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To J & A, ever



You can’t be perfect,
but if you don’t try,
you won’t be good enough.

Paul Halmos



Preface

The book is split into two parts. Part I is a first course in measure theory
with integration, consisting of a revised, corrected, enlarged, updated, and
thoroughly rewritten text based on the author’s 2007 Measure Theory: A
First Course [25]. Part II is a second course, dealing with measure and
integration on topological spaces.

Part I, Introduction to Measure and Integration, designed to be a text-
book for a first course in measure theory, gives an abstract approach to
measure and integration, in which the classical concrete cases of Lebesgue
measure and Lebesgue integral are presented as an important particular
case of the general theory. Part I contains nine chapters. Chapter 1 considers
real-valued (and extended real-valued) measurable functions with respect to
a σ-algebra, and Chapter 2 introduces the concepts of measure and signed
measure. The integral of nonnegative measurable functions with respect to
a given measure is addressed in Chapter 3. The notion of integral is ex-
tended to real-valued measurable functions in Chapter 4, and Lp spaces are
constructed in Chapter 5. Convergence of sequences of measurable functions
is discussed in Chapter 6, where several concepts are compared. Decompo-
sition of measures is investigated in Chapter 7, and extension theorems are
treated in Chapter 8, where the Lebesgue measure is built up and discussed
in detail. Product measures and integrals with respect to product measures
(in particular, iterated integrals) close Part I in Chapter 9.

Part II, Measures on Topological Spaces , extends the material of Part I
by equipping a nonempty set with a topology and considering σ-algebras of
subsets of it containing the topology. This second part investigates measures
and integrals on such Borel σ-algebras. It contains four chapters. Chapter 10
is an introduction to Part II, examining fundamental properties of integrals
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viii Preface

with respect to positive, real, and complex measures. Measures on topologi-
cal spaces are introduced in Chapter 11, whose central theme is the construc-
tion of Borel measures on a Borel σ-algebra of subsets of a locally compact
Hausdorff space. Several forms of the Riesz Representation Theorem are
considered in Chapter 12 after an introduction to continuous functions with
compact support and bounded linear functionals. Invariant measures are
focused in Section 13, where the main topic is the construction of Haar
measure on a Borel σ-algebra of subsets of a locally compact Hausdorff
group.

The final section of each chapter in Part I contains Problems , and is an
integral part of the chapter, not only just a set of routine exercises. The
majority of those problems consists of auxiliary results, extensions of the
theory, examples, and mainly counterexamples. The reader is encouraged
to look at these problems with the same care as expected for a conventional
theory section. Indeed, part of the theory is sometimes shifted to the prob-
lems section, and when this happens those problems are accompanied by
Hints (sometimes, by detailed hints). The intention is to motivate readers
to take an active part in the development of the theory presented in Part I.

Part II evidently is more advanced than Part I, addressed to more ex-
perienced readers. Thus, unlike Part I, the last section of each chapter of
Part II consists of Additional Propositions, containing auxiliary and comple-
mentary results. These are followed by a set of Notes , in which each propo-
sition is briefly discussed, and references are provided indicating proofs for
all of them. These additional propositions can be viewed as a set of more
complex proposed problems, and the respective notes as hints for dealing
with them.

Each chapter in both Parts I and II ends with a collection of Suggested
Readings . This has a triple purpose: to offer a reasonable bibliography in-
cluding most of the classics as well as some recent texts, to point out where
different approaches and proofs can be found, and also to indicate alter-
nate routes towards additional results (so that some of the references are
suggested as a second or third reading on the subject).

The material in Part I was devised to be covered in a one-semester begin-
ning graduate course. Although naturally addressed to graduate students,
Part I certainly is accessible to advanced undergraduate students as well.
In fact, it is self-contained, and the prerequisites are very modest, namely,
conventional undergraduate introductory analysis and, just for Chapter 5,
linear spaces as usually taught in standard linear algebra courses. No ac-
quaintance with functional analysis is required in Part I, but elementary
set theory is obviously required. In particular, it is assumed that the reader
be familiar with the notions of cardinality, countable and uncountable sets,
and also with the following basic results: the set of all rational numbers
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is countable, countable union of countable sets is countable, infinite sets
(in particular, uncountable sets) have a countably infinite proper subset,
and countably infinite families can be reenumerated into a sequence. Part II
was prepared to be covered in a one-semester graduate course as well, sub-
sequent to a first course based on the material of Part I. The prerequisites
for Part II is just Part I.

All in all, the resulting text of the whole book is the outcome of attempts
to meet the needs of a contemporary course in measure theory for mathema-
ticians who will also be accessible to a wider audience of students in mathe-
matics, statistics, economics, engineering, and physics, bearing a modest
prerequisite. I tried to respond to the input from those students by present-
ing a text that contains complete proofs, including answers to several ques-
tions they have raised throughout the years. The logical dependence of the
various sections and chapters is roughly linear and reflects approximately
the minimum amount of material needed to proceed further.

I have been lecturing on this subject for a long time. Thus, I benefited
from the help of many friends among students and colleagues and I am
truly grateful to all of them, in particular to Renato A.A. da Costa, Sergio
Franklin, Leonardo B. Gonçalves, Johnny Kwong, André L. Pulcherio,
Luciano R. da Silveira, Alexandre Street, and João Zanni who helped with
the quest for typos in Part I, and Lucas Freire and Joaquim D. Garcia who
helped with the quest for typos in Part II. Special thanks are due to Jessica
Q. Kubrusly from whom I stole the notes for Section 7.3, to Adrian H.
Pizzinga who read the entire text of Part I and corrected a number of ty-
pos and inaccuracies, to Richard Delaware who (together with his students)
has scanned Part I as well and contributed with many corrections, and to
an anonymous reviewer who made sensible suggestions to improve the text.
Thanks are also due to my friend and colleague Marcelo D. Fragoso who
was indeed an accomplice in writing this book. Let me also thank Elizabeth
Loew and Ann Kostant from Springer New York for a pleasant and lasting
partnership. I am grateful to the Catholic University of Rio de Janeiro for
providing the release time that made this project possible.

Rio de Janeiro, Brazil Carlos S. Kubrusly
June 2015
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Introduction to Measures and Integration



1

Measurable Functions

1.1 Measurable Space

The power set ℘(X) of a given set X is the collection of all subsets of X.
We will work with set functions (i.e., functions whose domains are sets of
sets) from Chapter 2 onwards. To begin with, we might assume that a nat-
ural candidate for the domain of such functions of sets would be the power
set ℘(X) of a given set X. This indeed would be an admissible candidate.
However, as we will see in subsequent chapters, there are instances where
the power set is too large a set to be the domain of some set functions we
wish to consider. This means that some functions may lose essential prop-
erties if their domain is too large or, in other words, some functions would
not be well-behaved when defined on a domain that is as big as a power set
(this will be discussed in detail in Chapter 8). Given an arbitrary set X, a
collection of subsets of X (i.e., a subcollection of the power set ℘(X)) that
will be appropriate to our purpose is a σ-algebra.

Definition 1.1. An algebra A (or a field , or a Boolean algebra) of sets is a
collection of subsets of a set X (i.e., A ⊆ ℘(X)) fulfilling the next axioms.

(a) The whole set X and the empty set ∅ belong to A.
(b) The complement X\E of a set E in A belongs to A.
(c) The union of a finite collection of sets in A belongs to A.

© Springer International Publishing Switzerland 2015
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7 1
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4 1. Measurable Functions

If the restriction of finite union in axiom (c) is relaxed to allow countably
infinite unions as well, then the algebra receives a special name and notation.

A σ-algebra (or a σ-field , or a Borel field) on X, denoted by X , is an algebra
of subsets of a set X for which axiom (c) is extended to axiom (ĉ) below.

(ĉ) The union of a countable collection of sets in X belongs to X .
A pair (X,X ) consisting of an arbitrary set X and a σ-algebra X of subsets
of X is called a measurable space. Sets in X are referred to as measurable
sets (measurable with respect to the σ-algebra X ) or as X -measurable sets .

Axioms (c) and (ĉ) in the preceding definition of algebra and σ-algebra
can be replaced, respectively, by the following axioms.

(c′) The intersection of a finite collection of sets in A belongs to A.
(ĉ′) The intersection of a countable collection of sets in X belongs to X .
Indeed, (b) and the De Morgan laws (viz., X

∖(⋃

αAα

)

=
⋂

α(X\Aα) and

X
∖(⋂

αAα

)

=
⋃

α(X\Aα) for any collection {Aα} of subsets of X) ensure

that (b) and (c)
(

(b) and (ĉ)
)

is equivalent to (b) and (c′)
(

to (b) and (ĉ′)
)

.

Remark: Since A\B = A ∩X\B for every A,B ⊆X, axioms (a), (b), (c) are
equivalent to axioms (a′), (b′), (c), where (a′) and (b′) are given as follows.

(a′) X belongs to A.
(b′) The difference E\F of sets E and F in A belongs to A.
A nonempty collection of sets that satisfies axioms (b′) and (c) is called a
ring (or a Boolean ring) of sets. If it satisfies axioms (b′) and (ĉ), then it
is a σ-ring. Every algebra (every σ-algebra) is a ring (a σ-ring). If a ring (a
σ-ring) of subsets of a set X contains X, then it is an algebra (a σ-algebra).

Example 1A. Take a nonempty set X. The power set ℘(X) is a σ-algebra
of subsets ofX (it is more than that since the union of an arbitrary collection
of sets in ℘(X) lies in ℘(X)), which is the largest σ-algebra of subsets of X.
At the other end, the collection {∅, X} is the smallest σ-algebra of subsets
of X. (The notions of large and small are defined in terms of the inclusion
ordering). A partition of a set X is any collection of pairwise disjoint subsets
of X that cover X. If {A,B} is a partition of X (i.e., if A ∪B = X and
A ∩B = ∅), then X = {∅, A,B,X} is also a σ-algebra of subsets of X.

The intersection of any collection of σ-algebras of subsets of a set X is
again a σ-algebra of subsets of X. This is readily verified by the definition
of σ-algebra. If C is a nonempty collection of subsets of a set X (i.e., if
C ⊆ ℘(X)), then there exists a smallest (inclusion ordering) σ-algebra XC
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of subsets of X that includes C. Indeed, let XC denote the collection of all
σ-algebras of subsets of X that include C. Note that XC is nonempty be-
cause the power set ℘(X) is an element of XC (i.e., ℘(X) ∈XC). Now set
XC =

⋂

XC, the intersection of all σ-algebras of subsets of X that include
C, which is itself a σ-algebra of subsets of X that includes C, included in
any σ-algebra of subsets of X that includes C (i.e., if X is a σ-algebra of
subsets of X such that C ⊆ X , then XC ⊆ X ). This smallest σ-algebra XC
is referred to as the σ-algebra generated by C.

The Borel σ-algebra of subsets of R is the σ-algebra � generated by the
collection of all open (or closed) intervals of the real line R, also called the
Borel algebra of subsets of R, for short. This coincides with the σ-algebra
generated by the open subsets of R (see the remark following Problem 1.14).
The elements of � (i.e., the �-measurable sets) are called Borel sets. The
notion of Borel σ-algebra will be extended in Chapter 11.

1.2 Real-Valued Measurable Functions

Definition 1.2. Consider a measurable space (X,X ). A function f :X→ R

is measurable with respect to the σ-algebra X , or X -measurable, if the
inverse image of (α,∞) under f is a measurable set for any real number α:

f−1
(

(α,∞)
)

=
{

x ∈ X : f(x) > α
}

∈ X for every α ∈ R.

Remark: The sign > in Definition 1.2 can be replaced with ≥, < , or ≤ ,
yielding equivalent definitions of a measurable function (cf. Problem 1.1).
Moreover, it can verified that f :X→ R is measurable if and only if the
inverse image of open sets in R are measurable sets in X (Problem 1.7(b)
— the notion of measurable function will be extended in Chapter 11).

Example 1B. Let (X,X ) be a measurable space, take any set E ∈ ℘(X),
and consider the characteristic function χ

E :X→ {0, 1} ⊂ R of E; that is,

χ
E(x) =

{

1, x ∈ E,

0, x ∈ X\E.

The characteristic function χ
E of a set E ⊆X is an X -measurable function

if and only if E is an X -measurable set (i.e., if and only if E ∈ X ). Indeed,

χ−1
E

(

(α,∞)
)

=
{

x ∈ X : χ
E(x) > α

}

=

⎧

⎪

⎨

⎪

⎩

∅, 1 ≤ α,

E, 0 ≤ α < 1,

X, α < 0.



6 1. Measurable Functions

Observe that the function 1:X→ R such that 1(x) = 1 for all x ∈ X
coincides with the characteristic function χ

X of the entire set X. Moreover,
it is also readily verified that γf is measurable for every γ ∈ R whenever
f :X→ R is a measurable function. Therefore, every constant function is
measurable (since a constant function is precisely γχ

X for some γ ∈ R).

Example 1C. Take the set N of all positive integers, and let Ne and No be
the subsets of N consisting of all even and odd numbers, respectively. Thus
{No,Ne} forms a partition of N. Example 1A says that N = {∅,No,Ne,N }
is a σ-algebra of subsets of N. Consider the measurable space (N,N ), and
take the identity function f :N → NR (i.e., f(n) = n for every n ∈ N). This
function f is not measurable (i.e., it is not N -measurable). In fact,

f−1
(

(1,∞)
)

=
{

n ∈ N : f(n) > 1
}

=
{

2, 3, 4, ...
}

�∈ N .

Take a σ-algebra X of subsets of a set X, and let E ∈ X be an arbitrary
measurable set of X . Recall that the power set ℘(E) of E is a σ-algebra of
subsets of E ⊆ X. Thus the collection of all X -measurable subsets of E,

E = ℘(E) ∩ X ,

is again a σ-algebra, now of subsets of E ⊆ X. Indeed, since X and ℘(X)
are σ-algebras, countable unions of sets in E lies in E . Moreover, if B ∈ E ,
then B ⊆ E and B ∈ X , and hence E\B ∈ ℘(E) and E\B = E ∩ (X\B) =
X\[(X\E) ∪B] ∈ X . Observe that the smallest σ-algebra of subsets of E,
namely {E,∅}, is a subcollection of E , and E itself is the largest σ-algebra
of subsets of E included in X .

Proposition 1.3. Restrictions of X -measurable functions to X -measurable
sets E are E-measurable functions .

Proof. Take a σ-algebra X of subsets of a set X and an X -measurable func-
tion f :X→ R. Let E be an X -measurable set and consider the restriction
f |E :E → R of f to E (i.e., f |E(e) = f(e) for every e ∈ E). Let α ∈ R be
an arbitrary real number and observe that

{

e ∈ E : f |E(e) > α
}

=
{

x ∈ X : f(x) > α
}

∩ E ∈ E= ℘(E) ∩ X .

In fact, as a subset of E, this obviously lies in ℘(E), and it lies in X since it
is the intersection of two X -measurable sets (because f is an X -measurable
function). Therefore, f |E is an E-measurable function. �

Proposition 1.4. Consider a measurable space (X,X ). Let A and B be X -
measurable sets, and take the σ-algebras A = ℘(A) ∩ X and B = ℘(B) ∩ X
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of subsets of A and B, respectively. Take a function f :X→ R and consider
its restrictions f |A :A→ R and f |B :B → R to A and B, respectively. If
A ∪B = X, then f is X -measurable if and only if f |A is A-measurable
and f |B is B-measurable.

Proof. Proposition 1.3 ensures the “only if” part. To prove the “if” part
proceed as follows. Take an arbitrary α ∈ R and note that since A ∪B = X,

{

x ∈ X : f(x) > α
}

=
{

a ∈ A: f |A(a) > α
}

∪
{

b ∈ B : f |B(b) > α
}

,

which is the union of an A-measurable set and a B-measurable set (because
f |A is an A-measurable function and f |B is an B-measurable function).
Since the σ-algebras A and B are included in X , both sets lie in X , and so
their union {x ∈ X : f(x) > α} is an X -measurable set. This means that f
is an X -measurable function. �

There is a huge supply of measurable functions as we will see in the rest
of this chapter (see also Problem 1.2 for the particular case of real-valued
functions on R with respect to the Borel algebra �). Let X be a σ-algebra
of subsets of a nonempty set X and take a pair of X -measurable functions,
say, f :X→ R and g :X→ R. A polynomial p(f, g) of a pair of functions f
and g is an arbitrary (finite) linear combination of products of powers of f
and g; that is, p(f, g) =

∑m,n
j,k=0 γj,k f

j gk with real coefficients γj,k.

Proposition 1.5.If f and g are measurable functions, then so is any p(f, g).

Proof. Consider a measurable space (X,X ). Let f and g be measurable func-
tions and let γ be any real number. We have already seen that γ (a constant
function) and γf (a multiple of a measurable function) are measurable func-
tions. Thus it is enough to show that f + g and fg are measurable func-
tions in order to ensure that each (finite) linear combination of {f jgk}j,k≥0

is a measurable function. Let Q denote the rational field, take an arbitrary
ρ ∈ Q, an arbitrary α ∈ R, and note that f−1((ρ,∞)) ∩ g−1((α− ρ,∞)) is
a measurable set (it is the intersection of measurable sets since f and g are
measurable functions). Let Eα,ρ denote such a measurable set, viz.,

Eα,ρ =
{

x ∈ X : f(x) > ρ and g(x) > α− ρ
}

.

Recall: (f + g)(x) = f(x) + g(x). Thus for each real α ∈ R, (f + g)(x) > α
if and only if f(x) > ρ and g(x) > α− ρ for some rational ρ ∈ Q. That is,
if and only if x ∈ Eα,ρ for some ρ ∈ Q. Thus, for every α ∈ R,

(f + g)−1
(

(α,∞)
)

=
{

x ∈ X : (f + g)(x) > α
}

=
⋃

ρ
Eα,ρ.
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Since each Eα,ρ is a measurable set and since Q is a countable set, it follows
that

⋃

ρ∈Q
Eα,ρ is a measurable set for every α ∈ R, and hence f + g is

a measurable function (Definitions 1.1 and 1.2). Next note that f2 (de-
fined by f2(x) = f(x)2 for every x ∈ X) is also a measurable function. In
fact, {x ∈ X : f2(x) > α} = X if α < 0 and f(x)2 > α if and only if ei-
ther f(x) >

√
α or f(x) < −√α whenever α ≥ 0, which implies that the set

(f2)−1((α,∞)) = {x ∈ X : f2(x) > α} is measurable:

(f2)−1
(

(α,∞)
)

=

⎧

⎨

⎩

X, α < 0,

f−1
(

(
√
α,∞)

)

∪ (−f)−1
(

(
√
α,∞)

)

, α ≥ 0,

where, for α ≥ 0, we have a union of measurable sets. This ensures that f2

is a measurable function. However, since

fg = 1
4

(

(f + g)2 − (f − g)2
)

,

whose expression involves multiplication by a constant, addition, and squar-
ing of measurable functions, it follows that fg is a measurable function. �

Take an arbitrary function f :X→ R, set

F+=
{

x ∈ X : f(x) ≥ 0
}

and F−=
{

x ∈ X : f(x) ≤ 0
}

,

and let χ
F+ and χ

F− be the characteristic functions of F+ and F−, respec-
tively. Consider the following real-valued functions on X:

f+ = fχ
F+ and f− = −fχ

F− .

These are the positive part of f and the negative part of f, respectively.
Note that f+:X→ R and f−:X→ R are both nonnegative functions (i.e.,
f+(x) ≥ 0 and f−(x) ≥ 0 for every x ∈ X). Moreover, the functions f and
its absolute value |f |:X→ R (given by |f |(x) = |f(x)| for every x ∈ X) can
be expressed in terms of the positive and negative parts of f as follows.

f = f+ − f− and |f | = f+ + f−.

The above identities can be reversed yielding

f+ = 1
2

(

|f |+ f
)

and f− = 1
2

(

|f | − f
)

.

Proposition 1.6. The following assertions are pairwise equivalent .

(a) f is a measurable function.
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(b) f+ and f− are measurable functions .

(c) F+ and F− are measurable sets and |f | is a measurable function.

Proof. Consider a measurable space (X,X ). Let f be a measurable function.
Thus F+ and F− are both measurable sets (cf. Definition 1.2), and so χF+

and χF− are measurable functions (cf. Example 1B). Then Proposition 1.5
ensures that f+= fχ

F+ and f−= −fχ
F− are measurable functions, and so

is |f | = f+ + f−. Note that the identity f = f+ − f− ensures the converse:
if f+ and f− are measurable, then f is measurable. So far we have proved
that (a) and (b) are equivalent, and (a) implies (c). Next we verify that (c)
implies (a). Note that the restrictions of |f | to F+ and F− coincide with
the restrictions of f to F+ and with the restriction of −f to F−; that is,

f |F+ = |f |
∣

∣

F+ :F+→ R and f |F− = −|f |
∣

∣

F− :F−→ R.

Since F+ ∪ F−= X, it follows by Proposition 1.4 that if F+ and F− are
X -measurable sets and |f | is an X -measurable function, then f |F+ is F+-
measurable and −f |F− (and so f |F−) is F−-measurable, with respect to the
σ-algebras F+ = ℘(F+) ∩ X and F− = ℘(F−) ∩ X , respectively. Another
application of Proposition 1.4 ensures that f is X -measurable. �

Observe that “|f | measurable” does not imply “f measurable” (i.e., (c)
does not imply (a) without the assumption that F+ and F− are measur-
able). For instance, take a measurable space (X,X ) and suppose there exists
a partition {A,A′} of X, where A and A′ are not X -measurable sets, and
consider the function f :X→ R given by f(x) = 1 for x ∈ A and f(x) = −1
for x ∈ A′ so that F+= A and F−= A′. It is clear that f is not an X -
measurable function (A is not an X -measurable set). But |f | is a constant
function, thus measurable (with respect to any σ-algebra — Example 1.B).

1.3 Extended Real-Valued Measurable Functions

When considering the notion of length of subsets of the real line R (as it
will be done from Chapter 2 onwards), it emerges the need for dealing with
the length of unbounded subsets of R (such as R itself), and also with the
notion of inf and sup of unbounded subsets of R. This lead us to introduce
the extended real number system (or the extended real line), which is the
collection R = R ∪ {−∞,+∞} consisting of the real field R and a pair of
symbols, namely, −∞ and +∞. These symbols are not numbers, certainly
not real numbers. We might have chosen any other pair of symbols such as,
for instance, (α, ω) or (	 , 
) instead of the “set-down-eights” (−∞,+∞).
However, we will stick with the standard notation. Regarding the natural
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ordering of the real line R, we postulate that −∞ < x < +∞ for all x in
R, and extend the natural order of R to R. Note that R is not a field, even
though arithmetics with the new symbols are partially defined in the usual
fashion, with some exceptions (e.g., −∞ and +∞ cannot be added together
in any order; equivalently, the subtraction of +∞ with itself is not defined).

We transfer the definition of measurable function to extended real-valued
functions exactly as in Definition 1.2, namely, if (X,X ) is a measurable
space, then an extended real-valued function f :X→ R is measurable (with
respect to the σ-algebra X ) or X -measurable if the inverse image of (α,∞)
under f is a measurable set for any real number (i.e., for any α ∈ R):

f−1
(

(α,∞)
)

=
{

x ∈ X : f(x) > α
}

∈ X for every α ∈ R.

As in Definition 2.1, the sign > in the above expression can be replaced
with ≥ , < , or ≤ , yielding equivalent definitions of an extended real-valued
measurable function (cf. Problem 1.1). If f is an extended real-valued X -
measurable function, then it is easy to verify (cf. Problem 1.4) that

F+∞ =
{

x ∈ X : f(x) = +∞
}

and F−∞ =
{

x ∈ X : f(x) = −∞
}

are X -measurable sets. Let χ
X\(F+∞∪F−∞) be the characteristic function

of the complement of F+∞ ∪ F−∞ and consider the real-valued function

fR = fχ
X\(F+∞∪F−∞)

:X → R

(i.e., fR(x) = f(x) if x /∈ (F+∞ ∪ F−∞) and fR(x) = 0 if x ∈ (F+∞ ∪ F−∞);
in other words, fR(x) = f(x) if f(x) �= ±∞, and fR(x) = 0 if f(x) = ±∞).

Proposition 1.7. Consider a measurable space (X,X ). An extended real-
valued function f :X→ R is measurable if and only if the real-valued func-
tion fR :X→ R is measurable and both sets F+∞ and F−∞ are measurable.

Proof. Take a function f :X→ R, and an arbitrary α ∈ R. Observe that

{

x ∈ X : f(x) > α
}

=

⎧

⎨

⎩

{

x ∈ X : fR(x) > α
}

∪ F+∞, α ≥ 0,
{

x ∈ X : fR(x) > α
}

\F−∞, α < 0.

Then f is a measurable function whenever fR is a measurable function and
F+∞ and F−∞ are measurable sets (recall: A\B = X\[(X\A) ∪B]). Since

{

x ∈ X : fR(x) > α
}

=

⎧

⎨

⎩

{

x ∈ X : f(x) > α
}

\F+∞, α ≥ 0,
{

x ∈ X : f(x) > α
}

∪ F−∞, α < 0,
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and since F+∞ and F−∞ are measurable sets whenever f is a measurable
function, it follows that fR is measurable whenever f is. �

Let S be an arbitrary set. An S-valued sequence (or a sequence of ele-
ments in S) is just an S-valued function defined on N, the positive integers
(or on N0= {0} ∪ N, the nonnegative integers). Take an arbitrary R-valued
sequence {αn}. Let infn αn and supn αn denote the greatest lower bound
and the least upper bound of {αn}, respectively, which exist and are unique
in R (but may not exist in R). The limit inferior (notation: lim infn αn) and
limit superior (notation: lim supn αn) of {αn} are defined in R by

lim inf
n

αn = sup
n

inf
n≤k

αk and lim sup
n

αn = inf
n

sup
n≤k

αk.

If lim infn αn= lim supn αn= α, then we say that {αn} converges to α ∈ R,
and write limn αn = α. If {αn} is increasing (i.e., αn ≤ αn+1), or decreasing
(i.e., αn+1 ≤ αn), then it is a monotone sequence. An R-valued monotone
sequence {αn} converges to a limit α in R. For R-valued sequences this defi-
nition of convergence is equivalent to the standard definition of convergence
(restricted to R); viz., a real-valued sequence {αn} converges to α ∈ R if
for every ε > 0 there exists an integer nε ≥ 1 such that |αn − α| < ε when-
ever n ≥ nε. If a real-valued sequence {αn} is bounded (i.e., if supn |αn| lies
in R), then the sequences {infn≤k αk} and {supn≤k αk} converge in R to
lim infn αn ∈ R and lim supn αn ∈ R, respectively. In this case,

lim inf
n

αn = lim
n

inf
n≤k

αk and lim sup
n

αn = lim
n

sup
n≤k

αk.

An R-valued monotone and bounded sequence {αn} converges to a limit α
in R. Let {fn} be a sequence of extended real-valued functions fn :X→ R

on X. Since each fn(x) lies in R for every x in X, set

φ(x) = inf
n

fn(x), Φ(x) = sup
n

fn(x),

f(x) = lim inf
n

fn(x), f(x) = lim sup
n

fn(x),

for every x ∈ X. These values always exist as elements of R, and so they de-
fine four functions, viz., φ:X→ R, Φ:X→ R, f :X→ R, and f :X→ R. If

f(x) = f(x) for every x ∈ X, then the R-valued sequence {fn(x)} converges
in R for every x ∈ X. The common value f(x) = f(x) ∈ R, denoted by f(x)

for each x ∈X, is called the limit of the R-valued sequence {fn(x)}. This
defines a function f :X→ R. In this case (i.e., when f = f), we say that the
sequence of functions {fn} converges pointwise to the limit function f and
write f = limn fn, which means that for every x ∈ X,

f(x) = lim
n

fn(x).
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For a sequence {fn} of real-valued functions this coincides with the standard
definition of pointwise convergence (restricted to R); viz., a sequence of real-
valued functions fn :X→ R converges pointwise to a real-valued function
f :X→ R if |fn(x)− f(x)| → 0 as n→∞ for every x ∈ X. In other words,
a sequence {fn} of R-valued functions on X converges pointwise if there
exists an R-valued function f on X such that, for every ε > 0 and each
x ∈ X, there is an nε,x∈ N such that |fn(x)− f(x)| ≤ ε whenever n ≥ nε,x.

Proposition 1.8. If each function fn is measurable, then so are the func-
tions φ, Φ, f and f , and also is the limit f = limn fn if the limit exists .

Proof. Recall that arbitrary intersections of closed sets are closed, and ar-
bitrary unions of open sets are open. Take any α ∈ R and note that

{

x ∈ X : φ(x) ≥ α
}

=
⋂

n

{

x ∈ X : fn(x) ≥ α
}

,

{

x ∈ X : Φ(x) > α
}

=
⋃

n

{

x ∈ X : fn(x) > α
}

.

Suppose {fn} is a sequence of measurable functions. The preceding sets are
measurable (because they consist of countable intersections and countable
unions of measurable sets), and so φ and Φ are measurable functions. Set

φn(x) = inf
n≤k

fk(x) and Φn(x) = sup
n≤k

fk(x)

for each integer n ∈ N and every point x ∈ X. Since each function fn is
measurable, the same argument ensures that the functions φn and Φn are
measurable too, and so are the functions f and f . In fact,

f(x) = sup
n

inf
n≤k

fk(x) = sup
n

φn(x) and f(x) = inf
n

sup
n≤k

fk(x) = inf
n

Φn(x)

for every x ∈ X. Recall that f exists if and only if f = f . �

Appropriate versions of Propositions 1.5 and 1.6 still hold for extended
real-valued functions as we will see in Proposition 1.9. Let us first recall
some usual conventions. We declare that 0 · (±∞) = 0 so that if γ = 0, then
γf(x) = 0 for all x ∈ X (i.e., γf = 0 if γ = 0) for every R-valued function f
on X. If f and g are R-valued X -measurable functions on X, then the sets

F+∞ ∩G−∞ =
{

x ∈ X : f(x) = +∞ and g(x) = −∞
}

,

G+∞ ∩ F−∞ =
{

x ∈ X : g(x) = +∞ and f(x) = −∞
}

,
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are X -measurable (cf. Problem 1.4). However, the function f + g is not
pointwise defined on these sets. That is, f + g is not defined by (f + g)(x) =
f(x) + g(x) if x lies in F+∞ ∩G−∞ or in G+∞ ∩ F−∞. So we declare that

(f + g)(x) = 0 for all x ∈ (F+∞ ∩G−∞) ∪ (G+∞ ∩ F−∞).

Recall the definition of the R-valued functions f ∧ g and f ∨ g onX: for each
x ∈ X, (f ∧ g)(x) = min{f(x), g(x)} and (f ∨ g)(x) = max{f(x), g(x)}.

Proposition 1.9. If f and g are R-valued measurable function on X, then

γf, f + g, f+, f−, |f |, f ∧ g, f ∨ g, fg,

are R-valued measurable functions on X as well .

Proof. Consider a measurable space (X,X ), take a pair of measurable R-
valued functions f and g on X, and let γ be any real number. The previous
conventions ensure that the functions γf and f + g are well defined, and
they are measurable as well (use the same argument in the proof of Proposi-
tion 1.5). The arguments in the first part of the proof of Proposition 1.6 still
hold for R-valued functions, so f+, f−, and |f | also are well-defined mea-
surable functions. Similarly (cf. Problem 1.3), f ∧ g and f ∨ g also are well
defined and measurable. Note that fg is a well-defined R-valued function.
To show that it is measurable proceed as follows. For each pair of integers
m,n ∈ N take the truncated functions fn :X→ R and gm :X→ R given by

fn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(x), |f(x)| ≤ n,

n, f(x) > n,

−n, f(x) <−n,
gm(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

g(x), |g(x)| ≤ m,

m, g(x) > m,

−m, g(x) <−m,

for every x ∈ X. Since {fn} and {gm} are sequences of R-valued X -
measurable functions (cf. Problem 1.5), it follows that fn gm are R-valued
X -measurable functions for each pair of integers m,n ∈ N according to
Proposition 1.5. Note that the sequences {fn} and {gm} clearly converge
pointwise to f and g, respectively. Since {fn gm} is a sequence of X -
measurable functions for each m ∈ N, and since

fgm = lim
n

fn gm

for each m ∈ N, it follows that fgm is X -measurable for each m ∈ N by
Proposition 1.8. Analogously, since each fgm is X -measurable, and since

fg = lim
m

fgm,

it follows by Proposition 1.8 that fg is X -measurable. �
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Remark: The argument in the proof of Proposition 1.5 can be used to show
that the function f2 is well defined and X -measurable, but the above con-
ventions are not enough to ensure the identity fg = 1

4 ((f + g)2− (f − g)2).

LetM(X,X ) denote the collection of all real-valued functions on X that
are measurable with respect to a σ-algebra X of subsets of X. WriteM for
M(X,X ) when the measurable space (X,X ) is clear in the context; that is,

M =M(X,X ) =
{

f :X→ R : f is X -measurable
}

.

The collection consisting of all real-valued functions on a set X is usually
denoted by R

X. It is well-known (and readily verified) that R
X is a real

linear space. If X is a σ-algebra of subsets ofX, then Proposition 1.5 ensures
that the collection M(X,X ) of all X -measurable real-valued functions on
X forms a linear manifold of the linear space RX (i.e., addition and product
by a scalar of X -measurable real-valued functions are again X -measurable
real-valued functions). ThusM(X,X ) is itself a linear space.

The collection of all extended real-valued functions on a set X that are
measurable with respect to a σ-algebra X of subsets of X will be denoted
byM(X,X ) (or simply byM) as well — same notation. However, in this
case,M(X,X ) is not a linear space (since R

X is not a real linear space).

1.4 Problems

Problem 1.1. Take a measurable space (X,X ). If f :X→ R is a real-valued
function on X, then show that the next assertions are pairwise equivalent.

(a) f−1
(

(α,∞)
)

=
{

x ∈ X : f(x) > α
}

∈ X for every α ∈ R,

(b) f−1
(

[α,∞)
)

=
{

x ∈ X : f(x) ≥ α
}

∈ X for every α ∈ R,

(c) f−1
(

(−∞, α)
)

=
{

x ∈ X : f(x) < α
}

∈ X for every α ∈ R,

(d) f−1
(

(−∞, α]
)

=
{

x ∈ X : f(x) ≤ α
}

∈ X for every α ∈ R.

Also show that these four assertions can be equivalently stated if we replace
the assumption “for every α ∈ R” with “for every α ∈ Q”.

Hint: If α ∈ R, then α = limn αn with αn+1 < αn ∈ Q for each n≥1 (de-
creasing rational sequence) so that f−1((α,∞)) =

⋃

n{x ∈ X : f(x) > αn}.
Therefore, the preceding eight assertions are equivalent forms of defining a
measurable function, and they still hold if f :X→ R take values in R.

Problem 1.2. Consider the real line R and take the Borel algebra �. By a
measurable real-valued function on R we mean an �-measurable (or Borel
measurable) function. Prove the next three assertions.
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(a) Every continuous function f :R → R is measurable.

(b) Every monotone function f :R → R is measurable.

Now consider the characteristic function χ
Q of the rational set Q, which is

far from being continuous or monotone. This is called the Dirichlet function.

(c) The Dirichlet function χ
Q :R → R is measurable.

Problem 1.3. Let f :X→ R and g :X→ R be arbitrary measurable func-
tions (with respect to a σ-algebra X of subsets of X). Define the functions
e:X→ R and h:X→ R as follows. For each x ∈ X,

e(x) = min
{

f(x), g(x)
}

and h(x) = max
{

f(x), g(x)
}

,

denoted by e = f ∧ g = inf{f, g} and h = f ∨ g = sup{f, g}. Show that

e = 1
2

(

f + g − |f − g|
)

and h = 1
2

(

f + g + |f − g|
)

.

Also show that e and h are X -measurable functions.

Problem 1.4. Take an extended real-valued function f :X→ R, and show
that if f is measurable with respect to a σ-algebra X of subsets of X, then

F+∞ =
{

x ∈ X : f(x) = +∞
}

and F−∞ =
{

x ∈ X : f(x) = −∞
}

are X -measurable sets. Hint: With n ranging over N,

F+∞ =
⋂

n∈N

{

x ∈ X : f(x) > n
}

,

F−∞ =
⋂

n

{

x ∈ X : f(x) ≤ −n
}

= X
∖
⋃

n

{

x ∈ X : f(x) > −n
}

;

countable intersection and complement of countable union.

Problem 1.5. Consider a measurable space (X,X ). Let f :X→ R be an
arbitrary extended real-valued measurable function on X. For each posi-
tive real number β define the β-truncation of f as the real-valued function
fβ :X→ R on X defined for each x ∈ X by

fβ(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f(x), |f(x)| ≤ β,

β, f(x) > β,

−β, f(x) < −β.

Show that fβ is a measurable function.
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Problem 1.6. Let X be a σ-algebra of subsets of X, and take a nonnegative
X -measurable function f :X→ R on X. Show that there exists a sequence
{ϕn} of X -measurable functions ϕn :X→ R with the following properties.

(i) Each ϕn is nonnegative (i.e., 0 ≤ ϕn(x) for every x ∈ X for each n).

(ii) {ϕn} is increasing (i.e., ϕn(x) ≤ ϕn+1(x) for every x ∈ X for each n).

(iii){ϕn} converges pointwise to f (i.e., f(x) = limn ϕn(x) for every x ∈ X).

(iv) Each ϕn has a finite range (i.e., {α ∈ R :α = ϕn(x) for some x ∈ X}
is a finite set for each n).

Now show that if f is bounded (i.e., if supx∈X |f(x)| <∞), then {ϕn} con-
verges uniformly to f (i.e., supx∈X |ϕn(x)− f(x)| → 0 as n→∞).

Hint: Take an arbitrary n ∈ N and, for each integer 0 ≤ k ≤ n2n, set

En,k =

⎧

⎨

⎩

{

x ∈ X : k2−n ≤ f(x) < (k + 1)2−n
}

, k < n2n,
{

x ∈ X : f(x) ≥ n
}

, k = n2n.

Verify that {En,k}0≤k≤n2n is a partition ofX made up of X -measurable sets.

Then, for each n ∈ N, set ϕn(x) = 2−n
∑n2n

k=0 k
χ
En,k

(x) for every x ∈ X.

Problem 1.7. Take an arbitrary complex-valued function f :X→ CC on
X. Consider its Cartesian decomposition: f = f1 + if2, where f1 and f2 are
real-valued functions on X (called the real and imaginary parts of f , which
are and defined by f1(x) = Re f(x) and f2(x) = Im f(x) for every x ∈ X).
We say that a complex-valued function f is measurable (with respect to the
σ-algebra X ) or X -measurable if its real and imaginary parts f1 and f2 are
both (real-valued) X -measurable functions. (Compare with Remark 10.2.)

(a) Verify that f :X→ CC is X -measurable if and only if the inverse image
of every open rectangle of the complex plane CC is an X -measurable
set. That is, the set {x ∈ X : α < f1(x) < β and γ < f2(x) < δ} lies in
X for all real numbers α, β, γ, and δ.

(b) Generalize the above characterization: f :X→ CC is X -measurable if
and only if the inverse image of every open set of CC is an X -measurable
set.

(c) Also verify that sums and products of complex-valued measurable func-
tions are again measurable, as well as the limit of every (pointwise)
convergent sequence of complex-valued measurable functions.

Problem 1.8. Consider two measurable spaces (X,X ) and (Y,Y). Let F be
a function of X into Y. We say that F is a measurable transformation (with
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respect to the σ-algebras X and Y) if the inverse image under F of every
Y-measurable set is an X -measurable set. That is, F :X→ Y is measurable
with respect to the σ-algebras X and Y of subsets of X and Y if

F−1(E) =
{

x ∈ X : Fx ∈ E
}

∈ X for every E ∈ Y.

Now set Y = R, Y = � (the Borel algebra) and consider a real-valued func-
tion f :X→ R. Show that f is X -measurable in the sense of Definition 1.2 if
and only if it is measurable in the above sense; that is, f−1(E) ∈ X for every
Borel set E. (Note the analogy with the definition of continuous function
between topological spaces. Such an analogy and also an alternate definition
of measurable transformation will be discussed in Theorem 11.4.)

Problem 1.9. Let F be an arbitrary function of a set X into a set Y. Let Y
be a σ-algebra of subsets of Y. First show that the collection of the inverse
images under F of each Y-measurable set, X = {F−1(E): E ∈ Y}, forms a
σ-algebra of subsets of X. Given any function F :X→ Y and a σ-algebra Y
of subsets of Y, also show that this X is the smallest σ-algebra of subsets
of X that makes F measurable. This is called the σ-algebra of subsets of X
inversely induced by F . (Note the similarity between this concept and that
of the topology inversely induced on X by F , which is the weakest topology
on X that makes F continuous.)

Hint: Let F :X→ Y be any function X into a set Y, and recall that the
inverse image of any subset B of Y under F is the subset of X given by

F−1(B) =
{

x ∈ X : F (x) ∈ B
}

.

Show that ∅ = F−1(∅), X = F−1(Y ), X\F−1(B) = F−1(Y \B) for every
B ⊆ Y , and that

⋃

γ F
−1(Bγ) = F−1

(⋃

γ Bγ

)

for every nonempty collec-
tion {Bγ} of subsets of Y.

Problem 1.10. Consider three measurable spaces, namely, (X,X ), (Y,Y),
and (Z,Z). Let F :X→ Y and G:Y → Z be measurable functions (with
respect to the σ-algebras X and Y, and Y and Z, respectively). Show that
the composition G ◦ F :X→ Z is a measurable function (with respect to
the σ-algebras X and Z) — Compare with Theorem 11.4(d).

Problem 1.11. Let f :X→ R be a real-valued X -measurable function on a
set X, where X is a σ-algebra of subsets of the set X, and let g :R→ R be a
continuous function. Show that the composition g ◦f :X→ R is measurable.
(Hint: Problems 1.2 and 1.10.) This will be extended in Theorem 11.4(e).

Problem 1.12. A collection T ⊆ ℘(X) of subsets of a set X is a topology
on X if it satisfies the following three axioms.
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(i) The whole set X and the empty set ∅ belong to T .
(ii) The intersection of a finite collection of sets in T belongs to T .
(iii) The union of an arbitrary collection of sets in T belongs to T .
A topological space, denoted by (X, T ) or simply X (if T is clear or imma-
terial) is a set X equipped with a topology T . The sets in T are called the
open sets of X with respect to T . Let X be equipped with a topology, and
equip the real line R with its usual topology (the one induced by the usual
metric on R). Show that if a real-valued function f :X→ R is continuous
(with respect to the above topologies, which means that the inverse image
under f of open sets of R are open sets of X), then f is measurable with re-
spect to the σ-algebra XT generated by a topology T on X. (In the jargon
of Section 11.1 this means that continuous functions are Borel measurable).

Problem 1.13. This is a generalization of Problem 1.12. Let XT be the σ-
algebra generated by a topology TX on a set X and let YT be the σ-algebra
generated by a topology TY on a set Y. If F :X→ Y is a continuous mapping
(i.e., if F−1(U) ∈ TX for every U ∈ TY ), then F is measurable (in the sense
of Problem 1.8). Note: “continuity” is with respect to the topologies TX and
TY , and “measurability” is with respect to the σ-algebras XT and YT . The
notion of measurable functions will be discussed again in Section 11.1.

Problem 1.14. Take a topological space X with a topology T . A subcol-
lection B of T is a base (or a topological base) for X if it covers every open
subset of X (i.e., every U ∈ T is the union of some subcollection of B —
we return to this notion in Section 11.1.) If X is a metric space equipped
with the metric topology T , then it has a base of open balls (every open
set is the union of open balls). A topological space is separable if it has a
countable dense subset. A metric space is separable if and only if it has a
countable base of open balls. Show that the σ-algebra XT generated by the
metric topology T on a separable metric space coincides with the σ-algebra
XB generated by any countable base B of open balls.

Remark: It is well known that the real lineR (equipped with its usual topol-
ogy) is a separable metric space. (Indeed, the set Q of all rational numbers
is countable and dense in R.) So the Borel algebra � (the σ-algebra gener-
ated by the open intervals) coincides with the σ-algebra generated by any
countable base of open intervals, which coincides with the σ-algebra gener-
ated by the topology on R (the σ-algebra generated by the open sets). For
this reason XT is called the Borel σ-algebra of subsets of a set X generated
a topology T on X. (Borel σ-algebra will be revisited in Section 11.2.)
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Problem 1.15. A nonempty class (i.e., a nonempty collection) K of subsets
of a set X that contains the union of every increasing sequence in K and the
intersection of every decreasing sequence in K is called a monotone class .
That is, K is a monotone class if, whenever {En} is an increasing sequence
(En ⊆ En+1) of sets in K and {Fn} is a decreasing sequence (Fn+1 ⊆ Fn)
of sets in K, then

⋃

n En and
⋂

n Fn are sets in K. The remaining problems
are all about monotone classes, leading to the central result of Problem 1.18
(The Monotone Class Lemma), which will be required in the sequel. To be-
gin with, prove the following assertions (where monotone classes, algebras,
and σ-algebras are supposed to consist of subsets of the same fixed set X).

(a) Every σ-algebra is a monotone class.

(b) A monotone class is not necessarily a σ-algebra.

A nonempty collection of subsets of a set X that is both a monotone class
and an algebra is called a monotone algebra.

(c) Every monotone algebra is a σ-algebra.

Hint: Let K be a monotone algebra and let {En} be a sequence of sets
in K. Since K is an algebra,

{⋃n
i=1 Ei

}

is an increasing sequence of sets

in K. Since K is a monotone class,
{⋃∞

i=1 Ei

}

lies in K.

Problem 1.16. Let C ⊆ ℘(X) be a nonempty collection of subsets of a set
X. Prove that there exists a smallest (in the inclusion ordering) monotone
class KC of subsets of X that includes C. That is, there exists a monotone
class KC included in any monotone class that includes C.
Hint: The intersection of any collection of monotone classes of subsets of X
is again a monotone class of subsets of X.

This smallest monotone class KC is the monotone class generated by C.

Problem 1.17. Let C ⊆ ℘(X) be a arbitrary nonempty collection of subsets
of a given setX. Show that the monotone classKC generated by C is included
in the σ-algebra XC generated by C:

C ⊆ KC ⊆ XC .

Give an example where the above inclusions are all proper.

Problem 1.18. Now prove the Monotone Class Lemma, which says that if
the preceding collection is an algebra A, then

KA = XA.
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In other words, the monotone class KA generated by an algebra A of subsets
of a set X coincides with the σ-algebra XA generated by A. This is the
Monotone Class Lemma, which plays a major role in Chapter 9.

Hint: Consider an algebra A of subsets of a set X, and let KA be the
monotone class generated by A. For each E ∈ KA, set

EA =
{

F ∈ KA : E\F ∈ KA, E ∩ F ∈ KA and F\E ∈ KA

}

⊆ KA.

Show that

(i) EA is a monotone class,

(ii) F ∈ EA if and only if E ∈ FA,

where the definition of FA is analogous to that of EA (swapping E for F ).
Since A is an algebra and A ⊆ KA (cf. Problem 1.17), also show that

(iii) ∅, E, X\E , and X all lie in EA,
(iv) E ∈ A implies A ⊆ EA.
(Recall that E ∩ F = X\

(

(X\E) ∪ (X\F )
)

and E\F = E ∩ (X\F ), and
hence E\F , E ∩ F , and F\E all lie in A if E and F lie in A.) Now show
from (i) and (iv) that (cf. Problem 1.16)

EA = KA for every E ∈ A.

Thus, if E ∈ A and F ∈ KA, then F ∈ EA, and so E ∈ FA by (ii). Hence
A ⊆ FA for every F ∈ KA. Then show from (i) that (cf. Problem 1.16)

FA = KA for every F ∈ KA.

So, if E,F ∈ KA, then E ∩ F , E\F , and F\E lie in KA. Furthermore, prop-
erty (iii) ensures that ∅ and X also lie in KA. Thus verify that the intersec-
tion and the complement of sets in KA remain in KA, and so a finite union
of sets in KA remain in KA. (Recall that F ∪ E = X\

(

(X\E) ∩ (X\F )
)

.)
Therefore, according to Definition 1.1,

KA is an algebra.

Finally, use Problem 1.15(c) to show that KA is a σ-algebra, and then
conclude that XA ⊆ KA, and therefore, by using Problem 1.17, infer that

KA = XA.

Problem 1.19. Prove that if a monotone class includes an algebra A, then
it also includes the σ-algebra XA generated by A.
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Remark: Problems 1.15 to 1.19 (and their hints) give a rather complete
account of monotone classes which will be enough for our purposes. In
particular, the Monotone Class Theorem as in Problem 1.18 will play an
important role in Lemma 9.7, which is crucial to proving Tonelli and Fubini
Theorems (Theorems 9.7 and 9.8) in Chapter 9.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Royden [35], Rudin [36]. For introduc-
tory set theory, see [19], [39], [40] and the first chapter of [9], [12], [18], [21],
[24], [26], [29], [35]. For general topology, see [9], [12], [16, Chapter 4], [21],
[24, Chapters 2 and 3], [26, Chapter 3], [29, Chapters 7 & 8], [35, Part Two].



2

Measure on a σ-Algebra

2.1 Measure and Measure Space

A function whose domain is a collection of sets is called a set function.
A measure is a nonnegative extended real-valued set function satisfying
some further conditions. The domain of a measure is a subcollection of the
power set ℘(X) of a given set X. It is advisable to require that the empty
set ∅ and the whole set X itself belong to the domain, and to assign the
minimum (zero) for the value of the function at the empty set. It is also
convenient to require additivity in the following sense. Assume that every
finite union of sets in the domain is again a set in the domain. This indi-
cates that the domain might be an algebra. Then assume that the value of
the function at any finite union of disjoint sets in the domain equals the
sum of the values of the function at each set. Actually, this leads to a possi-
ble definition of a concept of measure (measures defined on an algebra will
be considered in Chapter 8). However, such an approach lacks an impor-
tant feature that is needed to build up a useful theory, namely, countable
additivity . That is, it is required that the notion of additivity also holds for
countably infinite unions of disjoint sets, and so countably infinite unions
of sets are supposed to be in the domain of a measure. This compels the
domain to be a σ-algebra.

Definition 2.1. A measure is an extended real-valued set function μ on a
σ-algebra X of subsets of a set X,

μ:X → R,
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that fulfills the following axioms (referred to as the measure axioms).

(a) μ(∅) = 0,

(b) μ(E) ≥ 0 for every E ∈ X ,
(c) μ

(⋃

n En

)

=
∑

n μ(En)

for every countable family {En} of pairwise disjoint (Em ∩ En = ∅

whenever m �= n) sets in X (i.e., μ is countably additive).

A triple (X,X , μ) consisting of an arbitrary set X, a σ-algebra X of subsets
of X, and a measure μ on X is called a measure space.

Remarks: Since μ takes values in R, it is possible that μ(E) = +∞ for some
X -measurable sets E. If the countable family {En} in (c) is infinite, and if
μ(En) ∈ R for every n (i.e., if all the sets En have a finite measure), then we
get an infinite sum of nonnegative real numbers in (c), and therefore either
a convergent (in fact, unconditionally convergent), or a divergent series of
nonnegative real numbers — in the latter case, μ

(⋃

n En

)

= +∞.

A real-valued measure μ:X → R is called a finite measure, which means
that μ(E) <∞ for all E ∈ X . However, as we will see in Proposition
2.2(a), this is equivalent to saying that a measure μ is finite if μ(X) <∞.
In particular, if μ(X) = 1, then μ is called a probability measure, and
(X,X , μ) is called a probability space. If there exists a countable covering of
X consisting of X -measurable sets of finite measure, then μ is referred to
as a σ-finite measure. Equivalently, a measure μ:X → R is σ-finite if there
exists an X -valued sequence {En} such that μ(En) <∞ for every n and
X=

⋃

n En.

An atom of a measure μ:X → R on a σ-algebra X of subsets of a non-
empty setX is a measurable set A ∈ X such that (i) μ(A) > 0, and (ii) either
μ(E) = 0 or μ(E) = μ(A) for every measurable subset E of A. In other
words, a measurable setA ∈ X is an atom of a measure μ:X → R if μ(A) > 0
and μ(E) = μ(A) whenever E ∈ ℘(A) ∩ X is such that μ(E) �= 0).

Example 2A. Consider any σ-algebra X of subsets of a nonempty set X.
Associated to any point x ∈ X, define a set function δx :X → R as follows.

δx(E) =

{

1, x ∈ E,

0, x ∈ X\E,

for every measurable set E ∈ X . According to Definition 2.1, δx is a mea-
sure, actually, a probability measure, called the Dirac measure at x (or
the unit point measure concentrated at x). Observe that any measurable
set containing x is an atom of δx. A singleton is a set containing just one
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element. If singletons are measurable sets with respect to the σ-algebra X
(i.e., if {x} ∈ X for every x ∈ X), then {x} is an atom of each δx, and
δx({y}) is 1 if y = x and 0 if y �= x for every singleton {y} in X .

Example 2B. Consider the σ-algebra ℘(N) of all subsets of the positive
integers N. Let the symbol # stand for cardinality (for a finite set S, #(S)
is the number of elements in S). Take the function μ:℘(N)→ R defined by

μ(E) =

{

#(E), E is finite,

+∞, E is infinite,

for each E ∈ ℘(N). It is readily verified by Definition 2.1 that μ is a measure.
Set En = {n} ∈ ℘(N) for each n ∈ N so that N =

⋃

n En and μ(En) = 1.
Then the measure μ is σ-finite, but it is not finite (there are infinite sets in
℘(N); e.g., N itself). This is called the counting measure on N.

Example 2C. Consider the σ-algebra � of subsets of R generated by the
collection of all open intervals. That is, consider the Borel algebra �. We
will prove in Chapter 8 the existence and uniqueness of a measure λ:� → R

such that λ((α, β)) = β − α for every open interval (α, β) of R. In other
words, this is the only measure on � that has the property of assigning to
each open interval its own length. It is referred to as the Lebesgue measure
on �, which is not finite (e.g., λ(R) = +∞) but is σ-finite. In fact, for an
arbitrary ε > 0 and for each integer k ∈ Z, let Ek = (qk − ε, qk + ε) be the
open interval of radius ε centered at qk, where {qk}k∈Z is an enumeration of
the rational numbers Q, so that R =

⋃

k Ek and μ(Ek) = 2ε for all k ∈ Z.

Example 2D. Scaling the Lebesgue measure λ of Example 2C leads to
another measure on �. Indeed, for any real γ > 0, the function λγ :� → R

defined by λγ = γλ, so that λγ((α, β)) = γλ((α, β)) = γ(β − α) = γβ − γα
for every open interval (α, β) of R, is again a measure on �. This is a
homogeneous scaling. Inhomogeneous scaling also yields new measures. For
instance, let F :R → R be a nondecreasing function (i.e., F (x) ≤ F (y) for
x ≤ y), which ensures that F has a left and a right limit at each point x ∈ R,
denoted by F (x−) = limε→0 F (x − |ε|) and F (x+) = limε→0 F (x + |ε|) —
if F is continuous, then F (x+) = F (x−) = F (x). The same argument used
to construct the Lebesgue measure λ in Chapter 8 can be readily modified
to show that there is a unique measure λF :� → R such that λF ((α, β)) =
F (β−)− F (α+) for every open interval (α, β) of R. This measure λF is the
Borel–Stieltjes measure generated by F , which again is σ-finite. Particular
cases: (i) if F = χ

[0,∞) :R→ {0, 1} is the characteristic function of [0,∞),
then λF = δ0 :� → {0, 1} is the Dirac measure at 0 of Example 2.A; (ii) if F
is continuously differentiable, then λF ((α, β)) = F (β)− F (α) =

∫

β

α
dF
dx dx.
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Recall the definition of increasing and decreasing sequences of sets: a
sequence {An} of subsets of X is increasing if An⊆ An+1, and decreasing if
An+1⊆ An, for every n. It is monotone if it is either increasing or decreas-
ing. The next proposition presents some basic properties of measures.

Proposition 2.2. Let X be a σ-algebra of subsets of a set X. Take arbitrary
(measurable) sets A and B in X , and an arbitrary sequence {En} of sets
in X . The following properties hold true for every measure μ:X → R.

(a) μ(A) ≤ μ(B) if A ⊆ B.

(b) μ(B\A) = μ(B)− μ(A) if A ⊆ B and μ(A) �= +∞.

(c) μ
(⋃

n En

)

= limn μ(En) if {En} is increasing.

(d) μ
(⋂

n En

)

= limn μ(En) if {En} is decreasing and μ(E1) �= +∞.

Proof. If A ⊆ B ⊆ X, then B = A ∪ (B\A) and A ∩ (B\A) = ∅. If both
A and B are X -measurable, then so is B\A = B ∩ (X\A) according to
Definition 1.1(b,c)). Then, by Definition 2.1(b,c),

μ(A) ≤ μ(A) + μ(B\A) = μ(A ∪ (B\A)) = μ(B),

proving (a). If, in addition, μ(A) �= +∞, then μ(B)− μ(A) is in R so that

μ(B)− μ(A) = μ(B\A),

which proves (b). Next let {En} be an increasing sequence of X -measurable
sets. If one of En has an infinite measure, then assertion (c) follows
from assertion (a). Thus suppose μ(En) ∈ R for every n ∈ N, and take a
sequence {E′

n} of X -measurable sets recursively defined as follows: E′
1 = E1

and E′
n+1 = En+1\En for each n ∈ N, which is a sequence of pairwise dis-

joint sets, and so (cf. Definition 2.1(c) and also recall that
⋃

n En =
⋃

n E
′
n)

μ
(
⋃

n
En

)

= μ
(
⋃

n
E′

n

)

=
∑

n
μ(E′

n) = μ(E′
1) + lim

m

m
∑

n=1

μ(E′
n+1).

It then follows from (b) that for an arbitrary integer m > 1,

m
∑

n=1

μ(E′
n+1) =

m
∑

n=1

μ(En+1\En)

=
m
∑

n=1

(

μ(En+1)− μ(En)
)

= μ(Em+1)− μ(E1),

and hence μ
(⋃

n En

)

= limm μ(Em+1), proving (c). Next suppose {En} is
a decreasing sequence of X -measurable sets and set E′′

n = E1\En for each
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n so that {E′′
n} is an increasing sequence. Thus we can apply (c), but first

note that since En ⊆ E1 for all n and μ(E1) �= +∞, we get from (a) that
μ(En) ∈ R for all n (and hence μ

(⋂

n En

)

∈ R). Then by (b), for each n,

μ(E1\En) = μ(E1)−μ(En) and μ
(

E1\
⋂

n
En

)

= μ(E1)−μ
(
⋂

n
En

)

.

Recalling De Morgan laws and applying (c), it then follows that

μ(E1)− μ
(
⋂

n
En

)

= μ
(

E1\
⋂

n
En

)

= μ
(
⋃

n
(E1\En)

)

= μ
(
⋃

n
E′′

n

)

= lim
n

μ(E′′
n) = lim

n
μ(E1\En) = μ(E1)− lim

n
μ(En),

completing the proof of (d) since μ(E1) �= +∞. �

Consider a measure space (X,X , μ). If a statement (or a proposition)
P (x) holds for every x ∈ X\N for some N ∈ X such that μ(N) = 0 (i.e.,
if it holds up to a set of measure zero), then we say that P (x) holds
μ-almost everywhere (or almost everywhere with respect to μ, or simply al-
most everywhere if the measure μ is clear in the context, or still almost sure
if (X,X , μ) is a probability space). Summing up: a proposition P (x) holds
μ-almost everywhere if P (x) is true up to a set of measure zero, which
means that there exists an X -measurable set N with μ(N) = 0 such that
P (x) holds true for all x in the complement X\N of N .

Example 2E. Let f :X→ Z and g :X→ Z be functions from a set X to
a set Z. The standard definition of equality between functions is pointwise
interpreted: f = g if f(x) = g(x) for every x ∈ X. That is, equality is point-
wise defined everywhere in X. Now suppose μ:X → R is a measure defined
on a σ-algebra X of subsets of X. The functions f and g are equal almost
everywhere with respect to μ (or equal μ-almost everywhere), denoted by

f = g μ-a.e.,

if f(x) = g(x) for every x ∈ X\N for someN ∈ X such that μ(N) = 0. That
is, f(x) = g(x) for every x in the complement of a set of measure zero. For
instance, take the measure space (R,�, λ) of Example 2C, and let f and g
be real-valued be functions on R. If f = 0 (i.e., f(x) = 0 for all x ∈ R), and
g(x) = 0 for every x ∈ R\{0} and g(0) = 1, then f = g λ-a.e., but f �= g
pointwise. (If both are continuous, then f = g λ-a.e. if and only if f = g.)

Example 2F. Consider a sequence {fn} of real-valued functions fn :X→ R

on a set X. The sequence of functions {fn} is said to converge pointwise to
a function f :X→ R if the sequence of real numbers {fn(x)} converges to
the real number f(x) for every x ∈ X, which means convergence of {fn(x)}
everywhere in X. Let μ:X → R be a measure on a σ-algebra X of subsets
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of X. The sequence of functions {fn} converges to f almost everywhere with
respect to μ (or converges μ-almost everywhere to f), denoted by

fn → f μ-a.e. or lim
n

fn = f μ-a.e.,

if fn(x)→ f(x) for every x ∈ X\N for some N ∈ X such that μ(N) = 0.
That is, fn(x)→ f(x) for every x except perhaps in a set of measure zero.

2.2 Signed Measure

Consider a measurable space (X,X ), let μ and λ be two measures on X , and
let α be a nonnegative real number. It is readily verified that αμ and μ+ λ
are again measures on X (pointwise defined; that is, (αμ)(E) = αμ(E) and
(μ+ λ)(E) = μ(E) + λ(E) for every E ∈ X )). This is easily extended (by a
trivial induction) so that every (finite) linear combination

∑n
i=1 αiμi with

nonnegative coefficients αi of measures μi on X is again a measure on X .
The assumption of nonnegative coefficients is imposed to ensure nonneg-
ativeness for the resulting measure (Definition 2.1(b)). If we ignore this
nonnegativeness requirement, then we might consider real coefficients. For
instance, we might consider the set function μ− λ on X (pointwise defined:
(μ− λ)(E) = μ(E)− λ(E) for every E ∈ X ). However, if there exists a set
E in X such that μ(E) = λ(E) = +∞, then μ(E)− λ(E) is not well de-
fined. An obvious way to avoid this problem is to assume that at least one of
μ or λ does not take on the value +∞. Another (and simpler) way consists
in assuming, symmetrically, that μ and λ are both real-valued measures.

Definition 2.3. A signed measure is a real-valued set function ν on a σ-
algebra X of subsets of a set X,

ν :X → R,

fulfilling the next two axioms.

(a) ν(∅) = 0, and

(b) ν
(⋃

n En

)

=
∑

n ν(En)

for every countable family {En} of pairwise disjoint sets in X for which
the series

∑

n ν(En) is unconditionally convergent.

Remark: A signed measure is a real-valued function on a σ-algebra that
may fail to be a measure (a finite measure, actually) because it may not
satisfy nonnegativeness in the second axiom of Definition 2.1(b). We are
now dealing with real-valued functions. Thus the series in (b) must converge
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(otherwise the left-hand side of (b) is not well defined). In Definition 2.1(c)
we had a series of nonnegative terms, where convergence coincides with
absolute convergence, which (in R) means unconditional convergence. Now
we have a series of real numbers, where unconditional convergence is not a
consequence of plain convergence. But the identity in (b) requires uncondi-
tional convergence (the union in the left-hand side is order invariant, and so
is the series on the right-hand side) or, equivalently, absolute convergence.

The properties in Proposition 2.2(b,c,d) still hold for a signed measure
(with essentially the same proof). Observe that any (finite) linear combi-
nation of signed measures is again a signed measure. If μ and λ are finite
measures, then the function ν = μ− λ is a signed measure. Such a setup
was our motivation for defining signed measures. There are other ways to
get signed measures from measures (cf. Lemma 4.6). Another important
question is how to get measures from signed measures (cf. Section 7.1).
The next example shows that what might seem the obvious way simply
fails. The following two examples exhibit measures generated by a signed
measure.

Example 2G. Take a measurable space (X,X ), let ν :X → R be a signed
measure, and consider a set function π :X → R defined for each E ∈ X by

π(E) = |ν(E)|.

This π :X → R may not be a measure. Actually, if the signed measure ν is
not a measure itself, then there is a set B ∈ X for which ν(B) < 0. If there
is a set A ∈ X such that A ∩B = ∅ and ν(A) = −ν(B), then ν(A ∪B) = 0.
Thus A ⊂ A ∪B and π(A) �≤ π(A ∪B), and so π is not a measure (Propo-
sition 2.2(a) — i.e., π is not increasing). Another way to see this:

π(A ∪B) = |ν(A ∪B)| = 0 < |ν(A)|+ |ν(B)| = π(A) + π(B).

Hence π is not additive, not even finite additive, and so π is not a measure
(Definition 2.1(c) — a concrete example is exhibited in Problem 2.12).

Example 2H. Let (X,X ) be a measurable space. Consider the σ-algebra
E = ℘(E) ∩ X for each X -measurable set E. Let ν :X → R be a signed
measure. We show that the function μ:X → R defined for each E ∈ X by

μ(E) = sup
A∈E

ν(A),

is a finite measure on X . In fact, let {En} be a arbitrary countable family
of pairwise disjoint sets in X , set E =

⋃

En ∈ X , and take any n ∈ N.



30 2. Measure on a σ-Algebra

Claim. For each ε > 0 there is an X -measurable set An ⊆ En such that

ν(An) ≤ μ(En) ≤ ν(An) +
ε
2n .

Proof. Observe that ν(An) ≤ μ(En) according to the definition of μ. Take
an arbitrary ε > 0. If ν(A) + ε < μ(E) for every A ∈ E , then μ(E) + ε =
supA∈E ν(A) + ε < μ(E), which is a contradiction. Thus, for every ε > 0
and every E ∈ X there is an Aε ∈ E such that μ(E) ≤ ν(Aε) + ε. Therefore,
for any integer n ∈ N and any ε > 0, set εn = ε

2n so that there exists an
X -measurable An ⊆ En for which μ(En) ≤ ν(An) +

ε
2n . �

Thus,
∑

n
ν(An) ≤

∑

n
μ(En) ≤

∑

n
ν(An) + ε

because
∑

n∈N

1
2n = 1. Since {An} is a disjoint sequence (reason: {En} is a

disjoint sequence) of sets in X , and since ν is a signed measure, we get

ν
(
⋃

n
An

)

=
∑

n
ν(An).

Set A =
⋃

n An in X so that A ⊆ E =
⋃

n En. Hence A ∈ E and

ν(A) ≤
∑

n
μ(En) ≤ ν(A) + ε.

This implies that

μ(E) ≤
∑

n
μ(En) ≤ μ(E) + ε

for every ε > 0 because μ(E) = supA∈E ν(A). Therefore, since
⋃

n En = E,

μ
(
⋃

n
En

)

= μ(E) =
∑

n
μ(En),

so that axiom (c) of Definition 2.2 (countable additivity) is satisfied. Since
axioms (a) and (b) are trivially satisfied (℘(∅) ∩ X = {∅} and ν(∅) = 0, so
μ(∅) = 0 and μ(E) ≥ 0 for every E ∈ X ), μ is a measure on X . Moreover, it
is readily verified that μ is indeed a finite measure (actually, it is dominated
by the measure in the next example, which will also be shown to be finite).

Example 2I. A covering of a subset A of a set X is a collection of subsets
of X that cover A (i.e., whose union includes A). A partition of A is then
a covering of it consisting of disjoint subsets of it (i.e., a disjoint covering).
Take a σ-algebra X of subsets of X and let E be any X -measurable set.
A measurable covering of E is a covering of it made up of X -measurable
sets. A measurable partition of E is a disjoint covering of it consisting of sets
in E = ℘(E) ∩ X . For each integer n ∈ N let E(n) be the collection of all
measurable partitions of E containing precisely n sets, so that

⋃

E(n) is the
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collection of all finite measurable partitions of E. Take any signed measure
ν :X → R and consider the function μ:X → R defined for each E ∈ X by

μ(E) = sup
{Ei}∈∪E(n)

∑

i
|ν(Ei)|.

Every finite partition {Ei} ∈
⋃

E(n) can be written as {Ei} = {Ej} ∪ {Ek},
where {Ej} and {Ek} are disjoint collections such that ν(Ej) ≥ 0 for each
j and ν(Ek) ≤ 0 for each k. Set E+ =

⋃

j Ej and E− =
⋃

k Ek in E so that

ν(E+) = ν
(
⋃

j
Ej

)

=
∑

j
ν(Ej) ≥ 0,

ν(E−) = ν
(
⋃

k
Ek

)

=
∑

k
ν(Ek) ≤ 0.

Therefore,
∑

i |ν(Ei)| = ν(E+)− ν(E−), where {E+, E−} ∈ E(2). Thus

μ(E) = sup
{E+, E−}∈E(2)

(

ν(E+)− ν(E−)
)

for every E ∈ X ,

where the supremum is taken over all measurable partitions {E+, E−} of
E consisting of two sets such that ν(E+) ≥ 0 and ν(E−) ≤ 0. This μ is a
finite measure on X , called the variation of the signed measure ν. Indeed, μ
coincides with the “total variation” of ν, which is a finite measure |ν|:X → R

that will be discussed in Proposition 7.4 and Example 7A of Section 7.1.

2.3 Completion of Measure Spaces

Consider a measure space (X,X , μ). It is said to be complete if the σ-algebra
contains all subsets of sets of measure zero. That is, (X,X , μ) is complete if

N ∈ X , μ(N) = 0 and A ⊆ N imply A ∈ X .

If a measure space (X,X , μ) is complete, then X is said to be a complete
σ-algebra (with respect to a measure μ) and μ is said to be a complete
measure on X . Each measure space can be completed by adding up enough
subsets of measure zero to the σ-algebra, as we will see next. Consider a
measure space (X,X , μ), and take the collection

N =
{

N ∈ X : μ(N) = 0
}

of all sets in X of measure zero. Let X be the collection of all sets of the
form E ∪A, where E is a set in X and A is a subset of some set in N :

X =
{

E ⊆ X : E = E ∪A with E ∈ X and A ⊆ N for some N ∈ N
}

.
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Consider a set function μ:X → R defined by

μ(E) = μ(E)

for each set E ∈ X , where E is any set in X for which E = E ∪A for some
subset A of some N in N . This function μ is well defined. In fact, take an
arbitrary E ∈ X and consider any pair of possible representations of it, say,
E = E1 ∪A1 = E2 ∪A2, where E1, E2 are sets in X and A1, A2 are subsets
of some sets N1, N2 in N , respectively. Since E1 ⊆ E1 ∪A1 = E2 ∪A2 ⊆
E2 ∪N2, and since E2 ∪N2 lies in X (Definition 1.1(c′)), it follows from
Proposition 2.2(a) and Definition 2.1(c) that μ(E1) ≤ μ(E2 ∪N2) = μ(E2).
Applying the same argument, μ(E2) ≤ μ(E1 ∪N1) = μ(E1). So μ(E1) =
μ(E2). Thus the function μ is well defined: it assigns to each E the value
μ(E), which is invariant for all representations of E = E ∪A. Moreover, as
it will be shown in the forthcoming Proposition 2.4,

(i) X is a σ-algebra of subsets of X that includes the σ-algebra X of subsets
of X (which means that X is a sub-σ-algebra of X ), and

(ii) μ is a measure on X that agrees with μ on X (that is, μ is an extension
of μ over X or, equivalently, μ is a restriction of μ to X ).

Proposition 2.4. Take an arbitrary measure space (X,X , μ).
(a) X is a σ-algebra of subsets of X such that X ⊆ X .
(b) μ:X → R is a measure on X such that μ(E) = μ(E) for every E ∈ X.
(c) (X,X , μ) is a complete measure space.

Proof. First note that X ⊆ X , since E = E ∪ ∅ for every E ∈ X . In partic-
ular, the empty set and the whole set trivially lie in X . Take an arbitrary
E ∈ X . Next we show that X\E ∈ X . Indeed, if E = E ∪A, then X\E =
X\(E ∪A) = (X\E) ∩ (X\A) = E′\A. Here E′ = X\E, which lies in X
because E ∈ X . Let N be any set in N ⊆ X such that A ⊆ N . Thus E′\A =
(E′\N) ∪ (N\A) = E1 ∪A1, where E1 = E′\N lies in X since both E′ and
N lie in X , and A1 = N\A ⊆ N . Thus,

X\E = E′\A = E1 ∪A1 lies in X .

Let {En} be an arbitrary sequence of sets in X . Thus En = En ∪An, where
En ∈ X and An ⊆ Nn with Nn ∈ N , for each n. Set E =

⋃

n En in X
(Definition 1.1.(c′)), and A =

⋃

n An ⊆ N =
⋃

n Nn. Note that N ∈ N
(Definition 2.1(c)). Then X is a σ-algebra (cf. Definition 1.1) since

⋃

n
En =

⋃

n

(

En ∪An

)

=
(
⋃

n
En

)

∪
(
⋃

n
An

)

= E ∪A lies in X ,
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completing the proof of (a). Note that the set function μ agrees with the
measure μ on X (i.e., μ(E) = μ(E) for every E ∈ X ) by the definition of
μ (because E = E ∪ ∅). In particular, μ(∅) = 0 and μ(E) = μ(E) ≥ 0 for
every E ∈ X . Moreover, suppose the arbitrary sequence {En} of sets in X
(i.e., En = En ∪An, where En ∈ X and An ⊆ Nn with Nn ∈ N ) is made
up of pairwise disjoint set. Thus {En} is a sequence of pairwise disjoint sets
in X , and so it follows from the above displayed identity that

μ
(
⋃

n
En

)

= μ
(

E ∪A
)

= μ(E) = μ
(
⋃

n
En

)

=
∑

n
μ(En) =

∑

n
μ(En)

by the definition of μ, since μ is a measure on X (Definition 2.1(c)). Then
μ is a measure on X (cf. Definition 2.1). This proves (b). Finally, set

N =
{

N ∈ X : μ(N) = 0
}

.

If N ∈ N , then N ∈ X . Thus the set N is of the form N = N ′ ∪A with
N ′ ∈ X and A ⊆ N for some N ∈ N (by the definition of X ). However,
μ(N ′) = μ(N) = 0 (cf. definition of μ), and so N ′ ∈ N . Outcome:

N ∈ N implies N = N ′ ∪A with A ⊆ N for some N,N ′ ∈ N . (∗)

Also, if A ⊆ N ∈ N ⊆ X , then A = ∅ ∪A must lie in X since ∅ ∈ X :

A ⊆ N ∈ N implies A ∈ X . (∗∗)

Hence, if A is any subset of an arbitrary set N in N , then A ⊆ N = N ′ ∪A
with A ⊆ N for some pair N,N ′ ∈ N by (∗). Therefore, A = A′ ∪A′′, where
A′ ⊆ N ′ and A′′ ⊆ A ⊆ N . But both A′ and A′′ lie in X by (∗∗), and so
A ∈ X (Definition 1.1(c′)). That is, X is a complete σ-algebra with respect
to the measure μ, which completes the proof of (c). �

The complete measure space (X,X , μ) is referred to as the completion of
the measure space (X,X , μ). Accordingly, we say that X is the completion
of the σ-algebra X (with respect to the measure μ) and μ is the completion
of the measure μ on X .

Remark: Consider the Lebesgue measure λ on the σ-algebra � of Borel sets
as in Example 2C. The measure space (R,�, λ) is not complete. That is, on
the Borel algebra � the Lebesgue measure λ is not complete. We will see
this in Chapter 8, and also how to build its completion, where the Lebesgue
measure λ on the Lebesgue algebra � (the completion of the Borel algebra
� with respect to λ) makes a complete measure space (R,�, λ). It is worth
noticing that the notation � is tricky; it does not mean the σ-algebra gen-
erated by the collection of all open intervals of the extended real line R.
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2.4 Problems

Problem 2.1. Consider a measurable space (X,X ), and let μ:X → R be a
measure on the σ-algebra X .
(a) Show that μ is a finite measure if and only if there exists 0 ≤ α ∈ R

such that μ(E) < α for all E ∈ X .
Actually, it is readily verified by Proposition 2.2(a) that μ is finite if and only
if μ(X) <∞. Consider the definition of a σ-finite measure and assume that
there exists an X -valued sequence {En} and a real (nonnegative) number
α such that μ(En) ≤ α for all n and X =

⋃

n En. In this case μ is said to
be uniformly σ-finite.

(b) Verify that the counting measure of Example 2B is uniformly σ-finite.

(c) Verify that the Lebesgue measure of Example 2C is uniformly σ-finite.

(d) When (i.e., for which class of functions F ) is the Borel–Stieltjes measure
λF of Example 2D finite? When is it uniformly σ-finite?

Problem 2.2. Every finite measure is uniformly σ-finite, and every uni-
formly σ-finite measure is σ-finite. (This is clear, isn’t it?) However, the
converses fail. Indeed, consider the σ-algebra ℘(N) of all subsets of the nat-
ural numbers N. According to the previous problem the counting measure
on ℘(N) is uniformly σ-finite, and it is clearly not finite (the value of it at
N is not finite). Now consider the function μ:℘(N)→ R defined by

μ(E) =
∑

k∈E

k

for every E ∈ ℘(N) (by convention, the empty sum is null). Verify that this
is a measure on ℘(N), which is σ-finite but not uniformly σ-finite.

Problem 2.3. Prove that a measure μ:X → R on a σ-algebra X of subsets
of a set X is σ-finite if and only if there exists a countable family {Ek} of
disjoint sets in X such that μ(Ek) <∞ for every k and X =

⋃

k Ek.

Hint: Every sequence of sets {Xn}n∈N has a disjointification {Yn}n∈N (i.e.,
{Yn}n∈N is a sequence of pairwise disjoint sets and

⋃

n Yn =
⋃

n Xn).

Problem 2.4. Let X be a σ-algebra of subsets of an arbitrary set X.
A measure μ:X → R is called semifinite if every measurable set of infinite
measure includes a measurable set of arbitrarily large finite measure.

(a) Prove that every σ-finite measure is semifinite.

Hint: Suppose a measure is not semifinite but σ-finite (Problem 2.3).
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Now suppose that X is an uncountable set. Let # stand for cardinality, and
take two set functions μ:X → R and λ:X → R defined for each E ∈ X by

μ(E) =

{

#(E), E is finite,

+∞, E is infinite,
λ(E) =

{

0, E is countable,

+∞, E is uncountable.

(b) Verify that μ is a measure on X (the counting measure on an uncount-
able set) that is semifinite but not σ-finite.

(c) Verify that λ is a measure on X that is not semifinite (thus not σ-finite
according to (a)).

Hint: Infinite sets have countably infinite (proper) subsets. Countable
unions of countable sets are countable.

