 =

√
k/m of the undamped oscillator.

To generalize: consider a weakly damped linear ODE that has slowly
decaying oscillatory solutions of the form e−εt cosω0t. If such a system is
subjected to an oscillatory force whose frequency is close to ω0, the response
may be very large. This phenomenon is known as resonance. It may be seen
over a vast range of scales, ranging from a child pumping a swing to the
collapse27 of the Tacoma Narrows Bridge (Braun [10] p. 173). Other forms
of resonance, including in a nonlinear equation, will be studied below.

(d) Show that assuming b > 0, every solution of (1.55) tends to xpartic(t) as
t → ∞.

Hint: If b2 = 4mk, you will need to use ideas from Exercise 2 to complete
this part of the exercise.

27See also [82] for a discussion of a less dramatic resonance-induced bridge episode.
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14. (a) Solve the IVP

εx′′ + x′ + x = 0, x(0) = a, x′(0) = b,

where ε is a small positive parameter.

Hint: Although this problem can be solved exactly, it’s messy, and an approx-
imation is perfectly adequate. The two roots of the characteristic equation
are approximately −1,−1/ε. Look for an approximate solution of the IVP
in the form

Ae−t +Be−t/ε

that uses these approximate roots in the exponents.

(b) Introduction: Given that ε 
 1, it is tempting to consider an approximation setting
ε = 0 in the ODE. This approximation has the alarming effect of transforming a
second-order ODE into a first-order equation! In particular, it is no longer possible to
satisfy both initial conditions. Nevertheless, in the next part of the exercise we invite
you to throw caution to the wind.

Solve the IVP
x′ + x = 0, x(0) = a.

(c) Set ε = 0.1, a = 1, b = 1, and plot the two solutions.

Discussion: Observe that apart from an initial short-lived transient, the two
solutions closely track one another; i.e., in this instance we didn’t get burned
by the brutal approximation. However, an approximation that changes the
order of an ODE has to be approached with caution. To drive this point
home, you might repeat the exercise for εx′′ −x′ −x = 0. We will encounter
similar issues on multiple occasions below.

15. (a) Suppose x = b∗ is an equilibrium of a scalar ODE x′ = f(x). Make an
educated guess (don’t bother with a “proof”) as to which of the following
two statements is true if f ′(b∗) > 0 and which if f ′(b∗) < 0:

• If the initial datum x(0) is sufficiently close to b∗, then x(t) tends to
b∗ as t → ∞.

• No matter how close the initial datum x(0) �= b∗ may be to b∗, the
solution x(t) moves further away from b∗ as t increases.

(b) Check your hunch against the two equilibria x = 0 and x = 1 of the
logistic equation (1.2).

Remark: This problem anticipates the concept of stability of an equilibrium,
a truly fundamental idea in the qualitative theory of ODE. It will be studied
in earnest beginning in Chapter 6.
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1.7.4 PHD Exercises

16. Introduction: In this exercise you show that a solution of a scalar ODE x′ = f(x) cannot
cross a zero of f , provided f ∈ C1. In fact, this conclusion follows simply from the general
uniqueness result, Theorem 3.3.4 below, but it may be useful preparation for later work to
derive this particular case now. The following statement concerns behavior of a solution
x(t) > 0 near a zero of f located at the origin, but the general case can be reduced to this
special case by translation and reflection.

Let x(t) be a solution of a scalar ODE, x′ = f(x), where f is C1 and f(0) = 0.
Show that if x(0) > 0, then x(t) > 0 for as long as the solution exists.

Hint: Since f(0) = 0 and f ∈ C1, you may bound f as follows: there is an
interval [0, a] where a > 0, and a constant C such that

f(x) ≥ −Cx for 0 ≤ x ≤ a.

Now suppose the claim is false, say x(t) > 0 for 0 ≤ t < t∗ but x(t∗) = 0. There
may be a long interval in which x(t) > a, but you may ignore this. Isolate an
interval [t∗ − ε, t∗) such that

0 < x(t) ≤ a if t∗ − ε ≤ t < t∗.

Then show that (d/dt) [eCtx(t)] ≥ 0 on this interval and hence conclude that

x(t) ≥ x(t∗ − ε)eC[(t∗−ε)−t] for t ∈ [t∗ − ε, t∗],

which contradicts the assumption that x(t∗) = 0.

17. Directions: Use separability to solve the following ODEs:

(a) The logistic equation with “constant harvesting”:

x′ = x(1− x)− μ,

where μ is a positive constant.

Advice: This problem is technically complicated; don’t pursue it if it ceases
to be enjoyable. The cases 0 < μ < 1/4, μ = 1/4, and 1/4 < μ must be
treated separately. To understand why the behavior of the equation changes
at μ = 1/4, think about the equilibrium equation x(1− x)− μ = 0.

In this ODE, it is assumed that constant harvesting continues even if x →
0, which of course is unsustainable. A consequence of this faulty assumption:
the equation can predict negative populations.

(b) The equation x′′ = x′x, which was offered to illustrate nonlinearity.

Hint: Integrate the equation once to obtain x′ = x2/2 + C, where C is a
constant, and then apply separability. The cases C > 0, C = 0, and C < 0
lead to different formulas.
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18. (a) Apply Theorem 1.8.1 below to show that solutions of the IVP

x′ = x2 − t, x(0) = b, (1.56)

blow up in finite time if b ≥ 1.

Hint: Suppose (1.56) is solvable on the interval 0 ≤ t < t∗. Let u(t) =
(1− t/2)−1 be the solution of

u′ = u2/2, u(0) = 1. (1.57)

Since b ≥ 1, we have the initial bound u(0) ≤ x(0). Show that for 0 ≤ t < 2,

1

2(1− t/2)2
=

du

dt
(t) ≤ f(u(t), t) =

1

(1− t/2)2
− t

by clearing the denominator and applying calculus. Derive a contradiction
from the theorem by assuming t∗ > 2.

(b) Apply Theorem 1.8.1 to show that if b ≤ 0, then the solution x(t) of (1.56)
satisfies

−
√
b2 + t ≤ x(t) ≤ 0 (t ≥ 0) (1.58)

for as long as the solution exists.

Hint: To bound x(t) from below, let u(t) = −√
b2 + t and verify the hy-

potheses of Theorem 1.8.1. To bound x(t) from above, first formulate an
analogue of Theorem 1.8.1 in which the directions of all inequalities are re-
versed, and then verify the hypotheses of the reformulated theorem for the
function u(t) ≡ 0.

Remarks: In Part (a), the solution of (1.57) is a useful basis for comparison,
because (1.57) is simple enough that it can be solved explicitly, while it still
retains the quadratic growth of (1.56) as x → ∞. In Part (b), the comparison
function u(t) = −√

b2 + t for the lower bound was the first function we
thought of such that u(t) ≈ −√

t as t → ∞ and u(0) ≤ b when b < 0, and
this choice worked.

Incidentally, the estimate (1.58) actually implies that the solution of the
IVP exists for all positive time if b ≤ 0; this will follow from our results in
Chapter 4.

19. Introduction: Exercise 9 applied computation to study the IVP for Riccati’s equation (1.56);
Exercise 18 applied rigorous analysis; the present exercise applies asymptotics to the same
end.

Show that there are formal series solutions of the Riccati equation (1.6),

x+(t) =
√
t
(
1 +

a0
t3/2

+
a1
t3

+ . . .
)

and x−(t) =
√
t

(
−1 +

b0
t3/2

+
b1
t3

+ . . .

)
,

series in inverse powers of t3/2.
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Discussion: When we say formal series, we are allowing the possibility that
the series may not converge. Thus to show that a formal series solution exists,
you need only derive a recurrence relation for successive coefficients in the series.
Although we hesitate to endorse mathematical sloppiness, we admit that in actual
practice, one often just calculates the first couple of coefficients in the series and
gets a general sense of how subsequent terms will work out.

The series x− approximates the asymptotic behavior of all those solutions
that remain in the lower half-plane {x < 0} as t → ∞. Since the series are based
on inverse powers, they are useful in the limit t → ∞. We invite you to compare,
for large t, say t > 5, the sum of the first few terms of these series with your
numerical solutions from Exercise 9. By contrast, the series x+ approximates
(when t is large) the unique solution that separates the two typical asymptotic
behaviors of solutions of (1.6). The asymptotic solution is particularly useful in
the latter case, since some effort is required to locate this solution numerically.

20. Introduction: The following problem derives an amusing, totally unsuspected, connection
between two, very different, ODEs that appeared in this chapter.

Show that if x(t) satisfies Airy’s equation (1.5a), then over an interval where
x(t) �= 0, the function y(t) = −x′(t)/x(t) satisfies the Riccati equation (1.6).

21. Derive the ODE that reparametrizes solutions of (1.59), in Section 1.8 below,
by arc length.

Remark: Your equation will be similar to (1.60), but with a significant difference:
parametrization by arc length breaks down at a point where F(x) vanishes, while
(1.60) remains nonsingular.

22. Introduction: In the modification of (1.35),

x′ = ax− bxy − fx,
y′ = cxy − dy − fy,

the terms proportional to f are added to model the effect of fishing on the populations.

Verify that these equations have a coexistence equilibrium

x =
d+ f

c
, y =

a− f

b
.

Discussion: If there is no fishing (f = 0), then the equilibrium is (x, y) =
(d/c, a/b). The astounding fact is that if f is positive and not too large, then
the equilibrium value of x is increased. That is, if predation is the main cause
of prey death, then moderate fishing boosts the prey population, both in absolute
numbers and in fraction of the catch.

During World War I, the reverse phenomenon occurred: because of the war,
there was less fishing, and a higher fraction of sharks appeared in the catch. The
model (1.35) was developed to help understand this observation. See Section 4.10
of [10] for more particulars.
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1.8 Pearls of Wisdom

1.8.1 Miscellaneous

In the first lesson in ODEs, one learns that extra conditions must be imposed to
single out one solution of an equation from among infinitely many. In this book we
apply initial conditions to select a specific solution. However, you should know that
in many applications, other conditions are more appropriate. Chief among these are
boundary conditions, in which constraints on the solution of an ODE defined on an
interval 0 ≤ t ≤ T are imposed at both ends of the interval. We briefly discuss such
problems in Section 10.1, along with references.

There is a general construction to reformulate a nonautonomous system of ODE
in n dimensions, say

y′ = F(y, t),

where y(t) = (y1(t), . . . , yn(t)) and F : Rn×R → R
n, as an autonomous system in one

higher dimension. Specifically, form a new unknown z(t) = (z1(t), . . . , zn(t), zn+1(t))
by adding one component and require that z(t) satisfy z′ = G(z), where the RHS
G : Rn+1 → R

n+1 is defined by

G(z) =

[
F(z̃, zn+1)

1

]
,

z̃ being shorthand for the first n components of z. The two systems are connected
through the observation that zn+1(t) is essentially equivalent to time.

In Section 1.4 we suggested that one might visualize solutions of (1.30), a particle
moving in a potential V (x), as the motion of a marble rolling in the x, z-plane along
a curve given by the equation z = V (x). This analogy is qualitatively useful; for
example, as we will prove in Chapter 6, a particle moving according to (1.28) will
indeed come to rest at the bottom of one of the wells of the potential in Figure 1.5(c),
just as a rolling marble would do. On the other hand, it is quantitatively inaccurate.
In the first place, rolling introduces a whole new level of complexity—one needs
to distinguish between rolling with and without slipping, which requires examining
friction between the marble and the surface. Even if we ignore rolling and imagine
a particle sliding (with negligible friction) along the curve z = V (x), the analogy is
still flawed. In an extreme case, the particle may move so rapidly that it lifts off the
curve. Less dramatically, in sliding along a curve even at slow speed, motion in the
z-direction influences the x-component of the motion.28

28You can check this statement using the Lagrangian formulation of mechanics (cf. footnote
number 11) to derive the equations for such constrained motion.
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Sometimes it is convenient to reparametrize time in an ODE. One useful reparame-
trization of an autonomous system

dx

dt
= F(x) (1.59)

comes from solving the ODE

dx

dτ
=

F(x)
√
1 + |F(x)|2 . (1.60)

Although (1.59) and (1.60) have different solutions, both equations have the same
orbits ; this follows from the uniqueness theorem of Chapter 3. Moreover, while
solutions of (1.59) may blow up in finite time, even if F is defined on all of Rd,
solutions of (1.60) exist for all τ ; this follows from existence results in Chapter 4.
The reparametrization in (1.60) is subtly different from reparametrizing orbits by
arc length; see Exercise 21.

1.8.2 The Concept “Generic”

Let us begin to develop the important concept of generic behavior, which is a more
technical synonym for “typical” behavior, with an implication of robustness. To be
specific, consider the trajectories illustrated in the upper left panel of Figure 1.9,
which are solutions of the augmented Lotka–Volterra equation (1.41) with the pa-
rameter values ε = 0.2, K = 2, ρ = 1. We claim that for “generic” initial data, the
solution of the IVP for this problem

converges to either the coexistence or the extinction equilibrium. (1.61)

Note that not every solution has this long-time behavior. For example, the threshold-
equilibrium solution (x(t), y(t)) ≡ (ε, 0), which is constant in time, isn’t covered by
(1.61). You may object that this solution does not belong to the open first quadrant.
Well, point taken, but here is an example that counters that objection. As illustrated
in Figure 1.11, consider a one-parameter family of initial conditions lying on the line
{x = 2}, say (x(0), y(0)) = (2, b) where 0 < b < 2. On the one hand, if b is close
to 0, the solution will converge to the coexistence equilibrium. On the other hand,
if b is large, the solution will converge to extinction. By continuity, somewhere in
between these extremes is an initial condition (2, b∗) that separates these behaviors.
As one might guess, the solution with initial condition (2, b∗) in fact converges to the
threshold equilibrium (ε, 0) as t → ∞, which is not covered by (1.61).

So what are we claiming in (1.61)? Solutions with initial conditions (x(0), y(0)) =
(2, b) where b �= b∗ are robust in the sense that every sufficiently small perturbation of
the initial data produces a solution with the same asymptotic behavior. By contrast,
the solution with initial conditions (x(0), y(0)) = (2, b∗) is far from robust—the
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Figure 1.11: An elaboration of the flow of (1.41) in Figure 1.9, the case
ε = 0.2, K = 2 (Region II). Most trajectories converge to either the coexistence
equilibrium or the extinction equilibrium. One distinguished trajectory, with initial
conditions (x(0), y(0)) = (2, b∗), converges to the extinction threshold, (ε, 0).

slightest perturbation of the initial conditions can change the asymptotic behavior.
Therefore, we dismiss the initial condition (2, b∗) as “nongeneric.” The dichotomy
(1.61) holds for robust solutions.

The example helps us articulate the mathematical value of this concept. We
wanted to classify the possible behavior of solutions of (1.41), and it is easier to
exclude nonrobust behavior and enumerate just robust cases. This point becomes
more emphatic if we allow parameters in (1.41) to vary: claim (1.61) remains valid
for all parameters (ε,K) that lie in Region II of Figure 1.9, even though there are
substantial (and interesting, to be sure) changes in nongeneric behavior, which we
will explore in later chapters.

Using the computer to test the above claims provides further insight. You will
find that it is impossible to locate b∗ exactly. If b is close to b∗, your solution will
linger near the equilibrium (ε, 0), but eventually it will fall away, either to extinction
or to coexistence. To generalize: It is virtually impossible to reproduce nongeneric
behavior on the computer.

We shall continue to develop the numerous mathematical associations of the term
“generic” as we proceed in the book.

1.8.3 A Comparison Theorem

In this book, in focusing on differential equations, we neglect differential inequalities,
except for the following token result. This neglect is not for want of significant
theory—whole books (e.g., [84]) have been written about the subject.



1.8. Pearls of Wisdom 39

Theorem 1.8.1. Let x(t) be a solution of the scalar ODE x′ = f(x, t), where f is
C1, on the interval 0 ≤ t < T . If the differentiable function u(t) satisfies

du

dt
(t) ≤ f(u(t), t), 0 ≤ t < T, (1.62)

and the initial bound u(0) ≤ x(0), then u(t) ≤ x(t) for all t ∈ [0, T ).

Although the proof of this result is not hard, we do not give it here. It drops
out as a consequence of the existence theory for systems of ODEs; see Exercise 4.15.
You may want to try to prove the theorem on your own, or see page 29 of [9].

In Exercise 18 we guide you in using the result to verify the conjectured asymp-
totic behavior of solutions of the Riccati equation from Section 1.2.2.



Chapter 2

Linear Systems with Constant Coefficients

2.1 Preview

The bulk of this chapter is devoted to homogeneous linear systems of ODEs with
real constant coefficients. This means systems of the form

x′
1 = a11x1 + a12x2 + . . .+ a1dxd,

x′
2 = a21x1 + a22x2 + . . .+ a2dxd,

...
...

...

x′
d = ad1x1 + ad2x2 + . . .+ addxd.

(2.1)

(From now on, we shall let d be the dimension of our systems, so that the index n is
available for other uses.) The written-out system (2.1) is awkward to read or write,
and we shall normally use the vastly more compact linear-algebra notation

x′ = Ax, (2.2)

where x = (x1, x2, . . . , xd) is a d-dimensional vector of unknown functions, A is a
d × d matrix with real entries, and matrix multiplication is understood in writing
Ax. In vector notation, an appropriate initial condition for (2.2) is

x(0) = b, (2.3)

where b ∈ R
d.
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In this chapter we will show that the initial value problem (2.2), (2.3) has the
unique solution given by the formula1

x(t) = eAtb, (2.4)

where the exponential of a matrix is defined in analogy with the exponential of a
scalar,

eAt = I + At+
1

2!
(At)2 +

1

3!
(At)3 + . . . . (2.5)

Note that each term in the series is a square matrix, so adding terms is dimensionally
consistent. Our first task, the goal of Section 2.2, is to prove that the series (2.5)
converges and to derive the basic properties of the matrix exponential. Once we
have established the formalism of “norms,” the proofs for matrix exponentials are
completely analogous to proofs for scalar exponentials.

It turns out that using the series (2.5) is generally not the most convenient way to
compute eAt. In Section 2.3 we discuss how to use the eigenvalues and eigenvectors
of a matrix to compute its exponential.

The following simple calculation motivates the appearance of the eigenvalue prob-
lem in solving linear systems of ODEs. We ask whether, in analogy with a scalar
linear ODE, there might be solutions of the vector equation (2.2) of the form eλt

times a constant. Of course the “constant” has to be a vector for dimensions to be
consistent. Thus we refine our question to this: are there any scalars λ and any
vectors v ∈ R

d such that
x(t) = eλtv (2.6)

is a solution of (2.2)? Since x′(t) = λeλtv, the two sides of (2.2) are equal iff

Av = λv,

where we have canceled the (nonzero) exponential factor eλt. In other words, (2.6)
is a solution of (2.2) if and only if v is an eigenvector of A with eigenvalue λ.

To complete the overview of the chapter: in three short additional sections, we
discuss the asymptotic behavior of solutions of (2.2) as t → ∞ (Section 2.4), we
draw phase portraits for typical two-dimensional linear systems (Section 2.5), and
we give formulas for solving an inhomogeneous equation (Section 2.6).

2.2 Definition and Properties of the Matrix Exponential

2.2.1 Preliminaries About Norms

To proceed, we need to define what it means for a series of matrices like (2.5) to con-
verge. We could define convergence of a series of matrices in terms of the convergence

1The two factors on the RHS of (2.4) must be written in the order in which they appear.
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of each entry, considered as a series of real numbers. However, proofs are smoother
if we introduce a metric on the set of matrices and use it to define convergence. The
metric is based on how matrices act when multiplying vectors, so we begin with some
concepts related to vectors.

For a vector x ∈ R
d, the d-dimensional generalization of the Pythagorean theorem

suggests that we define the length of x, written |x|, by

|x| =
√√√√

d∑

j=1

x2
j . (2.7)

In analysis it is more common to call the expression |x| the norm of x rather than
its length, and we shall follow that usage. Note that the norm may be expressed as

|x| =
√

〈x,x〉, (2.8)

where 〈·, ·〉 denotes the usual inner product on R
d,

〈x,y〉 =
d∑

j=1

xjyj. (2.9)

In two and three dimensions it is known that

〈x,y〉 = |x| |y| cos θ, (2.10)

where θ is the angle between x and y. In d dimensions, (2.10) is used to define the
angle between two vectors. The following lemma, the Cauchy–Schwarz inequality,
supports this definition by guaranteeing that cos θ computed from (2.10) is at most
unity in absolute value.

Lemma 2.2.1. For all vectors x,y ∈ R
d,

|〈x,y〉| ≤ |x| |y|. (2.11)

The inequality is strict unless one of the vectors is a multiple of the other.

Proof. If y = 0, both sides of (2.11) vanish and the inequality is trivial, so we assume
y �= 0. Consider choosing a constant c to minimize

|x+ cy|2 = |x|2 + 2c〈x,y〉+ c2|y|2. (2.12)

To find the minimum, we differentiate (2.12) with respect to c, set the derivative
equal to zero, and solve the resulting trivial linear equation for c, obtaining
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x1

x2

y
x+y

x

Figure 2.1: Illustrating the triangle inequality.

c∗ = −〈x,y〉
|y|2 .

On substituting into (2.12) and combining terms, we obtain

|x+ c∗y|2 = |x|2 − 〈x,y〉
|y|2 .

Since |x + c∗y|2 ≥ 0, (2.11) follows. By reexamining the above argument, we may
conclude that the inequality is strict unless one vector is a multiple of the other. (Do
this!)

In the next lemma we collect several simple but fundamental properties of the
norm function.

Lemma 2.2.2. For any vectors x,y ∈ R
d and scalar c ∈ R,

(i) |x| ≥ 0, and |x| = 0 iff x = 0,

(ii) |cx| = |c| |x|,
(iii) |x+ y| ≤ |x|+ |y|.

Inequality (iii) is called the triangle inequality, for reasons suggested by Figure 2.1.

Proof. We leave the derivation of properties (i) and (ii) as an exercise; we merely call
your attention to the fact that the same vertical-bar notation is used with slightly
different meanings in |c| and in |x|—the absolute value of the scalar and the norm
of the vector. Regarding the proof of (iii), observe that

|x+ y|2 = |x|2 + 2〈x,y〉+ |y|2.
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Using Lemma 2.2.1 to bound the middle term, we compute that

|x+ y|2 ≤ |x|2 + 2|x| |y|+ |y|2 = (|x|+ |y|)2.

The result follows on taking a square root.

The norm of a vector specifies its “size.” The analogous quantity measuring size
for matrices, written with double bars ‖A‖ and also called the norm, is defined in
terms of the operation of a matrix on vectors; specifically, if A is a d1 × d2 matrix,
we define

‖A‖ = max
|x|≤1

|Ax|. (2.13)

In this expression, for Ax to be defined, x must be a d2-dimensional vector, while
Ax has dimension d1. Thus, if d1 �= d2, |x| and |Ax| are computed with respect to
different spaces, even though the notation does not indicate this explicitly.

It follows from compactness that the maximum (2.13) actually exists, as we ask
you to show in Exercise 1(a). (Compactness is discussed in Section B.1 of Ap-
pendix B. If you have scant experience with this concept, it may seem rather nebu-
lous. We hope that the practice of using compactness in this and other applications
below will demystify it.)

Let us collect several useful properties of the matrix norm.

Lemma 2.2.3. For all matrices A,B of appropriate dimensions, for every vector
x ∈ R

d, and for every scalar c ∈ R,

(i) ‖A‖ ≥ 0, and ‖A‖ = 0 iff A = 0,

(ii) ‖cA‖ = |c| ‖A‖,
(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖,
(iv) |Ax| ≤ ‖A‖ |x|,
(v) ‖AB‖ ≤ ‖A‖ ‖B‖,
(vi) ‖A2‖ ≤ ‖A‖2.

In the exercises we ask you to verify these properties. Although this task probably
seems less than exciting, we urge you not to skip over it too lightly, because it helps
develop proficiency with the use of norms, proficiency you will need later.

The next result relates the norm of a vector or matrix to information about the
size of its entries.

Lemma 2.2.4. If x ∈ R
d, then

max
1≤j≤d

|xj| ≤ |x| ≤
d∑

j=1

|xj|,
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and if A is a d1 × d2 matrix with entries {ajk}, then

max
1≤j≤d1

max
1≤k≤d2

|ajk| ≤ ‖A‖ ≤
d1∑

j=1

d2∑

k=1

|ajk|.

The vector part of this lemma shouldn’t cause you any difficulty; we refer you to
Exercise 2 for hints on how to prove the matrix part.

Note that properties (i–iii) in Lemmas 2.2.2 and 2.2.3 are the same. Indeed,
every function ‖·‖ from a vector space to the nonnegative reals satisfying these three
properties is called a norm.2 Given a norm, one may define the distance between
two vectors in the space. Thus, for vectors in R

d and for matrices we define

dist(x,y) = |x− y|, dist(A,B) = ‖A−B‖, (2.14)

respectively.

2.2.2 Convergence

We use the notion of distance to define convergence. Specifically, we say that a
sequence {An} of matrices converges to a limit matrix L if

lim
n→∞

‖An − L‖ = 0,

and we say that an infinite series of matrices
∑∞

0 An converges if the sequence of
partial sums

∑N
0 An converges as N → ∞. That is,

∑∞
0 An converges to a limit

matrix L if for every ε > 0, there is an integer N0 such that

N > N0 =⇒
∥∥∥∥∥

N∑

n=0

An − L

∥∥∥∥∥
< ε.

Lemma 2.2.5. A sequence of matrices {An} converges if and only each sequence of
entries converges, and likewise for an infinite series

∑∞
0 An.

Proof. This result is easily proved using Lemma 2.2.4; we leave the details as a
practice exercise.

We shall say that a series
∑∞

0 An of matrices is absolutely convergent if
∑∞

0 ‖An‖ <

∞. Note that the terms of the latter series are nonnegative real numbers.

2The vector space need not be finite-dimensional. Indeed, in the next chapter, we shall encounter
a norm on an infinite-dimensional space.
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Lemma 2.2.6. If
∑∞

0 An is absolutely convergent, then the series converges; i.e.,
there exists a matrix L such that

lim
N→∞

N∑

n=0

An = L.

Moreover, for every integer M ,

∥∥∥∥∥

M∑

n=0

An − L

∥∥∥∥∥
≤

∞∑

n=M+1

‖An‖. (2.15)

Proof. In Exercise 2 we ask you to derive the lemma from the analogous result for
scalars. The inequality (2.15), a seemingly innocuous generalization of the triangle
inequality to an infinite sum, actually requires a limiting argument that we outline
in the hints.

Proposition 2.2.7. If A is a square matrix, the series
∑∞

0 (At)n/n! in (2.5) con-
verges absolutely.

Proof. For the general term in (2.5) we have the estimate

∥∥∥∥
(At)n

n!

∥∥∥∥ ≤ (|t| ‖A‖)n
n!

, (2.16)

and by comparison with the series representation of the scalar exponential e|t| ‖A‖, we
see that

∑∞
0 ‖(At)n/n!‖ < ∞.

We will write eAt for the sum (2.5), which is guaranteed to exist by Lemma 2.2.6.
To apply calculus to the series, we need it to converge uniformly, for which the range
of t must be restricted.

Corollary 2.2.8. For every real number T , the series
∑∞

0 (At)n/n! converges uni-
formly on {t : |t| ≤ T}; i.e., for every T and ε > 0, there is an integer N0 such that
if N > N0 and if |t| ≤ T , then

∥
∥∥∥
∥

N∑

n=0

(At)n

n!
− eAt

∥∥
∥∥
∥
< ε.

Proof. By (2.15) and (2.16),

∥∥∥
∥∥

N∑

n=0

(At)n

n!
− eAt

∥
∥∥∥
∥
≤

∞∑

n=N+1

(|t| ‖A‖)n
n!

≤
∞∑

n=N+1

(T ‖A‖)n
n!

.
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Since the series for eT ‖A‖ converges, by taking N sufficiently large, the RHS of this
inequality can be made arbitrarily small.

2.2.3 The Main Theorem and Its Proof

Having slogged through a lot of rather dry material, and with more of the same ahead
of us, let us reward ourselves by jumping ahead to the main result of Section 2. We
suppose A is a square matrix.

Theorem 2.2.9. For every b ∈ R
d, the initial value problem

x′ = Ax, x(0) = b

has the unique solution that is given by the formula

x(t) = eAtb. (2.17)

To prove the theorem, it’s back to the salt mines. First we must study the
dependence of eAt on t. If φ(t) is a matrix-valued function, we shall say that φ is
continuous at t or that φ is differentiable at t with derivative L if

lim
Δt→0

φ(t+Δt) = φ(t) or lim
Δt→0

φ(t+Δt)− φ(t)

Δt
= L,

respectively. It is natural to interpret these limits using norms, but of course, by
Lemma 2.2.4, the matrix function φ is continuous or differentiable if and only if each
entry of φ is continuous or differentiable. In the obvious notation, we shall write
φ′(t) for the derivative of φ at t, and we shall call φ continuously differentiable on
an interval if φ is differentiable at every point in the interval and φ′(t) is continuous
with respect to t there.

Proposition 2.2.10. The exponential eAt is a continuously differentiable function
of t and

d

dt
eAt = AeAt = eAtA.

Discussion: To prove this result we need to differentiate an infinite series of functions
term by term; in symbols,

d

dt

∞∑

n=0

fn(t) =
∞∑

n=0

dfn
dt

(t). (2.18)

Such a result is trivial for finite sums, but without additional conditions, it fails badly
for infinite sums. This issue is discussed, along with key examples, in Section B.2 of
Appendix B. (See also Section 2.8.2 below.) According to Corollary B.2.6, to invoke
(2.18) we need for the series on the RHS to converge uniformly.
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Proof. Each term (At)n/n! = tn(An/n!) in the series for eAt is continuously differen-
tiable; indeed,

d

dt

(At)n

n!
= nA

(At)n−1

n!
= n

(At)n−1

n!
A.

Taking a finite sum and observing that n/n! = 1/(n−1)! provided n ≥ 1, we calculate

d

dt

N∑

n=0

(At)n

n!
= A

{
N∑

n=1

(At)n−1

(n− 1)!

}

=

{
N∑

n=1

(At)n−1

(n− 1)!

}

A.

Shifting the summation index in the series on the RHS, we see that

N∑

n=1

(At)n−1

(n− 1)!
=

N−1∑

m=0

(At)m

m!
. (2.19)

As N → ∞, the series (2.19) converges to eAt; indeed, the convergence is uniform
for bounded t. Hence the proposition follows by applying Corollary B.2.6.

In the next two results we suppress t in eAt for brevity. Since A is an arbitrary
matrix, we lose no generality by doing this.

Proposition 2.2.11. The exponential of the zero matrix is the identity; in symbols,
e0 = I. For every matrix A, the exponential eA is invertible and

(eA)−1 = e−A.

Proof. It is readily seen from the series expansion (2.5) that e0 = I. Regarding
the claim about inverses, for real s let φ(s) = eAse−As. According to the previous
proposition, each factor in φ is continuously differentiable. In Exercise 1(b) we
ask you to prove that the product of two continuously differentiable matrix-valued
functions is continuously differentiable and its derivative is given by Leibniz’s rule
for differentiation of a product. Thus,

d

ds
φ(s) =

(
d

ds
eAs

)
e−As + eAs

(
d

ds
e−As

)
= eAs(+A)e−As + eAs(−A)e−As = 0,

where we have applied Proposition 2.2.10. Since the derivative vanishes, φ(s) =
φ(0) = I for all s, in particular for s = 1, and the result is proved.

An incidental consequence of Proposition 2.2.10 is that A and eAt commute. More
generally, we have the following:

Proposition 2.2.12. If AB = BA, then AeB = eBA, eAeB = eBeA, and

eA+B = eAeB.
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Proof. We prove only the displayed formula; the other two results are left as exercises.
Let

φ(s) = e−s(A+B)esAesB.

By Leibniz’s rule

d

ds
φ(s) = e−s(A+B)(−A−B)esAesB + e−s(A+B)(A)esAesB + e−s(A+B)esA(B)esB.

In the third term we may commute the middle two factors, esA and B, and then all
three terms add up to zero. Thus φ(s) = φ(0) = I for all s.

It is now a simple matter to prove the main result of this section:

Proof of Theorem 2.2.9. It is obvious that x(t) = eAtb satisfies the initial condition.
To show that it satisfies the equation, just differentiate and apply Proposition 2.2.10.
To show uniqueness, suppose x(t) is one solution and let

y(t) = e−Atx(t). (2.20)

Differentiate (2.20) to show that

d

dt
y(t) = −e−AtAx(t) + e−At d

dt
x(t).

Since x(t) satisfies the ODE, the two terms in this equation cancel, yielding dy(t)/dt =
0. Thus

y(t) = y(0) = x(0) = b,

and the uniqueness result follows on multiplying (2.20) by eAt.

2.3 Calculation of the Matrix Exponential

2.3.1 The Role of Similarity

Suppose x(t) is a solution of the homogeneous linear system

x′ = Ax. (2.21)

Let us consider a linear change of coordinates for the unknown functions {xj(t)};
i.e., let S be a nonsingular matrix and define a new vector of unknown functions by
y(t) = Sx(t). Then we may derive an ODE for y(t) as follows:

y′ = Sx′(t) = SAx = SAS−1y.
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In other words, y also satisfies a linear homogeneous system of ODEs, and the
coefficient matrix in the system for y is SAS−1, a matrix similar to A in the technical
sense of linear algebra. This is an idea worth remembering:

Two systems of ODEs with similar coefficient matrices, say x′ = Ax
and y′ = SAS−1y, differ only by the choice of coordinates on R

d. In
particular, their solutions exhibit exactly the same phenomena.

Expanding on this theme, the following proposition guarantees that the exponen-
tials of similar matrices are themselves similar.

Proposition 2.3.1. If B = SAS−1, then eBt = SeAtS−1.

You are asked to prove this result in Exercise 3.

To illustrate the value of this proposition, let’s suppose that the matrix A in
(2.21) is diagonalizable over R. Specifically, suppose that A = SΛS−1, where

Λ = Diag(λ1, λ2, . . . , λd) =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . λd

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

is a diagonal matrix with the (real) eigenvalues of A along its diagonal. By Propo-
sition 2.3.1,

eAt = SeΛtS−1.

Now, for every power, Λn is also diagonal, simply Diag(λn
1 , λ

n
2 , . . . , λ

n
d). Thus, the

series for eΛt converges to the diagonal matrix

eΛt = Diag(eλ1t, eλ2t, . . . , eλdt),

and hence
eAt = S Diag(eλ1t, eλ2t, . . . , eλdt)S−1. (2.22)

In words, we have reduced calculating a matrix exponential to calculating several
scalar exponentials and a couple of matrix multiplications.

To take advantage of (2.22), we need to be able to calculate the similarity matrix
that diagonalizes A, and the next result tells us how to do this. In this propo-
sition, the notation Col(v1,v2, . . . ,vd) denotes the matrix whose columns are the
specified vectors v1,v2, . . . ,vd. If A is diagonalizable over R, then there is a basis
{v1,v2, . . . ,vd} for Rd consisting of eigenvectors of A.
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Proposition 2.3.2. If A is diagonalizable over R with eigenvectors {v1,v2, . . . ,vd}
that form a basis for R

d and if S = Col(v1,v2, . . . ,vd), then
3

S−1AS = Λ,

where Λ is the diagonal matrix whose j, j-entry is the eigenvalue λj of A associated
with the eigenvector vj.

Proof. For every matrix A, the product Aej with the jth unit vector of the standard
basis equals the jth column of A. Therefore,

the jth column of AS = (AS)ej = A(Sej) = Avj = λjvj.

On the other hand,

the jth column of SΛ = (SΛ)ej = S(Λej) = λjSej = λjvj.

In words, we have shown, column by column, that AS = SΛ, and we multiply this
equation by S−1 to complete the proof.

Suppose A is diagonalizable over R. Let’s compare the ODE x′ = Ax with the
ODE y′ = Λy obtained from the change of variable y = S−1x, where S diagonalizes
A, i.e., S−1AS = Λ. The rate of change of xj depends on all the components of
x, while the rate of change of yj, which equals λjyj, depends only on the same
component yj. In other words, by diagonalizing A we are performing a change
of coordinates on R

d such that the new coordinates yj evolve uncoupled from one
another! Pretty clever, huh?

2.3.2 Two Problematic Cases

The hypothesis in Proposition 2.3.2 may fail in two ways (and both failures may
occur together):

• A has repeated eigenvalues but not enough eigenvectors, or

• A has complex eigenvalues.

Let’s consider simple special cases before dealing with the general situation.

3Up to this point, it does not matter whether we consider the basic equation expressing similarity
to be B = S−1AS or B = SAS−1. Here, however, there is a difference: the columns of the matrix
S such that S−1AS is diagonal are the eigenvectors of A, while the characterization of S−1 is less
transparent.
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The following is the simplest example of a matrix that has a deficiency of eigen-
vectors:

A =

[
a 1
0 a

]
.

It is readily seen that λ = a is the only possible eigenvalue of A, but the eigenspace
associated with this eigenvalue, ker(A − aI), is only one-dimensional. However, let
us write

A = aI +N, where N =

[
0 1
0 0

]
.

Since I and N commute, we have from Proposition 2.2.12 that

e(aI+N)t = eaIteNt = eateNt.

Moreover,4 since N2 = 0, the exponential series for eNt truncates to just two terms,

eNt = I +Nt =

[
1 t
0 1

]
, so eAt = eat

[
1 t
0 1

]
. (2.23)

Regarding the second problematic case, complex eigenvalues, λ = a ± bi, occur
for the matrix

A =

[
a −b

b a

]
, (2.24)

which we write as

A = aI + bJ, where J =

[
0 −1
1 0

]
.

Since I and J commute,
e(aI+bJ)t = eatebJt. (2.25)

As with nilpotent matrices, the exponential of J can be computed conveniently using
the power-series definition, because of the fact that J2 = −I; thus,

Jn =

⎧
⎪⎪⎨

⎪⎪⎩

I if n = 0 (mod 4),
J if n = 1 (mod 4),
−I if n = 2 (mod 4),
−J if n = 3 (mod 4).

4Recall that a square matrix N is called nilpotent if there exists a positive integer k such that
Nk = 0.
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Grouping odd and even powers (this rearrangement of terms will be justified in
Exercise 3(c)), we see that

ebJt =

(
1− 1

2!
(bt)2 +

1

4!
(bt)4 + . . .

)
I +

(
bt− 1

3!
(bt)3 +

1

5!
(bt)5 + . . .

)
J, (2.26)

in which the power series for cos bt and sin bt can be recognized. On substituting this
formula into (2.25), we obtain

eAt = eat
[
cos bt − sin bt
sin bt cos bt

]
. (2.27)

Incidentally, in Exercise 10 we ask you to prove, with hints, that a 2× 2 matrix
with nonreal eigenvalues a± bi is similar to (2.24). Equation (2.24) is called the real
canonical form for 2× 2 matrices with complex eigenvalues.

The exponential of (2.24) may also be calculated by diagonalization. Indeed, the
calculation looks pretty simple. Let

S =

[
1 1
−i i

]
, S−1 =

1

2

[
1 i

1 −i

]
.

The columns of S are eigenvectors of A, so as in Proposition 2.3.2, we have S−1AS =
Λ, where

Λ =

[
a+ bi 0
0 a− bi

]
.

Therefore,

eAt = S eΛt S−1 = S

[
e(a+bi)t 0

0 e(a−bi)t

]
S−1.

Recalling Euler’s formula eibt = cos bt+ i sin bt and multiplying out the product, we
rederive (2.27).

Unfortunately, there is a gap in this argument; i.e., we are applying results of the
previous section about real matrices to complex matrices. In fact, all these results do
carry over to the complex case, but this must be proved. Even the basic definitions
are subtly different. Temporarily, for a real vector x or a real matrix A we shall
write |x|R or ‖A‖

R
for the norms defined above. Generalizing to complex vectors, if

z ∈ C
d, we let

|z|C =

√√
√√

d∑

j=1

|zj|2. (2.28)
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This norm may be calculated from the complex inner product |z|C =
√〈z, z〉C, where

〈z,w〉C =
d∑

j=1

z̄jwj, (2.29)

with z̄j denoting the complex conjugate of zj. If A is a matrix with complex entries,
then let

‖A‖
C
= max

|z|C≤1
|Az|C. (2.30)

If x ∈ R
d, then |x|R = |x|C. If A has real entries, it is not obvious but still true that

‖A‖
R
= ‖A‖

C
, (2.31)

which we ask you to verify in Exercise 2. Because of (2.31), we may omit the subscript
R or C in writing norms—if A has complex entries, we understand ‖ · ‖C, and if A
has real entries, it doesn’t matter which norm we choose. Moreover, in Exercise 2 we
ask the dedicated reader to check that properties of norms and the various results
about the exponential of matrices in Section 2.2 all carry over to the complex case.
In this way, calculating the exponential of (2.24) by diagonalization may be justified.

2.3.3 Use of the Jordan Form

By a Jordan block we mean a square matrix of the form

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
0 0 λ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ 1
0 0 0 . . . 0 λ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.32)

In words, B has entries λ on the diagonal, 1 on the “superdiagonal,” and zeros
elsewhere. The matrix B may be of any dimension, including 1 × 1, in which case
B is simply the scalar λ. The diagonal entry λ is the only eigenvalue of B. No
matter how large the dimension of B may be, there is only one linearly independent
eigenvector.

The Jordan normal-form theorem (see Appendix B of Strang [79]) asserts that
every square matrix A is similar to a diagonal array of Jordan blocks; in symbols,
S−1AS = J , where
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J =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
...

...
...

. . .
...

0 0 0 . . . BM

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

. (2.33)

Here, form = 1, 2, . . . ,M , the matrix Bm is a dm×dm Jordan block, and
∑M

1 dm = d,
the dimension of A. To shorten the formulas we shall generalize the notation for
diagonal matrices and write J as

J = Diag(B1, B2, . . . , BM).

The Jordan canonical-form theorem is spot-on for computing the exponential of
a matrix. First observe that

if A = S Diag(B1, . . . , BM)S−1, then eAt = S Diag(eB1t, . . . , eBM t)S−1. (2.34)

Moreover, each Jordan block Bm may be exponentiated by the same method as was
used for the 2× 2 case above. Specifically to exponentiate a d× d Jordan block,

• Write B = λI + N where N is the d × d nilpotent matrix with ones on the
superdiagonal.

• Observe that by Proposition 2.2.12, eBt = eλtetN .

• Calculate etN with the truncated power series

I + tN +
1

2!
(tN)2 + . . .+

1

(d− 1)!
(tN)d−1.

Painful though it may be, let’s write out the result:

eBt = eλt

⎡

⎢
⎢
⎢⎢⎢
⎢
⎢⎢⎢
⎣

1 t t2/2 . . . td−2/(d− 2)! td−1/(d− 1)!
0 1 t . . . td−3/(d− 3)! td−2/(d− 2)!
0 0 1 . . . td−4/(d− 4)! td−3/(d− 3)!
...

...
...

. . .
...

...

0 0 0 . . . 1 t

0 0 0 . . . 0 1

⎤

⎥⎥⎥
⎥
⎥⎥⎥
⎥
⎥
⎦

. (2.35)

Despite the messiness of (2.35), this matrix has a simple structure: 1’s along the
main diagonal, t’s along the superdiagonal, t2/2 above that, etc. Thus, the j, k-entry
of eBt equals eλttk−j/(k − j)! if k ≥ j and vanishes otherwise.
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In the exercises we ask you to use this information to calculate the exponentials
of various matrices. In order to do so, you need to be able to find the Jordan normal
form of a matrix. A method for this is explained in Section C.1 of Appendix C. We
urge you to read this section now. We think you will find our approach to this topic
refreshing. In particular, normal forms are determined with natural calculations
finding generalized eigenvectors, with no mention of the minimal polynomial.5 Of
course in general, both the Jordan normal form J and the similarity matrix S have
complex entries.

As we have seen, the Jordan normal form is perfect for theoretical analysis of
eAt because it exhibits the structure of the matrix so clearly. However, this normal
form is problematic in numerical computation because it is so sensitive to round-off
errors. For example, consider the matrices

[
a 1
0 a

]
and

[
a 1
0 a+ ε

]
. (2.36)

No matter how small ε > 0 may be, the structure of the Jordan normal forms of
these two matrices are completely different—a single 2×2 block vs. two 1×1 blocks.
(In Exercise 5(b) we ask you to compare the exponentials of these matrices.)

2.4 Large-Time Behavior of Solutions of Linear Systems

2.4.1 The Main Results

We shall say that the origin in R
d is a sink (or attractor) for a linear homogeneous

system x′ = Ax if for every initial condition b ∈ R
d,

lim
t→∞

eAtb = 0.

The eigenvalues of A provide an elegant test for such behavior.

Theorem 2.4.1. The origin is a sink for x′ = Ax iff

max
1≤j≤d

�λj < 0. (2.37)

The theorem is an immediate consequence of the following, more quantitative,
result.

5Although the minimal polynomial is useful in proving that transformation to the Jordan form
is possible, it is a distraction in calculating the Jordan form.
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Proposition 2.4.2. For every ε > 0, there is a constant K such that

eμt ≤ ‖eAt‖ ≤ Ke(μ+ε)t, (2.38)

where
μ = max

1≤j≤d
�λj. (2.39)

Remark. Note that the imaginary part �λj has no influence on ‖eAt‖. This behavior
may already be seen in the scalar equality |e(μ+iν)t| = eμt.

Proof. To prove the upper bound, we recall (2.33), the Jordan normal form of A. By
(2.34),

‖eAt‖R = ‖eAt‖C ≤ ‖S‖C ‖eDiag(B1,...,BM )t‖C ‖S−1‖C,
and it is easily shown that

‖eDiag(B1,...,BM )t‖C = max
1≤m≤M

‖eBmt‖C. (2.40)

Applying (the complex version of) Lemma 2.2.4 to (2.35), we deduce that

‖eBmt‖C ≤ d2m e�λm t max{1, tdm−1} (t ≥ 0). (2.41)

Of course dm ≤ d, so we may estimate (rather extravagantly)

max{1, tdm−1} ≤ max{1, td−1}.

In Exercise 1(c) we ask you to show that for every ε > 0 there is a constant C such
that

max{1, td−1} ≤ Ceεt. (2.42)

Combining these, we obtain the upper bound in (2.38) with K = d2C ‖S‖C ‖S−1‖C.
If the maximum in (2.39) is achieved by a real eigenvalue of A, we may obtain

the lower bound in (2.38) by applying eAt to an eigenvector of A with eigenvalue μ,
say v, where |v| = 1:

‖eAt‖ ≥ |eAtv| = eμt|v| = eμt.

On the other hand, if only complex eigenvalues of A achieve the maximum, we may
estimate ‖eAt‖C with the same argument and invoke (2.31).

In Exercise 3(d) we ask you to prove the following two extensions of Proposi-
tion 2.4.2, the first trivial and the second more subtle. Read the hint for the second
result. It introduces a specific similarity transformation you need to know about.
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Corollary 2.4.3. If A is diagonalizable, then (2.38) is satisfied with ε = 0. Indeed,
if A = S Diag(λ1, . . . , λd) S

−1, then

‖eAt‖ ≤ Keμt (2.43)

where K = ‖S‖ ‖S−1‖.
Corollary 2.4.4. There is a matrix B that is similar to A for which ‖eBt‖ ≤ e(μ+ε)t;
i.e., B satisfies (2.38) with the constant K = 1.

2.4.2 Tests for Eigenvalues in the Left Half-Plane

Because of Theorem 2.4.1, it is useful to be able to test whether a matrix has all its
eigenvalues in the left half-plane without actually having to find the eigenvalues. For
2 × 2 and 3 × 3 matrices, the following two results give simple tests. Please forgive
us a homily:

Use these results! To our frustration, generations of students have ig-
nored them, wasting their time by calculating eigenvalues when it was not
actually necessary.

Proposition 2.4.5. If A is a 2× 2 matrix with real entries, then �λj < 0 iff

(i) trA < 0,

(ii) detA > 0.

Proposition 2.4.6. If A is a 3× 3 matrix with real entries, then �λj < 0 iff

(i) trA < 0,

(ii) 1
2
trA [(trA)2 − tr(A2)] < detA,

(iii) detA < 0.

The proof of Proposition 2.4.5 is left as an exercise. Proposition 2.4.6 is proved
in Section C.4 of Appendix C. To motivate Condition (ii) in Proposition 2.4.6, see
Exercise 15.

As practice, let’s apply Proposition 2.4.6 to determine for what values of the
parameter b the eigenvalues of the matrix

A(b) =

⎡

⎣
−1 −16 0
1 0 b
0 1 −3

⎤

⎦ (2.44)

lie in the left half-plane. A simple calculation shows that

trA = −4, detA = b− 48, tr(A2) = 2b− 22.
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Condition (i) is always satisfied, and the remaining two require that

(ii) 3b < 28, (iii) b < 48.

Thus, by the proposition, the eigenvalues of A(b) satisfy �λj < 0 if and only if
b < 28/3. (What happens to the eigenvalues of A(b) as b passes through 28/3?
Another reason to do Exercise 15.)

The following result is sometimes useful to test for oscillatory behavior in a 2× 2
system. It may be derived by examining the quadratic formula for the eigenvalues
of A.

Proposition 2.4.7. A real 2× 2 matrix has complex eigenvalues if and only if

(trA)2 < 4 detA.

2.5 Classification and Phase Portraits for 2× 2 Systems

In two dimensions there is an extensive vocabulary classifying linear systems6

x′ = Ax (2.45)

based on the eigenvalues of A. Suppose that A is nonsingular, so that x = 0 is an
isolated equilibrium of (2.45). In Table 2.1, we have listed several descriptive terms
for the equilibrium of such an equation. (Note that these terms are not mutually
exclusive.) It will be useful below to have these terms available, and we recommend
that during some “captive time,” such as on a long flight, you commit them to
memory.

Each type of equilibrium has a characteristic phase-plane portrait, as we now
explore.

2.5.1 Saddles and Nodes

If A has real nonzero eigenvalues, then (2.45) has either a saddle or a node. Because
equations with similar coefficient matrices exhibit the same phenomena, we assume
that A is in Jordan normal form. Supposing for the moment that A is diagonalizable,
we take

A =

[
λ1 0
0 λ2

]
(2.46)

where λk �= 0. The general solution of x′ = Ax is given by

[
x1(t)
x2(t)

]
=

[
x1(0)e

λ1t

x2(0)e
λ2t

]
.

6In Chapter 6, we will extend this classification to equilibria of nonlinear systems.
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Name Eigenvalues of coefficient matrix Characterizing inequalities

Sink Both eigenvalues in LHP, {�λ < 0} detA > 0, trA < 0
Source Both eigenvalues in RHP, {�λ > 0} detA > 0, trA > 0
Saddle Both eigenvalues real, of opposite sign detA < 0
Node Both eigenvalues real, of same sign 0 < 4 detA ≤ (trA)2

Focus Eigenvalues complex conjugates, �λ �= 0 0 < (trA)2 < 4 detA
Center Eigenvalues complex conjugates, �λ = 0 0 = trA < detA

Table 2.1: Descriptive terms for the isolated equilibria of two-dimensional linear
systems. A sink may be either a node or a focus, and likewise for a source. A node
may be either a sink or a source, and likewise for a focus.

If x1(0) = 0, then the trajectory follows the x2-axis. Otherwise, by eliminating t, we
find that the trajectory lies along the graph of a power function,

x2 = C |x1|p, (2.47)

where p = λ2/λ1 and C is a constant. Recalling our earlier terminology, we see that
(2.47) specifies orbits.

If (2.45) has a saddle, then p < 0 in (2.47). Reindexing the eigenvalues if neces-
sary, we may assume that λ1 < 0 < λ2. A phase portrait for such a case is shown
in Figure 2.2(a). (To the eye, all cases with λ1 < 0 < λ2 tend to look qualitatively
similar, so we show the phase portrait only for one specific choice of eigenvalues.)
The coordinate axes are special orbits; these trajectories converge to the origin in
one of the limits t → −∞, t → ∞. Other trajectories, which are curved, tend to
infinity in both limits, approaching one of the coordinate axes asymptotically.

If (2.45) has a node, then p > 0. If both eigenvalues of A are negative, then all
trajectories converge to zero, as shown in Figure 2.2(b), where for definiteness we
have assumed λ2 < λ1 < 0. Equal eigenvalues lead to phase portraits qualitatively
different from Figure 2.2(b); this includes both the case A = λI and that in which A
is similar to a Jordan block. In Exercise 17 we ask you to draw phase portraits for
such cases. Do this exercise! Being fluent in visualizing flows enriches the subject
enormously.

If at a node the eigenvalues of A are negative, as in Figure 2.2(b), then the
origin is a sink, and we say that (2.45) has a stable node. By contrast, if the
eigenvalues are positive, then trajectories follow the same orbits—given by (2.47) if
A is diagonalizable—but move away from the origin; i.e., the origin is a source, and
we say that (2.45) has an unstable node.
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λ 1 < 0 < λ 2

x x 11

2x2x x

x 1

2

λ 2 1λ a < 0, b > 0< < 0

ba c

Figure 2.2: Representative phase portraits for (2.45). (a) A saddle: A given by
(2.46) with λ1 < 0 < λ2. (b) A stable node: A given by (2.46) with λ2 < λ1 < 0. (c)
A stable focus: A given by (2.48) with a < 0 and b > 0.

2.5.2 Foci and Centers

If A has complex eigenvalues, i.e., if (2.45) has a focus or a center, then it is more
convenient to study the real canonical form,

A =

[
a −b
b a

]
(2.48)

where b > 0, than the Jordan normal form. If a < 0, it may be seen from (2.27) that
trajectories of (2.45) spiral inward toward the origin (cf. Figure 2.2c), while if a > 0,
they spiral outward. The equilibria in these two cases are called a stable focus and
an unstable focus, respectively. If a = 0, the trajectories are concentric circles, and
the equilibrium is called a center.

2.5.3 Additional Remarks

(a) For a general matrix, the phase portrait of (2.45) could be determined by
applying an appropriate linear transformation to the phase portrait associated
with the corresponding Jordan or real canonical form. In practice, however,
much simpler calculations often suffice to visualize the phase portrait.

For example, suppose detA < 0; i.e., suppose the equation has a saddle point.
For definiteness assume λ1 < 0 < λ2, with associated eigenvectors v1,v2, re-
spectively. The general solution of (2.45) is

C1e
λ1tv1 + C2e

λ2tv2. (2.49)

Trajectories with C2 = 0 lie on the straight line R{v1}, the span of {v1}, which
corresponds to the x1-axis in Figure 2.2(a), and those with C1 = 0, on R{v2},
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which corresponds to the x2-axis. Trajectories with both C1 and C2 nonzero
correspond to the hyperbola-like curves in Figure 2.2(a); these trajectories are
asymptotic to the eigenspaces R{v1} or R{v2} as t → ±∞. For many purposes,
this level of detail is adequate.

In Exercise 18 we outline analogous shortcuts for other cases.

(b) If zero is an eigenvalue of A, then there are infinitely many solutions of Ax = 0,
each of which represents a constant solution, or equilibrium, of x′ = Ax.

(c) Although visualization is more difficult, phase-portrait ideas extend to higher
dimensions. Consider, for example, a 3× 3 matrix A that has real eigenvalues
λ1 < 0 < λ2 ≤ λ3 with (possibly generalized) eigenvectors v1, v2 and v3,
respectively. Trajectories that lie in the λ1-eigenspace R{v1} tend to the origin
as t → ∞. Trajectories that lie in the plane R{v2,v3}, what we might call the
positive eigenspace, converge to the origin as t → −∞. All other trajectories
are curves that are asymptotic to these eigenspaces as t → ±∞.

2.6 Solution of Inhomogeneous Problems

If x satisfies an inhomogeneous linear equation with constant coefficients, say

x′ = Ax+ g(t), (2.50)

then the unique solution to the IVP with x(0) = b is given by7

x(t) = eAtb+

∫ t

0

eA(t−s)g(s) ds. (2.51)

The derivation of this result, which plays a central role in Chapter 6, is posed as
Exercise 4(b).

Incidentally, in Exercise 4(c) we ask you to show that if g(t) is a finite linear
combination of terms of the form eμtv, where μ ∈ C and v is a constant vector,
then (2.50) may be solved explicitly (and (2.51) ignored). Since μ may be complex,
this construction includes cases in which the inhomogeneous term is a trigonometric
function.

Does (2.51) generalize to systems with variable coefficients,

x′ = A(t)x+ g(t) ? (2.52)

7Note that the integrand in (2.51) is vector-valued. Such an integral can be interpreted com-
ponentwise, giving a collection of ordinary, scalar, integrals.
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If A(t1) and A(t2) commute for all t1, t2, there is a generalization analogous to (1.18),
but not otherwise; cf. Exercise 24.

2.7 Exercises

After the core exercises, there are subsections of linear-algebra problems and of problems involving
drawing phase-plane portraits, followed by the usual PHD exercises.

2.7.1 Core Exercises

The core exercises have the following purposes:

To deal with unfinished business 1–4
(general analysis, norms, exponentials, other)

To calculate exponentials of specific matrices 5
To develop general facility with systems of ODEs 6–8
To apply the tests of Propositions 2.4.5, 2.4.6, and 2.4.7 9

1. (a) Prove that the maximum in Equation (2.13) exists and is finite.

Hint: Use compactness, which is discussed in Section B.1 of Appendix B.

(b) Derive Leibniz’s rule for differentiation of the product of two matrix-valued
functions of a scalar variable:

d

dt
[φ(t)ψ(t)] = φ′(t)ψ(t) + φ(t)ψ′(t).

Remark: Similarly, Leibniz’s rule extends to other linear-algebra products,
such as a matrix times a vector, as occurs for example in (2.51).

(c) Verify (2.42).

Hint: Here is a warmup problem that isolates the main issue: Prove that for
every positive power p,

max
0≤t<∞

tpe−t

exists and is finite. The exact value of the maximum can in fact be computed
using calculus, but this is unnecessary, and it is useful training to do this
exercise merely with estimation, as follows. Argue that

lim
t→∞ tpe−t = 0.

Deduce that there is a constant T such that tpe−t < 1 when t > T . Therefore,

max
0≤t<∞

tpe−t ≤ max

{
max
0≤t≤T

tpe−t , 1

}
,

and the maximum over [0, T ] is finite by compactness.
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2. (a) Prove Lemmas 2.2.2, 2.2.3, 2.2.4, 2.2.5, and 2.2.6.

Hint for Lemma 2.2.4: In the matrix part of the lemma, the lower bound for
‖A‖ may be obtained by applying A to a basis vector ek. The upper bound
may be obtained by writing A as a sum of d1 × d2 matrices, each of which
has only one nonzero entry.

Hint for Lemma 2.2.6: Derive the existence of L from Proposition B.2.4 in
Appendix B, the analogous result for scalars. Regarding (2.15), for N > M ,
add and subtract terms An for n between M and N to write

M∑

n=0

An − L =

[
N∑

n=0

An − L

]

−
[

N∑

n=M+1

An

]

.

For every ε > 0, if N is large enough, the first sum on the right is bounded
by ε. Since the second sum is finite, it may be estimated using the triangle
inequality. Now let N tend to infinity.

(b) Establish Equation (2.31) for a matrix with real entries.

Hint: Show that ‖A‖R ≤ ‖A‖C because ‖A‖C is calculated as the maximum
over a larger set. Use

|A(x+ iy)|2
C
= |Ax|2

R
+ |Ay|2

R

to prove the reverse inequality.

(c) Rederive all the results of Sections 2.2 and 2.3 for matrices with complex
entries.

Remark: This one is for the truly dedicated reader.

(d) Calculate that if A has dimension d × 1 (i.e., A is a column vector) or
1× d (i.e., A is a row vector), then ‖A‖ is just the norm of the vector.

(e) Prove that if A has a (real or complex) eigenvalue λ, then ‖A‖ ≥ |λ|.
(f) Show that if S is an invertible matrix, then ‖S‖ ‖S−1‖ ≥ 1.

Remark: The quantity ‖S‖ ‖S−1‖ is often called the condition number of
the matrix S; see Section 7.2 of Strang [79] regarding why this quantity is
important.

3. (a) Prove the first two assertions in Proposition 2.2.12.

(b) Prove Proposition 2.3.1.

Hint: You may prove this result either by comparing terms in the series for
the two sides of the equation or by differentiating e−BsSeAs.

(c) Justify the rearrangement of terms in Equation (2.26).
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Hint: For a finite sum, trivially

∑N
n=0

1
n! (bJt)

n =
(
1− 1

2! (bt)
2 + . . .+ 1

(N−1)! (bt)
N−1

)
I

+
(
bt− 1

3! (bt)
3 + . . .+ 1

N ! (bt)
N
)
J,

where for convenience we assume N = 1 (mod 4), so that the last coefficient
in each of the truncated series is positive; now let N → ∞.

As a general rule, rearrangements of an absolutely convergent series are
always permissible (see Theorem 3.55 of Rudin [68]). Errors that may re-
sult from rearranging terms in a series that is not absolutely convergent are
illustrated in the Pearls of Appendix B.

(d) Prove Corollaries 2.4.3 and 2.4.4.

Hint for Corollary 2.4.4: Here is a way to rescale the entries of a d × d
matrix A that is worth remembering: If c is a nonzero real number and if

S = Diag(1, c, c2 . . . , cd−1), then

S−1AS =

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

a11 ca12 c2a13 . . . cd−1a1d
c−1a21 a22 ca23 . . . cd−2a2d
c−2a31 c−1a32 a33 . . . cd−3a3d

...
...

...
. . .

...

c−(d−1)ad1 c−(d−2)ad2 c−(d−3)ad3 . . . add

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

. (2.53)

Note that the power of c in the i, j-entry of the product is j − i. Thus if
A is upper triangular (e.g., in Jordan form), then we can choose c small to
make the off-diagonal entries of S−1AS as small as we like. If A has real
eigenvalues, you may use such a scaling to prove the corollary. If A has
complex eigenvalues, the same basic argument works but with some minor
technical modifications.

4. (a) Prove Propositions 2.4.5 and 2.4.7.

(b) Show that (2.51) is the unique solution of the IVP for (2.50).

Hint: Argue that (2.50) is equivalent to

d

dt

(
e−Atx

)
= e−Atg(t)

and integrate.

(c) Show that if g(t) = eμtv, where μ ∈ C is not an eigenvalue of A and v is
a constant vector, then (2.50) has a particular solution of the form eμtw.

Discussion: Because of linearity, this idea may be used to find a particular
solution of (2.50) if g(t) is a finite linear combination of such terms. Of
course, the general solution of (2.50) is a particular solution plus a solution
of the homogeneous equation x′ = Ax.

If μ is an eigenvalue of A, particular solutions may still be constructed, but
one or more components of the solution may have the form teμt or perhaps
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with higher powers of t. A general theory is a little messy, but you might
find it instructive to consider first a diagonalizable 2× 2 matrix and then a
2× 2 Jordan block.

5. Compute etA for the following matrices, and if initial conditions are provided,
solve the initial value problem for the system x′ = Ax:

(a) [
3 1
−1 1

]
, x(0) =

[
2
0

]

(b) [
a 1
0 a+ ε

]

Remark: Be sure to compare your answer for etA with (2.23), the exponential
of the Jordan block with eigenvalue a.

(c) ⎡

⎣
1 0 0
1 2 0
1 0 −1

⎤

⎦ , x(0) =

⎡

⎣
1
0
−1

⎤

⎦

(d) ⎡

⎣
1 0 0
1 0 0
1 1 0

⎤

⎦

(e) [
0 1

−κ2 0

]

where κ is a real constant.

Hint: Here is a shortcut: invoking (2.53) with c = κ, we see that this matrix
is similar to a matrix of the form (2.24), whose exponential we have already
calculated.

(f) ⎡

⎢
⎢
⎣

a −b 1 0
b a 0 1
0 0 a −b
0 0 b a

⎤

⎥
⎥
⎦

(g) Make up your own examples of matrices to exponentiate. (If you choose
an example for which the calculations are too messy, you will nevertheless
have learned something.)
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6. Suppose A is a real square matrix with at least one eigenvalue λ, real or com-
plex, such that �λ < 0. Show that the linear system x′ = Ax has at least one
nonzero real solution x(t) such that

lim
t→∞

x(t) = 0.

7. Rederive (2.23) by explicitly solving the ODE x′ = Ax.

Hint: The x2-equation does not involve x1; solve this equation first and then
attack the x1-equation.

8. Write the general linear homogeneous 2× 2 system

[
x′

y′

]
=

[
a b

c d

] [
x

y

]

in polar coordinates.8

9. (a) If

A =

[
1 a

−1 b

]
,

for what values of a, b is the origin a sink for the two-dimensional system
x′ = Ax?

(b) For what values of a, b does the matrix in Part (a) have complex eigen-
values?

(c) If

A =

⎡

⎣
−2 a 0
1 2 b
0 3 −1

⎤

⎦ ,

for what values of a, b is the origin a sink for the three-dimensional system
x′ = Ax?

2.7.2 Practice with Linear Algebra

10. Introduction: This problem identifies the similarity transformation that reduces a 2×2 real
matrix A with eigenvalues a± ib, where b �= 0, to its real canonical form C, i.e., the matrix
S such that

S−1AS = C =

[
a −b
b a

]
. (2.54)

8The introduction of polar coordinates represents a nonlinear change of coordinates in an ODE.
Linear changes of coordinates were exploited in Section 2.3.
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Let u = v + iw be an eigenvector of A with eigenvalue a− ib; thus

A(v + iw) = (a− ib)(v + iw). (2.55)

Let S be the 2× 2 matrix Col(v,w). Deduce (2.54) from (2.55).

11. Find the 2×2 matrix A that has the indicated eigenvalues and eigenvectors:

e-value e-vector

−1/ε (1, 1)
−1 (1, 1 + δ)

Hint: This exercise is easy if you make use of Proposition 2.3.2.

Discussion: The ulterior message in the exercise is to observe that ‖A‖ may
become large if ε and/or δ tends to zero. This behavior is not surprising for
ε → 0, since the eigenvalue −1/ε gives a lower bound for ‖A‖. You may find it
surprising for δ → 0, which simply means that the two eigenvectors of the matrix
become nearly parallel even as its eigenvalues remain bounded.

12. (a) Find matrices A,B such that eAeB �= eA+B.

Remark: It is informative to experiment and find your own example. There
is no need to go beyond 2× 2 matrices.

(b) Find matrices A,B such that etA and etB converge to zero but ‖et(A+B)‖
tends to infinity.

Hint: You can find an example in which A is a Jordan block and B = AT .
Of course your matrices provide another example of what Part (a) requests.

13. (a) Show that if A is a square matrix with ‖A‖ < 1, then the Neumann series

I + A+ A2 . . . (2.56)

converges to (I − A)−1.

(b) Let A be a d× d matrix with real entries. Show that the powers An tend
to zero as n → ∞ iff every eigenvalue of A satisfies

|λk(A)| < 1, k = 1, . . . , d.

Remark: With a bit more care you can show that this eigenvalue hypothesis
implies that the series (2.56) converges.

(c) True or false: The largest eigenvalue (in absolute value, ties possible) of
a square matrix A satisfies

|λmax| = lim
n→∞

‖An‖1/n.
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14. (a) Verify that the inequalities in the third column of Table 2.1 characterize
the indicated classifications of the eigenvalues of A.

(b) Write (1.24) as a 2 × 2 first-order system and classify how the type of
the equilibrium at the origin depends on the parameters, according to the
categories of Table 2.1.

15. Show that if A is a 3 × 3 matrix with eigenvalues α,±iν, where α and ν are
real, then the two sides of Condition (ii) in Proposition 2.4.6 are equal.

Discussion: This exercise is intended to demystify Condition (ii) in Proposi-
tion 2.4.6. To make the issues more concrete, let’s recall the application of
Proposition 2.4.6 to the matrix (2.44). If b = 0, then A(b) has block lower-
triangular form, and its eigenvalues may be calculated explicitly to verify that
they lie in the left half-plane. Do they stay there as b varies? Well, the eigenval-
ues of A(b) vary continuously9 with b, so the eigenvalues will indeed stay in the
left half-plane unless an eigenvalue crosses the imaginary axis. How can such a
crossing occur? Generically, in one of two ways, as sketched in Figure 2.3: (i) a
single real eigenvalue may cross zero or (ii) a pair of complex conjugate eigenval-
ues can move across the imaginary axis. In the first case, the transition occurs
when a real eigenvalue vanishes, which implies that the determinant also van-
ishes; thus, Condition (iii) tests for such a transition. This exercise shows that
Condition (ii) tests for the other possible transition, i.e., for a pair of complex
conjugate eigenvalues to lie on the imaginary axis.

The seemingly minor issue in this exercise in fact segues to a major phe-
nomenon appearing later in the book, i.e., Hopf bifurcation in Section 8.7.

2.7.3 Practice Sketching Phase Portraits

16. For each of the following matrices A, sketch the phase portrait for x′ = Ax.
Your sketch should include information about the asymptotic behavior of tra-
jectories. For two-dimensional systems, classify the origin according to the
categories of Table 2.1.

(a) A =

[ −2 4
−2 2

]
, (b) A =

[
1 1
0 1

]
, (c) A =

⎡

⎣
2 0 0
0 −1 2
0 −2 −1

⎤

⎦ .

17. Sketch the phase portraits for (2.45) in cases in which it has a stable node
different from Figure 2.2(b), i.e., when (i) A = λI, where λ < 0 or (ii) A is a
Jordan block with eigenvalue λ < 0.

9In the case of simple eigenvalues, this result is easily proved with the implicit function theorem.
Multiple eigenvalues raise more subtle issues that we ignore here, but continuous dependence,
appropriately interpreted, still holds. (Cf. Section C.3 of Appendix C.)
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Im λ
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one real eigenvalue
crosses imaginary axis

pair of eigenvalues
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axis
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third

confined
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other two

to LHP

Figure 2.3: Varying the entries in a 3×3 matrix can cause real parts of eigenvalue(s)
to change sign in one of two generic ways: (a) a single, real eigenvalue moves across
the imaginary axis, or (b) a pair of complex-conjugate eigenvalues moves across the
imaginary axis.

Remarks: Incidentally, in Exercise 26 we ask you to derive an equation for the
orbits in Case (ii). Plots for unstable nodes may be derived by observing that
x′ = Ax and its time-reversed equation x′ = −Ax have the same orbits, but with
the flow direction reversed.

18. Introduction: Item (a) in Section 2.5.3 describes a shortcut for visualizing the phase portrait
of (2.45) when this equation has a saddle point. In this exercise we describe analogous
shortcuts when the equation has a stable node.

(a) Suppose A has eigenvalues λ2 < λ1 < 0 with eigenvectors v1,v2. Using
the general solution (2.49), show that the eigenspaces R{v1} and R{v2}
are straight trajectories and that all other trajectories are curved and
approach the origin as t → ∞, asymptotic to R{v1}.

Remark: If λ1 = λ2 < 0 and A is diagonalizable, then A = λ1I, whose phase
portrait you found in the previous exercise.

(b) Suppose that λ1 = λ2 < 0 and A is not diagonalizable. Let v1 be an
eigenvector. Show that the eigenspace R{v1} is a straight trajectory and
that all other trajectories are curved and approach the origin as t → ∞,
asymptotic to R{v1}.

Hint: Choose a generalized eigenvector such that (A − λ1I)v2 = v1 and
analyze the general solution of the equation,

eλ1t [C1v1 + C2(v2 + tv1)] .

(Note that the approach to the eigenspace is algebraic, rather than exponen-
tial as in Part (a).)
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Remark: Near a center, trajectories are ellipses, and motion around them
may be clockwise or counterclockwise. Similarly, the phase portrait for a
focus is a distorted spiral.

19. Suppose A has eigenvalues λ2 < 0, λ1 = 0 with eigenvectors v1,v2, i.e., a
singular limiting case of Part (a) of Exercise 18. Choose hypothetical directions
for v1,v2 and sketch the phase portrait of x′ = Ax.

2.7.4 PHD Exercises

20. (a) Derive the following exact formula for the norm of a matrix:

‖A‖ =
√
λmax(ATA).

Hint: Deduce from the definition of ‖A‖ that

‖A‖2 = max
|x|≤1

〈ATAx,x〉

and invoke the spectral theorem for symmetric matrices to estimate 〈ATAx,x〉.
(b) Use this result to find the norm of

[
1 2
0 −1

]

and compare this answer with the estimates of Lemma 2.2.4.

21. Introduction: If A is a d× d matrix with real entries, define the Euclidean norm of A,

‖A‖E =

⎧
⎨

⎩

d∑

j,k=1

a2jk

⎫
⎬

⎭

1/2

.

Determine which of the following is true and prove it:

(i) For all A different from zero, ‖A‖ < ‖A‖E.
(ii) For all A, ‖A‖ ≤ ‖A‖E, with equality occurring for at least one nonzero

matrix A.

(iii) There is a matrix A such that ‖A‖ > ‖A‖E.
22. Introduction: This exercise illustrates how the power series expansion of the function ln(1+x),

ln(1 + x) = x− x2/2 + x3/3− x4/4 + . . . ,

can be used to define a logarithm of a nonsingular matrix.
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(a) Consider the Jordan block

A =

⎡

⎣
λ 1 0
0 λ 1
0 0 λ

⎤

⎦

where λ �= 0, which we rewrite as A = λ(I + N), where I is the identity
and N is nilpotent. Use the above series to define a provisional logarithm

logA = (log λ)I +N −N2/2 + . . . ,

where of course the series terminates.

(b) Show that elogA = A.

Remark: A logarithm of any nonsingular matrix can be found by performing
calculations of this type on each block in the Jordan form.

23. (a) Find the general solution for two coupled harmonic oscillators, say

x′′ + x = εy
y′′ + y = εx

where for simplicity we take identical oscillators. Write your solution in
the form

[
x
y

]
= C1 cos(ω1t− α1)

[
1
1

]
+ C2 cos(ω2t− α2)

[
1
−1

]
.

Hint: You could reduce this problem to a four-dimensional first-order system,
but actually the linear algebra is simpler if you don’t. Write your system as

[
x′′

y′′

]
+

[
1 −ε
−ε 1

] [
x
y

]
= 0

and look for solutions of the form (x, y) = eλtv.

(b) Solve the IVP with initial conditions

x(0) = 1, x′(0) = y(0) = y′(0) = 0.

Assuming that ε 
 1, graph the energy (times 2) in the individual oscil-
lators (x′)2 + x2 and (y′)2 + y2 as functions of time.

Remark: You can do this analytically, but it’s fine if you prefer to use the
computer. You will find that the energy shifts back and forth between the
two oscillators.
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24. (a) Consider the variable-coefficient system (2.52), and suppose that A(t1)
and A(t2) commute for all t1, t2. Let

A(t) =

∫ t

0

A(s) ds.

Show that

x(t) = eA(t)b+

∫ t

0

eA(t)−A(s)g(s) ds

solves the IVP for (2.52) with initial condition x(0) = b.

(b) Solve (2.52) in the case

A(t) =

[
0 t
0 1

]
, g(t) ≡ 0

and show that this solution differs from what the above formula produces.

Remark: Even if in (2.52), the eigenvalues λk(t) of the coefficient matrix A(t)
satisfy �λk(t) < 0 for all time (and say g(t) ≡ 0), solutions of this system
may suffer exponential growth. (For an example, you may peek ahead: the
first-order system derived from the scalar ODE in Exercise 3.13, say with a
small amount of friction added, exhibits this behavior.)

25. Suppose that the eigenvalues of A satisfy the hypothesis (2.37). Show that if
limt→∞ g(t) = 0, then the solution (2.51) of the inhomogeneous ODE (2.50)
also tends to zero as t → ∞.

26. Find an equation for the orbits of x′ = Ax in the case that A is a 2× 2 Jordan
block with eigenvalue λ < 0.

Hint: One orbit is the x1-axis. For other orbits you can express x1 as a function
of x2 and one arbitrary constant.

2.8 Pearls of Wisdom

2.8.1 Alternative Norms

There are many different norms in the literature used to measure the size of vectors
and matrices. For example, for vectors, two common choices are

|x|1 =
d∑

j=1

|xj| and |x|∞ = max
1≤j≤d

|xj|,
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which give rise to matrix norms

‖A‖1 = max
|x|1≤1

|Ax|1 and ‖A‖∞ = max
|x|∞≤1

|Ax|∞.

2.8.2 Nondifferentiable Limits and the Cantor Set

In proving Proposition 2.2.10, we invoked Corollary B.2.6 of Appendix B to justify
term-by-term differentiation of a series

∑
n fn(t) of functions. Here’s another coun-

terexample, in addition to those in the appendix, to show that for this result to hold,
the series

∑
n f

′
n(t) of derivatives must converge uniformly. It’s more convenient to

formulate this example in the context of the analogous, but equivalent, issue for
sequences. Let

φ(t) =

⎧
⎪⎨

⎪⎩

0 , t ≤ 0

t2(3− 2t), 0 < t < 1

1 , t ≥ 1.

(2.57)

Graph this function! You will find that it is continuously differentiable.10 For n =
1, 2, . . ., let fn(t) = φ(nt). Then

lim
n→∞

fn(t) =

{
1, t > 0,

0, t ≤ 0,

is not even continuous, let alone differentiable. However, each function fn is contin-
uously differentiable, and for every t, the sequence {f ′

n(t)} converges (to zero).

Let’s have some fun with this example by combining it with the Cantor set. The
Cantor set is constructed by repeatedly removing middle thirds from intervals, as
indicated in Figure 2.4(a). Although the figure may be clearer than formulas, let us
not neglect the latter. To start, we define

C1 = [0, 1] ∼ (1/3, 2/3)
C2 = C1 ∼ {(1/9, 2/9) ∪ (7/9, 8/9)} ;

we continue inductively for n ≥ 2,

Cn+1 = Cn ∼
3n−1⋃

k=0

(
3k + 1

3n+1
,
3k + 2

3n+1

)
; (2.58)

10For your information, with a little extra work, it is possible to construct a C∞ function that
equals zero for t ≤ 0 and equals unity for t ≥ 1. See [73], pp. 48–50.
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g   (x) = φ (x)
0

Figure 2.4: (a) Schematic illustration of the construction of the Cantor set. (b) The
functions g0(x), g1(x), and g2(x) in the construction of the Cantor function.

and finally we let

C =
∞⋂

n=1

Cn.

You may show by induction that Cn consists of 2n disjoint intervals of length 1/3n.
Note that many of the intervals enumerated in the union in (2.58) don’t remove
anything from Cn; for example, if n = 1, the interval (4/9, 5/9) is included in the
union in (2.58), but this interval and more was already removed in defining C1.

The Cantor function is the limiting function of the sequence whose construction
is indicated in Figure 2.4(b). In formulas, define functions gn : [0, 1] → R, where
g0(x) = φ(x) and
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gn+1(x) =

⎧
⎪⎨

⎪⎩

gn(3x)/2, if 0 ≤ x ≤ 1/3,

1/2, if 1/3 < x < 2/3,

1/2 + gn(3(x− 2/3))/2, if 2/3 ≤ x ≤ 1.

Although it is not readily apparent from this recursive definition, in fact gn+1(x) =
gn(x) for all x ∈ [0, 1] ∼ Cn. Moreover, |gn+1(x)− gn(x)| ≤ 2−n for all x. Thus, the
sequence converges uniformly, so g(x) = limn gn(x) is continuous. But this function
has the paradoxical properties that somehow it manages to climb from zero to one
as x ranges over [0, 1] but g(x) is constant on intervals of total length

1

3
+

2

32
+

22

33
+ . . .+

2n−1

3n
+ · · · = 1.

In particular, even though each function gn(x) is C1, the limit is far from differen-
tiable.

2.8.3 More on Generic Behavior

In Section 1.8.2 we discussed the concept “generic” in choosing initial conditions for
an IVP. In this section we apply the concept in another context, i.e., generic behavior
for a homogeneous linear system with constant coefficients,

x′ = Ax. (2.59)

This time we actually give a definition for the term.

The set of equations (2.59) is parametrized by d × d matrices, or the Euclidean
space R

D, where D = d2. We shall say that a property P of matrices (or of such
equations) is generic if it holds for all matrices in some open, dense set Ω ⊂ R

D. For
example:

Proposition 2.8.1. The set of d × d matrices whose eigenvalues are all simple is
generic.

For 2 × 2 matrices, the set of matrices with only simple eigenvalues may be
characterized as the complement of the zero set of the discriminant polynomial on R

4,

{A : (a11 − a22)
2 + 4a12a21 = 0},

which implies that it is open and dense. Section 7.3 of [40] proves the result for
general d.
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A square matrix A is often called hyperbolic11 if none of its eigenvalues lies on the
imaginary axis; in symbols, �λk(A) �= 0. For instance, in Table 2.1, all the equilibria
described there are hyperbolic except a center.

Proposition 2.8.2. The set of hyperbolic d× d matrices is generic.

For 2× 2 matrices, the set of hyperbolic matrices is the complement of

{A : detA = 0} ∪ {A : detA ≥ 0, trA = 0},

which is open and dense. Section 7.3 of [40] proves the result for general d.

By the following result, proved in Section 7.3 of [40], we may require both simple
eigenvalues and hyperbolicity and still have a generic property.

Lemma 2.8.3. If Ω1, . . . ,Ωn are open, dense subsets of RD, then the intersection

Ω1 ∩ · · · ∩ Ωn

is also open and dense.

The following intuitive ideas about genericity are more important for us than a
rigorous understanding of the supporting theory. (This is why we only give references
for proofs, even though they are not difficult.) If Ω is dense, then for every matrix A0,
there are matrices arbitrarily close to A0 that belong to Ω. On the other hand, if Ω
is open, then for any A0 ∈ Ω, all matrices sufficiently close to A0 also belong to Ω. In
more intuitive language, matrices that possess a generic property are both plentiful
and robust. In particular, if an equation is known only approximately (e.g., the
coefficients are determined from experimental data), there is no real loss of generality
in assuming that A has some convenient generic property.

Regarding the discussion of genericity in Section 1.8.2, note that what we iden-
tified as generic initial conditions there—the complement of the blue trajectory in
Figure 1.11—is open and dense in the first quadrant.

Genericity ideas are also useful in understanding nonlinear ODEs. However, we
shall keep the discussion informal in order to sidestep technical issues arising from
working in infinite-dimensional spaces.

11 We regard this terminology as unfortunate, since the word hyperbolic already has so many
uses in mathematics, but it is well established and we adopt it. The term “hyperbolic” derives from
the simplest system with such a coefficient matrix,

[
x′

y′

]
=

[
0 1
1 0

] [
x
y

]
,

whose solutions move along hyperbolas {x2 − y2 = C} where C is a constant. In general, however,
orbits for hyperbolic systems have at best only a qualitative resemblance to hyperbolas, and possibly
none at all.



Chapter 3

Nonlinear Systems: Local Theory

In this chapter we state and prove the basic existence and uniqueness theorems (in
Sections 3.2 and 3.3, respectively) for the initial value problem (IVP) for systems of
nonlinear ODEs. For the moment we consider only autonomous systems, say

x′ = F(x) =

⎡

⎢⎢⎢
⎣

F1(x1, x2, . . . , xd)
F2(x1, x2, . . . , xd)

...
Fd(x1, x2, . . . , xd)

⎤

⎥⎥⎥
⎦

(3.1)

where F : Rd → R
d; or more generally, we may assume that F is defined only on

an open subset U ⊂ R
d. In Section 3.4, we discuss extensions of the theory to

nonautonomous systems.

3.1 Two Counterexamples

While the IVP for a linear system x′ = Ax has a unique solution that exists for
all time, nonlinear equations are not so kind to us. We begin the chapter with two
examples to illustrate the difficulties.

Example 1: Without special conditions on F, the IVP for (3.1) may possess a
solution only for a finite, possibly very short, time. To see this, consider the IVP for
a scalar unknown function x(t),

x′ = x2, x(0) = 1. (3.2)

The equation may be solved using separability:

dx

x2
= dt, which integrates to − 1

x
= t+ C.

© Springer Science+Business Media New York 2016
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Solving for x and imposing the initial condition (IC) to deduce that C = −1, we
obtain

x(t) =
1

1− t
. (3.3)

You may check that this formula satisfies both the equation and the initial condition,
but note: this solution exists only for t < 1.

Strictly speaking, formula (3.3) makes sense provided t �= 1, but in most model-
ing contexts, continuation of the solution beyond the blowup time, i.e., to {t > 1},
is rejected on physical grounds. Suppose, for example, that x represents a popula-
tion; reemergence of x with large negative values after the singularity at t = 1 is
nonsensical. We shall say that the solution ceases to exist at t = 1.

The blowup of (3.3) at t = 1 may be understood as follows: From the equation,
we see that x′ > 0, so the solution is always increasing. As x(t) grows, the equation
x′ = x2 forces the solution to increase ever more quickly, and the growth accelerates
out of control in a finite time. It is instructive to compare (3.2) with the linear
equation x′ = x, whose solutions also grow without bound but remain finite for all
time. The difference between these equations is that in (3.2), the RHS x2 grows faster
than linearly as x → ∞; finite-time blowup is driven by such superlinear growth (cf.
Exercise 2).

Incidentally, in Chapter 4 we will give sufficient conditions to guarantee that the
solution to an IVP exists for all time.

Example 2: Without special conditions on F, solutions of the IVP for (3.1) need
not be unique. To see this, consider another scalar IVP,1

x′ =
√

|x|, x(0) = 0. (3.4)

Note that x′ ≥ 0, so that for positive t, we have x(t) ≥ 0, and thus we may drop
the absolute value in the equation. Solving x′ =

√
x by separability, we obtain the

general solution

x(t) =

[
t+ C

2

]2
.

Choosing C = 0 to satisfy the IC, we get the solution x(t) = t2/4. Please check that
this function satisfies the equation for positive time.2

However, note that x(t) ≡ 0 also solves both the equation and the initial condi-
tions. In other words, the solution to this IVP is not unique. Moreover, the situation

1This example is merely a simplification of Exercise 4(b) of Chapter 1 that makes the calcula-
tions all but trivial.

2This function is not a solution of (3.4) for t < 0. Geometrically, it follows from the fact that
x′ ≥ 0 that x(t) ≤ 0 when t < 0. Analytically, the issue is that the radical means the positive
square root, so

√
t2/4 = |t|/2 �= (d/dt)(t2/4). This example provides an unwelcome, but salutary,

reminder that explicit solutions of ODEs need to be checked thoroughly.
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is worse than is so far apparent: for every constant t0 ≥ 0, the function

x(t) =

{
0 if t ≤ t0

(t− t0)
2/4 if t > t0

(3.5)

is a continuously differentiable solution of the equation that also satisfies the initial
condition. (Check this!) In other words, there are infinitely many solutions of the
IVP.

The problems with this example stem from the singularity of
√|x| at the origin.

As we shall see in Section 3.3, uniqueness may be guaranteed if F is sufficiently
regular, e.g., continuously differentiable.

3.2 Local Existence Theory

3.2.1 Statement of the Existence Theorem

In this section we formulate and prove the fundamental existence theorem for the IVP
for (3.1). We will assume that the function F on the RHS of the ODE is continuous,
and in fact we will impose a stronger condition that we now describe.

If S is a subset of Rd1 , a function F : S → R
d2 is called Lipschitz continuous, or

simply Lipschitz, if there is a constant L such that for all points x,y ∈ S,

|F(x)− F(y)| ≤ L|x− y|. (3.6)

Condition (3.6) is much more restrictive than mere continuity. For example, on
the real line, the function F (x) =

√|x|, which appeared in the example (3.4), is
continuous but not Lipschitz continuous.3

Let U be an open subset of Rd1 , and let F : U → R
d2 . We shall call F locally

Lipschitz if for every point x0 ∈ U there is a neighborhood V of x0 such that the
restriction F|V is Lipschitz.4 For example, on the real line the function F (x) = x2

is locally Lipschitz, even though it is not Lipschitz on the whole line. (Check this!)
Sometimes, to emphasize the distinction from locally Lipschitz, we shall say that a
function is globally Lipschitz on S to mean that it is Lipschitz on S.

We shall study the IVP (3.1) under the assumption that F is locally Lipschitz. As
Proposition 3.2.2 below shows, a C1 function is locally Lipschitz; in fact, being locally
Lipschitz is only slightly less restrictive than being C1. In most equations that we

3The Cantor function, which was discussed in the Pearls of Chapter 2, gives a more dramatic
illustration of this point. For yet more drama, see Exercise 20.

4Incidentally, if F is locally Lipschitz on U , then the restriction of F to a compact subset of U
is Lipschitz; see Proposition 3.3.2. The proof is trickier than you might expect.
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study in later chapters, F will actually be C1; we consider the more general condition
here only because, as we shall see, the local existence and uniqueness theory is so
well suited to a Lipschitz condition.

Below we give our fundamental existence theorem for the IVP, whose formulation
we repeat for convenient reference: given b ∈ R

d, find a continuously differentiable
function5 x(t) such that

x′ = F(x), x(0) = b. (3.7)

Theorem 3.2.1. Let U ⊂ R
d be open and contain the initial data b, and let F :

U → R
d be locally Lipschitz. Then there exist an interval (−η, η) and a C1 function

x : (−η, η) → U such that (3.7) is satisfied.

The construction of x(t) will show that the solution is unique on the possibly
very short interval (−η, η) in the theorem. In fact, uniqueness holds in far greater
generality, as we shall show in Section 3.3. Anticipating those stronger results, we
ignore the information regarding uniqueness that may be obtained through proving
Theorem 3.2.1.

We must develop substantial preliminaries before we are ready to prove Theo-
rem 3.2.1, which we do in Section 3.2.5. Although the results of the next subsection
are not actually needed to prove the theorem, they will be needed later, and we
include them here because they help elucidate Lipschitz continuity.

3.2.2 C1 Implies Lipschitz Continuity

Proposition 3.2.2. If U ⊂ R
d1 is open and F : U → R

d2 is C1, then F is locally
Lipschitz.

Incidentally, the converse of this result is not true. For example, on the real
line, F (x) = |x| is locally Lipschitz (globally Lipschitz, in fact) despite not being
differentiable at the origin.6

We offer two proofs of the proposition, the first only for scalar-valued functions
of one variable and the second for the general case. The second proof is greatly to be
preferred. We offer the first proof primarily because it illustrates a common bad habit
among beginning analysis students—overreliance on the mean value theorem—and
we want to have an identified target to shoot down.

Proof 1 (only for d1 = d2 = 1). Given x0 ∈ U , choose a compact interval I such that

x0 ∈ Int I ⊂ I ⊂ U ,
5This might be an appropriate place to repeat our warning from Chapter 1: the symbols x,

y, etc., may denote a point in R
d (as in (3.6)) or a vector-valued function of time (as in (3.7)),

depending on context. Whenever you see one of these letters, ask yourself which usage is intended.

6In the Pearls, Section 3.6.1, we invoke a little analysis to construct a more dramatic example
of this point.
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where Int means interior, and let L = maxI |F ′|. Given x, y ∈ I, we have from the
mean value theorem that there is a point ξ between x and y such that

F (x)− F (y) = F ′(ξ)(x− y),

so by the choice of L as the maximum, we deduce

|F (x)− F (y)| ≤ L|x− y|.

This proof may be generalized to all d1, but there are problems with it if d2 > 1.
The difficulty is that one needs to apply the mean value theorem separately to each
of the d2 components of F. This is not impossible, but it results in a clunky proof.
The following is a far more elegant alternative, and we urge you to absorb the clever
application of the fundamental theorem of calculus in Lemma 3.2.3. In this result,
and indeed throughout the book, we use the notation DF for the Jacobian matrix
of F(x) with entries ∂Fk/∂xj , where j = 1, . . . , d1 and k = 1, . . . , d2.

Proof 2 (for general d1, d2). Given x0 ∈ U , we choose an (open) ball

B(x0, ε) = {x ∈ R
d : |x− x0| < ε}

whose closure is contained in U . We will show that F is Lipschitz on this ball with
Lipschitz constant derived from the norm of the Jacobian,

L = max
z∈B(x0,ε)

‖DF(z)‖. (3.8)

Let two points x,y ∈ B(x0, ε) be given. We isolate the following simple lemma as a
separate result so that we can refer to it later.

Lemma 3.2.3. In the above notation,

F(x)− F(y) =

{∫ 1

0

DF(y + s(x− y)) ds

}
· (x− y). (3.9)

Proof. Note that the argument of DF in the above integrand,

�(s) = y + s(x− y), 0 ≤ s ≤ 1, (3.10)
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defines the line segment from y to x, which is entirely contained in B(x0, ε) ⊂ U .
Thus, the composition F ◦ � : [0, 1] → R

d2 is defined and C1. By the fundamental
theorem of calculus,7

F(x)− F(y) =

∫ 1

0

d

ds
[F ◦ �] (s) ds. (3.11)

According to the chain rule (reviewed in Section B.3 of Appendix B), (d/ds)[F◦�] =
DF · �′, and differentiation of (3.10) yields �′(s) = x− y. Thus (3.9) follows.

Proof 2 of Proposition 3.2.2, concluded. Taking norms in (3.9), we deduce from
Property (iv) in Lemma 2.2.3 that

|F(x)− F(y)| ≤
∥∥∥∥

∫ 1

0

DF(y + s(x− y)) ds

∥∥∥∥ |x− y|. (3.12)

We estimate the first factor on the RHS by the triangle inequality for matrix-valued
integrals,8

∥∥∥∥

∫ 1

0

DF(y + s(x− y)) ds

∥∥∥∥ ≤
∫ 1

0

‖DF(y + s(x− y))‖ ds, (3.13)

and we bound the RHS of (3.13) using the maximum of the integrand. Substituting
into (3.12), we obtain

|F(x)− F(y)| ≤
{
max
0≤s≤1

‖DF(y + s(x− y))‖
}
|x− y|. (3.14)

Since the line segment between x and y is contained in B(x0, ε), we obtain the
required bound |F(x)− F(y)| ≤ L|x− y|, where L is defined by (3.8).

We ask you to verify that the exact same construction as in the second proof
above supports the following extension of Proposition 3.2.2.

Corollary 3.2.4. If U ⊂ R
d1 is open, if F : U → R

d2 is C1, and if K ⊂ U is compact
and convex, then F|K is Lipschitz with Lipschitz constant

L = max
K

‖DF‖. (3.15)

7Note that the functions in (3.11) are vector-valued. Each component of this equation is simply
the standard one-variable fundamental theorem of calculus.

8For a scalar function it is obvious from the interpretation of the integral as an area that
∣
∣∣∣

∫ 1

0

f(s) ds

∣
∣∣∣ ≤

∫ 1

0

|f(s)| ds.

To derive the analogous result for a vector- or matrix-valued function, apply the triangle inequality
to approximating Riemann sums and then take limits.
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Remark. This result may be strengthened: even if K is not convex, F|K is still
Lipschitz. We will prove this in Proposition 3.3.2. However, the proof involves an
intricate application of compactness, and a simple estimate like (3.15) for a Lipschitz
constant is not available. We postpone the proof of the stronger result until it is
actually needed.

3.2.3 Reformulation of the IVP as an Integral Equation

The proof of Theorem 3.2.1 is based on analyzing an equivalent integral equation, i.e.,
(3.16) below. The integral equation is more tractable than (3.7), because integration
is a much less singular operation than differentiation. Also note that the two separate
equations in (3.7)—the ODE and the initial conditions—are combined in a single
integral equation.

In the proposition, it suffices if F is merely continuous, so we temporarily weaken
our hypotheses.

Proposition 3.2.5. Let U ⊂ R
d be open, and let F : U → R

d be continuous. If
x ∈ C1((α, β),U) satisfies the IVP (3.7), then x satisfies the integral relation

x(t) = b+

∫ t

0

F(x(s)) ds, α < t < β. (3.16)

Conversely, if x is continuous on (α, β) and satisfies (3.16), then x is C1 and satisfies
(3.7).

The proof of this result is a straightforward application of the fundamental the-
orem of calculus, and we leave it as an exercise.

Despite its appearance, equation (3.16) is not a formula that tells us what the
solution is, because we need to know x(s) in order to evaluate the integral.

3.2.4 The Contraction-Mapping Principle

In Chapter 2 we encountered norms on a vector space X, i.e., a function ‖ · ‖ : X →
[0,∞) such that for all vectors x,y ∈ X and scalar c ∈ R,

(a) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0,
(b) ‖cx‖ = |c| ‖x‖,
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

(3.17)

Previously, the norms were defined on finite-dimensional spaces of vectors or ma-
trices. For the proof of Theorem 3.2.1, we need a norm on the infinite-dimensional
space C([−η, η],Rd), the set of continuous functions from the closed interval [−η, η]



86 Chapter 3. Nonlinear Systems: Local Theory

into R
d; specifically, for x ∈ C([−η, η],Rd) we define

‖x‖ = max
−η≤t≤η

|x(t)|. (3.18)

Since [−η, η] is compact, the maximum exists. In Exercise 1(b), you are asked to show
that (3.18) satisfies the axioms (3.17). Convergence of a sequence in C([−η, η],Rd)
with respect to this norm is simply uniform convergence of a sequence of functions.

Let X, ‖ · ‖ be a normed vector space. A sequence {xn} ⊂ X is called Cauchy if
for every ε > 0, there is an integer N such that

m,n > N =⇒ ‖xm − xn‖ < ε.

The space in question is called complete if every Cauchy sequence converges, i.e., if
there exists an element x∞ in X such that

lim
n→∞

‖xn − x∞‖ = 0.

These definitions generalize familiar concepts for real numbers. Incidentally, a com-
plete normed vector space is called a Banach space. Thus, in this terminology, the
following proposition asserts that C([−η, η],Rd) is a Banach space.

Proposition 3.2.6. The space C([−η, η],Rd) is complete.

This theorem is merely a restatement of the result (Theorem B.2.2 in Appendix B)
that the uniform limit of a sequence of continuous functions is itself continuous.

After two more definitions, we will be ready to state and prove the contraction-
mapping principle. Let S be a subset of a normed linear space9 X, and let T : S → S
be some mapping of that set into itself. We use a Gothic letter for the mapping as a
warning that it may be a more complicated mathematical object than others we have
encountered so far: if, for example, X = C([−η, η],Rd), then T needs a vector-valued
function x(t), −η ≤ t ≤ η, as its argument, and the result of applying T to x, which
we write as T[x] with square brackets, is also a function on [−η, η]. We shall call T
a contraction if there is a constant C < 1 such that for all x,y ∈ S,

‖T[x]− T[y]‖ ≤ C‖x− y‖; (3.19)

in words, for T to be a contraction, it must be Lipschitz continuous with a Lipschitz
constant less than unity. (Note that we are generalizing the notion of Lipschitz
continuity from R

d to an infinite-dimensional space.) Finally, we shall call a point
x ∈ S a fixed point of T if T[x] = x.

9Incidentally, the contraction mapping theorem extends easily to the more general context of
a complete metric space. This result has no connection to the fact that X is a linear space. The
only change needed is to replace ‖x − y‖ by the distance function d(x,y). However, to minimize
formalism, we don’t introduce this more general, but unnecessary, context.
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Theorem 3.2.7. If S is a closed subset of a Banach space X and if T : S → S is a
contraction, then T has a unique fixed point in S.

Proof. Choose a vector x0 ∈ S arbitrarily. Define a sequence inductively as follows:
having chosen x0,x1, . . . ,xn, let xn+1 = T[xn]. Observe that

‖xn+1 − xn‖ = ‖T[xn]− T[xn−1]‖ ≤ C ‖xn − xn−1‖.

Iterating this inequality, we deduce that

‖xn+1 − xn‖ ≤ Cn‖x1 − x0‖. (3.20)

Since C < 1, (3.20) implies that {xn} is Cauchy. (Check this!) Because X is
complete, we conclude that {xn} has a limit x∞ in X; moreover, since S is closed, in
fact x∞ ∈ S.

We claim that x∞ is a fixed point of T. To see this, observe that

T[x∞] = T[ lim
n→∞

xn] = lim
n→∞

T[xn] = lim
n→∞

xn+1 = x∞,

where we have used the continuity of T to pull the limit outside the argument of T.

To show that the fixed point is unique, suppose x,y are both fixed points of T.
Then

‖x− y‖ = ‖T[x]− T[y]‖ ≤ C ‖x− y‖,
or

(1− C) ‖x− y‖ ≤ 0.

Since 1 − C > 0, we deduce ‖x − y‖ ≤ 0. Then by Property (3.17a), we obtain
x = y.

3.2.5 Proof of the Existence Theorem

To prove Theorem 3.2.1 we will construct a solution of (3.7) by finding a fixed point
of a mapping based on the integral equation (3.16), as follows: Choose an (open)
ball B(b, δ) around the initial condition b in R

d such that

(a) B(b, δ) ⊂ U and

(b) the restriction F|B(b, δ) is Lipschitz continuous.
(3.21)



88 Chapter 3. Nonlinear Systems: Local Theory

Using the same radius δ, let S ⊂ C([−η, η],Rd) be defined by10

S = {x ∈ C([−η, η],Rd) : ∀t ∈ [−η, η] |x(t)− b| ≤ δ}. (3.22)

For every x ∈ S, the composition F(x(s)) in the integrand of (3.16) makes sense
and is a continuous function of s. Hence we may define a mapping from S into
C([−η, η],Rd), in symbols T : S → C([−η, η],Rd), by the RHS of (3.16), i.e.,

T[x](t) = b+

∫ t

0

F(x(s)) ds, −η ≤ t ≤ η. (3.23)

Since we are dealing with infinite-dimensional spaces, let’s review the notation, even
though this may bore you. The argument of T is a function, written x without any
argument, and the result T[x] is also a function. To know what function T[x] is, we
have to be told its value for every point t ∈ [−η, η], and that is what (3.23) gives us.

The following two claims will allow us to apply Theorem 3.2.7 to extract a fixed
point of T in C([−η, η],Rd). By Proposition 3.2.5, such a fixed point is the desired
solution11 of (3.7) on (−η, η). Thus, the proof of Theorem 3.2.1 will be complete
when we prove the claims.

Claim 1: If η is sufficiently small, then for every x ∈ S, the image T[x] belongs
to S.

In other words, although as originally defined the range of T was C([−η, η],Rd),
by reducing η if needed, we may regard T as a mapping from S into S.

Proof. We need to show that for every x ∈ S,

‖T[x]− b‖ ≤ δ.

From (3.16) we compute that

(T[x]− b)(t) =

∫ t

0

F(x(s)) ds,

so

|T[x]− b|(t) ≤
∫

I(t)

|F(x(s))| ds, (3.24)

10In words, B(b, δ) is the ball in the Euclidean space Rd of radius δ around the vector b, while S
is the (closed) ball in the infinite-dimensional space C([−η, η],Rd) of radius δ around the constant
function b. In symbols,

S = {x ∈ C([−η, η],Rd) : ‖x− b‖ ≤ δ}.

11The fixed point x is a continuous function on the closed interval [−η, η], which is more than
(3.7) requires.
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where I(t) is the interval12

I(t) = [min{0, t}, max{0, t}].

Let
K = max

z∈B(b,δ)
|F(z)|.

Since x ∈ S, the integrand in (3.24) satisfies |F(x(s))| ≤ K. Thus, observing that∫
I(t)

ds ≤ η, we conclude that |T[x] − b|(t) ≤ ηK, so the claim will be satisfied,
provided η is chosen such that

ηK ≤ δ. (3.25)

Claim 2: If η is sufficiently small, then T is a contraction on S.

Proof. By (3.21b), there is a Lipschitz constant L for F over B(b, δ). Let x,y ∈ S
be given. From (3.23), we have

|T[x]− T[y]|(t) ≤
∫

I(t)

|F(x(s))− F(y(s))| ds.

By the Lipschitz property,

|T[x]− T[y]|(t) ≤ L

∫

I(t)

|x(s)− y(s)| ds.

Of course
|x(s)− y(s)| ≤ ‖x− y‖,

and estimating
∫
I(t)

ds ≤ η, we deduce that

‖T[x]− T[y]‖ ≤ ηL‖x− y‖.

The claim follows if
ηL < 1. (3.26)

Thus the proof of Theorem 3.2.1 is now complete. Since the above proof gives
a fixed point for every η that satisfies (3.25) and (3.26), we may formulate a more
quantitative version of the theorem.

Corollary 3.2.8. Suppose the function F on the RHS of (3.7) is defined and Lips-
chitz continuous on a neighborhood of the closed ball B(b, δ). Let K = max{|F(x)| :

12With this notation we may write a single formula that is valid for both t > 0 and t < 0.
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x ∈ B(b, δ)} and let L be a Lipschitz constant for F on B(b, δ). Then the IVP (3.7)
is solvable for t ∈ (−η, η), provided

η < min{δ/K, 1/L}. (3.27)

In this result, the size of η is limited by both the magnitude of F and its Lipschitz
constant. In point of fact, the restriction η < 1/L has no intrinsic significance; it is
required only for constructing the solution via a fixed-point argument. Indeed, the
IVP has a solution for −η < t < η, provided merely that η < δ/K. This range of t
has a natural interpretation: if a particle starts at the center of a ball of radius δ and
moves with speed at most K, then a time of at least δ/K is required for the particle
to reach the boundary. You may use this interpretation to prove the result now,
or you can wait until Exercise 4.16, where we ask you to derive it using techniques
developed in that chapter.

3.2.6 An Illustrative Example and Picard Iteration

Unscrambling the proof of the fixed-point theorem, we see that the construction of
the solution of the IVP ultimately comes down to the limit of an iterated sequence:
x0 is chosen arbitrarily (e.g., x0(t) ≡ b), and subsequent x’s are chosen iteratively:

xn+1 = T[xn]. (3.28)

Let’s compute the iterates for the simplest of IVPs, the scalar problem

x′ = x, x(0) = 1.

Equation (3.28) becomes

xn+1 = 1 +

∫ t

0

xn(s) ds.

If we choose x0(t) ≡ 1, then we obtain

xn(t) = 1 + t+
1

2!
t2 + · · ·+ 1

n!
tn.

In other words, the nth iterate is just the polynomial approximation of degree n
to the exponential et. Thus, the iteration works very well indeed for this simple
example.

Incidentally, some authors prove Theorem 3.2.1 directly by iteration of the in-
tegral equation (3.16), which avoids the fixed-point theorem. This is called Picard
iteration. The two approaches are compared in the Pearls. If you’d like to practice
Picard iteration on your own, try Exercise 6.
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3.2.7 Concluding Remarks

Strictly speaking, the definition of a solution of an IVP includes a domain, α < t < β.
For the time being, functions defined on different intervals must be regarded as
different solutions. Ultimately, these pedantic distinctions can be removed—we will
show this in several stages culminating in Proposition 4.1.1 in Chapter 4—but based
on what we know so far they are required for logical consistency.

The following two results are mildly interesting in their own right, but more
important, they are useful as tools in certain proofs below. In Exercise 1(c) we give
you hints for proving both results.

Lemma 3.2.9. Suppose x1,x2 are solutions of an ODE such that

(i) x1 is continuous on (α, β] and satisfies x′ = F(x) on (α, β),
(ii) x2 is continuous on [β, γ) and satisfies x′ = F(x) on (β, γ).

If x1(β) = x2(β) and if this common value belongs to the domain13 of F (on which
this function is continuous), then the definition

x(t) =

{
x1(t) if α < t ≤ β,
x2(t) if β ≤ t < γ,

(3.29)

yields a solution of the ODE on the combined interval (α, γ).

Corollary 3.2.10. If x is a C1 solution of an ODE in an interval (α, β) that is
continuous on (α, β] and if x(β) belongs to the domain of F, then x may be extended
to a solution of the equation in a slightly larger interval (α, β + ε), and similarly for
the left endpoint.

3.3 Uniqueness Theory

3.3.1 Gronwall’s Lemma

The main workhorse of the uniqueness proof, Gronwall’s lemma, is a simple inequal-
ity, but it provides extremely useful estimates for solutions of an ODE in many
contexts besides the present one.

13Here is an example to show that the annoying hypothesis “xj(β) belongs to the domain of
F” is really necessary. It’s a bit technical, so don’t pursue this unless you, like us, are amused by
such things. On the domain U = {(x, y) : x2 > y3} consider the ODE (x′, y′) = (f(x, y), 0), where
f(x, y) = (1/3)(x2 − y3)−1. Then (x1(t), y1(t)) = (t1/3, 0) for t ≤ 0 and (x2(t), y2(t)) = (t1/3, 0) for
t ≥ 0 satisfy all the hypotheses of the theorem (with β = 0) except the containment hypothesis,
but the function defined by (3.29) is not differentiable at t = 0.
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Lemma 3.3.1. Let g : [0, T ] → R be continuous, and suppose there are nonnegative
constants C,K such that

g(t) ≤ C +K

∫ t

0

g(s) ds, 0 ≤ t ≤ T. (3.30)

Then
g(t) ≤ CeKt, 0 ≤ t ≤ T. (3.31)

Here is a corollary of Gronwall’s lemma whose hypotheses are more intuitive: if
g is differentiable and satisfies

g′ ≤ Kg, g(0) ≤ C, (3.32)

then g is bounded by an exponential as in (3.31). This could easily be proved
directly; alternatively, it follows from the lemma, because integration of condition
(3.32) yields (3.30). In contrast to (3.32), Gronwall’s inequality does not require that
g be differentiable, and this makes application of the lemma much more flexible.

Proof of Lemma 3.3.1. We define a function by the RHS of (3.30),

G(t) = C +K

∫ t

0

g(s) ds.

The function G is C1, and it satisfies

(a) g(t) ≤ G(t) and (b) G′(t) = Kg(t). (3.33)

Applying Leibniz’s rule to differentiate the product e−KtG(t) and invoking (3.33),
we calculate

d

dt

[
e−KtG(t)

]
= e−Kt ·Kg(t)−Ke−Kt ·G(t) = Ke−Kt [g(t)−G(t)] ≤ 0.

Thus, e−KtG(t) is nonincreasing, so e−KtG(t) ≤ G(0) = C. Invoking (3.33a) again,
we deduce that

g(t) ≤ G(t) ≤ CeKt.

Remark: One minor generalization of Gronwall’s lemma relaxes the hypotheses
and assumes that g is merely piecewise continuous;14 check that the same conclusion
still follows. Exercise 8 gives two other generalizations, but there are many more.

14For the record: a function g is called piecewise continuous on an interval I if there is a finite
set of points {ak : k = 1, 2, . . . , p} in I such that (i) g is continuous on I ∼ ∪k{ak} and (ii) at each
point ak, the one-sided limits of g exist (and are finite).
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3.3.2 More on Lipschitz Functions

Proposition 3.3.2. Suppose U ⊂ R
d1 is open and F : U → R

d2 is locally Lipschitz.
Then for every compact set K ⊂ U , the restriction F|K is (globally) Lipschitz.

In particular, if F is C1 and K is compact, then F|K is (globally) Lipschitz. If K is
convex, Proposition 3.2.2 gives the same conclusion, along with the simple estimate
(3.15) for the Lipschitz constant of F|K. When K is not convex, the following intri-
cate nonconstructive compactness argument is needed for the proof. (See Exercise 12
for an illustration of the complicating issues.)

Proof. For each x ∈ K, choose a ball B(x, δx) such that (i) its closure B(x, δx) is
contained in U and (ii) F is Lipschitz continuous on B(x, δx). The collection

{B(x, δx/2) : x ∈ K}

is an open cover of K. (Note that the radii here have been halved.) Choose a finite
subcover of K, say B(xj, δj/2), j = 1, 2, . . . , J ; let Λj be a Lipschitz constant for F
on B(xj, δj) (radius not halved); and let

L1 = max
j=1,...,J

Λj, L2 = 4max
x∈K

|F(x)|/min
j

δj.

Let us show that F is Lipschitz over K with Lipschitz constant L = max{L1, L2}.
To prove this, suppose x,y ∈ K. The first point, x, belongs to one of the balls in
the finite subcover, say x ∈ B(xk, δk/2). We consider two cases: (i) If y belongs to
the (full-radius) ball B(xk, δk) with the same index, then by construction,

|F(x)− F(y)| ≤ Λk|x− y| ≤ L1|x− y|.

(ii) If y lies outside B(xk, δk), then it may be seen from Figure 3.1 that

|x− y| ≥ δk/2. (3.34)

(It is useful practice to derive this result analytically.) Of course

|F(x)− F(y)| ≤ 2max
K

|F|; (3.35)

we multiply the RHS of (3.35) by 2|x − y|/δk, a quantity that by (3.34) is greater
than unity, to obtain

|F(x)− F(y)| ≤ 4 max
K

|F| |x− y|
δk

≤ L2|x− y|.

Thus both cases are covered, and the proof is complete.
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Figure 3.1: Graphical verification of the inequality (3.34).

For future use let us record a somewhat dull corollary of the compactness con-
struction in the above argument that will be needed below.

Corollary 3.3.3. If K ⊂ U ⊂ R
d, where K is compact and U is open, then there

exist a larger compact set K′ ⊂ U and a δ > 0 such that for every x ∈ K, the closed
ball B(x, δ) is contained in K′.

Proof. In the notation of the previous proof, let K′ = ∪J
j=1B(xj, δj) and let δ =

minj(δj/2).

3.3.3 The Uniqueness Theorem

Theorem 3.3.4. Suppose that F : U → R
d is locally Lipschitz. Let x1,x2 be two

solutions of the initial value problem

x′ = F(x), x(0) = b, (3.36)

say defined for αj < t < βj, j = 1, 2. Then for all t in the range max{α1, α2} <

t < min{β1, β2} where both solutions are defined, x1(t) = x2(t).

Remarks: (i) Although “local theory” is part of the title of this chapter and the
existence theorem was very local indeed, this uniqueness theorem is in fact global:
uniqueness holds on every interval over which the IVP happens to have a solution,
no matter how long. (ii) In light of Lemma 3.2.9, we may paste together the two
solutions considered in the theorem to obtain a solution on the combined interval
min{α1, α2} < t < max{β1, β2}.
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Proof. We consider only positive time; with trivial modifications, the arguments can
be adapted to handle t < 0. We want to apply Gronwall’s lemma to the func-
tion15 g(t) = |x1(t) − x2(t)|. Both solutions satisfy integral equations as in (3.16).
Subtracting these, we have

x1(t)− x2(t) =

∫ t

0

[F(x1(s))− F(x2(s))] ds, 0 ≤ t < min{β1, β2}. (3.37)

Thus

g(t) = |x1(t)− x2(t)| ≤
∫ t

0

|F(x1(s))− F(x2(s))| ds. (3.38)

Temporarily we restrict t to an interval [0, T ] where T < min{β1, β2}. Since [0, T ]
is compact, so is the union of images K = x1([0, T ]) ∪ x2([0, T ]). Therefore, by
Proposition 3.3.2, there is a Lipschitz constant L for F on K. Hence for 0 ≤ s ≤ T ,
the integrand on the RHS of (3.38) may be estimated as follows:

|F(x1(s))− F(x2(s))| ≤ L|x1(s)− x2(s)| = Lg(s).

Substituting into (3.38), we see that

g(t) ≤ L

∫ t

0

g(s) ds. (3.39)

Thus from Gronwall’s inequality with C = 0 we deduce that g(t) ≤ 0 for 0 ≤ t ≤ T .
But g is nonnegative, so g ≡ 0, and thus x1(t) = x2(t) for this range of t. Finally,
we may take T arbitrarily close to min{β1, β2}, so we have equality for all t where
both solutions are defined.

Remark: We pause to shoot down a possible misconception. Students sometimes
imagine that two solutions of an autonomous equation x′ = F(x) may cross one
another, but this is false. To put a positive slant on this negative remark: If at times
t1 and t2 two solutions x1(t) and x2(t) of x′ = F(x) satisfy x1(t1) = x2(t2), then
x2(t) = x1(t − (t2 − t1)) for all t for which both sides of this equality are defined.
(Prove this!)

15Note that the absolute-value function is not differentiable, so it is possible that g is not differ-
entiable. Thus, the weak hypothesis in Gronwall’s lemma simplifies the proof of the theorem.
This is just one instance of how proofs in ODEs, which is an old subject, have been polished

over the years. Indeed, beware of reading through this and other proofs too quickly and missing
the cleverness. For example, in this proof, before applying Gronwall’s lemma, we prepare for it
by (i) restricting t to a large closed subinterval of [0, β) to obtain compactness and (ii) invoking
Proposition 3.3.2 to derive a Lipschitz constant that works on all of [0, T ]. After these preparations
have been made, the proof may be appropriately described as a straightforward application of
Gronwall’s lemma.
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It will be convenient below to have uniqueness under a (superficially) weaker
hypothesis. Thus, we define a solution of (3.36) in forward time, by which we mean
a continuous function x : [0, β) → U with x(0) = b that is continuously differentiable
on the open interval (0, β) and satisfies the ODE there. Such solutions are unique:

Corollary 3.3.5. Suppose that F : U → R
d in (3.36) is locally Lipschitz. Let x1,x2

be two solutions in forward time of the initial value problem (3.36), say defined for
0 ≤ t < βj, j = 1, 2. Then for all t in the range 0 ≤ t < min{β1, β2} where both
solutions are defined, x1(t) = x2(t).

In fact, it follows from Corollary 3.2.10 that each solution xj has an extension to
a solution on an open interval (−ε, βj) that contains the origin, and Corollary 3.3.5
may be proved by applying Theorem 3.3.4 to the extensions. Thus, the generalization
to an apparently wider class of solutions is actually vacuous. We introduce it here
only because in some proofs below it is technically convenient to be able to apply
the uniqueness result to solutions of the IVP that are defined only for t ≥ 0. In
this way, we may avoid the distraction of constructing extensions in the middle of
another proof.

3.4 Generalization to Nonautonomous Systems

3.4.1 Nonlinear Systems

Both the existence and uniqueness theorems generalize to nonautonomous IVPs, say

x′ = G(x, t), x(0) = b, (3.40)

as we discuss in Exercise 17.

