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Abbreviations

(The abbreviations apply to all figures.)

III Third ventricle
AA Axo-axonal terminal
ACC Anterior cingulate cortex
AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AP Area postrema
BDNF Brain-derived neurotrophic factor
Bi Midline nucleus of Bischoff
CCI Chronic constriction injury
CCK Cholecystokinin
CGRP Calcitonin gene-related peptide
CL Nucleus centralis lateralis
Cu Cuneate nucleus
C1, C2 Central terminals of type 1 or type 2 glomerulus
D Dendrite
DCN Dorsal column nuclei
DH Dorsal horn
DT Dome-shaped terminal
EPSP Excitatory postsynaptic potential
EM Electron microscopy
FB Fast Blue
FGF-2 Fibroblast growth factor-2
fMRI Functional magnetic resonance imaging
FRAP Flour-resistant acid phosphatase
GABA γ-Aminobutyric acid
GDNF Glial cell line-derived neurotrophic factor
GluR1 AMPA receptor subunits GluR1
GluR2 AMPA receptor subunits GluR2
Gr Gracile nucleus
HZ Herpes zoster
IC Insular cortex
ION Infraorbital nerve
LCN Lateral cervical nucleus
LM Light microscopy



VIII Abbreviations

LSN Lateral spinal nucleus
MDH Medullary dorsal horn
MD Mediodorsal thalamic nuclei
MDvc Medial thalamus, ventrocaudal part
NGF Nerve growth factor
NMDA N-methyl-d-aspartate
NMDAR1 NMDA receptor subunit 1
NMDAR2 NMDA receptor subunit 2
NKA Neurokinin A
NK1 Neurokinin 1
NO Nitric oxide
NOS Nitric oxide synthase
NP Neuropathic pain
NPY Neuropeptide Y
PA Primary afferent (neuron)
PC Prefrontal cortex
RF Reticular formation
PAG Periaquaductal gray
PET Positron emission tomography
PHN Postherpetic neuralgia
Po Posterior nuclear complex
Pom Posterior nuclear complex, medial part
PTN Principal trigeminal nucleus
SC Spinal cord
SG Spinal (dorsal root) ganglia
SHT Spinohypothalamic tract
SMT Spinomesencephalic tract
Sol Nucleus solitarius
SP Substance P
SPbT Spinoparabrachial tract
SRT Spinoreticular tract
STN Spinal trigeminal nucleus
STNc Spinal trigeminal nucleus, caudal part (subnucleus caudalis)
STNi Spinal trigeminal nucleus, interpolar part (subnucleus interpolaris)
STNo Spinal trigeminal nucleus, oral part (subnucleus oralis)
STrT Spinal trigeminal tract
STT Spinothalamic tract
SI Primary somatosensory cortex
SII Secondary somatosensory cortex
TG Trigeminal ganglion
THT Trigeminohypothalamic tract
TTT Trigeminothalamic tract
VIP Vasoactive intestinal polypeptide
VL Nucleus ventralis lateralis
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VPI Nucleus ventralis posterior inferior
VPL Nucleus ventralis posterior lateralis
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VPM Ventral posteromedial thalamic nucleus
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1
Introduction

Pain is defined by the International Association for the Study of Pain (IASP)
as an unpleasant sensory and emotional experience associated with actual or
potential tissue damage, or described in terms of such damage or both. Pain
is an unpleasant but very important biological signal for danger. Nociception is
necessary for survival andmaintaining the integrityof theorganism inapotentially
hostile environment (Hunt and Mantyh 2001; Scholz and Woolf 2002). Pain is not
a monolithic entity. It is both a sensory experience and a perceptual metaphor for
damage (i.e., mechanically, by infection), and it is activated by noxious stimuli that
act on a complex pain sensory apparatus.

However, sustained or chronic pain can result in secondary symptoms (anxiety,
depression), and in a marked decrease of the quality of life. This spontaneous
and exaggerated pain no longer has a protective role, but pain becomes a ruining
disease itself (Basbaum 1999; Dworkin and Johnson 1999; Woolf and Mannion
1999; Dworkin et al. 2000; Hunt and Mantyh 2001; Scholz and Woolf 2002). If pain
becomes the pathology, typically via damage and dysfunction of the peripheral
and central nervous system, it is termed “neuropathic pain.”

Here, we present an updated review of the functional anatomy of normal and
neuropathic pain.

2
Functional Neuroanatomy of the Pain System

2.1
Primary Afferent Neuron

The primary afferent (PA) neuron is the pseudounipolar cell, localized in spinal
(dorsal root) ganglia (SG), and in the sensory ganglia of the 5th, 7th, 9th, and
10th nerves (for reviews see Scharf 1958; Duce and Keen 1977; Brodal 1981; Willis
1985; Zenker and Neuhuber 1990; Willis and Coggeshall 1991; Hunt et al. 1992;
Lawson 1992; Waite and Tracey 1995; Usunoff et al. 1997; Waite and Aschwell 2004).
The perikarya of the PA neurons are round, oval, or elliptical. The neurons lack
dendritic processes and generally lack direct synaptic input to the soma (Feirabend
and Marani 2003). The Nissl substance is abundant but finely dispersed. In old
individuals, large accumulations of lipofuscin are regularly observed. Feirabend
and Marani (2003) summarized the functional aspects of the dorsal root ganglia:
“It appears that the DRG cell bodies are electrically excitable, lack a blood brain
barrier and some are able to fire repetitively. The first feature may be important
for both propagation of impulses along the T junction and feed back regulation
of sensory endings. The second aspect suggests a role as chemical sensor and
the third property may be responsible for generating background sensation of
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the awareness of the body scheme.” The cell body emits a single process (crus
commune) that bifurcates in a peripheral and central process. Frequently, and
especially in the larger neurons, the crus commune is highly coiled (Ramon y Cajal
1909); this is referred to as the glomerular segment. The central process, usually
thinner than the peripheral one (Rexed and Sourander 1949), enters the CNS, and
the peripheral process (morphologically an axon, functionally a dendrite) runs in
the peripheral nerve to its sensory innervation zone. The peripheral specialized
transductive ending serves as part of a sense organ complex or as the sense organ
itself as is the case with the free nerve ending.

The diameter of the pseudounipolar perikarya varies from 15 to 110 µm. Two
basic types are generally recognized: large, light A cells and small, dark B cells.
The cytoplasm of the large cells is rather pale and unevenly stained due to ag-
gregations of Nissl substance interspersed with light staining regions that contain
microtubules and a large amount of neurofilaments. The small cells appear dark
mainly because of the densely packed cisternae of granular endoplasmic reticulum
and few neurofilaments. The largest A cells are the typical proprioceptor neurons,
and the small B cells are the typical nociceptor neurons (Harper and Lawson 1985;
Sommer et al. 1985; LaMotte et al. 1991; Willis and Coggeshall 1991; Truong et al.
2004). The neurons in the trigeminal ganglion (TG) are similarly distinguished in
light and dark cells (Capra and Dessem 1992; Waite and Tracey 1995; Usunoff et al.
1997; Waite and Ashwell 2004). Attempts have been made to classify the two pop-
ulations of PA neurons further into physiological, anatomical, ultrastructural, and
immunocytochemical terms (Sommer et al. 1985; Lawson et al. 1987, Lawson 1992,
2002; Schoenen and Grant 2004). Some studies suggest that a single PA neuron may
give rise to more than one peripheral branch, and more than one centrally project-
ing branch (Langford and Coggeshal 1981; Chung and Coggeshal 1984; Alles and
Dom 1985; Laurberg and Sorensen 1985; Coggeshall 1986; Nagy et al. 1995; Russo
and Conte 1996; Sameda et al. 2003). This question is of interest from a clinical
point of view because the possible branching of peripheral processes has bearing
on the problem of referred pain (Coggeshall 1986; Schoenen and Grant 2004).

There are numerous studies on the number and size of PA neurons of the SG
in various species revealing not only large species differences but also significant
interindividual variations (Avendano and Lagares 1996; Mille-Hamard et al. 1999;
Farel 2002; Tandrup 2004). Ball et al. (1982) examined the TG from 64 human
subjects from 2 months to 81 years old; the mean neuronal count was 80,600 with
no significant age or sex difference. However, they reported striking variation in
individual samples (range 20,000–157,000). According to a recent investigation,
the human TG comprises approximately 20,000–35,000 neurons (La Guardia et al.
2000).

The neurotransmitter of the PA cells is the amino acid glutamate, the most
typical fast-acting central excitatory transmitter (Weinberg et al. 1987; De Biasi
and Rustioni 1988; Rustioni and Weinberg 1989; Clements et al. 1991; Westlund
et al. 1992; Broman et al. 1993; Broman 1994; Valtschanoff et al. 1994; Salt and
Herrling 1995; Keast and Stephensen 2000; Meldrum 2000; Lazarov 2002; Hwang



Primary Afferent Neuron 3

et al. 2004; Tao et al. 2004). The glutamate acts postsynaptically on three families of
ionotropic receptors, named after their preferred agonists, N-methyl-d-aspartate
(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and
kainate. These receptors all incorporate ion channels that are permeable to cations,
although the relative permeability to Na+ and Ca++ varies according to the family
and the subunit composition of the receptor (Hollmann et al. 1989; Yoshimura and
Jessel 1990; Furuyama et al. 1993; Tölle et al. 1993, 1995; Hollmann and Heinemann
1994; Petralia et al. 1994, 1997; Tachibana et al. 1994; Popratiloff et al. 1996a, b;
Ruscheweyh and Sandkühler 2002; Szekely et al. 2002). More recently, also gluta-
matemetabotropic receptorswerediscovered.TheyareG-proteins linkedandoper-
ateby releasing secondmessengers in the cytoplasm,orby influencing ionchannels
through release of G-protein subunits within the membrane (Schoepp and Conn
1993; Pin and Duvoisin 1995; Conn and Pin 1997). Glutamate is released from the
peripheral terminals of PA nociceptors in the skin and joints during sensory trans-
duction presumably as an initiating event in neurogenic inflammation (Lawand et
al. 1997;CarltonandCoggeshall 1999;Carltonetal. 2001;Willis andWestlund2004).

Especially the B cells contain, besides glutamate, various neuropeptides: sub-
stance P (SP), calcitonin gene-related peptide (CGRP), galanin, neuropeptide Y
(NPY), neurokinin A (NKA), somatostatin, cholecystokinin (CCK), bombesin, va-
soactive intestinal polypeptide (VIP), dynorphin, enkephalin, etc. (Rustioni and
Weinberg 1989; Willis and Coggeshall 1991; Lawson 1992; Levine et al. 1993; Bro-
man 1994; Ribeiro-da-Silva 1995; Wiesenfeld-Hallin and Xu 1998; Edvinsson et
al. 1998; Todd 2002; Waite and Ashwell 2004; Willis and Westlund 2004). Two or
more peptides may be colocalized in the same PA. The proportions of peptider-
gic SG cells that contain a particular peptide may differ depending on the type
of peripheral nerve. CGRP is found in 50% of skin afferents, in 70% of muscle
afferents, and in practically all visceral afferents. SP is found in 25% of skin af-
ferents, in 50% of muscle afferents, and in more than 80% of visceral afferents.
However, somatostatin is lacking in visceral afferents but is present in a small num-
ber of somatic afferents (Willis and Westlund 2004). According to Ambalavanar
et al. (2003) from the cutaneous PA neurons in the rat’s TG, 26% contain CGRP,
5% SP, and 1% somatostatin. In the SG, the quantity of SP-containing neurons
(10%–29% of the cutaneous afferent population) is considerably higher (O’Brien
et al. 1989; Hökfelt 1991; Willis and Coggeshall 1991; Perry and Lawson 1998; see
also Lazarov 2002). Most cells containing SP seem to be nociceptive neurons with
high thresholds (Lawson et al. 1997). In the SG (Yang et al. 1998), the percentage
of CGRP-immunoreactive neurons is smaller in females that in males. In guinea
pigs, the CGRP expression is detected in under half the nociceptive neurons, and
is not limited to nociceptive neurons (Lawson et al. 2002). It seems likely that the
peptides are neuromodulators that act in concert with the fast-acting neurotrans-
mitter glutamate, either enhancing or diminishing its action (Levine et al. 1993;
Willis et al. 1995; Besson 1999; McHugh and McHugh 2000).

The brain-derived neurotrophic factor (BDNF) meets many of the criteria to
establish it as a neurotransmitter/neuromodulator in small diameter nociceptive
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PA neurons, localized in dense core synaptic vesicles (McMahon and Bennett 1999;
Mannion et al. 1999; Pezet et al. 2002) and is released by the PAs terminating in the
superficial laminae of the dorsal horn (DH).

The gaseous transmitter nitric oxide (NO) is synthesized by the enzyme nitric
oxide synthase (NOS) in some PA cells of the SG, and in the sensory ganglia of
the cranial nerves (Morris et al. 1992; Aoki et al. 1993; Terenghi et al. 1993; Alm
et al. 1995; Dun et al. 1995; Lazarov 2002; Thippeswamy and Morris 2001, 2002;
Luo et al. 2004). NO is found mainly in the small sensory neurons (Zhang et al.
1993b; Vizzard et al. 1994; Lazarov and Dandov 1998; Rybarova et al. 2000) and
coexists with CGRP, sometimes also with SP and galanin (Zhang X et al. 1993a;
Majewski et al. 1995; Edvinsson et al. 1998; Rybarova et al. 2000). In the human
TG, the coexistence of NO and CGRP is less pronounced (Tajti et al. 1999).

The peripheral processes of the nociceptive PA cells terminate generally as thin
fibers of two types: Aδ (Group III), and C (Group IV) (Perl 1996; Bevan 1999;
Basbaum and Jessel 2000; Lewin and Moshourab 2004; Willis and Westlund 2004).
The Aδ-fibers are thinly myelinated, with a diameter of 1–3 µm and a conduction
velocity of 5–30 m/s. More rapidly conducting nociceptive A-fibers (up to 51 m/s)
have been described (Treede et al. 1995). The C-fibers are unmyelinated, with
a diameter of approximately 1 µm and with a conduction velocity of 0.5–2 m/s.
Goldschneider (1881) was the first to propose the existence of two pains, later
universally recognized (Hassler 1960; Bowsher 1978; Craig 2003a, d). The first pain
(pinprick sensation) is typical for threat of tissue damage. It is rapidly conducted
to consciousness and well localized. The second pain occurs when tissue damage
has already taken place. It is slowly conducted and poorly localized (Basbaum and
Jessel 2000; Julius and Basbaum 2001).

Nociceptors respond maximally to overtly damaging stimuli, although they
generally also respond, but less vigorously, to stimuli that are merely threaten-
ing (Willis and Westlund 2004). Stimulation of cutaneous Aδ-nociceptors leads to
pricking pain, whilst stimulation of C-nociceptors leads to burning or dull pain
(Campbell and Meyer 1996; Perl 1996; Willis and Westlund 1997, 2004; Millan 1999;
Raja et al. 1999). The peripheral processes of nociceptive PA neurons terminate as
free nerve endings (Cauna 1980; Kruger et al. 1981, 2003a, b; Halata and Munger
1986; Kruger 1988, 1996; Munger and Ide 1988; Heppelmann et al. 1995; Messlinger
1996; Petruska et al. 1997; Fricke et al. 2001). The nociceptor terminal differs from
other sense organs in responding more vigorously to successive identical stimuli,
a process called sensitization. This contrasts with the reduced responsiveness to
successive stimuli known as adaptation—displayed by all other sensory transduc-
tion systems (Kruger et al. 2003b). Nociceptors, in contrast to modality specificity
of other sense organs, are apparently responsive to mechanical, chemical and
thermal perturbations, accounting for their common designation as polymodal
(Kruger 1996).

The sensory endings of group III (Aδ) and group IV (C) are characterized by
varicose segments, the sensory beads, described by Ramon y Cajal (1909) in the
cornea. They measure 5–12 µm in length in group III and 3–8 µm in group IV
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fibers (Messlinger 1996). The free nerve endings contain clusters of small clear
vesicles, dense core vesicles, membranous strands of smooth endoplasmic retic-
ulum, mitochondria, and sometimes glycogen granules (Messlinger 1996; Kruger
et al. 2003a, b). The nociceptors, except the free endings, are incompletely sur-
rounded by modified Schwann cells. In particular, their beads exhibit free areas
where the axolemma is separated from the surrounding tissue by the basal lamina
only. The axoplasm that underlies the bare areas of axolemma shows a faint fila-
mentous substructure and appears more electron-dense (Messlinger 1996). A high
concentration of axonal mitochondria may be correlated with energy consumption
and hence the activity of the sensory endings (Heppelmann et al. 1994). Probably,
the sensory beads represent the receptive sites of the sensory endings (Andres and
von Düring 1973; Chouchkov 1978; Munger and Halata 1983; Messlinger 1996).

The free nerve endings contain SP, CGRP, and NKA (Gibbins et al. 1987; Dals-
gaard et al. 1989; Micevych and Kruger 1992; Dray 1995; Kruger 1996; Holland et
al. 1998), and the sensory endings in the cornea contain also galanin (Marfurt et al.
2001; Müller et al. 2003). However, the neuropeptides, released by the endings, do
not have a neurotransmitter function (for a discussion on the noceffector concept,
see Kruger 1996).

2.2
Distribution of Nociceptor Peripheral Endings

The free nerve endings are to be found throughout the body, mainly in the ad-
ventitia of small blood vessels, in outer and inner epithelia, in connective tissue
capsules, and in the periosteum. They are most densely arranged in the cornea,
dental pulp, skin and mucosa of the head, skin of the fingers, parietal pleura, and
peritoneum.

The two main types of nociceptors in the skin are Aδ mechanical and C poly-
modal nociceptors (Willis and Westlund 2004), although other types of nociceptors
have also been described (Davis et al. 1993). Within the dermis, the afferent fiber
gives off several branches that penetrate the basal lamina and extend into the
epidermis. As a rule, the myelin sheath ends within the dermis. Most large axons
lose their myelin sheaths and perineurium before reaching the papillary layer of
the dermis, with the exception of the axons innervating Merkel cells, although
those also become unmyelinated before penetrating the epidermis (Iggo and Muir
1969; Kruger et al. 1981; Halata et al. 2003). Cauna (1973) described an elaborate
cluster of unmyelinated fibers entering the papillary layer of human hairy skin
as a free “penicillate ending”. Terminals that penetrate the epidermis for a con-
siderable distance (to the stratum granulosum) have been reported in studies,
utilizing methylene blue or silver stainings (Woolard 1935). In the beginnings of
ultrastructural examination, numerous reports on the electron microscopic image
of the skin receptors appeared (Halata 1975; Andres and von Düring 1973; Cauna
1973, 1980; Chouchkov 1978; Kruger et al. 1981). Even in recent papers (Kruger
1996; Kruger and Halata 1996; Messlinger 1996; Kruger et al. 2003a, b) the authors
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are careful in the description of the intraepithelial run of the free nerve endings. As
the axon-Schwann cell complex approaches the basal epidermis, the thin Schwann
cell basal lamina merges with the thicker epidermal basal lamina. The axon pene-
trating the epidermis is accompanied by thin Schwann cell processes which follow
its course until a single axonal profile is completely enveloped by keratinocytes,
without junctional specializations (Kruger et al. 1981, 2003b).

The Meissner corpuscles are widely regarded as low-threshold mechanorecep-
tors. However, Pare et al. (2001) showed that Meissner corpuscles are multiaffer-
ented receptor organs that may have also nociceptive capabilities. In the Meissner
corpuscles of glabrous skin of monkey digits they found that the Aα-β-fibers are
closely intertwined with endings of peptidergic C-fibers (SP and CGRP). These
intertwined endings are segregated into zones containing nonpeptidergic C-fibers
expressing immunoreactivity for vanilloid receptor 1.

The enormous number of free nerve endings in the cornea and the lack of any
encapsulated receptors were demonstrated by Ramon y Cajal as early as 1909. The
innervation density is 300–600 times that of the skin (Rozsa and Beuerman 1982).
The number of PA neurons in the TG, that send their peripheral processes in the
ophthalmic nerve is modest (La Vail et al. 1993); however, a single corneal sensory
neuron in the rabbit support approximately 3,000 individual nerve endings (Mar-
furt et al. 1989; Belmonte and Gallar 1996; Müller et al. 2003). Both myelinated
Aδ and unmyelinated C-fibers are present in the peripheral cornea but the cen-
tral cornea is innervated by unmyelinated fibers. The latter penetrate Bowman’s
membrane and terminate between the epithelial cells (Müller et al. 2003; Waite and
Ashwell 2004; Guthoff et al. 2005).

Human premolars receive about 2,300 axons at the root apex, and 87% of these
fibers are unmyelinated. Most apical myelinated axons are fast conducting Aδ-
fibers with their receptive fields located at the pulpal periphery and inner dentin.
These fibers are probably activated by a hydrodynamic mechanism and conduct
impulses that are perceived as a short, well-localized sharp pain. Most C-fibers are
slow-conducting fine afferents with their receptive fields located in the pulp and
transmit impulses that are experienced as dull, poorly localized and lingering pain
(Nair 1995; Waite and Ashwell 2004). Free nerve endings in mature teeth are found
in the peripheral plexus of Rashkow, the odontoblastic layer, the predentin, and
the dentin. The endings are most numerous in the regions near the tip of the pulp
horn, where more than 40% of the dentinal tubules can be innervated (Byers 1984).
Endings can extend for up to 200 µm into the dentinal tubules in both monkey
and human teeth, particularly near the cusps of the crown (Byers and Dong 1983;
Waite and Ashwell 2004). The periodontal ligament is rich in free nerve endings.
The periodontal pain is usually well localized and exacerbated by pressure (Waite
and Ashwell 2004).

In the muscles, the free nerve endings are found in the adventitia of the blood
vessels, but also between muscle fibers, in the connective tissue of the muscle and in
the tendons (Andres et al. 1985). The small myelinated afferent fibers in the muscles
have conduction velocities from 2.5–20 m/s, and the unmyelinated fibers less than
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2.5 m/s. Of all of the small myelinated and unmyelinated fibers, approximately 40%
were believed to be nociceptors (Marchettini et al. 1996; Mense 1996). Bone has
a rich sensory innervation; the density of nociceptors in the periosteum is high,
whereas nerve fibers in the mineralized portion of the bone are less concentrated
and are associated with blood vessels in Volkman and Haversian canals (Bjurholm
et al. 1988; Hill and Elde 1991; Hukkanen et al. 1992; Mach et al. 2002). Nociceptors
in the joint are located in the capsule, ligaments, bone, articular fat pads, and
perivascular sites, but not in the joint cartilage (Heppelmann et al. 1990; Hukkanen
et al. 1992; Halata et al. 1999). The free nerve endings in the cruciate ligaments
are found subsynovially, and are seen also between collagen fibers, close to blood
vessels. However, at least part of the latter fibers appear to be efferent sympathetic
fibers and not nociceptors (Halata et al. 1999). The branched, terminal tree of the
unmyelinated fibers has a “string of beads” appearance which probably represent
multiple receptive sites in the nerve ending (Heppelmann et al. 1990; Schmidt
1996).