Problem 2.5. Suppose X is a σ-algebra of subsets of an infinite set X for
which all singletons are measurable sets. Let π :X → R and ρ:X → R be set
functions defined for each E ∈ X by

π(E) =

{

0, E is finite,

+∞, E is infinite,
ρ(E) =

{

0, E is finite,

1, E is infinite.

Question: Why are these functions not measures?

Problem 2.6. This is a continuation of the previous problem for an un-
countable set. Suppose X is an uncountable set, and let X be a collection
of those subsets of X that either are countable or are the complement of a
countable subset of X. First show that X is a σ-algebra of subsets of X.
Next consider the set function μ:X → R defined for each E ∈ X by

μ(E) =

{

0, E is countable,

1, X\E is countable.

Verify that μ is a measure (actually, a probability measure) on X .

Problem 2.7. Consider the Lebesgue measure λ:� → R on the Borel
algebra � of subsets of R (cf. Example 2C). Prove the following assertions.

(a) Every singleton of R is �-measurable and has measure zero.

(b) Every countable subset of R is �-measurable and has measure zero.

(c) If α < β, then the intervals (α, β), [α, β), (α, β], [α, β] are �-measurable
and λ((α, β)) = λ([α, β)) = λ((α, β]) = λ([α, β]) = β − α.

(d) Every nonempty open subset U of R is �-measurable and λ(U) > 0.
(Hint: R has a countable base of open intervals — see Problem 1.14.)
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(e) Every bounded �-measurable subset of R has a finite measure.

(f) A closed and bounded subset K of R is �-measurable and λ(K) <∞.

Also show that λ is uniformly σ-finite by exhibiting a countably infinite fam-
ily {Ek} of disjoint sets in � such that λ(Ek) = 1 for all k and R =

⋃

k Ek.

Problem 2.8. Let μ:X → R be a measure on a σ-algebra X , and let {En}
be a sequence of X -measurable sets. Apply Proposition 2.2 to show that

(a) μ
(⋃

n En

)

= limm μ
(⋃m

i=1 Ei

)

,

(b) μ
(⋃

n En

)

≤
∑

n μ(En).

Hint: Set Am =
⋃m

i=1 Ei to prove (a), and set Bm+1 = Em+1\
(⋃m

i=1 Ei

)

so
that Bm ⊆ Em and {Bm} is pairwise disjoint to prove (b).

Problem 2.9. The Cantor set is a rather important well-known subset of
the interval [0, 1] of the real line R, possessing striking properties, which
make it a significant source of counterexamples. The reader is referred to
the bibliography mentioned in the Suggested Reading section for many of its
aspects. Roughly speaking, the Cantor set C is the intersection of a decreas-
ing sequence {Cn} of closed subsets of C0 = [0, 1] obtained by successive
removal of the central open third. Among the main properties of the Cantor
set C =

⋂

n Cn ⊂ [0, 1] ⊂ R we point out the following. The set C is non-
empty, closed, and bounded; it has an empty interior and has no isolated
point; it is uncountable and totally disconnected. Consider the Lebesgue
measure λ:� → R as in Example 2C (see Problem 2.7 as well) and show
that the Cantor set has measure zero. In other words, C lies in � and
λ(C) = 0. (Hint: Each Cn consists of 2n disjoint intervals of length 1

3n .)

Problem 2.10. Now we build up a Cantor-like set S whose Lebesgue mea-
sure is not null. Consider the setup and the construction of the previous
problem, where each set Cn (for n ∈ N) is obtained from Cn−1 by removing
2n−1 central open subintervals, each of length 1

3n . Now, instead of removing
2n−1 central open subintervals of length 1

3n at each iteration, remove 2n−1

central open subintervals of length 1
4n at each iteration. Let {Sn} be the re-

sulting decreasing sequence of closed subsets of the unit interval S0 = [0, 1].
Show that the length of each Sn is λ(Sn) = 1

2 + 1
2n+1 and conclude that

S =
⋂

n Sn ⊂ [0, 1] ⊂ R lies in � and λ(S) = 1
2 . (Hint: Proposition 2.2(c).)

Problem 2.11. Take a measure μ:X → R on a σ-algebra X of subsets of a
set X. Let A be an arbitrary X -measurable set, and consider the σ-algebra
A = ℘(A) ∩ X of subsets of A, so that A ⊆ X . Define a pair of set functions
μA :X → R and μ|A :A → R as follows:
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μA(E) = μ(E ∩A) for every E ∈ X ,

μ|A(E) = μ(E) for every E ∈ A.

Verify that the set functions μA :X → R and μ|A :A → R are measures on X
and on A, respectively. (Hint:

(⋃

n En

)

∩A =
⋃

n(En ∩A).) The measure
μ|A is the restriction of both μ and μA to A, and so μ and μA are (different)
extensions of μ|A over X — all these measures coincide on A.

Problem 2.12. Consider the Lebesgue measure λ:� → R on the Borel
algebra � of subsets of the real line R (cf. Example 2C and Problem 2.7). Set
A = [1, 2], B = [−2,−1], and take the measures λA :� → R and λB :� → R

defined in Problem 2.11. Show that λA and λB are finite measures so that
their difference ν = λA−λB :� → R is a signed measure. Also show that

ν(A ∪B) = λA(A ∪B)− λB(A ∪B) = 0,

|ν(A)|+ |ν(B)| = |λA(A)− λB(A)|+ |λA(B)− λB(B)| = 2.

Then conclude that the set function π :� → R, defined for each E ∈ � by
π(E) = |ν(E)| = |λA(E)− λB(E)|, is not a measure (cf. Example 2G).

Problem 2.13. Consider the measure space (R,�, μ), where μ:� → R is
a measure on the Borel algebra � of subsets of R such that μ(K) <∞ for
every closed and bounded subset K of R. This is referred to as a Borel
measure (recall that all open, and so all closed, sets lie in �; that is, they
are Borel sets). The general notion of Borel measure will be the subject
of a whole chapter — Chapter 11. Verify that the Lebesgue measure of
Example 2C is a Borel measure, and that every Borel measure is σ-finite.
If μ is a Borel measure, then its support is the set [μ] = R\U, where U is
the union of all open sets of measure zero. Show that [μ] is a closed set
(so [μ] ∈ �), and R\[μ] is the largest (in the inclusion ordering) open set
of measure zero. Show that a point α ∈ R is not in the support of μ if and
only if there exists an open subset of measure zero that contains α. Let A
be a closed set with 0 < μ(A) <∞, take the σ-algebra A = ℘(A) ∩ �, and
take the restriction λ = μ|A :A → R of μ to A, which is a finite measure.
Examples: if μ is a finite measure, then A may be any closed subset of R
of nonzero measure (e.g., A = R and A = �); if μ is the Lebesgue measure,
then A may be any closed and bounded nondegenerate interval (i.e., one
that is not a singleton). Show that the support [λ] of λ is the smallest (in
the inclusion ordering) closed subset of A such that λ([λ]) = λ(A).

Problem 2.14. Take an arbitrary measurable space (X,X ). Prove the as-
sertion: the sum of σ-finite measures on X is a σ-finite measure on X .
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Hint: Suppose μ and λ are σ-finite measure on X . Let {En} and {Fn} be
sequences in X such that μ(En) <∞, λ(Fn) <∞, and

⋃

n En =
⋃

n Fn =
X. If λ(Ei) <∞, then take Ei. If λ(Ek) =∞, then take {Fnj

} such that

Ek =
⋃

j Fnj
. Show that the collection of all those Ei and {Fnj

} consists

of a countable collection, and so conclude that (μ+ λ) is σ-finite.

Problem 2.15. Take a measure space (X,X , μ) and let (X,X , μ) be a
completion of it. Suppose f :X→ R is X -measurable. Show that there is an
X -measurable function f :X→ R such that f = f μ-almost everywhere.

Hint: Let q ∈ Q be an arbitrary rational number. Set Eq = f −1((q,∞)) in
X , write Eq = Eq ∪Aqwith Eq ∈ X and Aq ⊆ Nq ∈ N , and set N =

⋃

Nq,
which is a countable union, so that N ∈ N with Aq ⊆ N . Consider the
function f :X→ R such that f(x) = f(x) if x ∈ X\N and f(x) = 0 if x ∈ N .
Show that f−1((q,∞)) is either in Eq\N or in Eq ∪N , and so f−1((q,∞))
lies in X for all q ∈ Q, and hence f is X -measurable (cf. Problem 1.1).

Problem 2.16. Let X be a σ-algebra of subsets of a set X. A complex-
valued set function η :X → C satisfying axioms (a) and (b) of Definition
2.3, with absolute convergence on the right-hand side of (b), is a complex
measure. Show that every complex measure η on X can be expressed as
η = ν1 + iν2, where ν1 and ν2 are (real-valued) signed measures on X .
Complex measures will be considered again in Chapter 10.

Problem 2.17. Show that for a real-valued measure (equivalently, for a fi-
nite measure) it is unnecessary to assume condition (a) in Definition 2.1
since this follows from countable additivity in condition (c); and verify that
condition (a) cannot be dismissed for extended real-valued measures. Sim-
ilarly, since a signed measure was defined as a real-valued set function sat-
isfying Definition 2.3, also show that for a signed measure (and so for a
complex measure) it is unnecessary to assume condition (a) in Definition
2.3 since this follows from countable additivity in condition (b).

Problem 2.18. Let (X,X , μ) be a measure space, let f :X→ R be an
X -measurable real-valued function, let � be the Borel algebra, and set

μf(E) = μ(f−1(E)) = μ({x ∈ X : f(x) ∈ E}) for every E ∈ �.
Prove that this defines a measure μf on � (see Problem 1.8). If (X,X , μ) is a
probability space, then show that (R,�, μf ) is also a probability space (i.e.,
μf is a probability measure whenever μ is). In this case, the X -measurable
real-valued function f is referred to as a real random variable.

Problem 2.19.Consider the definition of an atom (preceding Example 2A).
Take any measure space (X,X , μ). A set E ∈ X is atomic (or purely atomic)
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if every measurable subset of it is the union of a set of measure zero and a
disjoint collection of atoms. A set E ∈ X is atom-free if it has no atom as a
subset. Now take the measure space (R,�, δ), where δ is any countable sum
of Dirac measures on � (Example 2A), and verify that every measurable
set is purely atomic. Next take the measure space (R,�, λ), where λ is the
Lebesgue measure on �, and show that every measurable set is atom-free.

Suggested Reading

Bartle [4], Berberian [7], Brown and Pearcy [8], Halmos [18], Royden [35].
For a discussion on unconditionally convergent series (as in Definition 2.3)
see [26, Section 5.7]. For the construction and properties of the Cantor set
(as in Problems 2.9 and 2.10) see, for instance, [1], [3], [9], [26], [32], [37].
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Integral of Nonnegative Functions

3.1 Simple and Nonnegative Functions

Let X be an arbitrary set. A simple function on X is a real-valued function
ϕ:X→ R with a finite range (i.e., a function that takes on only a finite
number of distinct values). It is clear that ϕ is a simple function if and only
if it can be represented as a linear combination of characteristic functions,

ϕ =

n
∑

i=1

αi
χ
Ei
,

where {Ei}ni=1 is a finite collection of subsets of X and {αi}ni=1 is a finite
set of real numbers. The above representation is not unique, but it becomes
unique if it is assumed that{αi}ni=1 is a set of distinct coefficients and{Ei}ni=1

is a partition of X (i.e., a collection of disjoint sets that cover X). This is
the representation of ϕ for which the set {αi}ni=1 is the range of ϕ, and for
each index i = 1, . . . , n the set Ei is the inverse image of the singleton {αi},
viz., Ei = ϕ−1({αi}) = {x ∈ X : ϕ(x) = αi}. This unique representation is
referred to as the canonical (or standard) representation of ϕ.

Let X be σ-algebra of subsets of X. Take any E ⊆ X. Its character-
istic function χ

E :X→ {0, 1} is X -measurable if and only if the set E is
X -measurable (Example 1B). Then a simple function

∑n
i=1 αi

χ
Ei

:X→ R

is measurable if{Ei}ni=1 is a collection of measurable sets (Proposition 1.5).
The converse fails: take a partition {A,B} of X made up of nonmeasurable
sets A,B ∈ ℘(X)\X and note that χ

X = χ
A+ χ

B . However, a canonical
representation is a measurable function if and only if{Ei}ni=1 is a collection

© Springer International Publishing Switzerland 2015
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of measurable sets, and a simple function is a measurable simple function
if and only if its canonical representation is measurable or, equivalently, if
it has a representation such that all sets Ei are measurable. Whenever we
refer to a measurable simple function, we consider only representations of
it for which all sets Ei are measurable. Since sum and (real) scalar multi-
ple of measurable simple functions are again measurable simple functions,
the collection of all X -measurable simple functions forms a linear manifold
of the real linear space of all X -measurable functions, and so it is a linear
space itself (cf. notes that close Section 1.3). A simple function is nonneg-
ative if and only if all coefficients αi of any representation are nonnegative
numbers.

Definition 3.1. (The integral of a simple function). Consider a measure
space (X,X , μ). Let ϕ:X→ R be a nonnegative measurable simple function,

ϕ =
n

∑

i=1

αi
χ
Ei
.

The integral of ϕ with respect to μ is the nonnegative extended real number
∫

ϕdμ =

n
∑

i=1

αiμ(Ei).

It is clear that ϕ must be measurable, since all Ei must be measurable;
otherwise the definition of the integral

∫

ϕdμ (with respect to any measure μ
on X ) would not make sense. In particular,

∫

χ
E
dμ = μ(E) for every E ∈ X .

It is readily verified that the integral of a nonnegative measurable simple
function is independent of its representation. So the notion of integral of a
simple function is unambiguously defined and we may assume the canonical
representation of ϕ without loss of generality. To ensure that the integral of
the null function (ϕ = 0) is well defined and equal to zero for every measure,
including nonfinite measures, we declare again that 0 ·+∞ = 0. The next
proposition considers three fundamental properties, which will survive as
long as the notion of integral is extended. The first two point out that the
integral is nonnegative homogeneous and additive. The third one shows how
the integral with respect to a measure yields a new measure. The reader is
invited to prove Proposition 3.2 in Problem 3.2.

Proposition 3.2. Consider any measure space (X,X , μ). If ϕ and ψ are
nonnegative measurable simple functions, and γ is a nonnegative real num-
ber, then γϕ and ϕ+ ψ are nonnegative measurable simple functions and



3.2 The Monotone Convergence Theorem 43

(a)
∫

γϕ dμ = γ
∫

ϕdμ,

(b)
∫

(ϕ+ ψ) dμ =
∫

ϕdμ+
∫

ψ dμ,

(c) λ(E) =
∫

ϕχ
E
dμ for every E ∈ X defines a measure λ:X → R.

Let (X,X ) be a measurable space. In Chapter 1 we adopted the notation
M(X,X ), or simply M, for the collection of all X -measurable functions.
Similarly, setM(X,X )+, or simplyM+ if the measurable space is clear in
the context, for the collection of all nonnegative functions fromM(X,X ):

M+=M(X,X )+=
{

f :X→ R : f is X -measurable and f(x) ≥ 0 ∀x ∈X
}

.

Extended real-valued functions are allowed in M and M+, but note that
these collections also contain real-valued functions. In particular, nonneg-
ative X -measurable simple functions lie in M(X,X )+. Given an arbitrary
(extended real-valued) function f in M(X,X )+, consider the set Φ+

f of all

simple functions ϕ inM(X,X )+ that are dominated by f ,

Φ+
f =

{

ϕ ∈M: ϕ is simple and 0 ≤ ϕ(x) ≤ f(x) ∀x ∈ X
}

⊆ M+.

Definition 3.3. (The integral of a nonnegative measurable function). Con-
sider a measure space (X,X , μ). The integral of a function f ∈M(X,X )+
with respect to μ is the extended real number

∫

f dμ = sup
ϕ∈Φ+

f

∫

ϕdμ.

The integral of f over a measurable set E with respect to μ is defined by
∫

E

f dμ =

∫

fχ
E
dμ in R.

The function f in the definition of the integral must indeed be measur-
able (recall that the supremum of measurable functions is measurable; and
f−1(α,∞) = {x ∈ X : α < f(x)} = {x ∈ X : α < supϕ∈Φ+

f
ϕ(x)} ). More-

over, since χ
E ∈M(X,X )+, we get fχ

E
∈M(X,X )+, whenever E ∈ X .

3.2 The Monotone Convergence Theorem

The Monotone Convergence Theorem is a fundamental result in the the-
ory of integration, which is due to Beppo Levi. It is indeed a basic tool for
almost everything that follows. A sequence {fn} of functions fn :X→ R is
increasing if fn ≤ fn+1 (i.e., fn(x) ≤ fn+1(x) for every x ∈ X) and decreas-
ing if fn+1 ≤ fn (i.e., fn+1(x) ≤ fn(x) for every x ∈ X) for each n. If it is
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either increasing or decreasing, then it is a monotone sequence. Observe,
according to Section 1.3, that a monotone sequence of extended real-valued
functions converges pointwise (to an extended real-valued function).

Theorem 3.4. (Monotone Convergence Theorem). Let (X,X , μ) be a mea-
sure space. If {fn} is an increasing sequence of functions in M(X,X )+,
then it converges pointwise to a function f :X→ R inM(X,X )+, and

∫

f dμ = lim
n

∫

fn dμ.

Proof. Recall that {fn} converges pointwise. Let f be its limit. Take any x in
X. Since each fn(x) ≥ 0, it follows that f(x) = limn fn(x) ≥ 0, and so f is
inM(X,X )+ by Proposition 1.8. Since fn ≤ fn+1, we get fn ≤ fn+1 ≤ f =
limn fn, and so

∫

fn dμ ≤
∫

fn+1 dμ ≤
∫

f dμ (cf. Problem 3.3), for every n.
Then the extended real-valued increasing sequence

{∫

fn dμ
}

converges and

lim
n

∫

fn dμ ≤
∫

f dμ. (∗)

To verify the reverse inequality, take a simple function ϕ inM(X,X )+ such
that 0 ≤ ϕ ≤ f (i.e., any ϕ ∈ Φ+

f ). Let α be any real number in (0, 1) and

set ψ = αϕ, which is a simple function inM(X,X )+ with the property that
ψ(x) = 0 if f(x) = 0 and 0 ≤ ψ(x) < f(x) if f(x) �= 0. For every n set

En =
{

x ∈ X : ψ(x) ≤ fn(x)
}

=
{

x ∈ X : fn(x)− ψ(x) ≥ 0
}

.

Since fn and ψ are measurable functions, fn − ψ is measurable (Proposition
1.9), and so each En is a measurable set. Thus, for every n,

α

∫

En

ϕdμ =

∫

En

ψ dμ ≤
∫

En

fn dμ ≤
∫

fn dμ

(Proposition 3.2(a,c)). Since {fn} is increasing, it follows that {En} is
increasing. Since fn ↗ f (i.e., {fn} is increasing and converges to f) and
0 ≤ ψ(x) < f(x) if f(x) �= 0, it follows that for every x ∈ X there is an m
for which ψ(x) ≤ fm(x) ≤ f(x), and so x lies in Em. Hence X =

⋃

n En so
that {En} is an increasing sequence of sets in X that cover X. Then

∫

ϕdμ = λ(X) = lim
n

λ(En) = lim
n

∫

En

ϕdμ

according to Proposition and 2.2(c), where λ is the measure of Proposition
3.2(c). So, by the previous two displayed expressions,

α

∫

ϕdμ ≤ lim
n

∫

fn dμ,
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which implies that
∫

ϕdμ = sup
α∈(0,1)

α

∫

ϕdμ ≤ lim
n

∫

fn dμ,

and therefore
∫

f dμ = sup
ϕ∈Φ+

f

∫

ϕdμ ≤ lim
n

∫

fn dμ. (∗∗)

The inequalities (∗) and (∗∗) ensure the identity:
∫

f dμ = limn

∫

fn dμ. �

The Monotone Convergence Theorem gives us the first evidence of conti-
nuity for the integral transformation. Theorem 3.4 will also give us the first
hint of linearity (in Proposition 3.5(a,b) below). Of course, all this would
make sense only if the domainM+ and codomain R of the transformation

∫

( · ) dμ:M+→ R

(that assigns to each function f in M+ the extended real number
∫

fdμ)
might be equipped with a suitable algebraic and topological structure. We
will modify the domain M+ in order to endow the new domain with the
proper algebraic structure in Chapter 4 (that makes the integral transfor-
mation a linear one), and with a proper topological structure in Chapter 5
(that makes the integral transformation a continuous one as well).

As a first application of the Monotone Convergence Theorem (among
many to come) we extend in Proposition 3.5 below the results of Proposition
3.2, from measurable nonnegative simple functions to arbitrary measurable
nonnegative (extended real-valued) functions. In particular, Theorem 3.4
shows (as stated in Proposition 3.5(c)) how the integral of a nonnegative
function with respect to a measure yields a new measure, viz., the set func-
tion λ:X → R given for each set E ∈ X by λ(E) =

∫

E
f dμ.

Proposition 3.5. Consider a measure space (X,X , μ). If f and g are
functions in M(X,X )+, and if γ is a nonnegative real number, then the
functions γf and f + g lie in M(X,X )+ and

(a)
∫

γf dμ = γ
∫

f dμ,

(b)
∫

(f + g) dμ =
∫

f dμ+
∫

g dμ,

(c) λ(E) =
∫

E
f dμ for every E ∈ X defines a measure λ:X → R.

Proof. If f and g are inM(X,X )+, then it follows by Proposition 1.9 that
γf and f + g also are in M(X,X )+ and, according to Problem 1.6, there
are increasing sequences {ϕn} and {ψn} of simple functions inM(X,X )+
for which f = limn ϕn and g = limn ψn.
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(a) Take γ ≥ 0 so that {γϕn} is an increasing sequence of simple functions in
M(X,X )+ that converges to γf . Thus Proposition 3.2(a) and
Theorem 3.4 (the Monotone Convergence Theorem) ensure that

∫

γf dμ = lim
n

∫

γϕn dμ = γ lim
n

∫

ϕn dμ = γ

∫

f dμ.

(b) Note that {ϕn + ψn} is an increasing sequence of simple functions in
M(X,X )+ that converges to f + g. Thus, again, Proposition 3.2(b) and the
Monotone Convergence Theorem ensure that

∫

(f + g) dμ = lim
n

∫

(ϕn + ψn) dμ = lim
n

(∫

ϕn dμ+

∫

ψn dμ

)

= lim
n

∫

ϕn dμ+ lim
n

∫

ψn dμ =

∫

f dμ+

∫

g dμ.

(c) Observe that λ(∅) = 0 since χ
∅ = 0 so that

∫

∅
f dμ = 0, and λ(E) ≥ 0

for all E in X by the definition of the integral of f inM(X,X )+. To verify
countable additivity (Definition 2.1(c)), take any sequence {En} of pairwise
disjoint sets in X . Since

∑m
n=1fχEn

= fχ∪mn=1En
, set for every integer m≥1

fm =
m
∑

n=1

fχ
En

= fχ∪mn=1En
.

Now observe that {fm} is an increasing sequence of functions inM(X,X )+
(Proposition 1.9) that converges pointwise to the function fχ

E
, with E =

⋃

n En in X . Then the Monotone Convergence Theorem ensures that

λ
(
⋃

n
En

)

=

∫

E

f dμ =

∫

fχ
E
dμ = lim

m

∫

fm dμ = lim
m

∫ m
∑

n=1

fχ
En

dμ.

Thus a trivial induction, using additivity as in item (b), ensures that the
integral of a finite sum coincides with the finite sum of each integral, so

lim
m

∫ m
∑

n=1

fχ
En

dμ = lim
m

m
∑

n=1

∫

fχ
En

dμ,

which completes the proof of (c). That is, λ
(⋃

n En

)

=
∑

n λ(En). In fact,

lim
m

m
∑

n=1

∫

fχ
En

dμ = lim
m

m
∑

n=1

∫

En

f dμ = lim
m

m
∑

n=1

λ(En) =
∑

n
λ(En). �
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Remarks: Theorem 3.4 deals with functions that are possibly extended
real-valued and with measures that are not necessarily finite (not even σ-
finiteness is assumed). Thus infinite integrals and infinite limits are allowed.
For example, if λ is the Lebesgue measure on � and fn = χ[0,n) for each inte-
ger n≥1, then {fn} is an increasing sequence of functions inM(R,�)+ with
finite integral (

∫

fn dλ = n for each n) converging pointwise to the function
f = χ[0,∞) that has an infinite integral. However, the real-valued sequence
{
∫

fn dλ} is unbounded (and so it does not converge in R) but it has the
limit +∞ in R. Hence,

∫

f dλ = limn

∫

fn dλ = +∞. We will see in the
next section that the Monotone Convergence Theorem still holds if point-
wise convergence is weakened to almost everywhere convergence. Moreover,
it holds without monotonicity by assuming convergence from below. This
is Corollary 3.10. (Convergence from below can be dismissed if we impose
uniform convergence and finite measure — see Problems 3.6 and 3.12.)

3.3 Monotone Convergence Corollaries

The next result, Fatou’s Lemma, can be viewed as an important consequence
of theMonotoneConvergenceTheorem, which will be applied to prove an ex-
tension of the Monotone Convergence Theorem that does not require mono-
tonicity (as in the forthcoming Corollary 3.10). Recall from Chapter 1 that
f = lim infn fn is a measurable function for any sequence {fn} of extended
real-valued measurable functions (Proposition 1.8), and that if {fn} con-
verges pointwise to a function f (i.e., if f = limn fn), then f = f .

Lemma 3.6. (Fatou’s Lemma). Take a measure space (X,X , μ). If {fn}
is a sequence of functions in M(X,X )+, then

∫

f dμ ≤ lim inf
n

∫

fn dμ.

Proof. Let {fn} be a sequence of functions inM(X,X )+. For every n set

φn = inf
n≤k

fk,

meaning that each φn :X→ R is a function defined by φn(x) = infn≤k fk(x)
for every x ∈ X. Proposition 1.8 ensures that each φn is measurable, and
so each φn lies inM(X,X )+. By definition {φn} is an increasing sequence,
and it converges pointwise to f . Indeed,

lim
n

φn(x) = lim
n

inf
n≤k

fk(x) = lim inf
n

fn(x) = f(x)
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for each x ∈ X. Then the Monotone Convergence Theorem ensures that
∫

f dμ = lim
n

∫

φn dμ.

But φn ≤ fk for every k ≥ n, which implies that
∫

φn dμ ≤
∫

fk dμ for every
k ≥ n, and so

∫

φn dμ ≤ infn≤k

∫

fk dμ. Hence

lim
n

∫

φn dμ ≤ lim
n

inf
n≤k

∫

fk dμ = lim inf
n

∫

fn dμ. �

Item (a) in Proposition 3.7 below is an application of Fatou’s Lemma.
It gives the first hint of what will make the basis for defining a new concept
of equality in the spaces Lp (based on the notion of equivalence classes as
introduced in Chapter 5), which reads as follows: if f ∈M(X,X )+, then

f = 0 μ-a.e. ⇐⇒
∫

f dμ = 0.

Proposition 3.7. Take a measure space (X,X , μ). If f is a function in
M(X,X )+ and λ is the measure on X defined in Proposition 3.5(c), then

(a) f = 0 μ-almost everywhere if and only if
∫

f dμ = 0,

(b) λ(E) = 0 for every E ∈ X such that μ(E) = 0.

Proof. Take a measure space (X,X , μ) and let f be a function inM(X,X )+.
(a) Since f is a measurable function, the set

En =
{

x ∈ X : 1
n < f(x)

}

is a measurable one such that 1
n
χ
En≤ f , and so (cf. Proposition 3.5(a))

0 ≤ 1
n μ(En) = 1

n

∫

En

dμ =

∫

1
n
χ
En dμ ≤

∫

f dμ

for every n. If
∫

f dμ = 0, then μ(En) = 0 for all n, and hence (since 0 ≤ f)

μ
(

{x ∈ X : f(x) �= 0}
)

= μ
(

{x ∈ X : 0 < f(x)}
)

= μ
(
⋃

n
En

)

= 0.

This means that f = 0 μ-almost everywhere. Conversely, set E =
⋃

n En

in X , and set fn = n χ
E for each n. It is clear that {fn} is a sequence of

functions inM(X,X )+ converging pointwise to f∞=+∞ χ
E :X→ R, and

so f = lim infn fn = limn fn = f∞. Also, 0 ≤ f ≤ f∞ = f . Thus

0 ≤
∫

f dμ ≤
∫

f dμ ≤ lim inf
n

∫

fn dμ
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by Problem 3.3 and Lemma 3.6 (Fatou’s Lemma). If f= 0 μ-almost every-
where, then μ(E) = 0 so that

∫

fn dμ = n
∫

χ
E
dμ = nμ(E) = 0 for all n.

Hence lim infn
∫

fn dμ = 0, and so
∫

f dμ = 0 by the preceding inequality.

(b) If μ(E) = 0 for some E ∈ X , and since
∫

χ
E
dμ = μ(E), it follows by

item (a) that χ
E = 0, and so fχ

E
= 0, μ-almost everywhere. Let λ:X → R

be the measure of Proposition 3.5(c). Another application of item (a) yields

λ(E) =

∫

E

f dμ =

∫

fχ
E
dμ = 0. �

The implication {μ(E) = 0 =⇒λ(E) = 0} in Proposition 3.7(b) is referred
to by saying that the measure λ is absolutely continuous with respect to the
measure μ. (Absolutely continuity will be discussed in Chapter 7.) Thus, by
Propositions 3.5(c) and 3.7(b), if μ is a measure on X and f is a function
in M(X,X )+, then the set function λ on X defined for each E ∈ X by

λ(E) =

∫

E

f dμ

is a measure that is absolutely continuous with respect to μ. This is another
important consequence of the Monotone Convergence Theorem. A crucial
result of Chapter 7 (the Radon–Nikodým Theorem) asserts the converse: if
μ and λ are σ-finite measures and λ is absolutely continuous with respect
to μ, then there exists a function f in M(X,X )+ such that for each E ∈ X ,

λ(E) =

∫

E

f dμ.

Corollary 3.8. Take a measure space (X,X , μ). If {fn} is an increasing
sequence of functions in M(X,X )+ that converges almost everywhere to a
function f :X→ R in M(X,X )+, then

∫

f dμ = lim
n

∫

fn dμ.

Proof. Suppose {fn} converges μ-almost everywhere to f , so that {fn}
converges pointwise to f on E = X\N for some N ∈ X with μ(N) = 0.
Thus {fnχE

} is an increasing sequence of functions inM(X,X )+converging
pointwise to fχ

E
∈M(X,X )+. By the Monotone Convergence Theorem,

∫

fχ
E
dμ = lim

n

∫

fnχE
dμ.
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However, Propositions 3.5(b) and 3.7(a) ensure (see Problem 3.8) that
∫

fχ
E
dμ =

∫

E

f dμ =

∫

f dμ and

∫

fnχE
dμ =

∫

E

fn dμ =

∫

fn dμ. �

Corollary 3.8 is Theorem 3.4 for almost everywhere convergence, which
will also be referred to as the Monotone Convergence Theorem. It leads
to the following version of Lemma 3.6 for almost everywhere convergence,
again referred to as Fatou’s Lemma.

Lemma 3.9. Take a measure space (X,X , μ). If {fn} is a sequence in
M(X,X )+ that converges almost everywhere to f ∈M(X,X )+, then

∫

f dμ ≤ lim inf
n

∫

fn dμ.

Proof. Consider the setup of the previous proof, where the sequence {fnχE
}

converges pointwise to fχ
E
∈M(X,X )+. By Lemma 3.6 (Fatou’s Lemma),

∫

fχ
E
dμ ≤ lim inf

n

∫

fnχE
dμ.

Again, Propositions 3.5(b) and 3.7(a) ensure that (cf. Problem 3.8)
∫

fχ
E
dμ =f dμ and

∫

fnχE
dμ =

∫

fn dμ. �

A sequence {fn} converges from below to f if fn ≤ f for all n and if
it converges to f in some sense. The following extension in Corollary 3.10
yields an ultimate version of the Monotone Convergence Theorem that as-
sumes just almost everywhere convergence from below.

Corollary 3.10. Let (X,X , μ) be a measure space. If a sequence {fn} in
M(X,X )+ converges almost everywhere to f ∈M(X,X )+ from below, then

∫

f dμ = lim
n

∫

fn dμ.

Proof. Since fn ≤ f , we get
∫

fn dμ ≤
∫

f dμ for all n. Thus, by Lemma 3.9,
∫

f dμ ≤ lim inf
n

∫

fn dμ ≤ lim sup
n

∫

fn dμ ≤
∫

f dμ. �

3.4 Problems

Problem 3.1. Consider a measurable space (X,X ). Thus, in this context,
“measurable” means X -measurable. Prove that sum, scalar multiplication,
and product of measurable simple functions are measurable simple functions.
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Next conclude that every polynomial p(ϕ,ψ) of measurable simple functions
ϕ and ψ is a measurable simple function. Moreover, also show that φ =
ϕ ∧ ψ = min{ϕ,ψ} and θ = ϕ ∨ ψ = max{ϕ,ψ} also are measurable simple
functions. (Hint: Proposition 1.5 and Problem 1.3.)

Problem 3.2. Show that the definition of integral of a nonnegative measur-
able simple function does not depend on the representation for the simple
function. Then, prove Proposition 3.2.

Hint: Verify homogeneity. To prove additivity proceed as follows. Show that

ϕ+ ψ =
∑

i

∑

j
(αi + βj)χEi∩Fj

,

where ϕ =
∑

i αiχEi
and ψ =

∑

j βj χFj
are canonical representations. So

∫

(ϕ+ ψ) dμ =
∑

i

∑

j
(αi + βj)μ(Ei ∩ Fj)

=
∑

i
αi

∑

j
μ(Ei ∩ Fj) +

∑

j
βj

∑

i
μ(Ei ∩ Fj)

=
∑

i
αiμ(Ei) +

∑

j
βj μ(Fj) =

∫

ϕdμ+

∫

ψ dμ

since μ(Ei) =
∑

j μ(Ei ∩ Fj) and μ(Fj) =
∑

i μ(Ei ∩ Fj) because {Ei} and
{Fj} are partitions of X. To prove (c) note that ϕχ

E
=

∑

i αiχEi∩E
. Hence

λ(E) =

∫

ϕχ
E
dμ =

∑

i
αiμ(Ei ∩ E) =

∑

i
αiμEi

(E) for every E ∈ X ,

a (finite) linear combination with nonnegative coefficients αi of measures
μEi

on X (Problem 2.11), and so it is itself a measure on X .

Problem 3.3. Let μ and λ be measures on a σ-algebra X of subsets of a
set X, let E and F be sets in X , and let f and g be functions inM(X,X )+.
Recall that

∫

E
f dμ =

∫

fχ
E
dμ; in particular,

∫

f dμ =
∫

fχ
X
dμ =

∫

X
f dμ

(cf. Definition 3.3). Prove the following assertions.

(a) 0 ≤
∫

E
dμ =

∫

χ
E
dμ = μ(E),

(b) f ≤ g =⇒ 0 ≤
∫

E
f dμ ≤

∫

E
g dμ,

(c) E ⊆ F =⇒ 0 ≤
∫

E
f dμ ≤

∫

F
f dμ,

(d) μ ≤ λ =⇒ 0 ≤
∫

E
f dμ ≤

∫

E
f dλ.

Problem 3.4. Let N be the set of all natural numbers (i.e., of all positive
integers), and consider the measurable space (N, ℘(N)).

(a) Verify that every nonnegative function f :N → R lies inM(N, ℘(N))+.
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Let μ be the counting measure of Example 2B. Apply Definition 3.3 to show
that for every nonnegative function f :N → R,

(b)
∫

E
f dμ =

∑

n∈E f(n) for every E ∈ ℘(N). Thus
∫

f dμ =
∑∞

n=1 f(n).

Problem 3.5. Let x be an arbitrary point in R, consider the Borel algebra �
of subsets of R, and take the Dirac measure δx :� → R at x of Example 2A.
If f ∈M(R,�)+, then use Definition 3.3 to prove the following statements.

(a)
∫

E
f dδx = f(x) if x ∈ E ∈ � and

∫

E
f dδx = 0 if x �∈ E ∈ �.

(b)
∫

f dδx = f(x) for every x ∈ R.

If μ =
∑m

n=1 αnδn with each αn ≥ 0, then μ is a measure on � for which

(c)
∫

f dμ =
∑m

n=1 αn

∫

f dδn =
∑m

n=1 αnf(n).

We will return to Dirac measures in Problem 7.15(a).

Problem 3.6. A sequence {fn} of real-valued functions on a set X con-
verges uniformly to a real-valued function f on X if, for each ε > 0, there
is a positive integer nε such that supx∈X |fn(x)− f(x)| < ε for all n ≥ nε.
Use Problem 3.3 and Proposition 3.5 to prove the assertion.

◦ If (X,X , μ) is a finite measure space and {fn} is a sequence of real-valued
functions inM(X,X )+ that converges uniformly to a real-valued function
f , then f lies inM(X,X )+ and

∫

f dμ = lim
n

∫

fn dμ.

Hint: For k≥1, set ε = 1
k , and take n ≥ nε. Set Ek = {x ∈ X : 1

k ≤ f(x)}
in X . Uniform convergence implies (f − 1

k )χEk
≤ fn ≤ f + 1

k . Hence,

∫

(f − 1
k )χEk

dμ ≤ lim inf
n

∫

fn dμ ≤ lim sup
n

∫

fn dμ ≤
∫

f dμ+ 1
k μ(X).

Show that
∫

(f − 1
k )χEk

dμ =
∫

fχ
Ek

dμ− 1
kμ(Ek) because μ(X) <∞. Since

∫

fχ
Ek

dμ = λ(Ek), where λ is the measure of Proposition 3.5(c), and since

{Ek} is increasing, verify that limk

∫

fχ
Ek

dμ = λ
(⋃

k Ek

)

= λ(X) =
∫

f dμ

(see Proposition 2.2). Since μ(X) <∞, it follows that limk
1
kμ(Ek) = 0.

Problem 3.7. Prove the Beppo Levi Theorem, which says that if (X,X , μ)
is a measure space and {fn} is a sequence of functions inM(X,X )+, then

∫ m
∑

n=1

fn dμ =
m
∑

n=1

∫

fn dμ
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for each positive integer m. (Hint: Use Proposition 3.5(b).) Now use the
Monotone Convergence Theorem (Theorem 3.4) to show that

∫

∑

n
fn dμ =

∑

n

∫

fn dμ.

Problem 3.8. Consider a measure space (X,X , μ) and take two functions
f, g ∈M(X,X )+. Let {E,F} be a pair measurable partition of X. Apply
Proposition 3.5(b) to show that

(a)
∫

f dμ =
∫

E
f dμ +

∫

F
f dμ.

Let N be a set in X . Use Problem 3.3(a) and Proposition 3.7(a) to show
that the following propositions hold true.

(b) μ(N) = 0 implies
∫

N
f dμ = 0,

(c) E = X\N and μ(N) = 0 imply
∫

E
f dμ =

∫

f dμ.

If the integrals are finite, apply Propositions 3.5(b) and 3.7(a) to show that

(d)
∫

E
f dμ =

∫

E
g dμ for every E ∈X implies f= g μ-almost everywhere.

Hint: Set A = {x ∈ X : f(x) < g(x)}, B = {x ∈ X : f(x) > g(x)}, and
C = {x ∈ X : f(x) = g(x)}. Thus {A,B,C} is a measurable partition
of X. Since

∫

A
f dμ =

∫

A
g dμ, and since (g − f)χ

A
∈M(X,X )+, ver-

ify that
∫

A
(g − f) dμ = 0, and so (g − f) = 0 μ-a.e. on A. Similarly,

(f − g) = 0 μ-a.e. on B. Moreover, f = g on C trivially.

Problem 3.9. Consider a measure space (X,X , μ). A (measurable) set E
in X is σ-finite (with respect to the measure μ) if there exists a countable
covering of E made up of measurable sets of finite measure (i.e., E ⊆

⋃

n En

with μ(En) <∞ for all n). Now take f ∈M(X,X )+ and use Problem 3.3
and Proposition 3.5 to show that if

∫

f dμ <∞, then

(a) μ({x ∈ X : f(x) ≥ ε}) <∞ for each ε > 0,

(b) μ({x ∈ X : f(x) = +∞}) = 0,

(c) {x ∈ X : f(x) �= 0} is a σ-finite set.

Hints: (a) If Fε = {x ∈ X : ε ≤ f(x)}, then εχ
Fε
≤ f . (b) Use Proposition

2.2(d) to {Fn}. (c) If En = {x ∈ X : 1
n ≤ f(x)}, then 1

n
χ
En≤ f .

Problem 3.10. Let (X,X , μ) be a measure space, take an arbitrary func-
tion f inM(X,X )+, and prove the following assertion.

◦ If
∫

f dμ <∞, then for every ε > 0 there exists a set Eε ∈ X such that
μ(Eε) <∞ and

∫

f dμ ≤
∫

Eε
f dμ+ ε.
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Hint: Set E = {x ∈ X : f(x) �= 0}. Show that
∫

f dμ =
∫

E
f dμ (Problem

3.8(a)). Set En = {x ∈ X : 1
n ≤ f(x)}. Show that {En} is increasing, that

E =
⋃

n En, and that μ(En) = n
∫

f dμ (Problem 3.9(c)). Use Theorem 3.4
to verify that limn

∫

fχEndμ =
∫

f dμ. Conclude: for each ε > 0 there is an
nε for which, with Eε = Enε , it follows that

∫

f dμ−
∫

fχ
Eε

dμ < ε.

Problem 3.11. Consider a measure space (X,X , μ), take f inM(X,X )+,
and let λ be the measure on X defined by

λ(E) =

∫

E

f dμ for every E ∈ X (∗)

as in Proposition 3.5(c). Show that if (∗) holds, then
∫

g dλ =

∫

gf dμ. for every g ∈M(X,X )+.

This identity is sometimes abbreviated by writing

dλ = f dμ,

where no independent meaning is assigned to the symbols dλ and dμ. In
this case, the function f in (∗) is sometimes denoted by

f =
dλ

dμ
,

which again is mere notation (with no independent meaning). We will return
to this point in Section 7.2.

Hint: If ϕ ∈ Φ+
g , that is, if ϕ =

∑n
i=1 αi

χ
Ei

is a measurable simple function
such that 0 ≤ ϕ ≤ g, then verify that

∫

ϕdλ =
∫

ϕf dμ =
∑n

i=1 αi

∫

Ei
f dμ.

Now use Problem 1.6 and apply Corollary 3.10.

Problem 3.12. Monotone (increasing) convergence in Theorem 3.4 was
weakened to convergence from below in Corollary 3.10, and such a version
of the Monotone Convergence Theorem cannot be improved further (even
under the assumption of uniform convergence — cf. Problem 3.6, which re-
quires finite measure). In fact, let (R,�, λ) be the Lebesgue measure space,
take the functions fn = 1

n
χ
[n,∞) and gn = 1

n
χ
[0,n] for each positive integer

n, and set f = g = 0, which are all functions inM(R,�)+. Now show that

(a) {fn} decreases and converges uniformly to f but
∫

fn dλ = +∞ for all
n, and so 0 =

∫

f dλ �= limn

∫

fn dλ = +∞;

(b) g ≤ gn for all n and {gn}, which is not monotone, converges uniformly
to g but

∫

gn dλ = 1 for all n, and so 0 =
∫

g dλ �= limn

∫

gn dλ = 1.
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Problem 3.13. Take a measure space (X,X , μ). Let {fn} be a sequence of
functions inM(X,X )+ converging pointwise to f ∈M(X,X )+. If

∫

f dμ =
limn

∫

fn dμ <∞, then show that for every measurable set E ∈ X
∫

E

f dμ = lim
n

∫

E

fn dμ,

and verify that this may fail without the assumption limn

∫

fn dμ <∞.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Royden [35], Rudin [36] (see also [2]).
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Integral of Real-Valued Functions

4.1 Integrable Functions

A real-valued function f :X→ R on X can be expressed as f = f+− f−,
where the nonnegative functions f+:X → R and f−:X → R are the pos-
itive and negative parts of f . If f is measurable, then so are f+ and f−

(Proposition 1.6). Integration of measurable real-valued functions, leading
to real-valued integrals, are considered by using the above decomposition.

Consider a measure space (X,X , μ), and let L(X,X , μ) — or simply L
if the measure space is clear in the context — be the collection of all real-
valued X -measurable functions such that both positive and negative parts
have a finite integral with respect to the measure μ. That is,

L = L(X,X , μ) =
{

f :X→ R : f ∈M(X,X ),
∫

f+dμ <∞,
∫

f−dμ <∞
}

.

Definition 4.1. (The integral of a real-valued measurable function). Take
a measure space (X,X , μ). The integral of a function f ∈ L(X,X , μ) with
respect to μ is the real number

∫

f dμ =

∫

f+dμ−
∫

f−dμ.

© Springer International Publishing Switzerland 2015
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The integral of f over a measurable set E with respect to μ is defined by
∫

E

f dμ =

∫

E

f+dμ−
∫

E

f−dμ.

A function in L(X,X , μ) is called an integrable (or μ-integrable) function.

The integral
∫

f dμ of a real-valued function f in M(X,X ) is then de-
fined in terms of the integrals

∫

f± dμ of their positive and negative parts
f± in M(X,X )+ if these integrals (as in Chapter 3) are finite. Additional
common notations:

∫

f(x) dμ,
∫

f(x) dμ(x), or
∫

f(x)μ(dx). Consider the
Lebesgue measure space (R,�, μ) or (R,�, μ). The Lebesgue integral of a
measurable function f :R → R is defined as the integral of f with respect to
Lebesgue measure (λ on �, or λ on �; see the remark that closes Chapter 2).
If the Lebesgue integral of a real-valued function f exists in R, then f is
Lebesgue integrable. Another notation for the Lebesgue integral:

∫

f(x) dx.

Proposition 4.2. Let (X,X , μ) be a measure space.

(a) If f is a real-valued function in M(X,X ) such that f = 0 μ-almost
everywhere (i.e., f = 0 μ-a.e.), then f lies in L(X,X , μ) and

∫

f dμ = 0.

(b) If f ∈ L(X,X , μ) and g ∈M(X,X ) is bounded, then fg ∈ L(X,X , μ).

Proof.

(a) For any f :R → R, consider the sets F+ = {x ∈ X : f(x) > 0}, F− =
{x ∈ X : f(x) < 0}, and F0 = {x ∈ X : f(x) = 0}, and set

F+=F+ ∪ F0=
{

x ∈ X : f(x)≥0
}

and F−=F− ∪ F0=
{

x∈X : f(x)≤0
}

.

If f ∈M(X,X ), then F+ and F− lie in X (Proposition 1.6) and so F+,
F−, and F0 also lie in X . If f = 0 μ-a.e., then we have already seen that
μ(F+) = 0. Recall that f+ = fχ

F+ , and hence f+ = f+χ
F+ . Thus

∫

f+dμ =

∫

f+χ
F+ dμ =

∫

F+

f+dμ =

∫

F+

f+dμ+

∫

F0

f+dμ =

∫

F0

f+dμ = 0

by Problem 3.8. Similarly,
∫

f−dμ = 0. Hence f ∈ L(X,X , μ) if it is real-
valued, and

∫

f dμ = 0 by Definition 4.1.

(b) Note that fg = (f+−f−)(g+− g−) = f+g++f−g−−f+g−−f−g+. So

(fg)+ = f+g+ + f−g− and (fg)− = f−g+ + f+g−.

If g is bounded, set β = supx∈X |g(x)| so that g+ ≤ β and g− ≤ β. Then
f+g+ ≤ βf+ and so

∫

f+g+dμ ≤ β
∫

f+dμ <∞ by Proposition 3.5(a)
and Problem 3.3(b). Similarly, we get

∫

f−g−dμ <∞,
∫

f+g−dμ <∞, and



4.2 Three Fundamental Lemmas 59

∫

f−g+dμ <∞. Hence,
∫

(fg)+dμ <∞ and
∫

(fg)−dμ <∞ according to
Proposition 3.5(b), and therefore fg ∈ L(X,X , μ). �

If f1 and f2 are real-valued functions in M(X,X )+ with f2 ≤ f1 and
∫

f2 dμ <∞, then
∫

(f1 − f2)dμ =
∫

f1dμ −
∫

f2dμ. In fact, write f1 =
(f1 − f2) + f2 and apply Propositions 1.5 and 3.5(b). In the next propo-
sition we replace the assumption f2 ≤ f1 by

∫

f1 dμ <∞.

Proposition 4.3. Take a measure space (X,X , μ). If f1 and f2 are real-
valued functions in M(X,X )+ with

∫

f1 dμ <∞ and
∫

f2 dμ <∞, then

f1 − f2 ∈ L(X,X , μ) and

∫

(f1 − f2) dμ =

∫

f1 dμ−
∫

f2 dμ.

Proof. If f1 and f2 are real-valued functions inM(X,X )+, then f = f1 − f2
lies inM(X,X ) (cf. Proposition 1.5). Since f1, f2, f

+, and f− are functions
inM(X,X )+ and f+− f−= f = f1 − f2, it follows that f

++ f2 = f1 + f−

is inM(X,X )+, and so (cf. Proposition 3.5(b))
∫

f+dμ+

∫

f2 dμ =

∫

f1 dμ+

∫

f−dμ.

Note that f+≤ f1 and f−≤ f2. Since
∫

f1 dμ <∞ and
∫

f2 dμ <∞, it
follows by Problem 3.3(b) that

∫

f+dμ <∞ and
∫

f−dμ <∞. Therefore,
(f1 − f2) = f lies in L(X,X , μ) and, according to Definition 4.1,

∫

(f1 − f2) dμ =

∫

f dμ =

∫

f+dμ−
∫

f−dμ =

∫

f1 dμ−
∫

f2 dμ. �

4.2 Three Fundamental Lemmas

Absolute integrability (of measurable functions), the first property in this
section, is of crucial importance. It says that |f | is integrable if and only if f
is. This holds for every (measure-theoretic) integral, as defined in Definitions
3.3 and 4.1. In particular, absolute integrability holds for the Lebesgue
integral (but it does not hold for the Riemann integral).

Actually, the well-known result stated in Problem 4.1 ensures that if a
bounded function on a closed and bounded (i.e., on a compact) interval of R

has a Riemann integral, then it is �-measurable and Lebesgue integrable, and
its Riemann and Lebesgue integrals coincide. However, there exist bounded
functions defined on closed and bounded intervals that are Lebesgue but not
Riemann integrable. For instance, f1(x) = 1 for x ∈ Q and f1(x) = −1 for
x ∈ R\Q define a function f1 = (2χQ − 1) on [0, 1] for which the Riemann
integral does not exist but the Lebesgue integral does exist (and is equal
to −1). But |f1| = 1, as a constant function on [0, 1], is trivially Riemann
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integrable and so it is Lebesgue integrable. On the other hand, the situation
is different for improper Riemann integrals. If a function either is defined on
an unbounded interval or is itself unbounded, then it may have a Riemann
integral and not a Lebesgue integral. Example: f2(x) = sin x

x on [1,∞)
defines a Riemann integrable function f2 (its improper Riemann integral
exists and is finite) but |f2| is not integrable (i.e., it has no finite integral,
in any sense) and so f2 is not Lebesgue integrable.

Lemma 4.4. If f ∈M(X,X ), then

(a) f ∈ L(X,X , μ) if and only if |f | ∈ L(X,X , μ).

If f ∈ L(X,X , μ), then

(b)

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

≤
∫

|f | dμ.

Proof. (a) First note that for any function f :X→ R,

|f |+ = |f | = f+ + f− and |f |− = 0, (∗)

and then recall from Proposition 1.6 that if f is measurable, then so are
the functions f+, f−, and |f |. If f ∈ L(X,X , μ), then

∫

f+dμ <∞ and
∫

f−dμ <∞. Hence, from (∗) and Proposition 3.5(b),
∫

|f |+dμ <∞ and
∫

|f |−dμ <∞. So |f | ∈ L(X,X , μ). Conversely, if |f | ∈ L(X,X , μ), then
∫

|f |+dμ <∞. But f+≤ |f |+ and f−≤ |f |+ by (∗). Then
∫

f+dμ <∞ and
∫

f−dμ <∞ according to Problem 3.3(b), and therefore f ∈ L
(X,X , μ).
(b) If f ∈ L(X,X , μ), then f ∈M(X,X ) and so |f | ∈ L(X,X , μ) by (a).
Since |f | = f++ f−, it follows by Proposition 3.5(b) and Definition 4.1 that

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

f+dμ−
∫

f−dμ

∣

∣

∣

∣

≤
∫

f+dμ+

∫

f−dμ =

∫

|f | dμ. �

As we pointed out in Section 3.2, the Monotone Convergence Theorem
gave us the first evidences of linearity for the integral transformation in
Proposition 3.5(a,b). Linearity is definitely accomplished in the next lemma.

Lemma 4.5. L is a linear space and
∫

:L → R is a linear functional.

Remarks: Before proving Lemma 4.5, note that what its statement says is
twofold. First it says that the collection L(X,X , μ) is a(real) linear space.
Indeed, Proposition 1.5 ensures thatM(X,X ) is a real linear space (when
consisting to real-valued functions only — see the last paragraphs that close
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Section 1.3). Since L(X,X , μ) is a subset ofM(X,X ), L(X,X , μ) is a linear
space if and only if it is a linear manifold ofM(X,X ), which means that if
f and g are functions in L(X,X , μ) and γ is a any real number, then

(a) γf and f + g lie in L(X,X , μ).

Consider the transformation
∫

:L → R that assigns to each function f in
L(X,X , μ) the value of its integral

∫

f dμ in R. A transformation of a (real
or complex) linear space into R or C is called a (real or complex) functional .
By Lemma 4.5,

∫

:L→ R is a (real) linear functional (i.e., a homogeneous
and additive functional), which means: (i) its domain L is a linear space,
and (ii) if f and g are functions in L(X,X , μ) and γ is a real number, then

(b)

∫

γf dμ = γ

∫

f dμ and

∫

(f + g) dμ =

∫

f dμ+

∫

g dμ.

Thus the proof of Lemma 4.5 is reduced to proving (a) and (b).

Proof. First note that γf ∈ L(X,X , μ) for every γ ∈ R if f ∈ L(X,X , μ),
as is a particular case of Proposition 4.2(b). Since −f = f− − f+, we get

γf = (γf)+ − (γf)− =

{

|γ|f+ − |γ|f−, γ ≥ 0,

|γ|f− − |γ|f+, γ < 0,

where the functions |γ|f+ and |γ|f− are in M(X,X )+, with
∫

|γ|f+dμ =
|γ|

∫

f+dμ and
∫

|γ|f−dμ = |γ|
∫

f−dμ (Proposition 3.5(a)), and these inte-
grals are finite since f ∈ L(X,X , μ). Hence, by Proposition 4.3,

∫

(

± |γ|f+ −±|γ|f−)

dμ = |γ|
(

±
∫

f+dμ−±
∫

f−dμ

)

,

and so,

∫

γf dμ =

⎧

⎪

⎨

⎪

⎩

|γ|
(

∫

f+dμ−
∫

f−dμ
)

, γ ≥ 0,

|γ|
(

∫

f−dμ−
∫

f+dμ
)

, γ < 0,

⎫

⎪

⎬

⎪

⎭

= γ

∫

f dμ.

Thus homogeneity is proved. Now, to prove additivity, proceed as follows.
Let f and g be in L(X,X , μ). Since |f + g| ≤ |f |+ |g|, and both |f + g|
and |f |+ |g| lie in M(X,X )+ (cf. Propositions 1.5 and 1.6), it follows by
Problem 3.3(b) and Proposition 3.5(b) that

∫

|f + g| dμ ≤
∫

(|f |+ |g|) dμ =
∫

|f | dμ+
∫

|g| dμ, and so |f + g| ∈ L(X,X , μ). In fact, since f and g are in
L(X,X , μ), it follows that |f | and |g| are in L(X,X , μ) by Lemma 4.4, and
so

∫

|f + g| dμ <∞. By Lemma 4.4 again, it follows that f + g ∈ L(X,X , μ)
(since f + g ∈M(X,X ) according to Proposition 1.5). Now note that

f + g = (f+ − f−) + (g+ − g−) = (f+ + g+)− (f− + g−),
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and also that (f+ + g+) and (f− + g−) lie in M(X,X )+ by Propositions
1.5 and 1.6, which have finite integrals by Proposition 3.5(b) — since f+,
f−, g+, and g− have finite integrals because f and g lie in L(X,X , μ). Thus
Propositions 4.3 and 3.5(b) and Definition 4.1 ensure that
∫

(f + g) dμ =

∫

(f++ g+) dμ−
∫

(f−+ g−) dμ

=

∫

f+dμ−
∫

f−dμ+

∫

g+dμ−
∫

g−dμ =

∫

f dμ+

∫

g dμ. �

In Proposition 3.5(c) we saw that given a measure, another measure
is generated by a nonnegative measurable function. This has a natural
extension for general real-valued (not necessarily nonnegative) functions,
but this time a signed measure is generated instead. Indeed, the next propo-
sition shows that given a measure, a signed measure is generated by a real-
valued integrable function, called the indefinite integral of f with respect
to μ.

Lemma 4.6. Let (X,X , μ) be a measure space. If f ∈ L(X,X , μ), then the
real-valued set function ν :X → R defined by

ν(E) =

∫

E

f dμ for every E ∈ X

is a signed measure.

Proof. If f = f+− f−∈ L(X,X , μ), then f+ and f− lie inM(X,X )+ and
have finite integrals. Hence ν+ and ν− on X defined for each E ∈ X by

ν+(E) =

∫

E

f+dμ and ν−(E) =

∫

E

f−dμ

are finite measures (cf. Proposition 3.5(c)). Therefore, by Definition 4.1, the
set function ν on X defined for each E ∈ X by

ν(E) =

∫

E

f dμ =

∫

E

f+ dμ−
∫

E

f− dμ = ν+(E)− ν−(E)

is such that ν = ν+ − ν−. Thus, as a linear combination of signed measures,
ν :X → R is itself a signed measure. �

4.3 The Dominated Convergence Theorem

A very important convergence theorem for integrable functions is the forth-
coming Dominated Convergence Theorem (also referred to as the Lebesgue
Dominated Convergence Theorem). It goes along the line of the Mono-
tone Convergence Theorem as in Corollary 3.10, now with no restriction to
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nonnegative functions, where nonnegativeness and convergence from below
are replaced with integrability and dominated convergence. Chronologically,
the original version of the Dominated Convergence Theorem was published
by Lebesgue in 1904, prior to (and independently of) the original version of
the Monotone Convergence Theorem, published by Beppo Levi in 1906 —
these refer to Lebesgue measure space (R,�, λ). However, the Dominated
Convergence Theorem can be easily proved — in a general abstract measure
space (X,X , μ) — as a consequence of the Monotone Convergence Theorem.
In fact, we will prove it by using Fatou’s Lemma, which in turn was proved
in Lemma 3.6 as consequence of the Monotone Convergence Theorem.

Theorem 4.7. (Dominated Convergence Theorem). Let (X,X , μ) be a mea-
sure space. If {fn} is a sequence of real-valued functions in M(X,X ) con-
verging μ-almost everywhere to a real-valued function f in M(X,X ), and
if there exists a nonnegative function g in L(X,X , μ) such that |fn| ≤ g for
all n μ-almost everywhere, then each fn and f lie in L(X,X , μ) and

∫

f dμ = lim
n

∫

fn dμ.

Proof. Suppose |fn| ≤ g for all n μ-a.e. and fn → f μ-a.e., so that |f | ≤ g μ-
almost everywhere. Thus each fn and f are integrable functions according to
Problem 4.4(b) — which in fact is an immediate consequence of corollary of
Lemma 4.4. Since 0 ≤ g ± fn and g ± fn → g ± f μ-a.e., use Fatou’s Lemma
(Lemma 3.9) to the sequences {g ± fn}, and apply Lemma 4.5 as follows:

∫

g dμ ±
∫

f dμ =

∫

(

g ± f
)

dμ ≤ lim inf
n

∫

(

g ± fn
)

dμ,

so that
∫

g dμ+

∫

f dμ ≤ lim inf
n

(∫

g dμ+

∫

fn dμ

)

=

∫

g dμ+ lim inf
n

∫

fn dμ,

∫

g dμ−
∫

f dμ ≤ lim inf
n

(∫

g dμ−
∫

fn dμ

)

=

∫

g dμ− lim sup
n

∫

fn dμ,

and hence

lim sup
n

∫

fn dμ ≤
∫

f dμ ≤ lim inf
n

∫

fn dμ. �

The Dominated Convergence Theorem plays a major part in integration
theory. In particular, it is essential in the proof of completeness for the space
Lp (Theorem 5.6), which is the main result of the next chapter. Applications
of the Dominated Convergence Theorem will be frequent throughout the
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text from now on. As a special case, the next result, the Bounded Conver-
gence Theorem, is an immediate consequence of Theorem 4.7.

Corollary 4.8. (Bounded Convergence Theorem). Let (X,X , μ) be a finite
measure space (i.e., a measure space equipped with a finite measure μ).
Suppose {fn} is a sequence of real-valued functions in M(X,X ) converging
μ-almost everywhere to a real-valued function f in M(X,X ). If {fn} is
bounded μ-almost everywhere (i.e., if there exists a real number γ > 0 such
that |fn| ≤ γ for all n μ-a.e.), then each fn and f lie in L(X,X , μ) and

∫

f dμ = lim
n

∫

fn dμ.

Proof. If (X,X , μ) is a finite measure space, and if there is a number γ > 0
such that |fn| ≤ γ for all n μ-a.e. (i.e., if {fn} is bounded μ-almost every-
where), then the function g :X→ R such that g(x) = γ for all x ∈ X\N for
some N ∈ X with μ(N) = 0 (i.e., the constant function g = γ μ-a.e.) lies in
L(X,X , μ) because

∫

g dμ = γμ(X) <∞. Now apply Theorem 4.7. �

4.4 Problems

Problem 4.1. A real-valued bounded function defined on a closed and
bounded interval of the real line is Riemann integrable if and only if the
set of points at which it is not continuous has Lebesgue measure zero. This
is a well-known classical fundamental result (cf. Suggested Reading at the
end of this chapter). Consider the Cantor set C and the Cantor-like set S
of Problems 2.9 and 2.10. Recall that both sets C and S are totally discon-
nected. Let χ

C and χ
S from [0, 1] to {0, 1} be the characteristic functions

of C and S, respectively. Which of these functions χ
C and χ

S is Riemann
integrable? Are they Lebesgue integrable? What are their integrals?

Problem 4.2. Consider a sequence {fn} of functions in L(X,X , μ). If {fn}
converges uniformly to f ∈ L(X,X , μ) and μ(X) <∞, then show that

∫

f dμ = lim
n

∫

fn dμ,

and also show that this identity may fail without the assumption μ(X) <∞.

Hint: If f − ε ≤ fn ≤ f + ε, then verify that f+− ε ≤ f+
n ≤ f++ ε and

f−− ε ≤ f−
n ≤ f−+ ε for any ε > 0, and so verify that uniform convergence
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of {fn} to f implies uniform convergence of {f+
n } and {f−

n } to f+ and
f−, respectively. Use Problem 3.6 and Definition 4.1 to prove the claimed
identity, and use Problem 3.12(b) to verify that it requires that μ(X) <∞.

Problem 4.3. Let f be a function in L(X,X , μ). Show that the integral
∫

f dμ is unambiguously defined in terms of the integrals of any pair of func-
tions f1 and f2 inM(X,X )+ ∩ L(X,X , μ) — i.e., of any pair of nonnegative
real-valued measurable functions with finite integrals — such that

f = f1 − f2.

Indeed, show that
∫

f dμ =

∫

f+dμ−
∫

f−dμ =

∫

f1 dμ−
∫

f2 dμ.

Problem 4.4. Take a real-valued function f inM(X,X ), and an arbitrary
function g ∈ L(X,X , μ). Show that

(a) 0 ≤ f ≤ g μ-a.e. implies f ∈ L(X,X , μ) and
∫

f dμ ≤
∫

g dμ,

(b) |f | ≤ |g| μ-a.e. implies f ∈ L(X,X , μ) and
∫

|f | dμ ≤
∫

|g| dμ,
(c) f = g μ-a.e. implies f ∈ L(X,X , μ) and

∫

f dμ =
∫

g dμ.

Hints: (a) Use Problems 3.3(b) and 3.8(c) and Definition 4.1. (b) Apply item
(a) and Lemma 4.4. (c) Use Proposition 4.2 and Lemma 4.5 to conclude that
∫

(f − g) dμ = 0 and f = (f − g) + g (since the functions are real-valued).

Problem 4.5. Take a pair of functions f and g in L(X,X , μ), a real number
γ, an arbitrary measurable set F ∈ X , and prove the following assertions.

(a)
∫

F
γf dμ = γ

∫

F
f dμ and

∫

F
(f + g) dμ =

∫

F
f dμ+

∫

F
g dμ,

(b)
∫

E
f dμ ≥ 0 (= 0) for all E ∈ X ⇐⇒ f ≥ 0 (= 0) μ-a.e.,

(c)
∫

E
f dμ =

∫

E
g dμ for every E ∈X ⇐⇒ f = g μ-almost everywhere.

Hint: By Proposition 4.2(b), fχ
E
∈ L(X,X , μ).Use Lemma 4.5 to prove (a)

and Propositions 3.7(a) and 4.2(a) and Problem 4.4 to prove (b) and (c).

Problem 4.6. Prove that if f and g are functions in L(X,X , μ), then so
are the functions f ∧ g and f ∨ g. (Hint: Problem 1.3, Lemmas 4.4 and 4.5.)

Problem 4.7. Let (X,X , μ) be a measure space. A complex-valued func-
tion f :X→ C is measurable if its real and imaginary parts, f1 and f2, are
real-valued measurable functions (Problem 1.7). A measurable complex-
valued function f = f1 + if2 is integrable if its real and imaginary parts are
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real-valued integrable functions (f1, f2 ∈ L(X,X , μ)). If a complex-valued
function is integrable, then the integral of f is defined as the complex
number

∫

f dμ =

∫

f1 dμ+ i

∫

f2 dμ.

Prove the complex version of Lemma 4.4. In other words, if f is measurable,
then it is integrable if and only if |f | is integrable and, in this case,

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

≤
∫

|f | dμ.

Conclude: f is integrable if and only if |f | ∈M(X,X ) and
∫

|f | dμ <∞ (i.e.,
|f | ∈ L(X,X , μ) — also see Section 10.1). Prove the complex version of
Problem 4.4(b): if f and g are complex-valued functions, f measurable and
g integrable, and |f | ≤ |g| μ-a.e., then f is integrable and

∫

|f | dμ ≤
∫

|g| dμ.
Hints: Note that |f | ≤ |f1|+ |f2|, |f1| ≤ |f |, and |f2| ≤ |f |. Use Lemmas 4.4
and 4.5 to show that if f is integrable, then so is |f1|+ |f2|, and hence |f |
is integrable by Problem 4.4(b) (since |f | = (|f1|2 + |f2|2)

1
2 is measurable).

Conversely, if f is measurable and |f | is integrable, then use Problem 4.4(b)
and Lemma 4.4 to show that f1 and f2 are integrable. The properties f
measurable, g integrable, and |f | ≤ |g| μ-a.e. imply that f is integrable and
∫

|f | dμ ≤
∫

|g| dμ. This also is a consequence of Problem 4.4(b). To prove
that

∣

∣

∫

f dμ
∣

∣ ≤
∫

|f | dμ proceed as follows. Write
∫

f dμ = ρ eiθ and consider
the function g = Re (e−iθf):X→ R so that |g| ≤ |e−iθf | = |f |. Use Lemma
4.5 to verify that

∣

∣

∫

f dμ
∣

∣ = ρ = e−iθ
∫

f dμ =
∫

e−iθf dμ = Re
∫

e−iθf dμ =
∫

Re(e−iθf) dμ =
∫

g dμ =
∣

∣

∫

g dμ
∣

∣ ≤
∫

|g| dμ ≤
∫

|f | dμ.

Problem 4.8. Use Lemma 4.5 to prove its own complex version. That is,
show that if f and g are complex-valued integrable functions (with respect
to a measure μ) and γ is an arbitrary complex number, then γf and f + g
are again integrable complex-valued functions, and

∫

γf dμ = γ

∫

f dμ and

∫

(f + g) dμ =

∫

f dμ+

∫

g dμ.

Problem 4.9. Prove the complex version of the Dominated Convergence
Theorem (Theorem 4.7). If {fn} is a sequence of complex-valued measurable
functions that converges pointwise to a complex-valued function f , and if
g is a nonnegative integrable function (with respect to a measure μ) such
that |fn| ≤ g for all n, then f is integrable and

∫

f dμ = lim
n

∫

fn dμ.
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Problem 4.10. Show that the indefinite integral of an integrable function,
as defined in Lemma 4.6, is countably additive in the following sense. If f is
in L(X,X , μ) and {En} is a countable measurable partition of E ∈ X , then

∫

E

f dμ =
∑

n

∫

En

f dμ.

Problem 4.11. Consider a measure space (X,X , μ). Suppose a sequence
{fn} of real-valued functions inM(X,X ) is such that

∑m
n=1 fn → f almost

everywhere to a real-valued function f inM(X,X ). Let g be a nonnegative
function in L(X,X , μ). If

∣

∣

∑m
n=1 fn

∣

∣ ≤ g for all m almost everywhere, then
f and each fn are integrable (i.e., they lie in L(X,X , μ)) and

∫

f dμ =
∑

n

∫

fn dμ.

Problem 4.12. Take a sequence {fn} of functions in L(X,X , μ). If the se-
ries

∑∞
n=1

∫

|fn| dμ of positive numbers converges (i.e.,
∑∞

n=1

∫

|fn| dμ <∞),
then show that the sequence

{∑m
n=1 fn

}

of functions in L(X,X , μ) con-
verges μ almost everywhere as m→∞ to a function f in L(X,X , μ), and

∫

f dμ =
∑

n

∫

fn dμ.

Hint: Since the sequence
{∑m

n=1

∫

|fn| dμ
}

of positive numbers is bounded,
it converges in R. Apply the corollary of the Monotone Convergence Theo-
rem stated in Problem 3.7 (i.e., the Beppo Levi Theorem) to verify that the
sequence of positive numbers

{∫ ∑m
n=1 |fn| dμ

}

converges in R, and that

the sequence
{∑m

n=1 |fn|
}

of functions in M(X,X )+ converges pointwise
to a function h inM(X,X )+ such that

∫

h dμ =
∑∞

n=1

∫

|fn| dμ. Set N =
{x ∈ X : h(x) = +∞}. Also set g(x) = h(x) if x ∈ X\N , and g(x) = 0 if
x ∈ N . Apply Problems 3.8 and 3.9 to show that the nonnegative real-valued
function g lies in L(X,X , μ), and the sequence

{∑m
n=1 |fn|

}

inM(X,X )+
converges almost everywhere to g, and so the sequence of real-valued func-
tions

{∑m
n=1 fn

}

in M(X,X ) converges almost everywhere to a function
f in M(X,X ) (because it converges absolutely almost everywhere). Show
that

∣

∣

∑m
n=1 fn

∣

∣ ≤ g and apply the Dominated Convergence Theorem.

Problem 4.13. Let f ∈M(X,X ) be a real-valued function. For each posi-
tive integer n consider its n-truncation fn ∈M(X,X ) as defined in Problem
1.5. Prove that (i) if f ∈ L(X,X , μ), then

∫

f dμ = lim
n

∫

fn dμ.

Conversely, prove that (ii) if supn
∫

|fn| dμ <∞, then f ∈ L(X,X , μ).
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Hint: Show that {fn} is a sequence of real-valued functions in M(X,X )
that converges pointwise to the real-valued function f , and that {|fn|} is
an increasing sequence of real-valued functions inM(X,X )+ that converges
pointwise to |f | (which implies that |fn| ≤ |f | for all n). To prove (i) verify
that |f | lies in L(X,X , μ) and apply the Dominated Convergence Theorem.
To prove the converse in (ii) apply the Monotone Convergence Theorem
and conclude that f lies in L(X,X , μ) since

∫

|f | dμ <∞.

Problem 4.14. If {fn} is a sequence of functions in L(X,X , μ), and if f is
a real-valued function inM(X,X ), then prove that

lim
n

∫

|fn−f | dμ = 0 implies f ∈ L(X,X , μ) and

∫

|f | dμ = lim
n

∫

|fn| dμ.

(In the jargon of Chapter 5 this means: fn → f in L1 =⇒ ‖fn‖1 → ‖f‖1.)
Hint: Recall that

∣

∣ |α| − |β|
∣

∣ ≤ |α− β| for all α, β ∈ R. Since f and fn are
real-valued functions, then apply Problem 3.3(b) and Proposition 3.5(b)
to show that if limn

∫

|fn−f | dμ = 0, then lim supn
∫

|fn| dμ ≤
∫

|f | dμ ≤
lim infn

∫

|fn| dμ. Also, since limn

∫

|fn−f | dμ = 0 implies that |fn−f | lies
in L(X,X , μ), and since fn lies in L(X,X , μ), then use Lemmas 4.4 and 4.5
to conclude that the function f lies in L(X,X , μ).

Problem 4.15. Consider the statement of the Dominated Convergence
Theorem. Show that in addition to the results stated there we also have

lim
n

∫

|fn−f | dμ = 0.

Hint: |fn − f | → 0 and |fn − f | ≤ 2g for all n almost everywhere.

Problem 4.16. Consider again the statement of the Dominated Conver-
gence Theorem. Verify that the dominance assumption (viz., |fn| ≤ g for
all n almost everywhere for some g ∈ L(X,X , μ)) cannot be dropped from
the theorem statement (even under the assumption of uniform convergence
— see Problem 4.2). In fact, take the Lebesgue measure space (R,�, λ), set
f = h = 0, set fn = n χ(0, 1n ], and set hn = 1

n
χ[0,n] for every integer n≥1 —

all real-valued functions in L(R,�, λ). Show that

(a) {fn} converges pointwise to f but 0 =
∫

f dλ �= limn

∫

fn dλ = 1,

(b) {hn} converges uniformly to g but 0 =
∫

h dλ �= limn

∫

hn dλ = 1.

Problem 4.17. Let (X,X , μ) be a measure space, and consider a function
f :X×[0, 1]→ R such that, for each s ∈ [0, 1], the function f(·, s):X→ R is
X -measurable. If, for some s0 ∈ [0, 1], f(x, s0) = lims→so f(x, s) for every
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x ∈ X, and if |f(x, s)| ≤ g(x) for every x ∈ X and all s ∈ [0, 1], for some g
in L(X,X , μ), then use the Dominated Convergence Theorem to show that

∫

f(x, s0) dμ = lim
s→s0

∫

f(x, s) dμ.

If, in addition, the function f(x, ·): [0, 1]→ R is continuous for each x ∈ X,
then show that the function F : [0, 1]→ R, defined for each s ∈ [0, 1] by

F (s) =

∫

f(x, s) dμ,

is continuous as well. (Continuity is with respect to the usual metric on R).

Suggested Reading

Bartle [4], Berberian [7], Brown and Pearcy [8], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36]. For the basic classic result stated in
Problem 4.1, see [33, p. 23] (also see [1, p. 206], [41, p. 53]).
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Banach Spaces Lp

5.1 Construction of L1

A topology to equip the linear space L(X,X , μ) which will turn it into a
Banach space is investigated in this chapter. Section 5.1 summarizes the ba-
sics on normed spaces that will be required in Chapter 5 (as well as in parts
of Chapters and 6, 10, and 12). We assume the reader has been introduced
to linear spaces (or vector space) before — see e.g., Lemma 4.5.

Definition 5.1. Let L be an arbitrary linear space over F, where F stands
either for the real field R or the complex field C. A real-valued function

‖ ‖: L → R

is a norm on L if the following conditions (referred to as the norm axioms)
are satisfied for all vectors f and g in L and all scalars γ in F.

(i) ‖f‖ ≥ 0 (nonnegativeness),

(ii) ‖f‖ > 0 if f �= 0 (positiveness),

(iii) ‖γf‖ = |γ|‖f‖ (absolute homogeneity),

(iv) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (subadditivity — triangle inequality).

© Springer International Publishing Switzerland 2015
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7 5
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Any linear space L equipped with a norm ‖ ‖ on it is a normed space (or a
normed linear space, or a normed vector space). A linear space is a real or
a complex linear space if F = R or F = C and, when equipped with a norm,
it is called a real or complex normed space.

Elements of any linear space L are called vectors , and elements of a
field F are called scalars. If L is a linear space equipped with a norm ‖ ‖,
then the resulting normed space is denoted by (L, ‖ ‖) or simply by L if the
norm is clear in the context. Observe from axioms (i), (ii), and (iii) that if
a function ‖ ‖: L → R is a norm, then

‖f‖ = 0 if and only if f = 0.

If a function ‖ ‖:L → R satisfies the three axioms (i), (iii), and (iv) but not
necessarily axiom (ii), then it is called a seminorm (or a pseudonorm). In
other words, a seminorm does vanish at the origin (as a norm does) but a
seminorm may also vanish at a nonzero vector (as a norm never does). A
linear space L equipped with a seminorm is called a seminormed space.

Definition 5.2. A sequence of vectors {fn} in a normed space (L, ‖ ‖)
converges to a vector f in L if for each real number ε > 0 there exists a
positive integer nε such that

n ≥ nε implies ‖fn − f‖ < ε.

If a sequence of vectors {fn} converges to a vector f ∈ L, then it is said
to be a convergent sequence and f is said to be the limit of {fn}. In order
to distinguish it among other convergence modes, we refer to the preceding
concept as norm convergence (or convergence in the norm topology). A se-
quence {fn} is a Cauchy sequence in (L, ‖ ‖) (or satisfies the Cauchy crite-
rion) if for each real number ε > 0 there is a positive integer nε such that

n,m ≥ nε implies ‖fm − fn‖ < ε.

A common notation for the Cauchy criterion is limm,n ‖fm − fn‖ = 0. A se-
quence {fn} is a bounded sequence in (L, ‖ ‖) if supn ‖fn‖ <∞.

Proposition 5.3. Consider an arbitrary normed space (L, ‖ ‖).
(a) Every convergent sequence in (L, ‖ ‖) is a Cauchy sequence.

(b) Every Cauchy sequence in (L, ‖ ‖) is bounded .

(c) If a Cauchy sequence in (L, ‖ ‖) has a subsequence that converges in
(L, ‖ ‖), then the sequence itself converges in (L, ‖ ‖) and its limit co-
incides with the limit of that convergent subsequence.
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Proof. Take a normed space (L, ‖ ‖) and a sequence {fn} of vectors in L.
(a) Take any ε > 0. If {fn} converges to f ∈L, then there exists nε ≥ 1 such
that ‖fn − f‖ < ε

2 for all n ≥ nε. Since ‖fm − fn‖ ≤ ‖fm − f‖+‖f − fn‖ by
the triangle inequality, it follows that ‖fm − fn‖ < ε whenever m,n ≥ nε.

