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Preface

Intelligent material with multifield coupling properties is an important
aspect of modern science and technology with applications in many industrial
fields such as biomedical, electronic and mechanical engineering.

It is well known that most engineering materials, composite materials in
particular, are heterogeneous. The heterogeneity is either designed to meet
engineering requirements for specific properties and functions or a natural
evolution to adapt the historical architecture to changes in long term loadings
and environment. Typical examples include functionally gradient materials and
biomaterials. Functionally gradient materials are designed according to specific
functions required by users. Biomaterials, on the other hand, remodel
themselves to adapt to changes in the natural environment. Obviously, there are
many heterogeneous materials in engineering including composites, defective
materials and natural biomaterials. Heterogeneous materials exhibit complex
properties at both microscopic and macroscopic level due to their anisotropy
and interaction between components. Generally, there are two approaches used
in investigating heterogeneous materials. One is the continuum mechanics
approach, where the materials are assumed to be approximately homogeneous
and continuous media. The other is the micromechanics approach, used for
investigating the deformation and stress of heterogencous materials by
considering the interactions of the components in the microscopic scale.

In recent years, research in macro-micro mechanics of composite materials
has resulted in a great many publications including journal papers and
monographs. Up to the present, however, no systematic treatment of
macro-micro theory of heterogeneous multifield composites has been available.
The objective of this book is to fill this gap, so that the reader can obtain a
sound basic knowledge of the solution methods of multifield composites. This
volume details the development of linear theories of multifield materials and

presents up-to-date results on magneto-electro-elastic composites. The book
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consists of eight chapters. Chapters 1, 2, 5, and 7 were written by Qing-Sheng
Yang, and the remaining four chapters were completed by Qing-Hua Qin.
Chapter 1 describes basic concepts and solution methods of heterogeneous
multifield composites. Chapter 2 introduces the essentials of homogenization
approaches for heterogeneous composites. Chapter 3 deals with basic equations
and solutions of linear piezoelectricity, and extensions to include magnetic
effects are discussed in Chapter 4. Chapter 5 is concerned with basic equations,
variational principles, and finite element solution of thermo-electro-chemo-
elastic problems. Applications of multifield theories to bone remodelling
process are detailed in Chapter 6. Chapter 7 examines general homogenization
schemes of heterogeneous multifield composites. In Chapter 8, the final chapter,
a detailed discussion of wvarious micromechanics models of defective
piezoelectricity is provided.

The main contents of this book were collected from the authors’ most recent
research outcomes and the research achievements of others in this field. Different
parts of the research presented here were partially conducted by the authors at the
Department of Engineering, Australian National University; and the Department
of Mechanics of Tianjin University, the Department of Engineering Mechanics at
Beijing University of Technology. Support from these universities, the National
Science Foundation of China, and the Australian Research Council is gratefully
acknowledged.

We are indebted to a number of individuals in academic circles and
organizations who have contributed in different, but important, ways to the
preparation of this book. In particular, we wish to extend our appreciation to our
postgraduate students for their assistance in preparing this book. Special thanks
go to Ms. Jianbo Liu of Higher Education Press for her commitment to the
publication of this book. Finally, we wish to acknowledge the individuals and
organizations cited in the book for permission to use their materials.

The authors would be grateful if readers would be so kind as to send us
reports of any typographical and other errors, as well as their more general

comments.

Qing-Hua Qin, Canberra, Australia
Qing-Sheng Yang, Beijing, China
May 2007
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Chapter 1 Introduction

1.1 Heterogeneous materials

In classical continuum mechanics, materials are viewed as ideal, continuous,
homogeneous media. The aim of continuum mechanics is to describe the re-
sponse of homogeneous materials to external forces using approximate consti-
tutive relations without microstructural considerations. In fact, all materials are
inhomogeneous in the microscopic scale. Manufactured composites, natural
soils and rocks as well as biological tissues are typical examples. The contin-
uum is a model of materials in the macroscopic scale. Therefore, the homoge-
neity of materials depends on the scale of measurement. The magnitude of the
micro-scale used differs for specific materials. In general, the approximate
range of the micro-scale is 10" mto 10" m.

Heterogeneous materials exist in both synthetic products and nature. Syn-
thetic examples include aligned and chopped fiber composites, particulate
composites, interpenetrating multiphase composites, cellular solids, colloids,
gels, foams, microemulsions, block copolymers, fluidized beds, and concrete.
Some examples of natural heterogeneous materials are polycrystals, soils,
sandstone, granular media, earth’s crust, sea ice, wood, bone, lungs, blood,
animal and plant tissue, cell aggregates, and tumors [1]. These heterogeneous
materials have a legible microstructure. Figs.1.1 to 1.3 show microscopic pic-
tures of some inhomogeneous materials.

It is noted that an important class of heterogeneous media is composites
which are manufactured mixtures of two or more constituents, firmly (as a rule,
but not always) bonded together [2]. The composites have inhomogeneous
properties for different domains or different directions due to the inhomogene-
ity of their microstructures. This is an important feature and merit of heteroge-



2 Chapter 1 Introduction

neous materials. The microstructures of the composite materials can be de-
signed to meet various desired properties and functions. The materials may
possess very high properties in one or two directions and very weak properties
in other directions, depending on the design for structural performance. Be-
cause of their excellent designable characteristics, composite materials are in-
creasingly applied to industrial fields, for example, acronautics and astronautics,

electronics, chemical engineering, biomedical fields and so on.

Fig. 1.1 Fiber reinforced composite

Fig. 1.2 Microstructure of concrete

Fig. 1.3 Microstructure of a bone
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Heterogeneous materials often exhibit very complex properties, presenting
new challenges and opportunities to scientists and engineers. In recent years
several new composite materials have been developed which display not only
good mechanical properties but also some new functions such as thermal, elec-
tric, magnetic, photic, and chemical effects. At the same time, composite mate-
rials can create new functions and performance which are absent in their
constituents. Such multiple physical properties are usually coupled with each
other. Consequently, the coupling properties and deformation behavior of
heterogeneous materials are topics of great interest for qualitative and

quantitative investigation.

1.2 Multifield coupling properties of heterogeneous ma-
terials

A number of heterogenecous materials can fulfill the transfer between mechani-
cal and non-mechanical energy (thermal, electrical, chemical energy, etc). Such
materials are usually called intelligent materials. These materials can be used in
adaptive structures, sensors, and actuators. Intelligent materials are sensitive to
variables of the external environment, adjusting their shape or size to adapt to
changes in that environment. This multifield coupling behavior is a unique
characteristic of intelligent materials. For instance, piezoelectric ceramics, pie-
zoelectric polymers, and some biological tissues (e.g. bone, skin, etc) exhibit
thermo-electro-elastic coupling properties [3]. Electric current and heat flow
will be excited when the material is subject to a mechanical loading, and vice
versa.

As an example, a composite material consisting of a piezoelectric phase
and a piezomagnetic phase exhibits considerable multifield coupling properties,
1.e. both electro-mechanical and magneto-mechanical coupling. In addition, it
displays a remarkably large coupling coefficient between static electric and
magnetic fields, which is absent in either constituent. The magnetoelectric cou-
pling in the composite is created through the interaction between the piezoelec-
tric phase and the piezomagnetic phase, which is called a product property. The
product property of composites offers great engineering opportunities to de-
velop new materials.

In a different example, biological tissues, a form of natural material, can
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perform energy transfer between chemical and mechanical energy. In this proc-
ess electric and thermal effects are coupled. This phenomenon can also be
found in clay, gel, and so on, and can be described by thermo-electro-
chemo-mechanical coupling theory.

Research into heterogeneous media has a long history. Two approaches
have been adopted: macro-mechanical and micro-mechanical approaches.
Macromechanics deals with material as a homogeneous continuum based on
the approximate constitutive model, ignoring heterogeneity of the microstruc-
ture. The macroscopic or averaged properties of heterogeneous materials are
studied. However, the macroscopic properties of materials depend on mi-
cro-structural information, such as the geometric and physical properties of the
constituents and the behavior of their interface. Micromechanics has been de-
veloped to investigate the relations between the effective properties and micro-
structures of heterogeneous materials and the interactions among the constitu-
ents[4,5]. As the characteristic length of microstructure is far less than the
characteristic length of the whole body, a homogenization is carried out to cap-
ture the macroscopic behavior of the materials, as shown in Fig.1.4. Denoting y
as the microscopic scale and x as the structural scale, since y<<x, the composite

is replaced by the homogenized continuum.

o 2@
s @
| x |

(a) Heterogeneous material with microstructure (b) Homogenized continuum
Fig.1.4 Homogenization of heterogeneous materials

In the frame of micromechanics, the emphasis is placed on the bridging of
effective properties and micro-structure parameters of materials. Effective
properties that can be measured experimentally include effective elastic stiff-
ness, conductivity of electricity and heat, permeability coefficient of fluid and
coupling coefficients among physical fields. An understanding of the relations
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of effective properties and microstructure of materials is very vital in the design

of new composite materials.

1.3 Overview and structure of the book

The multifield coupling behavior of the heterogeneous material is a multi-
disciplinary subject. This book focuses on the multifield coupling properties of
several intelligent materials, investigating them by means of macro- and micro-
mechanics. The first group of materials involved is artificially intelligent mate-
rials, such as piezoelectric solids, piezomagnetic materials, and electric activity
polymers which are sensitive to stimuli from the external environment. The
second group of materials includes natural materials, such as biological materi-
als (bone, soft tissue, articular cartilage). These materials exhibit thermo-electro-
chemo-mechanical coupling effects. Investigation of the behavior of such mate-
rials can contribute to understanding of the interaction of the fields and mecha-
nism of deformation, growth, aging and rebuilding of the biological system.
This book is divided into two parts: macromechanics and micromechanics.
Macromechanical analysis i3 covered in Chapters 3 to 6. The phenomenological
theory of continuous media is applied in the investigation of multifield coupling
behavior of heterogeneous materials. In Chapter 3 the linear theory and general
solutions of piezoelectric materials are described. In Chapter 4 electro-elastic
coupling theory is extended to magneto-electro-elastic coupling problems. In
Chapter 5 we discuss fundamental equations and analytical methods of
thermo-electro-chemo-mechanical coupling problem. Chapter 6 involves
applications of thermo-clectro-elastic coupling in bone remodeling.
Micro-mechanical analysis focuses on the connection between
macro-properties and micro-structure parameters, devoting attention to estab-
lishing analytical methods for the effective coupling properties of materials.
Micro-mechanical analysis is dealt with in Chapters 2, 7, and 8. Chapter 2 dis-
cusses the homogenization theory of microstructure and the method of calcula-
tion of the effective properties of heterogeneous elastic materials. In Chapter 7,
we introduce the homogenization methods in the general sense, including the
direct average method, the indirect average method, and the mathematical ho-
mogenization method. In Chapter 8, a micro-mechanical model of

thermo-piezoelectric solid is described, and the effective properties of
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thermo-piezoelectric materials with micro-defects are computed.
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Chapter 2 Homogenization theory for hetero-
geneous materials

In this chapter we discuss the characteristics of heterogeneous media, basic
concepts, and methods of homogenization of microstructures of the materials.
Because there is much literature on this topic, for example references [1,2], the
chapter presents a brief review of the current state and new developments of

homogenization theory.

2.1 Microstructure of heterogeneous materials

Heterogeneous materials such as composites, solids with micro-defects, rocks,
and natural biomaterials consist of combinations of different media that form
regions large enough to be regarded as continua, which are usually firmly
bonded together at the interface. Their microstructure can be observed by
means of electric scanning microscopes. Generally, for a heterogeneous com-
posite, continuous constituents or phase can be referred to as a matrix, and a
discrete phase as an inclusion which is embedded in the matrix. The inclusion
may be a particle, a fiber, a micro-void, or a micro-crack. The overall (effective
or macroscopic) properties of composite materials depend on the geometric and
physical properties of the phases.

The microstructure of heterogeneous materials may be very disordered
and complex in that the distribution, size and shape of inclusions are random.
Moreover, there are local fluctuations of the phase volume fraction in a com-
posite. Therefore, mathematical description of the microstructure of a compos-
ite is a difficult issue.

From a practical point of view, it is considered that a composite material is
an assembly of periodic unit cells. A unit cell is also called a representative

volume element (RVE), as shown in Figs.2.1 and 2.2. A necessary characteristic
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of composite materials is statistical homogeneity (SH). A strict definition of
this concept must be expressed in terms of n-point probabilities and ensemble
averages. Suffice it to say for practical purposes that in a composite displaying
SH all global geometrical characteristics, such as volume fraction, two-point

correlations, etc., are the same in any RVE, regardless of its position [3].

|«
|«
|«

Fig.2.1 Composite with periodic cell

Fig.2.2 Representative volume element (RVE)

Boundary conditions imposed on a deformable body are called homoge-
neous boundary conditions if either one of

u,(s) = &%, 2.1.1)

T.(s)=oyn, 2.1.2)

is satisfied, where 5,.? are constant strains and 0'3 are constant stresses, x;

are the coordinates and n; are the components of the outward normal of the

boundary. Homogeneous boundary conditions applied to a medium displaying
SH produce statistically homogeneous fields within the body. The statistically
homogeneous fields are statistically indistinguishable within different RVEs in
a heterogeneous body. This implies that their statistical moments such as aver-
age, variance, etc. are the same when taken over any RVE within the heteroge-
neous body. In particular, statistical homogeneity implies that the body average
and the RVE average are the same.

A homogeneous material which has the effective properties of composite
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material is referred to as an effective medium. For a SH statistically homogene-
ous medium, the mechanical behavior of a RVE must be equivalent to the me-

chanical behavior of the effective medium.

2.2 Periodic boundary conditions

2.2.1 General considerations

The SH composites usually consist of periodic cells, as shown in Fig.2.1. In this

case, the microscopic displacement field and stress field are the periodic solu-

tions and a RVE is a periodic cell, as illustrated in Fig.2.2. Therefore the

boundary conditions of a RVE should reflect the periodicity of the microstruc-

ture. Without loss of generality, the strict periodic conditions of the displace-
ment and stress field can be expressed by [4]

w,(»)=u(y+Y), Vye (2.2.1)

o,(»=0,(y+Y), Vye 2 (2.2.2)

where ¥ =(1,Y,,Y;) is the periodicity, £2 is the domain of the RVE. A

typical periodic deformation of a composite is illustrated in Fig.2.3. For
vy" e I', the periodic displacement boundary condition of the RVE can be

written as
() =u,(y°+Y), W'erl (2.2.3)

Fig.2.3 Typical deformation of a composite

where /7 is the boundary of the RVE. The stress periodicity of the RVE re-
quires an anti-periodic traction boundary condition

TO)=-T('+Y), el (2.2.4)
where y” +¥ is the boundary of the periodic RVE.
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For a 2D square or rectangular RVE, as shown in Fig.2.4, the periodic dis-
placement boundary conditions can be expressed by
(3,3 =107 +1,,) (2.2.52)

u, (3, 3,) =, () +1,,3,) (2.2.5b)

Y2
D(y), ¥ +Yy)  COY +Y,, )8 +1y)

A7, 09) B() +Y,,)%)

R4l
Fig.2.4 The periodic RVE
on the left and right opposite sides, and
() =t (3,y; + 1) (2.2.62)
(35 73) =¥, 35 +15) (2.2.6b)

on the upper and lower opposite sides. The anti-periodicity of the traction
boundary conditions requires

G (53:)==0,() + 1,7, (2.2.7a)

61, 32) =01, + X, ;) (2.2.7b)
on the left and right sides and

Uzz(y1»y2)=—022(y.,y3"+1’3) (2.2.8a)

05 (s 19) = =050, )5 +1,) (2.2.8b)

on the upper and lower sides.

2.2.2 Symmetric and periodic boundary conditions

The periodic conditions described by Eq.(2.2.5) to Eq.(2.2.8) can be simplified
to ordinary boundary conditions as the RVE is symmetric. This case can reflect
many model composites in which the inclusion has, in the 2D state, the shape

of a circle, ellipse, or rectangle, as shown in Fig.2.5.
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O ®,

Fig.2.5 Symmetric and periodic RVEs

Firstly, consider the normal (extension and contraction) deformation
modes of the RVE. The periodicity and symmetry of the RVE require

U, (ylnayz) =1 (Y:] oo Y;,yz)
=—u, () +Y,5,) (2.2.9)
=0

on the left and right opposite sides, and
“2(}’1:)’3) = uz(y,,yzo +1)
=—t,(y,, 15 +Y,) (2.2.10)
=0
on the upper and lower opposite sides. Egs.(2.2.9) and (2.2.10) imply that the
normal displacements on all external edges of the RVE are fixed, as shown in
Fig.2.6. Clearly, these constraints can satisfy the anti-periodic and symmetric

requirements of the traction boundary conditions.

Fig.2.6 Constraints on RVE for normal deformation

Secondly, considering the pure shear deformation of the RVE, an

anti-symmetric deformation mode occurs. Then we can obtain

“2(3”105}'2) :”2(y10 +¥,¥,)

=-u, () + ¥, ;) (2.2.11)
=0
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on the left and right opposite sides, and
(¥, 32) =, (3,3, +1,)
==t (%, 53 +1,) (2.2.12)
=0
on the upper and lower opposite sides. Eqgs.(2.2.11) and (2.2.12) mean that the
tangent displacements on the boundary of the RVE are fixed, as shown in
Fig.2.7.

Fig.2.7 Constraints on RVE for pure shear deformation

The periodic and symmetric boundary conditions can be applied to the
two-scale expansion method where the initial strains are loaded [5, 6], which is
discussed in the following section. For a symmetric RVE, FE analysis of only
half a quarter of the RVE is sufficient.

2.3 Implementation of periodic boundary conditions in FE
analysis

Generally, displacement can be decomposed into two parts: constant displace-
ment and periodic displacement. Accordingly, alternative to Egs.(2.2.5) and
(2.2.6), the general periodic boundary conditions can be rewritten as

w (3 y,) = (3 +Y,3,)+¢ (2.3.1a)

uz(yl()syz)ZHQ(YF+}1sy2)+cg (2.3.1b)
on the left and right opposite sides, and

w(r,03) = (3, + %)+ (2.3.2a)

u, (3,33 =, (y, 33 + 1) +e, (2.3.2b)

on the upper and lower opposite sides, where ¢,,c, and ¢,e, are constant
displacements. These boundary conditions produce a periodic strain field
and therefore a periodic stress field. However, the displacements lose their
periodicity.
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2.3.1 Multi-point constraints

In finite element analysis, there are different methods for imposing periodic
boundary conditions. For example, appropriate multi-point constraints are im-
posed on the boundary of a RVE to produce periodic boundary conditions [7].
For a square or rectangular RVE, identical displacement functions must be
specified for corresponding nodes on the opposite edges. For example, the pairs
of nodes on the opposite edges of the RVE can be linked by a constraint equa-
tion so that opposite edges have identical deformations. The periodic boundary
conditions of a 2-D rectangular RVE, as shown in Fig.2.8, have been defined by
Hohe and Becker [8].

p+l i+p 2p
—_— O O O O O
2ptq © O 2pt+lg
%
b jo QJitq
2 o
p+1 o 2ptq+l

—_— i)
1= 0

Fig.2.8 Multi-point constraints of a RVE

It is assumed that there are 2p nodes on the upper and lower sides, 2g
nodes on the other two sides. The multi-point constraint for RVE can be ex-
pressed by

U oy — Uiyt =Uapy — Ui pyi » i=L3,---,p (2.3.3a)
on the upper and lower sides, and
Uaprgy ~ Yt = Uapiagi ~ Uijsgrio J=Cp+D,2p+2),--.2p+q)
(2.3.3b)
on the right and left sides, and u, are values of displacement components
u, atnode i, /=123.

For the problem of bending of a plate, the periodicity of the rotations will
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be described as
Py = Pipy i=13p (2.3.4a)
Py =Pyegys  J=Cp+D,2p+2),.2p+q) (2.3.4b)

where ¢, is the rotation with respect to the x;-axis at node .

2.3.2 Polynomial interpolations

The multi-point constraints satisfying periodic conditions can be implemented
in standard finite element programs, such as ABAQUS software. In some cases,
however, it is difficult to express periodic boundary conditions by multi-point
constraints, especially in the case of quite arbitrary FE mesh and/or arbitrary
boundaries of a RVE. In this case, the boundary node correspondence cannot be
casily established. For this case, a method can be implemented for enacting the
periodic boundary conditions, in which the displacements of boundary nodes
are expressed by suitable polynomial functions.

It is assumed that there are p nodes on any side, even a curved side of the
RVE. Then a (p—1)th order polynomial is chosen for the displacements. Denote
1 as the displacement component with respect to the x axis. Therefore we
can obtain p equations

U=y + X @y, Xy
: m+n=p-1 (2.3.5)
U, =0y +ax, +a,y, - a, X,y
where u;,---,u, are nodal displacement components with respect to the x
axis and x;,---,x, are the coordinates of the nodes on the boundary. Similar

equations of displacement components v and w, with respect to the y and z
axes, respectively, can be obtained. These lead to displacement constraints in
the FE equations prior to solving. These displacement constraints can be intro-
duced into the FE equations by the Lagrange multiplier method or the penalty
method [9, 10].

2.3.3 Specified strain states

Boundary constraints can be directly imposed on the RVE according to the de-

formation modes of the RVE. For a 2D problem, for instance, there are three
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kinds of basic deformation modes, two normal modes and one in-plane shear
mode, as shown in Fig.2.9. The three modes of deformation are used in the FE
calculation of effective stiffness coefficients of a composite by the direct aver-
age method which is described in the following section. Fig.2.9 shows the
boundary constraints corresponding to the following states of simple strain:

£, 1 o 0 £, 0
£=|&, |=|0], £=|é&, |=|1], £=|6&, |=|0 (2.3.6)
2¢, 0 2¢, 0 2¢,, 1
v=0
u=0|b q u=a Q
a
v=0
v=h
u=0|b q u=0 @
a
v=0
u=b/2
v=0|b @ v=al2
a
u=0

Fig.2.9 Three deformational modes of a 2D RVE

2.4 Effective fields and effective properties

Microstructural materials such as various kinds of composites, are bodies with

structural hierarchy, where the characteristic length of the entire body is much
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greater than the characteristic length of the microstructure. There is a complex
interaction between phases. Thus, if only quantities on the macroscopic scale
need to be determined, an optional method is that the microstructure is ho-
mogenized for reasons of a more efficient analysis. Homogenization is a
method for finding the macroscopic fields and properties based on the micro-
structural parameters and local properties of heterogeneous media. Effective
properties represent the overall behavior and depend on the phase properties
and microstructure information of heterogeneous materials. A schematic of a
homogenization is presented in Fig.2.10.

a a a a a

—

o000 ao
2 0aa0ao
Q=

Fig.2.10 Schematic homogenization of a heterogeneous material

241 Average fields

The volume average of the local or microscopic stress o;; and strain &; can

be defined by

5, = % [ o4 2.4.1)

and
_ 1
5=1 L, £,d02 (2.4.2)

where (2 denotes a RVE and V is the volume of the RVE, the superscript
bar denotes the volume average of the quantity, e.g. macroscopic or effective
quantity. For an elastic body, the volume average of the strain energy can be

expressed by
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_ 1 1¢1
W= ;L) wd2 = ;jﬂzaﬁgijd[)

Lp 1
= jggcﬁk,gggk,dg (24.3)

11
= ; J. o E ffjkz 0;;0x de

1 . . . .
where Eaijgl.j =w is the strain energy density, ¢, are the local stiff-
ness coefficients and fj;,(f =¢") are local compliance coefficients which

are different from phase to phase. Additionally, the macroscopic strain energy

should satisfy

Gz (2.4.4)

2.4.2 Effective properties

The effective properties which are represented by the effective stiffness ¢,
or compliance f}ki of composites, in terms of the average stress and strain,
can be defined as

Oy = Cyubu » & = fiuOu (2.4.5)

or according to the equivalence of the strain energy, defined as

1_ _ 1
5 i€ v Qg%gffd“@ (2.4.6)
that is
1 _ _ 1 1
Ecijklgijgkl = ;J-Qgcwgg/gk/dg (2.4.7)

This relation was obtained by Hill [11] and is referred to as Hill’s principle [12].
The principle has been generalized into nonlinear and inelastic materials [13].
The linearity of the stress-strain relation into an elastic body leads to
0’ w
c. =— 248
ikl agﬁagk[ ( )

then an explicit form of the effective stiffness components can be obtained [8]
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2W(gl.j)_iz, i=jk=li=k
if
_ 1 . L
w(E;)—» i#jk#Li=k,j=1
2517
_ _ _ 1 . .

T = [w(e,-,-,sk,)—w(ey>—w(ek,)]§, i=jk=Lizk  (249)
iy “kl
[W(sl./.,gkl)—W(si/)—sz(gk,)]%, i#jk#li+korj#I)

. . 4gijgkl
1
w(e,,&,)—w(e,)—wle,) |———, i=jk#l
[ #(z;5,) — W(g;) = W( k,)]z% J

where w(g,,&;,) denotes the strain energy density for a reference strain state,
where only ¢, and ¢, have non-zero values. Indices mean that no summa-

tion has to be performed.

Homogeneous boundary conditions are usually used to evaluate overall
material properties. For homogeneous traction df]) on the boundary 7" of the

RVE, we have
5, =0y (2.4.10)
and
& =f}jkzt7;?; 24.11)

Thus to find the effective compliance f;, the average strain &; must be

computed for a composite subjected to a homogeneous traction boundary con-
dition.

For a homogeneous displacement condition on the boundary /7~ of the
RVE, we have

g = (2.4.12)
and
5, =Tyt (2.4.13)

accordingly, to determine ¢, the average stress &, must be computed for

heterogeneous material subjected to a homogeneous displacement boundary
condition.

It is worthwhile to note that the volume average of stress, strain and strain
energy density can be expressed by phase volume fractions. For a general func-
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tion F,the volume average can be written as
=—j FdR=— U FaQ+| Fd.o+--}
Q 2

Npo Bpe, (2.4.14)
v v

= vlﬁ(l) + 'vzﬁ(z) +

where €2,€02,,-- (£ +€2, +-- =40 ) are subdomains which represent the

domains occupied by phase 1, 2, --- of the composite material, and V,,V,,--
are their volume, while
4 Y,
V=, Uy ==, 2.4.15
=0 BTy ( )
are referred to as volume fractions of the corresponding phases and
v, +v, ++--=1. For n-phase composite, the stress, strain and strain energy can
be expressed by
=)
Zv, ay (2.4.16a)
g = Zv g (2.4.16b)
=)
Zvl ) (2.4.16¢)

where the superscript (i) corresponds with phase i. In a word, the average of the
stress, strain and the strain energy density can be calculated by a volume aver-
age method. The average properties of a composite can be obtained by using
any one of the two averaged quantities mentioned above.

As the shape of an inclusion is ellipsoidal, the stress or strain in the inclu-
sion is uniform. In this case, the effective properties can be expressed by the
so-called concentration factor of the stress or strain. It is assumed that Hooke’s
law holds in each elastic phase

o) =chey’,  r=01-n (2.4.17a)

&) = frol . r=01-en (2.4.17b)

i
Substituting Eq.(2.4.17a) into Eq.(2.4.16a), and using Eq.(2.4.6), we can obtain
c=c"+Y v(c —c")e" (2.4.18a)

r=l1

Substituting Eq.(2.4.17b) into Eq.(2.4.16b), and using Eq.(2.4.5), we have
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F=r"+> 0(f - fHe"s" (2.4.18b)
r=1
It is assumed that there is a relation between average strain and local strain
e =A% (2.4.192)
Similarly, the average stress and local stress have the relation
6" =Bg (2.4.19b)
Thus the effective stiffness ¢ and compliance f of the composite can be
written as
c=c"+Y v (" —cHA (2.4.20a)
r=1
F=r'+> v (f - fOB (2.4.20b)
r=I1

where A"and B' are referred to as the concentration factors of stress and
strain, respectively. They are functions in term of the properties of the con-
stituents and the shape of inclusions.

For an isotropic composite, such as particle reinforced composites, the
stress-strain relation can be expressed by two independent engineering con-

stants as follows
Gy =3key, 5;=2ue, (2.4.21)

where G, =0,,+ 0, + 033,86, =&, + 8y +&3, 5

;- and ¢, are deviatoric

parts of £, and &,

; » respectively. k is effective bulk modulus and g is

shear modulus. Under this situation, Eq. (2.4.20a) can be rewritten as

k=ky+ v, (k, —ky)ey ;' (2.4.22a)

r=1

=ty + 20,4, — 1y)e)’e; ", jjnosum (2.4.22b)

r=1

2.4.3 Homogenization methods

There are different homogenization approaches. Direct homogenization is
based on volume average of field quantities such as stress, strain and energy
density. Then the effective properties can be found according to the definition
of the effective properties of the composite. The average and the calculation of
local field quantities can be performed by a numerical procedure, FEM or
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BEM [14,15], for instance, while the geometry and the properties of micro-
structures can be arbitrary.

