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In mathematics you don’t understand things.
You just get used to them.

John von Neumann

“Begin at the beginning”, the King said, very
gravely, “and go on till you come to the end:
then stop”.

Lewis Carroll, Alice in Wonderland



Preface

This textbook is a self-contained introduction to the mathematical aspects of partial
differential equations. The book is aimed at undergraduate students studying for a
mathematics degree. Selected chapters could also be of interest to engineers and
scientists looking to develop an understanding of mathematical modelling and
numerical analysis.

The material is organised into 13 chapters, with roughly equal emphasis placed
on analytical and numerical solution techniques. The first four chapters provide a
foundation for the study of partial differential equations. These chapters cover
physical derivation, classification, and well-posedness. Classical solution tech-
niques are discussed in Chaps. 8 and 9. Computational approximation aspects are
developed in Chaps. 6 and 10–12. A clear indication is given in each of these
chapters of where the basic material (suitable perhaps for a first course) ends and
where we begin to probe more challenging areas that are of both a practical and
theoretical interest. The final chapter defines a suite of projects, involving both
theory and computation, that are intended to extend and test understanding of the
material in earlier chapters.

Other than the final chapter, the book does not include programming exercises.
We believe that this strategy is in keeping with the aims and objectives
of the SUMS series. The availability of software environments like MATLAB
(www.mathworks.com), Maple (www.maplesoft.com) and Mathematica
(www.wolfram.com) means that there is little incentive for students to write
low-level computer code. Nevertheless, we would encourage readers who are
ambitious to try to reproduce the computational results in the book using whatever
computational tools that they have available.

Most chapters conclude with an extensive set of exercises (almost 300 in all).
These vary in difficulty so, as a guide, the more straightforward are indicated byI

while those at the more challenging end of the spectrum are indicated byH. Full
solutions to all the exercises as well as the MATLAB functions that were used to
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generate the figures will be available to authorised instructors through the book’s
website (www.springer.com). Others will be able to gain access to the solu-
tions to odd-numbered exercises though the same web site.

Distinctive features of the book include the following.

1. The level of rigour is carefully limited—it is appropriate for second-year
mathematics undergraduates studying in the UK (perhaps third or fourth year in
the USA). The ordering of topics is logical and new concepts are illustrated by
worked examples throughout.

2. Analytical and numerical methods of solution are closely linked, setting both on
an equal footing. We (the authors) take a contemporary view of scientific
computing and believe in mixing rigorous mathematical analysis with informal
computational examples.

3. The text is written in a lively and coherent style. Almost all of the content of the
book is motivated by numerical experimentation. Working in the “computa-
tional laboratory” is what ultimately drives our research and makes our scientific
lives such fun.

4. The book opens the door to a wide range of further areas of study in both applied
mathematics and numerical analysis.

The material contained in the first nine chapters relies only on first-year calculus
and could be taught as a conventional “introduction to partial differential equations”
module in the second year of study. Advanced undergraduate level courses in
mathematics, computing or engineering departments could be based on any com-
bination of the early chapters. The material in the final four chapters is more
specialised and, would almost certainly be taught separately as an advanced option
(fourth-year or MSc) entitled “numerical methods for partial differential equations”.
Our personal view is that numerical approximation aspects are central to the
understanding of properties of partial differential equations, and our hope is that the
entire contents of the book might be taught in an integrated fashion. This would
most probably be a double-semester (44 hours) second- (or third-) year module in a
UK university. Having completed such an integrated (core) course, students would
be perfectly prepared for a specialist applied mathematics option, say in continuum
mechanics or electromagnetism, or for advanced numerical analysis options, say on
finite element approximation techniques.

We should like to extend our thanks to Catherine Powell, Alison Durham, Des
Higham and our colleagues at Manchester and Dundee, not to mention the many
students who have trialled the material over many years, for their careful reading
and frank opinions of earlier drafts of the book. It is also a pleasure to thank Joerg
Sixt and his team at Springer UK.

May 2015 David F. Griffiths
John W. Dold

David J. Silvester
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Chapter 1
Setting the Scene

Abstract This chapter introduces the notion of a partial differential equation. Some
fundamentally important PDEs are identified and some classical solutions are dis-
cussed. The chapter motivates the analytical and numerical solution techniques that
are developed in the remainder of the book.

Partial differential equations (PDEs) underpin all of applied mathematics and enable
us to model practical problems like forecasting the weather, designing efficient aero-
planes and faster racing cars, and assessing the potential returns from investments in
financial stocks and shares.

There are two very different questions that will be considered in this book. The
first question is practical: can we find a solution to a given PDE problem—either
analytically (that is writing down an explicit formula for the solution in terms of
known quantities like position and time), or else numerically (that is, using a com-
puter to approximate the continuous solution in a discrete sense). It turns out that
analytic solutions can only be obtained in special cases, whereas computers enable
the possibility of calculating a numerical solution in any case where the solution
makes sense from a practical perspective.

The second question is more subtle, seemingly magical: can we infer generic
properties of a solution without actually solving the PDE problem? We will show
that this is indeed possible. The essential idea is to characterise PDEs into different
types so that the solutions have similar properties. A suitable classification is touched
upon in this first chapter: it will be developed in the rest of the book.

We will need to establish some notation to begin with. Consider a function, say
u(x, y, z, . . . , t) of several independent variables, perhaps representing the temper-
ature of the air at a given point in space and at a given point in time. The partial
derivative of u with respect to x is defined to be the rate at which u changes when x
varies, with all the other independent variables held fixed. It will be written as

∂u

∂x
or ux or ∂x u.
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2 1 Setting the Scene

Other first-order derivatives, uy , uz , ut , etc., are written analogously. Second
derivatives are written in the form

∂2u

∂t∂x
or utx or ∂t∂x u

and represent rates of change of first derivatives. Note that in practical applications,
u will usually be at least twice continuously differentiable, so the order of differen-
tiation can be commuted and we have utx = uxt .

We now define a PDE having solution u(x, y, z, . . . , t) to be a relationship of the
form

F(u, x, y, . . . , t, ux , uy, . . . , ut , uxx , uyx , . . . , utx , . . .) = 0, (1.1)

where F is some given function. The order of the PDE is the highest degree of
differentiation that appears in the expression (1.1).

1.1 Some Classical PDEs . . .

The most straightforward case is when there are just two independent variables, x
and t say, and when the PDE is first order (that is, no second or higher derivatives
of u are present). A simple example is the following:

one-way wave
equation

ut + cux = 0 (pde.1)

which is also known as the advection equation. Here u(x, t) might represent the
height of a travelling wave at a point x on a straight line at time t , with c a given
constant which represents the speed of propagation of the wave. If the speed of
propagation is not constant but instead depends on the height of the wave then we
have a more complicated first-order PDE:

inviscid Burgers’
equation

ut + uux = 0. (pde.2)

The physical intuition that motivates using (pde.2) as a mathematical model of a
real-life flow problem is developed in Chap.3. A technique for determining analytic
solutions of PDEs like (pde.1) and (pde.2) is described in Chap.9. The numerical
solution of (pde.1) is discussed in Chap.12.

Second-order PDEs are extremely important—they frequently arise in modelling
physical phenomena through Newton’s second law of motion. The three classical
examples of second-order PDEs in two variables are stated below. First, we have

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_9
http://dx.doi.org/10.1007/978-3-319-22569-2_12


1.1 Some Classical PDEs . . . 3

Laplace’s
equation

uxx + uyy = 0. (pde.3)

In this case u(x, y) might represent the electrostatic potential at a point (x, y) in a
square plate. Look out for (pde.3) across the mathematical landscape—it pops up
everywhere; from complex variable theory to geometricmappings to (idealized) fluid
mechanics.1 Second, we have the

heat
equation

ut − κuxx = 0. (pde.4)

Here u(x, t) might represent the temperature in a wire at point x and time t with
κ > 0 a given constant which represents the thermal conductivity. We will expand
on the physics that is built into (pde.4) in Chap.3. Third, we have the

wave
equation

utt − c2uxx = 0. (pde.5)

This PDE is sometimes referred to as the two-way wave equation to distinguish it
from (pde.1). The reason for the nomenclature will become apparent in the next
section when we construct a solution u(x, t) that satisfies (pde.1).

These classical second-order PDEs also have analogues in higher dimensional
space: that is when the position is a vector �x ∈ R

d (d = 2, 3) rather than a scalar
x ∈ R:

heat
equation (in R

3)
ut − κ(uxx + uyy + uzz) = 0, (pde.6)

wave
equation (in R

2)
utt − c2(uxx + uyy) = 0. (pde.7)

In (pde.6) the solution u(x, y, z, t)might represent the temperature at time t in a solid
block of material at position (x, y, z). Similarly, in (pde.7) the sought-after function
u(x, y, t) might represent the height at time t of a wave at a point (x, y) on a two-
dimensional ocean surface. Time independent (steady-state or equilibrium) solutions
of (pde.6) and (pde.7) satisfy Laplace’s equation in R3 and R

2, respectively.
The following second-order PDE has achieved a certain notoriety in recent years

through its use as a model for pricing options in the financial marketplace:

1 The left-hand side of (pde.3) is called the Laplacian of u and is often denoted by∇2u ≡ uxx +uyy .
Some texts use the alternative notation �u ≡ uxx + uyy .

http://dx.doi.org/10.1007/978-3-319-22569-2_3


4 1 Setting the Scene

Black–Scholes
equation

ut + 1
2σ

2x2uxx + r xux − ru = 0. (pde.8)

In this setting u(x, t) typically represents the option price at time t and is a function of
the stock price x (which also depends on t), with the interest rate r and the volatility
σ assumed to be known. The model (pde.8) is an example of an advection–diffusion
equation (because it includes first and second derivatives of x). What is remarkable
about the Black–Scholes equation is that the underlying stock price fluctuates unpre-
dictably over time, yet the optimal option price can be readily computed by solving
a deterministic PDE.

Third-order PDEs seldom feature as models of physical systems but there is one
important exception:

Korteweg-de Vries
equation

ut + 6uux + uxxx = 0. (pde.9)

It is commonly referred to as the KdV equation and is used primarily as a model
for wave propagation. It has analytic solutions u(x, t), called solitons, that are very
persistent (see Exercise 1.5). Solving (pde.9) has led to the design of extremely
efficient long distance communication networks.

1.2 . . . and Some Classical Solutions

To solve any of the PDEs in the previous section we shall have to integrate functions
in multiple dimensions—this is not going to be easy! The alternative strategy is to
cheat. Specifically, we can postulate a hypothetical function u, and then differentiate
it enough times to see if it does indeed satisfy the PDE being considered. Some
specific examples will be used to illustrate this process.

Example 1.1 Find PDEs that have the solution u(x, t) = x2t2+ A(t)+ B(x), where
A(t) and B(x) are arbitrary functions.

By differentiating u(x, t) we discover the PDEs

ut = 2x2t + A′(t), utx = 4xt,

utxt = 4x, utxtx = 4

all of which have the same solution u. Moreover, a given function u will satisfy any
number of PDEs—just keep differentiating! There is also an endless list of other
relationships, such as utx = tutxt and utxt = xutxtx .

Note that two specific differentiations are needed to kill the two functions of inte-
gration A(t) and B(x). This has significant ramifications. Clearly there are infinitely
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Fig. 1.1 A solution
u = F(x − ct) of the
one-way wave equation with
F(x) = e−(x+1)2 and wave
speed c = 1. It is plotted at
intervals of half a time unit
for 0 ≤ t ≤ 4 4
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many functions which satisfy the following PDE, arbitrarily chosen from the list
above,

test
equation

utx − 4xt = 0. (pde.10)

(Two possibilities are u1 = x2t2 and u2 = x2t2 + et + x3.) To fix the solution to
(pde.10)—that is to determine A and B precisely—we need two additional pieces
of information. We will return to this issue in the next chapter. ♦

Example 1.2 Find a solution to (pde.1), that is, ut + cux = 0.

Let u(x, t) = F(x − ct) with c �= 0 (constant). The first partial derivatives are

ut = −cF ′(x − ct)

ux = F ′(x − ct)

and combine to give ut + cux = 0.
The special form of this solution explains why the wave equation (pde.1) is only

“one-way”. With u(x, t) = F(x −ct) the initial profile defined by the function F(x)

simply translates to the right with speed c (see Fig. 1.1). In contrast the solution of
the two-way wave equation (pde.5) can be expressed as the sum of two waves that
travel in opposite directions (see Exercise 1.1). ♦

Example 1.3 Find a PDE satisfied by the special function u(x, t) = t−1/2e−x2/4t .

Calculating partial derivatives:

ut = −1

2
xt−3/2e−x2/4t + 1

4
x2t−5/2e−x2/4t

= 1

4t2
(−2t + x2)u(x, t)

ux = −1

2
xt−3/2e−x2/4t = −1

2

x

t
u(x, t)
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Fig. 1.2 The fundamental
solution of the heat equation
for 0.25 ≤ t ≤ 10
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uxx = − 1

2t
u(x, t) − 1

2

x

t
ux

= − 1

2t
u(x, t) − x2

4t2
x

t
u(x, t)

so that ut − uxx = 0, see (pde.4). ♦
The solution u shown in Fig. 1.2 has a “Gaussian” profile2 in space for each time t .
We deduce from the PDE that at locations where uxx < 0 (so u is convex in x)
the solution decreases in time at fixed x whereas, when uxx > 0 (so u is concave)
the solution increases in time. The points of inflection, where uxx changes sign,
separate regions where the solution is increasing in time from those where it is
decreasing. In this example, the points of inflection are located at x = ±√

2t and the
curve corresponding to the positive root (x = √

2t) is shown in Fig. 1.2 as a thick
transverse curve.

The solution u in this example is very special. When it is translated through a
distance s as in the following expression,

u(x, t) = 1√
4π t

∫ ∞

−∞
e−(x−s)2/4tg(s)ds, (1.2)

then it is called a fundamental solution of the heat equation (see Exercise 1.6) for
t > 0. It canbe shown thatu(x, t) in (1.2) satisfies the initial conditionu(x, 0) = g(x)

for all x ∈ R in the limit t → 0.

Example 1.4 Find a PDE satisfied by the special function u(x, y) = 1
2 ln(x2 + y2).

Calculating partial derivatives:

ux = x(x2 + y2)−1

uxx = (x2 + y2)−1 − 2x2(x2 + y2)−2

uyy = (x2 + y2)−1 − 2y2(x2 + y2)−2

2Also known as a “normal distribution” in probability theory, where it is extremely important—but
that is a topic for another textbook!
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Fig. 1.3 A solution
u = ln(1/r) of Laplace’s
equation in R

2, 0.1 ≤ r ≤ 1

so that uxx + uyy = 0, see (pde.3). ♦
Functions that satisfy Laplace’s equation are known as harmonic functions. Thus,
with r2 = x2 + y2,

u(x, y) = 1
2 ln r2 = ln r,

is an example of a harmonic function in two dimensions.We show the negative of this
function (ln(1/r) = − ln r ) in Fig. 1.3. An important feature of harmonic functions
is easily deduced from the PDE: when the surface z = u(x, y) is convex in the
x–direction (uxx < 0) then it must be concave in the y–direction (uyy > 0) and vice
versa. This shape behaviour is evident in Fig. 1.3.

Note that u = 1
2 ln(x2 + y2 + z2) does not satisfy Laplace’s equation in three

dimensions so we have to look for a different special function in this case.

Example 1.5 Show that u(x, y, z) = (x2 + y2 + z2)−1/2 is a harmonic function in
R
3.

Calculating partial derivatives:

ux = −x(x2 + y2 + z2)−3/2

uxx = −(x2 + y2 + z2)−3/2 + 3x2(x2 + y2 + z2)−5/2

uyy = −(x2 + y2 + z2)−3/2 + 3y2(x2 + y2 + z2)−5/2

uzz = −(x2 + y2 + z2)−3/2 + 3z2(x2 + y2 + z2)−5/2

we find that uxx +uyy +uzz = 0. Therefore u(x, y, z) = 1/r , with r2 = x2+y2+z2,
is an example of a harmonic function in R3. ♦

A general method for determining analytic solutions to the three classical PDEs
(pde.3), (pde.4), (pde.5) is developed in Chap.8. Numerical methods for gener-
ating computational solutions to all of the PDE models in Sect. 1.1 are described
in Chaps. 10–12. More complicated physical models involve “systems” of cou-
pled PDEs. Examples includeMaxwell’s equations governing electromagnetism, the
Navier–Stokes equations governing incompressible fluid flow, and Einstein’s equa-
tions which model the evolution of the universe and the formation of black holes.
These models, though extremely important, are beyond the scope of this textbook.

http://dx.doi.org/10.1007/978-3-319-22569-2_8
http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_12


8 1 Setting the Scene

Exercises

1.1 Given that A and B are arbitrary functions and c is a constant, determinewhether
or not the given function u is a solution of the given PDE in each of the following
cases:

(a) u(x, y) = A(y); uy = 0.
(b) u(x, y) = A(y); uxy = 0.
(c) u(x, t) = A(x)B(t); uxy = 0.
(d) u(x, t) = A(x)B(t); uuxt − ux ut = 0.
(e) u(x, y, t) = A(x, y); ut = 0.
(f) u(x, t) = A(x+ct) + B(x−ct); utt + c2uxx = 0.

1.2 Find PDEs that are satisfied by each of the following functions:

(a) u(t, x) = et cos x
(b) u(x, y) = x2 + y2

(c) u(t, x) = x2t
(d) u(t, x) = x2t2

(e) u(x, y) = e−x2

(f) u(x, y) = ln(x2 + y2)

In each case try to find more than one suitable PDE.

1.3 In each of the following cases (a)–(c), find second-order PDEs that are satisfied
by the given function. For cases (d)–(f) find a first-order PDE involving ux and ut .

(a) u(x, t) = A(x + ct) + B(x − ct), where c is a constant.
(b) u(x, t) = A(x) + B(t).
(c) u(x, t) = A(x)/B(t).
(d) u(x, t) = A(xt).
(e) u(x, t) = A(x2t).
(f) u(x, t) = A(x2/t).

1.4 Show that
u = f (2x + y2) + g(2x − y2)

satisfies the PDE

y2 uxx + 1

y
uy − uyy = 0

for arbitrary functions f and g.

1.5 Show that u(x, t) = 1
2c sech2 12

√
c(x −ct −x0) is a solution of theKdV equation

(pde.9). This is an example of a soliton, a solitary wave that travels at a speed c
proportional to its height.
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1.6 By differentiating under the integral, show that the function u defined by (1.2)
satisfies the heat equation (pde.4) for any initial function g(x).

1.7 Show that if φ satisfies the heat equation then the change of dependent variable

u(x, t) = −2
∂

∂x
logφ (x, t)

(commonly referred to as the Cole–Hopf transformation) satisfies the nonlinear PDE
ut + u ux = uxx (also known as the viscous Burgers’ equation to distinguish it from
(pde.2)). Hence use Example 1.3 to determine a solution u to this nonlinear PDE.

1.8 Suppose that a and b are positive numbers and that φ(x, t) = e−a(x−at) +
eb(x+bt). Show that φ is a solution of the heat equation and use the Cole–Hopf trans-
formation to determine the corresponding solution u(x, t) of the viscous Burgers’
equation ut + u ux = uxx . Show that

(a) u(x, t) → 2a as x → −∞ and u(x, t) → −2b as x → ∞.
(b) u(x, t) is constant along the lines x − (b − a)t = constant.

Describe the nature of the solution in the cases a < b, a = b and a > b.

1.9 Determine a solution of Burgers’ equation via the Cole–Hopf transformation
based on φ(x, t) = 1 + e−2a(x−2at) + e−a(x−x0−at). Graph the solution on the
interval −20 < x < 40 at times t = 0, 5, 10, 15 when a = 1 and x0 = 10.

1.10 Show that u(x, y) = tan−1(y/x) is a harmonic function in the first quadrant
{(x, y); x > 0, y > 0} of R2 and has the properties

u(x, 0) = 0 and lim
x→0+ u(x, y) = 1

2π (for y > 0).

Thus u has different constant values on the positive coordinate axes and is undefined
at the origin.



Chapter 2
Boundary and Initial Data

Abstract This chapter introduces the notions of boundary and initial value prob-
lems. Some operator notation is developed in order to represent boundary and initial
value problems in a compact manner. Familiarity with this notation is essential for
understanding the presentation in later chapters. An initial classification of partial
differential equations is then developed.

Our starting point here is a simple ordinary differential equation (ODE): find u(t)
such that u′ = 2t . Integrating gives the solution u = t2 + C whereC is the “constant”
of integration. To compute C and thus get a unique solution we need to know u(t)
at some specific time t = T ; for example, if u(0) = 1 then C = 1 and u = t2 + 1.

To build on this, suppose that u(x, t) satisfies the simple PDE

ut = 2t . (2.1)

Writing this in the form ∂t (u − t2) = 0, it is seen that u(x, t)− t2 does not vary with
t (but it may vary with x), so the PDE is readily integrated to give the solution

u(x, t) = t2 + A(x), (2.2)

where A(x) is an arbitrary “function” of integration. Wemay regard the PDE (2.1) as
an (uncountably) infinite set of ODEs, one for each value of x . The arbitrary function
of integration is then seen to be a consequence of requiring a different constant of
integration at each value of x . For a unique solution, we must specify an additional
initial condition; for example,

u(x, 0) = g(x), (2.3)

where g(x) is a given function. Putting t = 0 in (2.2) and using (2.3) gives a solution
that is uniquely defined for all time:

u(x, t) = t2 + g(x). (2.4)

© Springer International Publishing Switzerland 2015
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12 2 Boundary and Initial Data

This combination of PDE (2.1) and initial condition (2.3) is referred to as an initial
value problem (IVP).

Applying this logic to the solution of the test equation (pde.10), we deduce that the
function u(x, t) in Example 1.1 will uniquely solve the PDE if we augment (pde.10)
by an additional initial condition, say,

u(x, 0) = g(x) (2.5)

together with an additional “boundary condition”, say,

u(0, t) = a(t). (2.6)

Insisting on continuity of u at the origin requires u(0, 0) = g(0) = a(0) and we then
obtain the unique solution

u(x, t) = x2t2 + g(x) + a(t) − g(0).

The combination of PDE (pde.10) with initial condition (2.5) and boundary condition
(2.6) is referred to as an initial–boundary value problem (IBVP) or simply as a
boundary value problem (BVP). Further insight into these issues may be found in
the exercises at the end of the chapter.

Let us move on to consider the heat equation (pde.4). For a unique solution, we
will need an initial condition and two boundary conditions. For example, it will be
shown in Chap.7 that the following BVP has a uniquely defined solution u(x, t):

t

x

u
(0

,t
)
=

a
0
(t
)

u
(1

,t
)
=

a
1
(t
)

u(x, 0) = g(x)

ut − κuxx = 0 ut − κuxx = 0 in (0, 1) × (0, T ]

u(x, 0) = g(x) for all x ∈ [0, 1]

u(0, t) = a0(t); u(1, t) = a1(t) t > 0,

⎫
⎪⎬

⎪⎭

(2.7)

where g(x), a0(t) and a1(t) are given functions. Two boundary conditions are needed
because of the second derivative with respect to x . Those used in (2.7), where the
value of u is specified, are known asDirichlet boundary conditions. It is not necessary
for the values at corners to be uniquely defined. For instance, it is not necessary for
limx→0 g(x) to equal limt→0 a0(t). This might model the situation where one end
of an initially “hot” bar of material is plunged into an ice bath. A solution of the heat
equation with this property is given in Exercise 2.3.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_7
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Alternative, equally viable, BVPs would be obtained by replacing one or both
boundary conditions in (2.7) by conditions on the x derivative, for example,

u(0, t) = a0(t); ux (1, t) = a1(t) for all t > 0, (2.8)

where the boundary condition at x = 1 is known as a Neumann condition, or

u(0, t) = a0(t); αu(1, t) + βux (1, t) = a1(t) for all t > 0, (2.9)

where the boundary condition at x = 1 is known as a Robin condition. Note that
choosing α = 1 and β = 0 reduces this to a Dirichlet condition and the combination
α = 0 and β = 1 leads to a Neumann boundary condition.

Note however that the following combination of boundary condition does not
make sense:

u(0, t) = a0(t); uxx (1, t) = a1(t) for all t > 0,

since the value of uxx (1, t) provided by the boundary condition would generally
conflict with the value obtained from the PDE as x → 1. This leads to the general
rule of thumb that the order of derivatives appearing in boundary conditions must be
lower than the highest order derivative terms appearing in the PDE.

Turning to the wave equation (pde.5), we need two initial conditions because of
the second derivative with respect to t , for example,

utt − c2uxx = 0 in (0, 1) × (0, T ]
u(x, 0) = f1(x); ut (x, 0) = f2(x) for all x ∈ [0, 1]
u(0, t) = g0(t); u(1, t) = g1(t) for all t > 0.

⎫⎪⎬
⎪⎭ (2.10)

Replacing the Dirichlet boundary conditions by either Neumann or Robin boundary
conditions would also lead to legitimate BVPs. In this case, for u(x, t) to be a
continuous function, the initial and boundary conditions need to be equal where they
meet so that f1(0) = g0(0) and f1(1) = g1(0).

In our final example in this section we consider Laplace’s equation (pde.3) on
a domain Ω in two dimensions which has a boundary that we will denote by
∂Ω (Fig. 2.1). In order to obtain a unique solution it is necessary to specify a condition
at every point on this boundary.

Since we have a second-order PDE the possible types of boundary condition are
Dirichlet, Neumann and Robin and these take the form:

• For a Dirichlet boundary condition, the value of u is specified

u( �x) = gD( �x) for all �x ∈ ∂Ω. (2.11a)
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Fig. 2.1 A domain Ω in R
2

with boundary ∂Ω . Also
shown is the outward normal
vector �n(�x) at a point
�x ∈ ∂Ω

• For a Neumann boundary condition, the value of the (outward) normal derivative
of u is specified, that is

∂u

∂n
( �x) = gN ( �x) for all �x ∈ ∂Ω. (2.11b)

The outward normal derivative of u(x, t) is the rate of change of u with distance
moved in the normal direction with any other independent variables, such as tan-
gential displacement and time, being held fixed. For a unit normal vector �n it is
the component of the gradient ∇u in the normal direction, which can be written
as ∂nu = un = �n · ∇u.

• For a Robin boundary condition, a linear combination of the value of u and its
(outward) normal derivative is specified, that is

αu( �x) + β
∂u

∂n
( �x) = gR( �x) for all �x ∈ ∂Ω, (2.11c)

where α and β are usually constant, but in some situations could depend on �x or
even u.

• Finally, we could also mix the three types by partitioning ∂Ω into nonoverlapping
pieces so that ∂Ω = ∂Ω D ∪ ∂ΩN ∪ ∂Ω R and then specify a boundary condition
of Dirichlet, Neumann and Robin type on ∂Ω D , ∂ΩN and ∂Ω R , respectively.

Note that whenever Laplace’s equation is solved in Ω ⊂ R
2 the boundary ∂Ω is

one-dimensional.When solving the equation inR3 the boundary is two-dimensional,
so that there are two tangential derivatives and one normal derivative at every point
on the boundary.

2.1 Operator Notation

Before embarking on a more detailed study of PDEs we introduce some notation
that will enable us to write PDEs, boundary conditions and BVPs in a compact
fashion much as linear algebraic equations are commonly expressed using matrices
and vectors.
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A calligraphic font (L,M,B, . . .)will be used for symbols that denote differential
operators in the space variables only. For example, defining

Lu(x, t) = −κuxx (x, t), (x, t) ∈ (0, 1) × (0, T )

would allow us to write the heat equation (pde.4) as

ut + Lu = 0.

Similarly, defining the boundary condition operator

Bu(x, t) =
{

u(0, t) for t > 0, x = 0

ux (1, t) for t > 0, x = 1,
(2.12)

allows the conditions (2.8) to be expressed as

Bu = f (x, t), t > 0, x = 0, 1,

where f (0, t) = a0(t) and f (1, t) = a1(t). Then, by defining

L u(x, t) =

⎧⎪⎨
⎪⎩

ut (x, t) + Lu(x, t) for (x, t) ∈ (0, 1) × (0, T )

Bu(x, t) for (x, t) ∈ {0, 1} × (0, T )

u(x, 0) for t = 0, x ∈ [0, 1]
(2.13)

and

F (x, t) =

⎧⎪⎨
⎪⎩
0 for (x, t) ∈ (0, 1) × (0, T )

f (x, t) for (x, t) ∈ {0, 1} × (0, T )

g(x) for t = 0, x ∈ [0, 1]
(2.14)

the BVP (2.7) could be written in compact form, so that

L u = F . (2.15)

In the sequel, symbols in script font (L ,M ,F , . . .) will be reserved for statements
of BVPs.

Example 2.1
Consider the BVP defined by Laplace’s equation in the unit square 0 ≤ x, y ≤ 1
with

(a) Dirichlet boundary conditions on the vertical edges: u(0, y) = cosπy and
u(1, y) = y − 1 for 0 < y < 1.
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(b) A Neumann condition1 on the lower edge: −uy(x, 0) = 1 for 0 < x < 1.
(c) A Robin condition on the upper edge: uy(x, 1) + u(x, 1) = 0 for y = 1,

0 < x < 1.

Define suitable forms forL and F so that it can be expressed asL u = F .

Here we define the BVP terms directly without first defining spatial differential
operators L and B:

L u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uxx (x, y) + uyy(x, y) for 0 < x, y < 1

u(0, y) for x = 0, 0 < y < 1

u(1, y) for x = 1, 0 < y < 1

−uy(x, 0) for y = 0, 0 < x < 1

uy(x, 1) + u(x, 1) for y = 1, 0 < x < 1

and

F (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for 0 < x, y < 1

cosπy for x = 0, 0 < y < 1

y − 1 for x = 1, 0 < y < 1

1 for y = 0, 0 < x < 1

0 for y = 1, 0 < x < 1.

It can be observed that boundary values have not been specified at the corners of the
domain as these do not affect the solution in the interior. An example of a problem
with a discontinuity is given in Exercise 1.10. ♦

2.2 Classification of Boundary Value Problems

Wewill categorise BVPs (that is, PDEs and associated initial or boundary conditions)
into those that are linear and those that are nonlinear in the next two sections.A formal
definition of a well-posed boundary value problem is the subject of the final section.

2.2.1 Linear Problems

Linear BVPs have a number of useful properties, some of which will be investigated
in this section. Our first goal is to identify which problems are linear.

1The outward normal direction on y = 0 is in the direction of �n = (0,−1).

http://dx.doi.org/10.1007/978-3-319-22569-2_1
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Definition 2.2 (Linearity) An operator L is linear if for any two functions u and v

and any α ∈ R the following two properties are satisfied:

(a) L(u + v) = L(u) + L(v);
(b) L(αu) = αL(u).

An operator that does not satisfy these conditions is said to be nonlinear. We will
explore various kinds of nonlinearity in the next section.

Example 2.3 Show that the BVP defined by (2.13)–(2.15) is linear.

The spatial operator Lu(x, t) = −κuxx (x, t) is linear since

L(u + v) = −κ(u + v)xx

= −κuxx − κvxx = Lu + Lv

L(αu) = −κ(αu)xx

= −ακuxx = αLu.

Similarly, the boundary condition operator B satisfies

B(u + v) =
{

u + v

(u + v)x
=

{
u + v for t > 0, x = 0

ux + vx for t > 0, x = 1,

= Bu + Bv

and

B(αu) =
{

αu

(αu)x
=

{
αu for t > 0, x = 0

αux for t > 0, x = 1,

= αBu

so it is also linear. Note that the same approach shows that conventional Dirich-
let/Neumann/Robin boundary conditions are always linear. This means that linearity
of a BVP normally depends only on the linearity of the PDE component of the
problem.2 ♦

Also, from the definition ofL in (2.13), we see that

L (u + v) =

⎧⎪⎨
⎪⎩

(u + v)t + L(u + v)

B(u + v)

u + v

=

⎧⎪⎨
⎪⎩

(ut + Lu) + (vt + Lv)

Bu + Bv

u + v

2Nonlinear boundary conditions such as un = eu on ∂Ω are certainly possible, but will not be
considered here.
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so that L (u + v) = L u + L v. (The proof that L (αu) = αL u is left as an
exercise.) We conclude that the given BVP for the heat equation (pde.4) is linear.

Other examples of linear BVPs are associated with the classical second-order
PDEs: the wave equation (pde.5), Laplace’s equation (pde.3), as well as the Black–
Scholes equation (pde.8). As shown in the next definition and the subsequent theo-
rems, a linear BVP leads to a “principle of superposition”which allows us to combine
solutions together.

Definition 2.4 (Homogeneous BVP) Suppose thatL is a linear operator associated
with the BVP L u = F , then the homogeneous BVP is the corresponding problem
L u = 0. To generate a homogeneous BVP, any terms that are independent of u must
be removed from the PDE and all boundary and initial data must be set to zero.

The statements of the following theorems may be familiar from studies of ordinary
differential equations and linear algebra.

Theorem 2.5
Suppose that u1 and u2 are any two solutions of a homogeneous boundary value
problem L u = 0, then any linear combination v = αu1 +βu2, with constants α, β,
is also a solution.

Proof
L v = L (αu1 + βu2) = αL u1︸︷︷︸

0

+β L u2︸︷︷︸
0

= 0. �

Theorem 2.6 Suppose that u∗ is a “particular” solution of the linear boundary
value problem L u = F , and that v is a solution of the associated homogeneous
problem, then w = u∗ + v is also a solution of the BVP L u = F .

Proof
L (w) = L (u∗ + v) = L (u∗)︸ ︷︷ ︸

F

+L (v)︸ ︷︷ ︸
0

= F . �

The superposition principle will prove to be invaluable in Chap.8, where we will
construct analytic solutions to BVPs like (2.7).

Theorem 2.7 (Uniqueness) A linear boundary value problem L u = F will have a
unique solution if, and only if, v = 0 is the only solution of the homogeneous problem
L v = 0.

Proof We suppose that there are two solutions, u1 and u2. Hence L u1 = F and
L u2 = F . Subtracting these equations from each other and using the linearity of
L gives

L v = 0, v = u1 − u2.

Thus, if v = 0 is the only solution of the homogeneous problem, we must have
u1 = u2. �

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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When the homogeneous problem has a nontrivial solution v, then αv, for any
constant α, is also a solution. Hence u2 = u1 + αv and there are therefore an
infinite number of solutions corresponding to different choices of α. This is typical
of linear problems: they have either no solutions, one solution or an infinite number
of solutions.

Example 2.8 Consider the solution of the wave equation uxx − uyy = 0 and
Laplace’s equation uxx + uyy = 0 in the rectangle 0 < x < 1, 0 < y < 1/2

with the boundary conditions given in Fig. 2.2 (with n a positive integer).

The wave equation has a particular solution u∗ = sin nπx cos nπy that also
satisfies the boundary conditions. However, it is readily shown that

v(x, y) = sin(2mπx) sin(2mπy)

solves the corresponding homogeneous BVP for any integer m and so the wave
equation has the nonunique solutions

u(x, y) = u∗(x, y) + αv(x, y)

for each constant α and each integer m. In contrast, it is readily checked that

u(x, y) = sin nπx
sinh nπ(1 − y)

sinh nπ

solves the BVP for Laplace’s equation. In fact, this is the only solution. It will
be shown in Chap.7 that a solution of Laplaces equation always has its maximum
and minimum values on the boundary. This ensures that the only solution of the
corresponding homogeneous BVP is zero. ♦

Fig. 2.2 Domain and boundary conditions for Example 2.8

http://dx.doi.org/10.1007/978-3-319-22569-2_7
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2.2.2 Nonlinear Problems

Not all of the PDEs that are listed in Sect. 1.1 are linear and the theorems given in
the previous section do not apply to these.

Example 2.9 The inviscidBurgers’ equation (pde.2), whichwewrite as ut +L(u) =
0 with L(u) = uux satisfies

L(αu) = (αu)(αu)x

= α2uux �= αL(u)

and violates the second condition in Definition 2.2. This shows that this PDE is
nonlinear. The KdV equation (pde.9) can be shown to be nonlinear using the same
argument. ♦

It is sometimes useful to classify the degree of nonlinearity of a PDE or associated
BVP. A standard classification is as follows:

Linear: The PDE should satisfy Definition 2.2. In effect, all coefficients of u and
any of its derivatives must depend only on the independent variables t, x, y, . . ..

Semi-linear: The coefficients of the highest derivatives of u do not depend on u
or any derivatives of u.

Quasi-linear: The coefficients of the highest derivatives of u depend only on lower
derivatives of u.

Otherwise the PDE is fully nonlinear. Some examples are listed below.

uxxx − 4uxxyy + uyyzz = f (x, y, z) : “linear”

u2
x utt − 1

2uxxxxx = 1 − u2 : “semi-linear”

utt uxxx + ux uttt = f (u, x, t) : “quasi-linear”

exp(uxtt ) − uxt uxxx + u2 = 0 : “fully nonlinear”.

Additional nonlinearity “classification” exercises are given in Exercise 2.8.
We will see in Chap.9 that the character of nonlinear first-order PDEs is com-

pletely governed by the nature of the nonlinearity, so it is important to classify the
nonlinearity correctly. This can be readily achieved if the first-order PDE is written
in the “additive form”,

aut + bux + cu = f, (2.16)

where a and b are functions of t , x , u, ut and ux ; c is a function of t , x and u, and f
is a function of t and x . The classification is then immediate:

Linear: If a, b and c depend only on t and x , and not on u or any of its derivatives,
then the PDE is linear.

Semi-linear: If a and b do not depend on u or any of its derivatives, but c depends
on u, then the PDE is semi-linear.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_9
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Quasi-linear: If a and/or b depend on u but not on any derivatives of u, then the
PDE is quasi-linear.

Otherwise the PDE is fully nonlinear. Some examples are listed below.

2 cos(xt)ut − xet ux − 9u = et sin x : “linear”

x cos(t)ut + tux + u2 · u = x

t
u sin(u) : “semi-linear”

uut + u2ux + u = ex : “quasi-linear”

ut + 1
2u2

x − u = cos(xt) : “fully nonlinear”.

2.2.3 Well-Posed Problems

So far so good. Well-conceived boundary value problems typically have unique
solutions. However, an unfortunate complication is that such BVPs can still be inor-
dinately sensitive to the problem data (for example, the boundary data). Thus, even
though such problems might have practical applications, they are much too demand-
ing for a textbook at this level. Accordingly our aim is to filter out such BVPs and
focus on those that are relatively well behaved.

An overview of the situation can be obtained by considering a generic linear BVP
written in the notation introduced in Sect. 2.1, namely,

L u = F . (2.17)

Suppose that we now make a “small” change δF to the data F and we denote the
subsequent change to the solution by δu. Thus,

L (u + δu) = F + δF . (2.18)

Then, since L is a linear operator, (2.17) may be subtracted from (2.18) to give

L (δu) = δF , (2.19)

so we see that δu satisfies the same BVP as u withF replaced by δF . We now get
to a definition which is the crux of the issue.

Definition 2.10 (Well-posed BVP) A boundary value problem which has a unique
solution that varies continuously with the initial and boundary data is said to be well
posed. A problem that is not well posed is said to be ill posed.
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In the context of (2.19) this means that δu should be “small” whenever δF is
“small” in the sense that there are norms3 ‖ · ‖a , ‖ · ‖b and a constant C that does not
depend on u, F or δF so that

‖δu‖a ≤ C‖δF‖b (2.20)

which must hold for all admissible choices of δF . By choosing δF = −F we
deduce that δu = −u and (2.20) then implies that

‖u‖a ≤ C‖F‖b. (2.21)

This reflects the general approach for linear problems: beginning with the homoge-
neous problem, the change in the data from zero toF causes the solution to change
from zero to u.

The good news here is that the BVPs defined at the start of the chapter, namely,
(2.7), (2.10) and Laplace’s equation with either Dirichlet, Neumann or mixed condi-
tions are well posed in the sense of satisfying this definition.4 The bad news is that
boundary value problems which have a unique solution are not automatically well
posed. A pathological example is given next.

Example 2.11 Consider the BVP obtained by setting κ = −1 in (pde.4), so that

backward heat
equation

ut + uxx = 0, (pde.11)

and subjecting it to the initial data u(x, 0) = 0.

This BVP has the unique solution, u(x, t) = 0. However, if we make tiny changes in
the initial data to say u(x, 0) = 10−99 cos(nx), then the unique solution changes to

u(x, t) = 10−99en2t cos(nx).

The ratio of solution to data (initial value) is u(x, t)/u(0, x) = exp(n2t). This can
be made as large as we wish, even for very small values of t , by taking a large
enough value of n. This happens in spite of the fact that the size of the change in
initial data would probably be subatomic in any practical example—it reflects the
fact that “anti-diffusive” behaviour violates the second law of thermodynamics and
is something like having time running backwards! ♦

Our second example extends the PDE from Example 2.8 and has a rearranged
boundary condition.

3The examples of ill-posed problems that we shall give are clear cut without the need to specify
precisely which norms are used.
4This proof is deferred to Chap.7.

http://dx.doi.org/10.1007/978-3-319-22569-2_7
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Fig. 2.3 Domain and boundary conditions for Example 2.12

Example 2.12 Consider the solution of Laplace’s equation uxx + uyy = 0 and the
wave equation uxx − uyy = 0 in the semi-infinite strip with the boundary conditions
given in Fig. 2.3 (with n a positive integer).

Now the wave equation has the unique solution

u(x, y) = sin nπx cos nπy

inwhich itsmagnitude (amplitude) is the sameas that of the data.5 Laplace’s equation,
however, has the solution

u(x, y) = sin nπx cosh nπy

which, for any y > 0 can be made as large as we wish by taking a suitably large
value of n. Hence this type of BVP for Laplace’s equation is ill posed.

A well-posed problem could be recovered by replacing one of the conditions
applied at y = 0 by a condition such as u(x, y) → 0 as y → ∞ for all x ∈ (0, 1).

Exercises

2.1 For each of the cases (a)–(f) in Exercise 1.3, can you determine the functions A
and/or B using the initial condition u(x, 0) = f (x),where f is some given function?
Give expressions for A and/or B wherever they can be determined.

2.2 For each of the cases (a)–(f) in Exercise 1.3, can you determine the functions A
and/or B using the alternative “initial condition” u(x, 1) = g(x), where g is some
given function?

5Note that we cannot conclude that this problem is well posed since we would need to consider all
possible choices of the data in order to make that claim.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_1
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2.3 Let the function g be defined by

g(x) =
{
0, x < 0

1, x > 0

and suppose that u(x, t) is defined by (1.2). (See also Exercise 1.6.) Use the result
that ∫ ∞

0
e−s2 ds = 1

2

√
π

to show that u(0, t) = 1
2 for t > 0 and u(x, 0) = 1 for x > 0.

2.4 By following the example in Sect. 2.1, define suitable forms for L and F so
the BVP (2.10) can be written as L u = F .

2.5 Show that L defined by (2.13) satisfies L (αu) = αL u.

2.6 Show that L defined in Example 2.1 is a linear operator.

2.7 ★Consider the backward heat equation (see Example 2.11) for u(x, t), corre-
sponding to having a negative thermal diffusivity coefficient κ = −1:

ut + uxx = 0.

Confirm that, for constant values of A and T a solution, for any t < T , is given by

u(x, t) = AT 1/2

(T −t)1/2
exp

(
− x2

4(T − t)

)
.

Use this to show that solutions can exist with, initially, |u(0, x)| ≤ ε for any ε > 0
but which become infinite in value after any given subsequent time. Deduce that
the backward heat equation is not well posed for t > 0 when subjected to initial
conditions at t = 0.

2.8 Determine the order and categorise the following PDEs by linearity or degree
of nonlinearity.

(a) ut − (x2 + u)uxx = x − t .
(b) u2utt − 1

2u2
x + (uux )x = eu .

(c) ut − uxx = u3.
(d) (uxy)

2 − uxx + ut = 0.
(e) ut + ux − uy = 10.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_1
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2.9 Categorise the following second-order PDEs by linearity or degree of nonlin-
earity.

(a) ut + utx − uxx + u2
x = sin u.

(b) ux + uxx + uy + uyy = sin(xy).
(c) ux + uxx − uy − uyy = cos(xyu).
(d) utt + xuxx + ut = f (x, t).
(e) ut + uuxx + u2utt − utx = 0.



Chapter 3
The Origin of PDEs

Abstract This chapter is a self-contained introduction to mathematical modelling.
Some classical partial differential equations are derived from Newton’s laws of
motion or else are developed by considering the conservation of quantities like mass
and thermal energy. The resulting PDEs can be readily extended to give mathemat-
ical models of plate bending, the dispersal of pollutants and the flow of traffic on
congested motorways.

In general, the “derivation” of a PDE is an exercise in combining physical conser-
vation principles with modelling assumptions. Typically, the more assumptions that
are made, the simpler the resulting PDE model. The validity of these assumptions
determines the success (or otherwise) of the mathematical model in predicting prop-
erties of the real world.1 Our aim here is to sketch the origin of some of the PDEs
that feature in later chapters of the book.

3.1 Newton’s Laws

Newton’s second law of motion: mass × acceleration = force is arguably the most
important relation in the whole of appliedmathematics. The following example gives
a classic illustration of the key role that Newton’s second law plays in the derivation
of simple mathematical models.

3.1.1 The Wave Equation for a String

We consider the motion of a thin, inextensible string of density ρ per unit length,
stretched to a tension T between two fixed points. The adjectives describing the
situation have quite precise meanings—by “thin” we mean that the thickness of the
string may be ignored, “inextensible” means that it does not stretch under tension

1Einstein summarised the situation succinctly: “As far as the laws of mathematics refer to reality,
they are not certain, as far as they are certain, they do not refer to reality.”

© Springer International Publishing Switzerland 2015
D.F. Griffiths et al., Essential Partial Differential Equations, Springer
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Fig. 3.1 Sketch of a portion
of a string of arc length δs.
The tension T± at its ends
acts in the direction of the
tangents which make angles
α± with the horizontal

and a “string” has no resistance to bending. The equation of motion is derived by
considering a small length of the string (of arc length δs) whose centre is a height
u(x, t) above the x-axis. Fig. 3.1 shows a sketch of the situation (with a greatly
exaggerated vertical scale).

The two key modelling assumptions are:

(a) The vertical motion is small, so that the angles α± are small and we may make
the approximations sinα± ≈ α±, cosα± ≈ 1 and tanα± ≈ α±.

(b) Horizontal motion is negligible compared to the vertical motion. The horizontal
components of the forces acting on the portion of the string must therefore
balance: T+ cosα+ = T− cosα− so, in view of assumption (a), T+ = T−. Thus
the tension T is the same at all points along the string.

The mass of the small portion of string is ρδs and its vertical acceleration is utt (x, t).
By Newton’s second law mass×acceleration is balanced by the vertical component
of force, and so

ρ δs utt (x, t) = T+ sinα+ − T− sinα−. (3.1)

We have already seen that T+ = T− = T and, by assumption (a), δx ≈ δs. The
angles α± are the angles that the tangents make with the horizontal and so

tanα± = ux (x ± 1
2δx, t).

Since tanα± ≈ α± we find that α± = ux (x ± 1
2δx, t) so (3.1) leads to

ρ δx utt (x, t) = T (α+ − α−) = T
(
ux (x + 1

2δx, t) − ux (x − 1
2δx, t)

)
= T δx uxx (x, t) + O(δx2)

which, on division by δx and letting δx → 0, gives the wave equation (pde.5), that
is, utt = c2uxx with a wave speed c = √

T/ρ.
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3.2 Conservation Laws

Suppose that we are interested in a property of a material (the heat content or con-
centration of a dye) that varies continuously with space (x, y, z) and time t . The
principle behind conservation laws is to focus on the changes and causes of change
in that property in a volume, V say, (it may be helpful to imagine a ball) of material
that is enclosed by a surface, S say. There are three key ingredients—the quantity Q
of the property per unit volume, the rate F at which it is being produced or destroyed
(that is, the net production) per unit volume and the net “flux” (or flow) of that prop-
erty into/out of the volume through its surface. If �q denotes the flow at any point in
V then the flux outwards at a point on the surface is �q · �n, where �n is the outward
normal vector at that point. A conservation law is the statement that

The rate of change of Q is equal to the difference between
net production and net outward flux.

This is expressed mathematically as

d

dt

∫
V

QdV =
∫

V
FdV −

∫
S

�q · �ndS. (3.2)

The surface integralmaybe converted to a volume integral bymeans of the divergence
theorem (see Theorem C.1). Moreover, the time derivative and the first integral may
be interchanged provided that the volume V does not vary with t and provided that
both Q and Qt are continuous. Making these simplifications gives

∫
V

(
∂ Q

∂t
+ �∇ · �q − F

)
dV = 0,

where �∇ · �q denotes the divergenceof �q (oftenwritten as div �q). Since this relationship
holds over every volume V , the PDE

∂ Q

∂t
+ �∇ · �q = F (3.3)

must hold at every point in the domain of interest. The quantities Q, �q and F fea-
turing in (3.3) are functions of the dependent variable (usually denoted by u), the
coordinates (x, y, z, t) and any constants (or functions) that describe the properties
of the specific medium, such as conductivity and density. Some specific examples
are discussed next.

3.2.1 The Heat Equation

The thermal energy or “heat” per unit mass in a substance is E = ∫ T
T0

C dT , where T
is temperature, T0 is a base or reference temperature, and C(T ) is the coefficient of
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specific heat or the “specific heat capacity”. The heat per unit volume is ρE , where
ρ is the density of the material so, with Q = ρE , we have

Q = ρ

∫ T

T0
CdT .

If the density and specific heat capacity are constant, this simplifies to give

Q = ρ C(T − T0).

The flux of heat by conduction is, by Fourier’s law, �q = −λ∇T , where λ(T ) is
the coefficient of thermal conductivity. This is a vector directed from regions of high
temperature to those of low temperature (see Fig. 3.2). If we assume that there is no
other way in which heat can flow (for example that there is no radiation of heat and
that there is no movement of the substance itself—as in a solid material at rest) and
if we let F(T, �r , t) represent the net effect of production and destruction of heat per
unit volume at a point with position vector �r = (x, y, z), then, from (3.3), we have
the energy conservation law

ρ C Tt + �∇ · (−λ �∇T ) = F

and if λ is also a constant, this becomes a nonhomogeneous heat equation

Tt − κ∇2T = f (3.4)

see (pde.6), with thermal diffusivity κ = λ/ρC and a source term f = F/ρC . In
general, (3.4) holds in three spatial dimensions but, if the geometry of the domain,
the boundary conditions and the source term f are all independent of one of the
coordinates, z, say, then (3.4) reduces to a PDE problem in two space dimensions.

Analogous equationsmodel all diffusive processes bywhich a property flows from
where it is more highly concentrated towards lower concentrations in proportion to
the gradient of the concentration at any point. Examples include the dispersion of
pollutants, the diffusion of chemicals, some aspects of turbulence and the formation
of cracks in solids.

As regards boundary conditions for (3.4), the temperature may be specified on
part of the boundary (a Dirichlet BC), whereas another part may be insulated so that
there is no flux of heat. This means that the normal derivative of T vanishes leading
to a Neumann condition ∂T/∂n = 0. A third type of boundary condition arises from

Fig. 3.2 The flux of heat by
conduction is �q = −λ �∇T

Low T

flux q

of heat
High T
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Newton’s law of cooling which states that the outward flux of heat is proportional to
the difference in temperature between the body and its surroundings. Thus, if ∂T/∂n
denotes the derivative of T in an outward normal direction at the boundary, and the
ambient temperature is denoted by T0, we have the Robin condition

∂T

∂n
= −μ(T − T0)

where μ is a constant that depends on thematerials involved. As noted in the previous
chapter, one of these boundary conditions must be imposed on each point of the
boundary, together with an initial condition, in order for the solution T to be uniquely
defined.

Extension 3.2.1 (The advection–diffusion equation) When the heat conduction
takes place in a fluid that is moving with a velocity �v, the flux is modified to become
�q = ρC �vT − λ �∇T , where ρ and C were defined earlier in this section. As a conse-
quence, the energy conservation law (3.3) becomes the advection–diffusion equation

Tt + �∇ · (�vT ) = κ∇2T + f. (3.5)

Note that since (3.5) is derived directly from a conservation law, it is referred to
as the conservative form of the advection–diffusion equation. A non-conservative
alternative is developed in Exercise 3.3.2 ♦

3.2.2 Laplace’s Equation and the Poisson Equation

In steady situations where the temperature does not vary with time, the heat equation
(3.4) reduces to the Poisson equation

− κ∇2T = f. (3.6)

The Poisson equation pops up everywhere! It is a simple model for a host of physical
phenomena ranging from steady diffusive processes to electrostatics and electromag-
netism. The importance of keeping the minus sign on the left-hand side will become
clear in the next chapter. If, furthermore, we suppose that there are no heat “sources”
or “sinks”, then f = 0 in which case the equation governing the temperature is
Laplace’s equation: ∇2T = 0. This reduces to (pde.3) in two dimensions.

2A PDE does not have to be written in conservative or conservation form for it to be a conservation
equation.
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Extension 3.2.2 (The biharmonic equation) Starting from the Poisson equation
(3.6), if the sources or sinks are such that they themselves satisfy Laplace’s equation,
∇2 f = 0, then

∇2(∇2T
) = ∇2 f = 0.

and in this case T satisfies the biharmonic equation: ∇4T = 0. In two dimensions
the biharmonic problem can be written as

Txxxx + 2Txxyy + Tyyyy = 0, (3.7)

since ∇4 = (∇2)2 = (∂2
x + ∂2

y)
2. The biharmonic equation is the most important

fourth-order PDE. It plays a fundamental role when modelling the flow of slow-
moving viscous fluids and it is the starting point for modelling the distortion of
elastic plates when subjected to a heavy load. ♦

3.2.3 The Wave Equation in Water

It was shown in Sect. 3.1.1 that small disturbances to a taut string are governed by
the wave equation. Here we shall show that the same equation may be derived for
small amplitude water waves by combining Newton’s second law of motion with an
appropriate conservation law (namely conservation of mass). Consider a long tank
with vertical sides that contains water with an undisturbed depth H above a flat
bottom (which is at y = 0) and a slightly disturbed surface, which is at a height
y = H + h(x, t). The situation is sketched in Fig. 3.3 (left), where the variation in
surface height has been greatly exaggerated.

We will make two simplifying assumptions.

• Disturbances are long, or cover a large range of values of x , in comparison to the
depth H + h (a “long-wave” or “shallow-water” approximation).

• Disturbances in depth are small compared with the average depth (a “small-amp-
litude” approximation) so that |h| � H .

y = H + h(x, t)

v(x, t)

x

y

g

H + h(x, t)

x

δx

δy

Fig. 3.3 On the left is shown a sketch of a tank containing fluid at a depth H + h(x, t) moving
with a velocity v(x, t). On the right is shown a narrow column of water of width δx and height
H + h(x, t). Also highlighted is a horizontal slice of this column of height δy
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These assumptions lead to the following approximations.

(a) The variation of horizontal component of velocity v with vertical position y is
negligible, so that v ≈ v(x, t).

(b) The pressure at any point is a combination of the atmospheric pressure P0 (a
constant) and the height of the column of water above that point. The pressure
can then be represented by the “hydrostatic” formula P = P0 +ρg(H + h − y),
where ρ is the density of the water (also constant) and g is the constant of
gravitational acceleration.

To proceed we consider a narrow column of water of depth H +h(x, t) and width
δx centred on the location x , as depicted in Fig. 3.3 (right). The flux of water in the
x-direction is (H + h)v, the product of depth and velocity, so the net flux into this
strip, per unit time, is “flux in” minus “flux out”, that is

(H + h)v|
x− 1

2 δx
− (H + h)v|

x+ 1
2 δx

≈ −δx((H + h)v)x

by Taylor expansion. This can be further simplified to −δx H vx by virtue of the
assumption |h| � H . If water is neither added nor removed from the tank, conser-
vation of (fluid) mass requires that this net influx must be balanced by the rate of
change in the volume (H + h)δx of the column. Thus, since H does not vary with t ,

∂t ((H + h)δx) = ∂t (hδx) = −δx H vx ,

so, on dividing by δx , we obtain

ht + Hvx = 0. (3.8)

This is one equation that connects the two dependent variables h and v. A second
equation is obtained by applying Newton’s second law of motion in the rectangle of
size δx × δy highlighted in Fig. 3.3. The mass of water in the rectangle is ρδxδy
and this has momentum (mass×velocity) ρvδxδy in the x-direction and therefore
acceleration (rate of change of momentum) (ρvδxδy)t . The net horizontal force
exerted on this rectangle is due to the pressure (force per unit area when dealing
with surfaces, here it is the force per unit length of boundary). The net force in the
x-direction is then

Pδy|
x− 1

2 δx
− Pδy|

x+ 1
2 δx

≈ −δxδy Px .

Newton’s second law of motion gives ρδxδyvt = −δxδy Px , which simplifies to

ρvt = −Px . (3.9)
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When (3.9) is combined with the hydrostatic approximation (b), this leads to

vt + ghx = 0. (3.10)

Combining (3.8) with (3.10) it is readily deduced (see Exercise 3.1) that the pertur-
bation h satisfies the wave equation (pde.5)

htt − c2hxx = 0, (3.11)

with wave speed c = √
gH . This equation models “shallow water waves” (including

tsunamis and tidal waves in estuaries) amazingly well. Even in deep sea the wave-
length of a disturbance can be much greater than the depth and in such cases the
wave speed can reach

√
gH ≈ 200 m/s or 400 mph.3

The wave equation is pretty important. It is used to model a host of physical
phenomena, including: the vibration of drum surfaces, the propagation of light and
other electromagnetic waves, the propagation of sound waves and the propagation
of disturbances in the earth caused by earthquakes. A more complete review of
possibilities can be found in Fowkes and Mahon [5].

3.2.4 Burgers’ Equation

Next we examine the flow of water in a gently-sloping river that is assumed to have
a constant slope and vertical banks. In this situation the flow velocity v of the water
is determined differently from the previous example (Fig. 3.4). The speed of the flow
downstream under the force of gravity builds up until resistive forces balance the
component of gravitational force acting downstream.

In the simplestmodel the resistive force R increases in direct proportion to the flow
velocity v, so that R = av and the component of gravitational force F downstream
increases in proportion to the depth of water h, giving F = bh. The flow speed

Fig. 3.4 Sketch of a gently sloping river with surface height h(x, t)

3This is roughly how fast a tsunami can cross an ocean. The destructive power of a tsunami is
testament to the momentum that it carries.



3.2 Conservation Laws 35

adjusts itself until these two forces balance, giving av = bh, or simply

v = Ch

for some constant C .
We further assume that rain (or small tributaries) add water and we let seepage

into the ground remove water. This will increase the depth of water at any point in the
river at the rate r(h, x, t) and themass conservation law is given by (see Exercise 3.4)

ht + (hv)x = r. (3.12)

Substituting for v using the equation above gives

ut + u ux = f (3.13)

with u = 2Ch and f = 2Cr . This is a nonhomogeneous inviscid Burgers’ equation
(pde.2). It is one of the simplest mathematical models used by environment agencies
to model flash floods. It also describes numerous other situations in which the speed
with which a property moves depends on the property itself.

Extension 3.2.4 (Traffic flow)The flowof trafficmight involvemovement at a speed
v that depends on the density of traffic d in some manner, v = S(d), say. The flux of
traffic is d v so that, with inflow from side roads given by r(d, x, t), the conservation
law for traffic flow becomes

dt + (
S(d)d

)
x = r.

If, as one example amongst many possibilities, S(d) = K/d2 with K a constant
(a perfectly reasonable model at moderately high traffic density that is below traffic
jam conditions) then the PDE flow model would be dt + (K/d)x = r , or, setting
u = d/K and f = r/K ,

ut − 1

u2 ux = f.

Solving this kind of PDE might help ease congestion on the route between Dundee
and Manchester! ♦

Exercises

3.1 ✩ Deduce from (3.8) to (3.10) that the height h(x, t) satisfies the wave equation
(3.11). Show also that vt t − gh vxx = 0.

3.2 ✩How is the governing PDE modified in Sect. 3.2.4 if the resistive force is pro-
portional to the square of the fluid speed: R = av2?
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3.3 ✩ If the velocity field �v in (3.5) is an incompressible flow (so that �∇ · �v =
0), deduce that T satisfies the non-conservative form4 of the advection–diffusion
equation

Tt + �v · �∇T = κ∇2T + f

in which the term �v · �∇T represents the derivative of T in the direction of �vmultiplied
by the scalar magnitude of v.

3.4 Use an argument similar to that leading to the conservation law (3.8) in order
to derive (3.12).

4This equation is still a conservation equation, having the same validity as (3.5), in spite of not
being written in conservative form.



Chapter 4
Classification of PDEs

Abstract This chapter introduces the notion of characteristics. The direction of char-
acteristics is shown to be connected to the imposition of boundary and initial condi-
tions that lead to well-posed problems—those that have a uniquely defined solution
that depends continuously on the data. A refined classification of partial differential
equations into elliptic, parabolic and hyperbolic types can then be developed.

Some of themore important PDEswere grouped together in Chap.2 using the criteria
of order and linearity. Different types of nonlinearity were categorised andwe dipped
into the rather deeper waters of well-posed and ill-posed boundary value problems.
The classification of PDEs is further developed in this chapter using the notion of
characteristics. By way of motivation, one might like to identify which boundary
conditions for problems involving homogeneous PDEs such as

2ux + 3uy = 0 and uxx − 2uxy − 3uyy = 0

lead to well-posed problems. Both equations are examples of the general linear
second-order PDE

auxx + 2buxy + cuyy + pux + quy + ru = f, (4.1)

where the coefficients a, b, c, p, q, r, f are functions of x and y. This general PDE
will be the centre of the discussion in this chapter. (Examples with constant coef-
ficients are an important special case of (4.1) that frequently arise in applications.)
Defining the operator L by

L := a∂2
x + 2b∂x∂y + c∂2

y + p ∂x + q∂y + r

we can succinctly express (4.1) in the form Lu = f . It can be readily verified that
L (αu + βv) = αLu + βLv so L is a linear operator, even in the case of variable
coefficients.
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4.1 Characteristics of First-Order PDEs

We first consider the very special case of (4.1) with a = b = c = r = 0, that is

pux + quy = f. (4.2)

In many physical applications, see (pde.1), one of the independent variables might
represent a time-like variable. In stationary applications both variables might be
spatial variables. We begin by considering a curve defined by the height of the
surface z = u(x, y) in three dimensions above a path (x(t), y(t)) in the x-y plane
that is parameterised by t . This curve has slope

du

dt
(x(t), y(t))

which, by the chain rule, is given by

du

dt
(x(t), y(t)) = ux

dx

dt
+ uy

d y

dt
. (4.3)

Thus, by choosing the parameterization such that

dx

dt
= p,

d y

dt
= q, (4.4)

the PDE (4.2) reduces to the ODE

du

dt
= f. (4.5)

The parameter t is not an intrinsic part of the system and can be avoided by writing
the three ODEs in (4.4) and (4.5) in the generic form

dx

p
= dy

q
= du

f
. (4.6)

Paths in the x-y plane described by (4.4) are known as characteristic curves or, sim-
ply, as characteristics, and equations (4.6) are known as the characteristic equations
of (4.2). The relations (4.6) define three equations, of which any two are independent.

For the remainder of this section we shall suppose that p and q are constant
coefficients. A more detailed study of the characteristics of variable coefficient and
nonlinear first-order PDE problems can be found in Chap.9.

Example 4.1 Find the general solution of the PDE pux + uy = u, where p is
constant. Show that the problem is well posed when solved in the infinite strip
{(x, y) : x ∈ R, 0 ≤ y ≤ Y } and an initial condition u(x, 0) = g(x), x ∈ R, is
applied, where g is a continuous bounded function.

http://dx.doi.org/10.1007/978-3-319-22569-2_9
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The characteristic equations are

dx

p
= dy

1
= du

u
,

which we may write as
dx

dy
= p,

du

dy
= u

so that x = py + k and u = Aey on any single characteristic. The value of k
changes from one characteristic to another and the different values of k distinguish
different characteristics. The value of A is also constant along any characteristic but
will change, along with k, from one characteristic to another. The appropriate form
for the general solution is therefore

x = py + k, u = A(k) ey .

Thus the characteristics are simply straight lines along which u varies exponentially.
The parameter k may be eliminated to give the general solution directly in terms of
x and y:

u(x, y) = A(x − py) ey . (4.7)

The unknown function A can be explicitly determined using the initial condition.
Setting y = 0 in (4.7) we find that A(x) = g(x)which then gives the unique solution

u(x, y) = eyg(x − py).

Finally, taking the maximum of both sides with x ∈ R and 0 ≤ y ≤ Y we find

|u(x, y)| ≤ eY max
x∈R

|g(x)|

from which the well-posedness of the BVP follows.
In the next example we explore how the arbitrary function may be determined by

application of a boundary condition on any line through the origin.

Example 4.2 (Half-plane problem) Solve the PDE pux + quy = f (with p and q
constant) in the domainαx+βy > 0 given that u = g(x) on the line � : αx+βy = 0,
where q > 0 and β > 0.

As in the previous example, the characteristic equations (4.4) are readily solved to
give

x = pt + C1, y = qt + C2, (4.8)

where C1 and C2 are constant along any characteristic. The assumption q > 0 means
that y increases along a characteristic as t increases—thus the parameter t may be
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Fig. 4.1 Characteristics for
Example 4.2 when α, β, p
and q are all positive. The
highlighted characteristic
through the point P intersects
the line � at Q.

viewed as a time-like variable. This is illustrated in Fig. 4.1 where the arrows on the
characteristics indicate increasing t .

In order to determine the solution at a point P(x, y), we trace the characteristic
through this point backwards in t until it intersects the line �. We shall suppose that
this occurs at the point Q having coordinates x = βs, y = −αs when1 t = 0. Then,
from (4.8), we find C1 = βs, C2 = −αs. Here s is a parameter that plays a role
similar to that of k in the previous example. It varies along the line � and each choice
of s selects a different characteristic:

x = pt + βs, y = qt − αs. (4.9)

Note that the characteristics have inherited their parameterization from that of the
line �. Next, we integrate the ODE (4.5),

∫ t

0

du

dt ′
dt ′ =

∫ t

0
f
(
x

(
s, t ′

)
, y

(
s, t ′

))
dt ′,

to give

u(s, t) = u(s, 0) + F(t), F(t) =
∫ t

0
f
(
x

(
s, t ′

)
, y

(
s, t ′

))
dt ′.

Here, A(s) = u(s, 0) is constant on any characteristic but varies, with s, from one
characteristic to another. The initial condition gives u = g(x) = g(βs) at t = 0 from
which we deduce (using (4.9)) that u(s, 0) = g(βs) so that

u = g(βs) +
∫ t

0
f
(
x

(
s, t ′

)
, y

(
s, t ′

))
dt ′. (4.10)

1The origin for t is immaterial, the intersection could be assumed to occur at t = t0, say, without
affecting the resulting solution so long as we replace all occurrences of t by t − t0.
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Finally, to express u as a function of x and y, the equation (4.9) have to be solved to
give s and t in terms of x and y:

t = αx + βy

αp + βq
, s = qx − py

αp + βq
,

which are valid so long as αp + βq �= 0. This condition has a geometric interpreta-
tion. Since αp +βq is the scalar product of the vector (p, q) (which is parallel to the
characteristics) and the vector (α,β) (which is orthogonal to the line �), the change
of variables (4.9) is one-to-one if, and only if, (p, q) is not parallel to (α,β). That is,
the initial condition should not be specified on any line parallel to the characteristics
(see Fig. 4.1). This is an important conclusion that applies more widely and, when it
holds, we have a unique solution at a point P (see Fig. 4.1) that depends only on the
initial value g given at the foot Q of the characteristic through P and the values of f
along PQ.

Finally, note that in the simple homogeneous case the coefficients of the PDE
pux + quy = 0 form a vector (p, q), whereas the solution (4.10) depends only on s,
that is, qx − py whose coefficients form a vector (q,−p) that is orthogonal to (p, q).
This means that boundary information is simply conveyed along characteristics. This
is visually evident in the solution to Example 1.2 inChap.1. Since information travels
a horizontal distance p/q for each unit of vertical distance, p/q is known as the
characteristic speed of the equation. For example in the case of (pde.1), solved in
Example1.2, the characteristic speed is equal to the wave speed c.

Example 4.3 (Quarter-plane problem) Solve the PDEs ux +uy = 0 and ux −uy = 0
in the quarter plane x > 0, y > 0 given that u(x, 0) = g0(x) for x > 0 and
u(0, y) = g1(y) for y > 0.

From the previous example with p = q = 1 we see that the PDE ux + uy = 0 has
characteristics x − y = constant and general solution u(x, y) = F(x − y) (where F
is an arbitrary function) which is constant along characteristics. The solution at any
particular point thus depends on whether the characteristic through that point first
intersects the x-axis or the y-axis (see Fig. 4.2, left). For example, the characteristic
through a point P0(X0, Y0) with X0 > Y0 cuts the x-axis at Q0(X0 − Y0, 0) and so,
using the boundary condition u(x, 0) = g0(x), we find

u(X0, Y0) = g0(X0 − Y0)

or,more succinctly, u(P0) = g0(Q0). Similarly, the characteristic through P1(X1, Y1)

with X1 < Y1 cuts the y-axis at Q1(0, Y1 − X1) and so, using the boundary condi-
tion u(0, y) = g1(y), we find

u(X1, Y1) = g1(Y1 − X1)

or u(P1) = g1(Q1). If the boundary conditions are such that g0(0) = g1(0) then the
solution in the quarter plane will be continuous and u(X, X) = g0(0) = g1(0) for

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_1
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Fig. 4.2 Characteristics for Example 4.3 with p = q = 1 (left) and with p = 1, q = −1 (right)

all X ≥ 0. Otherwise, there is a discontinuity at the origin which will propagate into
the domain along the characteristic x = y shown as a dashed line in Fig. 4.2 (left).
To the right of the dashed line the solution is u(x, y) = g0(x − y) and to the left,
u(x, y) = g1(y − x).

For ux −uy = 0 the characteristics are x+y = constant and the general solution is
u(x, y) = F(x + y), where F is again an arbitrary function. What distinguishes this
from the previous case is that any characteristic now intersects the boundary twice
(see Fig. 4.2 (right)). The characteristic through the point P(0, Y ), for example, cuts
the x-axis at Q(Y, 0) and so u has the value u = g0(Y ) along this characteristic.
However, at P we have u(0, Y ) = g1(Y ) and, in general, there will be a contradiction
at P between the value of u at the boundary and its value on the characteristic. This
implies that the problem is not properly posed.

Themoral to be taken from the two PDEproblems in this example is that boundary
conditions should only be imposed on boundaries along which characteristics are
directed into the domain. The PDE ux − uy = 0 should have a boundary condition
on the x-axis but not the y-axis. ♦
It was shown in Example 4.2 that a boundary condition should not be applied on
boundaries parallel to characteristics. Our final example illustrates the consequences
of a characteristic being tangential to the curve along which a boundary condition is
specified.

Example 4.4 Solve the PDE ux + uy = 0 in the domain y > ϕ(x), x ∈ R given
that u = g(x) on the curve y = ϕ(x), where ϕ(x) = x/(1 + |x |).
We first observe that the curveϕ(x) = x/(1+|x |) is continuously differentiable (see
Exercise 4.1) and monotonically increases from its value ϕ(x) = −1 as x → −∞
to ϕ(x) = 1 as x → ∞. The characteristics y = x + constant and the initial curve
are shown in Fig. 4.3 (left). Since ϕ′(0) = 1 the characteristic y = x through the
origin (shown dashed in the figure) is tangent to ϕ(x) at the origin.
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The general solution of the PDE is u(x, y) = A(x − y), where A(·) is an arbitrary
function. Parameterizing the initial curve by s, the boundary condition becomes

x = s, y = ϕ(s), u(s,ϕ(s)) = g(s)

so that the function A may be determined from the relationship

u(s,ϕ(s)) = A(s − ϕ(s)) = g(s).

This requires that x = s − ϕ(s) be solved for s in terms of x so as to give A(x) =
g(s(x)). When ϕ(x) = x/(1+ |x |) this is accomplished by treating the cases x ≥ 0
and x < 0 separately,

s(x) =
⎧⎨
⎩

1
2

(
x + √

x2 + 4x
)

x ≥ 0

1
2

(
x − √

x2 − 4x
)

x < 0
. (4.11)

This leads us to the explicit solution u(x, y) = g(s(x − y)), which uniquely defines
u throughout the domain y > ϕ(x).

Snapshots of the solution u in the case of the smooth boundary condition, g(x) =
e−x2 , are visualised in Fig. 4.3. An unexpected feature of the solution is that, although
g is infinitely differentiable, there is a discontinuity in the slope of the solution u
along the characteristic y = x . This is attributable to this characteristic being tangent
to the initial curve at the origin.
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4
6
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1

Fig. 4.3 Characteristics for Example 4.4 (left) and snapshots of the solution plotted at half unit
intervals for 1 ≤ y ≤ 4 (right)
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4.2 Characteristics of Second-Order PDES

We now turn to the issue of boundary conditions that ensure the well-posedness of
BVPs associated with the linear PDE (4.1) when the coefficients are constant. Since
the generic behaviour of solutions is dependent on the terms involving the highest
derivatives we will focus on the special case p = q = r = 0, that is, the PDE

Lu := a∂2
x u + 2b∂x∂yu + c∂2

yu = f, (4.12)

where f (x, y) is a given function and we draw attention to the factor of 2multiplying
the mixed derivative. For the sake of definiteness, and without loss of generality, we
will assume that a ≥ 0.

There are three alternative possibilities knownashyperbolic,parabolic and elliptic
PDEs, named not for any connection with conic sections but because of the shape of
the level curves of the associated quadratic form

Q(x, y) := ax2 + 2bxy + cy2. (4.13)

Important geometric properties of quadratic forms are reviewed in Appendix B.4.
The key point here is that the shape of the level curves can be determined by making
an appropriate change of variable. Making the same change of variable to the PDE
provides information about the underlying characteristics.2 The geometric properties
of (4.13) depend on the sign of its discriminant: d = b2 − ac. The sign of this
discriminant determines whether or not the second derivative operator (4.12) can be
factorised into the product of real one-dimensional operators. There are three cases
to consider.

Hyperbolic (b2 − ac > 0). L has two distinct real factors:

Lu = (α∂x + β∂y)(γ∂x + δ∂y)u (4.14)

with real numbers α,β, γ and δ such that

β

α
�= δ

γ
. (4.15)

Building on the earlier discussion (see Example 4.2), This implies that a second-
order hyperbolic PDE operator has two distinct characteristic speeds β/α and
δ/γ.

2 In practical situations BVPs are defined on domains in R
2 and any change of variables is likely to

distort the boundary of the domain and thereby complicate the imposition of boundary conditions.
Such changes of variable should therefore be viewed as tools to investigate the theoretical properties
of PDEs.
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Parabolic (b2 − ac = 0; a > 0). L is a perfect square:

Lu = (α∂x + β∂y)
2u

for real numbersα and β. This implies that a parabolic partial differential operator
has a single characteristic speed β/α.

Elliptic (b2 − ac < 0). This means that neither a nor c can be zero and that both
have the same sign. It also implies that an elliptic operator L has no real factors,
so the characteristics are complex.

Prototypical examples of the three types of PDE will be discussed below. Iden-
tifying solutions of hyperbolic PDEs turns out to be straightforward, so this case is
considered first. The characterisation of solutions of parabolic and elliptic PDEs will
provide more of a challenge.

4.2.1 Hyperbolic Equations

From our considerations of first-order PDEs in the previous section we recall that
the operator p∂x + q∂y has associated characteristics defined by (4.4) along which
qx − py is constant. Thus the factorisation (4.14) gives rise to two families of
characteristics:

s = δx − γy ; t = βx − αy, (4.16)

which we shall refer to as the s- and the t-characteristics, respectively. Making this
change of variables and using the chain rule gives

∂u

∂x
= ∂u

∂s

∂s

∂x
+ ∂u

∂t

∂t

∂x
= δ

∂u

∂s
+ β

∂u

∂t
∂u

∂y
= ∂u

∂s

∂s

∂y
+ ∂u

∂t

∂t

∂y
= −γ

∂u

∂s
− α

∂u

∂t
.

It follows that
α∂x + β∂y = σ∂s, γ∂x + δ∂y = −σ∂t ,

where σ = αδ − βγ and σ �= 0 because of (4.15), thus from (4.14) we find that

Lu = −σ2∂s∂t u. (4.17)

At this point the PDE Lu = f is readily integrated (see Example 1.1):

u(s, t) = F(s) + G(t) − Φ(s, t), Φ(s, t) = 1

σ2

∫∫
f (x(s, t), y(s, t) ds dt,

http://dx.doi.org/10.1007/978-3-319-22569-2_1
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where F(s) and G(t) are arbitrary functions of integration. Changing back to x-y
coordinates (by inverting (4.16)) then gives an explicit characterisation of the general
solution to our hyperbolic PDE:

u(x, y) = F(δx − γy) + G(βx − αy) − Φ(s(x, y), t (x, y)). (4.18)

Note that the solution has three components: (a) the integral Φ of the source term,
(b) the function F(δx −γy) that is constant on s-characteristics and, (c) the function
G(βx −αy) that is constant on t-characteristics. This structure conforms to a famil-
iar pattern of being the general solution of the homogeneous equation (the F and
G terms) combined with a particular solution (the Φ term) of the inhomogeneous
equation.

Reduction of hyperbolic equations to the form ust = φ(s, t) is particularly suitable
for pencil-and-paper solutions. The next example shows the elegance of this approach
when applied to the wave equation (pde.5).

Example 4.5 (The wave equation) Find a solution of the PDE utt − c2uxx = 0
(where c is a constant) in the half plane t > 0 with initial conditions u(x, 0) = g0(x)

and ut (x, 0) = g1(x).

Note that the wave equation is expressed here in x-t coordinates since, in practice,
one of the independent variables invariably denotes time. The factorisation

utt − c2uxx = (∂t + c∂x )(∂t − c∂x )u

suggests the change of variables y = x − ct , s = x + ct and, following the steps
taken in the previous example, leads us immediately to the general solution

u(x, t) = F(x − ct) + G(x + ct), (4.19)

where the two characteristic speeds are ±c. Next, knowing the value of u and its
normal derivative along the x-axis, one can explicitly determine F and G (see
Exercise 4.3) to show that

u(x, t) = 1

2
(g0(x − ct) + g0(x + ct)) + 1

2c

∫ x+ct

x−ct
g1(z) dz. (4.20)

This is called d’Alembert’s solution to the wave equation. ♦

4.2.2 Parabolic Equations

In the case b2 = ac the operator L defined by (4.12) is a perfect square,

Lu = (α∂x + β∂y)
2u. (4.21)
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Wewill draw attention to themost important properties of parabolic PDEs by looking
at some distinguished examples. Parabolic equations usually arise in space-time
situations and, in addition to second derivative terms that form a perfect square, these
problems typically have nonzero first derivative terms. The prototypical example of
a PDE of this type is the heat (or diffusion) equation (pde.4) derived in Sect. 3.2.1.

Example 4.6 (The heat equation) Solve the PDE ut = uxx defined on the half-plane
t > 0 with initial condition u(x, 0) = g(x) and establish the well-posedness of the
initial value problem.

By writing the equation as (∂x + 0 ∂t )
2u = ut , we see that its characteristics would

follow paths defined by
dx

dt
= ±∞

and, in this sense, the heat equation has two infinite characteristic speeds. That is
to say, information is transmitted from one part of the domain to another instanta-
neously. Confirmation of this assertion is provided by the fundamental solution

u(x, t) =
∫ ∞

−∞
k(x − s, t) g(s)ds, k(x, t) = 1√

4πt
e−x2/4t (4.22)

that was identified in Example 1.3. For given values of x and t > 0, the kernel
function k(x − s, t) > 0 is strictly positive for all s ∈ R, so we can immediately
conclude that u(x, t) > 0 whenever g(x) > 0 for all x ∈ R: positive initial data leads
to a positive solution. Moreover, if we suppose that g(x) = c, a positive constant, in
a small neighbourhood (x0 − ε, x0 + ε) of some point x0 and is otherwise zero, we
discover that

u(x, t) = c√
4πt

∫ x0+ε

x0−ε
e−(x−s)2/4tds > 0.

Thus, since u is never equal to zero, we conclude that the initial value at x0 affects
the solution at (x, t) regardless of the distance between x and x0 and regardless of
how small the value of t that is taken.

Next, since k(x − s, t) > 0 and using the fact that

∫ ∞

−∞
k(x − s, t)ds = 1 (4.23)

(which follows from the result given in Exercise 2.3), it follows from (4.22) that

|u(x, t)| ≤ max
s∈R

|g(s)|.

This establishes the well-posedness of the (initial value) problem.

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_2
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Fig. 4.4 The solution to Example 4.7 with a = 2, g(x) = 1 for −2 ≤ x ≤ 2 and with κ = 1 (left)
and κ = 0.001 (right)

Example 4.7 (The advection–diffusion equation) Determine the solution of the PDE
ut + aux = κuxx (where a and κ > 0 are constant) on the half plane t > 0 with
initial condition u(x, 0) = g(x).

It can be shown (see Exercise 4.12) that a viable solution to this PDE is given
by u(x, t) = φ(ξ, t), where ξ = (x − at)/

√
κ and φt = φxx . Since u(x, 0) =

φ(x/
√

κ, 0) it immediately follows, using the representation (4.22) for φ, that

u(x, t) = 1√
4πt

∫ ∞

−∞
exp

(
− 1

4t

(
x − at√

κ
− s

)2
)

g(s
√

κ)ds. (4.24)

For the particular case of an initial “square pulse” with g(x) = 1 for |x | ≤ 2 and
g(x) = 0 otherwise, the PDE solution u can be succinctly expressed using the error
function

erf(x) := 2√
π

∫ x

0
e−s2ds. (4.25)

In particular, it may be shown that

u(x, t) = 1

2

(
erf

( 1√
4κt

(x − at + 2)
) − erf

( 1√
4κt

(x − at − 2)
))

. (4.26)

This solution is illustrated in Fig. 4.4. Note that the initial data is swept to the right
with the advection speed a but, unlike the corresponding hyperbolic situation, dis-
continuities in the initial data are smeared in time. This smoothing of initial data
is typical of parabolic equations. As κ → 0+ the solutions approach those of the
one-way wave equation (pde.1).
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4.2.3 Elliptic Equations

In the case b2 < ac the operator L defined by (4.12) may be written as

L = 1

a

(
(a∂x + b∂y)

2 + (ac − b2) ∂2
y

)
, (4.27)

that is, as a sum of two squares. Even thoughL has no real factors it is possible to fol-
low the procedure used for hyperbolic problems but with complex characteristics—
this idea is pursued in Exercises 4.23 and 4.24.

The use of complex characteristics turns out to be of limited utility, so instead,
we shall investigate an elegant change of variables that transforms Lu = f to give
Poisson’s equation:

− (uss + utt ) = φ, (4.28)

where φ(s, t) is the “source term” and is associated with the change of variables in
the right-hand side function f . We will see that such as change of variables is given
by

s = α(bx − ay), t = x

in which α is a scaling constant. Applying the chain rule gives

∂x = αb∂s + ∂t , ∂y = −αa∂s

and choosing α = −1/
√

(ac − b2) leads to L = a(∂2
s + ∂2

t ), which matches the
PDE operator in the Poisson equation.

For the remainder of the section we will assume that the elliptic PDE is homoge-
neous so that f in (4.12) is zero. Recalling Example 1.4, we know that

u = 1

4π
log(s2 + t2), (s, t) �= (0, 0),

is a solution of Laplace’s equation uss + utt = 0 (that is, the homogeneous version
of the Poisson equation). A short calculation then shows that s2 + t2 = aQ̂(x, y),
with

Q̂(x, y) = cx2 − 2bxy + ay2

ac − b2
,

and so, (provided x and y are not both zero) a solution of the elliptic equationLu = 0
is given by the simple expression

u(x, y) = 1

4π
log Q̂(x, y). (4.29)

http://dx.doi.org/10.1007/978-3-319-22569-2_1
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To explore the implications of (4.29), we introduce the symmetric matrix

A =
[

a b
b c

]
(4.30)

formed from the coefficients of L defined by (4.12). The quadratic form Q in (4.13)
and its close relative Q̂ may be expressed in matrix-vector notation as

Q(x) = xT Ax, Q̂(x) = xT A−1x, x = [x, y]T .

We now suppose that A has eigenvalues λ1,λ2 with corresponding eigenvectors
v1, v2 normalised to have unit length. The eigenvalues are real by virtue of the fact
that A is symmetric and, from the ellipticity condition ac > b2, it follows that
det A > 0 and so the product λ1λ2 > 0. Then, since3 tr A = a + c = λ1 + λ2 > 0
and, knowing that a > 0, we deduce that A has two positive eigenvalues.

Suppose that the two eigenvalues are ordered so that λ1 ≥ λ2 > 0. We know
that the principal axes of the ellipses defined by the level curves Q = constant
and Q̂ = constant are in the directions of the eigenvectors (details are given in
Appendix B.4) and, moreover,

Q(
1√
λ j

v j ) = 1, Q̂(

√
λ jv j ) = 1, j = 1, 2.

The upshot is that general second-order elliptic PDEs model processes that act in an
anisotropic manner. Diffusion is isotropic when the eigenvalues are equal, as in the
special case of Laplace’s equation, and the PDE is then invariant under rotation of
the coordinate axes (see Exercise 4.13). Otherwise, when the two eigenvalues are not
equal, there are two alternative ways of interpreting this geometrical information:

(a) The level curve Q(x) = 1 is an ellipse with major axis of length 1/
√

λ2 in the
v2 direction and minor axis of length 1/

√
λ1 in the v1 direction. The diffusion

coefficient is greater in the direction of v2 than v1.
(b) The level curve Q̂(x) = 1 is an ellipse with major axis of length

√
λ1 in the

v1 direction and minor axis of length
√

λ2 in the v2 direction. The solution is
therefore diffused (smeared) more in the direction of v1 than v2.

These points are illustrated in Fig. 4.5 for the elliptic operator

Lu = 13uxx − 8uxy + 7uyy . (4.31)

3The trace of a matrix A, denoted by tr A, is the sum of its diagonal entries.
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Fig. 4.5 Left the level curves Q(x, y) = 1 (dashed) and Q̂(x, y) = 1 (solid) related to the operator
L defined by (4.31).OAandOBshow the vectors

√
λ1v1 and

√
λ2v2, respectively.Right the solution

(4.29) of Lu = 0

A discussion of the corresponding quadratic form Q is given in Example B.6, where
it is shown that

λ1 = 15, λ2 = 5, v1 = [1, 2]T /
√
5, v2 = [−2, 1]T /

√
5.

This example shows how the solution of Laplace’s equation established in Exam-
ple 1.4 can be used to generate a solution to general elliptic PDE Lu = 0.

The same solution alsomakes a subtle contribution to the solution of the half-plane
problem for Laplace’s equation in the next example—the connection is identified in
Exercise 4.17. A word of caution is in order. The half-plane problem is ill posed if
two initial conditions are specified on the x-axis as in Example 4.5, so a different
arrangement of boundary conditions is necessary.

Example 4.8 (Laplace’s equation) Explore the solution of the PDE uxx + uyy = 0
on the upper half plane y > 0, assuming that it satisfies the boundary condition
u(x, 0) = g(x) and the condition u → 0 as r = √

x2 + y2 → ∞.