In the healthy back, only the outer third of the annulus fibrosus of the inter-
vertebral disk is innervated (see Coppes et al. 1990, 1997; Freemont et al. 1997).
Lower back pain was studied in diseased lumbar intervertebral discs and was for
the first time reported to be related to ingrowth of nociceptive fibers by Coppes
et al. (1990, 1997). This finding was confirmed in 46 samples of diseased inter-
vertebral disks (Freemont et al. 1997). Both groups characterized this ingrowth
and extension of the neuronal disk network by the nociceptive neurotransmitter
substance P. It is now well established that a change of the innervation of the disk
is the morphological substrate for discogenic pain.

There are two classes of nociceptors in viscera (Cervero 1994). The first class
is composed of “high-threshold” receptors that respond to mechanical stimuli
within the noxious range. Such are found within different organs: gastrointestinal
tract, lungs, ureters and urinary bladder, and heart (Cervero 1996; Gebhart 1996).
The second class has a low threshold to natural stimuli and encodes the stimulus
intensity in the magnitude of their discharges: “intensity-encoding” receptors.
Both receptor typesare concernedmainlywithmechanical stimuli (stretch)andare
involved inperipheral encodingofnoxious stimuli in theorgans (Cerveroand Jänig
1992). The cardiac receptors are the peripheral processes of the pseudounipolar
PA neurons, located in the SG and the ganglion inferius n. vagi. The sympathetic
afferents are considered solely responsible for the conduction of pain arising in
the heart. However, Meller and Gebhart (1992) suggest that afferent fibers of the
vagus nerve might also contribute to the cardiac pain. The vagus nerve is largely
responsible for the pain conduction arising in the lung. Klassen et al. (1951)
demonstrated that the burning sensation caused by an endobronchial catheter can
be abolished by vagal block. In general, solid organs are least sensitive, whereas the
serous membranes, covering the viscera are most sensitive to nociceptive stimuli
(Giamberardino and Vecchiet 1996).

Except for avascular structures, such as cornea, skin, and mucosa epithelia,
nociceptors are adjacent to capillaries and mast cells (Kruger et al. 1985; Dalsgaard
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et al. 1989; Heppelmann et al. 1995; Messlinger 1996). This triad is a functional no-
ciceptive response unit, which is sensitive to tissue damage (Kruger 1996; McHugh
and McHugh 2000). The firing of nociceptors at the site of tissue injury causes
release of vesicles containing the peptides SP, NKA, and CGRP, which act in an
autocrine and paracrine manner to sensitize the nociceptor and increase its rate
of firing (Holzer 1992; Donnerer et al. 1993; Dray 1995; Kruger 1996; Cao et al.
1998; Holzer and Maggi 1998; Millan 1999; McHugh and McHugh 2000). Cellular
damage and inflammation increase concentrations of chemical mediators such
as histamine, bradykinin, and prostaglandins in the area surrounding functional
pain units. These additional mediators act synergistically to augment the transmis-
sion of nociceptive impulses along sensory afferent fibers (McHugh and McHugh
2000). In addition to familiar inflammatory mediators, such as prostaglandins
and bradykinin, potentially important, pronociceptive roles have been proposed
for a variety of “exotic” species, including protons, purinergic transmitters, cy-
tokines, neurotrophins (growth factors), and NO (Mannion et al. 1999; Millan
1999; Boddeke 2001; Willis 2001; Mantyh et al. 2002; Scholz and Woolf 2002). Phys-
iological pain starts in the peripheral terminals of nociceptors with the activation
of nociceptive transducer receptor/ion channel complexes inducing changes in
receptor potential, which generate depolarizing currents in response to noxious
stimuli (Woolf and Salter 2000). In PA neurons, the transducer proteins that re-
spond to extrinsic or intrinsic irritant chemical stimuli are selectively expressed
(McCleskey and Gold 1999; and references therein). The noxious heat transducers
include the vanilloid receptors VR1 and VRL1 (Caterina et al. 1997, 1999; Tominaga
et al. 1998; Guo et al. 1999; Welch et al. 2000; Caterina and Julius 2001; Michael and
Priestly 1999; Valtschanoff et al. 2001; Hwang et al. 2003). VR1 are on the terminals
of many unmyelinated and some finely myelinated nociceptors and respond to
capsaicin, heat, and low pH (Holzer 1991; Caterina et al. 1997, 2000; Helliwell et al.
1998; Tominaga et al. 1998). On the other hand, VRL1 are on PAs with myelinated
axons, have a high heat threshold, and do not respond to capsaicin and low pH
(Caterina et al. 1999). mRNA for VR1 has been shown to be widely distributed in
the brains of both rats and humans (Mezey et al. 2000), so that the role of these re-
ceptors in response to painful stimuli may be much more complex than previously
thought.

There are nociceptors that under normal circumstances are inactive and rather
unresponsive. Such nociceptors were first detected in the knee joint and were called
“silent” or “sleeping” by Schaible and Schmidt (1983a, b). Inflammation leads to
sensitization of these fibers, they “awaken” and become much more sensitive to
peripheral stimulation (Schaible and Schmidt 1985, 1988; Segond von Banchet et
al. 2000). Later, “silent” nociceptors were described also in cutaneous and visceral
nerves (Davis et al. 1993; McMahon and Koltzenberg 1994; Schmidt et al. 1995,
2000; Snider and McMahon 1998; Petruska et al. 2002).



Termination in the Spinal Cord and Spinal Trigeminal Nucleus 9

2.3
Termination in the Spinal Cord and Spinal Trigeminal Nucleus

As central processes of the SG neurons approach the dorsal root entry zone, the
fine, nociceptive axons become segregated in lateral portions of the rootlets and
enter lateral portions of the DH, passing through fasciculus dorsolateralis Lissaueri
(Ranson 1913; Kerr 1975b; Light and Perl 1979a; Brown 1981; Schoenen and Faull
1990; Willis and Coggeshall 1991; Carlstedt et al. 2004). At the junction between
spinal cord (SC) and roots, there is a profound redistribution and reorganization
of nerve fibers (Fraher 1992, 2000; Carlstedt et al. 2004). The transitional zone is
the most proximal free part of the root, which in one and the same cross-section
contains both CNS and PNS tissue. The PNS compartment contains astrocytic
processes that extend from the CNS compartment forming a fringe among the
nerve fibers. The CNS compartment is dominated by numerous astrocytes, while
oligodendrocytes and microglia are rare. The myelinated fiber change from PNS
to CNS type of organization occurs in a transitional node of Ranvier situated at
the proximal end of a glial fringe cul-de-sac at the PNS-CNS borderline.

The nociceptive fibers terminate primarily in the most dorsally located laminae
of Rexed (Rexed 1952, 1954, 1964). These comprise lamina I (nucleus postero-
marginalis) and lamina II (substantia gelatinosa Rolandi); the Aδ-fibers terminate
in laminae I and V, and C-fibers in laminae I and II. The large mechanoreceptive
Aβ-axons reach laminae III–VI (Light and Perl 1979a, b; Light et al. 1979; Ral-
ston 1979; Ralston and Ralston 1979; Perl 1996; Willis 1985; Menetrey et al. 1989;
Willis and Coggeshall 1991; Hunt et al. 1992; Molander and Grant 1995; Ribeiro-
da-Silva 1995; Craig 1996a; Han et al. 1998; Morris et al. 2004). Lamina I is with
low neuronal density and contains small, medium-sized, and large neurons. The
latter, often called marginal cells of Waldeyer are rich in granular endoplasmic
reticulum and other organelles (Ralston 1979). They are usually elongated and
the three main perikaryal types are fusiform, pyramidal, and multipolar (Gobel
1978a; Lima and Coimbra 1991; Lima et al. 1991; Zhang ET et al. 1996; Zhang and
Craig 1997; Han et al. 1998). Based on responses to natural cutaneous stimuli,
there are three major types of lamina I neurons (Craig 1996a): (a) nociceptive-
specific neurons that respond only to noxious mechanical or heat stimuli, (b)
polymodal nociceptive neurons that respond to noxious heat, pinch, and cold,
(c) thermoreceptive-specific neurons that respond to innocuous cooling and are
inhibited by warming the skin. The nociceptive-specific neurons are dominated
by Aδ-fiber input and can respond tonically to a maintained noxious mechanical
stimulus, so they may be important for the “first pain” (Craig 2000). The poly-
modal nociceptive cells are dominated by C-fiber input and are important for the
“second pain.” Han et al. (1998) have shown by means of intracellular labeling that
the nociceptive-specific neurons are fusiform, the polymodal nociceptive neurons
are multipolar, and the thermoreceptive-specific neurons are pyramidal. Later,
Andrew and Craig (2001) identified “itch-specific” lamina I neurons, which are
selectively sensitive to histamine. Approximately 80% of lamina I neurons express
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the NK1 receptor (Todd et al. 2000). Substance P in the PAs acts on the neurokinin 1
(NK1) receptor, which is concentrated in lamina I (Marshall et al. 1996; Todd et al.
1998, 2002; Yu et al. 1999; Cheunsuang and Morris 2000; Mantyh and Hunt 2004;
Morris et al. 2004).

Lamina II contains densely packed small cells, with a very low amount of
perikaryal cytoplasm but relatively rich dendritic tree (Ralston 1979; Schoenen
and Faull 1990, 2003; Ribeiro-da-Silva 1995). Two neuronal types called islet cells
and stalked cells are to be distinguished (Gobel 1978b; Todd and Lewis 1986),
and in humans, Schoenen and Faull (1990) describe four types: islet, filamentous,
curly, and stellate neurons. In lamina II neurons coexist two “classical” inhibitory
transmitters: the amino acids γ-aminobutyric acid (GABA) and glycine, and GABA
is further co-expressed with the neuropeptides methionine enkephalin and neu-
rotensin (Todd and Sullivan 1990; Todd et al. 1992; Todd and Spike 1993). As
originally described by Rexed (1952, 1954) in the cat, lamina II might be sub-
divided into outer and inner zones. In the outer zone, the neurons are slightly
smaller and more tightly packed than in the inner zone. In the rat, Ribeiro-da-
Silva (1995) further subdivided lamina II in sublaminae A, Bd, and Bv. In humans,
the separation between the outer and the inner zone is much less clear (Schoenen
and Faull 1990). It has been postulated that the substantia gelatinosa may func-
tion as a controlling system modulating synaptic transmission from PA neurons
to secondary sensory systems (Melzack and Wall 1965; Wall 1978; LeBars et al.
1979a, b; Light et al. 1979; Moore et al. 2000). Originally, lamina II was considered
a closed system, e.g., composed exclusively of short axon interneurons. According
to Ribeiro-da-Silva (1995) such a view is no longer valid, as some cells were found
to project to the brain. For example, Lima and Coimbra (1991) claimed that some
islet cells project to the reticular formation (RF) of the medulla oblongata. After
complex local processing in the DH (Willis and Coggeshall 1991; Parent 1996;
Ribeiro-da-Silva 1995) nociceptive signals are conveyed to higher brain centers
through projection neurons whose axons form several ascending fiber systems.

Interestingly, after transection of sensory fibers entering the spinal DH or the
descending spinal trigeminal tract, the typical substantia gelatinosa-related en-
zyme acid phosphatase disappeared (Rustioni et al. 1971; Coimbra et al. 1974).
Moreover, in the descending spinal trigeminal tract a topographic localization
for the ophthalmic, maxillary, and mandibular nerves was described using the
disappearance of this enzyme (Rustioni et al. 1971). Later on, fluor-resistant
acid phosphatase (FRAP) was related to the nociceptive system (see Csillik et
al. 2003).

The central processes of pseudounipolar TG neurons enter the brainstem via
the sensory trigeminal root. Some fibers bifurcate to give a rostral branch to the
principal (pontine) trigeminal nucleus (PTN) and a caudal branch that joins the
spinal trigeminal tract (STrT); some axons only descend to the spinal trigeminal
nucleus (STN) (Brodal 1981; Capra and Dessem 1992; Waite and Tracey 1995;
Parent 1996; Usunoff et al. 1997; Waite and Ashwell 2004). The PAs terminate
somatotopically:most ventral are theophthalmicfibers, in themiddle themaxillary
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fibers, anddorsally terminate themandibularfibers.A small numberofnociceptive
fibers from the 7th, 9th and 10th nerves also join the spinal tract and take a position
immediately dorsal to the axons of the mandibular division (Brodal 1947; Usunoff
et al. 1997). Generally, the PAs emit collaterals to all three subnuclei of the STN:
oralis (STNo), interpolaris (STNi), and caudalis (STNc), defined by Olszewski and
Baxter (1954), and according to the classical belief, nociceptive Aδ- and C-fibers
terminate almost exclusively in STNc. As suggested at the beginning of the century
by Dejerine (1914), inputs from the nose and the lips reach the most rostral parts of
STNc, and the posterior regions of the face reach the caudal parts of STNc (onion
hypothesis). This appears to be valid from rat to human (Arvidsson 1982; Borsook
et al. 2004). Terminations of trigeminal afferents are ipsilateral but some PAs with
midline receptive fields terminate in the contralateral STNc (Pfaller and Arvidsson
1988; Jacquin et al. 1990; Marfurt and Rajchert 1991). Many trigeminal PAs reach
the paratrigeminal nucleus and solitary nucleus (Usunoff et al. 1997); a moderate
number reaches the supratrigeminal nucleus, the dorsal RF, and the cervical SC
and a small number of PAs reach cuneate, trigeminal motor, and vestibular nuclei,
and even the cerebellum (Marfurt and Rajchert 1991).

The structure of STNc is very similar to the spinal DH (Olszewski and Baxter
1954), and since Gobel et al. (1977) and Gobel (1978a, b), this structure is often
called the medullary dorsal horn (MDH) (Craig 1992; Iwata et al. 1992; Li JL et al.
1999; Li YQ et al. 1999, 2000a, b). It has a laminar arrangement with a marginal layer
(lamina I), substantiagelatinosa (lamina II), andamagnocellular layer (laminae III,
IV). Lamina I is polymorphic, with few large, multipolar neurons (Gobel 1978a; Li
YQ et al. 2000a, b), lamina II contains small neurons (Gobel 1978b; Li YQ et al. 1999),
and the magnocellular layer actually contains predominantly medium-sized cells,
also in humans (Usunoff et al. 1997). In all layers glutamate- and GABA-containing
cells are present (Magnusson et al. 1986, 1987; Haring et al. 1990). The GABAergic
interneurons innervate the glutamatergic projection neurons, and the latter emit
collaterals to the GABA-containing cells (DiFiglia and Aronin 1990). Thus, in the
STN there is a reciprocal modulation between the excitatory trigeminothalamic
tract (TTT) neurons and the inhibitory interneurons. At the lateral border of
the STN, especially in STNc, there are interneurons that immunoreact for NOS
(Dohrn et al. 1994; Usunoff et al. 1999). These cells contact the TTT neurons, and
Dohrn et al. (1994) suggest that they may indirectly influence orofacial nociceptive
processing at the level of the STN via NO production.

In all probability, the MDH is the main, but not the sole part of the trigeminal
nuclear complex responsive for nociception. The cornea and the tooth pulp give
rise mainly to nociceptive sensations. However, the PAs of these regions reach all
components of the trigeminal nuclear complex (Marfurt and Echtenkamp 1988;
Barnett et al. 1995; Allen et al. 1996). The rostral parts of the STN also respond to
noxious stimulation, and nociceptive responses persist in ventral posteromedial
thalamic nucleus (VPM) after trigeminal tractotomy at the obex (Dallel et al. 1988),
suggesting nociceptive pathways that are more complex than originally thought
(Waite and Tracey 1995).
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2.3.1
Types of Terminals in Substantia Gelatinosa

Two types of glomerular terminals could be identified in superficial laminae. One
was scalloped, with densely packed clear vesicles of variable size, dark axoplasm,
and occasional mitochondria (Figs. 1, 3A,E). These terminals, which contacted sev-
eral postsynaptic dendrites, correspond to the central terminals of type 1 glomeruli
(C1) described by Ribeiro-da-Silva and Coimbra (1982). They are likely to be ter-
minals of unmyelinated PAs (Ribeiro-da-Silva 1995). Terminals of the second type
were also scalloped, but with loosely packed clear vesicles of uniform size, light ax-
oplasm and many mitochondria (Figs. 1, 3B,F). These terminals, contacting several
postsynaptic profiles and involved in axo-axonic contacts with symmetric active
zones, correspond to the central terminals of type 2 glomeruli (C2) described by
Ribeiro-da-Silva and Coimbra (1982). These are likely to arise from thinly myeli-
nated PAs (Alvarez et al. 1992, 1993; Light 1992). C1 terminals are concentrated
in lamina IIo and dorsal IIi, whereas C2 terminals are concentrated in ventral
lamina IIi (Bernardi et al. 1995). Glomeruli make only about 5% of the synapses in
substantia gelatinosa (Ralston 1979). The majority of synapses in this region are
axo-dendritic, and it is hard to relate them to a particular afferent input. The ma-
jority of dome-shaped terminals are believed to originate from intrinsic neurons.
Axo-axonic terminals are common in lamina II. Frequently, axo-axonic terminals
contain flattened or pleomorphic vesicles (Kerr 1975). Few synapses contain dense
core vesicles.

Glutamate Receptors in the Superficial Laminae of the Spinal Cord The superficial
laminae of the SC are of particular interest because of their role in hosting the
first brain synapse involved in pain processing. This diverse region of the SC
also receives other types of PA fibers. Afferents that mediate different types of
stimuli (i.e., low- and high-threshold mechanoreceptors) impinge onto the same
DH neurons (Willis and Coggeshall 1991). Therefore, the question persists of
how spinal neurons decode the convergent inputs at the level of the first synapse.
Providing a better understanding about the nature of the synaptic processing in
superficial laminae of the SC will directly improve our knowledge and strategies on
howto treat abnormalpain. Fromapharmacologicalpointof view, afirstpossibility
derives from a speculation that different submodalities are mediated by different
neurotransmitters. The pharmacological diversity seems to play a role since the
SG neurons giving rise to C-fibers contain substance P, which was not found in cell
bodies of normal SG giving rise to A-fibers. Moreover, substance P-positive axons
in this area co-localize with µ-opioid receptor (Ding et al. 1995a), suggesting the
role of opiates in this region. On the other hand, all PA terminals in the superficial
laminae of the SC appear to contain glutamate (Rustioni and Weinberg 1989; Salt
and Herrling 1995); nevertheless, the amount of glutamate available in different
anatomical classes of terminals may vary (De Biasi and Rustioni 1988; Merighi et
al. 1991; Tracey et al. 1991; Levine et al. 1993; Valtschanoff et al. 1994).
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In general, a large variety of pre-, post-, and extrasynaptic factors may shape
the timing and magnitude of glutamatergic transmission. Normally, glutamate is
released by calcium-dependent mechanisms into the synaptic cleft. In the cleft,
glutamate is present for brief periods of time because of the fast and highly specific
uptake by specific transporters expressed by the nearby astrocytic or neuronal
processes and terminals. In the synaptic cleft, glutamate is saturated by two ma-
jor classes of glutamate receptors: ionotropic and metabotropic. The former are
ligand-gated sodium/potassium and, under some circumstances, calcium channels
that depolarize the postsynaptic membrane, whereas the latter are coupled to sec-
ond messenger cascades that can impact metabolism. Three classes of ionotropic
glutamate receptors are currently distinct based on their pharmacological char-
acteristics, structure, and physiological properties: AMPA, NMDA, and kainate.
AMPA receptors are pore-forming heteromers built-up of a combination of the four
subunits: GluR1, GluR2, GluR3, and GluR4. A common property of native AMPA
channels is their low affinity to glutamate, blocked by CNQX, and the low perme-
ability of calcium. Local application of CNQX completely abolishes the fast com-
ponent of the excitatory postsynaptic potentials (EPSP), but does not significantly
alter the slower component. Each receptor subunit contributes specific pharmaco-
logical andbiophysical properties to the receptor channel. For instance, partitionof
the edited form of the GluR2 subunit into AMPA channels renders them insensitive
to internal polyamine block and impermeable to bivalent ions such as calcium.

Different groupsofneurons in thebrain express awidevarietyofAMPAreceptor
subunit combinations, but not necessarily all of them. Physiological data suggest
that this unique phenotyping correlates well with differences in the kinetics of
corresponding EPSP. In contrast, NMDA receptors are nonsensitive to CNQX, but
to NMDA, show high affinity to glutamate, high voltage dependence due to internal
magnesium block, and higher conductance of bivalent ions such as calcium. They
are built of an obligatory NMDAR1 subunit and several NMDAR2 subunits. NMDA
receptors show lesser variability between brain regions. Finally, kainate receptors
have thus far attracted attention particularly because of their presynaptic localiza-
tion in the superficial laminae of the SC. Their functional significance, at least in
the SC, is not clear (Hwang et al. 2001).

Among the number of postsynaptic factors that may contribute to the shape and
size of the local glutamatergic depolarization events is the diversity of ionotropic
glutamate receptors. Several light microscopic (LM) studies demonstrated high
concentrations of AMPA receptor subunits in neurons of superficial laminae of the
DH (Furuyama et al. 1993; Henley et al. 1993; Tölle et al. 1993; Tachibana et al. 1994;
Kondo et al. 1995; Popratiloff et al. 1996a). However, electron microscopy (EM)
was required to verify the presence of receptor subunits at synaptic sites and to
explore the relations between receptor subunits and PA terminals. EM evidence for
glutamate receptors subunit immunoreactivity was provided with preembedding
immunocytochemistry (Liu et al. 1994; Tachibana et al. 1994; Vidnyanszky et al.
1994), suggesting accumulation of electron-dense reaction product at postsynaptic
densities. Preembedding was also used in an effort to relate glutamate receptor
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subunits to PA terminals (Alvarez et al. 1994). Although providing valuable qual-
itative data, this method was not suitable for quantitative study, both because of
variable antibody penetration into the sections and because of the difficulty in
quantifying the density of immunoreactions at the EM level. Postembedding im-
munocytochemistry with colloidal gold can in principle avoid the above technical
limitations (Nusser et al. 1995a, b). However, osmic acid used in the classical EM
protocols for tissue fixation abolishes or seriously impairs the antigenicity of the
vast majority of the proteins, including glutamate receptor subunits. An original
method that replaces osmic acid with tannic acid and uranyl salts in material fixed
with glutaraldehyde yielded good structural preservation together with precise
localization of multiple receptor subunits (Phend et al. 1995). With this technique,
relative quantification of AMPA receptor subunits showed that these are highly
concentrated at synapses and that functionally different terminals show different
affinity to one or another receptor subunit.

Light Microscopic Appearance of AMPA Receptor Subunits in the Substantia Gelati-
nosa When the immunolabeling was revealed according to a nickel-intensified
DAB-peroxidase protocol in two animals, fine granular reaction product in neu-
ronal somata and neuropil was indicative for sites with high concentration of
the antigen. Cellular staining could be identified in somata and proximal den-
drites. Staining with the GluR1 antibody was concentrated in the superficial DH
(Fig. 2A–C). Stained neurons in other regions except lamina X of the SC were
small and sparse. Neurons immunoreactive for GluR2/3 were also concentrated in
superficial laminae (Fig. 2D–F). However, this antibody also abundantly stained
a number of neurons of various size and shape throughout the rest of the SC.

