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Preface

Let XD denote the Hilbert modular surface H � H
�=SL2.OD/, where H is the

complex upper half plane, H
� is the complex lower half plane, OD is a real

quadratic order of discriminant D, and SL2.OD/ acts on H � H
� by the Möbius

transformations given by the two embeddings SL2.OD/ ! SL2.R/. Originally, the
interest in Hilbert modular surfaces arose from Hilbert’s aim to find an analytic
function which plays the same role for arbitrary algebraic number fields as the
exponential function does in Kronecker’s Theorem about abelian extensions of Q
(compare [vdG88]).

Later, algebraic curves on Hilbert modular surfaces came more into the focus of
research. This was triggered by an astonishing result of Hirzebruch and Zagier: they
introduced twisted diagonals, which are nowadays also called Hirzebruch–Zagier
cycles, via maps H ! H � H

� with z 7! .Mz;�M�z/, where M 2 GLC
2 .K/

and � denotes the Galois conjugate, and they found out that the intersection
numbers of certain twisted diagonals can be interpreted as the Fourier coefficients
of holomorphic elliptic modular forms of weight two (see [HZ76]). This is the main
reason why twisted diagonals have been extensively treated in the literature. For
instance, it is well known how to calculate the volume of twisted diagonals.

The projection of a twisted diagonal to XD yields a Kobayashi curve, i.e., an
algebraic curve which is a geodesic for the Kobayashi metric on XD . So far, there
have been found only few examples of Kobayashi curves on XD that do not stem
from twisted diagonals. These rare examples come from Teichmüller curves and
have been constructed implicitly by Calta and McMullen. Teichmüller curves are
algebraic curves in the moduli space of Riemann surfaces Mg, which are geodesic
for the Kobayashi metric. Under the Torelli map the image of such a Teichmüller
curve constructed by Calta and McMullen lies in XD and yields a Kobayashi curve.
This implies that in the universal cover the curve is of the form z 7! .z; '.z// for
some holomorphic map '.

�The author is partially supported by the ERC-StG 257137.
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viii Preface

In these notes, a new class of algebraic curves on Hilbert modular surfaces is
introduced: a possibility to construct even more Kobayashi curves on XD is to
consider the projection of z 7! .Mz;M �'.z// to XD where again M 2 GLC

2 .K/.
These curves are called twisted Teichmüller curves, because their construction is
very reminiscent of Hirzebruch–Zagier cycles. These new objects are analyzed
in detail in these notes and their main properties are described. In particular,
the volume of twisted Teichmüller curves is calculated and their components are
partially classified.

Structure of the Notes

These notes are organized as follows:
Chapter 1 is the introduction and summarizes the results proven in the following

chapters.
In Chap. 2, we give an overview of the basic concepts which are used everywhere

else in these notes. We recall well-known results about real quadratic number fields,
Fuchsian groups, moduli spaces, and Hilbert modular surfaces. This chapter will
be helpful in particular for people who are not already familiar with the mentioned
topics.

In Chap. 3, we introduce Teichmüller curves. In particular, we recall Calta’s
and McMullen’s construction of Teichmüller curves in M2, which was already
mentioned above.

In Chap. 4, the main new objects of these notes, namely twisted Teichmüller
curves, are defined. Only some main properties of twisted Teichmüller curves are
derived here. Most importantly, it is shown that twisted Teichmüller curves yield
indeed Kobayashi curves.

In Chap. 5, we describe the relation between the stabilizer of the graph of the
Teichmüller curve and the commensurator of the Veech group. Furthermore we
introduce the notion of pseudo parabolic maximal Fuchsian groups and show why
this property is useful for calculating the stabilizer.

In Chap. 6, the volume of twisted Teichmüller curves is calculated for most
matrices M if the class number of OD is equal to 1. From this the classification
of twisted Teichmüller curves can be derived. Finally, we present some ideas how
quantities like the number of elliptic fixed points and the number of cusps and the
genus of twisted Teichmüller curves can be calculated in some special cases.

In Chap. 7, we recall McMullen’s construction of Teichmüller curves in M3 and
M4 using Prym varieties. Also these Teichmüller curves yield Kobayashi curves
on XD.

In Chap. 8, we recall Oseledet’s Theorem on the existence of Lyapunov expo-
nents and introduce the Kontsevich–Zorich cocycle over Teichmüller curves. Fur-
thermore the connection of the Teichmüller flow to the geodesic flow on T 1H is
discussed.

In Chap. 9, it is proven by using Lyapunov exponents that the Teichmüller curves
from Chap. 8 are never twists of Teichmüller curves in M2.
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Chapter 1
Introduction

Let XD denote the Hilbert modular surface H � H
�=SL2.OD/, where H is the

complex upper half plane, H
� is the complex lower half plane, OD is a real

quadratic order of discriminant D and SL2.OD/ acts on H � H
� by the Möbius

transformations given by the two embeddings SL2.OD/ ! SL2.R/. The simplest
algebraic curve in XD is the diagonal, i.e. the image of the composition of the
map z 7! .z;�z/ with the quotient map � W H � H

� ! XD . In their paper
[HZ76], F. Hirzebruch and D. Zagier implicitly introduced twisted diagonals, i.e.
the algebraic curves z 7! .Mz;�M�z/ for any matrix M 2 GLC

2 .K/ where
M� is the Galois conjugate of M . Their �-images are known as modular curves
or Hirzebruch-Zagier cycles. These curves have been extensively treated in the
literature due to their importance for the geometry and arithmetic of Hilbert modular
surfaces (see e.g [vdG88]). In other words, a twisted diagonal is in H � H

� given
by an equation

�
z2 1

� �ap
D �

��� b
p
D

��
z1
1

�
D 0

with a; b 2 Q and � 2 K . If a; b 2 Z and � 2 OD such a matrix is called
integral skew-hermitian. The (finite) number of integral skew-hermitian matrices
which have the same determinant but yield different curves in XD was calculated
by H.-G. Franke and W. Hausmann in [Fra78] and [Hau80].1 It is well-known how
to calculate the volume of twisted diagonals. People have also been interested in
calculating the intersection numbers of these curves (see [HZ76]).

In the preceding cases, both components of the universal covering are given by
Möbius transformations. A curve C ! XD is still rather special if only (at least)

1This theorem is one of the main reasons why it makes sense to define the well-known curves
FN and TN , which are in many cases unions of certain twisted diagonals (see e.g. [HV74] or
[McM07]). Moreover H.-G. Franke and W. Hausmann gave explicit formulas for the volume of the
curves FN and TN ([Hau80], Satz 3.10 and Korollar 3.11). See Sect. 2.5.1.

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

one of the components of the universal covering map H ! H � H
� is a Möbius

transformation. It is folklore that it is equivalent to ask that C ! XD is totally
geodesic for the Kobayashi metric (see e.g. [MV10]) and that is the reason why these
curves are called Kobayashi geodesics.2 An algebraic curve that is a Kobayashi
geodesic is called a Kobayashi curve. Very few examples of Kobayashi curves
other than twisted diagonals are known so far.

Teichmüller Curves in Genus 2. Some of these rare examples are certain
Teichmüller curves. Let Mg denote the moduli space of Riemann surfaces of
genus g. A Teichmüller curveC is an algebraic curve in Mg that is totally geodesic
with respect to the Teichmüller (or equivalently Kobayashi) metric. At first sight
Teichmüller curves might not seem to have anything to do with Hilbert modular
surfaces. By the work in [McM03a] (and more generally [Möl06]) both worlds are
however closely connected and Teichmüller curves yield indeed Kobayashi curves
on XD. Let us describe Teichmüller curves in a different and more intuitive way.
There is a natural bundle�Mg over Mg: an element in�Mg is specified by a pair
.X; !/ where X 2 Mg and where ! 2 �.X/ is a nonzero, holomorphic one-form
on X . The group SL2.R/ acts on �Mg in the following way: a matrix A 2 SL2.R/
maps the differential form ! to the differential form � where

� D �
1 i
� �a b
c d

��
Re!
Im!

�
:

There is a unique complex structure on X as topological surface such that �
is holomorphic. We denote the corresponding Riemann surface by Y and define
A.X;!/ WD .Y; �/. It is well-known (see e.g. [Möl11a]) that all Teichmüller curves
arise as the projection of an SL2.R/-orbit of a pair .X; !/ to Mg .3 The action
of SO2.R/ � SL2.R/ only rotates the differential form, but does not change the
Riemann surface structure. Hence we get the following commutative diagram:

SL2.R/ ��

��

�Mg

�

��
SO2.R/nSL2.R/ � H

f
�� Mg

2The Kobayashi metric d is the largest pseudo-metric on XD such that for all holomorphic maps
f W D ! XD we have: d.f .x/; f .y// � 	.x; y/ where 	 is the Poincaré metric on the unit
disk D.
3This is not completely correct: A Teichmüller curve might also be the projection of a SL2.R/-orbit
of a half-translation surface .X; q/ where q is a quadratic differential. We may however restrict to
the case .X; !/ by the so-called double covering construction.
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Fig. 1.1 An L-shaped polygon of the form P.a; b/

On the other hand, the projection of the SL2.R/-orbit of a pair .X; !/ to Mg yields
a Teichmüller curve if and only if the stabilizer of the function f under the SL2.R/-
action is a lattice (as Fuchsian group). In this case we say that .X; !/ generates the
Teichmüller curve. The stabilizer of the action is called the Veech group of .X; !/.

C. McMullen and K. Calla independently constructed a series of Teichmüller
curves in M2 generated by certain L-shaped polygons P.a; b/ with opposite sides
glued (see Fig. 1.1). The holomorphic one-form d z on C is translation-invariant
and hence descends to a natural one-form ! on the glued surface. They proved
in [McM03a] and [Cal04] that P.a; a/ generates a Teichmüller curve in M2 if
a D .1C p

D/=2 andD � 1 mod 4 and that P.a; 1C a/ generates a Teichmüller
curve if a D p

D=2 and D � 0 mod 4 (Theorem 3.3). The number D is
called the discriminant of the Teichmüller curve and the mentioned generating
surface is denoted by L1D . The Veech group of such a L1D is contained in SL2.OD/

(Propositions 3.8 and 3.13) and will be denoted by SL.L1D/.
We denote these Teichmüller curves by C1

L;D if we want to stress their origin.
These are almost all primitive Teichmüller curves in M2

4: by a theorem of C.
McMullen if D > 9 there is a second primitive Teichmüller curve of discriminant
D if and only if D � 1 mod 8 (Theorem 3.4).5 The corresponding Veech group
is also contained in SL2.OD/ (Proposition 3.10) and will be denoted by SL.L0D/.
The Teichmüller curves are denote by C0

L;D The two Teichmüller curves of the same
discriminant are distinguished by their spin invariant (even or odd). Whenever we
do not care which of the two Teichmüller curves we actually consider, we just write
SL.LD/ for the Veech group and CL;D for the Teichmüller curve. It is known that
such a Teichmüller curve with discriminant D lies on the Hilbert modular surface
XD. The reason is shortly speaking the following: by mapping each point X of the
Teichmüller curve to its Jacobian Jac.X/ one gets an embedding of the Teichmüller

4A Teichmüller curve in Mg is called primitive if it does not arise by a covering construction from
a Teichmüller curve in lower genus.
5If D D 5 then there is also a second primitive Teichmüller curve given by the regular decagon
(see [McM06b]).
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curve into the space of principally polarized Abelian surfaces A2. C. McMullen
proved that all these Jacobians have real multiplication by OD .6

Theorem 3.5 (McMullen, [McM03a]). Let f W C �
L;D ! M2 be one of the

Teichmüller curves of discriminant D. Then C �
L;D gives rise to a Kobayashi curve

in XD . More precisely we have the following commutative diagram

H
� �

ˆ.z/D.z;'.z//
��

=SL.LD/

��

H � H
�

=SL2.OD/

����
C �
L;D

� � ��

f

��

XD

��
M2

� � Jac
�� A2

where SL.LD/ D StabSL2.R/.ˆ/ \ SL2.OD/, the stabilizer of the graph of
the Teichmüller curve .z; '.z// in SL2.OD/, is the Veech group. Moreover ' is
holomorphic but not a Möbius transformation.

Twisted Teichmüller Curves. We have just seen that Teichmüller curves yield
some of the very few known examples of Kobayashi curves on XD that are not
twisted diagonals. Using Teichmüller curves another new class of examples of
Kobayashi curves can be constructed: these objects remind one very much of twisted
diagonals and are therefore called twisted Teichmüller curves. Similar as in [HZ76]
we twist Teichmüller curves by a matrixM 2 GLC

2 .K/whereK D Q.
p
D/. These

curves are the main objects of these notes. Consider the following diagram

H

.Mz;M� '.z//
��

=SLM .LD/
��

H � H
�

=SL2.OD/

��
CM �� XD

where SLM.LD/ is the stabilizer of the graph of the twisted Teichmüller curve
ˆM D .Mz;M �'.z// inside SL2.OD/. We call such a curve a twisted Teichmüller
curve. Note that one may by multiplying all the entries of M with all of the

6As the Hilbert modular surface XD parametrizes all principally polarized Abelian surfaces with
real multiplication by OD (Theorem 2.30) one gets indeed an embedding of the Teichmüller curve
into XD .
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denominators always assume that every entry of M is in OD . It is a first main
observation that twisted Teichmüller curves are indeed Kobayashi curves.7

Proposition 4.4. All twisted Teichmüller curves are Kobayashi curves.

One might then be interested in the same questions as those that have been
answered for twisted diagonals.

(1) What is the volume of a twisted Teichmüller curve?
(2) When do two matrices M;N 2 GLC

2 .K/ yield different twisted Teichmüller
curves?

(3) Are all Kobayashi curves in XD given by twisted diagonals and twisted
Teichmüller curves?

These three questions are answered with some restrictions imposed by a simplifying
assumption on the class number hD and some congruence conditions on D in these
notes. Moreover one might ask:

(4) What are the intersection numbers of twisted Teichmüller curves?

This question remains unanswered and is left open as a problem for future research.
When one wants to do explicit calculations for a twisted Teichmüller curve (e.g.

of the volume), there arises a major problem: in general, it is very hard to calculate
SLM.LD/. There are three main reasons for this phenomenon:

• A theorem of E. Gutkin and C. Judge in [GJ00] implies that the Veech groups
SL.LD/ are all non-arithmetic Fuchsian groups (Theorem 3.2). In particular, this
makes it hard to decide whether a matrix in SL2.OD/ lies in the Veech group or
not.

• Furthermore, it is still unknown how to calculate the Veech group for a given flat
surface .X; !/. Although this problem is solved in some special cases (see e.g.
[Sch05] and [McM03a]), in our case the Veech group can for large D only be
calculated partially.8

• The Taylor expansion of ' is known by the theorem of M. Möller and D. Zagier
in [MZ11]. Even with this knowledge, it is not easy to decide whether there exist
elements of SL2.R/ which are not in the Veech group but lie in StabSL2.R/2 .ˆ/,
the stabilizer of the graph of the Teichmüller curve, or even if there exist any such
element in SL2.K/ X SL2.OD/.

Statement of Main Results. If the class number hD D 1 then the twist-matrix M
can be normalized such that

7More generally it is, of course, true that all twists of Kobayashi curves are again Kobayashi curves,
but we are only concerned about twisted Teichmüller curves in these notes.
8There is a recent preprint [Muk12] of R. Mukamel where he claims to give an algorithm to find
the Veech group of any Veech surface.
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M D
�
m x

0 n

�

with m; n; x 2 OD and .m; n; x/ D 1 (Proposition 4.5). This rests on the fact that
the number of cusps of a Hilbert modular surface is equal to the class number of the
quadratic order (see e.g. [vdG88], Proposition 1.1). For M 2 GLC

2 .K/ let

XD.M/ WD H � H
�=.SL2.OD/\M�1SL2.OD/M/;

denote a (finite index) cover of XD . If D � 5 mod 8 is fundamental discriminant,
then we are able to calculate the Euler characteristic �.CM / of the twisted
Teichmüller curve and thus its volume �.CM/ since �.CM/ D 2��.CM /. Our
results are cleanest for the case where D � 5 mod 8 and hC

D D 1 and therefore
we will be mainly concerned about this case now. Nevertheless, some results can
be stated (sometimes partially) in a more general setting and so we will later also
explain other cases when we describe the results in more detail.

Theorem 6.25. Let D � 5 mod 8 be a fundamental discriminant with hC
D D 1

and let m; n; x 2 OD be arbitrary elements with .m; n; x/ D 1. Then

�.CM/ D deg.XD.M/ ! XD/ � �.CL;D/:

This result also implies that the Teichmüller curve has minimal volume among
all twisted Teichmüller curves.

Surprisingly enough, the surrounding arithmetic of SL2.OD/ determines the
arithmetic of the twisted Teichmüller curves to a very high degree. It is well-
known how to calculate the degree of the covering XD.M/ ! XD (compare
Proposition 2.14). For instance, if M D �

� 0
0 1

�
with some prime element � 2 OD

then the degree of the covering is equal to jN .�/j C 1. Another interpretation of
Theorem 6.25 is that the Veech groups of Teichmüller curves are the opposite of
being arithmetic, since it implies in particular that all Hecke congruence subgroups
of SL.LD/ have maximal possible index in SL.LD/.

Let us make a short comment on the proof of Theorem 6.25. The Euler
characteristic is calculated in two steps: at first we show that the Euler characteristic
of CM does not change by lifting CM to a curve CM.M/ on XD.M/. This curve
CM.M/ has the same volume as the curve CM.M/ lying over CL;D . As second
step of the proof we then show that the covering CM.M/ ! CL;D has the maximal
possible degree. The main idea of this part of the proof is to calculate indexes of
Hecke congruence subgroups in SL.LD/. The coset representatives are given by
words in known parabolic elements of the Veech group. A similar idea is used by
G. Weitze-Schmithüsen in [Wei12] to calculate the congruence level of the Veech
groups of L-shaped square-tiled surfaces. She shows that these Veech groups are “as
far as possible” from being a congruence subgroups.
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The knowledge about the volume of twisted Teichmüller curves enables us
to classify twisted Teichmüller curves at least partially under some additional
assumptions.

Theorem 6.28. SupposeD � 5 mod 8 is a fundamental discriminant with narrow
class number hC

D D 1. If M D . m x
0 n / and N D �

a b
0 c

�
with a; b; c;m; n; x 2 OD

and .a; b; c/ D 1 and .m; n; x/ D 1 define the same twisted Teichmüller curve then

det.M/ D det.N /:

Indeed, equality of the determinant is also a sufficient criterion for the twisted
Teichmüller curves to coincide whenever the determinant is prime in OD .

Theorem 6.30. SupposeD � 5 mod 8 is a fundamental discriminant with narrow
class number hC

D D 1 and let � 2 OD be a prime element. Then there is exactly
one twisted Teichmüller curve of determinant � , i.e. all matrices in GLC

2 .K/ \
Mat2x2.OD/ of determinant � with relative prime entries define the same twisted
Teichmüller curve.

For arbitrary determinants we are unfortunately not able to prove a corresponding
result in full generality. Nevertheless, we have strong numerical evidence that the
following conjecture holds. It is based on computer experiments for many different
determinants n 2 OD including all types of splitting behavior of the prime divisors
of n.

Conjecture. Suppose D � 5 mod 8 is a fundamental discriminant with narrow
class number hC

D D 1. All matrices M 2 GLC
2 .K/ \ Mat2x2.OD/ of determinant

n 2 OD with relative prime entries define the same twisted Teichmüller curve, i.e.
there is exactly one twisted Teichmüller curve of determinant n.

Comparison to Twisted Diagonals. Since twisted diagonals are our main moti-
vation to introduce twisted Teichmüller curves, we now want to shortly compare
these two classes of objects. In some aspects they behave similar while they differ
in others.

To a certain extent an analogue of the classification theorem by H.-G. Franke
and W. Hausmann for twisted diagonals is also true for twisted Teichmüller curves:
after normalizing the involved matrices appropriately, there are only finitely many
different twisted Teichmüller curves of a given determinant.

Moreover, Theorem 6.30 gives that for arbitrary prime elements � 2 OD the
number of different twisted Teichmüller curves of determinant � is always 1 and
thus agrees with the number of different twisted diagonals of determinant � (see
[Fra78], Theorem 2.3.2 or [vdG88], Chap. V.3.).

On the other hand, Theorem 6.25 implies that the volume of twisted Teichmüller
curves behaves very differently than the volume of twisted diagonals. For example,
for M D �

� 0
0 1

�
, where � is an inert prime number or a divisor of a ramified prime

number, the stabilizer of the twisted diagonal is always SL2.Z/ and hence unlike the
corresponding twisted Teichmüller curve does not depend on � .
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Furthermore, Theorem 6.28 tells us that if two twisted Teichmüller curves agree,
then the determinants of the involved matrices have to agree. As we have seen in the
preceding example this is not true for twisted diagonals. However, a corresponding
result does hold after passing to skew-hermitian matrices.

More Kobayashi Curves. One might wonder if twisted diagonals and twisted
Teichmüller curves yield all Kobayashi curves on XD . This is not the case.
For each D, C. McMullen constructed two different Kobayashi curves on XD
stemming from certain Teichmüller curves in M3 and M4 using Prym varieties (see
[McM06a]). The generating surfaces are certain S -shaped respectively X -shaped
polygons with opposite sides glued (Theorem 7.8). We denote these curves on XD
therefore by CS;D and CX;D .9

The Kontsevich-Zorich Cocycle. There is a very interesting cocycle over the
Teichmüller flow on a Teichmüller curve, namely the Kontsevich-Zorich cocycle
(see [Zor06]). Oseledet’s Multiplicative Theorem (Theorem 8.2) ensures the exis-
tence of some invariants of the Kontsevich-Zorich cocycle, its so-called Lyapunov
exponents. To each of the Teichmüller curves which appear in these notes one
can uniquely associate a pair of Lyapunov-exponents. The greater of these two
Lyapunov exponents is always equal to one. The second Lyapunov exponent of
each Teichmüller curve C �

L;D in M2 has been calculated by M. Bainbridge in
[Bai07] to be equal to 1

3
(Theorem 9.9). Recent results of D. Chen and M. Möller in

[CM11] and of A. Eskin, M. Kontsevich and A. Zorich in [EKZ11] enable us to also
calculate the second Lyapunov exponent of the curves CS;D and CX;D . It is equal to
1
5

respectively 1
7

(Corollary 9.12 and Corollary 9.13). On the other hand, it can be
shown that:

Corollary 9.8. Twists do not change the Lyapunov exponents.

The following statement are then immediate consequences.

Theorem 9.6. For all discriminants D the genus 4 Teichmüller curve CX;D is
neither a twist curve of a C �

L;D nor a twisted diagonal.

Corollary 9.12. For all discriminants D the genus 3 Teichmüller curve CS;D is
neither a twist curve of a C �

L;D nor a twisted diagonal.

This result gives a hint that we should not expect to have found all Kobayashi
curves on XD so far. However, this is, of course, still an open question. We now
describe more detailed how the results are achieved.

The Stabilizer of the Graph. When we want to calculate the Euler characteristic
of the twisted Teichmüller curve we have to gain more knowledge on the stabilizer
SLM.LD/. It is immediately clear from the definition of the Veech group that

9To be more precise: While CX;D lies on XD for all D, this is not always the case for CS;D . The
curves CS;D always do allow real multiplication by OD but are not principally polarized. Therefore,
for some D the curve lies CS;D on a different Hilbert modular surface (see Chap. 7).
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MSL.LD/M�1 \ SL2.OD/ � SLM .LD/ holds for all M 2 GLC
2 .K/. For most

M we can show that even equality holds because the stabilizer of the graph of a
Teichmüller curve in SL2.K/ cannot be (too much) greater than SL.LD/. In order
to state the results precisely we introduce the technical term of pseudo parabolic
maximal Fuchsian groups. The group SL.LD/ is called pseudo parabolic maximal
if there does not exist a Fuchsian group� containing SL.LD/ of finite index and also
containing a parabolic element which is in SL2.K/ X SL2.OD/. Pseudo parabolic
maximal is a good property to consider because of the following theorem.

Theorem 5.36. For all fundamental discriminants D � 1 mod 4 where SL.L1D/
is pseudo parabolic maximal StabSL2.R/.ˆ/ \ SL2.K/ D SL.L1D/ holds. This
implies that SLM .L1D/ D MSL.L1D/M

�1 \ SL2.OD/.

The proof of the theorem heavily relies on Margulis’ commensurator theorem
(Theorem 2.8) and the arithmetic of OD . Indeed, many groups SL.LD/ are pseudo
parabolic maximal.

Theorem 5.17. For all D � 5 mod 8 the group SL.LD/ is pseudo parabolic
maximal.

For D D 5 this theorem goes back to a result of A. Leutbecher in [Leu67].

Conjecture. All the groups SL.LD/ are (pseudo) parabolic maximal.

Due to a lack of information on the Veech group we are however not able to
prove this conjecture in the cases left open in Theorem 5.17. In general, the results
become therefore a bit more complicated to state. In this introduction we will stick
to the language of class number 1 although we will work in the general setting
later. We call a Fuchsian group � � SL2.OD/ n-pseudo parabolic maximal
(or shortly n-ppm) for n 2 OD if there does not exist a Fuchsian group � 0
containing � with finite index and containing also a parabolic element in SL2.K/X
.SL2.K/\ Mat2x2. 1

n
OD//. In other words, there might only appear divisors of n as

denominators of the entries of elements in � 0. If we set w WD 1Cp
D

2
2 OD ifD � 1

mod 4 and set w WD
p
D
2

ifD � 0 mod 4 and let �2 be the (unique) common prime
divisor of 2 and w if D � 1 mod 8 and let e�2 the unique prime divisor of 2 for
D � 0 mod 4then the following table summarizes the situation if hD D 1.

D SL.L1D/ SL.L0D/
5 mod 8 1-ppm –
1 mod 8 �2-ppm ��2 -ppm
0 mod 4 e�2-ppm –

This enables us to prove a weaker version of Theorem 5.36 in all the cases where
SL.LD/ is only n-pseudo-parabolic maximal.
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Theorem 5.28. Let M 2 GLC
2 .K/ \ Mat2x2.OD/ and D be a fundamental

discriminant and C �
L;D be a Teichmüller curve of discriminantD. Suppose that

(i) D � 1 mod 8, C �
L;D has odd spin and det.M/ is not divisible by �2 or

(ii) D � 1 mod 8, C �
L;D has even spin and det.M/ is not divisible by ��2 or

(iii) D � 9 mod 16 and C �
L;D has odd spin or

(iv) D � 5 mod 8 or
(v) D � 0 mod 4 and det.M/ is not divisible by e�2

then

(i) the degree of the covering � W CM.M/ ! CM is equal to 1 and
(ii) we have SLM .LD/ D MSL.LD/M�1 \ SL2.OD/.

Euler Characteristic. Using M. Bainbridge’s formula in [Bai07] for the volume
of Teichmüller curves in genus 2 (Theorem 3.6), we are, in the situation of
Theorem 5.28, able to give explicit formulas for the Euler characteristic of twisted
Teichmüller curves �.CM/. We again look at normalized matrices

M D
�
m x

0 n

�

with m; n; x 2 OD and .m; n; x/ D 1. If D � 1 mod 8 and the spin of the
Teichmüller curve is odd let Q� be the number �2 and if D � 1 mod 8 and the spin
of the Teichmüller curve is even let Q� be .w C 1/.w � 1/ and if D � 5 mod 8 let Q�
be 1 and if D � 0 mod 4 let Q� be w.w C 1/.

Theorem 6.17. Let D be a fundamental discriminant and let m; n; x 2 OD be
arbitrary elements with .m; n; x/ D 1. If hD D 1 and .n; Q�/ D 1 and .m; Q�/ D 1,
then

�.CM/ D deg.XD.M/ ! XD/ � �.C �
L;D/:

We stress the fact that for D � 5 mod 8 the result holds with Q� D 1

(Theorem 6.25). We cannot expect such a result to hold without any (congruence)
condition on D: for instance for D D 17 and the Teichmüller curve of odd spin
there exists a matrix M0 2 GLC

2 .K/ such that the degree of � W XD.M0/ ! XD is
greater than one, but �.CM0/ D �.C 1

L;D/ (see Sect. 6.2.2).

Classification. We use the knowledge about the volume to prove Theorem 6.28.
Besides the lack of knowledge about the Veech group in the case D 6� 5 mod 8,
there arise many more problems in the general situation which prevent our methods
from working. In particular, if the class number hD is greater than one then we may
not restrict to upper triangular matrices since the number of cusps of the Hilbert
modular surface is equal to hD .



Chapter 2
Background

As we try to keep these notes as self-contained as possible this chapter gathers
together many different concepts and results which will be used at various stages
of these notes. It will also introduce notation and serve as a reference section.
There are only very few proofs included in this chapter. Nevertheless, the reader
will find references to the literature where one finds more detailed explanations
of the presented material. The reader who is familiar with the topic can without
compunction skip the corresponding section.

2.1 Real Quadratic Number Fields

In this section a short overview over real quadratic number fields is given. We will
mainly concentrate on results which are important for the further understanding
of these notes. We refer the reader who wants to find out more about the details to
[Hec23,Neu05,Sch07] and [Zag81], where one finds most of the presented material.

Real Quadratic Number Fields and the Ring of Integers. A number field K is
a finite field extension of Q. An element z 2 K is called integer if there exists a
polynomial f .X/ D XnCan�1Xn�1C : : :Ca1XCa0 2 ZŒX� such that f .z/ D 0.
The set of all integers in K is denoted by O. In fact O is known to be a Noetherian
ring (see [Neu05], Theorem 3.1) and therefore called the ring of integers of K .
We are interested only in a special type of number fields: let d > 1 be a square-free
integer. ThenK D Q.

p
d/ is a real quadratic number field. The discriminant of

K is

D D
�
d if d � 1 mod 4
4d if d � 2; 3 mod 4

:

Note that Q.
p
d/ D Q.

p
D/. A discriminant (of any—not necessarily real—

quadratic number field) is called a prime discriminant if it is divisible by only

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__2,
© Springer International Publishing Switzerland 2014
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one prime, i.e. D D �4;�8;C8 orD is equal to a prime number p � 1 mod 4 or
D is equal to �p where p is a prime number 3 mod 4. Every discriminant of a real
quadratic number field is the product of prime discriminants, i.e. D D D1 � � �Dt

where all Dt are prime discriminants.
For all d there exist exactly two embeddings K ,! R � C. We write z D

x C y
p
d 7! z� D x � y

p
d for the (Galois-)conjugation. The norm of an

element z 2 K is defined as N.z/ WD zz� . In most situation we will only use the
absolute value of the norm which we denote by N .z/ WD jN.z/j. The trace of an
element z 2 K is defined as tr.z/ WD zCz� . The ring of integers of the real quadratic
number field of discriminantD will be denoted by OD . We know that (see [Sch07],
Theorem 6.1.10):

OD D
(
Z C 1Cp

D
2

Z if D � 1 mod 4

Z C
p
D
2
Z if D � 0 mod 4

:

We denote this basis of OD by .1;w/. As we will always only deal with one
real quadratic number field at a time, this notation will not cause any confusion.
Kronecker’s Approximation Theorem (see e.g. [Mac01], Theorem 4.1) implies that
for all D the ring of integers OD is dense in R. An element x 2 OD is called
totally positive (negative), if for all embeddings ˛i W OD ! R, i D 1; 2 the
inequality ˛i .x/ > 0 (˛i .x/ < 0) holds. If x is totally positive (negative), we write
x � 0 (x 	 0). We denote by O�

D the group of units in OD . By Dirichlet’s unit
theorem (see [Neu05], Theorem 7.4) there is a unique element � > 1 such that
O�
D D f˙1g � f�n j n 2 Zg. The element � is then called the fundamental unit of

K . If the discriminant of the real quadratic number field is equal to a prime p � 1

mod 4, then the fundamental unit always has negative norm. If the discriminant has
a prime factor p that is congruent to 3 mod 4 then the fundamental unit has positive
norm (see e.g. [Ste93]). We define the inverse different as the fractional ideal

O_
D D fx 2 K j tr.xy/ 2 Z 8y 2 ODg :

More concretely, O_
D D 1p

D
OD .

Let JK be the group of (fractional) ideals in K , i.e. those subsets I ¤ f0g of K
for which there exists an element r 2 OD such that rI � OD is an ideal in OD ,
and let PK denote the group of fractional principal ideals .a/ D aOD with a 2 K�.
The ideal class group is defined as the quotient C lK WD JK=PK . The number hD
of elements of C lK is known to be finite ([Neu05], Theorem 6.3) and is called the
class number of K . The norm of an (ordinary) ideal a is equal to the number of
elements of OD=a. The norm of a fractional ideal I such that rI is an ideal is given
by the quotient of the norm of rI and the norm of the principal ideal .r/.

If the class number of K is greater than 1, there do exist ideals which cannot be
generated by a single element. However, for Noetherian rings the following fact is
well known (see [Bru08], p. 107): if a � K is a fractional ideal, then there exist
˛; ˇ 2 K such that a D ˛OD C ˇOD .
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One has to carefully distinguish the class number from the narrow class number.
Two ideals a and b are equivalent in the narrow sense if there exists a � 2 K

with N.�/ > 0 and .�/a D b. The equivalence classes form a group of order
hC
D . The number hC

D is called the narrow class number of OD . By definition, two
(fractional) ideals a and b belong to the same genus if there exists a � 2 K with
N.�/ > 0 and N.�/N.a/ D N.b/ (compare [Zag81], p. 111). If the fundamental unit
of OD has negative norm, then the narrow class number equals the class number.
If the fundamental unit of OD has norm 1 then hC

D D 2hD . It goes back to C.-F.
Gauß that the narrow class number hC

D is always divisible by 2t�1 ifD D D1 � � �Dt

where all Dt are prime discriminants (see e.g. [Zag81], p. 112). Hence the only
possible discriminants (of a real quadratic number field) of narrow class number 1
are 8 and primes p � 1 mod 4. On the other hand, it was conjectured by Cohen
and Lenstra in [CL84] that approximately 76% of all real quadratic number fields of
prime discriminant have (narrow) class number 1. Nevertheless, it is not even known
yet if there are infinitely many real quadratic number fields of class number 1.

Euclidean Number Fields. An integral ideal domain R is said to be Euclidean if
there exists a map � W R X f0g ! N such that given any a; b 2 R with b ¤ 0

there exist q; r 2 R such that a D bq C r with either r D 0 or �.r/ < �.b/. � is
called Euclidean norm function. We would like to know under which conditions
OD is Euclidean. Clearly a necessary condition for OD to be Euclidean is that
hD D 1. More precisely we have the following conditional theorem going back
to P. Weinberger:

Theorem 2.1 ([Sch07], Satz 6.6.2). For a real quadratic number field K D
Q.

p
D/ the following are equivalent:

(i) hD D 1.
(ii) OD is a principal ideal domain.

(iii) OD is a unique factorization domain.

(Weinberger, [Wei73]) Under the additional assumption of the generalized Riemann
hypothesis, also the following is equivalent to .i/–.iii/:

(iv) OD is Euclidean.

A list of all real quadratic number fields with class number 1 in the range 2 

D 
 100 can be found in [Neu05], p. 37. It is conjectured that there are infinitely
many real quadratic number fields with hD D 1. So far all known examples of
Euclidean real quadratic number fields have their norm as Euclidean norm function
(D D 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73). It was moreover
proven that this list is complete if one only admits the norm as Euclidean norm
function (see [JQS85]).

The Different Types of Prime Numbers. Any prime number p 2 Z gives rise to
an ideal .p/ in OD . A prime number is either inert if .p/ is a prime ideal, or splits
if .p/ is a product of two conjugated prime ideals p; p� , or is ramified if .p/ is the
square of a prime ideal p. The splitting theorem (see e.g. [Sch07], Theorem 6.5.18)
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describes precisely when each of these cases occur: let
� �

�
�

denote the Legendre

symbol. If p 2 Z is odd then .p/ is inert whenever
�
D
p

�
D �1 and .p/ is split

if
�
D
p

�
D C1 and .p/ ramified if

�
D
p

�
D 0, i.e. if pjD. The prime number 2

is inert if D � 5 mod 8, it splits if D � 1 mod 8 and is ramified if D � 0

mod 2. Whenever hD D 1 one does not have to distinguish between prime ideals
and prime elements in OD . If hD > 1 then it only makes sense to speak of a prime
decomposition of an element n 2 OD in the sense of ideals. For two ideal a; b we
write ajb if b � a. If a is an ideal and n 2 OD , then we mean by ajn that aj.n/.
Quadratic Orders. Let K be a quadratic number field. A quadratic order is a
subring O ofK such that O ˝Q D K . Each integerD � 0 or 1 mod 4 determines
a quadratic order

OD D ZŒT �=.T 2 C bT C c/

where b; c 2 Z and b2 � 4c D D. Indeed, these are up to isomorphism all quadratic
orders and the isomorphism class of OD only depends onD. Note that OD is the ring
of integers of Q.

p
D/wheneverD is a fundamental discriminant. Thus the notation

OD makes sense. If D is not of the form f 2E for some integers f > 1 and E with
E � 0 or 1 mod 4 then D is a fundamental discriminant and f WD 1. In both
cases f is called the conductor of D. If D is not a square (but not necessarily
fundamental), then OD is at least a subring of some ring of integers of Q.

p
D/.

Note that if D � 1 mod 4 is not a square then OD is always spanned by 1 and

w D 1Cp
D

2
and if D � 0 mod 4 is not a square then OD is spanned by 1 and w Dp

D
2

. The notions of class number and narrow class number also make sense in the
context of quadratic orders, though the definition of the class group is slightly more
sophisticated: instead of considering all fractional ideals of OD one only considers
those fractional ideals a which are proper, i.e. fulfill a D fˇ 2 K j ˇa � ag. The
proper ideals of OD are exactly the invertible ones. The class group is then defined as
the quotient of the proper ideals by the principal ideals (see e.g. [Cox89], Chap. 7,
for details). Moreover, it is important to note that for f > 1 and D D f 2E the
quadratic order OD is not a unique factorization domain any more. In particular, if
p 2 Z is a prime number with pjf then .p/ is irreducible but not prime. Thus p
behaves to a certain extent similarly as an inert prime number from an arithmetic
point of view. On the other hand, any ideal which is relatively prime to .f / can be
factored uniquely into a product of prime ideals. For details on the factorization we
refer the reader to [Rob09]. IfD is a square then everything is slightly different. As
we will not deal with this case in the following we refer the reader e.g. to [Bai07],
Chap. 2.2 for details.

Some Arithmetic Properties of Real Quadratic Number Fields. For the con-
venience of the reader we recall two (well-known) arithmetic properties of real
quadratic number fields, that will be used frequently in the following chapters.
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Lemma 2.2. (i) Let D be a fundamental discriminant and let K be the real
quadratic number field of discriminant D. If x 2 K with x2 2 OD then
x 2 OD .

(ii) Let D be a fundamental discriminant and let K be the real quadratic number
field of discriminant D. Let p 2 Z be a prime number which is not ramified. If
x 2 K with x2 2 1

p
� OD then x 2 OD .

Remark 2.3. The lemma is not only true for real quadratic number fields, but for all
number fields and the corresponding rings of integers.

Proof. (i) The statement can either be proven by direct calculation or in a more
sophisticated way by using valuations, i.e. function p W K ! Z which send x
to the multiplicity of the prime ideal p in .x/ or 1 if the multiplicity is 0. It is
well-known that x 2 OD if and only if p � 1 for all prime ideals. Therefore,
the claim immediately follows.

(ii) Let x D c
d

with c; d 2 OD . If the claim was not true, then d2 would necessarily
divide p by .i/. This is not possible since p is not ramified (and thus has no
square divisors).

ut
The lemma is not true any more ifD is not a fundamental discriminant. For instance,
if D D 45 then .2C 5w/=3 … OD , but ..2C 5w/=3/2 D 31C 5w.

Lemma 2.4. If p is a prime ideal which is a divisor of the principal ideal generated
by a split or ramified prime number in OD , then

p − 1; : : : ;N .p/ � 1:

Proof. Suppose pja for a 2 Z with 0 < a < N .p/. Then N .p/ is a prime number
strictly greater than a and N .a/ D a2. Therefore, N .p/jN .a/ is impossible. ut

As we will make extensive use of the arithmetic of OD later on, we collect some
more of its most important properties in a separate lemma.

Lemma 2.5 (Properties of w). Let OD be a real quadratic order.

(i) If x D aC bw 2 OD and n 2 N then njx if and only if nja and njb.
(ii) If D � 1 mod 4 then w� D 1 � w and for the absolute value of the norm we

have N .w/ D N .w � 1/ D D�1
4

.
(iii) If D � 1 mod 4 then all the prime ideal divisors of w are divisors of split

prime numbers.
(iv) For D � 1 mod 4 we have w2 D w C D�1

4
.

(v) For D � 1 mod 4 and all k 2 N we have wk D ck C dkw with ck; dk 2 Z

and the greatest common divisor of ck and dk is 1.
(vi) If D � 0 mod 4 then we have N .w/ D D

4
and w� D �w. Therefore, all

prime ideal divisors of w are divisors of ramified prime numbers.
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Proof. (i) follows from the definition.
(ii) is just a direct calculation.

(iii) : w cannot have a prime divisor which is an inert prime number by (i) and w
cannot have a prime divisor which divides a ramified prime divisor by (ii).

(iv) is again just a calculation.
(v) follows since wk has up to multiplicity the same prime divisor as w.

(vi) is again a simple calculation.
ut

2.2 Fuchsian Groups

Fuchsian groups are certain subgroups of PSL2.R/. They will appear almost
everywhere in the following chapters. For a detailed review of this topic the reader
may consult for example [Bea89, Kat92] or [Mac01].

Let H WD fz 2 C j Im.z/ > 0g denote the complex upper half plane. The
closure of H in the projective plane P

1.C/ WD C [ f1g is H D H [ R [ f1g :
We shall use the usual notations for real and imaginary parts, namely z D x C iy

for z 2 C. Recall that H is equipped with the Riemannian metric derived from the
differential

ds D
p

dx2 C dy2

y
:

The metric is called Poincaré metric. The Gaussian curvature of H equipped with
the Poincaré metric is constant and equal to �1 and the geodesics in H are then given
by vertical lines and semicircles orthogonal to R (see e.g. [Bea83], Chap. 7.3). For a
subset A � H we define �.A/, the hyperbolic area of A, by

�.A/ WD
Z

A

dxdy

y2

whenever the integral exists. Another model for the hyperbolic plane is the unit disc
D WD fz 2 C j jzj < 1g . Here the Poincaré metric corresponds to the differential
ds D 2jd zj

1�jzj2 .