A solution to this problem can be constructed that is analogous to that of the heat
equation (4.22) discussed in Example 4.6. It takes the same form (see Exercise 4.16):

u(x, y) =
∫ ∞

−∞
k(x − s, y) g(s) ds, k(x, y) = 1

π

(
y

x2 + y2

)
, (4.32)

except that the kernel function is defined slightly differently. The construction (4.32)
allows us to deduce properties of the solution analogous to those of the heat equation.
In particular,

(a) u(x, y) > 0 for y > 0 provided that g(x) > 0 for all x ∈ R. That is, positive
boundary data produces a positive solution.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
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Fig. 4.6 The solution to
Example 4.8 with g(x) = 1
for −2 ≤ x ≤ 2
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(b) If g(x) = c, a positive constant, in a neighbourhood of a point x0 and is zero
otherwise then u(x, y) > 0. That is, changing the data affects the solution
everywhere.

(c) The boundary value problem is well posed: |u(x, y)| ≤ maxs∈R |g(s)|.
Returning to the case of a “square pulse” g(x) on the boundary, the integral in

(4.32) can again be explicitly evaluated—this time it takes the form

u(x, y) = 1

π

(
tan−1 ( x+2

y ) − tan−1 ( x−2
y )

)
. (4.33)

Cross-sections of this function at different values of y are shown in Fig. 4.6. It can
be readily seen that the discontinuous boundary data is smoothed as it diffuses into
the domain. ♦

4.3 Characteristics of Higher-Order PDEs

The classification of nonlinear and higher-order PDEs can often be accomplished by
factorizing the differential operators involved. Treating the general case would be
overly ambitious for a textbook at this level, so we simply give some representative
examples below.

Example 4.9 The PDE

uttt + utxx + uuttx + uuxxx = (∂t + u∂x )(utt + uxx )

= (∂t + u∂x )(∂t + i∂x )(∂t − i∂x )u = 0
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is of mixed hyperbolic and elliptic type, since its operator factorises into one operator
involving a real characteristic speed and two operators with imaginary characteristic
speeds.

Example 4.10 The PDE

uttt − utxx + uuttx − uuxxx = (∂t + u∂x )(utt − uxx )u

= (∂t + u∂x )(∂t + ∂x )(∂t − ∂x )u = 0

is hyperbolic for |u| �= 1, since its operator then factorises into operators each
involving real and distinct characteristic speeds.Wheneveru = ±1 two characteristic
speeds coincide, making the PDE of mixed hyperbolic and parabolic type.

Example 4.11 The PDE

utt − utxx + uutx − uuxxx = (∂t + u∂x )(ut − uxx )

= (∂t + u∂x )(∂t − ∂xx )u = 0

is of mixed hyperbolic and parabolic type, since its operator factorises into one
parabolic operator and one operator involving a real characteristic speed.

4.4 Postscript

The examples in this chapter are intended to show that while the process of deter-
mining solutions to parabolic and elliptic equations is invariably a challenging task;
the qualitative picture of the solutions, as revealed in Figs. 4.4 and 4.6, shows struc-
ture and simplicity. In contrast, constructing solutions to homogeneous hyperbolic
problems is easier but the nature of the solutions can be relatively complex.

An important and general feature is that solutions of elliptic/parabolic prob-
lems are typically much smoother than their boundary data; whereas, for hyperbolic
problems, discontinuities in boundary data are propagated into the domain with no
smoothing. It is this distinction that makes the derivation of high-quality numerical
methods for hyperbolic problems so much more challenging than for their ellip-
tic/parabolic counterparts.

Exercises

4.1 If ϕ(x) = x/(1 + |x |) for x ∈ R, show that ϕ′(x) = (1 + x)−2 for x > 0 and
ϕ′(x) = (1 − x)−2 for x < 0 and deduce that ϕ(x) is a continuously differentiable
function.
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4.2 Consider the function u(x, y) = g(s(x)), where g(t) = exp(−t2) and s(x) is
defined by (4.11) in Example 4.4. Find ux (x, y) for x > y and x < y and show that
ux (x, y) is not continuous at x = y. In particular, show that ux (x, x−) = 1 while
ux (x, x+) = −1 thus confirming the behaviour shown in Fig. 4.3.

4.3 Show, by applying the initial conditions given in Example 4.5, to the general
solution (4.19) of the wave equation, that F(x)+G(x) = g0(x) and G ′(x)−F ′(x) =
g1(x)/c. Deduce D’Alembert’s solution (4.20). [Hint: first replace x by x ± ct in the
first of these relations and integrate the second over the interval (x − ct, x + ct).]

4.4 Compute uxx and utt from (4.20) and hence verify that u satisfies the wave
equation utt − c2uxx = 0 together with the initial conditions u(x, 0) = g0(x),
ut (x, 0) = g1(x), x ∈ R. Sketch the characteristics.

4.5 Determine conditions under which each of the PDEs in Exercise 2.9 is elliptic,
parabolic or hyperbolic.

4.6 Show that the wave equation ∂2
x u − ∂2

yu = 0 can be written

(a) in factored form: (∂x − ∂y)(∂x + ∂y)u = 0,
(b) as a first-order system ux = vy, uy = vx ,

(c) as ust = 0 under the change of variable s = x + y and t = x − y.

Use the form (c) to determine the general solution.

4.7 Use the change of variables from Exercise 4.6(c) to determine the general solu-
tion of the PDE uxx − uyy = x + y as a function of x and y. Can you find a solution
that satisfies the boundary conditions u(x, 0) = x, u(0, y) = − 1

2 y3?

4.8 Show that the PDE uxx − 2uxy − 3uyy = 0 is hyperbolic and that it has the
general solution u(x, t) = F(3x + y) + G(x − y). Adapt the strategy outlined
in Exercise 4.3 to determine the arbitrary functions so that u satisfies the initial
conditions u(x, 0) = g0(x) and ut (x, 0) = g1(x) for x ∈ R.

4.9 Show that the equation 2uxx +5uxt +3utt = 0 is hyperbolic. Use an appropriate
change of variable to find the general solution of this equation. Hence, determine
the solution satisfying the initial conditions u (x, 0) = 0, ut (x, 0) = xe−x2 for
−∞ < x < ∞.

4.10 Show that the change of dependent variable v(r, t) = ru(r, t) transforms the
PDE a2∂r

(
r2ur

) = r2∂2
t u to a2∂2

r v = ∂2
t v and that the change of independent

variables p = r − at , q = r + at then reduces this to the form ∂p∂qv = 0. Deduce
that the general solution can be written in the form

u(r, t) = 1

r
( f (r + at) + g(r − at))

for arbitrary functions f and g. Hence, find the solution satisfying the initial condi-
tions u(r, 0) = 0, ∂t u(r, 0) = e−r2 , −∞ < r < ∞.

http://dx.doi.org/10.1007/978-3-319-22569-2_2


Exercises 55

4.11 Show that the spherical wave equation in n dimensions

utt = urr + n − 1

r
ur

has solutions of the form u(r, t) = rm f (t − r) provided that f satisfies a certain
first-order ODE. This differential equationwill be satisfied for all twice differentiable
functions f provided that the coefficients of f and f ′ are both zero. Show that this
is only possible when either n = 1 or n = 3, and determine the value of m in these
cases.

4.12 Verify the derivation of the solution (4.24) of the advection–diffusion problem
in Example 4.7.

4.13 Consider the change of variables

x = s cosα − t sinα, y = s sinα + t cosα

corresponding to a rotation of the x-y axes through a constant angle α. Show that

uxx + uyy = uss + utt ,

so that Laplace’s equation is invariant under such a transformation.

4.14 Show that the operator L defined by (4.12) may be written as

L = 1

c

(
(ac − b2)∂2

x + (b∂x + c∂y)
2
)

.

By following the same steps as in Sect. 4.2.3 show that this leads to the same solution
(4.29) as using (4.27).

4.15 Determine a solution of the PDE 2uxx + 3uyy = 0 in the form (4.29) and
sketch the contours u(x, y) = constant.

4.16 Show, by differentiating under the integral sign, that (4.32) is a solution of
Laplace’s equation for y �= 0.

4.17 Suppose that

G(x, y, t) = 1

4π

(
log(x2 + (y + t)2) − log(x2 + (y − t)2)

)
.

Show that the kernel k(x, y) defined by (4.32) is related to G by k(x, y) =
∂t G(x, y, t)|t=0 and is normalised such that

∫ ∞

−∞
k(x − s, y) ds = 1.



56 4 Classification of PDEs

4.18 Establish the properties (a)–(c) in Example 4.8.

4.19 By using the standard trigonometric formula for tan−1 a − tan−1 b, show that
the curve u(x, y) = 1

2 , where u is given by (4.33), is a semicircle of radius 2.
Deduce that u(x, y) → 1

2 (g(2+) + g(2−)) as x → 2, y → 0. What is the
corresponding limit as x → −2, y → 0?

4.20 Consider the change of variable to polar coordinates: x = r cos θ, y = r sin θ.
Use the chain rule to obtain ur and uθ in terms of ux and uy and hence show that

∂x = cos θ∂r − 1

r
sin θ∂θ

∂y = sin θ∂r + 1

r
cos θ∂θ.

Hence, by considering

∂2
x u = (cos θ∂r − 1

r
sin θ∂θ)(cos θ∂r − 1

r
sin θ∂θ)u,

or otherwise, show that

uxx + uyy = urr + 1

r
ur + 1

r2
uθθ.

For what functions f and what values of n is u = rn f (θ) a solution of Laplace’s
equation? Consider also u = f (θ) ln r .

4.21 Use the results of Exercise 4.20 to solve the following problems.

(a) Show that there is a function u = F(r) which solves the Poisson equation
−∇2u = 1 in the circle r < 1 and is zero on the boundary of the circle. (This
function is used to compute the rigidity of a cylindrical column when twisted.)

(b) Show that there are two solutions of Laplace’s equation in the circle r < 1
such that u = cos θ on the boundary of the circle. Why should one of these be
discarded?

4.22 ✩ Suppose that u and v satisfy the pair of first-order PDEs ux = vy, uy = −vx ,
known as the Cauchy–Riemann equations. Show that both u and v must also satisfy
Laplace’s equation.

4.23 Show that uxx + uyy = uzz∗ under the complex change of variable z = x + iy
(z∗ = x − iy). Hence prove that the general solution of Laplace’s equation can be
written as

u(x, y) = F(x + iy) + G(x − iy),

where F and G are arbitrary functions.
If F is a real function, deduce that �F(x + iy) and F(x + iy) are also solutions

of Laplace’s equation.
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4.24 Use the previous exercise to construct real families of solutions to Laplace’s
equation corresponding to each of the functions (a) F(x) = xn (n = 0, 1, 2), (b)
F(x) = exp(−nx), (c) F(x) = sin nx and (d) F(x) = log x (Hint: Use polar
coordinates).

Use the result of part (d) to give an alternative validation of the solution given in
Example 1.4. How is this solution related to that given in Exercise 1.10?

4.25 The biharmonic equation ∇4u = f (see Extension 3.2.2) may be written as
a coupled pair of Poisson equations −∇2u = v and −∇2v = f . Use this, together
with Exercise 4.20 to show that u = Cr2 log r is a solution of the homogeneous
biharmonic equation for r > 0 and any constant C .

4.26 Show that the change of variables in Exercise 4.23 reduces the homogeneous
biharmonic equation to uzzz∗z∗ = 0.

Suppose that u(x, y) = �(
z∗F(z) + G(z)

)
, where z = x + iy (z∗ = x − iy) and

F , G are real functions. Show that u is a solution of the homogeneous biharmonic
equation. This solution is associated with the name of Goursat.

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_1
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Chapter 5
Boundary Value Problems in R1

Abstract This chapter focuses on one-dimensional boundary value problems. Key
concepts likemaximumprinciples, comparisonprinciples and infinite series solutions
are introduced in a one-dimensional setting. This chapter establishes the theoretical
framework that is used to establish the well-posedness of PDE problems in later
chapters.

A wide range of second-order ODEs may be written in the form

u′′ = F(x, u, u′), ′ ≡ d

dx
, (5.1)

where u ≡ u(x) and F is a given function. Why might one be interested in solving
such a problem?Ourmotivation is to introduce some key concepts and techniques rel-
evant to PDEs (especially elliptic equations like Laplace’s equation, see Sect. 4.2.3)
in a rather simpler setting. To this end, we shall focus on linear variants of (5.1), that
take the general form

u′′ = a(x)u′ + b(x)u − f (x). (5.2)

This is called a reaction–advection–diffusion equation since the second derivative
term represents “diffusion”, the term a(x)u′′ represents “advection” (if a > 0 then
there is a “wind” blowing from left to right with strength a) and the term b(x)u
represents “reaction”. The term f is often called the “source” term.

In cases where the differential equation is posed on an interval, x� < x < xr

say, and one piece of supplementary information is given at each end of the interval
we arrive at what is known as a “second-order two–point boundary value problem”.
Note that any such BVP may be transformed by means of the change of independent
variable ξ = (x − x�)/(xr − x�) to a BVP on 0 ≤ ξ ≤ 1 since

d

dx
= 1

L

d

dξ
,

d2

dx2
= 1

L2

d2

dξ2
,

where L = xr − x� is the length of the interval. We shall take as our starting
point the second-order differential equation (5.2) for which it is assumed that the
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change of variable described above has been carried out and then the variable ξ has
been renamed to be x . The differential equation is therefore posed on the interval
0 < x < 1.

Recall that the general solution of such an equation consists of

• the complementary function: that is, the general solution of the homogeneous
equation1

u′′ − a(x)u′ − b(x)u = 0.

Thiswill have two linearly independent solutions, u1(x) and u2(x) say, fromwhich
we construct the general solution

u(x) = Au1(x) + Bu2(x). (5.3)

• A particular solution of (5.2): which we denote by P(x), say.

The general solution of the inhomogeneous equation (5.2) is then a composition of
the two:

u(x) = Au1(x) + Bu2(x) + P(x). (5.4)

This leaves a solution containing two arbitrary constants that have to be found using
supplementary information (that is, boundary conditions).

Boundary conditions required to complete the specification of the boundary value
problem are relationships between u and its first derivative. They are typically one-
dimensional analogues of the BCs (2.11) for Laplace’s equation.

At x = 0 (and at x = 1) the three possibilities are:

Dirichlet: the value of u is specified, e.g., u(0) = 3.
Neumann: the value of u′ is specified, e.g., u′(0) = 1.
Robin: a linear combination of u′ and u is specified, e.g., 2u(0) − u′(0) = 2.

Important questions for a mathematician include the following.

• Does a given two-point boundary value problem have a solution?
• Is the solution unique?
• What properties can be deduced about the solution without having to solve the
boundary value problem?

• How can a numerical approximation to a solution be computed (to deal with
situations where no closed form solutions exist)?

• Is the numerical solution close to the exact solution?

We will give answers to these questions in the next two chapters of the book.

1An equation in a variable u, say, is homogeneous if replacing u by cu, where c is a constant, leaves
the equation unchanged—thus cu is also a solution. Choosing c = 0 shows that u = 0 must be a
solution of a homogeneous equation. The equation must also be linear.

http://dx.doi.org/10.1007/978-3-319-22569-2_2
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5.1 Qualitative Behaviour of Solutions

The following example illustrates someof the issues involved.The example is instruc-
tive in the sense that we can explicitly write down the solution. We will not be so
lucky in general.

Example 5.1 For what values of the real constant b does the BVP

u′′ − bu = ε, 0 < x < 1
u(0) = u(1) = 0,

}
(5.5)

in which ε is a constant, have a unique solution?

It may be shown (see Exercise 5.2) that, for b > 0, the solution is

u(x) = − ε

b

(
1 − cosh

√
b

(
x − 1

2

)
cosh 1

2

√
b

)
(b > 0). (5.6)

Though it might appear that this formula fails when b = 0, it is found, by taking the
limit b → 0+ (Exercise 5.3) or by solving (5.5) with b = 0, that

u(x) = − 1
2εx(1 − x) (b = 0). (5.7)

When b < 0 we may write b = −|b| in (5.6) so that
√

b = √−|b| = i
√|b|. Then,

using the result that cosh iθ = cos θ (for θ ∈ R), we conclude that

u(x) = − ε

b

(
1 − cos

√|b| (x − 1
2

)
cos 1

2

√|b|

)
(b < 0). (5.8)

This formula clearly fails, and the BVP has no solution, when cos 1
2

√|b| = 0, that
is when b = −(2n − 1)2π2, n = 1, 2, . . .. We note that

|u( 12 )| → ∞ as b → − (2n − 1)2π2

indicating that the BVP is not well posed for these values of b. Furthermore, when
b = −(2nπ)2, the homogeneous BVP has the nontrivial solutions

u(x) = A sin 2nπx,

where A is an arbitrary constant. In these cases, A sin 2nπx should be added to the
right hand side of (5.8) to give the general solution. Representative solutions are
plotted in Fig. 5.1 for b = 0,±100. ♦
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Fig. 5.1 Solutions to (5.5)
with ε = 1, b = 100 (solid),
b = 0 (dotted) and
b = −100 (dashed)

There are two conclusions that we wish to draw from this example.

(a) The BVP is well posed for b ≥ 0 and, when ε > 0, the solution is negative
throughout the interval 0 < x < 1. For this reason we generally arrange for the
coefficient of the second derivative in second-order BVPs to be negative so that
positive data will lead to positive solutions. For example, rewriting the BVP in
this example as

−u′′ + bu = −ε, 0 < x < 1
u(0) = u(1) = 0,

}

would have ensured a non-negative solution when the right hand side is non-
negative (−ε > 0). This conclusion is also valid when ε is allowed to vary
with x .

(b) The situation is more complex when b < 0: although there is generally a unique
solution (though its well posedness has not been investigated here), there are
values of b, namely, b = −(nπ)2, n ∈ N, for which the BVP has either no
solution or else the solution is not unique.

The situation is analogous to those encountered when solving systems of linear
algebraic equations—there is either no solution, exactly one solution or an infinity
of solutions.

Conclusions were drawn in the preceding example on the basis that its solution
was known. We shall be more ambitious in the next example where b is allowed to
vary with x and we draw similar conclusions by applying some familiar techniques
from the calculus of maxima and minima of functions of one variable.

Example 5.2 Consider the solvability of the BVP

−u′′ + b(x)u = f (x), 0 < x < 1
u(0) = α, u(1) = β.

}
(5.9)

If we focus on the issue of uniqueness of solution then, by virtue of Theorem 2.7,
it is sufficient to consider the homogeneous problem—we therefore set α = β = 0

http://dx.doi.org/10.1007/978-3-319-22569-2_2
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and f (x) ≡ 0 for all x ∈ (0, 1). Thus

u′′ = b(x)u (5.10)

and we consider any subinterval in which

(a) b(x) > 0 and u(x) > 0. This implies that u′′ > 0 so the solution must be
concave,

(b) b(x) > 0 and u(x) < 0. Then u′′ < 0 so the solution must be convex (concave
down),

(c) b(x) < 0 and u(x) > 0. Then u′′ < 0 so the solution must be convex,
(d) b(x) < 0 and u(x) < 0. Then u′′ > 0 so the solution must be concave.

These four possibilities are sketched inFig. 5.2. It is evident in cases (a) and (b),where
b(x) > 0, that, if these inequalities were to hold over the entire interval, then such a
solution would not be capable of satisfying the homogeneous BCs u(0) = u(1) = 0
unless u(x) ≡ 0 for all x ∈ [0, 1]. In these cases the homogeneous problem would
have a unique solution.

In cases (c) and (d), where b(x) < 0, there is a natural tendency for the solution
to cross and recross the x-axis and therefore lead to oscillatory solutions. We would
also anticipate that the more negative that b(x) becomes, the stronger the curvature
and so the wavelength of oscillations would become shorter. It is not possible to
assert with any confidence that any particular BVP would have oscillatory solutions
because this would depend on the strength of the curvature relative to the length of
the interval. However, the potential for such solutions clearly exists which, in turn,
opens up the possibility of nonunique solutions since there are many places where
u = 0. ♦

A trick allows us to relax the strict inequalities in the previous example to nonstrict
inequalities. This is the topic of the next section. It opens the door to a systematic
approach for showing the well-posedness of BVPs.

(a) (b) (c) (d)

Fig. 5.2 Parts a–d show sketches of possible solutions for Example 5.2. The arrows indicate the
location of the x-axis
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5.2 Comparison Principles and Well-Posedness

Before plunging into details, we begin by outlining the strategy that we shall use to
investigate the well-posedness of two-point BVPs. A key point is that, by expressing
the essential ideas using the abstract operators introduced in Sect. 2.1, wewill be able
to apply the same strategy in later chapters. It will prove useful both for determining
properties of PDEs and for proving convergence of numerical methods.

Thus, suppose that our BVP is written in the form (see (2.15))

L u = F , (5.11)

where L contains both the differential and boundary operators and F the data
terms comprising the right hand side of the differential equation and the boundary
conditions. We will insist that L satisfies two properties:

① L is linear.
② L is inverse monotone: that is,L u ≥ 0 implies that u ≥ 0.

Wewill also need to find (or construct) a bounded, non-negative functionϕ(x), called
a comparison function, so that

③ Lϕ(x) ≥ 1 for all x ∈ [0, 1].
One way to interpret inverse monotonicity is that a non-negative source term is
guaranteed to generate a non-negative solution. Furthermore, if u and v are two
functions such that

L u ≥ L v

then, by linearity ofL , we haveL (u−v) ≥ 0 and, by virtue of inversemonotonicity,
we conclude that u ≥ v. This is known as a comparison principle. The two properties
① and ② ensure solution uniqueness.

Theorem 5.3 (Uniqueness) If the linear operator L is inverse monotone then the
equation L u = F has a unique solution.

Proof We suppose that there is a second solution v. Then L v = F and so L v =
L u. Thus, on the one handL v ≥ L u from which we deduce that v ≥ u while, on
the other hand,L v ≤ L u so that v ≤ u. Combining these two results we conclude
that v = u! �

The additional property③ is all that is required for a well-posed problem in the sense
of Definition 2.10.

Theorem 5.4 Suppose that the linear operator L is inverse monotone, it has a
comparison function ϕ and that the norm ‖ · ‖ is defined such that

−‖F‖ ≤ F ≤ ‖F‖.

http://dx.doi.org/10.1007/978-3-319-22569-2_2
http://dx.doi.org/10.1007/978-3-319-22569-2_2
http://dx.doi.org/10.1007/978-3-319-22569-2_2
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Then the problem L u = F is well posed:

−‖F‖ϕ ≤ u ≤ ‖F‖ϕ

at all points x ∈ [0, 1], which means that

max
x

|u| ≤ C‖F‖,

where C = maxx∈[0,1] ϕ.

Proof Using ③, the upper bound follows from the sequence of inequalities

L u = F ≤ ‖F‖ = ‖F‖ × 1 ≤ ‖F‖ × Lϕ = L (‖F‖ϕ),

We thus see that L u ≤ L (‖F‖ϕ) which leads, via inverse monotonicity, to u ≤
‖F‖ϕ. The lower bound can be proved in a similar manner and is left to Exercise 5.5.

�

A note of caution: when applying this result to a particular boundary value problem,
care must be taken when choosing the sign of the highest derivative in both the
differential operator and the boundary conditions.

Example 5.5 Show that the BVP

−u′′ = f (x), 0 < x < 1
u(0) = α, u(1) = β

}
(5.12)

is well posed. Establish upper and lower bounds on the solution when α = −3,
β = 2 and f (x) = sin(x2).

This BVP corresponds to that in Example 5.2 with b(x) ≡ 0. A suitable definition
forL is, in this case,

L u(x) =

⎧⎪⎨
⎪⎩

u(0) for x = 0,

−u′′(x) for 0 < x < 1,

u(1) for x = 1.

The argument that will be used below to show that L is inverse monotone is more
elaborate than is strictly necessary: the aim is to develop an approach that can be
easily extended to more complicated problems.

Let us begin by supposing that L u > 0 holds with strict inequality. That is,

u(0) > 0, −u′′(x) > 0 for x ∈ (0, 1) and u(1) > 0.

We will now show, by contradiction, that these conditions imply that u(x) ≥ 0 for
x ∈ [0, 1]. To this end, let us suppose that u(x) is negative on some part of the unit
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interval and let s ∈ (0, 1) be a point where u achieves a negative minimum.We know
from calculus that

u(s) < 0, u′(s) = 0 and u′′(s) > 0.

The last of these contradicts the requirement that L u(s) > 0.
In order to shore up this argument to accommodate the case that L u ≥ 0, we

first construct a suitable comparison function. These are usually constructed from
low degree polynomials. Trying ϕ(x) = Ax2 + Bx + C we get

Lϕ(x) =

⎧⎪⎨
⎪⎩

C for x = 0,

−2A for 0 < x < 1,

A + B + C for x = 1.

We can thus ensure thatLϕ(x) = 1 for all x ∈ [0, 1] by making the specific choices
C = 1, A = −1/2 and B = 1/2, leading to the function

ϕ(x) = 1 + 1
2 x(1 − x) (5.13)

which is non-negative for x ∈ [0, 1], as required by the definition.
The second, key step towards establishing inverse monotonicity is to introduce a

new function v according to

v(x) = u(x) + εϕ(x)

with ε > 0. Note that
L v(x) = L u(x) + ε.

The inequality L u ≥ 0 implies that L v ≥ ε > 0 and our earlier argument may
now be applied to prove that v(x) ≥ 0. The fact that u(x) + εϕ(x) ≥ 0 for all
x ∈ [0, 1] and for all ε > 0 also ensures that u(x) ≥ 0 for all x ∈ [0, 1]. (If this
were not the case, then we could choose ε so small so that u(x) + εϕ(x) < 0 at
some point x ∈ (0, 1) giving, once more, a contradiction.) This establishes inverse
monotonicity.

Finally, sinceF is given by

F (x) =

⎧⎪⎨
⎪⎩

α for x = 0,

f (x) for 0 < x < 1,

β for x = 1,

(5.14)

we can simply define

‖F‖ = max{|α|, max
0≤x≤1

| f (x)|, |β|}. (5.15)
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In the specific case α = −3, β = 2 and f (x) = sin(x2) we find that ‖F‖ = 3 and,
since C = max0≤x≤1 ϕ(x) = 9/8, Theorem 5.4 immediately implies that

max
0≤x≤1

|u(x)| ≤ 27/8. ♦

What makes this result so impressive is that a bound on the magnitude of the solution
has been determined despite the fact that the function f was purposely chosen so
that the BVP could not be solved in closed form. Theoretical bounds like this can
also provide useful checks on numerical solutions.

The argument used in the above example can be extended to establish the well-
posedness of the reaction–advection–diffusion problem (5.2) when b(x) ≥ 0 (see
Exercise 5.6). The next example introduces a BVP with Robin boundary conditions.
In this case the sign of the derivative terms in the boundary conditions is particularly
important.

Example 5.6 Show that the BVP

−u′′ = f (x), 0 < x < 1
u(0) − u′(0) = α, u(1) + u′(1) = β

}
(5.16)

is well posed. Establish upper and lower bounds on the solution when α = 3, β = 2
and f (x) = cos(x2).

Setting

L u(x) =

⎧⎪⎨
⎪⎩

u(0) − u′(0) for x = 0,

−u′′(x) for 0 < x < 1,

u(1) + u′(1) for x = 1

and withF given by (5.14), the argument used in the previous example carries over
to this case. The only difference is the comparison function, which takes the form

ϕ(x) = 1
2

(
3 + x − x2

)
,

and the fact that we have to preclude the possibility that v (= u(x) + εϕ(x)) has a
negative minimum at either one of the two end points of the interval.

Consider the point x = 0. If v(x) is a negative minimum then v(0) < 0 and
v′(0) ≥ 0 which implies that

L v(0) = v(0) − v′(0) < 0.

This cannot happen since it contradicts the assumption that L v(x) > 0 for all
x ∈ [0, 1]. A similar argument holds when x = 1.
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When α = 3, β = 2 and f (x) = cos(x2), we find ‖F‖ = 3 and, since C =
max0≤x≤1 ϕ(x) = 13/8, Theorem 5.4 implies that

max
0≤x≤1

|u(x)| ≤ 33/8,

However, since F ≥ 0, we deduce that u(x) ≥ 0 for all x ∈ [0, 1] and we have the
improved bounds

0 ≤ u(x) ≤ ‖F‖ϕ(x) ≤ 3ϕ(x), x ∈ [0, 1]. ♦

There is no first derivative term in any of the examples presented thus far. We shall
rectify this omission in Sect. 5.3.2. Getting to this stage of technical sophistication
will involve the notion of orthogonality in a function space. This important topic is
discussed next.

5.3 Inner Products and Orthogonality

The geometrical properties of differential operators and solutions to boundary value
problems may be conveniently expressed using the notion of an inner product. For
complex-valued functions u(x) and v(x) defined on the interval x ∈ [0, L], the inner
product is simply the complex number given by

〈
u, v

〉 =
∫ L

0
u(x) v∗(x)dx, (5.17)

where v∗(x) is the complex conjugate of v(x). Note that
〈
u, u

〉
is both real and positive

(unless u is identically zero). If u and v are square integrable, that is, if

∫ L

0
|u(x)|2dx < ∞ and

∫ L

0
|v(x)|2dx < ∞,

then the integral in (5.17) iswell defined because of theCauchy–Schwarz2 inequality:

∣∣〈u, v
〉∣∣ ≤ 〈

u, u
〉1/2〈

v, v
〉1/2

< ∞. (5.18)

The inner product (5.17) has a close analogy with the inner product for column
vectors (see Appendix B). The geometric analogy with vectors is continued in the
next definition.

2The proof of (5.18) can be found in a first course on functional analysis. See Appendix B for an
equivalent statement in the case of finite-dimensional vectors.
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Definition 5.7 (Orthogonality) Any two nontrivial functions u(x) and v(x) are said
to be orthogonal if 〈

u, v
〉 = 0.

Orthogonal functions are necessarily linearly independent (see Exercise 5.11c).
It is usual to deal with infinite sets of mutually orthogonal functions. That is, for

a set of functions {φn(x)} we have
〈
φn,φm

〉 = 0, m = n.

Note that
〈
φn,φn

〉
> 0.

The most celebrated set of mutually orthogonal functions is given by the complex
exponentials, φn(x) = e2πinx/L (n = 0,±1,±2, . . .), see Exercise 5.19. These
functions are calledFourier modes. Thenext example shows that the functions formed
by their real and imaginary parts are also orthogonal.

Example 5.8 Show that the functions

{1, sin(2πx/L), cos(2πx/L), . . . , sin(2πnx/L), cos(2πnx/L), . . .}

form a mutually orthogonal set with respect to the inner product (5.17).
To establish the orthogonality of ϕn = sin(2πnx/L) and ϕm = sin(2πmx/L),

we simply use the trigonometric identity

sin A sin B = 1
2 (cos(A − B) − cos(A + B)).

Thus, if m = n,

〈
ϕn,ϕm

〉 = 1

2

∫ L

0
(cos(2π(m − n)x/L) − cos(2π(m + n)x/L))dx

= 1

2

[
sin(2π(m − n)x/L)

(2π(m − n)/L)
− sin(2π(m + n)x/L)

(2π(m + n)/L)

]L

0

= 0,

since the numerators of the terms on the right hand side vanish at both end points.
Also, when m = n,

〈
sin(2πnx/L), sin(2πnx/L)

〉 = L/2. The remaining cases are
left to Exercise 5.20. ♦

An important consequence of orthogonality concerns functions f (x) that can be
expressed in terms of a convergent series of the form

f (x) =
∞∑

n=1

anφn(x).
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Such formulae are easily inverted—that is, a simple expression can be obtained for
the coefficients an—when the functions φn(x) are mutually orthogonal. To see this,
the first step is to multiply both sides of the relation by φ∗

m(x), for any value of m.
We then integrate the result to give

∫ L

0
f (x)φ∗

m(x)dx =
∞∑

n=1

an

∫ L

0
φn(x)φ∗

m(x)dx

or, more elegantly,

〈 f,φm〉 =
∞∑

n=1

an
〈
φn,φm

〉
.

By virtue of orthogonality, the only nonzero term in the sum on the right-hand side
is 〈φm,φm〉 and it follows that

〈 f,φm〉 = am〈φm,φm〉.

Replacing the dummy index m by n gives a simple expression for the coefficient:

an = 〈 f,φn〉
〈φn,φn〉 . (5.19)

Note that the right-hand side of (5.19):

∫ L

0
f (x)φ∗

n(x)dx

/ ∫ L

0
φn(x)φ∗

n(x)dx,

is called as the projection of the function f onto the function φn . It is particularly
convenient, from a theoretical point of view, to normalise (by dividing the functionφn

by the square root of
〈
φn,φn

〉
> 0) so that the rescaled functions satisfy

〈
φn,φn

〉 = 1.
If this is done then the coefficients in the expansion for f become an = 〈

f,φn
〉
and

the set {φn} is then known as an orthonormal set.
We shall explore two-point BVPs that naturally give rise to orthogonal function

sets in Sect. 5.4. Thematerial in this section is a prerequisite for Chap. 8, where it will
be shown that these orthogonal functions contribute to the solution of some important
PDE problems. Before this, we need to identify suitable differential operators—
those with a property that is analogous to symmetry for a conventional matrix (see
Appendix B.2).

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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5.3.1 Self-adjoint Operators

In this section we will focus on BVPs described, in the notation of Sect. 2.1, by
differential operators L having the special form

Lu(x) := −(p(x)u′(x))′ + q(x)u(x), 0 < x < 1, (5.20)

where q(x) is be assumed to be continuous and p(x) is a positive and continuously
differentiable function on (0, 1). These are known as Sturm–Liouville operators. We
shall further suppose that the associated boundary condition operator B takes the
form3

Bu(0) := a0u(0) − b0u′(0), Bu(1) := a1u(1) + b1u′(1), (5.21)

where coefficients a0, b0, a1, b1 are given constants with b0 ≥ 0, b1 ≥ 0 and
|a0| + |b0| > 0, |a1| + |b1| > 0 to avoid degeneracy. The pair of equations Lu = f
and Bu = g describe a two-point boundary value problem on [0, 1].

Although the coefficients in (5.20) and (5.21) will either be real constants or
real-valued functions, certain situations (detailed later in the chapter) will neces-
sitate consideration of complex dependent variables. Thus, taking complex-valued
functions u and v we have, after integrating by parts twice,

〈
u,Lv

〉 =
∫ 1

0
u
(−(p(x)v∗′

)′ + q(x)v∗)dx (5.22)

=
[
−puv∗′]1

0
+

∫ 1

0

(
p(x)u′v∗′ + q(x)uv∗)dx (5.23)

=
[

p(x)(u′v∗ − uv∗′
)
]1
0
+

∫ 1

0

(−(p(x)u′)′ + q(x)u
)
v∗dx .

Thus, 〈
u,Lv

〉 =
[

p(x)(u′v∗ − uv∗′
)
]1
0
+ 〈Lu, v

〉

which can be rearranged to read

∫ 1

0

(
uLv∗ − v∗Lu

)
dx =

[
p(x)(u′v∗ − uv∗′

)
]1
0

(5.24)

and is known as Green’s identity. It can further be shown, see Exercise 5.7, that
the contributions from the boundary terms vanish if u and v are both subject to

3The reason for the different signs on the derivative terms at x = 0 and x = 1 is that we take the
“outward” directed derivative at each boundary point.

http://dx.doi.org/10.1007/978-3-319-22569-2_2
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homogeneous boundary conditions, Bu = 0 and Bv = 0, in which case

〈
u,Lv

〉 = 〈Lu, v
〉 ⇐⇒

∫ 1

0

(
v∗Lu − uLv∗)dx = 0, (5.25)

a result known as Lagrange’s identity. It inspires the following definition.

Definition 5.9 (Self-adjoint operator) A differential operator L such that

〈
u,Lv

〉 = 〈Lu, v
〉 + boundary terms

is said to be formally self adjoint. The full operator, L , defined by

L u(x) =
{
Lu(x), 0 < x < 1

Bu(x), x = 0, 1,
(5.26)

is said to be self adjoint if
〈
u,Lv

〉 = 〈Lu, v
〉
for all functions satisfying the homo-

geneous boundary conditions Bu = 0 and Bv = 0. Note that unqualified self-
adjointness is a property of both the differential operator and the associated boundary
conditions.

5.3.2 A Clever Change of Variables

The reaction–advection–diffusion operator in (5.2) can be expressed as a Sturm–
Liouville operator by finding a suitable integrating factor. The first step is to multiply
both sides of (5.2) by a function p(x) to give

p(x)u′′ − p(x)a(x)u′ − p(x)b(x)u = p(x) f (x). (5.27)

Next, using the rule for differentiating a product, we find that

d

dx
(pu′) = pu′′ + p′u′

which leads to the identity pu′′ = (pu′)′ − p′u′, so (5.27) becomes

(pu′)′ − (pa + p′)u′ − pbu = p f.

The coefficient of the first derivative term can be made to vanish by choosing p(x)

so that p′ = −a(x)p. That is,

p(x) = e−∫
a(x)dx
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and, making this specific choice, we find that

− (p(x)u′)′ + q(x)u = g(x), (5.28)

with

p(x) = exp
(−∫

adx
)
, q(x) = p(x)b(x), g(x) = −p(x) f (x). (5.29)

The special form (5.20) therefore includes all second-order linear ODEs whose coef-
ficient a(x) is integrable! This is a significant result. Further appreciation may be
gained by making the change of independent variable ξ = ξ(x) given by

ξ =
∫ x

0

1

p(s)
ds ⇐⇒ dξ

dx
= 1

p(x)
and ξ(0) = 0. (5.30)

By the chain rule,
d

dξ
= dx

dξ

d

dx
= p(x)

d

dx
,

so we see that the Sturm–Liouville equation (5.28) is transformed to a simple
(reaction-diffusion) equation:

− d2u

dξ2
+ q̃(ξ)u = g̃(ξ), (5.31)

where q̃(ξ) = p(x)q(x) and g̃(ξ) = p(x)g(x).
Note that in order for the change of variable (5.30) to be one-to-one it is necessary

that p(x) be positive over the entire open interval (0, 1). When 1/p(x) is integrable,
a finite interval in x is transformed to a finite interval in ξ and the associated Sturm–
Liouville operator is said to be regular. Otherwise, when p(x) = x for example, the
Sturm–Liouville operator is said to be singular.

Supposing that the differential equation has been transformed to one with no first
derivative term then the arguments of earlier sections may be applied to deduce its
qualitative properties. Thus, when homogeneous Dirichlet BCs are applied at both
ends of the interval, the BVP associated with (5.31) will have a unique solution when
q̃(ξ) > 0 throughout the interval. Since q̃(ξ) = p2(x)b(x) it follows that there will
be a unique solution provided b(x) > 0. An alternative treatment involves making a
change of dependent variable. The details can be found in Exercise 5.17.

We are now in a position to mine a rich vein of orthogonal functions, known as
eigenfunctions. These functions will prove to be useful when constructing solutions
to linear PDEs in later chapters.
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5.4 Some Important Eigenvalue Problems

The general eigenvalue problem associated with a differential operatorL and bound-
ary condition operator B is to find non-trivial functions u (that is, not zero for all
x ∈ [0, 1]), and corresponding constants λ, satisfying the two-point boundary value
problem:

Lu(x) = λw(x)u(x), 0 < x < 1
Bu(x) = 0, x = 0, 1,

}
(5.32)

where w(x) is a given positive function known as a weight function.
A fundamental example of (5.32) is obtained when L is defined by (5.20) and B

by (5.21). This gives

−(p(x)u′)′ + q(x)u = λw(x)u, 0 < x < 1
a0u(0) − b0u′(0) = 0, a1u(1) + b1u′(1) = 0.

}
(5.33)

Problems of this type are known as Sturm–Liouville problems. Every value of λ
for which the boundary value problem (5.33) has a nontrivial solution is called an
eigenvalue and the corresponding solution, u, is called an eigenfunction.

It may be shown (Exercise 5.21) that, if u is an eigenfunction corresponding to
an eigenvalue λ, then cu is also an eigenfunction for any nonzero constant c.

We present some examples below that can be solved in closed form and we also
present results that apply when this is not possible. We shall assume below that

p(x) > 0, w(x) > 0, 0 < x < 1. (5.34)

Our first example, closely related to Example 5.1, is the simplest possible yet it has
properties that are typical of Sturm–Liouville problems.

Example 5.10 Determine the eigenvalues and eigenfunctions of the problem

−u′′ = λu, 0 < x < 1

with boundary conditions u(0) = u(1) = 0.

The form of the general solution of this ODE will depend on whether λ < 0, λ = 0
or λ > 0. We consider each case in turn.

(a) Suppose firstly that λ < 0.Wewrite λ = −μ2 (μ = 0) then the ODE has general
solution

u(x) = Aeμx + Be−μx .

The first BC implies that A + B = 0 so u(x) = A(eμx − e−μx ) and the second
BC gives A(eμ−e−μ) = 0, whichmay bewritten as 2A sinh μ = 0. This implies
that A = 0 since μ = 0. Thus, since the only solution when λ < 0 is u(x) ≡ 0



5.4 Some Important Eigenvalue Problems 75

(the trivial solution), there cannot be any negative eigenvalues. This conclusion
could also have been reached using the arguments presented in Example 5.2.

(b) Suppose, next, that λ = 0. Then u′′ = 0 which has general solution u(x) =
A + Bx . The BCs imply that A = B = 0. This is, again, the trivial solution so
λ = 0 cannot be an eigenvalue.

(c) Suppose, finally, that λ > 0. This time we write λ = ω2 and we have the general
solution

u(x) = A sinωx + B cosωx .

The first BC implies that B = 0 while the BC u(1) = 0 gives A sinω = 0.
Thus, either A = 0 (a possibility that we ignore because it again gives the trivial
solution) or else sinω = 0, that is, ω = nπ, n = ±1,±2, . . . leading to the
infinite sequence of eigenvalues

λn = n2π2, n = 1, 2, . . .

with corresponding eigenfunctions φn = sin nπx . The negative values of n may
also be ignored since there is only one eigenvalue and one linearly independent
eigenfunction associated with each pair +n and −n.
Note that, it can be seen that the BVP in Example 5.1 fails to have a unique solu-
tion precisely when the coefficient b is an eigenvalue of the associated homoge-
neous problem. ♦

It was implicitly assumed in the above example that the eigenvalues λ are real. This
assumption is justified in the next theorem.

Theorem 5.11 Suppose that p(x) > 0, q(x) ≥ 0 and w(x) > 0 for x ∈ (0, 1).
Then the eigenvalues of the Sturm–Liouville problem

−(p(x)u′)′ + q(x)u = λw(x)u, 0 < x < 1
u(0) = u(1) = 0,

}
(5.35)

are real and positive.

Proof To prove that all eigenvalues are real we use Lagrange’s identity with v = u.
Since Lu = λwu it follows, by taking the complex conjugate of each side, that
Lu∗ = λ∗wu∗ (recall that the coefficients in L are real). Then (5.25) gives

∫ 1

0

(
u∗Lu − uLu∗)dx = −(λ − λ∗)

∫ 1

0
w(x) |u(x)|2dx = 0.

The integrand is strictly positive because of the assumptionw(x) > 0 and soλ∗−λ =
0 from which we deduce that λ must be real.
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To show that the eigenvalues are positive, we set v = u in (5.23) and apply the
boundary conditions u(0) = u(1) = 0:

〈
u,Lu

〉 =
∫ 1

0

(
p(x) |u′(x)|2 + q(x) |u(x)|2)dx .

The left hand side can be written as

〈
u,Lu

〉 = 〈
u,λwu

〉 = λ

∫ 1

0
w(x) |u(x)|2dx

and so we find that

λ =

∫ 1

0

(
p(x)|u′(x)|2 + q(x) |u(x)|2)dx

∫ 1

0
w(x) |u(x)|2dx

> 0

since both numerator and denominator are positive. �

Corollary 5.12 The homogeneous BVP

−(p(x)u′(x))′ + q(x)u(x) = 0, 0 < x < 1
u(0) = u(1) = 0,

}
(5.36)

has only the trivial solution u(x) ≡ 0.

Proof This situation would correspond to a Sturm–Liouville problem with an
eigenvalue λ = 0 and nontrivial eigenfunction u. This contradicts the results in
Theorem 5.11. �

Example 5.13 Find the eigenfunctions and eigenvalues of the boundary value prob-
lem

−u′′ + 4u = λu, 0 < x < π
u′(0) = u(π) = 0.

}
(5.37)

If we rewrite the ODE in the form −u′′ = (λ − 4)u, then Theorem 5.11 tells us that
the eigenvalues (λ − 4) of this problem are real and positive. It can be shown that
only trivial solutions exist for λ ≤ 4 (Exercise 5.24). Assuming λ > 4, we write
λ = 4 + ω2 which leads to the general solution

u(x) = A sinωx + B cosωx .

Next, the BC u′(0) = 0 gives A = 0 while the BC u(π) = 0 gives B cosωπ =
0. Since B cannot be zero (it would lead to the trivial solution), we must have
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cosωπ = 0. This can only occur if ω is an odd multiple of 1
2 : ω = 1

2 (2n − 1) so the
nth eigenvalue is given by

λn = 4 + (
n − 1

2

)2

for n = 1, 2, . . . , and the corresponding eigenfunction is

φn = cos
(
n − 1

2

)
x . ♦

To complete the discussion of Sturm–Liouville problems, some other general
properties of the eigenvalues and eigenfunctions are listed below:

① Real eigenvalues (and consequently eigenfunctions) also occur for the general
boundary conditions, Bu = 0, where B is defined by (5.21). The eigenvalues will
still be positive if the coefficients in (5.21) are all positive.

② The eigenfunctions corresponding to distinct eigenvalues are orthogonal with
respect to the weighted inner product defined by

〈
u, v

〉
w

=
∫ 1

0
w(x)u(x)v∗(x)dx . (5.38)

That is
〈
u, v

〉
w

= 0. This is explored in Exercises 5.31 and 5.33.
③ All eigenvalues of regular Sturm–Liouville problems are simple—there is only

one eigenfunction (up to a multiplicative constant) corresponding to each eigen-
value. It follows that the eigenvalues may be ordered so that

0 < λ1 < λ2 < λ3 < · · · . (5.39)

Also λk → ∞ as k → ∞.
For a detailed discussion and proof, see Pryce [16, Theorem 2.4].

Example 5.14 Verify that the Laplacian operator in polar coordinates is formally
self adjoint with respect to a particular weighted inner product in the special case of
circular symmetry.

In polar coordinates, x = r cos θ, y = r sin θ, the Laplacian operator is

−∇2u = −
(

∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2

)
.

If u is a function of r only (that is, when there is circular symmetry) we get

Lu(r) = −
(

∂2u

∂r2
+ 1

r

∂u

∂r

)
= −1

r
(ru′)′,

where the dash here denotes differentiation with respect to r . Assuming a circular
region of radius R and choosing a weighted inner product of the type (5.38) with
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weight w(r) = r on an interval 0 ≤ r ≤ R we find that

〈
u,Lv

〉
r =

∫ R

0
u (−rv∗′

)′ dr. (5.40)

The result follows by integrating the right hand side by parts twice as is done in the
derivation of (5.24). The right hand side of (5.40) is a special case of (5.22) with
p = r and q = 0. ♦

Example 5.15 Show that the problem Lu = f with homogeneous boundary condi-
tions Bu = 0, where L and B are defined by (5.20) and (5.21), respectively, is well
posed.

We will need to use all the properties of Sturm–Liouville eigenvalue problems listed
above. Suppose that λn is the eigenvalue associated with the normalised eigenvector
φn of the Sturm–Liouville problem (5.33), and suppose that u can be expanded in
terms of the eigenvectors as

u(x) =
∞∑

n=1

αnφn(x).

Note that u and φn both satisfy the boundary condition Bu = 0. Then

Lu =
∞∑

n=1

αnLφn(x) =
∞∑

n=1

αnλnw(x)φn(x)

and, by virtue of Property ②, we find that

〈
u, u

〉
w

=
∞∑

n=1

α2
n

〈
φn,φn

〉
w

=
∞∑

n=1

α2
n,

and that

∫ 1

0
uLu dx =

∞∑
n=1

αnλn

∫ 1

0
w(x)u(x)φn(x) dx

=
∞∑

n=1

αnλn
〈
u,φn

〉
w

=
∞∑

n=1

λnα2
n .
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It follows from Property ③ that

∞∑
n=1

λnα2
n ≥ λ1

∞∑
n=1

α2
n = λ1‖u‖2w

where ‖u‖w = 〈
u, u

〉1/2
w

is the (suitably weighted) norm of u.
Thus, given that Lu = f , and applying the Cauchy–Schwarz inequality (5.18) in

the weighted inner product gives

λ1‖u‖2w ≤
∫ 1

0
uLu dx =

∫ 1

0
u f dx

=
∫ 1

0
w u ( f/w) dx = 〈

u, f/w
〉
w

≤ ‖u‖w‖ f/w‖w

Finally, dividing by λ1‖u‖w > 0 gives

‖u‖w ≤ 1

λ1
‖ f/w‖w (5.41)

and we deduce that the weighted norm of u is bounded provided that the same norm
of f/w is bounded. We note that in situations (such as the previous example) where
w = 0 at one or both ends of the interval we will need to insist that f vanishes at
the same point. ♦

Exercises

5.1 Find the general solution of u′′+3u′−4u = 1. Hence find the solution satisfying
the boundary conditions u(0) = 1, and u(1) = 3.

5.2 Verify that (5.6) and (5.8) are solutions to the BVP in Example 5.1.

5.3 Show that taking the limit b → 0 in both (5.6) and (5.8) leads to (5.7).

5.4 Rewrite the following equations into the form (5.28):

(a) −u′′ + 20u′ = 1,
(b) u′′ + 3u′ − 4u = x2,
(c) (1 − x2)u′′ − 2xu′ + ku = 0 (Legendre’s equation),
(d) x2u′′ + xu′ + (x2 − ν2)u = 0 (Bessel’s equation, see Appendix D).

5.5 Starting from the observation that L u = F ≥ −‖F‖, establish the lower
bound −(‖F‖ϕ) ≤ u in Theorem 5.4.

5.6 Show that the ideas in Example 5.5 may be extended to establish the well-
posedness of the BVP (5.2) when b(x) ≥ 0 for x ∈ [0, 1].
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5.7 ✩Given that a0u(0) − b0u′(0) = 0 and a0v(0) − b0v′(0) = 0, show that
u′(0)v(0) − u(0)v′(0)) = 0.

5.8 Suppose that the operator L is defined by Lu = −u′′ + au′ + bu, where the
coefficients a and b are real constants. Using only integration by parts, show that

〈
u,Lv

〉 = 〈Mu, v
〉 + boundary terms

where M, the adjoint of L, is defined by Mu = −u′′ − au′ + bu. This shows that
the operator L is self-adjoint (L = M) when a = 0.

5.9 Express the ODE

−2xu′′ − u′ = 2 f (x), 0 < x < 1,

in the form (5.31) and show, in particular, that q̃(ξ) ≡ 0. Use the arguments presented
in Example 5.2 to show that this equation has a unique solution when subject to
Dirichlet BCs.

5.10 ✩Show that the functions u(x) = 2x−1 and v(x) = 4x2−4x+ 1
2 are orthogonal

with respect to the inner product (5.17) over the interval 0 < x < 1.

5.11 Show that, for integrable functions u and v, the scalar product (5.17) has the
following properties:

(a)
〈
u, v

〉 = 〈
v, u

〉∗,
(b)

〈
u, u

〉 ≥ 0,
(c) If u(x) is continuous on [0, L], then 〈

u, u
〉 = 0 implies u(x) ≡ 0,

(d)
〈
c1u1+c2u2, v

〉 = c1
〈
u1, v

〉+c2
〈
u2, v

〉
, where u1 and u2 are integrable functions

on [0, L] and c1 and c2 are constants,
(e) If u and v are continuous functions that are orthogonal with respect to the inner

product
〈
u, v

〉
, show that they are linearly independent. (Hint: assume that they

are linearly dependent: that is, there are non-zero constants a, b such that au(x)+
bv(x) = 0 and show that this leads to a contradiction.)

5.12 Solve the BVP

u′′ + a2u = sin πx, 0 < x < 1
u(0) = 1, u(1) = −2,

}

for all a ∈ R. What are the solutions in the cases a = ±π? (Hint: compare with
Example 5.1.)

5.13 Show that the differential equation −u′′(x) = 4π2u(x) (0 < x < 1) with
boundary conditions u(0) = u(1) = 0 has a nontrivial solution φ(x).

Now consider the ODE −u′′ − 4π2u = f (x), 0 < x < 1 with boundary
conditions u(0) = u(1) = 0. Show, by multiplying both sides of this differential
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equation by φ and integrating over the interval 0 < x < 1, that no solution can exist
unless

∫ 1
0 f (x)φ(x) dx = 0.

Illustrate this result by showing that there is no solution in the case when f (x) =
sin 2πx and that there are an infinite number of solutions when f (x) = 1. (Hint:
when f (x) = sin(2πx), show that the general solution is u(x) = 1

4π x cos 2πx +
A sin 2πx + B cos 2πx .)

5.14 For what value(s) of a does the ODE−u′′ − 9u = x − a, 0 < x < π have a
solution with end conditions u(0) = 0, u(π) = 0?

5.15

(a) Determine the eigenvalues λ and corresponding eigenfunctions φ(x) of the ODE
−φ′′(x) = λφ(x), 0 < x < 1, with boundary conditions φ(0) = φ′(1) = 0.

(b) Suppose that −u′′(x) = ω2u(x) + f (x), 0 < x < 1, with boundary conditions
u(0) = 1, u′(1) = −2. If ω2 is equal to one of the eigenvalues λ from part (a),
show that a solution u(x) cannot exist unless

∫ 1

0
f (x)φ(x) dx = 2φ(1) − φ′(0).

Find a constant function f (x) for which this condition is satisfied when ω2 is
equal to the smallest of the eigenvalues and determine the resulting solution
u(x).

5.16 ✩Use the chain rule to make the change of variables ξ = x/L to convert the
BVP

−u′′ = λu, 0 < x < L
u(0) = u(L) = 0,

}

to one involving derivatives with respect to ξ. Deduce the eigenvalues and eigen-
functions of this problem by following Example 5.10.

5.17 Show, by making the substitution u(x) = M(x)w(x) into (5.2) and choosing
M(x) appropriately, that the ODEmay be transformed to the form−w′′ + Q(x)w =
G(x). Express the functions Q and G in terms of a(x), b(x) and M(x).

5.18 ✩Show that the function u(x) = xm is square integrable on the interval (0, 1)
for m > − 1

2 but not for m ≤ 1
2 .

5.19 Show that the functions φn(x) = e2πinx/L , n = 0,±1,±2, . . ., are mutually
orthogonal with respect to the inner product (5.17) on the interval (0, L). Evaluate〈
φn,φn

〉
.

5.20 Complete the working out of Example 5.8.

5.21 ✩Show that, if u is an eigenfunction corresponding to an eigenvalue λ, then cu
is also an eigenfunction for any constant c.
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5.22 ✩Show that the Sturm–Liouville problem (5.33) has an eigenvalue λ = 0 when
a0 = a1 = 0, b0 = 0, b1 = 0 and q(x) ≡ 0 by identifying a suitable eigenfunction.

5.23 Check that the eigenfunctions in Example 5.13 are orthogonal with respect to
the inner product (5.17).

5.24 ✩Show that the choices λ = 4 and λ = 4 − μ2 < 4 in Example 5.13 both lead
to trivial solutions.

5.25 Repeat Example 5.13 with the alternative BCs: u(0) = u(π) = 0.

5.26 Determine the eigenvalues and corresponding eigenfunctions of the differential
equation

−u′′(x) = λu(x), 0 < x < π

with boundary conditions u(0) = u′(0) and u(π) = u′(π).
Show, in particular, that there is one negative eigenvalue and express the correspond-
ing eigenfunction in its simplest form.

5.27 Consider the eigenvalue problem

−x2u′′ + 2xu′ − 2u = λx2u, 0 < x < 1,
u′(0) = 0, u(1) = u′(1).

}

Determine a function M(x) so that, under the change of variable u(x) = M(x)w(x),
it can be transformed to the standard form

−w′′ = λw, 0 < x < 1

and establish the appropriate boundary conditions for w.
Hence determine all eigenvalues and eigenfunctions of the original problem.

5.28 Show that λ = μ2 is an eigenvalue of the BVP

−u′′(x) = λu(x), 0 < x < 1
u(0) = 0, u(1) = u′(1),

}

provided that μ is a root of the equation tan μ = μ. By considering the graphs
of tan μ and μ, show that there are an infinite number of eigenvalues λn and that
λn → (n + 1

2 )
2π2 as n → ∞.

5.29 Consider the eigenvalue problem

−u′′(x) = λw(x)u(x), 0 < x < 1,

u′(0) = 0, u(1) + u′(1) = 0,

where w(x) is a given positive function. Prove that all eigenvalues λ are real and
positive.
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5.30 Extend Theorem 5.11 to prove that all eigenvalues of the Sturm–Liouville
problem (5.33) are real and positive provided that a0, b0, a1 and b1 are positive real
numbers.

5.31 Show that the properties in Exercise 5.11 also hold for the weighted inner
product defined by (5.38).

5.32 Suppose that all members of the set of functions {φn(x)}n∈N are mutually
orthogonal with respect to the weighted inner product

〈
u, v

〉
w
. If f (x) is given by

the convergent sum f (x) = ∑∞
n=1 anφn(x), show that the coefficients satisfy

an =
〈
f,φn

〉
w〈

φn,φn
〉
w

.

5.33 Suppose that φm(x) and φn(x) are eigenfunctions of the Sturm–Liouville prob-
lem (5.33) corresponding to distinct eigenvalues λm and λn . Use Lagrange’s identity
to prove that φm(x) and φn(x) are orthogonal with respect to the weighted inner
product (5.38), that is,

〈
φm,φn

〉
w

= 0 for m = n.



Chapter 6
Finite Difference Methods in R1

Abstract This chapter is an introduction to finite difference approximationmethods.
Key concepts like local truncation error, numerical stability and convergence of
approximate solutions are developed in a one-dimensional setting. This chapter
establishes the theoretical framework that is used to analyse the convergence of
finite difference approximations in later chapters.

Our aim in this chapter is to introduce a simple technique for constructing numerical
solutions to two-point boundary value problems based on the use of finite differences.
Whereas the exact solution is a function u(x) defined on an interval x ∈ [0, L], say,
our numerical solution is sought only at a finite set of grid points

x0 = 0 < x1 < · · · < xM = L .

For the sake of simplicity, we will assume that these grid points are equally spaced,
so that xm = mh (m = 0, 1, . . . , M), where h = L/M is the grid size. The values
of the exact solution of the BVP on the grid are

u(x0), u(x1), . . . , u(xM ).

In the approximation process the given BVP will be replaced by a set of M + 1
algebraic equations (known as finite difference equations) in M + 1 unknowns

U0, U1, . . . , UM .

We shall often refer to U as a grid function, one whose domain is the set of grid
points {x0, x1, . . . , xM } and whose value at the mth grid point xm is denoted by Um .
A typical situation is depicted in Fig. 6.1.

It is essential that the approximation be convergent in the sense that each item
in the list U0, U1, . . . , UM should converge to the corresponding item in the list
u(x0), u(x1), . . . , u(xM ) as M → ∞. This will mean that any desired level of
accuracy can be achieved by choosing M appropriately. Having to take impractically
large values of M in order to meet some desired accuracy tolerance is what drives

© Springer International Publishing Switzerland 2015
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Fig. 6.1 A grid of points xm
(m = 0, 1, . . . , M), the exact
solution u(x) (solid curve),
its restriction to the grid um
(m = 0, 1, . . . , M , crosses)
and a notional numerical
solution Um
(m = 0, 1, . . . , M , dots)

x0 x1 xm−1 xm xm+1 xM−1 xM

u0

u1 um−1
um

um+1
uM−1

uM

U0

U1 Um−1

Um

Um+1 UM−1

UM

the search for more efficient numerical methods. There are two main ways in which
convergence can be problematic:

(a) there may not be a limit as M → ∞—this we attribute to a lack of stability of
the approximation method,

(b) there may be convergence to the wrong limit as M → ∞—this we attribute to
an inconsistency with the original boundary value problem.

These key ideas of consistency, stability and convergence are central to the devel-
opment and analysis of numerical methods and much of this chapter is devoted to
exploring the relationships between these concepts.

The replacement of differential equations and their associated boundary condi-
tions by algebraic equations will be accomplished through Taylor series expansions.
Other means are also possible and some of these are explored in exercises at the end
of this chapter. The building blocks of the approximation process are developed in
the following section and their deployment and effectiveness is studied in subsequent
sections.

6.1 The Approximation of Derivatives

We will suppose throughout this chapter that v is a smooth function, by which we
mean that it is a continuous function that possesses sufficiently many continuous
derivatives in order that various Taylor expansions are valid.

Fig. 6.2 The gradients of the
chords AB (backward), BC
(forward) and AC (central)
are three possibilities for
approximating the gradient
of the tangent to the function
v(x) (solid curve) at B

xm−1 xm xm+1

vm−1

vm vm+1

A

B C
v(x)
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Referring to Fig. 6.2, the gradient of the function v(x) at B (x = xm) may be
approximated by the gradients of any of the chordsAB, BC orAC.We shall formalise
the connections in this section and provide a means for assessing the degree of
approximation involved in each case.

We shall begin with the slope of the forward chord at B(xm, vm). In the Taylor
expansion with remainder

v(x + h) = v(x) + hv′(x) + 1
2h2v′′(ξ), (6.1)

for some number ξ ∈ (x, x + h), we choose x = xm , and rearrange to give

v′(xm) = h−1(v(xm+1) − v(xm)
)− 1

2hv′′(ξm), ξm ∈ (xm, xm+1), (6.2)

where we have written ξm with a subscript to reflect its dependence on xm . We
shall adopt a notation whereby vm, v′

m, v′′
m, . . . are used to denote v(xm), v′(xm),

v′′(xm), . . ., respectively. Thus,

v′
m = h−1(vm+1 − vm

)+ Rm .

The remainder term Rm is known as the local truncation error. It corresponds to
truncating the Taylor series underlying (6.2) and is given by Rm = − 1

2hv′′(ξm).
Although it cannot be evaluated (except in very special cases) we observe that it can
be made arbitrarily small by choosing h to be sufficiently small—provided that v′′
is bounded in the neighbourhood of xm . If we use the “big O” notation whereby
Rm = O(h) signifies that the remainder is roughly proportional1 to h as h → 0,
then we can write

v′
m = h−1(vm+1 − vm

)+O(h). (6.3)

When the remainder term is omitted this provides an estimate, known as the forward
difference approximation, of v′ at x = xm . The forward difference operator �+ is
defined by

�+vm := vm+1 − vm (6.4)

and so v′
m ≈ h−1�+vm with an error of O(h).

In a similar fashion, starting with the Taylor series

v(x − h) = v(x) − hv′(x) + 1
2h2v′′(ξ), ξ ∈ (x − h, x) (6.5)

and the backward difference operator �− defined by

�−vm := vm − vm−1, (6.6)

1More precisely, suppose that z(h) is a quantity that depends on h. We say that z(h) = O(h p) if
there is a constant C , independent of h, such that |z(h)| ≤ Ch p as h → 0.
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it may be shown that
v′

m = h−1�−vm + O(h). (6.7)

Thus v′
m ≈ h−1�−vm , again with an error proportional to h.

The two approximations introduced above are known as first-order approxima-
tions since the error is proportional to (the first power of) h. A more accurate approx-
imation may be obtained by including one more term in each of the expansions (6.1)
and (6.5), so that

v(x ± h) = v(x) ± hv′(x) + 1
2h2v′′(x) ± 1

6h3v′′′(ξ±).

Subtracting one from the other gives

v′(x) = 1
2h−1(v(x + h) − v(x − h)

) + 1
12h2(v′′′(ξ+) + v′′′(ξ−)

)

and, assuming that v′′′(x) is continuous, the intermediate value theorem implies that
there is a point ξm ∈ (ξ−, ξ+) such that

v′
m = 1

2h−1(vm+1 − vm−1
)+ 1

6h2v′′′(ξm), ξm ∈ (xm−1, xm+1). (6.8)

Defining the second-order central difference operator � by

�vm := 1
2

(
vm+1 − vm−1

)
, (6.9)

we find that v′
m = h−1�vm + O(h2), which represents a second-order, central

difference approximation of v′
m .

In summary, there are three basic ways of approximating v′
m using the three grid

values vm−1, vm and vm+1. The second-order approximation (h−1�vm) will always
be more accurate than the first-order approximations (h−1�+vm and h−1�−vm) pro-
vided that h is sufficiently small and the underlying function v is sufficiently smooth.
Moreover, any weighted average of the form

h−1(θ�+ + (1 − θ)�−)vm

will also give a first-order approximation to v′
m except for the special case θ = 1/2,

which coincides with the central difference approximation h−1�vm .
Before leaving this topic, let us introduce another central difference,

δv(x) := v(x + 1
2h) − v(x − 1

2h),

which corresponds to the use of � with h replaced by h/2. When x = xm , a point
on the grid, the right-hand side involves values of v midway between grid points,
while, if x = xm+1/2 (by which we mean x = xm + 1/2h) we have that

δvm+1/2 := vm+1 − vm . (6.10)
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Exploiting the connection with � we can deduce from (6.8) that

v′(x) = h−1δv(x) + 1
24h2v′′′(ξ), ξ ∈ (x − 1

2h, x + 1
2h). (6.11)

Although δ cannot be used on its own (because it requires values at points that
are not on the grid), it is nevertheless indispensable in the approximation of even
derivatives. Indeed, the customary approximation for second derivatives is based on
δ2vm = δ(δvm), that is,

δ2vm = δ(δvm)

= δ(vm+1/2 − vm−1/2) = δvm+1/2 − δvm−1/2

= (vm+1 − vm) − (vm − vm−1) = vm+1 − 2vm + vm−1. (6.12)

To see how this works (see Exercise6.1 for a formal derivation), consider the two
Taylor series expansions

v(x ± h) = v(x) ± hv′(x) + 1
2h2v′′(x) ± 1

6h3v′′′(x) + 1
24h4v′′′′(x) + · · · . (6.13)

Adding these series together we obtain

v(x + h) + v(x − h) = 2v(x) + h2v′′(x) + 1
12h4v′′′′(x) + · · ·

and setting x = xm leads to

v′′
m = h−2(vm+1 − 2vm + vm−1) − 1

12h2v′′′′
m + · · · (6.14)

Thus, from (6.12) we get a centered finite difference approximation to the second
derivative,

v′′
m ≈ h−2δ2vm,

which is second order since the remainder term in (6.14) is proportional to h2.
The main results of this section are summarised in Table6.1. Here the remainder

terms are expressed in the shorthand form O(h p), which is less cumbersome than
using precise expressions like (6.8). Note that, in general, there are a variety of
differentways of combining approximations of first derivatives to approximate higher
derivatives.

Table 6.1 Finite difference operators: definitions and Taylor expansions

Forward difference operator �+vm := vm+1 − vm = hv′
m + 1

2 h2v′′
m + O(h3)

Backward difference operator �−vm := vm − vm−1 = hv′
m − 1

2 h2v′′
m + O(h3)

Central difference operator �vm := 1
2

(
vm+1 − vm−1

) = hv′
m + 1

6h3v′′′
m + O(h5)

Central difference operator δvm := vm+1/2 − vm−1/2 = hv′
m + 1

24h3v′′′
m + O(h5)

Second-order centered
difference operator

δ2vm := vm+1 − 2vm + vm−1 = h2v′′
m + 1

12 h4v′′′′
m + O(h6)
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6.2 Approximation of Boundary Value Problems

We begin by considering the two-point BVP, see (5.9),

−u′′(x) + r(x)u(x) = f (x), 0 < x < 1
u(0) = α, u(1) = β,

}
(6.15)

where r(x), f (x) are given continuous functions on [0, 1]. The boundary conditions
in this example do not require approximation (more complicated boundary conditions
will be covered in Sect. 6.4.1) so we can fix our attention on the differential equation.
When this is evaluated at the mth grid point we get

− u′′(xm) + r(xm)u(xm) = f (xm), (6.16)

and, when the finite difference (6.14) (with v replaced by u) is used to represent the
second derivative term, we find that

− h−2δ2um + O(h2) + rmum = fm, (6.17)

where rm = r(xm) and fm = f (xm). The order term, representing the remainder
terms in the Taylor expansions, is retained in (6.17), so this equation continues to
be satisfied identically by the exact solution of the BVP. When the order term is
neglected, equation (6.17) will no longer be satisfied by u but by some grid function
U , say, which we hope will be close to u. This process leads to a finite difference
representation of (6.15), namely

U0 = α,

−h−2δ2Um + rmUm = fm, m = 1, 2, . . . , M − 1,
UM = β.

⎫⎬
⎭ (6.18)

We will henceforth refer to (6.18) as a discrete BVP. Writing it explicitly gives

− 1

h2 [Um−1 − 2Um + Um+1] + rmUm = fm, (6.19)

form = 1, 2, . . . , M−1,which is a linear relationship between three consecutive grid
values ofU . This is the fewest number of grid points that can be used to approximate
the second derivative of a function. Taken together with the boundary conditions
U0 = α, UM = β, there are M+1 linear algebraic equationswithwhich to determine
the M + 1 grid values of U .

It is convenient for developing the theory of finite difference equations to introduce
notation that resembles that used for differential equations (see Sects. 2.1 and 5.2).
Thus, a finite difference operatorLh (the subscript h acts as a reminder that it involves

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_2
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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a grid of size h) that represents the discretized differential equation is defined via2

LhUm := −h−2δ2Um + rmUm, m = 1, 2, . . . , M − 1. (6.20)

Similarly, we let Fh represent the corresponding source term—its mth component
being, in this case, Fh,m = fm . Equation (6.19) may then be written succinctly as
LhU = Fh .

In keeping with the convention introduced in Sect. 2.1, a script font is used to
represent differential/difference operators together with their boundary conditions.
Accordingly, we define

LhUm =
{

Um for m = 0, M,

LhUm for m = 1, 2, . . . , M − 1,
(6.21)

and

Fh,m =

⎧⎪⎨
⎪⎩

α for m = 0,

fm for m = 1, 2, . . . , M − 1,

β for m = M.

(6.22)

The discrete BVP (6.18) can then be succinctly written as

LhU = Fh . (6.23)

This may be clearly identified as being the discrete analogue of the BVP in (5.11),
namely, L u = F .

It is also useful to express the discrete BVP in matrix–vector notation. To this
end, setting m = 1 in (6.19) and using the left-end condition U0 = α gives

(
2

h2 + r1

)
U1 − 1

h2U2 = f1 + α

h2 .

Similarly, for m = 1, 2, . . . , M − 1 we get

− 1

h2 Um−1 +
(

2

h2 + rm

)
Um − 1

h2Um+1 = fm

and finally, setting m = M − 1, gives

− 1

h2 UM−2 +
(

2

h2 + rM−1

)
UM−1 = fM−1 + β

h2 ,

2The shorthand version LhUm to denote the value of LhU at the mth grid point.

http://dx.doi.org/10.1007/978-3-319-22569-2_2
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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using the right-end condition UM = β.
Next, if we let u ∈ R

M−1 denote the vector

u = [U1, U2, . . . , UM−1]T,

which contains the unknown grid values of U in their natural order, then (6.19) may
be expressed in the matrix form

Au = f , (6.24)

where

A = 1

h2

⎡
⎢⎢⎢⎢⎢⎣

a1,1 −1
−1 a2,2 −1

. . .
. . .

. . .

−1
−1 aM−1,M−1

⎤
⎥⎥⎥⎥⎥⎦

(6.25)

(only the nonzero entries are shown), am,m = 2 + rmh2 and

f =

⎡
⎢⎢⎢⎢⎢⎣

f1 + α/h2

f2
...

fM−2

fM−1 + β/h2

⎤
⎥⎥⎥⎥⎥⎦

It should be observed that not only does the dimension of the matrix A grow without
bound as h → 0 but its nonzero elements also tend to ±∞. The matrix A can
be expressed more neatly by defining T to be the (M − 1) × (M − 1) symmetric
tridiagonal matrix

T = 1

h2

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦

(6.26)

which represents the approximation of the second derivative with Dirichlet boundary
conditions. Then A = T + D, where

D = diag(r1, r2, . . . , rM−1)

is a diagonalmatrix. The algebraic system (6.24)will have a unique solution provided
A is nonsingular; the following lemma establishes a somewhat stronger result.
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Lemma 6.1 The matrix A of equation (6.24) is symmetric and positive definite if
r(x) ≥ 0 or equivalently if rm ≥ 0 for all m.

Proof The symmetry is obvious so we need to prove that vT Av > 0 for all nonzero
vectors v ∈ R

M−1. The condition rm ≥ 0 ensures that vT Dv ≥ 0 and hence

vT Av = vT(T + D)v = vTT v + vT Dv ≥ vTT v.

The positive definiteness of A will then follow from the positive definiteness of T .
To establish this, let L denote the (M − 1) × M matrix

L = 1

h

⎡
⎢⎢⎢⎣

1 −1
. . .

. . .

1 −1
1 −1

⎤
⎥⎥⎥⎦

A direct computation reveals that L LT = T and so, defining w = LTv,

vTT v= vT L LTv = wTw ≥ 0.

Clearly, wTw = 0 if and only if w = 0 but in this case, solving LTv = w = 0 leads
to v = 0. �

Note that the matrix L is a representation of the difference operator −h−1�+ in that
Lvm = −(Um+1 − Um)/h. Likewise, LT (apart from its first and last rows which
are influenced by BCs) represents h−1�− (see Exercise6.2).

Example 6.2 Use the method (6.18) to solve the differential equation

− u′′(x) + 2σ 2 sec2(σ x) u(x) = 4σ 2 cos2 (σ x) (6.27)

on the interval 0 < x < 1 with σ = 3/2 and the boundary conditions u(0) = 1,
u(1) = − sin2 σ .

The matrix A and right hand side f of the linear algebra system (6.24) are readily
calculated for r(x) = 2σ 2 sec2(σ x), f (x) = 4σ 2 cos2 (σ x), α = 1 and β =
− sin2 σ . Current software is capable of solving such systems reliably—because
A is positive definite—and usually in less time than it takes to calculate the elements
of A and f . The numerical solutions with M = 8, 16 and 32 are shown by the dots
in Fig. 6.3 along with the exact solution u(x) = cos2 (σ x) − tan(σ x)/tan σ . ♦

It is observed that the greater the number of grid points the closer the numerical
solution is to the exact solution—an indication, but no more, that the numerical
solutions converge to the exact solution as h → 0. The difference E = u − U ,
known as the global error, is regarded as a grid function since it is defined only at
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Fig. 6.3 The exact solution u(x) (solid line) and the numerical solution U (dots) for Example6.2
when M = 8, 16 and 32

Table 6.2 The maximum global error as a function of h for Example6.2

M h ‖u − U‖h,∞ Ratio

8 0.125 0.13 –

16 0.0625 0.071 1.86

32 0.03125 0.026 2.71

64 0.015625 0.0078 3.38

128 0.0078125 0.0021 3.78

256 0.00390625 0.00052 3.93

512 0.001953125 0.00013 3.98

The final column shows the ratio of the global error with grid size 2h to the global error obtained
using a grid size h

grid points. A natural measure of its magnitude (and one that we shall use throughout
this chapter) is provided by the �∞ or maximum norm, defined by

‖u − U‖h,∞ := max
m

|um − Um |, (6.28)

where we have included a subscript h as a reminder that the maximum is taken over
all points of the grid, rather than the entire interval.

Definition 6.3 (Convergence)Anumericalmethod is said to converge if‖u − U‖h,∞
→ 0 as h → 0. It is said to be convergent of order p if ‖u − U‖h,∞ = O(h p), for
some p > 0.3

Sample results for Example6.2 are shown in Table6.2. The final column shows the
ratio by which the error is reduced when h is halved and suggests that the global
error is reduced by a factor of about four whenever the grid size h is halved—
provided that h is sufficiently small. The results suggest that ‖u − U‖h,∞ ∝ h2 so
that it converges at a second-order rate. Thus reducing h by a factor of 3 will cause a
reduction in the global error of 1/9 and improve the accuracy of the numerical solution

3The order of convergence p is usually an integer but exceptions to this rule are not uncommon, so
beware.
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Fig. 6.4 Log-log plot of the
maximum global error
versus h for Example6.2
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by almost one decimal digit. The convergence can be visualised by supposing that
‖u − U‖h,∞ = O(h p) so that

‖u − U‖h,∞ ≈ Ch p,

if h is small enough that the higher-order terms are negligible. Taking logarithms,

log ‖u − U‖h,∞ ≈ p log h + logC

so a plot of log ‖u − U‖h,∞ versus log h should reveal a straight line of gradient p.
Figure6.4 shows such a log–log plot for Example6.2. The maximum global errors
for M = 8, 16, . . . , 2048 are shown by dots and a dashed line of slope two has been
included for comparison. This provides compelling evidence that the global error is
proportional to h2 when h is sufficiently small. ♦

Numerical experimentation can often expose methods that are not convergent but
a mathematical analysis is necessary in order to establish convergence. This aspect
will be addressed in the next section.

6.3 Convergence Theory

The theory in this section can be applied quite broadly: it revolves around the notation
introduced earlier whereby the BVP L u = F is approximated by a discrete BVP
LhU = Fh . The aim is to follow the principles used in the previous chapter (see
Sect. 5.2) to establish the well posedness of the underlying BVP. The first step in
the analysis is the determination of the local truncation error (LTE). This provides a
measure of how well the discrete BVP matches the original BVP.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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Definition 6.4 (Local truncation error) The local truncation error, denoted by Rh ,
is defined to be the residual when the exact solution u of the BVP is substituted into
the discrete equations. Thus,

Rh := Lhu − Fh .

When attention is restricted to the approximation of the differential equation, the
local truncation error is defined to be4 Rh := Lhu −Fh , so thatRh = Rh except at
boundary points.

Definition 6.5 (Consistency) The approximationLhU = Fh is said to be consistent
with L u = F if Rh := Lhu − Fh → 0 as h → 0. It is consistent of order p if
Rh = O(h p) with p > 0.

Returning to the discreteBVP (6.18), theDirichlet boundary conditions are replicated
exactly so the LTE at x = xm is given by

Rm = −h−2δ2um + rmum − fm, (6.29)

where u is the solution of (6.15). Since f = −u′′ + r u, the result (6.14) leads to

Rm = −
(

u′′
m + 1

12h2u′′′′
m + O(h4)

)
+ rmum − (−u′′

m + rmum
)

= − 1
12h2u′′′′

m + O(h4) (6.30)

soRh = O(h2) and (6.18) is consistent with (6.15) of order two provided, of course,
that u′′′′(x) is bounded on the interval (0, 1).

For a consistent approximationwe have the situationwhere the numerical solution
satisfiesLhU = Fh whereas the exact solution u satisfies the nearby relationLhu =
Fh +Rh . Thus the issue is whether or not this implies that U is close to u. Defining
the global error (as in the previous section) by E = u − U , we see, by linearity of
Lh , that Lh E = Lhu − LhU and so

Lh E = Rh, (6.31)

which is actually the same as the equation forU with the right hand sideFh replaced
byRh . The requirement that E should tend to zero wheneverRh tends to zero leads
to the following definition.

Definition 6.6 (�∞ stability) The discrete operator is said to be stable (with respect
to the maximum norm ‖ · ‖h,∞) if there is a constant C > 0, independent of h, such
that the solution of the equation LhU = Fh satisfies

‖U‖h,∞ ≤ C‖Fh‖h,∞,

where C is known as the stability constant.

4The subscript h will often be omitted and we write R and R since they have no continuous
counterparts and to avoid the notation becoming too onerous.
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This mirrors the definition of a well-posed BVP given in Sect. 2.2.3 with the added
requirement that the upper bound C be independent of h (so as to preclude the
possibility that C → ∞ as h → 0). Two further points are worthy of mention. The
first is that stability ofLh makes no reference to the original differential operator and,
secondly, stability is established with respect to a particular norm, in this case the
maximum norm. The next theorem is often paraphrased as “consistency and stability
implies convergence”.

Theorem 6.7 (Convergence) Suppose that discrete BVP LhU = Fh is a consistent
approximation of L u = F and that Lh is stable in the sense of Definition6.6. Then
‖u − U‖h,∞ → 0 as h → 0. Moreover, if the order of consistency is p > 0 then the
order of convergence is also p.

Proof Stability of Lh , together with (6.31) give

‖E‖h,∞ ≤ C‖Rh‖h,∞

so that‖Rh‖h,∞ = O(h p) implies that‖E‖h,∞ = O(h p)provided thatC is bounded
independently of h. �

We have already seen how consistency of a finite difference scheme can be estab-
lished. As for stability, we exploit its relationship with well-posedness (see Sect. 5.2)
which was built around the ideas of inverse monotonicity (L u ≥ 0 implies u ≥ 0)
and the existence of a comparison function ϕ > 0 such thatL ϕ ≥ 1. The analogue
for discrete operators is given by the following lemma.

Lemma 6.8 (Stability) Suppose that the operator Lh is inverse monotone and that
there is a comparison function Φ > 0 such that5 LhΦ ≥ 1. Then Lh is stable, with
stability constant C = maxm Φm, provided that Φ is bounded independently of h.

Proof See Theorem 5.4. �

The discrete operators encountered so far have been such thatLhUm has involved a
linear combination of three consecutive values of U , namely Um−1, Um and Um+1.
The next definition identifies some simple inequalities that are sufficient (though
not necessary) for operators of this type to be inverse monotone when accompanied
by Dirichlet boundary conditions. The definition will later be extended to include
approximations of other boundary conditions as well as approximations of partial
differential equations.

Definition 6.9 (Positive type operator) A finite difference operator of the form

LhUm := −amUm−1 + bmUm − cmUm+1 (m = 1, 2, . . . , M − 1) (6.32)

is said to be of positive type if the coefficients satisfy the inequalities

5Inequalities of the form V ≥ 0, where V is a grid function, mean that Vm ≥ 0 for all m =
0, 1, . . . , M (or m = 1, 2, . . . , M − 1, depending on context).

http://dx.doi.org/10.1007/978-3-319-22569-2_2
http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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am ≥ 0, cm ≥ 0, bm ≥ am + cm (6.33)

and bm > 0.

Theorem 6.10 (Inverse monotonicity) Suppose that the difference operator Lh is
defined by

LhUm =
{

Um for m = 0, M,

LhUm for m = 1, 2, . . . , M − 1,
(6.34)

where Lh is of positive type, then LhU ≥ 0 implies that U ≥ 0.

Proof Suppose, contrary to the statement of the theorem, that there is at least one
grid point where U is negative. This means that U attains its negative minimum at
an internal grid point x j , say (1 ≤ j ≤ M − 1, since we know that U0 and UM are
both nonnegative fromLhU ≥ 0). Thus,

U j−1 ≥ U j and U j+1 ≥ U j

and it follows from (6.32) and (6.33) that

LhU j ≤ (a j − b j + c j )U j ≤ 0. (6.35)

If the inequality happens to be strict (LhU j < 0) it would contradict the assumption
LhU ≥ 0 and the theorem would be proved.

We suppose therefore that equality holds. This can occur if and only if a j − b j +
c j = 0 and U j−1 = U j = U j+1, that is, the same negative minimum value is taken
at three consecutive grid points. In this case, we apply the same reasoning with either
m = j − 1 or m = j + 1. Continuing in this way, we either obtain a contradiction
because of strict inequality or we reach a stage when the same negative minimum
holds at m = 0 or m = M where we know, by hypothesis, that Um ≥ 0. This again
leads to a contradiction. �

By applying the theorem to −U we may also prove that LhU ≤ 0 implies that
U ≤ 0. A comparison principle follows as in the continuous case: LhU ≥ Lh V
implies that U ≥ V .

Corollary 6.11 (Uniqueness) Suppose that Lh satisfies the conditions of
Theorem6.10. Then the discrete equation LhU = Fh has a unique solution.

Proof See Theorem 5.3.
�

Example 6.12 Show that the finite difference operator defined by (6.21) and (6.20)
is inverse monotone when r(x) ≥ 0.

Using (6.20) and (6.12) we find

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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LhUm = h−2
(
−Um−1 + (2 + rmh2)Um − Um−1

)

and so, comparing with (6.32), am = cm = h−2 and bm = 2h−2 +rm . The condition
bm ≥ am + cm required by Definition6.9 is therefore satisfied provided that rm ≥ 0,
for all m. Thus, not only will the solution of the discrete BVPLhU = Fh be unique,
it will also be nonnegative provided that the dataFh is nonnegative. ♦
The final step required in order use Lemma6.8 to ascertain stability of a discrete BVP
is to identify a suitable comparison function. The good news is that a comparison
function ϕ that has previously been found for the continuous problemL u = F can
also be used for LhU = Fh , provided that Lh is consistent with L in the sense
that Lhϕ → L ϕ, as h → 0. In many cases ϕ is a polynomial of low degree and
we haveLhϕ ≡ L ϕ ≥ 1 and we may therefore choose Φ = ϕ. More generally, for
any constant c > 1, we have

Lh(cϕ) = cLhϕ → cL ϕ ≥ c > 1,

as h → 0. Thus Φ = cϕ may be used as a comparison function for Lh (provided,
of course, that c is independent of h). In both cases the discrete operatorLh is seen
to inherit a comparison function fromL . This contrasts with inverse monotonicity,
which has to be established independently for L and Lh .

Example 6.13 Show that the discrete BVP (6.18), repeated here for convenience,

U0 = α,

−h−2δ2Um + rmUm = fm, m = 1, 2, . . . , M − 1,
UM = β,

⎫⎬
⎭ (6.36)

is stable when r(x) ≥ 0.

Inversemonotonicity of the corresponding operatorLh (defined by (6.21) and (6.20))
was established inExample6.12 and it remains to find a suitable comparison function.
With Lh defined by (6.20),

Lhϕm = −h−2δ2ϕm + rmϕm ≥ −h−2δ2ϕm = −ϕ′′
m− 1

12h2ϕ′′′′(ξm) (6.37)

where we have used rm ≥ 0, ϕm ≥ 0 together with the result of Exercise6.1 (a more
precise version of (6.14)). The comparison function

ϕ(x) = 1 + 1
2 x(1 − x)

was shown in Example 5.5 to satisfy−ϕ′′(x) ≥ 1 for x ∈ (0, 1) along with ϕ(x) ≥ 1
at x = 0, 1. Since ϕ is a polynomial of degree less than four the remainder term in
(6.37) vanishes so

Lhϕm = −ϕ′′
m ≥ 1

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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and, because ϕ has the correct behaviour at the boundary points, Lhϕ ≥ 1. We
conclude that Lh is stable with stability constant C = max ϕ = 9/8. ♦
Thus, by virtue of Theorem6.7, the solution of (6.36) will converge to the solution u
of (6.15) provided that u′′′′(x) is bounded on the interval (0, 1), a property that can
usually be deduced from the differential equation. For example, by differentiating
the ODE u′′ = ru − f twice, we find that

u′′′′(x) = r ′′(x)u(x) + 2r ′(x)u′(x) + r(x)u′′(x) − f ′′(x),

inwhich the right hand side is bounded provided that r and f and their first and second
derivatives are continuous on (0, 1). Convergence of the finite difference method
used in Example6.2 can be verified by a particular instance of this argument (see
Exercise6.4). It is worth noting that finite difference methods of the type considered
in this section usually converge (albeit at a slower rate) even if u′′′′(x) is not bounded,
but the analysis is considerably more delicate than that given in Theorem6.7.