Note that to simplify the notation in (3.40), we have imposed the initial condi-
tion at t = 0. Unlike those for autonomous equations, solutions of nonautonomous
equations do not have translational invariance. Thus strictly speaking, imposing an
initial condition at a different time, say x(t0) = b, gives a different problem. How-
ever, no real generality is lost by assuming t0 = 0 in (3.40), since the general case
can easily be reduced to (3.40) by appropriate translation.

3.4.2 Linear Systems

The theory for nonautonomous linear systems, say an IVP

x′ = A(t)x+ g(t), x(0) = b, (3.41)

is refreshingly simple and deserves explicit formulation.
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Theorem 3.4.1. Suppose the coefficient matrix A(t) and the inhomogeneous term
g(t) in (3.41) are continuous in the (possibly infinite) open interval (T1, T2) that
contains t = 0; then this IVP has a unique solution that exists for T1 < t < T2.

In particular, solutions of a linear system do not blow up in finite time, no matter
how rapidly ‖A(t)‖ or |g(t)| may grow with t. (If this result makes you think linear
equations are dull, see Exercise 13.)

Two options for proving this result are available. One method uses Picard itera-
tion; Exercise 16 guides you through this. The other, for which we are not yet ready,
combines local results with theory from Chapter 4; see Exercise 5(a) in that chapter.

3.5 Exercises

After the core exercises, there is a subsection of exercises on linear ODEs with (time-dependent)
periodic coefficients. This phrase describes a whole subfield known as Floquet theory.

3.5.1 Core Exercises

The core exercises have the following purposes:

To deal with unfinished business 1, 12
To develop intuition about blowup through an example 2
To understand Lipschitz continuity through examples 3
To understand integral operators 4, 5
To explore the approach of Picard iteration 6
To extend theory developed in the text 7, 8
To increase your facility with ODEs 9, 10
To connect theory and computing 11

1. (a) Prove Proposition 3.2.5.

(b) Show that the definition (3.18) satisfies the axioms (3.17).

(c) Prove Lemma 3.2.9 and Corollary 3.2.10.

Hint for Lemma 3.2.9: By hypothesis, x′
1 = F(x1(t)) for t ∈ (α, β). But F ◦ x1,

a composition of continuous functions, is continuous on the half-closed interval
(α, β]. Thus,

lim
t→β−

x′
1(t) = F(x(β)).

Argue similarly for x2(t) and combine your results to conclude that the function
(3.29) is C1 on the combined interval.

Hint for Corollary 3.2.10: Apply Theorem 3.2.1 to solve an IVP for y′ = F(y)
with initial condition y(β) = x(β) on β − η < t < β + η. Then use Lemma 3.2.9
to obtain a solution on (α, β + η).
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2. (a) Use separability to solve the scalar IVP

x′ = |x|p, x(0) = b,

where p > 0 and b > 0.

Discussion: You will see that the solution blows up in finite time if p > 1, i.e.,
if the RHS of the ODE has superlinear growth. According to Theorem 4.2.1
of Chapter 4, solutions of an equation with linear growth cannot blow up
in finite time. However, even if an equation has superlinear growth, this
does not imply that solutions blow up in finite time. One counterexample
is x′ = |x|p sinx. (Why don’t solutions blow up? ) Part (b) of this exercise
gives another counterexample, which is two-dimensional.

(b) By finding explicit solutions, show that every IVP for the system (in polar
coordinates)

r′ = r
θ′ = r2

has a solution for all time (positive and negative).

Advice: For practice, be sure you can write this system in Cartesian coordi-
nates. Incidentally, you will find that in Cartesian coordinates, the RHS of
the equation grows cubically.

3. Question: Are the following functions Lipschitz continuous on the indicated sets? (Inciden-
tally, all of these examples are scalar-valued functions; vector-valued functions would not
pose any additional difficulties except for the need to examine more components.)

(a) (x+ 2)1/3 on the interval [−1, 1]? On [−∞,−1]?

(b) (x2 + 2)1/3 on the interval [−1, 1]? On [−∞,−1]?

(c) (2x3 + 1)1/3 on the interval [−1, 1]? On [−∞,−1]?

(d) (2x4 + 1)1/3 on the interval [−1, 1]? On [−∞,−1]?

(e) sin(e−x) on the interval [−1, 1]? On [−∞,−1]?

(f) x sin(1/x) on the interval [−1, 1]? On [−∞,−1]?

(g) |x+ y2 − 2| on the square {|x| ≤ 2, |y| ≤ 2}? On R
2?

Hint: Observe that the function is the composition of x + y2 − 2 with the
absolute value function. Show that the composition of two Lipschitz func-
tions is Lipschitz continuous. Thus, |x+ y2− 2| is Lipschitz on the indicated
set if x+ y2 − 2 is.

(h)
√
x2 + 1/(x2 + y2 − 1) on the bounded annulus {2 ≤ x2 + y2 ≤ 8}? On

the unbounded annulus {2 ≤ x2 + y2 < ∞}?
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Hint: The function is certainly not Lipschitz on all of R2, because the de-
nominator goes to zero on the unit circle. Propositions 3.2.2 and 3.3.2 may
be combined to show that this function is Lipschitz on the bounded annulus.
More thought is required to analyze the unbounded annulus. Have fun!

4. Consider the integral operator (on scalar functions)

T[x](t) = et b+

∫ t

0

cos(s+ t) x2(s) ds,

where b is a constant. Find η, δ such that T is a contraction on the set

S = {x ∈ C([−η, η],R) : ‖x− b‖ ≤ δ}.

5. (a) Formulate the integral equation (3.16) for the IVP

[
x′

y′

]
=

[ √
100− x2 − y2

(cos x) ey/5

]
,

[
x(0)
y(0)

]
=

[
7
7

]
.

(b) Find (numerical values for) η, δ such that on the set (3.22), this operator
defines a contraction of S into itself.

6. (a) Find the nth Picard iterate resulting from the IVP

x′ = −tx, x(0) = 2,

assuming x0(t) ≡ 2.

(b) Solve this IVP analytically and compare your answer in Part (a) with the
power series expansion of the solution.

7. Consider an IVP
x′ = F(x), x(0) = b

such that the first component of the RHS satisfies F1(0, x̃) = 0 for all x̃ ∈ R
d−1

with (0, x̃) ∈ U , where x̃ is shorthand for (x2, . . . , xd). Prove that if b1 = 0,
then x1(t) ≡ 0 for as long as the solution exists.

Hint: Prove this result, which is a kind of uniqueness theorem for the first
component of the solution of an IVP, with an argument similar to the proof of
the uniqueness theorem.

8. Introduction: In this exercise you derive two generalizations of Gronwall’s inequality,
Lemma 3.3.1, which will be used in later chapters.



100 Chapter 3. Nonlinear Systems: Local Theory

(a) Show that if g : [0, T ] → R is continuous and if there are nonnegative
constants C,B,K such that

g(t) ≤ C +Bt+K

∫ t

0

g(s) ds, 0 ≤ t ≤ T,

then

g(t) ≤ CeKt +B
eKt − 1

K
, 0 ≤ t ≤ T.

Hint: One approach is simply to mimic the proof of Lemma 3.3.1. A
more elegant alternative, which does not require reexamining the proof of
Lemma 3.3.1, involves applying Gronwall’s inequality as given in Section 3.3.1
to the function h(t) = g(t) +B/K.

(b) Show that if g : [0, T ] → R is continuous and if there are nonnegative
constants C,M,K with M < K such that

g(t) ≤ C(eMt − 1) +K

∫ t

0

g(s) ds, 0 ≤ t ≤ T,

then

g(t) ≤ C

K/M − 1
(eKt − eMt), 0 ≤ t ≤ T. (3.42)

Hint: As in Part (a), this inequality can be reduced to Lemma 3.3.1 by the
addition of a carefully chosen term to g(t). Alternatively, you can mimic the
original proof of Lemma 3.3.1.

9. (a) Let x1(t), . . . ,xk(t) be solutions of a homogeneous d-dimensional linear
system

x′ = A(t)x, (3.43)

where A(t) is continuous, and assume that at time zero, x1(0), . . . ,xk(0)
are linearly independent vectors in R

d. Show that at later times, x1(t), . . . ,
xk(t) are still linearly independent.

Hint: This is an easy exercise. Just consider appropriate linear combinations
of x1(t), . . . ,xk(t) and invoke the uniqueness theorem.

(b) Let x1(t), . . . ,xd(t) be solutions of (3.43), let W (t) be the square matrix
W (t) = Col(x1(t), . . . ,xd(t)), and let φ(t) = detW (t). Give a heuristic
proof16 that

φ′(t) = [trA(t)]φ.

16In Chapter 4, when we introduce the order notation, we ask you to use this notation to make
the argument rigorous. Incidentally, the letter “W” is a mnemonic for “Wronskian” (cf. Section 2.1
of [10]).
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Hint: Of course

φ′(t) = lim
ε→0

detW (t+ ε)− detW (t)

ε
. (3.44)

Now
W (t+ ε) ≈ W (t) + εW ′(t) = W (t) [I + εW−1(t)W ′(t)].

Regarding the RHS of the last equation, recall that the determinant of a
product equals the product of the determinants. Then, with appropriate
hand-waving, argue that det[I + εW−1W ′] ≈ 1 + ε tr(W−1W ′) for small ε.
Justify the following equalities:

tr W−1W ′ = tr W−1(AW ) = tr (AW )W−1 = tr A(WW−1) = tr A.

Substitute this information into (3.44) and manipulate the result.

10. Introduction: Let x(t) be a continuous function on the closed interval [0, T ] that satisfies the
ODE x′ = F(x) for 0 < t < T and assume moreover that x(T ) = x(0) belongs to the domain
of F. Extend x to a periodic function x̃(t), defined for all time, such that

x̃(t+ T ) = x̃(t). (3.45)

Show that x̃ satisfies the equation x̃′ = F(x̃) for all t.

Remark: This easy exercise gives you a mini head start in thinking about periodic
solutions of ODEs, which are the focus of Chapter 7.

11. Solve numerically the IVP

x′ =
√
|x|, x(0) = −1.

Discussion: Adapting our solutions from Example 2 in Section 3.1, we can see
that this IVP has infinitely many solutions: once x(t) reaches zero, it may sit at
this level for an arbitrarily long time, say until t = T , before switching to the
parabola x(t) = (t − T )2/4. However, you will find that the numerical solution
completely misses these subtleties. Moral: It is risky to compute solutions with-
out an adequate theoretical understanding of existence and uniqueness issues for
the problem you are studying.

12. On the cut plane
U = {(r, θ) : r > 0, −π < θ < π},

the function f(r, θ) = r sin(θ/2) is continuous and locally Lipschitz. (Are you
clear why this is true with the cut but false without it?) If ε > 0, define the
compact subset of U

K = {(r, θ) : 1/2 ≤ r ≤ 3/2, −π + ε ≤ θ ≤ π − ε},
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and consider the two points P± in K with r = 1, θ = ±(π − ε). Argue that

|f(P+)− f(P−)|
|P+ −P−| ≈ 1

ε
.

Discussion: In other words, although f is Lipschitz on K, the Lipschitz constant
of f goes through the roof if ε is small. This example explains why the proof of
Theorem 3.3.2 was such a chore.

3.5.2 Linear ODEs with Periodic Coefficients

The study of linear ODEs with periodic coefficients is known as Floquet theory. We briefly develop
the theory in Section 7.10.1. In the following exercises we illustrate the behavior of solutions of
such equations. Definitely do Exercise 13; it is both interesting and instructive. The other two
exercises are optional. Although they are a little technical, in them you can derive the behavior of
solutions analytically, without recourse to the computer.

13. Write Mathieu’s equation (1.5b)

x′′ + (κ+ 2ε cos t)x = 0 (3.46)

as a first-order system; assuming κ = 1/4, solve the IVP numerically for 0 ≤
t ≤ 1000, say with ε = 0.05. (Exact initial conditions don’t matter much,
provided x(0) and x′(0) don’t both vanish.)

Discussion: It is easy to imagine that the effect of the small oscillatory coefficient
2ε cos t ought to average to zero, so that solutions of (3.46) ought to roughly
imitate the periodic behavior that results from setting ε = 0 in the equation.
This can happen, but not for the parameters proposed here. Equation (3.46)
exhibits a form of resonance, which is discussed in the Pearls (cf. Figure 3.2
below).

If you are curious, you may experiment by adding friction (include an addi-
tional term, βx′) and “detuning” the equation (change κ slightly away from 1/4).
You will find that resonant growth persists under sufficiently small perturbations
of either type. We will derive this behavior analytically in Exercise 7.16.

Incidentally, (3.46) also exhibits resonant growth near κ = 0 and κ = 1,
although in the former case, ε must exceed a threshold, and in the latter case,
the phenomenon is less robust.

It is interesting to compare this behavior of (3.46) with a pendulum vibrated at
its base, Exercise 1.12. Two minor differences are that the pendulum equation
was nonlinear and friction was included. Far more significantly, however, the
basic behavior in the two equations is reversed—in (3.46), the time-periodic
perturbation was small and caused exponential growth, while in (1.53), it was
large and its effect was stabilizing.

14. Introduction: Meissner’s equation, a more tractable analogue of Mathieu’s equation, is

x′′ + [κ+ εS(t)]x = 0, (3.47)



3.5. Exercises 103

where S(t) is the 2π-periodic square wave17 such that

S(t) =

{
1 for 0 < t < π

−1 for π < t < 2π.

Show that if κ = 0, then solutions of (3.47) are bounded if

| cosh(π√ε) cos(π
√
ε)| < 1 (3.48)

and grow exponentially if this quantity exceeds 1.

Hint: Rewrite (3.47), assuming κ = 0, as a first-order system. On intervals of
length π, this system may be viewed as a constant-coefficient linear system:

x′ = A+x, for 2nπ < t < (2n+ 1)π
x′ = A−x, for (2n+ 1)π < t < (2n+ 2)π

(3.49)

where n is an arbitrary integer and

A± =

[
0 1
∓ε 0

]
.

Argue that for every positive integer n,

x(2nπ) = Πn x(0), where Π = (eπA−) · (eπA+). (3.50)

Solutions will be bounded if the eigenvalues of Π satisfy |λ(Π)| = 1 and are dis-
tinct, while (most) solutions will grow if one of the eigenvalues satisfies |λ(Π)| >
1.

To determine the eigenvalues of Π, calculate etA+ (cf. Exercise 2.5(e)) and
etA− . Then show that detΠ = 1 and trΠ = 2 cosh(π

√
ε) cos(π

√
ε). Obtain the

claimed result from examining the quadratic formula for the eigenvalues of Π.

Incidentally, near ε = 0, (3.48) is satisfied if 0 < ε < 0.356. For large ε, (3.48)
is violated except for small intervals around the zeros of cos(π

√
ε).

15. Show that if κ = 1/4, solutions of (3.47) grow exponentially if ε �= 0 is small.

Hint: On intervals of length π, (3.47) may written in the form (3.49) with

A± =

[
0 1

−κ2
± 0

]

where κ± =
√

1/4± ε. As above, the behavior of solutions depends on the
eigenvalues of Π = (eπA−) · (eπA+). Show that detΠ = 1 and

trΠ = 2 cos(κ+π) cos(κ−π)−
(
κ+

κ−
+

κ−
κ+

)
sin(κ+π) sin(κ−π).

17This system has discontinuous coefficients, but it is a case in which the discontinuities are not
a problem (cf. Section 3.6.1).
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Substituting18 κ± = 1/2±ε−ε2+O(ε3), perform the somewhat messy calculation
to deduce that trΠ = −2−16ε2+O(ε4). Apply the quadratic formula to conclude
that for small nonzero ε, the absolute value of one of the eigenvalues of Π must
be greater than unity.

3.5.3 PHD Exercises

16. Prove Theorem 3.4.1.

Remark: As we mentioned in the text, Theorem 3.4.1 can be proved using ideas
from Chapter 4, and that proof is perhaps more in the mainstream of this book
than the one outlined below. Nevertheless, the following proof has the merit of
introducing a number of interesting and useful ideas from analysis.

Hint: The linear IVP (3.41) is equivalent to the integral equation

x(t) =

∫ t

0

A(s)x(s) ds+ h(t), T1 < t < T2, (3.51)

where

h(t) = b+

∫ t

0

g(s) ds.

If T1 or T2 is large, (3.51) need not define a contraction on C([T1, T2],R
d). Nev-

ertheless, let us show that Picard iteration converges uniformly for t ∈ I, where
I is an arbitrary compact subinterval of (T1, T2). To this end, we rewrite (3.51)
more symbolically as

x = Lx+ h, (3.52)

where L is the linear operator L : C(I,Rd) → C(I,Rd) defined by

[Lx](t) =

∫ t

0

A(s)x(s) ds.

To begin Picard iteration on (3.52), let x0 = h, and to continue, let xn+1 =
Lxn + h. Check that

xn = [I + L+ L2 + . . .+ Ln]h.

Now show that the terms on the RHS of this equation may be written as iterated
integrals: for t ≥ 0, we have

[Lk h](t) =

∫ t

0

∫ s1

0

. . .

∫ sk−1

0

A(s1)A(s2) . . . A(sk)h(sk) dskdsk−1 . . . ds1.

Let K = maxt∈I ‖A(t)‖ and let ‖h‖ = maxt∈I |h|. Estimating maxima in the
above equation, conclude that

| [Lk h](t)| ≤ Kk‖h‖
∫ t

0

∫ s1

0

. . .

∫ sk−1

0

dskdsk−1 . . . ds1 =
Kktk

k!
‖h‖.

18The letter O is mnemonic for order ; thus O(ε3) is shorthand for omitted terms that are of
order ε3 or higher. A more serious usage of this notation is introduced in Section 4.6.4.
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Combining this estimate with an analogous estimate for t ≤ 0 gives ‖Lk h‖ ≤
(Kk |I|k/k!) ‖h‖, where |I| denotes the length of I. With this estimate you
can show that Picard iteration for (3.51) converges as claimed, which establishes
existence.

Uniqueness follows from an application of Gronwall’s lemma, as in the proof
of Theorem 3.3.4.

17. Formulate and prove generalizations of the existence result Theorem 3.2.1 and
the uniqueness result Theorem 3.3.4 to the nonautonomous problem (3.40),
assuming that G is locally Lipschitz in both x and t.

Hint: Recall the transformation of x′ = G(x, t) to an autonomous system in
d+ 1 variables, as described in the Pearls of Chapter 1.

Discussion: Both existence and uniqueness theorems for (3.40) can be derived
under a weaker hypothesis; it suffices if G is uniformly locally Lipschitz in x and
merely continuous in t. For the record, if G(x, t) is defined on U × I, where
U ⊂ R

d is open and I ⊂ R is an open interval, we say that G is uniformly locally
Lipschitz in x if for every (x0, t0) ∈ U × I, there exist a neighborhood V × J of
(x0, t0) and a constant L such that

(∀x1,x2 ∈ V) (∀t ∈ J ) |G(x1, t)−G(x2, t)| ≤ L|x1 − x2|. (3.53)

“Uniformly” refers to the fact that the same Lipschitz constant works for all t
in the neighborhood J . The generalizations with this weaker hypothesis are not
especially important in themselves, but proving them offers practice with proofs
that has some value.

18. (a) Find the general solution of the equations

tx′ ± x = 0

for t > 0.

Discussion: This may be solved either as a first-order linear equation or
as a separable equation. Note that writing this equation in standard form
yields x′ = ±x/t, where the RHS is singular at t = 0. The remainder of this
exercise illustrates some nasty consequences of such a singularity.

(b) Deduce from your solution in Part (a) that the IVP

tx′ + x = 0, x(0) = b

has no solutions.

(c) Deduce from your solution in Part (a) that the IVP

tx′ − x = 0, x(0) = b

has no solutions if b �= 0 and has infinitely many solutions if b = 0.
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19. Introduction: Here is a physical situation that relates to our nonuniqueness example, (3.4).
Consider a partially filled bucket that has a hole in its bottom. Under certain simplifying
assumptions, the height h(t) of the water in the bucket satisfies

dh

dt
= −C

√
h.

We refer to Section 4.2 of [44] for details, but briefly, the derivation is (i) dh/dt is proportional
to the speed v with which the water emerges from the bucket, and (ii) if friction is neglected,
the kinetic energy (essentially, this means v2) of the emerging water is proportional to the
loss of potential energy (i.e., h). Without loss of generality, we may scale time to make C = 1
in this equation.

(a) Apply separability to solve the IVP

dx

dt
= −√

x, x(0) = b, (3.54)

where b > 0, for 0 ≤ t < ∞.

Hint: Observe that after some finite time, x(t) reaches zero. On physical
grounds one knows that x(t) ≡ 0 for all later times; this continuation is C1

and satisfies the equation.

(b) Argue that the solution of (3.54) is unique.

Hint: Equation (3.54) is meaningful only for nonnegative functions. Show
that if x(y) and y(t) are both C1 nonnegative solutions of (3.54), then

d

dt
[x(t)− y(t)]2 = 2[x(t)− y(t)] [−

√
x(t) +

√
y(t)].

Argue that the RHS of this equation is nonpositive by considering x ≤ y and
y ≤ x as two separate cases. Conclude that [x(t)−y(t)]2 ≤ [x(0)−y(0)]2 = 0.

Remark: Reinterpreting our nonuniqueness example from Section 1 in the
present context, the IVP (in forward time) for (3.4) may be articulated as,
“Suppose you come into the room and see that the bucket is empty; how full
was it an hour ago?”

20. Construct a continuous function on R that is not Lipschitz over any open
interval.

Hint: This exercise is based on imitating (3.55) in the Pearls. Let {qk} be an
enumeration of the rational numbers. Form an infinite sum of terms involving√|x− qk| with a smooth denominator that keeps each term bounded.

3.6 Pearls of Wisdom

3.6.1 Miscellaneous

Although we have assumed Lipschitz continuity of F in proving the existence of
solutions of x′ = F(x), this is not necessary. In fact, mere continuity of F suffices.
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This is proved, for example, in Birkhoff–Rota [9], Chapter 6, Section 14. (Regarding
uniqueness, as we saw in Section 3.1, continuity alone is not sufficient.)

An ODE in which the RHS is not continuous must be approached with caution,
but it may nevertheless behave perfectly decently. We illustrate this claim with scalar
ODEs. Consider

f1(x) =

{ −1 if x > 0
−2 if x ≤ 0,

f2(x) =

{ −1 if x > 0
2 if x ≤ 0.

It is natural to call the continuous piecewise differentiable function

x(t) =

{
1− t if t ≤ 1

−2(t− 1) if t > 1

a solution of the ODE x′ = f1(x) with initial condition x(0) = 1 even though x is
not differentiable at t = 1, where it crosses zero; moreover, this generalized solution
is unique. By contrast, there is no way to continue the solution of x′ = f2(x) with
initial condition x(0) = 1 past t = 1.

Interpreting a discontinuous ODE is simpler if the discontinuous behavior in a
nonautonomous equation x′ = G(x, t) is isolated in the t-dependence of G. For
instance, in (3.47), near the discontinuity of S(t) at t = π, the obvious solution is
obtained by solving the equation x′′+(κ+ε)x = 0 for t ≤ π and then using x(π), x′(π),
i.e., this solution at the final time, as initial conditions to solve x′′ +(κ− ε)x = 0 for
the next range of t, etc.

Let’s construct a more dramatic example than |x| that a Lipschitz function need
not be continuously differentiable. The starting point in the example is the function
|x|/√1 + x2, which is Lipschitz continuous with constant 1 and fails to be differen-
tiable at x = 0; we include the denominator so that the function is bounded over all
x. Let {qk} be an enumeration of the rational numbers and let

F (x) =
∞∑

k=1

k−2 |x− qk|√
1 + (x− qk)2

. (3.55)

Then F is Lipschitz continuous (with Lipschitz constant L =
∑∞

1 k−2) but is not
differentiable on any open interval.

Let’s compare use of the contraction-mapping formalism to Picard iteration in
proving Theorem 3.2.1. The latter has two advantages: (i) It avoids the abstract-
ness of the contraction-mapping principle. (ii) The iteration may converge over a
larger interval of t than what’s needed to guarantee that the operator T in (3.23) is
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a contraction (cf. Exercise 16). Two points favoring the former:19 (i) In our view,
the contraction-mapping formalism actually clarifies the proof of Theorem 3.2.1 by
guiding you to exactly what is needed to guarantee that the iteration may be con-
tinued indefinitely and that it converges, i.e., Claims 1 and 2 in Section 3.2.5. (ii) In
general, determining the exact range of t for which Picard iteration converges is a
nightmarish problem; it is simpler to estimate by other means the range of t in which
the IVP actually has a solution, which is the approach taken in Chapter 4.

3.6.2 Resonance

If an ODE with oscillatory solutions is subjected to a periodic perturbation, the
perturbation may have a large effect over time if its frequency matches the natural
frequency of oscillations of the ODE. This phenomenon is called resonance. We saw
an example of resonance in Exercise 1.13. In that problem, the periodic disturbance
occurred in an inhomogeneous term not involving the dependent variable x. In
equation (3.46), which also exhibits resonance, the periodic disturbance occurs in a
coefficient of x. This situation is known as parametric resonance, a term that comes
from regarding the coefficients in a linear ODE as “parameters.” (Of course, this
viewpoint is slightly oxymoronic, since parameters are supposed to be constant, but
hey, we didn’t make up the term.)

Physically, (3.46) may be viewed as a spring–mass system in which the spring
constant varies with time. Figure 3.2 illustrates how, if appropriately timed, such
a perturbation can amplify oscillations of the system. Every child who can pump a
swing20 understands this at a gut level.

19These points apply to the context of Theorem 3.2.1. In more general contexts, such as stochastic
differential equations, Picard iteration may be the preferable method.

20A minor clarification: pumping a swing is an example of parametric resonance in a nonlinear
problem: a pendulum.
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Figure 3.2: Unperturbed (ε = 0, shown in green) and perturbed (ε = 0.05, shown
in black) solutions of the Mathieu equation (3.46) starting from the same initial
conditions. (Cf. Exercise 13.) Resonance occurs in the perturbed system because the
spring is weaker when x moves away from equilibrium and stronger when x is pulled
back toward equilibrium.



Chapter 4

Nonlinear Systems: Global Theory

Theorem 3.2.1 guarantees that a solution to the initial value problem exists for what
might be an extremely short time. Typically, the ODEs that arise in physical ap-
plications possess solutions for much longer times than can be deduced with the
contraction-mapping principle, and in this chapter we introduce methods for demon-
strating this behavior. The technique is based on extending a short-time solution
obtained from Theorem 3.2.1. The main tool for such extensions, Theorem 4.1.2, is
proved in Section 4.1. In Section 4.2, this theorem is used to derive two theoretical
results that guarantee global existence.

In Sections 4.3 and 4.4 we introduce techniques, including nullclines, for verifying
the hypotheses of these global existence theorems, and we illustrate the techniques
by applying them to specific ODEs drawn from various fields. These equations will
reoccur frequently in later chapters.

We regard the introduction of meaningful applications to illustrate the theory as
one of the attractive features of this book. In the present chapter we consider the
ODEs, without motivation, from a purely mathematical point of view; this analysis
completes the theoretical treatment of IVPs begun in Chapters 2 and 3. (In Chapter 5
we introduce models in their original form, including interpretation of the variables
and underlying physical assumptions. Central to that chapter, we study scaling as a
systematic technique to simplify the original equations to forms more convenient for
analysis, as considered in the present chapter.)

In the last two sections of this chapter we show that the solution of an IVP
depends continuously (Section 4.5) and even differentiably (Section 4.6) on its initial
conditions. These results are a fundamental part of the theory.

An appendix is devoted to Euler’s method, the simplest numerical approximation
for solutions of an IVP. In particular, we prove that as the step size tends to zero, the

© Springer Science+Business Media New York 2016
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approximations converge to the true solution. This proof closely mimics the proof in
Section 4.5 that the solution of an IVP depends continuously on its initial data.

4.1 The Maximal Interval of Existence

Our first result asserts that there is a maximal interval for which the solution of an
IVP exists, a sort of “gold standard” for solutions.

Proposition 4.1.1. Let F : U → R
d be locally Lipschitz on U ⊂ R

d. Given b ∈ U ,
there is a solution x∗ : (−α∗, β∗) → U of the IVP

x′ = F(x), x(0) = b (4.1)

that is maximal in the following sense: if another function x solves (4.1) for t in
some open interval I, then

(i) I ⊂ (−α∗, β∗) and (ii) x(t) = x∗(t) for t ∈ I. (4.2)

Remark: It often happens that either α∗ or β∗, or both, equals infinity. Note that
the maximal interval of existence is always open, even if α∗ or β∗ is finite.

Proof. We focus only on β∗ and t ≥ 0, leaving the analogous treatment of α∗ and
t ≤ 0 for the dedicated reader. Let

β∗ = sup {β : IVP (4.1) is solvable for 0 ≤ t < β}.

Of course, by Theorem 3.2.1, β∗ > 0. For n = 1, 2, . . ., choose solutions xn of (4.1)
that exist for times t ∈ [0, βn), where βn → β∗, finite or infinite. To define x∗, given
t ∈ [0, β∗) choose any n such that βn > t and let

x∗(t) = xn(t). (4.3)

By Theorem 3.3.4, the uniqueness result, the definition (4.3) does not depend on the
choice of n, and moreover, x∗ is a solution of (4.1). It is readily checked (do so!)
that every solution x of (4.1) on some interval I satisfies properties (i) and (ii) of
(4.2).

Although it may not be apparent, the following result is extremely useful in
extending solutions to larger times. Of course there is an analogous result for negative
time.

Theorem 4.1.2. Suppose, regarding the maximal solution x∗ : (−α∗, β∗) → R
d, that

β∗ < ∞. Then for every compact set K ⊂ U , there is an ε > 0 such that x∗(t) /∈ K
for β∗ − ε < t < β∗.
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Proof. By Corollary 3.3.3, there is a compact set K′ and a δ > 0 such that for all
x ∈ K, the closed ball B(x, δ) is contained in K′. Let M = maxK′ |F(x)|, let L be a
Lipschitz constant for F on K′, and choose ε < min{δ/M, 1/L}.

We claim that x∗(t) /∈ K if t > β∗ − ε. Suppose to the contrary that there is a
time t0 > β∗ − ε such that x∗(t0) ∈ K. It follows from Corollary 3.2.8 that the IVP

y′ = F(y), y(t0) = x∗(t0)

has a solution on (t0−ε, t0+ε). Applying Lemma 3.2.9, we conclude that the original
solution x∗ may be defined on [0, t0 + ε). But t0 + ε > β∗, which contradicts the
hypothesis that β∗ was maximal.

4.2 Two Sufficient Conditions for Global Existence

4.2.1 Linear Growth of the RHS

Our first result1 gives existence for all times, positive and negative.

Theorem 4.2.1. If F : Rd → R
d is locally Lipschitz and if there exist nonnegative

constants B,K such that

|F(x)| ≤ K|x|+ B, x ∈ R
d, (4.4)

then the solution x(t) of (4.1) exists for all time, −∞ < t < ∞, and moreover,

|x(t)| ≤ |b|eK|t| +
B

K
(eK|t| − 1), −∞ < t < ∞. (4.5)

Proof. This proof will use the generalization of Gronwall’s lemma given in Exer-
cise 3.8(a). We consider only forward time, t ≥ 0; negative time can be handled with
trivial modifications of the argument. Suppose (4.1) has a solution for t ∈ [0, β),
which of course satisfies the integral equation

x(t) = b+

∫ t

0

F(x(s)) ds, 0 ≤ t < β.

Defining g(t) = |x(t)|, we deduce that

g(t) ≤ |b|+
∫ t

0

[Kg(s) + B] ds, 0 ≤ t < β.

Hence by the generalized Gronwall lemma, x satisfies the estimate (4.5) for its entire
domain of existence, 0 ≤ t < β.

1We alert you one final time: the same symbol x may simply denote a point in R
d (as in (4.4))

or may denote a vector-valued function of time (as in (4.5)).
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Now let x∗, β∗ be the maximal solution of (4.1), and suppose β∗ < ∞. According
to (4.5), x∗(t) belongs to the compact ball

K = {z ∈ R
d : |z| ≤ |b|eKβ∗ +

B

K
(eKβ∗ − 1)}

for all t ∈ [0, β∗). This estimate contradicts Theorem 4.1.2, so we must have β∗
infinite.

This result may be easily extended to nonautonomous equations that satisfy a
linear-growth estimate. (See Exercise 5(a).)

4.2.2 Trapping Regions2

Our second result, which gives global existence in forward time only, is more widely
applicable but also requires more explanation.

(a) An introductory example

Rewriting Duffing’s equation (1.28) as a first-order system, we obtain

x′ = y
y′ = −βy + x− x3.

(4.6)

Let us repeat the calculation from Section 1.4.1 that the energy

E(x, y) = y2/2− x2/2 + x4/4 (4.7)

decreases along trajectories of (4.6). Indeed, by the chain rule,

dE

dt
=

∂E

∂x

dx

dt
+

∂E

∂y

dy

dt
= 〈∇E,F〉,

where 〈·, ·〉 is the inner product on R
2. Obtaining ∇E from (4.7) and F from (4.6),

we calculate that
〈∇E,F〉 = −βy2 ≤ 0. (4.8)

For a constant E0, consider the sublevel set

K = {(x, y) ∈ R
2 : E(x, y) ≤ E0}, (4.9)

2Trapping regions represent a first hint of a shift toward more geometric thinking in this book.
In this connection, you may be amused by the aphorism, “Geometry is the art of reasoning well from
badly drawn figures.” The oldest citation that we can give for this is from an article by Poincaré in
1895 [64], but apparently the quotation was old even at that time, for Poincaré introduces it with
the remark, “It is worth repeating . . . .”
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Figure 4.1: (a) The level set E(x, y) = 1, where the energy E(x, y) is given by
(4.7), and the flow direction for Duffing’s equation (4.6) at selected points on the
curve, assuming β = 1. The flow is strictly inward except for y = 0, where it is
tangential. (b) Hypothetical escaping trajectory for the Duffing system. Were such a
trajectory possible, it would have to cross the level set tangentially at one of the two
points where the flow is not strictly inward (i.e., along the x-axis).

whose boundary is the level set

∂K = {(x, y) ∈ R
2 : E(x, y) = E0}. (4.10)

Provided3 that E0 > 0, formula (4.10) defines a smooth closed curve (see Figure 4.1).
Now ∇E is normal to the level set; since ∇E points in the direction of increasing E,
the inward normal is given by N = −∇E. Thus, we may rewrite (4.8) as

〈Nx,F(x)〉 ≥ 0 (x ∈ ∂K).

In words, the direction of the flow of the ODE at ∂K is inward, or at worst tangential
or zero.

As we now show, if an inequality of this type holds on the boundary of a region,
then the solution of the IVP (for positive times) is trapped inside that region.

(b) Statement and discussion of the result

Consider the IVP for an ODE x′ = F(x), where F is defined on an open subset U
of Rd. Let K be a closed subset of U whose boundary is a C1 surface (see Section B.3.3
for definitions), and for x ∈ ∂K, let Nx be an inward normal to ∂K at x. We shall

3The topology of the set (4.9) changes if E0 < 0. For simplicity, we sidestep this complication.
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call K a trapping region4 for x′ = F(x) if

(∀x ∈ ∂K) 〈Nx,F(x)〉 ≥ 0. (4.11)

Theorem 4.2.2. Suppose that F : U → R
d is C1 and that K is a compact trapping

region for x′ = F(x). If the initial data b lies in the interior of K, then the solution
x to equation (4.1) exists for all positive time and moreover lies in the interior of K.

If the inequality (4.11) is replaced by strict inequality,

(∀x ∈ ∂K) 〈Nx,F(x)〉 > 0, (4.12)

only a few lines suffice5 to prove this result:

Proof of Theorem 4.2.2 assuming (4.12). By Theorem 4.1.2, the solution may cease
to exist only if it first leaves K. If, coming from inside K, the trajectory x(t) reaches a
point on ∂K, then at that point the (outward) normal velocity must be nonnegative,
and this contradicts the trapping hypothesis (4.12).

If we have only the weaker hypothesis (4.11), our proof must rule out the pos-
sibility illustrated in Figure 4.1(b) for Duffing’s equation (4.6): could a trajectory
escape tangentially from K at a point where the inner product (4.8) vanishes?6 This
proof is somewhat technical and does not contain fundamental new ideas.7 You may
safely postpone reading it, but since the full result is useful, we will feel free to invoke
it below in studying specific examples.

(c) Proof of Theorem 4.2.2. By Theorem 4.1.2, the solution may cease to exist
only if it first leaves K. Let

t∗ = sup{t : (∀s ≤ t) x(s) ∈ Int K}. (4.13)

4Some authors reserve the word “region” to describe an open set. Note that we are not following
that convention here.

5If you feel that these remarks are too sketchy to constitute a real proof, we urge you to revisit
them after reading the proof of the full result.

6For Duffing’s equation, we can argue that such an escape is not possible, since the function
E(x, y) is nonincreasing along orbits. However, this argument uses the fact that E(x, y) is defined
in a neighborhood of ∂K, while we want to prove the theorem using only information derived from
the fact that (4.11) holds on ∂K.

7Indeed, the argument is only a minor extension of what you already were asked to do in
Exercise 1.16.
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V

Figure 4.2: Schematic of a trapping region K and the data of (4.14). Remark:
Note that the vector field F has an equilibrium point inside the trapping region; in
two dimensions, this cannot be avoided if K is simply connected.

By the local existence theorem, t∗ > 0. We suppose t∗ < ∞ and look for a con-
tradiction. Of course at the supremum (4.13), x(t∗) ∈ ∂K. For brevity we write
x∗ = x(t∗).

Since ∂K is a C1 surface, near the hypothetical exit point x∗, one of the coordi-
nates, say x1, may be expressed as a function of the others. That is, there exist a
neighborhood V ⊂ U of x∗ and a function ψ : V → R, independent of x1, such that

∂K ∩ V = {x ∈ V : x1 = ψ(x̃)}, (4.14)

where x̃ is shorthand for (x2, . . . , xd). Moreover, reversing signs of both x1 and ψ if
necessary, we may assume that x1 > ψ(x̃) on the interior of K, or N = (1,−∇̃ψ) is
an inward normal along ∂K. (Cf. Figure 4.2.)

By continuity, there is an interval [t∗ − δ, t∗] such that x(t) ∈ V for t in this
interval. Let

g(t) = x1(t)− ψ(x̃(t)), t∗ − δ ≤ t ≤ t∗. (4.15)

Then g(t) > 0 for t∗ − δ ≤ t < t∗, while g(t∗) = 0. On the other hand, we claim that

g′(t) ≥ −Kg(t), t∗ − δ ≤ t ≤ t∗ (4.16)

for some constant K. Given (4.16), it follows that (d/dt)[eKtg] ≥ 0, so

eKt∗g(t∗) ≥ eK(t∗−δ)g(t∗ − δ).

But g(t∗ − δ) > 0, and hence this inequality implies that g(t∗) > 0, which is a
contradiction that will prove Theorem 4.2.2.

It remains to prove the claim, (4.16). Applying the chain rule to (4.15), we
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calculate that g′(t) = G(x(t)), where

G(x) = F1(x)−
d∑

j=2

∂ψ

∂xj

(x̃)Fj(x). (4.17)

This function need not be C1, because ψ may not have the requisite smoothness,
but it is continuously differentiable with respect to the first component, x1. Also, if
x ∈ ∂K, then

G(x) = 〈Nx,F(x)〉 ≥ 0. (4.18)

To estimate G at a general point (x1, x̃) in K∩V , we add and subtract G evaluated
at a nearby point (ψ(x̃), x̃) on ∂K:

G(x1, x̃) = [G(x1, x̃)−G(ψ(x̃), x̃)] +G(ψ(x̃), x̃). (4.19)

Invoking (4.18) to drop the second term, we have

G(x1, x̃) ≥ G(x1, x̃)−G(ψ(x̃), x̃). (4.20)

We apply the fundamental theorem of calculus to rewrite the RHS of (4.20) as

G(x1, x̃)−G(ψ(x̃), x̃) =

∫ x1

ψ(x̃)

∂G

∂x1

(s, x̃) ds.

Since ∂G/∂x1 is continuous, by compactness it is bounded on K ∩ V , say by the
constant K. Therefore,

G(x1, x̃)−G(ψ(x̃), x̃) ≥ −K[x1 − ψ(x̃)],

which we may substitute into the RHS of (4.20). Thus,

g′(t) = G(x(t)) ≥ −K[x1(t)− ψ(x̃(t))] = −Kg(t),

as claimed in (4.16). The proof of Theorem 4.2.2 is now complete.

(d) Various generalizations of the theorem

Theorem 4.2.2 may be generalized to trapping regions whose boundary is only
piecewise smooth, which provides a much more versatile tool. Here is such a result
for two-dimensional problems, which we ask you to prove in Exercise 2. Note that
the trapping condition (4.11) need not be explicitly imposed at corner points8 of the
boundary; information derived from continuity suffices to handle the corners.

8If this term is unclear, see Section B.3.3(b), where the distinction between regular points and
corner points on the boundary is defined.
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Theorem 4.2.3. Suppose that F : U → R
2 is C1 on a domain U ⊂ R

2 and that
K ⊂ U is a compact region with a piecewise smooth boundary such that (4.11) holds
at all regular points of ∂K. If the initial data b lies in the interior of K, then
the solution x to equation (4.1) exists for all positive time and moreover lies in the
interior of K.

Of course analogous results hold in dimensions higher than two, but it is rather
tedious to deal carefully with all possible cases, and not much is learned in doing so.
We do not formulate any such generalization.

With a minor revision of the proof of Theorem 4.2.2, you may show that even
if a trapping region is not compact, the following conclusion still holds. (Check this
result! We will use it below.)

Corollary 4.2.4. Suppose that F : U → R
d is C1 and that K is a trapping region

for x′ = F(x). If the initial data b lies in the interior of K, then the solution x to
equation (4.1) lies in the interior of K for as long as this solution continues to exist.

Two further generalizations: (i) If the initial data b of an IVP belongs to
the boundary of a compact trapping region, global existence may still be deduced.
(ii) Theorem 4.2.2 may be extended to nonautonomous equations. In practice, nei-
ther of these results turns out to be terribly useful, and we do not pursue them.

4.3 Level Sets and Trapping Regions

4.3.1 Introduction via Duffing’s Equation

In Section 4.2.2(a), we observed that sublevel sets (4.9) of the energy function (4.7)
are trapping regions for Duffing’s equation (4.6). This fact provides an easy global
existence proof for the IVP for this equation. For every E0, the set (4.9) is a compact
trapping region. Given initial conditions b ∈ R

2, choose E0 large enough that b ∈ K.
By invoking Theorem 4.2.2, we obtain existence for all positive time.

For many other ODEs as well, level sets of some auxiliary function(s) may be
used to construct trapping regions; we present two such examples.

4.3.2 The Chemostat

The chemostat is described by the scaled ODEs

x′ =
y

y + 1
x− ρx,

y′ = − y

y + 1
x− ρ(y − σ),

(4.21)
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where ρ, σ are positive constants. The variables x and y are concentrations, so they
are nonnegative. The linear terms −ρx and −ρy represent decay, and the constant
term ρσ in the second equation represents replenishment of y. The assumptions
leading to the nonlinear terms will be explained in Section 5.5. Even without un-
derstanding the basis for these terms, we can see that they tend to increase x at
the expense of y. Since these terms differ only by a minus sign, we may add the
equations and deduce a third ODE

x′ + y′ = −ρ(x+ y) + ρσ (4.22)

that will be useful in analyzing global existence.

Let’s seek a triangular trapping region of the form

K = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, x+ y ≤ A}, (4.23)

where A is a constant. Along the sloping face of ∂K, the inward normal is given by
N = (−1,−1), and we observe from (4.22) that 〈N,F〉 = −x′ − y′ = ρ(A − σ). In
particular, provided A ≥ σ, we have 〈N,F〉 ≥ 0 along this face, which shows that
flow is inward here. Regarding the other two sides, you may check that the flow of
(4.21) is inward along the x-axis and is tangential along the y-axis. Therefore, K is
a compact trapping region.

For every initial condition b in the first quadrant, the constant A in (4.23) may
be chosen large enough that b belongs to the trapping region K. Therefore, we may
invoke Theorem 4.2.3 to obtain global existence for the IVP for (4.21).

The lesson to take away from this example is that we have used level sets of the
linear function L(x, y) = x+ y in constructing trapping regions for (4.21).

4.3.3 The Torqued Pendulum and ODEs on Manifolds9

Consider a pendulum, as illustrated in Figure 4.3, that is subjected to a “torque” μ,
which tends to twist the unperturbed pendulum away from its stable, straight-down
equilibrium. If friction is modeled by linear damping, then after appropriate scaling,

9Although we use the general term “manifold” here, in fact we need only a couple of special
cases (like the circle S1) with which you are probably already familiar. A manifold is a topological
space in which each point has a neighborhood homeomorphic to a ball in Euclidean space, subject
to some compatibility conditions. If you want precise definitions, you may find these in Section 2.7
of [63] or look online, but we expect that most readers will not need to consult other sources to
read the present section.
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this problem may be described by the first-order system10

x′ = y,
y′ = − sin x− βy + μ,

(4.24)

where β > 0 and μ are constants. Without loss of generality, it suffices to consider
the case μ ≥ 0. (Why?)

We seek a trapping region derived from the total energy, kinetic plus potential,
of the pendulum, which is given by

E(x, y) = y2/2− cos x. (4.25)

Thus, given a constant E0, we consider the sublevel set

K = {(x, y) ∈ R
2 : y2/2− cosx ≤ E0}. (4.26)

Substitution into (4.24) yields

dE

dt
= 〈∇E,F〉 = −βy2 + μy.

In general, dE/dt may have either sign, but if |y| > μ/β, then dE/dt = −βy(y−μ/β)
is negative. At the boundary of (4.26), y = ±√2(E0 + cos x), so |y| > μ/β, provided
E0 is sufficiently large. Doing the calculation, we see that (4.26) is a trapping region
for (4.24), provided E0 ≥ (μ/β)2/2 + 1. Increasing E0 if necessary, we may also
assume that K contains any proposed initial data.

However, our attempt to apply Theorem 4.2.2 is thwarted by the fact that K is
not compact (see Figure 4.4a). In principle, a solution of (4.24) might stay inside K
while x marches off to infinity in finite time. In fact, this does not happen: the RHS
of (4.24) satisfies the hypothesis (4.4) of Theorem 4.2.1, so the solution exists for all
t ∈ R.

The trapping-region existence proof may be revived with the addition of some
geometry. Note that the RHS of (4.24) is 2π-periodic in x. Therefore, rather than
considering (4.24) as an ODE on the Euclidean space R×R, we may regard it as an
ODE on the cylinder11 S1 ×R, where S1 = R/2πZ is the circle. If K is considered a
subset of S1 × R, then this set is compact (see Figure 4.4b). Moreover, as you will
show in Exercise 6, Theorem 4.2.2 generalizes to trapping regions on S1 × R, and
thus we may obtain a different, in our view more elegant, proof of global existence
in forward time for (4.24). As an added bonus, using this approach, you will find

10Incidentally, the equations (4.24) also describe the behavior of an electrical device known as
the Josephson junction. See Strogatz [81], Section 4.6, for details.

11You have already encountered an equation on a cylinder: in using polar coordinates to study
an ODE in the plane, you obtain an ODE in which r, θ belong to the manifold (0,∞)× S1.
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x

"torque" μ

Figure 4.3: Schematic diagram of the torqued pendulum.

π42 π
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x
π π−4 −2

y = 0

a b

Figure 4.4: Sketch of the trapping region K for the torqued pendulum, (4.26). In
Panel (a), K is the unbounded region that lies between the two curves. In Panel (b),
the x, y-plane is wrapped around a cylinder, so that values of x differing by 2π are
identified.
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that the solution grows at worst linearly as t → ∞. This conclusion is stronger than
what can be deduced using Theorem 4.2.1.

In this book we do not attempt to extend Theorem 4.2.2 to ODEs on general
manifolds, even though given the right technical background, this is not difficult.
Rather, we consider ODEs only on two specific manifolds, the cylinder S1×R and the
torus T2 = S1 ×S1. For these two special cases, the generalization of Theorem 4.2.2
may be proved with ad hoc arguments using (multivalued) Euclidean coordinates,
as in Exercise 6.

4.4 Nullclines and Trapping Regions

4.4.1 Nullclines in the Chemostat

The term nullcline refers to a curve12 where one of the components of the veloc-
ity vector vanishes. For example, consider the chemostat (4.21). We have that x′

vanishes if
x = 0 or y =

ρ

1− ρ
, (4.27)

while y′ vanishes if

x = −ρ
(y − σ)(y + 1)

y
. (4.28)

The portions of both curves that lie in the first quadrant are graphed in Figure 4.5, in
brown for the x-nullclines (4.27) and in cyan13 for the y-nullcline (4.28). Intersections
of the nullclines at

(x, y) = (0, σ) and

(
σ − ρ

1− ρ
,

ρ

1− ρ

)
(4.29)

are equilibrium solutions of the ODE. In the figure we show the more interesting
case, for which the second equilibrium lies in the first quadrant, i.e., parameters such
that ρ < 1 and σ > ρ/(1− ρ).

To extract information from the nullclines with minimal pain, it is helpful to
proceed in the three stages represented in Figure 4.5. Whenever you need to graph
nullclines, we urge you to follow this three-stage procedure. Being systematic in this
way reduces (slightly) the opportunities for making careless mistakes, of which there
are plenty.

12“Curve” is the appropriate word for two-dimensional systems, which is the usual context in
which nullclines are studied. For higher-dimensional systems, one should say the “set where . . . ”
or “surface where . . . .”

13Whenever we plot nullclines, we will follow this color convention.
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• In Figure 4.5(a), vertical lines are drawn along the x-nullclines (4.27) because
the flow is vertical there, i.e., x′ = 0. Similarly, horizontal lines have been
drawn along the y-nullcline (4.28).

• Figure 4.5(b) augments the previous figure by specifying along the x-nullclines
whether the flow is up or down; and along the y-nullcline whether the flow
is to the right or left. Here is the thinking behind the construction of this
figure. The orientation of the flow along (4.27) changes from up to down14

whenever this curve crosses a nullcline of the other family. Alternatively put,
on every segment of (4.27) that does not intersect (4.28), the orientation of the
flow does not change. It may be seen from (4.21b) that y′ is positive at the
origin. As shown in the figure, the flow remains upward as one moves away
from the origin until points where (4.28) is crossed, causing the direction to
reverse itself. Similarly, for the other nullcline, start by observing from (4.21a)
that far out on (4.28), near the x-axis, x′ is negative. Then the other horizontal
arrows along (4.28) in Figure 4.5(b) may be constructed by reversing direction
whenever (4.27) is crossed.

• The nullclines partition the first quadrant into regions. Within one region
the flow F(x, y) points into one of the four quadrants, {±x > 0, ±y > 0},
and the quadrant remains the same if (x, y) moves within this region. The
quadrant of the flow in each of the regions is indicated by a thick black arrow
in Figure 4.5(c). Again, one can complete this figure by analyzing a special case
(e.g., along the x-axis, the flow points into the second quadrant) and making
appropriate reversals on crossing nullclines.

We will call the completed Figure 4.5(c) a flow-quadrant diagram.

Especially for two-dimensional ODEs, nullclines are an invaluable aid in sketching
trajectories. We shall see that this technique is most effective when used in conjunc-
tion with information from Chapter 6 about flow near equilibria. For now we turn
our attention to using nullclines to construct trapping regions.

4.4.2 An Activator–Inhibitor System

In this example x and y evolve according to the ODEs

(a) x′ = σ
1

1 + y

x2

1 + x2/κ2
− x,

(b) y′ = ρ

[
x2

1 + x2/κ2
− y

]
,

(4.30)

14Well, generically one expects the orientation of the flow arrows to change, but here is a cau-
tionary example: x′ = y2, y′ = −x. Along the y-nullcline (the y-axis), all arrows are oriented in the
direction of increasing x. Of course, this example is concocted with nongeneric behavior in mind:
Generically, polynomials change sign at every root, whereas y2 does not.
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y = σ
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y

y

y =
ρ

1 −ρ

Figure 4.5: Nullclines for the chemostat equations (4.21) with ρ = 1/2 and σ = 2.
See text for a detailed description of the panels and the color conventions.
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Figure 4.6: (a) Nullclines for the activator–inhibitor equations (4.30) with σ = 4
and κ = 1, in which case there are three equilibria (bold dots). The inset shows a
blowup of a region near the origin that contains two of the three equilibria. (b) A
rectangular trapping region in the first quadrant, with flow quadrants indicated.

where σ, ρ, κ are positive parameters; κ is often quite large. The variables x and
y, which represent concentrations, are nonnegative. Linear terms in each equation
describe decay. The physical basis for the nonlinear terms will be discussed in Sec-
tion 5.6.

Panel (a) in Figure 4.6 shows the nullclines of (4.30) (Check them!), and Panel (b)
superimposes a rectangular region

K = {(x, y) : 0 ≤ x ≤ A, 0 ≤ y ≤ B} (4.31)

on the flow-quadrant diagram. Just from the figure, we may deduce that K is a
trapping region. We see from Panel (a) that the flow is tangential along its left side,
the y-axis, because this is an x-nullcline; and we see from the flow quadrant vectors
in Panel (b) that the flow is inward along the other three sides, provided A and B
are appropriately large. (You need to fill in the flow quadrant for the underresolved
triangular region near the origin.) It is good analytical practice to determine explicit
estimates for A,B to ensure that the flow is inward.

To derive global existence: given initial data x(0) = a, y(0) = b, where (a, b) lies
in the first quadrant, choose A,B large enough that K is a trapping region and (a, b)
belongs to K, and then apply Theorem 4.2.3.
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dx/dt = 0
nullcline

dy/dt = 0
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Figure 4.7: (a) Nullclines of the Sel’kov model (4.32). (b) A trapezoidal trapping
region. The diagonal line segment has slope −1 and connects the y-axis to the point
(A, ρ), where A > ρ/σ. Along this diagonal line it is not apparent from the flow
quadrant diagram that the flow is inward; a calculation is needed for this.

4.4.3 Sel’kov’s Model for Glycolysis

The Sel’kov model, which will be introduced in Section 5.1.3, is given by the equations

x′ = ρ− σx− xy2,

y′ = −y + σx+ xy2,
(4.32)

where ρ, σ are positive constants. The variables x and y are concentrations and
must be nonnegative. As in the chemostat (4.21), the sole nonlinear terms in the
two equations are equal in magnitude and opposite in sign. Imitating that example,
let us seek a triangular trapping region like (4.23). The flow is inward along both
coordinate axes. Regarding the sloping side of (4.23), we add the equations to derive

x′ + y′ = ρ− y.

Unfortunately, the flow along this side is inward only if y ≥ ρ. Thus, no region of
the form (4.23) will trap solutions of (4.32).

Nullclines provide an easy fix for this minor difficulty. Nullclines for (4.32) are
shown in Panel (a) of Figure 4.7, and in Panel (b) a trapezoidal region is superim-
posed on the flow-quadrant diagram. Regarding the right side of the trapezoid, we
require that A > ρ/σ. Then, because the x-nullcline of (4.32) crosses the x-axis at
x = ρ/σ < A, we see from the flow-quadrant diagram that the flow is inward along
this side. We already know that the flow is inward along the other three sides. Hence
every trapezoid with A sufficiently large is a trapping region, which may be used to
prove global existence.

To conclude, we have found trapping regions with a combination of level sets and
nullclines.
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4.4.4 Van der Pol’s Equation

Next we consider the van der Pol system,

(a) x′ = y,
(b) y′ = −β(x2 − 1)y − x.

(4.33)

Recall that the rate of change of the energy-like function E(x, y) = (x2+y2)/2 along
a trajectory is given by

dE

dt
= −β(x2 − 1)y2.

Thus, the flow is inward along most of a large (circular) level set {E(x, y) = E0},
but not within the vertical strip {−1 < x < 1}.

To handle this difficulty, we modify a sublevel set {E(x, y) ≤ E0}, as indicated
in Panel (b) of Figure 4.8, by deleting slices PQRP from the top and STUS from the
bottom of this disk. Taking advantage of the fact that the flow (4.33) is odd under
the reflection (x, y) �→ (−x,−y), we construct the region to be invariant under this
reflection; thus, we need specify only PQR, the boundary of the upper deletion. Let
QR be the line segment given by the equation

y = A+ 2βx, −2 ≤ x ≤ 2, (4.34)

where A is a large constant to be chosen below. Once A is chosen, the region is
completely specified, as follows: The point R has coordinates (2, A + 4β), which
determine the radius

√
2E0 of the circle; i.e.,

2E0 = 22 + (A+ 4β)2.

The horizontal line starting at Q, along which y = A − 4β, meets the circle at P,
which has coordinates (−X,A− 4β), where

(−X)2 + (A− 4β)2 = 2E0.

Finally, S, T, and U are located by symmetry.

We claim that provided A is sufficiently large, PQRSTUP is a trapping region. By
symmetry we need to show that the flow is inward only along half of the boundary,
say along PQRS. (i) Along the circular arc RS, we already know that the flow is
inward. (ii) Regarding QR, by dividing the two equations in (4.33), we calculate
that the flow direction has slope

dy

dx
= β(1− x2)− x

y
≤ β − x

y
. (4.35)

Choose A large enough that along QR, the second term on the RHS of (4.35) satisfies
|x/y| ≤ β; then the flow direction along QR has slope dy/dx ≤ 2β. But QR has



4.4. Nullclines and Trapping Regions 129

S

U

P

R

x

y

Q

T

ya b

x

Figure 4.8: (a) Nullclines for the van der Pol system (4.33). The y-nullclines have
vertical asymptotes at x = ±1. (b) A trapping region and flow-quadrant diagram as
described in the text. The dashed vertical lines are located at x = ±2.

slope exactly 2β, so for such large A, the flow is inward along QR. (iii) Along PQ,
we see from the flow-quadrant diagram Figure 4.8(b) that the flow is inward, which
finishes the proof of the claim.

Using these trapping regions, we derive global existence for van der Pol’s equation.
As in the previous example, the successful strategy combined level sets and nullclines.

4.4.5 Michaelis–Menten Kinetics

The above examples provide an adequate introduction to nullclines and their use-
fulness in finding trapping regions, and more examples are given in the exercises.
However, we present one more example because of its scientific interest.

Michaelis–Menten kinetics arises in modeling the concentrations (thus x, y ≥ 0) of
certain chemical species in an enzyme-mediated reaction (see Section 5.7). Applying
suitable scaling, the equations take the form

(a) x′ = −x(1− y) + y,
(b) ε y′ = x(1− y)− (1 + κ)y,

(4.36)

where ε, κ are positive parameters. Typically ε is very small indeed. Reflecting this,
we shall call (4.36) a fast–slow system, because at least away from the y-nullcline,
the second variable evolves much more rapidly than x.

Global existence for (4.36) is easily demonstrated. By adding the equations, one
sees that the derivative of x+ εy is negative. Any triangular region bounded by the
x-axis, the y-axis, and a line {x + εy = A}, where A > 0, can serve as a trapping
region.
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Figure 4.9: (a) Nullclines for the scaled Michaelis–Menten equations (4.36) form a
trapping region (κ = 5 in this figure). We use double arrowheads to indicate fast flow
in the vertical direction (for small ε); if we attempted to represent lengths accurately,
these vectors would be absurdly long. (b) Two trajectories for (4.36), starting outside
the trapping region. During a brief initial transient, motion is nearly vertical, after
which trajectories hug the y-nullcline while both variables decay to zero.

However, the region between nullclines

y =
x

x+ 1
and y =

x

x+ 1 + κ

is a much more interesting trapping region (see Figure 4.9(a)). The fast equation
(4.36b) drives (x, y) into this trapping region, after which both variables tend slowly
to zero while staying inside the trapping region, as sketched in Figure 4.9(b). Since ε
is small, the solution hugs the y-nullcline, the lower boundary of the trapping region.

In this and other fast–slow systems, it is natural to consider the approximation15

of setting ε = 0 in (4.36b). In this approximation, we may then solve (4.36b), now an
algebraic equation, to obtain y = x/(x+ 1 + κ); substituting into (4.36a), we derive

dx

dt
= − κx

x+ 1 + κ
. (4.37)

This equation is the (scaled) Michaelis–Menten approximation for the enzymatic
reaction rate arising from (4.36).

We hope that you are worried about the violent approximation from which (4.37)
is derived; indeed, the approximation changes the differential equation (4.36b) to

15Chemists call this approximation “letting the fast reaction go to completion” or the “quasi-
steady-state” assumption. Modifying this language, we shall speak of “letting the fast equation go
to equilibrium.”
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an algebraic equation! However, the above argument with nullclines supports the
approximation. It indicates that after a brief initial transient, the exact solution
follows the approximation rather closely.

4.5 Continuity Properties of the Solution

Your authors are fond of the “proof through pictures” style of the last two sections.
We will encounter a lot more of this style of mathematics in later chapters, but for
now it’s back to hard analysis without the relief provided by pictures.

4.5.1 The Main Issue: Continuous Dependence on Initial Conditions

Theorem 4.5.1. Suppose F : U → R
d is locally Lipschitz, and let x0(t), 0 ≤ t < β0,

be a solution in forward time of x′
0 = F(x0) with initial condition x0(0) = b0. (i) For

every positive T < β0, there is a neighborhood V of b0 such that if b ∈ V, the IVP

x′ = F(x), x(0) = b (4.38)

has a solution for 0 ≤ t < T . (ii) Moreover, there is a constant L such that for all
b ∈ V,

|x(t)− x0(t)| ≤ |b− b0| eLt, 0 ≤ t < T. (4.39)

In words, Conclusion (ii) asserts that if the initial data for an IVP are altered
slightly, then the perturbed solution diverges from the original solution no faster than
at a controlled exponential rate. Conclusion (i), which guarantees that the perturbed
solution exists for nearly as long as x0, gives the estimate more significance.

Incidentally, β0 = ∞ is allowed in Theorem 4.5.1, but the condition T < β0

means that T must be finite. Such issues are clarified by examining the theorem in
the context of an example, the scalar IVP

x′ = x3, x(0) = b.

The solution x0(t) ≡ 0 with initial condition b = b0 = 0 exists for all t ≥ 0, but
for every b �= 0, the IVP is solvable only for a finite interval. If T in the theorem is
increased, the neighborhood V must be shrunk in compensation. An example in the
reverse direction: it is possible for x0 to blow up in finite time while most nearby
solutions exist for infinite times (see Exercise 4(c)).

Proof of Theorem 4.5.1. Let K0 be the image of [0, T ] under x0, which is a compact
subset of U . By Corollary 3.3.3, there exist a larger compact subset K ⊂ U and a
δ > 0 such that

(∀t ≤ T ) B(x0(t), δ) ⊂ K. (4.40)
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By Proposition 3.3.2, F|K is Lipschitz continuous, say with Lipschitz constant L.
It is technically convenient to assume16 L > 0, so that e−Lε < 1 for every ε > 0.

Let V be the ball B(b0, e
−LT δ). If b ∈ V , let x be the solution in forward time

of (4.38), extended to the maximal interval 0 ≤ t < β, and define

t∗ = sup{t ∈ [0, T ] ∩ [0, β) : (∀s ≤ t) |x(s)− x0(s)| ≤ δ}. (4.41)

Since |x(0)−x0(0)| ≤ e−LT δ < δ, we know that t∗ > 0. On the other hand, it follows
from (4.41) that x(t) remains in K for 0 ≤ t < t∗, so by Theorem 4.1.2 we have
t∗ < β. To derive Conclusion (i) we will show that t∗ = T .

Let g(t) = |x(t) − x0(t)|. From subtracting the integral equations for x and x0,
we deduce that

g(t) ≤ |b− b0|+
∫ t

0

|F(x(s))− F(x0(s))| ds. (4.42)

If t ≤ t∗, then both x(s) and x0(s) in the integrand belong to B(x0(s), δ) ⊂ K, so
Lipschitz continuity gives us

|F(x(s))− F(x0(s))| ≤ L|x(s)− x0(s)|. (4.43)

Substituting into (4.42), we have

g(t) ≤ |b− b0|+ L

∫ t

0

g(s) ds,

and hence by Gronwall’s lemma,

g(t) ≤ |b− b0|eLt, 0 ≤ t ≤ t∗. (4.44)

To complete the proof we show that t∗ = T , and thus (4.44) gives us (4.39). We
see from the definition (4.41) that t∗ ≤ T . But we have from (4.44) that

g(t∗) ≤ (e−LT δ) eLt∗ = e−L(T−t∗)δ.

If t∗ were strictly less than T , then we would have g(t∗) < δ. By continuity, g(t) =
|x(t) − x0(t)| would remain less than δ for some interval beyond t∗, and this would
contradict the definition of t∗ as a supremum.

For use below let us formulate a refinement of this result under the stronger
hypothesis that F ∈ C1(U). Given x0(t) as in the theorem and T < β0, choose δ > 0

16Rigor can be such a pain! We are guarding against a triviality, since L could vanish only if
F(x) were constant.
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and a compact set K ⊂ U for which (4.40) holds, and let

L = max
x∈K

‖DF(x)‖. (4.45)

Corollary 4.5.2. Under these hypotheses, if b ∈ B(b0, e
−LT δ), the IVP (4.38) is

solvable for 0 ≤ t < T + η, where η > 0,

x(t) ∈ B(x0(t), δ) ⊂ K, 0 ≤ t ≤ T, (4.46)

and (4.39) holds with the constant (4.45).

Proof. A problem in adapting the proof of Theorem 4.5.1 to the present case: we
cannot assume via Corollary 3.2.4 that (4.45) is a Lipschitz constant for K, since
this set is not necessarily convex. The saving point is that L need not be a Lipschitz
constant for the entire set K; it suffices if (4.43) is satisfied for all s ∈ [0, T ]. By
Corollary 3.2.4, given a value of s , (4.43) is satisfied for that s if

L ≥ max
x∈B(x0(s),δ)

‖DF(x)‖,

and it is satisfied for all s if

L ≥ max
0≤s≤T

max
x∈B(x0(s),δ)

‖DF(x)‖.

This inequality holds for the constant (4.45).

Of course, the above results have analogues in backward time, which we invite you
to formulate. Less trivially, the solution of the IVP for a nonautonomous equation
x′ = G(x, t) depends continuously on the initial condition, but we do not pursue this
generalization.

4.5.2 Some Associated Formalism

Sometimes, when it is instructive to focus on how the solution of an IVP depends
on the initial data, we shall use the flow notation. Specifically, we shall write

ϕ(t,b) = x(t) (4.47)

for the solution x(t) of the IVP (4.38). This solution operator or flow function is a
mapping ϕ : Ω → U , where its domain is given by

Ω = {(t,b) ∈ (−∞,∞)× U : t ∈ maximal interval of existence for (4.38)} .
(4.48)
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It follows from Theorem 4.5.1 that ϕ is locally Lipschitz with respect to its sec-
ond argument, b, provided F(x) is locally Lipschitz. Trivially, ϕ is in fact locally
Lipschitz with respect to both arguments simultaneously. (Why is this trivial?)

The solution operator17 satisfies the following relation, which is known as the
semigroup property :

Proposition 4.5.3. If (s,b) ∈ Ω and if (t,ϕ(s,b)) ∈ Ω, then (s+ t,b) ∈ Ω and

ϕ(t,ϕ(s,b)) = ϕ(s+ t,b). (4.49)

This result follows easily from Lemma 3.2.9. (Show this! )

4.5.3 Continuity with Respect to Parameters

In Theorem 4.5.1 we proved that the solution of an IVP depends continuously on its
initial data. It is also true that the solution “depends continuously on the equation.”
The most straightforward version of such a result addresses how the solution of
a parametrized family of IVPs depends on the parameters. For simplicity, in the
following theorem we address this issue only in the case of linear equations, which
suffices for our needs below. Thus, suppose A(t, α1, . . . , αm) is anm-parameter family
of d×d matrices, defined for t ∈ (T1, T2), where this interval contains zero and, using
an obvious vector notation, for α ∈ V , where V ⊂ R

m is open. Let w(t,α) be the
solution of

w′ = A(t,α)w, w(0,α) = b. (4.50)

Theorem 4.5.4. If A(t,α) is continuous on (T1, T2)×V, then w(t,α) is continuous
on this set.

In Exercise 7 we provide hints to help you prove this result.

4.6 Differentiability Properties of the Solution

4.6.1 Dependence on Initial Conditions

In the previous section we proved that the flow ϕ(t,b) is Lipschitz continuous in b.
In this section we show that ϕ is in fact C1, provided of course that F is C1.

The above phrasing is a concise summary of the results of this section. However,
let us restate the conclusion in the more discursive language of perturbation theory,
since we believe that this makes the discussion more intuitive. We suppose x0(t), 0 ≤
t < β0, is a solution in forward time of x′ = F(x) with initial condition x0(0) = b0,

17A function ϕ satisfying (4.49) is sometimes called a dynamical system.
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and we ask how the solution changes if the initial condition is perturbed. Specifically,
let x(t, ε) be the solution of

x′ = F(x), x(0, ε) = b0 + εb1. (4.51)

We look for an expansion18 of this solution in powers of ε,

x(t, ε) = x0(t) + εx1(t) + . . . . (4.52)

The size of the neglected terms, which are represented by the dots, will be estimated
in Theorem 4.6.1. For the moment we proceed formally. Substituting (4.52) into
(4.51), we obtain

x′
0(t) + εx′

1(t) + . . . = F(x0(t) + εx1(t) + . . .).

Using a Taylor series to expand19 the RHS of this equation in powers of ε, we calculate

x′
0(t) + εx′

1(t) + . . . = F(x0(t)) + εDF(x0(t)) · x1 + . . . . (4.53)

Equation (4.53) must hold for all values of ε, i.e., the two power series on either side
of the equation define the same functions of ε. Thus the coefficients of each power
of ε must be equal. Matching corresponding powers of ε in(4.53), we obtain

(a) O(ε0) : x′
0 = F(x0),

(b) O(ε1) : x′
1 = DF(x0(t)) · x1.

(4.54)

(The letter O is a mnemonic for “order.”) The O(ε0)-equation merely repeats the
ODE for our original solution. The O(ε1)-equation gives new information, i.e., an
ODE for x1, which is a linear homogeneous system with time-dependent coefficients

x′
1 = A(t)x1, (4.55)

where the coefficient matrix is given in (4.54b). Similarly, matching powers of ε in
the initial conditions (4.51) gives

(a) O(ε0) : x0(0) = b0,
(b) O(ε1) : x1(0) = b1.

(4.56)

The O(ε0)-equation here is nothing new, but the O(ε1)-equation provides an initial

18We may describe (4.52) as an ansatz, i.e., an assumed form for the solution of a problem. This
term, which comes from German, is a useful one to add to your (mathematical) vocabulary.

19Fortunately, it suffices for our purposes to carry the expansion only through the first power.
Although higher-order terms of a multivariable Taylor series can be handled efficiently with the
multi-index notation (cf. Section 10.2 of [74]), it would be a distraction to introduce it here.
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condition for the ODE (4.55). Theorem 3.4.1 guarantees that the IVP (4.55), (4.56b)
has a unique solution x1(t) for t in the same interval [0, β0) on which x0 is defined.

Here is the main result of Section 4.6. Of course analogous results hold for
negative times.

Theorem 4.6.1. Let F : U → R
d be C1. In the above notation, for every t ∈ [0, β0),

lim
ε→0

|x(t, ε)− x0(t)− εx1(t)|
ε

= 0. (4.57)

Moreover, if T < β0, the limit is uniform for 0 ≤ t ≤ T .

You may find the proof of this result tough going. We postpone the proof until
Section 4.6.5, first exploring related ideas that among other things, make the proof
easier to read.

4.6.2 The Perspective of Differentiability

Consider differentiating the flow map ϕ : Ω → U with respect to the initial condition
b; i.e., consider

∂ϕ

∂bj
(t,b0) = lim

ε→0

ϕ(t,b0 + εej)−ϕ(t,b0)

ε
. (4.58)

In our notation above, we have ϕ(t,b0) = x0(t), and if in (4.51) we define b1 = ej,
then ϕ(t,b0 + εej) = x(t, ε). Theorem 4.6.1 implies that the limit in (4.58) exists,
so ϕ(t,b) is in fact differentiable with respect to bj; indeed, ∂ϕ/∂bj(t,b0) equals the
appropriate solution of the IVP (4.55), (4.56b), which we repeat as

w′
j = A(t)wj, wj(0) = ej, (4.59)

where A(t) = DF(x0(t)). It is noteworthy that the partial derivatives of ϕ with
respect to the various components bj all satisfy the same ODE; they differ only in
their initial conditions.

Let us motivate how the IVP (4.59) arises. Regarding the initial condition, at
time zero, (4.58) reduces to the triviality

∂ϕ

∂bj
(0,b0) = lim

ε→0

(b0 + εej)− (b0)

ε
= ej. (4.60)

For t > 0, the flow ϕ(t,b) satisfies the ODE

∂

∂t
ϕ(t,b) = F(ϕ(t,b)). (4.61)

We differentiate this equation without worrying about justification; this will be pro-
vided by the proof of Theorem 4.6.1. Specifically, take the derivative of (4.61) with
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respect to bj using the chain rule,

∂

∂bj

∂ϕ

∂t
(t,b) = DF(ϕ(t,b))

∂ϕ

∂bj
(t,b), (4.62)

interchange the order of the t and b derivatives to obtain

∂

∂t

∂ϕ

∂bj
(t,b) = DF(ϕ(t,b))

∂ϕ

∂bj
(t,b),

and set b = b0 to argue that ∂ϕ/∂bj(t,b0) should satisfy the ODE in (4.59).

4.6.3 Examples

The IVP (4.59) provides a beautiful characterization of ∂ϕ/∂bj, which is used fre-
quently in theoretical analysis of ODEs. Unfortunately, cases in which (4.59) can be
solved explicitly are the exception rather than the rule.

One important special case in which the IVP can be solved occurs when b0 is an
equilibrium of x′ = F(x). In this caseϕ(t,b0) ≡ b0, so the coefficient matrix in (4.59)
is independent of time, A = DF(b0). In other words, the system (4.59) has constant
coefficients. Incidentally, this approximation, which is known as the linearization of
x′ = F(x) at the equilibrium, figures heavily in the qualitative theory of ODEs.

In case you would find it helpful to see the theorem in action, here is a less trivial
example in which an explicit solution of (4.59) is possible. Consider the IVP for the
Lotka–Volterra equations,

(a) x′ = x− xy, x(0) = b1,

(b) y′ = ρ(xy − y), y(0) = b2.
(4.63)

If b2 = 0, then (4.63) has the explicit solution ϕ(t, (b1, 0)) = (b1e
t, 0); i.e., without

predators, the prey grow exponentially. If a small population of predators were in-
troduced, how would their numbers evolve? For small b2, we have the approximation
(for the predator population)

ϕ2(t, (b1, b2)) ≈ b2 · ∂ϕ2

∂b2
(t, (b1, 0)).

In Exercise 12, we ask you to solve the appropriate version of (4.59) to show that

∂ϕ2

∂b2
(t, (b1, 0)) = exp

{
ρ[b1(e

t − 1)− t]
}
. (4.64)

Thus, to lowest order, the number of predators grows very rapidly indeed as t in-
creases, an exponential of an exponential. Rapid growth is hardly surprising, since
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the predator’s food supply is increasing without bound. Of course, the above approx-
imation must become inaccurate as t increases. Indeed, we know from Exercise 3 in
Chapter 1 that the solution of (4.63) is periodic if b2 > 0, so the population must
remain bounded. To interpret this discussion in the language of Theorem 4.6.1, the
larger you want to make T , the smaller you must take ε in the limit (4.57).

Other examples of differentiation with respect to initial conditions, including in
the above example calculating the effect of the predators on the prey, are given in
the exercises.

4.6.4 The Order Notation

To prepare for the proof of Theorem 4.6.1, we introduce the order notation,20 i.e.,
big-O and little-o. This notation makes an otherwise messy proof relatively clean.

The rigorous use of big-O, the simpler concept, is as follows: Given a quantity
that depends on a parameter, say f(ε), where 0 < ε < ε0 and f may be either a
vector or scalar quantity, we say that f is order-ε, written f(ε) = O(ε), if

(∃C)(∃ε1 > 0) such that 0 < ε < ε1 =⇒ |f(ε)| ≤ Cε.

(The formula f(ε) = O(ε) may also be read “f is big-O of ε.”) The same notation is
also used in several more complicated contexts. If ε can assume either sign, i.e., if f(ε)
is defined for 0 < |ε| < ε0, we write f(ε) = O(|ε|) to mean |f(ε)| ≤ C|ε|, provided
|ε| is sufficiently small. More generally, if φ(ε) > 0 is some function that tends to
zero as ε → 0, for example φ(ε) = |ε|p, we interpret the formula f(ε) = O(φ(ε))
with the obvious inequality. Also, the notation is generalized to estimate quantities
that depend on multiple parameters. For example, in Theorem 4.5.1 the solution
x(t) = ϕ(t,b) depends on the d parameters of the initial data, b1, . . . , bd, and we
may paraphrase the conclusion of the theorem as

|ϕ(t,b)−ϕ(t,b0)| = O(|b− b0|). (4.65)

In the notation of Theorem 4.6.1, we have from Theorem 4.5.1

|x(t, ε)− x0(t)| = O(ε). (4.66)

20There is an unfortunate ambiguity in the use of the symbol O. In (4.54) and (4.56), the symbol
O(εp) is merely intended as a placeholder, something to indicate the terms in a power series that
are proportional to εp. This might be called the informal usage. By contrast, we are now going
to describe a rigorous, technical meaning of this symbol. Both usages appear in the literature.
Although some authors introduce separate notations to distinguish between the two meanings, we
prefer to avoid this proliferation of notation. We believe that once you have been alerted to the
issue, you will be able to determine from context which usage is intended.
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Indeed, we say that (4.66) holds uniformly for t ∈ [0, T ], because the inequality

|x(t, ε)− x0(t)| ≤ eLT |b1| ε (4.67)

holds for all t in this interval with the same constant C = eLT |b1|. Alternatively, we
may hide the explicit constants in (4.67) and rewrite this inequality as

sup
0≤t≤T

|x(t, ε)− x0(t)| = O(ε). (4.68)

Little-o is a more delicate concept. If f is defined for 0 < ε < ε0, we say that f
is little-o of ε, written f = o(ε), if

(∀η > 0)(∃ε1 > 0) such that 0 < ε < ε1 =⇒ |f(ε)| ≤ ηε.

Of course, this definition is equivalent to21

lim
ε→0

|f(ε)|
ε

= 0.

The little-o notation, like big-O, is also used in more complicated contexts. For
example, if the vector-valued function F(x) is continuously differentiable, then we
may write22

F(z) = F(z0) +DF(z0) · (z− z0) + o(|z− z0|) (4.69)

for z near z0.

The following facts are part of the order-notation liturgy:

(a) If f(ε) = o(ε), then Cf(ε) = o(ε) for every constant C.
(b) If f(ε) = o(φ(ε)) and if φ(ε) = O(ε), then f(ε) = o(ε).

(4.70)

We ask you to derive (4.70) in Exercise 10. Even though these facts may be viewed
as just a reworking of familiar properties of limits, it is worth your while to do
the exercise before reading the proof of Theorem 4.6.1. Order notation allows you
to focus on higher-level issues in the proof than repeatedly rederiving properties of
limits. Incidentally, (4.70) can be generalized in numerous ways, but this limited
version suffices for our needs.

21Incidentally, big-O may be similarly characterized:

f(ε) = O(ε) ⇐⇒ lim sup
ε→0

|f(ε)/ε| < ∞.

22We use z rather than x in order to reserve the latter for the functions defined by (4.54), (4.56).
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To return to Theorem 4.6.1, note that our desired conclusion simply asserts that

sup
0≤t≤T

|x(t, ε)− x0(t)− εx1(t)| = o(ε). (4.71)

4.6.5 Proof of Theorem 4.6.1

Given T < β0, choose δ > 0 and a compact set K ⊂ U for which (4.40) holds, and
let L be given by (4.45). For all sufficiently small ε, the perturbed initial condition
b0 + εb1 belongs to B(b0, e

−LT δ), so by Corollary 4.5.2,

x(t, ε) ∈ B(x0(t), δ) ⊂ K, 0 ≤ t ≤ T. (4.72)

Forming a linear combination of the integral relations

x(t, ε) = b0 + εb1 +

∫ t

0

F(x(s, ε)) ds,

x0(t) = b0 +

∫ t

0

F(x0(s)) ds,

x1(t) = b1 +

∫ t

0

A(s)x1(s) ds,

we deduce that g(t, ε) = |x(t, ε)− x0(t)− εx1(t)| satisfies

g(t, ε) ≤
∫ t

0

|F(x(s, ε))− F(x0(s))− εA(s)x1(s)| ds.

Add and subtract A(s){x(s, ε)−x0(s)} in the integral and use the triangle inequality
to obtain

g(t, ε) ≤ I1(t, ε) + I2(t, ε), (4.73)

where

(a) I1(t, ε) =

∫ t

0

|F(x(s, ε))− F(x0(s))− A(s){x(s, ε)− x0(s)} | ds,

(b) I2(t, ε) =

∫ t

0

|A(s){x(s, ε)− x0(s)− εx1(s)} | ds.
(4.74)

The integrand in I2(t, ε) is bounded by ‖A(s)‖ g(s, ε), and since x0(s) ∈ K, we have
‖A(s)‖ = ‖DF(x0(s))‖ ≤ L. Therefore,

g(t, ε) ≤ I1(t, ε) + L

∫ t

0

g(s, ε) ds.
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Thus, by Gronwall’s inequality,

g(t, ε) ≤ eLt sup
0≤s≤T

I1(s, ε),

and taking the supremum over t yields

sup
0≤t≤T

g(t, ε) ≤ eLT sup
0≤s≤T

I1(s, ε). (4.75)

The following lemma gives control over the RHS of (4.75). (In Exercise 25 we ask you
to prove the lemma, based on showing that the pointwise estimate (4.69) is uniform
over an appropriate compact set.)

Lemma 4.6.2. As ε tends to zero,

sup
0≤s≤T

I1(s, ε) = o(ε). (4.76)

Applying the lemma to (4.75), we may rewrite this equation as

sup
0≤t≤T

g(t, ε) = C o(ε),

where C = eLT . Thus, our desired conclusion (4.71) follows from (4.70a). This
completes the proof.

4.6.6 Tying Up Loose Ends

We claim that the flow map ϕ(t,b) is C1. By Theorem 4.6.1, the partial derivatives
∂ϕ/∂bj exist, and of course ∂ϕ/∂t also exists. We need to show that these partial
derivatives are continuous. Trivially, from the ODE ∂ϕ/∂t = F(ϕ(t,b)), the t-
derivative is continuous. The derivative with respect to bj was characterized by the
IVP (4.59), which we rewrite indicating the dependence of the coefficient matrix
on b:

∂

∂t

∂ϕ

∂bj
= DF(ϕ(t,b))

∂ϕ

∂bj
,

∂ϕ

∂bj
(0) = ej. (4.77)

It follows from Theorem 4.5.4 that ∂ϕ/∂bj is continuous. This proves the claim.

In Section 4.6.2 we motivated the formula (4.59) for ∂ϕ/∂bj, modulo an inter-
change of the order of differentiation that needs to be justified. According to The-
orem B.3.2 in Appendix B, it suffices to show that one of the mixed partials exists
and is continuous. It follows from (4.77) that ∂2ϕ/∂t∂bj is continuous, the RHS of
this ODE being a product of continuous functions.

4.6.7 Generalizations

There are more results about the differentiability of the solution of IVPs than either
you or we care to explore fully, but a few highlights need to be mentioned. We refrain
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from giving formal statements of these results in the hopes of making the text more
readable. A careful treatment of such results is given in Section 1.7 of [15].

First let us generalize Theorem 4.6.1 to nonautonomous IVPs. It can be shown
that the flow operator ϕ(t, t0,b) obtained by solving

x′ = G(x, t), x(t0) = b (4.78)

is C1 with respect to all variables, provided G is C1. Moreover, ∂ϕ/∂bj(t, t0,b)
satisfies a linear homogeneous IVP

dw

dt
= DG(ϕ(t, t0,b), t)w, w(t0) = ej, (4.79)

where DG denotes the d×d matrix of partial derivatives ∂G/∂xj, not including the
t derivative.

Next, we consider “differentiability with respect to the equation” through a
parametrized family of IVPs, say

x′ = G(x,α), x(0) = b, (4.80)

where α ∈ V ⊂ R
m; to simplify the notation, we assume that (4.80) is autonomous.

The flow map ϕ(t,b,α) is C1 with respect to all its arguments, and ∂ϕ/∂αj satisfies
the linear inhomogeneous IVP

dw

dt
= DG(ϕ(t,b,α),α)w +

∂G

∂αj

(ϕ(t,b,α),α), w(0) = 0. (4.81)

As above, DG denotes the d × d matrix of derivatives of G with respect to xj; the
derivative with respect to the parameter is written out explicitly. In fact, this result
does not require separate proof; it may be derived easily with a “reduce it to the
previous case” ruse, as we discuss in Exercise 24.

Finally, our third generalization addresses higher-order derivatives: it can be
shown that if an ODE is of class Ck, then the solution operator also has k continuous
derivatives with respect to all variables. In particular, under the hypotheses of
Theorem 4.6.1, if F ∈ C2, then

x(t, ε)− x0(t)− εx1(t) = O(ε2).

4.7 Exercises

After the core exercises, there are subsections on applying the differentiation results, on cleaning
up some loose ends from previous chapters, and on computing.
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4.7.1 Core Exercises

The primary purposes of the core exercises are as follows:

Proof of a minor generalization 1
Unfinished business 2, 5–7, 10
Use of trapping regions to prove global existence 3
Counterexamples to clarify the theory 4
A first look at asymptotic behavior 8, 9

1. (a) Prove the following variant of Theorem 4.1.2: If F is bounded on U and
if β∗ < ∞, then x∗(t) tends to a point on ∂U as t → β∗.

(b) Construct an IVP for a scalar ODE x′ = f(x), with f bounded, whose
solution has a maximal interval of existence (α∗, β∗) with both endpoints
finite.

2. Prove Theorem 4.2.3.

Hint: You must show that the solution cannot leave K. Rule out crossing ∂K at
a regular point by the same argument used to prove Theorem 4.2.2. At a corner
point, say P, recall the notation of Section B.3.3 to represent ∂K near P as the
intersection of two smooth curves, {φ1 = 0} and {φ2 = 0}. Take limits of regular
points to conclude that

〈∇φk(P),F(P)〉 ≥ 0, k = 1, 2.

Use the hypothesis that ∇φ1(P) and ∇φ2(P) are linearly independent to argue
that one of these inequalities must be strict, as in (4.12). Rule out crossing ∂K
at P by the simple argument used to derive Theorem 4.2.2 from (4.12).

3. Use trapping regions to analyze global existence for the following equations:

(a) The Lorenz equations:

x′ = σ(y − x),
y′ = ρx− y − xz,

z′ = −βz + xy,

where σ, ρ, β are positive constants (arbitrary initial conditions).
Hint: Deduce global existence by showing that a set of the form

K = {(x, y, z) : x2 + y2 + (z − ρ− σ)2 ≤ A2}
is a trapping region if A is sufficiently large; i.e., the trapping region is
bounded by the level set of a carefully chosen quadratic function.

(b) Equations for the evolution of two interacting species:

x′ = x (1− x− by) , y′ = ρy (1− y − cx) ,

where ρ, b, c are constants with ρ > 0 (both x(0), y(0) nonnegative).
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Discussion: Note that each species has logistic growth that is modified
by the presence of the other. If b, c are both positive, then the interaction is
competitive; if they are both negative, it is symbiotic. The most interesting
cases, for which there are coexistence equilibria in the (open) first quadrant,
are (i) 1 < b, c, (ii) 0 < b, c < 1, and (iii) −1 < b, c < 0.

Hint: In Cases (i) and (ii), draw the nullclines to show that there are tri-
angular trapping regions of the form (4.23). A slightly more complicated
region is needed for Case (iii).

Discussion: Incidentally, we invite you to compute a few typical solutions
for an equation belonging to Case (i) and for one belonging to Case (ii). You
will find that they behave differently as t → ∞. This behavior may seem a
little mysterious at present, but the ideas from Chapter 6 will clarify it.

Challenge: A harder, but educational, problem is to prove that the solution
may blow up in finite time when b, c < −1. Try it! As preparation for this
harder problem, you might first try to show blowup for the simpler system
x′ = xy, y′ = xy.

(c) A simplified activator–inhibitor system

(a) x′ = σ 1
1+y

x2 − x,

(b) y′ = ρ [x2 − y],

(4.82)

i.e., the limit of equations (4.30) as κ → ∞ (both x(0), y(0) nonnegative).
Remark: It was straightforward to construct a trapping region for (4.30);
you’ll have to work considerably harder to do so for (4.82). But below we
will use the simpler equations (4.82) in calculations about the properties of
solutions of activator–inhibitor models.

(d) The “repressilator”

x′ =
μ

1 + yn
− x,

y′ =
μ

1 + zn
− y,

z′ =
μ

1 + xn
− z,

where μ and n are positive constants (initial values of all variables non-
negative).

Hint: To prove global existence for this system, which will be introduced
and analyzed in Section 8.7.2, construct a trapping region of the form

K = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0, x+ y + z ≤ A};

i.e., prove that the flow is inward on each of the four faces of this simplex
if A is sufficiently large. Note that K is a three-dimensional region whose
boundary is only piecewise smooth. (We have shied away from actually
defining piecewise smooth in higher dimensions, but however this phrase is
defined, it surely applies to this set.) Hence Theorem 4.2.2 is not immediately
applicable to proving global existence. If you are bothered by this gap, you
can close it by mimicking Problem 2.
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4. (a) Regarding Theorem 4.1.2, give an example to show that if β∗ = ∞, then
the solution of an IVP can stay inside a compact set for all time.

(b) Give an example of a C1 function that satisfies the linear-growth estimate
(4.4) but is not (globally) Lipschitz.

(c) For the system
x′ = x2 − y2,
y′ = 2xy,

(4.83)

find a solution that blows up in finite time but most nearby solutions exist
for all time.

Hint: First show that with initial conditions x(0) = 1, y(0) = 0, the solution
of (4.83) blows up in finite time. Although you can’t solve (4.83) for other
trajectories, you can locate the solution curves, i.e., find the orbits, as follows.
Along an orbit you have the ODE

dy

dx
=

dy/dt

dx/dt
=

2xy

x2 − y2
.

Multiply the equation by (x/y)2−1 and manipulate the result into the form23

d

dx

(
x2

y
+ y

)
= 0,

from which you may deduce that the solution curves are circles through the
origin, x2 + (y − C)2 = C2, where C is an arbitrary constant. Argue from
this information that the solution of (4.83) with initial conditions x(0) =
1, y(0) = b, where b �= 0, exists for all time.

5. (a) Prove the following generalization of Theorem 4.2.1, referring to Exer-
cise 8(a) in Chapter 3.

Theorem 4.7.1. If G : Rd × R → R
d is locally Lipschitz in x and t and

if there exist nonnegative continuous functions B(t), K(t) such that

|G(x, t)| ≤ K(t)|x|+B(t), (x, t) ∈ R
d × R, (4.84)

then the solution of the IVP

x′ = G(x, t), x(0) = b

23A scalar ODE of the form (d/dx)f(x, y) = 0 is called exact. In this example we have made the
equation exact, and therefore solvable, by means of an integrating factor. This is another solution
technique, one that we did not cover in Section 1.3; to learn more, see Section 1.9 of [10].
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exists for all time, −∞ < t < ∞. Moreover, for every finite T > 0,

|x(t)| ≤ |b|eKmax|t| +
Bmax

Kmax

(eKmax|t| − 1), −T ≤ t ≤ T, (4.85)

where
Bmax = max

|s|≤T
|B(s)|, Kmax = max

|s|≤T
|K(s)|.

Discussion: It will be useful below to have Theorem 4.7.1 explicitly formu-
lated, and it is useful training to adapt the proof of Theorem 4.2.1 to handle
the nonautonomous case. For a complete proof, you would need to prove
extensions of Proposition 4.1.1 and Theorem 4.1.2 to nonautonomous equa-
tions. We invite you to skip this not very rewarding task and regard the
extensions of those two results as given.

Incidentally, every linear equation x′ = A(t)x + g(t) satisfies the above
hypotheses, provided of course that A(t) and g(t) are continuous. Thus, this
theorem provides another proof of global existence for linear equations, an
alternative to the approach based on Picard iteration that was outlined in
Exercise 16 in Chapter 3.

(b) Use Theorem 4.7.1 to prove global existence for

x′ = y,
y′ = −(1/4 + β cos t)x.

Remark: Recall your computations from Exercise 13 in Chapter 3, in which you
found the surprising fact that solutions of this equation may grow exponentially
with time; from this problem you may conclude that solutions grow no faster
than exponentially.

6. Extend Theorem 4.2.2 to ODEs on the cylinder R/2πZ× R.

Hint: First, some notation: If K is a subset of R/2πZ × R, let Klift ⊂ R
2 be

defined by24

Klift = {(x, y) ∈ R
2 : Π · (x, y) ∈ K},

where Π : R2 → R/2πZ × R is the natural projection. In less formal terms, the
projection “wraps the plane around the cylinder,” and Klift is the set obtained
from K if the cylinder is “unwrapped.” (Cf. Figure 4.4.)

By an ODE on R/2πZ× R we mean a two-dimensional ODE

[
θ′

y′

]
= F(θ, y), (4.86)

where F : R2 → R
2 is 2π-periodic in its first argument, i.e., F(θ+2π, y) = F(θ, y).

We propose to prove global existence for the IVP for (4.86) by applying the theory

24The subscript “lift” refers to the idea that R2 is a simply connected covering space for R/2πZ×
R that lies “above” R/2πZ× R.
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of this chapter to the equivalent “lifted” planar IVP

[
x′

y′

]
= F(x, y),

[
x(0)
y(0)

]
= b, (4.87)

where x may vary over (−∞,∞).

Suppose K ⊂ R/2πZ×R is a compact trapping region for (4.86); then Klift is
a trapping region for (4.87). By Corollary 4.2.4, if b ∈ Klift, then the solution of
(4.87) remains in Klift for as long as it exists, say 0 ≤ t < t∗. From compactness
we have

C = max
(x,y)∈Klift

|F(x, y)| = max
(θ,y)∈K

|F(θ, y)| < ∞.

Therefore, |x(t)| ≤ |b|+ Ct for 0 ≤ t < t∗. If t∗ were finite, this estimate would
contradict Theorem 4.1.2, so (4.87) must have a global solution.

Remark: A similar argument works for ODEs on the torus T2.

7. Prove Theorem 4.5.4.

Hint: You need to show that |w(t1,α1) − w(t2,α2)| can be made arbitrarily
small by making t1, t2 and α1, α2 sufficiently close to one another. It suffices
to consider only positive times tk ≤ T , where T < T2, and to restrict αk to a
compact subset N of the parameter set V. Let

M = max
0≤t≤T

max
α∈N

‖A(t,α)‖. (4.88)

It is convenient to abbreviate w(t,αk) to wk(t); i.e., you need to show that
|w1(t1)−w2(t2)| is small. Add and subtract a term w2(t1) to estimate

|w1(t1)−w2(t2)| ≤ |w1(t1)−w2(t1)|+ |w2(t1)−w2(t2)|. (4.89)

To estimate the second term here, first apply Gronwall’s inequality to the ODE
w′

2 = A(t,α2)w2 to conclude that |w2(t)| ≤ |b|eMt and then integrate this ODE
to obtain

|w2(t1)−w2(t2)| ≤ M |b|eMT |t1 − t2|.
To estimate the first term in (4.89), subtract the ODEs for wk(t) and then add
and subtract A(t,α1)w2(t) to deduce that

∣∣∣
∣
d

dt
(w1 −w2)

∣∣∣
∣ ≤ ‖A(t,α1)‖ |w1 −w2|+ ‖A(t,α1)−A(t,α2)‖ |w2|.

Integrate this inequality and apply the generalization of Gronwall’s inequality in
Exercise 3.8(a) to conclude that

|(w1 −w2)(t)| ≤ B
eMt − 1

M
,

where M is defined by (4.88) and

B = max
0≤t≤T

|b|eMT ‖A(t,α1)−A(t,α2)‖.

Combine these inequalities with the fact that A(t,α) is uniformly continuous in
α to complete your proof.
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Remark: Theorem 4.5.4 may be generalized to a (Lipschitz continuous) nonau-
tonomous nonlinear equation, say x′ = G(x, t,α). The most convenient proof of
such a result uses the trick proposed in Exercise 24.

8. For the chemostat equations (4.21) with 0 < σ < ρ/(1 − ρ), use nullclines to
show that every solution with initial conditions in the first quadrant tends to
the equilibrium (0, σ) as t → ∞.

Hint: Recall that a monotone function has a limit as t → ∞.

Remark: This problem and the next address an issue that figures heavily in the
second half of this book, i.e., the asymptotic behavior of solutions of an ODE.
In these problems the issue can be resolved with ad hoc methods. Starting in
Chapter 6, we introduce more effective tools for investigating such asymptotic
behavior.

9. (a) Prove the following lemma.

Lemma 4.7.2. Suppose F : U → R
d is continuous. If the solution x(t)

of the ODE x′ = F(x) tends to a point b∗ ∈ U as t → ∞, then b∗ is an
equilibrium of this equation.

Hint: Use the ODE to show that x′(t) has a limit as t → ∞ and then argue
that limx′(t) = 0. Incidentally, satisfying an ODE is an essential part of this
exercise; Exercise 3 in Appendix B concerns an example of a C1 bounded,
monotone increasing function g(t) (which must have a limit as t → ∞) whose
derivative does not converge.

(b) For the chemostat equations (4.21) as shown in Figure 4.5, i.e., with σ >

ρ/(1−ρ) > 0, show that every solution with initial conditions in the open
first quadrant tends to the equilibrium (σ−ρ/(1−ρ), ρ/(1−ρ)) as t → ∞.

Hint: Let x(t), y(t) be a solution of (4.21) with x(0), y(0) > 0. By solving
(4.22), deduce that x(t)+y(t) tends to σ as t → ∞. Now refer to Figure 4.10,
in which the first quadrant is divided into six regions by the nullclines and
the line {x+ y = σ}. First suppose that (x(0), y(0)) ∈ R1 ∪R2 ∪R3. Argue
that the sets R3, R2 ∪R3, and R1 ∪R2 ∪R3 are all trapping regions. Thus,
one of the following must hold:

(∃T ) s.t. (∀t ∈ (T,∞)) (x(t), y(t)) ∈ R3,
(∃T ) s.t. (∀t ∈ (T,∞)) (x(t), y(t)) ∈ R2,

(∀t ∈ (0,∞)) (x(t), y(t)) ∈ R1.
(4.90)

In each of the cases, both components of (x(t), y(t)) are monotonic functions
for large t. (Why?) Therefore, they have limits; i.e., (x(t), y(t)) tends to some
point b∗ in the first quadrant. By the lemma, b∗ must be an equilibrium,
and there is only one equilibrium.

If (x(0), y(0)) ∈ R4 ∪ R5 ∪ R6, you may truncate these sets as in Sec-
tion 4.3.2,

R̃k = Rk ∩ {(x, y) : x+ y ≤ A}, k = 4, 5, 6,
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Figure 4.10: Illustrating the regions described in Exercise 9(b).

for an appropriate constant A and proceed similarly. Truncation is needed
to show that no trajectories escape to infinity.

10. Prove the two claims regarding the order notation made in (4.70).

4.7.2 Applying the Differentiation Theorems

11. Introduction: This exercise is intended as a confidence builder; you verify formulas (4.79)
and (4.81) in a specific example by explicit solutions. It is also useful preparation for some
calculations below.

(a) Use separability to solve the IVP

dx

dt
=

α + cos t

x
, x(0) = b, (4.91)

where b �= 0.

(b) Differentiate your solution to compute ∂x/∂b.

(c) Define G(x, t, α) = (α+ cos t)/x as in (4.91), calculate DG, write out the
IVP (4.79), and show that your answer to Part (b) satisfies this IVP.

(d) Differentiate your solution to Part (a) to compute ∂x/∂α.

(e) Write out the IVP (4.81) and show that your answer to Part (d) satisfies
this IVP.

Remark: It might be more consistent to use the flow notation in this problem,
but when explicit calculations are involved, we usually find it more intuitive to
use x instead of ϕ. Note that what we are calling x depends on t, b, and α, but
we are deliberately sloppy about not indicating all these dependencies explicitly.
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12. For the Lotka–Volterra system (4.63), verify formula (4.64) for ∂ϕ2/

∂b2(t, (b1, 0)).

Hint: Recall that ϕ(t, (b1, 0)) = (b1e
t, 0). Thus ∂ϕ/∂bj satisfies an ODE w′ =

A(t)w, where

A(t) = DF(ϕ(t, (b1, 0))) =

[
1 −b1e

t

0 ρ(b1e
t − 1)

]
. (4.92)

As a warmup exercise, calculate from the explicit solution that ∂ϕ1/∂b1(t, (b1, 0)) =
et and check that w(t) = (et, 0) satisfies this ODE with initial condition w(0) =
(1, 0). Then solve the ODE with w(0) = (0, 1) and derive (4.64). As a bonus,
you may also calculate ∂ϕ1/∂b2(t, (b1, 0)), from which you can estimate the effect
of a small number of predators on the prey.

13. Introduction: Let x0(t, μ), y0(t, μ) be the solution of the IVP for the torqued pendulum
(4.24) subject to initial conditions x(0) = 0, y(0) = 0, and similarly let xπ(t, μ), yπ(t, μ) be
the solution with x(0) = π, y(0) = 0. If μ = 0, these two initial conditions are equilibria for
(4.24), so we have

[
x0(t, 0)
y0(t, 0)

]
≡
[

0
0

]
and

[
xπ(t, 0)
yπ(t, 0)

]
≡
[

π
0

]
.

Calculate the partial derivatives of x0(t, μ), y0(t, μ) and xπ(t, μ), yπ(t, μ) with
respect to μ at μ = 0; i.e., determine the ODE (4.81) that these functions of t
satisfy and solve the appropriate IVP.

Food for thought: Solutions of (4.81) for the derivative of x0, y0 involve only
decaying exponentials, while solutions of (4.81) for the derivative of xπ, yπ may
include a growing exponential. How does this different behavior relate to differ-
ences between the equilibria x = 0 and x = π?

14. Introduction: Let ϕ(t,b) be the solution of the IVP

x′ = x− y − (x2 + y2)x, x(0) = b1,
y′ = x+ y − (x2 + y2)y, y(0) = b2.

(4.93)

With the particular initial condition b∗ = (1, 0), the IVP has the solution ϕ(t,b∗) =
(cos t, sin t), which is periodic. In this exercise we invoke polar coordinates to find the solution
of the ODE (4.59) for ∂ϕ/∂bj(t,b∗). The primary challenge of the exercise is calculational;
to rephrase this more positively, the exercise offers useful practice with calculations in mul-
tivariable calculus.

(a) Write down the ODE (4.59) for ∂ϕ/∂bj(t,b∗).

Discussion: Your equation will be a linear system with variable coefficients, and
it’s not clear how to solve this equation. Let’s exploit the fact that (4.93) becomes
much simpler if it is written in polar coordinates:

r′ = r − r3, θ′ = 1. (4.94)
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Let ϕpolar(t, c) be the solution of (4.94) with initial conditions r(0) = c1, θ(0) =
c2. (For clarity we’ll write ϕcart—“cart” for Cartesian—for the solution of
(4.93).)

We introduce the notation

Ψ : (0,∞)× R → R
2, Ψ(r, θ) =

[
r cos θ
r sin θ

]

for the transformation from polar to Cartesian coordinates. Note that the inverse
Ψ−1 is multivalued, but we may define it uniquely in a neighborhood of b∗, with
Ψ−1(b∗) = (1, 0) = b∗. Then for b near b∗ we have the representation

ϕcart(t,b) = Ψ ◦ϕpolar(t,Ψ
−1(b)). (4.95)

This equation is valid for all t, even though the orbit circles the origin multiple
times. We will differentiate (4.95) with the chain rule. The formulas will be
simpler with a bit of notation: let Dϕcart be the 2 × 2 matrix with columns
∂ϕcart/∂bj and define Dϕpolar similarly with columns ∂ϕpolar/∂cj .

(b) Show that

Dϕcart(t,b∗) = DΨ(ϕpolar(t,b∗)) ·Dϕpolar(t,b∗), (4.96)

where of course

DΨ(r, θ) =

[
cos θ −r sin θ
sin θ r cos θ

]
.

Remark: From the chain rule you would expect a third factor on the right in
(4.96) from differentiation ofΨ−1, butDΨ−1(b∗) equals the identity matrix.

(c) Using the fact that ϕpolar(t,b∗) = (1, t), apply (4.59) to show that

Dϕpolar(t,b∗) = etA, where A =

[ −2 0
0 0

]
.

(d) Calculate Dϕcart(t,b∗) from (4.96).

(e) Verify that the columns ofDϕcart(t,b∗), i.e., ∂ϕcart/∂bj, satisfy your equa-
tion in Part (a).

4.7.3 Some Mopping-Up Exercises

15. Prove the comparison result from Chapter 1, Theorem 1.8.1.

Hint: Make an autonomous system out of the ODE for x in the theorem,

[
x′
1

x′
2

]
=

[
f(x1, x2)

1

]
.
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Use the function u(t) to define a set

K = {(x1, x2) ∈ R
2 : u(x2) ≤ x1}.

Show that K is a trapping region for this system.

16. In the context of Corollary 3.2.8, strengthen that result by showing that the
IVP is solvable on (−η, η), provided merely that η < δ/K.

Hint: Imitate the proof of Theorem 4.2.1.

17. Rewrite the equation εx′′+x′+x = 0 as a first-order system, draw the nullclines,
and make a flow-quadrant diagram, observing the double-arrow convention (cf.
Figure 4.9) for the fast-flow direction. Argue from your figure that after a brief
transient, a typical trajectory hugs the y-nullcline as it decays to zero.

Discussion: In Exercise 1.14, working with explicit solutions, you showed that
the approximation of setting ε = 0 in this equation gives decent results. Using
nullclines you can understand geometrically why the approximation works. For a
more complete understanding of these issues, repeat the exercise for εx′′ − x′ − x = 0.

4.7.4 Computing Exercise

18. In a programming language of your choosing, apply Euler’s method (which is
introduced in the appendix of this chapter) to solve approximately the IVP for
(4.93) with b = (0.1, 0), say for 0 ≤ t ≤ 0.5. Choose various mesh sizes h =
10−n/2, n = 2, 3, . . . , 10. Compare your calculations with the exact solution by
making a log-log plot of the errors in x(0.5) and y(0.5) as a function of h over
this range.

Remark: You will find that, as suggested by Theorem 4.9.1, the error in Euler’s
method is roughly proportional to h as the mesh size tends to zero.

The simplest improvement over Euler’s method is the unimaginatively named
“improved Euler method.” In this method also, one computes approximations
yn to x(nh), the solution of an IVP at integer multiples of the step size. In
the improved Euler method, advancing to the next approximation is a two-step
process: given yn, let

(a) yn+1/2 = yn + (h/2)F(yn), (b) yn+1 = yn + hF(yn+1/2). (4.97)

The only change from Euler’s method is that yn+1/2, the crude initial estimate
for the solution at the intermediate time (n + 1/2)h, is used in (4.97b). (After
substitution into (4.97b), yn+1/2 is discarded.) Remarkably, the simple fudge
(4.97) gives a more accurate method; as h → 0, the error tends to zero as h2. We
invite you to verify this claim on the above example with your own computations.
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4.7.5 PHD Exercises

19. In the context of Theorem 4.2.2, show that if a compact trapping region K
satisfies (4.12), the distance from the solution x(t) to ∂K remains bounded
away from zero as t → ∞.

Advice: You might as well assume that ∂K is smooth; handling the more general
case of a piecewise smooth boundary would add only technical complications.

20. Prove global existence for Duffing’s equation if the sign of friction is reversed,

x′ = y,
y′ = +βy + x− x3,

where β > 0.

Hint: You can’t get anywhere on this problem using trapping regions, because the
solution grows without bound. Likewise, Theorem 4.2.1 is useless, because the
cubic term in the force violates (4.4). Here’s a strategy that works: Calculate the
rate at which energy grows. Manipulate your result to show that dE/dt ≤ βE,
provided (x, y) lies outside some large circle, say x2 + y2 > C2. (In fact, C = 2
is sufficient.) Then extract your conclusion from this information.

21. Use the order notation to make a completely rigorous proof out of your heuristic
proof from Exercise 9 of Chapter 3 that (in the notation of that problem)

φ′(t)− [trA(t)]φ = 0.

22. Introduction: The equations
x′ = x− xy,
y′ = ρ(σ + xy − y),

(4.98)

where ρ and σ are positive parameters, are like the Lotka–Volterra equations, except that
even without predation, new predators appear at a small background rate (normalized to ρσ).
This assumption is pretty hokey when applied to foxes and rabbits, but variants of these
equations arise in certain models for the evolution of a viral infection; see [62] for details. In
this application, x measures the total population of virus cells in the patient’s body, while
y represents the body’s immune mechanism; specifically, y measures the population of what
are called effector cells.

(a) Interpret in words each term in these equations.

(b) Draw nullclines for these equations.

(c) Use the nullclines to construct trapping regions to prove global existence
in forward time for the IVP, assuming initial data in the first quadrant.

Remarks: Setting σ = 0 in (4.98) yields the Lotka–Volterra equations (4.63).
Recall that all orbits of (4.63) are periodic. Thus, the only trapping regions for
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Lotka–Volterra are regions bounded by the periodic orbits themselves. While we
were able to find explicit formulas for the orbits for the Lotka–Volterra equations,
we can’t do likewise for (4.98).

Hint: Try to construct a trapping region for (4.98) bounded in part by an orbit of
the Lotka–Volterra equations, or at least something close to an orbit. Tolerances
are small, and you have to be careful in carrying out the construction. If you
find it helpful, assume that σ is small.

23. (a) Use software to solve the IVP

(a) x′ = y, x(0) = 2,
(b) y′ = −x− zy, y(0) = 0,
(c) εz′ = − (z − x2 + 1) , z(0) = 1,

(4.99)

for t ∈ [0, 5], say for ε = 10−3, 10−6, 10−9.

Warning: Depending on what method you choose, you may encounter trou-
ble for very small ε.

(b) Show that the fast–slow approximation of setting ε = 0 reduces the three-
dimensional problem to the van der Pol system.

(c) Compare your solution in Part (a) (in cases in which you were able to get
a solution) with solutions of the van der Pol equation.

Remark: In the language of Section 10.3, (4.99) is a stiff ODE.

24. Introduction: The differentiability of the solution of the IVP (4.80) with respect to the
parameters can be proved with minimal effort using a trick of augmenting the system with
m “fake” variables corresponding to the parameters α1, . . . , αm. Specifically consider an
auxiliary variable y ∈ R

m, and let (x,y) evolve according to the system

x′ = G(x,y), x(0) = b,
y′ = 0, y(0) = α.

Apply Theorem 4.6.1 to this system to show that the solution of (4.80) is
continuously differentiable with respect to α and to derive (4.81).

25. (a) Introduction: If F ∈ C1(U), let Δ(z, z0) = F(z)−F(z0)−DF(z0) · (z−z0) be the error
in the first-order Taylor series approximation for F(z) based at z0. In this notation,
(4.69) may be rephrased as

Δ(z, z0) = o(|z− z0|).

Given a compact set K ⊂ U , show that the above estimate is uniform for
z0 ∈ K; i.e., show that for every η > 0, there is a δ > 0 such that for all
z0 ∈ K and all z with |z− z0| < δ,

|Δ(z, z0)| ≤ η|z− z0|. (4.100)
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Hint: By Corollary 3.3.3, there exist a larger compact set K′ ⊂ U and a
δ0 such that for every z0 ∈ K, the ball B(z0, δ0) is contained in K′. Apply
calculus to conclude that if |z− z0| < δ0, then

Δ(z, z0) =

{∫ 1

0

[
DF(z0 + s(z− z0))−DF(z0)

]
ds

}
· (z− z0).

Use the fact that DF is uniformly continuous on K′ to complete the argu-
ment.

(b) Prove Lemma 4.6.2.

Hint: Since A(s) = DF(x0(s)), the definition (4.74) of I1(t, ε) may be rewrit-
ten as

I1(t, ε) =
∫ t

0

Δ(x(s, ε),x0(s))ds.

Apply Part (a) with K equal to the image of [0, T ] under the base solution
x0, z = x(s, ε), and z0 = x0(s); specifically, show that

sup
0≤s≤T

|Δ(x(s, ε),x0(s))| = o(φ(ε)),

where
φ(ε) = sup

0≤s≤T
|x(s, ε)− x0(s)|. (4.101)

Show that φ(ε) = O(ε) and invoke (4.70) to finish the proof.

4.8 Pearls of Wisdom

While Theorem 4.5.1 gives control over the solution of an IVP for every finite time,
infinite times are beyond our reach: the limit of ϕ(t,b) as t → ∞ may be discontin-
uous in b. For example, the solution of the IVP for Duffing’s equation

x′ = y, x(0) = b,
y′ = −βy + x− x3, y(0) = 0,

converges to (1, 0) as t → ∞ if b > 0 and to (−1, 0) if b < 0, at least provided that
|b| is not too large. (You could probably prove this now; in any case, you will see it
proved in Chapter 6.)

As we observed in Section 4.6.3 (but it bears repeating), if b0 is an equilibrium
of x′ = F(x), we may approximate ϕ(t,b0+ εb1), the solution of an IVP with initial
conditions near b0, by b0 + εw(t), where w(t) solves the linear constant-coefficient
IVP

w′ = Aw, w(0) = b1

with the coefficient matrix A = DF(b0). This approximation, known as the lineariza-
tion of x′ = F(x) at the equilibrium, typically determines the qualitative behavior
of solutions of the full nonlinear equation near the equilibrium. (Cf. Chapter 6.)
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There is an efficient procedure for handling the linearized equations (4.59) in
numerical solutions. Given a d-dimensional autonomous ODE x′ = F(x), consider
the greatly enlarged system of dimension d + d2 with unknowns the d-dimensional
vector x(t) and a d× d matrix X(t):

x′ = F(x), x(0) = b,
X ′ = DF(x)X, X(0) = I,

(4.102)

where I is the identity matrix. Then the jth column of X(t) reproduces (4.59); thus,
the jth column of X(t) equals ∂ϕ/∂bj(t,b). To conclude: although in discussing the
theory, it is more natural to first solve the ODE and then differentiate with respect
to initial conditions, in computations it works better to attack both issues at the
same time.

4.9 Appendix: Euler’s Method

4.9.1 Introduction

Since it is rarely possible to produce explicit solutions of ODEs, we often resort
to numerical methods25 in order to obtain approximate solutions. In this section
we introduce the simplest numerical method, known as Euler’s method. We do
not propose to actually use this method as a practical source of information about
solutions of ODEs, since software employs methods that are far more accurate than
this, and their automated control of step size makes them a joy to use. Rather,
we study Euler’s method for cultural reasons, namely, it provides useful insight into
numerical methods in general, and its simplicity allows the conceptual issues to come
through more easily.

Euler’s method is an iterative process for approximating the solution of an IVP,
say

x′ = F(x), x(0) = b. (4.103)

For simplicity, let’s consider a set of evenly spaced t-values: given h > 0, we calculate
the approximations yn for x(nh) recursively according to the rule

y0 = b; yn+1 = yn + hF(yn), n = 0, 1, . . . . (4.104)

Although yn depends on h, here we follow the usual convention of not indicating this
dependence.

As an illustration, consider the time-honored scalar IVP x′ = x, x(0) = 1, which
has exact solution x(t) = et. Let’s approximate the solution on the interval t ∈ [0, 1]

25Perturbation methods, some of which are discussed in Sections 7.5 and 7.6 (among other
places), offer another valuable way of approximating solutions.
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with Euler’s method, say using a step size of h = 1/N , where N is a positive integer.
Starting from y0 = 1, we use (4.104) to generate the subsequent iterates recursively:

yn+1 = yn + hyn =

(
1 +

1

N

)
yn, n = 0, 1, 2, . . . ,

so yn = (1 + 1/N)n. To test the accuracy of the approximation, consider yn with
n = N , which should approximate x at time t = Nh = 1: as h → 0 (and thus
N → ∞), we have

yN = (1 + 1/N)N → e = x(1),

as desired.

More generally, yn provides an approximation for et for all t, but the formulation
of this behavior is made awkward by two issues: (i) the number of steps needed to
reach time t scales up as 1/h as h → 0 and (ii) any specific time t need not belong to
the set of grid points {nh : n = 0, 1, . . .} for which the approximations are computed.
Thus, on the time interval 0 ≤ t ≤ T , the convergence result for this example takes
the somewhat clumsy form

lim
h→0

max
0≤n≤T/h

|enh − yn| = 0.

A convergence result for the general case is given in Theorem 4.9.1 below.

4.9.2 Theoretical Basis for the Approximation

We offer three motivations26 for Euler’s method. All three motivations begin with
the limited goal of understanding the first step in (4.104), which we may rephrase as

x(h) ≈ x(0) + hF (x(0)). (4.105)

(For simplicity, we assume temporarily that we are solving a scalar equation.)

Motivation 1: (Tangent line) Interpreting the derivative geometrically (see Fig-
ure 4.11), we see from the ODE that the slope of the solution curve through (0, x(0))
equals F (x(0)). Thus, we may estimate x(h) by following the tangent line, resulting
in the approximation (4.105).