In lamina I, neurons stained with GluR1 were more concentrated laterally
(Fig. 2B), whereas a larger population of intensely stained GluR2/3 neurons was
present throughout the mediolateral extent of lamina I (Fig. 2E). Fine punctate
neuropil staining was present with both antibodies, which was organized in small
bundles oriented mediolaterally, especially apparent in the sections labeled with
GluR1.

In lamina II, the density of neurons immunostained for GluR1 was highest near
the IIo/IIi border; few stained cells were seen in the deep IIi (Fig. 2C). Neuropil
staining with GluR1 overlapped the staining of somata, gradually disappearing
at the ventral border of lamina II. The staining achieved with GluR2/3 antibody
showed a remarkable difference: density of neuronal and neuropil staining was
relatively low at the IIo/IIi border, and highest deep in lamina IIi, extending into
lamina III (Fig. 2F). GluR2/3 staining is most likely due to the abundance of
GluR2 subunit, because the pattern of GluR2 labeling very much resembles those
achieved with the GluR2/3 antibody (not shown). Additional results showed that
GluR4 antibody produces little and diffuse staining in superficial laminae of the
SC. However, recent data suggest that staining with this antibody is concentrated
in the presynaptic terminals and these loci are not readily distinguishable with
conventional optical microscopy (Lu et al. 2002).
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ElectronMicroscopy With both GluR1 and GluR2/3 antibodies, gold particles were
sparse over cell bodies and dendrites. Gold particles were instead clustered over
the postsynaptic density, postsynaptic membrane, and cleft of a large number
of asymmetric synapses. A large proportion of terminals with positive synaptic
zones could be recognized as originating from PAs, together with synaptic zones of
many terminals lacking characteristic glomerular organization, likely to originate
from intrinsic neurons. Labeling was not observed over active zones of symmetric
synapses. Ninety-four percent of gold particles tallied (410/437) from a sample of
215 glomerular terminals from lamina II were in a region between 30 nm out-
side and 40 nm inside the postsynaptic membrane (Popratiloff et al. 1996a). The
majority of gold particles were associated with the postsynaptic membrane and
density. The distribution of gold particles was similar for GluR1 and GluR2/3. The
very low density of gold particles away from the synaptic active zones implies that
even a single gold particle at the active zone is strong evidence for immunopos-
itivity. Examination of serial thin sections confirmed this interpretation, because
synapses first identified as labeled by the presence of one gold particle on one sec-
tion displayed one or more gold particles also in the adjacent sections (Fig. 3C,D).
The same did not hold true for gold particles at nonsynaptic sites.

Relationship Between Types of Terminals and Different Receptor Subunits Terminals
of both types were presynaptic to both GluR1 and GluR2/3, but to a different
extent. C1 synapses were predominantly GluR1-positive, and synapses were pre-
dominantly positive for GluR2/3. These differences were highly significant.

Interpretation of the above-mentioned quantitative differences was complicated
by the possibility that unlabeled synaptic sites might nonetheless contain recep-
tor subunits, or that the concentration of subunits may vary at different types of
synapses. To explore this issue, the number of gold particles underlying each ac-
tive zone of randomly photographed PA terminals was counted. The counts were
roughly Poisson-distributed, reflecting the random exposure of epitopes at the
surface of a thin section. However, heterogeneity of synaptic contacts was also
suggested, especially for C2 terminals immunopositive for GluR2/3. Immunola-
beled C1 synapses contained a similar number of gold particles coding for GluR1,
on average, as did immunopositive synapses of C2 terminals (1.88 vs 2.10), con-
firming that a higher proportion of C2 than of C1 synapses expressed little or no
GluR1. On the other hand, immunopositive synapses of C1 terminals contained
a markedly lower mean number of gold particles coding for GluR2/3 than did
synapses of C2 terminals (1.92 vs 2.79). This could not be explained by differences
in dimensions of active zones, because C1 and C2 had active zones of similar
lengths (322.6 ± 13 vs 341.6 ± 11 nm, respectively).

Considerations The data on LM distribution of AMPA subunits are generally con-
sistent with previous studies (Furuyama et al. 1993; Henley et al. 1993; Tölle et al.
1993, 1995; Tachibana et al. 1994; Kondo et al. 1995). The high density of AMPA
receptor expression in superficial laminae of the DH is consistent with the pres-
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ence of numerous glutamatergic synapses both from peripheral afferents (Broman
et al. 1993; Valtschanoff et al. 1994) and from local interneurons (Rustioni and
Cuenod 1982). GluR1-positive neurons are concentrated at the IIo/IIi border and
are generally superficial to the GluR2/3-positive neurons. Because previous studies
with in situ hybridization suggest that the GluR3 subunit is only weakly expressed
in the superficial DH (Furuyama et al. 1993; Henley et al. 1993; Tölle et al. 1993,
1995; Pellegrini-Giampietro et al. 1994), our staining for GluR2/3 is likely to re-
veal mainly the GluR2 subunit. By extrapolation from observations in the cortex
(Kharazia et al. 1996) and in the DCN (Popratiloff et al. 1997), at least a fraction
of GluR1-positive neurons in superficial laminae may be GABAergic. Nitric oxide
synthase (NOS) coexists with GABA in cells in these laminae (Valtschanoff et al.
1992), and NOS-positive neurons in forebrain lack GluR2 (Catania et al. 1995).
However, because NO-synthesizing neurons in the SC are concentrated at the bor-
der between laminae II and III (ventral to GluR1-positive neurons), only a modest
fraction of GluR1-stained neurons may synthesize NO.

Relationship of LM and EM Results The laminar distribution of staining for the two
antibodies was similar at LM and EM. However, staining of somata was prominent
at LM, but sparse at EM. This apparent discrepancy is presumably explained by
the characteristics of the techniques: immunoperoxidase exhibits high sensitivity
(because of Ni-amplification of weak signals by the DAB reaction), but is less well
localized than immunogold and does not accurately reflect quantitative differences
(Griffiths 1993). Alternatively, the immunogold labeling may require antigen con-
centration to exceed a threshold value. Craig et al. (1993) provided LM evidence
for clustering of AMPA/kainate subunits at synapses in cultured neurons. This was
supported by EM immunogold performed on frozen or freeze-substituted sections
(Nusser et al. 1994, 1995a, b) and by the present results. The immunoglobulin
bridge introduces a localization error of 20 nm for the gold particles (Kellenberger
and Hayat 1991). Because staining is confined to the surface, obliquity of synaptic
membranes in the section may introduce an additional error of similar magni-
tude. These errors do not affect the present data concerning the modal location of
particles but suggest that our results documenting a strong association of AMPA
receptors with the postsynaptic membrane underestimate the precision of this
association. The close match between glutamate-enriched terminals and sites im-
munopositive for glutamate receptors (Craig et al. 1994; Phend et al. 1995) shows
that the labeling is selective for excitatory synapses, a conclusion supported by the
absence of gold labeling at symmetric synapses.

Number of Receptors at a Synapse The exact numerical relationship between gold
particles and receptor molecules cannot yet be determined, but in other systems,
one gold particle represents 20–200 molecules of antigen (Kellenberger et al. 1987;
Kellenberger and Hayat 1991; Griffiths 1993). This ratio reflects various factors:
(a) only antigen molecules presenting an epitope at the surface can be recog-
nized and, even for thin (100-nm) sections, a majority of the epitopes are not
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exposed; (b) many of the epitopes may be denatured by the fixation and process-
ing; and (c) steric constraints permit only a fraction of surface epitopes to bind
immunoglobulin. Thus, although even a single gold particle over a synapse is likely
to indicate the presence of a receptor, its absence cannot be taken as proof of the
lack of receptor. Nevertheless, because there is an approximately linear relation-
ship between gold particles and antigen density (Ottersen 1989; Griffiths 1993), it
is possible to estimate the relative densities of subunits at different synapses. This
study is about subunits, not functional receptors. However, considering the high
concentration of gold in the vicinity of the postsynaptic membrane, most of these
subunits were presumably already in a functionally appropriate position. In cortex
and hippocampus, the labeling density seen with this method corresponds well to
biophysically derived estimates of functional receptors, assuming a labeling effi-
ciency of 1%–2% (Hestrin 1992; Stern et al. 1992; Griffiths 1993). It can be argued
that most subunits inserted into the synaptic membrane have been assembled into
functional pentameric receptors.

Relation of Receptors to Types of Synapses C1 terminals contain a low density of
mitochondria and a high density of glutamate (Broman et al. 1993; Valtschanoff et
al. 1994), both features perhaps related to their lower tonic activity and the need
for a larger pool of vesicular glutamate. C1 terminals are frequently presynaptic to
GABAergic dendrites, whereas C2 terminals are more frequently postsynaptic to
GABAergic profiles, possibly reflecting the generally lower spatiotemporal resolu-
tion of unmyelinated vs small myelinated fibers (Bernardi et al. 1995). The present
quantitative data show that both types of PA terminals are associated with subtypes
of AMPA receptors, but in different proportions. The preference of C1 for GluR1
contrasts with the preference of C2 terminals for GluR2/3 subunits. While the rel-
ative role of presynaptic and postsynaptic factors in establishing and maintaining
these differences remains to be determined, the contrasting distribution of GluR1
and GluR2/3 immunopositivity raises the possibility that some neurons in the
superficial DH may express only one of the two receptor subunits. Because AMPA
receptors lacking GluR2 are calcium-permeable (presumably associated with C1
terminals, Hollman and Heinemann 1994), some neurons in the dorsal substan-
tia gelatinosa may experience AMPA-mediated calcium transients in response to
glutamatergic synaptic input, particularly that originating from unmyelinated af-
ferents (C1), thus potentially activating second-messenger cascades. Indeed, recent
work supported this possibility (Engelmann et al. 1999). Also results from primary
culture demonstrate calcium-permeable AMPA channels in some neurons in the
DH (Kyrozis et al. 1995). The apparent bias of terminals of unmyelinated fibers to-
ward GluR2-poor AMPA receptors may bear on the issue of hyperalgesia. Sugimoto
et al. (1990) proposed that central hyperalgesia secondary to peripheral neuropa-
thy may involve NMDA-mediated excitotoxic damage to inhibitory interneurons.
The present data raise the possibility that GABAergic interneurons in substan-
tia gelatinosa may suffer excitotoxic damage from sustained abnormal activity in
unmyelinated fibers synapsing onto calcium-permeable AMPA channels.
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NMDAR1 and Primary Afferent Terminals in the Superficial SC With the nickel-
intensified DAB-peroxidase procedure, immunostaining at the LM level produced
a fine granular product in cells and neuropil. In 25-µm sections, cellular stain-
ing could be identified in somata and proximal dendritic arbors. Within the DH,
staining was more prominent in the superficial laminae, especially lamina II, pos-
sibly because of its higher cellular concentration (Fig. 4A,B). Neuropil staining was
densest in lamina I and IIo and tended to decrease more ventrally in the super-
ficial dorsal horn (Fig. 4B). This was confirmed in plastic embedded, 1-µm-thick
sections in which staining was denser in IIo where cells are more densely packed
(Popratiloff et al. 1998b).

At the EM level, sections showed generally good structural preservation in the
absence of osmium fixation (see also Feirabend et al. 1994, 1998). Myelin was
poorly preserved but clear, and dense core vesicles as well as synaptic special-
izations were well preserved and contrasted. Gold particles were sparse over cell
bodies and dendrites but more frequently encountered than in sections stained
for AMPA receptors. Particles were clustered over the postsynaptic density, pre-
and postsynaptic membrane, and over clefts of a large number of asymmetrical
synapses. A significant fraction of terminals with positive synaptic zones could be
recognized as originating from primary afferents, but synaptic zones of many ter-
minals of uncertain origin were also immunopositive. Labeling was not observed
over active zones of symmetric synapses. In addition to scalloped terminals at
the center of C1 (Fig. 4C,D) and C2 (Fig. 4E) glomeruli, a third distinct group of
terminals in superficial laminae are dome-shaped. They display loosely packed
clear vesicles of irregular size, light axoplasm, and many dense core vesicles (DT in
Fig. 1). These terminals are not involved in glomerular arrangement and contact, in
the plane of transverse ultrathin section, only a single dendrite or dendritic spine.
They are concentrated in lamina I, extending into IIo. Many of these terminals are
of primary afferent origin.

To explore whether there is a different concentration of the receptor subunit at
different classes of terminals, gold particles underlying active zones were counted
for each group of terminals from random photographs. As expected, the counts
were roughly Poisson-distributed, reflecting the random exposure of epitopes in
a thin section. Immunopositive C1 (Fig. 4C,D) and C2 (Fig. 4E) terminals had
similar counts of gold particles (2.18 ± 0.13 and 2.06 ± 0.13, respectively) and
these were lower than the counts for nonglomerular terminals (2.36 ± 0.17). This
difference is likely to be explained by differences in the length of active zones
between glomerular and nonglomerular terminals, i.e., on one side 266 ± 26 for
C1 terminals and 268 ± 18 nm for C2 terminals, respectively, and on the other side
387 ± 24 nm for nonglomerular terminals.

The apparently uniform relationship between NR1 sites and the three types of
terminals considered here differs from the results of a study with AMPA subunits
(Popratiloff et al. 1996a). Additional data show also that nonglomerular terminals
contact postsynaptic sites with GluR2/3 subunits about twice as frequently as post-
synaptic sites with the GluR1 subunit. These data show that most PA synapses in
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superficial laminae express NR1; considering the limited sensitivity of immuno-
gold. These data are also compatible with the expression of NMDA receptors at
all such PA synapses. Available data generally support that, as for other regions
of the CNS, synaptic potentiation requires activation of NMDA receptors, though
it may be expressed mainly via AMPA receptors. The present data thus suggest
that virtually all primary afferent synapses in the superficial DH may be potenti-
ated, although in view of previously reported results, this may further strengthen
expression of different AMPA subunits for different groups of synapses.
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Fig. 2 A–F AMPA receptor subunits GluR1 (A–C) and GluR2/3 (D–F) in the rat substantia
gelatinosa. A An image from semithin section labeled for GluR1. Labeling is present in
neuronal cell bodies and neuropil. Labeling is denser at the border between outer lamina II
(IIo) and inner lamina II (IIi), whereas in deep lamina IIi it is present as sparse punctae in
the neuropil. B Low-power camera lucida drawing from a 50-µm-thick section labeled with
GluR1 antibody, and C high power from the box on B, showing differential density of the
GluR1 labeling in superficial laminae (I–III) of the DH. D–F In contrast to GluR1, GluR2/3
labeling is present in neuronal perikarya and neuropil through laminae I–III. Staining
density increases from lamina I to lamina III. D A semithin section similar to A labeled for
GluR2/3; E and F camera lucida drawings similar to B and C labeled for GluR2/3. Scale bar:
D and A, 200 µm. (Adapted with permission from Popratiloff et al. 1996a)

�
Fig. 1 Schematic drawing representing the three major types of primary afferent terminals
that could be distinguished by their morphology. Upper left, small dome shaped terminals
(DT), which contain a few large dense core vesicles and contact a single dendrite (D). These
terminals are more abundant in lamina I. Central left, a large scalloped terminal at the
center of type 1 glomerulus (C1). These terminals have dark axoplasm, densely packed
vesicles of various sizes and occasional large dense core vesicles. C1 terminals contact
several dendrites and are more abundant in lamina IIo. Bottom left, large scalloped terminal
at the center of type II glomerulus (C2). The terminals contain sparse clear vesicles, many
neurofilaments and several mitochondria. Such terminals also contact several dendrites, but
are more frequently postsynaptic to inhibitory axo-axonic terminals (AA). These terminals
are concentrated in laminae IIi and III
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Fig. 3 A–H AMPA receptor subunits GluR1 (A–D) and GluR2/3 (E–H) at the central
terminals of C1 (A, C, D, E) or C2 (B, F, G, H) in the substantia gelatinosa of the rat DH
revealed with postembedding immunogold. More frequently active zones of C1 (A, C, D,
arrows) than C2 (B, arrows) terminals were labeled for GluR1. However, strongly labeled
active zones were present at both C1 (A, left arrow) and C2 terminals (B, left arrow). In
contrast, GluR2/3 more frequently labeled terminals of C2 (F, G, H) than C1 (E) glomeruli.
On average more gold particles were found at C2 active zones, compared to C1. C, D Serial
sections through a same C1 terminal labeled with GluR1, and G, H serial sections through
a same C2 terminal labeled with GluR2/3. Arrows show positive active zones, arrowheads
(B, D, E, F) point to negative active zones. AA axo-axonic terminal. Scale bars: A, B, E, F,
G, H, 500 nm; D and C, 250 nm. (Adapted with permission from Popratiloff et al. 1997)

�
Fig. 4 A Low-power camera lucida drawings from a 50-µm-thick vibratome section stained
with anti-NMDAR1 antibody. B Higher-power camera lucida drawing from the field in
box on A. NMDAR1 antibody stained uniformly perikarya and neuropil through laminae
I–III. C–E NMDAR1 immunolabeling detected with postembedding immunogold in C1
C, D and C2 E PA terminals. Gold particles labeling was weaker than those observed for
AMPA receptor subunits. C, D Consistently low labeling in serial sections through a same
C1 terminal (arrow, positive active zone; arrowhead, negative active zone). E NMDAR1
antibody stains weakly the active zones of C2 PA terminals (arrow), some gold particles
are present presynaptic (arrowhead), and a few active zones show accumulation of more
than two gold particles (open arrow). Note that the symmetric contacts are negative for
NMDAR1 (thick arrow). Scale bars: A, 200 µm; B, 50 µm; D and C, 250 nm; E, 500 nm.
(Adapted with permission from Popratiloff et al. 1998b)



22 Functional Neuroanatomy of the Pain System



Ascending Pathways of the Spinal Cord and of the STN 23

2.4
Ascending Pathways of the Spinal Cord and of the STN

2.4.1
Spinothalamic Tract

In experimental animals, it was repeatedly reported that the large lamina I neurons
are the source of about one-half of the spinothalamic tract (STT) (Willis et al. 1979;
Apkarian and Hodge 1989a, b; Craig 1995). Recently, however, Klop et al. (2004a, b)
declared that in the cat the percentage of lamina I neurons is 4.9%–14.2% of
the 12,000 spinothalamic neurons in the SC. The STT in humans mediates the
sensations of pain, cold, warmth, and touch (Hassler 1960; Kerr 1975a; Nathan
and Smith 1979; Brodal 1981; Jones 1985, 1998; Willis 1985; Willis and Coggeshall
1991; Craig 1996a; Willis and Westlund 1997, 2004; Nathan et al. 2001). The mean
conduction velocity of the STT estimated in experimental animals is approximately
8.0m/s (DostrovskyandCraig 1996).Themodernphysiologicalmethodsalsoallow
its evaluation in humans (Rossi et al. 2000; Tran et al. 2002). The mean conduction
velocity was estimated by Rossi et al. (2000) to be approximately 9.87 m/s.

The cells of origin are located mainly in laminae I and IV–VI. Few STT neurons
are located in lamina X (around the central canal), and in laminae VII and VIII
(in the ventral horn, dorsal to the “motoneuronal” lamina IX) (Willis et al. 1979;
Granum 1986; Kemplay and Webster 1986; Apkarian and Hodge 1989a, b; Burstein
et al. 1990b; Willis and Coggeshall 1991; Craig 1996b; Usunoff et al. 1999; Andrew
and Craig 2001). The neurotransmitter of the STT neurons is glutamate (Ericson
et al. 1995; Blomqvist et al. 1996) and the STT cells also express peptides as co-
transmitters (Ju et al. 1987; Battaglia et al. 1992; Battaglia and Rustioni 1992;
Todd and Spike 1993; Broman 1994). Lee et al. (1993) claimed that some STT
neurons contain NOS, but for the contrary see Kayalioglu et al. (1999) and Usunoff
et al. (1999). Most of the cells project to the contralateral thalamus. However,
in experimental animals a fairly significant number of ipsilaterally projecting
cells (approximately 10% of the total STT neuronal population) were detected
(Burstein et al. 1990b). Clinical observations indicate that ipsilaterally projecting
STT neurons also exist in humans (Nathan et al. 2001). The STT axons cross
the midline in the commissura alba anterior transversely, rather than diagonally
(Nathan et al. 2001) and ascend in the anterolateral quadrant of the SC white matter.
The axons of lamina I neurons in the monkey ascend more dorsally than do the
axons of neurons in the deeper laminae (Apkarian and Hodge 1989b), and in the cat
the ascending fibers of the lamina I cells are scattered throughout the lateral white
matter (Craig 1991). Clinical evidence from anterolateral cordotomies in patients
with intractable pain indicates that the STT axons are somatotopically arranged.
The axons representing the lower extremity and the caudal body parts are located
more laterally, and those representing the upper extremity and the cranial body
parts more anteromedially (Nathan and Smith 1979; Lahuerta et al. 1994; but see
Marani and Schoen 2005 for debate). In the brainstem, the STT ascends close to the
dorsolateral wedge of the medial lemniscus (Walker 1940; Bowsher 1957; Hassler
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1960; Mehler et al. 1960; Mehler 1962). The axons that reach the thalamus are very
few in number. In all probability, a large amount of fibers end in the brainstem.
The STT starts in the spinal cord with over 10,000 axons. Glees and Bailey (1951)
and Bowsher (1963) counted in the rostral midbrain approximately 1,000 axons
with diameters of 2–4 µm, and only 500 axons with diameters of 4–6 µm, and the
area occupied was only 0.8 mm in width. In humans and primates, the STT axons
terminate in the caudal and oral parts of the nucl. ventralis posterior lateralis
(VPLc and VPLo), the nucl. ventralis posterior inferior (VPI), the medial part of
the posterior nuclear complex (Pom), nucl. centralis lateralis (CL), as well as in
other intralaminar and medial nuclei (Walker 1940; Hassler 1960; Mehler 1966;
Kerr 1975b; Boivie 1979; Mantyh 1983; Apkarian and Hodge 1989c; Cliffer et al.
1991; Ralston and Ralston 1992, 1994; Willis et al. 2001, 2003; for the delineation
of the thalamic nuclei see Hassler 1959, 1982; Jones 1985, 1997a, b, 1998; Hirai and
Jones 1989; Mai et al. 1997; Ralston 2003; Percheron 2004; Marani and Schoen 2005).