The next example illustrates the new issues that occur when the differential equa-
tion contains a first derivative term.

Example 6.14 (Advection–Diffusion) Write down a finite difference approximation
that is consistent of order two with the BVP

−εu′′(x) + 2u′(x) = f (x), 0 < x < 1
u(0) = α, u(1) = β,

}
(6.38)

where ε > 0. Prove that the numerical solution is convergent of order two.

The approximations (6.8) and (6.14) suggest the numerical method

−εh−2δ2Um + 2h−1�Um = fm, m = 1, 2, . . . , M − 1,
U0 = α, UM = β,

}
(6.39)

which leads to the definition of the operator Lh ,

LhUm = −εh−2δ2Um + 2h−1�Um (6.40a)

= −
(
εh−2 + h−1

)
Um−1 + 2εh−2Um −

(
εh−2 − h−1

)
Um+1 (6.40b)

for m = 1, 2, . . . , M − 1. The form (6.40a) is most convenient for determining
consistency. Thus, using f (x) = −εu′′(x) + 2u′(x) and appropriate results from
Table6.1, we find

Rm = Lhum − fm

= −εh−2δ2um + 2h−1�um − (−εu′′
m + 2u′

m

)
= − 1

12εh2u′′′′
m + 1

3h2u′′′
m + O(h4).
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Accordingly,R = O(h2) when u and its derivatives up to order four are continuous
and bounded.

When the finite difference equations are organised as a linear algebraic system
Au = f (cf. (6.24)) the coefficient matrix A is no longer symmetric—see Exer-
cise6.10—and so its nonsingularity cannot be deduced from Lemma6.1. However,
utilising Definition6.9 and Theorem6.10 (this is where the second form (6.40b) of
the definition of Lh is useful) with

am = εh−2 + h−1, bm = 2εh−2, cm = εh−2 − h−1,

we find that the operator is of positive type whenever h ≤ ε, in which case the
corresponding operator Lh (formed by Lh with Dirichlet boundary conditions) is
inverse monotone. The existence of a unique numerical solution then follows from
Corollary6.11.

In order to use Lemma6.8 to establish stability of Lh , a suitable comparison
function must be found. As in the previous example, this can be achieved by finding
a comparison function for the BVP. Thus, trying a linear function ϕ(x) = Ax + B
where A and B are constants, gives

L ϕ(x) =

⎧⎪⎨
⎪⎩

ϕ(0) = B, x = 0,

−εϕ′′(x) + 2ϕ′(x) = 2A, 0 < x < 1,

ϕ(1) = A + B, x = 1,

and soL ϕ ≥ 1when B ≥ 1, 2A ≥ 1 leading toϕ(x) = 1
2 x+1. Since the consistency

error was shown earlier to involve third and fourth derivatives, Lhϕ = L ϕ ≥ 1
and we may choose Φ(x) = ϕ(x) as a discrete comparison function. Hence Lh is
stable with stability constant C = 3/2. Convergence of order two is thus guaranteed
whenever u and its first four derivatives are continuous and bounded on (0, 1).

The condition h ≤ ε required for inverse monotonicity does not affect the issue of
convergence, since this concerns the situation when h → 0. The condition does have
important practical significance however. Indeed, if the condition is not satisfied,
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Fig. 6.5 The exact solution (solid line) and the numerical solution (dots) for Example6.14 when
ε = 1/20, f (x) = 2 and h = 1/10, 1/19 and 1/21
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that is if h > ε, then the numerical solutions may be prone to so-called wiggles (that
is, they exhibit grid dependent oscillations that are not present in the exact solution).
This is illustrated in Fig. 6.5 where we show the results of numerical experiments
when ε = 1/20, f (x) = 2 and the boundary values are α = 0, β = 2. The exact
solution is given by

u(x) = x − e−2/ε − e−2(1−x)/ε

1 − e−2/ε ,

which is a monotonic increasing function. When M = 10 (so that h/ε = 2) there
are significant oscillations that become barely perceptible when M = 19 (h/ε =
20/19 > 1) and are not visible when M = 21 (h/ε = 20/21 < 1). When ε

becomes significantly smaller, the requirement h ≤ ε becomes impractical and more
sophisticated numerical methods are needed (see Morton [15] or Roos, Stynes and
Tobiska [19]). We shall return to this in a later chapter of the book. ♦

When presented with a finite difference scheme for the first time, some care is
usually required in the definition of the operators Lh andLh in order to ensure that
they are correctly scaled with respect to h. This point is illustrated by the following
example.

Example 6.15 Show that the finite difference method

− (1 + h2)Um−1 + 2Um − (1 + h2)Um+1 = 0, (6.41)

for m = 1, 2, . . . ,M − 1 with end conditions U0 = 2 and UM = −1 is a convergent
approximation of the BVP,

−u′′(x) + 2u(x) = 0, 0 < x < 1
u(0) = 2, u(1) = −1.

}
(6.42)

To check on consistency, we substitute U = u into the left side of (6.41)

− (1 − h2)um−1 + 2um − (1 − h2)um+1 =
2u(xm) − (1 − h2)

(
u(xm − h) + u(xm + h)

)

and, from the Taylor expansions (6.13) with x = xm , we have

u(xm − h) + u(xm + h) = 2h2u(xm) + h2u′′(xm) + 1
12h4u′′′′(xm) + · · ·
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so that

−(1 − h2)um−1 + 2um − (1 − h2)um+1 = h2Lu(xm) + O(h4),

where Lu(x) = −u′′(x) + 2u(x). The presence of the factor h2 on the right hand
side shows that the given finite difference equations needs to be divided by h2 in
order to define Lh :

LhUm := h−2
(
−(1 − h2)Um−1 + 2Um − (1 − h2)Um+1

)
.

The remaining issues for this example are left to Exercise6.14. ♦

6.4 Advanced Topics and Extensions

The material of this section is not essential in a first course on the numerical solution
of boundary value problems but it does lead to a variety of challenging exercises for
the diligent student. The first extension we consider are boundary value problems
associated with the general boundary conditions described at the start of Chap. 5.

6.4.1 Boundary Conditions with Derivatives

The family of boundary value problems of interest to us initially is

−u′′(x) + r(x)u(x) = f (x), 0 < x < 1
u(0) = α, au(1) + bu′(1) = β,

}
(6.43)

having a Dirichlet BC at x = 0 and a Robin BC at x = 1. (The abbreviation BC for
boundary condition will be used throughout this section.) As in Sect. 6.2, we shall
assume that r(x) and f (x) are continuous functions on the interval [0, 1]. We shall
also assume that b = 0 since the situation when b = 0 has already been dealt with.

The differential equation will be approximated using the finite difference method
used for the BVP (6.15), that is, LhU = f , where (see (6.20))

LhUm = −h−2δ2Um + rmUm, m = 1, 2, . . . , M − 1,

and Lu(x) = −u′′(x) + r(x)u(x).

In order to approximate the derivative u′(1) = u′(xM ) by values of u lying on
the grid {x0, x1, . . . , xM } a backward difference approximation must be used. That
is (see Table6.1),

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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u′
M = h−1�−uM + O(h)

= h−1 (uM − uM−1) + 1
2hu′′

M + O(h2). (6.44)

On neglecting the last two terms on the right hand side, the Robin BC au(1) +
bu′(1) = β is seen to lead to the numerical boundary condition

aUM + bh−1�−UM = β, (6.45)

that is, aUM + b (UM − UM−1) /h = β (see Fig. 6.6).
We therefore have the discrete BVP LhU = Fh , where

LhUm =

⎧⎪⎨
⎪⎩

U0,

LhUm,

aUM + bh−1�−UM ,

Fh,m =

⎧⎪⎨
⎪⎩

α for m = 0,

fm for m = 1, 2, . . . , M − 1,

β for m = M.

(6.46)
This gives M + 1 linear algebraic equations for the values Um (m = 0, 1, . . . , M).
The system may be expressed in matrix-vector form Au = f by defining u =
[U1, U2, . . . , UM ]T, with an M × M tridiagonal matrix A

A = 1

h2

⎡
⎢⎢⎢⎢⎢⎣

a1,1 −1
−1 a2,2 −1

. . .
. . .

. . .

−1
−1 aM,M

⎤
⎥⎥⎥⎥⎥⎦

, (6.47)

where am,m = 2 + h2rm (m < M), aM,M = 1 + ha/b, and

f =
[

f1, f2, . . . , fM−1, f β
M

]T
, (6.48)

with f β
M = β/(hb). Note that equation (6.45) representing the boundary condition

has been divided by bh so as to preserve the symmetry of A.
The components of the LTERh = Lhu −Fh at x = xm (m = 0, 1, . . . , M − 1)

are O(h2), as in the previous section. At x = xM we have, from (6.46),

Fig. 6.6 The finite
difference approximation
replaces the Robin boundary
condition at x = xM = 1 by
a relationship between UM
and UM−1

Robin BC (6.45)U0 = a

x1 x2 xM−1

xM = 1x0 = 0
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Rh,M = LhuM − Fh,M

= auM + bh−1�−uM − β

= auM + b
(
u′

M − 1
2hu′′

M ) − β + O(h2) (6.49)

and, since u satisfies auM +bu′
M = β, we find thatRh,M = O(h) giving an order of

consistency of p = 1. We will demonstrate presently that the rate of convergence is
also first order but, before doing so, we shall describe how second-order consistency
can be recovered.

The reduced order consistency is clearly caused by the term − 1
2bhu′′

M in the LTE
(6.49), which originates from the leading error term in (6.44). Applying the ODE
u′′ = ru − f , the approximation (6.44) can be written as

u′
M = h−1�−uM + 1

2h
(
rM uM − fM

) + O(h2).

so that the Robin BC auM + bu′
M = β now leads to

aUM + b
(

h−1�−UM + 1
2hrMUM

)
= β + 1

2bh fM . (6.50)

This suggests a modified discrete BVP L̂hU = F̂h in which the quantities
L̂h, F̂h differ from Lh,Fh only at x = xM , where (compare with (6.46))

L̂hUM = (a + 1
2bhrM )UM + bh−1�−UM , F̂h,M = β + 1

2bh fM . (6.51)

This modified method is consistent of order two with the BVP (6.43) (see
Exercise6.15). When written in matrix–vector notation Au = f , the matrix A and
vector f are still defined as in (6.47) and (6.48) except that

aM,M = 1 + ha

b
+ 1

2
h2rM , f β

M = β

hb
+ 1

2
fM .
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Fig. 6.7 The exact solution (solid line) and the numerical solutions for Example6.16 using σ = 4
with the first-order approximation (dots) and second-order approximation (crosses) of the Robin BC
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Fig. 6.8 Log–log plot of
maximum global error
versus h for the first and
second-order accurate BCs
(dots and +, respectively) of
Example6.16. Two dashed
lines with slopes of one and
two are included for
reference
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These represent minor changes to the original equations—the gain in order of con-
sistency is obtained at essentially no extra cost.

Example 6.16 Use the methods described in this section to solve the differential
equation−u′′(x)+σ 2u(x) = 0 on 0 < x ≤ 1with the boundary conditions u(0) = 1
and σu(1)+u′(1) = σeσ / sinh σ , where σ is a positive constant. The exact solution,
for comparison purposes, is u(x) = sinh(σ x)/ sinh(σ ).

The solutions with σ = 4, M = 8, 16 and 32 are shown in Fig. 6.7 for both methods
(6.45) and (6.50) for approximating the Robin BC at x = 1. There is a discernible
difference between the first- and second-order methods at the two smaller values of
M and they both merge with the exact solution when M = 32. The log–log plot
shown in Fig. 6.8 provides a quantitative measure of the accuracy of the two methods
for M = 2k (k = 3, 4, . . . ,9). On the finest grid (M = 512) the first-order method
has a maximum error of 2 × 10−3 compared with 4 × 10−6 for the second-order
method—a significant increase in accuracy in return for the additional care taken in
the design of the numerical boundary condition. ♦
The analysis of problems that involve Robin BCs require generalisations of
Definition6.9 and Theorem 6.10.

Definition 6.17 (Positive type operator–2) A difference operator Lh defined by

LhUm = −amUm−1 + bmUm − cmUm+1, m = 0, 1, . . . , M, (6.52)

with a0 = 0 and cM = 0 is said to be of positive type if

am ≥ 0, bm > 0, cm ≥ 0, bm ≥ am + cm, m = 0, 1, . . . , M (6.53)
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and also bm > am + cm for at least one value of m.6

Theorem 6.18 (Inverse monotonicity–2) If Lh is of positive type then, LhU ≥ 0
implies that U ≥ 0.

Proof See Exercise6.19. �
Example 6.19 Prove that the methods used in Example6.16 are convergent and
establish the rate of convergence in each of the two schemes.

The problem addressed in Example6.16 is a special case of the BVP (6.43) and so
consistency of the two methods follows from the earlier discussion. The discrete
operator for the first method is

LhUm =

⎧⎪⎨
⎪⎩

U0, m = 0,

−h−2Um−1 + (2h−2 + σ 2)Um − h−2Um+1, m = 1, 2, . . . , M − 1,

−h−1UM−1 + (σ + h−1)UM , m = M,

and so a0 = c0 = 0, b0 = 1,

am = cm = h−2, bm = 2h−2 + σ 2, m = 1, 2, . . . , M − 1,

aM = h−1, bM = σ +h−1 and cM = 0. Since σ is a positive constant, these fulfil the
inequalities required by Definition6.17 soLh is inverse monotone by Theorem6.18.
The operator L̂h representing the second-order method is similarly defined except
that

L̂hUM = −h−1UM−1 + (σ + h−1 + 1
2σ

2h)UM .

Since bM = σ + h−1 + 1
2σ

2h > h−1 = aM + cM , this operator is also of positive
type. Next, to show that these discrete operators are stable we have to find a suitable
comparison function. This can be achieved by looking at the underlying continuous
problem. Thus, ifL is the operator representing the BVP (6.43) and ϕ(x) = C is a
constant function, then

L ϕ(x) =

⎧⎪⎨
⎪⎩

ϕ(0) = C, x = 0,

−ϕ′′(x) + σ 2ϕ(x) = σ 2C, 0 < x < 1,

ϕ′(1) + σϕ(1) = σC, x = 1,

and so L ϕ ≥ 1 by choosing C = max{1, 1/σ 2}. Since Lhϕ = L̂hϕ = L ϕ when
ϕ(x) = C , it follows that Φ = C will also be a comparison function for both Lh

and L̂h .
The methods LhU = Fh and L̂hU = F̂h in Example6.16 are stable and

consistent of order one and two, respectively, and they therefore converge at first

6This condition is satisfied if, for example, a Dirichlet BC is applied at one or both ends of the
interval: LhU0 := U0 would lead to b0 = 1 > a0 + c0 = 0.
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and second-order rates provided that u and its first four derivatives are continuous.
This is easily checked in this example since we know that the exact solution is
u(x) = sinh(σ x)/ sinh σ . ♦

In the final example additional practical and theoretical issues are introduced by
replacing the Dirichlet BC at x = 0 by a Neumann BC.

Example 6.20 Find a second-order consistent finite difference approximation of the
BVP

−u′′(x) + σ 2u(x) = 0, 0< x < 1
u′(0) = −1, σu(1) + u′(1) = 2eσ ,

}
(6.54)

and examine the convergence of the scheme when σ > 1
2 .

The starting point for approximating the BC at the left endpoint is the forward
difference operator (see Table6.1),

u′(0) = h−1�+u0 − 1
2hu′′

0 + O(h2).

To upgrade this to a second-order approximation, the ODE at x = 0 gives u′′
0 = σ 2u0

and so
u′(0) = h−1�+u0 − 1

2hσ 2u0 + O(h2).

Thus, the BC u′(0) = −1 leads to the numerical boundary condition

h−1�+U0 − 1
2hσ 2U0 = −1,

that is
− (

h−1 + 1
2hσ 2)U0 + h−1U1 = −1. (6.55)

This, together with (6.19) and (6.50) defines our discrete BVP. To analyse themethod
we need to express it in the operator form, LhU = Fh , where Lh is inverse
monotone. We observe that the signs of the coefficients of U0 and U1 in (6.55)
are the opposite of those required by Theorem6.18 (at m = 0), so both sides of the
numerical BC (6.55) should bemultiplied by−1 in order to define a suitable operator
Lh :

LhUm =

⎧⎪⎨
⎪⎩

−h−1�+U0 + 1
2hσ 2U0, m = 0,

LhUm, m = 1, 2, . . . , M − 1,

(σ + 1
2σ

2h)UM + h−1�−UM , m = M,

(6.56)

with Lh defined by (6.20) and Fh defined as in (6.46) except that Fh,0 = 1. This
accords with our observation in Sect. 5.2 that derivatives in BCs should be based
on outward-going derivatives. Confirmation that this approximation is both second-
order consistent with the BVP (6.54) and inverse monotone is left as an exercise
(Exercise6.25).

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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A comparison function needs to be found in order to complete the proof of stability
and, for this, we turn again to the continuous problem for which the operator L is
given by

L u(x) =

⎧⎪⎨
⎪⎩

−u′(0), x = 0,

−u′′(x) + σ 2u(x), 0 < x < 1,

u′(1) + σu(1), x = 1.

(6.57)

A constant comparison function is not satisfactory sinceL ϕ(0) = 0 so we look for
a function of the form ϕ(x) = A + Bx . This will satisfy L ϕ(x) ≥ 1 if B = −1
and both conditions σ 2(A − 1) ≥ 1 and σ(A − 1) ≥ 2 hold. Since σ > 1

2 these
are satisfied for A = 5 so ϕ(x) = 5 − x . Clearly ϕ(x) ≥ 0 for x ∈ [0, 1]. Because
ϕ(x) is a polynomial of degree ≤ 2, Lhϕ = L ϕ ≥ 1 and we have a function that
fulfils all the criteria for a comparison function for bothL and Lh . Since the finite
difference approximation that has been constructed is stable whenever σ > 1

2 and is
consistent of second order, it converges at a second-order rate for any value of σ in
this range. ♦

The approach we have used to increase the order of convergence of derivative
BCs can be employed more widely to generate high-order finite difference methods.
This is explored in the concluding section.

6.4.2 A Fourth-Order Finite Difference Method

To illustrate the derivation of finite difference methods with a convergence rate that
is potentially higher than second-order, we return to the Dirichlet problem discussed
earlier, see (6.15),

−u′′(x) + r(x)u(x) = f (x), 0 < x < 1
u(0) = α, u(1) = β.

}
(6.58)

The basis of the approximation in Sect. 6.2 was the following Taylor expansion (see
Table6.1)

u′′
m = h−2δ2um − 1

12h2u′′′′
m + O(h4). (6.59)

An approximation of the leading term 1
12h2u′′′′

m in the truncation error must be
incorporated into the finite difference method so as to increase its order of consis-
tency. A direct approximation of this term requires the five consecutive grid values
um±2, um±1 and um (see Exercise6.32) and is rather cumbersome to implement,
especially in the context of generalisations to PDEs. We shall describe an alternative
approach that fits conveniently into the framework that we have established. The
leading term in the truncation error in (6.59) is proportional to u′′′′

m (x) which, via the
differential equation, can be expressed as
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u′′′′
m (x) = (

r(x)u(x) − f (x)
)′′

then, using h−2δ2vm = v′′
m + O(h2) from Table6.1 with v = ru − f ,

u′′′′
m = h−2δ2

(
rmum − fm

) + O(h2).

When this is combined with (6.59) to approximate the ODE at x = xm , we obtain
the method

− h−2δ2Um + (
rmUm + 1

12δ
2(rmUm)

) = fm + 1
12δ

2 fm (6.60a)

for m = 1, 2, . . . , M − 1, with boundary conditions U0 = α, UM = β. Written
explicitly in terms of grid values, this becomes,

h−2(−Um−1 + 2Um − Um+1
) +

1
12

(
rm−1Um−1 + 10rmUm + rm+1Um+1

)
= 1

12

(
fm−1 + 10 fm + fm+1

)
. (6.60b)

The difference scheme is commonly known as Numerov’s method (because it was
conceived in a 1924paper byBoris Numerov). It is an example of a compact difference
scheme in that it achieves a high-order of consistency (fourth-order, in fact) while
using a minimal number of consecutive grid values.

The discrete BVP may be written in the operator form LhU = Fh , where

LhUm =
{

Um for m = 0, M,

LhUm for m = 1, 2, . . . , M − 1,
(6.61)

with Lh being defined by (6.32) with coefficients

am = 1

h2 − 1

12
rm−1, bm = 2

h2 + 5

6
rm, cm = 1

h2 − 1

12
rm+1, (6.62)

and

Fh,m =

⎧⎪⎨
⎪⎩

α for m = 0,
1
12

(
fm−1 + 10 fm + fm+1

)
for m = 1, 2, . . . , M − 1,

β for m = M.

(6.63)

The operator Lh is of positive type (and therefore inverse monotone by virtue of
Theorem6.10) so long as r(x) ≥ 0 and 12h2r(x) ≤ 1 for all x ∈ [0, 1] (which is
always achievable if h is sufficiently small and r(x) is bounded). The comparison
function used in Example6.13 also applies here and so the method is stable. Conse-
quently, Numerov’s method is convergent of fourth-order whenever the solution is
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Table 6.3 The maximum global error for the second-order method in Example6.2 versus the error
for Numerov’s method as a function of h

M h Conventional method Numerov method

‖u − U‖h,∞ Ratio ‖u − U‖h,∞ Ratio

8 0.125 0.13 – 0.35 –

16 0.0625 0.071 1.86 0.062 5.51

32 0.03125 0.026 2.71 0.0075 8.21

64 0.015625 0.0078 3.38 0.00060 12.61

128 0.0078125 0.0021 3.78 0.000042 14.36

256 0.00390625 0.00052 3.93 0.0000027 15.60

512 0.001953125 0.00013 3.98 0.00000017 15.89

smooth enough (certainly if u and the first six derivatives are continuous functions
over (0, 1)).

Example 6.21 Compare the performance of Numerov’s method with the second-
order finite difference method used to solve the BVP in Example6.2.

Results obtained using Numerov’s method are shown in Table6.3 and are appended
to the original results in Table6.2. Note that the second-order method has a smaller
global error on the coarsest grid; but that the global error for Numerov’s method can
be reduced by up to a factor of 16 (commensurate with a fourth-order method) when
the grid spacing is halved, compared to a maximum factor of 4 for the second-order
method. The superiority of Numerov’s method (at least when computing a smooth
solution) is pretty self-evident. ♦

Exercises

6.1 Derive the result

v′′
m = h−2(um+1 − 2um + um−1) − 1

12h2v(4)(ξm), ξm ∈ (xm−1, xm+1)

by mimicking the derivation of (6.8).

6.2 Show that�+�− = δ2, in the sense that�+�−Um = δ2Um for any grid function
U . Show also that (a) �−�+ = δ2, (b) � = 1

2 (�+ + �−) and (c) δ2 = �+ − �−.

6.3 Verify that �+�+vm = vm+2 − 2vm+1 + vm , where vm := v(xm). Show, by use
of suitable Taylor expansions, that h−2�+�+vm = v′′

m +O(h), providing a first-order
approximation of v′′

m .
What are the corresponding results for �−�−vm?

6.4 By verifying that u′′′′(x) is continuous and bounded in (0, 1) establish that the
finite difference method in Example6.2 is convergent and that the rate is second-
order.
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6.5 ✩ WithLh as defined in Theorem6.10 and

Fh,m =
⎧⎨
⎩

α, m = 0,
fm, m = 1, 2, . . . , M − 1,
β, m = M,

write the equationsLhU = Fh in the form Au = f , where A is an (M−1)×(M−1)
matrix and u, f ∈ R

M−1.

6.6 Show that the finite difference method

−h−2δ2Um + x2mUm = xm, m = 1, 2, . . . , M − 1,
U0 = 1, UM = −2.

}

is an approximation of the BVP

−u′′(x) + x2u(x) = x, 0 < x < 1
u(0) = 1, u(1) = −2

}

that is consistent of second order. When M = 4, write the finite difference equations
in matrix–vector form Au = f .

6.7 ✩Write the finite difference approximation in Exercise6.6 at xm in the form

−amUm−1 + bmUm − cmUm+1 = dm

for m = 1, 2, . . . , M − 1. Give expressions for am , bm , cm and dm . Hence show that
the corresponding finite difference operator is inverse monotone when combined
with Dirichlet BCs.

6.8 Consider the discrete BVP

−h−2δ2Um = 1, m = 1, 2, . . . , M − 1,

with BCs U0 = 0 and 2h−1(UM − UM−1) = 1.

(a) With which BVP is it consistent? What is the order of consistency?
(b) Verify that the discrete BVP satisfies the conditions of Theorem6.18. Deduce

that the numerical solution is non-negative.

6.9 Suppose that LhU = Fh where Lh and Fh are defined by the previous exer-
cise. Find values of a and c so that Φ(x) = cx(x − a) is a comparison function for
Lh , i.e., ⎧⎨

⎩
Φ0 ≥ 0,

−h−2δ2Φm ≥ 1, m = 1, 2, . . . , M − 1,
h−1(ΦM − ΦM−1) ≥ 1.
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Verify that the solution of the discrete BVP in the previous exercise is given by
Um = 1

2 xm(3 − xm−1). Deduce an expression for the global error and thus confirm
the theoretical rate of convergence is actually achieved in this case.

6.10 ✩ Show that the finite difference equations (6.39) lead to an algebraic system
Au = f in which the matrix A is not symmetric.

6.11 Use the central difference operators � and δ2 to construct a finite difference
approximation to the BVP

−u′′(x) + 20u′(x) = x2, 0 < x < 1
u(0) = 0, u(1) = 0,

}

on a grid
{

x j = jh, j = 0, 1, 2, . . . , M
}
and write it in the form

−aUm−1 + bUm − cUm+1 = fm .

For what values of M is the resulting difference operator of positive type?
Show that the discrete BVP has a linear comparison function Φ and hence prove

that the finite difference approximation is stable if h is sufficiently small.

6.12 Show that the finite difference equations

−εh−2δ2Um + 2h−1�Um = 0, m = 1, 2, . . . , M − 1,

(see (6.39)) have solutions Um = A and Um = Bρm , where A, B are constants
and ρ = (ε − h)/(ε + h). The equations therefore have a general solution Um =
A + Bρm . Explain why this implies that solutions are generally oscillatory when
h > ε.

6.13 Define appropriate quantities Lh and Fh corresponding to the upwind finite
difference method

−εh−2δ2Um + 2h−1�−Um = fm, m = 1, 2, . . . , M − 1,
U0 = α, UM = β,

}

where ε > 0, and determine its order of consistency for solving the BVP (6.38).
Prove, by first showing that Lh is of positive type, that the numerical solution con-
verges. What is the convergence rate?

6.14 Complete the investigation of consistency, stability and convergence for
Example6.15. [Hint: show that the constant Φm = 1 is a possible comparison func-
tion.]

6.15 Suppose that L̂UM and F̂h,M are defined by equation (6.51). Verify that
the discrete BVP L̂hU = F̂h is consistent of order two with the BVP (6.43) at
x = xM = 1.
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6.16 Show that the standard central difference approximation (6.19) of the differen-
tial equation together with the numerical boundary condition aU0 −bh−1�+U0 = α

leads to a discrete BVP that is consistent of order one with the BVP defined by
−u′′(x) + r(x)u(x) = f (x) for 0 < x < 1 with a Robin BC au(0) − bu′(0) = α at
x = 0 and Dirichlet BC u(1) = β at x = 1.

6.17 Explain how the approximation of the Robin BC in the previous exercise can
be modified to give rise to a discrete BVP that is consistent of order two.

6.18 ✩ WithLh given in Definition6.17 and

Fh =

⎧⎪⎨
⎪⎩

α, m = 0

fm, m = 1, 2, . . . , M − 1

β, m = M,

write the equationsLhU = Fh in the form Au = f , where A is an (M+1)×(M+1)
matrix and u, f ∈ R

M+1.

6.19 Prove Theorem6.18 by generalising the proof of Theorem6.10.

6.20 ✩ Verify that the operatorsLh defined by (6.46) and its modification L̂h defined
with the BC (6.51) are both of positive type provided that the coefficients a and b in
the Robin BC have the same sign.

6.21 ★ Show that Lh defined by

LhUm =
⎧⎨
⎩

−h−1(U1 − U0), m = 0,
−h−2δ2Um, m = 1, 2, . . . , M − 1,

h−1(UM − UM−1), m = M,

does not satisfy the conditions of Theorem6.18.
Verify that Lh V = 0 for any constant grid function V . Deduce that if LhU = Fh

has a solution U , then it also has a family of solutions U + V for every constant
function V . (Thus, if a solution exists then there are infinitely many solutions.)

Suppose thatFh is given by (6.22). Show that the BVP with which the numerical
method is consistent also has infinitely many solutions.

Under what conditions onF andFh do solutions to the continuous and discrete
BVPsL u = F andLhU = Fh , respectively, exist? [Hint: integrate the ODE over
the interval 0 < x < 1 and, using δ2 = �+�−, sum the finite difference equations
for m = 1, 2, . . . , M − 1.]

6.22 ★Suppose that the operator Lh in the previous exercise is modified so that its
value atm = 0 readsLhU0 = hU0−h−1(U1−U0). Show that the resulting operator
is inverse monotone but unstable. [Hint: repeat the summation process used in the
previous exercise.]
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6.23 Show that LhUm := −8Um−1 + 65Um − 8Um+1 defines an inverse monotone
operator Lh .

Verify that the homogeneous equations LhUm = 0 have solutions Um = A8m

and Um = B 8−m for arbitrary constants A, B, and that its general solution is the
sum of these two sequences. Determine the coefficients in this linear combination
from the boundary conditions U0 = α and UM = β.

Sketch the solutions for m = 0, 1, . . . , M when M = 10 and α = ±1, β = 2.
[Hint: Show that Um ≈ α8−m + β8M−m .] Verify that, in both cases, min(0, α, β) ≤
Um ≤ max(0, α, β).

6.24 Suppose that Lh is as defined by (6.32) and that U satisfies the homogeneous
equations LhUm = 0, for m = 1, 2, . . . , M − 1, with BCs U0 = α, UM = β. Prove
that min(0, α, β) ≤ Um ≤ max(0, α, β) when Lh inverse monotone.

6.25 Verify that the operatorLh defined by (6.56) is inverse monotone when σ > 0.

6.26 Given a finite difference operator Lh and an associated grid function Fh

defined by

LhUm =

⎧⎪⎨
⎪⎩

U0,

−h−2δ2xUm + Um, m = 1, 2, . . . , M − 1,

h−1
(
(1 + 1

2h2)UM − UM−1
)
,

Fh,m =

⎧⎪⎨
⎪⎩
0,

f (mh), m = 1, 2, . . . , M − 1,
1
2h f (Mh),

where Mh = 1, show that LhU = Fh is second-order consistent with the BVP

−u′′(x) + u(x) = f (x) , 0 < x < 1
u(0) = 0, u′(1) = 0.

}

Prove, from first principles, that Fh ≥ 0 implies that U ≥ 0.

6.27 Determine the order of consistency of the finite difference methods

⎧⎨
⎩

−h−1�+U0 = 1,
−h−2δ2Um + xmUm = 1, m = 1, 2, . . . , M − 1,

UM = 2

and ⎧⎨
⎩

−h−1�+U0 = 1 − 1
2h,

−h−2δ2Um + xmUm = 1, m = 1, 2, . . . , M − 1,
UM = 2
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for solving the BVP

−u′′(x) + xu(x) = 1, 0 < x < 1
−u′(0) = 0, u(1) = 2.

}

6.28 Develop a finite difference approximation of the BVP

−u′′(x) = x2, 0 < x < 1
−u′(0) = 1, u′(1) + u(1) = 2

}

that is consistent of order two.

6.29 Suppose that u(x) is a solution of the differential equation

−u′′ + 4u′ + x2u = sin πx, 0 < x < 1

with the BCs u(0) = 0 and u′(1) = 2. Show that

−h−2δ2Um + 4h−1�Um + x2mUm = sin πxm,

where xm = mh (m = 0, 1, 2, . . . , M , h = 1/M), is second-order consistentwith the
differential equation. Derive a second-order approximation of the derivative bound-
ary condition at x = 1.

6.30 Suppose that u(x) satisfies−u′′+xu′ = cosπx for 0 < x ≤ 1. Determine con-
stants A and B so that h−1(U1−U0) = AU0+ B is a finite difference approximation
of the boundary condition u′(0) = 2u(0) that is second-order consistent.

6.31 Let L(ρ) denote the M × (M + 1) matrix

L(ρ) = 1

h

⎡
⎢⎢⎢⎣

−1 1
. . .

. . .

−1 1
−1 ρ

⎤
⎥⎥⎥⎦

and let A0 denote the M × M matrix obtained from (6.47) by setting r1 = r2 =
· · · = rM−1 = 0. If aM,M ≥ 1, show that a real value of ρ may be found such that
L(ρ)L(ρ)T = A0. Hence, extend the proof of Lemma6.1 to prove that A is positive
definite provided that the coefficients a and b in the Robin boundary condition in
(6.43) have the same sign.

6.32 Show that h−4δ4um = u′′′′
m + O(h2) and combine it with (6.59) to give the

approximation

u′′
m = h−2

(
δ2 − 1

12δ
4
)

um + O(h4).
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Hence, construct a fourth-order approximation of the ODE (6.58) that can be applied
at grid points x = xm , (m = 2, 3, . . . , M − 2). Verify that

(
δ2 − 1

12δ
4
)

um = 1
12 (um−2 − 16um−1 + 30um − 16um+1 + um+2),

to show that the finite difference equation necessarily involves values of u at five
consecutive grid points.

6.33 Suppose that Numerov’s method from Sect. 6.4.2 is applied to the BVP

−u′′(x) + 12u(x) = 12x, 0 < x < 1
u(0) = 3, u(1) = −5.

}

Write the corresponding finite difference equations in matrix–vector form Au = f
when M = 4.

6.34 Suppose that Lh and Fh are defined by (6.61) and (6.63), respectively. Use
appropriate Taylor expansions to verify that the local truncation errorRh = Lhu −
Fh for Numerov’s method is O(h4) if u ∈ C6[0, 1] and r, f ∈ C4[0, 1]. [Hint:
definingLh byLhum = −h−2δ2um +(

rmum + 1
12δ

2(rmum)
)
simplifies the algebra.]

6.35 ✩ Suppose that LhU = Fh , where Lh is inverse monotone. Suppose that, in
addition, Φ is a discrete comparison function such that Φ ≥ 0 and that

LhΦm ≥ 1 when Fh,m = 0,

LhΦm ≥ 0 when Fh,m = 0.

Prove that ‖Um‖h,∞ ≤ C‖Fh‖h,∞ where C = ‖Φ‖h,∞.

6.36 In the light of the previous exercise, show that Φ(x) = 1
2 x(1 − x) could be

used as a comparison function for the Dirichlet problem in Example6.13.

6.37 An alternative approach to constructing finite differencemethods is themethod
of undetermined coefficients. The idea is to assume a particular form for Lh . As an
example, let us suppose that Lh is to involve three consecutive grid values as in
(6.32), where the unknown coefficients (am, bm, cm) are determined by requiring,
for each m, that Lhvm = Lvm for v(x) = 1, (x − xm) and (x − xm)2. Show that this
implies that Lhvm = Lvm for all polynomials of degree at most two.

In the case that Lv(x) = −v′′(x) + r(x)v(x), show that this process leads to the
standard finite difference approximation (6.20).

6.38 ★Use the method of undetermined coefficients outlined in the previous exercise
to develop a finite difference approximation of the operatorLu = −εu′′(x)+2u′(x).
Compare the resulting approximation method with the scheme in (6.40b).
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6.39 Consider the BVP

−u′′(x) = f (x), 0 < x < 1
u(0) = 0, u(1) = 0,

}

with the following right-hand side functions:

(a) f (x) = 192(x − 1
2 )

2,
(b) f (x) = 0 for 0 < x ≤ 1

2 and f (x) = 384(x − 1
2 )

2 for 1
2 < x < 1,

(c) f (x) = 0 for 0 < x ≤ 1
2 and f (x) = 96(x − 1

2 ) for
1
2 < x < 1.

Determine the exact solution in each case and show that they satisfy u(1/2) = 1.
[Hint: In cases (b) and (c) it will be necessary to determine the general solution of
the ODEs separately in the intervals (0, 1

2 ) and ( 12 , 1) which will give rise to four
arbitrary constants. These may be determined by applying the BCs and by insisting
that both u(x) and u′(x) be continuous at x = 1

2 .]
Conduct numerical experiments using the finite difference approximation given

in equation (6.18) to ascertain whether or not the numerical solutions converge in
each of these three cases. If so, estimate the rate of convergence.



Chapter 7
Maximum Principles and Energy Methods

Abstract This chapter extends the ideas in earlier chapters and identifies two
concepts that are useful for checking the well-posedness of boundary value prob-
lems. These concepts play a fundamental role in establishing the stability of finite
difference solutions in later chapters.

The well-posedness of boundary value problems associated with general linear
second-order PDEs was assessed in Chap. 4 by considering fundamental solutions,
or more generally, integral formulae expressing the solution in terms of the bound-
ary data. Such a procedure has limited utility however. Fundamental solutions only
exist for a small number of problems, so more general techniques are needed. In this
chapter, we develop two powerful tools—maximum principles (based on inverse
monotonicity) and energy methods (based on the use of inner products)—that are
applicable more widely when studying properties of PDEs.

7.1 Maximum Principles

Wefirst showhow the concept of inversemonotonicity thatwas introduced inSect. 5.2
in the context of two-point boundary value problems may be extended to parabolic
and elliptic BVPs. This framework requires that the BVPs be written in the form

L u = F , (7.1)

where the operator L is inverse monotone and possesses a suitable comparison
function. Once this is done themain theorems in Sect. 5.2 are immediately applicable
in a PDE context. We present a number of examples in the sequel. Before doing
so however, we will discuss some iconic results from the theory of parabolic and
elliptic PDEs.

As discussed in Chap. 4, the heat equation (pde.4) is the quintessential parabolic
PDE. We begin with a celebrated result that has an intuitive physical interpretation:
if no heat is applied to the interior of an insulated rod of unit length, its temperature
cannot exceed the larger of its initial temperature and that at its ends.
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Fig. 7.1 The domain Ωτ for
the heat equation (pde.4)
(shaded) and the boundary
Γτ (thick line)

t = τ
t

x

Ωτ ΓτΓτ

Γτ

Theorem 7.1 (Maximum principle for the heat equation) Let κ > 0, suppose that
the function u(x, t) satisfies the inequality

−κuxx + ut ≤ 0

for (x, t) ∈ Ωτ , where

Ωτ = {(x, t) : 0 < x < 1, 0 < t ≤ τ } ,

then u(x, t) is either constant or else attains its maximum value on Γτ , which is the
boundary of Ωτ excluding the side t = τ (see Fig.7.1).

Proof We begin the proof as in Example 5.5 by assuming that strict inequality holds:
−κuxx + ut < 0 throughout Ωτ . If u were to achieve a maximum at some point
(x∗, t∗) ∈ Ωτ this would require

uxx (x∗, t∗) ≤ 0 and ut (x∗, t∗) ≥ 0

(wewould have ut (x∗, t∗) = 0 if themaximum occurred for t∗ < τ , but ut (x∗, t∗) ≥
0 if it occurred at t∗ = τ ) meaning that −κuxx + ut ≥ 0 at (x∗, t∗), contradicting
our hypothesis.

Returning to the original premise that −κuxx + ut ≤ 0, we go back to the
comparison function ϕ(x) = 1 + 1

2 x(1 − x) used in Example 5.5 and we define the
function v by

v(x, t) = u(x, t) + εϕ(x). (7.2)

It is easily shown that−κvxx +vt = −κuxx +ut−κε so that−κvxx +vt < 0 for all
positive values of ε. The earlier argument then implies that v achieves its maximum
on Γτ since it cannot occur in Ωτ . The proof is completed by allowing ε → 0+. �

Corollary 7.2 If ut = κuxx in Ωτ then u attains its maximum and minimum values
on Γτ .

Proof See Exercise 7.2. �

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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The next result shows that the operator corresponding to the heat equation with
an initial condition and Dirichlet boundary conditions is inverse monotone, that is,
L u ≥ 0 implies that u ≥ 0.

Corollary 7.3 (Inverse monotonicity for the heat equation) The operator L defined
by

L u(x, t) =
{

−κuxx + ut for (x, t) ∈ Ωτ ,

u(x, t) for (x, t) ∈ Γτ

is inverse monotone.

Proof See Exercise 7.3. �

The well-posedness of the inhomogeneous heat equation with Dirichlet boundary
conditions is the focus of the following example.

Example 7.4 Show that the BVP for the heat equation ut = κuxx + f (x, t), for
(x, t) ∈ Ωτ is well posed for the initial/boundary condition: u(x, t) = g(x, t) for
(x, t) ∈ Γτ .

WithL in Corollary 7.3 and the source term defined by

F (x, t) =
{

f (x, t), (x, t) ∈ Ωτ

g(x, t), (x, t) ∈ Γτ ,
(7.3)

the BVP can be written in the requisite form (7.1). The inverse monotonicity of L
is thus sufficient to ensure uniqueness of the solution (see Theorem 5.3). For well-
posedness, we adapt the argument used in Example 5.5 to the present situation. To
this end the comparison function ϕ(x) = 1+ 1

2 x(1−x) satisfiesL u ≥ 1 everywhere
in Ωτ as well as on the boundary Γτ . A suitable norm is1

‖F‖ = max

{
max

(x,t)∈Ωτ

| f (x, t)|, max
(x,t)∈Γτ

|g(x, t)|
}

, (7.4)

so well-posedness follows immediately (from Theorem 5.4), provided that the func-
tions f and g are bounded on their respective domains. ♦
The Poisson equation is the quintessential elliptic PDE, see (4.28). In two dimensions
it can be written in the form Lu = f , with

Lu := −uxx − uyy (7.5)

and is assumed to hold on a domain Ω such as that shown in Fig. 7.2.
Like the heat equation, it has a well-defined maximum principle.

1The alternative norm ‖F‖ = max(x,t)∈Ωτ | f (x, t)|+max(x,t)∈Γτ |g(x, t)| leads to a slightly larger
upper bound.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_4
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Fig. 7.2 The domain Ω for
the Poisson equation which
is contained between the
lines x = 0 and x = a

Theorem 7.5 (Maximum principle for the Poisson equation) Suppose that the
function u(x, y) satisfies the inequality

−uxx − uyy ≤ 0

for (x, y) ∈ Ω then u(x, y) is either constant or else attains its maximum value on
∂Ω , the boundary of Ω .

Proof We shall suppose that the domain Ω is contained in the strip 0 ≤ x ≤ a (see
Fig. 7.1) then apart from cosmetic changes (replacing u(x, t) by u(x, y), Ωτ by Ω

and Γτ by ∂Ω) the only alteration needed to the proof of Theorem 7.1 is to define

v(x, y) = u(x, y) + εϕ(x), ϕ(x) = 1 + 1
2 x(x − a) (7.6)

instead of (7.2). Note that vxx ≤ 0 and vyy ≤ 0 at a maximum of v in Ω . �

Corollary 7.6 (Laplace’s equation) If uxx+uyy = 0 inΩ then u attains its maximum
and minimum values on the boundary ∂Ω .

Corollary 7.7 (Inverse monotonicity for the Poisson equation) The operator L
defined by

L u(x, y) =
{

−uxx − uyy for (x, t) ∈ Ω,

u(x, y) for (x, t) ∈ ∂Ω

is inverse monotone.

The well-posedness of the Poisson equation with Dirichlet boundary conditions is
established in the following example by combining the result of Theorem 7.5 and its
corollaries.

Example 7.8 Show that the BVP for the Poisson equation −uxx − uyy = f (x, y),
for (x, y) ∈ Ω is well posed for the boundary condition: u(x, y) = g(x, y) for
(x, y) ∈ ∂Ω .

To get to the requisite form (7.1), we let L be as in Corollary 7.7 and set

F (x, y) =
{

f (x, y), (x, y) ∈ Ω

g(x, y), (x, y) ∈ ∂Ω.
(7.7)
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The inverse monotonicity ofL ensures uniqueness of the solution. Next, we extend
the argument used in Example 7.4 to the present situation. Thus, assuming that the
domain Ω fits into the strip 0 ≤ x ≤ a, we simply take ϕ(x) = 1 + 1

2 x(a − x)

as the comparison function. Well-posedness immediately follows from Theorem 5.4
whenever the functions f and g are bounded on their respective domains. ♦

One needs to proceed with a lot more care if Neumann boundary conditions are
substituted for the Dirichlet conditions in the previous example since a solution may
not even exist in this case! This is will be addressed in the next example. First, we
recall from Chap.2 that �n := �n(x, y) denotes the outward unit normal vector to a
point (x, y) on ∂Ω so that un := �n · grad u represents the outward normal derivative
to ∂Ω .

Example 7.9 (Neumann boundary conditions) Consider the BVP for the Poisson
equation −uxx − uyy = f (x, y), for (x, y) ∈ Ω when subject to the BC un(x, y) =
g(x, y) for (x, y) ∈ ∂Ω .

To make progress, we use the relation uxx +uyy = div grad u and integrate the PDE
over Ω . Applying the divergence theorem then gives

∫
Ω

div grad u dΩ =
∫

∂Ω

�n · grad u dS =
∫

∂Ω

un dS.

Since div grad u = − f in Ω and un = g on ∂Ω , we find that the given functions f
and g are required to satisfy a compatibility condition:

∫
Ω

f dΩ +
∫

∂Ω

g dS = 0, (7.8)

otherwise a solution cannot exist. Assuming that (7.8) holds, we observe that if
u(x, y) is a solution to the given problem, then u(x, y) + c is also a solution, for
any constant c.2 This means that there are infinitely many solutions! An additional
condition is required to restore uniqueness in this case. For example, one could choose
to find the specific solution satisfying u(x∗, y∗) = 0 for some point (x∗, y∗) ∈
Ω ∪ ∂Ω , or else one could find the solution satisfying

∫
Ω

u dΩ = 0. (7.9)

(In the context of u representing a pressure, this latter condition means that the net
force on the domain is zero). ♦
The concept of inverse monotonicity is not so helpful when considering hyperbolic
PDEs. The next example illustrates why an alternative construction is needed in such
cases.

2This might occur, for instance, when u is the pressure in a fluid. In such systems it is usually only
the difference in pressure between two points and not the absolute pressure that can be measured.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_2


124 7 Maximum Principles and Energy Methods

Example 7.10 (The wave equation) Suppose that u satisfies the wave equation utt =
a2uxx in the quarter-plane x > 0, t > 0 and is subject to the boundary condition
u(0, t) = 0 and initial conditions u(x, 0) = g(x) and ut (x, 0) = 0, where g(x) is an
odd function of x . Show that positive initial data (g0(x) ≥ 0, for x ∈ [0,∞)) does
not necessarily lead to a positive solution for t > 0.

The general solution of thewave equation is given by d’Alembert’s formula (equation
(4.20) with g1 = 0):

u(x, t) = 1

2
(g(x − at) + g(x + at)) . (7.10)

When x = 0 this reduces to u(0, t) = 1
2 (g(−at) + g(at)) = 0 (since g is an odd

function) so (7.10) is a valid solution to the quarter-plane problem. There are many
examples of odd functions g(x) that are positive on (0,∞) but lead to solutions
u that are negative in certain parts of the positive quadrant. For example, taking
g(x) = x/(1+ x2) it can be shown that u(1, 2/a) = −1/10 < 0. Thus, in this case,
positive data does not lead to a positive solution. ♦

7.2 Energy Methods

Energy methods provide an alternative way of establishing well-posedness. They
can, moreover, be applied to hyperbolic PDEs.

To demonstrate the basic idea of energymethodswe take the heat equation (pde.4)
(ut = κuxx ) with zero Neumann end conditions as a prototypical BVP. Integrating
the heat equation over the spatial interval gives

∫ 1

0

∂u

∂t
dx =

∫ 1

0
κ

∂2u

∂x2
dx = κ

∂u

∂x

∣∣∣∣
1

x=0
= 0, (7.11)

where the right hand side is zero because of the homogeneous Neumann BCs. The
left hand side of (7.11) can be identified with d

dt

∫ 1
0 u(x, t) dx and the quantity∫ 1

0 u(x, t) dx , which is a function of t only, may be interpreted as the total heat
content of the bar at time t . Since its derivative is zero the heat content remains
constant in time so is always equal to its initial value:

∫ 1

0
u(x, t) dx =

∫ 1

0
u(x, 0) dx =

∫ 1

0
g(x) dx . (7.12)

This is consistent with the bar being kept insulated.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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In a similar vein, if both sides of the PDE are multiplied by u before integrating,
we have ∫ 1

0
u

∂u

∂t
dx = κ

∫ 1

0
u

∂2u

∂x2
dx .

The integrand on the left hand side may be written as 1
2∂t (u2) and, by integrating the

right hand side by parts, we find that

1

2

d

dt

∫ 1

0
u2 dx = κu

∂u

∂x

∣∣∣∣
1

x=0
− κ

∫ 1

0

(
∂u

∂x

)2

dx

The first term on the right hand side vanishes when the ends are subject to either
homogeneous Dirichlet or Neumann BCs and so, in these cases,

d

dt

∫ 1

0
u2 dx = −2κ

∫ 1

0

(
∂u

∂x

)2

dx ≤ 0.

Therefore
∫ 1
0 u2(x, t) dx , which is a measure of the magnitude of the solution at time

t , is a nonincreasing quantity, so it cannot exceed its initial value:

∫ 1

0
u2(x, t) dx ≤

∫ 1

0
g2(x) dx . (7.13)

This implies stability —the solution to the heat equation cannot blow up in time! This
is not all—it also implies that the problem has a unique solution (by Theorem 2.7,
since u(x, t) ≡ 0 whenever g(x) ≡ 0) and is therefore well posed. Inequalities like
that in (7.13) have acquired the sobriquet of “energy inequalities” despite the fact
that the integral on the left hand side does not actually represent a physical energy.
The key point is that it is the integral of a nonnegative quantity. ♦

Example 7.11 (The wave equation) The energy E associated with the wave equation
utt = c2uxx for 0 < x < 1, t > 0 is given by

E(t) =
∫ 1

0

(
(ut )

2 + c2(ux )
2) dx .

Show that the energy E is constant in time when the equation is supplemented with
homogeneous Neumann boundary conditions.

By differentiating with respect to t , we find,

dE

dt
= 2

∫ 1

0

(
ut utt + c2ux uxt

)
dx .

http://dx.doi.org/10.1007/978-3-319-22569-2_2
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Next, integrating the second term on the right hand side by parts gives

dE

dt
= 2

∫ 1

0
ut

(
utt − c2uxx

)
dx + c2ux ut

∣∣∣1
0
.

The imposed boundary conditions make the boundary term zero, so the right hand
side is identically zero. Thus E(t) does not vary with time.

The same conclusion may be drawn if the Neumann boundary conditions are
replaced by Dirichlet conditions of the form u = constant at either, or both, x = 0, 1.
For example, if u(0, t) = constant then ut (0, t) = 0 and the corresponding boundary
term above vanishes. ♦
Exercises

7.1 Show that Theorem 7.1 can also be established by making the choice v(x, t) =
u(x, t) + ε(τ − t) for 0 ≤ t ≤ τ .

7.2 Prove Corollary 7.2.

7.3 Prove Corollary 7.3.

7.4 Suppose that u satisfies the advection–diffusion equation ut + 2ux = uxx for
0 < x < 1 and t > 0 together with homogeneous boundary conditions3 ux = 2u at
x = 0 and x = 1, and the initial condition u(x, 0) = 6x , for 0 < x < 1. Show that
the total mass M(t) := ∫ 1

0 u(x, t) dx satisfies M ′(t) = 0 and deduce that M(t) = 3
for all t ≥ 0.

Show also, by employing the energy method, that E(t) := ∫ 1
0 u2(x, t) dx satisfies

E ′(t) ≤ 0 and deduce that E(t) ≤ 12.

7.5 Suppose that u satisfies the PDE ut = xuxx + ux together with homogeneous
Dirichlet boundary conditions and the initial condition u(x, 0) = sin πx for 0 <

x < 1.
Use the energy method to prove that

∫ 1
0 u2(x, t) dx ≤ 1/2.

[Hint: show that xuxx + ux = ∂x (aux ) for a suitable function a(x).]

7.6 Suppose that u(r, t) satisfies the heat equation in polar coordinates with circular
symmetry, that is, rut = (rur )r (see Example 5.14), in the region 1 < r < 2,
t > 0 with BCs u(1, t) = 0, u(2, t) = 0 for t > 0 and initial condition u(r, 0) =
(r − 1)(2 − r) for 1 ≤ r ≤ 2.

3The PDE may be written in the form of a conservation law ut + f (u)x = 0 with a flux function
f (u) = 2u − ux . The boundary conditions are then seen to be zero-flux conditions.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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Show, using an energy argument, that

d

dt

∫ 2

1
ru2 dr = −2

∫ 2

1
r (ur )

2 dr.

Deduce that
∫ 2
1 ru(r, t)2 dr ≤ 1/20 for all t > 0.

7.7 Suppose that the solution u(x, t) of the heat equation is subject to homogeneous
(Dirichlet or Neumann) boundary conditions and has initial condition u(x, 0) =
g(x). Establish the energy inequality

∫ 1

0
u2

x (x, t) dx ≤
∫ 1

0
(g′(x))2 dx

by differentiating the integral on the left with respect to t .

7.8 Suppose that u(x, y) satisfies the Poisson equation −∇2u = f (x, y) for
(x, y) ∈ Ω with homogeneous Dirichlet boundary conditions. By first multiply-
ing both sides of the PDE by u and then proceeding as in Example 7.9, show that

∫
Ω

(
(ux )

2 + (uy)
2) dΩ =

∫
Ω

u f dΩ.

Deduce that the boundary value problem consisting of Poisson’s equation with
Dirichlet boundary conditions has a unique solution.
[Hint: div α�v = α div �v + �v · grad α.]

7.9 Explore the consequences of replacing the homogeneous Dirichlet boundary
condition in the previous exercise by the homogeneousNeumann boundary condition
un = 0. Explain why it cannot be concluded that the problem has a unique solution.

7.10 Suppose that the wave equation of Example 7.11 is subject to the Robin bound-
ary conditionsa0u(0, t)−b0ux (0, t) = 0 anda1u(1, t)+b1ux (1, t) = 0 for constants
a0, b0, a1, b1 with b0 �= 0 and b1 �= 0. Calculate the derivative E ′(t) of the energy
given in the example.

How should E(t) be modified in order to remain constant in time with these new
boundary conditions?

What constraints should be imposed on a0, b0, a1, b1 to ensure the modified
energy is a nonnegative function of u?

7.11 Consider the Korteweg-de Vries equation ut +6uux +uxxx = 0 on the interval
−∞ < x < ∞ for t > 0 (see (pde.9)). If u and its derivatives decay to zero
sufficiently rapidly as x → ±∞, show that the total mass m(t) and the momentum
M(t), defined by
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m(t) =
∫ ∞

−∞
u(x, t) dx, M(t) =

∫ ∞

−∞
u2(x, t) dx,

are both constant in time.

7.12 Suppose thatu is a solutionof theKorteweg-deVries equation as in the previous
exercise. Show that the energy

E(t) =
∫ ∞

−∞
( 1
2 (ux )

2 − u3) dx

is also constant in time.4

4An indication of the special nature of the KdV equation is that it has an infinite number of such
conserved quantities.



Chapter 8
Separation of Variables

Abstract This chapter describes a classical technique for constructing series solutions
of linear PDE problems. Classical examples like the heat equation, the wave equation
and Laplace’s equations are studied in detail.

Separation of variables is an elegant technique for finding solutions of linear PDEs.
It is founded on the notions of inner products, Sturm–Liouville theory and eigenvalue
problems discussed in Chap. 5. Although the range of problems that can be solved is
limited, the technique is generally useful; first, for revealing the nature of solutions
and second, for providing exact solutions with which to test the correctness and
accuracy of numerical methods.

In this chapter we will apply the technique to the model elliptic, hyperbolic and
parabolic problems that were identified in Chap.4. We study the easiest problem
first.

8.1 The Heat Equation Revisited

Example 8.1 Solve the (homogeneous) heat equation (pde.4)

∂u

∂t
= κ

∂2u

∂x2
, (κ > 0), (8.1)

in the semi-infinite strip S = {(x, t) : 0 < x < 1, t > 0}, with a nonhomogeneous
initial condition, u(x, 0) = g(x), 0 < x < 1, and (Dirichlet) boundary conditions:
u(0, t) = u(1, t) = 0, t > 0. Note that we will not insist that g(0) = g(1) = 0, so
that there could be a discontinuity in the solution when we take the limit t → 0.

The essence of separation of variables it to look for a solution of the form

u(x, t) = X (x)T (t), (8.2)
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that is, as a product of two functions, each depending on only one of the independent
variables. First, substituting the ansatz (8.2) into the boundary conditions gives

u(0, t) = X (0)T (t), u(1, t) = X (1)T (t).

Since we are seeking nontrivial solutions, we require T (t) �≡ 0, thus

X (0) = X (1) = 0.

Next, we substitute (8.2) into the PDE. Rearranging the result gives

1

κT (t)

dT (t)

dt
= 1

X (x)

d2X (x)

dx2
.

Note that the left hand side is a function of t only, while the right side is a function
of x only. Thus both sides of the equation must be equal to a constant (known as the
separation constant),

1

κ

1

T (t)

dT (t)

dt
= 1

X (x)

d2X (x)

dx2
= constant. (8.3)

Writing the constant as −λ (a negative number, following the reasoning given in
Example 5.10) the BVP for X becomes

−X ′′(x) = λX (x), 0 < x < 1
X (0) = X (1) = 0.

}
(8.4)

Working through the details of Example 5.10 leads to a countable set of eigenfunc-
tions X (x) := Xn(x), where

Xn(x) = sin nπx,

associated with eigenvalues λ := λn = n2π2 (n = 1, 2, . . .). Moreover, for these
distinct values, (8.3) gives

T ′(t) = −κλnT (t)

whose solution is Tn(t) = A exp(−κλnt), where A is an arbitrary constant. Com-
bining Xn with Tn gives an infinite family of fundamental solutions

un(x, t) = e−κn2π2t sin nπx, n = 1, 2, . . . (8.5)

where, for simplicity, we normalize each eigenfunction by setting the arbitrary con-
stant so that A = 1. The first three solutions are illustrated in Fig. 8.1. As n increases
the wavelength decreases, as does the penetration of the solution into the domain in
the t-direction.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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Fig. 8.1 The first three fundamental solutions un, n = 1, 2, 3 (see (8.5)) of the heat equation with
κ = 1

As discussed in Sect. 2.2.1, the fact that the PDE and associated boundary condi-
tions are linear and homogeneous means that any linear combination of fundamental
solutions (8.5), that is

u(x, t) =
∞∑

n=1

Ane
−κn2π2t sin nπx, (8.6)

must also be a solution (to the combination of the PDE plus BCs), with arbitrary
coefficients {An}.

We should take a step back at this point: Corollary 7.3 together with Theorem 5.3
ensure that our BVP has a unique solution. This implies that the coefficients {An}
in (8.6) have to be uniquely determined by problem data that we have not yet used;
namely the (nonhomogeneous) initial condition u(x, 0) = g(x). Thus, to find these
coefficients we simply need to set t = 0 in (8.6). Doing so gives

g(x) =
∞∑

n=1

An sin nπx, (8.7)

and hence, using the construction in (5.19), we find that1

An = 〈g, Xn〉
〈Xn, Xn〉 , (8.8)

where 〈u, v〉 = ∫ 1
0 uv dx . To summarise, (8.6) and (8.8) characterise the solution

of our boundary value problem for any initial data g that possesses a convergent
expansion of the form (8.7). ♦

To give a concrete illustration, let us suppose that g(x) = x and κ = 1. The boundary
value problem is then amodel of the temperature in a rod that is initially in equilibrium

1The eigenfunctions {Xn(x)}∞n=1 are orthogonal with respect to the inner product (5.17) with L = 1,
see Example 5.8.

http://dx.doi.org/10.1007/978-3-319-22569-2_2
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with a temperature u = 0 at x = 0 and u = 1 at x = 1, but with the right end
plunged into an ice bath at time t = 0 (the boundary condition is u = 0 for t > 0 at
x = 1). With this specific initial condition the numerator in (8.8) can be evaluated
by integration by parts,

〈g, Xn〉 =
∫ 1

0
x sin nπx dx = −

[ x

nπ
cos nπx

]1
0
+ 1

nπ

∫ 1

0
cos nπx dx

= 1

nπ
(−1)n+1,

while the denominator 〈Xn, Xn〉 = 1/2. Thus, from (8.7), we find that

u(x, t) =
∞∑

n=1

(−1)n+1 1

nπ
e−n2π2t sin nπx . (8.9)

The series solution (8.9) is visualised for 0 ≤ t ≤ 0.1 in increments of 0.005 on
the left of Fig. 8.2. The discontinuity at x = 1, t = 0, between the initial condition
and the boundary condition instantaneously vanishes and the function u becomes
progressive smoother as t increases. When t is relatively large, successive terms in
the series decay rapidly to zero so the long-term solution looks like the leading term,
that is,

u(x, t) ≈ 1

π
e−π2t sin πx, when t → ∞.

This asymptotic behaviour is evident in Fig. 8.2.

Example 8.2 Characterise the solution to the heat equation (pde.4) when modelling
the case that both ends of the rod are insulated for t > 0.
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Fig. 8.2 The solution of Example 8.1 (left) and Example 8.2 (right) withκ = 1 and initial condition
g(x) = x , shown at time increments of 0.005
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Appropriate conditions for insulated ends are ux (0, t) = ux (1, t) = 0. Setting
u(x, t) = X (x)T (t), leads to X ′(0) = X ′(1) = 0. The general solution satisfying
the combination of PDE plus BCs can be shown (see Exercise 8.1) to be

u(x, t) = 1

2
A0 +

∞∑
n=1

Ane
−κn2π2t cos nπx .

The coefficients {An}∞n=0 are still determined by the initial data at t = 0:

g(x) = 1

2
A0 +

∞∑
n=1

An cos nπx .

Once more, by virtue of the orthogonality of the functions {cos nπx}∞n=0 we use (8.8)
with Xn(x) = cos nπx , to give

An = 2
∫ 1

0
g(x) cos nπx dx, n = 0, 1, 2, . . . .

For the specific example with g(x) = x and κ = 1, it may be shown that

u(x, t) = 1

2
−

∞∑
n=1
n odd

4

π2n2 e
−n2π2t cos nπx,

which is visualised in Fig. 8.2 (right). In this case, for relatively large times t , the
first two terms dominate and

u(x, t) = 1

2
− 4

π2 e
−π2t cosπx + · · ·

so u → 1/2 as t → ∞ in contrast to the case of homogeneous Dirichlet boundary
conditions where u → 0 as t → ∞. ♦

It might appear on intuitive grounds that the initial data g(x) used in the above
examples should be continuous and have continuously differentiable first and second
space derivatives in order to lead to bona fide solutions of the heat equation. This is
far from being the case—the function g need only be smooth enough that the inner
product 〈g, Xn〉 in the formula (8.8) is well defined and that the resulting coefficients
lead to a convergent series (8.7). The following definition makes this more precise.

Definition 8.3 (Piecewise continuity) A function f (x) defined on an interval [a, b]
is said to be piecewise continuous if there are a finite number of points a = x0 <

x1 < · · · < xN = b such that
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1© f is continuous on each open interval xn−1 < x < xn ,
2© f has a finite limit at each end of each subinterval,

An important point is that, while the value of f at the interior points xn must be
finite, this value need not be the same as either of the limits of f as x → xn .

If g(x) and g′(x) are piecewise continuous functions on [0, 1] then the infinite
series defined by

g(x) =
∞∑

n=1

Ansin nπx, An = 〈g, sin nπx〉
〈sin nπx, sin nπx〉= 2

∫ 1

0
g sin nπx dx (8.10)

converges to the function g(x) at all points where it is continuous, except possi-
bly at end points where there are Dirichlet boundary conditions that g(x) does not
satisfy (see Example 8.1). At interior points where g(x) is discontinuous, the series
converges to 1

2

(
g(x+) + g(x−)

)
, the average of its left and right limits at x . If the

eigenfunctions satisfy a homogeneous Dirichlet boundary condition at an end point
then the series expansion in (8.10) will also be zero at that end point, regardless of
the value of g there.

Tutorial exercises typically involve piecewise polynomials. That is, the domain of
interest is divided into subintervals on each of which g has a polynomial expression.
Such situations naturally lead to piecewise continuous functions. This is illustrated
in the next example.

Example 8.4 Solve the diffusion equation ut = κuxx on the domain {(x, t) : 0 ≤
x ≤ 1, t > 0} with homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) =
0 and initial conditions

(a) g(x) = 1 for 3/8 < x < 5/8 and equal to zero otherwise,
(b) g(x) = max{0, 1 − |8x − 4|}.
From Example 8.1 we have eigenfunctions Xn(x) = sin nπx with corresponding
eigenvalues λn = κ(nπ)2. In case (a), where g(x) is piecewise continuous but not
continuous, we find,

〈g, Xn〉 =
∫ 5/8

3/8
sin nπx dx

= − 1

nπ
(cos 5

8nπ − cos 3
8nπ) = 2

nπ
sin 1

2πn sin 1
8nπ.

Since 〈Xn, Xn〉 = 1/2, it is seen that the coefficients An given by (8.10) tend to
zero as a rate inversely proportional to n, as n → ∞. This slow decay is shared by
all piecewise continuous functions that are not continuous. This also leads to slow
convergence of the corresponding series for g(x), which implies that many terms
may be needed in order to obtain an accurate representation of g. Also, according to
our earlier remarks, the series converges at the points of discontinuity (x = 3/8, 5/8)

to 1/2, which is the average of left and right hand limits. The solution is given by
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u(x, t) =
∞∑

n=1
n odd

4

nπ
e−κn2π2t sin 1

2nπ sin 1
8nπ sin nπx, (8.11)

and we observe that, for t > 0, the terms decay to zero very rapidly due to the
presence of the exponential factor. The coefficients of the even numbered terms are
all zero (the reason for which can be found in Exercise 8.3) and so the summation is
altered accordingly.

Next, for case (b) where g(x) = max{0, 1 − |8x − 4|}, it can be shown (see
Exercise 8.2) that the solution is given by (8.6) with coefficients

An =
(

8

πn

)2

(sin 1
16nπ)2 sin 1

2nπ (8.12)

that decay to zero like 1/n2 as n → ∞ (compared to 1/n in case (a) reflecting the
additional smoothness of the initial data—see Theorem E.2). The even numbered
coefficients are again zero.

Finally, we note that in case (a) A1 = (4/π) sin(π/8), while in case (b) we
have A1 = (8/π)2 sin2(π/16). The ratio of these two quantities is given by
(π/8) cot(π/16) ≈ 1.97, from which it follows that the long-term amplitude in
case (a) should be approximately twice that in case (b). This is borne out by a closer
inspection of the computed solutions shown in Fig. 8.3. ♦

Anumber of features of the examples so far are also relevant tomore general parabolic
equations. In contrast to ordinary differential equations, where the general solution
of an nth-order equation is a linear combination of n fundamental solutions, the
general solutions of PDEs contain an infinite number of terms. We also note that,
within the set of solutions (8.5), the terms with shorter wavelengths decay faster than
those with longer wavelengths. These shorter wavelengths are responsible for the
fine detail in the initial data: in general, this means that solutions to parabolic PDE
problems inevitably become progressively smoother over time.

0

0.5

1 0
0.05

0.1

0

0.5

1

t
x

0

0.5

1 0
0.05

0.1

0

0.5

1

t
x

Fig. 8.3 The solutions of the initial boundary value problem for the heat equation in Example 8.4
for 0 ≤ t ≤ 0.1
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8.1.1 Extension to Other Parabolic Problems ...

A key ingredient of separation of variables is the identification of an eigenvalue
problem in one of the independent variables with (two) homogeneous boundary
conditions. The Sturm–Liouville (S–L) eigenvalue problems introduced in Sect. 5.4
can be included in this category. As will be shown shortly, S–L eigenvalue problems
naturally arise when solving linear parabolic BVPs of the following form:

ut + 1
w(x)

Lu = 0, 0 < x < a
Bu(0, t) = Bu(a, t) = 0, u(x, 0) = g(x).

}
(8.13)

Generality comes from different choices of weight function w(x) > 0. The main
constraint is that neither spatial derivative operatorsL norB is allowed to depend on t .

Applying separation of variables to (8.13) we look for a solution of the form
u(x, t) = X (x)T (t), with general boundary conditions,

BX (0) = BX (a) = 0.

The linearity of L implies that L(
X (x)T (t)

) = T (t)
(LX (x)

)
and so the PDE in

(8.13) becomes, on dividing by X (x)T (t),

T ′(t)
T (t)

= − LX (x)

w(x)X (x)
.

Thus, if we le λn be the nth eigenvalue and Xn the corresponding eigenfunction
solving the problem

LX (x) = λw(x)X (x), 0 < x < a,

BX (0) = BX (a) = 0,

}
(8.14)

then T ′(t) = λT (t). This immediately leads us to a set of fundamental solutions

un(x, t) = Xn(x)e−λn t , n = 1, 2, . . . (8.15)

and a general solution

u(x, t) =
∞∑

n=1

An Xn(x)e−λn t . (8.16)

Given the initial condition u(x, 0) = g(x), the coefficients {An} can be directly
determined from

g(x) =
∞∑

n=1

An Xn(x)e−λn t

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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bymultiplying both sides of this equation byw(x)Xm(x) and using the orthogonality
of the eigenfunctions with respect to the weighted inner product (5.38). The result is

Am = 〈g, Xm〉w
〈Xm, Xm〉w . (8.17)

The combination (8.17) and (8.16) is the solution to the general boundary value
problem (8.13). Two specific examples are worked out below.

Example 8.5 (The heat equation with circular symmetry) Determine the solution of
the heat equation ut = ∇2u in a circular disc of radius a, when the temperature at
the boundary satisfies u = 0 and the initial temperature distribution, u = g at t = 0,
has circular symmetry.

In polar coordinates x = r cos θ, y = r sin θ, the circular symmetry of the initial
data means that g is a function of radial distance r from the centre of the disc. This
then implies that the solution must also be radially symmetric, that is u := u(r, t). In
this case, as shown in Example 5.14, the heat equation can be expressed in the form
(8.13) with weight function w = r (the independent variable is now r , rather then
x) and with

Lu = − ∂

∂r

(
r
∂u

∂r

)
. (8.18)

We now follow the general procedure outlined above for separation of variables,
which is to say that we look for solutions in the form u(r, t) = R(r)T (t). The
boundary condition u = 0 at r = a requires that R(a) = 0 while circular symmetry
implies that R′(0) = 0 (see Exercise 8.7). Thus we are led to the eigenvalue problem
(8.14), which can be written as

R′′(r) + 1
r R′(r) + λR(r), 0 < r < a,

R′(0) = R(a) = 0.

}
(8.19)

The change of variable2 x = √
λr transforms this ODE to

d2R

dx2
+ 1

x

dR

dx
+ R = 0, 0 < x < a

√
λ,

which is of the form (D.1) with ν = 0. Using results from Appendix D we deduce
that the general solution is R(r) = AJ0(x) + BY0(x), where J0 and Y0 are zero-
order Bessel functions of the first and second kinds, respectively, with A, B being
arbitrary constants. Since Y0(x) → −∞ as r → 0, it follows that B = 0 in order
to give a bounded solution. Furthermore, since all eigenfunctions are unique only
up to a multiplicative constant, we may choose A = 1, so R(r) = J0(x). The bound-
ary condition at r = 0 is automatically satisfied since J ′

0(0) = 0. The remaining

2The eigenvalues of S–L problems are necessarily positive, see Theorem 5.11, so
√

λ is a positive
real number.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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boundary condition requires that u = 0 at x = √
λa. The zeros of J0(x) are labelled

ξ0 = 0 < ξ1 < ξ2 < · · · (see Table D.1) which means that the eigenvalues must be

λk =
(

ξk

a

)2

, k = 1, 2, . . . (8.20)

Making use of (8.16), the general solution is

u(r, t) =
∞∑

n=1

An J0(x)e−λn t , An = 〈g, J0〉r

〈J0, J0〉r
, (8.21)

where x = ξnr/a. It can be shown (see Exercise D.6) that 〈J0, J0〉r = 1
2a2 J 2

1 (ξn)

and so

An = 2

a2 J 2
1 (ξn)

∫ a

0
rg(r)J0

(
rξn

a

)
dr. (8.22)

The scope for pencil and paper calculations is limited by our ability to evaluate
integrals involvingBessel functions. Perhaps the simplest scenario involves the initial
data

g(r) =
{
1 for 0 ≤ r < b,

0 for b < r ≤ a,
(8.23)

for some 0 < b < a. This corresponds to an initial condition in which a smaller
concentric disc of radius b is heated to a uniform temperature. Then

∫ a

0
rg(r)J0

(
rξn

a

)
dr =

∫ b

0
r J0

(
rξn

a

)
dr

and, using Exercise D.4, we find that

An =
(

2b

aξn

)
J1(bξn/a)

J 2
1 (ξn)

. (8.24)

The corresponding solution (8.21) is shown in Fig. 8.4 when b = 1/4, a = 1/2.
To facilitate a comparison with Fig. 8.3 (left), where the inner quarter of a rod was
uniformly heated (here a quarter of the area of the disc is initially heated) the solution
that is shown has been extended to an even function of r in the interval −a ≤ r ≤ a
for each value of t . ♦

Example 8.6 (The heat equation with spherical symmetry) Determine the solution
of the heat equation ut = ∇2u in a spherical ball of radius a when the temperature at
the boundary satisfies u = 0 and the initial temperature distribution, u = g at t = 0,
has spherical symmetry.
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Fig. 8.4 The cross-section of the solution on any diameter of the initial boundary value problem
for the heat equation in a disc (Example 8.5, left) and a sphere (Example 8.6, right) for 0 ≤ t ≤ 0.1

In spherical polar coordinates x = r cos θ sin φ, y = r sin θ sin φ, the spherical
symmetry of the initial data means that g depends only on the radial distance r from
the centre of the sphere. Then u is a function of r and t only and satisfies

ut = urr + 2

r
ur , (8.25)

which can bewritten in the form (8.13) with independent variables t and r andweight
functionw(r) = r2. The appropriate boundary conditions are ur (0, t) = u(a, t) = 0
(see Exercise 8.8). It can be shown (see Exercise 8.10) that the general solution may
be written in the form

u(r, t) =
∞∑

n=1

An
sin (nπr/a)

r
e−(nπ/a)2t . (8.26)

The coefficients An can be readily evaluated (see Exercise 8.11) in the specific case
of an initial condition u(r, 0) = g(r) where g is the step function defined by (8.23)
with a = 1/2 and b = 1/4. They are given by

An =

⎧⎪⎨
⎪⎩

1

(2m − 1)2π2 (−1)m−1 for n = 2m − 1,

1

4πm
(−1)m−1 for n = 2m.

(8.27)

The resulting temperature cross-section profiles are shown in Fig. 8.4. The rate of
cooling in R

3 is visibly more rapid than it is in R
2. (Since the surface/volume ratio

is larger!) ♦



140 8 Separation of Variables

8.1.2 ... and to Inhomogeneous Data

Data that is associated with boundary value problems come in three flavours; (a)
initial conditions, (b) source terms in the PDE, and (c) boundary values. A systematic
way of solving general linear BVPs is to separate the three scenarios, so that only
one of these three data sources is nonzero, and then to appeal to the principle of
superposition to combine component solutions. All examples considered thus far
have been of type (a). Thus, to solve general problems the question to be addressed
is: can separation of variables be applied to type (b) and type (c) problems? This is
the issue explored in this section.

We will consider type (b) problems first. Thus, instead of (8.13), we would like
to find a solution to the following BVP,

ut + 1
w(x)

Lu = f (x, t), 0 < x < a
Bu(0, t) = Bu(a, t) = 0, u(x, 0) = 0,

}
(8.28)

where, as previously, neither L nor B involves derivatives or coefficients depending
on t , and where w(x) > 0 is a weight function. To make progress, we will need to
insist that the source term f (x, t) is separable, that is, it takes the form3 f (x, t) =
F(x)G(t). Then, if F(x) is expanded in terms of the eigenfunctions (8.14), so that

F(x) =
∞∑

n=1

Bn Xn(x), Bn = 〈F, Xn〉w
〈Xn, Xn〉w , (8.29)

then a solution u can be found which is itself an expansion in terms of these eigen-
functions, that is

u(x, t) =
∞∑

n=1

An(t)Xn(x) (8.30)

but with coefficients that explicitly depend on t . Substituting these expansions into
the PDE and using the relationship LXn(x) = λnw(x)Xn(x) gives

∞∑
n=1

(
A′

n(t) + λn An(t) − BnG(t)
)
Xn(x) = 0. (8.31)

Moreover, the mutual orthogonality of the eigenfunctions Xn means that the coeffi-
cients An must satisfy the ODEs

A′
n(t) + λn An(t) = BnG(t), n = 1, 2, . . . .

Next, multiplying by the integrating factor exp(λnt) gives, on rearranging,

3The case where f is the sum of separable functions naturally arises when we consider
inhomogeneous boundary conditions later in the section.



8.1 The Heat Equation Revisited 141

(
eλn t An(t)

)′ = BnG(t) eλn t

which can be integrated to give

An(t) = e−λn t An(0) + Bn

∫ t

0
e−λn(t−s)G(s) ds. (8.32)

This, in turn, leads us to the general solution

u(x, t) =
∞∑

n=1

e−λn t An(0)Xn(x) +
∞∑

n=1

Bn Xn(x)

∫ t

0
e−λn(t−s)G(s) ds. (8.33)

Note that the first sum on the right hand side is the general solution of the homoge-
neous PDE and the second sum represents a particular solution. The initial condition
u(x, 0) = 0 means that An(0) = 0 for n = 1, 2, . . . so, when solving (8.28), only
the second sum remains, that is

u(x, t) =
∞∑

n=1

Bn Xn(x)

∫ t

0
e−λn(t−s)G(s) ds. (8.34)

To complete the picture we need to consider type (c) problems. That is, we would
like to find a solution to the following BVP,

ut + 1
w(x)

Lu = 0, 0 < x < a
Bu(0, t) = α(t), Bu(a, t) = β(t), u(x, 0) = 0,

}
(8.35)

with B defined by (5.21), that is,

Bu(0, t) := a0u(0, t) − b0ux (0, t),
Bu(a, t) := a1u(a, t) + b1ux (a, t).

}
(8.36)

At this point, we introduce polynomials φ0(x) and φ1(x) of degree ≤ 2, satisfying
the following conditions

Bφ0(0) = 1, Bφ0(a) = 0, Bφ1(0) = 0, Bφ1(a) = 1.

This is a clever move! The function Φ(x, t) = φ0(x)α(t) + φ1(x)β(t) is forced to
satisfy the same boundary conditions as the solution of (8.35); that is, BΦ(0, t) =
α(t) and BΦ(a, t) = β(t). Consequently the function v(x, t) = Φ(x, t) − u(x, t)
satisfies the homogeneous conditions Bv(x, t) = 0 at x = 0 and x = a. Note that, if
the boundary functions α(t) and β(t) are consistent with the initial condition, then

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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α(0) = β(0) = 0, from which we deduce that v(x, 0) = 0. The upshot is that v(x, t)
satisfies a BVP of the form (8.28), where the source term

f (x, t) = α′(t)φ0(x)+β′(t)φ1(x)+
(

1

w(x)
Lφ0(x)

)
α(t)+

(
1

w(x)
Lφ1(x)

)
β(t)

is the sum of four separable terms of the form F(x)G(t). The solution can then
be readily computed using (8.34). The complete solution strategy is best shown by
looking at a specific example. This comes next.

Example 8.7 Solve the heat equation in the semi-infinite strip {(x, t) : 0 < x <

a, t > 0} with end conditions ux (0, t) = 0, u(a, t) = sin 2πt and with a homoge-
neous initial condition u(x, 0) = 0.

First it may be verified that Φ(x, t) = sin 2πt satisfies both boundary conditions
and the initial condition, so v(x, t) = Φ(x, t) − u(x, t) satisfies

vt − vxx = 2π cos 2πt, 0 < x < a
vx (0, t) = 0, v(a, t) = 0, v(x, 0) = 0.

}
(8.37)

The associated eigenvalue problem is

−X ′′(x) = λX (x), 0 < x < a,

X ′(0) = X (a) = 0,

}
(8.38)

which has eigenvalues λn = (n − 1
2 )

2π2/a2 and corresponding eigenfunctions

Xn(x) = cos
(
(n − 1

2 )
πx

a

)
, n = 1, 2, . . . .

The source term in (8.37) takes the form F(x)G(t)with F(x) = 2π,G(t) = cos 2πt .
Next, since w(x) = 1 for the heat equation in Cartesian coordinates, we find that

〈F, Xn〉 = 2π
∫ a

0
cos

(
(n − 1

2 )
πx

a

)
dx = 2a

(−1)n−1

(n − 1
2 )

.

Thus, using (8.29),

F(x) =
∞∑

n=1

Bn cos
(
(n − 1

2 )
πx

a

)
, Bn = 4

(−1)n−1

(n − 1
2 )

.

(The slow decay in the coefficients is because F(x) does not satisfy the boundary
conditions.) With G(s) = cos 2πs, the integral in (8.34) can be evaluated to give

∫ t

0
e−λn(t−s)G(s) ds = 1

λ2
n + 4π2

(
λn cos 2πt + 2π sin 2πt − λne

−λn t),
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Fig. 8.5 The boundary condition u(x, 1) = sin 2πt (solid line) and the solution u(0, t) of Exam-
ple 8.7 for 0 ≤ t ≤ 5 when a = 1 (dashed line) and a = 4/3 (dot-dashed line)

which completes the solution of the BVP (8.37). Since u(x, t) = Φ(x, t) − v(x, t)
we deduce that

u(x, t) = P(x, t) +
∞∑

n=1

λn Bn

λ2
n + 4π2 e

−λn t cos
(
(n − 1

2 )
πx

a

)
, (8.39)

with

P(x, t) = sin 2πt −
∞∑

n=1

Bn

λ2
n + 4π2

(
λn cos 2πt + 2π sin 2πt

)
cos

(
(n − 1

2 )
πx

a

)
.

The exponential terms in (8.39) represent an initial transient that dies off relatively
rapidly leaving u(x, t) ≈ P(x, t), a periodic function of t with unit period. Figure8.5
shows the imposed boundary condition at x = 1 (solid line) together with the solu-
tions at x = 0 for interval lengths a = 1, 4/3. This can be regarded as a grossly
simplified model of the dissipation of heat through the wall of a building of thick-
ness a. In a hot climate and with time measured in days, the exterior wall is heated
by the sun during the day and is cooled at night. By adjusting the thickness of the
wall (in this case a = 4/3) it can be arranged for the interior wall to be coolest
when the exterior wall is at its hottest, and vice versa, thus providing a comfortable
environment without the need for air-conditioning! ♦

8.2 The Wave Equation Revisited

As discussed in Chap. 3, the wave equation is important in a variety of practical
applications. It is the prototypical hyperbolic PDE. It can also be solved by separation
of variables.

http://dx.doi.org/10.1007/978-3-319-22569-2_3
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Example 8.8 Solve the wave equation (pde.5)

utt = c2uxx (8.40)

in the semi-infinite strip S = {(x, t) : 0 < x < 1, t > 0}, with initial conditions:

u(x, 0) = g0(x), ut (x, 0) = g1(x), 0 < x < 1,

and homogeneous Dirichlet boundary conditions, u(0, t) = u(1, t) = 0, t > 0.
Theproceduremirrors that used to solve the heat equation inExample 8.1.Looking

for a separated solution u(x, t) = X (x)T (t), the boundary conditions u(0, t) =
u(1, t) = 0 imply that X (0) = X (1) = 0. Substituting the ansatz for u(x, t) into
(8.40) gives the slightly different characterisation

1

c2
1

T (t)

d2T (t)

dt2
= 1

X (x)

d2X (x)

dx2
= constant. (8.41)

We follow Example 8.1 and set the separation constant to −λ. This means that X
must satisfy the eigenvalue problem (8.4). Solving this problem gives

λn = n2π2, Xn(x) = sin nπx, n = 1, 2, . . . .

Note that the ODE for T is second order (whereas for the heat equation it is only
first order):

T ′′(t) + λnc2T (t) = 0.

With λn = n2π2, the general solution to this ODE is given by

T (t) = A cos cnπt + B sin cnπt,

where A and B are arbitrary constants. As a consequence, there are two sequences
of fundamental solutions of the wave equation (8.40), namely

{cos cnπt sin nπx}∞n=1 and {sin cnπt sin nπx}∞n=1.

These solutions are periodic in both space (having period 2) and time (having period
2/c). Note the contrast with the fundamental solutions (8.5) of the heat equation,
which decay exponentially with time. Any initial stimulus to the wave equation will
persist for all time,whereas solutions to the heat equation invariably tend to a constant
as t → ∞.

A linear combination of these fundamental solutions,

u(x, t) =
∞∑

n=1

(An cos cnπt + Bn sin cnπt) sin nπx (8.42)
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provides a general solution of the PDE (8.40) that also satisfies homogeneous
Dirichlet boundary conditions. The two sequences of arbitrary constants {An, Bn}
are again determined from the given initial conditions. First, the initial condition
u(x, 0) = g0(x) gives the characterisation

g0(x) =
∞∑

n=1

An sin nπx . (8.43)

Second, differentiating (8.42) with respect to t , gives

∂u

∂t
=

∞∑
n=1

cnπ (−An sin cnπt + Bn cos cnπt) sin nπx,

so the initial condition ut (x, 0) = g1(x) implies that

g1(x) =
∞∑

n=1

cnπBn sin nπx . (8.44)

Finally, we can explicitly compute the coefficients using the inversion formula (8.10).
Doing this gives

An = 2
∫ 1

0
g0(x) sin nπx dx, Bn = 2

cnπ

∫ 1

0
g1(x) sin nπx dx . (8.45)

The combination (8.45) and (8.42) is the unique solution to the BVP. ♦

Some specific problems that mirror ones solved earlier in the chapter are worked
out in the following examples.

Example 8.9 Compare and contrast the solutions of the wave equation (8.40) with
Dirichlet boundary conditions when the initial velocity is given by ut (x, 0) = 0 and
the initial displacement u(x, 0) = g0(x) is the same as that in Example 8.4; that is

(a) g(x) = 1 for 3/8 < x < 5/8 and equal to zero otherwise,
(b) g(x) = max{0, 1 − |8x − 4|}.
The coefficients {An} are as given in Example 8.4, so the respective solutions to the
wave equation are

u(x, t) =
∞∑

n=1
n odd

sin 1
2nπ

(
4

nπ
sin 1

8πn

)
cos cnπt sin nπx, (8.46a)

u(x, t) =
∞∑

n=1
n odd

sin 1
2nπ

(
8

nπ

)2

(sin 1
16πn)2 cos cnπt sin nπx . (8.46b)
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Fig. 8.6 Solutions of the wave equation for Example 8.9 for initial conditions a (left) and b (right)
with c = 1/2. The solutions at time t = 4 (after one period) are highlighted by thicker lines

The two solutions are visualised in Fig. 8.6 for 0 ≤ t ≤ 5 when c = 1/2. They both
have the same geometric structure. The initial functions both have unit height and
in both cases they immediately split into two smaller waves of amplitude 1/2, one
travelling to the right and the other to the left—the reason for this behaviour may be
deduced from Exercise 8.15. When these waves hit the boundary, they are reflected
as in a perfect elastic collision—their velocity changes from ±c to ∓c while their
amplitude changes from +1/2 to −1/2. The process repeats itself every time a pulse
hits a boundary. The solutions in (8.46) are time periodic and both return to their
initial state when t is an integer multiple of 2/c.