A matrix M D �
a b
c d

� 2 SL2.R/, i.e. a; b; c; d 2 R and ad � bc D 1, (or rather
the group SL2.R/) acts on H by Möbius transformation, namely

z 7! az C b

cz C d

and this map is an orientation-preserving isometry (see e.g. [Kat92], Theo-
rem 1.3.1). Two matrices which differ only by a multiple of ˙Id define the same
Möbius transformation. Indeed, the group of all biholomorphic maps of H to itself
is given by PSL2.R/ WD SL2.R/= f˙Idg.
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A Fuchsian group � is a discrete subgroup of PSL2.R/. The most prominent
example of a Fuchsian group is the modular group PSL2.Z/. Elements in a
Fuchsian group are distinguished by the value of their trace tr.M/ WD ja C d j
for M D �

a b
c d

�
: If tr.M/ < 2 then M is called elliptic, if tr.M/ D 2 then M is

called parabolic and if tr.M/ > 2 then M is called hyperbolic. Equivalently one
could distinguish these elements by their fixed points: an elliptic transformation
has exactly one fixed point in H, a parabolic element has only one fixed point
on the boundary and a hyperbolic transformation has two fixed points on the
boundary. A closed domain F � H is called a fundamental domain for the
Fuchsian group � if .i/ for every z 2 H there exists a M 2 � with M z 2 F ,
.ii/ int.F/ \ M.int.F// D ; for all M ¤ ˙Id and .iii/ the number of M Id and
.iii/ the number of M 2 � with MF \ F ¤ ; is finite. A Fuchsian group � is a
lattice or cofinite if the orbit space H=� (or equivalently its fundamental domain)
has finite (hyperbolic) area �.H=�/. A Fuchsian group � is called (co-)compact
if the quotient H=� is compact. It is very often convenient to look at conjugated
groups: for a Fuchsian group � and M 2 SL2.R/ we denote by �M the group
M�1�M .

Here are two motivations why Fuchsian groups are interesting for us1: First of
all, every Veech group is a Fuchsian group (see e.g. [Vor96]). Secondly recall that
the moduli space of Riemann surfaces characterizes the set of isomorphism classes
of Riemann surfaces of a given genus. It goes back to ideas of Riemann that the
universal cover of every Riemann surface is biholomorphically equivalent either
to P

1.C/ or to C or to H (Uniformization theorem, see e.g. [FK92], Chap. IV.4).
All Riemann surfaces of genus g � 2 have H as their universal cover. Since the
automorphism group of H is exactly PSL2.R/, every Riemann surface of genus g �
2 can be regarded as the quotient of H by a Fuchsian group. On the other hand, for
a cofinite Fuchsian group � the quotient space H=� becomes a Riemann surface,
if the charts are chosen properly. The surface H=� has orbifold points at the fixed
points of the elliptic elements of � .

Signature of a Fuchsian Group. The most general presentation of a cofinite
Fuchsian group� is the following (see e.g. [Sin72]): the set of generators is given by
some hyperbolic elements a1; b1; : : : ; ag; bg , some elliptic elements x1; x2; : : : ; xr
and some parabolic elements p1; : : : ; ps . Note that the xj and pj are representatives
of the conjugacy classes of the elliptic and parabolic generators. Furthermore the
relations are given by

x
m1
1 D x

m2
2 D : : : D xmrr D

gY
iD1
Œai ; bi �

rY
jD1

xj

sY
kD1

pk D 1

where Œ�; �� denotes the commutator. Then we say that � has signature
.gIm1; : : : mr I s/. The signature contains precise information about the Euler

1The reader who is not familiar with the objects which are mentioned here should consult the
following sections first.
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characteristic �.H=�/ and therefore also about its volume since �.H=�/ D
2��.H=�/.

Theorem 2.6 (Riemann-Hurwitz Formula). The Euler characteristic �.H=�/
of a cofinite Fuchsian group � of signature .gIm1; : : : mr I s/ is:

2 � 2g �
rX
iD1

�
1 � 1

mi

�
� s:

Proof. See [Miy89], Theorem 2.4.3. ut
Commensurability and Arithmeticity. Let G be a group and A;B < G two
subgroups:

(i) A and B are called directly commensurable if A\B has finite index in both
A and B , i.e. ŒA W A \ B� < 1 and ŒB W A\ B� < 1.

(ii) A and B are called commensurable (in G) if there exits a g 2 G such that A
and gBg�1 are directly commensurable.

(iii) For a subset A of G we denote by CommG.A/ the commensurator of A in G
namely the set of all g 2 G such thatA and gAg�1 are directly commensurable.

Remark 2.7. (i) Two subgroupsA andB are directly commensurable if and only
if there exists a common subgroup C which has finite index in both A and B .

(ii) If A;B;C are subgroups of G and A and B are directly commensurable then
A\ C and B \ C are directly commensurable.

(iii) If C is a subgroup ofB of finite index and A is directly commensurable to C ,
then A is also directly commensurable to B .

(iv) We have A � CommG.A/.
(v) Always ŒCommG.A/ W A� ¤ 2 since A cannot be a normal subgroup.

(vi) The set CommG.A/ is a subgroup of G.
(vii) If A and B are commensurable then CommG.A/ D CommG.B/.

(viii) For all g 2 G we have CommG.gAg�1/ D gCommG.A/g
�1.

An order O in a quaternion2 algebra A over a totally real number field F is a
subring of A containing 1 which is a finitely generated OF -module generating the
algebra A over F , where OF is the ring of integers in F . Recall that the group of
units in such an order O of reduced norm 1 can be embedded into SL2.R/. This
group, denoted by �.O1; A/, is in fact a Fuchsian group ([Kat92], Theorem 5.2.7).

A Fuchsian group � is called arithmetic if it is commensurable with the group
�.O1; A/ for some O and A. Another equivalent definition of arithmeticity was
given in [Tak75] using traces and their Galois conjugates.

2The word quaternion itself is taken from a sentence of the King James Bible: “And when he had
apprehended him, he put him in prison, and delivered him to four quaternions of soldiers to keep
him”(Acts 12:4); compare [Ebb92], p.159.
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A very deep result of Margulis (see [Mar89] for a proof) links the commensurator
of a Fuchsian group to the notion of arithmeticity. This theorem will play an
important role in particular in Chap. 5.

Theorem 2.8 (Margulis’ Commensurator Theorem). A Fuchsian group � �
PSL2.R/ is arithmetic if and only if its commensurator CommPSL2.R/.�/ is dense in
PSL2.R/. Furthermore if � is non-arithmetic, then CommPSL2.R/.�/ contains � as
finite index subgroup and hence CommPSL2.R/.�/ is itself a Fuchsian group.

There is mainly one property beside Margulis’ Theorem of arithmetic Fuchsian
groups which is important for us (this justifies also the sketchy definition):

Theorem 2.9 ([Mac01], Theorem 5.2). If �.O1; A/ is non-compact, then it is
commensurable with PSL2.Z/.

In other words PSL2.Z/ is a representative for the (single) commensurability
class of non-compact arithmetic Fuchsian groups. Vice versa: a non-compact
Fuchsian group which is not commensurable to PSL2.Z/ is non-arithmetic.

Trace Fields. The trace field of a Fuchsian group � is the subfield of R generated
by tr.A/ for A 2 � . If the volume of the Fuchsian group is finite, then the trace field
is always a finite extension of Q ([MR03], Theorem 3.1.2).

2.3 Congruence Subgroups of SL2.OD/

We denote by SL2.OD/ the set of all 2 by 2 matrices with entries in OD and determi-
nant 1 and set PSL2.OD/ as SL2.OD/ modulo diagonal matrices of determinant 1.
Accordingly we define SL2.K/ and PSL2.K/.3 On the level of matrices Kronecker’s
Approximation Theorem implies that PSL2.OD/ is not a Fuchsian group.4 Beside
SL2.OD/ we will also be interested in a special type of subgroups of SL2.OD/,
which will appear in some of the explicit calculations, namely certain congruence
subgroups. In this section we will introduce these subgroups of SL2.OD/. [Fre90]
and [New72] give a broader overview of the topic.

Definition 2.10. Two matrices A and B are equivalent modulo n 2 OD , if they are
entrywise equivalent modulo n. Then

�D.n/ WD fM 2 SL2.OD/ j M � E mod ng

3SL2.K/ is generated by the matrices U.b/ D �
1 b
0 1

�
; b 2 K and S D �

0 �1
1 0

�
(see e.g. [Lan85],

p. 209–211).
4In the next section we will however see that the group PSL2.OD/ acts properly discontinuously on
H � H

�; the group PSL2.K/ is neither a Fuchsian group nor does it act properly discontinuously
on H � H

�.
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is called principal congruence subgroup. A congruence subgroup is a subgroup
of SL2.OD/ containing a principal congruence subgroup �D.n/ for some n 2 OD .

Sometimes n is called the level of the congruence subgroup. A principal
congruence subgroup is equal to the kernel of the projection map SL2.OD/ !
SL2.OD=nOD/ (see e.g. [Fre90], Chap. 3).

Lemma 2.11. If hD D 1 then for all n 2 OD the following sequence is exact:

1 ! �D.n/ ! SL2.OD/ ! SL2.OD=nOD/ ! 1:

Proof. Evidently �D.n/ is the kernel of the projection � W SL2.OD/ !
SL2.OD=nOD/. The surjectivity follows just like in the SL2.Z/-case (see e.g.
[KK07], Satz II.3.2) since hD D 1. ut

For general hD the map is still surjective; to prove this one may use rather
sophisticated techniques (strong approximation). Nevertheless, there is a very nice
elementary proof, that we want to sketch here: let S;R be two commutative
rings and let R ! S be a surjective homomorphism. If SL2.S/ is generated by
elementary matrices then the induced map SL2.R/ ! SL2.S/ is also surjective
since an elementary matrix over S obviously lifts to an elementary matrix over R.
Furthermore, it follows e.g. from the results in [Ros94], Chap. 2.2, that SL2.S/ is
generated by elementary matrices if S is a local ring. We now apply these facts
to R D OD and S D OD=nOD . Since OD=nOD is finite and since every finite
commutative ring is a direct product of local rings, the claim thus follows.

As the absolute value of the norm of an element n 2 OD is equal to the number
of elements of OD=nOD and thus finite, the number of elements in SL2.OD=nOD/

and thereby of �D.n/ can be very roughly bounded by N .n/4. If the ring of integers
OD has class number hD D 1 then the index of principal congruence subgroups in
SL2.OD/ can be calculated.

Theorem 2.12. Let n 2 OD and �D.n/ be an principal congruence subgroup
where 4

.n/ D
sY

kD1
.pk/

ek

is the unique prime decomposition of n up to multiplication by units. Then

�D.n/ D �D.p1/
e1 / � � � � � �D.ps/es /

and

ŒSL2.OD/ W �D.n/� D N .n/3
Y
pjn

�
1 � 1

N .p/2

�
:
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Proof. See [New72], p. 113–115. There it is assumed that the ring is Euclidean.
However, the proof also works verbatim if only hD D 1. ut

Note that this formula is a generalization of the SL2.Z/-case. There are even
some more special congruence subgroups, where one can calculate the index.
These are the analogs to the Hecke congruence subgroups of SL2.Z/, which are
considered e.g. in the theory of newforms (see e.g. [Wei08]). These groups will also
be important for this work.

Definition 2.13. The groups �D0 .n/ and �D;0.n/ are defined by

�D0 .n/ WD
��
a b

c d

�
j
�
a b

c d

�
�
�� �
0 �

�
mod n

	

and

�D;0.n/ WD
��
a b

c d

�
j
�
a b

c d

�
�
�� 0

� �
�

mod n

	
:

Finally we set �D.m; n/ WD �D0 .m/ \ �D;0.n/: Accordingly, we define all these
groups for proper ideals m; n.

Proposition 2.14. Let n 2 OD and let .n/ D Qs
kD1.pk/ek be a decomposition of n

into prime ideals then:

ŒSL2.OD/ W �D0 .n/� D ŒSL2.OD/ W �D;0.n/� D N ..n//
Y
pk

�
1C 1

N .pk/

�
:

If m 2 OD with .m; n/ D 1 and if .m/ D Qr
kD1.epk/ek is a decomposition of .m/

into prime ideals then

ŒSL2.OD/ W �D0 .n/ \ �D;0.m/� D N ..n//
Y
pk

�
1C 1

N .pk/

�
�

N .m/
Y

epk

�
1C 1

N .epk/
�
:

Proof. In the case hD D 1 the proof can be done exactly like e.g. in [Wei08],
Chap. 2.1. If hD > 1 it is immediately clear that the claimed equality hold with 

instead of D. As is commonly known in the literature, equality is also true in the
latter case (weak approximation). We also implicitly prove this fact in Chap. 6. ut

We conclude this section by giving another class of examples of congruence
subgroups, which are in general not principal congruence subgroups.
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Proposition 2.15. If M 2 GLC
2 .K/ then SL2.OD/ \ MSL2.OD/M

�1 is a
congruence subgroup and therefore

ŒSL2.OD/ W SL2.OD/\MSL2.OD/M
�1� < 1

holds.

Proof. LetM 2 GLC
2 .K/ and let d be the product of all the denominators appearing

in M and M�1. Then M�1�D.d/M � SL2.OD/ since M�1IdM D Id and since
for all A 2 Mat2x2.OD/ we have dM�1AM 2 Mat2x2.OD/. In other words the
claim follows from the following exact sequence:

1 ! �D.d/ ! SL2.OD/ ! SL2.OD=dOD/ ! 1:

ut

2.4 Moduli Spaces

One of the objects we will deal with everywhere in these notes is the moduli
space of compact Riemann surfaces. It solves the moduli problem of parameterizing
all Riemann surfaces of a given genus g. In Sect. 2.4.2 this topic will be dealt
with. In Sect. 2.4.1 we introduce flat surfaces. These are Riemann surfaces together
with a non-zero holomorphic differential form. Flat surfaces have a very important
invariant, the Veech group. Furthermore, they lead to a stratification of the moduli
space, that we describe in detail in Sect. 2.4.3. Finally, we consider in Sect. 2.4.4
another moduli space, namely the one of Abelian varieties.

2.4.1 Flat Surfaces and Veech Groups

Riemann Surfaces. By a Riemann surface we shall mean a connected holomor-
phic manifold of complex dimension one. More precisely, a Riemann surface is a
connected Hausdorff space X of real dimension two together with a maximal set †
of charts fU˛; z˛g on X such that the transition functions

f˛ˇ D z˛ ı z�1
ˇ W zˇ.U˛ \ Uˇ/ ! z˛.U˛ \ Uˇ/

are holomorphic maps. The maps z˛ are also called local parameters. † is called
a complex structure on X . Note that given any set M of (holomorphic) charts
covering the surface, M is contained in a unique † (see e.g. [Shi71], p. 15).
It is well-known that there is an equivalence of categories between (non-singular,
connected, projective) algebraic curves over C and compact Riemann surfaces
(see e.g. [Rey89], Chap. VII, 3). This is the reason why there is a double
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terminology, i.e. why the terms compact Riemann surface and algebraic curve are
used as synonyms in the existing literature.

Flat Surfaces. Morally speaking, a flat surface is a Riemann surface with a metric
which has curvature zero everywhere with the only exception that the metric may
have several singular points. These points are also called conical singularities. An
intuitive example of a flat surface in this sense is a cube: it is flat on all of its sides;
the vertices of the cube are the conical singularities; they carry all the curvature of
the cube (see [Zor06], Sect. 1.1 for more details on this example). We now give the
precise definition: a flat surface is a pair .X; !/ where X is a Riemann surface
and ! is a non-zero holomorphic differential form on X . One can define charts on
X by integrating ! locally (see e.g. [HS06], Sect. 1.1.3). The transition maps are
then given by translations. Let us explain how this gives rise to a metric with the
properties mentioned previously. Let Z.!/ denote the zeroes of !. On X X Z.!/

a flat (Riemannian) metric is given by pulling back the Euclidean metric of C via
the charts. A zero P 2 Z.!/ leads to a singularity of this metric. The total angle
around a singularity, called the cone angle, is an integer multiple of 2� . If the form
! has a zero of degree d , then the cone angle at this point is equal to 2�.d C 1/

(see e.g. [Zor06], Sect. 3.3). A geodesic segment connecting two singular points
is called saddle connections. Equivalently, flat surfaces arise from gluing rational
angled planar polygons by parallel translations along their faces. This implies in
particular that there exists an atlas on X such that all transition maps of X away
from the zeroes are given by translations. Therefore, flat surfaces are sometimes
also called translation surfaces (see also e.g. [Mas06]).

The simplest class of examples of flat surfaces are square-tiled surfaces or
Origamis, i.e. flat surfaces .X; !/, where X is obtained as a covering of a square
torus ramified over one point only and ! is the pullback of the holomorphic one-
form on the torus. A rather comprehensive and understandable paper on square-tiled
surfaces is [Sch05].

A holomorphic quadratic differential q on a Riemann surface is locally defined
by q D f .z/.d z/2 where f .z/ is a holomorphic function defined on a chart .U; z/.
A pair .X; q/ is sometimes called a half-translation surface, because there always
exists an atlas on X such that the transition functions are given by compositions of
˙Id and translations.

Veech Groups. At least from our point of view, the Veech group is the most
important invariant of a flat surface. Take the charts on X X Z.!/ defined
by integrating ! and let AffC.X; !/ denote the group of orientation-preserving
homeomorphisms of X that are affine diffeomorphisms on X X Z.!/ with respect
to these charts. The matrix part of the affine map is independent of the carts and
provides a map

D W AffC.X; !/ ! SL2.R/:

The image of D is called the affine group or Veech group of .X; !/ and often
denoted by SL.X; !/. Let us point out three well-known basic properties of Veech
groups.
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Proposition 2.16. A Veech group SL.X; !/ is always discrete, i.e. a Fuchsian
group.

Proof. Let l be the length of (one of) the shortest saddle connections � onX . There
exist only finitely many saddle connection of length at most 2l . This implies that
there are only finitely many possible images of � under SL.X; !/. Hence SL.X; !/
is discrete. ut
Proposition 2.17. A Veech group SL.X; !/ is never cocompact.

Proof (Following [HS06]). We only need to find a continuous function on
SL2.R/=SL.X; !/ which has no minimum value. Consider the function ƒ W
SL2.R/ ! R

C given by A 7! l.A.X; !// where l.�/ denotes the length of the
shortest saddle connection. By rotating we normalize .X; !/ such that its shortest

saddle connection is in the vertical direction. Via the geodesic flow
�
et=2 0
0 e�t=2

�
the

length of this geodesic tends to zero. ut
Finally, it follows from a theorem by Gutkin and Judge that .X; !/ is a square-

tiled surface if and only if SL.X; !/ is arithmetic (see [GJ96]). We will discuss this
theorem in more detail in Sect. 3.1. If the Veech group SL.X; !/ is a lattice, then
.X; !/ is called a Veech surface. For more general background on Veech groups
we refer the reader for instance to [Möl09] and [Sch05].

2.4.2 The Moduli Space of Compact Riemann Surfaces

The uniformization theorem (1851) can be considered as starting point for the
moduli problem for Riemann surfaces. Roughly speaking, it states that every
connected Riemann surface of genus g � 2 has H as its universal cover (see
e.g. [FK92], p. 194ff). The moduli space of compact Riemann surfaces of genus
g parametrizes all compact Riemann surfaces of genus g. We will briefly review
some of the relevant material. There are some different approaches to construct
moduli space. All approaches are similar in the sense that each construction involves
a priori curves with additional structure and then taking the quotient by the relation
that identifies these additional structures. We present here the topological approach
which involves Teichmüller space. There is a wide variety of material on the moduli
space and related topics, for example [Ham13, HM98, IT92, Sch89, SS92] to name
a few.

Teichmüller Space. Fix an arbitrary closed (i.e. compact without boundary)
Riemann surface S of genus g � 2.5 A marked complex structure on S is
a pair .X; '/ consisting of a Riemann surface X and a orientation-preserving

5As the Riemann mapping theorem already indicates, the case g � 1 is by far easier (see e.g.
[Sch05]). We will therefore in the following restrict to the case g � 2.
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diffeomorphism ' W S ! X . Two such pairs .X; '/ and .X 0; ' 0/ are equivalent
if ' 0 ı '�1 is homotopic to a biholomorphic mapping h W X ! X 0. The space of
equivalence classes is called the Teichmüller space T .S/. Note that by definition
the Teichmüller space has a base point, namely .S; Id/. Teichmüller space has
a canonical structure as a complex manifold of dimension 3g � 3. Indeed, it is
biholomorphic equivalent to a bounded domain in C

3g�3. The mapping class group
is defined as the quotient

Mod.S/ D DiffC.S/=DiffC
0 .S/

of orientation-preserving diffeomorphisms of S modulo those orientation-
preserving diffeomorphisms of S which are homotopic to the identity. An element

 of the mapping class group acts on Teichmüller space by leaving the base-surface
invariant and pre-composing the marking with 
�1.

Moduli Space. The moduli space of compact Riemann surfaces of genus g is
defined as the quotient

Mg WD T .S/=Mod.S/

of the Teichmüller space of an arbitrary Riemann surface S of genus g by the action
of the mapping class group. The definition does not depend on the chosen base
point of Teichmüller space. Since the action of the mapping class group is properly
discontinuously, the moduli space is a non-compact orbifold of complex dimension
3g�3. There is a good compactification Mg of moduli space which goes back to P.
Deligne and D. Mumford and which is therefore known as the Deligne-Mumford
compactification (for details see e.g. [MB09]).

The Teichmüller Metric. When S0 and S1 are Riemann surfaces with different
complex structures, there does (by definition) not exist any conformal map from S0
to S1. The deviation of the complex structures can be measured. An orientation-
preserving smooth map f W S0 ! S1 sends an infinitesimal circle at x 2 S0 to
an infinitesimal ellipse at f .x/ 2 S1. The coefficient of quasiconformality of f at
x 2 S0 is the ratio Kx.f / D a

b
of the demi-axis of this ellipse. The coefficient of

quasiconformality of f is defined by

K.f / WD sup
x2S0

Kx.f /:

Note that a map is conformal if and only if K.f / D 1. Hence one can define a
metric, the Teichmüller metric on Mg , by d.S0; S1/ D inff 1

2
logK.f /.

A Vector Bundle Over Mg . An element of �Mg is specified by a pair .X; !/
where X 2 Mg and where ! 2 �.X/ is a non-zero, holomorphic one-form on
X . In other words an element of �Mg is given by a flat surface. So �Mg is a
natural vector bundle minus the zero section over Mg . Moreover, �Mg naturally
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has the structure of a complex algebraic orbifold, whose dimension is equal to
4g � 3 (see e.g. [KZ03]). We will treat �Mg intensively in the following chapters
mainly because of the fact that there is a natural action of SL2.R/ on�Mg . We will
describe this action in Sect. 2.4.3.

Families of Curves. The concept of families of curves which we will explain now
goes back to A. Grothendieck. We do not use the language of categories here but
follow closely the textbook [Sch89]. Let X ;B be complex spaces. A family of
curves (Riemann surfaces) over B is a surjective map � W X ! B such that
� is a holomorphic map and the fiber Xb WD ��1.b/ is a Riemann surface of
genus g for every point b 2 B . The space B is also called the base space. Note
that a family of curves � W X ! B is necessarily locally topologically trivial, i.e.
every point b 2 B has a neighborhood U such that there exists a homeomorphism
h W ��1.U / ! U � Xb .

If we have such a family � W X ! B we can define a map ‰B;X W B ! Mg

by assigning to b 2 B the isomorphy class of the fiber Xb over b. The geometric
structure of Mg can be defined such that each ‰B;X is a holomorphic map and
such that Mg is universal in the sense described e.g. in [Sch89], p. 69. Therefore,
Mg is called a coarse moduli space although Mg is not a fine moduli space.
This is because there does not exist a universal family of curves over Mg. A family
of curves � W U ! Mg is a universal family of curves over Mg if the fiber
over every point Y 2 Mg is a representative for the class Y and every family of
curves X over B is induced by pulling back U via the map ‰B;X . Analogously, the
notion of fine moduli space can be defined for every moduli space. The obstruction
to the existence of a universal family over Mg is the existence of curves with
nontrivial automorphisms (see [HM98], Chap. 2.A). A way to bypass this problem
is to consider families of curves with level l-structures. A level l-structure is the
choice of an isomorphism from .Z=.l//2g to the l-torsion points of the Jacobian (see
also Sect. 2.4.4). If l � 3, then there is a fine moduli space representing the moduli
problem (see e.g. [Kap11], Chap. 5).

2.4.3 Strata

A stratification of a topological X is a decomposition X D S
i2I Xi where I is a

finite set of indexes and the strataXi are disjoint orbifolds such that the closure of a
stratum is a union of strata. In this section we want to describe a natural stratification
of �Mg: from the Riemann Roch Theorem one can deduce a well known formula
for the sum of the degrees ki of the zeroes of a holomorphic one-form on a Riemann
surface of genus g (see e.g. [For77], Satz 17.12), namely

X
i

ki D 2g � 2: (1)
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Although it is not completely obvious that condition (1) is also sufficient for the
existence of a holomorphic one-form with corresponding order of zeroes, this is
nevertheless true. The key ingredient for the stratification of �Mg is Eq. (1). Let
k1; : : : ; kn be a finite sequence of positive integers such that the sum

P
i ki is equal

to 2g � 2. Then denote by �Mg.k1; : : : ; kn/ the subspace of �Mg consisting of
equivalence classes of pairs .X; !/ where ! has exactly n zeroes with multiplicities
k1; : : : ; kn (for some ordering of the zeroes). Since the definition does not depend
on the ordering of the ki this yields a decomposition:

�Mg D
[

n;.k1;:::;kn/
k1�:::�kn

k1C:::CknD2g�2

�Mg.k1; : : : ; kn/:

It is well-known that each of the �Mg.k1; : : : ; kn/ is an orbifold of complex
dimension 2gCn�1 (see e.g. [KZ03]). Thus this is indeed a stratification of�Mg.

Each stratum�Mg.k1; : : : ; kn/ can be locally modeled on a cohomology space:
any differential form ! on X defines an element Œ!� of the relative cohomology
H1.X; fzeroes of !g IC/. For a sufficiently small neighborhood of a generic point
.X0; !0/ the resulting map from U to the relative cohomology yields local charts on
�Mg.k1; : : : ; kn/. More details on these charts can be found e.g. in [EKZ11].

M. Kontsevich and A. Zorich have been able to calculate the connected com-
ponents of the strata. It turns out that each stratum decomposes into at most three
connected components.

One invariant involved is the so-called parity of spin structure. For a general
definition we refer the reader to [BL04] and [McM05]. If the spin structure is
determined by an Abelian differential with even degrees of zeroes—which is the
only case of interest for us—, there is a geometric way to define the spin structure:
let ˛ be a smooth simple closed oriented curve on .X; !/ which does not contain a
zero of !. The index ind˛ 2 Z is defined as the total change of the angle between
the vector tangent to the curve and the vector tangent to the horizontal foliation
divided by 2� (note that there is always a well-defined notion of horizontal direction
on flat surfaces). Now choose oriented smooth paths .˛i ; ˇi /iD1;:::;g representing a
symplectic basis ofH1.X;Z=2/with respect to the intersection pairing (see [FK92],
Chap. III.1). Then the parity of spin structure or spin invariant can be defined as

�.X; !/ WD
gX
iD1
.ind˛i C 1/.indˇi C 1/ mod 2:

We say that a connected component of �Mg.2k1; : : : ; 2kn/ has even or odd spin
structure depending on whether the corresponding spin invariant of all pairs .X; !/
in the connected component is even or odd. Finally �Mg

hyp.k1; : : : ; kn/ is the
hyperelliptic locus which consist of all pairs .X; !/ 2 �Mg.k1; : : : ; kn/ such
that X has an hyperelliptic involution. Having defined all this, let us now state the
classification of the connected components of�Mg .
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Theorem 2.18 (Kontsevich, Zorich, [KZ03]). The strata of �Mg have at most
three connected components, distinguished by the parity of spin structure and by
being hyperelliptic or not. For g � 4, the strata �Mg.2g � 2/ and �Mg.2k; 2k/

with an integer k D .g � 1/=2 have three components, namely the component of
hyperelliptic flat surfaces and two components with odd or even parity of the spin
structure but not consisting exclusively of hyperelliptic curves.

The stratum �M3.4/ has two components�M3.4/
hyp and �M3.4/

odd .
Also the stratum �M3.2; 2/ has two components, namely �M3.2; 2/

hyp and
�M3.2; 2/

odd .
Each stratum �Mg.2k1; : : : ; 2kr / for k � 3 or r D 2 and k1 ¤ .g � 1/=2 has

two components determined by even and odd spin structure.
Each stratum �Mg.2k � 1; 2k � 1/ for k � 2 has two components, the

component of hyperelliptic flat surface �Mg.2k � 1; 2k � 1/hyp and the other
component�Mg.2k � 1; 2k � 1/non�hyp.

In all other cases, the stratum is connected.

The Action of SL2.R/ on �Mg . After having repeated some of the main
properties of �Mg, we can introduce a natural action of SL2.R/ on �Mg: for
A D �

a b
c d

� 2 SL2.R/ consider the harmonic one-form

!0 D �
1 i
� �a b
c d

��
Re.!/
Im.!/

�

onX . There is a unique complex structure with respect to which !0 is holomorphic.
Its charts yield a new Riemann surface X 0 - topologically the surface has not
changed at all. We define A � .X; !/ WD .X 0; !0/. In other words the action can
be described by identifying C with R

2 and letting A act on the charts by linear
transformations. Note that the action of SL2.R/ preserves the stratification of�Mg

and even its connected components. Additional information on this topic can be
found e.g. in [MT02, McM03a] and [Möl11a].

Projection. For each k D .k1; : : : ; kn/ with
Pn

iD1 ki D 2g � 2 there is a
natural projection from �Mg.k/ to Mg which sends .X; !/ to X . The map only
remembers the complex structure on the surface defined by the Abelian differential
and forgets the Abelian differential itself.

2.4.4 The Moduli Space of Abelian Varieties AD
g

In this section we want to define the moduli space of Abelian varieties. Before we
can do so, we give a general overview over the theory of Abelian varieties. In this
section we mainly follow the exposition in [BL04]. Another very good reference for
Abelian varities is [Deb05] which is probably easier to read for people not already
familiar with the topic.
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Let V be a complex vector space of dimension g and ƒ be a lattice in V . By
definition ƒ is a discrete subgroup of rank 2g of V. Then the quotient X D V=ƒ

is called a complex torus of dimension g. An homomorphism of a complex torus
X to a complex torus X 0 is a holomorphic map f W X ! X 0, compatible with the
group structures of the tori. An isogeny is by definition a surjective homomorphism
f W X ! X 0 with finite kernel. Recall that we can associate to each Chern class
c1.L/ of a line bundle L on X (i.e. a vector bundle of dimension 1) a unique
alternating form E W V � V ! R with E.ƒ;ƒ/ � Z and E.iv; iw/ D E.v;w/
for all v;w in V . Moreover E is known to be the imaginary part of some unique
Hermitian form H . The line bundle is positive (definite) if H is a positive definite
Hermitian form. The group which consists of all such forms is called the Néron-
Severi group (for details, see [BL04], Chaps. 1 and 2). According to the elementary
divisor theorem there is a basis �1; : : : ; �g; �1; : : : ; �g of ƒ, with respect to which
E is given by the matrix

�
0 D

�D 0

�

where D D diag.d1; : : : ; dg/ with integers di � 0 satisfying di jdiC1 for i D
1; : : : ; g � 1 (see e.g. [Mur93], Chap. 5). The elementary divisors d1; : : : ; dg are
uniquely determined by E and ƒ and thus by L. Then �1; : : : ; �g; �1; : : : ; �g is
called a symplectic basis of ƒ for L (or H or E).

Definition 2.19. (i) A polarization on X is the Hermitian form H associated to
the first Chern class c1.L/ of a positive definite line bundle L on X .

(ii) The vector .d1; : : : ; dg/ is called the type of the polarization of the line bundle
L on X . Sometimes also D itself is called the type of the polarization.

(iii) A polarization is called principal if it is of the type .1; : : : ; 1/.

By abuse of notation one sometimes calls the line bundle L itself a polarization.
Obviously not every polarization is principal.

Definition 2.20. An Abelian variety is a complex torus X admitting a polariza-
tionH . The pair .X;H/ is called a polarized Abelian variety. A homomorphism
of polarized Abelian varieties f W .Y;K D c1.M// ! .X;H D c1.L// is a
homomorphism of complex tori f W Y ! X such that f �c1.L/ D c1.M/.

For example every elliptic curve is an Abelian variety while not every complex
torus of dimension � 2 is an Abelian variety (see [BL04], Chap. 4). An Abelian
variety X of dimension 2 is also called an Abelian surface.

Choose bases e1; : : : ; eg of V and �1; : : : ; �2g of ƒ. Writing all the �i in terms
of the basis e1; : : : eg, i.e. �i D Pg

jD1 �j;i ej yields a matrix

… D

0
B@
�1;1 � � � �1;2g
:::

:::

�g;1 � � � �g;2g

1
CA :
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This matrix… is called a period matrix of X . Note that with respect to these bases
we have X D C

g=…Z
2g. When one looks at period matrices there is an useful

criterion which decides whether a complex torus is an Abelian variety or not:

Theorem 2.21 ([BL04], Chap. 4.2). The space X is an Abelian variety if and only
if there is a nondegenerate alternating matrix A 2 M2g.Z/ such that

(i) …A�1…t D 0

(ii) i…A�1…t
> 0.

The conditions .i/ and .ii/ are called Riemann relations. An important class
of examples of principally polarized Abelian varieties is the following: recall that
H0.X;�.X//, the C-vector space of holomorphic 1-forms on a compact Riemann
surface X of genus g, has dimension g. The homology group H1.X;Z/ is a free
abelian group of rank 2g. We can associate to any element � 2 H1.X;Z/ in a
canonical way a linear form on H0.X;�.X//, namely � W ! 7! R

�
! which does

by Stokes’ theorem not depend on the choice of the representative. This map is
injective. The Jacobian of X is then defined as

Jac.X/ WD H0.X;�.X//_=H1.X;Z/

Jacobians of Riemann surfaces of genus g � 1 can be canonically polarized and
this polarization is principal (see [BL04], p. 317, for details).

The notion of real multiplication for Abelian varieties, that we define here only
for Abelian surfaces, seems to be very technical at first (the general definition can
be found e.g. in [Möl11a], Chap. 4). Nevertheless, its significance will be seen
throughout these notes.

Definition 2.22. (i) Let End.X/ denote the endomorphism ring of a polarized
Abelian variety X D V=ƒ. Elements of End.X/ can be regarded as complex-
linear maps T W V ! V with T .ƒ/  ƒ. An endomorphism is called
self-adjoint if it satisfies E.T x; y/ D E.x; Ty/ with respect to the alternating
form E on x; y 2 ƒ.

(ii) Let OD be a quadratic order. An Abelian surface has real multiplication by OD

if there is a monomorphism	 W OD ! End.X/with the following properties:

– For each � 2 OD the lift Q	.�/ W V ! V is self-adjoint.
– 	 is proper in the sense that it does not extend to a monomorphism 	0 W

OE ! End.X/ for some OE � OD .

It is now crucial to parametrize the set of polarized Abelian varieties of a given
type D with symplectic basis: there is a bijection between the set of polarized
Abelian varieties of type D with symplectic basis �1; : : : ; �g; �1; : : : ; �g and the
Siegel upper half space

Hg WD ˚
Z 2 Mg.C/ j Zt D Z; Im.Z/ > 0



:
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The bijective map is explicitly given in [BL04], Chap. 8.1. However we just want to
parametrize isomorphism classes of Abelian varieties. The matrix group

�D WD
�
M 2 M2g.Z/ j M

�
0 D

�D 0

�
Mt D

�
0 D

�D 0

�	

acts properly discontinuously on Hg in the following way: ifM D �
a b
c d

� 2 �D then
the action on Hg is given by

Z 7! M hZi WD .aZ C bD/.D�1cZ CD�1dD/�1

(see [BL04], Proposition 8.2.5). This yields the desired result:

Theorem 2.23 ([BL04], Chaps. 8.1.–8.2.). The normal complex analytic space
AD
g WD Hg=�D of dimension 1

2
g.g C 1/ is a (coarse) moduli space for polarized

Abelian varieties of type D.

Whenever D is omitted in the notation of AD
g we mean the moduli space of

principally polarized Abelian varieties. One of the main properties of the moduli
space of principally polarized Abelian varieties Ag is that for g � 2 the moduli
space of compact Riemann surfaces Mg can be embedded into Ag by the Torelli
map, that assigns to each element ŒX� 2 Mg its Jacobian Jac.ŒX�/. Indeed the
following theorem holds:

Theorem 2.24 (Torelli). Let X and X 0 be two Riemann surfaces of genus g � 2.
Then X and X 0 are biholomorphically equivalent if and only if their Jacobians
Jac.X/ and Jac.X 0/ are isomorphic as (principally) polarized Abelian varieties.

In other words: the Torelli map j W Mg ! Ag is injective.

Proof. See e.g. [Wei57]. ut
The following fact is straightforward but nevertheless rather important:

Proposition 2.25. Let D1 D .d1; d2; : : : ; dg/ and D2 D .1; d2
d1
; : : : ;

dg
d1
/ then AD1

g

and AD2
g are canonically isomorphic.

Note thatD2 is also a type of polarization since d1jdi for all i D 1; : : : ; g. In fact
the type of the polarization of an Abelian variety cannot always be seen immediately.
Main tools for calculating polarizations are the following two propositions:

Proposition 2.26 ([BL04], Corollary 12.1.5). Let .Y;Z/ be a pair of comple-
mentary Abelian subvarieties of a principally polarized Abelian variety X with
dimY � dimZ D r . If Z has polarization of type .d1; : : : ; dr / then Y has induced
polarization of type .1; : : : ; 1; d1; : : : ; dr /.

Proposition 2.27 ([BL04], Lemma 12.3.1). Let X , X 0 be two compact Riemann
surfaces. Let Jac.X 0/ be the canonically polarized Jacobian of X 0 and let f W
X 0 ! X be a covering map of degree n. Then the induced polarization of Jac.X/
as subvariety of Jac.X 0/ is .n; : : : ; n/.
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This means that if one knows the type of the polarization of the smaller subvariety
Z one also gets the type of the polarization of the greater subvariety Y . The second
statement implies that Jac.X/ as subvariety of Jac.X 0/ is not principally polarized,
but has n-times a principal polarization.

2.5 Hilbert Modular Surfaces

At the end of the nineteenth century it was one main aim to create a higher dimen-
sional theory of modular forms (O. Blumenthal, D. Hilbert). This development also
led to the definition of Hilbert modular surfaces. During the 1970s Hilbert modular
surfaces became more and more popular in modern mathematics, notably by the
work of F. Hirzebruch and J.-P. Serre.

This section will serve as a short summary of some of the most important aspects.
More comprehensive accounts to Hilbert modular surfaces can be found e.g. in
[Bru08, Fre90, Hir73] and [vdG88]. We remark that in principal many definitions
and results in this section can be generalized to higher dimensions (Hilbert modular
varieties).

Let OD be a real quadratic order and let K be the real quadratic number field
containing OD . The group SL2.K/ is embedded into SL2.R/ � SL2.R/ by the two
real embeddings of K into R. Hence it acts on H � H via

�
a b

c d

�
z WD

�
az1 C b

cz1 C d
;
a� z2 C b�

c� z2 C d�

�
;

where z D .z1; z2/ is the standard variable in H � H. If a is a fractional ideal of K ,
we write

SL.OD ˚ a/ WD
��
a b

c d

�
2 SL2.K/ja; d 2 OD; b 2 a�1; c 2 a

	

for the Hilbert modular group, respectively PSL2.OD˚a/ for SL.OD˚a/modulo
the invertible diagonal matrices. Since every Hilbert modular group is discrete in
SL2.R/2, it acts properly discontinuously on H

2 (see [Fre90], Proposition 2.1). Thus
it makes perfectly sense to consider the quotient H � H=SL.OD ˚ a/. The Hilbert
modular surface XD is defined as the quotient H � H=SL.OD ˚ O_

D/. Moreover
any Hilbert modular group� acts onP1.K/ by fractional linear transformations. The
orbits of P1.K/ under this action are called the cusps of � . Mostly one choses a set
of representatives of these orbits and calls, by abuse of notation, the representatives
cusps. For every cusp x of � there exists an element 	 2 PGL2.R/ with 	x D 1 D
.1 W 0/ such that 	�x	�1 � PSL2.K/ where �x is the isotropy group of the cusp.
According to [Hir73] we then have an exact sequence

0 ! M ! 	�x	
�1 ! V ! 1
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where M is a complete submodule in K , i.e. an additive subgroup of K which is
a free abelian group of rank 2, and V is a subgroup of the group of totally positive
units of OD of rank 1.M and V do neither depend on the choice of 	 nor on the cusp
representative x and are therefore called the type of a cusp. The group 	�x	�1 DW
G.M;V / is the semi-direct productM Ì V (see also [vdG88], Chap. 2.1).

An element .˛1; ˛2/ 2 � is called elliptic if tr.˛i /2 � 4 < 0 for i D 1; 2. A point
z 2 H

2 is called an elliptic fixed point for � if it is the fixed point of an elliptic
element of � .

Proposition 2.28 ([vdG88], p. 16). If ˛ 2 SL.OD ˚ a/ is elliptic then tr.˛/ is
confined to the following possibilities:

0;˙1;˙p
2;˙p

3;˙1˙ p
5

2
:

The order of ˛ with such a trace as element in PSL.OD ˚ a/ equals 2; 3; 4; 6; 5
respectively.

If the discriminantD is different from 5; 8; 12 then only order 2 and order 3 occur.
For D D 5; 8 and 12 elliptic elements with order 5; 4 and 6 do exist. The number
of cusps and the number of �-inequivalent elliptic fixed points of a Hilbert modular
group � are always finite (see [Fre90], Chap. 2 or [Pre68]).

There is an isomorphism SL.OD ˚ O_
D/ ! SL2.OD/ given by

�
a b

c d

�
7!
�

a
p
D=bp

Dc d

�

and the map T W H � H ! H � H
� induces an isomorphism XD Š H �

H
�=SL2.OD/. Both isomorphic descriptions of the Hilbert modular surface will

be used frequently in these notes. In general these surfaces are not isomorphic to
H � H=SL2.OD/. Only if OD contains a unit � with ��� D �1 then multiplication
by .�; �� / induces an isomorphism

H � H
�=SL2.OD/ ! H � H=SL2.OD/:

Recall that the occurrence of a unit � with ��� D �1 is impossible if D is divisible
by a prime p � 3 mod 4 (see e.g. [Ste93]).

A classical formula which goes back to C.-L. Siegel implies that the Euler
characteristic of a Hilbert modular surfaceXD is closely related to the Zeta-function
of the number field K (see [Hir73], Chaps. 1.3 and 1.4 for details and references).

Theorem 2.29 (Siegel). Let K D Q.
p
D/ be a real quadratic number field. Then

the Euler characteristic of the Hilbert modular surface XD is equal to 2
K.�1/
where 
K is the Zeta-function of K , i.e. the Euler characteristic is given as
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1

30

X

jbj<p
D;b2�D mod 4

�1

�
D � b2
4

�
;

where �1.a/ is the sum of the divisors of a (in Z).

