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Preface 

Intelligent material with multifield coupling properties is an important 

aspect of modern science and technology with applications in many industrial 

fields such as biomedical, electronic and mechanical engineering. 

It is well known that most engineering materials, composite materials in 

particular, are heterogeneous. The heterogeneity is either designed to meet 

engineering requirements for specific properties and functions or a natural 

evolution to adapt the historical architecture to changes in long term loadings 

and environment. Typical examples include functionally gradient materials and 

biomaterials. Functionally gradient materials are designed according to specific 

functions required by users. Biomaterials, on the other hand, remodel 

themselves to adapt to changes in the natural environment. Obviously, there are 

many heterogeneous materials in engineering including composites, defective 

materials and natural biomaterials. Heterogeneous materials exhibit complex 

properties at both microscopic and macroscopic level due to their anisotropy 

and interaction between components. Generally, there are two approaches used 

in investigating heterogeneous materials. One is the continuum mechanics 

approach, where the materials are assumed to be approximately homogeneous 

and continuous media. The other is the micromechanics approach, used for 

investigating the deformation and stress of heterogeneous materials by 

considering the interactions of the components in the microscopic scale. 

In recent years, research in macro-micro mechanics of composite materials 

has resulted in a great many publications including journal papers and 

monographs. Up to the present, however, no systematic treatment of 

macro-micro theory of heterogeneous multifield composites has been available. 

The objective of this book is to fill this gap, so that the reader can obtain a 

sound basic knowledge of the solution methods of multifield composites. This 

volume details the development of linear theories of multifield materials and 

presents up-to-date results on magneto-electro-elastic composites. The book 
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consists of eight chapters. Chapters 1, 2, 5, and 7 were written by Qing-Sheng 

Yang, and the remaining four chapters were completed by Qing-Hua Qin. 

Chapter 1 describes basic concepts and solution methods of heterogeneous 

multifield composites. Chapter 2 introduces the essentials of homogenization 

approaches for heterogeneous composites. Chapter 3 deals with basic equations 

and solutions of linear piezoelectricity, and extensions to include magnetic 

effects are discussed in Chapter 4. Chapter 5 is concerned with basic equations, 

variational principles, and finite element solution of thermo-electro-chemo­

elastic problems. Applications of multi field theories to bone remodelling 

process are detailed in Chapter 6. Chapter 7 examines general homogenization 

schemes of heterogeneous multifield composites. In Chapter 8, the final chapter, 

a detailed discussion of various micromechanics models of defective 

piezoelectricity is provided. 

The main contents of this book were collected from the authors' most recent 

research outcomes and the research achievements of others in this field. Different 

parts of the research presented here were partially conducted by the authors at the 

Department of Engineering, Australian National University; and the Department 

of Mechanics of Tianjin University, the Department of Engineering Mechanics at 

Beijing University of Technology. Support from these universities, the National 

Science Foundation of China, and the Australian Research Council is gratefully 

acknowledged. 

We are indebted to a number of individuals in academic circles and 

organizations who have contributed in different, but important, ways to the 

preparation of this book. In particular, we wish to extend our appreciation to our 

postgraduate students for their assistance in preparing this book. Special thanks 

go to Ms. lianbo Liu of Higher Education Press for her commitment to the 

publication of this book. Finally, we wish to acknowledge the individuals and 

organizations cited in the book for permission to use their materials. 

The authors would be grateful if readers would be so kind as to send us 

reports of any typographical and other errors, as well as their more general 

comments. 

Qing-Hua Qin, Canberra, Australia 

Qing-Sheng Yang, Beijing, China 

May 2007 
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Chapter 1 Introduction 

1.1 Heterogeneous materials 

In classical continuum mechanics, materials are viewed as ideal, continuous, 

homogeneous media. The aim of continuum mechanics is to describe the re­

sponse of homogeneous materials to external forces using approximate consti­

tutive relations without microstructural considerations. In fact, all materials are 

inhomogeneous in the microscopic scale. Manufactured composites, natural 

soils and rocks as well as biological tissues are typical examples. The contin­

uum is a model of materials in the macroscopic scale. Therefore, the homoge­

neity of materials depends on the scale of measurement. The magnitude of the 

micro-scale used differs for specific materials. In general, the approximate 

range of the micro-scale is 10-7 m to 10-4 m. 

Heterogeneous materials exist in both synthetic products and nature. Syn­

thetic examples include aligned and chopped fiber composites, particulate 

composites, interpenetrating multiphase composites, cellular solids, colloids, 

gels, foams, micro emulsions, block copolymers, fluidized beds, and concrete. 

Some examples of natural heterogeneous materials are polycrystals, soils, 

sandstone, granular media, earth's crust, sea ice, wood, bone, lungs, blood, 

animal and plant tissue, cell aggregates, and tumors [1]. These heterogeneous 

materials have a legible microstructure. Figs.l.l to 1.3 show microscopic pic­

tures of some inhomogeneous materials. 

It is noted that an important class of heterogeneous media is composites 

which are manufactured mixtures of two or more constituents, firmly (as a rule, 

but not always) bonded together [2]. The composites have inhomogeneous 

properties for different domains or different directions due to the inhomogene­

ity of their microstructures. This is an important feature and merit of heteroge-
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neous materials. The microstructures of the composite materials can be de­

signed to meet various desired properties and functions. The materials may 

possess very high properties in one or two directions and very weak properties 

in other directions, depending on the design for structural performance. Be­

cause of their excellent designable characteristics, composite materials are in­

creasingly applied to industrial fields, for example, aeronautics and astronautics, 

electronics, chemical engineering, biomedical fields and so on. 

Fig. 1.1 Fiber reinforced composite 

~- -... -: P.,' 

Fig. 1.2 Microstructure of concrete 

Fig. 1.3 Microstructure of a bone 
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Heterogeneous materials often exhibit very complex properties, presenting 

new challenges and opportunities to scientists and engineers. In recent years 

several new composite materials have been developed which display not only 

good mechanical properties but also some new functions such as thermal, elec­

tric, magnetic, photic, and chemical effects. At the same time, composite mate­

rials can create new functions and performance which are absent in their 

constituents. Such multiple physical properties are usually coupled with each 

other. Consequently, the coupling properties and deformation behavior of 

heterogeneous materials are topics of great interest for qualitative and 

quantitative investigation. 

1.2 Multifield coupling properties of heterogeneous ma­
terials 

A number of heterogeneous materials can fulfill the transfer between mechani­

cal and non-mechanical energy (thermal, electrical, chemical energy, etc). Such 

materials are usually called intelligent materials. These materials can be used in 

adaptive structures, sensors, and actuators. Intelligent materials are sensitive to 

variables of the external environment, adjusting their shape or size to adapt to 

changes in that environment. This multifield coupling behavior is a unique 

characteristic of intelligent materials. For instance, piezoelectric ceramics, pie­

zoelectric polymers, and some biological tissues (e.g. bone, skin, etc) exhibit 

thermo-electro-elastic coupling properties [3]. Electric current and heat flow 

will be excited when the material is subject to a mechanical loading, and vice 

versa. 

As an example, a composite material consisting of a piezoelectric phase 

and a piezomagnetic phase exhibits considerable multifield coupling properties, 

i.e. both electro-mechanical and magneto-mechanical coupling. In addition, it 

displays a remarkably large coupling coefficient between static electric and 

magnetic fields, which is absent in either constituent. The magneto electric cou­

pling in the composite is created through the interaction between the piezoelec­

tric phase and the piezomagnetic phase, which is called a product property. The 

product property of composites offers great engineering opportunities to de­

velop new materials. 

In a different example, biological tissues, a form of natural material, can 
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perform energy transfer between chemical and mechanical energy. In this proc­

ess electric and thermal effects are coupled. This phenomenon can also be 

found in clay, gel, and so on, and can be described by thermo-electro­

chemo-mechanical coupling theory. 

Research into heterogeneous media has a long history. Two approaches 

have been adopted: macro-mechanical and micro-mechanical approaches. 

Macromechanics deals with material as a homogeneous continuum based on 

the approximate constitutive model, ignoring heterogeneity of the microstruc­

ture. The macroscopic or averaged properties of heterogeneous materials are 

studied. However, the macroscopic properties of materials depend on mi­

cro-structural information, such as the geometric and physical properties of the 

constituents and the behavior of their interface. Micromechanics has been de­

veloped to investigate the relations between the effective properties and micro­

structures of heterogeneous materials and the interactions among the constitu­

ents[ 4,5]. As the characteristic length of microstructure is far less than the 

characteristic length of the whole body, a homogenization is carried out to cap­

ture the macroscopic behavior of the materials, as shown in Fig.l.4. Denoting y 

as the microscopic scale and x as the structural scale, since y« x, the composite 

is replaced by the homogenized continuum. 

(a) Heterogeneous material with microstructure (b) Homogenized continuum 

Fig.1.4 Homogenization of heterogeneous materials 

In the frame of micromechanics, the emphasis is placed on the bridging of 

effective properties and micro-structure parameters of materials. Effective 

properties that can be measured experimentally include effective elastic stiff­

ness, conductivity of electricity and heat, permeability coefficient of fluid and 

coupling coefficients among physical fields. An understanding of the relations 
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of effective properties and microstructure of materials is very vital in the design 

of new composite materials. 

1.3 Overview and structure of the book 

The multifield coupling behavior of the heterogeneous material is a multi­

disciplinary subject. This book focuses on the multifield coupling properties of 

several intelligent materials, investigating them by means of macro- and micro­

mechanics. The first group of materials involved is artificially intelligent mate­

rials, such as piezoelectric solids, piezomagnetic materials, and electric activity 

polymers which are sensitive to stimuli from the external environment. The 

second group of materials includes natural materials, such as biological materi­

als (bone, soft tissue, articular cartilage). These materials exhibit thermo-electro­

chemo-mechanical coupling effects. Investigation of the behavior of such mate­

rials can contribute to understanding of the interaction of the fields and mecha­

nism of deformation, growth, aging and rebuilding of the biological system. 

This book is divided into two parts: macromechanics and micromechanics. 

Macromechanical analysis is covered in Chapters 3 to 6. The phenomenological 

theory of continuous media is applied in the investigation of multifield coupling 

behavior of heterogeneous materials. In Chapter 3 the linear theory and general 

solutions of piezoelectric materials are described. In Chapter 4 electro-elastic 

coupling theory is extended to magneto-electro-elastic coupling problems. In 

Chapter 5 we discuss fundamental equations and analytical methods of 

thermo-electro-chemo-mechanical coupling problem. Chapter 6 involves 

applications of thermo-electro-elastic coupling in bone remodeling. 

Micro-mechanical analysis focuses on the connection between 

macro-properties and micro-structure parameters, devoting attention to estab­

lishing analytical methods for the effective coupling properties of materials. 

Micro-mechanical analysis is dealt with in Chapters 2, 7, and 8. Chapter 2 dis­

cusses the homogenization theory of microstructure and the method of calcula­

tion of the effective properties of heterogeneous elastic materials. In Chapter 7, 

we introduce the homogenization methods in the general sense, including the 

direct average method, the indirect average method, and the mathematical ho­

mogenization method. In Chapter 8, a micro-mechanical model of 

thermo-piezoelectric solid is described, and the effective properties of 
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thermo-piezoelectric materials with micro-defects are computed. 
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Chapter 2 Homogenization theory for hetero­
geneous materials 

In this chapter we discuss the characteristics of heterogeneous media, basic 

concepts, and methods of homogenization of microstructures of the materials. 

Because there is much literature on this topic, for example references [1,2], the 

chapter presents a brief review of the current state and new developments of 

homogenization theory. 

2.1 Microstructure of heterogeneous materials 

Heterogeneous materials such as composites, solids with micro-defects, rocks, 

and natural biomaterials consist of combinations of different media that form 

regions large enough to be regarded as continua, which are usually firmly 

bonded together at the interface. Their microstructure can be observed by 

means of electric scanning microscopes. Generally, for a heterogeneous com­

posite, continuous constituents or phase can be referred to as a matrix, and a 

discrete phase as an inclusion which is embedded in the matrix. The inclusion 

may be a particle, a fiber, a micro-void, or a micro-crack. The overall (effective 

or macroscopic) properties of composite materials depend on the geometric and 

physical properties of the phases. 

The microstructure of heterogeneous materials may be very disordered 

and complex in that the distribution, size and shape of inclusions are random. 

Moreover, there are local fluctuations of the phase volume fraction in a com­

posite. Therefore, mathematical description of the microstructure of a compos­

ite is a difficult issue. 

From a practical point of view, it is considered that a composite material is 

an assembly of periodic unit cells. A unit cell is also called a representative 

volume element (RVE), as shown in Figs.2.1 and 2.2. A necessary characteristic 
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of composite materials is statistical homogeneity (SH). A strict definition of 

this concept must be expressed in terms of n-point probabilities and ensemble 

averages. Suffice it to say for practical purposes that in a composite displaying 

SH all global geometrical characteristics, such as volume fraction, two-point 

correlations, etc., are the same in any RVE, regardless of its position [3]. 

cr cr cr cr cr 
cr cr cr cr cr 
cr cr cr cr cr 

Fig.2.1 Composite with periodic cell 

Fig.2.2 Representative volume element (RYE) 

Boundary conditions imposed on a deformable body are called homoge­

neous boundary conditions if either one of 

ui (s) = &ZXj (2.1.1 ) 

7;(s) = a Znj (2.1.2) 

is satisfied, where &Z are constant strains and aZ are constant stresses, Xj 

are the coordinates and n j are the components of the outward normal of the 

boundary. Homogeneous boundary conditions applied to a medium displaying 

SH produce statistically homogeneous fields within the body. The statistically 

homogeneous fields are statistically indistinguishable within different RVEs in 

a heterogeneous body. This implies that their statistical moments such as aver­

age, variance, etc. are the same when taken over any RVE within the heteroge­

neous body. In particular, statistical homogeneity implies that the body average 

and the RVE average are the same. 

A homogeneous material which has the effective properties of composite 
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material is referred to as an effective medium. For a SH statistically homogene­

ous medium, the mechanical behavior of a RYE must be equivalent to the me­

chanical behavior of the effective medium. 

2.2 Periodic boundary conditions 

2.2.1 General considerations 

The SH composites usually consist of periodic cells, as shown in Fig.2.1. In this 

case, the microscopic displacement field and stress field are the periodic solu­

tions and a RYE is a periodic cell, as illustrated in Fig.2.2. Therefore the 

boundary conditions of a RYE should reflect the periodicity of the microstruc­

ture. Without loss of generality, the strict periodic conditions of the displace­

ment and stress field can be expressed by [4] 
Ui (Y)=Ui (y+Y) , 'v'YEn (2.2.1) 

(j ij (y) = (j ij (y + Y) , 'v'y E n (2.2.2) 

where Y = (1'; ,1;,1;) is the periodicity, n is the domain of the RYE. A 

typical periodic deformation of a composite is illustrated in Fig.2.3. For 

'v'yO 
E r, the periodic displacement boundary condition of the RYE can be 

written as 

(2.2.3) 

Fig.2.3 Typical deformation of a composite 

where r is the boundary of the RVE. The stress periodicity of the RVE re­

quires an anti-periodic traction boundary condition 

T;(Yo) = -T;(Yo + Y), 'v'yO 
E r (2.2.4) 

where l + Y is the boundary of the periodic RYE. 
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For a 2D square or rectangular RVE, as shown in Fig.2A, the periodic dis­

placement boundary conditions can be expressed by 

ul (Y~ 'Y2 ) = UI(Y~ + ~ 'Y2 ) 

A(y? ,y~) 

Fig.2.4 The periodic RYE 

on the left and right opposite sides, and 

ul (YI ,Y~ ) = ul (YI ,Y~ + 1;) 

U2(Yi'Y~)=U2(YI'Y~ +1;) 

(2.2.Sa) 

(2.2.Sb) 

(2.2.6a) 

(2.2.6b) 

on the upper and lower opposite sides. The anti-periodicity of the traction 

boundary conditions requires 

all (YI
O 
'Y2) = -all (Y~ + ~'Y2) 

aI2(Y~ 'Y2) = -O"12(Y~ + ~'Y2) 

on the left and right sides and 

0"22 (Yi'Y~) = -0"22 (Yi'Y~ + 1;) 

a 21 (Yi'Y~) = -0"21 (YI ,Y~ + 1;) 

on the upper and lower sides. 

2.2.2 Symmetric and periodic boundary conditions 

(2.2.7a) 

(2.2.7b) 

(2.2.8a) 

(2.2.8b) 

The periodic conditions described by Eq.(2.2.S) to Eq.(2.2.8) can be simplified 

to ordinary boundary conditions as the RVE is symmetric. This case can reflect 

many model composites in which the inclusion has, in the 2D state, the shape 

of a circle, ellipse, or rectangle, as shown in Fig.2.S. 
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Fig.2.5 Symmetric and periodic RYEs 

Firstly, consider the normal (extension and contraction) deformation 

modes of the RVE. The periodicity and symmetry of the RVE require 

u, (y? ,Yz) = u, (y? + ~ ,Yz) 

= -u, (y? + ~ ,Yz) 

=0 

on the left and right opposite sides, and 

Uz (y, ,yg) = Uz (y, ,yg + Yz) 
= -uz (y" yg + Yz) 
=0 

(2.2.9) 

(2.2.10) 

on the upper and lower opposite sides. Eqs.(2.2.9) and (2.2.10) imply that the 

normal displacements on all external edges of the RVE are fixed, as shown in 

Fig.2.6. Clearly, these constraints can satisfy the anti-periodic and symmetric 

requirements of the traction boundary conditions. 

Fig.2.6 Constraints on RYE for normal deformation 

Secondly, considering the pure shear deformation of the RVE, an 

anti-symmetric deformation mode occurs. Then we can obtain 

uz(y? ,yz} = Uz (y? + ~ ,yz) 

= -uz (y? + ~ ,Yz) 

=0 

(2.2.11) 
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on the left and right opposite sides, and 

U1 (y"y~) = U1 (YI ,y~ + 1;) 

= -U1 (y"y~ + 1;) 

=0 

(2.2.12) 

on the upper and lower opposite sides. Eqs.(2.2.11) and (2.2.12) mean that the 

tangent displacements on the boundary of the RVE are fixed, as shown in 

Fig.2.7. 

o 
Fig.2.7 Constraints on RVE for pure shear deformation 

The periodic and symmetric boundary conditions can be applied to the 

two-scale expansion method where the initial strains are loaded [5, 6], which is 

discussed in the following section. For a symmetric RVE, FE analysis of only 

half a quarter of the RVE is sufficient. 

2.3 Implementation of periodic boundary conditions in FE 
analysis 

Generally, displacement can be decomposed into two parts: constant displace­

ment and periodic displacement. Accordingly, alternative to Eqs.(2.2.5) and 

(2.2.6), the general periodic boundary conditions can be rewritten as 

u1(Y? 'Y2) = u1 (y? + ~'Y2) +c1 

U2(YIO ,yJ = u2 (y? + ~ ,yJ + c2 

on the left and right opposite sides, and 

U1 (YI ,y~) = U1 (YI ,y~ + 1;) + el 

U2(YI,Y~)=U2(YI'Y~ +1;)+e2 

(2.3.1a) 

(2.3.1b) 

(2.3.2a) 

(2.3.2b) 

on the upper and lower opposite sides, where C1' C2 and el , e2 are constant 

displacements. These boundary conditions produce a periodic strain field 

and therefore a periodic stress field. However, the displacements lose their 

periodicity. 
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2.3.1 Multi-point constraints 

In finite element analysis, there are different methods for imposing periodic 

boundary conditions. For example, appropriate multi-point constraints are im­

posed on the boundary of a RVE to produce periodic boundary conditions [7]. 

For a square or rectangular RVE, identical displacement functions must be 

specified for corresponding nodes on the opposite edges. For example, the pairs 

of nodes on the opposite edges of the RVE can be linked by a constraint equa­

tion so that opposite edges have identical deformations. The periodic boundary 

conditions of a 2-D rectangular RVE, as shown in Fig.2.8, have been defined by 

Rohe and Becker [8]. 

p+l i+p 2p 

2p+2q 

j+q 

l'p+ 1 

0---0--0---0--0 2p+q+ 1 

1 P 

11-' --a --1-1 
Fig.2.S Multi-point constraints of a RVE 

It is assumed that there are 2p nodes on the upper and lower sides, 2q 

nodes on the other two sides. The multi-point constraint for RVE can be ex­

pressed by 

U(p)/ - u (i)/ = U(2p)/ - U(i+p)/ ' i = 1,3,. · .,p (2.3.3a) 

on the upper and lower sides, and 

U(2p+q )/ - u (j)/ = U(2p+2q)/ - u (j+q)/' j = (2p + 1),(2p + 2),. · · ,(2p + q) 

(2.3 .3b) 
on the right and left sides, and u(i) / are values of displacement components 

U/ at node i, I = 1,2,3 . 

For the problem of bending of a plate, the periodicity of the rotations will 
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be described as 
rpU) = rpU+ p) , i = 1,3,···,p 

rpU) = rp(j+q)' j = (2p + l),(2p + 2),···,(2p + q) 

where rpO) is the rotation with respect to the x3-axis at node i. 

2.3.2 Polynomial interpolations 

(2.3.4a) 

(2.3.4b) 

The multi-point constraints satisfYing periodic conditions can be implemented 

in standard finite element programs, such as ABAQUS software. In some cases, 

however, it is difficult to express periodic boundary conditions by multi-point 

constraints, especially in the case of quite arbitrary FE mesh and/or arbitrary 

boundaries of a R VE. In this case, the boundary node correspondence cannot be 

easily established. For this case, a method can be implemented for enacting the 

periodic boundary conditions, in which the displacements of boundary nodes 

are expressed by suitable polynomial functions. 

It is assumed that there are p nodes on any side, even a curved side of the 

RVE. Then a (p-l )th order polynomial is chosen for the displacements. Denote 

U as the displacement component with respect to the x axis. Therefore we 

can obtain p equations 

{
~l = ao + a1x1 + a2Yl .. ·ap_1x;l y; 

m n 
up =ao +alxp +a2Yp···ap_lxpYp 

m+n=p-l (2.3.5) 

where u l ,···, up are nodal displacement components with respect to the x 

axis and XI'···' x p are the coordinates of the nodes on the boundary. Similar 

equations of displacement components v and w, with respect to the Y and z 

axes, respectively, can be obtained. These lead to displacement constraints in 

the FE equations prior to solving. These displacement constraints can be intro­

duced into the FE equations by the Lagrange multiplier method or the penalty 

method [9, 10]. 

2.3.3 Specified strain states 

Boundary constraints can be directly imposed on the RVE according to the de­

formation modes of the RVE. For a 2D problem, for instance, there are three 
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kinds of basic deformation modes, two normal modes and one in-plane shear 

mode, as shown in Fig.2.9. The three modes of deformation are used in the FE 

calculation of effective stiffness coefficients of a composite by the direct aver­

age method which is described in the following section. Fig.2.9 shows the 

boundary constraints corresponding to the following states of simple strain: 

(2.3.6) 

v=o 

v=b 

v=o 

u=o 

Fig.2.9 Three deformational modes of a 2D RYE 

2.4 Effective fields and effective properties 

Microstructural materials such as various kinds of composites, are bodies with 

structural hierarchy, where the characteristic length of the entire body is much 
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greater than the characteristic length of the microstructure. There is a complex 

interaction between phases. Thus, if only quantities on the macroscopic scale 

need to be determined, an optional method is that the microstructure is ho­

mogenized for reasons of a more efficient analysis. Homogenization is a 

method for finding the macroscopic fields and properties based on the micro­

structural parameters and local properties of heterogeneous media. Effective 

properties represent the overall behavior and depend on the phase properties 

and microstructure information of heterogeneous materials. A schematic of a 

homogenization is presented in Fig.2.lO. 

Fig.2.10 Schematic homogenization of a heterogeneous material 

2.4.1 Average fields 

The volume average of the local or microscopic stress (Jij and strain cij can 

be defined by 

(2.4.1 ) 

and 

- II C =- cdQ 
lj v.a lj 

(2.4.2) 

where Q denotes a RVE and V is the volume of the RVE, the superscript 

bar denotes the volume average of the quantity, e.g. macroscopic or effective 

quantity. For an elastic body, the volume average of the strain energy can be 

expressed by 
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w=~f wdQ=~f ~O"cdQ 
V Q V Q2 II lj 

= ~f ~C.··klC .. CkldQ V Q2 II lJ 
(2.4.3) 

= ~ fQ l·J;jklO"ijO"kldQ 

1 
where 20"ijcij = w is the strain energy density, Cijk1 are the local stiff-

ness coefficients and !ijkl(! = c-1
) are local compliance coefficients which 

are different from phase to phase. Additionally, the macroscopic strain energy 

should satisfy 

(2.4.4) 

2.4.2 Effective properties 

The effective properties which are represented by the effective stiffness Cijkl 

or compliance hjkl of composites, in terms of the average stress and strain, 

can be defined as 

(2.4.5) 

or according to the equivalence of the strain energy, defined as 

~O'& = ~f ~O"cdQ 
2 1/ lJ V Q 2 lJ II 

(2.4.6) 

that is 

(2.4.7) 

This relation was obtained by Hill [11] and is referred to as Hill's principle [12]. 

The principle has been generalized into nonlinear and inelastic materials [13]. 

The linearity of the stress-strain relation into an elastic body leads to 

a2w 
Cijkl = a- a­

cij ck/ 
(2.4.8) 

then an explicit form of the effective stiffness components can be obtained [8] 
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i=j,k=l,i=k 

W("'ij) ~2' 
2cij 

i"#-j,k"#-l,i=k,j=l 

[W("'ij''''k,)-W('''ij)-W('''k,)J_~ , 
"'if"'k! 

[W("'ij''''k!) - W("'ij) - W("'k/) ] _1_ , 
2CU"'k! 

i=j,k=l,i"#-k 

i=j,k"#-l 

(2.4.9) 

where w( "'ij' "'k! ) denotes the strain energy density for a reference strain state, 

where only "'if and "'kl have non-zero values. Indices mean that no summa­

tion has to be performed. 

Homogeneous boundary conditions are usually used to evaluate overall 

material properties. For homogeneous traction ();~ on the boundary r of the 

RVE, we have 

(2.4.10) 

and 

(2.4.11) 

Thus to find the effective compliance lijkl the average strain "'ij must be 

computed for a composite subjected to a homogeneous traction boundary con­

dition. 

For a homogeneous displacement condition on the boundary r of the 

RVE, we have 

(2.4.12) 

and 

(2.4.13) 

accordingly, to determine ~jkl the average stress (}ij must be computed for 

heterogeneous material subjected to a homogeneous displacement boundary 

condition. 

It is worthwhile to note that the volume average of stress, strain and strain 

energy density can be expressed by phase volume fractions. For a general func-
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tion F, the volume average can be written as 

p=~f FdQ=~[f FdQ+f FdQ+ ... ] 
VD VDj D2 

= ~ pel) + Vz p(2) + ... 
V V 

(2.4.14) 

= v pCl) + v p(2) + ... 
] 2 

where Q] ,Q2' . . . (Q] + Q2 + ... = Q ) are subdomains which represent the 

domains occupied by phase 1, 2, ... of the composite material, and ~,V2"" 

are their volume, while 
V2 V =- ... 

2 V' 
(2.4.15) 

are referred to as volume fractions of the corresponding phases and 
v] + v2 + ... = 1. For n-phase composite, the stress, strain and strain energy can 

be expressed by 

;=1 

n 

W;j = L v;w;j) 
;=] 

(2.4.I6a) 

(2.4.I6b) 

(2.4.l6c) 

where the superscript (i) corresponds with phase i. In a word, the average of the 

stress, strain and the strain energy density can be calculated by a volume aver­

age method. The average properties of a composite can be obtained by using 

anyone of the two averaged quantities mentioned above. 

As the shape of an inclusion is ellipsoidal, the stress or strain in the inclu­

sion is uniform. In this case, the effective properties can be expressed by the 

so-called concentration factor of the stress or strain. It is assumed that Hooke's 

law holds in each elastic phase 

r = O,I,"'n 

r = O,I,"'n 

(2.4.I7a) 

(2.4.I7b) 

Substituting Eq.(2.4.I7a) into Eq.(2.4.I6a), and using Eq.(2.4.6), we can obtain 
n 

c=co + Lvr(cr _co)eCr)e-1 (2.4.ISa) 
r=l 

Substituting Eq.(2.4.I7b) into Eq.(2.4.I6b), and using Eq.(2.4.5), we have 
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n 

I = fa + LVr(F - fO)u(r)ii- 1 (2.4. 18b) 
r=1 

It is assumed that there is a relation between average strain and local strain 
e (r) = Are-

Similarly, the average stress and local stress have the relation 
a(r) = Bra 

(2.4.19a) 

(2.4. 19b) 

Thus the effective stiffness c and compliance f of the composite can be 

written as 
11 

c=co + LVr(cr -cO)Ar (2.4.20a) 

11 

1= f O + Lvr(F - fO)B r (2.4.20b) 
r=1 

where A r and B r are referred to as the concentration factors of stress and 

strain, respectively. They are functions in term of the properties of the con­

stituents and the shape of inclusions. 

For an isotropic composite, such as particle reinforced composites, the 

stress-strain relation can be expressed by two independent engineering con­

stants as follows 
(2.4.21) 

where iikk = iii I + (i22 + (i33' ~(k = &; I + &22 + &33' sij' and eij are deviatoric 

parts of ~j and (iij' respectively. k is effective bulk modulus and JilS 

shear modulus. Under this situation, Eq. (2.4.20a) can be rewritten as 
n 

k=ko+ Lvr(kr-ko)&t?&jjl (2.4.22a) 

11 

_ "( ) (r)--I Ji - Jio + L.. vr Jir - Jio eii eii ' ij no sum (2.4.22b) 
r=1 

2.4.3 Homogenization methods 

There are different homogenization approaches. Direct homogenization is 

based on volume average of field quantities such as stress, strain and energy 

density. Then the effective properties can be found according to the definition 

of the effective properties of the composite. The average and the calculation of 

local field quantities can be performed by a numerical procedure, FEM or 
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BEM [14,15], for instance, while the geometry and the properties of micro­

structures can be arbitrary. 

Indirect homogenization follows the idea of the equivalent inclusion 

method based on Eshelby's eigenstrain solution for a single inclusion embed­

ded into an infinite matrix [16]. This method does not use the average of field 

quantities, and the effective properties can be derived in terms of the volume 

fraction and geometry of the inclusion as well as the properties of the constituents. 

The self-consistent scheme [17-19], the generalized self-consistent scheme [20], 

the differential method [21, 22] and the Mori-Tanaka method [23-25] have been 

developed along the lines of this approach and are used widely to find the 

properties of various composite materials. However, the arbitrary microstruc­

tural morphology that is frequently encountered in actual materials cannot be 

deterministically treated with these models. The constitutive responses of the 

constituent phases are also some what restricted, and predictions with large 

property mismatches are not very reliable. Additionally, due to the lack of a 

proper representation of microscopic stresses and strains, these models cannot 

capture the effect of local inhomogeneities. A survey of indirect homogeniza­

tion methods and applications in predictions of the effective properties of 

composites has been presented by Hashin [3]. 

Alternatively to direct and indirect homogenizations, the variational 

method is unique in that it can give the upper and lower bounds of the elastic 

moduli [26-29]. This method gives improved results over earlier bounds [30,31]. 

A relatively new approach for homogenization of microstructure consists 

of mathematical homogenization based on a two-scale expansion of the 

displacement field. This originated for analyzing physical systems containing 

two or more length scales [32-35]. It is suitable for multi-phase materials in 

which the natural scales are the microscopic scale characterized by in­

ter-heterogeneity or local discontinuity spacing and the macroscopic scale 

characterizing the overall dimensions of the strncture. This method can be 

called mathematical homogenization. 

Books covering different homogenization methods have been written by 

Mura [36], Nemat-Nasser and Hori [37]. A critical review of different homog­

enization methods and applications in cellular sandwich strnctures can be found 

in a recent article by Rohe and Becker [38]. 

In the following sections we focus on the direct method, indirect method 
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and two-scale expansion method. Special attention is given to application in 

conjunction with FE analysis and the implementation of the methods. 

2.5 Direct homogenization 

In direct homogenization, the direct averages of the microscopic fields, such as 

stress, strain and strain energy density, are calculated by a volume or surface av­

eraging process. The effective properties of the composites are then predicted 

according to relations of macroscopic stress, strain and strain energy density. 

The effective quantities of the stress, strain and strain energy density can 

be calculated from the corresponding boundary values by a surface averaging 

procedure. For the strain Cu" = ~(u J' + u
J
' ,.) , applying the divergence theorem , 2 '. . 

in Eq.(2.4.2) yields 

- If If 1 c·· =- c. dQ=- -(u.n .. +U. n)dF 
'I V n 'I V r 2 'I I' 

(2.S.l) 

where F is the boundary of the RVE, n; is the outward normal vector on F. 

The surface average of the stresses can be obtained by integration by part 

of Eq.(2.4.l), that is 

(f = ~f O"dQ = ~f ~(Tx + Tx)dT (2.S.2) 
'1 V n 'I V r 2 '1 I' 

where T; is the traction vector on the surface of the RVE. This implies that 

T; = O"ijn j holds. It is shown from Eq.(2.S.2) that average stresses can be cal-

culated by the volume averaging of the stresses or surface averaging of the trac­

tions. 

Let us consider, for illustration, a brick shaped RVE as shown in Fig.2.ll, 

which has been used in most research work. The surface averages of tractions 

can be expressed by, for instance, 

- 1 f 0"1l = - O"lldT , 
b Be 

(2.S.3a) 

(2.S.3b) 

The average strain energy can be expressed by the boundary values, ac­

cording to the work-energy principle 

w=~f ~O"cdQ=~f TudF 
V n2 Y lJ V r ' , 

(2.S.4) 



2.6 Indirect method 23 

Fig.2.11 Traction condition of a RVE 

This relation can be proved and be generalized mathematically. In fact, using 

Green's theorem, we can obtain 

f O"&d.o ='!'f 0" (u +u. )d.o 
Q Y Ij 2 Q Ij I , ) } , I 

= f O" .. u. d.o 
Q Ij I,} 

=f [(O"u). -O" .. u]d.o 
Q Ij I , } y ,} I 

= -f O" .. ud.o + f O" .. u.ndF 
Q Ij,} I r Ij I } 

(2.5 .5) 

Noting that O"ij,j =-J; (in .0) and O"ijnj =T; (on Ft ) , then Eq.(2.5.4) be-

comes 

f O"&d.o = f J;ud.o + f TudF 
Q fj lj n I I T( I I 

(2.5.6) 

This is the work-energy principle: the strain energy stored in the RVE is equal 
to the work of external forces . In the case of a free body force, i.e. J; = 0 , the 

total strain energy can be represented by the work of the traction of the 

boundary surface. 

Therefore, it is concluded that the average of stress, strain and strain en­

ergy density can be calculated by either a volume or a surface averaging proc­

ess. Once two of the three quantities are found, the effective properties of the 

composite can be predicted. 

2.6 Indirect method 

Indirect homogenization in this book refers to various homogenization methods 

derived from Eshelby's inclusion theory. An elastic solution has been obtained 
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for a single inclusion embedded in infinite elastic medium [16]. Such a method 

does not involve the calculation of average fields. The self-consistent scheme, 

generalized self-consistent scheme, Mori-Tanaka method and differential 

method are developed along this route. Indirect methods are widely used to 

prediction of the effective properties of composites [39,40]. 

2.6.1 Self-consistent and generalized self-consistent scheme 

The self-consistent and generalized self-consistent schemes provide methods to 

calculate stress or strain concentration factors. They are briefly reviewed here 

for a binary composite with matrix (r = 0) and inclusion (r=1). 

In self-consistent scheme, it is assumed that a typical inclusion (fiber, par­

ticle or micro-void) is embedded in an infinite effective medium subjected to a 

uniform strain "& at an infinite boundary. Denote c as the effective stiffness 

of the composite to be found. According to Eq. (2.4.12), "& is the effective 

strain of the composite. The corresponding effective stress is 

u = ce (2.6.1) 

The strain in the inclusion consists of two parts, uniform strain c and a per­

turbing strain cPt, and the stress in the inclusion is S + spt , that is 

C(I) ="& +cpt 

(T(l) = (j + (Tpl 

Using the equivalent inclusion principle yields 
- t 1 - f - t * 

U +u p = c (e +e P ) = c(e +e P -e ) 

and 
cpt = Sc* 

where S is the Eshelby tensor and c* the equivalent eigenstrain. 

Solving Eqs. (2.6.2) and (2.6.3), we find 

e(1) =[1 +SC-I(CI_C)f;; 

(2.6.2a) 

(2.6.2b) 

(2.6.3a) 

(2.6.3b) 

(2.6.4a) 

where I is the unit tensor. A comparison of Eq.(2.6.4a) with Eq.(2.3.20a) gives 

the strain concentration factor 

A = [I + SC-1(C1 -c) f (2.6.4b) 

The effective properties can be found by substitution of Eq.(2.6.4b) into 

Eq.(2.4.20a). As the homogeneous traction boundary condition is applied on 

the infinite boundary of the effective medium, we can obtain the stress concen-
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tration factor and effective compliance of the composite. 

In this model, the strain subjected on the effective medium is the effective 

strain of the composite to be found. The scheme is self-consistent. 

It is noted that the strain concentration factor is a function of unknown ef­

fective stiffness c. An iteration procedure should be used to solve the 

effective properties. In addition, the use of Eshelby's solution means that the 

shape of the inclusion is assumed to be an ellipsoidal. The self-consistent 

scheme can be applied to calculating the effective properties of the composite. 

But the complex interaction of inclusions cannot be considered in this model, 

which can therefore lead to inaccurate prediction of effective properties. In 

particular, a wrong result will be obtained when the inclusion volume fraction 

is greater than 0.5. 

The generalized self-consistent scheme is a modification of the 

self-consistent model. It is assumed that a RYE is embedded in an infinite ef­

fective medium subjected to homogeneous boundary conditions. This is a novel 

model and gives a reasonable result although the operation of the scheme is 

more complex. 

2.6.2 Mori-Tanaka method 

Mori and Tanaka [23] have given a solution of back stress in matrix of compos­

ites. This result can be applied in extension of Eshelby's solution for a single 

inclusion to a composite with a finite inclusion volume fraction. 

For a finite-fraction inclusion problem with eigenstrain II, although 

there are complex interactions of phases, the average stress can be expressed by 

<a>m=c<e >m=-vjc(Se*-e*) (2.6.5) 

where < 8 > III is the average strain in the matrix. VI is the volume fraction of 

inclusion. 

There are different variations to applying Mori-Tanaka's average stress 

conception to composites with inclusion of a finite fraction. Weng [24] gave the 

following reexamination of the Mori-Tanaka(M -T) method. 

For a binary composite subjected to a homogeneous boundary condition 

[Eq. (2.1.2)], denoting r=0 matrix and r= 1 inclusion, the effective stress is uo. 

For the sameshaped pure matrix applied to the same boundary condition, the 

corresponding strain 8° can be expressed by 
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(2.6.6) 

where CO is the stiffness of the matrix. Due to the existence of an inclusion, 

the strain in the real matrix of the composite differs from that in a pure matrix. 

Let & be the perturbing strain and 0- corresponding perturbing stress. Thus 

eO + & and aO + 0- are strain and stress in the real matrix with 

0'0 +a = cO(c ° +i) (2.6.7) 

The strain and stress in the inclusion are different from those in the matrix. The 

differences are e' and a', respectively. Thus eO + & + e' and aO + 0- + a' 

are the strain and stress in the inclusion. The equivalent inclusion principle 

yields 
a(l) =ao +o-+a'=cl(eo +&+e')=co(eo +e+e'-e*) 

e' = Se* 

& = -VI (S - J)e * 

(2.6.8a) 

(2.6.8b) 

(2.6.8c) 

where VI is the volume fraction of the inclusion. Eq.(2.6.8c) arises from 

Mori-Tanaka's concept of average stress [Eq.(2.6.5)]. Solving Eq.(2.6.8) yields 

e* = H eO (2.6.9) 

where H = [CO + flc( VI J - voS) rl 
flc, flc = c l 

- co, Vo = 1- VI is the volume 

fraction of matrix. 

Accordingly, the effective strain e IS 

"& = (1- VI )e(O) + VI e(l) 

= (l-vl)(eo +&)+vl(eo +&+e') 

° * =e +v\e 

= (I + vjH)eo 

and the effective stiffness of the composite is 

c=c°(I +vjHr
j 

(2.6.l0a) 

(2.6.l0b) 

Benveniste [25] has presented another explanation of the Mori-Tanaka 

method by using the concept of the concentration factor. Denote A as the 

strain concentration factor for the composite with a dilute inclusion. Here A 
is independent of the volume fraction of the inclusion. Denoting A as the strain 

concentration factor for the circumstance of a finite volume fraction of inclu­

sion, the relation exists 

(2.6.11 ) 

Therefore, the effective stiffness of the composite can be determined by 
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Eq. (2.4.20a) as 
- ° (I o)A c =c +VI C -c (2.6.12) 

To calculate the concentration factor A, introduce a new tensor G satisty-

mg 
C(I) = Gc(O) 

Using relation "& = voc CO) + VIC(I) yields 

A = G[vol -vlGrl 

(2.6.13) 

(2.6.14) 

At the limit state, the concentration factor should satisfy the following condi­

tion 

A Iv 1--+0 = A, Alvl--+l = I (2.6.15) 

Obviously, by setting only G = A , the above mentioned limit condition will be 

satisfied. Thus the Mori-Tanaka method can be summarized as: an inclusion is 

embedded in an infinite matrix subjected to uniform strain "&. The strain 

concentration factor can be calculated by [see Eq.(2.6.4b), but c is replaced 

by co] 

A = [I + S(cOrl(cl -co) r 
Then the effective stiffness is 

c=co +VI(CI -cO)A[ vol +vlAr 

2.6.3 Self-consistent FEM and M-T FEM 

(2.6.16) 

(2.6.17) 

The self-consistent scheme and M-T method are close mathematically. How­

ever, they are applicable only to ellipsoidal shaped inclusions. This is a critical 

limit for their practical utility. The self-consistent finite element and M -T finite 

element method (FEM) are numerical procedures used to solve the effective 

properties of composites. The self-consistent model or M-T model in conjunc­

tion with the FEM can be applied to dealing with composites with arbitrary 

shaped inclusions. 

It is assumed that a typical inclusion is embedded in an infinite effective 

medium subjected to a uniform strain "&. This boundary value problem can be 

solved by FEM and then the average strain in the inclusion can be obtained. 

Consequently, the strain concentration factor can be found and effective stiff­

ness can be calculated by Eq.(2.4.20a). In this process, the unknown effective 
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properties must be used in FE calculation, requiring an iteration procedure [41]. 

The self-consistent FEM can deal with arbitrary shapes of inclusions. The 

influence of shape of the inclusion can be considered. Also, it can deal with 

nonlinear material and the effect of interfacial properties. 

Similarly, the M-T FEM can be used to numerically deal with arbitrary 

shapes of inclusion. In M -T FEM, a typical inclusion is embedded in an infinite 

matrix medium subjected to a homogeneous strain boundary condition. A FE 

procedure is applied to calculate the strain concentration factor A, then the 

effective properties of the composite can be found by using Eq. (2.6.17). 

2.6.4 Differential method 

The differential method has a long history in physics. In considering the inter­

action of phases, the differential method has been applied to composite and 

cracked solids. 
Denote e as the effective stiffuess of a composite with volume Va and 

inclusion volume fraction VI. Add the volume bVof the inclusion to the 

composite so that the inclusion volume fraction is VI + bV
1 

and the effective 

stiffness is e + be. To keep a constant volume Vo of the composite, the 

volume bV is subtracted from the composite before adding the inclusion. 

Thus the concentration of the inclusion is 
VIVO +bV-V1bV = (VI +bV1)VO (2.6.l8a) 

that is 

(2.6.18b) 

The average stress is 
(2.6.l9a) 

then we have 

- Va -bV bV (1) 
& = &+-& 

Va Va 
(2.6.19b) 

- Vo -bV bV (1) 
U= u+-u 

Va Va 
(2.6.l9c) 

where & and u denote the average stress and strain in the instantaneous 

composite, respectively. &(1) and u(l) represent the average stress and strain 
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of the added inclusion, respectively. If there are very few inclusions, the strain 

concentration factor can be calculated by Eshelby's solution for a dilute inclu­

sion problem 
& (1) =Ac (2.6.I9d) 

where A=[I +SC- I(CI -c)f , S is the Eshelby tensor. 

Substituting Eqs. (2.6.19b), (2.6.19c) and (2.6.I9d) into Eq.(2.6.I9a) 

yields 

s:- _ (I -)A bV uC - c -c -
Va 

Using Eq. (2.6.I8b), and setting bVI ---+ 0 , we can obtain 

dc I I 
-=--(c -c)A 
dVI I-vI 

(2.6.20) 

(2.6.2Ia) 

This is a differential equation for effective stiffness. Its initial condition is 

clvl=o = CO (2.6.2Ib) 

Eq.(2.6.2Ia) is a nonlinear equation which can be solved by a numerical pro­

cedure. 

For a spherical particulate reinforced composite, the form ofEq. (2.6.2Ia) 

IS 

dk kl -k k +k* 
(2.6.22a) - = 

dVI I-vI kl + k* 

d,li f.11 -,li ,li + f.1 * (2.6.22b) 
dVI I-vI f.11 + f.1 * 

where k and f.1 are the bulk modulus and shear modulus of the isotropic 

composite. kl and f.11 are the bulk and shear moduli of the inclusion, respec­

tively, and 

* ,li 9k + 8,li 
f.1 =6 k +2,li 

(2.6.22c) 

The initial condition Eq.(2.6.21 b) becomes 

VI = 0, k = ko, f.1 = f.1o (2.6.22d) 

where ko and f.1o are the bulk and shear moduli of the matrix. 

If we take approximately values 

* 4 * f.1o 9ko + 8f.1o k = - f.1o' f.1 = - ---''-----'--''-
3 6 ko + 2f.1o 

(2.6.22e) 
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an approximate solution of Eqs.(2.6.22a,b) can be obtained 

k 
-k vl(kl -k) 
- 0 + ------''--'---'------:-------:--

1 + (1 - v ) kl - ko 
I kl +k* 

ji = J.1o + VI (J.11 - ji) 

1 + (1- VI) J.11 - J.1~ 
J.11 + J.1 

2.7 Variational method 

(2.6.22f) 

(2.6.22g) 

The variational method is used to determine the bound of effective properties of 

a composite. It gives the upper and lower bounds of the effective properties of 

the composite according to the stationary principle of the energy. 

Consider a composite, volume V, subjected to a homogeneous strain 

boundary condition [Eq.(2.1.l)]. Denoting Sij as the virtual strain which satis­

fies the displacement boundary condition and the geometric equations, the 

strain energy can be written as 

- If 0 If I U = - CkIS.Skid V + - C"IS"Skid V 2 Va lj lj 2 VI ljn lj 
(2.7.1) 

where Va is the domain occupied by a matrix, ~ is the region of the inclu­

sion and Vo + ~ = V . 

The effective strain energy corresponding to the average strain and stress 

IS 

1_ 0 0 
U = 2Cijk/SijSkiV (2.7.2) 

According to minimum potential principle, the real strain should satisfy 

U ~ U (2.7.3) 

This equation will lead to the upper bound of the effective stiffness. 

If the composite is subjected to a homogeneous stress boundary condition 
[Eq.(2.1.2)], denoting (Jij as the stress which satisfies the equilibrium equa-

tion and traction boundary condition, the complementary energy is 

- If 0 I f I r = - +'I(J.··(JkldV + - +·kl(J··(JkldV 2 Vo JiJ'( IJ 2 TJ JiJ lJ 
(2.7.4) 

The real complementary energy can be expressed by means of effective stress 

and strain 
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1 - 0 0 
r ="2 fjk/(Jij(JkI V 

The minimum complementary energy principle leads to 

r~i' 

(2.7.5) 

(2.7.6) 

This equation can be used to find the lower bound of the effective stiffness. 

Let us consider two special cases. 

(1) Constant strain: A uniform uniaxial strain is applied to a composite in 

one direction, and the strains of matrix and fiber are assumed to be the same. 

This state stands for a uniaxial deformation of a unidirectional fiber composite. 

The minimum potential energy principle leads to 

Ell ~ voEln + vlEf (2.7.7) 

where Ell is effective modulus along the axial or single direction. 

Ei (i = m, f) are the elastic moduli of the constituents. The equation above 

indicates that the upper bound of effective stiffness can be expressed by a mix­

ture law. This result is referred to as the Voigt approximation [30]. 

(2) Constant stress: It is assumed that a homogeneous traction boundary 

condition is applied to a composite , and the stresses in the matrix and fiber of 

the composite are the same. The minimum complementary energy principle 

yields 

(2.7.8) 

This is referred to as the Reuss approximation [31]. It is usually used to predict 

the transverse effective modulus of composites. 

2.8 Two-scale expansion method 

It is assumed that an elastic body is an assembly of periodic microscopic unit 
cells. There are two coordinate systems: global coordinate x = (XI ,X2 ,X3 ) and 

local coordinate y = (Yl' Y2' Y3). The global coordinate x is related to the 

local coordinate y as 

y=x/& (2.8.1) 

where & is a very small positive number denoting the ratio between the 

dimension of a unit cell and a structural body. When subjected to structural 

level loads and displacements, the resulting evolutionary variables, e.g. deformation 

and stresses, vary from point to point at the macroscopic scale x. Furthermore, 
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a high level of heterogeneity in the microstructure causes a rapid variation of 

these variables in a small neighborhood e of the macroscopic point x. In the 

present homogenization theory, periodic repetition of the microstructure about 

a macroscopic point x has been assumed, therefore the field functions depend 

periodically on y = xl e. This characteristic is often termed V-periodicity, 

where Y corresponds to a RVE. 

2.8.1 Expansion of the displacement field 

The displacement field can be asymptotically expanded as 

ui = u;"(x) = u7(x,y) + eU;(X,y) + e2U;2(X,y) + ... (2.8.2) 

The superscript e denotes association of the function with the two length 

scales. Note that 

oFl:(x,y) of(x,y) loF(x,y) 
------'----'--"-'-= + 

oXi oXi e 0Yi 
(2.8.3) 

where F is a general function, for the strain tensor e;i' we have 

e =..!.. [OU i + au j ) 

If 2 ax ax 
J I 

I -1 0 1 
= - eii (X, y) + eii ( x, y) + eeij ( x, y) + ... e . . (2.8.4) 

where 

(2.8.5a) 

(2.8.5b) 

1 1 [au; OU~) 1 [OU;2 OU~: e(X,y)=- -+- +- -+-
IJ 2 OXi ax; 2 OYj oY; 

(2.8.5c) 

The elastic coefficients Cijkl are periodic functions of x and depend on 

e, that is 

C;~kl = c;ikl (x / e) = Cijkl (y) 

Thus the stress can be expressed as 

(2.8.6) 
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1 " -I ( "' 0 ) "' 1 ) = -CijklE:kl x,y) + CijklE:kl(X,y + E:CijklE:kl(X,y + ... 
E: 

1 -I 0 1 
= - () ij (x, y) + () ij ( x, y) + E:() ij ( x, y) + ... 

E: 
(2.8.7) 

The stress-strain relations can be expressed by 

()~ (x,y) = C~klE:I;'(X,y), n = -1,0,1 (2.8.8) 

From Eqs.(2.8.5) and (2.8.8), the stresses have the following forms 

-I e ouZ 
()ij = Cijkl OYI (2.8.9a) 

0_ ,e' [ouZ OU!) 
()ij -cijkl a + 0 

XI y, 
(2.8.9b) 

()1 = C~kl [au~ + aui ) 
If If ax, oy, 

(2.8.9c) 

2.8.2 Establishment of basic equations of elastic microstructure 

The elastic problem with a periodic microstructure is described as: 

()i~,j +.t; = 0 (in Q) (2.8.10a) 

(2.8. lOb) 

(2.8.lOc) 

Substituting Eq.(2.8.7) into Eq.(2.8.1O), and equating the powers of E:, 

we obtain 
O()~I 
_lJ_=O 

oY) 
a -1 a 0 

()ij + ()ii = 0 

OX) oy) 

(2.8.11a) 

(2.8.11b) 

O()? a 0.1 
_If +_If + t; =0 (2.8.11c) 
OX) oy) . I 

For solving the system of Eq.(2.8.11), an important result is introduced 
here. For a Y periodic function rfJ = t1>(x,y), the equation 

-~[aij(y) OrfJ.l = F (2.8.12) 
0Yi 0Yi 
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has a unique solution if the mean value of F is equal to zero, i.e. 

- 1 f F=- Fdy=O V y 
(2.8.13) 

where V is the volume of the unit cell. Application of this condition to 

Eq.(2.8.11a) leads to 

and then from Eq.(2.8.8) and Eq.(2.8.5a), we have 

u7(x,y) = u7(x) 

This shows that u7 is a function of the global coordinate x only. 

The expansion of the displacement field can be rewritten as 

uj = u;(x) = u7(x) + &Ui(x,y) + &2U;(X,y) + ... 

(2.8.14) 

(2.8.15) 

(2.8.16) 

We can regard u7 as the macroscopic displacement, while 1 2 
U j 'U j , ••• are 

the microscopic displacements. The physical interpretation of Eq.(2.8.16) thus 
is that the real displacement u j oscillates rapidly around the mean displace-

ment u7 due to the inhomogeneity from the microscopic point of view. 

u; ,uj

2 
,. •. are the perturbing displacements on the level of the microstructure. 

Substituting Eq.(2.8.14) into Eq.(2.8.11b), we can obtain the microscopic 

equilibrium equation 
O()? 
__ lJ = 0 (in .Q) 
oYj 

(2.8.17) 

Taking the mean of Eq. (2.8.11c) over .Q and applying Eq.(2.8.13) to 
O()l 

the second term --" ,leads to the macroscopic equilibrium equation 
oYj 

OO'? 
_If + f = 0 (in .Q) oX

j 
I 

(2.8.18) 

where O'Z are the macroscopic stresses. 

2.8.3 Determination of effective properties of material with micro­
structure 

It is assumed that the displacement fields u7 and u; are related by 

1 __ kt( ) ouZ uj - If/j x,y ;:, 
uXI 

(2.8.19) 
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Substituting Eq.(2.8.19) into (2.8.9b) yields 

(Tt~ = [Ciikl - ctimn o;::,lf/~) ~uZ 
, , , uYn uXI 

(2.8.20) 

Then integrating on the RVE leads to the effective stress-strain relations for an 

elastic medium 

(2.8.21 ) 

where 

-0 1 f 0 0"" = - (T(x,y)dY 
If V y If 

(2.8.22) 

- 1 [ Olf/~ 1 Ci/kl =-f Ci/"kl -ct/'lnn-- dY , V y, , 0Yn 
(2.8.23) 

are the homogenized elastic coefficients. It can been seen from Eq.(2.8.23) 

that the function If/(x,y) must be calculated before determination of the ho­

mogenized properties. Generally, the evaluation of If/(x,y) can be performed 

by the FEM. 

2.8.4 Variational forms 

The variational forms of the abovementioned equations can be established to 

calculate the effective properties of a composite in conjunction with the FEM. 

The variational form ofEq.(2.8.11a) is 

;::, -\ [0) u(T ij 0 & aUk 0 

f ,--ouidQ=f & Ciikl - ouidQ=O 
nay. n, oY 

j I ' ,j 

(2.8.24) 

where oui can be viewed as arbitrary virtual displacements. For a Y-periodic 

function ¢(y), we define a mean operator as follows: 

limf ,¢(xlrlQ=J.-f f ¢(y)dYdQ (2.8.25) 
10--+0 n & r V n y 

Since the homogenization method consists of finding the limit of the solutions 

to Eqs.(2.8.11a)~(2.8.11c) as & tends to zero, we have the form ofEq.(2.8.24) 

1· f [& ouZ) s: °d 1 f f [ ouZ) s: °d d 1m ,Ctikl - uUt .0=- Cijkl- uUt Yi .0=0 
1:--+0 n ' OYI' V n y OYI' 

J J 

(2.8.26) 
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Using the divergence theorem in Eq.(2.8.26) yields 

Thus 

1 1 1 [ ouZ) 0 - Cijll - bUj dYdQ 
V n y (aYI . 

,j 

1 1 ~ auZ 0 = - c··kl-nbu dsdQ = 0 
V n s If ay, j I 

auf =0 
aYi 

It is shown again that u~ is a function of x only. 

(2.8.27) 

(2.8.28) 

Substituting Eq. (2.8.9b) into the variational form of Eq. (2.8.11 b) yields 

(2.8.29) 

Then 

1· f & [ouZ oUk) s: ld 1m I .. Cikl -+- uUi Q 
&-->0 n j OX

I 
0YI . 

,j 

= If 1 c·· [auz + au;,) S:u 1dYid rl = 0 V n yUki a a u I J.L (2.8.30) 
XI YI. j 

Integrating by parts, and noting that the virtual displacements bU; = 0 at the 

boundary of the RVE, and u~ is a function ofx only, we have 

f auZ (1 c.~ abU; dY: dQ + 1 1 c... au;, abU; dYdQ = 0 
n 0 y Ilkl any Ilkl a a 

~ ~ ~ ~ 
(2.8.31 ) 

Introducing the function If/( x, y) which satisfies 
o kl I I 

1 If/p obu 1 abu Cjipq ----' dY = Cijkl--l dY 
y. ay q aYi y aYi 

(2.8.32) 

and substituting Eq.( 2.8.32) into Eq.(2.8.31), we have 

o a kl I I I 

1 aUk 1 Cj ~ abuj dYdQ + 1 1 Cjkl aUk abuj dYdQ = 0 
n ax y ~pq ay ay . n y Y ay oy . 

, q j I j 

(2.8.33) 

Applying the divergence theorem to Eq.(2.8.33) leads to 

1 ~ kl auf Obu; 1 ~ 1 abu; Cijpqlf/p nq ---dsdQ + cijkZupnq --dsdQ = 0 
n s aXI aYi n s aYi 

(2.8.34) 
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From Eq.(2.8.34), we can again obtain Eq.(2.8.19). This explains the reason for 

the assumption made in the previous section. 

2.8.5 Finite element formulation 

The interpolation ofthe FE form for the function 'I'(x,y) can be expressed by 

kl ( )kl ( )kl Vi = Na'l'a i = Nil' i , a = 1,2,.··,M (2.8.35) 

where N is a shape function, 'I' stands for the nodal generalized coordinates, 

and M denotes the total number of degrees of freedom in a FE system. Then 

the derivatives in Eq.(2.8.19) can be expressed as 
a kl 

~=(B )kl a q'l' p 
Yq 

o8u; = (B'I')kl ouZ 
OYj J I oXI 

(2.8.36) 

(2.8.37) 

where Bi are the derivatives of the shape function N with respect to Yi' 

Note that the function u? is independent of y. 

We can rewrite Eq.(2.8.32) in the standard form of FE 

(tBTcBdY)'I'kl = tBTckldY (2.8.38) 

where c is the stress-strain matrix, B is the discrete displacement-strain matrix 

depending on the element shape functions, Ckl is a vector of a colunm of kl 

(kl=II,22,33,23,31,12) of the stress-strain matrix c, and 'I'kl is the characteri­

stic displacement vector associated with the kl mode. There are six equations to 

be solved for different strain states. A conventional FE can be used to calculate 

Eq.(2.8.38). 

Therefore, the homogenized elastic constants defined by Eq.(2.8.23), can 

be expressed as 

- If c = - c(1 - BV')dY 
V y 

(2.8.39) 

where 

(2.8.40) 

In summary, 'I'kl in Eq.(2.8.38) is solved by the FEM and then the effective 

properties can be calculated from Eq.(2.8.39). 
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2.9 An approximate estimation of effective properties 

Here let us approximately evaluate the effective properties based on the 

two-scale expansion method. Consider two specific cases: the constant strain 

model and the constant stress model. 

Analyzing the basic assumption made in the two-scale expansion method, 

Eq.(2.8.19), and the effective stiffness, Eq. (2.8.23), we can see that the first 

term in Eq. (2.8.23) is the well-known rule of mixture, while the second term is 

a correction term due to the heterogeneity of the microstructure. 

In the constant strain model, it is assumed that the strains undergone in 

each phase have the same values. Thus no perturbing displacements exist, that is 

I kl auZ 
u j =-If/; (x,y)-=O (2.9.1) ax, 

Then the effective stiffness Eq.(2.8.23) can be reduced as 

- 1 f [ a If/;; ]dY 
Cijkl = V y Cijkl - Cjjmn -a--

Yn 

= ~LCijk,dY (2.9.2) 

This is the known rule of mixture. A simple expression under uniaxial state is 

- - 1 f - (I) (2) El1 - - El1 dV - vlEII + v2EII +... (2.9.3) V y 

where Ell is the Young's modulus, Vj and E I(;) are the volume fraction 

and the Young's modulus of phase i, respectively. Eq.(2.9.3) is referred to as 

the Voigt approximation [30] and usually is used to predict the effective axial 

modulus of unidirectional fiber composite material. Eq.(2.9.3) gives the upper 

bound of the elastic modulus. 

For estimating the approximation of effective properties in the constant 

stress state, we can represent the relation by 

±[ ~:: + ~~ 1 ~ I,.,c;" (2.9.4) 

and 

(2.9.5) 

The strain is 



2.10 Formulations and implementation for 2D problem 39 

Taking integration over the RVE, we can obtain 

&;j = .t;jpqCJ pq 

with the homogenized compliance coefficients 

- 1 [. alf/~ J 
J;jpq = V f y j ijpq - J;jmn -a- fklpq dY 

Yn 

(2.9.6) 

(2.9.7) 

(2.9.8) 

Eq.(2.9.8) can be interpreted as the correction operating on the rule of mixture 

for the compliance. In the constant stress model, it is assumed that the stresses 

of each phase are uniform and equaL Applying the equal stress condition to 

Eq.(2.9.8), we can obtain 

- 1 f 
J;jkl = V yj~kldY (2.9.9) 

For the uniaxial state, the Young's modulus can be expressed by 

-1-=~f _1_dV=~+~+ ... 
E- V y E E(I) E(2) 

22 22 22 22 

(2.9.10) 

This equation is called Reuss's approximation [31] and is usually used to pre­

dict the transverse modulus of a unidirectional composite materiaL It is verified 

that this equation gives the simple lower bound of the effective elastic modulus 

of a composite. 