Indirect homogenization follows the idea of the equivalent inclusion
method based on Eshelby’s eigenstrain solution for a single inclusion embed-
ded into an infinite matrix [16]. This method does not use the average of field
quantities, and the effective properties can be derived in terms of the volume
fraction and geometry of the inclusion as well as the properties of the constituents.
The self-consistent scheme [17-19], the generalized self-consistent scheme [20],
the differential method [21, 22] and the Mori-Tanaka method [23-25] have been
developed along the lines of this approach and are used widely to find the
properties of various composite materials. However, the arbitrary microstruc-
tural morphology that is frequently encountered in actual materials cannot be
deterministically treated with these models. The constitutive responses of the
constituent phases are also some what restricted, and predictions with large
property mismatches are not very reliable. Additionally, due to the lack of a
proper representation of microscopic stresses and strains, these models cannot
capture the effect of local inhomogeneities. A survey of indirect homogeniza-
tion methods and applications in predictions of the effective properties of
composites has been presented by Hashin [3].

Alternatively to direct and indirect homogenizations, the variational
method is unique in that it can give the upper and lower bounds of the elastic
moduli [26-29]. This method gives improved results over earlier bounds [30,31].

A relatively new approach for homogenization of microstructure consists
of mathematical homogenization based on a two-scale expansion of the
displacement field. This originated for analyzing physical systems containing
two or more length scales [32-35]. It is suitable for multi-phase materials in
which the natural scales are the microscopic scale characterized by in-
ter-heterogeneity or local discontinuity spacing and the macroscopic scale
characterizing the overall dimensions of the structure. This method can be
called mathematical homogenization.

Books covering different homogenization methods have been written by
Mura [36], Nemat-Nasser and Hori [37]. A critical review of different homog-
enization methods and applications in cellular sandwich structures can be found
in a recent article by Hohe and Becker [38].

In the following sections we focus on the direct method, indirect method
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and two-scale expansion method. Special attention is given to application in
conjunction with FE analysis and the implementation of the methods.

2.5 Direct homogenization

In direct homogenization, the direct averages of the microscopic fields, such as
stress, strain and strain energy density, are calculated by a volume or surface av-
eraging process. The effective properties of the composites are then predicted
according to relations of macroscopic stress, strain and strain energy density.
The effective quantities of the stress, strain and strain energy density can

be calculated from the corresponding boundary values by a surface averaging

. 1 . .
procedure. For the strain ¢, = E(Mi’ ;tu;,;), applying the divergence theorem

in Eq.(2.4.2) yields
_ 1 1¢e 1
5= [ &de= % J-I_E(uinj +u,n)dl 2.5.1)
where [ is the boundary of the RVE, #, is the outward normal vectoron /.
The surface average of the stresses can be obtained by integration by part

of Eq.(2.4.1), that is

1 11
5 =— =—| = 252
o, VJ.QJi].d.Q lerz(ﬁx/.+7"jxi)dl" ( )

where 7, is the traction vector on the surface of the RVE. This implies that

I; =oyn; holds. It is shown from Eq.(2.5.2) that average stresses can be cal-

culated by the volume averaging of the stresses or surface averaging of the trac-
tions.

Let us consider, for illustration, a brick shaped RVE as shown in Fig.2.11,
which has been used in most research work. The surface averages of tractions

can be expressed by, for instance,

_ 1 o
a“:ZjBCaudr, ozzzngcozzdF (2.5.3a)

1 1
5, =05, :ZchalzdF :ngcaﬂdr (2.5.3b)

The average strain energy can be expressed by the boundary values, ac-
cording to the work-energy principle

gl !
W= j@aﬁggdg = [ Twar (2.5.4)
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B
- =
- T—"' a,
MlE -

Fig.2.11 Traction condition of a RVE

This relation can be proved and be generalized mathematically. In fact, using

Green’s theorem, we can obtain
1
'[Qoggr.jd.() = EL’-’ oy (u; ;Fu;)de2
=‘[ ou; .d0
a ¥ (2.5.5)
- Iﬂ[(o-{fuf)-j ~ 0y, ;42

= —IQ o, ud+ L_ o.undl”

i g /]

Noting that o; ; =—f, (in ) and o,n; =T, (on [I,), then Eq.(2.5.4) be-

comes
[ od2=| fud2+ jﬂ Tu,dl" (2.5.6)

This is the work-energy principle: the strain energy stored in the RVE is equal
to the work of external forces. In the case of a free body force, i.e. f, =0, the
total strain energy can be represented by the work of the traction of the
boundary surface.

Therefore, it is concluded that the average of stress, strain and strain en-
ergy density can be calculated by either a volume or a surface averaging proc-
ess. Once two of the three quantities are found, the effective properties of the
composite can be predicted.

2.6 Indirect method

Indirect homogenization in this book refers to various homogenization methods

derived from Eshelby’s inclusion theory. An elastic solution has been obtained
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for a single inclusion embedded in infinite elastic medium [16]. Such a method
does not involve the calculation of average fields. The self-consistent scheme,
generalized self-consistent scheme, Mori-Tanaka method and differential
method are developed along this route. Indirect methods are widely used to

prediction of the effective properties of composites [39,40].

2.6.1 Self-consistent and generalized self-consistent scheme

The self-consistent and generalized self-consistent schemes provide methods to
calculate stress or strain concentration factors. They are briefly reviewed here
for a binary composite with matrix (» = 0) and inclusion (r=1).
In self-consistent scheme, it is assumed that a typical inclusion (fiber, par-
ticle or micro-void) is embedded in an infinite effective medium subjected to a
uniform strain £ at an infinite boundary. Denote ¢ as the effective stiftness
of the composite to be found. According to Eq. (2.4.12), & is the effective
strain of the composite. The corresponding effective stress is
6 =cc (2.6.1)
The strain in the inclusion consists of two parts, uniform strain £ and a per-

turbing strain &', and the stress in the inclusion is S + 87", that is

eV =g+g” (2.6.2a)
oV =5+0" (2.6.2b)
Using the equivalent inclusion principle yields
6+ =c'€ +e")=c@e +e¢” —&") (2.6.3a)
and
g" =8¢" (2.6.3b)

where § is the Eshelby tensor and &* the equivalent eigenstrain.
Solving Egs. (2.6.2) and (2.6.3), we find
eV =148 -0)] & (2.6.42)

where I is the unit tensor. A comparison of Eq.(2.6.4a) with Eq.(2.3.20a) gives
the strain concentration factor
-1
A= [I+SE’1 (c' —6)] (2.6.4b)

The effective properties can be found by substitution of Eq.(2.6.4b) into
Eq.(2.4.20a). As the homogeneous traction boundary condition is applied on
the infinite boundary of the effective medium, we can obtain the stress concen-
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tration factor and effective compliance of the composite.

In this model, the strain subjected on the effective medium is the effective
strain of the composite to be found. The scheme is self-consistent.

It is noted that the strain concentration factor is a function of unknown ef-
fective stiffness ¢ . An iteration procedure should be used to solve the
effective properties. In addition, the use of Eshelby’s solution means that the
shape of the inclusion is assumed to be an ellipsoidal. The self-consistent
scheme can be applied to calculating the effective properties of the composite.
But the complex interaction of inclusions cannot be considered in this model,
which can therefore lead to inaccurate prediction of effective properties. In
particular, a wrong result will be obtained when the inclusion volume fraction
is greater than 0.5.

The generalized self-consistent scheme is a modification of the
self-consistent model. It is assumed that a RVE is embedded in an infinite ef-
fective medium subjected to homogeneous boundary conditions. This is a novel
model and gives a reasonable result although the operation of the scheme is
more complex.

2.6.2 Mori-Tanaka method

Mori and Tanaka [23] have given a solution of back stress in matrix of compos-
ites. This result can be applied in extension of Eshelby’s solution for a single
inclusion to a composite with a finite inclusion volume fraction.

For a finite-fraction inclusion problem with eigenstrain &, although
there are complex interactions of phases, the average stress can be expressed by

<o > =c<e >, =—vc(Se” —¢") (2.6.5)
where <& >, isthe average strain in the matrix. v, is the volume fraction of
inclusion.

There are different variations to applying Mori-Tanaka’s average stress
conception to composites with inclusion of a finite fraction. Weng [24] gave the
following reexamination of the Mori-Tanaka(M-T) method.

For a binary composite subjected to a homogeneous boundary condition
[Eq. (2.1.2)], denoting =0 matrix and r=1 inclusion, the effective stress is o .
For the sameshaped pure matrix applied to the same boundary condition, the
corresponding strain & can be expressed by
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6’ =c%" (2.6.6)
where ¢’ is the stiffness of the matrix. Due to the existence of an inclusion,
the strain in the real matrix of the composite differs from that in a pure matrix.
Let & be the perturbing strain and & corresponding perturbing stress. Thus
g"+& and o +6 are strain and stress in the real matrix with

6’ +o6=c"c"+¢) (2.6.7)
The strain and stress in the inclusion are different from those in the matrix. The
differences are & and o', respectively. Thus &’ +&+¢' and o’ +6+o’

are the strain and stress in the inclusion. The equivalent inclusion principle

yields
n _ 0 ~ r_ 1 0 = ~n _ 0,0 ! *
oc'=0"+0+t0'=c(e +é+&)=c'(¢ +e+&'—-¢") (2.6.8a)
g'=8¢ (2.6.8b)
E=—v(S-De’ (2.6.8¢)

where v, is the volume fraction of the inclusion. Eq.(2.6.8c) arises from
Mori-Tanaka’s concept of average stress [Eq.(2.6.5)]. Solving Eq.(2.6.8) yields

g =Hg" (2.6.9)
where H = [co + Ac(o T - vOS)I1 Ac, Ae=c'—¢’, uy,=1-vis the volume
fraction of matrix.

Accordingly, the effective strain £ is
g=(1-v)&" +ve"

=(1-v)e’ +&) +v (e’ +&+¢')

(2.6.10a)
=&’ +ue
= +v H)&’
and the effective stiffness of the composite is
c=c"U+vH)' (2.6.10b)

Benveniste [25] has presented another explanation of the Mori-Tanaka
method by using the concept of the concentration factor. Denote A as the
strain concentration factor for the composite with a dilute inclusion. Here A
is independent of the volume fraction of the inclusion. Denoting A as the strain
concentration factor for the circumstance of a finite volume fraction of inclu-
sion, the relation exists

&gV = ag (2.6.11)

Therefore, the effective stiffness of the composite can be determined by



2.6 Indirect method 27

Eq. (2.4.20a) as

c=c"+v(c' -4 (2.6.12)
To calculate the concentration factor 4, introduce a new tensor G satisfy-

ing
gV =Ge? (2.6.13)

Using relation & =v,e” +v,e" yields

A=G[v,] -vG]" (2.6.14)
At the limit state, the concentration factor should satisfy the following condi-

tion
A, o=A4, A, =1 (2.6.15)

Obviously, by setting only G = A, the above mentioned limit condition will be
satisfied. Thus the Mori-Tanaka method can be summarized as: an inclusion is
embedded in an infinite matrix subjected to uniform strain £. The strain
concentration factor can be calculated by [see Eq.(2.6.4b), but ¢ is replaced
by ¢’]

A=[1+85) ' -] (2.6.16)
Then the effective stiffness is

c=c"+y(c —co);l['vol+leJ (2.6.17)

2.6.3 Self-consistent FEM and M-T FEM

The self-consistent scheme and M-T method are close mathematically. How-
ever, they are applicable only to ellipsoidal shaped inclusions. This is a critical
limit for their practical utility. The self-consistent finite element and M-T finite
element method (FEM) are numerical procedures used to solve the effective
properties of composites. The self-consistent model or M-T model in conjunc-
tion with the FEM can be applied to dealing with composites with arbitrary
shaped inclusions.

It is assumed that a typical inclusion is embedded in an infinite effective
medium subjected to a uniform strain £ . This boundary value problem can be
solved by FEM and then the average strain in the inclusion can be obtained.
Consequently, the strain concentration factor can be found and effective stift-
ness can be calculated by Eq.(2.4.20a). In this process, the unknown effective
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properties must be used in FE calculation, requiring an iteration procedure [41].

The self-consistent FEM can deal with arbitrary shapes of inclusions. The
influence of shape of the inclusion can be considered. Also, it can deal with
nonlinear material and the effect of interfacial properties.

Similarly, the M-T FEM can be used to numerically deal with arbitrary
shapes of inclusion. In M-T FEM, a typical inclusion is embedded in an infinite
matrix medium subjected to a homogeneous strain boundary condition. A FE
procedure is applied to calculate the strain concentration factor 4, then the

effective properties of the composite can be found by using Eq. (2.6.17).

2.6.4 Differential method

The differential method has a long history in physics. In considering the inter-
action of phases, the differential method has been applied to composite and

cracked solids.
Denote ¢ as the effective stiffness of a composite with volume ¥, and

inclusion volume fraction v,. Add the volume &7 of the inclusion to the
composite so that the inclusion volume fraction is v, + dv, and the effective
stiffness is ¢ +0c¢ . To keep a constant volume F, of the composite, the
volume OV is subtracted from the composite before adding the inclusion.

Thus the concentration of the inclusion 1s

vV, + 0V =06V = (v, + dv)V, (2.6.18a)
that is
o _ oy (2.6.18b)
Vo 1-v
The average stress is
6=(C+dck (2.6.19a)
then we have
gLV IV (2.6.19b)
4 Yy
G-tV 5 OV G0 (2.6.19¢)
" "

where € and o denote the average stress and strain in the instantancous

)

composite, respectively. & and o represent the average stress and strain
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of the added inclusion, respectively. If there are very few inclusions, the strain
concentration factor can be calculated by Eshelby’s solution for a dilute inclu-

sion problem
= A€ (2.6.19d)

where A=[I +8¢7'(c' - E)T , § is the Eshelby tensor.

Substituting Egs. (2.6.19b), (2.6.19¢) and (2.6.19d) into Eq.(2.6.19a)
yields

oc =(c' —c)A5—V (2.6.20)
Vo
Using Eq. (2.6.18b), and setting v, — 0, we can obtain
L (c'-e)A (2.6.21a)
do, 1-v,

This is a differential equation for effective stiffness. Its initial condition is
EL} o=C (2.6.21b)

Eq.(2.6.21a) is a nonlinear equation which can be solved by a numerical pro-
cedure.
For a spherical particulate reinforced composite, the form of Eq. (2.6.21a)
is
dk  k—k k+k
d_v1 - k +k

(2.6.22a)

A _p-mptp (2.6.22b)
do, 1-v gy +p
where k& and Z are the bulk modulus and shear modulus of the isotropic

composite. &k, and g are the bulk and shear moduli of the inclusion, respec-

tively, and
* 4 — * I
k'==u, H = £ 9_ wa 'L (2.6.22¢)
3 6 k+2u
The initial condition Eq.(2.6.21b) becomes
v,=0, k=k, A=y, (2.6.22d)

where kjand g, are the bulk and shear moduli of the matrix.

If we take approximately values
k=l p=tahtin (2.6.22¢)
3 6 ky+2u,
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an approximate solution of Eqs.(2.6.22a,b) can be obtained

— v (k, — k)
k=k,+ PRy

k +k

(2.6.22)

1+(1-19)

ﬁ:ﬂ + vl(ﬂl_ﬁ) (2622g)
o — 0.
1+(1—v) A"t

T H

2.7 Variational method

The variational method is used to determine the bound of effective properties of
a composite. It gives the upper and lower bounds of the effective properties of
the composite according to the stationary principle of the energy.

Consider a composite, volume V, subjected to a homogeneous strain
boundary condition [Eq.(2.1.1)]. Denoting &; as the virtual strain which satis-
fies the displacement boundary condition and the geometric equations, the
strain energy can be written as

~ 1 1

U=3 [  CusyeudV + Ejm chueendV 2.7.1)
where V is the domain occupied by a matrix, ¥] is the region of the inclu-
sionand V,+V, =V.

The effective strain energy corresponding to the average strain and stress
is

1_
U= Ec,.jk,ggg,?ll/ (2.7.2)
According to minimum potential principle, the real strain should satisfy
U<U (2.7.3)
This equation will lead to the upper bound of the effective stiffness.

If the composite is subjected to a homogeneous stress boundary condition
[Eq.(2.1.2)], denoting o, as the stress which satisfies the equilibrium equa-

tion and traction boundary condition, the complementary energy is

~ 1 1
I'= EIH> fuy0udV + EIVI fiu0 04V (2.7.4)

The real complementary energy can be expressed by means of effective stress
and strain
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1 _
== fwoonV (2.7.5)

The minimum complementary energy principle leads to
r<r (2.7.6)
This equation can be used to find the lower bound of the effective stiffness.

Let us consider two special cases.

(1) Constant strain: A uniform uniaxial strain is applied to a composite in
one direction, and the strains of matrix and fiber are assumed to be the same.
This state stands for a uniaxial deformation of a unidirectional fiber composite.
The minimum potential energy principle leads to

E, <v,E" +vE’ (2.7.7)
where [), is effective modulus along the axial or single direction.

E'(i=m, f) are the elastic moduli of the constituents. The equation above

indicates that the upper bound of effective stiffness can be expressed by a mix-
ture law. This result is referred to as the Voigt approximation [30].

(2) Constant stress: It is assumed that a homogeneous traction boundary
condition is applied to a composite , and the stresses in the matrix and fiber of
the composite are the same. The minimum complementary energy principle

yields
L ¢ @

—< 2.7.8
E, E" E/ 275
This is referred to as the Reuss approximation [31]. It is usually used to predict

the transverse effective modulus of composites.

2.8 Two-scale expansion method

It is assumed that an elastic body is an assembly of periodic microscopic unit
cells. There are two coordinate systems: global coordinate x =(x,x,,x,) and

local coordinate y =(»,»,,5,). The global coordinate x is related to the
local coordinate y as

y=x/¢ (2.8.1)
where & is a very small positive number denoting the ratio between the
dimension of a unit cell and a structural body. When subjected to structural
level loads and displacements, the resulting evolutionary variables, e.g. deformation
and stresses, vary from point to point at the macroscopic scale x . Furthermore,
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a high level of heterogeneity in the microstructure causes a rapid variation of
these variables in a small neighborhood & of the macroscopic point x. In the
present homogenization theory, periodic repetition of the microstructure about
a macroscopic point x has been assumed, therefore the field functions depend
periodically on y=x/¢. This characteristic is often termed Y-periodicity,

where ¥ corresponds to a RVE.

2.8.1 Expansion of the displacement field
The displacement field can be asymptotically expanded as
u; = uf () =1 (% p) + 1 (% ) + £7u (%, )+ (2.8.2)

The superscript & denotes association of the function with the two length

scales. Note that

OF*(x,y) _OF(xy) 10F(xy)

(2.8.3)
Ox; Ox, e 0y
where F is a general function, for the strain tensor &, We have
1 8u auj
g =—| —L/+—
T2\ ox,  ox
1 -1 0 1
= ;gﬁ (X, p)+&;(x, ¥) +e6,(x, p) + -+ (2.8.4)
where
o ou’
&g (x,y):l aLJr—J (2.8.5a)
Y 2 oy, oy
0 o Lot
g;;(x,y)zl Ou Oy L) Ow | O (2.8.5b)
‘ 2\ ox; ox, ) 2\0y, oy
' u! 2 ou’
(o y) = Ouy 04y |, L] Our O (2.8.5¢)
2\ ox;, ox; ) 2\ 0y, Oy

The elastic coefficients Cyy are periodic functions of x and depend on
£, that is
o = (X7 8) = ¢y (¥) (2.8.6)

Thus the stress can be expressed as
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& _ &
Oi = Cii €

1 & -1 £ 0 g 1
= ;C[jklgkl (x%p)+ c;’kl‘c"kl(x’ )+ gc:jkl‘c"kl(x’ Y+

1 _
:;O_[jl(x’y)+Gi(j)'(x’y)+go—i]j(x’y)+”' (2.8.7)
The stress-strain relations can be expressed by
G;(x’y):c;k/gkn/(x’y)’ l’l:—l,o,l (288)
From Egs.(2.8.5) and (2.8.8), the stresses have the following forms
ou,
-1 & k
o, =c; 2 (2.8.9a)
i ifkl 8y,
0 1
o0 =ct, [%+%J (2.8.9b)
ox, oy
1 2
ol =, O, B (2.8.9¢)
T lox, oy

2.8.2 Establishment of basic equations of elastic microstructure

The elastic problem with a periodic microstructure is described as:

o; +f=0 (in Q) (2.8.10a)
oin, =T, (on I,) (2.8.10b)
u =1u, (on I")) (2.8.10c)
Substituting Eq.(2.8.7) into Eq.(2.8.10), and equating the powers of &,
we obtain
80,;.1
=0 (2.8.11a)
%,
8o oo
vy 4 ¥ _9 (2.8.11b)
ox, oy,
ool B0t
9% 5% 4 r g 2.8.11¢)
ox; 0y;

For solving the system of Eq.(2.8.11), an important result is introduced
here. Fora Y periodic function @ =®(x,y), the equation

0 oD
L la(N=—"_I|=F (2.8.12)
o, {a,] (») 8yj}
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has a unique solution if the mean value of F is equal to zero, i.e.

1
F:;Idey:O (2.8.13)

where V is the volume of the unit cell. Application of this condition to

Eq.(2.8.11a) leads to
o'=0 (2.8.14)

i
and then from Eq.(2.8.8) and Eq.(2.8.5a), we have
u (x,y) =1’ (x) (2.8.15)
This shows that ulo is a function of the global coordinate x only.
The expansion of the displacement field can be rewritten as
u, = ul (x)=u) (x)+eu) (%, y)+ U (X, p) +++ (2.8.16)
We can regard u, as the macroscopic displacement, while u;,u’,---are

the microscopic displacements. The physical interpretation of Eq.(2.8.16) thus
is that the real displacement u, oscillates rapidly around the mean displace-

ment u due to the inhomogeneity from the microscopic point of view.

12

u;,u; ,--+ are the perturbing displacements on the level of the microstructure.

Substituting Eq.(2.8.14) into Eq.(2.8.11b), we can obtain the microscopic

equilibrium equation
oo, _
2=0 (in Q) (2.8.17)
J
Taking the mean of Eq. (2.8.11c) over (2 and applying Eq.(2.8.13) to
1

..
the second term 6—" , leads to the macroscopic equilibrium equation
Vi

Folop

- "4+ /=0 (in Q) (2.8.18)

J

—0 .
where G, are the macroscopic stresses.

2.8.3 Determination of effective properties of material with micro-
structure

It is assumed that the displacement fields u and u, are related by

0
i Ouy

up ==y (x5 p) - (2.8.19)
0x,
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Substituting Eq.(2.8.19) into (2.8.9b) yields

a kil auo
Gl(l) = {Ci/k/ _Cijmn al/):m Ja—xk (2820)
n !

Then integrating on the RVE leads to the effective stress-strain relations for an

elastic medium

ou’
—0 _ — K
i = Cin ox, (2.8.21)
where
_ 1
5y =1 [, of (e pmar (2.8.22)
z ] oV,
G = ;J.Y|:Cg,‘/d = Cijmn o, dYy (2.8.23)

;. are the homogenized elastic coefficients. It can been seen from Eq.(2.8.23)

that the function w(x,y) must be calculated before determination of the ho-

mogenized properties. Generally, the evaluation of w(x, y)can be performed

by the FEM.

2.8.4 Variational forms

The variational forms of the abovementioned equations can be established to
calculate the effective properties of a composite in conjunction with the FEM.
The variational form of Eq.(2.8.11a) is

oo 0
| —Louda=] e, B | s0a0 -0 (2.8.24)
@ ayj U oy,

o

where Su, can be viewed as arbitrary virtual displacements. For a Y-periodic

function ¢(y), we define a mean operator as follows:

lim j ) ¢(§]d.(2 = % jﬂ quﬁ( )dYdQ (2.8.25)

>0

Since the homogenization method consists of finding the limit of the solutions
to Egs.(2.8.11a)~(2.8.11c) as & tends to zero, we have the form of Eq.(2.8.24)

0 0
lim | g[c;fk; au,(J 5u?d!2=ij f [c,.j,(,%] Su’d¥dQ =0  (2.8.26)
smola\ Moy, ) via b ey,

oJ
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Using the divergence theorem in Eq.(2.8.26) yields

0
L [ ] cij,daﬂ SudYdQ

—— L;CJS U,d —n,6uldsd2 =0 (2.8.27)
Thus
ouy
—* =0 (2.8.28)
oy,

It is shown again that ulo is a function of x only.

Substituting Eq. (2.8.9b) into the variational form of Eq. (2.8.11b) yields

oo . 1
J' ) i 514[](1.0: L-C;kl %+% 5u3d_(2:0 (2829)
0 ayj 2 axl ayl J
Then
0 1
im [ ez, [%+%] Suld
e0J 0" ¥ axl 6y, J
0 1
:lj I Cin [%+%j Su'dYdQ2 =0 (2.8.30)
yJely ox, 0Oy, y

Integrating by parts, and noting that the virtual displacements 5u3 =0 at the

boundary of the RVE, and u is a function of x only, we have

0
J~ ouy, J‘ o, 0% oou; 00u; 4y dQ+I J~ e au,( odu, QFAQ=0  (2.831)
0%, %, o oy,

Introducing the function w(x,y) which satisfies

a il ]
[ Vy 00w 4 dy = | e, 65 M gy (2.8.32)
v ayq 8)}'1 ’ ./'
and substituting Eq.( 2.8.32) into Eq.(2.8.31), we have
0 G
[ 250 e, vy 0oy, a¥d+ [ f e O 00U, yva=0 (2833
2 0x, Y aq ay] Oy, oy,

Applying the divergence theorem to Eq.(2.8.33) leads to

1
[ $ cipain Oui 00u; 4 162 + [ iy, 90U 4sd2=0  (2.834)
dy; oy

ind¥ p g
6 J
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From Eq.(2.8.34), we can again obtain Eq.(2.8.19). This explains the reason for

the assumption made in the previous section.

2.8.5 Finite element formulation
The interpolation of the FE form for the function w(x,y) can be expressed by
v =Nl =(Vw) . a=12,M (2.8.35)

where /V is a shape function, y stands for the nodal generalized coordinates,
and M denotes the total number of degrees of freedom in a FE system. Then
the derivatives in Eq.(2.8.19) can be expressed as

oy, i
= (By (2.8.36)
ayq q r
1 0
Oou; _ (By)! Oty (2.8.37)
9y, : ox,

where B, are the derivatives of the shape function N with respect to y,.

z

Note that the function ) is independent of y.
We can rewrite Eq.(2.8.32) in the standard form of FE
( fyBTchY)y/k’ =[ BMay (2.8.38)

where c is the stress-strain matrix, B is the discrete displacement-strain matrix

koo
" is a vector of a column of kI

depending on the element shape functions, ¢
(k1=11,22,33,23,31,12) of the stress-strain matrix ¢, and 1//“ is the characteri-
stic displacement vector associated with the &/ mode. There are six equations to
be solved for different strain states. A conventional FE can be used to calculate
Eq.(2.8.38).

Therefore, the homogenized elastic constants defined by Eq.(2.8.23), can

be expressed as
_ 1
g :;LC(I—Bt//)dY (2.8.39)
where
y= ['//H sz l//33 '/’23 !/fn 'l,lz:| (2.8.40)

In summary, " in Eq.(2.8.38) is solved by the FEM and then the effective
properties can be calculated from Eq.(2.8.39).
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2.9 An approximate estimation of effective properties

Here let us approximately evaluate the effective properties based on the
two-scale expansion method. Consider two specific cases: the constant strain
model and the constant stress model.

Analyzing the basic assumption made in the two-scale expansion method,
Eq.(2.8.19), and the effective stiffness, Eq. (2.8.23), we can see that the first
term in Eq. (2.8.23) is the well-known rule of mixture, while the second term is
a correction term due to the heterogeneity of the microstructure.

In the constant strain model, it is assumed that the strains undergone in

cach phase have the same values. Thus no perturbing displacements exist, that is
0

e o (2.9.1)
X

Then the effective stiffness Eq.(2.8.23) can be reduced as
_ 1 oy,
Cijkl = ;J‘Y |:Cijkl - cijmn ay :|dY

n

1
= j cjudY (2.9.2)
This is the known rule of mixture A simple expression under uniaxial state is
j E, dV =0, EV +0,E? +. (2.9.3)

where E,, is the Young’s modulus, v, and E{ are the volume fraction

and the Young’s modulus of phase i, respectively. Eq.(2.9.3) is referred to as
the Voigt approximation [30] and usually is used to predict the effective axial
modulus of unidirectional fiber composite material. Eq.(2.9.3) gives the upper
bound of the elastic modulus.