Motivation 2: (Finite differences) Using the difference quotient approximation

x(h)− x(0)

h
≈ x′(0) = F (x(0)),

26For Euler’s method, all three motivations produce the same formula, but for advanced nu-
merical methods, different approximation formulas may result from starting with one or another of
these three points of view.
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Figure 4.11: Schematic illustration of one iteration of Euler’s method. Note the
discrepancy between the exact solution x(h) and its Euler’s method approximation y1.

we again obtain (4.105).

Motivation 3: (Integral equation) Reformulating the IVP as an integral equation,

x(h) = x(0) +

∫ h

0

F (x(s)) ds,

we derive (4.105) from a one-term Riemann-sum approximation for the integral.

The continuation of Euler’s method may seem like an act of desperation. It is
extremely unlikely that the point (h, y1) will lie on the exact solution curve (see
Figure 4.11). Nevertheless, it is the best information we have about the solution.
Therefore, we will use that point as the starting point for another iteration of Euler’s
method; i.e., we let y2 equal the Euler approximation to the solution of x′ = F (x)
through the point (h, y1). All subsequent steps are derived similarly. One may well
wonder about an approximation in which each step is based on increasingly faulty
information, especially since as h → 0, more and more steps are required to advance
a finite time. However, as we show in the next subsection, the accumulated error in
the numerical solution actually tends to zero with h.

4.9.3 Convergence of the Numerical Solution

If F is defined everywhere, then the definition (4.104) of yn remains meaningful for
arbitrarily large n, even if the solution x that is being approximated blows up in finite
time. However, if F is defined only on a subset U ⊂ R

d, then some iterate yn may lie
outside U , so the iteration would halt. This possibility is addressed in Conclusion (i)
of the following theorem, which has much in common with Theorem 4.5.1.
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Theorem 4.9.1. Suppose F : U → R
d is locally Lipschitz, and let x(t), 0 ≤ t < β,

be a solution in forward time of x′ = F(x) with initial condition x(0) = b. (i) For
every positive T < β, there exists a positive constant h0 such that if h < h0, then
the iterates yn are defined for all n such that nh ≤ T . (ii) There are constants C,L
such that if h < h0, then

|x(nh)− yn| ≤ CheLnh, for 0 ≤ nh ≤ T.

Remark: Note that Conclusion (ii) implies the uniform error estimate

|x(nh)− yn| ≤ CheLT .

Proof. Choose a compact subset K ⊂ U and a constant δ > 0 such that

(∀t ∈ [0, T ]) B(x(t), δ) ⊂ K ⊂ U .

We define the constants: let C = maxK |F|, let L be a Lipschitz constant for F|K,
and let h0 = e−LT δ/C. We compute yn for as many iterations as nh ≤ T and yn ∈ K,
say n ≤ N . Note that yN ∈ K, so that it is possible to calculate at least one more
iterate, yN+1.

The solution x satisfies the integral equation

x(t) = b+

∫ t

0

F(x(s)) ds.

In order to derive an analogous integral equation for the approximate solution, we
construct a piecewise constant function on [0, (N +1)h] as follows: for t < (N +1)h,
let

y(h)(t) = yn for nh ≤ t < (n+ 1)h,

and at the right-hand endpoint define y(h)((N + 1)h) = yN+1. Note that

∫ (n+1)h

nh

F(y(h)(s)) ds = hF(yn),

the integrand being constant. Therefore, at the grid points,

y(h)(nh) = b+

∫ nh

0

F(y(h)(s)) ds , n = 0, 1, 2, . . . , N + 1.

Moving off grid points, we obtain the desired integral equation

y(h)(t) = b+

∫ t

0

F(y(h)(s)) ds−
∫ t

nh

F(y(h)(s)) ds,
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where n is the largest integer such that nh ≤ t.

For 0 ≤ t ≤ min{T, (N+1)h}, let g(t) = |x(t)−y(h)(t)|. Subtracting the integral
equations for x(t) and y(h)(t), we deduce that

g(t) ≤
∫ t

0

|F(x(s))− F(y(h)(s))| ds+
∫ t

nh

|F(y(h)(s))| ds,

where again n is the largest integer such that nh ≤ t. Note that in the integrands,
we have x(s), y(h)(s) ∈ K. By Lipschitz continuity, the first term here satisfies

∫ t

0

|F(x(s))− F(y(h)(s))| ds ≤ L

∫ t

0

g(s)ds,

and by the definition of C, the second satisfies

∫ t

nh

|F(y(h)(s))| ds ≤ Ch.

Thus, by Gronwall’s inequality (extended to piecewise continuous functions),

g(t) ≤ CheLt, 0 ≤ t ≤ min{T, (N + 1)h}. (4.106)

Regarding Conclusion (i): If (N + 1)h < T , then taking t = (N + 1)h in (4.106),
we see that

|yN+1 − x((N + 1)h)| ≤ CheL(N+1)h < CheLT < δ,

so yN+1 ∈ K; i.e, the iteration would continue. Inequality (4.106) verifies Conclu-
sion (ii).

By (4.106), the errors produced by Euler’s method may be expected to be on
the order of h to the first power. This apparently good news is actually bad news.
Contrast this error estimate with, for example, the error in the fourth-order Runge–
Kutta algorithm (RK4), which is of order h4. Thus, if the step size is halved, the
error in Euler’s method is merely halved, while the error in the RK4 method27 is
decreased by a factor of 16. To achieve high accuracy with Euler’s method, the step
size must be chosen painfully small; this wastes computational time and also raises
round-off issues [65].

Much effort has gone into devising highly accurate numerical methods for solving
ODEs. In Exercise 18, we describe one simple improvement over Euler’s method,
but for serious further study see the cautionary examples in Section 10.3 and the
references in that section.

27Typically, in software h is chosen automatically, so the convergence rate is not readily apparent
to the user.



Chapter 5

Nondimensionalization and Scaling

The preceding chapter had some pretty heavy analysis, and the next has even more.
In what may be welcome relief, the present chapter pushes in an orthogonal di-
rection: it focuses on nondimensionalization and scaling, which are techniques for
simplifying ODEs that arise in applications. In the hands of a skilled user, they can
provide insights far beyond any reasonable expectation. This power is illustrated by
the following anecdote about G.I. Taylor, a distinguished twentieth-century British
physicist/applied mathematician. Using this kind of analysis, he estimated the power
of one of the early tests of the atomic bomb [86], based on only a series of photographs
from the cover of a popular magazine of the fireball following the explosion! His es-
timate was so accurate that it led to suspicions about a possible security leak! (Cf.
Chapter 14 of [6].)

In Section 5.1 we briefly introduce the types of applications we consider in this
text. In Sections 5.2–5.7 we apply the scaling methodology to a variety of ODEs.
(For brevity, we shorten “nondimensionalization and scaling” to “scaling.”) Some
general comments and advice on the use of scaling are collected in the Pearls.

The only effective way to learn scaling is through specific examples. For that
reason, in this chapter we have applied the technique to quite a few different ODEs.
It’s possible that you will grow weary of an uninterrupted diet of such examples. If
so, here is a suggestion: at a bare minimum read through the end of Section 5.3,
read Section 5.6, and read Section 5.9.1; then return to read other sections as need
or interest dictates. However, we add one comment: these ideas are both elegant
and powerful; don’t give them short shrift.

© Springer Science+Business Media New York 2016
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Figure 5.1: (a) Schematic of a bead on a rotating wire hoop, described by (5.1).
(b) A less contrived, mathematically equivalent, system: one of the components of
Watt’s centrifugal governor for steam engines. (See Meiss [54] pp. 159–160, Exer-
cise 3, for more information.)

5.1 Classes of ODEs in Applications

The applications in this text may be grouped into three broad classes: mechanical,
electrical, and “bathtub” models. Our coverage is slanted toward the physical and
biological sciences;1 the social sciences, even economics, are not broached.

5.1.1 Mechanical Models

Mechanical systems that we encountered in Chapter 1 include spring–mass systems,
the pendulum, and Duffing’s equation. The infamous Lorenz system, introduced in
Exercise 3a of Chapter 4, also has a basis in mechanics. Of course, the whole field
of ODEs got started with the mechanics of planetary motion.

Usually, the ODE for the motion of a mechanical system can be derived from
Newton’s second law: mass times acceleration equals the sum of the forces. Let’s
illustrate this by deriving the equations of motion of a bead sliding on a wire hoop
that is rotating about a vertical axis, as illustrated in Figure 5.1(a). Let m be the
mass of the bead, 
 the radius of the hoop, and ω the (constant) speed of rotation.
The motion of the bead is purely tangential; if x measures its angular position
(in radians) as a function of time, then the tangential acceleration is the radius 

times the second derivative2 d2x/dt̂2. There are three forces acting on the bead:

1Even with this restriction, we are forced to omit many interesting problems; just to cite one
example, reference [96] studies ODEs derived from neural models that do not belong to any of our
three categories.

2Regarding the notation d2x/dt̂2: At this point, we introduce the convention of putting hats
over variables—but not parameters—that have dimensions. Time has dimensions, but since x is
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(i) gravity, whose projection onto the tangential direction is −mg sin x; (ii) friction,
which we model (with the usual oversimplification) as proportional to dx/dt̂; and
(iii) centrifugal force from rotation about the vertical axis. Centrifugal force from
rotation at speed ω in a circle of radius 
 sin x equals m(
 sin x)ω2; projection of this
force, which is directed outward, onto the tangential direction adds a factor of cos x.
Thus, Newton’s law gives us

m

d2x

dt̂2
= −b

dx

dt̂
−mg sin x+m
ω2 sin x cos x. (5.1)

If ω = 0, then (5.1) reduces to the pendulum equation, (1.26) with damping added.

In Exercise 5 we ask you to scale this equation, which reduces the number of
parameters from five to two.

5.1.2 Electrical Models

Van der Pol’s equation (1.33) arose in modeling an electrical circuit. Although we
presented the torqued-pendulum equation (4.24) in Chapter 4 as a mechanical sys-
tem, this equation also describes an electrical device, the Josephson junction (see
Strogatz [81], Section 4.6). Interesting ODEs with an electrical basis also occur in
models for nerve cells, as in the FitzHugh–Nagumo equations introduced in Exer-
cise 11 and the Morris–Lecar model in Section 9.8. The Chua circuit [53] provides
another equation of electrical origin; although this equation exhibits fascinating be-
havior, we do not study it in this book.

Equations for circuit models may be derived from Kirchhoff’s laws plus informa-
tion about the current–voltage characteristics of the various devices in the circuit.
For biologically based models, to understand current–voltage characteristics, one
needs to discuss physiological issues as well. We do not attempt to cover any of this
background, which can be found online.

5.1.3 “Bathtub” Models

We borrow the phrase bathtub model from Ellner and Guckenheimer [20]. This
tongue-in-cheek phrase describes models in which a population (of animals, cells,
nutrients, biomolecules etc.) is divided into various categories (bathtubs), and the
ODEs track the flow of individuals (water) from one category to another. Two ex-
amples that fit into this category are the various versions of the Lotka–Volterra equa-
tions in Section 1.6, in which the populations consist of animals, and the activator–
inhibitor equations (4.30), in which the populations consist of biomolecules. Strictly

measured in radians, it does not. Although this may seem obscure at the moment, we hope that the
discussion in Section 5.2 will clarify the reasons for this convention. In the meantime, we suggest
that you simply ignore the hats.
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Figure 5.2: Schematic illustration of the Sel’kov glycolysis model (5.2).

speaking, the populations in such models are usually integers, but if populations are
large, an integer variable may be approximated by a continuous variable.

Biologists often use a schematic diagram to enumerate the terms in bathtub
models that arise in their field. We illustrate this in Figure 5.2 for Sel’kov’s toy
model [71] for the positive feedback in the first step of glycolysis (the metabolic
process of converting sugar into energy; see [47], Section 1.5, for more explanation).
The governing ODEs are

dx̂/dt̂ = A−Bx̂− Cx̂ŷ2,

dŷ/dt̂ = Bx̂+ Cx̂ŷ2 −Dŷ,
(5.2)

where A,B,C,D are positive parameters. (Recall that hats over variables indicate
that they have dimensions. For now, you may safely ignore these hats.) Figure 5.2
shows a graph with two vertices, which correspond to the two concentrations x̂, ŷ
in (5.2). The vertices are the bathtubs3 in the phrase “bathtub model.” The graph
has four (directed) edges, with labels taken from coefficients in (5.2). The edges
correspond to the following four processes:

A : Continuous addition of X to the system.
B : X decays to Y.
C : The decay of X is enhanced by Y.
D : Y decays to an inert product.

The terms Bx̂ and Cx̂ŷ2 appear in both equations because these two processes affect
both concentrations. In process D, when we say that Y decays to an inert product,
we mean a product that has no influence on the concentrations of X or Y; the product
is actually crucial for subsequent processes in glycolysis.

Typically, in bathtub models there are several processes causing movement from
one category to another, and it is a wonderful simplification that, as above, equa-
tions describing the overall evolution may be obtained simply by adding the rates
associated with the various processes. We bore our students by saying frequently,

3Sel’kov’s model is represented more literally as a bathtub model in the cartoon on the fron-
tispiece.
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“This simplification makes it easy to formulate differential equations describing phys-
ical processes. The challenge lies in solving them, which is good news for keeping
mathematicians employed.”

Concluding remarks: (i) Since the dependent variables in a bathtub model usually
represent populations of some kind, they must be nonnegative. (ii) The edges in a
schematic graph such as Figure 5.2 enumerate the terms in the ODE but do not
specify their exact functional form. Note the different meanings of the edges in
Figure 5.2: in Processes A, B, and D, the arrows represent flow into or out of a tub,
while in Process C, the arrow represents changes to a reaction rate rather than flow
per se. A reaction can be either promoted (as in Process C here) or inhibited (see
Section 5.6).

5.2 Scaling Example 0: Two Models from Ecology

As a gentle introduction to scaling, in this section we apply the technique to two
population models from Chapter 1.

(a) The logistic equation: The most general scalar logistic equation is

dx̂

dt̂
= Ax̂−Bx̂2. (5.3)

Let’s ask to what extent this general equation can be simplified by introducing scaled
variables, say

x =
x̂

X
, t =

t̂

T
,

where X,T are positive constants. We substitute these scaled variables into (5.3)
and manipulate the result to obtain

dx

dt
= AT x−BTX x2.

If we choose T = 1/A, X = A/B, we can reduce (5.3) to

x′ = x(1− x),

in which the constants A,B have disappeared!

Why is T = 1/A a convenient unit of time? As we know, if the population is small,
then solutions of (5.3) grow exponentially, like eAt̂. If we measure time in human-
centered units—like days, months, etc.—then we have to live with whatever value of
the constant A that this choice of units forces on us. However, by measuring time
in units of the characteristic growth time of the exponential eAt̂, we have effectively
scaled the (linear) growth rate to unity.
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Similarly, using X = A/B as a unit of population eliminates the coefficient of the
nonlinear term in (5.3). This choice of unit also has a natural interpretation for the
ODE: x̂ = A/B is the population at which the linear growth term Ax̂ balances the
nonlinear decay term Bx̂2, i.e., the equilibrium population.

To conclude, there really is only one logistic equation, provided you are willing
to measure time and population in equation-appropriate units.

It might seem more natural to use unadorned notation (i.e., without hats) for the
variables in the dimensional equation (5.3) and to use hats in the scaled equation. Af-
ter all, we first encounter the equations in dimensional form, and the scaled variables
are then derived from the dimensional variables. However, since we quickly pass from
the dimensional equations to the nondimensional equations and then spend most of
our time analyzing the latter, we reserve the simpler notation for the dimensionless
equations.

(b) The Lotka–Volterra equations: Let’s try for the same simplification of the
most general Lotka–Volterra equations,

(a) dx̂/dt̂ = Ax̂−Bx̂ŷ,

(b) dŷ/dt̂ = Cx̂ŷ −Dŷ.
(5.4)

Thus, we want to introduce scaled variables

x =
x̂

X
, y =

ŷ

Y
, t =

t̂

T
. (5.5)

Immediately, a key difference from the preceding example grabs our attention: there
are only three parameters in (5.5), but there are four coefficients in (5.4). Thus,
it seems unlikely that we can eliminate all four coefficients, but let’s plunge ahead
regardless. Equation (5.4) has the equilibrium solution x̂ = D/C, ŷ = A/B. Let’s
use these values as our scales for the population; i.e., in (5.5) we choose

X = D/C, Y = A/B. (5.6)

Letting T be undetermined for the time being, we substitute (5.5) into the Lotka–
Volterra equations to obtain

dx/dt = AT (x− xy),
dy/dt = DT (xy − y).

(5.7)

We can choose T to simplify a coefficient in either equation, but no choice of T will
work for the coefficients in both equations.

This difficulty represents a real phenomenon. The parameters A and D are the
growth rate for the prey and death rate for the predators, respectively. As suggested
by Table 5.1, for different systems, D/A can assume vastly different values. Without
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Predator Prey Size of D/A

Whales Plankton Tiny
Wolves Deer Order unity
Germs Humans Huge

Table 5.1: Various predator–prey systems displaying extremes of predator death rate
and prey growth rate.

A
D = ?

A
D = ?

x x0
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Figure 5.3: Orbits of the Lotka–Volterra equation (5.7) through the point (1, 1/10)
for two different choices of D/A. Can you determine which panel is for D/A = 1

5

and which is for D/A = 5?

going to such extremes, suppose for example that D/A = 1/5; then in the half-life of
the predators, the prey (without predation) would multiply by a factor of 25 = 32,
whether you measure time in microseconds, in centuries, in units derived from the
ODE, or whatever. On the other hand, if D/A = 5, then in a predator half-life, the
prey would increase only by a factor of 21/5 ≈ 1.149. In other words, two different
systems, say (5.4) with one set of parameter values in which D/A = 1/5 and with
another set in which D/A = 5, will behave differently; it is not reasonable to expect
scaling to remove differences in their behavior. Indeed, Figure 5.3 illustrates a typical
trajectory for each of these cases; can you puzzle out for which case D/A = 1/5 and
for which D/A = 5? (No computing. That’s cheating! )

To dig deeper, let’s consider dimensions. Every variable and parameter in (5.4)
has physical units. For example, the variables x̂, ŷ, and t̂ have units of number of
prey, number of predators, and time, respectively. We summarize this information
in the self-explanatory notation

U(x̂) = #prey , U(ŷ) = #predator , U(t̂) = time .

The units of the parameters in (5.4) may be determined from the principle that all
terms in an equation must have the same units. Applying this principle to the first
term in (5.4a), we obtain



168 Chapter 5. Nondimensionalization and Scaling

U

(
dx̂

dt̂

)
= U(Ax̂) = U(A)U(x̂).

Making these units explicit, we deduce that

#prey

time
= U(A) #prey , so U(A) =

1

time

where we have canceled #prey . Similar analysis of (5.4b) yields U(D) = 1/ time .
Thus, the ratio D/A is dimensionless; i.e., the ratio will remain unchanged no matter
what units are employed.

To summarize: while all parameters in (5.3) could be eliminated through scaling
to obtain a unique simplified equation, the best we can hope for with (5.4) is a one-
parameter family of simplified equations. Indeed, if we choose T = 1/A, then (5.7)
may be rewritten

dx/dt = x− xy,

dy/dt = ρ(xy − y),
(5.8)

where ρ = D/A is the (dimensionless) parameter that cannot be scaled away.

Let’s push a little further. For the nonlinear terms in (5.4) to have the same units
as the other terms, we need

#prey

time
= U(B) #prey #predator and

#predator

time
= U(C) #prey #predator ,

which implies that

U(B) =
1

time #predator
and U(C) =

1

time #prey
.

Note that for the x-scale (5.6),

U(X) =
U(D)

U(C)
= #prey ,

so that the scaled variable x = x̂/X is dimensionless. Similarly, U(Y ) = #predator ,
so y is also dimensionless. This behavior is typical—a scale for a variable that
simplifies the equation will normally make the scaled variable dimensionless, and
conversely.

Incidentally, it is meaningless to speak of a quantity with nontrivial units being
either large or small. Let’s support this statement with an apparently outrageous
assertion: one normally thinks of the speed of light as a very large quantity, but
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in fact, it is only 2 × 10−6 in our choice of units—we use astronomical units per
millisecond.4 The speed of light is fast compared with velocities encountered in
ordinary (for human beings) circumstances, like the speed of sound or the speed of
a runner. Mathematically, this means that the dimensionless ratio of the speed of
light divided by a typical reference speed is large.

5.3 Scaling Example 1: A Nonlinear Oscillator

Consider the equation

m
d2x̂

dt̂2
+ b

dx̂

dt̂
+ k1x̂+ k2x̂

3 = 0, (5.9)

where all constants are positive.5 Regarding units, for the variables we have

U(t̂) = time , U(x̂) = length ,

and of course U(m) = mass , so

U

(
m

d2x̂

dt̂2

)
=

mass length

time 2
.

From this information we may deduce the units of the other parameters in (5.9). For
example, requiring consistent units between the first and second terms gives us

mass length

time 2
= U

(
b
dx̂

dt̂

)
= U(b)

length

time
,

from which it follows that U(b) = mass / time , as given in Table 5.2. The other
entries in the table may be verified similarly.

We begin nondimensionalization and scaling by asking two basic questions:

• What dimensionless quantities can be constructed from the parameters in the
problem by forming products of powers, i.e., quantities of the form

mα bβ kγ
1 k

δ
2,

where the exponents α, β, γ, δ may be chosen arbitrarily?

4Would you prefer light-years per year? Unity is such a nice velocity.

5Thus, this equation differs from Duffing’s equation (1.28) in that the linear part of the force
law, k1x̂, is attracting. This sign difference has no effect on scaling the equation; it just makes
interpretation of the time scale T =

√
m/k1, which we introduce below, slightly more transparent.
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Variables Description Units

t Time time

x Length length

Parameters

m Mass mass

b Friction coefficient mass / time

k1 Linear spring constant mass / time 2

k2 Nonlinear spring constant mass / length 2 time 2

Table 5.2: Units of quantities in equation (5.9).

• How can the equations be simplified by introducing scaled variables,

x = x̂/L, t = t̂/T? (5.10)

Regarding the first question, we find from Table 5.2 that

U(mα bβ kγ
1 k

δ
2) = mass α+β+γ+δ time −β−2γ−2δ length −2δ.

Requiring this to be dimensionless means that we must have

α + β + γ + δ = 0,
β + 2γ + 2δ = 0,

δ = 0.

This is a system of three homogeneous linear equations in four unknowns, and the
coefficient matrix has rank 3, so there is one linearly independent solution. For this
we may take β = 1, α = γ = −1/2, which gives the dimensionless quantity b/

√
mk1.

To address the second question, let’s substitute (5.10) into (5.9); after dividing
the equation by mL/T 2, we have

d2x

dt2
+

bT

m

dx

dt
+

k1T
2

m
x+

k2L
2T 2

m
x3 = 0.

We want to choose L and T to make the three coefficients

bT

m
,

k1T
2

m
,

k2L
2T 2

m
(5.11)

as simple as possible. Since the effect of L and T is mixed together in the third
coefficient in (5.11), it makes sense to choose T first: we let T =

√
m/k1 to make
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the middle coefficient equal to unity,6 so the ODE becomes

d2x

dt2
+

b√
mk1

dx

dt
+ x+

k2L
2

k1
x3 = 0.

Note that the coefficient of the first-order derivative is our dimensionless quantity,
b/
√
mk1; the choice of length scale will not affect this coefficient. However, we may

simplify the nonlinear term by choosing L =
√

k1/k2, which reduces the equation to

d2x

dt2
+

b√
mk1

dx

dt
+ x+ x3 = 0. (5.12)

We have now achieved maximum simplicity: all coefficients in the equation are either
simple numbers—in this case, unity—or the dimensionless quantity constructed in
answering Question 1.

The task of scaling is not complete until you have interpreted the dimensionless
quantities in Question 1 and the scale parameters T and L in Question 2. To this
end, let’s compare (5.9) with the linear equation

m
d2x̂

dt̂2
+ b

dx̂

dt̂
+ k1x̂ = 0, (5.13)

extracting three points.

• If b = 0 (no friction), then (5.13) has trigonometric solutions cos(
√
k1/m t)

and sin(
√
k1/m t). The time scale T derives from the period 2π

√
m/k1 of

these linear oscillations.

• If b is small, the oscillations have approximately the same period but decay as
e−bt/2m. Over the duration of the time scale T , the oscillations decay by a factor
of e−bT/2m = e−b/2

√
mk1 . The dimensionless parameter b/

√
mk1 is a measure of

the strength of friction compared to other relevant effects in the equation.

• In the force law of the full equation (5.9), the linear term k1x̂ dominates for
small x̂, while the cubic term k2x̂

3 dominates for large x̂. The length-scale
parameter L =

√
k1/k2 separates the two regimes ; it is the displacement where

the nonlinear and linear forces are exactly equal.

In some ways, scaling as in (5.10) is analogous to scientific notation, in which very
large or small quantities are written as a number on the order of unity times a power
of 10. For example, the speed of light in meters/second (more reasonable units than

6What about choosing T = m/b to simplify the first coefficient? In Section 5.9, we argue that
provided friction is not too large, the spring constant k1 provides a more useful basis for scaling
than b. But such choices are rarely cut-and-dried.
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above) is 2.9979 × 108. Similarly, in scaling we write the dimensional variable x̂ as
a product x̂ = xL. The scale factor L, which is analogous to the power of 10, might
represent the separation between two atoms in a large organic molecule, a typical
extension length of a spring in a laboratory, the distance from the sun to a planet, or
whatever; for the mathematics, it does not matter which. In studying the equation,
it releases brain cells for more creative tasks if you focus on the nondimensional
formulation of the problem in terms of x and push L into the background.

Here is another perspective on the importance of dimensionless quantities: no one
parameter in (5.13) by itself determines the behavior of solutions of this equation.
For example, one may change two parameters in such a way that each change com-
pensates for the other and the behavior of the system is unchanged (apart from scale
factors). By contrast, problems for which the dimensionless combination b/

√
mk1 is

large and for which it is small are genuinely different systems. Thus, for instance,
the difference between underdamped, overdamped, and critically damped, defined in
Section 1.4.1, depends on the size of b/

√
mk1.

5.4 Scaling Example 2: Sel’kov’s Model for Glycolysis

The dimensional formulation (5.2) of Sel’kov’s model,

dx̂/dt̂ = A−Bx̂− Cx̂ŷ2,

dŷ/dt̂ = Bx̂+ Cx̂ŷ2 −Dŷ,
(5.14)

was introduced as part of the discussion of bathtub models in Section 5.1.3. In
this section we show how to reduce (5.14) to the simpler system (4.32) analyzed in
Chapter 4.

In Exercise 1 we ask you to perform the first two steps of this reduction, beginning
with the following:

• Verify the units of the coefficients A,B,C,D given in Table 5.3.

Note that both the concentrations x̂ and ŷ have units of molarity. (Since the two
equations contain identical terms, for (5.14) to be dimensionally consistent, x̂ and ŷ
must have the same units.) It is not necessary to understand what molarity means
to do this exercise;7 you may simply treat molarity as a fundamental unit to be

7However, to support scientific literacy we explain molarity in the Pearls. One point is relevant
here: concentration in molarity is based on counting molecules per unit volume, not mass per unit
volume. This choice allows one to readily compare the concentrations of the different substances X
and Y, and it is responsible for the pleasant feature that the coefficients of the terms Bx̂ and Cx̂ŷ2

have equal magnitudes in both equations (5.14).
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Variables Description Units

t̂ Time time

x̂, ŷ Concentrations molarity

Parameters

A Addition rate molarity / time

B,D Decay rates 1/ time

C Nonlinear enhancement of decay 1/ molarity 2 time

Table 5.3: Units of quantities in Sel’kov’s model, (5.2). As explained in the Pearls,
molarity means moles per liter of solution.

manipulated along with other units. Thus for example, matching units of terms in
the first equation in (5.14), we see that

U(A) =
molarity

time
.

As a second task, we ask you to

• Determine what dimensionless parameters may be constructed from the coef-
ficients A,B,C,D in (5.14).

Specifically, show that there are exactly two independent dimensionless combinations
AαBβCγDδ of the parameters, which we may take to be

ρ = A

√
C

D3
, σ =

B

D
. (5.15)

Usually, in scaling a 2× 2 system we would introduce separate scale parameters
for x̂ and ŷ. However, in the present context we want to preserve the fact that the
terms Bx̂ and Cx̂ŷ2 appear with equal coefficients in both equations, so we use the
same scale parameter Y for both variables. Thus, we substitute

x = x̂/Y, y = ŷ/Y, t = t̂/T

into (5.2), which yields

dx/dt = AT/Y − BT x− CTY 2 xy2,

dy/dt = BT x+ CTY 2 xy2 −DT y.
(5.16)
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We choose T = 1/D to simplify the decay term proportional to y in the second
equation, and we choose Y =

√
D/C to simplify the terms proportional to xy2 in

both equations. These choices result in the equations

dx/dt = ρ− σx− xy2,
dy/dt = −y + σx+ xy2,

(5.17)

where ρ, σ are defined by (5.15), which is the form of Sel’kov’s model we analyzed in
Chapter 4. We ask you to check that x, y, t are all dimensionless.

It remains to interpret the scaling. The parameter ρ may be viewed as the rate at
which X is being added to the system, relative to other scales in the problem, and σ
is the ratio of the uncatalyzed reaction rate X →Y to the decay rate of Y . The time
scale T is based on the decay rate of Y to an inert product. As occasionally happens,
the concentration scale Y is rather unilluminating: if both x̂ and ŷ equal Y , then
Cx̂ŷ2, the catalyzed contribution to the reaction X →Y , equals Dŷ, which specifies
the decay of Y . However, even if its interpretation is uninspiring, this choice for Y
gives simple dimensionless equations.

5.5 Scaling Example 3: The Chemostat

The chemostat involves flow through a reactor. Elementary ODE books often pose
flow problems, but they seem to cause students an undue amount of trouble. There-
fore, before introducing the chemostat, we review such problems.

5.5.1 ODEs Modeling Flow Through a Reactor

Consider the configuration indicated in Figure 5.4. A chemical X is dissolved in water
in a tank; the tank is well-stirred, which means that the concentration of X is uniform
throughout the tank. Water containing the chemical in constant concentration C is
added to the tank at the rate r1. The well-stirred mixture is drawn off at a rate r2.
The state of the system at every time is specified by V̂ , the volume of mixture in the
tank, and x̂, the concentration of the chemical in the mixture. (Let’s measure x̂ in
mass per unit volume rather than molarity; see Table 5.4.)

The first variable evolves according to the obvious equation

dV̂

dt̂
= r1 − r2,

at least as long as V̂ > 0.

The equation for x̂ is best accessed by considering the total mass of X in the
tank, i.e., V̂ x̂. We claim that this amount evolves according to the equation

d

dt̂
(V̂ x̂) = r1C − r2x̂.
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r1

r 2

Figure 5.4: Schematic of the flow problem considered in Section 5.5.1: An aqueous
solution containing a chemical of constant concentration C flows at a rate r1 into a
continuously stirred tank, and the mixture drains from the tank at a rate r2.

Variables Description Units

t̂ Time time

V̂ Volume volume

x̂ Concentration mass / volume

Parameters

r1 Addition rate volume / time

r2 Withdrawal rate volume / time

C Concentration in feed mass / volume

Table 5.4: Units of quantities in the reactor model model in Section 5.5.1.

To derive this equation, consider how the mass changes in a short time interval
(t̂, t̂ + Δt). In time Δt, a mass of X equal to (r1Δt)C is added to the mixture.
Similarly, in the same time interval, a mass of dissolved substance approximately
equal to (r2Δt)x̂(t̂) is withdrawn from the tank; this estimate is only approximate,
since x̂ varies over time, but it will be nearly constant over a short time interval.
Thus,

(V̂ x̂)(t̂+Δt)− (V̂ x̂)(t̂) ≈ Δt r1C −Δt r2x̂(t̂);

dividing by Δt and passing to the limit Δt → 0, we get the above equation.

While these equations are perhaps too trivial to nondimensionalize, we think you
may find it instructive to verify explicitly that

U(V̂ x̂) = U((r1Δt)C) = mass .
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As an important special case, suppose r1 = r2, and write r for the common value.
In this case, the volume V̂ is a constant, say V , and the concentration equation
simplifies to

dx̂

dt̂
= (r/V )(C − x̂). (5.18)

The general solution of this linear equation, particular solution plus homogeneous
solution, is

x̂(t̂) = C + const e−(r/V )t̂.

Thus, the concentration x̂ converges exponentially to the concentration C of the feed
at the rate r/V .

5.5.2 The Chemostat

A chemostat is a primarily a humdrum device in the laboratory for maintaining a
population of bacteria in a state always ready for experiments. The bacteria live
inside a reactor. A solution containing dissolved nutrients is added continuously
to the reactor, and the contents of the reactor—a mixture containing bacteria plus
whatever nutrients the bacteria have not consumed—are drained off at the same rate.
The tank is well stirred, so both bacteria and nutrients are uniformly distributed
throughout the reactor.

The state of the system is specified by two variables, the bacteria population
per unit volume in the chemostat, x̂, and the concentration of nutrients, ŷ. These
variables evolve according to the ODEs

dx̂

dt̂
= A

ŷ

K + ŷ
x̂− r

V
x̂,

dŷ

dt̂
= −B

ŷ

K + ŷ
x̂+

r

V
(C − ŷ),

(5.19)

where A,B,C,K, V, r are positive constants. The terms in (5.19) are indicated
schematically in Figure 5.5. In the linear terms of either equation, C, V , and r

have the same meanings as above: C is the concentration of nutrients in the feed, V
is the volume of the reactor, and r is the rate at which fluid is added to and drained
from the tank. In the nonlinear terms, say in the second equation, B and K describe
the consumption of nutrients by the bacteria. At low concentrations of nutrients
(ŷ 
 K), the consumption rate is proportional to the density of nutrients ŷ; but at
high concentration, the rate saturates at a level independent of ŷ. (A bacterium can
eat only so fast.) The nonlinear term in the first equation expresses the assumption
that the growth of the bacteria is proportional to the consumption of nutrients.

As listed in Table 5.5, the units of x̂ and ŷ are number of cells per unit volume
and mass per unit volume, respectively. In Exercise 1 we ask you to (i) verify all the
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Y

r
V

r
V

A

X

C

B

Figure 5.5: Schematic diagram of the chemostat model (5.19). The arrow labeled B
does double duty: it represents a reaction that depletes the concentration of Y, and
it indicates that Y promotes the reaction through which X grows.

Variables Description Units

t̂ Time time

x̂ Cell population #cells / volume

ŷ Nutrient concentration mass / volume

Parameters

A Bacterial growth rate 1/ time

B Consumption rate mass / #cells time

K Saturation concentration mass / volume

C Concentration in feed mass / volume

V Volume of reactor volume

r Feed rate volume / time

Table 5.5: Units of quantities in the chemostat equations, (5.19).

dimensions listed in the table and (ii) apply the usual technique to show that exactly
two independent dimensionless parameters AαBβCγKδV εrζ may be constructed from
these parameters, which we may take to be

ρ =
r

V A
and σ =

C

K
. (5.20)

Let’s introduce scaled variables

x =
x̂

X
, y =

ŷ

K
, t =

t̂

T
. (5.21)

We will choose X and T by substituting (5.21) into (5.19) and making the equations
as simple as possible. By contrast, we specify the ŷ-scale a priori as the saturation
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levelK in the consumption terms in (5.19); this choice simplifies the factors ŷ/(K+ŷ).
If we take T = 1/A and X = KA/B, we obtain the scaled equations

dx

dt
=

y

1 + y
x− ρx,

dy

dt
= − y

1 + y
x− ρ(y − σ),

(5.22)

where ρ, σ are given by (5.20), which is the form (4.21) studied in Chapter 4. Check
that x, y, t are dimensionless.

Regarding interpretation of the scaling: regrouping the factors in (5.20) as ρ =
(r/V ) /A, we see that ρ is the ratio of two rates: r/V is the “turnover” rate at which
the feed changes the concentration of nutrients in the tank, and A is the bacterial
growth rate under conditions of ample food. The other dimensionless parameter,
σ = C/K, is the ratio of two concentrations. The time scale T is set by the bacte-
rial growth rate. As noted above, the nutrient scale is the saturation concentration
K. The scaling x = x̂/X relates bacterial concentration to the nutrients that this
population would consume. Specifically, (B/K)x̂ is the nondimensionalized con-
sumption rate of nutrients under conditions of ample food, and x = (B/KA)x̂ is the
nondimensionalized quantity of nutrients that would be consumed at this rate in the
characteristic growth time 1/A of the bacteria.

The choices in scaling are far from unique. Illustrating this point, Exercise 2
proposes an alternative scaling for the chemostat that some authors prefer.

5.6 Scaling Example 4: An Activator–Inhibitor System

In this section and the next we illustrate an additional benefit of scaling: it helps
you assess the relative importance of various effects in an equation and suggests
appropriate approximations to simplify them.

The activator–inhibitor system is described by the equations8

(a)
dx̂

dt̂
= A

L

L+ ŷ

x̂2

K2 + x̂2
−Bx̂,

(b)
dŷ

dt̂
= C

x̂2

K2 + x̂2
−Dŷ,

(5.23)

8A reaction rate of the form x̂n/(Kn + x̂n), as appears in (5.23), is called a Hill function. If
n = 1, this rate reduces to Michaelis–Menten kinetics (see Section 5.7). These rates arise from
enzymatic reactions; when cooperative effects are important, n > 1. See Chapter 1 of Keener and
Sneyd [47].



5.6. Scaling Example 4: An Activator–Inhibitor System 179

C

B

X Y

D
A

Figure 5.6: Schematic illustration of the activator–inhibitor model (5.23).

Variables Description Units

t̂ Time time

x̂, ŷ Concentrations molarity

Parameters

A,C Production coefficients molarity / time

B,D Decay rates 1 / time

K,L Saturation concentrations molarity

Table 5.6: Units of quantities in the activator–inhibitor model, (5.23).

where A,B,C,D,K,L are positive constants; the terms in (5.23) are indicated
schematically9 in Figure 5.6. The reactant X is called a self-activator or self-promoter,
since its production rate increases with its own concentration, x̂. Self-activation is
indicated in Figure 5.6 by the closed loop at vertex X . The reactant Y is called
an inhibitor or repressor, because a high value of ŷ suppresses the production of X
through the factor L+ ŷ in the denominator of the first term in (5.23a). To indicate
inhibition in the figure, the edge originating at Y terminates in a short crossbar at
the edge associated to the reaction it inhibits. As usual, nothing in the figure indi-
cates the exact functional dependence of the reaction rates on concentrations; only
the presence of an effect and its sign are indicated.

Units of the parameters in (5.23) are given in Table 5.6. In the standard way we
find that there are exactly four dimensionless combinations of these parameters, for
example

A

BK
,

C

DL
,

D

B
,

L

K
. (5.24)

Interpretation of these parameters is not particularly illuminating. The significant
information about these parameters is that in typical applications, A/BK is large

9Do you find this figure useful? If not, feel free to ignore it. We find the schematic diagrams
less informative as they become more complicated.
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and C/DL is huge, the latter on the order of 103 or more. A good scaling must
accommodate this fact: this means that in choosing the scaling

x =
x̂

X
, y =

ŷ

Y
, t =

t̂

T
,

the scaled variables x and y should be on the order of unity near equilibrium. If
x̂ = X and ŷ = Y , then equilibrium in the second equation in (5.23) gives

X2

K2 +X2
=

DY

C
. (5.25)

We propose10 to take Y = L, the saturation concentration in the reaction rate
L/(L + ŷ). With this choice, the RHS of (5.25) equals DL/C 
 1. Therefore,
(5.25) implies that X 
 K. Neglecting X compared to K in the denominator and
solving, we obtain the approximation X =

√
DL/C K. With these choices and

letting T = 1/B, we obtain the scaled equations11

(a)
dx

dt
= σ

1

1 + y

x2

1 + x2/κ2
− x,

(b)
dy

dt
= ρ

[
x2

1 + x2/κ2
− y

]
,

(5.26)

where

κ =

√
C

DL
� 1, σ =

A/BK
√
C/DL

, ρ =
D

B
,

which is the system (4.30) studied in Section 4.4.1. Incidentally, both the numerator
and denominator in σ are large, but they are comparable, and typically σ is of modest
size.

10Let’s admit it—we needed several tries to get this right. After the fact, we can motivate
focusing on the second equation, since this equation contains coefficients that appear in the largest
parameter.

11Why are there only three parameters in (5.26), even though there are four dimensionless
combinations of the parameters in (5.23)? The reason is that even though both x̂ and ŷ have
units of molarity, we chose different x- and y-scales, and this gave us an extra degree of freedom in
simplifying the equations. By contrast, this option was not attractive to us in scaling the equations
(5.14) for Sel’kov’s model, because if we had chosen different scales for x and y in that problem, the
terms Bx̂ and Cx̂ŷ2 would then have had unequal coefficients in the two equations. The difference
is that in Sel’kov’s model, single reaction terms change both concentrations, subtracting from X and
adding to Y.
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At last we reap the rewards of good scaling. We may suspect the equations (5.23)
can be simplified in some way based on the fact that they contain large parameters,
but it is far from obvious how to do so. By contrast, it is trivial to take the limit
κ → ∞ in (5.26):

(a) x′ = σ
x2

1 + y
− x,

(b) y′ = ρ [x2 − y].

(5.27)

This is a much less intimidating system of equations that has only two dimensionless
parameters but still exhibits the interesting behavior of the original system.

5.7 Scaling Example 5: Michaelis–Menten Kinetics

This example, like the preceding one, illustrates how scaling can help in assessing the
relative importance of various effects in the equations and can suggest simplifying
approximations.

Michaelis–Menten kinetics arise as an approximation of certain reaction rates
where an enzyme is involved. An enzyme is a catalyst in biochemical reactions; i.e.,
it facilitates the reaction but is not itself consumed. Consider a chemical reaction of
the form12

R + E � [RE] → P + E . (5.28)

Here R is a reactant (often called a substrate), E is an enzyme, [RE] is a compound in
which the reactant and the enzyme are bound to one another, and P is a product. The
reaction R+E � [RE] is reversible, while the production of the product is considered
irreversible. According to the law of mass action (see Chapter 6 of Murray [57] or
Chapter 1 of Keener and Sneyd [47]), a binary reaction such as R+E → [RE] proceeds
at a rate proportional to the product of the concentrations of R and E, while the
unary reactions [RE] → R+E and [RE] → P+E proceed at rates proportional to
the concentration of [RE]. Let r̂, ê, ĉ, p̂ denote the concentrations of R, E, [RE], P,
respectively (mnemonic: “c” for compound). We assume that all concentrations are
uniform over some region in space, so that the concentrations are described by ODEs

12Reaction (5.28) might seem to violate conservation of mass; otherwise, how could P be different
from R? Typically, the product P is what’s called an isomer of R, a substance with the same chemical
composition but with different spatial configuration. Incidentally, the second reaction [RE] → P+E
is treated as irreversible; this assumption is appropriate if, for example, the product is produced in
the cell nucleus but is transported out of the nucleus to the cell body before the reverse reaction
can occur.
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(rather than PDEs), specifically by the equations13

dr̂/dt̂ = −k+1r̂ê+ k−1ĉ,

dê/dt̂ = −k+1r̂ê+ k−1ĉ+ k2ĉ,

dĉ/dt̂ = k+1r̂ê− k−1ĉ− k2ĉ,

dp̂/dt̂ = k2ĉ,

(5.29)

where the constants kj , all positive, specify reaction rates. Although this is a system
of four equations, it may be reduced to two equations. In the first place, the equation
for p̂ decouples from the other three equations, so it may be ignored until the other
three have been solved. Less trivially, by adding the ê and ĉ equations, we derive
the following claim (Check this!):

Claim 5.7.1. The sum ê+ ĉ is independent of time.

Acting on the claim, we let E0 denote the constant value of ê + ĉ; for example,
if initially none of the compound [RE] is present, then E0 is the initial value ê(0).
We may use the relation ê = E0 − ĉ to eliminate ê from the equations, yielding the
two-dimensional system

dr̂/dt̂ = −k+1r̂(E0 − ĉ) + k−1ĉ,

dĉ/dt̂ = k+1r̂(E0 − ĉ)− k−1ĉ− k2ĉ.
(5.30)

In Table 5.7 we have listed plausible values for the parameters14 in (5.30). We
invite you to simulate the IVP for these equations, say with initial conditions r̂(0) =
10−2 M and ĉ(0) = 0. Then compare what you learn from the simulation with the
insight gained from the following scaling analysis.

In the Exercises we ask you (i) to verify the units listed in Table 5.7 and (ii) to
show that two dimensionless combinations may be constructed from the parameters
in (5.30), which may be chosen to be

κ =
k2
k−1

and ε =
E0

k−1/k+1

. (5.31)

For the numbers in Table 5.7, ε = 10−3 is very small, and this is typical.

13 Note that the same reaction constants appear in different equations. As in Sel’kov’s model,
this simplification arises because we measure all concentrations in molarity, which is based on
counting molecules. (Molarity is explained in the Pearls.) In contrast to Sel’kov’s model, when we
simplify the present problem, we choose different scales for r̂ and ĉ, scales that reflect typical orders
of magnitude for the variables.

14These are not the parameters for any specific reaction; they are arbitrarily chosen values in
the midrange of what is observed experimentally in reactions of this type.
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Variables Description Units

t time time

r, c concentration molarity

Parameters Plausible value

k+1 reaction constant 1/ molarity time 107 /M sec

k−1 reaction constant 1/ time 104 /sec

k2 reaction constant 1/ time 102 /sec

E0 enzyme concentration molarity 10−6 M

Table 5.7: Units of and some plausible values for quantities in (5.30), the reactions
leading to Michaelis–Menten kinetics. The molarity unit M stands for moles/liter.

To nondimensionalize (5.30), we define

r =
r̂

R
, c =

ĉ

E0

, t =
t̂

T
. (5.32)

The scale for ĉ seems inevitable: since ê + ĉ = E0, the parameter E0 is an upper
bound for ĉ, so the scaled variable c = ĉ/E0 has the range 0 ≤ c ≤ 1. The scale for
r̂ is more subtle. We could choose R = r̂(0) as a scale for this variable, but there
is a more intrinsic choice that involves only parameters in equation (5.30); this has
the advantage of being usable for all initial conditions. To motivate this scale, let us
isolate part of the reaction scheme (5.28),

R + E � [RE]. (5.33)

The forward and reverse reactions will be in balance if

k+1r̂ê = k−1ĉ.

If exactly half of the enzyme is free and half is bound to R—i.e., if ê = ĉ = E0/2—
then this equation reduces to r̂ = k−1/k+1. We propose R = k−1/k+1 as the scale15

to use in (5.32). Note that E0/R = ε, where ε is defined in (5.31). In physical terms,
ε is small because R is abundant, while E and [RE] are in short supply.

Leaving the time scale T undetermined for the moment, we substitute (5.32) into
(5.30) and rearrange to obtain

dr/dt = εk−1T [−r(1− c) + c],
dc/dt = k−1T [r(1− c)− (1 + κ)c].

(5.34)

15Incidentally, if you like jargon: chemists call the quantity k−1/k+1 the dissociation constant
of the reaction (5.33).
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Even before we have chosen T , an unexpected consequence has dropped out from
systematic scaling: in (5.35), the reaction rate in the c-equation is effectively ε−1

times faster than in the r-equation. This difference in rates may seem surprising,
because for every molecule that the term −k+1r̂(E0− ĉ) removes from r̂, exactly one
molecule is added to ĉ; and for every molecule that the term −k−1ĉ removes from ĉ,
exactly one molecule is added to r̂. However, because ĉ 
 r̂, on a percentage basis
the same increment or decrement is a much greater change in ĉ than in r̂, which
makes the effective rates so different.

We choose T = 1/εk−1 to make the overall coefficient in the first equation in
(5.34) equal to unity, which yields the fast–slow system

dr/dt = −r(1− c) + c,
ε dc/dt = r(1− c)− (1 + κ)c.

(5.35)

As we saw in Section 4.4.5, after a brief transient,16 evolution in (5.35) is well ap-
proximated by the scalar ODE for r derived by setting ε = 0. In other words, scaling
has led us to a great simplification of (5.30).

Because of the scientific importance of the Michaelis–Menten approximation, let
us return to unscaled variables to express the rate at which the product P is produced
after the transient has decayed,

dp̂

dt̂
= k

r̂

K + r̂
, (5.36)

where k = k2E0 and K = (k−1+ k2)/k+1. The reaction rate (5.36) is proportional to
r̂ when this variable is small (compared to K), but the rate saturates at k2E0 when
r̂ is large.

Concluding remarks: (i) The other dimensionless parameter κ specifies what
proportion of molecules of the compound [RE] decay back to the separate components
R and E and what proportion produce the product P. (ii) If an enzyme inhibits a
reaction, the reaction rate may have the form 1/(K + r̂), as with the y-dependence
in (5.23a). See Section 1.2.3 of Keener and Sneyd [47] for a derivation of such a rate
from a reaction scheme analogous to (5.28).

5.8 Exercises

Beyond the core exercises, there is a subsection of anticipatory exercises that introduce models we
will use as examples below.

16In Section 4.4.5 our argument was based on nullclines. See Exercise 12 for an analytical
treatment of this behavior.
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5.8.1 Core Exercises

The core exercises have the following purposes:

To deal with unfinished business 1
To illustrate alternative scalings 2, 3
To practice scaling on new problems 4–6
To complete an idea from the Pearls 7
To keep a geeky tradition alive 8

1. For each of the examples in Sections 5.4–5.7, verify the units given in the
corresponding table and check the claims about dimensionless parameters.

2. (a) Regarding the chemostat equations (5.19), determine what scaling for
x̂, ŷ, t̂ produces the simplified equations

dx

dt
= κ

y

1 + y
x− x,

dy

dt
= − y

1 + y
x− y + μ.

(b) Express κ, μ in terms of the original dimensional parameters A,B,C,
K, V, r, verify that κ, μ are dimensionless, and interpret them in words.

Discussion: Edelstein-Keshet [19], for example, analyzes this form of the scaled
equations. There isn’t a compelling case for choosing between the scalings. One
minor consideration in favor of the parameters (5.20) is that they are easily
controlled by the experimentalist through varying the flow rate r and the feed
concentration C.

3. Determine the scaling that reduces the Lotka–Volterra equations (5.4) to

dx/dt = x− xy,
dy/dt = xy − ρy.

(5.37)

Discussion: This scaling makes the coefficients of three of the four terms in the
equations equal to unity. In our view, this minor simplification is less important
than fixing the location of the equilibrium, which was the basis for (5.8).

4. Find dimensionless parameters and scale the system

dx̂

dt̂
=

R

K4 + ŷ4
−Dx̂,

dŷ

dt̂
=

R

K4 + x̂4
−Dŷ.

Both x̂ and ŷ have units of molarity.
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Advice: If you are already comfortable with scaling, skip this exercise and proceed
to more interesting scaling problems. In this problem we recommend scaling
time based on the decay coefficient D and scaling x̂, ŷ based on the saturation
constant K.

5. (a) Regarding (5.1), which describes a bead sliding on a rotating loop, make a
table of variables and parameters, together with their dimensions.

(b) Show that

β =
b

m
√

g

, μ =

ω2

g

form a basis for the dimensionless parameters that may be constructed from
the dimensional parameters in the problem.

Remark: Of course, β is a dimensionless friction coefficient; the other parameter
μ, a dimensionless measure of rotation speed, has a more specific interpretation
as the ratio between centrifugal force and gravity.

(c) Choose a time scale17 t = t̂/T to transform (5.1) to

d2x

dt2
= −β

dx

dt
− sin x+ μ sin x cos x, (5.38)

where β, μ are given by the above.

Discussion: You might be tempted to use ω to scale time, i.e., to let t = ωt̂.
This choice leads to the equation

d2x

dt2
= − β√

μ

dx

dt
− 1

μ
sinx+ sinx cosx. (5.39)

We find this scaling less transparent. For one reason, it seems more natural
to scale time based on what is fixed, gravity, than on what can be varied, the
rotation speed. This is particularly true in Chapter 8 when we study how the be-
havior of solutions of this ODE changes as μ varies, shifting the balance between
centrifugal force and gravity.

6. Introduction: In Exercise 4.3 we considered nondimensionalized equations for the evolution
of two interacting species. Those equations may be derived by scaling a dimensional system

dx̂/dt = r1x̂(1− x̂/K1 −Bŷ),
dŷ/dt = r2ŷ(1− ŷ/K2 − Cx̂),

(5.40)

where r1, r2,K1,K2, B,C are positive constants.

17The angle x is already dimensionless. We prefer not to scale x, because that would mess up
the trig functions.
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(a) Make a table of units of the variables and parameters in this equation.
Interpret the meaning of the parameters in your own words.

(b) Find all dimensionless combinations of the parameters.

(c) Scale (5.40) to obtain the nondimensionalized equations of Exercise 4.3.

7. Verify equations (5.50) and (5.51) in the Pearls.

8. Find the numerical value of the speed of light in furlongs per fortnight.

Discussion: You probably already know this, but just in case: a furlong is one-
eighth of a mile, a term used in horse racing, and a fortnight is two weeks, a
term more common in Victorian times.

As undergraduates, when punchy from studying during exam week, we dis-
tracted ourselves by converting various physical constants into the firkin–furlong–
fortnight system of units. (The firkin is a unit of volume in the wine trade, but
we made it into a unit of mass whose value is the mass of that quantity of wine.)
Care to make the conversion for Planck’s constant?

5.8.2 Anticipatory Exercises

9. Introduction: This exercise on the continuous stirred-tank reactor (CSTR), which provides
the best illustration of some bifurcation phenomena in Chapter 8, is definitely worth doing.
The system is described by the equations

dĉ/dt̂ =
r

V
(Cf − ĉ)−R ĉ eT̂ /Δ,

dT̂ /dt̂ =
r

V
(Tf − T̂ ) +H R ĉ eT̂ /Δ,

where r, V, Cf , R,Δ, Tf , H are constants, all positive except possibly Tf . In Chapter 8 these
equations will be a rich source of bifurcation phenomena. The CSTR is a flow problem, as
in Section 5.5.1, with the complication that the chemical flowing into and out of the tank
undergoes an exothermic reaction. Exothermic means that the reaction releases heat as the
chemical is consumed.

The state of the system is specified by ĉ and T̂ , the concentration in the tank and its
temperature, respectively. As in Section 5.5.1, r is the flow rate into and out of the tank, and
V is the volume of the tank; Cf and Tf are the concentration and temperature of the inflow,
respectively; R is a rate constant for the reaction at temperature zero, but the rate increases
exponentially with temperature; H quantifies the temperature rise due to heat released by
the reaction.

Two effects are added together in the concentration equation: the first term represents
the change in concentration as the result of flow, as in (5.18), and the second represents the
consumption of the chemical in the reaction. The temperature equation has the same two
effects, with the difference that the reaction term increases temperature, so this term has a
plus sign.

(a) The units of ĉ and T̂ are mass per unit volume and degrees, respectively.
Make a table of the units of all seven parameters in the CSTR equations.
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(b) Find a basis for the dimensionless constants that may be constructed from
these parameters.

(c) Reduce the equations to the simplified form

dx/dt = μ(1− x)− xey,
dy/dt = −μy + σxey.

Express μ and σ in terms of the dimensional parameters, verify that they
are dimensionless, and interpret them in words.

Hint: The scalings for ĉ and t̂ are straightforward; you will find that x = ĉ/Cf

is the appropriate scaling for the concentration. However, for temperature, you
need to include a translation along with a scale factor; i.e., assume

y = (T̂ − Tf )/Δ.

Translation is natural in this case, because there is nothing special about the
temperature “zero” in the CSTR system.

There are only two dimensionless constants in the reduced equations, which is
fewer than the number of dimensionless constants you were able to construct in
Part (b). This reduction is a result of the extra flexibility allowed by translating
the temperature variable.

10. Introduction: The Rosenzweig–MacArthur model, another predator–prey system, is de-
scribed by the system

dx̂

dt̂
= Ax̂− Ex̂2 −B

x̂ŷ

1 + Sx̂
,

dŷ

dt̂
= C

x̂ŷ

1 + Sx̂
−Dŷ.

If x̂ is small (i.e., x̂ 
 S−1), this system is equivalent to the Lotka–Volterra system with
logistic growth of the prey. However, in the present equations the predation rate saturates at
a maximum of (B/S)ŷ when the prey are plentiful. This Michaelis–Menten-type of saturation
also occurred in the chemostat, (5.19).

(a) Make a table of the parameters in these equations and their units.

(b) Find a basis for the dimensionless constants that can be formed from these
parameters.

(c) Scale the equations to the form

dx

dt
= x(1− x)− xy

1 + σx
,

dy

dt
= κ

xy

1 + σx
− ρy.

Express σ, κ, ρ in terms of the dimensional parameters, verify that they
are dimensionless, and interpret them in words.
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5.8.3 PHD Exercises

11. Introduction: The FitzHugh–Nagumo model refers to a system of the form

(a) η dx̂/dt̂ = Γ(x̂) +Aŷ,
(b) dŷ/dt̂ = Bx̂+ Cŷ +D,

(5.41)

subject to the following assumptions: (i) Γ(x̂) = Γ3x̂
3 +Γ2x̂

2 +Γ1x̂+Γ0 is a nonmonotonic
cubic with Γ3 < 0 as sketched in Figure 5.7, (ii) A,B,C,D are constants with AB < 0, and
(iii) η is a small positive constant. This model was proposed by FitzHugh [27] as a simpli-
fication of the Hodgkin–Huxley equations describing the conduction of nerve impulses [41].
(Nagumo [59] later constructed a circuit to simulate a nerve axon.) It might be stretching
a point to assign units to the variables in this mathematical model, so we omit this part of
scaling. A generalization of the model will figure in Chapters 8 and 9.

(a) Show that scaling may be used to simplify every such system to the form

ε dx/dt = x(1− x2)− y + I,
dy/dt = x− γy,

(5.42)

where ε, I, γ are constants.

Hint: Equations (5.41) contain nine constants, but effectively there are only
eight, because only the ratios of coefficients in (5.41a) matter. Let

x =
x̂+ a

X
, y =

ŷ + b

Y
, t =

t̂

T
,

which gives you five constants to play with.

• Choose a to annihilate the quadratic term of Γ.

• Choose X > 0 to make the coefficients of the cubic and linear terms in Γ
equal in magnitude and opposite in sign. (Why can’t they have the same
sign?)

x

( x )Γ

Figure 5.7: Nonmonotone cubic of the type in the FitzHugh–Nagumo equation
(5.41), Exercise 11.
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The first equation now may be written as

η

Γ3

dx

dt̂
= x(1− x2) +A ŷ + Γ0, (5.43)

where the bars indicate some modification of the original constants and Γ3 > 0.
(Why is Γ3 positive? )

• Choose Y T = −1/A to make the coefficient of y in (5.43) equal to −1.

• Preserving Y T from the previous step, choose T > 0 (and hence Y ) to make
the coefficient of x in the second equation equal to unity.

• Choose b to annihilate the constant term in the second equation.

The dedicated reader may wish to calculate explicitly the choices for a, b, X, Y ,
and T , and to identify the constants ε, I, γ.

(b) If γ = 0, show that a solution of the scaled system satisfies

ε
d2x

dt2
= (1− 3x2)

dx

dt
− x.

Without worrying about the size of ε, scale this equation to obtain the van der
Pol equation, z′′ + β(z2 − 1)z′ + z = 0. Express β in terms of ε.

12. Introduction: Consider an IVP for the equations of Michaelis–Menten kinetics (5.35), say

(a) dx/dt = −x(1− y) + y, x(0) = b,
(b) εdy/dt = x(1− y)− (1 + κ)y, y(0) = 0.

(5.44)

In Section 4.4.5 we argued from nullclines that after a brief transient, the solution of (5.44)
was well approximated by the scalar ODE (4.37) that results from letting the fast y-equation
proceed to equilibrium; i.e., x solves the IVP

dx

dt
= − κx

x+ 1 + κ
, x(0) = b, (5.45)

and y is slaved to x:

y =
x

x+ 1 + κ
. (5.46)

The present exercise shows how scaling may be used to give an analytical handle on this
transient. Consider the scaled time τ = t/ε, whose greatly expanded scale is appropriate for
following the rapid evolution during the transient. With respect to τ, (5.44) becomes

(a) dx/dτ = ε(−x(1− y) + y), x(0) = b,
(b) dy/dτ = x(1− y)− (1 + κ)y, y(0) = 0.

(5.47)

Suppose the solution of (5.47) is expanded in a power series in ε, say

x(τ, ε) = x0(τ) + εx1(τ) + · · · ,
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and similarly for y(τ, ε). Argue that x0(τ) ≡ b, derive and solve an IVP for
y0(τ), and show that

lim
τ→∞

y0(τ) =
b

b+ 1 + κ
, (5.48)

consistent with (5.46).

Discussion: We have two separate approximations for the solution of (5.44),
on different time scales: the above transient, called the inner solution, and the
the fast-equation-to-equilibrium approximation (5.45), called the outer solution.
Neither approximation is uniformly accurate for all times. Intuitively, they ought
to agree in the “overlap region” where τ = t/ε may be large, say τ ∼ ε−1/2,
even though t is still small. The method of matched asymptotic expansions (see
Chapter 2 of [43] or Chapters 6 and 7 of [98]) develops these ideas systematically.
Both the inner and outer solutions are expanded in power series in ε, and the
coefficients of each power of ε in the inner and outer solutions are required
to agree in their appropriate limits. This more elaborate procedure has the
obvious benefit of giving greater accuracy. It also has a nonobvious benefit:
these calculations are often very tricky, and success in matching to higher order
builds confidence that one has not gone astray.

5.9 Pearls of Wisdom

5.9.1 Making Scaling Work for You

Students often complain that scaling is more art than science, and we can’t really
disagree with this complaint. Effective scaling comes only with experience, and
getting experience invariably means making errors in some of your trials. We hope
that the remarks in this section can at least reduce your grief as you learn to use this
collection of techniques. Additional perspective on this topic is provided in Chapter 4
of [98].

We hesitate to call any scaling “wrong,” but some are definitely less informa-
tive, especially when you are seeking an approximation to exploit a large or small
parameter in the equations. Let’s illustrate this for a linear spring–mass system

m
d2x̂

dt̂2
+ b

dx̂

dt̂
+ kx̂ = 0. (5.49)

Precisely one dimensionless parameter, say β = b/
√
mk, can be formed from the

parameters in this equation. Since (5.49) is linear, changes in the x-scale have no
effect. (Check this! ) Therefore, we shall simply omit the hat on x and consider
scaling only time.

Three scalings that give dimensionless time are listed in Table 5.8, along with the
resulting scaled equation. In the scaled equations, the coefficients of two of the three
terms in the ODE are equal to one another (and equal to unity). Which scaling is
appropriate depends on context.
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Scaling Scaled equation

τ1 = (b/m)t̂ d2x/dτ 21 + dx/dτ1 + β−2x = 0

τ2 = (
√
k/m)t̂ d2x/dτ 22 + βdx/dτ2 + x = 0

τ3 = (k/b)t̂ β−2d2x/dτ 23 + dx/dτ3 + x = 0

Table 5.8: Scalings of the spring-mass system (5.49), where β = b/
√
mk.

Context 1: small β. Physically, the inequality β 
 1 could mean that friction is
small. The dominant phenomenon in this context is that solutions of (5.49) oscillate
within a decaying envelope set by friction. In this case, the τ2-scaling is definitely
the most useful, because such oscillatory behavior is evident in the scaled equation
d2x/dτ 22 + βdx/dτ2 + x = 0. By contrast, it would be awkward, at best, to extract
this behavior from either of the other scalings, in which the term proportional to
β−2 dominates the other two terms. Moreover, here’s another consideration that
points to τ2 as the natural time scale: since (5.49) is linear, it admits exponential
solutions eλt̂. In Exercise 7 we ask you to show that when β 
 1, the roots are

λ = ±i

√
k

m
+O(β), (5.50)

where the O(β) term contains both real and imaginary parts. In other words, to
leading order, (the absolute value of) the exponent λt̂ equals τ2, the preferred time
scale.

Context 2: large β. In physical terms, β � 1 could indicate that m is small,
that k is small, that b is large, or any combination of these; the concept of large
or small is meaningful only when applied to dimensionless quantities. When β is
large, the τ2 time scale is sterile. To explore alternatives, let’s look for exponential
solutions eλt̂ of (5.49). In Exercise 7 we ask you to show that when β � 1, the roots
λ are given by

− b

m
+O(β−1) and − k

b
+O(β−1). (5.51)

In other words, to leading order, |λt̂| = τ1 or τ3. Both scalings have their uses.

In the τ3-scaled ODE, the first-order and zeroth-order terms dominate the second-
order term, β−2d2x/dτ 23 . Solutions of the equation with the second-order derivative
neglected18 decay like e−τ3 . This scaling captures the long-term decay of the system
that follows the initial transient.

18If (5.49) were written as a first-order system, it would be a fast–slow system, and neglecting this
second-order derivative would be the approximation of letting the fast equation go to equilibrium.
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Note that τ1 = β2τ3; i.e., if β � 1, then τ1 increases very rapidly. The τ1-scaling
is appropriate for examining in detail the structure of the transient (as is done in
Exercise 12 for a different problem). For an equation as simple as (5.49) there
is little reward in focusing so intensely on this behavior, but in more complicated
problems, much can be learned from such analysis. It would take a semester’s course
in asymptotics to fully support this apparently innocuous remark. (At a lower level
of commitment, see Chapter 2 of [43] or Chapters 6 and 7 of [98].) The discussion in
Section 7.6.4 provides a hint of the value in studying rapid transients on an expanded
time scale.

The principle of dominant balance expresses the lessons to be drawn from this
section. It articulates two desiderata in choosing a scaling for an equation:

• Every term in the equation should be on the order of unity or smaller, with at
least two terms actually having this maximal size.

• All scaled variables should be on the order of unity.

In particular, the second desideratum played a key role in the scalings in Sections 5.6
and 5.7.

Even when no order-of-magnitude issues are involved, you may have to choose
between different scalings. Two simple examples of this are given in Exercises 2
and 3, and here is another: Consider the Lotka–Volterra equations when there is a
logistic limit to the growth of the prey; i.e., (5.4) is modified to

dx̂/dt̂ = Ax̂− Ex̂2 − Bx̂ŷ,

dŷ/dt̂ = Cx̂ŷ −Dŷ.
(5.52)

If we use the same scales as in deriving (5.8), i.e., x = Cx̂/D, y = Bŷ/A, t = At̂,
then we get the scaled equations

dx/dt = x(1− x/K)− xy,
dy/dt = ρ(xy − y),

(5.53)

where K = AC/DE is the nondimensional carrying capacity19 of the environment
and ρ = D/A. On the other hand, note that the dimensional carrying capacity in
(5.52) is x̂ = A/E. This quantity also provides a natural scale for x̂, and if we use it

19For the most part, we use Greek letters for dimensionless constants, but K deviates from this
convention. However, invoking the pseudo-justification that too much consistency can be oppressive,
we stick with K.
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to define x = Ex̂/A (while keeping the same scalings for y, t), we get the alternative
scaled equations

dx/dt = x(1− x)− xy,
dy/dt = κxy − ρy,

(5.54)

where κ = C/E. The parameter κ may be interpreted as the “efficiency with which
the predators convert the prey into their own biomass.”

The first scaling is more appropriate in studying how a logistic limit on growth
changes the behavior of the Lotka–Volterra equations (cf. Section 6.5.3), because in
(5.53), the limit K → ∞ is nonsingular. By contrast, the second scaling underlies
what is proposed in Exercise 10 on the Rosenzweig–MacArthur model, and this
scaling will be more convenient in the bifurcation analysis of this model in Chapter 8.
In conclusion, the best choice for scaling depends on the intended application (as well
as on personal taste).

5.9.2 A Nod to Scientific Literacy

First, let’s define molarity. The term mole specifies a quantity of a substance, more
precisely, a number of grams of it equal to the molecular weight of the molecules of
which the substance is composed. Thus, for example, a mole of glucose, C6H12O6,
equals 6 × 12 + 12 × 1 + 6 × 16 = 180 grams.20 A mole of a substance contains
a precise number of molecules of it; specifically, it contains Na molecules, where
Na ≈ 6.02 × 1023 is Avogadro’s number. In Sel’kov’s and other models in which a
variable has units of molarity, the chemicals are dissolved in an aqueous solution,
and molarity specifies the number of moles per liter of solution.

Exercise 9 involves a chemical reaction that proceeds at a temperature-dependent
rate. A more realistic form for such temperature dependence is given by the Arrhe-
nius kinetics, a rate proportional to e−Ta/T , where T is the absolute temperature and
the constant Ta is the activation energy of the reaction converted to a temperature
(by means of Boltzmann’s constant). The rate-dependence in Exercise 9 provides a
tolerable approximation to this formula when, as usually is the case, T 
 Ta.

20Because of heavier isotopes, the molecular weight of carbon is a little greater than 12, and
likewise for hydrogen and oxygen. Thus the molecular weight of glucose is also a little greater than
180, but this integer approximation is adequate for our purposes.



Chapter 6

Trajectories Near Equilibria

In this chapter we relate the flow of an ODE x′ = F(x) near an equilibrium b∗
to the flow of the linearization, by which we mean the equation w′ = Aw, where
A = DF(b∗). There are two main theoretical results. (i) In Section 6.1, we assume
�λj(A) < 0, which guarantees that all solutions of the linearization converge to
the equilibrium; Theorem 6.1.1 shows that under this hypothesis, the full equation
shares a version of this behavior, which is called asymptotic stability. (ii) In Sec-
tion 6.6, the stable-manifold theorem (Theorem 6.6.1) characterizes the behavior of
solutions when the Jacobian DF(b∗) has eigenvalues with both positive and negative
real parts.

Other sections mostly supplement or apply results of the above two sections.
Specifically, Section 6.2 introduces some of the terminology growing out of Theo-
rem 6.1.1; Sections 6.3 and 6.4 analyze two scientifically interesting applications of
Theorem 6.1.1; and Section 6.7 shows how Theorems 6.1.1 and 6.6.1 are useful in
sketching trajectories of ODEs.

Section 6.5 pushes in a different direction. It introduces Lyapunov functions,
which are another technique for proving stability, a technique not based on lineariza-
tion.

There are two appendices. The first explores how the stable manifold theorem is
proved, and the second informally introduces a generalization of this theorem.

From here on in this book, unless otherwise stated, we shall assume in the generic
ODE x′ = F(x) that the function F is C1. (Indeed, otherwise linearization wouldn’t
make sense.)
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6.1 Stability of Equilibria

We recall that a point b∗ ∈ R
d is called an equilibrium for an ODE x′ = F(x) if at this

point, F(b∗) = 0. For a linear homogeneous constant-coefficient equation x′ = Ax,
the origin b∗ = 0 is always an equilibrium, and it is the only equilibrium if A is
invertible. For nonlinear equations, it is more typical to have multiple equilibria. For
example, already in Section 1.6 we saw that the augmented Lotka–Volterra system

x′ = x

(
x− ε

x+ ε

)(
1− x

K

)
− xy,

y′ = ρ(xy − y),

has four equilibria in the physical domain if 0 < ε < 1 < K. Similarly, the 2 × 2
system derived from Duffing’s equation

x′ = y,

y′ = x− x3 − βy,
(6.1)

has equilibrium points (0, 0) and (±1, 0).

6.1.1 The Main Theorem

In Theorem 2.4.1 we showed that for the linear system x′ = Ax, if the eigenvalues
of the coefficient matrix satisfy

�λj(A) < 0, j = 1, 2, . . . , d,

then every solution x(t) of the equation decays to zero as t → ∞. The following
theorem, a major and quite beautiful result, asserts that one may deduce similar
stability behavior for solutions of a nonlinear equation x′ = F(x) near an equilibrium
point b∗, provided the eigenvalues of DF(b∗), the differential of F at the equilibrium,
satisfy this condition. Here and below we shall abbreviate DF(b∗) to DF∗.

Theorem 6.1.1. Suppose b∗ is an equilibrium point for x′ = F(x), where F ∈ C1(U)
with U ⊂ R

d, and assume that

�λj(DF∗) < 0, j = 1, 2, . . . , d. (6.2)

Then there is a neighborhood V of b∗ in R
d such that for any initial data b ∈ V, the

IVP
x′ = F(x), x(0) = b (6.3)

has a solution for all t ≥ 0, and moreover, limt→∞ x(t) = b∗.

Remarks. (i) The theorem includes the linear case, because if F(x) = Ax, then at
the origin, DF(0) = A. (Indeed, DF(x) = A at every point x.) (ii) In one dimension
DF∗ is a scalar, and in this case, Theorem 6.1.1 was anticipated by Problem 1.15.
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It may be instructive to compare Theorem 6.1.1 with what may be deduced under
the same hypotheses from Theorem 4.6.1, i.e., that (∀η > 0)(∀T < ∞) there is a
neighborhood V such that if b ∈ V , then ϕ(t,b) exists for all t ≤ T and

|ϕ(t,b)− b∗ − eAt(b− b∗)| ≤ η|b− b∗|, 0 ≤ t ≤ T.

Of course, since �λj(A) < 0, the term eAt(b − b∗) tends to zero as t → ∞, so for
large time, effectively we have an estimate for |ϕ(t,b) − b∗|. The new information
provided by Theorem 6.1.1 is twofold: (i) the IVP (6.3) has a solution all the way to
infinite time, and (ii) |ϕ(t,b)− b∗| decays to zero as t → ∞.

Proof of Theorem 6.1.1. Making an appropriate translation in R
d, we may assume

without loss of generality that the equilibrium b∗ is located at the origin, i.e.,
F(0) = 0. Expand F at the origin: F(x) = Ax+ r(x), where (i) the constant term is
missing, since F(0) vanishes, (ii) in the linear term, A = DF(0), and (iii) in the order
notation of Section 4.6.4, the remainder r(x) is o(|x|). It follows by Proposition 2.4.2
that there are constants K, ε, where ε > 0, such that

‖eAt‖ ≤ Ke−εt, t ≥ 0; (6.4)

of course K ≥ 1. Choose a positive η such that η < ε/K. Since r(x) = o(|x|), there
is a δ > 0 such that if |x| ≤ δ, then |r(x)| ≤ η|x|.

Let V = {b ∈ R
d : |b| < δ/K} ⊂ B(0, δ). If the IVP (6.3) is not solvable on

[0,∞), then by Theorem 4.1.2, the solution must leave the ball B(0, δ). We seek to
derive a contradiction by assuming that there is a time t∗ > 0 such that |x(t)| < δ

for t < t∗, while |x(t∗)| = δ.

With the same ε as in (6.4), let g(t) = eεt|x(t)|, which we will estimate with
Gronwall’s inequality. We rewrite the IVP (6.3) as

x′ − Ax = r(x), x(0) = b (6.5)

and interpret (6.5) as a linear equation with constant coefficients with the inhomo-
geneous term r(x(t)). As we saw in (2.51), a solution of (6.5) satisfies the integral
equation1

x(t) = eAtb+

∫ t

0

e(t−s)A r(x(s)) ds. (6.6)

Multiplying by eεt, we obtain

g(t) ≤ eεt|eAtb|+ eεt
∫ t

0

|e(t−s)A r(x(s))| ds.

1A similar integral equation, (3.16), arose in proving the existence theorem. The advantage of
(6.6) over (3.16) is twofold: (i) the decay in (6.4) assists the convergence of the integral for large t,
and (ii) in the integrand, r(x) is small when x is close to zero.



198 Chapter 6. Trajectories Near Equilibria

Applying (6.4) to bound the exponentials in each term, we conclude that

g(t) ≤ K|b|+K

∫ t

0

eεs|r(x(s))| ds. (6.7)

Now for t ≤ t∗, the second term of (6.7) satisfies

K

∫ t

0

eεs|r(x(s))| ds ≤ Kη

∫ t

0

eεs|x(s)| ds = Kη

∫ t

0

g(s) ds.

Hence by Gronwall’s lemma, g(t) ≤ K|b|eKηt for 0 ≤ t ≤ t∗. Recalling the definition
of g, we conclude that

|x(t)| = e−εtg(t) ≤ K|b|e(Kη−ε)t. (6.8)

In particular, since the exponential is decaying, we have |x(t∗)| ≤ K|b| < δ, contra-
dicting our assumption above, so the solution never leaves the ball of radius δ. Thus,
the solution exists for all t ≥ 0, and by (6.8), it tends to zero as t → ∞.

The following corollary of Theorem 6.1.1 makes the convergence to the equilib-
rium more quantitative. This result may be derived by exercising a little more care
in the proof of Theorem 6.1.1, a task we ask you to complete in Exercise 1(a).

Corollary 6.1.2. If in Theorem 6.1.1 the eigenvalues satisfy

�λj(DF∗) < −ε, j = 1, 2, . . . , d, (6.9)

where ε > 0, then V may be chosen with the property that there is a constant K1

such that for all b ∈ V, the solution of the IVP satisfies

|x(t)− b∗| ≤ K1e
−εt|b− b∗|, t ≥ 0. (6.10)

6.1.2 An Easy Application

Let’s illustrate these ideas by applying them to Duffing’s equation (6.1), which de-
scribes motion in the double-well potential V (x) = −x2/2+x4/4. At the two minima
of V we have

DF(±1, 0) = DF∗ =
[

0 1
−2 −β

]
.

To test whether eigenvalues have negative real parts, we compute

detDF∗ = +2 > 0, trDF∗ = −β < 0,

where we have assumed β > 0, i.e., normal friction. Hence by Proposition 2.4.5, the
eigenvalues of DF∗ both have negative real parts, and so near the equilibria (±1, 0),
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solutions of (6.1) behave as described in Theorem 6.1.1. More interesting examples
will be studied below.

Incidentally, Theorem 6.1.1 does not readily extend to nonautonomous equations;
Problem 13 in Chapter 3, with a bit of friction added to the ODE, illustrates the
difficulties.

6.2 Terminology to Classify Equilibria

6.2.1 Terms Related to Theorem 6.1.1

An equilibrium b∗ of a system x′ = F(x) is called Lyapunov stable if for every
neighborhood V of b in R

d, there is a smaller neighborhood V1 such that if b ∈ V1,
then the IVP (6.3) is solvable for all positive times and moreover, x(t) ∈ V for all
t ≥ 0. The equilibrium b∗ is called attracting if there is some neighborhood V∗ of
b∗ such that for all initial data in V∗, the solution of (6.3) exists for all t ≥ 0 and
converges to b∗; in symbols,

lim
t→∞

x(t) = b∗. (6.11)

The equilibrium b∗ is called asymptotically stable if it is Lyapunov stable and
attracting.

The results of Section 6.1 imply that b∗ is asymptotically stable if condition (6.2)
is satisfied. Theorem 6.1.1 as stated is not sufficient to prove this claim. We need
the estimate of Corollary 6.1.2 to conclude that b∗ is Lyapunov stable.

You may think that the language used in these definitions is excessively fussy.
Here are two examples to show why such careful wording is required:

(i) Regarding the nested neighborhoods in the definition of Lyapunov stable, con-
sider the following linear 2× 2 system:

x′ =
[ −η −K−1

K −η

]
x (6.12)

where K is a large constant and η > 0 a small one. For every real C, the
function

x(t) = Ce−ηt

[
cos t
K sin t

]

is a solution of this system. Even though they spiral into the origin, these
trajectories are very elongated, as shown in Figure 6.1(a). Suppose we are
given a circular neighborhood V = {b ∈ R

2 : |b| < ε} of the origin. To
prove Lyapunov stability, we want to find another neighborhood, say circular
V1 = {b ∈ R

2 : |b| < δ}, such that if x(0) ∈ V1, then the trajectory remains
confined to V . We have to choose a much smaller radius δ < ε/K to achieve
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b 2

b 1

δ

ε

|b| =

|b| =

y

x
1

a b

Figure 6.1: Figures to clarify the definition of asymptotic stability. (a) An elongated
spiral converging to the origin need not be contained in a circular neighborhood.
(b) An unstable equilibrium may be attracting.

this, because trajectories are so elongated. If we were smart enough to choose
V1 with a perfect shape adjusted to the orbit, we could arrange that x(t) ∈ V1

for all t ≥ 0. Although this is sometimes possible, it is inconvenient to insist
on it in general.

(ii) You might think that if an equilibrium is attracting, then it surely is Lyapunov
stable. This is false, as shown by the following 2 × 2 system, which we write
in polar coordinates:

r′ = r − r3,
θ′ = 1− cos θ.

(6.13)

A few trajectories for this system are illustrated in Figure 6.1(b). As suggested
by the figure, all nonzero solutions of this system converge to (r, θ) = (1, 0) as
t → ∞. However, a trajectory that starts at a point (r, θ) = (1, ε), where ε is
positive (and as small as you like), proceeds all the way around the circle before
it converges to (1, 0); in particular, it leaves the ball of unit radius around (1, 0).

Another bit of terminology: if b∗ is an attracting equilibrium, the basin of at-
traction of b∗ is the set of initial conditions b such that the solution of the IVP (6.3)
converges to b∗ as t → ∞. For example, the basin of attraction of the equilibrium
x = 1 of the logistic equation x′ = x− x2 is the interval (0,∞).

Unstable means the negation of Lyapunov stability; i.e., there is some neighbor-
hood V of b∗ in R

d such that for every smaller neighborhood V1, there are initial
conditions b ∈ V1 such that the solution to the IVP (6.3) leaves V at some positive
time. The linearization provides a sufficient condition for such behavior:

Proposition 6.2.1. If b∗ is an equilibrium of x′ = F(x) and if �λj(DF∗) > 0 for
some j, then b∗ is unstable.
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The proof of this seemingly obvious result is less straightforward than one might
expect. Let’s shoot down the natural first try at a proof. Suppose v is an eigenvector
of DF∗ with a real eigenvalue λ > 0, and let a neighborhood V of b∗ be given.
Consider solutions of x′ = F(x) with x(0) = b∗ + εv, where ε 
 1. We have the
approximation from linearization

x(t) ≈ b∗ + εeλtv. (6.14)

The growing exponential will eventually push the RHS of (6.14) outside V , as needed
to prove instability. But the smaller ε is, the longer we have to wait for x(t) to leave
V , and it’s not obvious that (6.14) remains valid long enough to guarantee this.

For a direct proof of the proposition, see Exercise 18; for an indirect proof, see
Section 6.10.4, where it is derived as a consequence of the stable manifold theorem.

As a simple application of the result, consider the equilibrium at the origin of
Duffing’s equation (6.1). We have detDF(0, 0) < 0, so the eigenvalues of DF have
opposite signs, one of them being positive, and thus the origin is unstable—no sur-
prise here.

If at an equilibrium, we have only �λj(DF∗) ≤ 0, i.e., if the inequality (6.2) is
not strict,2 then no information can be deduced from the linearization. As a trivial
example to justify this statement, consider the scalar ODE

x′ = ±x3. (6.15)

For either sign, the origin is an equilibrium, and the lone eigenvalue of DF (0) van-
ishes. However, if the minus sign is chosen, the origin is asymptotically stable, while
if the plus sign is chosen, it is unstable, and both behaviors are different from that
of the linearization w′ = 0, whose equilibrium is Lyapunov stable but not asymptot-
ically stable. (Check these claims!)

Another borderline case occurs in Duffing’s equation (6.1) if the friction coefficient
β is equal to zero. The eigenvalues ofDF at the equilibria (±1, 0) are pure imaginary,
i.e., �λ = 0. In this case, the equilibria are Lyapunov stable but not asymptotically
stable. This can easily be shown using energy as a Lyapunov function, a technique
we will introduce in Section 6.5. (Cf. Exercise 11.)

6.2.2 Other Terms Based on Eigenvalues

We call an equilibrium b∗ of an ODE x′ = F(x) hyperbolic if

�λj(DF∗) �= 0, j = 1, . . . , d. (6.16)

2For example, the equilibrium (r, θ) = (1, 0) of (6.13) suffers from this degeneracy.
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This definition generalizes the usage in Section 2.8.3 for linear systems. We also
extend the terminology of Section 2.5 to classify hyperbolic equilibria in two dimen-
sions. Thus, an equilibrium x∗ ∈ R

2 is called a sink, source, saddle, node, or focus
if the eigenvalues of DF∗ fit the corresponding description in Table 2.1. (The term
“center” is not used, because if the eigenvalues of DF∗ are pure imaginary, then x∗
is not hyperbolic.)

Near a hyperbolic equilibrium x∗, locally the flow of the full system resembles the
flow of the linearized system w′ = Aw, where A = DF∗. The two main results of
this chapter, Theorems 6.1.1 and 6.6.1, support this claim. A precise correspondence
between a nonlinear system and its linearization is articulated by the Hartman–
Grobman Theorem in Section 6.9.2 of the Pearls. In particular, this result shows
that the appropriate phase portrait of a linear system in Section 2.5 provides a
reliable qualitative representation of the flow in some neighborhood of a hyperbolic
equilibrium. (You might find reviewing Section 2.5 a useful investment at this point.)

6.2.3 Section 1.6 Revisited, Part I

Let’s apply this classification of equilibria to the augmented Lotka–Volterra system
in Section 1.6. This calculation explains how the ε,K-parameter set in Figure 1.9
gets divided into three regions.

We rewrite (1.41) as
(a) x′ = xφ(x)− xy,

(b) y′ = ρ(xy − y),
(6.17)

where

φ(x) =

(
x− ε

x+ ε

)(
1− x

K

)
(6.18)

and 0 < ε < min{K, 1}. Because we process pictures more readily than formulas,
we have graphed φ(x) in Figure 6.2. As we showed in Section 1.6, this system has
the four equilibria listed in Table 6.1. To classify these equilibria, we calculate that

DF =

[
xφ′(x) + φ(x)− y −x

ρy ρ(x− 1)

]
. (6.19)

(i) The extinction equilibrium: Substituting (x, y) = (0, 0) into (6.19), we obtain

DF(0, 0) =

[
φ(0) 0
0 −ρ

]
.

By Figure 6.2, φ(0) < 0. Thus, the eigenvalues of DF are real and negative,
as claimed in the table: this equilibrium is a stable node.
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φ (x)

x
ε K

Figure 6.2: Graph of the function φ(x) defined in (6.18).

Equilibrium Name Type of equilibrium

(0, 0) Extinction equilibrium Always a sink (and a node)
(ε, 0) Extinction threshold Always a saddle
(K, 0) Prey-only equilibrium If K < 1: a sink (and a node)

If K > 1: a saddle
(1, φ(1)) Coexistence equilibrium If K < 1: an unphysical saddle

If 1 < K < (1 + 2ε− ε2)/2ε: a sink
If (1 + 2ε− ε2)/2ε < K: a source

Table 6.1: Classification of equilibria of the augmented Lotka–Volterra equa-
tions (6.17).
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(ii) The extinction threshold: Substituting (ε, 0) into (6.19), we obtain

DF(ε, 0) =

[
εφ′(ε) −ε

0 −ρ(1− ε)

]
.

By Figure 6.2, φ′(ε) > 0. Thus, the eigenvalues of DF have opposite signs, as
claimed: this equilibrium is a saddle.

(iii) The prey-only equilibrium: Substituting (K, 0) into (6.19), we obtain

DF(K, 0) =

[
Kφ′(K) −K

0 −ρ(1−K)

]
.

Thus, the eigenvalues of DF are real. By Figure 6.2, φ′(K) < 0. Both
eigenvalues of DF are negative if K < 1 (a stable node) but have opposite
signs if K > 1 (a saddle). This calculation explains why, in Figure 1.9, the line
{K = 1} arises as a boundary between regions in parameter space.

(iv) The coexistence equilibrium: Substituting (1, φ(1)) into (6.19), we obtain

DF(1, φ(1)) =

[
φ′(1) −1
ρφ(1) 0

]
.

Now

detDF = ρφ(1) = ρ

(
1− ε

1 + ε

)(
1− 1

K

)
.

If K < 1, then detDF < 0, so the equilibrium is a saddle; it is unphysical,
because y = φ(1) < 0. If K > 1, then detDF > 0, so the equilibrium is either
a sink or a source. To determine which, we calculate

trDF = φ′(1) =
2ε− (1 + 2ε− ε2)/K

(1 + ε)2
.

If 1 < K < (1 + 2ε− ε2)/2ε, then trDF < 0, and the equilibrium is a sink; if
(1 + 2ε − ε2)/2ε < K, a source. This calculation explains why, in Figure 1.9,
the curve {K = (1 + 2ε − ε2)/2ε} arises as a boundary between regions in
parameter space. As you can calculate (and we will show in later chapters),
these equilibria can be either nodes or foci; which case occurs depends on ρ as
well as ε,K.

Some typical phase portraits for (6.17) will be plotted in Section 6.7.3.



6.2. Terminology to Classify Equilibria 205

Slope x-nullcline larger Slope y-nullcline larger

Signs of ∂F1/∂y, ∂F2/∂y same detDF∗ < 0 detDF∗ > 0
Signs of ∂F1/∂y, ∂F2/∂y opposite detDF∗ > 0 detDF∗ < 0

Table 6.2: Types of equilibria and slopes of nullclines, assuming ∂Fk/∂y �= 0.

6.2.4 Two-Dimensional Equilibria and Slopes of Nullclines

Here is a geometric fact that can sometimes shorten stability calculations for two-
dimensional systems: At an equilibrium (x∗, y∗) of

[
x′

y′

]
=

[
F1(x, y)
F2(x, y)

]
, (6.20)

if you know the slopes of the nullclines, you can distinguish between a saddle point
(where detDF∗ < 0) and a sink or source (where detDF∗ > 0), as indicated in
Table 6.2.

To prove this assertion, suppose that detDF∗ �= 0. Because the determinant is
nonvanishing, (i) both gradients ∇Fj(x∗, y∗), j = 1, 2, are nonzero, so both null-
clines are nonsingular curves, and (ii) the nullclines are not tangent. Note that
the slope of the x-nullcline is the quotient −∂F1

∂x
/∂F1

∂y
, interpreted as ∞ if the de-

nominator vanishes, and similarly for the slope of the y-nullcline. If either ∂F1/∂y
or ∂F2/∂y vanishes, then one of the two terms in detDF∗ is zero, so the sign of
detDF∗ may be determined from the signs of elements of DF∗; thus, in the table we
assume that ∂F1/∂y �= 0, ∂F2/∂y �= 0. Multiply and divide detDF by the product
∂F1/∂y ∂F2/∂y to deduce

detDF = (∂F1/∂y)(∂F2/∂y)

{
∂F1/∂x

∂F1/∂y
− ∂F2/∂x

∂F2/∂y

}
. (6.21)

Thus (6.21) represents detDF∗ as a factor times the difference in the slopes of the
nullclines. With these observations you may verify the information given in Table 6.2.
(Don’t forget the minus sign in the formula for the slopes.)
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6.3 Activator–Inhibitor Systems and the Turing Instability

As we saw in Section 5.6, in the limit κ → ∞, the activator–inhibitor equations3

reduce to
(a) x′ = σx2/(1 + y)− x,

(b) y′ = ρ [x2 − y],
(6.22)

where σ and ρ are positive parameters. In the first subsection below we determine the
equilibria of (6.22) and their stabilities; in the second, making a lovely application
of Theorem 6.1.1, we present the Turing instability, in which two copies of (6.22) are
coupled.

6.3.1 Equilibria of the Activator–Inhibitor System

Let’s establish the following facts about the equilibria of (6.22):

• The origin (0, 0) is an asymptotically stable equilibrium of (6.22) for all par-
ameter values.

• If σ > 2, then (6.22) has two nontrivial equilibria, say P± = (x±, y±), where
x± satisfies

x2 − σx+ 1 = 0 (6.23)

and y± = x2
±. (See also Figure 6.3.)

• When σ > 2, the equilibrium P− is a saddle point.

• When σ > 2, the equilibrium P+ is a sink if ρ > 1 and a source if ρ < 1.

Proof of Point 1: It is obvious that the origin (0, 0) is an equilibrium of (6.22).
To determine its stability, we calculate the Jacobian of the system (at an arbitrary
point):

DF =

⎡

⎢
⎢
⎣

2σx

1 + y
− 1 − σx2

(1 + y)2

2ρx −ρ

⎤

⎥
⎥
⎦ . (6.24)

At the origin,

DF∗ =
[ −1 0

0 −ρ

]
, (6.25)

so by Theorem 6.1.1 this equilibrium is asymptotically stable.

3In Section 4.4.2 we proved global existence for the activator–inhibitor equations assuming
κ < ∞, and global existence for (6.22) was posed as Exercise 4.3(c).
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x+

x

2
σ

1
x −

Figure 6.3: Nonzero equilibria of the activator–inhibitor system (6.22) for σ ≥ 2.

Proof of Point 2: To investigate other equilibria of (6.22), we calculate nullclines.
The RHS of (6.22a) vanishes if

(a) x = 0 or (b) y = σx− 1. (6.26)

The RHS of (6.22b) vanishes if y = x2; substituting into (6.26b), we obtain (6.23).
If σ > 2, then the roots of (6.23) are real, and (6.22) has two nontrivial equilibria,
as claimed. Incidentally, the Jacobian (6.24) at these equilibria simplifies to

DF± =

⎡

⎣
1 −1/σ

2ρx± −ρ

⎤

⎦ . (6.27)

Proof of Point 3: As shown in Section 6.2.4, we may determine the sign of detDF∗
at an equilibrium by comparing the slopes of the two nullclines. Note from (6.27)
that ∂F1/∂y and ∂F2/∂y always have the same sign, both negative. As we see in
Figure 6.4, the x-nullcline has larger slope at P− than the y-nullcline. Thus, by
Table 6.2, this equilibrium is a saddle point.4

Proof of Point 4: Similarly, we see from Table 6.2 that P+, which we call the
“top” equilibrium, is either a sink or a source. By (6.27),

trDF∗ = 1− ρ.

If ρ > 1, then trDF∗ < 0, so P+ is a sink, and if ρ < 1, then P+ is a source.

4If you don’t like the geometric argument we use in deriving Points 3 and 4, you may just
calculate detDF∗ instead.
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P −

P+

y

y−nullcline

x

x−nullclines

Figure 6.4: Nullclines and equilibria of the activator–inhibitor system (6.22) assum-
ing σ = 5/2. This system has three equilibria, provided σ > 2. Note that this figure
differs from the nullclines in Figure 4.6, because (6.22) was derived from (4.30) by
taking the limit κ → ∞.

6.3.2 The Turing Instability: Destabilization by Diffusion

The Turing instability may arise if an activator and an inhibitor react in a spatially
extended environment in which the chemicals may diffuse. It is believed (see Sec-
tion 2.2, Volume 2, of Murray [58]) that this mechanism may underlie the formation
of periodic structures in the embryo, especially patterns on the coats of animals.
The full description of the Turing instability requires both spatial and temporal
variables, i.e., a PDE, which is beyond the scope of this book. However, the essential
phenomenon occurs in a toy model that we study in this section.

To develop intuition about the effect of diffusion, let’s consider a hypothetical
scalar reaction, say modeled by y′ = 1 − y, that takes place in two reaction vessels
coupled by diffusion. This situation is described by the equations

y′1 = 1− y1 +D(y2 − y1),
y′2 = 1− y2 +D(y1 − y2),

where D > 0 is a diffusion constant. The diffusive terms cause reactant to move
from the cell with higher concentration to the cell with lower concentration, at a
rate proportional to the difference in concentration. The original scalar ODE has
a unique equilibrium at y = 1, and it is asymptotically stable. The system with
diffusion has the unique equilibrium (1, 1); moreover, the eigenvalues of the 2 × 2
coefficient matrix are −1 and −1 − 2D, so this equilibrium is also asymptotically
stable. Indeed, the extra eigenvalue −1−2D is even more negative than the original
one. Thus, diffusion is usually regarded as a stabilizing effect.
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However, in some circumstances diffusion can be destabilizing. Consider two
reaction vessels, each containing an activator–inhibitor system modeled by (6.22).
Suppose the inhibitor is allowed to diffuse5 between the two cells, which leads to the
four-dimensional system

(a) x′
1 = σx2

1/(1 + y1)− x1,

(b) y′1 = ρ [x2
1 − y1] +D(y2 − y1),

(c) x′
2 = σx2

2/(1 + y2)− x2,
(d) y′2 = ρ [x2

2 − y2] +D(y1 − y2).

(6.28)

We assume that σ > 2 and ρ > 1, so that the top equilibrium (x+, y+) of (6.22)
is asymptotically stable. Let’s apply Theorem 6.1.1 to determine the stability of
the equal-concentration equilibrium (x+, y+, x+, y+) of (6.28). The Jacobian DF∗ of
(6.28) at the equilibrium may be decomposed into block form

DF∗ =
[
A− B B
B A−B

]
, (6.29)

where A is the 2× 2 Jacobian of (6.22) at the equilibrium, and

B =

[
0 0
0 D

]

covers the diffusion terms. By applying a similarity transformation with block struc-
ture

S =

[
I −I

I I

]
,

where I is the 2× 2 identity matrix, we may reduce DF∗ to the block diagonal form

S−1DF∗S =

[
A 0
0 A− 2B

]
. (6.30)

The four eigenvalues of this matrix are the two eigenvalues of A and the two eigen-
values of A− 2B. Since (x+, y+) is asymptotically stable, the eigenvalues of A have
negative real parts, so stability hinges on the eigenvalues of A− 2B.

Taking A from (6.27), we calculate that

det(A− 2B) = det

[
1 −1/σ

2ρx+ −ρ− 2D

]
= −ρ+ 2ρx+/σ − 2D.

5Realistically, both chemicals should be allowed to diffuse. For the model problem (6.28), such
a perturbation, if not too large, has little consequence. We ask you to verify this in Exercise 20.
However, in a PDE formulation of the full problem, diffusion of the activator is an essential effect.
In particular, it influences decisively the length scale of periodic structures that may arise from the
Turing instability.
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If D is large enough, the term −2D makes the determinant of this matrix negative.
For such large D, one of the eigenvalues of A − 2B, and hence an eigenvalue of
DF∗, must be positive, meaning that the equilibrium of the 4×4 system is unstable.
This is the Turing instability: an otherwise stable equilibrium has been destabilized
by diffusion!

What is the long-term behavior of solutions of (6.28) when the equal-concentration
equilibrium is unstable? We wouldn’t want to stop the determined reader from firing
up his/her computer to answer this question right now, but let us mention that in
Chapter 8 we will develop analytical methods to attack this question.

For reference when we return to this problem, we record the following informa-
tion: One eigenvalue of the Jacobian of (6.28) at the equal-concentration equilibrium
(x+, y+, x+, y+) is positive if D > D∗, where, after some calculation, we find that the
critical value of diffusion is

D∗ =
ρ
√

1− 4/σ2

2
.

If D = D∗, the equal-concentration equilibrium of (6.28) is nonhyperbolic, and the
null eigenvector v of DF∗ in this case is

v =

[
w
−w

]
, (6.31)

where w ∈ R
2 spans the kernel of A− 2B.

6.4 Feedback Stabilization of an Inverted Pendulum6

Consider an inverted pendulum mounted on a cart, as shown in Figure 6.5. The cart
may slide along a track, and let x̂ measure its displacement along the track. The
pendulum may rotate about its pivot in the vertical plane aligned with the track,
and let θ be the angle with the vertical.

We don’t need any theory to know that the straight-up equilibria of the system

x̂ = const, θ = 0, (6.32)

are unstable. In this section we ask whether by applying force to the cart, we can
reliably drive the system to one of these otherwise unstable equilibria, specifically, a
force proportional to the amount the system is out of equilibrium. To put this more
mathematically, consider a force on the cart given by

6This section is a standalone, moderately difficult application of Theorem 6.1.1. If you feel you
need to press ahead, the section may be skipped or read later without loss of continuity.
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F

Figure 6.5: An inverted pendulum mounted on a cart. Can it be stabilized by
judicious application of a force F?

F̂ = Âθ + B̂
dθ

dt̂
, (6.33)

where Â, B̂ are constants, what is called feedback control. Note that the states
(6.32) are still equilibria of this system when F̂ is given by (6.33). We shall apply
Theorem 6.1.1 to determine whether there are any values of the coefficients Â, B̂
in (6.33) that make the equilibria (6.32) of the force–cart–pendulum system stable.
Perhaps you, like us, will be surprised by the answer: no choice of Â, B̂ will make the
equilibria stable! However, the surprises don’t stop here: with a different feedback
control involving the speed of the cart,

F̂ = Âθ + Ĉ
dx̂

dt̂
, (6.34)

it is possible to stabilize the pendulum in the inverted position!

The following ODEs describe the motion of the cart–pendulum system:

M
d2x̂

dt̂2
+m

(
d

dt̂

)2

[x̂+ 
 sin θ] = F̂ (t̂)− c
dx̂

dt̂
, (6.35)

m
2
d2θ

dt̂2
= mg
 sin θ − b

dθ

dt̂
−m
 cos θ

d2x̂

dt̂2
. (6.36)

As indicated in the figure, M is the mass of the cart, m is the point mass at the
end of a (massless) rod of length 
, and g is the acceleration of gravity. The term
−c dx̂/dt̂ models a frictional force resisting motion of the cart, and −b dθ/dt̂ models
a frictional torque resisting rotation of the pendulum.
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The simplest derivation of these equations is based on the Lagrangian approach
to mechanics7 (see, for example, Chapter 7 of [88]). Derivations may be found online,
or alternatively it might be a nice reward for learning this formalism to be able to
perform the derivation yourself. In any case, you do not need to understand the
derivation to proceed with reading this section.

First, some preliminary processing of the equations: We combine the two terms
in (6.35) involving d2x̂/dt̂2, and then we divide the equation by (M +m)
 to obtain

1




d2x̂

dt̂2
+ α

(
d

dt̂

)2

[sin θ] =
F̂ (t̂)

(M +m)

− c

(M +m)


dx̂

dt̂
, (6.37)

where α = m/(M +m). Dividing (6.36) by m
2 yields

d2θ

dt̂2
=

g



sin θ − b

m
2
dθ

dt̂
− cos θ




d2x̂

dt̂2
. (6.38)

To nondimensionalize the equations, we define t = ωt̂, where ω2 = g/
 and
x = x̂/
. The scaled equations are

x′′ + α[sin θ]′′ = F (t)− γx′,
cos θ x′′ + θ′′ = sin θ − βθ′,

where

F (t) =
F̂ (t̂)

(M +m)
ω2
, γ =

c

(M +m)ω
, β =

b

m
2ω

are all dimensionless, and prime indicates d/dt.

From here, the most straightforward way to process the equations would be to
evaluate the derivative

[sin θ]′′ = (cos θ) θ′′ − (sin θ)(θ′)2,

invert the coefficient matrix [
1 α cos θ

cos θ 1

]

7A direct derivation of (6.35), (6.36) from Newton’s laws is tricky, but after the fact, let us
interpret the equations in these terms. Equation (6.35) is the x-component of Newton’s second law
for the motion of the center of mass of the total system. Equation (6.36) comes from computing
moments around the pivot, but with one nonstandard ingredient: the term m� cos θ d2x̂/dt̂2 is
a fictitious torque reflecting the fact that moments are calculated about a point that may be
accelerating. Note that the cart exerts an unknown force on the pendulum at the pivot. The above
equations sidestep this issue; this force does not appear in (6.35), because an internal force does
not contribute to the motion of the center of mass, and in (6.36) the moment of this force vanishes,
because the length of the lever arm is zero.
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to express (x′′, θ′′) in terms of lower-order derivatives, derive a first-order four-
dimensional system for (x, x′, θ, θ′), and invoke Theorem 6.1.1 to assess the stability
of the equilibrium. However, this program involves some fairly messy calculations
that we may avoid by proceeding as follows.

In the first place, undifferentiated x does not appear in the above equations, only
derivatives of x. (Physically, this just expresses the fact that behavior is not affected
by exactly where the cart is.) Therefore, we may reduce the order of the system by
defining v = dx/dt and rewriting the equations as

v′ + α[sin θ]′′ = F (t)− γv,

(cos θ) v′ + θ′′ = sin θ − βθ′.
(6.39)

Although we could now derive a first-order three-dimensional system for (v, θ, θ′), we
continue our nonstandard approach by sticking with the mixed-order two-dimensional
system (6.39). Let the applied force be determined by the feedback formula

F = Aθ +Bθ′ + Cv.

Note that v = θ = 0 is still an equilibrium of (6.39) with this force. To investi-
gate whether any coefficients A,B,C make this equilibrium stable, we linearize the
equations around the equilibrium:

v′ + αθ′′ = Aθ +Bθ′ + Cv − γv,
v′ + θ′′ = θ − βθ′.

An exponential (v(t), θ(t)) = eλt(v0, θ0) is a solution of this system iff

[
λ+ γ − C αλ2 −Bλ− A

λ λ2 + βλ− 1

] [
v0
θ0

]
=

[
0
0

]
.

We get a nontrivial solution only if the determinant of the matrix is zero, which
implies that

(1− α)λ3 + (β + γ − C +B)λ2 + (−1 + β(γ − C) + A)λ− (γ − C) = 0. (6.40)

This is exactly the same characteristic polynomial that would have resulted from the
standard approach based on writing (6.39) as a first-order three-dimensional system.
We leave it to the dedicated reader to verify this claim. Therefore, by Theorem 6.1.1,
the equilibrium v = θ = 0 of (6.39) will be asymptotically stable if the three roots
of (6.40) all lie in the left half-plane.

Claim 1: If C = 0, the equilibrium v = θ = 0 of (6.39) is unstable.
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Proof. If C = 0, the product of the roots of (6.40) is γ/(1 − α). Since α < 1,
this product is positive, which means that at least one root must lie in the right
half-plane.

Here is a more intuitive take on the above proof. If no force is applied, the system
has two eigenvalues in the left half-plane and one in the right. (Heuristically, one
eigenvalue may be associated with the speed of the cart, which is negative because of
friction, and two eigenvalues with the pendulum, which have opposite signs because
the decoupled θ-equation has a saddle-point equilibrium.) Thus if F = 0, the product
of the eigenvalues is positive. The proof of the claim shows that if feedback does not
involve v, it cannot change the sign of the product of the eigenvalues.

Claim 2: If B = 0, the system (6.39) is asymptotically stable if

(a) C = γ + β/2 and (b) A > (2− α) + β2/2. (6.41)

Proof. As follows from Theorem C.4.1 in Appendix C, the roots of a cubic polynomial
γ0λ

3 + γ1λ
2 + γ2λ+ γ3 all lie in the left half-plane iff

(a) γ1/γ0 > 0,
(b) γ1γ2/γ

2
0 > γ3/γ0,

(c) γ3/γ0 > 0.

Condition (c) is satisfied if C > γ, and Condition (a) is satisfied if C < γ + β; the
choice (6.41a) meets both these requirements. Given this value of C, Condition (b)
becomes the inequality (6.41b).

Here is an interpretation of the successful control strategy. First choose C to
reverse the effective sign of friction on the block,8 but keep it small enough that
overall, the system is still dissipative. Now choose A to push the cart hard when θ
is out of equilibrium, hard enough to overcome gravity and then some. This makes
the equilibrium stable.

You might enjoy testing the predictions of this section numerically.9

8We find this choice surprising, because it seems to make the system more unstable. Indeed, if
C is given by (6.41) and A = B = 0, then two of the roots of (6.40) have positive real parts.

9Are you tempted to build a physical model and use it to test the predictions? Contemplating
this, you will quickly see the wisdom in the quip due to V.I. Arnol’d, a distinguished Russian
mathematician: “Mathematics is the part of physics where experiments are cheap.”
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6.5 Lyapunov Functions

6.5.1 The Main Results

Lyapunov functions provide another approach to analyzing the stability of an equi-
librium. When it can be used, this approach has two noteworthy advantages over
Theorem 6.1.1: (i) It may be used to prove asymptotic stability of an equilibrium
even in some cases in which one or more eigenvalues of the Jacobian have zero real
part. (ii) It is more amenable to obtaining global results (cf. Exercises 12 and 13).

Suppose b∗ is an equilibrium of x′ = F(x), where F : U → R
d. Let L(x) be a

real-valued function defined on an open neighborhood of b∗, say on U1 ⊂ U , that is
continuous on U1 and C1 on U1 ∼ {b∗}. We shall call L a Lyapunov function for this
system near b∗ if it satisfies the following two hypotheses:

(a) For all x ∈ U1 ∼ {b∗}, 〈∇L(x),F(x)〉 ≤ 0 and
(b) For all x ∈ U1, L(x) ≥ L(b∗), with equality only if x = b∗.

(6.42)

Condition (b) requires that b∗ be a strict minimum of L over U1. Regarding Condi-
tion (a): by the chain rule, the derivative of L(x) along a trajectory x(t) of x′ = F(x)
is given by

d

dt
L(x(t)) = 〈∇L(x(t)),x′(t)〉 = 〈∇L(x(t)),F(x(t))〉;

thus, Condition (a) implies that L(x) is nonincreasing along any trajectory of
x′ = F(x).

The simplest example of a Lyapunov function is provided by the energy L(x, y) =
y2/2 + x2/2 of a spring–mass system, written as a (scaled) first-order system:

x′ = y,
y′ = −x− βy.

(Check that (6.42) is satisfied!) In this and other examples, sublevel sets of a
Lyapunov function

Kα = {(x, y) : L(x, y) ≤ α} (6.43)

provide a one-parameter family of trapping regions.

Theorem 6.5.1. If x′ = F(x) admits a Lyapunov function L(x) near b∗, then the
equilibrium is Lyapunov stable.

Proof. Let V , a neighborhood of b∗, be given. Choose a radius δ so small that
B(b∗, δ) ⊂ V ∩ U1. Let

α = min
|x−b∗|=δ

L(x); (6.44)
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V1

L(x)= α

b
*

B(b  ,   )
*

δ

Figure 6.6: Hypothetical neighborhoods in the proof of Theorem 6.5.1.

by (6.42b) and compactness, α > L(b∗). Let

V1 = {x ∈ B(b∗, δ) : L(x) < α}.

(This data is indicated schematically in a hypothetical example in Figure 6.6.)

If b ∈ V1, let x(t) = ϕ(t,b) be the solution to the IVP. Since L(x) decreases
along trajectories, we know that for as long as the solution is in U1,

L(x(t)) ≤ L(x(0)) < α.

In light of (6.44), x(t) cannot cross ∂B(b∗, δ); i.e., the trajectory is confined to the
compact set B(b∗, δ). By Theorem 4.1.2, the solution exists for all t ≥ 0. Moreover,
x(t) ∈ B(b∗, δ) ⊂ V , and this shows that b∗ is Lyapunov stable.

Regarding Condition (b) in (6.42), the following example shows that b∗ must be
a strict minimum of L(x) to get a useful concept: the origin is an equilibrium of

x′ = x,
y′ = −y,

the function L(x, y) = y2 satisfies Condition (a) and has a minimum at 0, but the
equilibrium is unstable.

If in Condition (a) of (6.42), less-than-or-equal-to is replaced by strict inequality,
〈∇L(x),F(x)〉 < 0, then L is called a strict Lyapunov function. In this case, of
course, along every trajectory L(x) is strictly decreasing.

Theorem 6.5.2. If the equation x′ = F(x) admits a strict Lyapunov function near
b∗, then the equilibrium is asymptotically stable.
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Proof. By Theorem 6.5.1, if a trajectory x(t) starts near b∗, then it exists for all pos-
itive time and stays within a compact neighborhood of b∗. Suppose such a trajectory
does not converge to b∗. Then there exists a sequence {tn} tending to infinity such
that {x(tn)} is bounded away from b∗. By invoking compactness and passing to a
subsequence if necessary, we may assume without loss of generality that the sequence
{x(tn)} has a limit, say x(tn) → b, for some point b �= b∗. Since L is continuous,

lim
n→∞

L(x(tn)) = L(b) = lim
t→∞

L(x(t)), (6.45)

the latter equality because L(x(t)) is a decreasing function.

Now consider the IVP for x′ = F(x) with initial condition b; we write this solution
as ϕ(s,b). On the one hand, since L is a strict Lyapunov function, for any s > 0

L(ϕ(s,b)) < L(ϕ(0,b)) = L(b). (6.46)

On the other hand, by the continuity of ϕ (Theorem 4.5.1), we have

ϕ(s,b) = lim
n→∞

ϕ(s,x(tn));

by the semigroup property (Proposition 4.5.3), we have ϕ(s,x(tn)) = x(tn + s), so
ϕ(s,b) = limn→∞ x(tn + s); hence,

L(ϕ(s,b)) = lim
n→∞

L(x(tn + s)) = L(b), (6.47)

the latter equality by (6.45). But (6.47) contradicts (6.46), which proves the theorem.

6.5.2 Lasalle’s Invariance Principle

Let’s attempt to apply Lyapunov functions to show that the equilibria (±1, 0) of
Duffing’s equation (6.1) are asymptotically stable. We propose the energy E(x, y) =
y2/2−x2/2+x4/4 as our Lyapunov function. The equilibria (±1, 0) are strict minima
of E, and

dE

dt
= −βy2 ≤ 0;

thus E is indeed a Lyapunov function. Unfortunately, it is not a strict Lyapunov
function, because dE/dt vanishes along the x-axis. Thus we may conclude from this
line of analysis only that (±1, 0) are Lyapunov stable, even though we know from
Theorem 6.1.1 that these equilibria are in fact asymptotically stable.

Difficulties of this type, which are fairly common, can be resolved with the fol-
lowing result, known as Lasalle’s invariance principle. The principle brings in infor-
mation about the set on which the Lyapunov inequality fails to be strict,
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S = {x ∈ U1 ∼ {b∗} : 〈∇L(x),F(x)〉 = 0}. (6.48)

Specifically, suppose that

no trajectory that starts in S remains in S for all positive time. (6.49)

Theorem 6.5.3. If near an equilibrium b∗, x′ = F(x) has a Lyapunov function L
that satisfies assumption (6.49), then b∗ is asymptotically stable.

Proof. The proof of this result closely follows that of Theorem 6.5.2. Suppose there is
a trajectory x(t) starting close to b∗ that does not converge to b∗. Then proceeding
as in the previous proof, we may choose a sequence {tn} such that x(tn) → b and
such that (6.45) holds. Again we consider the solution ϕ(s,b) of the IVP and
show that it satisfies (6.47). The difference appears with (6.46): before, we could
guarantee that this inequality held for any s > 0, but now, if b ∈ S, it might happen
that L(ϕ(s,b)) = L(b) for a range of s. However, the crucial point is this: by
Assumption (6.49), the trajectory ϕ(s,b) cannot remain in S indefinitely, and hence
there must be some value of s such that (6.46) holds. Thus, we can still obtain the
contradiction needed to complete the proof.

In Exercise 12 we ask you to use Lasalle’s invariance principle to complete the
proof of asymptotic stability for the equilibria (±1, 0) of Duffing’s equation using
Lyapunov functions.

6.5.3 Construction of Lyapunov Functions: An Example

The real mystery regarding Lyapunov functions is not how to use them but how to
find them. There are a few standard tricks: In mechanical problems, such as Duffing’s
equation above, energy is an obvious candidate. For two classes of equations—
Hamiltonian systems (cf. Exercise 10) and gradient systems (cf. Section 6.9.1)—the
structure of such equations automatically provides a Lyapunov function. Another
technique that sometimes works is introduced in Exercise 13(b). Failing these special
cases, you are forced to rely on ingenuity and insight.

This early in your study of ODEs, you may feel that insight is in short supply,
but we urge you to take the long view: you will find that in studying an equation
over an extended period of time, you develop intuition about it that may astonish
those less familiar with the equation, and this intuition will, among other benefits,
help in constructing a Lyapunov function.
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Let’s illustrate how insight can be exploited to construct a Lyapunov function for
the Lotka–Volterra equations with logistic limits to growth of the prey10,

(a) x′ = x(1− x/K − y),
(b) y′ = ρy(x− 1).

(6.50)

We assume that K > 1, so that the coexistence equilibrium of (6.50), located at
(x, y) = (1, 1−1/K), lies in the physical domain {x > 0, y > 0}. It is readily verified
from Theorem 6.1.1 that this equilibrium is asymptotically stable.

Note that setting K = ∞ in (6.50) yields the original Lotka–Volterra equation
(1.39) from Chapter 1. As we saw there, the function

ρ(x− ln x) + y − ln y, (6.51)

which has a strict minimum at (1, 1), is constant on the (periodic) orbits of (1.39).
This is of course a special case of a Lyapunov function. Let’s try to modify (6.51) to
obtain a Lyapunov function for (6.50) when K < ∞, say

L(x, y) = Ax−B ln x+ y −D ln y (6.52)

for some constants A,B,D. (By scaling (6.52), we have assumed without loss of
generality that the coefficient of y in (6.52) is unity.) To determine appropriate
coefficients in (6.52), we first require that this function assume its minimum at the
equilibrium (x, y) = (1, 1−1/K) of (6.50); this yields that A = B and D = 1−1/K.
Thus we may rewrite (6.52) as

L(x, y) = A(x− ln x) + y − (1− 1/K) ln y.

A calculation shows that

dL

dt
= A(x− 1)(1− y − x/K) + ρ(y − 1 + 1/K)(x− 1).

If we choose A = ρ, then all terms that are not O(1/K) cancel, and this equation
simplifies to

dL

dt
= −ρ(x− 1)2

K
.

In particular, dL/dt ≤ 0, so L is a Lyapunov function for (6.50) at the coexistence
equilibrium.

It follows from Theorem 6.5.1 that the equilibrium (1, 1− 1/K) of (6.50) is Lya-
punov stable. Although L is not a strict Lyapunov function, by invoking Lasalle’s

10In Exercise 13(c) we relate this Lyapunov function to behavior of the augmented Lotka–Volterra
equation that we discussed in Section 1.6.
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invariance principle, you may prove, independently of Theorem 6.1.1, that this equi-
librium is asymptotically stable. In fact, in Exercise 13(c) we outline how L may be
used to prove that the equilibrium is globally attracting.