Close inspection of Fig. 8.6 (right) for the initial condition (b) shows that the
plotted solution remains piecewise linear as time evolves. In contrast there are small
imperfections in the plotted solution corresponding to the initial condition (a). These
imperfections are known asGibb’s phenomenon (see Example E.1). They are a direct
consequenc of expressing a piecewise continuous function as a sum of trigonometric
functions.4 This severely limits the usefulness of separation of variableswhen solving
hyperbolic equations with piecewise continuous data. The bad solution behaviour
can also be identified from the series solution (8.46a) where the coefficients only
decay like 1/n. The initial condition (b) is continuous with a piecewise continuous
derivative. In this case the coefficients in (8.46b) decay like 1/n2 which means that
the series converges uniformly. ♦

Following the procedure described in Sect. 8.1.1, separation of variables can also be
used to construct series solutions to generalised hyperbolic BVPs given by

utt + 1
w(x)

Lu = 0, 0 < x < a
Bu(0, t) = Bu(a, t) = 0, u(x, 0) = g0(x), ut (x, 0) = g1(x).

}
(8.47)

4In order to produce graphical solutions the sums in (8.46) need to be truncated to a finite number
of terms. Although convergence of the series is assured—see the discussion following Definition
8.3—it is not uniform. As x approaches a discontinuity more and more terms are required in the
summation (8.46a) in order to achieve any particular level of accuracy (in Fig. 8.6 we have used
100 terms).
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More specifically, if the eigenvalues and corresponding eigenfunctions of (8.14)
are denoted by λn and Xn(x), respectively, then we can construct fundamental solu-
tions u(x, t) = Xn(x)Tn(t), where Tn(t) satisfies the second-order ODE

T ′′(t) + λnT (t) = 0.

This immediately gives us the general solution to (8.47),

u(x, t) =
∞∑

n=1

(
An sin

√
λnt + Bn cos

√
λnt

)
Xn(x). (8.48)

Two specific examples are worked out below.

Example 8.10 (The wave equation with circular symmetry) The wave equation with
circular symmetry is given by

utt = c2
1

r
∂r (rur ). (8.49)

The general solution on the interval 0 < r < a with homogeneous boundary con-
ditions ur (0, t) = 0 and u(a, t) = 0 is given by (8.48), where the eigenvalues and
eigenfunctions are those in Example 8.5. With the initial conditions u(r, 0) = g(r)

and ut (r, 0) = 0, we have Bn = 0 with An given by (8.22). ♦

Example 8.11 (The wave equation with spherical symmetry) The wave equation
with spherical symmetry is given by

utt = c2

r2
∂r (r

2ur ). (8.50)

The general solution on the interval 0 < r < a with homogeneous boundary con-
ditions ur (0, t) = 0 and u(a, t) = 0, is also given by (8.48) with eigenvalues
and eigenfunctions as in Example 8.6. For initial conditions u(r, 0) = g(r) and
ut (r, 0) = 0, we have Bn = 0, but An is given by (8.27) in this case. ♦

Figure8.7 gives a direct comparison of the wave equation solutions for the three
different geometries. It compares solutions at time t = 0.75 for Example 8.10
(circular geometry), Example 8.11 (spherical geometry) as well as the solution
in Cartesian geometry (see Exercise 8.17) all with the same initial conditions
g0(x) = max(0, 1 − (x/b)2) and g1(x) = 0. It can be observed that the initial
condition (shown dotted) has been translated by the same amount (ct = 0.375) in
each case, despite the marked differences in the form of the respective solutions!
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Fig. 8.7 Solutions of the wave equation on a line (- -), a disc with circular symmetry (o) and a
sphere with spherical symmetry (×) at t = 0.75 with c = 1/2. The initial condition is shown dotted

8.3 Laplace’s Equation

Laplace’s equation is the prototypical elliptic PDE. Since it only differs from thewave
equation by changing a minus to a plus sign, the separation of variables procedure
is going to be very similar to that in the previous section. The major difference lies
in the imposition of boundary conditions. As discussed in Chap.4, there is no time-
like variable in Laplace’s equation (both the independent variables are on an equal
footing) so there are no initial conditions, only boundary conditions.

Example 8.12 (Laplace’s equation) Solve Laplace’s equation (pde.3)

uxx + uyy = 0 (8.51)

in the rectangle Ω = {(x, y) : 0 < x < a, 0 < y < b} together with Dirichlet
boundary conditions:

u(x, 0) = g1(x), u(x, b) = g3(x), 0 < x < a,

u(a, y) = g2(y), u(0, y) = g4(y), 0 < y < b,

for four given functions {gi }. The situation is illustrated in Fig. 8.8 (left).

x = a
y = b Ω

E1
E4

E3 E2

O

P3 P2

P4 P1

Fig. 8.8 Left Adecomposition of Laplace’s equation on a rectangular domainwithDirichlet bound-
ary conditions. Right The four subproblems P1, P2, P3, P4, each having zero boundary conditions
on three edges of the domain

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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In order to establish a relationship with an appropriate eigenvalue problem, at
least two boundary conditions need to be homogeneous. If the four edges y = 0,
x = a, y = b and x = 0 of Ω are labelled E j , ( j = 1, .., 4), respectively, then
linearity of the BVP justifies its decomposition into four subproblems P1, P2, P3,
P4. This is visualised in Fig. 8.8 (right). For subproblem P j , the condition u = g j is
imposed on edge E j and u = 0 is imposed on the other three edges. The solution to
the original BVP is simply the sum of the solutions of the four subproblems.

We will show how P1 may be solved and leave the remaining subproblems to
be dealt with in a similar fashion. Thus, looking at P1, we require that the ansatz
u(x, y) = X (x)Y (y) satisfies the homogeneous boundary condition for this subprob-
lem.That is, theBCsu(0, y) = u(a, y) = 0 for 0 < y < b require X (0) = X (a) = 0
and the BC u(x, b) = 0 for 0 < x < a requires Y (b) = 0.

Substituting u(x, y) = X (x)Y (y) into (8.51) and rearranging gives

− 1

X (x)

d2X (x)

dx2
= 1

Y (y)

d2Y (y)

dy2
= constant = λ, (8.52)

where the separation constant λ is selected so that X solves the eigenvalue problem

−X ′′(x) = λX (x), 0 < x < a
X (0) = X (a) = 0.

}
(8.53)

This is slightly more general than (8.4), since the domain length is a not 1. It can be
immediately checked that the rescaled eigenfunctions and eigenvalues are

Xn(x) = sin
(nπx

a

)
, λn =

(nπ

a

)2
. (8.54)

It then follows from (8.52) that Y satisfies

Y ′′(y) = λn Y (y), 0 < y < b,

with Y (b) = 0 (from above). This ODE has only one boundary condition, so has the
family of solutions

Yn(y) = C sinh
(√

λn(b − y)
)
,

where C is an arbitrary constant. Choosing C so that Yn(0) = 1 leads to the infinite
family of fundamental solutions

un(x, y) = sinh (nπ(1 − y/b)/a)

sinh (nπ/a)
sin

(nπx

a

)
, n = 1, 2, . . . (8.55)

The first three solutions are illustrated in Fig. 8.9 for a rectangular domain. They
resemble the fundamental solutions of the heat equation shown in Fig. 8.1 in that the
higher the frequency, the less they penetrate the domain. This is an indication that
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Fig. 8.9 The first three fundamental solutions of subproblem P1 for Laplace’s equation on the
rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

fine detail in boundary values has minimal influence on the behaviour of solutions in
the heart of the domain. By taking a linear combination of the solutions (8.55), we
arrive at the general solution of P1, namely

u(x, y) =
∞∑

n=1

An
sinh (nπ(1 − y/b)/a)

sinh (nπ/a)
sin

(nπx

a

)
. (8.56)

The coefficients {An} are uniquely determined by the nonhomogeneous boundary
condition u(x, 0) = g1(x) on the edge E1. Thus, setting y = 0 in (8.56) gives

g1(x) =
∞∑

n=1

An sin
(nπx

a

)
,

and using the orthogonality of the eigenfunctions in (8.54) (with respect to the stan-
dard inner product on (0, a)), gives the characterisation

An = 2

a

∫ a

0
g1(x) sin

(nπx

a

)
dx . (8.57)

Solutions to subproblems P2, P3 and P4 can be constructed in exactly the same way
(see also Exercise 8.19). ♦

Example 8.13 Solve the subproblem P1 shown in Fig. 8.8 with a = 1 and b = 1
with the boundary condition u(x) = g1(x) on E1, where, as in Example 8.4, we have

(a) g1(x) = 1 for 3/8 < x < 5/8 and equal to zero otherwise,
(b) g1(x) = max{0, 1 − |8x − 4|}.
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Fig. 8.10 The solution of subproblem P1 for Laplace’s equation in Example 8.13 with two choices
of boundary condition on y = 0

When a = 1, the coefficients An may be deduced from Example 8.4. The resulting
solutions, computed with the first 25 nonzero terms in their respective series are
shown in Fig. 8.10. Gibb’s phenomenon (see Example E.1) is clearly visible in the
discontinuous boundary data on the left (where g1 is represented by its series expan-
sion), but no oscillations are evident in the interior of the domain showing that these
imperfections decay very rapidly away from the boundary. (This contrasts with the
corresponding solution to the wave equation in Fig. 8.6, where the boundary imper-
fections persist for all time.) Both solutions are smooth in the interior and decay
rapidly with distance from the boundary spike. ♦

The discontinuity in the boundary condition in the previous example means that the
presence of Gibb’s phenomenon is to be expected. What is perhaps unexpected is
that it can also occur when the boundary data is continuous. This is because the
individual subproblems all have discontinuities at the corners of the domain unless
the prescribed data is zero there (see Fig. 8.8 (right)). This is explored in the next
example, along with a technique for its removal.

Example 8.14 Solve Laplace’s equation in the square {(x, y), 0 < x, y < 1} with
boundary conditions u(x, 0) = x2 on y = 0, u(1, y) = 1 − y on x = 1 and u = 0
on the remaining two sides.

This is a particular instance of Example 8.12 with a = b = 1, g1(x) = x2,
g2(y) = 1 − y with g3(x)=0 and g4(y)=0. Only subproblems P1 and P2 have
nontrivial solutions.

The solution to subproblem P1 is given by (8.56). Evaluating the integral in (8.57)
(see Exercise 8.20) gives the coefficients

An = (−1)n−1 2

nπ
− (1 + (−1)n)

4

(nπ)3
. (8.58)

The solution to subproblemP2 isworked out in Exercise 8.21. The combination of the
two subproblem solutions (with N = 40 terms in each series expansion) is shown in
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Fig. 8.11 The separation of variables solution of Example 8.14 (left) and the solution to the same
problem after it is preprocessed to make the boundary data zero at the corners (right)

Fig. 8.11 (left). Spurious Gibbs oscillations are again evident. They arise because the
boundary functions g1(x) and g2(y) do not satisfy the same boundary conditions as
the eigenfunctions in the respective directions—the separation of variables solution
is necessarily zero at the corner, whereas the boundary condition implies that u = 1
at the same point.

The discontinuity can be circumvented however. The idea is to subtract a suitably
chosen polynomial from the solution so that v = u − p is zero at the vertices of
the domain. The following bilinear function p(x, y) (also known as a ruled surface)
does this perfectly

p(x, y) := (
(a − x)(b − y)u(0, 0) + x(b − y)u(a, 0)

+ xyu(a, b) + (a − x)yu(0, b)
)
/(ab),

(8.59)

since, by construction, p(x, y) is equal to u(x, y) at the four corners. Note that
since p(x, y) is bilinear it trivially satisfies Laplace’s equation, which in turn means
that the modified function v = u − p satisfies Laplace’s equation in the domain
{(x, y), 0 < x < a, 0 < y < b}, with the new boundary conditions

v = gk − p on edge Ek, k = 1, . . . , 4.

In our case, evaluating the boundary conditions at the four corner points gives
u(0, 0) = 0, u(1, 0) = 1, u(1, 1) = 0 and u(0, 1) = 0, so the modification function
is given by p(x, y) = x(1− y). This simple modification makes a big difference. In
particular, the boundary conditions for v are much more straightforward: on the edge
E1 we have v(x, 0) = x2 − p(x, 0) = x(x − 1), but on edges E2, E3, E4, we find
that v is zero. Thus, to compute v, we simply have to solve subproblem P1. Easy!
(The solution is given by (8.56) with coefficients determined by (8.57).)
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Having computed v, we can immediately write down the solution (u = p + v):

u(x, y) = x(1 − y) −
∞∑

n=1
n odd

8

(nπ)3

sinh (nπ(1 − y))

sinh nπ
sin nπx . (8.60)

This is the solution that is plotted in Fig. 8.11 (right).5 ♦

Example 8.15 (Eigenvalues of the Laplacian on a rectangle) Determine the eigen-
values of the Laplacian operator with Dirichlet boundary conditions on the rectangle
Ω := {(x, y) : 0 < x < a, 0 < y < b}. That is, find real numbers μ associated with
nontrivial solutions of 6

− ∇2u = μu in Ω, (8.61)

where u = 0 on the boundary of the rectangular domain Ω .
We look for eigenfunctions in the separated form u(x, y) = X (x)Y (y). Since

u �= 0, the corresponding boundary conditions are X (0) = X (a) = Y (0) = Y (b) =
0. Then, substituting u(x, y) = X (x)Y (y) into (8.61) and rearranging, we get

− X ′′(x)

X (x)
= Y ′′(y)

Y (y)
− μ = constant = λ,

where the separation constant λ is chosen so that X (x) satisfies the eigenvalue
problem (8.53). With this choice, the function Y (y) satisfies

−Y ′′(y) = (μ − λn)Y (y), 0 < y < b
Y (0) = Y (b) = 0,

}
(8.62)

which must define another eigenvalue problem (with eigenvalue μ̃ = μ − λn) if
nontrivial solutions are to emerge. It has solutions given by

Ym(y) = sin
(mπy

b

)
, μ̃m =

(mπ

b

)2
.

Combining the components Xn and Ym generates eigenfunctions of (8.61) that
involve a pair of indices,

um,n(x, y) = Xn(x)Ym(y) = sin
(nπx

a

)
sin

(mπy

b

)
, m, n = 1, 2, . . .

with corresponding eigenvalues given by

5This series converges much more rapidly than that associated with (8.58). Taking only the first 5
terms in (8.60) gives an accuracy of three significant digits!
6We have denoted the general eigenvalue by μ rather than λ in order to avoid confusion with the
solutions of the corresponding one-dimensional eigenvalue problem.
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μm,n = λn + μ̃m =
(nπ

a

)2 +
(mπ

b

)2
. (8.63)

The eigenvalues μm,n are all strictly positive but, unlike the underlying one-
dimensional eigenvalue problems they do not have to be simple. For example, for
a square domain with a = b = 1 we note that μm,n = μn,m with eigenfunctions
Xn(x)Ym(y) and Xm(x)Yn(y) related by symmetry (either eigenfunction may be
obtained from the other by interchanging x and y). ♦

The eigenfunctions of the Laplacian are intrinsically useful. They are intimately
connected to resonance in physics and they play a crucial role in numerical analysis.
As shownnext, they also provide away of constructing a series solution to the Poisson
equation.

Example 8.16 (Poisson’s equation revisited) Solve the Poisson equation −(uxx +
uyy) = f (x, y) in a rectangle 0 < x < a, 0 < y < b, with the homogeneous
condition u = 0 at all points of the boundary.

When dealingwith the inhomogeneous heat equation in Sect. 8.1.2 it was assumed
that f was a product of functions of one variable (or a sum of such functions). We
can accomplish the same end here by expanding f in terms of the eigenfunctions of
the Laplacian. That is, we determine coefficients such that

f (x, y) =
∞∑

m=1

∞∑
n=1

Am,n Xn(x)Ym(y), (8.64)

where Xn(x)Ym(y) are the eigenfunctions determined in the previous example. Mul-
tiplying (8.64) by the eigenfunction and integrating over the domain, and then using
the orthogonality of functions {Xn(x)} on 0 < x < a and of {Ym(y)} on 0 < y < b
leads to the following characterisation of the generic coefficient Ak,�,

∫ b

0

∫ a

0
f (x, y)Xk(x)Y�(y) dx dy

=
∞∑

m=1

∞∑
n=1

Am,n

∫ a

0
Xk(x)Xn(x) dx

∫ b

0
Ym(y)Y�(y) dy = 1

4
ab Ak,�. (8.65)

Next, using the fact that um,n(x, y) = Xn(x)Ym(y) satisfies (8.61) with eigenvalues
(8.63), we can rewrite the right hand side of (8.64) as follows,

f (x, y) = −∇2

( ∞∑
m=1

∞∑
n=1

Am,n

μm,n
Xn(x)Ym(y)

)
.

Thus, since our solution u(x, y) satisfies −∇2u = f (x, y), we can construct a new
function
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v(x, y) = u(x, y) −
∞∑

m=1

∞∑
n=1

Am,n

μm,n
Xn(x)Ym(y) (8.66)

which satisfies Laplace’s equation −∇2v = 0 in the domain and also satisfies v = 0
on the boundary (since the eigenfunctions also satisfy the homogeneous boundary
condition, see (8.61)). Clearly v(x, y) = 0 is a possible solution. At this juncture
we can make use of the theory developed in Chap.7. In particular, since we have
an inverse monotone operator (see Corollary 7.7) the function v(x, y) = 0 must be
unique (see Theorem 5.3). This, in turn, implies that the unique solution to Poisson’s
equation −∇2u = f is given by the double sum

u(x, y) =
∞∑

m=1

∞∑
n=1

Am,n

μm,n
Xn(x)Ym(y), (8.67)

where the coefficients Am,n are defined as in (8.65). Note that the coefficients
Am,n/μm,n tend to zero much faster that those in (8.64), signalling the fact that
the solution u is much smoother than the data f .

♦

Exercises

8.1 Work out the details that were omitted in Example 8.2.

8.2 Suppose that g(x) = max{0, 1 − |8x − 4|}. By expressing g(x) in the form
Ax + B on the separate subintervals [0, 3/8), (3/8, 1/2), (1/2, 5/8) and (5/8, 1], compute
the inner products 〈g, Xn〉 when Xn(x) = sin nπx . Hence verify that the series
solution in Example 8.4 (b) has the coefficients (8.12).

8.3 Any function g(x) that satisfies g(1 − x) = g(x) for x ∈ [0, 1] is symmetric
about x = 1/2. Show that g′(1/2) = 0, provided that g(x) is continuously differ-
entiable in the neighbourhood of x = 1/2. Next, suppose that the initial condi-
tion g(x) in Example 8.1 is symmetric about x = 1/2 and show that the function
v(s, t) = u(1 − s, t) satisfies the same PDE and boundary/initial conditions as
u(x, t). (This shows that the solution of the BVP must also be symmetric about the
centre of the interval.)

8.4 Using separation of variables, construct the solution of the heat equation ut =
κuxx for 0 < x < 1/2, t > 0 with BCs u(0, t) = 0, ux (1/2, t) = 0 for t > 0 and
initial condition u(x, 0) = g(x), where g(x) = 0 for 0 < x < 3/8 and g(x) = 1 for
3/8 < x < 1/2. Why is this solution identical to the series solution that is explicitly
constructed in Example 8.4(a)?

8.5 This exercise builds on Exercise 8.3. Both problems in Example 8.4 have series
solutions in which the coefficients of the even-numbered terms are equal to zero.
Show that this will always be the case when homogeneous Dirichlet conditions
u = 0 are imposed at the end points (still assuming that the initial condition g(x) is
symmetric about x = 1/2).

http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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8.6 Show that the advection–diffusion equation ut − uxx + 2ux = 0with boundary
conditions u(0, t) = u(1, t) = 0 for t > 0, has fundamental solutions of the form
u(x, t) = exp(x −αt) sin βx for suitably chosen constantsα and β. Hence, construct
the solution when the initial condition is given by u(x, 0) = 1 for 0 < x < 1.

8.7 Suppose that u(x, y) is a continuously differentiable, circularly symmetric func-
tion, so that when expressed in polar coordinates x = r cos θ, y = r sin θ, it depends
solely on the radius r ; that is u = f (r). Show that ux (x, y) = f ′(r) cos θ and hence
deduce that f ′(0) = 0, which implies the Neumann boundary condition ur = 0
when r = 0.

8.8 Suppose that u(x, y, z) is a continuously differentiable, spherically symmetric
function, so that when expressed in spherical polar coordinates x = r cos θ sin φ,
y = r sin θ sin φ, z = r cosφ, it depends solely on the radius r ; that is u = f (r).
Show that ur = 0 at r = 0.

[Hint: use the chain rule to express the partial derivatives uθ, uφ and ur in terms
of ux , uy and uz and then set uθ = 0 and uφ = 0.]

8.9 Show that the coefficients in the solution (8.21) of the heat equationwith circular
symmetry are given by

An = 2

ξ2n J 2
1 (ξn)

(
4

ω
J1(ω) − 2J0(ω)

)
, ω = ξnb

a
,

when g(r) = 1 − (r/b)2 for 0 ≤ r ≤ b and g(r) = 0 for b < r ≤ a.
[Hint:

∫
x3 J0(x) dx = 2x2 J0(x) + x(x2 − 4)J1(x).]

8.10 By identifying the differential operator L, show that the heat equation in a
sphere (8.25) can be expressed in the generic form (8.13). Look for a separated
solution u(r, t) = R(r)T (t) for Example 8.6 and show that the eigenvalue problem
for R(r) can be written as X ′′(r) + λX (r) = 0, X (0) = X (a) = 0, where X (r) =
r R(r). If g(r) is the initial condition, show that the general solution to the problem
is given by (8.26) with coefficients {An} given by

An = 2

a

∫ a

0
rg(r) sin

nπr

a
dr, n = 1, 2, . . .

8.11 ✩ This exercise builds on the previous exercise. Verify that the coefficients {An}
are given by (8.27) when g(r) is the step function defined by (8.23).

8.12 Using the expression for the coefficients given in Exercise 8.10, show that the
heat equation in a sphere with initial condition g(r) = 1 − (r/b)2, 0 ≤ r ≤ b and
g(r) = 0 for b < r ≤ a has the series solution (8.26) with coefficients

An = 4b2

a

(
3
sinω

ω4 − 3
cosω

ω3 − sinω

ω2

)
, ω = nπb

a
.
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8.13 Suppose that a solid sphere of unit radius is held at a uniform temperature
u = 1 when, at t = 0, it is plunged into a bath of freezing water. Use separation of
variables to determine the solution u (assumed to be spherically symmetric for all
time) that satisfies the heat equation (8.25), the initial condition u(r, 0) = 1 and the
boundary condition u(1, t) = 0. Deduce from this solution that the temperature at
the centre of the sphere is given by

u(0, t) = 2
∞∑

n=1

(−1)n−1e−n2π2t .

What is the dominating behaviour at large times?

8.14 Using separation of variables, construct the solution of the BVP

ut = κuxx + u, 0 < x < L , t > 0
u(0, t) = u(L , t) = 0, u(x, 0) = sin(nπx/L).

}

Show that there exists a value L = L∗, say, such that, u(x, t) → 0 for L < L∗
as t → ∞, whereas u(x, t) → ∞ for L > L∗. This illustrates a general feature:
physical diffusion becomes less and less effective in damping solutions of the heat
equation as the size of the domain increases.

8.15 ✩ If the functions g0(x) and g1(x) are given by the series expansions (8.43)
and (8.44), respectively, show that d’Alembert’s solution (4.20) leads to the series
solution (8.42).

8.16 Using separation of variables, construct the general solution of the wave equa-
tion utt = uxx for 0 < x < 1, t > 0 with BCs u(0, t) = 0, ux (1, t) = 0, for
t > 0 and initial condition u(x, 0) = 0. What other condition might determine the
remaining constants in this solution?

8.17 Determine the general solution of the wave equation utt = uxx for −a < x <

a, t > 0 with BCs u(±a, t) = 0, for t > 0 by separation of variables. Find the
specific solution satisfying the initial conditions g0(x) = max(0, 1 − (x/b)2) and
g1(x) = 0 (b < a).

8.18 Use separation of variables to solve the PDE

utt + 2ut = uxx

in the strip 0 < x < 1, t > 0 subject to the boundary conditions u(0, t) = u(1, t) = 0
for t ≥ 0 and initial conditions u(x, 0) = sin πx , ut (x, 0) = 0 for 0 ≤ x ≤ 1.

8.19 By applying interchanges such as x ↔ a − x , x ↔ y, a ↔ b to the general
solution (8.56) of subproblem P1 in Example 8.12, write down the series solutions
for subproblems P2, P3 and P4.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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8.20 ✩ Evaluate the integral (8.57) when a = 1, g1(x) = x2 and show that it leads
to (8.58).

8.21 ✩ Show that the solution to Laplace’s equation in the square domain 0 < x, y <

1 with u(1, y) = 1 − y and u = 0 on the remaining edges is given by the series

u(x, y) =
∞∑

n=1

(
2

nπ

)
sinh nπx

sinh nπ
sin nπy.

8.22 Using separation of variables, construct the solution of the elliptic PDE uxx +
uyy = cu (in which c is a constant) in the rectangle 0 < x < 2, 0 < y < 1, with BCs
u(0, y) = u(2, y) = 0 for 0 ≤ y ≤ 1 and uy(x, 0) = uy(x, 1) = 0 for 0 ≤ x ≤ 2.
For what values of c are nontrivial fundamental solutions possible?

8.23 Using separation of variables, find fundamental solutions of the elliptic PDE
−(uxx + uyy) + 2ux = 0 in the square domain 0 < x, y < 1 with homogeneous
Dirichlet BCs u = 0 on the edges y = 0 and y = 1 and the Neumann BC ux = 0
on x = 1. Can you construct an explicit solution that satisfies the additional BC
u(0, y) = y(1 − y)?

8.24 Suppose that u(r, θ) satisfies Laplace’s equation in the circular region defined
by 0 ≤ θ < 2π, 0 ≤ r ≤ a in polar coordinates. Look for a separated solution
u(r, θ) = R(r)�(θ) and construct the ODEs satisfied by R(r) and �(θ). Show that
requiring �(θ) to be a periodic function of θ with period 2π uniquely identifies the
set of associated eigenvalues: λn = n2, n = 0, 1, 2, . . ..

Show that the ODE satisfied by R(r) has solutions of the form Arα (for n > 0)
and identify the two possible values of α. Explain why requiring solutions to be
bounded means that one of the two solutions can be disregarded and write down the
resulting series solution of the BVP.

Finally, if u is subject to the BC u(a, θ) = g(θ), show that u(0, 0) =
1
2π

∫ 2π
0 g(θ) dθ: the mean value of a harmonic function over a circle is equal to

its value at the centre.

8.25 Suppose that u(r, θ) satisfies Laplace’s equation in polar coordinates in the
annular region defined by 0 ≤ θ < π/4, 1 ≤ r ≤ 2.

Look for a separated solution u(r, θ) = R(r)�(θ) and construct the ODEs satis-
fied by R(r) and �(θ) appropriate when u = 0 on the boundary except on r = 2
(0 < θ < π/4), where u = g(θ). Verify that the associated eigenvalues are given
by λn = 16n2 and show that the corresponding solutions for R are of the form Arα,
where A is an arbitrary constant and α is related to n.

8.26 Repeat the previous exercise when the BCs are changed so that u = g(r)

on θ = 0 (1 < r < 2) and is otherwise equal to zero. Verify that the associated
eigenvalues are given by λn =(nπ/ log 2)2. [Hint: apply the change of variable s =
log r to simplify the differential equations for R.]
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8.27 ★ Consider the eigenvalue problem−∇2u = λu for the negative Laplacian−∇2

in a circle of radius a with u = 0 on the boundary. Using separation of variables,
show that the eigenvalues are given by

λm,n :=
(

ξn,m

a

)2

, n = 0, 1, 2, . . . , m = 1, 2, . . .

with corresponding eigenfunctions given by

Jn

( r

a
ξn,m

)
sin nθ, Jn

( r

a
ξn,m

)
cos nθ,

where 0 = ξn,0 < ξn,1 < ξn,2 < · · · denote the zeros of the Bessel function Jn(x).

8.28 Use the solution of the previous exercise to determine the general solution of
the wave equation utt = c2∇2u, where c is a constant, in a circle of radius a with
homogeneous Dirichlet boundary conditions.



Chapter 9
The Method of Characteristics

Abstract This chapter describes a classical technique for constructing solutions of
hyperbolic PDEs. The method is applied to linear systems of PDEs and to nonlinear
PDEproblems. This naturally leads to a discussion ofmore advanced topics including
shocks, Riemann problems and weak solutions.

The study of characteristics initiated in Chap. 4 is continued in this chapter. We
begin by considering systems of linear first-order hyperbolic PDEs and we continue
by looking at how the method of characteristics can be extended to second-order
hyperbolic PDEs. The chapter concludes with a detailed study of semi-linear and
quasi-linear PDEs of first order. The solutions to these problems will be shown
to exhibit behaviour not found in linear problems; for example, shock waves—the
spontaneous development of discontinuities—leading to a reassessment of what is
meant by a solution of a PDE.

9.1 First-Order Systems of PDEs

As a starting point, we recall from Sect. 4.1 that the simplest linear PDE

pux + quy = f (9.1)

in which p, q and f are functions of x , y and u, can be identified with characteristic
equations

dx

p
= dy

q
= du

f
(9.2)

which have to be solved in order to determine the relationships between x , y and
u. These relationships are often parameterized in terms of k, say, and the paths
(x(k), y(k)) are referred to as the characteristics.

In this section, we shall consider systems of first-order PDEs with constant coef-
ficients, Pux + Quy = 0, where the solution u(x, y) represents a vector in R

d and
P and Q are matrices in R

d×d . For simplicity, it is helpful to assume that at least
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162 9 The Method of Characteristics

one of these matrices is nonsingular (to avoid degenerate situations that are generally
underdetermined) so let us suppose that Q is nonsingular. Then, premultiplying by
Q−1 and writing A = Q−1P gives

Aux + uy = 0. (9.3)

This generic PDE system can be diagonalised into d uncoupled scalar problems by
making use of the eigenvalue decomposition—however, it turns out that it is the
eigenvalue problem for AT, rather than A, that is the key.1 To see this, suppose that
λ is an eigenvalue of AT with corresponding eigenvector v so

ATv = λv.

Since, vT A = λvT, multiplying both sides of (9.3) by vT leads to

vT Aux + vTuy = 0,

that is
λ(vTu)x + (vTu)y = 0. (9.4)

When the eigenvalues of AT are real and distinct this is a first-order hyperbolic
equation having as dependent variable the scalar vTu and the characteristic equations

dx

λ
= dy

1
= d(vTu)

0
.

Thus, for each eigenvalue λ, the component of u in the direction of the corresponding
eigenvector v is constant along the characteristic x −λy = constant. For the remain-
der of this section we will assume that the system (9.3) is hyperbolic and we will
replace y by t in order to emphasize the point that it represents a time-like variable.

Example 9.1 Solve the system Aux + ut = 0 for t > 0, x ∈ R when subject to the
initial condition u(x, 0) = g(x), x ∈ R, given that A has real distinct eigenvalues,
and show that the solution is bounded by the data.

In order to determine the solution at somepoint P(X, T ) (withT > 0), the characteris-
tics through P are followed backwards in time until they intersect the initial line t = 0.
The process is illustrated in Fig. 9.1. When AT has eigenvalues λ1 < λ2 < · · · < λd

with corresponding eigenvectors v1, v2, . . . , vd , the characteristics are solutions of
the ODEs dx/ dt = λ j with x(T ) = X . They are given by

x − λ j t = X − λ j T, j = 1, . . . , d

1Note that matrices A and AT have the same eigenvalues, but that the corresponding eigenvectors
are different in general.
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Fig. 9.1 The characteristics
through a general point
P(X, T ) for a typical
d-dimensional hyperbolic
system

and intersect the x-axis at points Q j (x j , 0), where x j = X − λ j T . Moreover, since
vT

j u is constant along the j th characteristic, we can construct a system of d linear
algebraic equations

vT
j u(X, T ) = vT

j g(X − λ j T ), j = 1, . . . , d, (9.5)

which can be solved to give u(X, T ). This characteristic system can be written in
matrix-vector form as

V Tu(X, T ) = f , (9.6)

where V = [v1, v2, . . . , vd ] is the matrix of eigenvectors and

f = [vT
1g(X − λ1T ), vT

2g(X − λ2T ), . . . , vT
dg(X − λd T )]T.

Eigenvectors corresponding to distinct eigenvalues are linearly independent so the
nonsingularity of V T is assured. This, in turn, means that (9.6) has a unique solution.

In order to bound the solution in terms of the data we can use the vector andmatrix
norms discussed in Sect. B.1. Thus, taking the maximum vector-norm of both sides
of u = V −T f leads to

‖u(X, T )‖∞ = ‖V −T f ‖∞ ≤ ‖V −T ‖∞‖ f ‖∞ = ‖V −1‖1‖ f ‖∞. (9.7)

In order to bound ‖ f ‖∞ we assume that the initial data g(x) is bounded, that is
‖g(x)‖∞ ≤ M∞ for each x ∈ R. This leads to the bound

|vT
j g(X − λ j T )| ≤

∑
1≤i≤d

|vi j | |gi (X − λ j T )| ≤ M∞
∑

1≤i≤d

|vi j |

and thus

‖ f ‖∞ = max
1≤ j≤d

|vT
j g(X − λ j T )| ≤ M∞ max

1≤ j≤d

∑
1≤i≤d

|vi j | = M∞‖V ‖1.
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Combining this result with (9.7) gives the final estimate

‖u(X, T )‖∞ ≤ κ1(V )M∞ (9.8)

where κ1(V ) = ‖V ‖1‖V −1‖1 is known as the 1-condition number. (See Exercise 9.3
for a related result in a different norm.) ♦
To complete this section we look at an example that extends the use of characteristics
to a system of three PDEs that involves a mixture of initial and boundary conditions.

Example 9.2 Suppose that the 3 × 3 matrix A has eigenvalues λ1 = −1, λ2 = 1
and λ3 = 2 and that the corresponding eigenvectors of AT are v1 = [1, 0, 1]T,
v2 = [0, 1, 1]T and v3 = [1, 1, 0]T. Consider the boundary value problem in which
the PDE Aux + ut = 0 is to be solved in the first quadrant of the x-t plane with
initial data that specifies the three components of u = [u, v, w]T on the line t = 0,
and with two boundary conditions u(0, t) = v(0, t) and w(0, t) = 0 specified on
the positive t-axis. Use the method of characteristics to determine the solution at the
point P(X2, T2) with T2 < X2 < 2T2.

There are three families of characteristics:

Γ1 : λ1 = −1, x + t = constant, vT
1 u = u + w = constant,

Γ2 : λ2 = 1, x − t = constant, vT
2 u = v + w = constant,

Γ3 : λ3 = 2, x − 2t = constant, vT
3 u = u + v = constant.

Note that, as discussed in Sect. 4.1, the fact that two of the three characteristic families
(Γ2 and Γ3) are directed into the domain along the t-axis is the reason why two
boundary conditions need to be specified there.

The first quadrant is divided into three regions by the two incoming characteristics
(x−t = 0 and x−2t = 0) that pass through the origin. Typical points P1 (X1 > 2T1),
P2 (T2 < X2 < 2T2) and P3 (X3 < T3) in each of these regions are shown in Fig. 9.2.

Fig. 9.2 The characteristics through points P1, P2, and P3 for Example 9.2 drawn backwards in
time, with reflections when they intersect the t-axis. The dashed lines show the characteristics
x − t = 0 and x − 2t = 0 that pass through the origin

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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The three characteristics through P1 intersect the x-axis directly while, for P2, the
Γ3 characteristic x − 2t = X2 − 2T2 intersects the t-axis at A(0, T2 − 1

2 X2) and
we have to include the Γ1 characteristic x + t = T2 − 1

2 X2 that passes through A
and intersects the x-axis at B with abscissa x = T2 − 1

2 X2. The Γ1 characteristic
AP2 is referred to as the reflection of BA in the t-axis: this makes sense because the
characteristic is outgoing rather than incoming.

In order to illustrate the characteristic solution process, we shall focus exclusively
on the point P2. (For P3, where X3 < T3, the two characteristics backwards in time
both intersect the t-axis and their “reflections” have to be included.) We start where
the characteristics backwards in time, or their reflections, intersect the x-axis and
simply move forwards to the point where we want the solution. By inspection there
are four sections:

BA: The Γ1 characteristic along which vT
1 u is constant. Thus2 u(A) + w(A) =

u(B) + w(B) and the boundary condition w = 0 on the t-axis gives

u(A) = u(B) + w(B). (9.9)

AP2: The Γ3 characteristic along which vT
3 u is constant. Thus u(P2) + v(P2) =

u(A) + v(A) and the boundary condition u = v on the t-axis together with
(9.9) leads to

u(P2) + v(P2) = 2
(
u(B) + w(B)

)
. (9.10)

CP2: The Γ2 characteristic along which vT
2 u is constant. Thus

v(P2) + w(P2) = v(C) + w(C). (9.11)

DP2: The Γ1 characteristic along which vT
1 u is constant. Thus

u(P2) + w(P2) = u(D) + w(D). (9.12)

We now have three linear algebraic equations (9.10)–(9.12) with which to determine
u(P2). Alternatively, the system can be written in the succinct form

V Tu(P2) = f , (9.13)

where f = [u(D) + w(D), v(C) + w(C), 2
(
u(B) + w(B)

)]T. Since the coefficient
matrix in (9.13) is nonsingular, we deduce that the solution is uniquely specified by
the given initial data on the line t = 0. ♦

2We use the informal notation that u(A) denotes the value of u at the point A.
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9.2 Second-Order Hyperbolic PDEs

Before proceeding to examine the solutionof constant coefficient second-order PDEs,
we show how such problems can arise from 2 × 2 systems of the form (9.3). First,
supposing that

A =
[
α β
γ δ

]
, u =

[
u
v

]
, (9.14)

the terms in (9.3) may be reorganised to read

(α∂x + ∂y)u + β∂xv = 0,

γ∂x u + (δ∂x + ∂y)v = 0.

Next, eliminating v by subtracting the multiple β∂x of the second equation from the
multiple δ∂x + ∂y of the first equation gives the second-order PDE

det(A) uxx + tr(A) uxy + uyy = 0, (9.15)

where tr(A) = α + δ is the trace of A. Finally, using the matrix properties det(A) =
λ1λ2 and tr(A) = λ1 + λ2, where λ1,λ2 are the eigenvalues of A, this equation can
be rewritten as

λ1λ2 uxx + (λ1 + λ2) uxy + uyy = 0 (9.16)

whose discriminant is (λ1 + λ2)
2 − 4λ1λ2 = (λ1 − λ2)

2 ≥ 0. Thus the PDE (9.16)
is readily factorized3

(λ1∂x + ∂y)(λ2∂x + ∂y)u = 0,

and implies that the PDE can be directly integrated. The process is illustrated in the
next example.

Example 9.3 (Quarter-plane problem) Use the method of characteristics to solve the
wave equation utt − c2uxx = 0 in the quarter plane {(x, t) : x > 0, t > 0} with
homogeneous initial conditions u(x, 0) = ut (x, 0) = 0 (0 ≤ x < ∞) and with
boundary condition u(0, t) = g(t) for t > 0.

In view of the factorization

utt − c2uxx = (∂t + c∂x )(∂t − c∂x )u

3Under the classification in Sect. 4.2 the system is hyperbolic as long as λ1 �= λ2. This is why the
eigenvalues of A were required to be distinct in Sect. 9.1.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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the wave equation may be written as (∂t + c∂x )U+ = 0, where U+ = (∂t − c∂x )u,
which has the characteristic equations

dt

1
= dx

c
= dU+

0
,

or as (∂t − c∂x )U− = 0, where U− = (∂t + c∂x )u, which has the characteristic
equations

dt

1
= dx

−c
= dU−

0
.

Together these give two families of distinct characteristics:

Γ + : U+ = ut − cux = constant
Γ − : U− = ut + cux = constant

}
along

{
x − ct = constant
x + ct = constant

,

where the Γ + (Γ −) characteristics transmit information in the positive (negative)
x-direction.

In order to determine the solution at a point P, say, we trace the characteristics
through P back in time until they meet either the x-axis, where the initial conditions
can be applied, or else the boundary where the boundary condition is applied. When
P has coordinates (x, t) where x − ct < 0, as shown in Fig. 9.3, there are three
component sections:

CP: The Γ − characteristic that intersects the x-axis at C, that is, (x + ct, 0). Since
U− = constant on Γ − and ux = ut = 0 on t = 0, we have

ut (P) + cux (P) = 0. (9.17)

Fig. 9.3 The two families of characteristics for Example 9.3 are shown on the left. Characteristics
through a point P(X, T ) (with X < cT ) are traced back to intersect with the positive x-axis. The
solution at times t = 1, 2, 3, for c = 2 and boundary condition u(0, t) = sin 5t is shown on the
right. The dashed line indicates the characteristic x = ct through the origin
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AP: The Γ + characteristic that intersects the t-axis at A, that is (0, t − x/c). Since
U+constant on Γ + and ut (0, t) = g′(t),

ut (P) − cux (P) = g′(t − x/c) − cux (A). (9.18)

BA: The Γ − characteristic that intersects the x-axis at B, that is (ct − x, 0). Thus
ut (A) + cux (A) = ut (B) + cux (B), that is,

g′(t − x/c) + cux (A) = 0.

This, combined with (9.18), gives

ut (P) − cux (P) = 2g′(t − x/c). (9.19)

Solving (9.17) and (9.19) (as algebraic rather than differential equations) for ut (P)

and ux (P) gives

ut (x, t) = g′(t − x/c), ux (x, t) = −(1/c) g′(t − x/c).

Integrating thefirst of these givesu(x, t) = g(t−x/c) + f (x),where f is an arbitrary
function. When this expression for u is substituted into the second equation, we find
that f (x) must be constant. Finally, the boundary condition u(0, t) = g(t) implies
that f = 0.

This completes the solution in the region x < ct . A similar (though simpler)
process for x > ct leads to u(x, t) = 0 and so the overall solution is

u(x, t) =
{

g(t − x/c) 0 ≤ x ≤ c t,

0 c t < x < ∞.
(9.20)

The solution at three different snapshot times is shown in Fig. 9.3 when g(t) = sin 5t
with the wave speed c = 2. This problem models the motion of a thin inextensible
string lying initially along the positive x-axis that has its left end vibrated vertically
in a sinusoidal fashion. ♦

Example 9.4 (Half-plane problem) Use the method of characteristics to solve the
inhomogeneous (or forced ) wave equation utt − c2uxx = f (x, t) in the upper
half plane {(x, t) : x ∈ R, t > 0} with homogeneous initial conditions u(x, 0) =
ut (x, 0) = 0, x ∈ R, for a time-independent forcing function f (x, t) = 2(2x2 −
1) exp(−x2).

Using the factorization and the notation in the previous example, we have the char-
acteristic equations

dt

1
= dx

c
= dU−

f
.
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We deduce that dU−
dt = f along the Γ − characteristic, shown as CP in Fig. 9.3. A

general point on CP has coordinates (x + c(t −τ ), τ ) for 0 ≤ τ ≤ t . Moreover, since
U− = ut + cux = 0 along the x-axis, we have that U−(C) = 0 and then integrating
along the characteristic gives

U−(P) = ut (P) + cux (P) =
∫ t

0
f (x + c(t − τ ), τ ) dτ . (9.21)

Using exactly the same argument for the Γ + characteristic through P gives

U+(P) = ut (P) − cux (P) =
∫ t

0
f (x − c(t − τ ), τ ) dτ . (9.22)

Thus subtracting (9.21) from (9.22) gives

ux (x, t) = 1

2c

∫ t

0

(
f (x + c(t − τ ), τ ) − f (x − c(t − τ ), τ )

)
dτ . (9.23)

The next step is to recognize that, by Leibniz’s rule for differentiating an integral
with variable limits,

f (x + c(t − τ ), τ ) − f (x − c(t − τ ), τ ) = ∂x

∫ x+c(t−τ )

x−c(t−τ )

f (ξ, τ ) dξ.

This means that (9.23) can be integrated to give

u(x, t) = 1

2c

∫ t

0

∫ x+c(t−τ )

x−c(t−τ )

f (ξ, τ ) dξ dτ + A(t), (9.24)

where A is an arbitrary function.When this expression for u is substituted into (9.22),
we find that A(t) must be constant. Moreover, the initial condition u(x, 0) = 0
implies that A = 0. Thus, in conclusion, the solution at a typical point P(x, t) is a
constant multiple (1/2c) of the integral of the source term over the triangle formed
by the two characteristics through P and the x-axis (shown as the shaded triangle
APB in Fig. 9.4).

In the case that f (x, t) = 2(1 − 2x2) exp(−x2) the double integral in (9.24) can
be readily evaluated (see Exercise 9.4) to give

u(x, t) = 1

2c2

(
2e−x2 − e−(x−ct)2 − e−(x+ct)2

)
. (9.25)

The solution at three different snapshot times is shown in Fig. 9.4. It is recognisable
as being a combination of two travelling waves and a standing wave. ♦
In the preceding example the solution of the inhomogeneous wave equation at a
specific point P was seen to depend only on values of the source term at points lying
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Fig. 9.4 The two families of characteristics for Example 9.4 are shown on the left. The solution
to the forced wave equation at P is proportional to the integral of the source term f (x, t) over the
triangle APB. A specific solution with c = 1 and source term f (x, t) = 2(1 − 2x2) exp(−x2) at
times t = 1, 2, 3, is shown on the right

in the shaded triangle APB in Fig. 9.4. D’Alembert’s solution (4.20) for the unforced
wave equation similarly shows that the solution at P depends only on the initial data
along AB. These observations, along with the principle of superposition, allow us
to conclude that the solution at P is unaffected by any data relating to points lying
outside the triangleAPB. This localisation property holdsmorewidely for hyperbolic
PDEs and leads to a set of generic definitions that are stated below which and which
are illustrated in Fig. 9.5.

Definition 9.5 (Causality for hyperbolic PDEs) The domain of dependence of a
point P is the region between the characteristics passing through P and the initial
line. The intersection of the domain of dependence with the initial line is known as
the interval of dependence of the point P. The domain of influence of a point C on
the initial line is the set of all points that can be affected by initial data in a small
interval containing C. When solving systems of first-order PDEs the triangle APB
should be chosen so as to include all characteristics that pass through the point P.

Fig. 9.5 Domains of dependence and influence for a hyperbolic PDE

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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9.3 First-Order Nonlinear PDES

The method of characteristics is also applicable to nonlinear PDEs. The usefulness
of the method will be demonstrated by going through a sequence of examples that
show increasingly complex solution behaviour.

Example 9.6 (A semi-linear PDE) Use the method of characteristics to find the
general solution of the semi-linear PDE ut − xux = −u2 in the upper half plane
{(x, t) : x ∈ R, t > 0}. Compare and contrast the solutions satisfying the initial
conditions u(x, 0) = sin2 x and u(x, 0) = sin x , x ∈ R.

The characteristic equations are

dt

1
= dx

−x
= du

−u2 ,

and the associated ODEs are

dx

dt
= −x,

du

dt
= −u2.

The general solution of the first of these is x(t) = ke−t in which different values of
the constant of integration, k, distinguish different characteristics (see Fig. 9.6). The
second ODE has the general solution u(t) = 1/(A(k) + t) in which the constant of
integration A(k) depends on the particular characteristic, and therefore on k. Thus k
plays the role of a parameter which, when eliminated, gives the general solution

u(x, t) = 1

A(xet ) + t
,

where the arbitrary function A(·) may be determined from the initial condition. The
specific initial condition u(x, 0) = g(x) leads to the relation A(x) = 1/g(x), and so
the generic solution is given by

u(x, t) = g(xet )

1 + tg(xet )
. (9.26)

The solutions associated with the specified initial conditions g(x) = sin2 x and
g(x) = sin x share the property that the distance between zeros of g(xet ) (and those
of the solution u) is πe−t . Thus, in either case, the frequency of zeros increases
exponentially as time evolves. The character of these two solutions is fundamentally
different however. For g(x) = sin2 x we have g(xet ) ≥ 0, for all x and t , and
consequently u(x, t) → 0 for all x as t → ∞. This contrasts with what happens
for g(x) = sin x , where u(x, t) becomes infinite as t → 1 for any value of x where
sin(x/e) = −1. This is an example of a finite-time singularity, which is a feature one
needs to be aware of when solving semi-linear PDEs. The solution blow-up in finite
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Fig. 9.6 A sketch of the characteristics associated with Example 9.6

Fig. 9.7 Solutions to the semi-linear PDE in Example 9.6 at three snapshot times for initial condi-
tions u(x, 0) = sin2 x (left) and u(x, 0) = sin x (right). Note that the number of zeros of u increases
as time evolves; in both cases

time is illustrated in Fig. 9.7 where the two solutions are plotted over the interval
−4 ≤ x ≤ 4 for three different snapshot times. ♦
In general, for a first-order semi-linear PDE the coefficients of the derivative terms
do not involve u and so the ODEs that describe the characteristics may be solved, as
in the previous example, without reference to u. This is not the case for quasi-linear
PDEs, as we shall see in the next example.

Example 9.7 (A quasi-linear PDE) Use the method of characteristics to find the
general solution of the quasi-linear PDE ut + uux = −u in the upper half plane
{(x, t) : x ∈ R, t > 0} when subject to the general initial condition u(x, 0) = g(x),
x ∈ R.

The characteristic equations in this case are

dt

1
= dx

u
= du

−u

and the associated ODEs are

dx

dt
= u,

du

dt
= −u.
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The first of theseODEs,which describes the characteristic path x(t), cannot be solved
without knowledge of u. Fortunately, the second ODE can be solved explicitly in
this case: u = A(k)e−t so that the equation for x becomes

dx

dt
= A(k)e−t .

The choice of parameterization has a significant impact on the complexity of the
subsequent calculations and, with this in mind, we suppose that the characteristic
path x(t) intersects the x-axis at x(0) = k. It follows that

x(t) = k + A(k)(1 − e−t ) = k + A(k) − u.

This shows that values of u on the characteristic are needed in order to find the
characteristic. To this end, using the initial condition g(x) = u(x, 0) = A(k) and
noting that x = k when t = 0 gives A(k) = g(k) leading to the solution

u = g(k)e−t , x = k + g(k)(1 − e−t ) (9.27)

that is parameterized by k ∈ (−∞,∞).
We nowencounter the first difficulty.Only in exceptional cases (seeExercises 9.18

and 9.19) can the second of these equations be solved for k in terms of x and t and
thereby allow one to express u as a function of x and t . Nevertheless, (9.27) is
perfectly adequate for graphing the solution at any given time t . For example, the
solutions corresponding to the initial function

g(x) = σ

1 + σ2x2
(9.28)

are illustrated for two different values of σ in Fig. 9.8. But nowwe encounter a deeper
difficulty: when σ = 2 we get a “breaking wave” and there are combinations of x
and t where the solution u has three possible values. Indeed, what is shown in the
figure cannot be a solution of the PDE since an intrinsic property of functions is
that they be single valued. When the second of the two equations (9.27) is used to
draw the corresponding characteristics (see Fig. 9.8, bottom right) it is seen that some
intersect each other—this is the souce of the problem: two colliding characteristics
carry different (and contradictory) information. ♦
Our task in the remainder of the chapter is to explore how a single-valued solution
may be recovered when solving PDE problems like the one above. We will make a
detailed study of the inviscid Burgers’ equation in order to achieve this goal.
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Fig. 9.8 The solution for Example 9.7 at t = 0, 1, 2 and the initial function g(x) = σ/(1+ σ2x2)
with σ = 1 (left) and σ = 2 (right). The dashed lines show the characteristics through the origin
(k = 0) in both cases. The lower figures show the corresponding characteristics

9.3.1 Characteristics of Burgers’ Equation

The inviscid Burgers’ equation (pde.2) is an important model in fluid dynamics.
The physical basis of the model is discussed in detail in Sect. 3.2.5. The solution
u typically represents the (scaled) depth of water in a simple model of river flow
without rain or seepage.

The PDE problem is specified in the upper half plane {(x, t) : x ∈ R, t > 0},

ut + u ux = 0, x ∈ R, t > 0, (9.29)

together with an initial condition u(x, 0) = g(x). The solution process mirrors that
in Example 9.7. The characteristic equations are

dt

1
= dx

u
= du

0

and the associated ODEs are

dx

dt
= u,

du

dt
= 0.

http://dx.doi.org/10.1007/978-3-319-22569-2_3
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As in Example 9.7, the second ODE can be solved explicitly to give

u = A(k) and x = A(k)t + k.

We deduce that the characteristics are straight lines in the x-t plane and that the
solution u is constant on a given characteristic. For the characteristic that intersects
the x-axis at x = k we have u(0, x) = A(x) = g(x), so that the solution, in terms
of k and t , becomes

u = g(k), x = g(k)t + k. (9.30)

It is also possible to eliminate k to obtain an implicit representation of the solution
to the BVP in the form

u = g(x − u t). (9.31)

Note that (9.31) is of limited utility since it usually requires root-finding software to
evaluate u at any given values of t and x . The representation (9.30) that is parame-
terized by k and t is generally much more useful.

It is evident from (9.30) that characteristics are straight lines in the x-t plane with
slope 1/g(k). When g(k) is a decreasing function of k, faster characteristics start
behind slower characteristics and they will inevitably intersect at some later time
(see Fig. 9.9) after which time the solution will become multivalued because u has a
different constant value on the two characteristics.

The next example is chosen to illustrate how easy it is to construct a dysfunctional
solution to the inviscidBurgers’ equation. Itwill show that it suffices to takemonoton-
ically decreasing initial data that is continuous and piecewise linear. To see why this
inevitably leads to a breakdown, note that linear initial data g(x) = σ(x − x0), where
σ is constant, leads, via (9.31) to the solution

u(x, t) = σ
x − x0
1 + σt

, (9.32)

Fig. 9.9 Two points A0 and B0 on the initial function g(x) evolve under the inviscid Burgers’
equation to A1 and B1 at a later time (left). The movement is horizontal because u is constant along
characteristics. The corresponding characteristics (right) intersect at some intermediate time
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which is a linear function of x having a constant intercept on the x-axis for fixed
t > 0. The slope of this solution at time t is σ/(1+ σt). For increasing data, σ > 0,
there is no problem: the slope tends to zero as t → ∞. For decreasing data the
situation is different however: for σ < 0, the slope decreases without bound until
t = −1/σ when all the associated characteristics intersect simultaneously and the
solution blows up! Note that beyond this critical time the slope is positive, so the
dysfunctinal solution also tends to a constant in the limit t → ∞.

Example 9.8 Determine the solution of Burgers’ equation (9.29) when subject to
the initial data

g(x) =

⎧⎪⎨
⎪⎩
3 for x ≤ −1

2 − x for − 1 ≤ x ≤ 1

1 for x ≥ 1.

The characteristics starting at x ≤ −1 are all parallel and have speed 3 ( and slope
1/3, see Fig. 9.10) while those starting at x ≥ 1 are also parallel and have speed 1
(and slope 1). From (9.30) we see that characteristics starting at x = k (−1 ≤ k ≤ 1)
follow the paths x = (2 − k)t + k, for −1 ≤ k ≤ 1 (shown by the shaded region in
Fig. 9.10). These all intersect simultaneously at x = 2, t = 1 when a discontinuity
forms. The non-constant sections of the solution shown in Fig. 9.10 are given by
(9.32) with σ = −1 and x0 = 2. Solutions after t = 1 should be disregarded because
they are multivalued. ♦
The solution snapshots in Figs. 9.8 and 9.10 indicate that multivalued solutions are
initiated by characteristics intersecting and by the slope of the solution becoming

Fig. 9.10 The characteristics for Example 9.8 are shown on the left. The shaded area highlights the
characteristics starting from the sloping part of the initial data on (−1, 1). Snapshots of the solution
are shown on the right
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infinite at the same time. To investigate the connection between these two events,
let us consider two neighbouring characteristics having paths x = x(t, k) and x =
x(t, k+δk) in the x-t plane. The characteristics intersect when x(t, k) = x(t, k+δk).
If we assume that the partial derivative of x with respect to k is a continuous function
then the mean value theorem implies that

x(t, k + δk) − x(t, k) = δk· ∂k x(t, k + θδk)

for some value θ ∈ (0, 1). This implies that at the specific time t (when neighbouring
characteristics intersect) there is at least one point in space where ∂k x = 0. Now,
since the solution u at a fixed time depends on x and k, applying the chain rule
∂ku = ∂x u · ∂k x gives ∂x u = ∂ku/∂k x . Thus the conclusion is that the intersection
of neighbouring characteristics causes ∂k x to vanish at some point in space which,
in turn, leads to the slope ∂x u becoming infinite.

Differentiating the solution (9.30) of Burgers’ equation gives ∂ku = g′(k) and
∂k x = 1 + g′(k)t and so we deduce that

∂x u = g′(k)

1 + g′(k)t
.

Crucially, if g′(k) is negative then the slope ux will become infinite at time t and
position x satisfying

t = − 1

g′(k)
; x = k + g(k)t = k − g(k)

g′(k)
. (9.33)

This represents a locus of critical points parameterised by k in (x, t) space.
For the piecewise linear initial data g given in Example 9.8 the solution to (9.33)

is the single point t = 1, x = 2 (for k ∈ (−1, 1)). The locus of critical points is more
interesting in our next example.

Example 9.9 Determine the solution of Burgers’ equation (9.29) subject to the initial
condition u(x, 0) = g(x), where g(x) = 1 − x/(1 + |x |), and investigate the locus
of points where the slope of the solution becomes infinite.

We begin by noting that the nonlinear function g(x) is continuously differentiable
with g′(k) = −1/(1 + |k|)2 < 0 (see Exercise 4.1). The characteristic solution is
given by (9.30) and, using (9.33), we find that ux becomes infinite when

t = (1 + |k|)2 and x = (1 + |k|)2 − k|k|. (9.34)

The earliest time at which this occurs is when k = 0 so that t = 1 and x = 1.
This point is shown by a solid dot in Fig. 9.11 (left). The two branches of the cusp
emanating from this point are defined by (9.34). The rightmost branch is the envelope
of characteristics corresponding to k < 0 while the leftmost branch is the envelope of

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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characteristics corresponding to k > 0. This behaviour is fairly typical of problems
in which characteristics collide, provided that they do not do so all at once.

The solution before, during and after the first collision of characteristics is shown
on the right of Fig. 9.11 where the locus of points where ux is infinite are shown by
the dashed curve. ♦
The model in Example 9.9 breaks down when characteristics intersect each other,
since a function cannot have three different values at the same place at the same
time. One way of resolving this ambiguity is to introduce a discontinuity, or shock
wave, into the solution at x = s(t) so that, at any time t , u(x, t) is continuous both
to the left and right of this point. For a river, this would realistically approximate a
flash flood—see Fig. 9.12 (right) where the shock connects the points P+ and P−. We
investigate the principle governing the process of fitting such a shock to the solution
in the next section.

Fig. 9.11 Shown on the left are a selection of characteristics for Example 9.9. Those that intersect
within the cusp defined by (9.34) are shown highlighted. Snapshots of the solutions are shown on
the right. The dashed curve indicates the points where ux is infinite

Fig. 9.12 The multivalued nature of the solution in the shaded area shown on the left is resolved
by introducing a discontinuity (shock), shown on the right, that connects two points P−, where
u = u−, to P+, where u = u+. The shaded area on the right represents the quantity

∫ b
a u dx . If

this quantity is to be conserved then the two lobes cut off by the shock must have equal area
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9.3.2 Shock Waves

This section is where the discussion becomes more technical. To avoid difficulties
associated with the interpretation of terms like ux we need to start again from the fun-
damental conservation law presented in Sect. 3.1 Since we are in a one-dimensional
setting the analogues of volume V and surface S are, respectively, an interval (a, b)

and its endpoints, x = a and x = b. If we suppose that the conserved quantity Q
is the solution u itself then, for a given flux function q(u) and source term F , the
conservation law (3.2) states that

d

dt

∫ b

a
u(x, t) dx + q(u)

∣∣
x=b − q(u)

∣∣
x=a =

∫ b

a
F(u, x, t) dx . (9.35)

We shall use the notation [u] to denote the jump in the value of u across the shock.
That is, as illustrated in Fig. 9.12,

[u] = u+ − u− with

⎧⎪⎨
⎪⎩

u+ = u
(
s+, t

) = lim
ε→0+u

(
s(t) + ε, t

)

u− = u
(
s−, t

) = lim
ε→0+u

(
s(t) − ε, t

)
.

On either side of the shock u varies continuously and satisfies the one-dimensional
analogue of (3.3), that is

ut + qx (u) = F ⇐⇒ ut + q ′(u)ux = F. (9.36)

The first term on the left-hand side of (9.35) is treated by splitting the integral into
two parts, one over (a, s(t)) and the other over (s(t), b). Since u is a differentiable
function on both intervals, we find, using Leibniz’s rule for differentiating an integral
with variable limits, that

d

dt

∫ b

a
u(x, t) dx = d

dt

∫ s

a
u(x, t) dx + d

dt

∫ b

s
u(x, t) dx

=
(∫ s

a
ut (x, t) dx + u−s′(t)

)
+

(∫ b

s
ut (x, t) dx − u+s′(t)

)

=
∫ s

a
ut (x, t) dx +

∫ b

s
ut (x, t) dx − [u]s′(t), (9.37)

where s′(t) = ds(t)
dt is the speed of the shock. The flux terms in (9.35) can also be

rearranged to give

q(u)
∣∣
x=b − q(u)

∣∣
x=a = (

q(u)
∣∣
x=b − q(u+)

) + (
q(u−) − q(u)

∣∣
x=a

) + [q(u)]

=
∫ b

s
qx (u) dx +

∫ s

a
qx (u) dx + [q(u)] (9.38)

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_3
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which, when combined with (9.37) inside (9.35) gives

0 = d

dt

∫ b

a
u(x, t) dx + q(u)

∣∣
x=b − q(u)

∣∣
x=a −

∫ b

a
F(u, x, t) dx

=
∫ s

a
(ut + qx (u) − F) dx +

∫ b

s
(ut + qx (u) − F) dx − [u]s′(t) + [q(u)].

Since u satisfies (9.36) in both (a, s) and (s, b), it can be seen that (9.35) can only
be satisfied if the shock speed is given by

s′(t) = [q(u)]
[u] , (9.39)

which is known as the Rankine–Hugoniot condition.
An important observation is that the shock speed does not involve the source term

(provided that F depends only on x, t, u and does not involve derivatives of u). The
initial condition for the ODE (9.39) is provided by the point at which characteristics
first intersect (as described in the previous section). Moreover, it must be solved in
conjunction with the characteristic equations of (9.36), namely

du

dt
= F,

dx

dt
= q ′(u). (9.40)

As u± → u the shock strength tends to zero and, in this limiting case, (9.39) gives
s′(t) → q ′(u) so the shock speed gets closer and closer to the characteristic speed.
This has relevance in situations, such as that in Example 9.8 for times t < 1, where
the solution is continuous but not differentiable at all points. It also confirms that
such solutions satisfy the integral form (9.35) of the conservation law. This naturally
leads us to a definition of admissible nonsmooth solutions.

Definition 9.10 (Weak and classical solutions) A piecewise continuous solution
(such as one including shocks) or a solution having a continuous derivative is said to
be aweak solution of a PDE if the underlying conservation law is satisfied at all points
in time. Between successive discontinuities in the solution values (or discontinuities
in derivative values) the solution satisfies the PDE itself. Solutions of nth-order PDEs
that are n times continuously differentiable are called classical solutions.

The inherent lack of smoothness in solutions of nonlinear hyperbolic problems is
one reason why the governing equations are always written as systems of first-order
PDEs rather than a single higher-order PDE. Next we will see that the concept of
weak solutions is what is needed to make sense of the dysfunctional solutions that
were encountered in Sect. 9.3.1.

Example 9.11 (Example 9.8 revisited) Show that the introduction of a shock resolves
the issue of solutions in Example 9.8 having multiple values after the intersection of
the characteristics.
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We can express Burgers’ equation in conservation form by setting C = 1/2 in (3.12),
this gives

ut + (1
2

u2)
x = 0.

The Rankine–Hugoniot condition (9.39) then determines the shock speed:

s′(t) = [ 12u2]
[u] = 1

2

(u+)2 − (u−)2

(u+ − u−)
= 1

2
(u+ + u−),

which is simply the average of the solution immediately ahead and immediately
behind the shock.

It was shown in Example 9.8 that characteristics first intersect at x = 2, t = 1.
Moreover since u+ = 1 and u− = 3 the shock speed is constant s′(t) = 2. Thus,
using the initial condition s(1) = 2, we deduce that the shock path is the straight
line s(t) = 2t passing through the origin. This defines a unique weak solution—the
“corrected” version of Fig. 9.10 is that given Fig. 9.13. ♦

Example 9.12 (Example 9.9 revisited) Determine the shock speed for Example 9.9
and describe how a shock wave can be fitted so as to avoid multivalued solutions
while conserving the mean value of the solution u at all points in time t .

The shock speed is, as in the previous example, given by s′(t) = 1
2 (u

+ + u−).
Characteristics first intersect at x = t = 1 and so s(1) = 1 (the tip of the cusp in
Fig. 9.11). In order to ascertain appropriate values of u+ and u−, we suppose that
the characteristics with k = k−(t) and k = k+(t) intersect at x = s(t) at time t .

Fig. 9.13 The weak solution of the problem in Example 9.8 amended to include a shock wave at
s(t) = 2t for t ≥ 1 as discussed in Example 9.11

http://dx.doi.org/10.1007/978-3-319-22569-2_3
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Note that, since the characteristic through (1, 1) also passes through the origin, we
know that k− < 0 < k+. The equation of the characteristics is given by (9.30) so
the values of k± can be found in terms of t and s, by inverting the relation

s(t) = k± + g(k±)t (9.41)

for the specific initial condition g(x) = 1 − x/(1 + |x |). Moreover, since u = g(k),
the location of the shock can be determined by solving the initial value problem

s′(t) = 1
2 (g(k+) + g(k−)), s(1) = 1, (9.42)

using the values of k± obtained from (9.41). The details are worked out in
Exercise 9.23.

We shall follow a different approach by exploiting the symmetry properties of
the initial data. From (9.34), for a fixed time t , the parameter values at which ux

is infinite are given by (1 + |k|)2 = t . Inverting this relation gives k = ±k∗, say,
where k∗ = √

t − 1 > 0 (recall that the shock is initiated at t = 1). Then, since
x = k + g(k)t , we find that the locations x(±k∗) at which these singularities occur
satisfy

x(±k∗) − t = ±
(

k∗ − k∗t

1 + k∗

)
,

so that the midpoint of these locations is simply given by

1
2 (x(k∗) + x(−k∗)) = t.

This is the abscissa of a point on the k = 0 characteristic x = g(0)t with associated
solution value u = g(0) = 1. Next, given that the shock connecting P− to P+
in Fig. 9.12 must be positioned so as to conserve the quantity

∫ b
a u dx , it seems

reasonable to suggest that the shock will follow the path taken by the midpoints (as
visualised in Fig. 9.11). This suggests that s(t) = t . Moreover, since g(k) − 1 is an
odd function of k, we note that (9.42) is immediately satisfied by setting s(t) = t
and choosing k− = −k+.

We can verify that the hypothesis is correct by computing the net area of the two
lobes cut off by the shock (see Fig. 9.12). Switching the role of the dependent (u)
and the independent (x) variables, the net area A is given by

A =
∫ u−

u+
(x − s) du.
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Setting x = k + ut and q(u) = 1
2u2 gives

A =
∫ u−

u+
k du − s

∫ u−

u+
du + t

∫ u−

u+
u du

=
∫ k−

k+
kg′(k) dk + s[u] − t[q(u)] =

∫ k−

k+
kg′(k) dk + [u] (s − ts′) ,

after making the change of variable u = g(k) and enforcing the Rankine–Hugoniot
condition. The integrand kg′(k) is an odd function of k. Thus if k− = −k+ then the
integral term vanishes and the net area will be zero provided

ts′(t) = s(t).

This ODE has general solution s(t) = c t , where c is a constant. Applying the initial
condition s(1) = 1 then confirms that s(t) = t .

The associated weak solution is shown in Fig. 9.14 for selected values of t . Notice
how the shock becomes more and more prominent as time evolves. ♦

Example 9.13 (Extension 3.2.4 revisited) Determine the shock speed for the traffic
flow model described in Extension 3.2.4, that is the PDE

ut − ux

u2 = f.

Expressed in conservation form, the PDE is

ut + (1/u)x = f

Fig. 9.14 The weak solution of the problem in Example 9.9 amended to include a shock wave at
s(t) = t for t ≥ 1 as discussed in Example 9.12. The cusp (9.33) is shown by dashed lines

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_3
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where the flux function is q(u) = 1/u. The condition (9.39) predicts that a shock
(an abrupt change in traffic density) at x = s(t) will travel at a speed

s′(t) = [1/u]
[u] = 1/u+ − 1/u−

u+ − u− = − 1

u+u− .

Note that s′(t) < 0 since the traffic velocity u is proportional to the traffic density d
(which is non-negative by definition).

As an illustration, one might visualize a high density convoy of vehicles travelling
on the M6 towards Manchester at a uniform high speed of u− when the lead vehicle
meets a much lower speed restriction u+ because of an accident. A short time later,
vehicles at the head of the convoy are travelling with speed u+, those much further
back are travelling with speed u−, while those in the vicinity of x = s(t) will have
to reduce their speed rapidly (due to the high density) from u− to u+. This region of
discontent may be idealized as a shock that moves in the direction opposite to that
of travel. ♦

9.3.3 Riemann Problems and Expansion Fans

To conclude the chapter, we will broaden the discussion to include problems of the
form

ut + q ′(u)ux = 0 with u(x, 0) =
{

uL for x < x0
uR for x > x0,

(9.43)

where uL and uR are constants. Initial value problems of this type, with piecewise
constant data and a single discontinuity, are known as Riemann problems. If there is
a shock at x = s(t), it will travel at the constant speed

s′(t) = q(uL) − q(uR)

uL − uR
. (9.44)

Shockwaveswill formwhen faster characteristics start behind slower characteristics.
In this case characteristics must enter the shock from both sides at their natural speed,
namely dx

dt = q ′(u), and this implies that the inequalities

q ′(uL) >
q(uL) − q(uR)

uL − uR
> q ′(uR)

must be satisfied for a shock to form. If uL > uR, then q ′(u) must be an increasing
function of u so that q ′′(u) > 0 and therefore q(u) must be a convex function of u
(that is, a function that lies above any of its tangent lines). Alternatively, if uL < uR
then q ′′(u) < 0 and q(u) must be a concave function. In the intermediate case
q ′′(u) = 0 so that q(u) = cu, say, in which case the conservation law reduces to
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the (linear) one-way wave equation (pde.1). In this situation the Rankine–Hugoniot
condition sets the shock speed to be equal to the characteristic speed: that is s′(t) = c.
Discontinuities in this case are not strictly shocks since characteristics do not intersect
and so they cannot enter a shock from both sides.

Example 9.14 Examine the Rankine–Hugoniot condition for the Riemann problem
associated with the generic flux function q(u) = uα (u > 0).

Since q ′′(u) = α(α − 1)uα−2, the flux is concave for 0 < α < 1 and a shock will
form if uL < uR (a backward facing step). The flux is convex for α < 0 or α > 1
and in this case a shock will form if uL > uR (a forward facing step). The expression
(9.44) for the shock speed simplifies in some special cases:

s′(t) =

⎧⎪⎨
⎪⎩

−1/(uLuR), α = −1, (uL > uR)

1/(u1/2
L + u1/2

R ), α = 1/2, (uL < uR)

uL + uR, α = 2, (uL > uR).

The case α = 2 demonstrates that shock waves can propagate positively with a
decrease in u across the shock. The case α = −1 also involves a decrease in u across
the shock since the shock propagates negatively. ♦
An important point is that different initial conditions can sometimes lead to the same
solution at a later time,which implies that “information” is lost as characteristics enter
a shock. This means that the reverse problem (equivalent to running time backwards
starting with a shock in the initial data) does not have a unique solution and so is not
well posed.

Let us suppose that the inequality q ′(uL) > q ′(uR) is violated in the Riemann
problem (9.43). In this situation a shock cannot be the correct form of solution
because characteristics are leaving rather than entering the shock. The following
example examines this issue within the context of Burgers’ equation (the case α = 2
in the previous example).

Example 9.15 Determine the solution of the Riemann problem (9.43) with q(u) =
1
2u2 and uL < uR by solving a closely related problem having continuous initial data
u(x, 0) = gε(x), with a parameter ε > 0 so that

gε(x) =
⎧⎨
⎩

uL, x < x0,
uL + [u](x − x0)/ε, x0 ≤ x ≤ x0 + ε,
uR, x0 + ε < x,

where [u] = uR − uL, and then allowing ε → 0.

For the original Riemann problem with uL < uR there is a wedge-shaped region
between x = x0 + uLt and x = x0 + uRt (shown shaded in Fig. 9.15) that is devoid
of characteristics. For the modified function gε, where the jump from uL to uR is
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Fig. 9.15 Shown on the left are the characteristics for Example 9.15 with 0 < uL < uR, where the
expansion fan (9.47) is shown in the shaded area as a series of dashed lines. The associated weak
solution at times t = 0 and t > 0 is shown on the right

replaced by a ramp of slope 1/ε, there is a characteristic through each point of the
plane and the solution, according to (9.30), is given by

u = gε(k), x = gε(k)t + k.

Thusu = uL for x < x0+uLt (corresponding to k < x0),u = uR for x > x0+uRt+ε
(corresponding to k > x0+ε) and it remains to determine the solution corresponding
to x0 < k < x0 + ε). Following Example 9.8 it may be shown (see Exercise 9.24)
that this is given by

u = uL + [u]
ε + [u]t (x − x0 − uLt) . (9.45)

Taking the limit of (9.45) when ε → 0 we find that

u = x − x0
t

, (9.46)

which is a special case of the solution (9.32) in the limit that σ, the initial slope, tends
to infinity. The associated characteristics, which are given by

x = x0 + ut, uL ≤ u ≤ uR, (9.47)

radiate outwards from the original point of discontinuity (x0, 0) and are shown as
dashed lines in Fig. 9.15. This is called an expansion fan. The initial data and the
solution at a later time are also shown in the figure. ♦
In order to generalize this result to the Riemann problem (9.43) we note that shocks
cannot be sustained if q ′(uL) < q ′(uR) and we observe that the characteristic equa-
tions (9.40) with F = 0 imply that u = constant along the characteristics

x = x0 + q ′(u)t, q ′(uL) ≤ u ≤ q ′(uR).
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This is a natural generalization of (9.47) and applies to a general Riemann problem
where characteristics radiate away from the initial discontinuity rather than converge
towards it. The solution at a point (x, t) in the associated expansion fan between
x = x0 + q ′(uL)t and x = x0 + q ′(uR)t can be found by solving the equation

q ′(u) = x − x0
t

. (9.48)

In general, the underlying PDE is not satisfied at the extremities of the expansion fan
(where u = uL and u = uR) because the solution has discontinuous first derivatives
at these points— the result is therefore an example of a weak solution. It is the only
solution that is continuous for t > 0.

Example 9.16 Determine the form of the expansion fan for the traffic model in
Example 9.13.

The flux function is q(u) = u−1 so that q ′(u) = −u−2 and a shock cannot be
formed with 0 < uL < uR. For uL < u < uR an expansion fan is obtained by
solving q ′(u) = −u−2 = (x − x0)/t giving the solution

u =

⎧⎪⎨
⎪⎩

uL, x − x0 < −t/u2
L√

t/(x0 − x), −t/u2
L ≤ x − x0 ≤ −t/u2

R

uR, −t/u2
R < x − x0.

Our final example combines a shock wave and an expansion fan.

Example 9.17 Determine the solution of Burgers’ equation (9.29) subject to the
initial condition u(x, 0) = g(x), where

g(x) =
{
0, x < 0 and x > 1,

1, 0 ≤ x ≤ 1.

The solution development is in twophases. In thefirst phase the discontinuity at x = 0
(which has uL = 0, uR = 1) evolves into an expansion fan having characteristics
(9.47) with x0 = 0, that is x = ut , 0 ≤ u ≤ 1. At the same time the discontinuity
at x = 1 (which has uL = 1, uR = 0) proceeds as a shock travelling with a speed
s′(t) = 1

2 (uL + uR) = 1
2 . Since the shock forms at s(0) = 1, the path is given by

s(t) = 1 + 1
2 t .

The rightmost characteristic of the expansion fan (x = t) will catch up with the
shock when t = 2 and x = 2. This triggers the second phase in which characteristics
from the expansion fan meet up with the left side of the shock. Thus, at x = s we
have u− = s/t and u+ = 0 and the Rankine–Hugoniot condition gives

s′(t) = s

2t
, s(2) = 2.
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Fig. 9.16 The characteristics for Example 9.17 are shown on the left. A dashed line is included to
emphasize the departure of the shock line from linearity. Snapshots of the associated weak solution
are shown on the right

Solving this initial-value problem gives s(t) = √
2t , and the associated PDE solution

(valid for t > 2) is given by

u(x, t) =
{
0, x < 0 and x >

√
2t,

x/t, 0 ≤ x ≤ √
2t .

The weak solution is shown in Fig. 9.16 for selected values of t . Note that, if t is
fixed then the maximum value of u is given by u(s, t) = √

2/t which tends to zero
as t → ∞. ♦

Exercises

9.1 Use the method of characteristics to find general solutions for the following
PDEs for u(x, t) both in terms of a characteristic variable and one of t or x , and in
terms of t and x . In each case sketch the paths of the characteristics.

(a) ut + tux = u, (e) tut + xux = x ,

(b) tut − ux = 1, (f) tut − xux = t ,

(c) ut + xux = −u, (g) xut − tux = xt ,

(d) xut − ux = t , (h) xut + tux = −xu
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9.2 For the general solutions you have obtained from Exercise 9.1, apply the follow-
ing boundary conditions, (a) to (a), (b) to (b), etc., and try to obtain unique solutions.
For what values of t and x is each solution valid?

(a) u(0, x) = sin(x), (e) u(1, x) = x3

(b) u(t, 0) = exp(−t2), (f) u(1, x) = 1/(1 + x2)

(c) u(0, x) = x2, (g) u(0, x) = 1 + x for x ≥ 0

(d) u(t, 0) = ln(1 + t2), (h) u(0, x) = 1 − x for x ≥ 0

9.3 Suppose that u1(X, T ) satisfies the system V Tu1 = f 1, which is a special case
of (9.6) inwhich f 1 = [vT

1g(X −λ1T ), 0, . . . , 0]T. Show that V Tu1 = D1V Tg(X −
λ1T ), where D1 is a certain d × d diagonal matrix. Deduce that ‖u1(X, T )‖2 ≤
M2κ2(V ) if ‖g(x)‖2 ≤ M2 for x ∈ R, where κ2 = ‖V ‖2‖V −1‖2 is known as the
2-condition number of V .

Extend this result to show that ‖u(X, T )‖2 ≤ M2κ2(V ) when u(X, T ) is the
solution of (9.6). Explain why this bound simplifies to ‖u(X, T )‖2 ≤ M2 when the
matrix A of the system Aux + ut = 0 is symmetric.

9.4 ✩Show that the eigenvalues λ of a general 2 × 2 matrix A satisfy the quadratic
equation λ2 − tr(A)λ + det(A) = 0.

9.5 Verify that the solution of the boundary value problem in Example 9.2 at points
P(X1, T1) and P(X3, T3) shown in Fig. 9.2 can also be written in the form (9.13),
where the components of f contain linear combinations of values of u(x, 0).

9.6 ✩ Show that the solution process described in Example 9.2 fails if the boundary
conditions are changed to u(0, t) = w(0, t) = 0.

9.7 Suppose that Example 9.2 is modified so that the eigenvalues are λ1 = −2,
λ2 = −1 and λ3 = 1 (the corresponding eigenvectors remaining unchanged) and
the boundary condition at x = 0 is given by w(0, t) = 0. Calculate the solution at
the point P(X, T ), with X < T .

9.8 Consider the system of first-order PDEs (9.3) where

A =
⎡
⎣0 1 0
0 0 1
a b c

⎤
⎦ , u =

⎡
⎣u

v

w

⎤
⎦ .

By generalizing the approach used in deriving (9.15), determine a third-order PDE
satisfied by the first component u of u. How are the coefficients of this PDE related
to the eigenvalues of A?

9.9 Write the first-order system ut + vx = f (x, t) and vt + ux = g(x, t) in matrix-
vector form and hence determine the appropriate characteristic equations.
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In the specific case f (x, t) ≡ 0 and g(x, t) = ∂t G(x, t), show that

u(x, t) = 1
2 (G(x + t, 0) − G(x − t, 0)),

v(x, t) = G(x, t) − 1
2 (G(x + t, 0) + G(x − t, 0))

is the solution satisfying the initial conditions u(x, 0) = v(x, 0) = 0.

9.10 Show that the PDE 2uxx + 3uxy + uyy = 0 is hyperbolic and determine its
characteristics. Show that the general solution can be written as u(x, y) = C(x −
2y) + D(x − y) for arbitrary functions C and D. Find the solution corresponding to
the initial data u(x, 0) = g0(x), uy(x, 0) = g1(x), (x ∈ R).

9.11 ★ This exercise builds on Exercise 9.10. Consider solving the PDE 2uxx +
3uxy +uyy = 0 in the first quadrant of the x-y planewith initial data u(x, 0) = g0(x),
uy(x, 0) = g1(x), (x > 0) and boundary data u(0, y) = f0(y), ux (0, y) = f1(y),
(y > 0).

Show that, for a point P having coordinates (X, Y ), the solution u(X, Y )

(a) is identical to that in Exercise 9.10 for X > 2Y > 0,
(b) can be expressed as

u(X, Y ) = 2 f0(Y − 1
2 X) − f0(Y − X) + 2

∫ Y− 1
2 X

Y−X
f1(s) ds

for 0 < X < Y ,
(c) can be expressed as

u(P) = u(Q) + u(R) − u(0, 0)

for 0 < Y < X < 2Y , where Q, R are the points where the characteristics
through P intersect the characteristics through the origin.

9.12 ✩ Verify that the solution to the problem in Example 9.4 with source term
f (x, t) = 2(1−2x2) exp(−x2) is given by (9.25). [Hint: Differentiate x exp(−x2).]

9.13 Show that the PDE utt + utx − 2uxx = t , describing u(x, t) for x, t ∈ R × R,
may be written as the pair of first-order PDEs (∂t − ∂x )v = t and (∂t + 2∂x )u = v

and hence determine its general solution.
Find the solution that satisfies the initial conditions u(0, x) ≡ 0, and ut (0, x) ≡ 0.

9.14 By using the factorization given in Example 9.3, or otherwise, show that the
general solution of the PDE utt − uxx = 0, which describes u(x, t) for x ∈ [0,π]
and t ∈ R, takes the form u = A(t + x) + B(t − x).

If we are given that u(0, t) = 0 for all t show that the solution takes the form
u = A(t + x) − A(t − x).

(a) If we are also given that u(π, t) = 0 for all t show that the function A(·) must
be periodic with period 2π.
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(b) If, instead, we were given that ux (π, t) = 0, show that the function A(·) must
satisfy A′(z + 2π) = −A′(z) for any z ∈ R. Deduce that the function A(·) must
again be periodic and determine its period.

9.15 ★ Suppose that the variable coefficient differential operators L1 and L2 are
defined by L1 := a∂t + b∂x and L2 := c∂t + d∂x , where a, b, c and d are functions
of x and t . Show that L1L2 = L, where

L = ac∂2
t + (ad + bc)∂t∂x + bd∂2

x

if act + bcx = 0 and adt + bdx = 0.
Illustrate this result by factorizing the operator associated with the PDE

utt + (t − 1)utx − tuxx = 0.

If this equation holds in the upper half plane and initial conditions u(x, 0) = g0(x)

and ut (x, 0) = g1(x) are prescribed for t = 0, x ∈ R show, by following the
characteristics of the operator L1, that

ut − ux = g1(x − 1
2 t2) − g′

0(x − 1
2 t2).

Deduce that

u(x, t) = g0(x + t) +
∫ t

0

(
g1(x + t − s − 1

2 s2) − g′
0(x + t − s − 1

2 s2)
)
ds.

9.16 ★ Use the factorization introduced in Exercise 9.15 to determine general solu-
tions for the following PDEs:

(a) utt + (1 + x)utx + xuxx = 0,

(b) tutt + (x − t)utx − xuxx = 0,

(c) xutt + (x − t)utx − tuxx = 0,

(d) xutt + (1 + xt)utx + tuxx = 0,

(e) xtutt + (x2 − t2)uxt − xtuxx = 0

Show that characteristics are parallel at any points where the PDEs fail to be
hyperbolic.

9.17 Show that the quasi-linear PDE ut + uux = −2u has the general solution
u = A(k)e−2t and x = k − 1

2 A(k)e−2t , where k and A(k) are constant along
any characteristic. If u satisfies the boundary condition u(0, t) = e−t show that
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k A(k) = 1/2 and hence deduce that the solution for x ≥ 0 is given by

u(x, t) = e−2t

x + √
x2 + e−2t

.

9.18 Express the solution u in (9.27) as a function of x and t when g(x) = σx ,
where σ is a constant. Deduce that (a) u remains a linear function of x for each t ,
(b) if σ > −1 then u(x, t) → 0 for each value of x as t → ∞, (c) if σ < −1, then
u(x, t) → ∞ for each value of x as t → ln a/(1 + a).

9.19 Suppose that u(x, t) is a solution of ut + uux = −u as in Example 9.7. Show,
by means of the change of variables s = −x , v = −u that u(x, t) is an odd function
of x for each time t whenever the initial condition u(x, 0) = g(x) is an odd function.

Express the solution u in (9.27) as a function of x and t when g(x) = x/(1+|x |).
9.20 ✩ Use (9.30) to show that the characteristics of Burgers’ equation (9.29) with
initial condition g(x) = σ(x − x0), where σ < 0 is a constant, all intersect at the
same point and determine its coordinates.

9.21 ★ Consider Burgers’ equation (9.29)with initial condition u(x, 0) = max{0, 1−
|x |}. Show that a shock forms at t = 1 and that the solution retains a triangular profile
throughout its evolution. Verify that the area of the triangular profile remains constant
in time.

9.22 ★ Consider the PDE ut + u1/2ux = 0 with initial condition u(0, x) = g(x),
where

g(x) =

⎧⎪⎨
⎪⎩

4, x ≤ −1,

(1 − x)2, −1 ≤ x ≤ 0,

1, x ≥ 0.