For estimating the approximation of effective properties in the constant

stress state, we can represent the relation by

1{ ou’ 5“
E[ ax, o ] JiniCu 294
and
()
ul /([ (x’ y) x l//fkl (x’ y)fk[pqapq (295)
7

The strain is
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a l//kl

0 m
& = (fiipq - fl’/'mn Wf klpq\JO-pq (2.9.6)

I

Taking integration over the RVE, we can obtain
z‘ii = fi/'pqapq (2’9‘7)
with the homogenized compliance coefficients

- 1 . oyl
Siivg _?Iy iing _fzfmnyfk/pq dy (2.9.8)

Eq.(2.9.8) can be interpreted as the correction operating on the rule of mixture
for the compliance. In the constant stress model, it is assumed that the stresses
of each phase are uniform and equal. Applying the equal stress condition to
Eq.(2.9.8), we can obtain

- 1 .
Tw=% L fudY (2.9.9)
For the uniaxial state, the Young’s modulus can be expressed by
SLENRLY LT . T (2.9.10)
E22 Ve E22 E§2) E;Z)

This equation is called Reuss’s approximation [31] and is usually used to pre-
dict the transverse modulus of a unidirectional composite material. It is verified
that this equation gives the simple lower bound of the effective elastic modulus
of a composite.

It should be noted that Voigt’s and Reuss’s approximations provide rigor-
ous upper and lower bounds. They are the most simply cases of Hashin and

Strikman’s variational solutions [26].

2.10 Formulations and implementation for 2D problem

In this section, the detailed FE formulation of a 2D problem is given for the

two-scale expansion method. There are three deformation modes of
pH (kl=11,22,12),e.g. ¥ =", %>, ¥") to be calculated for this case.

2.10.1 Formulations

Consider a plane stress problem of an orthotropic elastic body. The stress-strain

relation is
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€1 S Sz 0 01y

&n |=|Jon Jfon 0 ||[On (2.10.1)
2g, 0 0 fonllon
where the compliance matrix can be expressed by the engineering constants
A =EL”, Sz = fonn =ﬁ (2.10.2a)
S = L o Jon = L (2.10.2b)
Ly Gy
Similarly, the stiffness matrix can be written by the equation
Oy G G 0 &
Oy |=| a1 Cpn 0 %) (2.10.3)
‘1 0 0 [ 28,
where
S :#a Cri22 = Cyqy ::Lin—Ezz (2.10.4a)
1= g, B, 1 E 1— By, 1 Ey
Com = l_ﬂlzzEﬁ s O =Gy (2.10.4b)

where E;, and FE,, are the Young’s moduli, g, is the Poisson’s ratio, and

G,, is the shear modulus. For an isotropic elastic body, E,=E,, =F,

My =H, G,=CG= and the compliance and stiffness matrix can be
21+ )
written as
S S 0 | 1 —u 0
f=lJon S O z —u 1 0 (2.10.5)
0 0 fon 0 0 20+p
and
i G 0 P 1w 0
c=|Cpy Cpy 0 |= 1 a1 0 (2.10.6)
0 0 ¢y 0 0 I_T:u

The governing equations (2.8.32) and (2.8.23) of the homogenization method
arc rewritten as follows:
I
J‘Y al//,, avi 4y = ov

c. e gy (2.10.7)
upq ayq a yj J'Y ijkl ayj
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ki
G = %Iy|:ciikl = Ciimn 581/;’,:1 }dY (2.10.8)
where v, =Ju; are arbitrary virtual displacements. The equations will be
solved for three cases: Al =11, K/ =22 and il =12, respectively. A detailed
solving procedure incorporating FEM is now provided for the three cases.

Case kI=11 Expansion of Eq.(2.10.6) with elements of matrix leads to

ay/]l al//ll av
_[Y|:[le al T ¢ =+

Yy dy, Jon
11 11
Cii2p ovy +Cp ov; a&“‘
oy, oy, )oy,
¢ [—a%n +—8W51J[%+%j dY
1212
oy, oy oy, oy
ov ov
:J‘y(cllllé_yI‘Fcuzz ijdy (2.10.9)
The effective properties in Eq.(2.10.8) become
. 1 ay/]l av/ll B
STEN :;J‘Y(c““_c““a_yll_c“”ﬁ dy, j=11 (2.10.10)
_ 1 al//ll al//ll -
ol :;J.Y(CZZII — Oy 8—)21_622228—)/2 dry, ij=22 (2.10.11)

Rewriting Eq.(2.10.9) in matrix form, we obtain

3!//]”
¢ ¢ 0 ¥
ov, 0Ov, 0Ov 0Ov, e oy
.[y — - ot |Cm cm O A dy
oy 0y, dy, Oy s
0 0 Dl2l2 11 11
oy, +al//2
| Oy, m |
Sin
= {% ou %Jra&} ¢ |dY (2.10.12)
1oy Oy, 0Oy, Ony

0

Now we introduce notations for the strains
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oy’ |
o oy,
8 11
co=| 2 | ew=| & (2.10.13)
0y, W,
oy, oy Oy 0
| o, v | L0y, Oy |
11 v
where y/:{%u}, v:{ 1]
v, Uy
The stiffness matrix can be written in a compact form
c=[¢, ¢ ¢ (2.10.14)
where
Sn S22 0
€ =|Comyy|s € =|Cppl|, €= 0O (2.10.15)
0 0 Ciaiz
Then Eq.(2.10.12) can be written in matrix form as
jye T(v)ce (w)dY = Le T ()¢, dY (2.10.16)

FE discretization is introduced by interpolation of the function y with the form
w=> Ny =Ny (2.10.17)
i=1

where 7 is the number of nodes in an element, ® is the degrees of nodal

freedom of the element

A

v =[w, v, — .| (2.10.18)

The shape function matrix NV can be expressed by
N=[N, N, -~ N,] (2.10.19)

Substituting Eq.(2.10.17) into the first of Eq.(2.10.13), the strain can be

obtained

&)=Ly = LNy* = By* (2.10.20)

where B = LN is the element strain matrix, and
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9
oy,
L= 0 i (2.10.21)
oy,
o 06
L0y, O |

is the matrix of linear differential operator which links the relation between
displacements and strains for a plane problem.

Similarly, the FE formulations for the function v, referred to as arbitrary
virtual displacements, can also be obtained with exactly the same form. Thus
we can obtain the FE equation from Eq.(2.10.16)

Ky=F (2.10.22)
where
K=K, F=)F° (2.10.23)
e=1 e=1
K= j B'cBdQ, F¢= j B¢, d02 (2.10.24)
0F oF

The “force” vector F has a physical meaning. ¢, is the stress induced by a
specific initial strain & °

0
Sy G 0 &1 Sl
_ 0 _ 0 _
¢ =C& =|Cp Cpy O En |7 S (2.10.25)
0
0 0 cnp || 28, 0

which implies that a uniform initial strain is applied to the RVE at any point

5101 1
e’=| & [=]0 (2.10.26)
2¢), 0

Thus, Eq.(2.10.22) is solved in order to give the displacement y and strain
£ (@), and we can calculate the effective properties by Egs.(2.10.10) and

(2.10.11), of which the matrix forms are

— 1

Ciin :;J‘Y[Clm —cje (1Y (2.10.27a)
o .

Ca1i :;J‘Y[szn - (W)dY (2.10.27b)
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For m finite elements, the integration can be replaced by summations element

by element
_ 1 m n
G =;;jge[01111_c1TBW 1de2 (2.10.28a)
= l N T e
Cors =5, 2 f L€y — €1 By 1402 (2.10.28b)
e=1

while the integration in an element can be calculated by a numerical integration
procedure, such as the Gauss-Legendre rule. It is easy to add the formulations
into a standard FE program.

Case kl=22 An identical approach can be used to derive the FE
formulations for the case &/ =22. The governing equation becomes

al//22 al//ZZ av
IyKCnn 51 + Oy |

V) dy, ) oy,

oy dy3’ 0w,
G2 +Coopo —— t
oy oy, )0y,

22 22
C(@LﬁLJ[@ﬁLJ ar
W, M Oy, Oy

ov Ov
- Iy(CZZZZ i"‘cnzz 8_)/:de (2.10.29)

The effective properties of the composites are

1 oy o] J .
Coyry =— | | Cyopy —C -c dYy, =22 (2.10.30a)
22 T, J‘Y{ 2220~ Con N 2202 o,

1

_ 1 oy’ oy g
01122:;jy(01122_01111 5)/]] ~Ch ayz dy, =11 (2.10.30b)

The matrix form of the Eq.(2.10.29) is
j &7 (v)es ()dY = j & (@)e,dY (2.10.31a)

The matrix forms of equations for the effective properties are

_ 1
Cromp = ;L [0, — €26 @)]AY (2.10.31b)

_ |
S = ;J‘Y[Cl 12— €& @)]dY (2.10.31c)



2.10 Formulations and implementation for 2D problem 45

22
where = {%22} )
¥,

The finite element equation is

Ky=F (2.10.32)
where
K=K, F=) F° (2.10.33)
e=1 e=1
and
e _ T e _ T
K'=[ B'cBdQ, F'=[ B'cd0 (2.10.34)

In this case, the physical meaning of the “force” vector F 1is nodal forces

induced by the uniform initial strain

5101 0
e'=| & |=]1 (2.10.35)
28!, 0

The formulations for calculation of the effective properties are

1 .

G =3 2, [ o — 1 By Jd2 (2.10.36a)
e=1

1y .

Cim =;nge[cmz ~c/ By |d02 (2.10.36b)
e=1

Case kI=12 In this case, we have a series of corresponding equations

ay/lZ ay/lz av
J-yKle al + ¢y |+

Y1 dy, oy
12 12
15
(61122 ov; + Conn 0V, ]i"'
oy oy, ) 0oy,
12 12
cmz(—@% +_6z//2 ](%+%j dy
o, oy \ov, oy
3 Ov,  Ov,
_Lclzlz[a"‘ajdy (2.10.37)

B 1 6(//12 al/llzj
Ciapy =— | Clopp| 1-———¢ 2 |dy, =12  (2.10.38)
1212 VIY 1212( oy, 1122 oy,
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ng T(0)ce (w)dY = Lg T(@)e,dY (2.10.39)
Copy = %L[Clzu —c58 (‘/’)de (2.10.40)

12
where = {%12} )

¥,

The finite element equation is

Ky=F (2.10.41)
where
K=K, F=)F° (2.10.42)
e=1 e=1
¢ _ T e _ T
K'=[ B'cBQ, F'=| B'cd0 (2.10.43)

The uniform initial strain in the RVE inducing the nodal “force” vector F is
identified as

0
e'=| g, |=|0 (2.10.44)
1

The effective properties can be calculated from
_ 1 m Ag
Cioyy = ;nge [ cia1o — €3 By |de2 (2.10.45)
e=l

It is noted that shear coupling coefficients exist for anisotropic materials. They

can be calculated by similar formulations.

2.10.2 FE implementation of homogenization methods

The standard FE program is available for prediction of the effective properties
of heterogeneous materials. But specific additional subroutines must be
incorporated into a standard FE program to treat the nodal “force” vector,
periodic boundary conditions and the calculation of effective properties.

A homogenization program named HOMP is developed here, including a
direct method and a two-scale expanding method. The program organization is
shown in Fig.2.12. The parts in grey denote the subroutines to be added into a
standard FE program.



2.11 Numerical results 47

Preprocessor
Input initial data

)
Treatment of periodic
boundary conditions

L

Solution of FE equations

\
Calculations of the average
strain,stresses and energy

)
Calculations of the effective
properties by direct and two-scale
expanding methods

3

Postprocessor

Fig.2.12 A profile of HOMP

2.11 Numerical results

To investigate the effective properties of the composites, using direct methods
(including stress, strain and energy) and the two-scale expanding method, we
consider the following problems.

Case 1 Circular inclusions are embedded into the isotropic matrix, and
the resulting composite is almost transversely isotropic. The microstructure is

shown in Fig.2.13.

D D
D D
9 D D

2
@ u
Q

Fig.2.13 Case 1: almost transversely isotropic composite
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Case 2 L-shaped inclusions are embedded into the isotropic matrix, and
the resulting composite is orthotropic. The composite and RVE are illustrated
in Fig.2.14.

2a
2

S

R
5NN
R

Fig.2.14 Case 2: orthotropic composite

Case 3 Y-shaped inclusions are embedded into the isotropic matrix, and

the resulting composite is anisotropic, as illustrated in Fig.2.15.

SN

@ %
@ v T
C @

Fig.2.15 Case 3: anisotropic composite

Each case includes a fiber composite, a rigid inclusion medium and a void
solid. The properties of the inclusions vary from a very large value (modeling
rigid inclusions) to a very small value (simulating the voids). The material
constants are as follows:

E-glass fiber: the Young’s modulus is 73.1 GPa, the Poisson ratio is 0.22.

Epoxy matrix: the Young’s modulus is 3.45 GPa, the Poisson ratio is 0.35.

An inclusion with very large elastic modulus is used to approximate the
rigid inclusion. The elastic modulus of the inclusion is 10° times that of the
matrix. The Poisson ratio of the matrix is 0.35.

An inclusion with a very small elastic modulus is used to model the void.
The elastic modulus of the void inclusion is 10 times that of the matrix. The
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Poisson ratio of the matrix is 0.35.

A plane strain model is taken into consideration here. Thus the in-plane or
transverse properties of the composites are calculated. For the direct average
methods, boundary conditions with specific displacements are imposed and
then the FE method is applied in the calculation of the average stress, strain and
strain energy density on the RVE with a uniaxial strain state. The resulting
effective stiffness matrix of the plane strain problem is

S G 0

G Cpn 0 (2.11.1)

0 0 ¢y
The engineering constants for an isotropic body (¢, = ¢,,, ) can be calculated

by

p=—nm (2.11.22)

Cun T Cum
E:clll1(1+ﬂ)(1_2ﬂ) (2.11.2b)

1-u

G=c¢,, (2.11.2¢)

211.1 Effective stiffness of isotropic composite

The effective transverse stiffness coefficients of the transversely isotropic
composite are listed in Table 2.1. Here ASS denotes the direct average method
based on strain and stress fields, ASE the direct average method based on strain
energy density and TEM the two-scale expansion method. It is shown that the
three methods yield identical stiffness coefficients. This is not surprising

because of the same homogenization principle is used in all three methods. The

Table 2.1 Transverse stitfness coefficients for fiber composite

ciin/GPa c112/GPa ¢1212/GPa
ASS ASE TEM ASS TEM ASS ASE TEM
0.1 | 63147 | 63147 | 6.3148 | 3.2920 | 3.2920 | 1.4726 | 1.4726 | 14727
0.2 | 7.3218 7.3218 7.3218 | 3.6171 3.6171 1.6824 | 1.6824 | 1.6824
0.3 | 8.6606 | 8.6606 | 8.6606 | 39511 | 39511 | 1.9255 | 1.9255 | 1.9255
0.4 | 10.4873 | 10.4873 | 10.4874 | 4.2879 | 4.2879 | 2.2313 | 2.2313 | 2.2314
0.5 | 13.0754 | 13.0755 | 13.0758 | 4.6347 | 4.6346 | 2.6549 | 2.6550 | 2.6551
0.6 | 17.0605 | 17.0606 | 17.0608 | 5.0817 5.0817 | 3.3356 | 3.3356 | 3.3357
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engineering constants can be found by Eq.(2.4.2) for comparison with the
approximate bounds and experimental data. Fig.2.16 illustrates the transverse
Young’s modulus E,, as a function of the fiber volume fraction. The lower
bound was calculated by Ruess’s approximation. It is shown that ASS, ASE
and TEM provide good consistent results with the experimental data [42]. The
experimental data and bounds are listed in Table 2.2.

16~

- —s— TEM, ASS, ASE %
141

—e— Lower bound
*  Experimental data

Transverse Young's modulus

2
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fiber volume fraction
Fig.2.16 Transverse Young’s modulus vs fiber volume fraction

Table 2.2 The transverse constants

E>,/GPa G3/GPa u
UB LB Exp. Data UB LB

0.0 3.45 3.45 1.278 1.278 0.35
0.1 4.0582 3.8133 1.4727 1.4133 0.3427
0.2 4.9291 42622 1.6824 1.5806 0.3307
0.3 6.0361 4.8309 0.46 1.5 1.9255 1.7929 0.3133
0.4 7.9412 5.5746 0.52 10.1 22314 2.0711 0.2902
0.5 | 10.6499 6.5890 0.59 14 2.6551 2.4514 0.2617
0.6 | 146712 8.0548 0.595 15.1 3.3357 2.9852 0.2295

Fig.2.17 shows the transverse shear modulus G of the composite with
different fiber volume fraction. No experimental data for the transverse shear
modulus is available for comparison. An approximate estimation for the

transverse shear modulus by
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1 _ n +2
Gy

G G,

m

(2.11.3)

is plotted in Fig.2.17. It is easy to prove that Eq.(2.11.3) provides a lower
bound for the shear modulus.

35+ —a— TEM, ASS, ASE
——e— Lower bound

3.0

2.5

Transverse shear modulus

1.0 PR SN N NS NS R "
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fiber volume fraction

Fig.2.17 Transverse shear modulus vs fiber volume fraction

The transverse Poisson’s ratio is shown in Fig.2.18. The nonlinear relation
between the effective transverse Poisson’s ratio and the fiber volume fraction is
demonstrated. No appropriate bounds and experimental data are available for

comparison.
036
0.34
0.32
0.30
0.28

0.26

Transverse Poisson ratio

0.24

022

1 1 1 L 1 1 | i
0.3 0.4 0.5 0.6

1 | 1

I
0.0 0.1 0.2

Fiber volume fraction

Fig.2.18 Transverse Poisson’s ratio vs fiber volume fraction
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For rigid and void inclusions, the effective stiffness coefficients are listed
in Tables 2.3 and 2.4. It is shown that the three methods yield the same results.
In summary, the direct methods and the two-scale expansion method predict the

same effective stiffness for a large range of elastic mismatches [43].

Table 2.3  Stiffness coefficients for rigid inclusion medium

0 c/Ey Cii2/Ey cia12/Ey

ASS ASE TEM ASS TEM ASS ASE TEM
0.1 1.8560 1.8560 1.8673 0.9678 0.9678 0.4324 0.4311 | 0.4325
0.2 | 2.1900 2.1900 2.1967 1.0791 1.0784 0.4952 0.4968 | 0.5007
0.3 2.6504 2.6504 2.6577 1.1957 1.1986 0.5721 0.5738 | 0.5821
04 | 33123 3.3123 3.3464 1.3128 1.3150 0.6638 0.6724 | 0.6797
0.5 4.3297 4.3297 4.4308 1.4206 1.4195 0.8096 0.8140 | 0.8273
0.6 6.1427 6.1427 6.2106 1.5056 1.5047 1.0548 1.0548 | 1.0766

Table 2.4  Stiffness coefficients for void solid

o, cun/Eo /by ci/Ey

ASS ASE TEM ASS TEM ASS ASE TEM
0.1 1.1314 1.1314 1.1314 0.5381 0.5381 | 0.2763 | 0.2763 | 0.2763
0.2 | 0.8405 0.8405 0.8405 0.3459 | 0.3459 | 0.1919 | 0.1919 | 0.1919
0.3 | 0.6388 0.6388 0.6388 0.2221 0.2221 | 0.1235 | 0.1235 | 0.1235
0.4 | 0.4863 0.4863 0.4863 0.1385 | 0.1385 | 0.0731 0.0731 0.0731
0.5 | 0.3625 0.3625 0.3625 0.0811 0.0811 | 0.0389 | 0.0389 | 0.0389
0.6 | 0.2537 0.2537 0.2537 0.0413 | 0.0413 | 0.0171 0.0171 0.0171

2.11.2 Effective stiffness of anisotropic composite

For Case 2 and Case 3, calculation of the stiffness is carried out. Here the

analysis is performed only for the inclusion volume fraction 0.4. The numerical
results are listed in Tables 2.5 and 2.6. Again, the ASS, ASE and TEM yield
the same predictions of the effective stiffness.

Table 2.5 Stiftness coefficients for composite with fraction 0.4 for Case 2

11

Co

Clin

C

ASS

ASE | TEM | ASS

ASE

TEM | ASS | TEM

ASS

ASE

TEM

fiber
(x10*)

1.3222

1.322211.3222|1.1440

1.1440|1.1440

0.4000{0.4000

0.2437

0.2437

0.2437

void
(/Eo)

0.3621

0.3621{0.3621(0.3007

0.3007{0.3007

0.06510.0651

0.0394

0.0394

0.0394

rigid
VEy)

5.0192

5.0192|5.0192|3.9738

3.9738|3.9737

1.1360|1.1360

0.9005

0.9005

0.9005
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Table 2.6 Stiffness coefficients for composite with fraction 0.4 for Case 3

(ST Cnm Cnz C1212
ASS | ASE | TEM | ASS | ASE | TEM | ASS | TEM | ASS | ASE | TEM

fiber
(x10*)

void

(Eo)

1.8515(1.8516|1.8516|1.5770|1.5766|1.5770|0.4856|0.4856|0.3425|0.3425)|0.3425

0.2310]0.2310{0.2310]0.1408|0.1408 | 0.1408 {0.0120|0.0120(0.0049 | 0.0049| 0.0049

rigid

(E» 494.51(494.51|494.5116.2615|6.2615|6.2614|1.5905[1.5905|2.2646|2.2646|2.2647
0

2.11.3 Microstructural deformation

This section focuses on the calculation of microstructural deformation of
anisotropic composites [44].

Microstructural deformations of an orthotropic composite with L-shaped
inclusions are shown in Fig.2.19 where the deformations have been scaled.
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Fig.2.19 Deformation of composite with non-symmetric inclusion
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Here three uniform uniaxial strain states are considered. Although the applied
strain is uniform, complex deformations of the RVE are found due to the
heterogeneity of the microstructure and the periodicity of the boundary
condition. It is shown that periodicity of the deformations is exhibited for the
applied normal strain and shear strain states. Fig.2.20 shows the deformation of
the void solid. Here the voids have the same shape as the fibers shown in
Fig.2.19. The periodicity of deformations of the RVE ensures the compatibility
of the deformations among the unit cells of the composite.
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(c) Uniform &, (d) Uniform &,

Fig.2.20 Deformation of void solid with non-symmetric hole

The microstructural deformations of the RVE with Y-shaped inclusion are
shown in Figs.2.21 and 2.22. For the upper and lower sides of the RVE,
periodic deformations are exhibited for both normal and shear states. On the
left and right sides, the symmetry and periodicity of the deformations lead to
null orthogonal displacements for the normal strain states (see Fig.2.21b, ¢ and
Fig.2.22b, c). However, the anti-symmetry and periodicity of the shear
deformations result in null tangent displacements on the left and right sides (see
Fig.2.21d and Fig.2.22d).
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Fig.2.21 Deformation of fiber composite with one-symmetric-plane inclusion
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Fig.2.22 Deformation of composite with non-symmetric inclusion
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Chapter 3 Thermo-electro-elastic problems

3.1 Introduction

When piezoelectric material is subjected to a mechanical load, it generates an
electric charge. This effect is usually called the “piezoelectric effect”. Co-
nversely, when piezoelectric material is stressed electrically by a voltage, its
dimensions change. This phenomenon is known as the “inverse piezoelectric
effect”. Thermo-piezoelectric materials, on the other hand, can produce electric
and mechanical fields when they are heated. The coupling properties among
thermal, electric, and mechanical fields make piezoelectric materials suitable
for widespread use in industrial applications in various fields including the
electronics industry, nuclear industry, smart structures, microelectromechanical
systems, biomedical devices, and superconducting devices. These applications
have generated renewed interest in the coupling behaviour of multi-field mate-
rials including thermo-piezoelectric materials. In particular, information re-
garding thermal stress concentrations around material or geometrical defects in
piezoelectric solids will have wide application in analyzing and designing
composite structures. Early in 1974, Mindlin [1] was the first to develop the
governing equations of a three-dimensional linear thermo-piezoelectric medium.
Nowacki [2] subsequently developed some general theorems and mathematical
models of thermo-piezoelectricity which can be viewed as the basis of various
numerical methods. Dunn [3] studied micromechanics models for effective
thermal expansion and pyroelectric coefficients of piezoelectric composites.
Benveniste [4] obtained some exact results in the micromechanics of piezoelec-
tric fibrous composites of two, three and four phases. By using seven potential
functions, Ashida et al. [5] introduced a technique for three-dimensional

asymmetric problems of piezothermoelasticity of the crystal class 6 mm. Altay
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and Dékmeci [6] introduced a set of Euler-Lagrange equations of discontinuous
thermo-piezoelectric fields. Starting with the principle of virtual work and
modifying it through Friedrichs’s transformation, they presented the funda-
mental equations of discontinuous thermo-piezoelectric fields in variational
form. Noda and Kimura [7] studied the response of a thin piezothermoelastic
composite plate subjected to stationary thermal and electric fields. They
showed that coupled direct piezoelectric and pyroelectric effects have a signifi-
cant influence on the response of the deflection. Ashida and Tauchert [8] pre-
sented a finite difference formulation for determining the time-varying, axi-
symmetric, ambient temperature on the face of a piezoelectric circular disk,
based on knowledge of the distribution of the induced electric potential differ-
ence across the disk thickness. For the fracture analysis of thermo-piezoele-
ctricity, Shang et al. [9] proposed a method for three-dimensional axisymmetric
problems of transversely isotropic thermo-piezoelectric materials by means of
potential functions and Fourier-Hankel transformations. Fracture and damage
behaviours of a cracked piezoelectric solid under coupled thermal, mechanical
and electrical loads were studied by Yu and Qin [10,11]. Using techniques of
Fourier transformation and extended Stroh formalism, they reduced the tem-
perature field for a single crack problem to a pair of dual integral equations
with the aid of an auxiliary function. The electroelastic field was governed by
another pair of dual integral equations. With these equations, closed form solu-
tions were obtained for strain energy release rate under thermal, mechanical and
electric fields. Based on the above results, several micromechanics models
were developed for crack or void-weakened piezoelectric materials, including
the dilute, self-consistent, Mori-Tanaka, generalized self-consistent and differ-
ential methods [12-14]. More recently, Qin and Mai [15-24] presented a series
of Green’s functions for thermo-piezoelectric materials with various defects
such as crack, hole and inclusion, with application to practical problems.

In this chapter, we begin with discussion of a linear theory of piezoele-
ctricity, followed by an introduction of the two classical solution approaches for
electroelastic problems. Then, solutions are presented for analyzing logarithmic
singularity of crack-tip fields in homogeneous piezoelectricity. In Section 3.5, a
finite element model is developed for electroelastic problems. Extensions of
linear electroelastic theory to include thermal effect are discussed in Section 3.6.

Fourier transform approach and its application to fracture analysis are presented
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in Section 3.7. Finally, formulations expressed in terms of cylindrical coordi-
nate systems and their application to penny-shaped crack and piezoelectric fibre
push-out problems are discussed.