It should be noted that Voigt's and Reuss's approximations provide rigor­

ous upper and lower bounds. They are the most simply cases of Hashin and 

Strikman's variational solutions [26]. 

2.10 Formulations and implementation for 20 problem 

In this section, the detailed FE formulation of a 2D problem is given for the 

two-scale expansion method. There are three deformation modes of 
'Pkl (kl = 11,22,12 ),e.g. 'P = ('PI 1 , 'P22 , 'P12) ,to be calculated for this case. 

2.10.1 Formulations 

Consider a plane stress problem of an orthotropic elastic body. The stress-strain 

relation is 
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(2.lO.1) 

where the compliance matrix can be expressed by the engineering constants 
1 

hlll=E' 
II 

1 
/2222 =£' 

22 

1 
h212 =0 

12 

Similarly, the stiffness matrix can be written by the equation 

[

0'11. [CI1I1 C

l122 

0 J[ &11 • 
0'22 = C2211 C2222 0 &22 

0'12 0 0 C1212 2&12 

where 

CIIII = 2 ' 
1- f.112E22 / Ell 

C - C - f.112E22 
1122 - 2211 - 1- 2 E / E 

f.112 22 11 

E22 
C2222 = 2 ,C1212 = GI2 

1- f.112E22 I Ell 

(2.10.2a) 

(2.lO.2b) 

(2.10.3) 

(2.l OAa) 

(2.lOAb) 

where Ell and E22 are the Young's moduli, f.112 is the Poisson's ratio, and 

GI2 is the shear modulus. For an isotropic elastic body, Ell = E22 = E , 

E 
f.1 - f.1 G - G - and the compliance and stiffness matrix can be 

12 - , 12 - - 2(1 + f.1) 

written as 

f'" h122 

[,~J ~[-; 
-f.1 

2(1~J f - 12211 1;222 1 (2.10.5) 

0 0 0 

and 

[e" " 
CI122 0 1 f.1 0 

c = C2~11 C2222 
o =_E_ f.1 0 (2.10.6) 

1- f.12 
0 CI212 0 0 

1- f.1 

2 

The governing equations (2.8.32) and (2.8.23) of the homogenization method 

are rewritten as follows: 
a k/ 

f ~ oVi dY=f oVi dY 
yCijpq a a yCijklO 

Yq Yj Yj 
(2.10.7) 
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(2.10.8) 

where Vi = 5u: are arbitrary virtual displacements. The equations will be 

solved for three cases: kl = 11, kl = 22 and kl = 12, respectively. A detailed 

solving procedure incorporating FEM is now provided for the three cases. 

Case kl=l1 Expansion ofEq.(2.10.6) with elements of matrix leads to 

(2.10.9) 

The effective properties in Eq.(2.1O.8) become 

ij = 11 (2.10.10) 

ij = 22 (2.10.11) 

Rewriting Eq.(2.10.9) in matrix form, we obtain 

a II 
If/I 

D:"J 

°YI 

f [OVI 
oV2 Bv, QV, f"" CI122 a If/~I 

-+- e2211 C2222 dY 
Y 0YI °Y2 °Y2 °YI 0 0 °Y2 

a II a II 
J.L+JL 
°Y2 °YI 

(2.10.12) 

Now we introduce notations for the strains 
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e (Ij/) = 

8 Ij/~ 1 

8Yl 

81j/~1 

8Y2 
8 II 8 II 

J.L+~ 
8Y2 8YI 

where V'=[~i:l v=[::l 

s(v) = 

8v1 

8YI 

8v2 

8Y2 

8vI 8v2 -+-
8Y2 8YI 

The stiffness matrix can be written in a compact form 

C = [c i c2 c3 ] 

where 

Then Eq.(2.10.12) can be written in matrix form as 

fl T (v)ce (lj/)dY = fl T (v)c1dY 

(2. lO. 13) 

(2.lO.14) 

(2.10.15) 

(2.10.16) 

FE discretization is introduced by interpolation of the function Iff with the form 
11 

Iff = L N/itt = Nite (2.lO.17) 
;~l 

where n is the number of nodes in an element, Ij/e is the degrees of nodal 

freedom of the element 

The shape function matrix N can be expressed by 

N=[NI N2 ... Nil] 

(2.10.18) 

(2.10.19) 

Substituting Eq.(2.lO.17) into the first of Eq.(2.lO.13), the strain can be 

obtained 

(2.10.20) 

where B = LN is the element strain matrix, and 
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0 
0 

°YI 

L= 0 
0 

(2.10.21) 
°Y2 

0 0 
--

°Y2 °Y1 

is the matrix of linear differential operator which links the relation between 

displacements and strains for a plane problem. 

Similarly, the FE formulations for the function v, referred to as arbitrary 

virtual displacements, can also be obtained with exactly the same form. Thus 

we can obtain the FE equation from Eq.(2.10.16) 

Kt?=F (2.10.22) 

where 

(2.10.23) 

(2.10.24) 

The "force" vector F has a physical meaning. c1 is the stress induced by a 

specific initial strain G 0 

(2.10.25) 

which implies that a uniform initial strain is applied to the RVE at any point 

(2.10.26) 

Thus, Eq.(2.1O.22) is solved in order to give the displacement If/ and strain 

G (t?), and we can calculate the effective properties by Eqs.(2.1O.10) and 

(2.10.11), of which the matrix forms are 

- 1 f T CIIII =- [CIIII -ciG (1f/)]dY V y 
(2.10.27a) 

- 1 f T 
C2211 =- [c2211-c2G(If/)]dY V y 

(2.l0.27b) 
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For m finite elements, the integration can be replaced by summations element 

by element 

(2.10.28a) 

(2.10.28b) 

while the integration in an element can be calculated by a numerical integration 

procedure, such as the Gauss-Legendre rule. It is easy to add the formulations 

into a standard FE program. 

Case kl = 22 An identical approach can be used to derive the FE 

formulations for the case kl = 22 . The governing equation becomes 

The effective properties of the composites are 

C2222 = - f C2222 - C2211 ~ - C2222 ~ dY, 
1 [ 0 221 0 22) 
V y 0Y1 0Y2 

ij = 22 

ij = 11 

The matrix form of the Eq.(2.1O.29) is 

fl T (v)cl' (If/)dY = fl T (v)c2dY 

The matrix forms of equations for the effective properties are 

C2222 = ~f [C2222 - cil' (1f/)]dY V y 

(2.10.29) 

(2.10.30a) 

(2.1O.30b) 

(2.1O.31a) 

(2.1O.31b) 

(2.10.31c) 
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where ~ = [~;: l 
The finite element equation is 

K,p=F (2.10.32) 

where 

(2.lO.33) 

and 

(2.lO.34) 

In this case, the physical meaning of the "force" vector F is nodal forces 

induced by the uniform initial strain 

(2.lO.35) 

The formulations for calculation of the effective properties are 

1 In 

C2222 = V ~ f.o' [ C2222 - c; B,pe J dQ (2.10.36a) 

C;122 =~ ff.oe[c1l22 -c;B,peJdQ 
Ve=1 

(2.lO.36b) 

Case kl = 12 In this case, we have a series of corresponding equations 

(2.lO.37) 

C;212 = - f C
I212 

1-__ 1_ - C
I122 

__ 2_ dY, 1 [0~12 0~12) 
V y 0Y2 0YI 

ij = 12 (2.lO.38) 
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f e T (v)ce (If/)dY = f e T (v)c,dY 
y y 0 

(2.lO.39) 

(2.lO.40) 

where If/ = [~i: l 
The finite element equation is 

K,p=F (2.lO.41 ) 

where 
In In 

K= LKe, F=LFe (2.lO.42) 
e=1 e=1 

(2.lO.43) 

The uniform initial strain in the RVE inducing the nodal "force" vector F is 

identified as 

The effective properties can be calculated from 
I m 

C;212 = - L f.oe [C1212 - ci B,pe ] dQ 
V e=1 

(2.lO.44) 

(2.lO.45) 

It is noted that shear coupling coefficients exist for anisotropic materials. They 

can be calculated by similar formulations. 

2.10.2 FE implementation of homogenization methods 

The standard FE program is available for prediction of the effective properties 

of heterogeneous materials. But specific additional subroutines must be 

incorporated into a standard FE program to treat the nodal "force" vector, 

periodic boundary conditions and the calculation of effective properties. 

A homogenization program named ROMP is developed here, including a 

direct method and a two-scale expanding method. The program organization is 

shown in Fig.2.12. The parts in grey denote the subroutines to be added into a 

standard FE program. 



Fig.2.12 A profile of HOMP 

Calculations of the effective 
properties by direct and two-scale 

expanding methods 

2.11 Numerical results 
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To investigate the effective properties of the composites, using direct methods 

(including stress, strain and energy) and the two-scale expanding method, we 

consider the following problems. 

Case 1 Circular inclusions are embedded into the isotropic matrix, and 

the resulting composite is almost transversely isotropic. The microstructure is 

shown in Fig.2.l3. 

I. • 1 

Fig.2.13 Case 1: almost transversely isotropic composite 
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Case 2 L-shaped inclusions are embedded into the isotropic matrix, and 

the resulting composite is orthotropic. The composite and RVE are illustrated 

in Fig.2.I4. 

~ ~ ~ 

1B1j ~ ~ ~ N 

~ ~ ~ 
I • 3 • I 

Fig.2.14 Case 2: orthotropic composite 

Case 3 Y -shaped inclusions are embedded into the isotropic matrix, and 

the resulting composite is anisotropic, as illustrated in Fig.2.I5. 

,-

V 
a 

I. . i-

Fig.2.15 Case 3: anisotropic composite 

Each case includes a fiber composite, a rigid inclusion medium and a void 

solid. The properties of the inclusions vary from a very large value (modeling 

rigid inclusions) to a very small value (simulating the voids). The material 

constants are as follows: 

E-glass fiber: the Young's modulus is 73.1 GPa, the Poisson ratio is 0.22. 

Epoxy matrix: the Young's modulus is 3.45 GPa, the Poisson ratio is 0.35. 

An inclusion with very large elastic modulus is used to approximate the 

rigid inclusion. The elastic modulus of the inclusion is 104 times that of the 

matrix. The Poisson ratio of the matrix is 0.35. 

An inclusion with a very small elastic modulus is used to model the void. 

The elastic modulus of the void inclusion is 10-6 times that of the matrix. The 
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Poisson ratio of the matrix is 0.35. 

A plane strain model is taken into consideration here. Thus the in-plane or 

transverse properties of the composites are calculated. For the direct average 

methods, boundary conditions with specific displacements are imposed and 

then the FE method is applied in the calculation of the average stress, strain and 

strain energy density on the RVE with a uniaxial strain state. The resulting 

effective stiffuess matrix of the plane strain problem is 

r
CIIII CI122 o. 
Cl122 C2222 0 

o 0 C1212 

(2.11.1) 

The engineering constants for an isotropic body (CIIII = C2222 ) can be calculated 

by 

E = c1 I I 1 (1 + .u )(1- 2.u) 
1- .u 

G = C1212 

2.11.1 Effective stiffness of isotropic composite 

(2.11.2a) 

(2.l1.2b) 

(2.11.2c) 

The effective transverse stiffness coefficients of the transversely isotropic 

composite are listed in Table 2.1. Here ASS denotes the direct average method 

based on strain and stress fields, ASE the direct average method based on strain 

energy density and TEM the two-scale expansion method. It is shown that the 

three methods yield identical stiffness coefficients. This is not surprising 

because of the same homogenization principle is used in all three methods. The 

Table 2.1 Transverse stiffness coefficients for fiber composite 

c1111/GPa CI122/GPa Cl212/GPa 

ASS ASE TEM ASS TEM ASS ASE TEM 

0.1 6.3147 6.3147 6.3148 3.2920 3.2920 1.4726 1.4726 1.4727 

0.2 7.3218 7.3218 7.3218 3.6171 3.6171 1.6824 1.6824 1.6824 

0.3 8.6606 8.6606 8.6606 3.9511 3.9511 1.9255 1.9255 1.9255 

0.4 10.4873 10.4873 10.4874 4.2879 4.2879 2.2313 2.2313 2.2314 

0.5 13.0754 13.0755 13.0758 4.6347 4.6346 2.6549 2.6550 2.6551 

0.6 17.0605 17.0606 17.0608 5.0817 5.0817 3.3356 3.3356 3.3357 
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engineering constants can be found by Eq.(2.4.2) for comparison with the 

approximate bounds and experimental data. Fig.2.16 illustrates the transverse 
Young's modulus E22 as a function of the fiber volume fraction. The lower 

bound was calculated by Ruess's approximation. It is shown that ASS, ASE 

and TEM provide good consistent results with the experimental data [42]. The 

experimental data and bounds are listed in Table 2.2. 

16 

----- TEM, ASS, ASE * 
14 - Lower bound 

Vl 
;::> 

* Experimental data ;:; 
"0 12 
0 
S 
.~ 
c 10 
;::> 

~ 
8 " ~ 

" > 
Vl 6 c 
OJ 

~ 
4 

2 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Fiber volume fraction 

Fig.2.16 Transverse Young's modulus vs fiber volume fraction 

Table 2.2 The transverse constants 

E22/GPa G23/GPa 
f..l 

UB LB Exp. Data UB LB 

0.0 3.45 3.45 1.278 1.278 0.35 

0.1 4.0582 3.8133 1.4727 1.4133 0.3427 

0.2 4.9291 4.2622 1.6824 1.5806 0.3307 

0.3 6.0361 4.8309 0.46 7.5 1.9255 1.7929 0.3133 

0.4 7.9412 5.5746 0.52 10.1 2.2314 2.0711 0.2902 

0.5 10.6499 6.5890 0.59 14 2.6551 2.4514 0.2617 

0.6 14.6712 8.0548 0.595 15.1 3.3357 2.9852 0.2295 

Fig.2.17 shows the transverse shear modulus G of the composite with 

different fiber volume fraction. No experimental data for the transverse shear 

modulus is available for comparison. An approximate estimation for the 

transverse shear modulus by 



~=~+2 
G Gm Gf 
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(2.11.3) 

is plotted in Fig.2.17. It is easy to prove that Eq.(2.11.3) provides a lower 

bound for the shear modulus. 

3.5 - TEM, ASS, ASE 

- Lower bound 

'" ::l 3.0 "3 
"'" 0 
8 
~ 2.5 

..Q 

'" 11) 

~ 

" 2.0 > 
'" = 
~ 

1.5 

1.0 
0.0 0.1 0.2 OJ 0.4 0.5 0.6 

Fiber volume fraction 

Fig.2.17 Transverse shear modulus vs fiber volume fraction 

The transverse Poisson's ratio is shown in Fig.2. IS. The nonlinear relation 

between the effective transverse Poisson's ratio and the fiber volume fraction is 

demonstrated. No appropriate bounds and experimental data are available for 

companson. 

0.36 

0.34 

.S 0.32 
OJ ... 
::: 
£ 0.30 
'" '0 

p.. 
<1.l 

~ 
0.28 

<1.l 
;> 

'" 0.26 

~ 
0.24 

0.22 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Fiber volume fraction 

Fig.2.18 Transverse Poisson's ratio vs fiber volume fraction 
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For rigid and void inclusions, the effective stiffness coefficients are listed 

in Tables 2.3 and 2.4. It is shown that the three methods yield the same results. 

In summary, the direct methods and the two-scale expansion method predict the 

same effective stiffness for a large range of elastic mismatches [43]. 

Table 2.3 Stiffness coefficients for rigid inclusion medium 

cIIII/Eo cIl22/Eo c1212/Eo 
VI 

ASS ASE TEM ASS TEM ASS ASE TEM 

0.1 1.8560 1.8560 1.8673 0.9678 0.9678 0.4324 0.4311 0.4325 

0.2 2.1900 2.1900 2.1967 1.0791 1.0784 0.4952 0.4968 0.5007 

0.3 2.6504 2.6504 2.6577 1.1957 1.1986 0.5721 0.5738 0.5821 

0.4 3.3123 3.3123 3.3464 1.3128 1.3150 0.6638 0.6724 0.6797 

0.5 4.3297 4.3297 4.4308 1.4206 1.4195 0.8096 0.8140 0.8273 

0.6 6.1427 6.1427 6.2106 1.5056 1.5047 1.0548 1.0548 1.0766 

Table 2.4 Stiffness coefficients for void solid 

CIlll/Eo C1l22/Eo cl2lzlEo 
VI 

ASS ASE TEM ASS TEM ASS ASE TEM 

0.1 1.1314 1.1314 1.1314 0.5381 0.5381 0.2763 0.2763 0.2763 

0.2 0.8405 0.8405 0.8405 0.3459 0.3459 0.1919 0.1919 0.1919 

0.3 0.6388 0.6388 0.6388 0.2221 0.2221 0.1235 0.1235 0.1235 

0.4 0.4863 0.4863 0.4863 0.1385 0.1385 0.0731 0.0731 0.0731 

0.5 0.3625 0.3625 0.3625 0.0811 0.0811 0.0389 0.0389 0.0389 

0.6 0.2537 0.2537 0.2537 0.0413 0.0413 0.0171 0.0171 0.0171 

2.11.2 Effective stiffness of anisotropic composite 

For Case 2 and Case 3, calculation of the stiffness is carried out. Here the 

analysis is performed only for the inclusion volume fraction 0.4. The numerical 

results are listed in Tables 2.5 and 2.6. Again, the ASS, ASE and TEM yield 

the same predictions of the effective stiffness. 

Table 2.5 Stiffness coefficients for composite with fraction 0.4 for Case 2 

Cllli C2222 CI122 CI212 

ASS ASE TEM ASS ASE TEM ASS TEM ASS ASE TEM 

fiber 

(x 104
) 

1.3222 1.3222 1.3222 1.1440 1.1440 1.1440 0.4000 0.4000 0.2437 0.2437 0.2437 

void 

(lEo) 
0.3621 0.3621 0.3621 0.3007 0.3007 0.3007 0.0651 0.0651 0.0394 0.0394 0.0394 

rigid 
5.0192 5.0192 5.0192 3.9738 3.9738 3.9737 1.1360 1.1360 0.9005 0.9005 0.9005 

(/Eo) 
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Table 2.6 Stiffness coefficients for composite with fraction 0.4 for Case 3 

C lill C2222 Cl 122 C l2 l2 

ASS ASE TEM ASS ASE TEM ASS TEM ASS ASE TEM 

fiber 

( x 104 
) 

1.8515 1.8516 1.8516 1.5770 1.5766 1.5770 0.4856 0.4856 0.3425 0.3425 0.3425 

void 

(lEo) 
0.2310 0.2310 0.2310 0.1408 0.1408 0.1408 0.0120 0.0120 0.0049 0.0049 0.0049 

rigid 
494.51 494.51 494.51 6.2615 6.2615 6.2614 1.5905 1.5905 2.2646 2.2646 2.2647 

(lEo) 

2.11.3 Microstructural deformation 

This section focuses on the calculation of microstructural deformation of 

anisotropic composites [44]. 

Microstructural deformations of an orthotropic composite with L-shaped 

inclusions are shown in Fig.2.19 where the deformations have been scaled. 
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(c) Uniform &22 (d) Uniform &" 

Fig.2.19 Deformation of composite with non-symmetric inclusion 
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Here three uniform uniaxial strain states are considered. Although the applied 

strain is uniform, complex deformations of the RVE are found due to the 

heterogeneity of the microstructure and the periodicity of the boundary 

condition. It is shown that periodicity of the deformations is exhibited for the 

applied normal strain and shear strain states. Fig.2.20 shows the deformation of 

the void solid. Here the voids have the same shape as the fibers shown in 

Fig.2.19. The periodicity of deformations of the RVE ensures the compatibility 

of the deformations among the unit cells of the composite. 

(a) Initial mesh (b) Unifonn e l l 

(e) Unifonn &22 (d) Unifonn &' 2 

Fig.2.20 Deformation of void solid with non-symmetric hole 

The microstructural deformations of the RVE with Y-shaped inclusion are 

shown in Figs.2.21 and 2.22. For the upper and lower sides of the RVE, 

periodic deformations are exhibited for both normal and shear states. On the 

left and right sides, the symmetry and periodicity of the deformations lead to 

null orthogonal displacements for the normal strain states (see Fig.2.2Ib, c and 

Fig.2.22b, c). However, the anti-symmetry and periodicity of the shear 

deformations result in null tangent displacements on the left and right sides (see 

Fig.2.2Id and Fig.2.22d). 
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(a) Initial mesh (b) Uniform &" 

(c) Uniform &22 (d) Uniform &" 

Fig.2.21 Deformation of fiber composite with one-symmetric-plane inclusion 

(a) Initial mesh 

(c) Uniform &22 (d) Uniform &,2 

Fig.2.22 Deformation of composite with non-symmetric inclusion 
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Chapter 3 Thermo-electro-elastic problems 

3.1 Introduction 

When piezoelectric material is subjected to a mechanical load, it generates an 

electric charge. This effect is usually called the "piezoelectric effect". Co­

nversely, when piezoelectric material is stressed electrically by a voltage, its 

dimensions change. This phenomenon is known as the "inverse piezoelectric 

effect". Thermo-piezoelectric materials, on the other hand, can produce electric 

and mechanical fields when they are heated. The coupling properties among 

thermal, electric, and mechanical fields make piezoelectric materials suitable 

for widespread use in industrial applications in various fields including the 

electronics industry, nuclear industry, smart structures, microelectromechanical 

systems, biomedical devices, and superconducting devices. These applications 

have generated renewed interest in the coupling behaviour of multi-field mate­

rials including thermo-piezoelectric materials. In particular, information re­

garding thermal stress concentrations around material or geometrical defects in 

piezoelectric solids will have wide application in analyzing and designing 

composite structures. Early in 1974, Mindlin [1] was the first to develop the 

governing equations of a three-dimensional linear thermo-piezoelectric medium. 

Nowacki [2] subsequently developed some general theorems and mathematical 

models of thermo-piezoelectricity which can be viewed as the basis of various 

numerical methods. Dunn [3] studied micromechanics models for effective 

thermal expansion and pyroelectric coefficients of piezoelectric composites. 

Benveniste [4] obtained some exact results in the micromechanics of piezoelec­

tric fibrous composites of two, three and four phases. By using seven potential 

functions, Ashida et al. [5] introduced a technique for three-dimensional 

asymmetric problems of piezothermoelasticity of the crystal class 6 mm. Altay 



60 Chapter 3 Thermo-electra-elastic problems 

and D6kmeci [6] introduced a set of Euler-Lagrange equations of discontinuous 

thermo-piezoelectric fields. Starting with the principle of virtual work and 

modifying it through Friedrichs's transformation, they presented the funda­

mental equations of discontinuous thermo-piezoelectric fields in variational 

form. Noda and Kimura [7] studied the response of a thin piezothermoelastic 

composite plate subjected to stationary thermal and electric fields. They 

showed that coupled direct piezoelectric and pyroelectric effects have a signifi­

cant influence on the response of the deflection. Ashida and Tauchert [8] pre­

sented a finite difference formulation for determining the time-varying, axi­

symmetric, ambient temperature on the face of a piezoelectric circular disk, 

based on knowledge of the distribution of the induced electric potential differ­

ence across the disk thickness. For the fracture analysis of thermo-piezoele­

ctricity, Shang et al. [9] proposed a method for three-dimensional axisymmetric 

problems of transversely isotropic thermo-piezoelectric materials by means of 

potential functions and Fourier-Hankel transformations. Fracture and damage 

behaviours of a cracked piezoelectric solid under coupled thermal, mechanical 

and electrical loads were studied by Yu and Qin [10,11]. Using techniques of 

Fourier transformation and extended Stroh formalism, they reduced the tem­

perature field for a single crack problem to a pair of dual integral equations 

with the aid of an auxiliary function. The electroelastic field was governed by 

another pair of dual integral equations. With these equations, closed form solu­

tions were obtained for strain energy release rate under thermal, mechanical and 

electric fields. Based on the above results, several micromechanics models 

were developed for crack or void-weakened piezoelectric materials, including 

the dilute, self-consistent, Mori-Tanaka, generalized self-consistent and differ­

ential methods [12-14]. More recently, Qin and Mai [15-24] presented a series 

of Green's functions for thermo-piezoelectric materials with various defects 

such as crack, hole and inclusion, with application to practical problems. 

In this chapter, we begin with discussion of a linear theory of piezoele­

ctricity, followed by an introduction of the two classical solution approaches for 

electro elastic problems. Then, solutions are presented for analyzing logarithmic 

singularity of crack-tip fields in homogeneous piezoelectricity. In Section 3.5, a 

finite element model is developed for electroelastic problems. Extensions of 

linear electroelastic theory to include thermal effect are discussed in Section 3.6. 

Fourier transform approach and its application to fracture analysis are presented 
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in Section 3.7. Finally, formulations expressed in terms of cylindrical coordi­

nate systems and their application to penny-shaped crack and piezoelectric fibre 

push-out problems are discussed. 

3.2 Linear theory of piezoelectricity 

3.2.1 Basic equations of linear piezoelectricity 

In this section, we recall briefly the three-dimensional formulation of linear 

piezoelectricity that appeared in references [25,26]. Here, a three-dimensional 

Cartesian coordinate system is adopted where the position vector is denoted by 

x (or x;). In this book, both conventional indicial notation Xi and traditional 

Cartesian notation (x, y, z) are utilized. In the case of indicial notation we in­

voke the summation convention over repeated Latin indices, which can be of 

two types with different ranges: i, j, k=1,2,3 for lower-case letters and M, 

N=I,2,3,4 for upper-case letters. Moreover, vectors, tensors and their matrix 

representations are denoted by boldface letters. The corresponding energy prin­

ciple can be established in a way similar to the case of elastic problems if we 

take (cij, Em) as the generalized strain tensor and (CYij, Dm) as the generalized 

stress tensor. Using the Cartesian coordinate system, the three-dimensional 

constitutive equations for linear piezoelectricity can be derived by considering 

the internal energy density U defined by [26] 

(3.2.1) 

Obviously, Eq.(3 .2.1) is a straightforward extension from the elastic energy 
density dU = (Tijdcij' Thus, the electric entropy per unit volume g can be de-

fined as 
(3.2.2) 

where U, Dm and Em are the internal energy density, electric displacement and 

electric field, respectively, and Em is defined by 
Em - -¢,m (3.2.3) 

in which ¢ is electric potential, a comma followed by arguments denotes partial 

differentiation with respect to the arguments. The constitutive relation of pie­

zoelectricity can then be obtained by considering the following Legendre 
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transformation 
dg = O"udcij - DmdEm 

in which the strain cij is defined by 

(3.2.4) 

1 
C =-(u +u) (3.2.5) 

/j 2 ' . .1 J.l 

with Uj being elastic displacement. It can be seen from Eq.(3.2.4) that 

O"ij =[ggl, Dm =-[o~ 1 (3.2.6) 
c/j J In 

When the function g is expanded with respect to cij and Em within the 

scope oflinear interactions, we have 

g=~[cu 00 ... +Em o~ ] [Ckl 00 +En o~ )g 
c'l m ckf n 

(3.2.7) 

The following constants can then be defined: 

C(E) =[ 02g 1 K(&) =-[ 02g 1 
Ukl 0 .. 0 ' nm oE oE ' c'l ckf n In 

(3.2.8) 

where <7) are the elastic moduli measured at a constant electric field, K,;:; 
the dielectric constants measured at a constant strain, emij the piezoelectric 

coefficients, the superscript "E' (or "c") represents the value of the related 

variable measured at a given electric field (or strain). When the function g is 

differentiated according to Eq.(3.2.4) and the above constants are used, we find 

O"ij = Cijklckl - emijEm, Dn = enijcij + KmnEm (3.2.9) 

A set of these two equations is the constitutive relation in the coupled 

system. It should be noted that the superscripts "s' and "E" appearing in 

Eq.(3.2.8) have been dropped here. To simplify subsequent writing we omit 

them in the remainder of this book. Using the notation defined above, the elec­

tric entropy function per unit volume can now be expressed as [27] 
1 1 

g = "2CijkfCijCkf - "2 KijEiEj - eijkEiCjk (3.2.10) 

while the related divergence equations and boundary conditions can be derived 

by considering the modified Biot's variational principle [27] 

is f Q UdQ - f Q (bjiSu j - beiS¢) dQ - f r (t;iSu i - qsiS¢) dr = 0 (3.2.11) 

where is is the variational symbol, Q and r are the domain and boundary of the 

material, bi and be are the body force per unit volume and electric charge den-
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sity, and tj and (j, are the applied surface traction and the applied surface 

charge, respectively. The variational equation (3.2.11) provides the following 

results 
(3.2.12) 

(3.2.13) 

together with the constitutive equation (3.2.9), where ni is the outer unit normal 

vector to r. Eq.(3.2.12) includes the elastic equilibrium equation and Gauss' 

law of electrostatics, respectively, Eq.(3 .2.13) is boundary condition. 

It should be mentioned that four equivalent constitutive representations are 

commonly used in the stationary theory of linear piezoelectricity to describe the 

coupled interaction between the elastic and electric variables. Each type has its 

own different set of independent variables and corresponds to a different ther­

modynamic function, as listed in Table 3.1. While all equations in Table 3.1 are 

expressed in terms of tensor, the indices have been omitted for brevity. It should 

be pointed out that an alternative derivation of formulae is merely a transforma­

tion from one type of relation to another. Some relationships between various 

constants occurring in the four types are given as follows: 

f) " h r" rf) d d (J i" 
Cijk! - Ci/le! = emil mk!' .J ilk! - .J ilk! = milg mk!' nil = K nmg mil = e nk!. Mil (3.2.14) 

The material constants can be reduced by the following consideration. 

According to definition [Eq.(3.2.5)] we may write &iF&ji. It follows that 

Table 3.1 Four types of fundamental electroelastic relation 

Independent variable 

8,E 

8,D 

u,E 

u,D 

Constitutive relation 

a=clJ-eE J 
t,' 'l 

lD=elJ +tcCE 

{
a =CDlJ -hTD 

E=-hlJ +pr.D 

{
lJ = Ilia +d'E 

D=da+tc"E 

{
lJ =1/Ja+g'D 

E=-ga+p"D 

Thermodynamic potentials 

g, =go +ED 
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(3.2.15) 

in which the relation () ij = () ji has been used. 

In view of these properties, it is useful to introduce the so-called 

two-index notation or compressed matrix notation [29]. Two-index notation 

consists of replacing ij or km by p or q, i.e. Cijian=Cpq , eilan=eiq, ()ij= ap, where i,j, 

k, m take the values 1~3, and p, q assume the values 1~6 according to the re­

placements 11 ~ 1, 22~2, 33 ~ 3,23 or 32~4, 13 or 31 ~ 5, 12 or 21 ~ 6. 

The constitutive equation (3.2.9) then becomes 

in which 

{ 

&ij' when i = j 

&q = 2&ij' when i *- j 

(3.2.16) 

(3.2.17) 

In addition, the elastic, piezoelectric and dielectric constants can now be written 

in matrix form since they all are described by two indices. The arrays for an 

arbitrarily anisotropic material are 

Cll CI2 cl3 CI4 CI5 CI6 

CI2 C22 C23 C24 C25 C26 

c[3 c23 C33 C34 C35 C36 (3.2.18) c= 
CI4 C24 C34 C44 C45 C46 

CI5 C25 C35 C45 C55 C56 

CI6 C26 C36 C46 C56 C66 l e" 
ell el3 el4 el5 e" 

e = e21 e 22 e 23 e 24 e 25 e 26 (3.2.19) 

e31 e 32 e 33 e 34 e 35 e 36 l K" K" KU j 
K = KI2 K22 K23 (3.2.20) 

K[3 K23 K33 

It can be seen that there are 21+ 18+6=45 independent constants for this 

material type. For a transversely isotropic material with X3 in the poling direc­

tion (Class C6v=6 mm), the related material matrices are simplified as 
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Cll Cl2 cl3 0 0 0 

CI2 CII Cl3 0 0 0 

Cl3 Cl3 C33 0 0 0 

c= 0 0 0 C44 0 0 (3.2.21) 

0 0 0 0 C44 0 

1 
0 0 0 0 0 -(Cll - c12 ) 

2 

e~l~ 
0 0 0 el5 

~j 0 0 el5 0 (3.2.22) 

e31 e31 e33 0 0 

l K" 0 0 j 
K = 0 KII 0 (3.2.23) 

o 0 K33 

Thus it is clear that a material with this type of symmetry is described by 

10 independent material constants. This category of material is important 

because polarized ceramics have high piezoelectric coupling. Finally, an 

isotropic dielectric material has arrays which are similar to the arrays for 

transversely isotropic materials, except that there are some additional relations 

among the material constants. They are 
eip = 0 , for all values of i and p (3.2.24) 

where G=EI[2(l+,u)] is the shear modulus of elasticity, A=2G,uI(I-2,u) is the 

Lame constant and E, ,u are the Young's modulus and Poisson's ratio, respec­

tively. In the MKS system the material constants and variables mentioned 
above are measured in the following units: [cij] = Nm -2, [eij] = Cm -2, 

[Kij]=C2 N-lm-2=NV-2
, [O"ij] = Nm-2, [Cij]=mm-l, [D

i
]=Cm-2 =N(Vmfl, 

[EJ=NC I = Vm-l, [¢]=V For poled barium-titanate (BaTi03) and lead-zirco­

nate-titanate, these physical constants are of the orders: cy O(1011 Nm-2 ) , 

e·=O(lO Nm-2
) /G·=O(1O-8 NV-2

) U , U • 

Substitution of Eq.(3.2.3) and Eq.(3.2.S) into Eq.(3.2.16), and later into 

Eq.(3.2.12), results in 
1 1 

CIIUIII + -(CII + C12 )U2 12 + (C13 + C44)U313 + -(CII - C I2 )UI 22 + , 2 ' , 2 . 

C44 U I,33 + (e31 + el5 )¢,13 + bl = 0 (3.2.26) 
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1 1 
CIIU222 + -(CII + CIJUI12 + (C13 + C44 )U3 23 + -(CII - CI2 )U211 + , 2 ' , 2 ' 

C44U2,33 + (e31 +eIS )¢,23 +b2 =0 

C44 U3,11 + (C44 +C13 )(UI,31 +U2,32)+C44U3,22 +C33 U3,33 + 

e is (¢,11 + ¢,22) + e 33 ¢,33 + b 3 = 0 

e 1S (u3,11 + U3,22) + (e1S + e31 )(U1,31 + U2,32) + 

e 33u3,33 - KII (¢,II + ¢,22) - K 33¢,33 + be = 0 

(3.2.27) 

(3.2.28) 

(3.2.29) 

for transversely isotropic materials (class C6v=6 mm) with X3 as the poling di­

rection and the X1-X2 plane as the isotropic plane. This type of material is 

adopted in the remaining chapters. 

3.2.2 Two-dimensional simplification 

For most practical problems piezoelectric materials are treated as a 

two-dimensional problem to simplifY the solution process. Here we discuss two 

special cases which are of some interest: 

(1) Plane strain. Without loss of generality we focus on transversely iso­

tropic piezoelectricity. Assuming that the x-y plane is the isotropic plane, one 

can employ either the x-z or y-z plane for the study of plane electromechanical 

phenomena. Choosing the former, plain strain conditions require that 

(3.2.30) 

By substitution ofEq.(3.2.30) into Eq.(3.2.16), we have 

(T1 CII c13 0 0 e 31 &1 

(T3 Cl3 C33 0 0 e 33 &3 

(Ts 0 0 Css e 1S 0 &5 (3.2.31) 

D1 0 0 e 1S 
-K

II 0 -E1 

D3 e31 e 33 0 0 -K
33 -E3 

or inversely 

&1 /;1 /;3 0 0 P31 (T1 

&3 1;3 1;3 0 0 P33 (T3 

&5 0 0 Iss P1S 0 (Ts (3.2.32) 

-EI 0 0 PIS -/311 0 DI 

-E3 P31 P33 0 0 -/333 D3 
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in whichfu is constant of elastic compliance of the material, Pu is the piezoelec­

tric coefficient and Pij is the dielectric impermeability constant. In the constitu­

tive equations (3.2.31) and (3.2.32), -Ei is used instead of Ei because it will 

allow the construction of a symmetric generalized linear response matrix which 

will prove to be advantageous. When the constitutive equation (3.2.31) is sub­

stituted into Eq.(3.2.12) we obtain 

cllul,Il +(c13 +cSS )U3,13 +CSS U1,33 + (e31 +e1S )¢,13 +b1 =0 (3.2.33) 

CSS U3,11 + (css +C13 )U1,31 +C33 U3,33 +e1S ¢,11 +e33 ¢,33 +b3 =0 (3.2.34) 

e 1S u 3,11 + (eiS + e 31 )U1,31 + e 33 u 3,33 - Kll ¢,ll - K 33 ¢,33 + be = 0 (3.2.35) 

(2) Anti-plane deformation. In this case only the out-of-plane elastic di­

splacement U3 and the in-plane electric fields are non-zero, i.e., 

u\=u2 =0, U3 =U3(X\,X2 ) 

E\ =E\(x\,xJ, E2 =E2(x\,xJ, E3 =0 
(3.2.36) 

Thus the constitutive equation (3.2.16) simplifies to 

0'4 C44 0 0 e\S &4 

O's 0 C44 e\S 0 &s 
(3.2.37) 

D\ 0 e lS -K
ll 0 -E\ 

D2 e\S 0 0 -K\\ -E2 

and the governing equation (3.2.12) becomes 

C44 V
2

U3 + elS V2¢ + b3 = 0 

e\SV
2

u 3 -K\\V2¢+be =0 

(3.2.38) 

where V2 = ( ),\1 + (),22 is the two-dimensional Laplacian operator. 

3.3 Two classical solution approaches for piezoelectricity 

For two-dimensional deformations in a general anisotropic piezoelectric mate­

rial, in which Ui and ¢ depend on Xl and X2 (or X3) only, there are two po­

werful solution procedures in the literature. One is Lekhnitskii's approach [30], 

which begins with equilibrated stress functions, followed by compatibility 

equations. This approach is discussed in Subsection 3.3.2. Another is Stroh's 

formalism [31], which begins with the displacements and electric potential, fo­

llowed by equilibrium equations. The equivalence of these two formalisms has 

been discussed by Suo [32]. The details of Stroh's formulation are given below. 
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3.3.1 Solution with Stroh formalism 

We begin by introducing the shorthand notation gIven by Barnett and 

Lothe [33], as it greatly simplifies the following writing. With this shorthand 

notation, the governing equation (3.2.12) and the constitutive relationship 

(3.2.16) can be rewritten as 

where b4=be (J =4), and 

~J,i +b/ =0 

~J = EiJKmUK,m 

_ { (J ij' i, J = 1, 2, 3 
llJ-

I D;, J = 4 i = 1, 2, 3 

{

Uk' K = 1, 2, 3 
U = 

K ¢, K =4 

I 
Cljkm' i,J,K,m = 1, 2, 3 

em'I,K=4, i,J,m=1,2,3 
E,JKm = J 4 . K 1 2 3 

_e'km, :' _ l, ,m =, , 
K

llll
, J -K -4, i,m=l, 2, 3 

(3.3.1) 

(3.3.2) 

(3.3.3) 

(3.3.4) 

(3.3.5) 

For two-dimensional deformations in which U=[ Uj U2 U3 ¢] T depends on Xj 

and X2 only, where the superscript T denotes the transpose, a general solution 

can be obtained by considering an arbitrary function of the form [33] 
U = af(z) (3.3.6) 

where z = Xl + PX2' P and a are determined by inserting Eq.(3.3.6) into 

Eq.(3.3.2), and later into Eq.(3.3.1). In the absence of any body force and free 

charge distribution, we have 

[Q + peR + RT) + p2T Ja = 0 

where Q, Rand Tare 4x4 real matrices whose components are 

QIK = E llKI , RIK = E llK2 , ~K = E21K2 

(3.3.7) 

(3.3.8) 

The stress and electric displacement (SED) obtained by substituting Eq.(3.3.6) 

into Eq.(3.3.2) can be written in terms ofa SED function tpas 

where 
tp = bf(z) 

b = (RT + pT)a = -p-\Q + pR)a 

(3.3.9) 

(3.3.10) 

(3.3.11) 

The second equality in Eq.(3.3.11) follows from Eq.(3.3.7). It suffices therefore 
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to consider the SED function lp because the stresses (Jij and the electric 

displacement D; can be obtained by differentiation. 

There are eight eigenvalues p from Eq.(3.3.7) which consists of four pairs 

of complex conjugates [33]. If PJ' aAJ =1,2,··,8) are the eigenvalues and 

the associated eigenvectors, let 

(3.3.12) 

where "1m" stands for the imaginary part of a complex number and the overbar 

denotes the complex conjugate. Assuming that P./ are distinct, the general solu­

tions for U and lp obtained by superposing eight solutions of the form of 

Eq.(3.3.6) and Eq.(3.3.1O) are 
4 

U = L {a./f./ (z./) + U./f./+4 (zJ)} (3.3.13) 

4 

lp = L {b./ fJ (z J ) + bJ fJ +4 (ZJ ) } (3.3.14) 
J~I 

where fJ(J = I, 2,··, 8) are arbitrary functions of their argument 

Z J = XI + P JX2 • In most applications jj assume the same functional form, so that 

we may write 

(3.3.15) 

where q./ are complex constants to be determined. Expressions (3.3.13) and 

(3.3.l4) can then be written in a compact form 

U = 2Re{Af(z)} = 2Re{A(J(za))q} (3.3.16) 

lp = 2Re{ Bf(z)} = 2Re{B (J(za))q} (3.3.17) 

in which "Re" stands for the real part of a complex number,Jl:z)=[fj(z]) j2(z2) 

13 (Z3) }4(Z4)]T, A, Bare 4x4 complex matrices defined by 
A=[a[ a2 a3 a4 ], B=[b[ b2 b3 b4 ] (3.3.18) 

and (J ( z a )) is a diagonal matrix 

(3.3.19) 

For a given problem, it is clear that all that is required is to determine the un­

known functionf(zJ) and the complex constant vector q. 

3.3.2 Solution with Lekhnitskii formalism 

The mathematical method known as Lekhnitskii formalism was developed 

originally to solve two-dimensional problems in elastic anisotropic materials [30]. 
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The evolution of the method and a number of extensions to electroelastic pro­

blems were described in [34-37]. In this section the Lekhnitskii formalism used 

in linear piezoelectricity is briefly summarized. For a complete derivation and 

discussion, the reader is referred to [30, 34-37]. 

Consider a two-dimensional piezoelectric plate where the material is 

transversely isotropic and coupling between in-plane stresses and in-plane elec­

tric fields takes place. For a Cartesian coordinate system Oxyz, choose the 

z-axis as the poling direction, and denote the coordinates x and z by Xl and X2 in 

order to generate a compacted notation. The plane strain constitutive equations 

are governed by Eq.(3.2.3l) or Eq.(3.2.32), except that all indices 3 should be 

replaced by 2 here. That is [35] 

&11 hi h2 0 0 P21 (TIl 

&22 I12 I22 0 0 P22 (T22 

2&12 0 0 h3 P13 0 (T12 (3.3.20) 

-EI 0 0 P13 -/311 0 DI 

-E2 P31 P33 0 0 -/322 D2 

From the constitutive equations, we observe that D2 produces normal strains &11 

and &22, while the stress component (T12 induces an electric field EJ, and (TIl and 

(T22 produce E2 . Equation (3.3.20) constitutes a system of five equations in ten 

unknowns. Additional equations are provided by elastic equilibrium and Gauss' 

law 

(3.3.21) 

in which the absence of body forces and free electric volume charge has been 

assumed, and by one elastic and one electric compatibility condition 

(3.3.22) 

Having formulated the electro elastic problem, we seek a solution to 

Eqs.(3.3.20)~(3.3.22) subjected to a given loading and boundary condition. To 

this end, the well-known Lekhnitskii stress function F and induction function V 

satisfying the foregoing equilibrium equations are introduced as follows [34,35]: 

(TIl = F.22' (T22 = F.II' (T12 = -F.12' DI = V,2' D2 = -V,I (3.3.23) 

Inserting Eq.(3.3.23) into Eq.(3.3.20), and later into Eq.(3.3.22) leads to 

L4F - L3V = 0, L3F + L2V = 0 (3.3.24) 

where 
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Note that if the problem was purely mechanical, L4 would be the only nonzero 

operator and its form would coincide with the plane anisotropic case discussed, 

among others, by Lekhnitskii [30]. To solve Eq.(3.3.24) we reduce the system 

to a single partial differential equation of order six in either F or V. Choosing F, 

we obtain 
(3.3.26) 

As discussed in [30] within the framework of anisotropic elasticity, Eq.(3.3.26) 

can be solved by assuming a solution of F(z) such that 
F(z)=F(xl +px2), p=a+i/3 (3.3.27) 

where a and /3 are real numbers. By introducing Eq.(3.3.27) into Eq.(3.3.26), 

and using the chain rule of differentiation, an expression of the form 
OF(6) = 0 is obtained. A nontrivial solution follows by setting the character-

istic equation (i.e., L~2+L3L3) equal to zero, namely 

1;1/3IIP6 +(1;1/322 + 1;3/311 +21;2/311 + P~I + PI
2
3 +2P2IPI3)p

4 
+ 

(f22/311 +21;2/322 + 1;3/322 +2P2IP22 +2P13P22)p
2 

+ 1~2/322 + P~2 =0 (3.3.28) 

Owing to the particular material symmetry of the piezoelectric material under 

investigation, the polynomial is expressed in terms of even powers of p. This 

allows us to solve Eq.(3.3.28) analytically, rendering 

PI=i/3I' P2=a2+i/32' P3=-a2+i/32' P4=PI' PS=P2' P6=P3 (3.3.29) 

where /31' a2 and /32 depend on the material constants. Once the roots Pi' j= 1, 

2, 3 are known, the solution for stress function F is written as 
3 

F(XI ,x2) = 2Re LF/z) 
j~1 

(3.3.30) 

The next step is to find the function Vusing one ofEq.(3.3.24). Ifwe con­

sider L3F= -L2 V, assuming solutions of the form F(Zk) and V(Zk), we have 
~:'(zk) = mk(Pk)F;;' (zk) (3.3.31) 

where primes indicate differentiation with respect to related argument, and 

- () (P21 +P13)P;+P22 
OJk Pk = 2 

/3IIPk + /322 
(3.3.32) 

Integration ofEq.(3.3.31) leads to 
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(3.3.33) 

It should be noted here that the arbitrary constants of integration could be set 

zero [34]. Thus, the solution for the induction function can be expressed as fo­

llows: 
3 3 

V(XpXz} = 2Re" V.(Z.) = 2Re" ii5F'(z) 
L..JJ L..1JJ 

(3.3.34) 

With the aid of Eq.(3.3.30) and Eq.(3.3.34) we can obtain expressions for the 

stress and electric displacement components. Using Eqs. (3.3.23), (3.3.30) and 

(3.3.34), we obtain 

r. r 
2 j 0"11 3 Pk 

0"22 = 2Re ~ _1 ([J!c(Zk)' 

0"12 Pk 

where rIHz,,) = F{(Zk)' 

Finally, using the constitutive equation (3.3.20) in conjunction with 

Eq.(3.3.35) allows us to find expressions for the strain and electric field. They are 

r 
Ell j 3 r

p

: j [E ] 3 [ * 1 E22 =2ReL q; <l};(Zk)' I =-L t: ([J~(zk) (3.3.36) 

2 k~1 * E2 "~I v" 
EI2 'I, 

where 

P; = fliP; + h2 - P2lii5k' q; = f12P; + f22 - P22ii5k' r; = (P13 ii5k - f33)Pk 
(3.3.37) 

Substitution of Eq.(3.2.3) and Eq.(3.2.5) into Eq.(3.3.36), and then integration 

of the normal strains and the electric field Ei= -¢,i produces 

(3.3.38) 

where the constants mo, Ua, Va represent rigid body displacements, and ¢o is a 

reference potential. 

Recapitulating, based on the procedure above, the plane strain piezoelec­
tric problem is reduced to one of finding three complex potentials, ~, ~ and 

rP:, , in some region Q of the material. Each potential is a function of a different 

generalized complex variable Zk = Xl + PkX2' 
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3.3.3 Some identities 

In this subsection some identities of matrices are presented in order to provide a 

source for usage in later sections and chapters. To this end rewrite Eq.(3.3.11) 

in the form 

(3.3.39) 

where 1 is the identity matrix. Since rl exists, we can reduce Eq.(3.3.39) to 

(3.3.40) 

where 

(3.3.41) 

Nl =_r1RT, N2 =r1 =Ni, N3 =RrlRT -Q=N; (3.3.42) 

Eq.(3.3.40) is a standard eigenrelation in the eight-dimensional space. The vec­

tor ~ in Eq.(3.3 .40) is a right eigenvector. The left eigenvector TJ is defined by 

TJTN=pTJT, NTTJ=pTJ (3.3.43) 

and can be shown to be [33] 

(3.3.44) 

Normalization of ~I and TJl (which are orthogonal to each other) gives 

TJJ~K = 0lK (3.3.45) 

where OJK is the Kronecker delta. Making use of Eqs.(3.3.11), (3.3.41), and 

(3.3.44), Eq.(3.3.45) can be written as 

[;: ~:l [; ;l=[~~] (3.3.46) 

This is the orthogonality relation. The two matrices on the left-hand side of 

Eq.(3.3.46) are the inverse of each other. Their product commutes so that 

[
A ~l [~T ~Tl = [1 0] (3.3.47) 
B B BT AT 0 1 

This is the closure relation and is equivalent to 
ABT + AiJY = BAT + BAT = 1, AAT + AAT = BBT + BBT = 0 (3.3.48) 

Equation (3.3.48) tells us that the real part of ABT is II2, while AAT and BBT are 

purely imaginary. Hence, the three Barnett-Lothe tensors S, H, L, defined by 
S = i(2ABT - 1), H = 2iAAT, L = -2iBBT (3.3.49) 
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are real. It is clear that Hand L are symmetric. It can be shown that they are posi­

tive definite and that SH, LS, H-IS, srI are anti-symmetric [38]. Moreover 

the real matrices S, H, L are not entirely independent. Indeed, they are related by 

LS + ST L = 0 (3.3.50) 

sri + rlsT = 0 (3.3.51) 

HST + SH = 0 (3.3.52) 

ST H-1 + H-1S = 0 (3.3.53) 

HL-SS=I (3.3.54) 

Identities (3.3.50), (3.3.52) and (3.3.54) can be verified by a direct substitution 

of S, Hand L from Eq.(3.3.49) with the aid of Eq.(3.3.48). Identity (3.3.51) is 

obtained from identity (3.3.50) by pre-multiplying and post-multiplying by rl. 

Similarly, identity (3.3.53) is obtained from identity (3.3.52) by multiplying by 
H- I • 

A generalized form of Eq.(3.3.40) and Eq.(3.3.43), which is related to the 

coordinate transformation and is useful for the development of identities, is 

written as 

where 

N(OJ); = p(OJ); 

NT (OJ)17(OJ) = P(OJ)17(OJ) 

'1 (OJ) = [cos OJ + p(O) sin OJ]'1 (0) 

() 
p(O)cosOJ-sinOJ 

p OJ = 
p(O) sin OJ + cos OJ 

(3.3.55) 

(3.3.56) 

(3.3.57) 

(3.3.58) 

NtCOJ) = -rtcOJ)RT (OJ), N2 (OJ) = rtcOJ), N3 (OJ) = -R(OJ )NI (OJ) - Q(OJ) 

(3.3.59) 

with 

QJK (OJ) = EiJKsnin" RJK (OJ) = EiJK,n;ms' TJK(OJ) = EiJK,m;m, (3.3.60) 

n=[cosOJ sinOJ O]T, m=[-sinOJ coSOJ O]T (3.3.61) 

In Eq.(3.3.61), nand m are two mutually orthogonal unit vectors embedded in 

the material as shown in Fig.3.1. The plane defined by nand m is the plane of 

interest and t=nxm is the unit normal to the plane. Note that; in Eq.(3.3.55) is 

independent of OJ, as has been shown in [39]. When w=0, Eq.(3.3.55) reduces to 

Eq.(3.3.40). By using Eq.(3.3.40) and Eq.(3.3.55), the following identities can 

be obtained [38,39] 

2AP(OJ)AT =N2(OJ)-i[N2(OJ)ST +NI(OJ)H] 

2AP(OJ)BT = NI (OJ) - i[ NI (OJ)S - N 2(OJ)L] 

(3.3.62) 

(3.3.63) 
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2BP(OJ)AT 
= N;r (OJ)-i[ N ;r (OJ)ST + N 3(OJ)H ] 

2BP(OJ)BT 
= N 3(OJ) - i[ N 3(OJ)S - N jT (OJ)LJ 

in which P( OJ) is a diagonal matrix defined by 
P(OJ) = diag [Pj (OJ) P2 (OJ) P3 (OJ) P4 (OJ)] 

Material axes 

Reference datum 

Fig.3.t Mutually orthogonal unit vectors m, nand t used in analysis 

Further, it has been shown in [38] that 

(3.3.64) 

(3.3 .65) 

(3.3 .66) 

lf 1t lf 1t lf 1t S=- Nj(OJ)dOJ, H=- N 2(OJ)dOJ, L=-- N 3(OJ)dOJ 
nO nO nO 

(3.3.67) 

Equation (3.3.67) provides an alternative to Eq.(3.3.49) for the Barnett-Lothe 

tensors S, Hand L. In addition, for any integer number k, we have [40] 
APk AT = (N; M -iNjk)H 12 (3.3.68) 

where 

APk BT = (N jk M -
j + iN; )L I2 

Bpk AT = [(Njk)T M -iN; ]H 12 

BpkBT = [N; M -
j 
+i(Njk)T]L I2 

M = H -
j 
(/ + is) = (/ - iST)H-

j 

(3.3.69) 

(3.3 .70) 

(3 .3.71) 

(3.3.72) 

3.4 Logarithmic singularity of crack-tip fields in homo­
geneous piezoelectricity 

3.4.1 General solution for crack-tip fields 

The singularity of stress and electric displacement near the tip in homogeneous 
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piezoelectricity has been studied by Ting [41] for anisotropic elasticity, Qin and 

Yu [42] for electro elastic problems, and Yu and Qin [10] for thermo-electro­

elastic problems. In this section we follow the results given in [42]. 

Consider a semi-infinite crack along the negative x-axis. The SED singu­

larities at the tips of the crack can be determined by assuming the function J in 

Eq.(3.3.6) and Eq.(3.3.1O) in the following form [43] 
ZI-'7 

J(zJ) =-1 J 
-17 

(3.4.1) 

where ry=a+ib is a complex constant with a and b being two real constants. 

Substituting Eq.(3.4.1) into Eq.(3.3.9) and Eq. (3.3.l3) yields 

U = 2Re{A\Z~-'7)-q-} (3.4.2) 
1-17 

~ =2Re{ B\z~'7)q} (3.4.3) 

where ~ = [0"21 0"22 0"23 D2]T. Ifwe use the polar coordinate system (r, 8) 

originating at the crack-tip, the complex variable Za becomes 
Za = r(cosB + Pa sin B) (3.4.4) 

We see that with the assumption of Eq.(3.4.1) the SED given by Eq.(3.4.3) is of 

the order r -'7 . It is obvious that the SED is singular if the real part of 17, i.e. a, 

is positive. For the potential energy to be bounded at the crack tip, we require 

that a<l. So we focus our attention on the interval 0< a<l. Using the trac­

tion-charge free condition on the crack surfaces and noting that Z =r when B =0 
and Z = re±in when B = ±n , we know that 

~ (n) = -r -a (r -ib e -in}7 Bq + rib einTj Bq) = 0 (3.4.5) 

(3.4.6) 

or in matrix form 
X(17)Q = 0 (3.4.7) 

where Q=[Bq Bq ]T. To obtain a nontrivial solution for Q we should let the 

determinant of X vanish, i.e. 

Ilxll=o (3.4.8) 

where the symbol IHI denotes the determinant, which leads to 

b=O, (1- e4irra
)4 = 0 (3.4.9) 

The solution ofEq.(3.4.9) reads 
l-n 

a =-2-' n = 0, 1, 2,··· (3.4.10) 
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Hence, to satisty O<a<l, we should take n=O, which is a fourfold root of 

Eq.(3.4.9). The elastic displacement and electric potential, V, and SED, Ih, 
may now be written in their asymptotic forms by combining Eqs. (3.4.2), (3.4.3) 

and (3.4.10) as 

V = 4r 1!2 Re[ A \ (cosB + Po: sinB)1!2)q ] 

~ = 2r- I
/
2 Re[ B \ (cosB + Po: sin Br1l2 )q ] 

3.4.2 Modified solution for p being a multiple root 

(3.4.11) 

(3.4.12) 

The analyses presented so far tacitly assume that the eigenvalues p's are distinct. 

When one of the p's is a double root, one mayor may not have four independ­

ent functions in Eq.(3.4.11) and Eq.(3.4.12), and a set of additional solutions 

are required [43]. It is not difficult to see that if Eq.(3.4. 11) and Eq.(3.4.12) are 

the solutions corresponding to the double root Pi, so are [43] 

V(2) = 4r 1!2 Re{~{A \ (cosB + Po: sinB)I/2) }q} 
dp; 

(3.4.13) 

~(2) = 2r-
1
!2 Re{ d~i {B\(cosB+ Po: sinBrIl2)}q} (3.4.14) 

where cIA / dp; and dB / dp; can be obtained by differentiating Eq.(3.3. 7) and 

Eq.(3.3.11) with respect to Pi, that is 

~{DA}=O 
dp; 

dB = ~{(RT + pT)A} 
dp; dp; 

(3.4.15) 

(3.4.16) 

where D=Q+ p(R+RT)+ p2T is a 4x4 matrix. The new solutions (3.4.13) 

and (3.4.14) exist if the following equation holds true [44]: 

d" 
-d IlIIDllp~Pi =0, n =N-M 

lPi 
(3.4.17) 

where Nand M are the order and rank of D, respectively. However, it is found 

that the order of singularity is not changed in the presence of the new solution 

(3.4.14). 

3.4.3 Modified solution for 17 being a multiple root 

If 17 is a multiple root ofEq.(3.4.8), the components of q may not be unique and 
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one must find other independent solutions. For a root of multiplicity m, the new 

solutions are given by (taking Il2 as an example) 

~(i) = 2Re{B[z;U) z~(i) z;(i) Z;(i)]T}, i = 1, 2,.··, m -1 (3.4.18) 

where z:(i) = z ~J7 ( -In z a + 0°7] J q a . Likewise, new solutions exist if 

n=8-M (3.4.19) 

holds true. Here M is the rank of matrix X. Since 1F 112 is a fourfold root [see 

Eq.(3.4.9)], the SED singularities at the tip of a semi-infinite crack must occur 

in one ofthe following cases 

O(r-1I2
), 

O(r-1I2 In r), 
~(r)= 

O(r-1I2 In2 r), 

O(r-1I2 ln3 r), 

only satisfying XQ = 0 

satisfying dX / d7]IIJ~I/2 = 0 

satisfying d2 X / d7]211J~1I2 = 0 

satisfying d3 X! d7]31 '7~1I2 = 0 

(3.4.20) 

For a semi-infinite crack in an anisotropic piezoelectric medium, it is therefore 

shown that both stress and electric displacement at the crack tip may be in the 

order of r- 1I2 , or r- I12 1nr, r- I12 1n2 r, r-1I2 1n3 r, as r ---+ 0, where r is the 

distance from crack tip to field point, depending on which boundary conditions 

are satisfied. 

3.5 Trefftz finite element method for piezoelectricity 

The Hybrid-Trefftz (HT) finite element (FE) model was originally developed in 

1977 for analysis of the effect of mesh distortion on thin plate elements [45]. 

During the following three decades, the potential of Trefftz finite elements for 

the solution of different types of applied science and engineering problems was 

recognised. Over the years, the HT finite element method (FEM) has become 

increasingly popular as an efficient numerical tool in computational mechanics 

and has been widely used in the analysis of plane elasticity, thin and thick plate 

bending, Poisson's equation, shell, heat conduction, and piezoelectric materials. 

Detailed discussion of the development in this area can be found in [46]. In 

contrast to conventional FEM, the class of finite elements associated with the 

Trefftz method is based on a hybrid method which includes the use of an auxil-
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iary inter-element displacement or traction frame to link the internal displace­

ment fields of the elements. Such internal fields, chosen so as to a priori satisfy 

the governing differential equations, have conveniently been represented as the 

sum of a particular integral of non-homogeneous equations and a suitably trun­

cated Trefftz complete set of regular homogeneous solutions multiplied by un­

determined coefficients. Inter-element continuity is enforced by using a modi­

fied variational principle together with an independent frame field defined on 

each element boundary. The element formulation, during which the internal 

parameters are eliminated at the element level, in the end leads to the standard 

force-displacement relationship, with a symmetric positive definite stiffness 

matrix. Clearly, whereas the conventional FE formulation may be assimilated to 

a particular form of the Rayleigh-Ritz method, the HT FE approach has a close 

relationship with the Trefftz method [46]. This section addresses applications of 

the Trefftz FEM to piezoelectric materials. The presentation below follows the 

developments appearing in [47,48]. 

3.5.1 Basic field equations and boundary conditions 

Consider a linear piezoelectric material, in which the differential governing 

equations in the Cartesian coordinates Xi (i=l, 2, 3) are given by 

CTij,j + bi = 0, Di,i + be = 0, in Q (3.5.1) 

where Q is the solution domain and the Einstein summation convention over 

repeated indices is used. For an anisotropic piezoelectric material, the constitu­

tive relation is 
oH(u, D) D 

cij = 0 = SijklCTkl + gkijDk , 
CTij 

(3.5.2) 
for (u, D) as basic variables, 

oH(e ,E) E 
CTij = 0 = Cijklckl - ekijEk , 

cij 

(3.5.3) 
for (e, E) as basic variables, 

oH(e ,D) f) 

CT ij = 0 = Cijklckl + hkijDk ' 
CTij 

(3.5.4) 
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for (I;, D) as basic variables, and 

oH(u,E) E 
&ij = - a = SijklO'kl + dkijDk ' 

. O'ij . 