Verify that the solution may be written as u = g(k), with x = k + √
g(k)t and show

that all characteristics for −1 < k < 0 collide at the point x = t = 1. Determine the
shock speed and show that it follows the path x = s(t) = (14t − 5)/9 for t ≥ 1.

9.23 Show that the roots of the equation (9.41) in Example 9.12 are given by

k− = 1
2

(
1 + s − 2t +

√
(1 + s − 2t)2 − 4(s − t)

)
,

k+ = 1
2

(
s − 1 +

√
(s − 1)2 + 4(s − t)

)
.

Hence verify that s(t) = t is a solution of the initial value problem (9.42).

9.24 ✩ Show that the solution (9.45) satisfies Burgers’ equation for k ∈ (x0, x0 + ε)
for the ramped initial data gε in Example 9.15.

9.25 ✩ Suppose that u is defined implicitly by (9.48). Show that u satisfies the con-
servation law ut + q ′(u)ux = 0 provided that q ′′(u) �= 0.
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9.26 ✩Show that the Riemann problem (9.43) cannot sustain a shock for the flux
function q(u) = 2u1/2 with uL > uR > 0. Determine the associated expansion fan
and sketch the resulting solution at a time t > 0.

9.27 ✩Determine the nature of the expansion fan for the Riemann problem (9.43) for
the flux function q(u) = ln u when uL > uR > 0.

9.28 Determine the precise form of the solution to the problem in Example 9.17 for
0 < t < 2.

9.29 Determine the solution to the problem in Example 9.17 when the initial value
g(x) is replaced by 1 + g(x).

9.30 Consider the second-order PDE

3utt + 10uxt − 8uxx = 0. (�)

(a) By making an appropriate change of variables from (x, t) �→ (y, s), show that
the general solution of (�) can be written as u(x, t) = A(3x + 2t) + B(x − 4t),
where A and B are arbitrary functions.

(b) Determine the explicit form of the solution to (�) with the initial conditions
u(x, 0) = g0(x), ut (x, 0) = g1(x) where g0 and g1 are known functions, and
show that

u(1, 3) = 1
14

(
12g0(3) + 2g0(−11)

) + 3
14

∫ 3

−11
g1(s) ds.

(c) Consider the pair of coupled PDEs

3ut + 5ux + 7vx = 0, 3vt + 7ux + 5vx = 0. (‡)

By expressing vx and vt in terms of ux and ut and imposing the condition
∂xvt = ∂tvx , eliminate v to show that u satisfying (‡) also satisfies (�). A
suitable initial condition for u is given in part (b): can you determine the initial
condition for v that ensures that (‡) is equivalent to (�)?

(d) Express (‡) as a first-order system

ut + Aux = 0,

where u = (u, v)T and A is a 2×2matrix and hence show that it has a (travelling
wave) solution u = cφ(x − λt), for any (differentiable) function φ provided
that λ is an eigenvalue of A and c is the corresponding eigenvector.

(e) Show that the general solution of the first-order system is given by

u = c1φ(x − λ1t) + c2ψ(x − λ2t)
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where φ and ψ are arbitrary scalar functions and determine ci and λi for the
specific problem (‡). How does the solution for component u compare with the
general solution given in part (a)?

(f) It was shown how (�) could be deduced from (‡) in part (c). We now consider
the inverse operation. Verify that (�) can be written as L2u = M2u where
L = 3∂t + 5∂x and M = −7∂x . If the function v is related to u by the
relationship Lu = Mv, show that Lv = Mu. Rearrange these relationships to
give (‡).

(g) Suppose that the substitution u = V v is made to the first-order system in part
(d) where V = [c1, c2] denotes the matrix of eigenvectors of A. If we write
v = [w, z]T, use the fact that V diagonalizes A to show that

wt + λ1wx = 0 and zt + λ2zx = 0.

Write down the general solutions of these equations and deduce the general
solution for u from u = V v. Compare the result with the explicit solutions
found in parts (b) and (e). We would hope that no stone has been left unturned
in this exercise!



Chapter 10
Finite Difference Methods for
Elliptic PDEs

Abstract This self-contained chapter focuses on finite difference approximation
of elliptic boundary value problems. A complete convergence theory is presented
and two classical methods for improving the accuracy of computed solutions are
described. Advanced topics include the extension to polar coordinates and a dis-
cussion of solution regularity when solving elliptic problems posed on nonconvex
domains.

In this chapter the approximation methods developed in Chap.6 will be extended
to second-order linear elliptic PDEs. The basic finite difference schemes are natural
extensions of the one-dimensional analogues as are the concepts of consistency,
stability and convergence.

Apart from the increase in dimensionality, the main novelty is the need to deal
with the shape of the domain.

An elliptic PDE takes the form Lu = f , where, in the case of two space dimen-
sions, the differential operator is typically of the form

Lu := −(auxx + 2buxy + cuyy) + pux + quy + ru (10.1)

with coefficients a, b, c, p, q, and r representing functions of x and y (in practice
they are often constant1). Such a PDE might hold on a domain Ω ⊂ R

2 like the one
shown schematically in Fig. 10.1. Note that (10.1) is the natural generalization of the
ODE operator in (5.2). The extension to three space dimensions will turn out to be
perfectly straightforward.

An appropriate condition must be specified at each point of the boundary ∂Ω

of the domain Ω if we are to have a uniquely defined solution. If we assume that
the boundary condition is written as Bu = g, then the associated boundary value
problem takes the formL u = F and comprises

L u =
{
Lu in Ω

Bu on ∂Ω
, Fu =

{
f in Ω

g on ∂Ω.
(10.2)

1For example, setting a = 1 = c, b = p = q = r = 0 gives the Poisson equation.
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Fig. 10.1 An illustrative
domain Ω in R

2

Ω

(x)

∂Ω

More specifically, if the boundary is decomposed into three disjoint sets Γi , i =
1, 2, 3 with ∂Ω = Γ1 ∪ Γ2 ∪ Γ3, then general boundary conditions associated with
the differential operator (10.1) are given by

Dirichlet: u(�x) = g(�x), �x ∈ Γ1,

Neumann: �n(x) · ∇u(�x) = g(�x), �x ∈ Γ2,

Robin: α(�x) u(�x) + β(�x) �n(�x) · ∇u(�x) = g(�x), �x ∈ Γ3,

where α, β, g are given functions, ∇ is the standard gradient operator and �n(x)

denotes the unit outward normal vector to ∂Ω at the point �x .

10.1 A Dirichlet Problem in a Square Domain

Rather than treat the general case given by (10.1) the approximation process will be
illustrated through the Dirichlet problem for the Poisson equation

− ∇2u = f in Ω, (10.3)

in which L := −∇2 = −(uxx + uyy) denotes the negative Laplacian in R
2 and

the boundary operator is simply Bu := u on ∂Ω . if the domain is the unit square
Ω = (0, 1)× (0, 1) then a finite difference approximation may be constructed using
a grid of size h × h, where h = 1/M , as illustrated in Fig. 10.2 (left). The internal
grid points (shown as solid dots) are denoted by

Fig. 10.2 The grid Ωh when
M = 4 (left) and the 5-point
finite difference stencil for
the Poisson equation (right)
applied at the grid point
indicated by ◦ involves the
unknowns at the grid points
marked by •
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Ωh = {(x�, ym) : x� = �h, ym = mh; �, m = 1, 2, . . . , M − 1}.

The grid points on the boundary (shown by circles) are likewise denoted by ∂Ωh ,
and the entire grid by Ωh = Ωh ∪ ∂Ωh . The finite difference solution can then be
identified with the grid function U , whose value U�,m at a typical point (�h, mh) ∈
Ωh approximates the exact solution u�,m := u(�h, mh) at that point. The values of U
at the boundary nodes are known from the prescribed boundary condition whereas
the values of U at the internal grid points are found by solving a system of finite
difference equations.

To construct such a system, the partial derivatives of u at a generic internal grid
point (�h, mh) are usually approximated by second-order centered differences (see
Sect. 6.1), so that, looking in the x-direction,

uxx |�,m = h−2 (u�−1,m − 2u�,m + u�+1,m
)+ O(h2).

Introducing the second-order difference operator δ2x , defined by

δ2x u�,m := u�−1,m − 2u�,m + u�+1,m, (10.4)

we have the more compact expression

uxx |�,m = h−2δ2x u�,m + O(h2).

Likewise, looking in the y-direction and introducing

δ2yu�,m := u�,m−1 − 2u�,m + u�,m+1 (10.5)

leads to the overall approximation

−∇2u
∣∣∣
�,m

= −h−2
(
δ2x u�,m + δ2yu�,m

)
+ O(h2).

The finite difference equations that approximate the PDE are generated by discarding
the remainder terms and replacing the exact solution u�,m by the grid approximation
U�,m at each grid point. This gives the algebraic equation

−h−2(δ2x + δ2y)U�,m = f�,m,

which can also be written as

4U�,m − U�+1,m − U�,m+1 − U�−1,m − U�,m−1 = h2 f�,m (10.6)

for each (x�, ym) ∈ Ωh . The values of the grid function are known on the boundary
∂Ωh , so (10.6) gives (M − 1)2 linear equations to determine the unknown grid
function values on Ωh . The 5-point stencil in Fig. 10.2 (right) is used to indicate the

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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values of U connected by equation (10.6); the grid point (x�, ym) (the target point)
is shown by an open circle (◦). In the special case of Laplace’s equation ( f ≡ 0) we
have

U�,m = 1
4

(
U�+1,m + U�,m+1 + U�−1,m + U�,m−1

)
,

and the numerical solution at any internal grid point is simply the mean of its values
at its four nearest neighbours taken horizontally and vertically.

10.1.1 Linear Algebra Aspects

By defining the discrete/grid operators so that

LhU�,m := −h−2
(
δ2x + δ2y

)
U�,m

= h−2
(
4U�,m − U�+1,m − U�,m+1 − U�−1,m − U�,m−1

)
BhU�,m := U�,m,

⎫⎪⎬
⎪⎭ (10.7)

the (M + 1)2 finite difference equations approximating the problem (10.2) may be
written in the compact formLhU = Fh with

LhU =
{
LhU in Ωh

BhU on ∂Ωh
, Fh =

{
f in Ωh

g on ∂Ωh
. (10.8)

A few items need to be addressed if these finite difference equations are to be
expressed as a standard matrix–vector equation.

(i) The unknowns {U�,m} are indexed by two subscripts, so a mechanism is required
to organize these into a column vector whose components have a single index. A
natural approach is to lay out the interior grid values as a square matrix and then
to collect the entries columnwise so that

U = [ u1 u2 . . . uM−1],

where u� ∈ R
M−1 is the vector that indexes the unknowns in the �th column of

the grid
u� = [U�,1, U�,2, . . . , U�,M−1]T.

A single vector containing the (M − 1)2 unknowns can then be constructed by
stacking the column vectors on top of each other2

2In linear algebra this operation is commonly written as u = vec(U ).
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u =

⎡
⎢⎢⎢⎣

u1
u2
...

uM−1

⎤
⎥⎥⎥⎦ .

(ii) The matrix of coefficients representing the left side of (10.6) will contain at
most five nonzero entries in each row. Moreover, if the equations are ordered in
the same way as the unknowns then the coefficient 4 will be on the diagonal.
When (10.6) is applied at a grid point adjacent to the boundary, one or more
of the neighbouring values of U�,m will be known from the Dirichlet boundary
condition and the corresponding term(s) moved to the right side of the relevant
equation. For instance, when � = m = 1, we have

4U1,1 − U1,2 − U2,1 = h2 f1,1 + g1,0 + g0,1,

so that the first row of the matrix will contain only three nonzero entries.
(iii) The focus now switches to the equations on the �th column of the grid. The

unknowns in this column are linked only to unknowns on the two neighbouring
columns. Thus the difference equations can be expressed as

−u�−1 + Du� − u�+1 = h2 f � + g�,

where D is the (M − 1) × (M − 1) tridiagonal matrix

D =

⎡
⎢⎢⎢⎢⎢⎣

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

⎤
⎥⎥⎥⎥⎥⎦

and g� =

⎡
⎢⎢⎢⎢⎢⎣

g�,0
0
...

0
g�,M

⎤
⎥⎥⎥⎥⎥⎦

arises from the condition on the top and bottom boundaries. Also, when � = 1 or
M − 1, boundary conditions from the vertical edges are applied so that u0 = g0
and uM = gM , where

g0 =

⎡
⎢⎢⎢⎣

g0,1
g0,2
...

g0,M−1

⎤
⎥⎥⎥⎦ , gM =

⎡
⎢⎢⎢⎣

gM,1
gM,2
...

gM,M−1

⎤
⎥⎥⎥⎦ .

The difference equations can now be expressed as a system of the form

Au = f , (10.9)
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where u, f ∈ R
(M−1)2 . The matrix A is a (M − 1)2 × (M − 1)2 matrix with a

characteristic block tridiagonal structure

A = 1

h2

⎡
⎢⎢⎢⎢⎢⎣

D −I
−I D −I

. . .
. . .

. . .

−I D −I
−I D

⎤
⎥⎥⎥⎥⎥⎦

, (10.10)

where I is the (M − 1) × (M − 1) identity matrix. The associated right-hand side
vector is given by

f =

⎡
⎢⎢⎢⎢⎢⎣

f 1
f 2
...

f M−2
f M−1

⎤
⎥⎥⎥⎥⎥⎦

+ 1

h2

⎡
⎢⎢⎢⎢⎢⎣

g0 + g1
g2
...

gM−2
gM−1 + gM

⎤
⎥⎥⎥⎥⎥⎦

.

The coefficient matrix A has around M4 entries but fewer than 5M2 nonzeros: these
have a very regular structure, as may be seen in Fig. 10.3 when M = 8. This means
that the matrix A should be stored as a sparse matrix, where only the nonzero entries
are stored, along with the indices that specify their location.

A common method of solving the system Au = f is to first factorise A into the
product L R, where L is a unit lower triangular matrix (that is Li j = 0 for j > i
and Lii = 1) and R is an upper triangular matrix (that is Ri j = 0 for j < i)
(see, for example, Golub and Van Loan [6, Sect. 4.3] where it is known as the L–U
decomposition). The system Au = f is then replaced by the pair of equations

Lv = f , Ru = v, (10.11)
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Fig. 10.3 Pattern of the nonzero entries in the 49×49 matrix A in (10.10) (left) and the L R factors
of A (centre and right). The quantity nz gives a count of the nonzero entries
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in which v is an intermediate vector, and are solved sequentially—processes that
are referred to as forward and backward substitution, respectively. The matrix A is
a sparse matrix with band width M—this is the maximum horizontal distance of
nonzero elements from the main diagonal—so that Ai j = 0 for |i − j | > M . As
illustrated in Fig. 10.3, this bandwidth is also inherited by the triangular factors L and
R. When M is large, the number of arithmetic operations (flops) needed to compute
the L R factorization of a banded matrix is asymptotically proportional to the product
of its dimension and the square of its bandwidth (see, for example, Golub and Van
Loan [6, Sect. 5.3]). Thus the time needed to factorize our matrix A on a computer
will typically increase as M4 when the grid in Fig. 10.2 is refined. The number of
operations needed for the forward/backward substitutions in (10.11) is proportional
to the product of the dimension and the band width, that is M3. This means that the
solution of the linear system Au = f is dominated by the factorization phase. This
is illustrated in the following example.

Example 10.1 Apply the finite difference method (10.7)–(10.8) to the Poisson equa-
tion in the unit square with a Dirichlet condition u = g on ∂Ω , where

g(x, y) = −xy log
(
(x − a)2 + (y − b)2

)

for fixed constants a and b,3 together with a right hand side function given by

f (x, y) = 4
2xy − bx − ay

(x − a)2 + (y − b)2
.

Note that f = −∇2g which means that the exact solution to the boundary value
problem L u = F is simply u = g.

The numerical solution with M = 16, a = b = 5/4 is visualised in Fig. 10.4 (left)
together with the global error E = u − U . The error has a maximum of about 10−3

which suggests that the finite difference method successfully generates an accurate
solution. The behaviour of the maximum norm of the global error ‖E‖h,∞ (defined
by a natural generalization of (6.28)),

‖u − U‖h,∞ := max
�,m

|u�,m − U�,m |, (10.12)

is assessed in Table10.1. The measure of global error can be seen to reduce by a
factor of four whenever M is increased by a factor of two, and this gives a strong
indication that the global error isO(h2). The table also shows the overall time taken
to compute the numerical solution for each M . The discussion earlier in this section
suggested that the time taken should be proportional to M4 and therefore increase
by a factor of 16 each time M is doubled. We see that this is a realistic estimate4 for

3We will take a = b > 1 to ensure that (a, b) /∈ Ω .
4Timing of computational algorithms is notoriously difficult since it depends on the number of
processes that are running concurrently.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Fig. 10.4 Numerical solution for Example10.1 with M = 16, a = b = 5/4 (left) and the
corresponding global error (right)

Table 10.1 The maximum global error as a function of h = 1/M for Example10.1

h ‖E‖h Ratio cpu time %

1/8 0.0034 — 0.0001 39

1/16 0.00093 3.61 0.0008 5

1/32 0.00024 3.95 0.008 2

1/64 0.000060 3.98 0.09 3

1/128 0.000015 4.00 1. 1

1/256 0.0000037 4.00 14. 0.8

The third column shows the ratio of the global error with grid size 2h to the global error obtained
using a grid size h. The final column gives the percentage of total cpu time needed to compute the
forward/backward solves in (10.11)

the larger values of M . The final column supports our assertion that the time taken
for the forward and back substitutions in (10.11) is negligible compared to the total
time taken.

Perhaps the most important (not to say sobering) conclusion to be drawn from the
statistics is that, if the method is indeed second-order convergent, then M2 has to be
increased by a factor of 10 in order to gain one extra digit of accuracy and the cost
of achieving this could be a factor of 100 in cpu time. ♦

10.1.2 Convergence Theory

The foundation of the theory needed to establish convergence is described in Sect. 6.3
and can be summarised by the dictum “consistency and stability imply convergence ”.
We shall only deal with situations where each of these quantities is measured in the
�∞-norm (10.12).

First, since the boundary value problem that we are dealing with is a Dirichlet
problem (so that the boundary condition is replicated exactly) it is only necessary to

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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check that the finite difference method is consistent with the PDE. That is, it has to
be shown that the local truncation error Rh := Lhu − Fh = O(h p) with p > 0.
Now, since Lhu|�,m = −h−2(δ2x + δ2y) u�,m and Fh |�,m = f�,m , we can simply use
(6.14) to get

Rh |�,m = −h−2(δ2x + δ2y) u�,m − f�,m

= −(uxx + uyy)
∣∣
�,m − f�,m − 1

12 h2(uxxxx + uyyyy)

∣∣∣
�,m

+ O(h4)

= − 1
12 h2(uxxxx + uyyyy)

∣∣∣
�,m

+ O(h4), (10.13)

since−(uxx + uyy) = f . Thus the method is consistent of order two if u and its
partial derivatives up to order four are continuous on the domain Ω .5

Second, according to Lemma 6.8 the finite difference operatorLh will be a stable
operator provided that it can be shown to be inverse monotone and have a compar-
ison function Φ (bounded independently of h) satisfying LhΦ ≥ 1. We shall first
prove that Lh satisfies a maximum principle so that it mimics the behaviour of the
continuous problem (as discussed in Theorem 7.5).

Theorem 10.2 (Discrete maximum principle) Suppose that LhU�,m is defined by
(10.7) and that LhU ≤ 0 at all grid points in Ωh. Then either U is constant in Ωh

or else it achieves its maximum on the boundary ∂Ωh.

Proof We sketch a proof that mirrors that for Theorem 6.10. Thus, by contradiction,
we suppose that U attains its maximum value at a point (x�, ym) in the interior of
the domain, so that 0 < �, m < M . The inequality LhU�,m ≤ 0 may be rewritten as

U�,m ≤ 1
4

(
U�+1,m + U�,m+1 + U�−1,m + U�,m−1

)
, (10.14)

from which it follows that either U�,m < max{U�+1,m, U�,m+1, U�−1,m, U�,m−1},
whichwould immediately lead to a contradiction, or else thefivevaluesU�,m , U�+1,m,

U�,m+1, U�−1,m, U�,m−1 must be equal to each other, in which case the grid function
U will attain its maximum on the set of five points (x�, ym), (x�±1, ym), (x�, ym±1).
The same argument can therefore be applied to all the nearest neighbours of the
original point (unless they lie of the boundary) which will either generate a contra-
diction, or else will further increase the number of grid points at which U attains
its maximum. Eventually all the interior grid points will be exhausted and U is a
constant grid function (a contradiction). �
Corollary 10.3 The difference operator Lh defined by (10.7) and (10.8) is stable.

Proof Establishing the inverse monotonicity is left to Exercise10.6. All we need to
do here is to find a suitable comparison function. The quadratic function

Φ(x, y) = 1 + 1
2 x(1 − x)

5This is the reason why we need to insist that (a, b) /∈ Ω in Example10.1.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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used in the proof of Theorem 7.5 is a likely candidate. Indeed, since the local trunca-
tion error is identically zero for this choice (since it depends on the fourth partial deriv-
atives of Φ), we immediately arrive at the desired result LhΦ�,m = − ∇2Φ

∣∣
�,m = 1

by invoking Lemma 6.8. �

Uniqueness of the numerical solution follows directly from Theorem 5.3. Finally, to
conclude the section, we reiterate the classical convergence result.

Corollary 10.4 The 5–point approximation to the Poisson equation with a Dirichlet
boundary condition, described by (10.7)–(10.8) on the unit square Ω is second-order
convergent if the fourth derivatives of the exact solution are bounded on Ω .

Proof This follows from Theorem 6.7 and the results established earlier in this
section. �

10.1.3 Improving the Solution Accuracy

There are two clever strategies for monitoring the accuracy of a numerical solution
in cases where the exact solution is not known. The first of these is named after
Richardson6 and is a generic process thatmaybe applied to a broad rangeof numerical
approximation methods.

Richardson’s idea is quite simple. It extrapolates results from a number of dif-
ferent grids to both estimate the rate of convergence and predict the exact solution.
An estimate of the global error follows by comparing the difference between this
prediction and any of the numerically computed values. The process is illustrated in
the following example.

Example 10.5 (Richardson extrapolation) Suppose that Q is a quantity of specific
interest, for example, the value of u at a specific point in the domain. To give an
explicit example, the following data represents the numerical solution to the problem
in Example10.1 at the particular point P=(3/4, 3/4) for five different grid sizes h:

h 1/4 1/8 1/16 1/32 1/64
Q(h) 0.37771749 0.38651913 0.38902712 0.38967667 0.38984053

Our task is to estimate the rate of convergence of the numerical solution at P and
then to determine an improved estimate of u(3/4, 3/4).

We start by assuming that Q(h) = Q(0) + Ch p. Some simple algebra gives 2p =
(Q(h) − Q(h/2))(Q(h/2) − Q(h/4)). Thus

p = 1

log 2
log

∣∣∣∣ Q(h) − Q(h/2)

Q(h/2) − Q(h/4)

∣∣∣∣ , Q(0) = 2p Q(h/4) − Q(h/2)

2p − 1
. (10.15)

6Lewis Fry Richardson (1881–1953) was one of the pioneers of numerical PDEs. He developed a
life-long interest in weather forecasting when living in Manchester.

http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Table 10.2 The actual error E(h) = u(3/4, 3/4)−Q(h), the exponent p (EOC) and solution estimate
Q(0) computed via (10.15) when solving Example10.1 for different values of h

h Q(h) E(h) EOC Q(0) Q(0) − Q(h)

1/4 0.37772 0.01218 — — —

1/8 0.38652 0.00338 — — —

1/16 0.38903 0.00087 1.811 0.39003 0.00100

1/32 0.38968 0.00022 1.949 0.38990 0.00024

1/64 0.38984 0.00005 1.987 0.38990 0.00006

To apply this construction to the tabulated data, we suppose that the global error
converges as O(h p) so that

U (3/4, 3/4)︸ ︷︷ ︸
Q(h)

≈ u(3/4, 3/4)︸ ︷︷ ︸
Q(0)

+ Ch p

in which C is a constant independent of h and the exponent p is the experimental
order of convergence or EOC (cf. the discussion in Example 6.2). The results given
in Table10.2 show that the point values Q(h) = U (3/4, 3/4) have an EOC of 1.811 on
the coarsest grids, rising to 1.987, as finer grids are used. These results are compatible
with a second-order rate of convergence. The extrapolated values of U (3/4, 3/4) in
the limit h → 0 are denoted by Q(0) and are also shown in Table10.2. The final
estimate Q(0) = 0.38990 differs from the exact solution u(3/4, 3/4) by only one unit
the the last decimal place. It is no surprise, therefore, that the quantity Q(0) − Q(h)

shown in the final column gives an increasingly accurate estimate of the actual error
E(h). ♦
The above example demonstrates that Richardson extrapolation is capable of esti-
mating and increasing the accuracy of numerical results with only a small amount of
arithmetic. There are a couple of issues that undermine the process however. These
are (a) theoretical justification for the ansatz Q(h) = Q(0) + Ch p is not always
available (note that all higher-order terms have been neglected) and (b) the numer-
ical solution has to be computed on three (nested) grids but the error estimate (or
extrapolated value) is only available at points on the coarsest grid.

A second way of estimating the global error from the finite difference solution U
satisfyingLhU = Fh is to post-process an estimate, R̂h say, of the local truncation
error. (This approach is called iterative refinement in a numerical linear algebra
setting.) If we substitute this estimate into the right hand side of global error equation
Lh E = Rh , see (6.31), an estimate Ê of the global error u − U may be found by
solving

Lh Ê = R̂h . (10.16)

The grid function Û = U + Ê is the enhanced approximation to the solution u. It is
important to observe that it is the original finite difference operatorLh that appears
on the left hand side. One such strategy is illustrated in the following example.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Example 10.6 (A post-processed error estimate) Determine a finite difference
approximation R̂h of the leading term in the local truncation error and thereby find
an equation of the form (10.16) that may be solved to give an estimate of the global
error u − U for the problem in Example10.1.

The boundary conditions in Example10.1 are incorporated without approximation
so the focus is simply on the differential equation. The finite difference equations
at internal grid points are represented in operator form by the equation LhU = Fh ,
where Lh is defined by (10.7). The local truncation error for this method is given
by (10.13),

Rh |�,m = − 1
12 h2(uxxxx + uyyyy)

∣∣∣
�,m

+ O(h4)

A direct approximation of the leading term on the right hand side is possible but
complicated, see Exercise 6.32. An alternative strategy is to observe that

uxxxx + uyyyy = (∂2x + ∂2y )2u − 2∂2x ∂2y u

= −( fxx + fyy) − 2∂2x ∂2y u,

and then to construct a finite difference approximation of the right hand side.
This gives the following “simple” estimate of the local truncation error

R̂h
∣∣
�,m = 1

12 (δ
2
x + δ2y) f�,m + 1

6h−2δ2xδ
2
yU�,m (10.17)

which involves only the nine grid values U�+ j,m+k with j, k = 0,±1.
Next, we note that the first term on the right hand side of (10.17) can be expressed

as − 1
12h2Lh f

∣∣
�,m so that, rather than solving (10.16) directly to get the estimate

Ê we can introduce the intermediate quantity Ẽ = Ê + 1
12h2 f that satisfies the

boundary value problem

Lh Ẽ�,m = 1
6h−2δ2xδ

2
yU�,m for (x�, ym) ∈ Ωh,

Ẽ�,m = 1
12h2 f�,m (x�, ym) ∈ ∂Ωh .

}
(10.18)

In this way we avoid having to evaluate Lh f . Applying this post-processing strategy
to the computed finite difference solutions in Example10.1 gives results shown in
Table10.3. The ratios of errors for successive grids (listed in the last column) suggest
that the rate of convergence of the post-processed difference solutions is significantly
faster than O(h2).

It might appear that computing the post-processed solution doubles the cost of
solving the BVP. However, this is not the case because the Eqs. (10.18) can be assem-
bled into matrix-vector form Aẽ = f̃ in which the coefficient matrix is exactly the
same as that used in (10.9) to determine U . Thus, provided that the previously com-
puted matrices L and R of A have been saved, ẽ may be computed by a forward and
backward solve, that is

L d̃ = f̃ , R ẽ = d̃.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Table 10.3 Numerical results for Example10.6 showing norms of the global error ‖E‖h,∞ (from
Table10.1), the post-processed error estimates ‖Ê‖h,∞ and the errors in the post-processed solution
U + Ê

h ‖E‖h ‖Ê‖h,∞ ‖u − U − Ê‖h,∞ Ratio

1/8 0.0038 0.0034 0.00015 —

1/16 0.00093 0.00093 0.000028 5.49

1/32 0.00024 0.00024 0.0000027 10.03

1/64 0.000060 0.000060 0.00000021 13.19

As discussed earlier (see the final column of Table10.1) the cost of this process—
and therefore the cost of computing the error estimate—is negligible compared to
the cost of computing the original solution U . ♦
The derivation of (10.16) is closely allied to that of higher-order methods, such as
Numerov’s method described in Sect. 6.4.2. A 9-point generalization of Numerov’s
method to the solution of PDEs is pursued in Exercise10.4.

10.2 Advanced Topics and Extensions

Thematerial in Sects. 10.1 and 10.2.1 gives a flavour of the issues involved in solving
elliptic PDEs by finite difference methods. This may be deemed sufficient for a first
foray into this area. A more ambitious reader might also want to look at some of the
topics in the rest of the chapter.

10.2.1 Neumann and Robin Boundary Conditions

Suppose that the Poisson equation (10.3) is to be solved on the unit square, Ω =
(0, 1) × (0, 1), but this time subject to the Neumann boundary condition

∂nu = g(x, y), for (x, y) ∈ ∂Ω, (10.19)

where ∂nu denotes differentiation in the direction of the outward normal to the
boundary. The normal is not well defined at corners of the domain and, indeed, g
neednot be continuous there.Note that itwas shown inExample7.9 that this boundary
value problem is not well posed unless the data f and g satisfies the compatability
condition (7.8).

Finite difference approximations of the condition (10.19) can be constructed by
generalising the process described in Sect. 6.4.1 for generating second-order approx-
imations to derivative boundary conditions. To illustrate this process, we consider a

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_7
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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grid point (0, mh) (with 0 < m < M to avoid the vertices) on the boundary x = 0
where (10.19) gives −ux = g(0, y) (0 < y < 1). Taking the forward difference
operator �+

x (see Table6.1) gives

�+
x u0,m = u1,m − u0,m = hux |0,m + 1

2h2uxx

∣∣∣
0,m

+ O(h3) (10.20)

and rearranging this we get

− ux (0, mh) = −h−1�+
x u0,m − 1

2huxx
∣∣
0,m + O(h2). (10.21)

In order to remove the first order term in h, we use the PDE uxx = −uyy − f so
that, at the point (0, mh)

−uxx |0,m = f0,m + uyy
∣∣
0,m = f0,m − h−2δ2yu0,m + O(h2).

Combining this with (10.21) gives

−ux (0, mh) = −h−1�+
x u0,m − 1

2h−1δ2yu0,m− 1
2h f0,m + O(h2)

which leads to the numerical boundary condition

− h−1�+
xU0,m − 1

2h−1δ2yU0,m = g0,m + 1
2h f0,m, (10.22a)

(m = 1, 2, . . . , M − 1). It can also be written in the explicit form

4U0,m − 2U1,m − U0,m−1 − U0,m+1 = 2hg0,m + h2 f0,m, (10.22b)

with a stencil that is depicted on the left of Fig. 10.5. An alternative derivation is
described in Exercise10.9.

x = 0

y = mh

x = 0

y = 1

Fig. 10.5 The grid in the vicinity of the boundary point (0, mh) and the corner point (0, Mh).
Approximations of the Neumann boundary condition at the target points (marked ◦) also involve
the neighbouring grid points (marked •)

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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The form (10.22a) is most convenient for checking the consistency error of the
boundary condition. The relevant component of the local truncation error is given by

Rh |0,m := −h−1�+
x u0,m − 1

2h−1δ2yu0,m − g0,m − 1
2h f0,m,

which, using the expansions listed in Table6.1, leads to

Rh
∣∣
0,m = −(ux + 1

2huxx + O(h2)
)∣∣
0,m− 1

2h
(
uyy + O(h2)

)∣∣
0,m− g0,m − 1

2h f0,m,

= (−ux − g)
∣∣
0,m + 1

2h
(−uxx − uyy − f

)∣∣
0,m + O(h2)

= (Bu − g)
∣∣
0,m + 1

2h
(Lu − f

)∣∣
0,m + O(h2). (10.23)

Since Bu = g and Lu = f at (0, mh), we conclude that the consistency error
of the boundary condition is second order. Checking this more carefully (see
Exercise10.10) reveals that that second-order consistency is dependent on the deriv-
ative uxxx being bounded in the interior of the domain, with uyyyy being bounded
on the edge x = 0, 0 < y < 1.

The derivation of a numerical boundary condition at a corner, (0, 1), say, requires
extra care in interpreting the boundary condition for the continuous problem. More
specifically, along x = 0 the Neumann condition is −ux = g while along y = 1 it
is uy = g, but the value of g need not be the same as we approach the corner along
the two edges. Taking the limits

lim
y→1− g(0, y) = g(0−, 1) and lim

x→0+ g(x, 1) = g(1+, 0),

the two boundary conditions at the corner become −ux = g(0−, 1) and uy =
g(1+, 0). By adding the backward difference approximation (10.20) for ux to the
backward difference approximation for uy , that is,

h−1�−
yu0,M = h−1(u0,M − u0,M−1) = uy

∣∣
0,M − 1

2huyy
∣∣
0,M + O(h2),

we arrive at the numerical boundary condition

− h−1�+
xU0,m + h−1�−

yU0,M = 1
2h f0,M + g(1+, 0) + g(0−, 1). (10.24a)

This may be explicitly written as

2U0,M − U1,M − U0,M−1 = 1
2h2 f0,M + hg(1+, 0) + hg(0−, 1), (10.24b)

and is depicted on the right of Fig. 10.5. The details are left to Exercise10.11.
Proceeding in this manner for each of the boundary segments and each corner, we
arrive at (M + 1)2 linear equations for the values of U on Ωh .

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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We conclude this section with an illustration of how a homogeneous Neumann
condition naturally arises when exploiting the inherent symmetry in a boundary
value problem. Suppose that both the domain and the solution u are symmetric with
respect to the y-axis—for the Poisson equation this requires that the source term f
and boundary values g are also symmetric with respect to the y–axis—then

u(−x, y) = u(x, y) for all x ∈ Ω. (10.25)

By expanding both sides of this equation in a Taylor series about x = 0, we find
that ux (0, y) = 0. In fact all the odd-order partial derivatives of u must vanish along
x = 0. The original problem can then be reduced to the half of the domain lying in
x ≥ 0, with the Neumann condition ux = 0 along x = 0 together with the original
boundary conditions on the remainder of the boundary.

Suppose now that a finite difference method with a 5-point stencil is used to solve
such a problem. When this method is applied at a point on the axis of symmetry (as
shown by the symbol ◦ in Fig. 10.6, left) the grid values U1,m (at the point labelled
A) and U−1,m (at the point labelled B) must be equal. In particular, the five point
finite difference approximation (10.6) applied at m = 0 immediately reduces to the
numerical boundary condition (10.22b) with g = 0. The upshot is that the numerical
solution need only be computed for one half of the original domain with a significant
saving in computational cost.

By a similar argument, if the domain and solution are symmetric with respect
to both coordinate axes (see Fig. 10.6, right) then ux (0, y) = 0 and uy(x, 0) = 0.
Furthermore, when the five point finite difference approximation (10.6) is applied at
the origin l = m = 0 we find that it reduces to

2U0,0 − U1,0 − U0,−1 = 1
2h2 f0,0,

AB

O x

y
AB

C

D

x

y

Fig. 10.6 An example of a domain that is symmetric about the y-axis left and, a domain that is
symmetric with respect both x- and y-axes (right)
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since symmetry implies that U−1,0 = U1,0 and U0,1 = U0,−1. This is identical to the
numerical boundary condition (10.24b) with g = 0 once the difference in indexing
in the two situations is taken into account. The numerical solution only needs to be
computed over one quarter of the domain in this case.

10.2.2 Non-Rectangular Domains

The techniques described in earlier sections readily deal with domains whose bound-
aries consist of grid lines x = �h or y = mh, for integers � and m or even boundaries
that pass diagonally through the grid. Although the range of problems can be further
extended by allowing different grid sizes in the x and y directions (as illustrated
by Exercise10.1), a new procedure is clearly required to deal with domains having
curved boundaries.

Apossible processwill be described through its application to solving theDirichlet
problem for the Poisson equation on a non-rectangular domain such as that illustrated
in Fig. 10.1. When the domain is covered by a rectangular grid of size h × h (such as
that shown in Fig. 10.7), there are difficulties in imposing the boundary conditions
because the boundary does not, in general, pass through grid points. For the Dirichlet
problem, the boundary condition takes the formu(x, y) = g(x, y) for all points (x, y)

lying on the boundary ∂Ω . This data is available at those points where the boundary
intersects the grid lines x = �h and y = mh. These are marked with a circle (◦) in
Fig. 10.7 and constitute the boundary ∂Ωh of our grid.

Fig. 10.7 A grid Ωh on the domain Ω having a smoothly curved boundary. Points marked ◦
show the intersection of grid lines with the boundary, grid points marked • are those whose four
nearest neighbours are each a distance h away and those marked ∗ have at least one of their nearest
neighbours on the boundary and less that a distance h away
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Fig. 10.8 The general form
of a 5–point finite difference
stencil at a grid point P
involving its four nearest
neighbours Q j , j = 1, 2, 3, 4

S3 S1P

Q2

k+

Q3

h−

Q4

k−

Q1

h+

The set of grid points marked ∗ in Fig. 10.7 have the property that at least one of their
four nearest neighbours lies on the boundary ∂Ωh . We shall denote the set of these
grid points by Ω∗

h . The remaining points of the grid will be denoted by Ω•
h and are

marked • in Fig. 10.7. The entire grid Ωh is therefore made up of three categories of
grid points: ∂Ωh , Ω∗

h and Ω•
h . The solution is known for grid points in ∂Ωh from

the Dirichlet condition U = g and the differential equation may be approximated
by the standard 5–point formula (10.6) for points in Ω•

h . It therefore only remains to
construct an approximation for the differential equation at points of Ω∗

h .
Suppose that P denotes a general grid point in Ω∗

h then, in order to cope with all
possibilities, we assume that its nearest neighbours Q j are at vertical or horizontal
distances h± and k± away, as shown in Fig. 10.8. To approximate uxx at P we use
the Taylor expansions

u(x + h+, y) = u + h+ux + 1
2h2+uxx + O(h3)

u(x − h−, y) = u − h−ux + 1
2h2−uxx + O(h3),

where h is the largest grid spacing in the x–direction and all the terms on the right
are evaluated at P. Eliminating ux leads to

uxx |P = 2

h+ + h−

[
u|Q1− u|P

h+
− u|P − u|Q3

h−

]
+ O(h), (10.26)

where the truncation error is (formally) of first order. If we now suppose that S1 and
S3 denote the midpoints of the line segments PQ1 and Q3P, respectively, then (10.26)
can be interpreted as the approximation

uxx |P ≈ ux |S1− ux |S3
|S1S3| with ux |S1 ≈ u|Q1− u|P

|PQ1| and ux |S3 ≈ u|P − u|Q3

|PQ3| .

Applying a similar process in the y-direction leads to

uyy
∣∣
P = 2

k+ + k−

[
u|Q2 − u|P

k+
− u|P − u|Q4

k−

]
+ O(h), (10.27)
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so the PDE−uxx −uyy = f can be approximated at a typical point P by the difference
formula

− 2

h+ + h−

[
U1 − U0

h+
− U0 − U3

h−

]
− 2

k+ + k−

[
U2 − U0

k+
− U0 − U4

k−

]
= f0

(10.28)

in which U0 ≈ u|P, U1 ≈ u|Q1, etc. Note that when P is the node (�h, mh) and
h± = k± = h, this formula simplifies to that given by (10.6). An equation of the
type (10.28) holds at each point in Ω∗

h while the 5–point replacement (10.6) holds
at points in Ω•

h . We have, therefore, a finite difference equation at each internal grid
point. Once an ordering of the grid points has been decided upon, these equations
may be written as a linear algebraic system Au = f .

Example 10.7 Construct a finite difference approximation to solve Laplace’s
equation in the quarter circle {(x, y) : x2 + y2 < 1} with a symmetry boundary
condition uy(x, 0) = 0 and a Dirichlet condition u = g on the remainder of the
boundary—where g is the harmonic function g(x, y) = x5 − 10x3y2 + 5xy4 so that
u = g is the exact solution of the boundary value problem.

A subdivision with M = 6 is illustrated in Fig. 10.9. It is a straightforward exercise
to apply (10.6) at points inΩ•

h and (10.28) at points inΩ∗
h to generate the set of finite

difference equations. By following the procedure described in the previous section,
a second-order difference approximation at the point (x�, 0) that incorporates an
approximation of the Neumann condition can be shown (see Exercise10.18) to be

2U�,0 − 1
2U�−1,0 − 1

2U�+1,0 − U�,1 = 0. (10.29)

The corresponding stencil is depicted by open circles (◦) in Fig. 10.9. The solution
obtained with M = 16 and the associated global error u − U is shown in Fig. 10.10.
It can be seen that the error is largest error along x = 0 (a line of symmetry) and that
it is relatively small near the curved boundary.

The maximum global error as a function of M is shown in Table10.4. The final
column shows the ratio by which the error is reduced when M is doubled (see
Table 6.2) and the results are consistent with the method being convergent of second

ym

x x

y

* * *

*

*

*

*

Fig. 10.9 A coarse grid for the boundary value problem in Example10.7. The columns of grid
values associated with the 5-point stencil at the point (x�, ym) (marked •) are shown highlighted

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Fig. 10.10 Numerical solution for Example10.7 with h = 1/16 (left) and the corresponding global
error (right)

Table 10.4 The maximum
norm of the global error as a
function of h = 1/M for
Example10.7

h ‖u − U‖h,∞ Ratio

1/16 0.0035 —

1/32 0.00091 3.85

1/64 0.00023 3.93

1/128 0.000058 3.96

order. This might appear surprising given that the consistency error in the boundary
approximation (10.28) is only first order in h. ♦
To establish the stability of finite difference approximations on a nonuniformly
spaced grid we will need to generalise the notion of a positive operator that was
given in Definition 6.9. The following construction will give us exactly what we
need to handle such cases.

Definition 10.8 (General positive type operator) Suppose that P is a grid point
and that Q1,Q2, . . . ,Qν are neighbouring grid points. The finite difference operator
defined by7

LhU
∣∣
P = α0 U

∣∣
P −

ν∑
j=1

α jU
∣∣
Q j

(10.30)

is said to be of positive type if the coefficients satisfy the inequalities

α j ≥ 0, j = 0, 1, . . . , ν ; α0 ≥
ν∑

j=1

α j . (10.31)

Note that, for any point P ∈ Ω∗
h , the difference equation (10.28) can be written in

the form (10.30) so it can be immediately checked that the overall finite difference

7Here ν and the coefficients {α j } are generally different for different points P but the notation does
not reflect this.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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operator is of positive type. This, in turn, means that the finite difference approx-
imation in the above example is inverse monotone, and following the exact same
argument as in Sect. 6.3 we deduce that the discrete problem LhU = Rh associated
with Example10.7 has a unique solution. The somewhat surprising second-order
convergence rate is studied next.

Theorem 10.9 (General discrete maximum principle) Suppose that LhU�,m is
defined by (10.7) at a general grid point of Ω•

h and by the left hand side of (10.28)
at a general grid point of Ω∗

h . If LhU ≤ 0 at all grid points in Ωh, then either U is
constant in Ωh or it achieves its maximum on the boundary ∂Ωh.

Proof Theorem10.2 implies that U cannot have a maximum at a point in Ω•
h , so it

remains to prove that a maximum cannot occur in Ω∗
h . For any point P ∈ Ω∗

h , the
finite difference equation (10.28) can be written in the form (10.30) and is of positive
type. It then follows from LhU

∣∣
P ≤ 0 that

α0 U
∣∣
P ≤

( 4∑
j=1

α j

)
max

j
U
∣∣
Q j

and soU
∣∣
P ≤ U

∣∣
Q j
. Thus, either strict inequality holds giving a contradiction, or else

U is constant on the set of points {P,Q1,Q2,Q3,Q4}. Applying the same argument
to all points in Ω∗

h gives the desired contradiction. �

Corollary 10.10 The operator Lh comprising Lh at points of Ωh together with a
Dirichlet boundary operator Bh is stable.

As in the proof of Corollary10.3 we simply need to exhibit a suitable comparison
function. If the domain Ω lies in the strip 0 ≤ x ≤ a, then it is readily verified that

Φ(x, y) = 1 + 1
2 x(a − x)

is a non-negative function on Ω satisfyingLhΦ ≥ 1. �

Corollary 10.11 The 5–point approximation to the Poisson equation with a Dirich-
let boundary condition, described by (10.6) and (10.28) in a general, simply con-
nected, domain Ω is second-order convergent if the fourth derivatives of the exact
solution are bounded on Ω .

Proof Convergence follows immediately fromTheorem6.7: establishing the second-
order rate requires one more step. The key is to separate the errors on Ω•

h and Ω∗
h .

Thus, suppose that E• and E∗ satisfy the boundary value problems

Lh E• =

⎧⎪⎨
⎪⎩
0 on ∂Ωh

0 on Ω∗
h

R•
h on Ω•

h

, Lh E∗ =

⎧⎪⎨
⎪⎩
0 on ∂Ωh

R∗
h on Ω∗

h

0 on Ω•
h

, (10.32)

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_6


216 10 Finite Difference Methods for Elliptic PDEs

where R•
h := Lhu − f onΩ•

h and R∗
h := Lhu − f onΩ∗

h , so that R•
h = O(h2) and

R∗
h = O(h).
The standard argument in Theorem 6.7 is sufficient to prove that E• = O(h2). To

analyse the error function E∗ we introduce a non-negative discrete function Ψ such
that

Ψ
∣∣
P =

{
0 on ∂Ωh

h2 on Ωh
.

This has the property that LhΨ
∣∣
P = 0 for P ∈ Ω•

h . For a point P ∈ Ω∗
h , at least one

of its nearest neighbours lies on the boundary. Suppose that this point is Q1 then,
using (10.31) gives

LhΨ
∣∣
P = α0 Ψ

∣∣
P −

4∑
j=1

α jΨ
∣∣
Q j

≥ h2

⎛
⎝α0 −

4∑
j=2

α j

⎞
⎠ sinceΨ

∣∣
Q1

= 0,

≥ h2

⎛
⎝α0 −

4∑
j=1

α j

⎞
⎠+ α1h2 ≥ α1h2 ≥ 1.

Note that if P has more than one nearest neighbour on the boundary, then the lower
bound is increased. Thus, in all cases, LhΨ

∣∣
P ≥ 1 for all P ∈ Ω∗

h .
Next, using (10.32), gives

Lh(E∗ − ‖R∗
h‖h,∞Ψ ) =

⎧⎪⎨
⎪⎩
0

Lh E∗ − ‖R∗
h‖h,∞LhΨ

0

≤

⎧⎪⎨
⎪⎩
0 on ∂Ωh

R∗
h − ‖R∗

h‖h,∞ on Ω∗
h

0 on Ω•
h

.

This means that Lh(E∗ − ‖R∗
h‖h,∞Ψ ) ≤ 0 and inverse monotonicity then implies

that E∗ ≤ ‖R∗
h‖h,∞Ψ . An identical argument shows that E∗ +‖R∗

h‖h,∞Ψ ≥ 0 and
hence

−‖R∗
h‖h,∞h2 ≤ E∗ ≤ ‖R∗

h‖h,∞h2

so that the total contribution to the global error from the O(h) local error in Ω∗
h is

O(h3). We conclude that E = E∗ + E• = O(h2) with the usual proviso that the
partial derivatives of u up to order four are bounded on Ω . �

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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10.2.3 Polar Coordinates

A “difficult” geometry can sometimes be accommodated naturally by making a
simple change of variables. The use of polar coordinates will be used to illustrate
how this can be done.

Example 10.12 (Example10.7 in polar coordinates) Construct a finite difference
approximation to solveLaplace’s equation in the quarter circle {(x, y) : x2+y2 < 1},
by transforming the problem into polar coordinates (x, y) �→ (r, θ) so that the
boundary conditions in Example10.7 are given by uθ (r, 0) = 0, u(r, π/2) = 0 and
u(1, θ) = cos 5θ .

Making the change of variable x = r cos θ, y = r sin θ transforms Laplace’s equa-
tion to the following form (see Example 5.14)

1

r
∂r (r∂r )u + 1

r2
∂2θ u = 0.

The domain Ω is mapped to the rectangle {(r, θ) : 0 < r < 1, 0 ≤ θ < π/2} shown
in Fig. 10.11, with the grid lines r� = �h (with h = 1/M) and θm = mΔθ (with
Δθ = π/(2M)). We have chosen an equal number of grid lines in the two directions
simply to avoid a profusion of symbols. The boundary r = 0 is shown as a dashed
line as a reminder that the solution is the same at all points along it since these are
all mapped to the origin x = y = 0. The internal grid points are denoted by Ωh ,
where Ωh = {(r�, θm) : 0 < � < M, 0 < m < M}. The Neumann condition is
satisfied at grid points {(r�, θ0) : 0 < � < M} and a Dirichlet condition is imposed
at all other points on the boundary, that is, for the set of points {(r�, θM ) : 0 < � <

M} ∪ {(1, θm) : 0 < m ≤ M}.
The PDE is approximated at a generic grid point (r�, θm) ∈ Ωh by replacing the

partial derivatives in r and θ by the first-order central difference operators h−1δr and
Δθ−1δθ that were introduced in Sect. 6.1. This process leads to a system of finite
difference equations LhU = 0, where

r

θm

1
2π

O r

θ

r

θ
=

θm

O x

y

Fig. 10.11 A typical grid for Example10.12 in the rθ-plane (left) and the xy-plane (right)

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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LhU�,m := 1

h2r�

δr (r�δr U�,m) + 1

r2� Δθ2
δ2θU�,m . (10.33)

Writing (10.33) explicitly gives

LhU�,m := 1

h2r�

(
r�+1/2(U�+1,m − U�,m) − r�−1/2(U�,m − U�−1,m)

)

+ 1

r2� Δθ2

(
U�,m+1 − 2U�,m + U�,m−1

)
, (10.33a)

where r�±1/2 = (� ± 1/2)h. The associated stencil is illustrated in Fig. 10.11. The
homogeneous Neumann condition reflects the symmetry about the x-axis, that is,
u(r,−θ) = u(r, θ). To enforce this condition we set m = 0 and U�,−1 = U�,1 in
(10.33a) to give the boundary operator

BhU�,0 := − 1

Δθ

(
U�,1 − U�,0

)

− Δθr�

2h2

(
r�+1/2(U�+1,0 − U�,0) − r�−1/2(U�,0 − U�−1,0)

)
(10.33b)

having been rescaled so that BhU�,0 = −Δθ−1�+
θU�,0 + a correction term. This

treatment is in line with the discussion at the end of Sect. 10.2.1. If these differ-
ence equations are assembled into a matrix-vector system using a column-ordering
of unknowns (by which we mean columns in the rθ -plane), then the structure of
nonzeros in the coefficient matrix is the same as in the Cartesian case. (Note that
each equation has to be multiplied by r� in order to get a symmetric matrix).

The solution obtained with M = 16 and the associated global error u − U is
shown in Fig. 10.12. This can be directly compared with the solution in Fig. 10.10.
The behaviour of the maximum global error is compared in Table10.5 with the
analogous result when the same BVP is solved in xy-coordinates. The global error
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Fig. 10.12 Numerical solution for Example10.12 computed with M = 16 (left) and the
corresponding global error (right)
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Table 10.5 The maximum norm of the global error as a function of h = 1/M for Example10.7
(using Cartesian coordinates) and for Example10.12 (using polar coordinates)

Square grid Polar grid

h ‖u − U‖h,∞ Ratio ‖u − U‖h,∞ Ratio

1/16 0.0035 — 0.0046 —

1/32 0.00091 3.85 0.0011 3.99

1/64 0.00023 3.93 0.00029 3.99

1/128 0.000058 3.96 0.000072 4.00

shows second-order convergence in both cases but is, for fixed M , about 25% larger
on the polar grid. This may be attributable to the Cartesian grid having a higher
density of grid points on the curved boundary while the polar grid has a high density
in the neighbourhood of the origin where there is very little variation in the solution.

♦
The theory underpinning polar coordinate approximation is summarised within the
following theorem.

Theorem 10.13 (Finite difference convergence in polar coordinates) Suppose that
Lh and Bh denote, respectively, the finite difference operators defined by (10.33a) in
Ωh and (10.33b) at points on the symmetry boundary. Then

(a) Lh is consistent of order two with the Laplacian operator written in polar coor-
dinates in Ωh and Bh is consistent of order two on the Neumann boundary.

(b) Lh satisfies a discrete maximum principle.
(c) The discrete operator Lh, which comprises −Lh in the interior, Bh on the Neu-

mann boundary and satisfiesLhU = U at grid points on the Dirichlet boundary,
is stable with regards to the comparison function Φ(r, θ) = 1 − 1

4r2.
(d) The approximation method converges to the solution of Laplace’s equation at a

second-order rate.

Proof We will simply outline the ingredients here. In order to check the consistency
error of (10.33) we use the expansion (see Table6.1)

h−1δrv�,m = ∂rv
∣∣
�,m + 1

24h2∂3r v
∣∣
�,m + O(h4)

for any smooth function v(r, θ). Thus, for the approximation of the r -derivatives,

h−2δr (r�δr u�,m) =
(
∂r + 1

24h2∂3r + O(h4)
)

r
(

ur + 1
24h2urrr + O(h4)

)

=
(
∂r + 1

24h2∂3r + O(h4)
) (

rur + 1
24h2rurrr + O(h4)

)

= ∂r (rur ) + 1
24h2 ((ru)rrr + (rurrr )r ) + O(h4),

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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where all the terms on the right hand side are evaluated at (r�, θm). The consistency
error of the θ -derivatives is second order (exactly as in xy coordinates) so the overall
truncation error is given byRh := Lhu−Lu = O(h2)+O(Δθ2)whenever the fourth
derivatives of u are bounded. Consistency of the approximation on the Neumann
boundary is covered in Exercise10.18.

The proof of themaximumprinciple follows bywriting the discrete operatorLh in
the form (10.30) and verifying that it is of positive type. Part (c) involves verification
that the given function Φ is, indeed, a suitable comparison function. The last part
follows immediately from Theorem 6.7. The details are left to Exercise10.20. �

Our final example involving polar coordinates addresses the degeneracy that occurs
at the origin.

Example 10.14 Determine a finite difference approximation of the Poisson equation
in polar coordinates that is valid at the origin.

The function u(0, θ) must be independent of θ if u(r, θ) is to be single-valued as
r → 0. Likewise, the numerical solution U0,m at r = 0 must be independent of m
and we shall write U0 = U0,m for all m to denote this common value. In this case,
the finite difference operator defined by (10.33) becomes degenerate and a different
approach is required on the line r = 0.

We will suppose that Δθ = 2π/M , where M is a multiple of 4. Our approach is
therefore not completely general but it turns out that the end result does not depend
on this specific choice of M . A consequence of Exercise 4.13 is that the Laplacian
is invariant under rotation of the coordinate axes. Thus, under rotation by the angle
θm , the Laplacian can be approximated by the standard (Cartesian) 5–point formula
(10.6) to give (see Fig. 10.13, right)

4U0 = U1,m + U1,m+M/4 + U1,m+M/2 + U1,m+3M/4 + h2 f0, (10.34)

θm

m = M, θ = 2π

O r

θ

θ
=

θ m

θ
m+M

/4

θ m
+
M
/
2

θ
m+3M

/4

θ = 0, 2π
O

Fig. 10.13 A grid of dimensions h, Δθ for the rectangle 0 ≤ r ≤ 1, 0 ≤ θ < 2π in the rθ-plane
(left) is mapped by polar coordinates to a grid covering the unit circle (right). The finite difference
approximation (10.35) at the origin involves M neighbouring points at r = h

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_4
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where f0 is the value of the source term at the origin. The nearest neighbours to the
origin lie on the polar grid because M is a multiple of four. This formula is periodic
in m of period M/4 and so provides M/4 independent formulae. Summing these and
dividing by M then leads to the expression

U0 = 1

M

M−1∑
m=0

U0,m + 1

4
h2 f0. (10.35)

Note that the expression (10.35) is well defined for any positive integer M (not just
multiples of 4).Moreover, since it is the arithmeticmeanof difference approximations
that are consistent of order two, the discrete equation (10.35) must also be second-
order accurate. ♦

10.2.4 Regularity of Solutions

It has been tacitly assumed up to this point that, when assessing truncation errors,
the solution u and its partial derivatives (usually up to order four) are well defined
(bounded) functions on the domain Ω . We shall now investigate this assumption and
give some indications of the consequences when it is not valid. This is a very delicate
area of analysis and our aim is to give a flavour of what occurs in particular examples
rather than a comprehensive overview.

We begin by considering the simplest case of Laplace’s equation8

uxx + uyy = 0

in a simply connected domain Ω , when subject to a Dirichlet boundary condition
u = g. Solutions of Laplace’s equation possess derivatives of all orders on any open
set in the plane so our attention focusses on the behaviour of a generic solution as
the boundary is approached.

Let us suppose that the domain has a smooth boundary in the sense that it has a
continuously turning tangent (as in an elliptical domain, or one similar to that depicted
in Fig. 10.1, say). Any lack of smoothness in a solution must then be a consequence
of the boundary values. A common situation occurs when the boundary data g is
piecewise continuous. To take a concrete example, suppose that part of the boundary
lies along the x-axis where g(x) = 1 for x < a and is equal to zero otherwise (see
Examples 4.8 and 8.4). In terms of polar coordinates x = a + r cos θ , y = r sin θ

centred at the discontinuity, Laplace’s equation has the solution u = A + Bθ , for
constants A and B. Setting u = g when y = 0 then gives an analytic solution.

8Our conclusions will apply to general second-order elliptic PDEs with constant coefficients.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
http://dx.doi.org/10.1007/978-3-319-22569-2_8
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Fig. 10.14 A sector of a
circle having a re-entrant
corner with angle π/α and
an L-shaped domain with a
re-entrant angle 3π/2

u(x, y) = 1

2
− 1

π
tan−1

(
x − a

y

)
+ s(x, y),

where s(x, y) is a smooth function with s(x, 0) = 0. This solution is singular when
we take the limit r → 0. Indeed, it is easily shown that partial derivatives of order
n in x and y behave in proportion to 1/rn , so all derivatives become unbounded as
r → 0.

The convergence theory thatwe have developed fails for problems such as this and,
indeed, numerical experiments confirm that the maximum global error ‖E‖h,∞ → c
as h → 0, where c is a positive nonzero constant. This would indicate that finite
difference methods cannot be used in the presence of discontinuous boundary data.
However, the use of Richardson extrapolation (see Example10.5) suggests that the
global error E converges at a second-order rate.9 Although seeming to contradict
each other, both results are correct. The maximum norm ‖E‖h,∞ does not converge
to zero because, with successively finer grids, it measures errors at points that are
progressively closer to the discontinuity. Richardson extrapolation uses results on
three grids, of sizes h, h/2 and h/4 and provides an experimental order of conver-
gence for points on the coarsest grid. Thus, during this process, results are compared
at points that stay a fixed distance from the discontinuity. These observations are
consistent with the global error being proportional to (h/r)2 so, when r = O(h) we
find ‖E‖h,∞ → constant but, if P is any fixed point in the domain then E |P = O(h2).

When the boundary function is a little smoother so that it is continuous with a
piecewise continuous derivative we find that ‖E‖h,∞ = O(h) while, with a contin-
uous derivative and piecewise continuous second derivative, the standard converge
rate ‖E‖h,∞ = O(h2) is regained.

Solutions of Laplace’s equation may be singular, even when the boundary data
g is smooth, in any case where the boundary has one or more re-entrant corners as
depicted in Fig. 10.14. To illustrate this, let us suppose that u = 0 on the rays OA and
OB. Then, in terms of polar coordinates x = r cos θ , y = r sin θ centred on O, the
general solution may be determined by separation of variables and may be shown to
be of the form

u =
∞∑

n=1

Anrnα sin(nαθ),

9The observed quadratic rate of convergence is dependent on the point x = a being a grid point,
with g(a) = 1/2 (see Definition 8.3 and the subsequent discussion).

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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where the interior angle at the corner is π/α and {An} are arbitrary constants. When
1/2 < α < 1 the angle is reflex and all x and y partial derivatives of this solution are
unbounded as r → 0 (unless, by good fortune, A1 = 0). The strength of the singu-
larity is not as strong as in the case of discontinuous boundary data and numerical
experiments10 typically show that ‖E‖h,∞ = O(hα), whereas for a fixed point P a
distance r from the origin, E |P = O(h2α), consistent with E being proportional to
(h2/r)α .

To complete the section, we briefly extend the discussion to cover the Poisson
equation.

The next example shows that derivatives of a solution can be discontinuous even
when the data appears to be smooth.

Example 10.15 Consider the boundary value problem −(uxx + uyy) = 1 in the
quarter circle {(x, y) : x > 0, y > 0, x2 + y2 < 1} with a homogeneous Dirichlet
boundary condition, so that u = 0 on x = 0 and y = 0. Show that the partial
derivatives uxx and uyy are not continuous at the origin.

On the x-axis we have u(x, 0) = 0 and so uxx (x, 0) = 0. Whereas, on the y-axis,
u(0, y) = 0 so uyy(0, y) = 0 and using the PDE we find that uxx (0, y) = −1. The
result follows by taking the limits x → 0 and y → 0. ♦
The crucial aspect of the previous example is that −(uxx + uyy) = f (x, y) with
f (0, 0) �= 0. An explicit solution is given in Exercise10.21 with a nonhomogeneous
condition specified on the circular arc. Fortunately, the weak singularities in the
corner have no discernible effect on the rate of convergence of finite difference
solutions!

Solving the Poisson equation when the source term has jump discontinuities is
usually problematic. In such cases, the standard 5–point approximation usually con-
verges (despite the fact that the second partial derivatives are discontinuous and the
third partial derivatives are unbounded) although the typical convergence rate will
only be first order. Fornberg [4] has shown that second-order accuracy can often be
restored by adjusting the values of f in a simple manner at grid points next to the
discontinuity.

10.2.5 Anisotropic Diffusion

Afeature of the (negative) Laplacian−(uxx +uyy) is its invariance under rotation (see
Exercise 4.13). This makes it a faithful model of a diffusion process that acts equally
in all directions (isotropic diffusion). To model an anisotropic diffusion process in
two dimensions we will consider the general elliptic equation Lu = f , that was
discussed in Sect. 4.2.3,

10Theory predicts that ‖E‖h,∞ = O(hα−ε) for any positive number ε, no matter how small. We
ignore ε in the discussion since it is not detectable in numerical experiments.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
http://dx.doi.org/10.1007/978-3-319-22569-2_4
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Lu = − (auxx + 2buxy + cuyy
)
, with b2 < ac. (10.36)

Note that we can assume, without loss of generality, that a > 0 fromwhich it follows
that c > 0. By interchanging a, x with c, y, if necessary, we can also assume that
a ≥ c.

Our first goal is to construct a 9–point finite difference approximation that is
consistent of order two with the operator in (10.36) using only the grid points
(x�+ j , ym+k) for j, k = 0,±1. If we add the proviso that the coefficients in the
approximation must be inversely proportional to h2, then there is a one-parameter
family of methods (see Exercise10.22), given by

LhU�,m = −ah−2δ2xU�,m − 2bh−2�x�yU�,m − ch−2δ2yU�,m + 1
2γ h−2δ2xδ

2
yU�,m,

(10.37)

where γ is the parameter. The structure of this finite difference operator is shown in
Fig. 10.15 using a sequence of four stencils, one for each term.

The inverse monotonicity of Lh is most conveniently investigated by expressing
(10.37) in the form

LhU
∣∣
P := α0 U

∣∣
P −

8∑
k=1

αkU
∣∣
Qk

, (10.38)

where U
∣∣
P := U�,m and {U ∣∣Q j

}8k=1 denote the values of U at the eight neighbouring

grid points Q1,Q2, . . . ,Q8 listed counterclockwise, beginning at (x�+1, ym). The
idea here is to choose the parameter γ so that Lh is of positive type (as in Defin-
ition10.8). In which case the argument followed in Sect. 6.3 can again be used to
establish a discrete maximum principle.

To this end, making use of Fig. 10.15 gives

α0 = 2h−2(a + c − γ )

α1 = α5 = h−2(a − γ )

α2 = α6 = 1
2h−2(γ − b)

α3 = α7 = h−2(c − γ )

α4 = α8 = 1
2h−2(γ + b)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(10.39)

which will be non-negative (and satisfy the conditions of Definition10.8) if γ is
chosen so that

|b| ≤ γ ≤ min(a, c). (10.40)

Fig. 10.15 A stencil representation of the operator Lh given in (10.37)

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Fig. 10.16 The operator
(10.36) is elliptic in the
shaded area
1 ≥ c/a > (b/a)2. The
coefficients of the difference
approximation (10.37) only
satisfy the condition (10.31)
in the cross-hatched region
1 ≥ c/a ≥ |b|/a

0 1−1 b/a

c/a

1

Sincewearranged thata ≥ c, this is possible if, andonly if c/a ≥ |b|/a. This region is
shown cross-hatched in Fig. 10.16 and is a subset of the region c/a ≥ (b/a)2 (shown
shaded in the same figure) where the operator (10.36) is elliptic. The upshot is that it
is not possible to construct a second-order approximation of positive type—although
it should be borne in mind that this is a sufficient, but not necessary, condition for
inverse monotonicity.

This loss of positivity in the difference approximation has an elegant geometric
interpretation. We know (from Sect. 4.2.3) that the effective diffusivity of the general
second-order elliptic operator (10.36) is reflected in the level curves of the quadratic
form Q(x) = xT Ax, where x = (x, y) and A is the matrix of PDE coefficients.
Here, the major axis of any of the ellipses Q(x) = constant makes an angle φ with
the y-axis such that |φ| ≤ π/4 because of the condition a ≥ c. The failed cases occur
close to the bounding parabola c/a = (b/a)2 (where the level curves degenerate to
parallel lines) and so they become elongated—in fact, positivity is lost whenever the
ratio of the lengths of the major to minor axes exceeds 1 + √

2, see Exercise B.8.
The problem above is easily fixed! What is needed is a different mesh size in the

x and y directions. Setting these to hx and hy , respectively, (10.37) is replaced by
the scheme

LhU�,m := ah−2
x δ2xU�,m + 2bh−1

x h−1
y �x�yU�,m + ch−2

y δ2yU�,m

− 1
2γ h−1

x h−1
y δ2xδ

2
yU�,m . (10.41)

Note that since hx and hy must both tend to zero simultaneously, it is natural to fix
the mesh ratio hx/hy so that it is equal to ρ, say. As shown in Exercise10.23, setting
ρ = √

a/c and then selecting γ so that

|b| ≤ γ ≤ √
ac, (10.42)

ensures that the coefficients in (10.41) satisfy the required condition (10.31) for a
positive type difference operator. Standard arguments can then be used to show that
Lh in (10.41) is inverse monotone, so it is a stable approximation scheme for (10.36)
in combination with a Dirichlet boundary condition. ♦

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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10.2.6 Advection–Diffusion

To conclude our discussion of elliptic PDEs, we briefly consider finite difference
approximation of the steady advection–diffusion equation, see (3.5), given in two
dimensions by

− ε(uxx + uyy) + pux + quy = 0, (10.43)

in situations where the advection terms (pux + quy) dominate the diffusion term
−ε∇2u. More specifically, if L is a length scale associated with the domain, we
introduce the Peclet number, so that

Pe = L

ε
max{|p|, |q|} (10.44)

and note that situations of interest in this section are characterised by Pe � 1. (Think
of taking ε = 10−6 with max{|p|, |q|} = 1 as representative values in a unit square
domain, so that L = 1). A one-dimensional example is considered in Example 6.14.

To avoid undue complexity, we shall suppose that the coefficients p and q are
constant, and that a Dirichlet condition is imposed everywhere on the boundary of
the unit square. As we have been at pains to emphasise throughout, the character
of a PDE is normally dictated by the terms involving the highest derivatives in any
coordinate direction. However, things are less clear cut when the coefficients of the
highest derivative terms are particularly small relative to other coefficients. Taking
the limit ε → 0 in (10.43) gives the first-order PDE

pux + quy = 0 (10.45)

which is sometimes referred to as the reduced equation. As discussed in Sect. 4.1 the
general solution of (10.45) is constant along the characteristics

qx − py = constant.

Each characteristic cuts the boundary twice so it is clear that a constant solution
cannot satisfy the boundary condition at both end points. This over-specification
can be resolved by recalling from Sect. 4.1 that boundary conditions on first-order
PDEs should only be imposed on boundaries along which characteristics are directed
into the domain. A discontinuity is created at points where characteristics leave the
domain which, for the full advection–diffusion equation (10.43), is replaced by a
layer of widthO(ε), known as a boundary layer, over which the value of the solution
changes by O(1). A specific instance of this abrupt solution behaviour is illustrated
by the following example.

Example 10.16 Use separation of variables to determine the solution of the PDE

−ε(uxx + uyy) + ux = 0

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_4
http://dx.doi.org/10.1007/978-3-319-22569-2_4
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in the unit square, with boundary condition u(0, y) = sin πy (0 < y < 1) and
u(x, y) = 0 on the remainder of the boundary. Discuss the character of the solution
when 0 < ε � 1.

Following the construction used in Example 8.12 gives a simple solution, involving
only the first term in the Fourier series,

u(x, y) = ex/(2ε) sin πy
sinh γ (1 − x)

sinh γ
, γ =

√
1 + 4π2ε2

2ε
. (10.46)

Unfortunately, this expression is not suitable for accurate computation of the solution
when ε is small because the factors involving x and γ become extremely large. For
instance, sinh γ > 10200 when ε = 10−3. To make progress we need to express the
hyperbolic sine terms as exponentials so that, after elementary algebraic manipula-
tion, we arrive at the alternative representation,

u(x, y) = ex(1/(2ε)−γ ) 1 − e−2γ (1−x)

1 − e−2γ sin πy.

Note that, since γ = 1
2ε + επ2 + O(ε2) the term e−2γ in the denominator is expo-

nentially small. Neglecting this term and truncating γ in the leading factor gives

u(x, y) ≈ e−επ2x (1 − e−2γ (1−x)) sin πy, (10.47)

which gives an excellent approximation to the solution for small values of ε. Note
that the factor 1− e−2γ (1−x) ≈ 1 except when 1− x = O(ε), that is, when x lies in
a thin boundary layer near x = 1. Moreover, outside this layer we have

u(x, y) ≈ e−επ2x sin πy ≈ (1 − επ2x) sin πy + O(ε2), (10.48)

the leading term of which is the solution of the reduced equation (10.45) with p = 1,
q = 0 together with the condition u(0, y) = sin πy on the inflow boundary x = 0.
The exact solution is shown in Fig. 10.17 (left) when ε = 0.02. ♦
The natural way to construct a finite difference approximation of (10.43) is to com-
bine the standard 5–point stencil for the diffusion operator with standard central
difference approximations

�x u�,m = 1
2h−1(u�+1,m − u�−1,m), �yu�,m = 1

2h−1(u�,m+1 − u�+1,m),

for the advection terms. For this specific choice,making use of the results in Table6.1,
the operator Lh defined by

LhU�,m := −εh−2(δ2x + δ2y)U�,m + ph−1�xU�,m + qh−1�yU�,m (10.49)

http://dx.doi.org/10.1007/978-3-319-22569-2_8
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Fig. 10.17 Left The exact solution of Example10.16 when ε = 0.02.Right The numerical solution
along the line y = 1/2 with M = 16 using the centred difference approximation (10.49) (•) and the
upwind approximation (x). The exact solution is shown by a solid curve

is a second-order consistent approximation to L. Note that the difference operator
Lh has a 5–point stencil. Writing it in the form (10.30) with ν = 4, we see that it is
of positive type when

h|p| ≤ 2ε and h|q| ≤ 2ε, (10.50)

that is whenever Peh ≤ 1, where Peh = h max{|p|, |q|}/(2ε) is the mesh Peclet
number. (So-called because it is based on specifying the length scale L = h/2 in
(10.44)). Both inequalities (10.50) will be satisfied if h is sufficiently small, so that
standard techniques can be used to establish that the numerical solutionwill converge
at a quadratic rate as h → 0.

Difficulties arise in practice when Pe � 1 and it would be impractical to choose h
so that Peh ≤ 1. The resulting numerical solutionswill invariably contain oscillations
(often called “wiggles” in the literature after a famous paper of Gresho and Lee) as
discussed in Example 6.14. They can also be seen in the right-hand plot in Fig. 10.17
(•). A potential fix is pursued next.

Example 10.17 Show that the use of second-order central difference approximations
of the advection term in the PDE−ε(uxx + uyy)+ux = 0 is unsatisfactory if h > 2ε
and investigate ways in which the method may be improved.

A typical solution obtained from (10.49) with p = 1, q = 0 and Peh > 1 is shown
in Fig. 10.17 (right) with ε = 0.02 and h = 1/16. The reason for the oscillations is
evident by taking the limit ε → 0 in (10.49) in which case the method reduces to
U�+1,m = U�−1,m . If M is even, this gives a numerical solution that is the same on
alternate vertical grid lines so that

sin(πhm) = U0,m =U2,m = U4,m = · · · = UM,m

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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whereas
U1,m = U3,m = · · · = UM+1,m = 0.

Oneway of suppressing thewiggles is to replace central differencing of the advection
terms by a one-sided “upwind” difference. The grounds for this strategy are that
the solution of the reduced equation at any point P can be found by tracing the
characteristic (y = constant) through P backwards to the inflow boundary where the
solution is known from the boundary condition.

Making this choice gives the difference operator

L−
h U�,m := −εh−2(δ2x + δ2y)U�,m + h−1�−

xU�,m (10.51)

which can be shown to be of positive type for all h > 0 (see Exercise10.24). Note
however that the improved stability comes at a price—the order of consistency of the
approximation (10.51) is only linear. The solution of L−

h U = 0 with ε = 0.02 and
h = 1/16 is shown in Fig. 10.17 (right) by crosses and, while it appears to be free
of wiggles, the transition layer near x = 1 is smeared when compared to the exact
solution.

The results of more extensive numerical testing are summarised in Fig. 10.18
for the central difference approximation scheme (left) and the upwind difference
scheme (right). Data points corresponding to Peh ≤ 1 are connected by solid lines
and confirm that the central difference scheme ultimately converges at a second-order
rate while the upwind scheme is only first-order accurate. A striking feature of the
behaviour of the error is that it seems to increase roughly in proportion to 1/ε if h is
kept fixed, in both cases. It can also be observed that the global error for the upwind
scheme initially increases as h decreases (for fixed ε). Thus the upwind solution for
large Peclet numbers is smooth but inaccurate. Eventually however, when h is small
enough that Peh < 1, the upwind error decreases monotonically to zero. ♦
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Fig. 10.18 Log-log plots of the global error ‖u − U‖ versus h for solving the advection–diffusion
problem in Example10.17 using central differences (left), and upwind differences (right) for ε =
10−1, 10−2 and 10−3. The dashed lines connect data points where the mesh Peclet number Peh > 1
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It is not appropriate to delve further into this fascinating and important topic
here and we refer the interested reader to Stynes [22] who gives an authoritative
survey of further techniques for tackling elliptic PDEs of this type. The books by
Roos et al. [19] and Morton [15] also cover this material in greater depth as well
as constructing approximation strategies for solving unsteady advection–diffusion
equations.

Exercises

10.1 When the Poisson equation is solved over a rectangular, rather than a square
domain, it may be appropriate to use a rectangular grid with spacings hx and hy in
the x and y directions, respectively. Derive the following 5–point difference scheme,

2(θ−1 + θ)U�,m − θ−1(U�+1,m + U�−1,m)−θ(U�,m+1 + U�,m−1)

= hx hy f�,m,

for the grid point (�hx , mhy), where θ = hx/hy . Then show that the local truncation
error, when appropriately scaled, is given by

− 1
12

(
h2

x∂
4
x u + h2

y∂
4
y u
)∣∣

(�h,mh)
+ O(h4),

where h = max(hx , hy).

10.2 Suppose that, instead of a natural ordering of grid points, a red-black (or odd-
even) ordering is used whereby the unknown grid values U�,m with � + m even are
ordered in a natural manner by columns to give a vector ue while those where �+ m
are odd are similarly ordered to give a vector uo. Using M = 4 show that the system
may be written as Au = f , where

u =
[

ue
uo

]
, A =

[
4 Ie B
BT 4 Io

]
,

where Ie, Io are identity matrices of dimension compatible with ue and uo, respec-
tively.

10.3 Consider the finite difference operator defined by

L×
h U�,m := 1

2h2 [4U�,m − U�+1,m+1 − U�−1,m+1 − U�−1,m−1 − U�+1,m−1],

whose stencil is shown in Fig. 10.19. By first showing that

L×
h U�,m = L+

h U�,m − 1
2h−2δ2xδ

2
yU�,m,
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Fig. 10.19 The stencil of the
5–point finite difference
operator L×

h described in
Exercise10.3

where L+
h := h−2(δ2x + δ2y) is the standard 5-point approximation of the Laplacian

(see (10.7)), or otherwise, verify that

L×
h u�,m = −∇2u

∣∣
(�h,mh)

− 1
12h2(∂4x u + 6∂2x ∂2y u + ∂4y u

)∣∣
(�h,mh)

+ O(h4)

so that L×
h u = f is consistent of second order with the Poisson equation (10.3).

10.4 Suppose that L×
h and L+

h are as defined in Exercise10.3. Show that there is a
value of λ for which

λL×
h u + (1 − λ)L+

h u = −∇2u − 1
12h2 ∇4u

∣∣∣
(�h,mh)

+ O(h4).

Use this result to construct a fourth-order 9–point difference approximation for
the Poisson equation. (Note: ∇4 = (∇2)2 = ∂4x + 2∂2x ∂2y + ∂4y .)

10.5 Consider the solution of the Poisson equation (10.3) with a homogeneous
Dirichlet boundary conditionon theunit square using thedifference schemeL×

h U�,m =
f�,m on a standard grid Ωh where L×

h is defined in Exercise10.3.

(a) Write the equations in matrix-vector form Au = f using the standard column-
wise ordering of grid points with M = 4. Identify the main features of the matrix
A and thereby generalise this to the case of an M × M grid.

(b) Suppose that an odd-even numbering of grid points is used as described in
Exercise10.2. Show that the solution ue on the “even” nodes can be calculated
independently of the unknowns uo on the “odd” nodes and vice versa.

10.6 ✩ Suppose that LhU ≥ 0 in Ωh , where Lh is defined by (10.7) and Ωh is a grid
imposed on the unit square. Deduce from Theorem10.2 that either U is constant on
Ωh or else it achieves its minimum value on ∂Ωh .

If Bh is defined by (10.7) deduce that the operatorLh defined by (10.8) is inverse
monotone.

10.7 ✩Suppose that the numerical solution U to a given BVP is known to converge at
a second-order rate and that solution valuesU h

P andU h/2
P are computed at a particular

point P using grids of size h and h/2, respectively. Can you explain why the quantity
(4U h

P − U h/2
P )/3 might provide a reliable estimate of the error in U h

P ?
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10.8 Suppose thatU denotes a finite difference approximation to Laplace’s equation
on theL-shaped region shown inFig. 10.14 (right)withDirichlet boundary conditions
provided by the exact solution u = r2/3 sin(2θ−π)/3 (written in polar co-ordinates).
The values of U h

P for the point P = (1/8,−1/8) are tabulated below.

h 1/8 1/16 1/32 1/64 1/128 1/256
U h
P 0.31413 0.33203 0.33943 0.34206 0.34305 0.34343

Determine the EOC and give an estimate of the error in the computed value of U h
P

when h = 1/256.

10.9 ✩ Suppose that the Neumann boundary condition−ux = g(0, y) for the Poisson
equation is approximated using a second-order central difference −h−1ΔxU0,m =
g(0, mh). Show that, if the fictitious grid value U−1,m is eliminated by making use
of (10.6) with � = 0, then it reduces to the numerical boundary condition (10.22b).

10.10 By including remainder terms in the Taylor expansions (in the spirit of (6.5),
say), show that the local truncation error in the boundary condition (10.22) may be
expressed as

Rh
∣∣
0,m = − 1

6h2uxxx (ξ, mh) − 1
24h2uyyyy(0, mh + η),

where 0 < ξ < h and −h < η < h.

10.11 Complete the details in the derivation of the Neumann condition (10.24) that
is valid at the corner (0, 1) of the unit square. Verify that the consistency error is
second order with respect to h.

10.12 Suppose that the Poisson equation is solved using the standard 5–point dif-
ference scheme (10.6) over the rectangular domain shown in Fig. 10.6 (left) and that
the solution is symmetric with respect to the y-axis. Give an explanation (based
on the discussion immediately prior to Example10.1) of why the time to compute
the solution over the rectangle (without taking advantage of any symmetry) will be
approximately four times longer than the time to compute the solution over the square
part of the domain lying in x ≥ 0.

How much longer would it take to solve the same problem over the full square
domain shown in Fig. 10.6 (right) without taking advantage of any symmetry? Give
reasons for your answer.

10.13 Consider the boundary value problem consisting of the Poisson equation in
the unit square 0 < x, y < 1 with source term f (x, y) = xy and Dirichlet boundary
condition u(x, y) = x2 + y2. Show that the solution u is symmetric with respect to
the line x = y. That is, show that the problem is invariant to the change of variables
(x, y) �→ (y, x).

By exploiting the symmetry of the problem, show that the unknowns at grid points
within the triangle {(x, y) : 0 < x < 1, 0 < y ≤ x} can be solved for independently
of the remaining unknowns. What are the finite difference equations that hold at grid
points (�h, �h) lying on the diagonal of the square?

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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10.14 Consider the boundary value problem consisting of the Poisson equation
−∇2u = 1 in the square −1 < x, y < 1 with a homogeneous Dirichlet bound-
ary condition. Show that the solution u is symmetric with respect to the lines x = 0,
y = 0, y = x and y = −x .

Suppose that a grid is imposed on the domain by the grid lines x = �h (� =
0,±1, . . . ,±M) and y = mh (m = 0,±1, . . . ,±M) with h = 1/M . By exploiting
these symmetries, show that the unknowns at grid points within the triangle {(x, y) :
0 < x < 1, 0 < y ≤ x} can be solved for independently of the remaining unknowns.
Write down the resulting finite differencematrix system in the case h = 1/3 and show
that the equations may be scaled so that the coefficient matrix becomes symmetric.

10.15 Suppose that a grid is imposed on the domain−1 < x, y < 1 by the grid lines
x = −1 + �h (� = 0, 1, . . . , M), and y = −1 + mh (m = 0, 1, . . . , M) with h =
2/M . Show how symmetry can be exploited so that a finite difference approximation
to the solution of the boundary value problem described in the previous exercise can
be computed by solving just three algebraic equations when M = 5. How many
independent unknowns are there when M is an odd integer?

10.16 ✩ Suppose that the Neumann condition described in Sect. 10.2.1 is replaced by
the Robin condition −ux + σu = g(y) along x = 0.

Construct the finite difference approximation analogous to (10.22).

10.17 Let Ω denote the interior of the triangle ABC for A(0, 0), B(0, 1) and
C(9/8, 0). Write down a finite difference replacement of the BVP

− ∇2u + u = 0, (x, y) ∈ Ω

u = 0 on AB and BC, u = 4x(9 − 8x) on AC

using a grid size h = 1/4, and assemble the resulting equations into a matrix-vector
system.

10.18 Derive the finite difference approximation (10.29) of Laplace’s equation in
Example10.7 that is valid at points (x�, 0) and show that, after appropriate scaling,
it is consistent of order two with the Neumann boundary condition.

10.19 Show that the finite difference boundary operator (10.33b) may be written

BhU�,0 = −Δθ−1�θU�,0 − 1
2r2� ΔθLhU�,0,

where Lh is defined by (10.33). Hence, verify that it is consistent of order two with
the Neumann condition −uθ (r, 0) = 0.

10.20 Complete the proof of Theorem10.13.

10.21 Show that the function

u(r, θ) = 1

π

(
log(

1

r
) sin 2θ + (

π

4
− θ) cos 2θ − π

4

)
r2
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satisfies the boundary value problem in Example10.15 with the nonzero Dirichlet
condition u(1, θ) = 1

4 (1 − 4θ/π) cos 2θ− 1
4 on the circular arc. Verify that |urr | →

∞ as r → 0 for all 0 < θ < 1
2π .

10.22 ★ This exercise explores the construction of a finite difference approximation
of the form (10.38) to the operator (10.36). To do this U is replaced by u in (10.38)
and each of the eight terms u(x�±1, ym±1) is expanded in Taylor series about the
point P = (x�, ym). This results in an expression of the form

Lhu|P = C0u + h(C1ux + C2uy) + 1
2h2C3uxx + · · ·

where all the terms on the right are evaluated at P and where each of the coefficients
Ck is a linear combination of {α j }8j=0 and is independent of h. Equating the terms

in this expansion with those of Lu up to (and including) all the terms in h3 gives a
total of ten linear equations, namely Ck = 0 for k = 0, 1, 2, 6, 7, 8, 9, and

h2C3 = −a, h2C4 = −2b, h2C5 = −c,

in the nine constantsα0, α1, . . . , α8. Construct a 10×9matrixC and a vector a ∈ R
10

such that these equations may be written in the form Cα = a.
Next, show that Lv|P = 0 for all choices of {α j }8j=0 when u = (x − x�−1)(x −

x�)(x − x�+1) and for a corresponding function involving y and ym . Explain why
this implies that the rank of C cannot exceed 8. By direct computation or otherwise,
show that the rank of C is exactly 8 so that the system Cα = a has a one parameter
family of solutions. Deduce that this solution family gives the difference operator
LhU in (10.37) when the parameter is suitably chosen.

10.23 Consider the finite difference operator Lh defined by (10.41) when hx/hy =
ρ. Show that it is possible to choose γ in such a way that Lh is of positive type when
ρ = √

a/c and b2 < ac.

10.24 ✩ Verify that the operator L−
h defined by (10.51) is of positive type for all

positive values of ε and h.

10.25 The upwind approximation of the PDE−ε∇2u + pux = 0 uses the backward
difference approximation ux ≈ h−1�−

x u when p > 0 and the forward difference
approximation ux ≈ h−1�+

x u when p < 0. Show that the resulting difference
operator can be written as

L±
h U�,m := −εh−2(1 + |Peh |)δ2xU�,m − εh−2δ2yU�,m + h−1 p�xU�,m,

where Peh = ph/(2ε). Generalize this result to construct an upwind difference
approximation of the operator L in (10.43).

[Hint: Use Exercise 6.2 to establish the identity�−
x = �− 1

2δ
2
x with an analogous

identity for �+
x .]