6.6 Stable and Unstable Manifolds

In this section we consider equilibria where the Jacobian has eigenvalues with both
positive and negative real parts.

6.6.1 A Linear Example

Stable and unstable manifolds11 can be seen already in the linear system

[
x′

y′

]
=

[
0 1
1 0

] [
x

y

]
. (6.53)

This matrix has eigenvalues equal to ±1, and the general solution of (6.53) is

[
x
y

]
= C1e

t

[
1
1

]
+ C2e

−t

[
1
−1

]
. (6.54)

It is easily calculated that the trajectory (6.54) is contained in the hyperbola

y2 − x2 = C, (6.55)

where C = −4C1C2. (Alternatively, C may be interpreted as twice the total energy,
kinetic (y2/2) plus potential (−x2/2), which a simple calculation shows is constant
along trajectories.) The case C = 0 is qualitatively different from C nonzero. Specif-
ically, please verify the following points:

• If C �= 0, then the set (6.55) consists of exactly two distinct orbits12—each
branch of the hyperbola is an orbit. Both orbits are bounded away from the
the equilibrium of (6.53) at the origin. (Cf. Figures 6.7a,b.)

11The general term “manifold” is defined in Section B.3.3, but in most examples the stable and
unstable manifolds will be just curves in the plane.

12Recall that the orbit of a solution of an ODE means the curve traced out by the solution,
considered merely as a subset of Rd, independent of any parametrization. By contrast, the term
trajectory includes a specific parametrization that yields a solution of the ODE. Each orbit corre-
sponds to infinitely many different trajectories, time translates of one another. Thus, it is more
convenient to enumerate orbits than trajectories.
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Figure 6.7: Orbits of the model problem (6.53). Stable (blue) and unstable (red)
manifolds are identified in Panel (c).

• If C = 0 (illustrated in Figure 6.7c), the singular hyperbola consists of five
orbits, the equilibrium {0} and four rays of slope ±45◦ starting at the
equilibrium, i.e.,

{y = x > 0}, {y = x < 0}, {y = −x > 0}, {y = −x < 0}. (6.56)

Stable and unstable manifolds relate to the asymptotic behavior of solutions as
t → ±∞. If the initial conditions x(0), y(0) of a solution of (6.53) lie on one of
the hyperbolas (6.55) with C �= 0, then this solution tends to infinity in both limits
t → ±∞. By contrast, if x(0), y(0) lies on the line {y = −x}, then this solution
tends to the equilibrium as t → +∞. Conversely, for every solution that tends to the
equilibrium as t → +∞, its initial conditions must lie on this line. Reflecting this
behavior, the line {y = −x} is called the stable manifold of the equilibrium, denoted
by Ms. Note that the stable manifold, which is colored blue in Figure 6.7c, is the
union of three orbits, the equilibrium and two of the rays in (6.56).

Analogously, the line {y = +x}, which is colored red in the figure, is called the
unstable manifold Mu. A solution of (6.53) tends to the equilibrium as t → −∞ if
and only if (x(0), y(0)) ∈ Mu.

Remark: We shall always observe the above color conventions—blue for stable
manifolds, red for unstable manifolds.

It is not difficult to generalize these ideas to a linear system of any dimension
whose equilibrium is hyperbolic, say x′ = Ax, where �λj(A) �= 0. As discussed in
Exercise 6, the stable manifold is given by the linear span of all generalized eigenvec-
tors13 of A associated with eigenvalues such that �λ < 0; for the unstable manifold,
it is the eigenvalues such that �λ > 0.

13Recall from the discussion of Jordan normal forms in Section C.1 that v is a generalized
eigenvector of a matrix A with eigenvalue λ if (A− λI)pv = 0 for some power p.
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6.6.2 Statement of the Local Theorem

The following result generalizes the stable/unstable-manifold concept to the IVP

x′ = F(x), x(0) = b (6.57)

for a nonlinear system that has a hyperbolic equilibrium at x = b∗. For brevity we
focus only on the stable manifold. The first change from the linear case is that we
restrict attention to initial conditions b that are close to b∗. Such a restriction is hard
to avoid with a nonlinear equation. Indeed, even with it, in a neighborhood of b∗
there may be initial conditions such that the IVP (6.57) does not have a solution for
all time t > 0 (cf. Exercise 9). The second change is that Ms is a curved manifold,
not a linear subspace.

To set the notation, suppose that ds eigenvalues of the Jacobian DF(b∗) = DF∗
have negative real parts and that the remaining d − ds eigenvalues of DF∗ have
positive real parts. Let Es ⊂ R

d denote the span of all generalized eigenvectors of
DF∗ associated with eigenvalues such that �λ < 0, a subspace of dimension ds.

Theorem 6.6.1. Given a hyperbolic equilibrium b∗ of an ODE as described above,
there exist a (bounded) neighborhood V of b∗ in R

d and a differentiable manifold
Ms ⊂ V of dimension ds tangent to Es at b∗ such that: (i) If b ∈ Ms, then the IVP
(6.57) has a solution ϕ(t,b) for all positive time and

lim
t→∞

ϕ(t,b) = b∗. (6.58)

(ii) If b ∈ V ∼ Ms, then ϕ(t,b) leaves V at some positive time.

Although it is mathematically redundant to do so, it may be pedagogically useful
to describe this result in nontechnical language: Ms characterizes certain initial con-
ditions for (6.57) in terms of the asymptotic behavior of the corresponding solution
of the IVP. To develop this thought, consider the IVP

x′ = −x x(0) = b1,

y′ = y + x2 y(0) = b2.
(6.59)

By finding an explicit solution you can show (cf. Exercise 8) that the solution of this
IVP converges to the equilibrium (0, 0) iff

b2 = −b21/3; (6.60)

i.e., (6.60) defines the stable manifold of the equilibrium (and V can be chosen
arbitrarily).

Remarks: (i) If in the theorem ds = d, then the stable manifold is simply an entire
neighborhood of b∗. In this case, Theorem 6.6.1 is effectively just a restatement of
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Theorem 6.1.1. (ii) Apart from being defined in a bigger or smaller neighborhood of
b∗, the manifold Ms is unique. (iii) Under the hypotheses of Theorem 6.6.1, there
is also an unstable manifold Mu through b∗. Its dimension equals the number of
eigenvalues of DF∗ with positive real parts. It is most easily described as the stable
manifold of the time-reversed system x′ = −F(x). In particular, if b ∈ Mu, then
ϕ(t,b) is defined for all t ≤ 0 and tends to b∗ as t → −∞.

The proof of this result, which is long and rather technical, is outlined in an
appendix. This material may be omitted without loss of continuity. However, to
continue profitably reading this book, you need to develop intuition about stable
and unstable manifolds, especially in the most common case of a saddle point in a
two-dimensional system, where Ms and Mu reduce to curves. This may be achieved
through interpreting the conclusions of Theorem 6.6.1 in various examples, including
those in the rest of Section 6.6, in Section 6.7, and in the exercises of Section 6.8.3.

6.6.3 A Nonlinear Example

In general it is not possible to find a formula for the stable or unstable manifolds at
an equilibrium. In this section we consider a nonlinear equation with a hyperbolic
equilibrium for which such formulas can be found, the ODE

x′ = y,
y′ = x+ x3.

(6.61)

This Duffing-like equation may be viewed as a nonlinear perturbation of (6.53). It
describes a particle under a force F (x) = x+x3 in which both linear and cubic terms
are repulsive. Its potential energy, V (x) = −x2/2−x4/4, is shown in Figure 6.8. We
discuss solutions of this equation in terms of the loose analogy of a marble rolling
in the x, z-plane over the hill given by z = V (x). Because there is no friction, each
orbit of (6.61) is contained in (but not necessarily equal to) a level set of the energy
function,14

{(x, y) : H(x, y) = C}, (6.62)

where H(x, y) = y2/2 + V (x).

For the case C > 0, representative level sets of (6.62) are shown in Figure 6.9a.
The orbit y = +

√
2C + x2 + x4/2 in the upper half-plane derives from a particle

that at large negative times is far to the left of the origin and is moving to the right
toward the top of the hill at x = 0 (the situation shown in Figure 6.8); it slows
down as it approaches the top of the hill, but it has enough energy to clear it; after
it passes x = 0, it sails off to the right, at ever increasing speeds. In focusing on

14Equation (6.61) is an example of what’s called a Hamiltonian system, a class of ODEs that
is defined in Exercise 10. From now on, we will use the letter H for the energy of Hamiltonian
systems.
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V(x)
x

Figure 6.8: Illustration of the rolling-marble analogy for (6.61) described in the
text.
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Figure 6.9: Level sets of (6.62). In Panels (a) and (b), trajectories tend to infinity
as t → ±∞. In Panel (c), trajectories on the stable manifold (colored blue) tend to
(0, 0) as t → +∞; on the unstable manifold (red), as t → −∞.



6.6. Stable and Unstable Manifolds 225

the orbit, we suppress information regarding exactly when the particle passes over
the hill. Similarly, the orbit y = −√2C + x2 + x4/2 in the lower half-plane may be
interpreted in terms of a particle moving from right to left that clears the hill. These
orbits are bounded away from the origin (x, y) = (0, 0) in the phase plane, and they
tend to infinity as t → ±∞.

If C < 0, (6.62) again consists of exactly two orbits (see Figure 6.9b), one in
the right half-plane {x > 0} and one in {x < 0}. The orbit in the right half-plane
derives from a particle that at large negative times is far to the right of the origin
and is moving toward the hill but does not have enough energy to clear it; thus the
particle is turned around and sails back to the right as time increases. The orbit in
the left half-plane is similarly described.

When C = 0, the level set (6.62) consists of two crossed curves, y = ±x
√
1 + x2/2

(see Figure 6.9c). This level set decomposes into exactly five orbits, as follows:

(i) x = y = 0,

(ii) y = −x
√
1 + x2/2, 0 < x < ∞,

(iii) y = −x
√
1 + x2/2, −∞ < x < 0,

(iv) y = x
√
1 + x2/2, 0 < x < ∞,

(v) y = x
√
1 + x2/2, −∞ < x < 0.

(6.63)

Orbit (ii) derives from a particle that at large negative times was far to the right of
the origin and is moving to the left with just enough energy to converge to the top of
the hill as t → ∞; this is a single orbit. Similarly, orbit (iii) derives from a particle
moving to the right that converges to the top of the hill. The stable manifold is the
union of orbits (i), (ii), and (iii), the curve y = −x

√
1 + x2/2, where −∞ < x < ∞.

Mathematically, orbits (iv) and (v) are quite similar to orbits (ii) and (iii), but
the description in words is harder to swallow: the particle “falls off” the hilltop at
time minus infinity and is moving away from the equilibrium for all time, starting at
infinitesimal speeds but continuously accelerating; it takes an infinite amount of time
to fall off an equilibrium at time minus infinity, just as it takes an infinite amount
of time to converge to equilibrium as t tends to plus infinity. The motion is to the
right or left for orbits (iv) or (v), respectively. These two orbits, together with the
origin, constitute the unstable manifold.

As regards Theorem 6.6.1, we ask you to verify that for every δ > 0, the definitions

V = {(x, y) ∈ R
2 :

√
x2 + y2 < δ}, Ms = {(x, y) ∈ V : y = −x

√
1 + x2/2},

(6.64)
satisfy all the claims of the theorem. The manifoldMu admits a similar parametriza-
tion.

For (6.61), conservation of energy allows us to derive explicit formulas for Ms

and Mu. If we modified (6.61) slightly, for example by including a friction term, we
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could no longer find explicit parametrizations, but we could still invoke the theorem
to guarantee that stable and unstable manifolds exist.

Incidentally, this example illustrates another difference between orbits and trajec-
tories. Most solutions of (6.61) blow up in finite time, both forward and backward.
In such cases, the trajectory is defined only for a finite interval of time, and the
parametrization is singular at the endpoints of this interval. By contrast, although
the orbits (6.63) extend to infinity, their behavior is nonsingular.

6.6.4 Global Behavior of Stable/Unstable Manifolds

Theorem 6.6.1 concerns what properly should be called a local stable submanifold.
When it makes for greater clarity, we use the notation M(loc)

s to indicate this idea
explicitly. It is useful to extend local stable and unstable manifolds to global objects.
We want a global stable manifold M(glob)

s to satisfy the following two properties:

(i) M(glob)
s is invariant under the flow.

(ii) M(glob)
s contains all initial conditions b such that ϕ(t,b) converges to the equi-

librium as t → ∞.

Regarding Property (i), let us make the intuitive concept “invariant” precise: a set
S is called invariant if for every initial condition b ∈ S, we have that ϕ(t,b) ∈ S

for all t, positive or negative, such that the IVP has a solution.

In the example (6.61), the curve y = −x
√

1 + x2/2 where −∞ < x < ∞ is such
a global stable manifold. Although the extension is trivial in this example, let us
consider Duffing’s equation (without friction)

x′ = y,

y′ = x− x3,
(6.65)

which differs from (6.61) only in the sign of the cubic term in the force. The origin
is a hyperbolic equilibrium of (6.65), and the Jacobian there is given by

DF(0) =

[
0 1
1 0

]
,

which has eigenvalues ±1. By Theorem 6.6.1, M(loc)
s is a curve through the origin

tangent to (1,−1), the eigenvector ofDF(0) with eigenvalue −1, and similarlyM(loc)
u

is tangent to (1, 1).

We may use energy to identify stable and unstable manifolds for (6.65). Indeed,
both local and global versions of stable and unstable manifolds are contained in the
zero-energy level set,

S = {(x, y) : y2/2− x2/2 + x4/4 = 0}, (6.66)
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a “figure eight” that is sketched in Figure 6.10(a). Although the zero-energy set for
(6.61) decomposed into the five orbits (6.63), the set (6.66) decomposes into only
three orbits,

(i) x = y = 0,
(ii) y2/2− x2/2 + x4/4 = 0, x > 0,
(iii) y2/2− x2/2 + x4/4 = 0, x < 0.

(6.67)

We may describe these orbits in terms of the “rolling marble” analogy. (You should
sketch the double-well potential −x2/2 + x4/4, to which the following descriptions
refer.) In orbit (ii) at t = −∞ the particle falls off the equilibrium x = 0, it moves to
the right and gets turned around by the hill, and it converges back to the origin as
t → ∞. The set (ii) is a called a homoclinic orbit: this term refers to an orbit that
converges to the same equilibrium as t → ∞ and t → −∞. Similarly for orbit (iii),
but to the left.

Regarding Theorem 6.6.1, let us take V = {(x, y) : |x| < 1, |y| < 1}. Solving the
equation in (6.66) for y, we obtain the parametrization

M(loc)
s = {(x, y) : y = −x

√
1− x2/2, −1 < x < 1} (6.68)

and a similar parametrization for M(loc)
u using the function y = +x

√
1− x2/2.

Although the local manifolds M(loc)
s and M(loc)

u are distinct, at the global level
they merge—both M(glob)

s and M(glob)
u equal the whole level set (6.66). This follows

from the fact that to be invariant, these sets must contain the entire orbit through
each of their points. Reflecting this behavior, we extend our color conventions: purple
when the stable and unstable manifolds coincide. (In Figure 6.10(a) we show the
portions of Ms and Mu inside the neighborhood V as blue and red, respectively,
according to our previous convention; in the future we will use purple for the entire
manifold.)

Parenthetically, let us use this example to correct a possible misunderstanding
about what Conclusion (ii) in Theorem 6.6.1 asserts: although solutions with initial

conditions in V ∼ M(loc)
s eventually leave V , it is possible for them to return to V at

some later time.

Nontrivial intersections15 of M(glob)
s and M(glob)

u , as in (6.65), are not robust.
The slightest perturbation of the equation is likely to remove them. For example, if
we modify (6.65) by including a small amount of friction, then M(glob)

s and M(glob)
u

intersect only at the origin, as sketched in Figure 6.10(b). (See Exercise 12.)

15Ms and Mu always intersect at the equilibrium; we use “nontrivial” to refer to the existence

of other intersection points. For (6.65), M(glob)
s and M(glob)

u coincide, but in higher-dimensional

equations M(glob)
s ∩M(glob)

u may be a proper, but nontrivial, subset of both manifolds. Of course
the intersection consists of one or more complete orbits.
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Figure 6.10: (a) The zero-energy level set (6.66) for Duffing’s equation without

friction (6.65). The local manifolds M(loc)
s and M(loc)

u , i.e., the portions inside the
neighborhood V, intersect only at the origin, but the global manifolds actually coincide
and cannot be distinguished. (b) With friction the global unstable manifold spirals
into the equilibria at (±1, 0), while the stable manifold comes in from infinity and
converges to the origin. (In the figure, β = 1/4.)

Two other examples for which M(glob)
s and M(glob)

u intersect one another nontriv-
ially to form a homoclinic orbit are given in Exercises 10(f) and 17.

At a general hyperbolic equilibrium point b∗ of an equation x′ = F(x), a global

stable manifold may be defined as a union of orbits through M(loc)
s ; in symbols,16

M(glob)
s =

⋃
{ϕ(t,b) : t ∈ R, b ∈ M(loc)

s }, (6.69)

with a similar representation for M(glob)
u . Of course only negative times contribute

anything new to the union (6.69). In simple examples, M(glob)
s is a “nice” submanifold

of Rd, and mostly we restrict our attention to such cases. More generally, however,
especially in higher-dimensional cases where the ODE exhibits chaos, a global stable
or unstable manifold may become entangled with itself as t → ±∞. We refer you to
Section 5.5 of Meiss [54] for a careful discussion of these issues.

6.7 Drawing Phase Portraits

Recall that a phase portrait is a sketch of the trajectories of a few key solutions of
an ODE that suggests the behavior of an arbitrary solution. Nullclines and local
knowledge near equilibria from this chapter greatly help in making such portraits.
Indeed, sometimes with these tools no computer solutions are required; and even

16Strictly speaking, in this union we may take only those times t for which the initial value
problem has a solution. This limitation may be expressed quite precisely in the flow notation of
Section 4.5.2, but in our opinion such precision obscures more than it clarifies.
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when numerics are required, these tools are invaluable in interpreting the computa-
tions. Let us illustrate these techniques with several examples.

6.7.1 Example 1: The Chemostat

We recall the (scaled) chemostat equations

x′ =
y

y + 1
x− ρx,

y′ = − y

y + 1
x− ρ(y − σ),

(6.70)

where the variables belong to the quarter-plane {x ≥ 0, y ≥ 0}. There are two
equilibria:

x = 0, y = σ and x = σ − ρ/(1− ρ), y = ρ/(1− ρ). (6.71)

At the first equilibrium, which we call “trivial,” the bacteria population x vanishes.
Let’s assume

σ > ρ/(1− ρ) > 0, (6.72)

so that at the second equilibrium both variables are positive; i.e., the nontrivial
equilibrium is in the physical domain.

We ask you to verify the following information:

• At the nontrivial equilibrium, the entries of the Jacobian DF∗ satisfy

a11 = 0, a12 > 0, a21 < 0, a22 < 0.

Thus detDF∗ = −a12a21 > 0 and trDF∗ = a22 < 0, so this equilibrium is a
sink.

• The trivial equilibrium, at which the Jacobian is lower triangular, is a saddle
point. The stable eigenvector is (0, 1), and in fact the stable manifold of this
equilibrium is the y-axis. The unstable eigenvector is (1,−1).

Thus, the local unstable manifold emerges from the saddle point (0, σ) with slope
−45◦. In Exercise 4.9 you showed that every trajectory in the open first quadrant
converges to the sink.17 In particular, the global unstable manifold converges to the
sink,18 as sketched in the phase portrait of Figure 6.11.

Surprisingly, Mu can be located exactly: by adding the equations, we conclude
that the line {x+y = σ} is invariant under (6.70) and therefore contains the unstable
manifold through the saddle point.

17In fact, using Theorem 6.1.1, you could now derive this behavior with less effort.

18“What else could it do?” we naively ask. Although phase portraits are often made using
this kind of “logic,” be careful. Not seeing other alternatives might just reflect limitations of our
imagination.
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Figure 6.11: Phase portrait for the chemostat (6.70) in the first quadrant, assuming
σ > ρ/(1− ρ) > 0. In this figure, σ = 1 and ρ = 1/4.

Incidentally, the eigenvalues of DF∗ at the sink are real, so convergence to it will
be monotone, as shown in the figure. Most trajectories will converge to the sink
tangent to the less rapidly decaying eigenvector, which, for the parameters in the
figure, is (1,−2/3).

6.7.2 Example 2: The Activator–Inhibitor

In Section 6.3.1 we saw that if σ > 2, which we assume here, the activator–inhibitor
system (6.22) has three equilibria: a sink at the origin, a saddle P− at (x−, x2

−),
where x− is the smaller root of (6.23), and a third equilibrium P+ at (x+, x

2
+), where

x+ is the larger root of (6.23). The equilibrium P+ is a sink or a source according as
ρ > 1 or ρ < 1, respectively. The eigenvalues of the Jacobian at P+ are complex if

1 +
√

1− 4/σ2 >
(1 + ρ)2

4ρ
. (6.73)

For σ = 2.1 as in Figure 6.12, inequality (6.73) means 0.348 < ρ < 2.871.

Two computed phase portraits are sketched in the figure. If ρ > 1, then one half
of the unstable manifold Mu from the saddle point P− connects to the origin, while
the other half connects to P+; if ρ < 1, both halves of Mu connect to the origin.
The phase portrait for the borderline case ρ = 1 is described in Exercise 10(f).

In contrast to the previous example, here the stable manifold Ms of P− is also
interesting: if ρ > 1, this curve separates the basins of attractions for the two sinks.19

Specifically, for all initial conditions (in the physical domain {x ≥ 0, y ≥ 0}) lying
“outside” Ms, the solution of (6.22) converges to the origin as t → ∞, and for all

19Reflecting this behavior, in the case of a saddle point in the plane (d = 2, ds = 1), the stable
and unstable manifolds (i.e., curves) were traditionally called separatrices.
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Figure 6.12: Stable and unstable manifolds of P− for the activator–inhibitor equa-
tions (6.22). Note that ρ > 1 in the left panel and ρ < 1 in the right panel, and in
both cases inequality (6.73) is satisfied. (The phase portrait for ρ = 1 is plotted in
Figure 7.2 below.)

initial conditions lying “inside”Ms, the solution converges to P+. This is an example
of what is commonly referred to as bistability; i.e., there are two asymptotically stable
equilibria, and the choice of initial conditions determines which of the two equilibria
is approached as t → ∞.

In Exercise 14 you will see how we used the theory to get a more faithful repre-
sentation of the stable and unstable manifolds near the equilibria in Figure 6.12.

6.7.3 Example 3: Section 1.6 Revisited, Part II

The augmented Lotka–Volterra equations (6.17) have three or four equilibria in the
physical domain {x ≥ 0, y ≥ 0}. The number and stabilities of these equilibria
depend on ε,K as itemized in Table 6.1; the inequalities in the table are also dis-
played graphically in Figure 6.13(d). In Panels (a)–(c) of the figure we show one
possible phase plane portrait for each of the three regions in Panel (d). (This figure
augments Figure 1.9 by including stable and unstable manifolds.) As it happens, all
phase portraits for parameters in Regions I and III are qualitatively equivalent, but
behavior in Region II is more complicated. We shall piece together the full story of
phase portraits in Region II in Chapters 8 and 9.

The flows shown for Regions I and II are bistable. The boundary between the
basins of attraction of the two sinks is the stable manifold through the threshold
equilibrium (ε, 0).



232 Chapter 6. Trajectories Near Equilibria

Region I

Region III

Region II

0

1

2

y

0 1 2 3 4
x0

1

2

y

0 1 2 3 4
x

0

1

2

y

0 1 2 3 4
x

Region II Region III

Region I

3

1

0
0 1ε

K

K = 4K = 2

K = 0.4

dc

ba

Figure 6.13: Some representative phase portraits (Panels a, b, c) for the augmented
Lotka–Volterra equations, (6.17) with ε = 0.2. In each case, the stable manifold of
(ε, 0) is shown; the unstable manifold of (K, 0) is shown when this equilibrium is
a saddle point (Panels a and b). For stable/unstable manifolds that are contained
in the x-axis we have suppressed our usual color conventions. Panel (d) identifies
regions in parameter space where the different phase portraits occur.
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6.8 Exercises

After the core exercises, there are subsections of exercises on Lyapunov functions and on sketching
phase portraits.

6.8.1 Core Exercises

The primary purposes of the core exercises are:

To complete a proof 1
To apply Theorem 6.1.1 in various examples 2
To reinforce the proof techniques of Theorem 6.1.1 3
To explore cases of borderline stability 4
To relate an ecological principle to this chapter 5
To work with stable manifolds 6–8
To practice related skills 9
To introduce Hamiltonian systems 10

Don’t skip Exercise 10. The Hamiltonian framework helps elucidate numerous ODEs below. In
particular, in Part (f) of this exercise you find another example of a homoclinic orbit.

1. Prove Corollary 6.1.2.

2. (a) Show that for all μ > 0, the equations

x′ =
μ

1 + y4
− x, y′ =

μ

1 + x4
− y,

have an equilibrium with x = y. Determine for what values of μ the
equilibrium is asymptotically stable. More generally, for all μ > 0, specify
which terms in Table 2.1 apply to the equilibrium.

Food for thought: Are there equilibria with x �= y? Chapter 8 will provide
new tools to address such questions (cf. Exercise 8.15).

(b) For Sel’kov’s model for glycolysis (from Chapter 4)

x′ = ρ− σx− xy2,
y′ = −y + σx+ xy2,

show that there is a unique equilibrium in the first quadrant. Assuming
σ = 0.1, determine the ranges of ρ for which this equilibrium is asymp-
totically stable and for which it is unstable. For the range of ρ where it
is unstable, specify which terms in Table 2.1 apply to this equilibrium.

(c) Introduction: Recall the (scaled) equations for a bead sliding on a rotating loop
(Exercise 5.5),

x′ = y, (6.74)

y′ = −βy − sinx+ μ sinx cosx.
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For μ < 1, this system (considered as an ODE on S1 ×R) has two equilibria, while for
μ > 1 it has four.

Find all these equilibria, determine their stabilities, and classify them
according to Table 2.1.

Puzzle: As you can easily show, the function

L(x, y) = y2/2− μ(sin2 x)/2− cosx (6.75)

decreases along orbits. On the other hand, L(x, y) cannot always be a Lya-
punov function for the equilibrium (0, 0) of (6.74)—there are values of μ such
that this equilibrium is unstable. How is this possible?

Incidentally, L(x, y) resembles energy but differs subtly from it: the term
μ(sin2 x)/2 represents the contribution to kinetic energy from the mass ro-
tating about the axis of the hoop, but it is subtracted in (6.75), not added.

(d) Introduction: The Lorenz equations

x′ = σ(y − x),
y′ = ρx− y − xz,
z′ = −βz + xy,

(6.76)

where σ, ρ, β are positive parameters, were introduced in Exercise 3(a) in Chapter 4.
For all values of the parameters, the origin is an equilibrium of this system.

Determine the parameter values for which (0, 0, 0) is asymptotically stable
and for which it is unstable.

3. Consider an ODE
x′ = Ax+ f(x, t), (6.77)

where the eigenvalues of A satisfy (6.2) and f : Rd × R → R
d is Lipschitz

continuous with respect to both variables. Suppose f(x, t) is estimated by

|f(x, t)| ≤ φ(t)|x|,

where φ is continuous and limt→∞ φ(t) = 0. Show that every solution of (6.77)
tends to zero exponentially fast as t → ∞.

Hint: Theorem 4.7.1 guarantees that solutions exist for all time. Prove the
decay result by imitating the proof of Theorem 6.1.1. Specifically, the ODE in
the theorem may be written

x′ = Ax+ r(x),

where r(x) = o(|x|); i.e., r is small when x is close to the origin. Similarly, in
(6.77), the remainder is small when t is large. Use this information to estimate
the solution on [t0,∞) for appropriately large t0.



6.8. Exercises 235

Remark: Under the slightly weaker hypothesis that

|f(x, t)| ≤ φ(t)(|x|+ 1),

where φ tends to zero, solutions of (6.77) still converge to zero, but not necessarily
exponentially fast. Moreover, the proof requires different ideas; a fixed-point
argument (as in the proof of Theorem 6.6.1) is one possibility.

4. (a) Is the equilibrium of x′ = sin2 x at x = 0 Lyapunov stable, possibly even
asymptotically stable, or unstable?

(b) Is the equilibrium of x′ = −x3 + ex sin2(x2) at x = 0 Lyapunov stable,
possibly even asymptotically stable, or unstable?

(c) When σ = 2, the activator–inhibitor system (6.22) has an equilibrium
(x, y) = (1, 1). Use nullclines to predict whether this equilibrium is Lya-
punov stable, possibly even asymptotically stable, or unstable.

Discussion: Recall that for σ > 2, this system has three equilibria, but for
σ < 2 only one. The equilibrium at (1, 1) in this borderline case is the limit
of two different equilibria that are separate for σ > 2, merge as σ → 2, and
become complex for σ < 2.

(d) For equation (4.83),
x′ = x2 − y2,
y′ = 2xy,

is the equilibrium at the origin Lyapunov stable, possibly even asymptot-
ically stable, or unstable?

Food for thought: After reading Section 6.11, ask yourself, what is the center
manifold for this nonhyperbolic equilibrium?

5. Introduction: The three-dimensional system

x′ = rx(K − x)− p1xy − p2xz,
y′ = ρ1xy − d1y,
z′ = ρ2xz − d2z,

(6.78)

where r,K, pk, ρk, dk are positive constants, is analogous to the Lotka–Volterra system with
logistic growth of the prey, except in (6.78) there are two species (y and z) that attack the
third.

(a) Show that unless d1/ρ1 = d2/ρ2, (6.78) has no equilibria at which all
three populations are nonzero.

Discussion: In the language of Section 2.8.3, the relation d1/ρ1 = d2/ρ2 is
“nongeneric.” In nontechnical language, such an equality could be satisfied
only by accident, and even if it were satisfied, the slightest perturbation of
the system would undo it. In ecology, this behavior is known as the law
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of competitive exclusion; i.e., it is ecologically unstable for two species to
compete for exactly the same resources. (Cf. Section 3.5 of [57].)

(b) Restricting attention to generic cases only, determine all equilibria in the
(closed) first quadrant and their stabilities as functions of the parameters.

Advice: There are annoyingly many cases to consider, and it’s far from clear
how to organize them systematically. You might want to skip Part (b) for
now; we will return to this question in Exercise 8.16, where bifurcation theory
will guide us in organizing the calculations.

6. If 0 is a hyperbolic equilibrium of a linear system x′ = Ax, let Es be the span
of all (generalized) eigenvectors with �λ < 0. Show that the solution of the
IVP, eAtb, converges to 0 as t → ∞ iff b ∈ Es.

Remark: No doubt it has already occurred to you that there is an analogous
result for Eu and t → −∞.

7. For the Lorenz equations (Exercise 2(d) above) with ρ > 1, find the stable and
unstable subspaces of the saddle point at the origin.

Discussion: In itself, this exercise poses little difficulty. We include it primarily to
start you thinking about the Lorenz system. You will find that Eu has dimension
one. According to Theorem 6.6.1, the origin has a one-dimensional unstable
manifold Mu. In Chapter 9 we will study, analytically and numerically, how

M(glob)
u changes as ρ increases, and we will see that the behavior becomes very

complicated indeed. If you wish to get a jump on this work, you could perform
such numerical computations now: if σ = 10 and b = 8/3, the real complexity
occurs when 24 < ρ < 25.

8. By finding the explicit solution of (6.59), show that (6.60) defines the stable
manifold (where V may be chosen arbitrarily).

9. For (6.61), a particle in a repulsive cubic force, show that if the initial conditions

b are not in M(glob)
s , then the solution to the IVP blows up in finite (positive)

time.

10. Introduction: Let H(x1, . . . , xd, y1, . . . , yd) be a smooth function of 2d real variables. A sys-
tem of the form

x′
j =

∂H

∂yj
, y′j = − ∂H

∂xj
(j = 1, . . . , d), (6.79)

is called Hamiltonian. A particle moving in an n-dimensional potential V (x) without friction,

x′
j = yj , y′j = −∂V/∂xj(x) (j = 1, . . . , d),

is Hamiltonian with H(x,y) = |y|2/2+V (x) equal to the total energy. A classical example is
the two-body problem for gravitational attraction, which can be formulated as a Hamiltonian
system on (R3 ∼ {0}) × R

3 with V (x) = −1/|x|. On more familiar ground, the frictionless
Duffing equation (6.65) and the frictionless pendulum are Hamiltonian.



6.8. Exercises 237

(a) Show that the frictionless version of (6.74) (i.e., with β = 0) is Hamilto-
nian by finding a Hamiltonian.

Hint: If you have already done Exercise 2(c), it may occur to you to consult
that problem for ideas. (Even if you haven’t done the problem, we’ve alerted
you.)

(b) In the general case, show that H(x,y) is constant along trajectories of a
Hamiltonian system.

Remark: Thus the Hamiltonian is a natural candidate for a Lyapunov func-
tion for such equations. If friction is added to a Hamiltonian system of me-
chanical origin, then typically the Hamiltonian decreases along trajectories,
so H(x,y) is still is a natural candidate for a Lyapunov function.

(c) Introduction: A point (x∗,y∗) is an equilibrium of a Hamiltonian system iff it is a
critical point of H(x,y), i.e., ∂H/∂xj = ∂H/∂yj = 0. The following part of the
problem generalizes Exercise 11, which you might want to do first.

Show that an equilibrium (x∗,y∗) of a Hamiltonian system is Lyapunov
stable if H(x,y) has a strict local minimum there. (In particular, if
H(x,y) = |y|2/2 + V (x), this condition means that y∗ = 0 and V (x)
has a local minimum at x∗.)

Remark: An equilibrium (x∗,y∗) of a Hamiltonian system is never asymp-
totically stable, because trDF∗ = 0. This follows from equality of mixed
second-order partials. So the sum of the eigenvalues of DF∗ is zero.

(d) Introduction: Two-dimensional Hamiltonian systems often have many periodic orbits.
In light of Part (b), this is easily understood: every orbit is contained in a level set
{H(x, y) = C}, and if these level sets form nested closed curves, one may expect a
family of periodic orbits (Cf. Exercise 17).

This behavior carries over to certain non-Hamiltonian systems. A system is called
reparametrized Hamiltonian if it can be written

x′
j = φ(x,y)

∂H

∂yj
, y′j = −φ(x,y)

∂H

∂xj
(j = 1, . . . , d), (6.80)

where φ(x,y) is a nonzero function. The next part of the exercise explains the name.

Suppose x(t),y(t) is a solution of a Hamiltonian system (6.79). Show that
if τ(t) satisfies the ODE dτ/dt = φ(x(t),y(t)), then x(τ(t)),y(τ(t)) solves
the reparametrized Hamiltonian system.

Remark: Hence although (6.79) and (6.80) have different solutions, these
solutions trace out the same orbits.
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(e) Show that the Lotka–Volterra equations

x′ = x− xy, y′ = ρ(xy − y),

are reparametrized Hamiltonian with

φ(x, y) = xy, H(x, y) = −ρ(x− ln x)− y + ln y.

Remark: This result “explains” why all orbits of the Lotka–Volterra equa-
tions are periodic.

(f) Show that the activator–inhibitor equations (6.22) with ρ = 1 are rep-
arametrized Hamiltonian with

φ(x, y) = x2, H(x, y) = σ ln(1 + y)− y

x
− x.

Remark: With this information we can describe the phase portrait of (6.22)
when ρ = 1, the portrait that if σ = 2.1, interpolates between Panels (a)
and (b) in Figure 6.12. Specifically, the unstable manifold Mu through the
saddle point (x−, y−) ≈ (0.730, 0.533) is contained in the level set

{
(x, y) : 2.1 ln(1 + y)− y

x
− x = C

}
, (6.81)

where C = 2.1 ln (1 + y−)− y−/x− − x−. Thus, one half of Mu connects to
the origin, but the other half is a homoclinic orbit that connects back to the
saddle point. The region inside (6.81) is filled by a one-parameter family of
periodic orbits, which are also level sets of H. (Cf. Figure 7.2.)

6.8.2 Uses of a Lyapunov Function

11. Use the energy H(x, y) = y2/2− x2/2 + x4/4 as a Lyapunov function to show
that the equilibria (±1, 0) of Duffing’s equation (without friction), (6.65), are
Lyapunov stable but not asymptotically stable.

Remark: While you are thinking about (6.65), it would be good practice to use
the energy to enumerate the orbits of this equation, as we did for the repul-
sive cubic (6.61). Interpret the orbits physically in terms of the rolling-marble
analogy.

12. Introduction: In this exercise you verify some of the features of the phase portrait in Fig-
ure 6.10(b) for Duffing’s equation (with positive friction), (6.1).

(a) Use the energy H(x, y) = y2/2 − x2/2 + x4/4 as a Lyapunov function,
together with Lasalle’s principle, to show that for every initial condition
b in the set

{(x, y) : x > 0, H(x, y) < 0}, (6.82)

the solution ϕ(t,b) tends to (1, 0) as t → ∞. (Draw this set!)
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Remark: Thus, we have a second proof that the equilibrium (1, 0) is asymp-
totically stable, supplementing the proof based on linearization at the equi-
librium. In Part (b) of this problem you use the Lyapunov function to obtain
additional information not immediately available from the linearization.

Incidentally, Condition (6.49) is so easy to verify in this example that you
might wonder how could it fail: this happens, for example, if U1 contains
another equilibrium of the ODE.

(b) Show that the two halves of the unstable manifold M(glob)
u through (0, 0)

converge to the equilibria at (±1, 0).

Hint: Find the unstable eigenvector of DF(0, 0). Use the fact that Mu is
tangent to this eigenvector to show that points on Mu with x > 0 close to
(0, 0) lie in the set (6.82).

(c) Describe the stable manifold M(glob)
s through (0, 0) in terms of the rolling-

marble analogy.

Remarks: (i) Thus, adding friction to (6.65) restores the generic situation

thatMs andMu intersect only at the saddle point. (ii) Incidentally, M(glob)
s

defines the boundary between the intertwined basins of attraction of (1, 0)
and (−1, 0).

13. Introduction: As you will see in this exercise, sometimes a Lyapunov function may be used
to prove that an equilibrium is globally attracting. Say that a function L : U → R tends to
infinity at the boundary of U if for every M > 0 there is a compact subset K ⊂ U such that
L(x) > M on U ∼ K.

(a) Show that if x′ = F(x) has a strict Lyapunov function L : U → [0,∞) that
tends to infinity at the boundary of U , then this ODE has a unique equi-
librium in U that moreover is globally attracting for any initial conditions
in U .

(b) Show for the Lorenz equations (6.76) that if ρ < 1, then

L(x, y, z) = x2/σ + y2 + z2

is a strict Lyapunov function. Use this to deduce that the origin is globally
asymptotically stable when ρ < 1, an improvement over Exercise 2(d).

Remark: This part of the problem suggests another technique for find-
ing Lyapunov functions: play around with an arbitrary positive definite
quadratic form to see whether you can make its derivative negative.

(c) Introduction: Note that, provided K > 1, the Lyapunov function

L(x, y) = ρ(x− lnx) + y − (1− 1/K) ln y

of Section 6.5.3 tends to infinity at the boundary of the open first quadrant.

Combine Lasalle’s invariance principle with your proof in Part (a) to prove
that the equilibrium (1, 1−1/K) of (6.50) is globally attracting for initial
data in the open first quadrant.
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Remark: The parameters considered for (6.50), i.e., ε = 0, K > 1, lie on the
boundary of Region II in Figure 6.13. You might find it amusing to contemplate
how as ε → 0, the phase portrait in Panel (a) of the figure can evolve into one
in which all orbits in the first quadrant converge to a single equilibrium.

6.8.3 Phase-Portrait Exercises

See also Exercise 21 below.

14. Introduction: This problem illustrates for Figure 6.12 how theory may be used to enhance the
accuracy of phase-portrait sketches. We have already remarked that the unstable manifold
spirals into P+ if (6.73) holds, so we focus on P−.

(a) Draw the nullclines and flow-quadrant diagram for the activator–inhibitor
system (6.22), paying special attention to the region around P−.

(b) Argue from the flow-quadrant diagram that the unstable manifold leaves
the saddle point P− in the wedge between the horizontal direction and
the tangent to the y-nullcline y = x2.

(c) Argue from the flow-quadrant diagram that the stable manifold converges
to the saddle point P− in the wedge between the tangent to the x-nullcline
y = σx− 1 and the vertical direction.

Remark: The dedicated reader can improve on Part (b) by evaluating the Ja-
cobian at P− and calculating the unstable eigenvector, which is tangent to the
unstable manifold. Similarly for Part (c) and the stable eigenvector.

15. Introduction: The following is a purely made-up, easy exercise to practice on.

Sketch the phase portrait of the system

x′ = y − x2,

y′ = x− y.

That is, locate all equilibria, classify them according to Table 2.1, sketch the
stable and unstable manifolds of any saddle points, and indicate a few other
trajectories.

16. Introduction: Recall from Exercise 4.3(b) the equations for the evolution of two interacting
species,

x′ = x (1− x− by) , y′ = ρy (1− y − cx) .

For all parameter values, this system has equilibria at (0, 0), (0, 1), and (1, 0). Moreover, in
each of the three cases (i) b, c > 1, (ii) 0 < b, c < 1, and (iii) −1 < b, c < 0, there is also a
coexistence equilibrium of this system in the open first quadrant.
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(a) For each of the three cases, determine the stability of all equilibria of this
system.

(b) For each case, use what-else-could-it-be? “logic” to sketch phase portraits,
including the stable and unstable manifolds through all saddle points.

Remark: If you’re feeling stuck, you could calculate eigenvectors of DF at
the saddle point.

(c) For each case, identify the basins of attraction of all asymptotically stable
equilibria.

17. Use the energy H(x, y) = y2/2 − cosx to construct the phase portrait of the
frictionless pendulum

x′ = y,

y′ = − sin x.

Identify the stable and unstable manifolds through saddle points.

Remark: If the equation is considered on the cylinder R/2πZ×R, the stable and
unstable manifolds through the saddle point (π, 0) coincide. In other words, this
equation gives another example of a homoclinic orbit.

6.8.4 PHD Exercises

18. Prove Proposition 6.2.1.

Hint: Suppose the equilibrium b∗ is at the origin. Write F(x) = Ax+r(x), where
r(x) = o(|x|). Applying an appropriate similarity transformation, without loss
of generality you may assume that A is block diagonal,

A =

[
As 0
0 Au

]
,

where the eigenvalues of these two submatrices satisfy

�λk(As) ≤ 0, �λk(Au) > 0. (6.83)

Decompose vectors x = (xs,xu) into stable and unstable components. Given
positive constants η, δ, define a truncated cone around the unstable subspace,

Γη,δ = {x ∈ R
d : |xs|2 ≤ η|xu|2, |x| ≤ δ}.

(Make appropriate sketches for the case that xs and xu are one-dimensional.)
Your primary task is to show that η and δ may be chosen small enough to obtain
the following two estimates:

• There is an ε > 0 such that for all x ∈ Γη,δ,

〈x,F(x)〉 ≥ ε|x|2. (6.84)
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• On the conical portion of ∂Γη,δ,

{x ∈ R
d : |xs|2 = η|xu|2, |x| ≤ δ}, (6.85)

the inward normal N = (−xs, ηxu) satisfies

〈N,F(x)〉 ≥ 0,

with equality only at the origin.

Then, since (d/dt)|x(t)|2 = 2〈x,F(x)〉, it follows from the first estimate that
for as long as x(t) ∈ Γη,δ, a solution satisfies |x(t)|2 ≥ |x(0)|2e2εt. On the other
hand, it follows from the second estimate, as in the analysis of trapping regions, a
solution starting in Γη,δ cannot cross the conical portion of the boundary. Thus,
the solution of an IVP with nonzero initial conditions in Γη,δ arbitrarily close
to the origin will grow until it eventually leaves the sphere of radius δ; i.e., the
equilibrium is not Lyapunov stable.

The derivation of the estimates is based on condition (6.83). Given this
condition, it follows from Proposition C.2.1 that, possibly after applying another
similarity transformation, there is an ε1 > 0 such that

(a) 〈xs, Asxs〉 ≤ (ε1/4)|xs|2, (b) 〈xu, Auxu〉 ≥ ε1|xu|2. (6.86)

For (6.84) we have

〈x,F(x)〉 = 〈xs, Asxs〉+ 〈xu, Auxu〉+ 〈x, r(x)〉.

According to (6.86b), the middle term on the RHS is positive. To obtain (6.84),
choose η small to control the size of the first term and invoke the fact that
r(x) = o(|x|) to control the third. Similarly, for (6.85) we have

〈N,F(x)〉 = −〈xs, Asxs〉+ η〈xu, Auxu〉+ 〈N, r(x)〉.

By (6.86), if x ∈ ∂Γη,δ, the first two terms satisfy

−〈xs, Asxs〉+ η〈xu, Auxu〉 ≥ 3

4
ηε1|xs|2.

To obtain (6.85), invoke the fact that r(x) = o(|x|) to control the third term.

19. Construct an alternative proof of Theorem 6.1.1 using a fixed-point argument,
as in the proof of the stable manifold theorem, Theorem 6.6.1.

Remark: Although this exercise requires considerable effort, it could help you
penetrate the messy details of the proof of Theorem 6.6.1.

20. Suppose (6.28) is generalized to include diffusion of both species,

(a) x′
1 = σx2

1/(1 + y1)− x1 +D1(x2 − x1),
(b) y′1 = ρ [x2

1 − y1] +D2(y2 − y1),
(c) x′

2 = σx2
2/(1 + y2)− x2 +D1(x1 − x2),

(d) y′2 = ρ [x2
2 − y2] +D2(y1 − y2).
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Assuming σ > 2 and ρ > 1 as in Section 6.3.2, determine for what values of
the diffusion coefficients the equal-concentration equilibrium (x+, y+, x+, y+) is
stable.

21. Sketch the phase portrait, including stable and unstable manifolds, for the
torqued pendulum

x′ = y,

y′ = μ− sin x− βy,

when the torque is just below critical, i.e., μ < 1 but barely so.

Suggestion: If you feel stuck on this problem, the phase portrait appears in
Figure 9.6(c). It is instructive to ask what happens to the center manifold in
Figure 6.14(a) when μ is perturbed.

22. Introduction: This problem gives you another example of a homoclinic orbit in a different
context. The Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0, x ∈ R, t > 0, (6.87)

is a partial differential equation that has been used to model surface waves in shallow water.
We seek a soliton solution of the KdV equation. Such a solution has traveling-wave form
u(x, t) = v(x − ct), where c, the wave speed, is a parameter to be determined; without loss
of generality we may assume c > 0. Let ξ = x− ct. For a soliton, v, v′, and v′′ all tend to 0
as ξ → ±∞, where a prime indicates differentiation with respect to ξ.

(a) Show that the PDE for v(x− ct) reduces to the ODE v′′′+6vv′− cv′ = 0.

(b) Integrate the equation once to show that v′′ + 3v2 − cv = 0.

Remark: The integration constant must vanish for the solution to decay at
infinity.

(c) Let w = v′ and derive the first-order system that v, w satisfy. Show that
this system is Hamiltonian with H(v, w) = w2/2− cv2/2 + v3.

(d) Deduce from the Hamiltonian structure that for every wave speed, the
global stable and unstable manifolds through the saddle point at the origin
intersect to form a homoclinic orbit.

Discussion: Since this construction works for every value of c, we get a one-
parameter family of soliton solutions of the PDE. Changing the viewpoint, we
may say that the speed of a soliton depends on its amplitude.

Incidentally, this exercise illustrates a common technique: looking for a solu-
tion of a PDE with a specific form often leads to an ODE.

23. Introduction: For certain parameter values, the FitzHugh–Nagumo equations (5.42),

εx′ = x(1− x2)− y + I,
y′ = x− γy,

(6.88)
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where I, ε, γ are parameters with ε small and positive, provide an example of what is called
an excitable system. To explain this term: the equations have a sink (x∗, y∗) (so given
initial conditions that are a sufficiently small perturbation of (x∗, y∗), the solution simply
will decay back to the sink), but for certain initial conditions that differ from (x∗, y∗) only
by O(ε), the solution of the IVP undergoes a long-lived, large-amplitude excursion before it
returns to (x∗, y∗). Such behavior is central to the function of nerve cells.

(a) Supposing that 0 < γ < 1, sketch the nullclines of (6.88) and show that
it has a unique equilibrium solution.

(b) Deduce from Table 6.2 that the unique equilibrium is either a sink or a
source.

(c) Calculate from the Jacobian DF∗ that if the equilibrium is located at
(x∗, y∗), then

trDF∗ =
1− 3x2

∗
ε

− γ. (6.89)

(d) Introduction: Excitability occurs if x∗ ≈ −1/
√
3, i.e., if an equilibrium (which by

(6.89) is a sink) lies near the local minimum of the x-nullcline. For definiteness, let’s
choose I, γ such that x∗ = −1/

√
3 exactly. Then the second equation requires that

y∗ = −1/γ
√
3, and the first that I = 2/3

√
3 + y∗. We can achieve this with simple

numbers if we let γ = 3/5 and I = −1/
√
3.

To demonstrate excitability numerically, solve the IVP for (6.88), say with

x(0) = −1
√
3, y(0) = −5/3

√
3− δ,

and I, γ as above. Choose your own δ as small as you wish.

Remark: Excitability in (6.88) can be understood through analysis of the null-
clines as a fast–slow system. This analysis is similar to what will be developed
in Section 7.6.3, and we propose it as Exercise 7.24.

24. Comment: How’s this for a change of pace?

The Heisenberg uncertainty principle imposes an upper bound Tmax on how
long you can reliably stand a pencil on its point; estimate this time.

Hint: Model the pencil as a frictionless pendulum, governed by the equation
θ′′ + (g/�) sin θ = 0. Behavior near the vertical is well approximated by the
linearization20 of this equation at θ = π, i.e., θ′′ − ω2θ = 0, where ω =

√
g/�.

With initial conditions θ(0) = a, θ′(0) = b, the linear IVP has the solution

θ(t) = A(a, b)eωt + B(a, b)e−ωt, (6.90)

20In case you were wondering: linearization is the issue that connects this problem to the rest
of the present chapter: for most of the time while the solution is growing, θ is so close to vertical
that solutions of the full equation and of the linearization could not be distinguished on a computer
screen.
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the sum of growing and decaying exponentials. The Heisenberg uncertainty prin-
ciple,

ΔxΔp ≥ �/2, (6.91)

where � ≈ 1.05 × 10−34joule-sec is Planck’s constant divided by 2π, limits the
precision with which initial displacement and velocity may be specified; you are
able to only require that

l|a| ≤ Δx, ml|b| ≤ Δp,

with Δx, Δp subject to (6.91). If you choose an accuracy Δx for the position,
then in the best case, Δp = �/2Δx. Thus for a given Δx,

ε(Δx) = max
|a|≤Δx/


max
|b|≤�/2m
Δx

|A(a, b)|

is the smallest value that can be guaranteed for the coefficient of the growing
exponential in (6.90). Calculate εmin = minΔx ε(Δx) and estimate Tmax by
solving εmine

ωt = 1, the time when the optimized solution becomes of order
unity.

25. Verify the claim in the Pearls that the two ODEs in (6.94) are topologically
equivalent.

Hint: Rewrite both equations in polar coordinates. Given initial conditions
b = (r0, θ0), then we have

ϕ1(t,b) = (e−2tr0, θ0) and ϕ2(t,b) = (e−tr0, θ0 + t)

for the solutions of the x and y equations, respectively. Prove that the map (in
polar coordinates)

Ψ(r, θ) = (
√
r, θ − (ln r)/2)

is continuous and that (6.93) is satisfied for this map.

26. (a) Find the global stable manifold for the equilibrium (1, 0) of (6.13)

(b) Describe all local center manifolds (defined in Section 6.11) through the
equilibrium.

Discussion: The natural choice for the center manifold, which moreover is global,
is the homoclinic orbit, {r = 1, 0 < θ < 2π}. Although you could obtain para-
metric representations for the other choices by solving the ODE, we say don’t
bother. It is sufficient to recognize the existence of these other possible choices
and to describe their behavior.

6.9 Pearls of Wisdom

6.9.1 Miscellaneous

Theorem 6.1.1 is such an important result that we urge you not only to know how to
apply it, but also to develop and retain some understanding about how it is proved.
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For example, be prepared to reply cogently if a few months from now a stranger
stops you on the street and asks, “Hey, how do you prove that an equilibrium of an
ODE is asymptotically stable if all eigenvalues of the Jacobian are negative there?”

The term gradient system refers to an ODE of the form

x′
j = − ∂V

∂xj

, j = 1, . . . , d,

where V : U → R is a smooth function; in vector notation, x′ = −∇V (x). You
can easily show that for such a system, (i) V decreases along orbits and (ii) a point
b∗ is an equilibrium iff ∇V (b∗) = 0. Thus, V provides a Lyapunov function for an
equilibrium of a gradient system, provided V has a strict local minimum there.

Incidentally, a Hamiltonian system can be written as a matrix times a gradient,

[
x′

y′

]
=

[
0 I
−I 0

] [ ∇xH(x,y)
∇yH(x,y)

]
.

6.9.2 The Hartman–Grobman Theorem and Topological Conjugacy

As we have seen in this chapter, the flow of a nonlinear system x′ = F(x) near a
hyperbolic equilibrium resembles the flow of the linearization. This resemblance is
made precise in the Hartman–Grobman theorem, which is proved in [37]; see also [63]
for a readable detailed sketch of the proof.

Theorem 6.9.1. Suppose b∗ is a hyperbolic equilibrium point for x′ = F(x). Let ϕ
be the flow map for this equation and let A = DF∗. Then there exist a neighborhood U
of b∗ and a continuous map Ψ : U → R

d, where Ψ(b∗) = 0, that is a homeomorphism
onto its range such that

Ψ(ϕ(t,b)) = etAΨ(b) (6.92)

for all b ∈ U and all times such that ϕ(t,b) is defined and belongs to U .
A noteworthy consequence of this result: the stable and unstable manifolds of

x′ = F(x) at a hyperbolic equilibrium b∗ are equal to Ψ−1(Es) and Ψ−1(Eu), res-
pectively, where Es and Eu are the stable and unstable subspaces of A.

Theorem 6.9.1 is definitely false at a nonhyperbolic equilibrium, which may be
seen by comparing either of the scalar ODEs x′ = ±x3 to its linearization, w′ = 0.

The theorem motivates the following definition: Consider two ODEs, say x′ =
F1(x) and y′ = F2(y), on open subsets U1 and U2 of Rd, respectively, and let these
ODEs have flows ϕ1(t,b) and ϕ2(t,b), respectively. We call these two flows topo-
logically conjugate if there is a homeomorphism Ψ from U1 onto U2 such that for all
(t,b) ∈ R× U1,

Ψ(ϕ1(t,b)) = ϕ2(t,Ψ(b)). (6.93)
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In case solutions are not global, equality in (6.92) means that if either side has
meaning, then both sides have meaning and are equal. Thus, we may paraphrase
the conclusion of Theorem 6.9.1 to state that on some neighborhood of a hyperbolic
equilibrium, x′ = F(x) is topologically conjugate to (the restriction to an appropriate
neighborhood of zero of) its linearization.

Note that topological conjugacy requires only that the homeomorphism Ψ be
continuous. This lack of smoothness is a serious issue that undercuts much of the
initial appeal of the theorem. For example, in Exercise 25 we guide you through a
proof that the two systems (both on the unit disk, say)

x′ =
[ −2 0

0 −2

]
x and y′ =

[ −1 −1
1 −1

]
y (6.94)

are topologically conjugate, even though the x-flow converges along radial lines to
the origin, while the y-flow has spirals that encircle the origin infinitely many times
as they converge, less rapidly, to the origin. Of course, these two systems are defi-
nitely not conjugate via a differentiable homeomorphism. In the first place, if (6.93)
is satisfied with a C1 diffeomorphism, then DF1 and DF2 have the same eigenvalues
at corresponding critical points. But more emphatically, no differentiable homeo-
morphism could map radial lines onto spirals.

In general, asking for the homeomorphism in the theorem to have one or more
derivatives raises technical issues involving “nonresonance conditions” on the eigen-
values of DF∗. The discussion in Section 19.12 of Wiggins [95] may help you under-
stand how these conditions arise. In case the equilibrium b∗ is asymptotically stable,
these complications can be sidestepped: Hartman [36] has shown that if F is C2 and
if �λj(DF∗) < 0, then there is a C1 diffeomorphism Ψ such that (6.92) is satisfied.

6.9.3 Structural Stability

In topological conjugacy, (6.93) requires that trajectories match up point by point,
including the parametrization by time. Structural stability is based on a weaker
notion, topological equivalence, in which only orbits need match up. Specifically, two
ODEs x′ = F1(x) and y′ = F2(y) as above are called topologically equivalent if there
is a homeomorphism Ψ : U1 → U2 such that for each b ∈ U1, Ψ maps the orbit21

ϕ1(R,b) of x
′ = F1(x) through b onto the orbit ϕ2(R,Ψ(b)) of y′ = F2(y) through

Ψ(b), preserving the direction of flow along orbits. For example, the two ODEs

21Although we write ϕ1(R,b), only times such that ϕ1(t,b) is defined are to be substituted.
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(a) x′ =
[
1 −1
1 1

]
x− |x|2x, (b) y′ =

[
1 −a

a 1

]
y − |y|2y, (6.95)

are topologically equivalent if a > 0 but not topologically conjugate unless a = 1.
The problem is that the periodic orbit |x| = 1 of (6.95a) has period 2π, while the
corresponding orbit |y| = 1 of (6.95b) has period 2π/a; i.e., the parametrizations of
trajectories do not match.

An ODE x′ = F(x) on an open set U ⊂ R
d is called structurally stable if it is

topologically equivalent to every other ODE y′ = G(y) on U that is C1-close to it,
i.e., for which

sup
x∈U

|G(x)− F(x)| and sup
x∈U

max
j

|∂jG(x)− ∂jF(x)|

are sufficiently small. For example, it follows from Peixoto’s theorem (see Section 1.9
of [33]) that (6.95a) is structurally stable on R

2. By contrast, the Lotka–Volterra
system (1.39) is not structurally stable.

Historically, there was a period in which structurally stable ODEs were a primary
focus of the theory. The thinking was that if a model of a physical system was not
structurally stable, the inevitable errors in the model, no matter how small, might
pose perturbations that invalidated conclusions drawn from the model. In response
to better understanding of chaotic solutions of higher-dimensional ODEs, this dogma
is currently regarded as too naive. (Cf. the discussion on pp. 258–259 of [33].)

6.10 Appendix 1: Partial Proof of Theorem 6.6.1

Our proof is nearly complete; we merely refer you to an external reference for a
couple of technical points at the end of the argument.

6.10.1 Reformulation of the IVP as an Integral Equation

The construction of the stable manifold of an equilibrium is facilitated by two red-
uctions. First, we translate coordinates so that the equilibrium is at the origin,
b∗ = 0, and then we change coordinates to separate the eigenvectors of DF(0) ass-
ociated with eigenvalues having positive and negative real parts. After performing
an appropriate similarity transformation, we may assume without loss of generality
that DF(0) has block-diagonal form, and we may write a Taylor series expansion

F(x) =

[
B 0
0 −C

]
x+ r(x), (6.96)

where B and C are (square) matrices of dimensions ds and d− ds whose eigenvalues
have negative real parts and where r(x) = o(|x|) near the origin. By Corollary 2.4.4,
possibly performing an additional similarity transformation, we may assume that
there is a constant ε > 0 such that
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∥∥eBt
∥∥ ≤ e−εt,

∥∥eCt
∥∥ ≤ e−εt (t ≥ 0). (6.97)

Theorem 6.6.1 concerns the IVP

x′ =
[
B 0
0 −C

]
x+

[
p(x)
q(x)

]
, x(0) =

[
c
d

]
, (6.98)

where we have decomposed both the remainder r(x) and the initial condition into a
ds-dimensional “stable” component plus a (d − ds)-dimensional “unstable” compo-
nent; i.e., we let

x(stb) =

⎡

⎣
x1

. . .
xds

⎤

⎦ , x(nst) =

⎡

⎣
xds+1

. . .
xd

⎤

⎦ .

We suggest that you keep the concrete academic example (6.59) handy as you read
the remainder of this section.22 Rewriting (6.59) in the notation of (6.98), note that
B = C = −1 and the components of the remainder term are scalar-valued functions
p(x, y) = 0 and q(x, y) = x2.

The proof of the theorem is based on an integral equation, which we now
formulate.

Proposition 6.10.1. If x(t) satisfies (6.98) for 0 ≤ t < ∞ and if supt≥0 |x(t)| < ∞,
then

x(t) =

⎡

⎢⎢⎢⎢
⎣

eBtc+

∫ t

0

e(t−s)B p(x(s)) ds

−
∫ ∞

t

e(s−t)C q(x(s)) ds

⎤

⎥⎥⎥⎥
⎦
. (6.99)

Conversely, if x(t) is a bounded function that satisfies (6.99), then it satisfies the
ODE in (6.98).

Remark. Regarding initial conditions, a solution of (6.99) satisfies x(stb)(0) = c, but
no simple formula for x(nst)(0) is available.

Proof of Proposition 6.10.1. The first component of (6.99) follows by integrating the
first component of the ODE (6.98) over (0, t), as in the derivation of (6.6). For the
second component we integrate over (t,∞). More precisely, we rewrite the second
component of (6.98) as

d

dt

(
eCtx(nst)

)
= eCtq(x(t)),

22If you continually refer back to example (6.59) throughout the technical results that follow,
the main payoff arrives once you reach equation (6.107). Namely, you’ll find that ψ(c) = −c2/3
(scalar-valued for this toy example), in agreement with formula (6.60) for the stable manifold.
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integrate over (t, T ) to deduce

eCTx(nst)(T )− eCtx(nst)(t) =

∫ T

t

eCsq(x(s)) ds,

and use the fact that x(t) is bounded together with (6.97) to obtain (6.99) in the
limit T → ∞.

Regarding the converse, it follows by differentiating (6.99) that the ODE in (6.98)
is satisfied.

6.10.2 Fixed-Point Analysis

When we used the integral equation (6.6) to prove Theorem 6.1.1, we already knew
that this equation had a solution for at least some range of t and this solution was
unique; we needed only to estimate the decay of the solution. By contrast, for
(6.99), existence and uniqueness must be derived before other issues are addressed.
A fixed-point argument is the appropriate tool for this job.

Let CB([0,∞),Rd) be the space of bounded continuous vector-valued functions
on the half-line, which is a Banach space with respect to the sup norm,

‖x‖sup = sup
0≤t<∞

|x(t)|.

For c ∈ R
ds with |c| sufficiently small, we will define an integral operator on a subset

S of CB([0,∞),Rd) by the formula

Tc[x](t) =

⎡

⎢⎢⎢⎢
⎣

eBtc+

∫ t

0

e(t−s)B p(x(s)) ds

−
∫ ∞

t

e(s−t)C q(x(s)) ds

⎤

⎥⎥⎥⎥
⎦
. (6.100)

The domain S will be chosen with the help of the following lemma.

Lemma 6.10.2. If η > 0, there is a positive constant δ such that for every two
points in R

d with |x|, |y| ≤ δ, we have

|r(x)− r(y)| ≤ η|x− y|.

Remark. From the definition of little-o, we know that we can satisfy |r(x)| ≤ η|x|;
the lemma asserts a little more.
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Proof of Lemma 6.10.2. Since r(x) = o(|x|) and is C1, its Jacobian Dr(x) is o(1)
near x = 0. Thus, there is a δ > 0 such that

‖Dr(x)‖ ≤ η provided |x| < δ.

The lemma follows by integrating along the line between x and y, as in the proof of
Lemma 3.2.3.

To define the domain of Tc, choose η > 0 such that

η <
ε

4
, (6.101)

where ε is defined by (6.97). Then choose δ as in the lemma, and let

S = {x ∈ CB([0,∞),Rd) : ‖x‖sup ≤ δ}. (6.102)

Please verify that if x ∈ S, then Tc[x] ∈ CB([0,∞),Rd).

Proposition 6.10.3. If |c| < δ/2, then Tc is a contraction that maps S into itself.

Proof. If x,y ∈ S, then by the lemma,

|p(x(s))− p(y(s))| ≤ η|x(s)− y(s)| ≤ η ‖x− y‖sup , (6.103)

and similarly for q(x). Substituting this estimate into (6.100) and using (6.97) to
estimate the exponentials, we calculate that

|Tc[x]− Tc[y]|(t) ≤
∫ t

0

e−ε(t−s)
(
η ‖x− y‖sup

)
ds+

∫ ∞

t

e−ε(s−t)
(
η ‖x− y‖sup

)
ds.

(6.104)
Regarding the first integral,

∫ t

0

e−ε(t−s)ds =
1− e−εt

ε
≤ 1

ε
,

and the second integral equals 1/ε exactly. Thus,

|Tc[x]− Tc[y]|(t) ≤ 2η

ε
‖x− y‖sup ,

both terms in (6.104) contributing equally. Taking the supremum over t and inserting
our choice (6.101) of η, we calculate that

‖Tc[x]− Tc[y]‖sup ≤ 1

2
‖x− y‖sup . (6.105)
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Now suppose |c| < δ/2 and x ∈ S. By the triangle inequality,

‖Tc[x]‖sup ≤ ‖Tc[0]‖sup + ‖Tc[x]− Tc[0]‖sup .

For the first term we have

‖Tc[0]‖sup =

∥∥∥∥

[
eBtc
0

]∥∥∥∥
sup

= sup
0≤t<∞

|eBtc| = |c| < δ

2
.

For the second, we know that ‖x‖sup ≤ δ, so it follows from (6.105) with y = 0
that ‖Tc[x]− Tc[0]‖sup is less than δ/2. Thus ‖Tc[x]‖sup ≤ δ, so Tc[x] ∈ S, as
claimed.

To conclude: it follows from the fixed-point theorem that for every c ∈ R
ds

with |c| < δ/2, the operator Tc has a unique fixed point in S, which we will denote
by Xc(t).

6.10.3 The Stable Manifold

Let the neighborhood V in Theorem 6.6.1 be given by

V = {(c,d) ∈ R
ds × R

d−ds : |c| < δ/2, |d| < δ/2}

with δ defined as above. If x(t) satisfies (6.98) and if x(t) never leaves V , then x(t)
is a bounded solution of the integral equation (6.99) and must in fact be the unique
fixed point of Tc, i.e., x(t) ≡ Xc(t). In particular, regarding initial conditions,

d = X
(nst)
c (0). We use this fact to define the stable manifold as the graph of a

mapping ψ from a ball in R
ds into R

d−ds , i.e.,

Ms = {(c,d) ∈ R
ds × R

d−ds : |c| < δ/2, d = ψ(c)}, (6.106)

where if c ∈ R
ds with |c| < δ/2, we define

ψ(c) = X(nst)
c (0) = −

∫ ∞

0

eCs q(Xc(s)) ds. (6.107)

Reflecting over the construction so far, we see that two claims in Theorem 6.6.1
remain to be proved:

• If (c,d) ∈ Ms, the fixed point Xc(t) has the decay indicated in (6.58).

• The set (6.106) is a differentiable manifold tangent to Es.

For the proof of the first claim, a task similar to proving Theorem 6.1.1, we refer
you to Section 5.4 of Meiss [54], especially Lemma 5.4. The following proposition
establishes most of the second claim, and we also refer you to Meiss for the missing
piece, i.e., that ψ is C1.
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Proposition 6.10.4. The map ψ is Lipschitz continuous, and ψ(c) = o(|c|) near
the origin.

Proof. If c1, c2 ∈ B(0, δ/2) ⊂ R
ds , then by the fixed-point property,

Xc1 −Xc2 = Tc1 [Xc1 ]− Tc2 [Xc2 ].

Adding and subtracting Tc2 [Xc1 ] and invoking the triangle inequality, we deduce

‖Xc1 −Xc2‖sup ≤ ‖Tc1 [Xc1 ]− Tc2 [Xc1 ]‖sup + ‖Tc2 [Xc1 ]− Tc2 [Xc2 ]‖sup . (6.108)

But for the first term,

‖Tc1 [Xc1 ]− Tc2 [Xc1 ]‖sup =

∥∥∥∥

[
eBt(c1 − c2)

0

]∥∥∥∥
sup

= |c1 − c2|.

We estimate the second term by (6.105) and bring this term to the LHS of (6.108),
thereby verifying Lipschitz continuity:

‖Xc1 −Xc2‖sup ≤ 2|c1 − c2|.
In particular, letting one of c’s equal zero, we have

‖Xc‖sup ≤ 2|c|. (6.109)

To show thatψ(c) = o(|c|), let α > 0 be given. Choose a positive constant η1 such
that η1 < εα/2. By Lemma 6.10.2, we may choose δ1 > 0 such that |q(x)| < η1|x| for
|x| < δ1. If |c| < δ1/2, then by (6.109), ‖Xc‖sup < δ1, so |q(Xc(s))| < η1 ‖Xc‖sup .
Thus,

|ψ(c)| <
∫ ∞

0

e−εs
(
η1 ‖Xc‖sup

)
ds ≤ 2η1

ε
|c| < α|c|,

as desired.

6.10.4 Stable Manifolds at Nonhyperbolic Equilibria

Even if an equilibrium b∗ fails to be hyperbolic, stable/unstable manifolds still exist.
This behavior is illustrated by the example

x′ = x2,
y′ = −y.

(6.110)

Note that the Jacobian DF∗ has the eigenvalues −1 and 0, with −1 having the
eigenvector e2. The stable manifold Ms of the equilibrium is one-dimensional—the
y-axis, tangent to e2—and solutions lying along Ms converge exponentially fast to
the origin as t → ∞. The behavior of other solutions is discussed in the next section.
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We formulate a partial generalization of Theorem 6.6.1 to such cases. Let b∗ be
a nonhyperbolic equilibrium of x′ = F(x), and suppose Es, the subspace spanned by
eigenvectors whose eigenvalues have negative real parts, has dimension ds.

Proposition 6.10.5. Under the above circumstances, there is a differentiable man-
ifold Ms of dimension ds defined near b∗, tangent to Es at b∗, such that if b ∈ Ms,
then the IVP (6.57) has a solution ϕ(t,b) for all positive time and

lim
t→∞

ϕ(t,b) = b∗. (6.111)

Regarding proofs, near b∗, we may still split F(x) into stable and unstable com-
ponents as in (6.96), where on Es the inequality �λk(B) < 0 remains valid, but
on Eu we have only �λk(C) ≤ 0. Thus, Proposition 6.10.1 may fail in the present
context, because

∫∞
t

e(s−t)C q(x(s)) ds need not converge. This issue is addressed as
part of the theory of center manifolds, as for example in [12].

Changing directions, let us use the unstable-manifold analogue of Proposition
6.10.5 to prove23 Proposition 6.2.1.

Proof of Proposition 6.2.1. Since DF∗ has at least one unstable eigenvalue, the un-
stable manifold Mu through b∗ is nontrivial; i.e., there is at least one point b ∈ Mu

different from b∗. By Proposition 6.10.5,

lim
t→−∞

ϕ(t,b) = b∗.

Choose a neighborhood V of b∗ that does not contain b.

Now, given any neighborhood V1 of b∗, no matter how small, there is a t0 > 0
such that ϕ(−t0,b) ∈ V1. By translational invariance, the IVP

x′ = F(x), x(0) = ϕ(−t0,b)

has solution x(t) = ϕ(t − t0,b), so x(t0) = b /∈ V . That is, at least one solu-
tion with initial conditions in the arbitrarily small neighborhood V1 leaves the fixed
neighborhood V .

6.11 Appendix 2: Center Manifolds and Nonhyperbolicity

As we just saw in Section 6.10.4, stable and unstable manifolds still exist at a non-
hyperbolic equilibrium, but the sum of the dimensions of Ms and Mu is less than
the overall dimension of the ODE. The center manifold, which we describe without

23If you object to using such heavy theory to prove such a basic result, we remind you that
Exercise 18 outlines a direct proof of Proposition 6.2.1.
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proofs24 in this appendix, fills this gap in dimensions. The center manifold at a
nonhyperbolic equilibrium b∗ is tangent to the subspace spanned by all eigenvectors
of DF∗ that have zero real part. While the stable and unstable manifolds are robust
objects, the center manifold is somewhat quirky. We illustrate the issues in two
examples.

6.11.1 First Example

Let us explore more thoroughly the nonhyperbolic equilibrium of (6.110) at b∗ = 0.
Since DF∗ has no eigenvalues with positive real part, Mu is trivial; i.e., it contains
only the origin. As we saw above, the stable manifold is the y-axis, Ms = {b ∈
R

2 : b1 = 0}. The x-axis is the obvious candidate for the center manifold, and it is
indeed an invariant set. However, there are other candidates: either by solving the
equations (6.110) and eliminating t or by solving the ODE

dy

dx
=

dy/dt

dx/dt
= − y

x2
,

you can show that for every constant C, the curve

y = Ce1/x, −∞ < x < 0

is an orbit of (6.110) that converges to the origin as t → ∞. Thus, for every C, the
curve

{
b : b2 = Ce1/b1 , −∞ < b1 < 0

}⋃ {b : b2 = 0, 0 ≤ b1 < ∞} (6.112)

is another possible center manifold; the two halves of (6.112) join one another in
a C∞ manner. (Be sure to draw some of the curves (6.112)! ) In this example it
may seem artificial to take C �= 0, but frequently in more complicated examples,
such choices cannot be avoided. This infinite multiplicity demonstrates that center
manifolds are not unique.

Regarding the asymptotic behavior of trajectories, in the right half-plane, Mc

behaves like an unstable manifold: it contains a single orbit that tends to the equi-
librium 0 as t → −∞ but leaves every bounded neighborhood of 0 as t increases.
On the other hand, in the left half-plane, the curves (6.112) could be viewed as an
infinite collection of stable manifolds: each of the orbits comes in from minus infinity
and converges to 0 as t → ∞. However, the convergence rate is only algebraic, i.e.,
like an inverse power of t, not exponential.

24See [12] for a careful treatment of the subject.
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Figure 6.14: (a) Stable and center manifolds for the critically torqued pendulum
system (6.113) with β = 1.3. (b) Approximation for the local center manifold (black)
superimposed on nullclines (brown and cyan), at a greatly expanded scale.

6.11.2 Second Example

This example comes from the torqued pendulum (4.24) when the torque is set equal
to its critical value μ = 1:

x′ = y,

y′ = 1− sin x− βy,
(6.113)

where β is a positive constant. This equation has a nonhyperbolic equilibrium at
b∗ = (π/2, 0), where its Jacobian is

DF∗ =
[
0 1
0 −β

]
.

As before, there is no unstable manifold. The stable manifold is tangent to (1,−β),
the eigenvector of DF∗ with eigenvalue −β. A simple computation locates Ms as
shown in Figure 6.14(a).

In the previous example there was an obvious candidate for Mc, but the situation
is less clear in this one. However, there is a standard technique to locate possible
center manifolds, which we now apply. Every center manifold must be tangent to
the null eigenvector (1, 0) at b∗. Therefore, Mc may be represented (locally) as a
graph

Mc = {b ∈ R
2 : b2 = h(b1),

π

2
− ε < b1 <

π

2
+ ε},

where h has a Taylor expansion beginning with quadratic terms

h(x) = a(x− π/2)2 + b(x− π/2)3 + . . . . (6.114)
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Suppose a trajectory (x(t), y(t)) of (6.113) passes through a point (x0, h(x0)) ∈ Mc

at time t0. Then according to (6.113),

x′(t0) = h(x0),
y′(t0) = 1− sin x0 − βh(x0).

But since Mc is invariant, the velocity (x′(t0), y′(t0)) must be parallel to the tangent
vector of Mc, i.e., to (1, dh/dx(x0)). Being parallel requires that

1− sin x− βh(x)

h(x)
=

dh/dx(x)

1
, (6.115)

where we have suppressed the subscript zero on x– this equation holds for all x near
zero.

We interpret (6.115) as an ODE for h(x). Clearing the denominator, substituting
the series (6.114), and expanding in powers of x, we match coefficients to calculate
from (6.115) that

a = 1/2β, b = −1/2β3.

The graph of (6.114) with quartic and higher-order terms truncated is shown in
Figure 6.14(b). Through quadratic terms, the graph follows the y-nullcline

{
y =

1− sin x

β

}
,

but because of the cubic term in (6.114), the graph veers away from this nullcline—
below it in the first quadrant, above it in the second.

This procedure may be continued to calculate arbitrarily many terms in the series
(6.114). Every candidate forMc, such as shown in Figure 6.14(a), matches this series
to all orders, but Mc is nonunique in a fashion similar to the preceding example.
Specifically, although there is a unique orbit of (6.113) that escapes from b∗ to the
right, there are infinitely many orbits25 that converge to b∗ from the left.

If the force F (x) = 1− sin x in (6.113) is written as the negative gradient of a po-
tential V (x) = −x− cos x (graphed in Figure 6.15), then the orbits in Figure 6.14(a)
can be interpreted in terms of the rolling-marble analogy. For example, the right half
of the center manifold, M(r)

c , describes a mass that falls off the equilibrium at time
minus infinity. (Note that x increases along this orbit, i.e., the pendulum “falls”
upward from its horizontal equilibrium at x = π/2, because the torque is stronger
than gravity.)

25Incidentally, there are more candidates for M(l)
c than suggested in the figure; see, for example,

Figure 9.6(c).
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0
2
πV(x)

x

Figure 6.15: Potential energy function V (x) = −x− cosx for the critically torqued
pendulum (6.113).

Exercise 21 provides a different perspective on the center manifold in this example.



Chapter 7

Oscillations in ODEs

As its title implies, this chapter is concerned with oscillatory solutions of ODEs.
Solutions of the van der Pol system (1.36)

x′ = y,
y′ = −β(x2 − 1)y − x,

(7.1)

plotted in Figure 1.7, are representative of the kind of behavior we focus on. Up
to now, we have been forced to rely on the computer to study such phenomena. In
this chapter, we introduce analytical techniques to predict and describe oscillatory
behavior.

This chapter is long, but a significant fraction of it may be skipped without loss
of continuity. The essential theory, not to be skipped, is presented in Section 7.1,
the first part of Section 7.2, and Section 7.3. The remaining sections, with explicit
examples, greatly lengthen the chapter and are not easy reading. On the other
hand, they make the topic more vivid by giving concrete descriptions of periodic sol-
utions of nontrivial ODEs—good material, if you have the time for it. Moreover, the
asymptotic techniques in Sections 7.5 and 7.6 are applicable in many other contexts.

We discuss the specific contents of this chapter more fully in Section 7.1.3. The
interdependence of the various sections is shown in Figure 7.1.

7.1 Periodic Solutions

7.1.1 Basic Issues

A nonconstant solution of x′ = F(x), defined for −∞ < t < ∞, is called periodic
if there exists a real number T �= 0 such that x(t + T ) = x(t) for all t ∈ R. Every
nonzero T for which this equation holds is called a period of x.
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Figure 7.1: Interdependence of the sections in this chapter.

The following lemma1 and its corollary will help in analyzing periodicity.

Lemma 7.1.1. Let x(t) be a continuous nonconstant function on a closed interval
[t1, t2] that satisfies x′ = F(x) for t1 < t < t2 and moreover

x(t1) = x(t2), (7.2)

this point belonging to the domain of F. Then (i) the maximal interval of existence
for x(t) is −∞ < t < ∞, and (ii) x(t) is periodic with period T = t2 − t1.

Proof. Let us define x(t) for all t by extending x periodically. Thus for all t,

x(t+ T ) = x(t).

By (7.2), this extension is unambiguously defined and continuous on R. Since the
equation x′ = F(x) is autonomous, the extension satisfies the ODE on every trans-
late of the original (open) interval, (t1 + nT, t2 + nT ), where n is an integer. By
Lemma 3.2.9, the extension in fact satisfies the equation everywhere. By unique-
ness, this periodic extension equals the maximal solution derived from the original
solution.

Corollary 7.1.2. If the trajectory of a solution x of x′ = F(x), defined for all t, is
contained in a closed C1 curve Γ and if there are no equilibria of x′ = F(x) on Γ,
then x is periodic.

Proof. Since Γ is compact and has no equilibria, the minimum speed along Γ, i.e.,
minΓ |F(x)|, is positive. Moreover, Γ has finite length. Thus, x will complete a

1In Problem 3.10 we asked you to prove this, but we still give the easy proof here.
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circuit of Γ in some time less than the length of Γ divided by this minimum speed.
This shows that there is a time T such that x(T ) = x(0), and we may therefore
apply the preceding lemma.

Here are a couple of simple properties of periodic solutions of an ODE that almost
don’t require proof.

Proposition 7.1.3. If x(t) is a periodic solution of x′ = F(x), then (i) there are no
equilibria on the orbit2 of x and (ii) x has a minimal period.

Proof. Regarding Claim (i), suppose that for some t∗, the point x(t∗) is an equilib-
rium; let b∗ = x(t∗). Then y(t) ≡ b∗ and x(t) are two different solutions of the
IVP

y′ = F(y), y(t∗) = b∗,

contradicting uniqueness. Regarding Claim (ii), define the infimum of the set of
periods,

p = inf{T : T > 0 and x(T ) = x(0)},
and consider a sequence Tn of periods that converges to p. If p = 0, then

x′(0) = lim
n→∞

x(Tn)− x(0)

Tn

= 0,

which contradicts Claim (i). Thus p > 0, and moreover

x(p) = lim
n→∞

x(Tn) = x(0),

so p is the minimal period.

If T is the minimal period of x, then the function x : [0, T ] → R
d defines a closed

curve that has no self-intersections. In complex analysis (where d = 2), such a curve
is called a simple closed curve or a Jordan curve [11]. Jordan curves can be rather
intricate; see, for example, Figure B.2 in Appendix B.

7.1.2 Examples of Periodic Solutions

(a) Examples with a continuum of periodic solutions

Example 1: (Linear equations) Recall the system

x′ = y, y′ = −x,

2Recall the distinction: orbit refers to the set {x(t) : t ∈ R} considered as a subset of Rd,
independent of any parametrization; trajectory refers to the curve with the specific parametrization
that satisfies the ODE x′ = F(x).
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Figure 7.2: Periodic orbits (green) for the activator–inhibitor system (7.3) with
ρ = 1 and σ = 2.1.

which comes from writing x′′ + x = 0, the equation of motion for a simple harmonic
oscillator, as a first-order system. Every nonconstant solution of this system is
periodic with period 2π, the orbits being circles {x2 + y2 = C2}. More generally, if
A is a d× d matrix, then the constant-coefficient linear system x′ = Ax has periodic
solutions if and only if A has at least one complex-conjugate pair of nonzero pure
imaginary eigenvalues. (Why?)

Example 2: (Hamiltonian systems) Two-dimensional Hamiltonian systems often
have a continuum of periodic solutions. Bypassing various mechanical systems, we
consider instead the activator–inhibitor system (6.22) with ρ = 1:

(a) x′ = σx2/(1 + y)− x,

(b) y′ = x2 − y.
(7.3)

Figure 7.2 shows a one-parameter family of periodic orbits of this system in the
case σ = 2.1. These periodic orbits arise from the fact that, as you showed in
Exercise 6.10(f), this system is reparametrized Hamiltonian with

H(x, y) = σ ln(1 + y)− y

x
− x.

The Hamiltonian is constant along trajectories of (7.3), so orbits are contained in
level sets of H(x, y). For a range of C, the level set {H(x, y) = C} contains a closed
loop, and each such loop is a periodic orbit. The loops are bounded by a homoclinic
orbit through the saddle point P− ≈ (0.730, 0.533), shown in purple in the figure.
This orbit represents a limiting case of a periodic orbit, i.e., a trajectory that closes
up on itself, but only in an infinite amount of time. All the periodic orbits encircle
P+ ≈ (1.370, 1.877), the other nonzero equilibrium of (7.3).
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y
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Figure 7.3: Trajectories of the academic example, (7.4).

(b) Examples with isolated periodic solutions

In both of the preceding examples, there are infinitely many periodic orbits. Of
greater interest to us will be isolated periodic orbits known as limit cycles. (This
name derives from the fact that for planar systems, nearby trajectories approach
the periodic orbit in one of the limits t → ±∞.) As our numerics have shown, van
der Pol’s system (7.1) has such a periodic orbit, and we shall derive this behavior
analytically later in this chapter. In the meantime, here are two examples for which
we can already show that such an orbit exists.

Example 3: (An academic example) Recall the system

x′ = x− y − (x2 + y2)x,
y′ = x+ y − (x2 + y2)y,

(7.4)

which we have considered several times above. The circle {r = 1} is a limit cycle of
this equation. Indeed, rewriting the system in polar coordinates3

r′ = r(1− r2), θ′ = 1, (7.5)

we found explicit solutions of this system. Even without the explicit solutions, one
may see from (7.5) that the angular variable θ increases at a constant rate, and unless
r(0) = 0, the radial variable r approaches 1 as t → ∞. Thus, nearby trajectories are
attracted to the periodic orbit {r = 1} as t → ∞ (see Figure 7.3).

3The simpler system r′ = 1 − r, θ′ = 1, has more or less the same behavior. However, unlike
(7.5), if we attempt to write this equation in Cartesian coordinates, x′ = F(x), then F(x) is singular
at the origin. It blows up like 1/r there. In other words, the simpler ODE is an equation only on
R

2 ∼ {0}. Often we shall accept such a singularity in order to simplify an example.
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Example 4: (Phase-locking on the torus) Consider the system

θ′1 = ω1 +K1 sin(θ2 − θ1),
θ′2 = ω2 −K2 sin(θ2 − θ1).

(7.6)

Here is a convenient interpretation of the equations (from Strogatz [81]) that makes
them seem less abstract.4 The variables θj may be viewed as the angular position of
two runners on a circular track, and the equations describe the following assumptions:
each runner has a natural “solo” speed ωj, and these may be different, but they (the
runners) place a value on running together, expressed by the terms ±Kj sin(θ2− θ1),
which pull them closer if |θ1 − θ2| < π.

We claim that if ∣∣∣∣
ω1 − ω2

K1 +K2

∣∣∣∣ < 1, (7.7)

then there are “phase-locked” or “entrained” solutions of (7.6) of the form

θ1(t) = ω t, θ2(t) = ω t+ α, (7.8)

where ω, α are constants. Note that θ′j(t) = ω. Thus, (7.6) is satisfied if and only if

ω = ω1 +K1 sinα,
ω = ω2 −K2 sinα.

(7.9)

Subtracting these equations and rearranging, we obtain

sinα =
ω2 − ω1

K1 +K2

.

Condition (7.7) guarantees that this equation has real solutions. Ignoring possible
translation by 2π, we pick two of these, say αc and αd, where

0 < |αc| < π/2, π/2 < |αd| < π. (7.10)

(The subscript “c” is a mnemonic for “close,” since in this case, the runners are
closer to each other; similarly, “d” is a mnemonic for “distant.”) Given the value of
sinα, we substitute into (7.9) to obtain

ω =
K1ω2 +K2ω1

K1 +K2

.

This constructs two solutions γc(t) and γd(t) of the form (7.8), and these are shown
in Figure 7.4.

4In Section 12.1 of [96], equations like (7.6) are proposed as a model for coupled oscillations of
neurons.
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θ 1

θ 2

Figure 7.4: Stable and unstable periodic orbits of the coupled oscillators (7.6)
correspond to solid and dashed green trajectories. Here, K1 = K2 = 1/2, and
ω2 − ω1 =

√
2/2, so that αc = π/4 and αd = 3π/4.

Considered as ODEs on R
2, (7.6) does not have periodic solutions—the functions

θj(t) in (7.8) increase without bound. However, we regard θ1, θ2 as coordinates on
the torus T

2 = (R/2πZ) × (R/2πZ), and in this interpretation,5 the solutions (7.8)
are periodic, with period 2π/ω.

Equation (7.6) is the simplest representative of a class of ODEs that model ent-
rainment in biological oscillations; cf. [83]. Incidentally, other entrained solutions of
(7.6) are discussed in Section 10.4.

7.1.3 A Leisurely Overview of This Chapter

The issue of asymptotic behavior of solutions of an ODE as t → ±∞ provides an
instructive perspective on oscillatory solutions. The simplest asymptotic behavior
as t → ∞ of a solution that remains bounded is for it to converge to an equilibrium
point. For example, in the previous chapter we saw that near an asymptotically
stable equilibrium, every solution has this behavior. Limit cycles represent the next
level of complexity in the asymptotic behavior of solutions.

Despite numerous analogies, limit cycles are more difficult to analyze than equi-
libria; even showing that they exist can be challenging. In Section 7.2, we introduce

5Already in Section 4.3.3 we found it convenient to reduce a Euclidean coordinate modulo 2π
and thereby interpret a planar ODE as one on the cylinder. In a similar spirit, the periodic solution
of (7.4) in polar coordinates, r(t) ≡ 1, θ(t) = t, may be viewed as a closed curve on the cylinder
(0,∞) × S1. Incidentally, as we show in Section 7.9.4, every ODE on T

2, in particular (7.6), can
be embedded in an ODE on R

3.
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a general analytical tool for proving existence of periodic solutions, the Poincaré–
Bendixson theorem, and apply it in two examples. Most emphatically, this theorem
is valid only in two dimensions. The rest of Section 7.2 explores special properties
of two-dimensional systems, including Dulac’s criterion for nonexistence of periodic
solutions.

As with equilibria, there is a notion of stability for limit cycles, driven by the
following question: what happens if a trajectory starts from initial conditions that
are “close” to a limit cycle? In Section 7.3, we define stability notions for limit
cycles and introduce a general theoretical technique for analyzing their stability: the
Poincaré map. Reminiscent of Theorem 6.1.1, the stability or instability of a limit
cycle may be determined from the eigenvalues of a certain matrix derived from the
Poincaré map. However, in contrast to Theorem 6.1.1, it is often difficult to calculate
this matrix. Nevertheless, the conceptual framework provided by the Poincaré map
is invaluable for understanding the behavior of many ODEs.

In Section 7.4 we study existence and stability of a limit cycle in another example,
the torqued-pendulum equation.

In the rest of the chapter we turn to describing limit cycles as opposed to merely
proving that they exist. There are three general techniques for this task:6

• numerical computation;

• asymptotic perturbation theory;

• rigorous mathematical analysis.

Virtually every problem is amenable to numerical solution; the limitation of this
technique is that one may solve equations only with specific values of the parameters
in it, which can make it difficult to get an overview of the behavior of solutions.
Asymptotics, which works by deriving simpler, approximate problems that can be
solved explicitly, is applicable only if there is a small or large parameter that can
be exploited, and the calculations are frequently messy; on the other hand, it often
provides an excellent overview of the behavior of solutions. Rigorous analysis is the
least general of the three methods—new arguments must be developed for each new
problem, and many problems are too complicated for complete analysis. However,
you may find the attraction of rigor irresistible.

In this chapter, we illustrate7 the use of the second of these techniques to ap-
proximate limit cycles. Specifically, in Section 7.5 we describe periodic solutions of

6Ask yourself which method you find most appealing. Your preference provides guidance about
possible career choices, or at least specializations within mathematics. If you like numerics best,
consider scientific computation; if you like asymptotics best, consider traditional applied mathe-
matics; if you like rigorous methods best, consider mathematical analysis.

7Asymptotics is only a secondary focus for this book. We refer you to [98] or [43] to go beyond
our limited coverage, or better still, take a course. Asymptotics is a hard subject to learn without
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the van der Pol equation in the limit of small β, and in Section 7.6 we do likewise in
the opposite limit of large β. Moreover, in Section 7.7 we apply the Poincaré map to
prove stability for the solutions of the van der Pol equation constructed in the two
preceding sections.

In an appendix we use ideas from Floquet theory to fulfill a promise we made in
Chapter 1, to explain how vibration can stabilize an inverted pendulum (cf. Exer-
cise 1.12). We include this material in the present chapter because Floquet theory
and Poincaré maps are closely related.

7.2 Special Behavior in Two Dimensions . . .Mostly

The topology of the plane, in particular the Jordan curve theorem, greatly con-
strains the possible dynamical behavior of two-dimensional systems of ODEs. This
is captured most fully by the strong version of the Poincaré–Bendixson theorem in
Section 7.2.4.

The irreducible core of the two-dimensional theory is a simplified version of the
theorem stated in Section 7.2.1 and its application in Section 7.2.2. Section 7.2.3
introduces limit sets, which are meaningful in every dimension; at least skim this
material, because limit sets facilitate the discussion in later chapters. The more de-
tailed information on two-dimensional ODEs in Sections 7.2.4–7.2.6 could be omitted
with little loss of continuity.

7.2.1 The Poincaré–Bendixson Theorem: Minimal Version

Theorem 7.2.1. Let F : U → R
2 be C1 on the open set U ⊂ R

2, and suppose
that K ⊂ U is a compact trapping region for x′ = F(x) that does not contain any
equilibria. Then K contains at least one periodic orbit of the ODE.

At the risk of boring you, we repeat: This theorem is valid only for planar sys-
tems. No analogous result holds in higher dimensions. The theorem follows from the
stronger version in Section 7.2.4.

Note that the trapping region in the theorem might contain several periodic
orbits. For a rather contrived example, consider the system on R

2 ∼ {0} in polar
coordinates

r′ = (1− r)(2− r)(3− r), θ′ = 1.

The annulus {1/2 ≤ r ≤ 4} is a trapping region with no equilibria, but it contains
three periodic orbits: circles of radii 1, 2, and 3.

guidance from a pro.
If you wish to pursue one of the other two techniques, for numerical methods read Section 10.3

of this book and follow the references there, and for rigorous analysis see Section 6.7 of [54].
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7.2.2 Applications of the Theorem

(a) The van der Pol equation

Recall that in Section 4.4 we constructed trapping regions for the van der Pol
equation (7.1) in order to prove global existence. Let K0 be one such trapping
region, corresponding to a choice of the parameter A in (4.34). (The outer curve in
Figure 7.5 bounds such a region.) We cannot apply Theorem 7.2.1 using K0, because
the equilibrium (x, y) = (0, 0) lies inside K0. However, let us remove a disk of radius
ε around the origin from K0; thus we define

K = K0 ∼ B(ε), (7.11)

where ε < 1. Now ∂K = ∂K0 ∪ Γ, where Γ is the circle of radius ε. Regarding
behavior at ∂K, we know from Section 4.4 that the flow of (7.1) is inward along ∂K0,
so we need consider only Γ. At a point (ε cos θ, ε sin θ) on Γ the inward normal, i.e.,
pointing into K, is Nθ = (cos θ, sin θ), and we calculate that

〈F,Nθ〉 = β
(
1− ε2 cos2 θ

)
ε sin2 θ ≥ 0.

Therefore, K is a trapping region for (7.1) that contains no equilibria. Hence by
Theorem 7.2.1, there must be a periodic orbit of (7.1) inside K.

Although we cannot conclude so from the theorem, there is in fact a unique
periodic orbit of the van der Pol equation inside K. We have observed this fact in
computations; we shall derive it with asymptotics in the limit of small or large β
(Sections 7.5 and 7.6, respectively); and we refer you to Meiss [54], p. 224, for an
analytical proof for all β.

(b) The torqued pendulum equation

Recall from Section 4.3.3 that the torqued pendulum is described by the system

x′ = y,
y′ = − sin x− βy + μ.

(7.12)

Suppose μ > 1; i.e., suppose the torque is large enough to overcome the pull of
gravity, no matter what the angle x of the pendulum may be. On physical grounds
it seems intuitively obvious that under this hypothesis, there is a solution x∗(t), y∗(t)
of (7.12) such that the pendulum continues to rotate indefinitely in a periodic fashion.
Such a solution would satisfy

x∗(t+ T ) = x∗(t) + 2π, y∗(t+ T ) = y∗(t) (7.13)

for an appropriate T > 0, so it would be periodic if (7.12) is interpreted as an
equation on S1 × R.
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Figure 7.5: Annular trapping region K of the form (7.11) used to prove existence of
a periodic orbit of the van der Pol equation (7.1). The outer boundary of the region
defines a trapping region for the van der Pol equation, as in Section 4.4. The inner
boundary quarantines the (unstable) equilibrium (0, 0), so that no equilibria are con-
tained in K.

We shall derive the existence of such a periodic solution with the following gen-
eralization of Theorem 7.2.1 to the cylinder. (See Exercise 1(b) for hints on how to
prove this result.)

Theorem 7.2.2. Let F : U → R
2 be C1 on the open set U ⊂ S1 × R, and suppose

that K ⊂ U is a compact trapping region for x′ = F(x) that does not contain any
equilibria. Then K contains at least one periodic orbit of the ODE.

In Chapter 4 we showed that

K = {(x, y) ∈ S1 × R : y2/2− cosx ≤ E0} (7.14)

is a trapping region for (7.12) when E0 ≥ (μ/β)2/2 + 1. Since μ > 1, this ODE has
no equilibria. Thus, it follows from the Poincaré–Bendixson theorem that (7.12) has
a periodic solution inside K. (As we will see in Section 7.4, this solution is unique.)

Remark: In the above analysis we assumed that μ > 1 in (7.12). Depending on
the value of β, there may still be a periodic orbit even if μ < 1; see Exercise 4.

(c) An auxiliary result, relevant to applying Theorem 7.2.1.

To construct a trapping region for the van der Pol equation with no equilibria,
we had to delete a neighborhood of the origin. The following theorem warns you
that for every planar ODE, only such an annular region can be equilibrium-free.
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Theorem 7.2.3. Let F : U → R
2 be C1 on the open set U ⊂ R

2, and suppose U
is simply connected. If Γ is a periodic orbit of x′ = F(x), then this equation has at
least one equilibrium inside Γ.

This result may be elegantly derived as is a consequence of index theory, which
uses algebraic topology to study periodic orbits; see Section 6.5 of [54]. Alternatively,
see Theorem 2 in Section 11.5 of [40] for a direct proof of the theorem.

7.2.3 Limit Sets (in Any Dimension)

The following generally useful concept is needed to formulate the strong version of
the Poincaré–Bendixson theorem. Unlike the rest of Section 7.2, here, this idea makes
sense in arbitrary dimension.

Recall from Section 4.5.2 the flow notation ϕ(t,b) for the solution of an IVP

x′ = F(x), x(0) = b. (7.15)

A point z is called an ω-limit point of b if ϕ(t,b) is defined for all t ≥ 0 and there
exists a sequence {tn} of real numbers tending to infinity such that

lim
n→∞

ϕ(tn,b) = z.

The set of all ω-limit points of b will be denoted by ω(b). The α-limit set, consisting
of points obtained in the limit as t → −∞, is defined analogously, but we will not
make much use of it.

An ω-limit set certainly can be empty, as illustrated by the scalar ODE x′ = x

with x(0) = b �= 0. (One could generalize the notion of limits to include the point
at infinity, but we don’t do this.) If the (forward) orbit through b is contained in a
compact set, then ω(b) is nonempty. Here are some examples of ω-limit sets.

Example 1: (A single point) If b∗ is an asymptotically stable equilibrium of
x′ = F(x), then there exists a neighborhood V of b∗ such that ω(b) = b∗ for all
b ∈ V . Similarly, if b∗ is a saddle point and if b ∈ Ms, the stable manifold of the
saddle, then ω(b) = b∗. Equation (6.13), say with the radial equation simplified,

r′ = 1− r, θ′ = 1− cos θ, (7.16)

provides another example, ω(b) = {(1, 0)} for all b ∈ R
2 ∼ {0}, even though the

equilibrium8 is not stable.

8Are we using Cartesian coordinates or polar coordinates to specify the equilibrium? It doesn’t
matter, because of a convenient mathematical pun: (1, 0) specifies the same point in either coordi-
nates.
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r = 1

Figure 7.6: Solutions of (7.17) rendered on the cylinder (0,∞)×S1. The two black
trajectories approach the (stable) periodic orbit, shown in green, as t → ∞. The
periodic orbit is the ω-limit of every b ∈ (0,∞)× S1.

Example 2: (A limit cycle) Consider Example 3 in Section 7.1 (with the radial
equation simplified):

r′ = 1− r, θ′ = 1. (7.17)

The unit circle Γ is a limit-cycle orbit of (7.17), and every solution of (7.17) in
R

2 ∼ {0} approaches Γ. Thus, in the present terminology, ω(b) = Γ for all b �= 0.
The van der Pol equation exhibits similar behavior.

Remark: Sometimes it will be convenient to abandon the interpretation of an
equation such as (7.17) as an ODE on the punctured plane R

2 ∼ {0} and regard it
as an ODE on the cylinder (0,∞)× S1. Figure 7.6 shows a couple of trajectories in
the latter interpretation.

Example 3: (A homoclinic cycle) New behavior emerges for another tweak of
these equations:

r′ = (1− r)3, θ′ = 1− cos θ + (r − 1)2. (7.18)

In Figure 7.7(a) we indicate the flow of (7.18), interpreted as an ODE on R
2 ∼ {0}.

If b /∈ Γ, then ω(b) = Γ, the unit circle. This behavior may be derived analytically
from explicit solutions: if t → ∞, then r−1 tends to zero as t−1/2, so θ′ ≥ C/t, which
means that θ increases without bound. However, points on Γ behave differently
from Example 2: if b ∈ Γ, then ω(b) = {(1, 0)}. We call Γ a homoclinic cycle:
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x

y

x

ya b

Figure 7.7: (a) Trajectories for (7.18) and (b) trajectories for (7.19) with n = 2.
Equilibria are indicated by bold dots. In Panel (a), the circle is a homoclinic cy-
cle, the homoclinic orbit {(r, θ) : r = 1, 0 < θ < 2π} plus the equilibrium
(r, θ) = (1, 0). In Panel (b), the circle is a heteroclinic cycle containing two dis-
tinct orbits, {(r, θ) : r = 1, 0 < θ < π} and {(r, θ) : r = 1, π < θ < 2π}, and two
equilibria.

this term describes an equilibrium and a homoclinic orbit connected to it as t → ±∞.
(This example may seem a little artificial,9 but in Chapter 9, homoclinic cycles that
are ω-limits arise naturally.)

Suppose we further modify the θ-equation in these examples to read

r′ = (1− r)3, θ′ = 1− cos(nθ) + (r − 1)2, (7.19)

for some positive integer n. (Figure 7.7(b) shows the flow if n = 2.) It is still
true that ω(b) = Γ if b �= 0 and b /∈ Γ, but now Γ consists of n equilibria (i.e.,
r = 1, θ = 2kπ/n, k = 0, 1, . . . , n− 1) and heteroclinic orbits (i.e., different limits as
t → ±∞) connecting these equilibria. With an obvious extension of the terminology,
we shall call Γ a heteroclinic cycle. You should identify limit sets for points on Γ.
(Exercise 22 gives more examples of this type.)

Incidentally, the homoclinic orbit in Figure 7.2 has different behavior: this ho-
moclinic orbit is not part of the ω-limit set of any point b ∈ R

2. If b lies inside
the homoclinic orbit, then ω(b) is the periodic orbit on which b lies; if b lies on the
stable manifold of the saddle point, which includes the homoclinic orbit, then ω(b)
is the saddle point P−; otherwise, ω(b) is the origin.

Example 4: (Tori in higher dimensions) The ω-limit set of a bounded trajectory
for a higher-dimensional system often involves a torus. For example, consider the

9To make this more specific, the equilibrium (1, 0) of (7.18) is highly degenerate; indeed, all
entries of the Jacobian DF vanish there.
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three-dimensional flow on the domain {(r, θ, z) : r > 0} (expressed in cylindrical
coordinates)

θ′ = ω1,

[
r′

z′

]
=

[
1− 2R2 − ω2,

ω2 1− 2R2

] [
r − 1
z

]
,

(7.20)

where R(r, z) =
√

(r − 1)2 + z2. Note that R is the radial coordinate in the r, z-plane
if the point (r, z) = (1, 0) is taken as the origin, say

r − 1 = R cosφ, z = R sinφ.

With respect to these coordinates, the r, z-subsystem may be rewritten as

R′ = R− 2R3, φ′ = ω2. (7.21)

This system mimics the academic equation (7.5), with the complication that solu-
tions of (7.21) need not be globally defined, because they may get driven to the
set {R cosφ < −1}, for which the coordinate transformation becomes ill defined.
However, solutions of (7.20) that start close to the level set {R = 1/

√
2}, which we

denote by T because it is a torus in the original Euclidean space, are globally defined
and in fact tend to T as t → ∞. As will follow from Exercise 7, if ω1/ω2 is irrational,
the ω-limit set of every such initial condition is the entire torus T.

Example 5: (Complicated limit sets in higher dimensions) In three or more
dimensions, limit sets can be far more complicated than any of the above examples.
In fact, in the 1960s, researchers were so perplexed by limit sets they observed that
they coined the pejorative phrase “strange attractor” [69] to describe such sets. If
your curiosity is piqued, you may peek ahead to see examples of such behavior in
Sections 9.6 and 9.7, particularly Figures 9.16(b) and 9.17(a). See [30] for a broader
view on these developments.

Although we don’t use limit sets all that much, let us nevertheless derive a couple
of the most basic properties of such sets. Let ϕ(t,b) be the flow associated with an
ODE x′ = F(x), where F : U → R

d. Recalling the definition from Chapter 6, we say
that V ⊂ U is invariant with respect to the flow if ϕ(t,b) is defined and belongs to
V for all b ∈ V and all t ∈ R.

Proposition 7.2.4. Every ω-limit set ω(b) is a closed invariant subset of U .
Proof. If ω(b) is empty, the assertion is trivial. If ω(b) is nonempty, let x(t) =
ϕ(t,b). Regarding being closed, suppose that {zm} is a sequence of points in ω(b)
that converges to z. Then we must show that z ∈ ω(b); i.e., there exists a sequence
{tn} tending to infinity such that limn x(tn) = z. Since zm ∈ ω(b), there exist
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sequences {s(m)
k }, all tending to infinity as k → ∞, such that limk x(s

(m)
k ) = zm. For

n = 1, 2, . . ., choose tn = s
(n)
k(n), with tn ≥ n, such that

|x(tn)− zn| < 1

n
.

Then
|x(tn)− z| ≤ |x(tn)− zn| + |zn − z|,

and since both terms on the right tend to zero, we see that ω(b) is closed.

Regarding invariance, suppose z0 ∈ ω(b); thus there is a sequence tn tending to
infinity such that z0 = limnϕ(tn,b). Let z = ϕ(t∗, z0) be a point on the trajectory
through z0. If t∗ ≥ 0, consider the sequence ϕ(tn+t∗,b). By the semigroup property,
Proposition 4.5.3,

ϕ(tn + t∗,b) = ϕ(t∗,ϕ(tn,b)),

and by continuity,

lim
n

ϕ(t∗,ϕ(tn,b)) = ϕ(t∗, lim
n

ϕ(tn,b)) = ϕ(t∗, z0) = z.

Hence z ∈ ω(b), as claimed.

If t∗ < 0, then early elements in the sequence ϕ(tn + t∗,b) might be undefined,
because tn + t∗ < 0. However, discarding these early problematic elements, we may
proceed as above with a subsequence, say ϕ(tn + t∗,b), where n ≥ N .

Limit sets need not be compact; see Exercise 20 for a counterexample. If a limit
set is compact, it is connected (see, for example, Lemma 4.16 in Section 4.9 of [54]).

7.2.4 The Poincaré–Bendixson Theorem: Strong Version

In simple language, the strong version of the Poincaré–Bendixson theorem states
that most limit sets in two-dimensional systems are no more complicated than
Examples 1–3 in the previous subsection.

Theorem 7.2.5. (Poincaré–Bendixson): Suppose that F : U → R
2 is C1 on U ,

where U contains only finitely many equilibria. If the (forward) orbit through b lies
in a compact subset of U , then ω(b) satisfies one of the following conditions:

(i) it consists of a single point;

(ii) it is a periodic orbit;

(iii) it is a homoclinic or heteroclinic cycle.

Because the techniques needed to prove this result have limited utility in the
rest of the theory of ODEs, we refer you to other sources for a proof, for example
Chapter 9 of [95] or Section 16.3 of [15].
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Incidentally, the hypothesis that F has only finitely many equilibria in U is es-
sential. For example, in the system

r′ = (1− r)3,
θ′ = (r − 1)2,

(7.22)

the ω-limit set of a trajectory with r(0) �= 1 is the unit circle Γ, and Γ is an infinite
union of equilibria. (Show this by solving the equations! It’s more delicate than you
might expect.)

7.2.5 Nonexistence: Dulac’s Theorem

The next proposition gives a sufficient condition to exclude periodic solutions.
Following its proof, the result is applied in Section 7.2.6.

Proposition 7.2.6. (Dulac). Suppose that F : U → R
2 is C1 on the open simply

connected set U ⊂ R
2. If there exists a C1 function g : U → R such that the divergence

∇ · (gF) is nonnegative and is not identically zero on any open subset of U , then the
equation x′ = F(x) has no periodic solutions lying entirely within U .

Remarks: (i) The same conclusion follows if ∇ · (gF) is nonpositive and is not
identically zero on any open subset of U . (ii) The proof below does not provide much
intuition about why the proposition is true. As we explore in Section 7.9.1 of the
Pearls, such intuition can be derived from considering how the areas of regions evolve
under the flow.

Proof of Proposition 7.2.6. Suppose to the contrary that there exists a simple closed
orbit Γ, and let Ω denote the interior of Γ. By Green’s theorem,

∫∫

Ω

∇ · (gF) dA =

∮

Γ

(gF) ·N ds,

where N, ds, and dA have their usual meanings. By our assumptions regarding
∇ · (gF), the double integral on the LHS is strictly positive. On the other hand, the
contour integral on the RHS is zero, since the velocity vector F(x) = x′ is tangent
to Γ and therefore orthogonal to the normal N.

7.2.6 Section 1.6 Revisited, Part III

As an application of Proposition 7.2.6, consider the modified Lotka–Volterra model

x′ = x

(
x− ε

x+ ε

)
− xy, y′ = ρ(xy − y), (7.23)
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where ρ > 0 and ε ≥ 0. (The carrying capacity K is equal to infinity.) If ε = 0,
all nonconstant trajectories of (7.23) in the (open) first quadrant are periodic. The
seemingly innocent factor (x − ε)/(x + ε), which is approximately equal to 1 if x
is large, changes the dynamics completely. We claim that (7.23) has no periodic
solutions in the biologically meaningful regime {x > 0, y > 0}. (This behavior is
easily verified in computations, but it is a pleasure to be able to derive it analytically.)
To prove the claim, we apply Dulac’s theorem with g(x, y) = 1/xy. (In Section 7.9.1
we explain why this choice is natural.) Since

∇ · (gF) =
2ε

y(x+ ε)2

is strictly positive throughout the first quadrant, the claim follows.

In fact, the above information may be combined with the strong Poincaré–
Bendixson theorem to show that virtually all solutions of (7.23) converge to total
extinction! (See Exercise 8.)

7.3 Stability of Periodic Orbits and the Poincaré Map

7.3.1 An Eigenvalue Test for Stability

The notion of stability for periodic solutions is completely analogous to stability of
equilibria. (For definiteness, you may think of an ODE on R

d, but the same ideas
apply for ODEs on the cylinder or the torus.) We say that a periodic solution of
x′ = F(x) with orbit Γ is Lyapunov stable if for every neighborhood V of Γ, there
is a smaller neighborhood V1 such that if initial data b are restricted to belong to
V1, then the IVP is solvable for all positive times, and moreover, ϕ(t,b) ∈ V for all
t ≥ 0. Similarly, we say that a limit cycle is asymptotically stable if it is Lyapunov
stable and there exists one neighborhood V∗ of Γ such that for all b ∈ V∗,

lim
t→∞

dist(ϕ(t,b),Γ) = 0.

For completeness, let us record that the distance from a point x to a compact set
K is defined by dist(x,K) = miny∈K |x − y|. For instance, it is easily seen that the
limit cycle in Example 3 of Section 7.1 is asymptotically stable.

Let γ(t) be a periodic solution10 of a d-dimensional system x′ = F(x), say with
period T . The theorem below provides a sufficient condition for asymptotic stability,
based on the eigenvalues of Dϕ(T,γ(0)), the differential of the flow map with re-
spect to its second argument. The following lemma is invoked in enumerating these
eigenvalues.

10We write lowercase γ(t) for the solution and uppercase Γ for the orbit.
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Lemma 7.3.1. One of the eigenvalues of Dϕ(T,γ(0)) equals unity, with eigenvec-
tor γ ′(0).

Proof. By periodicity, we have that

ϕ(T,γ(t)) = γ(t).

The lemma follows from differentiating this equation with respect to t using the chain
rule and evaluating at t = 0.

Here and below we assume that Dϕ(T,γ(0)) has eigenvalues λ1, . . . , λd−1, and
λd = 1, where λd is the trivial eigenvalue associated with γ ′(0).

Theorem 7.3.2. With the above notation, if the nontrivial eigenvalues of
Dϕ(T,γ(0)) satisfy |λk| < 1 for k = 1, . . . , d− 1, then γ is asymptotically stable. If
any eigenvalue of Dϕ(T,γ(0)) satisfies |λk| > 1, then γ is unstable.

The proof, which will be discussed in Section 7.3.3, is based on the Poincaré map,
which we define in the next subsection.

In the following remark, we record that the theorem extends to cases such as the
equations

θ′1 = ω1 +K1 sin(θ2 − θ1),
θ′2 = ω2 +K2 sin(θ1 − θ2),

(7.24)

of Example 4, Section 7.1.2, which has periodic solutions if it is regarded as an
ODE on the torus T

2. We define the flow map in such cases without reducing its
components modulo 2π. Of course, such a translation would have no effect on Dϕ,
anyway.

Remark 7.3.3. Theorem 7.3.2 is still valid for solutions of an ODE that are periodic
only when considered on the cylinder or torus.

By way of illustration, let us apply the extended theorem to (7.24), say focusing
on the periodic solution γc(t) (notation of Section 7.1.2). We may calculate the
differential of the flow map ϕ : R × R

2 → R
2 with Theorem 4.6.1. Specifically,

Dϕ(T,γc(0)) acting on a vector b is the solution at time T of the IVP

w′ = A(t)w, w(0) = b,

where A(t) = DF(γc(t)). Substituting the solution (7.8) into DF, we find that A(t)
is the constant matrix

A =

[ −K1 cosαc K1 cosαc

K2 cosαc −K2 cosαc

]
.
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Thus Dϕ(t,γc(0)) = etA. Now A has eigenvalues −(K1 + K2) cosαc and 0, so for
t = T , the differentialDϕ(T,γc(0)) has eigenvalues λ1 = e−T (K1+K2) cosαc and λ2 = 1.
It follows from (7.10) that cosαc > 0, so |λ1| < 1, and hence γc(t) is asymptotically
stable. (By a similar argument, γd(t) is unstable.)

This example was hand picked to yield simple calculations. Usually, Theorem
7.3.2 is harder to apply than Theorem 6.1.1, its close analogue about the stability
of equilibria of ODEs. Nevertheless, the result and especially the key idea in its
proof—the Poincaré map—are of the utmost importance theoretically.

7.3.2 Basics of the Poincaré Map

To construct the Poincaré map11 of a periodic solution, we first

• choose a base point on the trajectory {γ(t)}, say the position γ(0) at time
zero, and

• choose a small section Σ of a (d−1)-dimensional hyperplane that contains γ(0)
and is transverse12 to the periodic orbit there.

We may specify Σ through a level set of a (scalar-valued) linear function, say

Σ = {b ∈ B(γ(0), η) : 〈N,b〉 = α} , (7.25)

whereN ∈ R
d, α = 〈N,γ(0)〉 is a constant, and η > 0 specifies the size of Σ. There is

no reason to insist on orthogonality of Σ and the periodic orbit at γ(0), although this
could be accomplished by choosing N = γ ′(0). In any case, transversality requires
that

〈N,γ ′(0)〉 �= 0. (7.26)

Now for initial conditions b ∈ Σ, consider the IVP

x′ = F(x), x(0) = b. (7.27)

If b = γ(0), then the solution of (7.27) crosses Σ when t = T , the minimal period
of γ(t), precisely at the point γ(0). The Poincaré map focuses on the question,
starting from any b ∈ Σ, when and especially where does the solution ϕ(t,b) of

11It is customary to say the Poincaré map, but in fact there are many. “The” is justified in
the sense that all of these mappings may be transformed to one another (on appropriately small
neighborhoods) by changes of coordinates.

12“Transverse” in this context reduces to the condition that γ′(0) is not tangent to Σ.
Incidentally, it would not create any mathematical difficulties to assume that Σ was a curved

surface, but writing precise equations in this case requires either the abstract language of differential
geometry or some heavy-handed notation. Not liking either option, we have assumed that Σ is flat.
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(7.27) next cross Σ? If Σ is given by (7.25), “when” is answered by defining the
function p(x) = 〈N,x〉 − α and solving the equation

p(ϕ(t,b)) = 0 (7.28)

for t, say t = τ(b); and “where” is answered by the formula that defines the Poincaré
map Π,

Π(b) = ϕ(τ(b),b). (7.29)

Theorem 7.3.4. In the above context, there exists a neighborhood13 N ⊂ R
d of γ(0)

such that (i) if b ∈ Σ ∩ N , then (7.28) has a unique solution τ(b) ≈ T that is a C1

function of b, and (ii) equation (7.29) defines a C1 map Π : Σ ∩ N → Σ.

Remark: Since Σ is (a piece of) a hypersurface, τ(b) may be regarded as a
function on a (d − 1)-dimensional Euclidean space. Thus the statement “τ is a
smooth function on Σ” is readily interpreted, which is our reward for assuming that
Σ is flat.