3.2 Linear theory of piezoelectricity

3.2.1 Basic equations of linear piezoelectricity

In this section, we recall briefly the three-dimensional formulation of linear
piezoelectricity that appeared in references [25,26]. Here, a three-dimensional
Cartesian coordinate system is adopted where the position vector is denoted by
x (or x;). In this book, both conventional indicial notation x; and traditional
Cartesian notation (x, y, z) are utilized. In the case of indicial notation we in-
voke the summation convention over repeated Latin indices, which can be of
two types with different ranges: i, j, k~=1,2,3 for lower-case letters and M,
N=1,2,3,4 for upper-case letters. Moreover, vectors, tensors and their matrix
representations are denoted by boldface letters. The corresponding energy prin-
ciple can be established in a way similar to the case of elastic problems if we
take (g, £,,) as the generalized strain tensor and (oy, D») as the generalized
stress tensor. Using the Cartesian coordinate system, the three-dimensional
constitutive equations for linear piezoelectricity can be derived by considering
the internal energy density U defined by [26]

dU =o0,ds; +E,dD, (3.2.1)
Obviously, Eq.(3.2.1) is a straightforward extension from the elastic energy
density dU =o,d¢,; . Thus, the electric entropy per unit volume g can be de-

fined as
g=U-E,D, (3.2.2)
where U, D,, and E,, are the internal energy density, electric displacement and
electric field, respectively, and £,, is defined by
E,=-¢, (3.2.3)
in which ¢ is electric potential, a comma followed by arguments denotes partial
differentiation with respect to the arguments. The constitutive relation of pie-

zoelectricity can then be obtained by considering the following Legendre
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transformation
dg = aﬁdeﬁ -D dE, (3.2.4)

in which the strain ¢, is defined by
1

& = E(ui’j +u,,) (3.2.5)
with u; being elastic displacement. It can be seen from Eq.(3.2.4) that
o, = %\ p-_|l& (3.2.6)
' og; OF,

When the function g is expanded with respect to ¢; and £, within the

scope of linear interactions, we have

1 0 0 0 0
e 2 vE L gL +E - 3.2.7
g 2[ i 85‘?], m 8Em ]( K agk[ n aEn jg ( )

The following constants can then be defined:

’g o’g o’g
Cii’lfl) eyt Kisiz) = ’ emij == (328)
o¢, i 0 2 OF, n OF, m 0 &y aEm

where cf/.‘,f]) are the elastic moduli measured at a constant electric field, ¢

nm

the dielectric constants measured at a constant strain, e

. the piezoelectric
coefficients, the superscript “£” (or “£”) represents the value of the related
variable measured at a given electric field (or strain). When the function g is
differentiated according to Eq.(3.2.4) and the above constants are used, we find
0, =Cyby — €k, D,=e, &, +K,,E, (3.2.9)

A set of these two equations is the constitutive relation in the coupled
system. It should be noted that the superscripts “£” and “E ™ appearing in
Eq.(3.2.8) have been dropped here. To simplify subsequent writing we omit
them in the remainder of this book. Using the notation defined above, the elec-

tric entropy function per unit volume can now be expressed as [27]

1 1
g= Eci//dgz‘/‘gkl ) kK, EE, —e Eey (3.2.10)
while the related divergence equations and boundary conditions can be derived

by considering the modified Biot’s variational principle [27]
5IQUdQ - jg(b,.au, —b.69) 42 —jr(?,.au,. —7.8H)dr=0  (3.2.11)

where ¢'is the variational symbol, £2and 7 are the domain and boundary of the
material, ; and b, are the body force per unit volume and electric charge den-
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sity, and 7 and g, are the applied surface traction and the applied surface

charge, respectively. The variational equation (3.2.11) provides the following
results
;b

1

—0, D, +b,=0 (3.2.12)
7, Din, =7, (3.2.13)

nj:z

i,

Gy
together with the constitutive equation (3.2.9), where n; is the outer unit normal
vector to 7. Eq.(3.2.12) includes the elastic equilibrium equation and Gauss’
law of electrostatics, respectively, Eq.(3.2.13) is boundary condition.

It should be mentioned that four equivalent constitutive representations are
commonly used in the stationary theory of linear piezoelectricity to describe the
coupled interaction between the elastic and electric variables. Each type has its
own different set of independent variables and corresponds to a different ther-
modynamic function, as listed in Table 3.1. While all equations in Table 3.1 are
expressed in terms of tensor, the indices have been omitted for brevity. It should
be pointed out that an alternative derivation of formulae is merely a transforma-
tion from one type of relation to another. Some relationships between various

constants occurring in the four types are given as follows:
_ & o _ o & _
nprm - 5nm > ﬁnm nm gnklhnkl s Ko Ko = dnklemkl
D Eo_ £ D _ _ _ E
Cr = Cyt = CniPosrs Sir = Tt = Q&> Ay = K&y = Cmafuy  (3.2.14)

_ L .E _ E _ po _ D _ pnE _ D
en;'/' - Knmhmij - dnklcklg'j’ gn(/' - ﬂnmdm(/' - hnk[fkl(/" hn(/' - ﬂnmemij - glzldck/g'/

The material constants can be reduced by the following consideration.
According to definition [Eq.(3.2.5)] we may write &=g;. It follows that

Table 3.1 Four types of fundamental electroelastic relation

Independent variable Constitutive relation Thermodynamic potentials
fa =c's —e'E 1 g, 1
=— &~ K¥E’—esE
&E ID:ee +x°E 8o 2 2
D T
c=ce¢—-hD
&D {E_hg 15D & =g, tED
e=fc+d'E
oE D=do +k°E §27 8708
e=f"c+g'D
=g, T ED-c¢
0',1) {EZgo'JrﬂﬁD 857 &
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Cigm = Cijmk 5 Cigpm = Cjikm> €ryj = Exji (3.2.15)

in which the relationo,; =, has been used.

In view of these properties, it is useful to introduce the so-called
two-index notation or compressed matrix notation [29]. Two-index notation
consists of replacing ij or km by p or q, i.e. Cjjtn=Cpgs Citm—¢€iq» Oy Op, Where i, J,
k, m take the values 1~3, and p, ¢ assume the values 1~6 according to the re-
placements 11 —>1,22—2,33—>53,23 or32—4, 13 0or 31 55, 12 or 21 - 6.
The constitutive equation (3.2.9) then becomes
i Di=e.e, +K,E; (3.2.16)

0,=C,E, ~ 5,(pE

in which

&., when i=j
.y :{ v / (3.2.17)

2g,, when i+ j

In addition, the elastic, piezoelectric and dielectric constants can now be written
in matrix form since they all are described by two indices. The arrays for an

arbitrarily anisotropic material are

€1 Gy Q3 Gy G5 G
Cp Cpp Gz Gy G5 Cyg
Cja Cyq Cyz Coy Cac C
13 €23 G33 Cay O35 C3¢
c= (3.2.18)
Cig Cog Gy Cyy Cys5 Cyq
Cis Cys G35 Cy5 Cs5 Csg

Cls Cr6 C36 Ca6 Cs6 Ceo
€1 € €3 €y €5 €5
e=[6 €y €3 &y €5 €y (3.2.19)

€31 €32 €33 €3 €35 €3 |
Ky Ky K3
K=|K, Ky, Ky, (3.2.20)

K3 Ky Ky

It can be seen that there are 21+18+6=45 independent constants for this
material type. For a transversely isotropic material with x3 in the poling direc-

tion (Class Cg,=6 mm), the related material matrices are simplified as
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ey a5 000 0
Gy ¢y 63 00 0
Gy 63 ¢ 00 0
c=10 0 0 ¢, O 0 (3.2.21)
00 0 0 ¢y 0
00 0 0 O %(CH—CIZ)
0 0 0 0e;0
e=| 0 0 0¢g; 00 (3.2.22)
€, 6, 6, 0 00
k, 0 0
k=| 0 x, O (3.2.23)
0 0 &,

Thus it is clear that a material with this type of symmetry is described by
10 independent material constants. This category of material is important
because polarized ceramics have high piezoelectric coupling. Finally, an
isotropic dielectric material has arrays which are similar to the arrays for
transversely isotropic materials, except that there are some additional relations
among the material constants. They are
e, =0, forall values of i and p (3.2.24)
Ca=C3=A, ¢, =C;=A+2G, cu=c =G, K, =K; (3.2.25)
where G=E/[2(1+u)] is the shear modulus of elasticity, A=2Gw/(1-24) is the
Lamé constant and E, g are the Young’s modulus and Poisson’s ratio, respec-
tively. In the MKS system the material constants and variables mentioned
above are measured in the following units: [c,]= Nm™, le; 1= Cm™,
[x;]= C’N'm™=NV~, [o,]1= Nm™, [gl.j]=m1n_l, [D,]=Cm~* =N(Vm) ',
[E,]-NC™" = Vm™, [¢#]=V. For poled barium-titanate (BaTiOs) and lead-zirco-
nate-titanate, these physical constants are of the orders: C,-j:O(lolle_z),
e;~O(10Nm™), i=O(10°NV ).
Substitution of Eq.(3.2.3) and Eq.(3.2.5) into Eq.(3.2.16), and later into
Eq.(3.2.12), results in

1 1
Ciily +5(C]l + )ity (€3 + €y s 13 +E(C|1 = Uy +

Caglh 33 + (&5 T e5)Py3 +b, =0 (3.2.26)



66 Chapter 3 Thermo-electro-elastic problems

1 1
Ciily 2 +§(Cll +op Uy + (65 +C44)“3,23 +5(Cll — Uy

Cagthy 33 + (€5 +€5)P; +Db, =0 (3.2.27)
Coglty 11 +(Caq + )t 31 Ty 35) + Coulls oy + Cilly 53+
e5(Py +Pa) T essfss +b;=0 (3.2.28)
€5 tyyy +Us00) (€5 + e )z Ttp3) +
ety 33 — K (§) +02) — K33y +5, =0 (3.2.29)

for transversely isotropic materials (class Ce,=6 mm) with x3 as the poling di-
rection and the x;—x, plane as the isotropic plane. This type of material is

adopted in the remaining chapters.

3.2.2 Two-dimensional simplification

For most practical problems piezoelectric materials are treated as a
two-dimensional problem to simplify the solution process. Here we discuss two
special cases which are of some interest:

(1) Plane strain. Without loss of generality we focus on transversely iso-
tropic piezoelectricity. Assuming that the x—y plane is the isotropic plane, one
can employ either the x—z or y—z plane for the study of plane electromechanical
phenomena. Choosing the former, plain strain conditions require that

&, =¢6,=¢6,=E,=0 (3.2.30)
By substitution of Eq.(3.2.30) into Eq.(3.2.16), we have
o] [er e 0 0 e | & ]
O3 a3 3 0 0 ey &
o5 [=| 0 0 ¢c5 ¢5 O & (3.2.31)

D, 0 0 ¢, —k, O —E
Dy| e e 0 0 -k |[—E;

or inversely

& fo s 00 py o
& fis Sz 0 0 py ||o;
& =10 0 fis ps 0 | o (3.2.32)
—E, 0 0 ps -5, O D,
L=Es] [pawops O 0 Sy Ds
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in which f;; is constant of elastic compliance of the material, p;; is the piezoelec-
tric coefficient and £3; is the dielectric impermeability constant. In the constitu-
tive equations (3.2.31) and (3.2.32), —£; is used instead of E; because it will
allow the construction of a symmetric generalized linear response matrix which
will prove to be advantageous. When the constitutive equation (3.2.31) is sub-
stituted into Eq.(3.2.12) we obtain

Ciyth gy + (G5 F Css by g3 + Cssthy 33 (€5 @55+ =0 (3.2.33)

Csstty 1) +(Css + €331 + Cyglly 33 F€5Py Hepdyy +b, =0 (3.2.34)
sty + (&5 + 5y + ey 3 — Ky Py — Ky b5, =0 (3.2.35)

(2) Anti-plane deformation. In this case only the out-of-plane elastic di-

splacement u; and the in-plane electric fields are non-zero, i.c.,

u =u, =0, Uy =1y (x;,X,)

(3.2.36)
E =E(x,x), E,=E(x.x,), E, =0
Thus the constitutive equation (3.2.16) simplifies to
Oy €y 0 0 e &y
o5 | _ 0 ¢y 5 O & (3237)
D, 0 e; -k, 0 ||-E o
D, es 0 0 —xy | —E,
and the governing equation (3.2.12) becomes
c,Vu, +e Vg +b, =0 (3.2.38)

e Viu, —x,\V¢+b,=0

where V* =( )11 +( ) 1is the two-dimensional Laplacian operator.

3.3 Two classical solution approaches for piezoelectricity

For two-dimensional deformations in a general anisotropic piezoelectric mate-
rial, in which u#; and ¢ depend on x; and x; (or x3) only, there are two po-
werful solution procedures in the literature. One is Lekhnitskii’s approach [30],
which begins with equilibrated stress functions, followed by compatibility
equations. This approach is discussed in Subsection 3.3.2. Another is Stroh’s
formalism [31], which begins with the displacements and electric potential, fo-
llowed by equilibrium equations. The equivalence of these two formalisms has
been discussed by Suo [32]. The details of Stroh’s formulation are given below.
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3.3.1 Solution with Stroh formalism

We begin by introducing the shorthand notation given by Barnett and

Lothe [33], as it greatly simplifies the following writing. With this shorthand

notation, the governing equation (3.2.12) and the constitutive relationship
(3.2.16) can be rewritten as

1, +b,=0 (3.3.1)

11, = E Ui m (3.3.2)

where bs=b,. (J=4), and

=i b (3.3.3)
v D,J=4 i=12,3 I

uka K:L 2, 3

Uk = (3.3.4)
¢’ K=4

C[jkm’ i:J’K9m=1, 2, 3

emi" K:4a i,J,m :1, 2, 3

Eigen =1 " (3.3.5)

i7km e, J=4 i,Km=1 273
-« ,J=K=4, iim=1 2,3

For two-dimensional deformations in which U=[u; 1, u; ¢]T depends on x;
and x, only, where the superscript T denotes the transpose, a general solution
can be obtained by considering an arbitrary function of the form [33]

U=af(z) (3.3.6)
where z=x +px,, p and a are determined by inserting Eq.(3.3.6) into
Eq.(3.3.2), and later into Eq.(3.3.1). In the absence of any body force and free
charge distribution, we have

[0+ p(R+R")+p’T]a=0 (3.3.7)
where @, R and T are 4x4 real matrices whose components are
O =Eiks R = Eyyrs T = By (3.3.8)
The stress and electric displacement (SED) obtained by substituting Eq.(3.3.6)
into Eq.(3.3.2) can be written in terms of a SED function ¢ as

II,=-¢,, II,=9¢, (3.3.9)

where
@ =bf(z) (3.3.10)
b=(R" +pT)a=—p (Q+pRa (3.3.11)

The second equality in Eq.(3.3.11) follows from Eq.(3.3.7). It suffices therefore
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to consider the SED function ¢ because the stresses o; and the electric
displacement D; can be obtained by differentiation.

There are eight eigenvalues p from Eq.(3.3.7) which consists of four pairs
of complex conjugates [33]. If p,,a,(J =1, 2,---, 8) are the eigenvalues and
the associated eigenvectors, let

Imp, >0, p,,,=p, a,,=a,, b, ,=b, Jl~4 (33.12)
where “Im” stands for the imaginary part of a complex number and the overbar
denotes the complex conjugate. Assuming that p, are distinct, the general solu-
tions for U and ¢ obtained by superposing cight solutions of the form of
Eq.(3.3.6) and Eq.(3.3.10) are

U=>{a,f,(z,)+a,f,.,Z)} (3.3.13)
J=1

¢ZZ{be:/(ZJ)+5J.fJ+4(Z])} (3.3.14)
J=1

where f,(J =1, 2,---,8) are arbitrary functions of their argument
z, =X, + p,x,. In most applications f; assume the same functional form, so that
we may write
Fiz)=q,0(z,), f5.4(Z)) = ‘_IJJ?(ZJ) , J=1~4 (3.3.15)
where ¢, are complex constants to be determined. Expressions (3.3.13) and
(3.3.14) can then be written in a compact form
U =2Re{Af(2)} =2Re{A(f(z,))q} (3.3.16)
@ =2Re{Bf (2)} =2Re{B(f(z,))q} (3.3.17)
in which “Re” stands for the real part of a complex number, f(z)=[fi(z1) fa(z2)
fi(z3) fazo]', A, B are 4x4 complex matrices defined by
A=|a a,a;a,], B=[b b, b, b,] (3.3.18)
and <f (z, )> is a diagonal matrix

(f)=diag [f(z)) [f(z) f(z) f(z)] (3.3.19)

For a given problem, it is clear that all that is required is to determine the un-

known function f(z,) and the complex constant vector q.

3.3.2 Solution with Lekhnitskii formalism

The mathematical method known as Lekhnitskii formalism was developed
originally to solve two-dimensional problems in elastic anisotropic materials [30].
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The evolution of the method and a number of extensions to electroelastic pro-
blems were described in [34-37]. In this section the Lekhnitskii formalism used
in linear piezoelectricity is briefly summarized. For a complete derivation and
discussion, the reader is referred to [30, 34-37].

Consider a two-dimensional piezoelectric plate where the material is
transversely isotropic and coupling between in-plane stresses and in-plane elec-
tric fields takes place. For a Cartesian coordinate system Oxyz, choose the
z-axis as the poling direction, and denote the coordinates x and z by x; and x; in
order to generate a compacted notation. The plane strain constitutive equations
are governed by Eq.(3.2.31) or Eq.(3.2.32), except that all indices 3 should be
replaced by 2 here. That is [35]

& S S 00 py ] oy
&n Jo Jn 0 0 py |oy
26, = 0 0 f3; p; O o (3.3.20)

—E, 0 0 p;-B, O D,
-E, [P Py 00 _ﬂzz__Dz

From the constitutive equations, we observe that D, produces normal strains &;
and &x», while the stress component i, induces an electric field £, and oy, and
o, produce E,. Equation (3.3.20) constitutes a system of five equations in ten
unknowns. Additional equations are provided by elastic equilibrium and Gauss’
law

Oy +012, =0, 0y +0y,=0, D,;+D,,=0 (3.3.21)

in which the absence of body forces and free electric volume charge has been
assumed, and by one elastic and one electric compatibility condition
Enmténn—26,,=0, E,-FE) = 0 (3.3.22)

Having formulated the electroelastic problem, we seeck a solution to
Eqgs.(3.3.20)~(3.3.22) subjected to a given loading and boundary condition. To
this end, the well-known Lekhnitskii stress function F and induction function V'
satisfying the foregoing equilibrium equations are introduced as follows [34,35]:
oy =Fy, 0p=Fy, o,==F,, D=V, D,=-V, (3.3.23)

Inserting Eq.(3.3.23) into Eq.(3.3.20), and later into Eq.(3.3.22) leads to
LF-LV=0, LF+LV=0 (3.3.24)

where
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4 a 64
L fzz +f11 Tt )
ox; Ix;0x,
(3.3.25)
0/'73 3 0/-)2 2
L3:p220,,—)cf+(p21+p13)m’ Lz:ﬂzzé’—)clz+ﬁllﬁ—)c§

Note that if the problem was purely mechanical, L, would be the only nonzero
operator and its form would coincide with the plane anisotropic case discussed,
among others, by Lekhnitskii [30]. To solve Eq.(3.3.24) we reduce the system
to a single partial differential equation of order six in either  or V. Choosing F,
we obtain
(LL, +L,.L)H)F =0 (3.3.26)
As discussed in [30] within the framework of anisotropic elasticity, Eq.(3.3.26)
can be solved by assuming a solution of F(z) such that
F(2)=F(x +px,), p=a+if (3.3.27)
where « and £ are real numbers. By introducing Eq.(3.3.27) into Eq.(3.3.26),
and using the chain rule of differentiation, an expression of the form
{1F® =0 is obtained. A nontrivial solution follows by setting the character-
istic equation (i.e., Lalo+L3L3) equal to zero, namely
FiBup® + (1B + fa B + 2180 +p3+ P+ 2Pt +
(fo2 B+ 21280 + Jia B + 2001 Py + 2P53020)D° + [ oy + 03 =0 (3.3.28)

Owing to the particular material symmetry of the piezoelectric material under
investigation, the polynomial is expressed in terms of even powers of p. This
allows us to solve Eq.(3.3.28) analytically, rendering

p=if, py=0+ify, py=—a,+if,, py=p;, Ps=pP,, Ps=p; (3.329)
where f, o, and f, depend on the material constants. Once the roots p;, j=1,

2, 3 are known, the solution for stress function F'is written as
3
F(x,,x,)=2Re ) F,(z,) (3.3.30)
J=1
The next step is to find the function 7 using one of Eq.(3.3.24). If we con-
sider L3;F=—L,V, assuming solutions of the form F(z;) and V(z;), we have
Viz) =a,(p)F (z,) (3.3.31)
where primes indicate differentiation with respect to related argument, and
(P + PPk + Py
B 1[713 + P

& (pr)=— (3.3.32)

Integration of Eq.(3.3.31) leads to
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Vi(z) = @, (p)Fl(z,) + ¢z, + 0, (3.3.33)

It should be noted here that the arbitrary constants of integration could be set
zero [34]. Thus, the solution for the induction function can be expressed as fo-
llows:

3 3
V(x,x,)=2ReD V,(z;)=2Re) &.F!(,) (3.3.34)
J=1 J=1
With the aid of Eq.(3.3.30) and Eq.{(3.3.34) we can obtain expressions for the

stress and electric displacement components. Using Eqgs. (3.3.23), (3.3.30) and
(3.3.34), we obtain

oy 3| P D s (@, p

oy |=2ReY| 1 |@/(z,), {Dl}zzRez{_"_"}@;(zﬂ (3.3.35)
k=1 2 k=1 k

On —D

Where @k (Zk) = F}c’(zk) .
Finally, using the constitutive equation (3.3.20) in conjunction with
Eq.(3.3.35) allows us to find expressions for the strain and electric field. They are

&, . «

&, [=2Re) | g, |D(z,), - =1 LBz (33.36)
5 k=1| * 2 k=1 Yr

&2 7

where
PZ :fllplf + fi2 — D@ ‘]Z :f12p/§ + [ — Do, ’”k* =(P13@; — f33)Ps
ty =Py + Ba®)Pi> U = PPk + Py + P, (3.3.37)
Substitution of Eq.(3.2.3) and Eq.(3.2.5) into Eq.(3.3.36), and then integration
of the normal strains and the electric field £~ —¢, produces

U 3 n DXy + U
uy [=2ReD | q; | @ (z)+| —wpx, + 7, (3.3.38)
¢ i )

where the constants ax, uo, vy represent rigid body displacements, and ¢ is a
reference potential.

Recapitulating, based on the procedure above, the plane strain piezoelec-
tric problem is reduced to one of finding three complex potentials, &, @, and

@, , in some region (2 of the material. Each potential is a function of a different

generalized complex variable z, =x, + p,x, .
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3.3.3 Some identities

In this subsection some identities of matrices are presented in order to provide a
source for usage in later sections and chapters. To this end rewrite Eq.(3.3.11)

B A

where 7 is the identity matrix. Since T~ exists, we can reduce Eq.(3.3.39) to

in the form

N&=pé (3.3.40)
where
| NN, _|a
N—LV3 N1T:|’ f—{b} (3.3.41)

N,=-T"'R', N,=T"'=N,, N,=RT'R"-Q=N; (3.3.42)
Eq.(3.3.40) is a standard eigenrelation in the eight-dimensional space. The vec-
tor £in Eq.(3.3.40) is a right eigenvector. The left eigenvector # is defined by

7"'N=pn', N'p=pq (3.3.43)
and can be shown to be [33]
n= {b} (3.3.44)

a
Normalization of &, and 57, (which are orthogonal to each other) gives
né& =06, (3.3.45)

where Jj is the Kronecker delta. Making use of Eqs.(3.3.11), (3.3.41), and
(3.3.44), Eq.(3.3.45) can be written as

T T A Z I0
Ij il —|= (3.3.46)
B'" 4" | |BB| |01
This is the orthogonality relation. The two matrices on the left-hand side of

Eq.(3.3.46) are the inverse of each other. Their product commutes so that

{A Aj} PT ‘fﬂ{l 0} (3.3.47)
BB||B" AT 01

This is the closure relation and is equivalent to
AB" + AB" =BA" +BA" =1, AA" + AA" =BB" + BB" =0 (3.3.48)
Equation (3.3.48) tells us that the real part of AB" is I/2, while AA" and BB are
purely imaginary. Hence, the three Barnett-Lothe tensors S, H, L, defined by
S =i(2AB' -I), H=2i4A", L=-2iBB" (3.3.49)
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are real. It is clear that H and L are symmetric. It can be shown that they are posi-
tive definite and that SH, LS, H™'S, SL' are anti-symmetric [38]. Moreover

the real matrices S, H, L are not entirely independent. Indeed, they are related by

LS+STL=0 (3.3.50)
SC'+L'ST =0 (3.3.51)
HS" + SH=0 (3.3.52)
S'H' +H'S=0 (3.3.53)
HL-SS=1 (3.3.54)

Identities (3.3.50), (3.3.52) and (3.3.54) can be verified by a direct substitution
of S, H and L from Eq.(3.3.49) with the aid of Eq.(3.3.48). Identity (3.3.51) is
obtained from identity (3.3.50) by pre-multiplying and post-multiplying by L',
Similarly, identity (3.3.53) is obtained from identity (3.3.52) by multiplying by
H™.

A generalized form of Eq.(3.3.40) and Eq.(3.3.43), which is related to the
coordinate transformation and is useful for the development of identities, is

written as
N(w)§ = p(w)§ (3.3.55)
N (@)(@) = p(@)n(w) (3.3.56)
where
yl{w)= [cosa)+ p(O)sina)]l] (0) (3.3.57)
p(e) = p(0)cosw —sinw (33.58)

p0)sinw + cosw
N (@) =~T (@)R" (@), Ny(0)=T (@), Ny(w)=-R(@)N,(0)~Q(w)
(3.3.59)
with

O (@) =Epgmng, Ry(w)=Ezgnm, Ty(o)=Ejgmm; (3.3.60)
n=[cosw sinw 0], m=[-sinw cosw 0] (3.3.61)
In Eq.(3.3.61), n and m are two mutually orthogonal unit vectors embedded in
the material as shown in Fig.3.1. The plane defined by n and m is the planc of
interest and f=nxm is the unit normal to the plane. Note that £ in Eq.(3.3.55) is
independent of @, as has been shown in [39]. When «=0, Eq.(3.3.55) reduces to
Eq.(3.3.40). By using Eq.(3.3.40) and Eq.(3.3.55), the following identities can

be obtained [38,39]
24P(@)A" = N,(0) =i N,()S" + N,()H | (3.3.62)
2AP(w)B" = N,(w) - i[N1 (w)S - N, (a))L] (3.3.63)
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2BP(w)A" = N () - f[N,T (@)S™ + N, (w)HJ (3.3.64)
2BP(»)B" = N,(w)— f[N3 (@)S — N (m)L} (3.3.65)

in which P(®) is a diagonal matrix defined by
P(w)=diag[p (@) p,(®) ps(@) p,(®)] (3.3.66)

Material axes

Reference datum

t
Fig.3.1 Mutually orthogonal unit vectors m, n and f used in analysis
Further, it has been shown in [38] that
1 . l n l n
S =;j . Ni(0)Mo, H =;j' L Ny (@)do, L= —;J’ - Ny(@)do
(3.3.67)

Equation (3.3.67) provides an alternative to Eq.(3.3.49) for the Barnett-Lothe
tensors S, H and L. In addition, for any integer number k&, we have [40]

AP*A" = (NiM —iN}YH /2 (3.3.68)
AP*B" =(N/M™" +iN})L/2 (3.3.69)
BP*A" =[(N})"M ~iN{1H /2 (3.3.70)
BP*B" =[N‘M™' +i(NTIL/2 (3.3.71)
where
M=H"(I+iS)=U-iS")H"' (3.3.72)

3.4 Logarithmic singularity of crack-tip fields in homo-
geneous piezoelectricity

3.4.1 General solution for crack-tip fields

The singularity of stress and electric displacement near the tip in homogeneous
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piezoelectricity has been studied by Ting [41] for anisotropic elasticity, Qin and
Yu [42] for electroelastic problems, and Yu and Qin [10] for thermo-electro-
elastic problems. In this section we follow the results given in [42].

Consider a semi-infinite crack along the negative x-axis. The SED singu-
larities at the tips of the crack can be determined by assuming the function fin
Eq.(3.3.6) and Eq.(3.3.10) in the following form [43]

1-n
z
f(z,)= /
1—
where n=a+ib is a complex constant with ¢ and b being two real constants.
Substituting Eq.(3.4.1) into Eq.(3.3.9) and Eq. (3.3.13) yields
U= 2Re{A (2L >L} (3.4.2)
1=
IT, = 2Re{B<Z;’7>q} (3.4.3)

(3.4.1)

where I, =[c,, o, o, D,]".Ifwe use the polar coordinate system (r, 6)
originating at the crack-tip, the complex variable z, becomes

z, =r(cosf+ p,_sind) (3.4.4)
We see that with the assumption of Eq.(3.4.1) the SED given by Eq.(3.4.3) is of
the order 7. It is obvious that the SED is singular if the real part of 77, i.e. a,
is positive. For the potential energy to be bounded at the crack tip, we require
that a<1. So we focus our attention on the interval 0< g<l. Using the trac-
tion-charge free condition on the crack surfaces and noting that z =+ when =0

and z =re*™ when 6 = +n, we know that
IL(m)y=—r"(r"e ™Bq+r"e™ Bg)=0 (3.4.5)
II,(-m)=—r“(r "™ Bq+r"e ™ Bq)=0 (3.4.6)
or in matrix form
X(mQ=0 (3.4.7)

where O=[Bq Bg ]T. To obtain a nontrivial solution for Q we should let the

determinant of X vanish, i.c.

|x[=0 (3.4.8)
where the symbol ||| denotes the determinant, which leads to
b=0, (1-¢&'™) =0 (3.4.9)
The solution of Eq.(3.4.9) reads
I-n

a=—=, =012 (3.4.10)
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Hence, to satisfy 0O<a<l, we should take »=0, which is a fourfold root of
Eq.(3.4.9). The elastic displacement and electric potential, U, and SED, IL,
may now be written in their asymptotic forms by combining Eqs. (3.4.2), (3.4.3)
and (3.4.10) as

U =4r" Re[A<(cos¢9+pa sine)‘/2>q] (3.4.11)

IT,=2r"Re [B((cose + p, sin 0)_”2>q] (3.4.12)

3.4.2 Modified solution for p being a multiple root

The analyses presented so far tacitly assume that the eigenvalues p’s are distinct.
When one of the p’s is a double root, one may or may not have four independ-
ent functions in Eq.(3.4.11) and Eq.(3.4.12), and a set of additional solutions
are required [43]. It is not difficult to see that if Eq.(3.4.11) and Eq.(3.4.12) are
the solutions corresponding to the double root p;, so are [43]

U® =442 Re{%{A«cosH +p, sinl9)”2>}q} (3.4.13)
I =27 Re { 4 {B<(Cos¢9+ . sin9)1/2>}q} (3.4.14)
dp,

where dA4/dp, and dB/dp, can be obtained by differentiating Eq.(3.3.7) and
Eq.(3.3.11) with respect to p;, that is

di{DA} =0 (3.4.15)
dB _d ¢
d_n_d—pi{(R +pT)A} (3.4.16)

where D=Q+ p(R+R")+ p’T is a 4x4 matrix. The new solutions (3.4.13)

and (3.4.14) exist if the following equation holds true [44]:
dﬂ
dp!