(b) Suppose {fn} is Cauchy. Then there is an n1>1 such that ‖fm− fn‖< 1
for allm,n ≥ n1. Let β ∈ R be the maximum of {‖fm− fn‖ ∈ R : m,n < n1}
(a finite set). Thus ‖fm− fn‖ ≤ ‖fm− fn1‖+ ‖fn1− fn‖ ≤ 2max{1, β} for
all m,n by the triangle inequality. But ‖fm‖ ≤ ‖fm− f1‖+ ‖f1‖ for all m.

(c) Consider a subsequence {fnk} of a Cauchy sequence {fn} that converges
to f ∈L (i.e., ‖fnk− f‖ → 0 as k →∞). Take any ε > 0. Since {fn} is a
Cauchy sequence, there is a positive integer nε such that ‖fm − fn‖ < ε

2 for
all m,n ≥ nε. Since {fnk} converges to f , there is a positive integer kε such
that ‖fnk− f‖ < ε

2 for all k ≥ kε. Therefore, if j is any integer for which
j ≥ kε and nj ≥ nε (for instance, if j = max{nε, kε}), then ‖fn − f‖ ≤
‖fn − fnj‖+‖fnj − f‖ < ε for every n ≥ nε by the triangle inequality, which

implies that the sequence {fn} converges to f . �

By Proposition 5.3(a), every convergent sequence is a Cauchy sequence.
However, the converse may fail (see Problems 5.13 and 5.15). But there are
normed spaces with the crucial property that every Cauchy sequence con-
verges. Normed spaces possessing this special property are called complete:
a normed space L is complete if every Cauchy sequence in L is a convergent
sequence in L. A Banach space is precisely a complete normed space.

Proposition 5.4. Set L = L(X,X , μ). The function ‖ ‖:L → R defined by

‖f‖ =

∫

|f | dμ for every f ∈ L(X,X , μ)

is a seminorm on the linear space L(X,X , μ), which is such that

‖f‖ = 0 if and only if f = 0 μ-almost everywhere.

Proof. Recall from Lemma 4.5 that L(X,X , μ) is a real linear space. Set
L = L(X,X , μ). Observe that the function ‖ ‖:L → R is well defined since
the integral

∫

|f | dμ exists in R for every f ∈ L(X,X , μ) by Lemma 4.4. Let f
and g be arbitrary functions in L(X,X , μ), and take any scalar γ in R. Note
that |γf(x)| = |γ||f(x)| for every x ∈ X, which means |γf | = |γ||f |. Since
the triangle inequality holds in R, that is, since |α+β| ≤ |α|+ |β| for every
pair {α, β} of real numbers, it follows that |f(x) + g(x)| ≤ |f(x)|+ |g(x)| for
every x ∈ X, which means |f + g| ≤ |f |+ |g|. Now verify the norm axioms.
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Axiom (i) in Definition 5.1, ‖f‖ ≥ 0, is immediate (Problem 3.3). For axioms
(iii) and (iv) recall that

∫

:L → R is a linear functional (Lemma 4.5). Thus,

‖γf‖ =

∫

|γf | dμ =

∫

|γ||f | dμ = |γ|
∫

|f | dμ = |γ|‖f‖,

‖f + g‖ =

∫

|f + g| dμ ≤
∫

(

|f |+ |g|
)

dμ =

∫

|f | dμ+

∫

|g| dμ = ‖f‖+ ‖g‖

(cf. Problem 3.3). Therefore ‖ ‖ is a seminorm on L. Moreover, Proposition
3.7(a) ensures that ‖f‖ = 0 if and only if f = 0 μ-almost everywhere. �

Nevertheless, this seminorm ‖ ‖ is not a norm on L(X,X , μ). In fact, it
does not satisfy axiom (ii) in Definition 5.1: there may be a function f in
L(X,X , μ) such that f �= 0 and ‖f‖ = 0 (e.g., take a Lebesgue integrable
function f in L(R,�, λ) such that f(x) = 0 for all x ∈ R except at the origin,
where f(0) = 1). In order to make this seminorm on L(X,X , μ) into a norm
we need to redefine the concept of equality between functions in L(X,X , μ)
(other than the usual pointwise definition) so that axiom (ii) is satisfied.

Take a measure space (X,X , μ), and let f and g be arbitrary real-valued
functions inM(X,X ). We say that f and g are equivalent (or μ-equivalent),
denoted by f ∼ g, if f = g almost everywhere (i.e., μ-a.e.). This ∼ is in fact
an equivalence relation on M(X,X ). For every real-valued function f in
M(X,X ), let [f ] be the equivalence class of f (with respect to μ),

[f ] =
{

f ′ ∈M(X,X ): f ′ ∼ f
}

.

This [f ] is the subset of M(X,X ) consisting of all functions in M(X,X )
that are μ-equivalent to f . The following necessary and sufficient conditions
for equality between equivalence classes are readily verified. Indeed,

[f ] = [g] ⇐⇒ f ∼ g ⇐⇒ f = g μ-almost everywhere.

Problem 4.4(c) says that if f is a function in L(X,X , μ), then so is every f ′

in [f ] and
∫

f ′dμ =
∫

f dμ. Therefore, if f is in L(X,X , μ), then so is every
g′ in [g] whenever [f ] = [g] and

∫

g′dμ =
∫

f dμ. Thus set

L1 = L1(μ) = L1(X,X , μ) =
{

[f ] ⊆M(X,X ): f ∈ L(X,X , μ)
}

,

which is the collection of all equivalence classes of functions in L(X,X , μ).
This collection L1= L1(X,X , μ) is also referred to as the quotient space of
L(X,X , μ) modulo ∼ and is also denoted byL(X,X , μ)/∼. Since L(X,X , μ)
is a linear space, it can be shown that L1(X,X , μ) is made into a linear space
when scalar multiplication and vector addition are defined by

γ [f ] = [γf ] and [f ] + [g] = [f + g]
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for every [f ] and [g] in L1(X,X , μ) and every scalar γ. Observe that the
origin [0] of the linear space L1(X,X , μ) is a linear manifold,

[0] =
{

f ∈ L(X,X , μ): f = 0 μ-a.e.
}

,

of the linear space L(X,X , μ), and L1(X,X , μ) can still be viewed as the
quotient space of L(X,X , μ) modulo [0], also denoted by L(X,X , μ)/[0].
The seminorm on L(X,X , μ) given in Proposition 5.4 induces a norm in
L1(X,X , μ). In fact, consider the function ‖ ‖1 :L1→ R defined by

‖[f ]‖1 =

∫

|f | dμ for every [f ] ∈ L1(X,X , μ),

where f ∈ L(X,X , μ) is any representative of the equivalence class [f ].

Proposition 5.5. The function ‖ ‖1 is a norm on the linear space L1.

Proof. Consider the seminorm ‖ ‖ on L(X,X , μ) of Proposition 5.4. Thus the
function ‖ ‖1 :L1→ R is well defined. Actually, for any [f ] in L1(X,X , μ),

‖[f ]‖1 = ‖f‖,

whose value does not depend on the representative f of the equivalence class
[f ]. Indeed, if f and f ′ are functions in L(X,X , μ) such that f = f ′ μ-a.e.,
then |f ′| = |f | μ-a.e. (since

∣

∣|f | − |f ′|
∣

∣ ≤ |f − f ′|), and so
∫

|f ′| dμ =
∫

|f | dμ
(Problem 4.4(c)). Note that ‖ ‖1 satisfies all the axioms (i), (ii), (iii), and (iv)
of Definition 5.1. In fact, take arbitrary classes [f ] and [g] in L1(X,X , μ),
and an arbitrary scalar γ ∈ R so that, by Proposition 5.4,

‖[f ]‖1 = ‖f‖ ≥ 0,

‖[f ]‖1 = 0 ⇐⇒ ‖f‖ = 0 ⇐⇒ f = 0 μ-a.e. ⇐⇒ [f ] = [0],

‖γ [f ]‖1 = ‖[γf ]‖1 = ‖γf‖ = |γ|‖f‖ = |γ|‖[f ]‖1,

‖[f ] + [g]‖1 = ‖[f + g]‖1 = ‖f + g‖ ≤ ‖f‖+ ‖g‖ = ‖[f ]‖1 + ‖[g]‖1. �

5.2 Spaces Lp and L∞

Consider a measure space (X,X , μ). Extending the construction of L1 in
the previous section, we now define the linear spaces Lp for each p≥1 and
L∞, equip them with norms, and show that they are Banach spaces.

We begin with the spaces Lp. Take an arbitrary real number p≥1.
A real-valued function f in M(X,X ) is p-integrable if fp ∈ L(X,X , μ) or,
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equivalently, if
∫

|f |pdμ <∞ (cf. Lemma 4.4). Along the same line used to
construct L1 (which is the particular case of Lp for p = 1), set

Lp = Lp(μ) = Lp(X,X , μ) =
{

[f ] ⊆M(X,X ): fp ∈ L(X,X , μ)
}

,

the collection of all equivalence classes of p-integrable functions. In other
words, Lp(X,X , μ) is the collection of all equivalence classes of real-valued
functions f inM(X,X ) for which

∫

|f |pdμ <∞ for every representative f
of [f ]. Thus consider the function ‖ ‖p :Lp→ R defined by

‖[f ]‖p =

(∫

|f |p dμ
)

1
p

for every [f ] ∈ Lp(X,X , μ),

where f is any representative of the equivalence class [f ] in Lp(X,X , μ).
Now we consider the space L∞. An extended real-valued function f in

M(X,X ) is essentially bounded if it is bounded almost everywhere. Roughly
speaking, if supx∈X |f(x)| <∞ μ-a.e. on X. Precisely this means that there
is a real number β > 0 such that |f | ≤ β μ-almost everywhere. If an ex-
tended real-valued function f inM(X,X ) is essentially bounded, then set

ess sup |f | = inf
{

β ≥ 0: |f | ≤ β μ-a.e.
}

= inf
N∈X

sup
x∈X\N

|f(x)|

in R, where infN∈X is taken over all N ∈ X such that μ(N) = 0. Next set

L∞ = L∞(μ) = L∞(X,X , μ) =
{

[f ] ⊆M(X,X ): sup
x∈X
|f(x)| <∞ μ-a.e.

}

,

the collection of all equivalence classes of essentially bounded extended real-
valued functions. In other words, L∞(X,X , μ) is the collection of all equiv-
alence classes of extended real-valued functions f in M(X,X ) for which
ess sup |f | <∞ for every representative f of [f ]. Thus consider the function
‖ ‖∞ :L∞→ R defined by

‖[f ]‖∞ = ess sup |f | for every [f ] ∈ L∞(X,X , μ),

where f is any representative of the equivalence class [f ] in L∞(X,X , μ).
We have seen in the previous section that since L(X,X , μ) is a linear

space, then L1(X,X , μ) was made into a linear space, with scalar multi-
plication and vector addition of equivalence classes defined as before. This
extends immediately to Lp(X,X , μ), so that Lp(X,X , μ) is made into a lin-
ear space as well. Similarly, L∞(X,X , μ) is also made into a linear space
under the same definition of scalar multiplication and vector addition.

Note that the elements of Lp(X,X , μ) and L∞(X,X , μ) are equivalence
classes of functions (and not functions themselves). If f is any function of
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an equivalence class [f ], then it is usual and convenient to write f for [f ].
Since the common usage is simpler, we follow it, and refer to a “function f”
in Lp(X,X , μ) or in L∞(X,X , μ) instead of “an equivalence class [f ] that
contains f”. Thus we write ‖f‖p and ‖f‖∞ instead of ‖[f ]‖p and ‖[f ]‖∞.

Take any real number p > 1. Let q = p
p−1 > 1 be the unique solution to

the equation 1
p + 1

q = 1 (or, equivalently, the unique solution to the equation
p+ q = p q ). In this case p and q are Hölder conjugates of each other. We
will show that ‖ ‖p and ‖ ‖∞ are norms on the linear spaces Lp and L∞,
respectively, but first we need the following fundamental inequalities, which
the reader is asked to prove following the hints to Problems 5.1 and 5.3.

Proposition 5.6. (Hölder inequality). If p, q >1 are Hölder conjugates,
and if f ∈ Lp and g ∈ Lq, then fg ∈ L1 and

‖fg‖1 ≤ ‖f‖p‖g‖q.

If f ∈ L1 and g ∈ L∞, then fg ∈ L1 and

‖fg‖1 ≤ ‖f‖1‖g‖∞.

Remark: A very special case. For p= q = 2, the Hölder inequality leads to
the Schwarz (or Cauchy–Schwarz ) inequality . An inner product on the real
linear space L2 is a bilinear functional 〈 , 〉:L2×L2 → R given by 〈f ; g〉 =
∫

fg dμ for every f, g ∈ L2. Indeed, If f and g lie in L2, then fg ∈ L1 and

|〈f ; g〉| =
∣

∣

∣

∣

∫

fg dμ

∣

∣

∣

∣

≤
∫

|fg| dμ = ‖fg‖1 ≤ ‖f‖2‖g‖2,

where 〈f ; g〉 =
∫

fg dμ is the inner product of f and g in L2. If μ(X) = 1,
then |〈f ;χ

X
〉| ≤ ‖f‖1 ≤ ‖f‖2, and so (

∫

f dμ)2 ≤ (
∫

|f | dμ)2 ≤
∫

|f |2 dμ.

Proposition 5.7. (Minkowski inequality). Take any real number p≥1. If
f, g ∈ Lp, then f + g ∈ Lp and

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

If f, g ∈ L∞, then f + g ∈ L∞ and

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.

Lemma 5.8. The functions ‖ ‖p and ‖ ‖∞ are norms on Lp and L∞.

Proof. Consider the real linear spaces Lp for each p≥1 and L∞. Proposition
5.5 ensures that ‖ ‖1 is a norm on L1. Exactly the same argument shows
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that ‖ ‖p is a norm on Lp for each p > 1, where the triangle inequality is
precisely the Minkowski inequality of Proposition 5.7. To verify that ‖ ‖∞
is a norm on L∞, note that properties (i) and (iii) of Definition 5.1 are trivi-
ally verified, (iv) is again the Minkowski inequality of Proposition 5.7, and
(ii) follows since ess sup |f | = 0 means |f | = 0 μ-almost everywhere. �

5.3 The Riesz–Fischer Completeness Theorem

A central result in integration theory is the Riesz Theorem, also referred
to as the Riesz–Fischer Theorem, or the Completeness Theorem (Theorem
5.9). It says that the linear spaces Lp and L∞ equipped with the norms ‖ ‖p
and ‖ ‖∞ are complete normed spaces (where Cauchy sequences converge).

Theorem 5.9. (Lp, ‖ ‖p) for each p≥1 and (L∞, ‖ ‖∞) are Banach spaces.

Proof. Take any real number p≥1. According to Lemma 5.8, consider the
normed spaces (Lp(X,X , μ), ‖ ‖p) and (L∞(X,X , μ), || ‖∞). The proof is
split into two parts. Part (a) shows that (Lp, ‖ ‖p) is complete, and part (b)
shows that (L∞, || ‖∞) is also complete.

(a) Let {fn} be an arbitrary Cauchy sequence in Lp (Definition 5.2). Thus
for any integer k≥1 there is another integer nk ≥ 1 for which

‖fm − fn‖p <
(

1
2

)

k whenever m,n ≥ nk.

Then there exists a subsequence {fnk} of {fn} such that

‖fnk+1
− fnk‖p <

(

1
2

)

k

for each k≥1. Let g :X→ R be a function defined for each x ∈ X by

g(x) = |fn1(x)|+
∞
∑

k=1

∣

∣fnk+1
(x)− fnk (x)

∣

∣.

First note that g is a well-defined extended real-valued nonnegative X -meas-
urable function on X (i.e., a function inM(X,X )+— cf. Proposition 1.8).
Thus the Monotone Convergence Theorem as in Corollary 3.10 ensures that

∫

gp dμ = lim
n

∫

(

|fn1 |+
n

∑

k=1

∣

∣fnk+1
− fnk

∣

∣

)p

dμ.

Recall that each |fnk | is in Lp, and so |fn1 | +
∑n

k=1 |fnk+1
− fnk | is in the

linear space Lp for each integer n≥1. The Minkowski inequality of Propo-
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sition 5.7 (i.e., the triangle inequality) plus a trivial induction ensure that
‖
∑n

k=1 gk‖p ≤
∑n

k=1 ‖gk‖p for every n≥1 if {gk} is a sequence in Lp. Then

(

∫

(

|fn1 |+
n

∑

k=1

∣

∣fnk+1
− fnk

∣

∣

)p

dμ

)

1
p

=

∥

∥

∥|fn1 |+
n

∑

k=1

∣

∣fnk+1
− fnk

∣

∣

∥

∥

∥

p

< ‖fn1‖p +

n
∑

k=1

(

1
2

)

k = ‖fn1‖p + 1

for every integer n≥1. The preceding two expressions ensure that
∫

gp dμ <
(‖fn1‖p + 1)p <∞, and so the set E = {x ∈ X : g(x) <∞} lies in X with

μ(X\E) = 0 by Problem 3.9(b). This implies that
∑∞

k=1(fnk+1
(x)− fnk (x))

converges for every x ∈ E (since it converges absolutely). Thus set

f(x) =

{

fn1(x) +
∑∞

k=1

(

fnk+1
(x)− fnk

(x)
)

= limk fnk+1
(x), x ∈ E,

0, x /∈ E,

defining a real-valued function f ∈M(X,X ) in Lp. Indeed, |f | ≤ g, and so
∫

|f |p dμ ≤
∫

gp dμ <
(

‖fn1‖p + 1
)p

< ∞

(cf. Problem 3.3(b)). Hence f ∈ Lp. Observe that
(i) {fnk} converges almost everywhere to f (i.e., |fnk− f | → 0 μ-a.e.),
(ii) |fnk |

p ≤ gp for all k, where gp is a nonnegative function in L(X,X , μ).
In fact, fnk (x)→ f(x) for every x ∈ E and, for all k,

|fnk | ≤
∣

∣

∣

∞
∑

j=k

(

|fnj | − |fnj+1
|
)

∣

∣

∣ ≤
∞
∑

j=k

|fnj+1
− fnj | ≤

∞
∑

j=1

|fnj+1
− fnj | ≤ g.

Also, since |fnk− f |p≤ (|fnk |+ |f |)
p≤ (g + |f |)p by (ii), and |f | ≤ g,

(iii) |fnk− f |p ≤ (2g)p for all k, where (2g)p lies in L(X,X , μ).
Therefore, since |fnk− f |p → 0 μ-a.e. by (i), and according to (iii), it follows
by the Dominated Convergence Theorem (Theorem 4.7) that

‖fnk− f‖pp =

∫

|fnk− f |p dμ→ 0 as k →∞,

and so the subsequence {fnk} of {fn} converges in (Lp, ‖ ‖p) to f ∈ Lp.
Use Proposition 5.3(c) to infer that the arbitrary Cauchy sequence {fn}
converges in (Lp, ‖ ‖p), and so the normed space (Lp, ‖ ‖p) is complete.

(b) Let {fn} be any sequence of functions in L∞. Recall that a countable
collection of sets of measure zero is again a set of measure zero. Thus, there
exists a set N ∈ X with μ(N) = 0 such that
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|fn(x)| ≤ ‖fn‖∞ and |fm(x)− fn(x)| ≤ ‖fm − fn‖∞

for all x ∈ X\N , for every m,n ≥ 1. If {fn} is a Cauchy sequence, then for
each ε > 0 there exists a positive integer nε such that

‖fm − fn‖∞ < ε whenever n,m ≥ nε,

and hence
sup

x∈X\N
m,n≥nε

∣

∣fm(x)− fn(x)
∣

∣ < ε.

Therefore, the scalar sequence {fn(x)} is a real-valued Cauchy sequence for
every x in X\N . Since R (with its usual norm | |) is a complete normed
space, it follows that {fn(x)} converges in R for every x ∈ X\N . Thus set

f(x) =

{

limn fn(x), x ∈ X\N,

0, x ∈ N.

This defines a real-valued function f inM(X,X ) which, in fact, lies in L∞.
Actually, take x, y arbitrary in X\N , and an arbitrary n ≥ nε. Note that

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)|.

Since the function | |:R → R is continuous, it follows that

|f(x)− fn(x)| =
∣

∣ lim
m

fm(x)− fn(x)
∣

∣ = lim
m
|fm(x)− fn(x)| ≤ ε,

and since each fn lies in L∞, it also follows that

|fn(x)− fn(y)| ≤ |fn(x)|+ |fn(y)| ≤ 2‖fn‖∞.

Thus

|f(x)| ≤ |f(y)|+ |f(x)− f(y)| ≤ |f(y)|+ 2(ε+ ‖fnε‖∞),

which implies that f ∈ L∞. Moreover, for all n ≥ nε,

‖f − fn‖∞ = sup
x∈X\N

|f(x)− fn(x)| ≤ ε.

Outcome: the arbitrary Cauchy sequence {fn} converges in (L∞, ‖ ‖∞) to
f ∈ L∞, and so the normed space (L∞, ‖ ‖∞) is complete. �
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5.4 Problems

Problem 5.1. Prove the Hölder inequality . Let (X,X , μ) be a measure
space and take a pair of real-valued measurable functions f and g in
M(X,X ). If fp ∈ L(X,X , μ) and gq ∈ L(X,X , μ), where p > 1 and q > 1
are Hölder conjugates, then show that fg ∈ L(X,X , μ) and

∫

|fg| dμ ≤
(∫

|f |p dμ
)

1
p

(∫

|g|q dμ
)

1
q
.

Hint: First prove the Young inequality which says that αβ ≤ αp
p + βq

q for
every positive real numbers α and β whenever p and q are Hölder conjugates.

If f ∈ L(X,X , μ) and g is essentially bounded, then fg ∈ L(X,X , μ) and
∫

|fg| dμ ≤ ess sup |g|
∫

|f | dμ.

Hint: Proposition 4.2(b) and Problem 4.4 (or Problem 3.8(c)).

Problem 5.2. Consider the second inequality of Problem 5.1. If fp lies in
L(X,X , μ) for some p≥1 (or if f is essentially bounded) and g is essentially
bounded, then (fg)p lies in L(X,X , μ) (or fg is essentially bounded) and
∫

|fg|p dμ ≤ ess sup |g|p
∫

|f |p dμ
(

or ess sup |fg| ≤ ess sup |f | ess sup |g|
)

.

Problem 5.3. Prove the Minkowski inequality . Let (X,X , μ) be a measure
space and take p-integrable functions f and g (i.e., real-valued functions in
M(X,X ) such that

∫

|f |p dμ <∞ and
∫

|g|p dμ <∞) for an arbitrary real
number p≥1. Show that f + g is p-integrable (i.e.,

∫

|f + g|p dμ <∞) and

(∫

|f + g|p dμ
)

1
p ≤

(∫

|f |p dμ
)

1
p
+

(∫

|g|p dμ
)

1
p
.

Hint: The special case of p =1 was proved in Proposition 5.4. To prove the
case of p > 1 proceed as follows. Take any α and β in R. Since |α+ β|p ≤
2p(|α|p + |β|p), show that

∫

|f + g|p dμ <∞. Since |α+ β|p ≤ (|α|+ |β|)p =
(|α|+ |β|)p−1|α| + (|α|+ |β|)p−1|β|, and recalling that (p− 1)q = p if q is
the Hölder conjugate of p, use Problem 5.1 to prove the claimed inequality.

Moreover, show that if f and g are essentially bounded, then

ess sup |f + g| ≤ ess sup |f |+ ess sup |g|.
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Problem 5.4. The Littlewood second principle says that “every” function is
nearly simple. That is, if f ∈Lp(X,X , μ) for some p≥1, then for every ε> 0
there is a measurable simple function ϕε such that ‖f− ϕε‖p < ε. Prove it.

Hint: If 0 ≤ |f | ∈ Lp, then Problem 1.6 ensures the existence of an increasing
sequence {ϕn} of measurable simple functions converging pointwise to |f |.
So (|f | − ϕn)

p → 0 pointwise and 0 ≤ (|f | − ϕn)
p ≤ |f |p. Use the Domi-

nated Convergence Theorem (Theorem 4.7) to infer that ‖f − ϕn‖p → 0.

Problem 5.5. Let �p be the set of all scalar-valued (real or complex) se-
quences x = {ξk} such that

∑∞
k=1|ξk|p <∞ (i.e., the set of all scalar-valued

p-summable sequences), for each real number p≥1. Let �∞ be the set of all
scalar-valued sequences x = {ξk} such that supk≥1|ξk| <∞ (i.e., the set
of all scalar-valued bounded sequences). These are (real or complex) linear
spaces. Consider the measure space (N, ℘(N), μ), where μ is the counting
measure of Example 2B. Use Problem 3.4 and show that we may identify

�p = Lp
(

N, ℘(N), μ
)

and �∞ = L∞(

N, ℘(N), μ
)

,

where each equivalence class in Lp and L∞ contains just one element.

Problem 5.6. Use the previous problem and Lemma 5.8 to show that

‖x‖p =
(

∞
∑

k=1

|ξk|p
)

1
p for every sequence x = {ξk} ∈ �p,

‖x‖∞ = sup
k≥1
|ξk| for every sequence x = {ξk} ∈ �∞,

define norms ‖ ‖p and ‖ ‖∞ on �p and on �∞, and then apply Theorem 3.9
to verify that (�p, ‖ ‖p) for every p≥1 and (�∞, ‖ ‖∞) are Banach spaces.

Problem 5.7. In particular, the Hölder and Minkowski inequalities (Propo-
sitions 5.6 and 5.7) hold for sequences in �p and �∞ equipped with the norms
of the previous problem. Now prove the Jensen inequality for sequences,
which says that if p and q are real numbers such that 0< p < q, then

(
∞
∑

k=1

|ξk|q
)

1
q ≤

(
∞
∑

k=1

|ξk|p
)

1
p

for every scalar-valued sequence x = {ξk} such that
∑∞

k=1|ξk|p <∞.

Hint: Prove that
∑∞

k=1α
r
k ≤

(∑∞
k=1αk

)r
for each real r≥1 if the sequence

of nonnegative real numbers {αk} is such that
∑∞

k=1αk <∞ (i.e., whenever
the series

∑∞
k=1αk converges).
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Moreover, for real numbers q and p show that

1 < p < q implies �1 ⊂ �p ⊂ �q ⊂ �∞.

Hint: Take { 1k} ∈ �p\�1 for p> 1 to verify that these are proper inclusions.

Problem 5.8. Let p, q, r be real numbers such that 1 ≤ r < min{p, q} and

1

p
+

1

q
=

1

r
.

Prove the generalized Hölder inequality , which reads as follows. If f ∈ Lp

and g ∈ Lq, then fg ∈ Lr, and

‖fg‖r ≤ ‖f‖p‖g‖q.

Hint: Show that p
r and q

r are Hölder conjugates.

Also, if (X,X , μ) is a finite measure space (i.e., μ(X)<∞), then prove that

1 < r < p implies L∞ ⊆ Lp ⊆ Lr ⊆ L1.

Hint: ‖f‖r ≤ ‖f‖p μ(X)
p−r
pr by the generalized Hölder inequality.

Problem 5.9. Consider an arbitrary measure space (X,X , μ). Prove that
the following assertions are pairwise equivalent.

(a) μ(X) <∞.

(b) L∞ ⊆ Lp for every p≥1.

(c) L∞ ⊆ Lp for some p≥1.

Problem 5.10. Prove that if (X,X , μ) is a finite measure space, then

lim
p→∞

‖f‖p = ‖f‖∞ for every f ∈ L∞.

Hint: Problem 5.9. |f |p ≤ |f |p−1|f | implies
∫

|f |p dμ ≤ ‖f‖p−1
∞

∫

|f | dμ, and
‖f‖p≤ ‖f‖

1−(1/p)
∞ ‖f‖1/p1 = ‖f‖∞(‖f‖1/‖f‖∞)1/p. So lim sup ‖f‖p≤ ‖f‖∞.

For γ in (0, ‖f‖∞) the set E = {x ∈ X : γ < |f(x)|} is such that μ(E)1/p γ ≤
(∫

E
|f |p dμ

)

1/p≤ ‖f‖p. So γ≤ lim inf ‖f‖p and ‖f‖∞= sup γ≤ lim inf ‖f‖p.

Problem 5.11. Let (X,X , μ) be an arbitrary measure space. Prove that

Lr ∩ Lq ⊆ Lp whenever 1 ≤ r ≤ p ≤ q.
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Hint: Take E = {x ∈ X : |f(x)| ≤ 1} and F = {x ∈ X : 1 < |f(x)|} in X
(cf. Proposition 1.6). Show that

∫

E
|f |p dμ +

∫

F
|f |p dμ ≤

∫

E
|f |r dμ +

∫

F
|f |q dμ.

Problem 5.12. Let (R,�, λ) be the Lebesgue measure space. Take an arbi-
trary �-measurable set E and consider the restriction λ|E of the Lebesgue
measure λ to the σ-algebra E = ℘(E) ∩ � of all Borel subsets of E as in
Problem 2.11. Take any real number p≥1 and consider the Lebesgue spaces :

Lp(E) = Lp(E, E , λ|E) and L∞(E) = L∞(E, E , λ|E).

(a) For each p≥1 (or p =∞), a function f ∈M(R,�) is locally Lp if
f ∈ Lp(E) for every bounded set E ∈ �. Verify that, if f ∈ Lp(R,�, λ)
for some p, then f is locally Lp, and show that the converse fails.

(b) Set E = [0, 1]. Show that the inclusions of Problem 5.8 are proper:

L∞([0, 1]) ⊂ Lp([0, 1]) ⊂ Lr([0, 1]) ⊂ L1([0, 1])

whenever 1<r <p, by exhibiting functions in

L2([0, 1])\L∞([0, 1]) and L1([0, 1])\L2([0, 1]).

(c) On the other hand, for an unbounded �-measurable set E we get the
opposite. Exhibit functions in

L∞([1,∞))\L2([1,∞)) and L2([1,∞))\L1([1,∞)).

Hints:
∫

dx√
x
= 2
√
x,

∫

dx
x = log(x), and

∫

dx
x2 = − 1

x .

Problem 5.13. Consider the set C[0, 1] consisting of all real-valued con-
tinuous functions f : [0, 1]→ R defined on the closed and bounded interval
[0, 1]. First verify that C[0, 1] is a linear space when vector addition and
scalar multiplication are pointwise defined. Now show that the functions
‖ ‖p :C[0, 1]→ R for each real p≥1 and ‖ ‖∞ :C[0, 1]→ R, given by

‖f‖p =

(

∫

[0,1]

|f(x)|p dx
)

1
p

and ‖f‖∞ = max
x∈[0,1]

|f(x)|,

are well defined for every f ∈ C[0, 1], and are norms on C[0, 1] (cf. Minkowski
inequality). Also show that it makes no difference whether the preceding in-
tegral is Riemann or Lebesgue. Next prove the following assertions.

(a) The normed space (C[0, 1], ‖ ‖p) is not complete for any p≥1.

Hint: Take the sequence {fn} of functions in C[0, 1] given by
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fn(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, x ∈ [0, 1
2 ],

n+ 1− 2nx, x ∈ [ 12 ,
n+1
2n ],

0, x ∈ [n+1
2n , 1].

Show that {fn} is a Cauchy sequence in (C[0, 1], ‖ ‖p) but does not
converge in (C[0, 1], ‖ ‖p) to any (continuous) function in C[0, 1].

(b) However, (C[0, 1],‖ ‖∞) is a Banach space. (Hint:Proof of Theorem 5.9.)

Problem 5.14. Take an arbitrary p≥1. Now consider the Lebesgue Space
Lp([0, 1]) of all p-integrable functions on [0, 1] (defined in Problem 5.12). Let
Rp[0, 1] denote the subset of Lp[0, 1] consisting of all (equivalence classes of)
Riemann integrable functions f for which |f |p has a finite Riemann integral.
Rp[0, 1] is a linear manifold of Lp[0, 1], and so it is a linear space. Equip
it with the norm ‖ ‖p and consider the normed spaces (Rp[0, 1], ‖ ‖p). Let
{fn} be a sequence of real-valued functions on [0, 1] defined by

fn(x) =

{

1, x = k
n ! ∈ [0, 1] for some integer k ≥ 0,

0, otherwise.

Verify that each fn lies in Rp[0, 1]. (Hint: Problem 4.1.) Apply the same
argument to show that the Dirichlet function f on [0, 1],

f(x) = χ
[0,1]∩Q(x) =

{

1, x ∈ [0, 1] ∩ Q,

0, x ∈ [0, 1]\Q,

lies in Lp[0, 1]\Rp[0, 1]. (Hint: [0, 1]\Q is totally disconnected and of mea-
sure 1 — cf. Problems 2.7(b) and 4.1.) Then show that

fn → f pointwise.

Hint: If fn(x) = 1, then x = k
n ! , so x = k(n+1)

(n+1) ! and hence fn+1(x) = 1.

Can we infer from this problem that (Rp[0, 1], ‖ ‖p) is not complete?

Problem 5.15. Consider the setup of Problem 5.14, where (Rp[0, 1], ‖ ‖p)
is a linear manifold of the Banach space (Lp[0, 1], ‖ ‖p). We show that the
normed space (Rp[0, 1], ‖ ‖p) is not complete for any p≥1. To begin with,
take the decreasing collection {Sn} of closed subsets of S0 = [0, 1] used to
build up the Cantor-like set S =

⋂

n Sn of Problem 2.10. Observe that

λ(Sn) = 1−
n−1
∑

i=0

2i

4i+1 = 1
2 + 1

2n+1
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is the length of Sn (and so the Lebesgue measure of Sn) for each n≥1. Take
the sequence {fn} of characteristic functions of Sn for every n≥1,

fn(x) = χ
Sn(x) =

{

1, x ∈ Sn,

0, x ∈ S0\Sn,

and verify that each fn belongs to Rp[0, 1] for every p≥1 (see Problem 4.1).
Let f be the characteristic function of S; that is,

f(x) = χ
S(x) =

{

1, x ∈ S,

0, x ∈ S0\S.

(a) Show that {fn} is a Cauchy sequence in (Rp[0, 1], ‖ ‖p).

Hint: Verify that ‖fm − fn‖pp ≤ 1
2m+1 whenever m ≤ n.

(b) Show that f ∈ Lp[0, 1] and {fn} converges in (Lp[0, 1], ‖ ‖p) to f .

Hint: Verify that ‖fn − f‖pp = λ(Sn\S) = 1
2n+1 since fn − f = χ

Sn\S .

(c) Show that f �∈ Rp[0, 1]. (Hint: Problems 2.10 and 4.1.)

Use (a), (b), (c) to infer that there is a Cauchy sequence {fn} of functions
in (Rp[0, 1], ‖ ‖p) that does not converge in (Rp[0, 1], ‖ ‖p). Thus conclude
that for any p≥1 the normed space (Rp[0, 1], ‖ ‖p) is not a Banach space:

(Rp[0, 1], ‖ ‖p) is an incomplete normed space.

Remark: We have promised in Chapter 3 to show that the integral
∫

( · ) dμ: L1 → R

is a continuous linear functional . In fact, linearity follows from Lemma 4.5
(since linearity of Lwas extended to L1 in Proposition 5.5, and so linearity of
the integral functional on L1 follows by using the same argument of Lemma
4.5). We will now verify continuity for the integral functional (cf. Problem
5.16(a)) — this will be extended in Proposition 10.G). Recall that a map
between metric spaces is continuous if and only if it preserves convergence.
In particular, the integral

∫

(·) dμ:L1 → R is a continuous functional if and
only if, whenever a sequence {fn} of functions in L1 converges in L1 to
f ∈ L1, then the real sequence

{∫

fn dμ
}

converges in R to
∫

fn dμ ∈ R.

Problem 5.16. Let (X,X , μ) be a measure space and take any p ≥ 1.

(a) If a sequence {fn} of functions in L1 converges in L1 to f ∈ L1, then
∫

f dμ = lim
n

∫

fn dμ.
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Hint:
∣

∣

∫

fn dμ−
∫

f dμ
∣

∣ ≤
∫

|fn − f | dμ = ‖fn − f‖1.
(b) If a sequence {fn} of functions in Lp converges in Lp to f ∈ Lp, then

∫

|f |p dμ = lim
n

∫

|fn|p dμ.

Hint: Verify that, by the triangle inequality,
∣

∣‖fn‖p − ‖f‖p
∣

∣ ≤ ‖fn − f‖p.
If, in addition, μ(X) <∞, then

∫

f dμ = lim
n

∫

fn dμ.

Hint: Hölder inequality with a constant function g, and the hint to (a).

Problem 5.17. Prove the Riesz Theorem, which reads as follows. Consider
a measure space (X,X , μ), take an arbitrary p ≥ 1, and suppose a sequence
{fn} of functions in Lp converges μ-almost everywhere to f ∈ Lp. Then

∫

|f |p dμ = lim
n

∫

|fn|p dμ

if and only if {fn} converges in Lp to f . In other words,

fn ∈ Lp → f ∈ Lp μ-a.e. =⇒
{

‖fn‖p → ‖f‖p ⇐⇒ ‖fn − f‖p
}

.

Hint: 0 ≤ hn = 2p(|fn|p + |f |p)− |fn − f |p ∈ Lp → 2p+1|f |p ∈ Lp a.e. (hint
to Problem 5.3 ensures 0 ≤ hn, fn → f a.e. implies a.e. convergence).
If ‖fn‖p → ‖f‖p then, by Lemma 3.9, 2p+1

∫

|f |p dμ ≤ lim infn
∫

hn dμ =
2p+1

∫

|f |p dμ− lim supn
∫

|fn − f |p dμ. This implies limn

∫

|fn − f |p dμ = 0.

See Problem 4.14. Now give another solution to Problem 4.15: under the
assumption of the Dominated Convergence Theorem, fn → f in L1.

Suggested Reading

Bartle [4], Bauer [6], Brown and Pearcy [8], Halmos [18], Royden [35], Rudin
[36]. See also [7], [13], [16], [17], [41], [42] and, for an introduction to Banach
spaces, e.g., [26, Chapter 4].



6

Convergence of Functions

6.1 Four Basic Convergence Notions

Major convergence concepts for sequences of real-valued functions will be
considered in this chapter. We have already met four convergence concepts
so far (viz., pointwise, uniform, almost everywhere, and convergence in Lp).
These are reviewed and compared in this section. Further concepts, namely,
convergence in measure, uniform almost everywhere, and almost uniform
convergence, will be discussed and compared in subsequent sections.

Definition 6.1. Take a sequence {fn} of real-valued functions fn :X→ R

on a set X. The sequence {fn} converges pointwise to a real-valued function
f :X→ R on X if the real-valued sequence {fn(x)} converges in R to the
real number f(x) for every x ∈ X. That is, if |fn(x)− f(x)| → 0 as n→∞
for every x ∈ X. In other words, {fn} converges pointwise to f if for every
ε > 0 and each x ∈ X there is a positive integer nε,x such that

n ≥ nε,x implies |fn(x)− f(x)| < ε.

In this case we write fn→ f pointwise. If the integer nε,x does not depend
on x, then {fn} converges uniformly to f , and we write fn→ f uniformly.
Thus a sequence of functions {fn} converges uniformly to a real-valued
function f :X→ R if supx∈X |fn(x)− f(x)| → 0 as n→∞ or, equivalently,
if for every ε > 0 there is a positive integer nε such that

n ≥ nε implies sup
x∈X
|fn(x)− f(x)| < ε.

© Springer International Publishing Switzerland 2015
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Observe that pointwise convergence is convergence in the normed space
(R, | |). Since (R, | |) is a Banach space (cf. Section 5.1), a real-valued
sequence {fn(x)} converges to f(x) in R for every x ∈ X if and only if
{fn(x)} is a Cauchy sequence in (R, | |) for every x ∈ X. This means that
for every ε > 0 and each x ∈ X there is a positive integer nε,x such that

m,n ≥ nε,x implies |fm(x)− fn(x)| < ε,

which is denoted as limm,n |fm(x)− fn(x)| = 0 for every x ∈ X. If such an
nε,x does not depend on x, then {fn} is a uniform Cauchy sequence. This
means that for every ε > 0 there is a positive integer nε such that

m,n ≥ nε implies sup
x∈X
|fm(x)− fn(x)| < ε,

which is denoted as limm,n supx∈X |fm(x)− fn(x)| = 0. It is clear that if
fn→ f uniformly, then {fn} is a uniform Cauchy sequence. Actually, by
the triangle inequality, for every m and n,

sup
x∈X
|fm(x)− fn(x)| ≤ sup

x∈X
|fm(x)− f(x)|+ sup

x∈X
|f(x)− fn(x)|.

Conversely, if {fn} is a uniform Cauchy sequence, then {fn(x)} is a real-
valued Cauchy sequence, and so it converges in R to a real number, say
f(x), for every x ∈ X. This defines a function f :X→ R such that fn→ f .
Since {fn} is a uniform Cauchy sequence, it follows that fn→ f uniformly.
In fact, for arbitrary x ∈ X and ε > 0 there is a positive integer nε for which

m ≥ nε implies |fm(x)− f(x)| = lim
n
|fm(x)− fn(x)| < ε.

Examples throughout the chapter will compare the several convergence
notions. Problems 6.6 and 6.7 summarize all possible implications among
some convergence notions that are based on measure-theoretical concepts.

Example 6A. fn→ f uniformly =⇒
�⇐= fn→ f pointwise.

It is clear that uniform convergence implies pointwise convergence (to the
same and unique limit). It is readily verified that the converse fails. For
instance, for each integer n≥1 let fn : [0, 1]→ R be given by fn(x) = xn if
x ∈ [0, 1) and fn(x) = 0 if x = 1. The sequence {fn} converges pointwise to
the null function 0 (i.e., 0: [0, 1]→ R such that 0(x) = 0 for all x ∈ [0, 1])
but it does not converge to 0 uniformly (since supx∈[0,1] |fn(x)| = 1 for all
n≥1). Hence it does not converge uniformly to any function.

The previous convergence notions are all measure free. The next notions
require a measure space. So, from now on, take a measure space (X,X , μ),
and by a measurable function we mean an X -measurable function on X.
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Definition 6.2. A sequence {fn} of real-valued functions fn :X→ R con-
verges almost everywhere with respect to the measure μ:X → R (or μ-almost
everywhere) to a real-valued function f :X→ R if the real-valued sequence
{fn(x)} converges in R to the real number f(x) for every x except in a set
of measure zero. In this case we write fn→ f μ-a.e. (or fn→ f a.e. if the
measure μ is clear or is not relevant in the context). That is, {fn} converges
almost everywhere to f if there exists a set N ∈ X with μ(N) = 0 such that
for every ε > 0 and each x ∈ X\N there is a positive integer nε,x such that

n ≥ nε,x implies |fn(x)− f(x)| < ε.

A sequence {fn} of real-valued functions on a setX converges in Lp(X,X , μ)
for some p≥1 if it converges in the Banach space (Lp, ‖ ‖p). In this case we
write fn→ f in Lp. In other words, {fn} converges in Lp if ‖fn − f‖p → 0
as n→∞ for some real-valued function f ∈ Lp. That is, for each ε > 0 there
is a positive integer nε such that

n ≥ nε implies ‖fn − f‖p < ε.

Example 6B. {fn} converges pointwise =⇒
�⇐= {fn} converges a.e.,

where, for any measure space (X,X , μ), the implication

fn→ f pointwise =⇒ fn→ f a.e.

holds trivially, since μ(∅) = 0 for every measure μ on any σ-algebra X . We
will now see how the converse fails. Recall that the limit of a sequence that
converges pointwise or uniformly is unique, and so is the limit of a sequence
that converges in Lp, where in this case uniqueness is understood almost
everywhere (the class of equivalence [f ] containing f is unique). But unlike
pointwise, uniform, and convergence in Lp, the notion of almost everywhere
convergence does not imply uniqueness of the almost everywhere limit. For
instance, take the function f :R → R defined by f(x) = 0 for all x ∈ R\{0}
and f(0) = 1. Let {fn} be a constant sequence with fn = f for all n≥1.
Consider the Lebesgue measure space (R,�, λ). The sequence {fn} trivially
converges pointwise to f (which is its unique pointwise limit of {fn}), and
{fn} converges a.e. to any function f ′ :R → R such that f ′ = f a.e. (i.e.,
f ′(x) = f(x) for every x ∈ R\N for some N ∈ � such that λ(N) = 0). In
particular, it converges almost everywhere to the null function 0:R → R

(since λ({0}) = 0 and f(x) = 0 for all x ∈ R\{0}), and also to f itself (since
λ(∅) = 0). Thus, fn→ 0 λ-a.e. and fn→ f �= 0 pointwise (and so λ-a.e.).
Now note that we might argue that such an example would be meaningless
had we decided to work with equivalence classes of functions,

[f ] =
{

f ′ :R → R : f ′ = f λ-a.e.
}

,



92 6. Convergence of Functions

rather than with single functions. In fact, this would yield uniqueness for
the almost everywhere limit in this particular example, but would not be
enough to avoid the failure of the converse in the preceding implication; the
converse in the preceding implication fails anyway. Indeed, if gn = (−1)nf ,
then gn → 0 λ-a.e. and {gn} does not converge pointwise (to any function).

In general, the notions of uniform convergence and convergence in Lp

are not related (see Problem 6.1):

{fn} converges uniformly �=⇒
�⇐= {fn} converges in Lp.

However, if {fn} converges both uniformly and in Lp, then the limits coin-
cide almost everywhere. Moreover, in a finite measure space uniform con-
vergence implies convergence in Lp to the same (a.e.) limit.

Proposition 6.3. Take any p≥1. Consider a sequence {fn} of functions
in Lp, and let f, f ′, f ′′ be real-valued measurable functions .

(a) If fn→f ′ uniformly and fn→f ′′ in Lp, then f ′= f ′′ almost everywhere.

(b) If μ(X) <∞ and fn→ f uniformly, then f ∈ Lp and fn→ f in Lp.

Proof. Take real-valued X -measurable functions fn, f , f
′, and f ′′ on X.

(a) |f ′ − f ′′| ≤ |f ′ − fn|+ |fn − f ′′| ≤ supx∈X |f ′(x)− fn(x)|+|fn − f ′′|
for each n. Since fn→ f ′ uniformly, we get |f ′ − f ′′| ≤ lim supn |fn−f ′′|.
Since fn→ f ′′ in Lp, it follows (cf. Problem 3.3(b) and Theorem 4.7) that

0 ≤
∫

|f ′ − f ′′|p dμ ≤ lim sup
n

∫

|fn − f ′′|p dμ = lim
n
‖fn − f ′′‖pp = 0,

and so f ′ = f ′′ a.e. (cf. Propositions 1.5, 1.6, and 3.7(a)).

(b) If each fn lies in Lp for an arbitrary p≥1, then

‖fm − fn‖pp =

∫

|fm − fn|p dμ ≤ sup
x∈X
|fm(x)− fn(x)|p μ(X)

for every pair of positive integers m and n. Since {fn} is uniformly Cauchy
(because fn→ f uniformly) and μ(X) <∞, it follows that {fn} is a Cauchy
sequence in the Banach space (Lp, ‖ ‖p), and so it converges in Lp; and the
Lp limit coincides a.e. with the uniform limit f (i.e., it is in [f ] ) by (a). �

According to Problem 6.2(a), observe that even if μ(X) <∞,

{fn} converges pointwise �=⇒ {fn} converges in Lp.
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But under the assumption of dominated convergence, just convergence al-
most everywhere is enough to ensure convergence in Lp.

Proposition 6.4. Take any p≥1. Consider a sequence {fn} of functions
in Lp, let f be a real-valued measurable function, and take g in Lp.

|fn| ≤ g for all n and fn→ f a.e. =⇒ f ∈ Lp and fn→ f in Lp.

Proof. The dominance assumption, namely, |fn| ≤ g for all n, is equivalent
to almost everywhere dominance; that is, |fn| ≤ g for all n a.e., since the
functions fn and g are in Lp, where inequalities (and equalities) are under-
stood in the sense of equivalence classes (and so they are always interpreted
almost everywhere). Since |fn|p ≤ gp for all n a.e. and fn→ f a.e., it follows
that |f |p ≤ gp almost everywhere. Thus, if g ∈ Lp, then fp is integrable (cf.
Problem 4.4(b)); that is, f ∈ Lp. Moreover,

|fn − f |p ≤
(

|fn|+ |f |
)p ≤ (2g)p ∈ L1 and |fn − f |p → 0 μ-a.e.,

so fn→ f in Lp by the Dominated Convergence Theorem (Theorem 4.7):

lim
n
‖fn − f‖pp = lim

n

∫

|fn − f |p dμ = 0. �

Remark: All constant functions lie in every Lp if the measure is finite. This
yields the following uniformly bounded version of the previous proposition.

supn |fn| <∞, μ(X) <∞ and fn→ f μ-a.e. =⇒ fn→ f ∈ Lp in Lp.

Convergence in Lp is of crucial importance since it is convergence in the
norm topology of the Banach space (Lp, ‖ ‖p). Generally, it does not imply
uniform convergence, nor is it implied by uniform convergence (cf. Problem
6.1), although in a finite measure space it is weaker than uniform conver-
gence (Proposition 6.3). Even in a finite measure space it is not implied by
almost everywhere convergence, and not even by pointwise convergence (cf.
Problem 6.2(a)). But, under the dominance hypothesis it becomes weaker
than almost everywhere convergence (Proposition 6.4). However,

{fn} converges in Lp �=⇒ {fn} converges a.e.,

even under finite measure and dominance condition (cf. Problem 6.2(b)).
On the other hand, convergence in measure (defined in the next section) is
weaker than Lp-convergence.
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6.2 Convergence in Measure

Throughout this section, let (X,X , μ) be a measure space and let {fn} be
a sequence of real-valued X -measurable functions (which means that each
function fn :X→ R lies inM(X,X )).

Definition 6.5. A sequence {fn} of real-valued functions inM(X,X ) con-
verges in measure to a real-valued function f inM(X,X ) if

lim
n

μ
({

x ∈ X : |fn(x)− f(x)| ≥ α
})

= 0

for every α > 0. In this case we write fn→ f in measure. The sequence {fn}
is Cauchy in measure if for every α > 0,

lim
m,n

μ
({

x ∈ X : |fm(x)− fn(x)| ≥ α
})

= 0.

Since the functions fn and f lie inM(X,X ), the set

Fn(α) =
{

x ∈ X : |fn(x)− f(x)| ≥ α
}

lies in X for every integer n≥1 and each real α > 0. Thus convergence
in measure means limn μ(Fn(α)) = 0, which implies that the sequence
{μ(Fn(α))} is eventually real-valued. So fn→ f in measure if and only if
for every ε > 0 and every α > 0 there is a positive integer nε,α such that

n ≥ nε,α implies μ
({

x ∈ X : |fn(x)− f(x)| ≥ α
})

< ε.

Similarly, the sequence {fn} is Cauchy in measure if and only if for every
ε > 0 and every α > 0 there exists a positive integer nε,α such that

m,n ≥ nε,α implies μ
({

x ∈ X : |fm(x)− fn(x)| ≥ α
})

< ε.

Example 6C. fn→ f in Lp =⇒
�⇐= fn→ f in measure.

Convergence in Lp implies convergence in measure to the same limit. In
fact, for every α > 0 and every integer n≥1,

αpμ
(

Fn(α)
)

=

∫

Fn(α)

αp dμ ≤
∫

Fn(α)

|fn−f |p dμ ≤
∫

|fn−f |p dμ = ‖fn−f‖pp.

The converse, however, fails even under the assumption that μ(X) <∞.
Actually, the sequence {fn} of Problem 6.2(a) does not converge in Lp but
it is readily verified that it converges in measure to the null function.
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Example 6D. fn→ f uniformly =⇒
�⇐= fn→ f in measure.

Indeed, if fn→ f uniformly, then for any ε > 0 there is an nε such that

n ≥ nε =⇒ sup
x∈X
|fn(x)− f(x)| < ε =⇒ Fn(ε) = ∅ =⇒ μ

(

Fn(ε)
)

= 0.

This means that the sequence {μ(Fn(α))} not only converges to zero but
is eventually null for every α > 0. Again, the converse fails. For example,
the sequence {fn} of Problem 6.1(b) converges in Lp, and so it converges in
measure, but it does not converge uniformly. Observe that the sequence {fn}
of Problem 6.1(a) also yields another example of a sequence that converges
in measure (since it converges uniformly) but not in Lp.

Proposition 6.6. Let {fn}be a sequence of real-valued measurable functions.

(a) If {fn} converges in measure, then it is Cauchy in measure.

(b) If {fn}converges in measure, then the limit is unique almost everywhere.

(c) If {fn} is Cauchy in measure and has a subsequence that converges in
measure, then it converges in measure itself and its limit coincides with
the limit of that subsequence.

Proof. Take real-valued measurable functions fn, f , and f ′. Set Fn(α) =
{x ∈ X : |fn(x)− f(x)| ≥ α} and Fn

′(α) = {x ∈ X : |fn(x)− f ′(x)| ≥ α}.
(a) Since |fm(x)− fn(x)| ≤ |fm(x)− f(x)|+ |fn(x)− f(x)|, by the triangle
inequality, we get {x ∈ X : |fm(x)− fn(x)| ≥ α} ⊆ Fm(α2 ) ∪ Fn(

α
2 ), and so

μ
({

x ∈ X : |fm(x)− fn(x)| ≥ α
})

≤ μ
(

Fm(α2 )
)

+ μ
(

Fn(
α
2 )

)

.

Suppose fn→ f in measure. Then, by definition, limn μ(Fn(
α
2 )) = 0, and

hence limm,n μ({x ∈ X : |fm(x)− fn(x)| ≥ α}) = 0, for every α > 0.

(b) Since |f(x)− f ′(x)| ≤ |fn(x)− f(x)|+|fn(x)− f ′(x)| (triangle inequal-
ity again), we get {x ∈ X : |f(x)−f ′(x)| ≥ α} ⊆ Fn(

α
2 ) ∪ Fn

′(α2 ), and so

μ
({

x ∈ X : |f(x)− f ′(x)| ≥ α
})

≤ μ
(

Fn(
α
2 )

)

+ μ
(

Fn
′(α2 )

)

.

Suppose {fn} converges in measure to both f and f ′, then limn μ(Fn(
α
2 ))

= limn μ(Fn
′(α2 )) = 0. This implies that μ({x ∈ X : |f(x)−

f ′(x)| ≥ α}) = 0 for every α > 0. Thus, f ′ = f a.e. (which is a consequence
of the inclusion {x ∈ X : |f(x)− f ′(x)| > 0} ⊆

⋃∞
k=1{x ∈ X : |f(x)− f ′(x)|

≥ 1
k}).

(c) Take a subsequence {fnk} of a sequence {fn}. Let α > 0 and ε > 0 be
arbitrary positive numbers. Suppose {fn} is Cauchy in measure. Thus there
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is an integer nε,α for which μ{x ∈ X : |fm(x)− fn(x)| ≥ α
2 } <

ε
2 whenever

m,n ≥ nε,α. If {fnk} converges in measure to f , then there is an integer kε,α
such that μ{x ∈ X : |fnk (x)− f(x)| ≥ α

2 } <
ε
2 for every k ≥ kε,α. Hence, if

j is an integer such that j ≥ kε,α and nj ≥ nε,α, then

μ
{

x ∈ X : |fn(x)− fnj (x)| ≥
α
2

}

< ε
2 ,

μ
{

x ∈ X : |fnj (x)− f(x)| ≥ α
2

}

< ε
2 ,

for n ≥ nε,α. Since |fn(x)−f(x)| ≤ |fn(x)−fnj (x)|+ |fnj (x)−f(x)|,
{

x ∈ X : |fn(x)− f(x)| ≥ α
}

⊆
{

x ∈ X : |fn(x)− fnj (x)| ≥
α
2

}

∪
{

x ∈ X : |fnj (x)− f(x)| ≥ α
2

}

,

so that

μ
({

x ∈X : |fn(x)−f(x)| ≥ α
})

≤ μ
({

x ∈X : |fn(x)−fnj (x)| ≥
α
2

})

+μ
({

x ∈X : |fnj (x)−f(x)| ≥
α
2

})

,

and hence μ({x ∈ X : |fn(x)− f(x)| ≥ α}) < ε for all n ≥ nε,α. Then
limn μ(Fn(α)) = 0, and so {fn} converges in measure to f . �

Convergences in measure and almost everywhere are not related.

{fn} converges in measure �=⇒ {fn} converges a.e.,

even in the case of μ(X) <∞. Indeed, the sequence {fn} of Problem 6.2(b)
acts on a finite measure space, converges in measure (since it converges
in Lp) to the null function, but {fn(x)} fails to converge for every x, and
so {fn} does not converge a.e. (thus it does not converge pointwise). Even
though uniform convergence implies convergence in measure (Example 6D),

{fn} converges pointwise �=⇒ {fn} converges in measure

(and, consequently, convergence a.e. does not imply convergence in mea-
sure). In fact, the sequence {fn} of Problem 6.3(a,b) converges pointwise
(i.e., everywhere in R, and so a.e.) to the null function, but it is not Cauchy
in measure and so it does not converge in measure by Proposition 6.6(a). Ob-
serve that if a sequence does not converge in measure, then it does not con-
verge both in Lp and uniformly (see Examples 6C and 6D). But convergence
almost everywhere implies convergence in measure whenever μ(X) <∞, as
it will be verified in the forthcoming Propositions 6.12 and 6.13.

Proposition 6.7. If a sequence of real-valued measurable functions is
Cauchy in measure, then it has a subsequence that converges both in mea-
sure and almost everywhere.
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Proof. Let (X,X , μ) be a measure space, and take a sequence {fn} of
real-valued functions in M(X,X ). Suppose {fn} is Cauchy in measure.
Take an arbitrary integer k≥1. Thus there is another integer nk ≥ 1 such
that

μ
({

x ∈ X : |fm(x)− fn(x)| ≥
(

1
2

)

k
})

<
(

1
2

)

k whenever m,n ≥ nk.

This implies that there is a subsequence {fnk} of {fn} for which

μ
({

x ∈ X : |fnk+1
(x)− fnk (x)| ≥

(

1
2

)

k
})

<
(

1
2

)

k .

Now, for each integer k≥1, consider the set Ek ∈ X given by

Ek =
∞
⋃

j=k

{

x ∈ X : |fnj+1
(x)− fnj (x)| ≥

(

1
2

)

j
}

,

so that μ(Ek) <
∑∞

j=k

(

1
2

)

j =
(

1
2

)

k−1. Set N =
⋂∞

k=1 Ek ∈ X , which is such
that μ(N) = 0 (because N ⊆ Ek and so μ(N) ≤ μ(Ek), for all k≥1). Since

fni(x)− fnj (x) =

i−j
∑


=1

fni−
+1
(x)− fni−


(x) =

i−1
∑


=j

fn
+1
(x)− fn
(x)

for every 1 ≤ j < i, it follows that if x ∈ X\Ek and k ≤ j < i, then

|fni(x)− fnj (x)| ≤
i−1
∑


=j

|fn
+1
(x)− fn
(x)| <

i−1
∑


=j

(

1
2

)


 <
(

1
2

)

j−1 .

Thus, if x lies in X\N = X\
⋂∞

k=1 Ek =
⋃∞

k=1(X\Ek) or, equivalently, if x
lies X\Ek for some k≥1, then the above inequality holds for every pair of
distinct integers i, j ≥ k. This leads to the following two results: The one
in (i) ensures that {fnk} converges almost everywhere, and the one in (ii)
ensures that {fnk} converges in measure (to the same limit f).

(i) By the above inequality {fnk (x)} is a Cauchy sequence in R, and so it
converges in R for every x in X\N . Since μ(N) = 0, we get

fnk → f μ-a.e., where f(x) =

{

limk fnk (x), x ∈ X\N,

0, x ∈ N,

defining the real-valued measurable function f on X.

(ii) Take any k≥1. The above convergence ensures that fnj (x)→ f(x) for

every x in X\Ek, and this implies that for every j ≥ k

|fnj (x)− f(x)| = lim
i
|fni(x)− fnj (x)| ≤

(

1
2

)

j−1 ≤
(

1
2

)

k−1 .

Moreover, since μ(Ek) <
(

1
2

)

k−1 for each k≥1, it follows that for every
ε > 0 and α > 0 there exists an integer k′ = kε,α ≥ 1 such that
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μ(Ek′) <
(

1
2

)

k′−1 < min
{

ε, α
}

.

However (since |fnj (x)− f(x)| ≤
(

1
2

)

k′−1 for every j ≥ k′), if j ≥ k′, then

{

x ∈ X : |fnj (x)− f(x)| ≥ α
}

⊆
{

x ∈ X : |fnj (x)− f(x)| ≥
(

1
2

)

k′
}

⊆ Ek′ .

Therefore,
μ
({

x ∈ X : |fnj (x)− f(x)| ≥ α
})

≤ μ(Ek′) < ε

for all j ≥ k′ = kε,α, which means that fnj → f in measure. �

The following theorem is an important consequence of Proposition 6.7,
which is referred to as the Riesz–Weyl Theorem. It says that a sequence
converges in measure if and only if it is Cauchy in measure.

Theorem 6.8. If a sequence of real-valued measurable functions is Cauchy
in measure, then it converges in measure.

Proof. Propositions 6.6(c) and 6.7. �

We have already seen that convergence in Lp implies convergence in
measure, but the converse fails even in a finite measure space (see Example
6C). However, dominated convergence in measure implies convergence in
Lp, as a consequence of another application of Proposition 6.7.

Proposition 6.9. Take any p≥1. If {fn} is a sequence of functions in Lp,
if f is a real-valued measurable function, and if g lies in Lp, then

|fn| ≤ g for all n and fn→ f in measure =⇒ f ∈ Lp and fn→ f in Lp.

Proof. Consider the dominance assumption, and note that in this context
plain dominance (i.e., |fn| ≤ g for all n) is equivalent to almost everywhere
dominance (i.e., |fn| ≤ g for all n a.e.) — cf. proof of Proposition 6.4. We
carry on a proof by contradiction. If {fn} does not converge in Lp to f ,
then there is a subsequence {hk} of {fn} and a real ε > 0 such that

‖hk − f‖p ≥ ε for every k≥1. (∗)

Suppose {fn} converges in measure to f . Thus every subsequence of {fn}
converges in measure to f . In particular, {hk} converges in measure to f .
Propositions 6.6(a) and 6.7 ensure that {hk} has a subsequence {hkj

} that
converges both in measure and almost everywhere. Since {hkj

} converges

in measure, Proposition 6.6 ensures that it must converge to f . Since {hkj
}

also converges almost everywhere to f , and since |hkj
| ≤ g ∈ Lp for all j, it

follows by Proposition 6.4 that f lies in Lp and {hkj
} converges in Lp to f ,

which contradicts the assertion in (∗). Then {fn} converges in Lp to f . �
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6.3 Almost Uniform Convergence

Consider a measure space (X,X , μ). Let {fn} be a sequence of real-valued
functions on X, and let f be a real-valued function on X. We say that {fn}
converges uniformly almost everywhere f {fn} converges uniformly to f on
X\N (i.e., limn supx∈X\N |fn(x)− f(x)| = 0) for some set N in X with
μ(N) = 0. Equivalently, if there exists a set N in X with μ(N) = 0 such
that for every ε > 0 there is a positive integer nε for which

n ≥ nε implies sup
x∈X\N

|fn(x)− f(x)| < ε.

In other words, if the sequence converges uniformly on the complement of
a set of measure zero. However, we will be dealing in this section with a
weaker notion of convergence, which requires uniform convergence on the
complement of sets that have arbitrarily small measure. Actually, we have
already met this notion in the proof of Proposition 6.7, part (ii).

Definition 6.10. A sequence {fn} of real-valued functions fn on X con-
verges almost uniformly (with respect to μ) to a real-valued function f on
X if for each δ > 0 there is a set Eδ in X with μ(Eδ) < δ such that {fn} con-
verges uniformly to f on X\Eδ (i.e., limn supx∈X\Eδ

|fn(x)− f(x)| = 0).
Equivalently, if for every δ > 0 and every ε > 0 there is a set Eδ in X with
μ(Eδ) < δ and a positive integer nε,δ such that

n ≥ nε,δ implies sup
x∈X\Eδ

|fn(x)− f(x)| < ε.

In this case write fn→ f a.u. (or fn→ f μ-a.u.). A sequence {fn} is almost
uniformly Cauchy if for each δ > 0 there is a set Eδ in X with μ(Eδ) < δ
such that {fn} is a uniform Cauchy sequence on X\Eδ (which means that
limm,n supx∈X\Eδ

|fm(x)− fn(x)| = 0). Equivalently, if for every δ > 0 and

every ε > 0 there is an Eδ ∈ X with μ(Eδ) < δ and an nε,δ ≥ 1 such that

m,n ≥ nε,δ implies sup
x∈X\Eδ

|fm(x)− fn(x)| < ε.

Example 6E. Consider the string of implications,

fn→ f uniformly =⇒
�⇐= fn→ f uniformly a.e. =⇒

�⇐= fn→ f a.u.,

where uniform convergence trivially implies uniform almost everywhere con-
vergence (set N = ∅), which in turn trivially implies almost uniform conver-
gence (set Eδ = N). The converses, however, fail even if μ(X)<∞. Actually,
take the finite Lebesgue measure space

(

[0, 1], ℘([0, 1]) ∩ �, λ
)

and let {fn}
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be a sequence of real-valued functions on [0, 1] such that fn(x) = 0 for all
x �= 0 and fn(0) = (−1)n for every n≥1. It is clear that {fn} does not con-
verge pointwise, and so it does not converge uniformly, but it converges
uniformly almost everywhere. It is also clear that the sequence {fn} of Ex-
ample 6A converges almost uniformly to the null function 0, but it does not
converge to 0 uniformly almost everywhere since sup[0,1]\N |fn(x)| = 1 for
any Borel set N ⊆ [0, 1] with λ(N) = 0, for all n.

Note that if fn→ f almost uniformly, then {fn} is an almost uniform
Cauchy sequence. In fact, for each m and n,

sup
x∈X\Eδ

|fm(x)− fn(x)| ≤ sup
x∈X\Eδ

|fm(x)− f(x)| + sup
x∈X\Eδ

|f(x)− fn(x)|.

The next result ensures the converse, and therefore a sequence converges
almost uniformly if and only if it is an almost uniform Cauchy sequence.

Proposition 6.11. Let {fn} be a sequence of real-valued functions .

(a) If {fn} is almost uniformly Cauchy, then it converges almost uniformly,
and it also converges almost everywhere to the same real-valued limit f.

(b) If each function fn is measurable, then so is the limit function.

Proof.

(a) Take a measure space (X,X , μ). Suppose a sequence {fn} of real-valued
functions on X is almost uniform Cauchy (with respect to μ). Then for each
integer k≥1 there is a set Ek in X with μ(Ek) <

1
k such that

lim
m,n

sup
x∈X\Ek

|fm(x)− fn(x)| = 0.

Set N =
⋂∞

k=1 Ek in X so that μ(N) ≤ μ(Ek) <
1
k for every k≥1, and so

μ(N) = 0. If x ∈ X\N = X\
⋂∞

k=1 Ek =
⋃∞

k=1(X\Ek), then the real-valued
sequence {fn(x)} is Cauchy in R, and hence it converges in R. Thus,

fn→ f a.e., where f(x) =

{

limn fn(x), x ∈ X\N,

0, x ∈ N.

This convergence defines a real-valued function f :X→ R on X,

f = lim
n

(

fnχX\N
)

.

Since {fn} is almost uniformly Cauchy, and since fn(x)→ f(x) for every x
on each X\Ek ⊆ X\N , it follows that fn(x)→ f(x) uniformly on X\Ek.
In fact, for k≥1 and ε > 0 arbitrary there exists nε,k ≥ 1 for which
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m,n ≥ nε,k implies sup
x∈X\Ek

|fm(x)− fn(x)| < ε,

and so, for every x ∈ X\Ek,

m ≥ nε,k implies |fm(x)− f(x)| = lim
n
|fm(x)− fn(x)| < ε,

which implies supx∈X\Ek
|fm(x)− f(x)| < ε. This ensures that

fn→ f a.u.,

since, for each δ > 0, take k large enough so that 1
k ≤ δ and set Eδ = Ek in

X so that μ(Eδ) < δ and {fn} converges uniformly on X\Eδ.

(b) Since f = limn fn μ-a.e., it follows by Propositions 1.8 and 1.9 that f
is X -measurable whenever each fn is X -measurable. �

So almost uniform convergence implies almost everywhere convergence,

fn→ f a.u. =⇒
�⇐= fn→ f a.e.,

but the converse fails in general. Indeed, even pointwise convergence does
not imply almost uniform convergence (cf. Problem 6.3). However, the con-
verse holds in a finite measure space, as it will be seen in Proposition 6.13.

Proposition 6.12. Consider a sequence {fn} of measurable functions. If
fn→ f almost uniformly, then fn→ f in measure.

Proof. Let (X,X , μ) be a measure space. For each α > 0, consider the set
Fn(α) = {x ∈ X : |fn(x)− f(x)| ≥ α} in X . If fn→ f a.u., then for each
δ > 0 there is a set Eδ ∈X with μ(Eδ)<δ and an integer nα,δ ≥1 such that

n ≥ nα,δ implies sup
x∈X\Eδ

|fn(x)− f(x)| < α.

Thus Fn(α) ⊆ Eδ, and hence μ(Fn(α)) < μ(Eδ) < δ for every n≥ nα,δ.
Therefore limn μ(Fn(α)) = 0, which means that fn→ f in measure. �

So almost uniform convergence also implies convergence in measure,

fn→ f a.u. =⇒
�⇐= fn→ f in measure,

but the converse fails even if μ(X) <∞. In fact, the sequence of Problem
6.2(b), which acts on a finite measure space, converges in measure (since
it converges in Lp), but does not converge a.u. (since it does not converge
a.e.). Furthermore, convergences almost uniform and in Lp are not related,

{fn} converges a.u. �=⇒
�⇐= {fn} converges in Lp,
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even if μ(X) <∞. Take the finite measure space of Problem 6.2(a). If fn =
(n+ 1)χ [1/(n+1), 2/(n+1)] for each n≥1, then {fn} converges almost uni-
formly to the null function but it does not converge in Lp (Problem 6.2(a)).
Conversely, we saw above that convergence in Lp (in a finite measure space)
does not imply almost uniform convergence. However, almost uniform dom-
inated convergence implies convergence in Lp by Propositions 6.9 and 6.12.

By Proposition 6.11, almost uniform convergence implies almost every-
where convergence. We close this chapter by showing that the converse holds
in a finite measure space. This is referred to as the Egoroff Theorem (Propo-
sition 6.13). The finite measure assumption in the Egoroff Theorem can be
replaced with dominated convergence (Corollary 6.14).

Proposition 6.13. Consider a sequence {fn} of measurable functions. If
μ(X) <∞ and fn→ f almost everywhere, then fn→ f almost uniformly .

Proof. Let (X,X , μ) be a measure space. Suppose {fn} converges almost
everywhere to f . This means that fn(x)→ f(x) for every x in X\N ∈ X for
some N ∈ X with μ(N) = 0. That is, fn→ f pointwise on the complement
X ′ = X\N of a set of measure zero, which implies that f ′

n → f ′ pointwise
on X with f ′

n = fnχX′ for each n and f ′ = fχX′ . That is, f ′
n(x)→ f ′(x) for

every x ∈ X. Take an arbitrary positive integer m and set, for each n≥1,

F ′
n(m) =

{

x ∈ X ′ : |fn(x)− f(x)| ≥ 1
m

}

=
{

x ∈ X : |f ′
n(x)− f ′(x)| ≥ 1

m

}

.

Recall that f ′ and f ′
n are measurable (since f and fn are). Thus |f ′

n − f ′|
is a measurable function. Then each F ′

n(m) is a measurable set, and so

E′
n(m) =

∞
⋃

k=n

F ′
k(m)

is a measurable set for each n≥1. Hence {E′
n(m)} is a decreasing sequence

of sets in X (i.e., E′
n+1(m) ⊆ E′

n(m) ∈ X ). Take an arbitrary x in X. Since
f ′
n(x)→ f ′(x), it follows that there exists an integer nm,x ≥ 1 such that

k ≥ nm,x =⇒ |f ′
k(x)− f ′(x)| < 1

m =⇒ x �∈ F ′
k(m) =⇒ x �∈ E′

nm,x(m),

and so x �∈
⋂∞

n=1 E
′
n(m). Thus

∞
⋂

n=1

E′
n(m) = ∅, which implies μ

(
∞
⋂

n=1

E′
n(m)

)

= 0.

From now on suppose μ is a finite measure. Proposition 2.2(d) ensures that

μ(X) <∞ =⇒ μ
(

E′
1(m)

)

<∞ =⇒ lim
n

μ
(

E′
n(m)

)

= 0.
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Then for every ε > 0 there is an integer nε,m ≥ 1 such that μ(E′
n(m)) < ε

2m

whenever n ≥ nε,m. Since this happens for an arbitrary integer m≥1, set

E′
ε =

∞
⋃

m=1

E′
nε,m(m)

in X so that

μ(E′
ε) = μ

(
∞
⋃

m=1

E′
nε,m(m)

)

≤
∞
∑

m=1

μ
(

E′
nε,m(m)

)

<
∞
∑

m=1

ε
2m = ε.

Suppose x ∈ X\E′
ε, so that x �∈ E′

nε,m(m). Hence

n ≥ nε,m =⇒ x �∈ F ′
n(m) =⇒ |f ′

n(x)− f ′(x)| < 1
m .

Thus {f ′
n} converges uniformly to f ′ on X\E′

ε. Take Eε in X given by

Eε = E′
ε ∪N.

Since X\Eε = X\(E′
ε ∪N) = (X\E′

ε) ∩ (X\N) = (X\E′
ε) ∩X ′, we get

sup
x∈X\Eε

|fn(x)− f(x)| = sup
x∈X\E′

ε

|f ′
n(x)− f ′(x)|.

Then {fn} converges uniformly to f on X\Eε (because {f ′
n} converges uni-

formly to f ′ onX\E′
ε). Since μ(Eε) ≤ μ(E′

ε) + μ(N) = μ(E′
ε) < ε, it follows

that {fn} converges almost uniformly. �

Corollary 6.14. Take a sequence {fn} of measurable functions. Suppose
|fn| ≤ g ∈ Lpand fn→f almost everywhere.Then fn→f almost uniformly .

Proof. Consider the proof of Proposition 6.13. The assumption μ(X) <∞
was used there only to ensure that μ(E′

1(m)) <∞. We now show that
μ(E′

1(m)) <∞ still holds if we assume dominated convergence instead, and
so we are reduced to the previous proof. If |fn| ≤ g ∈ Lp and fn→ f a.e.,
then |f | ≤ g (so that fn, f ∈ Lp) and |fn − f | ≤ |fn|+ |f | ≤ 2g (see Propo-
sition 6.4). By setting G′(m) = {x ∈ X ′ : 2g(x) ≥ 1

m } in X , we get

F ′
n(m) =

{

x ∈ X ′ : 1
m ≤ |fn(x)− f(x)|

}

⊆
{

x ∈ X ′ : 1
m ≤ 2g(x)

}

= G′(m)

for all n, and hence

E′
1(m) =

∞
⋃

n=1

F ′
n(m) ⊆ G′(m).

Since
∫

gp dμ <∞, it follows that μ({x ∈ X : gp(x) ≥ ε}) <∞ for every
ε > 0 (Problem 3.9), and so μ(G′(m)) <∞. Thus μ(E′

1(m)) <∞. �
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6.4 Problems

Problem 6.1. Let (R,�, λ) be the Lebesgue measure space.

(a) If fn = n−1/p χ
[0, n] for each n≥1, then {fn} converges uniformly to

the null function but does not converge in Lp for any p≥1.

Hint: If n = 2m, then show that ‖fn − fm‖pp ≥ n−m
n = 1

2 .

(b) If fn = n1/p χ
[n, n+(1/n2)] for each n≥1, then {fn} converges in Lp to

the null function 0 for every p≥1 but does not converge uniformly.

Hint: Show that {fn} converges pointwise to 0 but supx∈R
|fn(x)| = n1/p.

Problem 6.2. Take the finite measure space
(

[0, 1], ℘([0, 1]) ∩ �, λ
)

, where
λ is the restriction of Lebesgue measure on the σ-algebra ℘([0, 1]) ∩ � (cf.
Problem 2.11). In other words, let λ be the Lebesgue measure acting on the
Borel subsets of [0, 1], which is a probability measure.

(a) If fn = (n+ 1)χ[1/(n+1), 2/(n+1)] for n≥1, then {fn} converges point-
wise to the null function 0 but does not converge in Lp for any p≥1.

Hint: If n ≥ 2m+ 1, then ‖fn − fm‖pp ≥ (2p−1 + 1)(m+ 1)p−1.

Observe that the sequence {fn} does not converge uniformly (since it
converges pointwise to 0 but supx∈[0,1] |fn(x)| = (n+ 1)), which is a
consequence of Proposition 6.3(b) since {fn} does not converge in Lp.

(b) Consider the intervals Ek,j =
[

j−1
k , j

k

]

for each pair of integers j and k
such that 1≤ j ≤ k. For each k≥1 take the finite sequence {Ek,j}1≤j≤k.
Stack these finite sequences to get the infinite sequence of intervals

{En}n≥1 =
{

{Ek,j}1≤j≤k

}

k≥1

=
{

{E1,1}, {E2,1, E2,2}, {E3,1, E3,2, E3,3}, {E4,1, E4,2, E4,3, E4,4}, ...
}

=
{

[0, 1], [0, 1
2 ], [

1
2 , 1], [0,

1
3 ], [

1
3 ,

2
3 ], [

2
3 , 1], [0,

1
4 ], [

1
4 ,

2
4 ], [

2
4 ,

3
4 ], [

3
4 , 1], ...

}

.

Show that if fn = χ
En for each n≥1, then {fn} converges in Lp to the

null function for every p≥1, but the real-valued sequence {fn(x)} does
not converge for every x in [0, 1] (i.e., {fn} does not converge pointwise
everywhere, and so it does not converge almost everywhere).

Hint: First note that the real-valued sequence {λ(En)} is bounded and
decreasing, thus convergent. For every m≥1 there is an nm such that
λ(Enm) ≤ 1

m . Hence ‖fn‖p → 0. Next take an arbitrary x in [0, 1]. The
real-valued sequence {fn(x)} has a subsequence constantly equal to 1
and another constantly equal to 0. Thus {fn(x)} does not converge.
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Problem 6.3. Consider the Lebesgue measure space (R,�, λ) and, for each
n≥1, take the characteristic function fn = χ

[n, n+1]. Prove the assertions.

(a) {fn} converges pointwise (and so a.e.) to the null function.

(b) {fn} does not converge in measure (so not uniformly and not in Lp).

Hint: Verify that λ({x ∈ X : |fm(x)− fn(x)| ≥ 1
2}) = 2 for everym �= n.

Thus conclude that {fn} is not Cauchy in measure (Proposition 6.6(a)).

(c) {fn} does not converge almost uniformly (and so not uniformly a.e.).