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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10.26 Express the advection–diffusion equation

−ε(uxx + uyy) − yux + xuy = 0,

where ε > 0, in polar coordinates x = r cos θ , y = r sin θ . Construct a finite
difference scheme that is consistent of second order with this PDE in a circle of
unit radius centred on the origin using a polar grid with r� = �h (h = 1/N ) and
θm = mΔθ (Δθ = 2π/M).What, in particular, is the finite difference approximation
at the origin?

Express the finite difference operator at a typical grid point with � > 0 in the form
(10.30) and determine whether any restrictions on the grid parameters are needed in
order that the discrete operator is of positive type.



Chapter 11
Finite Difference Methods for Parabolic
PDEs

Abstract This self-contained chapter focuses on finite difference approximation
of parabolic boundary value problems. Standard explicit and implicit time-stepping
schemes are introduced and the quality of resulting numerical approximations is
assessed using maximum principles as well as the classical Von Neumann stability
framework. The development of method-of-lines software is discussed at the end of
the chapter.

The focus of this chapter is on time dependent versions of the elliptic PDEs that
feature in earlier chapters of the book. The associated parabolic PDE problems will
take the specific form

ut + Lu = f, (11.1)

together with appropriate boundary and initial conditions, where L is an operator
involving only spatial derivatives. For example, if there is only one space dimension
then L is of the form (see Chap. 6)

Lu := −εuxx + aux + bu, (11.2)

where ε is a positive constant and a and b are functions of x and t .
The heat equation (that is (11.1) with Lu := −uxx ) will be employed as a proto-

type throughout the chapter to illustrate the main ideas relating to the construction
and analysis of finite difference methods for parabolic equations. These ideas extend
naturally to higher dimensions but the calculations are much more involved. To
establish notation we suppose that (11.1) and (11.2) is to be solved on the domain

Ωτ := {(x, t) : 0 < x < 1, 0 < t ≤ τ } (11.3)

with an initial condition u(x, 0) = g(x) and Dirichlet boundary conditions

u(0, t) = g0(t), u(1, t) = g1(t), 0 < t ≤ τ. (11.4)

© Springer International Publishing Switzerland 2015
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In this setting, the value of u is specified on Γτ which comprises the boundary of Ωτ

excluding the top edge t = τ (shown by the lines marked with crosses in Fig. 11.1).
Alternative boundary conditions will be considered later in the chapter. The value of
τ is not usually specified in advance—computation of the solution may proceed, for
example, until it is deemed to be sufficiently close to a steady state.

11.1 Time Stepping Algorithms

The closed domain Ωτ (the shaded area in Fig. 11.1) is covered by a grid of lines
parallel to the coordinate axes to give a set of grid points

{(mh, nk) : m = 0, 1, 2, . . . , M, n = 0, 1, 2, . . . , N }, (11.5)

where h = 1/M is the grid size in the x-direction and k = τ/N is the grid size in the
t-direction. Our strategy for generating a numerical solution is to suppose that it has
been computed at all time levels up to t = nk (n ≥ 0) and to devise an algorithm for
determining the solution at the next time level t = (n + 1)k. The numerical solution
at a typical grid point (xm, tn) will be denoted by U n

m while the exact solution1 at the
same point is un

m . We shall also use U n· to denote the set of grid values at time level
t = nk, the dot reminding us that the dependence on space has been suppressed. The
simplest possible time stepping algorithm is studied in the next section.

11.1.1 An Explicit Method (FTCS)

The starting point for constructing a finite difference approximation to (11.1) and
(11.2) is the Taylor expansion

u(x, t + k) = u(x, t) + kut (x, t) + O(k2). (11.6)

Using the heat equation ut = uxx as an illustration, we have

u(x, t + k) = u(x, t) + kuxx (x, t) + O(k2).

If xm = mh, tn = nk is a typical grid point in Fig. 11.1, then taking the centered
difference approximation uxx = h−2δ2x u + O(h2) gives

un+1
m = un

m + rδ2x un
m + O(k2) + O(kh2), (11.7)

where r = k/h2 is known as themesh ratio.As usual, to develop a numerical method
the remainder terms in (11.7) are discarded so the equation will no longer be satisfied

1A little care is needed to distinguish exponents from quantities (U , u, etc.) that are evaluated at
time level n.
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Fig. 11.1 Grid points
x = mh, t = nk divided into
sets according to points (x)
on Γτ where the solution is
known from boundary or
initial conditions, points (◦)
where the solution has
previously been computed,
and points (•) where it is
about to be computed

t = nk

t = τ

t

x0 1

by the exact solution u of the PDE but instead by some grid function U . Thus the
PDE ut = uxx is replaced at (xm, tn) by the algebraic equation

U n+1
m = U n

m + rδ2xU n
m . (11.8a)

This is an example of a partial difference equation. It will be referred to as the FTCS
scheme (an acronym for Forward Time, Centred Space). Recalling the definition of
δ2x from Table 6.1, the method may be written in the alternative form

U n+1
m = rU n

m−1 + (1 − 2r)U n
m + rU n

m+1. (11.8b)

The FTCS scheme provides a means of computing the approximate solution U n+1·
at the advanced time level t = (n + 1)k from known values U n· at the time level
t = nk. For example, when n = 0 in (11.8b), the values of U 1

1 , U 1
2 , . . . , U 1

M−1 may
be calculated by setting m = 1, 2, . . . , M − 1. The remaining values at the first time
level are provided by the boundary conditions: U 1

0 = g0(t1) and U 1
M = g1(t1). The

computation then proceeds in an identical fashionwith n = 1. Because the numerical
solution at each grid point at the new time level is given directly in terms of known
values the FTCS scheme is called an explicit method. It is associated with the stencil
shown in Fig. 11.2. It is sometimes convenient to refer to the “anchor” and “target”
points of a stencil. The anchor is the grid point at which the PDE is approximated
and about which Taylor expansions are carried out—here the point (xm, tn) and the
target (usually denoted by ◦) is the grid point at which the solution is obtained—here
the point (xm, tn+1).

Fig. 11.2 The stencil for the FTCS method. The unknown value at the target point (xm , tn+1) (◦)
is computed from the three known grid values (•) at t = tn

http://dx.doi.org/10.1007/978-3-319-22569-2_6


240 11 Finite Difference Methods for Parabolic PDEs

Example 11.1 Use the FTCS method to solve the heat equation on the domain Ωτ

with τ = 0.2 with initial condition u(x, 0) = sin πx and end conditions u(0, t) =
u(1, t) = 0. Compute the numerical solution with h = 1/40 and k = rh2 with r =
0.5 (k = 3.125 × 10−4, N = 640 steps) and r = 0.52 (k = 3.25 × 10−4, N = 616
steps).

The exact solution is u(x, t) = exp(−π2t) sin πx (see Fig. 8.1 with n = 1). The
numerical solutions are computed at times t = nk until the final time τ = 0.2 and
results are shown in Fig. 11.3 at every 80th time step. When r = 0.5 (left figure)
the numerical and exact solutions are indistinguishable but, when the mesh ratio is
increased to r = 0.52, oscillations appear which grow exponentially with time (when
t ≈ 0.2 the amplitude of the solution exceeds 3000, so the solution is not shown
after t480 = 0.156). It will be shown later that this is a manifestation of an instability
that occurs whenever r > 0.5.

A quantitative measure of the performance of the FTCS method is provided in
Table 11.1 where the maximum error at t ≈ 0.2 is shown for three grids (h =
1/20, 1/40 and 1/80). In the case r = 0.5 the maximum global error reduces by a
factor of 4 each time h is halved in accordance with anO(h2) behaviour. In contrast,
with r = 0.52 the global error for h = 1/20 is marginally larger than with r = 0.5
but, if h is reduced further then the error explodes! ♦

0

1 0
0.1

0.2

0

0.5

1

0

1 0
0.1

0.2

0

0.5

1

Fig. 11.3 FTCS solutions to the problem in Example 11.1 with h = 1/40, r = 0.50 (left) and
r = 0.52 (right). The numerical solutions are shown by dots at every 80th time step. The solid lines
show the corresponding exact solutions

Table 11.1 Results for the FTCS method in Example 11.1 with grids based on M = 20, 40 and
80 points and mesh ratios r = 0.50, 0.52

h r = 0.50 r = 0.52

N Max. error Ratio N Max. error

1/20 160 0.0011 – 154 0.0012

1/40 640 0.00028 4.03 616 3360.3

1/80 2560 0.000070 4.01 2462 8.6 × 1064

The maximum error is calculated after N time steps, when t ≈ 0.2

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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In order to generalize the method to parabolic equations of the type (11.1), we
suppose that the spatial operator L is approximated as described in Chap. 6 by a
finite difference operator Lh that is consistent of order p. That is,

Lhv = Lv + O(h p) (11.9)

for any sufficiently smooth function v. By following the steps leading to (11.8) we
find that

U n+1
m = U n

m − kLhU n
m + k f n

m . (11.10)

On dividing both sides by k, it may be seen that the scheme could also be derived by
making the finite difference replacements

∂t u
n
m ≈ k−1�+

t U n
m, Lun

m ≈ LhU n
m,

where �+
t denotes the forward difference in the t-direction. In view of this, the

scheme (11.10) should be divided by k in order to be correctly scaled for checking
its consistency. The resulting local truncation (or consistency) error is given by

Rn
m = k−1(un+1

m − un
m) + Lhun

m − f n
m (11.11)

which leads, using (11.6) and (11.9), to the conclusion that Rn
m = O(k) + O(h p).

This tends to zero as h, k → 0, establishing the consistency of the approximation
with the PDE ut + Lu = f .

In the specific case of the heat equation, the leading terms in the truncation error
can be identified by expanding the Taylor series (as in Table 6.1) so that

un+1
m = un

m + kut
∣∣n
m + 1

2k2utt
∣∣n
m + O(k3),

h−2δ2x un
m = uxx

∣∣n
m − 1

12h2uxxxx
∣∣n
m + O(h4).

Setting ut = uxx then gives the estimate

Rn
m = 1

2kutt
∣∣n
m − 1

12h2uxxxx
∣∣n
m + O(k2) + O(h4) (11.12)

for the local truncation error. This is first-order in k and second-order in h provided
that utt and uxxxx are bounded. Moreover, the error is “balanced” when k ∝ h2 (that
is, when r is kept fixed) since the two leading terms both tend to zero at the same
rate.

There is another, more fundamental, reason—which will surface in the next
example—why k should tend to zero faster than h for an explicit method like FTCS.

Example 11.2 (Domain of dependence—the CFL condition) Show that the solution
of the FTCS scheme (11.8) cannot converge, in general, to the solution of the heat
equation when h, k → 0 unless the ratio of the two parameters k/h also tends to 0.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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The simplest situation concerns the pure initial value problem, where the heat
equation is solved in the upper half plane x ∈ R, t > 0 with given initial data
u(x, 0) = g(x).

Consider a point P having coordinates (X, T ), independent of h and k, with
X > 0, as shown in Fig. 11.4. In order to compute the numerical solution at P with
the FTCS scheme (11.8) it is sufficient to first compute the solution at grid points
marked with ◦ and these, in turn, depend on initial values along QR (marked with a
x). The triangle PQR is the domain of dependence of P. (The numerical solution at
the point P depends only on the numerical solution inside this triangle.) Similarly,
the interval of initial values between Q and R is known as the interval of dependence
of P. In contrast, it is known from the theory of characteristics (see Example 4.6) that
the exact solution at the point P depends on the initial data along the entire x-axis.
Thus, in general, for convergence of the numerical solution to the exact solution we
require that the coordinates of Q and R should satisfy xQ → −∞ and xR → ∞ as
h, k → 0. Setting X = mh and T = nk, then

xQ = X − nh = X − h

k
T, xR = X + nh = X + h

k
T,

so we deduce that k/h must tend to zero in the limit h, k → 0.
To reinforce our assertion that this condition is necessary, let us suppose that there

is a positive constant c such that k/h ≥ c as h, k → 0. It follows that the interval
QR remains of finite extent throughout the limit process. Thus, for an initial function
g(x) that vanishes in QR but is not identically zero, the numerical solution U

∣∣
P at P

is always zero while the exact solution u
∣∣
P is non-zero, so U

∣∣
P cannot converge to

u
∣∣
P as h, k → 0. ♦
This observation is expressed as a formal requirement in the next definition.

Definition 11.3 (CFL condition) Convergence of a finite difference approximation
of a parabolic PDE cannot take place unless the domain of dependence of the numer-
ical solution (at a generic point P) is identical to that of the exact solution in the limit
h, k → 0.

This requirement (which depends only on the shape of the stencil, not on the actual
coefficients) provides a necessary condition for convergence of any explicit finite

Fig. 11.4 The domain of
dependence (shaded) of a
typical grid point P for a
method with an FTCS-type
stencil. The grid values
marked x are known from
the initial condition and form
the interval of dependence

t

x

P

Q RInterval of dependence

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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difference method for parabolic equations.2 It is more widely applied to hyperbolic
problems and it is in that context that we shall encounter it in the next chapter. The
CFL condition identifies some specific finite difference methods (Exercise 11.6) or
certain combinations of grid sizes as being nonconvergent. Note that there is no
implication that satisfaction of the condition will lead to convergence—establishing
this requires an assessment of the stability of the difference scheme (via inverse
monotonicity, as done in earlier chapters).

Rather than considering the difficult issue of convergence to the solution on the
whole domain Ωτ , it is usual to establish convergence at a given time t ∈ (0, τ ] as
in following definition.

Definition 11.4 (Convergence) A finite difference solution U is said to converge to
the exact solution u of a time dependent PDE at time t if

lim
k→0
h→0

‖u(·, t) − U n· ‖h = 0

when nk = t is kept fixed 3. Here ‖ · ‖h denotes any norm on functions defined on
the spatial grid.

Having already established that the FTCSmethod (11.8) is consistent with the heat
equation, convergence will follow if it can be shown that the method is stable. Our
strategywill be the sameas that used forLaplace’s equation in the preceding chapter: a
maximum principle implies inverse monotonicity which, with a suitable comparison
function, will lead to 	∞-stability. The most appropriate norm for establishing this
chain of thought is the 	∞ (maximum) norm (6.28), that is,

‖U n· ‖h,∞ := max
0≤m≤M

|U n
m |. (11.13)

Note that the index n is retained on the left hand side on (11.13) since the value of
the norm is dependent on the specific time level tn .

The theoretical results that follow lead to the establishment of stability and con-
vergence with respect to the 	∞ norm (11.13). They are presented in a manner that
highlights the fact that the finite difference approximation satisfies properties anal-
ogous to those enjoyed by the exact solution of the heat equation (cf. Chap. 7).

Theorem 11.5 (Discrete maximum principle) Suppose that the grid function U sat-
isfies the inequalities

− h−2δ2xU n
m + k−1(U n+1

m − U n
m) ≤ 0 (11.14)

for (xm, tn+1) ∈ Ωτ and r= k/h2 ≤ 1/2 then U is either constant or else attains its
maximum value on Γτ .

2It’s importance was first recognised by Courant, Friedrichs and Lewy in 1928.
3Since k is determined in terms of h and r , it is unlikely that there is an integer n such that nk = t—it
is sufficient that n be chosen so that nk → t . Usually n is the largest integer such that nk ≤ τ .

http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_7
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Proof First, we make the observation that if U is a constant function then (11.14)
holds at every grid point with equality. Next, suppose that Kτ denotes the maximum
value of U on Γτ , that is, define

Kτ = max
(xm ,tn)∈Γτ

U n
m .

The proof proceeds by induction on n. Since we know that (xm, t0) ∈ Γτ , it follows
that U 0

m ≤ Kτ for m = 0, 1, . . . , M . We suppose that U is bounded above by Kτ for
all time levels up to, and including, t j so that

U j
m ≤ Kτ for m = 0, 1, . . . , M.

Rearranging (11.14) with n = j we find

U j+1
m ≤ rU j

m−1 + (1 − 2r)U j
m + rU j

m+1, m = 1, 2, . . . , M − 1

and, because U j
m−1, U j

m, U j
m+1 ≤ Kτ and r > 0, (1 − 2r) ≥ 0,

U j+1
m ≤ (|r | + |1 − 2r | + |r |)Kτ = Kτ , m = 1, 2, . . . , M − 1.

Also, with m = 0 or m = M , U j+1
m are boundary values so they are bounded above

by Kτ . The induction hypothesis therefore holds at time level t j+1. �

Corollary 11.6 If the grid function U satisfies

−h−2δ2xU n
m + k−1(U n+1

m − U n
m) = 0

for (xm, tn+1) ∈ Ωτ and if r ≤ 1/2 then U attains its maximum and minimum values
on Γτ . If the function U also satisfies a zero boundary condition (U n

0 = U n
M = 0)

then
‖U n· ‖h,∞ ≤ ‖U 0· ‖h,∞ n = 1, 2, . . .. (11.15)

Proof See Exercise 11.7. �

The inequality (11.15) establishes stability with respect to initial conditions. Next,
suppose that we define an operator Lh in terms of the left hand side of (11.14), that
is,

LhU n
m := −h−2δ2xU n

m + k−1(U n+1
m − U n

m). (11.16)

Is the FTCS operator Lh of positive type? Rearranging (11.16) to give

LhU
∣∣
P = α0U

∣∣
P −

3∑
j=1

α jU
∣∣
Q j

(11.17)
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(as in Definition 10.8) with the target point P(xm, tn+1) and neighbours (xm, tn),
(xm±1, tn), the coefficients are α0 = k−1, α1 = α3 = h−2 and α2 = k−1(1 − 2r).
Checking the inequality conditions (10.31) confirms thatLh is a positive typeoperator
whenever r ≤ 1/2.

Corollary 11.7 (Inverse monotonicity) The operator Lh defined by

LhU n
m =

{
−h−2δ2xU n

m + k−1(U n+1
m − U n

m) for (xm, tn+1) ∈ Ωτ ,

U n
m for (xm, tn) ∈ Γτ

is inverse monotone whenever r ≤ 1/2.

Proof Inverse monotonicity (that is, LhU ≥ 0 implies that U ≥ 0) is covered in
Exercise 11.8, while stability follows since Φn

m := 1+ tn satisfiesLhΦ ≥ 1 on both
Ωτ and Γτ and therefore provides a suitable comparison function (see Lemma 6.8).4

�

Corollary 11.8 Suppose that the partial derivatives utt and uxxxx of the solution to
the heat equation together with Dirichlet boundary conditions and a specified initial
condition, are bounded on the domain Ωτ . If r ≤ 1/2 then the FTCS approximation
(11.8) is convergent at the rate O(k) + O(h2).

Proof This follows from Theorem 6.7 and the results established above. �

Before discussingother (possibly superior) finite difference approximation strategies,
the complications that arise when a linear reaction term is added to the basic heat
equation model will be studied.

Example 11.9 Investigate the convergence of the FTCS method

U n+1
m = rU n

m−1 + (1 − 2r + γ k)U n
m + rU n

m+1 (11.18)

for solving the PDE ut = uxx + γ u (where γ is a constant) for 0 < x < 1, t > 0,
given an initial condition and homogeneous Dirichlet boundary conditions.

The consistency of (11.18) is assessed in Exercise 11.2 so the focus of attention
switches to the discrete maximum principle. The first prerequisite for extending the
proof of Theorem 11.5 is that the coefficients on the right hand side of (11.18) should
be non-negative. This requires that 1− 2r + γ k ≥ 0 which is automatically satisfied
if γ k ≥ 2r , that is, if γ is big enough so that γ h2 ≥ 2. (Note that this cannot hold
as h → 0.) Otherwise, if γ h2 < 2, the inequality can be rearranged to give the time

4Note that the stability constantC := maxm,n Φn
m = 1 + τ grows with τ , which precludes the

use of this type of analysis to study behaviour as t → ∞. With homogeneous Dirichlet boundary
conditions it is sufficient to take Φn

m = 1 and the inequality (11.15) follows.

http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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step restriction

k ≤ h2

2 − γ h2 , (11.19)

which is a small perturbation of the corresponding limit r ≤ 1/2 for the heat equation.
When γ ≤ 0 the argument proceeds as in Theorem 11.5 but, when γ > 0, the

PDE has the potential for growing solutions so neither it, nor the finite difference
approximation satisfies a maximum principle. In this case the question of stability is
tackled directly. Taking the absolute value of both sides of (11.18), using the triangle
inequality and assuming that 1 − 2r + γ k ≥ 0 gives

|U n+1
m | ≤ |r ||U n

m−1| + |1 − 2r + γ k||U n
m | + |r ||U n

m+1|
≤ (|r | + |1 − 2r + γ k| + |r |) ‖U n· ‖h,∞
= (1 + γ k)‖U n· ‖h,∞.

The inequality holds for the value of m for which U n+1
m = ‖U n+1· ‖h,∞ (and trivially

at the endpoints, since U n+1
0 = U n+1

M = 0). Thus,

‖U n+1· ‖h,∞ ≤ (1 + γ k)‖U n· ‖h,∞

and so ‖U n· ‖h,∞ ≤ (1 + γ k)n‖U 0· ‖h,∞. Using the inequality 1 + z ≤ ez (valid for
all real z), with z = γ k then gives

‖U n· ‖h,∞ ≤ eγ tn ‖U n· ‖h,∞ ≤ eγ τ‖U 0· ‖h,∞

since tn ≤ τ . We therefore have stability in the maximum norm in the sense that

‖U n· ‖h,∞ ≤ C‖U 0· ‖h,∞ (11.20)

with stability constantC = exp(γ τ) that is independent of both h and k provided
that (11.19) holds. ♦

Theproof leading up to (11.20) (withγ = 0) could also have been used to establish
(11.15) directly—indeed, it is probably the most common approach adopted in the
literature.

In summary, the FTCSmethod has in its favour its inherent simplicity and the fact
that it is second-order convergent in space. The big issue is the restriction r ≤ 1/2

on the time step—if there are M grid points in space then in excess of 2τ M3 grid
points are required in order to integrate the heat equation over the interval (0, τ ]. The
method requires five arithmetic operations per grid point so the cost of the method
is also proportional to the number of grid points. In order to increase the accuracy of
the results by one decimal place, one would expect to increase M by a factor

√
10

and the cost would increase by a factor of 103/2 > 30; two decimal places would
increase the cost by a factor of 1000! The alternative difference scheme introduced
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in the next section is much more stable—it will not be necessary to fix the ratio k/h2

when the spatial grid is refined.

11.1.2 An Implicit Method (BTCS)

In order to construct a second method for advancing the heat equation solution from
tn to tn+1 we use

u(x, t − k) = u(x, t) − kut (x, t) + O(k2) (11.21)

instead of the Taylor expansion (11.6). Applying the PDE leads to

u(x, t) − kuxx (x, t) = u(x, t − k) + O(k2)

and, when (x, t) is the grid point (xm, tn+1) and uxx is approximated by h−2δ2x u, we
arrive at the finite difference method

U n+1
m − rδ2xU n+1

m = U n
m, (11.22a)

which can also be written as

−rU n+1
m−1 + (1 + 2r)U n+1

m − rU n+1
m+1 = U n

m . (11.22b)

The resulting difference approximation involves three consecutive unknown values
of U . The method is implicit since it requires the solution of a set of linear alge-
braic equations at each time level in order to determine the set of values U n+1· . The
approximation method (11.22) will be referred to as the BTCS scheme (an acronym
for Backward Time, Centred Space) because it can also be derived by making the
finite difference replacements

∂t u
n+1
m ≈ k−1�−

t U n+1
m , uxx

∣∣n+1
m ≈ h−2δ2xU n+1

m

where �−
t denotes the backward difference in the t-direction—see Table 6.1. The

associated finite difference stencil is shown in Fig. 11.5.

Fig. 11.5 The stencil for the
BTCS method. The target
and anchor points (denoted
by ◦) are coincident at the
point (xm , tn+1)

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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The local truncation error is given by

Rn
m = k−1(un+1

m − un
m) − h−2δ2x un+1

m (11.23)

which, by using Taylor expansions centred on x = xm , t = tn+1, leads to

Rn
m = − 1

2kutt
∣∣n+1
m − 1

12h2uxxxx
∣∣n+1
m + O(k2) + O(h4). (11.24)

This implies that the BTCS scheme is consistent of orderO(k) +O(h2). (The same
order as the FTCS scheme.)

In contrast to the FTCS method (where unknown grid values are calculated one
at a time), the unknown values at t = tn+1 are all computed simultaneously in
the BTCS approach (as shown in Fig. 11.1). To interpret this using linear algebra,
suppose that the heat equation is supplemented by end conditions u(0, t) = g0(t)
and u(1, t) = g1(t) for t ≥ 0, where g0 and g1 are given continuous functions,
together with an initial condition u(x, 0) = g(x) for 0 < x < 1. Then, defining

un = [U n
1 , U n

2 , . . . , U n
M−1]T

to be a vector containing grid values at time level t = nk, with a similar definition
for un+1, and with the (M − 1) × (M − 1) tridiagonal matrix A and vector f n+1 so
that

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 + 2r −r 0 · · · 0
−r 1 + 2r −r

0 −r
. . .

. . .

. . . −r
0 −r 1 + 2r

⎤
⎥⎥⎥⎥⎥⎥⎦

, f n+1 =

⎡
⎢⎢⎢⎢⎢⎣

r g0(tn+1)

0
...

0
r g1(tn+1)

⎤
⎥⎥⎥⎥⎥⎦

,

the BTCS scheme (11.22) can be expressed as the matrix-vector system

Aun+1 = un + f n+1, n = 0, 1, 2, . . . . (11.25)

In (11.25) the vector f n+1 contains the contributions from the boundary data and
the vector u0 is known from the initial condition U 0

m = g(mh). The matrix A
is positive definite (cf. Lemma 6.1)—and therefore nonsingular—so the systems
Au1 = u0 + f 1, Au2 = u1 + f 2, … have unique solutions that may be determined
sequentially to provide the numerical solution at any time tn .

It may appear that a considerable amount of work has to be carried out for each
value of n but this is not the case in this simple one-dimensional setting. The system
of linear equations at each time step involves the samematrix A which, being positive
definite, has a Cholesky factorization A = RT R, where R is upper triangular and
bidiagonal (only the entries Ri,i and Ri,i+1 are nonzero). The factorization is only

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Table 11.2 Maximumerrors after N time steps (at t = 0.2) for the BTCS solution inExample 11.15
for mesh ratios r = 0.5 and r = 5

h r = 0.5 r = 5

Max. error Max. error

N FTCS BTCS Ratio N BTCS Ratio

1/20 160 0.0011 0.0023 – 16 0.017 –

1/40 640 0.00028 0.00056 4.00 64 0.0043 3.94

1/80 2560 0.000070 0.00014 4.00 256 0.0011 3.98

performed once, then on every step, the two systems

RTv = un + f n+1, Run = v

are solved in which v is an intermediate vector. In this case, the work per time step
is roughly twice that of the FTCS method.5 This means that the two schemes, FTCS
and BTCS, generate numerical solutions having the same local truncation error at a
comparable cost. Is one better than the other?

Example 11.10 Use the BTCS method to solve the heat equation on the domain
Ωτ with τ = 0.2 with initial condition u(x, 0) = sin πx and with end conditions
u(0, t) = u(1, t) = 0. Compute the numerical solution with h = 1/40 and k = rh2

with r = 0.5 (k = 3.125×10−4, N = 640 steps) and r = 5 (k = 3.125×10−3, N =
64 steps) and compare the errors at the final time with those obtained using the FTCS
method (cf. Example 11.1).

When r = 0.5 the BTCS errors reported in Table 11.2 are approximately twice
as large as the corresponding FTCS errors (a consequence of the respective local
truncation errors being in the ratio (r + 1/6)/(r − 1/6)—see Exercise 11.1 and
Exercise 11.9). This means that the BTCS scheme is not cost effective (compared to
FTCS with the same grid ratio) since the computation is roughly twice the cost. The
advantage of BTCS is seen when larger values of r are used. The numerical solutions
remain perfectly smooth and show no indication of instability. Unfortunately, the
global error is proportional to r +1/6 so, as shown in Table 11.2, it grows by a factor
of 8 with this increase in r . ♦

The stability of the BTCS approach is confirmed by the following theoretical
analysis.

5The cost of the initial Cholesky factorization is approximately 5M arithmetic operations and the
cost per step is subsequently approximately 6M operations.
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Theorem 11.11 (Discrete maximum principle) Suppose that the grid function U
satisfies the inequalities

− h−2δ2xU n+1
m + k−1(U n+1

m − U n
m) ≤ 0 (11.26)

for (xm, tn+1) ∈ Ωτ then U is either constant or else attains its maximum value
on Γτ .

Proof The proof is by induction on n with the hypothesis that U n
m ≤ Kτ , where Kτ

is defined in Theorem 11.5 and where the hypothesis is seen to be true at n = 0.
Rewriting the inequality (11.26) with n = j as

(1 + 2r) U j+1
m ≤ U j

m + r (U j+1
m+1 + U j+1

m−1)

and, supposing that U j
m ≤ Kτ , we find

(1 + 2r) U j+1
m ≤ Kτ + 2r max

0≤i≤M
U j+1

i , m = 1, 2, . . . , M − 1.

The right hand side is independent of m so this inequality holds when the left hand
side is maximized with respect to m and therefore

(1 + 2r) max
0<m<M

U j+1
m ≤ Kτ + 2r max

0≤i≤M
U j+1

i .

If the maximum occurs at an interior point, m = m∗ say, we deduce that

(1 + 2r) U j+1
m∗ ≤ Kτ + 2rU j+1

m∗ ,

from which it follows that
U j+1

m ≤ U j+1
m∗ ≤ Kτ .

Otherwise the maximum at the time level ( j + 1) occurs on the boundary m = 0 or
m = M . In either case the induction hypothesis holds with n = j + 1. �

Corollary 11.12 If the grid function U satisfies

−h−2δ2xU n+1
m + k−1(U n+1

m − U n
m) = 0

for (xm, tn+1) ∈ Ωτ then U attains its maximum and minimum values on Γτ . If the
function U also satisfies a zero boundary condition (U n

0 = U n
M = 0) then

‖U n· ‖h,∞ ≤ ‖U 0· ‖h,∞, n = 1, 2, . . .. (11.27)

Proof See Exercise 11.11. �
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Corollary 11.13 (Inverse monotonicity) The operator Lh defined by

LhU n
m =

{
−h−2δ2xU n+1

m + k−1(U n+1
m − U n

m) for (xm, tn+1) ∈ Ωτ ,

U n
m for (xm, tn) ∈ Γτ

is inverse monotone and stable for all r > 0.

Proof Follows from the proof of Corollary 11.7. �

Corollary 11.14 (Convergence) Suppose that the partial derivatives utt and uxxxx

of the solution to the heat equation together with Dirichlet boundary conditions and a
specified initial condition, are bounded on the domain Ωτ . The BTCS approximation
(11.8) is convergent at the rate O(k) + O(h2).

Proof This follows from Theorem 6.7 and the results established above. �

To summarise, the BTCS scheme overcomes the main deficiency of the FTCS
scheme—its conditional stability. In the next section we target a second deficiency—
the first-order accuracy with respect to the time step k.

11.1.3 The θ-Method

The next idea is to look at linear combinations of the FTCS and BTCS methods that
were analysed in the preceding sections. This idea will be developed for the general
PDE ut + Lu = f , where L is given by (11.2), assuming (to simplify the notation)
that the coefficients of L are independent of t .

When L is replaced by a finite difference approximation Lu = Lhu +O(h p), the
FTCS method applied to ut + Lu = f leads to (11.10)

U n+1
m = U n

m − kLhU n
m + k f n

m, (11.28)

whose local truncation error (given by (11.11) and relabelled R+) is given by

R+∣∣n
m = 1

2kutt
∣∣n
m + 1

6k2uttt
∣∣n
m + O(k3) + O(h p).

The BTCS method applied to the same PDE results in

U n+1
m = U n

m − kLhU n+1
m + k f n+1

m (11.29)

whose local truncation error is

R−∣∣n
m = k−1(un+1

m − un
m) + Lhun+1

m − f n+1
m

= − 1
2kutt

∣∣n+1
m + 1

6k2uttt
∣∣n+1
m + O(k3) + O(h p),

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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where, following the derivation of (11.23), the Taylor series expansions have been
centred on x = xm and t = tn+1. We now form a family of methods by taking a
convex combination6 of the two methods. That is, a multiple (1 − θ) of (11.28) is
added to a multiple θ of (11.29) to give

U n+1
m = U n

m − k
[
θ(LhU n+1

m − f n+1
m ) + (1 − θ)(LhU n

m − f n
m)

]
, (11.30)

which we will refer to as the θ–method. The local truncation error is, by virtue of its
construction, given by Rθ = θR− + (1 − θ)R+, although a little care is required
in combining R− and R+ because they are evaluated at different times. If we let
tn+1/2 = tn + 1

2k, then the Taylor expansions

φn
m = φ

n+1/2
m − 1

2kφt
∣∣n+1/2

m + O(k2)

φn+1
m = φ

n+1/2
m + 1

2kφt
∣∣n+1/2

m + O(k2)

applied to a function φ(x, t) leads to

utt
∣∣n+1
m − utt

∣∣n
m = kuttt

∣∣n+1/2

m + O(k2),

when φ = utt , and to

uttt
∣∣n+1
m + uttt

∣∣n
m = 2uttt

∣∣n+1/2

m + O(k2),

when φ = uttt . Combining these results gives the asymptotic estimate

Rθ
∣∣n+1/2

m = ( 12 − θ)kutt
∣∣n+1/2

m − 1
12k2uttt

∣∣n+1/2

m + O(k3) + O(h p), (11.31)

which is, in general, O(k) + O(h p), the same as its constituent parts. The choices
θ = 0 and θ = 1 reduce to the FTCS and BTCS methods, respectively. However,
choosing θ = 1/2 increases the temporal accuracy to second order and the resulting
scheme is called the Crank–Nicolson method.7 It is given by

(1 + 1
2kLh) U n+1

m = (1 − 1
2kLh) U n

m + 1
2k( f n+1

m + f n
m), (11.32)

and has the local truncation error

R
1
2
∣∣n+1/2

m = − 1
12k2uttt

∣∣n+1/2

m + O(k3) + O(h p). (11.33)

6A convex combination is a linear combination in which the coefficients are non-negative and sum
to one.
7Phyllis Nicolson (1917–1968) was another pioneer of numerical PDEs who made a name for
herself while living in Manchester. She led a very interesting life.
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This scheme can also be derived by evaluating the PDE ut + Lu = f midway
between time levels at x = xm , t = tn + 1

2k and employing the finite difference
replacements

∂t u
n+1/2
m = k−1δt u

n+1/2
m +O(k2), Lun+1/2

m = 1
2Lh(un+1

m + un
m) +O(k2) +O(h p),

together with f n+1/2
m = 1

2 ( f n+1
m + f n

m) + O(k2), each of which is second-order
accurate in time. Note that when the coefficients in L depend on t , the second of
these should be written as

Lun+1/2
m = 1

2

[
(Lhu)n+1

m + (Lhu)n
m

] + O(k2).

For the heat equationLu = −uxx ,Lhu = −h−2δ2x u, f = 0, the Crank–Nicolson
method takes the simple form

(1 − 1
2rδ2x ) U n+1

m = (1 + 1
2rδ2x ) U n

m, (11.34a)

which can be also be written as

− 1
2rU n+1

m−1+(1+r) U n+1
m − 1

2rU n+1
m+1 = 1

2rU n
m−1+(1−r) U n

m + 1
2rU n

m+1. (11.34b)

Since it involves three values of U at the next time level the Crank–Nicolson method
is implicit. The associated difference stencil is shown in Fig. 11.6.

Note that the coefficients in the expression (11.34b) are the same as those for the
BTCS method in (11.22b) with r replaced by r/2 and −r/2 on the left and right,
respectively. Thus, if we denote thematrix in (11.25) by A(r) := A, then the equation
(11.34b) can be expressed as the matrix-vector system

A(r/2) un+1 = A(−r/2) un + f n+1/2, (11.35)

where, if f �= 0, the source term is given by f n+1/2 = 1
2 ( f n+1 + f n). The matrix

A(r/2) is positive definite (because A(r) is) so the system (11.35) has a unique
solution at each time level.

To evaluate the computational expense of (11.35), we note that the cost of evalu-
ating the right-hand side of (11.35) is about the same as that of one step of FTCS,
while the cost of solving the linear system is the same as that a single BTCS step.
Since a BTCS step is about twice the cost of a FTCS step, the computational expense

Fig. 11.6 The stencil for the
Crank–Nicolson method.
The ◦ symbol indicates the
target point (xm , tn+1)
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is effectively three times that of FTCS. The question is: does Crank–Nicolson lead
to a better approximation?

Example 11.15 Use the Crank–Nicolson method to solve the heat equation on the
domain Ωτ with τ = 0.2 with initial condition u(x, 0) = sin πx and with end
conditions u(0, t) = u(1, t) = 0. Compute the numerical solution with r = 5
(k = 5h2) and k = h with grid sizes h = 1/20, 1/40 and 1/80 and compare the errors
at the final time with those obtained using the BTCS method (cf. Example 11.10).

The Crank–Nicolson results are presented in Table 11.3, together with the corre-
sponding BTCS results (the errors for r = 5 are taken from Table 11.2). When r = 5
the global errors for Crank–Nicolson are significantly smaller than those for BTCS.
A possible explanation for the error not reducing by a factor of 4 when h is halved is
that it is dominated by temporal errors on the coarsest grid but, as h is reduced, it is
dominated by spatial error (the temporal error is proportional to k2 = 25h4, making
it negligibly small). It is when k = h (so that the time and space contributions to the
local truncation error are balanced) that the Crank–Nicolson method really comes
into its own. Relatively few time steps are required to achieve high accuracy and a
second-order rate of convergence is achieved without any trace of instability. The
BTCS method is only first-order accurate in this comparison. ♦

Is this convergence behaviour typical, or is it specific to this example? The answer
to this question can be found by investigating the theoretical properties of the Crank–
Nicolson approximation. This will turn out to be more subtle than for either of the
first-order schemes.

Theorem 11.16 (Discrete maximum principle) Suppose that the grid function U
satisfies the inequalities

− 1
2h−2δ2x (U

n+1
m + U n

m) + k−1(U n+1
m − U n

m) ≤ 0 (11.36)

for (xm, tn+1) ∈ Ωτ and r = k/h2 ≤ 1 then U is either constant or else attains its
maximum value on Γτ .

Table 11.3 Maximum errors after N time steps (when t = 0.2) for the Crank–Nicolson (C–N)
solution in Example 11.15 when r = 5 and r = 1/h

1/h r = 5 k = h

Max. error Max. error Max. error

N BTCS C–N Ratio N BTCS Ratio C–N Ratio

20 16 0.017 0.00022 – 4 0.063 – 0.0051 –

40 64 0.0043 0.00012 1.82 8 0.033 1.92 0.0013 4.05

80 256 0.0011 0.000034 3.52 16 0.017 1.96 0.00031 4.01
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Proof This result can again be established by induction on n with the hypothesis that
U n

m ≤ Kτ , where Kτ is defined in Theorem 11.5 and where the hypothesis is seen to
be true at n = 0. We suppose that an intermediate grid function U j+1/2 is computed
using the right hand side of (11.34b) (with n = j), that is,

U j+1/2
m = 1

2rU j
m−1 + (1 − r)U j

m + 1
2rU j

m+1. (11.37)

This corresponds to one step of FTCS with a time step k/2 so, using the argument
from the proof of Theorem 11.5, we have that

max
0<m<M

U j+1/2
m ≤ Kτ

provided r ≤ 1. The inequality (11.36) then becomes

− 1
2rU j+1

m−1 + (1 + r)U j+1
m − 1

2rU j+1
m+1 ≤ U j+1/2

m (11.38)

which corresponds to the inequality (11.26) for the BTCS method with a time step
k/2. The desired result then follows by applying the same argument used in the proof
of Theorem 11.11. �

Corollary 11.17 If the grid function U satisfies

− 1
2h−2δ2x (U

n+1
m + U n

m) + k−1(U n+1
m − U n

m) = 0

for (xm, tn+1) ∈ Ωτ and r ≤ 1 then U attains its maximum and minimum values
on Γτ . Furthermore, if U is subject to homogeneous Dirichlet BCs, then

‖U n· ‖h,∞ ≤ ‖U 0· ‖h,∞, n = 1, 2, . . .. (11.39)

Proof See Exercise 11.15. �

Corollary 11.18 (Inverse monotonicity) The operator Lh defined by

LhU n
m =

{
− 1

2h−2δ2x (U
n+1
m + U n

m) + k−1(U n+1
m − U n

m) for (xm, tn+1) ∈ Ωτ ,

U n
m for (xm, tn) ∈ Γτ

is inverse monotone and stable for 0 < r ≤ 1.

Proof Follows from the proof of Corollary 11.7. �

The restriction r ≤ 1 raises a concern about the stability of the scheme, although the
need to enforce it is not evident from the numerical results in Example 11.15. In fact,
the restriction r ≤ 1 turns out to be necessary and sufficient for the Crank–Nicolson
scheme to be inverse monotone (see Exercise 11.16). To explore this issue further,
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we recall that the generic definition of stability in Definition 6.6 for the equation
LhU n

m = Fh |nm , withLh given in Corollary 11.18 and source term

Fh |nm =
{

U 0
m, n = 0

0 n > 0
,

requires that
‖U n· ‖h,∞ ≤ C‖U 0· ‖h,∞, n = 1, 2, . . . (11.40)

with a positive constant C (the stability constant) that is independent of h and k.
Such a bound can in fact be established for the Crank–Nicolson scheme for the heat
equation (with C ≤ 23, but we would conjecture a value of C ≤ 3 as being more
realistic), although the proof is beyond the scope of this book. This result implies that
the restriction r ≤ 1 needed for (11.39) is sufficient but not necessary for stability
with respect to the maximum norm.

The above discussion highlights a weakness in seeking a theory based on positive
type operators. A simple way of circumventing the issue is to analyse approximation
methods using a different norm—which is what wewill do in the next section. Before
that, an example is constructed that reveals a defect in the Crank–Nicolson method:
a propensity for generating oscillatory solutions when the mesh ratio is large and the
initial data is not smooth.

Example 11.19 Use the Crank–Nicolson method to solve the heat equation on the
domain Ωτ with initial and Dirichlet boundary data taken from the exact solution
u(x, t) = erf((x − 1/2)/

√
4t). Compute the numerical solution with h = k = 1/40

(that is, for r = 1) and show that the numerical solution is highly oscillatory.

The initial condition has a discontinuity at x = 1/2 and is shown in Fig. 11.7 along
with the numerical solution (dots connected by dashed lines) and exact solution (solid
curves) for the first three time steps. Note that the discontinuity leaves an artefact in
the numerical solution that oscillates in time around the exact solution! ♦

The unwanted oscillations can be removed by making a simple modification to
the Crank–Nicolson method at the first time step. This correction is based on the
observation made in the proof of Theorem 11.16 that the Crank–Nicolson update
is equivalent to the consecutive applications of the FTCS and BTCS methods with
time steps k/2. The fix is simply to replace the first occurrence of the half-step FTCS
method (at t = 0) by a half-step of the BTCS method. Since the same coefficient
matrix is involved at all time steps only one Cholesky factorization is required so the
cost of the modification is negligible. The results are shown on the right of Fig. 11.7.
The improvement is dramatic: the numerical and exact solutions actually become
indistinguishable.8

8Our fix is a refinement of a suggestion due to Rannacher [17] that the time integration be initiated
with two steps of BTCS before reverting to the Crank–Nicolson method.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Fig. 11.7 The initial condition for Example 11.19 and the first three time steps of the Crank–
Nicolson solution shown by dots connected by dashed lines. The exact solution is shown by the
solid curve. On the right hand side the first half time step of FTCS in the Crank–Nicolson method
is replaced by a half step of BTCS

11.2 Von Neumann Stability

This section of the book is devoted to “classical” numerical analysis. The aim is to
construct a relatively simple test for distinguishing between stable and unstable finite
difference methods.9 This will be done by measuring the stability of a grid function
in the 	2 (or “root mean square”) norm (as opposed to the 	∞ or maximum norm)

‖U n· ‖h,2 :=
(

h
M∑ ′′

m=0

|U n
m |2

)1/2

, (11.41)

where the double prime on the summation sign indicates that the first and last terms
should be halved, so

‖U n· ‖2h,2 = h
(
1
2 |U n

0 |2 + |U n
1 |2 + · · · + |U n

M−1|2 + 1
2 |U n

M |2
)

.

9The test is due to John von Neumann (1903–1957). Apart from being a brilliant mathematician,
his name is synonymous with the early development of computers—motivated by the need to solve
PDEs.
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Note that the presence of the factor h ensures that

‖u‖h,2 →
(∫ 1

0
|u(x)|2 dx

)1/2

for any continuous function u as h → 0.
Stability in this norm—known as 	2 stability—requires a constantC , independent

of both h and k, such that

‖U n· ‖h,2 ≤ C‖U 0· ‖h,2, n = 1, 2, . . .. (11.42)

A consequence of Exercise 11.17 is the bound ‖U n· ‖h,2 ≤ ‖U n· ‖h,∞. Combining
this with (11.40) leads to stability in the least squares norm for bounded initial data

‖U n· ‖h,2 ≤ ‖U n· ‖h,∞ ≤ C‖U 0· ‖h,∞. (11.43)

Note that (11.43) implies that 	2 stability is a weaker requirement than maximum
norm stability.

The von Neumann approach is to check to see if the finite difference scheme is
stable in this weaker norm. The essence of the test is to look for a function ξ(κ) of
some real variable κ (the wavenumber) so that the finite difference equations have a
solution of the form10

U n
m = ξneiκmh, i = √−1. (11.44)

The ansatz functions are called discrete Fourier modes. Since this expression is
unchanged if an integer multiple of 2π M is added to κ, it is sufficient to consider
values of κ in the interval [−π M, π M], that is, κh ∈ [−π, π ]. We observe that
κ = 0 corresponds to a grid function that is constant in space, while κh = ±π gives
U n

m = ξn(−1)m which represents a wave of wavelength 2h, the shortest that can be
represented on the spatial grid. Next, if we substitute (11.44) into (11.41) and assume
a periodic boundary condition then we find that

‖U n· ‖h,2 = |ξ(κ)|n (11.45)

so a solution of the form (11.44) will grow or decay in time depending on whether
|ξ | > 1 or |ξ | < 1. For this reason, ξ is known as the amplification factor of the
scheme being examined.

The von Neumann test is valid only when the expression for ξ does not depend
on either m or n when (11.44) is substituted into the target difference scheme. In
practice this means that the test is only applicable to finite difference approximation
of problems with constant coefficients. In problems where the exact solution decays
in time it is usually appropriate to require that |ξ(κ)| ≤ 1 for all κh ∈ [−π, π ] in

10The quantity ξn is the nth power of ξ and not a superscript. It could be written as (ξ)n were it not
so ugly.



11.2 Von Neumann Stability 259

which case the stability inequality (11.42) holds with stability constant C = 1 (since
‖U 0· ‖h,2 = 1). For problems where the exact solution may grow in time, we require
that a constant c be found, independent of h and k, such that

|ξ | ≤ 1 + ck, (11.46)

for all κh ∈ [−π, π ]. It follows, using the inequality 1 + z ≤ ez (valid for any
positive real number z), that

|ξ |n ≤ (1 + ck)n ≤ ecnk ≤ ecτ ,

since nk = tn ≤ τ . In this case (11.42) holds with stability constant C = ecτ .

Definition 11.20 (von Neumann stability) A finite difference approximation of a
parabolic PDE with a solution of the form U n

m = ξneiκmh is said to be von Neumann
(or 	2) stable, if a non-negative constant c can be found, independent of both h and
k, such that |ξ | ≤ 1 + ck for all κh ∈ [−π, π ].
The following relationships prove useful when testing the stability of difference
schemes

U n+1
m = ξn+1eiκmh = ξU n

m,

U n
m±1 = ξneiκ(m±1)h = e±iκhU n

m,

U n+1
m±1 = ξn+1eiκ(m±1)h = ξe±iκhU n

m .

(11.47a)

In particular, we note the following results

δ2xU n
m = [e−iκh − 2 + eiκh]U n

m = −4 sin2( 12κh) U n
m, (11.47b)

�xU n
m = [eiκh − e−iκh]/2 = i sin(κh) U n

m . (11.47c)

The following examples will show the usefulness of the approach.

Example 11.21 Investigate the 	2 stability of the FTCS approximation of the heat
equation, that is

U n+1
m = U n

m + rδ2xU n
m . (11.48)

Substituting U n
m = ξneiκmh into (11.48) and using (11.47b) we find that

ξ = 1 − 4r sin2( 12κh). (11.49)

Since solutions of the heat equation decay in time we simply take c = 0 in (11.46),
so the von Neumann condition for stability is that

|ξ | ≤ 1, for all real κh ∈ [−π, π ].

Thus, since ξ in (11.49) is real, the condition for stability is that
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−1 ≤ 1 − 4r sin2( 12κh) ≤ 1.

The right inequality is satisfied for all r > 0 while the left inequality requires that

r sin2( 12κh) ≤ 1
2 ,

for all values of κh ∈ [−π, π ]. The left hand side is maximized when κh = ±π

and so it will be satisfied for all κ provided 0 < r ≤ 1
2 . This is, coincidentally,

the same condition that was derived earlier for stability in the maximum norm.
The above theory seems to be consistent with the computational results presented
in Example 11.1. Instability is associated with the highest possible wavenumber
κh = π , which explains the sawtooth appearance of the FTCS solution shown in
Fig. 11.3 when r = 0.52 > 0.5. There is, however, a hidden subtlety in the final
column of Table 11.1. For r = 0.52 the amplification factor ξ = 1 − 4r sin2( 12πh)

actually satisfies |ξ | < 1 for all the tabulated values of h! This suggests that the
numerical results should be stable for this value of r .11 ♦

Example 11.22 Show that Crank–Nicolson approximation of the heat equation
(11.34a) is unconditionally stable in an 	2 sense.

Using (11.47b) it is readily shown that the amplification factor is given by

ξ = 1 − 2r sin2( 12κh)

1 + 2r sin2( 12κh)
(11.50)

which satisfies −1 ≤ ξ ≤ 1 for all κh ∈ [−π, π ] and for all r > 0 and is
therefore unconditionally stable. This contrasts with Corollary 11.17 where stability
with respect to the maximum norm could only be established under the condition
r ≤ 1. ♦

Example 11.23 Investigate the 	2 stability of the FTCS approximation of the heat
equation with a reaction term ut = uxx + γ u, that is

U n+1
m = U n

m + rδ2xU n
m + γ kU n

m . (11.51)

11The explanation for this apparent paradox is rounding error. The computations would be stable
if done in exact arithmetic. If we add the term 2 sin(κxm) × 10−16 with κ = π/h to the initial
condition to simulate round-off effects, then the amplification factor (11.49) predicts growth by a
factor |1 − 4r | = 1.08 (when r = 0.52) at each time step, which is consistent with the tabulated
results.
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Substituting U n
m = ξneiκmh into (11.51) and using (11.47b) we find that

ξ = 1 − 4r sin2( 12κh) + γ k. (11.52)

In the case γ > 0 there is the possibility (dependent on initial data and boundary
conditions) that the exact solutions may grow in time, in which case the appropriate
von Neumann stability condition is

|ξ | ≤ 1 + γ k, κh ∈ [−π, π ].

Since ξ in (11.52) is real, this leads to the conditions

−1 − γ k ≤ 1 − 4r sin2( 12κh) + γ k ≤ 1 + γ k.

The right inequality is satisfied for all r > 0 while the left inequality requires that
2r sin2( 12κh) ≤ 1 + γ k for all values of κh ∈ [−π, π ]. The worst case occurs
when κh = ±π , so the condition that must be satisfied for von Neumann stability is
0 < r ≤ 1

2 (1+γ k). This is the same condition that was established in Example 11.9
for stability in the maximum norm. ♦

A final comment on the previous example is that although restrictions on the
maximum time step are critically important in numerical computations, it is the
behaviour as h, k → 0 that is decisive when considering stability in the context of
convergence theory. This requires only that r < 1/2, regardless of the magnitude of
γ or whether it is positive or negative. Thus, as far as convergence is concerned,
the addition of the term γ u to the PDE has no effect on the relationship between h
and k. This is true more generally: stability in the limit h, k → 0 is dictated by the
approximations to the highest derivatives that occur in each independent variable,
lower derivative (or undifferentiated) terms serve as small perturbations.

The amplification factor was real in all the examples considered thus far. The final
example illustrates the possibility of having a complex-valued ξ .

Example 11.24 Investigate the 	2 stability of the FTCS approximation of the
advection–diffusion equation ut = εuxx + ux , that is

U n+1
m = U n

m + rδ2xU n
m + ρ�xU n

m (11.53)

where r = εk/h2, ε > 0 and ρ = k/h.

Substituting U n
m = ξneiκmh into (11.53) and using (11.47b)–(11.47c) we find that

ξ = 1 − 4r sin2( 12κh) + i ρ sin (κh) (11.54)
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which is clearly complex. The appropriate von Neumann condition for stability is
|ξ | ≤ 1 (κh ∈ [−π, π ]), which is more conveniently rewritten as

|ξ |2 − 1 ≤ 0. (11.55)

To make progress, we set s = sin2( 12κh) and use the half-angle formula sin(κh) =
2 sin( 12κh) cos( 12κh), which leads to

|ξ |2 − 1 = (1 − 4rs)2 − 1 + ρ2 sin2(κh)

= −8rs(1 − 2rs) + 4ρ2s(1 − s)

= −4s
[
2r(1 − 2rs) − ρ2(1 − s)

]
,

which is required to be non-positive for all s ∈ [0, 1]. Next, since the expression in
square brackets is linear in s, it will be non-negative for s ∈ [0, 1] if, and only if, it
is non-negative at the endpoints s = 0, 1. This immediately leads to the following
condition on the parameters

1
2ρ

2 ≤ r ≤ 1
2 , (11.56)

which must be satisfied if the difference scheme (11.53) is to be 	2 stable.
It seems sensible to insist12 that ρ = k/h ≤ 1. Setting r = εk/h2 > 0 and

introducing the mesh Peclet number Peh = h/(2ε) (cf. Example 10.16), we find
that the condition (11.56) translates to a time step restriction k ≤ h2/2ε when
Peh ≤ 1 (with a h-independent restriction k ≤ 2ε otherwise). The importance of
the condition Peh ≤ 1 in establishing a maximum principle for the FTCS scheme is
explored in Exercise 11.21. The advection term dominates diffusion when Peh > 1
so it may be advisable in these situations to base finite difference schemes on the
underlying hyperbolic, rather than the parabolic, PDE as exemplified by Leith’s
scheme in Exercise 12.11. ♦
We note once again that, in the limit h, k → 0, it is only the highest derivative terms
in each variable that dictate stability. The restrictions on the time step have to be
respected in calculations with finite h and k however—otherwise the FTCS scheme
is bound to show instability as time evolves.

The justification for the von Neumann approach in more general situations is a
complex and subtle issue that will not be pursued here. We refer the interested reader
to the books of Strikwerda [21, Chap. 2] or LeVeque [14, Sect. 9.6].

12Recall the CFL condition: if the FTCS scheme is to have any chance of converging then ρ → 0
when h, k → 0.

http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_12
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11.3 Advanced Topics and Extensions

Some important extensions are discussed in the following sections.Whilewe touchon
some important practical issues, the coverage of topics will inevitably be somewhat
limited.

11.3.1 Neumann and Robin Boundary Conditions

The content of this section complements the discussion of boundary conditions for
elliptic PDEs in Sect. 10.2.1. To illustrate the main idea, we consider the simplest
FTCS approximation (11.8b) of the heat equation on the interval 0 < x < 1 subject
to a Neumann boundary −ux (0, t) = g0(t) condition at x = 0 (the negative sign
indicates that it is the outward normal derivative that is prescribed). Our aim is to
construct a numerical boundary condition that is second-order accurate. We begin
with the centred difference

−ux (0, nk) = −h−1�x un
0 + O(h2)

at t = nk so the boundary condition reads

− 1
2h−1(−U n−1 + U n

1 ) = g0(nk). (11.57)

Note that this involves the value ofU at a grid point (−h, nk). This is shown by an
asterisk in Fig. 11.8 and is referred to as a fictitious grid point because it lies outside
the domain. However, by applying the FTCS method (11.8b) at x = 0 we have

U n+1
0 = rU n−1 + (1 − 2r)U n

0 + rU n
1

and the contribution of the fictitious grid point can be eliminated by solving this
equation for U n−1 and substituting the result into (11.57). This results in the approx-
imation

− 1

2hr
(U n+1

0 − (1 − 2r)U n
0 − 2rU n

1 ) = g0(nk). (11.58)

Fig. 11.8 The grid in the
vicinity of the boundary
point (0, nk) where the
stencil of the FTCS method
involves a fictitious grid
point (indicated by ∗) at
(−h, nk)

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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which leads to to the explicit update formula

U n+1
0 = (1 − 2r)U n

0 + 2rU n
1 − 2hrg0(nk). (11.59)

The truncation error in the boundary condition should be based on (11.58), since
it is correctly scaled. Using Taylor series in the usual way gives

Rn
0 = 1

2rh

(
un+1
0 − (1 − 2r)un

0 − 2run
1 − 2hrg0(nk)

)

= h

2k

(
[u + kut + 1

2k2utt + · · · ] −
(1 − 2r)u − 2r [u + hux + 1

2h2uxx + 1
6h3uxxx + · · · ] − 2hrg0(nk)

)

= [−ux − g0(nk)] + 1
2h[ut − uxx ] − 1

6h2uxxx + 1
4hkutt + · · · ,

where all terms on the right hand side are evaluated at (0, nk). This establishes
the second-order consistency, Rn

0 = O(h2), of the approximation to the numerical
boundary condition.Moreover, the theoretical results developed for the FTCSmethod
with Dirichlet boundary conditions in Sect. 11.1.1 will continue to hold for the new
boundary condition (with the same restriction, r ≤ 1/2).

11.3.2 Multiple Space Dimensions

How easy is it to extend the time stepping strategies introduced earlier in the chapter
to PDEs with more than one space dimension? To answer this question, we now
turn our focus onto the two-dimensional heat equation ut = uxx + uyy defined on a
general domain Ω in the x–y plane (as shown in Fig. 10.1).

Numerical methods for solving the parabolic PDE ut = Lu may be obtained by
combining a time stepping method (as in Sect. 11.1) with a finite difference approx-
imation of Lu := −(uxx + uyy) on a subdivision Ωh (as described in Chap. 10). In
the following we assess the stability of some of the resulting schemes.13

We also introduce some simple modifications that are designed to help cope with
the massive increase in grid points from M to M2 at every time level.14 The simplest
approximation scheme is discussed first.

13The definition of the 	2 norm (11.41) has to be modified to read

‖U n· ‖h,2 :=
(

h2
M∑ ′′

	=0

M∑ ′′

m=0

|U n
	,m |2

)1/2

, (11.60)

in two space dimensions.
14The modifications are therefore especially relevant when solving a PDE problem defined in three
space dimensions.

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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Example 11.25 Investigate the stability of the FTCS approximation of the two-
dimensional heat equation on the unit square with a grid of size h×h, with h = 1/M .

Combining (11.10) with the standard 5-point approximation of the Laplacian (see
Sect. 10.1) gives the FTCS method

U n+1
	,m = U n

	,m + r(δ2x + δ2y)U
n
	,m, (11.61a)

where r = k/h2. This can also be written as

U n+1
	,m = r(U n

	+1,m + U n
	−1,m + U n

	,m+1 + U n
	,m−1 + U n

	,m) + (1 − 4r)U n
	,m .

(11.61b)

The coefficients on the right hand side are positive, and the corresponding operator
will thus be of positive type whenever 0 < r ≤ 1/4. This implies that the largest
allowable time step is half the corresponding value in one dimension. To assess the
	2 stability, we need as appropriate ansatz in two dimensions,

U n
	,m = ξnei(κx 	+κym)h, i = √−1 (11.62)

which, when substituted into (11.61), gives the amplification factor

ξ = 1 − 4r(sin2 1
2κx h + sin2 1

2κyh).

A straightforward calculation reveals that −1 ≤ ξ ≤ 1 if, and only if, 0 < r ≤ 1/4,
which is the same as the condition for stability in the maximum norm. ♦
It is relatively easy tomodify the basicFTCSscheme (11.61b) so as to recover the one-
dimensional time step restriction. The ploy is simply to add the term r2δ2xδ

2
yU n

	,m to
the right hand side of (11.61a). Since this represents a finite difference approximation
of the term k2uxxyy , the local truncation error remainsO(k) +O(h2). However, the
right hand side can then be factorized into two components

U n+1
	,m = (1 + rδ2x )(1 + rδ2y)U

n
	,m, (11.63a)

naturally leading to a two-stage solution process

V n
	,m = (1 + rδ2y)U

n
	,m, U n+1

	,m = (1 + rδ2x )V n
	,m . (11.63b)

The refined FTCS method (11.63) is a locally one-dimensional scheme. The first
stage involves computing V n at all grid points except those on horizontal boundaries
(where δ2yU n

	,m is not defined). The second stage computes U n+1 at all the internal
grid points. While the overall cost per grid point is marginally greater than the
unmodified scheme, the advantage of the two-stage method is that it is stable in both

http://dx.doi.org/10.1007/978-3-319-22569-2_10


266 11 Finite Difference Methods for Parabolic PDEs

the 	2 and maximum norms for 0 < r ≤ 1/2. The details are left to Exercise 11.28
and Exercise 11.29.

Repeating the construction in Sect. 11.1.2 leads to the BTCS approximation in
two dimensions

U n+1
	,m − r(δ2x + δ2y)U

n+1
	,m = U n

	,m, (11.64a)

which can also be written as

(1 + 4r)U n+1
	,m − r(U n+1

	+1,m + U n+1
	−1,m + U n+1

	,m+1 + U n+1
	,m−1) = U n

	,m . (11.64b)

When (11.64b) is used to approximate the heat equation on the unit square with
a Dirichlet boundary condition, the equations can be expressed in the form of a
matrix-vector system

Aun+1 = un + r f n+1, n = 0, 1, 2, . . ., (11.65)

where f n+1 contains nonzero boundary values of U n+1· , and the matrix A has the
same block tridiagonal structure as the matrix (10.10) that arises when computing a
finite difference solution of Laplace’s equation on a square. To generate a numerical
solution the Cholesky factorization A = RT R should first be computed (with com-
putational work proportional to M4) then, at each subsequent time step, the solution
un+1 can be determined via

RTv = un + r f n+1, Run+1 = v, (11.66)

where v is an intermediate vector. If this is done then, as discussed in Sect. 10.1.1,
the cost of each time step (11.65) will be proportional to M3.

To generate a locally one-dimensional version of the BTCS scheme, the term
r2δ2xδ

2
yU n+1

	,m must be added to the left hand side of (11.64). As for the FTCS scheme,
the modified scheme can then be factorised so that

(1 − rδ2x )(1 − rδ2y) U n+1
	,m = U n

	,m, (11.67a)

without increasing the order of the local truncation error. The factorisation leads to
the following two-stage solution process

(1 − rδ2y)V n
	,m = U n

	,m, (1 − rδ2x )U
n+1
	,m = V n

	,m, (11.67b)

where at each stage the solution vector can be constructed by performing a sequence
of one-dimensional linear solves (to generate a single row or a column of the grid
solution values) with the tridiagonal matrix A that appears in (11.25). The overall
cost of computing U n+1 via (11.67) will thus be proportional to M2 rather than M3

for (11.64)—a substantial gain in efficiency!

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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The Crank–Nicolson scheme may also be readily extended to multiple space
dimensions. The locally one-dimensional implementation of Crank–Nicolson is also
referred to as the Alternating Direction Implicit method.15

Example 11.26 Investigate the stability of the locally one-dimensional Crank–
Nicolson approximation of the two-dimensional heat equation on the unit square
with a grid of size h × h, with h = 1/M .

The Crank-Nicolson approximation is given by (11.32), where Lh is the standard
5-point approximation of the Laplacian. Written out explicitly, it is

(
1 − 1

2r(δ2x + δ2y)
)
U n+1

	,m = (
1 + 1

2r(δ2x + δ2y)
)
U n

	,m, (11.68)

with local truncation error O(k2) + O(h2). The locally one-dimensional variant is
obtained by adding 1

4r2δ2xδ
2
yU n+1

	,m to the left hand side and 1
4r2δ2xδ

2
yU n

	,m to the right
hand side, giving

(1 − 1
2rδ2x )(1 − 1

2rδ2y)U
n+1
	,m = (1 + 1

2rδ2x )(1 + 1
2rδ2y)U

n
	,m . (11.69)

The contribution that the additional terms make to the local truncation error is

1

4k
r2δ2xδ

2
y(u

n+1
	,m − un

	,m) = 1

4
k2uxxyyt + higher-order terms

which does not alter the second-order consistency of the original method.
The amplification factor of the modified scheme is given by

ξ =
(
1 − 2r sin2( 12κx h)

1 + 2r sin2( 12κx h)

) (
1 − 2r sin2( 12κyh)

1 + 2r sin2( 12κyh)

)

which, being a product of amplification factors of one-dimensional Crank–Nicolson
operators (see (11.50), satisfies −1 ≤ ξ ≤ 1 for all κx , κy and r > 0. This means
that the scheme (11.69) is unconditionally 	2 stable. ♦

The modified scheme method is usually implemented as a two-stage process

(1 − 1
2rδ2y)V n+1

	,m = (1 + 1
2rδ2x )U

n
	,m

(1 − 1
2rδ2x )U

n+1
	,m = (1 + 1

2rδ2y)V n+1
	,m

}
(11.70)

again involving an intermediate grid function V . This pair of equations defines the
“classic” ADI method. The calculation of V n+1 from the first of these equations
proceeds columnwise but requires boundary conditions on the horizontal edges of

15The ADI method was devised for the oil industry by Peaceman and Rachford in 1955. It is still
used in anger, over 50 years later!
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the domain. These are obtained by subtracting the second equation from the first to
give

V n+1
	,m = 1

2

(
U n+1

	,m + U n
	,m − 1

2rδ2x (U
n+1
	,m − U n

	,m)
)
. (11.71)

When m = 0, M and 	 = 1, 2, . . . , M − 1 these equation express the boundary
values of V on horizontal edges in terms of the known boundary values of U n and
U n+1. The calculation of U n+1 then proceeds row by row. The cost of a single ADI
step is about twice that of the BTCS method. The ADI method is significantly more
efficient however—the second-order accuracy in k allows much larger time steps to
be taken to achieve the same solution accuracy.

11.3.3 The Method of Lines

The method of lines is a popular strategy for solving time-dependent PDEs that
exploits techniques (and, particularly, software) for solving initial value problems
for ordinary differential equations. We give an example to convey the flavour of the
method.

Example 11.27 (Example 8.7 revisited) Solve the heat equation ut = uxx in the
semi-infinite strip {(x, t) : 0 < x < 1, t > 0} with end conditions ux (0, t) = 0,
u(1, t) = sin 2π t and with a homogeneous initial condition u(x, 0) = 0 using the
method of lines.

The basic philosophy of the method of lines is that a finite difference grid is only
defined for the spatial variables. In this one-dimensional setting, we have grid points
xm = mh for m = 0, 1, . . . , M (with h = 1/M) and we note that the unknown
grid point values Um will be functions of time: Um(t). To give a specific example, if
the spatial approximation is the standard centred finite difference δ2x (as in (11.8) or
(11.22)) then we generate the ordinary differential equation

d

dt
Um = 1

h2

(
Um−1(t) − 2Um(t) + Um+1(t)

)
, (11.72)

at every interior grid point m = 1, 2, . . . , M − 1. Imposing the Dirichlet boundary
condition at x = 1 gives UM (t) = sin 2π t , which feeds into the ODE (11.72) at the
last interior grid point. Next, if we take a centred difference approximation of the
Neumann boundary condition at x = 0, then the fictitious grid point value U−1(t)
(that arises when putting m = 0 in (11.72), cf. Sect. 11.3.1) is replaced by the value
U1(t), leading to the following boundary equation

d

dt
U0 = 2

h2

(
U1(t) − U0(t)

)
. (11.73)

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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Fig. 11.9 A method of lines solution to Example 11.27 for 0 ≤ t ≤ 5 using a second-order finite
difference approximation in space with h = 1/10

To summarise, themethodof lines solution is the systemof coupledODEs (11.72) and
(11.73) for the M unknown functions Um(t), supplemented by the initial conditions
Um(0) = 0, m = 0, 1, . . . , M − 1. ♦

Systems of ODEs can readily be solved up to a given error tolerance using pro-
fessional (or open-source) software packages. A sample solution16 in the case of
M = 10 is illustrated in Fig. 11.9. Note that for each grid point there is a continu-
ous solution curve (xm, t, Um(t)). The book by Ascher [1] is a good starting point
for anyone looking for more information. One drawback of the method is that the
decoupling of the spatial and temporal approximationsmakes it difficult to effectively
balance the component discretization errors. It is very easy to generate time-accurate
solutions which are completely dominated by spatial error!

Exercises

11.1 ✩ By differentiating the PDE, show that the leading terms in the local truncation
error (11.12) of consistency of the FTCS approximation of the heat equation may be
combined, using the PDE to give 1

2h2(r − 1
6 )uxxt

∣∣n
m . What is the order of consistency

of the FTCS method when r = 1/6?

11.2 Construct FTCS approximations of the PDEs (a) ut = uxx + f (x, t) and
(b) ut = uxx − u. Examine the local truncation errors and show that, in neither
case, is there a value of r = k/h2 that leads to a higher order of consistency than
O(k) + O(h2).

11.3 ✩Suppose that the FTCS method (11.8b) is used to solve the heat equation
with initial condition u(x, 0) = g(x), 0 < x < 1 and end conditions u(0, t) =
g0(t), u(1, t) = g1(t). Show that the solution un+1 at the (n + 1)st time level may
be expressed as

16Computed by solving the ODE system using the MATLAB function ode15s.
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un+1 = A(−r)un + f n,

where A(r) is the matrix appearing in the BTCS scheme (11.25).

11.4 Suppose that the point P in Fig. 11.4 has the coordinates X = mh, T = nk
and let Q and R denote the points (xm−n, 0) and (xm+n, 0). If the grid function U is
determined by the FTCS scheme (11.8b) and if U 0

j = (−1) j ( j = m − n, m − n +
1, . . . , m + n), show that

U 1
j = −(4r − 1)(−1) j , j = m − n + 1, m − n + 2, . . . , m + n − 1

and that U n
m = (4r − 1)n(−1)m .

Next, suppose that the grid sizes are reduced so that h becomes h/2, k becomes
k/4 (leaving r unchanged) and X = 2mh, T = 4nk so that P remains fixed. Deduce
that this method is unstable as h, k → 0 with r ≥ 1/2+ε, where ε > 0 is any number
independent of both h and k.

11.5 Show that the finite difference scheme

U n+1
m = 1

3rU n
m−2 + (1 − r)U n

m + 2
3rU n

m+1

is a consistent approximation of the heat equation ut = uxx . What is the stencil of
the method? Sketch the domain of dependence of the method and specify the interval
of dependence of a typical grid point P having coordinates (mh, nk).

11.6 Show that the finite difference scheme

U n+1
m = U n

m + r(U n
m−2 − 2U n

m−1 + U n
m)

is a consistent approximation of the heat equation ut = uxx . Sketch the stencil of the
method and use the domain of dependence argument to show that its solution cannot
converge to that of the differential equation as h → 0 and k → 0.

11.7 Prove Corollary 11.6 by replacing U by −U in Theorem 11.5.

11.8 Prove that the operatorLh defined in Corollary 11.7 is inverse monotone when
r ≤ 1/2.

11.9 By taking Taylor series expansions about the point x = mh, t = (n + 1)k,
or otherwise, show that the local truncation error of the BTCS method (11.22)
is given by (11.24). Show also that the leading terms may be combined to give
− 1

2h2(r + 1
6 )utxx

∣∣n+1
m .

11.10 Use Lemma 6.1 to show that the matrix A in (11.25) is positive definite.

11.11 Complete the details of the proof of Corollary 11.12. Hence prove that the
BTCS method converges as h, k → 0 without restriction on the mesh ratio r .

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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11.12 Determine the leading term in the local truncation error of the scheme

U n+1
m = U n

m + rδ2xU n
m − 1

2kγ (U n+1
m + U n

m)

for solving the parabolic equation ut = uxx − γ u.

11.13 Write down the finite difference scheme defining the θ -method for solving the
heat equation with initial condition u(x, 0) = g(x), 0 < x < 1 and end conditions
u(0, t) = g0(t), u(1, t) = g1(t). Show that the solution un+1 at the (n + 1)st time
level may be expressed as

A(θr) un+1 = A
(
(θ − 1)r

)
un + f n,

where A(r) is the matrix A appearing in the BTCS scheme (11.25). Can you express
f n in terms of the boundary functions g0(t) and g1(t)?

11.14 Use the formula (B.11) for the eigenvalues of a tridiagonalmatrix to determine
the largest and smallest eigenvalues of the matrix A(θr) of the preceding exercise.
Use this to prove that A(θr) is positive definite for θ ≥ 0.

11.15 Complete the details of the proof of Corollary 11.17.

11.16 ✩ Suppose that the Crank–Nicolson scheme (11.34b) is used with a grid with
h = 1/2, boundary conditions U n

0 = U n
2 = 0 (for all n ≥ 0) and initial condition

U 0
1 = 1. Determine U 1

1 and deduce that the difference scheme cannot be inverse
monotone if r > 1. This establishes r ≤ 1 as being a necessary condition for inverse
monotonicity. (Corollary 11.18 shows that it is also a sufficient condition.)

11.17 Suppose that the norms‖ · ‖h,∞ and‖ · ‖h,2 are definedby (11.13) and (11.41),
respectively. Prove that

1
2

√
h‖U·‖h,∞ ≤ ‖U·‖h,2 ≤ ‖U·‖h,∞

for any grid functionU . Investigate the relative sizes of the terms in these inequalities
when,

(a) Um = 1 for each m = 0, 1, ..., M ,
(b) U0 = 1 and Um = 0 for 0 < m ≤ M .

11.18 ✩ Show that the amplification factor of the BTCS scheme (11.22a) is

ξ = 1

1 + 4r sin2( 12κh)

and hence show that the BTCS scheme is unconditionally 	2 stable, that is, stable
for all values of r > 0.
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11.19 Show that the amplification factor for the θ -method applied to the one-
dimensional heat equation is given by

ξ = 1 − 4r(1 − θ) sin2( 12κh)

1 + 4rθ sin2( 12κh)
.

Hence show that the θ–scheme is 	2 stable if (1−2θ)r ≤ 1
2 (so there is no restriction

on r if θ ≥ 1/2).

11.20 Examine the 	2 stability of the explicit finite difference scheme

U n+1
m =

[
1 + rδ2x

]
U n

m − 1
2k(U n

m−1 + U n
m+1)

for solving the PDE ut = uxx −u.What conditions on h and k ensure that themethod
is stable in the sense of von Neumann?

Is there any advantage in using the above method in preference to the more
standard FTCS method (11.18) with γ = −1?

11.21 Show that the FTCS approximation (11.53) of the advection–diffusion equa-
tion may be written in the form

U n+1
m = α−1U n

m−1 + α0U n
m + α1U n

m+1

for coefficients α1, α2 and α3 that are non-negative and sum to 1 when 1
2ρ ≤ r ≤ 1

2 .
Express these as restrictions on k in terms of h and compare with the corresponding
conditions given in (11.56) for 	2-stability.

Prove that a discrete maximum principle in the sense of Theorem 11.5 holds when
U satisfies

U n+1
m ≤ α−1U n

m−1 + α0U n
m + α1U n

m+1

for (xm, tn+1) ∈ Ωτ .

11.22 The advection–diffusion equation ut = uxx − 2ux is approximated by the
“semi-implicit” finite difference scheme

U n+1
m − U n

m = rδ2xU n+1
m − c

(
U n

m+1 − U n
m−1

)
,

where r = k/h2 and c = k/h. Show that the von Neumann amplification factor is
given by

ξ = 1 − 2ic sin κh

1 + 4r sin2 1
2κh

.

Hence prove that |ξ | ≤ 1 for all real κ if k ≤ 1
2 .
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11.23 Show that the amplification factor of the finite difference scheme in Exer-
cise 11.5 is

ξ = 1 − r + 1
3r(2eiκh + e−2iκh).

Determine the largest mesh ratio r for which it is 	2-stable.

11.24 Necessary conditions for	2-stabilitymaybeobtainedby sampling the amplifi-
cation factor ξ at certain wavenumbers (κh = 0, π , for example) or by examining the
MacLaurin expansion of either ξ or |ξ |2 in powers of h. Investigate these possibilities
for the amplification factors (a) the FTCSmethod (11.49), (b) the advection–diffusion
scheme (11.54) and (c) the semi-implicit scheme in Exercise 11.22.

11.25 Describe howonemightmodify the update formula (11.59) in order to accom-
modate the Robin end condition−ux (0, t)+σu(0, t) = g0(t), where σ is a positive
constant. Check that the resulting formula has a local truncation error of O(h2).

11.26 ✩Determine a second-order accurate numerical boundary condition for the
BTCS approximation of the heat equation subject to the Neumann condition
−ux (0, t) = g0(t) at x = 0.

[Hint: start from the condition (11.57) with n + 1 replacing n.]

11.27 Determine a second-order accurate numerical boundary condition for the
Crank–Nicolson approximation of the heat equation subject to the Neumann condi-
tion −ux (0, t) = g0(t) at x = 0.

11.28 Show that the locally one-dimensional scheme (11.63a) for the two-
dimensional heat equation has amplification factor

ξ = (1 − 4r sin2 1
2κx h)(1 − 4r sin2 1

2κyh).

Deduce that the scheme is 	2 stable whenever 0 < r ≤ 1/2.

11.29 ★ Show that the locally one-dimensional scheme (11.63a) for the two-
dimensional heat equation in the unit square with a homogeneous Dirichlet boundary
condition is stable in the maximum norm, that is ‖U n‖h,∞ ≤ ‖U 0‖h,∞, if r ≤ 1/2.

11.30 Suppose that V n+1
	,m is replaced by U n+1/2

	,m (the approximation to u at x = mh,
y = 	h, t = (n + 1/2)k). Show that the individual equations in the ADI method
(11.70) are both consistent with the two-dimensional heat equation.

11.31 The heat equation in polar coordinates with circular symmetry is given by
ut = 1

r (rur )r and may be approximated by the explicit finite difference scheme (see
(10.33)

U n+1
m = U n

m + k

h2 rmδr (rmδr U n
m),

where rm = mh > 0. Show that

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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(a) this scheme is identical to that obtained bywriting the PDE as ut = urr + 1
r ur and

using a FTCS style approximation involving second-order centred differences
for the terms urr and ur .

(b) the scheme is of positive type when a time step restriction k ≤ h2/2 is imposed.

Use l’Hôpital’s rule to show that the PDE reduces to ut = 2urr in the limit r → 0.
Write down a standard FTCS approximation of the limiting PDE and determine the
largest mesh ratio k/h2 for which it is of positive type. [Hint: look at Exercise 8.7
first.]

11.32 In polar coordinates the heat equation in two dimensions is given by ut +Lu =
0 with Lu = −urr − 1

r ur − 1
r2

uθθ .
Suppose that the PDE is approximated by the explicit scheme (11.10) so that−Lh

is the expression given in (10.33a). Show that the resulting scheme will be of positive
type whenever17

k ≤ h2Δθ2

2(1 + Δθ2)
.

11.33 Consider the PDE ut = ∇2u in the triangular domain having vertices at (0, 0),
(0, 1) and (9/8, 0) together with the same Dirichlet conditions as in Exercise 10.17.
An explicit finite difference approximation of the PDE is provided by the FTCS
scheme

U n+1
	,m = U n

	,m − kLhU n
	,m

(cf. (11.10)), where Lh is an approximation to −∇2. Write down the set of finite
difference equations when h = 1/4 using the spatial approximation described in
Exercise 10.17. What restriction needs to be imposed on the time step k in order for
these equations to be of positive type? How does this compare to the corresponding
limit k ≤ h2/4 for a regular grid?

11.34 Suppose that the finite difference equations at the 3 internal grid points adja-
cent to the hypotenuse in the previous example are replaced by the BTCS equations

U n+1
	,m + kLhU n+1

	,m = U n
	,m .

Show that the approximation may be calculated at each time level without the need to
solve linear equations (so they remain explicit) and that the equations are of positive
type provided that k ≤ h2/4.

17This bound is so small as to make the scheme impractical.
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Chapter 12
Finite Difference Methods for Hyperbolic
PDEs

Abstract This self-contained chapter focuses on finite difference approximation
of hyperbolic boundary value problems. A number of explicit and implicit time-
stepping schemes are introduced and their stability, dissipation and dispersion is
analysed. State-of-the-art schemes for hyperbolic PDEs that involve flux limiters are
discussed at the end of the chapter.

The construction and analysis of difference approximations for hyperbolic equations
will mirror the discussion of parabolic equations in the previous chapter. Properties
such as local truncation error, stability and convergence of schemes can be defined
in exactly the same way. One aspect that is different is the Courant–Friedrichs–Lewy
(CFL) condition, which has a hyperbolic variant. A point that should be empha-
sised right at the start is that explicit methods for hyperbolic equations are relatively
appealing. Thus the emphasis of the chapter will be on explicit schemes. We will
show that practical methods are perfectly stable for time steps that scale with the
spatial grid size, that is k ∼ h.

Parabolic PDEs contain diffusive terms so that the initial data becomes smoother
over time (see Example4.7) and perturbations—such as local truncation errors or
rounding errors—are damped out as time evolves. This contrasts with hyperbolic
PDEs such as pux + quy = 0 which has a constant solution along characteristics,
so any perturbation of the solution will persist indefinitely. When solving nonlinear
PDEs even smooth initial data can evolve to form a shock. This inherent lack of
smoothness is what makes the numerical solution of hyperbolic PDE problems so
challenging.

Despite its apparent simplicity, we shall focus almost exclusively on schemes for
solving the advection equation (pde.1),

ut + aux = 0, (12.1)

in which a (the wave speed) is constant. It should also be emphasised at the outset
that (12.1) is not an end in itself, but merely the first step on the way to solving
hyperbolic systems of PDEs that are nonlinear or else have variable coefficients.
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To avoid the issue of dealingwith boundary conditions,wewill suppose that (12.1)
is posed on the half-space {x ∈ R, t ≥ 0} with an initial condition u(x, 0) = g(x).
To enable computation, we will additionally suppose that the initial condition is
periodic of period L so that g(x + L) = g(x) for all x . This implies that the solution
u will also have a periodic profile, which in turn means that it will be sufficient to
solve the initial-value problem over 0 ≤ x ≤ L with grid size h = L/M . More
realistic boundary conditions will be explored later, in Sect. 12.4.2. We will discover
that there are no particular obstacles to constructing stable methods (at least for
linear problems). The real difficulty is in constructing approximation methods that
keep the numerical solution constant on characteristics, especially in the presence of
discontinuities in the initial condition or its derivatives.

The assessment of numerical methods in earlier chapters was done by giving
tables of results that showed how the global error behaves as the grid size(s) tend
to zero. Such an approach is not appropriate for hyperbolic problems, since even a
small discrepancy in wave speed can lead to a 100% error at later times. We shall
therefore use graphical evidence to compare alternative approximation schemes.
The performance of methods depends on many factors and rather than display a
range of test problems using different data, we shall borrow an idea introduced by
Leonard (1991) and use an initial condition made up of pulses of increasing levels
of continuity (discontinuous, continuous, continuously differentiable) with peaks of
different widths. The variety in the regularity of the initial data will turn out to be
useful in ascertaining the strengths and (particularly the) weaknesses of numerical
methods.

Example 12.1 Describe the solution of the one-way wave equation (12.1) on the
interval 0 ≤ x ≤ 3 with a = 1, with periodic boundary conditions and the initial
condition

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 1
4 < x < 3

4 (square wave)

1 − |4x − 6|, 5
4 < x < 7

4 (triangular wave)

cos2 π(2x − 5) 9
4 < x < 11

4 (cosine squared wave)
0, otherwise.

(12.2)

The characteristics for 0 ≤ x ≤ 3 are shown in Fig. 12.1 over a single period, along
with the exact solution at times t = 0, 1, 2, 3. A characteristic (and the information
it conveys) that exits the domain at x = 3 immediately reappears (along with its
information) at x = 0. ♦
The exact solution of the one-way wave equation (12.1) is constant along the char-
acteristics x − at = constant. Thus the solution un+1

m at the point (xm, tn+1) may be
expressed in terms of the solution at the earlier time t = tn via

un+1
m = u(xm − ch, tn), (12.3)
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Fig. 12.1 Characteristics for the test problem in Example12.1 (left) and the exact solution at times
t = 0, 1, 2, 3 (right)

where c = ak/h is known as the Courant number.1 Note that the solution translates
to the right a distance ch at each time step k. Indeed, if the grid size is constructed
so that the Courant number is an integer, then the solution satisfies the exact relation

un+1
m = u((m − c)h, tn) = un

m−c, (12.4)

which, together with the initial condition and periodic boundary condition, charac-
terises a simple algorithm for computing the exact solution at every grid point! This
shows that explicit finite difference schemes that follow the characteristics can be
very effective. This avenue is explored in detail in the first section.

12.1 Explicit Methods

We start by supposing that (12.1) is approximated by an explicit finite difference
method of the form

U n+1
m =

ν∑
j=−μ

α jU
n
m+ j , (12.5)

where μ and ν are nonnegative integers. We shall refer to this as a (μ, ν)-scheme.
A typical stencil is illustrated in Fig. 12.2. The stencil uses μ grid points upwind of

1Richard Courant (1888–1972) founded a world-leading institute for applied mathematics in New
York University. He also pioneered the idea of using finite element approximation methods to solve
elliptic PDEs defined on irregularly shaped domains.
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μh νh

μ∗ ν∗

ch

P

Q

Fig. 12.2 A (μ, ν)–stencil with μ = 3 and ν = 1. The dashed line PQ shows the characteristic
through P when a > 0. Integers μ∗ and ν∗ refer to the number of points situated upwind and
downwind of the intersection point Q

P and ν points downwind of P. The right hand side of (12.5) approximates the right
hand side of (12.3) by a weighted average of values {U n

m+ j }νj=−μ from the previous
time level.

An explicit difference scheme will not converge to the exact solution of a par-
abolic PDE in the limit h, k → 0 unless the CFL condition given in Definition11.3
is satisfied. The hyperbolic PDE analogue is just as important. Moreover since it
depends on the geometry of the stencil, not on the actual coefficients, the condition
applies to general hyperbolic problems. The details are presented below.

Consider a grid point P with coordinates (X, T ) with T > 0 fixed as h, k → 0
as shown in Fig. 12.3. Setting X = J h and T = Nk and applying (12.5) with
n = N − 1, the difference solution U N

J at P will clearly depend on the (μ + ν + 1)
grid point values U N−1

J+ j , j = −μ, . . . , ν, which, themselves depend on the values

U N−2
J+ j , j = −2μ, . . . , 2ν. Continuing the recursion back to t = 0, it can be seen

that the solution value U N
J is solely determined by the initial data in the interval

[xA, xB] between points A and B in Fig. 12.3, where

xA = X − μ
h

k
, xB = X + ν

h

k
. (12.6)

t

BA

P(X, T )

Interval of dependence
C xQ(X, 0)

Fig. 12.3 The domain of dependence (left) of a grid point P(X, T ) and domain of influence (right)
of Q(X, 0) for an explicit scheme with a (2, 1)-stencil. The grid values along AB form the interval
of dependence of P(X, T ). The broken lines show the characteristics through P and Q

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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The triangle PAB shown in Fig. 12.3 defines the domain of dependence of the numer-
ical solution at P for the scheme (12.5). The interval xA ≤ x ≤ xB is the associated
interval of dependence. In contrast, the domain of dependence of the exact PDE
solution is simply the characteristic through P, backwards in time, that intersects the
x-axis at C, say.