(3.5.5) 
for (u, E) as basic variables, with 

( ) 1 D 1 AO" 
H\u,D =-"2SijkIO'iPkl+"2 ijDPj-gkijO'ijDk (3.5.6) 

1 E 1 [; 
H(I; ,E) = "2 Gijkl&ij&k/ -"2KijEiEj -ekij&ijEk (3.5.7) 

1 D 1 1& h 
H(I; ,D) = -Gijkl&ij&kl +-/I,ijDjD j + kij&ijDk 2 . 2 . . (3.5.8) 

H(u ,E) = -lS:klO'iPkl -lKi~ EiEj - dkiPijEk (3.5.9) 

h E f) d E f) h 'ffn d l' ffi . were Gijki' Gijkl an Sijki' Sijkl are t e stl ess an comp lance coe IClent ten-

sor for E=O or D=O, Ki~' < and Ai~' Ai~ are the permittivity matrix and the 

conversion of the permittivity constant matrix for 0'=0 or &=0. 

The boundary conditions of the electroelastic problem are defined by 
ui = ui ' on Ttl (3.5.10) 

ti = 0' ijnj = ti , on I; (3.5.11) 

Dn = Dini =-qn =Dn , onTD (3.5.12) 

¢=¢, onT¢ (3.5.13) 

where ~, 7;, qn and ¢ are, respectively, prescribed boundary displacement, 

traction vector, surface charge and electric potential, an overhead bar denotes 

prescribed value, T=Tu+ Tt =TD +T¢ is the boundary of the solution domain Q. 

Moreover, in the Trefftz FE form, Eqs. (3.5.l)~(3.5.l3) should be com­

pleted by the following inter-element continuity requirements: 

Uie=U if ' ¢e=¢I' onTenTf' conformity (3.5.14) 

Dne + Dilf = 0 , on Te n T f , reciprocity (3.5.15) 

where "e" and ''I'' stand for any two neighboring elements. Eqs.(3.5.1)~(3.5.15) 

are taken as the basis to establish the modified variational principle for Trefftz 

FE analysis of piezoelectric materials. 

3.5.2 Assumed displacement and electric potential fields 

The main idea of the HT FEM is to establish a FE formulation whereby the 
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intra-element continuity is enforced on a non-conforming internal displacement 

field chosen so as to a priori satisfy the governing differential equation of the 

problem under consideration [46]. In other words, as an obvious alternative to 

the Rayleigh-Ritz method as a basis for a FE formulation, the model here is 

based on the method of Trefftz [49]. With this method the solution domain n is 
subdivided into elements, and over each element "e," the assumed in­

tra-element fields are 

Uj u j NI 

u= 
u2 u2 

+ 
N2 

c=it+ LNjcj =it+Nc (3.5.16) 
u3 u3 N3 j=j 

¢ (j N4 

where Cj stands for undetermined coefficient, and it = [iiI ii2 ii3 (j] T and N 

are known functions. If the governing differential equation (3.5.1) is rewritten 

in a general form 
9i'u(x) + hex) = 0 (x E.q,) (3.5.17) 

where 9i' stands for the differential operator matrix for Eq.(3.5.1), x for the 

position vector, h = [bl b2 b3 be] T for the known right-hand side term, and 

.q stands for the eth element sub-domain, then it = it(x) and N = N(x) in 

Eq.(3.5.16) must be chosen such that 

fllit + h = 0 and fll N = 0 (3.5.18) 

everywhere in .q. A complete system of homogeneous solutions Nj can be 

generated by way of the solution in Stroh formalism 

u = 2Re{A(J(za))c} (3.5.19) 

where (J(za))=diag[f(zl) f(Z2) f(Z3) f(Z4)] is a diagonal4x4 ma­

trix, while f(Zi) is an arbitrary function with argument Zi = XI + Pi X2· Pi 

(i=1~4) are the material eigenvalues. Of particular interest is a complete set of 

polynomial solutions which may be generated by setting in Eq.(3.5.19) in tum 

f(Za)=~:}, k=I,2,... (3.5.20) 
f(za) = lZa 

where i = ~. This leads, for N; ofEq.(3.5.16), to the following sequence 

N 2j = 2Re{A(z~)}, N 2j+1 = 2Re{A(iz~)} (3.5.21) 

The unknown coefficient C in Eq.(3.5.19) can be written as 
... C]T 

In 
(3.5.22) 
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in which m is the dimension of vector c. The choice of m has been discussed in 

[46]. For the reader's convenience, we briefly describe the basic rule for deter­

mining m. It is important to choose the proper number m of trial functions ~ 

for the Trefftz element with the hybrid technique. The basic rule used to pre­

vent spurious energy modes is analogous to that in the hybrid-stress model. The 

necessary (but not sufficient) condition for the matrix H, which is later defined 

by Eq.(3.5.47) in Subsection 3.5.4, to have full rank is stated as [46] 
mmin = N DOF - N RIG (3.5.23) 

where NDOF and NRIG are numbers of nodal degrees of freedom of the element 

under consideration and of the discarded rigid body motion terms, or more 

generally the number of zero eigenvalues. Although the use of the minimum 
number m = N DOF - N RIG of flux mode terms in Eq.(3.5.23) does not always 

guarantee a stiffness matrix with full rank, full rank may always be achieved by 

suitably augmenting m. The optimal value of m for a given type of element 

should be found by numerical experimentation. 

The unknown coefficient c in Eq.(3.5 .19) may be calculated from the con­

ditions on the external boundary and/or the continuity conditions on the in­

ter-element boundary. Thus various Trefftz element models can be obtained by 

using different approaches to enforce these conditions. In the majority of cases 

a hybrid technique is used, whereby the elements are linked through an auxil­

iary conforming displacement frame which has the same form as in the conven­

tional FE method. This means that, in the Trefftz FE approach, a conforming 

electric potential and displacement (EPD) field should be independently de­

fined on the element boundary to enforce the field continuity between elements 

and also to link the coefficient c, appearing in Eq.(3.5 .19), with nodal EPD d. 

The frame is defined as 

u(x) = (3.5.24) 

where the symbol "~,, is used to specifY that the field is defined on the element 

boundary only, d=d(c) stands for the vector of the nodal displacements which 

are the final unknowns of the problem, Fe represents the boundary of element e, 

and N is a matrix of the corresponding shape functions which are the same as 
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those in conventional FE formulation. For example, along the side A-O-B of a 

particular element (see Fig.3.2), a simple interpolation of the frame displace­

ment and electric potential can be given in the form 

U, 

U(X) = 
u2 

= [ N A N a] [~: l U3 
xEFe (3.5.25) 

¢ 

where 

N A =diag[Nl N, N.. N,], Na =diag[N2 N2 N2 N2] (3.5.26) 

dA = [Ut A U2A U3A ¢A]T, da = [Ut a u2B u3a ¢a]T (3.5.27) 

with 
- 1-~ 

N, =-2- ' 
- 1+~ N2 = --

2 

;=-1 ; = 0 ; =+1 
G------~A~----~® 
A 0 B 

Fig.3.2 A quadrilateral element generalized two-dimensional problem 

(3.5.28) 

Using the above definitions, the generalized boundary forces and electric 

displacements can be derived from Eqs.(3.5.11), (3 .5.12) and (3.5.16), and de­

noted 

(3.5.29) 

where ~ and DIl are derived from ii. 

3.5.3 Variational principles 

The Trefftz FE equation for piezoelectric materials can be established by the 

variational approach [46]. Since stationary conditions of the traditional poten-



84 Chapter 3 Thermo-electra-elastic problems 

tial and complementary variational functional cannot satisfy the inter-element 

continuity condition which is required in Trefftz FE analysis, some new varia­

tional functionals need to be developed. For this purpose, we present the fol­

lowing two modified variational functionals suitable for Trefftz FE analysis: 

e;D = Le;~ =L{e:D 
-f (Dn -Dn)¢ds-f (7; -t;)ii;ds+ 

iDe lIe 
e e 

f (D,} + t;iiJds} (3.5.30) 
Fie 

e~£ = Le~: =L 1:£ + f «(f -¢)Dnds+ f (li; -uJ~ds-eel' T¢e T tI(, 

2f ii/;ds-2f ¢Dnds-f (¢Dn +ii;t;ds} (3.5.31) 
lte FDe FIe 

e:;D = Le,~~ =Lfe:D - f (Dn-Dn)¢ds+ f (U; -uJ~ds-
eel rDe rue 

2f ii/;ds+f (Dn¢-t;iiJds} (3.5.32) 
TIe Tie 

e;E = L e;eE = L 1:E + f «(f - ¢)Dnds - f (7; - t; )ii;ds -
e e II ljie Fie 

2f Dn¢ds - J (Dn¢ - t;ii; )dS} (3.5.33) 
iDe lIe 

where 

e:D 
= If H(rr ,D)dQ + f tJ:I;ds + f DJds (3.5.34) 

4 lue l¢e 

e:E=ff [H(e,E)-b;u;-be¢]dQ+f 7;ii;ds+f Dn¢ds (3.5.35) 
4 ~ ~ 

e;D =ff [H(e,D)-b;u;]dQ+f 7;ii;ds+f Dn(fds (3.5.36) 
4 ~ ~ 

e:E 
= If [H(rr ,E) - be¢]dQ + f t;li;ds + f Dn¢ds (3.5.37) 

4 rue r De 

The boundary re of a particular element consists of the following parts: 

(3.5.38) 

where 

(3.5.39) 

and r Ie is the inter-element boundary of the element "e". We now show that 

the stationary condition of anyone functional in Eqs.(3.5.30)~(3.5.33) leads to 

Eqs.(3.5.l0)~(3.5.l5), u; = ii; (on r t ) and ¢ = ¢ (on rf))' and present the 

theorem on the existence of extremum of the functional, which ensures that an 

approximate solution can converge to the exact one. Taking e;f) as an exam-
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pie, we have the following two statements: 

(1) Modified complementary principle. 

se:f) =0=?(3.5.10)~(3.5.15), u; =u; (onFt ) and ¢=¢ (onFf)) 

(3.5.40) 

where S stands for the variation symbol. 

(2) Theorem on the existence of extremum. 

If the expression 

If S2H(a,D)dfl+f St;Suids+f SDnS¢ds+ Lf (S¢SDn +Su;StJds 
D If lD lie 

e 

(3.5.41) 
is uniformly positive (or negative) in the neighborhood of Ua , where Uo is 

such a value that e:D (Uo) = (e:D)o' and where (e:D)o stands for the sta­

tionary value of efJf) we have 
m ' 

cwD :>- (ClfJD) [ r ClfJD ,;:: (ClfJD) ] 
&m r.:ym 0 0 t:Ym -....::: am 0 (3.5.42) 

in which the relation that ue = uf is identical on Fe n F f has been used. 

Proof: First, we derive the stationary conditions of functional (3.5.30). To 

this end, perfonning variation of e:D and noting that Eq.(3.5.1) holds true a 

priori by the previous assumption, we obtain 

se:f) =f (ii; -u;)St;ds+f ((f -¢)SDnds-
l" l¢ 

f I, [0; - tJSu; - (u; - uJSt; Jds - tLJ [(15n - Dn)S¢ - (¢ - ¢)SDn Jds + 

(3.5.43) 

Therefore, the Euler equations for expression (3.5.43) are Eqs. (3.5.1O)~(3.5.15), 

U; = Ui (on T t ), and ¢ = ¢ (on T D ), as the quantities 6t;, SUi' S¢, SD
Il

, 

SUi and S¢ may be arbitrary. The principle (3.5.40) has thus been proved. 

This indicates that the stationary condition of the functional satisfies the re­

quired boundary and inter-element continuity equations and can thus be used 

for deriving Trefftz FE formulation. 

As for the proof of the theorem on the existence of extremum, we may 

complete it by way of the so-called "second variational approach" [50]. In do­
ing this, perfonning variation of se,~D and using the constrained conditions 

(3.5.1), we find 
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02e::,D = If D o2H(u,D)dD+ f I, ot;ou;ds+ 

f ODno¢ds+ l:f (O¢ODn +ouiotJds 
Tn e Tre 

(3.5.44) 

Therefore the theorem has been proved from the sufficient condition of the ex­

istence of a local extreme of a functional [50]. This completes the proof. The 

functional given in Eqs.(3.5.31)~(3.5.33) can be stated and proved similarly. 

We omit those details for the sake of conciseness. 

3.5.4 Elemental stiffness matrix 

The element matrix equation can be generated by setting oe::;, = O. To sim­

plify the derivation, we first transform all domain integrals in Eq.(3.5.30) into 

boundary ones. In fact, by reason of the solution properties of the intra-element 

trial functions, the functional e::,: can be simplified to 

D If If - f - -eeT =-- (tu +D ,f,)ds-- (bu. +q- ,f,)dD- (D -D ),f,ds-
me 2 Fe 1 I n'f/ 2 nil b'r iDe n 11 If' 

(3.5.45) 

Substituting the expressions given in Eqs.(3.5.16), (3.5.24), and (3.5.29) into 

(3.5.45) produces 

e::,: = -leT He + eT Sd + eT 
Ij + d T 

Y2 + terms without e or d (3.5.46) 

in which the matrices H, S and the vectors Yj, Y2 are defined by 

H = fIe QT Nds (3.5.47) 

S ~ t~ Q;N,ds+ t.lHl ~}+ t. Q'Nds (3.5.48) 

1 f T ~ T ~ 1 f T-Y1 =-- (N T+Q u)ds-- N bdD+ 
2 ~ 2 D 

(3.5.49) 
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To enforce inter-element continuity on the common element boundary, the un­

known vector c should be expressed in terms of nodal DOF d. An optional rela­

tionship between c and d in the sense of variation can be obtained from 
ofX'D 
~=-Hc+Sd+1j =0 (3.5.51) 

OCT 

This leads to 
c=Gd+g (3.5.52) 

where G = H-1 Sand g = H-11j, and then straightforwardly yields the ex­

pression of e:~ only in terms of d and other known matrices 

e:~ = ~dT GT HGd + d T (GT Hg + rJ + terms without d (3.5.53) 

Therefore, the element stiffness matrix equation can be obtained by taking the 

vanishing variation of the functional e,~~ as 

Kd=P (3.5.54) 

where K=GTHG and P= -GTHg-r2 are, respectively, the element stiffness ma­

trix and the equivalent nodal flow vector. The expression (3.5.54) is the ele­

mental stiffness-matrix equation for Trefftz FE analysis. 

3.5.5 Application to anti-plane problem 

The formulation presented in Subsection 3.5.4 IS for a general three­

dimensional piezoelectric solid. To show typical applications of the above FE 

model, let us consider an anti-plane crack problem. 

In the case of anti-plane shear deformation involving only out-of-plane 

displacement Uj and in-plane electric fields, and these variables depends on XI 

and X2 as defined in Eq.(3.2.36), the constitutive relation and equilibrium equa­

tion are governed by Eq.(3.2.37) and Eq.(3.2.38), respectively. When the 

coordinate system (X,y,Z) , rather than (xt, X2, X3), is used, Eq.(3.3.27) and 

Eq.(3.3.28) are rewritten as 

(3.5.55) 
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()xz C44 0 -e15 0 Yxz 

G'yz 0 C44 0 -e15 Yyz 
(3.5.56) 

Dx e15 0 Kll 0 Ex 

Dy 0 e15 0 Kll Ey 

or inversely 

Yxz S44 0 g15 0 O"xz 

Yyz 0 S44 0 g15 O"yz 

Ex 0 ~1 0 D 
(3.5.57) 

-g15 x 
Ey 0 -g15 0 ~l Dy 

where Yxz ' Yyz andEr, Ey are, respectively, shear strains and electric fields 

given by 
ou_ oUz o¢ E =_ o¢ 

Yxz = 0; , Yvz=a' Ex =--, 
. y ox y oy 

The constants S44, gl5 and All are defined by the relations 

The boundary conditions of the anti-plane problem are given by 

t = 0"3jnj = t , 

Dn =D;n; =-qn =Dn, 

¢=¢, 

onI'u 

on I; 

(3.5.58) 

(3.5.59) 

(3.5.60) 

(3.5.61) 

(3.5.62) 

(3.5.63) 

where Ii, T, qn and ¢ are, respectively, prescribed boundary displacement, 

traction vector, surface charge and electric potential, an overhead bar denotes 

prescribed value, T=Tu+I;=TD+T¢ is the boundary of the solution domain.Q. 

In the Trefftz FE form, Eqs.(3.5.55)~(3.5.63) should be completed by the 

following inter-element continuity requirements: 

uze = uzt ' ¢e = ¢f ' on Te n T f 

where "e" and "f" stand for any two neighbouring elements. 

It is obvious from Eq.(3.5.55) that it requires 

C44 K ll + l12
5 oF 0 

(3.5.64) 

(3.5.65) 

(3.5.66) 

to have non-trivial solutions for the out-of-plane displacement and in-plane 
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electric fields. This results in 
'\l2uz = 0, (3.5.67) 

(1) Trefftz functions. It is well known that the solutions of the Laplace 

equation (3.5.67) may be found using the method of variable separation. By this 

method, the Trefftz functions are obtained as [51] 
= 

uz(r,B) = L>m (am cos mB+ bm sin mB) (3.5.68) 
m=O 

= 

¢(r,B) = L rm (cm cosmB + dm sinmB) (3.5.69) 
m=O 

for a bounded region and 

uz(r,B) = a~ + ao In r + Lr-m (am cosmB + bm sinmB) (3.5.70) 
m=i 

= 

¢(r,B) = c~ + Co In r + Lr-m (cm cosmB + dm sinmB) (3.5.71) 
m=1 

for an unbounded region, where rand B are a pair of polar coordinates. Thus, 

the associated Trefftz complete sets of Eqs.(3.5.68)~(3.5.71) can be expressed 

in the form 
T = {I, rm cos mB, rm sin mB} = {1-;} 

T= {I, lnr, r-m cosmB, r-m sinmB} = {I;} 

(3.5.72) 

(3.5.73) 

(2) Assumed fields. To perform FE analysis, the solution domain 12 is di­

vided into elements, and over each element "e" two independent fields are as­

sumed in the following way: 

(a) The non-conforming intra-element field is expressed by 

[
Uz ] i[N\i 0 ] [CUi ] [N1 0] 

u = ¢ = j=1 0 N
2j 

C¢j = 0 N2 C = Nc 
(3.5.74) 

where c is a vector of undetermined coefficient, Ni are taken from the com-

ponents of the series (3.5.68)~(3.5.71). 

(b) An auxiliary conforming field 

U=[~]=[:1 ;J[~:]+[~c ;2J[~::]=Nd+Ncdc (3.5.75) 
is independently assumed along the element boundary in terms of nodal DOF 
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d = [du d¢ rand dc = [duc d¢c r ,where N represents the conventional 

finite element interpolating functions and N,c ' N2c are given in Eq.(3.5.75) 

above. For example, in a simple interpolation of the frame field on the side 

l-C-2 of a particular element (Fig.3.3), the frame functions are defined in the 

following way: 

M" 

uzl2 = N1uZI +N2uZ2 + L, e -' (1-.;2)u zCJ 
J=I 

M¢ 

¢12 =N,<P, +N2<P2 + L, .;J-'(1-.;2)<PCJ 
J=I 

where uzCJ and <PCJ are shown in Fig.3.3, and 

1-'; - 1+'; 
2 ' N2 =-2-

g=-I 
• 

g=o 
.& 
c 

• uz ' </>(2 DOF) 

g=+1 
• 
2 

f::,. UzC I '</>CI,Uzel' ···(2MDOF) 

Fig.3.3 Geometry of a triangular element 

(3.5.76) 

(3.5 .77) 

Using the above definitions, the generalized boundary forces and electric 

displacements can be derived from Eqs.(3.5.61), (3.5.62) and (3.5.74), denoting 

(3.5.78) 

(3) Special element containing angular comer. It is well known that sin­

gularities induced by local defects such as angular comers, cracks, and so on, 

can be accurately accounted for in the conventional FE model by way of ap­

propriate local refinement of the element mesh. However, an important feature 

of the HT FEM is that such problems can be far more efficiently handled by the use 

of special purpose functions [46]. Elements containing local defects (see Fig.3.4) 

are treated by simply replacing the standard regular functions N in Eq.(3.5.74) by 

appropriate special purpose functions. One common characteristic of such trial 

functions is that it is not only the governing differential equations, which here are 

Laplace equations, that are satisfied exactly, but also some prescribed boundary 
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conditions at a particular portion F eS (see Fig.3.4) of the element boundary. 

This enables various singularities to be specifically taken into account without 

troublesome mesh refinement. Since the whole element formulation remains 

unchanged [except that now the frame function u in Eq.(3.5.75) is defined 
and the boundary integration is performed only at the portion F e' of the ele­

ment boundary Fe = Fe' + FeS' see Fig.3.4] [46], all that is needed to imple­

ment the elements containing such special trial functions is to provide the ele­

ment subroutine of the standard, regular elements with a library of various op­

tional sets of special purpose functions. 

y 

Fig. 3.4 Special element containing a singular comer 

Element r 
boundary e' 

In this section we show how special purpose functions can be constructed 

to satisfY both the Laplace equation (3.5.67) and the traction-free boundary 

conditions on angular comer faces (Fig.3.4). The derivation of such functions is 

based on the general solution of the two-dimensional Laplace equation 
= = 

uz(r , tJ) = ao + ~)anr'<n +bnr-'<n )cos (AntJ) + ~)d,/n + enr-'<n ) sin (AntJ) 
11 =1 n=1 

(3.5.79) 
= = 

¢(r,tJ) = eo + ~)enr'<n + i"r-'<n )cos (AntJ) + ~)gn r'<n + hnr-'<n ) sin (AntJ) 
11 =1 11= 1 

(3.5.80) 

Appropriate trial functions for a singular comer element are obtained by 

considering an infinite wedge (Fig.3.4) with particular boundary conditions 

prescribed along the sides tJ=±~ forming the angular comer. The boundary 

conditions on the upper and lower surfaces of the wedge are free of surface 

traction and surface charge 
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(3.5.81) 

This leads to 

Buz =0 
B() , 

B¢ =0 
B() , 

(3.5.82) 

To solve this problem, we rewrite the general solution (3.5.79) as 
= = 

Uz (r, ()) = ao + L (a/'" + bnr --i,,) cos (An()) + L (dnrP" + enr -p,, ) sin (Pn()) 
n=1 n=1 

(3 .5.83) 
where An and P/l are two sets of constants which are assumed to be greater 

than zero. Differentiating solution (3.5.83) and substituting it into Eq.(3.5.82) 

yields 

= 

"fJ (d r P" + e b - p" ) cos (+fJ () ) = 0 L...J 1l n n - nO 
11 =1 

Since the solution must be limited for r= 0, we should specify 

bn = ell = 0 

From Eq.(3.5.84) it can be deduced that 
sin(±A/l()o) = 0, cos(±P/l()o) = 0 

leading to 

(3.5.84) 

(3 .5.85) 

(3.5.86) 

A/l()O = nn, n=1 ,2,3,.·· (3.5.87) 

2P/l ()o = nn, n =1,3,5,.·· (3.5.88) 

Thus, for an element containing an edge crack (in this case ()o = 1r ), the 

solution can be written in the form 
= = n 

uz(r,()) = ao + La/' cos(n()) + L d/lr2 sin(~()) 
n=1 /l = 1,3,5 2 

(3.5.89) 

With the solution (3.5.89), the internal function defined in Eq.(3 .5.74) can be 

taken as 

n 3"='. . ( 2n - 1 ) N2/l _1 = r cos(n()), N2/l = r 2 sm -2-() , n =1,2,3,.·· (3.5.90) 

It is obvious that the displacement function (3.5.89) includes the term propor­

tional to rll2, whose derivative is singular at the crack tip. The solution for the 

second equation of (3.5.82) can be obtained similarly. 
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(4) Variational principle. For the boundary value problem described by 

Eqs.(3.5.55)~(3.5.67), the corresponding dual variational functional is con­

structed in the form 

e,~D = L:e;~ =L:{e:D - tlJe (15n -Dn)¢ds- tic (T -t)uzds+ 
e e 

tlc (Dn¢ + tuz)ds} (3.5.91) 

e~E = L:e~; =L:{e:E + f (¢ -¢)Dn ds + f (itz -uz)tds-
e e T¢e rue 

(3.5.92) 

where 

(3.5.93) 

(3.5.95) 
1 2 2 I 2 2 

H(rij,Ek ) = "2C44 (rxz + ryz) - e]SrxzE , - e]SrrzEr -"2 K ]] (Er + Er) (3.5.96) 

The boundary Te of a particular element consists of the following parts: 

(3.5.97) 

where 

(3.5.98) 

and TIe is the inter-element boundary of the element "e". 

(5) Generation of element matrix. Similar to the treatment of Eq. (3.5.45), 

the domain integral in Eq.(3.5.93) is converted into a boundary integral by use 

of solution properties of the intra-element trial functions, for which the func­

tional (3.5.91) is rewritten as 

II;:eD = -f (Dn - Dn )¢ds - f (T - t)uzds + f (Dn¢ + tuJds} -
r De r tc TIe 

(3.5.99) 

Substituting the expressions given in Eqs.(3.5.74),(3.5.75) and (3.5.78) into 

(3.5.99) produces 
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crD 1 T T T T . ll,l1e = --e He + e Sd + e Ii + d r2 + terms without e or d 
2 

in which the matrices H , S and the vectors r" r2 are defined by 

H=f QTNds 
re 

(3.5.100) 

(3.5.101) 

(3.5.102) 

(3.5.103) 

(3.5.104) 

The remaining derivation and the resulting equations are in the same form 

as in Eqs.(3.5.51)~(3.5.54). 

3.5.6 Numerical examples 

As a numerical illustration of the finite element formulation presented in this 

section, an example of a piezoelectric prism subjected to simple tension is con­

sidered (see Fig.3.5). This example was taken from [52] for a PZT-4 ceramic 

prism subject to a tension P=10 Nm-2 in the y-direction. The properties of the 

material are given as follows: 

y 

D -

c 

o A B x 

Fig.3.5 Geometry of the piezoelectric prism 

CIIII =12.6x10Io Nm-2
, CII22 =7.78xlO'O Nm-2

, CII33 =7.43x10'o Nm-2 

C3333 = 11.5 X 1010 Nm-2
, C3232 = 2.56 X 1010 Nm-2

, el31 = 12.7 Cm-2 

e311 = -5 .2Cm-2
, e333 =15.1Cm-2

, KII = 730Ko, K33 = 635Ko 

where Ko = 8.854 X 10-12 C2 I Nm2 
. The boundary conditions of the prism are 

(j'yy = P, (j'xy = Dy = 0, on edges y = ±b 
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0" xx = O"xy = Dx = 0 , on edges x = ±a 

where a=3 m, b= 10m. Owing to the symmetry about load, boundary conditions 

and geometry, only one quadrant of the prism is modeled by 10 (x-direction) x 

20 (y-direction) elements in the HT FEM analysis. Table 3.2 lists the displace­

ments and electric potential at points A, B, C, and D using the present method 

and comparison is made with analytical results. It is shown that the TFEM re­

sults are in good agreement with the analytical ones [52]. 

Table 3.2 Ul, U2, and ¢ofTFEM results and comparison with exact solution 

Point A(2,0) B(3,0) ceO,5) D(O,IO) 

TFEM ul/(10 10m) -0.9674 -1.4510 0 0 

U2/(J 09m) 0 0 0.5009 1.0016 

¢(V) 0 0 0.6890 1.3779 

Exact [52J u/(1010m) -0.9672 -1.4508 0 0 

U2/(l09m) 0 0 0.5006 1.0011 

¢(V) 0 0 0.6888 1.3775 

3.6 Theory of coupled thermo-piezoelectricity 

In the previous sections of this chapter we described various problems of pie­

zoelectric materials without considering thermal effects. In this section, an ex­

tension to include the thermal effect is presented. We begin with a discussion of 

the general theory of thermo-piezoelectricity, followed by an introduction of the 

uniqueness of the thermo-electro-elastic solution. The presentation focuses on 

the developments in [1,2]. 

3.6.1 Basic equations 

The equations of the classical, linear theory of piezoelectricity, including the 

coupling among deformation, temperature, and electric field, were derived by 

Mindlin [1]. The coupling problem under consideration consists of determiuing 
the stress O"ij(x, t), electric displacement D;(x, t), elastic displacementu; (x, 

t) temperature T(x, t) and electric potential ¢ (x, t) for x E Q and t>O. 

In the region Q and for t>O without body force and free charge, the fol­

lowing equations should be satisfied: 
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(1) Divergence equations. 

CTij,j = PUi' Di,i = 0, hi,; = -Ta/l.s (3.6.1) 

where P is the mass density. Using the notation introduced in Section 3.3 and 

considering a steady-state problem, Eq.(3.6.l) can be rewritten in a simple form 

EiJKnP Komi = AiJT,i' kijT,ij = ° (3.6.2) 

where AiJ (J=I,2,3) represent the thermal-stress constants, Ai4 = Pi stands for 

the pyroelectric coefficient. 

(2) Gradient equations. 
1 

Ei=-(u.+u), 
lj 2 foj jof 

where kij is the heat conduction coefficient. 

(3) Constitutive equations. 

F -[ ~n,' <Tij ~ [ ::1; D =-[ og 1 
m oEm f:,T 

where g is the "electric Gibbs function" defined by 

I I pC" 2 
g ='2CijkiEiijEiki -'2KijE;Ei - 2T T -e;ikE;Eijk - PmTEm -AijTEiij 

o 

(3.6.3) 

(3.6.4) 

(3.6.5) 

Eqs.(3.6.1)~(3.6.4) comprise the 27 equations of linear thermo-piezoelectricity 

governing the 27 dependent variables Uo CTij, Eiij' D;, Ei' ¢, hi's, T. From 

Eq.(3.6.4) and Eq.(3.6.5), we find 

where a = pC"To-
l

• 

s = aT + AijEiij + Pm Em 

CTij = -AijT + CijkiEiki - emijEm 

Dn = Pn T + enijEiij + KmnEm 

(3.6.6) 

By successive substitution, the 27 equations may be reduced to five on Ui, 

¢andT 

C"klUk I' + ek ¢' - AT = pu U ,I "U ,J(l U ,l J 

ek"u. 'k - K¢ .. + pT = ° lj l,j lj ,lj 1,1 
(3.6.7) 

. . kT 
1 • do T lJ ,f! /l,.U . . - py. + a = --' 

lJ f.j f of Ta 

These equations should be completed with boundary and initial conditions. The 

following quantities may be assigned at the surface rofthe body Q: 
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(1) Displacement or surface traction. 
ui = Ii; (x, t) (on T j ), O"ijn j = t;(x, t) (on T 2 ) (3.6.8) 

where Ii; and t; are known functions, and T = T j U T 2, T j n T2 = O. 

(2) Electric potential or electric displacement. 

¢ = ¢(x, t) (on 1 3 ), Djn j = -qs(x, t) (on 14) (3.6.9) 

where (f and qs are known functions, and T = T3 U T 4, T3 n T4 = O. 

(3) Temperature or heat flux. 
- -

T=T(x,t) (on 15)' -kijT,jni=-h,,(x,t) (on 1 6 ) (3.6.10) 

where if and h" are known functions, and 1 = 15 U 1 6 , 15 n 16 = O. 

(4) Initial conditions. 
u;(x,O)=};(x), u;(x,O)=g;(x), T(x, 0) = Ta(x). (3.6.11) 

where ii, gi and To are known functions. 

3.6.2 Uniqueness of the solution 

The uniqueness theorem for the differential equations of thermo-piezo-electricity 

can be established by way of the principle of virtual work. The energy functional 

used for this purpose is as follows: 

-f pii5udQ + f T5udl = f O"5&dQ n I I r I I n lj lj 
(3.6.12) 

in which the virtual increments have been replaced by the real increments 

au;. O&ij. 
5u =-dt=udt, 5& =-dt=&dt (3.6.13) 

I at I If at If 

Thus, we obtain the fundamental energy equation 

-f piiudQ + f Tudl = f O"i:. dQ 
nIl r I I Q Y 11 

into which we introduce the constitutive relations 

O"ij = -AijT + Cijkl&kl - emijEm 

Hence 

~(K + W) = f Tudl + f (AT + eE )i:dQ dt TIl flU mymy 

where K is the kinetic energy and W the work of deformation 

(3.6.14) 

(3.6.15) 

(3.6.16) 

K = P f uudQ, W = ~f C··'I&··&kldQ (3.6.17) 2 n I I 2 n II" 'I 

To eliminate the term f n Aiji:ijTdQ , we consider the heat conduction equation 
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(3.6.18) 

Multiplying by T and integrating over the region Q, after simple transformation 

we obtain 

where 

f 
. kij f f' d91 XTsdQ=- TTndT-p TE dQ---Xo 

n If lJ l'o r ,J 1 m n m dt 

k
f Xo =2 TTdQ T n ,l,J 

o 

Substituting Eq.(3.6.19) into Eq.(3.6.16) yields 

(3.6.19) 

(3.6.20) 

~(K + W + 91) + Xo = f [Tit + kij TTn) dT + f (eE i: - p,E,T)dQ dt r 1 1 l'o ,J 1 n my m If 1 1 

(3.6.21) 

To eliminate the term f nemiAjEmdQ in Eq.(3.6.21), we make use of the con-

stitutive relations 
(3.6.22) 

Finally, we make use of the equation of the electric field Dj,i = 0 . Multiplying 

the equation by ¢ and integrating over the region Q, we obtain 

f rDjn;¢dT+ fnDrnEmdQ=O (3.6.23) 

Using relation (3.6.22), after simple transformations we obtain 

In (emijE",f:ij - pjE;T)dQ = -frDmnm¢dT - :t (1',' - Pk fnTEkdQ) (3.6.24) 

where 

(3.6.25) 

In view ofEqs.(3.6.21)~(3.6.23), we arrive at the modified energy balance 

:t (K + W +91+ N+ PkJnTEkdQ) + Xo 

= Tit +2TTn -D ¢n dT f [ k .) 
r 1 1 To ,J 1 m m 

(3.6.26) 

The energy functional (3.6.26) makes possible the proof of the uniqueness of 

the solutions. 
Consider two distinct solutions (u;,¢',T') and (u;',¢",T") which satisfy 

Eq.(3.6.1) and the appropriate boundary and initial conditions. Let 
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¢/ =¢' -¢", T* =T' -T" (3.6.27) 

Since the problem is linear, the difference variables in Eq.(3.6.27) are also solu­

tions. Therefore, Eq. (3.6.26) holds for the solution (u; ,¢* ,T*). 

In view of the homogeneity of the equations and the boundary conditions, 

the right-hand side ofEq.(3.6.26) vanishes. Hence, 

d( * * * * f * *) * dt K +W +ill +~ +Pk n T EkdQ =-%e:(O (3.6.28) 

where we have made use of the fact that the integrand of the energy-dissipation 
function %e is a positive-definite quadratic form. The integral in the left-hand 

side of Eq.(3.6.28) vanishes at the outset, since the variables (ui* ,rjJ*, T*) sat­

isfy the homogeneous initial conditions. On the other hand, the inequality in 

Eq.(3.6.28) proves that its left-hand side is either negative or zero. The latter 

possibility occurs if the integrand is the sum of squares. 

Consequently, we assume that 

K* = W* = 0, ill* + 1'<* + pd,l*E;dQ;;:' 0 (3.6.29) 

These results imply that 

(3.6.30) 

Assuming that Kij is a known positive-definite symmetric tensor, Pk IS a vec­

tor, and a>0. Consider the function 

A(T, Ek) = aT2 + 2PkTEk + KijEiEj (3.6.31) 

A is nonnegative (A;;:' 0) for every real pair (T, Ek), provided that 

Ipil2 
:( a1m (3.6.32) 

where 1m is the smallest positive eigenvalue of the tensor Kij . Eq.(3.6.30) im­

plies the uniqueness of the solutions of the thermo-piezoelectricity equations, 

I.e., 
, " d.' == d.", u j =u j ' 'f' 'f' T'=T" (3.6.33) 

3.7 Solutions by Fourier transform method 

The boundary-initial value problems described in the previous section can be 

solved by means of the Fourier transform approach. Hereafter, for simplicity, 

we assume that all variables do not vary with time. In this case the problem 

defined in the previous section is known as the boundary value problem. It 

should be noted that the Fourier transform approach to thermo-piezoelectric 
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problems usually involves two basic steps: (1) solve a heat transfer problem 

first to obtain the steady-state T field; (2) calculate the electroelastic field 

caused by the T field, then add an isothermal solution to satisfy the corre­

sponding electrical and mechanical boundary conditions, and finally, solve the 

modified problem for electroelastic fields. In this section, we first derive the 

Fourier transform formulation for temperature fields and then extend it to the 

case of thermo-electro-elasticity. 

3.7.1 Fourier transform method and induced general solution 

The Fourier transform pair used in this section is defined by [10,11] 

j(~) = _1 f = f(x)eiS'xdx, f(x) = _1 f = j(~)e-iS'xd~ 
2n -w 2n -w 

(3.7.1) 

where i = H. Applying the transform (3.7.1) to Eq.(3.6.2) with respect tOXI, 

leads to 

2 ' . of 021' 
~ kllT + 21~k12 - - k22 -2 = 0 

oX2 oX2 

Eq.(3.7.2) admits a solution of the form 

f = ao (~)e -
irx

2 

provided that" satisfies the following eigenvalue equation: 

kll~2 + 2kI2~" + k 22"2 = 0 

The roots ofEq.(3.7.4) are 

* k12 . k * -* 2 1/2 
PI =--+l-, P2 = PI' k=(kllk22 -klJ 

k22 k22 

(3.7.2) 

(3.7.3) 

(3.7.4) 

(3.7.5) 

where P; ="; / ~ and the overbar denotes the complex conjugate. For a given 

real~, "I and "2 can be defined such that for Im("1 »0, the results are 

_ {p;~, .; > 0 "I - * 
PI~' ~ < 0 

(3.7.6) 

As a consequence, the general solution ofEq. (3.7.2) can be written as 

f = -J2;,(Fofo + Gogo) (3.7.7) 

where 

G - -irx2 
o-e (3.7.8) 

Recall that ~ and" are contained in the eigenvalue P =" / ~ , while fa and go 

are two functions of ~ to be determined from the boundary conditions of a 
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given problem. The transformed heat flux hi = -kij~j is given by 

h=i~.J2;[(k] + p;kll)Fofo +(k] + P;'kll)GOgoJH(~)+ 

i~.J2;[(kr + p;krr)Fofo +(kr + p;krr)GogoJH(-~) (3.7.9) 

where h = [hI h2]T, kr = [kll kI2 ]T, krr = [k21 k22]T and H(~) is the 

Heaviside step function. Eq.(3.7.7) and Eq.(3.7.9) represent the general solution 

for the temperature and heat flux fields in the Fourier transform space. Taking 

the inverse Fourier transform, the results are 

T(xl'x2) = f:n (Folo + Gogo)e-i~Xld~ (3.7.10) 

h(xl'x2 ) =if 0 ~ [(k, + p;kll)Fofo +(k, + p;kll)GogoJe-iSXld~ + 

if := ~ [(k] + p; kll )Fofo + (k] + p; kll )Gogo J e-i~Xl d~ (3.7.11) 

Similarly, applying Eq.(3.7.1) to Eq.(3.6.2) with respect tOXI, we have 

~2QU+i~(R+RT)OU _T02~ =i~A,T-A2 of (3.7.12) 
oX2 oX2 oX2 

where A. i = [Ai) Ai2 Ai3 P;J. The solution to Eq.(3. 7 .12) can be assumed to 

consist of a particular part Up and a homogeneous part Uh as 

(3.7.13) 

since it is a linear problem. 

Making use of the solution (3.7.7), the particular solution Up, which satis-

fies Eq.(3.7.12) can be assumed in the form 
,.J2; - .J2; -

Up =-~(AoFofo +AoGogo)H(~)-~(AoFofo +AoGogo)H(-~) 

(3.7.14) 
where 

(3.7.15) 

The homogeneous part Uh can be obtained by considering an arbitrary eigen­

function of the form 

(3.7.16) 

Substituting Eq.(3.7.16) into the left-hand side ofEq.(3.7.12), it is found that 

[Q( + ~lJ(R + RT) + lJ2T JA = 0 (3.7.17) 

which is exactly the same as Eq.(3.3.7) if we putP=lJ/~. The eigenvaluep can 

be determined by considering the characteristic determinant of Eq.(3. 7 .17) 
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(3.7.18) 

As was noted in Section 3.3, there are eight eigenvalues P from Eq.(3.7.18), 

which consists of four pairs of complex conjugates. Let 

_{PM~' ~ > 0 
7JM - -;: ;: 0 

PM'=" '=' < 
(3.7.19) 

where M=1, 2, 3, 4. It is obvious that Im(7JM»O for all ~. Such a definition is 

expedient for development of the subsequent derivation. Hence, a general solu­

tion ofEq.(3.7.12) can be obtained by simple summation of the two parts of the 

solution 

where 

(; = J2;.(AFJ + AGg)H(~) +J2;.(AFJ + AGg)H(-~)-

J2;. - J2;. - . 
-----;;f(AoFofo + AoGogo)H(~) ------;;f(AoFo./o + AoGogo)H(-~) 

F(~,X2) = (Fa (~,X2)) = (e-iJ7aX2 ) 

G(~,X2) = (Ga (~,X2)) = (e-il7wt2 ) 

(3.7.20) 

(3.7.21) 

(3.7.22) 

The transformed stress and electric displacements follow from the constitutive 

relation (3.6.6) 

~ = i~J2;.(BPFJ + liPGg)H(~) + i~J2;.(lipFJ + BPGg)H(-~)-

where 

J2;.(Bop; Fofo + Bop;Gogo)H(~) - J2;.(Bop; Fofo + Bop;Gogo)H(-~) 

(3.7.23) 

~ = -i~J2;.(BFf + BGg)H(~) -i~J2;.(BFf + BGg)H(-~)+ 

J2;.(BoFo.fo + lioGogo)H(~) - J2;.(BoFo.fo + BoGogo)H(-~) 

(3.7.24) 

(3.7.25) 

The traction vector on a surface with normal n=[nl n2 0] can be found 

from Eq.(3.7.23) and Eq.(3.7.24) as 

i = ~n\ + ~n2 = i~J2;.[ B(n\P - n2I)Ff + B(n1P - n2I)Gg JH(~) + 

i~J2;.[ B(nIP - n2I)FJ + B(n1P - n2I)Gg JH(-~)-

J2;.[ Bo (niP; - n2)Fofo + lio (niP; - n2 )Gogo ] H(~)-

J2;.[Bo(n\p; -n2)FO'/~ + Bo(n\p; -n2)GogoJH(-~) (3.7.26) 
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Eqs.(3.7.20), (3.7.23) and (3.7.24) represent the solution for the elastic and 

electric fields in the Fourier transform space. The general solution of electro­

elastic fields in real space is obtained by applying the inverse Fourier transform 

to Eqs. (3.7.20), (3.7.23), (3.7.24) and (3.7.26). The results are 

U(XPX2) = f;[ AFf + AGg - i~ (AuFofo + AoGOgo)] e-
iq 

XI d~ + 

f o [AFf+AGg-~(AoFof~+AuGogo)]e-iqXld~ (3.7.27) 
-= l~ 

II., (XPX2) = f; [i(BPFf +iipGg)~ -Bop;Fofo -iiop;GogoJe-isxld~ + 

f:= [i(iipFf + BPGg)~ - iiop;'Fofo - Bop; Gogo] e-is XI d~ 

(3.7.28) 

~(XPX2) = -f; [i(BFf + iiGg)~ - BoFofo - iiopGogoJe-isXld~-

f:= [i(iiFf + BGg)C; - iioFof~ - BoGogo ] e-is XI d~ 

t(X1,X2) = f; {i~[B(nlP-n2I)Ff+ii(nlP-n2I)GgJ­
BO(n1P; -n2)Fofo -iiO(n1P; -n2 )GogO} e-i;xld~ + 

f :.n {i~[ (ii(n1P - n2I)Ff + B(nIP - n2I)GgJ-

(3.7.29) 

iiO(n1P; -nJFofo -BO(n1P; -n2)GogO} e-i;xld~ (3.7.30) 

For a given boundary value problem, the eight functions/o,j, go andg are 

determined from the appropriate boundary conditions. As an illustration, the 

general solutions (3.7.27)~(3.7.30) are now used for analyzing crack-tip singu­

larities. 

3.7.2 Crack-tip singularity 

The singular behaviour at crack-tip can be found by considering a semi-infinite 
crack along the negative Xl -axis with the origin at the crack-tip under 

consideration. Assuming that the crack faces are traction-free and charge-free 

and thermally insulated, the boundary conditions at the crack faces are 
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~(Xp O+)=~(xp 0-)=0, h2(xP 0+)=h2(xP 0-)=0 

The continuity conditions along x2 = 0 and XI > 0 require that 

T(xl' O+)=T(xp 0-), h2(Xl' 0+)=h2(xl' 0-) 

U(xp 0+) = U(xl' 0-), ~(xp O+)=~(xp 0-) 

(3.7.31) 

(3.7.32) 

Since the solution must be bounded as IX21 ~ =, fi and gi (i=0~4) should be 

taken as 
;;(,;) = 0, whenx2 > 0 

gi(';) = 0, when x2 < 0 

(3.7.33) 

(3.7.34) 

Further, satisfaction of the continuity conditions alongx2=0 requires that 

;;(-,;)=;;(,;), g;(-,;) = g;(,;) , i=0~4 (3.7.35) 

It follows then that 

azO() aZO() 
1(j)(xp O)=-a J +-a J (3.7.36) 

XI XI 

U(j) (xl' 0) = A(j)Z(j) + A(j)Z(j) + AO(j)Zo(j) + AO(j)Zo(j) (3.7.37) 
2 2-

. a ZO(j) . a ZO(j) 
h2(j)(xp O)=-zk(j) 2 +ZkU)--2- (3.7.38) 

aXI aXI 

aZUl - aZ(j) azOU ) - aZO(J) 
~Ci)(Xp O)=B(j)--+B()--+BO( )--+BO()-- (3.7.39) 

aX
I 

J aX
I 

I aX
I 

J aX
I 

where the subscript (j) is used to distinguish the lower and upper half-plane,j=l 
corresponds to the domain X 2 > 0, and j=2 means that the point is located in 

the lower half-plane. The quantities kU)' ZO(i) and Z(n are defined by 

k = k(j) k(J) - (k(j))2 (j) II 22 12 

Z - f = 1 (J:) iqxj d J: 
0(1) - 0 i,;go -'" e '" 

ZO(2) = - f 0= i~!O (,;)e -iqx[ d,; 

Z - f = ( J:) iqXjdJ: 
(I) - 0 g -'" e '" 

Z(2) = fox, !(,;)e- iqX[ d,; 

(3.7.40) 

(3.7.41 ) 

(3.7.42) 

(3.7.43) 

(3.7.44) 

The asymptotic form of the field variables can be obtained by setting Xl ~ 0 

(r ~ 0) along x2 = 0 . Hence, ZO(i) and Z(i) become 

(3.7.45) 
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(3.7.46) 

Substitution ofEq.(3.7.45) and Eq.(3.7.46) into Eqs. (3.7.36)~(3.7.39) yields 
_ b" 

'Fcf)(xp 0)=(5+1)(qo(f)+qo(j))lxl l, xl>O (3.7.47) 

h(j)(xp 0)=-ik(j)5(5+1)(qo(j) -i]o(J))lxl·-l, Xl >0 (3.7.48) 

h ( 0) - ·k "(" 1)( b"(j) -b"(j)-) 1 1
0

-
1 

(j) XI' - -I uF U + e qO(j) - e qO(j) XI , 

U(j)(Xp 0) = 2 Re(A(j)q(j) + AO(j)qo(i))lxll
o
+
l 
, Xl >0 

o 
~(J)(XI' 0) = 2Re[(5 + l)(B(j)h(j) + BO(J)qo(J))]lxll ' XI >0 

or) 1 1
0 

~(j)(xp 0) = 2 Re[(5 + l)e J (B(j)q(j) + BO(j)qO(j))] Xl , Xl < 0 

(3.7.49) 

(3.7.50) 

(3.7.51) 

(3.7.52) 

where 5(j) = in5( -l)i+l. Summation convention does not apply to the re­

peated indices in Eqs.(3. 7.4 7)~(3. 7 .52). Substitution of Eqs.(3. 7.4 7)~(3. 7 .52) 

into Eq.(3.7.31) and Eq.(3.7.32) leads to a system of 20 homogeneous equa­

tions. The results can be written in matrix form as 

(3.7.53) 

where 

%(1) B(l)q(l) 

a k = 
%(1) 

a c = 
B(I)(J(I) 

%(2) B(2)q(2) 
(3.7.54) 

qO(2) B(2)(J(2) 

1 -1 -1 

Kk = 
ik(l) -ik(l) -ik(2) ik(2) 

e
2iITO

k -k(!) 0 0 (1) 

(3.7.55) 

0 0 k(2) _e2iITO k 
(2) 4x4 

A(l)B(~; 
- - 1 
A(l)Bo) -A(2)B~\ 

- --1 
-A(2)B(2) 

K = 
1 1 -1 -1 

c e2i"0 1 1 0 0 
(3.7.56) 

0 0 1 e2iTeb" 1 16xl6 

AO(I) AO(I) -AO(2) -AO(2) 

K = 
BO(l) BO(!) -BO(2) -BO(2) 

2iTeO m 
e BO(I) BO(l) 0 0 

(3.7.57) 

0 0 B O(2) e2iITb"jj 
0(2) 16x4 
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The order of singularity in the temperature and traction fields is deter­

mined by setting the determinant of the 20 x 20 matrix in Eq.(3.7.53) to zero. 

This is equivalent to 
(3.7.58) 

or 
(3.7.59) 

Note that the roots 8 in Eq.(3.7.58) and Eq.(3.7.59) are uncoupled; they are 
given as 6k and 6e , respectively. For a semi-infinite crack in a homogeneous 

solid, Eq.(3.7.58) yields 
1 

6k =--
2 

The roots ofEq.(3.7.59) are given in [42] as 

6 =_l 
c 2 

(3.7.60) 

(3.7.61) 

They are in multiples of 4. These result in five r-1I2 singularities when 
6k = 6e , which may convert into logarithmic singularities. For the present case, 

the stress and electric displacement singularities at the crack-tip may be one of 

the following cases: r- 1I2 
, r- 1I2 ln j r (j=0~3). For interface cracks, the root of 

Eq.(3.7.58) is still-I12, and the roots ofEq.(3.7.59) will be [53] 

6=_l±ia, -l±K (3.7.62) 
2 2 

where a and K are real numbers depending on the constitutive constants. For 

certain special bimaterials, a may be zero [53]. In such a situation, three r-1I2 

singularities may prevail, they may also be converted into logarithmic singu­

larities. The above analysis shows that the order of singularity for the temp ern­

ture field is always of the inverse square root type for a crack in a homogeneous 

solid and lying at a bimaterial interface. The traction singularities at crack-tips, 

however, may vary with different materials. 

3.7.3 Griffith crack in homogeneous piezoelectricity 

As an application of the formulation developed in Subsection 3.7.1, consider a 
crack of length 2a with its tips located at XI = -a and XI = a in an infinite 

thermo-piezoelectric material subjected to uniform loading T= and llz= at in­

finity. The surface of the crack is traction-free and charge-free and is kept at 
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zero temperature. The crack-tip behaviour can be found by considering the fol­

lowing conditions: 

U(l) (xl' 0) = U(2) (xl' 0), IXII >a 

IXII >a 

IXII >a ~(1) (xl' 0) = ~(2) (xl' 0), 

1(l)(xp 0) = 1(2) (Xl' O)=-T=, 

~(1)(Xp 0)=~(2/XP O)=-~=, IXII<a 
T(xl' xJ~O, IILJ(xl , X2)~0, when (X12 +x~)~oo 

1) Temperature field 

(3.7.63) 

(3.7.64) 

(3.7.65) 

(3.7.66) 

(3.7.67) 

(3.7.68) 

Eqs.(3.7.63)~(3.7.68) can be applied to yield the governing dual integral 

equations with the aid of an additional continuity condition related to tempera­

ture field to supplement Eq.(3.7.63). This can be accomplished by introducing 

an auxiliary function, say d, in such a way that 

d(l) (XI' 0) = d(2/XI' 0), IXII > a 

d(j)(Zt) = Q(j)(Zt) + Q(j)(Zt) ' j=1,2 

1(il(Zt) = A*Q(j) (Zt) + A*Q(j) (Zt) 

where A* is a complex constant to be determined, Zt = Xl + P; x2 , and 

Q(l)(Zt) = f 0= g~(_~)eiqz(d~ 

Q(2) (Zt) = Lnj~*(~)e-iqZld~ 

fa* (-~) = 10* (~), g~ (-~) = g~ (~) 

(3.7.69) 

(3.7.70) 

(3.7.71) 

(3.7.72) 

(3.7.73) 

(3.7.74) 

Substituting Eqs.(3.7.72)~(3.7.74) into Eq.(3.7.70) and Eq.(3.7.71) yields 

d(1)(zt) = f 0=[ g~(~)e-i{Zf + g~(~)ei¢Zf Jd~, x2 > 0 (3.7.75) 

d(2) (Zt) = L=[fo*(~)e-i¢Zf + 1o*(~)ei¢Zf Jd~, x2 < 0 

1(1) (z,) = if 0=[ A*g~(~)ei¢Zf - A*g~(~)e-i{Zf J~d~, x
2 

> 0 

1(2) (z,) = i L=[ A*fa* (~)e-i¢Zf - A* 10* (~)ei¢Z( ] ~d~, X2 < 0 

Comparing Eq.(3.7.77) and Eq.(3.7.78) with Eq.(3.7.10) renders 

fo(~) = -i~A*fa*(~) 

go(~) = -i~A* g~(~) 

It follows from Eq.(3.7.64) that 

(3.7.76) 

(3.7.77) 

(3.7.78) 

(3.7.79) 

(3.7.80) 
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(3.7.81) 

Inserting Eqs.(3.7.75), (3.7.76) and (3.7.81) into Eq.(3.7.69), and Eq.(3.7.77) 

and Eq.(3.7.78) into Eq.(3.7.66), it is found that 

fom g~(~{l- ~:) e-iqxld~+ fomg~(~{l- ~:}iqXld~=O, IXII>a 

(3.7.82) 

-L= i~A*g~(~)e-;qXld~ + L= i~A*g~(~)ei~Xld~ = _Tn, IXII < a (3.7.83) 

It can be seen that Eq.(3.7.82) will be trivial if 1- A* / A* = 0. Therefore, 

the constant A* should be chosen so that 1- A* / A* *- 0, e.g., A* = i =~. 

Now, denote the real and imaginary parts of g~(~) as 

g~(~) = qs (~) + iqa (~) (3.7.84) 

where qs(~) and qa(~) are two real functions of ~. Since the temperature 

T= is symmetric about Xl = 0, it can be shown that the anti symmetric part on 

the left-hand side of Eq.(3.7.82) and Eq.(3.7.83) may be taken as zero, i.e., 
qa = 0, and putting Eq.(3.7.84) into Eq.(3.7.82) and Eq.(3.7.83) leads to 

f 0= q,(~)cos(xl~)d~ = 0, Xl> ° (3.7.85) 

(3.7.86) 

The pair of Eqs. (3.7.85) and (3.7.86) are the standard dual integral equations. 

A solution of the equations is given by [54] 

qs(~) = 2a~ J l (a~)Tn (3.7.87) 

where J l (a~) is the Bessel function of the first kind with order one. Substi­

tuting Eq.(3.7.84) and Eq.(3.7.87) into Eq.(3.7.79) and Eq.(3.7.80) gives 

g~(~) = - j~* (~) = ~Jl (a~)T= (3.7.88) 
2~ 

where sign( ~ is defined as 

{

I, 

sign(~) = -1, 

0, 

Eq.(3.7.88) can be put into Eq.(3.7.77) and Eq.(3.7.78), yielding 

(3.7.89) 

(3.7.90) 
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[ 
iZt 1 = ~I) = Re 2 2 112 -1 T , 

(a - Zt ) 
(3.7.91) 

[ ~ 1 = ~2)=Re 2 -2112 -1 T , 
(a - Zt ) 

(3.7.92) 

Eq.(3.7.91) and Eq.(3.7.92) represent the temperature field of the boundary 

value problem stated by Eqs.(3.7.64), (3.7.66) and (3.7.68). 

2) Elastic and electric fields 

To simplify the derivation, we introduce the following notation: 

g*(~)={g(~)-jj-:jjOgo(~)/i~, ~>O (3.7.93) 
g(~) - B- Bogo(~)/i~, ~ < 0 

f*(~)={f(~)_~-l~ofo(~)/i~, ~>O (3.7.94) 
f(~) - B-IBofo(~)/i~, ~ < 0 

Eq.(3.7.29) may thus be written as 

ilz(l) (Xl , O)=-iL=[jjg*(~)e-i~Xl -Bg*c~)ei~Xl J~d~ (3.7.95) 

ilz(2) (xi' 0) = -i L [Bf*c~)e-i~Xl - jj T (~)ei~Xl J~d~ (3.7.96) 

As a consequence, Eq.(3.7.65) gives 

jjg* (~) = Bf*c~) (3.7.97) 

The crack opening displacement and electric potential along x2 = 0 are ob­

tained by substituting Eqs.(3.7.93), (3.7.94) and (3.7.97) into Eq.(3.7.27) to 

give the result 

AU(xl ) = 2Re[f 0= (iCBf* -bfo~-l) e-iqX'd~ ] 

where 

The substitution 

AU(xl ) = U(l) (Xl) - U(2/XI), X2 = 0 

C = i(AB-1 - Ajj-l) 

b = i[ (An - AB-IBo) - (Ao - Ajj-ljjo) ] 

a* = f* - j~ B-IClb 
i~ 

(3.7.98) 

(3.7.99) 

(3.7.100) 

(3.7.101) 

(3.7.102) 

leads to a pair of dual integral equations by combining Eqs.(3.7.63), (3.7.67), 

(3.7.99) and (3.7.102): 

(3.7.103) 
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-f 0= ir;(Ba * e-isx1 
- Jiit eiSX1

) dr; = 2C-Ib f o=.fa (r;)cos(xlr;)dr; - ~=, IXII < a 

(3.7.104) 

For the sake of convenience, define 
qa = Re(Ba*) , q, = Im(Ba*) (3.7.105) 

or 

q = Ba* =q +iq a s (3.7.106) 

where qa and q, are two real functions of r;. Eq.(3.7.103) and Eq.(3.7.104) can 

thus be rewritten as 

(3.7.107) 

f 0= r;[q, (r;)cos(xl) -qa (r;)sin(xlr;)] dr; = C-Ib f o=fo(r;)cos(xlr;)dr; - ~n, IXiI <a 

(3.7.108) 

The above pair of dual integral equations determines the functions qa and 

q,. They are 
qa(r;) =0 

q=iq, = ~~(C-Ibr -~cY<)JtCar;) 

(3.7.109) 

(3.7.110) 

It can be seen from Eqs.(3.7.93), (3.7.94), (3.7.102), (3.7.109) and (3.7.110) 

that 

fer;) = a~;l (n;XO + BoT")J] (ar;) 

g(r;) = a:;l (n;n + BoTn)J] (ar;) 

(3.7.111) 

(3.7.112) 

Substituting Eq.(3.7.111) and Eq.(3.7.112) into Eqs.(3.7.27)~(3.7.29) and 

(3.7.98) results in 

U(1) =Re[AF(z)B-l(~= +BoT=)-AoF(2;)T=], x2 >0 (3.7.113) 

U(2) = Re[ AF(z)B-1 (~= + BoT=) - AoF(z,)T=], x2 < 0 (3.7.114) 

L'lU(xl' 0)=(c~m-br')(a2-x;i/2, IXII<a (3.7.115) 

~(l) = - Re [BPF* (z)B- I (n;n + Bor) + Bop; F* (2; )Tn J, X 2 > 0 

(3.7.116) 

~(2) =-Re[BPF*(z)B-l(~= +BoT=)+Bop~F*(zt)T=], x2 <0 

(3.7.117) 
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~(I) =Re[BF*(z)B-I(~= + BoT=)-BoF*(Z;)T=], x2 >0 (3.7.118) 

~(2) = Re[ BF* (z)B-)(.ll;~ + BoT") - BoF"(zt)T"] , x2 < 0 (3.7.119) 

where 

F(z) = diag[ F(z)) F(Z2) F(zJ F(Z4)] 

F*(z)=diag [F*(z)) F*(Z2) F*(Z3) F*(Z4)] 

F(z) = (Z2 _a2)1I2_z 

* z 
F (z) = 2 2 1/2 

(z -a ) 

3) Crack-tip fields 

(3.7.120) 

(3.7.121) 

(3.7.122) 

(3.7.123) 

A polar coordinate system (r, fJ) centered at the crack tip with 
(x)' x2 ) = (a, 0) and fJ =0 along the crack line is taken. Let the variable z be 

gIVen as 
z = a + r(cosfJ + psinfJ) (3.7.124) 

The stress and electric displacement field near the crack-tip can be obtained by 
taking the asymptotic limit of Eqs.(3.7.113)~(3.7.119). Hence, ~(j) III 

Eq.(3.7.118) and Eq.(3.7.119) becomes 

II,(2) "'" ffRe{BP(fJ'P)B-I~= + [BP(fJ,p)B-
I 

- I f3*(fJ,p;) ]Bor}, x2 > 0 

(3.7.125) 

~(2) "'" ffRe{BP(fJ'P)B-)~= +[ BP(fJ,p)B-
I 

- If3*(fJ,p;) ]Bor}, x2 < 0 

(3.7.126) 

where 

P(fJ, p) = diag[f3"(fJ, p)) 13* (fJ, P2) 13* (fJ, P3) 13* (fJ, P4)] (3.7.127) 

13* (fJ,p) = (cos fJ + psin fJr l/2 (3.7.128) 

3.8 Penny-shaped cracks 

In the previous sections of this chapter, formulations were derived in terms of a 

rectangular coordinate system. The formulation is, however, inefficient for axi­

symmetric electroelastic problems. In this section, theoretical models are pre­

sented in terms of a cylindrical coordinate system and used to analyze (a) re-
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sponses of elastic stress and electric displacement in a long piezoelectric cylin­

der with a concentric penny-shaped crack and (b) the effect of elastic coating 

on the fracture behaviour of piezoelectric fiber with a penny-shaped crack. The 

discussion follows the development in [55]. 