There is also a moduli interpretation of Hilbert modular surfaces. Indeed, the
Hilbert modular surface XD is the moduli space of all pairs .X; 	/, where X is a
principally polarized Abelian surface and 	 is a choice of real multiplication onX by
OD . This claim follows from the much more general work of P. Deligne in [Del70].
Maybe this is the reason why it is hard to find a complete explicit proof of this
theorem in the existing literature. We present a very detailed proof in Appendix A.1
such that our exposition does not need to be interrupted here for quite a few pages.

Theorem 2.30 (Deligne). The Hilbert modular surface XD is the moduli space of
all pairs .X; 	/, whereX is a principally polarized Abelian surface and 	 is a choice
of real multiplication on X by OD .

In the proof a natural map j W XD ! A2 which simply forgets the choice
of real multiplication is explicitly constructed. When one wants to prove a higher
dimensional analog, i.e. g > 2, of this theorem, there arises another problem: if one
defines Hilbert modular varieties as H

g=� , where � D SL.O ˚ O_/ for some
order O of a totally real number field F (see e.g. [Fre90]), then the natural map from
H
g=� to the moduli space of Abelian varieties is in general not surjective on the

locus of Abelian varieties with real multiplication by O since the real multiplication
locus needs not to be connected (see e.g. [MB09] for details).

Automorphisms of XD . The group of automorphisms of H � H
� is given by the

semi-direct product SL2.R/2 Ì h�i, where � is the involution .z1; z2/ 7! .�z2;�z1/.
For a givenM 2 GLC

2 .K/ it is now natural to ask whether M W H�H
� ! H�H

�,
with .z1; z2/ 7! .M z1;M� z2/, descends to an automorphism ofXD . This is the case
if and only if M normalizes SL2.OD/, i.e. MSL2.OD/M

�1 D SL2.OD/. If D
is a fundamental discriminant then M must therefore be in SL2.OD/ and so the
only automorphism of XD coming from a matrix M 2 GLC

2 .K/ is the identity.6

Nevertheless, the group of automorphisms of XD might be much bigger than the
trivial group. An explicit example of an automorphism of X8 not stemming from an
automorphism of H � H

� is described in [vdG88], Chap. VII.2. For a givenD, it is
in general an unsolved problem how to explicitly write down all automorphisms of
XD .

Hilbert Modular Forms. Hilbert modular forms are a higher dimensional ana-
logue of elliptic modular forms. Many parts of the theory of elliptic modular forms
can be translated into the language of Hilbert modular forms. Similarly as the
former are related to the modular surface H=SL2.Z/, the latter are related to Hilbert

6If D is not fundamental discriminant, then this is not true any more (compare Lemma 2.2).
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modular surfaces. Let � be a finite index subgroup of a Hilbert modular group.
A holomorphic function f W H2 ! C is called a Hilbert modular form of weight
k D .k1; k2/ 2 Z

2 for all � D �
a b
c d

� 2 � and for all z D .z1; z2/ 2 H
2 one has

f .�z/ D .cz1 C d/k1.c0z2 C d 0/k2f .z/: (2)

If k is of the form .k; k/ then one speaks of a Hilbert modular form of weight k. It is
a striking fact that, in contrast to the case of elliptic modular forms, a holomorphic
Hilbert modular form is automatically holomorphic at the cusps. This is known as
the Koecher principle (see [Bru08], Theorem 1.20). Non-zero holomorphic Hilbert
modular forms only exist if k D .0; 0/ or if the two ki are both positive (see
[vdG88], Lemma 6.3). Let f jk� WD .cz1 C d/�k1.c0z2 C d 0/�k2f .�z/. A Hilbert
modular form f is a cusp form if the constant term a0 in the Fourier series of f jk�
vanishes for all � 2 GLC

2 .K/. If one extends the definition of Hilbert modular forms
to half-integral weight one has (as in the case of elliptic modular forms) to deal with
characters. For more background on Hilbert modular forms the reader is invited to
consult the books [Bru08, Fre90] and [vdG88].

2.5.1 Special Algebraic Curves on Hilbert Modular Surfaces

A plane algebraic curve over a field k is an equation of the form F.x; y/ D 0

for some F 2 kŒX; Y �. A point on an algebraic curve is a pair .x; y/ 2 k2 with
F.x; y/ D 0. A nonsingular algebraic curve is simply an algebraic curve over k
which has no singular points over k. Here, we are interested in algebraic curves
on Hilbert modular surfaces. For sure, the simplest algebraic curve on XD is the
diagonal, i.e. the image of the composition of the map z 7! .z;�z/ with the quotient
map � W H � H

� ! XD. Another class of examples are the twisted diagonals
which F. Hirzebruch and D. Zagier implicitly introduced in their paper [HZ76].
These are the algebraic curves in H

2 defined by the map z 7! .M z;�M�z/ for an
arbitrary matrix M 2 GLC

2 .K/, i.e. a matrix of totally positive determinant, where
M� is the Galois conjugate of M . Their �-images are known as modular curves
or Hirzebruch-Zagier cycles. Modular curves have been extensively treated in the
literature due to their importance for the geometry and arithmetic of Hilbert modular
surfaces. Very good references for an overview on modular curves are [vdG88] and
[Bru08]. All modular curves have finite volume. There is a simple trick which makes
modular curves rather good accessible: a twisted diagonal in H

2 is namely given by
an equation

�
z2 1

� �ap
D �

��� b
p
D

��
z1
1

�
D 0 (3)
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with a; b 2 Q and � 2 K . Because of its form such a matrix is called
skew-hermitian. The appearing matrix is uniquely determined by M up to scalar
multiples in K (see [vdG88], p. 88 for details). If a; b 2 Z and � 2 OD the skew-
hermitian matrix is called integral. If a; b; � do not have a common divisor m 2 N

the matrix is called primitive. Twisted diagonals can be classified by classifying
the corresponding skew-hermitian matrices. For U integral skew-hermitian let FU
denote the image of the curve defined by (3) inXD. H.-G. Franke and W. Hausmann
showed that the number of integral skew-hermitian matrices which have the same
determinant but yield different curves in XD is finite (see [Fra78] and [Hau80]).
For N 2 N it hence makes sense to look at the (finite volume) curve FN which
is the union of all modular curves that are defined by an integral primitive skew-
hermitian of determinant N . If we omit the primitivity condition in the definition
we get the curve TN . Also the curves FN and TN are of great interest for the
arithmetic and geometry of XD (see e.g. [vdG88] and [Bru08]) and are closely
linked to modular forms. This link is given by the intersection numbers of the TN
(see [HZ76]). Also the volume of all these curves is explicitly known (see [Hau80],
Satz 3.10 and Korollar 3.11 or [vdG88], Theorem V.5.1). Furthermore, it is known
that the stabilizers of the curves FN inside SL2.OD/ are the unit groups of certain
quaternion rings (see e.g. [Fra78], Theorem 2.3.8).

Another example for the importance of these curves is the following: let .U /
denote the image of � in the ring OD=DD where DD , the different, is the principal
ideal .

p
D/. For  2 OD=DD, let TN ./ denote the union of all FU where U

is an integral skew-hermitian matrix with det.U / D N and .U / D ˙. Note
that TN ./ ¤ ; if and only if N ./ D �N mod D. Finally, let PD denote the
reducible locus in XD, i.e. the locus of all abelian varieties which are products of
elliptic curves.

Theorem 2.31 (McMullen, [McM07], Corollary 3.5). The reducible locus PD is
given by

PD D
[
N

n
TN ..e C p

D/=2/ W e2 C 4N D D
o
:

Note that if D is prime, then PD can be written as the union of some FN . In
general, this is not possible (see [McM07], Chap. 3).

For twisted diagonals both components of the universal covering map are given
by Möbius transformations. An algebraic curve C ! XD is still rather special
if only (at least) one of the components of the universal covering map H ! H

2

is a Möbius transformation. Equivalently, one may ask that C ! XD is totally
geodesic for the Kobayashi metric (see e.g. [MV10]).7 For a complex domain W ,
the Kobayashi metric kW .:; :/ is defined as follows (see [Kob67] or [Vil70]): let 	

7The reason is the following: a holomorphic map f W H ! H is a Kobayashi geodesic if and
only if it is a Möbius transformation. By the product property of the Kobayashi metric (see e.g.
[Kob70], Proposition IV.1.5) the claim then follows.
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be the Poincaré metric on the unit disc D. For all x; y 2 W we call a chain from x

to y points x0; x1; : : : ; xn 2 D together with holomorphic maps fi W D ! W such
that

f1.x0/ D x; fj .xj / D fjC1.xj /; j D 1; : : : ; n � 1; fn.xn/ D y:

Then

kW .x; y/ WD inf
nX
iD1

	.xi�1; xi /;

where the infimum is taken over all chains from x to y. In general, the Kobayashi
metric is only a pseudo metric although on XD the Kobayashi metric is known
to be a metric. The main property of the Kobayashi metric is that it is distance-
decreasing for all holomorphic maps. A very well written introduction to the
Kobayashi metric can be found in [Kra90]. A more profound reference is [MV10].
An algebraic curve that is a Kobayashi geodesic is called a Kobayashi curve. Very
few examples of Kobayashi curves on XD other than twisted diagonals are known
so far. Nevertheless, it is known by the work of Viehweg and Möller that each
Kobayashi curve is defined over a number field ([MV10], Corollary 6.2). In the next
chapter we will see how Teichmüller curves yield some of those few examples. The
main aim of these notes is to construct totally new examples of Kobayashi curves,
i.e. also different from Teichmüller curves, and to analyze some of their properties.



Chapter 3
Teichmüller Curves

Teichmüller curves (or at least the first non-arithmetic examples) were introduced in
the groundbreaking paper [Vee89] by W.A. Veech. His main motivation for studying
Teichmüller curves came from their relation to billiard dynamics. In Sect. 3.1 we
recall the definition of Teichmüller curves and some of their main properties.
A well-known class of examples of Teichmüller curves stems from square-tiled
surfaces. In his paper [McM03a], C. McMullen found another class of examples
of Teichmüller curves which are independent (in a sense to be made more precise in
this chapter) from square-tiled surfaces.1 Moreover he showed that each of these
examples lies on a unique Hilbert modular surface (Theorem 3.5). We recapitulate
his ideas in Sect. 3.2. Teichmüller curves are generated by a flat surface .X; !/
which is unique only up to the SL2.R/-action on�Mg . Therefore, the Veech group
of the generating surface is unique only up to conjugation. When one wants to
consider a Teichmüller curve as a curve on the Hilbert modular surface one thus
has to carefully choose an appropriate generating surface. We discuss this problem
in Sect. 3.3.

Unfortunately, there is not a standard reference for Teichmüller curves yet. This
is why we gather together important facts. Our main references are [Bai07, Kap11,
MB09, McM03a, McM05] and [Möl11a].

3.1 Definition and Main Properties

Definition 3.1. A Teichmüller curve C ! Mg is an algebraic curve in Mg that
is totally geodesic with respect to the Teichmüller metric.

A map f W X ! Y is said to be totally geodesic if for each geodesic xt in X the
image f .xt / is a geodesic in Y . At first glance the definition of Teichmüller curves

1This class of examples was independently also found by K. Calta in [Cal04].

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__3,
© Springer International Publishing Switzerland 2014
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seems to be rather abstract. However it is well-known (see e.g. [Möl11a]) that all
Teichmüller curves arise as the projection of an SL2.R/-orbit of a flat surface .X; !/
or a half-translation surface .X; q/ to moduli space. On the contrary, the projection
of the SL2.R/-orbit of a flat surface .X; !/ (respectively .X; q/) to Mg yields a
Teichmüller curve if and only if .X; !/ (respectively .X; q/) is a Veech surface.
Hence it stems from a dynamically optimal billiard table (see e.g. [MT02]).2 In this
case we say that .X; !/ (respectively .X; q/) generates the Teichmüller curve. We
will in the following restrict ourselves to the case of translation surfaces.3

Note that the action of the group of rotations SO2.R/ � SL2.R/ may change the
Abelian differential without touching the Riemann surface structure. We identify
SO2.R/nSL2.R/ with H by SO2.R/ � B 7! �B�1.i/ (compare [HS07], Chap. 2.3.2).
Hence a Teichmüller curve stems from the unique map Qf W SO2.R/nSL2.R/ Š
H ! Mg which makes the diagram

SL2.R/
F

��

��

�Mg

�

��
SO2.R/nSL2.R/

Qf
�� Mg

commute, where F.A/ D A � .X; !/. More concretely if z 2 H then Qf .z/ is defined

as �.Az � .X; !//whereAz W C ! C is given by
�
1 Re.z/
0 Im.z/

�
(see [McM03a], Chap. 3).

The stabilizer of the curve Qf W H ! Mg coincides with the Veech group of
.X; !/ and thus Qf factors through H=SL.X; !/ and yields the Teichmüller curve
f W H=SL.X; !/ ! Mg. Note that the Veech group does not act by Möbius
transformations on H under this construction. So does only R SL.X; !/R�1 where
R D ��1 0

0 1

�
(compare [McM03a], Proposition 3.2.).

The simplest examples of Teichmüller curves are generated by square-tiled
surfaces. The Veech group of the torus E WD C=.Z ˚ iZ/ is SL2.Z/ and thus
the torus generates a Teichmüller curve in M1. In fact, every square-tiled surface
generates a Teichmüller curve: recall that a translation covering � W .X; !/ !
.Y; �/ is a covering � W X ! Y of compact Riemann surfaces such that ! D ���.

Theorem 3.2 (Gutkin, Judge, [GJ00]). Let � W .X; !/ ! .Y; �/ be a translation
covering. If Z.�/ ¤ ; and � is branched over the zeroes of � or if the genus
g.X/ D 1 and � is branched over at most one point then the corresponding Veech
groups SL.X; !/ and SL.Y; �/ are commensurable.

2A billiard table is called dynamically optimal if each billiard trajectory which avoids the corners
is either periodic or dense.
3This is possible to due to the canonical double covering construction which will be described in
Sect. 9.2; see e.g. [BM10b] for more details on this fact.
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Hence square-tiled surfaces give a very big family of Teichmüller curves.
Indeed for every g and each connected component of every stratum of �Mg

Teichmüller curves generated by square-tiled surfaces are dense (see e.g. [Möl11a],
Proposition 5.3).

Primitive Teichmüller Curves. Square-tiled surfaces can be regarded as one big
class of examples of Teichmüller curves. A Teichmüller curve in Mg is called
(geometrically) primitive if it does not arise from a curve in Mh with h < g
via a branched covering construction. More precisely, we call a Teichmüller curve
(geometrically) primitive if it is generated by a Veech surface .X; !/ and there
does not exist a translation covering � W .X; !/ ! .Y; �/ with g.Y / < g.X/,
where g.�/ is the genus. All Teichmüller curves stemming from square-tiled
surfaces (beside the torus) are hence non-primitive Teichmüller curves. Since every
Teichmüller curve has a cusp (see [Vee89] or e.g. [MB09], Chap. 1), it follows
from Theorems 3.2 and 2.9 that all primitive Teichmüller curves in genus g � 2

have non-arithmetic Veech groups. Moreover, every Teichmüller curve has a unique
primitive representative in its commensurability class (see [McM05], Chap. 2).
We call a Teichmüller curve algebraically primitive if it arises from a flat surface
.X; !/ with g.X/ D ŒK W Q� where K is the trace field of SL.X; !/. The trace
field of a Veech group is well-defined, i.e. does not depend on the explicit choice of
the generating surface ([McM03b], Corollary 9.6). Algebraically primitivity implies
primitivity (see [McM03a], Theorem 5.1). The converse does not hold (see Chap. 7
for infinitely many counter examples).

Computational Aspects. In general, it is an unsolved problem how to calculate the
Veech group of a flat surface .X; !/. In her thesis, G. Weitze-Schmithüsen [Sch05]
describes an algorithm for finding the Veech group of every square-tiled surface. In
[McM03a], C. McMullen gives another algorithm for calculating the Veech group
of Teichmüller curves generated by a flat surface .X; !/ which has some mirror
symmetry (as the examples in Chap. 3.2 have). Nevertheless, this algorithm works
only in very few special cases: for instance the genus of the Teichmüller curve has
to be equal to 0. J. Bowman communicated to the author of these notes that he
has almost found an algorithm for finding the Veech group of all surfaces that are
known to be Veech surfaces (e.g. because they are known to generate a Teichmüller
curve) using Iso-Delauney triangulations. Although his idea is very promising it is
not yet proven to work in general. If the Veech group is known to be a subgroup of a
countable group SL2.S/ and if its (co-)volume is known, then D. Zagier suggested
to calculate the Veech group by brute force, i.e. by checking for each element A 2
SL2.S/ if it lies in the Veech group until one has found a set of generators. Finally,
in [Muk12], R. Mukamel has found an algorithm for computing generators of the
Veech group of those Teichmüller curves which will be described next.
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3.2 Examples in Genus 2

In [Vee89], W. A. Veech showed that every regular polygon is a Veech surface
and hence gives rise to a Teichmüller curve. Many years later in [McM03a],
C. McMullen found a big class of examples of primitive Teichmüller curves
different from square-tiled surfaces using L-shaped polygons. These examples
were independently also found by K. Calta in [Cal04]. Let us recapitulate the
construction: an L-shaped billiard table P is obtained by removing a small
rectangle form the corner of a larger rectangle. It can be normalized by a linear
transformationA 2 GLC

2 .R/ such that it is of the form P.a; b/ shown in Fig. 3.1:
The so-called Zemljakov-Katok construction or unfolding construction),

which was first described in [ZK75], associates to an L-shaped billiard table a point
.X; !/ 2 �Mg: in general, let P � R

2 Š C be a compact polygon whose interior
angles are rational multiples of � . Let G be the finite subgroup of the orthogonal
groupO2.R/ generated by the linear parts of the reflections in the sides of P . Then
we define

X D
0
@a
g2G

g � P
1
A = �

where � is an equivalence relation defined by gluing edges. Glue each edge E of
g �P to the edge r �E of r �g �P by a translation, where r 2 G is reflection throughE
(compare [McM03a]). The holomorphic one-form d z on C is translation-invariant
and hence descends to a natural one-form ! on X . The only possible zeroes of !
come from the vertices of P (Fig. 3.2).

Note that the associated flat surface .X; !/ of an L-shaped polygon is always in
�M2.2/.

Theorem 3.3 (McMullen, [McM03a], Theorem 9.2). The Veech group of the
L-shaped polygon P.a; b/ is a lattice if and only if a and b are rational or

a D x C z
p
D and b D y C z

p
D

for some x; y; z 2 Q with x C y D 1 and D � 0 in Z. In the latter case the trace
field of SL.X; !/ is Q.

p
D/. In particular the Veech of group of P.a; a/ is a lattice

if and only if a is rational or a D .1˙ p
D/=2 for some D 2 Q.

ForD � 1 mod 4, the polygonsP.a; a/ with a D .1Cp
D/=2 yield an infinite

collection of primitive Teichmüller curves in �M2.2/. For D � 0 mod 4 we
consider the polygonsP.

p
D=2; 1Cp

D=2/, which also yield an infinite collection
of primitive Teichmüller curves. The discriminant of such a Teichmüller curve is
defined as the discriminant of the quadratic order generated by 1 and a, i.e. equal
to D (compare also [Bai07], Chap. 1). Let SL.L1D/ from now on denote the Veech
group of these polygons. To each of them one can associate a unique real quadratic
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Fig. 3.1 An L-shaped
billiard table of the form
P.a; b/

Fig. 3.2 Unfolding of an
L-shaped billiard table (from
[McM03a])

order and a unique real quadratic number field, namely the trace field of the Veech
group.

One might ask if these are all primitive Teichmüller curves in M2. This is
partially true. In [McM05] and [McM06b], C. McMullen succeeded to completely
classify Teichmüller curves in M2. Before we state this theorem correctly, recall the
definition of the spin invariant from Sect. 2.4.3. Again we may restrict our attention
to Abelian differentials with zeroes of even degree—for more details on the general
case see [BL04, KZ03] or [McM05]. The spin invariant of the described L-shaped
billiard tables is always odd.

Theorem 3.4 (McMullen, [McM05], Corollary 1.2, [McM06b], Theorem 6.1).
Every Teichmüller curve generated by a form .X; !/ 2 �M2.2/ is up to
isomorphism determined by the discriminant D and, if D � 1 mod 8, by its spin
invariant �.X; !/ 2 Z=2. The only primitive Teichmüller curve in �M2.1; 1/ is
generated by the regular decagon.

We denote the corresponding Teichmüller curves by C �
L;D with � 2 f0; 1g if we

want to stress their origin. By abuse of notation, we will often also say that the
Teichmüller curves of discriminant D � 5 mod 8 are of odd spin, because they
are also generated by symmetric polygons and therefore behave quite similarly as
the odd spin Teichmüller curves.

Prototypes. Indeed, an explicit construction of all Teichmüller curves in �M2.2/

is given in [McM05] using the so-called prototypes. We refer the reader who is
interested in details to this paper. Here, we just describe a generating surface for the
Teichmüller curve of even spin: it is given by the L-shaped polygon P.

p
D=2 C

3=2;
p
D=2 � 1=2/.4 The corresponding Veech group will be denoted by SL.L0D/.

4In the notation of the paper [McM05] this surface corresponds to the prototype .0; (D-1)=4; 1; 1/.



44 3 Teichmüller Curves

Whenever we are not interested which of the Teichmüller curves we actually look
at, we just write SL.LD/.

It is known that such a Teichmüller curve with discriminantD lies on the unique
Hilbert modular surfaceXD. We postpone an even more detailed explanation of this
fact until Chap. 7, where we revisit the described examples in a more general setting.
At this point, let us just present the following theorem and sketch the proof. We use
here the second model of XD , namely H � H

�=SL2.OD/.

Theorem 3.5 (McMullen, [McM03a]). Let f W C �
L;D ! M2 be one of the

Teichmüller curves of discriminant D generated by an L-shaped polygon. Then
C �
L;D lies on the Hilbert modular surfaceXD . More precisely, we have the following

commutative diagram:

H
� �

ˆ.z/WD.z;'.z//
��

=SL.LD/

��

H � H
�

=SL2.OD/

����
C �
L;D

� � ��

f

��

XD

��
M2

� � Jac
�� A2

where SL.LD/ is the Veech group of the generating surface. Moreover ' is
holomorphic but not a Möbius transformation.

Sketch of the Proof. We now explain the main ideas of the proof, following
[McM03a], in particular Chaps. 7, 8 and 10. By mapping each point X of the
Teichmüller curve to its Jacobian Jac.X/ one gets an embedding of the Teichmüller
curve into the space of principally polarized Abelian surfaces A2. All these
Jacobians have real multiplication by OD since the trace field of SL.LD/ is
not Q ([McM03a], Theorem 7.1). As the Hilbert modular surface parametrizes
all principally polarized Abelian surfaces with real multiplication by OD (see
Theorem 2.30) one gets indeed an embedding of the Teichmüller curve into XD .
Since Teichmüller curves are Kobayashi curves, it is clear that the map ˆ is of
the form as described in the statement of the theorem. The map ˆ can also be
constructed explicitly as follows: Let .Xt ; !t / D At.X; !/ so that Xt D f .t/. Then
ˆ is of the form

ˆ.t/ D
 R

b1
�1.t/R

a1
�1.t/

;

R
b2
�2.t/R

a2
�2.t/

;

!
;

where .ai ; bi / is a symplectic basis for H1.X;R/ adapted to the action of OD and
.�1.t/; �2.t// is a dual eigenbasis ofH0.Xt ;�.Xt // (see [McM03a], Theorem 10.1
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or Sect. 2.4.4). After a change of the base point, ˆ is then again of the form as
mentioned in the theorem. ut

Note that choosing another surface .Y; �/ D M.X; !/ with M 2 SL2.R/ as
generating surface of the Teichmüller curve yields a slightly different Veech group,
namely MSL.LD/M�1.

Euler Characteristic. In his thesis [Bai07], M. Bainbridge calculated the Euler
characteristic of all of the Teichmüller curves in �M2.2/. He showed that it is
proportional to the Euler characteristic of the Hilbert modular surface on which it
lies.

Theorem 3.6 (Bainbridge, [Bai07], Theorem 1.1). If D is not a square, then the
Euler characteristic of a Teichmüller curve C �

L;D ! M2 of discriminant D is
given as

�.C �
L;D/ D �9

2
�.XD/

if D 6� 1 mod 8 and

�.C �
L;D/ D �9

4
�.XD/

if D � 1 mod 8.

Elliptic Fixed Points. By the work of R. Mukamel [Muk11], also the number of
elliptic fixed points of such Teichmüller curves is known. It is the weighted sum
of class numbers of some imaginary quadratic number fields. Moreover for D > 8

there do not arise any elliptic fixed points of order other than two. We only repeat
his results for the case that D is not a square.

Theorem 3.7 (Mukamel, [Muk11], Theorem 5.5). For D > 8, all elliptic fixed
points of a Teichmüller curve C �

L;D of discriminant D have order two. The number
e2.C

�
L;D/ of such points is given as

D mod 16 e2.C
�
L;D/

1; 5; 9 or 13 1
4
h�4D

0 1
2
.h�D C 2h

�
D
4
/

4 0

8 1
2
h�D

12 1
2
.h�D C 3h

�
D
4
/

where h�E is the class number of the imaginary quadratic number field of
discriminant �E unless E D 3 or 4. In the latter case h�E is half of the class
number of the imaginary quadratic number field of discriminant �E .
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Fig. 3.3 Two typical cylinder
decompositions in direction
.1=2w; 1/ in the cases D � 1

mod 8 and D � 5 mod 8

3.3 Fixing the Veech Group

We now come to the problem of the correct choice of the Veech group. As we have
explained on the preceding pages, it follows from the results in [McM03a] that there
exists M 2 SL2.R/ such that MSL.LD/M�1 � SL2.OD/. Indeed, we may choose
M D Id for all D. This is true for both, SL.L1D/ and SL.L0D/.

D � 1 mod 4, Odd Spin. Let us first analyze the Veech groups of the Teichmüller
curves generated by the symmetric L-shaped polygons. Recall our abuse of notation
that we include the Teichmüller curves of discriminantD � 5 mod 8 in this case.

Proposition 3.8. For all discriminants D � 1 mod 4 the Veech group SL.L1D/ is
a subgroup of SL2.OD/.

Proof. LetD � 1 mod 4. Integrating ! on the L-shaped polygon yields obviously
that the periods of .X; !/ are 1, w, i and iw (compare e.g. [Sil06]). Regarding C as
R
2, the Veech group maps by definition the periods to Z-linear combinations of the

periods. Hence the Veech group is contained in SL2.OD/ since OD is generated by
1 and w. ut

One can at least calculate parts of this Veech group. Immediately one observes
that for D � 1 mod 4

T WD
�
1 w
0 1

�
and S WD

�
0 �1
1 0

�

and hence also Z WD �STS are in SL.L1D/. Since the parabolic elements of Veech
groups correspond to periodic directions on a Veech surface, formulas depending
only on D can be given for some more parabolic elements of the Veech group. A
calculation for the cylinder decomposition in direction .1=2w; 1/ implies forD > 5:

Lemma 3.9. If D > 5 then the following matrices lie in SL.L1D/ (Fig. 3.3):

• If D � 5 mod 8:

�
1 � 2w.w C 1/ w2.w C 1/

�4.w C 1/ 1C 2w.w C 1/

�
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Fig. 3.4 A typical cylinder
decomposition in direction
.1; 1/

• If D � 1 mod 16:

�
1 � w.w C 1/ 1

2
w2.w C 1/

�2.w C 1/ 1C w.w C 1/

�

• If D � 9 mod 16:

�
1 � 1

2
w.w C 1/ 1

4
w2.w C 1/

�.w C 1/ 1C 1
2
w.w C 1/

�
:

Let us say a few more words about this cylinder decomposition: It can be calculated
that in the case D � 1 mod 8 the lengths of the cylinders are 2 and w C 1 while
the heights of the cylinders are .w � 2/=w and 1=w. Thus the ratio of the moduli of
the two cylinders is always D�9

16
. If D � 5 mod 8 then the lengths of the cylinders

are 2 and 2.w C 1/ while their heights are again .w � 2/=w and 1=w. Thus the ratio
of the moduli of the two cylinders is always D�9

4
.5 From this data the matrices from

Lemma 3.9 can be calculated (see e.g. [McM03a]).
Additionally we want to describe the parabolic element in SL.L1D/ which fixes

the cusp .1; 1/ a little more precisely. It is of the form

E D
�
1 � e e

�e 1C e

�

for some e 2 OD . Here the data of the cylinders are slightly more difficult
to describe: let b�c be the floor function. Then the lengths of the cylinders are
w � 1 C bwc and w C bwc and the heights of the cylinders are �w C 1 C bwc
and w � bwc. Hence e is the least common Z-multiple of w�1Cbwc

�wC1Cbwc and wCbwc
�wCbwc .6

Note that there thus cannot exist a n 2 N with nje (Fig. 3.4).

5In the notation of C. McMullen in [McM05] the cusp .w=2; 1/ thus corresponds to the prototype
.0; D�9

8
; 2;�3/ if D � 1 mod 16 and to the prototype .0; D�9

4
; 2; 3/ if D � 9 mod 16. If

D � 5 mod 8 it corresponds to the prototype .0; D�9
4
; 1;�3/.

6We cannot uniformly give a prototype corresponding to the cusp .1; 1/ because even the ratio of
the moduli varies in a rather complicated way, depending on bwc.
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Fig. 3.5 A typical cylinder
decomposition in direction
.1; 1=2.w C 1//

D � 1 mod 8, Even Spin. If D � 1 mod 8, then we also have to analyze the
Veech groups of the Teichmüller curves of even spin. We then again have:

Proposition 3.10. For all discriminantsD the Veech group SL.L0D/ is a subgroup
of SL2.OD/.

Proof. The periods of the generating surfaces are 1, w � 1, i and i.w C 1/. Since
f1;wg is a basis of OD the claim follows. ut

It is again possible to calculate the Veech group SL.L0D/ at least partially. More
precisely, the matrices

T WD
�
1 w � 1
0 1

�
and Z WD

�
1 0

w C 1 1

�

are in SL.L0D/. The cylinder decomposition in direction .1; 1=2.w C 1// yields:

Lemma 3.11. The following matrices lie in SL.L0D/ (Fig. 3.5):

• If D � 1 mod 16:

�
1 � 1

2
w.w C 1/ w

� 1
4
w.w C 1/2 1C 1

2
w.w C 1/

�

• If D � 9 mod 16:

�
1 � w.w C 1/ 2w
� 1
2
w.w C 1/2 1C w.w C 1/

�
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Fig. 3.6 A typical cylinder
decomposition in direction
.1=2.w � 1/; 1/

It can be checked that the lengths of the cylinders are 2 and w while the heights of
the cylinders are 1 and .w � 1/=2. Thus the ratio of the moduli of the two cylinders
is always D�1

16
.7

Moreover for D > 17 the cylinder decomposition in direction .1=2.w � 1/; 1/

yields:

Lemma 3.12. The following matrices lie in SL.L0D/ (Fig. 3.6):

• If D � 1 mod 16:

 
1 � .2C w/.w � 1/

.2Cw/.w�1/2
2

�2.2C w/ 1C .2C w/.w � 1/

!

• If D � 9 mod 16:

 
1 � .2Cw/.w�1/

2

.2Cw/.w�1/2
4

.2C w/ 1C .2Cw/.w�1/
2

!

The lengths of the cylinders are 2 and 2 C w while the heights of the cylinders are
2=.w � 1/ and .w � 3/=.w � 1/. Thus the ratio of the moduli of the two cylinders is
always D�25

16
.8

Finally we want to describe the parabolic element

7In the notation of [McM05] the cusp .1; 1=2.w C 1// thus corresponds to the prototype
.1; D�1

8
; 2;�1/ in both cases.

8In the notation of [McM05] the cusp .1=2.w � 1/; 1/ thus corresponds to the prototype
.1; D�25

8
; 2;�5/ in both cases.
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Fig. 3.7 A typical cylinder
decomposition in direction
.1; 1/

E D
�
1 � e e

�e 1C e

�

with e 2 OD , which fixes the cusp .1; 1/, more precisely (Fig. 3.7).
The lengths and the heights of the two cylinder are then exactly the same as

in the case of SL.L1D/. Hence e is the least common Z-multiple of w�1Cbwc
�wC1Cbwc and

wCbwc
�wCbwc .9

D � 0 mod 4. Also when D � 0 mod 4 we have chosen the generating surface
appropriately such that SL.LD/ � SL2.OD/.

Proposition 3.13. For all discriminants D � 0 mod 4 the Veech group SL.LD/
is a subgroup of SL2.OD/.

Proof. If D � 0 mod 4, then the periods of .X; !/ are 1; 1 C w; i and iw. Since
f1; !g is a basis of OD the claim follows. ut

It can again be immediately seen that SL.LD/ contains the matrices

T WD
�
1 w C 1

0 1

�
and Z WD

�
1 0

w 1

�

and the cylinder decomposition in direction .1;w=2/ yields

Lemma 3.14. For D > 16 the following matrices lie in SL.LD/ (Fig. 3.8):

• If D � 4 mod 8:

9We can again not uniformly give a prototype corresponding to the cusp .1; 1/.
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Fig. 3.8 Two typical cylinder
decompositions in direction
.1;w=2/ in the cases D � 4

mod 8 and D � 0 mod 8

 
1 � 2.2w CD=4/ 4.w C 2/

� .2wCD=4/2
wC2 1C 2.2w CD=4/

!

• If D � 8 mod 16:

 
1 � .2w CD=4/ 2.w C 2/

� .2wCD=4/2
2.wC2/ 1C .2w CD=4/

!

• If D � 0 mod 16:

 
1 � 1

2
.2w CD=4/ .w C 2/

� .2wCD=4/2
4.wC2/ 1C 1

2
.2w CD=4/

!

If D � 0 mod 8, then the lengths of the cylinders are w and w C D=8 while the
heights of the cylinders are .w � 2/=2 and 1. Thus the ratio of the moduli of the two
cylinders is D=16� 1. IfD � 4 mod 8 then the lengths of the cylinders are w and
2w CD=4 while the heights of the cylinders are .w � 2/=2 and 1=2. Thus the ratio
of the moduli of the two cylinders is D=4� 4.10

10In the notation of [McM05] the cusp .1;w=2/ therefore corresponds to the prototype .1; D
8

�
2; 2;�4/ if D � 0 mod 8, and to the prototype .1; D

2
� 8; 2;�8/ if D � 4 mod 8.



Chapter 4
Twisted Teichmüller Curves

We have just seen that Teichmüller curves yield some of the very few known
examples of Kobayashi curves on XD that are not twisted diagonals.1 Using a
Teichmüller curveC �

L;D a totally new class of examples of Kobayashi curves will be
constructed in this chapter: these objects remind very much of twisted diagonals and
will therefore be called twisted Teichmüller curves. They will be the main objects of
these notes. We derive some of their basic properties here. Most importantly, we will
see that twisted Teichmüller curves are indeed Kobayashi curves (Proposition 4.4).
As concrete examples we will do some rather explicit calculations for Teichmüller
curves twisted by diagonal matrices. Congruence subgroups will then naturally
come into play. This rather big class of examples will be revisited in Chap. 6, where
we calculate the volume of almost all twisted Teichmüller curves. Aside from the
basic properties mentioned in this chapter it requires much work to analyze twisted
Teichmüller curves. On account of this, other properties of twisted Teichmüller
curves will be derived later in distinct chapters.

In the last chapter we saw that for the primitive Teichmüller curves in M2 the
following diagram commutes

H

ˆ.z/D.z;'.z//
��

=SL.LD/
��

H � H
�

=SL2.OD/

��
C

� � �� XD

where from now on we write C instead of C �
L;D to simplify notation. The group

SL.LD/ D StabSL2.R/2.ˆ/ \ SL2.OD/ is the stabilizer of the graph of the

1Other known Kobayashi curves will be described in Chap. 7.

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__4,
© Springer International Publishing Switzerland 2014
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54 4 Twisted Teichmüller Curves

Teichmüller curve ˆ.z/ D .z; '.z// inside SL2.OD/. As a shortcut, we will from
now on always write Stab.ˆ/ whenever we mean the stabilizer inside SL2.R/2

of the graph of ˆ. Moreover we saw that ' is not a Möbius transformation
and that SL.LD/ is the Veech group of the surface .X; !/ obtained from the
L-shaped polygon, when we consider the Teichmüller curve as projection of the
orbit SL2.R/.X; !/ to Mg.

We now mimic the construction of twisted diagonals (compare e.g. [vdG88]):
Let us twist these Teichmüller curves on XD by a matrix M 2 GLC

2 .K/. In other
words, let us consider the twisted diagram

H

ˆMD.M z;M�'.z//
��

=SLM .LD/

��

H � H
�

=SL2.OD/

��
CM

� � �� XD

where M� is as always the Galois conjugate of M and where SLM .LD/ D
StabSL2.R/2 .ˆM/ \ SL2.OD/ is the stabilizer of ˆM D .Mz;M �'.z// inside
SL2.OD/, i.e. the stabilizer of the graph of the twisted Teichmüller curve.

Definition 4.1. We call CM ,! XD a twisted Teichmüller curve.

Evidently, the stabilizer SLM .LD/ is a group. It is natural to ask what SLM.LD/
exactly looks like. A very first starting point for answering this very hard question
is the next proposition.

Remark 4.2. A matrix N 2 GLC
2 .K/ is in Stab.ˆ/ if and only if '.Nz/ D N�'.z/

for all z 2 H. However, this is hardly of any use to compute the stabilizer.

Proposition 4.3. Let M 2 GLC
2 .K/, then

SLM.LD/ D Stab.ˆ/M
�1 \ SL2.OD/:

In particular, we have MSL.LD/M�1 \ SL2.OD/ < SLM.LD/. Equality holds if
for all A 2 SL2.R/ the condition '.At/ D A�'.t/ holds if and only if A 2 SL.LD/.

Proof. Let N 2 SLM.LD/ � SL2.OD/. Then for all z 2 H we have

.N � Mz; N � �M�'.z// D .Mz�;M �'.z�//

for some z� 2 H depending on N . The first component yields:

N � Mz D Mz� or equivalently M�1 �N � Mz D z�
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Inserting this in the second component gives

N� �M�'.z/ D M�'.M�1 �N � Mz/

which is equivalent to

M��1 �N� �M�'.z/ D '.M�1 �N � Mz/:

Thus SLM.LD/ D M � Stab.ˆ/ �M�1 \ SL2.OD/. Since '.At/ D A�'.t/ for all
A 2 SL.LD/ we get the claimed inclusion. ut

AsM 2 GLC
2 .K/ and kM act on H�H

� in the same way for totally positive k 2
K , one can restrict to the case where M 2 GLC

2 .K/\ Mat2x2.OD/ by multiplying
M with the least common multiple of the denominators of its entries if necessary.
Recall that GLC

2 .K/\Mat2x2.OD/ ¤ GL2.OD/. Depending on the question which
shall be answered this point of view is sometimes very useful.

Before we proceed with our analysis of twisted Teichmüller curves, let us
introduce a bunch of extra notation. The logic behind the notation is such that
a matrix .M/ in brackets corresponds to a level-covering of the involved curves
(compare Lemma 4.8) and a matrix M as subscript corresponds to a twist—as
for CM . First we denote by SL2.OD;M/ the group SL2.OD/ \ SL2.OD/

M�1
and

by XD.M/ WD H � H
�=SL2.OD;M /, a finite cover of XD . By SL.LD;M/ we

denote the group SL.LD/ \ SL2.OD/
M�1

which yields a cover of the Teichmüller
curve C that is therefore denoted by C.M/. Finally we set SLM.LD;M/ WD
SLM.LD/ \ MSL2.OD/M

�1 and let CM.M/ denote the corresponding cover of
the twisted Teichmüller curve.

Let us clarify the relation of all these curves in a diagram, where all arrows going
down indicate (finite degree) coverings

H

SLM .LD;M/

��

H

SL.LD;M/

��

H � H
�

SL2.OD;M/

�����
���

���
�

SL2.OD/

����
��
��
��
��
��
��
��
��
��
��
��
�

CM.M/ � � ��

��

C.M/

��

� � �� XD.M/

��
CM � � ��C

� � �� XD

:

In order to facilitate many expressions which include conjugation, we want to
introduce even some more notation. For the convenience of the reader we collect
the most important notation in the following table.
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SL2.OD;M/ D SL2.OD/ \ SL2.OD/
M�1

SL.LD;M/ D SL.LD/ \ SL2.OD/
M�1

SLM.LD/ D Stab.ˆ/M
�1 \ SL2.OD/

SLM.LD/ D SLM.LD/M D Stab.ˆ/ \ SL2.OD/
M

SLM.LD;M/ D SLM.LD/ \ SL2.OD/
M�1

SLM.LD;M/ D SLM.LD;M/M D SL.LD/\ SL2.OD/
M

Finally we set CM.M/ WD H=SLM.LD;M/. Note that this curve has the
same geometric properties and in particular the same volume as CM.M/ since the
involved groups are conjugated. We are now able to state the main result of this
chapter.

Proposition 4.4. Every twisted Teichmüller curve is a Kobayashi curve.

Proof. CM is an algebraic curve if and only if SLM.LD/ is a lattice. Note that this
is a purely group theoretic property. It follows from Proposition 2.15 that we have
ŒSLM.LD/ W SLM.LD;M/� < 1 and also that ŒSL.LD/M W SLM .LD;M/� < 1.
Hence SLM .LD/ is a lattice. By definition one of the components in the universal
covering is given by a Möbius transformation and therefore CM is a Kobayashi
curve. ut

More generally it is, of course, true that all twists of Kobayashi curves are again
Kobayashi curves, but as we are only concerned about twisted Teichmüller curves
in these notes, we restrict to this case.

It is in general a very hard task to calculate the groups SLM.LD/ or the quotients
CM D H=SLM.LD/. Let us recall the three main reasons for this:

(i) The theorem of E. Gutkin and C. Judge (Theorem 3.2) implies that the Veech
groups SL.LD/ are all non-arithmetic Fuchsian groups. In particular, this
makes it hard to decide whether a matrix in SL2.OD/ lies in the Veech group
or not. Indeed, we will prove in Chap. 6 that these Veech groups are somehow
the opposite of being arithmetic.

(ii) It is still unknown how to calculate the Veech group for a given flat surface
.X; !/. Although this problem is solved in some special cases, in our case the
Veech group can only (or at least) be calculated partially (see Sect. 3.3).