There is a large body of literature on the STT in subprimate species (Lund and
Webster 1967b; Carstens and Trevino 1978a, b; Willis et al. 1978, 1979; Giesler et al.
1979, 1981; Kevetter and Willis 1982, 1983, 1984; Peschanski et al. 1983; Granum
1986; Craig 1987, 1991, 1995, 2003b, d; Lima and Coimbra 1988; Stevens et al. 1989;
Burstein et al. 1990b; Cliffer et al. 1991; Tracey 1995; Shaw and Mitrofanis 2001;
Andrew and Craig 2002; Gauriau and Bernard 2004; Klop et al. 2004a, b), but it
should be interpreted with caution, since the organization of STT and thalamocor-
tical projections related to pain is fundamentally different in primate species than
in nonprimate species such as rodents and carnivores (Craig and Dostrovsky 1999;
Blomqvist and Craig 2000; Marani and Schoen 2005). Percheron (2004) pointed
out that there are also noticeable changes from monkeys to man: thalamic parts
have disappeared, others have appeared, and some have considerably developed
(see also Marani and Schoen 2005). In the cat, lamina I STT axons terminate in
nucl. submedius, a significant relay nucleus for nociception (Craig 1987; Eric-
son et al. 1996). Craig et al. (1994) defined in the monkey clusters of nociceptive
and thermoreceptive specific neurons, reached by lamina I STT axons, located in
the posterior part of the nucl. ventralis medialis (VMpo). Blomqvist et al. (2000)
identified VMpo also in the human thalamus; it is included in the supragenicu-
late/posterior complex of Hirai and Jones (1989), and corresponds to the nucleus
limitans portae (located immediately caudal to the nucl. ventrocaudalis parvocel-
lularis internus), and adjacent part of nucleus ventrocaudalis portae of Hassler
(1960, 1982). The VMpo is proportionally much larger in humans than in monkeys
(Blomqvist et al. 2000) and coincides with the dense zone of STT input recognized
by Mehler (1966) in human posterolateral thalamus (Lenz et al. 2000). The proposal
of Blomqvist et al. (2002) that STT axons do not terminate in VPL was reviewed by
Willis et al. (2001, 2002). Also, Graziano and Jones (2004) questioned the existence
of VMpo as an independent thalamic pain nucleus or as a specific relay in the
ascending pain system in the monkey. According to Craig et al. (1994) and Craig
(1998, 2000), lamina I in primates projects to three thalamic zones: (a) VMpo, (b)
VPI, which receives convergent input from lamina V and the dorsal column nuclei,
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and (c) to a small zone in the medial thalamus (MDvc), which receives a STT input
predominantly from lamina I. The VMpo projects topographically to the fundus of
the superior limiting sulcus of the insular cortex and to area 3a in the fundus of the
central sulcus (Craig 1996a, 2000). MDvc projects to the fundus of the anterior cin-
gulate cortex (field 24c) (Craig 2000). Interestingly, the termination of STT axons in
the lateral habenular nucleus escaped recognition, and was only recently described
by Craig (2003b) as arising in lamina I in the cat. According to Craig (2003b), the
spinohabenular connection could be significant for homeostatic behaviors.

The dorsal column nuclei (DCN), consisting of nucleus gracilis (Gr) and nu-
cleus cuneatus (Cu) are traditionally regarded as a structure primarily involved
in conscious fine tactile sensation. The basis for this designation is the DCN’s
well-established role in relaying precise tactile information from primary dorsal
column fibers to the VPL and from there to the somatosensory cortex. However,
there is growing evidence that the DCN are also strongly involved in nociception.
The DCN project via the medial lemniscus to VPL, Po, and zona incerta, as well as
to the border zone between VPL and VL (Lund and Webster 1967a; Boivie 1978;
Berkley et al. 1980, 1986; Peschanski and Ralston 1985; Kemplay and Webster 1989;
Marani and Schoen 2005). The DCN-thalamic projection is glutamatergic (De Bi-
asi et al. 1994). The connection is constantly described as completely crossed, and
only Kemplay and Webster (1989) mentioned occasional ipsilaterally projecting
neurons. According to Wree et al. (2005), however, about 5% of the DCN neurons
project to the ipsilateral thalamus in the rat.

Ralston and Ralston (1994) compared the mode of termination of STT and me-
dial lemniscal axons and found that the thalamic synaptic relationships of these
two thalamopetal systems are fundamentally different. The terminals of the me-
dial lemniscus very often contact (46% of the synaptic contacts) the GABAergic
interneurons, which in turn contact the relay neurons. In contrast, more than 85%
of the spinothalamic afferents form axodendritic synapses with relay cells, and
only in 4% the STT terminals contact the GABA-immunoreactive presynaptic den-
drites. Ralston and Ralston (1994) pointed out that because the STT neurons pre-
dominantly transmit information about noxious stimuli, the simple axodendritic
circuitry of the majority of these spinal afferents suggests that the transmission of
noxious information is probably not subject to GABAergic modulation by thalamic
interneurons, in contrast to the GABAergic processing of non-noxious informa-
tion carried out by the medial lemniscus afferents. On another hand, Ericson et al.
(1996) found that the lamina I terminations in the nucleus submedius of the cat
also participate in synaptic triads, synapsing on presynaptic vesicle-containing
dendrites of the interneurons. Beggs et al. (2003) investigated the termination of
lamina I STT axons in VMpo in macaques. They reported that these synaptic bou-
tons are relatively large and contain densely packed, round synaptic vesicles. The
STT terminals make asymmetric synaptic contacts on low-order thalamic neurons.
Similar to Ericson et al. (1996), Beggs et al. (2003) found that the STT terminals
are closely associated with GABAergic presynaptic dendrites, and nearly all form
classic triadic arrangements (axo-dendro-dendritic synapse).
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The critical role of the STT in pain is universally acknowledged, but the relative
involvement in pain sensation of lamina I neurons and the wide-dynamic-range
lamina V neurons is controversial (Willis and Westlund 1997; Price et al. 2003 vs
Craig 2004). According to Price et al. (2003) the wide-dynamic-range lamina V
STT neurons are necessary and sufficient for all types of pain sensation and their
discharge encodes pain. On the other hand, Craig (2004) reported that, in the
monkey, the burning pain is signaled by modality-selective lamina I neurons and
not convergent lamina V wide-dynamic-range STT cells.

Primate STT neurons that project to the lateral thalamus (VPL) have receptive
fields on a restricted area. Therefore, they are well suited to a function in signaling
the sensory-discriminative aspects of pain (Willis et al. 1974; Willis and Westlund
1997, 2004). Primate STT cells that project to the CL may also collateralize to the
lateral thalamus, and have response properties identical to those STT neurons
that project just to the lateral thalamus (Giesler et al. 1981; Willis and Westlund
1997). On the other hand, STT neurons that project only to the CL have very large
receptive fields (Giesler et al. 1981; Willis and Westlund 1997).

The entire trigeminal sensory nuclear complex projects to the thalamus
(Peschanski 1984; Magnusson et al. 1987; Mantle-St. John and Tracey 1987; Jacquin
et al. 1989; Kemplay and Webster 1989; Dado and Giesler 1990; DiFiglia and
Aronin 1990; Iwata et al. 1992; Williams et al. 1994; Barnett et al. 1995; Waite
and Tracey 1995; Usunoff et al. 1997, 1999; Li 1999; Li JL et al. 1999; Zhang and
Yang 1999; Hirata et al. 2000; Graziano and Jones 2004). The trigeminothalamic
tract (TTT) projections are not uniform. Following unilateral horseradish
peroxidase injections into the thalamus, Kemplay and Webster (1989) counted
8,683 retrogradely labeled neurons in the PTN, 524 cells in the STNo, 1,920
neurons in the STNi, and 260 labeled cells in the STNc. Generally, the projection
toward the VPM and the posterior thalamic nucleus (Po) arises mainly in PTN
and in STNi, while the nucl. submedius and the intralaminar nuclei are heavily
innervated by the nociceptive STNc. The lamina I neurons send strong projections
to the nucl. submedius, VPM, and Po. The deeper laminae moderately innervate
VPM and Po, but project heavily to the ventral diencephalon (see the following
section). The smallest thalamic innervation (to VPM and Po) arises in STNo. The
TTT is bilateral but, especially for the STN, strongly crossed.

2.4.2
Projections to the Ventrobasal Thalamus in the Rat

We examined the projections of the trigeminal sensory nuclei, DCN, and the SC
to the thalamus by means of the retrograde axonal transport fluorescent method
of Kuypers et al. (1980). We injected unilaterally in the thalamus of Wistar rats
(n = 20) 2 µl of 1% Fast Blue (FB, Sigma, dissolved in physiological saline), 0.5 µl per
injection focus (Fig. 5). Two injections were placed 6 mm, and two 5 mm anterior to
the interaural line. The injection foci spread to all somatosensory thalamic nuclei
on the side of the injection, including the ventrobasal complex (VPL and VPM),
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posterior nucleus group, and the intralaminar nuclei. Animals were transcardially
perfusion fixed 5 days after injection. This fluorescent dye labels the cytoplasm
silver blue, and in heavily loaded cells extends also in the dendrites. The FB
injection foci are sharply demarcated (Fig. 5), and it is successfully transported
over long distances. The present results are comparable with our previous data,
obtained with a very effective retrograde tracer colloidal gold conjugated to the B
subunit of cholera toxin (Usunoff et al. 1999).

In the brainstem, the PTN and the three subdivisions of the STN contained
retrogradely labeled neurons, but to a very different extent (Figs. 6–9). The largest
number of retrogradely labeled neurons was observed in the PTN, contralateral
to the injection. From its rostral to its caudal pole, this nucleus was filled with
densely packed labeled neurons that formed vaguely delineated clusters (Fig. 6A).
The ipsilateral PTN contained a moderate number of FB-labeled neurons, mainly
in its dorsal sector (Fig. 6B). The TTT neurons are multipolar, rarely exceeding
20 µm. In the ventral part of the PTN, the neurons are slightly larger. In the STNo,
the labeling sharply decreases (Fig. 7). Throughout the entire rostrocaudal extent
of STNo, the labeled neurons were more concentrated in the ventral part of the
nucleus. The cells are slightly smaller than in the PTN, usually about 18 µm, but
some neurons measure about 30 µm (Fig. 7A). There were also few ipsilaterally
projecting neurons (Fig. 7B), and most of these cells measured less than 18 µm.
The contralateral STNi contained a substantial number of FB-labeled neurons
(Fig. 8A,B). Especially in more caudal sectors, some features of lamination were
seen (Fig. 8B). The labeled neurons vary considerably in size and shape: from small,
rounded to larger, heavily loaded with FB multipolar perikarya. We observed only
occasional ipsilaterally projecting neurons in STNi. Throughout the contralateral
STNc the retrograde labeling was moderate (Fig. 9). Toward the spinomedullary
junction, the number of FB-labeled neurons gradually decreased. Most laterally in
theSTNcwere thecharacteristicmarginal cells (medullary lamina I) (Fig. 9A).They
were usually elongated and oriented parallel to the spinal trigeminal tract. Within
the latter also few labeled neurons were seen (Fig. 9A). Few labeled neurons were
seen in the magnocellular layer (laminae III, IV). Actually the cells were medium-
sized, with average diameters of about 20 µm. The ipsilateral projection to the
thalamus from the STNc is faint but unquestionable. Almost exclusively marginal
neurons were labeled (Fig. 9B).

The present experiments demonstrate a prominent crossed connection from the
DCN to the thalamus, from the rostral (Fig. 10A) to the caudal pole (Fig. 10B) of the
nuclear complex. The FB-labeled neurons are medium to small in size, measuring
approximately 20 µm. Few neurons in the DCN ipsilateral to the injection were
labeled (Fig. 10A,B), mostly one to three per section.

For cytoarchitectonic orientation in the SC, the atlas of Molander and Grant
(1995) was consulted. The distribution of labeled neurons was very uneven. The
highest number of STT neurons was encountered at the spinomedullary junction
(Fig. 11), and in the four cranial cervical segments (C1–C4), contralateral to the
thalamic injection (Fig. 12). At these levels, a prominent cell labeling was also
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observed in the lateral cervical nucleus (LCN) (Figs. 11, 12). Notably, also in the
first four cervical segments, there was only a moderate number of labeled marginal,
lamina I neurons. Most significant labeling was found near the medial aspect of the
DH, in the medial extension of lamina IV and adjacent lamina V. Scattered labeled
neurons were observed in laminae V–VIII. The ipsilateral STT arising in the first
four segments is substantial. Most of these neurons are located deep in the ventral
horn, lamina VIII, adjacent to the motoneuronal lamina IX (Fig. 12) Only a few
lamina I cells project to the ipsilateral thalamus (Fig. 12). Starting from the fifth
cervical segment, the number of STT neurons sharply diminishes (Fig. 13). Very
few cells were seen in lamina I, and there were few in the deeper lamina of the DH.
Occasional labeled neurons were seen in lamina (area) X (Fig. 13). The ipsilateral
STT from the lower cervical segments was very scant.

The thoracic SC of the rat contained only few STT neurons, especially in the
cranial thoracic segments (Figs. 14, 15). Singly scattered cells were seen in lamina I,
in the deeper laminae, as well as in lamina X. Although very few, ipsilaterally
projecting neurons were seen (Fig. 14).

In the lumbar segments, the number of STT neurons increased (Figs. 16, 17).
Labeled neurons in lamina I were very few. Scant FB-labeled neurons were seen in
the lateral spinal nucleus (LSN) (Fig. 16A). More numerous were the cells in the
deeper laminae (Fig. 16B), as well as in area X (Fig. 17). Some larger cells were
heavily labeled and FB extended also into the dendrites. Although few, ipsilaterally
projecting STT neurons were also present (Fig. 16B).

In the sacral (Fig. 18A,B) and coccygeal (Fig. 18C,D) segments only few, but
heavily labeled neurons were found in the DH. STT neurons in lamina I were
practically absent, but few such were seen in the LSN, and in this structure were
located the occasional ipsilaterally projecting cells. Most STT neurons were found
in the deep laminae of the DH, in area X, and in the dorsal laminae of the ventral
horn. Some neurons are heavily loaded with FB and occasionally one was able to
follow the retrogradely labeled axon (Fig. 18A,B).

�
Fig. 5 (top) Low-power photograph of the maximum extent of the two rostral injection
foci. By the medial focus, also the distal part of the needle tract is filled with Fast Blue.
The four injection foci fused ventrally and completely engaged VPL and VPM, as well as
considerable portions of Po, and the intralaminar nuclei. To the lower left, the dorsal part
of the third ventricle (III). Despite the massive injection, there is no spillage of FB to the
contralateral side, so that the findings below on the ipsilateral TTT and STT, as well as for
the DCN-thalamic projection are reliable. Scale bar: 200 µm

Fig. 6 A (bottom) The contralateral principal trigeminal nucleus (PTN) is filled with reg-
ularly packed retrogradely labeled neurons, B while a few such cells in the ipsilateral PTN
are concentrated in its dorsal part. For orientation, the laterally adjoining spinal trigeminal
tract (STrT) is indicated. Scale bars: 100 µm
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Fig. 7A In the contralateral spinal trigeminal nucleus, oral part (STNo) retrogradely labeled
neurons preferably are located in its ventral part, B while a few labeled neurons in the
ipsilateral STNo are scattered throughout the nucleus. For orientation the laterally adjoining
spinal trigeminal tract (STrT) is indicated. Scale bars: 100 µm

�
Fig. 8 A,B (top) A significant number of retrogradely labeled neurons are homogeneously
distributed throughout the contralateral spinal trigeminal nucleus, interpolar part (STNi),
both A rostrally and B caudally. For orientation, the laterally adjoining spinal trigeminal
tract (STrT) is indicated. Scale bars: 100 µm

Fig. 9 A,B (bottom) Compared with the large mass of the spinal trigeminal nucleus, caudal
part (STNc) the number of retrogradely labeled neurons in the contralateral nucleus is
relatively low (A). There are several labeled neurons also seen in the STrT. In the ipsilateral
STNc, labeled neurons are observed in lamina I, just at the border with the STrT. Scale bars:
100 µm
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Fig. 10 A,B A large number of retrogradely labeled neurons are distributed throughout the
contralateral gracile (Gr) and cuneate (Cu) nuclei (left part of the pictures), both rostrally
A and caudally B. In the ipsilateral dorsal column nuclei, several labeled neurons are also
seen. For orientation, the area postrema (AP) and the nucl. solitarius (Sol) are indicated.
Scale bars: 250 µm

�
Fig. 11 (top) In the spinomedullary junction, a single retrogradely labeled neuron is seen
in the most caudal contralateral gracile nucleus (Gr) and in the midline nucleus of Bischoff
(Bi), respectively. In the spinal cord (left half of the figure) contralateral to the injection
site distinctly retrogradely labeled neurons are seen in the lateral cervical nucleus (LCN) as
well as in the lateral spinal nucleus (LSN). Within the grey matter, the retrogradely labeled
neurons are scattered bilaterally. Note that in the ipsilateral cord neurons are located deep
in the ventral horn (arrowhead). Also, two labeled cells are found within the lateral white
matter (arrow). Scale bar: 200 µm

Fig. 12 (bottom) In the first cervical segment, the distribution of the retrogradely labeled
neurons somewhat differs from that seen in the spinomedullary junction (Fig. 11). Here
again, there are labeled neurons in the LCN and LSN contralateral to the injection site
(left half of the figure). In lamina I, two labeled neurons are seen contralaterally and one
ipsilaterally. In the deeper laminae distinctly retrogradely labeled neurons are found mainly
in the medial grey matter, in a characteristic location of the STT cells. Bilaterally retrogradely
labeled neurons are also found deep in the ventral horns. Scale bar: 200 µm
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Fig. 13 Already at the level of the fifth cervical segment, the number of the retrogradely
labeled neurons has drastically diminished. In the dorsal horn contralateral to the injection
site (left half of the figure), labeled neurons are concentrated in the superficial laminae. Only
one ipsilaterally projecting neuron is seen. Scale bar: 175 µm

Fig. 14 In the first thoracic segment four retrogradely labeled neurons are depicted in the
dorsal horn contralateral to the injection site (left half of the figure) and one is located in the
LSN (arrow). There is one labeled neuron also seen in the ipsilateral DH. Scale bar: 125 µm
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Fig. 15 At the level of fifth thoracic segment very few retrogradely labeled neurons are
found. Two of them are located within the white matter contralateral to the injection site
(left half of the figure) lateral of the DH in the LSN (arrow), and a large neuron is seen in
the medial part of the deeper laminae (arrowhead). The central canal is indicated (*). Scale
bar: 150 µm
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Fig. 16A,B In the first lumbar segment the location of retrogradely labeled neurons differed
between sections. A Contralateral to the injection site (left half of the figure), only labeled
neurons are depicted at the base of DH, around the central canal (*) and a single one in the
position of LSN (arrow). B Here, labeled neurons are seen bilaterally in the intermediate
grey substance, one contralaterally in lamina III. Scale bars: 150 µm

�
Fig. 17 (top) In the fourth lumbar segment there are few retrogradely labeled neurons only
contralateral to the injection site (left half of the figure). Two neurons are present in the base
of DH near the central canal (*) and two small STT cells are seen in LSN (arrow). Scale bar:
150 µm

Fig. 18 A,B (bottom) In the first sacral segment, one strongly retrogradely labeled neuron
is seen contralateral to the injection site (left half of the figure) in the deep DH. B In the
enlargement of A the initial portion of the labeled axon is directed medially (arrowheads).
C, D The first coccygeal segment is surrounded by the fascicles of the cauda equina (+). An
elongated large neuron is seen in the medial portion of DH contralateral to the injection
site (left half of the figure). B Enlargement of A. Scale bars: A,C, 250 µm; B,D, 500 µm
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2.4.3
Pathways to Extrathalamic Structures

Several other pathways accompany the STT in the ventrolateral quadrant of the
SC. These include the spinomesencephalic tract (SMT), the spinoparabrachial
tract (SPbT), the spinoreticular tracts (SRT), and several more recently described
spinolimbic tracts (Willis and Coggeshall 1991; Willis and Westlund 1997).

The SMT actually includes several projection systems that terminate in different
mesencephalic areas. In primates, the neurons of origin are distributed similar
to the STT neurons, e.g., in laminae I, IV–VI, and a few in the ventral horn
and in lamina X (Willis et al. 1979; Mantyh 1982; Wiberg et al. 1987; Yezierski
and Mendez 1991). The SMT neurons are glutamatergic (Yezierski et al. 1993;
Azkue et al. 1998). Some SMT neurons emit collaterals to the lateral thalamus
(Zhang D et al. 1990). The SMT projections terminate in the periaquaductal gray
(PAG), nucl. of Darkschewitsch, nucl. interstitialis of Cajal, nucl. cuneiformis of
the mesencephalic RF, nucl. intercollicularis, deep layers of the superior colliculus,
area pretectalis, nucl. ruber, and probably in the cortical (polysensory, rather than
acoustic) regions of the inferior colliculus (Bowsher 1957; Hassler 1960; Kerr 1975b;
Mantyh 1982; Menetrey et al. 1982; Wiberg et al. 1987; Yezierski 1988; Blomqvist
and Craig 1991; Yezierski and Mendez 1991; Bernard et al. 1995; Craig 1995).
The SMT neurons project bilaterally (Wiberg et al. 1987; Blomqvist and Craig
1991; Craig 1995), and approximately 2% of the SMT cells in the rat project both
ipsilaterally and contralaterally (Yezierski and Mendez 1991). According to Wiberg
et al. (1987), the SMT projections from the caudal parts of the SC terminate in
the caudal mesencephalon, and the projections from the cranial parts terminate
more rostrally in the brainstem. The SMT is involved in nociception (Dougherty et
al. 1999). However, it is not clear that it contributes to the sensory discriminative
aspects of pain; instead, it seems more suited to contributing to the motivational,
affective aspects of pain, as well to triggering activity in descending control systems
(for details, see Willis and Westlund 1997).

There is growing evidence (at least in rodents) that the S(trigemino)PbT is a ma-
jor nociceptive projection, rivaling in significance the STT (Bester et al. 1997b;
Todd et al. 2000; Hunt and Mantyh 2001). This small region, surrounding the
superior cerebellar peduncle at the pontomesencephalic transition, is densely in-
nervated by ascending SC and STN axons (Hylden et al. 1985; Wiberg et al. 1987;
Blomqvist et al. 1989; Bernard and Besson 1990; Craig 1992, 1995; Kitamura et al.
1993, 2001; Light et al. 1993; Slugg and Light 1994; Bernard et al. 1995; Feil and
Herbert 1995; Allen et al. 1996; Yamashiro et al. 1998; Gauriau and Bernard 2002;
Bourgeais et al. 2003). The cells of origin are located mainly in lamina I and many
of them express the NK1 receptor (Ding et al. 1995b; Marshall et al. 1996; Yu et
al. 1999; Todd et al. 2000; Bester et al. 2001), e.g., these cells receive a nociceptive
input from SP-releasing PAs (Bernard et al. 1996; Craig 1996b; Hunt and Mantyh
2001, 2004; Todd et al. 2002). The SPbT is bilateral (Craig 1992; Bernard et al. 1996;
Yamashiro et al. 1998; Kitamura et al. 2001). The S(trigemino)PbT is topically dis-
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tributed (Bourgeais et al. 2003): parabrachial neurons excited chiefly by noxious
stimulation of the face have their dendritic tree located primarily within the field
of lamina I trigeminal projections, i.e., in the caudal portion of the parabrachial
area, around the external medial and caudal part of the external lateral subnuclei;
parabrachial neurons excited chiefly by noxious stimulation of the paw or the
tail have their dendritic tree located primarily within the field of lamina I spinal
projections, i.e., in parabrachial mid-extent, around the borderline between the
external lateral and both the lateral crescent and the superior lateral subnuclei.
The parabrachial nucleus projects heavily to the amygdala and the hypothalamus
(Fulwiler and Saper 1984; Bernard and Besson 1990; Bester et al. 1997a; Gauriau
and Bernard 2002). The spino-parabrachio-amygdalar/hypothalamic nocispecific
multineuronal chain is probably concerned with the intensity of pain rather than
its location or nature (Bernard et al. 1996; Bernard and Bandler 1998; Hunt and
Mantyh 2001).