Proof of Theorem 7.3.4. (i) Let us apply the implicit function theorem to (7.28). By
periodicity, ϕ(T,γ(0)) = γ(0), so if b = γ(0), then t = T solves (7.28). Of course, p
is differentiable, and we know from Theorem 4.6.1 that ϕ is also differentiable. From
the chain rule,

∂

∂t
p(ϕ(t,γ(0)))

t=T

= 〈N, ∂tϕ(T,γ(0))〉. (7.30)

Invoking periodicity again, we note for the second factor in the inner product that

∂tϕ(T,γ(0)) = ∂tϕ(0,γ(0)) = γ ′(0).

Thus, by the transversality condition (7.26), we conclude that (7.30) is nonzero.
This proves Part (i) of the theorem. Regarding Part (ii), Π is C1, because it is the
composition of continuously differentiable functions.

Remark: If the radius η of the Poincaré section (7.25) is sufficiently small, then
τ(b) represents the first time at which the trajectory ϕ(t,b) returns to Σ. Thus,
the Poincaré map is sometimes called the first-return map. If η were too large, the
periodic orbit γ could cross Σ “prematurely” without completing a full cycle (see
Figure 7.8). However, even if η were too large, the requirement that τ(b) depend
smoothly on b selects the right solution of (7.28).

Extending the notation, we write

T (Σ) = {b ∈ R
d : 〈N,b〉 = 0}

13In many examples it might seem as though we could drop the neighborhood N and just make
Σ small. This idea doesn’t work when γ is unstable; see Exercise 21.
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too largeη

η

γγ

η appropriately small

Figure 7.8: If η is chosen too large, γ could cross Σ prematurely, as indicated by
an open circle in the left panel. In both panels, the solid black dot represents γ(0).

for the tangent space to Σ. This set differs from Σ in that it is unbounded and has
been translated from γ(0) to the origin; moreover, T (Σ) is a (d − 1)-dimensional
linear subspace of Rd. For every b ∈ Σ ∩ N , the differential of the Poincaré map
defines a linear transformation DΠ(b) : T (Σ) → T (Σ). The following proposition
connects DΠ at the base point γ(0) to the differential of the flow map.

Proposition 7.3.5. If DΠ(γ(0)) has eigenvalues λ1, . . . , λd−1, then Dϕ(T,γ(0))
has the same eigenvalues λ1, . . . , λd−1 plus the trivial eigenvalue λd = 1.

Proof of Proposition 7.3.5. Choose a special basis for R
d as follows. By transver-

sality, Rd is spanned by T (Σ) and the one-dimensional subspace R{γ ′(0)}. Thus,
if v1, . . . ,vd−1 is a basis for T (Σ), then v1, . . . ,vd−1,γ

′(0) is a basis for R
d. Let

Mϕ be the d × d matrix that represents Dϕ(T,γ(0)) with respect to the basis
v1, . . . ,vd−1,γ

′(0), and let MΠ be the (d − 1) × (d − 1) matrix that represents
DΠ(γ(0)) with respect to the basis v1, . . . ,vd−1. The proposition follows imme-
diately from the following lemma.

Lemma 7.3.6. With respect to the above bases, Dϕ(T,γ(0)) has the block structure

Mϕ =

[
MΠ 0
c 1

]
, (7.31)

where c is a (d− 1)-component row vector.

Proof. In proving Lemma 7.3.1, we saw that γ ′(0) is an eigenvector of Dϕ(T,γ(0))
with eigenvalue 1. It follows from this fact that the last column of Mϕ has the
structure indicated in (7.31).
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Regarding the other columns of Mϕ, we compute the directional derivative of
(7.29) in an arbitrary direction v ∈ T (Σ) and evaluate at γ(0) to obtain

DΠ(γ(0)) · v = ∂tϕ(T,γ(0)) 〈∇bτ(γ(0)),v〉+Dϕ(T,γ(0)) · v. (7.32)

Recognizing that ∂tϕ(T,γ(0)) = γ ′(0) and rearranging terms, we obtain

Dϕ(T,γ(0)) · v = DΠ(γ(0)) · v − 〈∇bτ(γ(0)),v〉γ ′(0).

This equation verifies the first d−1 columns of (7.31) and moreover determines that
the last row of Mϕ is given by c = −∇bτ(γ(0)). This proves both the lemma and
Proposition 7.3.5.

7.3.3 Discrete-Time Dynamics and the Proof of Theorem 7.3.2

The main idea of the proof is easily conveyed through a trivial example, the equation
given in polar coordinates by

r′ = 1− r, θ′ = 1. (7.33)

Of course, r(t) ≡ 1, θ(t) = t satisfies (7.33), or in more geometric terms, the unit
circle is a periodic orbit of this equation. Relative to this periodic solution, we choose
the transverse section

Σ = {(b1, b2) : 1/2 < b1 < 3/2, b2 = 0} = (1/2, 3/2)× {0}.

To define the Poincaré map, given b ∈ (1/2, 3/2), we must solve (7.33) with initial
conditions

r(0) = b, θ(0) = 0; (7.34)

this yields (r(t), θ(t)) = (1 + (b− 1)e−t, t). Solving the equation for the time of first
return, θ(t) = 0 (mod 2π), we find that τ(b) ≡ 2π; thus,

Π(b) = r(2π) = 1 + e−2π(b− 1). (7.35)

Regarding Theorem 7.3.2, we ask, does the trajectory that originates from b0 =
(b, 0) converge to the unit circle? Well, after one circuit of the origin, it crosses Σ at
b1 = Π(b0), which by (7.35) is a factor e−2π closer to the circle than b0; after two
circuits, it crosses at b2 = Π(b1), which is a factor (e−2π)2 closer to the circle; and
so on. So we have reproved the obvious, that the trajectory does converge. But this
strategy generalizes.

Suppose γ(t) is a periodic trajectory of an ODE x′ = F(x) with Poincaré map
Π : Σ ∩ N → Σ. If b0 ∈ Σ ∩ N , we follow the trajectory ϕ(t,b0) forward in time.
When t = τ(b0), the trajectory makes its first return to Σ, crossing the Poincaré
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section at the point b1 = Π(b0). If b1 ∈ Σ happens to belong to Σ ∩ N , then
the trajectory crosses Σ a second time at b2 = Π(b1). Continuing for as long as
these iterates remain in Σ ∩ N , we may recursively define a sequence of subsequent
crossings, bn+1 = Π(bn) = Πn+1(b0). Thus, the Poincaré map allows us to
recast “continuous time” questions about the behavior of trajectories as t → ∞ in
terms of “discrete time” questions about the convergence of this sequence. In more
picturesque language, the Poincaré map lets us examine trajectories under a strobe
light.

It’s time to formalize concepts. By a discrete-time dynamical system14 we mean
a mapping Ψ : U → R

d, where U ⊂ R
d is open. “Time” for such a system counts

the number of iterations of Ψ; i.e., we define Ψ0(z) = z and

Ψn+1(z) = Ψ(Ψn(z))

for as long as the iterates remain in U . Of course, if Ψ(U) ⊂ U , the iteration
continues indefinitely.

A fixed point of a discrete dynamical system is a point z∗ ∈ U such thatΨ(z∗)= z∗.
This concept is analogous to an equilibrium of an ODE. Lyapunov stability, asymp-
totic stability, and instability of a fixed point are defined with the obvious modifica-
tions of the definitions for an equilibrium. For example, consider the one-dimensional
discrete dynamical system Ψ : R → R given by Ψ(z) = z2. The map has two fixed
points, 0 and 1; the former is asymptotically stable, and the latter is unstable. (Show
this directly, and relate it to the next proposition.)

The eigenvalues of the Jacobian of Ψ provide a convenient test for asymptotic
stability of a fixed point.

Theorem 7.3.7. Let z∗ be a fixed point of the C1-map Ψ : U → R
d. If every

eigenvalue of the Jacobian DΨ(z∗) satisfies |λ| < 1, then z∗ is asymptotically stable.
If |λ| > 1 for some eigenvalue, then z∗ is unstable.

If Ψ were linear, say Ψ(z) = Az for some matrix A, the theorem would reduce to
Exercise 2.13(b). The proof for nonlinear Ψ, which we pose as Exercise 13(a) below,
is based on approximation by the linearization of Ψ at the fixed point. This proof is
similar in spirit to, but technically simpler than, the analogous test for stability of
equilibria of an ODE, Theorem 6.1.1.

Note that DΨ(z∗) might have complex eigenvalues λ = α+ iβ, in which case |λ|
means

√
α2 + β2, but the theorem still holds.

14Discrete-time dynamical system are important and interesting in their own right, independent
of any connection to Poincaré maps. Chapter 10 of [81] has a brief, readable introduction to the
behavior of one-dimensional maps, and [17] gives a more thorough, but still readable, treatment.
(See also Sections 9.9.2 and 10.6(a) below.)
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Proof of Theorem 7.3.2 (assuming Theorem 7.3.7). If γ(t) is a periodic solution of
x′ = F(x), then γ(0) is a fixed point of the Poincaré map Π. In Exercise 13(b)
we ask you to sharpen the correspondence between continuous-time and discrete-
time systems by showing that γ(0) is a Lyapunov stable, asymptotically stable, or
unstable fixed point of the Poincaré map iff the trajectory γ(t) has the corresponding
stability behavior with respect to the ODE. Regarding Π as a discrete dynamical
system on a (d−1)-dimensional Euclidean space, we can relate the stability of γ(0) to
eigenvalues of DΠ(γ(0)) through Theorem 7.3.7. Of course, by Proposition 7.3.5 the
eigenvalues of DΠ(γ(0)) are just the nontrivial eigenvalues of Dϕ(T,γ(0)). Thus,
Theorem 7.3.2 follows from Theorem 7.3.7.

A reminder: please reexamine this proof to check that it works equally well
for ODEs that have a periodic solution on the cylinder or torus, as asserted in
Remark 7.3.3.

7.4 Stability of the Limit Cycle in the Torqued Pendulum

In Section 7.2.2(b) we applied the Poincaré–Bendixson theorem to show that the
torqued pendulum equation (7.12) has a periodic solution (as an ODE on the cylin-
der) if μ > 1. Now we prove that this periodic solution is asymptotically stable. In
proving this, we give an independent proof of its existence and we show that it is
unique.

To begin, we eliminate time from (7.12): y as a function of x satisfies the scalar
ODE dy/dx = F (y, x), where

F (y, x) =
y′

x′ =
μ− sin x

y
− β. (7.36)

We restrict y to an interval ε ≤ y ≤ M , where we choose ε such that

0 < ε <
μ− 1

β
, which implies that F (ε, x) > 0,

and choose M such that

M >
μ+ 1

β
, which implies that F (M,x) < 0.

Thus, as illustrated in Figure 7.9(a), if ε ≤ b ≤ M , then the solution of the IVP

dy

dx
= F (y, x), y(0) = b, (7.37)

is trapped between the lines y = ε and y = M . More formally, we have the following:



284 Chapter 7. Oscillations in ODEs

b
*

2 π b
*

ε M0
b

ε
0

M

slope 1

(b)Π

M

0

ε

0

y

x

ba

Figure 7.9: (a) Trajectories for (7.36), an ODE for orbits of the torqued pendulum
equation (7.12), with β = 1/2, μ = 3/2. Flow is restricted to the strip {ε < y < M},
where ε = 1/2 and M = 6. The trajectory shown in green, which returns to the same
height (i.e., y(2π) = y(0) = b∗), picks out a periodic solution of (7.12). (b) Graph of
Π, the Poincaré-like map b �→ ϕ(2π, b) for (7.36). The intersection of the graph with
the diagonal locates the periodic solution of the torqued-pendulum equation (7.12).

Claim 1: If ε ≤ b ≤ M , then the solution ϕ(x, b) of the IVP (7.37) exists for all
x ≥ 0 and moreover satisfies ε ≤ ϕ(x, b) ≤ M .

Leaving it to the dedicated reader to construct a careful proof of this claim, we
move on:

Claim 2: The derivative ∂ϕ/∂b satisfies the estimate

0 <
∂ϕ

∂b
(x, b) < 1.

Proof of Claim 2. According to the generalization of Theorem 4.6.1 to ODEs with
variable coefficients, the solution of (7.37) depends differentiably on the initial con-
dition b, and moreover, ∂ϕ/∂b(x, b) satisfies the linear IVP

dw

dx
= −

(
μ− sin x

ϕ2(x, b)

)
w, w(0) = 1,

where the RHS of the equation was obtained by differentiation of (7.36) with respect
to y. The claim follows from the observation that the coefficient of w in this equation
is negative.
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Using the solution of (7.37), define a map15 Π : [ε,M ] → [ε,M ] by the formula
Π(b) = ϕ(2π, b). As illustrated in Figure 7.9(b), it follows from our claims above
that there is a unique point b∗ ∈ (ε,M) where the graph of Π crosses the diagonal
in [ε,M ]× [ε,M ].

Now let x∗(t), y∗(t) be the solution of (7.12) with initial conditions x∗(0) =
0, y∗(0) = b∗. As shown in Section 4.3.3, this IVP has a solution for all t ≥ 0.
Indeed, by Claim 1, y∗(t) ≥ ε. Since x′

∗(t) = y∗(t) ≥ ε, it follows that x∗(t) in-
creases steadily, and there is a positive time T ≤ 2π/ε such that x∗(T ) = 2π. Since
b∗ is a fixed point of Π, we have y∗(T ) = b∗. Now

x∗(t+ T )− 2π, y∗(t+ T ) (7.38)

also satisfies (7.12) and has the same initial conditions as x∗(t), y∗(t). Thus, by
uniqueness, (7.38) coincides with x∗(t), y∗(t), which therefore provides our desired
periodic solution of (7.12). Examining the above construction, including solutions
outside the strip {ε < y < M}, you may show that x∗(t), y∗(t) is the only periodic
solution.

Finally, we deduce that x∗(t), y∗(t) is asymptotically stable from Theorem 7.3.2,
because |Π′(b∗)| < 1. Indeed, |Π′(b)| < 1 for all b ∈ (ε,M).

7.5 Van der Pol with Small β: Weakly Nonlinear Analysis

The Poincaré–Bendixson theorem asserts the existence of a periodic orbit without
giving any specific information about it. We turn now to methods for calculating
periodic (and other) solutions approximately. In this section we use perturbation
theory to describe the limit cycle of the van der Pol system

x′ = y,

y′ = −x− β(x2 − 1)y,
(7.39)

in the limit of small β. Specifically, we show that a circle of radius 2, in symbols

x(t) ≈ 2 cos t, y(t) ≈ −2 sin t, (7.40)

is an approximate solution (to lowest order in β) of (7.39). Although we focus on
the van der Pol system, these techniques are generally applicable to what are called
weakly nonlinear equations. Other examples are posed in Exercises 15–17; see also
[81] (Section 7.6, including the associated exercises) or look online.

To prepare the way for analysis of the van der Pol equation, we first introduce
perturbation theory through two examples. You will probably feel that these calcu-

15Although we use Poincaré-map notation, we have not yet related this map to any periodic
solution.



286 Chapter 7. Oscillations in ODEs

lations are rather long. We urge you to persevere. Developing tolerance for slogging
through longer calculations is part of the maturation process for mathematicians.

7.5.1 Two Illustrative Examples of Perturbation Theory

Example 1: Consider the one-parameter family of initial value problems

x′ = −x+ εx2, x(0) = 1, (7.41)

where ε is a small parameter. If ε = 0, then (7.41) has the solution x(t) = e−t. Even
if ε �= 0, (7.41) may be solved exactly, because the equation is separable. However,
let us temporarily ignore this exact solution and use perturbation theory to obtain
the O(ε2)-approximation

x(t) ≈ e−t + ε(e−t − e−2t). (7.42)

This perturbation-theory result estimates how much the small positive term εx2 on
the RHS of (7.41) slows down the decay of the solution.

In perturbation theory, in attacking a one-parameter family of problems like
(7.41), one considers all small values of ε simultaneously. To emphasize this point
of view, we write x(t; ε) for the solution, indicating the dependence on ε, and we
suppose x(t; ε) has a power-series expansion16

x(t; ε) = x0(t) + εx1(t) + ε2x2(t) + . . . . (7.43)

Inserting the expansion into (7.41) yields

x′
0 + εx′

1 + ε2x′
2 + . . . = −[x0 + εx1 + ε2x2 + . . .] + ε[x0 + εx1 + ε2x2 + . . .]2,

where the dots indicate terms that are of order ε3 or higher. Expanding out the
squared term, we obtain

x′
0 + εx′

1 + ε2x′
2 + . . . = −x0 + ε[−x1 + x2

0] + ε2[−x2 + 2x1x0] + . . . .

For each t, the LHS and RHS of this equation are functions of ε, and for them to
be the same functions, the coefficient of each power of ε on the left must equal the
corresponding coefficient on the right. This principle may be used to calculate ODEs
for every coefficient xn(t) in (7.43). In particular, matching terms of corresponding
orders through ε2 generates the ODEs

16In some cases this series may not converge—it could be only asymptotic (cf. Section 1.4 of
[43] or Section 6.2 of [98]). Whether the series converges or not doesn’t really have much impact
on the application of the method. In this example, one may deduce from the exact solution (7.44)
that the series does actually converge in some neighborhood of zero.
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O(ε0) : x′
0 + x0 = 0,

O(ε1) : x′
1 + x1 = x2

0,

O(ε2) : x′
2 + x2 = 2x1x0.

Since the initial condition x(0, ε) = 1 holds for all ε, it follows by a similar matching
argument that

x0(0) = 1, x1(0) = 0, x2(0) = 0, . . . .

We attack the equations sequentially. First, x0(t) = e−t satisfies the O(ε0)-IVP.
Given x0(t), the O(ε)-problem is an inhomogeneous IVP whose solution is x1(t) =
e−t − e−2t. The O(ε2)-problem may be solved similarly.

The first two terms of (7.43) yield the approximation (7.42). To assess the acc-
uracy of this approximation, we solve (7.41) explicitly via separation of variables,
obtaining

x(t, ε) =
1

ε+ (1− ε)et
. (7.44)

Please check that for each t,

x(t, ε) = x0(t) + εx1(t) +O(ε2), (7.45)

as expected.

In point of fact, (7.45) holds uniformly for 0 ≤ t < ∞. Such uniformity is
rare. One would expect errors in the approximation to accumulate as time increases.
Thus, normally an expansion like (7.45) would be uniform only over finite intervals,
say 0 ≤ t ≤ T . However, problem (7.41) was hand-picked so that all coefficients
xn(t) in (7.43) decay as t → ∞. In other words, the estimate (7.45) is uniform over
[0,∞) but only because both sides tend to zero for large t.

Example 2: Our next example illustrates the accumulation of errors in a power-
series approximation as t increases and shows how to cope with this difficulty.
Consider the one-parameter family of initial value problems

x′′ + (1 + ε)x = 0, x(0) = 1, x′(0) = 0. (7.46)

The exact solution of the IVP is x(t) = cos(
√
1 + ε t), which is periodic; in particular,

it does not decay as t → ∞. Ignoring the exact solution and seeking an approximate
solution as above, we suppose x(t, ε) = x0(t) + εx1(t) + . . . and insert this expansion
into the ODE,

x′′
0 + εx′′

1 + . . . + (1 + ε)[x0 + εx1 + . . .] = 0.
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Multiplying out the product and grouping like powers of ε, we obtain ODEs

O(ε0) : x′′
0 + x0 = 0, O(ε1) : x′′

1 + x1 = −x0,

subject to initial conditions

x0(0) = 1, x′
0(0) = 0, x1(0) = x′

1(0) = 0.

The solution of the leading-order problem is x0(t) = cos(t). Substitution of x0(t) into
the O(ε)-equation leads to an inhomogeneous ODE for x1 with a resonant17 forcing
term:

x′′
1 + x1 = − cos t.

Imposing the initial conditions, we obtain

x1(t) = −1

2
t sin t,

which yields the two-term asymptotic approximation

x(t, ε) ≈ x0(t) + εx1(t) = cos t− ε
t

2
sin t. (7.47)

The error in (7.47) is O(ε2), uniformly for t in every finite interval 0 ≤ t ≤ T .
However, this approximation fails miserably as t → ∞ (see Figure 7.10). Indeed,
x1(t), the supposedly small first correction, in fact becomes large compared to x0(t)!

The problem with the simple ansatz above, x(t, ε) = x0(t) + εx1(t) + . . . , is that
both x(t, ε) and x0(t) are periodic, but they have different periods, with the period of
x(t, ε) depending on ε. Because of this mismatch, there’s no way the two functions
could remain close to one another indefinitely.

A momentary interlude for terminology: a term in an expansion x(t, ε) = x0(t)+
εx1(t)+ . . . with a coefficient xn(t) that grows without bound as t → ∞ is sometimes
called a secular term. Such terms, which typically come from resonant forcing as
above, are incompatible with periodic behavior.

The Poincaré–Lindstedt method18 allows one to obtain an approximate solution
of (7.46) and similar problems with periodic solutions that holds for arbitrarily large
times. In this method one introduces a scaled time

τ(t, ε) = ω(ε)t = (1 + ω1ε+ ω2ε
2 + . . .)t (7.48)

17That is, the period of the forcing term equals the period of solutions of the homogeneous
equation, x′′

1 + x1 = 0. The term resonance derives from Exercise 1.13.

18There are more general techniques for finding accurate large-time approximations, e.g., the
method of multiple scales (a.k.a. two-timing); see [43] (Chapter 3) or [81] (Section 7.6). We present
a less general method here, because in our estimation, it is less confusing to apply.
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x(t)

t

exact

Poincare −
Lindstedt
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Ο (ε 2)

Ο (ε 2) naive

Figure 7.10: Comparison of the exact solution of (7.46) with its “naive” two-term
regular perturbation expansion approximation (7.47) and Poincaré–Lindstedt approx-
imation (7.50) for 0 ≤ t ≤ 50, assuming ε = 0.5. (The graph of the naive approxi-
mation stops when it grows out of the scale of the viewing window.)

and seeks a power-series expansion of x(t, ε),

x(t, ε) = x0(τ(t, ε)) + εx1(τ(t, ε)) + ε2x2(τ(t, ε)) + . . . , (7.49)

in which the coefficients xn(τ) depend on the scaled time. We will show that if the
scaling factor ω(ε) in (7.48) is chosen cleverly, it can compensate for the mismatch
between the periods of the exact and approximate solutions. Of course, the $64 ques-
tion is how to choose the scaling factor. In the calculation below it will be seen that
if we require at each order that no secular terms arise, then both the undetermined
coefficients ωn in (7.48) and the terms xn(τ) in the series are uniquely determined.

Let’s get on with it. Invoking the chain rule to derive d/dt = ω(ε) d/dτ , we may
rewrite the ODE in (7.46) as

ω2(ε)
d2x

dτ 2
+ (1 + ε)x = 0.

Inserting the expansions for ω(ε) and x(t, ε), we obtain

(1 + 2ω1ε+ . . . )

[
d2x0

dτ 2
+ ε

d2x1

dτ 2
+ . . .

]
+ (1 + ε)[x0 + εx1 + . . . ] = 0.
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On expanding the products and grouping terms according to their order in ε, the
leading-order and next-order correction terms obey the equations

O(ε0) :
d2x0

dτ 2
+ x0 = 0,

O(ε1) :
d2x1

dτ 2
+ x1 = −2ω1

d2x0

dτ 2
− x0.

Since τ is proportional to t, these functions must satisfy the initial conditions at
τ = 0,

x0(0) = 1,
dx0

dτ
(0) = 0, x1(0) =

dx1

dτ
(0) = 0.

The solution of the leading-order equation is x0(τ) = cos τ . Given x0(τ), the
O(ε)-equation becomes

d2x1

dτ 2
+ x1 = (2ω1 − 1) cos τ.

Now here is the key point: to avoid a secular term in x1(τ), we must require that
ω1 = 1/2, so that the RHS of this equation vanishes. The solution of the (now
homogeneous) IVP for x1 is the trivial function x1(τ) ≡ 0. Thus, modulo errors that
are of order ε2 or higher, our approximation of the true solution x(t) = cos(

√
1 + ε t)

is given by
x(t, ε) ≈ cos [(1 + ε/2)t] . (7.50)

This estimate is far more satisfactory than (7.47), since the only discrepancy
between (7.50) and the exact solution of (7.46) is the O(ε2) difference between their
periods. Indeed, in Figure 7.10 we made the deliberately “large” choice of ε = 0.5 so
we could see the discrepancy without needing a vastly longer time scale.

To assess the error in (7.50) more quantitatively, note that
√
1 + ε = 1 + ε/2 +

O(ε2); thus, (7.50) may be derived from the exact solution cos(
√
1 + ε t) by neglect-

ing terms that are O(ε2t) inside the argument of the cosine. Therefore, the error in
(7.50) is small if t 
 1/ε2; by contrast, the error in (7.47) is small only if t 
 1/ε, a
much more stringent condition.

By carrying the Poincaré–Lindstedt approximation to successively higher orders,
one can obtain approximations that are accurate if t 
 1/εn for every integer n.
However, these higher-order calculations are tedious, and we suggest that you save
your energy for higher-order calculations with the van der Pol equation, where the
results hold greater interest.

A pessimist might complain that the above calculation seems a little mysterious,
and we would agree. On the other hand, an optimist might exclaim how wonderfully
it all works out, and we would again agree. Speaking personally, we have found that
over time, the mystery in asymptotics seems to recede into the background, while
the wonder remains and even grows.
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7.5.2 Application to the van der Pol Equation

Let us now apply the Poincaré–Lindstedt method to a real problem, the van der Pol
equation

x′′ + ε(x2 − 1)x′ + x = 0, (7.51)

where we write ε for the friction coefficient as a reminder that it is small. (The
calculations are slightly simpler if we work with the second-order scalar equation
rather than the equivalent first-order system (7.39).) In notable contrast with the
linear equation (7.46), for which all solutions are periodic, the periodic solution of
(7.51) is unique up to translation (in time). Without loss of generality, we may
perform a translation in t such that a local maximum of the periodic solution of
(7.51) is located at t = 0. Then this periodic solution will satisfy initial conditions

x(0) = b(ε), x′(0) = 0, (7.52)

where the unknown amplitude b(ε) > 0 must be determined along with the solution
itself.

Here goes. Defining scaled time as in (7.48), we may rewrite (7.51) as

ω2(ε)
d2x

dτ 2
+ ε(x2 − 1)ω(ε)

dx

dτ
+ x = 0.

Inserting expansions for ω(ε) and x(t, ε) into the equation, we obtain

[1 + 2ω1ε+ · · · ]
[
d2x0

dτ 2
+ ε

d2x1

dτ 2
+ · · ·

]

+ε[(x2
0 − 1) + · · · ] [1 + · · · ]

[
dx0

dτ
+ · · ·

]

+[x0 + εx1 + · · · ] = 0,

where we have retained only those terms that contribute to orders ε0 and ε1. Group-
ing terms of like order, we calculate the equations

O(ε0) :
d2x0

dτ 2
+ x0 = 0,

O(ε1) :
d2x1

dτ 2
+ x1 = −2ω1

d2x0

dτ 2
− (x2

0 − 1)
dx0

dτ
.

Regarding initial conditions, we expand b(ε) in a series

b(ε) = b0 + b1ε+ . . . (7.53)
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and deduce from (7.52) that

x0(0) = b0,
dx0

dτ
(0) = 0, and x1(0) = b1,

dx1

dτ
(0) = 0. (7.54)

The solution of the lowest-order problem is x0(τ) = b0 cos τ , where b0 is yet to be
determined. To determine b0 we need to start the calculation at the next order!

We substitute x0(τ) into the O(ε) equation to obtain

d2x1

dτ 2
+ x1 = 2ω1b0 cos τ − (

b20 cos
2 τ − 1

)
(−b0 sin τ).

We seek to annihilate all resonant forcing terms that would cause secular growth in
x1(t). Doing so will determine both b0 and ω1. The problematic terms 2ω1b0 cos τ
and b0 sin τ are easy to spot, but there is another troublemaker lurking here as well.
By use of the trigonometric identity19

cos2 θ sin θ =
1

4
[sin θ + sin 3θ], (7.55)

the ODE for x1 can be rewritten:

d2x1

dτ 2
+ x1 = 2ω1b0 cos τ +

(
b30
4
− b0

)
sin τ +

b30
4
sin 3τ. (7.56)

The sin 3τ term is harmless; i.e., it has the particular solution (−b30/32) sin 3τ , which
is periodic. To avoid secular terms, we must require that

ω1b0 = 0 and b30/4− b0 = 0.

Since b0 > 0 by assumption, the expansion can proceed only if ω1 = 0 and b0 = 2.
Hence

x0(τ) = 2 cos τ, τ(t, ε) = [1 +O(ε2)]t,

and so
x(t, ε) = 2 cos t+O(ε) for t 
 1/ε2, (7.57)

which is a more quantitative reformulation of (7.40).

Disappointingly, theO(ε)-correction to the period vanishes.20 To obtain a nonzero
correction, you must complete the calculation of the O(ε) correction and start the
calculation at the next highest order. We guide you through this task in Exercise 14.

19This identity may also be interpreted as the Fourier series expansion of cos2 θ sin θ.

20Here is an independent derivation of this fact: If x(t) is a periodic solution of van der Pol’s
equation (7.51), then x(−t) is a periodic solution of (7.51) with ε replaced by −ε, and it has the
same period. Therefore, the period of the limit cycle must be an even function of ε.
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Challenge: Can you predict, even without calculation, whether the O(ε2)-correction
to the frequency will make the period longer or shorter?21

7.6 Van der Pol with Large β: Singular Perturbation Theory

Complementing the small-β analysis of the previous section, in the present section
we describe approximately the periodic solution of van der Pol’s equation

x′′ + β(x2 − 1)x′ + x = 0 (7.58)

when β is large. Again, we focus on this one specific example, but the general
method—called singular perturbation theory—is widely applicable (cf. Chapters 1
and 2 of [43] or Chapters 6, 7, and 10 of [98]). Singular perturbations already
occurred in the equation εx′′ + x′ + x = 0 in Problem 1.14. The adjective “singular”
refers to the fact that the order of the equation is reduced if the perturbing term εx′′

is dropped.22 Since new phenomena appear with singular perturbations, it is wise to
arm ourselves with as much preparatory information as possible.

7.6.1 Two Sources of Guidance

(a) A linear analogy

The closest linear analogue of (7.58),

x′′ + βx′ + x = 0, (β � 1), (7.59)

may be interpreted as a spring–mass system with enormous friction.23 The general
solution of (7.59) is a linear combination of exponentials eλt, where

λ = λ± =
−β ±√

β2 − 4

2
.

In the limit of large β,

λ+ = −1/β +O(β−3), λ− ≈ −β +O(β−1).

21Hint: It may be useful to reflect on the information from the next section that solutions slow
down as the coefficient of the frictional term tends to infinity.

22We also refer to a fast–slow system such as (4.36) as a singular perturbation. In that case,
the dimension of the system is reduced if ε = 0. The behavior of solutions of that problem was
analyzed in Exercise 5.12.

23We discussed such equations in the Pearls of Chapter 5. You may find it useful to review
Section 5.9.1, but our discussion here is self-contained.
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Formulas for exact solutions are rather messy. Suppose we seek an approximate
solution of (7.59) with the ansatz

x(t) = C1e
−t/β + C2e

−βt.

Imposing initial conditions

x(0) = b1, x′(0) = b2,

we calculate that

C1 = b1 +
b2
β

+O(β−2), C2 = −b2
β

+O(β−2),

yielding the approximate solution

x(t) ≈
(
b1 +

b2
β

)
e−t/β −

(
b2
β

)
e−βt. (7.60)

Comparison with the exact solution shows that this approximation is correct to
O(β−2).

Let us note the structure of the approximation (7.60). This function starts with
a rapidly decaying small-amplitude transient (represented by the second term in
(7.60)), followed by slow decay (represented by the first term). Note that the larger
the friction, the slower the decay in the long-lived term. Figure 7.11 compares the
exact and approximate solutions of the IVP, assuming β = 10, for initial conditions

x(0) = 5, x′(0) = 1. (7.61)

(b) Numerical solutions

In Figure 7.12 we graph the solution of van der Pol’s equation (7.58) with the
same initial conditions (7.61) and β = 10, obtained numerically. Initially, the solution
resembles the solution for the linear analogue in that after a small-amplitude rapidly
decaying transient (too small to be seen in the figure), there is a period of slow
decay.24 However, after this initial period, the two solutions go completely separate
ways: while the linear solution decays all the way to zero, the solution of (7.58)
settles into periodic behavior. In other words, the solution converges to exactly the
periodic orbit that we seek. Moreover, in this periodic solution, intervals of slow
evolution are punctuated by intervals of rapid, almost jump-like, evolution. In the
literature such oscillations are termed relaxation oscillations. As in an earthquake,
stress builds up slowly until it reaches a breaking point and relaxes precipitously.

24The decay for van der Pol’s equation is much slower than for the linear equation. For these
initial conditions, the effective coefficient of friction in van der Pol’s equation, β(x2−1), is enhanced
by a large factor, initially almost 25.
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Figure 7.11: Exact and approximate solutions of linear analogue (7.59) with β = 10
and initial conditions (7.61). With the viewing scale of Panel (a), the two curves are
almost indistinguishable. Panel (b) shows a blowup of the solutions at small times.

7.6.2 Approximation of the Initial Decay in (7.58)

The initial slow decay in Figure 7.12 can be described with the fast-equations-to-
equilibrium approximation in an appropriately scaled version25 of (7.58). Specifically,
consider τ = t/T , where T = βp for some power p; if p = 1, we obtain the equation

1

β2

d2x

dτ 2
+ (x2 − 1)

dx

dτ
+ x = 0. (7.62)

Neglecting the second-order term gives the reduced problem

(x2 − 1)
dx

dτ
+ x = 0, x(0) = 5, (7.63)

where for a first-order equation we impose only one initial condition.

25For pedagogical reasons let’s explore the consequences of not scaling and ignoring the principle
of dominant balance from Section 5.9.1; i.e., let us attempt to derive an approximate equation from
(7.58) by dropping the first and third terms on the grounds that the middle term, which has the
large coefficient, should dominate. This leads to a completely sterile equation, (x2−1)x′ = 0, which
has only trivial constant solutions.
Recall that the principle of dominant balance tells us to scale the equation so that two terms have

comparable magnitude and dominate the third. The scaling τ = t/β yields (7.62), which has this
structure. The scaling τ = βt would balance two different terms; although our discussion doesn’t
employ it, it is used in deriving the results quoted in Section 7.6.4.
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Figure 7.12: Numerical solution of the IVP (7.58), (7.61) for van der Pol’s equa-
tion with β = 10.

By separability, the general solution of the ODE in (7.63) is

x2

2
− ln |x| = C − τ (7.64)

for an arbitrary constant C. Although we can’t solve (7.64) for x as a function of τ ,
we may understand the solution graphically. In Figure 7.13 we have plotted the LHS
of (7.64). To satisfy the initial condition we choose C = C0 so that the horizontal
line {x = C0} intersects this curve at x = 5, i.e., C0 = 25/2 − ln 5. At later times,
x(τ) is the value of x where the curve intersects a horizontal line of height C0 − τ ;
thus, x(τ) gradually decays. As Figure 7.14 shows, this decay of the approximate
solution closely matches the initial decay of the solution of the full problem.26

However, this construction eventually fails. The function x2/2− ln |x| has a min-
imum at x = 1, where it equals 1/2. Thus if τ > C0 − 1/2, the horizontal line
{x = C0 − τ} no longer intersects the curve in Figure 7.13. In other words, we
are encountering a new phenomenon here: although the fast-equation-to-equilibrium
approximation works well for a while, it (correctly) predicts its own breakdown. This
behavior serves as a reminder to be cautious when making such a drastic approxi-
mation.

26In comparing Figures 7.12 and 7.14, keep in mind that scaled time τ = t/β is plotted in the
latter figure.
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Figure 7.13: Graph of (7.64), the implicit solution of the reduced van der Pol
equation (7.63).
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Figure 7.14: Comparison of the exact solution of the IVP (7.62) for van der Pol’s
equation with the asymptotic approximation (7.64), which solves the reduced equation
(7.63). For early times (Panel (a)), the two functions are indistinguishable. Again,
β = 10.
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7.6.3 Phase-Plane Analysis of a Related Equation

The solution of (7.62) beyond this breakdown can be better understood through
study of a related ODE,

1

β2

d2z

dτ 2
+

[
1

3

(
dz

dτ

)3
− dz

dτ

]

+ z = 0, (7.65)

a scaled version of Rayleigh’s equation. You can easily check that if z(τ) satisfies
(7.65), then x(τ) = dz/dτ(τ) satisfies the ODE in (7.62). Conversely, if x(τ) satisfies
the ODE in (7.62), then for an appropriate constant C,

z(τ) =

∫ τ

0

x(τ ′) dτ ′ + C

satisfies (7.65).

We want to describe periodic solutions27 of these ODEs. The problem with (7.62)
is that if β → ∞, the slope dx/dτ tends to infinity during the relaxation part of the
oscillations. By contrast, as we shall see, in the periodic solution of (7.65), both z
and dz/dτ remain bounded as β → ∞.

The geometry of the phase plane clarifies the behavior of (7.65). In the usual
way, (7.65) can be rewritten as a first-order system,

(a) dz/dτ = x,

(b) ε dx/dτ = −z − (x3/3− x),
(7.66)

where ε = β−2 and we have retained the notation x = dz/dτ from the derivation of
(7.65). Making the fast-equation-to-equilibrium approximation yields

(a) dz/dτ = x,

(b) z + (x3/3− x) = 0.
(7.67)

For orientation, let’s reinterpret our approximate solution of (7.62) in the previous
section in terms of (7.67). To give the discussion a touch of whimsy, imagine an ant,
as depicted in Figure 7.15(a), crawling along the nullcline (7.67b), starting at x = 5
and adjusting its vertical speed to the current value of x. All goes well until it reaches
x = 1, when the rules break down—it cannot continue to climb without leaving the
nullcline. Of course, this is just the breakdown we saw in (7.63) in another guise.

To understand what happens after the reduced equations break down, we return
to the full problem (7.66). The vector field associated with (7.66) is sketched in
Figure 7.15(b), where double arrowheads indicate the fast flow in the x-direction

27In Exercise 3 we ask you to use the Poincaré–Bendixson theorem to prove that (7.65) has a
periodic solution.
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Figure 7.15: (a) An animation of the reduced system (7.67). The cubic has a local
maximum at x = 1 at height z = 2/3. (b) The vector field defined by the fast–slow
system (7.66).

that occurs at points off the nullcline. Enlarging on our whimsical imagery, we may
interpret (7.66b) as a strong wind that sweeps the ant along whenever it (the ant)
cannot get a foothold on the nullcline. With this interpretation it is easy to follow the
solution after the breakdown—the ant climbs slightly above the peak of the nullcline
at (x, z) = (1, 2/3) and is blown quickly to a different portion of the nullcline. This
prediction matches qualitatively the behavior seen in Figure 7.12 after the initial
transient, and we claim that it even matches quantitatively. Since the horizontal
motion to the left is very rapid, the value of z hardly changes during the flight; thus
z ≈ 2/3 where the ant lands on the nullcline; we compute from (7.67b) that x = −2
when z = 2/3; and in Figure 7.12 we see that x ≈ −2 when rapid evolution stops.

The subsequent relaxation oscillations in Figure 7.12 also emerge from these ideas.
After the ant reaches (−2, 2/3), it can once again get a foothold on the nullcline and
follow (7.67b). Since x < 0, the ant now crawls downward on the nullcline till it
reaches x = −1. Here the approximation (7.67) again breaks down, and the ant is
swept over to the right branch of the nullcline at approximately (2,−2/3). Then it
climbs upward, retracing part of its original journey, etc.

In conclusion, this discussion has led us to an approximate description of a peri-
odic solution28 of (7.66) in four phases (see Figure 7.16a):

• Phase 1: A piece that follows the x-nullcline upward from (2,−2/3) to the
local maximum of the nullcline at (1, 2/3). Here the speed is O(1).

28By differentiating and undoing scaling, we may convert this into a description of a periodic
solution of (7.58). Question: Does the maximum slope of the periodic solution of (7.58) tend to
infinity as β → ∞?
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Figure 7.16: (a) Illustrating the four phases in the approximate description of the
limit cycle of the van der Pol equation for large β. (b) Comparison of the approximate
solution (black curve) and numerical solution (green curve) of (7.66) for β = 10. The
vertical scale has been stretched relative to that of Panel (a) in order to make these
curves more distinguishable. (c) Corresponding relaxation oscillations of x(t). For
x(t), the asymptotic approximation is indistinguishable from the numerical solution.

• Phase 2: A horizontal piece from (1, 2/3), intersecting the x-nullcline at
(−2, 2/3). Here the speed is O(ε−1).

• Phase 3: A piece that follows the x-nullcline downward from (−2, 2/3) to the
local minimum of the nullcline at (−1,−2/3). Here the speed is O(1).

• Phase 4: A horizontal piece from (−1,−2/3), returning to the nullcline at
(2,−2/3). Here the speed is O(ε−1).

Panels (b) and (c) of Figure 7.16 compare this approximate solution with a numerical
solution of (7.66). Can you believe that such a simplistic argument gives such a good
approximation of complicated behavior? As we said before, we continue to be awed
by the power of asymptotics.
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7.6.4 Concluding Remarks

Although our discussion above has been purely heuristic, with effort this analysis
can be made completely rigorous. The pioneering work was done by Fenichel; [46]
gives a comprehensive introduction to the theory, including references.

Let us estimate the period of the oscillations. Most of the time required for
the solution of (7.66) to complete the cycle around the origin is spent in Phases 1
and 3. Recalling the solution (7.64) of the reduced equation, we calculate that while
x decreases from x = 2 to x = 1 along the nullcline, τ increases by 3/2 − ln 2.
Thus, Phase 1 lasts approximately this long, and by symmetry, Phase 3 has the
same duration. Doubling this estimate and undoing the scaling τ = t/β, we obtain
the approximation

T (β) ≈ (3− 2 ln 2)β (7.68)

for the period of the relaxation oscillations of (7.58). In particular, the period gets
large as β → ∞. This is to be expected—the first-order term in (7.58) involves
friction, and as friction gets large, all motion slows down. We invite you to check
(7.68) numerically (as well as its refinement (7.69) below).

With a tour de force application of higher-order asymptotics,29 it has been shown
that

T (β) = (3− 2 ln 2)β + 3ζ1β
−1/3 +O(β−1 ln β), (7.69)

where the constant ζ1 ≈ 2.33811 is the first zero of the Airy function Ai(ζ). The
O(β−1/3)-term is perhaps surprising, since it seems like the neglected durations of
Phases 2 and 4 are only O(β−1) (in the original, unscaled, time) as β → ∞. The
subtle point is that a substantial amount of time is required to make the transitions
from Phase 1 to Phase 2 and from Phase 3 to Phase 4, i.e., the transitions at which
the solution is pushed off the nullcline. Both insight and patience are required to
derive (7.69); and with sloppy analysis you might easily miss the O(β−1/3)-term
altogether.

7.7 Stability of the van der Pol Limit Cycles

In this section we prove that the van der Pol limit cycles constructed above are stable.
The proofs are fairly short but uninspiring. We include them for completeness,
expecting that most readers will omit them on the first pass through the book.

29In regular perturbation theory, such as in Section 7.5, higher-order calculations are routine,
although often tedious. By contrast, the derivation of (7.69) is anything but routine. The fractional
powers and logarithmic terms in (7.69), which are common in singular-perturbation expansions,
warn of hidden complexities. The derivation of this result is based on a sophisticated application
of matched asymptotic expansions. Exercise 5.12 gives a simple illustration of this technique; the
general method is developed in [98] and in [43]; and the specific formula (7.69) is derived in [13].
Incidentally, some authors give a formula for T (β) with a different coefficient for β−1/3; we assure

you that equation (7.69) is correct.



302 Chapter 7. Oscillations in ODEs

7.7.1 Case 1: Small β

We will calculate an approximate Poincaré map with perturbation theory. Superfi-
cially, the calculation resembles the Poincaré–Lindstedt method in Section 7.5, but
there is a crucial difference: the solution of the IVP for the first-order correction
will have secular terms. Indeed, the secular terms are precisely what make generic
solutions converge to the periodic solution as t → ∞.

As in Section 7.5, we work with the second-order scalar equation rather than
a first-order system, adapting the Poincaré map accordingly. We constructed an
approximate periodic solution γ(t) of the van der Pol equation with initial conditions
γ(0) ≈ 2 and γ ′(0) = 0. Given an initial value b close to γ(0), let x(t, b, ε) be the
solution of the zero-initial-velocity IVP

d2x

dt2
+ ε(x2 − 1)

dx

dt
+ x = 0, x(0) = b,

dx

dt
(0) = 0. (7.70)

Using the time derivative of this solution, define a return time30 τ(b, ε) that satisfies

dx

dt
(τ(b, ε), b, ε) = 0 (7.71)

with τ(b, ε) ≈ 2π. Then the Poincaré map is given by

Π(b) = x(τ(b, ε), b, ε), (7.72)

where our notation suppresses the dependence of Π on ε.

We look for an expansion of x(t, b, ε) with the usual form

x(t, b, ε) = x0(t, b) + εx1(t, b) + . . . . (7.73)

Substituting the series into the equation, we obtain ODEs

O(ε0) :
d2x0

dt2
+ x0 = 0,

O(ε1) :
d2x1

dt2
+ x1 = −(x2

0 − 1)
dx0

dt
,

subject to initial conditions

x0(0, b) = b,
dx0

dt
(0, b) = 0; x1(0, b) =

dx1

dt
(0, b) = 0.

30This τ has no connection to the scaled time in the Poincaré–Lindstedt method. We do not
scale time in the present calculation.
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The solution of the leading-order IVP is

x0(t, b) = b cos t.

Given this we calculate, as in Section 7.5, that

−(x2
0 − 1)

dx0

dt
=

(
b3

4
− b

)
sin t+

b3

4
sin 3t,

and the solution of the first-order correction IVP is

x1(t, b) =

(
b3

4
− b

)[
− t

2
cos t+

1

2
sin t

]
− b3

32
[sin 3t− 3 sin t] .

Substitution into (7.71) gives the equation

−b sin τ(b, ε) +O(ε) = 0,

from which we conclude that τ(b, ε) = 2π+O(ε). Note that x0(τ(b, ε), b) = x0(2π, b)+
O(ε2), because dx0/dt(2π, b) = 0. Thus, substitution into (7.72) yields

Π(b) = x0(2π, b) + εx1(2π, b) +O(ε2) = b− πε

(
b3

4
− b

)
+O(ε2). (7.74)

We differentiate and evaluate Π′ at b = γ(0), the starting point of the periodic
trajectory. Since γ(0) = 2+O(ε), we obtain Π′(γ(0)) = 1−2πε+O(ε2). In particular,
Π′(γ(0)) < 1, provided ε is sufficiently small, so the limit cycle is asymptotically
stable.

Remarks: (i) We reject the solution of dx/dt(t, b, ε) = 0 with t ≈ π. At this time,
the trajectory in the (x, x′)-phase plane crosses the negative x-axis, which is the kind
of premature crossing of Σ illustrated in Figure 7.8. (ii) Let’s use (7.74) to look for
fixed points of Π. Neglecting the O(ε2)-term, we see that Π(b) = b if b = 2. This
reproduces the Poincaré–Lindstedt result of Section 7.5 that the periodic solution,
to lowest order, is a circle of radius 2 in the x, x′-phase space.

7.7.2 Case 2: Large β

When β is large, (7.66) is a convenient reduction of the van der Pol equation to a
first-order system. In Section 7.6, we argued that this system has a periodic orbit
Γ, as sketched in Figure 7.16. To determine the stability of this orbit, consider the
Poincaré section

Σ = {(x, z) : x = 1, −1 < z < 0}.
The orbit Γ crosses Σ in “Phase 4” of the asymptotic description of the orbit, at the
base point (1, b∗), where b∗ ≈ −2/3. Given a nearby point (1, b) ∈ Σ, to evaluate the
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x

z

Figure 7.17: The Poincaré map for the periodic solution of (7.66), with ε = 1/100,
together with the x-nullcline. The Poincaré section {(1, b) : −1 < b < 0}
is shown in bold orange. One trajectory, starting from the initial conditions
(x(0), y(0)) = (1,−0.2), is illustrated.

Poincaré map Π(b) we must solve the IVP for (7.66) with initial conditions

x(0) = 1, z(0) = b.

This IVP may by analyzed with the same asymptotic argument as was used in
constructing Γ. (See Figure 7.17.) Indeed, after racing over to the nullcline (7.67b),
the solution closely follows Γ and returns to cross Σ very near to the base point
(1, b∗). Thus for all b we have Π(b) ≈ b∗. Indeed, there is great compression, and
|Π′(b∗)| 
 1. Hence the orbit is stable.

7.8 Exercises

After the core exercises, there are subsections on the Poincaré–Lindstedt method and changing
coordinates in an ODE.

7.8.1 Core Exercises

The core exercises address the following issues:

Unfinished business 1
Existence of periodic solutions 2–4
Nonexistence of periodic solutions 5
ω-limits of trajectories 6, 7
The Poincaré–Bendixson theorem 8
A combination of techniques 9
Eigenvalues of a Poincaré map 10, 11
Discrete dynamical systems 12, 13
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1. (a) Derive Theorem 7.2.1, the simpler version of the Poincaré–Bendixson
theorem, from Theorem 7.2.5.

Remark: This exercise is easy, provided you get started along right road—
choose any point b ∈ U and consider the trajectory that starts at b.

(b) Prove Theorem 7.2.2, the Poincaré–Bendixson theorem generalized to
ODEs on the cylinder.

Hint: Using coordinates (θ, z) on S1×R, you may identify the cylinder with
R

2 ∼ {0} via the mapping

(θ, z) �→ (ez cos θ, ez sin θ). (7.75)

Using this map, transform from an ODE on the cylinder

[
θ′

z′

]
= F(θ, z)

to one on the plane, and apply the Poincaré–Bendixson theorem to the latter.

Remark: As follows from Exercise 7, a Poincaré–Bendixson-type result does
not hold for the torus T2.

2. Solve the ODE on R
2 ∼ {0}

r′ = 1 + ε sin θ − r,
θ′ = 1,

to show that if |ε| < √
2, it has a periodic solution.

Remark: The condition on ε is needed so that r remains positive.

3. Construct an appropriate trapping region for and apply the Poincaré–Bendixson
theorem to (7.66), thereby showing that (7.65) has a periodic solution.

Remark: The usual version of Rayleigh’s equation is

x′′ + β

[
(x′)3

3
− x′

]
+ x = 0;

(7.65) resulted from a special scaling appropriate for large β.

4. Show that the torqued-pendulum equation (7.12) has a periodic solution if
β < μ/2.

Hint: Mimicking (7.14), consider a region of the form

K = {(x, y) ∈ S1 × (0,∞) : 1 + ε < y2/2− cosx ≤ E0}.
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10 μ

2

0

1β

= 1μ

Figure 7.18: The shaded area indicates the region of parameter space for
which (7.12) has a periodic solution. The boundary of the region becomes vertical
at μ = 1, β ≈ 1.19. For parameters in the shaded region with μ < 1, (7.12) has
bistable behavior—both a stable equilibrium and a stable periodic solution are possi-
ble ω-limits.

Show that if E0 ≥ (μ/β)2/2 + 1 and ε > 0 is sufficiently small, then K is an
equilibrium-free trapping region. Apply Theorem 7.2.2.

Discussion: Figure 7.18 displays the region in parameter space in which (7.12)
has a periodic solution. Reflecting our result from Section 7.2.2(b), this region
includes the set {μ > 1}, but it also includes the wedge {β < μ/2}.

5. (a) Show that a scalar autonomous ODE x′ = f(x) cannot have periodic
solutions.

Hint: Note that the equation x′ = f(x) is posed on the line R
1, not the

circle—on S1, even the trivial equation x′ = 1 has periodic solutions. Sup-
pose indirectly that there exists a periodic solution of x′ = f(x), and let T
denote its period. Multiply both sides of the ODE by dx/dt, integrate over
an interval of length T , and derive a contradiction.

(b) Given an ODE x′ = F(x), show that if there is a function L : U → R such
that

for all x ∈ U 〈∇L(x),F(x)〉 < 0,

then this equation cannot have a periodic solution in U .
(c) Introduction: The system

x′ = x− xy

1 + Sx
y′ = ρ

(
xy

1 + Sx
− y

)
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is another modification of the Lotka–Volterra system: consumption saturates when the
prey are plentiful. It is the limit of the Rosenzweig–MacArthur model in Exercise 5.10
as the carrying capacity for the prey tends to infinity.

Apply Dulac’s theorem with g(x, y) = 1/xy to show that this system has no
periodic orbits in the first quadrant.

6. Assuming that condition (7.7) holds, determine the ω-limit sets for all points
b ∈ T

2 under the flow of (7.6).

Remark: If (7.7) does not hold, then ω-limit sets may vary with the parameters
in complicated ways (cf. Section 10.4).

7. Introduction: By linear flow on the torus, we mean the system

θ′1 = ω1,

θ′2 = ω2,
(7.76)

where θ1 and θ2 are reduced modulo 2π.

(a) Show that if ω1/ω2 in (7.76) is rational, then (i) every orbit is periodic
and (ii) for every initial condition, the omega limit set ω(b) is the periodic
orbit on which b lies.

(b) Show that if ω1/ω2 in (7.76) is irrational, then (i) there are no closed
orbits; (ii) every orbit ϕ(t,b) is dense in the torus; and (iii) for every
initial condition, ω(b) is the entire torus.

Hint: Consider the flow as a Poincaré-like map with respect to the Poincaré
section

Σ = {(θ1, θ2) ∈ T
2 : θ1 = b1 (mod 2π)}.

The orbit ϕ(t,b) passes through Σ at times t = 2πn/ω1, where n is an
integer. To prove Claim (ii), it suffices to show that {ϕ(2πn/ω1,b) : n =
1, 2, . . .} is dense in Σ. (Why?) Given a desired level of accuracy ε > 0,
choose N > 2π/ε and divide Σ into N “boxes”

Σk =

{
(θ1, θ2) ∈ T

2 : θ1 = b1,
k − 1

N
≤ θ2

2π
<

k

N
(mod 2π)

}
,

where k = 1, 2, . . . , N . Now the set {ϕ(2πn/ω1,b), n = 0, 1, . . . , N} con-
tains N + 1 points that belong to Σ, so at least two of them (say n1, n2

where n1 > n2) must lie in the same box (see Figure 7.19(a)); this means
that the distance between them is less than ε, or the second component ϕ2

of ϕ satisfies

0 < |ϕ2(2πn1/ω1,b)− ϕ2(2πn2/ω1,b)| < ε,

the difference being reduced mod 2π. Thus, if Δn = n1−n2, the subsequence
ϕ(2π�Δn/ω1,b), � = 0, 1, . . . starts at (b1, b2) and marches along Σ in
uniform steps that are smaller than ε, so it eventually comes within ε of
every point in Σ (Figure 7.19(b)).
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b1
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θ 1
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Figure 7.19: (a) Some points in the set {ϕ(2πn/ω1,b), n = 0, 1, . . . , N} (see
Exercise 7). (b) Some points in the set {ϕ(2π
Δn/ω1,b), 
 = 0, 1, . . .}.

8. For equation (7.23), the Lotka–Volterra system plus the Allee effect, show that
for generic initial conditions in the first quadrant, the solution converges to
extinction. Identify the exceptional initial conditions.

Hint: Strictly speaking, you should begin by constructing trapping regions to
derive global existence. This step is not trivial, because for small ε, trajectories
tend to hug a periodic solution of the Lotka–Volterra equations; thus, a simple
polygonal region is too crude to trap solutions.

You can convince yourself that generically, solutions tend to extinction by
locating equilibria and stable/unstable manifolds, using a generous dose of what-
else-can-it-be logic. Invoke the strong version of the Poincaré–Bendixson theorem
to make a rigorous argument.

9. Introduction: In preparation for a bifurcation example in Chapter 9, consider the effects of
perturbing the van der Pol system by adding a nonlinear term to the restoring force, say

x′ = y,
y′ = −β(x2 − 1)y − x− εx2.

(7.77)

(a) Apply the Poincaré–Bendixson theorem to deduce that provided |ε| is
sufficiently small, (7.77) still has a periodic solution.

(b) Show that this system has a saddle point at (−1/ε, 0).

(c) Show that if ε > 1, then one half of the global stable manifold through
the saddle point connects (as t → −∞) to the equilibrium at the origin.
(Draw this!)

Hint: Without the frictional term −β(x2 − 1)y, equation (7.77) would be
Hamiltonian with the Hamiltonian

L(x, y) = x2/2 + y2/2 + εx3/3.
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The frictional term causes L(x, y) to increase in the strip |x| < 1, which
for ε > 1 contains both the saddle point and the origin. To derive the
result, use L(x, y) as a Lyapunov function for the backward equation (cf.
Exercise 6.12(a)).

(d) Argue that (7.77) has no periodic solutions if ε > 1.

Hint: The stable manifold in Part (c) blocks the periodic orbit of (7.77)
that for small ε encircles the origin, and you could use this fact to solve the
problem. However, an easier and more elegant approach, which we discuss
along with the necessary background in the problem solutions on our website,
is to invoke index theory. Hey, take the easy way out!

(e) Check your conclusions in Parts (c) and (d) by computer simulations.

10. Introduction: Consider a spring–mass system subjected to a trigonometric periodic force, say
Γ cosωt. After scaling, we may describe this situation by the three-dimensional first-order
autonomous system

x′ = y,
y′ = −x− βy + Γcos z,
z′ = ω,

(7.78)

where ω, β,Γ are real constants with β > 0. Because the RHS is periodic in z, we may
regard (7.78) as an ODE on R

2 × S1, where S1 = R/2πZ. In this problem you identify a
periodic orbit of the system, you find its Poincaré map, and you use this map to show that
the periodic orbit is asymptotically stable.

(a) Show that (7.78) has a 2π/ω-periodic solution, say xp(t), yp(t), zp(t).

Hint: In looking for explicit solutions of (7.78), it is convenient to recall the
formulation as a scalar equation,

x′′ + βx′ + x = Γcosωt. (7.79)

Construct a periodic solution of (7.78) with zp(t) = ωt from the particular
solution of (7.79) discussed in Problem 1.13(b).

(b) Relative to the transverse section

Σ = {(x, y, z) ∈ R
2 × (R/2πZ) : z = 0 (mod 2π)},

which we identify with R
2, show that there is a 2×2 matrix such that the

Poincaré map Π : R2 → R
2 of this periodic solution has the form31

Π(b) = A(b− b0) + b0,

where b0 = (xp(0), yp(0)).

31This map is an example of what is called an affine map: more precisely, it equals the sum of
a linear map (i.e., b �→ Ab) and a constant term (i.e., b0 −Ab0).
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Hint: The matrix A relates to homogeneous solutions of(7.79), but for
this part of the problem you need not determine the precise matrix in this
formula—the form of Π results from the linearity of (7.79). Interpret the
fact that b0 is a fixed point of Π.

(c) Show that the eigenvalues of DΠ satisfy |λj(DΠ)| < 1, j = 1, 2, so the
periodic solution is asymptotically stable.

Hint: Prove that if eμt is a solution of the homogeneous equation x′′+βx′+x = 0,
then e2πμ/ω is an eigenvalue of DΠ.

11. Introduction: Consider the system of ODEs

r′ = z, θ′ = rez, z′ = r − 1. (7.80)

You may think of it either as an equation on {(x, y, z) ∈ R
3 : x2 + y2 > 0} written in

cylindrical coordinates or as an equation on R × (R/2πZ) × R. With respect to the latter
coordinates, the system has the 2π-periodic solution γ(t) = (1, t, 0). Define a Poincaré map
with respect to a Poincaré section Σ contained in the plane {θ = 0}.
Find the eigenvalues of DΠ to assess the stability of this periodic solution.

Hint: Because the θ-equation is so messy, the time for a trajectory starting in
Σ to return to Σ—the solution of (7.28)—depends on the initial condition b in
a totally impenetrable way. Differentiating (7.29), including the dependence on
τ(b), to find DΠ directly would discourage even the most stalwart investigator.
Fortunately, according Proposition 7.3.5, you need only calculate the eigenvalues
of Dϕ(2π,γ(0)), which is quite benign.

12. Introduction: This exercise offers routine practice with a discrete dynamical system, defined by

xn+1 = xn − yn + xnyn
yn+1 = xn + (1− a)yn + y2n

where a is a real parameter.

(a) For all a, the origin is a fixed point of this mapping. Apply Proposition
7.8.1 to determine for what range of a the fixed point is stable.

Hint: If you want to look ahead, the result of Exercise 25 would be helpful
here.

(b) There are also fixed points in the plane {x = 1}. Find these, make a
graph of y vs. a.

13. (a) Prove Theorem 7.3.7.

Remark: As in Proposition 6.2.1, the instability part of the result seems
obvious. Although the proof is not completely trivial, it may not be worth
bothering with this issue a second time.

(b) Show that the fixed point γ(0) of the Poincaré map of a periodic solution
of x′ = F(x) is Lyapunov stable, asymptotically stable, or unstable iff the
trajectory γ(t) has the corresponding stability behavior with respect to
the ODE.
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7.8.2 The Poincaré–Lindstedt Method

The exercises in this section show that with the Poincaré–Lindstedt method you can get an analyti-
cal hold on many interesting, but otherwise intractable, problems involving periodic solutions, both
old and new, provided they can be cast in the appropriate perturbation-theory language. (See also
Section 7.10.2.) The calculations are longish, but we hope you feel that the interest of the results
justifies such efforts, and we give you copious hints along the way.

14. (a) Show that given ω1 = 0 and b0 = 2, the solution of (7.56) subject to initial
conditions (7.54) is

x1(τ) = −1

4
(sin 3τ − 3 sin τ) + b1 cos τ,

where b1 is the as yet undetermined next coefficient in the expansion
of b(ε).

(b) Solve for the next-order coefficients, ω2 in (7.48) and b1 in (7.53).

Hint: Derive an equation for x2(t). Without actually solving this equation,
determine ω2 and b1 by requiring that no secular terms arise in solving this
equation. To recognize dangerous terms you will need to expand powers of
trig functions in terms of multiple-angle trig functions, as in (7.55). The
relevant formulas are most easily derived using complex exponentials.

(c) Determine the O(ε2)-correction to the period of the limit-cycle solution
of van der Pol’s equation (7.51).

15. Introduction: For every value of ε > 0, the IVP with the normalized initial conditions

x′′ + x+ εx3 = 0, x(0) = 1, x′(0) = 0,

has a periodic solution; if ε < 0, it still has a periodic solution, provided ε is not too large.
In either case the period is 2π +O(ε).

Use a Poincaré–Lindstedt expansion to determine the O(ε)-correction to the
period caused by the cubic nonlinearity.

Remark: With this equation you get nontrivial information more quickly than
with the van der Pol equation. Specifically, to get the desired correction, you
need not solve the ODE for the first-order term x1(τ), you need only ensure that
no secular terms would arise in solving it.

16. Introduction: This problem gives an analytical handle on the exponentially growing solutions
of Mathieu’s equation that you found numerically in Exercise 3.13. We include a frictional
term, since this doesn’t complicate the calculations significantly.

Apply the Poincaré–Lindstedt method to argue that for small ε > 0, the
equation

x′′ + εβx′ + (1/4 + 2ε cos t)x = 0 (7.81)

has an exponentially growing solution unless β > 2.
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Hint: Floquet theory (cf. Section 7.10.1) suggests looking for a solution in the
form

x(t, ε) = e(λ1ε+λ2ε
2+...)t [x0(t) + εx1(t) + ε2x2(t) + . . .],

where each term xk(t) is periodic. As in the proof of Proposition 7.10.3, substi-
tute this ansatz into (7.81) and separate terms of different orders to derive ODEs
for x0(t) and x1(t). The x0-equation has the general solution

x0(t) = A cos(t/2) +B sin(t/2), (7.82)

where A and B are as yet undetermined. Formulate the equation for x1(t);
without actually solving it, derive the conditions on A and B such that no secular
terms would be generated by solving it. You will find that the only choice without
secular terms is A = B = 0 unless λ1 satisfies a certain quadratic equation, whose
roots give the Floquet exponents. Show that one root of this equation leads to
a growing exponential unless β > 2.

Discussion: Both this problem and Proposition 7.10.3 study exponential growth
of solutions of Mathieu’s equation with the Poincaré–Lindstedt method. Despite
this similarity, interpretation of the results differs greatly in the two problems. In
(7.81), without the periodic forcing of the cosine term, solutions of this equation
would exhibit slowly decaying oscillations characterized approximately by (7.82);
the takeaway lesson is that the effect of periodic forcing can build up over time,
leading to exponential growth. By contrast, in (7.100), without the cosine term,

solutions would suffer exponential growth eλt, where λ = ε(
√

β2 + 4γ−β)/2; the
takeaway lesson is that oscillatory forcing can cancel such exponential growth.

Two other, lesser, differences between the two problems: (i) In analyzing
(7.81), the Floquet exponent emerges already at first order in ε, while with
(7.100), the calculation has to be carried to second order. (ii) Although the
forcing in (7.81) is 2π-periodic, x0(t) in (7.82) and the subsequent terms in the
expansion have period 4π. In other words, the Floquet multiplier in this problem
is (real and) negative. By contrast, the Floquet multiplier in (7.100) is positive.

Remark: With only slightly more effort one can analyze (7.81) with some detun-
ing, i.e., periodic forcing at a mismatched frequency. Specifically, for small ε, the
equation

x′′ + εβx′ + (1/4 + εκ1 + 2ε cos t)x = 0 (7.83)

has an exponentially growing solution if β2/4 + κ2
1 < 1.

17. (a) Introduction: In Exercise 1.13 you analyzed resonance in the periodic forcing of a linear
spring. In this problem you study how nonlinearity can modify the phenomena. The general
equation would be

x′′ + βx′ + x+ αx3 = Γcosωt,

but we can’t find explicit solutions of this equation. We want to isolate a perturbation-theory
problem that we can solve but that still raises the main issues. Thus we assume (i) friction,
the nonlinearity, and forcing are all small and (ii) the forcing frequency ω is nearly resonant,
ω ≈ 1. These assumptions lead to the equation

x′′ + εβx′ + x+ εαx3 = ε cos((1 + εΩ)t), (7.84)

where we have used the strength of the forcing as the smallness parameter ε.
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Apply the Poincaré–Lindstedt method to show that, to leading order, the am-
plitude A of the periodic response of (7.84) satisfies

(2ΩA− 3αA3/4)2 = 1− (βA)2. (7.85)

Hint: In the usual way, seek an expansion of the solution

x0(τ) + εx1(τ) + . . . ,

where xj(τ) is a 2π-periodic function of the scaled time τ = (1 + εΩ)t. The
leading-order equation implies that x0(τ) has the form A cos(τ + φ), where you
may assume A ≥ 0. The amplitude A and the phase angle φ cannot be deter-
mined at his level; two coupled equations for A and φmay be derived by requiring
that no secular terms be generated in solving the x1-equation. Eliminate φ from
these two equations to obtain (7.85).

(b) Introduction: In Figure 7.20(a), assuming α = 0.5, β = 0.35, the positive solution A of
(7.85) is plotted as a function of the detuning parameter Ω, which measures the separation
between the forcing frequency and the frequency of linear vibrations. This graph can be
better understood by solving (7.85) for Ω as a function of A,

Ω = ±
√
1− (βA)2

2A
+

3

8
αA2. (7.86)

The two terms in this expression are graphed separately (for A > 0) in Figure 7.20(b). The
first term is meaningful only if 0 < A ≤ 1/β; it follows from this observation that A = 1/β is
the maximum amplitude in Figure 7.20(a), a maximum that tends to infinity as β → 0. The
second term causes the asymmetry around Ω = 0 of the response curve in Figure 7.20(a).
The following calculation shows that if the nonlinearity is strong enough, this asymmetry
can force A to be a multivalued function of Ω (as shown in the figure).

Choosing the plus/minus sign in (7.86) so that the two terms have the same
sign, calculate dΩ/dA and show that this derivative has two zeros in the open
interval 0 < A < 1/β if α is sufficiently large (in absolute value).

Remark: Although the above analysis does not show it, this periodic solution
of (7.84) is asymptotically stable. Thus, you may check the rather surprising
theoretical results with simulation.

7.8.3 Changes of Variables

18. (a) Verify that writing (7.4), the system

x′
1 = x1 − x2 − (x2

1 + x2
2)x1,

x′
2 = x1 + x2 − (x2

1 + x2
2)x2,

(7.87)

in polar coordinates leads to (7.5).
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Figure 7.20: (a) The solution of (7.85), the amplitude of the periodic solution
of (7.84) as a function of the detuning parameter Ω, assuming α = 0.5, β = 0.35.
(b) Graphs of the two terms in (7.86), used in analyzing (7.85).

Remark: The main point of this exercise is to let you practice the slick technique
described in Section 7.9.4; i.e., define Φ(r, θ) by

[
x
y

]
= Φ(r, θ) =

[
r cos θ
r sin θ

]

and work out (7.95).

(b) Write the system
r′ = 1− r,
θ′ = 1,

(7.88)

in rectangular coordinates.

Discussion: For making the transformation in the reverse direction, you need to
define Φ(x, y) in (7.95) by

[
r
θ

]
= Φ(x, y) =

[ √
x2 + y2

arctan(y/x)

]
.

You will find that the equations in Cartesian coordinates have a 1/r singularity
at the origin; i.e., your equation will be defined only on R

2 ∼ {0}.

19. Suppose the two-dimensional ODE x′ = F(x) is C1 and has an equilibrium
at the origin. Show that writing this equation in polar coordinates leads to a
system such that for small r,

r′ = rg(θ) + o(r), θ′ = h(θ) + o(1), (7.89)
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where
g(θ) = c1 cos

2 θ + c2 cos θ sin θ + c3 sin
2 θ,

h(θ) = d1 cos
2 θ + d2 cos θ sin θ + d3 sin

2 θ,

and the coefficients satisfy

c1 − c3 + d2 = 0, c2 − d1 + d3 = 0. (7.90)

Hint: Expand F(x) in a Taylor series

F(x) =

[
α11x1 + α12x2

α21x1 + α22x2

]
+ o(|x|),

apply (7.95), express ck, dk in terms of αjk, and verify that equations (7.90) hold.

Remark: You may use this exercise to recognize when an ODE in polar coordi-
nates comes from a nonsingular ODE on R

2. For example, (7.5) has the form
(7.89) with

c1 = c3 = d1 = d3 = 1, c2 = d2 = 0,

and conditions (7.90) are satisfied. By contrast, (7.88) does not have the required
form.

20. (a) Suppose x(t) is a solution of (7.87) such that |x(0)| < 1. Define the
transformed unknown

[
y1
y2

]
=

1
√
1− x2

1

[
x1

x2

]
(7.91)

and derive the ODE that y(t) satisfies.

Hint: This calculation gives the dedicated reader an opportunity for more
practice using (7.95) to change variables in an ODE. Invert the transforma-
tion (7.91) to write

x = Φ(y) =
1

√
1 + y21

[
y1
y2

]
.

(b) Argue that for every nonzero initial condition b with |b2| < 1, the ω-limit
set of the solution of your equation for y equals the parallel lines

{(y1, y2) : y2 = ±1},

an ω-limit set that is neither compact nor connected.

Hint: You needn’t actually calculate the y-equation to do this part of the prob-
lem. The point is that the unit circle {x2

1+x2
2 = 1} is the ω-limit set of solutions

of (7.87) with initial conditions inside the unit disk, and the transformation
(7.91) maps the unit disk onto the strip {|y2| < 1}.
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7.8.4 PHD Exercises

21. Introduction: The ODE on R
2 ∼ {0},

r′ = r − 1, θ′ = 1,

has an obvious periodic solution, say with γ(0) = (1, 0). Consider a Poincaré section

Σ = {(r, θ) : b1 < r < b2, θ = 0},

where say b1 = 1/2 and b2 = 2.

Find a neighborhood N of (1, 0) such that a Poincaré map Π : Σ ∩ N → Σ
may be defined.

Remark: The point of this problem is that without the neighborhood N , no
Poincaré map of Σ to itself can be defined.

22. Introduction: In this exercise you construct an interesting ω-limit set from a Hamiltonian
system modified with a carefully chosen gradient term:

x′ = ∂yH − ε∂x(H
2),

y′ = −∂xH − ε∂y(H
2).

(7.92)

(a) First consider (7.92) with H(x, y) = (1 − x2)(1 − y2) and ε = 0. Show
that (i) equation (7.92) has a one-parameter family of periodic orbits
(which are level sets of H(x, y)) inside the square {|x| < 1, |y| < 1} and
(ii) the boundary of the square is a heteroclinic cycle, each vertex being
a hyperbolic equilibrium.

(b) Then consider (7.92) with the same Hamiltonian and ε > 0. Show that
(i) the square is still a heteroclinic cycle and (ii) it is the ω-limit of every
trajectory starting from a nonzero point inside the square. (See Fig-
ure 7.21.)

Hint: The square is part of the zero set of H(x, y), and the gradient term pushes
the flow toward this set.

23. (a) Use a computer to calculate the period T (β) of the limit-cycle solution of
van der Pol’s equation (7.58) for β = 10, 20, 40, 80, 160, 320.

Remark: You may find it challenging to obtain an accurate approximation
for large β, since there are two obstacles working against you: (i) The period
of the limit cycle increases with β. (ii) Large β may force you to compensate
by choosing a very small time step in your numerical ODE solver.

(b) Make a log-log plot of

T (β)− [3− 2 ln 2]β vs. β

and deduce from its slope that the first correction term in (7.69) is indeed
of order β−1/3.
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x

y

Figure 7.21: An ω-limit set that is a square heteroclinic cycle. See Exercise 22.

(c) Use curve-fitting software to estimate the best value of the coefficient C
in fitting T (β) by a curve of the form

[3− 2 ln 2]β + Cβ−1/3.

24. Introduction: Recall your computation in Exercise 6.23 that illustrated excitability in the
FitzHugh–Nagumo equations 6.88.

Explain the behavior observed in your computation with fast-slow analysis, as
in Section 7.6

25. Prove the following:

Proposition 7.8.1. If A is a 2× 2 matrix, then its eigenvalues have modulus
less than 1 if and only if

(i) trA− detA < 1,
(ii) trA+ detA > −1,
(iii) detA < 1.

Hint: Consider the eigenvalues of A as functions of the entries. The eigenvalues
of the zero matrix have modulus less than 1, and the zero matrix satisfies Con-
ditions (i)–(iii). As A varies, its eigenvalues will continue to have modulus less
than 1 unless (i) a real eigenvalue passes through +1, (ii) a real eigenvalue passes
through −1, or (iii) a pair of complex conjugate eigenvalues cross the unit circle.
Show that conditions (i)–(iii) test for exactly these three occurrences.

Incidentally, drawing the set defined by Conditions (i)–(iii) in the plane
with coordinates trA, detA, which is a triangle, may help you remember these
conditions.
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7.9 Pearls of Wisdom

7.9.1 Area and Dulac’s Theorem

Consider an ODE x′ = F(x) on a domain U with flow ϕ. If K ⊂ U is a region with a
piecewise smooth boundary, write Kt for the image of K under ϕ(t, ·). Although the
following proposition holds in every dimension (with area being replaced by volume),
we restrict to the only case we need, d = 2.

Proposition 7.9.1. If A indicates the area of a subset of R2, then

d

dt
A(Kt) =

∫∫

Kt

div F(x) dx1dx2.

Proof. The calculations are clearer if we rewrite the equation in the equivalent form

d

ds
A(Ks+t)

s=0

=

∫∫

Kt

div F(x) dx1dx2.

Now by the semigroup property ϕ(s, ·) : Kt → Ks+t, so the change-of-variable for-
mula for integrals (see Theorem 9.3.1 in [51], quoted in (B.26)) tells us that

A(Ks+t) =

∫∫

ϕ(s,Kt)

dx1dx2 =

∫∫

Kt

detDϕ(s,x) dx1dx2.

We will differentiate under the integral, for which we need the following:

Claim 7.9.2.
∂

∂s
detDϕ(s,x)

s=0

= div F(x).

Proof. With the order notation, this proof reduces to a sequence of self-explanatory
formulas:

ϕ(s,x) = x+ sF(x) + o(s),

Dϕ(s,x) = I + sDF(x) + o(s),

detDϕ(s,x) = 1 + s trDF(x) + o(s).

(Regarding the third formula, see Exercises 3.9 and 4.21.) Of course, trDF = div F.
Thus, differentiation with respect to s proves both the claim and the proposition.

Now let’s apply the proposition to obtain a more intuitive proof of Dulac’s the-
orem, first in the case that the function g(x) is the constant function, g(x) ≡ 1.
Suppose div F(x) ≥ 0 and div F(x) does not vanish identically on any open subset
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of U ; then by the proposition, for every region, we have (d/dt)A(Kt) > 0. We claim
that x′ = F(x) cannot have a periodic orbit. If there were such an orbit, consider
the region K inside the orbit and observe that Kt = K, so (d/dt)A(Kt) = 0, a
contradiction.

Essentially the same proof works when g(x) is nonconstant. Let ψ(t,x) be the
flow associated with the ODE x′ = g(x)F(x), and for an arbitrary region let Kt =
ψ(t,K). If div (gF)(x) ≥ 0 and div (gF)(x) does not vanish identically on any open
subset of U , then by the proposition, (d/dt)A(Kt) > 0. Suppose that x′ = F(x)
has a periodic solution. If g(x) is nonvanishing, then the orbits of x′ = g(x)F(x)
are exactly the same as those of x′ = F(x), so ψ has the same periodic orbit. Even
if g(x) does vanish, x′ = g(x)F(x) may have additional equilibria that could stop
the flow from completing the circuit around the periodic orbit, but the region K
inside this periodic orbit of x′ = F(x) does not move under the flow of ψ(t, ·). Thus
Kt = K, so (d/dt)A(Kt) = 0, a contradiction as before.

Here is a consequence of Proposition 7.9.1: if divF(x) ≡ 0, e.g., if x′ = F(x)
is Hamiltonian, then areas are preserved under the flow. This result is true in any
dimension.

These ideas also explain why in Section 7.2.6 in applying Dulac’s theorem to
(7.23) we use the factor g(x, y) = 1/xy: equation (7.23) is a perturbation of the
Lotka–Volterra equations that have reparametrized Hamiltonian form

x′ = xy
∂H

∂y
, y′ = −xy

∂H

∂x
,

and 1/xy cancels the reparametrization factor.

7.9.2 Poincaré-Like Maps in Constructing Periodic Solutions

If an autonomous system is subjected to periodic forcing, often the resulting system
has a periodic solution with the same period. In Exercise 1.13 and Exercises 16
and 17 of the present chapter we analyzed resonance problems where such solutions
could be found explicitly. Even in the absence of explicit solutions, there is a general
construction for proving that such solutions exist, which we illustrate on the forced
van der Pol equation,

x′′ + β(x2 − 1)x′ + x = Γcosωt. (7.93)

As in Exercise 10, we may rewrite this equation as a first-order autonomous system

x′ = y,
y′ = −x− β(x2 − 1)y + Γcos z,
z′ = ω.
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Given b ∈ R
2, let ϕ(t,b) ∈ R

3 be the solution of the IVP for this system with initial
conditions

(x(0), y(0), z(0)) = (b, 0).

With respect to the Poincaré section {z = 0}, define a Poincaré-like map Π(b) =
ϕ̃(2π/ω,b), where ϕ̃ = (ϕ1, ϕ2) denotes the first two components of ϕ. Trapping
regions can be constructed to show thatΠmaps a large ball of initial conditions in R

2

continuously into itself. It then follows from the Brouwer fixed-point theorem32 that
Π has a fixed point, say Π(b∗) = b∗. The solution of (7.93) with initial conditions
(b∗, 0) is periodic with period 2π/ω.

Remarks: (i) This existence argument says nothing about uniqueness or stability.
Especially for large forcing, (7.93) may exhibit complicated behavior that includes
many periodic solutions, mostly unstable. (Cf. Section 2.1 of [33].) (ii) Perhaps,
buoyed by our successes with the Poincaré–Lindstedt method elsewhere in the chap-
ter, you are tempted to seek explicit solutions of (7.93) through an expansion in Γ.
Beware! The conflict between oscillations at the natural period of the equation and
the period of the forcing makes this treacherous territory.

7.9.3 Stable/Unstable Manifolds in Other Contexts

The concept of stable/unstable manifolds extends to hyperbolic periodic orbits of an
ODE, where this concept is defined as follows: a periodic solution γ(t) with Poincaré
map Π is called hyperbolic if the eigenvalues of DΠ satisfy

|λk(DΠ)| �= 1.

For example, the periodic orbit in Exercise 11 is hyperbolic. For this particular
orbit we may identify the stable and unstable manifolds explicitly, because the r, z-
subsystem is linear. Specifically,

Ms = {(r, θ, z) : z = −(r − 1)}, Mu = {(r, θ, z) : z = r − 1}. (7.94)

(In these formulas, we are interpreting (7.80) as an equation on R × (R/2πZ) × R;
if (7.80) is interpreted as an equation on Euclidean space, effectively restricting
the variables to (0,∞) × (R/2πZ) × R, the condition r > 0 must be added to the
definitions (7.94).)

These concepts also extend to fixed points of a mapping. In fact, stable/unstable
manifolds for a periodic orbit of an ODE may be derived from stable/unstable man-
ifolds for the fixed point of the Poincaré map of the periodic orbit. We recommend
Section 2.6 of [17] for a user-friendly treatment of stable manifolds for maps.

32The best reference for this theorem may be to look online. It is covered in many topology
texts, but usually it’s near the end of the book where more of an investment is needed to extract
the essential ideas.
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7.9.4 Miscellaneous

On many occasions we have made a linear change of coordinates to simplify an
ODE. Nonlinear changes of coordinates, such as polar coordinates, offer even more
opportunities to simplify. It is always possible to derive the transformed equations
with brute force, but there is a very slick way to derive them: Given an ODE
x′ = F(x), write a new coordinate, say y, backward from what you might expect, in
the form x = Φ(y). Then the y-equation may be written with elegant compactness

y′ = DΦ(y)−1 · (F ◦Φ)(y). (7.95)

Exercises 18–20 offer practice with this formula.

Every flow on a torus can be embedded in higher-dimensional Euclidean space.
For example, in (7.20), linear flow on T

2 is embedded in a three-dimensional ODE.
More generally, the flow

θ′1 = f(θ1, θ2), θ′2 = g(θ1, θ2)

on T
2 is embedded in the three-dimensional system

θ′ = f(θ, φ(r, z))[
r′

z′

]
=

[
1− 2R2 −g(θ, φ(r, z))

g(θ, φ(r, z)) 1− 2R2

] [
r − 1
z

]

where φ(r, z) = arctan(z/(r − 1)) and R(r, z) =
√
(r − 1)2 + z2. This system is

defined on {(r, θ, z) : R(r, z) < 1}, which is a solid torus.

7.10 Appendix: Stabilizing an Inverted Pendulum

In Exercise 1.12 we found with computation that an inverted pendulum can be
stabilized by rapid vibration of the pivot. In this appendix we make a perturbation-
theory calculation that predicts this phenomenon.

7.10.1 A Smidgen of Floquet Theory

Floquet theory is concerned with a variable-coefficient d× d linear system33

x′ = A(t)x, (7.96)

33Such systems arise, among other contexts, in describing the linearization of the Poincaré map
of a periodic solution of an ODE; this connection suggests the notation Π for the matrix in (7.97).
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where A(t) is T -periodic, i.e., A(t + T ) = A(t). The solution ϕ(t,b) of the IVP
for (7.96) depends linearly on the initial condition b. In particular, there is a (real)
matrix Π such that at time T , after one period of the coefficient matrix A(t),

ϕ(T,b) = Πb, (7.97)

which is called the monodromy matrix. The structure of solutions of (7.96) depends
on this matrix. The following lemma expresses the simplest case of this connection.

Lemma 7.10.1. If μ is an eigenvalue of Π, then (7.96) has a solution of the form

x(t) = eλtw(t), (7.98)

where λ = T−1 lnμ and w(t) is T -periodic.

Remarks: The eigenvalue μ is called a Floquet multiplier, and λ is called a Floquet
exponent. The Floquet multiplier μ cannot vanish (why?), so its logarithm may
be taken. If μ is real and positive, then λ = lnμ is real, and the function w(t)
can be assumed real-valued. Otherwise, the logarithm of μ must be taken in the
complex sense, and then both λ and w(t) are complex-valued. This behavior is
hardly surprising for a genuinely complex eigenvalue, but it is unnatural if μ is real
and negative. A better representation for the solution in the latter case is given in
Lemma 7.10.2 below.

Proof. Let v be an eigenvector of Π with eigenvalue μ, and let

w(t) = e−λtϕ(t,v).

Obviously, eλtw(t) = ϕ(t,v) satisfies the ODE (7.96). To show that w(t) is periodic,
we first apply the semigroup property to conclude that

ϕ(t+ T,v) = ϕ(t,ϕ(T,v)) = ϕ(t,Πv) = ϕ(t, μv) = μϕ(t,v),

where we have used the linearity of ϕ(t, ·) at the last step. Thus,

w(t+ T ) = e−λ(t+T )ϕ(t+ T,v) = e−λte−λTμϕ(t,v) = e−λtϕ(t,v) = w(t),

since e−λTμ = 1.

Please check that essentially the same proof gives the following more natural
representation when μ is real and negative.

Lemma 7.10.2. If μ < 0 is an eigenvalue of Π, then (7.96) has a (real) solution of
the form

x(t) = eλtw(t),

where λ = T−1 ln |μ| and w(t), which is 2T -periodic, satisfies w(t+ T ) = −w(t).
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If Π is diagonalizable, then there are d linearly independent solutions of (7.96)
of the form (7.98), and the general solution of (7.96) is a linear combination of
these basic solutions. If Π has repeated eigenvalues and a deficiency of eigenvectors,
the general solution of (7.96) may still be described, but the construction is a little
more complicated. We refer to Section 2.8 of [54] for details.

7.10.2 Some Stable Solutions of Mathieu’s Equation

The Mathieu equation is a second-order linear ODE with a sinusoidal coefficient;
flipping a sign, we may write it as

y′′ + (−κ+ 2ε cos t)y = 0. (7.99)

We are interested in the case κ > 0, which means that if ε = 0, generic solutions
of the equation will grow like e

√
κt. However, if ε �= 0 and κ is not too large, the

periodic forcing makes all solutions of the equation remain bounded as t → ∞. This
statement can be proved with the same technique that we use to prove the following
result for a modified equation that also includes a frictional term.

Proposition 7.10.3. According to lowest-order perturbation theory in the parameter
ε, all solutions of the equation

y′′ + βεy′ + (−γε2 + 2ε cos t)y = 0 (7.100)

decay exponentially, provided γ < 2.

Proof. We calculate with the scalar equation (7.100), without reducing it to a first-
order system as in (7.96). Despite this mismatch, we invoke Lemma 7.10.1 to justify
looking for solutions of (7.100) in the form

y(t, ε) = e(λ1ε+λ2ε2+...)t [y0(t) + εy1(t) + ε2y2(t) + . . .],

where each term yk(t) is 2π-periodic. By linearity, without loss of generality we may
impose an initial condition that y(0, ε) = 1. A calculation shows that

e−(λ1ε+λ2ε2+...)ty′′ = ε0[y′′0 ] + ε[y′′1 + 2λ1y
′
0] + ε2[y′′2 + 2λ1y

′
1 + 2λ2y

′
0 + λ2

1y0] + . . . ;

y′ has a simpler expansion, of which only the O(ε0) and O(ε) terms are needed.

We substitute these formulas into (7.100) and collect terms at various orders:

O(ε0) : y′′0 = 0,
O(ε1) : y′′1 + 2λ1y

′
0 + βy′0 + 2 cos t y0 = 0,

O(ε2) : y′′2 + 2λ1y
′
1 + 2λ2y

′
0 + λ2

1y0
+β[y′1 + λ1y0]− γy0 + 2 cos t y1 = 0.

(7.101)
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The solution of the leading-order equation, including the initial condition, is
y0(t) ≡ 1; we reject t, the other linearly independent solution of the equation, because
this has secular growth, which is not consistent with periodicity. Using this leading-
order solution, we reduce the first-order equation to y′′1 = −2 cos t, whose solution,
including initial condition, is

y1(t) = 2(cos t− 1).

No information about the growth rate is obtained at this level.

We rewrite the next-order equation, for y2(t), with the inhomogeneous terms
isolated on the right:

− y′′2 = 2λ1y
′
1 + 2λ2y

′
0 + λ2

1y0 + βy′1 + βλ1y0 − γy0 + 2 cos t y1. (7.102)

We do not need to solve this equation, only to require that the inhomogeneity not
force any aperiodic terms on the particular solution of the equation.

Claim 7.10.4. Modulo terms that are periodic, the expression

ypartic(t) = −(λ2
1 + βλ1 − γ + 2)t2/2 (7.103)

is a particular solution of (7.102).

Proof. Let us account for the seven terms on the RHS of (7.102) one by one. The
second term, 2λ2y

′
0, vanishes. The first and fourth terms, 2λ1y

′
1 and βy′1, are each

proportional to sin t; thus, their contributions to the particular solution are periodic.
The third, fifth, and sixth terms, which are constant, are recognizable in (7.103).
Finally, for the last term we have

2 cos t y1 = 2 + 2 cos 2t− 4 cos t.

The constant term 2 appears in (7.103), and the contributions of the two cosine
terms to the particular solution are periodic.

The secular contribution (7.103) to the particular solution will vanish only if

λ2
1 + βλ1 − γ + 2 = 0. (7.104)

The leading-order Floquet exponents are determined by this equation. By hypothe-
sis, β > 0. Thus, both roots of (7.104) have negative real parts iff −γ + 2 > 0.

The perturbation-theory proof of the proposition gives information only for
small ε. Thus, we conclude from the proposition that there is a positive ε0 such
that if

(a) ε < ε0 and (b) γ < 2, (7.105)
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then all solutions of (7.100) decay exponentially. In principle, ε0 might vary with β,
but computations suggest that this is not a problem.

7.10.3 Application to the Inverted Vibrated Pendulum

After scaling, the inverted vibrated pendulum is governed by the equation (1.53):

x′′ + βx′ + (1− αω2 cosωt) sin x = 0. (7.106)

Let us define the rescaled time τ = ωt and linearize the equation about the unstable
equilibrium x = π, which yields the equation

d2y

dτ 2
+

β

ω

dy

dτ
+

(
− 1

ω2
+ α cos τ

)
y = 0. (7.107)

To connect (7.107) to (7.100), we ignore friction34 and make the identifications

γε2 = 1/ω2, 2ε = α. (7.108)

Thus, condition (7.105) for stability translates to

(a) α < 2ε0 and ω2 >
2

α2
. (7.109)

In words, solutions of (7.107) will decay, provided the amplitude α of forcing is not
too great and the frequency ω is sufficiently large. This behavior of the linearization
carries over to the full equation (7.106) near the equilibrium at x = π.

34Equation (7.109a) imposes a limit on the amplitude of vibration for stabilization, and because
of our cavalier treatment of friction, it is unclear how this limit depends on β. This issue could be
explored numerically, but of course if β = 0.1, we know from Exercise 1.12 that α = 0.1 is below
this limit.



Chapter 8

Bifurcation from Equilibria

In Chapter 6 we studied the behavior of solutions of an ODE near a hyperbolic
equilibrium point. In this chapter we turn to behavior near nonhyperbolic equilibria.
Both for theoretical reasons and applications, it is natural to consider this problem
in the context of a one-parameter family of ODEs, say

x′ = F(x, μ), (8.1)

where F : U × I → R
d is a vector-valued function on an open subset of Rd × R.

Suppose that for all μ near some fixed value μ∗ in the interval I, (8.1) has a smoothly
varying equilibrium1 xeq(μ) that is nonhyperbolic for μ = μ∗ but hyperbolic on either
side of μ∗. Bifurcation theory seeks to characterize the behavior of solutions of (8.1)
for μ near μ∗. Unlike the behavior near a hyperbolic point, this behavior depends
crucially on nonlinear terms in the expansion of F at the equilibrium point.

Specific examples taken from applications play a central role in our study of
bifurcation. The phenomena will be more or less familiar, but we describe them
with a different focus that provides an invaluable new method to investigate ODEs.
Indeed, bifurcation theory provides access to an amazing variety of mathematical,
physical, biological, and engineering phenomena, more than we can describe or even
list here. Just the examples considered in the text cover a rather wide range of
applications. To highlight this point, and hopefully to enliven the exposition, in
several of the supporting figures we include a cartoon suggestive of the application,
utilizing space that otherwise would be blank.

After presenting examples of the best-known type of bifurcation in Section 8.1,
we summarize the remainder of the chapter in Section 8.2.

1Up until now, a subscript star has been used to designate an isolated equilibrium of an ODE.
In the present context, we have a curve of equilibria, and star designates a particular equilibrium
of interest on that curve.
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8.1 Examples of Pitchfork Bifurcation

8.1.1 Bead on a Rotating Hoop

In Chapter 5 (see Section 5.1.1 and Exercise 5.5) we introduced ODEs for a bead
sliding on a wire hoop that is rotating at constant speed, illustrated in Figure 8.1(a).
After scaling, this led to the system

x′ = y,
y′ = −βy − sin x+ μ sin x cos x.

(8.2)

For every value of μ, (8.2) has the trivial equilibrium2 x = y = 0, in which the bead
is located at rest at the bottom of the hoop. To investigate its stability, we calculate
the 2× 2 Jacobian matrix3 of (8.2) at (0, 0, μ):

DF(0, μ) =

[
0 1

−1 + μ −β

]
.

The determinant of this matrix equals 1− μ, which vanishes if μ = 1, so in this case
the equilibrium is nonhyperbolic.

In fact, this example possesses additional structure that is typical for bifurcation
problems. Specifically, if μ < 1, then the equilibrium (0, 0) is asymptotically stable;
while if μ > 1, it is unstable (more precisely, a saddle point). Colloquially, we say
that the equilibrium loses its stability when μ crosses the point μ∗ = 1.

The central message of bifurcation theory is this: When an equilibrium loses
stability as a parameter is varied, expect new solutions of some type to appear.4

Acting on this message, we look for steady-state solutions of (8.2). The velocity y
vanishes at every equilibrium. Substituting y = 0 into the second equation yields
the condition

(−1 + μ cos x) sin x = 0. (8.3)

The sine factor vanishes if x = 0 or x = π; i.e., this factor gives the obvious two
equilibria of (8.2). The other factor vanishes if

cos x =
1

μ
. (8.4)

2We ignore the equilibrium at x = π, which is unstable for all μ ≥ 0.

3In the context of a parametrized family of ODEs like (8.1), the notation DF denotes the matrix
of derivatives of F with respect to the state variables x1, . . . , xd only. We write out derivatives with
respect to parameters explicitly, such as ∂F/∂μ.

4The occurrence of additional solutions does not conflict with the result from Chapter 3 that
under minimal hypotheses, the solution of the IVP is unique. The new solutions here are equilibrium
solutions, possible ω-limits of trajectories.
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Figure 8.1: (a) Schematic diagram of the bead on a rotating wire hoop, equation
(8.2). The nondimensional bifurcation parameter is μ = 
ω2/g. (b) Bifurcation
diagram for this system. Here and below, stable equilibria are shown as solid curves;
unstable, dashed. In particular, the trivial equilibrium x = 0 loses stability when the
nondimensionalized rotation speed μ exceeds 1, and simultaneously two new, stable
equilibria appear. (Unstable equilibria at x = ±π are not shown in the figure.)

This equation has no real solutions if 0 ≤ μ < 1, but two real solutions appear as
soon as μ crosses the critical value μ∗ = 1. (Can you hear the spirit of bifurcation
theory whispering smugly, “I told you so”?)

Figure 8.1(b), known as a bifurcation diagram, shows a graph of these various
equilibrium solutions in the x, μ-plane. Intervals of μ where the equilibria are asymp-
totically stable are indicated by a solid curve; unstable, by a dotted curve. (You may
either calculate now or recall from Exercise 6.2(c) that the new equilibria given by
(8.4) are stable.)

Bifurcation diagrams are usually interpreted in the context of what is called
quasistatic variation of parameters. Imagine that, starting from the equilibrium
x = 0 with μ < 1, we increase μ by a small increment and wait until the system
returns to equilibrium; then increase μ by another small increment and again wait
for reequilibration, etc. Nothing will happen as long as μ stays smaller than 1; the
system will remain at its stable equilibrium at x = 0. However, when μ crosses
μ∗ = 1, we expect the system to move away from this equilibrium. Strictly speaking,
x = 0 is still an equilibrium when μ > 1, but since it is now unstable, if the system is
subjected to the slightest bit of noise, the solution will evolve away from x = 0. Using
Exercise 6.12 as a guide, you can show that for μ > 1, virtually all solutions will tend
to one of the equilibria (8.4). The solution may evolve to either equilibrium, x =
± arccos(1/μ), when μ first crosses μ∗ = 1; which case occurs depends on accidents
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in initial conditions and/or noise. However, once one of the two branches has been
selected, the system will follow that branch under further quasistatic increases of μ.

Remarks: (i) The origin of the term bifurcation may be seen in Figure 8.1(b):
as μ is increased, the unique stable solution x = 0 is replaced by the two5 stable
solutions, x = ± arccos(1/μ). (ii) In bifurcation theory we often abbreviate “asymp-
totically stable” to “stable” (as in the previous remark). Lyapunov stability doesn’t
play much of a role in this subject. (iii) The particular bifurcation diagram in
Figure 8.1(b) is known as a pitchfork. As will be discussed in Section 8.5.5, pitchfork
bifurcations are common in systems that exhibit reflectional symmetry. Illustrating
this behavior, nonzero equilibria of (8.2) occur in symmetric pairs that are mapped
into one another by the reflection x �→ −x, while the trivial solution x = 0 is in-
variant under the reflection. In the dynamics, this symmetry is expressed as follows:
if (x(t), y(t)) is a solution of (8.2), then so is (−x(t),−y(t)). (iv) It follows from
a general result, called the principle of exchange of stability, that the bifurcating
solutions in Figure 8.1(b) are stable. In other words, although it was pedagogically
useful, the specific calculation to derive this behavior was actually unnecessary. This
principle will be discussed in Section 8.5.4.

8.1.2 The Lorenz Equations

As a second example of a pitchfork bifurcation, recall from Exercise 4.3(a) the Lorenz
equations

(a) x′ = σ(y − x),
(b) y′ = ρx− y − xz,

(c) z′ = −βz + xy,

(8.5)

where σ, ρ, and β are positive (dimensionless) parameters. We reverse the order of
presentation from the previous example. Here we first look for equilibrium solutions
of (8.5), and then we make the connection with a loss of stability. The first equation
implies that x = y at equilibrium, the third equation then implies that z = y2/β,
and substitution into the second yields the equation

y(ρ− 1− y2/β) = 0. (8.6)

This equation can be satisfied by virtue of either factor’s vanishing, which yields a
pitchfork bifurcation diagram as shown in Figure 8.2(a), where ρ is taken as the bi-
furcation parameter. As is conventional, we plot only the one variable y in the figure.
This variable is sufficient to determine the equilibria of (8.5): given y, the other two
variables may be obtained from it as in the above analysis.

5The now unstable equilibrium at x = 0 for μ > 1 is not included in the counting; thus one
does not speak of “trifurcation.” Somewhat inconsistently, the middle branch is not ignored in the
term “pitchfork.”
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y
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ρ = 1

ba

Figure 8.2: (a) Bifurcation diagram for the Lorenz system (8.5). Solid curves cor-
respond to stable equilibria; the dashed line, an unstable equilibrium. (b) A cartoon
of the physical problem from which the Lorenz equation (8.5) was extracted: convec-
tive rolls of fluid between two horizontal plates held at different temperatures. The
plates extend to infinity in both directions; the rolls, indicated schematically, are in-
finite cylinders viewed end on. The figure shows only four representative cells in an
infinite array.

We now consider stability. You may either recall from Exercise 6.2(d) or calculate
directly that the trivial solution x = y = z = 0 of (8.5) is asymptotically stable for
ρ < 1 and unstable for ρ > 1. The bifurcating solutions, for which y = ±√β(ρ− 1),
grow out of the trivial solution at exactly the same point—the bifurcation point—
where the trivial solution loses stability. Thus, we have another instance of the
central phenomenon of bifurcation theory.

As in the preceding example, the bifurcating equilibria are asymptotically stable
in some neighborhood of the bifurcation point. Again this behavior follows from the
principle of exchange of stability, but while you are learning the subject, it may be
reassuring to verify it explicitly.

As before, (8.5) has a reflectional symmetry, specifically, with respect to the
mapping (x, y, z) �→ (−x,−y, z).

Some discussion of physical interpretations makes this example more meaningful.
(And see Gleick’s book [30] for some of the history of this fascinating equation.)
E. Lorenz [50] studied (8.5) as a model problem to shed light on the generation of
weather patterns in the atmosphere. The system arises from a massive simplification
of PDEs that describe Rayleigh–Bénard convection. This term refers to motion of
fluid confined between infinite horizontal parallel plates held at fixed temperatures.
If the lower plate is sufficiently hot, then thermal expansion of the fluid induces
buoyant motion as low-density expanded fluid rises and displaces fluid in the denser
layer above it.

In (8.5), the variable y specifies the amplitude of a velocity field in the fluid in the
form of rolls, as indicated schematically in the cartoon Figure 8.2(b). (The other two
variables specify the temperature.) Rolls in adjacent cells alternate in orientation,
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Figure 8.3: (a) Schematic diagram of a laterally supported pendulum, the physi-
cal system described by the potential energy (8.7). (b) Bifurcation diagram for this
system; μ is the nondimensionalized mass, μ = mg/k
.

clockwise or counterclockwise. If the velocity field in the figure—cw, ccw, cw, ccw
for the four cells shown—corresponds to y > 0, then y < 0 corresponds to the reverse
orientation, ccw, cw, ccw, cw. This reversal of orientation gives rise to the reflectional
symmetry in (8.5) mentioned above.

In (8.5), the bifurcation parameter ρ is a nondimensionalized measure of the
temperature difference between the two plates, called the Rayleigh number. The
equilibrium x = y = z = 0, which corresponds to a state in which the fluid is
stationary, is stable when the temperature difference between the two plates is small
enough, i.e., ρ < 1. However, if heating is increased so that ρ > 1, the trivial
equilibrium loses stability, and motion ensues.

8.1.3 A Laterally Supported Inverted Pendulum

Both Figures 8.1(b) and 8.2(a) show the same qualitative behavior under quasistatic
variation of parameters; i.e., as forcing is increased, a trivial response of the system
evolves into one of two stable nontrivial steady-state responses. Our next example
is a pitchfork bifurcation that exhibits different qualitative behavior.

Consider the laterally supported pendulum shown in Figure 8.3(a). The cart rolls
up and down, so that the spring remains horizontal.6 For variety let’s analyze the

6The geometry in Figure 8.3(a) may seem a little artificial to you, but the behavior in this
problem is actually representative of the collapse of a variety of structures. Such behavior is
illustrated, for example, in Exercise 14. However, the more realistic geometry of the exercise is also
more complicated to analyze. The artificially simple geometry in Figure 8.3(a) provides a gentler
first encounter with subcritical bifurcation.
Incidentally, for the geometry in the figure, x is constrained to the interval (−π/2, π/2). Although

we ignore this constraint in analyzing (8.8), one might question the physical significance of the
equilibrium solution x = ±π outside this range.



8.1. Examples of Pitchfork Bifurcation 333

bifurcations of this system using energy considerations, rather than working directly
from the ODE. In dimensional units, the potential energy of this system equals

V̂ (x) = mg
 cosx+ k(
 sin x)2/2,

where x measures the angle of the pendulum (with x = 0 being straight up). Scaling
by 1/k
2, we obtain the nondimensional potential energy

V (x) = μ cos x+ (sin x)2/2, (8.7)

where μ = mg/k
, which may be interpreted as the nondimensionalized mass. The
equation for equilibria, ∂V/∂x = 0, is

[−μ+ cos x] sin x = 0. (8.8)

Two solutions of this equation, x = 0 and π, are associated with the sine factor
in (8.8) vanishing. Provided μ < 1, the nontrivial factor of (8.8) has two solutions
located symmetrically about the inverted equilibrium x = 0. These solutions are
graphed in the bifurcation diagram7 of Figure 8.3(b). Stabilities of all equilibria,
which may be determined from the sign of ∂2V/∂x2, are also indicated in the figure.
(Verify these! ) In words: if the scaled mass μ is not too great, the inverted equilib-
rium x = 0 is stable and the two nontrivial equilibria are unstable; when μ > 1, the
inverted equilibrium becomes unstable, and the nontrivial equilibria disappear.

Let’s see how, under quasistatic variation of parameters, the behavior of this
system differs from the one above. In (8.2), for example, when μ is increased (qua-
sistatically) beyond μ∗ = 1, we expect the system to move away from the trivial
equilibrium x = 0, but its response is still continuous in μ. Specifically, it will follow
one of the solutions x = ± arccos(1/μ) of (8.4). Moreover, there is essentially no
dynamics in this response; i.e., x changes only in proportion to the amount μ is
increased. By contrast, the laterally supported pendulum in the straight-up position
collapses when μ is increased ever so slightly beyond μ∗ = 1. In more restrained lan-
guage, the system undergoes a significant transient and evolves to states far removed
from x = 0.

The pitchfork bifurcations in Sections 8.1.1 and 8.1.2 are called supercritical. This
term refers to the fact that the nontrivial equilibria appear for forcing that is greater
than what is required to destabilize the trivial solution. By contrast, the bifurcation
in the present section is called subcritical because the nontrivial equilibria exist for
smaller forcing than required to destabilize the trivial solution. Some authors use
the terms soft and hard for supercritical and subcritical bifurcations, respectively.
Others refer to continuous and discontinuous bifurcations, respectively.

7Although x = ±π satisfies (8.8), we don’t show this solution in the figure.
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8.2 Perspectives on This Chapter

8.2.1 An Outline of the Chapter

The term “bifurcation” seems natural to describe the phenomena analyzed in Sec-
tion 8.1. More generally, however, this term has come to be used to refer to any
change in the qualitative behavior of solutions of an ODE as a parameter changes.
Such changes include local phenomena, which are the focus of the present chapter,
and global phenomena, which are the focus of Chapter 9. Particularly in the lat-
ter case, the relevant behavior may have no association whatsoever with the word
bifurcation.

The context of local bifurcation theory is a one-parameter family of ODEs x′ =
F(x, μ) such that for some specific parameter value μ∗, the equation x′ = F(x, μ∗)
has an isolated nonhyperbolic equilibrium. The central phenomenon of the theory
is that there (usually) are additional, nonobvious, solutions of the equation near the
nonhyperbolic equilibrium. This behavior is illustrated by numerous examples in this
chapter. In the examples of Sections 8.1, 8.3, 8.4, and 8.6, the additional solutions
are equilibrium solutions, which exhibit what is called steady-state bifurcation. By
contrast, in the examples of Section 8.7, the new solutions are (time-dependent)
periodic solutions, which represent what is called Hopf bifurcation.

To supplement the examples-oriented sections, the remainder of Section 8.2 and
Sections 8.5, and 8.8 address theory. Section 8.2.2 formulates a theorem that unifies
many steady-state bifurcation phenomena. Section 8.5 introduces the Lyapunov–
Schmidt reduction; this is an exceedingly long section, and it is not easy reading,
but a thorough understanding of steady-state bifurcation can be gleaned with this
technique. In particular, the partial classification of bifurcation problems given in
Table 8.1 is based on this technique. Section 8.8 presents some of the theory con-
cerning Hopf bifurcation.

8.2.2 A Bifurcation Theorem

The following theorem identifies the common theme in many bifurcation problems,
including the three examples of Section 8.1. Consider a one-parameter family of
ODEs such that for all μ near μ∗, the equation

x′ = F(x, μ) (8.9)

has an isolated equilibrium, x = xeq(μ), which varies smoothly with μ. We call this
the trivial solution. Suppose that for μ = μ∗, the Jacobian DF∗ of this equation at
(xeq(μ∗), μ∗) has a simple eigenvalue zero; i.e., assume

λ1(DF∗) = 0, λj(DF∗) �= 0, j = 2, . . . , d. (8.10)
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Under this hypothesis, Proposition C.3.1 yields the following information about the
Jacobian DF(xeq(μ), μ) at nearby equilibria. (You need not consult Appendix C; we
will derive this result below in Section 8.5.2(a) below.)

Lemma 8.2.1. Along the trivial solution, there is a unique smoothly varying (real)
eigenvalue λ(μ) of DF(xeq(μ), μ) in a neighborhood of μ∗ such that λ(μ∗) =
λ1(DF∗) = 0.

The bifurcation theorem requires an additional hypothesis8 on how this eigenvalue
depends on μ, i.e.,

dλ

dμ
(μ∗) �= 0. (8.11)

It may seem unclear how to differentiate λ(μ), but we will show below that (8.11) is
equivalent to

d

dμ
detDF(xeq(μ), μ)

μ=μ∗
�= 0, (8.12)

and this is readily verifiable. The following theorem, which we prove in Section 8.5.2,
characterizes the local geometry of the bifurcation diagram

{(x, μ) ∈ R
d × R : F(x, μ) = 0}

as two smooth curves that cross at (x∗, μ∗), where x∗ = xeq(μ∗). The parametrization
(8.13) in the theorem, which may seem unintuitive, is discussed below.

Theorem 8.2.2. Under the above hypotheses, there is a one-parameter family of
nontrivial equilibrium solutions of (8.9) near (x∗, μ∗). Assuming F ∈ C3, these
solutions admit a C2 parametrization (x, μ) = (X(a), μ(a)) in terms of an amplitude
parameter a (which lies in an interval around a = 0),

(a) X(a) = xeq(μ(a)) + av +O(a2), (b) μ(a) = μ∗ + μ1a+ μ2a
2 + o(a2), (8.13)

where v spans the kernel of DF∗ and μ1, μ2 are constants. Every equilibrium of
(8.9) in an appropriate neighborhood N ⊂ R

d×R of (x∗, μ∗) lies on either the trivial
branch {(xeq(μ), μ)} or the bifurcating branch (8.13).

Let’s interpret the theorem for the Lorenz equations (8.5), starting with hypothe-
ses. We have xeq(ρ) = (0, 0, 0) and

DF(0, ρ) =

⎡

⎣
−σ σ 0
ρ −1 0
0 0 −β

⎤

⎦ . (8.14)

8If the nonzero eigenvalues of DF∗ have negative real parts, then (8.11) implies that xeq(μ) is
stable for μ on one side of μ∗ and unstable on the other. In other words, xeq(μ) loses stability as
μ crosses μ∗. This is the most interesting case.
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Let ρ∗ = 1; then DF∗ has one zero eigenvalue and negative eigenvalues −(σ + 1)
and −β. Taking the determinant of (8.14), you may easily verify (8.12).

Regarding the parametrization (8.13) of the bifurcating solutions, in Section 8.1.2
we showed that for every value of a, the point (a, a, a2/β) is an equilibrium solution
of (8.5) with ρ = 1 + a2/β. Thus, we have (8.13) with v = (1, 1, 0) as the null
eigenvector of DF∗, μ1 = 0, and μ2 = 1/β.

For this example, the parameter a can be eliminated from the description of
the bifurcating solutions: inverting ρ = 1 + a2/β gives a = ±√β(ρ− 1), and thus
the nontrivial equilibria can be expressed directly as a function of the bifurcation
parameter. However, this is not possible in general.9 For instance, the trivial linear
scalar equation

x′ = μx (8.15)

satisfies the hypotheses of the theorem, with xeq(μ) ≡ 0. The bifurcating solutions,
which lie on the line {μ = 0}, may be parametrized by amplitude as in (8.13),

X(a) = a and μ(a) ≡ 0,

but x cannot be expressed as a function of μ.

Remarks: (i) Exercises 9 and 10 illustrate some of the pathology that can appear
if DF∗ has a multiple eigenvalue 0 or if (8.11) is not satisfied. (ii) Much of bifurca-
tion theory, including the above theorem, extends naturally to infinite-dimensional
problems. (Cf. the elastica in Chapter 10, equation (10.71).)

8.3 Examples of Transcritical Bifurcation

8.3.1 Section 1.6 Revisited: Part IV

Recall from Section 1.6.2 the Lotka–Volterra model of a predator–prey system (1.41)
modified to have logistic growth for the prey:10

(a) x′ = x(1− x/K)− xy,

(b) y′ = ρ(xy − y).
(8.16)

9Besides (8.15), you should be aware of mischievous possibilities like x′ = ϕ(x) − μx, where

ϕ(x) = e−1/x2

sin(1/x), defined for x = 0 by ϕ(0) = 0. The bifurcating equilibria wiggle back and
forth infinitely many times above the point μ = 0.

10For simplicity, we do not include the Allee effect. Locally near the bifurcation point, this effect
would make little difference, as you can easily verify.
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We regard K as the bifurcation parameter and the prey-only equilibrium xeq(K) =
(K, 0) as the trivial solution. Along this solution branch,

DF(xeq(K), K) =

[ −1 −K
0 ρ(K − 1)

]
.

With K∗ = 1, the Jacobian DF∗ has a simple eigenvalue zero, and (8.11) may be
verified by inspection. As shown in the bifurcation diagram in Figure 8.4(a), a new
branch of equilibria, coexistence equilibria, given by

(1, 1− 1/K), (8.17)

bifurcates from the prey-only equilibrium branch at precisely this value of K. This
kind of bifurcation is known as a transcritical bifurcation, because the bifurcating
solutions exist for K both below and above the bifurcation point.

Regarding Theorem 8.2.2, our calculation has shown that all equilibrium solutions
of (8.16) lie on either the trivial solution branch {(xeq(K), K)} or the branch of
bifurcating solutions, (8.17). The key to obtaining the exact parametrization (8.13)
depends on choosing the function K(a) in (8.13b) appropriately. As you will show
in Exercise 2, K(a) = 1 + a is one possible choice.

It is easily verified that as indicated in Figure 8.4(a), the bifurcating solution is
stable for K > 1, and it is unstable for K < 1; moreover, in the latter case it lies in
the unphysical domain {y < 0}.

Let us articulate behavior implied by Figure 8.4(a) if K is varied quasistatically:
if K > 1, then every solution of (8.16) with a nonzero prey population at t = 0
will converge to the coexistence equilibrium, but if K is reduced below unity, the
predators will die out. (Incidentally, at this level of detail, the behavior of the system
doesn’t depend on the parameter ρ, but ρ will affect the global dynamics studied in
Chapter 9.)

8.3.2 The Chemostat

In Section 6.7.1 we studied the phase portrait of the chemostat,

x′ =
y

y + 1
x− ρx,

y′ = − y

y + 1
x− ρ(y − σ),

(8.18)

under the assumption (6.72), or equivalently that

ρ <
σ

σ + 1
. (8.19)

This inequality is significant, because if ρ is regarded as a bifurcation parameter,
the system undergoes a transcritical bifurcation at ρ∗ = σ/(σ + 1). Specifically, if



338 Chapter 8. Bifurcation from Equilibria

y = 1 − 1/K
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a b

Figure 8.4: (a) Transcritical bifurcation in an augmented Lotka–Volterra model
(8.16) at K = 1: exchange of stability between prey-only and coexistence equilibria
as the carrying capacity K crosses 1. (b) A million years ago, the marsupial lion in
the cartoon was the top predator in Australia, but currently there are no mammalian
carnivores weighing more than twenty pounds. What happened? There is no general
agreement about this, but one theory is that climate changes, aggravated by low soil
fertility, reduced the prey population below what will support large mammalian preda-
tors. Assuming that the extinction can be captured by a two-species mathematical
model, it is suggested in Chapter 12 of [85] and the article by Flannery reprinted
there that K in (8.16) has fallen below its critical value. (Cartoon drawn by Jeff
Poe, 2016. Copyright 2016 by D.G. Schaeffer and J.W. Cain.)
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ρ > ρ∗, the only equilibrium in the physical domain is the trivial state (0, σ) without
any bacteria, which is stable. As ρ decreases across ρ∗, a new branch of stable
equilibria bifurcates from the trivial equilibrium, the latter becoming unstable. We
leave the more-or-less painless verification of these claims to you, urging you to draw
the bifurcation diagram that summarizes them.

In physical terms, if the (nondimensionalized) flow rate ρ is too large, bacteria
get flushed out of the vessel faster than they can replace themselves through growth.
However, if ρ < ρ∗, a colony can get established.

8.4 Examples of Saddle-Node Bifurcation

In pitchfork and transcritical bifurcations, a smoothly varying equilibrium solution
of an ODE loses stability as a parameter crosses a threshold. In saddle-node bifur-
cations, two equilibria, typically one of them stable, both disappear as a parameter
crosses a threshold. Unlike previous bifurcations, saddle-node bifurcations do not fit
into the rubric11 of Theorem 8.2.2.

8.4.1 The Torqued Pendulum

The most intuitive saddle-node bifurcation is in the (scaled) torqued pendulum in-
troduced in Section 4.3.3 (cf. Figure 8.5(a)),

x′ = y,

y′ = − sin x− βy + μ,
(8.20)

where we may assume without loss of generality that the bifurcation parameter μ is
nonnegative. The bifurcation diagram for this equation is shown in Figure 8.5(b).
If μ < 1, (8.20) has two equilibria. The equilibrium that is between 0 and π/2—
the pendulum lies below the horizontal—is a sink, and at least for μ close to 1 it
is a (stable) node; i.e., the eigenvalues of the Jacobian are real (and negative). By
contrast, the equilibrium between π/2 and π is a saddle. (Check these claims! )
The node disappears when it and the saddle annihilate one another as the point
μ = 1 is crossed. This behavior is called saddle-node bifurcation,12 or limit-point
bifurcation [31], or rather poetically blue-sky bifurcation [1].