(iii) The Taylor expansion of ' is known by a theorem of M. Möller and D. Zagier
in [MZ11] (compare also [Möl11b]). Even with this knowledge, it is not easy
to decide whether there exist elements of SL2.R/ which are not in the Veech
group but lie in Stab.ˆ/ or even if there exist any such element in SL2.K/ X
SL2.OD/.
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In Chap. 5.3 we will show that the group SLM.LD/ is contained in a unique
(finitely maximal) Fuchsian group, namely the commensurator of SL.LD/. Unfor-
tunately this fact alone does in most cases not help very much since calculating
CommSL2.R/.SL.LD// remains a very difficult task. In Chap. 5.3, we will therefore
also work out a way to circumvent this problem. Furthermore we will see that
the group SLM.LD;M/ equals the a priori bigger group SLM.LD/ in most cases.
Note that this is really surprising when one only considers the definition. This is also
a justification why we analyze these groups SLM.LD;M/ in more detail in Chap. 6.

The expressions .Mz;M �'.z// and .NMz; N �M�'.z// define the same curve
inside the Hilbert modular surface XD if M 2 GLC

2 .K/ and N 2 SL2.OD/. Thus
one is indeed only interested in analyzing twisted Teichmüller curves for a system
of representatives of SL2.OD/nGLC

2 .K/. If the class number hD is equal to 1 we
are able to give a nice set of matrices that contains a system of representatives.
Otherwise the proof of a similar statement would involve some weird arithmetic
which we will avoid here.

Proposition 4.5. If hD D 1 then for all M 2 GL2.K/ there exists a matrix N 2
SL2.OD/ and an upper triangular matrix L 2 GL2.K/ with M D NL.

Proof. The claim follows immediately from the fact that XD has only one cusp.
Nevertheless, we want to find the matrices N;L explicitly. Let M be of the form

�
a
x

b
x

c
x
d
x

�

with a; b; c; d; x 2 OD . We want to find e; f; g; h 2 OD with eh � fg D 1 and
k; l;m 2 K such that

�
e f

g h

��
k l

0 m

�
D
�
a
x

b
x

c
x
d
x

�

By choosing k appropriately, i.e. k D .a; c/ we may without loss of generality
assume that .a; c/ D 1. Since hD D 1 we can find a f 2 OD such that h WD cf C1

a
2

OD . Then we choose e D a, g D c, k D 1
x

, l D � f .ad�bc/�b
ax

and m D ad�bc
x

and
get the claim. ut

The proposition rests on the fact that the number of cusps of a Hilbert modular
surface is equal to the class number of the number field (see e.g. [vdG88],
Proposition 1.1). We may thus from now on always assume that M is an upper
triangular matrix if hD D 1 .

Remark 4.6. (i) Neither the matrix N nor the matrix L is unique. A different
choice ofN only changes the parametrization of the twisted Teichmüller curve.

(ii) The upper triangular matrices are not a system of representatives of
SL2.OD/nGL2.K/ since some of them are equivalent modulo SL2.OD/.

(iii) The matrix L cannot always be chosen as a diagonal matrix.
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It is a particularly interesting case to consider twisted Teichmüller curves for a
diagonal matrixM . One reason why they are so interesting is that the calculation of
the volume of Teichmüller curves twisted by upper triangle matrices can be reduced
to the case of diagonal matrices (see Chap. 6). This is why we give Teichmüller
curves twisted by diagonal matrices a special name.

Definition 4.7. If M is diagonal, we call CM a diagonal twisted Teichmüller
curve. If M is of the form

�
m 0
0 1

�
with m 2 OD we call CM a simple twisted

Teichmüller curve.

Note that every diagonal matrix can be normalized to the form
�
m 0
0 n

�
withm; n 2

OD and .m; n/ D 1 if hD D 1. Let us finish this discussion by quickly showing how
simple respectively diagonal twisted Teichmüller curves are related to congruence
subgroups.

Lemma 4.8. For M D �
m 0
0 1

�
with m 2 OD we have

SLM.LD;M/ D SL.LD/\ �D0 .m/:

Proof. It suffices to show M�1SL2.OD/M \ SL2.OD/ D �D0 .m/. We have
M�1 � a b

c d

�
M D �

a b=m
cm d

�
. Hence, M�1SL2.OD/M \ SL2.OD/ � �D0 .m/. We

now show the other inclusion: so let Y D
�

Qa Qb
Qc Qd 2 �D0 .m/

�
. Then Qc D c � m with

c 2 OD . Choosing the matrixX as
�

Qa Qbm
c Qd

�
2 SL2.OD/; we getM�1XM D Y . ut

Moreover the degree of the covering CM.M/ ! CM is bounded by the degree
of the covering � W XD.m/ ! XD, where XD.m/ WD H � H

�=�D0 .m/.

Lemma 4.9. For M D �
m 0
0 1

�
with m 2 OD the following inequality holds:

ŒSLM.LD/ W SLM.LD;M/� 
 ŒSL2.OD/ W �D0 .m/�:

Proof. We have

ŒSLM.LD/ W SLM.LD;M/� D �
SLM .LD/ W SLM .LD;M/

�


 �
SL2.OD/ W SL2.OD/ \M�1SL2.OD/M

�

D �
SL2.OD/ W �D0 .m/

�
:

ut
An analogous calculation as above yields the corresponding result for the case of

diagonal twisted Teichmüller curves.

Corollary 4.10. ForM D �
m 0
0 n

�
with m; n 2 OD and .m; n/ D 1 we have

SLM.LD;M/ D SL.LD/ \ �D.m; n/
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and

ŒSLM .LD/ W SLM.LD;M/� 
 ŒSL2.OD/ W �D.m; n/�:

A Possible Generalization. In these notes we consider twisted Teichmüller curves
only for matrices M 2 GLC

2 .K/. By dividing each of the entries of the matrix M
by the root of the determinant one can also interpret the pair of matrices .M;M�/

as a pair in SL2.R/2. Hence, there is some scope for generalization of the term
twisted Teichmüller curve: One could as well take an arbitrary pair of matrices
.M;M 0/ 2 SL2.R/2 and define a twisted Teichmüller curve as the projection of the
orbit .Mz;M 0'.z// to XD . Of course, this still yields a well-defined curve in XD .
Such curves are much harder to treat than the twisted Teichmüller curves which we
introduced because of the following main reason: a pair .M;M 0/ lies in the stabilizer
of the graph of a Teichmüller curve if and only if '.Mz/ D M 0'.z/. Thus one would
need to completely understand the behavior of ' under Möbius transformation in
order to solve the problem of calculating the stabilizer of the graph of a Teichmüller
curve in SL2.R/2. This seems to be far from being reachable. However, this problem
is somehow the starting point when one wants to understand these generalized
twisted Teichmüller curves. Even for twisted diagonals people restricted to matrices
in GLC

2 .K/ (compare e.g. [Fra78, Hau80] or [vdG88]). One reason for this is that
for twisted diagonals with an arbitrary pair of matrices .M;M 0/ 2 SL2.R/2 the
stabilizer does not need to be a lattice any more.



Chapter 5
Stabilizer and Maximality

In the last chapter we claimed that it is in general very hard to describe the groups
SLM.LD/ because we do not know the stabilizer of the graph of the Teichmüller
curve Stab.ˆ/. However, we could calculate SLM.LD/ more easily if we knew
that the Veech group SL.LD/ had certain nice properties. The strongest of these
properties is (finite) maximality. This notion is closely linked to the commensurator.

In Sect. 5.1 we show that the Veech groups SL.L1D/ for discriminant D equal
to 5; 13 and 17 are indeed (finitely) maximal. We are able to do this because
the generators of these groups are explicitly known. Since this is not true for
large D, we have to introduce the weaker notion of pseudo parabolic maximal
Fuchsian groups (see Definition 5.15) in Sect. 5.2 which suffices for our purposes.
And we show (Theorem 5.17) that if D � 5 mod 8 then the group SL.LD/ is
pseudo parabolic maximal. This property allows us to deduce a lot of information
about the commensurator and the stabilizer of the graph of the Teichmüller curve.
In Sect. 5.3 we discuss the relation between the stabilizer and the commensurator
in general: we will show that Stab.ˆ/ is always contained in the commensurator
of SL.LD/ (Corollary 5.30). We will see that we can state stronger and more
precise statements for pseudo parabolic maximal SL.LD/. In particular, we will
get that if the discriminant D � 1 mod 4 is fundamental then the degree of
the covering � W CM.M/ ! CM is always equal to 1 for all M 2 GLC

2 .K/.
The reason for this is the following: being pseudo parabolic maximal suffices to
imply Stab.ˆ/ \ SL2.K/ D SL.LD/ (Theorem 5.36). If D 6� 5 mod 8 then a
lack of information on the Veech groups prevents us from being able to prove that
the groups SL.LD/ are pseudo parabolic maximal. Therefore, the techniques are
more involved, but the result that the degree of the cover � W CM.M/ ! CM is
equal to 1 still holds for most M 2 GLC

2 .K/ if the discriminant is fundamental
(Theorem 5.28).

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__5,
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5.1 Maximal Fuchsian Groups and the Commensurator

A Fuchsian group � is called (finitely) maximal if there does not exist a Fuchsian
group� 0 properly containing� with finite index (compare [Sin72]). If � is a cofinite
Fuchsian group and � 0 is a Fuchsian group containing � then Œ� 0 W �� < 1 is
automatically, because�.�/ > 0.1 For cofinite Fuchsian groups one could therefore
have left away the with finite index condition in the definition. On the other hand if
� 0 is any subgroup of PSL2.R/ which contains the Fuchsian group � of finite index,
then � 0 is itself a Fuchsian group. Therefore, we will from now on only speak of
maximal Fuchsian groups when we mean (finitely) maximal Fuchsian groups.

The notion of maximality is closely linked to the notion of commensurability:
if � is a non-arithmetic Fuchsian group of finite volume, then by Margulis’
theorem the commensurator is the unique maximal Fuchsian group containing �
(Theorem 2.8).

Lemma 5.1. Let � be any non-arithmetic Fuchsian group of finite volume. Then
CommSL2.R/.�/ is the unique maximal Fuchsian group containing � .

Proof. Let � 0 be a maximal Fuchsian group containing � . Thus Œ� 0 W �� < 1.
Hence we have for all U 2 � 0:

1 >
�
� 0 W �� � �

U�U�1 W � \ U�U�1�

and

1 >
�
� 0 W �� � �

U�1�U W � \ U�1�U
� D �

� W � \ U�U�1� :

and so U 2 CommSL2.R/.�/. By Margulis’ Theorem (Theorem 2.8) the com-
mensurator CommSL2.R/.�/ is a group containing � of finite index. Thus the
commensurator is also Fuchsian. ut

In this section we mainly want to prove the following theorem:

Theorem 5.2. For D 2 f5; 13; 17g we have:

(i) CommSL2.R/.SL.L1D// D SL.L1D/.
(ii) SL.L1D/ is maximal.

Applied to our case the last lemma shows that CommSL2.R/.SL.L1D// is the
unique maximal Fuchsian group containing SL.L1D/. This means that SL.L1D/ is
maximal if and only if CommSL2.R/.SL.L1D// D SL.L1D/. Therefore, the two
statements of Theorem 5.2 are equivalent. For D D 5, namely the Hecke triangle

1Note that the volume of a fundamental domain of a Fuchsian group is bounded by �=21 (or by
�=3 if the Fuchsian group has a cusp).
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group�.2; 5;1/,2 this theorem is due to A. Leutbecher in [Leu67]. We will follow
his methods closely. To be more precise, we will use geometric arguments similar to
the ones given in [Leu67] combined with the Riemann-Hurwitz formula and some
other general statements about Fuchsian groups. All the necessary arguments for
proving Theorem 5.2 will be given in detail forD D 13. AsD D 17 is very similar,
we will then only give a brief sketch of the proof.

Remark 5.3. Note that

CommSL2.R/.SL.L1D// � SL2.K/

since every element in the commensurator permutes the cusps.

So let us consider the case D D 13. The first step in the proof will be to
show that there does not exist any parabolic element U 2 SL2.K/ such that
1 <

�˝
SL.L113/; U

˛ W SL.L113/
�
< 1. We will give three different proofs of this

fact. The first one is very geometric and makes use of the explicit knowledge of the
fundamental domain of SL.L113/, that is known by McMullen’s algorithm (compare
[McM03a]). As a first step in this geometric proof, it is necessary to explicitly give
a list of elements in SL.L113/ with certain properties.

Lemma 5.4. (i) The set of matrices of the form
�
a b
1 d

�
inside SL.L113/ is given by

the double coset

�
1 wZ
0 1

��
0 �1
1 0

��
1 wZ
0 1

�
:

(ii) The set of matrices of the form
�
a b
w d

�
inside SL.L113/ is given by the union of

the double cosets

�
1 wZ
0 1

��
1 0

w 1

��
1 wZ
0 1

�

�
1 wZ
0 1

���1 0

w �1
��

1 wZ
0 1

�

Proof. A fundamental domain F of SL.L113/ is (Fig. 5.1):
Its vertices are �w=2;�1; 1;w=2 and 1. If we look at SF this yields another

fundamental of SL.L113/ (Fig. 5.2):
The radius of the two isometric circles which adjoin 0 and 2=w (respectively

0 and �2=w) is exactly 1=w. The isometric circles which adjoin 1 and 2=w
(respectively �1 and �2=w) have radius strictly smaller than 1=w. Those isometric
circles and the one which adjoins �1 and 1 are the boundary of SF . All the elliptic

2For the definition of the term triangle group see e.g. [Bea89], Chap. 10.6.
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Fig. 5.1 Fundamental
domain F of SL.L113/

Fig. 5.2 Fundamental
domain SF of SL.L113/

fixed point of SL.L113/ are exactly SL.L113/i . Two points z1 and z2 in the domain
Im.z/ � 1 are equivalent with respect to SL.L113/ if and only if z1 � z2 2 wZ. To
see this, one just looks at the tessellation of H by the copies of the fundamental
domain F . The only elliptic fixed points in the domain Im.z/ > 1

w are the points
i C wZ. Let V D �

a b
c d

� 2 SL.L113/ with c ¤ 0. Then

V

��d
c

C i

jcj
�

D a

c
C i

jcj (5.1)

So we have jcj � 1. If jcj D 1 then a
c

2 wZ and d
c

2 wZ hence a 2 wZ and
d 2 wZ. Then b is determined, because the determinant is equal to 1. All those
matrices are exactly given by the double coset in .i/. Now suppose that c D w,
i.e. we are searching for all matrices V D �

a b
w d

� 2 SL.L113/. At first we now look
at the two points z1 D 1=3w � 1=3 C i

w and z2 D 1=3w � 1=3 C i
w which lie on

@SF and have imaginary part 1
w . Then z1 and z2 can not be mapped to any of the

two other points lying on @SF under the action of SL.L113/ since z1 and z2 are the
midpoints of the isometric circles containing them. Thus all points in z 2 H with
Im.z/ D 1

w which might be equivalent to z1 or z2 under the action of SL.L113/ are
given by z1 C wZ and z2 C wZ. So suppose that z1 is mapped to z2. By (5.1) we
then have a D ˙1 and so V D �˙1 0

w ˙1
�
. Thus V lies in one of the double cosets

given in .ii/. Moreover, by looking at (5.1) we immediately see that there cannot
exist other matrices inside SL.L113/ with c D w. ut

We use this to prove the following key lemma.
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Lemma 5.5. If U 2 SL2.K/ stabilizes the cusp 1 then

U 2 SL.L113/ if and only if U 2 CommSL2.R/.SL.L113//:

Proof. Let z 7! zC˛ 2 CommSL2.R/.SL.L113//, i.e. the map stabilizes 1. Evidently
˛ 2 Q.

p
13/.

At first we consider the case ˛ 2 O13. As S 2 SL.L113/ we know that 0
is a representative of the cusp Œ1�. Since any element in CommSL2.R/.SL.L113//
permutes the cusps of SL.L113/, we also know that ˛ is a cusp which is equivalent
to 1 under SL.L113/. Therefore, there exists a matrix V D �

a b
c d

�
in SL.L113/ with

c > 0 and a
c

D ˛. The entries of V lie in O13. For this reason c must be a unit. Thus

V

�
1 w
0 1

�
V �1 D

� � �
�wc2 �

�

is the generator of the stabilizer of ˛ in SL.L113/. According to the remarks about
the commensurator in Sect. 2.2 the group generated by

�
1 �˛
0 1

�
V

�
1 w
0 1

�
V �1

�
1 ˛

0 1

�
D
�

1 0

�wc2 1

�

is commensurable to the group
�
1 0

wZ 1

�
. Therefore, c2 is rational (and a unit) and

hence c D 1 and a D ˛. According to Lemma 5.4 (i), then ˛ 2 wZ.
For every map z 7! z C ˇ 2 CommSL2.R/.SL.L113// we hence have ˇ D rw with

r 2 Q. To show that r lies in fact in Z we only have to show that for every map
z 7! z C w

n
2 CommSL2.R/.SL.L113// it must be the case that n D 1.

So suppose that z 7! z C w
n

2 CommSL2.R/.SL.L113//. Then there is a matrix
V D �

a b
c d

� 2 SL.L113/ such that c > 0 and a
c

D w
n

, i.e. a D 	w; c D 	n with
	 2 Q.

p
13/ and 	 > 0. Then ad � bc D 1 implies that 	�1 2 O13. Furthermore

the group generated by

�
1 �w=n
0 1

�
V

�
1 w
0 1

�
V �1

�
1 w=n
0 1

�
D
�

1 0

�wc2 1

�

is commensurable with
�
1 0

wZ 1

�
, i.e. 	2 2 Q. As 	�2 is a rational, algebraic integer

which divides w2 and as w is not divisible by any element in Z>1, 	 D 1 holds. Thus
we have c D n and a D w. Moreover we know that S � V D ��n �d

w b

� 2 SL.L113/
and therefore by Lemma 5.4 .ii/ n D 1.

Finally we look at an arbitrary map W.z/ D az C b 2 CommSL2.R/.SL.L113//
with a > 0. Hence WTW�1 and W �1TW lie in CommSL2.R/.SL.L113//. Then
WTW�1.z/ D z C aw and W �1TW.z/ D z C a�1w yield a D 1 and b 2 wZ.
This proves the lemma. ut
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For the other two cusps of H=SL.L113/, namely 1 and w=2, we are not able to
exploit the geometry of the fundamental domain in a similar way because we do
not know how to formulate an analogue of Lemma 5.4. Therefore, we have to use a
different approach.

Lemma 5.6 (Root Lemma for Parabolic Elements). Let � be a Fuchsian group
with �.H=�/ < 1 and let �1; : : : ; �r be a system of representatives of the primitive
parabolic elements of � up to conjugacy. If � 0 is a Fuchsian group containing � ,
then for every parabolic element � 0 2 � 0 there is a parabolic element � 2 � , such
that

(i) � is conjugated to one of the �i and
(ii) � 0n D �k for some k; n 2 Z with .k; n/ D 1.

Proof. Let � 0 be a parabolic element in � 0n� . Since �.H=�/ < 1 and since � 0 is
a Fuchsian group we have Œ� 0 W �� < 1. Therefore, there exists a minimal n 2 N

with � 0n 2 � . As � 0n is also parabolic it is conjugated to the k-th, k 2 Z, power of
one of the �i inside � , i.e.

� 0n D M�1�ki M

with M 2 � and .k; n/ D 1 since n is minimal. ut
An immediate consequence of this lemma is:

Remark 5.7. Let � be a Fuchsian group with �.H=�/ < 1 and let �1; : : : ; �r be a
system of representatives of the primitive parabolic elements of � up to conjugacy.
If � 0 is a Fuchsian group containing � and at least one parabolic element not in �
then � 0 also contains a n-th root of one of the �i , i.e. there is a matrix � 0 2 � 0 with
� 0 … � but � 0n 2 � for some n 2 N.

For SL.L113/ the root lemma allows us to move away from the explicit geometric
arguments and to give a second proof of Lemma 5.5. In fact we prove two much
more general versions of Lemma 5.5.

Corollary 5.8. Let D � 1 mod 4 and let U stabilize the cusp at 1 then

U 2 SL.L1D/ if and only if U 2 CommSL2.R/.SL.L1D//:

Proof. Let U 2 CommSL2.R/.SL.L1D// stabilize the cusp at infinity. Without loss
of generality we may then assume that U D �

1 a
0 1

�
and that U … SL.L1D/. By the

root lemma we then have that a D w=n with n 2 N.3 One proves by induction

3The claim follows immediately for all D < 49 and n > 2: we then have w=n < 2 which implies
(since S 2 SL.L1D/, since the commensurator is Fuchsian and since Q.

p
D/ 	 Q.
D/, where 
D

is the primitiveDth root of unity) that w=n D cos.2�=D/. However for all D < 49 and n > 2 we
have w=n < cos.2�=D/. This is a contradiction.
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that .US/k D
�
pk.a/ qk.a/
rk.a/ sk.a/

�
with pk; qk; rk; sk polynomials in a with pk.a/ D ak C

bk�1ak�1C : : :Cb0 and deg.qk/; deg.rk/; deg.sk/ 
 k�1. Now suppose that there
exists U … SL.L1D/ such that

�˝
SL.L1D/; U

˛ W SL.L1D/
�
< 1. Then there exists a

k 2 N such that .US/k 2 SL.L1D/ � SL2.OD/. In particular pk.w
n
/ 2 OD which

implies that njwk . Finally, this contradicts Lemma 2.5 (v). ut
Corollary 5.9. If � is a non-arithmetic cofinite Fuchsian-group containing S

such that the assertion of Lemma 5.4 (ii) holds, then for all U 2 SL2.K/ which
stabilize 1

U 2 � if and only if U 2 CommSL2.R/.�/

holds.

Proof. We may again assume U D �
1 w=n
0 1

� 2 CommSL2.R/.�/ X � with n > 2.
As in the proof of Lemma 5.5 there then exists a matrix V D . �n w�d b / 2 � . This
contradicts the assertion of Lemma 5.4 .ii/. ut

We now want to show that a Fuchsian group that contains SL.L113/ can never
contain any additional parabolic elements. So suppose that there exists a Fuchsian
group � which contains SL.L113/ and at least one parabolic element U … SL.L113/.
As we know by the root Lemma 5.6 the only possible candidates for the parabolic
elements U such that

˝
SL.L113/; U

˛
might still be Fuchsian are the roots of

the (non-conjugated) parabolic elements in SL.L113/. However there are just 3
(non-conjugated) parabolic elements inside SL.L113/ and thus we know that only
parabolic roots of

B D
��5 � 4w 6C 5w

�4 � 4w 7C 4w

�
or C D

��4 � 4w 5C 4w
�5 � 4w 6C 4w

�

may occur. We can exclude almost all of the candidates with the help of the
following two theorems.

Theorem 5.10 ([Kat92], Theorem 2.4.8). A non-elementary subgroup � of
PSL2.R/ is discrete if and only if, for each V and W in � , the group hV;W i is
discrete.

A Fuchsian group � is called elementary if there exists a finite �-orbit in H.
Equivalently the commutator of any two elements of infinite order has trace 2 (see
[Ros86]). Note that a Fuchsian group containing parabolic as well as hyperbolic
elements is never elementary. From this fact it can be observed that all the two
generator Fuchsian which we consider in this chapter are indeed non-elementary.
We now only need a criterion to find out whether hV;W i is discrete.

Theorem 5.11 ([Bea83], Theorem 11.4.2). Let V;W 2 PSL2.R/ such that
V is parabolic and G D hV;W i is a non-elementary Fuchsian group. Then
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trŒV;W � � 3. If 3 
 trŒV;W � < 6 then trŒV;W � D 4 C 2 cos.2�=q/ with
q 2 N.

By this we are able to exclude all roots of B and C of degree � 3 by an easy
calculation. First define for n � 3, V D Vn as

Vn WD
�
1 � 6C4w

n

.6C5w/
n�4�4w

n
1C 6C4w

n

�

(the roots of B) and set W D T � S . Since n � 3 it follows that trŒV;W � D 2 C
7C5w
n2

< 6 and none of the values is equal to 4C2 cos.2�=q/ for a q 2 N. Hence, the
subgroups generated by Vn and W cannot be Fuchsian for n � 3. Secondly define
for n � 3, V D eVn as

eVn WD
�
1 � 5C4w

n
5C4w
n

� 5C4w
n

1C 5C4w
n

�

(the roots of C) and set W D T � S . Then trŒV;W � D 2 C 7C5w
n2

and we repeat
the same argument as above to exclude the matrices eVn. It now only remains to
check the case n D 2. This will for both B and C yield a contradiction to the key
Lemma 5.5.

(i) Suppose that B2 WD B1=2 2 CommSL2.R/.SL.L113//, then

S � B�1
2 � .C�1 � S2/4 D

��2 � 2w 2C 2w
0 1 � 1=2w

�
2 CommSL2.R/.SL.L113//:

This contradicts Lemma 5.5.
(ii) Suppose that C2 WD C1=2 2 CommSL2.R/.SL.L113//, then

.S � T /2 � .S � C � T /6 � S � C2 D
��7=2� 3=2w �5=2� 11=2w

0 8C 6w

�
2 CommSL2.R/.SL.L113//:

This again contradicts Lemma 5.5.

Collecting everything we see that we have established:

Proposition 5.12. Let � be any Fuchsian group containing SL.L113/. If U 2 � is
parabolic then U 2 SL.L113/.

Definition 5.13. A Fuchsian group� is called parabolic maximal if there does not
exist a Fuchsian group � 0 containing � and a parabolic element U 2 � 0 X � .

Using the Riemann-Hurwitz formula (Theorem 2.6) we can now deduce
Theorem 5.2.
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Proof of Theorem 5.2 forD D 13. Recall that the signature of SL.L113/ is .0I 2I 3/.
Now we suppose that there exists a maximal Fuchsian group � of signature
.gIm1; : : : ; mr I s/ containing SL.L113/ such that

�
� W SL.L113/

� D k � 3. Since
SL.L113/ has exactly three cusps and � cannot have additional parabolic elements,
the degree of the covering is exactly equal to 3. Therefore, we must have that s D 1.
For the Euler characteristic of SL.L113/ we have H=SL.L113/ D 3=2 and thus by the
Riemann-Hurwitz formula:

3

2
D 3

0
@2g � 2C 1C

rX
jD1

�
1 � 1

mj

�1
A

1

2
D 2g � 1C

rX
jD1

�
1 � 1

mj

�
:

In particular

3

2
� 2g C

rX
jD1

�
1 � 1

mj

�
: (5.2)

Hence g D 0. Since the degree of the covering is 3, there can be at most 2
elliptic elements in � . If inequality (5.2) is fulfilled then � must have signature
.0I 3; 6;1I 1/ or .0I 4; 4;1I 1/. This is a contradiction—these groups do not have
an appropriate trace field . ut

We now show that the assertion also holds for SL.L1D/ if D D 17 instead of
D D 13.

Proof of Theorem 5.2 forD D 17. Since the groups SL.L113/ and SL.L117/ have the
same signature, we only need to check if SL.L117/ is parabolic maximal. Recall that
the generators of SL.L117/ are given by

T D
�
1 w
0 1

�
; B WD

��3 � 2w 4C 3w
�2 � 2w 5C 2w

�
;

S D
�
0 �1
1 0

�
; C WD

��2 � 2w 3C 2w
�3 � 2w 4C 2w

�
:

By Corollary 5.8 and Lemma 5.6 we thus only have to check if the roots of
B;C might lie in the commensurator. If we again define Vn as the n-th root of B
(respectively C ) and set W D T � S we get that trŒVn;W � < 6 for n � 3. Then we
only have to check the square roots of the matrices B and C .
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(i) Suppose that B2 WD B1=2 2 CommSL2.R/.SL.L117//, then

B�1
2 � C � B�1

2 D
�
1 1=4w
0 1

�
2 CommSL2.R/.SL.L117//:

This contradicts Corollary 5.8.
(ii) Suppose that C2 WD C1=2 2 CommSL2.R/.SL.L117//, then

F � C2 � A � C�1
2 D

�
2 � 3=4w 17C 53=4w

0 5C 3w

�
2 CommSL2.R/.SL.L117//

where

F D T 2 � S � C � S � A�1 � S2 � C � S2 � C2 � A � S�1 � C � A � S:

This again contradicts Corollary 5.8. ut
Corollary 5.14. For D 2 f5; 13; 17g every group � � SL2.R/ that is commensu-
rable to SL.L1D/ is conjugated to a subgroup of SL.L1D/.

Also note that we get a third proof of Lemma 5.5 with the help of the root
Lemma 5.6 and Theorem 5.11.

5.2 Pseudo Parabolic Maximal Groups

Also the property of parabolic maximality seems to be hard to prove if the group
SL.LD/ is not explicitly given. For Fuchsian groups having entries in OD it is
possible to define a weaker notion which is still good enough for our purposes.

Definition 5.15. (i) We call a Fuchsian group � � SL2.OD/ pseudo parabolic
maximal if there does not exist a Fuchsian group � 0 containing � with finite
index and also containing a parabolic element in SL2.K/X SL2.OD/.

(ii) We call a Fuchsian group � � SL2.OD/ n-pseudo parabolic maximal for a
(proper) ideal n � OD if there does not exist a Fuchsian group � 0 containing �
with finite index and also containing a parabolic element in SL2.K/X.SL2.K/\
Mat2x2.n�1//.

Note that the stabilizer cannot distinguish pseudo parabolic maximal groups from
parabolic maximal groups since Stab.ˆ/ \ SL2.OD/ D SL.LD/, but this property
is much easier to check. This is why pseudo parabolic maximality is a good property
to consider.

Before going through the rest of this section, we recommend the reader to repeat
the arithmetic properties of OD which we described in Sect. 2.1.
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In this section we want to prove that all the groups SL.LiD/ are almost pseudo
parabolic maximal, i.e. there exists at most an ideal ni � OD of norm of
absolute value 2, that depends only on whether D is even or odd and on the
spin of the Teichmüller curve, such that SL.LiD/ is ni -pseudo parabolic maximal.4

Unfortunately, it is not convenient to treat here the even and the odd spin case
simultaneously if D � 1 mod 4 for the following reason: the lower left entry of
the matrixZ is w in the odd spin case and wC1 in the even spin case. While .w/ has
only prime ideal divisors which are divisors of split prime numbers (Lemma 2.5),
we have N .w C 1/ D D�9

4
and so if 3jD then .w C 1/ has also a prime ideal divisor

which is a divisor of a ramified prime number, namely 3. This will force us to treat
some special cases for even spin Teichmüller curves.

D � 1 mod 4, Odd Spin. Let us begin with the Teichmüller curves generated by
the symmetric L-shaped polygons. We want to prove the following theorem.

Theorem 5.16. For all D � 1 mod 4 the group SL.L1D/ is .2/-pseudo parabolic
maximal.

If we have more information on the discriminant we can strengthen the result.

Theorem 5.17. (i) For all D � 5 mod 8 the group SL.LD/ is pseudo parabolic
maximal.

(ii) For all D � 1 mod 8 the group SL.L1D/ is p2-pseudo parabolic maximal,
where p2 is the (unique) common prime ideal divisor of .2/ and .w/.

Both of these facts will be important later on.
Fix a discriminant D � 1 mod 4 and assume that SL.L1D/ is not pseudo

parabolic maximal and � 0 is a corresponding Fuchsian group containing SL.L1D/.
We have already seen that

�
� 0 W SL.L1D/

�
< 1 implies that only roots of

parabolic elements in SL.L1D/ might lie in � 0. Let

M D
�
1 � a b

c 1C a

�

be an arbitrary parabolic element in SL.L1D/. We may without loss of generality

assume that b ¤ 0 and c ¤ 0 by Corollary 5.8 and hence c D �a2
b

. The n-th root of
M is of the form

Mn WD
�
1 � a

n
b
n

c
n

1C a
n

�
:

As we want to analyze how much SL.L1D/ differs from being pseudo parabolic
maximal we are just interested in those roots not lying in SL2.OD/. Since njb
and njc yield nja we may in the following always assume that n − c or n − b.

4Recall our abuse of notation of the term spin, compare Sect. 3.1.
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Furthermore we may obviously assume that n is a prime number in N and that � 0
is the group

˝
SL.L1D/;Mn

˛
. Given Mn we now construct (for almost all n) a matrix

L 2 � 0 such that Lk … SL.L1D/ for all k 2 N. This contradicts the assumption�
� 0 W SL.L1D/

�
< 1:

Lemma 5.18. Let

N D
�
1 � e f

g 1C e

�

be any parabolic element in SL.L1D/. Then

.MnN/
k D

�
pk.

1
n
/ �

qk.
1
n
/ �
�

where pk. 1n /; qk.
1
n
/ are polynomials in 1

n
of degree k with leading coefficient

.�1/k..e � 1/aC gb/.�fc C 2ea C gb/k�1 for pk

and

.�1/k.�.e � 1/c C ga/.fc C 2ea C gb/k�1 for qk:

Proof. This follows by induction on k or by [MR03], Lemma 3.1.3. ut
Applying Lemma 5.18 to T already gives a rather restrictive condition on a; b

and c.

Proposition 5.19. Let n be an arbitrary prime number in N. If n − wc or n − wb
or n − wa, then

�˝
SL.L1D/;Mn

˛ W SL.L1D/
� D 1:

Proof. First assume that n − wc. We use the notation from Lemma 5.18 which
we apply to .MnT /

k . The leading coefficient of qk is in this case .�1/kwk�1ck .
We assume that

�˝
SL.L1D/;Mn

˛ W SL.L1D/
�
< 1: Then there exists k 2 N with

njwk�1ck . This and Lemma 2.5 imply that njw2c2 if n ramifies or otherwise that
njwc. So n D p2 must be ramified and therefore by Lemma 2.5 (v) we have njc2.
We may thus without of loss of generality assume that pjc and pjb (otherwise the
statement would be true by interchanging the roles of c and b) and hence pja. Then
the (fractional) ideal generated by the lower left entry of Mn is of the form cp�1 for
some proper ideal c and p − c. Looking at .MnT /

k once again one then notices that
the necessary condition for the existence of some k0 2 N such that .MnT /

k , namely
pj.w/2c2, contradicts Lemma 2.5 (iii) and therefore cannot be fulfilled.
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If n − wb then one again uses the same argument with T replaced by Z D T t . If
n − wa the claim follows since a2 D �bc and hence n − wb or n − wc. ut

From this it follows immediately that n must be a split prime number, i.e. .n/ D
pp� , a product of two conjugated prime ideals in OD , if the index is finite. Moreover
njN .w/ D D�1

4
. Another infinite series of matrices in � 0 can also be explicitly

calculated.

Lemma 5.20. We have

.MnS/
k D

�
pk.

1
n
/ �

qk.
1
n
/ �
�

where pk.
1
n
/ and qk.

1
n
/ are polynomials in 1

n
of degree k with leading coefficients

.�1/kc.c � b/k�1 for pk and .�1/ka.c � b/k�1 for qk .

Proof. Also follows by induction on k. ut
Similarly as above this gives some additional restrictions on the entries of Mn.

Proposition 5.21. If n D pp� is a split prime number with p − .c � b/ and p� −
.c � b/ then

�˝
SL.L1D/;Mn

˛ W SL.L1D/
� D 1:

Proof. Since we may assume that n − c the claim follows immediately from
Lemma 5.20 by the same arguments as in Proposition 5.19. ut

Without loss of generality we may then assume p� j.c � b/ and therefore in
particular p� ja2 C b2 since c D � a2

b
.

The desired theorem can now be derived. Recall that the parabolic element that
fixes the cusp 1 is of the form

E D
�
1 � e e

�e 1C e

�
:

where e 2 OD . Moreover there cannot exist a prime number with n 2 Z and nje
(see Sect. 3.3). This allows to prove the main result of this section.

Proof of Theorem 5.16. We have already seen .n/ D pp� has to be a split prime
number with .n/jwa, .n/jwb, .n/jwc and p� ja2 C b2. We may furthermore assume
that pjb but .n/ − b. We now prove that SL.LD/ is .2/-pseudo parabolic maximal.
Assume that the claim is not true. We apply Lemma 5.18 to MnE . If the index is
finite, then p� ja or p� j.a � b/. Since p� ja2 C b2 and p� − 2 it thus follows in any
case that p� jb. This is a contradiction. ut
Proof of Theorem 5.17. If D � 1 mod 8 then njwa, njwb and njwc imply that
SL.LD/ is indeed p2-pseudo parabolic maximal since p�2 − w. If D � 5 mod 8
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we also see that the claim is an immediate consequence since 2 is an inert prime
number if D � 5 mod 8. ut

For the Veech groups which are explicitly known by C. McMullen’s algorithm
it now follows that they are indeed parabolic maximal since none of the parabolic
elements in SL.L1D/ has a root in SL2.OD/ in these cases.

Corollary 5.22. For D 2 f5; 13; 21; 29g we have that SL.L1D/ is parabolic
maximal.

Corollary 5.23. In the other cases where SL.L1D/ is explicitly known, i.e. D 2
f17; 33; 41g, the group is also parabolic maximal.

Proof. None of the parabolic elements in SL.L1D/ has a root in SL2.OD/ in these
cases. It can also be checked that second roots may not appear (e.g. by applying the
algorithm from Appendix A.2). ut
D � 1 mod 8, Even Spin. We now want to show the corresponding result for the
Veech groups of even spin Teichmüller curves.

Theorem 5.24. For all D � 1 mod 8 the group SL.L0D/ is p�2 -pseudo parabolic
maximal.

Recall that the matrices T D �
1 w�1
0 1

�
and Z D �

1 0
wC1 1

�
lie in SL.L0D/. We

assume that � 0 is a Fuchsian group containing SL.L0D/ with finite index and some
additional parabolic element. We use the same notation as in the case of odd spin.
The following is then the analogue of Proposition 5.19.

Proposition 5.25. Let n be an arbitrary prime number in N. If 3 − D and if n −
.w � 1/c or n − .w C 1/b, then

�˝
SL.L0D/;Mn

˛ W SL.L0D/
� D 1:

If 3jD then

�˝
SL.L0D/;Mn

˛ W SL.L0D/
�
< 1

implies that either nj.w � 1/c and nj.w C 1/b or that n D 3 and 3jc.

Proof. We proceed similar as in the proof of Proposition 5.19. We first consider
the case that 3 − D. We again use the notation from Lemma 5.18 which we
apply to .MnT /

k . The leading coefficient of qk is in this case .�1/k.w � 1/k�1ck .
If
�˝

SL.L1D/;Mn

˛ W SL.L1D/
�
< 1, then there exists k 2 N with nj.w � 1/k�1ck .

This and Lemma 2.5 imply that nj.w � 1/2c2 if n ramifies or otherwise that
nj.w � 1/c. So we assume that .n/ D p2 ramifies and therefore by Lemma 2.5
we have njc2 and hence pjc. We now look at the sequence of matrices .MnZ/

k .
Note that N .w C 1/ D D�9

4
implies that .w C 1/ has no prime ideal divisors which

also divide D. The assumption that the index is finite therefore yields that we must
have njb2 and hence pjb and pja. Then the (fractional) ideal generated by the lower
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left entry of Mn is of the form cp�1 for some proper ideal c and p − c. Looking at
.MnT /

k once again one then notices that pj.w � 1/2c2 contradicts Lemma 2.5 (iii)
since .w/� D .w � 1/.

If 3 − D, then interchanging the roles of T and Z yields nj.w C 1/b.
If 3jD then .w C 1/ has a common prime ideal divisor with the ramified prime

number 3. We denote this ideal by p3. If n ¤ 3 then the preceding proof of course
still works. But if n D 3, then the above only yields that either nj.w � 1/c and
nj.w C 1/b or that n D 3 and 3jc. ut

We then consider the parabolic element in SL.L0D/ which fixes the cusp 1, i.e.

E D
�
1 � e e

�e 1C e

�
:

with e 2 OD . It is known that there does not exist n 2 Z with nje (see Sect. 3.3).
This matrix is again the key ingredient for the proof of Theorem 5.24.

Proof of Theorem 5.24. Since ..w C 1/; .w � 1// D p�2 it suffices to prove that
SL.L0D/ is .2/-parabolic maximal. If D D 17 then we know all the (parabolic)
generators of SL.L017/ by Lemma 3.11 and it can be checked that the group is indeed
parabolic maximal. So we may assume thatD > 17. We know that N .w�1/ D D�1

4

and N .w C 1/ D D�9
4

.
Let us first assume that 3 − D. Then it follows from Proposition 5.25 that

.n/ D pp� is a split number. Lemma 5.18 implies that the leading coefficient of
the polynomial qk in .MnE/

k is

.�1/k..e � 1/c C ea/ek�1.c C 2a � b/k�1

and that the leading coefficient of the polynomial eqk in .EMn/
k is

.�1/k..e C 1/c C ea/ek�1.c C 2a � b/k�1:

If
�˝

SL.L0D/;Mn

˛ W SL.L0D/
�
< 1 then, since p and p� do not divide e at the same

time, we may assume that

p� j..e � 1/c C ea/.c C 2a � b/

and

p� j..e C 1/c C ea/.c C 2a � b/:

Suppose that p� − .cC2a�b/. Then summing up both relations yields p� j.2c/ and
since n ¤ 2 hence p� j.c/ and thus p� j.a/. From the leading coefficients of the upper
right entry of .EMn/

k it then follows that p� j.b/. Since n does neither divide b nor c,
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it then follows from .n/j.w�1/.c/ and .n/j.wC1/.b/ that pj..w�1/; .wC1// D p�2 .
So n D 2 which is a contradiction.

Therefore, we may assume that p� j.cC2a�b/. As c D � a2

b
we hence have that

p� j.a� b/ and thus p� j.w C 1/.a/ since p� j.w C 1/.b/. Similarly b D � a2

c
implies

that p� j.aC c/ and therefore p� j.w � 1/.a/. Then either p� j..w � 1/; .w C 1//, i.e.
n D 2, or p� j.a/ and therefore also p� j.b/ and p� j.c/. In both cases we derived a
contradiction.

Now let us assume that 3jD. Then .w C 1/ has a prime ideal divisor p3 which
also divides the ramified prime number 3. This might cause trouble if n D 3.
If
�˝

SL.L0D/;M3

˛ W SL.L0D/
�
< 1, then we have to distinguish two different

subcases.

Case (1) If we have .3/j.w C 1/.b/ and .3/j.w � 1/.c/ then 3j.c/, p3j.b/ and, since
a2 D �bc, also .3/j.a/. Hence

M3 D
�
1 � Qa b

3

Qc 1C Qa
�

with Qa; Qc in OD and .b/ D p3b for some proper ideal b in OD and p3 − b. Then
we look at the matrix L from Lemma 3.12 and consider .M3L/

k . The upper right
entry is a polynomial in 1

3
and the (fractional) ideal generated by the leading term is

..eC1/gk�1bk/p�k
3 , where e D .2C w/.w �1/ and g D .2C w/ or e D .2Cw/.w�1/

2

and g D 2.2C w/ (depending on D). Note that p3 − .e C 1/ and p3 − 2.2 C w/.
Thus there exits a k 2 N with .M3L/

k only if p3jb. This is a contradiction.

Case (2) If we have .3/j.c/ but p3 − b then, since a2 D �bc, also p3j.a/. Hence

M3 D
�
1 � a

3
b
3

Qc 1C a
3

�

with Qc 2 OD and .a/ D p3a for some proper ideal a in OD . Then we again look
at the matrix L from Lemma 3.12 and consider .M3L/

k . The upper right entry is
again a polynomial in 1

3
and the (fractional) ideal generated by the leading term is

..eC1/gk�1bk/p�2k
3 , where again g D .2Cw/ or g D 2.2Cw/ (depending onD).