3.8.1 Problem statement and basic equation 

Consider a piezoelectric cylinder of radius b containing a centered 

penny-shaped crack of radius a under axisymmetric electromechanical loads 
(Fig.3.6). For convenience, a cylindrical coordinate system (r,B,z) originating 

at the center of the crack is used with the z -axis along the axis of symmetry of 

the cylinder. The cylinder is assumed to be a transversely isotropic piezoelectric 

material with the poling direction parallel to the z -axis. It is subjected to the 
far-field of a normal stress, O'z = O'(r) and a normal electric displacement, 

Dz = D(r). 
z 

y 

x 

Fig.3.6 Penny-shaped crack in a piezoelectric cylinder. 

The constitutive equations for a piezoelectric material which IS 

transversely isotropic and poled along the z-axis can be written as [56] 

(3.8.1) 

(3.8.2) 

(3.8.3) 
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(3.8.4) 

(3.8.5) 

(3.8.6) 

in which Ur , U z denote the displacements in the r-directions and z-directions 

respectively. 

In the derivation of the analytical solution, the following potential functions 

are introduced [57]: 
3 0 rp 

ur ==L-" 
I or 

(3.8.7) 

where ll!(r,z)(i = 1,2,3) are the potential functions to be determined, kli and 

k2i (i = 1,2,3) are unknown constants. 

Substituting Eq. (3.8.7) into the constitutive equations (3.8.1)~(3.8.6), the 

field equations and gradient equations, we have the following governing equa­

tions: 

~(orp 1 orp) ~{[ ] OflJ.} 
C11L.. -~ +--' + L.. C44 +k1i (CI3 +c44)+k2Je31 +els ) ---f =0 

i~l or r or i~l OZ 

(3.8.10) 

Following the procedure presented in [57], the solution to Eqs.(3.8.8)~(3.8.1O) 

can be assumed in the form: 

ll!(r,z) = fan i[ A;(~)Io(~~ )cos(~z) + B;C~)exp( -~SiZ)JO (~r) 1 d~ (3.8.11) 

where AJ~), BJ~) (i=1,2,3) are the unknown functions to be determined, 

J,,0 is the Bessel functions of the first kind of order n, and InC) is the modified 
Bessel function of the first kind and the second kind of n order. In addition, Si' 

kli and k2i ( i = 1,2,3 ) are defined by 
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1 
s; = r::' i=I,2,3 

'in; 

C44 +(cl3 +C44 )ku -(e3l +esl )k2; 
n;=~---=--~~--~--~~ 

Cll 

c33kJi - e33k2; 

(3.8.12) 

(3.8.13) 

which n; ( i = 1,2,3 ) are determined by the following equation: 

An; + Bn;2 + Cn; + D = 0 (3.8.14) 

where 

A=C44Kll+elS2 (3.8.15) 

B = (KllC~3 - CllC33 Kll + 2C13C44Kll - CllC44K33 + 

2c13e~S +2cl3elSe3l -c44eil -2clleISe33)/cll (3.8.16) 

C = (C33C44Kll - C~3K33 + CllC33K33 - 2C13C44K33 + c33e~S + 2c33elSe3l + 

c33eil -2c13elSe33 -2c13e31e33 -2c44e31e33 -2c44e31e33 +clle;3)/c11 

(3.8.17) 

(3.8.18) 

Using Eq.(3.8.11), the following expressions for electric and elastic fields 

in the cracked piezoelectric fibre composite can be obtained 

uz(r,z) = - tklif; ~(~)Io (~~ }in(~Z)d~-
3 = 

~.)JiS;f 0 B;(~)Jo(~r)e-I;SiZd~ + a(r)z 
;~l 

(3.8.19) 

ur(r,z) = t :; f; A;(~)Il [ ~~ }OS(~Z)d~ - tf; BJ~)Jl (~r)e-I;SiZd~ 
(3.8.20) 

3 

~)2;s;f; B;C~)Jo(~r)e-I;SiZd~ -b(r)z (3.8.21) 
;~l 

3 F = [~r) 
O"zz = - ~ S;~ f 0 ~~(~)Io ---;; cos(~z)d~ + 

3 LF;;f; ~B;(~)Jo(~r)e-I;SiZd~ + c(r) 
;~l 

(3.8.22) 
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(Jrr = - t :~i f;' ~Ai(~)10 [ ~~ }OS(~Z)d~ + 

CII ;C
12 t S~2 f 0 ~Ai(~)J2 [~~ }OS(~Z)d~ + 

3 3 

LFSif ;'~Bi(~)JO(~r)e-¢SiZd~ + Cll -C
12 Lf ~n~B;C~)J2(~r)e-¢SiZd~ 

'~l 2 i~l 

(3.8.23) 

(Jzr = - t :~i f; ~ A,(~)JI [ ~~ }in(~Z)d~ + tF;,f; ~B;C~)JI (~r)e-¢SiZd~ 
(3.8.24) 

3 

LF2i f on ~Bi (~)JO (~r)e-¢SiZd~ + d(r) (3.8.25) 
i~l 

3 F f en [~r) 3 f <Yo Dr = - t; S~i 0 ~Ai(~)ll --;; sin(~z)d~ + t;F4i 0 ~BJ~)Jl (~r)e-¢SiZd~ 

in which 

F;i = (C33kJi -e33k2,)Si
2 

-CI3 ' F2i = (e33kli +K33k2,)Si
2 
-e31 

F;i = [C44(1+ku)-eISk2i]Si' F4i = [els(1+ku)+Kllk2i]Si 

b (r) = c33 D(r) - e33~(r) 
C33 K 33 + e33 

- -
c(r) = O'(r), d(r) = D(r) 

(3.8.26) 

(3.8.27) 

(3.8.28) 

3.8.2 Reduction of crack problem to the solution of a Fredholm 
integral equation 

1. A piezoelectric cylinder with a penny-shaped crack 

To illustrate applications of the formulations presented in Section 3.8.1, 

we consider a cracked cylinder shown in Fig. 3.6 subjected to the following two 

cases of boundary conditions: 
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(1) In the first case we assume that the piezoelectric cylindrical surface is 

free from shear and is supported in such a way that the radial component of the 

displacement vector vanishes on the surface. The problem of determining the 

distribution of stress and electric displacement in the vicinity of the crack is 

equivalent to that of finding the distribution of stress and electric displacement 

in the semi-infinite cylinder z ~ 0, ° ~ r ~ a when its plane boundary z = ° 
is subjected to the conditions 

O"zz(r,O) = 0, ° ~ r < a 

uz(r,O)=O, a<r<b 

¢(r,O)=O, a<r<b 

O"rz(r,O)=O, O~r<b 

Dz(r,O+) = Dz(r,O-) , O~r<a 

Er(r,O+) = Er(r,O+) , ° ~ r < a 

and its curved boundary r = b is subjected to the conditions 

ur(b,z)=O, O"rz(b,z) =0, Dr(b,z)=O, z~O 

(3.8.29) 

(3.8.30) 

(3.8.31) 

(3.8.32) 

(3.8.33) 

(3.8.34) 

(3.8.35) 

From the boundary conditions (3.8.31)~(3.8.35), and making use of the Fourier 

inversion theorem as well as the Hankel inversion theorem, we obtain 

Bj (,;) = MjBj (,;), B2 (,;) = M 2B j (';), B3 (,;) = M3 B3 (,;) (3.8.36) 

1 3 1 3 

Aj (,;) = A(,;) ~N1i(';)j;/';), A2 (,;) = A(,;) ~N2i (,;)1;i (';), 

1 3 

A3 (,;) = A(,;) ~N3; (O!;;(,;) (3.8.37) 

where 

(3.8.38) 

(3.8.40) 

Nli (,;) = [(h13 (,;)h22 (,;) - hj2 (,;)h23 (,;)] g3i + [ (hj2 (,;)h33 (,;) - h13 (,;)h32 (,;)] g 2i + 

[ (h23 (,;)h32 (,;) - h22 (,;)h33 (,;) ] gji (3.8.41) 
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N2i (~) = [(h11 (~)h23 (~) - h21 (~)h13 (~)] g3i + [(h13 (~)h31 (~) - h11 (~)h33 (~)] g2i + 

[(h21 (~)h33 (~) - h3J (~)h23 (~)] gJj (3.8.42) 

N3;(~) = [(h12(~)h21 (~) - hll (~)h22(~)]g3i + [(hll (~)h32(~)-h31 (~)h12(~)]g2; + 

[(h22 (~)~1 (~) - ~1 (~)~2 (~) ]g1i (3.8.43) 

with 

(3.8.44) 

(3.8.45) 

(3.8.46) 

C' ~(M1F; 1 + M 2F;2 + M 3F;3)B1 (~)JO(~r)d~ = -c(r), 0 ~ r < a (3.8.47) 

f 0 (M1k11 S1 + M 2k12S 2 + M i13s3)B1 (~)Jo(~r)d~ = 0, a < r < b (3.8.48) 

Eq.(3.8.47) and Eq.(3.8.48) can be solved using the function lj/(a) defined by 

(3.8.49) 

where lj/(O) = O. 

Using the following solutions of integrals: 

f = . ( ) -IFdz S f = () -uzdz u SIn sz e - = 2 2 ' cos sz e = 2 2 
o s +u 0 s +u 

(3.8.50) 

f t rlo(~r) dr = sinh(~t) f Jo(ru)sin(ut) du = sinh(st)Ko(rs) t < r 
o .J t2 _ r2 ~'o S2 + u2 

S' 

f 
= uJ (ru) sin(ut) . 

1 2 2 du = smh(st)K1 (rs), t < r 
o s +u 

f en u
2 
J o (ru) sin(ut) d - - .. h() ( ) 

2 2 U - S sm st KO rs , 
o s +U 

t<r 

(3.8.51) 

(3.8.52) 

(3.8.53) 
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f= u
2
J2(ru)Sin(ut)d - . . h( )K ( ) 

2 2 U - S sm st 2 rs , 
o s +u 

t < r (3.8.54) 

As well as the solution of integral equation 

f = /(t~ dt = g(x), 0 < a < l, a < x < b 
o (x - t t (3 .8.55) 

which is given by 

J(t) = 2sin 1ta d f t ug(u) du, a < t < b 
1t dt 0 (t 2 _ u2 )I -a 

(3.8.56) 

We can obtain a Fredholm integral equation of the second kind in the following 

form: 

f a 2 f a re(r) 
lj/(a) + lj/(f3)L(a,fJ)dfJ = - J dr 

o 1trno 0 a 2 _ r 2 
(3.8.57) 

where 

L(a,fJ) = -:-± F; j f ~-l-sinh(qal± ~Nj; (q)Sinh[qfJ)KI [qb)dq 
1t rno J=I Sj L1(q) Sj 1=1 s; s; s; 

(3.8.58) 

(2) In the second case we assume that the piezoelectric cylindrical surface 

is traction-free. The conditions (3 . 8 .29)~(3.8 . 34) remain the same, but the 

boundary condition (3.8.35) is replaced by 
O"rr (b,z) =0 , O"rz (b,z) =0 , Dr(b,z)=O , z ~ O (3.8.59) 

Using a procedure similar to that in the case (1), we have 
1 3 

AI (q) = L1(q) t;[ NI;(q).h ; (q) + I:;(q)J2i (q) + W;i (q).hi (q)] (3 .8.60) 

1 3 

A2(q) = L1(q) t;[ N2i (q).h i (q) + ~/q)J2i(q) + W2/q}hi (q)] (3.8.61) 

1 3 

A3 (q) = L1(q) t;[ N3i (q).hi (q) + ~i (q)J2i (q) + W;i (q).hi (q)] (3.8.62) 

in which 

f . ( J: ) = ~f = rl BI (7J)Jo (7Jb) d f . ( J: ) = ~f = 7J2 BI (7J)J2 (7Jb) d (3 .8.63) 
2, ." 0 2 2 J:2 7J , 3, '" 0 2 2 J: 2 7J 

1t 7J~+." 1t 7J ~ +." 

Nli(q) = [h52 (q) - h42 (q)][ ~3 (q)g2i - h23 (q)g3i] + 

[h53 (q) - h43 (q)][ h22 (q)g3i - ~2 (q)g2;] (3 .8.64) 

1 
I:i (q) = ~[~3 (q)~2 (q) - h22 (q)~3 (q) ]g5i (3 .8.65) 
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1 
W:ti (C;) = ~ [h23 (c;)h32 (C;) - h22 (c;)h33 (C;) ] g 4i (3.8.66) 

N2Jc;) = [hS3 (C;) - h43 (c;)][ ~ I (c;)g2i - h21 (c;)g3J + 

[hstCc;) - h41 (c;)][ h23 (c;)g3i - h33 (c;)g2i] (3.8.67) 

1 
~i (C;) = ~[h21 (c;)~3 (C;) - h23 (c;)h31 (c;)] gSi (3.8.68) 

1 
W2i (C;) = ~ [h21 (c;)h33 (C;) - h23 (c;)h3tCc;) ] g 4i (3.8.69) 

N3i (C;) = [hsl (C;) - h41 (c;)][ ~2 (c;)g2i - h22 (c;)g3i] + 

[hS2(c;)-h42(c;)][h21(c;)g3i -~I(c;)g2i] (3.8.70) 

1 
~i (C;) = ~[h22 (c;)h31 (C;) - h21 (c;)h32 (c;)] gSi (3.8.71) 

1 
W3i (C;) = ~[h22 (c;)h31 (C;) - h21 (c;)h32 (c;)] g4i (3.8.72) 

L1(c;) = \[ -hS3 (C;) + h43 (c;)] ~2 (C;) + [hS2 (C;) - h42 (c;)] ~3 (c;)l h21 (C;) + 

\ [hS3 (C;) - h43 (c;)] h3J (C;) + [-hsJ (C;) + h4J (c;)] ~3 (c;)l h22 (C;) + 

\[ hSI (C;) - h41 (c;)] ~2 (C;) + [-hS2 (C;) + h42 (c;)] ~I (c;)l h23 (C;) (3.8.73) 

with 

F4i [ c;b ) 
gli =F4iM i (3.8.74) h\i(c;) =-2 II - , 

Si Si 

lSi [C;b) g2i = lSiMisi (3.8.75) h2i (c;) = -2 II - , 
Si Si 

1 [ c;b ) g3i = Misi (3.8.76) h3i (c;) = - II - , 
Si s; 

h(c;) = ell -e12 1 I (c;b) _ ell -e12 M (3.8.77) 
41 2 2 2 ' g4i - 2 iSi 

Si Si 

!lsi [ c;b ) gSi = Fs;M;s; (3.8.78) hSi(C;) =-2 10 - , 
Si Si 

In the above equations, Bi(ry) and j;i(c;) are the same to those in the case (1). 

Therefore, the corresponding Fredholm integral equation for the case (2) 

can be obtained and has exactly the same form as Eq.(3.8.57) except that the 
kernel L(a,p) is replaced by 



120 Chapter 3 Thermo-e1ectro-e1astic problems 

L(a,p) =+ t ~j f ;_I_sinh(sa:t ~sinh[SP)x 
n ma j~1 si i1(S) Sj i~1 Si Si 

[ Nj;(S)K{ :~ J -~ Pj;(S)Ka( :~ J + ~ Wj;(S)K2 [ :~ ) 1 dS (3.8.79) 

The generalized stress intensity factor can thus be expressed in terms of lj/(S) 

as [57] 

K" = K[ = lim ~2n(r - a )O"z (r, 0) = ~mOlj/(a) 
r----+a+ a 

(3.8.80) 

KD = li~ ~2n(r-a)Dz(r,0)=~mllj/(a) (3.8.81) 
r----+a a 

K C 
= li~~2n(r-a)&z(r,0)=~m2lj/(a) (3.8.82) 

r----+a a 

KE = li~ ~2n(r-a)Ez(r,0)=~m3lj/(a) (3.8.83) 
r----+a a 

in which 

ma =-(MI~I +M2F;2 +M3F;3) (3.8.84) 

ml = -(F2IMI + F22M 2 + F23M 3) (3.8.85) 

m2 =-(klls~MI +kI2S~M2 +kl3s~M3) (3.8.86) 

m3 =-(k21s;Ml +k22S~M2 +k23S~M3) (3.8.87) 

and KeY, KD ,Ks and KE are the stress intensity factor, electric displacement 

intensity factor, strain intensity factor and electric field intensity factor, respec­

tively. 

2. Coated piezoelectric fibre with a penny-shaped crack 

To prevent piezoelectric cylinders such as that considered above from 

mechanical failure and to increase the bonding strength of the interface between 

the fibre and matrix during service, these cylinders are often coated with an 

elastic layer [55,58]. It is therefore desirable to understand effect of the coating 

layer on the fracture behavior of piezoelectric fibre composites. To this end, 

consider a piezoelectric fibre with a finite elastic coating and containing a cen­

tered penny-shaped crack of radius a under axisymmetric electromechanical 

loading (Fig. 3.7). The fibre is assumed to be a transversely isotropic piezoe­

lectric material with the poling direction parallel to the z-axis, and the elastic 
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coating is also a transversely isotropic material. They are subjected to the 

far-field ofa normal strain,cz = c(r) and a normal electric loading, Ez = E(r). 

The boundary conditions of this problem are [55] 
lJzz (r,O)=O, O~r<a 

l(r), K(r) 

l(r), K(r) 

Piezoelectric fibre 

Elastic coating 

x 

(3.8.88) 

(3.8.89) 

Fig.3.7 Piezoelectric fibre with a finite elastic coating and containing a penny-shaped crack 

under mechanical and electrical loading 

¢(r,O)=O, a<r<b 

lJrz(r,O)=O, O~r<b 

Dz(r,O+) = Dz(r,O- ) , 0 ~ r < a 

E,. (r,O+) = E,.(r ,O+) , 0 ~ r < a 

D,.(b,z)=O, O<z< = 

(3.8.90) 

(3.8.91) 

(3.8.92) 

(3.8.93) 

(3.8.94) 

The continuity and loading conditions of this problem are defined by: 

(1) The continuity conditions for elastic displacements and tractions at the 

interface between the fibre and elastic coating are 

(3.8.95) 

(3.8.96) 

(2) Loading conditions at infinity are 
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cz(r,=)=E"(r), Ez(r,=)=E(r), c~(r,=)=E"(r) 

(3) Loading conditions on the outer surface of the coating are 

u~ (d, z) = 0 , (J"~z (d, z) = 0 , 0 < z < = 

(3.8.97) 

(3.8.98) 

The expressions for electric and elastic fields in the cracked fibre are given 

by Eqs.(3.8.l9)~(3.8.26). The elastic displacement field in the coating layer can 

be obtained by considering the following potential functions: 
2 COl rPc 

UC = " k C _u_'_. 
z L.... I COl ' 

i~l uZ 

2 0 rPc 

C L I U = --
r j~l or (3.8.99) 

The potential functions for the elastic coating layer can then be written as: 

<I{("z) ~ C z[ q';)J" [!; J+D,(';)Ko[ ~; J }O*'Z)d'; (38100) 

With Eq (3.8.100), elastic displacements and stresses in the elastic coating can 

be given in the form 

u; (r,z) ~ - tk; f;[ C,CW" [!; ) + D,C';)K" [~; ) }in(';Z)d'; + a(,)z 

(3.8.101) 

u; (r, z) ~ t: f , [ c, cm [ ~; ) -D'(c)K,[ ~; )] co'C';z )d'; (38102) 

o-~(r,z) ~ - t i; f; .;[ qf)J" [!; ) + D,(';)Ko [:; ) ]COS(fZ)d'; + 

crl - C~2 t -h-f; ~[Cj(~)J2 [~~) + Di(~)K2 [~~J]cOS(~Z)d~ 
2 l~l Sj Sj Sj 

(3.8.103) 

o-;,(r,z) ~ - t ;~ f; .;[ C,C';)J, [:; ) - D,(';)K, [~; ) }in(';Z)d'; (3,8,104) 

in which 
c c 

F c _ C kC c2 _ Cll + cl2 
3· - Cl3 . S . . , , , 2 

(3.8.105) 

where the superscript "c" refers to the coating. 

Using the boundary conditions (3.8.88)~(3.8.96) and (3.8.98), the Fourier 

inversion theorem and the Hankel inversion theorem, we obtain 
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1 3 • 

AI (~) = L1(~) t;J NIJ~)jli (~) + ~i(~)f2i (~) + ~i (~)hi (~) + 1';i (~)f4i (~)] 

(3.8.106) 
1 3 

A2 (~) = L1(~) ~[N2i (~)fli (~) + ~i (~)f2i (~) + W2i (~)hi (~) + Yzi (~)f4i (~)] 

(3.8.107) 

A3 (~) = L1:~) t[ N3i(~)j;i (~) + ~i (~)j;i (~) + ~i (~)j;i (~) + 1;i (~)j~i (~)] 

where 

3 

CI (~) = L[M3A(~) + M4;C~)j;;C~)] 
i=1 

3 

C2 (~) = L[MsA(~) + M6i(~)f2i(~)] 
i=1 

2 2 

DI(~)= LMIiCi(~), D2(~)= LM2iCJ~) 
;=1 i=1 

Nli(~) = [H13 (~)H32 (~) - H12 (~)H33 (~) ]gjj (~) + 

[~3 (~)H32 (~) - HI2 (~)H33 (~)] hSi (~) 

N2i (~) = [HI I (~)H33 (~) - H31 (~)H13 (~) ]gjj (~) + 

[hl1 (~)H33 (~) - H13 (~)H31 (~)] hs;C~) 

N3i(~) = [HI2(~)H31 (~) - HII (~)H32 (~)]gli(~) + 

[~2 (~)H31 (~) - Hl1 (~)H32 (~) ]hsi (~) 

~i(~) = [h13 (~)H32 (~) - hl2 (~)H33 (~) ]H2i (~) + 

[h12 (~)H13 (~) - h13 (~)H12 (~) ]H4;C~) 

~i(~) = [~J~)H33(~) - ~3(~)H3J~)] H2;C~) + 

[h13 (~)HII (~) - hi I (~)H13 (~) ]H4i (~) 

~i(~) = [~2(~)H31 (~) - ~J~)H32(~) ]H2;C~) + 

[hi I (~)HI2 (~) - hl2 (~)HII (~) ]H4i(~) 

~i (~) = [~3 (~)HI2 (~) - hl2 (~)H13 (~)] hsi (~) 
W2i (~) = [hll (~)H13 (~) - ~3 (~)HII (~) ]hsi (~) 

~i(~) = [~2 (~)HII (~) - hll (~)HI2 (~) ]hsi (~) 
1';i (~) = [~3 (~)H12 (~) - hl2 (~)H13 (~)] h9i (~) 

(3.8.108) 

(3.8.109) 

(3.8.110) 

(3.8.111) 

(3.8.112) 

(3.8.113) 

(3.8.114) 

(3.8.115) 

(3.8.116) 

(3.8.117) 

(3.8.118) 

(3.8.119) 

(3.8.120) 
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1';i (~) = ['11 (~)HI3 (~) - h13 (~)Hll (~)] h9i (~) 

~J~) = [h12 (~)Hll (~) - '11 (~)H12 (~) ]h9i(~) 
Li(~) = hll (~)[ H13 (~)H32 (~) - H12 (~)H33 (~)] + 

h12 (~)[ Hll (~)H33 (~) - H31 (~)H13 (~)] + 

h13 (~)[ HI2 (~)H31 (~) - HII (~)H32 (~)] 

where j~i (~), hii (~) , gii (~) ,and Hii (~) are defined by 

(3.8.121) 

(3.8.122) 

(3.8.123) 

(3.8.126) 

(3.8.127) 

(3.8.128) 

(3.8.129) 

(3.8.130) 

(3.8.l31) 

(3.8.l32) 

(3.8.133) 

(3.8.134) 

(3.8.135) 
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Mli(~) = g132 (~)g14i(~) - g152 (~)g12i(~) 
g132 (~)g151 (~) - glS2 (~)gl3l (~) 

M2;C~) = gl3l (~)g14i(~) - glS1 (~)gl2i(~) 
gl3l (~)glS2 (~) - glSl (~)g132 (~) 

Gli(~) = g2;C~) + g31 (~)M1J~) + g32(~)M2i(~) 

G2;C~) = gIOi(~) - glll (~)Mli(~) - gll2 (~)M2i (~) 

M3i (~) = G22 (~)h2i (~) - GI2 (~)hIOi (~) 
G22 (~)Gll (~) - G12 (~)G21 

M4i(~) = G22(~)h3i(~)~ + GI2(~)hll;C~) 
G22(~)Gll (~) - GI2(~)G21 

MSi(~) = G2I (~)h2;C~) - Gil (~)hlO;C~) 
G21 (~)GI2 (~) - GIl (~)G22 

M6i(~) = G21 (~)h3;C~) + ql (~)~Ii(~) 
G21 (~)GI2 (~) - GIl (~)G22 

ti(~) = g4;C~) - gSI (~)MIi (~) - gS2 (~)M2,(~) 

1f(~) = [g7i (~) - g6i (~)]~ + [g91 (~) - gSl (~) ]~Ml;C~) + 

[g92 (~) - gS2 (~) ]~M 2i (~) 

Hli(~) = ti (~)M3i(~) + t2 (~)MSi (~) - h4i (~) 

H2i(~) = tl (~)M4i (~) + t2 (~)M6;C~) 

H3i (~) = 1] (~)M3i (~) + r2 (~)MSi (~) - [h7i (~) - h6i (~)] ~ 

H4i(~) = 1](~)M4i(~) + r2(~)M6i(~) 

(3.8.l36) 

(3.8.l37) 

(3.8.l38) 

(3.8.139) 

(3.8.140) 

(3.8.141) 

(3.8.142) 

(3.8.143) 

(3.8.144) 

(3.8.145) 

(3.8.146) 

(3.8.147) 

(3.8.148) 

(3.8.149) 

(3.8.150) 

(3.8.151) 

(3.8.152) 

From Eqs.(3.8.88), (3.8.89) and (3.8.106)~(3.8.110), the following system of 

dual integral equations can be deduced: 

_L'~[F~I lor ~rJAI(~)+ F~2 lor ~rJA2(~)+ F~ lo[~r)A3(~)l d~+ 
SI l SI S2 l S2 S3 S3 

f ~n ~(MI~ I + M2~2 + M3~3) BI (~)Jo(~r)d~ = -c(r), 0 ~ r < a 

(3.8.153) 
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f; (M1klls1 + M 2k12s2 + M3k13s3) B1 (;)Jo(;r)d; = 0, a < r < b 

(3.8.154) 
where Mi are given in Eq.(3.8.38). 

It is found that the above dual integral equations (3.8.153) and (3.8.154) 

also yield the Fredholm integral equation (3.8.57), except that the kernel 
L(a,p) is replaced by 

(3.8.155) 

3.8.3 Numerical assessment 

To illustrate applications of the solutions presented above, consider the cracked 

piezoelectric fibre composite as shown in Fig. 3.7. Material properties used in 

the analysis are 

(1) Piezoelectric fibre. 
Elastic constants (1010 N/m2) : Cll = 16.8, Cl2 = 6.0, C33 = 16.3, C44 = 2.71. 

Piezoelectric constants (C/m2): e15 = 4.6, e31 = -0.9, e33 = 7.1. 

Dielectric permittivities (10-10 Flm): dll = 36 ,d33 = 34 . 

(2) Elastic coating. 
Elastic constants (1010 N/m2): Cll = 0.83, Cl2 = 0.28 ,c\3 = 0.03 , C33 = 8.68, 

C44 = 0.42. 

It can be seen from Eqs.(3.8.80)~(3.8.83) that determination of the stress 
intensity factor requires the solution of the function ljf(;). The Fredholm inte­

gral equation of the second kind (3.8.57) can be solved numerically using a 

Gaussian quadrature formula. In the ca1culation,b = 40 mm, s(r) = l.Ox 10-5
, 

and E(r) = 106 Vim are assumed. 

The variations in the normalized stress intensity factor with the ratio of 

crack radius to fibre radius a I b under different thicknesses and elastic con­

stants of the coating are shown in Fig.3.8 and Fig.3.9. It can be seen from 
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Fig.3 .8 that the stress intensity factor decreases with increase of the ratio a l b. 

It is also evident that the thickness of the elastic coating has an important effect 

on the stress intensity factor, and greater thickness will lead to a higher decay 

rate and a smaller value of the stress intensity factor. This means that a thicker 

coating layer can reduce crack propagation. 

0.75 

..r 0.74 
8 
~ 0.73 

0 

>::::' 0.72 

{ 0.71 

---------.... ~ .. .. ~ -----

" " "" " "" ' " 
--- d=0.05 , , 
- --- d=0.06 
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~ 
~ 0.70 
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:.:: 0.69 

0.68 

0.0 
alb 

Fig.3.8 Variation of the stress intensity factor with the ratio alb under different thicknesses 

of the coating 

The variation in the stress intensity factor with the ratio alb under different 

values of the elastic constant C33 of the coating layer is plotted in Fig.3.9. It can 

be seen from the figure that the stress intensity factor may increase or decrease 

with the ratio alb depending on the value of C33 of the coating. When C33 of 

0.76 

..r 0.75 ..§ 

~ 0.74 
>::::' 

J 0.73 
:e: 
~ 0.72 ~ 

1..: 
0.71 

c ......... .... ......... ..... 

"" '" 
" 

-- C33=8 .68 , d=O.06 "'. 
_ .. - c33= I3.02 , d=0 .06 " " 

--- c33=21.7 , d=O.06 ' " '. 
"" 

0.0 
alb 

Fig.3.9 Variation of the stress intensity factor with the ratio alb under di fferent values of 

the elastic constant e33 of the coating. 
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the coating is greater than that of the piezoelectric fibre, the stress intensity 

factor will increase with an increase in the a / b . Obviously, the decay rate of 
the stress intensity depends strongly on the value of C33 when it is smaller 

than that of piezoelectric fibre. 

3.9 Piezoelectric fibre composites 

In the last section of this chapter, formulations are presented in terms of a cy­

lindrical coordinate system. In this section, applications of the formulations to 

problems of piezoelectric fibre composite push-out testing are discussed. We 

start by presenting a theoretical model of the piezoelectric fibre push-out prob­

lem and use it to analyze elastic deformation and frictional sliding behaviour in 

a single piezoelectric fibre push-out test. The theoretical model is also used as a 

basis for establishing the debonding criterion for investigating the debonding 

process of piezoelectric fibre in the push-out test. The discussion follows the 

development in [59-61]. 

3.9.1 Theoretical model for piezoelectric fibre push-out 

The physical problem to be studied is shown in Fig. 3.10, where a circular pie­

zoelectric fibre polarized in the axial direction with radius a is embedded in the 

centre of a coaxial cylindrical matrix with radius band total length L. The pol­

ing direction of the piezoelectric fibre is parallel to the axial direction. The load 

O'a is applied at z = ° and the matrix is fixed at z = L . In our analysis the 

matrix is considered transversely isotropic. For simplicity, a cylindrical coordi­
nate system (r,e,z) is used. 

a'~t-----------I---[" ~ 
I. L . 1 ~ 

Fig.3.10 A piezoelectric fibre/matrix cylinder model in the fibre push-out test 

It should be mentioned that the theoretical model developed here is based 

on the following two assumptions: (a) the axial stresses are independent of the 
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radial distance in any cross-section of the composite; (b) the matrix shear strain 

. . 1 . b rz ou~ h z· . d' 1 . IS approxImate y gIven y r m = --, were UI/1 IS matnx ISP acement III 
Or 

the axial direction [62]. 

The general relation between strains and stresses is given by [59,61] 
r 

EI/1 III .J;2 .J;3 0 r 
(}m 

e h2 h) h3 0 e 
Gm (}m 

(3.9.1) 
&/~ j;3 j;3 j~3 0 ()~ 

r:~z 0 0 0 Iss rz 'm 
for the transversely isotropic matrix and 

E; h') .J;~ h; 0 (); 0 g31 

E
e 

j;~ h'l h; 0 e 0 

[ ~:l f (}f 
+ 

g3) 
(3.9.2) 

E; .J;; .J;; I;3 0 (); 0 g33 

r7 0 0 0 Is's ,7 g)S 0 

(); 

[~:l=-[g~l 0 0 g~s ] 
e 

+ [K)) or [ D: 1 (}f 
(3.9.3) 

g31 g33 (}r o K33 D 
,7 

for the piezoelectric fibre, where subscripts "I" and "m" refer to fibre and ma­

trix, the superscripts stand for coordinate direction (r,e,z), Ii; and ()~ 

(i = r,e,z, and j = m, I) are strain and stress components, respectively. In 

Eq.(3.9.2) and Eq.(3.9.3), Di and Ei are components of the electric dis­
placement (NV-lm-l) and electric field (Vm- I

), gij and Kij are piezoelectric 

coefficients (Vm~l) and dielectric constants (NV-\ and Iij and .1;; are 

components of elastic compliance [61]. 

The field equations of the piezoelectric fibre undergoing axially symmetric 

deformations about the z-axis can be expressed as 
a (}Z a ,rz ,rz 

--.I +-.1-+-.1-=0 
oz Or r 

':l r ':l rz r e 
U(}.I u'.I (}j-(}j 
--+--+ =0 

Or Oz r 

oDr Dr aDz 
--+-+--=0 

Or r oz 

(3.9.4) 

(3.9.5) 

(3.9.6) 
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The equilibriums between the axial stress and the interfacial stress can be 

expressed as 

da,~, 2r () or --=-'r. Z 
dz a ' 

(3 .9.7) 

dar 2 
&=-~'ri (Z) (3 .9.8) 

in which r = a 2 /(b 2 
- a 2

) and 'ri (z) is the interfacial shear stress. 

The electric field, E i , is defined by 

Er = _ o¢ E Z = _ o¢ 
Or ' oz (3 .9.9) 

To simplify the derivation of the theoretical model and without loss of 

generality, the axial stresses a j and a ;, are assumed to be functions of Z 

only, and the electric potential which is caused by elastic deformation of the 

fibre is also independent ofr [61] , i.e., 

a j =aj (z) , a,~, =a,: (z) , ¢=¢(z) (3.9.10) 

Using Eqs.(3 .9.3), (3 .9.6), (3 .9.9), and (3.9.10), the electric displacements in 

the fibre can be expressed in terms of matrix stresses as 

D Z 
= dl sa j , Dr = dl s'rj (3.9.11) 

in which di s (= KIIgIs) is the piezoelectric coefficient. 

It is now necessary to find the expression of fibre stress in terms of some 

derivable functions . In the push-out test, although the electro-mechanical cou­

pling effect in Eq.(3.9.2) and Eq.(3 .9.3) is considered, the following assumption 

is still acceptable [59,61]: 

a j (z) = a~( z) = qi(Z) (3.9.12) 

where qi(Z) is the interfacial radial stress arising from Poisson contraction be­

tween the fibre and the matrix. 

Interfacial shear stress in the frictional sliding interface is governed by 

Coulomb's friction law [59]. That is, 
'ri (Z) = - .u[qo-q/z)] (3.9.l3) 

where qo is the residual fibre clamping (compressive) stress in the radial direc­

tion caused by matrix shrinkage and differential thermal contraction of the coo­
stituents upon cooling from the processing temperature, and .u is the friction 

coefficient. 

The remaining task is to derive the differential equation for a j and radial 
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stress q;(z) due to elastic deformation in composites with a perfectly bonded 

interface or in the frictional sliding process after the interface is completely 

debonded. The detailed derivations for these two processes are provided in the 

following two subsections. 

3.9.2 Stress transfer in the bonded interface 

Stress transfer is of fundamental importance in determining the mechanical 

properties of fibre-reforced composite materials [63]. At the first stage of the 

push-out process, elastic stress usually transfers from an elastic matrix to an 

elastic fibre through the bonded interface which predominates in an elastic ma­

trix/elastic fibre composite, and it depends largely on the micromechanical 

characteristics of the fibre/matrix interface. In the interface in piezoelectric fi­

bre reinforced composites, stress transfer is affected by the piezoelectric coeffi­

cient in addition to the micromechanical properties. To investigate the effect of 

the piezoelectric coefficient on the elastic stress transfer, we consider the inner 

and outer boundary conditions of the matrix 

CT~,(a,z)=q;(z), r;:(a,z) = r;(z) , CT:(b,z)=O, r;:(b,z) =0 (3.9.14) 

Then from Eqs.(3.9.4),(3.9.8) and (3.9.14), we obtain 

rz ( ) y( b
2 

- r2) () rm r,z = r; z (3.9.15) 
ar 

Following the procedure given in [62], we have 

CT:(r,z) = :a : \ 217l b
2 [In(r / b) + y(b2 /r2 -1)ln(b / a) J + 

yq;(z)(b2 /r2 -1)+7h(b2 -r2)(1-a2 /r2)) (3.9.16) 

CT! (r,z) = -yqJz)(1 + r2 / b2) +..L dr; 1172 (b2 + r2)(1 + a2 / r2) + 4b2 + 
4a dz \ 

277Jb2 [In(r / b) - y(b2 / r2 + 1) In(b / a) J + 2171 (b2 - r2)) (3.9.17) 

Substituting Eq.(3.9.16) and Eq.(3.9.17) into Eq.(3.9.1) yields 

u: =yq;(Z)[U;2 - 1;1)b2 /r2 - ;;1 - 1;2J+ ;;3CT,: + 
r 

:a : \ 217Jb
2
(fll + 1;2)[ln(r/b)-yln(b/a)]+ 

217l b
2y In(b / a )U;2 - 1; I )b2 / r2 + 1; 1172 (b2 + r2)(1 + a2 / r2) + 

1;217
2 
(b 2 

_ r2)(I- a2 / r2) + 4;; Ib2 + 21; 1171 (b2 - r 2)) (3.9.18) 
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au:, = -2f13rQj(Z) + !:'3(J,~, + 2f13 L d ' j 12'71b2 [In(r I b) - r In(b I a)] + 
OZ 4a dz \ 

'71(b2 -r2)+2b2 +'72(a2 +b2)} 

(3.9.19) 

For a fully bonded interface, the continuity conditions of axial and radial de­

formation between fibre and matrix are given by 

u;', (a ,z) =uj (a ,z) 

u:,(a,z) = uj (a ,z) 

(3.9.20) 

(3.9.21) 

From Eqs.(3.9.19), (3.9.21) and (3.9.2), the radial stress of the fibre is obtained as 

Qj(z) = ,1 \r!:,3(Ja-(r!:,3+!:,'3+g3As)(Jj+ 
2(f13 + r ~3) 

2~3 :a ~ [2'71 b\1+r)ln(a l b)+'71(b
2 
-a

2
)+2b

2 
+'72(a

2 
+b

2 )J} 
(3.9.22) 

Then, combining Eqs.(3.9.2), (3.9.18), (3.9.20) and (3.9.22) yields the differen­

tial equation of (J j as 

d2(Jj(z) z 

dz2 -Al(Jf (z)=~(Ja (3.9.23) 

(3.9.24) 

(3 .9.25) 

with 

Bl =~; + ~'l -r(~ 2 - ~1)b2 l a
2 +r(~l + ~2) (3.9.26) 

2(~~ + r ~3 ) 

C1 = 2'71b2 (~I + ~2)(1 + r) In(a/b) + 21J1b
2r In(b I a)(~ 2 - ~ 1 )b2 I a2 + 

2~1'72 (a 2 +b2)+4~lb2 +2~1'71(b2 _a2) (3.9.27) 

C2 = 2'71b2 (1 + r) In(a I b) + '71 (b2 - a2) + 2b2 + '72 (a2 + b2) (3.9 .28) 

(3 .9.29) 

(3.9.30) 
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Using the stress boundary conditions 

O"j (O) = O"a' O"j (L) = 0 (3.9.31) 

the distribution of the axial stress in the piezoelectric fibre is given by 

O"j (z)=KI sinh(JA"z)+K2 cosh(JA"z)- ~ O"a (3.9.32) 
AI 

where KI and K2 are defined by 

~ - (1 + ~ J cosh( JA" L) 
AI AI 

(3.9.33) K I - fA O"a 
sinh( \j AI L) 

K2=(I+~~JO"a (3.9.34) 

In addition, using Eqs.(3.9.4), (3.9.5) and (3.9.12), qi (Z) can be expressed as 

d2 z 
Z O"j 

q;(z)=NIO"a-NPj +N3d;2 (3.9.35) 

where N; (i=I,2,3) are given by 

N = r /;3 N = r /;3 + 1;3 + g3As N3 = _ rCd13 I , 2 , (3.9.36) 
2(J;~ + r 113 ) 2(J;~ + r J;3) 4 

From Eqs.(3 .9.3), (3.9.11), (3.9.32) and (3 .9.35), the electric field E' can 

be calculated by 

E Z (z) = -2g3Iq;(z) + [~- g33)O"j(Z) (3.9.37) 
K 33 

3.9.3 Frictional sliding 

Once the interface debonds completely, the frictional sliding of the fibre out of 

the surrounding matrix will begin, which is the last stage of the push-out proc­

ess. To better characterize this stage, theoretical analysis was conducted with 

the micromechanical model shown in Fig.3 .11. 

Fig.3.11 A fibre-matrix cylinder model for frictional sliding in the push-out test 
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For the sake of simplicity, we assume a small elastic deformation and a 

large displacement at the fibre-loaded end during sliding. Therefore, the elastic 

deformation of the fibre can be neglected, and the fibre axial displacement 0 

approximately equals the fibre sliding distance s, that is, 0::::: s . 

Similar to the mathematical operation for Eq.(3.9.23), we have from the 

continuity condition of radial displacement Eq.(3.9 .20) 

q.(z) = r 1;3 rr _ r 1;3 + 1; ~ + g3A s rr Z +L~ drj 
V a v J (3.9.38) 

I DI DI 4a DI dz 

Subsitituting Eq.(3.9.38) into Eq.(3.9.13) gives the governing equation for O"j 

d20"j (z) dO"j (z) z 
-....e.,2=--+E1 +E20"J (z)=E3 (3.9 .39) 

dz dz 

where E j (i=1 ,2,3) are given by 

E 
__ 4aDI 

1- , 

f./yCI 

E = 8D1 (r 1; 3 0" _ q ) 
3 C D a 0 r 1 1 

with 

Using the stress boundary conditions 

O"j (s)=O"a' O"j (L) =0 

Eq (3.9 39) is solved and the solution is obtained 
E 

O"j (z)=K
3
eA,tZ +K4e~z +_3 

E2 

where s is the fibre sliding distance and K 3 , K 4 , ~,~ are given by 

1 1 ~ 2 1 =-E -- E -4E " 2
2

1
2

1 2 

(3 .9.40) 

(3.9.41) 

(3.9.42) 

(3.9.43) 

(3 .9.44) 

(3.9.45) 

In the process, the interfacial shear stress is governed by Coulomb's fric­

tionallaw given in Eq.(3.9.13). Noting that fibre and matrix maintain contact in 

the radial direction, we have 

uj (a,z) = u:n (a,z) 

Then, the radial stress can be expressed as 

d2 z 
O"J 

qj(z)=M1 -MPa +M3d;2 

(3.9.46) 

(3.9.47) 
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where M; (i=1,2,3) are given by 

M =_yCI 

3 8D 
I 

(3.9.48) 

Using Eqs.(3.9.3), (3.9.11), (3.9.43) and (3.9.47), the electric field can be 

obtained as 

(3.9.49) 

Noting that the sum of the radial stress of the fibre should be negative, and 

the fibre and matrix can contact each other during the fibre sliding process, the 

radial stress must satisfy the expression 

qo-q;(z)~O (3.9.50) 

According to the distribution of the fibre stress fields in the push-out test, 

the axial stress reaches its maximum value at the fibre-loaded end z = s (s ~ 0 , 

and s is defined in Fig. 3.7), while the interfacial shear stress reaches its minimum 

value at the same location. Then Eq.(3.9.50) yields 

qo -q;(s)=O (3.9.51) 

Therefore the relationship between the applied stress O"a and the axial dis­

placement 8 at the fibre-loaded end can be given as 

q (1- m 1 2eAIS - m 1 eA:1S ) 
0" = 0 3"1 4"2 

a 1;; +~3 IdI5 + Y ~3 (m3A, 2eAIS + m4Az 2eA:1S ) + ~~I (n3A, 2eAIS + n4Az 2eA:1S ) 

I I I 

(3.9.52) 

eA:1L _ eA:1S 
m = --,---,-----,------,--

3 £2 (e AIL +A2S _ eAIS+A:1L) , 
(3.9.53) 

eA:1L 
n = 3 e AIL+A2S _ eAIS+ A:1 L ' (3.9.54) 

3.9.4 Partially debonding model 

Consider again the physical set-up shown in Fig.3.1O, but now an interfacial 

debonding crack of length I is situated on the interface between piezoelectric 

fibre and matrix (see Fig.3.l2). 
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v r11i• 

L 

I--- @-z 

C-
· 1 2b 

PoliDiz direction 

Fig.3.12 Piezoelectric fibre push-out model under electrical and mechanical loading 

1. Mechanical loading 

Using the mechanical boundary conditions (3.9.31) and a procedure 

similar to that in [64], the stress fields in the debonded region (0::::; Z::::; I) are 

obtained as 

where 

Em(f13 +g3IdIS)O"j +vmO",~, 
qj(z) = 

E/11(1;1 + 1;2)+1+2y+v/11 

O",~, (z) = yw[ 0"* + O"a J[I- exp( -Az)] 

O"j (z)=O"a -w[O"* +O"aJ[1-exp(-Az)] 

K = _ E/11 (1;3 + g3ldlS) - YV/11 

E/11 (1; 1 + 1;2) + 1 + 2y + V/11 

W = __ E-"./11,--,(.:....1;,-,,13_+....:g=.c3'-'.1 d_l",-s,-) _ 

Em (1;3 + g3l dlS) - YV/11 

,1,= 2J1x 
a 

* % 0" =--
WK 

(3.9.55) 

(3.9.56) 

(3.9.57) 

(3.9.58) 

(3.9.59) 

(3.9.60) 

(3.9.61) 

(3.9.62) 

The solutions of the stress fields in the bonded region (/::::; Z ::::; L) are 

given by 

(3.9.63) 
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where 

(Tj (l) = (T, = (Ta - a{ (T* + (Ta] [1- exp( -AI)] 

A _ 2[y+E,Jh3 +g3As)-2K(Y))1I1 -EII/ J; 3)] 

,- (1+))"J[2yb2In(b l a)-a2] 

2[Y + 2 (y))111 -EII/J;3)(w-I)K] 
A2=-~----=-----~----~ 

(1 +))111 ) [ 2yb2 In(b I a) - a2] 

(3.9.64) 

(3.9.66) 

(3.9.67) 

(3.9.68) 

The electrical field Ez in both the debonded and bonded regions is given as 

(3.9.69) 

2. Electrical and mechanical loading 

The solutions presented above apply for problems with mechanical loading 

only. To obtain solutions due to electrical and mechanical loading, we rewrite the 

constitutive equations (3.9.2) and (3.9.3) in the following form [56,60]: 

&z 
J 

2&f 

J;, J; 2 J; 3 

J; 2 J;, J;3 ~ I :~ +[ ~ ~: : [EElz' ] 

J; 3 J; 3 h3 0 (Tj 0 d33 
o 0 0 Iss Tf d, s 0 

(3.9.70) 

(3.9.71) 

Considering Eqs.(3.9.6), (3 .9.9), (3.9.10), (3.9.12), (3.9.70) and (3 .9.71), 

we can deduce that the electric potential can be obtained and written in the 
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form 

where 

CI=_V --I-f[2d13q;Cz)+(d33-dls)O"j(z)]dz, C2 =V 
L e33 L 0 . 

(3.9.73) 

Electrical boundary conditions at the ends of the piezoelectric fibre are 

gIVen as 
¢(O) = V, ¢(L) = 0 (3.9.74) 

where mechanical boundary conditions are given by Eq. (3.9.31). 

The solutions for stress distribution in the constituents are obtained in the 

bonded region and the debonded region, and are exactly the same as those 

given in Eqs. (3.9.56)~(3.9.58) and (3.9.63)~(3.9.65), except that certain 

variables and parameters are replaced as follows: 

Em [.t;3 - d13 (d33 - dls )/ K33 ]O"/(z) + vmO":Jz) - Em d13 CI 
q;(z) = 

Em(.t;l +.t;2 -2d1/ /K33)+1+2y+vm 

Em[.t;3 -d13(d33 -dlS)/K33]-YVm 
K= 

E"J/; I +/;2 - 2d13 
2/ K33 ) + 1 + 2y + Vm 

E"Jt;3 -d13(d33 -dIS )/K33 ] 
(j) = ---=---=------------=---=----

Em [.1;3 - d13(d33 -dls )/ K33 ] - YVm 

q* Em d13 CI 

(3.9.75) 

(3.9.76) 

(3.9.77) 

(3.9.78) 

(3.9.79) 

(3.9.80) 

A _ 2 {Y + Em Lh3 - d33 (d33 - diS) / K33 ] - 2K(YVm - E"J13 + Em d13d33 / K33 )} 

1- (1+v
n
,)[2yb2 In(b/a)-a 2

] 

{

[y + 2(yvm - Em.t;3 + E"A3d33 / K3J((j) -l)K] + } 

2 2[yvm -Em(.t;3 -d13d33/K33)]Q*/O"a +Emd33C1 /O"a 

(1 + VI/,) [ 2yb2 In(b / a) - a 2
] 

(3.9.81) 

(3.9.82) 

The electrical field Ez in both the debonded and bonded regions is given as 
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(3.9.83) 

3.9.5 Interfacial debonding criterion 

In piezoelectric fibre composites (PFCs), unlike non-piezoelectric fibre 

composites, there are electromechanical couplings caused by piezoelectric or 

inverse piezoelectric effects. Therefore, the existing debonding criterion based 

on non-piezoelectric fibre composites is not applicable to PFCs. To incorporate 

the piezoelectric effect in the debonding criterion we consider a cracked 

piezoelectric elastic body of volume V in which traction P, frictional stress t 

and surface electrical charge OJ are applied. Sp, St and SO) are the corresponding 

surfaces respectively, as shown in Fig.3.13. For the sake of simplicity, the 

matrix is assumed to be a piezoelectric material whose piezoelectric 

coefficients and dielectric constants equal zero. In our analysis, the debonding 

region is taken to be a crack (see Fig.3.13). 

Based on the principle of energy balance, the variation of the energy in the 

piezoelectric system for crack growth ciA along the friction surface under 

electromechanical loading is 

(3.9.84) 

where Gc is the fracture energy, Wr is the work done by friction stress during 

crack growth 

Fig.3.13 A piezoelectric elastic body with a frictional crack under electromechanical 

loading 
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(3.9.85) 

and g is the generalized mechanical and electrical energy stored inside the 

piezoelectric body 

g = ~I (6' + 6'0): (0' + O'o)dQ-
2 n 

~ I (D + Do) : (E + Eo )dQ - I PudS + I m¢dS 
2 n Sp SO) 

(3.9.86) 

in which v is the relative slip of crack surfaces, and to is the tangential 

component of pre-stress (or initial stress) on the crack surfaces. so' Do are 

self-equilibrium stress and generalized stress states, respectively, and 

s + So ' D + Do balances the applied stress and generalized stress. 

Using the basic theory of piezoelectricity [Eqs.(3.9.1)~(3.9.9)], one can 

easily prove the corresponding reciprocal principle of work and the principle of 

virtual work for piezoelectric material 

Ir t;u;2dT - Irml¢2dT + In b;u;2dQ = Irt;2u;dT - Irm2¢ldT + In b;2u;dQ 

(3.9.87) 

I t;6UjdT + I bj6ujdQ - I ~6¢dT + I be6¢dQ = I (O'ii&ii - D j6 E j )dQ rr n rO) n n 

(3.9.88) 

Using the two principles (3.9.87) and (3.9.88), it can be proved that the 

energy release rate against the incremental debonding length is equal to the 
interfacial fracture toughness G ic ' that is [60] 

2naG = aUt 
I at (3.9.89) 

in which Ut is the total elastic energy and electrical energy stored in the fibre 

and matrix, which can be expressed in the following form: 

Ut = I: I: (O'Js( - D
Z 

EO )rrrdrdz + r I: (O'JS( - D
Z 

E
Z 

)rrrdrdz + 

I:S:[ (~::2 + 2(1;:n,) (r;:)2 }rdrdz + 

r s:[(O':Y + 2(1+vm) (r,:;')2]nrdrdz (3.9.90) 
Em Em 

Then the following energy criterion is introduced: 

G; ~Gic (3.9.91) 

where Gic is a critical interface debonding energy release rate. 
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In Equation (3.9.90), Ut is a complex function of the material properties of 

the constituents and geometric factors. Performing some mathematical 

manipulations on Eq. (3.9.90) over the debonded and bonded regions for the 

piezoelectric-epoxy composite system by utilizing a numerical quadrature 
approach and then substituting the result into Eq.(3.9.89), we can obtain G; as 

a second-order function of the applied stress u a for a fibre/matrix system with 

given debonding length t. 

3.9.6 Numerical examples 

To illustrate applications of the formulations developed in this section, 

numerical assessment is presented for a hypothetical piezoelectric fibre/epoxy 

composite system. The material properties and geometrical characteristics of 

the piezoelectric fibre, matrix and interface are [61] 
SII = 0.019 (GPafi, S33 = 0.015 (GPafi, SI2 = -0.0057 (GPafi 

s13 = -0.0045 (GPafi, S55 = 0.039 (GPafi, d33 = 390 x 10-12 m y-i 

d31 =-d15 =-190xlO-12 my-I, g33 =24xlO-3 YmN-I 

g31 = -11.6x 10-3 YmN-I, e33 = 16.25 x 10-9 Ny-2 

Em = 3GPa ,J)m = 0.4 

The radii of fibre and matrix are: a = 0.065 mm , b = 3 mm, and 

I = 0.6 mm, L = 2 mm. The residual fibre clamping stress in the radial 

direction qo is assumed to be -0.01 GPa and ,u=0.8 [59]. 

Fig.3.14 shows the distribution of stresses and electric field as functions of 

dimensionless axial distance z/L for a partially debonded piezoelectric 
composite system subject to a constant external stress u a = 1.5 GPa in the 

fibre push-out test. In the calculation, the debonding length is assumed to be 

1= 0.6mm. For comparison and illustration of the effect of electromechanical 

coupling on stress transfer behaviour, the corresponding distribution of stresses 

for non-piezoelectric fibre composite (NPFC) is also plotted in Fig. 3.14. It is 

shown that the curves for PFCs and NPFCs have similar shapes. When 
subjected to applied stress of same value, the axial stress u f in PFC is smaller 

that in NPFC (Fig.3.14a). It can also be seen from Fig.3.14a and Fig. 3.14d that 

both axial and radial stresses in the fibre gradually decrease as z / L increases. 

Fig. 3.14c demonstrates that there is a greater radial stress in PFC and it decays 
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more rapidly than that in NPFC, which leads to a larger interface shear stress in 

the debonded region of PFC in Fig.3.14b due to the Coulomb friction law 

[Eq.(3.9.13)]. This phenomenon can be attributed to the piezoelectric effect in 

piezoelectric fibre; greater applied stress is required in PFC to produce the 

same axial stress as in non-piezoelectric fibre composites. The difference in the 

stress fields between these two composite systems is controlled by piezoelectric 

coefficients, which were investigated in our previous work [59] for fully 

bonded composites. When the piezoelectric coefficients and dielectric constants 

are set to be zero, piezoelectric fibre degenerates to non-piezoelectric fibre. Fig. 

3.14d shows the variation of electrical field as a function of axial distance zlL. 
The variation of Ez with zlL is very similar to that of the fibre axial stress. 
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Fig.3.14 Plot of (a) fibre axial stress, (b) interface shear stress, (c) fibre radial stress, 

(d) electric field for the piezoelectric fibre push-out under mechanical loading 

Fig.3 .15 shows the distribution of stresses and electric field as functions of 

dimensionless axial distance zlL for a partially debonded piezoelectric 

composite system subject to electrical loading and a constant external stress 
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(Ya = loS GPa in the fibre push-out test. To study the effect of positive and 

negative electric loading on stress transfer, electric potentials of SOOO V , 

o V and -SOOO V are applied on the end of a piezoelectric fibre (z = 0). 

Fig.3.lSa shows that the fibre axial stress under negative electric potential 

decays more rapidly than under positive electric potential. It can also be seen 

from Fig.3.lSc that negative electric potential leads to a larger radial stress in 

piezoelectric fibre than does applied positive electric potential, causing greater 

interface frictional shear stress accordingly in the debonded region in Fig.3.lSb. 

This is because when piezoelectric fibre is subjected to an electric potential 

applied parallel to the polarization direction, expansion occurs in the same 

direction and shrinkage occurs in the transverse direction [2S]. For a positive 

applied electric potential, the hoop stress developed is compressive, while for a 

negative applied electric potential, the hoop stress developed is tensile. In 

Fig.3.lSd, the distribution of electric field in piezoelectric fibre is plotted via 

aiL, and it depends strongly on the applied electric field. 
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Chapter 4 Thermo-magneto-electro-elastic 
problems 

4.1 Introduction 

In the previous chapter we presented the linear theory of piezoelectricity and its 

application to various engineering problems. Extension of the theory and the 

methodology to thermo-magneto-electro-elastic problems is described in this 

chapter. First, we present a brief review of the developments in this field. As 

mentioned in [1], Suchtelen [2] appears to have been the first to report the 

magneto electric coupling effect in piezoelectric-piezomagnetic composites. He 

indicated that the magnetoelectric effect is a product property that results from 

the interaction between different properties of the two phases in composites. 

Later, Boomgaaed et al [3] further explored the magneto-electric effect of 

BaTiOrCoFe204 composites. To investigate fundamental theories and solution 

procedures, Lee [4], He [5], and Qing et al [6] constructed a variety of variational 

principles for magneto-electro-elastic materials. Alshits et al [7] studied the 

existence of surface waves in piezoelectric and piezomagnetic composites. Using 

a perturbation method, Lee et al [8] investigated stress effects on the electroma­

gnetic resonance of circular dielectric disks. Li and Dunn [9] and Li [10] obtained 

formulas for predicting the average magneto-electro-elastic field and effective 

material properties of magneto-electro-elastic solids containing a multi-inclusion 

or inhomogeneity using the micromechanics approach. The investigation of 

general solution procedures should also be mentioned, it includes: eight sets of 

constitutive equations [1]; analytical solutions for simply-supported and 

multilayered magneto-electro-elastic plates [11, 12], for magneto-electro-elastic 

plates with polygonal inclusions [13], and for functionally graded and layered 

magneto-electro-elastic plates [14]; general solutions of three-dimensional 
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magneto-electro-elastic solids based on the potential function approach [15, 16]; 

and hyperboloidal notch problems [17]. Recently, Liu et al [18] presented 

closed-form expressions of elastic, electric and magnetic fields for a moving 

dislocation in a magneto-electro-elastic solid and found that the magneto­

electro-elastic field exhibits the singularity of r -1 near the dislocation core. 

Using the methods of Laplace and finite sine transformations, Ootao and 

Tanigawa [19] obtained the transient solution for a simply supported and 

multilayered magneto-electro-thermo-elastic strip due to unsteady and nonu­

niform heat supply in the width direction. Soh and Liu [20] presented an 

analytical expression for the interfacial debonding problem of a piezoelectric­

piezomagnetic composite with a circular inclusion. In addition, it should be noted 

that the application of fracture mechanics to magneto-electro-elastic problems 

has been a fruitful subject, including but not limited to the work on interfacial 

cracks [21], plane cracks under out-of-plane deformation [22], crack-tip fields 

and energy release rate [23], collinear cracks [24], parallel cracks in a bimaterial 

solid [25], constant moving cracka under anti-plane deformation [26], 

microcrack-microcrack interaction [27], dynamic anti-plane crack problems [28], 

l-integral and dislocation model for crack problems [29], dynamic behaviour of 

two collinear cracks [30], and finite cracks in a piezoelectromagnetic strip [31]. 

Regarding Green's functions of magneto-electro-elastic problems, reports can be 

found on elliptic hole and rigid inclusion problems [32,33], three-dimensional 

problems [34,35], general inclusion problems [36], bimaterial problems [37], and 

an infinite magneto-electro-elastic solid with various defects [38, 39]. 

We begin this chapter with a discussion of the general theory of magneto­

electro-elastic problems, followed by an introduction of the variational principle 

and potential approach. Then, Green's functions are presented for half-plane, 

bimaterial, and wedge problems. Finally, solutions for an antiplane shear crack in 

a magneto-electro-elastic layer are derived. 

4.2 Basic field equations for magneto-electro-elastic solids 

4.2.1 Basic equations of general anisotropy 

In this subsection we review briefly basic equations of three-dimensional 
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magneto-electro-elastic solids. For a linear magneto-electro-elastic solid of 

general anisotropy, the governing equations of the mechanical and electric fields 

are in the same form as those of Eqs.(3.2.3), (3.2.5), (3.2.12), and (3.2.l3). For 

the sake of completeness, we list all these equations together with equations 

governing magnetic fields below [4, 40]: 

Force equilibrium equation: 

Strain-displacement relationship: 
1 

& =-(u. +u) " 2 l,j j,l 

Magnetoelectric Maxwell equation: 

Du +be =0, B;,i +b", =0 

Magnetoelectric gradient equation: 
E. = _do., H. = -1// . 

I 'f/,l I "t',1 

(4.2.1) 

(4.2.2) 

(4.2.3) 

(4.2.4) 

Eqs.( 4.2.1), (4.2.2) are coupled to Eqs.( 4.2.3), (4.2.4) with the following 

constitutive relations [4]: 
CJij = Cijki&ki - eiijEi - eliiHi 

D; = e;k/&ki + Ki/EZ + ai/HZ (4.2,5) 

B; = e;k'&kl + ailEI + f.1i/ H , 

In the above equations, bm is the body electric current; B;, H;, and lj/ are the 

magnetic induction, magnetic field, and magnetic potential respectively, and 
e, " a., and II.. are piezomagnetic constants, electromagnetic constants, and 
"lJ r" 

magnetic permeabilities, respectively. Let T be the boundary of the solution 
domain .Q of the magneto-electro-elastic solid considered. Then the boundary 
conditions can be given in the form [40] 

u; =u;, onTu (4.2,6) 

t; = CJijnj = to onTI (4.2.7) 

¢=¢, onT¢ (4.2.8) 

Dn =D;n; =-q, =Dn, onTD (4.2.9) 

lj/ = lj/ , onTIf (4.2.10) 

Bn = B;n; = iii, onTE (4.2.11) 

where a bar over a variable indicates that the variable IS prescribed, and 

T = Tu UTI = T¢ U TD = Tif U T B • The introduction of the symbol Dn is for 

simplicity of the writing that follows. Obviously, the first four equations 
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(4.2.6)~( 4.2.9) are the electric and mechanical boundary conditions which are the 
same as those presented in Section 3.5, and the remaining two are for the 
magnetic field. Eqs.( 4.2.1 )~( 4.2.11) constitute the complete set of equations of a 

linear magneto-electro-elastic solid. This set of equations is coupled among 
magnetic, electric, and mechanical fields. 