Problem 6.4. Let g :R → R and fn :R → R for each positive integer n be
real-valued functions on R given by

g(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, x ≤ 0,

1√
x
, x ∈ (0, 1],

1
x2

, x ∈ [1,∞),

fn(x) = fg,n(x) =

{

n, g(x) ≥ n,

0, otherwise.

Consider the Lebesgue measure space (R,�, λ). Show that g ∈ L1, and

(a) {fn} is dominated by g and converges pointwise to the null function 0,

(b) {fn} converges to 0 almost uniformly but does not converge uniformly
almost everywhere.

Hint: supx∈X\N |fn(x)| → ∞ for every set N of Lebesgue measure zero.

Problem 6.5. The symmetric difference of two sets A and B is the set

A�B = (A\B) ∪ (B\A) = (A ∪B)\(A ∩B).

Consider a measure space (X,X , μ) and let E and F be arbitrary sets in X .
We say that the sets E and F are equivalent (or μ-equivalent), denoted by
E ∼ F , if μ(E �F ) = 0. The relation ∼ is in fact an equivalence relation on
X . Define the function d:X×X→ R by d(E,F ) = μ(E �F ) for every E,F
in X . Verify that d(E,F ) ≥ 0 , d(E,F ) = d(F,E), and (triangle inequality)
d(E,F ) ≤ d(E,G) + d(G,F ) for every E,F,G in X . (Observe that d is a
pseudometric on X — cf. Section 11.1 — and so it induces a metric on
the quotient space X/∼.) Take a sequence {En} of sets in X and, for each
n≥1, set fn = χ

En :X→ R, the characteristic function of En. Show that
{χEn} is Cauchy in measure if and only if limm,n μ(Em�En) = 0. That is,

{fn} is Cauchy in measure if and only if limm,n d(Em, En) = 0.

Problem 6.6. The following diagrams show the relationship among almost
everywhere convergence, almost uniform convergence, convergence in Lp,
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and convergence in measure. These will be denoted by (a.e.), (a.u.), (Lp),
and (μ), respectively. The first diagram considers the general case (with no
additional assumption), the second one considers the case of finite measure
(i.e., if μ(X) <∞), and the third diagram considers the case of dominated
convergence (i.e., when |fn| ≤ g ∈ Lp).

(a.e.) ⇐= (a.u.)
"

"

#

(Lp) =⇒ (μ)

General
case

(a.e.) ⇐⇒ (a.u.)
"

"

#

(Lp) =⇒ (μ)

Finite
measure

(a.e.) ⇐⇒ (a.u.)
"

"

#

(Lp) ⇐⇒ (μ)

Dominated
convergence

As usual, the arrows mean implication. Show that the above diagrams are
correct and complete in the sense that all arrows are true and no arrow can
be added except for the trivial ones (i.e., up tomodus ponens— for example,
it is obvious from those diagrams that (a.e.) implies (μ) in a finite measure
space and also that (a.e.) implies (Lp) under the dominance assumption).

Problem 6.7. Now let (u.a.e.) denote uniform convergence almost every-
where. Show that the implications

(u.a.e.) =⇒ (a.e.) and (u.a.e.) =⇒ (a.u.)

hold true, and their converses fail even under finite measure and dominance
assumptions. Also, (u.a.e.) implies (Lp) under finite measure or dominance
but not in general, and the converse fails even under both assumptions.

Problem 6.8. Show that the Dominated Convergence Theorem holds if
almost everywhere convergence is replaced with convergence in measure.

Hint: Consider the Dominated Convergence Theorem (Theorem 4.7). Use
Problem 6.6 (specifically, Proposition 6.9) and Problem 5.16 for p = 1.

Problem 6.9. Prove the Vitali Convergence Theorem, which reads as fol-
lows. Take an arbitrary p≥1. If {fn} is a sequence of real-valued function in
Lp(X,X , μ), then fn→ f in Lp for some f ∈ Lp if and only if the following
three assumptions hold true.

(a) fn→ f in measure.

(b) For each ε> 0 there is anEε∈X with μ(Eε)<∞ such that for all n≥ 1
∫

F

|fn|p dμ < εp for every F ∈ X for which F ∩ Eε = ∅.
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(c) For each ε > 0 there is a δε > 0 such that for all n≥1
∫

E

|fn|p dμ < εp for every E ∈ X with μ(E) < δε.

Hint: To prove that assumptions (a), (b), (c) imply fn→ f in Lp proceed as
follows. Use the Minkowski inequality to show that assumption (b) implies
‖fm − fn‖p=

(∫

Eε
|fn − fm|p

) 1
p +2ε for every m,n ≥ 1. By the Minkowski

inequality also show that (a) and (c) imply
(∫

Eε
|fn − fm|p

) 1
p ≤ 3ε for every

m,n ≥ nε for some nε ≥ 1. Thus conclude that {fn} is Cauchy in Lp. Apply
Proposition 6.6 for uniqueness of the limit f .

Problem 6.10. Take any p≥1. If a sequence {fn} of functions in Lp is
such that fn→ f ∈ Lp a.e. and ‖fn‖p→ ‖f‖p, then fn→ f in Lp. Prove.

Hint: Use Proposition 6.4. (Compare with Problems 4.14 and 5.17.)

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Kingman and Taylor [23], Munroe [30].
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Decomposition of Measures

7.1 The Jordan Decomposition Theorem

Take a signed measure ν :X → R on a σ-algebra X of subsets of a set X.
According to Definition 2.3, signed measures are real-valued set functions.
We saw in Section 2.2 that if μ and λ are finite measures, then ν = μ− λ is
a signed measure. In this section we show that all signed measures ν admit
a decomposition into a difference of two finite measures.

Definition 7.1. Consider a signed measure ν on a σ-algebra X . A set A+ in
X is positive with respect to ν if ν(A+ ∩ E) ≥ 0 for all E in X . A set A−

in X is negative with respect to ν if ν(A− ∩ E) ≤ 0 for all E in X . A set
N in X is null with respect to ν if ν(N ∩ E) = 0 for all E.

In other words, let ν be an arbitrary signed measure on an arbitrary
σ-algebra X of subsets of an arbitrary set X. A measurable set is positive,
negative, or null if each measurable subset of it has nonnegative, nonpos-
itive, or null measure, respectively. The set X always has a measurable
partition consisting of a positive and a negative set with respect to ν.

Theorem 7.2. (Hahn Decomposition Theorem). Let X be a σ-algebra of
subsets of a set X. If ν is a signed measure on X , then there exists a
measurable partition {A+, A−} of X such that A+ is positive and A− is
negative with respect to ν.

Proof. Consider a signed measure ν on X . We show that there exists a
pair of sets A+ and A− in X such that A+∪A−= X, A+∩A−= ∅, A+ is

© Springer International Publishing Switzerland 2015
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7 7

109
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positive, and A− is negative. Let A+⊆ X be the collection of all positive
sets with respect to ν, which is not empty (since it contains the empty set).
Set α = supA∈A+ν(A) and take a sequence {An} of sets in A+ such that
supn ν(An) = α. Thus A+ =

⋃

n An is a positive set (Problem 7.2(b)) with
0 ≤ ν(A+) = α <∞ (since ν(An) ≤ ν(A+) ≤ α for all n — Problem 7.3).
Take its complement A−= X\A+. If A− is a negative set, then we are done.

Claim. A−= X\A+ is a negative set.

Proof. Suppose A− is not negative. Then it has a measurable subset E0

such that ν(E0) > 0. If E0 is a positive set, then ν(A+∪ E0) > α (because
A+ ∩ E0 = ∅), which is a contradiction (α = supA∈A ν(A)). Thus E0 is not
positive, so it has measurable subsets of negative measure. Let n0 be the
smallest positive integer such that E0 has a measurable subset of measure
not greater than − 1

n0 , say E1 with ν(E1) ≤ − 1
n0 . Observe that

ν(E0\E1) = ν(E0)− ν(E1) > ν(E0) > 0

(cf. Problem 7.1(a)). If E0\E1 is a positive set, then ν(A+ ∪ (E0\E1)) > α
(because A+ ∩ (E0\E1) = ∅), which is again a contradiction. Thus E0\E1

is not positive, so it has measurable subsets of negative measure. Let n1 be
the smallest positive integer such that E0\E1 has a measurable subset of
measure not greater than − 1

n1 , say E2 with ν(E2) ≤ − 1
n1 . Again, note that

ν
(

E0\(E1∪E2)
)

=ν(E0)−ν(E1∪E2)=ν(E0)−
(

ν(E1)+ν(E2)
)

>ν(E0)>0

(because E1 ∩ E2 = ∅). As before, E0\(E1 ∪ E2) is not positive, so it has
measurable subsets of negative measure. Let n2 be the smallest positive
integer such that E0\(E1 ∪ E2) has a measurable subset of measure not
greater than − 1

n2 , say E3 with ν(E3) ≤ − 1
n2 . This leads to the inductive

construction of a sequence {Ek}∞k=1 of pairwise disjoint measurable sets
and a sequence {nk}∞k=1 of integers with each nk being the smallest pos-
itive integer for which E0\

⋃

k
i=1 Ei has a measurable subset of measure

not greater than − 1
nk

. Moreover, ν(Ek+1) ≤ − 1
nk

for every k≥ 0, and so
∑∞

k=0
1
nk

<∞. In fact, by setting E =
⋃∞

k=1 Ek in X we get

−∞ < ν(E) =
∞
∑

k=1

ν(Ek) ≤ −
∞
∑

k=0

1
nk

< 0,

since {Ek}∞k=1 consists of disjoint sets. Thus 1
nk
→ 0 as k →∞. Note that

ν(E0\E) = ν(E0)− ν(E) > ν(E0) > 0.

The set E0\E is indeed positive. In fact, suppose E0\E has a measurable
subset of negative measure, say F with ν(F ) < 0. Since nk →∞ as k →∞,
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take k large enough so that 1
nk−1 < −ν(F ); that is, ν(F ) < − 1

nk−1 . But

F ⊆ E0\E ⊆ E0\
⋃

k
i=1 Ei, so E0\

⋃

k
i=1 Ei has a measurable subset of mea-

sure less than − 1
nk−1 , which contradicts the fact that nk is the smallest pos-

itive integer for which E0\
⋃

k
i=1 Ei has a measurable subset of measure not

greater than − 1
nk

. Thus every measurable subset of E0\E has a nonnegative

measure, and so E0\E is a positive set. Therefore, since A+∩ (E0\E) = ∅

(because E0 ⊆ A−) and ν(E0\E) > 0, it follows that ν(A+∪ (E0\E)) > α,
which is again a contradiction. Outcome: A− must be a negative set. �

Let (X,X ) be a measurable space. A measurable partition {A+, A−} of
X, where A+∈ X is positive and A−∈ X is negative with respect to a signed
measure ν on X , is called a Hahn decomposition of X with respect to ν.
Given a signed measure ν on X , a Hahn decomposition of X is not unique
(if there exists a nonempty null set with respect to ν). In fact, if {A+, A−}
is a Hahn decomposition of X and N is a null set, then {A+∪ N,A−\N}
and {A+\N,A−∪N} are also Hahn decompositions of X (all with respect
to ν). However, this lack of uniqueness is indistinguishable for the signed
measure ν, and so it is not a disadvantage of the Hahn decomposition.

Proposition 7.3. Suppose {A+
1 , A

−
1 }and {A+

2 , A
−
2 }are Hahn decompositions

of X with respect to a signed measure ν on X . Then, for every E ∈ X ,

ν(A+
1 ∩ E) = ν(A+

2 ∩ E) and ν(A−
1 ∩ E) = ν(A−

2 ∩ E).

Proof. If A, B, C are arbitrary sets, then {A∩(B\C), A∩B∩C} is a partition
of A ∩B. In X , if ν(A ∩ (B\C)) = 0, then ν(A ∩B) = ν(A ∩B ∩ C). Since
E ∩ (A+

1 \A+
2 ) ⊆ A+

1 ∩A−
2 and E ∩ (A+

2 \A+
1 ) ⊆ A+

2 ∩A−
1 , it follows that

ν(E ∩ (A+
1 \A+

2 )) = 0 and ν(E ∩ (A+
2 \A+

1 )) = 0.

Thus

ν(E ∩A+
1 ) = ν(E ∩A+

1 ∩A+
2 ) and ν(E ∩A+

2 ) = ν(E ∩A+
2 ∩A+

1 ),

and so

ν(E ∩A+
1 ) = ν(E ∩A+

2 ).

Analogously, replacing A+
1 with A−

1 , and A+
2 with A−

2 , we get

ν(E ∩A−
1 ) = ν(E ∩A−

2 ). �

Consider a Hahn decomposition {A+, A−} of X with respect to a signed
measure ν on X . Problem 2.11 ensures that the set functions ν+ :X → R

and ν− :X → R defined for every set E in X by

ν+(E) = ν(A+ ∩ E) and ν−(E) = −ν(A− ∩ E)
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are finite measures on X . The measures ν+ and ν− are called positive vari-
ation and negative variation of ν, respectively. Note: (1) ν+ and ν− are
unambiguously defined (their definitions do not depend on the Hahn decom-
position {A+, A−} by Proposition 7.3), and (2) ν+(A−) = ν−(A+) = 0, sig-
nifying that ν+ and ν− are singular (as it will be defined in Definition 7.9).

Theorem 7.4. (Jordan Decomposition Theorem). Let (X,X ) be a measur-
able space. Suppose ν is a signed measure on X . Then

ν = ν+ − ν−,

where ν+ and ν− are the positive and negative variations of ν. If

ν = λ − μ ,

where λ and μ are finite measures on X , then
ν+ ≤ λ and ν− ≤ μ .

Proof. Take an arbitrary Hahn decomposition {A+, A−} of X with respect
to a signed measure ν on X . Since {A+, A−} is a partition of X, it follows
that (A+ ∩ E) ∪ (A− ∩ E) = E and (A+ ∩ E) ∩ (A− ∩ E) = ∅, and hence

ν(E) = ν(A+ ∩ E) + ν(A− ∩ E) = ν+(E)− ν−(E),

for every E ∈ X . If λ and μ are finite measures on X (so that 0 ≤ λ(E) <∞
and 0 ≤ μ(E) <∞ for every E ∈ X ) such that ν = λ− μ, then

ν+(E) = ν(A+ ∩ E) = λ(A+ ∩ E)− μ(A+ ∩ E) ≤ λ(A+ ∩ E) ≤ λ(E),

ν−(E) = −ν(A− ∩ E) = −λ(A− ∩ E) + μ(A+ ∩ E) ≤ μ(A+ ∩ E) ≤ μ(E),

for every E ∈ X (Proposition 2.2(a)). Therefore, ν+ ≤ λ and ν− ≤ μ. �

The sum of finite measures is again a finite measure. The total variation
of a signed measure ν :X → R is the finite measure |ν|:X → R defined by

|ν| = ν+ + ν−.

Example 7A. Let ν be a signed measure on X. The total variation |ν|
coincides with the (ordinary) variation μ discussed in Example 2I. In fact,
as in Example 2I, the (ordinary) variation μ is the measure defined by

μ(E) = sup
{E+, E−}∈E(2)

(

ν(E+)− ν(E−)
)

for every E ∈ X ,

where the supremum is taken over all measurable partitions {E+, E−} of E
consisting of two sets such that ν(E+) ≥ 0 and ν(E−) ≤ 0. If {A+, A−} is
any Hahn decomposition of X with respect to ν and E = ℘(E) ∩ X , then
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ν+(E) + ν−(E) = ν(A+ ∩ E)− ν(A− ∩ E) ≤ μ(E)

≤ sup
F∈E

ν(F )− inf
F∈E

ν(F ) = ν+(E) + ν−(E),

where the last identity follows from Theorem 7.4 (via Problem 7.5), and so

μ(E) = |ν|(E) = ν+(E) + ν−(E) for every E ∈ X .

Proposition 7.5. Consider a measure space (X,X , μ), and take a function
f ∈ L(X,X , μ). If ν :X → R is the signed measure defined in Lemma 4.6,

ν(E) =

∫

E

f dμ for every E ∈ X ,

then the measures ν+, ν−, and |ν| are given for each E ∈ X by

ν+(E) =

∫

E

f+dμ, ν−(E) =

∫

E

f−dμ, and |ν|(E) =

∫

E

|f | dμ.

Proof. Take the sets F+ = {x ∈ X : f(x) > 0}, F− = {x ∈ X : f(x) < 0},
and F0 = {x ∈ X : f(x) = 0}, and set

F+= F+∪F0 =
{

x ∈ X : f ≥ 0
}

and F−= F−∪F0 =
{

x ∈ X : f ≤ 0
}

.

Thus {F+, F−} is a measurable partition of X such that ν(F+ ∩ E) ≥ 0 and
ν(F− ∩ E) ≤ 0 for each E ∈ X , and so {F+, F−} is a Hahn decomposition
of X with respect to ν. Since

∫

F−∩E
f dμ =

∫

F−∩E
f dμ (cf. Proposition

3.7(a), Problem 3.8(a), and Definition 4.1), it follows for every E ∈ X that

ν+(E) = ν(F+ ∩ E) =

∫

F+∩E

f dμ =

∫

E

fχ
F+ dμ =

∫

E

f+dμ,

ν−(E) = −ν(F− ∩ E) = −
∫

F−∩E

f dμ =

∫

E

−fχ
F− dμ =

∫

E

f−dμ,

|ν|(E) = ν+(E) + ν−(E) =

∫

E

(f+ + f−) dμ =

∫

E

|f | dμ. �

7.2 The Radon–Nikodým Theorem

Definition 7.6. Take a measurable space (X,X ) and let E ∈ X be an
arbitrary measurable set. A measure λ on X is absolutely continuous with
respect to a measure μ on X if

μ(E) = 0 implies λ(E) = 0

(i.e., λ(E) = 0 for every E ∈ X such that μ(E) = 0). Notation: λ� μ.
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Let λ and μ be measures on X , let E be an arbitrary measurable set in
X , and consider the following statements.

(a) For every ε> 0 there is a δε> 0 (which does not depend on E) such that

μ(E) < δε implies λ(E) < ε.

(b) The measure λ is absolutely continuous with respect to μ (i.e., λ� μ).

These are equivalent if λ is a finite measure, as it will be shown in
Proposition 7.7 below, thus justifying the terminology “absolute continuity”.

Proposition 7.7. Consider the above assertions.

Claim: (a) implies (b), and (b) implies (a) if λ is finite.

Proof. Suppose (a) holds. If μ(E) = 0 for some E ∈ X , then λ(E) < ε for all
ε > 0, which means that λ(E) = 0. Therefore (a) implies (b). Conversely,
Suppose (a) fails. Thus there exists an ε > 0 such that for every δ > 0 there
exists an Eδ ∈ X for which μ(Eδ) < δ and λ(Eδ) ≥ ε. In particular, for
every n≥1 there exists an En ∈ X such that μ(En) <

1
2n and λ(En) ≥ ε.

Set Fn =
⋃∞

k=n Ek in X so that μ(Fn) ≤
∑∞

k=n μ(Ek) <
∑∞

k=n
1

2k
= 1

2n−1

and λ(Fn) ≥ λ(Ek) ≥ ε for every n≥1. Set F =
⋂∞

n=1 Fn in X . Since {Fn}
is a decreasing sequence of sets in X , and since μ(F1) ≤ 1 and λ(F1) <∞
if λ is a finite measure, it then follows by Proposition 2.2(d) that

μ(F ) = lim
n

μ(Fn) = 0 and λ(F ) = lim
n

λ(Fn) ≥ ε,

and so (b) fails. Equivalently, (b) implies (a) if λ is a finite measure. �

Propositions 3.5(c) and 3.7(b) ensure that if μ is a measure on X and f
is a function inM(X,X )+ (a nonnegative extended real-valued measurable
function), then the set function λ on X defined by

λ(E) =

∫

E

f dμ for every E ∈ X

is a measure which is absolutely continuous with respect to μ. What comes
as a nice and perhaps unexpected result is that the converse holds if the
measures λ and μ are σ-finite. That is, in this case, there exists a function f
inM(X,X )+ such that λ is expressed as an integral of f with respect to μ.
Also, the function f is unique μ-a.e. (which means that if g inM(X,X )+ is
such that λ(E) =

∫

E
g dμ for every E ∈ X , then g = f μ-almost everywhere).

This converse is a fundamental result in measure theory, which we see next.

Theorem 7.8. (Radon–Nikodým Theorem). Take any measurable space
(X,X ). If λ and μ are σ-finite measures on X , and if λ is absolutely con-
tinuous with respect to μ, then there exists a unique (μ-almost everywhere
unique) real-valued function f in M(X,X )+ such that
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λ(E) =

∫

E

f dμ for every E ∈ X .

Proof. Suppose λ and μ are measures on X such that λ� μ. We split the
proof into two parts. Part (a) proves the theorem for finite measures. Part
(b) extends the proof for σ-finite measures.

(a) Take an arbitrary real number α > 0. Suppose λ and μ are finite mea-
sures. Thus να = λ− αμ is a (real-valued) signed measure. Let {A+

α , A
−
α }

be a Hahn decomposition for X with respect to the signed measure να.
Consider a sequence {Ek}k≥1 of sets in X recursively defined by

Ek+1 = A−
(k+1)α

∖
k
⋃

j=1

Ej with E1 = A−
α .

It is immediately verified by induction that

(i) {Ek}k≥1 is a sequence of disjoint sets,

(ii)
k
⋃

j=1

Ej =
k
⋃

j=1

A−
jα for every k≥1,

and hence

Ek = A−
kα

∖
k−1
⋃

j=1

A−
jα = A−

kα ∩
k−1
⋂

j=1

A+
jα for every k≥ 2.

Then Ek ∈ (A−
kα ∩A+

(k−1)α), which implies that for each set E ⊆ (X ∩ Ek),

λ(E)− kαμ(E) ≤ 0 and λ(E)− (k − 1)αμ(E) ≥ 0, and so

(iii) (k − 1)αμ(E) ≤ λ(E) ≤ kαμ(E),

for every E ⊆ (X ∩ Ek) and every k ≥ 2. Set (cf. property (ii))

F = X
∖

∞
⋃

j=1

Ej = X
∖

∞
⋃

j=1

A−
jα =

∞
⋂

j=1

A+
jα ⊆ A+

kα for all k≥1

so that λ(F )− kαμ(F ) ≥ 0, equivalently, 0 ≤ kαμ(F ) ≤ λ(F ), for all k≥1.
Since λ is a finite measure, it follows that μ(F ) = 0. Since λ� μ, we get

(iv) λ(F ) = 0.

Take the nonnegative real-valued function fα inM+=M(X,X )+ given by

fα(x) =

⎧

⎨

⎩

(k − 1)α, x ∈ Ek for some k≥1,

0, x ∈ F = X
∖⋃∞

k=1 Ek.
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Observe that {F, Ek; k≥1} is a measurable partition of X by property (i).
Take an arbitrary E ∈ X so that {E ∩ F, E ∩ Ek; k≥1} is a measurable
partition of E. Thus (cf. Problems 3.3(a) and 4.10)

∫

E

fα dμ =

∫

⋃∞
k=1

(E∩Ek)

fα dμ =
∞
∑

k=1

∫

E∩Ek

fα dμ

=
∞
∑

k=1

(k − 1)α

∫

E∩Ek

dμ =
∞
∑

k=2

(k − 1)αμ(E ∩ Ek)

≤
∞
∑

k=2

λ(E ∩ Ek) = λ
(⋃∞

k=2(E ∩ En)
)

≤ λ(E)

by properties (iii) and (i). Similarly, by properties (i), (iii), and (iv) we get

λ(E) =

∫

E

dλ =

∫

⋃∞
k=1

(E∩Ek)

dλ = λ
(⋃∞

k=1
(E ∩ Ek)

)

=

∞
∑

k=1

λ(E ∩ Ek)

≤
∞
∑

k=1

kαμ(E ∩ Ek) =

∞
∑

k=1

∫

E∩Ek

kα dμ =

∞
∑

k=1

∫

E∩Ek

(fα + α) dμ

=

∫

⋃∞
k=1

(E∩Ek)

(fα + α) dμ ≤
∫

E

(fα + α) dμ =

∫

E

fα dμ+ αμ(E).

Take an arbitrary integer n≥1, set α =
(

1
2

)n
and fn = f(1/2)n . The previ-

ously displayed inequalities ensure that

(v)

∫

E

fn dμ ≤ λ(E) ≤
∫

E

fn dμ+
(

1
2

)n
μ(X)

for all n≥1. Hence, for an arbitrary pair of positive integers m and n,
∫

E

fn dμ ≤ λ(E) ≤
∫

E

fm dμ+
(

1
2

)m
μ(X),

∫

E

fm dμ ≤ λ(E) ≤
∫

E

fn dμ+
(

1
2

)n
μ(X),

so that
∫

E

fn dμ−
∫

E

fm dμ ≤ λ(E)−
∫

E

fm dμ ≤
(

1
2

)m
μ(X),

∫

E

fm dμ−
∫

E

fn dμ ≤ λ(E)−
∫

E

fn dμ ≤
(

1
2

)n
μ(X),

which implies
∣

∣

∣

∣

∫

E

(fm − fn) dμ

∣

∣

∣

∣

≤
(

1
2

)m
μ(X)
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whenever m ≤ n. Since this holds for all E ∈ X , we get

∫

|fm − fn| dμ =

∫

(fm − fn)
+ dμ +

∫

(fm − fn)
− dμ

=

∫

F+
m,n

(fm − fn) dμ −
∫

F−
m,n

(fm − fn) dμ

=

∣

∣

∣

∣

∣

∫

F+
m,n

(fm − fn) dμ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

F−
m,n

(fm − fn) dμ

∣

∣

∣

∣

∣

≤ 2
(

1
2

)m
μ(X)

for each m,n such that m ≤ n, with F+
m,n= {x ∈ X : (fm − fn)(x) ≥ 0} and

F−
m,n= {x ∈ X : (fm − fn)(x) ≤ 0}. Since property (v) holds for all E in X ,

λ is a finite measure, and fn is a real-valued function inM+, it follows that
each function fn lies in L1(μ) = L1(X,X , μ). Thus, by the above inequality,

‖fm − fn‖1 ≤
(

1
2

)

m−1μ(X)

if 1 ≤ m ≤ n. Since μ is a finite measure, the above inequality says that {fn}
is a Cauchy sequence in the Banach space L1(μ), and so it converges in L1(μ)
to, say, f ∈ L1(μ). Then the real-valued sequence

{∫

E
fn dμ

}

converges in
R to

∫

E
f dμ for every E ∈ X . In fact (cf. Problem 5.16),

∣

∣

∣

∣

∫

E

fn dμ−
∫

E

f dμ

∣

∣

∣

∣

≤
∫

E

|fn − f | dμ ≤
∫

|fn − f | dμ = ‖fn − f‖1 → 0.

Recall that f = limn fn ∈ L1(μ) is real-valued. Therefore, by property (v),

λ(E) = lim
n

∫

E

fn dμ =

∫

E

f dμ for every E ∈ X .

Note that we may take a nonnegative function f in the equivalence class
[f ], that is, we may take f ∈M+. Indeed, since 0 ≤ λ(E) =

∫

E
f dμ for

every E ∈ X , it follows by Problem 4.5(b) that f ≥ 0 μ-a.e. (and also λ-a.e.
because λ� μ) for every f ∈ [f ]. Moreover, such an f is μ-a.e. unique. In
fact, if g ∈ L1(μ) (and g ∈M+) is such that λ(E) =

∫

E
f dμ =

∫

E
g dμ for

every E ∈ X , then f = g μ-a.e. by Problem 3.8(d) (or Problem 4.5(c)).

(b) Next assume that the measures λ and μ are σ-finite. Thus there are two
sequences of X -measurable sets, say {An} and {Bn}, such that λ(An) <∞
and μ(Bn) <∞ for every n, both covering X. Actually, by considering
successive unions of them if necessary, we may assume that these sequences
are increasing. Set Xn = An ∩Bn so that {Xn} is an increasing sequence
of X -measurable sets such that

⋃

Xn =
⋃

An ∩
⋃

Bn = X and, for each n,

λ(Xn) <∞ and μ(Xn) <∞.
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Take an arbitrary index n. Consider the σ-algebra Xn= ℘(Xn) ∩ X . By part
(a) there is a function gn∈M(Xn,Xn)

+ such that λ(E′) =
∫

E′ gndμ|Xn for
every E′∈Xn (cf. Problem 2.11). Let fn be a function on X defined as fol-
lows: fn(x) = gn(x) if x ∈ Xn, and fn(x) = 0 if x ∈ X\Xn. This function
fn lies inM+=M(X,X )+ and, for every E′∈Xn ⊆ X ,

λ(E′) =

∫

E′
fn dμ.

Recall that Xn ⊆ Xk for every n ≤ k. Then E′ ∈ Xk for every k ≥ n when-
ever E′ ∈ Xn. So the above identity holds for all k ≥ n. That is, the sequence
{fn} of functions inM+ is such that if E′ ∈ Xn for some n≥1, then

λ(E′) =

∫

E′
fn dμ =

∫

E′
fk dμ

for every k ≥ n. Again from part (a), gn is unique μ-a.e., then so is fn, for
each n. Thus the previous identity ensures that fk = fn μ-a.e. on Xn for all
k ≥ n. (Same uniqueness argument: see Problem 3.8(d) or Problem 4.5(a)
— nonnegative functions in L1(μ).) Hence, since each fn vanishes outside
Xn, and since {Xn} is an increasing sequence of sets, it follows that {fn}
is an increasing sequence of functions inM+ such that

λ(E ∩Xn) =

∫

E∩Xn

fn dμ =

∫

E

fnχXn
dμ =

∫

E

fn dμ

for each E ∈ X (since E ∩Xn ∈ Xn and fn = fnχXn
) and for each n≥1.

Take an arbitrary set E in X and note that {E ∩Xn} is an increasing
sequence of sets in X that covers E (because {Xn} is an increasing sequence
of sets in X that covers X). Thus, by Proposition 2.2(c),

λ(E) = λ
(
⋃

n
(E ∩Xn)

)

= lim
n
(E ∩Xn) = lim

n

∫

E

fn dμ.

The Monotone Convergence Theorem completes the existence proof. In-
deed, since {fn} is an increasing sequence of functions inM+, it converges
pointwise to a function f̃ inM+, and so it follows by Theorem 3.4 that

λ(E) = lim
n

∫

E

fn dμ = lim
n

∫

fnχE
dμ =

∫

lim
n

fnχE
dμ =

∫

f̃χ
E
dμ =

∫

E

f̃ dμ.

The function f̃ ∈M+ is the pointwise limit of an increasing sequence of
functions in M+. Thus it may possibly be extended real-valued; but, it is
μ-a.e. real-valued. Equivalently, the set F+∞ = {x ∈ X : f̃(x) = +∞} has
measure zero (i.e., μ(F+∞) = 0). Indeed, recall that {Xn} is an increasing
sequence of sets that cover X, each fn is null outside Xn, and fk = fn μ-a.e.
onXn for all k ≥ n. Thus, since f̃(x) = limn fn(x) for every x ∈ X, it follows
that fn = f̃χ

Xn
μ-a.e., and so μ(F+∞ ∩Xn) = μ({x ∈ Xn : fn(x) = +∞}),
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for each n. However fn ∈ L1(X,X , μ), because gn = fnχXn
∈ L1(Xn,Xn, μ)

and fn = 0 on X\Xn. Hence μ(F+∞ ∩Xn) = 0 for all n by Problem 3.9(b).
Since F+∞ = F+∞ ∩X = F+∞ ∩

⋃

n Xn =
⋃

n(F+∞ ∩Xn), it follows that
μ(F+∞) ≤

∑

n μ(F+∞∩Xn) = 0 (Problem 2.8(b)), and so μ(F+∞) = 0. Set

f = f̃χ
X\F+∞

, a real-valued function inM+ such that (see Problem 3.8)

λ(E) =

∫

E

f̃ dμ =

∫

E∩(X\F+∞)

f̃ dμ +

∫

E∩F+∞
f̃ dμ =

∫

E

f̃χ
X\F+∞

dμ =

∫

E

f dμ

for every E ∈ X . Such an f ∈M+ is unique μ-a.e. by Problem 3.8(d). �

The real-valued function f ∈M(X,X )+ in the statement of the Radon–
Nikodým Theorem was not claimed to be integrable. Actually, f is μ-
integrable (i.e., f lies in L(X,X , μ)) if and only if λ is a finite measure.
This function f is called the Radon–Nikodým derivative of λ with respect
to μ, which it is often written as f = dλ

dμ (or dλ = f dμ). As noticed in Prob-
lem 3.11, no independent meaning is assigned to the symbols dλ and dμ.
So, if λ and μ are σ-finite measures such that λ� μ, then there is a unique
(μ-a.e.) real-valued function dλ

dμ inM(X,X )+ such that for every E in X

λ(E) =

∫

E

dλ

dμ
dμ.

Remark: A major applications of the Radon–Nikodým Theorem is the Riesz
Representation Theorem. One of the versions of it say that if Φ:Lp(μ)→ R

is a bounded linear functional on the Banach space Lp(μ), then there is a
unique g ∈ Lq(μ) such that Φ(f) =

∫

fg dμ for every f ∈ Lp(μ) and ‖Φ‖ =
‖g‖q (where q is the Hölder conjugate of p ; if p = 1 so that q =∞, then μ
is supposed to be σ-finite). See Proposition 12.A. The Riesz Representation
Theorem holds in every Hilbert space, and so it can be proved for p = 2
without using the Radon–Nikodým Theorem and, perhaps surprisingly, this
can be used to prove the Radon–Nikodým Theorem itself. Chapter 12 is
entirely dedicated to the Riesz Representation Theorem.

7.3 The Lebesgue Decomposition Theorem

If λ is absolutely continuous with respect to μ, then they act synchronized in
the sense that sets of small μ-measures have small λ-measures (Proposition
7.7). At the opposite end there are measures λ and μ which act complemen-
tary in the sense that sets of small μ-measure may have large λ-measure.
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Definition 7.9. Take a measurable space (X,X ). A measure λ on X is
singular with respect to a measure μ on X (notation: λ ⊥ μ) if there exists
a measurable partition {A,B} of X such that

λ(A) = μ(B) = 0.

The notion of singular measures means that λ and μ have disjoint sup-
ports (see Problem 2.13), which is also referred to by saying that λ is concen-
trated on a set of μ-measure zero. It is clear that ⊥ is a symmetric relation
on the collection of all measures on X (i.e., λ ⊥ μ if and only if μ ⊥ λ).
Thus we say that λ and μ are mutually singular, or simply singular, instead
of λ is singular with respect to μ (or vice versa). Note that singularity may
be equivalently restated as follows: λ ⊥ μ if there exists a partition {A,B}
of X such that A ∩ E and B ∩ E lie in X for every E ∈ X and

λ(A ∩ E) = μ(B ∩ E) = 0.

Observe that the preceding two expressions are equivalent. In fact, A and
B must be measurable (because A ∩X and B ∩X lie in X since X lies
in X ), A ∩ E ⊆ A, and B ∩ E ⊆ B. The next result is another important
consequence of the Radon–Nikodým Theorem.

Theorem 7.10. (Lebesgue Decomposition Theorem). Consider a measur-
able space (X,X ). If λ and μ are σ-finite measures on X , then there exists
a unique pair of measures λa and λs on X such that λa � μ, λs ⊥ μ, and

λ = λa + λs.

Proof. Let λ and μ be σ-finite measures on X . Set ν = μ+ λ, which is
again σ-finite measure on X (Problem 2.14). Both μ and λ are absolutely
continuous with respect to ν (i.e., ν(E) = 0 implies μ(E) = λ(E) = 0, and
so μ� ν and λ� ν). Then the Radon–Nikodým Theorem says that there
are real-valued functions f and g inM(X,X )+ such that for every E ∈ X ,

μ(E) =

∫

E

f dν and λ(E) =

∫

E

g dν.

Take the measurable partition {F0, F+} of X, with F0 = {x ∈ X : f(x) = 0}
and F+ = {x ∈ X : f(x) > 0}. Set λs = λF0

and λa = λF+ , where the mea-
sures λF0

and λF+ on X are defined as in Problem 2.11, namely,

λs(E) = λF0
(E) = λ(E ∩ F0) and λa(E) = λF+(E) = λ(E ∩ F+)
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for every E ∈ X . Since μ(F0) =
∫

F0
0 dν = 0 and λs(F+) = λ(∅) = 0, we get

λs ⊥ μ.

If E ∈ X is such that μ(E) = 0, then
∫

fχ
E
dν =

∫

E
f dν = 0, and hence

fχ
E

= 0 ν-a.e. (cf. Proposition 3.7(a)). That is, f = 0 ν-a.e. on E, and so
ν(E ∩ F+) = 0. Since λ� ν, it follows that λa(E) = λ(E ∩ F+) = 0. Thus,

λa � μ.

Now note that λ(E) = λ((E ∩ F0) ∪ (E ∩ F+)) = λ(E ∩ F0)+λ(E ∩ F+) =
λs(E) + λa(E) for every E ∈ X , and therefore

λ = λs + λa.

To prove uniqueness, suppose λ = λ1 + λ2, where λ1 and λ2 are (σ-finite)
measures on X such that λ1 ⊥ μ and λ2 � μ. Take the signed measures
λs − λ1 and λa − λ2 on X so that λs − λ1 ⊥ μ and λa − λ2 � μ (cf. Prob-
lems 7.10 and 7.11). Since λs + λa = λ1 + λ2, it follows by Problem 7.12
that λs − λ1 = λa − λ2 = 0, and so λ1 = λs and λ2 = λa. �

Remark: The signed measures λs−λ1 and λa−λ2 are well defined if we allow
extended real-valued signed measures, and declare that (λs−λ1)(E) = 0 if
E in X is such that λs(E) = λ1(E) = +∞, and (λa−λ2)(E) = 0 if E in X
is such that λa(E) = λ2(E) = +∞. Also note that Problems 7.10, 7.11, and
7.12 are naturally extended to extended real-valued signed measures.

Theorem 7.10 decomposes every σ-finite measure λ into two parts: an
absolute continuous and a singular, both with respect to a σ-finite reference
measure μ (e.g., such a reference measure may be the Lebesgue measure in
the particular case of (X,X ) = (R,�)). Next we refine this decomposition.

Definition 7.11. Take a measurable space (X,X ). A measure λ on X is
continuous with respect to a measure μ on X if, for {x} ∈ X ,

μ({x}) = 0 implies λ({x}) = 0

(i.e., λ({x}) = 0 for every measurable singleton {x} such that μ({x}) = 0).

Definition 7.12. Let (X,X ) be a measurable space. A measure λ on X
is discrete with respect to measure μ on X if there exists a measurable
partition {A,B} of X such that (i) B is a countable set whose all subsets
are measurable (equivalently, B = {bn}n∈I with each singleton {bn} lying
in X , where the index set I is either finite or I = N), and (ii)

λ(A) = μ(B) = 0.
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That is, λ is concentrated on a countable set of μ-measure zero; and so, if λ
is discrete with respect μ, then λ and μ are singular — see Problems 7.13
and 7.14. In the very particular case where μ is the Lebesgue measure on the
Borel algebra of subsets of the real line things get considerably simplified.

Proposition 7.13. Consider a measurable space (X,X ). Suppose λ and μ
are measures on X . If λ is σ-finite and measurable singletons of X have
μ-measure zero, then there is a unique pair of measures λc and λd on X
such that λc is continuous and λd is discrete, both with respect to μ, and

λ = λc + λd.

Proof. If λ is σ-finite, then there is a sequence {En} of sets in X that cover
X such that each En has finite μ-measure. For each integer k≥1 set

Bk(n) =
{

x ∈ En : {x} ∈ X and λ({x}) ≥ 1
k

}

.

Suppose Bk(n) is an infinite set. Thus it has a countably infinite subset,
say Ck(n) =

⋃

m{bm} ⊆ Bk(n), consisting of distinct points bm of Bk(n).
Since each singleton {bm} is X -measurable, Ck(n) also lies in X , and hence
λ(Ck(n)) =

∑

m λ({bm}) = ∞ because λ({bm}) ≥ 1
k for all m. But this

contradicts the fact that λ(Ck(n)) ≤ λ(En) <∞. Therefore, each Bk(n) is
a finite set in X . Thus, since X =

⋃

n En,

Bk =
⋃

n
Bk(n) =

{

x ∈ X : {x} ∈ X and λ({x}) ≥ 1
k

}

is a countable set in X for every k≥1, and so

B =
⋃

k
Bk =

{

x ∈ X : {x} ∈ X and λ({x}) �= 0
}

is again a countable set (recall: a countable union of countable sets is count-
able) in X . Indeed, B is measurable (because, after all, B is a countable
union of measurable singletons). Take the measurable partition {A,B} of
X so that A = X\B. Set λc = λA and λd = λB , where the measures λA and
λB on X are defined as in Problem 2.11. That is, for each E ∈ X ,

λd(E) = λB(E) = λ(E ∩B) and λc(E) = λA(E) = λ(E ∩A).

Since B = {bn}n∈I is a countable set consisting of measurable singletons,
and since measurable singletons have μ-measure zero, we get

λd(A) = λ(A ∩B) = 0 and μ(B) = μ
(
⋃

n
{bn}

)

=
∑

n
μ({bn}) = 0,

and so λd is discrete with respect to μ. If {x} is an X -measurable singleton
of X, then either λ({x}) = 0 or λ({x}) �= 0. In the former case, {x} ⊆ A so
that λc({x}) = λ({x}) = 0. In the latter case, {x} ⊆ B so that λc({x}) =



7.4 Problems 123

λ(∅) = 0. Thus λc({x}) = 0 for all {x} ∈ X , and hence λc is continuous
with respect to μ (because μ({x}) = 0 for all {x} ∈ X ). Now observe that

λ(E) = λ
(

(E ∩A) ∪ (E ∩B)
)

= λ(E ∩A) + λ(E ∩B) = λc(E) + λd(E)

for every E ∈ X , and therefore

λ = λc + λd.

To prove uniqueness, suppose λ = λ1 + λ2, where λ1 and λ2 are measures on
X such that λ1 is continuous and λ2 is discrete, both with respect to μ. Take
a singleton {x} in X . Since μ({x}) = 0, it follows that λ1({x}) = λc({x}) =
0, and so λ2({x}) = λ({x}) = λd({x}). Thus λ2 = λd by Problem 7.14. If
λ1 �= λc, then there is a measurable set E ⊆ A such that λ1(E) �= λc(E).
But λ2(E) = λd(E) = 0 because E ⊆ A and λ2 = λd, and hence λ(E) =
λ1(E) = λc(E), which is a contradiction. Then λ1 = λc. �

Corollary 7.14. Consider a measurable space (X,X ). If μ is a σ-finite
measure on X such that measurable singletons of X have μ-measure zero,
then every σ-finite measure λ on X has a unique decomposition

λ = λa + λsc + λsd,

where the measures λa, λsc, λsd on X are absolutely continuous, singular
and continuous, singular and discrete, respectively, all with respect to μ.

Proof. By Theorem 7.10, λ = λa + λs, where λa is absolutely continuous
and λs is singular, with respect μ. If λ is σ-finite, then so is λs (the same
countable covering of X that makes λ σ-finite, works for λs). Thus λs =
λsc + λsd by Proposition 7.13, where λsc is continuous and λsd is discrete,
with respect to μ. Since λs ⊥ μ, there exists a measurable partition {A,B}
of X such that λs(A) = λsc(A) + λsd(A) = 0 = μ(B), and so λsc(A) =
λsd(A) = 0. Hence λsc and λsd also are singular with respect to μ. �

The identity λ = λa +λsc +λsd is called the canonical decomposition of
λ with respect to a reference measure μ, and the measures λsc and λsd are
called singular-continuous , and singular-discrete (with respect to μ).

7.4 Problems

Problem 7.1. Consider a signed measure ν :X → R on X . If A and B are
X -measurable sets and {En} is a sequence of sets in X , then show that

(a) ν(B\A) = ν(B)− ν(A) if A ⊆ B,
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(b) ν
(⋃

n En

)

= limn ν(En) if {En} is increasing,

(c) ν
(⋂

n En

)

= limn ν(En) if {En} is decreasing.
Hint: Proof of Proposition 2.2 and Definition 2.3.

Problem 7.2. Prove the assertions. (a) A measurable subset of a positive
set is positive. (b) A countable union of positive sets is a positive set.

Hint: (b) Let {An} be a sequence of sets. Set An+1
′ = An+1\

(⋃n
i=1 Ai

)

with
A1

′ = A1. This {A′
n} is a sequence of disjoint sets such that

⋃

n A
′
n =

⋃

n An

(i.e., {A′
n} is a disjointification of {An}). Suppose each An is a positive set.

Each A′
n is a measurable subset of An and so is a positive set by (a). Thus,

ν(E ∩
⋃

n An) = ν
(

E ∩
⋃

n A
′
n

)

= ν
(⋃

n(E ∩A′
n)

)

=
∑

n ν(E ∩A′
n) ≥ 0.

Problem 7.3. Take a signed measure ν on a σ-algebra X . If A and B lie
in X and B is positive with respect to ν, then

A ⊆ B implies 0 ≤ ν(A) ≤ ν(B).

Hint: Problems 7.1(a) and 7.2(a).

Problem 7.4. This is the signed-measure version of Problem 2.8. Suppose
ν :X → R is a signed measure on a σ-algebra X , and let {En} be a sequence
of X -measurable sets. Show that

(a) ν
(⋃

n En

)

= limn ν
(⋃n

i=1 Ei

)

.

If each En is positive with respect to ν, then

(b) ν
(⋃

n En

)

≤
∑

n ν(En).

Hints: (a) Problem 7.1(b). (b) Disjointification and Problem 7.3.

Problem 7.5. Take a signed measure ν on X . For an arbitrary E ∈ X , set
E = ℘(E) ∩ X (the σ-algebra of all measurable subsets of E). Show that

ν+(E) = sup
F∈E

ν(F ) and ν−(E) = − inf
F∈E

ν(F ).

Hint: Theorem 7.4: ν(F ) = ν+(F )−ν−(F ) ≤ ν+(F ) ≤ ν+(E) = ν(A+∩E).

Problem 7.6. Again, take a signed measure ν on X . Prove that

N ∈ X is a null set with respect to ν if and only if |ν|(N) = 0.

Hint: Definition of |ν| on the one hand; Problem 7.5 on the other hand.
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Problem 7.7. Consider a measurable space (X,X ). Suppose ν, ν1, and ν2
are signed measures on X . Let α be any real number. Verify that ν1 + ν2
and αν are again signed measures on X , where for each E ∈ X ,

(αν)(E) = αν(E) and (ν1 + ν2)(E) = ν1(E) + ν2(E).

Now let S = S(X,X ,R) stand for the collection of all signed measures on
X . Since addition and scalar multiplication of signed measures are again
signed measures, it follows that S is a (real) linear space (in fact, a linear
manifold of the real linear space R

X of all real-valued set functions on X ).
Consider the total variation of signed measures in S. Prove that

(a) |αν| = |α||ν|
and

(b) |ν1 + ν2| ≤ |ν1|+ |ν2|.
Hint: Take a Hahn decomposition {A+

ν , A
−
ν } of X with respect to ν. Show

that {A+
αν , A

−
αν} is a Hahn decomposition of X with respect to αν, where

A+
αν = A+

ν and A−
αν = A−

ν if α ≥ 0 or A+
αν = A−

ν and A−
αν = A+

ν if α ≤ 0.
Then show that (αν)+ = αν+ and (αν)− = αν− if α ≥ 0 or (αν)+ =
−αν− and (αν)− = −αν+ if α ≤ 0. Thus conclude the identity in (a):
|αν| = (αν)+ + (αν)− = |α|(ν+ + ν−) = |α||ν|. To verify the inequality in
(b) note that ν1 + ν2 = (ν+1 + ν+2 ) − (ν−1 + ν−2 ), apply Theorem 7.4 again
to show that (ν1 + ν2)

+ ≤ ν+1 + ν+2 and (ν1 + ν2)
− ≤ ν−1 + ν−2 , and hence

|ν1 + ν2| = (ν1 + ν2)
+ + (ν1 + ν2)

− ≤ (ν+1 + ν−1 ) + (ν+1 + ν−2 ) = |ν1|+ |ν2|.
Next consider the function ‖ ‖:S → R defined by

‖ν‖ = |ν|(X)

for every ν ∈ S. This is a norm on S. In other words, show that

(c) (S, ‖ ‖) is a normed space.

Hint: Use (a) and (b) to verify axioms (iii) and (iv) of Definition 5.1.

Also show that this normed space is complete. That is, show that

(d) (S, ‖ ‖) is a Banach space.

Hint: Consider the following well-known result from elementary functional
analysis. A normed space is a Banach space if and only if every absolutely
summable sequence is summable (cf. Suggested Readings for Chapter 5).
Observe that if {νn} is a sequence of signed measures in S, then

max{ν+n (E), ν−n (E)} ≤ ν+n (E) + ν−n (E) ≤ ν+n (X) + ν−n (X) = |νn|(X),
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where 0 ≤ min{ν+n (E), ν−n (E)}, so that νn(E) = ν+n (E)− ν−n (E) makes a
summable sequence for every E in X (i.e., {νn} is summable in S) whenever
{‖νn‖} is a summable in R (i.e., whenever {νn} is absolutely summable).

Problem 7.8. Take a measurable space (X,X ). Show that absolute con-
tinuity � is a reflexive and transitive but not a symmetric relation on the
collection of all measures on X . That is, if λ, μ, and ν are measures on X ,
then show that μ� μ (reflexivity), and that λ� μ and μ� ν imply λ� ν
(transitivity), but λ� μ does not imply μ� λ. If λ� μ and μ� λ, then
λ and μ are called equivalent measures (common notation: λ ≡ μ or λ ∼ μ).

Problem 7.9. Consider a measure space (X,X ). Let λ, μ, and ν be σ-finite
measures on X . Prove the following propositions.

(a) If λ�μ and g∈M(X,X )+, then
∫

E
g dλ =

∫

E
g dλ

dμ dμ for every E∈X .

Hint: Theorem 7.8 and Problem 3.11 (recall: gχ
E
∈M(X,X )+).

(b) If λ� ν and μ� ν, then d(λ+μ)
dν = dλ

dν + dμ
dν ν-almost everywhere.

Hint: Theorem 7.8, Proposition 3.5(b), and Problem 3.8(d).

(c) If λ� μ� ν, then dλ
dν = dλ

dμ
dμ
dν ν-almost everywhere.

Hint: Recall that λ� ν. Apply Theorem 7.8 for each relation � fol-
lowed by Problem 3.11 as in part (a). Then use Problem 3.8(d).

(d) If λ� μ and μ� λ, then dλ
dμ = (dμdλ )

−1 almost everywhere.

Note: λ� μ� λ means λ ≡ μ (i.e., λ and μ are equivalent measures)
so that μ-almost everywhere is equivalent to λ-almost everywhere.

Hint: dλ
dλ is the identity. Use part (a) with ν = λ. Swap λ and μ.

Problem 7.10. Let ν and μ be signed measures on a σ-algebra X . The
signed measure ν is absolutely continuous with respect to μ if, for E ∈ X ,

|μ|(E) = 0 implies ν(E) = 0

(i.e., ν(E) = 0 for every E ∈X such that |μ|(E) = 0). Same notation as for
measures: ν � μ. Show that the following assertions are pairwise equivalent.

(a) ν � μ.

(b) ν+ � μ and ν− � μ.

(c) |ν| � |μ|.
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Hint: Take a Hahn decomposition {A+
ν , A

−
ν } of X with respect to ν. Verify

that |μ|(E) = 0 implies |μ|(A+ ∩ E) = |μ|(A− ∩ E) = 0 and, if (a) holds,
this implies ν+(E) = ν−(E) = 0. Thus conclude that (a) implies (b). That
(b) implies (a) follows from the fact that ν = ν+ − ν− (Theorem 7.4).
Similarly, verify that (b) and (c) are equivalent because |ν| = ν+ + ν−.

Consider a third signed measure λ on X and show that

(d) λ� μ and ν � μ imply (λ+ ν)� μ.

Hint: |λ+ ν| ≤ |λ|+ |ν| according to Problem 7.7(b).

Problem 7.11. Let ν and μ be signed measures on a σ-algebra X . One is
singular with respect to the other (or mutually singular, or simply singular)
if their total variations |ν| and |μ| are singular measures on X (according
to Definition 7.9). Same notation as for measures: ν ⊥ μ. That is,

ν ⊥ μ if and only if |ν| ⊥ |μ|.

Since |ν| = ν+ + ν−, show that

(a) ν ⊥ μ implies ν+⊥ μ and ν−⊥ μ.

Consider a third signed measure λ on X and show that

(b) λ ⊥ μ and ν ⊥ μ imply (λ+ ν) ⊥ μ.

Hint: If |λ|(A) = |μ|(B) = 0 and |ν|(C) = |μ|(D), where {A,B} and {C,D}
are measurable partitions of X, then {E,F} forms another measurable par-
tition of X, with E = (A ∩ C) and F = (B ∩ C) ∪ (A ∩D) ∪ (B ∩D), such
that |λ|(E) = |ν|(E) = |μ|(F ) = 0. Now recall from Problem 7.7(b) that
|λ+ ν| ≤ |λ|+ |ν|, and so |λ+ ν|(E) = μ(F ) = 0.

Problem 7.12. Let (X,X ) be a measurable space. If λ and μ are measures
(or signed measures) on X such that λ� μ and λ ⊥ μ, then λ = 0.

Problem 7.13. Consider a measurable space (X,X ). Let λ and μ be mea-
sures on X . Prove the following propositions.

(a) If λ� μ, then λ is continuous with respect μ.

(b) If λ is discrete with respect to μ, then λ ⊥ μ.

(c) If λ is continuous and discrete with respect to μ, then λ = 0.

Note that the converses are not true. In particular, although discrete implies
singular ; singular does not imply discrete. See examples in Problem 7.15.
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Hint: Definitions 7.6, 7.9, and 7.11. (c) If λ is discrete and continuous with
respect to μ, then λ(X) = λ(A) + λ(B) = λ(B) =

∑

n λ(bn) = 0, since each
{bn} is measurable and μ({bn}) ≤ μ(B) = 0, so λ({bn}) = 0.

Problem 7.14. Let λ and μ be measures on a σ-algebra X . For each E ∈ X
take the σ-algebra E= ℘(E) ∩ X . If λ is discrete with respect to μ, then

λ(E) =
∑

{x}∈E
λ({x}) for every E ∈ X ,

and μ({x}) = 0 whenever {x} in X is such that λ({x}) �= 0.

Hint: λ(E) = λ(E∩B), where B is a countable set of measurable singletons.

Problem 7.15. Let μ, λ, ν :�→ R be measures on the Borel algebra � of
subsets of R, where μ is the Lebesgue measure (Example 2C, Problem 2.7).
Consider the components of the canonical decomposition in Corollary 7.14.

(a) Set F = χ
[x,∞) :R→{0, 1}, the characteristic function of [x,∞) for some

x ∈ R (Example 1B). Set λ = μF = δx :� →{0, 1}, the Borel–Stieltjes
measure generated by F (Example 2D), which is the Dirac measure
at x (Example 2A). Show that λ ⊥ μ. Actually, show that λ = δx is
singular-discrete with respect to Lebesgue measure (and so is

∑

q∈Q
δq).

(b) Let f, F :R→R be measurable functions. Define λ, ν :�→R as follows.
λ(E) =

∫

E
f dμ (if f is nonnegative) and ν(E) = μF (E) =

∫

E
dF
dx dμ(x),

the Borel–Stieltjes measure generated by F (if F is nondecreasing and
continuously differentiable), for each E ∈ �. Prove: λ and ν are absolute-
ly continuous with respect to Lebesgue measure μ, and σ-finite (if f is
locally L1). (Hint : Example 2D, Propositions 3.5 and 3.7, Theorem 7.8.)

(c) Consider the Cantor set C⊂ [0, 1] obtained by successive removal of the
central open third of [0, 1] (Problem 2.9). Writing each point of [0, 1] in
its ternary (i.e., base 3) expansion, it can be shown that x lies in C if
and only if it has only 0’s and 2’s, and no 1’s, in its ternary expansion.
Moreover, it can be verified that the map Φ:C → [0, 1] that changes the
2’s into 1’s, and interprets the result in its binary expansion (i.e., as a
base 2 number), is a one-to-one correspondence between C and [0, 1]
(i.e., Φ is injective and surjective, which shows that C is uncountable).
It can also be verified that Φ is increasing, uniformly continuous, and
assumes the same values at the end points of every bounded open in-
terval in the complement [0, 1]\C of the Cantor set. Thus the function
Φ:C → [0, 1] has a unique extension F : [0, 1]→ [0, 1] over the closed in-
terval [0, 1] (i.e., F |C = Φ) such that F is piecewise constant (constant
on each successively removed open third remaining in [0, 1]\C — e.g.,
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F (x) = 1
2 for all x in the central open third ( 13 ,

2
3 ) of [0, 1]), contin-

uous, increasing (F (0) = 0, F (1) = 1), and differentiable with dF
dx = 0

μ-a.e. (since μ(C) = 0). This F : [0, 1]→ [0, 1] is the Cantor function
(or Cantor–Lebesgue function, or Lebesgue singular function — whose
graph is sometimes referred to as Devil’s Staircase). Now set λ = μF ,
the Borel–Stieltjes measure generated by F (Example 2D). Recalling
that every singleton in R is �-measurable (Problem 2.7), and that F is
continuous, show that λ({x]}) = 0 for every singleton {x} ⊂ [0, 1], and
so verify that λ is continuous with respect to Lebesgue measure μ (Def-
inition 7.11). Also show that λ is concentrated on C; that is, λ(C) =
λ([0.1]), and hence verify that λ and μ are singular (i.e., λ⊥μ). So con-
clude: λ = μF is singular-continuous with respect to Lebesgue measure.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Kelley and Srinivasan [22], Royden
[35], Rudin [36], Shilov and Gurevich [38]. See also [29, Section 6.8]. For
construction of the Cantor function (Problem 7.15(c)) see [4], [9], [32], [37].
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Extension of Measures

8.1 Measure on an Algebra and Outer Measure

In Chapter 2 (see Example 2C) we considered the Lebesgue measure λ on
the Borel algebra �, which is the σ-algebra of subsets of the real line R gen-
erated by the collection of all open intervals; and we have been using the
notion of Lebesgue measure since then, although it has not been properly
constructed so far. Indeed, in Example 2C we promised to prove existence
and uniqueness of the Lebesgue measure λ:� → R in Chapter 8. We will
comply with that promise in Section 8.3, as a special case of the following
program. (1) First we introduce the concept of a measure μ on an algebra A
(rather than on a σ-algebra) of subsets of set X. (2) Then we consider the
notion of an outer measure μ∗ generated by that measure μ on an algebra
A, which is a set function on the power set ℘(X). (3) Finally, we show that
this outer measure μ∗ induces a σ-algebra A∗ of subsets of X (such that
A ⊆ A∗) upon which the restriction μ∗|A∗ is a measure on the σ-algebra A∗.
This is the Carathéodory Extension Theorem, which is the central result of
this chapter, whose applications go as far as Chapters 9, 11, and 13.

The difference between an algebra and a σ-algebra of subsets of a set X
is that in an algebra A any finite union of sets in A is required to remain
in A, while in a σ-algebra X it is imposed, in addition, that any countable
union of sets in X must remain in X (see Definition 1.1). We will now define
the notion of a measure μ on an algebra A. Since a countable union of sets
in A is not necessarily in A, countable additivity for μ will be restricted to
countable families of sets in A whose union still lies in A.

© Springer International Publishing Switzerland 2015
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Definition 8.1. A measure on an algebra is an extended real-valued set
function μ on an algebra A of subsets of a set X,

μ:A → R,

that fulfills the following axioms.

(a) μ(∅) = 0,

(b) μ(E) ≥ 0 for every E ∈ A,
(c) μ

(⋃

n En

)

=
∑

n μ(En)

for every countable family {En} of pairwise disjoint sets in A for which
⋃

n En lies in A.

Remarks: Similarly to the remarks that follow Definitions 2.1 and 2.3, if
the countable set {μ(En)} of nonnegative (extended) real numbers in (c)
is infinite (countably infinite), then the (infinite) series

∑

n μ(En) either
converges unconditionally to a real number (i.e., the real value of the sum
does not depend on the order of the summands) or diverges to infinity.
Properties of measures on a σ-algebra are naturally transferred to measures
on an algebra up to the assumption

⋃

n En ∈ A in axiom (c), which is not
necessary for a measure on a σ-algebra.

Let A be any algebra of subsets of a set X. A measure μ on A generates
a set function μ∗ on the power set ℘(X) as follows.

Definition 8.2. Suppose μ:A → R is a measure on an algebra A of subsets
of a set X. For each subset S of X (i.e., for each S ∈ ℘(X)) consider the
collection CS of all countable families {En} of sets in A that cover S,

CS =
{

{En}: En ∈ A and S ⊆
⋃

nEn

}

.

The extended real-valued set function μ∗ on the power set ℘(X),

μ∗ :℘(X)→ R,

defined for each S ∈ ℘(X) by

μ∗(S) = inf
{En}∈ CS

∑

n
μ(En),

is the outer measure generated by the measure μ on the algebra A.

In spite of the terminology, an outer measure μ∗ may be far from being a
measure (in the sense of Definitions 2.1 or 8.1) since it is not necessarily ad-
ditive. Actually, it may happen that μ∗(A ∪B) �= μ∗(A) + μ∗(B) for some
disjoint sets A and B in ℘(X) — we will comment on this in Problems 8.16
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and 8.22. Additivity is weakened to subadditivity . In fact, outer measures
are countably subadditive (Proposition 8.3(e) below). On the other hand, μ∗

has the advantage of being defined for every subset of X and inherits some
properties of a measure, such as μ∗(∅) = 0 and μ∗(S) ≥ 0 for every subset
S of X and, what is more important, μ∗(E) = μ(E) for every E ∈ A.

Proposition 8.3. Let μ∗ :℘(X)→ R be the outer measure generated by a
measure μ:A → R on an algebra A of subsets of a set X. Then

(a) μ∗(∅) = 0,

(b) μ∗(S) ≥ 0 for every S ∈ ℘(X),

(c) μ∗(S1) ≤ μ∗(S2) whenever S1 ⊆ S2 ⊆ X,

(d) μ∗(E) = μ(E) for every E ∈ A (i.e., μ∗|A = μ),

(e) μ∗(⋃

n En

)

≤
∑

n μ
∗(En)

for every countable family {En} of subsets of X.

Proof. Observe that properties (a), (b), and (c) are trivially verified by the
definition of outer measure (Definition 8.2). To verify property (d) take an
arbitrary E ∈ A, and let {E′

n} be a sequence of subsets of A such that
E′

1 = E and E′
n = ∅ for all n �= 1. Since {E′

n} ∈ CE , we get

μ∗(E) = inf
{En}∈ CE

∑

n
μ(En) ≤

∑

n
μ(E′

n) = μ(E).

To verify the reverse inequality proceed as follows. If {En} is any countable
family in CE , then {E ∩ En} is again a countable family in CE such that
E =

⋃

n(E ∩ En), and so (cf. Problem 2.8(b) and Proposition 2.2(a))

μ(E) ≤
∑

n
μ(E ∩ En) ≤

∑

n
μ(En).

Since this holds for all {En} ∈ CE , we get

μ(E) ≤ inf
{En}∈ CE

∑

n
μ(En) = μ∗(E),

completing the proof of (d): the restriction μ∗|A of the outer measure μ∗ to
the algebra A coincides with measure μ on the algebra A. Finally we verify
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countable subadditivity. Take an arbitrary ε > 0. Let {En} be an arbitrary
countable family of subsets of X, and recall that for each En,

μ∗(En) = inf
{Fk}∈ CEn

∑

k
μ(Fk).

Then for each n≥1 there is a countable family {F ′
n,k} in CEn for which

∑

k
μ(F ′

n,k) ≤ μ∗(En) +
ε
n2

.

Note that {F ′
n,k} =

⋃

n

⋃

kF
′
n,k is a countable family of sets in A covering

⋃

n En, which means that {F ′
n,k} lies in C∪nEn . Since

μ∗
(
⋃

n
En

)

= inf
{Fn,k}∈ C∪nEn

∑

n,k
μ(Fn,k),

it follows that

μ∗
(
⋃

n
En

)

≤
∑

n,k
μ(F ′

n,k) =
∑

n

∑

k
μ(F ′

n,k) ≤
∑

n
μ∗(En) + ε

∑

n

1
n2

,

and so, since this holds for every ε > 0, and since
∑

n
1
n2

<∞,

μ∗
(
⋃

n
En

)

≤ inf
ε>0

(
∑

n
μ∗(En) + ε

∑

n

1
n2

)

=
∑

n
μ∗(En),

which completes the proof of (e). �

8.2 The Carathéodory Extension Theorem

Consider the outer measure μ∗ generated by a measure μ on an algebra A of
subsets of a set X. A set E ∈ ℘(X) is said to be μ∗-measurable (or satisfies
the Carathéodory condition) if

μ∗(S) = μ∗(S ∩ E) + μ∗(S\E)

for every S ∈ ℘(X). This means that μ∗ behaves additively on E. Let

A∗ =
{

E ∈ ℘(X): E is μ∗-measurable
}

be the collection of all μ∗-measurable subsets of X. The next result is a
decisive one for constructing measures out of set functions that are not mea-
sures on σ-algebras. It says that this A∗ is a σ-algebra such that A ⊆ A∗,
and the restriction of the outer measure μ∗ to A∗ is a measure (on the
σ-algebra A∗) that extends the measure μ (on the algebra A) over A∗.

Theorem 8.4. (Carathéodory Extension Theorem). A∗ is a σ-algebra that
includes the algebra A, and the restriction of μ∗ to A∗ is a measure on A∗.
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Proof. Note that the empty set ∅ and the whole set X clearly lie in A∗

(i.e., they are μ∗-measurable). Also, since S ∩ E = S\(X\E) for every pair
of sets E and S in ℘(X), it follows that the complement of every set in A∗

is again in A∗. Next take an arbitrary S ∈ ℘(X). If F ∈ A∗, then

μ∗(S) = μ∗(S ∩ F ) + μ∗(S\F ),

and if E ∈ A∗, then

μ∗(S ∩ F ) = μ∗(S ∩ F ∩ E) + μ∗((S ∩ F )\E).

Now observe that [S\(E ∩ F )] ∩ F = (S ∩ F )\(E ∩ F ) = (S ∩ F )\E, and
also that [S\(E ∩ F )]\F = (S\F )\(E ∩ F ) = S\F . Thus, if F ∈ A∗,

μ∗(S\(E ∩ F )) = μ∗([S\(E ∩ F )] ∩ F ) + μ∗([S\(E ∩ F )]\F )

= μ∗((S ∩ F )\E) + μ∗(S\F ).

The above three displayed identities ensure that if E and F lie in A∗, then

μ∗(S) = μ∗(S ∩ F ∩ E) + μ∗((S ∩ F )\E) + μ∗(S\F )

= μ∗(S ∩ E ∩ F ) + μ∗(S\(E ∩ F )),

and so E ∩ F lies in A∗. Therefore, since intersection of sets in A∗ and com-
plements of sets in A∗ are both again in A∗, it follows that union of sets
in A∗ also lie in A∗ (because E ∪ F = X\[(X\E) ∩ (X\F )] — De Morgan
Laws). Then a trivial induction ensures that any finite union of sets in A∗

remains in A∗, and hence A∗ is an algebra. That is,

(a)
⋃n

i=1 Fi lies in A∗ for every finite family {Fi}ni=1 of sets in A∗.

Furthermore, if S and F are sets in ℘(X), if E is a set A∗, and if E and F
are disjoint (so that S ∩ (E ∪ F )\E = S ∩ F ), then

μ∗(S ∩ (E ∪ F )) = μ∗(S ∩ (E ∪ F ) ∩ E) + μ∗(S ∩ (E ∪ F )\E)

= μ∗(S ∩ E) + μ∗(S ∩ F ),

and so μ∗ acts additively on the intersection of any set in ℘(X) with every
pair of disjoint sets in A∗. Thus another trivial induction ensures that

(b) μ∗(S ∩
(⋃n

i=1 Ei

))

=
∑n

i=1 μ
∗(S ∩ Ei) for every finite family {Ei}ni=1

of pairwise disjoint sets in A∗ and every set S in ℘(X).

In particular, for S = X, this shows that μ∗ is finitely additive on A∗:

(c) μ∗(⋃n
i=1 Ei

)

=
∑n

i=1 μ
∗(Ei) for every finite family {Ei}ni=1 of pairwise

disjoint sets in A∗.
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Next these results on finite families are extended to countably infinite fam-
ilies, which shows that A∗ is a σ-algebra and μ∗ is countably additive on
A∗, and hence the restriction of μ∗ to A∗ is a measure (by Definition 2.1).
Thus take any (infinite) sequence {Fn} of sets in A∗, and consider the dis-
jointification {En} of {Fn} given by E1 = F1 and En+1 = Fn+1\

(⋃n
i=1 Fi

)

(see Hints to Problems 2.3 and 7.2). Clearly, {En} is a sequence of pairwise
disjoint sets in A∗ (each En lies in A∗ because finite union and difference
of sets in an algebra remain in the algebra). For each integer n≥1 set
Gn =

⋃n
i=1 Ei =

⋃n
i=1 Fi, which lies in A∗ (finite union of sets in A∗), and

set G =
⋃∞

n=1 En =
⋃∞

n=1 Fn in ℘(X). Take an arbitrary S in ℘(X). Note
by the countable subadditivity of Proposition 8.3(e) that

μ∗(S ∩G) = μ∗
(

S ∩
∞
⋃

i=1

Ei

)

= μ∗
(

∞
⋃

i=1

(S ∩ Ei)
)

≤
∞
∑

i=1

μ∗(S ∩ Ei),

and hence, since S = (S ∩G) ∪ (S\G), subadditivity ensures again that

μ∗(S) ≤ μ∗(S ∩G) + μ∗(S\G) ≤
∞
∑

i=1

μ∗(S ∩ Ei) + μ∗(S\G).

On the other hand, since each Gn =
⋃n

i=1 Ei lies in A∗, and since the
sequence {En} consists of pairwise disjoint sets in A∗, it follows by (b) that

μ∗(S) = μ∗(S ∩Gn) + μ∗(S\Gn) =

n
∑

i=1

μ∗(S ∩ Ei) + μ∗(S\Gn)

for all n. Since Gn ⊆ G, we get S\G ⊆ S\Gn, so μ∗(S\G) ≤ μ∗(S\Gn) by
Proposition 8.3(c). Therefore,

n
∑

i=1

μ∗(S ∩ Ei) + μ∗(S\G) ≤ μ∗(S)

for all n, which implies that

∞
∑

i=1

μ∗(S ∩ Ei) + μ∗(S\G) ≤ μ∗(S).

Hence, for every S ∈ ℘(X),

μ∗(S) = μ∗(S ∩G) + μ∗(S\G) =

∞
∑

i=1

μ∗(S ∩ Ei) + μ∗(S\G).

The first identity in the above expression says that G lies in A∗, that is,

(a′)
⋃

n Fn lies in A∗ for every countable family {Fn} (not necessarily pair-
wise disjoint) of sets in A∗,
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proving that the algebra A∗ is, in fact, a σ-algebra. Furthermore, taking
S = G (so that μ∗(S\G) = 0 and S ∩ Ei = Ei for every i≥1), we also get

μ∗(G) =
∞
∑

i=1

μ∗(Ei).

If {Fn} is a sequence of pairwise disjoint sets, then En = Fn for each n, and
so the above identity ensures that μ∗ is countably additive on A∗:

(c′) μ∗(⋃

n En

)

=
∑

n μ
∗(En) for every countably infinite family {En} of

pairwise disjoint sets in A∗.

Properties (a′) and (c′) ensure that the restriction of μ∗ to A∗ is a measure
on the σ-algebra A∗. Finally we verify the inclusion A ⊆ A∗. Take an arbi-
trary A ∈ A, an arbitrary S ∈ ℘(X), and an arbitrary ε > 0. According to
Definition 8.2, there exists a sequence {An} of sets in A such that

S ⊆
⋃

n
An and

∑

n
μ(An) ≤ μ∗(S) + ε.

Note that {(An ∩ A), (An\A)} is a partition of An for every n, which is
made up of sets in the algebra A. Thus, according to Proposition 8.3(c,e,d),

μ∗(S ∩A) ≤ μ∗
(
⋃

n
(An ∩A)

)

≤
∑

n
μ∗(An ∩A) =

∑

n
μ(An ∩A),

μ∗(S\A) ≤ μ∗
(
⋃

n
(An\A)

)

≤
∑

n
μ∗(An\A) =

∑

n
μ(An\A),

and so, by using the additivity of Definition 8.1(c),

μ∗(S ∩A) + μ∗(S\A) ≤
∑

n

(

μ(An ∩A) + μ(An\A)
)

=
∑

n
μ
(

(An ∩A) ∪ (An\A)
)

=
∑

n
μ(An) ≤ μ∗(S) + ε.

Since ε > 0 is arbitrary, this implies that

μ∗(S ∩A) + μ∗(S\A) ≤ μ∗(S).

On the other hand, since S = (S ∩A) ∪ (S\A),

μ∗(S) ≤ μ∗(S ∩A) + μ∗(S\A)

by the subadditivity of Proposition 8.3(e). Hence,

μ∗(S) = μ∗(S ∩A) + μ∗(S\A)

for every S ∈ ℘(X), which means that A lies in A∗. Thus A ⊆ A∗. �
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The Carathéodory Extension Theorem is sometimes referred to as
the Carathéodory–Fréchet–Hahn–Kolmogorov Extension Theorem. Since
the restriction of the outer measure μ∗ to the algebra A coincides with
the measure μ on A (i.e., μ∗|A = μ), since the restriction μ∗|A∗ of the outer
measure μ∗ to the σ-algebra A∗ is a measure, and since A ⊆ A∗ ⊆ ℘(X), it
follows that the measure μ∗|A∗ on the σ-algebra A∗ extends the measure μ
on the algebra A over A∗. This measure μ∗|A∗ is complete in the sense of
Section 2.3. Equivalently, the σ-algebra A∗ is complete with respect to it.
This means that if N ∈ A∗ and μ∗(N) = 0, then every subset E of N lies
in A∗ (and so μ∗(E) = 0 according to Proposition 8.3(b,c)). More is true:
all sets with outer measure zero are μ∗-measurable (and so A∗ is complete).

Proposition 8.5. Consider the outer measure μ∗ on ℘(X) (induced by a
measure on A). Let A∗ be the σ-algebra of all μ∗-measurable sets in ℘(X).

(a) If N ∈ ℘(X) is such that μ∗(N) = 0, then N ∈ A∗.

(b) If E ⊆ N ∈ ℘(X) and μ∗(N) = 0, then E ∈ A∗ and μ(E) = 0.

Proof. Assertion (b) follows from assertion (a) and Proposition 8.3(b,c).
Assertion (a) says that every set with outer measure zero is μ∗-measurable.
To verify this take arbitrary sets S and N in ℘(X) such that μ∗(N) = 0.
Since S ∪N = (S ∩N) ∪ (S\N), we get from Proposition 8.3(c,e) that

μ∗(S) ≤ μ∗(S ∪N) ≤ μ∗(S ∩N) + μ∗(S\N) ≤ μ∗(N) + μ∗(S) = μ∗(S),

and so μ∗(S) = μ∗(S ∩N) + μ∗(S\N); that is, N ∈ A∗. �

A measure on an algebra inherits most of the attributes of a measure on
a σ-algebra. For instance, a measure μ on an algebra A of subsets of a set X
is finite if μ(X) <∞. Similarly, μ is σ-finite if X is covered by a countable
family of sets in A of finite measure, that is, if there exists a sequence {An}
of sets in A such that μ(An) <∞ for every n and X =

⋃

n An. Finiteness
and σ-finiteness are naturally extended from a measure μ on an algebra A
to the associated outer measure μ∗ on the power set ℘(X) by Proposition
8.3(d) since X ∈ A ⊆ ℘(X) — just replace μ with μ∗. The next result says
that if μ is σ-finite, then its extension over the σ-algebra A∗ is unique.

Theorem 8.6. (Hahn Extension Theorem). If a measure μ on the algebra
A is σ-finite, then its extension to a measure on the σ-algebra A∗ is unique.

Proof. Consider the outer measure μ∗ generated by a measure μ on an
algebra A of subsets of a set X. The collection A∗ of all μ∗-measurable
subsets of X is a σ-algebra such that A ⊆ A∗, and the restriction of μ∗ to
A∗ is a measure that extends μ over A∗ (Theorem 8.5). Let ν is a measure
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on A∗ that extends μ over A∗ (i.e., suppose ν is a measure on A∗ such
that ν(E) = μ(E) for every E ∈ A). The proof will be split into two parts.
The claimed result is proved supposing μ is a finite measure in part (a).
This is extended to the case when μ is σ-finite in part (b).

(a) Assume that μ is a finite measure on the algebra A. Thus any extension
ν of μ to A∗ is again finite (because X ∈ A ⊆ A∗ ⊆ ℘(X) implies μ∗(X) =
ν(X) = μ(X) <∞). Take an arbitrary set E in A∗, and an arbitrary se-
quence {An} in CE . That is, let {An} be any sequence of sets in A such that
E ⊆

⋃

n An. (These sequences do exist; trivial example: A1 = X.) Thus

ν(E) ≤ ν
(
⋃

n
An

)

≤
∑

n
ν(An) =

∑

n
μ(An).

(See Proposition 2.2(a) and Problem 2.8(b).) Since this holds for every
{An} ∈ CE , it follows by the definition of the outer measure μ∗ induced by
the measure μ on the algebra A (Definition 8.2) that

ν(E) ≤ inf
{En}∈ CE

∑

n
μ(En) = μ∗(E).

Recall that μ∗|A∗ (μ∗ restricted to A∗) and ν are measures on the σ-algebra
A∗, so that they are additive by Definition 2.1(c). Moreover, also recall that
μ∗(X) = ν(X) = μ(X) <∞. Thus the above inequality leads to

μ∗(E) = μ∗(X)− μ∗(X\E) = ν(X)− μ∗(X\E) ≤ ν(X)− ν(X\E) = ν(E).

Hence ν(E) = μ∗(E) for all E ∈ A∗, which proves uniqueness if μ is finite.

(b) Assume that μ is σ-finite. Thus any extension ν of μ to A∗ is again
σ-finite. In fact, if μ is σ-finite, then there exists a sequence {An} of sets in
A ⊆ A∗ ⊆ ℘(X) for which μ∗(An) = ν(An) = μ(An) <∞ for every n≥1
and X =

⋃

n An, and so μ∗ and ν are σ-finite as well. Set A′
n =

⋃n
i=1 An

so that {A′
n} is an increasing sequence of sets of finite measure that cover

X. Take an arbitrary E in A∗. Since {E ∩ A′
n} is a sequence of sets in A∗

(intersection and finite union of sets in A∗ remain in A∗) of finite measure
(since μ∗(E ∩A′

n) ≤ μ∗(A′
n) <∞ and ν(E ∩A′

n) ≤ ν(A′
n) <∞), it follows

from part (a) that for every n≥1,

μ∗(E ∩A′
n) = ν(E ∩A′

n).