Thus there exits a k 2 N with .M3L/
k only if p3j.b/. This is again a contradiction.

ut
Corollary 5.26. The Fuchsian group SL.L017/ is maximal.

Proof. SL.L017/ and SL.L117/ have the same signature. ut
D � 0 mod 4. Recall that the prime number 2 ramifies if D � 0 mod 4 and thus
.2/ D ep22 for some prime ideal ep2 of norm of absolute value 2. The following
analogue of Theorem 5.17 will be proven next.
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Theorem 5.27. For all D � 0 mod 4 the group SL.LD/ is ep2-pseudo parabolic
maximal, where ep2 is the (unique) prime ideal divisor of .2/.

The proof is very similar to the case D � 1 mod 4. Therefore, we only sketch
parts of the arguments.

Proof. The theorem can be checked directly if D < 16. So let D > 16 from now
on. As usual, we look at a prime number n 2 Z and

Mn D
�
1 � a

n
b
n

c
n

1C a
n

�
;

a root of some parabolic element in SL.LD/. We assume that Mn … SL2.K/ \
Mat2x2.ep2�1/ and that � WD hSL.LD/;Mni contains SL.LD/ with finite index. We
now have to consider three different cases:

Case (1) n − D: The condition .MnT /
k0 2 SL2.K/ \ Mat2x2.ep2�1/ for some

k0 2 Z implies that nj.w C 1/c and by considering .MnZ/
k we get that njwb.

Hence n cannot be inert and njb. More precisely, .n/ D pp� must be split. The
relations nj.w C 1/c and njb imply that we may without loss of generality assume
that p� jb; p� jc; p� ja and that pja. Hence Mn is of the form

�
1 � Qa Qb
c=n 1C Qa

�

with Qa; Qc 2 OD and p − c and pj.w C 1/. Let L be the matrix from Lemma 3.14.
Then there must exist some k1 2 Z such that .MnL/

k1 2 SL2.K/ \ Mat2x2.ep2�1/
and so pj.w C 2/c.1 � c/. There also exists k2 2 Z such that .LMn/

k2 2
SL2.K/ \ Mat2x2.ep2�1/ and hence pj.w C 2/c.1 C c/. Thus pj.w C 2/ which
contradicts pj.w C 1/.

Case (2) njD and n ¤ 2: Then .n/ D p2 ramifies. From the sequence .MnT /
k

we see that njc and hence pja. It happens that .w/ D pg for some ideal g with
p − g because otherwise we would have njw. By recalling that c D � a2

b
and then

analyzing the upper right entry of .MnZ/
k we get that pjgb and so pjb. ThusMn is

of the form

�
1 � Qa b=n

Qc 1C Qa
�

with Qa; Qc 2 OD and pjb but p2 − b. Looking at .MnZ/
k again, we see that pjgb.

That is again a contradiction.

Case (3) n D 2: The claim immediately follows since 2 − w C 1 and 2 − w. ut
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5.3 Stabilizer and Commensurator

Recall that we use the abbreviationC for the Teichmüller curveC �
L;D . In this section

we want to prove the following theorem:

Theorem 5.28. Let M 2 GLC
2 .K/ \ Mat2x2.OD/ and D be a fundamental

discriminant and C be a Teichmüller curve of discriminant D. Suppose that

(i) D � 1 mod 8, C has odd spin and det.M/ is not divisible by p2 or
(ii) D � 1 mod 8, C has even spin and det.M/ is not divisible by p�2 or

(iii) D � 9 mod 16 and C has odd spin or
(iv) D � 5 mod 8 or
(v) D � 0 mod 4 and det.M/ is not divisible by ep2

then

(i) the degree of the covering � W CM.M/ ! CM is equal to 1 and
(ii) we have SLM .LD/ D MSL.LD/M�1 \ SL2.OD/.

Our task is now to better understand the stabilizer of the graph of the Teichmüller
curve Stab.ˆ/. The commensurator will help us a lot do this because it is the unique
maximal Fuchsian group which contains the Veech group. Let us start with the
following statement:

Lemma 5.29. Let � be a non-arithmetic, cofinite Fuchsian group. If H is a finite
index subgroup of � then

CommSL2.R/.H/ D CommSL2.R/.�/:

If � is maximal then

CommSL2.R/.H/ D �:

Proof. The group H is non-arithmetic because it is a finite index subgroup of a
non-arithmetic group. The commensurator CommSL2.R/.H/ is the unique maximal
group containing H by Lemma 5.1. However, CommSL2.R/.�/ is a maximal group
containingH . ut

This proposition allows us to show that the conjugated stabilizer groups of
twisted Teichmüller curves are always contained in the commensurator.

Corollary 5.30. For all M 2 GL2.K/

Stab.ˆ/ \M�1SL2.OD/M 
 CommSL2.R/.SL.LD//\M�1SL2.OD/M

holds. If SL.LD/ is maximal then

Stab.ˆ/ \M�1SL2.OD/M D SL.LD/ \M�1SL2.OD/M:
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Proof. The groupG WD Stab.ˆ/\MSL2.OD/M
�1 is a Fuchsian group with finite

index subgroupH WD Stab.ˆ/\MSL2.OD/M
�1\SL2.OD/. Indeed,H is a finite

index subgroup of CommSL2.R/.SL.LD// too, and therefore the Fuchsian groupG is
contained in the unique maximal Fuchsian group CommSL2.R/.SL.LD//. This yields
the claim. ut
Maximal Groups. Before coming to n-pseudo parabolic maximal groups, we will
at first look at the maximal case. An immediate consequence of the preceding results
is the following theorem, which we have already mentioned in the introduction of
this chapter.

Theorem 5.31. If SL.LD/ is maximal then the degree of the covering � W
CM.M/ ! CM is equal to 1 for all M 2 GL2.K/. In other words

SLM.LD/ D MSL.LD/M
�1 \ SL2.OD/:

It is now natural to ask which set of matrices we actually can exclude from lying
in the stabilizer if SL.LD/ is maximal.

Definition 5.32. We define SLtr
2 .K/ WD fx 2 SL2.K/jtr.x/ 2 ODg.

Remark 5.33. Note that SLtr
2 .K/ is not a group.

Let us explain why this is the right object to look at.

Proposition 5.34. We have

[
M2GL2.K/

MSL2.OD/M
�1 D SLtr

2 .K/:

Proof. The union
S
M2GL2.K/

MSL2.OD/M
�1 is a subset of SLtr

2 .K/ as the trace
is preserved under conjugation. On the other hand by the theory of the rational
canonical form two matrices A and B in SL2.K/ such that neither of them has a
double eigenvalue and such that they have the same characteristic polynomial are
conjugated in GL2.K/. Note that for all matrices A 2 SLtr

2 .K/ there exists a matrix

B D
�

tr.A/�1 1
tr.A/�2 1

�
2 SL2.OD/ with the same characteristic polynomial as A. Finally,

any parabolic matrix in SL2.K/ is in GL2.K/ conjugated to a matrix of the form�
1 x
0 1

�
with x 2 K ut

From this we can deduce:

Corollary 5.35. We always have that

Stab.ˆ/ \ SLtr
2 .K/ 
 CommSL2.R/.SL.LD//

If SL.LD/ is maximal then even

Stab.ˆ/ \ SLtr
2 .K/ D SL.LD/

holds.
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Since SLtr
2 .K/ is not all of SL2.K/, there still remain some matrices which

might additionally lie in the stabilizer. We can also exclude all the other possible
candidates from lying in the stabilizer of the graph of the Teichmüller curve.
Before we do this we want to switch to the more general setting of n-pseudo-
parabolic maximal groups. We will analyze three different cases separately, namely
the odd spin Teichmüller curves with discriminant D � 1 mod 4, the even spin
Teichmüller curves with discriminant D � 1 mod 8 and the Teichmüller curves
with discriminantD � 0 mod 4.

D � 1 mod 4, Odd Spin. So far everything in this section has been true for all
Teichmüller curves, in particular for D � 1 mod 8 for both, the odd and the even
spin Teichmüller curves. From now on we have to distinguish the two cases. As
usual, we start with the family of Teichmüller curves which includes the odd spin
case. Recall that the matrices T;Z D T t and S always lie in SL.L1D/.

Theorem 5.36. For all fundamental discriminants D � 1 mod 4 where SL.L1D/
is pseudo parabolic maximal Stab.ˆ/ \ SL2.K/ D SL.L1D/ holds. In this case the
degree of the covering � W CM.M/ ! CM is equal to 1 for all M .

Proof. Let us first assume that there does not exist a prime ideal p in OD with pj2
and p2jw.

Now suppose there exists a matrix

X WD
�
a0 b0
c0 d 0

�
2 Stab.ˆ/ \ SL2.K/ X SL.L1D/:

Since Stab.ˆ/\SL2.OD/ D SL.L1D/ we know thatX … SL2.OD/. Then we define
e to be the common denominator of a0; b0; c0; d 0 in K . We can write X as

X D
�
a
e
b
e

c
e
d
e

�

with a; b; c; d; e 2 OD . We now compute

XTX�1 D
 
1 � w ac

e2
w a2

e2

�w c2

e2
1C w ac

e2

!

which is parabolic and therefore in SL.L1D/ and in particular XTX�1 2 SL2.OD/.
So let us now assume that .w/ has (finitely many) prime (ideal) divisors

q1; : : : ; qn that divide .w/ with order at least 2. We assume that e is not a unit. Then
it follows from Lemma 2.2 that .e/ D Q

i2J qi with J � f1; : : : ; ng. Working in
an appropriate localization we may without loss of generality assume that J D f1g,
i.e. .e/ D q1 DW q. Evidently q does divide at most three of a; b; c; d . Let L be the
parabolic element in SL.L1D/ which stems from Lemma 3.9. Then L is of the form
L D �

1Cv z
r 1�v

�
and



5.3 Stabilizer and Commensurator 81

.XLX�1/1;2 D 1

e2

�
za2 � 2vab � rb

�
:

Therefore, 1
e2

�
za2 � 2vab � rb

� 2 OD .

(a) Let us first assume that e divides at least one of the a; b; c; d . Since S 2 SL.L1D/
we may (by multiplying M with S and taking inverses) assume that e − b and
eja and hence a D ea0 with .a0; e/ D 1 (if higher order divisors occur, then
we do the same argument for the appearing power). Therefore, we must have
that za02 � 2va0 b

e
� r b

2

e2
2 OD or equivalently 2va0 b

e
� r b

2

e2
2 OD . From this it

follows that qjrb2. Inserting the expression for r from Lemma 3.9 we see that
qj4b2. We thus have qjb since q − 2. This is a contradiction.

(b) So we may assume that e divides none of a; b; c; d . Since r D � v2

z ,

.XLX�1/1;2 D 1

e2
v2

z
.a

z

v
� b/2:

On the other hand z
v

is equal to 1
2
w. Thus we have that 1

4e2
v2

z .aw � 2b/2 2 OD .
Inserting again the expression for r we get that qjaw � 2b and so - since
qjw - also that qj2b. Since q − 2 and q − b, this is not possible.

Finally we remark that .w; 2/ D 1 is not at all a restriction since if there exists
a prime ideal p with p2jw and pj2 then D � 1 mod 16 but then r D 2.w C 1/

and therefore p2jaw � 2b which yields again a contradiction. ut
An especially interesting consequence of this is that the information about how

much the stabilizer in SL2.K/ might be bigger than SL.L1D/, is somehow only
hidden in the additional parabolic elements of the commensurator. We can again
deduce a statement about the commensurator of pseudo parabolic maximal groups
SL.L1D/:

Corollary 5.37. For all fundamental discriminants D � 1 mod 4 such that
SL.L1D/ is pseudo parabolic maximal

CommSL2.R/.SL.L1D// � SL2.OD/:

Now we can prove the main theorem of this section. The theorem tells us how
the stabilizer of an arbitrary twisted Teichmüller curve exactly looks like and thus
enables us to calculate the volume of most twisted Teichmüller curves in Chap. 6.
It is valid for all fundamental discriminants D � 1 mod 4 with D 6� 1 mod 16
and not only for those for which we could prove pseudo parabolic maximality.

Theorem 5.38. For all fundamental discriminants D � 1 mod 4 with D 6� 1

mod 16 the degree of the covering � W CM.M/ ! CM is equal to 1 for all M .
In other words SLM .L1D/ D MSL.L1D/M

�1 \ SL2.OD/.
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Proof. If D � 5 mod 8 this follows since SL.L1D/ is then pseudo parabolic
maximal.

If D � 9 mod 16 then by Theorem 5.16 there might only exist second roots
of parabolic elements inside the commensurator. Since 2 is not a ramified prime
number in this case, Lemma 2.2 (ii) suffices to derive an analogue statement as in
Theorem 5.36 since the lower left entry of the matrix from Lemma 3.9 is w C 1 and
thus not divisible by 2. ut

If D � 1 mod 16 then the situation might be a little worse. The proof of the
corollary is just the same as for Theorem 5.38.

Corollary 5.39. Let M 2 GLC
2 .K/ \ Mat2x2.OD/. Then for all fundamental

discriminants D � 1 mod 16 the degree of the covering � W CM.M/ ! CM
is equal to 1 if det.M/ is not divisible by p2.

This also implies that the stabilizer is only known to be contained in SL2.K/ \
Mat2x2.p�1

2 / if D � 1 mod 16.

D � 1 mod 8, Even Spin. In Theorem 5.24 we have shown that the Veech groups
SL.L0D/ are p�2 -pseudo parabolic maximal. Therefore, it is not surprising that the
following analogue of Corollary 5.39 holds.

Proposition 5.40. Let M 2 GLC
2 .K/ \ Mat2x2.OD/. Then for all fundamental

discriminants D � 1 mod 8 the degree of the covering � W CM.M/ ! CM is
equal to 1 if det.M/ is not divisible by p�2 .

Proof. We do the proof here only for the case D � 1 mod 16 because D � 9

mod 16 works in the same way. We prove that the commensurator of SL.L0D/ must
be contained in Mat2x2.p�1

2 /. Suppose there exists a matrix

X WD
�
a
e
b
e

c
e
d
e

�
2 Stab.ˆ/ \ SL2.K/ X Mat2x2.p�1

2 /

with a; b; c; d; e 2 OD . Since SL.L0D/ is p�2 -pseudo parabolic maximal, it follows
from the entries of XTX�1, X�1TX, XZX�1 and X�1ZX that eja and ejd . We may
without loss of generality assume that .e/ is a prime ideal. Then either ejc and
ej.wC1/ or ejb and ej.w�1/ holds. In the first case we consider the matrix L from
Lemma 3.12 to get

.XLX�1/1;2 D u C 2.2C w/.w � 1/ab

e2
C 2.w C 2/

b2

e2

for some u 2 OD . It follows that ejb because eja and ej.w C 1/. This is a
contradiction. In the second case we consider the matrix QL from Lemma 3.11 to get

.X QLX
�1
/2;1 D u C .2w C D � 1

4
/
cd

e2
C w

c2

e2
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for some u 2 OD . Since ejd and ej.w � 1/ it follows that ejc which is again a
contradiction. ut

This finishes the proof of Theorem 5.28 (iv).

D � 0 mod 4. We will again only present a rather short proof, because everything
works very similar as for odd discriminants.

Proposition 5.41. Let M 2 GLC
2 .K/ \ Mat2x2.OD/. Then for all fundamental

discriminants D � 0 mod 4 the degree of the covering � W CM.M/ ! CM is
equal to 1 if det.M/ is not divisible by ep2.
Proof. We prove that the commensurator of SL.LD/ must be contained in
Mat2x2.ep2�1/. Suppose there exists a matrix

X WD
�
a
e
b
e

c
e
d
e

�
2 Stab.ˆ/ \ SL2.K/X Mat2x2.ep2�1/

with a; b; c; d; e 2 OD . Since SL.LD/ is ep2-pseudo parabolic maximal, it follows
from the entries of XTX�1, X�1TX, XZX�1 and X�1ZX that eja and ejd . We may
without loss of generality assume that .e/ is a prime ideal (otherwise we localize).
We see from the preceding list of matrices that either ejb or e2jw. Since D is a
fundamental discriminant the latter is not possible and so we have ejb. Moreover
we see that either e2j.w C 1/ or ejc. Suppose that the former holds. Then X is of
the form

� Qa Qb
c
e

Qd
�

with Qa; Qb; Qd 2 OD . Then we take the matrix L from Lemma 3.14 and look at the
lower left entry of XLX�1 and see that ej4.w C 2/c2 and so ej4c2. Since .e/ ¤ ep2
we have ejc. This is a contradiction. ut

This completes the proof of Theorem 5.28.
As we have seen being (pseudo) parabolic maximal is a very useful property of

SL.LD/. We shortly describe a criterion how to decide whether SL.LD/ is parabolic
maximal.

Let � be a Fuchsian group containing SL.LD/. From the parabolic root
Lemma 5.6 one immediately knows that there are only finitely many possible
additional parabolic elements in � (up to conjugation). For each candidate � we
can construct (parts of) the Dirichlet fundamental domain of hSL.LD/; �i in the
usual way (see e.g. [Kat92], Chap. 3.2). If the area of the partially constructed
fundamental domain gets smaller than �

3
then one knows that hSL.LD/; �i cannot

be Fuchsian since the area of a Fuchsian group with a cusp is bounded from below
by �

3
. We emphasize that this stopping criterion works if and only if SL.LD/ is

parabolic maximal. If after very long time (whatever this really means) the area
of the constructed fundamental domains gets close (whatever this really means)
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to a divisor of the area of H=SL.LD/ then one might tend to assume that � 2
CommSL2.R/.SL.LD// and might try to prove that hSL.LD/; �i contains SL.LD/
with finite index. It would be an interesting task for future research to find a
good algorithm which decides if a Fuchsian group � � SL2.OD/ is parabolic
maximal.



Chapter 6
Calculations for Twisted Teichmüller Curves

So far we have treated more or less abstract properties of twisted Teichmüller curves.
This chapter will be more explicit: some of the main geometric properties of twisted
Teichmüller curves will be derived. First and foremost the volume of these objects
will be calculated. Note that unlike in the case of twisted diagonals the classification
of skew Hermitian forms cannot be used for this purpose because the function ' is
involved when dealing with twisted Teichmüller curves (compare [Fra78, Hau80]).
Instead one can make use of Theorem 5.28 and calculate certain group indexes.

In this chapter we assume as general condition that D is a fundamental
discriminant.

In Sect. 6.1 we calculate the volume of diagonal twisted Teichmüller curves
(Theorem 6.1). A table with some numerical data for the volume of diagonal twisted
Teichmüller curves in the cases D D 13 and D D 17, that of course supports the
results, can be found in Appendix B. We will generally assume hD D 1 starting with
Sect. 6.2. In Sect. 6.2 the volume of Teichmüller curves twisted by upper triangular
matrices will be calculated. Surprisingly enough, the calculation can then be reduced
to the case of diagonal twisted Teichmüller curves (Theorems 6.17 and 6.25). Since
the class number is assumed to be equal to 1, twists by upper triangular matrices
indeed give all twisted Teichmüller curves (because the number of cusps of XD is
equal to the class number).

In many cases, the volume of twisted Teichmüller curves is an invariant which is
good enough for deciding when two twisted Teichmüller curves agree. In Sect. 6.3
we will assume that the narrow class number hC

D D 1. Note that this implies
that D D 8 or D � 1 mod 4 is a prime by what we have said in Sect. 2.1. In
particular, we will then see that an analogue result as the theorem by H.-G. Franke
and W. Hausmann does hold for twisted Teichmüller curves: after normalizing the
involved matrices appropriately there are only finitely many twisted Teichmüller
curves of a given determinant. Moreover we will get that there is exactly one twisted
Teichmüller curve if the determinant of the twisting matrix is prime (Theorem 6.30).

Finally in Sect. 6.4, we give an outlook how other interesting geometric prop-
erties of twisted Teichmüller curves like the number of elliptic fixed points, the

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__6,
© Springer International Publishing Switzerland 2014
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number of cusps and the genus can be calculated. These calculations are far from
being complete, but should rather be regarded as a rough guideline how things can
be done in principle.

6.1 The Volume of Diagonal Twisted Teichmüller Curves

Recall the following fact: if � 0 � � � PSL2.R/ are two Fuchsian groups, then
the Euler characteristics of the surfaces H=� and H=� 0 and the index of the
subgroup Œ� W � 0� are closely related via the well-known formula �.H=� 0/ D
Œ� W � 0��.H=�/ since our definition of Euler characteristic takes orbifold points
into account (see Theorem 2.6). We have seen in the last chapter that the degree of
the covering CM.M/ ! CM is 1 in most cases. When we want to calculate the
volume of diagonal twisted Teichmüller curves, it therefore suffices to calculate the
indexes of the groups SLM.LD;M/ in SL.LD/. Recall that �D.m; n/ is defined
as �D0 .m/ \ �D;0.n/. This gives us the task to calculate the indexes ŒSL.LD/ W
.SL.LD/ \ �D.m; n//� for m; n 2 OD with .m; n/ D 1 (see Corollary 4.10). For
fundamental discriminants D � 1 mod 4 we know that this calculation yields the
volume of the twisted Teichmüller curve if .n; 2/ D 1 and .m; 2/ D 1 (compare
Theorem 5.28).

As we want to treat the cases D � 1 mod 4 with even or odd spin and D � 0

mod 4 in this section simultaneously, we introduce the following notation: let �C
denote the upper right entry of the matrix T and �� denote the lower left entry
of the matrix Z. Finally let �� be the product of �C and ��. In this section we
will show that for all elements m; n 2 OD with .m; n/ D 1 and .n; ��/ D 1

and .m; ��/ D 1 the index ŒSL2.OD/ W �D.m; n/� equals the index ŒSL.LD/ W
.SL.LD/ \ �D.m; n//�. The surrounding arithmetic of SL2.OD/ determines so to
speak the arithmetic of the twisted Teichmüller curves. Another interpretation of
this fact is that the Veech groups of Teichmüller curves are the opposite of being
arithmetic.

To prove this, we have to distinguish between the different types of splitting
behavior of prime numbers over OD . Before going through the proofs of this section
we recommend the reader to recall the number theoretic and arithmetic results from
Sects. 2.1 and 2.3.

The aim of this whole section is to prove the following theorem.

Theorem 6.1. Let m; n 2 OD be arbitrary elements with .m; n/ D 1 and

(i) if .m; ��/ D 1 and .n; ��/ D 1 or,
(ii) if D � 1 mod 4 but D 6� 1 mod 16, the spin of the Teichmüller curve is

odd, andm and n are arbitrary or
(iii) if D � 1 mod 16, the spin of the Teichmüller curve is odd, and m; n 2 OD

are arbitrary with .m; p2/ D 1 and .n; p2/ D 1
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then the degree of the covering Q� W CM.M/ ! C equals the degree of the covering
� W XD.M/ ! XD . In other words

�
SL.L1D/ W .SL.L1D/ \ �D.m; n//� D �

SL2.OD/ W �D.m; n/� :

If the degree of the covering � W CM.M/ ! CM is equal to 1, then the volume of
the Teichmüller twisted by M D �

m 0
0 n

�
in all these cases is

�9� �SL2.OD/ W �D.m; n/��.XD/:

Note that the formula for the volume of twisted Teichmüller immediately follows
from the first part of the result by Bainbridge’s formula (Theorem 3.6) and the
relation between group indexes and volumes which we stated at the very beginning
of this chapter. We stress the fact that this is the best result we can achieve in general.
For discriminantD D 17 we have w D .wC2/ � .wC2/ � .2w�5/. Note that 2w�5
is a unit in O17 and that w C 2 D 5Cp

17
2

is �2, the (unique) common prime divisor
of 2 and w. A calculation yields that

�
SL.L117/ W .SL.L117/\ �D0 .�2//

� D 2

3

�
SL2.OD/ W �D0 .�2/

�

holds. Accordingly for ��2 we have

�
SL.L017/ W .SL.L017/\ �D0 .�

�
2 //
� D 2

3

�
SL2.OD/ W �D0 .��2 /

�
:

This means that the theorem is in general false for .n; ��/ ¤ 1 or .m; ��/ ¤ 1. We
will revisit this phenomenon in Sect. 6.1.4. In particular we will get there that the
index

Œ.SL.LD/ \ �D..m/pk; .n/// W .SL.L1D/ \ �D..m/pkC1; .n///�

is always either N .p/ or N .p/ C 1 for all k 2 N [ f0g and all m; n 2 OD with
.m; n/ D 1 and all prime ideals p if .p; n/ D 1 and D � 1 mod 4.

Furthermore, we see that the volume of twisted Teichmüller curves behaves very
different than the volume of twisted diagonals. For example for hD D 1 and M D�
� 0
0 1

�
, where � is an inert prime number or a divisor of a ramified prime number,

the stabilizer of the twisted diagonal is always SL2.Z/ and hence does not depend
on � . This follows immediately from the definition of twisted diagonals. On the
other hand if � is a divisor of a split prime number, then the volume of the twisted
diagonal is up to a constant, which does only depend on D, equal to N .�/ C 1.
This is a consequence of the work by H.-G. Franke and W. Hausmann ([Fra78],
Theorem 2.4.6 and [Hau80], Satz 3.10).

The proof of Theorem 6.1 will step through four different cases. The first three
cases concern the different types of prime ideals. The fourth concerns those prime
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ideals p with .p; ��/ ¤ 1. This strange condition will naturally arise. Before we
start, recall once again that the matrices

T D
�
1 �C
0 1

�
; Z D

�
1 0

�� 1

�

are always elements of SL.LD/. Furthermore note that since SL.LD/ � SL2.OD/

we have for all m; n 2 OD

ŒSL.LD/ W .SL.LD/\ �D.m; n//� 
 ŒSL2.OD/ W �D.m; n/�:

In the sequel this inequality will be used constantly.
Before we start with the proofs let us fix some notation. Let

.m/ D
Y

qeii
Y

r
fi
i

Y
s
gi
i

be the unique factorization of .m/ into prime ideals, where qi are inert prime ideals,
ri are prime ideal factors of split prime numbers and si are prime ideal factors of
ramified prime numbers and ei ; fi ; gi 2 N. Since the norm ofm plays a special role,
we use capital letter and set M WD N .m/.

As the index of SL.LD/\�D.m; n/ in SL.LD/ does not depend on the ordering
of the prime ideal divisors of .m/ which we choose, we may at first divide out
the prime divisors of split prime numbers, then the prime divisors of inert prime
numbers and finally the prime divisors of ramified prime numbers. Moreover we
may always assume that we consider the prime divisor p of .m/ which has the
highest order in .m/ of all prime ideal divisor pi of the given type.

Before we start with the approach described above, let us make an observation
which will significantly facilitate things.

Lemma 6.2. Let m; n 2 OD with .m; n/ D 1. If �D0 .mn/ \ SL.LD/ has the
maximal possible index in SL.LD/ then also �D.m; n/\ SL.LD/ has the maximal
possible index.

Proof. As both subgroups describe the volume of a certain twisted Teichmüller
curve, it suffices to show that the matrix M D �

m 0
0 n

�
defines the same twisted

Teichmüller curve as the matrix N D �
mn 0
0 1

�
. For this we show that there exists a

matrix X D �
a b
c d

� 2 SL.LD/ with

NXM�1 D �
na mb
c=m d=n

� 2 SL2.OD/

(for details we refer the reader to Chap. 6.3). Recall the well-known isomorphism
(see e.g. [Kil08], Sect. 2.4)

SL2.OD/=�
D
0 .nm/ Š P

1.OD=nmOD/
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where P
1.�/ denotes projective space. The isomorphism is given by mapping a

coset representative
�
a b
c d

�
to .c W d/ 2 P

1.OD=nmOD/. Consider the coset
representatives A1; : : : ; Ak of SL.LD/=.SL.LD/ \ �D0 .nm//. Since the index
of SL.LD/ \ �D0 .nm/ in SL.LD/ equals the index of �D0 .nm/ in SL2.OD/

(Theorem 6.1) we also have

SL.LD/=.SL.LD/\ �D0 .nm// Š P
1.OD=nmOD/:

Thus there exists an Ai D
�
e f
g h

�
with mjg and njh and hence NAiM�1 2

SL2.OD/. ut
This means that we may restrict to the case of �D0 .m/ in the following. In the next
three subsections we will always proceed very similarly. In each case we show first
for a prime ideal p 2 OD and arbitrarym 2 OD with .m; p/ D 1 that

Œ.SL.LD/ \ �D0 ..m/pk// W .SL.L1D/\ �D0 ..m/p
kC1//� D N .p/

for all k 2 N by giving an explicit list of coset representatives. Afterwards we prove
that

Œ.SL.LD/\ �D0 ..m/// W .SL.L1D/\ �D0 ..m/p//� D N .p/C 1

holds. This suffices for the first part of Theorem 6.1. Recall that the quotient
�D0 ..m/p

k/=�D0 ..m/p
kC1/ is a cyclic group of order N .p/ while the quotient

�D0 ..m//=�
D
0 ..m/p/ is isomorphic to P

1.OD=p/ (compare e.g. [Kil08], Sect. 2.4).
This fact also explains the indexes above.

The proofs are quite similar for all three types of splitting behavior of prime
numbers although the matrices involved in the proofs differ significantly. As an
abbreviation we will from now on write �D0 .mpk/ when we mean �D0 ..m/p

k/. For
clearness reasons we will more generally leave away brackets indicating principal
ideals in this chapter.

Before we go through the different types of primes, let us clarify what distin-
guishes the different cases from our point of view: If p D pp� is a split prime
number and m 2 OD is arbitrary with .m; p/ D 1, then either p and p� both
divide k � m for k 2 Z or none of them does divide k � m. Since we can only give
general formulas for parabolic matrices in SL.LD/ and consider their powers (and
products), this makes this case particulary difficult. The difficulty about the case
where p is an inert prime number, is that we cannot break down the calculation of
ŒSL.LD/ \ �D0 .p

k/ W SL.LD/ \ �D.pkC1/� into two sub-steps then and therefore
have to find a list of p2 (or p2 C 1 if k D 0) coset representatives and not only
of p coset representatives as in the first case. Finally, the case where p D p2 is
a ramified prime number is somewhere in the middle of the first two cases and
therefore combines difficulties and ways the circumvent these difficulties from both.
For example, for k odd andm 2 OD with .m; p/ D 1 either pk and pkC1 both divide
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k � m for k 2 Z or none of them does. This makes it again hard to break down the
calculation of ŒSL.LD/ \ �D0 .p

2k/ W SL.LD/ \ �D0 .p
2.kC1//� into two sub-cases,

which would be easier to treat, because we would have to find only fewer coset
representatives.

6.1.1 Divisors of Split Prime Numbers

We begin with the case which is probably the most difficult one namely, prime ideals
that are divisors of split prime numbers. Until the rest of this subsection p 2 Z

always denotes a split prime number, i.e.
�
D
p

�
D C1, with p D pp� .

Proposition 6.3. Let p 2 Z with
�
D
p

�
D C1, i.e. p D pp� and let .p; ��/ D 1.

Moreover let m 2 OD be an arbitrary element with .m; p/ D 1. Then for all k 2 N

�
.SL.LD/ \ �D0 .mpk// W .SL.LD/\ �D0 .mpkC1//

� D p

holds.

Proof. The aim is to find p matrices in �D0 .mpk/ which are inequivalent modulo
�D0 .mpkC1/. We will now describe the simplest set of matrices which we found. We
have to distinguish two cases.

1. Case: p is not conjugated to any of the ri

Then ZMpki , i D 1; : : : ; p are obviously in �D0 .mpk/ but inequivalent modulo
�D0 .mpkC1/.

2. Case: p is conjugated to a certain rh

We set m0 D .m/r
�fh
h andM 0 WD N .m0/. Let us furthermore suppose that rlhj�� but

rlC1h − �� for some l 2 Z�0. We now have to distinguish two subcases.

Case (a) fh � l > k

This means in particular that rh has a higher order in m than k. We therefore want
to divide out powers of rh first. This means that we have to show

h
.SL.LD/ \ �D0 .m0rfh�1

h pk// W .SL.LD/ \ �D0 .m0rfhh pk//
i

D p:

We set u WD fh � l � 1 and v WD pu. The matrices ZM 0vi , 1 
 i 
 p lie in
�D0 .m

0rfh�1
h pk// since m0rfh�1

h pkjM 0v�� �i but the matrices are incongruent modulo

�D0 .m
0rfhh pk/ since m0rfhh pkjM 0v�� � i implies pji by the definition of v. This means

that we may restrict to the case:

Case (b) k � fh � l .
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We then set v D pk and look at the matrices ZM 0vi , 1 
 i 
 p. These matrices are
all in �D.mpk; n/ but are not equivalent modulo �D0 .mpkC1/ by definition of v. ut

We now come to the second claim. The proof will also make use of Proposi-
tion 6.3.

Proposition 6.4. Let p 2 Z with
�
D
p

�
D C1, i.e. p D pp� and let .p; ��/ D 1.

Then for all m 2 OD with .m; p/ D 1

�
.SL.LD/\ �D0 .m// W .SL.LD/\ �D0 .mp/

� D p C 1

holds.

The main problem about divisors of split prime numbers is that it is still possible
that p� jm. This will make it seriously harder to prove the result. Therefore, we
have to split the proof into two steps. Each of these steps will be dealt with in a
separate lemma.

Lemma 6.5. Let p 2 Z with
�
D
p

�
D C1, i.e. p D pp� and let .p; ��/ D 1.

Furthermore let m 2 OD with .m; p/ D 1. Then

�
.SL.LD/\ �D0 .mp�// W .SL.LD/ \ �D0 .mp�p//

� D p C 1

holds.

Proof. We try to find a matrixW which is a word in T andZ such that the matrices

.I / W T i ; i D 1; : : : ; p

.II/ Id

are all in �D0 .mp�/ but are incongruent modulo �D0 .mp�p/ or in other words such
that W T i�jW �1 2 �D0 .p

�p/ implies i D j . The simplest W that we found is
W WD ZT kZMT �kZ�1 where k is chosen as follows: let k 2 f1; : : : ; pg, such that
p� jk���C C 1. This is always possible since p� − �� and 1; ::; p are incongruent
modulo p� . Furthermore we know that k ¤ p because otherwise it would follow
that p� j1. Now suppose that pjk���C C 1. Since .p; p�/ D 1 we would then have
pp� jk���C C 1 which is exactly pjk���C C 1 or pjk.w Cf /C 1 for some f 2 Z

and therefore pjk since p 2 N.1 This is a contradiction. Hence p − k���C C 1. For
i 2 f1; : : : ; pg we have

.W T Ni /2;1 D M��.k���C C 1/2:

1If D � 1 mod 4 then f is D�1
4

for SL.L1D/ and it is D�5
4

for SL.L0D/. If D � 0 mod 4 then
f isD=4.
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Since

mp� jM��.k���C C 1/2:

all the matrices lie in �D0 .mp�/ but none of the matrices in .I / is equivalent to
the identity modulo �D0 .mp�p/. We now show that the matrices in .I / are pairwise
incongruent. So suppose

W T j�iW �1 2 �D0 .mpp�/:

Set x WD j � i . Then

.W T NxW �1/2;1 D �M��2�C.Mk���C C 1/4 � x:

As p − M; p − �� and p − .k���C C 1/ we have that pjx and hence i D j . ut
We proceed to the second lemma.

Lemma 6.6. Let p 2 Z with
�
D
p

�
D C1, i.e. p D pp� and let .p; ��/ D 1.

Furthermore let m 2 OD with .m; p/ D 1. Then

�
.SL.LD/ \ �D0 .m// W .SL.LD/ \ �D0 .mp//

� D p C 1

holds.

Proof. We want to find a k 2 N such that the matrices

.I / ZMi ; i D 1; : : : ; p

.II/ ZMkT

lie in �D0 .m/ and are pairwise incongruent modulo �D0 .mp/. Indeed, we choose k
as follows: let k 2 f1; : : : ; pg such that pjkM���C C 1. This is always possible
since p − �� and p − M . Furthermore we know that k ¤ p because otherwise it
would follow that pj1. By definition, it is clear that all the matrices in .I / and .II/
lie in �D0 .m/ and that the matrices in .I / are pairwise incongruent modulo�D0 .mp/.
Finally, we calculate

.ZMkTZ�Mi/2;1 D M��.�.kM���C C 1/i C k/:

Now suppose that pjM��.�.kM���C C 1/i C k/. In other words this means
pj.�.kM���C C 1/i C k/ which yet implies pjk. This is a contradiction. ut
Proof (Proof of Proposition 6.4). By Proposition 6.3 (and analogous arguments as
in the proof of it) we may assume that prime ideals stemming from split prime
numbers divide m only of order one. Then the claim follows from Lemmas 6.5
and 6.6. ut
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6.1.2 Inert Prime Numbers

The second case concerns inert prime numbers p 2 Z. The condition .p; ��/ D 1 is
then automatically fulfilled (compare Lemma 2.5). The difficulty about this case is
that there exist 0 < i < N .p/ D p2 with pji . We start with controlling the effect
of higher powers of p.

Proposition 6.7. Let p 2 Z be an inert prime number, i.e.
�
D
p

�
D �1. Moreover

let m 2 OD be an arbitrary element with .m; p/ D 1. Then for all k 2 N

�
.SL.LD/ \ �D0 .mpk// W .SL.LD/\ �D0 .mp

kC1//
� D N .p/ D p2

holds.

Proof. We want to find matrixW which is a word in T andZ such that the matrices

W lZMpkj ; j D 1; : : : ; p l D 1; : : : ; p

lie �D0 .mp
k/ but are pairwise incongruent modulo �D0 .mp

kC1/. As p is an inert
prime number, it does not divideM , and hence

W WD ZTMp
k

Z�1

might be a good a choice.

W hZMpkj � W lZMpki

is equivalent to W hZMpk.j�i /W �l 2 �D0 .mpkC1/:

Setting x WD j � i , we thus need to check when

.W hZpkdxW �l /2;1 D p3kM3��3�C2 � hlx„ ƒ‚ …
v1

Cp2kM2��2�C � .hC l/x„ ƒ‚ …
v2

CpkM��.x C ���C � .l � h//„ ƒ‚ …
v3

is divisible by mpkC1. We already know that mjv1 C v2 C v3. It suffices to check
when pkC1jv1 C v2 C v3 holds. Obviously pkC1 always divides v1 C v2. So we
are just interested in which cases we have pkC1jpkM��.x C ���C � .l � h// or
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equivalently pjM��.x���C � .l � h//. As p − �� and p − M this is equivalent to
pj.x C ���C � .l � h//. We have ���C D w C f , with f 2 Z. Thus we ask when
pj.w C f / � .l � h/C x. We now just look at the imaginary part of the right hand
side (i.e. the part which does not lie in Z). This gives us that l D h. Thus pjx. This
yields x D 0 or in other words i D j . ut

We now come to the second claim.

Proposition 6.8. Let p 2 Z be an inert prime number, i.e.
�
D
p

�
D �1. Then for all

m 2 OD with .m; p/ D 1

�
.SL.LD/\ �D0 .m// W .SL.LD/\ �D.mp//

� D N .p/C 1 D p2 C 1

holds.

Proof. We claim that the matrices

.I / Z�MT iZMT j ; i D 1; : : : ; p � 1; j D 1; : : : ; p

.II/ ZMT i i D 1; ::; p

.III/ Id

lie in �D0 .n/ and are pairwise incongruent modulo �D0 .mp/. The matrices in .II/ lie
in �D0 .m/ but are not congruent to the identity modulo �D0 .mp/. Furthermore

.ZMT iZ�M/2;1 D �M2��2�C � i

implies that the matrices in .II/ are pairwise incongruent modulo �D0 .mp/. More-
over all the matrices in .I / lie in �D0 .m/ but none of them is congruent to the
identity modulo �D0 .mp/. Next we show that the matrices in .I / are indeed pairwise
incongruent modulo �D0 .mp/:

Z�MT iZMT k � Z�MT jZMT l

is equivalent to Z�MT iZMT xZ�MT �jZM 2 �D0 .mp/

where x WD k � l . However

.Z�MT iZMT xZ�MT �jZM/2;1 D vi;j;x

where vi;j;x D M2��2�C.�M2��2�C2 � ijx C .j � i//: So let us suppose that
pjM2��2�C.�M2��2�C2 � ijx C .j � i// which holds if and only if we have
pj �M2��2�C2 � ijx C .j � i/. We now have to distinguish three cases:

Case (1) D � 1 mod 4, odd spin: If we consider SL.L1D/ for D � 1 mod 4

then we assume that p − DC1
2

. Then ��2�C2 D DC1
2

w C D�1
4

C .D�1/2
16

and we look
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at the imaginary part of the right hand side. As p − DC1
2

this yields pjijx. Now we
look at the real part (i.e. the part which lies in Z) and get j D i < p. Therefore,
x D 0 yields k D l . It remains to check whether it is possible that a matrix in .I / is
congruent to a matrix in .II/.

.Z�MT iZMT xZ�M /2;1 D M��.M2��2�C2 � ix � 1/:

However pjM��.M2��2�C2 � ix � 1/ implies pj.M2��2�C2 � ix � 1/. As above,
this yields ix D 0 and thus pj � 1, which is a contradiction.

If pjDC1
2

, then we first prove the following lemma:

Lemma 6.9. Let p 2 Z be an inert prime number, i.e.
�
D
p

�
D �1. Then

�
SL.L1D/ W .SL.L1D/\ �D0 .p/

� D N .p/C 1 D p2 C 1

holds.

Proof. As m D 1 we are allowed to use the elliptic element S 2 SL.L1D/. This will
help a lot. It is enough to find a list of N .p/ C 1 D p2 C 1 matrices in SL.L1D/
which are inequivalent modulo �D0 .p/. We claim that

.I / ZiT j ; i D 1; : : : ; p � 1; j D 1; : : : ; p

.II/ ST j ; j D 1; : : : ; p

.III/ Id

is such a list. Note that

.ZiT j /2;1 D w � i

and

.ST j /1;2 D 1

which means that none of the matrices in .I / and .II/ is equivalent to the identity
matrix.

So let us assume ZlT j�iZk 2 �D0 .p/. We set x WD j � i and calculate

.ZlT xZ�k/2;1 D �w3 � klx C w � .l � k/

So by assumption pj � w3 � klx C w � .l � k/. Since .w; p/ D 1 this is equivalent
to pj � w2 � klx C .l � k/. Furthermore w2 D w C f , where f D D�1

4
depends

only on the discriminant, and so pj.l � k/ � .w C f / � klx. Since both l and k are
smaller than p, this implies x D 0 and therefore l D k.
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Next we show that all the matrices in .II/ are incongruent modulo �D0 .p/. So
suppose ST j � ST i . Then

.ST j�iS/2;1 D w � .j � i/

implies that j D i .
Finally it has to be shown that the matrices in .I / and .II/ are incongruent modulo

�D0 .p/. Again we set x WD j � i and calculate

.ST xZ�k/2;1 D �w2 � kx C 1

But, as above, pj � w2kx C 1, cannot hold. ut
Now suppose that the index ŒSL.L1D/ W SL.L1D/ \ �D.m/� is k. So we know by

the lemma that the index ŒSL.L1D/ W SL.L1D/ \ �D.mp/� is k.N .p/ C 1/=l with
l 2 N. On the other hand, it follows from Proposition 6.7 that the index is at least
kN .p/. This yields l D 1 and thus the claim.