4.2.2 Eight forms of constitutive equations 

In addition to the constitutive equation (4.2.5), Soh and Liu [1] presented the 

other seven equivalent constitutive representations commonly used in the 

stationary theory of linear magneto-electro-elastic solid to describe the coupled 

interaction among elastic, electric, and magnetic variables. Table 4.1 lists the 

eight forms of constitutive relations, the corresponding independent variables, 

and the generalized Gibbs energy functionals. In Table 4.1, c and s are elastic 

stiffness and compliance tensors, K and p are permittivity and impermittivity 

tensors, J1 and JI are permeability and reluctivity tensors, a, A, 1], and (; are 
magnetoelectric constants, e, h, d, and g are piezoelectric constants, and e, 
ii, d and g are piezomagnetic constants. It can be seen from Table 4.1 that each 

form of constitutive representation has its own distinct independent variables and 

corresponding thermodynamic potential. But they are dependent on each other 

and anyone form can be deduced from another through the Legendre transform. 
F or example, if we choose u, E , and H as the independent variables, 8 8 can be 

deduced through the Legendre transform from 8] as follows: 8 8 = 8] - U& , 

which results in the following constitutive relations in terms of 8 g : 

& = _ a 8 8 D = _ a 8 8 B = _ a 8 8 

au' aE' aH 
(4.2.12) 

Table 4.1 Eight forms of constitutive models [I] 

Independent variables 

e,E,H 

e,D,H 

Constitutive relations 

j
u = ce - e T E - i? H 

D =ee+ICE +aH 

B = ee + aE + pH 

j
u=ce-hTD-eTH 

E=-he+pD-,H 

B=ee+'D+pH 

Thermodynamic potentials 

I 2 2 2 
@1 =-(ce -ICE -pH )-

2 
eeE-eeH-aEH 
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Table 4.1 (continued) 

Independent variables Constitutive relations Thermodynamic potentials 

e,E,B 

e,D,B 

u,D,B 

u,E,B 

u,D,H 

u,E,H 

I
T -T 

u=ce-e E -h B 

D = e~ + teE + TJB 

H = -he -TJE + vB 

l
u =ce-hTD-i?B 

E=-~e+pD-AB 

H=he-AD+vB 

I
e = su+ glD+ its 
E = -gu+ pD -AB 

H=gU-AD+vB 

I
e = su + dT E + gT B 

D=du+teE+TJB 

H = -gu -TJE + vB 

I
e = su + glD + d IH 

E=-gu+PD-(H 

B=du+(D+jlH 

I
e = su + d T E + dT H 

D =du+teE +aH 

B=du+aE+jlH 

4.2.3 Transversely isotropic simplification 

If the magneto-electro-elastic solid considered is transversely isotropic, the 

equations described in Subsection 4.2.1 can be further simplified [41]. In a fixed 

rectangular coordinate system (X,y,Z) , the constitutive equations (4.2.5), and 

governing equations (4.2.1) and (4.2.3) of a transversely isotropic magneto­

electro-elastic solid with the isotropic plane perpendicular to the z axis can, 

respectively, be expressed in the following form [15, 16]: 

O"xx =CllUI,x +c12u 2,y +c13 u 3,z +e31¢,z +e311fl,z 

O"yy = CI2 UI,x + CllU2,y + c 13 u 3,z + e 31¢,z + e 31 1fl,z 

O"zz = c13ul ,x + C13U2,y + C33 U3,z + e 33 ¢,z + e 33 1f1,z 

0" yz = C44 (u2,z + U3,y) + eIS¢,y + elslfI,y 

O"xz = C44 (ul,z + u 3,x) + eIS¢,x + e1slfl,x 

O"xy = C66 (u1,y + u2,x) 

(4.2,13) 
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and 

Dx = e ls (uI,z + u 3,J - KII¢,x - aillf/,x 

D y = els (u2,z + U3,y) - Kll ¢,y - a l1 lf/,y 

D z = e31 (ul,x + U2,y) - e 33u 3,z - K33 ¢,z - a 33 lf/,z 

B = e (u + U ) + a ¢ - Il If/ x IS I,z 3,x 11 ,x II ,x 

Bv = e ls (u 2,z + U3,y) + all¢,y - Ilillf/,y 

Bz = e31 (ul,x + U2,y) + e 33u 3,z + a 33 ¢,z - 1l33lf/,z 

1 1 
CIIUI,xx +"2(CII -CI2 )UI,yy +"2(CII +CI2 )U2,XY + (C13 +C44 )U3,xz + 

(4.2.14) 

(4.2.15) 

C44UI,zz + (e31 +eIS)¢,xz -eelS +e31 )lf/,xz +bl =0 (4.2.16) 

1 1 
CI1 u 2,j}' +"2 (Cll - cl2 )u2,xx +"2 (cl1 + Cl2 )ul,xy + (C13 + C 44 )U3,yz + 

C44U2,zz + (e31 + eIJ¢,yz - (elS + e31 )If/,yz + b 2 = 0 (4.2.17) 

C44 (u3,xx + U3,yy) + (C44 + cl3 )( ul,xz + U2,yz) + C33U3,33 + 

eIS(¢,xx + ¢,H) + e33¢,zz -e33 lf/,zz -eIS(lf/,xx +If/,yy) +b3 = 0 (4.2.18) 

e IS (u3,xx +u3,}~·)+(eIS +e31 )(ul,xz +U2,yJ + e33u 3,zz -

e lS (U3,H + U3,yy) + (els + e31 )(uI,xz + U2,yJ + e33u 3,zz + 

all (¢,xx + ¢"Y) + a 33 ¢,zz - Ill! (If/,xx + If/,j}') - 1l33lf/,zz + b m = 0 (4.2.20) 

Eqs.( 4.2.13)~( 4.2.20) are used as a basis in later sections. 

4.2.4 Extension to include thermal effect 

The equations presented in Section 4.2.1 can be straightforwardly extended to 

include thermal effects if the temperature field does not fully couple with the 

magneto-electro-elastic field, that is, if the magneto-electro-elastic field can be 

affected by the temperature field through constitutive relations but the 

temperature field is not affected by the magneto-electro-elastic field. Under such 

assumptions the governing equations of thermo-magneto-electro-elastic problems 

can be expressed as [42] 

(J'ij,j +bi =0, Di,i +be =0, Bi,i +b", =0 

(J'ij = Cijk,ck' - e/ijE/ - e/ijH, - AuT} 

Di = eik/ck' + Ku E, + ailH, - p7 
Bi = eik/ck/ + ailE, + llilH/ - J./iT 

(4.2.21) 

(4.2.22) 
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1 
& = - (u + u ), E, = -¢", H, = -lj/". 

lJ 2 ',j j,' 
(4.2.23) 

hi,i = 0, hi = -kijT,j (4.2.24) 

where Vi are pyromagnetic coefficients. The boundary conditions of the thermo­

magneto-electro-elastic problem are still defined by Eqs.( 4.2.6)~( 4.2.11) 

together with the boundary conditions for the thermal field. To obtain the 

solution of the boundary value problem defined by Eqs.(4.2.6)~(4.2.11) and 

(4.2.21)~(4.2.24), we usually first solve the heat transfer problem to obtain the 

steady-state T field, and then calculate the magneto-electro-elastic field caused 

by the T field, add an isothermal solution to satisfY the corresponding magnetic, 

electrical and mechanical boundary conditions, and finally solve the modified 

problem for magneto-electro-elastic fields. 

4.3 Variational formulation 

Taking e1 (s,E,H) (see Table 4.1) as an example, we now present a 

variational principle for a magneto-electro-elastic solid in the domain .abounded 

by r. The variational principle is based on the independent variables (s,E,H). 

First, the explicit expression of el (s,E,H) in terms of &'i' Ei and Hi IS 

presented 

~=~~~~-~~~~-~~~~-~~~-~~~-~~~ 
(4.3.1) 

which results in the following constitutive relations: 

CJ = oel D =_ oel B =_ oel 

lJ 0&" oE' I oH. 
y 1 l 

(4.3.2) 

Then, based on the variational functional e1 (s, E, H) and the basic equations 

(4.2.1 )~( 4.2.11), a variational functional can be constructed as 

f (0 -bu -b>¢-b lj/)d.a-f tUdr-f jj ¢dr-f mlj/dr 
nIL I e m 1, I I In 11 FB 

(4.3.3) 

in which Eqs.( 4.2.5), (4.2.6), (4.2.8), and (4.2.10) are assumed to be satisfied, a 

pnon. 

We now proceed to show that Eqs.(4.2.1), (4.2.3), (4.2.7), (4.2.9), and 

(4.2.11) can be derived from Eq.(4.3.3) for the independent variables 
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OU;, o¢, and Olj/. Taking the vanishing variation ofEq.(4.3.3), we have 

f (0@1 -b;ou; -beO¢-bmOlj/)dQ-f t;ou;dT-f i5nO¢dT-f mOlj/dT=O 
Q I, 1[J Is 

(4.3.4) 
Noting that the variation of @1 expressed by Eq.( 4.3.1) can be further written as 

0@1 = Cijkl&kIO&ij - eijk (EkO&ij + &jkOEJ - KijEjOEj - ).lijHjOHj -

eijk (HkO&ij + &jkOH;) - aij (EjoH; + HiDE;) 

(4.3.5) 

The substitution ofEq.(4.3.5) into Eq.(4.3.4) yields 

fQ (o-ijO&ij - D;oE; - B;oH; - b;ou; - beo¢ - bmolj/)dQ-

f t;ouidT - f 15no¢dT - f mOlj/dT = 0 
I, 1[J III 

(4.3.6) 

Making use ofEqs.(4.2.2) and (4.2.4), the variables can be expressed as 

1 
0& =-(ou. +ou), DE =-o¢, oH =-Olj/ 

If 2 },' I,} I ,I I ,1 
(4.3.7) 

By substituting Eq.(4.3.7) into Eq.(4.3.6) and employing the chain rule of 

differentiation, integration by parts, the divergence theorem, and the boundary 

conditions (4.2.6), (4.2.8), (4.2.10), the first three terms of Eq.(1.106), with the 

substitution ofEq.(4.3.6), become 

f o-o&dQ = f o-noudT -f o-oudT 
Q If If r/ If} / Q If,} } 

=f toudT -f o-oudT 
11 I I Q lJ,J J 

-f DoEdQ = f DnOA-.dT -f DOA-.dT 
[) 1 I rn I I If/ 12 [,1 'f/ 

=ir[J Dno¢dT -LD;,iO¢dT 

-f BoHdQ = f BnOlj/dT -f BOlj/dT 
Q I I r

D 
I I Q 1,1 

=fr[J BnOlj/dr-fQB;,iOlj/dT 

Then, with substitution ofEqs.(4.3.8)~(4.3.1O) into Eq.(4.3.6), we have 

f)(o-ij,j + bJou; + (D;,; + bJo¢ + (B;,i + bnJolj/] dQ-

(4.3.8) 

(4.3.9) 

(4.3.10) 

f (ti - t)iOUidT - f (Dn - i5n )o¢dT - f (Bn - m)olj/dT = 0 
~ ~ ~ 

(4.3.11) 
The above equation must be satisfied for the independent variables OUi , o¢, 
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and8lf/. Hence, the volume integral in Eq.(4.3.11) leads to Eqs.(4.2.1) and 

(4.2.3), and the corresponding surface integrals yield boundary conditions (4.2.7), 

(4.2.9), and (4.2.11). Similarly, we can present variational principles for the other 
seven thermodynamic functionals (82 ~ 8 g ) in a straightforward way. It should 

be mentioned that the above variational principles yield half of the boundary 

conditions only. This is because only three variables are taken as independent 

variables. To obtain all field equations from the variational principle we need to 

construct the corresponding variational functional in such a way that all variables, 
i.e., u;, cij' O"ij' ¢, Ei' D;, If/, H;, Bi are independent variables. Taking 

8 1 (e,E,H) (see Table 4.1) as an example again, Yao [40] presented a 

generalized variational functional as follows: 

f)O"ijcij -81 +U;(O"ij,j +b;)-D;E; -BiH ; +¢(Di,i +be )+ 

If/(Bi ; +bm)]dQ-f t/i;dr-f D)fdr-f B/jJdr-
, Til T¢ Tv, 

f (t; -t;)uidr-f (Dn -Dn)¢dr-f (Bn -m)lf/dr 
T f Tv TR 

(4.3.12) 

It can be shown that the vanishing variation of the functional (4.3.12) leads to 

Eqs.( 4.2.1 )~( 4.2.11) [40]. 

4.4 General solution for 3D transversely isotropic 
magneto-electro-elastic solids 

Based on the developments in [15, 41], this subsection describes the potential 

function approach for solving three-dimensional magneto-electro-elastic 

problems. To this end, Wang and Shen [15] assumed that the general solution to 

Eqs.(4.2.16)~(4.2.20) is in the form 

(4.4.1) 
where (]J and 'F are two potential functions to be solved for, and k1' k2' k3 are 

three constants to be determined. Substituting Eq.(4.4.1) into Eqs.(4.2.16)~ 

(4.2.20), we obtain 

(4.4.2) 
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Cll(lP,xx + lP')Y) + [C44 +kl (CI3 + C44 ) + k2(e15 +e31)-k3(eI5 +e31 )]lP,zz = 0 

(C13 +C44 +klc44 +kAs -kAs)(lP,n + lP,)Y) + (klc33 +k2e33 -ki33)lP,zz =0 

(eiS + e31 + klelS - k2Kll - k3all )( (/J,xx + (/J,yy) + (kle33 - k2 K33 - k3 a33 )(/J,zz = 0 

(e15 +e3l +klelS +k2a ll -k3fill)(lP,xx +lP,yy) + (kle33 +kp33 -k3fi33)lP,zz =0 

(4.4.3) 

which results in the following equation: 
C44 +kl (CI3 +c44)+k2(eIS +e31)-k3(eIS +e31 ) 

Cll 

klc33 + k2e33 - k3e33 

Cl3 + C44 + klc44 + k2el5 - kil5 

kle33 + k2a33 - k3fi33 = A, 

elS +e31 +klel5 +k2a ll -k3fill 

(4.4.4) 

Eliminating kl' k2 and k3 from Eq.(4.4.4) yields the following equation for A,: 

uT(A-A,Brlu=C
II 

-C44 A,-1 (4.4.S) 

where 

lC"+CM j l c" 
e33 -e" j l C

M el5 -e" j 
u = e~5 + e~1 , A= e~3 -K33 -a33 , B= e~5 -KII -all 

-e15 -e3l -e33 -a33 fi33 -e15 -all fill 

(4.4.6) 

It is formidable and injudicious to directly expand the left-hand side of 

Eq.( 4.4.S). In order to obtain the algebraic equation for A, in an elegant manner, 

Wang and Shen [IS] considered the following eigenvalue problem: 
A; = 8B; (4.4.7) 

Then the following orthogonal relationship with respect to A and B establishes: 
yTBY=Ah , yTAY=Aa=AoAh (4.4.8) 

where 

y = [;1 ;2 ;3]' Ab =diag[bt b2 b3 ], Ao =diag[ 61 62 63] 

Making use of the relationships (4.4.8), Eq.(4.4.S) can be rewritten as 

ii(Ao - A,Irl A~l = cll - C44 A,-1 

where 

while k; (i = 1, 2, 3) can be expressed in terms of A, as 

(4.4.9) 

(4.4.10) 

(4.4.11) 
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(53 - A)b3 

Expanding Eq.( 4.4.10) yields the following algebraic equation for A 
3 -2 

C44 " U i -+ L.. =CII 
A i~1 (5; - A)b; 

(4.4.12) 

(4.4.13) 

Eq.( 4.4.13) is a quartic equation in A. Denote the four roots of Eq.( 4.4.13) as 
Ai(i = 1, 2, 3, 4) and let Au = C44 / C66 . Then, there exist five potential functions 

(j);(i = 1 ~ 4) and (j)o = 'P , which satisfY 

(/J;,xx + (/J;,yy + A;(/J;,zz = 0, i = 0, 1, 2, 3, 4, 5 (4.4.14) 

Based on the above derivation, displacements, electric potential and magnetic 

potential in the fixed Cartesian coordinate system can be expressed in terms of 
the five potential functions (j)i (i = ° ~ 4) as 

4 4 

U I = L (j)i,x - (j)o,y' U2 = L (j)i,y + (j)o,x 
;~I ;~I 

4 4 4 

U3 = Lkli(j);,z' ¢ = Lk2i (j);,z, If/3 = Lk3;(j);,z 

where k li ,k2; and k3i can be obtained from Eq.(4.4.4) as [41] 

Iii _ I 2; k. = I 3; 

kl ; =y' k2; -Y' 31 I; 

with 

Cl3 + C44 e l5 + e 31 CI5 + C31 

I; = e33 - elsA; KIIA; -K33 alIA; -a33 

C33 - CIS A; alIA; -a33 f.111 Ai - f.133 

CIIA; -C44 els + e 31 CIS + C31 

IIi = (els +e31 )A; KIIAi -K33 alIA; - a 33 

(CIS +C31 )A; alIA; -a33 f.11 A - f.133 

Cl3 + C44 Cl3 Ai - C44 CIS + C31 

I2i = e33 - elsA; (els +e31 )A; alIA; -a33 

C33 - CIsAi (CIS +C31 )A; f.11 I Ai - f.133 

(4.4.15) 

(4.4.16) 

(4.4.17) 

(4.4.18) 

(4.4.19) 
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I3i = e 33 -el5'~i KIIAi -K33 (els +e31 )Ai 

e33 - elsA; aliA; - a 33 (els + e31 )A; 

Eq.( 4.4.15) can also be written in matrix form as 

U = A(jp + i(/Jo)' W = KP'z 

where 

W~l: J' p~ :: 
f!J

4 

J= 

A=~+i~ ax oy 

(4.4.20) 

(4.4.21) 

T 

(4.4.22) 

Making use of Eqs.(4.4.21) and (4.2.12)~(4.2.14), we can obtain stress, 
electric displacement, and magnetic induction in terms of f!Ji as 

- --T 
(Txx + (Tyy = 2(C66 JH - c44J - 10 BK)P,zz 

(4.4.23) 

where 

(4.4.24) 

Eqs.(4.4.21) and (4.4.23) are the general expressions of magneto-electro­
elastic fields in terms of the five potential functions f!Ji (i = 0, 1, 2, 3, 4) . 

Therefore, with the potential function method, the 3D transversely isotropic 

magneto-electro-elastic problem is reduced to one of finding five complex 

potential functions. 

4.5 Green's function for half-plane and bimaterial problems 

In this and next sections, Green's functions of defective magneto-electro-elastic 

solids are derived based on the Stroh formalism. The defects considered here 

include bimaterial interface, half plane boundary, and wedge boundary. 
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4.5.1 Preliminary formulations 

To simplify subsequent writing, the shorthand notation described in Subsection 

3.3.1 is used here. In the stationary case where no free electric charge, electric 

current, and body force are assumed to exist, the complete set of governing 

equations for coupled electromagnetoelastic problems are [38] 

Governing equation: 

Ilu ,; = 0 

Constitutive relationship: 

where 

r J,;:;,3 -t' M,;:;,3 

Ilu = D;, J=4, UM - ¢, M=4 

Bi , J=5 lj/, M=5 

cUmn ' 
J,M';:;'3 

enij , J';:;'3,M=4 

enij , J';:;'3,M=5 

eimn , J=4,M';:;'3 

E = iJMn -Kin' J=4,M=4 

-ain , J=4,M =5 

eimn , J=5,M';:;'3 

-ain , J =5,M =4 

-/1;11' J=5,M =5 

A general solution to Eq.(4.5.1) can be expressed as [38] 
U = 2 Re[Af(z)q] 

where 

A = [A[ A2 A3 A4 As] 

fez) = (J(za)) = diag[J(z[) /(Z2) /(Z3) /(Z4) 

q=[q[ q2 q3 q4 qsf 

(4.5.1) 

(4.5.2) 

(4.5.3) 

(4.5.4) 

(4.5.5) 

wherefis an arbitrary function to be determined, q denotes unknown constants to 

be found by boundary conditions, and Pi and Ai are constants determined by 

[Q+(R+RT)p;+Tp;JA;=O (4.5.7) 
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with Q, Rand Tbeing 5x5 constant matrices defined by 

(Q) IK = EIIKl' (R) IK = E l1K2 , (T) IK = E2IK2 (4.5.8) 

The stress-electric displacement-magnetic induction (SEDMI), II, obtained from 

Eq.(4.5.2) can be written as 

where rp is the SEDMI function given as 

with 

rp = 2 Re[Bf(z)q] 

B = RT A + TAP = -(QA + RAP)P- l 

P = (Pa) = diag[Pl P2 P3 P4 Ps] 

4.5.2 New coordinate variables 

(4.5.9) 

(4.5.10) 

(4.5.11) 

The half-plane or bimaterial interface considered in this section is different from 

those reported in the literature [43,44]. The half-plane boundary (or bimaterial) 

is in the vertical (Xl = 0 on the boundary in our analysis) rather than the horizontal 
direction (see Fig. 4.1). It is obvious that Zk = Xl + PkX2 becomes a real number 

on the horizontal boundary X2 = O. However, Zk is, in general, neither a real 

number nor a pure imaginary number on the vertical boundary Xl = 0, which 

complicates the related mathematical derivation. To bypass this problem, a new 

coordinate variable is introduced [38] 

(4.5.12) 

In this case * Zk is a real number on the vertical boundary Xl = O. This coordinate 

transformation is used for both the half-plane and the bimaterial problem below. 

4.5.3 Green's function for full space 

For an infinite magneto-electro-elastic solid subjected to a line force qo and a line 
dislocation b both located at Zo (XIO ,x20 ) (see Fig. 4.1), the solution in the form of 

Eqs.(4.5.5) and (4.5.lO) is [45] 

U =;Im[ A\ln(z: -z:o))q J, rp =;Im[ B\ln(z: -z:o))q ] (4.5.l3) 
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,l. zo(x JO , x20) 
I 

I 

" I 

" 

Fig.4.1 Magneto-electro-elastic half-plane 

where q is a complex vector to be determined. Since In(z: - z:o) is a 

multi-valued function we introduce a cut along the line defined by X2 = X20 and 
Xl ~ XIO . Using the polar coordinate system (r, ()) with its origin at ZO(XlO,X20) and 

with ()= 0 being parallel to the xl-axis, the solution (4.5.13) applies to 

-11: < () < 11:, r > 0 

Therefore 

Owing to this relation, Eq.(4.5.13) must satisfy the conditions 
U ( 11:) - U ( -11:) = b, rp ( 11: ) - rp (-11:) = q 0 

which lead to 
2Re(Aq) =b, 2 Re(Bq) =qo 

This can be written as 

It follows from the relation 

[~T ~Tl[A ~l = [1 0] 
B T AT B B 0 1 

that 

Hence 

(4.5.14) 

(4.5.15) 

(4.5.16) 

(4.5.17) 

(4.5.18) 

(4.5.19) 

(4.5.20) 

(4.5.21) 
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The Green's function for full space can thus be obtained by substituting 

Eq.(4.5.2l) into Eq.(4.5.l3). 

4.5.4 Green's function for half-space 

Let the material occupy the region XI > 0 (see Fig. 4.1), and a line force-charge 

qo and a line dislocation b apply at Zo (XlO, X20). To satisty the boundary conditions 

on the infinite straight boundary of the half-plane, the general solution (4.5.l3) 

should be modified as follows: 

U =! Im[ A (In(z: - z:o))q ] + ± ! Im[ A (In(z:o - z;o) )qf3 ] (4.5.22) 
n P~l n 

rp =! Im[ B (In(z: - z:o))q ] + ± ! Im[ B (In(z:o - z;o) )qf3 ] (4.5.23) 
n f3~1 n 

where q is given in Eq.( 4.5.21) and q 13 are unknown constants to be determined. 

To determine constants qp' the following two kinds of boundary conditions are 

considered. 
Consider first the case in which the surface Xl = 0 is traction-free, so 

that [45] 

rp = 0, X = 0 (4.5.24) 

Substituting Eq.(4.5.23) into Eq.(4.5.24) yields 

rp =! Im[ B (In(x2 - z:o))q ] + ± ! Im[ B (In(x2 - z;o) )qf3 ] = 0 (4.5.25) 
n f3~1 n 

Noting that Im(.f) = - Im(.f) , we have 

Im[ B(ln(x2 -z:o))qJ = -Im[ii(ln(x2 -z;o))liJ (4.5.26) 

and 

where 

If3=(5f3a)=diag[5f31 5132 5133 5134 5f3sJ 

Eq.(4.5.25) now yields 
-I - - -I - -T -T 

q 13 = B BIf3q = B BIf3 (A % + B b) 

If the boundary Xl = 0 is a rigid surface, then 

U =0, x=o 

(4.5.27) 

(4.5.28) 

(4.5.29) 

(4.5.30) 
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The same procedure shows that the solution is given by Eqs.(4.5 .22) and (4.5.23) 

with 

(4.5.31) 

(4.5.32) 
1 5 1 

qJ = - Im[ B (ln(za - zaO) / Pa) q ] + L -Im[ B (ln(za / Pa - zpo / p/J )qp ] 
11: P =I11: 

(4.5.33) 

4.5.5 Green's function for a bimaterial problem 

We now consider a bimaterial solid whose interface is on the X2-axis(xl = 0). It 

is assumed that the left half-plane (XI < 0) is occupied by material 1, and the right 

half-plane (XI > 0) by material 2 (see Fig. 4.2). They are rigidly bonded together 

so that 

X=o (4.5.34) 

Xz 

o 

~ Interface 

Fig.4.2 Magneto-electro-elastic bimaterial pl ate 

where the superscripts (1) and (2) label the quantities relating to materials 1 and 2 

respectively. The equality of traction continuity comes from the relations 
1 = aqJ / as . When points along the interface are considered, integration of 

1(1) = 1(2) provides Eq.(4.5 .34) since the integration constants corresponding to 

rigid motion can be ignored. 
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For a magneto-electro-elastic bimaterial plate subjected to a line 

force-charge qo and a line dislocation b both located in the left half-plane at ZO(XIO, 

X20) (Fig.4.2), the solution may be assumed, using a similar treatment to that for 

the half-plane problem, in the form [38] 

U(l) = !rm[ A(l) (In(z:(1) - z:~)))q ] + i! rm[ A(l) (In(z:(l) - z;~)) )q~) ] 
n P~l n 

(4.5.35) 

rpCl) =! Im[ B(l) (In(z:(1) - z:~)))q ] + i! Im[ BCl) (In(z:(l) - z;~)) )q~) ] 
n P~l n 

for material 1 in XI < 0 and 

U (2 ) = i! Im[ A(2) (In(z:C2) - z~(~)) )qj;) ] 
P~1 n 

rp(2) = ± ! Im[ B(2) (In(z:(2) - z~(~)) )q~2) ] 
P~1 n 

(4.5.36) 

(4.5.37) 

(4.5.38) 

for material 2 in X > 0 where Z*(I) = z(1) fp(l) z*(i) = z(i) fp(i) (i = 1,2). The 
I, po po p' a a a 

value of q is again given in Eq.(4.5.21), and q~), q~2) are unknown constants 

which are determined by substituting Eqs.(4.5.35)~(4.5.38) into Eq.(4.5.34). 

Following the derivation in subsection 4.5.3, we obtain 
A(l)q~) +A(2)q~2) =A(l)Ipq, B(l)q~) +B(2lq~2l =B(llIpq 

Solving Eq.(4.5.39) yields 
q~l =B(ll-I[I _2(M(ll-1 +M(2)-lr1L(ll-I]B(l)Ipq 

q~l =2B(2l-1(Mcll-l +M(2l-1rlL(ll-IB(llIpq 

where M(j) = -iB(j) A(j)-l is the surface impedance matrix. 

(4.5.39) 

(4.5.40) 

(4.5.41) 

4.5.6 Green's function for an inclined interface or half-plane 
boundary 

If the half-boundary is in an angle () 0 (() 0 *- 0) (see Fig. 4.3) with positive x-axis, 

the corresponding Green's function can be obtained by introducing a new 

mapping function: 

(4.5.42) 

which maps the boundary () = ~ in the z-plane onto the real axis in the s-plane 

(~+iTJ)· 
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~-plane 

.,:?:x lO ' x20) 

"" 
"" 

d~'~---~ 

/,l ~o(~o, 7]0) 

0/ 

Fig.4.3 Magneto-electro-elastic solid with arbitrarily oriented half-plane 

Following the procedure in Subsections 4.5.3 and 4.5.4 it can be shown that 

the resulting Green's functions can be expressed as 

U=~Im[ A (ln(z~ / BO -z~~BO ) ) qJ+ :t~Im[ A ( ln(z~ / BO -z;~BO ) ) q,8 J 
n ,8=ln 

(4.5.43) 

qJ = ~ Im[ B ( In(z~ / BO - z~~BO))q ] + :t ~ Im[ B ( In(z~ / BO - z;~BO) )q,8 ] 
n ,8=1 n 

for the half-plane problem, and 

U(1) =;Im[ A(1) ( ln(z11)1t IBO -Z1161t IBO))qJ+ 

:t ~ Im[ A(I) ( In(z~)1t I BO - ZftlJ" IBO) ) q~) ] 
,8=1 n 

qJ(1 ) =;Im[B(I)( ln(z~)1t I BO _Z~61t I BO ) ) q J+ 
:t ~ Im[ B(1 ) ( In(z~)1t I BO - ZftlJ" IBO)) q~) ] 
,8=1 n 

for material 1 in XI < 0 and 

U(2) = :t ~ Im[ A(2) ( In(z12)1t IBO - Z~61t I BO ) ) q~2) ] 
,8=1 n 

qJ(2) = :t ~ Im[ B (2) ( In(z12)1t IBO - Z~61t I BO) )q~) ] 
,8=1 n 

(4.5.44) 

(4.5.45) 

(4.5.46) 

(4.5.47) 

(4.5.48) 

for material 2 in a biomaterial problem, where q,8' q~), and q~) have, 

respectively, the same forms as those given in Eqs.(4.5.31), (4.5.40), and 
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(4.5.41). 

4.6 Green's function for wedge problems 

In the previous section, we presented Green's functions for magneto­

electro-elastic problems. Extension of the formulations to thermo-magneto­

electro-elastic problems is discussed in this section. 

4.6.1 Basic formulations 

With the shorthand notation used in the last section and in the stationary case 

where no free electric charge, electric current, body force, and heat source are 

assumed to exist, the complete set of governing equations for coupled thermo­

magneto-electro-elastic problems are [24] 

together with 

where 

IIiJ,; = 0 

{

Aii' J (3 

AiJ = Pi' J=4 

Vi' J=5 

and where fliJ' U M' and EiJMn are defined by Eqs.(4.5.3) and (4.5.4). 

with 

A general solution to Eq.(4.6.1) can be expressed as [45] 
T = 2Re[g'(zt)]' U = 2 Re[ Af(z)q + cg(Zt)] 

(4.6.1) 

(4.6.2) 

(4.6.3) 

(4.6.4) 

(4.6.5) 

in which the prime (') denotes differentiation with the argument, q represents 

unknown constants to be found by boundary conditions, g and f are arbitrary 

functions to be determined, T and c are constants determined by [45] 

k22T2 + (k12 + k21 )T + kjj = 0 

[Q+(R+R
T

)T+TT
2JC=A, +TA2 

(4.6.6) 

where Ai are 5x 1 vectors defined by 

Ai =[Aj) Ai2 Ai3 Pi Vir (4.6.7) 

The heat flux, h, and the SEDMI, II, obtained from Eq.(4.6.2) can be written as 
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hi =-2Re[(kil + rki2)g"(Zt )] , fllJ =-qJJ,2' fl2J =qJJ,1 

where qJ is the SEDMI function given as 
qJ = 2Re[ Bf(z)q + dg(zJ] 

with 

d=(RT +rT)c-A2 =-(Q+rR)clT+A,1T 

Introducing a heat flow function [45] 
9 = 2k Im[g'(zt )] 

(4.6.8) 

(4.6.9) 

(4.6.10) 

(4.6.11) 

where k = (kllk22 -kI
2
2)1 12 , and "1m" stands for the imaginary part of the 

complex number, we have 
(4.6.12) 

which has the same form as those for SEDMI function [see Eq.(4.6.8)]. Thus we 

may use the same method as that in magneto-electro-elastic problems to derive 

the thermal solutions. 

4.6.2 Green's function for a wedge or a semi-infinite crack 

Consider an infinite magneto-electro-elastic wedge whose symmetric line 

extends infinitely in the negative direction of the xI-axis (Fig.4.4). The wedge 

angle is denoted by 2i%. The solid is subjected to a temperature discontinuity f 
and a heat source h *, both at a point Zo (XIO' x20 ) as shown in Fig.4.4. The 

wedge faces are assumed to be thermal-insulated, and free of force, external 

electric current and charge. The boundary condition along the two wedge faces 

can thus be written as 
9=qJ=O 

,tzo(X 10 ' x20) 
I 

I 

" I 
---------------- - ..... 

o XI 

(4.6.l3) 

Fig.4.4 Wedge-shaped magneto-electro-elastic plate and its mapping in the (-plane 
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1. General solution for thermal field 

Based on the concept of perturbation given by Stagni [47], the general 

solution for temperature and heat-flow function can be assumed in the form 

T = 2Re[g'(zt)] = 2Re[fo(st)+ J;(St )] (4.6.14) 

.9 = 2klm[g'(zt )] = 2k Im[Jo (St ) + J; (St )] (4.6.15) 

where Jo can be chosen to represent the solutions associated with the unperturbed 

thermal fields which are holomorphic in the entire domain except at some 

singular points such as the point at which a point heat source is applied, andfi is a 
function corresponding to the perturbed field due to the wedge. Here St and StO 

are related to Zt and ZtO (= xlO + H 20) by the mapping functions [48] 

Zt = si /" and ZtO = Stl;" (4.6.16) 

where ,,1,= n /(2n - 2&0) and St = ~ + ill maps the wedge boundary & = ±( n -

&0) in the zt-plane into the imaginary axis in the St -plane (FigAA). Therefore 

the solution domain is mapped into the right half plane axis in the St -plane. 

For a given loading condition, the functionJo can be obtained easily since it 

is related to the solution of homogeneous media. When an infinite space is 

subjected to a line heat source h * and the thermal analog of a line temperature 

discontinuity To both located at (XIO,x20) , the functionJo can be chosen in the form 

fo(St )=% In(St -Sto) (4.6.17) 

where qo is a complex number which can be determined from the conditions 

f c dT = f , for any closed curve C enclosing the point StO (4.6.18) 

f c d.9 = -h * , for any closed curve C enclosing the point StO (4.6.19) 

With the substitution of Eq.(4.6.17) into Eqs.(4.6.14) and (4.6.15), the 

conditions (4.6.18) and (4.6.19) yield 

qo = f / 4ni - h * / 4nk (4.6.20) 

For the half plane in the St = ~ + ill system, the perturbation function can be 

assumed in the form [45] 

(4.6.21) 

Substituting Eqs.( 4.6.17) and (4.6.21) into Eq.( 4.6.15), the condition (4.6.13) 

yields 

Im[ qo In(ill - StO) + ql In( -ill - ~o) ] = 0 

Noting that Im(f) = - Im(f) , we have 

Im[ qo In(ill - Sto)] = - Im[ Zio In( -ill - ~o) ] 

(4.6.22) 

(4.6.23) 
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Equation (4.6.22) now yields 

ql = % (4.6.24) 

Having obtained the solution offo andJi, the function g'(Zt) can now be written 

as 

g'(Zt) = qo In(z; -Z~ ) + qo In(-z; -Z;~ ) 

Substituting Eq.(4.6.25) into Eqs.(4.6.14) and (4.6.15) yields 

T = 2Re[ qo In(zt'' - z~ ) + qo In( -z; - Z;~ ) ] 

9- = 2kIm[ % In(Zt" -Zt~ ) + qo In(-Zt" -Zt~ )J 

(4.6.25) 

(4.6.26) 

(4.6.27) 

The function gin Eq.(4.6.14) can thus be obtained by integrating the functions of 

10 andJi with respect to Z(, which leads to 

g(Zt) = %1; (Zt) + qoh (Zt) 

where 

1; (Zt) = /tZt [ -1 + 2 F; (1 / /t, 1, 1 + 1/ /t, z; / Zt~ ) ] + Zt In( z; - Zt~ ) 

h (Zt ) = /tZt [ -1 + 2 F; (1/ /t, 1, 1 + 1/ /t, - z; / Z;~ ) ] + Zt In( - z; - Zt~ ) 

with 2FI(a,b,c,z) being a hypergeometric function defined in [49] 
r( c) 1 tb- I (1- t)c-b-I 

F(abcz)= f ~ 
2 1 '" r(b)r(c-b) 0 (1-tzY 

. . 
or senes expanSIOn 

D( b )-1 ab a(a+l)b(b+l) 2 •• • _~(a)l1(b)11 11 
21"1 a, ,c, z - + Z + Z + - L.... Z 

l!c 2!c(c+l) 11=0 n!(c)n 

where rex) is a gamma function. 

2. Green's function for magneto-electro-elastic field 

(4.6.28) 

(4.6.29) 

(4.6.30) 

(4.6.31) 

The general solution of the thermo-magneto-electro-elastic problem can be 

written as 

(4.6.32) 

where subscripts ''p'' and "h" refer, respectively, to the particular and 

homogeneous solution. 

From Eqs.( 4.6.5) and (4.6.9) the particular solution of a magneto­

electro-elastic field induced by thermal loading can be written as 

Up =2Re[cg(zt)], f/J p =2Re[dg(zt)] (4.6.33) 
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The particular solutions (4.6.33) do not generally satisfy the boundary 

condition (4.6.13) along the wedge boundary. We therefore need to seek a 

corrective isothermal solution for a given problem so that when it is superi­

mposed on the particular thermo-magneto-electro-elastic solution, the surface 

conditions (4.6.13) will be satisfied. Owing to the fact thatj(zk) andg(zt) have the 

same order of effect on stress and electric displacement in Eqs.( 4.6.5) and (4.6.9) 
[note that the term Bj(z)q in Eq.(4.6.9) is now replaced by B((J;(Zk»)ql + 

(1; (zk) )q2) ], possible function forms come from the partition of g(Zt). They are 

1; (Zk) = ,,1,Zk [-1 + 21'; (1/ ,,1,,1,1 + 1/ A,Z; / z~) ] + Zk In(z; - Z;~) 
, , , (4.6.34) 

12(zk) = AZk [-1 + 21'; (1/ A,l,l + 1/ A,-Z~' /Z;~) ] + Zk In( -z; - Z;~) 

The substitution of Eqs.(4.6.28) and (4.6.34) into Eq.(4.6.9), and then into 

Eq.( 4.6.13), leads to 

ql=-B-1dqo, q2=-B-1dCfo (4.6.35) 

Substituting Eq.(4.6.35) into Eqs.(4.6.5) and (4.6.9), the Green's functions 

can then be written as 

U = 2Re[ -A((1; (Zk»)% + \!2 (zk»)qo)B-1d + cg(Zt) ] 

qJ = 2Re[ -B((t;(Zk»)qO + \!2(Zk»)qo)B-1d +dg(zt) ] 
(4.6.36) 

When ~=O, i.e, A=1I2, Eq.(4.6.36) represents the Green's functions for the case 

of a semi-infinite crack in an infinite magneto-electro-elastic solid. 

4.7 Antiplane shear crack in a magneto-electro-elastic 
layer 

In this section, the crack problem of a magnetoelectroelastic layer bonded to 

dissimilar half spaces under antiplane shear and inplane electric and magnetic 
loads is considered based on the formulation described in the previous sections of 
this chapter. In the analysis, Fourier transforms are used to reduce the mixed 

boundary value problems of the crack, which is assumed to be permeable, 
to simultaneous dual integral equations, and then expressed in terms of 
Fredholm integral equations of the second kind. The discussion follows the 

development in [50]. 

4.7.1 Statement of the problem 

Consider a Griffith crack of length 2c situated III the mid-plane of a 
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magneto-electro-elastic layer that is sandwiched between two elastic half planes 

with an elastic stiffness constant c~, as shown in Fig. 4.5. Quantities in the 

elastic half plane will subsequently be designated by superscript E. A coordinate 

system (x, y , z) is set at the center of the crack for reference. Due to the assumed 

symmetry in geometry and loading conditions, it is sufficient to consider the 

problemfor O ~x<=, O~y< = only. 

Fig.4.5 A magneto-electro-elastic laminate with a finite crack 

The magneto-electro-elastic boundary value problem is simplified 

considerably if we consider only the out-of-plane displacement, the in-plane 

electric fields and in-plane magnetic fields, i.e., 

Ex = Ex(x,y), Ey = Ey(x,y) , Ez = 0 

H x = H x(x,y), H y = H y(x,y), H z =0 

(4.7.1) 

(4.7.2) 

(4.7.3) 

(4.7.4) 

where (ux ' uy , uz ), (Ex, Ey , Ez ) and (Hx ' Hy , Hz ) are the components of 

displacement, electric field and magnetic field vectors, respectively. The 

constitutive equations for anti-plane magneto-electro-elastic material take the 

form of [51] 

(4.7.5) 
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and the governing equations are 

C44 V
2u

z 
+ elS V2 ¢ + elS V2lj/ = 0 

elS V
2uz - KllV2¢ - a llV

2
lj/ = 0 

elSV 2uz - a 11V2¢ - JillV2
lj/ = 0 

V 2
U

E 
= 0 z 

(4.7.6) 

(4.7.7) 

where V2 = a2 
/ ax2 + a2 

/ a/ is the two-dimensional Laplacian operator in the 

variables x and y. 

We consider four possible cases of electrical and magnetic boundary 

conditions on the edges of the magneto-electro-elastic layer 

Case 1: D/x,h) = Do, Bv(x,h) = Eo (4.7.8) 

Case 2: Ey(x,h) = Eo, Ey(x,h) = Eo (4.7.9) 

Case 3: 

Case 4: 

Dv(x,h) = Do, Hy(x, h) = Ho 

Ey(x,h) = Eo, Hy(x,h) = H o 

The mechanical conditions are 

O'z/x,O) = 0 , 0:( x < C 

uz(x,O)=O, C:(X<= 

O'!.(x,y) = Ten' x
2 + / ~ = 

O'zy(x,h) = O'!(x,h) 

uz(x,h) = u; (x,h) 

The shear stress T= can be expressed as 

~ T (elSall -elsKll)Eo + (elSall -elsJill)Do 
-- 0+ 2' 
C44 KI IJiI I - all 

Az (elSall - elsJil1 )Eo - elsBo 
--To + , 
C44 Jill 

~ (elSall -elsKll)Ho -elsDO --1'0 + , 
C44 KII 

~1'0 -elsEo -elsHo, 
C44 

Case 1 

Case 2 

Case 3 

Case 4 

(4.7.lO) 

(4.7.11) 

(4.7.12) 

(4.7.l3) 

(4.7.14) 

(4.7.15) 

(4.7.16) 

(4.7.17) 

where 1'0 is a uniform shear stress at zero electrical and magnetic loads, and 

Aj ( j = 1, 2, 3, 4) are the magneto-electro-elastic stiffened elastic constants 

defined as 
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2 -2 2 -
1 _ f.ill el5 + Kll el5 - allel5el5 

"1 - C44 + 2 
K ll f.i11 - a l1 

A:z = (C44 f.i11 + e1
2
5 ) / f.ill (4.7.18) 

~ = (C44 KII +e~5)/KII 
,1,4 = C44 

The electrical and magnetic conditions for the permeable crack case can be 

expressed as [50] 

Dy(x,O+) = D,(x,O-), E)x,O+) = Er(x,O-), 

By(x,O+) = By(x,O-), Hx(x,O+) = Hx(x,O-), 0:( x < C 

O:(x<C 
(4.7.19) 

¢(x,O) = 0, lj/(x, 0) = 0, C:( x < '= (4.7.20) 

4.7.2 Solution procedure 

Fourier transforms are applied to Eqs.(4.7.6) and (4.7.7), and we obtain the 

results as 

2f= uz(x,y) = - 0 [AI (a)exp(ay) + A2 (a)exp(-ay)]cos(ax)da + aoy 
n 

2 f= ¢(x,y) = - [BI (a)exp(ay) + B2 (a) exp(-ay)] cos(ax)da -boY 
n 0 

2 fon 
lj/(X,y) = - [CI (a)exp(ay) + C2 (a)exp(-ay)] cos(ax)da - coY 

n 0 

E 2f= uz (X,y)=- 0 A3(a)exp(-ay)cos(ax)da+doy+eo 
n 

(4.7.21) 

(4.7.22) 

(4.7.23) 

(4.7.24) 

where A/a) (j = 1, 2, 3) and B/a) (i = 1, 2) are the unknowns to be solved 

and ao' bo, co' do and eo are real constants which can be determined by 

considering the far-field and interface conditions as 

Case 1: (4.7.25) 

Case 2: (4.7.26) 
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Case 3: (4.7.27) 

Co =Ho 

Case 4: ao=_I_(T=+elsEo+elsHo), bo=Eo, co=Ho (4.7.28) 
C44 

(4.7.29) 

Then, a simple calculation leads to the stress, electric displacement and magnetic 

induction expressions 

2 f= {[C44 Al (a) + elsBI (a) + elSCI (a)]exp(ay) -} 
O'zv = - a _ cos(ax)da + 

~ 11: 0 [c44 A2(a) + elsB2(a) + elS C2 (a)] exp(-ay) 

c44 aO -elsbo -eISCO (4.7.30) 

(4.7.31) 

2 f= {[elsAI (a) - aliBI (a) - f.iIICI (a)]exp(ay) -} 
By = - a _ cos(ax)da + 

11: 0 [elsA2(a)-aIIB2(a)-f.iIIC2(a)]exp(-ay) 

elSaO + allbo + f.illCO (4.7.32) 

E 2 E r= E 
O'zy = --C44 Jo aA3 (a)exp( -ay) cos(ax)da + C44do 

11: 
(4.7.33) 

Satisfaction of the boundary conditions (4.7.8)~(4.7.11), (4.7.15) and (4.7.16) 

leads to the result that 

A (a) = (Ai - c!)exp(-2ah)F(a) 
Q

i 

A2(a) = (Ai + C~)F(a) 
I 

A3(a) = 2AiF(a)jQi 

exp(-2ah) [ G(a) + mjF(a)] 
Bl (a) = ------=--------=­

l+exp(-2ah) 

B2(a) = G(a)-mj exp(-2ah)F(a) 
1 + exp(-2ah) 

(4.7.34) 

(4.7.35) 

(4.7.36) 

(4.7.37) 

(4.7.38) 
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exp(-2ah) [ H(a) + n;F(a)] 
C

I 
(a) = -------=.--------=. 

1+exp(-2ah) 

C
2 
(a) = H(a) - ni exp(-2ah)F(a) 

1 + exp(-2ah) 

(4.7.39) 

(4.7.40) 

where F(a) , G(a) and H(a) are the only unknown functions, and m;, n; 

and 12; (i = 1, 2, 3, 4) are defined for Case i (i = 1, 2, 3, 4), respectively, 

as 

(4.7.41) 

2C;4(eIS a ll -elsKII ) 2c!els nl = 2 ' n2 =---, n3 =n4 =0 
121 (Kll,ull - all) 1'11 122 

(4.7.42) 

12i =A; +C;4 + (A; -c;4)exp(-2ah) , i=l, 2, 3, 4 (4.7.43) 

By applying the mixed boundary conditions (4.7.l3), (4.7.19) and (4.7.20), we 

can reduce the problem to the unknowns F( a), G( a) and H( a) that satisfy the 

following simultaneous dual integral equations: 

f
= nT 

aM;(a)F(a)cos(ax)da = -=-, 0:( x < c, i = 1, 2, 3, 4 
o ~« ~.7.~ 

rF(a)cos(ax)da=O, x;;;'c 

r aG(a)sin(ax)da = 0, L= aH(a)cos(ax)da = 0, 0:( x < c (4.7.45) 

r G(a)cos(ax)da = 0, L= H(a)cos(ax)da = 0, x;;;' c (4.7.46) 

where Mi (a) are defined as 

( ) 
= 2{ 1 E 2C;4 exp( -2ah)(,ulleI2s + Kllel2s - 2allelsels)}_1 MI a '1+C44+--~--------~2~--~~--~~~ 

121 C44 (Kll,ull - a ll )[1 + exp( -2ah)] 

(4.7.47) 

(4.7.48) 

(4.7.49) 

(4.7.50) 

Eqs.(4.7.44)~(4.7.46) can be solved by using the method of Copson [52], 

and the solutions are as follows: 
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nT c
2 f= F(a) = -=- r;0i (r;)Jo (acr;)dr; 

2C
44 

0 

nT c
2 s= G( a) = -= - r; 'PI (r;)Jo (acr;)dr; 

2C
44 

0 
(4.7.51) 

nT c
2 f= H(a) = -=- r;'P2 (r;)JO(acr;)dr; 

2C
44 

0 

where J 0 ( ) is the zero order Bessel function of the first kind. The function 

0/ r;) should satisfy the Fredholm integral equations of the second kind in the 

form 

where 

Ki (lJ,t) = lJ f: s [Mi (s/ c) -1 ]Jo (st)Jo (slJ )dlJ 

The functions 'P (r;) (j = 1, 2) are 'P (r;) = 0 . 
1 J 

(4.7.52) 

(4.753) 

The stress intensity factor (SIF), the electric displacement intensity factor 

(EDIF), and the magnetic induction intensity factor (MIIF) are defined and 

determined respectively as 

KT = lim ~2n(x-c)azv(x,0)=T=t1Ji(l)-&, i=l, 2, 3, 4 
x----+c+ ~ 

(4.7.54) 

KD = lil1l ~2n(x - c )Dy (x, 0) = ~ KT 
x-->c C44 

(4.7.55) 

KB = lil1l ~2n(x - c)B/x, 0) = ~KT (4.7.56) 
x-->c C44 

For this particular problem, the stresses, electric displacements and 

magnetic inductions at the crack tip show inverse square root singularities. It is 

clear that the SIF, EDIF and MIIF are dependent on the geometry size of the 

magneto-electro-elastic layer, the mechanical load conditions and the material 

constants. 
In the case of /311 = 0 and 17,,5 = 0, the results are reduced exactly to the 

solution of a cracked piezoelectric layer bonded to dissimilar half spaces given by 
Narita et al[53]. 
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Chapter 5 Thermo-electro-chemo-mechanical 
coupling 

Many synthetic and natural media which are often described as multifunctional 

smart materials demonstrate thermo-electro-chemo-mechanical coupling 

behavior and are sensitive to external environmental stimuli. This chapter 

presents a set of basic equations, a variational principle and a finite element 

procedure for investigating the coupled behavior of thermo-electro­

chemo-elastic media. The emphasis here is placed on introducing chemical 

effects into the coupled equation system. Using the governing equations of 

thermal conduction, electric field, ionic diffusion and momentum balance, a 

variational principle is deduced for a linearly coupled system by means of the 

extended Gibb's free energy function. The variational principle is then used to 

derive a fully coupled multifield finite element formulation for simulating the 

coupled thermo-electro-chemo-elastic behavior of such media. Numerical 

examples are considered to illustrate the coupled phenomena of the materials 

and to verify the proposed variational theory and numerical procedure. 

5.1 Introduction 

With the rapid development of material sciences and technologies, many new 

multifunction materials have been created and applied to industrial engineering, 

including materials that exhibit coupled multifield behavior and interaction 

among fields. For example, conducting polymers have been widely used as 

artificial muscles and biosensors [1-4], because the conducting polymers can 

accomplish the transformation of electrical, chemical and mechanical energy 

and demonstrate response to external environmental variables including 

temperature, pH and electrical and mechanical loadings. Such versatile 

polymers, which seem to be increasingly manufactured, include hydrogel and 
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various advanced polymers [5-7]. In general, these multifield materials consist 

of a solid network and interval fluid, and deform in volume and shape. They 

can be applied in practical engineering as biosensors, artificial skin of robots, 

artificial muscles, and actuators of adaptive structures [2, 4]. 

On the other hand, natural materials such as biological tissues, clays and 

shales exhibit strong swelling and contractive properties under chemical, 

electrical and mechanical stimuli. For example, articular cartilage is a porous 

medium bathed in an electrolyte and its electro-chemo-mechanical coupling 

behavior cannot be ignored. This cartilage consists of hydrated proteoglycans 

and collagen fibers which form fibrillar structures that trap their own water. To 

sustain external loads, including mechanical and electrochemical loads, 

cartilage modifies its internal configuration by means of water and ion 

exchanges [8-10]. The performance of saturated porous media has also attracted 

the attention of researchers and scientists over the past decades [11,12]. Early 

studies in this field focused on the interactions between the solid and the fluid 

in the saturated porous media. A poroelastic theory was developed [13, 14] and 

used for deriving various numerical algorithms. The concept of effective stress 

and the equations of mass balance and momentum balance form the primary 

framework of poroelastic theory. 

Using poroelastic theory [14], a triphasic mixture model of porous media 

was proposed to consider the electric and diffusion effect induced by ions in the 

fluid [15]. In the triphasic theoretical model, the porous medium was assumed 

to be composed of solid, fluid and ions. Modified mass balance and momentum 

balance equations, in addition to the ionic diffusion equation, were introduced. 

These equations were then used to describe the deformation and stress of 

biological soft tissues like cartilage and to derive corresponding finite element 

(FE) formulations [16]. Later, a quadriphasic model was presented, to 

investigate quasi-static finite deformation of swelling of incompressible porous 

media, where the ions in the fluid are decompounded as anions and cations [17]. 

In this model, balance laws are derived for each phase and for the mixture as a 

whole. The quadriphasic model, considering electric-osmosis and streaming 

current effects, can be applied to the analysis of intervertebral disk tissue [18]. 

More recently, a thermo-electro-chemo-mechanical formulation based on the 

quadriphasic mixture model has been developed for quasi-static finite 

deformation of swelling incompressible porous media [19]. It is noted that the 
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triphasic and quadriphasic models belong to the category of mixture theory 

based on the poroelasitic framework of porous media. However, these two 

models provide balance equations of the mixture only, and an explicit form of 

constitutive law does not appear in the related literature. Therefore the solution 

of these theoretical models largely depends on the form of constitutive law 

used. 

In addition to the mixture methods discussed above, other types of 

multifield appro ache have been presented in recent years [20-27] to reveal the 

electro-chemo- mechanical coupling behavior of porous media and to try to 

explain interactions among the fields. On the basis of these theories some 

numerical methods have been developed to solve the coupled multifield 

differential equations, including direct iteration procedures [22, 23] and the FE 

method [24-27]. 

In this chapter, a theoretical model and the corresponding FE formulation 

for thermo-electro-chemo-mechanical coupled problems are presented, 

developed by redefining linearly coupled constitutive relations and extending 

the traditional Gibb's free energy to include chemical effects. In contrast to 

previous work, the theoretical model proposed is based on a newly introduced 

linear constitutive chemical law instead of the balance laws that were used in 

the triphasic and quadriphasic mixture models [15-19]. As existing chemical 

governing equations are not suitable for FE analysis, we start by deriving a 

modified form of basic equation for the chemical field (Section 5.2). By 

extending the traditional Gibb's free energy to include the chemical field, we 

obtain linear forms of coupled constitutive laws and a variational principle 

including chemical effect (Sections 5.3 and 5.4). The variational principle is 

then used to derive the FE formulation (Section 5.5). As a special case of the 

coupled system, coupling between chemical and mechanical fields is discussed 

in detail, and the determination of some coupled property parameters is also 

demonstrated (Section 5.6). 

5.2 Governing equations of fields 

Consider a thermo-electro-chemo-mechanical body of volume Q bounded by 

surface S. The governing equations, including heat conduction equation, 

Maxwell's equation of electrostatics, equilibrium equations of stresses, and 
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diffusion equations of ions, are as follows: 

(1) Equilibrium equations of stresses momentum balance equations. 
(Jij.j + J; = 0, in 12 (5.2.1) 

(2) Boundary conditions. 

U i =ui ' on Su 

(Jijnj = t;, on S, 

(3) Maxwell's equation of electrostatics. 

Di,i = qb , in 12 

(4) Electric boundary conditions. 

¢ = ¢, on S¢ 

(5) Heat conduction equation. 
hi'; = -Tory, in 12 

(6) Thermal boundary conditions. 

(5.2.2a) 

(5.2.2b) 

(5.2.3) 

(5.2.4a) 

(5.2.4b) 

(5.2.5) 

T = T , on Sr (5.2.6a) 

hini = hn' on Sh (5.2.6b) 

In these equations, (J ij , Di' and hi are respectively stress tensor, electric 

displacement vector, and heat flux vector; J; and qh are the mechanical body 

force and body electric charge density; ~ and t; are the prescribed surface 

displacements and tractions; ¢ and (j, are the prescribed electric potential 

and surface electric charge; T and hn are the prescribed temperature change 

and heat flux on the surface S; ni is the unit outward normal vector on the 
surface S; TJ is the entropy density; To is reference temperature; and 

S = Su + Sf = S¢ + SD = Sr + Sh' 

(7) Basic equations of chemical field. 

Fick's law shows that the mass flux .g± is proportional to the gradient of 

the ionic concentrations Y' c± by [28] 

(5.2.7) 

where "+" and "-" denote anion and cation, respectively. The proportional 

coefficients qJi~ denote the diffusion coefficients of anions and cations, 

depending on the intrinsic features of the medium. For an isotropic medium, 

qJi~ = rp± 0ij' c± are increments of concentrations for the anion and cation. 

Therefore c± can be related to the current concentrations c± by c± = c~ + c± , 
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where c~ are the reference concentrations. V = [~ ~] is the gradient ax oy 
operator. The convection-diffusion equations of the ions can thus be written as 

oc± + [rp±c± +) Tt+V.(cv)-V. RT* V;r =0 (5.2.8) 

where v is the velocity of the ions, R is the universal gas constant and T* is 

the absolute temperature. The first term in Eq. (5.2.8) represents the change rate 

of the concentrations with respect to the time. The second term stands for the 

convection effect that describes the macroscopic motion of the ions. The third 

term is the diffusion of the ions. The electric potential produced by ion is very 

small compared with that produced by the applied electric field and is therefore 

ignored. 

For the motion of ions in fluid, the primary mechanism is ionic diffusion. 

By ignoring the convection effect in Eq. (5.2.8), which means that the 

macroscopic motion of the ions is not considered, we have 

0;; -\7. [~;.' \71'}O (5.2.9) 

where J1± is chemical potential. In classical physical chemistry, the chemical 

potential and concentration of the ions have the following relations: 

J1± = J1~ + RT* lnc± (5.2.10) 

where J1~ is a reference potential of anion and cation in the standard state. 

Substituting Eq. (5.2.10) into Eq. (5.2.9) leads to 

oc± + + 
--V.rp-Vc- =0 
at (5.2.ll) 

It is noted that Eqs. (5.2.8) and (5.2.11) agree with those applied in [20] for the 

motion of ions. For an isotropic medium, we have 

oc± + V;:± = 0 in Q at '=' , 

The corresponding natural boundary condition is 

';;±n; =.;:, on S 

where ';I~ is the ionic flux on the surface of the domain. 

(5.2.12) 

(5.2.13) 

Eq. (5.2.12) and natural boundary condition (5.2.13) are the governing 

equations of ionic diffusion. For the multifield coupling case, we must modify 
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Eq. (5.2.12) to consider the coupling effect. For this purpose, taking 

differentiation in respect to time t leads to 

Ofl± = RT* oc± 

at z± at (5.2.14a) 

Consider a small concentration increment, thus Z± = c~ + c± ::::; c~. We can 

obtain 

Ofl± = RT* oc± 

at c~ at 
(5.2. 14b) 

Employing Eq. (5.2.12) and Eq.(5.2.14b), we obtain the diffusion equations of 

ions in the form 
a + + 
fl- + Co V;:± = 0 (5 2 15) at RT* '" .. 

The relations between displacements u i and strains By for elastic field, 

electric potential ¢ and electric fields Ei for electrostatics, temperature 

change T and heat flux hi for heat conduction, ionic flux ~i± and 

concentration change c± for the chemical field are as follows: 
1 

B =-(u. +u) 
If 2 I.} j,l 

E =-¢ 
1 .' 

(5.2.16) 

(5.2.17) 

(5.2.18) 

(5.2.19) 

where k ij are heat conduction coefficients. It is noted that the theory outlined 

here is restricted to small deformations as linear equations are used. 

5.3 Free energy and constitutive laws 

In this section, Gibb's free energy function in [29,30] is extended to include 

chemical effect and is used to derive the linear constitutive law for 

thermo-electro-chemo-mechanical systems. For a system that includes thermal, 

electrical, chemical and mechanical interaction, the extended Gibb's free 

energy per volume can be written by adding chemical energy in the form 

g = U -EiD; -ryT + L flaca (5.3.1) 
a=+,-

where U denotes internal energy, the second and third terms stand for the 
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energy contributions of electric and temperature fields, respectively, and the last 
term is the chemical energy. Gibb's free energy containing the first three terms 

in Eq. (5.3.1) has been discussed elsewhere [29,30]. The last term should be 
added to the Gibb's free energy when the chemical effect is considered [28]. An 
exact differential of Gibb's free energy function (5.3.1) with respect to its 

independent variables leads to 

dg = O"ijdsij - DmdEm -lJdT + L ,uadca (5.3.2) 
a=+,-

Thus, we obtain 
og 

0" .. =--, 
lJ oSij 

D =_ og og ± og 
j oE ' lJ = - aT' ,u = oc± 

l 

(5.3.3) 

When the function g is expanded with respect to T, Sij, Em and c± within the 

scope of linear interactions, we have 

(T=~[T~+S~. +E _o_+C±~l(T~+S ~+E ~+c±~ Ig 
b 2 aT IJ OSjj m oEm oc± aT k! aSk! 11 oEn oc± ) 

(5.3.4) 

(5.3.5) 

where Cijkl are the elastic moduli, Kl1m the dielectric constants, Cv the specific 
heat per unit mass, emij the piezoelectric coefficients, Au the thermal-stress 

coefficients, and Xm the pyroelectric coefficients. The newly introduced 

constants R: ' J)± , w!, and s± are respectively the mechanical-chemical 

coefficients measured at a constant temperature and electric field, the thermo­
chemical coefficients measured at constant strain and electric field, the 
electrical-chemical coefficients measured at a constant strain and temperature, 
and the chemical potential constant measured at a constant strain and 
temperature and electric field for anion and cation. 
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When the function g is differentiated according to Eq. (5.3.2), and the 
above constants are used, we find 

(5.3.6a) 
a=+,-

(5.3.6b) 
a=+,-

(5.3.6c) 
a=+,-

(5.3.6d) 

A set of these equations is the constitutive relation in the coupled system. 
It is noted that the constitutive equations (5.3.6a~d) are extensions of 

known thermo-electro-mechanical coupling [29, 30] to include a chemical field. 
In classical physical chemistry, the relation between chemical potential and 

ionic concentrations is expressed by a logarithm function [see Eq. (5.2.10)], but 
here we assume a linear relationship between the potential and the 
concentration changes, which means that Eqs. (5.3.6a~d) apply to a small 
change of ionic concentrations only. This assumption allows us to develop the 

corresponding numerical model for FE formulation in a simple way. Actually, 
the classical logarithm relation is applied to determine the present linear 
coefficients, as shown in the following section. 