Thus, since {E ∩ A′
n} is an increasing sequence of sets in A∗ such that

E =
⋃

n(E ∩A′
n), and since both ν and the restriction μ∗|A∗ of μ∗ to the

σ-algebra A∗ are measures on A∗, we get by Proposition 2.2(c) that

μ∗(E) = lim
n

μ∗(E ∩A′
n) = lim

n
ν(E ∩A′

n) = ν(E).
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Hence ν(E) = μ∗(E) for all E ∈ A∗, proving uniqueness if μ is
σ-finite. �

Let λ∗ denote the measure on the σ-algebra A∗ obtained by the restric-
tion of the outer measure μ∗ :℘(X)→ R to A∗. That is,

λ∗ = μ∗|A∗ :A∗→ R.

The previous results are summarized as follows. If μ:A → R is a σ-finite
measure defined on an algebra A, then there exist a σ-algebra A∗ including
A and a unique extension of μ to a measure over the σ-algebra A∗. This
measure on A∗ is σ-finite and, by uniqueness, coincides with λ∗ :A∗→ R.
That is, there exists a unique measure λ∗ on the σ-algebra A∗ such that

μ = λ∗|A :A → R;

equivalently, such that λ∗(E) = μ(E) for every E ∈ A. Moreover, the mea-
sure space (X,A∗, λ∗) is complete. This means that the σ-algebra A∗ is
complete with respect to the measure λ∗ or, equivalently, the measure λ∗ is
complete on the σ-algebra A∗.

8.3 Construction of Lebesgue Measure

Consider the following classes of (left-open) intervals of the real line.

Class C1:
{

(α, β] ⊆ R : α, β ∈ R, α ≤ β
}

.

Class C2:
{

(−∞, β] ⊆ R : β ∈ R

}

.

Class C3:
{

(α,+∞) ⊆ R : α ∈ R

}

.

Class C4:
{

(−∞,+∞)
}

.

These four classes are exhaustive. Let I be the family of all (left-open) in-
tervals of the real line; each of them belonging to one of the above classes.
The empty set ∅ is of class C1 (for the case of α = β), and the only interval
of class C4 is R itself. It is clear that the intersection of any two sets in I is
again a set in I and that the complement of any set in I is a finite union
of disjoint sets in I. This means that I is a semialgebra. But the finite
union of sets in I is not necessarily a set in I, and so I is not an algebra.
However, the collection � of all finite unions of sets in I is an algebra
(Problem 8.3).
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Definition 8.7. Consider the collection � ⊆ ℘(R) consisting of all finite
unions of (left-open) intervals of the real line (i.e., of all finite unions of
intervals from the semialgebra I),

� =
{

F ⊆ R : F is a finite union of intervals from I
}

.

Let �:� → R an extended real-valued set function with following properties.

(a) �
(

(α, β]
)

= β − α for any α, β ∈ R such that α ≤ β,

(b) �
(

(−∞, β]
)

= �
(

(α,+∞)
)

= �
(

(−∞,+∞)
)

=∞,

(c) �
(⋃

i Ii
)

=
∑

i �(Ii)

for every finite family {Ii} of pairwise disjoint intervals in I.
A function with these properties is referred to as the length function on �.

We show that properties (a), (b), and (c) are enough to make the length
function �:�→R well defined (and so unique) on the collection �, which is
an algebra, and � is a measure on it. For the prove we proceed as follows.
First we check that � is well defined at every set in � (Problem 8.2). Next
we show that � is an algebra (Problem 8.3), and so we conclude that the set
function � is increasing (Problem 8.4). This is applied to prove an auxiliary
result in Proposition 8.8 that is used to prove in Lemma 8.9 that the length
function � is countably additive, and so it is a measure on the algebra �.

Proposition 8.8. Let (a, b] be an interval of class C1. If {(αk, βk]} is a
countable family of disjoint intervals of class C1, then

(a) (a, b] =
⋃

k
(αk, βk] implies �

(

(a, b]
)

=
∑

k
�
(

(αk, βk]
)

.

If {(ai, bi]} is a finite set of disjoint intervals of class C1, then

(b)
⋃

i
(ai, bi] =

⋃

k
(αk, βk] implies �

(
⋃

i
(ai, bi]

)

=
∑

k
�
(

(αk, βk]
)

.

Proof. First note that if the countable family {(αk, βk]} of disjoint intervals
is finite, then the results in (a) and (b) are trivially verified by Definition
8.7(c). Thus suppose the countable family {(αk, βk]} is infinite. To avoid
trivialities, assume that all intervals {(αk, βk]} are nonempty , which means
that αk < βk for every k.

(a) Suppose (a, b] =
⋃

k(αk, βk]. Take an arbitrary finite subfamily {(αi, βi]}
of the infinite family {(αk, βk]}. Since {(αi, βi]} has a finite number of subin-
tervals of (a, b], it follows that a ≤ min{αi} and max{βi} ≤ b, and so

∑

i
�
(

(αi, βi]
)

=
∑

i
(βi − αi) ≤ b− a = �

(

(a, b]
)

.
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This holds for all finite subfamilies {(αi, βi]} of {(αk, βk]}. By taking the
supremum over all finite subsets of the countably infinite set {�((αk, βk])}
of positive numbers we get

(a1)
∑

k
�
(

(αk, βk]
)

= sup
∑

i
�
(

(αi, βi]
)

≤ �
(

(a, b]
)

.

To verify the reverse inequality, proceed as follows. Take an arbitrary ε > 0
and let {εk} be any sequence of positive numbers such that

∑

k εk ≤ ε. Since
(a, b] =

⋃

k(αk, βk], it follows that b ∈ (αk1
, βk1

] for some index k1, and so
b = βk1

. Furthermore, it also follows that a = infk{αk}, which ensures the
existence of an index k0 �= k1 such that αk0

< a+ ε0. Hence the following
infinite family of open intervals

{

(αk0
− ε0, βk0

+ ε0) , (αk, βk + εk) for every k �= k0 with k0 �= k1
}

covers the closed and bounded interval [a, b] (i.e., it covers the compact in-
terval [a, b] — by the Heine–Borel Theorem). The definition of compactness
(cf. Definition 11.1(c)) says that this family of open intervals has a finite
subfamily of open intervals that still covers [a, b],

{

(αk0
− ε0, βk0

+ ε0) , (αj , βj + εj) for every j ∈ J
}

,

with J being a finite index set such that k0 �∈ J and k1 ∈ J . If the intervals in
{(αk, βk]} are pairwise disjoint, then we may assume that αk0

< αj < αk1
for all j ∈ J\{k1}. Note that J is not empty (k1 ∈ J). Let n ∈ N be the
cardinality of the finite set J (i.e., the number of elements of J), and relabel
this finite family of open intervals with nonnegative integers i ∈ [0, 1, ..., n].
Since the intervals in {(αk, βk]} are disjoint, we can order the endpoints of
the intervals that appear in the above finite family as αi < βi ≤ αi+1 < βi+1

for each i ∈ [0, 1, ..., n−1], identifying k0 with 0 and k1 with n, so that

a0 − ε0 < α ≤ α0 < β0 ≤ αi < βi ≤ αi+1 < βi+1 < αn < βn = b < βn + εn

for i ∈ [1, ..., n−2]. This finite family of open intervals is then rewritten as

{

(α0 − ε0, β0 + ε0) , (αi, βi + εi) for every i ∈ [1, ..., n]
}

,

which covers [a, b], and so it covers the interval (a, b] of class C1:

(a, b] ⊆ [a, b] ⊆ (α0 − ε0, β0 + ε0) ∪
n
⋃

i=1

(αi, βi + εi)

⊆ (α0− ε0, α0] ∪ (α0, β0] ∪ (β0, β0+ ε0] ∪
n
⋃

i=1

(αi, βi] ∪
n
⋃

i=1

(βi, βi+ εi].
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Let i be an arbitrary index in [0, ..., n−1]. Since {(αk, βk]} consists of disjoint
intervals, it follows that βi ≤ αi+1. Also, since the above union of intervals
of class C1 covers [a, b], it follows that αi+1 ≤ βi + εi. Then consider a finite
sequence {δi} of nonnegative numbers given by

0 ≤ δi = αi+1 − βi ≤ εi for each i ∈ [0, ..., n−1] and 0 < δn = εn.

Replacing {εi} with {δi} in the intervals of the form (βi, βi + εi] we get a
finite covering for (a, b] consisting of disjoint intervals of class C1, viz.,

(α0 − ε0, α0] ∪ (α0, β0] ∪ (β0, β0 + δ0] ∪
n
⋃

i=1

(αi, βi] ∪
n
⋃

i=1

(βi, βi + δi].

Hence, according to Definition 8.7(a,c) and Problem 8.4,

�
(

(a, b]
)

≤ ε0 +

n
∑

i=0

�
(

(αi, βi]
)

+

n
∑

i=0

δi ≤
∑

k
�
(

(αk, βk]
)

+ 2ε

for
∑n

i=0 δi <
∑

k εk ≤ ε. Since this holds for an arbitrary ε > 0, we get

(a2) �
(

(a, b]
)

≤
∑

k
�
(

(αk, βk]
)

.

Therefore the result in (a) follows by (a1) and (a2).

(b) The disjointness assumption on both {(αk, βk]} and {(ai, bi]} ensures
that, if

⋃

i(ai, bi] =
⋃

k(αk, βk], then (ai, bi] =
⋃

j(αi,j , βi,j ] for each i, where

{(αi,j , βi,j ]} = {(αk, βk]}. Thus, applying Definition 8.7(c) and the result
in item (a), we get

�
(
⋃

k
(αk, βk]

)

= �
(
⋃

i
(ai, bi]

)

=
∑

i
�
(

(ai, bi]
)

=
∑

i

∑

j
�
(

(αi,j , βi,j ]
)

.

Since the summands {�((αi,j , βi,j ])} are nonnegative real numbers, the dou-
bly indexed sum is unconditionally convergent, and hence

∑

i

∑

j
�
(

(αi,j , βi,j ]
)

=
∑

k
�
(

(αk, βk]
)

. �

Lemma 8.9. The collection � of all finite unions of (left-open) intervals of
the real line is an algebra of subsets of R, and the length function �:� → R

is a measure defined on the algebra �.

Proof. Take the collection � of all finite unions of intervals from I as in
Definition 8.7. It is readily verified that � is an algebra of subsets of R

(cf. Problem 8.3). We claim that the length function � is a measure on the
algebra �. Note that �(∅) = 0 by Definition 8.7(a). Next note that every set
in � can be expressed as a finite union of disjoint intervals from I so that
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�(F ) ≥ 0 for every F ∈ � by Definition 8.7(a,b,c). Indeed, every countable
family of intervals in I admits a disjointification consisting of intervals in
I (see Hints to Problems 2.3 and 7.2). To complete the proof, it remains to
verify axiom (c) of Definition 8.1, viz.,

(c) �
(⋃

n Fn

)

=
∑

n �(Fn)

for every countable family {Fn} of pairwise disjoint sets in � for which
⋃

n Fn lies in �.
Recall that every set in the algebra � can be expressed as a finite union
of disjoint intervals from I. Hence the identity in property in (c) is readily
verified by Definition 8.7(c) if {Fi} is a finite family of pairwise disjoint
sets in �. Thus suppose {Fn} is a countably infinite family (equivalently,
an infinite sequence) of pairwise disjoint sets in � such that

⋃

n Fn lies in �.
Take the extended nonnegative-valued sequence {�(Fn)}. If

∑

n �(Fn) <∞,
then �

(⋃

i Fi

)

=
∑

i �(Fi) <
∑

n �(Fn) <∞ for every finite subunion
⋃

i Fi

of
⋃

n Fn because (c) holds for finite families of disjoint sets in �. So

�
(
⋃

n
Fn

)

= sup �
(
⋃

i
Fi

)

≤
∑

n
�(Fn) <∞,

where the supremum is taken over all finite subunions of the countably
infinite union

⋃

n Fn. Hence, if �
(⋃

n Fn

)

=∞, then axiom (c) holds:

�
(
⋃

n
Fn

)

=
∑

n
�(Fn) =∞.

Thus suppose �
(⋃

n Fn

)

<∞ so that �(Fn) <∞ for each n by Problem 8.4,
and recall that each Fn and also

⋃

n Fn are sets in �. Then each set Fn is
a finite union of disjoint intervals of class C1,

Fn =
⋃

j
(αn,j , βn,j ].

Since {Fn} is a sequence of disjoint sets, this implies that

⋃

n
Fn =

⋃

n,j
(αn,j , βn,j ] =

⋃

k
(αk, βk],

where {(αn,j , βn,j ]} = {(αk, βk]} is an infinite family of disjoint intervals of
class C1, which also is a finite union of disjoint intervals of class C1,

⋃

n
Fn =

⋃

i
(ai, bi].

Therefore,
⋃

i(ai, bi] =
⋃

k(αk, βk]. Using Proposition 8.8(b) and recalling
the unconditional convergence argument that closed that proof, we get
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�
(
⋃

n
Fn

)

= �
(
⋃

i
(ai, bi]

)

=
∑

k
�
(

(αk, βk]
)

=
∑

n,j
�
(

(αn,j , βn,j ]
)

=
∑

n

∑

j
�
(

(αn,j , βn,j ]
)

=
∑

n
�
(
⋃

j
(αn,j , βn,j ]

)

=
∑

n
�(Fn)

by Definition 8.7(c), so that (c) holds, thus completing the proof. �

Now we can to apply the Carathéodory Extension Theorem of Sec-
tion 8.2 to build up the Lebesgue measure.

Theorem 8.10. There exists a σ-algebra �∗ of subsets of R that includes
the algebra � and extends the length function �:� → R uniquely to a mea-
sure λ∗ :�∗→ R, which is σ-finite and complete on the σ-algebra �∗.

Proof. Lemma 8.9 says that �:� → R is a measure on the algebra �. Let
�∗ :℘(R)→ R be the outer measure generated by � (as in Definition 8.2),
and let �∗ be the collection of all sets in ℘(R) that are �∗-measurable:

�∗ =
{

F ∈ ℘(R): �∗(S) = �∗(S ∩ F ) + �∗(S\F ) for every S ∈ ℘(R)
}

.

According to Theorem 8.4, �∗ is a σ-algebra of subsets of R that includes
the algebra �, and the restriction of �∗ to �∗ is a measure. In other words,
� ⊆ �∗⊆ ℘(R) and �∗|�∗ is a measure on �∗. Thus this measure �∗|�∗ ex-
tends � over �∗ according to Proposition 8.3(d). Also, it is readily verified
that the measure � on the algebra � is σ-finite. Indeed, the real line R is cov-
ered by the countably infinite family of intervals {(qk − ε, qk + ε]} of class
C1 of length 2ε for any ε > 0, where {qk} (with k running over all integers
Z) is an enumeration of the rational numbers Q (see Example 2C). Since �
is σ-finite, it Theorem 8.6 ensures that there is a unique measure on �∗, say
λ∗ :�∗→ R, that extends � over �∗, which is again σ-finite. By uniqueness,
this extension of � over �∗ coincides with the restriction of �∗ to �∗; that
is, λ∗ = �∗|�∗ . Thus Proposition 8.5 ensures that λ∗ is a complete measure
on the σ-algebra �∗ (i.e., the measure space (R,�∗, λ∗) is complete). �

The σ-algebra �∗ of Theorem 8.10 is referred to as the Lebesgue algebra.
Sets in �∗ are called Lebesgue sets (or �∗-measurable). The measure λ∗ on
�∗ of Theorem 8.10 is also called Lebesgue measure. We close the section
by considering a collection of a few basic properties of Lebesgue measure.

Consider the Borel algebra �, consisting of the Borel sets (i.e., �-meas-
urable sets), which is the σ-algebra generated by the open intervals of the
real line R or, equivalently, by the left-open intervals in I, which means that
� is the intersection of all σ-algebras of subsets of R that include the family
I (so � is the smallest σ-algebra including I — see also the remark following
Problem 1.14). Since any σ-algebra that includes the family I necessarily
includes the algebra � (finite union of intervals from I), it follows that



146 8. Extension of Measures

(P1) � is the smallest σ-algebra including the algebra �.

Thus � properly includes the algebra � (because � is not a σ-algebra
— Problem 8.3). Moreover, � is included in the σ-algebra �∗ (since �∗

includes �). This leads to the following chain if inclusions:

� ⊂ � ⊆ �∗ ⊆ ℘(R).

It is clear that the restriction of the Lebesgue measure λ:� → R of Example
2C to the algebra � is the length function �:� → R (Problem 2.7(c)). Recall
that the restriction of the outer measure �∗ :℘(R)→ R to the Lebesgue alge-
bra �∗ is the Lebesgue measure λ∗ :�∗→ R (Proof of Theorem 8.10). So

λ|� = � and �∗|�∗ = λ∗.

Since the length function � on � extends to the measure λ∗ on �∗ so that
λ∗|� = � = λ|�, and since this extension is unique (Theorem 8.10), we can
infer that the restriction of the Lebesgue measure λ∗ :�∗→ R to the Borel
algebra � is the Lebesgue measure λ:� → R of Example 2C. That is,

(P2) λ∗|� = λ.

Summing up,

� = λ|� = λ∗|� = �∗|�, λ = λ∗|� = �∗|�, λ∗ = �∗|�∗ .

Recall that λ is a Borel measure in the sense of Problem 2.13 (which implies
that all bounded sets in � have finite measure). Then so is its extension
λ∗ over �∗. Since �-measurable sets are �∗-measurable, all the Borel sets
of Problem 2.7 are Lebesgue sets, and their λ∗-measures (as Lebesgue sets)
coincide with their λ-measures (as Borel sets), which in turn coincide with
their �∗-outer measures. In particular, the Cantor set in � of Problem 2.9
is an uncountable set with Lebesgue measure zero. Also, the measure space
(R,�∗, λ∗) is the completion of the measure space (R,�, λ). Equivalently,
the σ-algebra �∗ is the completion of the σ-algebra � with respect to λ, or
the measure λ∗ is the completion of the measure λ on �. That is,

(P3) �∗ = � and λ∗ = λ

(see the remark that closes Section 2.3). In fact, since (R,�∗, λ∗) is a com-
plete measure space, and according to Problem 8.6(b), it follows that

�∗ =
{

E ⊆ R : E = E ∪A, with E ∈ �, A ⊆ N ∈ � and λ(N) = 0
}

.

This is precisely the definition of �. So, according of Problem 2.15, every
�∗-measurable function is a.e. equal to an �-measurable functions . That
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is, if f :R → R is an �∗-measurable (or Lebesgue measurable) function, then
there is an �-measurable (or Borel measurable) function g :R → R such that
g = f λ-a.e. Observe that the Borel–Stieltjes measure on � of Example 2D
can be naturally extended to a complete Lebesgue–Stieltjes measure on �∗.
The above properties are easily verified. However, �∗ is neither the smallest
nor the largest σ-algebra including �, so the inclusions below are proper:

(P4) � ⊂ �∗⊂ ℘(R).

These proper inclusions are all but trivial. They have been quite critical in
many aspects (including historical aspects). Completeness of the measure
space (R,�∗, λ∗) can be used to give an existential proof for the first proper
inclusion. Indeed, let IQ be the subfamily of I consisting of those intervals
from I with rational endpoints. It is readily verified that this is a countably
infinite set (#IQ = #N, where # stands for cardinality), and also that the
smallest σ-algebra of subsets of R that includes IQ is the smallest σ-algebra
that includes I, and so it is the smallest σ-algebra that includes the algebra
�, which is precisely the Borel algebra �. Then � is the σ-algebra generated
by IQ . Since #IQ = #N < #R, it follows that #� ≤ #R [18, Problem 9(c),
p. 22]. But #R ≤ #� trivially (for each x ∈ R, (x, x+ 1) ∈ �). Hence,

#� = #R.

Now recall that the Cantor set C ∈ � ⊆ �∗ of Problem 2.9 is uncountable
(actually, #C = #R) and has measure zero. Since λ∗ is a complete measure
on �∗ and λ∗(C) = 0, it follows that all subsets of C are measurable; that
is, ℘(C) ⊆ �∗. Thus, recalling that #X < #℘(X) for every set X, we get

#R = #C < #℘(C) ≤ #�∗.

Therefore #� < #�∗ and � ⊆ �∗ so that

� ⊂ �∗.

This proves the first proper inclusion in P4 and, en passant , it also proves
that � is not complete (as anticipated in the remark the closes Section 2.3)
since �∗ is the completion of �. As for the second proper inclusion,

�∗⊂ ℘(R),

a proof of it is worked out in Problem 8.14 based on translation invariance
(an important property that we discuss later). It is also worth noticing that
by Properties P3 and P4 the σ-algebra � is not complete with respect to λ,
and this implies that there are Lebesgue sets of measure zero that are not
Borel. However, every Lebesgue set of measure zero is a subset of a Borel
set of measure zero:
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(P5) N ∈ �∗ and λ∗(N) = 0 imply N ⊆ G ∈ � and λ(G) = 0.

In fact, since N ∈ �∗ and λ∗(N) = 0 imply N ∈ ℘(R) and �∗(N) = 0, Prop-
erty P5 is an immediate consequence of Problem 8.8(c), which also says that
the Borel set G of measure zero actually is a Gδ. Next we focus on the trans-
lation invariance property . For every α ∈ R and every S ⊆ R, set

S + α =
{

ξ + α ∈ R : ξ ∈ S
}

⊆ R.

If E ∈ �∗, then E + α ∈ �∗ and

(P6) λ∗(E + α) = λ∗(E)

(cf. Problem 8.12). Translation invariance plays a central role when we set
about to build up a nonmeasurable set (as we do in Problem 8.14). Another
important consequence of it reads as follows.

(P7) Sets with positive outer measure include nonmeasurable subsets.

(See Problem 8.18.) Special case: every Lebesgue set of positive measure
includes a nonmeasurable set . Translation invariance is the central topic of
Chapter 13 (see, in particular, Proposition 13.F).

Remarks: In the first paragraph of Chapter 1 we observed that “the power
set is too large a set to be the domain” of some measures. Now (and only
now) are we ready to offer a proper explanation of that assertion. In fact, we
have the following problem. It is not possible to construct a set function with
the following four properties: (1) defined on the whole ℘(R), (2) assigning
to each interval the value of its length, (3) countably additive, and (4)
translation invariant, as we can infer from Problem 8.14. Indeed, properties
(2), (3), and (4) were all we needed in the proof of Problem 8.14. Weakening
property (1) is a possible approach to face this problem (as we have, in fact,
done in Chapters 2 and 8), supplying a measure λ∗ defined on a proper σ-
algebra �∗, which retains the useful properties (2), (3), and (4). However,
there are other approaches (e.g., if we keep (1), (2), and (4) but replace (3)
with subadditivity, then we get the outer measure �∗ on ℘(R)). Assuming
the Continuum Hypothesis (i.e., the hypothesis that every uncountable sub-
set of R has the same cardinality as R itself), then it can be shown that
there is no set function satisfying properties (1), (2), and (3) only. (See the
references in the Suggested Reading section.)

8.4 Problems

Problem 8.1. Axiom (c) of Definition 8.1 is referred to as countable addi-
tivity (same as in axiom (c) of Definition 2.1 for a measure on σ-algebra).
Let μ:A → R be a set function on an algebra A and consider the assertion:
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◦ μ
(⋃

i Ei

)

=
∑

i μ(Ei) for every finite family {Ei} of pairwise disjoint
sets in A.

This is referred to as finite additivity. It is clear that countable additivity
implies finite additivity. Verify that the converse fails. (Hint: Problem 2.5.)
Suppose the set function μ is such that

(i) μ(E) ≥ 0 for every E ∈ A
and, if {An} is a sequence of sets in A,

(ii) limk μ
(⋃k

n=1 An

)

= μ
(⋃∞

n=1 An

)

whenever
⋃∞

n=1 An lies in A. Prove the following proposition. If μ is finitely
additive, then it is countably additive. In other words, take an arbitrary
sequence {En} of pairwise disjoint sets in A. If

μ
(

m
⋃

n=1

En

)

=

m
∑

n=1

μ(En)

for every m≥1 (i.e., finite additivity) and (i) and (ii) hold, then show that

μ
(

∞
⋃

n=1

En

)

=
∞
∑

n=1

μ(En)

whenever
⋃∞

n=1 En lies in A (i.e., countable additivity).

Hint: First use the proof of Proposition 2.2(a), recalling that μ is finitely
additive now acting on an algebra A, to show that if (i) holds, then

(i′) A,B ∈ A and A ⊆ B imply μ(A) ≤ μ(B).

Now take an arbitrary sequence {En} of pairwise disjoint sets in A such
that

⋃∞
n=1 En ∈ A. Use finite additivity, the fact that

{⋃m
n=1 En

}

is an
increasing sequence of sets inA, and the result in (i′) to check that

m
∑

n=1

μ(En) = μ
(

m
⋃

n=1

En

)

≤ μ
(

∞
⋃

n=1

En

)

for all m≥1.

Next apply the same argument, recalling from (i′) that
{

μ
(⋃m

n=1 En

)}

is

an increasing sequence of nonnegative elements from R, to show that

μ
(

k
⋃

n=1

En

)

≤ lim
m

μ
(

m
⋃

n=1

En

)

= lim
m

m
∑

n=1

μ(En) =

∞
∑

n=1

μ(En) for all k≥1.

Problem 8.2. The notion of length function �:� → R was introduced in
Definition 8.7. Show that properties (a), (b), and (c) in Definition 8.7 are
enough to ensure that �:� → R is defined on the whole collection �.
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Hint: Every countable family of intervals in I admits a disjointification
consisting of intervals in I (use the Hints to Problems 2.3 and 7.2). Use
Definition 8.7(c) to verify that a length is defined for every set in �.

Problem 8.3. Consider again the setup of Definition 8.7.

(a) First show that � is an algebra of subsets of the real line R.

Hint: In order to show that axiom (b) of Definition 1.1 holds true; that
is, to check that the complement of a set in � belongs to �, proceed as
follows. Verify that (i) if I is an interval in I, then R\I is the union
of no more than two intervals in I, and therefore it is a set in �, and
(ii) if E and F are sets in �, then E ∩ F is again a set in � (since
the intersection of any pair of intervals in I is again an interval in I).
According to De Morgan laws, R\

⋃

i Ii =
⋂

i(R\Ii) lies in � for every
finite union

⋃

i Ii of intervals Ii from I.
(b) Now verify that � is not a σ-algebra of subsets of R.

Hint:
⋃∞

n=1(2n− 1, 2n] = (1, 2] ∪ (3, 4] ∪ ... is not a set in �.

Problem 8.4. Let � be the algebra of Problem 8.3(a). Verify that

E ⊆ F with E,F ∈ � implies �(E) ≤ �(F ).

Hint: F = E ∪ (F\E) and F\E ∈ �. Recall the Hint to Problem 8.2.

Problem 8.5. Consider the union in the Hint to Problem 8.3(b). Observe
that it suggests the following infinite union in � (which in fact is in class C3)
of disjoint intervals of class C1,

∞
⋃

k=1

(k, k + 1] = (1, 2] ∪ (2, 3] ∪ (3, 4] ∪ ... = (1,+∞),

which has an infinite subunion
⋃∞

n=1(2n−1, 2n] not in�. Show that this can
happen even if the original infinite union is of class C1 (thus having finite
length) by exhibiting a sequence {(αk, βk]} of intervals of class C1 such that

∞
⋃

k=1

(αk, βk] = (0, 1] but

∞
⋃

n=1

(αn, βn] �∈ �

for some subsequence {(αn, βn]} of {(αk, βk]}. Hint:
{(

1

2k
, 1

2k−1

]}

.

Problem 8.6. Take the Borel algebra � and the Lebesgue algebra �∗, which
are σ-algebras of subsets of R with � ⊆ �∗. Prove the following assertions.
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(a) If F ∈ �∗, then there exists E ∈ � such that λ∗(F\E) = 0.

Hint: Since λ∗(F ) = λ∗(F∩E)+λ∗(F\E), it follows that, if λ∗(F\E)> 0
for every E ∈ �, then λ∗(F ∩ E) < λ∗(F ) (whenever λ∗(F ) <∞) for
every E ∈ �, which is a contradiction since R ∈ �.

(b) If F ∈ �∗, then there exist E ∈ � and N ∈ �∗ such that F = E ∪N
and E ∩N = ∅, where λ∗(N) = 0 and so λ∗(F ) = λ(E).

Problem 8.7. Take the outer measure �∗ :℘(R)→ R generated by the
length function �:� → R, which is a measure on the algebra � (by Lemma
8.6). Apply Definitions 8.2 and 8.7 to verify that �∗ is written as

(a) �∗(S) = inf
{In}∈IS

∑

n
�(In)

for every S ∈ ℘(R), where

IS =
{

{In}: In ∈ I and S ⊆
⋃

nIn
}

is the collection of all countable families {In} of intervals in I that cover S.
Let I ∈ I be an arbitrary interval, and let I◦ and I− denote interior and
closure of I, respectively (with respect to the usual topology of the R).
Suppose λ:� → R is the Lebesgue measure on the σ-algebra �. Recall that
� includes the algebra � (i.e., � ⊂ �). Verify that I◦ ∈ � and I−∈ �, and

(b) λ(I◦) = λ(I) = λ(I−)

for every I ∈ I. (Hint: Problem 2.7.) Recall that I◦ ⊆ I ⊆ I−and show that

(c) �∗(S) = inf
{In}∈I◦

S

∑

n
λ(I◦n) = inf

{In}∈I−
S

∑

n
λ(I−n ),

where the infimum is taken over all countable coverings of S consisting
either of open intervals (equivalently, of the interior of intervals in I),

I◦S =
{

{In}: In ∈ I and S ⊆
⋃

nI
◦
n

}

,

or of closed intervals (equivalently, of the closure of intervals in I),

I−S =
{

{In}: In ∈ I and S ⊆
⋃

nI
−
n

}

.

Hint: Covering by closed intervals is a consequence of item (b) since I ⊆ I−

and �(I) = λ(I). For the case of covering by open intervals, take an arbi-
trary ε > 0 and observe that for each In ∈ I there exists an open interval
Jn ∈ � such that In ⊆ Jn and λ(Jn) ≤ �(In) +

ε
2n . Thus

⋃

n In ⊆
⋃

n Jn
and

∑

n λ(Jn) ≤
∑

n �(In) + ε (if n runs over N).
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Problem 8.8. Take a measure �:� → R on an algebra �, let �∗ :℘(R)→ R

be the outer measure generated by � (Definition 8.2), let λ:� → R be the
Lebesgue measure on the σ-algebra �, and let λ∗ :�∗→ R be the Lebesgue
measure on the σ-algebra �∗. Recall that � ⊆ �∗ and λ(E) = λ∗(E) for
every E ∈ �, and also that open sets are measurable (open sets are Borel
sets by Problem 2.7(d), and so they are Lebesgue sets). Take any S ∈ ℘(R)
and an arbitrary ε > 0. Show that there is an open set Uε ⊆ R such that

(a) S ⊆ Uε and λ(Uε) ≤ �∗(S) + ε.

Then, since �∗(S)≤ λ(Uε) and infimum is the maximum of all lower bounds,

(b) �∗(S) = inf
U∈T

{

λ(U): S ⊆ U
}

,

where T is the topology (i.e., the collection of all open sets) of R.

Hint: Take the first identity in Problem 8.7(c) with the infimum taken over
I◦S . Thus there is {Jn} ∈ I◦S such that

∑

n λ(J
◦
n) ≤ �∗(S) + ε. Since every

union of open sets is again an open set, set U =
⋃

n J
◦
n in � and verify that

λ(U) = λ∗(U) = �∗(U) ≤
∑

n �
∗(J◦

n) =
∑

n λ(J
◦
n) — Proposition 8.3(e).

Finite intersections of open sets is an open set, but a countable intersection
of open sets, which is referred to as a Gδ, is not necessarily an open set,
although always measurable (i.e., a Gδ is a Borel set). Show that there exists
a Gδ, say G ∈ �, such that

(c) S ⊆ G and �∗(S) = λ(G).

Hint: Item (a) ensure the existence of a sequence {Un} of open sets such
that S ⊆ Un and λ(Un) ≤ �∗(S) + 1

n for all n. Set G =
⋂

n Un in � and
verify that S ⊆ G ⊆ Un, and so �∗(S) ≤ �∗(G) = λ(G) ≤ λ(Un) for all n.

Problem 8.9. Apply Problem 8.8(c) and the fact that the measure λ∗ is
complete to show that every set with outer measure zero is a Lebesgue set :

(a) N ∈ ℘(R) and �∗(N) = 0 imply N ∈ �∗ and λ∗(N) = 0; and

(b) E,N ∈ ℘(R), E ⊆ N and �∗(N) = 0 imply E ∈ �∗ and λ∗(E) = 0.

Take an arbitrary set S ∈ ℘(R). According to Problem 8.8(c), S ⊆ G with
�∗(S) = λ(G) for some G ∈ �. Since G = S ∪ (G\S) and S = G\(G\S), use
item (a) to prove the following assertion.

(c) If �∗(S) <∞, then S ∈ �∗ if and only if �∗(G\S) = 0.
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Problem 8.10. Consider the setup of Problem 8.8. Prove that

λ∗(E) = inf
U∈�

{

λ(U): U is open and E ⊆ U
}

for every E ∈ �∗.

This means that λ∗ is outer regular (see Section 11.2).

Hint: Problem 8.8(b) and Property P2.

Problem 8.11. Consider again the setup of Problem 8.8. Prove that

λ∗(E) = sup
F∈�

{

λ(F ): F is closed and F ⊆ E
}

for every E ∈ �∗.

This implies that λ∗ is inner regular (see Section 11.2).

Hint: Take an arbitrary E ∈ �∗ and an arbitrary ε > 0. Set E′ = R\E ∈ �∗

(the complement of E lies in �∗). According to Problem 8.8(a), there is an
open set Uε such that E′ ⊆ Uε and λ(Uε) ≤ λ∗(E′) + ε. First prove that

λ∗(Uε\E′) ≤ ε.

If λ∗(E′) <∞, then the above inequality is an immediate consequence of
Proposition 2.2(b). If λ∗(E′) =∞, then proceed as follows. Since λ∗ is a σ-
finite measure on �∗, every set in �∗ is σ-finite, and so there is a countable
covering of E′, say {E′

n}, made up of measurable subsets of E′ of finite mea-
sure. Since λ∗(E′

n) <∞, there is an open set Uε,n such that E′
n ⊆ Uε,n and

λ∗(Uε,n\E′
n) ≤ ε

2n . Take the open set Uε =
⋃

n Uε,n ⊇
⋃

n E
′
n = E′. Show

that λ∗(Uε\E′) ≤
∑

n λ
∗(Uε,n\E′

n) ≤ ε. This proves the claimed inequality.
Now take the closed set Fε = R\Uε ⊆ E, verify that E\Fε = Uε\E′, and
hence λ∗(E\Fε) ≤ ε. Thus λ∗(E) = λ∗(E ∩ Fε) + λ∗(E\Fε) ≤ λ∗(Fε) + ε.
But λ∗(Fε) ≤ λ∗(E) (and supremum is the minimum of all upper bounds).

Problem 8.12. Prove the translation invariance property (i.e., prove P6).

Hint: Take an arbitrary real number α ∈ R. Verify that

�(I + α) = �(I)

for every I ∈ I. Apply Problem 8.7(a) to show that

�∗(S + α) = �∗(S)

for every S ∈ ℘(R). Recall that E ∈ �∗ if and only if

�∗(S) = �∗(S ∩ E) + �∗(S\E) for every S ∈ ℘(R).

Take arbitrary A,B ∈ ℘(R). Verify that (A+ α) ∩B = (A ∩ (B − α)) + α
and (R\B) + α = R\(B + α), and so (A+ α)\B = (A\(B − α)) + α. Thus
show that if E ∈ �∗, then
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�∗(S) = �(S − α) = �∗
(

(S − α) ∩ E
)

+ �∗
(

(S − α)\E
)

= �∗
(

(S ∩ (E + α)− α
)

+ �∗
(

(S\(E + α)− α
)

= �∗
(

S ∩ (E + α)
)

+ �∗
(

S\(E + α)
)

.

Hence E + α also lies in �∗. Since λ∗ = �∗|�∗ , conclude the result in P6:

E ∈ �∗ implies E + α ∈ �∗ and λ∗(E + α) = λ∗(E).

Problem 8.13. Consider a binary operation �: [0, 1)×[0, 1)→ [0, 1) defined
as follows. If α and β lie in the interval [0, 1), then

α� β =

{

α+ β, α+ β < 1,

α+ β − 1, α+ β ≥ 1.

This is called sum modulo 1. For every α ∈ [0, 1) and every S ⊆ [0, 1), set

S � α =
{

ξ � α ∈ R : ξ ∈ S
}

⊆ [0, 1).

This is called translation modulo 1, Prove translation invariance modulo 1;
that is, prove translation invariance with respect to sum modulo 1.

(a) If S ⊆ [0, 1), then �∗(S � α) = �∗(S).

(b) If E ⊆ [0, 1) and E ∈ �∗, then E � α ∈ �∗ and λ∗(E � α) = λ∗(E).

Hint: Take an arbitrary real number α ∈ [0, 1), and take an arbitrary set
E ⊆ [0, 1) such that E ∈ �∗. Consider the sets E1 = E ∩ [0, 1−α) and E2 =
E ∩ [1−α, 1). Show that E1 and E2 lie in �∗. Since ξ + α < 1 for every
ξ ∈ E1, and ξ + α ≥ 1 for every ξ ∈ E2, verify that E1 � α = E1 + α and
E2 � α = E2 + (α− 1). Therefore, conclude that E1 � α and E2 � α lie
in �∗. Finally, using translation invariance again (for ordinary sums, as in
Problem 8.12), show that

λ∗(E � α) = λ∗(E1 � α) + λ∗(E2 � α)

= λ∗(E1 + α) + λ∗(E2 + α) = λ∗(E1) + λ∗(E2) = λ∗(E).

Problem 8.14. Let ∼ be a relation on the interval [0, 1) defined by

α ∼ β if and only if α− β ∈ Q.

In other words, α and β in [0, 1) are related if their difference is a rational
number. This is an equivalence relation. That is, ∼ is reflexive (i.e., α ∼ α),
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transitive (i.e., α ∼ β and β ∼ γ imply α ∼ γ), and symmetric (i.e., α ∼ β
implies β ∼ α). Thus ∼ induces a partition of [0, 1) into equivalence classes

[α] =
{

α′∈ [0, 1): α′ ∼ α
}

=
{

α′∈ [0, 1): α′− α ∈ Q

}

.

The Axiom of Choice ensures the existence of sets consisting of elements
from every equivalence class (one and just one from each equivalence class).
These are the Vitali sets. Let V ⊆ [0, 1) be a Vitali set and let {qn} be
an enumeration of Q ∩ [0, 1). For each n set Vn = V � qn ⊆ [0, 1); rational
translations modulo 1 of V . Show that {Vn} forms a partition of [0, 1).

(a) Vm ∩ Vn = ∅ whenever m �= n.

Hint: Take an arbitrary ξ ∈ Vn ∩ Vm. Show that ξ = α� qn = β � qm,
with α, β ∈ V, α� qn ∈ Vn, and β � qm ∈ Vm. Then α− β ∈ Q (i.e.,
α ∼ β), so α and β come from the same equivalence class. Since V has
only one element from each equivalence class, α = β. Hence m = n.

(b)
⋃

nVn = [0, 1).

Hint: Take an arbitrary α ∈ [0, 1). Thus α is in some equivalence class
(since these classes form a partition of [0, 1)), and so α ∼ β for some
β ∈ V ⊆ [0, 1) (since V has one element from each class), which means
α− β ∈ Q so that α = β + q for some q in Q. First show that if β ≤ α,
then α = β + qn for qn in Q ∩ [0, 1) so that α = β � qn, and therefore
α ∈ Vn for some n. Next verify that if α < β, then α = β − qm for qm
in Q ∩ (0, 1) so that α = β � pm with pm= 1− qm in Q ∩ (0, 1), and so
α ∈ Vm for some m. Then conclude that [0, 1) ⊆

⋃

n Vn.

Now use Problem 8.13 to prove that

V �∈ �∗.

Hint: If V ∈ �∗, then λ∗([0, 1)) =
∑

n λ
∗(Vn) =

∑

n λ
∗(V ) �= 1.

Outcome: Vitali sets are not measurable, thus completing the proof of P4.
This was the first example of a nonmeasurable set, given by Giuseppe Vitali
in 1905. The use of the Axiom of Choice is essential here.

Problem 8.15. Exhibit a sequence {Vn} of disjoint sets in ℘(R) such that

�∗
(
⋃

n
Vn

)

<
∑

n
�∗(Vn).

Problem 8.16. Exhibit a pair of disjoint sets A and B in ℘(R) such that

�∗(A ∪B) �= �∗(A) + �∗(B).
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Hint: According to Propositions 8.3(c) and 8.5(a), the outer measure of a
Vitali set V is such that 0 < �∗(V ) ≤ 1. Take the sequence {Vn} of Problem
8.14. Set q0 = 0 so that V0 = V. Note that the equivalence class containing
zero is [0] = Q ∩ [0, 1). Use the same argument as in the Hint to Problem
8.14(b) and show that

⋃

nVn\V0 = (0, 1). Set A = V0 and B =
⋃

nVn\V0.

Problem 8.17. Show that measurable subsets of Vitali sets have measure
zero. In other words, prove that

E ∈ �∗ and E ⊂ V imply λ∗(E) = 0.

Hint: Consider the setup of Problem 8.14. Set En = E � qn ⊂ Vn. Show
that {En} is a sequence of disjoint sets in �∗ with λ∗(En) = λ∗(E) and

∑

n
λ∗(En) = λ∗

(
⋃

n
En

)

≤ �∗
(
⋃

n
Vn

)

= �∗
(

[0, 1)
)

= 1.

Problem 8.18. Prove Property P7.

If S ∈ ℘(R) and �∗(S) > 0, then there exists S0 ⊆ S such that S0 �∈ �∗.

Hint: Suppose �∗(S) > 0. Then use Problem 8.7(c) to show that there is
a translation of S, say S′, such that �∗(S′ ∩ (0, 1)) > 0. Set A = S′ ∩ (0, 1)
and An = A ∩ Vn, with {Vn} as in Problem 8.14. If all subsets of S are
measurable, then show that An is measurable. Since An ⊆ V, Problem 8.17
ensures that λ∗(An) = 0. Thus verify the following contradiction:

0 < �∗(A) ≤ �∗
(

A ∩
⋃

n
Vn

)

= �∗
(
⋃

n
An

)

≤
∑

n
�∗(An) =

∑

n
λ∗(An) = 0.

Problem 8.19. Take E ∈ �∗ and S ∈ ℘(R) arbitrary. Show that

(a) �∗(E ∪ S) + �∗(E ∩ S) = λ∗(E) + �∗(S),

(b) E ⊆ S and λ∗(E) <∞ imply �∗(S\E) = �∗(S)− λ∗(E).

Hint:�∗(E ∪ S) = �∗((E ∪ S) ∩ E)+ �∗((E ∪ S)\E) = λ∗(E)+ �∗(S\E) and
�∗(E ∩ S) + �∗(S\E) = �∗(S), proving (a). Replace S with S\E in (a).

Problem 8.20. If S ∈ ℘(R) is such that �∗(S) <∞, then show that

(a) S ∈ �∗ if and only if λ∗(E) = �∗(S) for some E ∈ �∗ such that E ⊆ S,

(b) S ∈ �∗ if and only if �∗(S\E) = 0 for some E ∈ �∗ such that E ⊆ S.

Hint: For the nontrivial part of (a): �∗(S\E) = �∗(S)− λ(E) = 0 by Prob-
lem 8.19(b); use Problem 8.9(a) to conclude that S = (S\E) ∪ E ∈ �∗.



Suggested Reading 157

Problem 8.21. Prove that if E ∈ �∗, λ∗(E) <∞, and S ⊆ E, then

S ∈ �∗ if and only if λ∗(E) = �∗(S) + �∗(E\S).

This is a special application of the Carathéodory condition for measurabil-
ity. It gives a necessary and sufficient condition for a subset of a Lebesgue
measurable set of finite measure to be Lebesgue measurable.

Hint: If S ∈ �∗, then the claimed equation follows from the Carathéodory
condition. Conversely, note that E\S ⊆ G with �∗(E\S) = λ(G) for some
G ∈ � by Problem 8.8(c). Thus show that �∗(E\S) ≤ λ∗(E ∩G) ≤ λ(G) =
�∗(E\S), and hence λ∗(E) = λ∗(E ∩G)+λ∗(E\G) = �∗(E\S)+λ∗(E\G). If
the claimed equation holds, then λ∗(E\G) = �∗(S) <∞, since λ∗(E) <∞.
Verify that E\G ⊆ S, apply Problem 8.20(a), and conclude that S ∈ �∗.

Problem 8.22. Prove the following proposition. Every measurable E ∈ �∗

with 0 < λ∗(E) <∞ has a nonmeasurable partition, A and B in ℘(R)\�∗

with A ∪B = E and A ∩B = ∅, such that

λ∗(E) = λ∗(A ∪B) < �∗(A) + �∗(B).

Hint: According to Problem 8.18, there is a nonmeasurable A ⊂ E. Thus
{A,B} with B = E\A is a nonmeasurable partition of E so that, by subad-
ditivity, λ∗(E) ≤ �∗(A) + �∗(B). The inequality is strict by Problem 8.21.

Problem 8.23. Now prove the converse. Take any nonmeasurable set with
finite outer measure, say A ∈ ℘(R)\�∗ with �∗(A) <∞, and let G ∈ �
be such that A ⊂ G and �∗(A) = λ(G) as in Problem 8.8(c). Show that
B = G\A ∈ ℘(�)\�∗ is such that �∗(B) > 0 (by Problem 8.9), and hence

λ(G) = λ(A ∪B) < �∗(A) + �∗(B).

Suggested Reading

Bartle [4], Cohn [10], Halmos [18], Royden [35]. See also [29, Part Two].
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Product Measures

9.1 Construction of Product Measure

Let X×Y denote the Cartesian product of two sets X and Y, which is the
set of all ordered pairs (x, y) where x ∈ X and y ∈ Y. Consider two measure
spaces (X,X , μ) and (Y,Y, ν). In this section we construct a σ-algebra of
subsets of the Cartesian product X×Y, denoted by X×Y, which is induced
by the σ-algebras X and Y, such that a measure π on X×Y is given by
the product of the measures μ on X and ν on Y. Since we will be dealing
with the product of measures, we must consider the problem of defining the
product “zero times infinity” because these are possible values for extended
real-valued measures. Therefore we declare again (see Sections 1.3 and 3.1)
that 0 ·+∞ = +∞ · 0 = 0.

Consider an arbitrary pair of subsets of X and Y, A ⊆ X and B ⊆ Y.
The Cartesian product A×B ⊆ X×Y is called a a rectangle from X×Y. If
(X,X ) and (Y,Y) are measurable spaces, and if E and F are measurable
subsets of X and Y, respectively (i.e., if E ∈ X and F ∈ Y), then E×F is re-
ferred to as a measurable rectangle from X×Y (i.e., a rectangle E×F from
X×Y consisting of an X -measurable set E ⊆ X and a Y-measurable set
F ⊆ Y ). Let X×Y denote the σ-algebra generated by the measurable rec-
tangles from X×Y (i.e., the smallest σ-algebra of subsets of X×Y contain-
ing all measurable rectangles E×F with E ∈ X and F ∈ Y), and consider
the measurable space (X×Y, X×Y), which is referred to as the Cartesian
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160 9. Product Measures

product of the measurable spaces (X,X ) and (Y,Y). In particular, it is clear
that E×F is a measurable rectangle from X×Y if and only if E×F ∈ X×Y.

Example 9A. Take the Borel algebra � of subsets of R and consider the
Cartesian product (R×R,�×�) of two copies of the same measurable space
(R,�). Note that open subsets of R2= R×R lie in �×�. In fact, since R2 is a
separable space, it follows by Problem 1.14 that open sets of R2 are counta-
bly covered by the topological base consisting of open rectangles made up of
open intervals. Indeed, it can be shown that the σ-algebra �×� coincides
with the σ-algebra generated by the open sets of R

2, and so �×� is the
Borel algebra of subsets of R2 (see the remark that follows Problem 1.14).

Proposition 9.1. The collection P of all finite unions of measurable rec-
tangles is an algebra of subsets of X×Y, included in X×Y.

Proof. Every finite union of measurable rectangles admits a disjointification
(cf. Hints to Problems 2.3 and 7.2) consisting of measurable rectangles. Thus
finite unions of sets in P are in P. It is readily verified that the complement
of a measurable rectangle lies in P, and that a finite intersection of sets in P
is a set in P. Applying De Morgan Laws we conclude that the complement
of a set in P lies in P. So P is an algebra. It is clear that P is included in
the σ-algebra X×Y generated by measurable rectangles. �

As we have observed in the previous proof, any set in P admits a dis-
jointification consisting of measurable rectangles. This means that any set
in P can be expressed as a finite union of disjoint measurable rectangles.

Definition 9.2. Take an arbitrary set P =
⋃

i Ei×Fi in P, where {Ei×Fi}
is an arbitrary finite partition of P consisting of measurable rectangles from
X×Y. Let μ:X → R and ν :Y → R be measures on X and Y, respectively,
and define a set function �:P → R by the following finite sum: for P ∈ P,

(a) �(P ) = �
(
⋃

i
Ei×Fi

)

=
∑

i
μ(Ei) ν(Fi) =

∑

i
�(Ei×Fi).

In particular, for each measurable rectangle E×F from X×Y,

(b) �(E×F ) = μ(E) ν(F ).

In (a) we have three identities. The first identity just reminds us that
{Ei×Fi} is a partition of P, the second identity is the definition of the set
function � on P, and the third identity is a consequence of the second,
according to the particular case in (b). By additivity of the measures μ
and ν, it is easy to verify that the sums in (a) are “partition invariant”:
they remain the same for every finite partition of P made up of measurable
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rectangles. We show that the set function � is a measure on the algebra P,
and then we extend this to a measure on the σ-algebra X×Y. But first we
need the following auxiliary result to prove that � is countably additive.

Proposition 9.3. Let {Ek×Fk} be a countable family of disjoint rectangles
in X×Y, and let A×B be a rectangle in X×Y. Then

(a) A×B =
⋃

k
Ek×Fk implies �(A×B) =

∑

k
�(Ek×Fk).

If {Ai×Bi} is a finite set of disjoint rectangles in X×Y, then

(b)
⋃

i
Ai×Bi =

⋃

k
Ek×Fk implies �

(
⋃

i
Ai×Bi

)

=
∑

k
�(Ek×Fk).

Proof. Let A×B be any measurable rectangle with A ∈ X and B ∈ Y, and
let {Ek×Fk} be an arbitrary countable partition of A×B with Ek in X and
Fk in Y so that {Ek} and {Fk} are countable partitions of A and B, respec-
tively. If {Ek×Fk} is a finite partition, then the results in (a) and (b) are
trivially verified by Definition 9.2(a). Thus suppose it is countably infinite.

(a) As usual, let χ
S denote the characteristic function of a set S. Then

χ
A(x) χB(y) = χ

A×B

(

(x, y)
)

=
∑

k

χ
Ek×Fk

(

(x, y)
)

=
∑

k

χ
Ek

(x) χFk
(y),

for every pair (x, y) ∈ X×Y. (The second identity holds since {Ek×Fk} is
a family of disjoint sets that cover A×B.) Fix x, integrate with respect to
ν, and apply the Monotone Convergence Theorem (cf. Problem 3.7) to get

χ
A(x) ν(B) =

∑

k

χ
Ek

(x) ν(Fk).

Next, integrate with respect to μ, repeating the same argument, to get

μ(A) ν(B) =
∑

k
μ(Ek) ν(Fk).

Thus we get the result in (a) by Definition 9.2(b), namely,

�(A×B) =
∑

k
�(Ek×Fk).

(b) The disjointness assumption on both {Ek×Fk} and {Ai×Bi} ensures
that if

⋃

i Ai×Bi =
⋃

k Ek×Bk, then Ai×Bi =
⋃

j Ei,j×Fi,j for each i,
where {Ei,j×Fi,j} = {Ek×Fk}. Hence, using Definition 9.2(a) and the re-
sult in (a), we get
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�
(
⋃

k
Ek×Fk

)

= �
(
⋃

i
Ai×Bi

)

=
∑

i
�(Ai×Bi)

=
∑

i

∑

j
�(Ei,j×Ei,j).

If �(Ai×Bi) =∞ for some i, then �
(⋃

i Ai×Bi

)

=
∑

k �(Ek×Fk) = ∞
and the result in (b) holds. Suppose �(Ai×Bi) <∞ for every i. Then the
summands {�(Ei,j×Ei,j)} are nonnegative real numbers by (a), and so the
doubly indexed sum is unconditionally convergent. Therefore,

∑

i

∑

j
�(Ei,j×Ei,j) =

∑

k
�(Ek×Fk),

and the result in (b) still holds. (Compare with Proposition 8.8.) �

Lemma 9.4. The set function � is a measure on the algebra P.
Proof. Observe that�(∅) = 0 and�(P ) ≥ 0 for every P ∈ P, trivially. Con-
sider an arbitrary countable family {Pn} of pairwise disjoint sets in P for
which

⋃

n Pn lies in P. Then, as we have seen before, each set Pn is a finite
union of disjoint measurable rectangles,

Pn =
⋃

j
En,j×Fn,j .

Since {Pn} is a sequence of disjoint sets, this implies that
⋃

n
Pn =

⋃

n,j
En,j×Fn,j =

⋃

k
Ek×Fk,

where {En,j×Fn,j} = {Ek×Fk} is a countable family of disjoint measurable
rectangles, and also a finite union of disjoint measurable rectangles,

⋃

n
Pn =

⋃

i
Ai×Bi.

Therefore,
⋃

i Ai×Bi =
⋃

k Ek×Fk. Using Proposition 9.3(b), and recalling
the unconditional convergence argument that closed that proof, we get

�
(
⋃

n
Pn

)

= �
(
⋃

i
Ai×Bi

)

=
∑

k
�(Ek×Fk) =

∑

n,j
�(En,j×Fn,j)

=
∑

n

∑

j
�(En,j×Fn,j) =

∑

n
�

(
⋃

j
En,j×Fn,j

)

=
∑

n
�(Pn)

by Definition 9.2(a). This shows that � is countably additive. �

Theorem 9.5. (Product Measure Theorem). Let (X,X , μ) and (Y,Y, ν)
be measure spaces. Then there exists a measure π :X×Y → R such that

π(E×F ) = μ(E) ν(F )
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for every measurable rectangle E×F with E ∈ X and F ∈ Y. Furthermore,
if μ and ν are σ-finite, then the measure π is unique and σ-finite as well .

Proof. Recall that � is a measure on the algebra P (Lemma 9.4). Then it
follows by the Carathéodory Extension Theorem (Theorem 8.4) that there
exists an extension of � to a measure π∗ on an σ-algebra P∗ that includes
the algebra P. Furthermore, it is readily verified that if μ and ν are σ-finite
on X and Y, then � is σ-finite on P, and so the Hahn Extension Theorem
(Theorem 8.6) says that π∗ is unique on P∗ and σ-finite. Recall that X×Y
is the smallest σ-algebra including P. Let π be the restriction of π∗ to X×Y,
so that π is a σ-finite measure on X×Y (since π∗ is σ-finite), which (by the
uniqueness of π∗) must be the extension of � over X×Y. Summing up:

P ⊆ X×Y ⊆ P∗, π = π∗|X×Y , and � = π|P = π∗|P .
Observe from Definition 9.2(b) that �(E×F ) = μ(E) ν(F ) for each measur-
able rectangle E×F . Since � = π|P , it follows that �(E×F ) = π(E×F ),
and therefore the measure π :X×Y → R is such that

π(E×F ) = μ(E) ν(F ) for every E×F ∈ X×Y. �

The value of π at each Cartesian product E×F in X×Y is the product
of the values of μ at E in X and ν at F in Y. This motivates the notation

π = μ× ν,

which is referred to as the product measure (or as the product of the mea-
sures μ and ν). Accordingly, (X×Y, X×Y, μ×ν) is the (Cartesian) product
space of the measure spaces (X,X , μ) and (Y,Y, ν).

9.2 Sections of Sets and Functions

Let S be an arbitrary subset of the Cartesian product X×Y. Associated to
each point x ∈ X, consider the set

Sx =
{

y ∈ Y : (x, y) ∈ S
}

,

which is called the x-section of S. Similarly, for each y ∈ Y, consider the set

Sy =
{

x ∈ X : (x, y) ∈ S
}

,

which is called the y-section of S. The reason for this notation with subscript
and superscript is to distinguish x-sections (subsets of Y for each x ∈ X)
from y-sections (subsets of X for each y ∈ Y ). Observe that sections are
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not “slices”, which means that Sx ⊆ Y (or Sy ⊆ X) and {x}×Sx ⊆ X×Y
(or Sy×{y} ⊆ X×Y ) are, in general, different sets. Also note that sections
of a rectangle A×B ⊆ X×Y are either empty or “sides” of the rectangle:

(A×B)x =

{

B, x ∈ A,

∅, x �∈ A,
(A×B)y =

{

A, y ∈ B,

∅, y �∈ B.

In particular,

(X×Y )x = Y and (X×Y )y = X.

Now let f :X×Y → R be an arbitrary extended real-valued function on
X×Y. For each x ∈ X consider the function fx :Y → R defined by

fx(y) = f(x, y) for every y ∈ (X×Y )x = Y,

which is called the x-section of f . Similarly, for each y ∈ Y consider the
function fy :X→ R defined by

fy(x) = f(x, y) for every x ∈ (X×Y )y = X,

which is called the y-section of f . If f :A×B → R is defined on a rectangle
A×B ⊆ X×Y, then its x-sections and y-sections are defined on B ⊆ Y and
A ⊆ X, respectively: fx :B → R and fy :A→ R.

Proposition 9.6. Every section of a measurable set is measurable:

(a) E ∈ X×Y implies Ey ∈ X and Ex ∈ Y for every x ∈ X and y ∈ Y.
(i.e., if E ∈ X×Y is X×Y-measurable, then Ey ∈ X is X -measurable
and Ex ∈ Y is Y-measurable).

Every section of a measurable function is measurable:

(b) If f :X×Y → R is X×Y-measurable, then fy :X→ R is X -measurable
and fx :Y → R is Y-measurable for every x ∈ X and y ∈ Y.

Proof. Take a pair of measurable spaces (X,X ) and (Y,Y), and consider
their Cartesian product (X×Y, X×Y).
(a) The assertion in (a) is an immediate consequence of Problem 9.5. In
fact, X×Y is included in the collection (X×Y)X of all subsets of X×Y for
which all x-sections are Y-measurable. Hence, if E ∈ X×Y, then Ex ∈ Y.
Similarly, E ∈ X×Y also implies Ey ∈ X . (See Problem 9.5.)

(b) To prove assertion (b) proceed as follows. Take any α ∈ R. If a function
f :X×Y → R is X×Y-measurable, then the set {(x, y) ∈ X×Y :
f(x, y) > α} is X×Y-measurable, and so every x-section {(x, y) ∈ X×Y :
f(x, y) > α}x is Y-measurable by item (a). Note that for each x ∈ X,



9.2 Sections of Sets and Functions 165

{

(x, y) ∈ X×Y : f(x, y)> α
}

x
=

{

y ∈ Y : f(x, y)> α
}

=
{

y ∈ Y : fx(y)> α
}

.

Therefore the set {y ∈ Y : fx(y) > α} is Y-measurable. This means that the
function fx :Y → R is measurable. Similarly, using the same argument, the
function fy :X→ R is measurable. �

Next we apply the Monotone Class Lemma (cf. Problems 1.18 and 1.19)
to prove an important result that will play a crucial role in Section 9.3.

Lemma 9.7. Let (X,X , μ) and (Y,Y, ν) be measure spaces. For each mea-
surable set E in X×Y consider the nonnegative functions fE :X→ R and
gE :Y → R defined by

f
E
(x) = ν(Ex) and g

E
(y) = μ(Ey)

for every x ∈ X and every y ∈ Y, respectively. If μ and ν are σ-finite mea-
sures, then fE :X→ R and gE :Y → R are measurable functions such that

∫

X

f
E
dμ = π(E) =

∫

Y

g
E
dν.

Proof. Consider the collection K of all sets E in X×Y such that

{

f
E
∈M(X,X )+, g

E
∈M(Y,Y)+, and

∫

X
f
E
dμ = π(E) =

∫

Y
g
E
dν

}

.

Thus K is the subcollection of X×Y for which the conclusion of the lemma
holds true. We split the proof into two parts. In part (a) we apply the
Monotone Class Lemma to prove that if μ and ν are finite measures, then

K = X×Y

(i.e., the stated assertion holds true for finite measures). In part (b) we apply
the Monotone Convergence Theorem to extend it to σ-finite measures.

(a) Let A×B in X×Y be any measurable rectangle. Recall that x-sections
(A×B)x are B if x ∈ A and empty otherwise, and y-sections (A×B)y are
A if y ∈ B and empty otherwise. Thus, for each x ∈ X and each y ∈ Y set

f
A×B

(x) = ν
(

(A×B)x
)

= ν(B)χA(x),

g
A×B

(y) = μ
(

(A×B)y
)

= μ(A)χB(y).

If μ and ν are finite measure, then these define real-valued functions on X
and on Y such that (cf. Example 1B and Proposition 1.5) fA×B = ν(B)χA

is inM(X,X )+, gA×B = μ(A)χB is inM(Y,Y)+, and (cf. Problem 3.3.(a))
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∫

X

f
A×B

dμ = ν(B)μ(A) = π(A×B) = μ(A) ν(B) =

∫

Y

g
A×B

dν.

Consider the algebra P of Proposition 9.1. Let P be an arbitrary set in P.
Since P =

⋃n
i=1 Ai×Bi is a finite union of disjoint measurable rectangles

{Ai×Bi}, the above results ensure that P ∈ K, and so P ⊆ K. Indeed,

f
P
(x) = ν(Px) = ν

((⋃n
i=1Ai×Bi

)

x

)

= ν
(⋃n

i=1(Ai×Bi)x
)

=
∑n

i=1ν
(

(Ai×Bi)x
)

=
∑n

i=1ν(Bi)χAi
(x) =

∑n
i=1fAi×Bi

(x),

g
P
(y) = μ(P y) = μ

((⋃n
i=1Ai×Bi

)y)
= μ

(⋃n
i=1(Ai×Bi)

y
)

=
∑n

i=1μ
(

(Ai×Bi)
y
)

=
∑n

i=1μ(Ai)χBi
(y) =

∑n
i=1gAi×Bi

(y),

for every x ∈ X and y ∈ Y. Hence (cf. Proposition 1.5) fP =
∑n

i=1 fAi×Bi
is

inM(X,X )+, gP =
∑n

i=1 gAi×Bi
is inM(Y,Y)+, and (cf. Problem 3.7(a))

∫

X

f
P
dμ =

n
∑

i=1

∫

X

f
Ai×Bi

dμ

=

n
∑

i=1

μ(Ai) ν(Bi) =

n
∑

i=1

π(Ai×Bi) = π
(

n
⋃

i=1

Ai×Bi

)

= π(P )

=

n
∑

i=1

∫

Y

g
Ai×Bi

dν =

∫

Y

g
P
dν.

Therefore, P ∈ K and so

(i) P ⊆ K.

First suppose {En} is an increasing sequence of sets in K. For each n set

f
En

(x) = ν
(

(En)x
)

and g
En

(y) = μ
(

(En)
y
)

for every x ∈ X and every y ∈ Y. Since En ∈ K, this defines two sequences
{fEn} and {gEn} of functions inM(X,X )+ and inM(Y,Y)+ such that

∫

X

f
En

dμ = π(En) =

∫

Y

g
En

dν.

But {fEn} and {gEn} are increasing sequences of extended real-valued func-
tions, because {En} is an increasing sequence of sets. Thus these sequences
of functions converge pointwise. Set E =

⋃

n En, which lies in the σ-algebra
X×Y. Since the sequences {(En)x} and {(En)

y} of sections in Y and X
are increasing with

⋃

n(En)x = Ex in Y and
⋃

n(En)
y = Ey in X for each

x ∈ X and each y ∈ Y, it follows by Proposition 2.2(c) that the functions
fE :X→ R and gE :Y → R are the pointwise limits of {fEn} and {gEn}:
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lim
n

f
En

(x) = lim
n

ν
(

(En)x
)

= ν
(
⋃

n
(En)x

)

= ν(Ex) = f
E
(x),

lim
n

g
En

(y) = lim
n

μ
(

(En)
y
)

= μ
(
⋃

n
(En)

y
)

= μ(Ey) = g
E
(y),

for every x ∈ X and y ∈ Y. Still by Proposition 2.2.(c) we get

lim
n

π(En) = π
(
⋃

n
En

)

= π(E).

Note from Proposition 1.8 that fE ∈M(X,X )+ and gE ∈M(Y,Y)+. Use
the Monotone Convergence Theorem (Theorem 3.4) to conclude that

∫

X

f
E
dμ = lim

n

∫

X

f
En

dμ = π(E) = lim
n

∫

Y

g
En

dν =

∫

Y

g
E
dν.

This implies that
E ∈ K.

Next suppose {Fn} be a decreasing sequence of sets in K and set F =
⋂

n Fn

in X×Y. Proceeding as before, consider the similarly defined functions fFn
inM(X,X )+ and gFn inM(Y,Y)+ such that

∫

X

f
Fn

dμ = π(Fn) =

∫

Y

g
Fn

dν

for each n. Still under the assumption that μ and ν are finite measures,
which implies that the product measure π = μ×ν is finite as well, we may
apply Proposition 2.2(d) for the finite measure π (instead of Proposition
2.2(c) for general measures) to verify that {fFn} and {gFn} are both decreas-
ing sequences of real-valued functions so that they converge pointwise, and

lim
n

f
Fn
(x) = f

F
(x) and lim

n
g
Fn
(y) = g

F
(y)

for every x ∈ X and y ∈ Y, which define the real-valued limit functions
fF ∈M(X,X )+ and gF ∈M(Y,Y)+. Proposition 2.2(d) also ensures that

lim
n

π(Fn) = π
(
⋂

n
Fn

)

= π(F ).

Recall that {fFn} and {gFn} are decreasing sequences of nonnegative real-
valued measurable functions, and that

∫

fF1dμ and
∫

gF1dν are bounded by
π(X×Y ) = μ(X) ν(Y ), which is finite since μ(X) <∞ and ν(Y ) <∞, it
follows by the Dominated Convergence Theorem (Theorem 4.7) that

∫

X

f
F
dμ = π(E) =

∫

Y

g
F
dν.
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This implies that
F ∈ K.

Hence (cf. Problem 1.15), under the finite measure assumption,

(ii) K is a monotone class.

According to (i) and (ii) the Monotone Class Lemma (see Problems 1.18
and 1.19) ensures that if μ and ν are finite measures, then

K = X×Y.

(b) If the measures μ and ν are σ-finite, then that there is a pair of increasing
sequences {Xn} and {Yn} of X -measurable and Y-measurable sets covering
X and Y, respectively, such that μ(Xn)<∞ and ν(Yn)<∞. For each n
consider the σ-algebras Xn = ℘(Xn) ∩ X and Yn = ℘(Yn) ∩ Y so that μ
and ν are finite measures when restricted to them. Let E be an arbitrary
set in X×Y. For each n set En = E ∩ (Xn×Yn) in Xn×Yn. Hence

(En)x =
(

E ∩ (Xn×Yn)
)

x
= Ex ∩ (Xn×Yn)x = Ex ∩ Yn ∈ Yn,

(En)
y =

(

E ∩ (Xn×Yn)
)y

= Ey ∩ (Xn×Yn)
y = Ey ∩Xn ∈ Xn.

Take the functions fEn:X→ R and gEn:Y → R defined for each n by

f
En

(x) = ν
(

(En)x
)

= ν
(

(En)x
)

χ
Xn ,

g
En

(x) = μ
(

(En)
y
)

= μ
(

(En)
y
)

χ
Yn ,

for every x ∈ X and y ∈ Y. Let μn = μ|Xn and νn = ν|Yn be the restrictions
of μ and ν to Xn and Yn so that (Xn,Xn, μn) and (Yn,Yn, νn) are finite
measure spaces. Since the stated assertion holds for finite measures (as we
saw in item (a)), it follows that fEn ∈M(X,X )+, gEn ∈M(Y,Y)+, and

∫

X

f
En

dμ =

∫

Xn

f
En

dμn = π(En) =

∫

Yn

g
En

dνn =

∫

Y

g
En

dν.

Since {Xn} and {Yn} are increasing sequences of X -measurable and Y-meas-
urable sets coveringX and Y, conclude that {En}, {(En)x}, and {(En)

y} are
increasing sequences of X×Y-measurable, Y-measurable and X -measurable
sets that cover E, Ex, and Ey, respectively, so E =

⋃

n En, Ex =
⋃

n(En)x,
and Ey =

⋃

n(En)
y. Then Proposition 2.2(c) ensures that limn π

(

En) =

π
(⋃

n En

)

= π(E) and

lim
n

f
En

(x) = lim
n

ν
(

(En)x
)

= ν
(
⋃

n
(En)x

)

= ν(Ex) = f
E
(x),

lim
n

g
En

(y) = lim
n

μ
(

(En)
y
)

= μ
(
⋃

n
(En)

y
)

= μ(Ey) = g
E
(y),
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for every x ∈ X and y ∈ Y. But {fEn} and {gEn} are increasing sequences
(since {Xn} and {Yn} are increasing) of nonnegative measurable functions
(according to item (a)), so that by the Monotone Convergence Theorem
(Theorem 3.4) we get fE ∈M(X,X )+, gE ∈M(Y,Y)+, and

∫

X

f
E
dμ = lim

n

∫

X

f
En

dμ = π(E) = lim
n

∫

Y

g
En

dν =

∫

Y

g
E
dν. �

9.3 Fubini and Tonelli Theorems

The following two theorems give sufficient conditions for interchanging the
order of integration. The first deals with extended real-valued nonnegative
functions. The second dismisses nonnegativeness but assumes integrability.

Theorem 9.8. (Tonelli Theorem). Consider two measure spaces (X,X , μ)
and (Y,Y, ν). If μ and ν are σ-finite and h ∈M(X×Y, X×Y)+, then the
extended real-valued functions fh and gh defined by

fh(x) =

∫

Y

hx dν and gh(y) =

∫

X

hy dμ

are in M(X,X )+ and in M(Y,Y)+, respectively, and
∫

X

fh dμ =

∫

X×Y

h dπ =

∫

Y

gh dν.

Proof. Let H be the set of all functions h ∈M(X×Y, X×Y)+ such that
{

fh ∈M(X,X )+, gh ∈M(Y,Y)+, and
∫

X
fh dμ =

∫

X×Y
h dπ =

∫

Y
gh dν

}

.

In other words, H is the subcollection of M(X×Y, X×Y)+ for which the
conclusion of the theorem holds true. The program is to prove that

H =M(X×Y, X×Y)+.

Equivalently, to prove thatM(X×Y, X×Y)+⊆ H. Let χ
E be the charac-

teristic function of E in X×Y. Recall that χ
E ∈M(X×Y, X×Y)+ (Exam-

ple 1B). Note that (χE)x = χ
Ex

and (χE)
y = χ

E
y (Problem 9.8). Set

fχ
E
(x) =

∫

Y

(χE)x dν =

∫

Y

χ
Ex

dν = ν(Ex),

gχ
E
(y) =

∫

X

(χE)
y dμ =

∫

X

χ
E
y dμ = μ(Ey),
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for every x ∈ X and y ∈ Y. Since μ and ν are σ-finite measures, Lemma 9.7
ensures that fχ

E
∈M(X,X )+, gχ

E
∈M(Y,Y)+, and

∫

X

fχ
E
dμ =

∫

X×Y

χ
E dπ =

∫

Y

gχ
E
dν.

Hence every characteristic function of sets in X×Y lies in H. Therefore, by
additivity and positive homogeneity in the set of positive measurable func-
tions (Proposition 1.9), and also for the integral itself (Proposition 3.5(a,b)),
we can conclude that every simple function (Definition 3.1) lies inH. Now let
h be an arbitrary function inM(X×Y, X×Y)+. Problem 1.6 says that there
exists an increasing sequence {ϕn} of simple functions inM(X×Y, X×Y)+
converging pointwise to h. For each n and for every x ∈ X and y ∈ Y, set

fϕn(x) =

∫

Y

(ϕn)x dν and gϕn(y) =

∫

X

(ϕn)
y dμ. (∗)

Since ϕn ∈ H (simple functions lie in H), the above identities define a pair
of functions fϕn and gϕn such that fϕn ∈M(X,X )+, gϕn ∈M(Y,Y)+, and

∫

X

fϕndμ =

∫

X×Y

ϕn dπ =

∫

Y

gϕndν. (∗∗)

Since ϕn → h, it follows that (ϕn)x → hx and (ϕn)
y → hy for every x ∈ X

and y ∈ Y, where these convergences are pointwise. Since {ϕn} is an increas-
ing sequence of nonnegative functions, it is clear that the sequences {(ϕn)x}
and {(ϕn)

y} are also increasing and consist of nonnegative functions for
each x ∈ X and y ∈ Y. Furthermore, since ϕn is measurable, then so are all
sections (ϕn)x and (ϕn)

y, for each n, by Proposition 9.6. Thus, applying
the Monotone Convergence Theorem (Theorem 3.4) we get from (∗) that

lim
n

fϕn(x) = lim
n

∫

Y

(ϕn)x dν =

∫

Y

lim
n

(ϕn)x dν =

∫

Y

hx dν = fh(x),

lim
n

gϕn(y) = lim
n

∫

X

(ϕn)
y dμ =

∫

X

lim
n

(ϕn)
y dμ =

∫

X

hy dμ = gh(y),

for every x ∈ X and every y ∈ Y , so that fϕn→ fh and gϕn→ gh pointwise.
Recall that {fϕn} and {gϕn} are increasing sequences (because {ϕn} is
increasing). Using the Monotone Convergence Theorem once again we get
from (∗∗) that fh ∈M(X,X )+, gh ∈M(Y,Y)+, and

∫

X

fh dμ =

∫

X×Y

h dπ =

∫

Y

gh dν,

and hence h ∈ H. ThenM(X×Y, X×Y)+⊆ H. �
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The conclusion of the Tonelli Theorem can be rewritten as
∫

X

(∫

Y

h dν

)

dμ =

∫

X×Y

h dπ =

∫

Y

(∫

X

h dμ

)

dν.

This is a significant result. It says that the order of the integrals can be inter-
changed . The same applies to the next theorem, which has exactly the same
conclusion but a different hypothesis, where the function h is not necessarily
nonnegative but should be integrable with respect to the product measure.

Theorem 9.9. (Fubini Theorem) Consider two measure spaces (X,X , μ)
and (Y,Y, ν). If λ and ν are σ-finite measures and h ∈ L(X×Y, X×Y, π),
then there are real-valued functions fh and gh defined a.e. on X and Y by

fh(x) =

∫

Y

hx dν and gh(y) =

∫

X

hy dμ,

which are in L(X,X , μ) and in L(Y,Y, ν), respectively, and
∫

X

fh dμ =

∫

X×Y

h dπ =

∫

Y

gh dν.

Proof. Take an arbitrary h in M(X×Y, X×Y), and consider its positive
and negative parts h+ and h− inM(X×Y, X×Y)+ such that h = h+ − h−

(Proposition 1.6), and also its x-section hx inM(Y,Y) and y-section hy in
M(X,X ) (Proposition 9.6). Now consider the parts of the sections (hx)

± in
M(Y,Y)+ and (hy)± inM(X,X )+, which coincide with the sections of the
parts (h±)x and (h±)y (Problem 9.9). Since the positive and negative parts
h+ and h− lie inM(X×Y, X×Y)+, since (h±)x = (hx)

± and (h±)y = (hy)±,
and since the measures μ and ν are σ-finite, the Tonelli Theorem ensures
that the functions fh± and gh± defined on X and Y by

fh±(x) =

∫

Y

(hx)
± dν and gh±(y) =

∫

X

(hy)± dμ (∗)

are inM(X,X )+ and inM(Y,Y)+, respectively, and
∫

X

fh± dμ =

∫

X×Y

h± dπ =

∫

Y

gh± dν. (∗∗)

In addition, if h ∈ L(X×Y, X×Y, π), then the parts h+ and h− are nonneg-
ative functions in L(X×Y, X×Y, π) by Definition 4.1. Even though their
sections are real-valued, the nonnegative measurable functions fh± and gh±
are not necessarily real-valued (cf. Problem 9.11) but have finite integrals
according to (∗∗). Then they are real-valued almost everywhere by Problem
3.9(b), and the differences fh+(x)− fh−(x) and gh+(y)− gh−(y) are defined
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almost everywhere with respect to μ and ν. Thus take real-valued functions
fh and gh defined almost everywhere on X and Y, respectively, as follows.

fh = fh+− fh− and gh = gh+− gh−

and zero otherwise, which lie in L(X,X , μ) and L(Y,Y, ν). In fact (Prob-
lems 3.8 an 3.9), there is an X -measurable set N with μ(N) = 0 such that
∫

X
fh± |X\N dμ =

∫

X
fh±

χ
X\N dμ =

∫

X\N fh± dμ =
∫

X
fh± dμ < ∞ for

which fh± |X\N is real-valued , and hence fh± |X\N lies in L(X,X , μ). Thus
the function fh defined by fh+ |X\N − fh− |X\N on X\N and zero on N is
real-valued and lies in L(X,X , μ) — see Lemma 4.5. Similarly, the function
gh is real-valued and lies in L(Y,Y, ν). Then, by (∗) and Definition 4.1,

fh(x) =

∫

Y

(hx)
+ dν −

∫

Y

(hx)
− dν =

∫

Y

hx dν,

gh(y) =

∫

X

(hy)+ dν −
∫

X

(hy)− dν =

∫

X

hy dμ,

for μ-almost every x in X and ν-almost every y in Y. Also, by (∗∗) and
applying Definition 4.1 again, and since fh = fh+ − fh− on X\N so that
∫

X
fh dμ =

∫

X\N fh+dμ−
∫

X\N fh−dμ (see Proposition 4.3), it follows that
∫

X×Y

h dπ =

∫

X×Y

h+ dπ−
∫

X×Y

h− dπ =

∫

X

fh+ dμ−
∫

X

fh− dμ =

∫

X

fh dμ,

and similarly
∫

X×Y

h dπ =

∫

Y

gh+ dμ−
∫

Y

gh− dμ =

∫

Y

gh dμ. �

SupposeN is an X -measurable set such that μ(N) = 0 for which fh(x) =
∫

Y
hx(y)dν on X\N and zero on N (as in the preceding proof). Observe that

∫

X
fh(x)dμ =

∫

X\Nfh(x)dμ =
∫

X\N
( ∫

Y
hx(y)dν

)

dμ =
∫

X

( ∫

Y
h(x, y)dν

)

dμ.