Case (2) D � 1 mod 8, even spin: If we consider SL.L0D/ then ��2�C2 D
D�3
2

w C D�1
2

C .D�5/2
16

and if we assume that p − D�3
2

, then the claim immediately
follows. If we look at p with pjD�3

2
then it suffices to prove the following lemma:

Lemma 6.10. Let p 2 Z be an inert prime number, i.e.
�
D
p

�
D �1, with pjD�3

2
.

Then

�
SL.L0D/ W .SL.L0D/\ �D0 .p/

� D N .p/C 1 D p2 C 1

holds.

Proof. It is enough to find a list of N .p/C 1 D p2 C 1 matrices in SL.L0D/ which
are inequivalent modulo �D0 .p/. We claim that

.I / L�1T iLT j ; i D 1; : : : ; p � 1; j D 1; : : : ; p

.II/ LT i ; j D 1; : : : ; p

.III/ Id;

where L is the matrix from Lemma 3.11, is such a list. We assume that D � 1

mod 16. The other case works in the same way. Note that

.L�1T iLT j /2;1 D �4.w C 2/2.w � 1/ � i

and

.LT i /2;1 D �2.w C 2/
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which means that none of the matrices in .I / and .II/ is equivalent to the identity
matrix since p ¤ 2.

Since

.LT iL�1/2;1 D �4.w C 2/2.w � 1/ � i

the matrices in .II/ are indeed pairwise incongruent modulo �D0 .p/. Furthermore,

.L�1T iLT xL�1T �j L/2;1 D vi;j;x

where vi;j;x D 4.w � 1/.w C 2/2.4.�w4 � 2w3 C 3w2 C 4w � 4/ � ijx C .j � i//:
Since �w4 � 2w3 C 3w2C 4w � 4 D .�DC 5/w C D�1

4
� DC7

4
� 4 and since p ¤ 2,

this implies that x D 0 if the matrix is in �D0 .p/ and thus also i D j . Therefore, all
the matrices in .I / are inequivalent modulo �D0 .p/.

Finally we have

.L�1T iLT jL�1/2;1 D 2.w C 2/..�w4 � 2w3 C 3w2 C 4w � 4/ � ij C 1/:

As above, this implies that the matrices in .I / and .II/ are not equivalent modulo
�D0 .p/. ut
Case (3) D � 0 mod 4: For D � 0 mod 4 we have ��2�C2 D D

2
w C �

D
4

�2 C 1:

On the other hand p does not divide D
2

because p is an inert prime number and so
the claim follows. ut

6.1.3 Divisors of Ramified Prime Numbers

The last type of prime numbers leads us to ramified prime numbersp 2 Z or in other
words pjD. This case is treated here. What also makes ramified prime numbers a
little difficult is the fact that if p D p2 then p2jN .p/.

Proposition 6.11. Let p 2 Z be a ramified prime number, i.e. pjD and p D p2,
with .p; ��/ D 1. Moreover let m 2 OD be an arbitrary element with .m; p/ D 1.
Then for all k 2 N

�
.SL.LD/\ �D0 .mpk// W .SL.LD/\ \�D0 .mpkC1//

� D N .p/:

holds.

Proof. Note that p − m yields p − M . We now have to distinguish three cases
for k:

1. Case: k is even

Choose d WD pk=2 2 N. Then ZMdi , i D 1; : : : ; p are matrices in �D0 .mpk/ which
are inequivalent modulo �D0 .mpkC1/.
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2. Case: k is odd and k > 1

We first consider the index

�
.SL.LD/\ �D0 .mpk�1// W .SL.LD/\ �D0 .mpkC1//

�
:

We claim that

W lZMdj ; j D 1; : : : ; p; l D 1; : : : ; p

is a list of p2 matrices in �D0 .mpk�1/ which are moreover inequivalent modulo
�D0 .mpkC1/, if we choose d WD p.k�1/=2 and W WD ZTMdZ�1. All the matrices
lie in �D0 .mpk�1/. So assumeW hZMd.j�i /W �l 2 �D0 .pkC1/. Set x WD j � i . Then

.W hZMdxW �l /2;1 D M3d3��3�C2 � hlx CM2d2��2�C � .l C h/x„ ƒ‚ …
v1

CMd��.x C ���C � .l � h//„ ƒ‚ …
v2

:

Note that always mpkC1jv1. So we are just interested in knowing in which cases
mpkC1jMd��.x C ���C.l � h//. This expression is equivalent to pj��.x C
(l-h)N���C/. As p − �� this means pj.x C N���C � .l � h//. We have ���C D
w Cf with f 2 Z. Thus we ask when pjN.w Cf / � .l � h/Cx. We now just look
at the imaginary part of the right side. This gives us that l D h and hence pjx. This
yields x D 0 or in other words i D j . Thus we have

p2 D �
.SL.LD/\ �D0 .mpk�1// W .SL.LD/\ �D0 .mpkC1//

�

D �
.SL.LD/\ �D0 .mpk�1// W .SL.LD/\ �D0 .mpk//

�
„ ƒ‚ …

Dp
�

�
.SL.LD/\ �D0 .mpk// W .SL.LD/\ �D0 .mpkC1//

�
„ ƒ‚ …

DWy

which implies y D p.

3. Case: k D 1

Since p is the divisor of a ramified prime number we know that pjD. Since .p; ��/ D
1we may consider the matrices from the proof of Proposition 6.8. All these matrices
then lie in �D0 .m/ but are inequivalent modulo �D0 .mp/ and therefore

�
.SL.LD/\ �D0 .m// W .SL.LD/\ �D0 .mp//

� � p2 C 1:
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On the other hand

�
.SL.LD/\ �D0 .m// W .SL.LD/ \ �D0 .mp//

�

D �
.SL.LD/\ �D0 .mp/// W .SL.LD/ \ �D0 .mp//

�
„ ƒ‚ …

DWy
�.p C 1/

by Proposition 6.12. This means that y.p C 1/ � p2 C 1 and hence y D p since
y 
 p. ut

The other proposition requires only a much shorter proof.

Proposition 6.12. Let p 2 Z be a ramified prime number, i.e. pjD and p D p2,
with .p; ��/ D 1. Then for all m 2 OD with .m; p/ D 1

�
.SL.LD/\ �D0 .m// W .SL.LD/\ �D0 .mp/

� D p C 1

holds.

Proof. The matrices

ZMT i ; i D 1; : : : ; p

all lie in �D0 .m/. The same calculation as in Proposition 6.8 yields that these
matrices are pairwise incongruent modulo �D0 .mp/. So we need to find one more
matrix W which is not equivalent to all the ZMT i . Note that Wk WD ZMT kZM 2
�D0 .m/ for all k 2 Z. We claim that there exists an k 2 f1; : : : ; pg with

WkT
�NiZ�M … �D0 .mp/

for all i D 1; : : : ; p. One calculates

.WkT
�iZ�M/2;1 D M��.M2��2�C2 � ik C 2M���C � i C 1/:

Now suppose that for all k there exits an ik such that

pjM2��2�C2 � kik C 2M���C � ik C 1

or equivalently

pjikM���C.M���C � k C 2/C 1:

This would imply that M���C � k C 2 is a unit mod p for all k. This contradicts
p − M���C. ut

This also finishes the proof of Theorem 6.1 (i).
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6.1.4 Prime Ideals with .p; ��/ ¤ 1

We have only treated the case .p; ��/ D 1 so far. If this condition is violated the
situation cannot be controlled by only using the matrices T and Z. Therefore, we
have to go through three different cases, namely odd and even spin Teichmüller
curves if D � 1 mod 4 andD � 0 mod 4

D � 1 mod 4, Odd Spin. We look at first at the odd spin Teichmüller curves.2 L7et
us revisit the example from the beginning of the chapter: for discriminant D D 17

and �2 D w C 2

�
SL.L117/ W .SL.L117/\ �D0 .�2//

� D 2

3

�
SL2.OD/ W �D0 .�2/

�

holds. Thus for arbitrary powers of �2 we have the inequality

�
SL.L117/ W .SL.L117/\ �D0 .�

n
2 //
ˇ̌

�
SL2.O17/ W �D0 .�n2 /

� 
 2

3

since �D0 .�
n
2 / D �D0 .�2/ \ �D0 .�n2 /.

Proposition 6.13. For discriminant D D 17 we have for all n 2 N:

�
SL.L117/ W .SL.L117/ \ �D0 .�n2 //

� D 2

3

�
SL2.OD/ W �D0 .�n2 /

�
: (6.1)

A direct calculation shows that the matrices Z; T; S do not suffice to find all coset
representatives of SL.L117/=.SL.L117/ \ �D0 .�n2 //. In order to prove the proposition
we therefore need to make use of the second parabolic generator of SL.L117/ from
Lemma 3.9, that we from now on denote by L.

Proof. The index
�
SL2.OD/ W �D0 .�n2 /

�
is 2n�1 � 3. Moreover we already know that

(6.1) holds with 
 instead of D. Thus we only have to give a list with 2n elements
in SL.L1D/ which are incongruent modulo �D0 .�

n
2 /. It can be easily checked that

L; : : : ; L2
n�1

LS; : : : L2
n�1

S

ut
is such a list.

There is a general pattern which explains the factor 2
3
. Recall that if p is a prime

ideal in OD with .p;w/ D p, then p divides a split prime number p 2 Z.

2Recall our abuse of notation of the term spin.
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Proposition 6.14. Let p be a prime ideal in OD with pjw and m 2 OD with
.m; p/ D 1. Then for all k 2 N

�
.SL.L1D/\ �D0 .mpk// W .SL.L1D/ \ �D0 .mpkC1/

� D N .p/

holds.

Proof. By what we have shown in the last sections we may without loss of generality
assume that .m;w/ D m. We have that p − M . Recall that 2 is an inert prime
number if D � 5 mod 8. Let j D .k � 1/, if pj2 andD � 1 mod 16, and j D k

otherwise. Then the matrices LMN .p/j i for i D 1; : : : ;N .p/ all lie in �D0 .mpk/ but
are incongruent modulo �D0 .mpkC1/. ut

Let us come to the case k D 0.

Proposition 6.15. Let p be a prime ideal in OD with pjw and p ¤ p2 if D � 1

mod 16 andm 2 OD with .m; p/ D 1, then

�
.SL.L1D/\ �D0 .m// W .SL.L1D/ \ �D0 .mp/

� D N .p/C 1:

Proof. By what we have proven so far, we may without loss of generality assume
that .m/ D p1 � � � pk where all the pi are distinct prime ideals which divide .w/.
We prove the claim by induction on the number k C 1 of prime ideals divisors of
mp. First assume that k C 1 D 1, i.e. m D 1. Then the matrices Li and S all
lie in �D0 .m/ but are incongruent modulo �D0 .mp/. We proceed with the induction
step. Since p − M the matrices LMi with 1 
 i 
 N .p/ are all in �D0 .m/ but
incongruent modulo �D0 .mp/. By the induction hypothesis we have that N .p/ C 1

as well as N .pi /C1 for all i divide the index. The induction hypothesis also implies
that the index is at least N .p/.N .p1/C 1/ � � � .N .pk/C 1/. Thus the claim follows.

ut
This also finishes the proof of Theorem 6.1 (ii) and (iii). Finally, let us consider

the case D � 1 mod 16 and p D p2:

Proposition 6.16. Let D � 1 mod 16 andm 2 OD with .m; p2/ D 1, then

�
.SL.L1D/\ �D0 .m// W .SL.L1D/\ �D0 .mp2/

� � N .p2/ D 2:

Proof. By the same arguments as in the proof of Proposition 6.15 one may restrict
to the case m D 1 and S and T are matrices which are incongruent mod �D0 .p2/.
So the index is at least 2. ut

For SL.L1D/, all cases that may occur have been treated now.

D � 1 mod 8, Even Spin. What makes the situation for even spin a lot more
complicated is that we cannot in general write down any elliptic element in SL.L0D/
explicitly. It is easy to see by considering the matricesLi and QLi from Lemmas 3.11
and 3.12 that for all prime ideals p with .p; ��/ D p, all k 2 Z�0 and allm; n 2 OD

with .m; n/ D 1 we have
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�
.SL.L0D/ \ �D0 .mpk// W .SL.L0D/\ �D0 .mpkC1//

� � N .p/:

The difficulty is to calculate the index
�
SL.L0D/ W .SL.L0D/ \ �D0 .p//

�
. If D D

17 and ��2 j��, which is then the unique prime divisor of ��, we know that�
SL.L0D/ W .SL.L0D/\ �D0 .�

�
2 //
� D 2 and hence the index cannot be maximal

in general if pj��. On the other hand, for all proper prime ideals p � OD with
pj�� and p ¤ p�2 we conjecture that the index is still maximal. However, the lack
of knowledge about the Veech group, prevents us from proving an analogue of
Theorem 6.1 (ii): we explicitly calculated that for small discriminants and arbitrary
ideals p with pj�� the index of � \ �D0 .p/ in the subgroup � of SL.L0D/ generated
by T;Z;L and QL is only N .p/.

D � 0 mod 4. Also if D � 0 mod 4 the matrix L from Lemma 3.14 yields that
for all prime ideals p with .p; ��/ D p, all k 2 Z�0 and all m 2 OD with we have

�
.SL.L0D/ \ �D0 .mpk// W .SL.L0D/\ �D0 .mpkC1//

� � N .p/:

However, the question how to precisely calculate the volume of a diagonal twisted
Teichmüller curve in general remains unsolved by the same reasons as in the even
spin case.

6.2 The Volume of Upper Triangular Twists

For the rest of the chapter we want to assume as a general condition that the (wide)
class number hD is equal to 1. In this case we now also calculate the volume of
Teichmüller curves twisted by upper triangular matrices. Since the class number is
assumed to be equal to 1 twists by upper triangular matrices yield indeed all twisted
Teichmüller curves because the number of cusps of XD is equal to the class number
(compare Proposition 4.5). This information is therefore very useful since it enables
us to calculate the volume of any twisted Teichmüller curve if hD D 1. Surprisingly
enough, we can reduce the calculation for upper triangular matrices to the case of
diagonal twisted Teichmüller curves. So let us consider a Teichmüller curve twisted
by the matrix

M D
�
m x

0 n

�

with m; n; x 2 K . By multiplying with the common denominator we may without
loss of generality assume that m; n; x 2 OD and .m; n; x/ D 1. Recall that the
stabilizer SLM.LD/ of the twisted Teichmüller curve is then given by SLM.LD/ D
Stab.ˆ/M

�1 \ SL2.OD/ (Proposition 4.3). We will again consider the conjugated
group Stab.ˆ/ \M�1SL2.OD/M which is known to be equal to SLM .LD;M/ D
SL.LD/ \M�1SL2.OD/M in most cases (see Theorem 5.28). Analogously as for



6.2 The Volume of Upper Triangular Twists 103

diagonal twisted Teichmüller curves, we have to distinguish the case where both
m and n are relatively prime to �� and the case where at least one of them has a
common prime divisor with ��. While we can always give precise formulas in the
first case, there again occur different phenomena in the second case.

6.2.1 The Relatively Prime Case

In this section the aim is to prove the following theorem:

Theorem 6.17. Let m; n; x 2 OD be arbitrary elements with .m; n; x/ D 1 and let
M be as above. If hD D 1 and .m; ��/ D 1 and .n; ��/ D 1 then the degree of the
covering Q� W CM.M/ ! C equals the degree of the covering � W XD.M/ ! XD .
In other words

�
SL.LD/ W .SL.LD/ \M�1SL2.OD/M/

� D �
SL2.OD/ W �D0 .nm/

�
:

If the degree of the covering � W CM.M/ ! CM is equal to 1, then the volume of
the Teichmüller twisted by M D . m x

0 n / is

�9� �SL2.OD/ W �D0 .nm/
�
�.XD/:

The theorem tells us that the volume of the Teichmüller curve can be only
preserved if the determinant of M is a unit. On the other hand the volume does
not detect the upper right entry of the matrix.

D � 1 mod 4, Odd Spin. We start again with the SL.L1D/ case. Let us from
now assume that .m;w/ D 1 and .n;w/ D 1. By Theorem 5.28 we then have
that Stab.ˆ/ \M�1SL2.OD/M D SL.L1D/ \M�1SL2.OD/M D SLM.L1D;M/.
In order to find out the volume of the twisted Teichmüller curve, it is therefore
necessary to calculate ŒSL.L1D/ W SLM.L1D;M/�.
Although the following lemma follows immediately from the definition, it plays an
important role for the calculation of the involved indexes.

Lemma 6.18. For all m; n; p; x 2 OD with .m; x; n; p/ D 1 and

M D
�
m x

0 np

�
and N D

�
m x

0 n

�

we have SLM.LD;M/ � SLN .LD;N /.

This lemma implies that we can proceed step by step and do similar calculations
as in the diagonal twist case. For i; j 2 N and an arbitrary prime element � 2 OD

with .�;w/ D 1 we set P WD
�
�i x
0 �j

�
and Q WD

�
�i x
0 �j�1

�
. Then we show the

following fundamental lemma about the indexes:
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Lemma 6.19. For all x 2 OD and all prime elements � 2 OD with .�;w/ D 1

and .�; x/ D 1 and all i; j 2 N

�
SL.L1D/ W SLP .L1D; P /

� D N .�/
�
SL.L1D/ W SLQ.L1D;Q/

�

holds.

Proof. As usual the different types of prime numbers (split, inert, ramified) require
different arguments. Recall that Z D T t for SL.L1D/.

(i) If � is a divisor of a split prime number and j > i then QTN .�j�i�1/Q�1 2
SL2.OD/, but PTN .�j�i�1/P�1 … SL2.OD/. So the matrices TN .�j�i�1/k

for 1 
 k 
 N .�/ are elements in the bigger group which are pairwise
incongruent modulo the smaller group. If i � j then QZN .�jCi�1/Q�1 2
SL2.OD/ and PZN .�jCi�1/P�1 … SL2.OD/.

(ii) If � is an inert prime number, we get by an argument of the same type as in the
case of split prime numbers that we only have to compare the indexes for the
case i D j D 1. LetL be the second parabolic matrix in the Veech group from
Lemma 3.9. We only do the case D � 5 mod 8 here. The other cases work
exactly in the same way. If � ¤ 2 we claim that the matrices Z�kL�z with
1 
 k 
 � and 1 
 z 
 � are matrices in the bigger group which are pairwise
incongruent modulo the smaller group. Indeed, QZ�kL�zQ�1 2 SL2.OD/

and it requires a long and tedious calculation to check that

.PZ�kL�zZ��lP�1/1;2 D x2

�
.4.w C 1/z C w.k � l//C v

for some v 2 OD . Since .�; x/ D 1we must therefore have �j4z and �j.k�l/.
This yields the claim. If � D 2 then a similar calculation yields

�
SLQ.L1D;Q/ W SLP .L1D; P /

� D 4

since the matrices Z2k;E2z for 1 
 k 
 2 and 1 
 z 
 2 all lie
in SLQ.L1D;Q/ but are incongruent modulo SLP .L1D; P / where E is the
parabolic element fixing the cusp 1 (compare Sect. 3.3).

(iii) If � is a divisor of a ramified prime number we may again restrict to the case
i D j D 1. Let U WD �

�2 x
0 1

� D �
1 x
0 1

� �
�2 0
0 1

�
and V WD �

�2 x
0 �

�
. It can

be checked that UZN .�/iU�1 2 SL2.OD/ but VZN .�/iV �1 … SL2.OD/ for
1 
 i < N .�/ and therefore:

.N .�/C 1/N .�/2 D N .�/
�
SL.L1D/ W SLU .L1D;U /

�

D �
SL.L1D/ W SLV .L1D; V /

�


 N .�/
�
SL.L1D/ W SLP .L1D; P /

�


 N .�/N .�/.N .�/ C 1/

ut
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By passing to appropriate powers of T;Z and L one can—similarly as in
Sect. 6.1—deduce the more general result: Let m; n; x 2 OD with .m; n; x/ D 1

and � 2 OD be a prime element with .�;w/ D 1 and set P WD
�
m�i x
0 n�j

�
and

Q WD
�
m�i x
0 n�j�1

�
.

Proposition 6.20. Let P andQ be defined as above. Then

�
SL.L1D/ W SLP .L1D; P /

� D N .�/
�
SL.L1D/ W SLQ.L1D;Q/

�
:

It is now possible to show that the volume of the Teichmüller curve twisted by
M only depends on the determinant of the matrix.

Proposition 6.21. If M D . m x
0 n / with m; n; x 2 OD with .m; n; x/ D 1, then

�
SL.L1D/ W SLM .L1D;M/

� D �
SL2.OD/ W �D0 .nm/

�
:

Proof. We first assume that .n; x/ D 1. Then let � be an arbitrary prime divisor of
n and set U D . m� x

0 n /. Hence

�
SL.L1D/ W SLM.L1D;M/

� � 1

N .�/

�
SL.L1D/ W SLU .L1D;U /

�
:

By Proposition 6.20 for V D �m� x
0 n=�

�
the latter expression is equal to

�
SL.L1D/ W SLV .L1D; V /

�

and hence the index
�
SL.L1D/ W SLM.L1D;M/

�
is maximal if and only if the index�

SL.L1D/ W SLV .L1D; V /
�

is maximal. We may therefore assume that M is of the
form . mn x0 1 /. Since

�
1 �x
0 1

��
mn x

0 1

�
D
�
mn 0

0 1

�

the claim thus follows.
If there exist common prime divisors of x and n, then we can repeat the preceding

arguments until the lower right entry divides x. Obviously the claim then also
follows since njx. ut

This completes the proof of Theorem 6.17 for D � 5 mod 8 and for D � 1

mod 8 for the odd spin Teichmüller curves.

D � 1 mod 8, Even Spin. It is clear that it suffices to prove an analogue of
Lemma 6.19 in order to show Theorem 6.17 in the even spin case. Let again be

P WD
�
�i x
0 �j

�
and Q WD

�
�i x
0 �j�1

�
two matrices where x 2 OD and � 2 OD is a

prime element with .�; x/ D 1 and .�; ��/ D 1.
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Lemma 6.22. For all x 2 OD and all prime elements � 2 OD with .�; ��/ D 1

and .�; x/ D 1 and all i; j 2 N

�
SL.L0D/ W SLP .L0D; P /

� D N .�/
�
SL.L0D/ W SLQ.L0D;Q/

�

holds.

Proof. If � is a divisor of a split or a ramified prime number p 2 Z then the proof
is verbatim the same as in Lemma 6.19 if we use the appropriate matrices T and
Z. So we just have do the case, where � is an inert prime number and i D j D
1. We do here only the case D � 1 mod 16. We consider the matrices Z�kL�z

with 1 
 k 
 � and 1 
 z 
 � where L stems again from Lemma 3.11. Then
QZ�kL�zQ�1 2 SL2.OD/ and therefore all the matrices lie in the bigger group. It
remains to be shown that the matrices are not equivalent modulo the smaller group.
We have

.PZ�kL�zZ��lP�1/1;2 D 1;2

where 1;2 D x2

�

�
.l � k/.w C 1/C z

�
DC15
16

w C 3.D�1/
16

��
C h with h 2 OD . So

assume that this entry lies in OD . Then since � is inert and .�; x/ D 1 it follows
that � divides the imaginary part of the expression as well as the real part and hence
�jzD�9

8
. However � cannot divide D�9

8
since � is inert and N .w C 1/ D D�9

4
.

Therefore, �jz and thus �j.l � k/. ut
D � 0 mod 4. We again show an analogue of Lemma 6.19. So let P WD

�
�i x
0 �j

�

and Q WD
�
�i x
0 �j�1

�
be as usual two matrices where x 2 OD and � 2 OD is a

prime element with .�; x/ D 1 and .�; ��/ D 1.

Lemma 6.23. For all x 2 OD and all prime elements � 2 OD with .�; ��/ D 1

and .�; x/ D 1 and all i; j 2 N

�
SL.L0D/ W SLP .L0D; P /

� D N .�/
�
SL.L0D/ W SLQ.L0D;Q/

�

holds.

Proof. If � is a divisor of a split or a ramified prime number p 2 Z then the proof
is again verbatim the same as in Lemma 6.19. So we just have do the case, where �
is an inert prime number and i D j D 1. We do here only the case D � 4 mod 8.
We consider the matrices Z�kL�z with 1 
 k 
 � and 1 
 z 
 � where L stems
from Lemma 3.14. Then QZ�kL�zQ�1 2 SL2.OD/ and therefore all the matrices
lie in the bigger group. It remains to be shown that the matrices are not equivalent
modulo the smaller group. We have

.PZ�kL�zZ��lP�1/1;2 D x2

�
..l � k/w � z.D=2C wD=4//C h
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with h 2 OD . So assume that this entry lies in OD . Then since � is inert and
.�; x/ D 1 it follows that � divides the imaginary part of the expression as well as
the real part. Since � is inert, we hence have �jz and therefore �j.l � k/. ut

6.2.2 The Non-relatively Prime Case

If m or n is not relatively prime to �� the index of SL.LD/ \ M�1SL2.OD/M

in SL.LD/ is not always maximal. In fact, there are examples where the index is
maximal, i.e. equal to the index of �D0 .mn/ in SL2.OD/, and examples where it is
not maximal. It has been already described in Sect. 6.1.4 that the first happens for
instance in the case D D 13 and M D �

w 0
0 1

�
(compare Theorem 6.1). We will

even see that the index is maximal for all twisted Teichmüller curves if D D 13.
An example for the latter phenomenon to happen is D D 17, odd spin and M D�

1 0
wC1 wC2

�
. Then the volume of the Teichmüller curve twisted by M is equal to the

volume of the original Teichmüller curve.
If the discriminant D is 5 mod 8, then let i; j 2 N, x 2 OD and let � 2 OD

be an arbitrary prime element with .�;w/ D � and set P WD
�
�i x
0 �j

�
and Q WD�

�i x
0 �j

�
. Then we can prove the following lemma:

Lemma 6.24. If D � 5 mod 8 then for all x 2 OD and all prime elements � 2
OD with .�;w/ D � and .�; x/ D 1 and all i; j 2 N

�
SL.L1D/ W SLP .L1D; P /

� D N .p/
�
SL.L1D/ W SLQ.L1D;Q/

�

holds.

Proof. As always we may restrict to the case i D j D 1. Note that � − 2 since
D � 5 mod 8 and since � is a divisor of a split prime number. Let L again be
the matrix from Lemma 3.9. Then QLN .�/Q�1 2 SL2.OD/, but PLN .�/P�1 …
SL2.OD/. Therefore, the matrices LN .�/i for 1 
 i 
 N .�/ are elements in the
bigger group which are incongruent modulo the smaller group. ut

Applying this lemma, Theorems 6.17, 5.28 (iii) and Proposition 6.1 (ii) yields:

Theorem 6.25. Let D � 5 mod 8 be a fundamental discriminant and let
m; n; x 2 OD be arbitrary elements with .m; n; x/ D 1 and let

M D
�
m x

0 n

�
:

If hD D 1 then the degree of the covering Q� W CM.M/ ! C equals the degree of
the covering � W XD.M/ ! XD . In other words



108 6 Calculations for Twisted Teichmüller Curves

�
SL.LD/ W .SL.LD/ \M�1SL2.OD/M/

� D �
SL2.OD/ W �D0 .nm/

�
:

The volume of the Teichmüller twisted by M is then

�9� �SL2.OD/ W �D0 .nm/
�
�.XD/:

6.3 Classification of Twisted Teichmüller Curves

In Sect. 2.5.1 we have mentioned the theorem of H.-G. Franke and W. Hausmann
which states that there are only finitely many different twisted diagonals if the deter-
minant of the associated primitive skew-hermitian matrix is fixed. In this section, we
will see that a corresponding result does also hold for twisted Teichmüller curves.
To be more precise, we will almost completely classify twisted Teichmüller curves
for hC

D D 1 and D � 5 mod 8 a fundamental discriminant. Most importantly, we
may by Proposition 4.5 then restrict to upper triangular matrices in this case and
make use of Theorem 6.25.

Remark 6.26. So far we have only considered the stabilizer of the graph of
the Teichmüller curve, i.e. the stabilizer of the universal covering map of the
Teichmüller curve. From this the stabilizer of the Teichmüller curve C , by which
mean we mean its stabilizer in XD , has to be carefully distinguished. If D is a
fundamental discriminant then a matrix M 2 GLC

2 .K/ and its corresponding map
 M W .z1; z2/ 7! .M z1;M�z2/ define an automorphism of XD if and only if
M 2 SL2.OD/ (see Sect. 2.5). The stabilizer of the Teichmüller curve is then rather
boring.

It is yet another different question, if for a matrix M 2 GLC
2 .K/ the twisted

Teichmüller curve CM agrees with the original Teichmüller curve C . In some sense
this is also a stabilizer and it will therefore be called the twisting stabilizer of the
Teichmüller curve.

Still one might have in mind different such twisting stabilizers, i.e. with respect
to different set of matrices. Essentially, one might think of three different such sets.
The first one is the twisting stabilizer in SL2.R/2. We denote this twisting stabilizer
by StSL2.R/2.C /. We have discussed in Chap. 4 that StSL2.R/2.C / is far from being
accessible. By dividing matrices in GLC

2 .K/ by the root of their determinant we
can also interpret these matrices as matrices in SL2.R/2 and ask which of them
stabilizes the Teichmüller curve by a twist. We denote the corresponding group by
StGLC

2 .K/
.C /. Note that neither StSL2.R/2 .C / nor StGLC

2 .K/
.C / has to be a group ex

ante since the twisting stabilizer is not defined by an action. Finally all matrices in
SL2.OD/ by definition stabilize the Teichmüller curve and these matrices can also
be interpreted as a subset StSL2.OD/.C / � StGLC

2 .K/
.C /.
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Since the matrices M 2 GLC
2 .K/ and kM with k 2 K are identified when they

are considered in SL2.R/ every matrix M 2 GLC
2 .K/ can, by multiplying each

entry of M with the common denominator of its entries, be uniquely written as

M D
�
a b

c d

�

with a; b; c; d 2 OD and .a; b; c; d / D 1 if hD D 1 without changing the twisted
Teichmüller curve. Let q D .a; c/. Recall from Proposition 4.5 that M then yields
the same twisted Teichmüller curve as the upper triangular matrix

�
k l
0 m

�
where k D

q, m D .ad � bc/=q and l D � f .ad�bc/=q�b
a=q

and where f is chosen such that
fc=qC1
a=q

2 OD .
If hD D 1 and D � 5 mod 8 is a fundamental discriminant we were able

to calculate the volume of all twisted Teichmüller curves in Theorem 6.25. This
invariant of the twisted Teichmüller curve enables us to calculate StGLC

2 .K/
.C /

whenever the fundamental unit � of OD has a negative norm.

Theorem 6.27. If D � 5 mod 8 is a fundamental discriminant with narrow class
number hC

D D 1 then

StGLC

2 .K/
.C / D SL2.OD/

holds.3

Proof. If M 2 GLC
2 .K/ is an upper triangular matrix then we may assume that M

is of the form . m x
0 n / with m; n; x 2 OD and .m; n; x/ D 1. By Theorem 6.25, M

preserves the volume if and only if m 2 O�
D and n 2 O�

D . Since the fundamental
unit � has negative norm we thus have m D ˙�2g and n D ˙�2g0

for g; g0 2 Z. By
dividing each entry of M by an appropriate power of � we see that M is indeed a
matrix in SL2.OD/.

If M is not an upper triangular matrix, then

M D
�
a b

c d

�

with a; b; c; d 2 OD and .a; b; c; d / D 1. Let q D .a; c/ or in other words

M D
�
q Qa b
q Qc d

�

3Recall from Sect. 2.1 that hC

D D 1 implies in particular that OD has a fundamental unit of negative
norm.
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where Qa D a=q 2 OD and Qc D c=q 2 OD . From Proposition 4.5, it then follows
that M yields the same twisted Teichmüller curve as the upper triangular matrix
QM D �

k l
0 m

�
where k D q, m D . Qad � b Qc/ and l D � f .Qad�b Qc/�b

Qa where f is

chosen such that Qcf C1
Qa 2 OD . Suppose that CM is equal to C . Theorem 6.25 then

implies that all the entries of QM are divisible by q and moreover that q D . Qad�b Qc/.
Since qjl it follows that qjb, i.e. b D Qbq with Qb 2 OD . Then .a; b; c; d / D 1 and
q D . Qad � b Qc/ imply that qj Qa, i.e. Qa D q Oa for some Oa 2 OD . Then

l D �f . Qad � b Qc/ � b
Qa D �fq � Qbq

Oaq D �f � Qb
Oa :

Therefore, QM defines the same twisted Teichmüller curve as

 
1 � f�Qb

q Oa
0 1

!

and hence in particular Qb D uq OaC f for some u 2 OD since CM D C . Then

d D
Qb Qc C 1

Oa D .uq OaC f / Qc C 1

Oa D Qcuq C Qcf C 1

Oa

and hence qjd since QcfC1
Qa D Qcf C1

q Oa 2 OD . Therefore, q D 1 and ad � bc D 1, i.e.
M 2 SL2.OD/. ut

From this result the classification of twisted Teichmüller curves in the case hC
D D

1 and D � 5 mod 8 fundamental discriminant can be derived. Recall that two
twisted Teichmüller curves CM and CN are the same curve in XD if and only if
there exists a J 2 SL2.OD/ such that

f.M z;M �'.z// j z 2 Hg D f.JN z; J �N �'.z// j z 2 Hg :

We only consider Teichmüller curves twisted by upper triangular matrices here since
hC
D D 1; by normalizing the matrix, we only have to check when two matrices
M D . m x

0 n / and N D �
a b
0 c

�
with a; b; c;m; n; x 2 OD and .m; n; x/ D 1 and

.a; b; c/ D 1 define the same curve in XD. If the associated Möbius transformations
of M and N differ by a matrix in SL2.OD/ then the twisted Teichmüller curves
agree. On the other hand we have:

Theorem 6.28. Suppose D � 5 mod 8 is a fundamental discriminant with
narrow class number hC

D D 1. IfM D . m x
0 n / andN D �

a b
0 c

�
with a; b; c;m; n; x 2

OD and .a; b; c/ D 1 and .m; n; x/ D 1 define the same twisted Teichmüller curve
then

det.M/ D det.N /:
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Proof. If M and N define the same twisted Teichmüller curve then there exists an
J 2 SL2.OD/ such that

.M z;M �'.z// D .JN z�; J �N �'.z�//:

for some z� 2 H depending on z. The first component yields:

N�1 � J�1 �M z D z�

Inserting this in the second component gives

M�'.z/ D J � �N�'.N�1 � J�1 �M z/

which is equivalent to

N��1 � J ��1 �M� � '.z/ D '.N�1 � J�1 �M z/:

Therefore, N�1J�1M lies in the stabilizer of the graph of the Teichmüller curve
and in particular also in the twisting stabilizer. Note that

det.N�1J�1M/ D nm

ac
:

Thus it follows from Theorem 6.27 that for k D
p
cap
nm

the matrix kN�1J�1M has

to be a properly normalized matrix in GLC
2 .K/, i.e. in Mat2x2.OD/ and its entries

have no common divisor. Since N�1J�1M 2 GLC
2 .K/ also k must then lie in K ,

i.e. k D p

q
with p; q 2 OD and .p; q/ D 1. Let

J�1 D
�
e f

g h

�
:

Then

Z WD kN�1J�1M D 1

c

p

q

�
1
a
.m.�gb C ec// 1

a
.�b.gx C hn/C c.ex C f n//

gm gx C hn

�
:

Let q1 be a prime divisor of q. From the lower left entry of Z it follows that q1jg
order q1jm. Assume that q1jg. ThenZ2;2 implies that q1jn since q1 − h because J 2
SL2.OD/. Considering Z1;1 we then have q1jm since q1je would again contradict
J 2 SL2.OD/.

We hence always have q1jm. From Z2;2 it then follows that q1jgx C hn and
therefore from Z1;2 we get q1jex C f n. Then q1j.eh � fg/x which implies q1jx
since det.J�1/ D 1 and q1j.eh � fg/n which means q1jn. Since .m; n; x/ D 1
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hence q1 D 1. This implies that q D 1. Interchanging the roles of N and M we get
p D 1. This means that mn D ac or in other words det.M/ D det.N /. ut

We can also state a counterpart to the theorem by H.-G. Franke and W.
Hausmann. IfM D . m x

0 n / withm; n 2 OD fixed and x 2 K arbitrary the volume of
the twisted Teichmüller curves changes with varying x. However, after normalizing
the involved matrices appropriately such thatm; n; x 2 OD and .m; n; x/ D 1 there
are only finitely many different twisted Teichmüller curves of a given determinant.
The number of different twisted Teichmüller curves of the same determinant can be
easily bounded very roughly.

Proposition 6.29. If k 2 OD and k D Q
i �

ei
i is a decomposition of k into

prime elements with ei 2 N. Let f D P
i ei then the number of different twisted

Teichmüller curves of determinant k is at most 2f N .k/ if hC
D D 1.

Proof. Since the class number is equal to one, we may assume thatM D . m x
0 n / is an

upper triangular matrix with m; n; x 2 OD and .m; n; x/ D 1. Since mn D k each
of the ei factors �i must either divide m or n. This gives altogether 2f possibilities
for the diagonal. Since M and JM define the same twisted Teichmüller curves if
J D �

1 y
0 1

� 2 SL2.OD/ there are at most N .k/ different possibilities for the choice
of x if m and n are fixed. ut

We have strong numerical evidence that the following conjecture holds. It is
based on computer experiments for many different determinants k 2 OD including
all types of splitting behavior of the prime divisors of k.

Conjecture. Suppose D � 5 mod 8 is a fundamental discriminant with hC
D D 1.

All matrices M 2 GLC
2 .K/ \ Mat2x2.OD/ of determinant n 2 OD with relative

prime entries define the same twisted Teichmüller curve, i.e. there is exactly one
twisted Teichmüller curve of determinant n.

We can prove this conjecture in two instances. Indeed, equality of the determinant
is also a sufficient criterion for the twisted Teichmüller curves to coincide whenever
the determinant is prime in OD .

Theorem 6.30. Suppose D � 5 mod 8 is a fundamental discriminant, hC
D D 1.

Let � 2 OD be a prime element. Then there is exactly one twisted Teichmüller curve
of determinant � .

Proof. Anyway, all twisted Teichmüller curves are given by the matrices

M WD
�
� 0

0 1

�
and Nx WD

�
1 x

0 �

�
; x 2 OD; � − x:

Let us say a few words why these are indeed all possible matrices: since we
may multiply any twist-matrix W from the left by a matrix V 2 SL2.OD/

without changing the twisted Teichmüller curve, M yields indeed the only twisted
Teichmüller curve with upper left entry � . Also note that we can multiply a
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twist-matrixW from the right by an element V in the Veech group without changing
the twisted Teichmüller curve. Hence the matrices M and N0 define the same
twisted Teichmüller curve because M D �SN0S and S 2 SL.LD/. This means
that we may assume � − x.

We now show that all the above matrices define the same twisted Teichmüller
curve. This is by definition equivalent to the existence of some matrixWx 2 SL.LD/
for all x 2 OD such that NxWxM

�1 2 SL2.OD/. As usual, we now have to
distinguish the different types of prime numbers.

(i) If � is a divisor of a split prime number p 2 Z and � − w then

NxT
lSM�1 D

�
lwCx
�

�1
1 0

�
:

Since � − w there thus exists l 2 Z with NxT lSM�1 2 SL2.OD/. If �jw then
� − 2 since D � 5 mod 8. We consider again the matrix L from Lemma 3.9.
Then

.MLkN�1
x /1;1 D 1

�
� 4kx

�
� 2wk

�
.1C w C 2x/

and all the other entries of MLkN�1
x automatically lie in OD for all k. There

exists a k0 2 Z such that �j.1 � 4kox/ since � − x and � − 2. Then
MLkN�1

x 2 SL2.OD/ as �jw.
(ii) If � is an inert prime number, then the matrices

P WD
�
1 u C iw
0 �

�
and Q WD

�
1 u C jw
0 �

�

with u; i; j 2 Z define the same twisted Teichmüller curve since
PT j�iQ�1 D Id. So we only have to consider those Nx with x 2 Z and
� − x. We now show that for all x 2 Z the matrices Nx and N0 define the
same twisted Teichmüller curve. Then

.NxT
kST lN�1

0 /1;2 D � 1
�

C l

�
.xw C kw2/

and all the other entries always are in OD . Note that xwCk0w2 D w.xCk0/C
D�1
4
k0. We choose k0 2 Z such that �j.x C k0/ and thus in particular � − k0.

Then

.NxT
k0ST lN�1

0 /1;2 D � 1

�
C lk0.D � 1/

4�
C iw

with i 2 Z. As � is an inert prime number � − D�1
4

. Therefore, there exists
l0 2 Z such that �j � 1C l0k0

D�1
4

and then .NxT k0ST l0N�1
0 / 2 SL2.OD/:
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(iii) If � is a divisor of a ramified prime number p 2 Z then � − w and the proof is
verbatim the same as in the split prime case.

ut
Furthermore, we are able to show the corresponding result for diagonal twists.

Proposition 6.31. Suppose D � 5 mod 8 is a fundamental discriminant with
hC
D D 1. Then all diagonal matrices M D �

m 0
0 n

�
with m; n 2 OD and .m; n/ D 1

which have the same determinant define the same twisted Teichmüller curve.

Proof. This is the assertion of Lemma 6.2. ut

6.4 An Outlook on Further Calculations

In Sect. 6.2 we have been able to precisely calculate the volume of almost any
diagonal twisted Teichmüller curve. Naturally one is also interested in knowing
the number of elliptic fixed points, the number of cusps and the genus of the
surface H=.SL.LD/ \ M�1SL2.OD/M/. In this section we present some ideas
how these quantities can be calculated if the narrow class number hC

D D 1 and
if the spin of the Teichmüller curve is odd. This section is far from solving any
of these problems completely, but should rather be regarded as a rough guideline
how practical calculations work. In general, it requires a new idea to give formulas
for any of these quantities. This is why we confine ourselves to simple twisted
Teichmüller curves where we can at least make some statements, i.e. M D �

m 0
0 1

�
.

Elliptic Fixed Points. Let us describe the number of elliptic fixed points of simple
twisted Teichmüller curves. By R. Mukamel’s result (Theorem 3.7) for D ¤ 5 the
elliptic elements inside SL.L1D/ have order two. We even restrict to the case that S
is the only elliptic element in SL.L1D/ up to conjugation. It might be possible to use
the method described here also in a more general situation. We want to prove the
following theorem:

Theorem 6.32. For all m 2 OD with .m;w/ D 1 there are elliptic elements of
order 2 if and only if the following two conditions are satisfied:

(i) For all prime divisors � … Z of m with N.�/ odd we have N.�/ � 1 mod 4.
(ii) For all prime divisors � of m with .�; 2/ ¤ 1 we have �2 − m.