Next, imagine that the grid is successively refined keeping c = ak/h fixed. In this
scenario the points A and B do not change as the grid is refined and the numerical
solution at the point P is only ever dependent on initial data in the fixed interval
[xA, xB]. Critically, if C does not lie in the interval [xA, xB], then the numerical
and exact solutions at P depend on different data for all grids in the sequence—so
convergence is out of the question. Such a situation is formalised in the following
definition.

Definition 12.2 (CFL condition) Convergence of a finite difference approximation
of a hyperbolic PDE cannot take place if the characteristic through a generic grid
point P does not intersect the x–axis within the interval of dependence of P.

Example 12.3 Show that a (μ, ν)-method finite difference solution of the advection
equation will not converge when h, k → 0 with c = ak/h kept fixed, unless −ν ≤
c ≤ μ.

The CFL condition simply requires that xA ≤ xC ≤ xB where the intersection point
C has coordinate xC = X − c h

k . Using (12.6) gives the condition

X − μ
h

k
≤ X − c

h

k
≤ X + ν

h

k

which can be rearranged to give the condition −ν ≤ c ≤ μ. ♦
Note that the triangle PABand the outline of the difference stencil are similar triangles
in the case of a constant coefficient PDE, so the CFL condition can be often checked
by inspection of the stencil (as shown in Fig. 12.2).

It is also instructive to focus on the behaviour of the (μ, ν)-method looking forward
in time. The initial condition at a grid point Q(X, 0) (with X = J h) will be used in
the computation of the values U 1

J+ j , j = −ν, . . . ,μ, (note the relative positions of

μ and ν in this sequence) which, themselves will be used to compute U 2
J+ j , j =

−2ν, . . . , 2μ. Thus the initial value at Q will affect the numerical solution in the
shaded region shown in Fig. 12.3 (right), known as the domain of influence of Q.
The corresponding domain of influence of the exact solution is the characteristic
line x − at = X through Q. This knowledge is of particular interest when Q is
a distinguished point in the initial data—for example, when Q is the location of
a discontinuity (either in the solution or in one of its derivatives). The domain of
influence shows that this will ultimately affect the numerical solution over the entire
domain, while the effect for the exact solution is confined to a single characteristic.
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12.1.1 Order Conditions

We would like to choose the coefficients in (12.5) so as to maximise the order of
consistency of the associated (μ, ν)-method. To make progress in this direction, the
local truncation error of (12.5) is defined by

Rn
m := 1

k

(
un+1

m −
ν∑

j=−μ

α j u
n
m+ j

)
(12.7)

(the factor 1/k ensures it is correctly scaled). Expanding un+1
m and un

m+ j about
(xm, tn) using standard Taylor series gives

Rn
m = k−1

(
u + kut + 1

2k2utt + · · ·
)∣∣n

m

−
ν∑

j=−μ

α j k
−1(u + jhux + 1

2 ( jh)2uxx + · · · )∣∣nm . (12.8)

Differentiating the PDE ut = −aux with respect to t we find

utt = −auxt = −a∂x (ut ) = a2uxx . (12.9)

Repeating this process gives ∂�
t u = (−a∂x )

�u and substituting into (12.8) gives

Rn
m = k−1(C0u + hC1ux + h2C2uxx + · · · )∣∣nm, (12.10)

where

C� = 1

� !

⎛
⎝(−c)� −

ν∑
j=−μ

j�α j

⎞
⎠ , � = 0, 1, . . . . (12.11)

Thus, assuming that the refinement strategy is to keep c fixed (so that h/k is a
constant) the scheme (12.5) will be consistent of order p if

C0 = C1 = · · · = C p = 0. (12.12)

The constraints (12.12) generate a system of (p + 1) linear algebraic equations
in (μ + ν + 1) unknowns (the α’s). Let q := μ + ν (this will be the maximum
possible order). When p = q the number of equations matches the number of
unknowns. Writing the system in matrix-vector form gives V α = c, where α =
[α−μ,α−μ+1, . . . ,αν]T and
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V =

⎡
⎢⎢⎢⎣

1 1 · · · 1
−μ −μ + 1 · · · ν
...

...

(−μ)q (−μ + 1)q · · · νq

⎤
⎥⎥⎥⎦ , c =

⎡
⎢⎢⎢⎣

1
−c
...

(−c)q

⎤
⎥⎥⎥⎦ . (12.13)

The matrix V is called a Vandermonde matrix and is nonsingular (since no two
columns are the same; see Trefethen and Bau [26, p. 78]). This implies that there is
a unique difference scheme of maximum order.2

The construction of the method of order q can be accomplished without the need
to solve linear equations. This will be explored in the next example.

Example 12.4 Show how polynomial interpolation may be used to construct the
(μ, ν)-method of maximal order q = μ + ν.

Since V is independent of c we deduce that the coefficients of the method are poly-
nomials of degree q. Suppose that Φ(x) denotes the polynomial of degree q that
interpolates the q + 1 solution values at the current time level {(xm+ j , U n

m+ j )}νj=−μ,
so that

Φ(xm + jh) = U n
m+ j , j = −μ, . . . , ν. (12.14)

We now consider a numerical method that mimics the behaviour (12.3) of the exact
solution, that is,

U n+1
m = Φ(xm − ch). (12.15)

Using the Lagrange form of the interpolating polynomial (see, for instance, Süli and
Mayers [23, Definition6.1]), we can write

Φ(x) =
ν∑

j=−μ

L j (x) U n
m+ j , (12.16a)

where

L j (x) =
ν∏

�=−μ
� �= j

xm+� − x

xm+� − xm+ j
. (12.16b)

The key property is that L j (xm+ j ) = 1while L j (xm+i ) = 0when i �= j . Combining
(12.15)with (12.16a) and thendirectly comparing coefficientswith (12.5)wefind that

α j = L j (xm − ch) =
ν∏

�=−μ
� �= j

xm+� − xm + ch

xm+� − xm+ j
=

ν∏
�=−μ
� �= j

� + c

� − j
, (12.17)

so that the coefficients are polynomials in c (of degree q) and α j := α j (c).

2It also follows from the nonsingularity of V that the equation (12.12) have full rank for p ≤ q so
that there are (μ + ν − p) families of methods of order p.
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The local truncation error of our new method can also be readily calculated.
This will require the introduction of a (different) polynomial φ(x) of degree q that
interpolates the exact PDE solution at the points {xm+ j }νj=−μ, that is

φ(x) =
ν∑

j=−μ

L j (x) un
m+ j .

Starting from (12.15) and using the exact solution characterisation (12.3), the local
truncation error of the new method is given by

Rn
m = 1

k

(
un+1

m − φ(xm − ch
) = 1

k

(
u(xm − ch, tn) − φ(xm − ch, tn)

)
,

The quantity in brackets on the right is just the error in polynomial interpolation
at the point xm − ch. An analytical expression for this error can be found in many
numerical analysis textbooks, for example in Süli and Mayers [23, Theorem 6.2]).
If the polynomial interpolation error term is bounded (by defining Mq+1 to be the

maximum value of |∂q+1
x u(x − ch, tn)| over the interval xm−μ < x − ch < xm+ν)

then we end up with the following bound

|Rn
m | ≤ Mq+1

(q + 1)!
( ν∏

j=−μ

( j + c)
) 1

k
hq+1t. (12.18)

The ratio h/k is constant, so (12.18) implies that the order of the new method is q.
Since there is a unique method of optimal order, the construction (12.17) must coin-
cide with the method described earlier where the coefficients were found by solving
the system V α = c. ♦

12.1.2 Stability Conditions

The existence of (μ, ν)-methods of order μ + ν raises the prospect of finding high-
order explicit schemes of positive type. The next example shows that searching for
such a scheme is futile.

Example 12.5 (Stability barrier) Suppose that (12.5) defines an (μ, ν)-operator of
positive type (that is, α j ≥ 0 for j = −μ, . . . , ν, see Definition10.8). Show that the
consistency of the associated explicit difference scheme cannot be higher than first
order.

The aim is to show that the assumption of a positive type scheme of order two leads to
a contradiction. As discussed already, the conditions C0 = C1 = C2 = 0 in (12.11)

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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represent three linearly independent equations in (μ + ν + 1) unknowns. Since the
coefficients are nonnegative by assumption, we start by defining two real vectors

x = (α
1/2
j )νj=−μ, y = ( jα

1/2
j )νj=−μ.

Next, writing out the equation C1 = 0 from (12.11), taking the absolute value of
both sides and then applying the Cauchy–Schwarz inequality (B.3) gives

| c | = ∣∣ ν∑
j=−μ

jα j
∣∣ =

∣∣∣xT y
∣∣∣ ≤ ‖x‖ ‖ y‖

=
( ν∑

j=−μ

α j

︸ ︷︷ ︸
1

)1/2( ν∑
j=−μ

j2α j

︸ ︷︷ ︸
c2

)1/2 = | c |,

where the terms on the right simplify using the equations C0 = 0 andC2 = 0. This is
a contradiction: if xT y = ‖x‖‖ y‖ then the vectors x and y have to be parallel (that
is a multiple of one another) which is not possible because of their construction. ♦
A first-order positive type scheme will be discussed in the next section. The stability
barrier makes it impossible to use elementary arguments to establish the stability of
explicit second-order (or higher-order) schemes in the �∞ (or maximum) norm.

To make any progress one has to assess the stability in a weaker norm, as was
done in Sect. 11.2. A theoretical result that is especially useful in this regard is the
following.

Theorem 12.6 (von Neumann stability)A necessary condition for a finite difference
scheme (12.5) to have order p and be �2 stable, is that the stencil must have at least3

�p/2� grid points on either side of the point where the characteristic through the
target point (xm, tn+1) intersects the previous time level.

Proof A proof can be found in Jeltsch and Smit [9] and builds on earlier work of
Iserles and Strang.4 (The proof relies on the concept of order stars so it is beyond
the scope of this textbook.) �

An alternative interpretation of the von Neumann stability condition is that if μ∗ and
ν∗ are the number of upwind and downwind points relative to the intersection point
Q (see Fig. 12.2), then the maximum order of the scheme will satisfy

3This is known as the ceiling function. It implies that p/2 should be rounded up when p is an odd
integer.
4The historical background to this theorem is discussed in the seminal paper by Iserles and
Nørsett [8].

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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p ≤
{
2min(μ∗, ν∗), when p is even

2min(μ∗, ν∗) − 1, when p is odd.

We are now ready to turn our attention to specific methods. One way to construct
explicit schemes is to choose integers μ, ν, and then to determine the coefficients in
the (μ, ν)-stencil by applying the order relations (12.12). We will not take this path.
Instead we will follow the methodology used to approximate parabolic equations in
Sect. 11.1. This approach reveals more of the structure of the resulting methods and
generalises more readily to PDEs with variable coefficients, reaction terms or source
functions.

12.1.3 First-Order Schemes

We start with the lowest-order case. The simplest approximation of (12.1) derives
from the Taylor expansion

u(x, t + k) = u(x, t) + kut (x, t) + O(k2). (12.19)

Using the differential equation, we have ut = −aux so

u(x, t + k) = u(x, t) − akux (x, t) + O(k2).

Approximating the spatial derivative with the backward difference formula ux =
h−1−

x u + O(h) then leads to

un+1
m = un

m − (ak/h)−
x un

m + O(h) + O(k2).

The discrete version of this is the FTBS scheme (Forward Time, Backward Space),

U n+1
m = U n

m − c −
xU n

m = c U n
m−1 + (1 − c) U n

m, (12.20)

where, as discussed earlier, c = ak/h is the Courant number. The associated stencil
is shown in Fig. 12.4 (left). The figure also shows why the FTBS scheme is referred
to as the first-order upwind scheme in the case c > 0. The restriction 0 < c ≤ 1 is a
consequence of the CFL condition discussed earlier.

The local truncation error of the FTBS scheme is given by

Rn
m = 1

k
[u(xm, tn + k) − u(xm, tn)] + a

h
−

x u(xm, tn)

= (
ut + aux + 1

2kutt − 1
2ahuxx

) ∣∣n
m + O(h2) + O(k2), (12.21)

so it is O(h) + O(k), first order in space and time.

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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Fig. 12.4 Stencils for the FTBS method (12.20) (left) and the FTFS method (12.25) (right). The
dashed lines show the characteristic through the target point (xm , tn+1) (◦) when 0 < c < 1 (left)
and −1 < c < 0 (right)

Returning to the issue of stability. The coefficients on the right of (12.20) are
both positive for 0 < c ≤ 1. Thus the scheme is �∞ stable under this condition. It
is important to appreciate that (because of the CFL condition) the FTBS method is
unstable whenever c < 0, that is, when the characteristics move from right to left.
Another interesting feature is that (12.20) reduces to U n+1

m = U n
m−1 when c = 1.

This means that the FTBS scheme exactly mimics the relation (12.4) satisfied by the
exact solution when the characteristics x − at = constant pass diagonally through
the grid. This feature is called the unit CFL property.

Before looking at the �2 stability of the FTBS scheme, we recall that the advection
equation ut + aux = 0 has separation of variables solutions of the form u(x, t) =
A(t) eiκx , where κ is the wavenumber (that is, the number of waves per 2π units
of distance) with coefficients A(t) = e−iaκt that are periodic in time. This leads
to fundamental solutions5 of the form u(x, t) = e−iωteiκx , where ω = aκ is the
frequency (the number of waves per 2π units of time), and the relation between ω
and κ is known as the dispersion relation. Note that |u(x, t)| = |e−iωteiκx | = 1, so
a solution of the advection equation must have constant modulus. This property will
not, in general, be satisfied by finite difference approximations of the exact solution.

To test for �2 stability using the von Neumann approach, we simply substitute
U n

m = ξneiκmh into (12.20) (cf. Sect. 11.2). The resulting amplification factor is

ξ = 1 − c + ce−iκh . (12.22)

Note that ξ depends on κh and c. Writing ξ = (1−c+c cosκh)− i sin κh, taking the
square of its modulus and simplifying the trigonometric functions using half-angle
formulae, leads to

|ξ|2 − 1 = −4c(1 − c) sin2 1
2κh. (12.23)

Hence, |ξ| ≤ 1 for all wavenumbers κ if, and only if, 0 < c ≤ 1—the same condition
as formaximumnorm stability. Stability is not thewhole story however. Since |ξ| < 1
for almost all wavenumbers, components of the numerical solution are highly likely
to be damped out, as the following example will illustrate.

5The advection equation is a linear PDE with constant coefficients, so the real and imaginary parts
provide linearly independent (real) solutions.

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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Fig. 12.5 The FTBS solution to the problem in Example12.1 (dots) at t = 3 and the exact solution
(dashed line) for Courant number c = 0.45

Example 12.7 Use the FTBSmethod to solve the advection equation on the interval
0 ≤ x ≤ 3 with a = 1, together with the initial condition (12.2) and periodic
boundary conditions. Compute the numerical solution for one complete period (τ =
3) with a Courant number6 c = 0.45 using two spatial grids—a coarse grid (h =
1/60, 400 time steps) and a fine grid (h = 1/240, 1600 time steps).

When (12.20) is used at the left boundary (m = 0) to determine U n+1
0 it involves

the value U n−1 corresponding to a grid point lying outside the domain. However,
periodicity implies that U n

m+M = U n
m for all m and so the required value is equal to

U n
M−1. Also, periodicity implies that U n+1

M = U n+1
0 so that formula (12.20) is not

required at m = M .
The numerical results shown in Fig. 12.5 illustrate the demanding nature of this

test. The three pulses are heavily damped (smeared) to such an extent that the evolved
triangular and cosine-squared waves are almost indistinguishable. Computing an
accurate solution to this model problem will be a challenge! ♦
Insight into this disappointing behaviourmay be obtained by revisiting the expression
(12.21) for the local truncation error of the FTBS scheme. Differentiating the PDE
as done in (12.9) and substituting the result into (12.21) gives the expression

Rn
m = (

ut + aux − 1
2ah(1 − c)uxx

) ∣∣n
m + O(h2) + O(k2). (12.24)

Thus, the FTBS method is not only a first-order approximation of the advection
equation ut + aux = 0, it is also a second-order approximation of the advection–
diffusion equation

ut + aux = 1
2ah(1 − c)uxx ,

in which the diffusion coefficient ( 12ah(1 − c)) is positive for 0 < c < 1 and
tends to zero with h. The FTBS method, being a stable, consistent approximation of

6This is carefully chosen so as not to flatter schemes with the unit CFL property.
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this modified PDE will have solutions that behave like those of advection–diffusion
equations (see Example4.7) and as a result, will tend to become smoother as time
evolves! This approach of linking the solution of a numerical method to that of a
different PDE to the one it was designed to solve is known as the method of modified
equations. Its application to initial value problems for ODEs is described in some
detail by Griffiths and Higham [7, Chap.13].

To obtain a stable scheme for the advection equation when a < 0 the backward
space difference is replaced in (12.20) by a forward difference to give the FTFS
method,

U n+1
m = U n

m − c+
xU n

m = (1 + c)U n
m − cU n

m+1 (12.25)

whose stencil is shown in Fig. 12.4 (right). The order of local accuracy is again
O(h) + O(k) but in this case we have stability in both the �∞ and the �2 sense
whenever −1 ≤ c < 0 (see Exercise12.2).

The FTBS results in Fig. 12.5 illustrate why first-order methods are generally
regarded as being too inefficient for practical use (even for problems with smooth
solutions), motivating the construction of higher-order schemes. One obvious way
of increasing the local accuracy in space is to use a second-order central difference
operator x . Doing this leads to the FTCS method, given by

U n+1
m = (1 − cx )U

n
m = 1

2c U n
m−1 + U n

m − 1
2c U n

m+1. (12.26)

Unfortunately, while the local truncation error is O(h2) + O(k), the FTCS scheme
is unconditionally unstable (see Exercise12.3). More successful ways of increasing
the order of accuracy are described in the next two sections.

12.1.4 Second-Order Schemes

Thefirst scheme thatwe discuss is, perhaps, themost celebrated of all finite difference
methods for hyperbolic PDEs. To improve the spatial accuracy we need to include
the k2 term in the Taylor expansion used in the previous section, that is

u(x, t + k) = u(x, t) + kut (x, t) + 1
2k2utt (x, t) + O(k3). (12.27)

The time derivatives can again be replaced by space derivatives by observing that
ut = −aux and utt = a2uxx ((12.1) and (12.9)), to give

u(x, t + k) = u(x, t) − akux (x, t) + 1
2a2k2uxx (x, t) + O(k3).

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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Fig. 12.6 Stencils for the
second-order Lax–Wendroff
method (left) and for the
leapfrog method (right)

Taking second-order approximations in space

ux = h−1x u + O(h2), uxx = h−2δ2x u + O(h2),

and neglecting the remainder terms, then leads to the Lax–Wendroff method7

U n+1
m =

[
1 − cx + 1

2c2δ2x
]

U n
m, (12.28a)

which, when written out explicitly, takes the form

U n+1
m = 1

2c(1 + c)U n
m−1 + (1 − c2)U n

m + 1
2c(c − 1)U n

m+1. (12.28b)

The associated finite difference stencil is shown in Fig. 12.6 (left). The local trunca-
tion error is given by

Rn
m := 1

k

(
un+1

m − un
m + cx un

m − 1
2c2δ2x un

m

)
, (12.29)

which, using the definitions in Table6.1, can be written as

Rn
m =

(
ut + aux + 1

6k2uttt + 1
6ah2uxxx

) ∣∣n
m + O(kh2) + O(k3).

Differentiating the PDE a second time, and rearranging gives

Rn
m = 1

6ah2(1 − c2)uxxx
∣∣n
m + O(kh2) + O(k3), (12.30)

which shows that the method is consistent of second order.
There is no choice of c (other than the isolated cases c = 0,±1) for which the

coefficients in the scheme are all nonnegative, so we cannot prove stability in the
maximum norm by elementary means (a strict maximum principle does not hold).
By applying the von Neumann stability test the scheme can, however, be shown to be
�2 stable for values of c satisfying−1 ≤ c ≤ 1 (see Exercise12.7). This is significant
because it implies that the Lax–Wendroff scheme is capable of accommodating both
right- and left-moving waves (a > 0 and a < 0).

7Peter Lax (1926–), a renowned mathematician and a pioneer of the numerical analysis of PDEs,
is closely associated with the Courant Institute in New York.

http://dx.doi.org/10.1007/978-3-319-22569-2_6


12.1 Explicit Methods 289

0 0.5 1 1.5 2 2.5 3

0

0.5

1 h = 1/60

0 0.5 1 1.5 2 2.5 3

0

0.5

1 h = 1/240

x

Fig. 12.7 The Lax–Wendroff solution to the problem in Example12.8 at t = 3 and the exact
solution (dashed line) for Courant number c = 0.45

Example 12.8 Use the Lax–Wendroff method to solve the advection equation on
the interval 0 ≤ x ≤ 3 with a = 1, together with the initial condition (12.2) and
periodic boundary conditions. Compute the numerical solution with c = 0.45 for
one complete period (τ = 3) using two spatial grids—a coarse grid (h = 1/60, 400
time steps) and a fine grid (h = 1/240, 1600 time steps).

The numerical results are presented in Fig. 12.7. The most striking feature is that
the method does not cope well with the discontinuous nature of the square wave on
either grid. An “oscillating tail” accompanies each break in continuity. This behav-
iour is typical of solutions computed using the Lax–Wendroff method. The rounded
“corners” of the triangular wave are an indication that the second-order method is
also adding some extra diffusion. Close inspection of the solution for h = 1/60
reveals that the numerical wave (dots) travels slightly slower than the exact solution.
Compared to the results for the first-order FTCS scheme in Fig. 12.5, a substantial
improvement in the resolution of the solution is obtained using the Lax–Wendroff
method. ♦
An alternative second-order method is known as leapfrog.8 It is generated by
approximating the derivatives in the advection equation using simple centered
differences

ut |nm = k−1t u
n
m + O(k2) = 1

2k−1(un+1
m − un−1

m ) + O(k2)

ux |nm = h−1x un
m + O(h2) = 1

2h−1(un
m+1 − un

m−1) + O(h2),

leading to the three-level difference scheme

U n+1
m = U n−1

m − c(U n
m+1 − U n

m−1). (12.31)

8The method is named after the children’s playground game.
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It is called the leapfrog method because U n+1
m is obtained by adjusting the value of

U n−1
m without reference to the ‘centre’ value U n

m , as shown in Fig. 12.6. The method
has, by construction, a local truncation error that is O(h2) (for fixed c), and it can
be shown to be �2 stable for −1 ≤ c ≤ 1 (see Exercise12.12). Another significant
feature of leapfrog is that the (von Neumann) amplification factor has the property

|ξ(κh)| = 1, −1 ≤ c ≤ 1

for all wave numbers κ—so it displays no damping (like the PDE). This makes it
a nondissipative method, of which we shall have more to say later (in Sect. 12.4.1).
Although this may seem to be an attractive property, we shall see from the numerical
experiments that some level of damping (especially of high frequency components
of the solution) is often beneficial.

Since the method requires values at two previous levels tn and tn−1 in order to
compute the solution at the next time level tn+1, two levels of initial data are needed
to start the time stepping process. The initial condition provides the data at t0 = 0
while the second-order Lax–Wendroff scheme may be used to provide the data at t1.

Example 12.9 Use the leapfrog method to solve the advection equation on the
interval 0 ≤ x ≤ 3 with a = 1, together with the initial condition (12.2) and
periodic boundary conditions. Compute the numerical solution with c = 0.45 for
one complete period (τ = 3) using two spatial grids—a coarse grid (h = 1/60, 400
time steps) and a fine grid (h = 1/240, 1600 time steps), and compare the results
with those obtained using Lax–Wendroff in Example12.8.

The numerical results are presented in Fig. 12.8. The leapfrog solution profile (shown
dotted) shows a considerable level of noise. This is mostly generated by the discon-
tinuities in the square wave. If the computation was repeated with the square wave
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Fig. 12.8 The leapfrog method solution to the problem in Example12.9 at t = 3 and the exact
solution (dashed line) for Courant number c = 0.45
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removed from the initial condition, then the accuracy would be comparable to that
of the Lax–Wendroff method (shown in Fig. 12.7). ♦
The origin of the high level of numerical noise may be clarified by labelling the
grid points as being “odd” or “even” depending on whether m + n is odd or even.
The leapfrog update involves only even or only odd grid points. This means that the
solution on even grid points can be calculated independently of the solution on the
odd grid points (similar to the situation outlined in Exercise10.4). As a result, if the
initial condition involves a discontinuity, then consecutive points might have very
different values and this difference will persist for all time.

12.1.5 A Third-Order Scheme

An ideal scheme for solving the advection equation would retain the good fea-
tures of the Lax–Wendroff method but would be less diffusive and less dispersive.
To construct such a scheme we follow a procedure—discussed in Sect. 6.4.2 and
Example10.6—which aims to raise the order of the Lax–Wendroff scheme by includ-
ing a finite difference approximation of its local truncation error.

The local truncation error for the Lax–Wendroff scheme was derived earlier,

Rn
m = 1

6ah2(1 − c2)uxxx
∣∣n
m + O(kh2) + O(k3). (12.32)

The leading term in this expansion involves the third derivative of the solution in
space, so a finite difference approximation of this term must involve at least 4 con-
secutive grid points. These cannot be placed symmetrically about x = xm and so
a decision has to made about whether to bias the scheme in an upwind or down-
wind direction. Intuition (and the first-order scheme results in Sect. 12.1.3) suggests
a biasing of the stencil in the upwind direction. Thus, when a > 0,Rn

m in (12.32) is
approximated by − 1

6ah−1(1 − c2)−
xδ

2
xU n

m . Otherwise, when a < 0, the backward
difference−

x should be replaced by the forward difference +
x . Multiplying by k (to

account for the normalization) and subtracting the approximation from (12.28) gives
a variant of the QUICK scheme (Quadratic Upsteam Interpolation for Convective
Kinematics) originally devised by B.P. Leonard [13]:

U n+1
m = [1 − cx + 1

2c2δ2x + 1
6c(1 − c2)−

xδ
2
x ] U n

m (12.33a)

(in the case a > 0) which shall refer to as the third-order upwind scheme. This is
a well-defined (μ, ν)-method of the form (12.5) with μ = 2 and ν = 1 having the
following coefficients

α−2 = − 1
6c(1 − c2), α−1 = 1

2c(1 + c)(2 − c),

α0 = 1
2 (1 − c2)(2 − c), α1 = 1

6c(c − 1)(2 − c). (12.33b)

http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_6
http://dx.doi.org/10.1007/978-3-319-22569-2_10
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Fig. 12.9 Stencils for the third-order upwind scheme (12.33) for a > 0 (left) and for a < 0 (right)

The coefficients are cubic polynomials: this is a necessary condition for themethod to
be of order 3 (see Example12.4). The two possible alternative stencils are illustrated
in Fig. 12.9. A consequence of the inbuilt bias is that the scheme (12.33) is only
�2-stable for positive Courant numbers—specifically only when 0 ≤ c ≤ 1. This
and other aspects of the third-order scheme are explored in Exercise12.13.

Example 12.10 Solve the advection equation using the third-order upwind method
on the interval 0 ≤ x ≤ 3 with a = 1, together with the initial condition (12.2) and
periodic boundary conditions. Compute the numerical solution with c = 0.45 for
one complete period (τ = 3) using two spatial grids—a coarse grid (h = 1/30, 200
time steps) and a fine grid (h = 1/120, 800 time steps).

The numerical results are presented in Fig. 12.10. These computations appear to be
exceptionally accurate, not least because the computational grids have half as many
grid points as those used for the second-order methods earlier in the chapter. ♦

12.1.6 Quasi-implicit Schemes

Implicit methods are needed when solving parabolic PDEs—they can follow the
physics by avoiding the stability restrictions of explicit methods. The physics of
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Fig. 12.10 The third-order scheme solution to the problem in Example12.10 at t = 3 and the exact
solution (dashed line) for Courant number c = 0.45
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Fig. 12.11 Stencils for the BTBS scheme (12.34) (left) and the box scheme (12.38) (right). No
target points are shown since they cannot be uniquely defined

hyperbolic PDEs is different—so the case for using implicit methods is less clear-
cut. Two implicit schemes are described below. We will refer to them as “quasi-
implicit” since they only involve two unknowns at the new time level and (except
when periodic boundary conditions apply) may be applied without having to solve
systems of algebraic equations.

The simplest quasi-implicit method is obtained when the forward difference in
the FTBS scheme (12.20) is replaced by a backward difference, so that

U n+1
m = U n

m − c−
xU n+1

m , (12.34a)

or, alternatively
− c U n+1

m−1 + (1 + c)U n+1
m = U n

m . (12.34b)

We will refer to (12.34) as the BTBS method. The associated finite difference stencil
is shown in Fig. 12.11 (left). When the scheme is used to solve (12.1) with periodic
boundary conditions, the solution vector

un+1 = [U n+1
1 , U n+1

2 , . . . , U n+1
M ]T

at time tn+1 is obtained by solving the system Cun+1 = un where

C =

⎡
⎢⎢⎢⎣

(1 + c) 0 · · · −c
−c (1 + c)

. . .
. . .

0 −c (1 + c)

⎤
⎥⎥⎥⎦ . (12.35)

The matrix C is a circulant matrix. Each row is obtained by translating the preceding
row one entry to the right in a cyclic fashion.9 Also, all the entries of C−1 are
nonzero, so each component of un+1 depends on every component of un . This is
perfect—it implies that there is no CFL time step restriction. (This is not the case
when the scheme is used to solve problemswithmore realistic boundary conditions—
see Exercise12.23.) To apply the von Neumann stability test, we substitute U n

m =
ξn exp(iκmh) into (12.34b). The resulting amplification factor is the reciprocal of

9The action of the inverse of a circulant matrix may be efficiently computed using a Fast Fourier
Transform (FFT), see Strang [20].
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the FTBS scheme amplification factor (12.22) with −c instead of +c, that is,

ξ = 1

1 + c − ce−iκh
. (12.36)

Thus, since the FTBS scheme is �2 stable for −1 ≤ −c < 0, the BTBS scheme will
be �2 stable if, and only if c > 0 or c ≤ −1 (see Exercise12.23). The set of stable
Courant numbers is thus composed of two disjoint sets.

The order of accuracy of the FTBS scheme can be increased (while preserving a
compact stencil) by approximating the leading term in the local truncation error and
feeding it back into the scheme. To this end, we note that (see Exercise12.14) the
local truncation error of the scheme (12.34) is given by

Rn
m = 1

k

(
(1+c)un+1

m −cun+1
m−1−un

m

) = 1
2h(1+c) uxt |n+1

m +O(h2)+O(k2) (12.37)

The leading term can be approximated by 1
2k−1(1+ c)−

x−
t U n+1

m and, when multi-
plied by k (to compensate for the scaling factor in Rn

m) and subtracted from the left
hand side of (12.34), we obtain the second-order accurate box scheme

(1 − c)U n+1
m−1 + (1 + c)U n+1

m = (1 + c)U n
m−1 + (1 − c)U n

m, (12.38)

whose stencil is shown in Fig. 12.11 (right).
The associated von Neumann amplification factor is given by

ξ = 1 − c + (1 + c)e−iκh

1 + c + (1 − c)e−iκh
, (12.39)

from which it can be shown (see Exercise12.19) that the box scheme is nondissipa-
tive: |ξ| = 1 for all wavenumbers κ. It is also unconditionally �2 stable.

Example 12.11 Solve the advection equation using the box scheme on the interval
0 ≤ x ≤ 3 with a = 1, together with the initial condition (12.2) and periodic bound-
ary conditions. Compute the numerical solution with c = 0.45 for one complete
period (τ = 3) using two spatial grids—a coarse grid (h = 1/60, 400 time steps)
and a fine grid (h = 1/240, 1600 time steps)—and compare the performance with
that of the second-order explicit schemes.

Thenumerical results are presented inFig. 12.12.Theoverall resolution of the profiles
can be seen to be similar to that of the Lax–Wendroff method in Fig. 12.7, but contain
more noise due to the lack of any damping (but not as much as the leapfrog scheme).
The behaviour at discontinuities is strikingly similar to the Lax–Wendroff method
except that spurious oscillations are being generated downstreamof the discontinuity,
rather than upstream. ♦
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Fig. 12.12 The box scheme solution to the problem in Example12.11 at t = 3 and the exact
solution (dashed line) for Courant number c = 0.45

12.2 The Two-Way Wave Equation

The second prototypical hyperbolic PDE is the wave equation (pde.5),

utt = a2uxx (12.40)

with constant wave speed a. The simplest direct approximation is to use a second-
order centred difference for each of the derivative terms,

utt |nm = k−2δ2t un
m + O(k2), uxx |nm = h−2δ2hun

m + O(k2)

leading to,
k−2δ2t U n

m = a2h−2δ2hU n
m (12.41a)

or, when written out explicitly,

U n+1
m = 2(1 − c2)U n

m + c2(U n
m+1 + U n

m−1) − U n−1
m , (12.41b)

where c = ak/h.
The stencil of this scheme is the same as the 5-point approximation of the Lapla-

cian (Fig. 10.2, right), the main difference is that the new time value in (12.41b) can
be explicitly updated from the three known values on the previous time levels, while
maintaining stability. The method (12.41) requires two levels of starting values: this
mirrors the requirement that the PDE has two initial conditions in order to be well
posed. Suitable initial conditions, taken from Example4.5, are given by

u(x, 0) = g0(x), ut (x, 0) = g1(x). (12.42)

http://dx.doi.org/10.1007/978-3-319-22569-2_1
http://dx.doi.org/10.1007/978-3-319-22569-2_10
http://dx.doi.org/10.1007/978-3-319-22569-2_4


296 12 Finite Difference Methods for Hyperbolic PDEs

The first of these provides one of the initial conditions for the difference scheme:
U 0

m = g0(xm). For the second initial condition we use a process similar to that used
when approximating a Neumann boundary condition in Sect. 11.3.1. The first step is
to replace the t–derivative in (12.42) by the central time difference t which gives
the second-order approximation k−1tU

0
m = g1(xm), that is,

U 1
m − U−1

m = 2kg1(xm).

This involves a fictitious grid point (xm, t−1) but, when combined with (12.41b) at
n = 0, leads to the modified update formula

U 1
m = kg1(xm) + (1 − c2)g0(xm) + 1

2c2
(
g0(xm+1) + g0(xm−1)

)
(12.43)

which we use to compute the numerical solution at t = t1.
The CFL condition for (12.41) imposes the condition |c| ≤ 1. To assess the �2

stability of the method, we simply substitute U n
m = ξneiκmh into (12.41). With some

algebra, the amplification factor can be shown to satisfy the quadratic equation

ξ2 − 2(1 − 2c2s2)ξ + 1 = 0, (12.44)

where s = sin( 12κh). It may be also be shown (see Exercise12.20) that the roots of
the quadratic in (12.44) form a complex conjugate pair with product equal to 1 for all
wave numbers. Since the roots are real if c2 > 1, this means that the 5-point scheme
is �2 stable only when −1 ≤ c ≤ 1.

We shall return to the two-way wave equation in Example12.18 where it is treated
as a system of first-order PDEs.

12.3 Convergence Theory

The von Neumann stability test is a hidden gem. All the requisite information for
studying finite difference approximations of constant coefficient PDE problems with
periodic boundary conditions is contained in the amplification factor ξ. Indeed, when
solving constant coefficient hyperbolic PDEs, the factor ξ is not only used to establish
convergence of methods but also to provide insight into the qualitative nature of the
resulting numerical solutions.

We want to study the propagation of a single Fourier mode of the form

u(x, t) = ei(κx−ωt), κ ∈ R, (12.45)

where κ and ω represent the wavenumber and frequency, respectively. The Fourier
mode describes a (complex valued) travellingwave of unit amplitude andwavelength
2π/κ. The function u will be a solution of the one-way wave equation ut +aux = 0,
if the initial condition satisfies u(x, 0) = exp(iκx) and if there is a linear dispersion

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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relation relating the frequency to the wavenumber, that is, whenever

ω = aκ. (12.46)

In this case the velocity a = ω/κ is known as the phase speed. More generally, a
typical constant coefficient (hyperbolic) PDE will have solutions (12.45) whenever
a nonlinear dispersion relation is satisfied. (For the two-way wave equation utt =
a2uxx we require that ω2 = a2κ2 so the speed of propagation a = ω(κ)/κ is
different for different wavenumbers.)

The fact that the speed a is the same for waves of all frequencies is what makes
the one-way wave equation so special. When a typical Fourier mode is evaluated at
a grid point (mh, nk) we have

un
m = ei(κmh−ωnk) = [e−iωk]neiκmh

and, using the dispersion relation leads to

un
m = [e−icθ]neimθ, (12.47)

where θ = κh and c = ak/h. The von Neumann test checks the stability of a finite
difference solution with exactly the same spatial behaviour as un

m in (12.47): that is,
a grid solution that takes the specific form

U n
m = ξ(θ)neimθ, (12.48)

where we have written ξ = ξ(θ) here to emphasise its dependence on the scaled
wavenumber θ. The relationship between (12.47) and (12.48) means that the order
of consistency of a scheme can be identified by simply comparing the MacLaurin
expansion of e−icθ with that of the von Neumann amplification factor ξ(θ). The
process is illustrated in the following example.

Example 12.12 Suppose that the Lax–Wendroff method is used to solve the
one-way wave equation on a periodic domain, together with the initial condition
u(x, 0) = exp(iκx). Express the local truncation error in terms of the von Neumann
amplification factor, and hence deduce the order of consistency of the finite difference
approximation scheme.

The local truncation error of the Lax–Wendroff method is (from (12.29))

Rn
m = 1

k

(
un+1

m − un
m + cx un

m − 1
2c2δ2x un

m

)
. (12.49)

Substituting the exact solution (12.47) into this expression gives the alternative rep-
resentation

Rn
m = 1

k

(
e−icθ − 1 + ic sin θ + 2c2 sin2 1

2θ
)

un
m .
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However, from Exercise12.7, the amplification factor of the Lax–Wendroff scheme
is given by ξ(θ) = 1 − ic sin θ − 2c2 sin2 1

2θ, so that

Rn
m = 1

k

(
e−icθ − ξ(θ)

)
un

m . (12.50)

The order of consistency of the scheme is concerned with the behaviour ofRn
m in the

limit h → 0, that is, when θ = κh → 0. Thus, comparing the Maclaurin expansions

ξ(θ) = 1 − icθ − 1
2c2θ2 + 1

6 icθ
3 + O(θ4)

e−icθ = 1 − icθ − 1
2c2θ2 + 1

6 ic
3θ3 + O(θ4),

together with c = ak/h and θ = κh, we find

e−icθ − ξ(θ) = − 1
6 ic(1 − c2)θ3 + · · · = O(kh2) + O(k3).

We deduce that the order of consistency isRh = O(h2) when c is kept fixed. ♦
It can be shown that that the relationship (12.50) holds for all explicit methods of
(μ, ν)-type (see Exercise12.21). In this simplified periodic setting the global error
E = u − U can also be expressed as a function of the amplification factor ξ. As a
result, one can directly establish the convergence of the approximation scheme. Such
a proof is constructed in the following lemma.

Lemma 12.13 (consistency + stability = convergence) Suppose that a finite differ-
ence method with order of consistency p > 0 is used to solve the one-way wave
equation on a periodic domain, together with initial condition u(x, 0) = exp(iκx).
If the method is �2 stable (that is, if |ξ| ≤ 1), and if c is kept fixed, then the numerical
solution will converge to the exact solution in the limit h → 0.

Proof Using (12.47)–(12.48) the global error is

En
m = (

ζn − ξn)eimθ,

where ζ(θ) = exp(−icθ). Using the algebraic identity

ζn − ξn = (ζ − ξ)(ζn−1 + ζn−2ξ + · · · + ζξn−2 + ξn−1)

with |ζ| = 1 (from its definition) and |ξ| ≤ 1 (from �2 stability) we deduce that

|En
m | ≤ n |ζ − ξ| |eimθ| = n |ζ − ξ|.

It follows from (12.50) (see Exercise12.21) that |ζ − ξ| = k
∣∣Rn

m

∣∣, hence
|En

m | ≤ kn
∣∣Rn

m

∣∣ = tn
∣∣Rn

m

∣∣ = O(h p), (12.51)
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since the method is consistent of order p. This shows that the global error tends to
zero with h at exactly the same rate as the consistency error. �

More generally, discrete solutions of the one-waywave equation on a periodic domain
of length L will be linear combinations of the fundamental grid solution (12.48) (see
Appendix E). Such solutions can be written as

U n
m =

∑∗

| j |≤�M/2�
A jξ(θ j )

neimθ j , (12.52)

with θ j = 2π jh/L , where the coefficients {A j } depend on the initial condition. In
this case, the global error in the approximation of the PDE can also be written as a
sum of contributions, so that

|En
m | ≤

∑∗

| j |≤�M/2�
A j
∣∣ζ(θ j )

n − ξ(θ j )
n
∣∣eimθ j . (12.53)

Unfortunately, the simple argument in Lemma12.13 cannot be applied directly to
the individual terms in this expression, since θ j does not tend to zero when h→0 for
modes corresponding to high wavenumbers j ∼ 1/h. A possible way of overcoming
this obstacle is split the set of wavenumbers into “low”wavenumbers (where |ζ(θ j )−
ξ(θ j )| = O(h p+1) is small) and “high” wavenumbers (where |A j | is small and
stability implies that |ζ(θ j )

n − ξ(θ j )
n| is bounded by an O(1) constant). For full

details see Strikwerda [21, Chap.10].
Themoral of this section is that showing that a finite difference scheme is a conver-

gent approximation to a hyperbolic PDE will almost certainly involve a combination
of technical effort and physical intuition. Low wavenumber terms have to be treated
accurately and high wavenumber terms have to approximated in a stable fashion.
This is too demanding a programme to pursue at this stage.

12.4 Advanced Topics and Extensions

The material in the following sections is included for the benefit of readers who are
seeking specialist knowledge of practical aspects of the numerical solution of wave
propagation problems. The advanced material is supported by the inclusion of a set
of challenging exercises at the end of the chapter.

12.4.1 Dissipation and Dispersion

This material extends the discussion of travelling wave solutions in the preceding
section. Recall that the Fouriermode solution (12.45) to the one-waywave equation is
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special because |u(x, t)| = 1—the amplitude is constant for all time and for waves of
all wavenumbers. By way of contrast, the solution of the difference equation (12.48)
satisfies |U n

m | = |ξ(θ)|n , so that the amplitude varies with both n and θ = κh. From
(12.50), we see that the error in propagating a single Fourier mode over one time step
is given by e−icθ − ξ(θ) which, being a complex quantity, can be described by its
modulus and argument. These components of the error are known as dissipation and
dispersion. They will turn out to be useful concepts for understanding the qualitative
behaviour of practical schemes.

Definition 12.14 (Dissipative approximation method) A stable finite difference
scheme is said to be dissipative if |ξ(θ)| < 1 for θ �= 0. It is dissipative of order 2s
if there is a positive constant K such that

|ξ(θ)|2 ≤ 1 − Kθ2s .

A method is nondissipative if |ξ(θ)| = 1 for all θ ∈ [−π,π].
The effect of dissipation is greatest on the modes associated with the highest wave
numbers (when |θ| is not close to zero) and has a smoothing effect on solutions—
in accordance with the observation that stability, and not accuracy, is the overrid-
ing concern for high wavenumbers. The damping of modes associated with low
wavenumbers is relatively small (θ ≈ 0) and it diminishes as the order of dissipa-
tion increases—this is consistent with the maxim that high accuracy is particularly
important for low wavenumbers.

Example 12.15 Determine the order of dissipation of the FTBS scheme (12.20).

The amplification factor of the FTBS scheme satisfies (12.23), that is,

|ξ|2 − 1 = −4c(1 − c) sin2 1
2θ.

Thus, since | sin 1
2θ | ≤ 1

2 |θ|, we deduce that the FTBSmethod is dissipative of order
2 for 0 < c < 1. Graphs of the FTBS amplification factor are shown in Fig. 12.13
(left) for c = 0.45 (solid line) and c = 0.75 (dashed line). ♦
Using results given in Exercises12.7 and 12.13 and then repeating the argument
in Example12.15, shows that the Lax–Wendroff scheme (12.28) and the third-order
upwind scheme (12.33) are both dissipative of order four. These amplification factors
are also plotted in Fig. 12.13. It can be observed that the behaviour of |ξ(θ)| is very
similar for large wavenumbers for all three methods but, at low wavenumbers, the
greater damping of the FTBS method is evident. The solid curves corresponding
to c = 0.45 on the left and right are close to the boundaries of their respective
shaded regions because thesemethods experiencemaximumdamping at c = 0.5. The
Lax–Wendroff method experiences maximum damping at c = 1/

√
2, which is why

the dashed curve, corresponding to c = 0.75, is closer to the boundary of its shaded
region.



12.4 Advanced Topics and Extensions 301

θπ

1
|ξ(θ)|

FTBS

θπ

1
Lax-Wendroff

θπ

1
3rd order upwind

Fig. 12.13 The moduli of the amplification factors |ξ(θ)| for the FTBS, Lax–Wendroff and third-
order upwind methods as functions of θ = κh for c = 0.45 (solid line), c = 0.75 (dashed line). As
c varies in the interval (0, 1] the functions |ξ(θ)| all lie in the shaded areas

It can be shown, more generally, that an explicit method of order p has order
of dissipation 2s = p + 1, when p is odd, and 2s = p + 2, when p is even
(see Exercise12.21). Both the leapfrog scheme (12.31) and box scheme (12.38) are
nondissipative—there is no damping of high wavenumbers—and this is the reason
why the numerical solutions in Figs. 12.8 and 12.12 are so noisy.10

When evaluated at a grid point (mh, nk), the exact solution of (12.1) with periodic
boundary conditions is given by

un
m =

∑∗

| j |≤�M/2�
A jζ(θ j )

neimθ j , ζ(θ) = exp(−icθ), (12.54)

where the coefficients {A j } are the same as those in (12.52) whenever u and its
discrete counterpart U satisfy the same initial condition. As noted in Sect. 12.3, the
component Fourier modes are all transmittedwith the same phase speedω/κ because
the dispersion relation ω = aκ takes such a simple form. Thus, the terms in (12.54)
are synchronised and each represents a wave travelling with speed a. Unfortunately,
the same is not true for the numerical solution (12.52) because each term (generally)
travels with a different speed and the solution breaks up, or disperses. This is known
as dispersion error.

To determine the speed at which discrete Fourier modes (12.48) evolve, we need
to look at the argument of the complex-valued amplification factor ξ and rearrange
it into polar form so that

ξ(θ) = |ξ(θ)|e−iΩk, with Ω = −1

k
tan−1

(�(ξ)

�(ξ)

)
. (12.55)

The quantityΩ(κ) represents the dispersion relation of the numerical scheme. Using
(12.55) the discrete Fourier mode can be expressed as

U n
m = ξ(θ)neimθ = |ξ(θ)|n ei(κmh−Ωnk) (12.56)

10The presence of the square wave in the initial condition further excites the high wavenumbers, by
which we mean that the coefficients {A j } in (12.52) are significantly larger for large | j |.
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which is a discrete analogue of the continuous Fourier mode,

u(x, t) = ei(κx−ωt). (12.57)

Thus, in addition to the error in amplitude when |ξ(θ)| < 1, there will generally
be an error in the phase speed: the continuous mode travels with speed ω/κ = a,
whereas the discrete mode moves at a (generally different) speed ah = Ω/κ.

Example 12.16 Determine the dispersion relation and the phase speed of numerical
solutions computed using the FTBS scheme (12.20).

From (12.22) we have ξ = 1 − c + ce−iθ so that

ξ = 1 − c + c cos θ − ic sin θ = (
1 − 2c sin2 1

2θ
)− ic sin θ

from which we obtain the numerical speed

ah = Ω

κ
= a

cθ
kΩ = a

cθ
tan−1

(
c sin θ

1 − 2c sin2 1
2θ

)
.

When c = 1 this reduces to ah = a, the exact phase speed, in accordancewith the unit
CFL property alluded to in Example12.7. This expression for the numerical speed
in not so informative in its present form but since accuracy depends on the behaviour
of the low wavenumber modes (when θ is small), it is appropriate to construct the
MacLaurin series expansion of ah which (using a computer algebra package) gives

ah/a = 1 − 1
6 (1 − 2c)(1 − c)θ2 + O(θ4). (12.58)

This expansion shows that, in general, ah = a + O(θ2). We can also see that ah =
a + O(θ4) when c = 0.5. This explains why the numerical solution for c = 0.45 in
Fig. 12.5, though heavily damped, predicts the location of the maxima in the solution
remarkably well. The expansion also suggests that ah < a when 0 < c < 1/2

(numerical waves travel too slowly) and that ah > a when 1/2 < c < 1 (they travel
too quickly). ♦
A graphical illustration of the FTBS dispersion error is given in Fig. 12.14 (left) for
c = 0.45 and c = 0.75, together with corresponding results for the Lax–Wendroff
and third-order upwind methods. For the Lax–Wendroff scheme (12.28) the expan-
sion of the numerical phase speed ah takes the specific form

ah/a = 1 − 1
6 (1 + 2c2)θ2 + O(θ4), (12.59)
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Fig. 12.14 The relative wave speeds ah(θ)/a of the FTBS, Lax–Wendroff and third-order upwind
methods as functions of θ = κh for c = 0.45 (solid line), c = 0.75 (dashed line). As c varies in
the interval (0, 1] the functions ah(θ)/a all lie in the shaded areas

which also implies second-order phase-speed accuracy. The leading term in the
expansion (12.59) suggests that numerical waves computed using Lax–Wendroff
are likely to move too slowly (ah < a, for all values of c) compared to the exact
solution. This tendency is clearly visible for the high-frequency components of the
numerical solutions shown in Fig. 12.7. The corresponding expansion for the third-
order method (12.33) is given by

ah/a = 1 − 1
60 (1 − c2)(1 − 2c)(2 − c)θ4 + O(θ6). (12.60)

This shows that the phase-speed error of this scheme is really small—the accuracy is
of order six when c = 0.5 and when c = 1. This explains why the graph of ah(θ)/a
in Fig. 12.14 (right) remains so close to 1 for much of the interval 0 ≤ θ ≤ π when
c = 0.45.

While there are many nondissipative schemes, it is generally not possible to con-
struct methods with zero dispersion error (except for special values of c, for example,
where the unit CFL property holds). For convergent methods, dispersion errors are
small for small values of θ and normally increase as θ increases. This means that,
ideally, methods should have a high order of dissipation (so that |ξ| is very close to
1 for small values of θ) and be such that |ξ| is small for θ close to π. This will mean
that the high wavenumber modes—which have the largest dispersion errors—will
be rapidly damped and their effect will not be noticeable in the numerical solution
(dissipation effects will actually smooth the solution).

The amplification factor can also shed light on other issues relating to the approx-
imation of hyperbolic PDEs. One such issue is group velocity—where groups of
waves with similar wavenumbers can travel at a speed that is quite different to that
of the individual modes. We refer to Strikwerda [21] or Trefethen [25] for further
details.
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12.4.2 Nonperiodic Boundary Conditions

An important lesson to be taken from Sect. 4.1 is that boundary conditions for the
advection equation need to be carefully specified if the resulting initial-boundary
value problem is to be well-posed. Further issues emerge when hyperbolic boundary
value problems are approximated by finite difference methods. Ways of dealing with
some of these issues will be discussed in this section.

To fix ideas, suppose that we want to solve the advection equation with unit wave
speed (a = 1) in the quarter plane x ≥ 0, t ≥ 0 with initial/boundary conditions
given by

u(x, 0) = g0(x), x ≥ 0; u(0, t) = g1(t), t ≥ 0.

This problem is well posed and its exact solution is discussed in Example4.3.
To define a computable finite difference solution the domain must be truncated by
choosing two positive numbers L , and τ , and then defining a grid within the rectangle
0 ≤ x ≤ L , 0 ≤ t ≤ τ . Clearly L and τ must be sufficiently large that the com-
putational rectangle encloses all interesting phenomena. An obvious observation is
that while the numerical solution at a given point (xm, tn) will never be influenced
by events at later times t > tn , it may (depending on the geometry of the differ-
ence stencil) be affected by events for x > xm (even though the characteristics only
transmit data from left to right when a > 0). In this case the resulting numerical
solution could be (very) sensitive to the specific choice of L . To avoid this possibility
a reasonable strategy would be to conduct numerical experiments with at least two
different values of L .

With a grid size set by h = L/M and a specific Courant number c the corre-
sponding time step is given by k = ch. Computing a solution at all grid points in
the rectangle with a stencil that resembles that of the FTBS scheme (Fig. 12.4, left)
poses no problem. However, for a spatially centered scheme such as Lax–Wendroff
(Fig. 12.6, left), there are difficulties at the outflow x = L . For example, when n = 0,
the update formula (12.28b) can only be applied for m = 1, 2, . . . , M −1 to provide
values of U 1

1 , U 1
2 , . . . , U 1

M−1. The boundary condition at x = 0 provides one of
the “missing” values: U 1

0 = g1(k), but there is no corresponding boundary value
available at x = L to specify U 1

M—indeed, if there were, the problem would be
over-specified.

A standard way of dealing with this issue is to use the FTBS scheme (12.20) at
m = M , that is

U 1
M = cU 0

M−1 + (1 − c)U 0
M , (12.61)

which completes the solution at time level t = t1. The process may then be repeated
for n = 1, 2, . . .. A different interpretation of the right-side boundary condition is
given in Exercise12.24. In general, only those points marked ◦ in Fig. 12.15 (left) can
be computed by the “vanilla” Lax–Wendroff method. The use of the FTBSmethod as
a boundary condition affects the solution at all the grid points indicated in Fig. 12.15
(right), that is, those in the domain of influence of Q. The next example provides

http://dx.doi.org/10.1007/978-3-319-22569-2_4
http://dx.doi.org/10.1007/978-3-319-22569-2_4
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t P(X, T )

x = LCO xQ(L, 0)

Fig. 12.15 (Left) the grid values that can be calculated up to t = T with a method (such as the
Lax–Wendroff scheme) with a (1, 1)-stencil for a given initial condition on t = 0 and a boundary
condition along x = 0. (Right) the domain of influence of the point (L , 0)

insight into the extent towhich this first-order accurate boundary condition “pollutes”
the overall solution.

Example 12.17 Use the Lax–Wendroff method together with the FTBS right-side
boundary condition, to solve the advection equation with a = 1 on the computational
rectangle L = 1, T = 0.45, with an initial condition u(x, 0) = x2 and a boundary
condition u(0, t) = t2, so that the exact solution is u(x, t) = (x − t)2. Compute the
solution with c = 0.45 using grid size h = 1/16 and compare the solution behaviour
with that obtained using the leapfrog method with the same boundary conditions.

The exact solution to this problem is quadratic in x and t so the local truncation error
of the Lax–Wendroff method (12.30) is identically zero. As a result, the numerical
solution must be exact at all grid points in the shaded area in Fig. 12.15 (left). The
local truncation error of the FTBS scheme is given by (12.21) and for the specific
solution u, is a constant value at each grid point,

Rn
m = ( 12kutt − 1

2huxx )
∣∣n
m = k − h = −h(1 − c). (12.62)

The actual global error is plotted in Fig. 12.16 (left) for c = 0.45 and h = 1/16. The
figure suggests that En

m → constant as n → ∞, with a different constant Am , say,
for each m. With a little effort (see Exercise12.25) it may be shown that

Am = 1
2 (1 − c)2h2

(
−1 + c

1 − c

)m+1−M

. (12.63)

This expression has two important ingredients. First, the global error is O(h2),
even though the local truncation error of the right-side boundary condition is only
first-order accurate. This is good news. The second item of good news is that the
error due to the boundary condition decays geometrically as we move away from
the outflow boundary. That is, En

m ∝ ρM−m as n → ∞ with geometric ratio
ρ := −(1 + c)/(1 − c). Clearly ρ < −1 for 0 < c < 1 and the error changes
sign and reduces by a factor |ρ| per grid point as we move away from the boundary.
The pollution effect increases, both in amplitude and extent, as c → 0 while the
effects decrease as c → 1.
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Fig. 12.16 (Left) the global error for Example12.17 with M = 16 and c = 0.45 using the
Lax–Wendroff method with an outflow boundary condition provided by the FTBS scheme. (Right)
the corresponding global error when using the leapfrog scheme

The global error for the leapfrog method is shown on the right of Fig. 12.16. Its
behaviour is similar to that of the Lax–Wendroff method in that it oscillates in the
spatial direction while approaching a limit in the t-direction. There is, however, no
damping as wemove away from the boundary (the counterparts of the limiting values
satisfy Am+1 = Am−1), so the inaccuracy from the boundary condition pollutes the
entire domain of influence of the boundary points. The difference in behaviour can
be attributed to the fact that the amplification factor of the Lax–Wendroff method
satisfies |ξ(κh)| < 1 for κ �= 0, whereas |ξ(κh)| = 1 for the leapfrog scheme. ♦

When using methods of higher order such as the third-order scheme used in
Example12.10, a more accurate right-side boundary condition is going to be needed.
One possibility is to use the (second-order) Warming–Beam scheme

U n+1
M = − 1

2c(1 − c)U n
M−2 + c(2 − c)U n

M−1 + 1
2 (1 − c)(2 − c)U n

M . (12.64)

Since the third-order scheme method uses two upwind grid values it cannot be used
at x = x1 and a simple remedy (which does not affect the order of accuracy of the
global error) is to use the Lax–Wendroff stencil at grid points contiguous with the
inflow boundary x = 0. This remedy does, however compromise the accuracy of
the third-order scheme at grid points in the domain of influence of grid points where
the Lax–Wendroff method is applied.

We complete this section by revisiting the boundary value problem for the two-
way wave equation described in Sect. 12.2. By following the procedure outlined
in Exercise9.30(f) the two-way wave equation (12.40) may be written as a pair of
coupled first-order PDEs ut = avx and vt = aux and then as a first-order system

ut + Aux = 0, A =
[

0 −a
−a 0

]
, (12.65)

where u = [u, v]T. This suggests an alternative approach to generating finite differ-
ence approximations that is explored in the following example.

http://dx.doi.org/10.1007/978-3-319-22569-2_9
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Example 12.18 Show how the Lax–Wendroff scheme may be applied to solve the
first-order system (12.65) on the strip 0 < x < 1, t > 0 with boundary conditions
u(0, t) = u(1, t) = 0 and initial conditions u(x, 0) = g0(x), ut (x, 0) = g1(x).

The key is to use the eigenvalues and eigenvectors of A to uncouple the PDEs—see
Sect. 9.1.

The eigenvalues are λ± = ±a with corresponding eigenvectors v± = [1,∓1]T .
Multiplying both sides of (12.65) by vT+ and vT−, in turn, leads to two scalar advection
equations

(u − v)t + a(u − v)x = 0 (12.66a)

(u + v)t − a(u + v)x = 0 (12.66b)

having dependent variables (u − v) and (u + v) and wave speeds +a and −a,
respectively. When these equations are approximated by the Lax–Wendroff method
we obtain

(U n+1
m + V n+1

m ) = (U n
m + V n

m) + cx (U
n
m + V n

m) + 1
2c2δ2x (U

n
m + V n

m)

(U n+1
m − V n+1

m ) = (U n
m − V n

m) − cx (U
n
m − V n

m) + 1
2c2δ2x (U

n
m − V n

m),
(12.67)

which involve the two Courant numbers ∓c, where c = ak/h. By adding and
subtracting these we find

U n+1
m = U n

m + cx V n
m + 1

2c2δ2xU n
m,

V n+1
m = V n

m + cxU n
m + 1

2c2δ2x V n
m .

(12.68)

These equations may also be written in the matrix-vector form

Un+1
m = [I − Cx + 1

2C2δ2x ]Un
m, (12.69)

where Un
m = [U n

m, V n
m]T, I is the 2 × 2 identity matrix and C = (k/h)A. Thus a

scalar method may be applied to a vector system simply by replacing occurrences of
the Courant number c by the Courant matrix C = (k/h)A.

The pair (12.67) will be �2-stable provided that their Courant numbers satisfy
the requirements of the von Neumann test which, for the Lax–Wendroff method are
−1 ≤ c ≤ 1. That is, ak ≤ h for stability (assuming a to be positive). For other
matrices A the eigenvalues of C should satisfy the requirements of the von Neumann
test. Thus, when A has (real) eigenvalues λ± the time step should be restricted by
−h ≤ kλ± ≤ h. This illustrates the importance of having finite difference schemes
available that are stable for both positive and negative Courant numbers.

http://dx.doi.org/10.1007/978-3-319-22569-2_9
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The problem is posed with two initial conditions (u(x, 0) = g0(x) and ut (x, 0) =
g1(x)) for u, but none for v. This is easily remedied since

vx (x, 0) = 1

a
ut (x, 0) = 1

a
g1(x)

may be integrated with respect to x to give v(x, 0).
The internal values U 1

m and V 1
m for m = 1, 2, . . . , M − 1 can now be calculated

from the initial data using the finite difference equations (12.68). The given boundary
conditions U 1

0 = U 1
M = 0 complete the solution for U at t = t1 but no equivalent

conditions are provided for V 1
0 or V 1

M . Supplementary conditions, known as numer-
ical boundary conditions, are therefore required for V . Just as it was emphasised in
Example4.3 that boundary conditions for hyperbolic PDEs should be imposed on
incoming characteristics in order for problems to be well-posed, numerical boundary
conditions should be imposed on quantities carried by outgoing characteristics so
as not to compromise the well-posedness of the problem. For example, specifying a
value for V at a boundary point would over-specify the problem.

The outward characteristic at x = 1 is governed by (12.66a) (when a > 0). The
FTBS method (12.20) (with dependent variable V − U ) is a possible approximation
of this equation since it is stable for Courant numbers in the range 0 < c ≤ 1. This
leads to

V 1
M = (1 − c)V 0

M + c(V 0
M−1 − U 0

M−1), (12.70)

where we have used U 0
M = U 1

M = 0 from the given boundary condition. The deter-
mination of a suitable boundary condition for V 1

0 at x = 0 is left to Exercise12.28.
The numerical solution at t = t1 is now complete and the whole process is then
repeated to determine the solution at times t = t2, t3, . . .. ♦
Treating the two-way wave equation as a system of PDEs is undoubtedly more
involved that the direct approach taken in Sect. 12.2 but this may be offset by having
greater flexibility (allowing the use of dissipative methods, for example).

12.4.3 Nonlinear Approximation Schemes

Theorem12.6 is a challenging result: positive type finite difference schemes of the
form (12.5) are first-order convergent at best. The aim of this concluding section is to
show that this order barrier can be lifted by allowing the coefficients {α j } to depend
on the solution at time level n; that is, by devising a nonlinear approximation scheme.
Our treatment of this issue is heavily based on the expository paper of Sweby [24]
in which the earlier works of Harten, van Leer, Roe, Chakravarthy–Osher and others
are drawn into a common framework.

http://dx.doi.org/10.1007/978-3-319-22569-2_4
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Our starting point is the linear conservation law (see Sect. 3.2),

ut + fx (u) = 0, (12.71)

with the flux function f (u) = au, where a > 0. The original methods were designed
for use on nonlinear conservation laws (like that in Extension3.2.4). The approxi-
mation we want to study is the explicit method

U n+1
m = U n

m − βn
m−

xU n
m (12.72)

which is reminiscent of the FTBS scheme (12.20) except that the coefficient βn
m is

not specified at the moment, but is allowed to vary with m and n (it will, in fact, be
chosen to depend on the solution vector U n· at time level n). A sufficient condition
for the explicit scheme (12.72) to be of positive type is that

0 ≤ βn
m ≤ 1. (12.73)

A good starting point is the first-order upwind scheme

U n+1
m = U n

m − c−
xU n

m, (12.74)

which is of positive type when c is subject to the CFL condition 0 < c ≤ 1. Next,
note that, with the aid of the identities

xU n
m = −

xU n
m − 1

2δ
2
xU n

m, δ2xU n
m = −

x+
xU n

m, (12.75)

(see Exercise6.1) the Lax–Wendroff scheme (12.28) can be expressed as a correction
of the FTBS scheme,

U n+1
m = U n

m − c−
xU n

m − −
x

( 1
2c(1 − c)+

xU n
m

)
, (12.76)

which raises its order of consistency from one to two. The additional term 1
2c(1 −

c)+
xU n

m is known as the anti-diffusive flux: its inclusion counters the excessive
diffusion in the FTBS method that is evident in Fig. 12.5.

Thevisual evidence (theoscillatoryLax–Wendroff solutions inFig. 12.7) indicates
that the amount of anti-diffusive flux that is added in (12.76) is excessive. As a
compromise, one could define a modified scheme

U n+1
m = U n

m − c−
xU n

m − 1
2c(1 − c)−

x

(
ϕn

m+
xU n

m

)
, (12.77)

which involves a special grid function ϕ known as a flux limiter. Noting that the
oscillations in Fig. 12.7 occur where there is a sharp change in the gradient of the
solution, it is natural to choose the limiter to be a function of the ratio of successive
gradients. That is, in a discrete setting, to choose ϕn

m = ϕ(ρn
m) where

http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_3
http://dx.doi.org/10.1007/978-3-319-22569-2_6
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ρn
m = −

xU n
m

+
xU n

m
.

Note that the grid function ρn
m is unbounded if +

xU n
m = 0 (with −

xU n
m �= 0) that is,

whenever the numerical solution is about to become flat. The remaining challenge is
to construct a limiter functionϕ(ρ) so as tomaximize the anti-diffusive flux of (12.77)
subject to the modified scheme being of positive type and second-order consistent.

We first observe that ρn
m < 0 whenever the point xm is a local maximum (or a

local minimum) of U n
m . To retain the FTBS method in these cases, we will insist that

ϕ(ρ) = 0 whenever ρ ≤ 0. Next, we express (12.77) in the form (12.72):

βn
m = c + 1

2c(1 − c)
−

x (ϕ(ρn
m)+

xU n
m)

−
xU n

m
,

and then rearrange it (see Exercise12.29) to give the explicit expression

βn
m = c

(
1 + 1

2 (1 − c)
(ϕ(ρn

m)

ρn
m

− ϕ(ρn
m−1)

))
. (12.78)

It can than be checked that the flux-limited scheme will be of positive type for
0 ≤ c ≤ 1 (that is (12.73) holds) when

∣∣∣∣ϕ(ρn
m)

ρn
m

− ϕ(ρn
m−1)

∣∣∣∣ ≤ 2. (12.79)

Moreover the condition (12.79) will be satisfied if ϕ(ρ) is chosen so that it lies in the
region that is highlighted in Fig. 12.17, that is,

0 ≤ ϕ(ρ) ≤ min{2, 2ρ}. (12.80)

0

1

2

0 1 2 3

ϕLW(ρ) = 1

ϕVL(ρ) =
|ρ|+ρ

1+ρ

ϕWB(ρ) = ρ

ρ

ϕ(ρ)

Fig. 12.17 The region where the flux-limited method (12.77) is of positive type (light shading) and
where it is also consistent of second order (dark shading). Dashed lines show the Lax–Wendroff,
Warming–Beam and van Leer limiters
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Next, to ensure second-order consistency of the flux-limited scheme (12.77), we
make the observation that any second-order scheme that is defined by the four
values {U n

m−2, U n
m−1, U n

m, U n
m+1}, will also have to be a linear combination of the

Lax–Wendroff (12.28) and Warming–Beam (12.64) methods. Moreover, both meth-
ods can be interpreted as a flux-limited scheme (12.77) by choosing the limiter func-
tion appropriately: ϕLW(ρ) = 1 and ϕWB(ρ) = ρ, respectively (see Exercise12.30).
As a result, any method having the limiter

ϕ(ρ) = (1 − θ(ρ))ϕLW(ρ) + θ(ρ)ϕWB(ρ)

= 1 + θ(ρ)(ρ − 1), 0 ≤ θ(ρ) ≤ 1,

will also be consistent of second order. The flux limiters ϕ(ρ) of interest are thus
given by: ρ ≤ ϕ(ρ) ≤ 1 for 0 < ρ ≤ 1 and 1 ≤ ϕ(ρ) ≤ ρ for ρ ≥ 1. These two
regions are also highlighted (by dark shading) in Fig. 12.17. Many limiters have been
proposed in the literature and some of these are listed in Table12.1. Further details
can be found in the excellent book by Leveque [14].

Example 12.19 Solve the advection equation using the scheme (12.77) with the van
Leer flux limiter on the interval 0 ≤ x ≤ 3 with a = 1, together with the initial
condition (12.2) and periodic boundary conditions. Compute the numerical solution
with c = 0.45 for one complete period (τ = 3) using two spatial grids—a coarse
grid (h = 1/60, 400 time steps) and a fine grid (h = 1/240, 1600 time steps).

Table 12.1 Possible choices for the flux limiter function

Van Leer ϕV L (ρ) = (|ρ| + ρ)/(|ρ| + 1)

Minmod (Roe) ϕ(ρ) = max{0,min(ρ, 1)}
Superbee (Roe) ϕ(ρ) = max{0,min(2ρ, 1),min(ρ, 2)}
Chakravarthy–Osher ϕ(ρ) = max{0,min(ρ,ψ)}, 1 ≤ ψ ≤ 2.

The Van Leer limiter is shown in Fig. 12.17

0 0.5 1 1.5 2 2.5 3
0

0.5

1 h = 1/60

0 0.5 1 1.5 2 2.5 3
0

0.5

1 h = 1/240

x

Fig. 12.18 The numerical solution (dots) to the problem in Example12.19 and the exact solution
(dashed line) using the van Leer flux limiter
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The numerical results are presented in Fig. 12.18. Although there is clearly some
smoothing of sharp edges, the results show a marked improvement over the schemes
used earlier in this chapter. This improvement is achieved with a negligible increase
in computational cost. ♦
Exercises

12.1 ✩Show that the leading term in the local truncation error (12.21) of the FTBS
scheme may be written as − 1

2ah(1 − c) uxx |nm .
12.2 ✩Show that the FTFS method (12.25) is stable in both the �∞ and the �2 sense
for −1 ≤ c < 0.

12.3 ✩Show that the FTCS method (12.26) does not satisfy the requirements of a
positive typeoperator for afixed c �= 0. Showalso that its amplification factor satisfies
|ξ| = 1 + c2 for κh = π/2 demonstrating that the FTCS method is unconditionally
unstable when h, k → 0 with c fixed.

12.4 ✩ Show that the scheme

U n+1
m = U n

m − cxU n
m + 1

2 |c| δ2xU n
m

reduces to either the FTBS method (12.20) or the FTFS method (12.25) depending
on whether c > 0 or c < 0.

12.5 Consider the Lax–Friedrichs scheme

U n+1
m = U n

m − cxU n
m + 1

2δ
2
xU n

m

for solving the advection equation.

(a) Sketch the stencil of the method.
(b) Determine the principal part of the local truncation error and confirm that the

scheme is first-order consistent.
(c) Are there values of c for which the scheme is of positive type?
(d) Find the range of values of c for which the scheme is �2 stable.
(e) What benefit would there be in using this method in preference to the FTBS

scheme in (12.20)?
(f) Show that the scheme is a second-order consistent approximation of a modified

equation of the form ut +aux = ε∂�
x u. Determine � and the relationship between

ε and then parameters c, h and k. How would you expect the scheme to perform
when solving the problem in Example12.1?

12.6 ✩Calculate the Lax–Wendroff scheme solution U 1
m for m = 1, 2, 3, 4 and

c = 0.5 of the advection equation starting from the discontinuous initial condi-
tion U 0

m = g(mh), where g(x) = 1 for x < 2.5h and g(x) = 0 for x > 2.5h Sketch
the solution and compare it to the exact solution after one time step.
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12.7 Show that the amplification factor for the Lax–Wendroff scheme (12.28) is
given by

ξ = 1 − ic sin κh − 2c2 sin4 1
2κh

and that it satisfies
|ξ|2 − 1 = −4c2(1 − c2) sin2 1

2κh.

Deduce that the method is �2 stable for −1 ≤ c ≤ 1.

12.8 Verify that the coefficients of the FTBS method (12.20), the Lax–Wendroff
method (12.28) and the third-order method (12.33) can all be determined by substi-
tuting suitable values of μ and ν into the formula (12.17).

12.9 Use the technique outlined in Sect. 12.1.1 to construct a (μ, ν)-method of the
form (12.5) with μ = 2, ν = 0 that is a second-order consistent approximation of
the advection equation. (Hint: you are following in the footsteps of Warming and
Beam.)

12.10 The Newton backward difference formula that is given by

Φ(x) = U n
m +

p∑
j=1

(
s + j − 1

j

)(−
x

) j
U n

m

with binomial coefficient
(s+ j−1

j

) = 1
j ! (s + j − 1)(s + j − 2) · · · s and with s =

(x − xm)/h, interpolates the finite difference solution values at the points xm+ j

( j = −p,−p+1, . . . , 0). Byusing this formula in (12.15)with p=1 and p=2 (rather
than the Lagrange interpolant) derive the FTBS scheme (12.20) and the Warming–
Beam scheme (12.64), respectively.

12.11 Leith’s method for solving the advection–diffusion equation

ut + aux = εuxx

in situations where 0 < ε � |a| is based on a Lax–Wendroff approximation of the
terms ut + aux to which is added the standard second-order approximation of the
diffusion term. The resulting scheme is

U n+1
m = U n

m − cxU n
m + (r + 1

2c2)δ2xU n
m,

where c = ak/h and r = εk/h2.

(a) What is the order of consistency of this approximation scheme?
(b) Why do the leading terms in the local truncation error suggest that this scheme

is particularly appropriate for solving advection–dominated problems?
(c) Determine the range of parameters r and c for which Leith’s scheme is �2 stable.

Show that the stability conditions are independent of the parameters a and ε
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when expressed in terms of the scaled grid sizes ĥ = ah/ε and k̂ = a2k/ε.
Hence sketch the region in the h-k plane which leads to a stable method.

12.12 Determine the leading term in the local truncation error of the leapfrog scheme
(12.31) for approximating the advection equation and show that it is second order in
both space and time.

Show that the scheme has solutions of the form U n
m = ξneiκmh provided that ξ

satisfies a certain quadratic equation. Deduce that both roots satisfy |ξ| = 1 for all
κ if, and only if, −1 ≤ c ≤ 1. (This establishes the conditional �2 stability of the
leapfrog scheme.)

12.13 ★For the third-order scheme (12.33), show that

(a) the scheme reduces to U n+1
m = U n

m−c when c = −1, 0, 1, 2 and the exact
solution of the PDE ut + aux = 0 is reproduced.

(b) the local truncation error is O(h3) + O(k3).
(c) the CFL condition is −1 ≤ c ≤ 2.
(d) the von Neumann amplification factor satisfies

|ξ|2 − 1 = − 4
9c(1 − c2)(2 − c) sin4 1

2θ
[
4c(1 − c) sin2 1

2θ + 3
]
,

where θ = κh.
(e) |ξ|2 ≤ 1 for all θ if, and only if, 0 ≤ c ≤ 1.

12.14 Show that the leading term in the local truncation error of the BTBS method
(12.34) is given by (12.37).

12.15 Suppose that C is the M × M circulant matrix (12.35) that arises in the study
of the BTBS approximation of the advection equation and that v j ∈ C

M ( j =
1, 2, . . . , M) is the vector whose mth component is e2πim j/M (m = 1, 2, . . . , M).
Show that v j is an eigenvector of C corresponding to the eigenvalue 1/ξ(2π jh).

12.16 The BTFS scheme

(1 − c)U n+1
m + c U n+1

m+1 = U n
m

may be obtained by changing the direction of the spatial difference operator in
(12.34). Show that the leading term in the local truncation error is
− 1

2ah(1 − c) uxx |n+1
m . Examine the �2 stability of the scheme and compare it with

the CFL stability condition.

12.17 Suppose that ξF(θ) (see (12.22)) and ξB(θ) (see Exercise12.16) denote the
amplification factors for the FTBS and BTFS methods, respectively, where θ = κh.
Show that ξF(θ) ξB(θ) = e−iθ and hence deduce the �2 stability restrictions of the
BTFS method from those of the FTBS method.
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12.18 ★ Show that the leading term in the local truncation error of the box scheme
(12.38) is given by11 − 1

6ah2(1 − c2)uxxx .

12.19 ✩Show that the amplification factor (12.39) of the box scheme may be written
as ξ = eiκhη/η∗, where η = (1− c)+ (1+ c)e−iκh and η∗ is its complex conjugate.
Deduce that |ξ| = 1 for all wave numbers, so that the box scheme is unconditionally
�2 stable.

12.20 Deduce from the quadratic polynomial (12.44) that (i) the roots form a com-
plex conjugate pair with modulus equal to 1 for all wavenumbers when c2 ≤ 1 and
(ii) there are wavenumbers κ for which the roots are real when c2 > 1. Explain why
one of the roots must have magnitude greater than one when κ �= 0 and the roots are
real.

12.21 ★Suppose that a (μ, ν)-method of the form (12.5) is used to solve the advection
equation with initial condition u(x, 0) = exp(iκx). Show that the local truncation
error can be expressed in the form (12.50). Use this result together with the error
expansion

kRn
m = h p+1C p+1 ∂

p+1
x u

∣∣∣n
m

+ h p+2C p+2 ∂
p+2
x u

∣∣∣n
m

+ O(h p+3)

to show that the amplification factor of a pth-order method satisfies

ξ(θ) = e−icθ − (iθ)p+1C p+1 − (iθ)p+2C p+2 + O(h p+3),

where the constants C p+1 and C p+2 are defined by (12.11). By considering the cases
where p is even and p is odd separately, deduce that

|ξ(θ)|2 =
{
1 − 2(−1)(p+1)/2θ p+1C p+1 + · · · p is odd,

1 − 2(−1)p/2+1θ p+2(cC p+1 + C p+2) + · · · p is even.

What is the order of dissipation of these methods?

12.22 ★Use a computer algebra package to verify that the phase speeds ah = Ω/κ
of the Lax–Wendroff scheme and the third-order scheme are given by (12.59) and
(12.60), respectively.

12.23 Suppose that the BTBS scheme (12.34) is used to solve the advection equation
in the semi-infinite strip 0 ≤ x ≤ 1 with the initial condition u(x, 0) = g(x). Use
the CFL condition to show that the method will not converge if (i) c > 0 unless the
boundary condition u(0, t) = g0(t) is placed at x = 0 or, (ii) if c ≤ −1 unless the
boundary condition u(1, t) = g1(t) is placed at x = 1.

11Note that this is zero when c = ±1, as are all subsequent terms. This is consistent with the fact
that the method is exact for these Courant numbers—a generalisation of the unit CFL property.
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12.24 Suppose that theLax–Wendroff scheme is used to solve the advection equation
in the computational rectangle 0 ≤ x ≤ L , 0 ≤ t ≤ T with boundary/initial
conditions specified along t = 0 and x = 0. Suppose also that an additional column
of grid points is added at x = L + h and an artificial boundary condition δ2xU n

M = 0
imposed. Show that (i) this implies that the points (xm, U n

m) (m = M −1, M, M +1)
are collinear and (ii) that this boundary condition is equivalent to using the FTBS
scheme (12.61).

12.25 ★Show that the global error for the problem in Example12.17 satisfies

En+1
m = 1

2c(1 + c)En
m−1 + (1 − c2)En

m + 1
2c(c − 1)En

m+1,

M − n ≤ m < M, n = 2, 3, . . .

En+1
M = cEn

M−1 + (1 − c)En
M − c(1 − c)h2, n = 0, 1, 2, . . .

together with En
m = 0 for 0 ≤ m ≤ M − n, n = 0, 1, . . ..

Next, by assuming that En
m → Am as n → ∞, show that

(1 + c)Am−1 − 2cAm + (c − 1)Am+1 = 0,

together with boundary conditions AM − AM−1 = −(1 − c)h2 and Am → 0 as
m → −∞. Verify that a solution of these equations is given by (12.63).

12.26 Determine the characteristic speeds of the system

ut + 2ux + vx = 0

vt + ux + 2vx = 0

and explainwhy the FTBSapproach is an appropriatemethod for their solution?What
is the largest grid ratio k/h for which FTBS gives a stable approximation? Calculate
the numerical solution at the point x = 5h, t = k when h = 0.1, k = 0.025 and the
initial conditions are u(x, 0) = x , v(x, 0) = x2.

12.27 ★Can you explain why neither the FTCS nor the FTBS methods can be used
to give a stable numerical solution of the first-order system (12.65)?

(a) Determine an updating formula for Un+1
m in terms of Un

m by applying the FTCS
method to (12.66a) and the BTCS method to (12.66b).

(b) The scheme described in Exercise12.4 combines the FTCS and FTBS methods.
A vector version applied to ut + Aux = 0 is given by

Un+1
m = Un

m − (k/h)Ax U1
m + 1

2 (k/h)|A| δ2x Un
m .

In order to evaluate |A|, we suppose that A = V ΛV −1, where V is the matrix
of eigenvectors of A and Λ = diag(λ1,λ2, . . .) is the corresponding matrix of
eigenvalues. Then |A| = V |Λ|V −1, where |Λ| = diag(|λ1|, |λ2|, . . .). Derive
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an expression for Un+1
m when A is the matrix appearing in (12.65) and show that

it is the same as that obtained in part (a).
(c) Show how the Lax–Friedrichs scheme (12.5) can be applied to solve the system

(12.65). Under what condition is the expression obtained for Un+1
m the same as

that obtained in part (b)?

12.28 Devise a numerical boundary condition at x = 0 for Example12.18 based on
the FTFS scheme and following a process similar to that described at x = 1.

12.29 Verify that the flux-limited method (12.77) can be written in the form (12.74)
with βn

m given by (12.78).

12.30 Verify that the flux-limited scheme (12.77) reduces to the Lax–Wendroff
scheme (12.28) and the Warming–Beam scheme (12.64) when the flux limiters are
set to ϕ(ρ) = 1 and ϕ(ρ) = ρ, respectively.

12.31 Sketch the graphs of the limiters listed in Table12.1.

12.32 ★Suppose that u(x, t) satisfies the conservation law ut + f (u)x = 0, where
the flux function f (u) is assumed to be a smooth function. Deduce that utt =
( f ′(u) f (u)x )x , where f ′(u) = d f (u)/ du.

The MacCormack method for numerically solving this conservation law is a two
stage process. The first stage determines the intermediate quantities U

n
m for all m

from the formula
U

n
m = U n

m − (k/h)+
x f (U n

m)

and these are used to determine the solution at the next time level via

U n+1
m = 1

2 (U
n
m + U n

m) − 1
2 (k/h)−

x f (U
n
m).

Show that

(a) the method is identical to the Lax-Wendroff method method when f (u) = au
and a is a constant

(b) the method is consistent of second order with the nonlinear conservation law.



Chapter 13
Projects

Abstract The final chapter identifies thirteen projects, involving both theory and
computation, that are intended to extend and test understanding of the material in
earlier chapters.

In this final chapter we present a baker’s dozen of projects designed to be tackled
by individuals or small groups of students. The first project is a warm-up exercise in
analysis. Several of the projects have been set as open-book examination questions
(with a 24h deadline) for postgraduate students. Themajority of projects are based on
papers from scientific journals—the references are not given for obvious reasons—
citations can be found in the solutions.

Project 13.1 (Parabolic smoothing)
Suppose that u(x, t) satisfies the heat equation ut = uxx on the interval 0 < x < 1
for t > 0 with boundary conditions ux (0, t) = ux (1, t) = 0 and a given initial
condition at t = 0. Use energy methods to establish the identities

‖u(·, t)‖2 − ‖u(·, 0)‖2 = −
∫ t

0
‖ux (·, t)‖2 ds (13.1a)

and

d

dt
‖ux (·, t)‖2 = −‖ut (·, t)‖2, (13.1b)

where ‖u(·, t)‖2 := ∫ 1
0 (u(x, t))2 dx denotes the standard L2 norm. By integrating

both sides of the second identity over the interval s < t < τ , and then integrating
the result with respect to s over the interval 0 < s < τ , show that

‖ux (·, τ )‖ ≤ 1√
τ

‖u(·, 0)‖.

This provides a quantitative measure of how the derivative ux decays with time.

© Springer International Publishing Switzerland 2015
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Project 13.2 (Convergence of a fourth-order approximation method)
This project concerns the high-order finite difference scheme in Exercise 6.32 for
approximating a second-order ODE with Dirichlet end conditions. One would like
to establish that the scheme converges at a fourth-order rate even when the ODE is
approximated by the standard second-order approximation at grid points adjacent to
the boundary.

Accordingly, consider the boundary value problem−u′′(x) = f (x) on the interval
0 < x < 1 with the boundary conditions u(0) = u(1) = 0. Taking a standard grid
of points xm = mh (h = 1/M , m = 0, 1, 2, . . . , M), suppose that L(5)

h denotes the
5-point approximation of the second derivative given by

L(5)
h Um =

{
−h−2δ2Um, for m = 1, M − 1

−h−2
(
δ2 − 1

12δ
4
)
Um, for m = 2, 3, . . . , M − 2.

and that the grid function U satisfies the boundary conditions U0 = UM = 0.
A standard analysis of this difference scheme shows that if u and its first six

derivatives are bounded on (0, 1) then the local truncation error Rm is O(h4) at
x = xm (m = 2, 3, . . . , M − 2), but is only O(h2) at x = x1, xM−1. Although
the operator L(5)

h is not of positive type, show that it can be factored as the product
MhLh of two positive type operators, where Lh := −h−2δ2 and

MhUm =
{

Um, for m = 1, M − 1

Um − 1
12δ

2Um, for m = 2, 3, . . . , M − 2.

Show also that the global error E := u − U satisfies the coupled equations

Mh V = Rh, Lh E = V .

Next, suppose that Rh is written as Rh = R∗
h + R•

h , where

R∗
h

∣∣
m =

{
Rm

0
and R•

h

∣∣
m =

{
0, for m = 1, M − 1

Rm, for m = 2, 3, . . . , M − 2,

and show that V = V ∗ + V • and E = E∗ + E• satisfy the equations

Mh V • = R•
h, Lh E• = V •,

Mh V ∗ = R∗
h, Lh E∗ = V ∗.

Show that Mh and Lh are inverse monotone when supplemented by Dirichlet
boundary conditions and hence deduce that both |V •| and |E•| are O(h4). The
behaviour of E∗ still needs to be examined carefully because R∗

h

∣∣
m = O(h2) for

m = 1 and m = M − 1.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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Can it be shown that E∗ = O(h4) in the case V ∗ = O(h2)? One idea is to suppose
that there is negligible interaction between the effects of R1 and RM−1. The effect
of R1 can then be determined by solving the difference equations Mh V ∗

m = 0 (for
m = 2, 3, . . .) with end conditions V ∗

1 = R1 and V ∗
m → 0 as m → ∞. Verify that

these equations are satisfied by V ∗
m = R1zm−1, where z is the smaller of the roots of

the quadratic z2 − 14z + 1 = 0. Next, determine the constant C so that the general
solution of the form of the equations Lh E∗

m = V ∗
m (m = 2, 3, . . .) has the form

E∗
m = A + Bm +Czm for arbitrary constants A and B. Finally, by enforcing the end

conditions 2E∗
1 − E∗

2 = h2R1 and E∗
m → 0 as m → ∞, show that E∗ = O(h4).