Finally, by means of the material parameters defined in Eqs. (5.3.6a~d) we 

can rewrite the Gibb's free energy function as 

g = -2
1 

Cijkl&kl&ij - AijT&ij - eijnEn&ij - I R:c
a 

&ij --2
1 

aT2 -
a=+,-

I aa 1 I aa II aaa vET - veT -- E E E - weE +- sec 
A.n n a=+ _ 2 mn n m a=+ _ m In 2 a=+ _ 

, " 

(5.3.7) 

This energy function is used as a basis for developing FE formulations in the 

following sections. 

5.4 Variational principle 

The variational functional plays a central role in the formulation of the 
fundamental governing equations in finite element method (FEM). For the 

boundary value problem described in Section 5.2 and the linear constitutive 
equations (5.3.6), the variational functional used for deriving FE formulation of 
thermo-electro-chemo-mechanical coupling system can be constructed in the 

form 
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f 
. T- ,,-

- /t;u; + qjp - - hn - T L.. ~l1a ca)dS 
To a~+,-

where T = R:* . The vanishing variation of functional (5.4.1) leads to 
Co 

8Il = f Q 813dQ + 8 f Q (F + J)dQ - f Q U;8u; - qh8¢)dQ-

Is (t;8u; + (j,8¢ - hn 8T - T L ~a8ca)dS = 0 
To a~+.-

(5.4.1) 

(5.4.2) 

where B is the generalized Biot's free energy [30] of the coupled four-field 

system. The function B should satisfy the following conditions: 

oB = {} oB = oB = D oB = ± 
as Ij' aT 7], oE i' oc± J1 

U l 

(5.4.3) 

It should be noted that the minus sign in Eq. (5.4.3) disappears here. Thus the 

function B has the following differential form 

8B = 8g + 2Dn8En + 2it8T (5.4.4) 

The function J in Eq. (5.4.1) is the dissipation energy caused by ionic diffusion 

and F is the heat dissipation. They are defined by 

I L;a a J=--T ,:>' C. 2 1,1 

a=+,-

I 
F=--hT 

2To 1 ,l 

Substituting Eqs. (5.4.4) and (5.4.5) into Eq. (5.4.2) yields 

8JJ = f Q ({}ij8i;i + it8T + Dn8En + L jt
a

8c
a
)dQ-

a=+,-

(5.4.5a) 

(5.4.5b) 

(5.4.6) 

Through a series of integrating by parts and mathematical operations, Eq. (5.4.6) 

can be further written as 
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811 = f [-(0"' + t;)8it + [~+ ry)8T + (D. - ql )8¢ + Q If,)' I I 1'0 1,1 J 

" (rC;a + if )8c
a 1 dQ + f [( O" .. n. - T)8it + (Dn + q )8¢ + L..J 1,1 S 1J J l 1 lIS 

a=+,-

[hn _ hjn
j 
)8T + L r(~la _~janJ8caldS = 0 (5.4.7) 

To To a=+,-

Due to the arbitrariness of 8uj , 8rjJ, 8T and 8c±, the variational equation 

(5.4.7) leads to the following governing equations and natural boundary 

conditions: 

Obviously, they are the Euler equations of functional (5.4.l) and represent the 

governing equations (5.2.1), (5.2.3), (5.2.5) and (5.2.15) of the mechanical, 

thermal, electrical and chemical fields, respectively, as well as the 

corresponding natural boundary conditions (5.2.2b), (5.2.4b), (5.2.6b) and 

(5.2.14), respectively. 

It is interesting to note that the governing equations of the chemical field 

have the same forms as those of heat conduction problems. In other words, 

there is an analogous relation between ionic diffusion and heat conduction. 

Table 5.1 lists the analogous relations between chemical problems and heat 

conduction problems. 

Table 5.1 Analogies of ionic diffusion and heat conduction 

Heat conduction Ionic diffusion 

Temperature T Concentration c 
Heat flux h = -K..T 

I II.j 
Mass flux qi = -CP,Fi 

Entropy change rate 7j Chemical potential change rate jL 

Energy form ryT Energy form !-,C 

Governing equation hi+~7j=O 
, 1'u 

Governing equation q +~ '{-O i,i RT· J -

Boundary condition hini = hn Boundary condition c;jn i = c;n 
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5.5 Finite element formulation 

Substituting the constitutive equations (S.3.6a~d) and the gradient 

equations(S.2.16)~(S.2.19) into the variational equation (S.4.6), we obtain 

f n[ Cijkl&kl - AijT - eijnEn + a~-R~ c" )o&ijdQ + 

f n[ Aij&ij + aT + XnEn + a~_vaca) 8TdQ+ 

f n[ ek1m&kl + Xm T + Emn En + a~- w~ca )oEmdQ + 

f n[a~_ (-R~&kl - vaT - w: En + saca) ]8C
a
dQ + 

f [~KT8T +r " Q/1Ca8C"] dQ-n T lJ,I,J ~ lJ,1 ,J 

o a~+,-

f f - h ,,-a a 
n(.t;8u;-Qb8¢)dQ- s(t;8u;+Zis8¢---.!'...8T-r ~ ~n 8c )dS=O 

To a~+,-

(S.S.I) 
This is a variational equation in terms of the independent variables u, ¢, T 

and c±. It is a basis for establishing the FE formulation. As in the conventional 

FEM, the boundary S and the domain Q are divided into a series of boundary 

elements and internal cells. Over each internal element, the independent 

variables u, ¢, T and c± are interpolated by the nodal discrete values in 

the form 
11 

U = LNju; = Nue
, Ii = Lu = LNue = Bue (S.S.2a) 

n n 

T=" NT =Nr, (T)=" NT =jjr ~ I I ,j ~ I,) } 
(S.S.2b) 

i~1 ;~I 

n n 

¢ = LNj¢; = Nf,/)e, (E;) = - LNiA = _jjf,/)e (S.S.2c) 
i~1 i~1 

n n + L-+ -0 + L- + -C = Ne = Nee ,(c~)= Nc:- =Bee 
t I ,I 1,1 I 

(S.S.2d) 

where N, Nand N are the matrices of shape functions, n is the nodal 

number of the element, and ee = [c: c1 ... c; <]T is the nodal ionic 
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concentration vector of element e. Let ei = [c; C;]T denote the degree of 

freedom for ionic concentrations at node i. L IS a matrix of differential 

operators and depends on the forms of the gradient equation. 

To simplify the notations, the compact form of matrix is applied in the 

following formulations. When the domain is discretized, the potential energy of 

the whole system can be obtained by summation of the energy over each 

element 

oIl =0L:Ile 

Thus we have the variational equation for element e 

oJr= 

f De DUeT (BT eBue - BT ANr + BT elif.1Je - BT RNee) dQ + 

f De OrT (NT ABue + NT aNr - NT zlif.1Je + NT JlNee) dQ­

f De of.1JeT (liT eBuc + liT z Nr - liT E lif.1Je + liT wNeC
) dQ + 

f De oeeT (_NT RT Bue - NT JlNr + NT wlif.1Je + NT SNe C
) dQ-

f 12' [ -OT~ liT K lir - roecT BT rpBec + DUcT NT f - of.1JcT NT qb ) dQ-

(5.5.3) 

f DUeT NT/dS - f of.1JcT NT-.dS + f Or
T 
NT Ii dS + f Ti5e cT NT~ dS = 0 

s' se q, se T n st ~n 
t D II 0 s 

(5.5.4) 
where ue,Te,f.1Je,eeare unknowns to be solved and oueT,of.1JeT,oTeT,oeeT 

are arbitrary variational variables. The equivalent forms ofEq. (5.5.4) are 

(5.5.5a) 

f D,(NTATBue +NTaNr -NTzlif.1Je +NTJlNee) dQ+ 

f liT K li r dQ + f NT Ii dS = 0 
De To sZ To II 

(5.5.5b) 

(5.5.5c) 
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f D' riP rpBcedQ + f S' r NT {,dS = 0 
c; 

(S.S.Sd) 

or in matrix form 

Kmm Kmt Kme Kme e Fe U m 

K tm K tt K te K te Te Fe 
t 

Kern Ket Kee Kee (/Je Fe e 
(S.S.6) 

Kern Ket Kee Kee c e Fe 
c 

in which 

f T f T - f T-Kmm = De B CBdQ, K mt = - D' B ILNdQ, Kme = De B eBdQ 

K = f BT RNT dQ Fe = f NT JdQ + f NTidS 
me ne ' m.ff sr 

Kem = f De ijT e
T 
BdQ, Kef = f De jjT ZT NdQ ,Kee = -f DeijT KiidQ, 

Kee = f De ijT W
T 
NdQ, Fee = f De NT q"dQ + f s'h NTcisdS 

Kem = fDeNTRTBdQ, Kef =-fDeNTvTNdQ,Kce = fDeNTwiidQ 

Kee = f D' (NT SN + rfPrpB)dQ, Fcc = -f s{ rN
T
{,dS 

The FE equation (S.S.6) is for element e only. The whole linear system can 

be obtained by a regular assembly process of elemental stiffness equations. 

5.6 Chemo-mechanical coupling 

When no external electric field is applied and the electric potential induced by 

ions is ignored, the problem can be significantly simplified by omitting the 

electrical effect. In addition, when the heat conduction of the system under 

consideration is not induced by stress and ionic diffusion, or in other words 

when the temperature field is not affected by stress and a chemical field, the 

temperature field can affect other fields through the constitutive relation only, 

and conversely, the other fields have no effect on the temperature field. In this 

section, a coupled chemical and mechanical problem is considered to illustrate 
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more clearly how the chemical field can be coupled with the other fields. For 

this purpose, consider a time-dependent coupled chemical and mechanical 

problem. The governing equations are 

± ± 1.± 0 j' 0 ep c· - - J1 = , CY ij,j + ; = 
,11 T 

(5.6.1) 

where the inertial effect is neglected. The natural boundary conditions are 
+ + ~+ - ( ) ep-c,in; = -~I1-' CYijnj - t; = 0 5.6.2 

The generalized variational principle for the chemo-mechanical coupling is 

then given by 

(5.6.3) 

where g is Gibb's free energy for chemo-mechanical coupling problems, and 

J is chemical dissipation energy 

1 L;:a alL a a a J=--T ~.' C =-T ep c·c· 
2 1,1 2 ,1 ,1 

a=+,- a=+,-

Substituting Eq. (5.6.4) into Eq. (5.6.3), we have 

8II = f [CY8i + j.t8c + T " epa ca 8Ca) dQ - f f8udQ-£2 1) 1] L..J ,1 ,I !J' I 1 

a=+,-

Is t;8u;dS + L Is T~a8cadS = 0 
a=+,-

After some mathematical operations, the equation becomes 

8II= fn(CYij + ;;)8u;dQ+ Is (CYijnj -t;)8u;dS+ 

L f n ( _Tepa C,~; + j.t )8cu dQ + L L T( epa < n; + ';,~ )8cu dS = 0 
a=+,- a=+,-

(5.6.4a) 

(5.6.4b) 

(5.6.5) 

(5.6.6) 

Equation (5.6.6) is equivalent to Eqs. (5.6.1) and (5.6.2). Substitution of 

constitutive laws into Equation (5.6.5) yields 

8II = fn[ CijklE:ij8ikl - a~- R~ca8ikl - u~-Rftikl8c
a 

+ u~- saca8c
Lr 

) dQ + 

fn T L epa<&,~dQ_ fn;;8u;dQ- Ist;8u;dS+ L IsT~a8cLrdS=O 
a~~ a~~ 

(5.6.7) 
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The FE discrete form of independent variables U and c can read 
n 

U = LNjuj = Nue
, 6 = Lu = LNue 

= Bue (5.6.8a) 

n n 

C = '" N,c,. = Nce
, c· = '" N .c = Bce 

L..J ,1 ~ 1,11 
(5.6.8b) 

j~l j~l 

Thus we obtain 

D~ = J (DucT BT eBue - DueT BT RNec - De eT NT RBue + De eT NT SNc e) dQ + 
4 

J ,DeeT fPrpBeedQ-J DUeT NT JdQ-J DUeT NTTdS + J ,DeeT NT~dS = 0 
4 1{, Se Se 

(5.6.9a) 

That is 

817 = 8lieT [In (BT eBue - BT RNce) dQ - In NT JdQ - Is NTTdSJ + 

8ceT (In NT RBlie + NT SNce + ,BT rpBce + Is,NT~dS)= 0 

The above equation leads to the following FE formulations 

[ 
0 0 ][li] [Kmm Kmc][U] [Fm] 

K,~c Me C + 0 Kee C = Fe 
in which the coefficient matrices have the following forms 

Me = LI NTSNdQ 
ne 

e 

The equivalent nodal force vectors are 

F,: = "'I NT JdQ + I NTTdS, Fe = -"'I TNT qedS L..J De Se C L..J Se n 
e e 

(5.6.9b) 

(5.6.10) 

(5.6.11) 

(5.6.12) 

(5.6.13) 

It should be mentioned that the material parameters used III coupled 
constitutive equations are classified into two sets. One set covers "stiffness" 

coefficients which reflect the strength of the fields such as Young's modulus, 
dielectric coefficient, etc. The another set consists of the coupled coefficients 

between fields, representing the interaction between fields such as piezoelectric 
coefficients, chemo-mechanical coefficients, etc. In principle, all the material 



198 Chapter 5 Thermo-electro-chemo-mechanical coupling 

parameters should be determined by experiments. But we can roughly estimate 

the ranges of some parameters by a theoretical method. Since the material 
properties of thermo-electro-mechanical media are well known [28], the 
following discussion focuses on the chemo-mechanical coupling parameters. 

For material parameters of chemo-mechanical media, the mechanical 

stiffness matrix can be calculated through Young's modulus and Poisson ratio, 

and the diffusion coefficient can be measured by the physicochemical method 

[28]. Here the new parameters to be determined are the proportional 

coefficients of chemical potential and concentration, and the coupled 

coefficient of the chemical and mechanical fields. 

At first, we consider the linearly proportional coefficients of chemical 

potential and concentration. 

In our study the linear relation f.1 ± = s±c± is assumed. According to the 

physico-chemical theory, c± has the dimension of mol- m-3 and f.1± has the 

dimension ofJ - m-3
, thus s± should have the dimension ofJ - mol- '. 

We use the same notation to write Eg. (5.2.10) as 

+ RT* _ + RT* + + 
f.1- =----=-;-Inc =----=-;-In(co +c-) (5.6.14) v- v-

Then we have 

(5.6.15) 

Considering an infinitesimal change in the concentration, we have 

± _ RT* I' 1 RT* 
s - _ + 1m + + v- c±--+o Co + c- j7±ct 

(5.6.16) 

If the temperature change is very small, i.e., T* = To + T ~ To , we have 

+ RTo s-
j7±ct 

(5.6.17) 

Since the universal gas constant R has the dimension of J • mol- ' • K- ', T has 

the dimension of K , and j7± has the dimension of m3
• mol-', the dimension 

of s± should be J. mor', which is consistent with the dimension in the present 

linear relation. The value of s± depends on the material used. 

For the coupled coefficient of chemical and mechanical effects, we can 

use the analogous relation of chemical and heat conduction to predict its value. 

Considering an isotropic material and supposing that concentration changes 

induce only swelling and contraction, with no shear deformation of the medium, 
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the constitutive laws for chemo-mechanical coupling can be written as 

" a a vE s: E " a s: a 
(Jij =Cijkl Cij - L.. R ij c = (1 )(1-2 )Ckk Uij +-l-cij - L.. ROuij c 

a=+,- + V V + V a =+,-

(S.6.18a) 
+ + + + + .s: + + ( 6 18b) IF = R ki c kl +S- c = R C; u kl c kl +S- C- S .. 

In order to estimate the coupled coefficients Rt, setting i = j in the above 

equations and denoting C j j = cil + c 22 + c 33 as the volume strain, the volume 

stress is given by 

E 3R+ + 3R; -(J .. =--c · - oC - C 
/I 1- 2v /I 

(S.6.19) 

It is assumed that the swelling and contraction of the material induced by 
concentration change begins from the free stress state, e.g. (Jj j = O. Thus we 

can obtain the volume expansion coefficient 

K + = (c~ J = 3(1- 2v) R; 
C 0"=0 E 

(S .6.20a) 

K - = --'L = Ro 
[

C. ) 3(1- 2v) 

C- 0"=0 E 
(S.6.20b) 

Then the coupled coefficient is 

Rt = E K ± 
3(1- 2v) 

(S.6.21) 

It is noted that the dimension of E is N· m-2 and dimension of K ± is 

m3
• mol- I, the dimension of Rt is thus N· m· mol- I. 

5.7 FE procedure and numerical examples 

The basic governing equations and FE formulations for the thermo­

electric-chemo-mechanical coupling have been given in previous sections. In 

this section, the FE implementation and numerical examples are presented. 

Discussion focuses on the chemo-mechanical coupling problem. 

The FE program is developed on the base of elastic FE procedure. The 

nodal degrees of freedom for an elastic problem are replaced by generalized 

degrees of freedom, including elastic displacements, electric potential and 

magnetic potential at the nodes, for the present coupling problem. Fig.S.1 

shows the steps for analysis of coupling problems by a FE method. 
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Input control parameters 

Solve equations and output displacement, 
electric potential and concentration 

Compute stress, electric displacement 
and chemical potential 

Fig.5.1 Flow sequence for the coupled finite element method 

Some examples are now given to illustrate the analysis process and 

coupling behavior of multifield problems. Numerical simulation is carried out 

for the biological tissues and polymer gel. 

To delineate the basic principles of the proposed multifield approach 

including a chemical effect, the assessment is limited to the swelling of a 

rectangular plate subjected to chemical load and a rectangular strip subjected to 

a chemical stimulus on its longer side. The two examples illustrate the coupling 

between chemical and mechanical fields. 

The material parameters used in the calculations are as follows. The 

Young's Modulus is E = 3.5 X 105 Pa; Poisson ratio is 0.45. The diffusion 

coefficients of the ions are (p+ =4.8xlO- IO m2/s, (F =7.8xlO- IO m2/s. The 

linearly proportional coefficients of the chemical potential and ionic 
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concentration are s+ = s- = 1.0 X 103 N.m.mor l 
• The coupling coefficients of 

mechanical and chemical effect are R; = RD = 1.75 X 104 N.m.mol- I 
. 

Example 1 A square plate subjected to chemical load. 

Consider the swelling of a square plate of 0.01 mx 0.01 m caused by a 

chemical load. It is assumed that the plate is body force free and traction free. 

The lower boundary is completely constricted (no displacement on this side) 

and the other sides are free of surface traction. An increment linear distribution 

of ionic concentration from maximum on the upper boundary to zero on the 

lower boundary is applied to the plate. Thus the distribution of the ions can be 

completely determined. The concentration of the ions varies linearly vary in the 

x direction and is evenly distributed in the y directions. Obviously, the same 

distributions are assumed here for the anions and cations. 
The deformation of the plate obtained from the proposed formulation is 

shown in Fig. 5.2. It is evident that a volume swelling of the plate occurs under 
the chemical stimuli, while the degree of swelling varies from point to point. 
Due to the linear distribution of ionic concentration, the maximum swelling 
occurs on the upper boundary and no swelling occurs on the lower boundary. It 
is evident that chemical swelling of the medium is very similar to heat 
expansion where pure volume expansion is produced under thermal load. The 
variations of maximum displacement versus ionic concentration are shown in 
Fig.5.3. The displacements increase linearly along with an increase in the ionic 
concentration. It is noted that the maxima of displacements Ux and uy do not 

appear at the same point. The maximum of U x occurs at the ends of the upper 

boundary, while the maximum of uy is at the center of the upper boundary. It 

is shown that the maxima of displacements Ux and uy are very different 

Fig.5.2 Swelling of a rectangular plate under chemical load 
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because of the difference of ionic distribution in two directions. On the upper 

boundary, even distribution of the ions with maximum values occurs in the x 

direction and consequently relatively large displacement in the x direction is 

found. Symmetry of the deformation is also exhibited in the x direction. In 

contrast, the ionic distribution in the y direction varies linearly, and the 

maximum of uy is the accumulation of displacement in the y direction. 

Therefore, a comparatively small maximum displacement occurs in the y 

direction. 

4.0X 10- 5 

a 3.5 X 10-5 

~ 3.0 X 10-5 
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8 2.5 x 10- 5 

!l 
.~ 2.0 X 10- 5 
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Fig.5.3 Variations of maximum displacement versus ionic concentrations 

Example 2 A rectangular strip subjected to a chemical stimulus on its 

longer side. 

Consider a 0.01 mxO.004 m rectangular strip with a displacement-free 

boundary on the lower side and traction-free boundaries on the remaining sides. 

A chemical stimulus is applied to the strip on one of its longer sides. The 

unique interest in this problem is that deformation of the medium can be 

affected by the geometry and constraints of the sample under applied chemical 

load. 

The ionic diffusion results in a linear distribution of ions in the strip. The 

calculated deformation of the strip is shown in Fig. 5.4. In contrast with 

Example 1, a bending deformation of the strip appears, due to the 

non-symmetric swelling which leads to different expansions on the two 

opposite sides of the strip. It is concluded that the deformation model for the 

whole of the sample can be controlled by applying proper constraints on the 
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boundaries. The same phenomenon for a gel fiber has already been 

demonstrated in [23]. This example illustrates the capability of the present 

theory for modelling the deformation of coupled media under chemical 

stimulus. 

Fig.S.4 Bending deformation of a strip under chemical load 

A theoretical model and FE formulation were developed in this chapter, 

based on the proposed governing equations of coupled thermal, electrical, 

chemical and mechanical fields. Using the proposed four-field equations a 

variational principle for deriving the FE formulation can be easily be 

constructed. Coupling between the chemical field and the other fields is 

enforced. Thus the resulting FE procedure is fully coupled in terms of the four 

fields. Two numerical examples were considered to illustrate the application of 

the FEM and to verify the proposed theory. 

A linearly constitutive relation was obtained using the concept of extended 

Gibb's free energy. The materials parameters for the chemo-mechanical 

coupling problem were discussed from theoretical estimations and their 

dimensions. It was shown that material parameters in the present linear model 

are coordinated with the physical constants in classical physical chemistry. 
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Chapter 6 Thermo-electro-elastic bone remodelling 

6.1 Introduction 

In Chapters 3 and 4, the multi-field theories of thermo-electro-elastic and 

thermomagneto-electro-elastic problems were presented. Applications of the 

theory to bone remodelling are described in this chapter. Bone is a kind of 

dynamically adaptable material. Like any other living system, it has 

mechanisms for repair and growth or remodelling, and mechanisms to feed its 

constituent parts and ensure that any materials needed for structural work are 

supplied to the correct area as and when required. These bone functions are 

performed via three types of bone cell: osteoblast, osteoclast, and osteocyte. 

Osteoblasts are cells that form new bone and are typically found lining bone 

surfaces that are undergoing extensive remodelling. Osteoclasts are large, 

multinucleated, bone-removing cells. Their function is to break down and 

remove bone material that is no longer needed or that has been damaged in 

some way. The third cell type is the osteocyte. Osteocytes, called the bone 

"sensor cells", are responsible for sensing the physical environment to which 

the skeleton is subjected. Osteocytes are characterized by many protoplasmic 

processes, or dendrites, emanating from the cell body. These cell dendrites form 

a communication network with surrounding cells, other osteocytes, osteoblasts, 

and possibly osteoclasts, which passes the signals from the osteocytes that 

control the action of osteoblasts osteoclasts. The activities of these three cell 

populations, and numerous other biological and biochemical factors, are 

coordinated in a continuous process throughout our lives to maintain a strong, 

healthy skeleton system. 

It should be noted that applications of the multi-field theory to bone 

remodelling have been the subject of fruitful scientific attention by many 
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distinguished researchers (e.g. Fukada and Yasuda [1,2], Kryszewski [3], 

Robiony [4], Qin and Ye [5] and others). Early in the 1950s, Fukada and Yasuda 

[1,2] found that some living bone and collagen exhibit piezoelectric behaviour. 

Later, Gjelsvik [6] presented a physical description of the remodelling of bone 

tissue, in terms of a very simplified form of linear theory of piezoelectricity. 

Williams and Breger [7] explored the applicability of stress gradient theory for 

explaining the experimental data for a cantilever bone beam subjected to 

constant end load, showing that the approximate gradient theory was in good 

agreement with the experimental data. Guzelsu [8] presented a piezoelectric 

model for analysing a cantilever dry bone beam subjected to a vertical end load. 

Johnson [9] et al. further addressed the problem of a dry bone beam by 

presenting some theoretical expressions for the piezoelectric response to 

cantilever bending of the beam. Demiray [10] provided some theoretical 

descriptions of electro-mechanical remodelling models of bones. Aschero [11] 

et al. investigated the converse piezoelectric effect of fresh bone using a highly 

sensitive dilatometer. They further investigated the piezoelectric properties of 

bone and presented a set of repeated measurements of coefficient d23 on 25 cow 

bone samples [12]. Fotiadis [13] et al. studied wave propagation in a long 

cortical piezoelectric bone with arbitrary cross-section. EI-Naggar and 

Abd-Alla [14], and Ahmed and Abd-Alla [15] further obtained an analytical 

solution for wave propagation in long cylindrical bones with and without cavity. 

Silva [16] et al. explored the physicochemical, dielectric and piezoelectric 

properties of anionic collagen and collagen-hydroxyapatite composites. 

Recently, Qin and Ye [5], and Qin [17] et al. presented a thermo-electro-elastic 

solution for internal and surface bone remodelling, respectively. Accounts of 

most of the developments in this area can also be found in [3, 18]. In this chapter, 

however, we restrict our discussion to the findings presented in [5, 17, 18, 27]. 

6.2 Thermo-electro-elastic internal bone remodelling 

6.2.1 Linear theory of thermo-electro-elastic bone 

Consider a hollow circular cylinder composed of linearly thermo- piezoelectric 

bone material subjected to axisymmetric loading. The axial, circumferential and 
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normal to the middle-surface co-ordinate length parameters are denoted by z, e 
and r, respectively. Using the cylindrical coordinate system, the constitutive 

equations (3.6.6) can be rewritten in the form [5,19] 
(jrr =cII&rr +CI2 &OO +cl3 &zz -e3l E z -AliT 

(joo =cI2 &rr +CII&OO +c13 &zz -e3l E z -AliT 

(jZ? = Cl3 &,.r + cl3&ee + C33&zz - e 33 E z - A33T 

(jzr =c44 &zr -elSE,., Dr =e1S &zr +KIIE,. 

D z = e 31 (&,.r + &00) + e33 &zz + K 33 E z - P3T 

(6.2.1) 

where ~ is the heat intensity. The associated strains, electric fields, and heat 

intensities are respectively related to displacements U;, electric potential ¢, and 

temperature change T as 
Ur 

err =U r.r ' &00 =- &zz =Uz,z &zr =Uz,r +Ur,Z 
r 

Er = -¢,r E z = -¢,z' W,. = -T,r' Wz = -T,z 

(6.2.2) 

For quasi-stationary behaviour, in the absence of a heat source, free electric 

charge and body forces, the set of equations for thermo-piezoelectric theory of 

bones is completed by adding the following equations of equilibrium for heat 

flow, stress and electric displacements to Eqs. (6.2.1) and (6.2.2). 

(6.2.3) 

6.2.2 Adaptive elastic theory 

Adaptive theory is used to model the normal adaptive processes that occur in 

bone remodelling as strain controlled mass deposition or resorbtion processes 

which modify the porosity of the porous bone material [20]. In the adaptive 

elastic constitutive equation presented in [20], the authors introduced an 

independent variable which is a measure of the volume fraction of the matrix 

structure. Let ~ denote the volume fraction of the matrix material in an 

unstrained reference state and assume that the density of the material 

composing the matrix is constant. Thus the conservation of mass will give the 

equation governing ~. Then an important constitutive assumption was made [20] 



210 Chapter 6 Thermo-e1ectro-e1astic bone remodelling 

that, at constant temperature and zero body force, there exists a umque 

zero-strain reference state for all values of r;. Thus r; may change without 

changing the reference state for strain. One might imagine a block of porous 

elastic material with the four points, the vertices of a tetrahedron, marked on 

the block for the purpose of measuring the strain. When the porosity changes, 

material is added or taken away from the pores, but if the material is unstrained 

it remains so and the distance between the four vertices marked on the block do 

not change. Thus r; can change while the zero-strain reference state remains the 

same. Keeping this in mind, a formal definition of the remodelling rate e (the 

rate at which mass per unit volume is added to or removed from the porous 

matrix structure) and free energy If' can be given [20]. 
e = e(r/J, F), 'P = 'P(r/J, F) (6.2.4) 

where r/J is the volume fraction of the matrix, and F stands for deformation 

gradient. More detailed discussion of this formulation (6.2.4) is found in [20]. 

Considering the adaptive property discussed above, the traditional elastic 

stress-strain relationship becomes [20] 

(Jij =(r/Jo +e)Cijkl(e)ckl' e=A*(e)+Aij(e)cij (6.2.5) 

where r;o is a reference volume fraction of bone matrix material, e is a change in 

the volume fraction of bone matrix material from its reference value r;o, 
Ciikm (e) is the stiffness matrix dependent upon the volume fraction change e, 

and A * (e) and Au( e) are material constants also dependent upon the volume 

fraction change e. Eq. (6.2.5) is deduced from mass balance considerations. 

When e is very small, Eq. (6.2.5) can be approximated by a simple form 

(6.2.6) 

where Co, Cp C2 , Ai~' and At are material constants. When r;o is one and e 

is zero the stress-strain relation (6.2.5) is reduced to Hooke's law for a solid 

elastic material. In this situation all the pores of the bone matrix would be 

completely filled with bone material. 

The bone remodelling equation (6.2.5) can be extended to include the 

effect of thermal and electric fields by introducing some new terms as [5] 

e= A*(e)+ A,E(e)Er + A; (e)Ez + A:'. (e)(crr +Cgg)+ A:~(e)czz + A,6~(e)crz (6.2.7) 

where AiE ( e) and Ai;' (e) are material coefficients dependent upon the volume 

fraction e. Eqs.(6.2.1)~(6.2.3) together with Eq.(6.2.7) form the basic set of 
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equations for the adaptive theory of internal piezoelectric bone remodelling. 

6.2.3 Analytical solution of a homogeneous hollow circular 
cylindrical bone 

We now consider a hollow circular cylinder of bone subjected to an external 

temperature change To, a quasi-static axial pressure load P, an external pressure 
p and an electric load ¢" (orland ¢b) . The boundary conditions are 

T=O, (Jrr =(JrB =(Jrz =0, ¢=¢a' at r=a 

T=To, (Jrr =-p, (Jr() =(Jrz =0, ¢=¢h' at r=b 
(6.2.8) 

and 

(6.2.9) 

where a and b denote, respectively, the inner and outer radii of the bone, and S is 

the cross-sectional area. For a long bone, it is assumed that all displacements, 

temperature and electrical potential except the axial displacement Uz are indepen­

dent of the z coordinate and that Uz may have linear dependence on z. Using (6.2.1) 

and (6.2.2), differential equations (6.2.3) can be written as 

[~+~~)T=O C [~+~~ __ I)u =A- 8T 
8r 2 r 8r '11 8r 2 r 8r r2 r II 8r 

(6.2.10) 

C [~+~~)u +e [~+~~)¢=O 
44 8r2 r 8r z 15 8r 2 r 8r 

(6.2.11) 

(6.2.12) 

The solution to the heat conduction equation (6.2.10) satisfYing boundary 

conditions (6.2.8) can be written as 

T = In(r I a) To 
In(bl a) 

(6.2.13) 

It is easy to prove that eqs.( 6.2.1O)~( 6.2.12) will be satisfied if we assume 

B(t) mr[ln(r I a) -1] 
ur =A(t)r+-+ (6.2.14) 

r Cll 

U z = zC(t) + D(t)ln(r I a), ¢ = F(t)ln(r1 a) + ¢a (6.2.15) 

where A, B, C, D and F are unknown variables to be determined by introducing 
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boundary conditions, and (ij = AI ITo . Substituting Eqs.(6.2.14) and (6.2.15) 
21n(b / a) 

into Eq. (6.2.2), and later into Eq.(6.2.1), we obtain 

B(t) -[C12 ( r J r] (}rr =A(t)(cII +cIJ--z-(CII -cI2 )+c13 C(t)+m - In--l -In-
r SI a a 

(6.2.16) 

B(t) -[CI2 r r ] 
(}fIfi = A(t)(cII + C12 ) +-2-(CII -CI2 ) + C13 C(t) + m -In--In--l 

r Cll a a 

(6.2.17) 

(6.2.18) 

(6.2.19) 

D
z 

=2A(t)e31 +C(t)e33 +(ij~[2In(r/a)-I]-P3To In(r/a) 
CII In(b/ a) 

(6.2.20) 

The boundary conditions (6.2.8) and (6.2.9) of stresses and electric potential 

require that 

c44 D(t) + elsF(t) = 0, rA = F(t) In(b / a) + ¢a 
B(t) C I2 _ 

A(t)(CII +CI2 )--2-(CII -cI2 )+c13C(t)--m=0 
a C II 

(6.2.21) 

(6.2.22) 

B(t) -[CI2 ( b J b] A(t)(cII +CIJ--
2
-(CII -cIJ+c 13 C(t)+m - In--l -In- =-p 

b clI a a 

where 

2 2[ *] * neb - a ) 2A(t)CI3 + C(t)C33 - F; To + F2 To =-P 

(6.2.23) 

(6.2.24) 

F;*= 1 [C13AII_A33), F;=nbZ[~AII-A33) (6.2.25) 
In(b/a) CII 2 CII 

The unknown functions A(t), B(t), CCt), D(t) and F(t) are readily found from 
Eqs.(6.2.21)~(6.2.24) as 

1 { *[ * ] _ C33 C I2 F;To + pet) * } A(t) = -* c33 fJI fJ2 To + pet) + m -- + z 2 CI3 - FI TOCI3 
F3 Cll neb -a ) 

B(t) = a
2 
fJ;[fJ;To + pet)] 

clI - cl2 

(6.2.26) 

(6.2.27) 
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where 

* 2 * b
2 

/32*=&[5.L+ 1) F3 =C33 (CII +CI2 )-2cI3 , /31 = (a 2 _b 2 )' 2 Cll 

(6.2.28) 

(6.2.29) 

(6.2.30) 

(6.2.31) 

Using expressions (6.2.26)~(6.2.30), the displacements Un Uz and electrical 

(6.2.32) 

(6.2.33) 

(6.2.34) 

The strains and electric field intensity appearing in Eq.(6.2.7) can be found by 
substituting Eqs.(6.2.13) and (6.2.32)~(6.2.34) into Eq.(6.2.2). They are, 
respectively, 

1 { *[ * ] _ C33CI2 F;To + P(t) * } 
Brr = -* c33 /31 /32 TO + pet) + {J}-- + 2 2 Cl3 - FI TOcl3 -

F3 CII n(b -a ) 

a2 /3:[/3;To + pet)] mln(r/a) 
2 + (6.2.35) 

r (CII - cl2 ) Cll 

1 { *[ * ] _ C33 CI2 F;To + pet) *} 
Bee = -* c33 /31 /32 To + pet) + {J}-- + 2 2 Cl3 - F; TOcl3 + 

F3 CII n(b -a ) 

a2 /3:[/3;To + pet)] m[ln(r / a) -1] 
2 + (6.2.36) 

r (cll - C12 ) Cll 



214 Chapter 6 Thermo-e1ectro-e1astic bone remodelling 

(6.2.37) 

eIS(¢b -¢a) 
&r =-

- rc44 In(b/a) 
(6.2.38) 

E = (¢b -¢J 
r rln(b/ a) 

(6.2.39) 

Then substituting the solutions (6.2.35)~(6.2.39) into Eq.(6.2.7) yields 

. * 2 A,";, { *[ * ] _ C33C I2 F;To + Pet) *} e = A (e) + -,-, c33 fJI fJ2 TO + pet) + OJ-'-- + 2 2 C13 - F; TOC13 + 
~ ~1 n0 -a ) 

A:rw[2In(r/a)-1] A:z {[F.*T _ F;To +P(t)]( )_ 
+ * 110 2 2 C 11 +C12 

ClI F3 neb -a ) 

(6.2.40) 

Since we do not know the exact expressions of the material functions 

A* (e), AiE (e), Ai; (e), Cij, eij, Ajj, KJj and %3' the following approximate forms of 

them, as proposed by Cowin and Van Buskirk [21] for small values of e, are used 

here 
A* (e) = Co + C1e + C2e

2
, A;E (e) = A;EO + eA;EI, A~ (e) = A~o + eA~1 (6.2.41) 

and 

(6.2.42) 

where 

p~ and pj are material constants. Using these approximations the remodelling 

rate equation (6.2.40) can be simplified as 

e=a(e 2 -2fJe+r) (6.2.43) 

by neglecting terms of e3 and the higher orders of e, where a, fJ and rare 
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constants. The solution to Eq. (6.2.43) is straightforward and has been discussed 

by Hegedus and Cowin [22]. For the reader's benefit, the solution process is 

briefly described here. Let e1 and e2 denote solutions to e2 - 2fJe + r = 0, i.e. 

(6.2.44) 

When fJ2 < r , e1 and e2 are a pair of complex conjugate, the solution of 

Eq.(6.2.43) is 

e(t) = fJ + ~(r - fJ2) tan[at~(r - fJ2) + arctan ~(r - fJ2) 1 
fJ - eo 

where e=eo is initial condition. When fJ2 = r, the solution is 

Finally, when fJ2 > r, we have 

(6.2.45) 

(6.2.46) 

(6.2.47) 

Since it has been proved that both solutions (6.2.45) and (6.2.46) are 

physically unlikely [21], we will use the solution (6.2.47) in our numerical 

analysis. 

6.2.4 Semi-analytical solution for inhomogeneous cylindrical bone 
layers 

The solution obtained in the previous section is suitable for analyzing bone 

cylinders if they are assumed to be homogeneous [21]. It can be useful if 

explicit expressions and a simple analysis are required. It is a fact, however, 

that all bone materials exhibit inhomogeneity. In particular, for a hollow bone 

cylinder, the volume fraction of bone matrix materials varies from the inner to 

the outer surface. To solve this problem we present here a semi-analytical 

model. 

Considering Eqs.(6.2.1), (6.2.2) and (6.2.3) and assuming a constant 

longitudinal strain, the following first-order differential equations can be 

obtained [5]: 
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T (6.2.48) 

where Ij/ = ell - e l
2
2 / ell' In the above equation, the effect of electrical potential 

is absent. This is because it is independent of Ur and O'r' The contribution of 

electrical field can be calculated separately as described in the previous section 

and then included in the remodeling rate equation. 

Assuming that a bone layer is sufficiently thin, we can replace r with its 

mean value R, and let r=a+s, where 0 ~ s ~ h, a and h are the inner radius and 

the thickness of the thin bone layer, respectively. Thus, Eq. (6.2.48) is reduced 

to 

:,[;J} ~~ c,,~-lJ l R2 R J 

r 
_5l 1 r ~ • ell ell T 

5 zz + 
el3 (1-~12 / ell) (e12 / e1~ -1),111 

The above equation can be written symbolically as 
o 
-[F] = [G][F] +[HL ] + [HT ] os 

where[G], [HL] and [Hr] are all constant matrices. 

(6.2.49) 

(6.2.50) 

Equation (6.2.50) can be solved analytically and the solution is [23] 

[ 
ur (s) ] = e[G]s [ur (0) ] + f >[G](s-r)[HL]d r + f >[G](s-r)[Hr]d r (6.2.51) 
O'rr(s) 0'1/.(0) 

where ur(O) and O'rr (0) are, respectively, the displacement and stress at the 

bottom surface of the layer. Rewrite Eq.(6.2.51) as 

[F(s)] = [D(s)][F(O)] + [D L ] + [DT ] (6.2.52) 
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The exponential matrix can be calculated as follows 
[D(s)] = e[G]s = ao(s)J + a l (s)[G] 

where ao(s) and a l (s) can be solved from 

ao(s)+atCs)pl =efJ]S 

ao(s) + a l (S)p2 = efJ2s 

(6.2.53) 

(6.2.54) 

In Eq.(6.2.54) PI and 132 are two eigenvalues of [G], which are given by 

[PI] = __ 1 ± _1 ~5 _ 4 cl2 (6.2.55) 
132 2R 2R Cll 

Considering now s=h, i.e. the external surface of the bone layer, we obtain 
[F(h)] = [D(h)][F(O)] + [DL ] + [DT ] (6.2.56) 

The axial stress applied at the end of the bone can be found as 

[ ) [ 2) [ ) C I2 U cl3 cl3 cl3 
(}zz =cl3 1-- -+ C33 -- &zz +-(}rr + -All -,1,33 T 

CII R CII CII CII 

(6.2.57) 

The stress problem can be solved by introducing the boundary conditions 

described on the top and bottom surfaces into Eq.(6.2.56) and 

If [ [ CI2 ) U [ CI
2
3 ) c13 

S c13 1-- -+ C33 -- &zz +-(}rr + 
Cll R Cll Cll 

[ ::; A" -,l,} 1 dS = -P'(t) (6.2.58) 

where P'(t) is the axial force excluding the effect of electric field. 

For a thick-walled bone section or a section with variable volume fraction 

in the radial direction, we can divide the bone into a number of sub-layers, each 

of which is sufficiently thin and is assumed to be composed of a homogeneous 

material. Within a layer we take the mean value of volume fraction of the layer 

as the layer's volume fraction. As a consequence, the analysis described above 

for a thin and homogeneous bone can be applied here for the sub-layer in a 

straightforward manner. For instance, for thej-th layer, Eq. (6.2.56) becomes 

[FU\hj )] = [DU\hj)][FU)(O)]j + [DiJ)] + [D}j)] (6.2.59) 

where hi denotes thickness ofthej-th sub-layer. 

Considering the continuity of displacements and transverse stresses across 

the interfaces between these fictitious sub-layers, we have 
[F(j) (h)] = [F(J+I)(O)] (6.2.60) 

After establishing Eq.(6.2.59) for all sub-layers, the following equation can be 
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obtained by using Eqs.(6.2.59) and (6.2.60) recursively: 
[F(hN)] = [D(N) (hN )][F(hN_I)] + [DiN)] + [D~N)] 

[D(N) (hN)] {[D(N-I) (hN_I )][F(hN_2)] + [Dt-I)] + [D~N-I)]} + [DiN)] + [D~N)] 

= [D(N) (hN )][D(N-I>ChN_I )][F(hN_2)] + 

[D(N)(hN)] {[DiN-I)] + [D~N-I)]} + [DiN)] + [D~N)] 

= [D(N) (hN )][ D(N-I) (hN_I )][ D(N-2) (hN-J]···[ D(N- j) (hN_ j )][ F(hN_ j_I)] + 

[D(N) (hN )][D(N-I) (hN_I)] .. ·[D
N- j+l (hN_ j+l)] {[Dt- j)] + [D~N-j)]} + 

[D(N) (hN )][ D(N-l) (hN-
1
)]···[ D N- j+2 (hN_ j+2)] {[ DIN- j+l)] + 

[D~N-j+l)]} + ... + [D(N)(hN)] {[DfV- 1)] + [DVV-l)]} + [DiN)] + [D~N)] 

= ['P'][F(O)] + [.Q] (6.2.61) 

where 
1 

['P'] = I1[D(j) (h)] 
i~N 

< {} (6.2.62) 
[.Q] = ~ D[D(j\h)] {{[Dt-1)]+ [D~N-I)]} + {[Dt)] + [Dt)]} } 

It can be seen that Eq.(6.2.61) has the same structure and dimension as 

those of Eq.(6.2.56). After introducing the boundary condition imposed on the 

two transverse surfaces and considering Eq.(6.2.58), the surface displacements 

and/or stresses can be obtained. Introducing these solutions back into the 

equations at sub-layer level, the displacements, stresses and then strains within 

each sub-layer can be further calculated. 

6.2.5 Internal surface pressure induced by a medullar pin 

Prosthetic devices often employ metallic pins fitted into the medulla of a long 

bone as a means of attachment. These medullar pins will cause the bone in the 

vicinity of the pin to change its internal structure and external shape. In this 

section we introduce the model presented in [17,18,21] for external changes in 

bone shape. The theory is applied here to the problem of determining the changes 

in external bone shape that result from a pin force-fitted into the medulla. The 

diaphysial region of a long bone is modelled here as a hollow circular cylinder, 
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and external changes in shape are changes in the external and internal radii of the 

hollow circular cylinder. 

The solution of this problem can be obtained by decomposing the problem 

into two separate sub-problems: the problem of the remodelling of a hollow 

circular cylinder of adaptive bone material subjected to external loads, and the 

problem of an isotropic solid elastic cylinder subjected to an external pressure. 

These two problems are illustrated in Fig. 6.1. 

Fig. 6.1 Decomposition of the medullar pin problem into two separate sub -problems 

For an isotropic solid elastic cylinder subjected to an external pressure p(t) , 

the displacement in the radial direction is given by 

-(2,u + A)p(t)r 
u = --'-'----"-"---'--'--

2,u(3A + 2,u) 
(6.2.63) 

where A and,u are Lame's constants for an isotropic solid elastic cylinder. 
In this problem we calculate the pressure of interaction pet) which occurs 

when an isotropic solid cylinder of radius ao + 6 / 2 is forced into a hollow 

adaptive bone cylinder of radius ao' 

Let a and b denote the inner and outer radii, respectively, of the hollow 

bone cylinder at the instant after the solid isotropic cylinder has been forced into 

the hollow cylinder. Although the radii of the hollow cylinder will actually 

change during the adaptation process, the deviation of these quantities from 

a and b will be a small quantity negligible in small strain theory. 

At an arbitrary time instant after the two cylinders have been forced together 
the pressure of the interaction is PI (t). The radial displacement of the solid 

cylinder at its surface is 
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-(2f1 + A)PI (t)a 
U - ---'---=-------'-"---'--'----'-

I - 2f1(3A + 2f1) 
(6.2.64) 

Using the expression (6.2.32), the radial displacement of the bone at its inner 

surface is obtained as 

a { * * _ C33 CI2 F;To + pet) * } 
U 2 = -* c33 /31 [/32 To - PI (t) + pet)] + OJ --+ 2 2 C\3 - F; TOc\3 + 

F3 CII neb - a ) 

a/3;[/3;To - PI (t) + pet)] OJa 
(6.2.65) 

Since it is assumed that the two surfaces have perfect contact, the two 

displacements have the following relationship: 
6 

au + - + ul = ao + u2 2 
(6.2.66) 

Hence we find 
6=2(U2 -u I ) (6.2.67) 

Substituting Eqs. (6.2.64) and (6.2.65) into Eq. (6.2.66), and then solving 
Eq.(6.2.66) for PI (t) we obtain 

1 o[ b
2 

1 1 : p,(t)~- II ~- H, b' -a' +H, b' -a' +H, In(~l 

2 c13P(t) 
H=---

2 F* 
3 n 

(6.2.68) 

(6.2.69) 

(6.2.70) 

(6.2.71) 

(6.2.72) 

Eq.(6.2.68) is the solution of the internal surface pressure induced by an 

inserting medullar pin. 
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6.2.6 Numerical examples 

As numerical illustration of the proposed analytical and semi-analytical solutions, 

we consider a femur with a=25 mm and b=35 mm. The material properties 

assumed for the bone are 
CII = 15(1 + e) GPa, CI2 = CI3 = 6.6(1 + e) GPa, C33 = 12(1 + e) GPa 

C44 =4.4(1+e) GPa, ~I =0.621(1+e)x105NK- Im-2 

..133 = 0.551(1 + e) x 105 NK- Im -2, P3 = 0.0133(1 + e) CK- Im-2 (6.2.73) 

e31 = -0.435(1 + e) C/m 2
, e33 = 1.75(1 + e) C/m 2 

el5 = 1.14(1+ e)C/m2 , KII =l11.5(1+e)Ko, K33 = 126(1+e)Ko 

Ko = 8.85 X 10- 12 C2 INm 2 = permittivity of free space 

The remodelling rate coefficients are assumed to be 

and 

Co = 3.09 X 10-9 S- I , CI = 2 X 10-7 S- I, C2 = 10-6 S- I 

A:'O = A,:
I = A:zo = A:zI = A,:o = AI:

I = 10-5 S-I 

ArEo = AIEl = 10-15 m/(V os)=10-15 C/(Nos) 

The initial inner and outer radii are assumed to be 
ao =25 mm, bo =35 mm 

and eo=O is assumed. In the calculation, ur(t)« ao has been assumed for the 

sake of simplicity, i.e., aCt) and b(t) may be approximated by ao and boo 

(1) A hollow, homogeneous circular cylindrical bone subjected to various 

extemalloads. 

To analyse remodelling behaviour affected by various loading cases we 

distinguish the following five loading cases: 
CD pet) = n x 2 MPa (n=1 , 2, 3, 4), P(t)=1500 N, with no other types of 

load applied. 

Table 6.1 lists the results at some typical time instances obtained by both the 

analytical and semi-analytical solutions. The semi-analytical solution is obtained 

by dividing the bone into N (= 1 0, 20, 40) sub-layers. It is evident from the table, 

and also from other extensive comparisons that are not shown here, that the 

solutions have excellent agreement on the change rate of porosity e. Hence, for 

the numerical results presented below, no references are given regarding which 

method is used to obtain the solution, unless otherwise stated. It is also evident 

from the table that the numerical results will gradually converge to the exact 
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value as the layer number N increases. 

Table 6.1 Comparison of porosity e obtained by analytical and semi-analytical solution 

(P=ISOO N,p=2 Mpa) 

Time (sec) SOO 000 1000000 I SOO 000 2000000 

N=10 7.283x lO-5 l.S33 x l0-4 2.423x lO-4 3.406x lO-4 

Semi-analytical N=20 7.294x lO-5 I.S36x JO-4 2.427x lO-4 3.412x 10-4 

N=40 7.297x 10-5 l.S36x l0-4 2.428x lO-4 3.413 x lO-4 

Analytical 7.298x lO-5 1.536x l0-4 2.428x JO-4 3.414x 10-4 

The extended results for this loading case are shown in Fig. 6.2 to 
demonstrate the effect of external pressure on the bone remodelling process. It is 
evident that there is a critical value P rO' above which the porosity of the femur 

will be reduced. The critical value PrO in this problem is approximately 

2.95 MPa. It is also evident that the porosity of the femur increases along with the 
increase of external pressure p. 

0.01 

0.00 ~~~~~~~~m==::::::::::::::::::::= 
- 0.01 F-
-0.Q2 
-0.03 
-0.04 
-0.05 
-0.06 
-0.07 

., - 0.08 
- 0.09 
-0.10 
- 0.1 1 
-0.12 
-0.13 
-0.14 
-0.15 
- 0.16 
-0.17 

__ p=2MPa 

_p=4 MPa 
__ p=6MPa 

_p=8MPa 

- 0.18 '-------'_----L_---'-_---'-_---'-_--'-_--'-_----'--_-'--_..L..----' 

0.0 0.5 1.0 2.0 2.5 

Fig.6.2 Variation of e with time t (tPb - tPa = To = 0 and P = IS00 N) 

® P=1500 N and internal pressure is produced by inserting a rigid pin 

whose radius a' is greater than a. 

The values of e as a function oft for a*-a=O.Ol mm, 0.03 mm, and 0.05 mm 

are shown in Fig. 6.3. It is interesting to note that for the three cases, the bone 

structure at the pin-bone interface adapts itself initially to become less porous and 
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then to a state with even less porosity. This is followed by a quick recovery of 

porosity, indicated by a sharply decreased value of e. As time approaches infinity, 

the bone structure stabilizes itself at a moderately reduced porosity. Although 

dramatic change of the remodelling constant is observed during the remodelling 

process, it is believed that the effect of the change on bone structures is limited by 

the fact that the duration of the change is very short compared to the entire 

remodelling process. This result coincides with Cowin and Van Buskirk's [21] 

theoretical observation which showed that a bone structure might tend to a 

physiologically impossible bone structure in finite time. Both of these have been 

observed clinically and classified as osteoporosis (excess density with the 

maximum value of e) and osteopetrosis (excess porosity with the minimum value 

of e) , respectively. Fig.6.3 also shows the variation of e against the tightness of fit. 

It is evident that the tightness of fit has significant effects on the remodelling 

process, especially during the time period when the abrupt change of porosity 

occurs. It must be mentioned here is that the remodelling rate for this period can 

only serve as an indication of the modelling process, since equation (6.2.43) is 

only valid for predicting a low remodelling rate. Thus, detailed analysis of the 

equation will not provide any further reliable information. More sophisticated and 

advanced remodelling models are apparently needed. Nevertheless, the prediction 

does suggest that the possibility exists of loss of grip on the pin, or of high level 

tensile stresses in the bone layer surrounding the pin that may induce cracks. 
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40 

Fig.6.3 Variation of e with time induced by a solid pin 

50 



224 Chapter 6 Thermo-electro-elastic bone remodelling 

® To(t) = lOoe, 20oe, 30oe, 40T. 

Fig.6.4 shows the effects of temperature change on bone remodelling rate at 
r = bo when rPb - rPa =p(t)=P(t)=O. In general, low temperature induces more 
porous bone structures, while a warmer environment may improve the 

remodelling process with a less porous bone structure. After considering all other 

factors, it is expected that there is a preferred temperature under which an ideal 

remodelling rate may be achieved. 

-- To=10 'c 
0.016 - To=20 'C 

-- To=30 'c 
~ To=40 'c 

0.012 

., 0.008 

0.004 

0.0 0.5 1.0 2.0 2.5 

Fig. 6.4 Variation of e with time t for several temperatures ( ¢b - ¢a = P = P = 0) . 

@) rPb - rPa = - 60 V, - 30 V, 30 V, and 60 V, r = bo, and To=p=P=O. 

Fig. 6.5 shows the variation of e with time t for various values of electric 

potential difference with To=p=P=O. It can be observed from Fig. 6.5 that there 

are no significant differences between the remodelling rates when the external 
electric potential difference rPb - rPa changes from - 60 V to 60 V, though it is 

observed that the remodelling rate increases as the electric potential difference 

deceases. However, the result does suggest that the remodelling process may be 

improved by exposing a bone to an electric field. Further theoretical and 

experimental studies are needed to investigate the implication of this in medical 

practice. 
@ rPb - rPa = - 60 V, - 30 V, 30 V, and 60 V, pet) = 2 MPa, P(t)=1500 N, 

and To=O. 
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10 
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Fig. 6.5 Variation of e with time t for several potential differences ( To = p = p = 0) 

This loading case is considered in order to study the coupling effect of 

electric and mechanical loads on bone remodelling rate. Fig.6.6 shows the 

numerical results of volume fraction change against different values of electric 

potential difference¢b -¢a when To=O, P(t)=1500 Nand p(t)=2 MPa. As 

observed in Fig. 6.5, it can again be seen from Fig. 6.6 that the bone remodelling 

rate increases along with the decrease of the potential difference if>o- ¢a. The 

combination of electrical and mechanical loads results in significantly different 

values of the remodelling rate when different electrical fields are applied. 

(2) A hollow, inhomogeneous circular cylindrical bone subjected to external 

loads. 

The geometrical and material parameters of this problem are the same as 

those used in the above cases except that all material constants in Eq.(6.2.73) are 
now modified by a multiplier[l-(l-~(b-r)/(b-a)], where 0 ~ ~ ~ 1 and repres­

ents a percentage reduction of stiffness at the inner surface of the bone. It is worth 

mentioning that by using the semi-analytical approach, the form of stiffness 

variation in the radial direction can be arbitrary. Fig.6.7 shows the results of eat 

the outside surface of the bone for ~=l, 0.8 , 0.6 and 0.4 The extemalloads are 

p=4 MPa, P=1500 N, T=40, and ¢b - ¢a =30 V. In general, the remodelling rate 

declines as the initial stiffness of inner bone surface decreases. When time 

approaches infinity, it is observed that the stiffness reduction in the radial 
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direction has an insignificant effect on the remodelling rate of the outside bone 

surface. This observation suggests that ignoring stiffness reduction in the radial 

direction can yield satisfactory prediction of the remodelling process occurring at 

the outside layer of the bone. 

5 
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Fig.6.6 Variation of e with time t for coupling loads (p=2 MPa, P=1500 Nand To=O) 
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Fig. 6.7 Variation of e with time t for a inhomogeneous bone subjected to coupling loads 
(p =4 MPa, P=1500 N, To=40 and ¢b - ¢a = 30 V) 
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6.3 Thermo-electro-elastic surface bone remodelling 

6.3.1 Equation for surface bone remodelling 

The electroelastic model for surface remodelling described here is based on the 

work of Cowin and Buskirk [24]. They presented a hypothesis that the speed of 

the remodelling surface is linearly proportional to the strain tensor under the 

assumption of small strain 

U(n,Q,t) = Cij(n,Q)[ sij(Q,t) - s~(Q,t) ] (6.3.1) 

where U(n, Q, t) denote the speed of the remodelling surface normal to the 

surface at the surface point Q. It is assumed the velocity of the surface in any 

direction in the tangent plane is zero because the surface is not moving 

tangentially with respect to the body. n is the normal to the bone surface at the 

point Q, s~ (Q, t) is a reference value of strain where no remodelling occurs, 

and Cij (n, Q) are surface remodelling rate coefficients which are, in general, 

dependent upon the point Q and the normal n to the surface at Q. Eq.( 6.3.1) 

gives the normal velocity of the surface at the point Q as a function of the 

existing strain state at Q. If the strain state at Q. sij (Q, t), is equal to the 

reference strain state, s;~ (Q, t) , then the velocity of the surface is zero and no 

remodelling occurs. If the right side of Eq.( 6.3.1) is positive, the surface is 

growing by deposition of material. If, on the other hand, the right side of 

Eq.(6.3.1) is negative, the surface is resorbing. 

Eq.(6.3.l) can be extended to include piezoelectric effects by adding some 

new terms as below [17,18] 

U = Cij(n,Q)[ sij(Q,t) - s~ (Q,t) ] + C;(n,Q)[ Ej(Q,t) - EjQ (Q,t) ] 

(6.3.2) 

C; are surface 
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remodelling coefficients. 

6.3.2 Differential field equation for surface remodelling rate 

We now consider again the hollow circular cylinder of bone used in Section 6.2. 

The bone cylinder is subjected to the same external load and boundary 

conditions as those in Section 6.2. 

Substituting Eqs. (6.2.35)~ (6.2.39) into Eq.(6.3.2) yields 

e b
2 

e I e 1 e 1 C e 

Ue = N J 2 2 + N2 -( ) + N3 2 2 + N4 () - 0 b -a b b -a b 
~ - a~ -

a a 

U N p b2 NP' a
2 

NP 1 NP 1 
P= J 2 2 + J 2 2+ 2 -()+ 3 2 2+ b -a b -a b b -a In -

a 

(6.3.3) 

where 

(6.3.4) 

(6.3.5) 

(6.3.6) 
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N P' -
I -

(C:' - C%e{ ~(~ -l)Ta + P(t)] 

P - 1 [ (Cp Cp) ( ) CP ] pet) N3 - -* e\3 rr + ee - ell + e l2 zz--
~ n 

(6.3.9) 

(6.3.10) 

(6.3.11) 

(6.3.12) 

(6.3.13) 

and the subscripts p and e refer to periosteal and endosteal, respectively. 

Since Ue and Up are the velocities nonnal to the inner and outer surfaces of 

the cylinders, respectively, they are calculated as 

U =_da U =db 
e dt' P dt 

(6.3.14) 

where the minus sign appearing in the expression for Ue denotes that the 

outward nonnal of the endosteal surface is in the negative coordinate direction. 

Substituting Eq.(6.3.14) into Eq.(6.3.3) yields 
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da N e b
2 

N e 1 N e 1 N e 1 C e 

-- = 1 2 2 + 2 -( ) + 3 2 2 + 4 () - 0 dt b -a I b b -a I b n - an -
a a 

(6.3.15) 

N;' (b) -Ct' 
bIn -:z 

where C{ = ct -N;. 