In this case there are exactly 2k elliptic elements of order 2 where k is the number
of prime divisors of m that do not divide 2. If .m;w/ ¤ 1 the number of elliptic
elements of order 2 is bounded by 2k.

Note that the result generalizes the well-known formula for the number of elliptic
fixed points of order 2 of the modular curves H=�0.m/ for congruence subgroups
�0.m/ � SL2.Z/ (compare [Miy89], Theorem 4.2.7).
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Since S has order two it is immediately clear that any elliptic element in
SL.L1D/ \ �D0 .m/ has to have order two if it exists. To calculate the number of
elliptic fixed points recall that a fundamental domain for SL.L1D/ \ �D0 .m/ consist
of ŒSL.L1D/ W SL.L1D/ \ �D0 .m/� copies of the fundamental domain of SL.L1D/.
A boundary component of the fundamental domain of SL.L1D/ \ �D0 .m/ might be
glued to another boundary component by an elliptic element. This happens if and
only if there exists a coset representative B 2 SL.L1D/=.SL.L1D/ \ �D0 .m// such
that BSB�1 2 SL.L1D/ \ �D0 .m/. As B; S 2 SL.L1D/ we thus just have to decide
whether BSB�1 2 �D0 .m/. In order to do this, let us look at an arbitrary coset
representative B D �

a b
c d

�
of SL.L1D/=.SL.L1D/\ �D0 .m//. We then have

BSB�1 D
�
caCdb �a2�b2
c2Cd2 �ca�db

�
:

If B 2 SL.L1D/m then it is enough to decide if m 2 OD divides c2 C d2. As a
number is divisible bym if and only if it is divisible by all its prime divisors we first
consider the case m D �n, where � 2 OD is a prime element and n 2 N. We now
use the well-known isomorphism (see e.g. [Kil08], Sect. 2.4)

SL2.OD/=�
D
0 .�

n/ Š P
1.OD=�

nOD/

where P1.�/ denotes projective space. The isomorphism is given by mapping a coset
representative

�
a b
c d

�
to .c W d/ 2 P

1.OD=�
nOD/. A more precise description of

P
1.OD=�

nOD/ will be very helpful.

Lemma 6.33. A system of representatives of P1.OD=�
nC1OD/ is given by

.1 W 0/
.k W 1/; k 2 OD=�

nC1OD

.a1 C : : :C an�
n�1 W �/; a1 2 OD=�ODn f0g ; ai 2 OD=�OD for i > 1

: : :

.a1 W �n/; a1 2 OD=�ODn f0g

Proof. The number of elements of the list is equal to N .�nC1/.1C 1
N .�/

/. So it just

remains to prove that the elements are not equal in P
1.OD=�

nC1OD/. This is easy
to check. ut

Most of these elements in P
1.OD=�

nOD/ do never yield elliptic elements of
order 2.

Lemma 6.34. For representatives of SL.L1D/=.SL.L1D/\�D0 .�n// with lower row
equivalent to .a1 C ::Cam�

m�1; �n�m/ or .1; 0/ the prime element � never divides
c2 C d2.
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Proof. If the lower row of the matrix is equivalent to .1; 0/ this is clear. If the lower
row is equivalent to .a1 C ::C am�

m�1; �n�m/ then c2 C d2 D .a1 C a2� C : : :C
am�

m�1/2 C .�n�m/2 but � − a1. ut
Thus the only coset representatives of interest inside SL.L1D/=.SL.L1D/ \

�D0 .�
n// are those with lower row .k; 1/. The relation �njk2 C 1 is equivalent to

�1 being a quadratic residue mod �n. It follows from Hensel’s lemma (see e.g.
[MSP06], Satz 13.15) that the congruence �1 � k2 mod �n is solvable if and
only if the congruence �1 � k2 mod � is solvable and that the number of solutions
coincides. So we may restrict to the case n D 1. Analogously to the first supplement
of the quadratic reciprocity law for all prime elements � with .�; 2/ D 1, it is true
that �1 is a quadratic residue if and only if

.�1/ N.�/�1
2 D 1:

As OD=�OD is an integral domain we know that the polynomial z2 C 1 D 0 has at
most two roots. On the other hand since .�; 2/ D 1 we always have that if z0 is a
root of this polynomial then also �z0 is a root and that z0 and �z0 do not coincide.
Hence we have established the following proposition:

Proposition 6.35. For all prime elements � 2 OD with .�; 2/ D 1 and all n 2 N

there are at most 2 elliptic elements of order 2 inside SL.L1D/ \ �D0 .�
n/. If in

addition .�;w/ D 1 holds, there are exactly 2 elliptic elements of order 2 if and
only if N.�/ � 1 mod 4 and none if and only if N.�/ � 3 mod 4.

Corollary 6.36. For allm 2 OD with .m; 2/ D 1 and .m;w/ D 1 there are elliptic
elements of order 2 inside SL.L1D/ \ �D0 .m/ if and only if for all prime divisors
� … Z of m we have N.�/ � 1 mod 4. In this case the number of elliptic elements
of order 2 is equal to 2k where k is the number of prime divisors ofm. If .m;w/ ¤ 1

then the number of elliptic elements of order 2 is bounded by 2k.

Now we want to analyze the case .�; 2/ ¤ 1. As usual we first assume that
.�;w/ D 1. There are two possibilities: the first one is that 2 is an inert prime
number (which means D � 5 mod 8). Then OD=2OD Š Z=2Z � Z=2Z and
therefore 2jc2 C d2 is true only for c D 1; d D 1. This means that there is
exactly one elliptic element of order 2 in SL.L1D/ \ �D0 .2/. The second possibility
is that 2 splits (which means D � 1 mod 8). Let � be a prime divisor of 2. Then
OD=�OD Š Z=2Z. Thus there is exactly 1 elliptic element of order 2. For higher
powers of � there is a copy of Z=4Z involved in both cases but �1 � 3 � k2

mod 4 is not possible. Hence there are no elliptic elements for higher powers of � .
Combining everything yields 6.32.

The Number of Cusps. The number of cusps of some simple twisted Teichmüller
curves will be calculated next. Let m D � be a prime element with .�;w/ D 1.
Since we know that a cusp s of SL.L1D/ \ �D0 .�/ lies over a cusp s0 of SL.L1D/ it
makes sense to speak of the relative width of the cusp s: the width of a cusp s is its
local ramification index over s0. Then the sum of the width of all cusps lying over
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s0 is exactly equal to the index ŒSL.L1D/ W SL.L1D/ \ �D0 .�/� D N .�/ C 1. Let us
first consider the cusps s lying over 1.

Proposition 6.37. If � 2 OD with .�;w/ D 1 is a prime element and � … Z, then
SL.L1D/ \ �D0 .�/ has exactly two cusps lying over 1. One of them has relative
width 1, the other has relative width N .�/.

Proof. Consider the fundamental domain of SL.L1D/ \ �D0 .�/. It consists of
N .�/ C 1 copies of the fundamental F of SL.L1D/. Since T 2 �D0 .�/ glues the
vertical left side and the vertical right side of F , it follows that SL.L1D/ \ �D0 .�/

has a cusp of relative width 1. Now suppose that the copy of the vertical left side
of F given by the coset representative A1 and the copy of the vertical right side of
F given by the coset representative A2 are glued. Then A1TA�1

2 2 �D0 .�/. If the
corresponding cusp has width k then A1TA�1

2 2 �D0 .�/, A2TA
�1
3 2 �D0 .�/,. . . ,

AkTA
�1
1 2 �D0 .�/. Since � is prime we have that A1 is equivalent to

�
1 0
a 1

�
with

a 2 N and 1 
 a < N .�/. Then we must have that A1T kA�1
1 D � � �

�kwa2 �
� 2

�D0 .�/. It follows that �jk and hence k D N .�/, i.e. we have a second cusp of
width N .�/. ut

If � 2 Z is an inert prime number then we can immediately deduce that there
are between 2 and � C 1 cusps lying over 1 and one of these cusps has relative
width 1.

Corollary 6.38. If � 2 Z is an inert number then there are exactly � C 1 cusps
lying over 1. One of them has relative width 1 all the others have relative width � .

Proof. Using the same notation as above, it is clear that the relative width of a cusp
is divisible by � if it is greater than 1. Now assume that there exists a minimal l 2 N

and coset representativesA1; : : : Al� such thatA1T l�A�1
l� 2 �D0 .�/. Then it follows

that Al� D A1 and l D 1. This implies the claim. ut
In particular the number of cusps of simple Teichmüller curves is not universally

bounded. We can also gain some general information about the cusp s D 1=2w

Proposition 6.39. If � 2 OD is a prime element, � … Z with .�; 2/ D 1 and
.�;w/ D 1, then there are exactly 2 cusps of SL.L1D/ \ �D0 .�/ lying over 1=2w. If
� 2 Z is an inert prime number, then there are exactly pC1 cusps lying over 1=2w.

Proof. We first look at the non-inert case. Let L be the parabolic element stabilizing
1=2w which we found in Lemma 3.9. Similarly as in the last proof one then has a
cusp of width k if there are coset representatives A1; : : : ; Ak with A1T �1LTA�1

2 2
�D0 .�/,. . . , AkT �1LTA�1

1 2 �D0 .�/. So we need to find out for which coset
representatives A one has AT �1LkTA 2 �D0 .�/. If A is a coset representative,
then so is AT �1. So we may assume that B WD AT �1 D �

1 0
a 1

�
: Then

.BLkB�1/2;1 D lk

�
a2

4

�
D C 7

4
C D � 1

2

�
C a

�
2w C D � 1

4

�
C w C 1

�
:
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where l is a power of 2 depending only on the discriminant. There exist at most
two a such that the lower left entry is equivalent to 0 mod � . If � 2 OD is a prime
element and � … Z, there thus exists a cusp of relative width N .�/. Therefore, there
are exactly two cusps in this case.

If � is an inert prime number, then one sees by the same arguments as in the last
proof that there exist � cusps of width � and 1 cusp of relative width 1. ut

If we want to gain information on the cusps s ¤ 1; 1=2w, we have to restrict
to the cases D D 13 and D D 17 since we do not have a general formula for
parabolic elements inside SL.L1D/. There is one more cusp in each case, namely 1.
The geometry of the fundamental domains of these Veech groups is so similar that
one more or less automatically treatsD D 13 andD D 17 at the same time. Almost
the same calculation as before gives the following result:

Proposition 6.40. If � 2 OD is a prime element, � … Z, with .�; 2/ D 1 and
.�;w/ D 1, then there are exactly 2 cusps in SL.L1D/ \ �D0 .�/ lying over 1. If
� 2 Z is an inert prime number, then there are exactly � C 1 cusps lying over 1.

Let us collect everything in one theorem:

Theorem 6.41. If D D 5 and if � 2 OD is a prime element with .�;w/ D 1 and
.�; 2/ D 1 then

(i) if � 2 Z, then H=.SL.L1D/\ �D0 .�// has exactly 2'1.�/ cusps.
(ii) If � … Z, then H=.SL.L1D/ \ �D0 .�// has exactly 4 cusps.

If D 2 f13; 17g and if � 2 OD is a prime element with .�;w/ D 1 and .�; 2/ D 1

then

(i) if � 2 Z, then H=.SL.L1D/\ �D0 .�// has exactly '1.2�/ cusps.
(ii) If � … Z, then H=.SL.L1D/ \ �D0 .�// has exactly 6 cusps.

Also this formula generalizes the well-known formula for the number of cusps of
the modular curvesH=�0.m/ for congruence subgroups�0.m/ � SL2.Z/ (compare
again [Miy89], Theorem 4.2.7). Summing up, this indicates that simple twisted
Teichmüller curves behave very much like modular curves from an arithmetic point
of view.

Genus. The Riemann-Hurwitz formula enables us now to calculate the genus of
simple twisted Teichmüller curves for prime elements � 2 OD . Let g� denote the
genus of H=.SL.L1D/ \ �D0 .�//.
Corollary 6.42. If D D 5 and if � 2 OD is a prime element with .�; 2/ D 1

then

(i) if � 2 Z, then g� D 3.N .�/C1/C10�20�1.�/
20

.

(ii) If � … Z and N.�/ � 1 mod 4 then g� D 3.N .�/C1/�20
10

.

(iii) If � … Z and N.�/ � 3 mod 4 then g� D 3.N .�/C1/�30
10

.
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If D 2 f13; 17g and if � 2 OD is a prime element with .�;w/ D 1 and .�; 2/ D 1

then

(i) if � 2 Z, then g� D 3.N .�/C1/C2�2�1.2�/
4

.

(ii) If � … Z and N.�/ � 1 mod 4 then g� D 3.N .�/C1/�8
4

.

(iii) If � … Z and N.�/ � 3 mod 4 then g� D 3.N .�/C1/�10
4

.



Chapter 7
Prym Varieties and Teichmüller Curves

We have just seen that there are many different twisted Teichmüller curves
(Theorem 6.28). So it is now natural to ask, whether these curves yields all
Kobayashi curves. This question will be answered negatively later. The natural
candidates for Kobayashi curves which are not a twisted Teichmüller curve stem
from certain Teichmüller curves in M3 and M4. The main purpose of this chapter
is to repeat how these primitive Teichmüller curves of low genus 2 
 g 
 4

are constructed in [McM06a]. These curves lie on Hilbert modular surfaces. The
embedding is given by assigning to each point lying on these Teichmüller curves its
Prym variety.

We have already introduced Abelian varieties in Sect. 2.4.4. A special class
of polarized Abelian varieties are the Prym varieties in Sect. 7.1. In Sect. 7.2 we
recall C. McMullen’s construction of an infinite collection of primitive Teichmüller
curves. We can associate to all the points lying on these Teichmüller curves their
Prym variety. All these Prym varieties have real multiplication (see Definition 2.22).
In view of the fact that Hilbert modular surfaces parametrize polarized Abelian
surfaces with real multiplication (compare Theorem 2.30), it follows that all the
Teichmüller curves described in this chapter lie on a Hilbert modular surface
(Theorem 7.11).

7.1 Prym Varieties

Prym varieties form a special class of examples of polarized Abelian varieties.
Although they are from a certain viewpoint more general than Jacobians, they
are still accessible geometrically (see [Bea89] for details). Classically they were
introduced as a certain subvariety of the Jacobian of a Riemann surface X 0 which
double covers another Riemann surface X with at most 2 branch points. This
classical definition is not sufficient for our purposes. That is why we use the

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__7,
© Springer International Publishing Switzerland 2014

121
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notion of Prym varieties from [McM06a]. The definition just involves double covers
without any restriction on the number of branched points.

Definition 7.1. Let X 0 be a compact Riemann surface with an automorphism
	 W X 0 ! X 0 of order two, i.e. an involution. Recall that Jac.X 0/ D
H0.X 0; �.X 0//_=H1.X

0;Z/. The action of 	 determines a splitting of the Abelian
differentials into even and odd forms �.X 0/ D �.X 0/C ˚ �.X 0/�, the C1
and the �1 eigenspace of the involution 	 on �.X 0/, as well as sublattices
H1.X

0;Z/˙ � H1.X
0;Z/. Then we define the Prym variety to be

P D Prym.X 0; 	/ D H0.X 0; �.X 0/�/_=H1.X
0;Z/�:

The automorphism 	 is called the Prym involution. Finally we refer to elements in
�.X 0/� as Prym forms on .X 0; 	/.

Remark 7.2. There is a very general notion of Prym varieties (see e.g. [BL04],
Chap. 12), which we do not need in its full generality here.

Note that the covering projection � W X 0 ! X 0=	 may have 2n branched
points. The Prym variety P is canonically polarized by the intersection pairing on
H1.X

0;Z/�. By the Riemann-Hurwitz formula we have that if dim.Prym.X 0; 	// D
h then h 
 g.X/ 
 2hC 1 (see [McM06a], Theorem 3.1).

7.2 Prym Varieties and Teichmüller Curves

Let us continue by collecting a few important results relating Teichmüller curves
and Prym varieties. In this section we will leave out those technicalities that are not
of great significance for us. The reader who wants to know more about the details,
in particular Prym systems and the Thurston-Veech construction, is referred to
[McM06a], Chaps. 4 and 5, as well as to [Möl11a], Chap. 2.2.

For 2 
 g 
 4 Prym varieties tell us where to search for an infinite collection of
Teichmüller curves: let P D Prym.X; 	/ be a Prym variety with real multiplication
by OD (especially dimC P D 2). Then OD also acts on�.P / Š �.X/�.

Definition 7.3. We call ! 2 �.X/� a Prym eigenform if 0 ¤ OD! � C!. By
�E

g
D � �Mg we denote the space of all pairs .X; !/ such that there exists a Prym

involution 	 such that P D Prym.X; 	/ admits real multiplication by OD and ! is
a Prym eigenform of P . The space is called the space of all Prym eigenforms for
real multiplication by OD .

Remark 7.4. Neither 	 nor the action of OD is uniquely determined by !.

We define the Weierstrass locus by

�W
g
D WD �E

g
D \�Mg.2g � 2/:
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Fig. 7.1 Generators for Teichmüller curves in genus 2,3 and 4 (from [McM06a]

The projection of �W g
D to moduli space is called the Weierstrass curve W g

D .

Theorem 7.5 ([McM06a], Theorem 3.2). The Weierstrass curve �W
g
D is a

SL2.R/-invariant subset of �Mg.

Another lemma reveals why this construction only works in the case 2 
 g 
 4.

Lemma 7.6. The Weierstrass curve W g
D is nonempty only if 2 
 g 
 4.

Proof. By the definition of real multiplication dimC P D 2. Therefore, �ED ¤ ;
only if 2 
 g 
 5. If g D 5 then X ! X=	 is an unramified double cover. Hence
! has an even number of zeroes and so ! … �Mg.2g � 2/. ut
W

g
D is itself the main link between Teichmüller curves and Prym varieties.

Theorem 7.7 (McMullen, [McM06a], Theorem 3.4). The Weierstrass curve
W

g
D � Mg is a finite union of Teichmüller curves. Each such curve is primitive,

providedD is not a square.

In fact, there are infinitely many primitive Teichmüller curves contained in the
union of all the W g

D for fixed 2 
 g 
 4. Without going into technical details
(Thurston-Veech construction, Prym systems), we want to sketch how such an
infinite collection of primitive Teichmüller curves can be found for genus 2 
 g 

4. Consider the L, S, and X-shaped polygons in Fig. 7.1 (corresponding to the case
of genus 2; 3 respectively 4):

For n 2 N we write Ln for the L shaped polygon with side lengths

. 1C
p
1C4n
2

; 1; 1; 1C
p
1C4n
2

/ and Sn for the S shaped polygon with side lengths .1 Cp
1C 2n; 2n; 1C p

1C 2n; n; 1C p
1C 2n; n/ and Xn for the X shaped polygon

with side lengths .n; 1C p
1C n; 1C p

1C n; n; n; 1C p
1C n; 1C p

1C n; n/.
For each such polygon Q we get a flat surface .X; !/ D .Q; d z/= � when

we identify opposite sides of Q. The vertices of Q are identified to a single point
p, namely the unique zero of !. For each genus there is a unique involution 	 2
Aut.X/ fixing p. For Sn andXn the involution 	 is realized by a 180ı rotation about
the center of the polygon. For Ln the involution 	 is the hyperelliptic involution.

Theorem 7.8 (McMullen, [McM06a], Theorem 5.4). Each of these polygons
Ln; Sn and Xn together with the corresponding involutions determines an element
.X; !/ 2 �W

g
D with D D n for Ln, D D 1 C 2n for Sn and D D 1 C n for
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Xn. The projection of the SL2.R/-orbit of .X; !/ to moduli space Mg determines a
Teichmüller curve.

The trace fields of the corresponding Veech groups are Q.
p
1C 4n/ for Ln and

Q.
p
1C 2n/ for Sn and Q.

p
1C n/ for Xn ([McM06a], Theorem 5.4). Recall

that Theorem 3.4 completely classifies Teichmüller curves in genus 2. A similar
classification is also known to hold in �E4

4 by the recent work of E. Lanneau and
D.-M. Nguyen (see [LN11], Theorem 1.1). A classification in the genus 3 case is still
open. Furthermore, it is not known whether there exist other primitive Teichmüller
curves in genus 3 and 4 than those described in this section.

7.3 Hilbert Modular Embeddings

Having established all the necessary background, we are now able to explicitly
describe an embedding of Teichmüller curves into Hilbert modular surfaces. In
particular, it will turn out that for genus 2 and 4 Teichmüller curves of discriminant
D can always be embedded into the same Hilbert modular surface XD . We again
mainly repeat results from [McM03a] and [McM06a].

First let us explain how primitive Teichmüller curves of genus 2 
 g 
 4 can
be embedded into the moduli space of Abelian varieties. The last two propositions
of Sect. 2.4.4 enable us to calculate the types of the polarizations of the Prym
varieties associated to the surfaces described in Sect. 7.2: consider the polygons
Ln, Sn and Xn with associated involutions 	L, 	S and 	X . Each of these yields
a flat surface .X; !/. For each of these flat surfaces we now consider the double
cover � W X ! Y WD X=	. The corresponding Prym varieties Prym.X; 	/ are
always 2-dimensional, because .X; !/ 2 �W

g
D (Theorem 7.8). Since Jac.X/ �

Jac.Y /˚ Prym.X; 	/ we get g.Y / D g.X/ � 2.

Lemma 7.9. For the L-shaped polygon Prym.X; 	/ has polarization of type .1; 1/,
for the S -shaped polygon Prym.X; 	/ has polarization of type .1; 2/, for the X -
shaped polygon Prym.X; 	/ has polarization of type .2; 2/.

Proof. We just prove the case of S -shaped polygons since the other two cases work
in the same way. The surface X has genus 3 in this case and thus Y has genus 1.
Using Proposition 2.27 we can observe that Jac.Y / has polarization of type .2/.
Then Proposition 2.26 implies that the polarization of Prym.X; 	/ is of type .1; 2/.

ut
Corollary 7.10. By mapping each point of the Teichmüller curve C generated by
Ln (respectively Sn, Xn) to its Prym variety one gets an embedding V ,! AD

2 with
D as in the lemma.

However by this construction we lost a little information, namely the choice of
real multiplication. This is why we get an embedding into a space with even more
structure: by Theorem 2.30 the Teichmüller curves in M2 lie on the Hilbert modular
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surfaces XD . Recalling that A.2;2/
2 Š A2, also the described Teichmüller curves in

M4 lie on XD and we get eventually the desired theorem.

Theorem 7.11 (McMullen, [McM03a, McM06a]). Let C � Wg
D be one of the

described Teichmüller curves of discriminant D in Mg with g 2 f2; 4g. Then
there exists an embedding of C into the Hilbert modular surface XD such that the
following diagram commutes:

H
� �

ˆ.z/D.z;'.z//
��

=SL.X;!/

��

H � H
�

=SL2.OD/

����
C

� � ��

f

��

XD

j

��
Mg

� � �� A2

Moreover ' is holomorphic but not a Möbius transformation.

Such an embedding is called a Hilbert modular embedding. The case of
Teichmüller curves of genus 3 is a little more difficult to describe than the genus 2
and the genus 4 case since the polarization is of type .1; 2/: although it can be
proven exactly in the same way that a similar embedding of Teichmüller curves
C � W3

D into a certain Hilbert modular surface H � H
�=SL.OD ˚ a/ exists, it is

a quite hard problem to calculate a and thus the surface parameterizing the space
of all pairs .X; 	/, with X an Abelian surface of type .1; 2/ and 	 a choice of real
multiplication by OD , explicitly (see e.g. [IO97]). Fortunately, this problem does not
play an important role for these notes. However, it happens for some D that a D b2

for some fractional ideal b. In this case the involved Hilbert modular surface is
isomorphic to XD and thus also the genus 3 Teichmüller curve lies onXD (compare
[Zag81], [vdG88]).

Generally, Abelian varieties of a given type with real multiplication are in a
natural connection with Hilbert modular varieties (see [McM03a], Chap. 6; [BL04],
Chap. 9). The mentioned result of C. McMullen has been generalized by M. Möller
in [Möl06]. There it is shown that every primitive Teichmüller curve of genus g � 2

has real multiplication and therefore can be embedded into a Hilbert modular
variety.

In [Möl11c], M. Möller calculates the Euler characteristic of the genus 3 and
4 Teichmüller curves. The Euler characteristic is as in M. Bainbridge’s theorem a
rational multiple of the Euler characteristic of the Hilbert modular surface.



Chapter 8
Lyapunov Exponents

Before we are able to prove that the genus 3 and the genus 4 Teichmüller
curves are never twists of the genus 2 Teichmüller curve, we have to introduce
another concept, namely Lyapunov exponents. These give to a certain extent
information about the long time average behavior of a dynamical system (see e.g.
[AB08, Möl11a] or [Zor06]). The existence of Lyapunov exponents follows from
Oseledets’s Multiplicative Ergodic Theorem (Theorem 8.2). However, Lyapunov
exponents are usually very hard to evaluate. Often it is just possible to do numerical
approximations. Only on rare occasions Lyapunov exponents are known explicitly.
In Sect. 8.1 we introduce the basic theory. We will be especially interested in the
Lyapunov exponents of a certain cocycle, namely the Kontsevich Zorich cocycle
(Sect. 8.4), over the Teichmüller flow. We define the latter in Sect. 8.3. An important
tool for our calculations is to relate the Teichmüller flow on a Teichmüller curve
(Sect. 8.3.2) to the geodesic flow on the tangent space T 1H=SL.X; !/ where
SL.X; !/ is the Veech group of the flat surface generating the Teichmüller curve
(and hence in particular a Fuchsian group). This is why we present the relevant
material about the geodesic flow in Sect. 8.2 before we come to the Teichmüller flow.

8.1 Basic Theory

For the convenience of the reader we recall the definition of Lyapunov exponents for
continuous time. A good introduction to the discrete case can be found in [AB08].
For the rest of this section let .X;�/ be a probability space, i.e. X is a measurable
space and � a measure on X with �.X/ D 1 and denote by L1.X;�/ the vector-
space of integrable, measurable functions f W X ! R with respect to �.

Definition 8.1. Let 't W X ! X be a measurable, measure-preserving flow on
.X;�/. Let p W E ! X be a finite-dimensional vector bundle overX endowed with

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__8,
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128 8 Lyapunov Exponents

a norm. A (linear) cocycle over 't is a measurable flow extension Ft W E ! E

such that p ı Ft D 't ı p and such that the action At.x/ W Ex ! E't.x/ of Ft on
every fiber is a linear isomorphism.1

Sometimes one also calls A a cocycle over 't . Note that At.x/ satisfies the
following conditions:

(i) A W R � E ! E is measurable.
(ii) A0.x/ D Id for all x 2 M

(iii) AsCt .x/ D At.'s.x//A
s.x/ for all s; t 2 R.

By replacing R by Z in the upper definition, we get with a grain of salt the definition
of a discrete linear cocycle. Albeit it is possible to define Lyapunov exponents in a
very general setting (see e.g. [KH97], Chap. S), we restrict to the case when the
cocycle A over T fulfills a certain integrability condition. Then one is able to define
Lyapunov exponents with the help of Oseledets’s Multiplicative Ergodic Theorem.

Theorem 8.2 (Oseledets’s Multiplicative Ergodic Theorem). Let Ft be a cocycle
over a measurable, measure-preserving flow 't on .X;�/ and let A be as described
above. Assume that the functions

g.x/ WD sup
0�t�1

logC jjAt.x/jj and

h.x/ WD sup
0�t�1

logC jjA1�t .'t .x//jj

are in L1.X;�/. Then there exists a '-invariant set X 0 � X with �.X 0/ D 1 and
the following holds for all x 2 X 0:

(i) The limit ƒx WD limt!1..At .x//.At .x//�/1=2t exists (* is the adjoint opera-
tor).

(ii) Let exp�1.x/ < : : : < exp�k.x/, where k D k.x/, be the eigenvalues of ƒx .
Then all �i .x/ are real and �1.x/ can be �1. Let U1.x/; : : : ; Uk.x/ be the
corresponding eigenspaces and li .x/ D dimUi.x/. The functions x 7! �i .x/

and x 7! li .x/ are 't -invariant. Let E0.x/ D f0g and Er.x/ D U1.x/˚ : : :˚
Ur.x/ for r D 1; : : : ; k. Then for v 2 Er.x/ X Er�1.x/, 1 
 r 
 s, we have

lim
t!1

1

t
log jjAt.x/vjj D �r.x/:

Proof. See [Arn98], Chap. 3.4. ut
A similar result for products of random matrices was proven earlier by H.

Furstenberg in [Fur63].

1See [Arn98], p.6, for a nice figure which describes the situation.
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Corollary 8.3. The subspaces .Er.x//krD0 form a filtration of E and

Er.x/ D
�
v 2 R

n j lim
t!1

1

t
log jjAtxvjj 
 �r.x/

	
:

Definition 8.4. The numbers �i .x/ appearing in the theorem are called the
Lyapunov exponents at x with respect to the cocycle A (or F ). The collection
of all �i .x/ is called the Lyapunov spectrum at x. Finally li .x/ D dimE�i .x/ �
dimE�i�1 .x/ is the multiplicity of the Lyapunov exponent �i .x/.

As convention we will, if li .x/ D m > 1, consider the Lyapunov exponent �i as
m distinct Lyapunov exponents, such that the total number of Lyapunov exponent is
always equal to the dimension of the vector bundle E over X .

Recall that a measure preserving map 't W X ! X is called ergodic if all
measurable subsets Y � X with '�1

t .Y / D Y have measure 0 or 1. Note that if 't
is ergodic, then the �i.x/ are constant almost everywhere. In this case we are able
to speak (globally) of the Lyapunov exponents �i of the cocycle F (or A). All maps
which we will look at are ergodic.

We will be mostly interested in symplectic cocycles. This means that there exists
some symplectic form wx on each fiber Ex which is preserved by the linear cocycle
F , i.e.

w't .x/.A
t.x/u; At .x/v/ D wx.u; v/ for all x 2 X and t 2 R and u; v 2 Ex:

8.2 The Geodesic Flow

In this section we briefly recall the definition of the geodesic flow on T 1H=� where
� is a Fuchsian group. The reader who wants to find out more about the details is
referred to [Ein06, Kat96, Kat08] and [KU07].

An element 
 2 TzH of the tangent plane of the hyperbolic plane at z is an
element of R2. For z D x C iy 2 H an inner product on TzH can be defined by
.
;w/z D 1

4y2
.
 � w/. This yields a norm jj � jjz on TzH. Consider the unit tangent

bundle T 1H of the hyperbolic plane. It is defined as the collection of all vectors

 2 TzH of length one, i.e. jj
jjz D 1, for all z 2 H. An element g D �

a b
c d

� 2
SL2.R/ acts on T 1H by .z; 
/ 2 T 1H 7! . azCb

czCd ;Dg.z/.
//, where Dg.z/ is the
derivative of g at z. This map is well defined. The action is transitive (see [Ein06],
pp. 3–4). T 1H can be identified with PSL2.R/ by sending v D .z; 
/ to the unique
g 2 PSL2.R/ such that z D g.i/ and 
 D Dg.z/.�/, where � is the unit vector at the
point i pointing upwards (see [Kat92], Theorem 2.1.1).

There is of course a bunch of geodesics going through a point z 2 H. For a fixed
direction 
 there is however a unique geodesic going through z in the direction 
.
For a unit vector 
 based at z 2 H the geodesic flow can therefore be defined
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as follows: equip (for technical reasons which become visible later) H with the
Poincaré metric with constant scalar curvature �4. The geodesic flow is the flow
with unit speed along the geodesic which goes through .z; 
/ at time t D 0. For
.i; �/ 2 T 1H the geodesic is just the imaginary axis and applying at D �

et 0
0 e�t

�
moves the vector along the geodesic. Applying elements g 2 PSL2.R/ gives a
unit speed parametrization of any other geodesic line in H. Since we apply the
isometry corresponding to g after applying the parametrization at , the geodesic flow
corresponds to right multiplication by at on PSL2.R/. The orbit gat projects to a
geodesic through g.i/.

Neither is this flow on T 1H especially interesting from a dynamical point of view
nor will it be the right object for us to look at. Instead we analyze geodesic flows
on T 1H=� , where � is a Fuchsian group. The geodesic flow on T 1H descends to
the geodesic flow on T 1H=� via the quotient map � W T 1H ! T 1H=� of the unit
tangent bundles.

8.3 The Teichmüller Flow

8.3.1 The Teichmüller Flow on �Mg

The Teichmüller (geodesic) flow is a Hamiltonian flow on �Mg defined as the
geodesic flow with respect to the natural metric, namely the Teichmüller metric. For
details we refer the reader to [Zor06] and [For06]. Some aspects of this topic are
very nicely presented in [HS06].

As has been described in Sect. 2.4.3 the action of SL2.R/ on �Mg preserves all
topological characteristics of the flat surface (like genus, number and type of conical
singularities) and therefore the action of SL2.R/ preserves each stratum.

Definition 8.5. The Teichmüller flow gt is given by the action of the diagonal
subgroup

�
et 0
0 e�t

� � SL2.R/ on �Mg .

Geometrically the Teichmüller flow can be realized as follows: take a polygon
pattern of the flat surfaceX by unwrapping it along some geodesic cuts and expand
the polygon in one direction and contract it in the other direction with the same
factor (see [Zor06], Chaps. 3.2 and 3.3).

By a continuity argument, it is evident that the Teichmüller geodesic flow cannot
leave the connected component of any stratum. Let �Mg

.1/ � �Mg denote
the subspace of surfaces with normalized area

R j!j2 D 1. The Teichmüller flow
preserves any hypersurface of constant area, especially �Mg

.1/, since the action of
SL2.R/ is also area preserving,

It was independently shown by H. Masur and W. Veech that there exists a
distinguished probability measure d1 on�Mg

.1/ invariant by the Teichmüller flow
and ergodic (see e.g. [AGY06]). This measure is called Masur-Veech measure.
In fact they proved the following key result:
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Theorem 8.6. (Masur, Veech) The Teichmüller flow gt preserves the (finite) mea-
sure d1 on �Mg

.1/ and is ergodic on each connected component of �Mg
.1/.

Proof. See [Mas82]. ut
The Teichmüller flow is often also called Teichmüller geodesic flow. One might

ask in which sense the Teichmüller flow is a geodesic flow. This question can
be answered in the following way: Teichmüller showed that given two Riemann
surfaces S0 and S1 there always exist maps f0 W S0 ! S1 which minimize the
coefficient of quasiconformality (see Sect. 2.4.2) and that the one parameter family
of matrices gt applied to S0 forms a geodesic with respect to the Teichmüller metric
(see [Zor06], Sect. 8.1).

For g D 1, the space �M.1/
1 can be identified with SL2.R/=SL2.Z/ and the

Teichmüller metric coincides with the Poincaré metric on the modular surface. So
for g D 1 the Teichmüller flow is exactly the geodesic flow on the modular surface
which was described in Sect. 8.2 (see e.g. [For06], p. 556).

8.3.2 The Teichmüller Flow on Teichmüller Curves

As Teichmüller curves have measure 0 with respect to the Masur-Veech measure,
one has to substitute the Masur-Veech measure in order to make sense of the notion
of Lyapunov exponents of the Teichmüller flow on Teichmüller curves. To this end,
let .X; !/ be a Veech surface of renormalized area 1 and consider its SL2.R/-orbit
C in �Mg

.1/. Since C is closed, we obtain a finite measure �C on �Mg
.1/ with

support C , namely the measure induced from the Haar measure � on SL2.R/. This
is the desired measure since �C is SL2.R/-invariant and ergodic with respect to
the Teichmüller flow (see [CFS82], Chap. 4, Theorem 1). We will see later that the
choices of the two measures fit together in an appropriate way.

We are now able to give an interpretation of the Teichmüller flow on Teichmüller
curves as geodesic flow in the sense of Sect. 8.2. Recall that Teichmüller curves
f W H ! Mg are generated by flat surfaces. Indeed f is simply the projection of
the SL2.R/-orbit of some .X; !/ to Mg.

Since a Teichmüller curve yields an isometric embedding H=SL.X; !/ !
f .H/ � Mg (compare [McM03a]), we can identify each Y 2 f .H/ with a point
on the orbifold H=SL.X; !/. As Teichmüller curves are complex geodesics for the
Teichmüller metric we observe that via f we can identify the Teichmüller flow on
the Teichmüller curve with the geodesic flow on T 1H=SL.X; !/.

The main advantage of the interpretation of the Teichmüller geodesic flow as the
geodesic flow on T 1H=SL.X; !/ is that it will in Sect. 9.2 enable us to show that
the Lyapunov exponents of twisted Teichmüller curves agree with the Lyapunov
of the ordinary Teichmüller curves with respect to a certain cocycle which will be
introduced next.
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8.4 The Kontsevich-Zorich Cocycle and Its Lyapunov
Exponents

In [Kon97], M. Kontsevich and A. Zorich introduced a certain renormalization
cocycle over the Teichmüller flow. In this section we describe the cocycle and some
of its properties. A more detailed review on this topic can be found e.g. in [For06]
and in [Zor06].

As has already been explained, we must replace Mg by an appropriate fine
moduli space by adding a level l-structure in order to find a universal family. We do
not indicate this change in our notation, but let f W X ! Mg be the universal family
over Mg (for details see Sect. 2.4.2). Let � W �Mg ! Mg be the usual projection.
We now consider the local system ��.R1f�R/, where R1 is the first right derived
functor (compare [Har77]). The fiber over .X; !/ is hence H1.X;R/. We denote
the corresponding real C1-vector bundle by V . Then V has a natural norm, namely
the Hodge norm (see e.g. [Möl11a], Chap. 4). Since V carries a flat structure,
we can lift the Teichmüller flow by parallel transport to a flow Ft on V . This is
the Kontsevich-Zorich cocycle. By construction the Kontsevich-Zorich cocycle is
indeed a cocycle over the Teichmüller flow. The Kontsevich-Zorich cocycle is a
continuous version of a cocycle introduced by G. Rauzy (see e.g. [Zor06]).

The real cohomologyH1.X;R/ of an orientable closed surfaceX has dimension
2g and is endowed with a natural symplectic form, namely the intersection form (see
[FK92], Chap. III.1). So the Kontsevich-Zorich cocycle is defined on a symplectic
vector bundle of dimension 2g. Therefore, the Kontsevich-Zorich cocycle, both over
the Teichmüller flow on Mg

.1/ and over a Teichmüller curve C , has a symmetric
Lyapunov spectrum (compare [Via08] Proposition 5.8.):

�1 D 1 � �2 � : : : � �g � 0 � ��g � : : : � ��2 � ��1 D �1:

The fact that �1 D 1 follows in both cases immediately by comparing the definition
of the Teichmüller flow and the assertion of Oseledet’s Theorem. Nevertheless
there are also differences for the two types of Lyapunov exponents: it was an open
problem for a decade whether the upper inequalities are strict for the Teichmüller
flow on�Mg

.1/. In 2004, A. Avila and M. Viana succeeded in solving this problem.
A weaker version of their theorem was earlier proven by G. Forni, see [For02].

Theorem 8.7 (Avila, Viana, [AV07]). For any connected component of any stra-
tum the first g Lyapunov exponents are distinct and greater than 0:

1 D �
1
1 > �

1
2 > : : : > �

1
g > 0:

This statement is in general not true for the Teichmüller flow on Teichmüller
curves (see e.g. [For02] or [BM10a], Theorem 8.2).

Let us conclude this section by a proposition which shows that the involved
measures fit together appropriately. Sometimes it is much easier to calculate the
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sum of the (positive) Lyapunov exponents than the individual ones. Let Cd denote
the union of all Teichmüller curves in a fixed stratum generated by square-tiled
surfaces of d squares and let L.Cd / be the average of the Lyapunov exponents of
the individual components weighted by the hyperbolic volume of the corresponding
component. Then the following holds (see [Che10], Appendix A):

Proposition 8.8. For d ! 1 the weighted sum of Lyapunov exponents L.Cd / of
square-tiled surfaces in a component of a stratum of �Mg converges to the sum of
Lyapunov exponents L1 .

Finally, let us remark that the correspondence which was established in the last
section implies that the Kontsevich-Zorich cocycle for Teichmüller curves can also
be regarded as a cocycle over the geodesic flow gt on T 1H=SL.X; !/. For brevity
reasons we will in the rest of these notes only speak of Lyapunov exponents when
we mean the Lyapunov exponents of the Kontsevich-Zorich cocycle.



Chapter 9
Kobayashi Curves Revisited

We now approach the answer to the question if all Kobayashi curves are twisted
Teichmüller curves. In particular, one might ask if the genus 4 Teichmüller curve is
a twist of a Teichmüller curve C �

L;D we saw that these curves always lie on the same
Hilbert modular surface XD . In the sequel we will answer this question negatively
(Theorem 9.6). In those cases when the genus 3 Teichmüller curve also lies on XD ,
we will furthermore see that it is not a twist of a Teichmüller curve C �

L;D either
(Corollary 9.12).

This chapter starts with a necessary criterion for any curve to be a twisted
Teichmüller curve (Proposition 9.2). We then show by a very explicit calculation
which uses the arithmetic of O5 that in discriminant 5 the genus 4 Teichmüller
curve is not a twisted Teichmüller curve (Proposition 9.4). This arithmetic approach
might also work for other discriminants. However, we use the concept of Lyapunov
exponents (see Chap. 8) to prove the result for arbitrary discriminants in Sect. 9.2.

9.1 An Arithmetic Approach

It is not at all easy to decide whether a given curve H=� , where � is a Fuchsian
group, is a twisted Teichmüller curve or not. The first result gives a necessary
criterion for this to be possible. As preparation for this criterion let us restate
Proposition 2.15 in the language of commensurators.

Proposition 9.1. We have CommGL2.R/.SL2.OD// D GL2.K/:

The criterion itself is easy to state, but practically hard to check: a twisted
Teichmüller curve is always commensurable with SL.LD/.

Proposition 9.2. Let � � SL2.OD/ be a Fuchsian group. If H=� is a twisted
Teichmüller curve then � and SL.LD/ are commensurable in SL2.R/.

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2__9,
© Springer International Publishing Switzerland 2014
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136 9 Kobayashi Curves Revisited

Before we give the proof, let us note that this criterion does not depend on the
choice of the generating surface (and thus SL.LD/) since changing the generating
surface changes both, the stabilizer and the Veech group, only by conjugation.