Once again, the bifurcation diagram suggests a specific scenario under quasistatic
increase of μ: While μ < 1, the system can follow its stable equilibrium in the interval

11Despite this mismatch, we articulated Theorem 8.2.2 because we think it is informative for
both pedagogical and historical reasons. The Lyapunov–Schmidt reduction of Section 8.5 applies
to all types of steady-state bifurcation, including saddle-node bifurcations.

12The term “saddle-node bifurcation” is natural for two-dimensional problems like (8.20). It is
not natural, but is still used, for one-dimensional problems like x′ = −x2 + μ (cf. Table 8.1), as
well as for problems with more than two variables.
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Figure 8.5: (a) A torqued pendulum, described nondimensionally by (8.20). (b) Sad-
dle-node bifurcation in the torqued pendulum (8.20) at μ = 1.

(0, π/2), but when μ passes 1, the system evolves to states far removed from this
equilibrium. Specifically, it converges to the periodic solution that was analyzed in
Section 7.4. This behavior seems obvious on physical grounds—when the torque is
too large, the pendulum will rotate indefinitely.

8.4.2 Activator–Inhibitor Systems

Wemay use bifurcation-theory language to reinterpret our calculations in Section 6.3.1
with the activator–inhibitor system,

(a) x′ = σx2/(1 + y)− x,

(b) y′ = ρ [x2 − y].
(8.21)

As we saw there, if σ > 2, then (8.21) has two nontrivial equilibria, say P± =
(x±, y±), where x± satisfies x2 − σx + 1 = 0 and y± = x2

±. As indicated in the
bifurcation diagram, Figure 8.6(a), when σ decreases through σ∗ = 2, these two
solutions undergo a saddle-node bifurcation; P− is always a saddle point, and for σ
near σ∗, P+ is a node; P+ may be either stable or unstable, according as ρ > 1 or
ρ < 1, respectively.

If ρ < 1, no significant change in behavior derives from the bifurcation at σ = 2;
specifically, if σ < 2, then all solutions of (8.21) in the physical domain decay to the
unique equilibrium x = y = 0, while if σ > 2, then as illustrated in Figure 6.12(b),
virtually all solutions of (8.21) decay to x = y = 0, i.e., solutions not lying on the
stable manifold of P−. By contrast, suppose that ρ > 1 and that starting from
σ > 2, the latter parameter is decreased quasistatically. If initially the system is in
the (stable) top equilibrium P+, the solution follows this equilibrium branch until the
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Figure 8.6: (a) Saddle-node bifurcation in nonzero solutions of the activator–in-
hibitor system (8.21) at σ = 2. Although the upper branch is shown as a solid curve
(indicating stability), in fact it is stable only if ρ > 1. (b) How did the zebra get its
stripes? Some authors believe that the pattern in zebras’ and other animals’ coats
is laid down in the developing embryo by the Turing instability in morphogen con-
centrations. (Cf. Chapters 2 and 3 of [58].) In the full-scale Turing instability, an
activator–inhibitor system is the reaction part of a reaction–diffusion PDE. Although
such problems are outside the scope of this book, in Section 8.6.1 we analyze bifurca-
tion in a toy model of this instability, which involves just ODEs. (Cartoon drawn by
Jeff Poe, 2016. Copyright 2016 by D.G. Schaeffer and J.W. Cain.)

bifurcation point at σ = 2 is crossed, and then it “collapses” to the state x = y = 0.

8.5 The Lyapunov–Schmidt Reduction

8.5.1 Bare Bones of the Reduction

With the Lyapunov–Schmidt reduction, one may greatly reduce the number of vari-
ables in calculations of steady-state bifurcation. Indeed, in all the above examples,
the reduced problem has only one state variable (plus of course the various param-
eters). For instance, recall how we analyzed the bifurcation at ρ = 1 in the Lorenz
equations (8.5): first we solved (8.5a) to obtain x = y; using this, we solved (8.5c)
to obtain z = y2/β; and we finally substituted into (8.5b), yielding (8.6). This
one-dimensional equation is the relation graphed in Figure 8.2(b). In general, the
reduction proceeds in pretty much the same way. Regrettably, the notation needed
for the general case obscures a simple idea.

To begin, we explore the hypotheses needed for the reduction. Consider a one-
parameter family of ODEs

x′ = F(x, μ) (8.22)
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that for μ = μ∗ has an equilibrium solution x = x∗. If x∗ were hyperbolic, or even if
the Jacobian matrix DF∗ merely satisfied

detDF∗ �= 0, (8.23)

then by the implicit function theorem, we could solve the equilibrium equation

F(x, μ) = 0 (8.24)

uniquely near (x∗, μ∗) for x as a smooth function of μ; i.e., no bifurcation occurs.13

Thus, to have bifurcation, (8.23) must fail.

The minimal failure of (8.23) occurs if zero is a simple eigenvalue of DF∗; in
symbols,14

λ1(DF∗) = 0, λj(DF∗) �= 0, j = 2, . . . , d. (8.25)

Under this hypothesis, the Lyapunov–Schmidt technique may be used to reduce
(8.24) to a single scalar equation.15

To proceed with the reduction, let us choose coordinates to simplify the Jacobian
DF∗. By Exercise 4, equation (8.25) implies that dim kerDF∗ = 1 and kerDF∗ ∩
range DF∗ = {0}. Therefore, without loss of generality we may make a linear change
of variables on R

d so that

(a) e1 is a null eigenvector of DF∗,
(b) the range of DF∗ is spanned by e2, . . . , ed,

(8.26)

where ej is the jth coordinate vector in the new coordinate system. We write the
Jacobian in block notation based on these coordinates,

DF =

[
∂F1/∂x1 ∇̃F1

∂F̃/∂x1 D̃F̃

]
, (8.27)

where tilde denotes a vector quantity whose first component has been deleted.
According to (8.26), at (x∗, μ∗) this simplifies to

DF∗ =
[
0 0T

0 D̃F̃∗

]
,

13More accurately, no steady-state bifurcation occurs; (8.23) is typically satisfied at a Hopf
bifurcation point.

14This equation repeats (8.10), but with a difference: here we make no assumption about equi-
libria of the ODE for μ �= μ∗.

15In general, a bifurcation problem may be reduced to a system with n variables, where n equals
the dimension of kerDF∗; see Chapter VII of [31].
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where by (8.25), the submatrix D̃F̃∗ is nonsingular. We apply the implicit function
theorem to conclude that the last d− 1 equations of (8.24),

F2(x1, x2, . . . , xd, μ) = 0,

. . . . . .

Fd(x1, x2, . . . , xd, μ) = 0 ,

(8.28)

may be solved near (x∗, μ∗) for y = (x2, . . . , xd) as functions of x1 and μ, say

y = Y(x1, μ).

Define the scalar function g(x1, μ) by substituting this formula for y into the first
component of F:

g(x1, μ) = F1(x1,Y(x1, μ), μ).

Then under the above hypotheses, there is a one-to-one correspondence between so-
lutions near (x∗, μ∗) of the full problem (8.24) and the reduced problem

g(x1, μ) = 0. (8.29)

Specifically, if (x1, μ) is a solution of (8.29), then (x1,Y(x1, μ), μ) is a solution of
(8.24), and every solution of (8.24) near (x∗, μ∗) arises in this way. This great
reduction of the problem results from merely processing the equations in (8.24) seq-
uentially, handling the nonsingular part first.

We call the above reduction, based on choosing coordinates to obtain (8.26), a
standard reduction. It is useful for analytical purposes, but in specific problems it
may not be the most convenient choice.16 For example, to reduce the equilibrium
equations for the chemostat (8.18) to a single equation, it is simplest to add the two
equations to deduce that ρ(x + y − σ) = 0, solve this relation for x, and substitute
into the first equation in (8.18) to obtain

(σ − y)

(
y

y + 1
− ρ

)
= 0. (8.30)

In general, there is great flexibility in choosing which component of x to retain in the
reduced equation and in choosing equations for eliminating the other d−1 unknowns.
We don’t introduce notation to formalize this procedure in all possible cases, because
that would obscure more than it would clarify.

16Even the reduction of the Lorenz equation in Section 8.1.2, which we used to motivate the
Lyapunov–Schmidt reduction, does not quite follow the standard procedure; cf. Exercise 5.
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8.5.2 Proof of Theorem 8.2.2

The proof of the theorem is based on the implicit function theorem. All the effort
goes into understanding the structure of the equations to see how this theorem may
be applied. But first, we must address a few matters.

(a) Some unfinished business:

Proof of Lemma 8.2.1. The eigenvalues of DF(xeq(μ), μ) satisfy the implicit
equation

f(λ, μ) = det
(
DF(xeq(μ), μ)− λI

)
= 0. (8.31)

Fixing μ = μ∗, we have

f(λ, μ∗) = (λ1(DF∗)− λ)(λ2(DF∗)− λ) . . . (λd(DF∗)− λ).

Therefore, by (8.10), we have f(0, μ∗) = 0 and

∂f

∂λ
(0, μ∗) = −λ2(DF∗)λ3(DF∗) . . . λd(DF∗) �= 0. (8.32)

Thus, the lemma follows from the implicit function theorem.

We also need to relate (8.11) and (8.12). By implicit differentiation of (8.31),

dλ

dμ
(μ∗) = −∂μf(0, μ∗)

∂λf(0, μ∗)
, (8.33)

where by (8.32) the denominator is nonzero. Regarding the numerator, we see from
(8.31) that

∂μf(0, μ∗) =
∂

∂μ
detDF(xeq(μ), μ)

μ=μ∗
.

Thus, it follows from (8.33) that (8.11) and (8.12) are equivalent, as claimed.

(b) Setting up the proof:

We collect our assumptions and notation from above, together with various red-
uctions that simplify the proof. By introducing x−xeq(μ) as a new unknown, we may
assume without loss of generality that the trivial solution xeq(μ) vanishes identically,
in symbols,

F(0, μ) ≡ 0. (8.34)

We translate the bifurcation point to μ = 0 and rewrite hypothesis (8.11),

dλ

dμ
(0) �= 0. (8.35)
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Making a linear change of coordinates as above, we may assume that at (x, μ) =
(0, 0),

DF(0, 0) =

[
0 0T

0 D̃F̃(0, 0)

]
, (8.36)

where D̃F̃(0, 0) is nonsingular. In the Lyapunov–Schmidt reduction of (8.9) we
solve17

F̃(x,Y(x, μ), μ) = 0 (8.37)

for the (d− 1)-dimensional vector Y(x, μ) on an appropriate neighborhood of (0, 0),
and we define the reduced function

g(x, μ) = F1(x,Y(x, μ), μ). (8.38)

Both Y and g are as smooth as F, i.e, at least C3.

(c) Key facts about the reduced function:

Because of (8.34), we have
g(0, μ) ≡ 0, (8.39)

which lets us define the quotient g(x, μ)/x for use below.

Lemma 8.5.1. The function h(x, μ) = g(x, μ)/x, defined by h(0, μ) = ∂xg(0, μ)
when x = 0, is C2 in a neighborhood of (0, 0) ∈ R

2.

Proof. The fundamental theorem of calculus gives us

g(x, μ) = g(0, μ) +

∫ x

0

∂xg(x
′, μ) dx′.

By (8.39), the first term vanishes. Reparametrizing the integral with s = x′/x, we
calculate that

h(x, μ) =

∫ 1

0

∂xg(sx, μ) ds,

which is indeed a C2 function, even near x = 0.

Lemma 8.5.2.

(a)
∂g

∂x
(0, 0) = 0 and (b)

∂2g

∂μ∂x
(0, 0) =

dλ

dμ
(0). (8.40)

Proof. For the first derivative, the chain rule applied to (8.38) yields

∂xg(x, μ) = ∂1F1(x,Y(x, μ), μ) + ∇̃F1(x,Y(x, μ), μ) · ∂xY(x, μ), (8.41)

and this vanishes when (x, μ) = (0, 0), because the first row of (8.36) is zero.

17We’ll write x instead of x1 to cut down clutter in some upcoming equations.
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To derive (8.40b), we insert an intermediate quantity and show that

∂2g

∂μ∂x
(0, 0) =

∂2F1

∂μ∂x1

(0, 0) =
dλ

dμ
(0). (8.42)

Regarding the first equality, it may seem impossible that ∂μ∂xg(0, 0) could reduce
to something as simple as (8.42): the x-derivative (8.41) already has two terms, and
taking the μ-derivative will generate several more. However, because many terms
vanish at the origin, only the term ∂μ∂1F1(0, 0) survives, to contribute to ∂μ∂xg(0, 0),
which we prove with the following three claims. The first claim addresses derivatives
of Y; the second two address the μ-derivatives of the two terms in (8.41). Combining
(8.41) with Claims 2 and 3, we verify the desired equation for ∂μ∂xg(0, 0).

Claim 1:
∂xY(0, 0) = ∂μY(0, 0) = 0. (8.43)

Proof. Taking derivatives of (8.37) with respect to x and μ, using the chain rule,
we calculate

∂1F̃+ D̃F̃ · ∂xY = 0 and D̃F̃ · ∂μY + ∂μF̃ = 0.

We see from (8.36) and (8.34) that ∂1F̃(0, 0) = 0 and ∂μF̃(0, 0) = 0, respectively,
and of course D̃F̃(0, 0) is invertible. This proves the claim.

Claim 2:
∂

∂μ
∇̃F1(0,Y(0, μ), μ) · ∂xY(0, μ)

μ=0

= 0.

Proof. We calculate the derivative with Leibniz’s product rule, using the chain
rule when differentiating ∇̃F1(0,Y(0, μ), μ). This yields a total of three terms. How-
ever, two of these terms have a factor ∂xY, and the third has a factor ∇̃F1, so all
three terms vanish at the origin, which proves the claim.

Claim 3:
∂

∂μ
∂1F1(0,Y(0, μ), μ)

μ=0

= ∂μ∂1F1(0,0, μ). (8.44)

Proof: We have from the chain rule that the LHS of (8.44) equals

∇̃[∂1F1](0,Y(0, 0), 0) · ∂μY(0, 0) + ∂μ∂1F1(0,Y(0, 0), 0).

By (8.43), the factor ∂μY(0, 0) in the first term of this formula vanishes, yielding
Claim 3.
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It remains to prove the second equality in (8.42), for which we derive alterna-
tive representations for the numerator and denominator in (8.33). Regarding the
denominator, in the notation of (8.36), we may rewrite equation (8.32) as

∂λf(0, 0) = − det D̃F̃(0, 0).

Regarding the numerator, consider the expansion of DF(0, μ) in a Taylor series in μ.
Using (8.36) to evaluate the zeroth-order terms in the expansion, we have

DF(0, μ) =

[
∂μ(∂F1/∂x1)(0, 0) · μ+O(μ2) O(μ)

O(μ) D̃F̃(0, 0) +O(μ)

]
,

where we write out first-order terms only in the (1, 1)-entry of the matrix. Taking
the determinant of this matrix, we find that

detDF(0, μ) = ∂μ(∂F1/∂x1)(0, 0) · det D̃F̃(0, 0) · μ+O(μ2).

Thus,

∂μf(0, 0) =
∂

∂μ
detDF(0, μ)

μ=0

= ∂μ(∂F1/∂x1)(0, 0) · det D̃F̃(0, 0).

The second equality in (8.42) follows on substituting these formulas for ∂λf(0, 0) and
∂μf(0, 0) into (8.33).

(d) Proof of Theorem 8.2.2:

The theorem asserts that the equilibria of (8.9) near the bifurcation point lie on
two crossed curves in R

d × R. By the Lyapunov–Schmidt reduction, it suffices to
show that the zero set of the reduced function

{(x, μ) ∈ R× R : g(x, μ) = 0} (8.45)

has this structure. Now, by (8.39),

g(x, μ) = 0 iff x = 0 or h(x, μ) = 0,

where h(x, μ) is defined in Lemma 8.5.1. The line {x = 0} is one curve contained
in the set (8.45). We claim that the zero set {h(x, μ) = 0} is also a smooth curve
through the origin. Note that h(0, 0) = ∂xg(0, 0) = 0, but

∂μh(0, 0) = ∂μ∂xg(0, 0) =
dλ

dμ
(0) �= 0,

where we have used Lemma 8.5.2 and invoked hypothesis (8.35). Thus, by the
implicit function theorem, the equation h(x, μ) = 0 may be solved for μ as a function
of x, which proves the claim and shows that (8.45) consists of two crossed curves.
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Vanishing der. Normal form for g Name Example

(none) x′ = −x2 + μ saddle-node Activator–inhibitor, (8.21)
∂μg = 0 x′ = −x2 + μx transcritical Lotka–Volterra, (8.16)
∂μg = 0 x′ = −x2 − μ2 isola center CSTR with bath, (8.70)
∂xxg = 0 x′ = ±x3 + μ hysteresis point CSTR without bath, (8.68)

∂xxg = 0, ∂μg = 0 x′ = ±x3 + μx pitchfork Lorenz equations, (8.5)

Table 8.1: Partial classification of one-dimensional bifurcation problems, based on
enumeration of derivatives of the reduced function, beyond (8.47), that vanish. Sec-
tion I.3 of [31] gives general formulas for calculating these derivatives.

Regarding parametrization of the bifurcating solutions, define μ(a) by solving the
equation h(a, μ) = 0 for μ. Then every nontrivial solution of g(x, μ) = 0 has the
form (a, μ(a)), and

X(a) = (a,Y(a, μ(a))) (8.46)

parametrizes the nontrivial equilibria of (8.9). Recalling the various reductions
above, i.e., xeq(μ(a)) ≡ 0, the kernel of DF∗ is spanned by v = (1,0), and
Y(a, μ(a)) = O(a2), we see that (8.13) and (8.46) are equivalent. �

8.5.3 One-Dimensional Bifurcation Problems

With the Lyapunov–Schmidt reduction, we may introduce a partial hierarchy of
problems with steady-state bifurcation from a simple eigenvalue. Without loss of
generality, we can translate coordinates so that the bifurcation point is located at
x = 0, μ = 0. The reduced function g(x, μ), defined near (0, 0), then satisfies

g(0, 0) = ∂xg(0, 0) = 0. (8.47)

Bifurcation problems that satisfy the simple-eigenvalue hypothesis (8.25) can be
roughly classified by the number of derivatives of the reduced function g, beyond
(8.47), that vanish. A few of the simplest cases are listed in Table 8.1; see Chapter IV
of [31] for more detail. The phrase normal form, which appears in the table, refers
to a particularly simple version of a bifurcation problem that captures the essential
behavior of a class of problems. (We shall use this phrase informally, shying away
from a precise technical definition.)

To gain intuition, let us discuss the construction of normal forms for pitchfork
bifurcations. Consider a degenerate equilibrium (i.e., satisfying (8.47)) such that in
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addition ∂μg(0, 0) = ∂xxg(0, 0) = 0. Then modulo higher-order terms,18 we have the
reduced ODE

x′ = Ax3 +Bμx. (8.48)

Suppose the coefficients A and B are nonzero. If we rescale x = |A|1/2x and μ = |B|μ,
then we may reduce this equation to either

(a) x′ = −x3 ± μx or (b) x′ = x3 ± μx, (8.49)

according as A < 0 or A > 0, respectively. What difference do the ± choices in
(8.49), which come from B, make? Considering, for example, (8.49a), if we choose
+μx, corresponding to B > 0 in (8.48), the trivial solution is stable for μ < 0
and unstable for μ > 0, while if we choose −μx, it is the other way around. How-
ever, in both cases, as the bifurcation parameter crosses zero in one direction or the
other, the trivial solution loses stability, and simultaneously two new, stable, solutions
bifurcate, behavior that we called supercritical in Section 8.1. The only difference
between the two cases is the reversal of the orientation of the bifurcation parameter,
a difference that does not seem important to us. Therefore, as is conventional, we
collapse these two cases into the one case −x3 + μx in the table by orienting the
bifurcation parameter so that the trivial solution loses stability as μ is increased.19

Unlike B, the sign of A in (8.48) impacts the qualitative nature of the bifurcation.
Specifically, the case A < 0 leads to (8.49a), for which the bifurcation is supercritical,
while A > 0 leads to (8.49b), which is subcritical.

We have not yet encountered isola-center or hysteresis-point bifurcations, but we
will discuss these in Section 8.5.6. In the meanwhile, let’s compare one of them,
the normal form for isola-center bifurcation, with the normal form for transcritical
bifurcation, purely as mathematical objects divorced from any applications. The
defining relations for both bifurcations are the same. In geometric terms, the zero
set {−x2 + μx = 0} for transcritical bifurcation consists of two crossed lines, while
the zero set {−x2 − μ2 = 0} for isola-center bifurcation consists of a single point. In
algebraic terms, both normal forms are quadratic forms Q(x, μ), a (negative) definite
form for isola-center bifurcation and an indefinite form for transcritical bifurcation.20

Incidentally, note that the different behaviors between the various bifurcations in
Table 8.1 are determined by the higher-order terms at the bifurcation point, which
reminds us of the importance of such terms at a nonhyperbolic equilibrium.

18In fact, the normal forms typically still apply even when higher-order terms are included; cf.
Section II.9 of [31].

19This convention is natural, because in applications it is more common for instability to appear
as the parameters in the problem, which usually measure forcing, are increased.

20Incidentally, our choice of −x2 + μx for transcritical bifurcation is not important; any of the
choices ±x2 ± μx would work equally well. For that matter, ±(x2 − μ2) are also possible, although
we prefer a normal form in which x = 0 is a trivial solution branch.
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8.5.4 Exchange of Stability

Let’s state the main result straightaway and explore context later. The principle of
exchange of stability deduces stability information for a higher-dimensional bifurca-
tion problem

x′ = F(x, μ), (8.50)

based on information about the reduced equation. For this theorem, hypothesis
(8.25) must be strengthened to require that the d− 1 nonzero eigenvalues of DF∗ lie
in the left half-plane, i.e.,

λ1(DF∗) = 0, �λj(DF∗) < 0, j = 2, . . . , d. (8.51)

For the proof, which expands on the less-than-inspiring calculations used to prove
Lemma 8.5.2, we refer you to Section 1.4 of [31].

Theorem 8.5.3. Let g(x, μ) be the reduced function from a standard Lyapunov–
Schmidt reduction of (8.50) at a bifurcation point where (8.51) is satisfied. Then in
an appropriately small neighborhood of (x∗, μ∗), an equilibrium (x0, μ0) ∈ R

d × R of
(8.50) is stable or unstable if at the corresponding equilibrium (x0, μ0) ∈ R×R of the
reduced problem, ∂xg(x0, μ0) is negative or positive, respectively.

Let us elaborate: At an equilibrium of (8.50) near the bifurcation point, d− 1 of
the eigenvalues of the Jacobian are safely in the left half-plane. Thus, the stability
of the equilibrium is determined by the remaining eigenvalue, and according to the
theorem, this has the same sign as ∂xg.

It may be illuminating to relate the sign of ∂xg(x0, μ0) to a one-dimensional
made-up ODE using the reduced function,

x′ = g(x, μ). (8.52)

Then (x0, μ0), an equilibrium of (8.52), is stable or unstable according as ∂xg(x0, μ0)
is negative or positive, respectively. In other words, we could rephrase the theorem
to state, more intuitively, that an equilibrium (x0, μ0) of the full problem has the
same stability as the corresponding equilibrium of (8.52).

In many specific bifurcation problems we can apply the theorem without ever cal-
culating a derivative of g(x, μ) if we think pictorially. Since (8.52) is one-dimensional,
its flow direction can reverse itself only where the RHS vanishes, i.e., only on the
bifurcation diagram. For example, suppose (8.52) represents a transcritical bifurca-
tion,

x′ = −x2 + μx.

As shown in Figure 8.7(a), the bifurcation diagram {−x2 + μx = 0} divides the
x, μ-plane into four regions. Within each region, the flow direction cannot change.
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Figure 8.7: Flow directions adjacent to (a) a transcritical bifurcation x′ = −x2+μx

and (b) a supercritical pitchfork bifurcation x′ = −x3 + μx. In both panels, the bold
dot is located at the bifurcation point, x = μ = 0.

Thus, without considering any derivatives, we see from flow arrows in the figure that
the trivial solution x = 0 is stable for μ < 0 and unstable for μ > 0, while these
stabilities are reversed for the bifurcating solutions x = μ. In Exercise 6 we ask you
to use this approach to determine the stabilities of the equilibria on both branches
of (8.30), which was derived from the chemostat. Since this equation was obtained
from (8.18) by a nonstandard reduction, you will need to be aware of the following
minor pitfall.

Addendum to Theorem 8.5.3. In a nonstandard reduction of a bifurcation
problem, it may happen that stabilities computed from the sign of ∂xg are exactly
reversed, i.e., stable if ∂xg(x0, μ0) > 0 and unstable if ∂xg(x0, μ0) < 0.

Incidentally, the phrase exchange of stability is intended to describe the transfer
of stability, as in Figure 8.7(a), from the trivial solution to the bifurcating solution
when they cross one another. This phrase is natural for transcritical bifurcation.
Even though it makes less sense in other cases, it is still used to describe the general
result, Theorem 8.5.3.

8.5.5 Symmetry and the Pitchfork Bifurcation

By a reflection on R
d we mean a linear map R : Rd → R

d, different from the identity,
such that R2 = I. We say that an ODE x′ = F(x) is symmetric21 under R if

F(Rx) = RF(x) for all x. (8.53)

21The technical term is equivariant.
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In this section we explore a connection between pitchfork bifurcations and reflectional
symmetry. To make the discussion more meaningful, for each of the three examples
of pitchfork bifurcation in Section 8.1 you should identify the reflectional symmetry
in the problem and consider Theorem 8.5.5 for the specific example.

Lemma 8.5.4. If R2 = I, then the only possible eigenvalues of R are ±1, and R is
diagonalizable.

We ask you to derive this bit of linear algebra in Exercise 4.

Theorem 8.5.5. In addition to the hypotheses of Theorem 8.2.2, assume that for
all μ, F(x, μ) is symmetric under the reflection R and that Rxeq(μ) = xeq(μ). If
the null eigenvector v of DF∗ at the bifurcation point satisfies Rv = −v, then the
reduced function g(x, μ) obtained in the standard Lyapunov–Schmidt reduction is odd
with respect to x:

g(−x, μ) = −g(x, μ). (8.54)

If g is odd, we deduce that

∂xxg(0, 0) = ∂μg(0, 0) = 0.

Thus, a bifurcation satisfying the hypotheses of the theorem is a candidate for a
pitchfork. (To show that it is actually a pitchfork we would need to check that
∂xxxg(0, 0) �= 0 and ∂μxg(0, 0) �= 0; i.e., it is not more singular.)

Remarks: (i) It is not difficult to prove this result. If you want guidance, you
may consult the proof of Proposition 3.3 on p. 306 in [31], which characterizes the
analogous behavior in a far more general context. In fact, any sensible reduction,
whether standard or not, will give a reduced function g(x, μ) that is odd in x. (ii) In
words, we describe the hypothesis that Rv = −v by saying that the bifurcation
breaks the symmetry. Incidentally, if Rv = +v, the other possibility, symmetry has
no implications for the bifurcation (cf. Exercise 11).

8.5.6 Additional Parameters in Bifurcation Problems

(a) Imperfect bifurcation. ODEs represent an idealized description of some physical
system, but real systems will differ from the idealized description in myriad ways that
are impossible to enumerate. As an example, in the bead equation (8.2), suppose
the axis of rotation of the ring is very slightly off-center, say displaced by δ as in
Figure 8.8(a). In this case, the radius of the rotating motion is slightly altered, from

 sin x to 
 sin x + δ. This perturbation changes the nondimensional equations of
motion (8.2) to read

x′ = y,
y′ = −βy − sin x+ μ(sinx+ ε) cosx,

(8.55)
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Figure 8.8: (a) Bead on a hoop rotating about a vertical axis displaced from the
centerline of the hoop: an example of imperfect bifurcation. This system is governed
by (8.55). (b) Perturbed pitchfork bifurcation diagram for (8.55), with ε > 0. If ε is
small, the saddle-node bifurcation is located near the unperturbed bifurcation point at
μ = 1.

where ε = δ/
. When ε �= 0, the perturbation splits a bifurcation diagram, which
is connected, into two separate pieces, as illustrated22 in Figure 8.8(b) for ε > 0.
To interpret Figure 8.8(b) in physical terms, if ε > 0 is fixed and μ is increased
quasistatically from zero, then the equilibrium of the bead will evolve smoothly from
an equilibrium near the bottom of the loop (i.e., x = 0) to equilibria with x > 0. In
other words, making ε nonzero removes the indeterminacy of the idealized, perfectly
symmetric, problem. (If ε < 0, the unique solution for small μ connects to the lower
solution branch at large μ.)

Note in Figure 8.8(b) that even with ε �= 0, for μ sufficiently large, both nontrivial
equilibria exist and are stable. Only one of them can be reached, starting from small
μ, by quasistatic increase of the bifurcation parameter. Given an appropriately large
value of μ, a finite (noninfinitesimal) perturbation could kick the system from either
equilibrium onto the other. However, when μ is decreased quasistatically, if the
system is on the “wrong” solution branch, it will undergo a sudden jump when μ

22It is not hard to believe that the perturbation (8.55) splits the pitchfork into two components,
but it is less clear whether for ε > 0 the negative μ-axis connects to the upper branch, as shown
in Figure 8.8(b), or to the lower branch. The issue may be resolved with a Taylor-series expansion
about the bifurcation point x∗ = 0, μ∗ = 1. Specifically, to lowest order, an equilibrium of (8.55)
satisfies

x (μ− 1) + ε = 0, (8.56)

where we have neglected terms that are O(|x|3) and εO(|x| + |μ − 1|). If ε > 0, the branch of the
hyperbola (8.56) that is asymptotic to the negative μ-axis lies in the half-plane {x > 0}, and even
with the higher-order terms, the solution of (8.55) will retain this behavior, as the figure indicates.
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reaches the saddle-node bifurcation point. Incidentally, it is worth recording that
(i) perturbation of a pitchfork bifurcation leads to a saddle-node bifurcation, and
(ii) the latter is robust under further small perturbations.

In an attempt to model deviations of a physical problem from an idealized descrip-
tion, one may consider subjecting the equation to an arbitrary small perturbation.
This kind of analysis goes by the name of imperfect bifurcation. For bifurcation from
a simple eigenvalue, it suffices to consider one-dimensional equations because of the
Lyapunov–Schmidt reduction. For example, perturbing in this way the normal form
for a supercritical pitchfork, we obtain

x′ = −x3 + μx+ ε, (8.57)

whose equilibria have the same qualitative behavior just seen in the (two-dimensional)
bead example (8.55).

(b) Unfoldings: hysteresis-point and isola-center bifurcation. Adding additional pa-
rameters to a bifurcation problem, as in (8.57), is sometimes called unfolding. Un-
foldings clarify the significance of two of the normal forms in Table 8.1, as we now
explain.

(i) Hysteresis points: Consider the unfolding of one of the normal forms for a
hysteresis point23,

x′ = −x3 + μ+ αx. (8.58)

As illustrated in Figure 8.9(b), if α > 0, there is a range of the bifurcation parameter
μ for which (8.58) has three solutions, two of them stable. If μ is fixed in the
bistability interval, then generically as t → ∞, a solution of (8.58) will tend to one
of the stable equilibria of this equation, but which equilibrium it tends to depends
on initial conditions.24 By contrast, if α < 0, then for every μ, the equation has a
unique equilibrium, which moreover is stable (globally attracting, in fact) and varies
smoothly with μ.

The name of this singularity derives from the phenomenon of hysteresis, which
describes behavior of (8.58) for α > 0 implicit in Figure 8.9(b): If μ is varied
(quasistatically) back and forth across the bistability interval, the solution of (8.58)
will jump repeatedly between the lower and upper equilibria. The term hysteresis

23What might seem like the simplest unfolding, x′ = −x3 + μ + α, doesn’t change anything; it
just yields another hysteresis-point bifurcation at a slightly shifted location. Unfolding theory, the
focus of Chapter III of [31], explains what perturbations in unfolding a singular bifurcation problem
make an actual difference.

24In Section 8.6.2 we discuss an application from chemical engineering with a hysteresis point in
which such bistability can have disastrous consequences. Isola centers, which pose different risks,
also appear in that application.
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Figure 8.9: Bifurcation diagrams for x′ = −x3 + μ + αx, an unfolding of a hys-
teresis-point bifurcation. Left panel: For α < 0, a unique, stable equilibrium varies
smoothly with μ. Right panel: For α > 0, there is hysteresis, which includes an
interval of bistability.

refers to the fact the system jumps at different points, while μ is increasing and while
it is decreasing.

(ii) Isola center: Consider the unfolding of the normal form for an isola center,

x′ = −x2 − μ2 + α. (8.59)

As illustrated in Figure 8.10(a), if α > 0, then (8.59) has a “circle” of equilibria,
with x = +

√
α− μ2 being stable, while if α < 0, the equation has no equilibria at

all. The term isola, the Italian word for island, is used to describe such an isolated
branch of equilibria. At the isola-center bifurcation α = 0, the isola is reduced to a
single point.

8.6 Steady-State Bifurcation in Two Applications

8.6.1 The Two-Cell Turing Instability

(a) Bifurcation from the trivial solution.

Armed with our newly acquired expertise in bifurcation theory, let us return to
the Turing instability with two interacting cells, introduced in Section 6.3.2,

(a) x′
1 = σx2

1/(1 + y1)− x1,
(b) y′1 = ρ [x2

1 − y1] +D(y2 − y1),
(c) x′

2 = σx2
2/(1 + y2)− x2,

(d) y′2 = ρ [x2
2 − y2] +D(y1 − y2).

(8.60)
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Figure 8.10: (a) Bifurcation diagram for x′ = −x2 − μ2 + α, an unfolding of
an isola-center bifurcation, assuming α > 0. (For α < 0 there are no equilibria.)
(b) Cartoon of a continuous stirred-tank reactor. In Section 8.6.2(b) we find an
isola-center bifurcation in ODEs modeling the CSTR. (Cartoon drawn by Jeff Poe,
2016. Copyright 2016 by D.G. Schaeffer and J.W. Cain.)

Suppose σ > 2, so that the single-cell ODE (8.21) has nonzero equilibria P± =
(x±, y±), obtained by solving

x2 − σx+ 1 = 0, y = x2. (8.61)

Also suppose ρ > 1, so that P+ is a stable equilibrium of the single-cell equation.
We consider (8.60) as a bifurcation problem with the diffusion coefficient D as the
bifurcation parameter. We recall from Section 6.3.2 that:

• For all D, equation (8.60) has two “trivial” equilibria (x±, y±, x±, y±) in which
the concentrations are the same in both cells.

• The stability of the solution (x+, y+, x+, y+) changes at the threshold

D∗ = ρ

(
x+

σ
− 1

2

)
; (8.62)

specifically, this solution is stable if 0 ≤ D < D∗ and unstable ifD > D∗. More-
over, at D = D∗ the simple-eigenvalue condition (8.51) and the nondegeneracy
condition (8.12) are satisfied.

• Equation (8.60) is symmetric with respect to the interchange of concentrations
in the two cells,

R · (x1, y1, x2, y2) = (x2, y2, x1, y1), (8.63)

which is a reflection. The null eigenvector v ∈ R
4 of DF∗ has the form v =

(w,−w) as in (6.31), so that Rv = −v.
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How do solutions of (8.60) behave when D > D∗? Theorem 8.5.5 strongly sug-
gests that the trivial solution undergoes a pitchfork bifurcation. To investigate this,
we turn to simulations. Both panels of Figure 8.11 show three traces of x1(t) vs. t
with σ = ρ = 2.5 and the indicated value of D. Initial conditions are small pertur-
bations of the trivial equilibrium (2, 4, 2, 4),
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With these values for σ, ρ, the critical value of diffusion is D∗ = 0.75. In Panel (a),
D = 0.7 < D∗, and each perturbation decays to zero. In Panel (b), D = 0.8 > D∗,
and we expect the perturbation to grow until a new equilibrium is reached. For
the first and second initial conditions, the solution does indeed tend to a nontrivial
equilibrium. For the third initial condition, however, the solution decays back to the
trivial solution. To understand the latter behavior, observe that in this case, x1(0) =
x2(0) and y1(0) = y2(0); by symmetry, both cells will have the same concentrations
for all time; thus, for these initial conditions, solutions of (8.60) will follow the single-
cell dynamics, for which (2, 4) is a stable equilibrium. In other words, the third initial
condition lies on the (three-dimensional) stable manifold of the trivial equilibrium.

It is clear that some sort of bifurcation occurs for D between 0.7 and 0.8. Given
that for D only slightly greater than D∗, the new equilibria are far from the trivial
equilibrium, one would conjecture that the bifurcation is subcritical. In principle,
one could verify this conjecture by performing a Lyapunov–Schmidt reduction and
showing that ∂xxxg > 0. Mercifully, this uninspiring calculation may be avoided.
The governing ODEs (8.60) are simple enough that all equilibria may be determined
analytically, which we do in the next section, and these calculations show that the
bifurcation is indeed a subcritical pitchfork.

(b) Enumeration of equilibria of (8.60).

The ideas in the above bifurcation analysis are widely applicable. By contrast, the
following calculations, which we merely outline, apply only to the specific equations
(8.60).

Because x1 is a factor of the equilibrium equation for (8.60a) and x2 is such a
factor for (8.60c), we may distinguish three classes of equilibria of (8.60), as follows:

1. solutions for which both x-concentrations vanish,

2. solutions for which only one of the x-concentrations vanishes,

3. solutions for which neither x-concentration vanishes.
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Figure 8.11: Evidence of a pitchfork bifurcation in (8.60), the Turing instabil-
ity, as D is increased. Here, σ = ρ = 2.5. (a) For the diffusion coefficient
D = 0.7 < D∗ = 0.75, the trivial equilibrium (x+, y+, x+, y+) appears to be sta-
ble to perturbations in x1. (b) For larger D = 0.8 > D∗, the trivial equilibrium is
unstable, and most perturbations drive the system to a different stable equilibrium.
(The two nondecaying trajectories in Panel (b) are images of each other under the
reflection (8.63), but this symmetry is not apparent in the figure.)

In view of the interchange symmetry, the third class may be subdivided:

3a. solutions for which x1 = x2,

3b. solutions for which x1 �= x2.

We study these equilibria in reverse order, focusing on solutions with D ≥ 0.

Solutions of Class 3a: These are the trivial equilibria (x±, y±, x±, y±) noted above.
To see this, we regard the equilibrium equations of (8.60b,d) as a pair of linear equa-
tions for y1, y2. This 2× 2 system is nonsingular, provided D �= −ρ/2, in particular
if D ≥ 0. Hence, given that x1 = x2, it follows that y1 = y2. Thus, for solutions of
this class, the diffusion term vanishes, so (x1, y1) = (x2, y2) both satisfy the one-cell
equilibrium equations.

These equilibria are plotted in Figure 8.12(a) as black dots labeled 3a±; note that
their location does not vary with D. As described above, (x+, y+, x+, y+) is stable
for (8.60) if 0 ≤ D < D∗ but becomes unstable when D > D∗. The other solution is
unstable for all D ≥ 0. (The position of these and other solutions in the bifurcation
diagram Figure 8.12b will be discussed below.)

Solutions of Class 3b: These are the equilibria that bifurcate from the trivial so-
lution (x+, y+, x+, y+) at D = D∗. To see this, we deduce from the equilibrium
equations of (8.60a,c) that yk = σxk − 1, k = 1, 2. Substituting into the equilibrium
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Figure 8.12: (a) Projection into the x1, x2-plane of equilibria of (8.60) of Classes 3a
and 3b, with σ = ρ = 2.5 and D variable. Solutions of Class 3a, which don’t depend
on D, project onto single dots. (b) A bifurcation diagram for (8.60), restricted to
D ≥ 0. After the bifurcation at D = D∗, generically solutions of (8.60) converge to
one of the stable solutions of Class 2 as t → ∞.

equations of (8.60b,d), adding these equations to eliminate D, and rearranging, we
find that the solutions lie on a circle

(x1 − σ/2)2 + (x2 − σ/2)2 = σ2/2− 2. (8.64)

We claim that as sketched in Figure 8.12(a), this circle intersects the diagonal
{x1 = x2} at (the projections of) the equilibria (x±, y±, x±, y±) of Class 3a. In-
deed, if x1 = x2, then (8.64) reduces to x2−σx+1 = 0, the equation for the one-cell
equilibria x±. Moreover, we subtract equations (8.60b,d) and rearrange, using the
fact that x1 �= x2 for solutions of Class 3b, to obtain a formula for D along the circle:

D = ρ

(
x1 + x2

2σ
− 1

2

)
. (8.65)

At the diagonal point x1 = x2 = x+, this expression equals D = D∗, the bifurcation
value. Thus, we have explicitly identified the bifurcating solutions whose existence
was deduced abstractly from the fact that the trivial solution (x+, y+, x+, y+) loses
stability at D = D∗.

The bifurcation is a pitchfork; is it subcritical or supercritical? From the graph
of (8.64) in Figure 8.12(a), you can see that x1+x2 decreases along the circle as you
move away from the bifurcation point (x+, x+). By (8.65), D also decreases, so the
bifurcation is subcritical.

Solutions of Class 2: These are the ω-limits of the nondecaying trajectories in
Figure 8.11. To explore this, suppose that x2 = 0. Then the equilibrium equation
of (8.60d) is linear and may be solved for y2. Also, since x1 �= 0, the equilibrium
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equation of (8.60a) implies that y1 = σx1−1. Substituting these formulas for yj into
the equilibrium equation of (8.60b) gives

ρ+D

ρ+ 2D
x2
1 − σx1 + 1 = 0, (8.66)

which has two positive roots, provided

D > −ρ
σ2 − 4

2σ2 − 4
. (8.67)

The larger root of (8.66) gives a stable equilibrium of (8.60); for the parameter values
in Figure 8.11, stability may be inferred from the observation that this equilibrium
is the ω-limit of a numerical solution, but it may be verified analytically in general.
To conclude, if D satisfies (8.67), then there are four equilibria of (8.60) of Class 2:
the two we just found plus two others for which x1 = 0 but x2 �= 0.

Solutions of Class 1: The zero solution is the obvious equilibrium of this class.
As it happens, there are some additional solutions that exist for D < 0. Although
these have no physical significance, they may have some interest as a mathematical
phenomenon, and we invite you to explore them in Exercise 24.

Figure 8.12(b) shows a partial bifurcation diagram. Equilibria of Classes 3a+, 3b,
and 2 are plotted as functions of D ≥ 0. To make the symmetry of the bifurcation
more evident, we plot the difference x2−x1 rather than just one variable by itself. In
this projection, the trivial solutions (x+, y+, x+, y+) of Class 3a+ lie along the D-axis.
Solutions of Class 3b bifurcate subcritically from them at D = D∗. To reduce clutter,
only the stable solutions of Class 2 are included in the figure.

8.6.2 The CSTR

The continuous stirred-tank (chemical) reactor is a rich source of bifurcation phe-
nomena. We study it here to illustrate hysteresis-point and isola-center bifurcations,
but it also exhibits interesting time-dependent behavior; see, for example, [89].

(a) Hysteresis-point bifurcation: Recall from Exercise 5.9 that we simplified the
equations of the CSTR to

dx/dt = μ(1− x)− xey,
dy/dt = −μy + σxey.

(8.68)
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Figure 8.13: Two bifurcation diagrams for the CSTR equations (8.68). As illus-
trated in Panel (b), the bifurcation diagram exhibits hysteresis if σ > 4.

We solve the first equilibrium equation for x as a function of y and μ, substitute
this into the second equation, and manipulate the result, canceling the uninteresting
solution μ = 0, to obtain the reduced equation

g(y, μ) = (σ − y)ey − μy = 0. (8.69)

Note that since μ > 0, this equation has solutions only if y and σ− y have the same
sign, i.e., only if 0 < y < σ. Bifurcation diagrams described by (8.69) are plotted in
Figure 8.13 for two different values of σ. The key point is that if σ > 4, then over
a range of μ the bifurcation diagram exhibits bistability and has two saddle-node
bifurcation points, while if σ < 4, there is a unique equilibrium for all μ, which
varies smoothly with μ.

To derive this behavior analytically, it is convenient to study μ as a function of y,

μ(y) =
σ − y

y
ey,

where 0 < y < σ. At the lower limit, μ(y) → ∞ as y tends to zero, and at the upper
limit, μ(y) → 0 as y tends to σ. We ask you to apply calculus to show that if σ < 4,
then μ(y) is monotonically decreasing on 0 < y < σ, and if σ > 4, there is an interval
of y where its derivative is positive. This information confirms the behavior shown
in Figure 8.13.

At the transition point σ = 4, equation (8.69) has a hysteresis-point bifurcation,
as defined in Table 8.1. We ask you to show that if σ = 4, then at (y∗, μ∗) = (2, e2),
the reduced function satisfies

g(y∗, μ∗) = ∂yg(y∗, μ∗) = ∂yyg(y∗, μ∗) = 0.
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If we indicate explicitly the dependence on σ in (8.69), say

G(y, μ, σ) = (σ − y)ey − μy = 0,

then G(y, μ, σ) is an unfolding of G(y, μ, 4), as defined in Section 8.5.6. Comparing
Figures 8.9 and 8.13, we see that both G(y, μ, σ) and the unfolding of the normal
form (8.58) exhibit the same qualitative behavior, i.e., in words, a transition from
unique equilibria to bistability.

These phenomena have significance for industrial applications. The CSTR is
typically studied as a model for some chemical process in a plant. If the model admits
multiple steady states, great care is required during startup of the plant to guarantee
that after transients, it winds up operating on the right solution branch. Mistakes
are very costly. If the transients put the plant on the lower solution branch when
the upper branch was anticipated, the process may fizzle and need to be restarted
from scratch. Or worse, if the transients put the plant on the upper branch when
the lower branch was anticipated, the whole plant could explode!

(b) Isola-center bifurcation: For this example, we consider an extension of the CSTR
model from Chapter 5 that includes an additional effect: cooling of the tank through
contact with a heat bath. This extension adds a term to the temperature equation;
after scaling, we have

dx/dt = μ(1− x)− xey,

dy/dt = −μy + σxey − β(y − ξ),
(8.70)

where β and ξ are the (nondimensionalized) heat-conduction coefficient and temper-
ature of the bath, respectively. Our interest in this model is to illustrate a bifurcation
phenomenon, not to catalogue all possible behavior of a reactor, so we shall restrict
our attention to a special case of (8.70). Specifically, we assume that ξ = 0, or in
dimensional terms, that the temperature of the bath is the same as the temperature
of the feed.

In Figure 8.14 we show bifurcation diagrams for the equilibria of (8.70), assuming
σ = 8, for various values of β. To understand these diagrams, we start by comparing
Panel (a), where the coefficient β of the new effect is small, with Figure 8.13(b),
where β = 0 (and σ is large). These diagrams are similar in that both have a
window in μ of bistability. They differ as the flow rate μ approaches 0, a limit that
is described more suggestively by saying the “residence time” 1/μ tends to infinity.
This difference is not hard to understand. Over a long residence time essentially all
of the reactant is consumed, and its latent heat is released. When β = 0, no heat is
lost to the environment, which means that the nondimensional temperature y rises
to σ, its maximum possible value. By contrast, when β > 0, over the long residence
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Figure 8.14: Bifurcation diagrams for (8.70) assuming σ = 8. (a) For β = 5, there
is hysteresis but no isola. (b) Increasing β to 7.5 causes the “neck” in Panel (a) to
pinch off and form an isola. (c) For β = 10, the isola still exists but has shrunk.
(d) At β = 11, the isola has disappeared.
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time, this heat is absorbed by the bath, so y equilibrates to the temperature of the
bath, which we assumed has the (nondimensional) value zero.

The other panels in Figure 8.14 can be understood through bifurcations from this
first case. As β is increased, the “neck” in Panel (a) pinches off at a transcritical25

bifurcation when β = βbif ≈ 7.39 and then forms an isola, as shown in Panel (b). As
β is further increased, the isola shrinks, as illustrated in Panel (c), all the way down
to an isola-center bifurcation when β = βiso ≈ 10.47. Beyond βiso, the system does
not exhibit bistability for any μ, as in Panel (d).

Much of this behavior can be derived analytically. In Exercise 23 we offer hints
for doing this.

As discussed above, when starting operations at an industrial plant, it is impor-
tant to know whether the system admits multiple steady states. The designer of the
plant may look for multiple steady states by continuously varying all possible param-
eters, either in a laboratory-scale mock-up of the plant or in a simulation. However,
an isola will never be seen under quasistatic variation of parameters; a finite, possibly
large, perturbation is required to “kick” the system onto a disconnected branch of
equilibria. It warms our mathematicians’ hearts to say so, but there is no substitute
for adequate theoretical analysis.

8.7 Examples of Hopf Bifurcation26

8.7.1 An Academic Example

To establish the ideas regarding Hopf bifurcation, let us begin with a simple, aca-
demic, example of it in a by-now-familiar equation, written in matrix notation

[
x′

y′

]
=

[
μ −1
1 μ

] [
x
y

]
− (x2 + y2)

[
x
y

]
. (8.71)

For all μ, this equation has an equilibrium at x = y = 0, and this is the only
equilibrium. (Check this!) At the equilibrium, the Jacobian is

DF(0, μ) =

[
μ −1
1 μ

]
,

25Since no symmetry is present in this problem, on grounds of genericity we expect the bifur-
cation to be transcritical. High-resolution computations confirm this expectation, but the actual
bifurcation diagram is so nearly symmetric that even magnified 50 times, it is visually indistin-
guishable from a pitchfork. These circumstances give a warning about the limitations of arguments
based on genericity.

26It would be historically more accurate to refer to Andronov–Hopf bifurcation, but the shorter
name has come into widespread use.
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which has eigenvalues μ ± i. In particular, it is stable for μ < 0 and unstable for
μ > 0. However, the mechanics for the loss of stability are quite different from
the previous examples of bifurcation. Rather than a single real eigenvalue passing
through zero, here stability is lost as a pair of complex-conjugate eigenvalues of the
Jacobian cross the imaginary axis.27

Taking the central message of bifurcation theory to heart, we expect some change
in the set of solutions of (8.71) as μ crosses zero. However, no new equilibria appear.
The only equilibrium of (8.71) is x = y = 0, no matter what the value of μ. To see
what change does occur near μ = 0, let us invoke polar coordinates one more time
to rewrite the equations as

r′ = μr − r3,

θ′ = 1.
(8.72)

Note that r′ vanishes if r = 0 or if r2 = μ. The first solution just represents the
equilibrium x = y = 0. By contrast, r2 = μ represents a new type of orbit that
appears as μ crosses zero, i.e., the periodic solution r =

√
μ, θ = t, where we have

chosen the phase arbitrarily. In Cartesian coordinates, the solution is

x =
√
μ cos t, y =

√
μ sin t.

This behavior is typical: in Hopf bifurcation, periodic solutions appear, as a pa-
rameter varies, when two eigenvalues of the Jacobian at an equilibrium cross the
imaginary axis.

It is instructive to consider a more general, but still academic,28 equation that
exhibits Hopf bifurcation: in polar coordinates on R

2,

r′ = μr − αr3,
θ′ = 1 + βr2 + γμ,

(8.73)

with parameters α, β, γ. The equilibrium r = 0 is stable for μ < 0 and unstable for
μ > 0. If α > 0, then the bifurcating periodic solutions exist for μ > 0 and are stable,
as indicated schematically in Figure 8.15(a); this case is called supercritical. In this
case, if μ is increased (quasistatically) beyond zero, solutions of (8.73) follow the
bifurcating periodic orbits. On the other hand, if α < 0, then the periodic solutions
exist for μ < 0 and are unstable, which is called subcritical. For μ < 0, the basin of
attraction of the equilibrium is bounded by the periodic orbit, and the basin shrinks
to a point as μ tends to zero. If μ increases beyond zero, the solution of (8.73)
blows up.

The parameters β and γ in (8.73) have only a limited effect on the behavior
of solutions: they cause the period of the oscillatory solutions to vary with their
amplitude.

27In connection with this behavior, we recommend that you revisit Exercise 2.15.

28In fact, (8.73) has greater generality than may be apparent; cf. Section 8.10.1.
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α > 0, supercritical α < 0, subcritical

μμ

xx

x = 0 x = 0

00

Figure 8.15: Bifurcation diagrams with Hopf bifurcation in the system (8.73) for
the cases α > 0 and α < 0. For a fixed value of μ, a periodic orbit is represented by
the maximum and minimum of the Cartesian coordinate x along the orbit.

8.7.2 The “Repressilator”

Hopf bifurcations may occur in any dimension. To illustrate this point, let us con-
sider a gene network called the repressilator [21]. The name tries to capture the
idea that oscillations occur through the mutual repression, or inhibition, of three
genes, as indicated schematically in Figure 8.16(a). It is believed that some oscil-
lations in biological systems—biological clocks in informal parlance—are based on
such networks.29

Mathematically, after scaling, the repressilator is described by the system

x′ =
μ

1 + y4
− x,

y′ =
μ

1 + z4
− y,

z′ =
μ

1 + x4
− z,

(8.74)

where to simplify the analysis, we assume that the interactions are completely sym-
metric; this is not necessary for bifurcation. These equations have a steady-state
solution with x = y = z = xeq(μ), where xeq satisfies the equation

xeq(1 + x4
eq) = μ. (8.75)

29The cell cycle is a prime example of such a biological clock. Although the cell cycle is vastly
more complicated than the simple system (8.74), nevertheless, this model is considered to be a
useful point of departure for studying the cell cycle (S. Haase, private communication). The model
is mentioned in passing on pp. 564–565 of Winfree’s encyclopedic work [97].
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Figure 8.16: (a) Schematic diagram of the repressilator system, (8.74); y inhibits
the production of x, etc. (b) Bifurcation diagram for the repressilator (8.74). For
each μ > 2, there is a stable periodic orbit.

It is easily seen that for all μ > 0, (8.75) has a unique solution with xeq > 0.
Moreover, this solution depends smoothly and monotonically on μ, and it tends to
infinity as μ → ∞. The graph of this solution is the “backbone” of the bifurcation
diagram of Figure 8.16(b).

To determine how the stability of xeq(μ) depends on μ, we compute that the
Jacobian of the system at the equilibrium equals

DF(xeq(μ), μ) =

⎡

⎣
−1 −ρ(μ) 0
0 −1 −ρ(μ)

−ρ(μ) 0 −1

⎤

⎦ , (8.76)

where

ρ(μ) =
4μx3

eq(μ)

(1 + x4
eq(μ))

2
=

4x4
eq(μ)

1 + x4
eq(μ)

. (8.77)

This matrix has the form DF(xeq(μ), μ) = −ρ(μ)B − I, where

B =

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ .

The eigenvalues of B are cube roots of unity, so the eigenvalues of DF(xeq(μ), μ) are

−ρ(μ)− 1 and − ρ(μ)

(

−1

2
± i

√
3

2

)

− 1.

As μ increases, so does ρ(μ). The real eigenvalue of DF(xeq(μ), μ) just becomes
more negative. By contrast, the complex-conjugate eigenvalues, which lie in the
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Figure 8.17: Sample traces of x versus t obtained by numerical solution of the
repressilator (8.74) with initial conditions x(0) = 0.6, y(0) = 0.4, z(0) = 0.2. Hor-
izontal lines locate the equilibrium solutions. Left panel: With μ = 1.8, transient
oscillations occur before the system settles to equilibrium. Right panel: With μ = 2.2,
the solution trajectory approaches a limit cycle. (If you solve the equations yourself,
you may view the orbit of this periodic solution in, say, the x, y-plane.)

left half-plane for small μ, cross the imaginary axis when ρ(μ) = 2. By (8.77), this
happens when x4

eq(μ) = 1, which according to (8.75) implies that μ = 2. In summary,
the equilibrium (8.75) is stable if μ < 2 and unstable if μ > 2.

Calling on simulations, we see in Figure 8.17 that stable small-amplitude periodic
solutions of (8.74) appear after μ crosses 2. As shown in the bifurcation diagram
of Figure 8.16(b), they grow continuously as μ increases. Thus, (8.74) exhibits a
supercritical Hopf bifurcation. This behavior could be determined analytically, but
it would take more patience than your authors have to carry this through.

8.7.3 Section 1.6 Revisited: Part V

Another example of a Hopf bifurcation occurs in the Lotka–Volterra equations aug-
mented to include logistic growth and the Allee effect for the prey,

(a) x′ = x

(
x− ε

x+ ε

)
(1− x

K
)− xy,

(b) y′ = ρ(xy − y).

(8.78)

In Section 6.2.3, we saw that if K > 1, then (i) the coexistence equilibrium (xeq, yeq),
where xeq = 1 and yeq = (1− 1/K)(1− ε)/(1 + ε), is in the physical domain {x ≥ 0,
y ≥ 0} and (ii) at this equilibrium, detDF(xeq(K), K) > 0 and

trDF(xeq(K), K) =
2ε− (1 + 2ε− ε2)/K

(1 + ε)2
.
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Figure 8.18: (a) Bifurcation diagram for the augmented Lotka–Volterra equations
(8.78). (b) A phase-plane plot for ε = 0.2, K = 3.2, and ρ = 1. The green dashed
curve is an unstable periodic orbit. For initial conditions inside this orbit, trajectories
spiral in to the coexistence equilibrium; for initial conditions outside, they spiral out
and (generically) eventually approach the extinction equilibrium (0, 0).

Thus, the equilibrium is asymptotically stable if 1 < K < (1 + 2ε − ε2)/2ε, but
it is unstable if K > (1 + 2ε − ε2)/2ε. If K = (1 + 2ε − ε2)/2ε, the eigenvalues of
DF(xeq(K), K) lie on the imaginary axis; in other words, the coexistence equilibrium
undergoes a Hopf bifurcation as K crosses this value.

With numerics we find that equation (8.78) has periodic solutions for values
of K near the bifurcation point, but as indicated in Figure 8.18(a), they exist when
K < (1+2ε−ε2)/2ε, where the coexistence equilibrium is asymptotically stable; thus,
the bifurcation is subcritical. These periodic solutions are unstable, so they are not
readily observable in a straightforward simulation. As illustrated in Figure 8.18(b),
they may be observed indirectly,30 since the basin of attraction of the coexistence
equilibrium is bounded by these periodic solutions.

Preview of coming attractions: As K decreases, the amplitude of these periodic
solutions grows, but they cease to exist abruptly at K ≈ 2.952, when the minimum
of y along the orbit vanishes. What happens to them? Stay tuned. We shall take
up this issue in Section 9.1.3.

8.7.4 The “Denatured” Morris–Lecar System

The Morris–Lecar system, an experimentally based model for the electrical behavior
of neurons, has a rich bifurcation structure. The system is introduced and analyzed

30Alternatively, they may be observed directly by solving the equations with “time running
backward.” We invite you to do this computation.
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x

I

ba

Figure 8.19: (a) A bifurcation diagram for the denatured Morris–Lecar equa-
tion (8.79) with parameters (8.82). A subcritical Hopf bifurcation occurs when
I ≈ 0.07573. (b) The Morris–Lecar model was derived from experiments on mus-
cle fibers of the giant acorn barnacle. Recognizing this origin, we include a [public
domain] reprinted sketch of Charles Darwin, who was passionate about barnacles
[78]. He kept a first draft of On the Origin of Species in a desk drawer for eight
years while he worked out a detailed taxonomy of barnacles! Source: Charles Darwin
[Public domain], via Wikimedia Commons.

in Section 3.2 of [23]. (Cf. also Section 9.7 of [96].) Here we study a simplification
of it, which we call the denatured Morris–Lecar equation, the system31

x′ = x2(1− x)− y + I,

y′ = Aeαx − γy,
(8.79)

where I, A, α, γ are constants; the bifurcation parameter I may have either sign,
while the other constants are all positive. Figure 8.19 shows a bifurcation diagram,
x vs. I, for (8.79) for one choice of the parameters.32 An S-shaped curve of equilibria
is plotted in black. Both stable and unstable periodic solutions are plotted in green,
displaying the maximum and minimum values of x along the orbit. Our goals in
this section are (i) to understand why the graph of equilibria is S-shaped and (ii) to
locate the Hopf bifurcation on the upper branch of the figure.

The S-shaped steady-state bifurcation diagram can be understood from the null-
clines for (8.79), such as drawn in Figure 8.20. As I varies, the x-nullcline shifts up

31It may be informative to compare (8.79) with the FitzHugh–Nagumo equation (Exercise 5.11),
which is a simplification of the Hodgkin–Huxley model. Both systems have the same x-nullclines,
apart from scaling. While the y-nullclines of the FitzHugh–Nagumo equations are straight lines,
the y-nullclines of (8.79) curve upward (see Figure 8.20), because a linear term is replaced by the
exponential.

32There’s a long story that we’re not telling you about how we chose these parameters. Let us
remind you of the old adage, “A good teacher doesn’t tell you everything he/she knows.”
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Figure 8.20: Nullclines for (8.79) with parameters (8.82). Left panel: For
I = −0.01, there are three equilibria. Right panel: For I = 0.05, there is just
one equilibrium.

or down. When I is sufficiently large, as in the right panel of the figure, the cubic
x-nullcline is so high that the nullclines intersect only once, at a large value of x.
When I is somewhat smaller, as in the left panel, the cubic may cross the exponential
three times. When I is sufficiently negative (not shown in figure), the x-nullcline is
so low that again there is only one intersection, at a negative value of x. Hence, the
S-shape.

Examining the slopes of the nullclines and applying the information in Table 6.2,
we see that detDF < 0 along the middle branch—these are saddle points—and
detDF > 0 along the upper and lower branches. Equilibria on the upper and
lower branches are mostly stable, but some equilibria on the upper branch may be
destabilized by a Hopf bifurcation.

Let’s look for a Hopf bifurcation. For (x∗, y∗) to be a Hopf-bifurcation point of
(8.79) when I = I∗, this data must satisfy

(a) x2
∗(1− x∗)− y∗ + I∗ = 0,

(b) Aeαx∗ − γy∗ = 0,
(c) 2x∗ − 3x2

∗ − γ = 0.
(8.80)

The first two of these equations are the equilibrium equations of (8.79); the third
requires that the Jacobian

DF∗ =
[
2x∗ − 3x2

∗ −1
αAeαx∗ −γ

]
(8.81)

have trace zero. Equations (8.80) are necessary for Hopf bifurcation but not sufficient;
we need also to show that detDF∗ > 0 to rule out the possibility that DF∗ has real
eigenvalues that happen to add up to zero.
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Provided γ < 1/3, equations (8.80) may solved sequentially in reverse order. For
the parameters

A = 0.001, α = 6, and γ = 0.15, (8.82)

we obtain33

(a) x∗ = (1 +
√
1− 3γ)/3 ≈ 0.58054,

(b) y∗ = Aeαx∗/γ ≈ 0.21710,
(c) I∗ = y∗ − x2

∗(1− x∗) ≈ 0.075731.
(8.83)

For these parameters34

detDF∗ = αAeαx∗ − γ2 ≈ 0.17289 > 0.

Thus, the eigenvalues of DF∗ are imaginary, specifically

λ(DF∗) =
√
detDF∗ i ≈ ±0.41580 i;

i.e., we’ve located the desired Hopf bifurcation.

Incidentally, the calculations outlined in Exercise 26 show that the bifurcation is
subcritical.

Another preview of coming attractions: The periodic solutions in Figure 8.19
cease to exist abruptly at I ≈ 0.007137, where the curve in the figure ends. What
happens to them? Is it an accident that the end of the periodic orbits appears to
line up with one of the saddle-node bifurcations? Answers in Section 9.2.2.

8.8 Theoretical Description of Hopf Bifurcation

8.8.1 A Bifurcation Theorem

The Lyapunov–Schmidt reduction provides a simple, effective tool for understanding
steady-state bifurcation. By contrast, the tools for studying Hopf bifurcation are
more complicated. Even the statement of the bifurcation theorem below is irritat-
ingly long, and we do not prove it. (But see the Pearls for discussion and references.)

Consider a one-parameter family of ODEs

x′ = F(x, μ), (8.84)

33Equation (8.80c) has two roots x∗ = (1 ± √
1− 3γ)/3. In (8.83a) we consider only the root

with the plus sign, because the other case gives real eigenvalues for the Jacobian.

34For other parameters, e.g., keeping α = 6 and γ = 0.15 but reducing A to 0.0001152, this
determinant may vanish. In this case, we have what’s called a Takens–Bogdanov bifurcation (see
Exercise 9).
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where we assume that F ∈ C3. As with steady-state bifurcation, we suppose that
the equation has a nonhyperbolic equilibrium (x∗, μ∗), but the hypothesis (8.10) on
the Jacobian DF∗ is altered as follows: we assume that

λ1,2(DF∗) = ±iω∗ �= 0, �λj(DF∗) �= 0, j = 3, . . . , d. (8.85)

In words, DF∗ has nonzero simple eigenvalues ±iω∗ and no other eigenvalues on the
imaginary axis. In particular, zero is not an eigenvalue of DF∗, so it follows from the
implicit function theorem that for μ near μ∗, there is a smooth branch of equilibria
xeq(μ) passing through (x∗, μ∗). (In Theorem 8.2.2, the steady-state counterpart of
Theorem 8.8.1, we needed a separate hypothesis to this effect.)

By (8.85), the linearized ODE

w′ = DF∗ ·w (8.86)

has (real) nonzero 2π/ω∗-periodic solutions, the components of w(t) being trig func-
tions. Such solutions are not unique: if w(t) is one such solution, so is the scaled
phase-shifted function cw(t − t0). Nevertheless, in Theorem 8.8.1 we choose one
specific solution w(t) of (8.86) for parametrizing the bifurcating solutions. Let us
define vectors in R

d

v1 = w(0), v2 = w′(0). (8.87)

As in Lemma 8.2.1, we may deduce that the Jacobian DF(xeq(μ), μ) has a
smoothly varying (complex) eigenvalue λ(μ) such that λ(μ∗) = iω∗. In analogy
with (8.11), we require that

d

dμ
�λ(μ∗) �= 0. (8.88)

Despite potential difficulties in verifying (8.88) in higher dimensions, in two dimen-
sions the formula

�λ(μ) =
1

2
trDF(xeq(μ), μ),

which holds for μ near μ∗, makes this task trivial.

Theorem 8.8.1. Under the above hypotheses, a one-parameter family of periodic
solutions of (8.84), say γ(t, a), where 0 ≤ a < ε, bifurcates from (x∗, μ∗); the
function γ(t, a) satisfies (8.84) for a specific parameter value μ = μ(a). If w(t)
is a nonzero periodic solution of the linearized equation (8.86), this family admits a
C2-parametrization

(a) γ(t, a) = xeq(μ(a))+aw(ω(a)t)+O(a2), (b) μ(a) = μ∗+μ2a
2+o(a2), (8.89)

where the frequency factor satisfies ω(a) = 1+O(a2) and μ2 is a constant; in partic-
ular, the period of γ(t, a) equals 2π/ω∗ plus an O(a2)-correction. The union of the
orbits
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⋃

t∈R

⋃

0≤a<ε

{(γ(t, a), μ(a))} (8.90)

is a two-dimensional surface in R
d ×R of class C2 through (x∗, μ∗), which is tangent

to the subspace spanned by (v1, 0) and (v2, 0), where v1,v2 are defined by (8.87).
Every periodic solution of (8.9) that is contained in an appropriate neighborhood
N ⊂ R

d × R of (x∗, μ∗) belongs to the family γ(t, a).

Remarks: (i) We suggest that you interpret the theorem for the normal form
(8.73). In particular, doing so shows the need for the frequency factor ω(a). (ii) Noth-
ing would be gained by allowing the amplitude parameter a to take negative values.
Since w(t) has trigonometric dependence, w(t + π/ω∗) = −w(t). Thus, including
a < 0 in the union (8.90) would simply give a double enumeration of points in this
surface. (iii) If μ2 �= 0 in (8.89b), the amplitude of the periodic solution γ(t, a) is
approximately proportional to

√|μ− μ∗|. In such a case, the periodic orbits could
be parametrized by μ, and the amplitude parameter a could be eliminated from the
formulation of the theorem. However, this is not possible in general. The trivial
linear equation [

x′

y′

]
=

[
μ −1
1 μ

] [
x

y

]
,

whose periodic solutions all lie in the plane {μ = 0}, is the simplest counterexample.
In Section 8.8.2 we will encounter a more serious example with the same behavior.

Stability information is available if μ2 �= 0 in (8.89b) and if the nonimaginary
eigenvalues in (8.85) all have negative real parts: in symbols,

λ1,2(DF∗) = ±iω∗ �= 0, �λj(DF∗) < 0, j = 3, . . . , d. (8.91)

Theorem 8.8.2. If (8.91) holds, then near a supercritical Hopf bifurcation the bi-
furcating periodic solutions are stable, while they are unstable near a subcritical one.

It follows from Theorem 8.8.1 that a Hopf bifurcation is supercritical if the two
quantities μ2 and � dλ/dμ(μ∗) have the same sign. (Check this! ) Conversely, the
bifurcation is subcritical if μ2 and � dλ/dμ(μ∗) have opposite signs.

8.8.2 The Activator–Inhibitor: Extreme Nongeneric Behavior

Recall once again from Section 6.3.1 the following two facts about equilibria of the
activator–inhibitor equations (8.21): (i) If σ > 2, then (8.21) has two nonzero equi-
libria P± = (x±, y±), where x± satisfies x2 − σx+ 1 = 0 and y± = x2

±. (ii) If ρ > 1,
then the top equilibrium P+ is a sink, and if ρ < 1, it is a source.

Fix σ > 2 and consider these equations as a bifurcation problem with ρ as the
bifurcation parameter. We ask you to show that the equilibriumP+ undergoes a Hopf
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bifurcation at ρ∗ = 1, in which the hypotheses (8.85) and (8.88) of Theorem 8.8.1 are
satisfied. By Theorem 8.8.1, a one-parameter family of periodic solutions of (8.21)
bifurcates from P+. However, the bifurcation is neither supercritical nor subcritical.
In fact, all the bifurcating solutions lie in the plane

{(x, y, ρ) ∈ R
2 × R : ρ = 1}.

Indeed, these are the periodic solutions shown in Figure 7.2, which we discussed in
Example 2 of Section 7.1.2. Equation (8.21) does not have periodic solutions for any
ρ �= 1. (Incidentally, phase portraits for (8.21) with ρ = 0.9 and 1.1 are shown in
Figure 6.12.)

This behavior is very nongeneric, and virtually any perturbation will disrupt it.
For example, recall that (8.21) was obtained as the limit κ → ∞ of a more general
activator–inhibitor model (5.26). Taking κ finite is a natural perturbation to inves-
tigate, and in Exercise 25, we ask you to show that the Hopf bifurcation of (5.26) at
ρ ≈ 1 is subcritical.

8.8.3 Sub/Supercriticality in Two Dimensions

In most applications, it is painful to determine analytically whether a Hopf bifur-
cation is subcritical or supercritical. Usually, we prefer to resort to numerics. For
two-dimensional systems there is actually a “plug-and-chug” formula for a quantity
whose sign determines this behavior. Unfortunately, a lot of calculation is required
to evaluate it, which limits its usefulness in applications; but let’s give it to you
anyway.

Let x′ = F(x, μ) be a family of two-dimensional ODEs with an equilibrium that
undergoes a Hopf bifurcation at (x, μ) = (x∗, μ∗), where (8.85) and (8.88) are satis-
fied. Performing a linear change of coordinates, we may assume that

F(x, μ∗) = Ω∗(x− x∗) +
[
f(x)
g(x)

]
, (8.92)

where
Ω∗ =

[
0 −ω∗
ω∗ 0

]
, (8.93)

and all higher-order terms are put into f(x), g(x). The stability of bifurcating
solutions depends on the following combination of quadratic and cubic terms in
f(x), g(x):

Γ = fxxx+fxyy+gxxy+gyyy+
1

ω∗
[fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy], (8.94)

where we use subscripts to indicate partial derivatives of f and g with respect to the
components x and y of x, evaluated at the bifurcation point (x∗, μ∗).
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Theorem 8.8.3. The Hopf bifurcation of (8.92) is supercritical if Γ < 0 and sub-
critical if Γ > 0.

In Exercise 30 we outline a proof of this result in the special case in which
all second-order derivatives in (8.94) vanish, and we give a reference for the general
proof. In Exercise 26 we ask you to apply the theorem to the denatured Morris–Lecar
model and confirm that the Hopf bifurcation found in Section 8.7.4 is subcritical.
The tedious part of the latter exercise is performing the initial linear transformation
to put DF∗ into real normal form as in (8.92).

8.9 Exercises

After the core exercises, many specific applications of bifurcation theory are proposed in Section 8.9.2.

8.9.1 Core Exercises

The core exercises address the following issues:

Unfinished business 1, 3, 4, 12
Parametrization of bifurcating solutions 2, 13
Applying the bifurcation theorems 5, 6
More analysis of normal forms 7, 8
Counterexamples 9–11

1. (a) For the bifurcations of (8.5), (8.8), and (8.16), if you haven’t already
done so, verify that the predictions of Theorem 8.5.3 regarding exchange
of stability are consistent with the relevant bifurcation diagrams in the
text.

(b) For the bifurcations of (8.2), (8.5), and (8.60), if you haven’t already done
so, verify that the hypotheses of Theorem 8.5.5 for symmetric bifurcations
are satisfied; i.e., check (8.10) and (8.12).

2. Show that the bifurcating solutions of the Lotka–Volterra model (8.16) may be
parametrized as in (8.13).

Hint: If you choose v = (−1, 1) to span kerDF∗, then (8.13a) reads

X(a) = (K(a), 0) + a(−1, 1) +O(a2).

On the other hand, from (8.17), the coexistence equilibrium is given by

X(a) = (1, 1− 1/K(a)).

Check that these two representations are consistent with the definitionK(a) = 1 + a.
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3. Rederive (8.47) from scratch.

Remark: Focusing on this one small part of the Lyapunov–Schmidt reduction
may help ease your way to a better understanding of the general theory.

4. (a) Show that both of the following conditions are equivalent to the hypothesis
that the (square) matrix A has a simple eigenvalue zero:

• dim kerA = 1 and kerA ∩ range A = {0}.
• dim kerA2 = 1.

(b) Prove Lemma 8.5.4; i.e., show that if R2 = I, then the only possible
eigenvalues of R are ±1, and R is diagonalizable.

5. Write the Lorenz system (8.5) in vector notation x′ = G(x, ρ), where x =
(x, y, z). Given a square matrix S, consider a transformed unknown x = S−1x,
which satisfies the ODE x′ = F(x, ρ) with F(x, ρ) = S−1G(Sx, ρ). Determine
S so that at the bifurcation point, DF∗ satisfies (8.26).

6. (a) Draw the graph, y vs. σ, defined by solving the reduced equation (8.30)
for the chemostat, g(y, σ) = 0, where

g(y, σ) = (σ − y)

(
y

y + 1
− ρ

)
.

(b) Label each branch of your graph according as ∂yg is positive or negative
there.

(c) Along the equilibrium branch x = 0, y = σ of (8.18) with σ < ρ/(ρ+ 1),
determine whether the equilibrium is stable or unstable.

(d) Recalling the addendum to Theorem 8.5.3, complete a bifurcation diagram
for the chemostat by identifying stable and unstable branches on your
graph.

7. Draw the analogues of Figure 8.7 for a subcritical pitchfork (x′ = x3 + μx),
a saddle-node bifurcation (x′ = −x2 + μ), and an unfolded hysteresis point
(x′ = −x3 + μ+ αx, where α > 0).

Remark: With this exercise we hope to make the ideas of exchange of stability
so familiar that you are slightly bored with them.

8. (a) Draw the imperfect bifurcation diagrams for a subcritical pitchfork (x′ =
x3 + μx + ε), transcritical bifurcation (x′ = −x2 + μx + ε), and saddle-
node bifurcation (x′ = −x2 + μ+ ε). Articulate differences (if any) in the
qualitative behavior under quasistatic variation of μ between the cases
ε > 0, ε = 0, and ε < 0.
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(b) Show that the branch of stable solutions for an imperfect subcritical pitch-
fork bifurcation terminates at

μ = −3
(ε
2

)2/3

. (8.95)

Hint: Implicit differentiation of x3 + μx+ ε = 0 with respect to x gives

3x2 + μ+ x
dμ

dx
= 0.

At the termination of the solution branch, dμ/dx = 0, so this equation may
be solved for x as a function of μ and substituted into the original equation.

Discussion: The fractional power in (8.95) is significant for engineering de-
sign. For example, the laterally supported pendulum in Figure 8.3 has a
stable equilibrium for every mass less than m∗ = k�/g. However, suppose
the supporting spring is slightly misaligned so that the potential energy
equals

V̂ (x) = mg� cosx+ k(� sinx+ δ)2/2.

Then, to lowest order in δ, the collapse load will be reduced by a quantity
proportional to ε2/3, where ε = δ/�, and if ε is small, then ε2/3 � ε. In other
words, a small imperfection can greatly reduce the predicted failure load of
a structure. See [87] for a thorough analysis of such issues.

9. Introduction: This problem illustrates what can go wrong in the bifurcation result, Theo-
rem 8.2.2, if the zero eigenvalue of DF∗ is not simple, even if kerDF∗ is one-dimensional.

(a) Consider bifurcation of the trivial solution x = y = 0 of

x′ = −y,
y′ = (x2 + μ2)x+ μy,

as μ crosses zero. Specifically, show that (i) zero is a repeated eigenvalue
of DF∗, (ii) the trivial solution loses stability as μ crosses zero, and (iii) no
new equilibrium solutions bifurcate near μ = 0.

(b) Consider bifurcation of the trivial solution x = y = 0 of

x′ = μx− y,
y′ = x2 − μx,

as μ crosses zero. Specifically, show that (i) zero is a repeated eigen-
value of DF∗, (ii) the bifurcation diagram has two branches like a typical
transcritical bifurcation, and (iii) the stabilities of these branches are not
described by the principle of exchange of stability.

Discussion: These two examples, which were constructed to illustrate a math-
ematical point, are a little artificial. However, in real applications with many
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parameters, a bifurcation in which zero is not a simple eigenvalue may be hidden
in the parameter space. Indeed, such a nongeneric bifurcation occurs in the de-
natured Morris–Lecar equation (8.79); see footnote number 34. A problem that
exhibits this degeneracy is called a Takens–Bogdanov bifurcation. Classification
of all the phenomena that may appear in such bifurcations is beyond the scope
of this book; see Section 20.6 of [95] for more information.

10. Draw the bifurcation diagram for

x′ = x3 − μ2x

and determine the stabilities of all solution branches.

Discussion: This problem illustrates the need for hypothesis (8.11) in Theo-
rem 8.2.2. The same issue is hidden in Part (a) of the preceding exercise: even
though the eigenvalue at the bifurcation point in that problem is not simple,
the equilibrium equations for this system may still be reduced to the analogous
single equation x3 + μ2x = 0, which does not satisfy hypothesis (8.11).

Incidentally, a simple mechanical system that exhibits a bifurcation of the
above form is presented and analyzed in Section VI.1 of [31].

11. Introduction: Applied naively, Theorem 8.5.5 might lead you to expect pitchfork bifurcation
in any problem that has reflectional symmetry. However, the system

x′ = −x2 − x+ μy,
y′ = −y2 − y + μx,

which is symmetric under the reflection R ·(x, y) = (y, x), warns that you must examine such
problems more carefully before jumping to this conclusion.

(a) Verify that the hypotheses (8.10) and (8.11) are satisfied at the bifurcation
of this system from the trivial solution x = y = 0 when μ = 1.

Remark: Even the stronger hypothesis (8.51) is satisfied.

(b) Show that a branch of solutions with x = y bifurcates transcritically from
the zero solution at μ = 1.

(c) Deduce from Theorem 8.2.2 that the zero solution and your solution in
Part (b) are the only equilibria near (x, y, μ) = (0, 0, 0).

(d) Show that the null eigenvector v of DF∗ satisfies Rv = +v. (Cf. Condi-
tion (iv) of Theorem 8.5.5.)

Remark: You might find it amusing to check that this system has another bifur-
cation for μ < 0 at which the hypotheses of Theorem 8.5.5 are satisfied.

12. For the Hopf bifurcations of (8.71), (8.74), and (8.78), if you have not already
done so, verify that conditions (8.85) and (8.88) hold.
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13. Introduction: The following exercise is intended to help you understand (8.89), the parametri-
zation of bifurcating solutions at a Hopf bifurcation, in the context of the repressilator (8.74).
Recall that periodic solutions bifurcate from the equilibrium when μ = μ∗ = 2.

(a) For μ = μ∗+10−k/2, k = 2, 3, 4, 5, compute the periodic solution of (8.74),
say γμ(t).

(b) Find a basis v1,v2,v3 of R3 such that the similarity matrix S = Col(v1,
v2,v3) transforms the Jacobian DF∗ at the bifurcation point to the real
canonical form ⎡

⎣
0 −ω∗ 0
ω∗ 0 0
0 0 −3

⎤

⎦ .

(c) For each value of μ as above, adjust the phase of γ(t) and find the best
choices for a, ω to minimize

sup
t

|γμ(t)− xeq(μ)− a[(cosωt)v1 + (sinωt)v2] |. (8.96)

(d) Process your data in Part (c) to (i) show that the error (8.96) is O(a2) and
ω(a) − 1 = O(a2) and (ii) estimate the coefficient μ2 in the Taylor-series
expansion of μ(a).

8.9.2 Applications of Bifurcation Theory

Exercises 14–17 involve steady-state bifurcation; 18–21 involve Hopf bifurcation; and both types
appear in Exercise 22. Let your interests guide which of these many problems you do.

14. Introduction: By the term guyed tower we mean an inverted pendulum supported by springs
on either side, as illustrated in Figure 8.21. Suppose m, the mass of the system, is concen-
trated at the end of the pendulum. Define a, �, α as in Panel (a), so tanα = �/a . Suppose
both springs are linear with spring constant k, and let them have unstretched length L,
where L <

√
�2 + a2. Thus, if the tower makes an angle x with the vertical, the potential

energy in the spring on the left is

k

2

(√
�2 + a2 + 2�a sinx− L

)2

.

The length of the spring, the expression under the radical, is derived from the law of cosines;
the angle opposite the spring is π/2 + x, and cos(π/2 + x) = − sinx.

(a) Write the total potential energy of the system as the sum of three terms,
the stretching energy of the two springs plus the gravitational potential
energy of the mass m.

(b) Choose an appropriate nondimensionalization of your expression for the
energy.
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x

a b

α α

a

Figure 8.21: (a) Schematic diagram of a guyed tower for Exercise 14, in its equi-
librium configuration. (b) A deformed configuration, illustrating the definition of the
angle x.

(c) Examine the quadratic term in the energy to find the value of the mass
at which bifurcation occurs.

(d) Examine the quartic term in the energy to show that the bifurcation is
subcritical if sin 2α < 2/

√
5, i.e., if α < 31.7◦ or α > 58.3◦.

15. Introduction: The equations

x′ =
μ

1 + y4
− x,

y′ =
μ

1 + x4
− y,

(8.97)

are a two-variable analogue of the repressilator (8.74); i.e., Y inhibits the production of X,
and X inhibits the production of Y. See also [29].

(a) Determine the value of μ where the equilibrium with x = y loses stability
and verify hypotheses (8.10) and (8.12).

Discussion: Recall that in Exercise 6.2(a) we asked whether there were any
equilibria of these equations off the diagonal {x = y}. Without our having
to fiddle with the equations, the application of Theorem 8.2.2 guarantees
the existence of such solutions. These equations are symmetric under the
interchange of x and y, and because of this symmetry, the bifurcation is a
pitchfork.

(b) Use the computer to show that the bifurcation is supercritical.

(c) Sketch the bifurcation diagram for the above system. Plot both x vs. μ,
which hides the symmetry in the problem, and x − y vs. μ, in which the
symmetry is evident.

Discussion: To make a reasonable sketch, it suffices to know that the bifur-
cation is supercritical and to determine analytically the behavior of solutions
as μ → ∞.

(d) Recalling (8.57) as a model for imperfect bifurcation, make a prediction
about how your bifurcation diagram will change if you break the symmetry
between the equations, say changing one of the production rates
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x′ =
(1 + ε)μ

1 + y4
− x,

y′ =
μ

1 + x4
− y.

(e) Test your prediction numerically for some nonzero choice of ε.

Discussion: The above system is sometimes called a bioswitch (cf. Section 12.2
of [70]). This term arises in the following context. Virtually every cell in a
living organism contains the entire genome. Differences between cells arise when
different combinations of genes are turned on or off. If X and Y describe the
level of activity of two genes, a gene circuit as above provides a mechanism for
choosing which gene is turned on and which turned off, i.e., adjusting initial
conditions and/or adjusting the balance between production rates.

Despite the similarity of (8.97) to the repressilator, here is a surprising con-
trast: while breaking symmetry in (8.97) changes the qualitative nature of the
bifurcation, breaking symmetry in (8.74) does not—stable periodic solutions bi-
furcate from an equilibrium even if the production coefficients μk and the decay
rates differ in the three equations.

16. Introduction: Recall from Exercise 6.5 the two-predator system

x′ = x(1− x/K)− xy − xz,
y′ = ρ1xy − δ1y,
z′ = ρ2xz − δ2z.

(8.98)

In Chapter 6 we ducked the task of listing the stabilities of all the equilibria as functions of
the parameters. There were just too many cases, and it seemed little understanding would
be gained from all the calculations. Bifurcation theory gives us an effective way to organize
and understand the phenomena.

Assuming δ1/ρ1 < δ2/ρ2, analyze the two bifurcations—i.e., locate and det-
ermine their types—from the prey-only equilibrium (K, 0, 0) of (8.98) as K
increases.

Discussion: Note that at the second bifurcation, where K = δ2/ρ2, exchange of
stability takes a slightly different form. At this bifurcation the prey-only equi-
librium and one of the coexistence equilibria cross each other. However, neither
branch is stable on either side of the bifurcation point. Below the bifurcation
point, the prey-only equilibrium has one unstable eigenvalue and the (unphys-
ical) coexistence equilibrium has two, while above the bifurcation point these
numbers are reversed.

17. Introduction: In Section 9.6.5 we shall study dynamics in Rössler’s equations,

x′ = −y − z,
y′ = x+ ay,
z′ = b+ z(x− c),

(8.99)

where a, b, c are positive parameters, as a bifurcation problem with c as the bifurcation
parameter. Here we consider only steady-state bifurcation.



8.9. Exercises 383

(a) Find a critical value c∗ such that for c < c∗, equation (8.99) has no equi-
libria, but two equilibria appear through a saddle-node bifurcation as c
crosses c∗.

Remark: If c < c∗, solutions of (8.99) grow without bound as t → ∞, and
even if c > c∗, some solutions are still unbounded. This is most easily shown
numerically.

(b) Show that if a = b, then at the bifurcation point, DF∗ has eigenvalues 0
and ±i

√
2− a2. (In particular, if a <

√
2, then hypothesis (8.10) is not

satisfied.)

Hint: At the bifurcation point, one eigenvalue vanishes, say λ1(DF∗) = 0.
Calculate that trDF∗ = 0, which implies that λ2 + λ3 = 0. Determine λ2,3

by calculating trDF2
∗.

Remark: The dedicated reader may show that for c just beyond the saddle-
node bifurcation, if a < b, then one equilibrium branch is stable and the
other unstable, but if b < a, then both branches are unstable.

18. Advice: Here is a gentle introduction to Hopf-bifurcation calculations. Feel free to skip it if
you are ready to handle stronger fare.

Locate any Hopf bifurcations from the equilibrium solution with x = y = z in
(8.74) with an arbitrary Hill exponent n:

x′ =
μ

1 + yn
− x,

y′ =
μ

1 + zn
− y,

z′ =
μ

1 + xn
− z.

19. Introduction: Recall Sel’kov’s model for glycolysis,

x′ = ρ− σx− xy2,
y′ = −y + σx+ xy2.

In Exercise 6.2(b) you found that (i) for all positive σ, ρ, the system has a unique equilibrium

in the first quadrant and (ii) for the specific parameter value σ = 0.1, this equilibrium is

unstable for ρ in an interval ρ1 ≤ ρ ≤ ρ2, and stable otherwise.

(a) Show that this equilibrium undergoes a Hopf bifurcation as ρ crosses either
ρ1 or ρ2; in particular, verify (8.85) and (8.88) at both bifurcation points.

(b) Use the computer to make a bifurcation diagram of the periodic solutions
that exist between these two values of ρ.
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20. Introduction: In this exercise you consider the van der Pol equation as an example of Hopf
bifurcation.

(a) Show that the trivial solution x = y = 0 of

x′ = y,

y′ = −x− (x2 − μ)y,

undergoes a Hopf bifurcation as μ crosses zero.

(b) For μ > 0, rescale variables to put this equation into the usual form

x′ = y,

y′ = −x− β(x2 − 1)y.

Challenge: Even before doing the rescaling, can you anticipate how β depends
on μ as μ → 0? I.e., does β tend to infinity, remain bounded away from both
zero and infinity, or tend to zero?

21. Introduction: Recall that if ρ > 1 in the Lorenz equations (8.5), then the equations have two
nontrivial equilibria, as discussed in Section 8.1.

(a) Show that if σ−β−1 < 0, then these equilibria are asymptotically stable
for all ρ > 1.

(b) Show that if σ − β − 1 > 0, the equilibria are asymptotically stable if
1 < ρ < ρ∗ and unstable if ρ > ρ∗, where

ρ∗ =
σ(σ + β + 3)

σ − β − 1
.

Specifically, show that the equilibria undergo Hopf bifurcation at ρ = ρ∗,
with hypotheses (8.91) and (8.88) being satisfied.

Hint: You may find it helpful to refer back to Proposition 2.4.6.

22. Introduction: The Rosenzweig–MacArthur equations describe another predator–prey model.
After scaling, the equations are

x′ = x(1− x)− xy

1 + Sx
,

y′ =
Exy

1 + Sx
− μy,

(8.100)

where S,E, μ are positive parameters. The model has a finite carrying capacity for the prey,
which has been scaled to unity; thus, for all parameter values, (1, 0) is an equilibrium. The
primary new effect in this model is that because of the factor 1 + Sx in the denominators,
predation saturates if the prey population is large; indeed, the letter “S” is a mnemonic for
“saturation.” (The letter “E” is a mnemonic for the “efficiency” with which the predators
convert the biomass of the prey into their own biomass.)
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(a) Considering this system as a bifurcation problem with the predator death
rate μ as bifurcation parameter, show that the prey-only solution (1, 0)
is stable for large μ, say μ > μ0, but loses stability when μ is decreased
below μ0.

(b) Find the coexistence equilibria in these equations. Show that this equi-
librium bifurcates from the prey-only equilibrium in a transcritical bifur-
cation at μ = μ0.

(c) Use the principle of exchange of stability to predict, for μ near μ0, where
the coexistence equilibrium is stable and where it is unstable.

(d) Verify that your prediction in Part (c) is correct.

Remark: In the remainder of the exercise, you will see that although these
stability predictions are accurate locally near the bifurcation point, they may
not hold globally.

(e) Choose a value of S > 1 in (8.100) and use the computer to study the
stability of the coexistence equilibrium as μ decreases. You will find a
Hopf bifurcation at some point μ = μ∗ > 0.

Remark: If S < 1, the coexistence equilibrium is stable, no matter how small
μ gets.

(f) Calculate (analytically) the bifurcation point μ∗ and verify hypotheses
(8.91) and (8.88) there.

8.9.3 PHD Exercises

We hope you will be stimulated by at least some of the following problems. Although they are long,
they offer opportunities to push much further into the subject. But please don’t let yourself feel
oppressed by them—they are not mandatory. Exercises 23–27 follow up on material in the chapter;
28–30 introduce theoretical results from dynamical systems; and 31, 32 introduce more advanced
ideas from bifurcation theory.

23. Introduction: In this exercise we outline calculations to support the bifurcation diagrams of
the CSTR plotted in Figure 8.14. In analyzing the equations, it is most effective to consider
μ as a function of y.

(a) Show that if ξ = 0, the equilibrium equation for (8.70) can be reduced to
the form

A(y)μ2 −B(y)μ+ C(y) = 0, (8.101)

where

A(y) = ye−y, B(y) = σ − y − βye−y, C(y) = βy.

Hint: Solve the first equilibrium equation for x as a function of y and μ,
substitute this into the second equation, and rearrange.
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(b) In the equation B2(y) − 4A(y) C(y) = 0 for the discriminant of (8.101)
to vanish, solve for β to obtain

β =

[√
σ

y
± 1

]2
ey. (8.102)

(c) Verify that as shown in Figure 8.22, if σ = 8, the graph of (8.102) with
the minus sign has a rising portion, ybif < y < yiso, sandwiched between
two falling portions.

Hint: Draw the graph of (
√

σ/y −1)2. Although it decreases over the entire
interval 0 < y < σ, the exponential factor in (8.102) can create a range of y
where this function increases. To test for this, differentiate (8.102). You will
get a positive factor times a cubic in 1/

√
y. The cubic is negative as y → 0

and y → σ, but you can show that if σ = 8, it is positive on an interval
between these extremes.

(d) Correlate the information in Figure 8.22 with the bifurcation diagrams in
Figure 8.14, as follows:

β < βbif , Panel (a)
βbif < β < βiso, Panels (b) and (c)

β > βiso, Panel (d).

Hint: If y, β lie below the curve in Figure 8.22, the quadratic formula provides
two positive real roots of (8.101). If y, β lie somewhat above it, (8.101) has
no real roots. (Still higher in the y, β-plane, (8.101) again has real roots, but
these are negative, so they have no physical significance.) Holding β fixed in
each of the three ranges, ask how the number of roots of (8.101) varies as y
increases from 0 to σ.

24. Introduction: Equation (8.60) for two-cell Turing instability has several bifurcations for
which D < 0. Although these have no physical significance, exploring them gives you an
opportunity to practice applying the theory. In this problem assume σ > 2 and ρ > 1.

(a) Class 1 equilibria of (8.60) (i.e., solutions for which x1 = x2 = 0) undergo
a pitchfork bifurcation for which D < 0. Find it and determine whether
it is supercritical, subcritical, or degenerate.

(b) The trivial equilibria (x+, y+, x+, y+) of (8.60) (i.e., solutions of Class 3a+)
are stable for 0 ≤ D < D∗ and for a range with D < 0; they lose sta-
bility through a Hopf bifurcation for some negative value of D. Find the
bifurcation point.

(c) Solutions of (8.60) of Class 3b exist only in the range −D∗ < D < D∗. We
saw in Section 8.6.1 that at the upper limit of this range, these solutions
bifurcate from the trivial solution, Class 3a+. Show that at the lower limit
they bifurcate from the “other” trivial solution, Class 3a−.
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Figure 8.22: The curve (8.102) with the minus sign, along which the discriminant
of (8.101) vanishes. The graph is calculated assuming σ = 8.

Discussion: Figure 8.23 shows a bifurcation diagram that summarizes in-
formation from Parts (b) and (c) of this exercise. Note that the number of
unstable eigenvalues of the Jacobian changes along the curve of solutions of
Class 3b; this indicates that a Hopf bifurcation occurs somewhere along this
solution branch, meaning that the equations have some (unstable) periodic
solutions we have not investigated.

25. Consider (5.26), the activator–inhibitor model with finite κ, as a bifurcation
problem with bifurcation parameter ρ. Assume σ = 2.1, κ = 4. Show numer-
ically that (i) for ρ sufficiently large, the origin and the “top equilibrium” are
stable, and (ii) as ρ decreases, the top equilibrium undergoes a subcritical Hopf
bifurcation near ρ = 1.

Remark: The point of this exercise is to see that a natural perturbation of
(8.21) removes the nongeneric behavior in the bifurcation of this system found
in Section 8.8.2.

26. Introduction: In this exercise, Theorem 8.8.3 is used to show that the Hopf bifurcation of the
denatured Morris–Lecar model is subcritical. We rewrite (8.79) with x, y near the bifurcation
point (8.83) and with I = I∗ in the abstract form

[
x′

y′

]
= DF∗

[
x− x∗
y − y∗

]
+

[
f(x)
g(x)

]
. (8.103)

Note that the higher-order terms f(x), g(x) depend only on x, reflecting the fact that both
equations in (8.79) are linear in y. A simple calculation shows that at the bifurcation point,

fxx = 2− 6x∗ ≈ −1.4832, fxxx = −6, gxx = γy∗α2 ≈ 1.1718. (8.104)

(a) Show that the hypothesis (8.88) is satisfied for (8.79) at the point (8.83).
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Figure 8.23: Diagram showing one Hopf and two steady-state bifurcations for equi-
libria of (8.60) of Classes 3a and 3b. (Cf. Exercise 24.) Despite appearances, both
steady-state bifurcations are pitchfork, not transcritical. When an equilibrium is un-
stable, the notation u, 2u, or 3u is used to indicate that the Jacobian has one, two,
or three eigenvalues in the right half-plane, respectively. For solutions of Class 3a,
this information is obtained from (6.30). For solutions of Class 3b, it is obtained
(locally near a bifurcation point) from the principle of exchange of stability.
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(b) Introduction: To put the equation in the form (8.92), make the linear transformation
defined by

S

[
x
y

]
=

[
x
y

]
where S =

[
1 0
γ ω∗

]
;

i.e., the columns of S are the real and imaginary parts of the eigenvector of DF∗ with
eigenvalue −iω∗. Thus x = x and y = (−γx+ y)/ω∗.

Show that the new variables35 (x, y) satisfy the ODE

[
x′

y′

]
= Ω∗

[
x− x∗
y − y∗

]
+

[
f(x)
g(x)

]
, (8.105)

where y∗ = (−γx∗ + y∗)/ω∗ and g(x) = (−γf(x) + g(x))/ω∗.
(c) Introduction: Since the nonlinear terms in (8.105) are independent of y, many terms

in (8.94) are zero. Thus, for (8.105), equation (8.94) reduces to

Γ = fxxx − 1

ω∗
[fxxgxx].

Recalling (8.104), show that Γ ≈ 2.1442 > 0, so by Theorem 8.8.3 the
bifurcation is subcritical.

27. Introduction: In Section 8.7.2 we found a Hopf bifurcation in the repressilator (8.74), which
is three-dimensional, and in Exercise 15 you found a steady-state bifurcation in a two-
dimensional analogue of the equations.

Analyze what kind of bifurcation, steady-state or Hopf, occurs in four- and
five-dimensional analogues of the repressilator.

28. Introduction: The following exercise shows you part of the calculation in reducing a general
two-dimensional Hopf bifurcation to the normal form (8.73). It doesn’t allow for a bifurcation
parameter, and it addresses only quadratic terms, but it introduces the clever changes of
coordinate that are the basis of the general proof. Sections 3.3 and 3.4 of [33] cover the
general reduction.

In the two-dimensional ODE

x′ = L∗x+P(x) +O(|x|3),

suppose that the matrix L∗ has eigenvalues ±iω∗ and that P is a homogeneous
quadratic term. Show that there is a change of coordinates such that the
transformed ODE has the form

y′ = Ω∗y +O(|y|3),
35Since x = x, we may omit the bar over x.
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where Ω∗ is given by (8.93).

Hint: By performing a preliminary linear change of coordinates, you may ass-
ume without loss of generality that L∗ = Ω∗. Using the slick technique of Sec-
tion 7.9.4, write the coordinate transformation in the form x = y+ q(y), where
q is a homogeneous quadratic vector-valued function. Since q = O(|y|2), this
change of coordinates is (locally) invertible. (Indeed, y = x − q(x) + O(|x|3),
but this information is not needed for our calculation.) This substitution leads
to the transformed ODE (cf. (7.95))

y′ = (I +Dq(y))−1[Ω∗(y + q(y)) +P(y + q(y))]. (8.106)

In preparation for neglecting higher-order terms, note that

(I +Dq(y))−1 = I −Dq(y) +O(|y|2), P(y + q(y)) = P(y) +O(|y|3).

Using this information, (8.106) may be simplified to

y′ = Ω∗y −Dq(y)Ω∗y +Ω∗q(y) +P(y) +O(|y|3).

Thus, given P, you need to choose q such that

Dq(y)Ω∗y − Ω∗q(y) = P(y).

Note that both P and q belong to the six-dimensional space—call it V—of
quadratic maps from R

2 into itself. Thus such a q is guaranteed to exist, provided
the linear operator on V given by

q �→ Dq(y)Ω∗y − Ω∗q(y) (8.107)

is invertible.

Write out components y = (y, z). Your first task is to show that with respect
to the basis y2e1, yze1, z

2e1, y
2e2, yze2, z

2e2 for V, the linear transformation
(8.107) is represented by the matrix in block form

ω∗

[
M I
−I M

]
, (8.108)

where

M =

⎡

⎣
0 −2 0
1 0 −1
0 2 0

⎤

⎦ .

To get started, observe that

D(y2e1)Ω∗y =

[
2y 0
0 0

] [
0 −ω∗
ω∗ 0

] [
y
z

]
= ω∗(−2yze1)

and

−Ω∗(y2e1) =
[

0 ω∗
−ω∗ 0

] [
y2

0

]
= ω∗(−y2e2).

Do similar calculations for each element of the basis and compile your results.

Having verified (8.108), show that this 6 × 6-matrix is invertible, and you’re
home free.
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Remark: As shown in Sections 3.3 and 3.4 of [33], this construction can be
continued at higher orders. However, already at the cubic level it is not possible
to transform away all cubic terms. The normal form (8.73) represents one choice,
perhaps the most natural choice, of which cubic terms to live with.

29. Remark: The result of this otherwise uninteresting exercise will be needed to complete
Exercise 30.

Let Ω∗ be the matrix (8.93). Show that if k �= 1, the system

(
d

dτ
− Ω∗

)
x =

[
a cos kω∗τ + b sin kω∗τ
c cos kω∗τ + d sin kω∗τ

]
(8.109)

has a periodic solution for every choice of coefficients a, b, c, d, and that if k = 1,
it has a periodic solution iff

d = −a and c = b. (8.110)

Hint: Consider the operator d/dτ − Ω∗ mapping the four-dimensional space of
functions of the form

[
A cos kω∗τ +B sin kω∗τ
C cos kω∗τ +D sin kω∗τ

]

into itself. If k �= 1, this operator is invertible. If k = 1, it has a two-dimensional
kernel; hence (8.109) will have a periodic solution only if the RHS of the equa-
tion belongs to the (two-dimensional) range of this operator, because otherwise,
secular terms will arise. Observe that

(
d

dτ
− Ω∗

)[
0

α cosω∗τ + β sinω∗τ

]
= ω∗

[
α cosω∗τ + β sinω∗τ
β cosω∗τ − α sinω∗τ

]
.

Combining these ideas, deduce that for k = 1, the range of d/dτ −Ω∗ is defined
by the two equations of (8.110).

30. Check the steps in the following outline for a proof of Theorem 8.8.3 in case
all second-order terms in (8.94) vanish.

Remarks: We propose a calculational proof based on the Poincaré–Lindstedt
technique from Section 7.5. Not having quadratic terms simplifies (a little) the
calculations; but if you want to try the general case, it’s not that much more
difficult. The full result is proved in the appendix to Section 3.4 of [33] using a
Taylor series expansion.

Outline: Assume without loss of generality that x∗ = 0 and μ∗ = 0. Introduce
notation that makes more low-order terms in (8.92) explicit:

x′ = [Ω∗ + μL]x+C(x) +O(|x|4, μ|x|2, μ2|x|), (8.111)

where L is a 2× 2 matrix with trL �= 0 (Why? Recall (8.88).) and

C(x) =
1

6

[
fxxxx

3 + 3fxxyx
2y + 3fxyyxy

2 + fyyyy
3

gxxxx
3 + 3gxxyx

2y + 3gxyyxy
2 + gyyyy

3

]
.
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Following the notation in (8.89), look for an expansion36 of a solution with period
2π/ω∗,

γ(t, a) = ax1(τ) + a3x3(τ) + . . . , μ(a) = μ2a
2 + . . . ,

where τ(t) = (1 + ω2a
2 + . . .)t. Note that the trivial solution x = 0 of (8.111)

is unstable if μ trL > 0. On the other hand, the bifurcating solutions exist when
μ = μ2a

2 + . . ., i.e., when μ has the same sign as the constant μ2. Thus, the
bifurcation is supercritical, i.e., the bifurcating solutions exist when the trivial
solution is unstable, if trL and μ2 have the same sign, and subcritical if they
have opposite signs. Below, a calculation is described that shows that

μ2 trL = −Γ/8, (8.112)

where Γ = fxxx+fxyy+gxyy+gyyy. Thus, the bifurcation is super- or subcritical
according as Γ is negative or positive, respectively.

Recognizing that dγ/dt = (1 + ω2a
2 + . . .)dγ/dτ , substitute the ansatz into

(8.111) and extract the leading-order equations:

O(a) : (d/dτ − Ω∗)x1 = 0
O(a3) : (d/dτ − Ω∗)x3 = −ω2dx1/dτ + μ2Lx1 + C(x1).

The solution of theO(a)-equation may be taken to be x1(τ) = (cos(ω∗τ), sin(ω∗τ));
amplitude and phase do not matter. The crux of the calculation is to require that
the O(a3)-equation not generate secular terms. As follows from Exercise 29, this
requires that appropriate nonresonance conditions hold, which may be derived
as follows. The first two terms on the RHS of the x3-equation are given by

dx1/dτ = ω∗

[ − sin(ω∗τ)
cos(ω∗τ)

]
, Lx1 =

[
L11 cos(ω∗τ) + L12 sin(ω∗τ)
L21 cos(ω∗τ) + L22 sin(ω∗τ)

]
,

where Ljk denotes the elements of L. The third term, C(x1), equals

1

6

[
fxxx cos3(ω∗τ) + 3fxxy cos2(ω∗τ)2 sin(ω∗τ) + 3fxyy cos(ω∗τ) sin2(ω∗τ) + fyyy sin3(ω∗τ)
gxxx cos3(ω∗τ) + 3gxxy cos2(ω∗τ)2 sin(ω∗τ) + 3gxyy cos(ω∗τ) sin2(ω∗τ) + gyyy sin3(ω∗τ)

]
.

With the trig identities cos3 z = (3/4) cos z+(1/4) cos 3z and similar expressions
for the other trig functions, reduce C(x1) to the form

1

8

[
(fxxx + fxyy) cos(ω∗τ) + (fxxy + fyyy) sin(ω∗τ)
(gxxx + gxyy) cos(ω∗τ) + (gxxy + gyyy) sin(ω∗τ)

]

plus various terms proportional to cos(3ω∗τ) or sin(3ω∗τ), the latter causing no
secular terms. Combining the above expressions, write the problematic terms on
RHS of the x3-equation in the form (8.109), where

a = μ2L11 + (fxxx + fxyy)/8, b = ω2ω∗ + μ2L12 + (fxxy + fyyy)/8
c = −ω2ω∗ + μ2L21 + (gxxx + gxxy)/8, d = μ2L22 + (gxyy + gyyy)/8.

Thus, (8.112) emerges as the first solvability condition in (8.110). (The second
solvability condition provides a formula for ω2.)

Honestly, we’d hate the Poincaré–Lindstedt method if it weren’t so useful.

36It will appear below that there is no need for a term proportional to a2 in the expansion for x.
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31. Introduction: In this problem, the effects of symmetry on a bifurcation problem are illustrated
in one specific example, the three-cell Turing instability, i.e., equation (8.116) in the Pearls
with n = 3. This problem is symmetric under the dihedral group D3, which is better known
as the symmetric group S3. (No group theory is required for the problem.) Two ways in
which symmetry changes the usual rules of bifurcation are these: (i) At the bifurcation,
kerDF∗ has dimension greater than one. (ii) The bifurcation is “transcritical” in the literal
sense of the term, but the usual exchange of stability at a one-dimensional transcritical
bifurcation does not apply—the bifurcating solutions are unstable both below and above the
bifurcation point. This behavior is generic within the class of problems having the symmetry.

(a) Assuming that σ > 2 and ρ > 1, show that the equal-concentration
equilibrium, (xk, yk) = (x+, y+), k = 1, 2, 3, of (8.116) with n = 3 is
stable if 0 ≤ D < D∗ and unstable if D > D∗, where

D∗ =
ρ

3

(
2x+

σ
− 1

)
.

Verify that kerDF∗ is two-dimensional.

Hint: The calculation closely follows Section 6.3.2; DF has the block form

DF =

⎡

⎣
A− 2B B B

B A− 2B B
B B A− 2B

⎤

⎦ , (8.113)

where A is the Jacobian of the two-dimensional system and B accounts for
diffusion, i.e.,

A =

[
1 −1/σ

2ρx+ −ρ

]
, B =

[
0 0
0 D

]
.

Apply a similarity transformation to (8.113) with the 6× 6 matrix

S =

⎡

⎣
(1/

√
3)I (1/

√
2)I (1/

√
6)I

(1/
√
3)I −(1/

√
2)I (1/

√
6)I

(1/
√
3)I 0 −(2/

√
6)I

⎤

⎦ ,

where I is the 2× 2 identity matrix. (This matrix is orthogonal, so no work
is required to calculate its inverse.) You will find that, in block notation,

S−1DF∗S =

⎡

⎣
A 0 0
0 A− 3B 0
0 0 A− 3B

⎤

⎦ ,

from which you can deduce the desired conclusions.

(b) By finding explicit solutions of the equations, show that nontrivial equilib-
ria with two equal concentrations bifurcate atD∗, the bifurcating solutions
existing both above and below the bifurcation point.

Hint: Assume x1 �= x2 = x3, all three variables being nonzero. (Of course,
this is only one of three possibilities that are related by symmetry.) As
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in Section 8.6.1(b), process the equilibrium equations to derive a quadratic
equation

Q(x1, x2) = 0 (8.114)

analogous to (8.64) and an expression D = φ(x1, x2) analogous to (8.65).
First show that (x+, x+) lies on the curve (8.114) and φ(x+, x+) = D∗; then
show that along the curve (8.114), D assumes values greater than D∗ on one
side of (x+, x+) and less than D∗ on the other side.

Discussion: In contrast to exchange of stability at a transcritical bifurcation
from a simple eigenvalue, these bifurcating equilibria of (8.116) are unstable
on both sides of the bifurcation point. It is messy to derive this fact by
working directly with the equations. A better proof is based on analysis of
the Lyapunov–Schmidt reduction in the presence of symmetry. The relevant
theory is contained in Sections XIV.4 and XIV.5 of [32], but substantial
background must be mastered to read that material profitably.

32. Introduction: Mode jumping in the buckling of a plate is discussed in Section 8.10.2. In
this problem, we illustrate the phenomenon by studying a two-dimensional system of ODEs
analogous to what the Lyapunov–Schmidt reduction extracts from the PDE problem, i.e.,

x′ = −x3 − 3xy2 + μx+ ε,
y′ = −x2y/2− y3 + (μ− 1)y + ε,

(8.115)

where μ is the bifurcation parameter and ε is a small imperfection parameter.

(a) Assuming ε = 0, show that when μ < 0, the origin is a stable equilibrium
of this system, but that as μ crosses zero, it loses stability through a
supercritical pitchfork bifurcation (from a simple eigenvalue).

(b) Still assuming ε = 0, articulate what behavior you would expect if, start-
ing from negative values, μ is increased quasistatically.

(c) Check your expectations numerically. That is, starting from the trivial
equilibrium with μ = −0.5, increase μ to 2.5 in small increments; after
each increment, solve the ODEs until the solution has reconverged to
equilibrium. (We suggest taking ε in (8.115) positive but small, say ε =
10−5, because otherwise, the simulation might remain stuck on a solution
branch even after it becomes unstable.)

Discussion: What to look for? For 0 < μ < 2, your calculated solution will
have x �= 0 but y ≈ 0; as μ crosses 2, it will jump to a new equilibrium
with x ≈ 0 but y �= 0. This discontinuous behavior is a manifestation of
competition between the x- and y-modes. Let us elaborate. If μ > 1, the
trivial solution is unstable with respect to both modes; both x and y are
driven away from zero. (Of course, growth saturates as nonlinear terms
come into play.) Near the trivial solution, the x-mode is “more unstable,”
i.e., the x-mode has the larger eigenvalue in the linearization at the origin,
and this explains what is seen initially in the simulation. However, as μ
grows and the equilibrium solution grows with it, the nonlinear terms shift
the balance of forces and come to favor the y-mode in the competition.
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(d) Introduction: It is possible to anticipate this behavior from explicit solutions of (8.115).
If ε = 0, then both equilibrium equations may be factored, giving rise to four classes
of equilibria:

1. x = y = 0, μ arbitrary : (the trivial solution)

2. x2 = μ, y = 0, μ > 0 : (the x-mode)

3. x = 0, y2 = μ− 1, μ > 1 : (the y-mode)

4.

{
x2 + 3y2 = μ

x2/2 + y2 = μ− 1
(the mixed-mode solution).

These four classes of solutions are represented schematically in the bifurcation diagram
in Figure 8.24. Classes 1, 2, and 3 are readily recognizable in the figure, and the next
part of the exercise verifies the behavior shown for the Class 4 solutions.

Solve the two coupled linear equations for x2 and y2 that characterize
Class 4 solutions, and then express x and y as functions of μ. Argue
that (real) solutions of Class 4 exist only if 3/2 ≤ μ ≤ 2. Show that at
μ = 3/2, Class 4 solutions meet the y-mode solution branch and that at
μ = 2, they meet the x-mode solution branch.

(e) Verify the stabilities listed in Figure 8.24 along the trivial solution and
the x- and y-mode solutions. (Stabilities along the mixed-mode solutions
follow from exchange of stability.)

Remark: Mode competition holds some other surprises. For example, see
Section X.4 of [31] for an overview of the phenomena that can arise from
bifurcation problems of the general form (8.115).

8.10 Pearls of Wisdom

8.10.1 Comments on Proving the Hopf Bifurcation Theorem

In two dimensions, it is not very difficult to prove the Hopf bifurcation theorem,
provided Γ, the cubic coefficient given by (8.94), is nonzero. With a clever change
of coordinates, the ODE can be transformed to (8.73), modulo higher-order terms
(cf. Exercise 28), and the higher-order terms have minimal effect if Γ �= 0. In
dimensions higher than two, center manifolds can be used to reduce the problem to
two dimensions. These proofs are appealing in that they use only standard ODE
methods. However, note that Theorem 8.8.1 makes no hypothesis about nonlinear
terms, and without such a hypothesis, it’s awkward to find the periodic orbits with
these methods.

Our theorem on Hopf bifurcation combines different versions from several sources,
e.g., [14, 16, 31, 33, 38, 52]. For example, some authors:
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Figure 8.24: Schematic bifurcation diagram for (8.115), the norm of the solution√
x2 + y2 vs. μ. Each point on the x-mode solution branch represents two equilibria

(±x, 0) of (8.115); on the y-mode branch, two equilibria (0,±y); and on the mixed–
mode branch, four equilibria (±x,±y). Despite appearances, the mixed-mode branch
has a pitchfork bifurcation at both ends of its interval of existence.

• Assume throughout that at the bifurcation point, DF∗ has no eigenvalues in
the right half-plane. This simplifies the analysis, and of course it is the most
interesting case.

• Allow additional eigenvalues on the imaginary axis besides the basic pair
λ1,2 = ±iω∗, with the restriction that inω∗ is not an eigenvalue for any in-
teger n. Under this more general hypothesis, the uniqueness result is weaker;
it guarantees only that every periodic solution whose period is close to 2π/ω∗
will lie on the surface (8.90).

• Formulate a result that also applies to PDEs. This raises a number of technical
issues.

To peruse all the references above to verify every part of Theorem 8.8.1 is a truly
thankless task. If you want to see a proof of Hopf bifurcation, be prepared to settle
for a lesser result.

For the record, we are partial to the method of Cesari and Hale, which is used
in the proof of Section VII.1 of [31]. This method, based on a Lyapunov–Schmidt
reduction in an infinite-dimensional Banach space, does not need restrictive hypothe-
ses on the higher-order terms. On the other hand, the method is extravagant with
derivatives and does not easily yield the strongest uniqueness statement.
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a b

Figure 8.25: Fluid flowing through a flexible hose with a loose end can induce
oscillatory motion. (a) A stationary hose in the absence of fluid flow. (b) Flutter of
the loose end of the hose due to fluid flow.

8.10.2 High-Dimensional Bifurcation: Symmetry and Mode Competition

For either steady-state or Hopf bifurcation, symmetry often leads to bifurcation from
a high-dimensional eigenvalue. In such problems, not only are there many different
bifurcating solutions, but there may be many different classes of bifurcating solu-
tions.37 For example, consider fluid flowing through a thin flexible hose and emerging
from an unsupported end (cf. Figure 8.25). As you probably have experienced, rapid
flow causes the hose to flutter. Let’s suppose, as in [5], that the flow is vertical, so
that the problem is symmetric with respect to rotation about the vertical axis. The
governing equations of this system have a steady-state solution in which the hose
is at rest; if the flow speed is slow, this equilibrium is asymptotically stable, but
it loses stability as the flow speed increases. Periodic solutions, in which the hose
oscillates in a vertical plane, bifurcate from the trivial solution at the critical flow
velocity; such motion is possible in every vertical plane. At the same critical speed,
other solutions, in which the loose end moves in a circle, also bifurcate. Although
both bifurcations are supercritical, only one of these solution classes is stable; which
class is stable depends on other parameters in the problem. And rather surprisingly,
there may be solutions near the bifurcation point in which the loose end traces out
an elliptical path whose axes slowly precess. Although Bajaj and Sethna [5] derive
this behavior from analyzing the equations of motion, much of it can be anticipated
from symmetry considerations alone; cf. Figure 7.2 in Chapter XVII of [32].

37A time-honored example is Rayleigh–Bénard convection, the physical problem underlying the
Lorenz equations in Section 8.1.2. Case Study 4 of [32] discusses information that can be derived
using just the symmetries of the problem.
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Figure 8.26: Schematic of buckles in a long rectangular plate under compression.
The sign of the out-of-plane deformation alternates between shaded and unshaded
regions, say upward in the shaded regions and downward in the unshaded regions.