The involvement of the brainstem RF in pain conduction and modulation was
studied intensively and reviewed by Hassler (1960), Bowsher (1976), Willis (1985),
and Willis and Coggeshall (1991). The cells of origin of the SRT differ. Neurons in
deeper laminae (V–VIII) project to the pontomedullary core: nucl. gigantocellu-
laris, nuclei reticulares pontis oralis et caudalis (Kevetter and Willis 1982; Kevetter
et al. 1982; Chaouch et al. 1983; Gauriau and Bernard 2002; for the delineation of
the RF in the human brainstem see Paxinos et al. 1990; Koutcherov et al. 2004),
and to nucl. reticularis lateralis (Menetrey et al. 1980, 1983). Lamina I neurons
project to the dorsal central and ventrolateral reticular regions of the medulla
oblongata (Craig 1995). Lamina I neurons project also to the catecholaminergic
neurons of the brainstem, except for the dopaminergic group in the mesencephalon
(substantia nigra and related nuclei: A8, A9, and A10 groups of Dahlström and
Fuxe 1964). Craig (1992, 1995) and Westlund and Craig (1996) found that such
axons project to noradrenergic and adrenergic groups in the ventrolateral medulla
(A1 and C1), nucl. solitarius and the dorsomedial medullary RF (A2 and C2), the
ventrolateral pons (A5), the locus coeruleus (A6), and the subcoerulear region
(A7). Huber et al. (1999) encountered very few neurons in laminae II and III that
project to the contralateral nucl. gigantocellularis. Nahin (1987) described several
peptides in the SRT neurons. CCK-containing neurons were most common, while
SP-containing cells were few. The data on the involvement of the RF in a nociceptive
spino-reticulo-thalamic projection are contradictory. Bernard et al. (1990) think
that the subnucl. reticularis dorsalis in the caudal medulla, which receives SRT
axons and sends fibers to the parafascicular and ventromedial thalamic nuclei,
could be involved in the control of pain processing. Especially Lima and Almeida
(2002) argued that the subnucl. reticularis dorsalis is a prenociceptive center of the
pain control system. Also, Villanueva et al. (1996, 1998) insist that the caudal RF
is an important nociceptive relay to the thalamus, and the spino-reticulo-thalamic
pathways may play an important role in distributing pain signals to the forebrain.
On the other hand, Blomqvist and Berkley (1992) reexamined the spino-reticulo-
diencephalic pathway in the cat, combining retrograde and anterograde tracing
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in order to study the extent to which SRT terminations and reticulodiencephalic
neuronal perikarya overlap. They found SRT terminations mainly caudolaterally,
while neurons projecting to the intralaminar thalamic nuclei and subthalamus
were concentrated rostromedially. Thus, information conveyed from the SC to the
RF appears to have access to the thalamus only by way of a few widely scattered
neurons. According to Blomqvist and Berkley (1992), these results encourage less
emphasis on a putative spino-reticulo-diencephalic pathway for pain. In the trans-
mission of nociceptive spinal signals to the forebrain, a significant involvement
of the pontomedullary noradrenergic neuronal groups could be ascribed, since
they profusely innervate the thalamus, the hypothalamus, the amygdala, and the
cerebral cortex (Aston-Jones et al. 1995; Westlund and Craig 1996). As Hassler
proposed that the pallidum externum is reached by pain-conducting axons (see
Fig. 31 in Hassler, 1960), recently Gauriau and Bernard (2004) established that the
deep laminae in the rat SC project substantially to the globus pallidus and the sub-
stantia innominata. In addition to the multineuronal chains that convey nocicep-
tive information to the hypothalamus and amygdala, there is growing evidence for
the existence of direct spino(trigemino)hypothalamic and spino(trigemino)limbic
tracts (Burstein and Giesler 1989; Burstein et al. 1990a, 1991, 1996; Cliffer et al.
1991; Katter et al. 1991, 1996; Iwata et al. 1992; Burstein and Potrebic 1993; Dado
et al. 1994a, b, c; Zhang X et al. 1995c, 1999; Newman et al. 1996; Kostarczyk et al.
1997; Li et al. 1997; Yamashiro et al. 1998; Malick et al. 2000; Gauriau and Bernard
2004). The spinohypothalamic tract (SHT), at least in lower mammals, appears
to be an unexpectedly massive projection. Burstein et al. (1990a) counted more
than 9,000 retrogradely labeled neurons following selective injection of the tracer
in the hypothalamus of rats. They found the greatest number of SHT neurons in
the deep DH, followed by the LSN, superficial DH, and around the central canal;
only a small number of spinohypothalamic neurons was found in the intermediate
zone and in the ventral horn. Similar location of SHT and trigeminohypothalamic
(THT) neurons, displaying SP receptor-immunoreactivity was reported by Li et al.
(1997): most such neurons were located in lamina I. SHT in the cat has the same
cells of origin as in the rat, but the projection appears to be smaller (Katter et al.
1991). SHT is present also in the monkey (Newman et al. 1996; Zhang X et al. 1999).
All studies point out that the SHT is bilateral, predominantly crossed. The SHT
axons terminate in most of the hypothalamic divisions: the lateral hypothalamus,
posterior, dorsal, and periventricular areas, the dorsomedial, paraventricular, and
suprachiasmatic nuclei, and the lateral and medial preoptic areas (Cliffer et al.
1991). In monkeys, the axons pass through the thalamus and then enter the hy-
pothalamus (Zhang X et al. 1999). Similarly, in rats, the SHT axons run through
the Po (Kostarczyk et al. 1997). The latter authors established that the SHT axons
collateralize significantly in the brainstem, innervating numerous RF nuclei, nucl.
ambiguus, nucl. solitarius, and Cu. Kostarczyk et al. (1997) conclude that through
its widespread collateral projections, the SHT appears to be capable of providing
nociceptive input to many areas that are involved in the production of multifaceted
responses to noxious stimuli. Zhang X et al. (1995c) established that some SHT
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axons in the rat course through a long and complex path. After decussating in
the hypothalamus, the axons descend in the ipsilateral Po, midbrain, pons, or
even rostral medulla. Such axons may provide nociceptive information to a va-
riety of nuclei throughout the diencephalon and brainstem bilaterally. Malick et
al. (2000) found that most of the THT neurons are nociceptive. Their axons cross
the midline and ascend until the level of supraoptic decussations in the lateral
hypothalamus. More than a half of the axons recross the midline to reach the
ipsilateral hypothalamus. The hypothalamic areas that receive trigeminal input
are the lateral, perifornical, dorsomedial, suprachiasmatic, and supraoptic nuclei.
The THT axons collateralize profusely: to the superior colliculus, substantia nigra,
red nucleus, anterior pretectal nucleus, striatum, globus pallidus, and substantia
innominata. According to Malick et al. (2000), the findings that non-nociceptive
signals reach the hypothalamus through the direct THT route, whereas nocicep-
tive signals reach the hypothalamus through both the direct and indirect routes,
suggest that highly prioritized painful signals are transferred in parallel channels
to ensure that this critical information reaches the hypothalamus, a brain area that
regulates homeostasis and other humoral responses required for the survival of
the organism.

Following the observation of Burstein and Giesler (1989) that the SC projects
directly to the telencephalon, i.e., to the limbic structures such as nucl. accumbens
and the septal nuclei, several papers confirmed and extended this unexpected
finding. Cliffer et al. (1991) report a strikingly large number of structures that
receive SC axons: ventral pallidum, globus pallidus, substantia innominata, basal
nucleus of Meynert (cholinergic neuronal group that innervates profusely the
cerebral cortex, the Ch4 group of Mesulam et al., 1984), amygdala, horizontal and
vertical limbs of the diagonal band of Broca, medial and lateral septal nuclei, nucl.
accumbens, and even the infralimbic and medial orbital cortex. The retrograde
tracing experiments of Burstein and Potrebic (1993) indicated that the projection
to the amygdala in the rat arises through the entire length of the SC. The number of
spinoamygdaloid neurons is modest, and these cells are located bilaterally (mainly
contralaterally) in the lateral reticulated area of the deep DH and around the central
canal. These authors verified the projection to the orbital cortex but also pointed
out that the number of spinocortical neurons is quite small. Newman et al. (1996)
found spinal projections to the hypothalamus, ventral striatum, globus pallidus,
amygdala, and the septal nuclei in rats and squirrel monkeys. They estimated that
in both species the total number of terminals seen in the striatal and limbic areas
was 50%–80% of the number seen within the thalamus. Following experimental
tooth movement, Yamashiro et al. (1998) found in rats bilaterally Fos-expressing
neurons in the periventricular hypothalamus and in the central nucleus of the
amygdala. Presently, the laterocapsular part of the central amygdala is defined
as the nociceptive amygdala because of its high content of nociceptive neurons
(Bourgeais et al. 2001; Gauriau and Bernard 2002; Li and Neugebauer 2004).
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2.5
Dorsal Column Nuclei and Nociception

Gr and Cu, their main afferent fibers traveling in the dorsal columns of the SC,
and their efferent fibers traveling in the medial lemniscus, are a part of trisynaptic
pathway traditionally thought to convey impulses concerned primarily with touch-
pressure and kinesthesis (Foerster 1936; Willis and Coggeshall 1991; Snow and Wil-
son1991;Parent1996). It is appreciated that thePAneuronsarepseudounipolar and
their axons are myelinated. Giuffrida and Rustioni (1992) counted and measured
thousands of retrogradely labeled SG neurons in rats that received a tracer in the
DCN. They found that at every level, most labeled, i.e., projecting neurons are large.

Electrophysiological studies first addressed the role of the dorsal columns in
mediating visceral pain (Amassian 1951; Rigamonti and Hancock 1978). More
recently, Berkley et al. (1993) and Berkley and Hubscher (1995) have shown that
the Gr neurons can be activated by distension of vagina, uterus, and colon, and
half of the Gr cells that respond to cutaneous stimuli are also activated by uterine
or vaginal distension. Apkarian et al. (1995) suggested that the DCN may be more
important for visceral pain than is the STT. Willis and his colleagues published
a series of papers that demonstrate the profound involvement of the DCN in
the transmission of visceral pain (Al-Chaer et al. 1996a, b, 1997, 1998; Willis
1999; Nauta et al. 2000; Wang and Westlund 2001; Palecek et al. 2002, 2003a, b;
Palecek and Willis 2003). The nociceptive inputs reach the DCN via two routes: (a)
monosynaptic input from PA cells in the SG and (b) the pathway consisting of two
neurons: a PA neuron and a neuron in the SC.

The classic monosynaptic nociceptive input was described repeatedly (Patter-
son et al. 1989, 1990; Garrett et al. 1992). According to Conti et al. (1990), the
nociceptive input to the DCN may be mediated, though to a very limited extent,
directly by way of small, substance P-containing PA neurons.

More important is the second route: via the so-called postsynaptic fibers trav-
eling in the dorsal column. By this bisynaptic pathway, the central process of the
PA neuron terminates upon a second-order projection neuron, located in the gray
matter of the SC. The axons of these neurons—the postsynaptic fibers—reach
the DCN (Rustioni 1973, 1974; Rustioni and Kaufman 1977; Cliffer and Giesler
1989; Cliffer and Willis 1994; Hirschberg et al. 1996; Wang et al. 1999). Rustioni
(1977) and Rustioni et al. (1979) investigated the cells of origin of postsynaptic
fibers in monkeys. The found that the fibers originate mainly from ipsilateral DH,
particularly from its medial part at upper cervical levels and from a band of gray
matter throughout the SC, largely corresponding to lamina IV and adjacent lami-
nae. Large neurons along the lateral border of the ventral horn at lumbar levels may
also contribute nonprimary afferents to the ipsilateral DCN. In the cat (Rustioni
and Kaufman 1977), the cells of origin are numerous in the upper cervical, brachial,
and lumbosacral SC, but are sparse in the thoracic segments. In the brachial and
lumbosacral cord, the neurons of origin are mainly localized in lamina IV and
more ventrally. According to Giesler et al. (1984), in the rat the postsynaptic dorsal
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column neurons constitute over 38% of the neurons that project to Cu, and ap-
proximately 30% that project to the Gr. In the lumbar segments, the cells of origin
are located within a narrow band extending across the ipsilateral DH, subjacent to
substantia gelatinosa. Hirschberg et al. (1996) reported a population of cells orig-
inating in lamina X and overlying dorsal commissural region at the sacral level of
the rat SC. Similarly, Wang et al. (1999) found out that in the rat, neurons in the
area adjacent to the central canal of the midthoracic or lumbosacral level of the
SC send ascending projections to the dorsal, lateral rim of the Gr and the medial
rim of Cu or the dorsomedial rim of the Gr, respectively. The non-PAs to the DCN
ascend mainly in the dorsal columns and, to a lesser extent, in the dorsal part of the
lateral funiculus both in monkeys (Rustioni et al. 1979) and in the rat (Giesler et al.
1984). The data on the role of the postsynaptic fibers in somatosensory processing
are contradictory. Brown and Fyffe (1981) and Brown et al. (1983) indicated that
this fiber system transmits cutaneous nociceptive and tactile information to the
brain. On the other hand, Giesler and Cliffer (1985) remained skeptical that the
postsynaptic fibers are involved in nociception. Also, according to Al-Chaer et al.
(1996a, 1997) the dorsal columns play a minor role in relaying excitatory noxious
cutaneous input to the VPL thalamic nucleus.

2.6
Cerebellum and Nociception

The cerebellum is regarded as a part of the CNS that is implicated mainly in mo-
tor behavior and its coordination. However, numerous studies showed a broad
diversity of its functions (reviewed by Saab and Willis 2003). Data indicating that
the cerebellum is also involved in nociception has been abundant in recent years,
although Chambers and Sprague (1955a, b) described an analgesic effect follow-
ing cerebellar cortical lesions. Siegel and Wepsic (1974) observed antinociceptive
effects following electrical stimulation of the superior cerebellar peduncle in the
monkey. Spiegel (1982) speculated that impulses generated by posterior column
stimulation may lead to relief of pain and spasticity by activating the cerebellum.

The first reliable evidence that nociceptive stimulation evokes activity in path-
ways and neurons of the cerebellum was provided by Ekerot et al. (1987a, b). They
reported that climbing fiber-evoked responses were recorded in Purkinje cells and
as field potentials from the surface of the cerebellum upon stimulation of the ip-
silateral superficial branch of the radial nerve. Similar data were reported by Wu
and Chen (1990) following stimulation of C-fibers in the saphenous nerve. Ekerot
et al. (1991) proposed that the cutaneous nociceptive input may be transmitted
to the inferior olive by the postsynaptic dorsal column nuclei. McGonigle et al.
(1996) found out that fibers containing substance P terminate upon neurokinin-1
receptor-immunoreactive neurons of the dorsal spinocerebellar tract that project
to paravermal areas. Saab et al. (2001) examined the influence of cerebellar cortical
stimulation on spinal nociceptive neurons that responded to noxious visceral and
somatic stimuli. The stimulation increased the responses of all isolated cells to vis-
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ceral stimuli (colorectal distension), while the effect on the responses to somatic
stimuli was less clear. In addition, Saab and Willis (2001) found that Purkinje cells
in the caudal vermis respond to nociceptive visceral stimulation in the form of
early and delayed changes in activity, and proposed a negative feedback circuitry
involving the cerebellum for the modulation of peripheral nociceptive events.

Recently, imaging studies on the nociceptive input to the cerebellum have also
appeared. In positron emission tomography (PET) and functional magnetic reso-
nance imaging (fMRI) studies, increases in blood volume or flow in the vermis and
paravermal areas were reported during the perception of acute heat pain (Casey et
al. 1994), deep cold pain (Casey et al. 1996), muscle pain (Svensson et al. 1997), and
capsaicin-evoked pain and allodynia (Iadarola et al. 1998). Saab and Willis (2003)
concluded that “. . . one central pillar (of pain research) is missing to confirm a role
for the ‘little brain’ in pain: clinical data. . . . Whereas the ‘little brain’ may influence
nociception, its grip on pain remains pliable.”

2.7
Cortices Involved in Pain Perception and Thalamocortical Projections

There is a multiregional organization of supraspinal pain processing (Bromm
and Lorenz 1998; Coghill et al. 1999; Treede et al. 1999; Hudson 2000; Peyron et al.
2000) andcortical areas involved inpainperceptionare theprimary somatosensory
cortex (SI), the secondary somatosensory cortex (SII), the insular (IC), the anterior
cingulate (ACC), and the prefrontal (PC) cortices. The respective cortical areas
differ functionally, as seen in electrophysiological and functional imaging studies:
the sensory-discriminative aspect ofpain (localization, intensity, duration, quality)
is presented in SI and SII, receiving thalamic input from lateral thalamic nuclei,
the motivational-affective aspect (subjective suffering, unpleasantness, aversive
emotions), and the cognitive-evaluative aspects of pain are presented in the IC,
ACC, and PC, receiving thalamic input from medial thalamic nuclei.

Primary Somatosensory Cortex The role of SI (located in the postcentral gyrus,
Brodmann’s areas 3, 1, 2) in pain perception has been a matter of dispute for
decades. The early findings were largely negative. Head and Holmes (1911) re-
ported that patients with long-standing cortical lesions did not show deficits in
pain perception, which lead to an erroneous suggestion that the pain sensation
takes place in the thalamus. During epilepsy surgery, Penfield and Boldrey (1937)
performed electrical stimulation of patients’ exposed SI and encountered only very
few cases (11 out of more than 800 responses) that reported a sensation of pain.
Single-cell recording in monkeys (Kenshalo et al. 1988) revealed only very few no-
ciceptive neurons, and the authors concluded that their functional significance was
uncertain. Also, the findings from human brain imaging studies have produced
rather inconsistent results concerning the role of SI in pain perception (Bushnell
et al. 1999; Craig 2003a). Despite certain controversies, an increasing number of
PET and fMRI studies found an activation of SI during painful stimuli (Casey et
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al. 1994; Coghill et al. 1994; Andersson et al. 1997; Torebjörk 1997; Derbyshire and
Jones 1998; Porro et al. 1998; Davis 2000; Wiech et al. 2001), also corroborating
electrophysiological findings (Drushky et al. 2000; Kanda et al. 2000). According to
Craig (2003a, d), nociceptive activation near the central sulcus in humans probably
occurs in area 3a (where the thalamic VMpo projects), but its location is below
the level of PET resolution. Bushnell et al. (1999) suggest that in SI primarily the
sensory-discriminative aspect of pain is presented. Two classes of neurons are ac-
tivated in SI: neurons with a wide dynamic range react already to stimuli that are
not painful; however, they show the highest activity to painful stimuli (Chudler et
al. 1990). They have large receptive fields and probably code pain intensity. Specific
nociceptive neurons only react to painful stimuli. They have small receptive fields,
are somatotopically located in the postcentral gyrus and enable the determination
of the localization, intensity, and temporal attributes of the painful stimuli. The
SI neurons get their afferents from the lateral thalamic nuclei (VPL, VPM, VPI;
in primates and humans also from VMpo; Willis 1997), and also heavily project
back to these nuclei. The thalamocortical projections are excitatory glutamatergic
(Kharazia and Weinberg 1994). Lesions of the respective thalamic nuclei, the tha-
lamocortical connections or of SI result (besides loss of somatosensory function)
in a dramatic decrease in temperature and pain perception (Bassetti et al. 1993;
Leijon et al. 1989). But there is no complete analgesia. Nevertheless, pain is still
interpreted as uncomfortable and unpleasant (Ploner et al. 1999).

Secondary Somatosensory Cortex SII is located just lateral and slightly anterior to
the lateral end of the central fissure in the human brain, roughly occupying Brod-
mann’s area 43 and parts of area 40. In contrast to SI, SII neurons do not seem to be
involved in discrimination of location and/or intensity of painful stimuli, but seem
to have an important role in recognition, learning, and memory of painful events
(Schnitzler and Ploner 2000). A number of studies found significant pain-related
activation of SII with functional imaging and electrophysiological methods (Talbot
et al. 1991; Casey et al. 1994; Coghill et al. 1994; Oshiro et al. 1998; Xu et al. 1997;
Davis 2000; Druschky et al. 2000; Kanda et al. 2000; Treede et al. 2000), mostly
bilaterally. The SII neurons get their mostly bilateral afferences from the lateral
thalamic nuclei partly different from those projecting to SI, namely from the VPI
and the dorsal part of the Po, thus indicating an anatomical and functional segre-
gation of the SI- and the SII-nociceptive pathways. Additionally, SII is reciprocally
connected to SI. Nevertheless, the function of SII in pain processing is still unclear.
Lenz et al. (1997) proposed that SII may play a key role in relaying nociceptive in-
formation to the IC and the temporal lobe limbic structures, providing fast access
to pain-related learning and memory.

Insular Cortex Functional imaging studies showed increased blood flow of the
insular cortex during painful stimuli, either contralaterally or bilaterally (Casey
et al. 1994; Coghill et al. 1994; Andersson et al. 1997; Derbyshire and Jones 1998;
Treede et al. 1999, 2000; Davis 2000; Sawamoto et al. 2000). It is not yet clear whether
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the anterior (Brodmann’s area 13) or posterior insular cortices (Brodmann’s areas
14–16) are mainly involved in pain perception (Craig 2003c, d). Moreover, patients
with lesions of the IC had an elevated pain tolerance and loss of or inadequate
emotional reactions to painful stimuli although recognizing pain (asymbolia for
pain; Bertier et al. 1988, Greenspan et al. 1999). The IC gets thalamic afferents
from the VMpo, the mediodorsal (MD), and intralaminar thalamic nuclei (Craig
et al. 1994; Craig 1996a) and from SII, and projects to limbic structures such as the
amygdala and the perirhinal cortex. Also, these connections speak in favor of the
importance of the IC in the motivational-affective aspect of pain and in autonomic
reactions to noxious stimuli.

Anterior Cingulate Cortex The cingulated cortex is involved in cognition and emo-
tion. Both functions are located in different anatomical subareas. The subarea
involved in the motivational-affective aspect of pain is most probably located in
the rostral part of Brodmann’s area 24 and the adjoining area 32. Patients with
lesions of the ACC lost the emotional reactions to painful stimuli although pain
could be further correctly localized. In the ACC, pain-receptive neurons were found
with large, often bilateral receptive fields not allowing localizing information. Sig-
nificantly increased functional activity of the ACC was robustly found in many
imaging studies (Casey et al. 1994, 1996; Coghill et al. 1994; Derbyshire and Jones
1998; Bromm et al. 2000; Casey 2000; Davis 2000; Hudson 2000) mostly described
in the hemisphere contralateral to the painful stimulus. The ACC gets thalamic af-
ferents from the VMpo, the MD, and intralaminar nuclei, from the IC and PC, and
projects to the amygdala, the mediodorsal thalamic nuclei, the PAG, motor nuclei
of the brainstem, and the IC thus being involved in motivational-affective aspects
of pain and in conditioned fear reaction. As the ACC can modulate the affective
aspect of sensory perception by pain expectation it is also involved in mediating
the affective components associated with attention and anticipation of upcoming
noxious stimulation (Sawamoto et al. 2000). In this respect, it is interesting to note
that hypnotic suggestion can selectively alter the unpleasantness of noxious stim-
uli in parallel with reduced pain-evoked activity within the ACC (Rainville et al.
1997). Thus the ACC may have a pivotal role in interrelating attentional functions
with that of establishing emotional valence and response properties (Price 2000).