=0, n=N-M (3.4.17)

||P=Pi
where N and M are the order and rank of D, respectively. However, it is found
that the order of singularity is not changed in the presence of the new solution
(3.4.14).

3.4.3 Modified solution for 77 being a multiple root

If 77 is a multiple root of Eq.(3.4.8), the components of ¢ may not be unique and
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one must find other independent solutions. For a root of multiplicity m, the new
solutions are given by (taking /% as an example)
I =2Re{B[7" 0 20 Z0T =1, 2,0, m=1 (34.18)

L

i - 0 _— . o

where 2, = 27 (_111 z, + 30 q, - Likewise, new solutions exist if
n

dﬂ
dn"
holds true. Here M is the rank of matrix X. Since 7=1/2 is a fourfold root [see

0, n=8-M (3.4.19)

”17:1/2 -

Eq.(3.4.9)], the SED singularities at the tip of a semi-infinite crack must occur
in one of the following cases
or "%, only satisfying XQ =0

O(™*1Inr),  satisfying dX /dn 0

n=1/2 =
II,(r) = (3.4.20)

O(r"*In*r), satisfying d*X /dn?

p=l/2 =

O(r""*In’r), satisfying d*X/d7n’ "7=1/ 2=0

For a semi-infinite crack in an anisotropic piezoelectric medium, it is therefore
shown that both stress and electric displacement at the crack tip may be in the
order of Y2 or "2 Iny, r2In?r, r"*In*r, as r—>0, where r is the
distance from crack tip to field point, depending on which boundary conditions
are satisfied.

3.5 Trefftz finite element method for piezoelectricity

The Hybrid-Trefftz (HT) finite element (FE) model was originally developed in
1977 for analysis of the effect of mesh distortion on thin plate elements [45].
During the following three decades, the potential of Trefftz finite elements for
the solution of different types of applied science and engineering problems was
recognised. Over the years, the HT finite element method (FEM) has become
increasingly popular as an efficient numerical tool in computational mechanics
and has been widely used in the analysis of plane elasticity, thin and thick plate
bending, Poisson’s equation, shell, heat conduction, and piezoelectric materials.
Detailed discussion of the development in this area can be found in [46]. In
contrast to conventional FEM, the class of finite elements associated with the
Trefftz method is based on a hybrid method which includes the use of an auxil-
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iary inter-element displacement or traction frame to link the internal displace-
ment fields of the elements. Such internal fields, chosen so as to a priori satisfy
the governing differential equations, have conveniently been represented as the
sum of a particular integral of non-homogeneous equations and a suitably trun-
cated Trefftz complete set of regular homogeneous solutions multiplied by un-
determined coefficients. Inter-element continuity is enforced by using a modi-
fied variational principle together with an independent frame field defined on
cach eclement boundary. The element formulation, during which the internal
parameters are eliminated at the element level, in the end leads to the standard
force-displacement relationship, with a symmetric positive definite stiffness
matrix. Clearly, whereas the conventional FE formulation may be assimilated to
a particular form of the Rayleigh-Ritz method, the HT FE approach has a close
relationship with the Trefftz method [46]. This section addresses applications of
the Trefftz FEM to piezoelectric materials. The presentation below follows the
developments appearing in [47,48].

3.5.1 Basic field equations and boundary conditions

Consider a linear piezoelectric material, in which the differential governing
equations in the Cartesian coordinates x; (i=1, 2, 3) are given by

o,,+b,=0, D,;+b,=0, mnQ2 (3.5.1)
where (2 is the solution domain and the Einstein summation convention over
repeated indices is used. For an anisotropic piezoelectric material, the constitu-
tive relation is

0H (e ,D) O0H(e,D) -
i =_T=Sijpk/6kl +8ulDr, E, =T=_giklgk/ + A Dy
ij i
(3.5.2)
for (o,D)as basic variables,
O0HE ,E) O0H( ,E) R
i e, = Cifld‘gkl —eyky, D= T ME =eyéy kL
i i
(3.5.3)
for (¢, FE) as basic variables,
0HE ,D) 0HE ,D) .
T Cpby Dy, E = D g€y + A Dy

14 i

(3.5.4)
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for (¢,D)as basic variables, and

& = aHa(;/E) l]EuU/d +d;Dy, D= —%E:E) =d oy + KL E,
for (o, E) as basic variables, with 0>
H{e,D)= ; S0y 0w + /1"DD - 24,0, D; (3.5.6)
HE ,E)= UMgngl ;K‘;EiE] €€ (3.5.7)
He,D)= Uk,gl/gk, +%/I;D,.Dj + 8,0, (3.5.8)
H(,E)= ; S50 0w — % ZEE, —do.E, (3.5.9)

where ¢“

D E D : : :
i Gy and s, sz, are the stiffness and compliance coefficient ten-

sor for E=0 or D=0, «’ K and A7

. e .
i o i » Ay are the permittivity matrix and the

conversion of the permittivity constant matrix for =0 or £=0.
The boundary conditions of the electroelastic problem are defined by

u, =1, on 7, (3.5.10)
t=oun, =1, on /; (3.5.11)
D,=Dn,=-g,=D,, on Ip (3.5.12)
p=¢, on Iy (3.5.13)

where i, £, g, and ¢ are, respectively, prescribed boundary displacement,

traction vector, surface charge and electric potential, an overhead bar denotes
prescribed value, 7=7,+ I; =Ip +1is the boundary of the solution domain (2.
Moreover, in the Trefftz FE form, Egs. (3.5.1)~(3.5.13) should be com-

pleted by the following inter-element continuity requirements:
U =Uy $,=9;. on/,(1I",, conformity (3.5.14)

to+t; =0, D, +D,=0, onl, (I, reciprocity (3.5.15)
where “e” and “f” stand for any two neighboring elements. Eqs.(3.5.1)~(3.5.15)
are taken as the basis to establish the modified variational principle for Treffiz
FE analysis of piezoelectric materials.

3.5.2 Assumed displacement and electric potential fields

The main idea of the HT FEM is to establish a FE formulation whereby the
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intra-element continuity is enforced on a non-conforming internal displacement
field chosen so as to a priori satisfy the governing differential equation of the
problem under consideration [46]. In other words, as an obvious alternative to
the Rayleigh-Ritz method as a basis for a FE formulation, the model here is
based on the method of Trefftz [49]. With this method the solution domain Qs
subdivided into elements, and over each clement “e,” the assumed in-

tra-element fields are

u i N,
u i N
U=|7?|=| 72|+ ?le=a+)> N,c,=iu+Nc (3.5.16)
Uy U, N, 7=l g
¢ g1 LN,

where ¢; stands for undetermined coefficient, and # =[i, 1, 1, 41" and N

are known functions. If the governing differential equation (3.5.1) is rewritten
in a general form

Hu(x)+b(x)=0 (xe2) (3.5.17)
where ¥ stands for the differential operator matrix for Eq.(3.5.1), x for the
position vector, b=[b b, b, b,]' for the known right-hand side term, and
£, stands for the eth element sub-domain, then #=##(x) and N =N(x) in
Eq.(3.5.16) must be chosen such that

Hau+b=0 and HN=0 (3.5.18)
everywhere in (2. A complete system of homogeneous solutions /V; can be
generated by way of the solution in Stroh formalism

u=2Re{A(f(z,))c} (3.5.19)

where (f(z,))=diag[f(z)) f(z) f(z) f(z,)] isa diagonal 4x4 ma-
trix, while f(z,) is an arbitrary function with argument z, =x + p,x,. p;
(i=1~4) are the material eigenvalues. Of particular interest is a complete set of

polynomial solutions which may be generated by setting in Eq.(3.5.19) in turn

g _ _k
f(za)‘zak k=12, (3.5.20)
flz,) =iz,
where i=+/-1. This leads, for N; 0ot Eq.(3.5.16), to the following sequence
Ny, =2Re{a(z))}, Ny, =2Re{A(iz))} (3.521)

The unknown coefficient ¢ in Eq.(3.5.19) can be written as
c=[¢, ¢, = ¢,] (3.5.22)
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in which m is the dimension of vector ¢. The choice of m has been discussed in
[46]. For the reader’s convenience, we briefly describe the basic rule for deter-
mining m. It is important to choose the proper number m of trial functions /N
for the Trefftz element with the hybrid technique. The basic rule used to pre-
vent spurious energy modes is analogous to that in the hybrid-stress model. The
necessary (but not sufficient) condition for the matrix H, which is later defined
by Eq.(3.5.47) in Subsection 3.5.4, to have full rank is stated as [46]

My = Npop = Npig (3.5.23)
where Npor and Ngyg are numbers of nodal degrees of freedom of the element
under consideration and of the discarded rigid body motion terms, or more
generally the number of zero eigenvalues. Although the use of the minimum
number m = Npo. — Ny, of flux mode terms in Eq.(3.5.23) does not always
guarantee a stiffness matrix with full rank, full rank may always be achieved by
suitably augmenting m. The optimal value of m for a given type of element
should be found by numerical experimentation.

The unknown coefficient ¢ in Eq.(3.5.19) may be calculated from the con-
ditions on the external boundary and/or the continuity conditions on the in-
ter-element boundary. Thus various Trefftz element models can be obtained by
using different approaches to enforce these conditions. In the majority of cases
a hybrid technique is used, whereby the elements are linked through an auxil-
iary conforming displacement frame which has the same form as in the conven-
tional FE method. This means that, in the Trefftz FE approach, a conforming
electric potential and displacement (EPD) field should be independently de-
fined on the element boundary to enforce the field continuity between elements
and also to link the coefficient ¢, appearing in Eq.(3.5.19), with nodal EPD d.
The frame is defined as

2 =

(S5
1}

a(x)y=| " |= d=Nd, xel (3.5.24)

w

S

4

’”

where the symbol “~ is used to specify that the field is defined on the element
boundary only, d=d(c) stands for the vector of the nodal displacements which
are the final unknowns of the problem, 7, represents the boundary of element e,

and N isa matrix of the corresponding shape functions which are the same as
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those in conventional FE formulation. For example, along the side 4-O-B of a
particular element (see Fig.3.2), a simple interpolation of the frame displace-

ment and electric potential can be given in the form

t
N gl re == 4
i(x)=| * |=[N, N,] , xel, (3.5.25)
7R d,
¢
where
N,=diag[N, N, N, N,], N,=diagN, N, N, N,] (3.5.26)
dy=[u, up, s, 8,1, dy=[ug g usy $1° (3.5.27)
with
N, =ﬂ, N, 1+d (3.5.28)
2 2
D(d),) C(d.)
&1 §=0 §=+1
A 0 B
P 5 0 B(dy)

Fig.3.2 A quadrilateral element generalized two-dimensional problem

Using the above definitions, the generalized boundary forces and electric

displacements can be derived from Eqgs.(3.5.11), (3.5.12) and (3.5.16), and de-
noted

Oy

Ll
h| |

t’) 0-2_;'”;' 5=
T=| "7 |= = + c=T+Qc (3.5.29)
4 0 1 o

I
L8
D D..f'n}- D n Q4

where 7 and D, are derived from .

3.5.3 Variational principles

The Trefftz FE equation for piezoelectric materials can be established by the
variational approach [46]. Since stationary conditions of the traditional poten-
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tial and complementary variational functional cannot satisfy the inter-element
continuity condition which is required in Trefftz FE analysis, some new varia-
tional functionals need to be developed. For this purpose, we present the fol-

lowing two modified variational functionals suitable for Trefftz FE analysis:

o = Z@;ff—z{@:D—j, (D, =D)dds - [ | (@ —1)ids +
j (D¢3+m.)ds} (3.5.30)
O°F = @‘EF z{a +j (¢ ¢)Dds+j @ —u,)ds —

2 . s =2 | . ¢D,ds — In@ (#D, + ﬁ,.tids} (3.5.31)
0 =3 0u =3 o7 =, (Bu=Ddds <[ @i~

2] ﬁitids+.[ (Dngz?—tizli)ds} (3.5.32)
o;" = @,:;'f Z{@ +j (G-pDds-[ G-t

2]{ D,,¢ds—j‘F7(D”¢—z[ﬁi)ds} (3.5.33)

where
O = H o, H@. D)2+ jr titds + jr D, 4ds (3.5.34)
4 ue de

=f €. B)=bu, —b€¢]dg+jn?,;ds+jr Dgds  (3.5.3%)

o =|| o [HE. D)=y ]da+ [ Zads+| Dgds (3.536)
L F¢e

o | LH@.E) ~b$ld2+[ tuds+[ Dgds (3537

The boundary 77, of a particular element consists of the following parts:

€

Fe:Fueufteufle:F(/)eUrDeUrIe (3538)
where
r,=r,Nr, r,=rNr, r,=r,Nr, r,=r,Nr,
(3.5.39)

and [, is the inter-element boundary of the element “¢”. We now show that
the stationary condition of any one functional in Eqs.(3.5.30)~(3.5.33) leads to
Egs.(3.5.10)~(3.5.15), u, =14, (onI",) and ¢=¢ (on7,), and present the
theorem on the existence of extremum of the functional, which ensures that an
approximate solution can converge to the exact one. Taking @7 P as an exam-
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ple, we have the following two statements:
(1) Modified complementary principle.
50°” =0=(3.5.10)~(3.5.15), w,=ii, (on ")) and ¢=4¢ (onl,)
(3.5.40)
where ¢ stands for the variation symbol.
(2) Theorem on the existence of extremum.
If the expression

[[ ,o°H@ D)d2+| , 51,07,ds + | - 5D, 54ds + Z f . (S¢5D, + 5.0t )ds

(3.5.41)
is uniformly positive (or negative) in the neighborhood of U,, where U, is

such a value that @7°(U,)=(07"),, and where (@°”), stands for the sta-

tionary value of @°" , we have
O =(O;7), [or O7° <(O77),] (3.5.42)
in which the relation that #, =, isidentical on /7, {1/, has been used.

Proof: First, we derive the stationary conditions of functional (3.5.30). To
this end, performing variation of @7” and noting that Eq.(3.5.1) holds true a

priori by the previous assumption, we obtain

607" =[ @ —u)dtds + jr¢ @ —$)5D,ds -

u

jr, [(Ti—tl.)&li—(ﬁi—u,)étins—Ifu [(D,=D,)5% - ($-$)6D, |ds +

2J, [ @ ~u)ot +@-$)5D, +1,64 +D,5¢ |ds (3.5.43)

Therefore, the Euler equations for expression (3.5.43) are Egs. (3.5.10)~(3.5.15),
u, =i, (on ")), and ¢=¢ (onT,), as the quantities &z, Su,, 5¢, 5D

no

ou; and 8¢ may be arbitrary. The principle (3.5.40) has thus been proved.
This indicates that the stationary condition of the functional satisfies the re-
quired boundary and inter-element continuity equations and can thus be used
for deriving Trefftz FE formulation.

As for the proof of the theorem on the existence of extremum, we may

complete it by way of the so-called “second variational approach” [50]. In do-

oD
m

ing this, performing variation of & and using the constrained conditions

(3.5.1), we find
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5’0" = 8 He,DYQ+[  otoids+
f . 6D,50ds +§ f .. (805D, +80,01)ds  (3.5.44)

Therefore the theorem has been proved from the sufficient condition of the ex-
istence of a local extreme of a functional [50]. This completes the proof. The
functional given in Eqs.(3.5.31)~(3.5.33) can be stated and proved similarly.
We omit those details for the sake of conciseness.

3.5.4 Elemental stiffness matrix

XV
me

The element matrix equation can be generated by setting 6@ =0. To sim-

plify the derivation, we first transform all domain integrals in Eq.(3.5.30) into
boundary ones. In fact, by reason of the solution properties of the intra-element

trial functions, the functional @°” can be simplified to

me

oo 1 e — _ .
O == | G+ D, g)ds == [ Gu+g,pde-| . (D, ~D,)jds -

[ G-tyids+| (Dg+siyds+[ twmds+| D,gds
e Ie ue pe

(3.5.45)
Substituting the expressions given in Eqgs.(3.5.16), (3.5.24), and (3.5.29) into
(3.5.45) produces

me

er = —%CTHC +c'Sd+c"r +d"r, + terms without c or d  (3.5.46)

in which the matrices H, .S and the vectors ry, r; are defined by

H=[_ 0"Nds (3.5.47)
o N
— T A7 ~ I
§=[, Q/Nds+| gz %z ds+[ Q'Nds  (3.548)
3 3

_ 1 T T~ 1 Th
r __Ejra (N'T+0Q u)ds—EJ‘QN b2+

o=
j%Q}gZderw 0, | |, |ds (3.5.49)

Q| |4

=



3.5 Trefftz finite element method for piezoelectricity 87

~ T

N ([a] T4
r= ijNI (D, - D,)ds + jre NTTds + jfm N | |2 ]| |[ds (3550
3 4 2

To enforce inter-element continuity on the common element boundary, the un-
known vector ¢ should be expressed in terms of nodal DOF d. An optional rela-
tionship between ¢ and 4 in the sense of variation can be obtained from

oD
aa@n—qrg :_Hc+Sd+r] =0 (3551)
c
This leads to
c=Gd+g (3.5.52)

where G=H"'S and g=H'r,, and then straightforwardly yields the ex-

pression of @7” only in terms of d and other known matrices

" = %dTGTHGd +d" (G" Hg + r,)+ terms withoutd ~ (3.5.53)

me

Therefore, the element stiffness matrix equation can be obtained by taking the
vanishing variation of the functional @7” as

06,

od"
where K=G"HG and P=—G"Hg ¥, are, respectively, the element stiffness ma-

=0= Kd=P (3.5.54)

trix and the equivalent nodal flow vector. The expression (3.5.54) is the ele-

mental stiffness-matrix equation for Trefftz FE analysis.

3.5.5 Application to anti-plane problem

The formulation presented in Subsection 3.5.4 is for a general three-
dimensional piezoelectric solid. To show typical applications of the above FE
model, let us consider an anti-plane crack problem.

In the case of anti-plane shear deformation involving only out-of-plane
displacement u; and in-plane electric fields, and these variables depends on x;
and x; as defined in Eq.(3.2.36), the constitutive relation and equilibrium equa-
tion are governed by Eq.(3.2.37) and Eq.(3.2.38), respectively. When the
coordinate system (x,),z), rather than (x|, x,, x3), is used, Eq.(3.3.27) and

Eq.(3.3.28) are rewritten as
c Vi +eV¢=0, e Vu —x,Vi¢=0 (3.5.55)
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ze c44 0 _e1 5 O 7/ Xz

o, _ 0 cyy 0 —e5|7, (3.5.56)
Dx €5 0 Ky 0 Ex o

D y 0 es 0 x ||E ¥

or inversely

Yz S44 0 gs 0|0
Telof O Sw 0 &0 (3.5.57)
Ex _gIS O j’ll 0 Dx
E y 0 —-gs 0 4, || D ¥
where v, - and £, Ey are, respectively, shear strains and electric fields
given by
7/’(2 = auz . }/VZ = auz s Ex = —% N EV = _% (35.58)
T ox : ay Ox ’ oy

The constants s44, 215 and A;; are defined by the relations

Su :%, s :%5, A :%, A=cur, +¢&  (3.5.59)

The boundary conditions of the anti-plane problem are given by
u, =1u,, on [, (3.5.60)
t=oyn, =t, on I; (3.5.61)
D,=Dn,=-q,=D,, onlp (3.5.62)
b=¢, on Iy (3.5.63)

where i, 7, g, and ¢ are, respectively, prescribed boundary displacement,

traction vector, surface charge and electric potential, an overhead bar denotes
prescribed value, 7=7,+1=I+I4is the boundary of the solution domain £2.
In the Trefftz FE form, Eqs.(3.5.55)~(3.5.63) should be completed by the
following inter-element continuity requirements:
U, =, g, =¢;, on /I, NI, (3.5.64)
t,+t,=0, D, +D,=0, on /(I (3.5.65)

where “e” and “f” stand for any two neighbouring elements.
It is obvious from Eq.(3.5.55) that it requires
Couky + e =0 (3.5.66)

to have non-trivial solutions for the out-of-plane displacement and in-plane
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electric fields. This results in
Viu, =0, V¢=0 (3.5.67)
(1) Trefftz functions. It is well known that the solutions of the Laplace
equation (3.5.67) may be found using the method of variable separation. By this
method, the Trefftz functions are obtained as [51]

u,(r,0) =Y r"(a, cos m+b, sin mo) (3.5.68)
m=0

o(r,0)= Z " (c, cosmO +d  sinmb) (3.5.69)
m=0

for a bounded region and

u (r,0)=a, +a,Inr+ Zr"’" (a,, cosm@ +b, sinmb) (3.5.70)

m=1
$(r.0)=c, +c,Inr+ Zr""’ (c,, cosmb +d  sinmb) (3.5.71)

m=1
for an unbounded region, where » and # are a pair of polar coordinates. Thus,
the associated Trefftz complete sets of Eqs.(3.5.68)~(3.5.71) can be expressed

in the form

T={l, r" cosm@, r"” sinm@} ={T;} (3.5.72)
T={1, Inr, ¥ " cosm8, r " sinmb} ={T;} (3.5.73)
(2) Assumed fields. To perform FE analysis, the solution domain €2 is di-
vided into elements, and over each element “e” two independent fields are as-

sumed in the following way:

(a) The non-conforming intra-element field is expressed by

u, | m Nlj 0 cy | N, 0 B
uzLJ_Z{ 0 Nz,/M%J_{O Njc_Nc (3:5.74)

Jj=1

where ¢ is a vector of undetermined coefficient, N, are taken from the com-
ponents of the series (3.5.68)~(3.5.71).
(b) An auxiliary conforming field

] N O du N 0 duc .7 x 7
a=|" =] o e ~Nd+N.d (3.5.75)
9 0 N, d¢ 0 N, d¢>c

is independently assumed along the element boundary in terms of nodal DOF
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d= [d" d, ]T and d, = [dm, d;, ]T , where N represents the conventional

finite element interpolating functions and N, , N, are given in Eq.(3.5.75)

le®
above. For example, in a simple interpolation of the frame field on the side
1-C-2 of a particular element (Fig.3.3), the frame functions are defined in the
following way:

M,

U,y = N + Nyu,, Z J](l é)uz(_.f

p (3.5.76)
Mg
$, = N¢ + N, ¢, +Z§J_I(l—§2)¢o
J=1
where u,., and ¢., are shown in Fig.3.3, and
~ 1=-¢& - 1+4¢&
N, = , N, = 3.5.77
1= 2= ( )
343, ¢3) é=1 50 g
1 c 2
e u,,$(2 DOF)
gy € 4@®) Aua.daue, +@MDOR)

Fig.3.3 Geometry of a triangular element

Using the above definitions, the generalized boundary forces and electric
displacements can be derived from Eqgs.(3.5.61), (3.5.62) and (3.5.74), denoting

B t _|o3n ()
T_[D,J_[Djﬂj] {Qz] =Qc (3.5.78)

(3) Special element containing angular corner. It is well known that sin-
gularities induced by local defects such as angular corners, cracks, and so on,
can be accurately accounted for in the conventional FE model by way of ap-
propriate local refinement of the element mesh. However, an important feature
of the HT FEM is that such problems can be far more efficiently handled by the use
of special purpose functions [46]. Elements containing local defects (see Fig.3.4)
are treated by simply replacing the standard regular functions N in Eq.(3.5.74) by
appropriate special purpose functions. One common characteristic of such trial
functions is that it is not only the governing differential equations, which here are
Laplace equations, that are satisfied exactly, but also some prescribed boundary
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conditions at a particular portion 7/ ,;(see Fig.3.4) of the element boundary.

This enables various singularities to be specifically taken into account without
troublesome mesh refinement. Since the whole element formulation remains
unchanged [except that now the frame function # in Eq.(3.5.75) is defined
and the boundary integration is performed only at the portion /7,. of the ele-
ment boundary 77, =7",.+ 1, see Fig.3.4][46], all that is needed to imple-

[5
ment the elements containing such special trial functions is to provide the ele-
ment subroutine of the standard, regular elements with a library of various op-
tional sets of special purpose functions.

Element r
boundary ~ ¢*

Fig. 3.4 Special element containing a singular corner

In this section we show how special purpose functions can be constructed
to satisfy both the Laplace equation (3.5.67) and the traction-free boundary
conditions on angular corner faces (Fig.3.4). The derivation of such functions is
based on the general solution of the two-dimensional Laplace equation

u.(r,0)=a,+ Y (a,r* +b,r"")cos (4,0)+ D (d, " +e,r")sin (4,0)

n=| n=l1

(3.5.79)
#(r,0)=e,+ Y (e, + f,r " )cos (4,0)+ Z(g,,r"-r +h,r*)sin (1,0)

n=1 n=1
(3.5.80)
Appropriate trial functions for a singular corner element are obtained by
considering an infinite wedge (Fig.3.4) with particular boundary conditions
prescribed along the sides #=t6, forming the angular corner. The boundary
conditions on the upper and lower surfaces of the wedge are free of surface

traction and surface charge
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du. 0 ou, o

- + 0, = —— —:0 3.5.8]
T =4 00 %5 o0 © =550 o0 A
This leads to
ou. o 9% _g 6 =+6, (3.5.82)
00 00

To solve this problem, we rewrite the general solution (3.5.79) as

u,(r,0)=a,+ Z(a"r’a” +b"r';‘“ )cos (4,0) + Z(d"rﬁ" + e"r_ﬁ" )sin (5,60)

n=| n=1

(3.5.83)
where A4, and S, are two sets of constants which are assumed to be greater

than zero. Differentiating solution (3.5.83) and substituting it into Eq.(3.5.82)

yields
ae | = Z;A (a,r* +b,r*)sin (£4,6,) +
S B,(d,r" + b )cos (£,0,) = 0 (3.5.84)
Since the solution must be limited for »=0, we should specify
b, =e =0 (3.5.85)
From Eq.(3.5.84) it can be deduced that
sin(+4,6,) =0, cos(£f,6,)=0 (3.5.86)
leading to
A,6, =nm, n=1,23,+ (3.5.87)
28,60, =nmn, n=1,3,5, (3.5.88)

Thus, for an element containing an edge crack (in this case 6, =7 ), the
solution can be written in the form
u_(r,0)=a, + Za“r" cos(nf) + z d, r2 sm(—9) (3.5.89)
n=1 =135
With the solution (3.5.89), the internal function defined in Eq.(3.5.74) can be
taken as

2n-1
N2H—| =r' COS(”&), NZN =r? Sin [ 2??2_ l 9} ,» N =1 52s39'" (3.5.90)

It is obvious that the displacement function (3.5.89) includes the term propor-
tional to rm, whose derivative is singular at the crack tip. The solution for the
second equation of (3.5.82) can be obtained similarly.
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(4) Variational principle. For the boundary value problem described by
Eqs.(3.5.55)~(3.5.67), the corresponding dual variational functional is con-

structed in the form

0" =300 =3 |0r" [, (B, =Dy, (s
e De e

J, D+ fﬁz)ds} (3.5.91)

O =200 = {@;E [, @-pDas+[ @ —u)ids-

2f . it tds - 2f o $D,ds- | . (4D, +ﬁztds} (3.5.92)
where
Q" _jj H(GU,Dk)dQ+jr fir ds+Ir $ds (3.5.93)
ue pe
o°F =”Q H(gl.j,Ek)dQ+Il_ Tﬁzds+jr Bnéds (3.5.94)
o, te De

ij X277 x

1
H(U ’D/():_ES44(G§Z +G§Z)_g156 D gISO-lz ¥y += j'll(D2 +D )
(3.5.95)
1
H(}/U,E )= c44(7/n +7/yL) esy.E, —esy.E, _EKH(Ef +E?) (3.5.96)

The boundary F of a particular eclement consists of the following parts:

3

Fe:FueUrleUrIe:ngeUrDeUrIe (3597)
where
rw=r,Nrl, F=CNL, T,=T,N, =101,
(3.5.98)

€ 3

and 7, is the inter-element boundary of the element “e

(5) Generation of element matrix. Similar to the treatment of Eq. (3.5.45),
the domain integral in Eq.(3.5.93) is converted into a boundary integral by use
of solution properties of the intra-element trial functions, for which the func-
tional (3.5.91) is rewritten as

el = j (D — D, )dds — jr (T —1)ii.ds + jn@ (D, + i1, )ds}

EJR (tu, +Dn¢)ds+J.rl tﬁzds+J.F¢‘ D, §ds (3.5.99)

Substituting the expressions given in Eqs.(3.5.74),(3.5.75) and (3.5.78) into
(3.5.99) produces
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°° =—%cTHc+cTSd +&r+d7r, + tems without ¢ ord  (3.5.100)

me

in which the matrices H, § and the vectors r|, #; are defined by

H=JF‘JQTNd5 (3.5.101)

s=[, ONds+[ O'Nds+[ Q"Nds (3.5.102)
n=|, @dds+[ olmds (3.5.103)
n=-[, NiDds-[ Nlus (3.5.104)

The remaining derivation and the resulting equations are in the same form
as in Eqgs.(3.5.51)~(3.5.54).