6.3.3 Approximation for small changes in radii 

It is apparent that Eq.(6.3.15) are non-linear and cannot, in general, be solved 

analytically. However, the equations can be approximately linearized when they 

are applied to solve problems with small changes in radii. In the bene surface 

remodelling process, we can assume that the radii of the inner and outer surface 

of the bone change very little compared to their original values. This means that 
the changes in aCt) and bet) are small. This is a reasonable assumption from 

the viewpoint of physics of the problem. To introduce the approximation the 

non-dimensional parameters 
a b 

&=--1, 7]=--1 
ao bo 

(6.3.16) 

are adopted in the following calculations. As a result, a(t) and bet) can be written 

as 
a(t)=[l+&(t)]ao , bet) = [1 + 7](t) ]bo , &, 7]« 1 (6.3.17) 

Since both & and 7] are far smaller than one, their squares can be ignored from the 

equations. Consequently, we can have the following approximations: 

b2 2 
~ 2 ao 22=Lo+2Lo- 2 (&-7]) 

b -a bo 
(6.3.18) 

2 b2 
a ~, 2,2 0 ( ) 

2 2 =Lo+ Lo -2 &-7] 
b -a ao 

(6.3.19) 

(6.3.20) 
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(6.3.21) 

1 1 1 2 

( ) 

~ - L
J 
(1 - [;) + - L

J 
([; - 7J) 

I 
b ao ao an -
a 

(6.3.22) 

1 1 1 2 

( ) 

~ - L
J 
(1- 7J) + - L

J 
([; - 7J) 

bIn ~ bo bo 
a 

(6.3.23) 

where 

(6.3.24) 

(6.3.25) 

(6.3.26) 

(6.3.27) 

Thus, Eq.(6.3.15) can be approximately represented in terms of [; and 7J, as 

follows 

(6.3.28) 

where 

(6.3.29) 

(6.3.30) 

(6.3.31) 

(6.3.32) 
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6.3.4 Analytical solution of surface remodelling 

(6.3.33) 

(6.3.34) 

An analytical solution of Eq.(6.3.28) can be obtained if smeared homogeneous 

property is assumed for bone material. In such a case, the inhomogeneous linear 

differential equations system (6.3.28) can be converted into the following 

homogeneous one: 

{ 

de' = B &' + B 7]' 
dt ) 2 

d ' ---.!L = B'&' + B' 7]' 
dt ) 2 

(6.3.35) 

by introducing two new variables such that 

{~: :~=~: (6.3.36) 

1, , 1" 
&= =--(B3B2 -B3B2), 7]= =--(B3B) -B3B\) 

detM detM 
(6.3.37) 

M = [B) B2] 
B( B~ 

(6.3.38) 

detM = B)B~ - B(B2 (6.3.39) 

The solution of Eq.(6.3.35), subject to the initial conditions that &(0) = 0 

and 7](0) = 0 , can be expressed in four possible forms that fulfil the physics of 

the problem, i.e., when t ~ =, & and 7] must be limited quantities, a < band 

the solution must be stable. The form of the solution depends on the roots of the 

following quadratic equation 

S2 - tr Ms + detM = 0 (6.3.40) 

where 
(6.3.41) 

All the theoretically possible solutions are shown as follows: 

Case 1 When (B) - B~)2 + 4B2B; > 0, B) + B~ < 0 and B)B~ - B2B; > 0, 
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Eq.(6.3.40) has two different roots, s] and S2' both of which are real and 

distinct. Then the solutions of the equations are 

I 
' -1 [( B) -SII (B ) -82

1 J & --- S2&m - 3 e + 3 -Sj&m e 
Sj -S2 

, - 1 [( B') -sit (B' ) -821J 17 --- S217= - 3 e + 3 -S]17= e 
S1 - S2 

(6.3.42) 

which can also be written as 

l
&(t) = &m + _1_[( S2&m - B3) e-s1t + (B3 - Sj&m) e-s2t J 

s] -S2 

( ) I [( ') -I· t (' ) -\ 1 J 17 t =17= +-- S217= -B3 e 'I + B3 -s117= e '2 

Sj -S2 

(6.3.43) 

The fonnulae for the variation of the radii, i.e., aCt) and b(t) , with time can be 

(6.3.44) 

The final radii of the cylinder are then 

{

a,n = lim a (t) = ao (I + &,n) 

bm =;:b(t) =bo(1+17=) 
t-->= 

(6.3.45) 

ease 2 When (B1-B~)2+4B2B;=O, Bj*B~ and Bj+B~<O, 
Eq.(6.3.40) has two equal roots, B~ + B1 . The solutions ofthe equations are 

{ [
B -B' ] } B2+BI[ 

&' = - &= + j 2 2 &= + B2 17= t e 2 

{ 
[( B'_B)2 B'-B II B

2
'+Blt 

'-_ _ 2 ] & _ 2 ] t e 2 
17 - 17m 4B2 m 2 17", 

(6.3.46) 

(6.3.47) 
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substituting Eq.(6.3.47) into Eq.(6.3.16) as 

{ [
B B' ] } B2+Bl 

a(t) =ao +ao&= -ao &= + j ~ 2 &= +B2'l= t e-2 -
t 

{ [

(B'_B)2 B'-B l} B2+Bl 
bet) = b + b 'l - b 'l - 2 j & - 2 j 'l t e 2 t 

o 0 = 0 = 4B = 2 = 
2 

(6.3.48) 

The final radii of the cylinder are then 

[

a=. =lima(t)=ao(1+&=) t-->= 
b= =limb(t) = bo(1 +'l=) 

(--ten 

(6.3.49) 

Case 3 When Bj = B~ < 0 and B2 = 0, the solutions of the equations are 

{

&' = _& eElt 

'l' = -( B;&=t + 'l=) eElt (6.3.50) 

which can also be written as 

{

&(t) = &= - &=e
Ejt 

'l(t) = 'l= - (B;&'nt + 'l=) e
Elt (6.3.51) 

The formulae for the variation of a(t) and bet) with time can be obtained by 

substituting Eq.(6.3.51) into Eq.(6.3.16) as follows: 

{

a(t) = ao + ao&= ( 1- eEl! ) 

bet) = bo + bo'l= - bo ( B; &j + 'l= ) eBl! 
(6.3.52) 

The final radii of the cylinder are then 

{

am =lima(t)=ao(1+&x,) 
(--teo 

b= = limb(t) = bo (1 + 'l=) 
!-->= 

(6.3.53) 

Case 4 When B j = B~ < 0 and B; = 0 , the solutions of the equations are 

{

&' = -( B. 2'lj + &=) e
Blt 

'l' = -'l,xeBl! 

which can also be written as 

{
&(t) = &u.' - (B2'lmt + &w) e

Blt 

'l(t) = 'l= _'l=eElt 

(6.3.54) 

(6.3.55) 

The formulae for the variation of the radii with time can be obtained by 

substituting Eq.(6.3.55) into Eq.(6.3.16). Thus 
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{

a(t) = ao + aOIi= -aO (B2 '7=t + 1i=)e811 

b(t) =bo + bo'7= (1-e B1I
) 

The final radii of the cylinder are then 

{

a= =lima(t) =ao(1+Ii=) 
!---teo 

. 

b= = limb(t) = bo(1 +'7=) 
1->= 

(6.3.56) 

(6.3.57) 

All the above solutions are theoretically valid. However, the first is the most 

likely solution to the problem, as it is physically possible when t ~ = [17, 18]. 

Therefore it can be used to calculate the bone surface remodelling. 

6.3.5 Application of semi-analytical solution to surface 

remodelling of inhomogeneous bone 

The semi-analytical solution presented in Section 6.2.4 can be used to calculate 

strains and stresses at any point on the bone surface. These results form the 

basis for surface bone remodelling analysis. This section presents applications 

of solution (6.2.61) to the analysis of surface remodelling behaviour in 

inhomogeneous bone. 

It is noted that surface bone remodelling is a time-dependent process. The 

change in the radii (Ii or '7) can therefore be calculated by using the rectangular 

algorithm of integral (see Fig. 6.8). The procedure is described here. Firstly, let 

To be the starting time and T be the length of time to be considered, and divide 

the time domain T into m equal interval !1T = T / m . At the time t, calculate 

the strain and electric field using Eqs. (6.2.35)~ (6.2.39). The results are then 

substituted into Eq.(6.3.2) to determine the normal velocity of the surface bone 

remodelling. Assuming that !1T is sufficiently small, we can replace V with 

its mean value [j at each time interval [t, t+!1T]. The change in the radii (Ii or 

'7) at time t can thus be determined using the results of surface velocity. 

Accordingly, the strain and electric field are updated by considering the change 

in the radii. The updated strain and electric field are in tum used to calculate 

the normal surface velocity at the next time interval. This process is repeated 

up to the last time interval [To + (m -l)!1T, To + T]. Fig. 6.8 shows the 

rectangular-algorithm of integral when we replace V with its initial value 

VI (rather than its mean value V) at the time interval [t, t+!1T]. 
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Fig.6.8 Illustration of the rectangular algorithm 

6.3.6 Surface remodelling equation modified by an inserting 

medullar pin 

Substituting Eq.(6.2.68) into Eq.(6.3.I5) yields 

da e b2 
e 1 e 1 e 1 

-- = Nl 2 2 + N2 -( ) + N3 2 2 + N4 () dt b -a 1 b b -a 1 b n - an -
a a 

b2 

M1Pl(t) 2 2 -C~ 
a -b 

db _ NP b
2 

NP' a
2 

NP 1 NP 1 
-- 1 2 2 + 1 2 2 + 2 -( ) + 3 2 2 dt b-a b-a b b-a In -

a 

(6.3.58) 

[ 
b2 2 J l' 

M2 2 2 +M3 2
a 

2 Pl(t)+NI () ct a -b a -b b bIn -
a 

where 

(6.3.59) 

(6.3.60) 
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M 
__ C:r -C$i1 

3 - (6.3.61) 

It can be seen that Eq.(6.3.58) is similar to Eq.(6.3.15). It can also be simplified 

as 

where 

{

de 
-=1;&+:r;7]+1; 
dt . 

d7] y,' y' y' -= \&+ 27]+ 3 
dt 

[ 

2 a~ 2 2 2 5)] H4 2LaH1 -2 + 2L2H 2aa + HJ~ +-
ba ao 

Y, ~ B, + M{ H, U: -H,L, - H,L, - H'L} 

II, [2L~II, :1 + 2L;II,h; + II,L; J] 
1; =B3 +M1H4[~ -H1 La -H2L2 -H3 L1) 

1;' =B1' -M2 [Hs (~ -HILa -H2L2 -H3L1 J+H4 X 

(6.3.62) 

(6.3.63) 

(6.3.64) 

(6.3.65) 

(6.3.66) 

[ 
2 a~ 2 2 2 )] [[ 5 ) 2LaH1 b~ + 2L2H2ba + H3 L1 - M3 H7 -;;; - HILa - H2L2 - H3 L1 -

II {2J:i11' :i + 2J3,II,hi + 11,4 )] (6.3.67) 
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y; = B~ + (M2H4 +M3H6)[ ~ -HlLO -H2L2 -H3Ll) (6.3.68) 

1 
(6.3.69) 

( 4,u + 2,1,) a~ 

Hs = ,u(3,1, + 2,u)b~ 

[
2[C33 + 1 )_ 2,u+,1, [1_a~)l2 

F 3* Cll -C12 ,u(3,1, + 2,u) b~ 

(6.3.70) 

1 
H6 =----------~~--------~--------~--

2,u+,1, +[2[C33 + 1 )_ 2,u+,1, lb~ 
,u(3,1, + 2,u) F;* Cll - C12 ,u(3,1,+2,u) a~ 

(6.3.71) 

H~; + e" ~eJ 1'(~~:;1')1~ 
(6.3.72) 

Eq.(6.3.62) is similar to Eq.(6.3.35) and can thus be solved by following the 

solution procedure described in Section 6.3.4. 

6.3.7 Numerical examples 

Consider again the femur used in Section 6.2.6. The geometrical and material 

coefficients of the femur are the same as those used in Section 6.2.6 except that 

the volume fraction change e is now taken to be zero here. In addition, the surface 

remodelling rate coefficients are assumed to be 

C,",. = -9.6 mJd , C;o = -7.2 mJd, C;z = -5.4 mJd 

C;,. =-8.4mJd, C,~ =-12.6mJd, C;o =-10.8mJd 

C~ = -9.6 mJd , C:,. = -12 mJd 

C~ = 0.000 837 3 mJd , cg = 0.000 158 43 mJd 

and &0 = 0, 770 = 0 are assumed. 

In the following, numerical results are provided to show the effect of 

temperature and external electric load on the surface bone remodelling process. 
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While the results for the effects of mechanical loading, inserted pin, and material 

inhomogeneinity on the surface remodelling behaviour are omitted here, they can 

be found in [17,18]. 

(1) Effect of temperature change on surface bone remodelling. The 

temperature is assumed to change between 29.5'C ~ 30.5 °C, i.e. To(t) = 

29.5 °C, 29.8 'C, 30 °C, 30.2 °C, 30.5 'C, while the other external loadings 

are specified as: (A -¢a =30 V, p(t) = 1 MPa, P(t)=1500 N. Fig. 6.9 and 

Fig. 6.10 show the effects of temperature change on bone surface remodelling. 

In general, the radii of the bone decrease when the temperature increases and 

they increase when the temperature decreases. It can also be seen from Figs. 6.9 

and 6.10 that & and 7J are almost the same. Since ao < bo , the change of the 

outer surface radius is normally greater than that of the inner one. The area of 

the bone cross-section decreases as the temperature increases. This also 

suggests that a lower temperature is likely to induce thicker bone structures, 

while a warmer environment may improve the remodelling process with a less 

thick bone structure. This result seems to coincide with actual fact. Thicker and 

stronger bones maybe make a person living in Russia look stronger than one 

who lives in Vietnam. It should be mentioned here that how this change may 

affect the bone remodelling process is still an open question. As an initial 

investigation, the purpose of this study is to show how a bone may respond to 

thermal loads and to provide information for the possible use of imposed 

external temperature fields in medical treatment and in controlling the healing 

process of injured bones. 
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(2) Effect of external electrical potential on surface bone remodelling. In 
this case, the coupled loading is assumed as: (A - ¢a = - 60 V, - 30 V, 30 V, and 

60V, p(t)=IMPa, P(t)=1500N, and To=O. Fig. 6.11 and Fig. 6.12 show the 

variation of Ii and '7 with time t for various values of electric potential 

difference. It can be seen that the effect of the electric potential is just the 

opposite to that of temperature. A decrease in the intensity of electric field results 

in a decrease of the inner and outer surface radii of the bone by almost the same 

magnitude. Theoretically, the results suggest that the remodelling process may be 

improved by exposing a bone to an electric field. Clearly, further theoretical and 
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Fig. 6.11 Variation of Ii with time t for several potential differences 
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Fig.6.12 Variation of 1J with time t for several potential differences 

experimental studies are needed to investigate the implications of this m 

medical practice. 

6.4 Extension to thermo-magneto-electro-elastic problem 

6.4.1 Linear theory of thermo-magneto-electro-elastic solid 

For a hollow circular cylinder composed linearly of a thermo-magneto­

electro-elastic bone material subjected to axisymmetric loading, the field 

equations described in the previous two sections can still be used by adding the 

related magnetic terms as follows [25]: 
u rr =cII Brr +C12Bee +Cl3 Bzz -e3lE z - e 3lH z -~IT 

u f}(} =cl2Brr +CII Bee +Cl3 Bzz -e3lE z -e3lH z -~IT 

u zz = c l3 Brr + c l3 Bee + C33 Bzz - e 33E z - e 33H z - ~3T 

u zr = c 44 Bzr - el SE ,. - el SH r 

D r =el Ss zr + KliEr +allHr 

D z = e3 1 (Srr + Sf}(} ) + e33 s zz + K 33 E z + a 33 H z - P 3T 

B r = el Ss zr + allEr + f.1II H r 

B z =e31(Srr +sf}(} )+e33 s zz +a33 E z +f.133 H z -V3T 

hr = krW,· , 

(6.4.1) 
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The associated magnetic field is related to magnetic potential If! , as 

(6.4.2) 

For quasi-stationary behaviour, in the absence of heat source, free electric 

charge, electric current, and body forces, the set of equations for thermo­

magneto-electro-elastic theory of bones is completed by adding Eqs. (6.2.2), 

(6.2.3) and following equation of equilibrium for magnetic induction to Eqs. 

(6.4.1) and (6.4.2) 

aBr + aBz + Br = ° 
ar az r (6.4.3) 

6.4.2 Solution for internal bone remodelling 

1. Equation for internal bone remodelling 

The extended adaptive elastic theory presented in Section 6.2 is used and 

extended to include the piezomagnetic effect as follows [26]: 

e = A* (e) + ArE (e)Er + A; (e)Ez + Gr
E (e)Hr + G; (e)Hz + 

A;'r(e)(crr + Cf)(J + A:z(e)czz +A;~(e)crz (6.4.4) 

where Gi
E (e) are newly introduced material coefficients dependent upon the 

volume fraction e. 

2. Solution for a homogeneous hollow circular cylindrical bone 

Consider again a hollow circular cylinder of bone, subjected to an external 

temperature change To, a quasi-static axial load P, an external pressure p, an 
electric potential load ¢a (or/and (A) and an magnetic potential load 

If!a (and/orlf!h ). The boundary conditions are 

T = 0, CJrr = CJrf) = CJrz = 0, ¢ = ¢a' If! = If!a' r = a 
(6.4.5) 

and 

(6.4.6) 

where a and b denote, respectively, the inner and outer radii of the bone, andS is 

the cross-sectional area. For a long bone, it is assumed that, except for the axial 
displacement uz ' all displacements, temperature and electrical potential are 

independent of the z coordinate and that U z may have linear dependence on z. 

Using Eqs. (6.2.2), (6.4.1), and (6.4.2), the differential equations (6.2.3) and 
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(6.4.3) can be written as 

[~+!~)T=O, or2 r or 
(6.4.7) 

[ 02 1 0) [ 02 1 0) _ [02 1 0) 
C -+-- U +e -+-- ¢+e -+-- V/=O 

44 or2 r or Z 15 or2 r or 15 or2 r or 
(6.4.8) 

e [~+!~)U -K [~+!~)¢-a [~+!~)V/=O 15 0r2 ror z 11 or2 ror 110r2 ror 
(6.4.9) 

e [~+!~)U -a [~+!~)¢-J1 [~+!~)V/=O 15 or2 r or Z 11 or2 r or 11 or2 r or 
(6.4.10) 

The solution of displacements Ur , uz ' and electric potential ¢ to the 

problem above in the absence of magnetic field was presented in Section 6.2. 

This section extends the results in Section 6.2 to include the piezomagnetic effect. 
It is found that temperature T, displacement U r ' and electric potential ¢ are again 

given by Eqs. (6.2.13), (6.2.32), and (6.3.24), respectively, while u_ and V/are 

as follows [26]: 

z j[ * F;1'a + pet)] * * Uz =-* F; 1'a - 2 2 (C11 +C12 )-2cl3 f31 [f321'a + p(t)]-
F" neb - a ) 

2Cl3 Cllm}_ e15 (¢b -¢a)ln(r/a) _ e15 (V/b -V/a)ln(r/a) 

Cll c44 In(b/a) c44 In(b/a) 
(6.4.11) 

In(r / a) 
V/ = In( b / a) (V/ b - V/ a) + V/ a (6.4.12) 

The strains, electric field, and magnetic field can be found by introducing the 

boundary conditions (6.4.5) and (6.4.6) into Eqs. (6.2.2) and (6.4.2). They are, 

respectively, 

1 { * [ • ] _ C33 C12 F;To + pet) .} 
Sr,. = -. C33 f31 132 To + pet) + OJ-- + 2 2 Cl3 - F; TOcl3 -

F" Cll n( b - a ) 

a2f3:[f3;To + p(t)] mln(r/a) 
2 + (6.4.13) 

r (Cll -c1J Cll 

1 { • [ * ] _ C33C12 F;To + pet) .} 
see = -. c33f3l f32 TO + pet) + OJ-- + 2 2 Cl3 - F; TOcl3 + 

F" Cll neb -a ) 

a2f3: [f3;To + p(t)] m[ In (r / a) -1] 
2 + (6.4.14) 

r (C11 - c ll ) Cll 
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s =_e,s((A-¢a) a' S(lfIb -lfIa) 
' z rc44 In(b l a) rc44 In(b l a) 

E = (¢b -¢a) H =_(lfIb -lfIa) 
r r In(b I a) , r rln(b I a) 

Substituting Eqs. (6.4.13)~(6.4.17) into Eq.(6.4.4) yields [26] 

(6.4.15) 

(6.4.16) 

(6.4.17) 

. • 2A,". { • [ • ] _ C33 C 12 F; To + pet) . } e=A (e)+-.- C33 P, P2 To+P(t) +0)--+ 2 2 c13 -F;TOC13 + 
F 3 Cll n(b -a ) 

A,,,.w[ 2ln(r I a) -1 ] A:z {[ . F; To + pet)] 
------'=~--------=-+-. F; To - 2 2 (Cll +C' 2)-

Cll F; n(b -a ) 

2c13 p:[p;To + p(t)J- 2C13C12w}_ ¢b -¢a (A,E +~A:r J-
Cll rln(b l a) C44 

IfIb -Ifla (G E +~AS ) (6.4.18) 
rln(b l a) r C

44 
zr 

Eq.(6.4.18) can be solved in a way similar to that described in Section 6.2. 

3. Numerical assessment 

As a numerical illustration of the analytical solution presented above, we 

consider again the femur used in Subsection 6.2.6. The material parameters used 

here are the same as those given in Subsection 6.2.6. The additional material 

constants for magnetic field are 

e,s = 550(1 + e) N /Am, G,EO = G,E' = 1.5 X 10-8 mI(A· d) 

We investigate the change of the volume fraction of bone matrix material from 

its reference value, which is denoted bye, in the transverse direction at several 

specific times. We also distinguish two loading cases to investigate the influence of 

magnetic and coupling loads on the bone structure. 

(1) p(t)=0 ,P=1500N , To(t)=O °C , ¢b -¢a =O, IfIb -lfIa=lA. 

Fig. 6.13 shows the variation of e with time t along the radii of bone when 

the loading case is pet) = 0 , P = 1500 N , To (t) = O°C, ¢b - ¢a = 0, 

IfIb -Ifla = lA . 
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It can be seen from Fig. 6.13 that a magnetic load has a similar influence on 

bone structure to an electric load. A magnetic load can also inhomogenize an 

initially homogeneous bone structure through the bone remodeling process. But 

essentially further experimental and theoretical investigations need to be 

developed to ascertain the exact remodeling rate coefficients and to discover the 

importance of the role played by magnetic stimuli. 
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Fig. 6.13 Variation of e with time t along the radii for magnetic load 

(2) p(t)=IMPa,P=1500N, To(t) =0.1 °C, (A -tPa =30V, 

If/b -If/a = lA . 

Fig. 6.14 shows the variation of e with time t in the transverse direction 

when subjected to coupling loads. The above loading case is considered to study 

the coupling effect of magnetoelectric and mechanical loads on bone structure. It 

can be seen from Fig. 6.14 that the function of coupled loads is the 

superimposition of the single loads. However, they are not simply linearly 

superposed. Further, the properties of bone tissue change more sharply under 

coupled loads than when it is subjected to only one load. The combination of the 

magnetic, electric, thermal and mechanical loads results in significant change in 

bone structure and properties of bone tissues. This indicates that loading coupled 

fields is more effective in modifying bone structure than loading only one kind of 

field. 



246 Chapter 6 Thermo-electro-elastic bone remodelling 

---- 0 day 
___ I day 
__ 2days 

-- 5 days 
----b- 10 days 
~20days 

-+- 30 days 
---¢- 50 days 
---t:r- 75 days 
-+- 100 days 

0.026 0.028 0.030 0.032 0.034 0.036 

r Im 

Fig. 6.14 Variation of e with time t along the radii for coupling loads 

6.4.3 Solution for surface bone remodelling 

The extended adaptive elastic theory presented in the last section is used and 

extended to include piezomagnetic effect as [27] 

U = Cij(n,Q)[ sij(Q)-sZ(Q)] + C; [Ei(Q)-EiO(Q)] + G; [Hi(Q)-H;O(Q)] 

(6.4.19) 

where Co = Crrs~, + Czzs~z + Cees~e + Crzs~z + CrE,o + CzE~ + G,.H~ + GzH~, G; 

is a surface remodeling coefficient. 

Substituting Eqs. (6.4.13)~ (6.4.17) into Eq.(6.3.19) yields [27] 

U N e b2 N e 1 N e 1 Ne 1 Ce 
e =' 2 2+2-()+32 2+4 ()-O b -a b b -a b 

~ - a~ -
a a 

a
2 

pip 1 
b' - a' + N, In (~) + N, -b=-2 -_-a-=-2 + 

(6.4.20) 

Nt l(b)+Ni'- Ct 
bIn -

a 

where 
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(6.4.21) 

(6.4.22) 

(6.4.23) 

(6.4.24) 

J.{2CI3C:~ [PI (CJ2 -1)To + P(t)]- (CII + CI2)C:~ (Sl PI - P3)rO} F" 2 CII CII 

(6.4.25) 

Nt = (C:e +C:r)PlTo 
2cII 

(6.4.26) 

(6.4.27) 

Np - 1 [ (Cp Cp) ( ) Cp ] pet) 3 --* Cl3 rr + ee - CII +C12 zz--

F" n 
(6.4.28) 

(6.4.29) 
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and the subscripts p and e refer to periosteal and endosteal surfaces, 

respectively. Since Ue and Up are the velocities normal to the inner and outer 

surfaces of the cylinders, respectively, they are calculated as 

U =_da U =db 
e dt ' P dt 

(6.4.30) 

where the mmus sIgn appeanng m the expression for Ue denotes that the 

outward normal of the endosteal surface is in the negative coordinate direction. 

Thus, equations (6.4.20) can be written as [27] 

da N e b
2 

N e 1 N e 1 N e 1 C e 

--d-t = 1 b2 _a 2 + 2 In(~) + 3 b2 _a 2 + 4 aln(~) - 0 

db _ N P b
2 

NP' a
2 

N P 1 NP 1 
-d-t - 1 b2 _ a2 + 1 b2 _ a2 + 2 In ( ~) + 3 b2 _ a2 + 

(6.4.31) 

Nt (br et 
bIn -

a 

where C{ = ct - N; . 
These equations are quite similar to those presented in Section 6.3 except 

for the additional terms related to magnetic field. Their solution procedure is 

similar to that in Section 6.3 and we omit it here for conciseness. 

As a numerical illustration of the analytical solutions above, we consider the 

femur used in Subsection 6.4.2. The material constants are assumed to be the 

same as those in Section 6.3. The additional surface remodelling constant for 

magnetic field is 
G = 10-10 mid r 

We distinguish the following three loading cases: 
(1) Ta(t) = - 0.5 °C, - 0.2 °C, O°C, 0.2°C, 0.5 °C, (A - ¢a = 30 V, 

I.f/b -I.f/a = 1 A ,p(t)= 1 MPa, P(t)=1500N. 

Fig. 6.15 shows the effects of temperature change on bone surface 

remodelling. In general, the radii of the bone decrease when the temperature 

increases and they increase when the temperature decreases. It can also be seen 
from Fig. 6.15 that [; and 7J are almost the same. Since ao < bo ,the change of 

the outer surface radius is normally greater than that of the inner surface radius. 
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The area of the bone cross section decreases as the temperature increases. This 

also suggests that a lower temperature is likely to induce thicker bone structures, 

while a warmer environment may improve the remodeling process with a less 

thick bone structure. It should be mentioned here that how this change may 

affect the bone remodeling process is still an open question. As an initial 

investigation, the purpose of this section to show how a bone may response to 

thermal loads and to provide information for possible use of imposed external 

temperature fields in medical treatment and controlling the healing process of 

injured bone. 
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(2) (A - rPa = - 60 V, - 30 V, 30 V, and 60 V, pet) = 1 Mpa, P(t)=1500 N, 

lj/ b -lj/ a = 1 A and To = 0 . 

Fig. 6.16 shows the variation of & and 17 with time t for various values of 

electric potential difference. It can be seen that the effect of the electric 

potential is the opposite to that of temperature. A decrease of the intensity of 

electric field results in a decrease of the inner and outer surface radii of the 

bone by almost the same magnitude. Theoretically, the results suggest that the 

remodelling process may be improved by exposing a bone to an electric field. It 

is evident that further theoretical and experimental studies are needed to 

investigate the implication of this for medical practice. 

0.06 

0.04 
--30V 
- 60V 
-ov 

0.02 
--30V 
-- -60V 

OJ 0.00 

-0.02 

-0.04 

- 0.06 
0 500 1000 1500 2000 

tid 

(a) [;vs. time t 

0.04 
--+-30V 
-60V 
--ov 0.02 --30V 
-- -60V 

0.00 
~ 

-0.02 

-0.04 

-0.06 
0 500 1000 1500 2000 

ti d 

(b) 77 vs. time t 

Fig.6.16 Variation of [; and 77 with time t for several electric potential differences 



References 251 

(3) If/b -If/a = - 2 A, - 1 A, 1 A, and 2 A, p(t) = 1 MPa P(t) =1500 N, 

(A - <Pa = 30 V and To = 0 . 

Fig. 6.17 shows the variation of [; and 17 with time t for various values of 

magnetic potential difference. The changes in the outer and inner surfaces of the 

bone due to magnetic influence are similar to those for electric field as shown in 

Section 6.2. 
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Chapter 7 Effective coupling properties of 
heterogeneous materials 

Intelligent materials have found increasing applications in engmeenng 

structures, especially in adaptive structure systems, as sensing and actuating 

devices and components. Composite materials have been developed to create 

smart properties through coupling of the mechanical and non-mechanical 

properties. A micromechanics analysis of intelligent composite materials is 

very helpful for studying their property-structure relationships and guiding the 

design and optimization of the new materials. 

As an example, composite materials consisting of a piezoelectric phase 

and a piezomagnetic phase have attracted significant interest in recent years. 

Such materials exhibit considerable multi-field coupling properties, i.e. 

electro-magneto-mechanical coupling. They evidence a remarkably large 

magnetoelectric coefficient, the coupling coefficient between static electric and 

magnetic fields, which is absent in either constituent. Magnetoelectric coupling, 

a new product property in the composite, is created through the interaction 

between the piezoelectric phase and the piezomagnetic phase. The product 

properties of such composite offer great opportunities to engineers for the 

design of new materials. 

In 1974, Van Run [1] et al. reported the fabrication and magneto-electric 

effect of a composite consisting of BaTi03 (piezoelectric phase) and CoFe204 

(piezomagnetic phase). The magnetoelectric coefficient is two orders larger 

than that of Cr203, which had the highest magnetoelectric coefficient among 

single-phase materials known at that time. Bradee and Van Vliet [2] reported a 

broad band magnetoelectric transducer with a flat frequency response using 

composite materials. Since then, much theoretical and experimental work for 

investigation of the magneto-electric coupling effect has been carried out. A 
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summary of this topic was given in Chapter 4. 

In fact, the coupling effect exists in many materials. A simple example is 

piezoelectric material which exhibits electro-mechanical coupling properties [3,4]. 

In general, a composite consisting of constituents with coupling properties can 

exhibit effective coupling properties and create, in some situations, the product 

properties. Table 7.1 summaries the coupling effect of several composites. 

Table 7.1 Coupling properties of composites 

Properties of Properties of 
Effective properties Product properties 

matrix inclusion 

Mechanical Thermo-mechanical Thermo-mechanical 

Electro-mechanical Defect Electro-mechanical 

Mechanical Electro-mechanical Electro-mechanical 

Thermo-mechanical Electro-mechanical Electro-mechanical Thermo-electric 

Magneto-mechanical Defect Magneto-mechanical 

Electro-mechanical Magneto-mechanical Magneto-electro-mechanical Magneto-electric 

Mechanical 
Electro-mechanical/ 

magneto-mechanical 
Magneto-electro-mechanical Magneto-electric 

Magneto-electro-
Defect 

Magneto-electro-

mechanical mechanical 

Thenno-magneto-
Defect 

Thermo-magneto-

electro-mechanical electro-mechanical 

Thermo-mechanical 
Magneto-electro- Thermo-magneto- Thermo-mechanical, 

mechanical electro-mechanical thermo-magnetic 

In this chapter, the effective coupling properties of heterogeneous 

materials are emphasized. The basic methods for homogenization of 

heterogeneous materials are described and several numerical results are 

presented. 

7.1 Basic equations for multifield coupling 

Consider a thermo-magneto-electro-mechanical coupling problem. For a 

thermo-magneto-electro-elastic material, the basic equations can be summar­

ized as follows. The governing equations are 

(7.1.1 ) 

The constitutive equations are 
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(Jij : Cijk .. ,Ckl - elijE, - eliiH, - AijT} 

Di - eiklckl + KitEl + aitHI - p7 
B; = eiklckl + ailEr + J.lilHI -))7 

The gradient equations are 
1 

c=-(u.+u), 
1j 2 l,J J,I 

q;,i =0, 

E = -¢, H =-lj/ 
I ,1 I ,I 

(7.1.2) 

(7.1.3) 

(7.1.4) 

For convenience of writing, we use the same notations here as in previous 

chapters. Definite vectors Z and II as 

[

CII c22 c33 2c23 2c13 2cI2 ] 
Z= 

-~ -~ -~ -~ -~ -~ 
(7.1.5) 

II = [(JII (J22 (J33 (J23 (J13 (J12] 
DI D2 D3 BI B2 B3 

(7.1.6) 

Thus the constitutive equations (7.1.2) can be rewritten in compact form 

II = EZ - rT (7.1. 7) 

Where coefficient E is 12th order symmetric matrix in the form 

E J; ~: ~:1 (7.18) 

le -a -jl J 
and 

(7.1.9) 

In Eq.(7.1.8), 6x 6 matrix c is a 4th order stiffness tensor; 3x6 matrix e 

is a 3rd order piezoelectric tensor; 6x3 matrix e
T is the transpose of e; 3x6 

matrix e is a 3rd piezomagnetic tensor; eT is the transpose of e; 3x3 

matrix K denotes a dielectric tensor; 3x3 matrix a is a magneto-electric 

coefficient matrix; 3 x 3 II is a magnetic permeability tensor; 6th dimensional 

vector 1 is a thermo-mechanical coefficient; 3rd dimensional vector p is a 

thermo-electric coefficient; 3rd dimensional vector JI is a thermo-magnetic 

coefficient. 

Here we use a new notation system here. A repeated subscript represents 

summation from 1 to 3. A repeat capital letter stands for the summation from 1 

to 5. For instance, TJUJ = TjUj + ~U4 + TsUs ' Using this notation, we have 
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{

U i , 1 = 1,2,3 

U/ = rp, 1 =4 

(jJ, 1 = 5 

Cijmn' J,M = 1,2,3 

eijn , M=4,J=1,2,3 

eijll' M = 5,J = 1,2,3 

eijn' J=4,M=I,2,3 

EjJMn = -Kill' J = 4,M = 4, 

-ain , J=4,M=5 

eijll' J = 5,M = 1,2,3 

-atll' J =5,M =4 

-f.1in' J = 5,M = 5 

M = 1,2,3 

M=4 

M=5 

(7.1.10) 

(7.1.11) 

These are called, for convenience, the generalized displacements, stresses, 

strains and generalized stiffness and thermal coefficients, respectively. 

Eq.(7.1.7) can be rewritten as 
(7.1.12) 

In this chapter, we focus on the effective coupling properties of a 

composite with a hierarchic microstructure. As with the situation of an elastic 

composite, we summarize the homogenization methods to predict the effective 

coupling properties of the composite. Here the direct average method, indirect 

average method and mathematical homogenization method are briefly 

reviewed. 

(1) The direct method is based on the average of local fields to calculate 

effective coupling properties. For instance, a uniform strain is applied to a 

piezoelectric composite and the average of the electric displacement is 

calculated. Then it is possible to calculate the effective piezoelectric 

coefficients of the composite. In general, local fields can be calculated by a 

numerical method, such as the boundary element method (BEM) [5] or finite 

element method (FEM) [6]. 

(2) The indirect method extends the elastic inclusion theory into 

multi-field coupling problems. There are many methods along this line to 

predict the effective piezoelectric [7-10], thermo-electric [11,12], magneto-electric 

[13-16] and piezoelectric-piezomagnetic [17-19] properties of composites. 

(3) Mathematical homogenization is applied to multi-field composites 
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with periodic microstructure. The displacement, electric field and magnetic 

field are asymptotically expanded on two scales. An averaging procedure over 

a volume is used to calculate the effective coupling properties. Aboudi [20] has 

presented a micromechanical model to evaluate the effective thermo-magneto­

electro-mechanical properties of composites. 

7.2 Direct method 

Neglecting the thermal effect, the constitutive equation for a coupling problem 

is 

II=EZ (7.2.1 ) 

In the direct method, the average fields of generalized strain Z and 

generalized stress II are first evaluated, then the effective coupling properties 

can be obtained. In detail, for a heterogeneous medium, consider a RVE 

subjected to a specific boundary condition and calculate the local field, Z and 

II , by a numerical method, such as BEM and FEM. Then a volume averaging 

is carried out and the homogenized fields, Z and Ii, can be obtained by 

z=lf ZdD, ii=lf IIdD (7.2.2) 
V n V n 

The effective stiffness E can be determined by 
- --
II=EZ 

Expanding Eq.(7.2.3), we can obtain 

fli=EijZj 

(7.2.3) 

(7.2.4) 

Applying uniaxial ZI = 1 and other Zj = 0 on right hand side vector Z and 

calculating the all ITi of the left hand side vector Ii, we can obtain the 

effective coupling stiffness coefficients EiJ. In the same method, Ei2 can be 

obtained. Ultimately, all components of Eij are found. 

This procedure is generally operated within a RVE. To reflect the 

periodicity of microstructure of a composite, a periodic boundary condition 

should be applied to a RVE. The following is a brief description of periodic 

boundary conditions for displacement, electric field and magnetic field. 

Denote Xi as a point on the boundary of a RVE, di the periodicity of 

the RVE in the corresponding direction. The point on the opposite boundary of 

the RVE is Xi + di . Without loss of generality, the periodic boundary condition 
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can read 

(
OU) U;(Xj + d) = U;(X) + OX~ dk 

¢(x +d)=¢(X)+(~)dk ) } } OX
k 

W(Xj + dj ) = w(xj ) + (OW )dk 
oXk 

(7.2.Sa) 

(7.2.Sb) 

(7.2.Sc) 

where ( ) is the average of the quantity. U i ' ¢ and OJ are displacements, 

electric potential and magnetic potential, respectively. 

7.3 Indirect method 

Consider a heterogeneous magneto-electro-elastic medium subjected to uniform 

ZJi and uniform temperature T. The macroscopic constitutive equation of the 

composite can be written as 

IIiJ = EiJKIZKI - riJT 

A homogeneous boundary condition leads to 
- -0 
ZKI = ZKI 

(7.3.1) 

(7.3.2) 

We decompose the strain and stress induced by external ZJ; and temperature 

T as 

(7.3.3) 

where superscripts I and II stand for the external load and temperature, 

respectively. Obviously, we have 

Then Eq.(7.3.1) can be written as 

II' =E Z' iJ ilMn Mn 

IIi~ = EiJMnZ~n - riJT 

Averaging of the equations yields 

(7.3.4) 

(7.3.Sa) 

(7.3.Sb) 

(7.3.6a) 

(7.3.6b) 

where EiJMn and r iJ are the effective coupling properties to be found. 

For a binary composite, the constitutive equations of the phases are 

~' = E,Z" ~'= E 2Z 2 (7.3.7) 
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where the subscript denotes the phase. A simple mixture law gives 
1 1-

CjZj + C2Z 2 = Z 
1 1 -I --

CJ1, +C2~ =II =EZ 

(7.3.8a) 

(7.3.8b) 

where CI and C2 denote the phase volume fractions. Substituting Eq.(7.3.7) into 

Eq.(7.3.8b) and employing Eq.(7.3.8a), we can obtain 
-- 1 1 
EZ = cjEIZI + c2E 2Z 2 

- J J 
= E j (Z - C2 Z 2) + c2E 2Z 2 (7.3.9) 

- 1 
=EjZ +c2 (E2 -Ej)Z2 

Introducing the concentration factor A, which connects the quantities in the 

inclusion and the effective quantities, we have 
J -

Z2 =AZ 

Thus, Eq.(7.3.9) can be expressed by the concentration factor as 

E =E1 +c2 (E2 -EI)A 

(7.3.10) 

(7.3.11) 

The concentration factor A can be calculated by single inclusion theory 

where an inclusion is embedded in an infinite matrix. That is 

(7.3.12) 

where S is the Eshelby tensor depending on the shape of the inclusion. Some 

publications have already presented calculation of Eshelby tensor [15, 21, 22]. 

Note that the concentration factor determined by Eq.(7.3.12) is based on 

single inclusion theory and can be used in the situation of dilute composite. For 

the finite volume fraction of an inclusion, a modification is carried out by the 

Mori-Tanaka method ( see reference [23] for an elastic problem) 

(7.3.l3) 

Replacing A in Eq.(7.3.11) by A MT , we can find the effective coupling 

properties. Similarly, a derivation of thermal properties by using Eq.(7.3.6b) 

yields 

(7.3.14) 

It is evident from the above derivation that the calculation of Eshelby 

tensor is a key step. As in the elastic problem, the Eshelby tensor can be 

calculated only for an ellipsoidal-shaped inclusion. This implies that the 

indirect method is available for an ellipsoidal-shaped inclusion. Here a 

discussion of the Eshelby tensor in the multi-field framework is given. 
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Consider first an elastic inclusion problem. In a small local domain [2 of 

an infinite isotropic matrix, there is a local strain < which is a non-elastic 

deformation, such as thermal expansion, transformation, pre-strain or plastic 

deformation. Such a strain was named eigenstrain by Mura [24]. A self­

balanced stress induced by the eigenstrain is called eigenstress. An inclusion 

theory has been developed to investigate the elastic solution for an inclusion 

embedded in an infinite matrix. 

For uniform eigenstrain cZ in an inclusion [2, the perturbing strain 

induced by eigenstrain in the matrix is derived by Eshelby [25]. It is 

(7.3.15) 

where cij is the perturbing strain in the matrix. Sijkl is the Eshelby tensor 

depending on the shape of the inclusion and properties of the matrix. Under the 

situation of ellipsoidal inclusion, the Eshelby tensor is a constant. It is 

concluded that the perturbing strain induced by a uniform eigenstrain is a 

constant if the shape of the inclusion is ellipsoidal. The corresponding stress in 

the matrix is expressed by Hooke's law 

(7.3.16) 

and the stress in the inclusion is 

CT~ = c;ik,(ck' - c;,) (7.3.17) 

Now we consider situation of multifield coupling. Denote the generalized 

eigenstrain in an inclusion by Z~n' It has the form 

(

C;1I1' M (: 3 
* * ZMn = =E,~, M: 4 (7.3.18) 

H n , M-5 

where is the stress-free eigenstrain, E; is the eigen-electric field which 

is electric displacement-free. H; is the magnetic field that is magnetic 

flux-free. The strain, electric field and magnetic field induced by the 

generalized eigenstrain in an inclusion can be expressed in terms of the Eshelby 

tensor 

(7.3.19) 

The stress, electric displacement and magnetic flux in the matrix can be written 



7.3 Indirect method 263 

as 
(7.3.20) 

The corresponding quantities in the inclusion are 
T * 

IIiJ = EiJMn(ZMn -ZMI1) (7.3.21) 

It is obvious that the Eshelby tensor is an ensemble of nine tensors, because the 

eigenstrain can induce the deformation, electric displacement and magnetic flux 

for magneto-electro-mechanical coupling. For a transversely isotropic medium, 

the nine tensors have the following forms: 

-1 
Sml14h = 811: Kib(Mm4in +Mn4im) 

Sml15h = 8~[ehii(Mmjil1 +Mniim)-Fi/J(Mm5il1 + Mn5inJ] 

S4nah = _1_ (CiJAhM 4 iil1 + eiabM 45il1) 411: . 

1 
S =--K M 

4n4b 411: ib 44il1 

S4115b = 4
1
11: (ebiiM4jil1 - FihM45il1) 

S5nab = -4
1 

(CiJAb M 5iil1 + eiabM55il1) 11: . 

1 
S5n4b = - 411: KibM54in 

S5115h = 4
1
11: (ehiiM5jil1 - FihM55i,,) 

(7.3.22a) 

(7.3.22b) 

(7.3.22c) 

(7.3.22d) 

(7.3.22e) 

(7.3.22f) 

(7.3.22g) 

(7.3.22h) 

(7.3.22i) 

where M MJil1 are functions depending on the properties of the matrix and the 

shape of the inclusion. Detailed formulations have been published in the 

literature [14,23]. It can be verified that the Eshelby tensor is symmetric. 

Sml14h = S111114h' 

S MI1Ab = Smn5b = Snm5b' 

S411ah = S4l1ha' 

S5nab = S5nba' 

M (3,A(3 

M(3,A=4 

M(3,A =5 

M=4,A(3 

M =5,A (3 

(7.3.23) 

For a transversely isotropic magneto-electro-elastic medium, the Eshelby 

tensor has only 28 independent non-zero components. These components have 
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been given in reference [14]. 

7.4 Two-scale expansion method 

The method under discussion is a generalized form of the two-scale expansion 

method as applied in the elastic problem. This method can be used in the 

multifield coupling materials with periodic microstructure. 

7.4.1 Asymptotic expansion of fields 

Consider a composite with periodic microstructure. There are two coordinate 

systems. x = (XI' X2' x3) represents the global coordinate and Y = (YI ' 

Y2'Y3) stands for the local coordinate. They define a periodically repeatable 

RVE of the composite. The characteristic length of a RVE (e.g. the average size 

of the domain) is much smaller than the characteristic length of the whole 

structure. The global and local coordinates are related by 

(7.4.1) 

where 0 is a small scaling parameter characterizing the size of a RVE. It 

means that the RVE can be viewed as a point in the scale of the whole structure. 
Through the two coordinate systems, the displacements u j ' electric 

potential c; and magnetic potential '7 can be asymptotically expanded in 

terms of the small parameter. For the displacements u j , we have 

uj(x,Y) = UOj (x,Y) + ou1i (x,y) + ... 

For a periodicity Y of the microstructure, we have 
uj(x,Y) = uj(x,y + Y) 

(7.4.2) 

(7.4.3) 

Due to the change of coordinates from the global to the local systems the 

following relation must be employed in evaluating the derivative of a field 

quantity 
o 0 1 0 
---+-+-- (7.4.4) 
ox; ox; o oY; 

The displacement uo; in Eq.(7.4.2) is the mean value of u; and hence is 

independent of Yj. Let 
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Eq.(7.4.2) can be rewritten as 

uj(x,y) = U;(x) + 5uj(x,y) + ... (7.4.6) 

As in the elastic situation, uJ x) is the mean displacement, ui (x, y) is the 

perturbing displacement which is an unknown periodic function. Thus the 
physical interpretation of Eq.(7.4.6) is that the real displacement ui is 

oscillating rapidly around the mean displacement U; due to the inhomogeneity 

from the microscopic point of view. In conjunction with Eq.(7.4.4), the strain is 

determined by the displacement expansion (7.4.2), that is 

&;j = &;j + iij (x,y) + 0(5) (7.4.7) 

where 

(7.4.8a) 

i =.!.[ ou; + ou) 1 
lJ 2 ox ox 

J I 

(7.4.8b) 

This shows that the strain components can be represented as a sum of the 
average strain &;j and the perturbing strain iij' It can easily be shown that 

If &dv=lf (r: +i)dV=&: 
V v If V V lJ lJ If 

(7.4.9) 

where V is the volume of the RVE. This stems directly from the periodicity 

of the perturbing strain, implying that the average of the perturbing strain taken 

over the RVE vanishes. For a homogeneous material it is obvious that the 

perturbing displacements and strains vanish identically. Using Eq.(7.4.7), we 

can readily represent the displacements in the form 

ui(x,y) = &;jx) + 5u; + 0(52) (7.4.l0a) 

Similarly, an asymptotic expansion of the electric and magnetic potentials can 

be utilized to yield 

E; = E;(x) + E;(x,y) + 0(5) 

H; = H;(x) + i((x,y) + 0(5) 

where the average electric and magnetic fields are given by 

Ei(x) =_9..t 
ox; 

(7.4.1 Ob) 

(7.4.lOc) 

(7.4. 11 a) 
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whereas the corresponding perturbing fields are determined from 

- o¢ 
E;(x'Y)=-a 

Xi 

(704.llb) 

(704.12a) 

(704. 12b) 

Consequently, just as in Eq.(704.I0a) for the displacements, the electric and 

magnetic potentials take the form 

¢(x,y) = -Ejx} + ¢ + 0(52
) (704. 13 a) 

(704.13b) 

The coefficient tensor EUKI is a periodic function defined in a RVE in terms 

of the local coordinates 
(704.14) 

Substituting Eq.(704.1O) into the constitutive equations (7.1.1), (7.1.2) and 

(7.1.3), respectively, and differentiating with respect to the local coordinate Yj 

leads, respectively, to the following three equations (assuming isothermal 

conditions): 

o[ - - - -] - Cijkl(&kl + &kl) - ekij(Ek + Ek) - ekij(H k +Hk) = 0 oy 
J 

O~j [ejkl(&kl + &kl) + Kjk(Ek +Ek)+ajk(H k+Hk)]=O 

O~j [ejk/(&kl + &kl) + ajk(Ek +Ek) + fljk(H k+Hk)] = 0 

Define the stress as follows: 

()i~ = Cijkl&kl - ekijEk - ekijHk 

(iij = Cijk1&kl - ekijEk - ekijHk 

(7.4. 15a) 

(704.15b) 

(704.15c) 

(7.4. 16a) 

(704. 16b) 

where Eq.(7 o4.16b) represents the perturbing stress. Similarly we define 
o - - -

Di = elk1&kl + KkEk + aikHk (704.17a) 

Di = elk'&kl + KkEk + aikHk (704. 17b) 
o --

Bl = elk/&kl + akEk + fllkHk 

Si = elk'&kl + aJik + fllJfk 

Thus the differential equations can be formed 

(704.18a) 

(704.18b) 
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oa ij + o (J"~ = 0 

oy } oy } 
(7.4.l9a) 

oD; + oD;o = 0 

oy; oy ; 
(7.4.19b) 

oBi + oB? =0 
OYi oy ; 

(7.4. 19c) 

The coupling governing equation (7.4.19) form the strong form of the 

equilibrium and Maxwell's equations. It is readily seen that the first terms in 

Eq.(7.4.19) involve the unknown perturbing periodic displacements iii' 

electric potential ¢ and magnetic potential ij , while the second terms in 

these equations produce pseudo-body forces. 

For given values of the average strain &kl ' average electric field Ei and 

average magnetic field ii; the perturbing displacements iii' electric field ¢ 
and magnetic field ij can be determined by Eq.(7.4.19). The periodic 

boundary conditions must be prescribed at the boundaries of the RVE. 

7.4.2 Effective coupling properties 

To connect the perturbing strains, electric and magnetic fields with the average 

strains, electric and magnetic fields, we define a matrix A as follows: 

i = A(Y)Z (7.4.20) 

With Eq.(7.4.1 0), we can rewrite the strains, electric and magnetic fields 

as follows: 

Z = Z + A(Y)Z =[1 + A(y)JZ = A(y)Z (7.4.21) 

where 1 is the unit matrix. A(y) was named the electro-magneto-elastic 

concentration matrix by Aboudi [20]. 

Aboudi [20] presented a procedure to obtain the electro-magneto-elastic 

concentration matrix A(y). To find A(y) , a series of problems must be 

solved as follows. Solve Eq.(7.4.19) in conjunction with the periodic boundary 

conditions with &11 = 1, and all other components of Z being equal to zero. 

The solution of these coupled differential equations readily provides 

Ail (i = 1,2,.··,12). This procedure is repeated with &22 = 1 and all other 

components of Z being equal to zero which provides A i2 and so on. 

Once the matrix A(y) has been determined, it is possible to compute the 
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effective matrix of the coefficients E of the composite. Substitution of Z 

given by Eq.(7.4.2l) into Eq.(7.2.l) (assuming isothermal conditions) yields 
- -
II = E(y)A(y)Z (7.4.22) 

Taking the average of both sides of Eq.(7.4.22) over a RVE yields the average 

stresses, electric displacements and magnetic flux densities in the composite in 

terms of the average strains, electric and magnetic fields, namely 
- --
II = EZ (7.4.23) 

where 

- 1 f E = V E(y)A(y)dV (7.4.24) 

The structure of the square 12th order symmetric matrix is of the form 

E == e* -K* -a* 

r

c* e* e*T j 
(7.4.25) 

* * -* * * * Where c ,e ,e ,1C ,a ,II 

piezomagnetic, dielectric, 

coefficients, respectively. 

--* * * e -a -II 

are the effective elastic stiffness, piezoelectric, 

magnetic permeability and electromagnetic 

In order to incorporate the thermal effects in the composite, we utilize 

Levin's [26] result to establish the effective thermal stress A~ tensor, 

pyroelectric Pi* and pyromagnetic Vi* coefficients. This approach was also 

followed by Dunn [27] to establish the effective thermal moduli of piezoelectric 

composites. To this end we define the following vector of thermal stresses, 

pyroelectric and pyromagnetric coefficients: 

(7.4.26) 

The corresponding global or effective vector is defined by 

(7.4.27) 

According to Levin's result, the relation between rand f is given in terms 

of the matrix A. 

(7.4.28) 

where AT is the transpose of A. The above relation provides the effective 

thermal stress vector ). *, pyroelectric vector p * and pyromagnetic vector 
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v * of the composite. 

Finally, we can collect the relative equations to form a coupled 

constitutive equation of the electro-magneto-thermo-elastic composite as 

follows: 

II=Ez-rT (7.4.29) 
The coefficients of thermal expansion ai and the associated pyroelectric 

constants p; and the pyromagnetic Mi of the constituent material can be 

assembled to form the vector 

Q=[ a] 

~ ~ 
(7.4.30) 

This vector can be given by 
Q=E-1r (7.4.31) 

where E and r are given by Eqs. (7.l.8) and (7.l.9), respectively. 
In the same manner, the effective coefficients of thermal expansion a i* 

and the associated pyroelectric constants p;* and the pyromagnetic constants 

M~ 
I 

of the composite can be assembled into the vector 

- [a: * * * * 

a;' 1 Q= 
a 2 a 3 a 4 as 

(7.4.32) 
p.* p* p* M* M* M* 

] 2 3 ] 2 3 

Once E and r have been established, this vector can be readily determined 

from 

(7.4.33) 

Aboudi [20] has given numerical results for the electro-magneto-mechanical 

properties of an electro-magneto-elastic medium. 

7.5 FE computation of effective coupling properties 

As an alternative to the concept of a coupling concentration matrix of Aboudi 

[20] detailed in the previous section, Yang [29] and Wang [30] presented a 

procedure to calculate the effective coupling properties in the frame of a 

two-scale expansion method in conjunction with the FEM. The present 

discussion focuses on the coupling properties of piezoelectric materials. 

Using Eqs. (7.4.7) and (7.4.10), we can write the generalized stress as 

II = IID + if (7.5.1) 

Thus the governing equation (7.4.19) becomes 
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where 

{

(Tij,j, J = 1,2,3 

V n = II]] = D .. , J = 4 
I, 1,1 

Bi,;' J=5 

(7.5.2) 

(7.5.3) 

In order to solve the strain concentration factor by means of the FEM, the 

variational fonn of the equilibrium equation must be given prior consideration. 

For an arbitrary virtual generalized displacement OU, the integration of 

equilibrium equation on a periodicity Y can be written as 

L (oU) TV II d V + L (oU) T V n° d V = 0 (7.5.4) 

Integrating by parts leads 

L(OZ)T lldV + fy(OZ)T nOdV +h.c.=O (7.5.5) 

where oZ is the virtual strain corresponding to oU. h.c. stands for the 

boundary terms. Note that the arbitrary virtual generalized displacement is 

equal to zero on the boundary, so that the boundary tenn in Eq.(7.5.5) vanishes. 

Substituting Eq.(7.4.20) and Eq.(7.4.23) into Eq.(7.5.5), we obtain 

t (OZ)T E(AZ)dV + t (OZ)T EZdV = 0 (7.5.6) 

Take Z as follows, respectively 

I 0 

o 
o 
o 
o 

o 
o 
o 

o 
o 

o 
o 

o 
o 
o , 
1 

o 
Then the above integration can be expressed as 

o 
o 
o 
o 

t(OZ)T EAkdV = -t(OZ)T EkdV 

(7.5.7) 

(7.5.8) 

where k is the independently variable index. For plane problems each index 

changes from I to 5, corresponding to the strain modes in Eq.(7.5.7). A" is a 

vector consisting of the k th column of the matrix A. Ek is a vector 

consisting of the k th colunm of the matrix E. 

To compute the vector A", as in the elastic case, we introduce a function 

Iff" to satisfy 

(7.5.9) 
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where L is an operator matrix which can be determined by the gradient 

equations. The FE interpolation of the function IJfk IS 

IJfk = Nlji (7.5.10) 

where N is the shape function, Iji is the value of function IJfk at nodes. 

We can obtain 

(7.5.11) 

where B = LN is the generalized strain matrix. The discrete form of the 

virtual strain ISZ is taken as ISZ = BlSlji . By using Eq.(7.5.8), the standard 

FE form can be expressed as 

(tBT EBdV)ljik = tBT EkdV (7.5.12) 

This equation provides a procedure for FE calculation for IJfk (k = 1,2,3,4,5 ). 

Thus the effective stiffness matrix can be calculated by 

- 1 f E = - E(l + BIji)dV 
Y y 

(7.5.l3) 

where 
-4 
IJf 

The integrations in Eqs. (7.5.12) and (7.5.13) can be calculated by the 

numerical integrations in each element. 

7.6 Numerical examples 

Consider a plane strain problem of a piezoelectric solid with elastic inclusions 

or voids. It is assumed that the materials are transversely isotropic in 1-3 plane 

and the polarization is along the 3rd-direction. The coupling constitutive 

equation is described in a matrix form 

a l CII Cl3 0 0 e31 ci 

a 3 C[3 C 33 0 0 e33 c3 

as 0 0 C ss els 0 Cs (7.6.1) 

D[ 0 0 e[s -K
ll 0 -E[ 

D3 e31 e33 0 0 -K
33 -E3 

or in a compact form 

II=EZ (7.6.2) 

The piezoelectricity ceramic material BaTi03 IS studied here. The material 
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properties are listed in Table 7.2. 

Table 7.2 BaTi03 material properties 

Elastic constants/GPa 
Piezoelectric constants Dielectric constants 

/(C/m2) /(I0·9C2iNm2) 

ell I Cl3 I e33 I ess eSl I e3l I e33 Kll I K33 

150 I 66 I 150 I 44 11.4 I -4.35 I 17.5 9.86 I 11.15 

7.6.1 Piezoelectric solid with voids 

The effective properties of the piezoelectric material containing circular voids 

are calculated for different volume fractions of the voids. Fig. 7.1 shows the 

curves of the effective properties versus the volume fractions of the voids. Here 

the numerical result for CII / CII is compared with that of the direct method by 

a BEM [5]. Good agreement between the two methods is demonstrated in this 

figure. 

1.1 

----- C;/Cll 

~ 
"C 
0 0.8 E 
<.) 

--C;/Cll(BEM) 
---+- C; /C 13 

--EssICss 
.~ 0.7 
'" " "C 0.6 
" .~ 

OJ 0.5 
E 
0 0.4 Z 

0.3 

0.2 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 

Void volume fraction 

Fig.7.1 Effective elastic moduli of piezoelectric material with voids 

Fig. 7.2 shows the variation curves of the effective piezoelectric moduli 

with the void volume fractions for a piezoelectric solid containing the voids. It 
can be seen that the value of e31 / e31 increases as the volume fraction of voids 

increases, whereas the opposite conclusion can be obtained for e;3 / e33 and 

e.;1 / eSI • 

Fig.7.3 shows the curves illustrating the variation of effective dielectric 
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moduli with the void volume fractions. It can be concluded that an increase in 
the void volume fraction leads to enhanced K 33 / K 33 and a decrease of Kll / Kll . 

2.1 

~ 
1.8 

"0 
0 
E! 1.5 --eS/eS1 <> 
'.6 - e3 /ell (.) ., --e3/el3 ;:; 
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Fig.7.2 Effective piezoelectric moduli of piezoelectric solid with voids 
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Fig.7.3 Effective dielectric moduli of piezoelectric solid containing voids 

7.6.2 Rigid inclusions 

Consider the effective properties for a piezoelectric solid containing rigid 

inclusions. The rigid inclusion is modeled by a much greater stiffness than that 
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of the matrix. The piezoelectric coefficients and the dielectric coefficients of 

the rigid inclusions vanish. The numerical results for the effective properties of 

the composite are illustrated in Figs.7.4~7.6. A result obtained from the direct 

method using BEM [5] is also shown in Fig.7.4 for comparison. It is evident 

that the elastic stiffness increases considerably as the volume fraction of the 

rigid inclusions increases. The effective piezoelectric and dielectric properties 

decrease with the increase of the volume fraction of the inclusion because the 

rigid inclusion has lost its piezoelectric and dielectric properties. 
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Fig.7.4 Effective elastic stiffness of rigid inclusion composite 
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Fig. 7.5 Effective piezoelectric properties of rigid inclusion composite 
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Fig.7.6 Effective dielectric properties of rigid inclusion composite 

7.6.3 Piezoelectric composite 

A composite of a piezoelectric matrix reinforced by another piezoelectric 

material is taken into account in this section. The material constants of phases 

are listed in Table 7.3. 

Table 7.3 Material constants of piezoelectric composite 

Dielectric 

Elastic constants/GPa 
Piezoelectric 

constants/(C/m2) 
constants 

I( 1 0-9C2/Nm2) 

CII C13 C33 CS5 eSI e31 e33 KII K33 

Matrix 50 14.5 50 3.4 2.2 - 3 3.2 12 11.5 

Inclusion 139 78 139 25.6 12.7 - 5.2 15 .1 6.5 5.6 

The effective properties calculated are shown in Figs. 7.7~7.9 , where the 

effective moduli are normalized by the properties of the matrix denoted by 

superscripts O. The curves are given through variations of the effective 

properties versus the inclusion volume fractions. The elastic reinforcement 

effect and the enhanced piezoelectric properties can be determined in the 

present investigation. However the reduction of the dielectric properties is seen 

in Fig. 7.9. 
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Fig. 7.7 Effective elastic moduli of piezoelectric composite 
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Chapter 8 Effective properties of 
thermo-piezoelectricity 

8.1 Introduction 

In Chapters 3 and 4, we presented a linear theory of multifield materials and its 

solutions for some special problems such as analytical expressions of a 2D 

thermo-piezoelectric plate with a crack of finite length. Based on the theoretical 

results presented in those two chapters, micromechanics models including the 

generalized self-consistent method, differential approach, and Mori-Tanaka 

method are presented in this chapter to predict effective material properties of 

defective multifield materials and heterogeneous materials. 