PrefrontalCortex There are still some doubts with respect to the function of the PC
in pain perception. The PC is rather believed to function as a supervisory attention
system (Andersson et al. 1997) and to be correlated with the cognitive-evaluative
aspect of pain. Functional imaging studies, however, described activation of parts
of the PC (probably Brodmann’s areas 9 and 10) during the painful stimuli. Inter-
estingly, mostly the right hemisphere showed increased activity irrespective of the
side of stimulation (Derbyshire and Jones 1998). Patients with unilateral lesions
of the PC show changes in both the sensory-discriminative and the motivational-
affective aspects of pain. The PC gets thalamic afferents from the VMpo, the MD
and intralaminar nuclei, and projects to the MD and the ACC.
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Sewards and Sewards (2002) proposed that separate sensory and hedonic rep-
resentations exist in each of the primary structures of the somatosensory system,
including brain stem, thalamic, and cortical components. They think that in rodent
primary somatosensory cortex, a hedonic representation can be found in laminae
Vb and VI. In carnivore and primate primary and secondary somatosensory cor-
tical areas no hedonic representation exists, and the activities of neurons in both
areas represent the sensory aspect exclusively. However, there is a hedonic repre-
sentation in the posterior part of the insular cortex, bordering on the retroinsular
cortex, that receives projections from the thalamic areas in which hedonics are rep-
resented. According to Sewards and Sewards (2002), these segregated components
are related to the subjective awareness of pain.

MotorCortex Interestingly, motor cortex stimulation has been shown to be benev-
olent for chronic pain suppression. Nearly 300 cases of motor cortex stimulation
have been published. Although the results were variable, it was applied successfully
in central post-stroke pain and in trigeminal neuralgia. The electrode is placed
epidurallyover theprecentral gyrus.Bystimulating theprecentral cortex, increased
neuronal activity was found in the ventroanterior and ventrolateral nuclei of the
thalamus. Computer modeling can predict the immediate bioelectrical effects of
the motor cortex stimulation (see Manola et al. 2005 for overview and modeling).

2.8
Descending Modulatory Pathways

The communication of Reynolds (1969) that he was able to perform abdominal
surgery in rats without chemical anesthesia, but instead stimulation of the mid-
brain PAG, was followed by a veritable boom of investigations on the descending
analgesia systems. The considerable body of literature was reviewed by Basbaum
and Fields (1984), Willis (1984), Besson and Chaouch (1987), Willis and Coggeshall
(1991), Light (1992), Wang and Nakai (1994), Beitz (1995), Stamford (1995), Willis
et al. (1995), Willis and Westlund (1997), Fields and Basbaum (1999), Fields (2000),
Lima and Almeida (2002), and Suzuki et al. (2002). Therefore, only a concise review
will be presented here.

The efferent connections of the PAG to the SC are indirect. The PAG neurons
project to the serotoninergic raphe nuclei of the medulla oblongata and to the
noradrenergic nuclei in the dorsolateral pons (Van Bockstaele et al. 1991; Bajic and
Proudfit 1999). Both the catecholaminergic and indolaminergic neuronal groups
project heavily to the SC and to the STN.

From the serotoninergic groups, the largest contribution of raphespinal con-
nections is provided by nucl. raphe magnus, followed by the pallidus, obscurus and
pontis raphe nuclei (Bowker et al. 1981, 1983; Steinbusch 1981; Willis 1984; Kwiat
and Basbaum 1990; Jones and Light 1990, 1992; Jones et al. 1991; for the topography
of the raphe nuclei in the human brainstem, see Törk and Hornung 1990). The
serotoninergic nucl. raphe dorsalis, located in the midbrain, also participates in
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antinociception, however not with a direct raphespinal connection; it is rather
involved both in ascending and descending pain inhibitory systems (Wang and
Nakai 1994). Polgar et al. (2002) showed that the serotonin-containing axons in
the SC selectively innervate the lamina I projection neurons that possess the NK1
receptor.

The noradrenergic connections to the SC arise in the locus coeruleus, sub-
coeruleus nucleus, and nucleus of Kölliker-Fuse (Westlund and Coulter 1980; Hol-
stege and Kuypers 1982; Stevens et al. 1982; Westlund et al. 1983, 1984; Kwiat and
Basbaum 1990; Clark and Proudfit 1991; Yeomans and Prodfit 1992; West et al.
1993; Zhang C et al. 1997; Tsuruoka et al. 2003). The projections are bilateral,
predominantly crossed, and mainly laminae I, II, and V are innervated. Zhang C
et al. (1997) stated that there is a predominantly inhibitory role on nociceptive
transmission at the SC level by descending noradrenergic fibers, and a facilita-
tory role on the responsiveness of the thalamic parafascicular nucleus to noxious
inputs by ascending locus coeruleus axons. Tsuruoka et al. (2003) found out that
a unilateral inflammation of the hind paw in rats results in bilateral activation of
locus coeruleus, followed by descending modulation.

The neurochemistry of the transmitters and receptors in the multineuronal
antinociceptive pathway arising in the PAG is very complex (Bowker et al. 1983;
Cui et al. 1999). Along with serotonin and noradrenaline, also endogenous opiates
and the amino acids glutamate, GABA, and glycine are clearly involved (Willis
1985; Willis and Coggeshall 1991; Stamford 1995; Willis and Westlund 1997; Lima
and Almeida 2002).

The pretectal area is regarded as a part of the visual system. However, the
connections of the anterior pretectal nucleus suggest that it is a part of the so-
matosensory system (Berkley et al. 1986; Wiberg et al. 1987; Foster et al. 1989;
Yoshida et al. 1992; Terenzi et al. 1995). Stimulation in the anterior pretectal nu-
cleus results in long-lasting antinociception without aversive side effects (Rees and
Roberts 1993). Again, the antinociceptive impulses, arising in the anterior pretec-
tal nucleus, are mediated via descending multineuronal chains, involving the deep
mesencephalic nucleus, the pedunculopontine tegmental nucleus (the cholinergic
Ch5 group of Mesulam et al. 1984, 1989), and the noradrenergic and serotoninergic
neurons in the pons and medulla (Terenzi et al. 1991, 1992, 1995; Wang et al. 1992;
Zagon et al. 1995).

In human patients, stimulation of the VPM and VPL thalamic nuclei is followed
by a reduction in pain in postherpetic neuralgia (PHN), thalamic syndrome, and
facial anesthesia dolorosa (Turnbull et al. 1980). Gerhart et al. (1983) found that
stimulation in the VPL causes an inhibition of primate STT neurons. Such inhi-
bition might result from antidromic activation of STT axons that emit collaterals
to nucl. raphe magnus and to the PAG. Also, the stimulation of the SI region of
the monkey cerebral cortex causes the inhibition of STT neurons (Yezierski et al.
1983). However, the cortical inhibition acts mainly on the responses to innocuous
mechanical stimulation, rather reducing nociceptive responses (Yezierski et al.
1983; Zhang D et al. 1991).
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Although the focus of investigation has been on the inhibitory modulation of
spinal nociceptive processes, data are accumulating that brain stem stimulation
can also enhance spinal nociceptive processes (Porreca et al. 2002). Fields (1992)
suggested that descending facilitatory influences could contribute to chronic pain
states. Later, Urban and Gebhart (1999) stated that such influences were important
to the development and maintenance of hyperalgesia. Several studies indicate that
the rostroventromedial medulla is a crucial relay in the persistence of descending
facilitation of noxious stimuli (Porreca et al. 2002).

The spinal neurons that express the NK1 receptor appear to play a pivotal role
in regulating descending systems that modulate activity of nociceptive dorsal horn
neurons (Mantyh and Hunt 2004; Khasabov et al. 2005).

3
Neuropathic Pain

While the acute nociceptive pain is a necessary defense mechanism that warns
against damage to the organism, chronic pain can be so deleterious that patients
not rarely prefer death. The nociceptive (“good”) pain is essential for survival
but the chronic (“bad”) pain serves no defensive, helpful function. There is no
biological advantage but only suffering and distress. Acute pain is produced by the
physiological functioning of the normal nervous system. The chronic, maladaptive
pain typically results from damage to the nervous system (peripheral nerve, PA
neuron, CNS) and is known as neuropathic pain (Basbaum 1999; Dworkin and
Johnson 1999; Woolf and Salter 2000; Bridges et al. 2001; Hunt and Mantyh 2001;
Zimmermann 2001; Scholz and Woolf 2002; Woolf 2004; Tsuda et al. 2005).

The spectrum of NP covers a variety of disease states and presents in the clinic
with a variety of symptoms (Woolf and Mannion 1999; Bridges et al. 2001). Several
etiologies of peripheral nerve injury might result in NP: PHN (Dworkin et al. 1997;
Dworkin and Johnson 1999), traumatic injury (Schwartzman and Maleki 1999;
Rodriguez-Filho et al. 2003), phantom limb pain (Nicholajsen and Jensen 2001),
diabetes (Boulton and Ward 1986; Calcutt 2002; Khan et al. 2002; Simmons and
Feldman 2002; Kapur 2003; Spruce et al. 2003), and malignancy (Schwei et al. 1999;
Regan and Peng 2000; Cain et al. 2001; Farrar and Portenoy 2001; Clohisy and
Mantyh 2003; Sabino et al. 2003). Despite its varied etiologies, NP conditions share
certain clinical characteristics: spontaneous, continuous pain, usually of a burn-
ing character; paroxysmal (shooting, lancinating) pain; evoked pain to various
mechanical or thermal stimuli such as allodynia and hyperalgesia. Hyperalgesia
is an increased pain response to a suprathreshold noxious stimulus and is a result
of abnormal processing of nociceptor input. Allodynia is the sensation of pain
elicited by a non-noxious stimulus and can be produced in two ways: by the action
of low threshold myelinated Aβ-fibers on an altered CNS, and by a reduction in the
threshold of nociceptive fibers in the periphery. The fact that pain is often located
in hypoesthetic or anesthetic areas may appear paradoxical and implies that NP
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not only depends on the genesis of nociceptive messages from nociceptors, but
may depend on other mechanisms as well, in contrast to nociceptive pain (Attal
and Bouhassira 1999).

That terminals of uninjured PA neurons terminating in the DH can collater-
ally sprout was first suggested by Liu and Chambers (1958), but was disputed by
numerous investigators (Mannion et al. 1996; Wilson and Kitchener 1996). Woolf
and colleagues presented a series of reports on the topographic reorganization of
the SC PAs following chronic NP (Fitzgerald et al. 1990; Woolf et al. 1992, 1995;
Coggeshall et al. 1997, 2001; Doubell et al. 1997, 1999; Mannion et al. 1998; Man-
nion and Woolf 2000; Tandrup et al. 2000; Woolf and Salter 2000; Decosterd et al.
2002; Sabino et al. 2003). Peripheral nerve injury results in a rearrangement of the
highly ordered laminar termination of PAs within somatotopically appropriate re-
gions of the DH. As described above, large myelinated mechanoceptive Aβ-axons
normally terminate in laminae III–VI, thin myelinated nociceptive Aδ-fibers in
laminae I and V, and the thinnest, unmyelinated C-axons in lamina II. Periph-
eral axotomy causes long-lasting sprouting of A-fibers into lamina II, an area in
which they do not normally terminate. Intracellular injections of tracers show
that at least some of these fibers are Aβ-afferents from lamina III. This A-fiber
sprouting into lamina II appears to be a result of at least two phenomena. The
first is the presence of vacant synaptic sites within the superficial laminae follow-
ing the transganglionic degeneration of C-axons; the second is the induction of
a regenerative capacity in the injured neurons (Mannion et al. 1996). Intrathecally
supplied neurotrophic factors, which may act as C-fiber “therapy,” can prevent
A-fiber sprouting (Bennett 1994). The functional importance of A-fiber sprout-
ing is that lamina II begins to receive information about non-noxious stimuli.
This information may be misinterpreted by the CNS as noxious: an anatomical
substrate for mechanical allodynia (Woolf and Doubell 1994; Attal and Bouhas-
sira 1999; Woolf and Mannion 1999; Bester et al. 2000). The findings of Woolf
and colleagues concerning sprouting of A-axons in the superficial laminae were
confirmed by others (Koerber et al. 1999; Nakamura and Myers 1999; Kohama
et al. 2000), and several reports on regenerative sprouting following nerve injury
also appeared (McMahon and Kett-White 1991; Cameron et al. 1992; Florence et
al. 1993; LaMotte and Kapadia 1993; Florence and Kaas 1995; Darian-Smith and
Brown 2000; Darian-Smith 2004). On the other hand, Tong et al. (1999) demon-
strated that in monkey and rat, a subpopulation of mainly small PA neurons
acquires the capacity to take up certain tracers (cholera toxin) after axotomy,
a capacity normally not associated with these SG neurons. Thus, after peripheral
axotomy, cholera toxin is a marker not only for large but also for small (noci-
ceptive) neurons, thus possibly also for both myelinated and unmyelinated PAs.
According to Blomqvist and Craig (2000), such phenotypic changes mean that
axonal sprouting may be less pronounced than originally assumed. It is clear that
both peripheral and central pathophysiological mechanisms contribute to PHN
pain. Some PHN patients have abnormal sensitization of unmyelinated cutaneous
nociceptors (irritable nociceptors) and minimal sensory loss. Other patients have
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pain associated with small fiber deafferentation. In such patients, pain and tem-
perature sensations are profoundly impaired but mechanical stimuli can produce
severe pain (allodynia). In these patients, allodynia may be due to the forma-
tion of new connections between non-nociceptive, thick (Aβ) PAs and central
pain transmission neurons. The third class of patients complain of severe sponta-
neous pain without hyperalgesia or allodynia, and according to Fields et al. (1998),
such patients presumably have lost both large- and small-diameter fibers, and the
pain is likely due to increased spontaneous activity in deafferented central neu-
rons and/or reorganization of central connections. The central sensitization is an
activity-dependent functional plasticity that results from activation of different
intracellular kinase cascades leading to the phosphorylation of key membrane re-
ceptors and channels, increasing synaptic efficacy (Woolf and Mannion 1999; Ji
and Woolf 2001).

The experiments with animal models of NP (Bennett and Xie 1988; Seltzer et
al. 1990; Kim and Chung 1992; Chacur et al. 2001; Decosterd and Woolf 2000;
Khan et al. 2002; Mantyh et al. 2002; Rodriguez-Filho et al. 2003) have considerably
increased our knowledge on the neuroanatomical and neurochemical plasticity
in the CNS. Sugimoto et al. (1989) reported that following a ligature around the
ischiadic nerve in rats, there was a bilateral increase in the number of neurons in
the lumbar region of the SC showing signs of degeneration (pyknosis and hyper-
chromatosis); however, the ipsilateral increase was significantly greater. They also
noted that daily doses of strychnine in neuropathic animals significantly increased
the incidence of degenerative neurons, suggesting that excessive excitation, which
can be exacerbated by strychnine-induced disinhibition, is one mechanism un-
derlying the appearance of such cells. Further, Sugimoto et al. (1990) observed
massive transsynaptic degeneration of interneurons in lamina II, and suggested
that these neurons die through an excitotoxic mechanism.

The sympathetic nervous system probably plays a role in a relatively low sub-
set of patients with PHN (Nurmicco et al. 1991; Sato and Perl 1991; Jänig 1996;
Attal and Bouhassira 1999; Wu et al. 2000; Kress and Fickenscher 2001). The nor-
mal PA pseudounipolar neurons (except for the mesencephalic nucleus of the
trigeminal nerve) receive no synaptic input (Zenker and Neuhuber 1990; Willis
and Coggeshall 1991). However, following peripheral nerve lesion a sprouting of
sympathetic noradrenergic fibers takes place (McLachlan et al. 1993; Chung et al.
1996, 1997; McLachlan and Hu 1998; Ramer et al. 1999). The sympathetic fibers,
which normally innervate the blood vessels in the ganglia, now form basket-like
structures around PA somata without establishing synaptic contacts with them, as
is usual in normal tissues (autonomic nonsynaptic terminals). Zhou et al. (1999)
suggest that satellite cell-derived nerve growth factor and neurotrophin-3 are in-
volved in the induction of the sympathetic sprouting. However, the sympathetic
sprouts predominantly form pericellular baskets around the large SG neurons that
do not transmit pain information (Ramer et al. 1998; Zhou et al. 1999), and the
density of sympathetic sprouts in the SG does not correlate with NP intensity
(Baron et al. 1999). Sympathectomy has been shown to alleviate allodynia in an-
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imal models, some patients with causalgia respond positively to sympathicolytic
procedures, and injection of epinephrine in a stump neuroma may induce in-
tense pain (Chabal et al. 1992; Choi and Rowbotham 1997; Attal and Bouhassira
1999). Similarly, intracutaneous applicationsof adrenaline andphenylephrinehave
been shown to increase spontaneous pain and allodynia in the affected area of
PHN patients (Choi and Rowbotham 1997). However, most of the patients do not
demonstrate significant benefit from various sympathicolytic procedures (Nur-
mikko et al. 1991; Kingery 1997; Attal and Bouhassira 1999; Ochoa 1999; Ochoa
and Verdugo 2001; Mailis and Furlan 2003), suggesting that the role of the sym-
pathetic nervous system may have been overemphasized. Moreover, Mailis and
Furlan (2003) point out that the complications of the sympathicolytic procedure
may be significant, in terms of both worsening the pain or producing a new pain
syndrome.

Along with neuroanatomical plasticity, the NP is accompanied with sometimes
profound neurochemical plasticity, especially in the PAs. Experimental studies
(Abbadie et al. 1996; Basbaum 1999; Schwei et al. 1999; Hunt and Mantyh 2001;
Gardell et al. 2003; Hains et al. 2003a, b) strongly suggested that often there are
distinct differences in the neurochemical changes that occur in the PA neurons
and in the SC in neuropathic, inflammatory, and cancer pain states. In NP models
(injuring the spinal nerve by means of cutting, crushing, or ligating) in the PA
neurons there is a down-regulation of CGRP, SP, isolectin B4, and fluoride-resistant
acid phosphatase, combined with up-regulation of glutamate, galanin, NPY, VIP,
dynorphin, and GAP-43 (Jessel et al. 1979; Bennett et al. 1989; Noguchi et al. 1990;
Cameron et al. 1991; Villar et al. 1991; Donnerer and Stein 1992; Al-Ghoul et al.
1993; Zhang X et al. 1993a, 1995a, b; Hökfelt et al. 1994; Ma and Bisby 1998; Miki et
al. 1998; Honore et al. 2000b; Blakeman et al. 2003). On the other hand, in a model
of persistent inflammatory pain, Honore et al. (2000b) encountered increases in SP
and CGRP, and Segond von Banchet et al. (2002) showed increased up-regulation
of neurokinin 1 and bradykinin 2 receptors in DRG neurons subsequent to antigen-
induced arthritis.

In animal models of NP, a significant up-regulation of NOS was found in the PA
neurons (Verge et al. 1992; Zhang X et al. 1993b; Steel et al. 1994; Choi et al. 1996;
Shi et al. 1998; Luo et al. 1999). In addition, Gordh et al. (1998) encountered NOS
up-regulation also in the SC gray matter, ipsilateral to the ligated spinal nerve.
In all probability, also carbon monoxide plays a role in nociceptive processes,
since Gordh et al. (2000) found an up-regulation of its synthesizing enzyme, the
heme oxygenase. Zhang X et al. (1998) suggested that one factor underlying the
insensitivity of NP to opioid analgesics could be due to a marked reduction in the
number of mu-opioid receptors both in the axotomized primary sensory neurons
and in the lamina II interneurons. Furthermore, after sciatic nerve ligation in the
mouse Narita’s group (Narita et al. 2000, 2004) demonstrated an up-regulation of
various protein kinase C isoforms in the superficial layers of the DH, hypothesizing
that these molecules are implicated in the sensitization of synaptic transmission
associated with persistent pain.
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Actual studies in neuropathic rats using the chronic constriction injury (CCI)
model of the sciatic nerve reveal that important changes also take place in the
respective muscles (Gradl et al. 2005). Muscles with impaired innervation react
with apoptosis of their fibers. However, at present it is unclear how apoptosis of
the muscle tissue contributes to neuropathic pain.

Furthermore, in the CCI model the invasion of T lymphocytes into the injured
nerve was found to be correlated with neuropathic pain, whereas athymic nude
rats, which lack mature lymphocytes, develop a significantly reduced allodynia
and thermal hyperalgesia compared to normal rats (Moalem et al. 2004). Transfer
of cytokine-producing T lymphocytes from CCI rats into nude rats enhanced pain
hypersensitivity in the recipients, speaking in favor of the T cell immune response
as a potential and important target for the treatment of NP (Moalem et al. 2004).