3.5.6 Numerical examples

As a numerical illustration of the finite element formulation presented in this
section, an example of a piezoelectric prism subjected to simple tension is con-
sidered (see Fig.3.5). This example was taken from [52] for a PZT-4 ceramic
prism subject to a tension P=10 Nm~ in the y-direction. The properties of the

material are given as follows:

2b
Q
ot ]
=]
=

Fig.3.5 Geometry of the piezoelectric prism

e =12.6x10" Nm™, ¢, =7.78x10"" Nm™, ¢;; =7.43x10" Nm™
Cyyyy =11.5x10'" Nm™, ¢y, =2.56x10"" Nm ™, ¢, =12.7Cm™
e, =-52Cm>, e, =15.1Cm™, &, =730x,, &y, =635k,
where &, =8.854x107'* C*/Nm® . The boundary conditions of the prism are
o,=P, 0,=D,=0,onedges y=1b
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o,.=0,=D =0,onedges x=x+a

xx Xy

where =3 m, b=10 m. Owing to the symmetry about load, boundary conditions
and geometry, only one quadrant of the prism is modeled by 10 (x-direction) x
20 (y-direction) elements in the HT FEM analysis. Table 3.2 lists the displace-
ments and electric potential at points 4, B, C, and D using the present method
and comparison is made with analytical results. It is shown that the TFEM re-

sults are in good agreement with the analytical ones [52].

Table 3.2  uy, uy, and ¢ of TFEM results and comparison with exact solution

Point A(2,0) B(3,0) C(0,5) D(0,10)
TFEM 1,/(10"m) -0.9674 -1.4510 0 0
1,/(10°m) 0 0 0.5009 1.0016
AV 0 0 0.6890 1.3779
Exact [52) u,/(10"%m) —0.9672 -1.4508 0 0
1,/(10°m) 0 0 0.5006 1.0011
AV 0 0 0.6888 1.3775

3.6 Theory of coupled thermo-piezoelectricity

In the previous sections of this chapter we described various problems of pie-
zoelectric materials without considering thermal effects. In this section, an ex-
tension to include the thermal effect is presented. We begin with a discussion of
the general theory of thermo-piezoelectricity, followed by an introduction of the
uniqueness of the thermo-electro-elastic solution. The presentation focuses on

the developments in [1,2].

3.6.1 Basic equations

The equations of the classical, linear theory of piezoelectricity, including the
coupling among deformation, temperature, and electric field, were derived by
Mindlin [1]. The coupling problem under consideration consists of determining
the stress o (x, 1), electric displacement Di(x, 1), elastic displacementu; (x,
f) temperature T{x, f) and electric potential ¢ (x, 7) for x e Q2 and 0.

In the region £2 and for £>0 without body force and free charge, the fol-
lowing equations should be satisfied:
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(1) Divergence equations.
oy =pi;, D=0, h,=-TAs (3.6.1)

where p is the mass density. Using the notation introduced in Section 3.3 and
considering a steady-state problem, Eq.(3.6.1) can be rewritten in a simple form

EnUk i = 25T, kT, =0 (3.6.2)
where 4, (J/=1,2,3) represent the thermal-stress constants, 4,= p, stands for
the pyroelectric coefficient.

(2) Gradient equations.
q
g,.:l u, +u,,), E=-¢,, h=—k.T, 3.6.3
4y 2 L St 5t

‘ ¢ g7

where k; is the heat conduction coefficient.

(3) Constitutive equations.

5= [ag} o -8 p__|%%& (3.6.4)
or D08, ek, o
where g is the “electric Gibbs function” defined by
1 1 pC,
8= 5 Cpubyu ~ 5K EE, - o7 —T? e, Ee&, —p,TE, -4Ts;,  (3.6.5)

0

Egs.(3.6.1)~(3.6.4) comprise the 27 equations of linear thermo-piezoelectricity
governing the 27 dependent variables u,, o D, E,@, h,s, T. From

Eq.(3.6.4) and Eq.(3.6.5), we find
s=al +;6;,+ p,E

"

=4, + ey — € E (3.6.6)

mij 'm

U’

Dn:p”T+e &y K, E

nif e
where a=pC,T,;".
By successive substitution, the 27 equations may be reduced to five on u;,
gand T
Copaty gy T € P — AT =

ety 5 — K¢, +p T, =0 (3.6.7)

kl Tl
A, —pd, +al = ;"/

’jlj
0

These equations should be completed with boundary and initial conditions. The

following quantities may be assigned at the surface /”of the body £2:
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(1) Displacement or surface traction.
w=i(x, 1) (onl) o =0(x.0) (onT}) (3.68)

gy
where #, and 7, are known functions,and I"'=,Ur,, N I, =0.
(2) Electric potential or electric displacement.
¢=¢(x, 1) (onl;), Dn,=-7,(x, 1) (onrl}) (3.6.9)
where ¢ and g, are known functions,and 7" =7,U7T,, I,NT,=0.
(3) Temperature or heat flux.
T=T(x,t) (on[ly), —kTn=-h(x,t) (only) (3.6.10)
where T and 1/, areknown functions,and 7"=7,U7l,, I,NT,=0.
(4) Initial conditions.
u(x, 0= f(x), u(x, 0)=g(x), T(x,0)=T,(x). (3.6.11)

where f;, g; and T} are known functions.

3.6.2 Uniqueness of the solution

The uniqueness theorem for the differential equations of thermo-piezo-electricity
can be established by way of the principle of virtual work. The energy functional
used for this purpose is as follows:

-[  piioudQ+| Toudl =] o,65,d0 (3.6.12)
in which the virtual increments have been replaced by the real increments
Ou, . 0 &y .
Ou, =—+dt =a,dt, g, =—dr=¢,dt (3.6.13)
ot Toot ‘
Thus, we obtain the fundamental energy equation
[ piigdQ+| Tidl = o,4,d02 (3.6.14)
into which we introduce the constitutive relations
o, = —ly.T + Cpy — i, (3.6.15)
Hence
d . .
LK) = [ madr+| (47 +e,,E,)%,d0 (3.6.16)

where X is the kinetic energy and ¥ the work of deformation

1
K =§J.Q uud2, W :E.[g Cy €€ de2 (3.6.17)

To climinate the term J. P A,;£,1d€2 , we consider the heat conduction equation
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i'Tl"
A of = 4,6, + pL, (3.6.18)

i

0

Multiplying by 7 and integrating over the region (2, after simple transformation

we obtain
k. . ds
ok ~ e
jgzi,TgﬁdQ_—% [ 1T ndr-p,[ TE,d0 Tl (3.6.19)
where
w=%[ 140 N 3.6.20
=51, ; zg—TOJ'H iy (3.6.20)

Substituting Eq.(3.6.19) into Eq.(3.6.16) yields

d .k
E(K+W+W)+ZH:J‘I_(7;MI.+T TTnde+J‘ (e,; E.&; plElT)dQ

(3.6.21)

To eliminate the term Iﬂem E _dQ in Eq.(3.6.21), we make use of the con-

5 i m

stitutive relations
D,=p,T +e,¢; +k,,E (3.6.22)

Finally, we make use of the equation of the electric field D,.J. =0. Multiplying
the equation by ¢ and integrating over the region 2, we obtain
[ Dngdr+[ D,E,d2=0 (3.6.23)
Using relation (3.6.22), after simple transformations we obtain
[ (CwsEnéy = pETIQ == D,n,pdr - di(x il TE,(d.Q) (3.6.24)
where

s=Sif BE 4o 3.6.25
_7_[_0 it ( )

In view of Egs.(3.6.21)~(3.6.23), we arrive at the modified energy balance
d Y S
E(K +W+H+N+p, IQTEde) + X

ok, .
- j r[];ul. +F"T7jjni —quﬁnmj dr (3.6.26)

0

The energy functional (3.6.26) makes possible the proof of the uniqueness of

the solutions.
Consider two distinct solutions (u,,¢',7") and (v/,¢",7") which satisfy

Eq.(3.6.1) and the appropriate boundary and initial conditions. Let
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w =u—-u', ¢ =¢-¢", T =T-T" (3.6.27)
Since the problem is linear, the difference variables in Eq.(3.6.27) are also solu-

tions. Therefore, Eq. (3.6.26) holds for the solution (u: T,
In view of the homogeneity of the equations and the boundary conditions,

the right-hand side of Eq.(3.6.26) vanishes. Hence,

%(K* W AN+ p, IQT*EZdQ)=—;(; <0 (3.6.28)
where we have made use of the fact that the integrand of the energy-dissipation
function g, is a positive-definite quadratic form. The integral in the left-hand

side of Eq.(3.6.28) vanishes at the outset, since the variables (u;,¢ ,T") sat-

isfy the homogeneous initial conditions. On the other hand, the inequality in
Eq.(3.6.28) proves that its left-hand side is either negative or zero. The latter
possibility occurs if the integrand is the sum of squares.

Consequently, we assume that

K'=W"'=0, 9% +5"+p [ T'Ed2>0 (3.6.29)
These results imply that
u; =&, =T =E =0 (3.6.30)

Assuming that «; is a known positive-definite symmetric tensor, p, is a vec-

tor, and o>0. Consider the function

A(T,E,)=aT? +2p,TE, + k,EE, (3.6.31)
A is nonnegative (4> 0) for every real pair (7, E;), provided that
ol <an, (3.6.32)

where 4, is the smallest positive eigenvalue of the tensor ;. Eq.(3.6.30) im-

plies the uniqueness of the solutions of the thermo-piezoelectricity equations,
ie.,
u =u', ¢'=¢", T'=T" (3.6.33)

3.7 Solutions by Fourier transform method

The boundary-initial value problems described in the previous section can be
solved by means of the Fourier transform approach. Hereafter, for simplicity,
we assume that all variables do not vary with time. In this case the problem
defined in the previous section is known as the boundary value problem. It
should be noted that the Fourier transform approach to thermo-piezoelectric
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problems usually involves two basic steps: (1) solve a heat transfer problem
first to obtain the steady-state T field; (2) calculate the electroelastic field
caused by the T field, then add an isothermal solution to satisfy the corre-
sponding electrical and mechanical boundary conditions, and finally, solve the
modified problem for electroelastic fields. In this section, we first derive the
Fourier transform formulation for temperature fields and then extend it to the
case of thermo-electro-elasticity.

3.7.1 Fourier transform method and induced general solution
The Fourier transform pair used in this section is defined by [10,11]
7 1 - i&x 1 <z —ifx
J@=o—[ " feoe¥dr, f=o=]  f(&)ede (3.7.1)
2wY 2wy

where i=~/-1. Applying the transform (3.7.1) to Eq.(3.6.2) with respect to x,
leads to

v, of o°T
Ek T + 2k, P ky, Fel 0 (3.7.2)
2 2
Eq.(3.7.2) admits a solution of the form
T =a,(&)e ™ (3.7.3)
provided that 7 satisfies the following eigenvalue equation:
k& + 2k, ET +kytt =0 (3.7.4)
The roots of Eq.(3.7.4) are
* k . k E] %
b= _ki—Hk_’ P, =D, k=(kky _k|22 "2 (3.7.5)
22 22

where p; =7,/¢ and the overbar denotes the complex conjugate. For a given

real £, 7; and 7, can be defined such that for Im( 7, >0, the results are

7 = {’j 16 &>0 (3.7.6)
pé, <0
As a consequence, the general solution of Eq. (3.7.2) can be written as
T =2n(F, f; + Gy2,) (3.7.7)
where
Fy=¢"™, G,=e"™ (3.7.8)

Recall that £ and 7 are contained in the eigenvalue p=7/¢&, while f; and g,

are two functions of & to be determined from the boundary conditions of a
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given problem. The transformed heat flux ﬁ, = —k,.j]Aj ; 1s given by
hi=iE2m ] (k, + pik, VFy fo + (K, + Piky )Gog, | H(E)+
iEN2] (K + Pk, VF, fy + (K, + pik )Gogo |H (=€) (3.7.9)
where h=[h h1", k, =[k, k,)', k,=[k, ky,]' and H(&) is the
Heaviside step function. Eq.(3.7.7) and Eq.(3.7.9) represent the general solution

for the temperature and heat flux fields in the Fourier transform space. Taking
the inverse Fourier transform, the results are

T(xlax2)='|‘7m (Foﬁ) +G0g0)efi%txld§ (3710)
h(xlij) - iI :éz |:(kl + pl*k,, )Fofo + (k/ + ﬁfku)GogoJe’if'“ df +

0 —* * —i&x
i &k, + Pk, F fy+ (K, + pik,)Gogy | ¥7dE (3.7.11)

Similarly, applying Eq.(3.7.1) to Eq.(3.6.2) with respect to x;, we have

. i .
azgﬁ+ig(R+RT)a—U—Ta [2] =i§11T—,128—T (3.7.12)
ox, 0x; 0x,

where A, =[A;, A, A, p;]. The solution to Eq.(3.7.12) can be assumed to

consist of a particular part U, and a homogeneous part U, as

A

U=U,+U, (3.7.13)

since it is a linear problem.

Making use of the solution (3.7.7), the particular solution U , » which satis-

fies Eq.(3.7.12) can be assumed in the form

U, = —%(AoFofo + 4,G, g ) H (&) - %(ZOFJO + 4)G, gy ) H (—£)
(3.7.14)
where

A, =D (p)A +p ), D(x)=Q+x(R+R")+x*T (3.7.15)
The homogeneous part U , can be obtained by considering an arbitrary eigen-

function of the form

U, = Ae™ (3.7.16)
Substituting Eq.(3.7.16) into the left-hand side of Eq.(3.7.12), it is found that
[0 +én(R+ R )+7°T |A=0 (3.7.17)

which is exactly the same as Eq.(3.3.7) if we put p=7/& The eigenvalue p can
be determined by considering the characteristic determinant of Eq.(3.7.17)
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|+ R+R)p+p*T|=0 (3.7.18)

As was noted in Section 3.3, there are eight eigenvalues p from Eq.(3.7.18),
which consists of four pairs of complex conjugates. Let

" :{g/wf , >0

Pué, &£<0

where M=1,2,3,4. It is obvious that Im(7,)>0 for all & Such a definition is
expedient for development of the subsequent derivation. Hence, a general solu-

(3.7.19)

tion of Eq.(3.7.12) can be obtained by simple summation of the two parts of the

solution
U =\2n(AFf + AGg)H (&) +~2n(AFf + AGg)H(-&) —
2n - NOT
?(AOE)JFO +A4,Gogy )H(S) - ?(AOE)J‘O +A4,Gogy ) H(=5)
(3.7.20)
where
F(€x)=(F,(&x))=(e ") (3.7.21)
G(&.%,) =(G,(&,x,)) = (™) (3.7.22)

The transformed stress and electric displacements follow from the constitutive
relation (3.6.6)
IT = i\ 2n(BPFf + BPGg)H (&) + iEN2n(BPFf + BPGg)H (—£) —
V21(B,p[ Fy fo + ByP, g0 H (&) ~N21(By B, Fo fo + By pi Gogo ) H (=)
(3.7.23)
IT, =—iE2n(BFf + BGg)H (&) — iEN2n(BFf + BGg)H (-&) +
\/E(BOE)J[O + EoGogo YH(E) - \/E(EOFZ)JFO + B,Gy g, )H (=)

(3.7.24)
where

B,=R"A,+TAp, (3.7.25)
The traction vector on a surface with normal n=[n; #n, 0] can be found
from Eq.(3.7.23) and Eq.(3.7.24) as
{ = ILn, + ILn, = iE\2n [ B(n, P —n,D)Ff + B(n P —n,1)Gg |H(&) +
i&2n| B(n,P —n,))Ff + B(n,P —n,1)Gg |H(-&) -
V2r |:Bo (mpy =) Fo fo + By(m Py —1,)Gogq :| H(&) -

\/ﬂ[ﬁo (nlﬁl* —ny))F, fo + B, (nlpl* -1, )GogoJH(_é) (3.7.26)
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Eqs.(3.7.20), (3.7.23) and (3.7.24) represent the solution for the elastic and
electric fields in the Fourier transform space. The general solution of electro-
elastic fields in real space is obtained by applying the inverse Fourier transform
to Egs. (3.7.20), (3.7.23), (3.7.24) and (3.7.26). The results are

U(xl,xz)=J-:{AFf+ZGg—é(AOFOfO +ZoGogo):| e ndE +

0

!

I(x,x,)= [ [i{(BPFf + BPGg): ~ B,p,F, [, - B,P,Gyg, |e " d& +

0 DD D = * —i& x|
I_w I:i(BPFf + BPGg)S - Byp F f, — Bypy G0g0:|e : 'dg
(3.7.28)
IL,(x,,x,) = _.[0 [i(BFf + BGg)E — B F, f, - EopGogo}eiig 1dg -
0 P D d —i& X
[ [i(BFf + BGg)Z - B,F, f, - B,Gyg, |e “ "d&
(3.7.29)
t(x,,x,) = j ) {if[B(an —~n,D)Ff + B(n,P —n,1)Gg | -
By(mp} —n)F,fy — By (n, By —m,)Gog,| e dE +
[° {i[(BoyP -n,D)Ff + B(n P -, D)Gg -
By (n By —n)F,fy — By (npy —m,)Gyg,} ¢ "dé  (3.7.30)
For a given boundary value problem, the eight functions fy, f, g, and g are

determined from the appropriate boundary conditions. As an illustration, the
general solutions (3.7.27)~(3.7.30) are now used for analyzing crack-tip singu-

larities.

3.7.2 Crack-tip singularity
The singular behaviour at crack-tip can be found by considering a semi-infinite
crack along the negative x -axis with the origin at the crack-tip under

consideration. Assuming that the crack faces are traction-free and charge-free
and thermally insulated, the boundary conditions at the crack faces are
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IL(x, 0")=1IL(x;, 07)=0, hy(x,, 0")=h,(x;, 07)=0 (3.7.31)
The continuity conditions along x, =0 and x; >0 require that
T(x, 0)=T(x, 07), h(x, 07)=hy(x, 07)
Ulx,, 0)=U(x,, 07), IL(x, 0")=IL(x, 0)
Since the solution must be bounded as |x2| — oo, f; and g; (i=0~4) should be

(3.7.32)

taken as
fi(§)=0, whenx, >0 (3.7.33)

g(£)=0, whenx, <0 (3.7.34)
Further, satisfaction of the continuity conditions along x,=0 requires that
LEO=5E), g(-6=8(), 04 (3.7.35)
It follows then that

oz, YA

T . (x, 0)=—2 4 ~00) 3.7.36
0 9 ox, o, ( )
Uy (0,0) = Ay Z A Zy + Ay Zogy + Aoy Zo) (3.7.37)
8°Zy,; 0’Z,
X, 0 Dtk ——a L 3.7.38
hyy (x5 0) =ik, o2 0 a2 ( )
0z, - OZ, 0Zy = OZy,
_ ) ) 0) 00/
1L, (%, 0)= B, o, + B ox, + By, o, * By, ox, (3.7.39)

where the subscript (7) is used to distinguish the lower and upper half-plane, j=1
corresponds to the domain x, >0, and j=2 means that the point is located in

the lower half-plane. The quantities k&, Z,,, and Z, are defined by

ki =Rk — (k) (3.7.40)
Zow =] jggo(—f)e"@“df (3.7.41)
Zay =, phiE 0 (3.7.42)

z,,=[ g(-&emde (3.7.43)

Zo=[, f&eag (3.7.44)

The asymptotic form of the field variables can be obtained by setting x;, — 0
(r > 0) along x, =0. Hence, Zy; and Z;) become
ZO(i) ~ ()51)6+1 ho(,-) , =12 (3.7.45)
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Z,~(x)"h,, =12

(3.7.46)

Substitution of Eq.(3.7.45) and Eq.(3.7.46) into Egs. (3.7.36)~(3.7.39) yields

5

Ty (x5 0) = (8 + 1oy + Tog )|
. — 5-1
by (x5 0) =ik ;,6(5 +1)(qy _%(j))|x1| » x>0
h (x5 0) = —ik

, x>0

)
6+1
Uy (315 0)=2Re(A g, + Ao o) > x>0

5

IL, , (x;, 0)=2Re[(5 + )(Bh, + By ,d0,)]%,

IT, (%, 0)=2Re[(5 +1)e”” (B 4, + Bo(;, 901"

. o Ny
56+ Vg, —e Vg )0 T, x <0

, x>0

s
, %<0

(3.7.47)
(3.7.48)
(3.7.49)
(3.7.50)
(3.7.51)
(3.7.52)

where &(j)=ind(~1)’"". Summation convention does not apply to the re-

peated indices in Eqs.(3.7.47)~(3.7.52). Substitution of Eqs.(3.7.47)~(3.7.52)
into Eq.(3.7.31) and Eq.(3.7.32) leads to a system of 20 homogeneous equa-

tions. The results can be written in matrix form as

KN

where
9oy l_;a)‘lu)
a, = o) , a = B4,
Qo2) B4
Qo2) B\
1 1 -1 -1
ik, ik, —tk ik,
K, 208 ) _k 0 0
) M
0 0 ko kg,
A(l)B(l; Z(I)I_TI; _A(2>B{21> _Z(2>E@I>
K - Zié 1 -1 -1
eI 1 0 0
0 0 I il B
AO(]) ‘EO(I) _AO(Z) _130(2)
Km Z[ioa) 2o _30(2) —Po2)
e Bo<1) o) 0 0
0 0 Byy €™ By,|

(3.7.53)

(3.7.54)

(3.7.55)

(3.7.56)

(3.7.57)



106 Chapter 3 Thermo-electro-elastic problems

The order of singularity in the temperature and traction fields is deter-
mined by setting the determinant of the 20x20 matrix in Eq.(3.7.53) to zero.
This is equivalent to

|K,(5)]|=0 (3.7.58)
or

|K.(5)|=0 (3.7.59)

Note that the roots & in Eq.(3.7.58) and Eq.(3.7.59) are uncoupled; they are
given as J, and ¢, , respectively. For a semi-infinite crack in a homogeneous

solid, Eq.(3.7.58) yields

1
5, = -3 (3.7.60)
The roots of Eq.(3.7.59) are given in [42] as
1
o, =—— 3.7.61
e=75 ( )

They are in multiples of 4. These result in five » "/? singularities when

0, = 0,, which may convert into logarithmic singularities. For the present case,

the stress and electric displacement singularities at the crack-tip may be one of
the following cases: » "2, r"?In’ r (j=0~3). For interface cracks, the root of

Eq.(3.7.58) is still —1/2, and the roots of Eq.(3.7.59) will be [53]
5=—liia, —liK (3.7.62)
2 2

where a and « are real numbers depending on the constitutive constants. For
certain special bimaterials, & may be zero [53]. In such a situation, three » 2
singularities may prevail, they may also be converted into logarithmic singu-
larities. The above analysis shows that the order of singularity for the tempera-
ture field is always of the inverse square root type for a crack in a homogeneous
solid and lying at a bimaterial interface. The traction singularities at crack-tips,

however, may vary with different materials.

3.7.3 Griffith crack in homogeneous piezoelectricity

As an application of the formulation developed in Subsection 3.7.1, consider a
crack of length 2a with its tips located at x;, =—a and x, =a in an infinite

thermo-piezoelectric material subjected to uniform loading 7 and IZ,” at in-

finity. The surface of the crack is traction-free and charge-free and is kept at
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zero temperature. The crack-tip behaviour can be found by considering the fol-

lowing conditions:

Uy (x, 0)=U, (x5, 0), |x|>a (3.7.63)

Ty (x, 0) =T, (x, 0), |x|>a (3.7.64)

IL, (x,. 0) =1L, (x,, 0), |x|>a (3.7.65)

Ty (%, 0) =T, (x, O=-T", |x|<a (3.7.66)

IL (%, 0) =1L, (x,, 0) =1L, |x|<a (3.7.67)
T(x,, x,) >0, IT,(x,x)—>0, when( +x;)—> (3.7.68)

1) Temperature field

Eqs.(3.7.63)~(3.7.68) can be applied to yield the governing dual integral
equations with the aid of an additional continuity condition related to tempera-
ture field to supplement Eq.(3.7.63). This can be accomplished by introducing
an auxiliary function, say &, in such a way that

dy(x,, 0)=dy,(x;, 0), |x|>a (3.7.69)
d(2)=0,,(z)+0,(z), 1.2 (3.7.70)
To(z) =40, (z)+ A0, (z) (3.7.71)
where 4" is a complex constant to be determined, z, =X, + p;x,, and

0n(z) =], &(-&)ede (3.7.72)
Op)(z) =], f(©)e s (3.7.73)
L EO=11©), &-H=8(©) (3.7.74)

Substituting Eqs.(3.7.72)~(3.7.74) into Eq.(3.7.70) and Eq.(3.7.71) yields
doy(z)={ [ (& + 2, |dg, x>0 (3.7.75)
dioyz) = [ [ fo©e ™ + 7 (e |dg, x, <0 (3.7.76)

TG =if [ A& - A gy(@e = |eds, x>0 (3777
TG =if [ A f©e ™ - T [ |eds, v <0 (3.7.78)

Comparing Eq.(3.7.77) and Eq.(3.7.78) with Eq.(3.7.10) renders
Jo(&)=—iA 1, (&) (3.7.79)
go(&) =—i A" gy(&) (3.7.80)
It follows from Eq.(3.7.64) that
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L&) =Ag(&)/4 (3.7.81)
Inserting Eqs.(3.7.75), (3.7.76) and (3.7.81) into Eq.(3.7.69), and Eq.(3.7.77)
and Eq.(3.7.78) into Eq.(3.7.66), it is found that

J 0%83(5)(1 A } gt ] g (é)[l—%}effﬂ d5=0, |x|>a

A*
(3.7.82)

[ A gy (e g+ [ A ZHOSTE= T, |x|<a  (3.783)
It can be seen that Eq.(3.7.82) will be trivial if 1— 4"/ 4" =0. Therefore,

the constant A4~ should be chosen so that 1— A"/ A" = 0, eg., A =i =1
Now, denote the real and imaginary parts of g, (&) as

2(&) =q,(&) +iq, (&) (3.7.84)
where ¢,(£) and ¢,(£) are two real functions of & Since the temperature
T” is symmetric about x; =0, it can be shown that the antisymmetric part on
the left-hand side of Eq.(3.7.82) and Eq.(3.7.83) may be taken as zero, i.e.,
g, =90, and putting Eq.(3.7.84) into Eq.(3.7.82) and Eq.(3.7.83) leads to

[, 4. ©cos(x&)de=0, x>0 (3.7.85)

) éa@cosxddd =-17, 0<x <a (3.7.36)

The pair of Eqs. (3.7.85) and (3.7.86) are the standard dual integral equations.
A solution of the equations is given by [54]

a
q,(5) = ZJl(aé)T (3.7.87)

where J,(a&) is the Bessel function of the first kind with order one. Substi-
tuting Eq.(3.7.84) and Eq.(3.7.87) into Eq.(3.7.79) and Eq.(3.7.80) gives

8 =S O = 52T (3.7.88)
Jo(&) =80(5) =§J1 (a&)T"sign($) (3.7.89)
where sign(¢£) is defined as
1, £>0
sign(&)=<-1, £<0 (3.7.90)
0, £=0

Eq.(3.7.88) can be put into Eq.(3.7.77) and Eq.(3.7.78), yielding
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iz -
T<I>=Re{m—l}T . x5 >0 (3.7.91)
iz, -
T, =Re| 555 —1|T7, x,<0 (3.7.92)
( - )

Eq.(3.7.91) and Eq.(3.7.92) represent the temperature field of the boundary
value problem stated by Eqs.(3.7.64), (3.7.66) and (3.7.68).