It is well known that piezoelectric ceramics are brittle materials. Thus, 

they may develop various microdefects such as microcracks, delamination, and 

microvoids during the production process and service period. This drawback 

has driven the development of composites of piezoelectric ceramics combined 

with piezoelectrically inactive polymers or other ductile materials that exhibit 

higher toughness than the piezoelectric ceramic alone [1]. To accurately predict 

the effects of microdefects on material performance and to assist mechanical 

engineers in developing piezoelectric composites for electromechanical 

transducers and engineering smart material applications, it is valuable to 

develop reliable theories to predict the changes in material performance due to 

the presence of these microdefects and the effects of the material properties and 

microstructural geometry of the constituents on the effective electro elastic 

behaviour of the composite. Early in 1978, Newnham [1] et al. presented a 

connectivity theory based on the combination of mechanics of material type 

parallel and series models to predict effective pyroelectric behaviour. Banno [2] 

generalized the connectivity theory to include the effects of a discontinuous 

reinforcement phase of particle reinforced piezocomposites. Grekov [3] et al. 

further presented a concentric cylinder model for evaluating effective 

electro elastic properties of piezocomposites reinforced by long fibres. Dunn 
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and Taya [4] studied the overall properties of piezoelectric composites 

containing interacting inhomogeneities using dilute method, self-consistent 

model, differential approach, and Mori-Tanaka method and obtained an explicit 

expression in a surface integral form for coupled electroelastic Eshelby tensors. 

With regard to the determination of effective thermal expansion and 

pyroelectric properties, Dunn [5] evaluated the effective pyroelectric properties 

of two-phase composites, again using the four micromechanics models 

mentioned above. Benveniste [6] showed that the effective thermal-stress 

constants and pyroelectric coefficients are related to the corresponding 

isothermal electroelastic moduli in two-phase media. For multiphase media, 

Benveniste [7] further indicated that the effective thermal-stress constants and 

pyroelectric coefficients follow from knowledge of the influence functions 

related to an electromechanical loading of the composite aggregate. Chen [8] 

obtained some formulae for the prediction of overall thermo-electro-elastic 

moduli of multiphase fibrous composites, using the self-consistent and 

Mori-Tanaka methods. Qin and Yu [9] and Mai [10] et al. presented effective 

thermo-electro-elastic properties of cracked piezoelectric solids using the 

self-consistent and Mori-Tanaka methods. Benvensite and Dvorak [11] showed 

that for a two-phase system, exact connections can be obtained not only 

between the effective moduli, but also among the local pointwise fields induced 

by a uniform electromechanical loading. Later, the connections were 

generalized to study piezoelectric fibrous composites of three or four 

phases [12,13]. The phase boundaries are cylindrical but otherwise the 

micro geometry is totally arbitrary. Qin [14-16] et al. developed a family of 

micromechanics models for evaluating defective thermo-piezoelectric materials. 

Levin [17,18] et al. developed self-consistent formulations for estimating the 

effective properties of piezocomposites with ellipsoidal inclusions. Using a 

generalized eigenstrain approach, Huang [19] obtained a unified explicit 

expression for the coupled electroelastic Eshelby tensors for piezoelectric 

ellipsoidal inclusions in a transversely isotropic medium. Based on the 

equivalent inclusion method and the Mori-Tanaka approach, Huang and Kuo 

[20], and Kuo and Huang [21] investigated the effective material behaviour of 

piezocomposite containing short fibres. They found that the longitudinal and 

in-plane shear moduli increased with fibre length, while the other moduli, 

piezoelectric and dielectric constants decreased. The method in [20,21] was later 

used to analyse effective material behaviour affected by microvoids [22] and 
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to establish a statistical micromechanics model [23]. Using a method of 2-scale 

asymptotic expansions, Wojnar [24] analyzed the homogenization process of a 

piezoelectric periodic composite in which thermal effects are taken into account. 

Eduardo [25] et al. used the 2-scale method to investigate anti-plane problems 

of thermo-piezoelectric fibrous composites. Hori and Nemat-Nasser [26] 

generalized the Hashin-Shtrikman variational principle to the coupled problem 

of piezoelectricity and presented the upper and lower bounds for the effective 

moduli of heterogeneous piezoelectric materials. Based on the concept of a cell 

model, Poizat and Sester [27] studied 1-3 and 0-3 composites made of 

piezoceramic fibres embedded in a soft non-piezoelectric matrix; Beckert [28] 

et al. estimated the relevant effective electromechanical parameters of 

composites continuously reinforced with coated piezoelectric fibres; Li [29] et 

al. examined the influence of void volume fraction, void distribution, void 

shape and configuration on the effective properties of voided piezoelectric 

ceramics; Berger [30] et al. presented an asymptotic homogenization method 

and its numerical model for 1-3 periodic composites made ofpiezoceramic fibres 

embedded in a soft non-piezoelectric matrix. Using the self-consistent approach, 

the orientation distribution function, and traditional Voigt-Reuss averages, Li [31] 

evaluated the effective electroelastic moduli of textured piezoelectric 

polycrystalline aggregates. Jiang [32] et al. presented a generalized 

self-consistent method for analysing the effective electroelastic behaviour of 

anti-plane fibrous piezocomposites by means of a three-phase confocal elliptical 

cylinder model. Recently, Wang [33] et al. combined a micromechanics approach 

with a boundary node element to evaluate the effective electro elastic properties of 

transversely isotropic piezoelectric materials containing randomly distributed 

voids. Qin [34] developed a micromechanics-boundary element algorithm for 

predicting defective piezoelectric materials. Most of the developments in this 

field can also be found in [35-42]. This chapter, however, focuses on the results 

presented in [4,5,9,lO,14-16,19,34]. 

8.2 Micromechanics model of thermo-piezoelectricity 
with microcracks 

8.2.1 Basic formulation of two-phase thermo-piezoelectricity 

It can be seen from the discussion in Section 4.2.4 that the resulting multifield 
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theory is concerned with the piezoelectric analog of the uncoupled theory of 

thennoelasticity where the magnetic, electric, and elastic fields are fully 

coupled, but temperature enters the problem only through the constitutive 

equations. As a result of this, the effective conductivity and the effective 

electroelastic or magnetoelectroelatic constants can be detennined 

independently, while evaluation of the effective thennal expansion and 

pyroelectric coefficients requires infonnation about both of them. Accordingly, 

our derivation is divided into three major steps: First, develop fonnulations for 

effective conductivity; then find expressions for effective electroelastic (or 

magneto-electro-elastic) constants; and finally, derive effective thermal 

expansion and pyroelectric coefficients based on the results obtained from the 

first two steps. To illustrate this process, we consider a two-dimensional 

piezoelectric plate weakened by microcracks. If this is a generalized plane 

stress problem, its thermo-electro-elastic constitutive relationship can be 

obtained by extending Eq.(3.2.31) adding thennal tenns. The addition rule is 

based on Eq.(3.6.6): 

0"1 CII c13 0 0 e31 £1 ~I 
0"3 Cl3 C33 0 0 e33 £3 ~3 
O"s 0 0 CSS els 0 £S 0 T (8.2.1) 

DI 0 0 els -KI1 0 -EI 0 

D3 e31 e33 0 0 -K33 -E3 P3 

[~]=[kl1 
h:J kl3 

kl3 ][~] 
k33 ~ 

(8.2.2) 

where heat intensity is defined by 

W =_ aT 
I oXi 

(8.2.3) 

If we choose heat flow hi, stress CJ;, and electric displacement Di as independent 

variables, the constitutive equations (8.2.1) and (8.2.2) become 

£1 1;1 1;3 0 0 P31 0"1 all 

£3 I13 I33 0 0 P33 0"3 a 33 

£S 0 0 Iss PIS 0 O"s + 0 T (8.2.4) 

-EI 0 0 PIS -jJl1 0 DI 0 

-E3 P31 P33 0 0 -jJ33 D3 Y3 
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[HI] = [Pll P13 ][hI] 
H3 P13 P33 ~ 

(8.2.5) 

where Pij = heat resistivity. These equations can also be written in matrix form 

as 

with 

h=kH, H=ph 

II = EZ - rT, Z = FII + aT 

II= [(TI (T3 (Ts DI D3f 

Z = [ZII Z22 ZI2 Z31 Z32 f = [&1 &3 &5 - EI - E3 f 

(8.2.6) 

(8.2.7) 

(8.2.8) 

(8.2.9) 

(8.2.10) 

Generally, a crack may be viewed as an inclusion with zero mechanical 

stiffness. Thus, micromechanics theories of a cracked piezoelectric solid can be 

established based on some fundamental results in the theory of two-phase 

media. In the case of two-phase materials, the volume average of a physical 

variable F is defined by 

(8.2.11) 

where subscripts "I" and "2" denote the matrix and inclusion phases, 
respectively, VI and v2 their volume (or area) fractions, and overbar denotes 

the volume (or area for 2D analysis) average of a quantity over a representative 

volume element fl, i.e., 

(e) = ~f (.)dfl 
fln 

(8.2.12) 

The effective properties represented by the effective heat conductivity 

k~ (or effective heat resistivity Pi~)' the effective generalized stiffness E~ (or 

generalized compliancy F;;), and the effective generalized stress-thermal 

coefficients r: (or generalized thermal expansion a~) of the cracked 

piezoelectric solid can be defined by the concept of the volume average (8.2.12) 

as 
q=k*H, H=p*q 

ii=E*Z-r*f, Z=F*ii+a*f 

(8.2.13) 

(8.2.14) 

Since the effective conductivity and the effective electroelastic constants 
can be determined independently, the applied remote temperature change Tx, 
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is set to be zero when we study effective electroelastic constants. Following the 

average energy theorem [43], we have 

(8.2.15) 

In this case, Eq.(8.2.14) becomes 

jj = E*Z, Z = F*jj (8.2.16) 

Making use of Eq.(8.2.11), the average generalized stress and strain can be 

written as 

(8.2.17) 

Substituting Eq.(8.2.17) into Eq.(8.2.16) and noting that "i = EiZi , we obtain 

E* = E j + (E2 - Ej)A2V2 

F* = F; + (F2 - F;)B2V2 

(8.2.18) 

(8.2.19) 

where the symmetric tensors A2 and B2 are defined by the linear relations [15] 
- -

Z2 = A2Z=, "2 = B2"= (8.2.20) 

with Z = and "= being the remote generalized stress and strain fields 

applied the effective medium. 

Eq.(8.2.20) cannot be used directly to analyze problems with voids or 

cracks due to the difficulty in evaluating Z2. To bypass this problem, we 

consider first the case when inclusions become voids. This implies that 
E2 ~ 0, F2 ~ '= . In this case, the voids under consideration can be thought 

of as being filled with air, which has a dielectric constant approximately three 

orders of magnitude smaller than the dielectric constants of piezoelectric 

materials. The consequence of this fact is that the boundary conditions on the 

hole boundary are given by ". n = 0 , where n is outward normal to the hole 
boundary. This is also equivalent to setting E2 = 0, where E2 stands for the 

material constants of the hole-phase. Then, Eqs.(8.2.18) and (8.2.19) become 

E* = E\ (I - AOv2) (8.2.21) 

(8.2.22) 

where 1 is the uniat tensor, Ao is A2 of Eq.(8.2.18) for voids, and Bo is defined 

by [15] 

(8.2.23) 

The interpretation of Z2 in Eq.(8.2.23) follows the average strain theorem [43] 
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(2)2 =_1 f Zdil2 =-l-f ([1+H(i-3)]Un +Un}dil2 (8.2.24) 
lj il2 D2 lj 2il2 8D2 I j j I 

where ~ and a~ are the total area and boundary of the voids, n = [nl n2 O]T 

is the nonnal local to the void surface, U = [UI U2 U3 f = [ul u3 ¢f ' and H(i) 

is the Heaviside step function. 

Cracks are defined as very flat voids of vanishing height and thus also of 
vanishing area. Multiplying both sides of Eq.(8.2.24) by v2 and considering 

the limit of flattening out in cracks, i.e., v2 ~ 0, one has 

lim [(2ij )2 v2] = -l-f {[I + H(i - 3) ]!1Ui nj + !1Ujni } dt = Xij (8.2.25) 
V2-->O 2A L 

where L = II U l2 U ... U l N' li is the length of the ith crack, N the number of 

cracks within the representative area element, !1(.) stands for the jump of a 

quantity across the crack faces. For convenience, we define [44] 
P = lim (Ao vJ , Q = lim (Bo v2 ) 

V2 -->0 V2-->O 

Hence Eqs.(8.2.21) and (8.2.22) can be rewritten as 

E* =EI(I -P) 

F* = F;(I +Q) 

with the relation 

(8.2.26) 

(8.2.27) 

(8.2.28) 

(8.2.29) 

Thus, the estimation of the integral (8.2.25) and thus P (or Q) is the key to 

predicting the effective electro elastic moduli E* and F*. The approximation of 

the integral (8.2.25) through use of various micromechanics models is the 

subject of the subsequent sections. 

8.2.2 Effective conductivity 

It can be seen from the discussion in Subsection 8.2.1 that the key point for 

evaluating the effective properties of a cracked piezoelectric solid is to 

detennine the concentration factors P and Q, and thus to calculate the integral 
(8.2.25). For a cracked piezoelectric sheet subjected to a set of far fields W;,n 

or hi'D' i.e., 

(8.2.30) 

or 
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(8.2.31 ) 

where s stands for arc coordinate on boundary, subscript "=" represents far 

field. Using the boundary conditions (8.2.30) and (8.2.31), the effective 

conductivity can be determined in the following way. For a cracked 

piezoelectric sheet, we have from the definition of average field and 

Eq.(8.2.25) [9] 

(8.2.32) 

(8.2.33) 

where "M' represents the quantity associated with the matrix, and I'1T stands for 

the jump of temperature field across crack faces 
I'1T(x) = 1(U) (x) -1(L) (x) (8.2.34) 

with subscripts "(U)" and "(L)" denoting the quantity associated with the upper 

and lower faces of the crack, respectively. If all cracks are assumed to have the 

same length and orientation, Eqs.(8.2.32) and (8.2.33) can be further written as 

(8.2.35) 

(8.2.36) 

where subscript "c" denotes the quantity associated with crack. By comparing 

Eq.(8.2.36) with Eq.(8.2.25), we see that the concentration factors P and Q can 

be expressed as follows 

. - If hm (~V2) = A L 1'1 Tndl = PM Qhm = PW", = X 
'V2 ----+0 

(8.2.37) 

It can be seen from Eq.(8.2.36) that the solution of I'1T along the crack line 

is required for calculating effective heat resistivity p~. For a piezoelectric 

sheet with a number of cracks, it is very difficult to obtain an analytical solution 

of I'1T when the interactions among cracks are taken into account. In the 

following, we show how to use micromechanics algorithms to evaluate I'1T, and 

then determine P~ and k~. 

(1) Dilute method. 

In the dilute assumption we assume that the interaction among cracks in an 

infinite plate can be ignored. The concentration factor P is then obtained from 

the solution of the auxiliary problem of a single crack embedded in an infinite 



8.2 Micromechanics model of thermo-piezoelectricity with microcracks 287 

intact plate (see Fig.8.1a). For an infinite plate with a horizontal crack and 
subjected to the far field W2m , the temperature jump across the crack faces was 

obtained by Atkinson and Clements [45] 

L1T(x) = 4kW2m (a2 _x2t 2 

kll 
(8.2.38) 

where k = (kllk22 - k122)li2 , and a is the length of the crack. Since with the 

dilute method we assume that there is no interaction among cracks, the 
constants k and kll in Eq.(8.2.38) can be taken as kM and k11M . Thus, the 

concentration factor pDIL can be expressed as 

p,nll - pDlL _ pDlL - 0 
11 - 12 - 21 - , 

n Dll _ 2nkMc 
122 -

kllM 
(8.2.39) 

where superscript "DIL" stands for the quantity associated with dilute method, 

and c = Na 2 
/ Q is the so-called crack density parameter. Substituting 

Eq.(8.2.39) into Eqs.(8.2.27) and (8.2.28) yields 

1 
2nckM 

k* - k2.2M -k22M k ' 
ij - 11M 

k;jM' 

for i = j = 2 
(8.2.40) 

otherwise 

When £«1, we have 

(8.2.41) 

It should be pointed out that the formulation obtained above applies to 

problems in which all cracks have the same length and are in the horizontal 

direction. 

(2) Self-consistent method. 

In the self-consistent method [16], for each crack, the effect of crack 

interaction is taken into account approximately by embedding each crack 

directly in the effective medium (see Fig.8.1 b), i.e., the medium having the as 

yet unknown material properties of the cracked matrix. Obviously, with this 

method the same form is used in Eq.(8.2.39), except that the subscript "M' is 

replaced by "*", i.e. 

P SC pSc n SC 0 
11 - 12 - 121 - , (8.2.42) 
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where superscript "SC" stands for the quantity associated with self-consistent 

method. 

(3) Mori-Tanaka method. 

It can be seen from the discussion above that the dilute method is based on 

the solution of a single crack embedded in infinite matrix subjected to the far 
field Wcr, (see Fig.S.la). In this case, Eq.(S.2.37) becomes 

(S.2.43) 

Alternatively, the self-consistent method is based on the solution of a 

single crack embedded in an infinite unknown effective material subjected also 
to the far field W= (see Fig.S.1 b). With this method. Eq.(S.2.37) becomes 

(S.2.44) 

In contrast, the Mori-Tanaka method [46] is based on the solution for a 

single crack embedded in an intact matrix subjected to an applied heat intensity 

equal to the as yet unknown average field ~ in the matrix (see Fig.S.lc), 

which means that the introduction of cracks in the matrix results in a value of X 

given by [16] 

(S.2.45) 

Thus, the key point is calculation of ~. One method is to use 

Eq.(S.2.l7h and rewrite it in the form 

~Vl = W= - W2V 2 (S.2.46) 

For a cracked plate, noting that VI ~ 1 and v2 ~ 0, we have 

(S.2.47) 

where superscript "MT" denotes the quantity associated with the Mori-Tanaka 

method. For example, pMT stands for the concentration factor associated with 

the Mori-Tanaka method. Substituting Eq.(S.2.47) into Eq.(S.2.45) yields 

Making use ofEq.(S.2.39), we obtain 

p.MT p'MT pMT 0 
11 - 12 - 21 - , 

pDTL 
pMT _ 22 

22 - 1 pDIL 
+ 22 

It can be seen from Eq.(S.2.49) that when 8«1, Pz~T ;::::; Pz~JL . 

(S.2.4S) 

(S.2.49) 



8.2 Micromechanics model of thermo-piezoelectricity with microcracks 289 

tt t t t t t t W~ ttt ttttt W~ tttttttt WI 

Matrix material k ijM Effective material kif Matrix material k ijM 

Crack Crack Crack 

(a) Dilute metbod (b) Self-consistent method (c) Mori-Tanaka method 

Fig.S.1 Three typical micromechanics models 

Another way to calculate ~ is to use the results from the dilute method 

[Eq.(8.2.4l)]. To this end, assume the average heat intensity W2M in the 

matrix as 

W2M = W2= + W2 P (8.2.50) 

where W2= and W
2 P 

are, respectively, remote heat intensity perpendicular to 

the crack line and perturbed heat intensity due to the presence of the crack. 

With the assumption of the Mori-Tanaka method, W"zc in Eq.(8.2.35) can be 

written as [46] 

(8.2.51) 

Substituting Eq.(8.2.51) into Eq.(8.2.4 7) yields 

(8.2.52) 

Hence 

P MT _ 2nskM / k'IM 
22 -

1 + 2nskM / kllM 
(8.2.53) 

It can be seen from Eq.(8.2.53) that this procedure obtains the same results 

as Eq.(8.2.49). 

(4) Differential method. 

As was pointed out in Chapter 2, the essence of the differential scheme is 

the construction of the final cracked medium from the intact material through 

successive replacement of an incremental area of the current cracked material 

with that of the cracks [47]. The result obtained below is along the lines given 
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in [44] in the study of the overall moduli of isotropic elastic solids with a 

penny-shaped crack 

lim [V2 dk
DS

) = _kDS pDS, 

V2-->O dV
2 

(S.2.54) 

Assume that the cracks are obtained by flattening elliptical voids which 

have the axes a and ap, where p can be made infinitely small. Then the area 

fraction of the voids is 

(S.2.55) 

Inserting Eq.(S.2.55) into Eq.(S.2.54) and noting that dV2 = npd6 , we have 

(S.2.56) 

with initial condition 
(S.2.57) 

where superscript "DS" stands for the quantity associated with the differential 

scheme. Eq.(S.2.56) represents a set of 2x2 coupled nonlinear ordinary 

differential equations, which can be solved using certain numerical methods, 

such as the well-known 4th order Runge-Kutta integration scheme. 

(5) Generalized self-consistent method. 

The generalized self-consistent method considered here is based on the 

effective cracked medium model shown in Fig.S.2 [4S], a crack of length 2a 

embedded in an elliptical matrix material, which in turn is embedded in a 

material with the as yet unknown effective property of a microcracked solid. 

The major axis of the elliptical matrix is chosen to be aligned along the crack 

line, and the area of the surrounding matrix is chosen so as to preserve the 

corresponding crack density in the matrix. Based on this understanding, the 

major and minor axes of the ellipse in Fig.S.2 are assumed to be [4S] 
a* = a + 8, b* = 8 (S.2.5S) 

where 8 is determined by 

6= 
n(a +8)8 A 

(S.2.59) 

Since it is impossible to find the analytical temperature field for the 

effective cracked medium model, the approach presented in [4S] is used to 

calculate !1T. The method is based on the minimum potential principle of the 
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following functional: 

J (T) = f SM kijM T,;'F,/Js + f SEM k~T,iT,/Js - fa IJ.Thi=nide (8.2.60) 

where ft1 and sEM are, respectively, regions occupied by the matrix and 

effective medium, and T is a kinematic admissible temperature field. Among all 

the kinematic admissible temperature fields, the exact temperature field gives 

the minimum potential energy. 

E* 

Crack 

2a 

Fig.8.2 Effective cracked medium model for generalized self-consistent method 

Let ~ be the temperature field for an infinite matrix medium containing a 
crack of length 2a and subjected to the far field ~= , and let yEM be the 

temperature field for an infinite effective medium having the as yet unknown 

material properties of a cracked matrix, where inside the medium, there is a 
crack of length 2a and it is subjected to the far field h2=. These temperature 

fields have been given in [16, 45] as 

AT' = 4~= ( 2 _ 2)112 
Ll ,a XI ' 

k 
I=M, EM (8.2.61) 

r ' 2~= R [( 2 2 )112 . ] 'h (V) =7 e a -Zt +IZt =t(V) 2=' X2 > 0 ,I=M, EM (8.2.62) 

r' 2h2= R [( 2 -2)1 /2 -] 'h (L) =-7 e a -Zt +IZt =t(L) 2=' X 2 < 0 , I=M, EM (8.2.63) 

where superscripts "M' and "EM' represent the quantity associated with the 

solution in an infinite matrix medium and an infinite effective medium, 

respectively. 

The approximate temperature field T is assumed to be the linear 

superimposition of the above two solutions 

T=q2= (~MTM +~EMTEM) (8.2.64) 

where T' = t(V) , when x2 > 0, otherwise T' = t(L) , and ~M and ~EM are 
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the constants to be determined by the principle of minimum potential energy. 
To detennine r;M and r;EM, substituting Eq.(8.2.64) into Eq.(8.2.60) and the 

vanishing variation ofEq.(8.2.60) with respect to r;M and r;EM yields 

where 

III = f S,"vf kijMr,iM r,7 ds + f SEM k;r,': r,7 ds 

I = f k TEM TV! ds + f . k~TEM TM ds 
12 sAt 1JM,I.J SLAt '1. 1 .J 

(8.2.65) 

(8.2.66) 

(8.2.67) 

(8.2.68) 

Thus, r;M and r;EM can be determined by solving Eq.(8.2.65), and then 

substituting the solution of r;M and r;EM into Eq.(8.2.63) and subsequently 

into Eq.(8.2.34) for determining I1T. It can be seen from Eqs.(8.2.37) and 

(8.2.39) that 
(8.2.69) 

where superscript "GSC" denotes the quantity associated with generalized 

self-consistent method. 

8.2.3 Effective electroelastic constants 

To obtain the relations between the effective electro elastic moduli of a cracked 

medium, the following auxiliary problem is considered: 
t(s) = IImn (8.2.70) 

or 
(8.2.71) 

and 
T(s) = 0 (8.2.72) 

where x = [XI x2 t = [ X y t is a position vector. When the boundary 

conditions (8.2.7l)~(8.2.72) are applied, it follows from the energy theorem [43] 

II = II= or Z = Zcr. (8.2.73) 

and 

T =0 (8.2.74) 

In the case of a cracked body, the average stress II and strain Z defined on 
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the basis of the integral average are [16] 
- -

II=IIM, Z=ZM +Zc (8.2.75) 

where Zc can be calculated through use ofEq.(8.2.25), i.e., 

Zijc = lim[(Zij)2 V2]=_1_j {[1+H(i-3)]i1Uin +i1Uj ni }dl=Xij (8.2.76) 
vr~O 212 L } 

with i1Ui being the jump of generalized displacement field across the crack 

faces. Thus, Eq.(8.2.75) can be further written as 

E*Zcn =EMZ= -EMZc (8.2.77) 

(8.2.78) 

It can be seen from the discussion above that the estimation of Ze is the 

key to predicting the effective electroelastic moduli, while the estimation of 

Zc requires the solution of i1Ui • For a piezoelectric sheet containing a crack 

of length 2a and subjected to a set of far fields II =, the solution has been 

given in Eq.(3.7.115). When there is no applied temperature load, Eq.(3.7.115) 

becomes 

(8.2.79) 

where n, = [0"31 m 0"33w D3u, r are the applied far fields, and the matrix C is 

defined by Eq.(3. 7.100), which depends on the material constants, i.e. 
Ci/ = Cij (E) . Substituting Eq.(8.2.79) into Eq.(8.2.76) yields the expression of 

(8.2.80) 

where 
(8.2.81) 

When all cracks are in the horizontal direction, noting that n1 = 0, n2 = 1 

and 

we have 

C22 (E) 
Cl2 (E) 

C32 (E) 

o 

o 

(8.2.82) 

(8.2.83) 

e

33M 

• o (8.2.84) 

-K
33M 
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where Cij (E) are functions of as yet unknown material constants. In the 

following, the results of Eqs.(S.2.76)~(S.2.S4) are used to establish five 

micromechanics approximation theories for estimating the effective 

electro elastic moduli. 

(1) Dilute method. 
For the dilute method, we have Cij = CijM = Cij(EM) . The concentration 

factor pOlL is thus given by 

pDIL = ns R (E )E 
2 c M M 

(S.2.S5) 

(2) Self-consistent method. 

Self-consistent theory gives results with the same form as Eq.(S.2.S5) 

except that Rc (EM) in Eq.(S.2.S5) is replaced by Rc (E*) 

pSC = ns R (E*)E 
2 c M 

(S.2.S6) 

(3) Mori-Tanaka method. 

For the Mori-Tanaka theory, we have the same form of pMT as m 

Eq.(S.2.4S), i.e. 

pMT = pDIL(I +pD1Lrl = n; Rc(EM )EM[I + n; Rc(EM )EM r l (S.2.S7) 

(4) Differential method. 

Similar to the formulation of differential theory in Subsection S.2.2, we have 
dEDS 

s-- = _E DS 
pDS (S.2.SS) 

ds 

with the initial condition 

(S.2.S9) 

Generally, Eq.(S.2.SS) represents a set of 3x3 coupled nonlinear ordinary 

differential equations, which can also be solved with the well-known fourth 

order Runge-Kutta integration scheme. 

(5) Generalized self-consistent method. 

Similar to the treatment in Subsection S.2.2, the generalized self-consistent 

method here is also based on the effective cracked medium model in Fig.S.2. 

The energy functional corresponding to the electroelastic problem 

defined as 

1 f ~T ~ 1 f ~T * ~ fa T 
J(U) ="2 su Z E M Zds+"2 SEMZ E Zds- _a!1U II=dc 

can be 

(S.2.90) 
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where 

(8.2.91) 

and ZR can be evaluated by substituting Eq.(3.7.113) or Eq.(3.7.114) into 
Eq.(8.2.91). For a piezoelectric sheet containing a crack of length 2a and 

subjected to a set of far fields IIm , the solution U has been given in 
Eqs.(3.7.113) and (3.7.114). When there is no applied temperature load, 

Eqs.(3.7.113) and (3.7.114) become 

U(I) = Re[ AF(z)jj-1 Jn~, 

U(2) = Re[ AF(z)B-1 J~, 

(8.2.92) 

(8.2.93) 

If we denote U(u) = Re[ AF(z)jj-1 ] and U(L) = Re[ AF(z)B-1 ] ' 

Eqs.(8.2.92) and (8.2.93) can be written in one equation as 

{
Uw!L' X2 > 0 

U=U~= 
UcdI=, x2 <0 

(8.2.94) 

Hence, with the generalized self-consistent method, U and Z can be assumed 

in the form 
Z = (pI! ZM + ;:EM ZEM)Jl 

~ R ~ R m 
(8.2.95) 

where ;;M and ;;EM are unknown constants which can be determined by 

taking the vanishing variation of the functional (8.2.90) with respect to ;;M 
and ;;EM. To find the solution ;;M and ;;EM ,we consider first the cracked 

body subjected to a set of far fields II= = [(}31= 0 Or. Substituting 

Eq.(8.2.79) into Eqs.(8.2.97) and (8.2.95) , we obtain the expression of U and 

Zas 

(8.2.96) 

(8.2.97) 
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(8.2.98) 

Then, substituting Eqs.(8.2.96)~(8.2.98) into Eq.(8.2.90) and taking the 

vanishing variation ofEq.(8.2.90) with respect to C;M and C;EM yields 

where 

q>i? = LM(U~I»)T EMU~l)ds+ LEkf(U~I»)T E*u~l)ds 

q>(I) - f (M)T E EM ds f (M)T E* EM ds 
12 - SM Ux(1) MUx(l) + SEM Ux(1) Ux(l) 

,-n(I) - f (EM)TE EMds f (EM)TE* EMds 
'4-'22 - SM Ux(l) M U t(1) + SEM Ux(1) Ux(1) 

(8.2.99) 

(8.2.100) 

(8.2.101) 

(8.2.102) 

Solve Eq.(8.2.99) for C;M and C;EM and denote the solution as C;(~ and C;(7~. 

Finally, substituting the solution C;(~ and C;(7~ into Eq.(8.2.96) and 

subsequently into Eq.(8.2.82) yields three equations for the three components of 
pGSC 

(8.2.103) 

GSC GSC 1C£ M * EM 
P"I !:,3M +P,,3 P33M =2(C3IM C;(I) +C31 C;(1) ) 

Similarly, assume II= = [0 0'33= Orand II= = [0 0 D3= rand, usmg 

the procedure described above, we can finally obtain the following equations 

for the remaining six components of pGSC 

(8.2.104) 
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(8.2.lO5) 

GSC GSC 1(& M * EM 
~ 1 P33M - ~3 fJ33M = 2 (C33M';(3) + C33 ';(3) ) 

Thus, the concentration factor pGSC can be detennined by solving the nine 

equations above. 

8.2.4 Effective thermal expansion and pyroelectric constants 

To ascertain the relations between the thermal and electroelastic moduli of a 

cracked medium, similar to the treatment in Subsection 8.2.3, an auxiliary 

remote uniform temperature problem is considered in which the following 

boundary conditions are prescribed: 

(8.2.lO6) 

and 

t(s)=O or U(s) = 0 (8.2.107) 

When the boundary conditions (8.2.106) and (8.2.lO7) exist, it follows from the 

energy theorem [43] 

(8.2.lO8) 

For the boundary conditions (8.2.106) and (8.2.lO7), the corresponding fields 

are defined as 

Z=O, T=Tm , ii=-r*Tn' IIM =EMz-rMT 

where 

a = [all a33 Y3f, r=[All ~3 P3f 

Making use ofEqs.(8.2.12) and (8.2.75), we have 

a*T= =aMT= +Zc' r*T= =rMT= -EMZc 

(8.2.109) 

(8.2.110) 

(8.2.111) 

where Ze IS defined by Eq.(8.2.76) in which !1U is given by [see 

Eq.(3.7.115)] 

(8.2.112) 

with b being evaluated from Eq.(3.7.101). Substituting Eq.(8.2.112) into 

Eq.(8.2.76) yields the explicit expression of Ze as 
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Zc = I ~::. ~- ,;r ~ 1T< 
l Z32 l bJ 

(8.2.113) 

With the dilute and self-consistent methods, the substitution of Eq.(8.2.113) into 

Eq.(8.2.1ll) yields 

For the concentration factors P and Q, it can be shown that [16] 

r* = (J - p)r M' a * = (J + Q)aM 

Comparing Eq.(8.2.114) with Eq.(8.2.116)we see that 

Q DIL _ n& d· [0 b2M b3M 1 --- lag ----
2 a 33M Y3M 

which yields QMT of Mori-Tanaka theory 

QMT = QDIL (I + QDlLrl 

(8.2.114) 

(8.2.115) 

(8.2.116) 

(8.2.117) 

(8.2.118) 

8.3 Micromechanics model of thermo-piezoelectricity 
with microvoids 

In this section, the effective electroelastic behaviour of void-weakened 2D 

material is studied via the dilute, self-consistent, Mori-Tanaka, and differential 

micromechanics theories. For simplicity, all holes are assumed to have the same 

size and orientation. First the results of perturbed heat intensity, strain, and 

electric field due to the presence of voids are presented for two-dimensional 

piezoelectric plates with voids of various shapes, and then the above four 

micromechanics models can be established based on the perturbation results. 

These models are applicable to a wide range of holes such as ellipse, circle, 

crack, triangle, square and pentagon. 

In the case of voids, Eqs.(8.2.21)~(8.2.24) are still applicable. It can be 

seen from Eq.(8.2.24) that the estimation of temperature, elastic displacement, 

electric potential, and their integration along the hole boundary is the key to 
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predicting the effective material properties of void-weakened piezoelectric plate. 

To this end, consider an infinite sheet containing a hole of anyone of various 

shapes, whose contour is described by [49] 
XI =a(cos Ij/+TJcosmlj/), x2 =a(csinlj/-TJsinmlj/) (8.3.1) 

where 0 < c ,,:; 1, and m is an integer. By appropriate selection of the 

parameters c, m, and TJ, we can obtain various shapes of voids, such as ellipse, 

square, and so on. 

8.3.1 Effective conductivity 

When a set of far-field hen = [~'n h2n r is applied on the voided infinite sheet 

above, the temperature change T at a point on the void boundary has been given 

in [49] as 

T = -~[ chI = cOSIj/ + h2= sinlj/ - TJ(hl= cosmlj/ - h2= sin mlj/)] 
k 

k* = kM(1 -ATOVJ, p * =p M(l +BTo v2 ) 

where ATO and B TO are defined by 

(8.3.2) 

(8.3.3) 

(8.3.4) 

Substituting Eq.(8.3.3) into Eq.(8.3.4) and integrating it along the contour of 

the void yields 

(8.3.5) 

where RT is a 2x2 diagonal matrix whose components are 

c2 + mTJ2 R _ 1 + mTJ2 
RTl2 = RT21 = 0, RTiI = 2' 22 - -----'--::-

k( c - mTJ) T k( c - mTJ2) 
(8.3.6) 

Thus, from Eqs.(8.3.3)~(8.3.5), we find 

ATO = ATO(kM,k*) = RTkM' BTO = BTo(kM,k*) = kMRT (8.3.7) 

8.3.2 Effective electroelastic constants 

Consider a piezoelectric plate containing a hole whose contour is defined by 
Eq.(8.3.1) and subjected a set of far fields II=. The elastic displacement and 

electric potential at a point of the hole boundary has been given in [15] 
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U = XIZh + x3Z 3,n + [aerl cos Ij/ - a17rl cosm Ij/ - aesrl sin Ij/+ 

a17Sr1 sin mlj/ ] tlx, - [ arl ST cos Ij/ + a17r1 ST cos mlj/-

a(H + srI ST)(sinlj/ + 17 sin mlj/) ]t3= (8.3.8) 

where 

(8.3.9) 

and Z= = EMII=, L, Sand H are the well-known real matrices in the Stroh 

formalism, which is defined by Eq.(3.3.49), while Z= andII= are 

Z - [ - E - E ]T II - [ D D ]T = - &11= &13= &33= 1= 3=' 'x, - CTllen CTnx, CT33x, 1= 3= 

(8.3.10) 

By substituting Eq.(8.3.8) into Eq.(8.2.24) and integrating it along the whole 

contour of the hole, we obtain 

where R is a 5x5 symmetric matrix whose components are 

RII =fll(e-m172)+(rl)ll(e2 +m172) 

RI2 = (e- m17
2
)[J;3 -(r

1
S

T
)12] 

R13 =(e2 +m172)(rl)12 -(e- m172)(r I S T )11 

Rl4 =(e2 +m172)(rl)13 

Rl5 = (e - m172)[ P31 - (r1S T)13] 

R22 = (e- m17
2
)h3 + (l+m17

2
)[(H)22 + (Sr

1
S

T
)22] 

R23 = (-e + m172)(Srl )22 + (l + m172)[ (H)21 + (srIST)21] 

R24 = (-e + m172)(Srl )23 

R25 = (e - m172)p33 + (1 + m172)[ (H)23 + (srIS T)23] 

(8.3.11) 

R33 =(e-m172{f~4 -2(Sr1)12]+(e2 +m172)(rl)22 +(1 + m172) [(H)I 1 +(srIST)II] 

R34 = (e - m172)[pI5 - (Sr l )l3] + (e2 + m172)(rl )23 

R35 = (l + m172)[ (srI ST)13 + (H)13] - (e - m172)(rl ST)23 

R44 =(e2 +m172)(rl)33 + (e- m17 2 ){Jll 

R45 = (m17 2 -e)(rISTb 

R55 = (e- m17
2

){J11 + (l+m17
2
)[(Sr

lsT
)33 + (H)33] 
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Thus, from Eqs.(8.2.20), (8.2.23) and (8.3.11), we have 

Ao = Ao(EM ,E*) = REM' Bo = Bo(EM ,E*) = EMR (8.3.12) 

In the following, the Eqs.(8.3.11) and (8.3.12) are used to establish various 

micromechanics models for the effective thermo-electro-elastic moduli. 

8.3.3 Effective concentration factors based on various 
micromechanics models 

1. Effective temperature field 

Eqs.(8.3.5) and (8.3.7) can be used to establish micromechanics models 

for effective conductivity. First, we consider the dilute method. Since the 

interaction among voids is ignored in the dilute method, noting Eq.(8.3.7), 
ATO and BTO can be written as 

(8.3.l3) 

Substituting Eq.(8.3.l3) into Eq.(8.3.3) yields 

kDTL = kM [I - v2RT(kM )kM], pDlL =P M [I + v2kMRT(kM)] (8.3.14) 

A;~ = RT(k*)kM, B;~ = kMRT(k*) 

k SC =kM[I -v2RT(k*)kM J, pSc =PM[I +v2kMRT(k*)] 

(8.3.15) 

(8.3.16) 

In the Mori-Tanaka method, we assume that the average perturbed heat 

intensity W2 is related to the average heat intensity of the matrix ~ [15] 
- - DlL-

W2 =RT(kM)kM~ =ATO ~ (8.3.17) 

Multiplying the both sides of Eq.(8.3 .17) by VI and then substituting it into 

Eq.(8.2.46) yields 

W- (I ADlL)-IADlLW AMTw 
2 = VI + V2 TO TO en = TO = (8.3.18) 

Noting that ATO is symmetric, A~T can be written as 

A MT (I ADIL)-IADIL ADIL( I ADIL)-I TO = VI + V 2 TO TO = TO VI + V2 TO (8.3.19) 

Similarly, the concentration factor B~T can be obtained as 

B MT BDIL (I BDIL )-1 TO = TO VI + V2 TO (8.3.20) 

With regard to the differential method, similar to the treatment in Subsection 

8.2.2, we have 

(8.3.21) 

Subjected to the initial condition 

k
DS IV2~O = kM (8.3.22) 



302 Chapter 8 Effective properties of thermo-piezoelectricity 

Eq.(8.3.21) represents a 2x2 coupled nonlinear differential equations which has 

a similar structure to that ofEq.(8.2.S6). 

2. Effective electro elastic moduli 

Making use of Eqs.(8.3.11) and (8.3.12), the concentration factors and 

effective c electro elastic moduli corresponding to the following four 

micromechanics theories can be obtained and listed: 

(1) Dilute method. 

A~IL = R(EM )EM' B~Il = EMR(EM) (8.3.23) 

EDll =EM[I-v2R(EM)EM], FDll =FM +v2R(EM) (8.3.24) 

(2) Self-consistent method. 

Age = R(E*)EM' Bge = EMR(E*) (8.3.2S) 

se [ * ] se * E = EM I -v2R(E )EM ,F = FM +v2R(E ) (8.3.26) 

(3) Mori-Tanaka method. 

A~T = A~Il(VII + V2~ILrl, B~T = B~Il(VJ + v2B~Ilrl (8.3.27) 

EMT = EM {I -v2R(EM )EM [vII +v2R(EM )EM r} 
(8.3.28) 

FMT =FM {I +v2E MR(EM)[v,I +V2E MR(EM)r} 
(4) Differential scheme. 

Subject to the initial condition 

8.4 Micromechanics model of piezoelectricity with 
inclusions 

8.4.1 Eshelby's tensors for a composite with an ellipsoidal 
inclusion 

(8.3.29) 

(8.3.30) 

For problems of piezoelectricity with inclusions, Eqs.(8.2.1S)~(8.2.20) can still 

be used to predict effective electroelastic properties. Evaluation of Z2 and the 

related concentration factor is the key to predicting the effective electroelastic 

properties. In this section, approaches presented in [4,21, SO] are described to 

show how the micromechanics models can be derived. To this end, consider a 

piezoelectric composite consisting of an infinite domain D containing an 



8.4 Micromechanics model of piezoelectricity with inclusions 303 

ellipsoidal inclusion Q defined by 
X2 X2 X2 
_I + _2 + -.L <: 1 in Q 2 2 2 '" , (8.4.1 ) 
al a2 a3 

where ap a2 , and a3 are the semi-axes of the ellipsoid with the a3 principle 

axis coincident with the X3 axis. The assumption that the shape of the 

inclusion is ellipsoidal allows treatment of composite reinforcement geometries 

ranging from thin flake to continuous fibre reinforcement. Suppose that the 

inclusion Q has electro elastic moduli E I , while the matrix, D-Q, has 
electroelastic moduli EM. The composite is subjected to a set of far fields Z=. 

U sing the equivalent inclusion method for piezoelectric composites [4], the 

generalized stress in the representative inclusion can be written as 

Ilj = EjZj = Ej(Zm +Z)=EM(Z" +Z-Z*) (8.4.2) 

where Z represents the perturbation of the generalized strain in the inclusion 
with respect to the generalized strain in the matrix and Z* is the fictitious 
eigenfield required to ensure that the equivalency of Eq.(8.4.2) holds. In 

Eq.(8.4.2), Z and Z* are related through [4] 

Z=SZ. (8.4.3) 

where S is the coupled electro elastic analog of Eshelby's tensor whose components 

(8.4.4) 

(8.4.5) 

To perform the integration in Eq.(8.4.4), the unit sphere is parameterized as 

~I (1-~i)I/2cose ~2 (1-~32)1I2sine ~3 
ZI =-= , Z2 =-= , Z3 =- (8.4.6) 

~ ~ ~ ~ ~ 

In general, for an anisotropic medium the integrals in Eq.(8.4.4) cannot be 

evaluated analytically. In this case, the integration is easily performed by 

Gaussian quadrature. 

It should be mentioned that Huang [50] presented an equivalent 

formulation to Eq.(8.4.4) as follows: 
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(S.4.7) 

where 

GMJin =ala2a31 ~NMJ(C;);i';nD-I(Ods(z) (S.4.S) 
Izl~1 S 

with ';i being defined in Eq.(S.4.6), and NMj(C;) andD(c;) being the 

cofactor and the determinant of the 4x4 matrix EiM1n';i';n' respectively [50]. 

The evaluation of NM/ C;) and D( C;) has been substantively discussed in [50] 

and we will not repeat it here as it is tedious and algebraic. 

Note that S is a fourth order tensor and it is useful to use the generalized 

Voight two-index notation. With the two-index notion, the electroelastic 

Eshelby's tensor SMnAb for an ellipsoidal inclusion in transversely isotropic 

piezoelectric materials can be expressed in the following form [21]: 

Sl1 S12 S13 0 0 0 0 0 SI9 

o 
o 

[S4nah] = I ~ l S91 

where 

S22 S23 0 

S32 S33 0 

o 0 S44 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 

o 
o 
o 

SII =SIIII' SI2 =SI122' SI3 =SI133, SI9 =SI143' S21 =S2211' S22 =S2222 

S23 = S2233 , S29 = S2243 , S31 =S3311. S32 = S3322 , S33 =S3333' S39 =S3343 

S44 =S2323 =S2332 =S3223 = S3232 , S48 = S2342 , S57 =S1341> S77 =S4141 

S55 = S1313 = S1331 = S3113 = S3131> S66 = S1212 = S1221 = S2112 = S2121 

S75 =S4113 =S4131' Sg4 =S4223 = S4232 , Sgg = S4242 , S91 =S4311 

S92 = S4322' S93 = S4333 , S99 = S4343 

(S.4.9) 

(S.4.10) 

(S.4.11) 

In particular, the above electroelastic Eshelby tensors for an elliptic 

cylinder, a circular cylinder, and a penny-shaped inclusion in transversely 

isotropic piezoelectric solids have been obtained by Huang as [19] 
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(I) Elliptic cylinder (al / a2 = a, a3 ~ =). 

Sl2 = a [(2+a)CI2 -1] 
2(1 + a)2 aC11 

s - C13 
13 - , 

(1 + a)cll 

s - e31 
19 - , 

(I + a)cll 

S21= a [(1+2a)CI2 _ 1] 
2(1 + af aCll 

S - a (2 3cll + c12 J 22 - 2 a + , 
2(1+a) Cll 

(8.4.12) 

s = a 
44 2(1 + a)' 

s = 1 
55 2(1 + a)' 

s = a [a
2 

+ a + 1 
66 2(1 + a)2 a 

1 a 
S77 = --, S88 =--

I+a I+a 
(2) Circular cylinder (al = a2, a3 ~ =). 

1 
S77=S88=-

2 

(3) Penny-shaped inclusion (al = a2 »a3, a3 ~ 0) . 

1 ~3 
S44 =S55 =-2' S57 =S75 =S48 =S84 =--, S33 =S99 =1 

2cll 

8.4.2 Effective elastoelectric moduli 

(8.4.l3) 

(8.4.14) 

Substituting Eq.(8.4.3) into Eq.(8.4.2) yields the generalized strain in the 

inclusion Z2 as 

Z2 =Z= +SZ. (8.4.15) 

Making use ofEqs.(8.4.2) and (8.4.l5), Z2 can be further written as 

Z2 =[1 +SE;}(EJ -EM)f Zen (8.4.16) 

By comparing Eq.(8.4.16) with Eq.(8.2.20), we observe 

A2 =[1 +SE;)(E1 -EM)f (8.4.17) 

Similarly, the concentration factor B2 can also be obtained as 
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(8.4.18) 

Eqs.(8.4.17) and (8.4.18) provide the results of the concentration factors 

A2 and B2 by ignoring interaction among inclusions. Therefore, they represent 
concentration factors A~TL and B~JL. 

For the self-consistent method, noting that each inclusion is assumed to be 

embedded in an infinite piezoelectric medium, Eqs.(8.4.17) and (8.4.18) become 

A~c =[1 +S*E*-I(E[ -E*)f (8.4.19) 

B~c = [I + F*-I (I - S*)(F1 - F*) f (8.4.20) 

With regard to Mori-Tanaka method, it can be shown that [4] 
AMT =ADIL(vI+v ADIL)-I BMT =BDIL(vI+v BDIL)-I 

2 2122' 2 2122 (8.4.21 ) 

Finally, we discussion the differential scheme. Following Mclaughlin [47], 

the removal of a volume increment !'.V of the instantaneous configuration 
(thus a removal of V2!'.V of the reinforcing phase) leads 

dV 
dV2 = - (1- vJ (8.4.22) 

V 

where V is the volume of the composite. Denoting E* (V2 + dv2 ) as the 

effective electroelastic moduli at a reinforcement volume fraction of 

(V2 + dv2 ) , use ofEqs.(8.2.18) and (8.4.22) leads [4] 

(8.4.23) 

where 

(8.4.24) 

As in the self-consistent scheme, SDIF is a function of E* of the 

composite material at a reinforcement volume fraction of (V2 + dv2 ). Formally, 

Eq.(8.4.23) represents a set of 9x9=81 coupled nonlinear ordinary differential 

equations, in which 

(8.4.25) 

8.4.3 Effective thermal expansion and pyroelectric coefficients 

As mentioned in Subsection 8.2.1, evaluation of the effective thermal 

expansion and pyroelectric coefficients requires information about the effective 

electro elastic moduli. To obtain the relationships between thermal and coupled 
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electro elastic effects, Dunn [5] considered the following two auxiliary 

problems: 

(1) Applied uniform electroelastic far-fields. 

Consider a two-phase composite subjected to the boundary conditions 

(8.2.71) and (8.2.72). For the boundary conditions (8.2.71) and (8.2.72), the 

volume average fields and the phase and overall equations follow from the 

energy theorem [43], that is 
Tl- Tl- Tl- Tl Tl- Tl Tl- * 
II =IL, T = 0, Zr = Fr ilr, ZM = FM lIM' Z = F Il= (8.4.26) 

To distinguish the fields induced by different loading conditions, the 

left-superscript "[7" is used to represent fields associated with the applied 
far-field Il=. With the boundary conditions (8.2.71) and (8.2.72), the average 

electro elastic concentration factors for each phase are defined in a way similar 

to that in Eq.(8.2.20) as 
Tl- Tl-

III = BIIl=, Il2 = B2Il= (8.4.27) 

Likewise, for the boundary conditions (8.2.71) and (8.2.72), the 

corresponding fields are 

"Z=Zm, zf=o, Ziij =Ej"ZI' ziiM =EM"ZM' zii=E*Zm (8.4.28) 

where the left-superscript "Z" denotes fields induced by loading conditions 

(8.2.71) and (8.2.72). The average electro elastic concentration factors for each 

phase are defined as 
z- z-

ZI = Al Zen , Z2 = AZZen (8.4.29) 

(2) Applied uniform temperature change. 

Consider again the two-phase composite, but subjected to the boundary 

conditions (8.2.106) and (8.2.107). When the boundary conditions (8.2.106) 

and (8.2.107) are applied, the volume average fields and the phase and overall 

equations are as follows: 

71= 0, Tf = T=, TZ =a *T= 

T ZI = FI T~ +a/0, T ZM = F:11 TilM +aMT 
(8.4.30) 

where the left-superscript "T' denotes fields induced by loading conditions 

(8.2.106) and (8.2.107). Those for the boundary conditions (8.2.106) and 

(8.2.107) are 

TZ = 0, Tf = Tn' Tfj= -r*Tn 

T~ = EI T ZI -rI '0, TilM = EM T ZM -rM~V1 
(8.4.31 ) 

With the boundary conditions (8.2.106) and (8.2.107), the average thermal 
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concentration factors for each phase are defined as 
T - T - T- T-
Il1 = BnTn, Il2 = BT2 T=, Z1 = VnTn' Z2 = VT2Tn (8.4.32) 

It is then necessary to establish relationships between effective thermal 

property and electro elastic property based on the above results. Based on the 

theorem of average strain energy [43] 

1 IJZdQ =liZQ (8.4.33) [J 

and considering the electro elastic fields due to the boundary conditions (8.2.71) 

and (8.2.72), substituting Eq.(8.4.26) into Eq.(8.4.33) and then using 

Eqs.(8.4.26) and (8.4.30), we obtain 

L TIlIl ZdQ = L, T~(FI Il~ )dQ + LM TIlM (FM IlIlM )dQ = 0 (8.4.34) 

Similarly, substituting Eq.(8.4.30) into Eq.(8.4.33) and then using 

Eqs.(8.4.26) and (8.4.34) leads 

1 IlIlTZdQ=I Il~(FIT~+aJ~)dQ+ [J [J, 

Ia\! IlIlM(FM TII,v. +aMTM)dQ=I{na*T"Q (8.4.35) 

Similar manipulation with the quantities associated with the loading 

conditions (8.2.71) and (8.2.72) yields 

I[J zIlT ZdQ = If.? T Z(E* Z Z)dQ = 0 (8.4.36) 

1 Z ZTIldQ = -1 Z zr*r dQ = -zJ*r Q (8.4.37) 
f.? f.?[ = = 

Substituting Eqs.(8.4.26), (8.4.28), (8.4.27), and (8.4.29) into Eq.(8.2.l7) 

leads to the relations 
(8.4.38) 

Enforcing the quantity on the right-hand side of Eq.(8.4.35) to the results 

of the middle integrals ofEq.(8.4.35), we obtain 

a* =vlBla l +v2Bp2 

Similar manipulation for Eq.(8.4.37) yields 

r* = vIA!'1 + v2AE2 

(8.4.39) 

(8.4.40) 

To express effective thermal property in terms of effective electroelastic 

property, we need to find relationships between the concentration factors Ai and 

Bi appearing in Eqs.(8.4.39) and (8.4.40) and the effective electroelastic moduli 

of the composite. To this end, substituting Eq.(8.4.26) into Eq.(8.2.l7) and 

making use ofEq.(8.4.27) yields 

F* = v1F;BI + v2F2B2 (8.4.41) 
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which is similar to the expression in Eq.(S.4.39). Substituting Eq.(S.4.2S) into 

Eq.(S.2.17) and making use of Eq.(S.4.29) yields 

(S.4.42) 

Inserting Eq.(S.4.3S) into Eq.(S.4.4I) to eliminate B2 in favor of BJ then 

yields 

(S.4.43) 

Similarly, we have 

vA =(E* -Er)(EM -Err1 (S.4.44) 

Finally, substituting Eqs.(S.4.43) and (S.4.44) into Eqs.(S.4.39) and (S.4.40) 

we obtain 
* * -1 a = aj + (F - Fj )(FM - Fj ) (aM - aj ) 

r* =rj +(E* -Ej)(EM -Ejr1(rM -rj) 

(S.4.45) 

(S.4.46) 

It can be seen from Eqs.(S.4.45) and (S.4.46) that a * and r* can be 

easily evaluated when the effective electroelastic moduli F* and E* are 

obtained in a manner such as the results presented in Subsection S.4.2. In the 

following, Eqs.(S.4.39), (S.4.40), (S.4.45), and (S.4.46) are combined with the 

results of micromechanics theories obtained in Subsection S.4.2 to obtain 

a * and r* of the composite. 

From Eqs.(S.4.3S)~(S.4.40), it is easy to prove that 

a* =aM +v2 B2(a j -aM)' r* =rM +v2A2(rj -rM) (S.4.47) 

Substituting Eqs.(S.4.17) and (S.4.1S) into Eq.(S.4.4 7), the dilute method yields 

the effective thermal expansion and pyroelectric coefficients as 

a* =aM +v2[I +F;;/(I -S)(Fr -FM)f (a r -aM) (S.4.4S) 

(S.4.49) 

The substitution of Eqs.(S.4.19) and (S.4.20) into Eq.(S.4.4 7) yields the 

expressions of a * and r* for the self-consistent method as 

a* =a M +v2[I +F*-l(I -S*)(Fr -FM)f (a r -aM) (S.4.50) 

(S.4.51 ) 

With the Mori-Tanaka method, the insertion of Eq.(S.4.21) into Eq.(S.4.47) 

yields 

(S.4.52) 

(S.4.53) 
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For the differential method, E* can be evaluated from Eqs.(S.4.23)~ 
(S.4.25), while F* is determined from the following equations [5]: 

dF = _1_(FJ _ F*)B~IF (S.4.54) 
dV2 1- v2 

subjected to the initial conditions 

F* (V2 = 0) = FM (S.4.55) 

where 

B~IF = [/ + F*-I (/ - SDIF)(Er - E*) r 
Substituting Eqs.(S.4.24) and (S.4.56) into Eq.(S.4.47) yields 

* [*-1 DIP * ]-1 a =aM +V2 / +F (/ -S )(Er -E) (a r -aM) 

* [DIF *-1 * ]-1 r =rM +V2 I+S E (E1-E) (r1-rM ) 

(S.4.56) 

(S.4.57) 

(S.4.5S) 

8.5 Micromechanics-boundary element mixed approach 

It is noted that common to each of the micromechanics theories described in 

this chapter is the use of the well-known stress and strain concentration factors 

obtained through an analytical solution of a single crack, void, or inclusion 

embedded in an infinite medium. However, for a problem with complexity in 

the aspects of geometry and mechanical deformation, a combination of these 

micromechanics approaches and numerical methods such as finite element 

method and boundary element method (BEM) presents a powerful 

computational tool for estimating effective material properties. It is also noted 

from Section S.2 that estimation of the integral (S.2.24), which contains 

unknown variables on the boundary only, is the key to predicting the 

concentration factor A2 (or B2)' Therefore, BEM is very suitable for performing 

this type of calculation. In this section, a micromechanics-BE mixed algorithm 

is presented for analyzing the effective behaviour of piezoelectric composites. 

The algorithm is based on two typical micromechanics models (self-consistent 

and Mori-Tanaka methods) and a two-phase BE formulation. An iteration 

scheme is designated for the self-consistent-BE mixed method. 

8.5.1 Two-phase BE formulation 

In this subsection, a two-phase BE model IS introduced for generalized 
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displacements and generalized stresses on the boundary of the subdomain of 

each phase [34]. The two subdomains are separated by the interfaces between 

inclusion and matrix (see Fig.8.3). Each sub domain can be separately modelled 

by direct BEM. Global assembly of the BE subdomains is then performed by 

enforcing continuity of the generalized displacements and generalized stresses 

at the subdomain interface. 

In a two-dimensional piezoelectric composite, the BE formulation takes the 

form [SI] 

c(a\~)Ui(a\~) = f sea) [Ui~(a) (x,~)T}a) (x) - Tj:(a) (x,~)uja) (x)]dS(x) (8.S.1) 

where the superscript "( a)" stands for the quantity associated with the ath 
phase (a= 1 being matrix and a=2 being inclusion), T; = O'ijnj (i= 1,2), 

T" = Dini and 

Sea) ={s+r, a =1 r if ~ E D(a) 

a=2' 
c(a) (~) = O.S, if ~ E Sea) (s(a) smooth) (8.S.2) 

S, 
0, if ~ ~ D(a) U Sea) 

[ . * 

-~'j [':' 
t:2 -(~j U 11 U I2 

* * * -¢; , [T;;'] = t~1 * (8.S.3) [Uij] = u:1 u22 t22 -W2 

* -¢; * * U 31 U32 t31 t32 -W3 

in which rand S are the boundaries of the representative area element (RAE) 

and inclusions, respectively (see Fig.8.3); u:~ and t; (i, j=1,2) denote, 

respectively, the displacement and traction component in the jth direction at a 

field point x due to a unit point force acting in the ith direction at source point ;; 

u;; and t;; (i= 1 ,2) represent the ith displacement and traction at x due to a unit 

electric charge at ;; ¢;* and Wj* (i= 1,2) stand for the electric potential and 

surface charge at x due to a unit point force acting in the ith direction at ;; and 

¢; and w; denote the electric potential and surface charge at x due to a unit 

electric charge at ;; These fundamental solutions are well documented in the 

literature and can be found in [SI]. 

To obtain a weak solution of Eq.(8.S.I) as in conventional BEM, the 

boundary Sea) is divided into a series of boundary elements. After performing 

discretization using various kinds of boundary element (e.g., constant element, 

linear element, higher-order element) and collecting the unknown terms to the 

left-hand side and the known terms to the right-hand side, as well as using 
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continuity conditions at the interface S (Fig.8.3b), the boundary integral 

equation (8.5.1) becomes a set of linear algebraic equations 

AY=P (8.5.4) 

where Y and P are the total unknown and known vectors, respectively, and A is 

a known coefficient matrix. 

(a) RAE with an inclusion (b) RAE with a void 

Fig.8.3 RAE used in BE analysis 

When the inclusion in Fig.8.3a becomes a hole, the boundary integral 

equation (8.5.1) still holds true if we take a=1 only. In this case the interfacial 

continuity condition is replaced by the hole boundary condition: Tj = 0 

along the boundary S (Fig.8.3b). 

8.5.2 Algorithms for self-consistent and Mori-Tanaka approaches 

(1) Self-consistent-BEM approach. 

As stated in Subsection 8.2.2, in the self-consistent method, for each 

inclusion (or hole), the effect of inclusion (or hole) interaction is taken into 

account approximately by embedding each inclusion (or hole) in the effective 

medium whose properties are unknown. In this case, the material constants 

appearing in the boundary element formulation (8.5.1) are unknown. 

Consequently a set of initial trial values of the effective properties is needed 

and an iteration algorithm is required. In detail, the algorithm is: 

(a) Assume initial values of material constants E;o). 

(b) Solve Eq.(8.5.1) for Uu) using the values of E;i_I)' where the 

subscript "(i)" stands for the variable associated with the ith iterative cycle. 

(c) Calculate A2(i) in Eq.(8 .2.20) by way of Eq.(8.2.24) and using the 
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current values of UCil ' and then determine E(*i) by way ofEq.(S.2.1S). 

(d) If {;(i) = IIE(;) - E:i_ l ) II / IIE(o) II,;;; {;, where {; is a convergent tolerance, 

terminate the iteration; otherwise take E(i) as the initial value and go to 

step (b). 

(2) Mori-Tanaka-BEM approach. 

With the Mori-Tanaka method, the concentration matrix A~T is given by 

the solution for a single inclusion (or void) embedded in an intact solid 

subjected to an applied strain field equal to the as yet unknown average field in 

the composite, which means that the introduction of inclusions in the composite 

results in a value of Z2 given by 

(S.5.5) 

where A~IL is the concentration matrix associated with the dilute model, 

which can be calculated by way of Eqs.(S.2.20), (S.2.24) and (S.5.1). Then, 

Eq.(S.4.21) is used to calculate A~T. It can be seen from Eq.(S.4.21) that the 

Mori-Tanaka approach provides explicit expressions for effective constants of 

piezoelectric composites. Therefore, no iteration is required with the 

Mori-Tanaka-BE method. 
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