Although ODE examples of bifurcation with symmetry are far less striking than
the PDE examples, let’s consider one anyway: in the n-cell Turing instability, sym-
metry forces a bifurcation with a multidimensional kernel. Assuming that the cells
are arranged cyclically in a ring,38 we generalize (8.60) to obtain a system of 2n
ODEs,

(a) x′
k = σx2

k/(1 + yk)− xk,

(b) y′k = ρ [x2
k − yk] +D(yk+1 − 2yk + yk−1),

(8.116)

where k = 1, 2, . . . , n. (Here, y0 is identified with yn, and yn+1 is identified with y1.)
This system is symmetric under the dihedral group Dn, the rotations and reflections
that leave a regular n-sided polygon invariant. (Cf. [3], Chapter 4.) The effects
of symmetry are felt already when n = 3, a case that we ask you to explore in
Exercise 31. (No group theory is required for the exercise.) More generally, the
consequences of Dn symmetry on bifurcation are studied in Section XIII.5 of [32].

Bifurcations from a multiple eigenvalue also arise in another context. A “trivial”
equilibrium of a system may become unstable, as a driving parameter μ is increased,
to two or more different perturbations, or modes, at close to the same value of μ.
Competition between two modes may dictate key features of the response of the
system. The buckling of a plate under compression provides a nice illustration of
possible consequences of such competition.39

Some background: When a flat rectangular plate (that is supported on all four
sides) is subjected to a sufficiently large longitudinal compression, it buckles in a
wavelike pattern, as suggested in Figure 8.26. The buckles form most readily if they
are nearly square. Thus, if the aspect ratio (length to width) of the plate is nearly
an integer, say k, then k buckles form at the bifurcation point, and they are very
nearly square. However, if this ratio lies between two integers, say k and k+1, then
modes with k buckles and k + 1 buckles compete.

38This geometry is more interesting than allowing diffusion between every pair of cells, because
it approximates the geometry of the actual Turing instability. (Cf. [58], Section 2.2 of Volume II.)

39Mode competition in a fluids problem, with more complicated phenomena than for plates, is
analyzed in Case Study 6 of [32].
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This competition may cause a strong discontinuity in how a plate responds under
compression. In the classic experiment of [77], in which the aspect ratio equaled
5.38, at the bifurcation point a pattern with five buckles appeared. As the load was
increased, the amplitude of the buckles increased continuously while maintaining the
same pattern, up to approximately 1.7 times the original buckling load. When the
load was further increased, the plate jumped suddenly and violently to a pattern with
six buckles.40 Since the experiment involved a metal plate squeezed in an apparatus
capable of generating 1,200,000 pounds of force,41 this jump was a dramatic event;
you would not want to be inside a spacecraft in which one of the panels behaved in
this way.

In Case Study 3 in [31], mode-competition ideas are used to analyze such mode
jumping in a mathematical model for the buckling of plates, without recourse to
the computer. The Lyapunov–Schmidt technique is invoked to reduce the PDEs to a
two-dimensional system, and in Exercise 32 we invite you to study a two-dimensional
ODE of the same form that exhibits the exact same jump behavior.42

8.10.3 Homeostasis, or “Antibifurcation”

The focus of bifurcation theory is to describe how the behavior of solutions of an
ODE changes as a parameter varies. As the tongue-in-cheek name “antibifurcation”
is intended to suggest, the central phenomenon of homeostasis is exactly the op-
posite: at least one component of a (steady-state) solution changes very little as
a parameter varies. This behavior is essential for life: conditions affecting critical
internal processes (e.g., body temperature in mammals) need to remain close to a
desired operating point, despite variations in the external environment.

The phenomenon of homeostasis is illustrated by the bathtub model43 that is
indicated in the schematic diagram, Figure 8.27(a). This model is described by the
(nondimensionalized) ODEs

40And subsequently to seven buckles, to eight buckles, and to complete collapse, but these jumps
are beyond our focus.

41In Stein’s experiment, compression was generated mechanically, but compression generated by
thermal expansion, such as on a spacecraft during reentry, is also of interest.

42Incidentally, Figure 8.24, a bifurcation diagram for equation (8.115) in the exercise, applies
equally well to the buckling plate if the x- and y-modes in the figure are identified with the five-
buckle and six-buckle modes of the plate, respectively.

43This network is an example of what’s called a feed-forward loop (cf. Chapter 4 of [2]); i.e.,
the concentration of X is “fed forward” to influence a reaction rate of one of its products. Such
feed-forward loops are embedded in many complex biological networks; the metabolic networks of
[60] provide one example.
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Figure 8.27: (a) Schematic diagram for the homeostasis model equations (8.117).
(b) Equilibrium value of y as a function of μ for k = 0.25 and K = 15.

(a) x′ = μ− x,

(b) y′ = x− ky − xy

1 + xy/K
, (8.117)

where μ, k, and K are positive constants. Thus, X is supplied from the environment
at a rate μ, and X reacts to form Y. The goal of homeostasis is to maintain
the concentration y at a constant level, regardless of how the input parameter μ
may change. To achieve this, Y is depleted by two processes, one linear—this could
represent either consumption or a baseline decay—and one nonlinear, the mechanism
behind homeostasis. Specifically, besides producing Y, X acts as an enzyme that
actively promotes the decay of Y. Thus, if μ gets large, making X large, an excess of Y
is avoided because of enhanced decay. However, this enzymatic promotion saturates
at large concentrations, which is modeled by the term xy/K in the denominator in
(8.117b).

For all μ > 0, (8.117) has a unique equilibrium. In Figure 8.27(b), the equilibrium
value of y is shown as a function of μ for one choice of reaction parameters. Note
how little y changes over a wide range of the input parameter μ. Some authors call
such a graph a “chair.”

The steady-state solution yeq(μ) of (8.117) can be found by the quadratic formula,
but the result is unilluminating, to say the least. Far more insight is gained by
considering two limiting cases: (i) If K is large and μ is not too large, we may neglect
the term xy/K in (8.117a) compared to unity, which leads to the approximation

yeq(μ) ≈ μ

k + μ
.
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(ii) If μ is very large, making x and y large, then xy/K dominates the denominator
in (8.117a); neglecting 1 compared to this term gives

yeq(μ) ≈ μ−K

k
.

Both approximations can be seen in Figure 8.27(b).

Homeostasis also insulates against the effects of a time-varying environment. We
invite you to experiment with this by solving (8.117) with the parameter μ replaced
by a function of time, such as a square wave.



Chapter 9

Examples of Global Bifurcation

The main goal of this chapter is to give examples of five different types of global bi-
furcation. While the local bifurcations of the previous chapter were associated with
stability changes in an equilibrium, the bifurcations in this chapter are associated
with stability changes in a periodic solution. We make no pretense of completeness.
It is not remotely possible to classify all possible global bifurcations. We introduce
each type of bifurcation with an academic example that may be handled analytically,
but for the more interesting examples that follow, we will rely heavily on computa-
tions (which we invite you to check) and on intuitive arguments. Even in cases for
which proofs are available, we may omit them because we find them unrewarding.
Consequently, this chapter is much less dense than the preceding one.

Sections 9.1, 9.2, and 9.4–9.6 present the examples. Section 9.3 discusses a
theoretical issue that unifies the following three sections. Two additional sections
describe scientifically interesting problems in which global bifurcation plays a central
role: the onset of chaos in the Lorenz system (Section 9.7) and bursting in neurons
(Section 9.8).

9.1 Homoclinic Bifurcation

9.1.1 An Academic Example

We base our construction on modified-Hamiltonian systems, as we considered in
Exercise 7.22,

x′ = ∂yH − ∂x(H − μ)2,
y′ = −∂xH − ∂y(H − μ)2,

(9.1)

© Springer Science+Business Media New York 2016
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Figure 9.1: Panels (a–c) show various orbits of (9.1), with the Hamiltonian (9.2),
for different values of μ. Panels (a) and (b) are representative of orbits in the ranges
0 < μ < 1/6 and μ > 1/6, respectively, while μ = 1/6 exactly in Panel (c). The
orbits, which are shown with the usual color conventions, are obtained from level sets
{H = μ} of the Hamiltonian. (d) Bifurcation diagram indicating the range of μ
over which (9.1) has a periodic orbit and the termination of the periodic orbits in a
homoclinic bifurcation.

where H(x, y) is some smooth function. A simple chain-rule calculation shows that
along a trajectory,

dH

dt
= −2(H − μ) |∇H|2.

Thus, trajectories are driven toward the minimum of (H − μ)2, the specific level set
{H(x, y) = μ}, which is a union of orbits (or possibly a single orbit). Consider the
one-parameter family of ODEs obtained by substituting into (9.1) the Hamiltonian

H(x, y) = y2/2 + x2/2 + x3/3, (9.2)

a quadratic kinetic energy plus a cubic potential energy with a local minimum at
x = 0. As illustrated in Figure 9.1, the orbit structure of this problem changes as μ
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passes through 1/6: if 0 < μ < 1/6, the level set {H = μ} contains a loop around the
origin, which is a periodic orbit, while for μ > 1/6, the ODE (9.1) has no periodic
solutions. The transition at μ = 1/6 includes a homoclinic orbit.

9.1.2 The van der Pol Equation with a Nonlinear Restoring Force

A virtually identical bifurcation occurs in a perturbation of the van der Pol equation
by a nonlinear force εx2,

x′ = y,
y′ = −β(x2 − 1)y − x− εx2,

(9.3)

a problem you analyzed in Exercise 7.9. If ε is small, the periodic orbit of the
van der Pol equation continues to exist, being only slightly distorted. However, if
ε is sufficiently large (ε ≥ 1 is sufficient), the periodic orbit is destroyed by the
perturbation. This homoclinic bifurcation is illustrated in Figure 9.2, which shows
some computed trajectories and the stable and unstable manifolds of the saddle
point (−1/ε, 0). In Figure 9.2(a), for ε small, the right half of the unstable manifold
Mu (in red) quickly approaches the periodic orbit (in green) asymptotically, while
both halves of Ms (in blue) come in from infinity. On the other hand, for ε large
(Figure 9.2(b)), half of the stable manifold Ms connects the origin to the saddle
point, while both halves of Mu march off to infinity. As you would expect from
continuity, there is a value εhomo such that Mu intersects Ms, which means that
the two manifolds coincide, as shown (in purple) in Figure 9.2(c). As is usual for
homoclinic bifurcation, it is not possible to locate the bifurcation point analytically;
numerically, if β = 1/2, we find that εhomo ≈ 0.399.

Regarding this intuitive description of the bifurcation, let us acknowledge that
we have not shown that the stable and unstable manifolds through a saddle point
depend continuously on parameters. Moreover, the continuity argument shows only
that there is at least one value of ε for which Mu and Ms intersect; although it
can be proved that there is only one such value, we prefer to rely on computation to
conclude this.

9.1.3 Section 1.6 Revisited: Part VI

A variation of homoclinic bifurcation occurs in the augmented Lotka–Volterra equa-
tions

(a) x′ = x

(
x− ε

x+ ε

)
(1− x

K
)− xy,

(b) y′ = ρ(xy − y).

(9.4)

In Section 8.7.3 we saw that a subcritical Hopf bifurcation creates a family of periodic
orbits of (9.4) at K = Khopf = (1+2ε−ε2)/2ε. Thus, as illustrated in Figure 9.3(a),
for K slightly less than Khopf , equation (9.4) has an unstable periodic orbit. As
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Figure 9.2: Panels (a–c) show phase-plane plots, including stable and unstable man-
ifolds, for the perturbed van der Pol system (9.3) for various values of ε, assuming
β = 1/2. If ε < εhomo, (Panel (a)) there is a stable periodic orbit, but for ε > εhomo

(Panel (b)) this orbit has disappeared through the homoclinic bifurcation shown in
Panel (c). Note that the asymptotic behaviors of Ms and Mu are changed by the
bifurcation. Panel (d) shows a bifurcation diagram for the system.
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phase portraits on either side of the bifurcation, while Panel (c) shows the phase por-
trait at the bifurcation point. Panel (d) gives a bifurcation diagram for the system.
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K decreases from Khopf , the orbit expands until at K = Khetero, it coincides with a
heteroclinic cycle that links the two saddle points (ε, 0) and (K, 0), the phase portrait
shown in Figure 9.3(c). When K < Khetero, the equation no longer has a periodic
orbit, as in Figure 9.3(b).

The overall behavior is summarized by the bifurcation diagram in Figure 9.3(d).
The heteroclinic bifurcation point Khetero, the lower limit of the range in which the
periodic solution exists, depends on ε and ρ; if ε = 0.2 and ρ = 1 as in the figures,
we compute that Khetero ≈ 2.952.

As with homoclinic bifurcation, the present bifurcation is accompanied by changes
in the α- and ω-limits of the stable and unstable manifolds through the saddle points.
Specifically, you should identify the ω-limit of the unstable manifold through (K, 0)
in each case, 1 < K < Khetero, K = Khetero, and Khetero < K < Khopf , and the α-limit
of the stable manifold through (ε, 0) in the three cases. By contrast, the α-limits of
the stable manifold through (K, 0) and the ω-limits of the unstable manifold through
(ε, 0) are the same for all K > 1, as you should also check.

This bifurcation provides the final update to Section 1.6.2. The parameters used
in both Panels (a) and (b) of Figure 9.3 belong to Region II of Figure 1.9. The phase
portrait in Figure 9.3(b) is topologically equivalent to the plot in Figure 1.9 for
Region II, shown on the upper left; but the phase portrait in Figure 9.3(a) does not
appear in Figure 1.9. The dedicated reader could include this extra information in
Figure 1.9 by dividing Region II into two subregions with different phase portraits as
in Figure 9.3(a,b). The subregions are separated by the curve, K vs. ε, that locates
the heteroclinic bifurcation. The position of this curve depends on the parameter ρ
in (9.4), and the computer is needed to locate it.

9.1.4 Other Examples of Homoclinic and Heteroclinic Bifurcations

In Exercise 4 you will see that a homoclinic bifurcation occurs in the torqued pendu-
lum equation, provided friction is sufficiently small. (If friction is large, a different
bifurcation occurs, which we study in Section 9.2.3.)

If you reread Section 8.8.2 with the ideas of the present section in mind, you will
discover that homoclinic bifurcation occurs in the activator–inhibitor model (8.21)
when ρ passes through the value ρhomo = 1. In this nongeneric example, all the
bifurcation phenomena are crammed into the plane {ρ = 1}, i.e., the Hopf bifurcation
that “creates” the periodic solutions, the one-parameter family of periodic solutions
themselves, and the homoclinic bifurcation that “destroys” them. (Incidentally, the
perturbation of (8.21) considered in Exercise 8.25 removes this nongeneric behavior.)

Homoclinic and heteroclinic bifurcations play a central role in the applications
studied in Sections 9.7 and 9.8. The heteroclinic bifurcation in the former section
is interesting in that an unstable manifold connects a saddle point to an unstable
periodic orbit, rather than to another saddle point as in Section 9.1.3.
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9.2 Saddle-Node Bifurcation of Limit Cycles

9.2.1 An Academic Example

The bifurcation is illustrated by the one-parameter family of ODE on R
2 ∼ {0} given

in polar coordinates by
r′ = 1− r,
θ′ = r−1 − cos θ + μ.

(9.5)

As μ crosses μsnlc = 0, two related phenomena occur: (i) (μ increasing) The equilibria

r = 1, θ = ± arccos(1 + μ), (9.6)

which exist for −2 < μ < 0, disappear through a saddle-node bifurcation at μ = 0.
(ii) (μ decreasing) If μ > 0, the unit circle is a periodic orbit of (9.5), but this
periodic orbit disappears as μ becomes negative, because two equilibria appear and
block the flow. Phase-plane plots on either side of the bifurcation point μ = 0
are shown in Figure 9.4(a,b), while the phase-plane plot at the bifurcation point is
shown in Figure 9.4(c). Overall behavior is summarized in the bifurcation diagram
Figure 9.4(d). Somewhat unimaginatively, we say that (9.5) undergoes a saddle-node
bifurcation of limit cycles, or more compactly an SN-limit-cycle bifurcation.

The use of purple in Figure 9.4(c) extends our color conventions. In Figures 9.1(c)
and 9.2(c), the purple orbit is both the (global) stable and unstable manifold of a
hyperbolic equilibrium, which coincide. By contrast, in Figure 9.4(c) the purple orbit
begins and ends at the nonhyperbolic equilibrium r∗ = 1, θ∗ = 0, where the Jacobian
has eigenvalues −1 and 0; this orbit is a center manifold.1

9.2.2 The Denatured Morris–Lecar Equation

We can now answer a question raised at the end of Section 8.7.4 concerning the
denatured Morris–Lecar equations (8.79),

x′ = x2(1− x)− y + I,
y′ = Aeαx − γy,

(9.7)

which, as before, we consider with the parameter values A = 0.001, α = 6, and
γ = 0.15. As indicated in the bifurcation diagram for (9.7), which we repeat in

1It may be instructive to compare Figures 9.3(c) and 9.4(a). In both figures, two different
colored trajectories connect two equilibria. In Figure 9.3(c), both equilibria are saddle points; the
trajectories are shown in purple because they are simultaneously (part of) the stable manifold of
one equilibrium and the unstable manifold of the other. By contrast, in Figure 9.4(a), one of the
equilibria is a sink; the trajectories are shown in red because they are the unstable manifold of the
saddle point r = 1, θ = arccos(1 + μ), but they are in no way distinguished as regards the sink;
they are only two of many orbits that converge to that equilibrium.
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Figure 9.5(d), the equations have a periodic solution for a range of currents. (The per-
iodic solution for I = 0.02 is shown in Figure 9.5(b), superimposed on the nullclines
of (9.7).) These periodic solutions disappear if I is decreased below the threshold
labeled Isnlc in the bifurcation diagram. What happens to them? Well, observe in
Figure 9.5(a) that below the threshold, a pair of new equilibria appear and block
the would-be periodic solution, exactly the same behavior that occurs in Figure 9.4.
That is, the periodic solutions disappear through an SN-limit-cycle bifurcation.

Given this information, we can locate the bifurcation point very accurately, more
accurately than trying to read it off the bifurcation diagram, by solving the equations

x2(1− x)− y + I = 0,
Aeαx − γy = 0,

αAeαx − γ(2x− 3x2) = 0.

The first two equations are the equilibrium equations for (9.7), and the third is the
condition that the Jacobian is singular at a saddle-node bifurcation point. Solving
these equations (numerically) for the appropriate values of A,α, γ, we obtain Isnlc ≈
0.007137.

Incidentally, two other bifurcation points are labeled in Figure 9.5(d): Ihopf locates
the Hopf bifurcation that was discussed in Section 8.7.4, and Imutan locates what is
called a “mutual annihilation” bifurcation, which will be discussed in Section 9.4.2.

9.2.3 The Overdamped Torqued Pendulum

Another instance of an SN-limit-cycle bifurcation occurs in the torqued-pendulum
equation

x′ = y,

y′ = − sin x− βy + μ,
(9.8)

provided the friction coefficient β is large enough. We saw in Section 8.4.1 that
the equilibria of this system undergo a saddle-node bifurcation at the critical torque
μ = 1.

Representative phase portraits and a bifurcation diagram for this system, assum-
ing β = 1.3, are shown in Figure 9.6. It is instructive to compare Figure 9.6(c),
which is global, with Figure 6.14, which shows the flow only locally near the degen-
erate equilibrium (π/2, 0). (Note the difference in scales between the two figures,
especially in the y-scales.) As indicated in Figure 6.14, to the right of the equilib-

rium the center manifold M(r)
c is unique and flows away from the equilibrium, while

there are many candidates for M(l)
c to the left, all of which converge to the equilib-

rium. Figure 9.6(c) shows yet another candidate for M(l)
c , one not represented in

Figure 6.14, i.e., the extension of M(r)
c to a global center manifold, which converges

back to the equilibrium. This global center manifold describes a trajectory in which
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tion of limit cycles in the torqued pendulum equations (9.8) as μ is varied, assuming
β = 1.3. In Panel (c), purple represents a center manifold.

the pendulum starts from rest at t = −∞, undergoes a complete revolution, and
then converges back to the equilibrium as t → ∞. As we saw in Figure 9.4(c), a
homoclinic global center manifold is the signature of an SN-limit-cycle bifurcation.

The phase portraits in Figures 9.6(a-b) conform to the SN-limit-cycle-bifurcation
pattern: if μ is decreased slightly below 1, the degenerate equilibrium splits into two
equilibria, a saddle and a node, and if μ is increased slightly, then the equilibrium
disappears and a periodic solution appears.

Note that in the bifurcation diagram Panel (d), cosx is plotted vs. μ rather than
x vs. μ. This choice is convenient, because the periodic solution is periodic only
because x is reduced modulo 2π.

Figure 9.6 is drawn for the specific friction coefficient β = 1.3. For all β >
1.191, a qualitatively identical bifurcation occurs. However, for β < 1.191, different
behavior—called underdamped—occurs. This is explored in Exercise 4.



414 Chapter 9. Examples of Global Bifurcation

9.3 Poincaré Maps and Stability Loss of Limit Cycles

In the bifurcations of the preceding two sections, a periodic solution exists for a
range of a parameter and suddenly disappears at the edge of this range. In the three
remaining types of global bifurcation, a periodic solution loses stability but continues
to exist. Recall from Section 7.3 that the stability of a periodic solution γ(t) was
studied through the Poincaré map, which is constructed so that γ(0) is a fixed point
of Π. Specifically, a periodic solution of a d-dimensional ODE is asymptotically
stable if the eigenvalues of (the differential of) the Poincaré map at the fixed point
γ(0) satisfy

|λj(DΠ)| < 1, j = 1, . . . , d− 1. (9.9)

In the context of bifurcation theory, consider a one-parameter family of ODEs
x′ = F(x, μ). Suppose that for μ = μ∗, this equation has a nonhyperbolic periodic
solution γ∗(t); i.e., one or more eigenvalues of DΠ∗ lie on the unit circle. We want to
consider a minimally degenerate situation, which may occur in one of three generic
ways:2

• DΠ∗ has a simple eigenvalue λ = 1,

• DΠ∗ has a complex-conjugate pair of eigenvalues of modulus 1, or

• DΠ∗ has a simple eigenvalue λ = −1.

As with bifurcation from equilibria, new solutions of the ODE appear in this context.
Each case has its own characteristic phenomena, which we illustrate with examples
in Sections 9.4–9.6.

Remarks: (i) The linearized map DΠ∗ is obtained from solving the IVP for the
linear ODE

x′′ + A(t)x = 0, (9.10)

where A(t) is the periodic matrix-valued function A(t) = DF(γ∗(t), μ∗). Such prob-
lems are precisely the focus of Floquet theory. (ii) Bifurcation of fixed points of maps
defined on Euclidean space can be studied divorced from any connection to a Poincaré
map. Fixed points of a map lose stability through the same three mechanisms above.
Although we probe a few bifurcation phenomena for maps in Exercises 13 and 14 in
this chapter and in Section 10.6.1, we refer you to Chapter 10 of [81] or to [17] for
more serious study.

2The first two mechanisms are closely analogous to steady-state bifurcation and to Hopf bifur-
cation from equilibria, respectively. The third has no analogue in bifurcation from equilibria.
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9.4 Mutual Annihilation of Two Limit Cycles3

9.4.1 An Academic Example

Consider a one-parameter family of ODEs on R
2 ∼ {0}, written in polar coordinates,

r′ = (r − 1)2 + μ,

θ′ = 1.
(9.11)

If μ = 0, then {r = 1} is a periodic orbit of (9.11), and in Exercise 2 we ask you to
show that the lone eigenvalue of the Poincaré map for this orbit equals 1.

What if μ is perturbed slightly? If −1 < μ < 0, then (9.11) has two periodic
orbits {r = 1 ±√−μ}, as illustrated in Figure 9.7(a), the inner one stable and the
outer one unstable. However, if μ > 0, there are none. As μ passes through zero, the
two periodic solutions meet and “annihilate” each other, behavior that is summarized
in the bifurcation diagram4 of Figure 9.7(b).

Although we use the standard term “annihilation,” this language might be mis-
leading. Actually, the stable and unstable periodic orbits in Figure 9.7(b) fit together
to make a smooth surface in R

3.

Let us examine (9.11) with Poincaré maps. Choosing a Poincaré section {θ = 0,
a1 < r < a2}, we solve the IVP for (9.11) with initial conditions

r(0) = b, θ(0) = 0

to obtain Π(b, μ) = r(2π). Periodic solutions of (9.11) near {r = 1} are in one-to-one
correspondence with fixed points of Π, i.e., with solutions of

Π(b, μ) = b. (9.12)

When μ < 0, Π(·, μ) has two fixed points, as shown in Panel (c) of Figure 9.7. As
μ → 0, the fixed points approach each other, and when μ > 0, Π(·, μ) has no fixed
points, as shown in Panel (d). This bifurcation of periodic solutions is completely
analogous to saddle-node bifurcation of equilibria.

9.4.2 The Denatured Morris–Lecar Equation

In Figure 9.5(d) above, which is a bifurcation diagram for the denatured Morris–Lecar
equations (9.7), a mutual annihilation bifurcation occurs at I = Imutan. Specifically,

3In this bifurcation, λ = 1 is an eigenvalue of the Poincaré map. Although mutual annihilation
is the most common bifurcation that occurs in this situation, it is not the only possibility; cf.
Exercise 3.

4As μ → −1, the inner orbit shrinks to the origin. On a superficial level this behavior resembles
Hopf bifurcation, but this description is inappropriate, because (9.11) is singular at the origin.
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for I slightly below the value Imutan, the equations have two periodic solutions, one
stable and one unstable; these meet and annihilate one another as I increases through
Imutan. The dedicated reader might want to check (numerically) that the eigenvalue
of the Poincaré map tends to 1 as I → Imutan.

9.4.3 Phase-Locking in Coupled Oscillators

Recall from Chapter 7 the coupled-oscillators equations (7.6) on the torus T2,

θ′1 = ω1 +K1 sin(θ2 − θ1),
θ′2 = ω2 +K2 sin(θ1 − θ2).

(9.13)

As we saw there, if ∣∣∣∣
ω1 − ω2

K1 +K2

∣∣∣∣ < 1, (9.14)

then (9.13) has two phase-locked periodic solutions, which have the form (7.8). To
rephrase this information in the language of bifurcation theory: if starting from pa-
rameters that satisfy (9.14), one of the parameters is varied so that the inequality is
violated, these two periodic solutions meet and annihilate each other. Incidentally, if
you reexamine the stability calculation of Section 7.3.1, you will see that the eigen-
value of the Poincaré map for the stable periodic orbit tends to 1 as the bifurcation
point is approached.

In fact, (9.13) exhibits infinitely many mutual annihilation bifurcations. As ω2/ω1

varies, the two variables get entrained in various rational frequency ratios, not just
1 : 1 as above. The birth and death of every entrainment interval occurs through a
mutual annihilation bifurcation. This behavior, which is explored in Section 10.4, is
common for ODEs on the torus.

9.5 Hopf-Like Bifurcation to an Invariant Torus

In this bifurcation, sometimes called a Neimark–Sacker bifurcation, a pair of complex-
conjugate eigenvalues of the Poincaré map cross the unit circle. In particular, the
Poincaré map is at least two-dimensional, which means that the governing ODE must
be at least three-dimensional.

9.5.1 An Academic Example

This example embeds the basic illustration of Hopf bifurcation, (8.71), in three di-
mensions in a construction similar to (7.20). Consider a family of ODEs (with
bifurcation parameter μ) written in cylindrical coordinates and defined on {(r, θ, z) :
r > 0},
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θ′ = 1,

[
r′

z′

]
=

[
μ −ω
ω μ

] [
r − 1
z

]
−R2(r, z)

[
r − 1
z

]
,

(9.15)

where ω is a nonzero constant and R(r, z) =
√
(r − 1)2 + z2. For all μ, it has the

periodic solution

θ(t) = t (mod 2π), r(t) = 1, z(t) = 0. (9.16)

Relative to the Poincaré section {θ = 0}, the Poincaré map for (9.16) involves only
the r, z-subsystem of (9.15), and its differential can be found by solving the lineariza-
tion of this subsystem. Thus, DΠμ = exp(2πCμ), where Cμ is the matrix in real
canonical form

Cμ =

[
μ −ω

ω μ

]
.

Now Cμ has eigenvalues μ± iω, so DΠμ has eigenvalues e2πμe±2πiω. Provided ω/2 is
not an integer, these are a pair of complex conjugates, and as μ increases, they cross
the unit circle when μ = 0.

How do solutions change when μ moves across zero? If μ < 0, then r and
z, whose behavior is independent of θ, decay to (1, 0); thus nearby trajectories of
(9.15) converge to the periodic trajectory (9.16). When μ > 0, this periodic solu-
tion becomes unstable, and trajectories of (9.15) converge to a curve on the torus
{(r, θ, z) : R2(r, z) = μ}, specifically to a solution

θ(t) = t, r(t) = 1 +
√
μ cos(ωt+ α), z(t) =

√
μ sin(ωt+ α), (9.17)

where α is an arbitrary phase angle. (See Figure 9.8.) If ω is rational, every bifurcated
solution (9.17) is periodic; otherwise, the solution is an (aperiodic) skew line. Which
case occurs does not vary with μ.

In general, Theorem 3.5.2 of Guckenheimer and Holmes [33] formulates a rigorous
result about bifurcation from a periodic orbit to flow on an invariant torus. As
discussed in Section 10.4, the behavior of ODEs on a torus is typically far more
complicated than what is presented above. Thus, in bifurcations of this type it may
not be possible to determine the nature of the flow on the invariant torus without
numerical solutions.
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Figure 9.8: Trajectories of (9.15) before and after the bifurcation at μ = 0. In
Panel (b), it is hard to see, but the (green) periodic orbit inside the torus is unstable
and therefore shown as dashed.

9.5.2 The Periodically Forced van der Pol Equation

Suppose, as in Section 7.9.2, a periodic force Γ cosωt is applied in van der Pol’s
equation. This situation may be described by the autonomous ODE

x′ = y,

y′ = −x− β(x2 − 1)y + Γcos z,
z′ = ω,

(9.18)

where z is reduced modulo 2π. Consider (9.18) as a bifurcation problem with Γ as
the bifurcation parameter.

If β = 0, equation (9.18) admits the explicit solution

x(t) =
Γ

1− ω2
cosωt, y(t) = −ω

Γ

1− ω2
sinωt, z(t) = ωt (mod 2π),

(9.19)
with the same period 2π/ω as the forcing. (Cf. Exercise 1.13.) This solution is
Lyapunov stable but not asymptotically stable.

In Section 7.9.2 we argued that for every Γ and β > 0, (9.18) has at least one
2π/ω-periodic solution. However, if Γ and β are large, there may also be some ex-
tremely complicated solutions, possibly chaotic (e.g., see Section 2.1 of [33]). There-
fore, we consider only one case, with β = 0.1, ω = 0.3, and Γ restricted to moderate
values. For example, if Γ = 1.3, the green curve in Figure 9.9(a) shows (the projection
into the x, y-plane of) one such periodic solution, which, moreover, is asymptotically
stable. Indeed, reflecting the fact that β is small, this solution doesn’t differ greatly
from the corresponding solution (9.19) of the frictionless problem, which is shown in
black.
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At first it might seem surprising that a solution of (9.18) could be asymptotically
stable, because the van der Pol equation has “negative friction” for |x| < 1, which is
a destabilizing effect. However, the solution spends more time in the stable region
|x| > 1 than in the unstable region, so on balance stability wins out.

But consider the effect of reducing the forcing coefficient Γ. Having a smaller
force will decrease the amplitude of x in the solution, increasing the fraction of time
spent in the unstable region. In other words, you might expect the periodic solution
to lose stability as Γ decreases. Panels (b) and (c) confirm this suspicion; they
show three-dimensional pictures of the flow before and after the bifurcation, which
occurs at Γ ≈ 1.285 when a pair of complex-conjugate eigenvalues of the Poincaré
map cross the unit circle. The apparent torus in Panel (c) consists of many distinct
curves; the solution of (9.18) is computed over a long time interval, and intervals
{2nπ < z < (2n+ 1)π} on the solution curve are translated back to [0, 2π].

Remarks: (i) In Exercise 7 we ask you to verify that the eigenvalues of an appro-
priate Poincaré map cross the unit circle. (ii) Fourier analysis is needed for a fuller
understanding of the bifurcation, but this lies beyond the scope of the present book.
(Chapter III of [8] gives a compact introduction to Fourier methods in the context
of dynamical systems. See also Section 8.5 of [18].)

9.5.3 Other Examples of Bifurcation to an Invariant Torus

The Rosenzweig–MacArthur predator–prey model, which exhibits a Hopf bifurcation,
was introduced in Exercise 8.22. Let us modify it to allow for a seasonal variation in
the linear growth rate for the prey:

x′ = (1 + γ cos νt− x)x− xy

1 + σx
,

y′ = E
xy

1 + σx
− μy.

(9.20)

Provided μ is fairly large, (9.20) has a stable 2π/ν-periodic solution. When μ gets
sufficiently small, the Hopf bifurcation of the Rosenzweig–MacArthur model makes
itself felt as a bifurcation of this periodic solution of (9.20) to an invariant torus. We
invite you to explore this behavior in Exercise 8.

The above bifurcations of (9.18) and (9.20) depend on having time-varying forc-
ing. In many fluid-mechanics problems, bifurcation to an invariant torus occurs even
with time-independent external driving, as we discuss briefly in Section 9.10.2.

9.6 Period-Doubling

In this bifurcation, an eigenvalue of the Poincaré map passes through −1. In a two-
dimensional autonomous ODE, the Poincaré map of a periodic solution cannot have
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Figure 9.9: Trajectories of (9.18) with β = 0.1 and ω = 0.3. Panel (a) shows the
two-dimensional projection of the stable periodic solution with Γ = 1.3 (in green),
along with the solution (9.19) of the frictionless equation (in black). Panels (b)
and (c) show perspective drawings of three-dimensional flow before and after the
bifurcation at Γ ≈ 1.285. In the figures, z is plotted reduced modulo 2π; consequently,
in Panel (c) we may see the outline of the invariant torus.



422 Chapter 9. Examples of Global Bifurcation

a negative eigenvalue: if a trajectory starts outside a periodic orbit, it must stay
outside. Thus, an (autonomous) ODE exhibiting this bifurcation must be at least
three-dimensional.

In fact, the simplest examples of period-doubling bifurcation occur for maps, not
necessarily related to any ODE, i.e., in the language of Section 7.3.3, for discrete
dynamical systems. Before proceeding to examples with ODEs, we first introduce
period-doubling in mappings on the line.

9.6.1 Academic Example 1: Mappings

Let Ψ : R× [0,∞) → R be the one-parameter family of mappings given by

Ψ(x, μ) = −μ
x√

1 + x2
. (9.21)

Observe that for all μ, the origin x = 0 is a fixed point of Ψ(·, μ). This trivial fact
may also be seen graphically from Figures 9.10(a,b). To assess its stability, calculate
that

DΨ(0, μ) =
∂Ψ

∂x
(0, μ) = −μ.

Thus, according to Theorem 7.3.7, the fixed point is asymptotically stable if 0 ≤ μ <

1 and unstable if μ > 1. The (unique) eigenvalue of DΨ(0, μ) passes through −1 as
μ crosses 1.

What new phenomena appear as a result of this loss of stability? There are no
new fixed points; it is apparent from Figure 9.10(b) that x = 0 is the only fixed point
of Ψ(·, μ), no matter how large the value of μ. But let us consider the iterate,

Ψ2(x, μ) = Ψ(Ψ(x, μ), μ) = μ2 x
√
1 + (μ2 + 1)x2

,

which is graphed in Figures 9.10(c,d). For all μ, the origin is of course a fixed point of
Ψ2(·, μ). If μ < 1, this is the only fixed point of Ψ2(·, μ), but when μ passes through
unity, Ψ2(·, μ) acquires two new fixed points. Analytically, you may calculate that
±√μ2 − 1 are fixed points of Ψ2(·, μ) when μ > 1.

To rephrase this behavior in suggestive language for ODEs, let us consider the
discrete dynamical system

xn+1 = Ψ(xn, μ), n = 0, 1, 2, . . . . (9.22)

We may regard the fixed point x = 0 as a periodic trajectory of this dynamical system
with period one. When μ > 1, Ψ(±√μ2 − 1) = ∓√μ2 − 1, so we may regard
{±√μ2 − 1} as a periodic trajectory of (9.22) with period two. The bifurcation
mantra is that when a fixed point of a mapping loses stability because an eigenvalue
of the differential passes through −1, expect period-doubled solutions to appear.
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9.6.2 Cardiac Alternans

Following a purely academic example, let’s consider an example of a meaningful, even
potentially dangerous, period-doubling bifurcation in a mapping, cardiac alternans.
Your heart’s ability to pump blood efficiently relies upon an incredibly well coor-
dinated electrical signaling system. Information about electrical activity and heart
rhythm can be extracted from routine, noninvasive electrocardiograms (ECGs). No
doubt you have seen output from an ECG. A schematic trace of the output from an
ECG lead appears in Figure 9.11(a). It is less likely that you have seen a recording
of electrical activity from an individual cardiac muscle cell. Figure 9.11(b) illustrates
the voltage measured across a single cell membrane as a function of time during three
consecutive heartbeats. Note that the voltage is elevated during a portion of each
beat; such elevations are known as action potentials. As indicated in Figure 9.11(b),
let APDn denote the duration of the nth action potential, i.e., the length of time
that the voltage exceeds a threshold value. The dashed vertical lines in Figure 9.11
indicate how APDs correlate with certain features of an ECG recording.

Phenomenological models5 for APDs can be based on a property known as resti-
tution: as observed by Nolasco and Dahlen [61], each APD can be expressed (ap-
proximately) as a function of the time the heart has to rest following the previous
action potential, what is called the diastolic interval. In symbols, using the notation
indicated in Figure 9.11(b),

APDn+1 = F (DIn). (9.23)

A common approximation for the restitution function F has the form

F (DI) = C1 − C2e
−DI/τ , (9.24)

where C1, C2, τ are constants. For example, the data of [34] was fit with

C1 = 392, C2 = 525, τ = 40, (9.25)

where all variables and parameters are measured in milliseconds.

Assuming such a model, we suppose that stimuli for action potentials arrive
periodically, with a uniform spacing B between consecutive stimuli. Thus, DIn =
B − APDn. Substituting into (9.23) and defining Ψ(APD, B) = F (B − APD), we
may describe the sequence {APDn} as the trajectory of a discrete dynamical system

APDn+1 = Ψ(APDn, B), n = 0, 1, 2, . . . , (9.26)

5For modeling at a more fundamental level, we refer you to Keener and Sneyd [47], who give a
beautiful introduction to electrophysiology from a mathematician’s perspective.
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Figure 9.10: Panels (a,b): graphs of the mapping (9.21) for μ < 1 and μ > 1, with
the diagonal {y = x} indicated by a dotted line. These panels show that the origin is
the only fixed point of Ψ(·, μ), no matter how large μ may be. Panels (c,d): graphs of
the iterated map Ψ2(·, μ). These panels show that while for μ < 1, the iterated map
has only one fixed point, for μ > 1 it has three. The nonzero fixed points of Ψ2(·, μ)
in Panel (d) may be interpreted as period-two trajectories of the discrete dynamical
system (9.22).
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Figure 9.11: (a) Hypothetical recording of one lead of an electrocardiogram over
three heartbeats. (b) Action potentials in an individual cardiac cell.

where we consider B a bifurcation parameter. We shall not specify a precise domain
for the function Ψ, although some physiological constraints must be satisfied.6

As suggested by the graphs in Figure 9.12(a), for every B within the physiological
range, Ψ(·, B) has a unique fixed point APD∗ satisfying the transcendental equation

APD∗ = C1 − C2e
−(B−APD∗)/τ .

Is it stable? If B is large (slow stimulation), the slope of Ψ(·, B) at the fixed point
is close to zero; in particular, it has absolute value less than 1, so the fixed point
is stable. However, as B decreases (more rapid stimulation), the slope of Ψ(·, B) at
the fixed point becomes more negative, suggesting that the fixed point could become
unstable as B decreases. In fact, for the mapping (9.24) with the parameters (9.25),
a period-doubling bifurcation occurs at B ≈ 455 ms, as shown in the bifurcation
diagram Figure 9.12(b). The period-2 response induced by this bifurcation, known
as alternans, is an abnormal rhythm that is viewed as a precursor to potentially fatal
arrhythmias.

Incidentally, mapping models of restitution have been derived via asymptotics
from ODE models of the electrical behavior of cardiac cells [56]. In Exercise 10, you
are asked to explore such an ODE model numerically, including finding the period-
doubling bifurcation to alternans.

6For instance, a stimulus will fail to elicit an action potential if DI is too short. Such consid-
erations are important for modeling, but for the purposes of this subsection they are a distraction
that we sweep under the rug.
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Figure 9.12: (a) Graphs of Ψ(APD,B) = F (B − APD) from (9.24) for three
choices of B. Intersections with the diagonal line are fixed points. (b) Loss of stability
of the fixed point at B ≈ 455 ms and bifurcation of a period-doubled response.

9.6.3 Academic Example 2: ODEs

We introduce period-doubling in ODEs with the system written in cylindrical coor-
dinates on the domain {(r, θ, z) : r > 0},

θ′ = 1,

[
r′

z′

]
= (Ω− I + μM(θ))

[
(r − 1)

z

]
−R2(r, z)

[
(r − 1)

z

]
,

(9.27)

where in the linear term, I is the 2× 2 identity matrix,

Ω =

[
0 −1/2
1/2 0

]
, and M(θ) =

[
cos2(θ/2) sin(θ/2) cos(θ/2)

sin(θ/2) cos(θ/2) sin2(θ/2)

]
,

and in the nonlinear term, R(r, z) =
√
(r − 1)2 + z2. For all μ, formula (9.16) defines

a 2π-periodic solution of this ODE. The following lemma addresses its stability.

Lemma 9.6.1. The Poincaré map for (9.16) has negative real eigenvalues, −e2π(μ−1)

and −e−2π.

Proof. We define the Poincaré map based on the transverse section {θ = 0 (mod 2π)}.
To calculate the eigenvalues of DΠμ, we need to solve the linearized r, z-subsystem

[
w′

r

w′
z

]
= (Ω− I + μM(t))

[
wr

wz

]
, (9.28)
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where we have substituted θ(t) = t from (9.16). First consider the simpler system

[
w′

r

w′
z

]
= (Ω− I)

[
wr

wz

]
, (9.29)

with M(t) omitted. Two linearly independent solutions of this equation are

e−t

[
cos t/2
sin t/2

]
, e−t

[ − sin t/2
cos t/2

]
.

Preparing to reinsert M(t) into the problem, we observe that

M(t)

[
cos t/2
sin t/2

]
=

[
cos t/2
sin t/2

]
, M(t)

[ − sin t/2
cos t/2

]
= 0.

In other words, M(t) has eigenvalues 1 and 0, and the eigenvectors of M(t) rotate
exactly in synchrony with the solutions of (9.29). Therefore

v1(t) = e(μ−1)t

[
cos t/2
sin t/2

]
, v2(t) = e−t

[ − sin t/2
cos t/2

]

solve (9.28). Since v1(0) = er and v2(0) = ez, we conclude that

DΠμ er = v1(2π) = −e2π(μ−1)er, DΠμ ez = v2(2π) = −e−2πez.

Thus, er, ez are eigenvectors of DΠμ with the claimed eigenvalues.

Note that an eigenvalue of DΠμ passes through −1 when μ = 1. Thus, the
periodic solution (9.16) is stable if μ < 1 but becomes unstable as μ increases beyond
this limit. Because of the artificial simplicity of (9.27), we can actually exhibit new
solutions that appear when μ > 1:

⎡

⎣
θ(t)
r(t)
z(t)

⎤

⎦ =

⎡

⎣
t+ α

1 +
√
μ− 1 cos(t/2 + α)√

μ− 1 sin(t/2 + α)

⎤

⎦ , (9.30)

where α is an arbitrary phase angle. These solutions are periodic, but with period 4π,
twice the period of (9.16). If α = 0, then at time zero, (9.30) starts at a point in the
Poincaré section {θ = 0} just “outside” the loop formed by (9.16). As time increases,
(9.30) moves along with (9.16) while rotating in the r, z-plane around the point (1, 0).
(Cf. Figure 9.13.) At time 2π, the trajectory returns to the Poincaré section, but
it has completed only half of a rotation around (1, 0). During the remainder of a
period, 2π ≤ t ≤ 4π, the trajectory completes the rotation around (1, 0) and returns



428 Chapter 9. Examples of Global Bifurcation

t =
2
ππ3

2
t =

t = π

t = 2 π

z

r

μ−1

t = 0

Figure 9.13: Schematic of the motion in the r, z-plane (θ suppressed) of the peri-
od-doubled solution (9.30) with α = 0 during the first half of its period, 0 ≤ t ≤ 2π.
In the second half of its period, it completes the revolution around (1, 0).

to its starting point as it crosses the Poincaré section.7

We invite you to compute with (9.27) to see that when μ > 1, virtually all
solutions of this equation are asymptotic, as t → ∞, to one of the solutions (9.30).

Perhaps surprisingly, this example is more robust than might be apparent. For
example, suppose we slightly change the rotation speed in Ω or perturb M(θ) in
some way. This will alter the eigenvalues of the Poincaré map, but these (distinct)
eigenvalues vary continuously with the perturbation. Therefore, we may deduce
that as μ varies, one eigenvalue of the Poincaré map remains real and close to zero,
while the other passes through −1 somewhere near μ = 1. In other words, in the
perturbed problem the periodic solution (9.16) experiences the same loss of stability.
Although we can’t calculate eigenvalues or solutions in the perturbed problem, a
general theoretical result (cf. Theorem 3.5.1 of Guckenheimer and Holmes [33])
guarantees that a stable period-doubled solution still bifurcates. In Exercise 9 we
ask you to perturb (9.27) and verify this claim with appropriate computations.

9.6.4 A Periodically Forced Pendulum

Consider a pendulum subjected to periodic forcing; after nondimensionalization, the
motion may be described by the ODE

x′′ + βx′ + sin x = Γcosωt. (9.31)

As the forcing amplitude Γ increases, the long-term behavior of solutions of (9.31)
changes through multiple bifurcations, including period-doubling bifurcations. In

7Do you have enough artistic talent to make a perspective drawing that does justice to the
three-dimensionality of this trajectory? If so, please send it to us, and we will put it on the web
page, along with a grateful acknowledgment.
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fact, this system admits such a bewildering variety of solutions that we consider it
only for a limited range of Γ with the specific parameters8

β = 0.5, ω = 1, (9.32)

which yields the fairly simple behavior discussed below.

Incidentally, let us record a symmetry of (9.31): if x(t) satisfies this equation, so
does

x̃(t) = −x(t+ π/ω). (9.33)

For small Γ, (9.31) has a unique 2π/ω-periodic solution, say γ(t), and it is glob-
ally attracting. The phase portrait of such a solution for Γ = 1.8 is shown in Fig-
ure 9.14(a). Given the parameters (9.32) and making the approximation sin x ≈ x,
we may estimate that

γ(t) ≈ A sin t where A = 2Γ = 3.6. (9.34)

Although the approximation is qualitatively correct, nonlinear effects are already
sufficient to undermine its quantitative accuracy. These solutions are invariant under
the symmetry (9.33); thus, the orbit in Figure 9.14(a) is invariant under reflection
through the origin in R

2.

The first bifurcation of (9.31), which occurs when Γ = Γpitch ≈ 2, breaks the
symmetry (9.33). The invariant 2π-periodic solution continues to exist but is unsta-
ble; two new solutions with the same period 2π appear at the bifurcation.9 One new
solution, for Γ = 2.2, is shown in Figure 9.14(b). The other solution, not shown, is
the image of the first under the symmetry (9.33); its orbit is the reflection of the orbit
in the figure through the origin. As Γ passes Γpitch, an eigenvalue of the Poincaré
map (How is this defined for (9.31)?) crosses +1. (Cf. Exercise 15.)

The next bifurcation is the reason we chose this example. As Γ crosses Γper−dbl ≈
2.318, the (asymmetric) trajectory illustrated in Figure 9.14(b) undergoes a period-
doubling bifurcation. A typical trajectory after the bifurcation, which has period
4π, is shown in Figure 9.14(c). These phase-plane plots make a convincing argument
that an eigenvalue of the Poincaré map has passed through −1, but the dedicated
reader may wish to verify this behavior numerically.

As Γ further increases, additional period-doubling bifurcations appear. For
example, a period-quadrupled solution is illustrated in Figure 9.14(d). However,
we do not pursue this behavior further.

8Note that this forcing is at the resonant frequency for the linearization of (9.31). This fact is
not important for the phenomena we study; it merely simplifies formula (9.34) for the approximate
solution.

9This bifurcation illustrates that, as mentioned above, mutual annihilation of limit cycles is not
the only possibility when an eigenvalue of the Poincaré map crosses +1. Cf. Exercise 3.
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Figure 9.14: Bifurcations of the forced pendulum (9.31) as Γ is varied, assuming
β = 1/2 and ω = 1. As described in the text, the panels indicate that a sym-
metry-breaking bifurcation occurs between Γ = 1.8 and Γ = 2.2, a period-doubling
bifurcation between Γ = 2.2 and Γ = 2.35, and another period-doubling bifurcation
between Γ = 2.35 and Γ = 2.385.

Mostly we are relying on the computer to demonstrate these bifurcations, since
rigorous analysis is unrewardingly technical. In Exercise 15, we relate the bifurcations
to parametric resonance, which provides some analytical insight into the phenomena.

9.6.5 Rössler’s Equation

Rössler’s equation
x′ = −y − z,
y′ = x+ ay,

z′ = b+ z(x− c),
(9.35)

provides the most elegant demonstration of period-doubling in an ODE. It is not
derived from any application; rather, Rössler created it as a simplification of the
Lorenz equation, a model of a model. In Exercise 8.17 you showed that (9.35) has
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a saddle-node bifurcation when c = c∗ = 2
√
ab at which two equilibria appear. If

a = b <
√
2, all three eigenvalues of DF∗ lie on the imaginary axis, so the principle

of exchange of stability provides no information. Lacking theoretical guidance, we
blithely plow ahead with computations.

If a = b = 0.2, equation (9.35) has stable periodic solutions as soon as c > 2a.
Initially, as c increases, the amplitude and the basin of attraction of these solutions
grow. This trend is illustrated in Figure 9.15(a,b), which shows projections of solution
trajectories into the xy-plane for c = 1, 2. However, if c is increased to 3 as in
Figure 9.15(c), the projection of the limit cycle makes two loops around the origin.
(Of course in three dimensions, the trajectory does not cross itself.) The trajectory
is still periodic, but it has roughly twice the period as when c = 2. For most
investigators this is adequate confirmation of a period-doubling bifurcation, but you
can remove any vestige of doubt by computing that an eigenvalue of the Poincaré
map tends to −1 as c → 2.832. (Cf. Exercise 11.)

Another period-doubling bifurcation occurs as c continues to increase, at c ≈
3.837. The period of the solution shown in Figure 9.15(d) has period approximately
four times that in Figure 9.15(b).

And the action continues: there is, in fact, an infinite sequence of period-doubling
bifurcation as c increases! The bifurcation diagram in Figure 9.16(a) gives an
overview of the bifurcations. When c < 2.832, the x component of the periodic
solution has exactly one local minimum and one local maximum per period; these
are graphed as functions of c in the figure. After the first period-doubling, when
2.832 < c < 3.837, x(t) has two local minima and two local maxima, all of which
are graphed in the figure. The number of local minima and local maxima continues
to double at each bifurcation. The bifurcations accumulate at a point with c ≈ 4.3.
Beyond that point, there are infinitely many local extrema of x(t); some of these
are indicated by small black dots in the figure, but they form a blur rather than
recognizable curves.

Figure 9.16(b) shows a portion of a trajectory computed for c = 5, over the range
0 < t < 900. This bounded aperiodic behavior is typical of deterministic chaos.10

The geometry of the trajectories, including the Poincaré map of (9.35), is explored
in Sections 3.4 and 4.1 of Part 2 of [1]. (Their analysis is summarized in Section 12.3
of [81].)

Chaotic behavior reappears briefly in Exercise 13 and in Sections 9.7 and 10.6 of
this book, but we do not explore chaos beyond these minor skirmishes. Part III of
[81] and [17] give readable introductions to chaos.

10We use this term informally without defining it precisely. Some features of chaotic behavior
are explored in Section 10.6.
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Figure 9.15: Projections into the x, y-plane of solutions of the Rössler sys-
tem (9.35), assuming a = b = 0.2. Note the period-doubling bifurcations in this
system as c increases.

9.6.6 Other Examples

The period-doubling cascade we just saw is not an uncommon phenomenon. The
simplest instance of it occurs in a discrete dynamical system, the quadratic map

Ψ(x, μ) = μx(1− x) (9.36)

on the unit interval [0, 1]. In Exercise 13 we invite you to use the computer to
discover this phenomenon for yourself.

The Lorenz equations exhibit several period-doubling cascades (cf. Chapter 4 of
[75]), but in a range of the bifurcation parameter ρ well beyond what we consider in
the next section.
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Figure 9.16: (a) Bifurcation diagram for the period-doubling cascade in the Rössler
system (9.35), assuming a = b = 0.2. (b) Projection of a typical orbit in the chaotic
regime.

9.7 The Onset of Chaos in the Lorenz Equations

Following well-established tradition in this subject, we study the Lorenz equations

(a) x′ = σ(y − x),
(b) y′ = ρx− y − xz,
(c) z′ = −βz + xy,

(9.37)

with ρ as the bifurcation parameter and the other two parameters fixed: σ = 10 and
β = 8/3. The origin is globally stable if ρ < 1; if ρ is increased to, say, 28, virtually all
solutions of these equations are chaotic. (A typical solution in the chaotic regime is
illustrated in Figure 9.17(a).) This radical change in behavior occurs through several
bifurcations of familiar types that are indicated schematically in Figure 9.17(b). The
present section guides you through these transitions.

The first bifurcation is the supercritical pitchfork bifurcation at ρ = ρpitch = 1,
discussed in Section 8.1. At this bifurcation, two nontrivial equilibria

P± = (±
√

β(ρ− 1), ±
√

β(ρ− 1), ρ− 1)

bifurcate from the origin. After the bifurcation, the origin is a saddle point equi-
librium with a one-dimensional unstable manifold Mu. For example, Figure 9.18(a)
shows the projection of Mu into the x, y-plane for ρ a little beyond the bifurcation.

Tracking the asymptotic behavior of Mu as ρ increases provides the key to un-
derstanding the subsequent bifurcations. Because of symmetry, we need track only
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Figure 9.17: (a) A typical trajectory for the Lorenz system (9.37) assuming ρ = 28,
σ = 10, and β = 8/3. Computations indicate that such orbits are not periodic. (b) A
bifurcation diagram for (9.37). The bifurcations at ρhomo ≈ 13.926, ρhetero ≈ 24.06,
and ρhopf ≈ 24.74 are discussed in the text. Note that the value of ρ used in Panel (a)
lies beyond all the bifurcations in the diagram.

Range of ρ Asymptotic behavior

ρpitch < ρ < ρhomo M(+)
u converges to P+

ρhomo < ρ < ρhetero M(+)
u converges to P−

ρhetero < ρ M(+)
u never converges

Table 9.1: Asymptotic behavior of the unstable manifold through the origin for
(9.37) in various ranges of the bifurcation parameter.

half of Mu. Let M(+)
u be the half of Mu that as t → −∞, approaches the origin

from the first quadrant.11 As shown in Figures 9.18(a,b) and noted in Table 9.1,

before the second bifurcation, M(+)
u converges to P+ as t → ∞. (For the record:

the convergence of M(+)
u to P+ is a spiral only if ρ > 1.3456; for smaller ρ, the

convergence is monotone.)

As ρ increases, M(+)
u swings back closer and closer to the origin before spiraling

into P+, until at ρ = ρhomo ≈ 13.926 it approaches the origin again asymptotically as
t → ∞ (cf. Figure 9.18(c)). This is the second bifurcation, a homoclinic bifurcation.

After the bifurcation, M(+)
u approaches the other equilibrium, P−, asymptotically.

11To be completely accurate, we should say that the projection of M(+)
u approaches the origin

from the first quadrant. Here and below we gloss over this technical point to simplify the syntax.
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Figure 9.18: Projections of unstable manifolds for the Lorenz system (9.37). Pan-

els (a,b): when 1 < ρ < ρhomo, M(+)
u connects to the stable equilibrium P+. (c) For

ρ = ρhomo ≈ 13.926, M(+)
u forms a homoclinic orbit. (d) For ρ = 20, M(+)

u takes
a longer excursion through phase space before connecting to P−. Note the unstable
limit cycles in this range of ρ.
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The homoclinic bifurcation creates unstable periodic orbits Γ+ and Γ− whose
projections lie in the first and third quadrants, respectively (cf. Figure 9.18(d)).
The figure suggests that

M(+)
u converges to P− “inside” Γ−, (9.38)

but since the flow is three-dimensional, this statement needs to be clarified, a nontriv-
ial but essential task. The linearized Poincaré map DΠ of Γ− has two eigenvalues,
both real, one stable (magnitude < 1) and one unstable (magnitude > 1). Thus, the
stable and unstable manifolds of Γ−, let us call themNs andNu, are two-dimensional,
with one dimension corresponding to motion around Γ− and the other to the stable
and unstable eigenvectors of DΠ, respectively. Trajectories in one half of Nu, let us
call it N (in)

u , spiral into P− as t → ∞, and in the opposite limit, they spiral outward
to Γ−. Thus, we may view N (in)

u as a sort of “membrane” stretched over Γ− that
contains the point P−. Since N (in)

u is an invariant manifold for (9.37), it forms an
impenetrable barrier for the flow. We may now clarify (9.38): for ρ slightly beyond

ρhomo, the invariant manifold M(+)
u from the origin bumps up against N (in)

u and then
spirals into P−. This is shown in perspective in Figure 9.19(a).

As ρ is increased beyond ρhomo, M(+)
u bumps up against N (in)

u closer and closer
to Γ− before spiraling into P−. This trend culminates at ρ = ρhetero ≈ 24.06, when
M(+)

u approaches the periodic orbit asymptotically.12 This is the third bifurcation,
the bifurcation that initiates chaos. If ρ > ρhetero, then M(+)

u bumps up against Nu

outside of Γ− and, as indicated in Figure 9.19(d), moves farther away from P− as it
revolves around that point; after a few turns, it sails off toward P+. It then takes a
few turns around P+ as it recedes from that point and flies back toward P−, where
it approximately repeats its earlier behavior. This alternation between revolution
around and recession from the two centers P± continues indefinitely, in an aperiodic
manner, as shown in Figure 9.17(a).

After ρ passes ρhetero, M(+)
u and all nearby trajectories are chaotic. However,

for ρhetero < ρ < ρhopf ≈ 24.74, equation (9.37) is bistable: although many solutions
are chaotic, solutions with initial conditions near P± will still spiral inward to the
(stable) equilibrium. Bistability ends when ρ = ρhopf : the equilibria lose stability
through the fourth bifurcation, a subcritical Hopf bifurcation (cf. Exercise 21 in
Chapter 8). This initiates a range of ρ in which virtually all trajectories are chaotic.

Even after ρhopf , equation (9.37) retains its ability to surprise. For still larger
values of ρ the equation undergoes many more bifurcations, including multiple period-
doubling cascades. Finally, it settles down when ρ > 313; in this range virtually all
solutions have the same simple asymptotic behavior, a stable periodic orbit (see
Chapter 7 of [75]).

12In other words, Γ− is the ω-limit of points on M(+)
u . You might find it helpful to look at

Exercise 5, which gives an analytically more tractable example of such behavior.
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Figure 9.19: Asymptotic behavior of M(+)
u for various values of ρ > ρhomo. In all

panels, starting from the origin (the black dot), M(+)
u makes a partial loop around

P+ (equilibrium not shown) before entering the third quadrant. Panels (a,b): M(+)
u

bumps up against the unstable manifold Nu “inside” Γ− and converges to P− as
t → ∞. (c) M(+)

u is asymptotic to the periodic orbit Γ−; this is the onset of chaos.

(d) M(+)
u bumps up against Nu “outside” Γ− and recedes from P−; after a few loops

it gets shot back toward Γ+, where it behaves similarly (cf. Figure 9.17(a)).
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9.8 Bursting in the Denatured Morris–Lecar Equations

Many neurons and other excitable cells exhibit a behavior known as bursting oscil-
lations. This behavior is characterized by an alternation between intervals of rapid
oscillations (in the transmembrane potential) with quiescent intervals, as illustrated
in Figure 9.20(a).

Ermentrout and Terman [23] construct physiologically realistic ODE models for
bursting based on the real Morris–Lecar equations.13 Here, choosing simplicity over

0.6
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a b
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Figure 9.20: (a) Bursting in the denatured Morris–Lecar equations (9.39), (9.41)
with parameters (9.40) and ε = 0.0002. (b) A graph of I(t) in the simulation of
Panel (a). (c) Bifurcation diagram for (9.39) with parameters (9.40). On the hori-
zontal axis, I, which is treated as a parameter, not a dynamic variable, ranges from
0 to 0.022. A homoclinic bifurcation occurs at Ihomo ≈ 0.01237 and a saddle-node bi-
furcation at ISN ≈ 0.01484. (The subcritical Hopf bifurcation, not related to bursting,
is located at Ihopf ≈ 0.01916.)

13If you are interested in neuroscience, you should definitely consult their book and/or [96]. For
example, there are different types of bursting, and we model only one of them.
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realism, we construct such behavior based on the denatured Morris–Lecar equations,

x′ = x2(1− x)− y + I,
y′ = Aeαx − γy,

(9.39)

but with slightly different parameters from those considered in Chapter 8, namely
with

A = 0.0041, α = 5.27, γ = 0.31. (9.40)

A bifurcation diagram for (9.39) with these parameter values is shown in Figure
9.20(c). Although this figure appears rather similar to Figure 8.19 in Chapter 8,
the two cases differ in how the periodic solutions terminate as I is decreased: in
Figure 8.19, through an SN-limit-cycle bifurcation, but in Figure 9.20(c), through a
homoclinic bifurcation.

The system (9.39) is bistable if Ihomo < I < ISN, where Ihomo ≈ 0.01237 and ISN ≈
0.01484 are identified in Figure 9.20(c). Specifically, Ihomo refers to the homoclinic
bifurcation at which periodic solutions terminate, and ISN refers to the saddle-node
bifurcation at which the lower branch of (stable) equilibria terminates. In this range
of I, both a periodic solution and an equilibrium are stable. This bistability can give
rise to bursting if the current I is allowed to vary slowly with time, depending on
the voltage x.

To elaborate, we refer to Figure 9.20(b), which shows the current I(t) in the
simulation represented in Figure 9.20(a). Because the current evolves slowly, the
simulation may be analyzed approximately as a solution of (9.39) under quasistatic
variation of I. At the starting time, I(0) = Ihomo and x(0) equals the equilibrium
on the lower branch for this value of I. As t increases, I(t) slowly increases, and x
will approximately track the bottom equilibrium in Figure 9.20(c) with I = I(t), as
long as I(t) < ISN. This corresponds to the quiescent phase of bursting. However,
when I(t) crosses ISN, the equilibrium disappears, so the system must jump to new
behavior; specifically, it jumps to the stable periodic solution shown in the bifurcation
diagram Figure 9.20(c). This corresponds to the rapidly oscillatory phase of bursting.
Although I then starts to decrease, these oscillations will continue as long as I(t) >
Ihomo. When I(t) finally decreases below Ihomo, the system will jump back to the
equilibrium, and the process starts over. In other words, bursting results from the
system (9.39) alternating between resting and spiking as quasistatic changes in I
move it around a hysteresis loop in Figure 9.20(c).
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To obtain this behavior in an autonomous system of ODE, we add I as a third
variable to (9.39) subject to the equation

dI/dt = ε(Iasym(x)− I), (9.41)

where ε = 0.0002 and Iasym(x) is a smoothed-out version of the step function

H(x) =

{
1/30 if x < vswitch,
0 if x > vswitch

(vswitch = 0.05).

The evolution of I is slow, because ε is small. Parameters in the step function
were chosen to achieve the following: if x < vswitch (as it is on the lower branch of
equilibria), then I tends to the asymptotic value 1/30 > ISN; and if x > vswitch (as it
is on the periodic solutions), then I tends to the asymptotic value 0 < Ihomo. In the
simulation we used

Iasym(x) =
1

60

[
1 + tanh

(
.05− x

.001

)]
.

9.9 Exercises

After the core exercises there are sections on computations to support the text and on bifurcation
in certain one-dimensional maps.

9.9.1 Core Exercises

The core exercises address the following issues:

Limit sets in global bifurcation 1
Calculation of eigenvalues of DΠ 2
Exploring various bifurcation phenomena 3–6

1. For each of the flows shown in Figures 9.2(c), 9.3(c), and 9.4(c), decide which
of the following statements is true:

(i) The purple orbit14 is the α-limit of points inside it.

(ii) The purple orbit is the ω-limit of points inside it.

(iii) The purple orbit is neither an α- nor ω-limit of points inside it.

(iv) The purple orbit is both an α- and an ω-limit of points inside it.

2. For the periodic solution of (9.11) with μ = 0, apply Theorem 4.6.1 to show
that λ = 1 is the eigenvalue of its Poincaré map.

14Strictly speaking, we should say the purple (homoclinic) orbit and the equilibrium, but please
cut us some slack.
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3. Using (9.11) as a guide, construct an academic example of an ODE with a
pitchfork-like bifurcation of periodic solutions from a periodic solution. Do
likewise for transcritical bifurcation.

Hint: Compare the r-equation in (9.11) with the normal form for saddle-node
bifurcation in Table 8.1.

Remark: The first bifurcation in Figure 9.14 is a nonacademic example of a
pitchfork-like bifurcation of periodic solutions from a periodic solution.

4. Introduction: As we saw in Section 7.4, the torqued pendulum (9.8) has a stable periodic
solution if μ > 1. In Section 9.2.3 we showed that for a representative large value of the
friction coefficient β (which is called overdamped), the periodic orbit terminates through
an SN-limit-cycle bifurcation at μ = 1. However, if friction is small (underdamped), the
periodic orbit continues to exist for a range of μ below 1 and terminates through a homoclinic
bifurcation at μ = μhomo < 1. In the range μhomo < μ < 1, the motion is bistable: both the
periodic orbit and one of the equilibria are stable. In the present exercise you explore this
behavior.

Figure 9.21 shows equilibria, stable and unstable manifolds, and periodic solutions of (9.8)
without our usual color conventions for three values of μ, assuming β = 0.2.

(a) Identify which equilibria are sinks, saddles, or sources.

(b) Identify which trajectories are stable manifolds, unstable manifolds, ho-
moclinic orbits, or periodic solutions.

(c) Place arrowheads to indicate the direction of flow.

(d) Draw a bifurcation diagram that summarizes this behavior.

Challenge: Figure out what’s special about the phase-plane plot of the torqued
pendulum at the border between underdamped and overdamped behavior, at
β ≈ 1.191.

5. Introduction: This problem gives a simple example of a heteroclinic orbit that connects a
saddle point to an unstable periodic orbit. This behavior in the example can be derived
without numerics, in contrast to the bifurcation at ρ = ρhetero in the Lorenz equation (9.37).

(a) Verify that for every μ > 0, the system given in cylindrical coordinates by

r′ = (r2 + 1− 3z)(r2 − 1− 3z)r,
θ′ = 1− z(1 + r sin θ),
z′ = μz(z − 1),

(9.42)

has a saddle-point equilibrium at (r, θ, z) = (
√
2, 0, 1) with a one-

dimensional unstable manifold Mu and an unstable periodic orbit {r =
1, z = 0}.

(b) Show that there is a value of μ > 0 such that Mu is asymptotic to the
periodic orbit as t → ∞.
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Figure 9.21: Stable/unstable manifolds and periodic orbits for the underdamped
torqued pendulum equations with β = 0.2. In Exercise 4 we ask you to supply the
appropriate colors and draw the bifurcation diagram.
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z
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r

Figure 9.22: Part of the flow-quadrant diagram for the r, z-subsystem of (9.42).

Hint: First consider the r, z-subsystem. Calculate its nullclines, which do not
depend on μ, and verify the flow-quadrant diagram of Figure 9.22. In particular,
show that the subsystem has saddle points at (

√
2, 1) and (1, 0), and show that in

the quadrilateral bounded by the r-nullclines z = (r2 ± 1)/3 and the z-nullclines
z = 0 and z = 1, flow is directed into the third quadrant.

Now ask how the unstable manifold of the r, z-subsystem through (
√
2, 1),

which we also designate by Mu, varies with μ. Argue that if μ is small, Mu

converges to the asymptotically stable equilibrium at the origin. Then argue
that if μ is large, Mu is swept out to infinity. Conclude by continuity that for
an intermediate value, say μ = μ∗, Mu converges to the saddle point at (1, 0).
Finally, put θ back into the problem and argue that when μ = μ∗, the unstable
manifold Mu for the full problem is asymptotic to the periodic orbit.

6. Introduction: Rewrite (7.106), the equation for a vertically vibrated pendulum, as a first-
order autonomous system

x′ = y,
y′ = −βy + (1− αω2 cos z) sinx,
z′ = ω,

(9.43)

where we reduce z modulo 2π. For all ω, this equation has the periodic solution

x(t) ≡ y(t) ≡ 0, z(t) = t. (9.44)

According to Section 7.10, provided α is not too large, this solution is stable if ω >
√
2/α.

(a) Just on the basis of readily observed properties, try to figure out what
kind of bifurcation accompanies this loss of stability:

(i) Homoclinic or heteroclinic bifurcation

(ii) SN-limit-cycle bifurcation

(iii) Supercritical pitchfork-like bifurcation (λ(DΠ∗) = +1)

(iv) Subcritical pitchfork-like bifurcation (λ(DΠ∗) = +1)
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(v) Transcritical-like bifurcation (λ(DΠ∗) = +1)

(vi) Mutual annihilation bifurcation (λ(DΠ∗) = +1)

(vii) Bifurcation to an invariant torus (λ(DΠ∗) = e±iω)

(viii) Period-doubling bifurcation (λ(DΠ∗) = −1)

Hint: Two readily observed properties are that the periodic solution contin-
ues to exist after it loses stability and (9.43) has the reflectional symmetry
(x, y, z) �→ (−x,−y, z).

(b) What new solutions, if any, appear at the bifurcation?

9.9.2 Computations to Support Claims in the Text

7. Introduction: Using Exercise 7.10 as a guide, define a Poincaré map Π : R2 → R
2 whose

fixed points locate 2π/ω-periodic solutions of (9.18).

(a) Compute the fixed point of Π for Γ = 1.3.

(b) Decreasing Γ slowly, track the fixed point as a function of Γ and verify
that the eigenvalues of DΠ cross the unit circle when Γ ≈ 1.285.

Hint: Although your software package may compute eigenvalues of the
Poincaré map automatically, it is useful to realize how simple it is to compute
these from scratch. Suppose γ(t) is a T -periodic solution of a d-dimensional
autonomous ODE x′ = F(x). As in Section 4.8, consider the IVP

x′ = F(x), x(0) = γ(0),
X ′ = DF(x)X, X(0) = I,

(9.45)

with unknowns the d-dimensional solution vector x(t) and a d × d matrix
X(t). Then X(T ) = Dϕ(T,γ(0)), and Proposition 7.3.5 can be invoked to
extract the eigenvalues of DΠ(γ(0)).

8. Verify numerically that (9.20) has periodic solutions that as μ varies, bifurcate
to an invariant torus.

Discussion: If you want a suggestion, here are some possible parameter values:

γ = 1/4, ν = 1, σ = 3, E = 1.

If γ = 0, then (9.20) undergoes a Hopf bifurcation at μ = 1/6. Thus for small γ,
you would expect the bifurcation to an invariant torus to occur for μ not too far
from 1/6.

9. Make one or more perturbations of (9.27) and check numerically that the per-
turbed equations still exhibit period-doubling.
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10. Introduction: Here is a simplified model of the cardiac action potential [56]:

dv

dt
=

h

τin
v2(1− v)− v

τout
+ Jstim(t),

dh

dt
=

{
(1− h)/τopen, if v < vcrit,

−h/τclose, if v ≥ vcrit,

(9.46)

where v represents voltage across a cell membrane and h is a “gate” variable; i.e., by “open-
ing” and “closing,” depending on whether the voltage exceeds a threshold vcrit, it regulates
the inward current in the voltage equation. The variables v and h are scaled to vary between
0 and 1. In solving (9.46), use the following choices for parameters:

τin = 0.1 ms, τout = 2.4 ms, vcrit = 0.13,
τopen = 30 ms, τclose = 150 ms.

You may regard Jstim(t) as a periodic impulsive15 stimulus; i.e., every B milliseconds, the
stimulus instantaneously raises v by some fixed amount, say 0.25. (Thus, these jumps make
the voltage discontinuous; the ODE holds on the intervals between stimuli.)

(a) Using numerical simulations with B = 400 ms, v(0) = 0.5, and h(0) = 0.9,
solve the equations for a few periods of the stimulus until v and h are
periodic with period B; plot this steady response v vs. t.

(b) Repeat the computation under quasi-static reduction of B until you
observe period-doubling; i.e., the period of the steady response v vs. t
becomes 2B.

Discussion: For B = 400 ms, you will find that the steady response v vs. t has
one shark-fin-shaped elevation of v per period of the stimulus. We may define
the APD as the time that v exceeds vcrit. Before period-doubling, all APD’s
are identical; after, they have a long–short alternating pattern. The associated
cardiac rhythm, called T -wave alternans, is considered abnormal and potentially
dangerous.

11. If a = b = 0.2, the Rössler equation (9.35) has a unique periodic solution for
0.4 < c < 2.832. Compute the eigenvalues of the Poincaré map of this periodic
solution for a range of c below 2.832 and show that one of them tends to −1
as c → 2.832.

12. Show numerically that (9.39) with parameters (9.40) undergoes a homoclinic
bifurcation at I ≈ 0.01237.

15If it bothers you that the periodic forcing term Jstim(t) is impulsive or that the right-hand side
of the dh/dt equation has jumps, feel free to employ smooth alternatives. If you do so, be sure that
over each period, Jstim(t) is nonzero only briefly, perhaps on the order of one to three milliseconds,
but integrates to something on the order of say 0.5 (in order to provide a sufficient kick to v).
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9.9.3 Bifurcation in a Quadratic Map

13. Use the computer to investigate for yourself the remarkable sequence of period-
doubling bifurcations in the logistic map

Ψ(x) = μx(1− x), (9.47)

which for μ ≤ 4 maps the unit interval [0, 1] into itself.

Discussion: You can read about this behavior in any number of references (e.g.,
Chapter 10 of [81]), but it’s more fun to discover it yourself. You can get started
analytically. If μ > 1, then x = 1 − 1/μ is a nonzero fixed point of Ψ. This
fixed point is stable if 1 < μ < 3, but it loses stability at μ = 3 through a
supercritical period-doubling bifurcation. You can find analytically the 2-cycle
that bifurcates at μ = 3 and show that it is stable for 3 < μ < 1 +

√
6. At

this point, you probably want to turn the job over to the computer. Here’s a
specific question to address: if the nth period-doubling bifurcation occurs at μn,
estimate the limit μ∞ of the sequence μn.

After doing this exercise, you might find it stimulating to read about the
universal behavior captured by Feigenbaum’s renormalization theory, which is
covered in Section 10.7 of [81].

14. Introduction: For μ∞ < μ ≤ 4, where μ∞ is defined in (the discussion following) the previous
exercise, the orbits of the logistic map (9.47) are mostly aperiodic, but with some exceptions.
Most notably, there is a range of μ in which Ψ has stable period-3 orbits. Although this
behavior was discovered using the computer, you can show that such orbits exist using just
a calculator ! With μ = 3.835, let

α1 = 0.152074, α2 = 0.494514, α3 = 0.958635.

You may calculate that Ψ(αk) ≈ αk+1, where for k = 3 we define α4 = α1.

Evaluate Ψ′(αk) and use this information to construct short closed intervals
Ik, k = 1, 2, 3, around each point αk such that Ψ(Ik) ⊂ Int Ik+1.

Discussion: It follows that the sequence Ψ3n(α1) contains a subsequence that
converges to a point in I1 that has period 3 under iteration by Ψ. You could
calculate that

Ψ′(α1)Ψ
′(α2)Ψ

′(α3) ≈ −0.394972,

and with a little more work you could show that for some ε > 0,

|Ψ′(x1)Ψ
′(x2)Ψ

′(x3)| < 1− ε (9.48)

for all xk such that xk ∈ Ik. From this it would follow that the period-3 trajectory
you found above is unique and stable.

However, far more rewarding than verifying (9.48) is to read about Sarkovskii’s
theorem, which identifies truly remarkable behavior that is implied by the exis-
tence of such a period-3 orbit; see, for example, Section 1.10 of [17].
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9.9.4 PHD Exercises

15. Introduction: In this exercise we seek intuition regarding the bifurcations in (9.31). Eigen-
values of the Poincaré map for a periodic solution γ(t) of (9.31) may be calculated by solving
the linearized equation

w′′ + βw′ + [cos γ(t)]w = 0. (9.49)

Consider only small Γ in (9.31) with parameter values (9.32). Using (9.34) and making the
approximation cos γ ≈ 1− γ2/2, (9.49) reduces to

w′′ + w′/2 + [(1−A2/4) + (A2/4) cos 2t]w = 0, (9.50)

where we have used the identity sin2 t = (1−cos 2t)/2. As A increases, there are two possible
mechanisms for instability in this equation: (i) the coefficient 1 − A2/4 could become too
negative for the periodic forcing to counteract, as studied in (7.99), or (ii) periodic forcing,
even though detuned from the natural frequency in (9.50), could cause exponential growth,
as described for (7.83) in Exercise 7.16. It is not obvious which effect comes into play first,
but we may deduce from our computations in Section 9.6.4 that mechanism (i) causes the
first instability.16 Let’s try to locate where this bifurcation occurs.

Use Proposition 7.10.3 to estimate that (9.50) acquires solutions with expo-
nential growth when A ≈ 2.16.

Hint: Change variables in (9.50) to τ = 2t to obtain

d2w

dτ2
+

1

4

dw

dτ
+

[
1

4

(
1− A2

4

)
+

A2

16
cos τ

]
w = 0,

whose trigonometric term has the same frequency as (7.100). Ignoring friction
for the moment, apply Proposition 7.10.3 with ε = A2/32 to derive the condition

1

4

(
1− A2

4

)
= −2

(
A2

32

)2

for the onset of solutions with exponential growth, and solve this equation for
A. A posteriori, check that the value of β in (7.100) implicit in making this
estimate, i.e., defined by β(A2/32) = 1/4, is in an acceptable O(1) range.

Remark: Comparing this result with Figure 9.14 and recalling how crude the
above approximations were, we can only say, “not bad.”

16. Introduction: Although the periodic solution of (9.31) that is invariant under (9.33) loses
stability as Γ increases, it still continues to exist; of course, it can’t be computed simply by

16How can we deduce this? In the first place, note that A ≈ 2.4 in Figure 9.14(a), and at
the bifurcation, it will be slightly larger, i.e., large enough to make 1 − A2/4 negative. Moreover,
reflecting on the discussion following Exercise 7.16, we can see that for mechanism (i), the destabi-
lizing eigenvalue of the Poincaré map would be +1, while for mechanism (ii), it would be −1; since
the period is not doubled at the first bifurcation, we conclude that mechanism (i) is the driver.
Period-doubling bifurcations of course do occur later, but they are less amenable to analysis; we do
not attempt to locate them, even approximately.
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letting t → ∞ in a simulation. However, feedback can be used to compute such an unstable
solution. Specifically, consider the equation17

x′′ + βx′ + sinx = Γcosωt− C[x(t) + x(t− π/ω)], (9.51)

where C > 0. The new term in (9.51) may be interpreted as a fictitious force that pushes
x(t) toward −x(t − π/ω). For functions that are invariant under (9.33), this term vanishes
identically; thus, a solution of (9.51) that is invariant under (9.33) also satisfies (9.31).

Choosing arbitrary initial data for 0 ≤ t ≤ π/ω, solve (9.51), say with Γ = 2.2
and the parameters (9.32). Experiment until you find a value of the coefficient
C such that your solution is invariant under (9.33).

Remark: Incidentally, after the period-doubling bifurcation, the unstable solu-
tions of (9.31) with the undoubled period 2π/ω can be found by solving an
analogue of (9.51) with a fictitious force

−C[x(t)− x(t− 2π/ω)].

9.10 Pearls of Wisdom

9.10.1 Remarks on Heteroclinic Orbits

The term “heteroclinic” is used to describe an orbit of an ODE that connects two
equilibria. Heteroclinic orbits are important when both equilibria are saddle points:
thinking for the moment in two dimensions, such an orbit is simultaneously the
unstable manifold of one saddle point and the stable manifold of the other. For
example, reflecting this situation, the heteroclinic orbit in Figure 9.2(c) is shown
in purple, a combination of red for unstable and blue for stable. As is typical, the
connection occurs only for one specific value of the bifurcation parameter, and this
value separates parameter regimes with different phase portraits.

By contrast, an orbit that connects a saddle point to a sink has little significance.
For example, two orbits that connect equilibria in Figure 9.4(a) are shown in red as
they are the unstable manifold of the saddle point (r, θ) = (1,+arccos(1 + μ)), but
they have no special status as regards their other endpoint: they are only two of
infinitely many orbits approach the sink (1,− arccos(1 + μ)) asymptotically. More-
over, this connection exists for a range of the bifurcation parameter, with no change
in phase portraits involved.

In higher dimensions, an orbit that connects two saddle points, say P1 andP2, has
significance for bifurcation if the dimension of the unstable manifold of P1 plus the

17Note that this is an ODE with delay, a class of equations that is discussed in Section 10.5.
Such equations exhibit some new phenomena; in particular, initial data must be specified along an
entire time interval of length π/ω. However, given such initial data, equations with delay can still
be solved numerically using software such as XPPAUT.



9.10. Pearls of Wisdom 449

dimension of the stable manifold of P2 equals exactly the dimension of the ambient
space. (Incidentally, the analogue of this condition for a homoclinic orbit is always
satisfied: the dimensions of the unstable and stable manifolds of a hyperbolic saddle
point add up to the dimension of the ambient space.)

As Exercise 5 demonstrates, heteroclinic orbits can connect other invariant sets
besides equilibria, such as a periodic orbit. In the Lorenz equations (9.37), a more

interesting example, if ρ = ρhetero, then the one-dimensional unstable manifold M(+)
u

is asymptotic to the periodic orbit Γ− as t → ∞. (Cf. Figure 9.19(c).) And as we
saw above, a bifurcation occurs at this value of ρ.

9.10.2 Bifurcation in Fluid-Mechanics Problems

As we mentioned in Section 9.5.3, bifurcation to an invariant torus occurs in many
fluid-mechanics problems,18 even without periodically varying external driving.
A representative example is provided by Taylor–Couette flow. This term refers to
fluid flow in the annular region between long concentric rotating cylinders, where a
rotation speed, say of the inner cylinder, is taken as the bifurcation parameter. For
small rotation rates, the flow is purely circumferential and is essentially independent
of z (the coordinate along the axis). Multiple bifurcations occur as the speed is
increased:

• first, to steady flow with circulation in cells, called Taylor vortices ;

• next, to a periodic flow, called wavy vortices ;

• then, to an aperiodic flow called modulated wavy vortices.

The third bifurcation is a bifurcation to an invariant torus. Look online to learn
more about these phenomena.

In fact, more instabilities continue to appear as the speed of rotation is increased
further, contributing to the transition to turbulent flow. Before the 1970s, it was
believed that fully turbulent flow ensued only after an infinite number of bifurcations
to increasingly complex flow had occurred. However, this view was supplanted by
the revolutionary proposal of Ruelle and Takens [69] that turbulent flow arrived
abruptly, after just a few such bifurcations, when the differential equations admitted
chaotic solutions. This story makes fascinating reading; see, for example, [30].

9.10.3 Routes to Chaos

Although we don’t deal with chaos in a serious way, it has nevertheless cropped up
in our work. Let us note three different routes through which chaos appeared:

18Although the description of fluid motion requires PDEs—the Navier–Stokes equation—in fact
the analysis of bifurcation in many PDEs is closely analogous to the analysis of bifurcation in ODEs.
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• A period-doubling cascade, in Rössler’s equation, Section 9.6.

• An abrupt global bifurcation, in the Lorenz equation, Section 9.7.

• Repeated Hopf-like bifurcations, in fluid mechanics, Section 9.10.2.

One further route that can be understood with the concepts from this book deserves
to be mentioned: a homoclinic tangle. The homoclinic bifurcations of Section 9.1
provide a useful point of reference. In these bifurcations, the stable and unstable
manifolds of a saddle point intersect in a complete orbit that approaches the saddle
point asymptotically in both limits t → ±∞. In a homoclinic tangle, the stable and
unstable manifolds of a periodic solution intersect transversely in an orbit that is
asymptotic to the periodic solution in both limits t → ±∞. Equivalently, in terms
of the Poincaré map Π of the periodic orbit, the stable and unstable manifolds
of the associated fixed point of Π intersect transversally.19 Such an intersection,
which is robust under perturbation, entails geometry so complicated as to defy the
imagination; for example, consult Sections 5.1, and 5.2 in Part 3 of [1] or Section 15.2
of [39], especially Figure 15.2.

In many references, the existence of a homoclinic tangle in the periodically forced
Duffing equation,

x′′ + βx′ − x+ x3 = Γcosωt,

is used to find chaotic solutions; the derivation in Section 15.3.1 of [39] is among the
more readable.

19Note the contrast: the stable and unstable manifolds of an equilibrium of an ODE cannot
intersect transversely.
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Epilogue

In this epilogue, we offer brief overviews of several ODE topics not covered in the
main body of the text.

10.1 Boundary Value Problems

10.1.1 An Overview Through Examples

Early on, we saw that ODEs have many solutions. Mostly in this book we have
used initial conditions to select one specific solution from the many. However, other
means of specifying a unique solution also arise in practice and need to be studied.
In these problems, typically the independent variable is a spatial coordinate—not
time—say ranging over an interval 0 ≤ x ≤ 
. A specific solution is determined by
requiring it to satisfy boundary conditions involving information from both ends of
the interval.

Let us illustrate possible boundary value problems (BVPs) in a simple case, say
for the linear second-order scalar ODE

d2y

dx2
− y = c, 0 ≤ x ≤ 
, (10.1)

where c is a constant. For any choices of the coefficients ak, bk, the relations

a0y
′(0) + a1y(0) = a2, b0y

′(
) + b1y(
) = b2, (10.2)

are appropriate candidates for boundary conditions, provided we avoid trivialities by
requiring that a0 and a1 not both be zero, and likewise for b0, b1. Thus, in contrast
to the IVP, there are many different viable BVPs based on a single ODE.

© Springer Science+Business Media New York 2016
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Here is a more profound difference between IVPs and BVPs: even for a perfectly
benign ODEs like (10.1), some boundary conditions can yield a problem with no
solution, and it may not be feasible to determine whether such behavior occurs in a
specific problem. For an example in which this determination is possible, consider
(10.1) subject to

y(0) = a, y′(
)− 2y(
) = b. (10.3)

The general solution of (10.1) is

y(x) = −c+ C1e
x + C2e

−x,

and the boundary conditions require that

− c+ C1 + C2 = a, 2c+ (1− 2)e�C1 + (−1− 2)e−�C2 = b. (10.4)

For every 
 �= (ln 3)/2, the coefficient matrix in this 2× 2 linear system is invertible,
so (10.4) has a unique solution. However, for the exceptional value of 
, this matrix
is singular. In this case, if

2c− b =
√
3(c+ a), (10.5)

then the BVP (10.1), (10.2) has solutions, but they are not unique, and if (10.5) is
not satisfied, the BVP does not have any solutions.

BVPs for nonlinear ODEs also occur. For example, the following BVP arises in
a calculus-of-variations1 problem:

yy′′ − (y′)2 = 1, 0 < x < 
, (10.6)

subject to
y(0) = a, y(
) = b, (10.7)

where a and b are positive constants. This problem relates to the shape assumed
by a soap film stretched over circular rings of radius a and b, as sketched in Fig-
ure 10.1. The unknown y(x) specifies the radius of a rotationally symmetric surface
as a function of position along the axis. One seeks a function y(x) > 0, subject to
the boundary conditions (10.7), to minimize the integral

∫ �

0

y(x)
√
1 + (y′)2dx, (10.8)

which equals (1/2π times) the area of such a surface of revolution. The BVP poses
a necessary condition for y(x) to minimize the integral.

Reflecting its nonlinearity, this BVP exhibits new behavior. For simplicity, let’s
suppose that in the boundary conditions, b = a. We claim that (10.6), (10.7) has
two solutions iff 0 < 
 < 
0 ≈ 1.3255a; these two solutions merge for 
 = 
0, and for

1See Chapter 3 of [98] for a brief introduction to this subject or [93] for more thorough treatment.
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a
b

Figure 10.1: Physical problem leading to BVP (10.6)–(10.7): Find a rotationally
symmetric minimal surface stretched over two rings, of radii a and b, separated by a
distance 
.


 > 
0, the BVP has no solutions.2 (In Exercise 2 we guide you through a proof of this
claim.) Two solutions of (10.6), (10.7), assuming 
 < 
0, are sketched in Figure 10.2.
Physically, the solution in Panel (a) describes a stable shape that a soap film may
assume in this geometry. The other solution, which is unstable, cannot be realized in
experiments. If starting from the stable solution in Panel (a), 
 is increased beyond
the critical value 
0, the soap film ruptures and contracts to two disconnected disks
bounded by the circles.

There are many variants of boundary conditions beyond the simple cases in (10.2).
For example,

• BVPs may be formulated for higher-order ODEs, of course with more boundary
conditions imposed. For example, small lateral deflections of a uniform beam3

(cf. Figure 10.3) may be described, after some scaling, by the ODE

d4y

dx4
= −ρ, 0 ≤ x ≤ 
, (10.9)

where ρ is proportional to its density (mass per unit length). One of many
possible sets of boundary conditions for (10.9) is

y(0) = y′′(0) = 0, y(
) = y′′(
) = 0.

2Using the terminology of Chapter 8, we may say that the BVP undergoes a saddle-node
bifurcation as � passes through �0.

3Bending involves highly nonlinear effects, but under certain simplifying assumptions, including
that deflections are small, the equations reduce to this linear problem; cf. Section 9.4 of [7].



454 Chapter 10. Epilogue

ba

y

x x

y

Figure 10.2: Two catenaries representing different solutions of BVP (10.6)–(10.7),
where we have assumed a = b = 
. The solution in Panel (a) can be observed
in experiments with soap films. By contrast, the solution in Panel (b) has only
mathematical significance. It represents a critical point of the area integral (10.8)
that is not a local minimum.

These relations, called simply supported boundary conditions, are illustrated in
the figure. The ends of the beam are held at a fixed height, and the beam is
free to rotate about the support points.

• A single boundary condition may involve the solution at both ends of the
interval. The most common case of this is periodic boundary conditions ; for a
second-order ODE, these are

y(
) = y(0), y′(
) = y′(0).

(See Exercise 4.)

• An ODE may be posed on an infinite interval with constraints on the behav-
ior of the solution at infinity playing the role of a boundary condition.4 For
example, the unique solution of (10.1) on 0 ≤ x < ∞ subject to

y(0) = a, y(x) bounded as x → ∞,

is y(x) = (a+ c)e−x − c.

• Sometimes, a specific solution of an ODE may be selected based in part on
an integral of the solution over an entire interval 0 ≤ x ≤ 
, not just values

4Looking for points on the stable manifold of a saddle point of a nonlinear system of ODEs
may be viewed as imposing a boundary condition at t = ∞, albeit not one that picks out a unique
solution.
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Figure 10.3: Physical problem leading to ODE (10.9): a beam bending under its
own weight.

at the endpoints. For example, consider a uniform flexible chain5 of length L,
as in Figure 10.4, suspended at its ends, hanging under its own weight. If the
tension in the chain is eliminated, the shape y(x) of the chain satisfies the ODE
(cf. Section 10.3 of [28])

d

dx

{
y′′

√
1 + (y′)2

}

= 0. (10.10)

Two obvious boundary conditions come from the supports at the end of the
chain, say

y(0) = a, y(
) = b. (10.11)

Since (10.10) is of third order, to complete the formulation of the problem we
need a third auxiliary condition, which is provided by the length constraint

∫ �

0

√
1 + (y′(x))2 dx = L. (10.12)

In Exercise 5 we lead you through the solution of (10.10) subject to these
conditions in case b = a.

10.1.2 Eigenvalue Problems

As we saw above, both existence and uniqueness fail for the BVP (10.1), (10.3) in
the one case that 
 = (ln 3)/2. One can dispel some of the mystery of such seemingly
random misbehavior by studying the eigenvalue problem. In the eigenvalue problem
derived from (10.1), (10.3), one asks for what values of the parameter λ does there
exist a nonzero solution of the BVP on the interval 0 ≤ x ≤ 
,

y′′ − y = λy; y(0) = 0, y′(
)− 2y(
) = 0. (10.13)

5This is the traditional application; to be more current, you might prefer to think of a long-
distance power cable.



456 Chapter 10. Epilogue

y

x

a

y = b

Figure 10.4: Physical problem leading to BVP (10.10), (10.11), (10.12): a hanging
chain.

This equation is analogous to the equation Av = λv for eigenvalues and eigenvectors
of a d×d matrix A. The matrix defines a linear transformation on R

d. Pursuing the
analogy, we use the ODE in (10.13) to define a linear operator

L[y] = y′′ − y

on an infinite-dimensional space of functions that incorporates the homogeneous
boundary conditions6

X = {y ∈ C2([0, 
]) : y(0) = 0, y′(
)− 2y(
) = 0}.

Then, we may rewrite (10.13) compactly as L[y] = λy. Making the obvious defini-
tions, we call a nonzero solution of (10.13) an eigenfunction of L, and λ an eigenvalue.

Eigenvalue problems may be formulated for many linear differential operators.
For example, restricting our attention to second-order operators (with variable coef-
ficients)

L[y] = c0(x)y
′′ + c1(x)y

′ + c2(x)y,

we append (homogeneous) boundary conditions to obtain

L[y] = λy; a0y
′(0) + a1y(0) = 0, b0y

′(
) + b1y(
) = 0, (10.14)

where a0 and a1 are not both zero and likewise for b0 and b1. Such eigenvalue prob-
lems have been thoroughly studied, because they arise from solving PDEs with the
technique known as separation of variables. (This method is explained, for example,
in Section 4.1 of [80] and Chapter 5 of [10].) Typically, (10.14) will have infinitely

6For L to be linear, the boundary conditions must be homogeneous. The theory can be extended
to inhomogeneous boundary conditions, but that is a digression we do not pursue.
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many eigenvalues. For general coefficients ck(x), the task of calculating these eigen-
values ranges from difficult to impossible. Nevertheless, because of the importance of
this problem in applications, over the decades and centuries eigenvalues have actually
been calculated for surprisingly many specific examples. Moreover, for a few opera-
tors in which the coefficients ck are constant, this calculation is fairly transparent.

As an example, let us calculate the eigenvalues of the simplest problem of the
form (10.14),

y′′ = λy; y(0) = 0, y(
) = 0. (10.15)

If μ2 = λ, where λ may be complex but (for the moment) is nonzero, the general
solution of the ODE (10.15) is

y(x) = C1e
μx + C2e

−μx.

Applying the boundary condition at x = 0, we conclude that C2 = −C1. Applying
the boundary condition at x = 
, we conclude that either C1 = C2 = 0 or eμ� = e−μ�.
C1 = 0 yields only the zero solution, so for λ to be an eigenvalue, we must have the
latter alternative; this means that μ
 = nπi for some integer n, and squaring μ gives
λ = −(nπ/
)2. We return to consider λ = 0. In this case, the general solution of
the ODE is y(x) = C1 +C2x, and the boundary conditions imply that C1 = C2 = 0,
so zero is not an eigenvalue. To conclude, we have calculated that (10.15) has an
infinite sequence {λn} of (real) eigenvalues that tend to negative infinity,

λn = −(nπ/
)2; n = 1, 2, 3, . . . . (10.16)

The eigenfunction corresponding to λn is sin(nπx/
).

We return to the difficulties with (10.1), (10.3). In Exercise 6, we ask you to
show that λ = 0 is an eigenvalue of (10.13) if and only if 
 = (ln 3)/2. In other
words, solving (10.1), (10.3) is problematic precisely when zero is an eigenvalue of
L. (Would it be pedantic to point out the analogy with solving a finite-dimensional
linear system Ax = b?)

10.2 Stochastic Population Models

ODEs describe deterministic systems: the complete evolution of a model follows
once its initial state is specified. Stochastic differential equations (SDEs) expand
such models to include the effects of randomness. A tiny corner of SDEs—birth–
death processes—makes contact with this book. Specifically, birth–death processes
provide a more faithful representation for the evolution of some systems that we
have described by “bathtub models,” such as population growth in ecology or gene
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networks. For serious study of stochastic processes, we refer you to [26, 48] or [49].
Here, we merely indicate briefly how the most basic of ODEs,

x′ = αx, (10.17)

can be embedded in a probabilistic model.

In the simplest stochastic analogue of (10.17), one studies a time-dependent ran-
dom variable, say X(t). This variable, which assumes integer values, 0,1,2,. . . , may
jump up or down by one through “births” and “deaths” that occur independently
at random times, according to the axioms below. Depending on the population at
time t, the probabilities7 of a jump in a short interval (t, t+ h) are given by

(a) P{X(t) = n & X(t+ h) = n+ 1} = [nβh+ o(h)] P{X(t) = n},
(b) P{X(t) = n & X(t+ h) = n− 1} = [nδh+ o(h)] P{X(t) = n},

(10.18)
where β and δ are positive constants, the “birth” and “death” rates, respectively.
Here is the thinking behind these formulas. The o(h)-correction terms8 in (10.18)
are related to multiple events, e.g., two or more individuals giving birth, a new-born
individual also giving birth, both a birth and a death occurring during the interval.
If h is small, the probability of any such multiple event is o(h) small. Now modulo
multiple events, the population will increase by precisely 1 during the interval (t, t+h)
iff one of n individuals gives birth during the interval, and for each individual,

P{Individual j gives birth} = βh+ o(h). (10.19)

Equation (10.18a) synthesizes these ideas. Similarly with (10.18b) for deaths. Inci-
dentally, the probability of no change in the population is given by

P{X(t) = n & X(t+ h) = n} = [1− n(β + δ)h+ o(h)] P{X(t) = n}.

The connection of (10.18) to the ODE (10.17) is made through the expected value
of the probabilistic model,

E{X(t)} =
∞∑

n=0

nP{X(t) = n}. (10.20)

Specifically, we have the following statement:

Proposition 10.2.1. The expected value x(t) = E{X(t)} is differentiable and satis-
fies the ODE (10.17), where α = β − δ.

7If you are familiar with probability theory, you may recognize that (10.18) could be formulated
more simply in terms of conditional probabilities.

8The precise values of the o(h)-correction terms here and below are different. Part of the power
of the order notation is to allow such sleight of hand in rigorous analysis.
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of X(50) is 10 e5
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Figure 10.5: Probability distribution at time t = 50 of the birth–death pro-
cess (10.18), where β = 0.2, δ = 0.1, and X(0) = 10. Apart from extinction, the dis-
crete random variable X(t) is characterized approximately by a continuous probability
distribution function P (x); thus, if x > 0, then P (x) ≈ P{x ≤ X(50) < x+1}. Note
that the probability of extinction P{X(50) = 0} is much greater than limx→0 P (x).

Idea of proof. Without worrying about convergence issues, we prepare to form a
difference quotient:

x(t+ h) =
∞∑

n=0

nP{X(t+ h) = n}. (10.21)

Now by (10.18) and independence,

P{X(t+ h) = n} = [1− (β + δ)nh] P{X(t) = n}
+β(n− 1)h P{X(t) = n− 1}
+δ(n+ 1)h P{X(t) = n+ 1}+ o(h).

(10.22)

On substituting (10.22) into (10.21) and shifting the summation index—do this care-
fully; it’s what gives the RHS of (10.23)—we find that

x(t+ h)− x(t) = (β − δ)
∞∑

n=0

nh P{X(t) = n}+ o(h). (10.23)

The result follows on dividing by h and taking the limit h → 0.

The behavior in the stochastic model is far more complicated than in the ODE
(10.17). In the first place, even if β > δ, the stochastic model may suffer extinction;
i.e., there may be a time T such that X(T ) = 0. Indeed, if X(0) = n (and if β > δ),
then the probability of eventual extinction equals (δ/β)n. Of course, this probability
tends to zero as n → ∞.
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Under any circumstances, the stochastic model specifies the population only
through a peaked probability distribution, such as sketched in Figure 10.5. The
expected value E{X(t)} = X(0)eαt provides an estimate for the position of the peak.
Thus, as t increases, the peak moves exponentially fast towards higher populations.
The standard deviation of the distribution, the square root of its variance, provides
a measure of the width of the distribution, or the size of deviations from E{X(t)} to
be anticipated. Because the standard deviation is large, the expected value E{X(t)}
lies to the right of the peak of the distribution.

Even though this stochastic model is a lot more complicated than the ODE, it
still seems painfully simplistic as a description of real populations.

10.3 Numerical Methods: Two Sobering Examples

10.3.1 Stiff ODEs

Consider Euler’s method applied to the test problem

x′ = −Mx, x(0) = 1, (10.24)

where M > 0. The approximation yn to x(nh) = e−Mnh is yn = (1−Mh)n. If M is
large, this approximation is completely off track until h becomes very small; indeed,
unless h < 2/M , the approximate solution is a growing exponential that oscillates
on the grid scale. As this example illustrates, it is difficult for a naive numerical
method to track a solution of an ODE that decays rapidly.

As regards (10.24), you may be thinking, “So what? Just take appropriately small
steps to follow the exact solution to zero and then quit.” Well, the real difficulty
comes from, for example, fast–slow systems like the one in Exercise 4.23. In such
systems, the overall evolution proceeds at a relatively slow rate, but some components
of the solution evolve very quickly. (In numerical contexts the term stiff is used to
describe a system in which different components evolve at widely divergent rates.)
If you use a naive numerical method on a stiff system, you may be forced to choose
a ridiculously small step size determined by the fastest time scale in the problem.
If so, an enormous number of steps are required to compute the solution over quite
modest times, which wastes computing resources and introduces unnecessary round-
off errors.

Faced with a stiff system, you may be able to sidestep the problem by making an
asymptotic approximation that eliminates the fast time scale. But in any case, there
are numerical methods specifically designed to cope with stiffness. The simplest of
these is the backward or implicit Euler method :

yn+1 = yn + hF (yn+1). (10.25)
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Note that yn+1 is not given explicitly by (10.25) but must be determined by solving
an (in general nonlinear) implicit equation for it; thus each step using (10.25) involves
more work than using the ordinary Euler method. On the other hand, (10.25) avoids
the instability of Euler’s method observed above. For example, applying (10.25) to
the test problem (10.24) (in which solving the linear implicit equation at each step
is no obstacle), we obtain

yn =
1

(1 +Mh)n
;

no matter how large M > 0 may be, the approximate solution decays docilely to
zero, regardless of the size of h.

While the implicit Euler method has excellent stability properties, its accuracy
is limited; as with the ordinary Euler method, the error in the numerical solution is
approximately proportional to h; this behavior is called first-order accuracy. More
accurate numerical schemes are given in Quarteroni et al. [65] and [45]. We do
not attempt to summarize any of these methods, because we believe that you should
first learn some of the supporting theory and see demonstrations of how they perform
when applied to specific problems.

10.3.2 Unreasonable Behavior of Reasonable Methods

Here’s an idea for a cheap way to increase accuracy compared to Euler’s method:
given a scalar ODE x′ = F (x), consider the formula

x((n+ 1)h) = x((n− 1)h) +

∫ (n+1)h

(n−1)h

F (x(s)) ds

and estimate the integral by a one-term Riemann sum using the midpoint of the
interval ((n− 1)h, (n+ 1)h),

∫ (n+1)h

(n−1)h

F (x(s)) ds = 2hF (x(nh)) +O(h3). (10.26)

Neglecting the O(h3)-error, we obtain the recurrence relation called the “midpoint
method”:

yn+1 = yn−1 + 2hF (yn). (10.27)

This is an example of a multistep method ; to compute yn+1, you need to know yn
and one or more earlier approximates.9

9If you are trying to solve an IVP with (10.27), y0 can be taken from the initial conditions, but y1
must be determined by some other method. In principle, you could calculate y1 with a higher-order
one-step method, but there is no need: you do not sacrifice the higher-order accuracy of (10.27) if
for one step only you compute y1 with the less-accurate Euler approximation, y1 = y0 + hF (y0).
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By way of comparison, Euler’s method can be derived from a one-term Riemann
sum using the left-hand endpoint of an interval,

∫ (n+1)h

nh

F (x(s)) ds = hF (x(nh)) +O(h2).

Since the error term in (10.26) is of higher order in h, we might expect the midpoint
method to be more accurate than Euler’s method. Let’s see how the midpoint method
performs on the test problem (10.24), say with M = 1, because stiffness is not the
issue here. For this test problem, (10.27) reduces to

yn+1 = yn−1 − 2hyn. (10.28)

Looking for solutions of (10.28) of the form yn = rn, we derive the characteristic
equation r2 + 2hr − 1 = 0. Thus, the general solution of (10.28) is

yn = C+r
n
+ + C−rn−, (10.29)

where

r± = −h±
√
h2 + 1 ≈

{
1− h (for r+),

−1− h (for r−).

To approximate x at time t, we must take n = [t/h] steps, where square brackets
indicate the “greatest integer” function. With this many steps, as h → 0, the first
term in (10.29) is approximately

C+(h)(1− h)[t/h] ≈ C+(h)e
−t,

where we have applied the formula from calculus limN(1 + x/N)N = ex. Thus, pro-
vided the coefficient C+ determined by the initial conditions y0, y1 satisfies C+(h) ≈ 1,
this term by itself gives a tolerable approximation to the solution e−t of the test
problem. By contrast, the second term in (10.29) is approximately

C−(h)(−1− h)[t/h] ≈ ±C−(h)et,

and this term is a disaster—it grows exponentially, and it oscillates on the grid
scale. You might hope that the coefficient C− determined by the initial conditions
tends to zero as h → 0, and in a strict mathematical sense, if y1 = 1 − h + O(h2),
this is true; hence, if (10.28) were implemented with infinite-precision arithmetic,
the approximate solution computed from (10.28) would converge to the solution of
the test problem. In practice, however, this fact is irrelevant. Even assuming that
y1 = r+y0, so that C− = 0, if (10.27) is implemented on the computer, round-off
errors constantly feed the problematic term in (10.29).

The moral: First off, don’t compute with this method, except possibly to check
whether it’s as bad as we say. More broadly, there are risks in creating numerical
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methods on your own. While we encourage experimentation, this area has many
pitfalls for the unwary. It is prudent to inform yourself about the collective wisdom
regarding numerical solutions of ODEs that has been developed over many years by
a large, talented research community.10 This expertise is available at your fingertips,
among other places, in the references.

10.4 ODEs on a Torus: Entrainment

As we saw in Exercise 7.7, linear flow on a torus, the ODE

θ′1 = ω1,

θ′2 = ω2,
(10.30)

where θ1, θ2 are reduced modulo 2π, presents a straightforward dichotomy: If ω1/ω2

is rational, every orbit is periodic, while if ω1/ω2 is irrational, every orbit is aperiodic
and dense in the torus. For nonlinear ODEs on a torus, the situation is far more
complex. Example 4 in Chapter 7,

θ′1 = ω1 +K1 sin(θ2 − θ1),
θ′2 = ω2 −K2 sin(θ2 − θ1),

(10.31)

provided a hint of this. We saw that for a range of parameters, specifically if

∣∣∣∣
ω1 − ω2

K1 +K2

∣∣∣∣ < 1, (10.32)

then (10.31) has the two periodic solutions (7.8) in which the phases of the two
variables are locked together or entrained. In fact, for many parameter ranges, the
variables in (10.31) become entrained at different frequency ratios, and this is the
generic behavior for ODEs on a torus.11

Our goal is to demonstrate the phenomenon rather than to be general. To simplify
our task, we restrict attention to an example, a special case of (10.31),

θ′1 = 1,
θ′2 = ω − sin(θ2 − θ1),

(10.33)

on which we impose the initial conditions

θ1(0) = 0, θ2(0) = b. (10.34)

10Can you possibly ignore a heavy-duty admonition like this one? We hope not!

11Huygens observed entrainment in 1666: over time, the pendulums of two clocks placed on the
same board became synchronized, 180◦ out of phase. You can track down many other instances of
it on the Internet.
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Let us use flow notation to write (θ1(t), θ2(t)) = (t, ϕ(t, b;ω)) for the solution to this
IVP, where we focus on the nontrivial second component; in this notation we do not
reduce θk(t) modulo 2π. It follows from (10.33) that

b+ (ω − 1)t ≤ ϕ(t, b;ω) ≤ b+ (ω + 1)t. (10.35)

Also, computing the derivative using (4.79), we conclude that

∂ϕ

∂ω
(t, b;ω) > 0 for t > 0. (10.36)

The key tool in analyzing the behavior of (10.33) is the rotation number

ρ(ω) = lim
T→∞

1

T
ϕ(T, b;ω). (10.37)

Two basic properties of the rotation number12 are these:

• The limit in (10.37) exists and is independent of the initial condition b.

• The function ρ(ω) is continuous and (not strictly) monotone increasing.

This quantity measures the “average” rate at which (the second component of)
solutions of (10.33) move around the circle.

Usually, rotation numbers are defined for a homeomorphism of the circle Φ :
S1 → S1. In our problem, the underlying homeomorphism is b �→ Φ(b, ω), where

Φ(b, ω) = ϕ(2π, b;ω) (reduced mod 2π);

in the first argument of ϕ on the RHS of this equation, t = 2π represents the time
needed for θ1 to advance one period. The following remarkable properties are what
make the rotation number so useful:

• If ρ(ω) is rational, say ρ(ω) = m/n, then the nth iterate of Φ has a fixed point;
i.e., there exists b ∈ S1 such that Φn(b, ω) = b (mod 2π). If m and n have
no common factors, then n is the minimal period of the discrete trajectory
{Φk(b, ω) : k = 0, 1, . . .}.

• If ρ(ω) is irrational, then {Φk(b, ω) : k = 0, 1, . . .} is aperiodic and dense in
the circle.

If ρ(ω) = m/n, then the iterates Φk(b, ω), k = 0, 1, . . . , n, of the fixed point complete
exactly m circuits around S1 before returning to b. Some effort is needed to interpret

12These properties and the properties quoted below are derived, for example, in Section 1.14
of [17].
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this statement for a general homeomorphism on S1, but in our case, because Φ(·, ω)
comes from solving an ODE on R

2, the statement has a simple formulation: the fixed
point b satisfies

ϕ(2nπ, b;ω) = b+ 2mπ. (10.38)

Conversely, if for a given ω there is at least one b that satisfies (10.38), then ρ(ω) =
m/n. (Incidentally, if ρ(ω) is irrational, then there is a coordinate change on S1 that
reduces Φ(·, ω) to rotation13 by the angle ρ(ω).)

Let us show how solutions of (10.33) become entrained near values of the fre-
quency parameter such that ρ(ω) is rational. Suppose that for ω = ω∗,

ρ(ω∗) = m/n, (10.39)

where m and n have no common factors. Figure 10.6(a) shows a hypothetical
graph14 of

ϕ(2nπ, b;ω∗)− b− 2mπ (10.40)

as a function of b. Because of (10.39), there will be at least one point where (10.38)
is satisfied; in the figure, we show two such points, say b1 and b2, and the graph
crosses the b-axis at them. (Generically, there is an even number of such points.)
The figure indicates that if b1 < b < b2, then ϕ(2nπ, b;ω∗) doesn’t quite advance
a full m revolutions around the circle; similarly, if 0 ≤ b < b1 or b2 < b ≤ 2π, it
advances a little more than m revolutions.

To understand entrainment, consider solving (10.38) for ω as a function of b,
which the following lemma shows is possible.

Lemma 10.4.1. For every m, n, and b, there is a unique value of ω that satisfies
(10.38), and it varies smoothly with b.

Proof. It follows from manipulating (10.35) that for all b,

ϕ(2nπ, b;m/n− 1) ≤ b+ 2mπ ≤ ϕ(2nπ, b;m/n+ 1),

so by continuity, there must be at least one value of ω ∈ [m/n − 1,m/n + 1] that
solves (10.38). We invoke (10.36) and the implicit function theorem to conclude that
this solution is unique and depends smoothly on b.

Figure 10.6(b) shows a possible graph of the solution ω of (10.38) as a function
of b, which is qualitatively consistent with Figure 10.6(a): If b = b1 or b2, then

13A technical issue: the existence of this conjugacy requires that Φ be at least C2. Of course,
this and more are satisfied here.

14Real graphs of this type are usually so flat that no structure can be seen. Besides being purely
hypothetical, the vertical scale in the figure is enormously expanded.
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Figure 10.6: (a) A hypothetical graph of (10.40), the net advance of ϕ(2nπ, b;ω)
as a function of b. (b) The solution ω of (10.38) as a function of b, consistent with
Panel (a). (Cf. Lemma 10.4.1.)
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ω = ω∗ satisfies (10.38). If b1 < b < b2, then a slightly larger value of ω is needed for
ϕ(2nπ, b;ω) to advance a full m revolutions; if 0 ≤ b < b1 or b2 < b ≤ 2π, a slightly
smaller value.

In the figure, ωmax and ωmin refer to the maximum and minimum values of ω
obtained by solving (10.38). Thus, if ωmin ≤ ω ≤ ωmax, there is at least one b

such that (10.38) is satisfied. Consequently, ρ(ω) ≡ m/n for all ω in the interval
[ωmin, ωmax]. That is, for ω in this interval, solutions of (10.33) are entrained at a
constant frequency ratio.

The graph of the rotation number as a function of ω is simply weird. For every
rational number r, this graph has a plateau on which ρ(ω) has the constant value r,
but for every irrational r, the graph passes through r at a single point. Try to plot
a function with these properties, or even to convince yourself that such a function
is possible. You will see why some poetically inclined researchers call such a graph
“the devil’s staircase.”

10.5 Delay Differential Equations

Let us consider a delay differential equation (DDE) that is of first order, scalar, and
autonomous,

dx

dt
(t) = f [x(t− τ)], (10.41)

where f : R → R and τ > 0 is the delay. The key feature of (10.41) is that dx/dt
depends on a past state of the system. This equation does not include any of the more
complicated forms such equations may assume (cf. Exercise 9.16 or more generally
[24]), but even this simple example confronts us with two surprises.

The first surprise relates to initial conditions: x(t) may be specified arbitrarily on
the interval 0 ≤ t ≤ τ . Given a function φ(t) on the interval [0, τ ], let us construct
(in forward time) a solution of (10.41) such that

x(t) = φ(t), 0 ≤ t ≤ τ. (10.42)

By the fundamental theorem of calculus, if t > τ , then

x(t) = x(τ) +

∫ t

τ

x′(s)ds.

But if τ ≤ t ≤ 2τ , the RHS of this equation may be evaluated solely in terms of the
initial function φ(t): shifting the range of integration based on the delay, we obtain

x(t) = φ(τ) +

∫ t−τ

0

f [φ(s)]ds,
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which defines the solution (uniquely) for τ ≤ t ≤ 2τ . Proceeding iteratively, we may
obtain the solution on every interval [nτ, (n+ 1)τ ], n = 1, 2, 3, . . . .

Let us rephrase this information: The set of solutions of (10.41) is parametrized
by an arbitrary function on [0, τ ]. In other words, the set of solutions of (10.41) is
infinite-dimensional! Quite a contrast with ODEs.

This complication makes some aspects of the theory of DDEs a little technical.
For example, consider a simple linear DDE of the form (10.41),

x′(t) = −ax(t− τ). (10.43)

As with constant-coefficient ODEs, solutions of (10.43) can be sought as linear com-
binations of exponentials. Substituting into the equation, we calculate that eλt solves
(10.43) iff λ satisfies the transcendental characteristic equation

λ = −ae−λτ . (10.44)

Although this equation cannot be solved explicitly, it has infinitely many roots in
the complex plane. (See Exercise 8, or fire up your computer.) Every convergent
linear combination of the exponential solutions is also a solution.

The second surprise comes from studying solutions of (10.43), assuming a > 0,
as the delay τ increases. If τ = 0, then all solutions of the ODE (i.e., multiples
of e−at) decay monotonically to zero as t → ∞. If τ > 0 is small, specifically, if
τ < π/2a, then all roots of (10.44) lie in the left half-plane, and solutions of (10.43)
still decay. However, if τ exceeds this threshold, then two of the roots move into the
right half-plane (a Hopf bifurcation! ), and more follow for larger τ . After this point,
generic solutions of (10.43), which are oscillatory, suffer exponential growth. Check
this numerically.15 Since the behavior is generic, you would have to be very unlucky
in choosing the initial function φ(t) not to see it. Analytically, here are a couple of
easily verified facts that support the claim of instability:16

• If τ = π/2a, then λ = ±iπ/2τ are roots of (10.44), and sin(at), cos(at) are
nondecaying oscillatory solutions of (10.43).

• With implicit differentiation of (10.44) you can show that these roots move
into the right half-plane if τ increases beyond π/2a.

Thus, when τ is slightly greater than π/2a, equation (10.43) admits exponentially
growing oscillatory solutions.