3.1
Central Changes Consequent to Peripheral Nerve Injury

Peripheral nerve injury in humans may result in clinical pain, including enhanced
responsiveness to noxious stimuli (hyperalgesia) and the sensation of pain in re-
sponse to innocuous stimuli (allodynia, Willis 1992). The two phenomena may in-
volve different mechanisms, but an injury-triggered discharge in small-caliber PA
fibers leading to hypersensitivity of DH neurons may occur at least at initial stages
of both (McMahon et al. 1993; Thompson et al. 1993; Woolf and Doubell 1994). This
increased excitability can be blocked by glutamate antagonists (Woolf and Thomp-
son 1991; Liu and Sandkühler 1995), supporting release of glutamate by these fibers
and a primary role for glutamatergic transmission in hypersensitivity (Willis 2001,
2002). Thus, better understanding of the mechanisms of hypersensitivity may be
gained by studying the effects of peripheral injury on glutamate and its receptors.
Glutamate receptors in the SC are down-regulated bilaterally following unilateral
inflammation of the paw in rats, possibly as a result of indirect effects of the lesion
(Pellegrini-Giampietro et al. 1994; Kus et al. 1995). On the other hand, immuno-
cytochemical evidence suggests ipsilateral up-regulation of AMPA receptors in
superficial laminae of the DH following chronic nerve ligation (Harris et al. 1996).
While these apparent discrepancies may be explained on the basis of differences
in the experimental models, none of these studies provides direct evidence that
changes in glutamate receptors occur at synapses of PA terminals. Recent advances
in postembedding immunocytochemistry made it possible to address this question
at the first brain synapse (Phend et al. 1995; Kharazia et al. 1996; Matsubara et al.
1996; Popratiloff et al. 1996a).Thepresent study is focusedon the lamina II, because
this is the region where the basic mechanisms responsible for the processing of no-
ciceptive stimuli resideandwhereperipheralfibers involved incentral sensitization
after injury terminate (Woolf and Doubell 1994). Section of a peripheral nerve was
chosen as the experimental model, because this procedure is known to result in hy-
perexcitability of DH cells, perhaps triggered by ectopic discharge at the neuroma
or in SG (Devor 1994), and because it is highly reproducible from animal to animal.
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Changes in AMPA Receptor Expression in Substantia Gelatinosa After Sciatic Nerve Le-
sion Sections reacted for FRAP exhibited a dense band of reaction product in the
superficial dorsal horn on the control side (Popratiloff et al. 1998a). A portion of
this band, corresponding to the representation of the sciatic nerve, was attenuated
or absent on the lesioned side. In contrast to this prominent effect, only modest
changes were seen in immunoreactivity for GluR2/3 on the two sides using con-
ventional confocal microscopy. These included weakly increased staining intensity
for somata, dendrites and poorly defined neuropil on the lesioned side. The mean
intensity of immunofluorescence over lamina II on the lesioned side (as measured
in ten 25-µm-thick sections from two rats) was only 7% greater than that on the
control side. However, more detailed image analysis revealed significant changes in
staining, especially a substantial increase in the number of very bright pixels on the
lesioned side (Popratiloff et al. 1998a). Though consistent with an up-regulation of
glutamate receptor protein, it was not possible from LM data to establish whether
the increase was primarily in somata (perhaps reflecting increased biosynthesis),
dendrites (reflecting increased transport), or at the postsynaptic membrane (re-
flecting functional glutamate receptors). At the EM, structural details were clearly
visible even in the absence of osmium, allowing identification of glomerular ter-
minals at the end of PA fibers. Myelin whorls and glycogen particles were observed
on the lesioned side, but not on the control side (Kapadia and LaMotte 1987; Zhang
X et al. 1995a). Another change apparent on the lesioned side involved glomerular
terminals that in control material have dark axoplasm, few mitochondria and clear
vesicles of irregular size. These terminals correspond to the central element of type
C1 glomeruli (Figs. 1, 3A; Ribeiro-da-Silva and Coimbra 1982, 1984). After periph-
eral nerve lesion, these terminals can no longer be identified (Castro-Lopes et al.
1990). Other glomerular terminals in superficial DH with clear axoplasm, numer-
ous mitochondria, and clear vesicles of regular size, corresponding to the central
element of type C2 glomeruli (Figs. 1, 19C,D; Ribeiro-da-Silva and Coimbra 1982),
are likely to originate from small-caliber myelinated PA fibers. Quantitative analy-
sis was performed on these terminals, since they were recognizable on the operated
side as easily as on the control side. A larger number of particles coding for AMPA
receptor subunits was evident at glomerular synapses on the lesioned (Fig. 19C) as
compared to the control side (Fig. 19D). To verify these qualitative observations,
we counted gold particles at synapses made by C2 terminals on the two sides in
the three animals used for EM. In each of the animals, labeling at synapses of C2
terminals was significantly increased on the injured side, with ratios ranging from
1.35 to 1.72. A slight (7%–8%) increase in the length of the synaptic active zone
may have contributed to this increase, but most of the increased labeling could
be attributed to increased receptor density, as indicated by the density of gold
particles per micrometer of synaptic contact. Nonparametric analysis confirmed
that receptor density was significantly elevated on the injured side (p≤0.01, Mann-
Whitney U-test). These data established AMPA receptor up-regulation at synapses
of PAs ipsilateral to the lesion in each of the animals studied. Might this result arise
from intra-animal variability? To address this issue, we further analyzed the data
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with a paired t-test, comparing the mean number of gold particles/synapse on the
lesioned and unlesioned sides for the three animals. Notwithstanding inevitable
variations in tissue processing, the mean labeling on lesioned and control sides for
each animal was very consistent in our material, thus making it possible to reject
the null hypothesis that the observed effect might arise from random variations
among animals (p>0.05, two-sided t-statistic).

We took advantage of the characteristic morphology of different types of
synapses in superficial laminae to address whether changes in glutamate receptors
after peripheral injury are confined to synapses of PAs. Besides glomerular ter-
minals, superficial laminae contain nonglomerular, dome-shaped terminals filled
with clear, round vesicles, and making single asymmetric synaptic contacts. Most
of these are glutamatergic terminals originating from interneurons or descending
fibers (Rustioni and Weinberg 1989). We counted gold particles associated with
synapses made by dome-shaped terminals (Figs. 19A,B) randomly selected from
lamina II in the same grids used for counts of synapses at C2 terminals. The mean
number of gold particles was not significantly changed: synapses made by dome-
shaped terminals on the injured side had an average of 0.94 times as much labeling
as synapses made by dome-shaped terminals on the control side. These results
imply that the increase in GluR2/3 is selective for terminals of PAs.

Considerations The effects of nerve injury upon the first synaptic link in the SC
have been studied in many experimental models, and reported in a vast literature.
The reaction to peripheral injury consists in part of trophic changes related to
attempts at regeneration (Sebert and Shooter 1993; Hökfelt et al. 1994); however,
the altered sensations associated with injury are likely to involve neurotransmitter
mechanisms. The present results are of special interest, as glutamate is the main
transmitter released at synaptic sites of PA terminals in the spinal DH (Jessell et
al. 1986; Valtschanoff et al. 1994). Relatively little information from microscopic
evidence has been published on glutamate and its receptors after peripheral nerve
injury. A modest increase in immunocytochemical staining for glutamate has been
reported in the DH, 7–14 days after chronic constriction injury of the sciatic nerve
(Al-Ghoul et al. 1993). This is in contrast with the decrease in staining, after the
same type of injury or after nerve section, of neuropeptides released by PA fibers,
e.g., substance P and CGRP (Bennett et al. 1989; Al-Ghoul et al. 1993; Hökfelt et al.
1994; Kajander and Xu 1995). LM evidence suggests that neuropeptide receptors
are up-regulated in the postsynaptic target after peripheral injury (Schäfer et al.
1993; McCarson and Krause 1994; Croul et al. 1995; Abbadie et al. 1996), whereas
the literature on glutamate receptors is equivocal (Pellegrini-Giampietro et al. 1994;
Croul et al. 1995; Kus et al. 1995; Harris et al. 1996; LaMotte et al. 1996). A modest
increase in mean LM staining was observed in the present study; image analysis
revealedmoresubstantial increaseswithinstronglyfluorescent spots. Someof these
were somata, perhaps reflecting increased biosynthesis, and others were within
the neuropil, suggesting increased staining at synapses. The latter possibility was
confirmed by our EM evidence that peripheral nerve injury induced an increase in
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the number of glutamate receptors at synapses of small-caliber PAs terminating in
the substantia gelatinosa. Because negative synapses were not included, it may be
argued that the increased counts of gold particles shown here may have resulted in
one or two gold particles at synapses that might otherwise be negative on the side
of the lesion. As the results, however, demonstrate increased counts in strongly
immunopositive synapses, the exclusion of negative synapses from the counts
would be expected to reduce rather than increase the difference in gold particle
counts between the control and operated sides. Though our data indicate that
the increase was mainly in receptor density, we also detected a modest increase in
active zone length. Even if this increase was confirmed in a larger group of animals,
both increased length and density would lead to a greater number of postsynaptic
receptors. The results are unlikely to reflect selective survival of those synapses that
normally express receptors at high density, because, at variance with C1 terminals,
we did not see signs of loss of C2 terminals. We chose to use material stained
for an antibody that recognizes both GluR2 and GluR3, because this antibody
gives intense staining in lamina II. Moreover, C2 terminals, clearly recognizable
by their morphology and well preserved after peripheral injury, have a distinct
affinity to label with GluR2/3 (Popratiloff et al. 1996a). In the superficial laminae,
the antibody for GluR2/3 appears to stain primarily the GluR2 subunit (Popratiloff
et al. 1996a), since the GluR3 subunit is only sparsely present there (Furuyama
et al. 1993; Henley et al. 1993; Tölle et al. 1993, 1995; Pellegrini-Giampietro et al.
1994). LM evidence suggests that peripheral injury may result in up-regulation
of GluR1 in superficial laminae of the DH (Harris et al. 1996; Popratiloff et al.
1996b). However, changes in glutamate receptors may be limited to those of the
AMPA type. Binding density for ligands selective for NMDA receptors was virtually
unchanged after dorsal rhizotomy (Croul et al. 1995). Although we show here that
glutamate receptors at synapses of intrinsic origin in superficial laminae are not
up-regulated, we cannot exclude changes in receptors at terminals that are not
glutamatergic. For instance, the number of neurons that are immunopositive for
GABAin theDHdecreases 2weeksafter sciaticnerve section.Concomitant changes
in GABA receptors may occur at synapses upon PA terminals (Castro-Lopes et al.
1993, 1995). Increased efficacy of excitatory synaptic transmission is supported
by an increase in synaptic field potentials recorded from the DH ipsilateral to
peripheral neuropathy (Colvin et al. 1996), and the similarity in the time course
of hyperalgesia and up-regulation of AMPA receptors in the superficial laminae
after chronic constriction injury (Harris et al. 1996). Up-regulation of AMPA
receptors has been implicated as a mechanism for increased synaptic efficacy
(Maren et al. 1993; Isaac et al. 1995). The present report provides the first direct
evidence for increased receptor protein at the synapse. Because AMPA receptors
in substantia gelatinosa are mainly of the high-efficiency “flip” type (Tölle et
al. 1995), an increase in their concentration postsynaptic to PA terminals may
be the main mechanism available for increasing synaptic efficacy in this system.
This increase may contribute to central sensitization and neuropathic pain in
humans.
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This monograph also shows up-regulation of AMPA receptor proteins at the
synapses. The concentration increase at primary afferent synapses is presumably
the explanation for increased synaptic efficacy in this system.

Fig. 19 A–E AMPA receptor subunits GluR2/3 labeling in PA terminals of the substantia
gelatinosa of rat DH 2 weeks after sciatic nerve section. On the operated side, average
labeling density does not change in the active zones sampled from small terminals likely
originating from neurons in the spinal cord A compared to control side B. Average number
of gold particles coding GluR2/3 increases at the active zones of C2 glomeruli, which is due
to more frequently observed active zones with more gold particles on operated side E1, E2,
and C, compared to the control side D. Small arrows—glycogen granules on injured side,
arrows—strongly labeled active zones. Scale bars: A and B, 200 nm; C, 300 nm; D, E2 and
E1, 250 nm (Adapted with permission from Popratiloff et al. 1998a)
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3.2
The Role of Glial Cells

There is growing evidence that both in the periphery and in the CNS, the glial
cells play a modulatory role in the response to inflammation and injury, and in
processes modifying nociception (Millan 1999; Watkins et al. 2001, 2003; Wieseler-
Frank et al. 2004). The microglia is activated by NP (Eriksson et al. 1993; Honore et
al. 2000; Tsuda et al. 2005). The substances derived from glial cells exert autocrine
and paracrine effects and are able to globally effect activity in the SC (Aldskogius
and Kozlova 1998; Minghetti and Levi 1998, Milligan et al. 2003, 2004; Watkins
et al. 2003; Verge et al. 2004). According to Watkins et al. (2001) and to Watkins
and Maier (2002b), the findings on the glial function—particularly that the glia
expresscharacteristics incommonwith immunecells—suggestanew,dramatically
different approach to pain control, as all clinical therapies are focused exclusively
on altering neuronal, rather than glial function.

Glia came to attention following the observations of Garrison et al. (1991) that
following constriction of the sciatic nerves, the astrocytes in the lumbar SC display
an increased staining for glial fibrillary acidic protein. The microgliocytes and
astrocytes in the DH are presently known to show up-regulated expression of acti-
vation markers in response to different conditions that produce hyperalgesia, such
as injury of the peripheral nerve (Colburn et al. 1999; DeLeo and Colburn 1999;
Hashizume et al. 2000; Stuesse et al. 2000; Inoue et al. 2004; Ji and Strichartz 2004;
Tsuda et al. 2005), subcutaneous formalin injection (Fu et al. 1999), experimental
peritonitis (Watkins and Maier 2002a), experimental bone cancer (Schwei et al.
1999), SC injury (Popovich et al. 1997), and immune SC activation (Milligan et
al. 2001). Increases in NGF and BDNF mRNA occur in Schwann cells and satellite
cells in SG during inflammation of peripheral tissues (Cho et al. 1997), suggesting
that by altering the expression and release of trophic factors, the Schwann cells
and SG satellite cells may modulate nociceptive signaling. Peripheral axotomy in-
duces a significant increase in NGF mRNA in the SG satellite cells, enhancing the
pathologic sympathetic sprouting (Zhou et al. 1999). Other satellite cell-derived
substances that might have demonstrable effects consistent with enhanced pain
include glial cell-derived neurotrophic factor (GDNF), BDNF, neurotrophin-3, and
proinflammatory cytokines (Watkins and Maier 2002a). The endothelins are pep-
tides that have a diverse array of functions mediated by two receptor subtypes,
the endothelin A and B receptors (Pomonis et al. 2001). Endothelin A receptor
expression may play a role in signaling acute pain or NP, whereas endothelin B
receptor expression may be involved in the transmission of chronic inflammatory
pain. Pomonis et al. (2001) found the A receptor in a subset of small PA cells;
however, the endothelin B receptor was not seen in the PA neurons but rather in
the satellite cells and in nonmyelinating Schwann cells. These data indicate that the
endothelins can have direct, nociceptive effects on the peripheral sensory nervous
system and that peripheral glia may be directly involved in signaling nociceptive
events in peripheral tissues. Madiai et al. (2002) examined the expression of fi-
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broblast growth factor-2 (FGF-2) following ligation of lumbar spinal nerves. They
found that FGF-2 was up-regulated both in PA neurons and in the SC astrocytes,
suggesting neurotrophic functions of this growth factor following peripheral nerve
lesion and possibly in astrocyte-related maintenance of pain states.

Watkins et al. (2001) recall the strange observation in the AIDS clinical litera-
ture that most patients suffer from chronic pain, a high percentage of which is of
unknown bodily origin. This suggests that spinal viral invasion, causing glial acti-
vation and proinflammatory cytokine release, might potentially explain such pain.

3.3
Neuropathology of Herpes Zoster and of Postherpetic Neuralgia

Varicella-zoster virus (VZV) is an alpha herpes virus that is found exclusively in
humans. VZV can cause a wide spectrum of disorders throughout life (Gilden
et al. 2000; Kleinschmidt-DeMasters and Gilden 2001). This highly contagious
virus causes a relatively benign disease in childhood: varicella (chickenpox). CNS
complications are estimated to occur in less than 1% of chickenpox cases, and even
this low number may be an overestimate (Kleinschmidt-DeMasters and Gilden
2001). Children have mild meningitic symptoms. The most common abnormality
is cerebellar ataxia; very rarely, transverse myelitis has been reported.

After varicella resolves, VZV becomes latent in the SG and in the sensory
ganglia of the cranial nerves and persists throughout the life of the host (Esiri
and Tomlinson 1972; Gilden et al. 1983, 1987, 2000; Hyman et al. 1983; Croen et
al. 1988; Mahalingam et al. 1990, 1999; Dueland et al. 1995; Esiri and Kennedy
1997; Kennedy et al. 1998; Cohrs et al. 2000; Kleinschmidt-DeMasters and Gilden
2001; Gilden et al. 2003). The data on the cellular localization of the latent VZV are
contradictory.Croenetal. (1988)andMeier et al. (1993)opposed thecommonbelief
that VZV is localized in neurons, and declared that VZV is localized exclusively in
the perineuronal satellite cells in latently infected human TG. Recent publications
indicate that the virus is located predominantly in the pseudounipolar PA neurons,
but the satellite cells are also implicated as a potential reservoir of latent VZV
(Lungu et al. 1995, 1998; Kennedy et al. 1998; Mahalingam et al. 1999). During
latency, VZV is not infectious and does not transcribe most of its genetic material,
thereby escaping detection and clearance of the virus by the immune system.

The likelihood of viral reactivation to HZ increases with each advancing decade
of age. HZ usually develops in elderly individuals and is eight to ten times more
frequent after the age of 60 years than before (Kost and Straus 1996; Bowsher
1999c). Immunocompromised patients are at especially high risk (Kleinschmidt-
DeMasters and Gilden 2001). With reactivation, the virus spreads transaxonally
to the skin, causing a rash with a dermatomal distribution, and is associated with
severe radicular pain. Any level of the neuraxis might be involved, but thoracic HZ
is the most common one, affecting one to two, rarely more dermatomes, followed
by the ophthalmic division of the 5th nerve (Hope-Simpson 1965; Portenoy et al.
1986; Zaal et al. 2000; Kleinschmidt-DeMasters and Gilden 2001; Devulder 2002).
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HZ ophthalmicus may be associated with keratitis, a potential cause of blindness
of the affected eye. The involvement of the facial nerve results in HZ oticus, often
combined with paresis of the ipsilateral muscles of facial expression: geniculate
neuralgia, described as early as 1907 by Ramsay Hunt (Hunt 1907, 1937; Brodal
1981). Similar combination of painful dermatomal rash with myotomal motor
weakness might be observed also in the spinal nerve HZ (Yaszay et al. 2000). In the
majority of patients, a prodrome of dermatomal pain starts before the appearance
of the characteristic rash (Dworkin and Portenoy 1996; Dworkin and Johnson
1999). Dermatomal pain without a rash (zoster sine herpete) occurs rarely (Lewis
1958; Gilden et al. 1992). HZ is monophasic with recurrence occurring in less than
5% of immunocompetent patients. In contrast, in immunocompromised patients
(especially in AIDS patients) HZ is recurrent, protracted, and often accompanied
with severe neurological complications (De La Blanchardiere et al. 2000; Gilden et
al. 2000, 2003).

The neuropathological investigation of HZ was started by the monograph of
Head and Campbell (1900), reviewed by Oaklander (1999). Also quite early, von
Bokay (1909) postulated an infectious agent common to varicella and HZ. The basic
pathologic substrate for HZ is ganglionic hemorrhage, necrosis, and inflammation
(Ghatak and Zimmerman 1973; Nagashima et al. 1975; Kleinschmidt-DeMasters
and Gilden 2001). The histopathologic features include mononuclear and lym-
phocytic infiltration, neuronal degeneration, neuronal phagocytosis by satellite
cells, empty neuronal cell beds, and fibrous scarring of the ganglia (Kleinschmidt-
DeMasters et al. 1996; Esiri and Kennedy 1997). Vasculitis in the adjacent nerve
results in damage of the axons (Gilden et al. 1996; Kleinschmidt-DeMasters et al.
1996), and especially destroyed are the myelin sheaths (Fabian et al. 1997). Rarely,
VZV spreads in the CNS. The virus might spread both in centripetal and centrifu-
gal directions (Schmidbauer et al. 1992; Kleinschmidt-DeMasters and Gilden 2001)
causing myelitis (Hogan and Krigman 1973; Esiri and Kennedy 1997). In patients
with HZ ophthalmicus, the virus might spread via trigeminal afferent fibers to
the large blood vessels at the base of the brain, with resultant vessel thrombosis,
vessel wall inflammation, and large, ipsilateral brain infarctions (Reshef et al. 1985;
Gilden et al. 1996).

Most HZ in immunocompetent patients resolves without sequelae. However,
many elderly patients have prolonged, debilitating pain, known as PHN. The in-
creased incidencewith increasingage iswell known(Kost andStraus1996;Bowsher
1999c; Dworkin and Johnson 1999; Helgason et al. 2000; Jung et al. 2004). The inci-
dence of PHN has also been found to be much higher in adults with cancer (Lojeski
and Stevens 2000) and in patients experiencing psychologic and physiologic stress
(Livengood 2000). Jung et al. (2004) examined 965 HZ patients. They found out that
older age, female sex, presence of a prodrome, greater rash severity, and greater
acute pain severity made independent contributions to identifying which patients
developed PHN.

According to Dworkin et al. (1997), five different types of pain may characterize
PHN: throbbing pain, steady burning pain, intermittent sharp or shooting pain,
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allodynia, and hyperpathia (see below). Chronic pain causes suffering and distress.
Here, pain became a disease itself, and it is a ruining disease (Portenoy et al. 1986;
Nurmikko et al. 1991; Watson et al. 1991; Dworkin and Portenoy 1996; Attal and
Bouhassira 1999; Dworkin and Johnson 1999; Dworkin et al. 2000; Gilden et al.
2000; Kanazi et al. 2000; Dworkin 2002). Dworkin and Johnson (1999) start their
handbook article with an impressive phrase: The Norwegians have an admirable
name for zoster (which like shingles means belt): “a belt of roses from hell”, while
the Danes call it “hell-fire.”

Unfortunately, pharmacotherapy of NP is limited. Patients with PHN do not
respond to nonsteroidal and anti-inflammatory drugs, and resistance or insensi-
tivity to opiates is common (Bowsher 1997; Ossipov et al. 2000; Kanazi et al. 2000;
Panlilio et al. 2002; Dworkin and Schmader 2003; Pappagallo and Haldey 2003;
Harden 2005). Recent research (Panlilio et al. 2002; Dworkin and Schmader 2003;
Lilie and Wassilew 2003) has shown that antiviral therapy can significantly reduce
the risk and duration of postherpetic neuralgia in elderly patients, provided that
treatment is started early in the course of disease (Jung et al. 2004).

The pathology of PHN is just beginning to be understood, and much less
morphologic information is available for this condition than for HZ (Kleinschmidt-
DeMasters and Gilden 2001). Along with the investigation of human material
(Smith 1978; Watson et al. 1991; Rowbotham and Fields 1996; Rowbotham et al.
1996; Oaklander et al. 1998; Gilden et al. 2003), more or less successful animal
models of NP conditions were developed (Willis et al. 1995; Attal and Bouhassira
1999;Honoreet al. 2000b). Smith (1978),utilizingbothLMandEM,describedcystic
distortion of thoracic SG removed 2.5 months after the onset of HZ, and persistent
chronic inflammatory cells. He found “ghost cells” in a patient with removed SG
2 years after the onset of PHN, and hypothesized that the altered structure of
surviving cells might contribute to the pathophysiology of the intractable pain.
Watson et al. (1991) reported findings in the SG and adjacent portions of the nerve
andof therootlets in threecaseswithseverePHNandin twocaseswithnopersistent
pain. The findings of DH atrophy and cell, axon, and myelin loss were encountered
only in patients with persistent pain. Marked loss of myelin and axons in the nerve
and/or sensory roots were found in cases with and without pain. Not unexpectedly,
Rowbotham et al. (1996) and Oaklander et al. (1998) demonstrated a greater loss
of small cutaneous nerve endings in skin biopsies obtained from patients with HZ
who developed PHN than in those who developed no neurologic sequelae.