Similarly,
∫

Y
gh(y)dν =

∫

Y

( ∫

X
h(x, y)dμ

)

dν. Thus, as we have commented
before, the conclusion of the Fubini Theorem can also be rewritten as

∫

X

(∫

Y

h dν

)

dμ =

∫

X×Y

h dπ =

∫

Y

(∫

X

h dμ

)

dν.

The middle integral,
∫

X×Y h dπ, is the double integral of h. The left and right

integrals,
∫

X

(∫

Y
h dν

)

dμ and
∫

Y

(∫

X
h dμ

)

dν, are the iterated integrals of h.
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9.4 Problems

Problem 9.1.Let�×�be the Borel algebra of subsets of R2 (Example 9A).
If E ∈ �, then show that the difference set DE is �×�-measurable: that is,

DE =
{

(x, y) ∈ R
2 : y − x ∈ E

}

∈ �×�.

Hint:

(a) The “smart” way: f(x, y) = y − x defines a continuous function f from
R

2 to R, thus a measurable function (Section 11.1), and DE = f−1(E).

(b) The “tour de force” way: Take E ∈ � so that E ∪ {β}+ α ∈ � for every
α, β ∈ R. If E is unbounded, then consider a countable partition of E made
up of bounded measurable sets. If E is bounded, then write E as a countable
union ofmeasurable triangles as follows. Let diamE = supx,y∈E |x− y| <∞
be the diameter of the bounded set E ⊆ R. For each integer k ∈ Z set

Ek = (E ∪ {supE}) + k diamE,

Fk = Ek + inf E =
[

(E ∪ {supE}) + inf E
]

+ k diamE,

which are subsets of R. Now consider the following subsets of R2:

L =
{

(x, y) ∈ R
2 : y ≤ supE + x

}

or L =
{

(x, y) ∈ R
2 : y < supE + x

}

whether supE lies or does not lie in E,

U =
{

(x, y) ∈ R
2 : y ≥ inf E + x

}

or U =
{

(x, y) ∈ R
2 : y > inf E + x

}

whether inf E lies or does not lie in E, and

Δk = (Ek×Fk) ∩ U and ∇k = (Ek×Fk+1) ∩ L

for each k ∈ Z. Verify that the above triangles cover the “strip-shape” set
DE (as suggested in the sketch below) (Fig. 9.1):

DE =
{

(x, y) ∈ R
2 : y − x ∈ E

}

=
⋃

k
(Δk ∪∇k).
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Fig. 9.1. Problem 9.1(b)

Problem 9.2. If f :R → R is �-measurable, then the function h:R2→ R

given by h(x, y) = f(y − x) for (x, y) in R
2 is �×�-measurable. Prove it.

Hint: See Problem 9.1.

Problem 9.3. Consider the Cartesian product (X×Y, X×Y) of the mea-
surable spaces (X,X ) and (Y,Y). If f ∈M(X,X ) and g ∈M(Y,Y) are real-
valued functions, then show that the real-valued function h onX×Y defined
by h(x, y) = f(x) g(y) for every (x, y) in X×Y lies inM(X×Y, X×Y).

Problem 9.4. Take an arbitrary subset S of the Cartesian product X×Y
of two sets X and Y. Let {Sα} be an arbitrary collection of subsets of X×Y,
and take any x in X. Use the definition of x-section to show that
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(a)
(

(X×Y )\S)
)

x = (X×Y )x\Sx = Y \Sx,

(b)
(⋃

α Sα

)

x =
⋃

α(Sα)x.

Problem 9.5. Let (X,X ) and (Y,Y) be measurable spaces, and take the
measurable space (X×Y, X×Y) of their Cartesian product. Consider the
collections of all subsets of X×Y for which all x-sections are Y-measurable,

(X×Y)X =
{

E ⊆ X×Y : Ex ∈ Y for every x ∈ X
}

,

and of all subsets of X×Y for which all y-sections are X -measurable,

(X×Y)Y =
{

E ⊆ X×Y : Ey ∈ X for every y ∈ Y
}

.

Show that (X×Y)X and (X×Y)Y are σ-algebras of subsets of X×Y (use
Problem 9.4), and that they contain all measurable rectangles (recall that
sections of rectangles are either empty or sides of them), and conclude that

X×Y ⊆ (X×Y)X and X×Y ⊆ (X×Y)Y .

Problem 9.6. Consider the unit interval X = [0, 1] ⊂ R and let X be the
collection of all subsets ofX that are either countable or are the complement
of a countable set. Show that X is a σ-algebra of subsets of X and take the
measurable space (X×X, X×X ) of the Cartesian product of two copies of
the measurable space (X,X ). For each α > 0 consider the line segments

Iα =
{

(x, y) ∈ X×X : y = αx
}

.

Show that every Iα is nonmeasurable (i.e., Iα �∈ X×X for every α > 0).

Hint: Let I0 = {(x, y) ∈ X×X : y = 0} = [0, 1]×{0} be the horizontal line
segment. Take an arbitrary line segment Iα distinct from I0 and consider
the intersection of their complements, which is the sector

(X\I0) ∩ (X\Iα) =
{

(x, y) ∈ X×X : 0 < y < αx
}

.

Show that such a sector is not X×X -measurable (use Proposition 9.6(a),
or Problem 9.5). Also show that I0 is X×X -measurable. If Iα is X×X -
measurable, then verify that the intersection of their complements is mea-
surable, which is a contradiction. Thus Iα is not X×X -measurable.

Problem 9.7. Use Proposition 9.6(a) to prove the failure of its own con-
verse: There exist nonmeasurable sets for which all sections are measurable.

Hint: See Problem 9.6.
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Problem 9.8. Consider the characteristic function χ
S of a subset S of the

Cartesian product X×Y of two sets X and Y. Show that for each x ∈ X
and each y ∈ Y, the sections (χS)x and (χS)

y of the function χ
S are the

characteristic functions of the sections Sx and Sy of the set S. That is,

(χS)x = χ
Sx

and (χS)
y = χ

S
y .

Thus conclude that if A×B is any rectangle from X×Y, then
χ
A×B(x, y) = χ

A(x)χB(y) for every (x, y) ∈ X×Y.

Problem 9.9. Let f :X×Y :→ R be an arbitrary extended real-valued func-
tion on the Cartesian Product X×Y. Take its positive and negative parts,
f+ and f−, and its x-sections and y-sections, fx and fy. First show that

(f+)x = (fx)
+, (f−)x = (fx)

− and (f+)y = (fy)+, (f−)y = (fy)−.

Hint: Recall that f+ = fχ
F+ , where F+=

{

(x, y) ∈ X×Y : f(x, y) ≥ 0
}

,
and verify that (f+)x = (fχ

F+)x = fx(χF+)x = fxχF+ = (fx)
+.

Next show that the x-sections and y-sections of f = f+ − f− are given by

fx = (f+)x − (f−)x and fy = (f+)y − (f−)y.

Problem 9.10. Consider the Borel algebra � (or the Lebesgue algebra �∗)
and take the Lebesgue measure λ on � (or on �∗), which is referred to as
the linear Lebesgue measure or as the length on R. Consider the product of
λ with itself; that is, the measure π = λ×λ on the σ-algebra �×� (or on
�∗×�∗) of subsets of the plane R

2 = R×R. This measure is referred to as
the planar Lebesgue measure or as the area on R

2. Note that �×� ⊂ �∗×�∗,
so �×�-measurable sets are �∗×�∗-measurable. Thus the area of a measur-
able rectangle E×F in R

2 is λ(E)λ(F ). Give an example of an uncountable
measurable subset of [0, 1]×[0, 1] with area zero such that all sections of it
(x and y-sections) are either empty or uncountable with length zero.

Problem 9.11. Take the Lebesgue measure space (R,�, λ) and the product
space (R2, �×�, π), where π = λ×λ is the area on R

2 as in Problem 9.10.
Give an example of a real-valued function f :R2→ R satisfying (1) and (2).

(1) f = 0 π-almost everywhere.

That is, f = 0 up to a measurable set of area zero, and so verify that this
f is �×�-measurable, and apply Proposition 4.2(a) to infer that this f is
also integrable with

∫

R
2 f dπ = 0. Moreover,

(2)
∫

R
fx dλ =∞ for some x-section fx :R → R of f .
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Problem 9.12. Set E = [0, 1] ⊂ R. Let E = ℘(E) ∩ � be the σ-algebra of
all Borel subsets of [0, 1]. Take the Lebesgue measure λ on E (i.e., the
restriction of the Lebesgue measure to E as in Problem 2.11). Let μ be the
counting measure on E as in Problem 2.4(b), which is not σ-finite. Consider
the measure spaces (E, E , λ) and (E, E , μ). Apply Example 9A to verify that
the identity segment , or the diagonal set , of the rectangle [0, 1]×[0, 1], viz.,
the set I = {(x, y) ∈ E×E : x = y}, is E×E-measurable, and show that

∫

μ(Ix) dλ �=
∫

λ(I y) dμ.

Hence the assumption of σ-finiteness cannot be omitted from Lemma 9.7.

Problem 9.13. Consider the setup of the previous problem. Use the char-
acteristic function χ

I ∈M(E×E, E×E , λ×μ)+of the set I to show that the
assumption of σ-finiteness cannot be omitted from the Tonelli Theorem.

Problem 9.14. Let (X,X , μ) and (Y,Y, ν) be σ-finite measure spaces.
Take their product space (X×Y, X×Y, π). If E and F are sets in X×Y
such that ν(Ex) = ν(Fx) for (almost) every x ∈ X (or μ(Ey) = μ(F y) for
(almost) every y ∈ Y ), then show that π(E) = π(F ).

Hint: Apply the Tonelli Theorem to the characteristic functions χ
E and χ

F

of the X×Y-measurable sets E and F . Use the results of Problem 9.8.

Problem 9.15. Take a pair f, g ∈ L(R,�, λ) of Lebesgue integrable func-
tions. Define a function h:R2→ R by h(x, y) = f(x− y) for every (x, y)
in R

2. According to Problem 9.2, h is �×�-measurable. Verify that the
function hg :R2→ R mapping each (x, y) ∈ R

2 into f(x− y)g(y) ∈ R is also
�×�-measurable. Now apply the Fubini Theorem to show that there is a
real-valued function f ∗ g ∈ L(R,�, λ) defined almost everywhere on R by

(f ∗ g)(x) =

∫

R

hx dy =

∫

R

f(x− y)g(y) dy.

This function f ∗ g :R → R is the convolution of f and g. Also show that
∫

|f ∗ g| dx ≤
(∫

|f | dx
)(∫

|g| dy
)

.

Problem 9.16. Let {αm,n} be a countable family of nonnegative real num-
bers, doubly indexed by (m,n) ∈ N×N.
(a) Use elementary analysis to show that

∞
∑

m=1

∞
∑

n=1

αm,n =

∞
∑

n=1

∞
∑

m=1

αm,n.
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Hint: Recall that a family of real numbers is absolutely summable if and
only if it is unconditionally summable.

Take the product space (N×N, ℘(N×N), μ×μ) of two copies of the measure
space (N, ℘(N), μ), where μ is the counting measure of Example 2B. Con-
sider the integral of the function αm,n :N×N → R with respect to the prod-
uct measure π = μ×μ (see Problem 3.4). That is, for every E ∈ ℘(N×N),

∫

E

αm,n dπ =
∑

E
αm,n.

(b) If
∑

N×N
αm,n <∞ (i.e., under the assumption of finite integral), then

show that the result in (a) can be proved by using the Fubini Theorem.

Problem 9.17. Consider the setup of the previous problem, but now sup-
pose {αm,n} is an arbitrary countable family of real numbers (not neces-
sarily nonnegative). Suppose αm,m= 1 and αm,m+1= −1 for every integer
m ∈ N, and αm,n= 0 otherwise. Show that

∞
∑

m=1

∞
∑

n=1

αm,n = 0 and

∞
∑

n=1

∞
∑

m=1

αm,n = 1.

Conclude that the nonnegativeness assumption (i.e., αm,n ≥ 0 for all (m,n)
in N×N) cannot the dropped in the Tonelli Theorem, and integrability (i.e.,
∑

N×N
|αm,n| <∞) cannot be omitted from the Fubini Theorem.

Hint:

{

αm,n

}

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 −1 0
0 1 −1 0

0 1 −1
0 1

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Problem 9.18. Let
(

[0, 1]×[0, 1], ℘([0, 1]×[0, 1]) ∩ (�×�), λ×λ
)

be the
product space obtained by two copies of the finite Lebesgue measure space
(

[0, 1], ℘([0, 1]) ∩ �, λ
)

. Consider the functions f ∈L
(

[0, 1], ℘([0, 1]) ∩ �, λ
)

and the real-valued g ∈M
(

[0, 1], ℘([0, 1]) ∩ �
)

+ given by

f(x) =

⎧

⎨

⎩

1, 0 < x ≤ 1
2 ,

−1, 1
2 < x ≤ 1,

g(y) =

⎧

⎨

⎩

0, y = 0,

1
y , y ∈ (0, 1].

Let the function h ∈M
(

[0, 1]×[0, 1], ℘([0, 1]×[0, 1]) ∩ (�×�)
)

be given by

h(x, y) = f(x) g(y)
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for every (x, y) ∈ [0, 1]×[0, 1], which is real-valued (Problem 9.3). Show that
∫ 1

0

(∫ 1

0

h(x, y)dx

)

dy = 0.

What is the value of the other iterated integral of h? Is h integrable?

Problem 9.19. Recall that an integrable function f (i.e., f in L(X,X , μ))
is a real-valued measurable function with a finite integral (i.e.,

∫

f± dμ <∞;
equivalently,

∫

|f | dμ <∞ — see Lemma 4.4). Theorem 9.9 assumes that
h is integrable and concludes that there are integrable functions fh and
gh such that

∫

X
fh dμ =

∫

X×Y
h dπ =

∫

Y
gh dν, where μ and ν are σ-finite

measures. As integrable functions, these h, fh, and gh are real-valued. Show
that if μ and ν are σ-finite and if h is an extended real-valued X×Y-meas-
urable function with a finite integral, then there are extended real-valued
X -measurable and Y-measurable functions fh and gh (defined as in Theorem
9.9) with finite integrals such that

∫

X
fh dμ =

∫

X×Y
h dπ =

∫

Y
gh dν.

The Fubini Theorem holds if we allow extended real-valued functions
but retain the assumption of finite integrals (i.e.,

∫

X×Y
|h| dπ <∞).

Problem 9.20. Take a pair of measure spaces (X,X , μ) and (Y,Y, ν) and
consider their product space (X×Y, X×Y, π), where π = μ×ν. Let f and g
be real-valued functions on X and Y, and let h be the real-valued function
on X×Y defined by h(x, y) = f(x) g(y) for every (x, y) in X×Y. Show that
if f ∈ L(X,X , μ) and g ∈ L(Y,Y, ν), then h ∈ L(X×Y, X×Y, π) and

∫

X×Y

h dπ =

(∫

X

f dμ

)(∫

Y

g dν

)

even if the measures μ and ν are not σ-finite.

Hint: Take the kernels of the f and g, namely,N (f) = {x ∈ X : f(x) = 0} in
X and N (g) = {y ∈ Y : g(y) = 0} in Y so that X ′= X\N (f) ∈ X and Y ′=
Y \N (g) ∈ Y are σ-finite sets with respect to μ and ν (Problem 3.9(c)). Set
X ′= ℘(X ′) ∩ X and Y ′= ℘(Y ′) ∩ Y, the sub-σ-algebras of X and Y made
up of subsets of X ′ and Y ′. Verify that μ and ν (in fact, their restrictions
to X ′ and Y ′) are σ-finite measures on X ′ and Y ′. Since h = fg, get

∫

X×Y

h(x, y) dπ =

∫

X′×Y ′
f(x) g(y) dπ.

Apply the Fubini Theorem for σ-finite measures on X ′ and Y ′.

Suggested Reading

Bartle [4], Bauer [6], Berberian [7], Halmos [18], Lang [28], Royden [35].
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Remarks on Integrals

10.1 Positive Measures

This is an introductory chapter to Part II, dealing with basic properties of
integrals with respect to a positive, signed, and complex measure that will
be required in the sequel. It does not yet deal with measures on topological
spaces. We will not equip the underlying set X with a topology in this
chapter, but we will do it from the next chapter onwards. However, to
avoid trivialities, we assume that the underlying set X is nonempty. By a
positive measure we simply mean a measure μ:X → R on a σ-algebra X of
subsets of a nonempty set X (so that μ(X) ≥ 0). (Sometimes this is used to
specify a nonzero measure; that is, a measure μ such that μ(X) > 0, but we
allow the zero measure here.) The term positive measure is employed just to
distinguish it from signed measure (also called real measure) and complex
measure. In this section we summarize the basic properties of integrals with
respect to a positive measure, as discussed in Chapters 3, 4, and 5. These
basic properties will be extended to integrals with respect a signed measure
and with respect to a complex measure in the forthcoming sections.

Remark 10.1. Consider a real-valued function f :X→ R onX. If μ:X → R

is a finite positive measure on a σ-algebra X of subsets of X, then the char-
acteristic function χ

E :X→ R is integrable for every measurable set E ∈ X ,
and so is the constant function 1:X→ R such that 1(x) = 1 for every x ∈ X
(reason:

∫

dμ = μ(X) <∞). If f :X→ R is an integrable function, then

© Springer International Publishing Switzerland 2015
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7 10
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∣

∣

∣

∣

∫

E

f dμ

∣

∣

∣

∣

≤
∫

E

|f | dμ ≤ sup |f |μ(E)

for every E ∈ X by Lemma 4.4 and Problem 5.1 (where sup |f | ∈ R is de-
fined as usual: sup |f | = supx∈X |f(x)|). Therefore,

sup
|f |≤1

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

≤ μ(X) =

∫

dμ =

∫

1 dμ =

∣

∣

∣

∣

∫

dμ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1 dμ

∣

∣

∣

∣

,

and so (since sup |1| = 1, trivially),

sup
|f |≤1

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

= max
|f |≤1

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1 dμ

∣

∣

∣

∣

=

∫

1 dμ = μ(X),

where the supremum is taken over all real-valued integrable functions f on
X such that |f | ≤ 1. The set L = L(X,X , μ) of all real-valued integrable
functions on X with respect to the measure μ is a linear space, and the
integral

∫

(·) dμ:L → R is a linear functional (cf. Lemma 4.5). For every
positive measure μ, the integral is a positive functional in the sense that it
takes positive functions to positive numbers:

0 ≤
∫

f dμ whenever 0 ≤ f ∈ L.

(i.e., if f :X→ R in L(X,X , μ) is such that 0 ≤ f μ-a.e., then 0 ≤
∫

f dμ —
cf. Proposition 4.2(a) and Problem 4.4(b)). That sup|f |≤1

∣

∣

∫

f dμ
∣

∣ =
∣

∣

∫

1 dμ
∣

∣

(i.e., the supremum is actually attained by the function 1, which lies in L
whenever μ is finite) is a consequence of the positivity of the linear functional
∫

(·) dμ:L → R with respect to a positive measure μ. Another consequence
of the positivity of the integral with respect to a positive measure is this
(see Problem 4.4(a)). If f and g are functions in L, then

f ≤ g implies

∫

f dμ ≤
∫

g dμ.

(In fact, since the integral is a positive functional, 0 ≤
∫

(g − f) dμ whenever
f ≤ g μ-a.e., and since it is linear,

∫

f dμ ≤
∫

g dμ.)

Remark 10.2. Consider a complex-valued function f :X→ C on X and its
Cartesian decomposition f = f1+ i f2, where f1 = Re f :X→ R and f2 =
Im f :X→ R are real-valued functions on X (the real and imaginary parts
of f). A complex-valued function f is measurable if f1 and f2 are meas-
urable (Problem 1.7); and f is integrable with respect to a positive measure
μ:X → R if f1 and f2 are integrable with respect to μ, and its integral is

∫

f dμ =

∫

f1 dμ+ i

∫

f2 dμ,

where f is integrable if and only if |f | is (Problem 4.7), and for every E ∈ X ,
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∣

∣

∣

∣

∫

E

f dμ

∣

∣

∣

∣

≤
∫

E

|f | dμ ≤ sup |f |μ(E).

The proof of the first inequality in the above expression requires a little
care (cf. Hint to Problem 4.7). However, as a consequence, we get the same
result obtained for real-valued functions, namely,

sup
|f |≤1

∣

∣

∣

∣

∫

f dμ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1 dμ

∣

∣

∣

∣

=

∫

1 dμ = μ(X),

where the supremum is taken over all complex-valued integrable functions f
on X such that |f | ≤ 1. The supremum is actually a maximum, attained by
the real-valued function 1:X→ R, which is integrable whenever μ is finite,
and this is a consequence of the positivity of the integral with respect to a
positive measure μ (when applied to a real-valued positive function).

10.2 Real Measures

If λ:X → R and μ:X → R are finite positive measures on a σ-algebra X
of subsets of a set X, then consider the (finite real-valued) signed measure
ν :X → R on X defined by ν = λ− μ, and recall that ν = ν+− ν−, where
ν+ :X → R and ν− :X → R are finite positive measures on X (singular to
each other), referred to as the positive and negative variation of ν, which
are such that ν+ ≤ λ and ν− ≤ μ. The total variation of ν is the finite
(positive) measure |ν|:X → R defined by |ν| = ν++ ν− (Example 7.A).

Remark 10.3. A real-valued function f :X→ R on X is integrable with
respect to a signed measure ν = λ− μ for arbitrary finite positive measures
λ and μ, if it is integrable with respect to the positive measures λ and μ (and
so if it is integrable with respect to the positive measures ν+ and ν−, since
ν+≤ λ and ν−≤ μ, so that

∫

|f | dν+ ≤
∫

|f | dλ and
∫

|f | dν− ≤
∫

|f | dμ; cf.
Problem 3.3(d) and Lemma 4.4(a)). The integral of f :X→ R with respect
to a signed measure ν is unambiguously defined by

∫

f dν =

∫

f dλ−
∫

f dμ =

∫

f dν+−
∫

f dν−.

Note that χ
E :X→ R is integrable for every E ∈ X since ν is finite, and so

ν(E) = ν+(E)− ν−(E) =

∫

E

dν+−
∫

E

dν− =

∫

E

dν.

Equivalently,

ν(E) = λ(E)− μ(E) =

∫

E

dλ−
∫

E

dμ =

∫

E

dν.
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This ensures that the integral with respect to a signed measure ν is equiva-
lently defined as the difference of the integrals with respect to the positive
measures ν+ and ν−, or with respect to the positive measures λ and μ.
Similarly, the integral with respect to the positive measure |ν| is defined by

∫

f d|ν| =
∫

f dν++

∫

f dν−.

Again, set sup |f | = supx∈X |f(x)|. Thus (cf. Lemma 4.4), for every E ∈ X ,
∣

∣

∣

∣

∫

E

f dν

∣

∣

∣

∣

≤
∫

E

|f | dν++

∫

E

|f | dν− =

∫

E

|f | d|ν| ≤ sup |f | |ν|(E),

so that

sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

≤ |ν|(X),

where the supremum is taken over all real-valued integrable functions f on
X such that |f | ≤ 1. Since ν+and ν−are singular, there is a measurable par-
tition {A+, A−} of X such that ν+(A−) = ν−(A+) = 0, ν+(A+) = ν+(X),
and ν−(A−) = ν−(X) (e.g., any Hahn decomposition of X with respect ν
— see Section 7.1). Consider the function χ

A+− χ
A− :X→ R for which

∫

(χA+− χ
A−) dν =

∫

χ
A+ dν++

∫

χ
A− dν− =

∫

A+
dν++

∫

A−
dν−

= ν+(A+) + ν−(A−) = ν+(X) + ν−(X) = |ν|(X).

Therefore, since |χA+− χ
A− | = 1,

|ν|(X) =

∫

d|ν| =
∫

1 dν++

∫

1 dν− =

∫

(χA+−χ
A−) dν ≤ sup

|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

,

and so the supremum is actually attained by the function χ
A+−χ

A− , which
is a consequence of the positivity of the integrals

∫

(·)dν+ and
∫

(·)dν− with
respect to the positive measures ν+ and ν−. Summing up:

sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

= |ν|(X).

Next we show another proof of the above identity. This alternate proof will
be required in the sequel. Suppose f is a real-valued integrable function on
X such that χ

F ≤f ≤χG, where χ
F and χ

G are characteristic functions
of measurable sets F,G ∈ X . If F ⊆ G ⊆ A+, then 0 ≤ ν(F ) =

∫

χ
F dν ≤

∫

f dν ≤
∫

χ
G dν = ν(G); on the other hand, if F ⊆ G ⊆ A−, then ν(G) =
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∫

χ
G dν ≤

∫

f dν ≤
∫

χ
F dν = ν(F ) ≤ 0. Outcome: If either F ⊆ G ⊆ A+,

or F ⊆ G ⊆ A−, and χ
F ≤f ≤χG, then

|ν(F )| ≤
∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

≤ | ν(G)| .

Note: this fails without the assumption that F ⊆ G are subsets of either
A+ or of A− (e.g., set F = A+, G = X, 0 <−ν(A−) = ν(A+), and f = 1).
However, if {Ai} is any measurable covering of X, then consider the mea-
surable covering {Ek} of X defined as follows: {Ek} = {A+

i } ∪ {A−
i }, where

A+
i = Ai ∩A+ and A−

i = Ai ∩A− for each index i. Thus {Ek} consists of
subsets of either A+ or A−. So, if Fk ⊆ Gk ⊆ Ek and χ

Fk
≤fk ≤χGk

, then

|ν(Fk)| ≤
∣

∣

∣

∣

∫

fk dν

∣

∣

∣

∣

≤ |ν(Gk)|

for each k. If {Ai} is an arbitrary finite measurable partition of X, then so
is {Ek}. Take Gk = Ek and set fk = χ

Ek
. In this case,

sup
∑

k

∣

∣

∣

∣

∫

χ
Ek

dν

∣

∣

∣

∣

= sup
∑

k
|ν(Ek)| = |ν|(X)

according to Examples 2I and 7A, where the supremum is taken over all
finite measurable partitions of X. Recalling that

∑

k
χ
Ek

= χ
X = 1 (and

so
∣

∣

∑

k
χ
Ek

∣

∣ = 1) and 0 ≤ χ
Ek
≤ 1, we may infer that

sup
∑

k

∣

∣

∣

∣

∫

χ
Ek

dν

∣

∣

∣

∣

≤ sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

,

where the supremum on the right-hand side is taken over all real-valued
integrable functions f on X such that |f | ≤ 1. Hence

|ν|(X) = sup
∑

k

∣

∣

∣

∣

∫

χ
Ek

dν

∣

∣

∣

∣

≤ sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

≤ |ν|(X).

Thus we get another proof that

sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

= |ν|(X).

Remark 10.4. A complex-valued function f :X→ C on X is integrable
with respect to a signed measure ν :X → R if f1 = Re f and f2 = Im f are
integrable with respect to ν, and the integral of f = f1 + if2 :X → C with
respect to a signed measure ν = ν+ − ν− :X → R is defined by
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∫

f dν =

∫

f1 dν + i

∫

f2 dν

=

∫

f1 dν
+−

∫

f1 dν
−+ i

[ ∫

f2 dν
+−

∫

f2 dν
−
]

=

∫

f1 dν
++ i

∫

f2 dν
+−

∫

f1 dν
−− i

∫

f2 dν
−

=

∫

f dν+−
∫

f dν−,

so that, by the inequalities in Remark 10.2 and according to the definition
of the integral with respect to |ν| in Remark 10.3 we get, for every E ∈ X ,

∣

∣

∣

∣

∫

E

f dν

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

E

f dν+
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E

f dν−
∣

∣

∣

∣

≤
∫

E

|f | dν++

∫

E

|f | dν− =

∫

E

|f | d|ν| ≤ sup |f | |ν|(E).

By the above inequality we get sup|f |≤1

∣

∣

∫

f dν
∣

∣ ≤ |ν|(X). However, as we
saw in Remark 10.3, such a supremum is attained by the real-valued (as a
particular case of a complex-valued) function χA+− χA− :X→ R ⊆ C for
any Hahn decomposition {A+, A−} of X with respect to ν. Therefore,

sup
|f |≤1

∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

= |ν|(X),

where the supremum is taken over all complex-valued integrable functions
f on X such that |f | ≤ 1.

10.3 Complex Measures

Now recall the definition of complex measure (cf. Problem 2.16): a complex
measure η :X → C is a complex-valued set function on a σ-algebra X of
subsets of a set X such that η = ν1+ i ν2, where ν1 = Re η :X → R and
ν2 = Im η :X → R, the real and imaginary parts of η, are (finite real-valued)
signed measures on X . We say that a positive measure μ:X → R dominates
a complex measure η :X → C if |η(E)| ≤ μ(E) for every E ∈ X (warning:
see Example 2G)). Set μ = |ν1|+ |ν2|. It is clear that μ:X → R is a finite
positive measure (since it is the sum of finite positive measures), and it is
readily verified that μ dominates η. Indeed, |η(E)| ≤ |ν1(E)|+ |ν2(E)| ≤
|ν1|(E) + |ν2|(E) = (|ν1|+ |ν2|)(E) <∞ for every E ∈ X (cf. Examples 2I
and 7A). Consider the total variation |η|:X → R of η :X → C defined along
the same line of Example 2I: for each n ∈ N let E(n) be the collection of



10.3 Complex Measures 189

all measurable partitions of E ∈ X containing n sets so that
⋃

E(n) is the
collection of all finite measurable partitions of E. For each E ∈ X set

|η|(E) = sup
{Ej}∈∪E(n)

∑

j
|η(Ej)| .

Again, following the same steps of Examples 2I and 7A, we can show that
the total variation |η|:X → R of the complex measure η :X → C is a finite
positive measure, which is the least positive measure that dominates η (i.e.,
if μ dominates η, then |η| ≤ μ).

Remark 10.5. A real-valued function f :X→ R on X is integrable with
respect to a complex measure η = ν1+ i ν2 :X → C if it is integrable with
respect to both signed measures ν1 and ν2, and the integral of an inte-
grable real-valued function f :X→ R with respect to a complex measure
η = ν1+ i ν2 is defined by

∫

f dη =

∫

f dν1 + i

∫

f dν2.

Observe that since χ
E :X→ R is integrable for each E ∈ X because ν1 and

ν2 are finite, it follows that (see Remark 10.3), for every E ∈ X ,

η(E) = ν1(E) + i ν2(E) =

∫

E

dν1 + i

∫

E

dν2 =

∫

E

dη.

Also note that
∣

∣

∫

E
f dη

∣

∣ ≤
∣

∣

∫

E
f dν1

∣

∣+
∣

∣

∫

E
f dν2

∣

∣ ≤ sup |f | (|ν1|+ |ν2|)(E)
for every E ∈ X . But we can get a tighter inequality as follows. Take an arbi-
trary E ∈ X . Let g :X→ R be a nonnegative measurable function, and con-
sider the collection Φ+

g (E) of all positive simple functions ϕ =
∑

j αj
χEj , for

all finite measurable partitions {Ej} ∈
⋃

E(n), such that 0 ≤ ϕ ≤ g. Note
that

∣

∣

∫

E
ϕdη

∣

∣ =
∣

∣

∑

j αj η(Ej)
∣

∣ ≤
∑

j αj |η(Ej)| ≤
∫

E
ϕd|η|, and therefore

∣

∣

∫

E
g dη

∣

∣ = supϕ∈Φg(E)

∣

∣

∫

E
ϕdη

∣

∣ ≤ supϕ∈Φg(E)

∫

E
ϕd|η| =

∫

E
g d|η|. By

linearity of the integral, and recalling that f = f+ − f− and |f | = f+ + f−,
where f+ and f− are nonnegative and measurable, we get

∣

∣

∣

∣

∫

E

f dη

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

E

f+dη −
∫

E

f−dη

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

E

f+dη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

E

f−dη

∣

∣

∣

∣

≤
∫

E

f+d|η|+
∫

E

f−d|η| =
∫

E

|f | d|η| ≤ sup |f | |η|(E)

for every E ∈ X , so that
∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤ sup |f | |η|(X).
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Let {A+
1 , A

−
1 } and {A+

2 , A
−
2 } be Hahn decompositions of X with respect to

the signed measures ν1 and ν2, respectively. Consider the collection A+−
1,2 =

{A+
1 ∩A+

2 , A
+
1 ∩A−

2 , A
−
1 ∩A+

2 , A
−
1 ∩A−

2 }, which is a measurable covering
of the nonempty set X. Suppose f is a real-valued integrable function on
X such that χ

F ≤f ≤χG, where χ
F and χ

G are characteristic functions of
measurable subsets F,G of X. If F ⊆ G ⊆ A for an arbitrary set A ∈ A+−

1,2 ,

then |ν1(F )|2 + |ν2(F )|2 ≤
∣

∣

∫

f dν1
∣

∣
2 +

∣

∣

∫

f dν2
∣

∣
2 ≤ |ν1(G)|2 + |ν2(G)|2 by

Remark 10.3. Outcome: If F ⊆ G ⊆ A ∈ A+−
1,2 and χ

F ≤f ≤χG, then

|η(F )| ≤
∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤ |η(G)| .

Consider Remark 10.3. A similar argument shows that for every measurable
covering of X there is a measurable covering {Ek} of X consisting of subsets
of the four sets in A+−

1,2 , and so if Fk ⊆ Gk ⊆ Ek and χ
Fk
≤fk ≤χGk

, then

|η(Fk)| ≤
∣

∣

∣

∣

∫

fk dη

∣

∣

∣

∣

≤ | η(Gk)|

for every k. Again, as in Remark 10.3, for every finite measurable partition
of X there exists a finite measurable partition {Ek} of X such that

sup
∑

k

∣

∣

∣

∣

∫

χ
Ek

dη

∣

∣

∣

∣

= sup
∑

k
|η(Ek)| = |η|(X),

where the supremum is taken over all finite measurable partitions of X.
Thus, following the same argument in Remark 10.3, since

∑

k
χ
Ek

= χ
X = 1

(and so
∣

∣

∑

k
χ
Ek

dν
∣

∣ = 1) and 0 ≤ χ
Ek
≤ 1, we may infer that

sup
∑

k

∣

∣

∣

∣

∫

χ
Ek

dη

∣

∣

∣

∣

≤ sup
|f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

,

where the supremum on the right-hand side is taken over all real-valued inte-
grable functions f on X such that |f | ≤ 1. So, |η|(X) = sup

∑

k|
∫

χ
Ek

dη | ≤
sup|f |≤1 |

∫

f dη |. Since sup|f |≤1

∣

∣

∫

f dν
∣

∣ ≤ |η|(X), it follows that

sup
|f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

= |η|(X).

Remark 10.6. A complex-valued function f = f1 + i f2 :X→ C on X is
integrable with respect to a complex measure η = ν1+ i ν2 :X → C if the
real-valued functions f1 and f2 (the real and imaginary parts of f) are inte-
grable with respect to η, and the integral of an integrable function f :X→ C

with respect to a complex measure η :X → C is given by
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∫

f dη =

∫

f1 dη + i

∫

f2 dη

=

∫

f1 dν1 + i

∫

f1 dν2 + i

[ ∫

f2 dν1 + i

∫

f2 dν2

]

=

∫

f1 dν1 + i

∫

f2 dν1 + i

[ ∫

f1 dν2 + i

∫

f2 dν2

]

=

∫

f dν1 + i

∫

f dν2.

Note that
∣

∣

∫

E
f dη

∣

∣
2=

∣

∣

∫

E
f1 dη

∣

∣
2+

∣

∣

∫

E
f2 dη

∣

∣
2≤ (sup |f1|2+sup |f2|2)|η|(E)

for every E ∈ X , by Remark 10.5. However, we can again get a tighter in-
equality, with sup |f1|2+ sup |f2|2 replaced by sup |f |2 = sup(|f1|2+ |f2|2).
Indeed, write

∫

f dη = ρ eiθ, which implies that e−iθ
∫

f dη = ρ ≥ 0. Set
g = e−iθf :X→ C and h = Re g :X→ R, and so |h| ≤ |g| and |g| = |f |.
Then 0 ≤ |

∫

f dη| = ρ =
∫

e−iθf dη =
∫

g dη = Re
∫

g dη ≤
∫

Re g dη. (To
verify the final inequality note, by the above displayed identity, that 0 ≤
Re

∫

g dη =
∫

g1 dν1−
∫

g2 dν2, so that
∫

g2 dν2 ≤
∫

g1 dν1; thus
∣

∣Re
∫

g dη
∣

∣ =
Re

∫

g dη ≤
∫

g1 dν1 and, since
∫

Re g dη =
∫

g1 dη =
∫

g1 dν1 + i
∫

g1 dν2, we
get Re

∫

Re g dη =
∫

g1 dν1, and so Re
∫

g dη ≤
∫

Re g dη.) Moreover, since h
is real-valued, we get by Remark 10.5 that

∣

∣

∫

f dη
∣

∣ ≤
∫

Re g dη =
∫

h dη =
∣

∣

∫

h dη
∣

∣ ≤
∫

|h| dη. So, using the same argument,
∣

∣

∫

E
f dη

∣

∣ =
∣

∣

∫

f χE dη
∣

∣ ≤
∫

|h|χE dη =
∫

E
|h| dη ≤

∫

E
|f | dη. Therefore, for every E ∈ X ,

∣

∣

∣

∣

∫

E

f dη

∣

∣

∣

∣

≤
∫

E

|f | dη ≤ sup |f | |η|(E),

so that
∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤ sup |f | |η|(X),

and hence sup|f |≤1

∣

∣

∫

f dν
∣

∣ ≤ |η|(X), where the supremum is taken over all
complex-valued integrable functions f on X such that |f | ≤ 1. However, as
we saw in Remark 10.5, this inequality becomes an identity even for the
particular case where the supremum is taken over the real-valued functions;
and so it holds for the general case. That is,

sup
|f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

= |η|(X).

10.4 Additional Propositions

Observe that a finite positive measure (whose range lies in [0,∞)) is a par-
ticular case of a signed measure (whose range lies in R), and that a signed
measure is a particular case of a complex measure (whose range lies in C).
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However, if a positive measure is not finite, then it is not a particular case of
any of the above measures since its range is [0,+∞], where the symbol +∞
(which is not a number; in particular, not real number) is included in it.
Thus a signed measure ν = ν+− ν− and a complex measure η = ν1 + i ν2 =
ν+1 − ν−1 + i (ν+2 − ν−2 ) are always finite in the sense that |ν(E)| <∞ and
|η(E)| <∞ for every measurable set E. So they are, in particular, σ-finite
in the sense that ν+, ν−, ν+1 , ν−1 , ν+2 , ν−2 , being all finite positive measure,
are tautologically σ-finite. Let λ and μ be arbitrary measures (positive,
finite positive, signed, or complex) on the same σ-algebra. Exactly as in
the case of positive measures (cf. Definition 7.6), λ is absolutely continuous
with respect to μ (notation: λ� μ) if, for an arbitrary measurable set E,
μ(E) = 0 implies λ(E) = 0. Similarly, as in the case of positive measures (cf.
Definition 7.9), λ and μ are singular (notation: λ ⊥ μ) if λ(A) = μ(B) = 0
for some measurable partition {A,B} of X.

With the above extended definitions in mind, the Radon–Nikodým The-
orem (Theorem 7.8) has an immediate extension to integrable functions
(instead of nonnegative measurable functions), where the σ-finite positive
measure λ is replaced by a (finite) signed measure ν, as follows: Let (X,X )
be a measurable space. If ν is a signed measure and μ is a positive σ-finite
measure, both on X , and if ν is absolutely continuous with respect to μ,
then there exists a unique (μ-almost everywhere unique) real-valued func-
tion f in L(X,X , μ) such that ν(E) =

∫

E
f dμ for each E ∈ X . The proof

follows naturally by Theorem 7.8 for f = f+− f− with ν+(E) =
∫

E
f+dμ

and ν−(E) =
∫

E
f−dμ (cf. Proposition 7.5). The original version in Theo-

rem 7.8 is not a particular case of the above version. However, the above
version a particular case of the following.

Proposition 10.A. Let (X,X ) be a measurable space. If η is a complex
measure and μ is a positive σ-finite measure, both on X , and if η is ab-
solutely continuous with respect to μ, then there exists a unique (μ-almost
everywhere unique) complex-valued μ-integrable function f on X such that

η(E) =

∫

E

f dμ for each E ∈ X .

Along the same lines, a similar approach extends the Lebesgue Decom-
position Theorem (Theorem 7.10), which in fact is a corollary of the pre-
ceding Radon–Nikodým Theorem, as follows. Let F denote either R or C

so that an F-valued measure means either a finite positive measure, or a
signed measure, or a complex measure.
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Proposition 10.B. Let (X,X ) be a measurable space. If μ is a positive
σ-finite and η is an F-valued, both measures on X , then there is a unique
pair of F-valued measures ηa and ηs on X such that ηa � μ, ηs ⊥ μ, and

η = ηa + ηs.

The Fundamental Theorem of Calculus of elementary calculus asserts that
integration and differentiation are the inverse of each other as follows. Sup-
pose, for instance, that f is a continuously differentiable real-valued function
on the interval [α, β] ⊂ R. The derivative of the indefinite (Riemann) inte-
gral coincides with the function, f(x) =

( ∫ x

α
f(t) dt

)′
for every x ∈ [α, β],

and conversely the function is recovered by integrating its derivative f ′

(which being continuous on [α, β] is integrable), f(x)− f(α) =
∫ x

α
f ′(t) dt

for every x ∈ [α, β]. Perhaps it might come as no big surprise that such an
inverse relationship between differentiation and integration may be prop-
erly stated in a measure-theoretical framework; in particular, in the context
of the Lebesgue measure. As expected, the Radon–Nikodým Theorem (The-
orem 7.8 — Proposition 10.A) plays a crucial role in establishing this with
the help of the Lebesgue Decomposition Theorem (Theorem 7.10 — Propo-
sition 10.B), where the reference measure μ is the Lebesgue measure.

We now proceed along the lines of the following propositions towards
the Lebesgue version of the Fundamental Theorem of Calculus. In what fol-
lows, μ:� → R will denote the Lebesgue measure on the Borel σ-algebra
� generated by the open sets of R, equipped with its usual topology, as in
Section 8.3 (see the remark that follows Problem 1.14). Recall that a com-
pact subset of R is precisely a closed and bounded subset of R, and also
that a Borel measure on � is a positive measure λ:� → R that assigns a
finite value to every compact set of R (i.e., λ(K) <∞ for every compact
K ⊂ R; cf. Problem 2.13). It is readily verified that the Lebesgue measure
(which assigns its finite length to every bounded interval) is a Borel mea-
sure, and also that every Borel measure is σ-finite (cf. Problem 2.13 again).
Also recall that a finite positive measure on � (which is tautologically a
Borel measure) is a particular case of a signed measure on �, which in turn
is a particular case of a complex measure on �. Thus we actually have es-
sentially two distinct cases: a positive nonfinite (possibly σ-finite) measure,
or an F-valued measure — complex, signed (i.e., real-valued), or positive
finite measures. Similarly, a real-valued function on R can be viewed as a
particular case of a complex-valued function on R, and so we will refer to an
F-valued function, meaning either a real-valued or a complex-valued func-
tion. Some of the next results can be stated for measures on the σ-algebra
generated by the open sets of Rn, or for functions on R

n. However, we will
consider only measures on � and functions on R.
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Let X be a nonempty open subset of F (particular case, X= R). Take a
function f :X→ F, and an arbitrary point x ∈ X. Let f ′(x) be a number in
F with the following property. For every ε> 0 there exists a δ > 0 such that

0 < |y − x| < δ implies
∣

∣

∣

f(y)−f(x)
y−x − f ′(x)

∣

∣

∣ < ε.

If there exists such a number f ′(x) ∈ F, then it is called the derivative of
f at x, and the function f is said to be differentiable at x.

Proposition 10.C. Let η be an F-valued measure and let μ be the Lebesgue
measure, both on �, and consider the function f :R → F defined by

f(x) = η((−∞, x)) for every x ∈ R.

The function f is differentiable at x ∈ X (so that there exists f ′(x) ∈ F)
and f ′(x) = α if and only if for every ε > 0 there exists a δ > 0 such that

μ(I(x)) < δ implies
∣

∣

∣

η(I(x))
μ(I(x)) − α

∣

∣

∣ < ε

for every open interval I(x) that contains x.

Given an arbitrary x ∈ I(x) = (α, β), we say that the open interval I(x)
shrinks to x (notation: I(x)→ {x}) if for every δ > 0 there exists an interval
Iδ(x) = (αδ, βδ) ⊆ I(x) = (α, β) containing x (i.e., α ≤ αδ < x < βδ ≤ β)
such that |βδ − αδ| < δ. Proposition 10.C suggests the following definition.
Take any point x ∈ I(x) = (α, β). Let (Dη)(x) be a number in F with the
following property. For every ε > 0 there exists a δ > 0 such that

|βδ − αδ| < δ implies
∣

∣

∣

η(Iδ(x))

μ(Iδ(x))
− (Dη)(x)

∣

∣

∣ < ε

whenever the interval Iδ(x) = (αδ, βδ) ⊆ I(x) = (α, β) contains x. If this
number (Dη)(x) ∈ F exists, then it is called the derivative of the measure
η at a point x with respect to Lebesgue measure μ. In other words, (Dη)(x)

is the limit of η(I(x))
μ(I(x)) as the open interval I(x) containing x shrinks to x:

(Dη)(x) = lim
Ix→{x}

η(I(x))
μ(I(x))

for every x ∈ R at which this limit exist. If the limit exists for every x ∈ R,
then the function Dη :R → F defined by the preceding limit is referred to as
the derivative of the measure η with respect to Lebesgue measure μ. Recall
that η is an F-valued measure on �, which may be a finite positive measure,
or a signed measure, or a complex measure.

The next result says that the Radon–Nikodým derivative dη
dμ of a measure

η with respect to Lebesgue measure μ coincides with the derivative Dη of
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the measure η with respect to Lebesgue measure μ. (Warning: all measures
on � and the reference measure must be the Lebesgue measure.)

Proposition 10.D. Let η be an F-valued measure and let μ be the Lebesgue
measure, both on �. Suppose η is absolutely continuous with respect to μ
(η � μ). Let dη

dμ be the Radon–Nikodým derivative of η with respect to μ.

Claim: Dη = dη
dμ (μ-almost everywhere), so that

η(E) =

∫

E

(Dη) dμ for every E ∈ �.

A further form of Proposition 10.D, representing the first part of the
Fundamental Theorem of Calculus extended to Lebesgue integrals, is con-
sidered in Proposition 10.E below. It requires the notion of Lebesgue points
of an integrable function, which is defined as follows. If f :R → F is inte-
grable with respect to Lebesgue measure μ, then every x ∈ R for which

lim
Ix→{x}

1
μ(Ix)

∫

Ix

|f − f(x)| dμ = 0

is called a Lebesgue point of f .

Proposition 10.E. Let f :R → F be μ-integrable, where μ is the Lebesgue
measure on �. For each x in R set

F (x) =

∫ x

−∞
f dμ

in F. This defines a function F :R → F, which is differentiable at every
Lebesgue point x, whose derivative at x is F ′(x) = f(x).

A function f : [α, β]→ F is called absolutely continuous on the interval
[α, β] if for every ε > 0 there exists a δ > 0 such that

∑

i
(βi − αi) < δ implies

∑

i
|f(βi)− f(αi)| < ε

for every finite disjoint collection of open intervals (αi, βi) ⊆ [α, β]. As a
particular case, if the above holds, then it holds for every collection con-
taining just one interval (i.e., βi − αi < δ implies |f(βi)− f(αi)| < ε for
every of open subinterval (αi, βi) of [α, β]), leading to the standard notion
of continuity. Thus absolute continuity trivially implies continuity.

The first part of the Fundamental Theorem of Calculus extended to
Lebesgue integrals in Proposition 10.E asserted that the derivative of the
indefinite integral coincides with the function. Conversely, the second part
of the Fundamental Theorem of Calculus extended to Lebesgue integrals
asserts that the function is recovered by integrating its derivative, as follows.



196 10. Remarks on Integrals

Proposition 10.F. Take f : [α, β]→ F on the interval [α, β] and let μ be
the Lebesgue measure on �. If either f is absolutely continuous (so that it
is differentiable μ-almost everywhere on [α, β] and f ′ is μ-integrable), or
f is differentiable at every point of [α, β] and f ′ is μ-integrable, then

f(x)− f(α) =

∫ x

α

f ′ dμ for every x ∈ [α, β] .

Recall again that by an F-valued function F :X→ F on a nonempty set
X we mean either a complex-valued function or the particular case of a real-
valued function. Similarly, by an F-valued measure η :X → F on a σ-algebra
of subsets of X we mean either a complex measure or the particular cases
of a signed measure or a finite positive measure. Since the notion of integral
has been extended in this chapter to F-valued functions and F-valued mea-
sure, the notion of the Banach space L1(X,X , η) is naturally extended from
the case of real-valued functions and positive measures, considered in Chap-
ter 5, to F-valued functions and measures. In particular, exactly the same
expression for the norm in L1 holds for F-valued functions and measures
due to the upper bounds obtained in Remarks 10.1 to 10.6,

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤
∫

|f | d|η| = ‖f‖1 <∞ for every f ∈ L1(X,X , η),

so that the results in Propositions 5.5 to 5.9 (see also Lemmas 4.4 and
4.5) still remain in force for F-valued functions and measures. The above
inequality says that the integral, as a transformation from the normed space
(L1(X,X , η), ‖ ‖1) of integrable functions to the normed space (F, | |) —
equipped with its usual norm | | — is bounded (a contraction, actually).
Since for linear transformations boundedness is equivalent to continuity,
we get the next proposition (for the particular case of F = R and η = μ, a
positive measure, see the remark that precedes Problem 5.16).

Proposition 10.G. The integral
∫

(·) dη :L1(X,X , η)→ F, as a functional
between the Banach spaces L1(X,X , η) and F, is linear and continuous
(i.e., the integral is a continuous linear functional).

Extending the notion of integral of scalar-valued (either real or complex)
functions to vector-valued functions on a finite-dimensional (real or com-
plex) normed space seems quite natural and, in fact, it is quite natural.
Things become more delicate if we consider vector-valued functions on
infinite-dimensional spaces.

Let Y be a normed space and let ‖ ‖ denote the norm on Y (cf. Definition
5.1), either as a finite or an infinite-dimensional, real or complex, normed
space. Let YT be the σ-algebra generated by the collection T of all open
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subsets of Y (i.e., the σ-algebra generated by a topology T on Y — cf.
Proposition 1.12 — which is called a Borel σ-algebra of subsets of Y — see
the remark following Problem 1.14). Now let X be a nonempty set, and let
X be a σ-algebra of subsets of X. Note that in accordance with the first
paragraph of this chapter, no topology is being assigned to the set X.

A Y-valued function F :X→Y on X is said to be measurable if the in-
verse image of sets in YT are sets in X (i.e., F−1(E) ∈ X for every E ∈ YT
— cf. Problem 1.8). Consider the real-valued function f :X→ R defined
by f(x) = ‖F (x)‖ for every x ∈ X. When we say that ‖F (·)‖ is measur-
able, we mean in the sense of Definition 1.2, which coincides with the above
sense (inverse image of sets in the Borel algebra � lie in X — cf. Problem
1.8 again). Let μ:X → R be a positive measure on the σ-algebra X of sub-
sets of the nonempty set X, and consider a measure space (X,X , μ). Let
L(X,Y ) = L(X,X , μ;Y ) denote the collection of all those measurable func-
tions F :X→Y for which the function ‖F (·)‖:X→ R is integrable; that is,
for which ‖F (·)‖ is measurable and

∫

‖F (·)‖ dμ <∞.

Proposition 10.H. Let (X,X , μ) be a measure space and let Y be a normed
space. (a) If a Y-valued function F :X→Y on X is measurable, then the
real-valued function ‖F (·)‖:X→ R on X is also measurable. (b) The set
L(X,Y ) is a linear space, and the function ‖ ‖:L(X,Y )→ R defined by

‖F‖ =

∫

‖F (·)‖ dμ for every F ∈ L(X,Y )

is a seminorm on the linear space L(X,Y ).

Compare with Lemma 4.5 and Proposition 5.4. Note that we are using
the same notation ‖ ‖ for the norm ‖F (x)‖Y of F (x) on the linear space Y
for each x ∈ X, and for the seminorm ‖F‖L(X,Y ) of F on the linear space
L(X,Y ). Now suppose Y is a Banach space (i.e., a complete normed space
— see the paragraph that precedes Proposition 5.4; also see Theorem 5.9).

A Banach-space-valued function F :X→Y on X is said to be Bochner
integrable if it lies in L(X,Y ) (i.e., F is measurable and

∫

‖F (·)‖ dμ <∞)
and its range F (X) is separable (i.e., F (X) ⊆ Y has a countable dense sub-
set, which means that F (X) has a countable subset whose closure coincides
with the closure of F (X) in Y — the notion of denseness and separabil-
ity will be discussed in the first section of the next chapter). Since F (X)
is separable whenever Y is (i.e., whenever Y has a countable dense subset;
equivalently, if Y has a countable subset whose closure coincides with Y ),
it follows that if Y is a separable Banach space, then F :X→Y is Bochner
integrable if and only if F ∈ L(X,Y ). It is worth noting that F equipped
with its usual norm (as well as F

n equipped with any norm) is a separable
Banach space. Just as in Sections 5.1 and 5.2, consider the equivalence class
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[F ] of all functions in L(X,Y ) that are equal to F μ-a.e., and denote the set
of these equivalence classes by L1(X,Y ) = L1(X,X , μ;Y ). As in Lemma
5.8, the seminorm of Proposition 10.H becomes a norm ‖ ‖1 on L1(X,Y ),

‖F‖1 = ‖[F ]‖1 =

∫

‖F (·)‖ dμ,

which does not depend on the exemplar F in [F ], so that (L1(X,Y ), ‖ ‖1)
(or simply L1(X,Y ) when the norm ‖ ‖1 is clear in the context) is a normed
space. A function Φ:X→Y is a simple function if its range is finite, and
it is an integrable simple function if it is simple and lies in L(X,Y ) (i.e.,
#Φ(X) <∞, Φ is measurable, and

∫

‖Φ(·)‖ dμ <∞).

Proposition 10.I. If (X,X , μ) is a measure space and Y is a Banach space,
then L1(X,Y ) is a Banach space. Moreover, if Y is a separable Banach
space, then the collection of all Y-valued integrable simple functions on X
is a dense linear manifold of L1(X,Y ).

The first part of the Proposition 10.I is the counterpart of Theorem 5.9;
the second part (which extends Problem 5.4) allows us to define an integral
for functions in L1(X,Y ). Let Y be a separable Banach space and write a
measurable simple function Φ as a weighted sum of characteristic functions
χ
Ei

:X→Y of a finite measurable partition {Ei} of X with a finite set of
distinct elements {ai} from Y (the finite set {ai} is the range of Φ), say

Φ =
n

∑

i=1

aiχEi
,

and define the integral of Φ in Y with respect to μ as in Definition 3.1:

∫

Φdμ =
n

∑

i=1

aiμ(Ei),

which is a vector in Y whenever Φ ∈ L1(X,Y ). Since the collection of all
Y-valued integrable simple functions on X is a dense linear manifold of
L1(X,Y ), every F ∈ L1(X,Y ) is the limit (with respect to the norm on
L1(X,Y )) of a sequence {Φk} of integrable simple functions in L1(X,Y ).
That is, for every F ∈ L1(X,Y ), there exists a sequence {Φk} such that
‖Φk − F‖1 → 0 as k →∞. In other words, a Bochner integrable function
F :X→Y of X into a separable Banach space Y (i.e., F ∈ L1(X,Y ), where
Y is a separable Banach space) is, according to Proposition 10.I, the limit in
L1(X,Y ) of a sequence of integrable simple functions in L1(X,Y ); that is,

F = lim
k

Φk.
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This leads to the next result, which defines the integral of F as the limit in
Y of the integrals of Φk: for each F in L1(X,Y ) there exists a unique vector
s(F ) in Y, denoted by s(F ) =

∫

F dμ, such that ‖
∫

Φk dμ− s(F )‖ → 0 as
k →∞ (where ‖ ‖ is the norm on Y ), which is written as

∫

F dμ =

∫

lim
k

Φk dμ = lim
k

∫

Φk dμ .

Such a limit in Y is ensured by the next proposition. Indeed, since the inte-
gral transformation

∫

(·) dμ:L1(X,Y )→Y is linear and continuous (which
means that it is linear and bounded, as in Proposition 10.J below), and
since F = limk Φk in L1(X,Y ), we get

∫

F dμ =
∫

limk Φk dμ = limk

∫

Φk dμ
(see e.g., [26, Corollary 3.8 and Theorem 4.14]).

Proposition 10.J. If (X,X , μ) is a measure space and Y is a separa-
ble Banach space, then there exists a unique bounded linear transformation
∫

(·) dμ:L1(X,Y )→Y such that
∫

Φdμ =
∑n

i=1 aiμ(Ei) for every integrable
simple function Φ =

∑n
i=1 aiχEi

∈ L1(X,Y ). Moreover,

∥

∥

∥

∥

∫

F dμ

∥

∥

∥

∥

≤
∫

‖F (·)‖ dμ = ‖F‖1.

Thus the integral
∫

(·) dμ:L1(X,Y )→Y from the Banach space L1(X,Y )
to the separable Banach space Y is a continuous linear transformation.

The value of this bounded linear transformation from L1(X,Y ) to a
separable Banach space Y, namely,

∫

F dμ, is called the Bochner integral of
F :X→Y with respect to the positive measure μ. Extensions from positive
to F-valued measures follow essentially the same path of Proposition 10.G.

For an exposition on further notions of integral, extended in a differ-
ent direction from what has been done here (also referred to as generalized
Riemann integral, Kurzweil–Henstock, or gauge integral), restricted to func-
tions on the real line, that corrects some defects in the classical Riemann
theory simplifying and extending the Lebesgue theory, see, for instance, [5].

Notes: The whole chapter, in particular the propositions in Section 10.4,
comprise a set of basic results on integration that will be required in the
sequel. The F-valued versions of the Radon–Nikodým Theorem and of the
Lebesgue Decomposition Theorem in Propositions 10.A and 10.B are natu-
ral and immediate consequences of their positive versions in Theorems 7.8
and 7.10 (e.g., also see [36, Theorem 6.10]). For the discussion on the Funda-
mental Theorem of Calculus extended to Lebesgue integrals, along the lines
we have approached here, the reader is referred to [36, Chapter 7]. In partic-
ular, see [36, Theorems 7.1, 7.8, and 7.11] for Propositions 10.C, 10.D, and
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10.E; and [36, Theorems 7.20, 7.21] for Proposition 10.F. Since the integral
remains linear for F-valued functions and measures (naturally extending
the result for real-valued functions and positive measures of Lemma 4.5 and
Section 5.1), it follows that Proposition 10.G is an immediate consequence
of the fact that for linear transformations boundedness coincides with con-
tinuity (see e.g., [26, Theorem 4.14]). Propositions 10.H, 10.I, and 10.J lead
to the notion of Bochner integral of Banach-space-valued functions (see e.g.,
[8, Theorems 17.8, 17.9, 17.11, 17.13, 17.14]).

Suggested Reading

Berberian [7], Brown and Pearcy [8], Cohn [10], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36], Weir [42].



11

Borel Measure

11.1 Topological Spaces

A topological space was defined in Problem 1.12: a set equipped with a
topology. A topology on a set X is a collection T of subsets of X satisfying
the following axioms: (i) the whole set X and the empty set ∅ lie in T , (ii)
finite intersections of sets in T lie in T , and (iii) arbitrary unions of sets in
T lie in T . The sets in T are called the open sets of X (with respect to T ).

A metric space is a set equipped with a metric. A metric in a set X
is a function d :X×X→ R such that for every x, y, z ∈ X, (i) d(x, y) ≥ 0
and d(x, x) = 0, (ii) d(x, y) = 0 if and only if x = y, (iii) d(x, y) = d(y, x),
and (iv) d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality) — these are
the metric axioms . (If d :X×X→ R satisfies axioms (i), (iii), and (iv), but
not necessarily axiom (ii), then it is called a pseudometric.) An open ball
(centered at x0 ∈ X with radius ε) in a metric space X is the set Bε(x) =
{x ∈ X : d(x, x0) < ε}. A set U is open in a metric space X if U includes a
nonempty open ball centered at each one of its points. Open balls are open
sets in a metric space. The collection T of all open sets in a metric space
X satisfies the three axioms of topology; this is referred to as the metric
topology on X, or the topology induced (or generated, or determined) by a
metric d. (Whenever we refer to the topology of a metric space, it will be
understood that this is the metric topology, unless otherwise stated.) Thus
every metric space is a topological space, where the topology (the metric
topology) is that induced by the metric. This topology T induced by the
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metric d, and the topological space obtained by equipping X with T , are
said to be metrized by d. If X is a topological space with topology T , and if
there exists a metric d on X that metrizes T (i.e., if X is a metric space with
respect to a metric d, and if the collection of all open sets in X with respect
to d coincides with T ), then the topological space X and the topology T
are called metrizable. The notion of topological space is broader than the
notion of metric space. Every metric space is a topological space, but the
converse fails: there are topological spaces that are not metrizable.

Definition 11.1. Let X be a topological space (i.e., a nonempty set X
equipped with a topology T , whose elements are the open subsets of X).

(a) A set V ⊆ X is closed if its complement X\V is open.

(b) The closure A−of A ⊆ X is the smallest closed subset ofX that includes
A. (The intersection of all closed subsets of X that include A.)

(c) A set A ⊆ X is dense if A−= X.

(d) A topological space is separable if it has a countable dense subset.

(e) The interior A◦ of A ⊆ X is the largest open subset of X included in
A. (The union of all open subsets of X included in A.)

(f) A covering of a set A ⊆ X is a collection of subsets of X whose union
includes A. An open covering of A is a covering of A consisting entirely
of open subsets of X.

(g) A set K ⊆ X is compact if every open covering of K includes a finite
subcovering. If X is a compact set itself, then X is a compact space.

(h) A set in X is σ-compact if it is a countable union of compact sets.

(i) A set A ⊆ X is relatively compact (or conditionally compact) if its closure
A− is compact.

(j) A base (or a topological base) for X is a subcollection of T that covers
each open subset of X (i.e., covers each set in T ). Equivalently, B ⊆ T
is a base for a topology T of subsets of X if, for each U ∈ T and each
x ∈ U there is a G ∈ B with x ∈ G ⊆ U .

(k) A neighborhood of a point x in X is any subset of X that includes an
open set which contains x. An open neighborhood of x ∈ X is any open
subset of X that contains x.

(�) A Hausdorff space is a topological space X such that for every pair of
distinct points x and y in X there exist neighborhoods Nx and Ny of x
and y, respectively, such that Nx ∩Ny = ∅.

(m) A locally compact space is a topological space X such that every point
of X has a compact neighborhood.
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The concepts of closed and open are dual of each other in the sense that
a set is open if and only if its complement is closed, and vice versa. The
three axioms of topology say that ∅ and X are open, intersection of a finite
collection of open sets is open, and union of an arbitrary collection of open
sets is open. It is readily verified that the dual result for closed sets reads
as follows: ∅ and X are closed, union of a finite collection of closed sets is
closed, and intersection of an arbitrary collection of closed sets is closed.
If a set is both open and closed, then its is said to be a clopen set. The
standard properties stated in the next lemma will be required in the sequel.

Lemma 11.2. Let A, B, G, U, V, K be subsets of a topological space X.

(a) A closed subset of a compact set is compact .

(b) If A ⊆ B and B− is compact, then A− is compact .

(c) A nonempty subset of a topological space is open if and only if it is
(or includes) a neighborhood of each one of its points .

(d) Every metric space is Hausdorff .

(e) Every singleton in a Hausdorff space is closed .

(f) If K is compact, X is Hausdorff, and x ∈X\K, then there is an open
set U with K ⊆U and a neighborhood Nx of x such that U ∩Nx =∅.

(g) Every compact subset of a Hausdorff space is closed .

(h) If X is Hausdorff, V is closed, and K is compact, then V ∩K is
compact.

(i) If intersection of an infinite (not necessarily countable) collection of
compact subsets of a Hausdorff space is empty, then there is a finite
subcollection whose intersection is also empty .

Proof. Let X be topological space.

(a) If V ⊆ K, where K is compact and V is closed, then V is compact . In
fact, suppose V is a closed subset of a compact setK ⊆ X. Take an arbitrary
covering of V, say U , consisting of open subsets of X. So U ∪ {X\V } is an
open covering of K. Since K is compact, this covering includes a finite
subcovering, say U ′, so that U ′\{X\V } ⊆ U is a finite subcovering of V.
Therefore, every open covering of V has a finite subcovering.

(b) This is a direct consequence of (a), since A ⊆ B implies A−⊆ B−.

(c) If A ⊆ X is open and nonempty, then A trivially is (and so A trivially
includes) an open neighborhood of each one of its points. Conversely, take
A ⊆ X. If A includes (or if A is) a neighborhood Na of every a ∈ A, then
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there is an open set Ua ⊆ Na ⊆ A such that a ∈ Ua for every a ∈ A. Since
A=

⋃

a∈AUa, it follows that A is open (cf. axiom (iii) of a topological space).

(d) It is readily verified (by the triangle inequality) that for every pair of
distinct points x and y in a metric space X there are nonempty open balls
Bε(x) and Bρ(y) centered at x and y (which clearly are neighborhoods of
x and y), respectively, such that Bε(x) ∩Bρ(y) = ∅.

(e) Take an arbitrary x ∈ X, consider the singleton {x} ⊆ X and its comple-
ment X\{x} ⊆ X, and take an arbitrary y ∈ X\{x}. If X is Hausdorff, then
there exists a neighborhood Ny of y such that
Ny ⊆ X\{x}. Hence there exists an open Uy ⊆ X\{x} such that y ∈ Uy.
Thus X\{x} is itself a neighborhood of each one of its points, and so X\{x}
is open by item (c).

(f) Let K be a compact proper subset of X. If K = ∅, then the result is
trivially verified for U = ∅. Thus suppose K �= ∅ and take an arbitrary
point x in X\K. Since x is distinct from every point in K, it follows that
for every y ∈ K there exists an open neighborhood Ky of y and an open
neighborhood Xy of x such that Ky ∩Xy = ∅ (reason: X is a Hausdorff
space). But K ⊆

⋃

y∈KKy so that {Ky}y∈K is a covering of K consisting of
nonempty open subsets of X. If K is compact, then there is a finite subset
of K, say {yi}ni=1, such that K ⊆ U =

⋃n
i=1Kyi

, which is open (each Kyi
is open). Set Nx =

⋂n
i=1Xyi

, which is a neighborhood of x (in fact an open
neighborhood of x since it is a finite intersection of open neighborhoods Xyi
of x). Since Kyi

∩Xyi
= ∅, it follows that Kyi

∩Nx = ∅, for each i, and
therefore (

⋃n
i=1Kyi

) ∩Nx = ∅. That is, U ∩Nx = ∅.

(g) Let K be a compact subset of a Hausdorff space X. If either K = ∅ or
K = X, then K is trivially closed in X. Thus suppose ∅ �= K �= X. Accord-
ing to (f), for every x ∈ X\K there exists an open set U with K ⊆ U and
a (open) neighborhood Nx of x such that U ∩Nx = ∅. Hence Nx ⊆ X\K.
Thus X\K includes a (open) neighborhood of each one of its points, which
means by (c) that X\K is open, and so K is closed.

(h) If X is Hausdorff, then V ∩K is compact whenever K is compact and
V is closed . Indeed, let K be a compact subset and V a closed subset of a
Hausdorff space. By item (g), K is closed. Thus V ∩K is a closed subset of
the compact K, and therefore compact itself according to (a).

(i) If an infinite collection {Kγ} of compacts sets in a Hausdorff space X
is such that

⋂

γ Kγ = ∅, then there exists a finite subcollection {Ki} of
{Kγ} such that

⋂

i Ki = ∅. Indeed, set Uγ = X\Kγ , which is open if X is
Hausdorff according to (g). Take an arbitrary K from the collection {Kγ}.
If

⋂

γ Kγ = ∅, then there is no point of K that belongs to every Kγ . Hence
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{Uγ} is an open covering of K. Since K is compact, there is a finite sub-
collection {Ui} of {Uγ} such that K ⊆

⋃

i Ui. Thus X\
⋃

i Ui ⊆ X\K, so
that

⋂

i Ki =
⋂

i X\Ui= X\
⋃

i Ui ⊆ X\K. Then K ∩
⋂

i Ki = ∅. �

Remarks on Boundedness: (a) Metric Spaces. A set B in a metric space
(X, d) is bounded if supx,y∈B d(x, y) < ∞ (i.e., if it has a finite diameter);
and B is totally bounded if for every ε > 0 there exists a finite ε-net Bε

for B (a subset Bε of B is an ε-net for B if for every point x of B there
exists a point y in Bε such that d(x, y) < ε). It is readily verified that total
boundedness implies boundedness, but the converse fails (the unit ball in �p

equipped with the usual metric is bounded but not totally bounded). The
Compactness Theorem says that in a metric space, a set is compact if and
only if it is complete and totally bounded (see, e.g., [26, Corollary 3.81] — a
set in a metric space is complete if every Cauchy sequence in it converges to
a point in it — Section 5.1). Since metric spaces are Hausdorff, compact sets
in a metric space are closed (Lemma 11.2(d,g)). Therefore, compact sets in
a metric space are closed and bounded . The Heine–Borel Theorem states the
converse for the metric space F

n (where F denotes either R or C) equipped
with their usual metric — see, e.g., [26, Theorem 3.83 and Corollary 4.32]):
in F

n, compact means closed and bounded . Since F
n is a complete metric

space, it follows by the Compactness Theorem that what the Heine–Borel
Theorem says is that in F

n boundedness implies total boundedness (i.e., in
F
n, boundedness coincides with total boundedness). Note that the metric

(thus Hausdorff) space F
n is locally compact (but the metric space �p is

not). In fact, Fn is a prototype of a locally compact Hausdorff space.

(b) Locally Compact Spaces. In light of these facts, a set in a locally com-
pact space is said to be bounded (or topologically bounded) if it is included in
a compact set. So, also in this case, every compact set is bounded (i.e., topo-
logically bounded); actually, every relatively compact set is bounded. Thus,
in this case, a closed and bounded set is a closed set included in a compact
set, and hence (by Lemma 11.2(a)) a closed and bounded set is compact .
The converse holds in a locally compact Hausdorff space, where compact
sets are closed (Lemma 11.2(g)): in a locally compact Hausdorff space, com-
pact means closed and bounded (where bounded means relatively compact
— Lemma 11.2(b)). A set in a locally compact space is σ-bounded if it is in-
cluded in a σ-compact set. Finally, note that in a locally compact complete
metric space, topologically bounded means totally bounded . Indeed, B to-
tally bounded =⇒ B− closed and totally bounded ⇐⇒ B compact (reason:
in a complete metric space a set is complete if and only if it closed) =⇒ B
topologically bounded =⇒ B− closed and topologically bounded ⇐⇒ B−

compact =⇒ B− totally bounded =⇒ B totally bounded.
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Remarks on Denseness: It is readily verified (cf. Proposition 11.B) that if a
topological space has a countable base, then it is separable. The converse is
not true in general. Example: if X is uncountable with topology consisting
of the empty set and the complements of the finite sets, then X is separable
but has no countable base — cf. [21, p. 49]. However, the converse holds in
a metric space: a metric space is separable if and only if it has a countable
base (see, e.g., [26, Theorem 3.35]).

Theorem 11.3. If K ⊆ U, where K is compact and U is open in a locally
compact Hausdorff space X, then there exists an open set G with compact
closure such that

K ⊆ G ⊆ G−⊆ U.

In particular, for each x ∈ U there exists an open neighborhood N of x and
a compact C, such that N ⊆ C ⊆ U.

Proof. Since X is locally compact, every point of X, in particular, every
point x ofK ⊆ X has a compact neighborhood, and therefore an open neigh-
borhood Bx with a compact closure. Thus, K ⊆

⋃

x Bx. Since K is compact,
this open covering has a finite subcovering {Bi} such that K ⊆

⋃

i Bi. Set
B =

⋃

i Bi, so that B is open and K ⊆ B, and hence B− =
⋃

i B
−
i (recall:

the closure of a finite union of sets coincides with the union of their clo-
sures). Since each B−

i is compact, and since a finite union of compact sets
is clearly compact, it follows that B− is compact. If the open set U is such
that U = X, then the result is verified withG = B (i.e.,K ⊆ B ⊆ B− ⊆ X).
Thus suppose U ⊂ X, and take an arbitrary y in the closed set V = X\U .
Since K ⊆ U , it follows that y ∈ X\K. Thus, since X is Hausdorff, Lemma
11.2(f) ensures that there exists an open set U ′

y with K ⊆ U ′
y and y �∈ U ′

y.
Set Ky = V ∩B− ∩ U ′−

y , which is compact by Lemma 11.2 (h) — B− is
compact and X is Hausdorff. Since {Ky}y∈X\U is a collection of compact
sets such that

⋂

y Ky = ∅ (because
⋂

y U
′
y = ∅ — if there exists z ∈ X\U

such that z ∈
⋂

y U
′
y, then z ∈ U ′

z, which is a contradiction), it follows by
Lemma 11.2 (i) that there exists a finite subcollection, say, {Ki} such that
⋂

i Ki = ∅. Hence (X\U) ∩B− ∩
⋂

i U
′−
i = ∅ so that B− ∩

⋂

i U
′−
i ⊆ U . Re-

call that K ⊆ B ∩
⋂

i U
′
i . Thus, by setting G = B ∩

⋂

i U
′
i , which is open

(finite intersection of open sets), we get G− ⊆ B− ∩
⋂

i U
′−
i , and so

K ⊆ G ⊆ G−⊆ U.

In particular, since a singleton is clearly compact, the above inclusion en-
sures that {x} ⊆ N ⊆ C ⊆ U for every x ∈ U , where {x} = K is compact,
N = G is an open neighborhood of x, and C = G− is compact. �

Remarks on Borel σ-algebras: Let X be a topological space with topology
T . Let XT be the σ-algebra generated by the topology T . That is, XT is the
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smallest σ-algebra of subsets of X that includes T . The elements of XT (i.e.,
the XT -measurable sets) are referred to as the Borel sets of X — see the
remark that follows Problem 1.14. A Borel σ-algebra of subsets of X is any
σ-algebra A of subsets of X that includes XT . Observe that all open and all
closed subsets of X are Borel sets (i.e., they belong to the Borel σ-algebra
XT ). A subset of X is a Gδ (read: G-delta) if it is a countable intersection
of open subsets of X, and an Fσ (read: F -sigma) if it is a countable union
of closed subsets of X. These are also Borel sets. In a Hausdorff space, all
compact sets are Borel sets, since they are closed by Lemma 11.2(g).

A function F between topological spaces X and Y is continuous if the
inverse image of open (closed) sets is open (closed), and measurable if the
inverse image of open (closed) sets is measurable (with respect to a σ-algebra
X of subsets of X). In other words, if X and Y are topological spaces with
topologies TX and TY , and if F :X→ Y is a function of X into Y, then

F :X→ Y is continuous ⇐⇒ F−1(U) ∈ TX for every U ∈ TY

and, if X is an arbitrary σ-algebra of subsets of X, then

F :X→ Y is X -measurable ⇐⇒ F−1(U) ∈ X for every U ∈ TY .

Theorem 11.4(b) says that a measurable function is precisely a measurable
transformation (in the sense of Problem 1.8) if Y = YT (i.e., if Y is the
Borel σ-algebra YT of subsets of Y generated by the topology TY on Y ):

F−1(U) ∈ X for every U ∈ TY ⇐⇒ F−1(E) ∈ X for every E ∈ YT .

In particular, if A ⊇ XT is a Borel σ-algebra of subsets of X (where XT is
the σ-algebra generated by a topology TX on X), and if TY is a topology
on Y, then a function F :X→ Y is Borel measurable if it is A-measurable
(i.e., if F−1(U) ∈ A for every U ∈TY). So the implication below is clear.

Continuous functions are Borel measurable.

(Since TX ⊆ XT , F
−1(U) ∈ TX for every U ∈ TY implies F−1(U) ∈ XT ⊆ A

for every U ∈ TY .) A Borel function is simply a Borel measurable function.

Theorem 11.4. Let X be a σ-algebra of subsets of a set X, let Y and Z
be topological spaces, and consider the functions F :X→ Y and G:Y → Z.

(a) The collection Y = {E ⊆ Y : F−1(E) ∈ X} is a σ-algebra.

(b) If F is X-measurable, thenYT ⊆Y (i.e., Y is a Borel σ-algebra). In other
words, if F is X-measurable, then F−1(E)∈X for every E ∈YT .
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(c) If Y = R (equipped with the usual topology), then F is X -measurable
if and only if F−1((α,∞)) ∈ X for every α ∈ R.

(d) If G is a Borel function and F is X -measurable, then the composition
H = G ◦ F :X→ Z is X -measurable.

(e) If G is continuous and F is X -measurable, then the composition H =
G ◦ F :X→ Z is X -measurable.

Proof. Let X be a σ-algebra of subsets of X.

(a) Observe that F−1(∅) = ∅ and F−1(Y ) = X. Moreover, F−1(Y \E) =
X\F−1(E) for every E ∈ X and F−1

(⋃

n En

)

=
⋃

n F
−1(En) for every

countable collection {En} of X -measurable sets. Thus Y is a σ-algebra ac-
cording to Definition 1.1.

(b) If F is X -measurable (inverse image of open sets are measurable), then
the σ-algebra Y of item (a) includes all open sets of Y. That is, it includes
the topology TY on Y : TY ⊆ Y. Thus, since Y is a σ-algebra that includes
TY , and YT is the smallest σ-algebra that includes TY (i.e., the σ-algebra
generated by the topology TY ), it follows that YT ⊆ Y.
(c) Let Y = R equipped with the usual topology, take F :X→ Y, and set
Y = {E ⊆ Y : F−1(E) ∈ X}. Take an arbitrary α ∈ R. Suppose F−1(α,∞)
lies in X , so that (α,∞) lies in Y. Let {αn} be a real-valued sequence con-
verging to α and such that αn < α for each n. Since (i) each (αn,∞) ∈ Y, (ii)
(−∞, α) =

⋃

n(−∞, αn] =
⋃

n Y \(αn,∞), and (iii) Y is a σ-algebra accord-
ing to (a), it follows that (−∞, α) ∈ Y. So (α, β) = (−∞, β) ∩ (α,∞) ∈ Y
for every β ∈ R, which means that every interval of the real line is Y-
measurable. Since every open set of R is a countable union of open inter-
vals — every separable metric space has a countable topological base of
open balls (see, e.g., [26, Corollary 3.16 and Theorem 3.35]), and since Y
is a σ-algebra, it follows that every open set in R lies in Y, and therefore,
according to the definition of Y, F−1(U) ∈ X for every open set U ⊆ R,
which means that F is X -measurable. Outcome: if F−1(α,∞) ∈ X , then F
is X -measurable. The converse is trivial since (α,∞) is open in Y : if F is
X -measurable, then F−1(α,∞) ∈ X .
(d) Take U ∈ TZ ; an arbitrary open subset U of Z. If G:Y → Z is a Borel
function, then G−1(U) ∈ YT , where YT is the Borel σ-algebra generated by
the topology TY . Thus, if F is X -measurable, then F−1(G−1(U)) ∈ X by
(b). If H = G ◦ F :X→ Z, then H−1(C) = F−1(G−1(C)) for every C ⊆ Z.
(Indeed, x ∈ H−1(C) ⇔ H(x) ∈ C ⇔ G(F (x)) ∈ C ⇔ F (x) ∈ G−1(C) ⇔
x ∈ F−1(G−1(C)).) Hence H−1(U) ∈ X , and so H is X -measurable.