2) Elastic and electric fields

To simplify the derivation, we introduce the following notation:

o _ |8 - B Bygy()/i&, £>0 3703
¢ {g((f) “ BBy (&)/ié, £<0 (37:59)
oyl SO =B B f(©)/ig, £>0 3794
1 {f(é) - BB f,($)/ig, £<0 (3759
Eq.(3.7.29) may thus be written as
L, (x,, 0)=—if [ Bg (&) " - Bg (&)™ |&d¢ (3.7.95)
L (x, 0)=—i[ | Bf"(©)e " —Bf (&)™ |édg (3.7.96)
As a consequence, Eq.(3.7.6_5) gives
Bg (&)= Bf (&) (3.7.97)

The crack opening displacement and electric potential along x, =0 are ob-

tained by substituting Eqs.(3.7.93), (3.7.94) and (3.7.97) into Eq.(3.7.27) to
give the result

AU(x,) = 2R6U: (ICBf" —bf,£) ¢ d;‘} (3.7.98)
where

AU(x) =Uyy ()~ Upy(x), %, =0 (3.7.99)
C=i(AB'-AB™") (3.7.100)
b=il(4,~ AB"'B,)~(4,- AB"'B,) | (3.7.101)

The substitution
a=f - @B*C*b (3.7.102)

i§

leads to a pair of dual integral equations by combining Eqs.(3.7.63), (3.7.67),
(3.7.99) and (3.7.102):

[, (Ba'e®" —Bac*)dg=0, |x]>a (3.7.103)
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- j O“ i&(Ba'e " — Ba'e*")dE=2C"b j O“ fo(&)cos(xEE - IT . |x|<a

(3.7.104)
For the sake of convenience, define
g, =Re(Ba’), ¢ =Im(Ba") (3.7.105)
or
g=Ba =q, +iq, (3.7.106)

where ¢, and ¢, are two real functions of £ Eq.(3.7.103) and Eq.(3.7.104) can
thus be rewritten as

[ [4,&)cos(x)-q,(©)sin(x£)]dE =0, |x[>a (3.7.107)
[, &la.©cos(xd)~q,(©sin(x)]dE = €[  f(E)cos(x&)dé ~ 1T, || <a

(3.7.108)
The above pair of dual integral equations determines the functions g, and

q.. They are
q,(65)=0 (3.7.109)

q=iq, = %(C*bf‘“ 1L )J,(af) (3.7.110)

It can be seen from Eqs.(3.7.93), (3.7.94), (3.7.102), (3.7.109) and (3.7.110)
that
aB™!

f&)= 2

(L + B,T")J,(a&) (3.7.111)

I

g(&)= %(n + BTV, (af) (37.112)

Substituting Eq.(3.7.111) and Eq.(3.7.112) into Eqgs.(3.7.27)~(3.7.29) and
(3.7.98) results in
Uy =Re| AF(D)BIL" + BT™) - AFE)T™ ], x>0  (3.7.113)
Up =Re| AF (2)B™ (IL" + B,T™) - 4,F (z)T” ], x,<0  (3.7.114)
AU(x,, 0)=(CIL" —=bT"Ya’ -x})'"?, |x|<a (3.7.115)
1T, =—Re| BPF' (2)B™'(IL" + B,T")+ B,p F'(E)T" |, x,>0
(3.7.116)
II,, =—Re[ BPF"(2)B™ (I + B,T™)+ Byp F'(z)T" ], x,<0

(3.7.117)
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IL,, =Re[ BF'(5)B™\(IL" + BT™)-B,F G|, x,>0 (3.7.118)
1T, =Re| BF'(2)B™ (I + B,T™) = B,F ' (z)T" |, x,<0 (3.7.119)

where
F(z):diag[F(zl) F(z,) F(z;) F(z4)] (3.7.120)
F'(z2)=diag [F'(z) F'(z;) F'(z) F'(z,)] (3.7.121)
F(z)=(z* -a*)"* -z (3.7.122)
% z

3) Crack-tip fields

A polar coordinate system (r, @) centered at the crack tip with
(x;, x,)=(a, 0) and & =0 along the crack line is taken. Let the variable z be

given as
z=a+r{cosé + psind) (3.7.124)

The stress and electric displacement field near the crack-tip can be obtained by
taking the asymptotic limit of Egs.(3.7.113)~(3.7.119). Hence, IL;, in

Eq.(3.7.118) and Eq.(3.7.119) becomes

a = —_ o P — 7 — * — D o0
HIW\/;Re{Bﬂ(e,p)B 7 +[BpO.D)B ' ~150.5) BT, x>0

(3.7.125)
I, ~ \E Re{BB(0.p)B 1L +[ BB(O.p)B ' 1/ (6,p) |B,T"}, x,<0
(3.7.126)

where
B0, p)=diag[ B'0,p) B ©O.p,) B ©O.p) B©O.p)] (37127
B (8, p)=(cos B+ psin §)"* (3.7.128)

3.8 Penny-shaped cracks

In the previous sections of this chapter, formulations were derived in terms of a
rectangular coordinate system. The formulation is, however, inefficient for axi-
symmetric electroelastic problems. In this section, theoretical models are pre-
sented in terms of a cylindrical coordinate system and used to analyze (a) re-
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sponses of elastic stress and electric displacement in a long piezoelectric cylin-
der with a concentric penny-shaped crack and (b) the effect of elastic coating
on the fracture behaviour of piezoelectric fiber with a penny-shaped crack. The

discussion follows the development in [55].

3.8.1 Problem statement and basic equation

Consider a piezoelectric cylinder of radius b containing a centered
penny-shaped crack of radius @ under axisymmetric electromechanical loads
(Fig.3.6). For convenience, a cylindrical coordinate system (7,8, z ) originating
at the center of the crack is used with the z -axis along the axis of symmetry of
the cylinder. The cylinder is assumed to be a transversely isotropic piezoelectric
material with the poling direction parallel to the z -axis. It is subjected to the
far-field of a normal stress,o. =&(r)and a normal electric displacement,

D. =D(r).

().
\J

/ 2a

x

Fig.3.6 Penny-shaped crack in a piezoelectric cylinder.

The constitutive equations for a piezoelectric material which is

transversely isotropic and poled along the z-axis can be written as [56]

ou.
Jn-zcnai*"clzu_r‘*'cui"'esl?_é (3.8.1)
or '3 0z 0z
Oo ~c,2%+c“&+cu%+eﬂﬂ (3.8.2)
oz
u, ou, o
.. =Cp; +¢3 +cjja—z'+e3sa—f (3.8.3)
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Ou, Ou op
L= L+ —L | +tes— 3.84
O, 044( or | o= j €5 or ( )

Ou, Ou o¢
D = L |-k, — 3.8.5
v els[ or 52) Ky or ( )

ou, u, Ou, o¢

Dz =€31£ ar +7j+e33g_l(33a—z (386)

in which u,, u_denote the displacements in the r-directions and z-directions
respectively.

In the derivation of the analytical solution, the following potential functions
are introduced [57]

3 3
u, = a;f ZI ¢= —;Ikzl. % (3.8.7)

where @(r,z)(i=1,2,3) are the potentlal functions to be determined, £;, and
k,;(i=1,2,3) are unknown constants.

Substituting Eq. (3.8.7) into the constitutive equations (3.8.1)~(3.8.6), the
field equations and gradient equations, we have the following governing equa-

tions:
oD 18@ 3 oD
C]IZ( - o j“'z‘,{ Cag R (05 +cy) (e +e]5)] }:0
i=1
(3.8.8)
[ 6@ 10 oD |
Z (Caghy; + 15 +Cy +615k2i)[a—21+_ l)+(633k11 +e33k21) =
i=1 [ ¥V r 8r Z |
(3.8.9)
N @ 10@ 6d |
Z (esky; + ey +e5 = KllkZI)( ’ ;_rlj+(e33 li K33k21.)872’ =0
=1L J
(3.8.10)

Following the procedure presented in [57], the solution to Eqs.(3.8.8)~(3.8.10)

can be assumed in the form:
ar2)=[ {4(5)1 ¢

where A4.(&), B/(&) (i= 1,2,3) are the unknown functions to be determined,

J.() is the Bessel functions of the first kind of order », and 7,() is the modified
Bessel function of the first kind and the second kind of # order. In addition, s,,

k, and k,,(i=1,2,3) are defined by

Yeos(Ez) + B (E)exp(—Es,z)J, ((fr)} dé (3.8.11)
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s =—, i=123 (3.8.12)

_Cut (013 + ¢k, — (e +e5))ky,

S

_ ik —essky,; _ eysky; + Kk, (3.8.13)

Caghyy + €3 +Cyy =5k, eshy; +eps +ey) + Kk,

which #,(i=1,2,3) are determined by the following equation:
An} +Bn’ +Cn, +D =0 (3.8.14)

where
A=c K, +eys (3.8.15)
B = (K Gy — €y Cayyy + 2013C44Ky) — CyCagss +
20,565 + 2¢158, 585, — ol — 20 ,€55853) ¢y, (3.8.16)
C = (C35Cugky ) =y + €1 Cagyy — 2013CoK sy + Cyglls + 20538 505, +
6336321 — 2038563, — 2¢385.833 — 204,05.03, — 200505, + 6113,33)/611

(3.8.17)
D= ¢y (epiy +€53)/ ¢, (3.8.18)

Using Eq.(3.8.11), the following expressions for electric and elastic fields

in the cracked piezoelectric fibre composite can be obtained

u,(r,z)= Zkl,j 4(5)1[ ]sm(éz)dé—

(3.8.19)
Z 5 [ | B (Er)e S dg +alr):
3
R IGY (‘f JCOS(SZ)di > [, 8w e ras
i=l 9
(3.8.20)
3
¢(r,z):Zk2lj A, (‘f js1n(§z)d§+
i ks, [ | BEW,(Er)edE b (r)z (3.821)

0. =2 e, ["Z—J cos(£2)dé +

z

3

Ry [ B (& (Ene dg +e(r) (3.8.22)
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o, = —g f [“ean, [‘5—] cos(E2)dE +
C'ZZ ‘ [RZIGIA (5 Jcos(fz)d§+

f EB (&) (Ere g+ CIZZJ EB(&)J(§r)e P dg
(3.8.23)
3 F;i N §I" i ; - —&siz
o, =2, €A, (?]SIH(&)d&ZEiIO EB,(),(Er)e de

7

(3.8.24)

I

3 =]
c _ZF_Zle 0 §A(E), [%j cos(&z)dE +
Y Ef, EBAE e s () (3825)

o ——Zfﬁ’j o A, [5 jsm(«fz)d&ZFm [, e e vde

7

(3.8.26)
in which
= (Cy3ky; — €55k, )S2 — G = (e53k; + K33k, )Sz —€3
£y —[C44(1+k1,) e1sk21]sn [els(l+k11)+K11kzz]S (3.8.27)
Fy, = ek, — eSIkZi)Siz _WTCIZ
a(r) = Ky (r) + 5335(’”) l;(r) _ C33D(’”) —ey0(r)
Cy3Kyy + e§3 ’ Cy3Ksy + e323 (3.8.28)

c(r)=&(r), d(r)=D(r)

3.8.2 Reduction of crack problem to the solution of a Fredholm
integral equation

1. A piezoelectric cylinder with a penny-shaped crack
To illustrate applications of the formulations presented in Section 3.8.1,
we consider a cracked cylinder shown in Fig. 3.6 subjected to the following two

cases of boundary conditions:
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(1) In the first case we assume that the piezoelectric cylindrical surface is
free from shear and is supported in such a way that the radial component of the
displacement vector vanishes on the surface. The problem of determining the
distribution of stress and electric displacement in the vicinity of the crack is
equivalent to that of finding the distribution of stress and electric displacement
in the semi-infinite cylinder z>0,0<r<a when its plane boundary z=0

is subjected to the conditions

o (r,00=0, 0<r<a (3.8.29)
u (r,0)=0, a<r<b (3.8.30)
dp(r.0)=0, a<r<b (3.8.31)
o (r,00=0, 0<r<b (3.8.32)
D (r,00)y=D_(r,07), 0<r<a (3.8.33)
E(r,0)=E(,0), 0<r<a (3.8.34)

and its curved boundary =5 is subjected to the conditions
u,(b,z)=0, o.(b,z)=0, D.(b,z)=0, z>0 (3.8.35)

From the boundary conditions (3.8.31)~(3.8.35), and making use of the Fourier

inversion theorem as well as the Hankel inversion theorem, we obtain

Bl(§)=MB (), By(&)=M,B(S), B (&)=M,B;(S) (3.8.36)
A(S)=—— ZNI,(f)fh(cf) 4,(5)= zNz,(ff)fn(é)

A(f) A(f)
4= A@ZN3,(§)£,(§) (3.8.37)
where
M,=1, M,= Fykyss3 = Foskys, , M, = Fiokys, — Fiikyys, (3.8.38)
Fiskyy8, = Fyokyysy Fiskyys, = Fiokyysy
h&=2 M dn (3.8.39)
+&

A(E) =[5 (EV3 (§) = Iy ()3 (§)] gy (&) + [y (E)5 (&) = Iy (E) s (£)] X

hy (&) + [hl (W, (8) — by (f)hlz(g)] hy;(£) (3.8.40)

N(&)= [(h13(§)h22 (&) = My (E)hy; (5)]g35 + [(hlz (E3(E) — 3 (E)hs, (§)]g2i +
[(h23 ()3 (S) = hyy (E)hay (5)]&;‘ (3.8.41)
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N, (&)= [(hll(‘f)hZS &)- hzl(f)hn(g)]gy + [(h13(§)h31 (&)= My (E)hy, (é:)]gZi +

[(hz1(§)h33 (&)= hsy (E)yy (5)]&;‘ (3.8.42)
Ny (&)= [(hn (&) (&) - hn(ff)hzz(f)]gy + [(hn(f)hn(f) = hy (&), (é:)]gzi +
[(hzz (W5, (8) — Iy (S, (5)]&[ (3.8.43)
with

h (&) =41 [5” j & = FuM, (3.8.44)

Si
hy, (&)= 32’ [l(ﬁb] gy =FyMs, (3.8.45)

Sl
h31(§)__] (fb] 8 =M;s; (3.8.46)

From Eqs.(3.8.29)~(3.8.30), we can obtain a system of dual integral equations

N Q{F_u; L [f_j 4@+ e, [5—] 4,181, (ﬁ}g@} a+
S| Sy S; ) s %

3
[ EMF, + MoFy + MoEDB (6 ==2(r), 0<r<a  (3.847)
[ o My, + Makis, + M5B U(EW,(Er)AE =0, a<r<b  (3.848)
Eq.(3.8.47) and Eq.(3.8.48) can be solved using the function y(«) defined by
B/(&)= j :y/(a)sin(ga)da (3.8.49)

where y(0)=0.

Using the following solutions of integrals:

J.msin(sz)e"”‘"dz =— il = J.wcos(sz)e"”zdz =— u 5 (3.8.50)
ST +u ST +u
J~ trl (§r) sinh(ét) I »J (m)sm(ut) sinh(st)Ko (rs) i<y
E T o 2y s ’
(3.8.51)
f WL (SO 4 Gnv(s0)K, (rs), 1< (3.8.52)
0 s +u
2 .
J‘Olw du =—s-sinh(s))K,(rs), t<r (3.8.53)
s*+u
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2 .
| “—‘MM du = s -sinh(st)K, (rs), t<r (3.8.54)
g §°+u
As well as the solution of integral equation
[ SO _4i—g(x), 0<a<l, a<x<b (3.8.55)
0 (x"=17)"
which is given by
2sinna d ¢+ ug(u)
= — du, a<t<b 3.8.56
AL b dtj.ﬂ(tz—uz)'_“ ! ( )
We can obtain a Fredholm integral equation of the second kind in the following
form:
a re(r
via)+ [ w(PL(a.Bp = jo ©_g (3.8.57)
N
where
4 &k [ EB | | P
L(a, p)= - N-;(é’)smh[— dg
nzmu}z:‘sj-[“ A(é) sj ; S; s s;
(3.8.58)

(2) In the second case we assume that the piezoelectric cylindrical surface
is traction-free. The conditions (3.8.29)~(3.8.34) remain the same, but the

boundary condition (3.8.35) is replaced by
oc,(b,z)=0, o_(bz)=0, DI(b,z)=0, z>0 (3.8.59)

Using a procedure similar to that in the case (1), we have

4(8) = A(é) Z[Nn () 1:() + Bi(&) () + W, (6) £5,(S)] (3.8.60)

4,(8) = —Z[Nz, i+ P 1)+ WD) /(O] (3.8.61)

NGy
4O =35 SN OO+ AOLOKOLO] (86
in which
f©=2], %f;?b)dm f;.-(f){jj%dn (3.8.63)
NE RESNES (NG RE
[RERNE) (NCYSNEeS (3864

RA(&) =é["'23(§)"’32(§)—hzz(f)hss(‘f)]gsx (3.8.65)
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W:(&)= 6g[ hys (Vs (8) = hoy (s (5)] 84

N, (&)= [hss(g)_hm(‘f)][}%l(f)gzz _hZI(é:)gBl]-i-

[h51 &) - h41(§)][h23 (8)g5 — Iy (é:)gZi]

P, (&)= é[hzl(f)hm (&) —hyy (g)hn(f)]gsl'

Wy (&) = é[hﬂ(f)hgs (&)~ hy (O ()] 24

N3i(ég) = [h5](§)—h41(§)][%2(§)g2,- _hzz(g)gy]"'

[hsz(ég) —hy, (ég)][hzl(ég)gy - }%1(5)g2i]

a,-@:é[hzz (EVhyy(E)— oy (Vs ()] 2,

W, (&)= é[zz(f)hn@) h21(§)h32(§)]g4,

A(S) :{[—h53(§) + h43(65)]}%2(§) + [h52(§) - h42(§)]}%3(§)} hy (&) +
{53 (&) = iy ()] () + [ s (£) + hyy ()] g (E)] Py () +
{51 (E) = hyy (D)) iy () + [~hsy (E) + By (6)] sy (E)] oy (€)

with
h(€) = 4'1[51’) g, = FyM,
oy (&) = 3; 11( j = FuM,s,
(&=, (5—]

hy (&)= ul 2612 2 2(%} 84 :%Mﬂi

z z

Sl[ [51)] &si F‘SlMLSL
R

i

hsl &)=

l

(3.8.66)

(3.8.67)

(3.8.68)

(3.8.69)

(3.8.70)

(3.8.71)

(3.8.72)

(3.8.73)

(3.8.74)

(3.8.75)

(3.8.76)

(3.8.77)

(3.8.78)

In the above equations, B,(;7) and f,,(&) are the same to those in the case (1).

Therefore, the corresponding Fredholm integral equation for the case (2)

can be obtained and has exactly the same form as Eq.(3.8.57) except that the

kernel L(a,f) is replaced by
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7
OA@) []Zh( ]
{N,«,. K, [@]—5&- ©K, (@} WK, {f” ﬂ & (3.8.79)
' s, ) s s

7

1/

La, p) =

i i l

The generalized stress intensity factor can thus be expressed in terms of (&)

as [57]

K? =K, = lim 2n(r —a)o ,(r,0) = Emol//(a) (3.8.80)
r—at a

b= lim 1/27c(r—a)DZ(r,O):\/Emll//(a) (3.8.81)
roa’ a

K° = lim \27(r —a)e, (r,0) = .| =m,p (@) (3.8.82)
roat a

E = lim \2n(— @)E.(r,0) = .| ~myy (a) (3.8.83)
roat a

in which

my =—(M\F, + M,F\, + M F\;) (3.8.84)

m, =—(FyM, + Fp,M, + F,,M,) (3.8.85)

my =—(ky "M, + kypS{ My + ks M) (3.8.86)

my =—(kyys{ M| +kposiMy +kpus3M ) (3.8.87)

and K°,K” Kfand K% are the stress intensity factor, electric displacement
intensity factor, strain intensity factor and clectric field intensity factor, respec-

tively.

2. Coated piezoelectric fibre with a penny-shaped crack

To prevent piczoelectric cylinders such as that considered above from
mechanical failure and to increase the bonding strength of the interface between
the fibre and matrix during service, these cylinders are often coated with an
elastic layer [55,58]. It is therefore desirable to understand effect of the coating
layer on the fracture behavior of piezoelectric fibre composites. To this end,
consider a piezoelectric fibre with a finite elastic coating and containing a cen-
tered penny-shaped crack of radius a under axisymmetric electromechanical
loading (Fig. 3.7). The fibre is assumed to be a transversely isotropic piezoe-

lectric material with the poling direction parallel to the z-axis, and the elastic
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coating is also a transversely isotropic material. They are subjected to the
far-field of a normal strain, &, = £(r) and a normal electric loading, E. =E(r).

The boundary conditions of this problem are [55]

c_(r,00=0, 0<r<a (3.8.88)
u,(r,00=0, a<r<b (3.8.89)
&0), E)

Piezoelectric fibre
Elastic coating
E—

A
o
=

-

&(r), E(r)

Fig.3.7 Piezoelectric fibre with a finite elastic coating and containing a penny-shaped crack

under mechanical and electrical loading

#(r,00=0, a<r<b (3.8.90)
o (0)=0, 0<r<b (3.8.91)
D.(r,0')=D.(r,07), 0<r<a (3.8.92)
E (r,0")=E (r,0"'), 0<r<a (3.8.93)
D,(b,2)=0, 0<z<oo (3.8.94)

The continuity and loading conditions of this problem are defined by:
(1) The continuity conditions for elastic displacements and tractions at the
interface between the fibre and elastic coating are
u (b,z)=ul(b,z), 0<z<oo, u (b,z)=u;(b,z), 0<z<oo (3.8.95)
o,(b,z)=0,(b,z), 0<z<oo, o.(bz)=0.(bz), 0<z<ow
(3.8.96)
(2) Loading conditions at infinity are
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£,(r,0)=2(r), E.(r,o)=E(r), &(ro)=(r) (3.8.97)
(3) Loading conditions on the outer surface of the coating are
u(d,zy=0, o0.(d,z)=0, 0<z<oo (3.8.98)
The expressions for electric and elastic fields in the cracked fibre are given
by Egs.(3.8.19)~(3.8.26). The elastic displacement field in the coating layer can

be obtained by considering the following potential functions:

ul =y ki —— u“—ia@g (3.8.99)
e T T S o

The potential functions for the elastic coating layer can then be written as:

D (r,z) = j {c &)1, {§FJ+D(§)K [f Hcos(f;z)df (3.8.100)

7

With Eq (3.8.100), elastic displacements and stresses in the elastic coating can

be given in the form

ui(nz) ==y k[ {C,- G [‘f—j +D,()K, (5—

i

sin(éz)dé+a(r)z

L 1

(3.8.101)
uf(r,z)=2%fo {c (&), {CEFJ D.(5)K, {frj cos(E2)dE  (3.8.102)

i=l ;i

i i

(4

oL(ra)=-3 | 09{6@1 (5 }D@)K {5 Hcos(fz)d§+

[4
S[

1 {

5ot e

i=1 9 i

{

(3.8.103)
a;;<r,z>=—if§ N g{c &)1, Frj D§K, {‘5 Hsm(&)dé (3.8.104)
in which
R meihist —cty, B mciu(vk)st,  Fo=cihes? -Gt
(3.8.105)

“ EX]

where the superscript “c” refers to the coating.
Using the boundary conditions (3.8.88)~(3.8.96) and (3.8.98), the Fourier

inversion theorem and the Hankel inversion theorem, we obtain



3.8 Penny-shaped cracks 123

3

1(5)_@ [N + B [ (E) + W, () [1(§) + K, () 11:(D)]
i=1
(3.8.106)
Az(«f)—@Z[Nz,(f)fh(fﬂ%l(f)ﬁ,(f)JrWzl(‘f)ﬁ,(‘f)ﬁLYzl(f)fz;,(ff)]
(3.8.107)
A4(&)= A(é)z Ny ()18 + B [ (&) + Wo () 13, (§) + Y (D) 1, (D)]
(3.8.108)
3
Ci(&) =D [My 4, (E) + M 4 (E) ,,(8)]
7 (3.8.109)
Cz(éf)ZZ[MsiAf(f)JrMéi(f).fzi(f)]
2
D)= M, C(&), D)= ZMZ,C,@) (3.8.110)
i=1
where
N(&) =[H 3 (O H,(§) - H,($)H ()] (6 +
[hl3(§)H32(§)—le(f)HB(ﬁ)]hS[(f) (3.8.111)
Ny (&) =[H, (§)H (&) — Hy (H)H 5(9)] g, (E) +
[h11(‘f)H33(§)_H13(§)H31(§)]h5i(§) (3.8.112)
N3i(§):[H12(§)H31(§)_Hll(g)H32(§)]gli(§)+
[, H (€)= Hi(§)H ()]s, (6) (3.8.113)
Plf(f):[h13(§)H32(§)_hlz(g)Hm(ég)]Hzi(g)"‘
[, (O H 5(E) = by (O H 5 (§)| H i (8) (3.8.114)
Pz,'(éz):[}ﬁl(é:)Hm(é:)_}53(§)H31(§)]H2i(§)+
[73 (O H, (&) = Iy (O H 3 ()] H i (8) (3.8.115)
P(&) =My () H (&)~ hy () H (9] H, (&) +
[hll(ff)le(f)_hlz(g)Hn(f)]Hu(‘f) (3.8.116)
W (&) =[ I3 () H 5 (&) = by (EYH 5 (E)] g, (§) (3.8.117)
Wy (&) = [ () H 5 (§) = Iz () H,, (E)] g (&) (3.8.118)
W&y =y (O H, (E) = Iy (O H 5 ()] g, (£) (3.8.119)

(&) =[hs () H (&) = hy (O H 5 ()] hy (£ (3.8.120)
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fil (é:) -

nB (77)J
j = fu(&)="= j s
fo=2] %;'gff”)dn, =2 %
hl[(é)_ 4ll[i.b]> gll(g) 41 1(5)
hzi(§)=k1z]0[@J, 4—kc [ng
S; S;
hS klz i 1 _k K (éﬁbj
S;
hy; :ill [@j > 8y :L,,(g_?J
S; s S0\ S;

Iy =

YZz(é:) = [hn(ég)Hu(g) - h13(§)H11(§)]h9i(§)
Y, (8) =M (OH, (&)~ by (§)H 5 ()] 7y ()
A&) = (O[H(OH (8§~ H\, (O H ()] +

C1 %

hy; =

he; =

1

2

cll _C12 M.s

thi

o ([ H (OH(E) — Hy (HH ()] +

s ([ H L (OH;(§)— H (O H (8]
where f,($), h,;(5),g;(S),and H (&) are defined by

(nb)

hy; =

2

1

51[

i

S

311

2
i

1

{

2 2[
S;

FMs,, gy =

1 11

hy =Ms,, g

1

N

z

S

~io

(

N

7

§b} Esi

&b

i

b
; ja 8oi =

c
z

N

n
89 =

2

_ G G

¢

£
(S;')Z

S’- Si'
:(s»z (
CC _CC
\J, g7i — 11 2 12

SIK[

&b

SL

1

|

B (m)J, (nb)

&b

c

N

i

1

|

c

S

1

|

i
(s)
7

_2,2[

()

sb

<

S

1

,(17b) d

b

¢

S,

|

1

|

(3.8.121)
(3.8.122)

(3.8.123)

dy (3.8.124)

n (3.8.125)

(3.8.126)

(3.8.127)

(3.8.128)

(3.8.129)

(3.8.130)

(3.8.131)

(3.8.132)

(3.8.133)

(3.8.134)

(3.8.135)
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£, &b
by = FM,;, glli:%Kl o
(s7) s

i

1 &d 1 &d
gIZi:_CII (_,;Ja gl3i:_cK][ B J
s s s 5]

F (& E(ed
84 =ﬁl1 ( 5 Ja 8151 = (5;2)2 K, [?j

M, (&)= 8132(8)&14: () — 8152 (£)&12:(S)
L 812(£)8151(S) — &15,(£)&15:(£)
M, (&)= 8131(6)814:(8) — £151(£) €12 ($)

l 831(8)815,($) — £15,(£) €15, ()

G (&) = 82(8) + 851 (M, (£) + €5, (S)M (&)
G, (&) =210:(&) — g1 (M, ($) — g1, ()M 5, (§)
M (&)= Gy (E),(S) = G, (), (S)

l G, (£)G,,(8) -G, ()G,
G (9)hs(8)E + G, (9, (S)
Gzz(é)Gll(f)_ Glz(f)Gzl
Gzl(g)hzl' (5) — Gn(f)hmi (SZ)
G21(§)G12 (f)_Gll(f)Gzz
M (&)= G, (A, (8) + G, (DM (E)
l G,(8)G1,(8) — G,1(§)Gy,

1(8)=g4,(8)— g5 (E)M; (&) — g5, ($IM ()

M4i((§) =

MSi(g):

”i(ég):[g7i(§)_géi(ét)]ét+[g91(§)_g81(§)]§M1i(§)+

[g92(§)_g82(§)]§M2i(§)
H,,(§) =1,(EIM (&) + 1, (M 5,(5) — hy; ()
Hy (&) =t(5)M (5 +1,(5M (S

H3i(§):ri(g)M&'(é)+r2(§)MSi(‘§)_[hh'(g)_hm(g)]g

H, (&) =r{(EM (&) +1,(EIM ()

(3.8.136)

(3.8.137)

(3.8.138)

(3.8.139)

(3.8.140)

(3.8.141)
(3.8.142)

(3.8.143)

(3.8.144)

(3.8.145)

(3.8.146)

(3.8.147)

(3.8.148)
(3.8.149)
(3.8.150)
(3.8.151)
(3.8.152)

From Eqs.(3.8.88), (3.8.89) and (3.8.106)~(3.8.110), the following system of

dual integral equations can be deduced:

. ‘”S{F—‘;Io [ﬁjAl(mF—?lo [QJAZ@HF—?IO (‘5—
L s 85 S5

3

1 2

]Aa (5)} dg+

[, EMF +M,Fy + MF) Bi(£),(6r)ds ==2(r), 0<r<a

(3.8.153)
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I:(M1k1151 +Mykyys, + Mikyssy) B(6)J,(Er)dE=0, a<r<b
(3.8.154)
where M, are given in Eq.(3.8.38).