The instability can be related to an everyday experience: adjusting the water
temperature when you take a shower. When the water is too hot or cold, you rotate

15XPPAUT is one example of free software that can solve delay differential equations numerically.

16See Section 2.1 of [24] for a more complete analysis.
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the dial to make the water cooler or warmer, as desired. However, it takes time for
the water to flow from the dial to the shower nozzle, and if the delay is too large, it is
easy to overcompensate, and your efforts may result only in a frustrating alternation
between scalding and freezing water.

Let us attempt to model this experience with a DDE for the temperature,

dT (t)

dt
= −a[T (t− τ)− Tcomf ], (10.45)

where Tcomf is the comfortable temperature that you wish to achieve. (The equation
reduces to (10.43) with the substitution x = T −Tcomf .) In this model, it is assumed
that displaying incredible self-control, you react to a misadjustment in temperature
by turning the dial continuously with a speed proportional to the size of the tem-
perature mismatch. The proportionality constant a characterizes your impatience to
arrive at a comfortable temperature. If the delay τ vanishes or is small, the tem-
perature simply approaches the desired temperature asymptotically, but if τ is too
large (relative to a−1), the temperature oscillates out of control.

DDEs have been used to model various phenomena, including periodic cycles
of population, traffic flow patterns, economic trends, the human respiratory-control
system, and many others (cf. [24]). Regarding population models, let us mention
the Hutchinson–Wright equation17

dy

dt
= ay(t)

[
1− y(t− τ)

K

]
. (10.46)

If τ = 0, this equation reduces to the logistic equation (1.2). Both the logistic
equation and (10.46) with τ > 0 admit x(t) ≡ K as an equilibrium solution. For the
logistic equation, this equilibrium is stable. However, by comparing the linearization
of (10.46) around the equilibrium with (10.43), you will find that if τ > π/2a, then
the equilibrium is unstable for (10.46). In contrast to a linear equation, when τ >

π/2a, generic solutions of (10.46) do not grow indefinitely; rather, they settle down
into finite-amplitude periodic oscillations, as you may readily compute. To conclude,
the delay-induced instability in (10.46) helped ecologists understand oscillations in
some populations that occur even in the absence of predators.

17Note that dy/dt depends on both a past state and the present state of the system. Consequently,
it requires more effort to prove existence for (10.46) than for (10.41).
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10.6 A Peek at Chaos

10.6.1 A One-Dimensional Mapping Model

In Exercise 9.13 we considered iteration of the quadratic map x �→ μx(1− x), which
for 0 ≤ μ ≤ 4 maps the unit interval [0, 1] into itself. We saw that this mapping
undergoes a period-doubling cascade as μ → μ∞ ≈ 3.56995 and that for a range of μ
above μ∞, orbits appear to be chaotic. Exploring these phenomena in detail is beyond
the scope of this book. In this subsection our goal is more limited: considering the
quadratic map only for the exact value μ = 4,

Ψ(x) = 4x(1− x), 0 ≤ x ≤ 1, (10.47)

we describe (without proofs) specific chaotic behavior that can be clearly identified
in this case. (For proofs, see [17], especially Exercises 6–10 of Section 1.8.)

Although on the surface, the mapping (10.47) has little to do with ODEs, its
behavior illustrates chaos in its purest form: the shift operator on symbol space.
Analogous behavior has been derived for some ODEs, but it seems to be difficult to
derive such results for most ODEs that arise in real applications.

We may define symbols for (10.47) as follows: Divide [0, 1] into two subintervals
I1 = [0, 1/2] and I2 = [1/2, 1], which overlap at the point x = 1/2. We shall call an
infinite sequence s0, s1, s2, . . . , where sn = 1 or 2, an itinerary of a point x ∈ [0, 1] if

x ∈ Is0 , Ψ(x) ∈ Is1 , Ψ
2(x) ∈ Is2 , . . . . (10.48)

If s0, s1, s2, . . . is an itinerary for x, then s1, s2, s3, . . . is an itinerary for Ψ(x). More
formally, Ψ acting on [0, 1] is topologically equivalent (as defined in Section 1.7 of
[17]) to the shift operator

S(s0, s1, s2, . . .) = s1, s2, s3, . . .

acting on symbol space. Note that we cannot say the itinerary of x because of the
following ambiguity: if ΨN(x) = 1/2 ∈ I1∩I2 for some N , then x has two itineraries
that differ in the Nth entry,

s0, s1, . . . , sN−1, 1, 2, 1, 1, 1, . . . ,
s0, s1, . . . , sN−1, 2, 2, 1, 1, 1, . . . .

(10.49)

Although there are only countably many such points, this minor issue slightly com-
plicates the exposition. For example, in the following theorem we want to write
TN(x) for the truncated itinerary s0, s1, s2, . . . , sN of x, but to make this notation
well defined, we need to adopt a convention such as choosing the first entry in (10.49)
in ambiguous cases.
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Ψ (x)

0

1

0 1x

Figure 10.7: The quadratic map (10.47). The fixed points are x = 0 and x = 3
4
.

Theorem 10.6.1. (i) For every infinite sequence s0, s1, s2, . . . , where sn = 1 or 2,
there is a unique x ∈ [0, 1] that has this itinerary. (ii) For every ε > 0, there is a
positive integer N such that for all x, y ∈ [0, 1],

TN(x) = TN(y) =⇒ |x− y| < ε. (10.50)

For example, the point that has the itinerary 2, 2, 2, . . . is easily identified: it
is just the fixed point x = 3/4 of Ψ in Figure 10.7. By contrast, it is not readily
apparent18 where the point that has the itinerary 1, 2, 1, 2, . . . , is located, let alone
the point with itinerary

1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, . . . .

Whatever messy sequence may strike your fancy, there is an x that has exactly that
itinerary.

Part (ii) of the theorem makes one think of continuity, but (10.50) relates to the
continuity of an inverse map that associates to an itinerary the point x that has
that itinerary. This formula shows the absolute futility of trying to make long-range
predictions about itineraries under iteration by Ψ: no matter how small ε > 0 may
be, there is an N = N(ε) such that even knowing that x belongs to an arbitrarily
small interval (b − ε, b + ε) gives no information whatsoever about the itinerary
of x beyond the Nth iterate; all continuations sN+1, sN+2, sN+3, . . . are possible
itineraries. Moreover, N(ε) ∼ ln(ε−1), so even a huge refinement of accuracy gives
only a modest gain in predictability. This mapping displays an extreme form of

18But see Exercise 7.
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Figure 10.8: Representations of the divergence of two nearby trajectories under
iteration by the quadratic map (10.47). (A periodic trajectory is shown in green.)

sensitive dependence on initial conditions, i.e., evolution in which small perturbations
of initial conditions continue to grow until they completely change the long-term
trajectory of a system.

Although the discrete dynamical system x �→ Ψ(x) is deterministic, the long-term
behavior of itineraries appears completely random. The description chaos does not
seem inappropriate.

It is instructive to view how trajectories that start nearby diverge as the iteration
proceeds. For example, Figure 10.8(a) shows two trajectories, with starting points
x = (5 −√

5)/8 ≈ 0.345492 and y = x − 10−6. The first trajectory is periodic with
period 2. Until n = 15, the two trajectories cannot even be distinguished visually.
Nevertheless, as the log plot in Figure 10.8(b) shows, the separation between the two
sequences is growing during this time. It continues to grow until around n = 18, by
which time the separation is comparable to the width of the unit interval. It cannot
continue to grow after this point, since both trajectories are contained in the unit
interval.

As we have just noted, the separation between two trajectories cannot grow larger
than O(1). One might try to observe growth of the separation over a longer period
by choosing starting points that are closer and closer to each other. However, in
numerical computations it is impossible to compare two trajectories whose initial
separation is less than a lower limit set by round-off errors. We may escape these
limitations by introducing the derivative of Ψ, which specifies how much the sepa-
ration between infinitesimally close neighbors is amplified by Ψ. Given a trajectory
{x0, x1, x2, . . .}, where xn = Ψn(x), for every positive integer N let

μN(x) =
1

N

N−1∑

n=0

ln |Ψ′(xn)|. (10.51)
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Then the separation between the Nth iterates of infinitesimally close neighbors of x
is the initial separation amplified by a factor of eNμN (x).

What happens to μN(x) as N → ∞? Of course if ΨN(x) = 1/2 for some N , then
Ψ′(xN) = 0, so μN+1(x) = −∞, and similarly for subsequent terms. Nevertheless,
apart from a few such exceptions, the sequence converges to a finite limit,

μ = lim
N→∞

μN(x) = ln 2, (10.52)

the same limit for almost every19 starting point x! This convergence is trivial if
x = 3/4, the fixed point of Ψ, because for this x, every term xn in the trajectory
equals 3/4, and |Ψ′(3/4)| = 2. If x = (5−√

5)/8, then ln 2 is a believable estimate for
the average slope in the linear part of the graph in Figure 10.8(b), and in Exercise 7
you derive (10.52) exactly. By contrast, convergence is far from trivial if x generates
a trajectory {x0, x1, x2, . . .} that is dense in [0, 1]. In this case, |Ψ′(xn)| wanders up
and down—it’s nearly 0 when xn is close to 1/2 and nearly 4 when xn is close to 0
or 1—but these variations average out, and μN(x) tends to ln 2.

The limit μ in (10.52), called a Lyapunov exponent, gives a quantitative measure
of sensitive dependence on initial conditions, which is a hallmark of chaos. That
is, in an averaged sense, under each application of Ψ in an iteration, the separation
between close neighbors is doubled.

In closing, let us note an important difference between (10.47) and the quadratic
map x �→ μx(1 − x) with μ < 4: Although for (10.47) there are points x for which
the trajectory x,Ψ(x),Ψ2(x), . . . is dense in [0, 1], no such points exist when μ < 4.
For the mappings with μ < 4, there are challenging issues about characterizing an
attractor to which trajectories converge; similar issues, only partially resolved, also
arise for ODEs with chaotic solutions, such as the Lorenz equations.

10.6.2 The Lorenz Equations

In the previous subsection we saw chaotic behavior in a noninvertible map in one
dimension. Chaos can occur for an invertible map if the dimension is at least two;
see, e.g., Section 12.2 of [81] or Section 5.5 of [33]. For ODEs, it follows from
the Poincaré–Bendixson theorem, Theorem 7.2.5, that chaos can occur only if the
dimension is at least three. Many ODEs in three or more dimensions have chaotic
solutions, but in this section we focus exclusively on the Lorenz equations (9.37) as
the archetype.

The solutions of the Lorenz equations in Section 9.7 (with ρ = 28, σ = 10, β =
8/3) certainly look chaotic, but what does this really mean? Various authors give

19In technical language, the set of exceptional points has Lebesgue measure zero. A brief intro-
duction to measures from a dynamical-systems viewpoint is given in Section 11.4.1 of [67]. However,
for this survey, the intuitive associations of this phrase suffice.
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different definitions of chaos (and some, like us, don’t give any), but sensitive depen-
dence on initial conditions is at the core of every definition. In this section we first
explore sensitive dependence on initial conditions in the Lorenz system, and then we
briefly address more general issues pertaining to chaos.

(a) Sensitive dependence on initial conditions

The phrase sensitive dependence on initial conditions (SDIC), which is reserved
for ODEs whose trajectories are bounded, conveys two properties:

P1. Generically,20 trajectories that start from nearby initial conditions diverge
exponentially fast from one another until further growth is limited by the fact that
trajectories are bounded.

P2. Even after growth is cut off, generically the evolution of different trajectories
is completely uncorrelated.

To clarify this concept, let us consider several examples that have some, but not
all, of the requisite behavior.

Example 1: Solutions of the scalar equation x′ = x diverge exponentially, but
they are unbounded. Likewise for the second-order equation x′′ = x − βx′, which
describes the motion of a particle in a linear repulsive force (with friction).

Example 2: If we modify the linear repulsive force by adding a cubic attractive
force, we obtain Duffing’s equation, which we rewrite as a first-order system

x′ = y,
y′ = x− x3 − βy.

(10.53)

Solutions of (10.53) are bounded, and generically solutions with initial conditions
that lie close to the saddle point at the origin diverge exponentially, at least for
a limited time. However, property P1 fails: trajectories not starting close to the
origin (i.e., most trajectories) do not exhibit exponential divergence. P2 also fails.
Specifically, Figure 10.9 shows the stable manifold Ms through the saddle point; the
complement of Ms has two components, which are basins of attraction for the two
stable equilibria of (10.53) at (±1, 0); all trajectories with initial conditions in the
same basin of attraction share the same asymptotic fate, i.e., convergence to one of
the equilibria.

Example 3. Consider the following ODE on the cylinder (R/2πZ× R),

x′ = y,

y′ = 0.

20The caveat “generic” is necessary, because, for example, if two initial conditions happen to lie
on the same orbit, the two trajectories will be translates of each other and therefore not diverge.
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x

y

Figure 10.9: Stable manifold for the saddle point of Duffing’s equation (10.53) with
β = 1/2. This curve separates the basins of attraction of the two stable equilibria,
(−1, 0) and (1, 0).

Nearby trajectories diverge as x winds around the circle (at a y-dependent rate), but
the separation grows only linearly in time, not exponentially as required in P1, so
the SDIC label does not apply.

As we said earlier, SDIC is a key property of chaotic ODEs. Consistent with that
statement, no one would call any of the above ODEs chaotic.

The exponential divergence in P1 may be quantified with Lyapunov exponents.
As in the previous subsection, we introduce differentials so that we can study expo-
nential divergence of trajectories over arbitrarily large time intervals. To elaborate,
let ϕ(t,b) be the solution operator for the IVP

x′ = σ(y − x), x(0) = b1,

y′ = ρx− y − xz, y(0) = b2,
z′ = −βz + xy, z(0) = b3.

(10.54)

The differentialDϕ(t,b) is a 3×3 matrix with entries ∂ϕj/∂bk. The largest Lyapunov
exponent,21 the most important one, may be characterized as

μ = lim
T→∞

ln ‖Dϕ(T,b)‖
T

, (10.55)

21For the three-dimensional Lorenz system, there are actually three Lyapunov exponents; see
Section 7.2 of [54] or Chapter 29 of [95]. Incidentally, the sum of these three exponents equals the
trace of the matrix in (10.57), or −13.6666. Since this number is large and negative, we see from
Proposition 7.9.1 that volumes contract rapidly as time evolves in the Lorenz equations.
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provided the limit exists and has the same value for almost all22 initial conditions b.
Computations indicate that this proviso is satisfied (look online); based on the graphs
of ‖Dϕ(T,b)‖/T in Figure 10.10 (and on other runs out to T = 100000), we make
the estimate

μ ≈ 0.906. (10.56)

The crucial information is that μ > 0: generically, at least for a limited time, nearby
trajectories will separate on average like the growing exponential eμt.

The computations reported in Figure 10.10 are fairly straightforward.23 Recalling
the definition of ϕ(t,b) as the solution of (10.54), let A(t) = DF(ϕ(t,b)), i.e.,

A(t) =

⎡

⎣
−σ σ 0

ρ− z(t) −1 −x(t)
y(t) x(t) −β

⎤

⎦ . (10.57)

As discussed in Section 4.6.2,

Dϕ(t,b) = Col(w1(t),w2(t),w3(t)), (10.58)

where wi(t) satisfies
w′

j = A(t)wj, wj(0) = ej. (10.59)

To obtain the graph in Figure 10.10, we solved a twelve-dimensional system consist-
ing of (10.54) together with the three associated linearized equations (10.59) and
computed the norm of the matrix (10.58). For the record, we used initial conditions
equal to (1, 2, 3), but other initial conditions give the same estimate (10.56).

Figure 10.11 illustrates evolution consistent with this Lyapunov exponent. (Cf.
Plate 2 of [81].) It summarizes 2500 simulations with initial data distributed over a
square patch, of dimension 0.001× 0.001, centered on

(0.756901, 1.35474, 13.2317)

and orthogonal to the trajectory through that point. In the various panels, each red
dot shows the position of one of the trajectories at a later time. These points are
displayed against a black background, which is the single trajectory starting from
the center of the patch computed for 0 ≤ t ≤ 100. The filament-like sets result

22Some initial conditions, such as on the stable manifold of the origin, may produce different
behavior. In computations, however, this is a nonissue: even if you were so profoundly unlucky
as to choose “bad” initial conditions, because of round-off errors as the computation proceeds,
exponential growth will leak into your results and then dominate the computation.

23Similar calculations were proposed in Exercise 9.7.
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Figure 10.10: (a) The initial transient of ln ‖Dϕ(T,b)‖/T . (b) Convergence to
approximately 0.906 in the long term.

from the exponential amplification (in one direction) of initial separations. By time
t = 16, the different points have distributed themselves over a large fraction of the
background trajectory.

Figure 10.11 hints at Property P2, but this behavior is better illustrated in Fig-
ure 10.12. The figure shows the x-component of the solution of (10.54) for 0 ≤ t ≤ 16
along the four trajectories starting at the four corners of the patch of initial condi-
tions used in Figure 10.11. For 0 ≤ t ≤ 8, the trajectories have not yet separated
very far, and the solutions roughly track one another. However, for t ≥ 12, they
have no connection to one another.

Lorenz proposed the equations (10.54) as an absolutely minimal model derived
from weather prediction. Presumably, the PDEs that model global weather have at
least the same level of SDIC, if not much greater. Such SDIC has been poetically
encapsulated in what’s known as the “butterfly effect”: hypothetically, in one of its
many variants, the disturbance caused by a butterfly flapping its wings in Brazil
could grow to the point that after a not-clearly-identified-but-presumably-rather-
short period, the path of a tornado in Texas could be altered.

(b) Strange attractors and rigorous results

Computations suggest a compelling description of the asymptotic behavior of
solutions of the Lorenz system (10.54). For the standard parameter values, it appears
that virtually all trajectories converge to a bounded attractor Λ, which, as shown in
Figure 9.17(a), resembles a butterfly. Near a typical point of Λ, say in the middle
of one of the “wings,” the set may be represented as a cross product of a (two-
dimensional) surface with a kind of Cantor set. Thus, both wings consist of infinitely
many sheets. This structure is fractal (cf. Chapter 11 of [81]), which on an intuitive
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Figure 10.11: An illustration of exponential divergence of solutions of (10.54): the
figure shows the positions at various later times of 2500 trajectories that all start
close to one another.

level means that if a small portion of Λ is viewed on various expanded scales, the
results look remarkably like the original set. Such attracting ω-limit sets have come
to be called strange attractors.

Although the numerical evidence is convincing, proofs would be nice. However,
deriving rigorous results has challenged the best and the brightest; more than 50
years on, the story is still not complete. The excellent summary of progress in [91],
which contains references to the original papers, is the place to learn more about
this work. One line of research derives complete results for geometrically defined
approximations of the Lorenz system; another line identifies specific chaotic behavior
embedded in the solution set of the actual equations. This account is fascinating, but
since it reports on the best efforts of some very smart people on a hard problem, it
is not light reading.

In Chapter 7 we saw zero-dimensional limit sets (e.g., an equilibrium), one-
dimensional limit sets (e.g., a periodic orbit), and two-dimensional limit sets (e.g., a
torus, the closure of a skew-line orbit). A dimension for the Lorenz attractor Λ may
be defined in various ways, but the result is not an integer. All definitions seem to
give a dimension slightly greater than 2; the “correlation dimension” turns out to be
2.05± 0.01. (See Example 11.5.1 of [81].)
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Figure 10.12: An illustration that even though trajectories start close to one an-
other, they become completely uncorrelated as time evolves.

10.7 Exercises

10.7.1 Core Exercises

Most core exercises address boundary value problems.

1. Consider a linear second-order BVP

c0(x)y
′′ + c1(x)y

′ + c2(x)y = f(x), 0 ≤ x ≤ 
,

a0y
′(0) + a1y(0) = a2, b0y

′(
) + b1y(
) = b2.

Show that this problem has at most one solution if and only if the homoge-
neous problem—i.e., with f(x), a2 and b2 all set to zero—admits only the zero
solution.

2. In this problem you verify the behavior claimed for the BVP for (10.6). We begin with an
inspired observation: if we substitute y(x) = coshx into (10.6), this equation reduces to the
identity cosh2 x− sinh2 x = 1.

(a) Verify that for every choice of constants C, x0, with C �= 0, the function

y(x) =
1

C
cosh[C(x− x0)] (10.60)

satisfies (10.6).
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Remarks: These solutions are constructed from coshx using symmetries of
(10.6). Can you identify the underlying symmetries? Incidentally, the curve
(10.60) is called a catenary.

(b) Suppose that b = a in (10.7). Show that (10.60) with x0 = 
/2 satisfies
the boundary condition if and only if C is a solution of

1

C
cosh(C
/2) = a. (10.61)

(c) Introduction: Multiplying (10.61) by 2/�, you may rewrite the equation as

2

C�
cosh(C�/2) =

2a

�
. (10.62)

Note that the LHS of the rewritten equation has the form (1/ξ) cosh ξ, where ξ = C�/2.

Graph the function (1/ξ) cosh ξ to see that it has a positive minimum over
0 < ξ < ∞, say m. Use calculus to show that

m = min
0<ξ<∞

1

ξ
cosh ξ ≈ 1.50888.

Deduce from (10.62) that if b = a, the BVP (10.6), (10.7) has (at least) two
solutions if 
 < 2a/m and none (of the above form) if 
 > 2a/m.

Challenge: Can you rule out the possibility that the BVP might have other
solutions not of the form (10.60)?

3. Determine the midpoint deflection of a beam described by (10.9) with simply
supported boundary conditions.

Hint: Equation (10.9) is linear and inhomogeneous. Look for a solution as
the sum of a particular solution plus the general solution of the homogeneous
equation. The calculations will be simpler if you use a translated coordinate,
x = x− �/2, because the beam is symmetric about its midpoint.

4. Consider a solution of an autonomous scalar second-order ODE,

y′′ = F (y, y′), 0 < x < 
,

where F is continuous on R× R, subject to the boundary conditions

y(
) = y(0), y′(
) = y′(0).

(I.e., assume that y′′ exists and satisfies the ODE for 0 < x < 
 and that both
y and y′ are continuous on the closed interval [0, 
].) Show that the periodic
extension of such a function to −∞ < x < ∞ is C2 and satisfies the ODE for
all x.
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5. Introduction: In this exercise you construct the solution to the hanging-chain problem, pro-
vided that, as required by (10.12), L > �.

(a) One family of solutions of (10.10) is y(x) = A + Bx, where A,B are
constants. Show that every other solution can be written in the form

y(x) = A+
1

C
cosh[C(x− x0)], (10.63)

where A,C, x0 are constants with C �= 0.

Hint: Observe from (10.10) that

y′′
√

1 + (y′)2
= C. (10.64)

Argue that you may assume C �= 0. Substitute z = y′ into (10.64), solve
the resulting first-order separable equation, and derive (10.63) from your
solution.

(b) Assuming b = a, deduce from (10.63) and (10.11) that x0 = 
/2.

(c) Argue from (10.12) that C must satisfy

2

C
sinh(C
/2) = L.

Show that this equation has a unique positive root C, provided L > 
.

(d) Determine the additive constant A from (10.11).

6. Show that λ = 0 is an eigenvalue of (10.13) if and only if 
 = (ln 3)/2.

Hint: It suffices to seek eigenvalues such that λ > −1, so that the general solution
of the ODE in (10.13) can be written

y(x) = C1 coshμx+ C2 sinhμx,

where μ =
√
1 + λ. Argue that for the solution to satisfy the boundary conditions

and not to vanish identically, μ must satisfy

tanhμ� = μ/2. (10.65)

Manipulate (10.65) to show that μ = 1 is a root of the equation iff � = (ln 3)/2.

Remark: All the eigenvalues of (10.13) can be characterized as the roots of a
transcendental equation similar to (10.65); see Sections 4.3 and 5.3 of [80].

7. Introduction: In the terminology of Section 10.6.1, the point x ∈ [0, 1] with itinerary
1, 2, 1, 2, . . . under the map (10.47) is a period-2 point for Ψ; i.e., it satisfies

Ψ2(x) = x. (10.66)
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(a) Write out an equation for (10.66). Two solutions of the resulting quartic
equation are x = 0 and x = 3/4, which are fixed points of Ψ. Factor
these out and show that the remaining quadratic equation has roots
x = (5±√

5)/8.

(b) Show that ∣∣Ψ′((5−
√
5)/8) Ψ′((5 +

√
5)/8)

∣∣ = 4,

consistent with (10.52) for the period-2 orbit.

10.7.2 PHD Exercises

8. Show that (10.44) has infinitely many roots in the left half-plane.

Hint: One way to solve this problem is to invoke the principle of the argument
from complex analysis. Although this calculation is long and only loosely related
to ODE, you might find it interesting to see a nice application of complex analysis
in an applied problem. Define the entire function

f(λ) = ae−τλ + λ. (10.67)

According to the principle of the argument (for example, see Section 86 of [11]),
if Γ is a closed contour in C on which f(λ) is nonvanishing, then the number
of zeros, say N , of f(λ) inside Γ equals (2π)−1 times the variation in arg f(λ)
around Γ; in symbols

N =
1

2π
ΔΓ arg f(λ).

Apply this principle with Γ equal to the boundary of a large rectangle

R = {λ ∈ C : −M ≤ �λ ≤ 0, |�λ| ≤ 2πK/τ}, (10.68)

where K is an integer and M is a large constant. Label the four sides of ∂R as
in Figure 10.13. The strategy is to show that

ΔΓ1
arg f(λ) ≈ 4πK and ΔΓk

arg f(λ) = O(1), k = 2, 3, 4, (10.69)

where O(1) denotes a quantity that is bounded independent of K. It follows
from (10.69) that the number of zeros of f(λ) inside R is at least 2K minus a
constant, and the desired result may be obtained by letting K → ∞.

How to justify (10.69)? Along Γ1, the exponential has modulus |e−τλ| = eτM .
Provided M is chosen large enough, the exponential term swamps the linear
term, so f(λ) is nonvanishing and

ΔΓ1
arg f(λ) ≈ ΔΓ1

arg e−τλ = 4πK.

Regarding Γ2 and Γ4, since K is an integer, along these sides the exponential in
(10.67) is real and positive, so f(λ) is nonvanishing and the variation of arg f(λ)
is less than π. Divide Γ3 into three ranges,

−2πK/τ ≤ �λ ≤ −2a, −2a ≤ �λ ≤ 2a, 2a ≤ �λ ≤ 2πK/τ.
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Figure 10.13: Indexing of the sides of the rectangle (10.68).

Since λ is pure imaginary along Γ3, the exponential has modulus 1; thus, in the
first and third ranges the linear term λ dominates ae−τλ, so the variation in
arg f(λ) along each of these is less than π. For the middle range, depending on
a, it might be difficult to derive an explicit bound, but in any case the variation
in arg f(λ) along this portion24 is bounded independent of K.

Remark: With the principle of the argument you can also count how the number
of zeros of f(λ) in the right half-plane varies with τ . In particular, if τ >
π/2a, there are at least two such zeros, so generically solutions of (10.43) exhibit
exponential growth. Thus, we have a more complete argument for the behavior
claimed in Section 10.5.

9. Consider the following modification of the repressilator equations (8.74) in
which the decay terms now include a time delay τ > 0:

x′(t) =
μ

1 + y4
− x(t− τ),

y′(t) =
μ

1 + z4
− y(t− τ),

z′(t) =
μ

1 + x4
− z(t− τ).

(10.70)

Use numerical simulations to show that if μ = 1.8 and τ = 0.5, the sys-
tem (10.70) has a stable limit cycle. Then, increasing the delay τ quasistati-
cally, compute that a Hopf-like bifurcation to an invariant torus occurs.

Remark: Take a moment to contrast this behavior with that of (8.74), the re-
pressilator without delay. Referring to Section 8.7.2, if τ = 0 and μ = 1.8 < 2,

24A minor technicality: depending on a, it might happen that f(λ) has zeros along this portion
of Γ3. If so, we may deform the middle portion of Γ3 to avoid these zeros, and the variation is still
O(1).
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solutions tend to the stable equilibrium x = y = z = xeq(μ). Hence, this exercise
supplies evidence of a delay-induced instability: an equilibrium that is stable for
small nonnegative τ loses stability at some τ = τbif > 0. A stable limit cycle
exists for τ slightly larger than τbif , but evidently that limit cycle suffers a loss
of stability once τ crosses some other threshold τ = τtorus > τbif in a bifurcation
to an invariant torus.

10. Introduction: In the elastica (10.71), which is considered in the Pearls, s is arc length along
the beam and θ(s) is the angle between the tangent to the beam and the x-axis. Thus, by
calculus, the height y(s) of the point a distance s along the beam is given by

y(s) = y(0) +

∫ s

0

sin(θ(s′)) ds′.

Deduce from (10.71) that provided μ > 0, the two ends of the beam are at the
same height; i.e., y(0) = y(π).

10.8 Pearls of Wisdom

10.8.1 The Elastica

Another nonlinear BVP, the elastica, is the granddaddy of all bifurcation problems—
Euler [25] introduced it in 1744. This problem, which can be formulated variation-
ally, models the buckling of an elastic beam under a compressive load, as sketched in
Figure 10.14. After scaling, it may be written (cf. Section VII.2(a) of [31] or Sec-
tion 12.1 of [92])

d2θ

ds2
+ μ sin θ = 0, θ′(0) = θ′(π) = 0, (10.71)

where μ > 0 is the scaled load. The variables in (10.71) are somewhat subtle: s is
arc length along the beam, and θ(s) is the angle between the tangent to the beam
and the x-axis (i.e., arctan(dy/dx)) at the indicated position. For all μ, θ(s) ≡ 0 is a
solution of (10.71). If 0 < μ < 1, this solution is unique. However, as μ crosses 1, new
solutions of (10.71) appear through a pitchfork bifurcation. Note that the linearized
operator L[θ] = θ′′ + μθ derived from the equation has a zero eigenvalue (with null
eigenfunction cos s) precisely when μ = 1; this is the infinite-dimensional analogue
of our observation in Chapter 8 that an equilibrium of an ODE can bifurcate only
when the linearization of the ODE is singular. As indicated in Figure 10.14(c), the
bifurcating solutions of (10.71) correspond to buckled states of the beam.25

25It is not obvious, but the boundary conditions in (10.71) imply that the ends of the beam are
at the same height, as indicated in the figure; see Exercise 10.



10.8. Pearls of Wisdom 485

θ (s)

x = π

μ μ

y

π
s

π
x

x = 0

a

b

c

Figure 10.14: (a) A schematic diagram of the elastica modeled by (10.71): buckling
of a beam under a compressive load. (b) The null eigenfunction θ(s) = cos s of the
linearization of (10.71) when μ = 1. (c) A buckled configuration in the physical
x, y-plane with μ = 1.1. The reflected function −y(x) is also a solution.
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10.8.2 A Bit More on Chaos

Here is some minimal guidance for supplementing the inadequate treatment of chaos
in this book. Part III of Strogatz [81] and Devaney [17] give readable introductions
to chaos that complement each other. Guckenheimer & Holmes [33] is one of many
good sources for more advanced theory; in particular, Chapter 2 introduces, with
a minimum of fuss, four elementary examples that display chaos. Fourier analysis
provides a different, invaluable, perspective on chaos; Chapter III of [8] and Sec-
tion 8.5 of [18] give relatively compact discussions of the key ideas as they apply to
dynamics.26

Rather than attempt to survey the vast chaos literature, let us mention just one
specific result, due to Wiggins [94], that may help entice you to pursue the subject.
Really, this gem, which identifies symbol-like behavior in an ODE, takes our breath
away. It concerns a vibrated pendulum,

x′′ + εδx′ + (1 + γ sin εt) sin x = 0, (10.72)

where ε > 0 is small, meaning that the vibration is slow and damping is corre-
spondingly weak. In dimensional terms, the hypothesis that |γ| < 1 means that the
acceleration of the pivot is always less than that of gravity; the sign of γ doesn’t
matter, since it can be flipped by a translation of time by π/ε. A proof of this result,
which is surprisingly readable in case δ = 0, is given in [39].

Theorem 10.8.1. If 0 < |γ| < 1 and 0 ≤ δ < |γ|/2, then there is a positive constant
ε1 with the following property: for every ε with 0 < ε < ε1 and for every infinite
sequence {m1,m2,m3, . . .} of positive integers, there is a solution of (10.72) in which
the pendulum makes exactly m1 complete clockwise rotations, followed by exactly
m2 complete counterclockwise rotations, followed by exactly m3 complete clockwise
rotations, etc.

Note that oscillations not involving a complete rotation may be part of the above
solution.

Call us naive, but . . . We hope that as you finish this book, even after 500 pages,
you are at least a little sorry that it’s over.

26The use of Fourier series in PDEs is covered, for example, in [80].
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Guide to Commonly Used Notation

A.1 Letter Choices

In a book of this size, it is impossible to avoid using the same letter to represent
different types of mathematical objects in different contexts. Nevertheless, a lot of
information is conveyed by the choice of notation in a formula. Although not every
use of a letter is covered below, we indicate our more common usages.

Lower case Latin letters. Letters before u in the alphabet usually indicate a
parameter; letters after this may indicate a variable. Vector quantities are set in
boldface (even 0 for the zero vector). Some specific recurring notation:

• b: an initial condition (normal type b is also used for a coefficient of friction).

• d: the dimension of a vector.

• g(x, t): the reduced function resulting from the Lyapunov–Schmidt reduction
of a bifurcation problem (in Chapter 8).

• j, k, n denote integers to enumerate something. The letter j often enumerates
the components of a vector or entries of a matrix, so j runs between 1 and d.
The letter k is used to enumerate other types of lists, so its range depends on
context. (But k also denotes a spring constant.) The letter n is usually used
to enumerate the entries of a sequence or series, in which case n runs from 1
to ∞.

• t: the independent variable in an ODE, usually thought of as time.
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• v,w,x,y, z may denote either a vector in R
d or a vector-valued function of t.

Scalar versions of these mathematical objects are written with the same letters
in regular type. Typically w is used as the unknown in the linearization of a
nonlinear equation at an equilibrium.

Uppercase Latin letters. Some specific recurring notation:

• B: used for an open ball; thus B(b, δ) = {x ∈ R
d : |x− b| < δ}.

• C,K,M : constants. The letter C is used for the constants of integration in
solving an ODE; K and M are typically large constants; M may be related to
the maximum of a continuous function over a compact set.

• D: indicates derivatives in the Jacobian of a vector-valued function, DF(x).

• E,H, V : energy in one form or another. The letter H is used for the energy
in Hamiltonian systems once these are introduced in Exercise 6.10; V denotes
potential energy.

• F: a vector-valued function, typically the RHS in the generic ODE x′ = F(x).

• L: a Lipschitz constant (Chapter 3), a length scale (Chapter 5), or a Lyapunov
function (Chapter 6).

• N : typically a large integer, but also a nilpotent matrix (Chapter 2) or, if
boldface N, the normal to a surface in R

d.

• T : generally a constant measuring time. In Chapter 5 it sets the time scale in
a nondimensionalization, and starting in Chapter 7 it denotes the period of a
periodic solution. (As a superscript, T indicates the transpose of a matrix.)

Lowercase Greek letters. Most dimensionless parameters are written as lowercase
Greek letters. Some specific recurring notation:

• α, β: the endpoints of the time interval over which an ODE has a solution.

• γ(t): a periodic solution of an ODE (starting in Chapter 7). (This is boldface,
indicating a vector quantity, although you need to look closely to see this.)

• δ, ε, η: this notation hints that constants are small.

• λ: an eigenvalue.

• μ: starting in Chapter 8, a bifurcation parameter.
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• ϕ(t,b): the flow map, the solution of an IVP with initial condition b.

• φ, ψ: auxiliary scalar functions.

• τ : scaled time in a perturbation-theory calculation (starting in Chapter 7) or
the time of first return in defining the Poincaré map (also starting in Chapter 7).

• ω: besides a frequency, an adjective indicating t → +∞, as in the ω-limit of a
trajectory.

Uppercase Greek letters. Some specific recurring notation:

• Γ: the orbit traced out by a periodic solution (starting in Chapter 7).

• Π: a Poincaré map (starting in Chapter 7).

• Σ: a small piece of surface used in defining a Poincaré map.

• Ψ: a mapping between Euclidean spaces (starting in Chapter 7).

Letters in different fonts. Some specific recurring notation:

• C: the space of continuous functions of time, or Ck, k-times differentiable func-
tions.

• K: a closed subset of Rd, typically a trapping region.

• M: a stable or unstable manifold (starting in Chapter 6).

• O, o: the order notation, introduced in Section 4.6.4. (You need to distinguish
between the formal and informal uses of O.)

• �,�: real and imaginary parts of a complex number.

• T: a mapping on a Banach space of functions (Chapter 3).

• U : an open subset of Rd, typically the domain on which an ODE is defined.

• U: In Chapter 5 a Gothic U indicates the units of a parameter or variable.

• X: sans serif letters (S and X) are used in Chapter 3 to indicate objects related
to a Banach space; they are used in Chapter 5 to indicate chemicals.
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A.2 Other Notations

Note 1. Many authors, us included, are sloppy in notation regarding functions. For
example, suppose f : (a, b) → R. Informally, one may say “consider the function f(t),
where a < t < b.” However, strictly speaking, the notation f(t) denotes a single real
number, the number that this function produces when evaluated at t ∈ (a, b). When
speaking of the function, one should write simply f . Nevertheless, in circumstances
where such precision seems fussy, we will stick with the more common informal usage.

A dot may be used to indicate an unwritten argument of a function; thus, f and
f(·) mean exactly the same thing. This notation is sometimes useful in dealing with
functions of more than one variable. For example, ϕ(t, ·) indicates the function of
one argument b �→ ϕ(t,b), where t is fixed, which is subtly different from either
ϕ (the function of both arguments) or ϕ(t,b) (the quantity that evaluation of ϕ
produces).

Note 2. In Chapter 5, a hat over a quantity has a special meaning: it indicates
that the quantity has nontrivial dimensions. For example, t̂ indicates time measured
in minutes, years, nanoseconds, or some such physical units. By contrast, if time
is scaled t = t̂/T , where T is some time scale extracted from the parameters in an
ODE, then the absence of a hat over t indicates that it is dimensionless.

Note 3. Regarding derivatives, prime denotes a derivative with respect to a scalar
argument, typically time as in x′(t); ∇f(x) denotes the gradient of a scalar func-
tion with respect to a vector argument; and DF(x) denotes the Jacobian matrix of
derivatives of a vector-valued function with respect to all the coordinates in its vector
argument. If F(x, μ) depends an a parameter as well as on x, then DF indicates
derivatives only with respect to x. Similarly, for the flow map, Dϕ(t,b) indicates
derivatives with respect to b, not t.

Miscellaneous.

• Col(v1, . . . ,vm) indicates the matrix with columns v1, . . . ,vm. If these vectors
have d components, this notation indicates a d×m matrix.

• Diag(λ1, . . . , λd) denotes the d× d diagonal matrix with the indicated entries.
This notation is also generalized to specifying blocks on the diagonal of a block-
diagonal matrix.

• In Chapter 4 and elsewhere, to focus attention on one component of a d-
dimensional coordinate, we write x = (x1, x̃), where x̃ is shorthand for the
remaining coordinates (x2, . . . , xd).

• Norms are indicated by single bars for vectors as |x|, double bars for matrices
as ‖A‖. Double bars are also used for norms in a function space (Chapter 3).
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• Restriction of a function to a set smaller than its domain is written with a
vertical bar, as for example in F|K.

• A subscript ∗ indicates a special value for a quantity, such as writing b∗ for an
equilibrium point. We also write the shorthand DF∗ for DF(b∗). Starting in
Chapter 8, μ∗ may indicate the value of μ at which bifurcation occurs.

• Complex conjugates are indicated by an overline: thus if z = x + iy, where
x, y ∈ R, then z = x− iy.

A.3 Other Conventions

Abbreviations.

• The phrase “if and only if” is sometimes shortened to “iff.”

• “RHS” and “LHS” indicate the “right-hand side” and “left-hand side” of an
equation.

Color conventions in figures.

• Brown and cyan are used for x-nullclines and y-nullclines of a two-dimensional
ODE, respectively.

• Red and blue are used for unstable and stable manifolds, respectively. Purple
indicates that a manifold is unstable with respect to one saddle point and stable
with respect to a second (or possibly the same) saddle. Purple is also used for
some global center manifolds.

• Green is used for periodic orbits.

Organizational units. Each of the 10 chapters is divided into sections; thus, for
example, Section 4.6 refers to the sixth section of Chapter 4. The sections are further
divided into subsections. When referring to a specific subsection by number, we write,
for example, simply Section 4.6.2 rather than the more cumbersome Subsection 4.6.2.
By contrast, we distinguish between “the next section” and “the next subsection.”

The phrase Exercise n, with a single number, refers to the nth exercise in the
current chapter. Exercisem.n, with a double number, refers to an exercise in themth
chapter.

Inconsistent use of the plural. Sometimes we regard a system of ODEs as a
single vector equation and call it an ODE (in the singular), but with no consistency.
Don’t waste your time trying to figure out what underlies our choices; we can’t figure
this out ourselves.



Appendix B

Notions from Advanced Calculus

In this appendix we recall selected parts of advanced calculus. We make no pretense
of completeness. We assume that you have taken an analysis course that deals rig-
orously with calculus, and we hope to jog your memory more than anything else.
In particular, you will need to consult a reference for most proofs. Whatever book
you used in a course is probably the most familiar, and therefore the most conve-
nient, reference. Alternative texts are by Rudin [68], Reed [66], and Marsden and
Hoffman [51].

B.1 Basic Issues

(a) Supremum and infimum. If E ⊂ R, a number b is called an upper bound for E if
x ≤ b for all x ∈ E. We say that b is the supremum of E if b is the least upper bound
for E in the sense that (i) b is an upper bound for E, and (ii) if b̃ is an upper bound
for E, then b ≤ b̃. The infimum of E is defined analogously as the greatest lower
bound for E. The supremum and infimum of E ⊂ R are denoted by sup(E) and
inf(E), respectively. If, for example, E = {1, 1

2
, 1
3
, 1
4
, . . . } ⊂ R, then sup(E) = 1 and

inf(E) = 0. Notice that in this example, sup(E) ∈ E, whereas inf(E) /∈ E. When
a set E contains its supremum, we typically write sup(E) = max(E), the maximum
of the set E. Likewise for infimum and minimum. If a < b, then the open interval
(a, b) and the closed interval [a, b] have the same infimum and supremum, whereas
only the closed interval has a maximum and a minimum.

(b) Compactness. Suppose E is a subset of Rd. An open cover of E is any collection
{Ωα}α∈I of open subsets of Rd with the property that

E ⊂
⋃

α∈I
Ωα.
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This union of sets need not be countable, and for that reason we enumerate the sets
using an arbitrary index set I. The set E is called compact if every open cover of E
has a finite subcover. That is, E is compact if from every open cover of E, we may
extract1 finitely many open sets whose union still contains E.

Applying this general definition directly is utterly hopeless. Fortunately, we have
the following, infinitely more workable, criterion.

Theorem B.1.1. (Heine–Borel) A subset E ⊂ R
d is compact if and only if E is

closed and bounded.

The same definition of compactness applies in every topological space, but in
general we do not have the luxury of the Heine–Borel theorem: in every metric
space, a compact set always is always closed and bounded, but not conversely.
(Cf. Exercise 10.)

Many of the technical proofs throughout this text require us to estimate functions
or their derivatives over some given subset of Rd. For continuous functions2 over a
compact set, the following two theorems facilitate such estimates. For the record, the

notation |a| for
√∑d

1 a
2
k, the length of a vector in R

d, is introduced and discussed in
Section 2.2.1.

Theorem B.1.2. (Extreme value theorem) Suppose that E ⊂ R
d1 is compact and

F : E → R
d2 is continuous. Then there exist points xmin,xmax ∈ E such that

|F(xmin)| = inf
x∈E

|F(x)| and |F(xmax)| = sup
x∈E

|F(x)|.

In particular, both the infimum and supremum are finite.

Incidentally, the above result for vector-valued functions may be reduced to the
corresponding result for scalar-valued functions by considering the composition g◦F,
where g(y) = |y|.
Theorem B.1.3. Suppose that E ⊂ R

d1 is compact and F : E → R
d2 is continuous.

Then the image F (E) is a compact subset of Rd2.

Phrased more compactly (bad pun intended, sorry), images of compact sets under
continuous functions are compact.

(c) One more definition. A subset E of a topological space is called dense if its
closure equals the entire space. For example, the rational numbers are dense in R.

1It might be more honest to say “God could extract . . . .” Although the definition merely asserts
the existence of a certain finite subcollection of sets, mathematicians seem to feel more comfortable
phrasing this as though we had the superhuman power to pick out the necessary sets from an
arbitrary collection.

2We expect that you are familiar with the concept of continuity. For a refresher, see [68].
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B.2 Pointwise and Uniform Convergence

B.2.1 Sequences

(a) Definitions. Convergence of a sequence of constants is a fairly dry affair.
Suppose {an}, n = 1, 2, 3, . . . is a sequence of points in R

d. We say that {an}
converges to a limit L if for every ε > 0, there exists an integer3 N = N(ε) such that
|an − L| < ε whenever n ≥ N .

By contrast, convergence of sequences of functions gives rise to a wealth of in-
teresting phenomena. (For most of our discussion below we consider scalar-valued
functions, but the extension to vector-valued functions poses no difficulties.) Two
notions of convergence for sequences of functions are relevant for this text. Suppose
that {fn, n = 1, 2, 3, . . . } is a sequence of functions defined over some set E ⊂ R

d.
We say that {fn} converges

• pointwise on E to a function f if for every ε > 0 and for every x ∈ E, there
exists an integer N = N(x, ε) such that |fn(x)− f(x)| < ε whenever n ≥ N ;

• uniformly on E to a function f if for every ε > 0, there exists an integer
N = N(ε) such that for all x ∈ E, |fn(x)− f(x)| < ε whenever n ≥ N .

On a formal level, the difference between these two definitions is obvious: in
pointwise convergence, the integer N can depend upon both ε and x, whereas in
uniform convergence, N depends only upon ε. That is, for uniform convergence,
the same integer N has to work for all x ∈ E. (Of course, uniform convergence
implies pointwise convergence.) To make this difference more concrete, consider, for
example, the functions fn : R → R defined by

fn(x) =
2

π
arctan(nx), n = 1, 2, 3, . . . . (B.1)

(To understand such an example, it is most effective to draw a graph. In this case,
we have done it for you in Figure B.1.)

Claim B.2.1. This sequence converges pointwise to the step function

f(x) =

⎧
⎪⎨

⎪⎩

1 if 0 < x < ∞,

0 if x = 0,

−1 if −∞ < x < 0.

(B.2)

3An incidental, but hopefully instructive, comment: Sometimes in definitions of this sort one
appends a restriction like N > 0. This is necessary, for example, in the usual ε, δ definition of the
continuity of a function of a real variable, i.e., for every ε > 0, there is a δ > 0 such that |x−x0| < δ
implies that |f(x)− f(x0)| < ε. The issue is that if δ were chosen negative, the implication would
be valid by virtue of its hypothesis never being satisfied. In the present case, no such restriction on
N is needed to avoid trivialities.
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x

f(x)

f  (x)n

1

−1

Figure B.1: Pointwise but nonuniform convergence of the sequence (B.1),
fn(x) =

2
π
arctan(nx).

Proof. Since fn(0) = 0, the middle case is obvious. To attack the first case, suppose
x > 0 and let ε > 0 be given. We must produce an integer N = N(x, ε) for which

|fn(x)− f(x)| = |(2/π) arctan(nx)− 1| < ε for all n ≥ N. (B.3)

Now
lim
y→∞

arctan y = π/2,

which means that there is a number Y (ε) such that | arctan y−π/2| < ε if y > Y (ε).
Since 2/π < 1, we may satisfy (B.3) by choosing N to be any integer such that
Nx > Y (ε).

Pointwise convergence in the third case, x < 0, may be proved effortlessly by
invoking symmetry.

The convergence of (B.1) is not uniform, and Figure B.1 illustrates why. The
limit function is graphed in black, and the dotted lines show an ε-neighborhood,
with ε ≈ 1/3, of this graph over the positive real axis. If the convergence were
uniform, then for sufficiently large n, the graph of fn(x), which is shown in red,
would need to stay between the dotted lines. This is clearly inconsistent with the
facts that fn(0) = 0 and fn(x) is continuous.

(b) Regularity of limit functions. The limit function (B.2) is discontinuous even
though the functions fn(x) are continuous. The next theorem, proved in [68], ensures
that this cannot happen for uniformly convergent sequences of continuous functions.

Theorem B.2.2. If a sequence of continuous (scalar- or vector-valued) functions
{fn(x)} converges uniformly to f(x) on a set E ⊂ R

d, then f(x) is continuous
on E.
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{f ′
n} converges {f ′

n} diverges

limn→∞ fn(x) Exercise 4 Exercise 5
not differentiable

limn→∞ fn(x) Exercise 6 Exercise 7
differentiable

Table B.1: Examples of uniformly convergent sequences of smooth functions with
varying behavior of derivatives.

What about derivatives of the limit of a sequence of functions? For our purposes it
suffices to address this question for functions of one variable. But note: even if every
function fn(x) in a sequence is differentiable and if {fn} is uniformly convergent,
limn fn(x) may or may not be differentiable, and the sequence of derivatives {f ′

n}
may or may not converge. Fairly dramatic examples of each behavior are given in
the exercises cited in Table B.1.

However, in studying ODEs, we need control over the derivative of the limit
function. The following result for (scalar- or vector-valued) functions of one variable,
which is proved in [68], will do the job. We say that a function f(x) on an interval is
C1 if it is everywhere differentiable and both f and f ′ are continuous on the interval.
(In case of a closed interval, at the endpoints f ′ means the one-sided derivative.)4

Theorem B.2.3. If {fn} is a sequence of C1 functions on [a, b] such that both {fn}
and {f ′

n} converge uniformly, then the limit function f(x) is C1 on [a, b] and

f ′(x) = lim
n→∞

f ′
n(x) (a ≤ x ≤ b).

In point of fact, the hypotheses in the preceding theorem can be weakened slightly:
it suffices to assume that {f ′

n} converges uniformly and that for one point x0 ∈ [a, b],
the sequence (of constants) fn(x0) converges. Some hypothesis on {fn} is needed,
because otherwise, the functions could march off to infinity (e.g., fn(x) ≡ n). In
practice, these weaker hypotheses are no easier to verify.

B.2.2 Series

There is a natural one-to-one correspondence between infinite sequences and infinite
series. To a series

∑∞
n=1 an we associate the sequence of partial sums Sm =

∑m
n=1 an;

and for a sequence {bn} ⊂ R
d we associate the telescoping series

b1 + (b2 − b1) + (b3 − b2) + (b4 − b3) + . . . ,

4Alternatively, one can define a C1 function on [a, b] by requiring that f ′(x), defined by the
usual difference quotient for x ∈ (a, b), extend to a continuous function on [a, b].
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which has {bn} as its sequence of partial sums. Despite the overlap, it is convenient
to have separately formulated results for both cases.

(a) Series of constants. If an ∈ R
d, n = 1, 2, 3, . . . , we say that the infinite series∑∞

n=1 an converges if the sequence of partial sums

Sm =
m∑

n=1

an

converges as m → ∞. We say that an infinite series converges absolutely if the series∑∞
n=1 |an|, whose terms are nonnegative scalars, converges (to a finite limit).

Proposition B.2.4. If the series
∑∞

n=1 an converges absolutely, then the series
converges.

This result is proved in [68]. The implication is in one direction only; for example,

∞∑

n=1

(−1)n/n (B.4)

is convergent but not absolutely convergent. (Some counterintuitive behavior of such
conditionally convergent series is discussed in the Pearls.)

(b) Series of functions. When dealing with a series of functions
∑∞

n=1 fn(x), we use
the correspondence between infinite sequences and infinite series to define pointwise
and uniform convergence of a series. Let us record two results for sequences that
carry over to series.

Corollary B.2.5. If a series
∑∞

n=1 fn(x) of continuous functions converges uni-
formly to S(x) on a set E ⊂ R

d, then S(x) is continuous on E.

Corollary B.2.6. Suppose that
∑∞

n=1 fn(x) and
∑∞

n=1 f
′
n(x) converge uniformly on

the interval [a, b], where each term fn(x) is continuously differentiable. Then the sum
S(x) is continuously differentiable, and S ′(x) equals the sum of the derivatives: in
symbols, ( ∞∑

n=1

fn(x)

)′

=
∞∑

n=1

f ′
n(x). (B.5)

On occasion, we will need to differentiate under an integral. We include a theo-
rem justifying this operation here because the result is loosely analogous to Corol-
lary B.2.6—the integral is a continuous analogue of a sum, the limit of Riemann
sums.



B.3. Selected Issues in Vector Calculus 499

Theorem B.2.7. If f(s, x) is continuously differentiable for (s, x) in a closed rect-
angle5 [a, b]× [c, d], then

∂

∂x

∫ b

a

f(s, x)ds =

∫ b

a

∂f

∂x
(s, x)ds (c < x < d).

You may wonder why no analogue of the hypothesis of uniform convergence
appears in the above result. We remind you that since ∂xf is continuous on a
compact set, it is uniformly continuous. By contrast, for differentiation of an inte-
gral over an infinite range, a uniformity hypothesis is needed. See Section 9.7 of [51]
for more details.

B.2.3 Convergence of Integrals

In profound contrast to derivatives, uniform convergence of a sequence or series
of functions does give control of the integral of the limit (provided the range of
integration is finite).

Theorem B.2.8. Suppose that {fn} is a sequence of continuous functions on [a, b]
that converges uniformly to f on [a, b]. Then

∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

The theorem is proved in [68]. The example in Exercise 8 shows that with-
out uniform convergence the result may fail. There are more general results than
Theorem B.2.8—the functions need not be continuous, only integrable, and a less
restrictive notion of convergence suffices—but we have no need for such results.

To conclude, let’s rephrase Theorem B.2.8 for series.

Corollary B.2.9. Suppose that a sum
∑∞

n=1 fn(x) of continuous functions on the
interval [a, b] converges uniformly on [a, b]. Then the order of integration and sum-
mation can be interchanged, i.e.,

∫ b

a

( ∞∑

n=1

fn(x)

)

dx =
∞∑

n=1

(∫ b

a

fn(x) dx

)
.

B.3 Selected Issues in Vector Calculus

One-variable calculus can be generalized to a vector context in two ways: to vector-
valued functions of a single real variable, or to functions of several variables. The for-
mer generalization, which suffices for much of the study of ODEs, poses no great

5That is, f is continuous on [a, b] × [c, d] and continuously differentiable on (a, b) × (c, d), and
both derivatives ∂sf , ∂xf extend to continuous functions on [a, b]× [c, d].



500 Appendix B. Notions from Advanced Calculus

challenges. Most results can be derived componentwise from their scalar counter-
parts. By contrast, calculus of functions of several variables introduces many new,
subtle complications, such as divergence, curl, multiple integrals, and Green’s the-
orem. Only a few ideas from the latter generalization, such as the chain rule, are
needed for this book, and these are reviewed below.

B.3.1 Differentiability

(a) Definitions. Suppose E ⊂ R
d1 is open and that F : E → R

d2 . We say that F
is differentiable at x ∈ E if there exists a linear transformation A : Rd1 → R

d2 such
that

lim
h→0

|F(x+ h)− F(x)− Ah|
|h| = 0. (B.6)

We refer to A as the derivative of F at x, and we write A = DF(x).

Equivalently, in terms of the order notation of Section 4.6.4, F is differentiable
at x if and only if there exists a linear transformation DF(x) : Rd1 → R

d2 such that
for h in a neighborhood of 0,

F(x+ h) = F(x) +DF(x)h+ r(h),

where the remainder r is “small” in the sense that r(h) = o(|h|).
A function F : E ⊂ R

d1 → R
d2 can be written out in components as

F(x1, x2, . . . , xd1) =

⎡

⎢⎢⎢
⎣

F1(x1, x2, . . . , xd1)
F2(x1, x2, . . . , xd1)

...
Fd2(x1, x2, . . . , xd1)

⎤

⎥⎥⎥
⎦
.

If F is differentiable on E, then the partial derivatives ∂Fi/∂xj, for i = 1, 2, . . . , d2
and j = 1, 2, . . . , d1, exist at all points in E. For every x ∈ E, the derivative DF(x)
has a compact representation as a d2 × d1 matrix

DF(x) =

⎡

⎢
⎢
⎢
⎣

∂F1/∂x1 ∂F1/∂x2 · · · ∂F1/∂xd1

∂F2/∂x1 ∂F2/∂x2 · · · ∂F2/∂xd1
...

...
. . .

...
∂Fd2/∂x1 ∂Fd2/∂x2 · · · ∂Fd2/∂xd1

⎤

⎥
⎥⎥
⎦

(B.7)

with respect to the standard bases for Rd1 and R
d2 . This matrix, called the Jacobian

of F, defines a linear transformation from R
d1 to R

d2 .
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(b) Results about derivatives. Existence of all the partial derivatives in the ma-
trix (B.7) is not enough to conclude that F is differentiable. Consider, for example,
the function f : R2 → R defined by

f(x1, x2) =

{
x1x2/(x

2
1 + x2

2) if (x1, x2) �= 0,

0 if (x1, x2) = 0 .
(B.8)

Both ∂f/∂x1 and ∂f/∂x2 exist everywhere in the plane, but f is not even continuous
at (0, 0), let alone differentiable! (See Exercise 9.)

As the following theorem asserts, such pathologies can be avoided if the partial
derivatives in the Jacobian matrix are continuous on E. The notation C1 designates
a function whose partial derivatives are continuous on an (open) set.

Theorem B.3.1. Suppose E ⊂ R
d1 is open and F : E → R

d2. If all partial deriva-
tives ∂Fi/∂xj in the Jacobian matrix (B.7) of F exist and are continuous on E, then
F is differentiable everywhere in E.

Compositions of differentiable functions are also differentiable, and the chain rule
from single-variable calculus generalizes to a composition H(x) = (G ◦ F)(x) =
G(F(x)), where F maps a neighborhood of a point x0 ∈ R

d1 into R
d2 and G maps

a neighborhood of F(x0) ∈ R
d2 into R

d3 . The multidimensional chain rule may be
written compactly

DH(x0) = DG(F(x0)) ·DF(x0), (B.9)

where the dot indicates matrix multiplication of Jacobians. More formally, we could
write DG(F(x0)) ◦DF(x0) for the composition of linear transformations.

In Chapter 4 we need the following technical result (proved in Section 6.8 of [51])
about the equality of mixed partial derivatives.

Theorem B.3.2. Suppose F : E → R
d2 is C1 on the open set E ⊂ R

d1. If a mixed
partial derivative ∂2F/∂xj∂xk exists and is continuous on E, then the derivative in
the opposite order also exists, and both mixed partial derivatives are equal on E.

B.3.2 The Implicit Function Theorem

Often we want to define a real variable y as a function of another variable x implicitly
through an equation

f(x, y) = 0. (B.10)

The implicit function theorem gives conditions under which this is possible. Below,
we will consider such issues for vector variables, but for the moment, we assume that
x and y are scalars.
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Theorem B.3.3. Suppose that (the scalar-valued) function f(x, y) is continuously
differentiable in a neighborhood of (a, b) ∈ R

2, that f(a, b) = 0, and that

∂f

∂y
(a, b) �= 0. (B.11)

Then there are neighborhoods U1 of a ∈ R and U2 of b ∈ R such that for every x ∈ U1,
equation (B.10) has a unique solution y = Y (x) ∈ U2. The function Y : U1 → U2 is
continuously differentiable, and of course Y (a) = b.

You may find the formulation of this result oppressively technical. To see why
such care is needed, observe that the equation

x4 + y4 − 1 = 0 (B.12)

satisfies the hypotheses of the theorem with (a, b) = (0, 1). Its conclusions are valid,
for example, for the choices

U1 = {x : |x| < 1} and U2 = {y : y > 0}.

However, if x leaves U1, then (B.10) may have no solutions. Moreover, for x ∈ U1,
(B.10) has two solutions, ±(1 − x4)1/4; we get uniqueness only by restricting our
search for solutions to y ∈ U2.

To illustrate why the hypothesis (B.11) is necessary, consider solving (B.12) for
y near (a, b) = (1, 0).

A formula for the derivative Y ′(x) may be obtained by implicit differentiation of
the relation f(x, Y (x)) ≡ 0, which yields

Y ′(x) = −∂f/∂x(x, Y (x))

∂f/∂y(x, Y (x))
. (B.13)

Note that because of (B.11), the denominator in (B.13) is nonzero at x = a.

Having formulated the scalar version of the implicit function theorem with com-
plete precision, we accept more informal language in generalizing to the vector ver-
sion, say

F(x,y) = 0, (B.14)

where x ∈ R
d1 , y ∈ R

d2 , and F : E → R
d2 with E ⊂ R

d1 ×R
d2 being open. We want

to solve this system for y = (y1, y2, . . . , yd2) as functions of x = (x1, x2, . . . , xd1).
Note that d2 equations are to be solved for an equal number of unknowns.

Theorem B.3.4. (Implicit function theorem) Suppose that F : E → R
d2 is C1, where

E ⊂ R
d1 × R

d2 is open. Given a point (a,b) ∈ R
d1 × R

d2 such that F(a,b) = 0, let
J be the partial Jacobian (i.e., only derivatives with respect to y)
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J =

⎡

⎢⎢⎢
⎣

∂F1/∂y1 ∂F1/∂y2 · · · ∂F1/∂yd2
∂F2/∂y1 ∂F2/∂y2 · · · ∂F2/∂yd2

...
...

. . .
...

∂Fd2/∂y1 ∂Fd2/∂y2 · · · ∂Fd2/∂yd2

⎤

⎥⎥⎥
⎦
,

evaluated at (a,b). If J is invertible, then (B.14) may be solved locally near (a,b)
for y as a function of x. The solution is unique, and it is a C1 function of x.

It is only too easy to forget whether it’s the matrix of derivatives of F with respect
to x or with respect to y that needs to be nonsingular. If you find yourself stranded
on the proverbial desert island and need to sort this out, observe that the hypotheses
imply that the matrix of derivatives of F with respect to y must be square, a d2×d2
matrix. By contrast, if d1 �= d2, the matrix of derivatives with respect to x will not
be square. Of course, only a square matrix can be invertible.

B.3.3 Surfaces and Manifolds

(a) Basic definitions. Informally, a surface in R
d may be defined as a subset such

that near each of its points it is specified by the zero set of a smooth function. More
precisely, if S ⊂ R

d is a C1-surface,6 then for every x0 ∈ S there exist a neighborhood
V of x0 and a C1 function φ : V → R with ∇φ(x0) �= 0 such that

S ∩ V = {x ∈ V : φ(x) = 0}. (B.15)

Given such a point x0 ∈ S, at least one partial derivative, say ∂φ/∂xj(x0), is nonzero,
so it follows from the implicit function theorem that the equation φ(x) = 0 may be
solved locally for xj as a function of the other coordinates. This property may be
used as an alternative definition of a surface: near every point, the set is a graph in
which one coordinate can be expressed as a function of the others.

Here’s a trivial example: the set

S = {(x, y) ∈ R
2 : x4 + y4 − 1 = 0} (B.16)

is a surface in R
2. (Since d = 2, it might be more natural to call S a curve.) At most

points of (B.16) we can solve for either x or y as a function of the other variable;
but at (0,±1), we can solve only for y as a function of x, and at (±1, 0), only for x
as a function of y.

6This definition describes a surface without boundary. By contrast, we would call a set like
the closed upper hemisphere, {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}, a surface with boundary. The
definition above does not describe points in the set that lie in the plane {z = 0}, i.e., the boundary.
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Since this curve is defined globally by the zero set of a single function, there is
little reason to bother with all the neighborhoods in the above definition. However,
for a complicated curve such as in Figure B.2, you can see that being allowed to
choose different defining functions at different points gives a more flexible concept.

Incidentally, in the neighborhood V of (B.15), the vector ∇φ provides a local
normal to S, generally not a unit normal.

Although manifolds can be defined abstractly [76], the following pedestrian defi-
nition is sufficient for purposes of this book: a k-dimensional manifold is a subset of
R

d such that near each of its points, d−k of the coordinates may be expressed as func-
tions of the remaining k coordinates. Thus, a surface in R

d is a (d− 1)-dimensional
manifold, and a curve is a 1-dimensional manifold. The torus, represented as

{
x ∈ R

4 : x2
1 + x2

2 = 1, x2
3 + x2

4 = 1
}
,

is a two-dimensional manifold.

(b) Piecewise smooth bounding surfaces. In this text, surfaces arise in Chapter 4
as boundaries of trapping regions. We also consider regions whose boundary is a
piecewise C1 surface, such as, for example, the set

{(x, y) : x4 + y4 ≤ 1} ∼ {(x, y) : x < 0 and y < 0}, (B.17)

which we would describe as three-quarters of a misshapen pie. (Draw it!) To avoid
unrewarding technicalities, we refrain from defining this concept in dimensions higher
than two. A closed set K ⊂ R

2 has a piecewise C1 boundary if for every x0 ∈ ∂K,
there is a neighborhood V of x0 for which one of the following applies:

1. There is a C1 function φ : V → R with ∇φ(x0) �= 0 such that

K ∩ V = {x ∈ V : φ(x) ≥ 0}.

2. There are C1 functions φ1 : V → R and φ2 : V → R with ∇φ1(x0) and ∇φ2(x0)
linearly independent such that either

K ∩ V = {x ∈ V : φ1(x) ≥ 0} ∩ {x ∈ V : φ2(x) ≥ 0} (B.18)

or
K ∩ V = {x ∈ V : φ1(x) ≥ 0} ∪ {x ∈ V : φ2(x) ≥ 0}. (B.19)

We call points described by Alternative 1 regular points; by Alternative 2, corner
points. Regarding corner points of the set (B.17), the “internal” corners (0,−1)
and (−1, 0) are described by intersection, as in (B.18), and the “external” corner
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Figure B.2: Example of a complicated simple closed curve. (Artist: Fiona Ross.
“When we could be diving for pearls,” 9 3/4 ” x 6”, 2011, Micron ink on Denril
paper. Reprinted with permission.)
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(0, 0), by union, as in (B.19). For each of the corner points you should identify an
appropriate neighborhood and functions φk that provide the desired representation.

What is the problem with defining a piecewise smooth boundary in R
d? As a first

attempt, you might imagine letting K ∩ V be defined locally by up to d functions,
with more possibilities for unions and intersections of the sets {x ∈ V : φk(x) ≥ 0}
than we care to enumerate. Such a definition would miss natural examples like a
cone,

{(x, y, z) : 0 ≤ z ≤ 1,
√
x2 + y2 ≤ z}.

We leave these depths unplumbed.

Even in two dimensions, our definition doesn’t include all the cases you might
expect. For example,

{(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x2}
is excluded because the gradients of φ1(x, y) = y and φ2(x, y) = x2 − y are linearly
dependent at the origin. This loss is not burdensome, and our definition has the
virtue of simplifying the proof of Theorem 4.2.3. (Cf. the hint following Exercise 4.2.)

B.4 Exercises

B.4.1 Core Exercises

1. (a) Find the limit of the sequence of functions fn : [0, 2] → R,

fn(x) =
xn

1 + xn
, n = 1, 2, . . . .

(b) Does this series converge uniformly, or only pointwise?

2. Consider the sequence of functions

gn(x) =
2

π
arctan[nx− n2/3];

these are translates of (B.1). Show that

lim
n→∞

gn(x) =

{
1 if 0 < x < ∞,

−1 if −∞ < x ≤ 0,

and for all x,
lim
n→∞

g′n(x) = 0,

both limits being pointwise.
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3. Introduction: The point of this exercise is to construct a C1 monotone increasing function on
[0,∞) that has a finite limit as x → ∞ but whose derivative does not converge. (What you
proved in Exercise 4.9 shows that such behavior is impossible for a function that satisfies an
ODE.) For x ∈ R, let

φ(x) =

{
x2(1− x)2 if 0 ≤ x ≤ 1,

0 otherwise;

let

f(x) =

∞∑

n=1

nφ(n3(x− n)).

Draw the graph of the general term in the series. This graph is a little “blip” that as n → ∞,
gets higher and much thinner as it marches off to infinity.

(a) Show that the series for f(x) converges pointwise and f(x) is C1, nonneg-
ative, and

lim inf
x→∞

f(x) = 0, lim sup
x→∞

f(x) = ∞.

(If you need a refresher on the definitions of lim inf and lim sup, see Section
1.5 of [51].)

(b) Show that the function

g(x) =

∫ x

0

f(s)ds (0 ≤ x < ∞)

is monotone increasing and limx→∞ g(x) < ∞.

Remark: Of course g′(x) = f(x) does not converge as x → ∞.

4. (a) Show that as n → ∞, the functions
√
x2 + n−1 converge uniformly to |x|

for x ∈ R, and the derivatives (d/dx)
√
x2 + n−1 converge pointwise to a

step function.

Discussion: Of course limn

√
x2 + n−1 = |x| is not differentiable at the ori-

gin.
With the addition of a bit of analysis, we can make this behavior more

dramatic (see Part (e) below). Let {qk : k = 1, 2, . . .} be an enumeration of
the rational numbers in the interval [0, 1]. For n = 1, 2, . . . and x ∈ R, let

fn(x) =

∞∑

k=1

√
(x− qk)2 + n−1

k2
, (B.20)

i.e., an infinite linear combination of translates of
√
x2 + n−1.

(b) Show that for each n, the series (B.20) converges uniformly for x in every
bounded interval and that its derived series

f ′
n(x) =

∞∑

k=1

x− qk

k2
√

(x− qk)2 + n−1
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converges uniformly for x ∈ R.

Remark: By Corollary B.2.6, each function fn(x) in the sequence is contin-
uously differentiable.

(c) Show that as n → ∞, the sequence {fn} converges uniformly to

∞∑

k=1

|x− qk|
k2

. (B.21)

Remark: By Theorem B.2.2, limn fn(x) is continuous. In fact, it is eas-
ily seen that (B.21) is Lipschitz continuous. However, this function is not
differentiable at any rational qj ∈ [0, 1].

(d) Prove that {f ′
n} converges pointwise.

Hint: This is trivial if x /∈ [0, 1]. If x ∈ [0, 1] is irrational, then

lim
n→∞ f ′

n(x) =

∞∑

k=1

sign(x− qk)

k2
,

while if x = qj ∈ [0, 1], we obtain the same series for limn f
′
n(qj) except with

the term with k = j omitted.

Challenge: Can you modify this example to get a function that is nondiffer-
entiable at all rational numbers, not just those in [0, 1]?

5. Introduction: The function defined for x ∈ R by

∞∑

k=1

ak cos(2kx), (B.22)

where 1/2 < a < 1, is continuous but nowhere differentiable. Weierstrass constructed the
first such function in 1892; the proof that (B.22) has this behavior is due to Hardy [35]. Note
that the terms of the derived series, −(2a)k sin(2kx), grow exponentially fast. As you might
expect, this means that the derived series diverges badly. We don’t ask you to establish
this behavior rigorously, merely to examine numerical evidence. (Incidentally, (B.22) is an
example of an important class of series known as Fourier series. Reference [4] provides an
accessible introduction.)

(a) Show that the series (B.22) converges uniformly (so that the limit is con-
tinuous).

(b) Choose a value of a, say a = 3/4. Use the computer to graph the partial
sums 1 ≤ k ≤ n over the interval 0 ≤ x ≤ π for n = 1, 3, 5, 7, 9, and
observe how irregular the graphs become as n increases.
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6. Introduction: Let {qk : k = 1, 2, . . .} be an enumeration of the rational numbers. For
n = 1, 2, . . . and x ∈ R, let

fn(x) =
1

n

∞∑

k=1

arctann(x− qk)

k2
. (B.23)

(a) Show that for each n, the series (B.23) and its derived series

f ′
n(x) =

∞∑

k=1

1

k2 [1 + n2(x− qk)2]
(B.24)

converge uniformly for x ∈ R. Conclude that each function fn(x) is
continuously differentiable.

(b) Show that as n → ∞, the sequence {fn} converges uniformly to zero.

(c) Show that {f ′
n} converges pointwise.

Hint: For each x, the sequence {f ′
n(x)} is a decreasing sequence of positive

numbers, since each term in (B.24) has this behavior.

(d) Show that at the jth rational number qj,

lim
n→∞

f ′
n(qj) ≥

1

j2
> 0.

Discussion: In other words, although {f ′
n} converges, it does not converge to the

derivative of limn→∞ fn(x).

7. In (B.23), define a sequence gn(x) by changing the leading coefficient n−1 to
n−1/2. Show that the sequence {gn} so defined still converges uniformly to
zero, but the derived sequence {g′n} diverges; in particular, for every rational
number qj,

lim
n→∞

g′n(qj) = ∞.

Remark: Incidentally, if the leading coefficient n−1 in (B.23) is removed alto-
gether, the resulting sequence of functions converges pointwise to an increasing
function that is discontinuous at every rational number.

8. Introduction: For x ∈ R, let

f(x) =

⎧
⎪⎨

⎪⎩

x if 0 ≤ x ≤ 1,

2− x if 1 < x ≤ 2,

0 otherwise ,

and define a sequence of (continuous) functions fn : [−1, 1] → R by fn(x) = nf(nx). Our
standard advice: to get intuition about what’s going on, graph fn(x).
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(a) Show that {fn} converges pointwise to zero.

(b) Evaluate the integrals to conclude that

lim
n→∞

∫ 1

−1

fn(x) dx = 1 �=
∫ 1

−1

lim
n→∞

fn(x) dx. (B.25)

9. (a) Show that both partial derivatives of the function (B.8) exist everywhere
in the plane.

(b) Show that this function is not continuous at (0, 0).

Hint: This function vanishes at the origin, while along the line {x = y}, it equals
1/2. Use this information to contradict the definition of continuity at the origin
“for every ε > 0 . . . ,” say with ε = 1/3.

B.4.2 PHD Exercises

10. Show that the unit ball in the set of continuous functions, say

S = {f ∈ C([0, 1]) : ‖f‖ ≤ 1},

is not compact.

Hint: First prove (or recall or see Theorem 3.1.3 in [51]) that if S is a compact
subset of a metric space and {fn} is a sequence of elements of S, then {fn} has
a convergent subsequence. Then consider the sequence

fn(t) = cos(2nπt), n = 0, 1, 2, . . . .

Argue that if m < n, then ‖fm − fn‖ ≥ |fm(2−m)− fn(2
−m)| = 2. Deduce that

no subsequence of {fn} can be Cauchy.

11. Introduction: The following problem, which doesn’t have a lot to do with ODEs, is intended
to remind you how to change variables in a multiple integral. Consider a C1 change of
coordinates, say x = Φ(y). Given a region R ⊂ R

2 and an integrable function f on the
image Φ(R), the change-of-variables formula (Theorem 9.3.1 in [51]) asserts that

∫ ∫

Φ(R)

f(x)dx1dx2 =

∫ ∫

R

f ◦ Φ(y)J(y)dy1dy2, (B.26)

where

J(y) =

∣
∣∣∣det

[
∂Φ1/∂y1 ∂Φ1/∂y2
∂Φ2/∂y1 ∂Φ2/∂y2

] ∣∣∣∣ .

(We confess that we still find this formula confusing and need to rethink it every time we
want to use it.)

Just for practice, show that if Φ(r, θ) = (r cos θ, r sin θ) is the transformation
from polar to Euclidean coordinates, then J(r, θ) = r.
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Remark: Thus, in this case, if R = {(r, θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π}, then (B.26)
gives the usual expression for evaluating an integral over the disk using polar
coordinates.

12. Introduction: Usually, to define the derivative with the difference quotient (B.6), one assumes
that the function F is defined on an open set. In this way, F(x + h) is defined for all h in
a neighborhood of zero. Sometimes, however, it is convenient to consider a differentiable
function defined on a closed set. It is trivial to do this for functions of one variable on a
closed interval. Depending on the set, the issue may be problematic in several dimensions,
but not for functions defined on a closed region with a smooth boundary. If the boundary is
smooth, a C1 extension in a larger open set may be defined by reflection across the boundary.
This exercise illustrates this construction in a special case in which the notation is simple.

Suppose that f : K → R is continuous, where K = {x2 + y2 ≤ 1} is the closed
unit disk, and that f is continuously differentiable on Int K. Show that if
∂f/∂x and ∂f/∂y extend to continuous functions on the closed disk, then the
definition (in polar coordinates)

f̃(r, θ) =

{
f(r, θ) if r ≤ 1,

2f(1, θ)− f(2− r, θ) if 1 < r < 3/2,

provides a C1 extension of f to a neighborhood of K.

13. Given an arbitrary sequence {ak} of real numbers, show that there is a C∞

function on the line whose derivatives satisfy g(k)(0) = ak.

Hint: To begin, construct a C∞ function φ(x) such that φ(x) ≡ 1 in a neighbor-
hood of zero and φ(x) = 0 if |x| ≥ 1. Do this in stages as follows (see Figure B.3):
if f(x) is defined by (B.32) below, let

φ1(x) = f(1− x2),

φ2(x) =
{∫∞

−∞ φ1(s)ds
}−1 ∫ x

−∞ φ1(s)ds,

φ(x) = φ2(2− 4x2).

For k = 0, 1, . . ., record the estimate for derivatives of order k or less,

Mk = max
x∈R

max
0≤
≤k

φ(
)(x).

Now let cn = max{1, |an|} and consider the series

g(x) =
∞∑

n=0

anφ(cnx)
xn

n!
. (B.27)

The crux of the proof is to show that this series may be differentiated, arbitrarily
many times, term by term. Since φ(cnx) ≡ 1 near the origin, a simple calculation
then shows that g(k)(0) = ak.
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Claim. For every nonnegative integer k, the series

∞∑

n=k+1

|an|
∣∣∣
∣∣

(
d

dx

)k [
φ(cnx)

xn

n!

]∣∣∣
∣∣

(B.28)

converges uniformly for x ∈ R.

Remarks: The claim permits the application of Theorem B.2.6 to show that
g(x) is Ck for all k. Note that the first k+1 terms in the series for g(x) have been
discarded in (B.28). This is convenient for the estimates below and of course has
no bearing on convergence.

Outline for the proof of the claim: Iterate Leibniz’s rule to conclude that

(
d

dx

)k [
φ(cnx)

xn

n!

]
=

k∑

j=0

(
k

j

)
ck−j
n φ(k−j)(cnx)

xn−j

(n− j)!
, (B.29)

where
(
k
j

)
is a binomial coefficient. Observe that since φ(cnx) vanishes if |x| ≥

1/cn, it follows that

ck−j
n

∣∣
∣φ(k−j)(cnx)x

n−j
∣∣
∣ ≤ ck−j

n

Mk

cn−j
n

=
Mk

cn−k
n

≤ Mk

cn
.

Moreover, if j ≤ k, then 1/(n− j)! ≤ 1/(n− k)!. Deduce from (B.29) that

∞∑

n=k+1

|an|
∣∣∣∣
∣

(
d

dx

)k [
φ(cnx)

xn

n!

]∣∣∣∣
∣
≤ 2kMk

∞∑

n=k+1

|an|
cn

1

(n− k)!
.

Since |an| ≤ cn, the sum (B.28) is bounded independently of x, as needed.

B.5 Pearls of Wisdom

In (2.26) we formed separate convergent series from the even-numbered and odd-
numbered terms of a series. Such a splitting would be disastrous for the alternating
series (B.4), since both

N∑

n=1

1

2n− 1
and

N∑

n=1

1

2n
(B.30)

tend to infinity as N → ∞.

Every rearrangement of a conditionally convergent series is problematic. For
example, consider a rearrangement of (B.4),

1 − 1
2

+
(

1
3
+ 1

5
+ 1

7
+ . . .+ 1

2n1−1

)
− 1

4

+
(

1
2n1+1

+ 1
2n1+3

+ . . .+ 1
2n2−1

)
− 1

6(
1

2n2+1
+ 1

2n2+3
+ . . .+ 1

2n3−1

)
− 1

8
+ . . . .
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φ1(x)

φ (x)

c

−1 0 1
x

101−101−
xx

φ 2(x)

1

1

1/e

a b

Figure B.3: Three C∞ functions used in the construction outlined in Exercise 13.
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For each block of positive terms, say

(
1

2nk + 1
+

1

2n2 + 3
+ . . .+

1

2nk+1 − 1

)
,

stuff enough terms into it so these terms add up to at least 1; this is possible,
regardless of how many terms may have been assigned to previous blocks, because
(B.30) still diverges even after any finite number of terms has been deleted. Then
the partial sums of the rearranged series tend to infinity.

By rearranging the terms with a little more finesse, you can make the partial
sums converge to any real number. (Try it!)

If f(x) is a C∞ function on the line, then for every x0 ∈ R, one can consider the
formal power series

∞∑

n=0

f (n)(x0)

n!
(x− x0)

n. (B.31)

The series need not converge for any x �= x0. Indeed, in Exercise 13 it is shown that
for every sequence {an} of real numbers there is a C∞ function such that at x0,

f (n)(x0) = an.

Even when (B.31) does converge, its sum may not equal f(x). A counterexample for
this is

f(x) =

{
e−1/x x > 0,

0 x ≤ 0 ;
(B.32)

this function is C∞, and all its derivatives vanish at the origin, so (B.31) with x0 = 0
reduces to a series of all zeros, but this doesn’t sum to f(x) for x > 0.

Convergence of (B.31) gives rise to the following definition. (Let’s consider only
functions of one variable.) A function is called real analytic7 on (a, b) if for every
x0 ∈ (a, b) and for all x in some neighborhood of x0, the series (B.31) converges and
its sum equals f(x). Such functions are incredibly rigid. For example, if f is real
analytic on (a, b) and if f vanishes on any subinterval I ⊂ (a, b), then f(x) ≡ 0 on
the entire interval (a, b).

7The name “real analytic” relates to the property that a complex variable may be inserted into
the convergent power series (B.31) to obtain a function that is analytic in the complex sense. See
also [11].



Appendix C

Notions from Linear Algebra

C.1 How to Work with Jordan Normal Forms

In a linear algebra text, one expects the author to prove that an arbitrary square
matrix is similar to a Jordan canonical form, and this proof is a messy affair.1 Here
we assume that you have seen the definitions and the statement of the theorem
but not necessarily followed the complete proof. We accept that a Jordan normal
form exists, and we ask, more simply, how to find it. We break this task into two
subquestions, focusing more on examples than theory: given a matrix A,

(a) What is the Jordan normal form of A?

(b) What similarity transformation produces the normal form?

(a) Calculating the normal form: The first step in determining the normal
form of A is to find its eigenvalues. Of course, finding eigenvalues analytically is an
intractable problem in general, and one is quickly driven to the computer. We work
with hand-picked examples in which the eigenvalues are readily determined.

Example 1:

A =

[
5 −2
2 1

]
.

It is readily computed that det(A − λI) = (λ − 3)2. Even if your command of the
theory is a little shaky, probably you know that there are two possible Jordan forms
for A,

1We like the treatment in Appendix B of Strang [79]. Other widely used references include
Hoffman and Kunze [42] and Meyer [55].
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J1 =

[
3 0
0 3

]
and J2 =

[
3 1
0 3

]
.

If A were similar to J1 = 3I, then every vector in R
2 would be an eigenvector.

However, v ∈ R
2 is an eigenvector iff (A − 3I)v = 0, and not every vector satisfies

this equation. Thus, J2 must be the normal form for A. Indeed, in hindsight we may
see that if a 2× 2 matrix has equal eigenvalues but is not equal to a multiple of the
identity, then its Jordan normal form must be a 2× 2 block.

Higher-dimensional examples in which there are several double eigenvalues, but
none of higher multiplicity, do not pose any additional difficulties, as we illustrate in
Exercise 1. Let us turn our attention to eigenvalues of multiplicity three.

Example 2: Consider

A1 =

⎡

⎣
a 1 1
0 a 0
0 0 a

⎤

⎦ , A2 =

⎡

⎣
a 1 1
0 a 1
0 0 a

⎤

⎦ , A3 =

⎡

⎣
a 0 1
0 a 1
0 0 a

⎤

⎦ .

By inspection, λ = a is the only eigenvalue of each matrix Aj. Thus the possible
normal forms for Aj are

J1 =

⎡

⎣
a

a
a

⎤

⎦ , J2 =

⎡

⎣
a 1
0 a

a

⎤

⎦ , J3 =

⎡

⎣
a 1 0
0 a 1
0 0 a

⎤

⎦ ,

where to facilitate visualization, entries that are zero but lie outside of any Jordan
block are left blank. We distinguish between cases by examining the dimension of
the eigenspaces. These dimensions may be computed most easily by applying the
“rank-plus-nullity” theorem (see Section 2.4 of Strang [79]), which gives us

dim ker(Jj − aI) = 3− rank(Jj − aI).

Thus J1, J2, J3 have eigenspaces of dimension 3, 2, 1, respectively. Proceeding simi-
larly, we find that A1, A2, A3 have eigenspaces of dimension 2, 1, 2, respectively. Since
the dimension of eigenspaces is preserved under similarity transformations, we con-
clude that A1, A2, A3 have Jordan forms J2, J3, J2, respectively.

Example 3:

A1 =

⎡

⎢
⎢
⎣

a 0 0 1
0 a 0 1
0 0 a 0
0 0 0 a

⎤

⎥
⎥
⎦ , A2 =

⎡

⎢
⎢
⎣

a 0 1 0
0 a 0 1
0 0 a 0
0 0 0 a

⎤

⎥
⎥
⎦ , A3 =

⎡

⎢
⎢
⎣

a 1 0 0
0 a 0 1
0 0 a 0
0 0 0 a

⎤

⎥
⎥
⎦ .
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The possible Jordan forms are

J1 =

⎡

⎢⎢
⎣

a
a

a
a

⎤

⎥⎥
⎦ , J2 =

⎡

⎢⎢
⎣

a 1
0 a

a
a

⎤

⎥⎥
⎦ , J3 =

⎡

⎢⎢
⎣

a 1 0
0 a 1
0 0 a

a

⎤

⎥⎥
⎦ ,

J4 =

⎡

⎢⎢
⎣

a 1 0 0
0 a 1 0
0 0 a 1
0 0 0 a

⎤

⎥⎥
⎦ , J5 =

⎡

⎢⎢
⎣

a 1
0 a

a 1
0 a

⎤

⎥⎥
⎦ .

Proceeding as above, we compute that J1, J2, J3, J4, J5 have eigenspaces of dimension
4, 3, 2, 1, 2, respectively. We can see potential trouble here in that J3 and J5 both
have two-dimensional eigenspaces. Now A1, A2, A3 have eigenspaces of dimension
3, 2, 2 respectively. Thus, we may conclude that A1 has J2 as its normal form, but
for A2 and A3, the dimension of the eigenspace does not distinguish between J3 and
J5. To proceed, we turn to generalized eigenvectors: a vector v ∈ R

d is called a
generalized eigenvector of a matrix A with eigenvalue λ if for some power p,

(A− λI)pv = 0.

Choosing p = 2, we compute that (J3 − aI)2 has a three-dimensional null space; and
(J5 − aI)2, four-dimensional. On the other hand, (A2 − aI)2 has a four-dimensional
null space, and (A3 − aI)2, three-dimensional. Thus the normal forms for A2, A3 are
J5, J3, respectively.

We have not considered examples with complex eigenvalues or with several dif-
ferent multiple eigenvalues, but the above examples should be adequate preparation
for these complications.

(b) Calculating the similarity transformation: For what matrix S does S−1AS

produce the Jordan form of A? If A is diagonalizable, every matrix whose columns
are eigenvectors of A will work (cf. Proposition 2.3.2). When the Jordan form for A
is nondiagonal, we shall see that the columns of S should be appropriate generalized
eigenvectors of A.

Recall Example 1, where

A =

[
5 −2
2 1

]
, with J =

[
3 1
0 3

]

its Jordan form. Observe that with respect to the standard basis e1, e2 for R2, the
matrix J satisfies

(J − 3I)e1 = 0 (J − 3I)e2 = e1.
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To match this behavior for A, we need to find vectors v1,v2 such that

(A− 3I)v1 = 0 (A− 3I)v2 = v1,

and then the matrix S = Col(v1,v2) will achieve the required transformation. (Note
that (A− 3I)2v2 = 0, so v2 is a generalized eigenvector.) One possible choice is

S =

[
1 1/2
1 0

]
. (C.1)

We ask you, now or in Exercise 2, to check that this matrix performs the desired
task. Incidentally, v2 could be replaced by v2 plus any multiple of v1. When A has
multiple eigenvalues, there is generally more latitude in the choice of S than in the
case of distinct eigenvalues.

More subtle issues may arise in cases of higher multiplicity. For instance, let A
be the first of the three matrices considered in Example 2, and let J be its Jordan
form, the second of the candidates. Observe that J satisfies

(J − aI)e1 = 0, (J − aI)e2 = e1, (J − aI)e3 = 0.

Thus we need to find vectors v1,v2,v3 such that

(A− aI)v1 = 0, (A− aI)v2 = v1, (A− aI)v3 = 0 (C.2)

and then let S = Col(v1,v2,v3). Note that v1 and v3 are eigenvectors of A, but
v1 must be chosen with care in order that the middle equation in (C.2), which is
inhomogeneous, have a solution. Now the eigenspace of A is spanned by

⎡

⎣
1
0
0

⎤

⎦

⎡

⎣
0
1
−1

⎤

⎦ . (C.3)

Suppose v1 is a linear combination of these vectors with coefficients α, β. Writing
out the middle equation in (C.2), we have

⎡

⎣
0 1 1
0 0 0
0 0 0

⎤

⎦

⎡

⎣
x
y

z

⎤

⎦ =

⎡

⎣
α
β

−β

⎤

⎦ .

To have a solution, we need β = 0. Thus, choosing α = 1, we see that

S =

⎡

⎣
1 0 0
0 1 1
0 0 −1

⎤

⎦ (C.4)
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is one of the possible similarity matrices that transforms A to its Jordan form. In
Exercise 2(c) we ask you to determine the most general such similarity matrix.

We reckon that if you understand the above examples, you will be able to handle
any matrix that is likely to come your way.

C.2 The Real Canonical Form of a Matrix

If a real matrix has complex eigenvalues, use of the Jordan normal form requires
introducing matrices with complex entries, which may be inconvenient. The real
canonical form avoids this. In the simplest case with complex eigenvalues, the real
canonical form has the structure

Γ =

[
a −b
b a

]
. (C.5)

In general, the real canonical form of a matrix consists of square blocks along the
diagonal,

C =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

B1 0 0 . . . 0
0 B2 0 . . . 0
0 0 B3 . . . 0
...

...
...

. . .
...

0 0 0 . . . BM

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (C.6)

where each matrix Bm may be either a Jordan block (for real eigenvalues) or a block
of the form

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Γ I 0 . . . 0 0
0 Γ I . . . 0 0
0 0 Γ . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Γ I

0 0 0 . . . 0 Γ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (C.7)

where Γ has the structure (C.5), I is the 2×2 identity matrix, and 0 is the 2×2 zero
matrix. (This includes the possibility that B is just the 2× 2 matrix Γ.) Note that
the only eigenvalues of (C.7) are λ = a± ib, each of which has only one eigenvector.

The real canonical form provides a proof of the following proposition. In Exer-
cise 8 we guide you through the not-very-inspiring proof.

Proposition C.2.1. Let A be a d × d matrix with real entries. For every ε > 0,
there is a matrix B similar to A such that for all x ∈ R

d,

|〈x, Bx〉 − 〈x,Λx〉| ≤ ε|x|2, (C.8)
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where Λ is the diagonal matrix whose entries are the real parts of eigenvalues of A,

Λ = Diag(�λ1, . . . ,�λd).

C.3 Eigenvalues as Continuous Functions of Matrix Entries

Near simple eigenvalues, the eigenvalues of a matrix depend continuously on its
entries, even differentiably. Specifically, we have the following result.

Proposition C.3.1. Let λ1 be a simple eigenvalue of a d × d matrix A0. There
exist an ε > 0 and a neighborhood U of A0 in R

d2 such that every matrix A ∈ U has
exactly one eigenvalue in the disk {z ∈ C : |z − λ1| < ε}. This eigenvalue, which is
real if λ1 is real, is a differentiable function of A.

Proof. We prove this result by applying the implicit function theorem (over R or C
as appropriate) to solve for λ in the equation for eigenvalues,

f(λ,A) = det(A− λI) = 0.

If A = A0, this function can be written as a product of eigenvalues,

f(λ,A0) = (λ1 − λ)(λ2 − λ) . . . (λd − λ).

Differentiation of this product with respect to λ gives d terms, but only one of them
is nonzero at λ = λ1, i.e.,

∂f

∂λ
(λ1, A0) = −(λ2 − λ1) . . . (λd − λ1).

Since λ1 is a simple eigenvalue, none of these factors vanish, and the result follows.

In the context of the above proposition, the following formula for the derivative
dλ/dε may be of interest. Let v be an eigenvector of A with eigenvalue λ1 and let
w be the vector orthogonal to range (A − λ1I) such that 〈w,v〉 = 1. (Why is this
possible? Why, once v is chosen, is w defined uniquely?) Then

dλ/dε(0) = 〈w, Bv〉.

A proof of this formula can be found on the web site.

The dependence of eigenvalues on the matrix is problematic near multiple eigen-
values. The simple example

A(α) =

[
0 1
α 0

]
,
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where α varies near zero, provides the first indication of trouble: its eigenvalues
±√

α may be either real or complex, and although continuous, they certainly are not
differentiable with respect to α at the origin. If complex entries are allowed or if the
dimension is higher, even continuity cannot be guaranteed. For example, consider
the matrix

A(α, β) =

[
0 1

α + iβ 0

]
,

which has eigenvalues λ± = ±√
α + iβ. In polar coordinates defined by α + iβ =

ρ eiφ, we have λ± =
√
ρ e±iφ/2. Since the exponentials e±iφ/2 are multiple-valued,

eigenvalues cannot be defined as continuous functions near zero. The same difficulty
arises in the 4× 4 matrix (with real entries)

A(α, β) =

[
0 I

Γ(α, β) 0

]
,

where 0 is the 2× 2 zero matrix, I is the 2× 2 identity matrix, and Γ is the matrix
in real canonical form

Γ(α, β) =

[
α −β
β α

]
.

Although at a multiple eigenvalue, one cannot define individual eigenvalues con-
tinuously, nonetheless the set of eigenvalues does vary continuously, in the sense of
the following proposition.

Proposition C.3.2. Let λ∗ be an eigenvalue of a d× d matrix A0 of multiplicity k.
For every sufficiently small ε > 0, there is a neighborhood U of A0 in R

d2 such that
every matrix A ∈ U has exactly k eigenvalues in the disk {|z − λ∗| < ε}.

Remarks: (i) In the proposition, ε must be less than the minimum separation
between λ∗ and the other eigenvalues of A0. (ii) As ε → 0, the maximum diameter
of U scales like εk.

One elegant proof of this proposition involves some complex function theory. This
subject is not a prerequisite for this text, so we refer you to Section 86 of [11].

In the language of Section 2.4, the following corollary of Proposition C.3.2 shows
that if the origin is a sink for the linear system x′ = Ax, then it is also a sink for
small perturbations of the system.

Corollary C.3.3. If all the eigenvalues of A lie in the left half-plane {�λ < 0},
then there is a neighborhood U of A in R

d2 such that the eigenvalues of every matrix
B ∈ U also lie in the left half-plane.

Continuity issues are a little different for symmetric matrices: All eigenvalues of
a symmetric matrix are real, and one may define individual eigenvalues continuously
by ordering them; i.e., we may define λ1(A) to be the smallest eigenvalue of A,
λ2(A) to be the next smallest eigenvalue, etc. (Multiple eigenvalues do not matter
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for these definitions.) However, even though with this convention the eigenvalues are
continuous, they need not be differentiable. This is demonstrated by the matrix

A(α, β) =

[
α β

β −α

]
,

which has eigenvalues λ1 = −√α2 + β2 and λ2 = +
√
α2 + β2.

C.4 The Routh–Hurwitz Criterion

It is astonishingly easy to determine whether a polynomial with real coefficients has
all its zeros in the left half-plane. For example, for the two polynomials

Q1(λ) = λ4 + 2λ3 + 3λ2 + 2λ+ 1,
Q2(λ) = λ5 + 2λ4 + 3λ3 + 3λ2 + 2λ+ 1,

the calculations in Table C.1 show that Q1(λ) has all its zeros in {�λ < 0}, while
Q2(λ) has at least one zero in {�λ ≥ 0}. Let us explain these calculations in the
context of a general polynomial

P (λ) = λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn−1λ+ cn.

The algorithm is slightly different, depending on whether n is even or odd. Reflecting
this difference, we define ν = [n/2], where [·] is the greatest-integer function, i.e.,
ν = n/2 if n is even and ν = (n − 1)/2 if n is odd. The algorithm forms an
(n+1)× (ν+1) matrix A as follows. The first two rows of A contain the coefficients
of even and odd powers of λ:

a1l : 1 c2 c4 . . .

a2l : c1 c3 c5 . . . .

(If n is even, then 0 is inserted as the last entry of the second row, as in the table on
the left.) Subsequent rows, 3, 4, . . . , n + 1, are calculated inductively from products
of entries from the two preceding rows that, apart from a sign, resemble a 2 × 2
determinant:

ak+1,l = ak,lak−1,l+1 − ak,l+1ak−1,l. (C.9)

In calculating the last column (l = ν + 1), entries ak,ν+2 or ak−1,ν+2 outside the
appropriate range are assumed to be zero, as has been done in Table C.1; thus
ak,ν+1 = 0 for k ≥ 3. Then we have the following theorem.

Theorem C.4.1. All the zeros of P lie in the open left half-plane iff all entries in
the first column of the above matrix are positive.

If the calculation produces a zero row, as in the table on the right, then the
calculation is stopped and we conclude that there is at least one zero in closed right
half-plane. Indeed, note that Q2(±i) = 0.
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1 2 3

1 1 3 1
2 2 2 0

3 4 2 0
4 4 0 0
5 8 0 0

1 2 3

1 1 3 2
2 2 3 1

3 3 3 0
4 3 3 0
5 0 0 0
6 – – –

Table C.1: The matrices {akl} in the Routh–Hurwitz calculations for
Q1(λ) = λ4+2λ3+3λ2+2λ+1 (left table) and Q2(λ) = λ5+2λ4+3λ3+3λ2+2λ+1
(right table). Values of k from 1 to n + 1 appear in the first column of each table;
values for l from 1 to ν + 1 appear in the top row. The two rows {akl : k = 1, 2},
which come directly from the coefficients of the polynomial, are separated from later
rows that come from the calculation indicated in (C.9).

This theorem is proved in Section 4.2 of [22]. Although the proof requires careful
reading, it is not terribly difficult, just clever. In cases where some of the zeros of
P (λ) lie in the right half-plane, it is usually possible to deduce how many zeros lie
there.

Turning to matrices and their eigenvalues, if A has real entries, then in principle,
one could calculate the characteristic polynomial of A and apply the Routh–Hurwitz
criterion to it to determine whether the eigenvalues of A lie in the left half-plane.
However, calculating the characteristic polynomial of even a moderately large matrix
by hand is not a pleasant task. (One could, of course, resort to symbolic computations
to obtain the characteristic polynomial, but if the computer is involved, one might
as well compute eigenvalues directly.) For 3× 3 matrices, Proposition 2.4.6 provides
a viable alternative to calculating the characteristic polynomial. Let us now apply
the Routh–Hurwitz theorem to prove this result.

Proof of Proposition 2.4.6. Let A be a 3× 3 matrix with characteristic polynomial

det(A− λI) = −[λ3 + c1λ
2 + c2λ+ c3].

The application of the Routh–Hurwitz criterion to this polynomial is shown in Ta-
ble C.2. Thus the roots of this polynomial are all in the left half-plane iff

(a) c1 > 0, (b) c1c2 − c3 > 0, (c) c3 > 0. (C.10)
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1 2

1 1 c2
2 c1 c3
3 c1c2 − c3 0
4 c3(c1c2 − c3) 0

Table C.2: The matrix {akl} in the Routh–Hurwitz calculations for the general cubic
λ3 + c1λ

2 + c2λ+ c3.

The coefficients cj are related to the eigenvalues of A through

c1 = −(λ1 + λ2 + λ3),
c2 = λ1λ2 + λ2λ3 + λ3λ1,
c3 = −λ1λ2λ3.

Thus, it is apparent that (C.10a) and (c) are equivalent to Conditions (i) and (iii)
of Proposition 2.4.6, and the equivalence of (C.10b) with Condition (ii) follows on
observing that

c2 =
1

2
[(trA)2 − tr(A2)].

C.5 Exercises

C.5.1 Core Exercises

1. (a) The following matrix has eigenvalues 2, 2,−4,−4. Find its Jordan normal
form and the similarity matrix that transforms A to normal form.

A =

⎡

⎢
⎢
⎣

0 1 4 1
−1 −2 −1 2
4 1 0 1
−1 2 −1 −2

⎤

⎥
⎥
⎦

(b) The following matrix has eigenvalues i, i,−i,−i. Find its Jordan normal
form and the corresponding similarity matrix.

A =

⎡

⎢
⎢
⎣

0 −2 1 0
2 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦

Remark: See Exercise 7 for the real canonical form of this matrix.
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2. (a) Show that S given by (C.1) transforms the matrix in Example 1 into
normal form.

(b) Show that S given by (C.4) transforms the matrix A1 in Example 2 into
normal form.

(c) Find the most general S that transforms the matrix A1 in Example 2 into
normal form.

Hint: Express each column of S as a linear combination of the vectors in a
basis consisting of the two eigenvectors (C.3) and any linearly independent
third vector, say e2. The answer involves a total of five independent parame-
ters, restricted by a couple of inequalities to guarantee that S is nonsingular.

(d) Find similarity matrices that transform the matrices A2 and A3 in
Example 2 into normal form.

3. Find the Jordan normal form for the matrix
⎡

⎢⎢
⎣

a 0 1 0
0 a 1 1
0 0 a 0
0 0 0 a

⎤

⎥⎥
⎦ .

4. Definition: A matrix (or linear transformation) such that A2 = A is called a projection.

(a) Show that if A is a projection, then so is I − A.

(b) Show that if A is a projection, then

range A = ker(I − A).

(c) Show that if A is a d-dimensional projection, then

R
d = kerA⊕ range A.

(d) Show that if |w| = 1, then the formula

Ax = 〈w,x〉w

defines a projection.

5. Write out the derivation of Corollary C.3.3 from Proposition C.3.2.

6. Check the Routh–Hurwitz criterion on some polynomials whose zeros you know,
such as

(λ+ 1)5 = λ5 + 5λ4 + 10λ3 + 10λ2 + 5λ+ 1,
(λ+ 1)4(λ− 1) = λ5 + 3λ4 + 2λ3 − 2λ2 − 3λ− 1
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or
λ4 + λ3 + λ2 + λ+ 1.

Remark: The third polynomial, called the cyclotomic polynomial of degree 4, is
the quotient (λ5 − 1)/(λ− 1), from which you can locate its zeros.

C.5.2 PHD Exercises

7. The real canonical form for the matrix in Exercise 1(b) has the block form

[
Γ I

0 Γ

]
,

where Γ is a 2× 2 matrix in real canonical form, equation (C.5). Determine Γ
and find the similarity matrix S that transforms A into real canonical form.

8. Prove Proposition C.2.1.

Hint: The proof is based on the simple observation that if Γ is the 2 × 2 real
canonical form (C.5), then

〈x,Γx〉 = a〈x,x〉, x ∈ R
2,

but this simplicity is obscured by technicalities. To set up the necessary technical
framework, let S be the similarity transformation that reduces A to real canonical
form: S−1AS = C. Split off the nilpotent part N of C, say C = C0 +N , where

C0 = Diag(Γ1, . . . ,ΓK , λ2K+1, . . . , λd).

That is, each Γk, where k = 1, . . . ,K, is a 2 × 2 matrix of the form (C.5), and
each λk is a real eigenvalue of A. Choose a scaling matrix T , as in Exercise 3(d)
in Chapter 2, such that T−1CT = C0 + εN . Complete the proof by letting
B = (ST )−1A(ST ) and observing that for all x ∈ R

d,

〈x, C0x〉 = 〈x,Λx〉.



Remarks Regarding Additional
References

So much has been published about ODEs that a complete bibliography is out of the
question. Most of the following references are here because we actually cited them.
We tended to cite secondary sources because (i) we thought they might be more
readable for the beginning student and (ii) in this way, the total number of distinct
reference sources could be kept smaller.

Here are some ODE books that have been important to us.

• Braun [10] and Strogatz [81] are unique books at a more elementary level than
this one. Braun covers the standard material in a first course in ODEs, but he
supports the theory with interesting applications peppered with quirky details
that make them a joy to read. Strogatz covers an amazing range of applications
and sneaks a lot of mathematical insight into very readable text.

• Hirsch–Smale [40], Meiss [54], and Perko [63] are general introductions to ODEs
at more or less the same level as this book. But how can we recommend the
competition?

• Guckenheimer–Holmes [33] and Hastings–McLeod [39] are natural sequels to
this book. Guckenheimer–Holmes develops the rigorous analysis of dynamical
systems, giving many of the proofs that we felt were too technical for this text.
Hastings–McLeod studies a rare selection of nonstandard advanced problems
in ODEs that reflects their good taste.

Incidentally, Robinson [67] has a lovely three-page prologue that gives a succinct
historical overview of ODEs; although it was written more than a decade ago, we
highly recommend it. And Abraham-Shaw [1], the mathematical equivalent of a
graphic novel, is a classic—do not miss it!

© Springer Science+Business Media New York 2016
D.G. Schaeffer, J.W. Cain, Ordinary Differential Equations: Basics and Beyond, Texts in
Applied Mathematics, DOI 10.1007/978-1-4939-6389-8

527



Bibliography

[1] R. H. Abraham and C. D. Shaw, Dynamics: The geometry of behavior, parts
1–4: Bifurcation behavior, Aerial Press, Santa Cruz, CA, 1988.

[2] U. Alon, An introduction to systems biology, Chapman and Hall/CRC, Boca
Raton, 2006.

[3] M. A. Armstrong, Groups and symmetry, Springer-Verlag, New York, 1988.

[4] G. Bachman, L. Narici, and E. Beckenstein, Fourier and wavelet analysis,
Springer-Verlag, New York, 2000.

[5] A. K. Bajaj and P. R. Sethna, Flow induced bifurcations to three-dimensional
oscillatory motions in continuous tubes, SIAM Journal on Applied Mathematics
44 (1984), 270–286.

[6] G. Batchelor, The life and legacy of G. I. Taylor, Cambridge University Press,
Cambridge, 1996.

[7] F. Beer, E. R. Johnston Jr, J. DeWolf, and D. Mazurek, Mechanics of materials,
7th edition, McGraw-Hill, New York, 2014.
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ω-limit point, 270

absolutely convergent sequence, 46
activator–inhibitor model, 124, 178,

230
equilibria and stability, 206
homoclinic bifurcation, 408
Hopf bifurcation, 374, 387
large-κ reduction, 144, 181
saddle-node bifurcation, 340
scaled equations, 180
special behavior if ρ = 1, 238, 262
trapping region, 124
two cells with diffusion, 209

affine, 309
Airy’s equation, 2
alpha limit set, 270
Andronov–Hopf bifurcation, see Hopf

bifurcation
Arrhenius kinetics, 194
asymptotically stable equilibrium, 199
attracting equilibrium, 199
attractor, 57
augmented Lotka–Volterra model, 23,

196
equilibria and stability, 202
generic behavior of solutions, 37
heteroclinic bifurcation, 405
infinite K, 275, 308
Lyapunov function, 219

stable and unstable manifolds,
231

subcritical Hopf bifurcation, 368
transcritical bifurcation, 336
without Allee effect, 193

autonomous, 3, 20

backward Euler method, 460
Banach space, 86
basin of attraction, 200
bead on a rotating hoop, 162

equilibria and stability, 234
imperfect bifurcation, 352
off-center axis of rotation, 352
pitchfork bifurcation, 328
scaled model equations, 186

bifurcation, 327
heteroclinic, 405
homoclinic, 403
Hopf, 364
hysteresis-point, 354
imperfect, 352
isola-center, 355
mutual annihilation, 415
Neimark–Sacker, 417
period-doubling, 420
pitchfork, 328
saddle-node, 339
SN on a limit cycle, 409
Takens–Bogdanov, 379
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to an invariant torus, 417
transcritical, 337

bifurcation diagram, 329
bistability, 231
blowup of solutions, 80
blue-sky bifurcation, see saddle-node

bifurcation
boundary conditions, 451
bursting, 438

cantilever beam, 13
Cantor function, 76
Cantor set, 75
capacitor, 17
catenary, 480
Cauchy sequence, 86
Cauchy–Schwarz inequality, 43
center, 62
center manifold, 254
chaos, 431, 436, 470
chemostat model, 119, 174

bifurcation diagram, 377
equilibria and stability, 229
Lyapunov–Schmidt reduction, 343
scaled equations, 178
transcritical bifurcation, 337
trapping region, 119

circuit, electrical, 17
competition model, 143, 186, 240
complete, 86
condition number, 65
constant coefficients, 20
constant-coefficient system, 41
continuous, 48
continuous dependence on initial data,

21
continuous stirred-tank reactor, 187,

360
hysteresis-point bifurcation, 360
isola-center bifurcation, 362
scaled equations, 188
with cooling, 362

continuously differentiable, 48
contraction, 86
contraction mapping principle, 87
convergence of a sequence, 46
corner point, 504
coupled oscillators, 73, 264

mutual annihilation bifurcation,
417

CSTR, see continuous stirred-tank
reactor

DDE, see delay differential equation
delay differential equation, 467
denatured Morris–Lecar equations,

370
bursting, 439
mutual annihilation bifurcation,

415
SN-limit-cycle bifurcation, 411
subcritical Hopf bifurcation, 387

dense, 494
diagonalizable matrices, 51
differentiable, 48, 500
diffusion, 208
direction field, 5
distance, 46
double-well potential, 14
Duffing’s equation, 14, 196

equilibria and stability, 198
Hamiltonian structure, 238
Lyapunov function, 238
stable and unstable manifolds, 226
trapping region, 114
with periodic forcing, 450

eigenvalue problem, 42
elastica, 336, 484
energy, 15, 223
equilibrium, 20, 196
exchange of stability, 330, 351
excitable system, 244
existence of solutions, 21, 82, 87
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existence, global, 113, 116, 145
exponential of a matrix, 42

fast–slow system, 129, 192, 244
FitzHugh-Nagumo equations, 317
Michaelis–Menten equations, 129

feed-forward, 399
first return, 279
FitzHugh–Nagumo equations, 189,

370
excitability, 244
fast-slow analysis, 317
scaled, 189

fixed point, 86
Floquet exponent, 322
Floquet multiplier, 322
Floquet theory, 102, 267
flow, 133
flow-quadrant diagram, 124
focus, 62, 202
forward time, solution in, 96
Fourier series, 508
fundamental existence theorem, 82, 87

generic, 37, 77
global existence, 113, 116, 145
globally Lipschitz, 81
gradient system, 246
Gronwall’s lemma, 91, 113

Hamiltonian, 236
Hartman–Grobman theorem, 246
heteroclinic bifurcation, 405
heteroclinic cycle, 272
heteroclinic orbit, 272
homeostasis, 399
homoclinic bifurcation, 403
homoclinic cycle, 271
homoclinic orbit, 227, 272
homoclinic tangle, 450
homogeneous, 3, 20
Hooke’s law, 10

Hopf bifurcation, 364
hyperbolic equilibrium, 201
hyperbolic periodic orbit, 320
hysteresis-point bifurcation, 354

IC, see initial condition
imperfect bifurcation, 352
implicit Euler method, 460
index theory, 309
inductor, 17
inhomogeneous equation, 63
initial condition, 4
initial value problem, 5
inner product, 43
integral equation, 85
interacting species, see competition

model, Lotka–Volterra
invariant, 226
isola-center bifurcation, 355
itinerary, 470
IVP, see initial value problem

Jordan block, 55
Jordan curve, 261
Jordan normal form, 55

KdV equation, 243
kinetic energy, 15
Korteweg–de Vries equation, 243

Leibniz’s rule, 49
LHS: acronym for left-hand side,

8
limit cycle, 263
limit-point bifurcation, see

saddle-node bifurcation
linear ODE, 3
linear system, 20
linearization, 137, 155
Lipschitz continuity, 81, 93
locally Lipschitz, 81
logistic equation, 1, 8
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Lorenz equations, 28, 234, 236, 433,
473

chaos, 436
global existence, 143
homoclinic bifurcation, 434
Hopf bifurcation, 384
Lyapunov exponents, 476
Lyapunov function, 239
Lyapunov–Schmidt reduction, 341
period-doubling, 432
pitchfork bifurcation, 330
sensitive dependence on ICs, 475

Lotka–Volterra model, augmented, see
augmented Lotka–Volterra
model

Lotka–Volterra model, standard, 18,
137

closed orbits, 27
Hamiltonian structure, 238
scaled equations, 166, 185

Lyapunov exponent, 473
Lyapunov function, 215
Lyapunov stability theorem, 215, 216
Lyapunov stable equilibrium, 199

magnets, 13
manifold, 504
matched asymptotic expansions, 191,

301
Mathieu’s equation, 2, 102
matrix exponential, 42
matrix norm, 45
maximal interval of existence, 112
Michaelis–Menten equations, 181

rapid initial transient, 190
scaled, 129, 184

monodromy, 322
Morris–Lecar equations, see

denatured Morris–Lecar
equations

multistep method, 461
mutual annihilation bifurcation, 415

Neimark–Sacker bifurcation, 417
Newton’s second law of motion, 10
nilpotent matrix, 53
node, 60, 202
nondiagonalizable matrices, 52
norm, 46, 85

for matrices, 45
for vectors, 43

nullcline, 123
numerical methods, 156

ODE, see ordinary differential
equation

omega limit set, 270
orbit, 27
order notation, 138
order of an ODE, 2
ordinary differential equation, 1

parametric resonance, 108
particular solution, 31
pendulum equation, 2, 13, 244

Hamiltonian structure, 241
pendulum, inverted, 210, 321
pendulum, laterally supported, 332,

380
pendulum, torqued, see torqued

pendulum equations
pendulum, vertically vibrated, 30,

102, 321, 443, 486
period-doubling bifurcation, 420
periodic, 20
periodic boundary conditions, 454
periodic solution, 259
perturbation methods, 156
phase portrait, 228
phase-locking, 264, 417
Picard iteration, 90
piecewise continuous, 92
piecewise smooth, 504
pitchfork bifurcation, 328
Poincaré–Lindstedt method, 288
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pointwise convergence, 495
of a series, 498

potential energy, 14
potential function, 223
predator–prey, 18
principle of dominant balance, 193
projection, 525
Pythagorean theorem, 43

Rössler’s equations, 382, 430
chaos, 431
period-doubling, 430

Rayleigh number, 332
real analytic, 514
real canonical form, 54
regular boundary point, 504
relaxation oscillations, 294
reparametrized Hamiltonian, 237
repressilator, 366, 380

global existence, 144
higher-dimensional analogues, 389
supercritical Hopf bifurcation, 368
two-variable analogue, 381
with time delay, 483

resistor, 17
resonance, 108
RHS: acronym for right-hand side, 3
Riccati equation, 2
Rosenzweig–MacArthur equations,

188
Hopf bifurcation, 385
modified for seasonal variations,

420
scaled, 188
transcritical bifurcation, 385
with infinite prey capacity, 306

Routh–Hurwitz criterion, 522

saddle, 60, 202
saddle-node bifurcation, 339

secular term, 288
Sel’kov’s model, 127, 164, 172

equilibria and stability, 233
Hopf bifurcation, 383
scaled equations, 174

semigroup property, 134
sensitive dependence on initial

conditions, 472
separable ODE, 8
separation of variables, 456
separatrices, 230
similar matrices, 51
simple closed curve, 261
simple harmonic motion, 2
singular perturbation theory, 293
singularity, 3
sink, 57, 202
SN-limit-cycle bifurcation, 409
soliton, 243
solution of an ODE, 4
solution operator, 133
source, 202
spring–mass system, 10
stable equilibrium, 199
stable focus, unstable focus, 62
stable manifold, 221
stable node, 61
standard reduction, 343
steady-state bifurcation, 334
stiff ODE, 154, 460
strict Lyapunov function, 216
structurally stable, 248
superposition principle, 4
surface, 503
symbol space, 470
system of ODEs, 17

Takens–Bogdanov bifurcation, 379
topologically conjugate, 246
topologically equivalent, 247
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torqued pendulum equations, 120, 243
center manifold, 256
existence of periodic orbits, 268,

305
homoclinic bifurcation, 441
overdamped, 411
saddle-node bifurcation, 339
SN-limit cycle bifurcation, 411
stability of limit cycle, 283
trapping region, 121
underdamped, 441

torus bifurcation, 417
total energy, 15
trace–determinant criteria, 59
trajectory, 27
transcritical bifurcation, 337
trapping region, 116
traveling wave, 243
triangle inequality, 44
Turing instability, 210

unfoldings, 354
uniform convergence, 495

of a series, 498

uniformly locally Lipschitz, 105
uniqueness, 80
uniqueness of solutions, 21
uniqueness theorem, 94
unstable equilibrium, 200
unstable manifold, 221
unstable node, 61

van der Pol’s equation, 17, 163,
259

existence of periodic orbits, 268
Hopf bifurcation, 384
limit cycle for large β, 293
limit cycle for small β, 291
stability of limit cycle, 301
trapping region, 128
weakly nonlinear case, 285
with nonlinear restoring force,

308, 405
with periodic forcing, 419

weakly nonlinear, 285
well-posed, 21
Wronskian, 100
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