(e) This is a particular case of (d), since every continuous function is a Borel
function (i.e., continuous functions are Borel measurable). �
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11.2 Regular Measures

Set X= R, the real line equipped with its usual (metric) topology, and
take XT = �, the Borel algebra (i.e., the σ-algebra generated by the open
intervals, which coincides with the σ-algebra generated by the topology of
R — the σ-algebra of subsets of R generated by the open sets of R; see the
remark following Problem 1.14). When dealing with a measure μ:�→ R on
the Borel algebra � we always assume the usual topology of R. If μ(K)<∞
for every compact (i.e., closed and bounded) subset K of R, then μ is called
a Borel measure (note: K ∈ � since closed subsets of R lie in �; see Problem
2.13). We generalize the notion of Borel measure from the concrete space R

to general topological spaces and, in particular, to Hausdorff spaces.

Remarks on Borel Measures: Let XT be the Borel σ-algebra of subsets of a
topological space X generated by a topology T on X. Every closed subset of
X is a Borel set. Suppose X is Hausdorff. Thus every compact set is a Borel
set (Lemma 11.2(g)). Take any Borel σ-algebra A of subsets of X (i.e., any
σ-algebra A that includes XT ; in particular, XT itself, or its completion). A
Borel measure is a (positive) measure μ:A → R on A such that μ(K) <∞
for every compact set K ∈ A. Every finite measure on a Borel σ-algebra A
is a Borel measure. If X is σ-compact, then every Borel measure is σ-finite.

Let A be a Borel σ-algebra of subsets of a Hausdorff space X (where
compact sets are Borel sets, so that if U is an open subset of X and K is a
compact subset of X, then U and K lie in A). An arbitrary set E in A is
outer regular with respect to a measure μ:A → R on A if

μ(E) = inf
{

μ(U): E ⊆ U, U open in X
}

,

and inner regular with respect to a measure μ:A → R on A if

μ(E) = sup
{

μ(K): K ⊆ E, K compact in X
}

.

A set E in A is regular with respect to μ if it is both outer and inner regular
with respect to μ. A measure μ on a Borel σ-algebra A is regular (outer
regular, inner regular) if every set E in A is regular (outer regular, inner
regular) with respect to it. A set E in A is quasiregular with respect to μ
if it is outer regular, and, if it is open, then it is inner regular; that is,

μ(E) = sup
{

μ(K): K ⊆ E, K compact in X
}

if E is open in X.

The difference between regular and quasiregular is that a nonopen quasireg-
ular set may not be inner regular. A measure μ on a Borel σ-algebra A is
quasiregular if every E set in A is quasiregular with respect to it. Clearly,
regularity implies quasiregularity: a regular measure is quasiregular.
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Lemma 11.5. Take the Borel σ-algebra XT of subsets of a Hausdorff space
X. All sets below are Borel sets, and measures are Borel measures on XT .

(a) A set of infinite measure is outer regular .

(b) A set of measure zero is inner regular .

(c) An open set is outer regular .

(d) A compact set is inner regular .

(e) A countable union of open sets is outer regular .

(f) A finite intersection of compact sets is inner regular .

(g) A finite intersection of open sets is outer regular .

The analogous result for inner regular sets reads: A finite union of compact
sets is inner regular . However, more is true as stated in (i).

(h) A countable intersection of open sets of finite measure is outer regular.

(i) A countable union of compact sets is inner regular .

(j) A finite disjoint union of inner regular sets of finite measure is inner
regular .

The analogous result for outer regular sets reads: A finite disjoint union of
outer regular sets of finite measure is outer regular . However, more is true.

(k) A countable union of outer regular sets is outer regular .

(�) A countable intersection of inner regular sets of finite measure is inner
regular .

(m) An increasing countable union of inner regular sets is inner regular .

(n) A decreasing countable intersection of outer regular sets of finite mea-
sure is outer regular .

Proof. Consider the definitions of outer and inner regular Borel sets with
respect to a Borel measure μ on XT .

(a) This is immediate by the definition of outer regular sets: X is an open
Borel set, and μ(E) =∞ implies μ(X) =∞ for every Borel set E ⊆ X.

(b) This is the dual of item (a) since ∅ is a compact Borel set with μ(∅) = 0,
and ∅ ⊆ E for every Borel set E.

(c) This is trivial by the definition of outer regular sets (set E = U).

(d) This is the dual of item (c). Also trivial by the definition of inner regular
sets (set E = K).
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(e) A countable union of Borel sets is a Borel set, an arbitrary union of
open sets is an open set, and open sets are outer regular by (c).

(f) This is the dual of item (e). A countable intersection of Borel sets is a
Borel set, a finite intersection of compact sets is a compact set, and compact
sets are inner regular by (d).

(g) A countable intersection of Borel sets is a Borel set, a finite intersection
of open sets is an open set, and open sets are outer regular by (c).

(h) Let{Ek}∞k=1 be a sequence of open sets with μ(Ek) <∞. Take a sequence
{Un}∞n=1 of open sets with Un =

⋂n
i=1 Ei. Set E =

⋂∞
k=1 Ek =

⋂∞
n=1 Un,

which is a Borel set. Since {Un}∞n=1is a decreasing sequence with μ(Un) ≤
min1≤i≤n μ(Ei) <∞ for each n, it follows by Proposition 2.2(d) that

μ(E) = lim
n

μ(Un),

where {Un}∞n=1 is a decreasing sequence of open sets such that E ⊆ Un.
This implies that E is outer regular.

(i) This is the dual of item (h). Let {Ek}∞k=1 be a sequence of compact sets.
Take a sequence {Kn}∞n=1 of compact sets with Kn =

⋃n
i=1 Ei. Set E =

⋃∞
k=1 Ek =

⋃∞
n=1 Kn, which is a Borel set. Since {Kn}∞n=1is an increasing

sequence, it follows by Proposition 2.2(c) that

μ(E) = lim
n

μ(Kn),

where {Kn}∞n=1 is an increasing sequence of compact sets such that Kn ⊆ E.
This implies that E is inner regular.

(j) Take an arbitrary ε > 0. If {Ei}ni=1 is a finite collection of disjoint inner
regular Borel sets of finite measure, then there is a compact set Ki ⊆ Ei

such that μ(Ei) ≤ μ(Ki)+
ε
n for each i. Set K=

⋃n
i=1 Ki, which is compact

(finite union of compact sets), and E =
⋃n

i=1 Ei. These are Borel sets such
that K ⊆ E. Since {Ei}ni=1 is a disjoint collection,

μ(E) =
n

∑

i=1

μ(Ei) ≤
n

∑

i=1

μ(Ki) + ε = μ(K) + ε,

which implies that E is inner regular.

(k) Again take an arbitrary ε > 0. If {Ek}∞k=1 is a sequence of outer reg-
ular Borel sets, then there exists an open set Uk such that Ek ⊆ Uk and
μ(Uk) ≤ μ(Ek) +

ε

2k
for each k. Set U =

⋃∞
k=1 Uk, which is open, and
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E =
⋃∞

k=1 Ek. These are Borel sets (countable union of Borel sets) such
that E ⊆ U. If μ(E) =∞, then E is outer regular by (c). If μ(E) <∞, then

μ(U)− μ(E) = μ(U\E) ≤ μ
(

∞
⋃

k=1

Uk\Ek

)

≤
∞
∑

k=1

μ(Uk\Ek) =

∞
∑

k=1

(

μ(Uk)− μ(Ek)
)

≤
∞
∑

k=1

ε

2k
= ε.

Thus μ(U) ≤ μ(E) + ε, which implies that E is outer regular.

(�) This is the dual of item (k). Take an arbitrary ε > 0. If {Ek}∞k=1 is a se-
quence of inner regular Borel sets such that μ(Ek) < ∞ for every k, then
there exists a compact set Kk such that Kk ⊆ Ek and μ(Ek) ≤ μ(Kk) +

ε

2k

for each k. Set K =
⋂∞

k=1 Kk, which is compact, and E =
⋂∞

k=1 Ek. These
are Borel sets (countable intersection of Borel sets) such that K ⊆ E. More-
over, since E\K =

⋂∞
k=1 Ek\

⋂∞
k=1 Kk) ⊆

⋃∞
k=1(Ek\Kk), we get

μ(E)− μ(K) = μ(E\K) ≤ μ
(

∞
⋃

k=1

Ek\Kk

)

≤
∞
∑

k=1

μ(Ek\Kk) =
∞
∑

k=1

(

μ(Ek)− μ(Kk)
)

≤
∞
∑

i=1

ε

2k
= ε.

Thus μ(E) ≤ μ(K) + ε, which implies that E is inner regular.

(m) Suppose {Ek}∞k=1 is a increasing sequence of inner regular Borel sets.
Set E =

⋃∞
k=1 Ek, which is a Borel set. If μ(E) = 0, then E is inner regular

by item (b). Thus suppose μ(E) > 0. Take any real number δ such that
0 < δ < μ(E). Since {Ek}∞k=1 is increasing, it follows that δ < supk μ(Ek) =
limk(Ek) = μ(

⋃∞
k=1 Ek) = μ(E) — cf. Proposition 2.2(c). Since each Ek is

inner regular (and recalling again that {Ek}∞k=1 is increasing), there exists
a compact set K such that K ⊆ supk Ek =

⋃∞
k=1 Ek = E and δ < μ(K) ≤

supk μ(Ek) = μ(E). Summing up: for every 0 < δ < μ(E) there exists a
compact set K such that K ⊆ E and

δ < μ(K) ≤ μ(E).

This implies that E is inner regular.

(n) This is the dual of item (m). Suppose {Ek}∞k=1 is a decreasing sequence of
outer regular Borel sets with μ(Ek) <∞. Set E =

⋂∞
k=1 Ek, which is a Borel

set with μ(E) <∞. Take any δ > 0 such that μ(E) < δ. Since {Ek}∞k=1

is decreasing, μ(E) = μ(
⋂∞

k=1 Ek) = limk(Ek) = infk μ(Ek) < δ — cf.
Proposition 2.2(d). Since each Ek is outer regular (and since {Ek}∞k=1 is
decreasing), there is an open set U such that E =

⋂∞
k=1 Ek = infk Ek ⊆ U
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and μ(E) = infk μ(Ek) ≤ μ(U) < δ. Summing up: for every μ(E) < δ there
is an open set U such that E ⊆ U and

μ(E) ≤ μ(U) < δ.

This implies that E is outer regular. �

Theorem 11.6. Let μ be a Borel measure on the Borel σ-algebra XT of
subsets of a locally compact Hausdorff space X. The following assertions
are pairwise equivalent .

(a) Every compact set is outer regular .

(b) Every bounded open set is inner regular .

(c) Every bounded set is regular .

(d) Every σ-bounded set is regular .

If X is σ-compact, then the above equivalent assertions are also equivalent
to the following assertion.

(e) The Borel measure μ:XT → R is regular .

Proof. Sets are subsets of a locally compact Hausdorff space (where compact
means closed and bounded, and bounded means relatively compact), and μ
is a Borel measure, thus finite at every Borel set included in a compact set.

(a)⇒(b) Take an arbitrary ε > 0. Let U be an arbitrary bounded open set.
Thus U ⊆ K for some compact set K. Note that K\U is compact (intersec-
tion of a compact with a closed set in a Hausdorff space — Lemma 11.2(h)).
If every compact set is outer regular, then K\U is outer regular, so that
there exists an open set G such that K\U ⊆ G and μ(G) ≤ μ(K\U) + ε.
Note that K\G is compact and that K\G ⊆ K\(K\U) = U . Thus

μ(U)− μ(K\G) = μ(U\(K\G)) = μ(U ∩G) = μ(G ∩ (K\[K\U ])

≤ μ(G\[K\U ]) = μ(G)− μ(K\U) ≤ ε.

Hence μ(U) ≤ μ(K\G) + ε, which implies that U is inner regular.

(b)⇒(a) Dually, again take an arbitrary ε > 0. Let K be an arbitrary com-
pact set. Let U be a bounded open set such that K ⊆ U . Note that U\K is
a bounded open set (intersection of a bounded open set with an open set). If
every bounded open set is inner regular, then U\K is inner regular, so that
there exists a compact set C such that C ⊆ U\K and μ(U\K) ≤ μ(C) + ε.
Note that U\C is open and that K = U\(U\K) ⊆ U\C. Thus

μ(U\C)− μ(K) = μ((U\C)\K) = μ((U\K)\C)

≤ μ(U\K)− μ(C) ≤ ε.
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Hence μ(U\C) ≤ μ(K) + ε, which implies that K is outer regular.

(d)⇒(c)⇒(a,b) Trivial.

(c)⇒(d) Let E =
⋃

k Ek be an arbitrary σ-bounded Borel set, where each
Ek is a Borel bounded set. If (c) holds, then each Ek is, in particular, outer
regular. Thus Lemma 11.5(k) ensures that E is outer regular. Now set Fn =
⋃n

i=1 Ei, so that {Fn}∞n=1 is an increasing sequence of bounded Borel sets,
which are, in particular, inner regular according to (c). Since E =

⋃

n Fn, it
follows by Lemma 11.5(k) that E is inner regular. Therefore, E is regular.

(a,b)⇒(c) Take an arbitrary ε > 0. Let E be any bounded Borel set, so
that E◦ ⊆ E ⊆ E−, where the interior Eo is open and bounded, and the
closure E− is compact. If (a,b) holds, then E◦ and E− are regular (cf.
Lemma 11.5(c,d)). Therefore, since μ(E−) <∞, Proposition 11.F(a) en-
sures that there exist compact sets C and K and open sets G and U such
that C ⊆ E◦ ⊆ G and K ⊆ E−⊆ U, for which μ(G\C) = μ(G)− μ(C) < ε
and μ(U\K) = μ(U)− μ(K) < ε. In fact, we may take K and G such that
μ(K) ≤ μ(G) (e.g., set G = E◦ and K = E−). Thus C ⊆ E ⊆ K and

μ(U)− μ(C) = μ(U)− μ(K) + μ(K)− μ(C)

≤ μ(U)− μ(K) + μ(G)− μ(C) ≤ 2ε,

which means by Proposition 11.F(a) that E is regular.

(d)⇔(e) Assertion (e) implies (d) trivially and, if X is σ-compact, then
every Borel set is σ-bounded, so that (d) implies (e). �

11.3 Construction of Borel Measures

An outer measure (or a plain outer measure) is an extended real-valued set
function μ∗ :℘(X)→ R on the power set ℘(X) of a given set X such that

(a) μ∗(∅) = 0,

(b) μ∗(S) ≥ 0 for every S ∈ ℘(X),

(c) μ∗(S1) ≤ μ∗(S2) whenever S1 ⊆ S2 ⊆ X,

(d) μ∗(⋃

n Sn

)

≤
∑

n μ
∗(Sn) for countable families {Sn} of sets in ℘(X).

Note that the outer measure generated by a measure on an algebra, as in
Definition 8.2, is a (plain) outer measure according to Proposition 8.3. By
analogy with Section 8.2, given an outer measure μ∗ :℘(X)→ R, we say
that a set E ∈ ℘(X) is μ∗-measurable if

μ∗(S) = μ∗(S ∩ E) + μ∗(S\E)
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for every S ∈ ℘(X). Observe that S\E = S ∩ (X\E) = S\(S ∩ E) so that
S = (S ∩ E) ∪ (S\E) and (S ∩ E) ∩ (S\E) = ∅. Since μ∗ is subadditive
(i.e., since (d) holds for the sets S ∩ E and S\E), it follows that E ∈ ℘(X)
is μ∗-measurable if and only if

μ∗(S ∩ E) + μ∗(S\E) ≤ μ∗(S)

for every S ∈ ℘(X). A quasiregular outer measure (or a topologically regular
outer measure) on the power set ℘(X) of a locally compact Hausdorff space
X is an outer measure μ∗ such that

(i) μ∗(S) = inf{μ∗(U):S ⊆ U, U ∈ ℘(X) open} for every S ∈ ℘(X),

(ii) μ∗(G ∪ U) = μ∗(G) + μ∗(U) if G and U are disjoint open in ℘(X),

(iii) μ∗(U) = sup{μ∗(K):K⊆U, K∈℘(X) compact} for U open in ℘(X).

Property (iii) justifies the terminology quasiregular. It is readily verified that
(iii) is equivalent to the following property: for each open set U ∈ ℘(X),

(iii′) μ∗(U) = sup{μ∗(G): G−⊆ U, G ∈ ℘(X) open with G− compact}.

The next theorem is the counterpart of Theorem 8.4, building a Borel
measure from an outer measure (instead of building a measure on a
σ-algebra from an outer measure generated by a measure on an algebra).

Theorem 11.7. If μ∗ :℘(X)→ R is a quasiregular outer measure on the
power set of a locally compact Hausdorff space X, then the collection A∗ of
all μ∗-measurable subsets of X,

A∗ =
{

E ∈ ℘(X): E is μ∗-measurable
}

,

is a Borel σ-algebra (i.e., it includes the σ-algebra XT ). The restriction

λ∗ = μ∗|A∗ :A∗→ R

of μ∗ to A∗ is a quasiregular complete measure. Moreover, If μ∗(S) <∞
for every bounded set S ⊆ X, then λ∗ :A∗⊇ XT → R is a Borel measure.
Furthermore, the restriction of μ∗ to the Borel σ-algebra XT,

λ = λ∗|XT = μ∗|XT :XT → R,

is a quasiregular measure on XT, which is a Borel measure if μ∗(S) <∞
for every bounded set S ⊆ X. (However λ is not necessarily complete.)

Proof. Let μ∗ :℘(X)→ R be a quasiregular outer measure on ℘(X), where
X is a locally compact Hausdorff space.



216 11. Borel Measure

(a) That the class A∗={E ∈℘(X):E is μ∗-measurable} of all μ∗-measurable
sets form a σ-algebra has already been verified in the proof of Theorem 8.4.

(b) Thus we proceed to show that every Borel set in the Borel σ-algebra
XT is μ∗-measurable (i.e., XT ⊆ A∗). Let X be a locally compact Hausdorff
space. It can be verified by property (i) of quasiregular outer measures that
a set E ∈ ℘(X) is μ∗-measurable if and only if, for every open set U ∈ ℘(X),

μ∗(U ∩ E) + μ∗(U\E) ≤ μ∗(U).

Since this holds trivially if μ∗(U) =∞, it follows that a set E in ℘(X) is
μ∗-measurable if and only if the above inequality holds for every open set
U ∈ ℘(X) with μ∗(U) <∞. Since XT is a σ-algebra generated by T , and
since A∗ is a σ-algebra, in order to show that XT ⊆ A∗ it is enough to verify
that the above inequality holds for every open set E in T ⊆ XT (instead of
for every set E ∈ XT ). That is, it suffices to show that each open set E is
μ∗-measurable. Thus take arbitrary open sets E and U in T ⊆ XT ⊆ ℘(X)
with μ∗(U) <∞, and take an arbitrary ε > 0. Property (iii′) of quasiregular
outer measures says that for each open set U ′,

μ∗(U ′) = sup
{

μ∗(G): G−⊆ U ′, G open with G− compact
}

.

Since U ∩ E is an open set such that μ∗(U ∩ E) <∞, there exists an open
set G for which G ⊆ U ∩ E and μ∗(U ∩ E) < μ∗(G) + ε. Note that U\E =
U ∩ (X\E) ⊆ U\G and (U\G) ∩G = ∅ (and hence μ∗(G)
+μ∗(U\G) = μ∗(G ∪ (U\G)) by property (ii) of quasiregular outer mea-
sures). Therefore,

μ∗(U ∩ E) + μ∗(U\E) < μ∗(G) + μ∗(U\G) + ε = μ∗(G ∪ (U\G)) + ε

= μ∗(U ∪G) + ε = μ∗(U) + ε.

Thus μ∗(U ∩ E) + μ∗(U\E) ≤ μ∗(U), and so E is μ∗-measurable.

(c) That the restriction λ∗ = μ∗|A∗ :A∗→ R of μ∗ to A∗ is a complete mea-
sure has been verified in the proofs of Theorem 8.4 and Proposition 8.5.

(d) Now we show that λ∗ = μ∗|A∗ :A∗⊇ XT → R is a quasiregular measure.
Take an arbitrary set E ∈ A∗. Since every open set U lies in XT ⊆ A∗, it
follows by property (i) of quasiregular outer measures that

λ∗(E) = μ∗(E) = inf
{

μ∗(U): E ⊆ U, U open
}

= inf
{

λ∗(U): E ⊆ U, U open
}

.

Moreover, since every compact set K lies in XT ⊆ A∗, it follows by property
(iii) of quasiregular outer measures that
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λ∗(E) = μ∗(E) = sup
{

μ∗(K): K ⊆ E, K compact
}

= sup
{

λ∗(K): K ⊆ E, K compact
}

whenever E is open (and so E lies in XT ⊆ A∗).

(e) That λ∗ :A∗⊇ XT → R is a Borel measure goes as follows. If μ∗(S) <∞
for every bounded subset S of X (i.e., for every S ∈ ℘(X) with compact
closure), and since every compact set lies in XT and is closed (because X
is Hausdorff), we get λ∗(K) = μ∗(K) <∞ for every compact set K.

(f) Finally, observe that all properties of the measure λ∗ except for com-
pleteness are readily transferred to the measure λ. �

A content on a topology (or simply a content) is an extended real-valued
set function μ# : T → R on the topology T of a topological space X such
that for arbitrary open sets U , G, and Un in T ,
(1) μ#(∅) = 0,

(2) μ#(U) ≥ 0,

(3) μ#(U) <∞ whenever U− is compact,

(4) μ#(G) ≤ μ#(U) whenever G ⊆ U ,

(5) μ#(G ∪ U) = μ#(G) + μ#(U) whenever G ∩ U = ∅,

(6) μ#
(⋃

n Un

)

≤
∑

n μ
#(Un) for countable families {Un}.

It is an inner content if, in addition,

(7) μ#(U) = sup{μ#(G): G−⊆ U, G−compact}.

Lemma 11.8. Let μ# : T → R be an inner content. If X is a locally compact
Hausdorff space, then the set function μ∗ :℘(X)→ R given by

μ∗(S) = inf
{

μ#(U): S ⊆ U, U open
}

for every S ∈ ℘(X)

is a quasiregular outer measure such that μ∗(S) <∞ for every bounded S.

Proof. Properties (a), (b), (c), and (d) in the definition of an outer measure
μ∗ follow at once by properties (1) — null measure of the empty set, (2) —
nonnegativeness, (4) — monotonicity, and (6) — countable subadditivity in
the definition of the content μ# , respectively.

Thus μ∗ is an outer measure.

Property (4) in the definition of the content μ# ensures that

μ∗(U) = μ#(U) for every open set U.
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Thus property (i) in the definition of a quasiregular outer measure holds by
the definition of μ∗. Moreover, the above identity also shows that property
(7) in the definition of an inner content ensures that property (iii′) in the
definition of a quasiregular outer measure holds. Observe that property (5)
in the definition of an inner content trivially implies property (ii) in the
definition of a quasiregular outer measure.

Thus the outer measure μ∗ is quasiregular.

Finally, property (3) in the definition of the content μ# and property (c) in
the definition of an outer measure μ∗ imply that

μ∗(S) <∞ for every bounded set S ∈ ℘(X)

(i.e., for every S ∈ ℘(X) with compact closure). �

The combination of Lemma 11.8 and Theorem 11.7 concludes the pro-
gram of constructing a Borel measure out of an inner content: an inner
content μ# generates a quasiregular outer measure μ∗ which is finite at
bounded sets, and this in turn generates a quasiregular Borel measure λ.

11.4 Additional Propositions

A collection C of sets has the finite intersection property if every finite
subcollection of C has a nonempty intersection.

Proposition 11.A. A space is compact if and only if every family of closed
sets that has the finite intersection property has a nonempty intersection.

A Lindelöf space is a topological space X such that every open covering
of X includes a countable subcovering.

Proposition 11.B. If a topological space has a countable base, then it is
a Lindelöf space and separable. Every σ-compact space is a Lindelöf space.
Every locally compact space with a countable basis is σ-compact. A locally
compact Hausdorff space is Lindelöf if and only if it is σ-compact .

Proposition 11.C. Take the Borel σ-algebra XT of subsets of a locally com-
pact Hausdorff space. If (E ∩K) ∈ XT for every compact K, then E ∈ XT .

Proposition 11.D. Let K1 and K2 be distinct compact sets in a Borel
σ-algebra of subsets of a locally compact Hausdorff space.

(a) If every compact set is outer regular, then so is K1\K2.

(b) If every bounded open set is inner regular, then so is K1\K2.
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Proposition 11.E. Let μ be a finite Borel measure on a Borel σ-algebra
of subsets of a locally compact Hausdorff space. If every Borel set is inner
regular, then μ is regular .

Proposition 11.F. Let μ be a Borel measure on a Borel σ-algebra of
subsets of a locally compact Hausdorff space.

(a) A Borel set E of finite measure is regular if and only if for every ε > 0
there exists a compact set K and an open set U such that K ⊆ E ⊆ U
and μ(U\K) < ε.

(b) If E and F are regular Borel sets of finite measure, then E\F is also
regular of finite measure.

Proposition 11.G. Let μ be a Borel measure on a Borel σ-algebra of sub-
sets of a locally compact Hausdorff space. If every open set is σ-compact,
then μ is regular .

Proposition 11.H. Lebesgue is a regular Borel measure — either viewed
as a measure on the Borel algebra � generated by the usual topology of R,
or as a measure on its completion �∗, the Lebesgue algebra. (See Section 8.3
— compare with Problems 8.10 and 8.11.)

Recall from Problem 2.13 the definition of support of a measure on
the Borel algebra � generated by the open sets from R, and extend it to
the σ-algebra XT of Borel sets of a locally compact Hausdorff space X. The
support [μ] of a measure μ:XT → R is the (unique) set [μ] = X\U, where
U is the union of all open sets of measure zero, so that [μ] is a closed set in
XT such that X\[μ] is the largest open set of measure zero:

X\[μ] = sup
{

U ∈ XT : U is open in X and μ(U) = 0
}

.

Proposition 11.I. If μ is a regular Borel probability measure (i.e.,
μ(X) = 1) on a compact Hausdorff space X, then its support [μ] is the
smallest compact set such that μ([μ]) = 1 and μ(K) < 1 for every compact
set K ⊂ [μ].

If X is a locally compact Hausdorff space, then let XG denote the σ-
algebra of subsets of X generated by the compact Gδ’s in X. The sets in
XG are referred to as Baire sets . Since every Gδ in X is a Borel set, it
follows that XG ⊆ XT : every Baire set is a Borel set. The notions of outer,
inner, regular, and quasiregular extend naturally to Baire sets. A measure
μ:XG → R which is finite for every compact set is called a Baire measure.

Proposition 11.J. If E ∈ XG, then E or X\E is σ-bounded. Every Baire
set is σ-bounded if and only if X is σ-compact .
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Proposition 11.K. A σ-bounded Baire set is the countable disjoint union
of bounded Baire sets .

Proposition 11.L. Compact Baire sets are Gδ; open Baire sets are Fσ.

Proposition 11.M. Let μ be a measure on a σ-algebra including XG. If μ
is inner regular or quasiregular, then for each measurable set E with finite
measure there is a Baire set B such that μ(EΔB) = 0. (See Problem 6.5.)

Proposition 11.N. If X is a separable locally compact metric space, then
XG = XT (i.e., every Borel set is a Baire set).

Proposition 11.O. If X is a σ-compact locally compact Hausdorff space,
then every Baire set is regular (i.e., every Baire measure is regular).

Let μ:XG → R be a Baire measure on the σ-algebra XG of all Baire sets
in a locally compact Hausdorff space X, and let [μ] ∈ XG be the support
of μ, now with respect to XG; that is, the set [μ] = X\U , where U is the
union of all open Baire sets of measure zero.

Proposition 11.P. Consider the support [μ] of a Baire measure μ.

(a) If U is an open Baire set such that U ∩ [μ] �= ∅, then μ(U) > 0.

(b) If K is a compact Baire set such that K ∩ [μ] = ∅, then μ(K) = 0.

(c) If E is a σ-bounded Baire set such that E ∩ [μ] = ∅, then μ(E) = 0.

A measure on a Borel σ-algebra of subsets of a locally compact Hausdorff
space X is a locally finite measure if every x ∈ X has an open neighborhood
of finite measure (i.e., a measure μ : A → R, where A is a Borel σ-algebra of
subsets of a locally compact Hausdorff space X, is locally finite if for every
x ∈ X there exists an open set U ⊆ X such that x ∈ U and μ(U) <∞).
A measure μ on a Borel σ-algebra of subsets of a locally compact Hausdorff
space is a Radon measure if it is both locally finite and inner regular.

Proposition 11.Q. Every locally finite measure is a Borel measure.

A neighborhood base of a point x in a topological space (or a local base
at x) is a family of neighborhoods of x such that every neighborhood of x
includes a member of the family (e.g., the family of all open neighborhoods
of x is trivially a neighborhood base of x). Note that if a topological space
has a countable base, then it is a topological space for which every point has
a countable neighborhood base (see Definition 1.1 and Proposition 11.B).

Proposition 11.R. Consider a Borel σ-algebra of subsets of a locally com-
pact Hausdorff space X. Suppose every point in X has a countable neigh-
borhood base (in particular, if X has a countable base; more particularly, if
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X is separable). In this case, every inner regular Borel measure is locally fi-
nite, and so is a Radon measure. Equivalently, under the above hypothesis,
a Radon measure is precisely an inner regular Borel measure.

Consider a metric space (X, d). The diameter diam(S) of a nonempty
subset S of X is defined by diam(S) = supx,y ∈S d(x, y). Thus a nonempty
set S is bounded in a metric space (X, d) if and only if diam(S)<∞. By con-
vention the empty set ∅ is bounded and diam(∅) = 0. Take an arbitrary
ε > 0. An ε-covering of a set S ⊆ X is a covering of S made up of subsets
of X of diameter not greater than ε.

Proposition 11.S. Let X be a locally compact metric space. For every pair
of real numbers p ≥ 0 and ε > 0 consider the nonnegative extended real

μ∗
ε,p(S) = inf

∑

i
diam(Si)

p for every S ∈ ℘(X),

where the infimum is taken over all finite open ε-coverings {Si} of S. This
defines an outer measure μ∗

ε,p :℘(X)→ R. Set μ∗
p(S) = lim ε→0 μ

∗
ε,p(S) for

every S ∈ ℘(X). The limit exists in R and coincides with supε>0 μ
∗
ε,p(S).

This defines another outer measure μ∗
p :℘(X)→ R. Following the setup of

Theorem 11.7, let A∗
p be the Borel σ-algebra of all μ∗

p-measurable sets (so
that A∗

p includes the Borel σ-algebra XT ). The restriction λ∗
p of μ∗

p to A∗
p,

and the restriction λp of μ∗
p to XT , viz.,

λ∗
p = μ∗

p|A∗
p
:A∗

p → R,

λp = λ∗
p|XT = μ∗

p|XT :XT → R,

are measures on A∗
p and on XT. The outer measure μ∗

p and the measures λ∗
p

and λp, are called p-dimensional Hausdorff measures. Both λ∗
p and λp are

Borel measures if μ∗
p(S) <∞ for every bounded set S ∈ ℘(X), and λ∗

p is
complete. For each set S ∈℘(X) there is a unique real number dimH(S) =
inf{p≥ 0:μ∗

p(S) = 0} = sup{p > 0:μ∗
p(S) =∞}, called the Hausdorff dimen-

sion of S, such that μ∗
p(S) =∞ if p < dimH(S), μ∗

dimH(S)(S)∈ [0,∞], and
μ∗
p(S) = 0 if dimH(S) < p. Examples: If X= R, then μ∗

1 coincides with the
outer measure �∗generated by the length function � (and so λ1 coincides with
the Lebesgue measure); if C is the Cantor set, then dimH(C) = log 2/ log 3
and μ∗

dimH(C)(C) = 1; if U is an open set in X= R
n, then dimH(U) = n.

If X= R
n (or X= C

n) equipped with the usual (Euclidean) topology
(or any equivalent topology), then X is a σ-compact locally compact metric
(thus Hausdorff) space with a countable base (thus separable), and so it
satisfies all the assumptions in every of the preceding propositions.

Notes: For the general topology summarized in Section 11.1 see, e.g., [12],
[21]. This final section contains standard results on measures on topologi-
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cal spaces whose proofs can be found in many texts. For instance, Propo-
sition 11.A can be found in [21, Theorem 5.1] and Proposition 11.B can
be found in [21, Theorems 1.14, 1.15, Problem 5.Y(b)], [35, Problem 8.16,
Theorem 9.21], and [6, Example IV.29-2(c)]. For Proposition 11.C see, e.g.,
[35, Lemma 13.9], and for Proposition 11.D see, e.g., [18, Theorem 52.A].
Propositions 11.E and 11.F are related to regular Borel measures (see, e.g.,
[35, Proposition 13.10] and [8, Problem 10,F]). Proposition 11.G (see, e.g.,
[36, Theorem 2.18]) is a first step towards Proposition 11.H, which says that
Lebesgue measure is a prototype of a regular Borel measure (see, e.g., [35,
Proposition 3.15]). Proposition 11.I deals with support of probability mea-
sures; see, e.g., [36, Exercise 2.9]. Proposition 11.J, 11.K, 11.L, and 11.M
introduce Baire sets and measures (see, e.g., [35, Lemmas 13.6, 13.7, Prob-
lem 13.12(e,f), Proposition 13.15]). Proposition 11.N shows when Baire and
Borel coincide, and Proposition 11.O gives a necessary condition for regu-
larity (see, e.g., [35, Problem 13.1, Corollary 13.12]). Proposition 11.P deals
with supports of Baire measures (see, e.g., [35, Problem 13.24]). Proposi-
tions 11.Q and 11.R on locally finite and Radon measures establish the
connection between Borel and Radon measure. For the Hausdorff measures
of Proposition 11.S see, e.g., [14, Chapter 1], [15, Chapter 3], and also [34].

Suggested Reading

Bauer [6], Brown and Pearcy [8], Halmos [18], Royden [35], Rudin [36].
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Representation Theorems

12.1 Continuous Functions and Compact Support

Let F denote either the real field R or the complex field C. A scalar-valued
function f :X→ F on a nonempty set X is called real-valued if F = R, and
complex-valued if F = C. If it is immaterial whether a scalar-valued function
is real-valued or complex-valued, then we refer to it as F-valued. The kernel
N (f) and range R(f) of a function f :X→ F are the sets

N (f) = f−1({0}) =
{

x ∈ X : f(x) = 0
}

,

R(f) = f(X) =
{

γ ∈ F : γ = f(x) for some x ∈ X
}

.

The support [f ] of an F-valued function f :X→ F on a topological space X
is the closure of the complement of its kernel:

[f ] = (X\N (f))− =
{

x ∈ X : f(x) �= 0
}−

.

From now on suppose X is a topological space and consider the usual (met-
ric) topology of F. Let Cc(X) denote the collection of all F-valued continuous
functions on X with compact support ; that is,

Cc(X) =
{

f :X→ F : f is continuous and [f ] is compact in X
}

.

If it is necessary to make it clear whether a collection of scalar-valued con-
tinuous functions on X consists of real-valued functions only, or whether it
may contain complex-valued functions as well, then we may use the notation

Cc(X,R) =
{

f :X→ R : f is continuous and [f ] is compact in X
}

,
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or

Cc(X,C) =
{

f :X→ C : f is continuous and [f ] is compact in X
}

.

It is worth noticing that if X is a locally compact Hausdorff space, then
the class of Baire sets coincides with the smallest σ-algebra of subsets of X
upon which every function in Cc(X,R) is measurable (see e.g., [35, p. 331]),
which in turn is included in the Borel σ-algebra XT (cf. Section 11.4).

Lemma 12.1.The range of a function f ∈ Cc(X) is a compact subset of F

(either the complex plane C or the real line R equipped with usual topology).

Proof. Let K be the support of f ∈ Cc(X). Since f is continuous and K is
closed, it follows that f(X) = f(K). We show that f(K) is compact in F.

Claim. Let F :X→ Y be a continuous mapping of a topological space X
into a topological space Y. If K is compact X, then F (K) is compact in Y
(i.e., continuous image of a compact set is compact).

Proof. Let U be a covering of F (K) (i.e., F (A) ⊆
⋃

U∈U U) consisting of
open subsets U of Y. If F is continuous, then F−1(U) is an open subset of
X for every U ∈ U . Set F−1(U) = {F−1(U): U ∈ U}, a collection of open
subsets of X. Since K ⊆ F−1(F (K)) ⊆ F−1

(⋃

U∈U U
)

=
⋃

U∈U F−1(U),
it follows that F−1(U) is a covering of K made up of open subsets of X.
If K is compact, then there exists a finite subcollection of F−1(U) covering
K; that is, there exists {Ui}ni=1 ⊆ U such that K ⊆

⋃n
i=1 F

−1(Ui) ⊆ X. So
F (K) ⊆ F

(⋃n
i=1F

−1(Ui)
)

⊆
⋃n

i=1 Ui ⊆ Y, and hence F (K) is compact. �

Consider the collection Cc(X) of all continuous F-valued functions f on
X with compact support [f ]. Let K be a compact subset, and U an open
subset, of the topological space X (with topology T ). For each K and U set

Cc(X)K =
{

f ∈ Cc(X): f(X) ⊆ [0, 1] and f(K) = 1
}

,

Cc(X)U =
{

f ∈ Cc(X): f(X) ⊆ [0, 1] and [f ] ⊆ U
}

.

Observe that when dealing with Cc(X)K or Cc(X)U we work only with
functions in Cc(X,R), since f(X) ⊆ [0, 1]R. A real-valued (or extended real-
valued) function f :X→ R (or f :X→ R) on a topological space X is said
to be lower semicontinuous if the inverse image of the open interval (α,∞)
under f is an open subset of X for every real number α,

f−1
(

(α,∞)
)

=
{

x ∈ X : f(x) > α
}

∈ T for every α ∈ R

(see Definition 1.2), and upper semicontinuous if the inverse image of the
open interval (−∞, α) under f is an open subset of X for every real α,

f−1
(

(−∞, α)
)

=
{

x ∈ X : f(x) < α
}

∈ T for every α ∈ R.
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Equipping R with its usual topology, it is readily verified that f is con-
tinuous if and only if it is both lower and upper semicontinuous . Examples
of functions that are either lower or upper semicontinuous (but possibly
not both): a characteristic function χ

U :X→ R of an open set U ⊆ X is
lower semicontinuous (compare with Example 1.B) and, dually, a charac-
teristic function χ

V :X→ R of a closed set V ⊆ X is upper semicontinuous
(both of which are not continuous if X = R is equipped with its usual topol-
ogy). Consider the definition of supγ fγ and of infγ fγ for any family {fγ}
of functions fγ :X→ R (or fγ :X → R) as in Section 1.4. It is also readily
verified that supγ fγ :X → R is lower semicontinuous whenever each fγ is ,

and infγ fγ :X → R is upper semicontinuous whenever each fγ is .

Thus we can interpret continuity of functions in Cc(X)K and in Cc(X)U

as functions being both lower and upper semicontinuous. Urysohn Lemma
(stated below) is the result that says that Cc(X)K ∩ Cc(X)U �= ∅ if K ⊆ U.

Lemma 12.2. If U and K are open and compact sets in a locally compact
Hausdorff space X such that K ⊆ U, then there exists f ∈ Cc(X)K ∩ Cc(X)U

(i.e., then there exists a function f ∈ Cc(X) such that χ
K ≤ f ≤ χ

U ).

Proof. Let U and K be open and compact subsets of X such that K ⊆ U.

Claim. There exists a countable family of open subsets of X with compact
closure, say {Gq}q∈Q∩[0,1] indexed by the rationals in [0, 1], such that

K ⊆ G−
1 , G0 ⊆ U, and G−

q ⊆ Gp whenever p < q.

Proof. Let {qk}∞k=1 be an enumeration of the countable set Q ∩ (0, 1)[0, 1]R
of all rational numbers in the open interval (0, 1). Set q0 = 0 and q∞ = 1.
According to Theorem 11.3, there exist open subsets G0 and G1 of X with
compact closures such that

K ⊆ G1 ⊆ G−
1 ⊆ G0 ⊆ G−

0 ⊆ U.

Take any q ∈ Q ∩ (0, 1). Using Theorem 11.3 again, there is an open set
with compact closure Gq associated with q such that

G−
1 ⊆ Gq ⊆ G−

q ⊆ G0 .

Take any q′∈ Q ∩ (0, 1) such that q′ �= q. Use Theorem 11.3 and get an open
set with compact closure Gq′ such that if q′< q, then Gq ⊆ Gq′ and

G−
1 ⊆ Gq ⊆ G−

q ⊆ Gq′ ⊆ G−
q′ ⊆ G0 ;
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if q < q′, then Gq′ ⊆ Gq and

G−
1 ⊆ Gq′ ⊆ G−

q′ ⊆ Gq ⊆ G−
q ⊆ G0 .

Proceeding along this line, if we already have a finite set {qi}ni=1 of rational
numbers from Q ∩ (0, 1), and an associated set of open sets with compact
closure {Gqi

}ni=1 such that Gqi+1
⊆ Gqi

for qi < qi+1 and

Gqi+1
⊆ G−

qi+1
⊆ Gqi

⊆ G−
qi
,

then take any qn+1 ∈ Q ∩ (0, 1) such that qn+1 �= qi for every integer
i ∈ [1, n]. Using Theorem 11.3 once again we get an open set with com-
pact closure Gqn+1

such that

G−
qj
⊆ Gqn+1

⊆ G−
qn+1

⊆ Gq

,

where q
 is the largest number from {qi}ni=1 which is smaller than qn+1, and
qj is the smallest number from {qi}ni=1 which is greater than qn+1. Continu-
ing this way we obtain, for each q ∈ {qk}∞k=1 ∪ {q0, q∞} = Q ∩ [0, 1], an open
set with compact closure Gq, such that K ⊆ G1 , G−

0 ⊆ U, and G−
q ⊆ Gp

whenever p < q. This concludes the proof of the claimed statement. �

For each q ∈ {qk}∞k=1∪ {q0, q∞}= Q ∩ [0, 1] take the characteristic functions
of Gq and X\G−

q , and consider the following functions of X into R:

fq = q χGq , gq = q χX\G−
q + χG−

q ,

f = sup
k

fqk , g = inf
k
gqk .

As we saw before, characteristic functions of open sets are lower semicon-
tinuous, and so are the sup of lower semicontinuous functions; dually, char-
acteristic functions of closed sets are upper semicontinuous, and so are the
inf of upper semicontinuous functions. Therefore, it is readily verified that
each fq and f are lower semicontinuous functions, while each gq and g are
upper semicontinuous functions. Now we show that

f ≤ g and g ≤ f, and hence f = g.

Indeed, if gp(x)<fq(x), then q < p, x∈Gp and x �∈G−
q (i.e., x∈ (Gp\G−

q )).
But q < p impliesG−

p ⊆ Gq so thatGp\G−
q = ∅. So fq < gp for every p and q

in Q ∩ [0, 1], which implies that f ≤ g. On the other hand, if f(x) < g(x) for
some x ∈ X, then there are p, q ∈ Q ∩ [0, 1] such that f(x) < p < q < g(x).
But f(x) < p implies that x �∈ Gp , and q < g(x) implies that x ∈ G−

q , so that
x ∈ G−

q \Gp . Again, p < q implies G−
q ⊆ Gp , so that G−

q \Gp = ∅. Then we
get g ≤ f . Hence f = g. Therefore, since f is lower semicontinuous, g is
upper semicontinuous, and f = g, it follows that

f :X → R is continuous .
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Clearly, fq has a compact support G−
q ⊆ [0, 1] and fq(X) ⊆ [0, 1] for every q

in Q ∩ [0, 1], and so (i) f has compact support and (ii) f(X) ⊆ [0, 1]. Since
K ⊆ [fq] for all q ∈ Q ∩ [0, 1] and sup(Q ∩ [0, 1]) = 1, we get (iii) f(K) = 1.
Since

⋃

q Gq ⊆ G0 ⊆ U, it is also follows that (iv) [f ] ⊆ U. Outcome:

f ∈ Cc(X)K ∩ Cc(X)U . �

Corollary 12.3. Let Ui and K be subsets of a locally compact Hausdorff
space. If {Ui}ni=1 is a open covering of a compact set K, then there exists
fi ∈ Cc(X)Ui for each i ∈ [1, n] such that

∑n
i=1 fi(x) = 1 for every x ∈ K.

Proof. Since K ⊆ U =
⋃n

i=1 Ui, where K is compact and U is open, there
exists an open set G with compact closure (cf. Theorem 11.3) such that

K ⊆ G ⊆ G−⊆ U.

Take an arbitrary integer i ∈ [1, n]. Set Gi = G∩Ui ⊆ Ui, which is an open
set (intersection of two open sets) with compact closure (since (G∩Ui)

−⊆
G−

i , which is compact — see Lemma 11.2). Let Ki be the finite union of all
sets G−

j such that Gj ⊆ Ui. Thus Ki is compact (since each G−
j is compact

and Ki is a finite union of them) and Ki ⊆ Ui, where Ui is open. Therefore,
by Lemma 12.2, there exists a function gi :X→ R such that

gi ∈ Cc(X)Ki
∩ Cc(X)Ui .

Now set

f1 = g1 and fi =

i−1
∏

j=1

(1− gj)gi if i ≥ 2.

Since gi ∈ Cc(X)Ui , it follows by the definition of Cc(X)Ui that

fi ∈ Cc(X)Ui .

It is readily verified by induction that
n

∑

i=1

fi = 1−
n
∏

i=1

(1− gi).

Next note that K ⊆
⋃n

i=1 Ki. Indeed, since
⋃n

i=1 G
−
i =

⋃n
i=1 Ki, it follows

that K ⊆ G ⊆
⋃n

i=1(G ∩ Ui) =
⋃n

i=1 Gi ⊆
⋃n

i=1 G
−
i =

⋃n
i=1 Ki. If gi(x) < 1

for every i ∈ [1, n] for some x ∈ K ⊆
⋃n

j=1 K
−
j , then gi �∈ Cc(X)Ki

, which
is a contradiction. Thus for every x ∈ K there exists an integer i′∈ [1, n]
such that gi′(x) = 1. Hence 1− gi′(x) = 0, and so

∏n
i=1(1− gi(x)) = 0, for

every x ∈ K. Therefore,
n

∑

i=1

fi(x) = 1 for every x ∈ K. �
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The preceding consequence of the Urysohn Lemma (i.e., Corollary 12.3),
together with the Urysohn Lemma itself (i.e., Lemma 12.2), will play an
important role for proving the first version of the Riesz Representation
Theorem, namely, Theorem 12.5 in Section 12.3.

12.2 Bounded Linear Functionals

Let S be a nonempty set and consider the set FS of all functions f :S → F of
S into F (i.e., of all F-valued function on S). It is readily verified that FS is
a linear space (over the field F) where addition and scalar multiplication in
F
S are defined pointwise (thus the linear structure of FS is inherited by that

in F). Let L(S) ⊆ F
S be any linear manifold of the linear space F

S. (That is,
L(S) ⊆ F

S is such that f + g and αf — defined as (f + g)(s) = f(s) + g(s)
and (αf)(s) = αf(s) for every s ∈ S and every α ∈ F — lie in L(S) when-
ever f, g ∈ L(S) and α ∈ F.) So L(S) is itself a linear space over F; if F = C

or F = R, then L(S) is referred to as a complex linear space or a real linear
space and, when necessary, it will be denoted by L(S,C) or L(S,R), respec-
tively — see the remarks that follow Lemma 4.5. Take a linear functional
Φ:L(S)→ F on the linear space L(S), which means that Φ is additive and
homogeneous (i.e., Φ(f + g) = Φ(f) + Φ(g) and Φ(αf) = αΦ(f) for every
pair of functions f, g ∈ L(S) and every scalar α ∈ F). A functional Φ on L(S)
is said to be positive if Φ(f) ≥ 0 for every f ≥ 0 (i.e., for every f ∈ L(S)
with nonnegative range f(S)); in other words, if

Φ(f) ≥ 0 for every f ∈ L(S) such that f(s) ≥ 0 for every s ∈ S.

Let Φ:L(S)→ F be a positive linear functional on the linear space L(S). If
f, g ∈ L(S) are such that f ≤ g, then 0 ≤ Φ(g − f) = Φ(g)− Φ(f). So

Φ(f) ≤ Φ(g) whenever f ≤ g.

Moreover, if f :S → R is a real-valued function in L(S), then (considering
the decomposition f = f+− f− of Section 1.2 where f+ ≥ 0 and f− ≥ 0)

|Φ(f)| = |Φ(f+− f−)| = |Φ(f+)− Φ(f−)|
≤ |Φ(f+)|+ |Φ(f−)| = Φ(f+) + Φ(f−) = Φ(f++ f−) = Φ(|f |).

Also, if the function 1:S → F (i.e., 1(s) = 1 for all s ∈ S) lies in L(S), and
if f :S → F is such that |f | ≤ 1, then 0 ≤ Φ(1− |f |) = Φ(1)− Φ(|f |). Thus

Φ(|f |) ≤ Φ(1) whenever |f | ≤ 1.

Summing up: If L(S) is a linear space of F-valued functions on a nonempty
set S, if Φ:L(S)→ F is a positive linear functional, if f :S → R is a real-
valued function in L(S), and if the constant function 1 lies in L(S), then

|Φ(f)| ≤ Φ(|f |) ≤ Φ(1) whenever |f | ≤ 1.
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An important particular case: A bounded function f :S → F is a func-
tion such that its range f(S) is a bounded subset of the metric space F

(equipped with the usual metric — i.e., a function f :S → F such that
sups∈S |f(s)| <∞ — cf. Remarks on Boundedness in Section 11.1). Now
consider the collection B(S) of all F-valued bounded functions on S,

B(S) =
{

f :S → F : f is bounded
}

,

which is a linear space (sum and scalar multiplication of bounded functions
are again bounded functions); in fact, it is a normed space with sup-norm

‖f‖∞ = sup
s∈S
|f(s)| .

Note that the constant function 1 lies in B(S). If a function f lies in B(S),
then |f | ≤ 1 means |f(s)| ≤ 1 for every s ∈ S, which is equivalent to saying
that sups∈S |f(s)| ≤ 1. Therefore,

‖f‖∞ ≤ 1 if and only if |f | ≤ 1.

If L(S) ⊆ B(S) is a linear manifold of B(S), then L(S) inherits the norm
of B(S) and (L(S), ‖ · ‖∞) is a normed space. A bounded linear functional
Φ:L(S)→ F on the normed space L(S) is a linear functional such that

supf �=0
|Φ(f)|
‖f‖∞

<∞. (It is worth noticing that, if Φ �= 0, then the image of Φ,

viz., Φ(L(S)), is not bounded in F — indeed, Φ(L(S)) = F: nonzero linear
functionals are surjective.) The induced uniform norm of a bounded linear
functional (in fact, the induced uniform norm on the normed space of all
F-valued bounded linear functionals on L(S) — the dual of L(S)) is

‖Φ‖ = sup
f �=0

|Φ(f)|
‖f‖∞

= sup
‖f‖∞≤1

|Φ(f)| = sup
|f |≤1

|Φ(f)| .

Hence, if the bounded linear functional Φ is positive and if 1 ∈ L(S), then
Φ(1) ≤ ‖Φ‖ = sup|f |≤1 |Φ(f)|, and also sup|f |≤1 Φ(|f |) ≤ Φ(1). Moreover, if
f ∈ L(S) is real-valued, then |Φ(f)| ≤ Φ(|f |). Therefore, if F = R, then

Φ(1) ≤ ‖Φ‖ = sup
|f |≤1

|Φ(f)| ≤ sup
|f |≤1

Φ(|f |) ≤ Φ(1).

Summing up: If L(S) is a real linear space of real-valued bounded functions
on a nonempty set S, if Φ is a real-valued positive bounded linear functional
on L(S), and if 1 ∈ L(S), then

‖Φ‖ = Φ(1).

Again, the complex linear space of all complex-valued bounded functions
on S, and the real linear space of all real-valued bounded functions on S
will, when necessary, be denoted respectively by
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B(S,C) =
{

f :S → C : f is bounded
}

,

and

B(S,R) =
{

f :S → R : f is bounded
}

.

A linear lattice is a linear space equipped with a partial ordering such
that every pair of elements has an infimum and a supremum in it. That is,

f ∧ g = inf{f, g} and f ∨ g = sup{f, g}

lie in the linear space for every f and g in the linear space. Set F = R and
let L(S,R) be a real linear space of real-valued functions on S. For f, g in
L(S,R) let f ∧ g and f ∨ g be defined by (f ∧ g)(s) = min{f(s), g(s)} and
(f ∨g)(s) =max{f(s), g(s)} for each s∈S. If L(S,R) has (in addition to the
linear properties) the property that f ∧ g and f ∨ g lie in L(S,R) whenever
f, g lie in L(S,R), then L(S,R) is a linear lattice of real-valued functions
on S. Example: the linear space B(S,R) of all real-valued bounded functions
on S equipped with the partial ordering ≤ (defined by f ≤ g if f(s) ≤ g(s)
for every s ∈ S), which induces the above binary operations ∧ and ∨, is a
linear lattice that contains the constant function 1(s) = 1 for all s ∈ S.

Now we equip S with a topology. Let S = X be a topological space and
consider the set C(X) of all F-valued continuous functions on X:

C(X) =
{

f :X→ F : f is continuous
}

.

Since sum and scalar multiples of continuous functions are again continuous
functions, C(X) is a linear manifold of the linear space F

X of all F-valued
functions onX, and so C(X) is itself a linear space. Clearly, Cc(X) ⊆ C(X).
Since the support of a sum of two functions in Cc(X) is the union of their
support (because finite union of compact sets is compact), we can infer that
Cc(X) is a linear manifold of C(X), and hence Cc(X) is itself a linear space.
If X is a compact space, then closed subsets of X are compact sets (Lemma
11.2(a)) so that Cc(X) = C(X) by the definition of Cc(X); that is,

Cc(X) = C(X) whenever X is a compact topological space.

By Lemma 12.1 (recalling that in F compact means closed and bounded),

Cc(X) ⊆ B(X),

and so the linear space Cc(X), and also C(X) if X is compact, is again a
normed space equipped with the sup-norm ‖ · ‖∞.

Once again, the complex linear space of all complex-valued continuous
functions on X, and the real linear space of all real-valued continuous func-
tions on X will, when necessary, be denoted respectively by
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C(X,C) =
{

f :X→ C : f is continuous
}

,
and

C(X,R) =
{

f :X→ R : f is continuous
}

.

Note that C(X,R) has the additional property that if f, g lie in C(X,R),
then so does the functions f ∧ g and f ∨ g. This means that C(X,R) is a
linear lattice of real-valued functions on X. Moreover, the constant function
1(x)=1 for all x∈X lies in C(X). Also, if X is compact, then C(X)⊆B(X)
(F-valued continuous functions on a compact space are bounded — cf. Claim
in the proof of Lemma 12.1 plus Remarks on Boundedness in Section 11.1).

Lemma 12.4. Let L(S,R) be a linear lattice of real-valued bounded func-
tions on a nonempty set S. If Φ:L(S,R)→R is a real-valued bounded linear
functional on L(S,R), then there are two positive real-valued bounded linear
functionals Φ+:L(S,R)→R and Φ−:L(S,R)→R on L(S,R) such that

Φ = Φ+− Φ−.

If L(S,R) contains the function 1, then ‖Φ‖ = Φ+(1) + Φ−(1).

Proof. Let Φ:L(S,R)→ R be a bounded linear functional. Set

Ψ+(f) = sup
0≤ϕ≤f

Φ(ϕ) for each 0 ≤ f ∈ L(S,R).

Thus Ψ+(0) = 0 (since Φ(0) = 0 by linearity of Φ) and hence Ψ+(f) ≥ 0 for
every 0 ≤ f ∈ L(S,R), and sup 0≤f Ψ

+(f) <∞ (since Φ is bounded). Note
that since Φ is linear, for every 0 ≤ α ∈ R and every 0 ≤ f ∈ L(S,R),

(i) Ψ+(αf) = αΨ+(f).

Now take an arbitrary pair of functions 0 ≤ f, g in L(S,R). Let ϕ,ψ be
functions in L(S,R) such that 0 ≤ ϕ ≤ f and 0 ≤ ψ ≤ g. Thus, by the def-
inition of Ψ+, since Φ is additive, Φ(ϕ) + Φ(ψ) = Φ(ϕ+ ψ) ≤ Ψ+(f + g),
and so (definition of Ψ+ again — taking the sup for all such ϕ and ψ)

Ψ+(f) + Ψ+(g) ≤ Ψ+(f + g).

Conversely, take any function h ∈ L(S,R) such that 0 ≤ h ≤ f + g. Since
0 ≤ h ∧ f = inf{h, f} = f , and since 0 ≤ h ∧ f ≤ h ≤ f + g, it follows
that 0 ≤ h− (h ∧ f) ≤ g. (Indeed, (h− (h ∧ f))(s) = 0 if h(s) ≤ f(s) and
h− (h ∧ f)(s) = (h− f)(s) ≤ g(s) if f(s) ≤ h(s).) Again, by the definition
of Ψ+, since Φ is linear, Φ(h) = Φ(h∧ f) +Φ(h− (h∧ f)) ≤ Ψ+(f) + Ψ+(g)
and so (definition of Ψ+ again — taking the sup for all such h)

Ψ+(f + g) ≤ Ψ+(f) + Ψ+(g).
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Therefore, for every 0 ≤ f, g ∈ L(S,R),

(ii) Ψ+(f + g) = Ψ+(f) + Ψ+(g).

Since every real-valued function f ∈ L(S,R) can be written as f = f+− f−,
where f+ = f ∨ 0 and f− = −f ∧ 0 (positive and negative parts of f) are
nonnegative functions in L(S,R), the values Ψ+(f+) and Ψ+(f−) are well
defined. Thus consider the functional Φ+:L(S,R)→ R defined on the whole
L(S,R) as follows. For every f ∈ L(S,R),

Φ+(f) = Ψ+(f+)− Ψ+(f−).

First we show that Φ+ is homogeneous. Take any f ∈ L(S,R). Since α ≥ 0
implies (αf)+ = αf+ and (αf)− = αf−, we get by (i) that Ψ+((αf)+) =
αΨ+(f+) and Ψ+((αf)−) = αΨ+(f−), and hence Φ+(αf) = αΦ+(f)
whenever α ≥ 0. Next observe that since f− = (−f)+ and f+ = (−f)−,

Φ+(−f) = Ψ+((−f)+)− Ψ+((−f)−) = Ψ+(f−)− Ψ+(f+) = −Φ+(f).

So Φ+(αf) = Φ+(−|α|f) = −Φ+(|α|f) = −|α|Φ+(f) = αΦ+(f) if α ≤ 0.
Therefore, for every α ∈ R and every f ∈ L(S,R),

(i′) Φ+(αf) = αΦ+(f).

In order to show additivity, take any f in L(S,R), and let ϕ, ψ in L(S,R)
be such that 0 ≤ ϕ, 0 ≤ ψ, 0 ≤ f + ϕ and 0 ≤ f + ψ. Note that by (ii),

Ψ+(f + ϕ) + Ψ+(ψ) = Ψ+(f + ϕ+ ψ) = Ψ+(f + ψ) + Ψ+(ϕ),

and so
Ψ+(f + ϕ)− Ψ+(ϕ) = Ψ+(f + ψ)− Ψ+(ψ).

In particular, with ϕ = f− (so that f + ϕ = f+), we get

Φ+(f) = Ψ+(f+)− Ψ+(f−) = Ψ+(f + ψ)− Ψ+(ψ).

Summing up: For every f ∈ L(S,R),

Φ+(f) = Ψ+(f + ψ)− Ψ+(ψ)

whenever 0 ≤ ψ is such that 0 ≤ f + ψ. Thus take any g ∈ L(S,R), and let
ψ be such that, in addition, 0 ≤ g + ψ. Then

Φ+(g) = Ψ+(g + ψ)− Ψ+(ψ).

Therefore, by using (i) and (ii),
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Φ+(f) + Φ+(g) = Ψ+(f + ψ) + Ψ+(g + ψ)− 2Ψ+(ψ)

= Ψ+(f + g + 2ψ)− Ψ+(2ψ).

But 0 ≤ f + ψ and 0 ≤ g + ψ imply that 0 ≤ f + g + 2ψ. Hence

Φ+(f + g) = Ψ+(f + g + 2ψ)− Ψ+(2ψ).

Outcome: For every f, g ∈ L(S,R),

(ii′) Φ+(f + g) = Φ+(f) + Φ+(g).

Properties (i′) and (ii′) mean that the functional Φ+:L(S,R)→ R is linear.
It is also bounded since sup f≥0 Ψ

+(f) <∞. Indeed,

sup
f∈L(S,R)

Φ+(f) = sup
f∈L(S,R)

(

Ψ+(f+)− Ψ+(f−)
)

≤ 2 sup
f≥0

Ψ+(f) <∞.

Moreover, observe that Φ+ is positive as well:

Φ+(f) = Ψ+(f) ≥ 0 for every f ≥ 0.

Next consider the functional Φ−:L(S,R)→ R defined on L(S,R) by

Φ− = Φ+− Φ,

which is trivially linear and bounded (since Φ and Φ+ are). Since Φ(f) ≤
Ψ+(f) for every f ≥ 0 by the definition of Ψ+, it follows that Φ− is positive:

Φ−(f) = Φ+(f)− Φ(f) = Ψ+(f)− Φ(f) ≥ 0 for every f ≥ 0.

Finally, suppose L(S,R) contains the function 1. Since L(S,R) is a real lin-
ear space of real-valued bounded functions, since Φ+ and Φ− are real-valued
positive bounded linear functionals on L(S,R), and since 1 ∈ L(S,R),

‖Φ+‖ = Φ+(1) and ‖Φ−‖ = Φ−(1),

so that

‖Φ‖ = ‖Φ+− Φ−‖ ≤ ‖Φ+‖+ ‖Φ−‖ = Φ+(1) + Φ−(1).

On the other hand, take any ϕ ∈ L(S,R) such that 0 ≤ ϕ ≤ 1, equivalently,
such that |2ϕ− 1| ≤ 1. First recall by the definition of Φ− that

Φ+(1) + Φ−(1) = 2Φ+(1) + Φ(1).

Next observe that according to the definitions of Ψ+ and Φ+,

Φ+(1) = Ψ+(1) = sup
0≤ϕ≤1

Φ(ϕ).
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Moreover, since |2ϕ− 1| ≤ 1, and since Φ is linear,

2Φ(ϕ)− Φ(1) = Φ(2ϕ− 1) ≤ sup
|f |≤1

‖Φ(f)‖ ≤ ‖Φ‖ .

Hence,

Φ+(1) + Φ−(1) = sup
0≤ϕ≤1

2Φ(ϕ) + Φ(1) ≤ ‖Φ‖ .

Therefore, Φ+(1) + Φ−(1) = ‖Φ‖. �

12.3 The Riesz Representation Theorem

Recall that continuous functions are Borel measurable. So every f ∈ Cc(X)
is XT -measurable. Actually, f ∈ Cc(X) is integrable with respect to a Borel
measure (and so is f ∈ C(X) = Cc(X) if X is compact), since these func-
tions are bounded (Cc(X) ⊆ B(X)), and since Borel measures are finite on
compact sets (cf. Lemma 4.4(b) and Problem 3.3(a,b)).

This section contains the central theme of the chapter. The next theorem,
Theorem 12.5, is one of the forms of the celebrated Riesz Representation
Theorem, which might be called Riesz–Markov–Radon–Banach–Kakutani–
Halmos Theorem, since many versions of it have traveled a long way from
Riesz’s original 1909 paper to the general form on locally compact Hausdorff
space developed in Halmos’s book [18]. For a short account of such a long
story see [35, p. 354]. We will see further versions up to Section 12.4.

Theorem 12.5. Let X be a locally compact Hausdorff space. If Φ is a
positive linear functional on Cc(X), then there exists a unique quasiregular
Borel measure μ on the Borel σ-algebra XT of subsets of X such that

Φ(f) =

∫

f dμ for every f ∈ Cc(X).

Proof. Let X be a locally compact Hausdorff space. Take the linear space
of all F-valued continuous functions on X with a compact support,

Cc(X) =
{

f :X→ F : f is continuous and [f ] is compact in X
}

,

and let Φ:Cc(X)→ F be a positive linear functional,

Φ(f) ≥ 0 for every f ∈ Cc(X) such that f(x) ≥ 0 for every x ∈ X,

and consider the set function μ# : T → R on the topology of X defined by

μ#(U) = sup
f∈Cc(X)U

Φ(f),
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where Cc(X)U is a collection of positive functions for every open set U ∈ T :

Cc(X)U =
{

f ∈ Cc(X): f(X) ⊆ [0, 1] and [f ] ⊆ U
}

⊆ Cc(X,R).

First we show that μ# satisfies the properties (1) to (7) in the definition of
an inner content (Section 11.3). Let G and U be arbitrary sets in T . Clearly,

(1) μ#(∅) = 0, (2) μ#(U) ≥ 0,

since Φ positive, and it is readily verified that

(3) μ#(U) <∞ whenever U− is compact,

(4) μ#(G) ≤ μ#(U) whenever G ⊆ U.

Before verifying property (5) we need to show property (6). Let {Uk} be a
countable family of open sets and set U =

⋃

k Uk, which is open. Take an
arbitrary f ∈ Cc(X)U. Thus {Uk} is an open covering of the compact set
[f ], and hence there exists a finite open subcovering {Ui}ni=1 ⊆ {Uk} of [f ].
In this case, Corollary 12.3 ensures that there exists fi ∈ Cc(X)Ui for each
i ∈ [1, n] such that

∑n
i=1 fi(x) = 1 for every x ∈ [f ]. Thus

f =

n
∑

i=1

fif where each fif lies in Cc(X)Ui .

Hence, by the definition of μ# , and since Φ is linear,

Φ(f) =

n
∑

i=1

Φ(fif) ≤
n

∑

i=1

μ#(Ui) ≤
∞
∑

i=1

μ#(Ui),

and so

μ#(U) = sup
f∈Cc(X)U

Φ(f) ≤
∞
∑

i=1

μ#(Ui).

Therefore,

(6) μ#
(⋃

k Un

)

≤
∑

k μ
#(Uk) for every countable family {Uk} ⊆ T .

Now suppose that G ∩ U = ∅. If f ∈ Cc(X)U and if g ∈ Cc(X)G, then
f + g ∈ Cc(X)U∪G. Thus (cf. definition of μ#),

Φ(f) + Φ(g) = Φ(f + g) ≤ μ#(U ∪G)

for every f ∈ Cc(X)U and every g ∈ Cc(X)G. This implies that

μ#(U) + μ#(G) = sup
f∈Cc(X)U

Φ(f) + sup
g∈Cc(X)G

Φ(g)

≤ sup
f∈Cc(X)U, g∈Cc(X)G

(

Φ(f) + Φ(g)
)

≤ μ#(U ∪G).
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Since we have already verified that μ#(U ∪ G) ≤ μ#(U) + μ#(G) (inde-
pendently of the disjointness assumption), it follows that

(5) μ#(G ∪ U) = μ#(G) + μ#(U) whenever G ∩ U = ∅.

Thus μ# is a content, which in fact is an inner content, since

sup
G∈G(U)

μ#(G) = sup
G∈G(U)

sup
f∈Cc(X)G

Φ(f) = sup
f∈Cc(X)U

Φ(f) = μ#(U),

with G(U) = {G ∈ T : G−⊆ U, G compact} for each U ∈ T , so that

(7) μ#(U) = sup
{

μ#(G): G−⊆ U, G−compact
}

.

Therefore, by Lemma 11.8, the set function μ∗ :℘(X)→ R defined by

μ∗(S) = inf
{

μ#(U): S ⊆ U
}

for every S ∈ ℘(X)

is a quasiregular outer measure such that μ∗(S) <∞ if S is bounded. So

μ = μ∗|XT :XT → R

is a quasiregular Borel measure on the Borel σ-algebra XT generated by the
topology T according to Theorem 11.7. Next we show that

Φ(f) =

∫

f dμ for every f ∈ Cc(X).

Any complex-valued function f in Cc(X) can be written as f = f1 + i f2,
where f1 =Re f and f2 = Im f (the real and imaginary parts of f) are real-
valued functions in Cc(X), and any real-valued function f in Cc(X) can
be written as f = f+− f−, where f+ and f− (positive and negative parts
of f) are nonnegative functions in Cc(X). In fact, such a decomposition is
possible since every function in Cc(X) is bounded (reason: f(X) is com-
pact by Lemma 12.1 and so it is bounded — cf. Remarks on Boundedness
in Section 11.1). Therefore, since Φ and

∫

(·) dμ are linear functionals, it
is enough to consider nonnegative functions. That is, if the above identity
holds for every nonnegative function f in Cc(X), then it holds for every
F-valued function f in Cc(X). Thus take an arbitrary nonnegative func-
tion f in Cc(X). Since Φ and

∫

(·) dμ are linear functionals and f(X) is
bounded, we may assume without loss of generality that f ≤ 1. Thus sup-
pose f(X) ⊆ [0, 1]. Take an arbitrary bounded open set U ∈ T such that
[f ] ⊆ U . In other words, take an arbitrary bounded open set U such that

f ∈ Cc(X)U.
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Take an arbitrary positive integer n and set, for each integer k≥ 0,

U0 = U, Uk =
{

x ∈ X : k−1
n < f(x)

}

= f−1((k−1
n ,∞)) for k≥1,

which are open (inverse image of open sets under a continuous function).
Note that U1 = X\f−1({0}) = X\N (f) so that U−

1 = [f ], U−
k+1⊆ Uk, and

Uk = ∅ for every k ≥ n+ 1. Set, for each integer k ∈ [1, n],

fk(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1, x ∈ Uk+1 (i.e., if k
n < f(x)),

nf(x)− (k − 1), x ∈ Uk\Uk+1 (i.e., if k−1
n < f(x) ≤ k

n ),

0, x ∈ X\Uk (i.e., if f(x) ≤ k−1
n ),

which defines a collection of n real-valued (since f is real-valued) functions
fk on X with compact support. In fact, [fk] ⊆ U−

k ⊆ Uk−1. Each fk is con-
tinuous (reason: nf(x)− (k − 1) = 0 if f(x) = k−1

n , nf(x)− (k − 1) = 1 if

f(x) = k
n , and f is continuous). Thus fk(X) ⊆ [0, 1], and so fk ∈ Cc(X)Gk

for each k ∈ [1, n] and each open set Gk such that [fk] ⊆ Gk. In particular,

fk ∈ Cc(X)Uk−1 .

Thus, according to the definitions of the inner content μ# : T → R and of the
quasiregular outer measure μ∗ :℘(X)→ R induced by it, and recalling that
the quasiregular Borel measure μ:XT → R generated by them is such that
μ|T = μ∗|T = μ#, we get, for each integer k ∈ [1, n],

μ#(Uk+1) = μ∗(Uk+1) = μ(Uk+1) ≤
∫

fk dμ ≤ μ(Uk) = μ∗(Uk) = μ#(Uk).

Since fk = 1 on Uk+1 ⊆ Uk, and [fk] ⊆ U−
k ⊆ Uk=1, it also follows that

μ#(Uk+1) = sup
g∈Cc(X)

Uk+1

Φ(g) ≤ Φ(fk) ≤ sup
g∈Cc(X)

Uk−1

Φ(g) = μ#(Uk−1).

Hence,
∫

fk+1 dμ ≤ Φ(fk) and Φ(fk+2) ≤
∫

fk dμ

for every integer k ∈ [1, n− 1] if n > 1, and for every integer k ∈ [1, n− 2]
if n > 2, respectively.

Claim. nf(x) =
n

∑

k=1

fk(x) for every x ∈ X.

Proof. If n = 1, then f = f1. Thus suppose n > 1. Take an arbitrary x ∈ X.
If i−1

n < f(x) ≤ i
n for some integer i in (1, n), then
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fk(x) =

{

1, if 1 ≤ k ≤ i− 1,

0, if i+ 1 ≤ k ≤ n,

for every integer k �= i in [1, n]. Hence,

n
∑

k=1

fk(x) =

i−1
∑

k=1

fk(x)+fi(x)+

n
∑

k=i+1

fk(x) = (i−1)+nf(x)−(i−1) = nf(n). �

Now suppose n > 1 so that
∫

fk+1 dμ ≤ Φ(fk) for each integer k ∈ [1, n− 1].
Since Φ and

∫

(·) dμ are linear functionals, we get

n

∫

f dμ−
∫

f1 dμ =

∫

(nf − f1) dμ =

∫

(
n

∑

i=1

fk dμ− f1

)

dμ

=

∫ n−1
∑

i=1

fk+1 dμ =

n−1
∑

i=1

∫

fk+1 dμ ≤
n−1
∑

i=1

Φ(fk) = Φ
(

n−1
∑

i=1

fk

)

= Φ
(

n
∑

i=1

fk − fn

)

= Φ(nf − fn) = nΦ(f)− Φ(fn).

Recall that
∫

f1 dμ ≤ μ(U0), with U0 = U, where U is bounded, and so
μ(U) <∞, and also that Φ(fn) ≥ 0 (because Φ is positive). Then

∫

f dμ ≤ Φ(f) + 1
n

∫

f1 dμ− 1
nΦ(fn) ≤ Φ(f) + 1

nμ(U0).

Since the preceding inequality holds for every integer n > 1, it follows that
∫

f dμ ≤ Φ(f).

Next suppose n > 2 so that Φ(fk+2) ≤
∫

fk dμ for each integer k ∈ [1, n− 2].
Again, since Φ and

∫

(·) dμ are linear functionals, we get

nΦ(f)− Φ(f1)− Φ(f2) = Φ(nf − f1 − f2) = Φ
(

n
∑

i=1

fk − f1 − f2

)

=
n−2
∑

i=1

Φ(fk−2) ≤
n−2
∑

i=1

∫

fk dμ =

∫

(
n

∑

i=1

fk − fn−1 − fn

)

dμ

=

∫

(nfk − fn−1 − fn) dμ = n

∫

f dμ−
∫

fn−1 dμ−
∫

fn dμ.

Recall that Φ(f1) + Φ(f2) ≤ μ(U0) + μ(U1) ≤ 2μ(U) < ∞, and also that
each

∫

fk dμ ≥ 0. Then

Φ(f) ≤
∫

f dμ+ 1
n

(

Φ(f1)+Φ(f2)−
∫

fn−1 dμ−
∫

fn dμ
)

≤
∫

f dμ+ 2
nμ(U).
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Since the preceding inequality holds for every integer n > 2, it follows that

Φ(f) ≤
∫

f dμ.

Outcome:
∫

f dμ = Φ(f).

Finally, we show that the quasiregular measure μ:XT → R on the Borel σ-
algebra XT of subsets of the locally compact Hausdorff spaceX generated by
the topology T on X, which satisfies the above identity, is unique. Suppose
μ and μ′ on XT are quasiregular measures that satisfy the above identity.
Observe by the definition of quasiregular measures on XT that they are
determined by their values on open sets, which in turn are determined by
their values on compact sets. So, in order to show that μ′ = μ on XT , it
suffices to verify that μ′(K) = μ(K) for every compact set K. Thus take
an arbitrary compact set K ⊆ X and an arbitrary ε > 0. Since μ′ is outer
regular, there exists an open set U such that K ⊆ U and μ′(U) ≤ μ′(K) + ε.
By Lemma 12.2, let f be any function in Cc(X)K ∩ Cc(X)U. Therefore, since
f(X) ⊆ [0, 1], f(K) = 1, and [f ] ⊆ U , it follows that

μ(K) ≤
∫

f dμ = Φ(f) =

∫

f dμ′ ≤ μ′(U) ≤ μ′(K) + ε,

and hence μ(K) ≤ μ′(K). Swapping μ with μ′ we get μ(K)′ ≤ μ(K). Thus
μ(K)′ = μ(K), so that μ′ = μ. �

A major application of Theorem 12.5 occurs in the proof of the Spectral
Theorem for normal operators (see, e.g., [27, Proof of Theorem 3.11]). Com-
paring with the previous version, the next one exchange positiveness with
boundedness for the linear functional Φ, and the positive Borel measure is
replaced with a finite signed measure. The price for it is that the domain on
which such a functional acts is the real linear space C(X,R) for a compact
X, rather than the linear space Cc(X) on a locally compact X.

Theorem 12.6. Let X be a compact Hausdorff space. If Φ is a real-valued
bounded linear functional on the real linear space C(X,R), then there is a
unique signed measure ν on the Borel σ-algebra XT of subsets ofX such that

Φ(f) =

∫

f dν for every f ∈ C(X,R).

Moreover, ‖Φ‖ = |ν|(X).

Proof. LetX be a compact Hausdorff space. Recall that the real linear space

C(X,R) =
{

f :X→ R : f is continuous
}
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of all real-valued continuous functions on X is a linear lattice, and let
Φ:C(X,R)→ R be a real-valued bounded linear functional on C(X,R).
Lemma 12.4 ensures that there exist two positive real-valued bounded linear
functionals Φ+:C(X,R)→ R and Φ−:C(X,R)→ R on C(X,R) such that

Φ = Φ+− Φ−.

Take an arbitrary f ∈ C(X,R). Since X is compact, C(X) = Cc(X), and
so Theorem 12.5 says that there is a Borel measure λ, and a Borel measure
μ, both unique on XT (which are finite because X is compact), for which

Φ+(f) =

∫

f dλ and Φ−(f) =

∫

f dμ.

Thus, the (finite) real-valued signed measure ν = λ− μ on XT is such that

Φ(f) = Φ+(f)− Φ−(f) =

∫

f dλ−
∫

f dμ =

∫

f dν,

which proves the existence. To verify uniqueness suppose ν and ν′ are (finite)
real-valued signed measures on XT such that for an arbitrary f ∈C(X,R),

∫

f dν = Φ(f) =

∫

f dν′.