What else is striking about the behaviour of E∗?

Project 13.3 (The Allen-Southwell-Il’in scheme)
This project concerns a specialised finite difference scheme for solving the one-
dimensional advection–diffusion problem in Example 6.14. To construct the scheme,
suppose that v(x) and w(x) satisfy the independent boundary value problems

−εv′′ − av′ = 0, −h < x < 0
v(−h) = 0, v(0) = 1,

} −εw′′ − aw′ = 0, 0 < x < h
w(0) = 1, w(h) = 0,

}

where ε, a and h are positive constants, and let g(x) be defined so that

g(x) :=
{

v(x), −h ≤ x < 0

w(x), 0 ≤ x ≤ h
.

Calculate
∫ h
−h g(x) dx . Sketch a graph of g when 0 < ε 	 1.

Next, suppose that a grid of points x = xm := mh is defined on the interval [0, 1],
where h = 1/M , and that u satisfies the advection–diffusion equation −εu′′(x) +
au′(x) = f (x) in 0 < x < 1 together with Dirichlet end conditions.

Use integration by parts to show that the identity

∫ xm

xm−1

v(x − xm)
(−εu′′ +au′ − f

)
dx +

∫ xm+1

xm

w(x − xm)
(−εu′′ +au′ − f

)
dx = 0

can be simplified to give

−εv′(−h)um−1 + ε
(
v′(0) − w′(0)

)
um + εw′(h)um−1 =

∫ xm+1

xm−1

g f dx .

Bydetermining thequantitiesv′(−h),v′(0),w′(0) andw′(h), show that this generates
an exact1 finite difference replacement of the advection–diffusion equation

1This wonderful property (the finite difference solution is exact at every grid point) does not
generalise to advection–diffusion problems in two or more space dimensions.

http://dx.doi.org/10.1007/978-3-319-22569-2_6


322 13 Projects

− ε̂h−2δ2um + ah−1
um = h−1
∫ xm+1

xm−1

g f dx, (13.3a)

in which ε̂ = εPeh coth Peh , and Peh = ah/(2ε) is the mesh Peclet number.
The scheme was discovered independently by Allen and Southwell in 1955 and

Il’in in 1969. It bears a strong resemblance to the central difference scheme in Exam-
ple 6.14 (in the case a = 2) except that the diffusion coefficient and the right hand
side need to be suitably modified. Show that

lim
h→0

ε̂ = ε and lim
ε→0

ε̂ = 1
2ah.

What are the corresponding limits of the integral on the right hand side of (13.3a)?

Project 13.4 (Saul’Yev schemes for advection–diffusion equations)
The use of implicit methods such as BTCS to solve second-order parabolic PDEs
typically involves the solution of systems of linear equations at each time level.
An L R factorisation of the coefficient matrix A, say, is performed at the start of
the simulation and systems of the form Lv = f , Ru = v are solved by forward
and backward substitution in order to determine the solution u at each new time
level. In one dimension, when A is tridiagonal, the matrices L and R are lower and
upper bidiagonal (having at most two nonzero entries on each row). The idea behind
this project is that some of the computational effort can be avoided by designing a
“pre-factorised” pair of methods.

As a starting point, consider the following pair of finite difference schemes for
solving the advection–diffusion equation ut + aux = εuxx ,

−(r + 1
2c)U n+1

m−1 + (1 + r + 1
2c)U n+1

m = (1 − r + 1
2c)U n

m + (r − 1
2c)U n

m+1
(13.4a)

(1 + r − 1
2c)U n+1

m − (r − 1
2c)U n+1

m+1 = (1 − r − 1
2c)U n

m + (r + 1
2c)U n

m−1,

(13.4b)

in which r = εk/h2 and c = ak/h. These are generalisations of schemes originally
designed for the heat equation (a = 0) by Saul’Yev (1967) (see Richtmyer and
Morton [18, Sect. 8.2]). Write down the associated stencils and use a domain of
dependence argument to show that neither scheme, used on its own, can provide
convergent approximations unless k/h → 0 as h, k → 0.

As a consequence of this the two schemes (13.4a) and (13.4b) will be combined.
Thus, to approximate the PDE on the interval 0 < x < 1 together with Dirichlet end
conditions, the scheme (13.4a) is used on even-numbered time levels n = 0, 2, 4, . . ..
The value U n+1

0 is provided by the boundary condition at x = 0 and then (13.4a)
is used with m = 0, 1, 2, . . . to determine the numerical solution on the entire time
level. When n is odd, U n+1

M is obtained from the boundary condition at x = 1, then
(13.4b) is used with m = M − 1, M − 2, . . . 1.

http://dx.doi.org/10.1007/978-3-319-22569-2_6
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By making the substitution U n
m = ξneiκmh , determine the amplification factors ξ1

and ξ2, say, of the individual methods (13.4a) and (13.4b). Next, show that when the
formulae are used alternately, U n+2

m = ξ1ξ2U n
m so that their combined amplification

factor is ξ = ξ1ξ2, that is, the product of the individual factors.
It may be shown that

|ξ|2 − 1 = −16rs
1 + (2r − c)(2r + c)s

(1 + (2 + 2r − c)(2r − c)s)(1 + (2 + 2r + c)(2r + c)s)
,

where s = sin2( 12κh). Deduce that the combined scheme (a) is stable in the sense
that |ξ|2 ≤ 1 provided that c2 ≤ 1 + 4r2 when r > 0, (b) is unconditionally stable
in the case of pure diffusion (c = 0), and (c) is nondissipative in the case of pure
advection (r = 0).

In the case c = 0, write the methods in difference operator notation and show
that, when implemented in the odd-even manner described above,

(1 − r
+
x )(1 + r
−

x )U
n+2
m = (1 − r
−

x )(1 + r
+
x )U

n
m . (13.4c)

Show that the local truncation error for the resulting scheme may be written as
Rh = R1 + R2, where R1 is the expression for the local truncation error of the
Crank–Nicolson scheme with a time step 2k (so that it isO(h2)+O(k2)), and where
R2 = − r2

2k δ2x (u
n+2
m − un). Show that requiring that R2 → 0 as h, k → 0 requires

that k/h must also tend to zero. The time step is therefore limited by accuracy rather
than stability. Why is this a potentially perilous situation?

Is there an analogous result for the case of pure advection?

Project 13.5 (Approximation of coupled diffusion equations)
This project concerns the coupled PDEs

ut = uxx + v, vt = εvyy − u,

where 0 < ε < 1, defined on the domain Ω = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
for t > 0 and subject to the boundary conditions u = 0 on the vertical boundaries
x = 0, 1 with v = 0 on the horizontal boundaries y = 0, 1, together with initial
conditions u(x, y, 0) = f (x, y), v(x, y, 0) = g(x, y). Use energy arguments to
show that

∫
Ω

(
u(x, y, t)2 + v(x, y, t)2

)
dΩ

is a strictly decreasing function of t so that ‖u(·, ·, t)‖2 → 0 and ‖v(·, ·, t)‖2 → 0
as t → ∞.
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An explicit FTCS approximation of these equations on a square grid with time step
k and grid spacing h × h in the (x, y) plane is given by

U n+1
�,m = (1 + rδ2x )U

n
�,m + kV n

�,m

V n+1
�,m = (1 + εrδ2y)V n

�,m − kU n
�,m

}
(13.5a)

where r = k/h2. The von Neumann stability of this scheme may be examined by
making the substitution

[
U n

m
V n

m

]
= ξnei(κ1�+κ2m)h c

where κ1,κ2 ∈ R are the wavenumbers and c is a constant 2 × 1 vector. Show that
this leads to a homogeneous system A(ξ)c = 0 (in which A(ξ) is a 2 × 2 matrix)
that will admit nontrivial solutions if, and only if, det(A(ξ)) = 0. Deduce that there
are choices of κ,κ2 such that |ξ| > 1 for any k > 0 so that the FTCS method is
unconditionally unstable.2

Compare and contrast the two alternative semi-implicit solution methods

U n+1
�,m = (1 + rδ2x )U

n
�,m + kV n+1

�,m

V n+1
�,m = (1 + εrδ2y)V n

�,m − kU n
�,m

}
(13.5b)

and

U n+1
�,m = U n

�,m + rδ2xU n+1
�,m + kV n+1

�,m

V n+1
�,m = (1 + εrδ2y)V n

�,m − kU n
�,m

}
(13.5c)

with regard to local truncation error and �2 stability.

Project 13.6 (Fisher’s equation and travelling waves)
Consider the nonlinear parabolic PDE ut = uxx + u(1 − u), known as Fisher’s
equation, on the interval −∞ < x < ∞ for t > 0. For spatially constant solutions
u(x, t) = v(t) show that u(x, t) → 1 at t → ∞ when v(0) > 0. When v(0) < 0,
show that there is a time t∗ > 0 such that u(x, t) → −∞ as t → t∗. This illustrates
the importance of non-negative initial data.

The focus will be on travelling wave solutions of Fisher’s equation such that
u(x, t) → 1 as x → −∞ and u(x, t) → 0 as x → ∞. If such solutions take the
form u(x, t) = ϕ(z), where z = x − at is the travelling coordinate, and a (the wave
speed) is constant, show that ϕ satisfies the ODE

ϕ′′(z) + aϕ′(z) + ϕ(z) − ϕ2(z) = 0, −∞ < z < ∞. (13.6a)

2For real numbers a and b the roots of the quadratic polynomial p(ξ) = ξ2 + aξ + b lie strictly
within the unit circle, i.e., |ξ| < 1, if, and only if, p(1) > 0, p(−1) > 0 and p(0) < 1. These are
known as the Jury conditions —for a proof see Griffiths and Higham [7, Lemma 6.10].
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(i) If ϕ(z) ≈ Ae−λz (λ > 0) as z → ∞, then ϕ2(z) is negligible compared to
ϕ(z) and so ϕ satisfies a linear ODE under these conditions. Determine the
relationship between a and λ and deduce that the associated wave speed must
satisfy a ≥ 2.

(ii) Analogously, if ϕ(z) ≈ 1− Beμz (μ > 0) as z → −∞, use a similar argument
to show that a ∈ (−∞,∞). What is the relationship between λ and μ if the
wave speeds are to be the same speed as x → ±∞?

(iii) Suppose that

s(t) =
∫ ∞

L
ϕ(x − at) dx,

where L is a constant. Show that s′(t) → a as t → ∞ if the conditions in parts
(i) and (ii) hold.

Finally, verify that

ϕ(z) = 1

(1 + C exp(bz))2
, a = 5/

√
6, b = 1/

√
6, (13.6b)

is a solution of (13.6a) for any constant C . Why should C be a positive constant?
Sketch the graph of ϕ(z). Show that there are values of λ and μ such that ϕ(z)
satisfies the properties in (i) and (ii). How do the predicted wave speeds in (i) and
(ii) compare with that of the solution in (13.6b)?

Project 13.7 (Approximation of a quasi-linear PDE)
Determine the most general solution of the PDE

ut = uuxx + u(1 − u) (13.7a)

taking the form u(x, t) = X (x)/T (t). Show that there are constants a (dependent
on h), b (dependent on k) and C such that

a2δ2x X (xm) = X (xm) − C, T (tn) − (1 + b)T (tn+1) = −bC,

where xm = mh and tn = nk. Use these results to show that the finite difference
scheme

U n+1
m = U n

m + b
[
a2U n+1

m δ2xU n
m + (1 − U n+1

m )U n
m

]
(13.7b)

also has exact solutions of the form U n
m = X (xm)/T (tn) for the same functions X

and T . Show that

a2 = h−2 − 1
12 + O(h2), b = k + 1

2k2 + O(k3),

and hence verify that (13.7b) is consistent with (13.7a).
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In order to gain some insight into the sensitivity of the scheme to perturbations
in the initial data, it is used to compute an approximation to the solution u(x, t) = 1
on the domain 0 < x < 1, t > 0 with a spatial grid size h = 1/M . The boundary
conditions are U n

0 = U n
M = 1 and the initial condition is taken to be U 0

m = 1+ εgm ,
where ε 	 1 and |gm | ≤ 1. By writing U n

m = 1 + εV n
m show that V is the solution

of a linear finite difference scheme with constant coefficients when terms in ε2 are
neglected. Deduce, using von Neumann’s method, that this is stable in �2 when
b ≤ 2 tanh2 1

2h.

Project 13.8 (High-order schemes for advection–diffusion equations)
The solution of the advection–diffusion equation ut + aux = εuxx , where (ε > 0)
and a are constants, can be constructed explicitly for k > 0 (see Example 4.7),

u(x, nk + k) = 1√
π

∫ ∞

−∞
e−z2u(x − ak + 2z

√
εk, nk) dz. (13.8a)

This formula provides a means of determining the exact solution at the (n +1)st time
level from that at the nth time level.

A numerical solution may be generated by approximating u at time t = nk by a
polynomial Φ(x), say, leading to the scheme

U n+1
m = 1√

π

∫ ∞

−∞
e−z2Φ(xm − ak + 2z

√
εk) dz. (13.8b)

Show that this leads to Leith’s method (see Exercise 12.11)

U n+1
m = U n

m − c
xU n
m + (r + 1

2c2)δ2xU n
m,

where r = εk/h2 and c = ak/h, when Φ(x) is the quadratic polynomial that
satisfies the interpolation conditions Φ( jh) = U n

j for j = m − 1, m, m + 1 (see
Example 12.4). Show that increasing the degree of Φ to be a cubic polynomial and
imposing the additional interpolating condition Φ(mh − 2h) = U n

m−2 leads to the
alternative scheme

U n+1
m =

[
1 − c
x + (r + 1

2c2)δ2x + 1
6c(1 − 6r − c2)
−

xδ
2
x

]
U n

m . (13.8c)

This generalises the third-order scheme in Example 12.10 to advection-diffusion
problems. Use a suitable change of variable in the integrand to show that (13.8b)
may be written in the alternative form

U n+1
m =

∫ ∞

−∞
K (s)Φ(xm − sh) ds,

and determine the exact form of K . Graph the function K (s) for −5 ≤ s ≤ 5 for
r = 0.125, 0.25, 0.5, 0.75, 1 when c = 0. What insight do these graphs provide for

http://dx.doi.org/10.1007/978-3-319-22569-2_4
http://dx.doi.org/10.1007/978-3-319-22569-2_12
http://dx.doi.org/10.1007/978-3-319-22569-2_12
http://dx.doi.org/10.1007/978-3-319-22569-2_12
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judging the range ofmesh ratios r forwhich thesemethods can be expected to provide
accurate solutions of (13.8b)? [Hint:

∫ ∞
−∞ z je−z2 dz has the values

√
π, 0, 1/2

√
π, 0

for j = 0, 1, 2, 3, respectively.]

Project 13.9 (Stability with an uneven spatial grid)
This project concerns the stability of boundary conditions when approximating the
heat equation ut = uxx on the interval 0 < x < 1 for t > 0 with Dirichlet end
conditions. Suppose that we use an FTCS finite difference method based on a grid
of size k in time and a grid in space made up of the points {xm = mh : m =
0, 1, . . . , M, xM+1 = 1} where h = 1/(M + α) and 0 < α < 1. That is, the grid is
uniform except in the final subinterval where the distance between grid points is αh.
Using the approximation (10.26) with h− = h and h+ = αh to approximate uxx at
x = xM leads to

U n+1
m =(1 + rδ2x )U

n
m, m = 1, 2, . . . , M − 1, (13.9a)

U n+1
M = 2r

1 + α
U n

M−1 + (1 − 2r

α
)U n

M + 2r

α(1 + α)
U n

M+1. (13.9b)

We would like to asses the stability of this approximation. To this end, suppose that
U n
0 = U n

M+1 = 0. Show that |U n+1
m | ≤ ‖U n� ‖h,∞ whenever

0 < r ≤ min

{
1

2
,
α(1 + α)

1 + 2α

}
.

A necessary condition for �2 stability requires that (13.9a) should be stable in the von
Neumann sense (with |ξ| ≤ 1), but a separate test will be needed to assess (13.9b).
The basis of this test (see Strikwerda [21, Sect. 11.3]) is that a solution of the total set
of difference equations is sought in the form U n

m = ξnzm . When this is substituted
into (13.9a) and (13.9b) (withU n

M+1 = 0), a quadratic equation and a linear equation
are obtained in z, respectively, whose coefficients depend (linearly) on ξ. This sets up
a one–to–one correspondence between possible values of z and ξ. The condition for
�2-stability then requires that |ξ| ≤ 1 in all cases where z has solutions with |z| > 1.
Show that the z roots are both real, and that the �2-stability test leads to the condition

r ≤
{

α
√
1 − α2, 0 < α ≤ 1/

√
2,

1
2 , 1/

√
2 ≤ α ≤ 1.

Finally, show that the scheme retains its explicit nature if the finite difference approx-
imation at x = xM is replaced by the BTCS-type scheme

− 2r

1 + α
U n+1

M−1 + (1 + 2r

α
)U n+1

M − 2r

α(1 + α)
U n+1

M+1 = U n
M , (13.9c)

and that the overall process will be stable with respect to the maximum norm when-
ever 0 < r ≤ 1/2.

http://dx.doi.org/10.1007/978-3-319-22569-2_10
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Fig. 13.1 The disposition of FTCS (•) and BTCS (◦) methods at the first two time levels for the
hopscotch scheme. The stencils are slightly offset in the interests of clarity. Eliminating the grid
value at the highlighted point leads to the DuFort–Frankel scheme

Project 13.10 (Convergence of the hopscotch scheme)
This project concerns the hopscotch scheme devised by Gordon in 1965. It is an
ingenius way of combining the FTCS and BTCS schemes (11.8b) and (11.22b) for
approximating the heat equation ut = uxx with Dirichlet end conditions ,

U n+1
m = rU n

m−1 + (1 − 2r)U n
m + rU n

m+1, (13.10a)

−rU n+1
m−1 + (1 + 2r)U n+1

m − rU n+1
m+1 = U n

m . (13.10b)

We suppose that the FTCSmethod is applied at even-numbered grid points to provide
values for U 1

2 , U 1
4 , . . . at the first time level (see Fig. 13.1). The solution U 1

1 , U 1
3 , . . .

at the odd numbered grid points can then be computed without the need to solve
algebraic equations—the method is explicit. At the second time step, the values
U 2
1 , U 2

3 , . . . are computed by the FTCS method and U 2
2 , U 2

4 , . . . by BTCS, again in
an explicit fashion. This odd-even pattern is then repeated over subsequent time steps
to give a method that has the same computational cost as the FTCS method alone,
but having the potential for greater stability because it also incorporates the BTCS
method.

The formulae for the individual methods have to be combined into one for the
purposes of analysis. To do this we select a point (xm, tn) where m + n is even
(the grid point highlighted in Fig. 13.1, for example). The value of U n

m may then be
eliminated from (13.10a) (with n replaced by n − 1) and (13.10b) to give

(1 + 2r)U n+1
m = 2r(U n

m−1 + U n
m+1) + (1 − 2r)U n−1

m . (13.10c)

This scheme is also known as the Du Fort–Frankel (1953) method. Show that the
solution at points where m + n is even can be found independently of the points
where m + n is odd.

http://dx.doi.org/10.1007/978-3-319-22569-2_11
http://dx.doi.org/10.1007/978-3-319-22569-2_11
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(a) Determine what restrictions the CFL places on the hopscotch scheme.
(b) Determine (following appropriate scaling) the local truncation error of the

method and deduce that it does not tend to zero as h, k → 0 unless k/h → 0.
(c) Show that |U n+1

m | ≤ ‖U n· ‖h,∞ for m = 1, 2, . . . , M − 1 for r ≤ 1
2 .

(d) Show that the amplification factor of the Du Fort–Frankel scheme satisfies a
quadratic equation and deduce that the method is unconditionally stable.

Describe how the FTCS and BTCS approximations (11.61b) and (11.64b) of the two-
dimensional heat equation ut = uxx + uyy may be deployed to give an analogous
method when the domain is a square in the x-y plane and a Dirichlet boundary
condition is applied on its boundary.

Project 13.11 (Unsteady advection–diffusion in R
2)

Suppose that u(�x, t), with �x = (x1, x2) satisfies the constant coefficient advection-
diffusion equation3

ut +
∑
j=1,2

a j∂x j u =
∑
j=1,2

ε j∂
2
x j

u,

where ε j > 0.Afinite differencegridwith grid sizeh j in the j th coordinate directions
is constructed from the lines x1,� = �h1, x2,m = mh2 and on which the PDE is
approximated by the FTCS scheme

U n+1
�,m = (

1 −
∑
j=1,2

c j
 j + 1
2

∑
j=1,2

r jδ
2
j

)
U n

�,m .

with Courant numbers c j = a j k/h j , mesh ratios r j = 2kε j/h2
j and 
 j , δ2j are

finite difference operators in the j th coordinate direction. Find an expression for the
amplification factor for this scheme by substituting U n+1

�,m = ξnei(κ1�h+κ2mh) and
express the result in terms of the scaled wavenumbers θ j = κ j h j .

The purpose of this project is to establish �2-stability in the sense that |ξ(θ)| ≤ 1
for all θ = (θ1, θ2) ∈ [−π,π] × [−π,π] if, and only if,

(i) r j ≤ 1 ( j = 1, 2), (ii)
∑
j=1,2

r j ≤ 1 and (iii)
∑
j=1,2

c2j
r j

≤ 1

which generalise the results in Example 11.24.

3A slightly different notation is adopted that uses x1, x2 in lieu of x, y so as to facilitate the
presentation of the scheme and its analysis and also to allow ready generalisation to higher space
dimensions. Note also that a factor 2 has been introduced into the definition of r j so as to avoid
fractions occurring at a later stage.

http://dx.doi.org/10.1007/978-3-319-22569-2_11
http://dx.doi.org/10.1007/978-3-319-22569-2_11
http://dx.doi.org/10.1007/978-3-319-22569-2_11
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Necessity: Deduce that conditions (i) and (ii) are necessary by examining ξ(π, 0),
ξ(0,π) and ξ(π,π). Show that the Maclaurin expansion of |ξ|2, for small values of
its arguments, may be written as

|ξ(θ)|2 = 1 − 1
4θ

T(R − ccT)θ + · · · ,

where R = diag(r1, r2) and c = [c1, c2]T (see Exercise 11.24). Deduce, by finding
the eigenvalues of the 2 × 2 matrix (R − ccT), that condition (iii) is necessary for
stability.
Sufficiency: Show, by writing c j sin θ j = (c j/

√
r j )(

√
r j sin θ j ) and using the

Cauchy–Schwatrz inequality, that

( ∑
j=1,2

c j sin θ j
)2 ≤

∑
j=1,2

r j sin
2 θ j

if condition (iii) holds. Hence show that |ξ(θ)|2 ≤ 1.

Project 13.12 (MacCormack’s method)
MacCormack’s method can be used to approximate a first-order hyperbolic equation
with a nonlinear source term

ut + aux = f (u), a > 0. (13.12a)

The method can be written as

U n+1
m = 1

2
[U n

m + U
n
m], (13.12b)

and involves intermediate quantities U n
m and U

n
m , computed via

U
n
m = U n

m − c
+
xU n

m + k f (U n
m), U n

m = U n
m − c
−

xU
n
m + k f (U

n
m),

where k is the time step and c = ak/h the Courant number.

(i) In the case f (u) = 0, show that the method reduces to the Lax–Wendroff
scheme.

(ii) When f (u) = −αu (where α ≥ 0 is a constant), show that the amplification
factor satisfies

|ξ|2 − 1 = 4(c2 − (1 − σ)2)c2s2 − 2σ(2 − σ)c2s − 1
4σ(2 − σ)((1 − σ)2 + 3),

where σ = αk, and s = sin2 1
2κh. Deduce that |ξ| ≤ 1 if 0 ≤ σ ≤ 2 and

c2 ≤ 1
4

(
(1 − σ)2 + 3

)
. Describe the behaviour that you would expect from a

sequence of numerical experiments when α � 1 in which the step sizes k tend
to zero with the Courant number remaining constant. The sequence begins with

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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k = 3/α. Would there be any significant difference between the cases when c
is small and c is close to 1?

(iii) Suppose that f (u) is a continuously differentiable function of u and that
(13.12b) has a constant solution U n

m = U∗ for all n, m with f ′(U∗) �= 0.
Show that U∗ must satisfy f (U∗) + f (U

∗
) = 0, where U

∗ = U∗ + k f (U∗).
In the particular case when f (u) = αu(1 − u), α > 0. Show that the scheme
has four possible constant solutions corresponding to U∗ = 0, U∗ = 1 and
two further values that are functions of σ and are given by the roots of a certain
quadratic equation. Under what conditions are these roots real?

Project 13.13 (A conjecture on isospectral matrices)
A separation of variables solution u(x, t) = e−iλtv(x) of the advection equation
ut + ux = 0 with periodic boundary conditions leads to the eigenvalue problem

iv′(x) = λv(x), 0 ≤ x ≤ 1, (13.13a)

with v(x + 1) = v(x) for all x ∈ R. Determine all the eigenvalues of this problem
along with the corresponding eigenfunctions.

The eigenvalue problem will be approximated by finite differences on a nonuni-
form grid in which the interval [0, 1] is divided into M subintervals by the grid points
x0 = 0 < x1 < x2 < · · · < xM = 1. Consider the two alternative approximations
to Lv(x) := iv′(x) given by

Lh Vm = i

Vm


xm
, (13.13b)

Mh Vm = i
1


xm

(

+xm


−Vm


−xm
+ 
−xm


+Vm


+xm

)
. (13.13c)

Note that both reduce to the standard second-order approximation v′(xm) = h−1
v

(xm) + O(h2) when the grid points are equally spaced and h = 1/M . Periodic
boundary conditions imply that V0 = VM so the approximations are only needed for
m = 1, 2, . . . , M . Furthermore, VM+1 = V1 and 
+xM = 
−x1.

Show that these approximations of (13.13a) lead to eigenvalue problems for the
matrices A1 = iD−1(L − LT) and A2 = iD−1(RL − R−1LT) respectively, where
h j = 
−x j ( j = 1, 2, . . . , M), D and R are the M × M diagonal matrices

D =

⎡
⎢⎢⎢⎣

h1+h2
h2+h3

. . .

hM +h1

⎤
⎥⎥⎥⎦ , R =

⎡
⎢⎢⎢⎣

h2/h1
h3/h2

. . .

h1/hM

⎤
⎥⎥⎥⎦ ,



332 13 Projects

and L is the bidiagonal circulant matrix

L =

⎡
⎢⎢⎢⎣

1 −1
−1 1

. . .
. . .

−1 1

⎤
⎥⎥⎥⎦ .

Confirm that A1 is singular having rank M − 1 when M is odd, and rank M − 2
when M is even (Hint: permute the rows of L − LT so that the first row becomes the
last.) Identify a set of linearly independent vectors that span the nullspace of A1 in
each case.

Next, show that the rank of A2 is at most M − 1 and identify a nonzero vector in
its nullspace. When M is even, suppose that the grid is chosen such that hm = αh
for m = 1, 2, . . . , M − 1 and that hM = βh (α,β > 0 and h = 1/(β + (M − 1)α).
Show that the rank of A2 is exactly M − 1 when M = 6, unless α = β.

We conjecture that the matrices A1 and A2 are isospectral—they have the same
eigenvalues.4

Prove that the eigenvalues of A1 are real and that, for every eigenvalue λ with
eigenvector v, there is an eigenvalue −λ with eigenvector v (the complex conjugate
of v).

Use an appropriate software package to compute the eigenvalues λm of A1 and
μm of A2 for a range of values of M when the grid points x1 < x2 < · · · < xM−1
are located randomly in the interval (0, 1). Calculate, in each case, the maximum
relative difference, that is

max
m

∣∣λm − μm

λm

∣∣,

where the maximum is taken over all nonzero eigenvalues. Comment on the nature
of the eigenvectors corresponding to zero eigenvalues particularly when M is even.

A more robust test of the conjecture is to use a computer algebra package to
show that the characteristic polynomials of the two matrices are the same or, more
appropriately, that the determinant of (i(L −LT)−λD) is identical to that of (i(RL −
R−1LT − μD). Carry out these computations for M = 3, 4, 5, 6. Confirm that the
polynomials have a root of multiplicity 1 when M is odd and multiplicity 2 when M
is even. If this conjecture is true then the earlier results on rank would imply that A2
is a defective matrix—it has fewer than M linearly independent eigenvectors.

4This is a mundane exercise compared with the celebrated article “Can one hear the shape of a
drum?” by Mark Kac [10], where it transpires that the answer is no because the Laplacian operator
in two dimensions can have the same eigenvalues on two different domains (drum shapes).



Appendix A
Glossary and Notation

The study of PDEs and, particularly their numerical solution has a rapacious appetite
for variable names, constants, parameters, indices, and so on. This means that many
symbols become overloaded—they are required to take on different meanings in dif-
ferent contexts. It is hoped that the list provided here will help in avoiding confusion.

B: an operator used to represent boundary conditions
Bh : a finite difference approximation of B
BC: boundary condition
BVP: boundary value problem—that is a PDE together with boundary and/or ini-

tial conditions
c: the wave speed in the wave equation; the Courant number c = ak/h when

approximating the advection equation
∂x , ∂t : shorthand notation for partial derivatives with respect to x and t ; so ux =

∂x u, uxx = ∂2
x u, uxt = ∂x∂t u

�+, �−, �, δ: forward, backward and alternative central difference operators for
functions of one variable; �+

x , �−
x , �x , δx apply to the x variable of a function of

several variables
∂Ω: the boundary of a typical domain Ω

F , Fh : source term in a differential equation Lu = F or in a finite difference
equation LhU = Fh ,

F ,Fh : source data in a boundary value problemL u = F or its finite difference
approximation LhU = Fh ,

IC: initial condition
IVP: initial value problem
IBVP: initial-boundary value problem
κ: the conductivity coefficient in the heat equation; the wave number in a von Neu-

mann analysis of stability
L, M: differential operators involving derivatives with respect to space variables

only, such as L = −∂2
x

Lh , Mh : finite difference approximations of differential operators L,M
L , M : differential operators together with associated boundary conditions
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334 Appendix A: Glossary and Notation

Lh ,Mh : finite difference approximations of differential operators L ,M
�n: the outward pointing normal direction; �n(�x) is the outward normal vector at a

point �x on the boundary
�∇: the gradient vector; �∇u = [ux , uy] for a function u(x, y) of two variables
∇2: Laplacian operator; ∇2u = uxx + uyy for a function u(x, y) of two variables
Ω , Ωh : typical domain of a PDE or its approximation by a grid of points,
ODE: ordinary differential equation
PDE: partial differential equation
p: coefficient of first derivative in a differential equation; order of consistency of

a finite difference approximation, as in O(h p)

ϕ, Φ: comparison functions for continuous (ϕ ≥ 0 and Lϕ ≥ 1) and discrete
problems (Φ ≥ 0 and LhΦ ≥ 1), respectively

u, U : typical solution of a boundary value problemL u = F or its finite difference
approximation LhU = Fh ,

r : the mesh ratio; r = k/h2 when approximating the heat equation; the radial
coordinate in polar coordinates

�r : position vector; �r = (x, y) in two dimensions
Rh ,Rh : local truncation error—Rh := Lhu −Fh andRh := Lhu −Fh , where

u solves Lu = F and L u = F .
x∗: Hermitian (or complex conjugate) transpose of a d-dimensional vector x
ξ: the amplification factor in a von Neumann analysis of stability
‖ · ‖: norm operator; maps d-dimensional vectors x (or real-valued functions) onto

non-negative real numbers
‖ · ‖h : discrete norm operator; maps grid functionsU onto non-negative real num-

bers; we use two flavours, the maximum (or �∞-) norm ‖ · ‖h,∞ and the �2-norm
‖ · ‖h,2〈·, ·〉: inner product; maps two d-dimensional vectors (or pairs of functions) onto
real numbers〈·, ·〉
w
: inner product associated with a positive weight function w; maps pairs of

functions onto real numbers.



Appendix B
Some Linear Algebra

B.1 Vector and Matrix Norms

Norms provide a convenient way of measuring the length of vectors and the magni-
fying ability of matrices.

Definition B.1 A norm on a vector x is denoted by ‖x‖ and is required to have the
properties

(a) positivity: ‖x‖ > 0 for x 	= 0,
(b) uniqueness: ‖x‖ = 0 if and only if x = 0,
(c) scaling: ‖ax‖ = |a| ‖x‖ for any complex scalar a,
(d) triangle inequality: ‖x + y‖ ≤ ‖x‖ + ‖ y‖ for any vector y having the same

dimension as x.

When x = [x1, x2, . . . , xd ]T a popular family are the so-called �p norms, and are
given by

‖x‖p =
⎛
⎝ d∑

j=1

|x j |p

⎞
⎠

1/p

(B.1)

with 1 ≤ p < ∞. Typical choices are p = 1, 2,∞, where the case p = ∞ is
interpreted as

‖x‖∞ = max
1≤i≤d

|xi |

and is known as the maximum norm. A particularly useful result is given by Hölder’s
inequalitywhich states that, for any two complex vectors x, y of the same dimension,

|x∗ y| ≤ ‖x‖p‖ y‖q , 1/p + 1/q = 1, (B.2)
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where x∗ denotes the Hermitian (or complex conjugate) transpose of x. When
p = q = 2 this is also known as the Cauchy–Schwarz inequality

|x∗ y| ≤ ‖x‖2‖ y‖2. (B.3)

Definition B.2 A norm on a matrix A is denoted by ‖A‖ and is required to have the
properties

(a) ‖A‖ > 0 for A 	= 0,
(b) ‖A‖ = 0 if and only if A is the zero matrix,
(c) ‖a A‖ = |a| ‖A‖ for any complex scalar a,
(d) ‖A + B‖ ≤ ‖A‖ + ‖B‖ for any matrix B of the same dimension as A,
(e) ‖AB‖ ≤ ‖A‖‖B‖ for any matrix B for which the product AB is defined.

The requirement that (e) holds is unconventional. (A standard definition would only
stipulate (a)–(d).) To find examples of matrix norms where (e) is satisfied, we note
that analyses involving norms usually involve both vector and matrix norms, and it is
standard practice in numerical analysis to use norms that are compatible in the sense
that

‖Ax‖ ≤ ‖A‖ ‖x‖. (B.4)

One way in which this can be achieved is to first define a vector norm ‖x‖ and then
use

‖A‖ = max
x 	=0

‖Ax‖
‖x‖

to induce a matrix norm. When the vector norm is a p-norm, this approach leads to
the matrix p-norms defined, for a d × d matrix A having ai j in the i th row and j th
column, by

‖A‖1 = max
1≤ j≤d

d∑
i=1

|ai j |, ‖A‖∞ = ‖AT‖1, (B.5)

while ‖A‖2 = √
λ, where λ is the largest eigenvalue of A∗ A. These matrix p-norms

are examples for which property (e) automatically holds. We refer to Trefethen and
Bau [26] for further discussion.
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B.2 Symmetry of Matrices

A real n × n matrix A is said to be symmetric if it remains unchanged when its rows
and columns are interchanged,1 so that AT = A. If A = (ai j ), with ai j denoting the
entry in the i th row and j th column, then symmetry requires ai j = a ji . To exploit
symmetry we note that AT = A implies that, for vectors x, y ∈ C

n ,

y∗(Ax) = y∗ Ax = (AT y)∗x = (A y)∗x. (B.6)

Thus y∗(Ax) = (A y)∗x so the (complex) scalar product of y and Ax is the same as
the scalar product of A y and x.

To take this idea further we need to introduce a special notation for scalar
product—this is generally referred to as an inner product. Specifically, we define

〈
x, y
〉 ≡ y∗x (B.7)

then, from (B.6),

〈
x, A y

〉 = 〈Ax, y
〉

(B.8)

for a symmetric matrix A.

B.3 Tridiagonal Matrices

Definition B.3 (Irreducible tridiagonal matrix) The n × n tridiagonal matrix A
given by

A =

⎛
⎜⎜⎜⎜⎜⎝

b1 c1 0 · · · 0
a2 b2 c2 0

. . .
. . .

. . .

an−1 bn−1 cn−1
0 · · · 0 an bn

⎞
⎟⎟⎟⎟⎟⎠

(B.9)

is said to be irreducible if the off-diagonal entries a j and c j are all nonzero.

Suppose that D = diag(d1, d2, . . . , dn) is an n × n diagonal matrix and let A be
an irreducible tridiagonal matrix. The product matrix

1We shall restrict ourselves to real matrices, the analogous property for complex matrices is that
A∗ = A, where A∗ is the Hermitian (or complex conjugate) transpose.
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D A =

⎛
⎜⎜⎜⎜⎜⎝

d1b1 d1c1 0 · · · 0
d2a2 d2b2 d2c2 0

. . .
. . .

. . .

dn−1an−1 dn−1bn−1 dn−1cn−1
0 · · · 0 dnan dnbn

⎞
⎟⎟⎟⎟⎟⎠

will be a symmetric matrix if the entries of D are chosen so that

d j a j = d j−1c j−1, j = 2, 3, . . . , n.

Setting d1 = 1, the fact that a j 	= 0 means that d2, d3, . . . , dn can be successively
computed. The fact that c j−1 	= 0 implies that d j 	= 0, j = 2, . . . , n, which ensures
that the diagonal matrix D is nonsingular. It follows from this result that A will have
real eigenvalues when a j/c j−1 > 0, for j = 2, 3, . . . , n (see Exercise B.4). This is
the linear algebra analogue of the clever change of variables for ODEs in Sect. 5.3.2
combined with (part of) Theorem 5.11.

The n × n tridiagonal matrix

T =

⎡
⎢⎢⎢⎢⎢⎣

b c 0 · · · 0
a b c

. . .
. . .

. . .

a b c
0 a b

⎤
⎥⎥⎥⎥⎥⎦

(B.10)

with constant diagonals, has eigenvalues

λ j = b + 2
√

ac cos
jπ

n + 1
, j = 1, 2, . . . , n. (B.11)

with corresponding eigenvectors

v j = [sin(π j x1), sin(π j x2), . . . , sin(π j xm), . . . , sin(π j xn)]T,

where xm = m/(n + 1) (see Exercise B.5). Generalizations of this result can be
found in Fletcher and Griffiths [3].

B.4 Quadratic Forms

Definition B.4 If x ∈ R
n and A is a real n × n symmetric matrix, then the function

Q(x) = xT Ax

is called a quadratic form.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
http://dx.doi.org/10.1007/978-3-319-22569-2_5
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The form Q(x) is a homogeneous quadratic function of the independent variables
x1, x2, . . . , xn .2 In the simplest (two-dimensional) case, we have x ∈ R

2, and

Q(x) = [x y
] [a b

b c

] [
x
y

]
= ax2 + 2bxy + cy2. (B.12)

We shall be concerned with the level curves of the quadratic form, that is points
where Q(x) = constant. If we make a change of variables: x = V s, where V is a
nonsingular 2 × 2 matrix, then the quadratic form becomes

Q(V s) = sT(V T AV )s

which is a quadratic form having coefficient matrix V T AV . The idea is to choose V
in such a way that V T AV is a diagonal matrix,

V T AV =
[
α 0
0 β

]
,

so that, with s = [s, t]T we have

Q(V s) = αs2 + βt2. (B.13)

We can picture the form in (B.13) geometrically. The points Q = constant in the s-t
plane are (a) ellipses if αβ > 0 (i.e., α and β have the same sign), (b) hyperbolae if
αβ < 0 (i.e., they have opposite signs) and (c) straight lines3 if one of α or β is zero
(i.e., αβ = 0).

Two basic questions need to be answered at this point:

Q1. How do we construct the matrix V ?
Q2. Different matrices V will lead to different values forα and β but will their signs

remain the same?

To answer the first question: a natural candidate for V is the matrix of eigenvectors of
A. To confirm this choice, suppose that A has eigenvalues λ1,λ2 with corresponding
eigenvectors v1 and v2:

Av j = λ jv j , j = 1, 2.

Since A is symmetric, the eigenvalues are real and the two eigenvectors are orthog-
onal: vT

1 v2 = 0 = vT
2 v1. Setting V = [v1, v2], we get

2Homogeneous means that Q(cx) = c2Q(x) for c ∈ R; this is the case because there are no linear
terms and no constant term.
3When Q(x) also contains linear terms in x then Q(V s) will, in general, contain linear terms in s.
In such cases the level curves will be parabolae.
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V T AV =
[
λ1v

T
1 v1 λ2v

T
1 v2

λ1v
T
2 v1 λ2v

T
2 v2

]
=
[
λ1v

T
1 v1 0
0 λ2v

T
2 v2

]

so that we have (B.13) with α = λ1v
T
1v1 and β = λ2v

T
2 v2. If the eigenvectors are

normalised to have unit length then α = λ1 and β = λ2. In both cases the sign of the
productαβ is the same as that of λ1λ2 so the level curves will be ellipses if λ1λ2 > 0
and hyperbolae if λ1λ2 < 0. Moreover, since the characteristic polynomial of the
matrix A is given by

det(A − λI ) = λ2 − (a + c)λ + (ac − b2),

then the product of the eigenvalues is given by λ1λ2 = ac − b2 = det(A), so we see
that it is not necessary to compute the eigenvalues in order to determine the nature
of the level curves. This is formally stated in the following result.

Theorem B.5 The level curves of the quadratic form Q(x, y) = ax2 + 2bxy + cy2

are hyperbolae if b2 − ac > 0 (when Q(x, y) has two distinct real factors) and
ellipses if b2 − ac < 0 (when Q(x, y) has no real factors). In the intermediate case,
b2 − ac = 0 (when Q(x, y) is a perfect square) the level curves are straight lines.

If the eigenvectors are normalised then V TV = I and x = V s may be inverted
to give

s =
[

s
t

]
= V Tx =

[
vT
1

vT
2

]
x

so that s = vT
1 x is the component of x in the direction of v1 and t = vT

2 x is the
component of x in the direction of v2. In the nondenegerate case (b2 	= ac), a further
rescaling of the components of s to new variables ξ = [ξ, η]T defined by ξ = s

√|λ1|
and η = t

√|λ2| can be applied. This gives s = Dξ where

D =
[
1/

√|λ1| 0
0 1/

√|λ2|
]

is a nonsingular diagonalmatrixwith Q(V Dξ) = ±1(ξ2+η2) in the elliptic case and
Q(V Dξ) = ±1(ξ2 − η2) in the hyperbolic case. Thus, with this special rescaling,
the contours are either circles or rectangular hyperbolae in the ξ-η plane. The process
is illustrated by the following example.

Example B.6 Determine the level curves of the quadratic form associated with the
matrix

A =
[
13 −4
−4 7

]
.
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Fig. B.1 Level curves of Q(x) (left), Q(V s) (centre) and Q(V Dξ) (right) for Example B.6. The
mapping from s-t to x-y corresponds to a simple rotation of the coordinate system

Computing the eigenvalues and eigenvectors of A gives

λ1 = 15, v1 = 1√
5

[
2

−1

]
, λ2 = 5, v2 = 1√

5

[
1
2

]
.

Setting V = [v1, v2] and changing variables gives s = (2x − y)/
√
5, t =

(x + 2y)/
√
5, ξ = (2x − y)

√
3 and η = x + 2y with associated quadratic forms

Q(V s) = 15s2 + 5t2, Q(V Dξ) = ξ2 + η2.

We note that both of these correspond to writing

Q(x, y) = 3 (2x − y)2 + (x + 2y)2.

The level curves Q(x) = 25 in the x-y plane, Q(V s) = 25 in the s-t plane and
Q(V Dξ) = 1 in the ξ-η plane are shown in Fig.B.1. The ellipse in the s-t plane is
a rotation of the ellipse in the x-y plane anticlockwise through the angle tan−1 (1/2).
The eigenvectors v1 and v2 can be seen to be directed along the minor and major
axes of the ellipse associated with Q(x). ♦

Returning to the second question above, we will see that suitable transformation
matrices V can be defined without knowledge of the eigenvalues or eigenvectors of
A. The key element in the construction of such matrices is Sylvester’s law of inertia,
stated below. Two definitions will be needed beforehand.

Definition B.7 (Congruence) Assuming that V is a nonsingular matrix, the matrix
(triple-) product V T AV is called a congruence transformation of A.

The two matrices V T AV and A are said to be congruent. The set of eigenvalues
of two congruent matrices will generally be different (unless V is an orthogonal
matrix). A congruence transformation does, however, retain just enough information
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about the eigenvalues to be useful in the current context. This information is called
the inertia of a matrix.

Definition B.8 (Inertia) The inertia of a symmetric matrix is a triple of integers
(p, z, n) giving the number of positive, zero and negative eigenvalues, respectively.

Theorem B.9 (Sylvester’s law of inertia)The inertia of a symmetric matrix is invari-
ant under a congruence transformation.

Sylvester’s law of inertia guarantees that the qualitative nature of the level curves
are invariant when the matrix is subject to congruence transformations. Thus in two
dimensions the level curves of a matrix having inertia (2, 0, 0) or (0, 0, 2) will be
ellipses while an inertia of (1, 0, 1) will lead to hyperbolae.

One natural possibility for a congruence transformation is to use Gaussian elim-
ination. When a 	= 0 we subtract b/a times the 1st row of A from the second
row in order to create a zero in the (2, 1) position. The elimination process can be
represented by defining V T so that

V T =
[

1 0
−b/a 1

]
, V T A =

[
a b
0 (ac − b2)/a

]
, V T AV =

[
a 0
0 (ac − b2)/a

]

so we generate (B.13) with α = a and β = (ac − b2)/a. The congruence transfor-
mation explicitly highlights the role of the discriminant (ac − b2) of the underlying
quadratic form. Next, computing the inverse transformation matrix gives

V −1 =
[
1 b/a
0 1

]
,

and setting s = V −1x, we find that s = x + by/a, t = y. Thus, from (B.13),

Q(x, y) = a

(
x + by

a

)2
+
(

c − b2

a

)
y2

which can be seen to be equivalent to “completing the square”.

Example B.10 (Example B.6 revisited) Completing the square in the quadratic form
associated with the matrix

A =
[
13 −4
−4 7

]

we find that

Q(x, y) = 13x2 − 8xy + 7y2 = 13

(
x − 4

13
y

)2
+ 75

13
y2.
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This suggests an alternative mapping from (x, y) to (s, t) via s = x − (4/13) y
(= x + by/a), t = y. The change of variables leads to

Q(V s) = 13s2 + 75

13
t2,

and defines the ellipse in the s-t plane that is associatedwith theGaussian elimination
congruence transformation V T AV . Making the further scaling ξ = s/

√
13, η =

t
√
13/75 gives Q(V Dξ) = ξ2 + η2, whose level curves in the ξ-η plane are again

circles. ♦

B.5 Inverse Monotonicity for Matrices

A real matrix A or a real vector x which has entries that are all nonnegative numbers
is called a nonnegative matrix or vector. They can be identified by writing A ≥ 0 and
x ≥ 0. The matrix interpretation of an inverse monotone discrete operator is called
a monotone matrix.

Definition B.11 (Monotone matrix) A nonsingular real n × n matrix A is said to be
monotone if the inversematrix A−1 is nonnegative: equivalently, Ax ≥ 0 implies that
x ≥ 0.

The standard way of showing that a matrix is monotone is to show that it is an
M-matrix.

Definition B.12 (M-matrix) A real n × n nonsingular matrix A is an M-matrix if

(a) ai j ≤ 0 for i 	= j (this means that A is a Z-matrix), and
(b) the real part of every eigenvalue of A is positive.

An M-matrix is guaranteed to be monotone. To expand on condition (b): first, a
symmetric matrix A has real eigenvalues. They are all positive numbers if and only
if the quadratic form Q(x) = xT Ax is positive for every nonzero vector x (such a
matrix is said to be positive definite). Second, an irreducible nonsymmetric matrix
will satisfy (b) if it is also diagonally dominant; that is if aii ≥∑n

j=1, j 	=i |ai j | with
strict inequality for at least one value of i . (This result immediately follows from the
Gershgorin circle theorem.4)

4This states that: let ri = ∑i 	= j |ai, j | denote the sum of the moduli of the off-diagonal entries of
an n × n matrix A, then every eigenvalue of A lies in at least one of the disks of radius ri centered
on aii .
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Exercises

B.1 Prove that an n × n matrix A is symmetric if and only if
〈
x, A y

〉 = 〈Ax, y
〉
for

all vectors x, y ∈ R
n . (Hint: Choose x = ei and y = e j , where ek is the kth unit

vector inRn , that is, the vectors whose only nonzero entry is one in the kth position.)

B.2 Suppose that A is an irreducible n ×n tridiagonal matrix. Construct the nonsin-
gular diagonal matrix D = diag(1, d2, . . . , dn) that makes the product matrix AD
symmetric.

B.3 Suppose that A is a tridiagonalmatrix and let D be a nonsingular diagonalmatrix
that makes the matrix D A symmetric. Prove that AD−1 is a symmetric matrix.

B.4 Suppose that the matrix A in (B.9) is irreducible and that its elements are real
with a j/c j−1 > 0 for j = 2, 3, . . . , n. Show that its eigenvalues are real.

[Hint: Av = λv for an eigenvector v ∈ C
n and corresponding eigenvalue λ. Now

consider the inner product
〈
v, ADv

〉
.]

B.5 Suppose that Um = sin(π jm/(n + 1)) so that U0 = 0 and Un+1 = 0 when j
is an integer. Show, using the trigonometric identity for sin(A ± B), that

aUm−1 + bUm + cUm+1 = λ jUm,

where λ j is the j th eigenvalue of the tridiagonal matrix (B.10).

B.6 Sketch the level curves of the quadratic form Q(x) when

A =
[−10 10

10 5

]
.

B.7 Consider a quadratic form Q(x) of the form (B.12) with a ≥ c > 0 and
b2 < ac. Suppose that â = 1

2 (a + c) and that r, θ are defined by a = â(1+ r cos θ),
c = â(1 − r cos θ) and b = âr sin θ (0 ≤ r < 1, −π/2 ≤ θ ≤ π/2). Show that

r2 = 1 − 4
ac − b2

(a + c)2

and that the matrix of the quadratic form has eigenvalues λ± = â(1 ± r) with
corresponding eigenvectors

v+ = (cos 1
2θ, sin

1
2θ), v− = (sin 1

2θ,− cos 1
2θ),

where tan θ = 2b/(a − c).
If the major axis of the ellipse Q(x) = constant makes an angle φwith the y-axis,

show that −π/4 ≤ φ ≤ π/4.
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B.8 This builds on the previous exercise. Attention is drawn in Sect. 10.2.5 to
quadratic forms where the coefficients satisfy b2 < ac ≤ a|b|. Show that the mini-
mum value of r , subject to these inequalities, is 1/

√
2. Hence show that the ratio of

the lengths of the two axes of the ellipse Q = constant (that is,
√

λ+/λ−) is greater
than, or equal to,

√
2 + 1.

B.9 Find the stationary points of the function φ(x, y) = 2x + 2yex + y2.
The leading terms in the Taylor expansion of a function of two variables about a

point x = a may be expressed in the matrix-vector form

φ(x) = φ(a) + (x − a)T g + (x − a)T H(x − a) + · · ·

where x = (x, y)T, g = (φx (a),φy(a))T is the gradient of φ at a and

H =
[
φxx (a) φxy(a)

φyx (a) φyy(a)

]

is the matrix of second derivatives (or Hessian matrix) evaluated at a. Use the expan-
sion to determine whether the stationary points of φ(x, y) are maxima, minima or
saddle points.

http://dx.doi.org/10.1007/978-3-319-22569-2_10


Appendix C
Integral Theorems

This appendix reviews the most important results in vector calculus: these are gen-
eralisations of the fundamental theorem of integral calculus, that is

∫ b

a
f ′(x) dx = f (b) − f (a).

Theorem C.1 Suppose that Ω ⊂ R
3 is a closed bounded region with a piecewise

smooth boundary ∂Ω and let �n denote the unit outward normal vector to ∂Ω . If φ
and �F denote, respectively, scalar and vector fields defined on a region that contains
Ω , then

(i)
∫∫∫

Ω

grad φ dV =
∫∫

∂Ω

φ �n dS

(ii)
∫∫∫

Ω

div �F dV =
∫∫

∂Ω

�F · �n dS

(iii)
∫∫∫

Ω

curl �F dV =
∫∫

∂Ω

�n × �F dS.

These three identities are associated with the famous names of George Green and
Carl Friedrich Gauss. The result (ii) is perhaps of greatest importance in applications
and is often referred to as the divergence theorem. What might not be obvious is that
if any one of the identities in Theorem C.1 is true then the other parts follow. This is
established below. Itwill be assumed that, inCartesian coordinates, �F = [Fx , Fy, Fz]
with a similar notation for �n.
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• (i)⇒(ii) If we take φ = Fx and write down the first (or the x-) component of the
vector-valued identity (i), we get

∫∫∫

Ω

∂ Fx

∂x
dV =

∫∫

∂Ω

Fx nx dS

where nx is the first component of �n. Moreover, taking φ = Fy and φ = Fz and
writing down the second and third components of �n gives

∫∫∫

Ω

∂ Fy

∂y
dV =

∫∫

∂Ω

Fyny dS,

∫∫∫

Ω

∂ Fz

∂z
dV =

∫∫

∂Ω

Fznz dS.

Adding these results gives identity (ii) written in Cartesian coordinates.
• (ii)⇒(i) If we take �F = [φ, 0, 0] then (ii) gives

∫∫∫

V

∂φ

∂x
dV =

∫∫

S

φ nx dS,

which is the first component of result (i). Taking �F = [0,φ, 0] and �F = [0, 0,φ]
give the second and third components. Hence, (i) follows from (ii).

• (i)⇒(iii) The first component of (iii) is

∫∫∫

V

(
∂ Fz

∂y
− ∂ Fy

∂z

)
dV =

∫∫

S

(
Fzny − Fynz

)
dS.

Toestablish this result, the second component of (i)withφ = Fz must be subtracted
from the third component of (i) with φ = Fy , that is

∫∫∫

V

∂ Fz

∂y
dV =

∫∫

S

Fzny dS and
∫∫∫

V

∂ Fy

∂z
dV =

∫∫

S

Fynz dS.

The other two components of (iii) can be established in exactly the same way.
• (iii)⇒(i) Suppose that �v is a constant vector. Taking �F = φ�v in identity (iii) gives

∫∫∫

V

curl(φ�v) dV =
∫∫

S

�n × (�vφ) dS.

Next, using the vector identity

curl(φ�v) = φ curl �v − �v× grad φ
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the left hand side simplifies (since �v is a constant vector, its curl is zero) to give

−
∫∫∫

V

�v× grad φ dV =
∫∫

S

�n × (�vφ) dS = −
∫∫

S

φ �v× �n dS

where we have used �a × �b = −�b× �a on the right hand side. Since �v is a constant
vector, it can be taken outside the integrals to give

−�v×
∫∫∫

V

grad φ dV = −�v×
∫∫

S

φ �n dS.

Finally, since the above result is valid for all constant vectors �v, identity (i) must
always hold. �



Appendix D
Bessel Functions

The ODE

x2u′′ + xu′ + (x2 − ν2)u = 0 (D.1)

defined on the semi-infinite real line 0 < x < ∞ and involving a real parameter ν
is known as Bessel’s equation. This is a linear second-order ODE and therefore has
two linearly independent solutions. These are usually denoted by Jν(x) and Yν(x)

and are referred to as Bessel functions of the first and second kind, respectively, of
order ν.

The equation cannot be solved in terms of standard elementary functions and so
the method of Frobenius is used to construct a series solution. That is, coefficients
{an} are sought such that a solution may be expressed in the form

u(x) =
∞∑

n=0

an xn (D.2)

It is sufficient for our purposes to consider the case ν = 0. Thus, on substituting
(D.2) into (D.1) and collecting terms with like powers of x , we find

x2u′′ + xu′ + x2u = a1x +
∞∑

n=2

(
n2an + an−2

)
xn

and the right hand side is zero when a1 = 0 and

an = − 1

n2 an−2, n = 2, 3, . . . . (D.3)
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Fig. D.1 The Bessel functions J0(x) (solid), J1(x) (dashed) and Y0(x) (dotted) for 0 ≤ x ≤ 21

When n = 3, 5, . . . we find that all odd-numbered terms in (D.2) vanish while,
writing n = 2m, the even-numbered coefficients are

a2m = (−1)m 1

22m(m!)2 a0, m = 0, 1, 2, . . . (D.4)

in which a0 is an arbitrary constant The remaining coefficient a0 is used to normalise
the solution and, by choosing a0 = 1, we find that u(x) = J0(x), where

J0(x) =
∞∑

n=0

(−1)n 1

(n!)2
( x

2

)2n
(D.5)

is the Bessel function of the first kind of order zero. Note that J0(0) = 1 and
J ′
0(0) = 0.
Bessel functions of the second kind have the property that Yν(x) → −∞ as

x → 0+ and, since we make no direct use of them in this book, they will not be
discussed further. Graphs of J0(x), J1(x) andY0(x) are shown in Fig.D.1. The graphs
of J1(x) and Y0(x) are indistinguishable for x > 3. Their oscillatory behaviour is
evident and the zeros play an important role when using separation of variables, as
illustrated in Example 8.5. A selection of the zeros of J0(x) are given in TableD.1.
It can be shown that, for large values of x ,

Table D.1 Selected zeros ξk of J0(x) compared with (k − 1
4 )π from the approximation (D.6) with

ν = 0

k 1 2 3 5 10 20

ξk 2.4048 5.5201 8.6537 14.9309 30.6346 62.0485

(k − 1
4 )π 2.3562 5.4978 8.6394 14.9226 30.6305 62.0465

0.0486 0.0223 0.0143 0.0084 0.0041 0.0020

The bottom row gives the difference between the preceding two rows

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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Jν(x) ≈
√

2

πx
cos
(

x − (ν + 1
2 )

π

2

)
, (D.6)

which suggests that the zeros of J0(x) approach (k − 1
4 )π as k → ∞. The table

confirms that this is a reasonable approximation even for small values of k.
Bessel functions have played an important role in applied mathematics for more

than a century. One reason for this prominent position is that those equations that
can be solved in Cartesian coordinates by the use of sines and cosines require Bessel
functions when the equations are expressed in polar coordinates. Bessel functions
have been studied extensively over the years. A comprehensive review can be found
in the celebrated book by G.N. Watson [27] (originally published in 1922), whereas
Kreyszig [12] provides an accessible introduction to their properties.

Exercises

D.1 Use the result of Exercise 5.4 to show that solutions of (D.1) are oscillatory.

D.2 By differentiating (D.1) when ν = 0, show that u = cJ ′
0(x) satisfies Bessel’s

equation with ν = 1 and the initial condition u(0) = 0 for any constant c.

D.3 Follow the process leading to (D.5) to show that (D.1) with ν = 1 has a solution
u(x) = J1(x), where

J1(x) =
∞∑

n=0

(−1)n 1

n!(n + 1)!
( x

2

)2n+1
. (�)

Verify, by term by term differentiation, that J1(x) = −J ′
0(x), confirming the result

of the previous exercise with c = −1.

D.4 Show that equation (D.1)with ν = 0 can be rewritten in the form (xu′)′+xu = 0.
Hence show that ∫ x

0
s J0(s) ds = x J1(x).

D.5 By multiplying (D.1) with ν = 0 by 2u′, establish the result

d

dx

(
x2u(x)′2 + x2u(x)2

) = 2xu2(x).

Then, using the fact that u = J0(x) is a solution of (D.1), show that

∫ ξ

0
x J 2

0 (x) dx = 1
2ξ

2 J 2
1 (ξ), (‡)

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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where ξ is any zero of J0.

D.6 By making an appropriate change of variable in (‡) establish the relation

∫ a

0
r J 2

0 (rξ/a) dr = 1
2a2 J 2

1 (ξ).

D.7 Using a search engine, or otherwise, explore the ratio test for convergence of
an infinite series. Use the ratio test to show that the series for J0(x) in equation (D.5)
and J1(x) in Exercise D.3 converge for all values of x .



Appendix E
Fourier Series

Consider the case of a real-valued function u(x) that is defined on the real line
−∞ < x < ∞ and is periodic, of period L . Thus u(x + L) = u(x) for all x and
knowledge of u on any interval of length L is sufficient to define it on the entire
real line. Let us suppose that u(x) is to be determined on the interval (0, L). Such a
function u(x) has a well-defined Fourier series expansion into complex exponentials
(sines and cosines)

u(x) =
∞∑

j=−∞
c je

2πi j x/L , (E.1)

with complex-valued coefficients c j that are constructed to ensure that the series
converges at almost every point x . Since we know (from Exercise 5.19) that the
functions {exp(2πi j x/L)} ( j = 0,±1,±2, . . .) aremutually orthogonalwith respect
to the complex L2(0, L) inner product (5.17), we can determine a general Fourier
coefficient ck by multiplying (E.1) by exp(−2πkx/L) and integrating with respect
to x over the interval. This gives

ck = 1

L

∫ L

0
e−2πikx/L u(x) dx . (E.2)

Expanding (E.2) in terms of sines and cosines, and then taking the complex conjugate
gives

ck = 1

L

∫ L

0
{cos(2πikx/L) − i sin(2πikx/L)} u(x) dx (E.3)

c∗
k = c−k = 1

L

∫ L

0
{cos(2πikx/L) + i sin(2πikx/L)} u(x) dx . (E.4)
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Combining these results gives new coefficients ak , bk , so that

ak := ck + c−k = 2

L

∫ L

0
cos(2πkx/L) u(x) dx (E.5)

bk := i (ck − c−k) = 2

L

∫ L

0
sin(2πkx/L) u(x) dx . (E.6)

Next, rearranging the expressions in (E.5) and (E.6) gives ck = 1
2 (ak − ibk) and

c−k = 1
2 (ak + ibk), and substituting these expressions into (E.1) and rearranging

(see Exercise E.1) generates the standard form (no complex numbers!)

u(x) = 1

2
a0 +

∞∑
k=1

{ak cos(2πkx/L) + bk sin(2πkx/L)} . (E.7)

Another direct consequence of the mutual orthogonality of the complex exponentials
is Parseval’s relation (see Exercise E.2)

∞∑
k=−∞

|ck |2 = 1

L

∫ L

0
|u(x)|2 dx . (E.8)

This implies that the Fourier coefficients are square summable if, and only if, the
function is square integrable. This also shows that the coefficients ak and bk will
need to decay with increasing k if the Fourier series (E.1) is to converge: coefficients
of the form (1, 1, 1, 1, . . .) will not be allowed, whereas (1, 1

2 ,
1
3 ,

1
4 , . . .) will be just

fine (because 1 + 1
4 + 1

9 + 1
16 + · · · < ∞).

Example E.1 Construct a piecewise continuous function (see Definition 8.3) that
has Fourier coefficients that decay harmonically, that is |ck | = a

|k| for k 	= 0, where
a is a constant (so that the series (E.1) converges).

Integrating the right hand side of (E.2) by parts we get

ck = − 1

2πik
u(x) e−2πikx/L

∣∣∣L
0

+ 1

2πik

∫ L

0
e−2πikx/L u′(x) dx . (E.9)

The factor 1/k in the first term of (E.9) suggests the specific choice u(x) = x (the
constant derivative means that the second integral is zero). Note that the periodic
extension of this function is discontinuous at the boundary points: u(0+) = 0 	=
u(L−) = L . When these two limits are substituted into the first term in (E.9) we get
ck = − L

2πik so that |ck | = L
2π|k| , as required.

http://dx.doi.org/10.1007/978-3-319-22569-2_8
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Fig. E.1 The Fourier series of the function u(x) = x for x ∈ (0, 2π) truncated to N = 100 real
terms (left). An expanded view in the square around the point (2π, 2π) is shown with N = 100
(centre) and N = 500 (right)

This slow decay of the coefficients has significant implications. The N th partial
sum with L = 2π is (since c0 = π)

SN (x) =
N∑

k=−N

cke
ikx = π −

N∑
k=1

2

k
sin(kx)

and is shown on the left of Fig.E.1 with N = 100. It is seen to give a coherent
approximation of u(x) = x except at points close to the discontinuities at x = 0, 2π.
The expanded view in the central figure reveals a highly oscillatory behaviour. When
N is increased to 500, the oscillations in the rightmost figure appear to be confined
to a smaller interval but their amplitude is undiminished—a dashed horizontal line is
drawn at y = 2.17π for reference. This is an illustration ofGibb’s phenomenon and is
a consequence of using continuous functions in order to approximate a discontinuous
one. The “overshoot” in the partial sum is at least 8.5% (closer, in fact, to 9%) of
the total jump (2π) at x = 2π. This, and other features, are succinctly explained by
Körner [11, pp. 62–66]. ♦

The following theorem relates the smoothness of the function u to the rate of
decay of the coefficients ck as the index k increases.

Theorem E.2 Let s ∈ {1, 2, . . .} be a parameter. If the function u and its first
(s − 1) derivatives are continuous and its sth derivative is piecewise continuous on
(−∞,∞), then the Fourier coefficients satisfy

|ck | ≤ a/|k|s+1 (E.10)

for k 	= 0, where a is a constant.
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Fig. E.2 Grid points over a full period − 1
2 Mh ≤ x ≤ 1

2 Mh when M is even

Proof Suppose that s = 1. The function u is continuous (and periodic) so
limx→0+ u(x) = limx→L− u(x). Thus, unlike the previous example, the first term in
(E.9) is zero, so that

|ck | = 1

k
·
∣∣∣ 1

2πi

∫ L

0
e−2πikx/L u′(x) dx

∣∣∣
︸ ︷︷ ︸

c′
k

.

Note that c′
k is a scalarmultiple of theFourier coefficient of the (piecewise continuous)

derivative function, so the coefficients |c′
k | will decay harmonically (at worst). The

general result may be obtained by repeating the above argument s − 1 times (each
integration by parts gives another factor of k in the denominator). �

Next, suppose that our periodic function u is sampled on the grid of points
xm = mh, m = 0,±1,±2, . . . where h = L/M (as illustrated in Fig.E.2), so
that

u(xm) =
∞∑

k=−∞
ck e

2πikm/M . (E.11)

The periodicity is reflected in the fact that exp(2πik′m/M) = exp(2πikm/M) for
k′ = k + �M where � is an integer. In this situation we say that the wave numbers
2πk and 2πk′ are aliases of each other. If we now collect all the like coefficients
together, then (E.11) can be written as a finite sum of distinct Fourier modes

u(xm) =
M−1∑
k=0

c̃k e
2πikm/M , c̃k =

∞∑
�=−∞

ck+�M , (E.12)

with modified coefficients c̃k that are periodic with period M : c̃k+M = c̃k for all k.
Note that if M is an even number (as illustrated above) then the function u can be
defined over the interval (− M

2 h, M
2 h) by simply summing over M+1 Fourier modes

(instead of M modes) and halving the contribution of the first and last terms (since
they are equal). This leads to the alternative representation5

u(xm) =
∑∗

|k|≤M/2

c̃k e
2πikm/M . (E.13)

5The first and last term adjustment is indicated by the asterisk in the summation.
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Note that if M is odd then the range of |k| will be �M/2� and no adjustment of the
two end contributions is needed.

The exact representation of the periodic function in (E.12) (or equivalently (E.13))
involves a summation of an infinite number of the coefficients ck . In a practical
computation the exact coefficients c̃k will be approximated by (discrete) coefficients
Ck and the associated discrete Fourier series is constructed

Um =
M−1∑
k=0

Cke
2πikm/M , (E.14)

where {Um} are a set of periodic grid values (Um+M = Um for all integers m) that
approximate the exact grid values u(xm). The construction of the discrete Fourier
coefficientsCk mirrors the construction used in the continuous case.All that is needed
is a suitable inner product.

Theorem E.3 The discrete Fourier modes {e2πikm/M }M−1
m=0 associated with distinct

wave numbers k are mutually orthogonal with respect to the discrete inner product6

〈
U, V

〉
h = 1

M

M∑ ′′

m=0

Um V ∗
m . (E.15)

Proof By construction

〈
e2πikm/M , e2πi�m/M 〉

h = 1

M

M−1∑
m=0

e2πi(k−�)m/M = 1

M

M−1∑
m=0

zm,

where z = e2πi(k−�)/M is one of the M th roots of unity, so zM = 1. The formula for
the sum of a geometric progression then gives

〈
e2πikm/M , e2πi�m/M 〉

h =
{

M when k = �
1
M

1−zM

1−z
= 0 when k 	= �.

�

The general coefficient Ck can thus be determined by multiplying (E.14) by
exp(−2πikm/M) and summing over m. This gives

Ck = 1

M

M−1∑
m=0

Ume
−2πikm/M . (E.16)

6The associated �2 norm ‖U‖h,2 is also defined in (11.41). The primes on the summation symbol
signify that the first and last terms of the sum are halved.

http://dx.doi.org/10.1007/978-3-319-22569-2_11
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The discrete Fourier coefficientswill be periodic:Ck+M = Ck for all k, andmirroring
the exact coefficients ck they satisfy C−k = C∗

k and CM−k = C∗
k : thus we only

need half of the coefficients in order to represent a real-valued grid function U . A
classic algorithm that can be used to efficiently compute the coefficients {Ck} (in
both real- and complex-valued cases) is the Fast Fourier Transform. The algorithm
is especially effective when M is a power of 2. Further details can be found in the
book by Briggs [2].

Following the argument in the lead-up to (E.13) shows that we can write

Um =
∑∗

|k|≤�M/2�
Cke

2πikm/M , (E.17)

in place of (E.14). We can also establish (see Exercise E.5) a discrete version of
Parseval’s relation,

M−1∑
k=0

|Ck |2 = 1

M

M−1∑
m=0

|Um |2 = ‖U‖2h,2, (E.18)

which implies that the discrete �2 norm of a periodic function is intrinsically con-
nected to the sum of squares of the discrete Fourier coefficients.

The book by Strang [20, Chap.4] is recommended for an overview of Fourier
analysis and its role in applied mathematics.

Exercises

E.1 Show also that (E.1) can be written as (E.7) when ck = 1
2 (ak − ibk) and {ak},

{bk} are real sequences.
E.2 Show that Parseval’s relation (E.8) follows from (E.2).

E.3 Verify that the discrete inner product (E.15) satisfies all the properties of the
function inner product (5.17) that are listed in Exercise 5.11.

E.4 Show that the coefficients in (E.16) satisfyC−� = C∗
� whenU is a real sequence.

E.5 Show that the discrete version of Parseval’s relation (E.18) follows from (E.16)
using an argument analogous to that in Exercise E.2.

http://dx.doi.org/10.1007/978-3-319-22569-2_5
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A
Advection dominated, 226, 262, 313
Advection equation, 2, 5, 285, 304

approximation, 275–294
with nonlinear source term, 330

Advection term, 59
Advection–diffusion equation, 4, 31, 36, 48,

100, 126, 156, 226–230, 235, 261,
272, 286, 322, 326, 329

Aliases of Fourier modes, 358
Amplification factor, 258–262, 265, 267,

271–273, 285, 290, 293, 294, 296–
303, 315, 329

Anisotropic diffusion, see diffusion,
anisotropic

B
B, 15, 17, 71, 74, 136, 140–142, 147, 196
Bh , 198, 215
Backward difference, 87, 247
Backward heat equation, see heat equation,

backward
Banded matrix, see matrix, banded
BC, see boundary condition
Bessel

equation, 79, 351–354
function, 137, 159, 351–354

Big O, 87
Biharmonic equation, 32, 57
Bilinear function, 152
Black–Scholes equation, 4, 18
Blow-up, 171
Boundary conditions, 11–19, 23, 41, 44, 51,

60, 164
approximation, 207–211, 213, 218, 233,
263–264, 304–308, 316

Dirichlet, 12, 13, 30, 60, 148, 196–198
for advection, 304–308, 316
mixed, 14
Neumann, 13, 14, 30, 60, 123, 156, 196,
207–211, 220, 263–264, 273

operator, 15, 71, 74, 136
periodic, 286, 331
Robin, 13, 14, 31, 60, 67, 196, 207–211,
233, 263–264, 273

Boundary layer, 226
Boundary value problem, 12, 137

homogeneous, 18
linear, 17
nonlinear, 20
quasi-linear, 20
semi-linear, 20

BTCS, see finite difference scheme, back-
ward time, centred space

Burgers’ equation, 2, 20, 34–35, 173–178,
187, 192

viscous, 9
BVP, see boundary value problem

C
Cauchy–Riemann equations, 56
Cauchy–Schwarz inequality, 68, 79, 283,

330, 336
Centred difference, 88, 239, 247
CFL condition, 242, 275, 278, 279, 285, 293,

329
Chain rule, 38, 45
Characteristic

equations, 38–39, 161–162, 167, 168,
171, 172, 174, 180

speed, 41, 44, 46, 53, 180, 185, 316
infinite, 47
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Characteristic curves, see characteristics
Characteristic polynomial, 332, 340
Characteristics, 38–46, 161–194, 226, 275,

277–279, 283, 304
complex, 45, 49
incoming, 42, 165, 226, 308
intersecting, 176, 180
of Burgers’ equation, 174–184
outgoing, 165, 308

Cholesky decomposition, 248, 256, 266
Circulant matrix, see matrix, circulant
Circular symmetry, 137, 156
Classical solution, 180
Cole–Hopf transformation, 9
Compact difference scheme, 110
Comparison

function, 64, 97, 99, 107, 109, 112, 117,
203, 215, 219, 243

principle, 64–68, 98
Comparison function, 121, 245
Condition number, 164, 189
Congruence transformation, 341
Conservation law, 29, 126, 179, 309
Conservative form, 31
Consistency, 86, 96, 100, 102, 113, 195, 202,

209, 219, 241, 243, 264, 282
order of, 96, 105, 203, 229, 241, 280, 297,
298, 309

Convection, see advection
Convergence, 86, 97, 113, 195, 202, 204,

219, 243, 251, 275, 296–299
estimating order of, 204–205
order of, 97, 100, 105, 110, 113, 202, 204,
206, 214, 215, 219, 245, 251, 299, 308,
320

Convergence rate, see convergence, order of
Convergent approximation, 85
Convex combination, 252
Courant number, 277, 284
Crank–Nicolson method, see finite differ-

ence scheme, Crank–Nicolson

D
d’Alembert’s solution, 46, 54, 124, 157, 170
Derivative

discontinuous, 180
outward normal, 14
partial, 1

Differential operator, 15
Diffusion, 30, 157, 289, 309

anisotropic, 50, 223–225
coefficient, 286, 322

coupled equations, 323
equation, 47, 134
operator, 227
term, 59, 226, 313

Dirichlet boundary condition, see boundary
condition, Dirichlet

Discontinuity, 16, 42, 43, 48, 52, 53, 129,
132, 134, 151, 161, 176, 178, 180,
184–186, 221, 226, 276, 279, 289,
294, 312, 356

Discrete Fourier modes, 258, 359
Discriminant, 166
Dispersion, 299–303

error, 301
relation, 285, 297, 301

Dissipation, 299–303
order, 300–301, 315

Divergence theorem, 347
Domain

circular, 126, 137, 147, 158
L-shaped, 222
nonrectangular, 211–221
of dependence, 170, 242, 279
of influence, 170, 279, 304, 306
quarter circle, 223
re-entrant corner, 222
rectangular, 232
spherical, 138, 147, 156
triangular, 233, 274
with symmetry, 210

Downwind grid point, 278, 283
Drum, shape of, 332
Du Fort–Frankel method, see finite differ-

ence scheme, Du Fort–Frankel

E
Eigenfunction, 74–79, 130, 137
Eigenvalue, 50, 74, 130, 136, 162, 166, 189,

193, 271, 307, 314, 316, 332, 336
problem, 74–79, 129–155

Eigenvector, 50, 162, 193, 314, 316, 339
elliptic PDE, see PDE, elliptic
Energy inequality, 125
Energy methods, 124–128, 319
EOC, see experimental order of convergence
erf, see error function
Error function, 48, 256
Expansion fan, 184–188
Experimental order of convergence, 205, 232
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F
[mathscr ]F , 14–19, 21–22, 64–68, 119–

123, 201
F , 14–19
[mathscr ]h, 91, 256
〈, 90, 198
Fast Fourier Transform, 293, 360
Fictitious grid point, 263
Finite difference

approximations, 86–90
operators (�+,�−,�, δ), 87–90

Finite difference scheme
Allen–Southwell–Il’in, 322
backward time

centred space, 247–251, 328
box, 294, 315
compact, 110
Crank–Nicolson, 252–256, 260, 267,
271, 323

dissipative, 300
Du Fort–Frankel, 328
explicit, 238–247, 264, 272, 273, 275,
277–296, 298, 328

first-order upwind, 284, 309
flux-limited, 317
forward time

backward space, 284, 293, 300
centred space, 238–247, 256, 259–

262, 265, 287, 309, 324, 327, 328
forward space, 285, 287, 317

hopscotch, 328
implicit, 247–256
Lax–Friedrichs, 312, 317
Lax–Wendroff, 288, 290, 291, 297, 301,
305, 307, 309, 312–314, 317

leapfrog, 290–291, 305, 314
Leith, 262, 313, 326
locally one-dimensional, 265, 273
MacCormack, 317, 330
nondissipative, 290, 300
nonlinear, 308–312
Numerov, 110, 117, 207
quasi-implicit, 292–294
Saul’Yev, 322
semi-implicit, 272
θ-method, 251
third-order upwind, 291, 292, 301, 314,
326

upwind, 229, 234, 284, 291, 292
Warming–Beam, 306, 311, 313, 317

Finite-time singularity, 171
First-order upwind method, see finite differ-

ence scheme, first-order upwind

Fisher’s equation, 324
Flux, 29

anti-diffusive, 309
function, 126, 179, 184, 187, 193, 309
limiter, 309–312

Forward difference, 87, 239, 287
Forward time backward space, see finite dif-

ference scheme, forward time, back-
ward space

Forward time centred space, see finite differ-
ence scheme, forward time, centred
space

Fourier
coefficient, 355
discrete modes, 258
discrete series, 359
mode, 69, 296, 299, 301, 359
series, 355
transform, 360

Fourier’s law, 30
Frequency, 285, 296
Frobenius method, 351
FTBS, see finite difference scheme, forward

time, backward space
FTCS, see finite difference scheme, forward

time, centred space
FTFS, see finite difference scheme, forward

time, forward space
Fundamental solution, 6

G
Gaussian elimination, see L-U matrix

decomposition
Gershgorin circle theorem, 343
Gibb’s phenomenon, 146, 151, 357
Global error, 93, 201, 216, 316

estimate, 204–207
Goursat solution, 57
Green’s identity, 71
Grid function, 85, 197

H
Harmonic function, 7, 9, 213
Heat equation, 3, 6, 9, 47, 129–135, 155–157

approximation, 238–256, 263–269, 327
backward, 22, 24
boundary value problem, 12
circular symmetry, 137
fundamental solution, 6
maximum principle, 119–121
nonhomogeneous, 30
origins, 29–31
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with reaction term, 260
Hermitian transpose, 336, 337
Hölder’s inequality, 335
Hopscotch method, see finite difference

scheme, hopscotch
Hydrostatic pressure, 33
hyperbolic PDE, see PDE, hyperbolic
Hyperbolic system, 162

I
Ill-posed, 21, 61
Incompressible flow, 36
Initial–boundary value problem, 12
Initial condition, 12, 23
Initial value problem, 12
Inner product, 68–72, 77, 80, 344

discrete, 337
weighted, 77, 79, 83, 137

Integrating factor, 141
Interpolating polynomial, 281–282, 326
Interval of dependence, 170, 242, 279
Inversemonotone, 64–66, 97–123, 155, 203,

215, 224, 225, 231, 243–245, 255,
270, 271, 320, 343

Iterative refinement, 205

J
Jury conditions, 324

K
KdV equation, 4, 20

L
[mathscr ]L , 14–19, 21–22, 64–68, 119–

123, 201
L, 14–19, 44–51, 136–137, 140–142, 147,

237, 251
L-U matrix decomposition, 200
[mathscr ]Lh , 102, 198, 203, 215, 245, 251,

255
[mathscr ]h, 91
Lh , 90, 102, 198, 203, 214–216, 245, 251
Lagrange

identity, 72, 75, 83
interpolant, 281, 313

Laplace’s equation, 2, 13, 15, 19, 22, 23, 49–
51, 55, 56, 122, 148–155

approximation, 198, 213–223, 232
harmonic function, 7, 213
origins, 31

Laplacian, 3, 196
eigenvalues, 153, 159
polar coordinates, 56, 77, 217, 219

Lax–Friedrichs method, see finite difference
scheme, Lax–Friedrichs

Lax–Wendroff method, see finite difference
scheme, Lax–Wendroff

Legendre’s equation, 79
Leibniz’s rule, 169, 179
Leith’s method, see finite difference scheme,

Leith
Linearly independent, 69
Local truncation error, 87, 95–97, 203, 241,

254, 275, 280, 297
Locally one-dimensional method, 265
LTE, see local truncation error

M
MacCormack’s method, see also finite dif-

ference scheme, MacCormack, 317
MacLaurin series, 302
Matrices

congruent, 341
isospectral, 331

Matrix
banded, 201
bidiagonal, 248, 332
block tridiagonal, 200
circulant, 293, 314, 332
condition number, 164, 189
diagonally dominant, 343
inertia, 342
inverse monotone, 343
irreducible, 337
M, 343
monotone, 343
positive-definite, 93, 343
sparse, 200
symmetric, 92, 337
trace, 50, 166
tridiagonal, 92, 104, 248, 271, 337–338,
344

Vandermonde, 281
Z, 343

Maximum norm, see norm, �∞
Maximum norm stability, see stability, �∞
Maximum principle, 119–124

discrete, 203, 215, 219, 224, 254, 262,
272

Mesh Peclet number, 228, 262, 322
Mesh ratio, 238
Method
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of Frobenius, 351
of characteristics, 161–194
of lines, 268
of modified equations, 287
of undetermined coefficients, 117

M-matrix, 343
Monotone matrix, see matrix, monotone
Mutually orthogonal, 69, 140, 359

N
Nearest neighbours, 198
Neumann boundary condition, see boundary

condition, Neumann
Newton backward difference formula, 313
Newton’s second law of motion, 27, 33
Nondissipative method, 290
Nonsmooth solution, 180, 256
Norm, 22, 64, 67, 243, 283, 335

�2, 257, 264, 271, 360
�∞, 94, 96, 97, 99, 101, 201, 203, 243,
271, 283, 335

�p , 335
weighted, 79

Normal derivative, 14, 30, 46, 123, 263
Numerov’s method, see finite difference

scheme, Numerov

O
O(h p), 87
One-waywave equation, see advection equa-

tion
Operator

backward difference (�−), 87
boundary, 15
centred difference (�), 88
differential, 15
forward difference (�+), 87
inverse monotone, 64
Laplacian, 3
linear, 17
positive type, 97, 101, 107, 214, 224, 229,
234, 309

self-adjoint, 72
stable, 203
Sturm–Liouville, 71

Orthogonal functions, 69
mutually, 69, 359

Orthonormal functions, 70

P
parabolic PDE, see PDE, parabolic

Parabolic smoothing, 319
Parseval’s relation, 356
Partial derivative, 1
Partial difference equation, 239
Partial differential equation, see PDE
PDE

definition, 2
elliptic, 45, 49–52, 148
first order system, 161–165
first order, nonlinear, 171–188
first-order system, 180
homogeneous, 18
hyperbolic, 44–46, 161–194, 262
linear, 17
nonlinear, 20
order, 2, 180
parabolic, 45–48, 136–143
quasi-linear, 20, 172–173, 325
semi-linear, 20

Peclet number, 226
Phase speed, 297
Piecewise

continuous, 133, 134, 146, 180, 221, 222
linear, 146, 175, 177
polynomial, 134

Poisson equation, 154–155
Poisson’s equation, 49, 56, 57, 122–123,

154, 195, 231
approximation, 196–204, 206, 223
maximum principle, 121
origins, 31

Polar coordinates, 77, 156, 158, 217–222,
273, 274

Positive type operator, seeOperator, positive
type

Positive-definite matrix, see matrix,
positive-definite

Projection, 70

Q
Quadratic form, 44, 50, 338
QUICK scheme, see finite difference

scheme, third-order upwind

R
[mathscr ]Rh , 96–111, 209
Rh , 96–111, 203, 241, 248, 264, 280
Rankine–Hugoniot condition, 180
Re-entrant corner, see domain, re-entrant

corner
Reaction term, 59
Reaction–advection–diffusion
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operator, 72
problem, 67

Reduced equation, 226
Richardson extrapolation, 204
Riemann problem, 184–188
Robin boundary condition, see boundary

condition, Robin
Root mean square norm, see norm, �2
Ruled surface, 152

S
Self-adjoint operator, 72
Separation constant, 130, 144, 149, 153
Shallow-water approximation, 32
Shock

discontinuity, 179
speed, 179, 181, 185
wave, 161, 178–184, 187

Smooth function, 86
Soliton, 4
Source term, 46, 49, 59
Sparse matrix, see matrix, sparse
Spherical symmetry, 156
Square integrable, 68
Stability, 86, 125, 195, 214, 229, 243, 256,

275, 282–284
�2, 257–262, 265–268, 271–273, 283,
285, 288, 290, 293–294, 298, 314, 326,
327, 329

�∞, 96–97, 109, 113, 202, 203, 215, 219,
225, 243, 246, 268, 271–274

barrier, 282
constant, 96, 101, 245, 246, 256

Stencil, 197, 208, 213, 218, 224, 227, 230,
284, 287, 288, 291

anchor point, 239, 247
target point, 239, 245, 247, 253, 283, 293

Sturm–Liouville, 71–79
operator, 71

regular, 73
singular, 73

problem, 74, 129, 136
Superposition principle, 18, 140
Sylvester’s law of inertia, 342
Symmetric matrix, see matrix, symmetric

T
θ–method, see finite difference scheme, θ–

method
Third-order upwind method, see finite dif-

ference scheme, third-order upwind

Trace of matrix, see matrix, trace
Traffic flow, 35, 183
Travelling

coordinate, 324
wave, 2, 146, 169, 193, 296, 299, 301,
302, 324

Tridiagonal matrix, see matrix, tridiagonal
Tsunamis, 34
Two-point boundary value problem, 59, 71,

74, 85, 90–111
Two-way wave equation, see wave equation

U
Uniqueness, 18, 64, 98, 101, 121, 123, 125,

155, 163, 181, 189, 204, 215, 248,
335

Unit CFL property, 285, 286, 302, 315
Unstable, 114, 240
Upwind, 291

difference scheme, see finite difference
scheme, upwind

grid point, 277, 283

V
Vandermonde matrix, 281
Von Neumann amplification factor, see

amplification factor
Von Neumann stability, see stability, �2

W
Warming–Beam method, see finite differ-

ence scheme, Warming–Beam
Wave equation, 3, 28, 124, 143–147, 306

boundary value problem, 13
d’Alembert’s solution, 46, 54, 124, 157,
170

in water, 34
with circular symmetry, 147
with spherical symmetry, 147

Wave speed, 276, 324
Wavenumber, 258, 285, 296
Weak solution, 180, 187
Weight function, 74
Weighted inner product, 77, see also inner

product, weighted
Well-posed, 21–23, 37, 38, 44, 47, 52, 61,

63–68, 78, 79, 95, 97, 119, 121, 122,
124, 125, 185, 207, 304

Wiggles, 228
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