Proof. If H=� is a twisted Teichmüller curve then

MStab.ˆ/M�1 \ SL2.OD/ D �:

for some M 2 GLC
2 .K/. This happens if and only if

Stab.ˆ/ \M�1SL2.OD/M D M�1�M

Now divide every entry of M by
p

det.M/ and denote this matrix by V . Then V
lies in SL2.R/ and V �1M is a multiple of the identity matrix. Hence

V �1.MStab.ˆ/M�1 \ SL2.OD//V D Stab.ˆ/ \M�1SL2.OD/M:

Thus it suffices to show that SL.LD/ andM�1�M are directly commensurable. We
have

ŒSL.LD/ W SL.LD/\M�1�M �

D ŒStab.ˆ/ \ SL2.OD/ W Stab.ˆ/ \ SL2.OD/\ Stab.ˆ/ \M�1SL2.OD/M �


 ŒSL2.OD/ W SL2.OD/ \M�1SL2.OD/M � < 1:

And

ŒM�1�M W M�1�M \ SL.LD/�

D ŒStab.ˆ/\M�1SL2.OD/M W Stab.ˆ/\ SL2.OD/ \ Stab.ˆ/ \M�1SL2.OD/M�


 ŒSL2.OD/ W SL2.OD/\MSL2.OD/M
�1� < 1:

ut
Corollary 9.3. If H=� is a twisted Teichmüller curve of H=SL.LD/ where SL.LD/
is maximal then

�.SL.LD//j�.�/:

Proof. Since � and SL.LD/ are commensurable � must be conjugated to a
subgroup of SL.LD/ (Corollary 5.14). ut

Recall that SL.L5/ D hS; T i. Moreover by calculating two cylinder decom-
positions of X5 one finds that SL.X5/, i.e. the Veech group of the genus 4 Prym
Teichmüller curve in discriminant 5, contains the subgroup QH D ˝

S; T 2; C
˛

with
infinite index, where C D ��3�6w 6C10w�2�4w 5C6w

�
. With the help of the algorithm described

in Appendix A.2 one may check that C … SL.L5/.
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Proposition 9.4. The groups SL.L5/ and SL.X5/ are not commensurable.

The proof will very explicitly make use of the arithmetic of both groups. This is
of course not very satisfactory. In Sect. 9.2 we will therefore present a much more
general approach which will imply that any of the Prym Teichmüller curves is never
a twisted Teichmüller curve of a Teichmüller curve in genus 2 and vice versa.

Proof. We set G WD SL.L5/ and H WD SL.X5/. Suppose that G and H are
commensurable. Since the Euler characteristic of H is greater than the Euler
characteristic of G we know by the maximality that H must be conjugated to a
subgroup of SL.L5/. This means that there exists a matrixM 2 SL2.R/ with

MHM�1 < G:

Since G and H are both subgroups of SL2.K/ and since M has to send cusps to
cusps we must have M 2 GLC

2 .K/. Since S 2 G and S 2 H and since S is the
only elliptic element of order 2 in G up to conjugation, there exists A 2 G with
MSM�1 D ASA�1. Since A 2 G we may without loss of generality assume that
MSM�1 D S . It is well-known that M is of the form

M D
�
d �c
c d

�
:

By multiplying with the common denominator of c and d we may furthermore
assume that c; d 2 OD . As we know that T 2 2 H we then must have

MT 2M�1 D
 
1C 2wcd

c2Cd2
2wd2

c2Cd2�2wc2

c2Cd2 1 � 2wcd
c2Cd2

!
2 SL2.OD/:

In particular this means (recall that w is the fundamental unit in O5):

2c2

c2 C d2
2 OD;

2d2

c2 C d2
2 OD:

Now suppose that c; d ¤ 0. The above is then equivalent to

2

1C d2

c2

2 OD;
2

1C c2

d2

2 OD:

This implies that 1 C c2

d2
D 2wm

n
or equivalently c2

d2
D 2wm�n

n
with n 2 OD and

m 2 Z. Now let � be a prime element in OD with �j2wm � n and �jn. Then �j2,
which means � D 2 because 2 is an inert prime number. So 2wm�n

n
D wm�k

k
with

k 2 OD . The latter fraction is completely reduced. This means that we have to
distinguish two cases.
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First suppose that c2

d2
D wm�k

k
. Then c2 D .wm � k/l and d2 D kl for some l 2

OD . We can forget about l because l yields just a multiplication ofM by a multiple
of the unit matrix which vanishes under conjugation. Therefore, c2 D wm � k and
d2 D k. Hence

.�/ c2 C d2 D wm:

We now have again to distinguish two different subcases. First suppose that m is
even and suppose that .c0; d 0/ is a solution for .�/. Then . c0

wm=2
; d 0

wm=2
/ is a solution

for c2 C d2 D 1. Hence it suffices to look at this equation. Setting c D eC f w and
d D g C hw with e; f; g; h 2 Z this yields

.e C f w/2 C .g C hw/2 D 1

or equivalently

e2 C f 2 C g2 C h2 C w.2fe C 2ghC f 2 C h2/ D 1

In particular e2 C f 2 C g2 C h2 D 1 which means that at least three variables must
be equal to zero and therefore c D 0 or d D 0 which is a contradiction. As second
subcase suppose that m D 2v C 1 is odd. A solution .c0; d 0/ of .�/ then yields a
solution . c0

wv=2
; d 0

wv=2
/ of c2 C d2 D w. By similar considerations as above there is no

solution to the latter equation.
Now look at the second case, namely c2

d2
is equal to a completely reduced fraction

of the form 2wm�n
n

. By the preceding arguments we must then have that c2 D 2wm�n
and d2 D n and therefore c2 C d2 D 2wm. We again distinguish two different
subcases. Ifm is even it suffices to look at c2 C d2 D 2. Using the same notation as
above this yields e2 C f 2 C g2 C h2 D 2 which means that 2 variables must be 0
and the other two ˙1. However, only e D ˙1 and g D ˙1 is possible since in all
other cases we must either have that c D 0 or d D 0 or the non-integer part does
not vanish. Finally, if m is odd there then M would be restricted to the following
possibilities:

(i) c D 0: So M D �
d 0
o d

�
with d 2 OD . This is a multiple of the unit matrix and

since the third element C 2 H does not lie in G, this is not possible.
(ii) d D 0: So M D �

0 �c
c 0

�
is a multiple of the matrix S and thus by the same

arguments as in .i/ not a possible candidate.
(iii) c; d D w2m: As we can again forget about multiplication with multiples of the

unit matrix we may just look at c; d D 1: SoM D �
1 �1
1 1

�
. ThenMT 2M�1 D�

1�2w 2w�2w 1�2w

� … SL.L5/: This is again a contradiction.
(iv) c D �w2m; d D w2m which is equivalent to c D �1; d D 1: So M D �

1 1�1 1
�

and MT 2M�1 D �
1C2w 2w�2w 1�2w

� … SL.L5/: This is again a contradiction.
(v) c D �w2m; d D �w2m which is equivalent to c D �1; d D �1: This yields

the same contradiction as in .iii/.
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(vi) c D w2m; d D w2m which is equivalent to c D 1; d D �1: This yields the
same contradiction as in .iv/.

Hence the groupsH and G are not commensurable. ut
In genus 2 there is one additional primitive Teichmüller curve for discriminant 5,

namely the one generated by the regular decagon. Its uniformizing group is given
by the triangle group �.5;1;1/. Also a twist of this Teichmüller curve will not
yield to the genus 4 Teichmüller curve.

Corollary 9.5. The groups SL.X5/ and�.5;1;1/ are not commensurable.

Proof. This is true because Œ�.2; 5;1/ W �.5;1;1/� D 2, see e.g. [Sin72]. ut
Of course there is a pattern hidden behind these calculations. In Appendix A.3

we describe how to decide if two cofinite Fuchsian groups are commensurable when
both of them contain an elliptic element.

9.2 The General Case

In this section, we want to show that all twisted Teichmüller curves are essentially
new objects, i.e. not one of McMullen’s Prym Teichmüller curves. For this we
compare twisted Teichmüller curves with the Prym Teichmüller curves in genus 3
and 4. In fact, we show that for any discriminant D the Teichmüller curves
in genus 3 and 4 are not a twisted (genus 2) Teichmüller curve. This means
that although there are infinitely many twisted Teichmüller curves we do never
get any other of the low genus Teichmüller curves by this construction. This is
really surprising when one recalls the large number of twisted Teichmüller curves
(Theorem 6.28). The proof of this fact involves deep results from the theory of
Lyapunov exponents. As we only consider Lyapunov exponents of Teichmüller
curves here, we will omit the index of Lyapunov exponents indicating the measure.
The main work of this section will consist in deriving the following result:

Theorem 9.6. For all discriminantsD the genus 4 Teichmüller curve is not a twist
of a Teichmüller curve C �

L;D .

For discriminantD D 5 we have already proven this result in Proposition 9.4 by
a very explicit calculation. We will now prove the general version without explicit
knowledge of the involved Veech groups. The analogue statement also holds for the
genus 3 Teichmüller curves whenever they also lie on XD . Of course, one might
also ask whether this theorem is still true for Teichmüller curves in Mg with g � 5,
if those Teichmüller curves lie on a Hilbert modular surface. There are no such
examples known today.

The main idea of the proof is to look at the Lyapunov exponents of the involved
Teichmüller curves (see Sect. 8.4) and to show that these are not compatible in a
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way which will be made more precise on the next pages. This will then immediately
imply the assertion of the theorem.

For the rest of this section we fix the discriminantD.
The purpose of the next few lines is to give another (equivalent) description of the

Lyapunov exponents of a Teichmüller curve which can be generalized to arbitrary
quotients H=� . We first consider the case of genus g D 2. Let us recall the setting:
in Sect. 8.3 we related the Teichmüller flow of the Teichmüller curve to the geodesic
flow on T 1H=SL.LD/. Then T 1H=SL.LD/ has Lyapunov exponents in a natural
way: by applying the Torelli map, C �

L;D D H=SL.LD/ can be considered as lying
in A2. LetA D Jac.X/ be a point on this curve. The latticeƒ ofA can be interpreted
as both H1.X;Z/ and H1.A;Z/ (see e.g. [BL04], Chaps. 1.3 and 11.1). This yields
the following commutative diagram

H1.X;R/



�� H1.A;R/

H1.X;Z/
� �

��

	�

��

D ƒ D H1.A;Z/
� �

��

	�

��

H0.X;�1X/_



�� H0.A;�1A/_

where the upper inclusions are given by tensoring with R and dualizing. As
H1.A;Z/ is a discrete group, H1.A;R/ yields a local system over the image of
T 1H=SL.LD/ in A2 (and hence a cocycle): consider the following composition of
maps

T 1H=SL.LD/
�

�� H=SL.LD/
� �
f

�� M2
� � Jac

�� A2

and pull back the local system to T 1H=SL.LD/. One can then look at the
corresponding Lyapunov exponents. Note that by construction the flow extension
of gt to the local system coincides with the Kontsevich-Zorich cocycle. Now let
� < SL.LD/ be a subgroup of finite index. Then the same construction as above
gives also natural Lyapunov exponents for T 1H=� (if we renormalize the Poincaré
measure of H=� to 1).

Lemma 9.7. If � < SL.LD/ is a subgroup of finite index, then the Lyapunov
exponents of the geodesic flow on T 1H=� and on T 1H=SL.LD/ as defined above
are the same.

Proof. Let F be a Dirichlet fundamental domain of SL.LD/. Then we can choose
a (connected) fundamental domain F 0 for � as ŒSL.LD/ W �� copies of F such
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that F � F 0. Let At.x/ be the cocycle over gt and �1; �2 be the Lyapunov
exponents of the geodesic flow on T 1H=SL.LD/ (respectively A0t .x/ and �0

1; �
0
2

for the geodesic flow on T 1H=�). By Poincaré’s Recurrence Theorem (see e.g.
[KH97], Theorem 4.1.19) there exists for almost all starting points x an unbounded
sequence .ti /i2N such that the geodesic flow on T 1H=� returns to F . At each of the
ti we have by construction that A0ti .x/ D Ati .x/ and hence

�0
k D lim

t!1
1

t
log

A0t .x/v
 D lim

i!1
1

ti
log

A0ti .x/v


D lim
i!1

1

ti
log

Ati .x/v D �k:

ut
The principal significance of the lemma is the following corollary:

Corollary 9.8. Twists do not change the Lyapunov exponents.

Proof. Twisting involves only finite index subgroups and conjugation (compare
Proposition 4.4). ut

Now let us analyze the genus 4 case. Consider the Prym Teichmüller curve
in W 4

D which has been described in Sect. 7.2. The corresponding cocycle over
T 1H=SL.XD/ has 4 positive Lyapunov exponents since H1.X;R/ has dimension
8. Let us denote these Lyapunov exponents by �1; : : : ; �4. We now split up the
Lyapunov exponents of the Teichmüller curve into two groups.

We embedded the genus 4 Teichmüller curve into A2 by mapping each
point of the curve to its Prym variety. By definition the Prym variety is given
as H0.X 0; �.X 0/�/_=H1.X;Z/

�. Thus a natural bundle over X is given as
H1.X;R/� and therefore of dimension 4. The positive Lyapunov exponents of
this bundle are two of the �1; : : : ; �4. Since the involution of the X -shaped billiard
table is the rotation by 180ı the form ! D d z lies in H1.X;Z/

� and hence 1 D �1
is in the Lyapunov spectrum of the corresponding cocycle.

So far the Lyapunov exponents of the genus 2 and of the genus 4 Teichmüller
curves have been treated more or less separately. Of course, the next task is to link
both of them. If the genus 4 Teichmüller curve was a twisted Teichmüller curve they
would by Corollary 9.8 and the preceding considerations have the same Lyapunov
exponents. In other words the embeddings of the genus 2 and of the genus 4
Teichmüller curves from Theorem 7.11 into the Hilbert modular surface uniquely
determine two pairs of Lyapunov exponents and all twisted Teichmüller curves share
their pair of Lyapunov exponents with the ordinary Teichmüller curve in genus 2.
Now there is an obvious plan how to proceed: calculate the two pairs of Lyapunov
exponents of the (ordinary) Teichmüller curves of genus 2 and 4 and show that they
are not equal.

Let �1; �2 be the Lyapunov exponents of the genus 2 curve and Q�1; Q�2 be the
Lyapunov exponents of the genus 4 curve. We know that �1 D Q�1 D 1. At first
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we want to calculate �2 now. The Lyapunov exponents are in some cases known to
depend only on the connected component of the stratum (see Theorem 2.18) which
the Teichmüller curve lies in. For Teichmüller curves in genus 2, the following
theorem precisely calculates �2:

Theorem 9.9 (Bainbridge, [Bai07], Theorem 15.1). If � is any finite, ergodic,
SL2.R/-invariant measure on �M.1/

2 then

�2.�/ D
(
1=3 if � is supported on�M.1/

2 .2/

1=2 if � is supported on �M.1/
2 .1; 1/

:

As the Teichmüller curve in genus 2 lies in the stratum �M.1/
2 .2/ we therefore

know that �2 D 1=3. For the sum of Lyapunov exponents of this Teichmüller curve
we thus have

P2
iD1 �i D 4=3.

Now we come to the more complicated case of the genus 4 Teichmüller curve
and compute Q�2. It was already pointed out that these Teichmüller curves lie in
�M4.6/. Another calculation shows that the Teichmüller curves in genus 4 in fact
lie in the connected component �M4.6/

even.1 Recently D. Chen and M. Möller
proved in [CM11] that the sum of the Lyapunov exponents of Teichmüller curves
depends in many cases only on the connected component which the Teichmüller
curve lies in. The result for the stratum �M4.6/ is the following:

Theorem 9.10 (Non-varying Sum of Lyapunov Exponents (Chen and Möller,
[CM11])). The sum of Lyapunov exponents of a Teichmüller curve in �M4.6/

only depends on the connected component which the Teichmüller curve lies in. More
precisely:

�M4.6/
even W

4X
iD1

�i D 14=7

�M4.6/
odd W

4X
iD1

�i D 13=7

�M4.6/
hyp W

4X
iD1

�i D 15=7

Indeed, D. Chen and M. Möller showed corresponding results for many different
connected components of strata of small genus. Their result on its own does not
give us enough information to calculate Q�2: for�M4.6/

even we only get the trivial
inequality 0 
 Q�2 
 1. We therefore have to combine this equality with another

1Note in the following that our proof would also work if the Teichmüller curves would lie in any
other of the connected components.
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recent result by A. Eskin, M. Kontsevich and A. Zorich in [EKZ11]. This will then
do the job.

Canonical Double Covering. Before we can state their theorem we have to explain
a general principle which is often called the canonical double covering: let .C; q/
be a pair consisting of a Riemann surface C of genus g and a meromorphic
quadratic differential q with at most simple poles. Let dj be the orders of the
zeroes of q (respectively dj D �1 for the poles). Then

P
j dj D 4g � 4. One

can then canonically associate to .C; q/ a double cover p W QC ! C such that
p�q D .!/2 where ! is an Abelian differential on the Riemann surface QC of
genus Qg. One easily shows that this construction associates to each even dj > 0

a pair of zeroes of ! of orders .dj =2; dj =2/, to each odd dj > 0 a zero of order
dj C1 and nothing to simple poles (for details see [Lan04] and [KZ03]). Hence one
gets a map from the stratum Q.d1; : : : ; dn/ of meromorphic quadratic differentials
to the stratum �Mg.k1; : : : ; km/ of Abelian differentials. This map is in fact an
immersion ([KZ03], Lemma 1).

Now consider this double cover p W QC ! C . There exists a natural involution
� W QC ! QC interchanging the sheets of the cover. This decomposesH1. QC ;R/ into
a direct of sum of subspaces, namely the invariant part H1. QC ;R/C (i.e. the C1-
eigenspace of ��) and the anti-invariant part H1. QC ;R/� (i.e. the �1-eigenspace
of ��) with respect to the induced involution �� on the cohomology. Thus we get
two natural vector bundles over Q.d1; : : : ; dn/, which we denote byH1C andH1�.
Evidently H1C is canonically isomorphic to the standard Hodge bundle H1

R
over

Q.d1; : : : ; dn/ as its fiber over a point C isH1.C;R/: it corresponds to cohomology
classes pulled back from C to QC via the projection. Now set geff D Qg � g. Hence
dimH1� D dimH1. QC;R/� D dimH1C D dimH1. QC ;R/C D 2geff . Let ��

1 �
: : : � ��

geff
denote the top geff Lyapunov exponents corresponding to the action of

the Teichmüller geodesic flow and the vector bundleH1�. Then one has:

Theorem 9.11 (Eskin, Kontsevich, Zorich, [EKZ11]). Consider a stratum
Q1.d1; : : : dn/ in the moduli space of quadratic differentials with at most simple
poles, where d1 C : : :C dn D 4g� 4. Let S be any regular PSL2.R/ suborbifold of
Q1.d1; : : : dn/. Let �C

1 � : : : � �C
g denote the Lyapunov exponents of the invariant

subbundleH1C over S along the Teichmüller flow and let ��
1 � : : : � ��

geff
denote

the Lyapunov exponents of the anti-invariant subbundle H1� over S along the
Teichmüller flow. Then the Lyapunov exponents satisfy the following equation

.��
1 C : : :C ��

geff
/� .�C

1 C : : :C �C
g / D 1

4
�

X
j such that dj is odd

1

dj C 2
:

The leading Lyapunov exponent ��
1 is equal to one.

We can apply this theorem to the case of Teichmüller curves of genus 4 as
follows: the genus 4 Teichmüller curve is the projection of an SL2.R/-orbit of a
flat surface .X; !/ (the X-shaped billiard table, see Sect. 7.2) to M4. Let 	 be the
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involution of X . It is a well-known fact that there exists a quadratic differential q
on Y WD X=	 such that p�q D !2, i.e. X is the canonical double cover of Y .
Therefore, .Y; q/ lies in Q2.�5; 1/. Note furthermore that the bundle over the Prym
variety corresponds to H1�. In our notation the theorem hence gives:

2
X
i

Q�i �
X
i

�i D 1

4
.1C 1

7
/ D 2

7
:

Combining this formula with the formula of Chen and Möller we finally get

X
i

Q�i D .2C 2

7
/=2 D 8

7
:

Thus the second Lyapunov of the genus 4 Teichmüller curve is Q�2 D 1
7
. We conclude

that the genus 4 Teichmüller curve is different from any of the twisted Teichmüller
curves of the genus 2 Teichmüller curve. This finishes the proof of Theorem 9.6.

Although the types of the polarizations of the genus 3 Teichmüller curve and of
the genus 2 Teichmüller are different, also the genus 3 Teichmüller curve might lie
on XD. This happens in the case, when the Hilbert modular surface parameterizing
the corresponding Abelian surfaces is given by H � H

�=SL.OD ˚ b2/ for some
fractional ideal a since this Hilbert modular surface is then isomorphic to XD
(compare [Zag81, vdG88]). We can then use the same methods as above to show:

Corollary 9.12. (i) For all discriminants D the genus 3 Teichmüller curve is not
a twist of a Teichmüller curve C �

L;D .
(ii) The second Lyapunov exponent of the genus 3 Teichmüller curve is equal to 1

5
.

Proof. Similarly as above, it follows from [CM11] and [EKZ11] that the second
Lyapunov exponent of the genus 3 Teichmüller curve is equal to 1

5
. By the

same argument the genus 4 Teichmüller curve is then also not a twisted genus 3
Teichmüller curve for all discriminantsD (and vice versa). ut

As a consequence from the calculations we get the following inequalities for the
Lyapunov exponents of the genus 4 Teichmüller curve.

Corollary 9.13. For the Lyapunov exponents of the Prym Teichmüller curves in
genus 4 the following inequalities hold: 3=7 
 �2 
 6=7, 1=7 
 �3 < 3=7,
0 < �4 
 1=7 and �3 or �4 is equal to 1=7.
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A.1 Proof of Theorem 2.30

Theorem 2.30. The Hilbert modular surface XD is the moduli space of all pairs
.X; 	/, where X is a principally polarized Abelian surface and 	 is a choice of real
multiplication on X by OD .

Proof. Given � D .�1; �2/ 2 H � H we define a map �� W OD ˚ O_
D ! C

2 by

��.x; y/ D .x C y�1; x
� C y��2/:

Let A� be the complex torus C
2=��.OD ˚ O_

D/ with the principal polarization
induced by the standard symplectic pairing on OD ˚ O_

D , i.e. h.x1; y1/; .x2; y2/i D
tr.x1y2 � x2y1/. We define real multiplication by OD on A� by k.z1; z2/ D
.kz1; k� z2/. This construction gives a map Q‰ from H � H to the set of all triples
.X; ; �/ where .X; / is a principally polarized Abelian surface X D C

2=ƒ

with real multiplication by OD and � is a choice of an OD-linear, symplectic
isomorphism � W OD ˚ O_

D ! ƒ. We need to show that “forgetting” the choice of
the isomorphism � means exactly factoring Q‰ through SL.OD ˚ O_

D/.
Let g D �

a b
c d

� 2 SL.OD ˚ O_
D/. Then also g� D �

a �b�c d

�
is an automorphism

of OD ˚ O_
D . Define

�.g; �/ D
�
.c�1 C d/�1 0

0 .c��2 C d�/�1
�
:

This yields the following commutative diagram:

OD ˚ O_
D

g�

��

��
�� C2

�.g;�/

��

OD ˚ O_
D

�g��

�� C2

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2,
© Springer International Publishing Switzerland 2014

145



146 A Appendix

Hence �.g; �/ induces an isomorphism between A� and Ag�� , that preserves
polarizations and commutes with the action of real multiplication. Therefore,
we have a well-defined map ‰ from XD to the set of all principally polarized
Abelian surfaces with a choice of real multiplication. This map will be shown to
be a bijection.

Let us first show that‰ is injective: assume that there exists an isomorphism f W
X D C

2=ƒ ! X 0 D C
2=ƒ0. Let us choose two isomorphisms �� W OD ˚ O_

D !
ƒ D ƒ� and �� 0 W OD ˚ O_

D ! ƒ0 D ƒ� 0 . Let � WD .D C p
D/=2. Following

[McM07], Chap. 3,A� WD C
2=��.OD ˚O_

D/ is then isomorphic to C
2=.Z2˚…Z

2/

where

… D 1

D

�
�1.�

� /2 C �2.�/
2 ��1�� � �2�

��1�� � �2� �1 C �2

�

and similarly forA� 0 . However, two such tori with corresponding matrices… and…0
are isomorphic if and only if … and …0 are equivalent modulo the action of Sp4.Z/
on H2. It can be checked that this implies that � 0 D g� for some g 2 SL.OD˚O_

D/.
It follows that ‰ is injective.

The longest step is to show that ‰ is surjective. To do this, we consider an
arbitrary complex torus X D C

2=ƒ with principal polarization given by an
alternating formE W ƒ�ƒ ! Z and real multiplication by 	 W OD ! End.X/. For
dimension reasonsƒ is a projective rank 2 OD-module. As first step let us show that
ƒ Š OD ˚ I for some ideal I. This is an immediate consequence of the following
two lemmas (compare [May09]).

Lemma A.1. Let R be a Dedekind domain and A1; : : : ; An be fractional ideals.
Then

A1 ˚ : : :˚ An Š Rn�1 ˚ A1 � � �An:

Proof. By induction, it suffices to consider the case n D 2. So we are dealing with
fractional ideals A and B . Multiplying by suitable elements x and y of R we may
assume that A and B are relatively prime ideals in R. Define � W A ˚ B ! R by
�.a; b/ D a C b. The kernel of � is A \ B D AB since A and B are relatively
prime. The short exact sequence

0 �! AB �! A˚ B
��! R �! 0

splits since R is (as Dedekind domain) free, and this yields the claim. ut
Lemma A.2. For a finitely generated projective OD-moduleM of rank n

M D On�1
D ˚ I

where I is an ideal.
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Proof. AsM is projective, it is torsion free. Now we proceed the proof by induction.
If n D 1, thenM is a OD-submodule ofM˝ODK Š K and is therefore isomorphic
to a fractional ideal. By choosing n � 1 elements of M that span a vector space of
that dimension in M ˝OD K , we can construct an OD-submoduleN of rank n� 1.
The exact sequence

0 �! N �! M �! M=N �! 0

remains exact upon tensoring with K, hence M=N has rank 1. Thus M=N is
projective and the sequence splits. Since any fractional ideal is isomorphic to an
ideal, the conclusion follows from the inductive hypothesis and the last lemma. ut

Hence we have that as OD-modules ƒ Š OD ˚ I for some ideal I. So we
may assume that X D C

2='.OD ˚ I/ with real multiplication 	 by OD for some
embedding ' W OD ˚ I ! C

2.

Lemma A.3. There exists a symplectic isomorphism‚ W .OD˚I; E; 	/ ! .OD˚
O_
D; h; i ; 	0/, where h; i is the symplectic pairing on OD ˚ O_

D that is compatible
with the real multiplications 	 and 	0.

Proof. We can always choose a symplectic basis with a1; a2 2 OD , b1; b2 2 I
for ƒ, i.e. E.ai ; bj / D ıij and E.ai ; aj / D 0 and E.bi ; bj / D 0. The form E

extends to E W K2 � K2 ! Q such that E.kx; y/ D E.x; ky/ for all x; y 2
ƒ and k 2 K . Let h; i be the standard symplectic form on OD ˚ O_

D with its
standard basis c1; c2; d1; d2 and together with its standard real multiplication 	0 (see
e.g. [McM07]). We choose a Z-linear symplectic isomorphism ‚ W OD ˚ I !
OD ˚ O_

D with ‚.ai / D ci and‚.bi/ D di for i D 1; 2. Then we may identify the
ai with the ci since the ci are a basis of OD as Z-module. We now want to prove
that this symplectic isomorphism is OD linear. By tensoring with K we also extend
this map to ‚ W K �K ! K �K and verify that ‚ is indeed K-linear. Since ‚ is
Q-linear, it suffices to show that ‚.kx/ D k‚.x/ for a fixed k 2 K XQ and for all
x 2 K �K . We now choose k D b1

b2
. By definition we have ‚.ka1/ D k‚.a1/ and

‚.ka2/ D k‚.a2/. We now show that ‚.kb1/ D k‚.b1/ for this fixed k 2 K X Q.
This is equivalent to showing that kd1 D d2. By definition of k we have

1 D E.a2; b2/ D E.a2; kb1/ D E.ka2; b1/;

which yields

1 D h‚.ka2/;‚.b1/i D hk‚.a2/; d1i D hc2; kd1i : (A.1)

Similarly we have

0 D E.a1; b2/ D E.a1; kb1/ D E.ka1; b1/
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which yields

0 D h‚.ka1/;‚.b1/i D hk‚.a1/; d1i D hc1; kd1i : (A.2)

Equations (A.1) and (A.2) imply that kd1 D d2. By considering appropriate
equations it follows similarly as above that ‚.kb2/ D k‚.b2/, which implies
K-linearity of ‚. This means that the following diagram commutes:

OD ˚ I
‚

��

	

��

OD ˚ O_
D

	0

��
OD ˚ I

‚
�� OD ˚ O_

D

Or in other words the chosen symplectic isomorphism respects the real
multiplication. ut

We may therefore assume that ƒ D '.OD ˚ O_
D/ where ' W OD ˚ O_

D ! C
2 is

an embedding. It remains to show that there exists a � 2 H
2 with �� D '.

Recall that

.a1; a2; b1; b2/ D ..1; 0/; .�; 0/; .0;���=pD/; .0; 1=pD//

is the standard basis of OD ˚ O_
D with respect to the standard symplectic form,

where � D .D C p
D/=2. With respect to this basis �� W OD ˚ O_

D ! C
2 is given

by the matrix

�� D
�
1 � ��1��=

p
D �1=

p
D

1 �� �2�=
p
D ��2=

p
D

�

or equivalently

�� D .B;D� .B
t /�1/

where B D
�
1 �
1 ��

�
and D� D �

�1 0
0 �2

�
. Consequently we have ‰.�/ Š C

2=.Z2 ˚
…Z

2/, where

… D B�1D�.B
t /�1 D 1

D

�
�1.�

� /2 C �2�
2 ��1�� � �2�

��1�� � �2� �1 C �2

�
:

Let us now consider '. As 	.�/ has two distinct eigenvalues, namely � and �� ,

we may choose a basis of C
2 such that the action of 	.�/ is given by

�
� 0
0 ��

�
.
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One easily calculates that the action of 	.�/ on the lattice OD ˚ O_
D with respect to

the basis .a1; a2; b1; b2/ is given by

	.�/.a1; a2/ D C

�
a1

a2

�

	.�/.b1; b2/ D C t

�
b1
b2

�
;

where C D
�

0 1
.D�D2/=4 D

�
.

Since the real multiplication commutes with ', we have

'.	.�/ai / D
�
� 0

0 ��

�
'.ai /

'.	.�/bi / D
�
� 0

0 ��

�
'.bi /:

Setting '.a1/ D . rs / and '.b2/ D
�

v=
p
D

�w=
p
D

�
with r; s; v;w 2 C we get that ' W

OD ˚ O_
D ! C

2 is given by the matrix

' D .

�
r 0

0 s

�
B;

�
v 0

0 w

�
.Bt /�1/:

Consequently C
2='.OD ˚ O_

D/ Š C
2=.Z ˚…0

Z/, where

…0 D
�
�1.�

� /2 C �2�
2 ��1�� � �2�

��1�� � �2� �1 C �2

�
:

with �1; �2 2 C. Since C
2=.Z ˚ …0

Z/ is a principal polarized Abelian variety we
have in fact that …0 2 H2 and hence �1; �2 2 H. This shows that ‰ is indeed
surjective. So ‰ is a bijection and we have finally proven the assertion of the
theorem. ut

A.2 Elements of Non-cocompact Cofinite Fuchsian Groups

Let � � PSL2.R/ be an arbitrary Fuchsian group. It is in general a very hard
problem to decide whether a given element N 2 PSL2.R/ is in � or not. For
example one would like to check if a certain matrix lies inside a Veech group
SL.X; !/ or not. In fact, one is often even interested in writing N as a word
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in given generators if possible. These problems are very much reminiscent of
the famous—generally unsolvable—word problem (see e.g. [Bau93]). For non-
cocompact, cofinite Fuchsian groups we are able to give an algorithm which does
solve both of the above problems—at least if the Dirichlet fundamental domain of
the Fuchsian group is known sufficiently well.

Let � until the end of Appendix A.2 be a non-cocompact cofinite Fuch-
sian groups. Then � contains at least one parabolic element (see [Kat92],
Corollary 4.2.7). Before we explain the algorithm, let us collect a bunch of well-
known facts. The first one describes the Dirichlet fundamental domain of a Fuchsian
group in Euclidean metric (compare [Kat92], Chap. 3).

Lemma A.4. The Dirichlet fundamental domain of � can be described using
Euclidean metric as follows:

Dp.�/ D
�

z 2 H j
ˇ̌
ˇ̌T .z/� p

z � p
ˇ̌
ˇ̌ � 1

jcz C d j 8T D
�
a b

c d

�
2 �

	

A long but straightforward calculation then yields:

Corollary A.5. For limk!1Dki .�/ DW D1.�/ all bounding geodesics of the
Dirichlet fundamental domain which are not vertical lines are given by

ˇ̌
ˇ̌z �

�
�d
c

�ˇ̌
ˇ̌ D 1

jcj

for some
�
a b
c d

� 2 � . The interior of this limit fundamental domain is

int.D1.�// D
�

z 2 H j
ˇ̌
ˇ̌z �

�
�d
c

�ˇ̌
ˇ̌ > 1

jcj
	
:

Furthermore we remind the reader of the following fact (see [FB06],
Hilfssatz V.7.1):

Lemma A.6. If M D �
a b
c d

� 2 SL2.R/, then for all z 2 H

Im.M z/ D Im.z/

jcz C d j2

holds.

The algorithm is based on the following lemma:

Lemma A.7. Let � be a Fuchsian group which is a lattice in PSL2.R). Then we
have:

(i) For all z 2 H there are only finitely many a1; : : : ; an 2 R with ai � Im.z/
which appear as imaginary parts in the elements of �z.

(ii) Every orbit �z contains points of maximal imaginary part.



A.2 Elements of Non-cocompact Cofinite Fuchsian Groups 151

Fig. A.1 A typical
fundamental domain

(iii) The points z 2 H which have maximal imaginary part in their �-orbit are
those with

jcz C d j � 1 8c; d with

�� �
c d

�
2 �:

Proof. Let z D x C iy. The last lemma gives

Im.M z/ � Im.z/ if and only if jcz C d j 
 1:

This proves .iii/. The inequality jcz C d j 
 1 has only finitely many solutions since
� is discrete. This yields .i/ and .ii/. ut

In [Koh06] one finds an algorithm which decomposes each element SL2.Z/ into
a word in the standard generators of SL2.Z/. Simultaneously it gives a possibility to
decide whether a given matrix lies in SL2.Z/, although this is of course trivial. We
now imitate this algorithm.

Recall that � is a Fuchsian group containing at least one parabolic element. By
conjugation we may assume that � contains A D �

1 s
0 1

�
with s 2 R. Furthermore

we may assume that jsj is minimal, i.e. there is no matrix of this form in � with
an upper right entry of smaller absolute value. The Dirichlet fundamental domain
D1.�/ then looks like:

The left and right boundary of D1.�/ are the geodesics joining �s=2 (respec-
tively s=2) and 1. The other boundary geodesics fill the gap between �s=2 and
s=2. Now let X 2 PSL2.R/. Let us try to write X as a word in the generators of � .
Choose an arbitrary point z0 2 int.D1.�// and

(1) look at y0 D Xz0 and apply k-times (with k 2 Z) the matrix A until
jRe.Aky0/j 
 s

2
.

(2) If y1 WD Aky0 2 int.D1.�//, then check if y1 D z0. If y1 ¤ z0 then X … �

since F is a fundamental domain.
(3) If y1 D z0, then check if X D A�k in PSL2.R). In either case we are finished.
(4) If y1 … int.D1.�//, then y1 lies beneath (at least) one of the boundary

geodesics and above the x-axis. Then find a matrix B D �
a b
c d

� 2 � which
generates this geodesic in the sense of Corollary A.5. And set y2 D By1.
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Since B generates the geodesic

ˇ̌
ˇ̌y1 �

�
�d
c

�ˇ̌
ˇ̌ < 1

jcj

or since equivalently jcy1 C d j < 1 holds, we must have that Im.y2/ > Im.y1/.
If y2 2 int.D1.�//, then we are again finished (after checking if y2 D z0 and if
A�kB�1 D X ). Otherwise we continue with step (I) with y2 instead of y0.

As the imaginary part grows with every iteration, the algorithms really deter-
mines by Lemma A.7 (iii). We have thus shown:

Theorem A.8. Let � be a non-cocompact, cofinite Fuchsian group. If A1; : : : ; An
generate � in the sense of Corollary A.5 then the algorithm above decides whether
an arbitrary element X 2 PSL2.R/ lies in � . If so, the algorithm returns X as a
word in the Ai .

A.3 Checking Commensurability

If we knew that in genus 2 all Veech groups of Teichmüller curves were maximal
and if we wanted to check if a curve H=� is a twisted Teichmüller curve then
Proposition 9.2 and Lemma 5.29 make it necessary to find a sufficiently general
algorithm which decides if a Fuchsian group H � SL2.R/ is conjugated to a
subgroup of another Fuchsian groupG � SL2.R/.

Since the signature of a Fuchsian group does not change under conjugation it is
necessary that G contains a subgroup of the same signature as H . This is of course
a much stronger criterion than just looking at the Euler characteristics. In [Sin70],
D. Singerman gave a criterion which decides whether a given group G contains a
subgroup of the same signature as H .

Definition A.9. If � is of signature .gIm1; : : : ; mr I sI t/ then the integers
m1; : : : ; mr are called the periods of � .

Let n now be a period of � 0 � � . Then n is by definition the order of an elliptic
element y 2 � 0 and y is a power of a conjugate of one of the elliptic generators
xj 2 � with ordermj . We shall then say that n has been induced bymj . Of course,
this implies that njmj .

Theorem A.10 (Singerman, 1970). Let � be a Fuchsian group of signature
.gIm1; : : : ; mr I sI t/. Then � contains a subgroup �1 of index N with signature
.g0n11; n12; : : : ; n1p1 ; : : : ; nr1; : : : ; nrpr I s0I t 0/ if and only if

(I) There exists a finite permutation group G transitive on N points and an
epimorphism � W � ! G satisfying the following properties
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(i) The permutation �.xj / has precisely pj cycles of lengths less thanmj , the
lengths of these cycles beingmj=nj1; : : : ; mj =njpj ,

(ii) If we denote the number of cycles in the permutation �.�/ by ı.�/ then

s0 D
sX

kD1
ı.pk/; t 0 D

tX
lD1

ı.hl /

where pk are the parabolic and hl are the hyperbolic generators of � .

(II) vol.�1/=vol.�/ D N .

Nevertheless, there may exist non-conjugated groups of the same signature (see
e.g. [SW00]). So Theorem A.10 only gives necessary conditions for H and G.
Hence we really need an algorithm to decide, whether there exists an M 2 SL2.R/
with MHM�1 
 G. For the rest of the section we will as two assumptions
suppose that G is a cofinite Fuchsian group and H (and thus necessarily also G)
contains elliptic elements. Note that both assumptions are fulfilled for the Veech
groups of Teichmüller curves of genus 2 and 4. The idea of the algorithm is that,
if MHM�1 
 G, then there must exist a fundamental domain FH of H and a
fundamental domain FG of G such that the tessellation of H by copies of FG is
a refinement of the tessellation of H by copies of MFHM

�1. The algorithm now
works in the following way:

(1) Choose an arbitrary elliptic fixed point x ofH of period nx .
(2) For each conjugacy class of elliptic fixed points of period mi with nx jmi in G,

choose an arbitrary elliptic fixed point zi and calculate all matricesMx;zi which
send x to zi .

Of course, elliptic fixed points ofH must be sent byMx;zi to elliptic fixed points of
G of suitable period. Thus the upper matricesMx;zi are the only possible candidates
forM . Note that the choices of the elliptic fixed points zi and x are really free since
choosing another representative than x means multiplying Mx;zi by a matrix in H
from the right and choosing another representative than zi means multiplyingMx;zi
by a matrix in G from the left.

(3) Choose another arbitrary elliptic fixed point y of H of period ny and calculate
d.x; y/.

For computational reasons it is convenient to choose y with minimal distance
d.x; y/.

(4) Calculate parts of the tessellation of H by copies of FG until Bd.x;y/.zi / is
completely covered.

Note that step (4) can be performed in finite time since G is a cofinite Fuchsian
group. Since Mx;zi is an isometry the next step of the algorithm is naturally given
by:
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(5) For all elliptic fixed points zk of G of period mk with zk 2 ıBd.x;y/.zi / and
ny jmk calculate if there exists a matrix Mx;zi with Mx;zi y D zk . If so this
matrix is unique and called Mx;y;zi ;zk .

This yields a complete list of possible candidates Mx;y;zi ;zk . For each of these
matrices now perform step (6).

(6) Set M WD M�1
x;y;zi ;zk

. Then for all generators uj of H decide whether
M ujM�1 2 G. If so (for all uj ), then MHM�1 
 G.

Step (6) can for example be done by the algorithm given in Sect. A.2.
In the following example we now show how the algorithm explicitly works:

Examples A.11. Let H D
D
S;
�
1C2=9p8 2=9

�16=9 1�2=9p8

�E
and let G D SL2.Z/. Both

groups H and G have only one conjugacy class of elliptic fixed points of order
2. Thus we may choose x D zi D i and it is well-known that Mx;zi D �

c d�d c

�
with

c2 C d2 D 1. Another elliptic fixed point of H is

�
1C 2=9

p
8 2=9

�16=9 1 � 2=9p8
�
i D 1

1553

�
�702� 220

p
8C i.369C 36

p
8/
�

„ ƒ‚ …
DWy

:

d.x; y/ D d.i; i C 2/ and i C 2 is an elliptic fixed point of G. Solving the equation
Mx;zi y D i C 2 yields

M WD M�1
i;y;i;iC2 D

�
1=3 �1=3p8
1=3

p
8 1=3

�
:

We have

M

�
0 �1
1 0

�
M�1 D

�
0 �1
1 0

�

and

M

�
1C 2=9

p
8 2=9

�16=9 1 � 2=9
p
8

�
M�1 D

�
1 2

0 1

�

and therefore MHM�1 
 G.



Appendix B
Tables

Tables with some numerical data for the volume of diagonal twisted Teichmüller
curves in the cases D D 13 and D D 17 can be found on the following pages. As
we have seen in Chap. 6 diagonal twisted Teichmüller curves carry the information
about the volume of almost all twisted Teichmüller curves in the case hD D 1.
Therefore, diagonal twisted Teichmüller curves are especially interesting from a
numerical point of view. More precisely, the tables on the next two pages contain
the indexes ŒSL.LD/ W SL.LD/\�D0 .m/\�D;0.n/� for manym; n 2 OD . From this
data one can calculate the volume of the corresponding twisted Teichmüller curves
(Theorem 6.25). All calculations were done with PARI/GP (Tables B.1, B.2).

C. Weiß, Twisted Teichmüller Curves, Lecture Notes in Mathematics 2104,
DOI 10.1007/978-3-319-04075-2,
© Springer International Publishing Switzerland 2014
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