Set ν̃ = ν − ν′. This is a (finite) real-valued signed measure on XT for which
∫

f dν̃ =

∫

f dν̃+ −
∫

f dν̃− = 0,

where ν̃+ and ν̃− are finite positive measures on XT associated with the
decomposition ν̃ = ν̃+− ν̃−: the positive and negative variations of ν̃. Now
consider the (real-valued) positive linear functional Ψ on C(X,R) such that

Ψ(f) =

∫

f dν̃+ =

∫

f dν̃−.

By uniqueness of the Borel measure in Theorem 12.5 we get ν̃+ = ν̃−, so
that ν̃ = 0, and hence ν = ν′, which proves uniqueness. Finally, recall that
C(X) ⊆ B(X) whenever X is compact, and so sup |f | <∞, and also that

|Φ(f)| =
∣

∣

∣

∣

∫

f dν

∣

∣

∣

∣

≤
∫

|f | d|ν| ≤ sup |f | |ν|(X)

for every f ∈ C(X,R) (as we saw in Remark 10.3). Hence

‖Φ‖ = sup
|f |≤1

|Φ(f)| ≤ |ν|(X).
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On the other hand, according to Example 7A and Theorem 7.4,

|ν|(X) = ν+(X) + ν−(X) ≤ λ(X) + μ(X) = Φ+(1) + Φ−(1) = ‖Φ‖

by Lemma 12.4 since C(X,R) contains the function 1. Therefore,

‖Φ‖ = |ν|(X). �

The next result extends Theorem 12.6 to bounded linear functionals on
C(X,C), where finite signed measures are replaced with complex measures.

Theorem 12.7. Let X be a compact Hausdorff space. If Φ is a complex-
valued bounded linear functional on C(X,C), then there exists a unique
complex measure η on a Borel σ-algebra XT of subsets of X such that

Φ(f) =

∫

f dη for every f ∈ C(X,C).

Moreover, ‖Φ‖ = |η|(X).

Proof. Let X be a compact Hausdorff space, let

C(X,C) =
{

f :X→ C : f is continuous
}

be the complex linear space of all complex-valued continuous functions on
X, and let Φ:C(X,C)→ C be a complex-valued bounded linear functional
on C(X,C). A function f in C(X,C) can be written as f = f1 + i f2, where
f1 and f2 (real and imaginary parts of f) are real-valued continuous func-
tions in the real linear space C(X,R) = {ϕ:X→R : ϕ is continuous}. More-
over, write the complex numbers Φ(f1) and Φ(f2) in its Cartesian represen-
tation, Φ(f1) = Re Φ(f1) + i Im Φ(f1) and Φ(f2) = Re Φ(f2) + i Im Φ(f2),
where Re Φ(fi) and Im Φ(fi) are real numbers. Thus, for each complex-
valued functional Φ:C(X,C)→ C on the complex linear space C(X,C),
we can associate two real-valued functionals, say, Φ1 :C(X,R)→ R and
Φ2 :C(X,R)→ R on the real linear space C(X,R), defined as follows.

Φ1(ϕ) = Re Φ(ϕ) and Φ2(ϕ) = Im Φ(ϕ),
so that

Φ(ϕ) = Φ1(ϕ) + i Φ2(ϕ),

for every ϕ ∈ C(X,R). These real-valued functionals Φ1 and Φ2 on C(X,R)
are linear and bounded. Indeed, since Φ is linear, it follows that for every
α ∈ R and every ϕ,ψ ∈ C(X,R),

αΦ1(ϕ) + i αΦ2(ϕ) = αΦ(ϕ) = Φ(αϕ) = Φ1(αϕ) + i Φ2(αϕ),

Φ1(ϕ+ ψ) + i Φ2(ϕ+ ψ) = Φ(ϕ+ ψ) = Φ(ϕ) + Φ(ψ)

=
(

Φ1(ϕ) + Φ1(ψ)
)

+ i
(

Φ2(ϕ) + Φ2(ψ)
)

,
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and so Φ1 and Φ2 are linear, which are also bounded since Φ is bounded:

max{‖Φ1‖2, ‖Φ2‖2}= max
{

sup
|ϕ|≤1

|Φ1(ϕ)|2, sup
|ψ|≤1

|Φ2(ψ)|2
}

≤ sup
|ϕ|≤1

(

|Φ1(ϕ)|2 + |Φ2(ϕ)|2
)

= sup
|ϕ|≤1

|Φ1(ϕ) + i Φ2(ϕ)|2

≤ sup
|ϕ|≤1

|Φ(ϕ)|2 ≤ sup
|f |≤1

|Φ(f)|2 = ‖Φ‖2.

Therefore, according to Theorem 12.6, there exist unique finite signed mea-
sures ν1 and ν2 on XT such that

Φ1(f1) =

∫

f1 dν1, Φ1(f2) =

∫

f2 dν1,

Φ2(f1) =

∫

f1 dν2, Φ2(f2) =

∫

f2 dν2.

Observe that by the linearity of Φ we get for each f ∈ C(X,C),

Φ(f) = Φ(f1 + i f2) = Φ(f1) + i Φ( f2)

= Φ1(f1) + i Φ2(f1) + i
(

Φ1(f2) + i Φ2(f2)
)

= Φ1(f1) + i Φ1(f2)− Φ2(f2) + i Φ2(f1).

Hence, since
∫

(·) dμ is a linear functional, for every f ∈ C(X,C),

Φ(f) =

∫

f1 dν1 + i

∫

f2 dν1 −
∫

f2 dν2 + i

∫

f1 dν2

=

∫

(f1 + i f2) dν1 + i

∫

(f1 + i f2) dν2

=

∫

f dν1 + i

∫

f dν2 =

∫

f dη,

where η = ν1 + i ν2 is a complex measure on XT, which is unique since the
finite signed measures ν1 and ν2 on XT are unique. Finally, to verify that

‖Φ‖ = |η|(X)

we proceed as follows. First recall that since C(X) ⊆ B(X) whenever X is
compact, we get sup |f | <∞ for every f ∈ C(X) = C(X,C), and also

|Φ(f)| =
∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤
∫

|f | d|η| ≤ sup |f | |η|(X)
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for every f ∈ C(X) = C(X,C) (as we saw in Remark 10.6), which implies

‖Φ‖ = sup
f∈C(X), |f |≤1

|Φ(f)| = sup
f∈C(X), |f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

≤ |η|(X).

Next we show the reverse inequality, so that

sup
f∈C(X), |f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

= |η|(X).

In fact, we have already seen in Section 10.3 that the above identity holds
when the supremum is taken over all complex-valued integrable functions f
on X such that |f | ≤ 1. We now show that this actually happens (i.e., the
above identity holds) even when the supremum is taken over the subcollec-
tion of all complex-valued continuous functions f on X such that |f | ≤ 1.
Indeed, since X is a compact Hausdorff space, we can apply Lemma 12.2
and Corollary 12.3. By Lemma 12.2 it follows that if {Ui} is any finite open
covering of X, then there is a finite compact covering {Ki} of X such that
Ki ⊆ Ui and, for each index i, there exists a function fi ∈ Cc(X) = C(X)
such that χ

Ki
≤ fi ≤ χ

Ui
. Let {A+

1 , A
−
1 } and {A+

2 , A
−
2 } be arbitrary Hahn

decompositions of X with respect to the signed measures ν1 and ν2, and
consider the collection A+−

1,2 = {A+

1 ∩A+

2 , A
+

1 ∩A−
2 , A−

1 ∩A+

2 , A
−
1 ∩A−

2 },
which also is a covering of X. An argument similar to that in Remark 10.3
shows that for every XT -measurable covering of X there is a XT -measurable
covering of X consisting of subsets of the four sets in A+−

1,2 . Thus take a finite
open covering {Ui} ⊆ A+−

1,2 of X. Hence (cf. Remark 10.5),

|η(Ki)| ≤
∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

≤ |η(Ui)|,

and so
∑

i
|η(Ki)| ≤

∑

i

∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

≤
∑

i
|η(Ui)| .

Observe that η is quasiregular in the sense that η = ν1 + i ν2 where ν1
and ν2 are quasiregular (finite) signed measure (i.e., they are differences of
quasiregular finite positive measures, which are Borel measures μ on XT
such that μ(U) = sup{μ(K): K ⊆ U, K compact} for open sets U). Then

sup
∑

i
|η(Ki)| = sup

∑

i

∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

= sup
∑

i
|η(Ui)|,

where the supremum is taken over all finite open coverings {Ui} ⊆ A+−
1,2 of

X, and so over their corresponding compact coverings {Ki} with Ki ⊆ Ui,
and over all finite collections {fi} of continuous functions on X such that
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χ
Ki
≤ fi ≤ χ

Ui
. Since |η|(X) = sup

∑

j |η(Ej)|, where the supremum is
taken over all finite XT -measurable partitions {Ei} of X (cf. Section 10.3),
we may infer that

sup
∑

i

∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

= |η|(X).

Now, arguing as in Corollary 12.3, we may take {fi} such that
∑

i fi = 1.
Indeed, set f =

∑

i fi, which is a real-valued continuous function on X such
that f ≥ 1. By setting f ′ = fi/f we get a finite collection {f ′

i} of functions in
C(X) such that χ

Ki
≤ f ′

i ≤ χ
Ui

and
∑

i f
′
i = 1. Such a system of functions

is referred to as a partition of the unity on X corresponding to an open
covering {Ui} of X. Thus, with

∑

i fi = 1 ∈ C(X) (and so
∣

∣

∑

i fi
∣

∣ = 1)
and 0 ≤ fi ≤ χ

Ui
for each index i, it is readily verified (taking again the

supremum over all finite open coverings {Ui} ⊆ A+−
1,2 of X) that

sup
∑

i

∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

= sup
∑

i

∣

∣

∣

∣

∣

∫

Ui

fi dη

∣

∣

∣

∣

∣

≤ sup
f∈C(X), |f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

.

Thus we get the reverse inequality,

|η|(X) = sup
∑

i

∣

∣

∣

∣

∫

fi dη

∣

∣

∣

∣

≤ sup
f∈C(X), |f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

.

Therefore,

‖Φ‖ = sup
f∈C(X), |f |≤1

|Φ(f)| = sup
f∈C(X), |f |≤1

∣

∣

∣

∣

∫

f dη

∣

∣

∣

∣

= |η|(X). �

12.4 Additional Propositions

Take the Banach space Lp= Lp(μ) = Lp(X,μ) = Lp(X,X , μ) of all (equiv-
alence classes of) F-valued functions f :X→ F on a nonempty set X that
are p-integrable if p ≥ 1, or essentially bounded if p =∞, where μ:X → R

is a positive measure on a σ-algebra X of subsets of X (Chapter 5). If
p > 1, then the Hölder conjugate q > 1 of p is the solution to the equation
1
p + 1

q = 1; for p = 1, set q =∞ (and vice versa). In Section 7.2, after prov-
ing the Radon–Nikodým Theorem, we remarked that “an application of
the Radon–Nikodým Theorem is the Riesz Representation Theorem”. The
referred version of the Riesz Representation Theorem reads as follows.

Proposition 12.A. If p ≥ 1 and Φ:Lp→ F is a bounded linear functional,
then there is a unique g ∈Lq, where q is the Hölder conjugate of p, such that

Φ(f) =

∫

fg dμ for every f ∈ Lp.

Moreover, ‖Φ‖ = ‖g‖q. If p = 1 (so that q =∞) then the (positive) meas-
ure μ is supposed to be σ-finite.
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A particularly important especial case is that of p = q = 2. As we have
also noticed in Section 7.2, such a particular case can be proved without
using the Radon–Nikodým Theorem. Indeed, recall that a Hilbert space is
a Banach space (i.e., a complete normed spaces, as in Chapter 4) whose
norm is induced by an inner product. In other words, let L be an arbitrary
(abstract) linear space over a field F. A functional 〈 ; 〉:L×L → F is an
inner product on L if the following conditions hold for all vectors f , g, and
h in L and all scalars α in F: (i) 〈f+ g ;h〉 = 〈f ;h〉+ 〈g ;h〉, (ii) 〈αf ; g〉 =
α〈f ; g〉, (iii) 〈f ; g〉 = 〈g ; f〉, (iv) 〈f ; f〉 ≥ 0, (v) 〈f ; f〉 = 0 only if f = 0.
An inner product space (L, 〈 ; 〉) is a linear space L equipped with an inner
product 〈 ; 〉. If L is a real or complex linear space, so that F = R or
F = C, equipped with an inner product on it, then it is referred to as a real
or complex inner product space, respectively. Every inner product induces a
norm. The norm ‖ ‖:L → R induced by an inner product 〈 ; 〉 is defined by
‖f‖2 = 〈f ; f〉 for every f ∈ L. A Hilbert space H is an inner product space
(L, 〈 ; 〉), which is complete in the sense that the normed space (L, ‖ · ‖),
whose norm is induced by the inner product 〈 ; 〉, is complete. The Riesz
Representation Theorem in an abstract Hilbert space H reads as follows.

Proposition 12.B. Let H be an arbitrary Hilbert space. For every bounded
linear functional Φ:H → F, there exists a unique vector g ∈ H such that

Φ(f) = 〈f ; g〉 for every f ∈ H.

Moreover, ‖Φ‖ = ‖g‖. Such a unique vector g in H is called the Riesz rep-
resentation of the functional Φ.

The space L2 is a concrete Hilbert space. Among the Banach spaces Lp,
for every p ≥ 1 and for p =∞, the only one which is a Hilbert space is L2

(only ‖ ‖2 is induced by an inner product). The inner product in L2 is

〈f ; g〉 =
∫

fg dμ for every f, g ∈ H.

Thus the Riesz Representation Theorem in L2 can be independently ob-
tained either by Proposition 12.A or by Proposition 12.B. In fact, we can
get it through Proposition 12.B, and use it to yield another proof of the
Radon–Nikodým Theorem (different from our proof of Theorem 7.8), and
the Radon–Nikodým Theorem is, in turn, used to prove Proposition 12.A
(see e.g., [36, Remark 6.17] or [4, Exercise 8.V]).

The next result extends Theorem 12.5 from the linear space Cc(X) of
all continuous functions with compact support to the linear space C0(X) of
all continuous functions that vanish at infinity. A function f :X→ F on a
topological space X is said to vanish at infinity if for every ε> 0 there is a
compact set Kε⊂X such that |f(x)|<ε whenever x∈X\Kε. Recall that a
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regular (quasiregular) signed measure ν= ν+− ν− is one such that the finite
positive measures ν+ and ν− are regular (quasiregular); a regular (quasi-
regular) complex measure η = ν1+ i ν2 is one such that the (finite) signed
measures ν1 and ν2 are regular (quasiregular) — cf. Proof of Theorem 12.7.

Proposition 12.C. Let X be a locally compact Hausdorff space. If Φ is an
F-valued bounded linear functional on C0(X), then there is a unique quasi-
regular F-valued measure η on a Borel σ-algebra XT of subsets ofX such that

Φ(f) =

∫

f dη for every f ∈ C0(X).

Moreover, ‖Φ‖ = |η|(X).

Let X be a topological space. Observe that Cc(X) ⊆ C0(X) ⊆ B(X) ⊆
L∞(X,μ). Also, Cc(X) ⊆ L1(X,μ) if L1(X,XT , μ) is given in terms of a
positive Borel measure μ on XT, as we had noticed at the opening of
Section 12.3. Thus (Problems 5.8 and 5.12), Cc(X) ⊆ Lp(X,μ) for every
p ≥ 1 if Lp(X,XT , μ) is given in terms of a Borel measure μ on XT. Note
that the inclusions in Lp(X,μ) or L∞(X,μ) are interpreted in terms of
the equivalence classes of each representative in Cc(X) or B(X). The next
proposition shows a denseness result of fundamental importance for the
linear spaces upon which the Riesz Representation Theorems were built,
viz., Cc(X), C0(X), and Lp(X,μ) (recall: Cc(X) = C0(X) = C(X) if X is
compact).

Proposition 12.D. Let X be a locally compact Hausdorff space. If μ is a
positive quasiregular Borel measure on a Borel σ-algebra XT of subsets ofX,
then the linear space Cc(X) is dense in the Banach space (Lp(X,μ), ‖ ‖p)
for every real p ≥ 1 and for p =∞.

Notes: These are classical and crucial results in functional analysis, which
extend the original form of the Riesz Representation Theorem (Theorem
12.5) in many directions. Proposition 12.A is the standard form of it in the
concrete Banach spaces Lp (for proofs using somewhat different approaches
see, e.g., [4, Theorems 8.14 and 8.15], [35, Theorems 11.29 and 11.30], or
[36, Theorem 6.16]). Proposition 12.B is the traditional version for abstract
Hilbert spaces, which does not depend on any measure-theoretical concept
(see, e.g., [26, Theorem 5.62]). For the extension to the concrete linear space
C0(X) in Proposition 12.C see, e.g., [36, Theorem 6.19], and for the pivotal
denseness result of Proposition 12.D see, e.g., [6, Theorem 29.41].

Suggested Reading

Bauer [6], Brown and Pearcy [8], Conway [11], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36].



13

Invariant Measures

13.1 Topological Groups

A binary operation on a set X is a mapping � : X×X→ X of the Cartesian
product X×X into X. It is usual to write z = x � y instead of z = �(x, y)
to indicate that z in X is the value of � at the point (x, y) in X×X. In this
context it is convenient to interpret the binary operation � multiplicatively,
so that x � y is interpreted as the product of x and y, and it is written in a
simplified form as x y. If a binary operation on X has the property that

x (y z) = (x y) z

for every x, y, and z in X, then it is said to be associative. So we can drop
the parentheses and write x y z. If there exists an element e in X such that

x e = e x = x

for every x ∈ X, then e is said to be the identity element (or the neutral
element) with respect to the binary operation on X. It is easy to show that
if a binary operation has a neutral element e, then e is unique. If an asso-
ciative binary operation on X has an identity element e in X, and if for
some x ∈ X there exists x−1 ∈ X such that

xx−1 = x−1 x = e,

then x−1 is called the inverse of x with respect to the underlying binary
operation. It is also easy to show that if the inverse of x exists with respect
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to an associative binary operation, then it is unique. Note that (x y)−1 =
y−1x−1 (indeed, x y y−1x−1 = e).

A group is a nonempty set X on which is defined a binary operation
that is associative, has an identity element e ∈ X, and every x in X has
an inverse in X. In general, the binary operation is not commutative in the
sense that there may exist a pair of elements x, y ∈ X for which x y �= y x. If
the binary operation on a group X is such that x y = y x for every x, y ∈ X,
thenX is said to be a commutative group (or an Abelian group). A nonempty
subset M of a group X is a subgroup of X if M is itself a group; that is,
if e ∈M , and x−1 and x y lie in M for every x and y in M ; equivalently,
if x y−1∈M whenever x and y are in M . Suppose A and B are arbitrary
subsets of a group X. Let A−1 and AB stand for the subsets of X consisting
of all elements of the form x−1 and x y, respectively, for x ∈ A and y ∈ B.
Thus a nonempty subset M of a group X is a subgroup of X if and only if
MM−1 ⊆M . Note that A ∩A−1 = (A ∩A−1)−1 for every A ⊆ X.

We write A2 for AA. Observe that (AA)A = A(AA), and so we write
A3 for AAA = (AA)A = A(AA). Generalizing, we write An for the multi-
plication of A with itself n times, A . . . A ⊆ X, for every positive integer n.
If e ∈ A, then {An} is an increasing sequence (with respect to the inclusion
ordering) since, in this case, An = An{e} ⊆ AnA = An+1 for every positive
integer n. For each x ∈ X, let xA and Ax denote {x}A and A{x}, which
are referred to as left translation and right translation of the set A ⊆ X,
respectively. If M is a subgroup of X, then the sets xM and Mx are re-
ferred to as left coset and right coset of M . An invariant subgroup M of
X is one for which xM = Mx for every x ∈ X. A homomorphism is a map
Φ:X→ Y of a group X into a group Y such that

Φ(x y) = Φ(x)Φ(y) for every x, y ∈ X.

A topological group is a groupX that is also a topological space for which
the map (x, y) !→ x y−1 is continuous from X×X (equipped with the usual
product topology) to X or, equivalently, for which the multiplication map
(x, y) !→ x y from X×X to X and the inversion map x !→ x−1 from X to
X are both continuous. Take an arbitrary x0 ∈ X. The maps y !→ x0 y and
y !→ y x0 from X to X are referred to as the left multiplication by x0 and
right multiplication by x0, respectively. These are sections of the multiplica-
tion map (x, y) !→ x y (see Section 9.2). Since a restriction of a continuous
map is continuous, it follows that a section of a continuous function is con-
tinuous, and so the right and left multiplication maps are both continuous.
It is readily verified that the map y !→ x−1

0 y from X to X is the inverse of
the left multiplication y !→ x0 y, and the map y !→ y x−1

0 from X to X is
the inverse of the right multiplication y !→ y x0, which are again continuous
(since these inverses are precisely the left and right multiplications by x−1

0 ).
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A symmetric neighborhood in a topological group is a neighborhood N of
the identity e such that N = N−1. Topological qualifications are naturally
attributed to topological groups. We refer to compact , or locally compact ,
or Hausdorff groups if, as topological spaces, they are compact, or locally
compact, or Hausdorff. A map between topological spaces is continuous if
the inverse image of open (closed) sets is open (closed). A homeomorphism
Ψ :X→Y of a topological space X onto a topological space Y is an invertible
map that is continuous and has a continuous inverse. So a homeomorphism
between topological spaces maps open (closed) sets into open (closed) sets,
and the inverse image of open (closed) sets is an open (closed) set. That is,
Ψ(A) is open (closed) in Y if and only if A = Ψ−1(Ψ(A)) is open (closed) in
X. Observe that the left and right multiplication maps are homeomorphism
of a topological group X onto itself (and so is the inversion map).

Next we exhibit four classical examples of topological groups.

(1) Let F denote either the set of all real or complex numbers, and consider
the set F\{0} of all nonzero real or complex numbers. Both F and F\{0}
are commutative locally compact Hausdorff groups, when equipped with the
usual metric topology, where F\{0} is equipped with the binary operation
defined by the usual multiplication in F with identify e = 1 (a multiplicative
group), and F is equipped with the binary operation defined by the usual
addition in F with identify e = 0 (an additive group).

(2) The unit circle about the origin T = {z ∈ C : |z| = 1} in the complex
plane C, equipped with the usual metric topology, is a commutative compact
Hausdorff (multiplicative) group with identify e = 1.

(3) Let GL(n) be the collection of all (real or complex) n×n invertible
matrices equipped with the ordinary matrix operations and the uniform
topology induced by the usual topology of the normed space F

n. This is
a noncommutative locally compact Hausdorff (multiplicative) group with
identity e = I, where I denotes the identity n×n matrix.

(4) Consider the collection of all unitary operators on a Hilbert space H.
That is, consider the collection of all operators U in the Banach space B[H]
of all bounded linear operators of H into itself, equipped with the uniform
topology, such that U∗U= UU∗= I, where I is the identity operator and
U∗ denotes the adjoint of U. This is a noncommutative Hausdorff (multipli-
cative) group, which is not locally compact if H is infinite-dimensional, with
identity e = I. Here multiplication means composition. For continuity of the
inversion and multiplication maps, see, e.g., [20, Problems 100 and 111].

The following lemma collects standard results on topological groups that
will be required in the sequel. The result in item (c) is central.
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Lemma 13.1. Let X be a topological group.

(a) If K and C are compact sets in X, then K−1 and CK are compact .

(b) Take x ∈X and U ⊆X arbitrary. The set U is open if and only if xU
is open if and only if Ux is open if and only if U−1 is open.

(c) If G is an open (bounded) neighborhood of the identity e, then there is
a decreasing sequence {Un} of open (bounded) symmetric neighborhoods
Un of e such that, for each integer n≥ 1, Uk

n ⊆G for every 1≤ k ≤n+1.

(d) If K is compact and G is open (bounded) in X such that K ⊆ G, then
there is an open (bounded) symmetric neighborhood U of e such that
KU ⊆ G, UK ⊆G. If X is locally compact and Hausdorff, UKU ⊆G.

(e) If X is locally compact and Hausdorff, and if C and K are disjoint
compact subsets of X, then there exists an open bounded symmetric
neighborhood U of the identity e such that each of UC, CU and UCU
is disjoint with each of UK, KU and UKU.

(f) X is Hausdorff if and only if {e} is a closed set .

Proof. Let X be a topological group.

(a) Recall: continuous images of compact sets are compact (cf. Claim in the
Proof of Lemma 12.1). Since inversion is continuous, it follows that K−1 is
compact if K is. Since the Cartesian product of compact sets is compact,
it follows that C×K is compact in X×X whenever C and K are compact
in X; since multiplication is continuous, it follows that CK is compact.

(b) Since the left and right multiplication maps are homeomorphism, xU is
open if and only if U is, and Ux is open if and only if U is. Since inversion
also is a homeomorphism, U−1 is open if and only if U is.

(c) Since G = eG, it follows that G lies in the range of the multiplication
map. Since G is open in X, and since the multiplication map from X×X
to X is continuous (in particular, it is continuous at (e, e)), the inverse
image of G under this map is open in X×X, and contains the point (e, e)
because G contains e. Thus there exist A ⊆ X and B ⊆ X such that A×B is
open in X×X, (e, e) ∈ A×B, and AB = G. Since e ∈ A ∩B and AB = G,
it follows that A ⊆ G and B ⊆ G. Therefore, since A×B is open in X×X,
there exist open neighborhoods of e, say, W1 ⊆ A ⊆ G and W2 ⊆ B ⊆ G,
such that W1W2 ⊆ AB = G. Hence the set W = W1 ∩W2 ⊆ G is open in
X (intersection of open sets), contains e, and W 2 = WW ⊆W1W2 ⊆ G.
Since W−1 is open (according to (b)) and contains e, it follows that U1 =
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W ∩W−1 ⊆ W ⊆ G is a symmetric (U1 = U−1
1 ) open neighborhood of e

(intersection of open sets containing e), and U2
1 = U1U1 ⊆WW = W 2 ⊆ G.

Outcome 1: For every open neighborhood G of the identity e there is a
symmetric open neighborhood U1 of e such that U1⊆ G and U2

1 ⊆ G.

Thus, applying the above result to U1 itself (which is an open neighborhood
of e), it follows that there exists a symmetric open neighborhood U2 of e
such that U2 ⊆ U1 ⊆ G and U2

2 ⊆ U1 ⊆ G. Therefore, since e ∈ U2,

U3
2 = U2U2U2 ⊆ U2U2U2U2 = U4

2 = (U2
2 )(U

2
2 ) ⊆ U1U1 = U2

1 ⊆ G.

Outcome 2: For every open neighborhood G of the identity e, there is a sym-
metric open neighborhood U2 of e such that U2⊆ G, U2

2 ⊆ G, and U3
2 ⊆ G.

Again, applying the above result to U2 (which is an open neighborhood of
e), it follows that there exists a symmetric open neighborhood U3 of e such
that U3 ⊆ U2 ⊆ G, U2

3 ⊆ U2 ⊆ G, and U3
3 ⊆ U2 ⊆ G. Since e ∈ U3, we get

U4
3 ⊆ U5

3 = (U2
3 )(U

3
3 ) ⊆ U2U2 = U2

2 ⊆ G.

Outcome 3: For every open neighborhood G of the identity e, there is a sym-
metric open neighborhood U3 of e such that Uk

3 ⊆ G for every 1 ≤ k ≤ 4.

Proceeding this way, if G is an open neighborhood of e, we eventually get
down to a pair of symmetric open neighborhoods Un and Un+1 of e such
that (i) Un+1⊆ Un ⊆ G, (ii) Uk

n ⊆ G for 1 ≤ k ≤ n+ 1, and (iii) U j
n+1 ⊆ G

for 1 ≤ j ≤ n+ 2, for each integer n≥1. Thus {Un} is a decreasing sequence
of open symmetric neighborhoods of e such that Uk

n ⊆ G for every k such
that 1 ≤ k ≤ n+ 1. Note that U⊆ G is bounded whenever G is.

(d) Take an arbitrary x ∈ K⊆ G⊆X, where K is compact and G is open
(bounded). Thus Gx−1 and x−1G are open (bounded) neighborhoods of e.
Then, by (c), there are open (bounded) symmetric neighborhoods Vx and
Wx of e such that V 2

x ⊆ Gx−1 and W 2
x ⊆ x−1G. Since e ∈ Vx ∩Wx, we get

that K ⊆
⋃

x∈K Vxx and K ⊆
⋃

x∈K xWx. Since K is compact, there exist
finite open subcoverings such that K ⊆

⋃n
i=1 Vxi

xi and K ⊆
⋃m

i=1 xiWxi
with xi in K. Set V =

⋂n
i=1 Vxi

and W =
⋂m

i=1 Wxi
, which are again open

(bounded) symmetric neighborhoods of e (because each Vxi
and Wxi

are).
Since x ∈ K, it follows that x ∈ Vxi

xi and x ∈ xiWxi
for some xi, and so

V x ⊆ Vxi
x ⊆ Vxi

Vxi
xi = V 2

xi
xi ⊆ Gx−1

i xi = G for every x ∈ K,

xW ⊆ xWxi
⊆ xiWxi

Wxi
= xiW

2
xi
⊆ x−1

i xiG = G for every x ∈ K.
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Thus VK ⊆ G and KW ⊆ G. If X is locally compact and Hausdorff, then
(by Theorem 11.3) there is an open neighborhood N of e and a compact C
such that {e} ⊆ N ⊆ C ⊆ V. Set V ′ =N ∩N−1, an open (cf. (b)) symmetric
neighborhood of e such that V ′⊆ C ⊆ V . Hence CK ⊆ VK ⊆ G. Recall that
CK is compact by (a). Then the preceding result ensures that there is an
open (bounded) symmetric neighborhood W ′of e such that CKW ′⊆ G. Set
U= V ′∩ V ∩W ∩W ′, an open (bounded) symmetric neighborhood of e. So
UK ⊆ VK ⊆ G, KU ⊆ KW ⊆ G, and UKU ⊆ V ′KW ′⊆ CKW ′ ⊆ G.

(e) Suppose X is Hausdorff. If C and K are compact, then C and K are
closed (Lemma 11.2(g)), and soX\C andX\K are open. If C∩K = ∅, then
C ⊆ X\K andK ⊆ X\C. SinceX is Hausdorff, it follows by Lemma 11.2(f)
that for every x ∈ X\C there is an open set G1 and an open neighborhood
Nx of x such that C ⊆ G1 and G1 ∩Nx = ∅. In particular, this holds for
every x ∈ K ⊂ X\C, and so there is an open set G2 =

⋃

x∈K Nx so that
K ⊆ G2 and G1 ∩G2 = ∅. If the Hausdorff X is also locally compact,
then we can take G1 and G2 bounded by Theorem 11.3. Thus, by item (d),
there are open bounded symmetric neighborhoods U1 and U2 of e such that
U1C ⊆G1, CU1⊆G1, U1CU1⊆G1, U2K ⊆G2, KU2⊆G2, U2KU2⊆G2.
Set U = U1 ∩ U2, an open bounded symmetric neighborhood of e such that
UC ⊆ U1C ⊆ G1, CU ⊆ CU1 ⊆ G1, UK ⊆ U2K ⊆ G2, KU ⊆ KU2 ⊆ G2,
UCU ⊆ U1CU1 ⊆G1, and UKU ⊆ U2KU2 ⊆G2. Since G1 ∩G2 = ∅, each
of UC, CU, and UCU is disjoint with each of UK, KU and UKU.

(f) Lemma 11.2(e) ensures that if a topological space X is Hausdorff, then
{e} is closed. Conversely, suppose X is a topological group, and suppose {e}
is closed. Consider the left multiplication map, so that {x} = x{e} is closed
for every x ∈ X (reason: the left multiplication map is a homeomorphism
so that it maps open sets into open sets and, dually, closed sets into closed
sets). Suppose x �= e. Since {x} is closed, its complement X\{x} is open,
so that there exists an open neighborhood G of e included in X\{x}, and
so x �∈ G. By item (c) there exists an open symmetric neighborhood U of e
such that U2 ⊆ G. This ensures that

U ∩ xU = ∅.

Indeed, if y ∈ U ∩ xU , then y = x z for some z ∈ U, which implies that
x = y z−1 ∈ UU = U2 ⊆ G (because U is symmetric; i.e., U = U−1), which
is a contradiction (x �∈ G). Hence U ∩ xU is empty. Thus, since e ∈ U and
x ∈ xU, it follows that there exist neighborhoods Nx of x and Ne of e such
that Nx ∩Ne = ∅. Take any distinct points x and y in X. Since x �= y, we
get x−1y �= e, and so there exist neighborhoods Nx−1y of x−1y and Ne of
e such that Nx−1y ∩Ne = ∅, which implies that xNx−1y ∩ xNe = ∅. Since
y ∈ xNx−1y and x ∈ xNe, it follows that X is Hausdorff. �
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13.2 Haar Measure

Let X be a locally compact Hausdorff group, and let A be a Borel σ-algebra
of subsets of X (i.e., a σ-algebra that includes XT ). A measure μ on A is left
invariant or right invariant if μ(xE) = μ(E) or μ(Ex) = μ(E) for every E
in A and every x ∈ X, respectively. It is called an invariant measure if it is
left invariant. In other words, a measure on a Borel σ-algebra of subsets of
a topological group is left invariant or right invariant if it is invariant under
left or right translations; for commutative groups a measure is left invariant
if and only if it is right invariant (called a translation invariant measure, or
a measure satisfying the translation invariance property).

A left (right) Haar measure is a left (right) invariant nonzero positive
Borel measure on a Borel σ-algebra of subsets of a locally compact Hausdorff
group. A Haar measure is a left Haar measure.

Remarks on Haar Measure: To begin with, observe that there is an asym-
metry in our definition of invariant and Haar measures. Left and right
translations are naturally distinct but symmetrical properties in a (non-
commutative) group. So why favoring “left” when defining Haar measure?
The point is that in this context, as we might have already guessed when
considering the proofs of items (d) and (e) in Lemma 13.1, the left-right sym-
metry of the invariance property preserves the pertinent algebraic (group)
and topological properties. The reason for this is that the inversion map
x !→ x−1 on X interchanges left and right (i.e., (xA)−1 = A−1x−1) and, be-
ing a homeomorphism, also preserves topological properties. In other words,
a result on left translation naturally implies and is implied by a correspond-
ing result on right translation. In particular if μ is a left Haar measure on
a Borel σ-algebra, then the set function λ on the same Borel σ-algebra ob-
tained by the composition of inversion and μ (i.e., λ(E) = μ(E−1)) is a
right Haar measure (and vice versa). Another point that is worth noticing
is that under the inner regularity assumption the “nonzero” condition in
the definition of a Haar measure is equivalent to saying that it assigns a
positive value to every nonempty open set. This is shown in the next result.

Lemma 13.2. Let μ:A → R be a positive measure on a Borel σ-algebra of
subsets of a locally compact Hausdorff group. Suppose μ is left invariant .

(a) If μ(U) = 0 for some open U �=∅, then μ(K) = 0 for every compact K.

(b) If μ(K)> 0 for some compact K, then μ(U)> 0 for every open U �=∅.

If, in addition, μ is an inner regular Borel measure, then
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(c) μ �= 0 if and only if μ(U) > 0 for every nonempty open set U ∈ A,
and, in this case (i.e., if μ �= 0), then

(d) 0<
∫

fdμ <∞ for every f ∈ Cc(X) such that 0 ≤ f �= 0 ( for every non-
zero nonnegative continuous functions on X with compact support).

Proof. If K and U are nonempty subsets of X, then for every k ∈K and
every u0 ∈ U there exists x = ku−1

0 ∈ X such that k = xu0, and so
⋃

x∈X xU
is a covering of K. (If U contains the identity e, then we can take u0 = e
and, in this case,

⋃

x∈K xU is a covering of K.) Thus, if μ(U) = 0 for some
open set U �= ∅, and if K �= ∅ is any compact set, then

⋃

x∈X xU is an open
covering of K, and therefore there exists a finite set of points in X, {xi}ni=1,
such that K ⊆

⋃n
i=1 xiU. Since μ is left invariant,

μ(K) ≤
n

∑

i=1

μ(xiU) =

n
∑

i=1

μ(U) = nμ(U) = 0.

This proves (a), which is equivalently stated as in (b): if μ(K) > 0 for some
compact K, then μ(U) > 0 for every open U �= ∅. Suppose, in addition, that
μ is an inner regular Borel measure. Since μ(U) = 0 for some open U �= ∅

implies μ(K) = 0 for every compact K, and recalling that an inner regular
measure is one for which μ(E) = sup{μ(K): K ⊆E, K compact} for every
Borel set E, it follows that μ(U) = 0 for some nonempty open set U implies
μ(E) = 0 for every E ∈ A; that is, μ = 0. In other words, if every compact
set has measure zero, and if the measure is inner regular, then μ = 0. Thus
μ �= 0 implies μ(U) > 0 for every open U �= ∅, proving (c) — the converse
is trivial. For (d) note that if 0 ≤ f �= 0 in Cc(X), then there is an ε > 0
and an open ∅ �= U ⊆ [f ]◦ such that εχU ≤ f and so, according to (c),
0 < μ(U) =

∫

χ
U dμ ≤

∫

f dμ ≤ μ([f ]) <∞, since μ is Borel. �
A program to build a Haar measure on a locally compact Hausdorff group

is similar to that of building a Borel measure in a locally compact Hausdorff
space as in Section 11.3, where it was shown that an inner content on
a topology generates a quasiregular outer measure (Lemma 11.8) that is
finite at bounded sets, which in turn generates a Borel measure (Theorem
11.7). Now we define the notion of outer content on the collection of all
compact sets, which is dual to the notion of inner content on a topology
as in Section 11.3, and show in Lemma 13.3 how an outer content on the
compact sets generates a quasiregular outer measure, which is the dual of
Lemma 11.8.
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Let X be a topological space, and let K denote the class of all compact
subsets of X. A content on the compact sets is a real-valued set function
λ# :K→ R on K such that for arbitrary compact sets K, C, and Ki in K,
(1′) λ#(∅) = 0,

(2′) λ#(K) ≥ 0,

(3′) λ#(K) <∞,

(4′) λ#(C) ≤ λ#(K) whenever C ⊆ K,

(5′) λ#(C ∪K) = λ#(C) + λ#(K) whenever C ∩K = ∅,

(6′) λ#
(⋃

i Ki

)

≤
∑

i λ
#(Ki) for finite families {Ki}.

It is an outer content if, in addition,

(7′) λ#(K) = inf{λ#(C): K ⊆ C◦, C ∈ K}.

Lemma 13.3. Let λ# :K→ R be an outer content. If X is a locally compact
Hausdorff space, then the set function μ∗ :℘(X)→ R given by

μ∗(S) = sup
{

λ#(K): K ⊆ S, K compact
}

for every S ∈ ℘(X)

is a quasiregular outer measure such that μ∗(S) <∞ for every bounded S.

Proof. Properties (1′), (2′), and (4′) in the definition of the content λ# imply
the properties (a), (b), and (c) in the definition of an outer measure μ∗ (see
Section 11.3). Property (6′) in the definition of the content λ# implies that

μ∗(
⋃

i
Si

)

≤ sup
Ki⊆Si

λ#
(
⋃

i
Ki

)

≤ sup
Ki⊆Si

∑

i
λ#(Ki) ≤

∑

i
μ∗(Si),

for every finite family {Si} of sets in ℘(X), which leads to property (d) in
the definition of an outer measure μ∗.

Thus μ∗ is an outer measure.

Property (4′) in the definition of the content λ# ensures that

μ∗(K) = λ#(K) for every compact set K.

Thus property (iii) in the definition of a quasiregular outer measure (Sec-
tion 11.3) holds by the definition of μ∗. Moreover, the above identity also
shows that property (7′) in the definition of an outer content ensures that

μ∗(K) = inf
{

μ∗(C): K ⊆ C◦, C ∈ K
}

for every compact set K which, by the definition of μ∗, implies that
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μ∗(S) = sup
K⊆S

μ∗(K) = sup
K⊆S

inf
K⊆C◦

μ∗(C◦) = inf
S⊆C◦

μ(C◦)

for every bounded set S, which leads to property (i) in the definition of a
quasiregular outer measure. Property (5′) in the definition of an outer con-
tent implies property (ii) in the definition of a quasiregular outer measure,
according to the definition of μ∗:

μ∗(G∪U) = sup
C∪K⊆G∪U

λ#(C∪K) = sup
C⊆G, K⊆U

λ#(C)+λ#(K) = μ∗(G)+μ∗(U)

wheneverG ∩ U = ∅. (Indeed, according to the definition of μ∗, property (ii)
of a quasiregular outer measure becomes, in this case, a consequence of the
condition μ∗(C ∪K) = μ∗(C) + μ∗(K) whenever C ∩K = ∅ — property
(5′), since this μ∗ coincides with λ# on K so that μ∗(S) = supK⊆S μ∗(K).)

Thus the outer measure μ∗ is quasiregular.

Finally, property (3′) in the definition of the content λ# and property (c)
in the definition of an outer measure μ∗ imply that

μ∗(S) <∞ for every bounded set S ∈ ℘(X)

(i.e., for every S ⊆ K for some K ∈ K). �

13.3 Construction of Haar Measures

In a locally compact Hausdorff group X, a bounded set means a relatively
compact set (i.e., one whose closure is compact) and so a compact set is
precisely a closed and bounded set (see Remarks on Boundedness in Sec-
tion 11.1). Let B ⊆ X be bounded (i.e., B− is compact), and let A ⊆ X have
a nonempty interior (i.e., the open set A◦ is nonempty). Since

⋃

x∈X xA◦ is
an open covering of B−, there is a finite set {xi}ni=1⊆ X such that

B ⊆ B−⊆
n
⋃

i=1

xiA
◦⊆

n
⋃

i=1

xiA.

The covering number [B :A] of a bounded set B by a set A with nonempty
interior is the least number of translates of A required to cover B. That is,

[B :A] = min
{

n ∈ N : B ⊆
⋃n

i=1xiA
}

> 0

whenever B �= ∅. Actually, [∅ :A] = 0. Observe that

[B :A] = min
{

[C :A]: B ⊆ C◦, C bounded
}

∈ N.
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Also, the covering number is translation invariant: for every x ∈ X,

[xB :A] = [B :A] = [B :xA] .

IfD ∈X is bounded with nonempty interior (D− compact and D◦ �=∅), then

[B :A] ≤ [B :D] [D :A]

(reason: cover B with [B :D] translates of D and cover each translate of D
with [D :A] translates of A), and

[D :D] = 1.

If B is a bounded set and U is a nonempty open set, then the covering
number [B :U ] can be thought of as a comparison between the sizes of B
and U. This is our starting point for constructing a Haar measure. For a
given B, the covering number [B :U ] gets larger as U gets smaller. To control
this growing process we consider instead the covering ratio [B : U ]/[D : U ]
for some reference bounded set D with nonempty interior, and define some-
how a limit of this covering ratio as U gets smaller and smaller. This will
lead us to a left invariant nonzero positive inner regular Borel measure.

From now on we assume the following setup. Let X be a locally compact
Hausdorff group and consider the inclusions

T ⊆ XT ⊆ A ⊆ ℘(X) and K ⊆ (B ∩ XT ),

where T is a topology on X, XT is the Borel σ-algebra of subsets of X gen-
erated by T , A is any Borel σ-algebra subsets of X, ℘(X) is the power set
of X, K ⊆ XT is the class of all compact subsets of X, and B ⊆ ℘(X) is the
class of all bounded subsets of X. Let D be a bounded set with nonempty
interior (i.e., D ∈ B and D◦ �= ∅). Take an arbitrary nonempty open set
U ∈ T and consider the rational-valued function λU :B → Q defined by

λU (B) = [B:U ]
[D:U ] for every B ∈ B.

Lemma 13.4. The covering ratio function λU :B → Q has the following
properties. For arbitrary bounded sets B, B1, B2, and Bi in B,
(a) λU (∅) = 0,

(b) 0 < λU (B) whenever B �= ∅,

(c) 0 ≤ λU (B) ≤ [B : D] <∞,

(d) λU (B1) ≤ λU (B2) whenever B1 ⊆ B2,
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(e) λU (B1 ∪B2) = λU (B1) + λU (B2) whenever B1U
−1 ∩B2U

−1 = ∅,

(f) λU

(⋃

iBi

)

≤
∑

i λU (Bi) for finite families {Bi},

(g) λU (B) = min
{

λU (C): B ⊆ C◦, C ∈ B
}

∈ Q,

(h) λU (xB) = λU (B) for every x ∈ X,

(i) λU (D) = 1,

(j) U !→ λU (B) is a bounded map for each B.

(k) If K1 and K2 are disjoint compact sets, then there is an open bounded
symmetric neighborhood U of the identity e such that

λG(K1 ∪K2) = λG(K1) + λG(K2)

for every open neighborhood G of e such that G ⊆ U .

Proof. Properties (a) to (f) are readily verified except, perhaps, for (e).
To show (e) take x ∈ X and observe that if B1 ∩ xU �= ∅, then x ∈ B1U

−1.
(Indeed, if b = xu, then bu−1 = x, so that x ∈ B1U

−1.) Similarly, if
B2 ∩ xU �= ∅, then x ∈ B2U

−1. Thus, if B1U
−1 ∩B2U

−1 = ∅, then there
is no x such that B1 ∩ xU �= ∅ and B2 ∩ xU �= ∅; that is, no left translate
of U meets both B1 and B2, and so [B1 ∪B1 :U ] = [B1 :U ] + [B2 :U ], prov-
ing property (e). Property (e) leads to property (k). Indeed, if the K1 and
K2 are disjoint compact sets, then there exists an open bounded symmetric
neighborhood N of the identity e such that K1N ∩K2N = ∅ by Lemma
13.1(e). Set U= N−1, again an open bounded symmetric neighborhood of
e. Let G be an arbitrary open (bounded) neighborhood of e such that
G ⊆ U. Set N ′ = G−1, an open (bounded) neighborhood of e. Since N ′−1=
G ⊆ U = N−1, it follows that N ′ ⊆ N , and so K1N

′ ∩K2N
′ = ∅, equiv-

alently, K1G
−1 ∩K2G

−1 = ∅. Thus λG(K1 ∪K2) = λG(K1) + λG(K2) by
(e), proving property (k). Properties (g) and (h) follow from the facts that
[B :U ] = min{[C :U ]: B ⊆ C◦, C ∈ B} and [xB :U ] = [B :U ], (i) is trivial,
and (j) follows from (c) as a consequence of [B :U ] ≤ [B :D] [D :U ]. �

Observe from properties (a) to (f) in the preceding lemma that λU (ac-
tually, the restriction of it to K) is nearly a content; it fails to be a content
on K just because additivity in property (e) may not hold for every pair of
disjoint compact sets — property (k) is an attempt to establish additivity
that will actually succeed in the next lemma.

The next lemma plays a central role in proving the existence of Haar
measures. There are distinct ways of approaching its proof. Some authors
use the Hahn–Banach Theorem (on extension of bounded linear func-
tionals), others use the Arzelà–Ascoli Theorem (on compact subsets of
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continuous functions), and some use the Tychonoff Theorem, which says
that the Cartesian product

∏

γ∈Γ Xγ of compact sets Xγ is compact (in the
product topology — see e.g., [21, Theorem 5.13]).

Lemma 13.5. The covering ratio function λU :B → Q generates a nonzero
left invariant outer content λ# :K→ R on K.
Proof. Let U denote the collection of all open neighborhoods of the identity
e ∈ X. Fix an arbitrary compact set D ∈ K ⊆ B with nonempty interior,
and consider the covering ratio function λU :B → R for an arbitrary U ∈ U .
Take the restriction of each λU to K, denoted again by λU :K→ R, so that
λU (K) = [K : U ]/[D : U ] for every K ∈ K. Let

Λ =
⋃

U∈U
{λU}

be the collection of the covering ratio functions λU :K→ R restricted to K
for all U ∈ U . Take the Cartesian product

Π =
∏

K∈K
[0, [K : D]]

of the closed intervals [0, [K : D]]. Since closed (and bounded) intervals are
compact sets in R, the Tychonoff Theorem says that the Cartesian product
∏

K∈K[0, [K : D]] is compact in the product topology. But the elements of
the Cartesian product

∏

K∈K[0, [K : D]] are interpreted as real-valued func-
tions on K. Indeed, by the definition of Cartesian product,

∏

K∈K[0, [K : D]]
consists of all indexed families {ϕ(K)}K∈K such that ϕ(K) ∈ [0, [K : D]] for
each K ∈ K; equivalently, of all real-valued functions ϕ:K→ R on K such
that 0 ≤ ϕ(K) ≤ [K : D] for every K∈ K. Since 0 ≤ λU (K) ≤ [K : D] <∞
by Lemma 13.4(c), the function λU :K→ R lies in

∏

K∈K[0, [K : D]] for each
U ∈ U . That is, Λ ⊆ Π. For each U ∈ U consider the set of functions

Λ(U) =
{

λG ∈ Λ: G ⊆ U
}

⊆ Π.

Let {Ui}ni=1 be an arbitrary finite family of open neighborhoods of e (i.e.,
each Ui lies in U). Observe that

⋂n
i=1 Ui is again a set in U , and also that

∅ �= Λ
(

n
⋂

i=1

Ui

)

⊆
n
⋂

i=1

Λ(Ui).

(Reason:
⋂n

i=1Ui ⊆ Uj so that Λ(
⋂n

i=1Ui) ⊆ Λ(Uj) for all Uj ∈ {Ui}ni=1

— cf. Lemma 13.4(d) — and Λ(U) �= ∅ for every U ∈ U because λU ∈ Λ(U).)
Hence the family {Λ(U) ⊆ Π : U ∈ U} of subsets of Λ ⊆ Π has the finite in-
tersection property (i.e., every finite subcollection of it has a nonempty
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finite intersection). In particular, the family {Λ(U)−⊆ Π : U ∈ U} of closed
subsets of the compact space Π has the finite intersection property (since
∅ �=

⋂n
i=1 Λ(Ui) ⊆

⋂n
i=1 Λ(Ui)

−). Therefore, Proposition 11.A ensures that
{Λ(U)−⊆ Π : U ∈ U} has a nonempty intersection. Hence there exists

λ# ∈
⋂

U∈U
Λ−(U) =

⋂

U∈U

{

λG ∈ Λ: G ⊆ U
}− ⊆ Π,

where λ# is a real-valued function on K, as is every element of the set
Π =

∏

K∈K[0, [K : D]]. Thus, for an arbitrary K ∈ K, the value λ#(K) ∈ R

is approached by taking a λU (K) = [K : U ]/[D : U ] ∈ Q for some U ∈ U ,
and letting U get smaller and smaller in the above sense. We show that
such a function λ# :K→ R is a nonzero left invariant outer content on K.
(i) First note that properties (a) to (c) in Lemma 13.4 trivially imply prop-
erties (1′) to (3′) in the definition of a content on K.
(ii) To verify property (4′) in the definition of a content on K proceed as
follows. For each K∈ K take the projection ΦK :Π→ [0, [K : D]] defined by
ΦK(ϕ) = ϕ(K) for every function ϕ:K→ [K : D] in Π =

∏

K∈K[0, [K : D]].
The product topology on

∏

K∈K[0, [K : D]] makes the projections ΦK con-
tinuous (see e.g., [21, p. 90]). Take arbitrary sets K1,K2 ∈ K. Thus the
difference ΦK2−K1

= ΦK2
− ΦK1

:Π→ R is continuous. Consider the set

ΣK2−K1
=

{

ϕ ∈ Π : ϕ(K1) ≤ ϕ(K2)
}

=
{

ϕ ∈ Π : 0 ≤ ΦK2−K1
(ϕ)

}

= Φ−1
K2−K1

([0,∞)) ⊆ Π,

which is closed (since ΦK2−K1
is continuous, so that the inverse image of

a closed set is closed). If K1 ⊆ K2, then λU (K1) ≤ λU (K2) for every U ∈ U
by Lemma 13.4(d), so that λU ∈ ΣK2−K1

for every U ∈ U , and hence we
get Λ(U) ⊆ ΣK2−K1

for every U ∈ U . Thus λ# ∈
⋂

U∈U Λ(U)−⊆ ΣK2−K1
(since ΣK2−K1

is closed). Then λ#(K1)
≤ λ#(K2). That is, property (d) in Lemma 13.4 implies property (4′) in
the definition of a content on K.
(iii) Take K1,K2∈ K. Since ΦK is continuous for each K∈ K, it follows that
ΦK2+K1

= ΦK2
+ ΦK1

− ΦK1∪K2
:Π→ R is continuous. Consider the set

ΣK2+K1
=

{

ϕ ∈ Π : ϕ(K1 ∪K2) = ϕ(K1) + ϕ(K2)
}

=
{

ϕ ∈ Π : ΦK2+K1
(ϕ) = 0

}

= Φ−1
K2+K1

({0}) ⊆ Π,

which is closed (since ΦK2+K1
is continuous and every singleton is closed

in R). If K1 ∩K2 = ∅, then there exist U0 ∈ U such that λG(K1 ∪K2) =
λG(K1) + λG(K2) for every G ∈ U such that G ⊆ U0 by Lemma 13.4(k).
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That is, there exists U0 ∈ U such that Λ(U0) ⊆ ΣK1+K2
. Therefore, since

ΣK2+K1
is closed, it follows that λ# ∈

⋂

U∈U Λ(U)−

⊆ Λ(U0)
− ⊆ ΣK2+K1

. Then λ#(K1 ∪K2) = λ#(K1) + λ#(K2). That
is, property (k) in Lemma 13.4 implies property (5′) in the definition of a
content on K.
(iv) Property (6′) of a content onK results from property (f) in Lemma 13.4
by the same argument of (ii) with the map ΦK2+K1

of (iii). Indeed, the set

Σ′
K2+K1

=
{

ϕ ∈ Π : ϕ(K1 ∪K2) ≤ ϕ(K1) + ϕ(K2)
}

=
{

ϕ ∈ Π : 0 ≤ ΦK2+K1
(ϕ)

}

= Φ−1
K2+K1

([0,∞)) ⊆ Π

is closed. Since λU (K1 ∪K2) ≤ λU (K1) + λ(K2) for every U ∈ U by Lemma
13.4(f), λU ∈ Σ′

K2+K1
, and hence Λ(U) ⊆ Σ′

K2+K1
, for every U ∈ U . Thus

λ# ∈
⋂

U∈U Λ(U)−⊆ Σ′
K2+K1

, and so λ#(K1 ∪K2) ≤ λ#(K1) + λ#(K2),
which extends by induction to finite unions of compact sets. Then property
(f) in Lemma 13.4 implies property (6′) in the definition of a content on K.
(v) Property (g) in Lemma 13.4 leads to Property (7′) of an outer content on
K. In fact, take K ∈ K arbitrary. Let C be any set in K such that K ⊆ C◦.
Recall that ΦK and ΦC are continuous, and so {ΦC−K = ΦC − ΦK}K⊆C◦ is
a family of continuous maps. Take the set ΣC−K = {ϕ ∈ Π : 0 ≤ ΦC−K(ϕ)}
of item (ii), which is closed, and consider the set

ΣK =
{

ϕ ∈ Π:ϕ(K)= inf
K⊆C◦ ϕ(C)

}

=
{

ϕ ∈ Π : ΦK(ϕ)= inf
K⊆C◦ ΦC(ϕ)

}

=
{

ϕ ∈ Π: inf
K⊆C◦ ΦC−K(ϕ)=0

}

= inf
K⊆C◦ΣC−K=

⋂

K⊆C◦
ΣC−K ⊆ Π,

which is closed as well (intersection of closed sets). Thus, as before, since
λU (K) = infK⊆C◦ λU (C) by Lemma 13.4(g), so that λU ∈ ΣK , for every
U ∈ U , we get λ# ∈

⋂

U∈U Λ(U)−⊆ ΣK (because ΣK is closed). Therefore,
λ#(K) = infK⊆C◦ λ#(C). Then property (g) in Lemma 13.4 ensures prop-
erty (7′) in the definition of an outer content on K.
Hence, according to (i)-(v), the function λ# :K→ R is an outer content on
K. That λ# is nonzero follows from the fact that λ#(D) = 1. Indeed the
same continuity argument ensures that since ΦD is continuous, the set

ΣD =
{

ϕ ∈ Π : ϕ(D) = 1
}

=
{

ϕ ∈ Π : ΦD(ϕ) = 1
}

= Φ−1
D ({1}) ⊆ Π

is closed. Since λU ∈ ΣD by Lemma 13.4(i), we get that Λ(U)−⊆ Σ−
D ⊆ ΣD,

for every U ∈ U , and so λ# ∈ ΣD. Finally, take x ∈X, K ∈ K, and consider
the continuous map ΦxK−K= ΦxK − ΦK :Π→ R. Then the set

ΣxK−K=
{

ϕ ∈ Π : ϕ(xK)=ϕ(K)
}

=
{

ϕ ∈ Π : ΦxK=0
}

=Φ−1
xK({0}) ⊆ Π
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is closed, and so, according to Lemma 13.4(h), the same argument ensures
that λ# ∈ ΣxK , which means that λ# is left invariant. �

The preceding lemma allows us to apply Theorem 11.7 to ensure the
existence of a Haar measure on a Borel σ-algebra of subsets of an arbitrary
locally compact Hausdorff group.

Theorem 13.6. There exists a quasiregular Haar measure on a Borel σ-
algebra of subsets of every locally compact Hausdorff group.

Proof. We will prove the following statement that leads to the above one.

A left invariant outer content λ#:K→ R on K (generated by a covering ratio
function λU:B→Q) generates a quasiregular outer measure μ∗:℘(X)→R,
finite on B, which in turn generates a quasiregular complete Haar measure
(i.e., a left invariant nonzero positive quasiregular complete Borel measure)
λ∗:A∗→R on a Borel σ-algebra A∗ of subsets of a locally compact Hausdorff
group X. Its restriction λ:XT → R to the Borel σ-algebra XT generated by
T is again a quasiregular Haar measure although λ may not be compete.

Indeed, consider the covering ratio function

λU :B → Q

defined by λU (B) = [B :U ]/[D :U ] for every B ∈ B, which is nonzero and
left invariant by Lemma 13.4(h,i). This λU generates a nonzero left invariant
outer content on K (whose existence was proved in Lemma 13.5),

λ# :K→ R,

which in turn generates a quasiregular outer measure

μ∗ :℘(X)→ R

defined by μ∗(S) = sup{λ#(K): K ⊆ S, K∈ K} for every S ∈ ℘(X), which
is finite on B, according to Lemma 13.3. Therefore, by Theorem 11.7, there
exists a quasiregular complete Borel measure

λ∗ = μ∗|A∗ :A∗→ R

on a σ-algebra A∗ that includes the Borel σ-algebra XT . It remains to verify
that the (positive) Borel measure λ∗ is nonzero and left invariant.

(a)] The measure λ∗ is nonzero. In fact, λ# is nonzero by Lemma 13.5, and
hence μ∗ is nonzero according to its very definition in Lemma 13.3. Thus
μ∗(X) > 0. Then, since X ∈ A∗, we get λ∗(X) = μ∗|A∗(X) = μ∗(X) > 0.
(b) The measure λ∗ is left invariant. Indeed, since λ# is left invariant by
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Lemma 13.5 (i.e., λ#(xK) = λ#(K) for every x ∈ X and every K ∈ K), it
follows by the definition of μ∗ in Lemma 13.3 that

μ∗(x−1S) = sup
K⊆ x−1S

λ#(K) = sup
xK⊆S

λ#(K)

= sup
xK⊆S

λ#(xK) = sup
K′⊆S

λ#(K ′) = μ∗(S)

for every x ∈ X and S ∈ ℘(X), so that μ∗ is left invariant, and so is the
restriction λ∗ = μ∗|A∗ of it to A∗ so that for every x ∈ X and E ∈ A∗,

λ∗(xE) = μ∗(xE) = μ∗(E) = λ∗(E).

Again, as in the proof of Theorem 11.7, the above properties of the quasi-
regular complete Haar measure λ∗, except for completeness, are transferred
to all restrictions of it to any Borel σ-algebra of subsets of X included in A∗;
in particular, to its restriction λ = λ∗|XT to the smallest Borel σ-algebra
XT of subsets of X, so that λ is a quasiregular Haar measure on XT . �

It is clear that a Haar measure on a Borel σ-algebra of subsets of a given
locally compact Hausdorff group X is not unique. Reason: μ is Haar if and
only if γ μ is Haar for every positive number γ. However, this is essentially
the only way they can differ.

Theorem 13.7. If λ and μ are quasiregular Haar measure on the same
Borel σ-algebra of subsets of a given locally compact Hausdorff group, then
there exists a positive constant γ such that

λ = γ μ.

Proof. Let μ and ν be quasiregular Haar measures on a Borel σ-algebra A
of subsets of a locally compact Hausdorff group X. Take the product μ×ν
on A×A as in Theorem 9.5. Recall that continuous functions with compact
support are integrable with respect to Borel measures. Consider the set

Cc(X)+ =
{

g ∈ Cc(X,R): g(X) > 0
}

consisting of all nonzero and nonnegative continuous real-valued functions
g :X→ R on X with compact support (see Section 12.1). Take an arbi-
trary μ-integrable Borel function f ∈ L(X,A, μ), and an arbitrary function
g∈ Cc(X)+, so that

∫

f dμ <∞ and 0 <
∫

g dν <∞ by Lemma 13.2(d).
Consider the function h:X×X→ R defined by

h(x, y) = f(x)g(yx)
∫

g(zx) dν(z)
for every x, y ∈ X,
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which is again a μ×ν-integrable Borel function: h ∈ L(X×X,A×A, μ×ν)
(cf. Problem 9.20). Now recall that the Fubini Theorem (Theorem 9.9) al-
lows us to interchange the order of the iterated integrals (cf. Problem 9.20
again). The translation invariance property in Proposition 13.E says that we
can swap x with zx in the argument of integrable functions when integrating
them. (In particular, we can replace x with y−1x if the argument is x, and
y with xy if the argument is y, and so we can replace y−1x = (y)−1x with
(xy)−1x = y−1x−1x = y−1 if the argument is y.) Therefore,

∫ (∫

h(x, y) dν(y)

)

dμ(x) =

∫ (∫

h(x, y) dμ(x)

)

dν(y)

=

∫ (∫

h(y−1x, y) dμ(x)

)

dν(y) =

∫ (∫

h(y−1x, y) dν(y)

)

dμ(x)

=

∫ (∫

h(y−1, xy) dν(y)

)

dμ(x)

(where we reverse the integration order, then we replace x with y−1x, reverse
the integration order again, and replace y−1x with y−1 and y with xy). Since

h(y−1, xy) = f(y−1)g(x)
∫

g(zy−1) dν(z)
for every x, y ∈ X,

it then follows that

∫

f(x) dμ(x) =

∫

f(x)

(∫

g(yx) dν(y)
∫

g(zx) dν(z)

)

dμ(x) =

∫ ( ∫

f(x)g(yx)
∫

g(zx) dν(z)
dν(y)

)

dμ(x)

=

∫ (∫

h(x, y) dν(y)

)

dμ(x) =

∫ (∫

h(y−1, xy) dν(y)

)

dμ(x)

=

∫ ( ∫

f(y−1)g(x)
∫

g(zy−1) dν(z)
dν(y)

)

dμ(x) =

∫ (∫

f(y−1) dν(y)
∫

g(zy−1) dν(z)

)

g(x) dμ(x).

Set α = α(f, g, ν) =
(∫

f(y−1) dν(y)
)/(∫

g(zy−1) dν(z)
)

, which is a real num-
ber that does not depend on μ such that

∫

f dμ = α
∫

g dμ. Thus, if λ also
is a quasiregular Haar measure on the same Borel σ-algebra A of subsets of
X, then

∫

f dλ = α
∫

g dλ whenever f ∈ L(X,A, λ). Hence,

∫

f dλ
∫

g dλ
=

∫

f dμ
∫

g dμ
, which implies

∫

f dλ =

(∫

g dλ
∫

g dμ

)∫

f dμ,

for every f ∈ L(X,A, μ) ∩ L(X,A, λ), for an arbitrary g ∈ Cc(X)+. Then
there is a positive constant γ =

∫

g dλ
/∫

g dμ such that
∫

f dλ = γ
∫

f dμ
for every f ∈ L(X,A, μ) ∩ L(X,A, λ). Therefore, since μ and λ are Borel
measures on the Borel σ-algebra A, it follows that for every compact set
K, its characteristic function χ

K lies in L(X,A, μ) ∩ L(X,A, λ), and so
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λ(K) =

∫

K

dλ =

∫

χ
K dλ = γ

∫

χ
K dμ = γ

∫

K

dμ = γ μ(K)

for every compact set K (all of them lie in A). Since the Borel measures λ
and μ on the Borel σ-algebra A are quasiregular, the argument that closes
the proof of Theorem 12.5 (which uses Lemma 12.2) ensures that if the
above identity holds for every compact set K, then λ = γ μ. �

13.4 Additional Propositions

Recall that a discrete space is a topological space X whose topology T is
the largest topology on X; that is, whose topology coincides with the power
set of X, so that every subset of X is open (and closed). Such a topology
T = ℘(X) is called the discrete topology .

Proposition 13.A. If μ is a Haar measure on a Borel σ-algebra of subsets
of a locally compact Hausdorff group X, then X is discrete if and only if
μ({x}) �= 0 for at least one point x ∈ X.

Proposition 13.B. Let A be a Borel σ-algebra of subsets of a locally com-
pact Hausdorff group X. If a Haar measure on A is finite, thenX is compact.

Proposition 13.C. If μ is a Haar measure on a Borel σ-algebra of subsets
of a locally compact Hausdorff group X, then the following assertions are
pairwise equivalent .

(a) The measure μ is σ-finite.

(b) The space X is σ-compact .

(c) Every disjoint family of nonempty open sets is countable.

(d) For every nonempty open set U, there exists a sequence {xn} of points
in X such that the family {xnU} covers X (i.e., X =

⋃

n xnU).

Proposition 13.D. If μ is a Haar measure on a Borel σ-algebra of subsets
of a locally compact Hausdorff group X, and if f and g are real-valued
continuous functions on X, then f = g everywhere if and only if f = g
μ-almost everywhere.

Proposition 13.E. Let X be a locally compact Hausdorff group. For each
real-valued function f :X→ R on X and each y ∈ X let fy :X→ R be de-
fined by fy(x) = f(y−1x) for every x ∈ X. Let μ:A → R be a nonzero pos-
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itive quasiregular Borel measure on a Borel σ-algebra A of subsets of X.
The measure μ is Haar (i.e., it is left invariant) if and only if

∫

fy dμ =

∫

f dμ,

where fy∈ L(X,A, μ), for every y ∈ X and every f ∈ L(X,A, μ); that is,
for every μ-integrable Borel function f :X→ R.

A Haar integral is an integral with respect to a Haar measure. The above
property, namely, fy∈ L(X,A, μ) whenever f ∈ L(X,A, μ) and the integrals
coincide, is referred to as the translation invariance property for the Haar
integral (which, according to Proposition 13.E, characterizes the Haar mea-
sure). Recall again that continuous functions with compact support are
integrable with respect to Borel measures. A positive linear functional Φ on
the linear space Cc(X,R) (where X is a locally compact Hausdorff group)
with the above translation invariance property is also referred to as a Haar
integral . Example: if X= R, which is a locally compact Hausdorff additive
group, then Proposition 13.E ensures that one can make the substitution
x → x−y under the integral sign.

Proposition 13.F. Lebesgue measure is invariant under addition on R —
either viewed as a measure on the Borel algebra � generated by the usual
topology of R, or as a measure on its completion �∗, the Lebesgue algebra.
Since it is a regular Borel measure (see Proposition 11.H), it follows that it
is a regular Haar measure (see the remarks that close Section 8.3).

Proposition 13.G. Consider the Lebesgue measure μ:� → R on the Borel
σ-algebra � of subsets of R generated by the usual topology of R. Take the
set R

+= (0,∞) of all the positive real numbers, which is a locally compact
Hausdorff multiplicative group. The set function λ:�+→ R on the Borel
σ-algebra �+= � ∩ ℘(R+) of subsets of R

+ defined by

λ(E′) =

∫

E′
1
x dμ(x) for every E′∈ �+

is a Haar measure.
(

Reason:
∫

dx
x = log(x) and log(β)−log(α) = log( βα ).

)

The notion of absolute continuity on the same σ-algebra (cf. Definition
7.6) is naturally extended to a couple of measures, one of them acting on a
sub-σ-algebra of the σ-algebra upon which the other measure acts. Indeed,
if μ:X → R is a measure on a σ-algebra X , and λ: E→ R is a measure on the
σ-algebra E = X ∩ ℘(E), for some E ∈ X , then λ is absolutely continuous
with respect to μ (same notation: λ� μ) if, for an arbitrary E′ ∈ E ⊆ X ,

μ(E′) = 0 implies λ(E′) = 0
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(i.e., λ(E′) = 0 for every E′∈ E ⊆ X such that μ(E′) = 0). Now consider
the setup of the previous proposition, and observe that �+= � ∩ ℘(R+) is
a sub-σ-algebra of the σ-algebra �. We know from Propositions 3.5(c) and
3.7(b) that the Haar measure λ on �+ is absolutely continuous with respect
to Lebesgue measure μ on �, and therefore (recall the Radon–Nikodým
Theorem — Theorem 7.8) the function f :R+→ R defined by f(x) = 1

x for
every x ∈ R

+ is the Radon–Nikodým derivative of λ with respect to μ.
Now consider the sub-σ-algebra �0= � ∩ ℘(R0) of the σ-algebra �, where
R0 = R\{0} is the set of all nonzero real numbers, which is again a locally
compact Hausdorff multiplicative group.

Proposition 13.H. The same Haar measure λ on the σ-algebra �0 of sub-
sets of the multiplicative group R0 is absolutely continuous with respect to
Lebesgue measure μ on the σ-algebra � of subsets of the additive group R.

Observe that the Radon–Nikodým derivative of λ with respect to μ is the
function f :R0→ R given by f(x) = 1

|x| for every x ∈ R0.
(

Proposition 3.G

— note that R0 = R
+∪(R+)−1 and so

∫

R0

1
|x| dλ =

∫

R
+

1
x dλ−

∫

(R+)−1
1
x dλ

)

.

Notes: Translation invariance was first mentioned at the end of Chapter 8,
and it was fundamental to build nonmeasurable sets there. The propositions
in this section complement the results on invariant measures discussed along
the chapter. For Propositions 13.A, 13.B and 13.C see, e.g., [18, Problems
5.6, 5.8, 5.9], and for Proposition 13.D see, e.g., [10, Exercise 9.2.3]. Propo-
sition 13.E plays an important role in the proof of Theorem 13.7 (see, for
instance, [7, Theorem 79.1]). We have already met those properties in the
previous propositions when we looked at Lebesgue measure. In fact, Propo-
sition 13.F says that Lebesgue measure is a prototype of a regular Haar
measure (see, e.g., [35, Proposition 14.24] or [6, Corollary 8.2]). Proposi-
tions 13.G and 13.H show that Haar measures on the Borel sets generated
by the multiplicative groups R

+ and R0 are absolutely continuous with re-
spect to Lebesgue measure on the Borel sets generated by the additive group
R (see e.g., [10, Exercise 9.2.3] and [18, Problem 60.1]).
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Carathéodory condition, 134
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inner content, 217
inner product, 77, 245
inner product space, 245
inner regular measure, 153, 209
inner regular set, 209
integrable function, 58
integrable simple function, 198
integral functional, 86, 196
integral transformation, 199
integral of a complex function, 61, 65
integral of a function over a set, 43
integral of a nonnegative function, 43
integral of a real function, 57
integral of a simple function, 42, 198
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invariant measure, 253
invariant subgroup, 248
inverse element, 247
inverse image, 16, 41
iterated integral, 172
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K
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L
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L2 space, 77, 245
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�p space, 82
�∞ space, 82
Lebesgue algebra, 145
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Lebesgue dominated convergence, 62
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Lebesgue measure on �∗, 145, 219
Lebesgue measure on 	, 25, 219
Lebesgue measure space, 54
Lebesgue point, 195
Lebesgue set, 145
Lebesgue singular function, 129
Lebesgue spaces, 84
Lebesgue-Stieltjes measure, 147
left coset, 248
left Haar measure, 253
left invariant measure, 253
left multiplication, 248
left translation, 248
length function, 141
length on R, 176
limit function, 11
limit inferior, 11
limit of a sequence, 72
limit superior, 11
Lindelöf space, 218
line segment, 175
linear functional, 61, 228
linear lattice, 230
linear Lebesgue measure, 176
linear manifold, 14, 61

linear space, 14, 60, 228
linear functional, 61, 86
Littlewood second principle, 82
local base, 220
locally compact group, 249
locally compact space, 202
locally finite measure, 220
locally Lp function, 84
lower semicontinuous, 224

M
μ-almost everywhere, 27
μ-equivalent functions, 74
μ-equivalent sets, 105
μ-integrable function, 58
μ∗-immeasurable set, 134, 214
measurable covering, 30
measurable function, 5, 207
measurable mapping, 207
measurable partition, 30
measurable rectangle, 159
measurable set, 4
measurable simple function, 42
measurable space, 4
measurable transformation, 16, 207
measurable triangle, 173
measure, 23

absolutely continuous, 49, 113
Baire, 219
Borel, 37, 207
Borel-Stieltjes, 25
complete, 31, 152
complex, 38, 188
continuous, 122
counting, 25
countably additive, 24, 149
Dirac, 24
discrete, 122
dominating, 188
equivalent, 126
F-valued, 192
finite, 24, 138
finitely additive, 149
Haar, 253
Hausdorff, 221
inner regular, 209
invariant, 253
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Lebesgue, 25, 145, 219
Lebesgue-Stieltjes, 147
left Haar, 253
left invariant, 253
linear Lebesgue, 176
locally finite, 220
mutually singular, 120
outer, 132, 214
outer regular, 209
plain outer, 214
planar Lebesgue, 176
point, 24
positive, 183
probability, 24
product, 163
quasiregular, 209, 246
quasiregular outer, 215
Radon, 220
real, 183, 185
reference, 121
regular, 209, 246
right Haar, 253
right invariant, 253
σ-finite, 24, 138
semifinite, 34
signed, 28, 185
singular, 120, 192
singular-continuous, 124
singular-discrete, 124
topologically regular outer, 215
translation invariant, 253
unit point, 24

measure axioms, 24
measure on an algebra, 132
measure space, 24
metric axioms, 201
metric, 105, 201
metric space, 201
metric topology, 201
metrizable topology, 202
Minkowski inequality, 77, 82
monotone algebra, 19
monotone class, 19
monotone class generated, 19
Monotone Class Lemma, 19
Monotone Convergence Theorem, 43
monotone scalar sequence, 11

monotone sequence of functions, 44
monotone sequence of sets, 26
multiplication, 248
mutually singular measures, 120

N
neighborhood, 202
neighborhood base, 220
negative part of a function, 8
negative set, 109
negative variation, 112
neutral element, 247
nondegenerate interval, 37
nonmeasurable set, 148
norm, 71
norm axioms, 71
normed linear space, 72
normed space, 72
normed vector space, 72
null set, 109

O
open ball, 201
open covering, 202
open neighborhood, 202
open set, 18, 201
outer content, 255
outer measure, 132, 214
outer regular measure, 153, 209
outer regular set, 209

P
p-integrable function, 75
p-summable sequence, 82
partition, 4, 30
partition of the unity, 244
plain outer measure, 214
planar Lebesgue measure, 176
point measure, 24
pointwise convergence, 11, 27, 89
polynomial, 7
positive functional, 184, 228
positive measure, 183
positive part of a function, 8
positive set, 109
positive variation, 112
power set, 3
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probability measure, 24
probability space, 24
product measure, 163
Product Measure Theorem, 162
product space, 163
pseudometric, 105, 201
pseudonorm, 72
purely atomic set, 38

Q
quasiregular complex measure, 246
quasiregular measure, 209
quasiregular outer measure, 215
quasiregular set, 209
quasiregular signed measure, 246
quotient space, 74

R
R-measurable function, 14
	-measurable set, 5
Radon measure, 220
Radon-Nikodým derivative, 119, 195
Radon-Nikodým Theorem, 114, 192
random variable, 38
range, 223
real inner product space, 245
real linear space, 72, 228
real measure, 183, 185
real normed space, 72
real part a function, 16, 184
real-valued function, 183, 223
real-valued bounded function, 229
real-valued continuous function, 230
rectangle, 159
reference measure, 121
regular complex measure, 246
regular measure, 209
regular set, 209
regular signed measure, 246
relatively compact set, 202
representation of a simple function, 41
restriction of measure to a set, 37
restriction of measure to X, 32
Riemann integrable function, 85
Riemann integral, 59
Riesz representation, 245

Riesz Representation Theorem, 119,
234

Riesz Theorem, 78, 87
Riesz-Fischer Theorem, 78
Riesz-Weyl Theorem, 98
right coset, 248
right Haar measure, 253
right invariant measure, 253
right multiplication, 248
right translation, 248
ring, 4

S
σ-algebra, 3
σ-algebra generated, 5
σ-algebra inversely induced, 17
σ-bounded set, 205
σ-compact set, 202
σ-field, 4
σ-finite measure, 24, 138
σ-finite set, 53
σ-ring, 4
scalar, 72
scalar-valued function, 223
Schwarz inequality, 77
sections, 163
sector, 175
semialgebra, 140
semifinite measure, 34
seminorm, 72, 198
seminormed space, 72
separable space, 18, 202
set function, 23
sides, 164
signed measure, 28 185
simple function, 41, 198
singleton, 24
singular measure, 120, 127, 192
singular-continuous measure, 124 128
singular-discrete measure, 124, 128
slices, 164
standard representation, 41
strip-shape set, 173
subadditivity, 133
subgroup, 248
sub-σ-algebra, 32
sum modulo one, 154
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summable sequence, 82, 126
sup-norm, 229
support of a function, 223
support of a measure, 37, 219
symmetric difference, 105
symmetric neighborhood, 249

T
Tonelli Theorem, 169
topological base, 18, 202
topological group, 248
topological space, 18, 201
topologically bounded set, 205
topologically regular outer measure,

215
topology, 17, 201
topology induced by a metric, 201
total variation, 112, 188
totally bounded set, 205
translation, 248
translation invariance property, 148,

253, 266
translation invariance modulo one, 154
translation invariant measure, 253
translation modulo one, 154
triangle, 173
triangle inequality, 71
truncation, 15
Tychonoff Theorem, 259

U
unconditionally convergent series, 24
uniform Cauchy sequence, 90
uniform convergence, 16, 52, 89
uniformly almost everywhere, 98
uniformly bounded convergence, 93
uniformly σ-finite, 34
unit point measure, 24
upper semicontinuous, 224
Urysohn Lemma, 225

V
vanish at infinity, 245
variation of signed measure, 31
vector, 72
vector space, 72
Vitali Convergence Theorem, 106
Vitali sets, 155

X
x-section of a function, 164
x-section of a set, 163

Y
y-section of a function, 164
y-section of a set, 163
Young inequality, 81
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