3.4
Diabetic Neuropathic Pain

The diabetic neuropathy is a severe late complication of diabetes mellitus, and is the
most common cause of neuropathy in the Western world (Simmons and Feldman
2002). Its pathogenesis is multifactorial, involving both metabolic and vascular
factors (Feldman et al. 1999; Eaton et al. 2001). Diabetic neuropathy has been exten-
sively studied in experimental animals exposed to the hyperglycemic agent strepto-
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zocin (Fox et al. 1999). The NP involves predominantly the distal portions of the ex-
tremities (Vrethem et al. 2002). It has been suggested that diabetic NP results from
hyperactivity of damaged C-fibers (Chen and Levine 2001; Kapur 2003; McHugh
and McHugh 2004). In addition, the electrophysiological data of Khan et al. (2002)
provide evidence that an abnormal sensory input not only from C- and Aδ-fibers,
but also from Aβ-fibers may play an important role in diabetic NP. Heavy alter-
ations of the myelinated axons (onion-bulb formation) in patients with diabetic
neuropathy were first described by Thomas and Lascelles (1966). Severe damage of
the myelin sheaths in the dorsal and ventral lumbar roots of rats after 8 months of
streptozotocin-induceddiabeteswas reportedbyTamuraandParry (1994). Mizisin
et al. (1998) examined biopsies from cats with spontaneously occurring diabetes
with the electron microscope, and Kalichman et al. (1998) observed biopsy sam-
ples from the sural nerve of patients with diabetic neuropathy. In both studies, the
most evident finding was a heavy myelin defect characterized by splitting and bal-
looning of the sheath, while the axons were relatively spared. Schwann cell injury
was significant. The reactive changes included accumulations of Pi granules of Re-
ich, lipid droplets and intermediate cytoplasmic filaments. Degenerative changes
ranged from dissolution of Schwann cell cytoplasm at the inner glial loop associ-
ated with periaxonal swelling and axonal shrinkage to demyelination. According
to Eckersley (2002), hypoxia, hyperglycemia, and increased oxidative stress con-
tribute directly or indirectly to Schwann cell dysfunction in diabetic neuropathy.
The results include impaired paranodal barrier function, damaged myelin sheaths,
reduced antioxidative capacity, and decreased neurotrophic support for axons.

There are few data on the central mechanisms of diabetic NP, although DeJong
(1977) found that lesions of the SC are not uncommon and may result in pain
syndromes.

3.5
Cancer Neuropathic Pain

For many patients, pain is the first sign of cancer, and 30%–50% of all cancer
patients will experience moderate to severe pain; the frequency and intensity of
pain tend to increase during the advanced stages, so that 75%–95% of patients
with metastatic or advanced-stage cancer will experience severe pain (Portenoy
1992; Portenoy et al. 1999; Regan and Peng 2000; Mantyh et al. 2002). In the cancer
population, NP is often related to compression, direct neoplastic invasion of the
peripheral nerves and/or the SC, or to a neuropathy caused by chemotherapy
(Farrar and Portenoy 2001). Manfredi et al. (2003) examined 187 patients with
cancer and pain, and the pain was categorized as neuropathic in 103 patients. The
most frequent sites of neurological injury were nerve roots, SC and cauda equina,
brachial and lumbosacral plexus, and peripheral nerves. There were no patients
with pain caused by injury to the brain.

Strangely enough, although not significantly, some tumors might be inner-
vated by sensory neurons (O’Connell et al. 1998; Seifert and Spitznas 2001; Terada
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and Matsunaga 2001), but this is not the main reason for the cancer pain. Far
more importantly, the tumor frequently entraps and injures the nerves by com-
pression, ischemia, or proteolysis. The proteolytic enzymes injure the sensory
and sympathetic nerve fibers, causing NP (Mantyh et al. 2002). Along the tumor
cells, the tumor contains immune-system cells (macrophages, neutrophils, T cells).
Both tumor and inflammatory cells secrete numerous factors that sensitize or di-
rectly excite PA neurons: prostaglandins, tumor necrosis factor-α, endothelins,
interleukin-1 and -6, epidermal growth factor, transforming growth factor-β, and
platelet-derived growth factor (Mantyh et al. 2002).

The most comprehensive studies on cancer NP concern bone cancer (Mantyh et
al. 2002; Clohisy and Mantyh 2003; Sabino et al. 2003, 2005), since there is a reliable
experimental animal model (Honore et al. 2000a, b; Mantyh and Hunt 2004). It
appears that bone cancer pain represents a unique pain state (Clohisy and Mantyh
2003). In the persistent inflammatory pain state induced by subcutaneous injection
of capsaicin, there is besides massive functional and electrophysiological changes
an up-regulation of SP and CGRP, while a down-regulation of these neuropeptides
takes place in the NP state following nerve transection or ligation (Noguchi et
al. 1989; Villar et al. 1991; Donnerer et al. 1993; Garrison et al. 1993; Safieh-
Garabedian et al. 1995; Cho et al. 1996, 1997). However, Honore et al. (2000b)
found no significant changes in the expression of these neurotransmitters in the
murine bone cancer model. These authors encountered large differences that occur
with each pain state in the SC: inflammation induced an increase in SP and CGRP
in laminae I and II, neuropathy induced down-regulation of these transmitters,
while bone cancer had no effect. In the murine model of bone cancer pain, Schwei
et al. (1999) observed a dramatic up-regulation of glial fibrillary acidic protein in
the SC, indicating massive astrogliosis. Again, this phenomenon is not observed
in the inflammatory and neuropathic pain models.

3.6
Central Neuropathic Pain

3.6.1
Spinal Cord Injury

Chronic NP occurs in approximately 50% (varying from 42% to 77%) of patients
with SC injury (Bonica 1991; Anke et al. 1995; Levi et al. 1995; Eide et al. 1996;
Christensen and Hulsebusch 1997; Bowsher 1999a; Siddall et al. 1999; Siddall and
Loeser 2001; Finnerup et al. 2001; Finnerup and Jensen 2004). Syringomyelia is
a rare disease but with a very high incidence of central pain (Boivie 1999). In 22
patients, he found that all had pain.

There are two varieties of NP following SC injury: (a) at-level pain (in segments
corresponding to the level of SC injury), (b) below-level pain (in parts of the body
corresponding to segments caudal to the injury) (Siddal et al. 2000). According
to Siddal et al. (1997), the below-level NP should be considered as a central pain
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condition caused by the SC injury, while at-level pain may have peripheral and
central components that are difficult to separate.

Eide et al. (1996) compared somatosensory abnormalities in painful and non-
painful denervated areas at or below injury in patients with SC injuries. They
observed that allodynia was more common in painful areas, and suggested that
in the pathogenesis of NP a major role is played by the hyperexcitability of STT
neurons. Bouhassira et al. (2000) investigated patients with painful and painless
syringomyelia. They observed no significant differences in thermal or mechanical
sensory function between patients with or without pain. Similarly, Defrin et al.
(2001) found no differences between thermal and tactile sensations in patients
with or without pain, but allodynia was only elicited in pain patients. Finnerup
et al. (2003) compared clinical examination, quantitative sensory testing and so-
matosensory evoked potentials in patients with traumatic SC injury with and
without pain below spinal lesion level. The patients with central pain more fre-
quently had sensory hypersensitivity in dermatomes corresponding to the level of
the injury. They found a significant correlation between the disesthesia at the level
of the lesion and spontaneous pain caudal to the injury level. Finnerup et al. (2003)
think that STT damage may be a necessary but not sufficient condition for devel-
oping below the level pain, since deficits of STT functions were equally severely
affected in patients without pain. They propose that pain in body segments below
the level of injury should be linked to the presence of abnormal evoked sensations
in segments at the level of injury. Finnerup et al. (2003) suggest that neuronal
hyperexcitability in second- or third-order neurons, which have lost their normal
afferent input, is an important mechanism for pain below spinal injury.

3.6.2
Brain Injury

According to Boivie (1999), historically central pain appears to have been first
described as early as 1883 by Greiff in a patient who, following cerebrovascular
lesions including the thalamus, developed reissende Schmerzen (tearing pain).
The term “thalamic syndrome” was introduced by Dejerine and Roussy (1906),
who described three cases of a condition in which spontaneous pain followed
a stroke, and the autopsies showed the infarct to be in the thalamus. Presently, the
condition is known as central post-stroke pain (Leijon et al. 1989; Bowsher 1999b).
Vestergaard et al. (1995) reported that approximately 8% of all stroke patients
develop central post-stroke pain. Lesions at any level along the neuraxis can cause
central pain. Thus lesions at the first synapse in the DH of the SC or trigeminal
nuclei, along the ascending pathways, in the thalamus, in the subcortical white
and probably in the cerebral cortex have all been reported to cause central pain
(Riddoch 1938; Garcin 1968; Cassinari and Pagni 1969; Leijon et al. 1989; Tasker
1990; Bowsher 1996, 1999a; Pagni 1998). The highest prevalence has been noticed
after lesions of the SC, lower brainstem and ventroposterior part of the thalamus
(Bonica 1991; Boivie 1992, 1999). The importance of the location of the thalamic
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lesion was repeatedly evaluated. According to Bogoussslavsky et al. (1988), only
patients with lesions including the ventroposterior thalamus develop central pain.
Also in studies carried out by Leijon et al. (1989) and Bowsher et al. (1998),
all thalamic lesions included part of the ventroposterior thalamic nuclei. Boivie
(1999) recalls that this is in accordance with Hassler’s idea that the V.c.p.c. thalamic
nucleus (an important site of STT termination in humans), is the crucial location
for thalamic lesions causing central pain (Hassler 1960).

The lesions that cause central pain vary enormously in location, size, and struc-
ture. There is no study indicating that a small lesion in the DH of the SC carries less
risk for central pain than a huge infarct involving much of the thalamus and large
parts of the white matter lateral and superior to the thalamus (Boivie 1999). There
are several hypotheses concerning the mechanisms involved in the pathophysi-
ology of central pain. Head and Holmes (1911) proposed a disinhibition of the
STT-thalamocortical system, triggered by lesions of the DCN-medial lemniscus
system. Foerster’s hypothesis (1936) was similar: he thought that epicritic sensitiv-
ity (touch, pressure, vibration) normally exerts control over protopathic sensitivity
(pain and temperature). According to Foerster’s hypothesis, central pain can only
occur when there is a loss of epicritic sensitivity, e.g., destruction of the lemniscal
system. More recently, indications were repeatedly found that the STT system is
affected in the majority of patients with central pain (Boivie et al. 1989; Tasker 1990;
Bowsher et al. 1998; Pagni 1998). Central pain patients have abnormal temperature
and pain sensibility, but they may have normal threshold to joint movements, vi-
bration, and touch (Boivie et al. 1989; Bowsher et al. 1998). Low brainstem infarcts
(Wallenberg syndrome) and cordotomies, in which the STT but not the medial
lemniscus is interrupted, may cause central pain (Boivie et al. 1989; Bowsher 1996;
Bowsher et al. 1998; Pagni 1998; Boivie 1999). Probably, the crucial lesions affect
the neo-STT, e.g., the projection to the ventroposterior thalamic region (Garcin
1968; Bowsher 1996; Pagni 1998). This kind of lesion leave the more medially and
inferiorly terminating paleo-STT projections intact (Boivie 1999).

Another hypothesis focuses on the role of the reticular thalamic nucleus, and
the medial and intralaminar zones receiving STT fibers. The reticular nucleus is the
only thalamic nucleus built by GABAergic, inhibitory projection neurons that do
not give rise to thalamocortical fibers but heavily innervate the remaining thalamic
nuclei (Gonzalo-Ruiz and Lieberman 1995; Guillery et al. 1998; Jones 2002a, b;
Guillery and Harting 2003). According to this hypothesis, the lesion removes the
suppressing activity exerted by the reticular thalamic nucleus on intralaminar and
medial thalamic nuclei, thereby releasing abnormal activity in this region, which
in turn leads to pain and hypersensitivity (Cesaro et al. 1991). In accordance with
this hypothesis, Edgar et al. (1993) pointed out that most thalamic lesions that
cause central pain might involve part of the reticular nucleus, as well as parts of
the ventroposterior nuclei.

Recently Craig (1998, 2003d) put forward a new hypothesis about the mecha-
nisms of central pain. His hypothesis builds on the classical insights of Head and
Holmes (1911). Central pain is due to the disruption of thermosensory integra-
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tion and the loss of cold inhibition of burning pain. This disruption is caused by
a lesion along the STT to the nuclei VPI, VMpo, and MDvc. These projections
tonically inhibit nociceptive thalamocortical neurons, which by the lesion increase
their firing and produce pain. The pathway is activated by cold receptors in the
periphery, which in turn activate cold-specific and polymodal lamina I cells in
the DH. According to Boivie (1999), this hypothesis might be applicable in some
patients, but not in others, because of the location of the lesions and the character
of the pain (roughly 40%–60% of all central pain has a burning character).

3.6.3
Changes in Cortical Networks Due to Chronic Pain

Persistent pain causes suffering and distress, and pain can become a disease
in itself. Chronic pain or NP can result from damage of the nervous system
at different levels of pain processing: peripheral nerve, SG, dorsal root, CNS.
Chronic syndromes mostly show positive symptoms such as pain, dysesthesia,
and paresthesia, often in combination with negative symptoms such as sensory
deficits. Unfortunately, pharmacotherapy of NP is limited, perhaps because the
etiology, the mechanisms, and the symptoms of NP may differ considerably be-
tween patients. In patients with PHN pain, mainly peripheral mechanisms are
discussed as being involved, but central changes might also be involved. Periph-
eral neuropathic pain is a spontaneous pain (stimulus-independent pain) or a hy-
persensitivity pain caused by a stimulus following damage of sensory neurons
(stimulus-evoked pain). Inflammation in the DG can sensitize neurons to respond
to normal innocuous thermal or mechanical stimuli and loss of DG perikarya
can induce changes in surrounding surviving neurons. Thus, loss of sensory den-
drites in the epidermis of patients suffering from PHN was positively correlated
with both sensory deficits and with pain (Baron and Saguer 1993; Koltzenburg
et al. 1994; Woolf and Doubell 1994; Rowbotham et al. 1996; Oaklander et al.
1998). Changes caused by alterations of peripheral input, followed by altered
spinal processing can be forwarded to the cortex via thalamic nuclei (Coderre
et al. 1993; Hsieh et al. 1995). Neurons in the somatosensory thalamus of patients
with NP showed various electrophysiological abnormalities: responses to stimuli
of body regions not normally driving those cells, high spontaneous firing rates,
and abnormal bursting activities. Thus, besides peripheral and spinal changes
there is massive cortical plasticity contributing to the development of pathological
pain.

Neuropathic pain has been studied using CT, EEG, PET, and fMRI. Substantial
plastic changes were found in the cortex using these techniques. Functional re-
organization in SI and SII were described. In NP, a change related to chronicity
and amount of pain was reported (Flor 2003). Moreover, using 1H-MRS chemical
changes were noted in the dorsolateral prefrontal cortex in chronic back pain for
N-acetyl aspartate and glucose, which could be related to measures of pain and
anxiety (Grachev et al. 2000).
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One of the thoroughly investigated topics in this field is the processing of
ongoing phantom limb pain (Flor et al. 1995, 1997). In humans, it could be shown
that there is a takeover of SI representation fields, no longer “used” because of limb
amputation, by directly adjoining cortical fields representing adjacent areas of the
body surface (Birbaumer et al. 1997): in SI the representation of the lower lip of the
side of amputation was found in the position that should have been occupied by the
contralateral (amputated) upper extremity. Changes in the cortical presentation
are intimately correlated with phantom limb pain (Flor et al. 1995, Birbaumer et
al. 1997): larger amounts of cortical reorganization are correlated with increased
pain impression (Montoya et al. 1998). In patients suffering from pain due to
traumatic upper limb loss, pharmacological blockade of the respective brachial
plexus could reverse the “pathological” cortical map in those patients that showed
a pain reduction (Birbaumer et al. 1997).

That chronic ongoing NP (painful mononeuropathy) altered cortical activity
was shown by a positron emission topography study comparing patients’ habitual
pain state with that of a pain-alleviated state induced by regional nerve block with
lidocaine (Hsieh et al. 1995). Although activities of SI and SII were not significantly
altered during both states in the patients, there was a clear state difference in the
activitiesof the IC, theposteriorparietal, and the inferior lateralprefrontal cortices,
indicating an involvement of those areas in NP processing. Most interestingly, the
ACC of the right hemisphere was found activated irrespective of the body side
of the painful nerve. The noninvolvement of SI in chronic pain corroborates the
observation that surgical extirpation of SI and SII provided little or no relief from
chronic pain. The cerebral activation pattern in neuropathic patients found by
Hsieh et al. (1995) shows the importance of the motivational-affective dimension
of pain in this illness. These findings are also in accordance with reports (Craig et
al. 1996a) that the ACC is activated in models demonstrating illusion of pain.

4
Concluding Remarks

The neuroanatomy of pain is complex, as many ascending systems in parallel are
involved in pain processing. Even more complex is the neuropathology of PHN
as far as it is understood to date. Damage of the nervous system at the level
of SG results in a rearrangement of the highly ordered laminar termination of
PAs within the appropriate regions of the DH. Normally, unmyelinated C-fibers
terminate in lamina II, myelinated mechanoceptive Aβ-axons in laminae III–VI
of the SC. Following the virus-induced transganglionic degeneration of C-axons,
long-lasting sprouting of A-fibers into lamina II occurs. The functional importance
of A-fiber sprouting is that lamina II begins to receive information about non-
noxious stimuli. This information may be misinterpreted by the CNS as noxious.
Thus PHN can be interpreted firstly as a result of a massive sprouting on the
level of the SC, secondly leading to abnormal ascending projection that thirdly are



68 Summary

pathologically further processed in the brainstem, the thalamus, and the cortical
areas involved in pain perception.

5
Summary

Pain is anunpleasantbutvery importantbiological signal fordanger.Nociception is
necessary for survival andmaintaining the integrityof theorganism inapotentially
hostile environment. Pain is both a sensory experience and a perceptual metaphor
for damage and it is activated by noxious stimuli that act on a complex pain sensory
apparatus. However, chronic pain no longer having a protective role can become
a ruining disease itself, termed neuropathic pain.

From periphery to cortex, the neuroanatomical chain of pain consists of the
primary afferent (PA), the perikarya localized in spinal ganglia (SG) and in the
sensory ganglia of the 5th, 7th, 9th and 10th nerves. The largest A cells are typical
proprioceptor, and the small B cells are typical nociceptor neurons. The peripheral
processes of the nociceptive PA cells are thin fibers of two types: Aδ- and C-fibers,
the Aδ-fibers being responsible for the “first pain” (pinprick sensation), and C-
fibers for the “second pain” (burning or dull pain). The free nerve endings are to
be found throughout the body, mainly in the adventitia of small blood vessels, in
outer and inner epithelia, in connective tissue capsules, and in the periosteum.

As central processes of SG neurons, the nociceptive fibers terminate primarily
in laminae I and II; the Aδ-fibers terminate in laminae I and V, and C-fibers
in laminae I and II. The nociceptive-specific neurons are dominated by Aδ-fiber
input. The polymodal nociceptive cells are dominated by C-fiber input and are
important for thesecondpain.ThecentralprocessesofpseudounipolarTGneurons
mostly descend especially to the caudal part of the spinal trigeminal nucleus, with
a structure similar to the spinal dorsal horn. Two types of glomerular terminals
could be identified in superficial laminae resembling terminals of unmyelinated
or from thinly myelinated PAs. In the superficial laminae of the SC, especially
glutamate receptors and their relation to types of synapses play a crucial role for
decoding the convergent inputs at the level of the first brain synapse and for the
understanding of abnormal pain.

A distribution of GluR1 and GluR2/3 for AMPA receptors is described in the
superficial dorsal horn of the spinal cord. GluR1 showed a lateral localization,
while GluR2 was localized over the mediolateral extent of the superficial dorsal
horn. Electron microscopic results revealed that GluR1 antibody was related to C1
synapses, while GluR2/3 antibodies were localized on C2 synapses.

Ascending pathways of the spinal cord (SC) and of the spinal trigeminal nucleus,
the spino- and the trigeminothalamic tracts, mediate the sensations of pain, cold,
warmth, and touch. The cells of origin are located mainly in laminae I and IV–VI,
their mostly crossing axons reaching various nuclei of the thalamus. Also, the
dorsal column nuclei (DCN) are highly involved in nociception, projecting via the
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medial lemniscus to thalamic nuclei. Furthermore, the entire trigeminal sensory
nuclear complex projects to the thalamus.

Our retrograde axonal transport studies revealed the projections to the ven-
trobasal thalamus in the rat. In the brainstem, the contralateral principal sensory
and all subdivisions of the spinal trigeminal nucleus contained retrogradely la-
beled neurons, but to a different extent. The ipsilateral projection to the thala-
mus is faint but unquestionable. The experiments also demonstrated a prominent
crossed connection from the DCN to the thalamus. Only a few neurons in the
DCN ipsilateral to the injection were labeled. In the SC, the distribution of labeled
neurons was uneven. The highest number of labeled neurons was encountered
at the spinomedullary junction and in the four cranial cervical segments, mostly
contralateral to the thalamic injection. In the more caudal segments, the number
of labeled neurons decreased.

There is a multiregional organization of supraspinal pain processing, and the
cortical areas involved in pain perception are the primary (SI) and secondary
(SII) somatosensory cortex, the insular (IC), the anterior cingulate (ACC), and the
prefrontal (PC) cortices. The sensory-discriminative aspect of pain (localization,
intensity, duration, quality) is presented in SI and SII, the motivational-affective
aspect (subjective suffering, unpleasantness, aversive emotions) and the cognitive-
evaluative aspects of pain are presented in IC, ACC, and PC.

Pain processing is controlled by descending modulatory pathways. Neurons
from the periaqueductal grey (PAG) project to the serotoninergic raphe nuclei
of the medulla oblongata and to the noradrenergic nuclei in the dorsolateral
pons. Both the catecholaminergic and indolaminergic neuronal groups project
heavily to the SC and to the spinal trigeminal nucleus. Along with serotonin and
noradrenaline, also endogenous opiates and the amino acids glutamate, GABA, and
glycine are clearly involved. It was suggested that descending facilitatory influences
could contribute to chronic pain states, and such influences were important to the
development and maintenance of hyperalgesia.

Chronic, maladaptive neuropathic pain typically results from damage to the
nervous system. Several etiologies of peripheral nerve injury might result in neu-
ropathic pain: postherpetic neuralgia (PHN), traumatic injury, phantom limb pain,
diabetes, and malignancy. Neuropathic pain conditions share certain clinical char-
acteristics: spontaneous, continuous pain, usually of a burning character; parox-
ysmal (shooting, lancinating) pain; and evoked pain to various mechanical or
thermal stimuli, such as allodynia and hyperalgesia.

As the result of neuroanatomical and neurochemical plasticity in the CNS,
peripheral nerve injury results in transsynaptic degeneration and a rearrangement
of the highly ordered laminar termination of PAs within appropriate regions of the
dorsal horn.

Chronic neuropathic pain occurs in approximately 50% of patients with SC
injury and following various brain injuries, i.e., central post-stroke pain in ap-
proximately 8% of all stroke patients and lesions at any level along the neuraxis.
Chronic pain seems to be the result of changes in cortical networks.
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PHN can be interpreted firstly as a result of a massive sprouting on the level
of the SC, secondly leading to abnormal ascending projection that thirdly are
pathologically further processed in the brainstem, the thalamus, and the cortical
areas involved in pain perception.
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