It is found that the above dual integral equations (3.8.153) and (3.8.154)

also yield the Fredholm integral equation (3.8.57), except that the kernel
L(a, p) is replaced by

Lia,p)=— e Z Sll.[o A(f)s h[iajzl:s—zsmh(iﬂj

7 i

{ N (9K, [5’)} LK, [5’)}

S (O, [‘f—bj £y (6K, (‘fl’ H aé (3.8.155)
) Si

i

1

3.8.3 Numerical assessment

To illustrate applications of the solutions presented above, consider the cracked
piezoelectric fibre composite as shown in Fig. 3.7. Material properties used in
the analysis are

(1) Piezoelectric fibre.

Elastic constants (10'° N/m”) :¢,, =16.8,¢,, =6.0 ,¢;; =163, ¢,, =2.71.

Piczoelectric constants (C/m’): e, =4.6, e, =—0.9 e, =7.1.

Dielectric permittivities (107 F/m) : d,, =36 ,d,, =34.

(2) Elastic coating.

Elastic constants (10'° N/m?): ¢,=0.83,¢,=0.28,¢,=0.03, c,; =8.68,

g =042

It can be seen from Eqs.(3.8.80)~(3.8.83) that determination of the stress
intensity factor requires the solution of the function w(&). The Fredholm inte-
gral equation of the second kind (3.8.57) can be solved numerically using a
Gaussian quadrature formula. In the calculation,b=40mm, &(r)=1.0x107,
and E(r)=10° V/m are assumed.

The variations in the normalized stress intensity factor with the ratio of
crack radius to fibre radius a/b under different thicknesses and elastic con-

stants of the coating are shown in Fig.3.8 and Fig.3.9. It can be seen from
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Fig.3.8 that the stress intensity factor decreases with increase of the ratio a/b .
It is also evident that the thickness of the elastic coating has an important effect
on the stress intensity factor, and greater thickness will lead to a higher decay
rate and a smaller value of the stress intensity factor. This means that a thicker

coating layer can reduce crack propagation.

0.75
0.74
0.73
0.72
0.71
0.70

K*12(alp)*-1/(10'N/m?)

0.69

o'ﬁs.l.l.l.f.l.i.l.l.

00 01 02 03 04 05 06 07 08 09
alb

Fig.3.8 Variation of the stress intensity factor with the ratio /b under different thicknesses

of the coating

The variation in the stress intensity factor with the ratio a/b under different
values of the elastic constant ¢33 of the coating layer is plotted in Fig.3.9. It can
be seen from the figure that the stress intensity factor may increase or decrease
with the ratio a/b depending on the value of ¢33 of the coating. When ¢33 of

0.76 i
g 075 R
Zz - B B
S 074 TSN
= .
T N
S 073 A
a | ¢13=8.68,d=0.06 "\
S 072F == €33=13.02,d=0.06
u | ——— ¢3;=21.7,d=0.06 N
071+ AN

W I P PR PR MNP R . W
00 01 02 03 04 05 06 07 08 09
alb
Fig.3.9 Variation of the stress intensity factor with the ratio a/b under different values of

the elastic constant c3; of the coating.
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the coating is greater than that of the piezoelectric fibre, the stress intensity
factor will increase with an increase in the a/b . Obviously, the decay rate of
the stress intensity depends strongly on the value of c¢;; when it is smaller

than that of piezoelectric fibre.

3.9 Piezoelectric fibre composites

In the last section of this chapter, formulations are presented in terms of a cy-
lindrical coordinate system. In this section, applications of the formulations to
problems of piezoelectric fibre composite push-out testing are discussed. We
start by presenting a theoretical model of the piezoelectric fibre push-out prob-
lem and use it to analyze elastic deformation and frictional sliding behaviour in
a single piezoelectric fibre push-out test. The theoretical model is also used as a
basis for establishing the debonding criterion for investigating the debonding
process of piezoelectric fibre in the push-out test. The discussion follows the
development in [59-61].

3.9.1 Theoretical model for piezoelectric fibre push-out

The physical problem to be studied is shown in Fig. 3.10, where a circular pie-
zoelectric fibre polarized in the axial direction with radius a is embedded in the
centre of a coaxial cylindrical matrix with radius b and total length L. The pol-
ing direction of the piezoelectric fibre is parallel to the axial direction. The load
o, is applied at z=0 and the matrix is fixed at z=L. In our analysis the
matrix is considered transversely isotropic. For simplicity, a cylindrical coordi-
nate system (r,d,z) is used.

Fig.3.10 A piezoelectric fibre/matrix cylinder model in the fibre push-out test

It should be mentioned that the theoretical model developed here is based
on the following two assumptions: (a) the axial stresses are independent of the
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radial distance in any cross-section of the composite; (b) the matrix shear strain

z

. . . = Ou, . o .
is approximately given by . :a—, where u, is matrix displacement in
Iz

the axial direction [62].

The general relation between strains and stresses is given by [59,61]
£, M fe S 0o,

5,2 _ Jo M Sis O O'Z (3.9.1)
&, Sy S S 0|0,
el Lo oo gl
for the transversely isotropic matrix and
5; Mo A0 O'_;' 0 g
g‘? = fi:z fl:' flé 0 JE o0 & {D:} (3.9.2)
& fo fa S 0 O, 0 gu | D
7/7 0 0 0 f5 T;'Z g&s 0
oy
E 0 0 0 “| Tx, O [D
) :_{ g15:| (7_,; +[ 11 :| ) (3.9.3)
E g & & 0 ]|o; 0 x5 D
Ty

for the piezoelectric fibre, where subscripts “f”” and “m” refer to fibre and ma-
trix, the superscripts stand for coordinate direction (r,6,z ), g; and Gj-

(i=r,0,z, and j=m, f) are strain and stress components, respectively. In

Eq.(3.9.2) and Eq.(3.9.3), D' and E’ are components of the electric dis-
placement (NV 'm™") and electric field (Vm™), g; and x; are piezoclectric

coefficients (VmI\TI) and dielectric constants (NVZ), and f. and f are

Z

components of elastic compliance [61].
The field equations of the piezoelectric fibre undergoing axially symmetric

deformations about the z-axis can be expressed as
do? otF 1f
I T A (3.9.4)
0z or r
dc" 977 o -of
e (3.9.5)
or 0z r

cD” D" oD*
+——+ =
or r 0z

0 (3.9.6)
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The equilibriums between the axial stress and the interfacial stress can be

expressed as

c,=0; +l0'; or dg;; = z—yr,. (2) (3.9.7)
T P
do; 2
—=——7 3.9.8
a1 (3.9.8)

in which y =4’ /(b* —a”) and 7,(z) is the interfacial shear stress.

The electric field, £, is defined by
E’ =—%, E* _ %% (3.9.9)
or 0z
To simplify the derivation of the theoretical model and without loss of

generality, the axial stresses o, and o, are assumed to be functions of z
only, and the electric potential which is caused by elastic deformation of the
fibre is also independent of » [61], i.e.,
o;=07(2), 0,=0,(2), ¢=¢@2) (3.9.10)
Using Eqgs.(3.9.3), (3.9.6), (3.9.9), and (3.9.10), the electric displacements in
the fibre can be expressed in terms of matrix stresses as
D* =dso;, D" =dsty (3.9.11)
in which d,5 (= ,,g,s) is the piezoelectric coefficient.

It is now necessary to find the expression of fibre stress in terms of some
derivable functions. In the push-out test, although the electro-mechanical cou-
pling effect in Eq.(3.9.2) and Eq.(3.9.3) is considered, the following assumption
is still acceptable [59,61]:

o} (2)=0)(2) =¢,(2) (3.9.12)
where ¢,(z) is the interfacial radial stress arising from Poisson contraction be-
tween the fibre and the matrix.

Interfacial shear stress in the frictional sliding interface is governed by
Coulomb’s friction law [59]. That is,

7,(2) =—u[q,—4,(2)] (3.9.13)
where g is the residual fibre clamping (compressive) stress in the radial direc-
tion caused by matrix shrinkage and differential thermal contraction of the con-
stituents upon cooling from the processing temperature, and g is the friction
coefficient.

The remaining task is to derive the differential equation for o} and radial
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stress ¢,(z) due to elastic deformation in composites with a perfectly bonded
interface or in the frictional sliding process after the interface is completely
debonded. The detailed derivations for these two processes are provided in the

following two subsections.

3.9.2 Stress transfer in the bonded interface

Stress transfer is of fundamental importance in determining the mechanical
properties of fibre-reforced composite materials [63]. At the first stage of the
push-out process, elastic stress usually transfers from an elastic matrix to an
clastic fibre through the bonded interface which predominates in an elastic ma-
trix/elastic fibre composite, and it depends largely on the micromechanical
characteristics of the fibre/matrix interface. In the interface in piezoelectric fi-
bre reinforced composites, stress transfer is affected by the piezoelectric coeffi-
cient in addition to the micromechanical properties. To investigate the effect of
the piezoelectric coefficient on the elastic stress transfer, we consider the inner
and outer boundary conditions of the matrix
o) (a,z)=q,(z), 7, (a,2)=7,(2), o,(b,z2)=0, 7,(b,z)=0 (3.9.14)
Then from Eqgs.(3.9.4),(3.9.8) and (3.9.14), we obtain
77(r,z) :@q (z) (3.9.15)

Following the procedure given in [62], we have

ol (r,z)= ﬁ ‘Zi {277,52 [m(r /bY+y(b* /1r* —=1)In(b /a)] +

7q. () [P =D+, (B° —r*)1-a’ /7 )} (3.9.16)

dr,
O (r,2) = —yq ()1 + 72 /b )+ L 20
0, (r,2)==yq,(z)(1+7r"/b%) 17 &

[, +r7)(A+d® /) +4b" +
2n,b° [m(r /b)Y —y(b* /7> +1)In(b /a)] +2n,(b% =17 )} (3.9.17)
Substituting Eq.(3.9.16 ) and Eq.(3.9.17) into Eq.(3.9.1) yields

r

=y (D fia = S0 17 = foy = foo |+ 0 +
r
—42 ‘;:f (20,0 (fy, + £ [InGr/B)— 7 In(b/ )] +

2nb*yIn(b/a)fiy — f;)0° 17 + [, (07 + 1)1+ a” /1) +
Sont, (B —rYA=a® [ r*)+ 4 £,,b° + 2,7, (b —rz)} (3.9.18)
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d dr,
%: 2.}‘-137'?;(2)"‘]330' +2f3_a{27?1b2[ln(r"’b) yln(b;’a)]+

m(b* =)+ 26" +n,(a” +b7)|
(3.9.19)
For a fully bonded interface, the continuity conditions of axial and radial de-

formation between fibre and matrix are given by

u,(a,z)=u}(a,z) (3.9.20)

u,(a,z)=u;z(a,z) (3.9.21)

From Egs.(3.9.19), (3.9.21) and (3.9.2), the radial stress of the fibre is obtained as
q:(2) = ;{ V1530 = (7 [ + f33 + 8xdli5)oy +

2(/i5+7/13)
2]‘]3 ¥ 45 [2q,b2(l+y)ln(afb)+7;,(b2—a )+ 2b% +1,(a® +52)]}

(3.9.22)
Then, combining Eqs.(3.9.2), (3.9.18), (3.9.20) and (3.9.22) yields the differen-
tial equation of o7 as

$o7@ _ ot ()= 4 3.9.23
7_ ]O'J-(Z)— 20-(: ( AL )
where 4, and 4, are two constants
A== Yt fis + &8s = Bi(r fis + fi3 + 833hs) (3.9.24)
%(CI _2Blfiscz)
Az = }/ﬁS - Bl/vj:’ﬁ (3‘925)
%(CI _231fi3C2)
with
B!=-fr2+ |’1_}’(ﬁ2_.rf;|)b2fa2+y(ﬁl+ ]2) (3.926)
2(fi3+7 /)
C, =26 (f;, + £,,)1+ ) In(a/b)+ 2n,b°y In(b/ a)(f;, - f;,)b* | a* +
2fm, (@ +b*)+4f,b° +2f,n,(b* —a*) (3.9.27)
C, =2nb*(1+y)In(a/b)+n,(b* —a*)+2b* +n,(a’ +b*) (3.9.28)
_Jss
n=22 (3.9.29)
"
7, =lfi—| (3.9.30)

2 fis
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Using the stress boundary conditions
o;(0)=0,, o;(L)=0 (3.931)

the distribution of the axial stress in the piezoelectric fibre is given by
o7 (2) = K, sinh(;/4,z) + K, cosh(y/4,z) -%aﬂ (3.9.32)
1

where K, and K, are defined by

4 _ [1 + ’j?-]cosh(ﬂl)

A
K= o, (3.9.33
‘ sinh(\/4, L) )
K, = [1 + i)o-“ (3.9.34)
1
In addition, using Eqs.(3.9.4), (3.9.5) and (3.9.12), ¢;(z) can be expressed as
i d’c}
4,()=No, ~Nooj + N~ (3.9.35)
where N, (i=1,2,3) are given by
N = :”’fss , N,= 18 % 'ffs + 8335 , N, __1Gh (3.9.36)
2(f3+7/s) 205 +753) 4

From Egs.(3.9.3), (3.9.11), (3.9.32) and (3.9.35), the electric field E~ can
be calculated by

. d .
E*(2)=-2g;4;(2)+ {i - gssJJ}(z) (3.9.37)
K33

3.9.3 Frictional sliding

Once the interface debonds completely, the frictional sliding of the fibre out of
the surrounding matrix will begin, which is the last stage of the push-out proc-
ess. To better characterize this stage, theoretical analysis was conducted with
the micromechanical model shown in Fig.3.11.

5 5
i = N
I L 15 2b

Fig.3.11 A fibre-matrix cylinder model for frictional sliding in the push-out test
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For the sake of simplicity, we assume a small elastic deformation and a
large displacement at the fibre-loaded end during sliding. Therefore, the elastic
deformation of the fibre can be neglected, and the fibre axial displacement &
approximately equals the fibre sliding distance s, thatis, o = s.

Similar to the mathematical operation for Eq.(3.9.23), we have from the

continuity condition of radial displacement Eq.(3.9.20)
rhs o, - vSia+ S+ 8ds o +LQ%
D, D, * 4da D, dz

Subsitituting Eq.(3.9.38) into Eq.(3.9.13) gives the governing equation for o
d’oi(z doi(z
d;( ) o d,z (2)
where E; (i=1,2,3) are given by

(3.9.38)

q‘.(z):

+E,0%(2) = E, (3.9.39)

E =— 4aD, , K= 8(rfis + fis + 831415) , E, :g(y_fl-‘o-“ _%J
uy G rG G D
(3.9.40)
with
D= fiy + [y =7 U = f)B' )@ + 7 (fiy + ) (3.941)
Using the stress boundary conditions
o;(s)=0,, o;(L)=0 (3.9.42)
Eq (3.9 39) is solved and the solution is obtained
o7 (2)= K,e™ + K™ + % (3.9.43)

2
where s is the fibre sliding distance and K, K, 4,, 4, are given by

Ky =Em;+no,, K,=Em,+no, (3.9.44)
/1.=%Eu+% (_512_452, %=%E.—%~/Ef-4fz (3.9.45)

In the process, the interfacial shear stress is governed by Coulomb’s fric-
tional law given in Eq.(3.9.13). Noting that fibre and matrix maintain contact in

the radial direction, we have
uy(a,z) =u, (a,z) (3.9.46)

Then, the radial stress can be expressed as
2 =z
d'o;
d22

4(z)=M, -M,o, + M, (3.9.47)
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where M, (i=1,2,3) are given by

M, = rhs , M,= Yfiu + S+ 8ads , M= G (3.9.48)

D, D, 8D,
Using Eqs.(3.9.3), (3.9.11), (3.9.43) and (3.9.47), the electric field can be
obtained as

E*(2)= —223.4;(2){&—333}6}(2) (3.9.49)
33
Noting that the sum of the radial stress of the fibre should be negative, and
the fibre and matrix can contact each other during the fibre sliding process, the
radial stress must satisfy the expression
Gy —q;(2)<0 (3.9.50)
According to the distribution of the fibre stress fields in the push-out test,
the axial stress reaches its maximum value at the fibre-loaded end z=s5(5>0,
and s is defined in Fig. 3.7), while the interfacial shear stress reaches its minimum
value at the same location. Then Eq.(3.9.50) yields
G, —q;(s)=0 (3.9.51)
Therefore the relationship between the applied stress o,and the axial dis-

placement & at the fibre-loaded end can be given as
qo(1=m 2 '™ —m,J,e™")

g =
B - -
+ d A A C 2 ds ins
Ji3 + 8345 +}’f|3 (m3ﬁ126 s +m4/122€ .2.¢)+7 1 (n,/,2e™ +n4/12261“")
D, D, 8D,
(3.9.52)
where ms, ma, n3, and ny are defined as
eizL _ e/‘.zs e).|.\' _ eijL (3 9 53)
m, = - - m, = 9.
3 2L dE ? 4 d G 3 )
E2 (eA|L+)._§' _ e)|$+42£) E2 (e)lL-l-)g\ _ el]a-!-;_l.)
AsL AL
e e
= n=—m——— 3.9.54
3 e4|.f.+),3.s- _e,l|,\-+42l 4 4 eA,L + Ay _e,l|.s+43L ( )

3.9.4 Partially debonding model

Consider again the physical set-up shown in Fig.3.10, but now an interfacial
debonding crack of length / is situated on the interface between piezoelectric
fibre and matrix (see Fig.3.12).
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V

Fig.3.12 Piezoelectric fibre push-out model under electrical and mechanical loading

1. Mechanical loading

Using the mechanical boundary conditions (3.9.31) and a procedure
similar to that in [64], the stress fields in the debonded region (0<z</) are
obtained as
E,(fis+&yds)o; +v,0,

WO Ut f)+1+ 27+, )
o.(z)= yw[c)" + 0'“][1 —exp(—4z)] (3.9.56)
oi(z)=0,-0|0" +o, |[1-exp(-12)] (3.9.57)
7,(z)= ﬂIIT‘:D(O"‘ +0,)exp(=Az) (3.9.58)

where
K= E::r(‘f;3 +g3[d|5)—ypm (39.59)
Em(f[] +.ﬁ2)+ 1 +2;V +‘Vm

Em(fla + gs1d|5)

- (3.9.60)
Em(ﬁ_’» + g}ldls) - }/ym
4= 225, (3.9.61)
a
o' =-Jo (3.9.62)
WK

The solutions of the stress fields in the bonded region (/<z<L) are
given by

(‘—j?--o'a +O',Jsinh \/AT(L -2z) —%3- o, sinh \/AT(J -z) )
l -—

sinh\[4, (L~1) 4
(3.9.63)

o5 ()=
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[%O’u +0",Jsinh \/A_I(L—z) —%O}, sinh \/ATU—Z)
1 1

o,(z)= y(l+é-}:ra -y

4 sinh /4, (L—1)

(3.9.64)
4, 4,
Aa ?o'ﬂ +0, cosh\/A_l(L —z)—;oa cosh \/AT(!—z)
(2)= ! ' 3.9.65
A 2sinh /4, (L-1) ; )
where
oi()=0,=0,-0[c" +0,|[I-exp(-2)] (3.9.66)
A] _ 2[}/ & Em (f-33 + gSSdIS) - ZK(}’V": . Emf;3 )] (39.6?)
(1+v,)[ 276> In(b/ a)-a’ |

4, = 27207~ Enfi )@ Dx] (3.9.68)

(1+y )[2;/3;2 1n(bfa)—a2]

m

The electrical field E. in both the debonded and bonded regions is given as

E. =-2g,k(w-1)o, + [ﬁ ~ &y — 2g31xJo~;’- (3.9.69)
K.

33

2. Electrical and mechanical loading

The solutions presented above apply for problems with mechanical loading
only. To obtain solutions due to electrical and mechanical loading, we rewrite the
constitutive equations (3.9.2) and (3.9.3) in the following form [56,60]:

E}" Ju fo Sz O ] O'_; 0 dw_
gj?' _ f{z Ju S 0 0'_? : 0 d; |:E,,] (3.9.70)
&f Jo S S 0| oy 0 dy|lE

27| 10 0 0 fiuller| [ds 0

z

D, 0 0 0 dsllo)| [x, O0]E
- an (3.9.71)
D, dy dy dy; 0 ||o; 0 &y E.

Considering Eqs.(3.9.6), (3.9.9), (3.9.10), (3.9.12), (3.9.70) and (3.9.71),
we can deduce that the electric potential can be obtained and written in the
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form
1 ¢ .
P2 =— [ [2d14,(2) + (dyy = dis)o5 () iz + Gz +C, - (3.9.72)
33
where
Vo1 .
=Tl [ [2dua,z)+(dy —di)oj () b=, C,=V  (3.9.73)

Electrical boundary conditions at the ends of the piezoelectric fibre are

given as
pO)=V, @(L)y=0 (3.9.74)
where mechanical boundary conditions are given by Eq. (3.9.31).

The solutions for stress distribution in the constituents are obtained in the
bonded region and the debonded region, and are exactly the same as those
given in Eqgs. (3.9.56)~(3.9.58) and (3.9.63)~(3.9.65), except that certain
variables and parameters are replaced as follows:

E, [fl3 —d,;(ds; _dls)/KB]G;(Z) +v,0,(2)- E,d;C,

E, (i + /i _2d132/K33)+1+27+Vm
o= E, [f13 _.d13(d332_ dls)/K33]_7Vm (3.9.76)
E, (fiy+/fi,=2d;y k) + 142y +v,

Em [fIS B d13(d33 - d15)/K33]

q,(z)=— (3.9.75)

_ (3.9.77)
E, [.f13 —dyy(ds; — d15)/’<33] ~ n
g = Em‘f”"‘ (3.9.78)
E, (fu+/fo—2dy k) +1+2y +v,

ot =G 4" (3.9.79)

Ko

2uk
4= ZHK (3.9.80)

a

{7+E [f33 13(ds; _dls)/K33] —-2x(yv,, —E, fi5 + E,d\3d3; /K33)}
(1+,)[ 276> In(b /@)~ a” |

(3.9.81)
2{[7/ + 2(7/ym - Emﬂ3 + Emd13d33 /K33)(a) - I)K] +

o 2|:]/)Jm—E (f _d13d33/7{33):|q>k/0 +Emd3301/0'a} (3.9.82)
2 (1+vy )[2yb21n(b/a) a ] -

o

The electrical field £, in both the debonded and bonded regions is given as
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1 .
E = __|:2d]3Q:'(z) +(dy; —dy5)o; (Z)J -G (3.9.83)

33

3.9.5 Interfacial debonding criterion

In piezoelectric fibre composites (PFCs), unlike non-piezoelectric fibre
composites, there are electromechanical couplings caused by piezoelectric or
inverse piezoelectric effects. Therefore, the existing debonding criterion based
on non-piezoelectric fibre composites is not applicable to PFCs. To incorporate
the piezoelectric effect in the debonding criterion we consider a cracked
piezoelectric elastic body of volume ' in which traction P, frictional stress ¢
and surface electrical charge @ are applied. Sp, S; and S,, are the corresponding
surfaces respectively, as shown in Fig.3.13. For the sake of simplicity, the
matrix is assumed to be a piezoelectric material whose piezoelectric
coefficients and dielectric constants equal zero. In our analysis, the debonding
region is taken to be a crack (see Fig.3.13).

Based on the principle of energy balance, the variation of the energy in the
piezoelectric system for crack growth dA4 along the friction surface under
electromechanical loading is

d@=-G,d4-dW, (3.9.84)

where G, is the fracture energy, Wy is the work done by friction stress during
crack growth

Fig.3.13 A piezoelectric elastic body with a frictional crack under electromechanical

loading
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W, = jST (1 +1,)vdS (3.9.85)

and @ is the generalized mechanical and electrical energy stored inside the

piezoelectric body

1
Q:EJ-Q(8+50):(G+GO)dQ—

%L}(D +Dy): (E + E,)dQ _.[s,, PudS + jsw ogdS  (3.9.86)

in which v is the relative slip of crack surfaces, and ¢, is the tangential
component of pre-stress (or initial stress) on the crack surfaces. s,, D, are
self-equilibrium stress and generalized stress states, respectively, and
s+s,,D+ D, balances the applied stress and generalized stress.

Using the basic theory of piezoelectricity [Eqs.(3.9.1)~(3.9.9)], one can
easily prove the corresponding reciprocal principle of work and the principle of
virtual work for piezoelectric material

[ thiar | &¢*dr+| puide=| fuldr-| o*¢'dr+[ blulde

(3.9.87)
| ol + [ bouae-| |, OpdL + [ 058402 =] (0,05, ~DOE )02

(3.9.88)
Using the two principles (3.9.87) and (3.9.88), it can be proved that the

energy release rate against the incremental debonding length is equal to the
interfacial fracture toughness G, ., that is [60]

2naG, = ou,
ol

(3.9.89)

in which U, is the total elastic energy and electrical energy stored in the fibre
and matrix, which can be expressed in the following form:

U, =[ [ (o565 - DE Ywdrdz + || [ (o767 — DB Jordrdz +

H{(Gm) 2(” D (o )}nrdrder

LL jb{(igm) L2 ;— u,n) () :|71;rdrdz (3.9.90)

m

Then the following energy criterion is introduced:
G =2G, (3.9.91)

7 i

where G;. 1s a critical interface debonding energy release rate.
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In Equation (3.9.90), U; is a complex function of the material properties of
the constituents and geometric factors. Performing some mathematical
manipulations on Eq. (3.9.90) over the debonded and bonded regions for the

piezoelectric-epoxy composite system by utilizing a numerical quadrature
approach and then substituting the result into Eq.(3.9.89), we can obtain G, as

a second-order function of the applied stress o, for a fibre/matrix system with

given debonding length /.

3.9.6 Numerical examples

To illustrate applications of the formulations developed in this section,
numerical assessment is presented for a hypothetical piezoelectric fibre/epoxy
composite system. The material properties and geometrical characteristics of
the piezoelectric fibre, matrix and interface are [61]
5, =0.019 (GPa), s, =0.015(GPa)”, s, =-0.0057 (GPa)"
5, =—0.0045 (GPa)', s, =0.039(GPa)"', d,, =390x10"*mV"’
dy =—dg =—190x10™2 mV"', g, =24x10" VmN"'
gy =—11.6x107 VmN', e, =16.25x10° NV ?
E, =3GPa,y, 6 =04

The radii of fibre and matrix are: ¢=0.065mm , b=3mm , and

[=0.6mm, L=2mm . The residual fibre clamping stress in the radial

direction ¢, is assumed to be —0.01 GPa and £=0.8 [59].

Fig.3.14 shows the distribution of stresses and electric field as functions of
dimensionless axial distance z/L for a partially debonded piezoelectric
composite system subject to a constant external stress o, =1.5 GPa in the
fibre push-out test. In the calculation, the debonding length is assumed to be
{=0.6mm. For comparison and illustration of the effect of electromechanical
coupling on stress transfer behaviour, the corresponding distribution of stresses
for non-piezoelectric fibre composite (NPFC) is also plotted in Fig. 3.14. It is
shown that the curves for PFCs and NPFCs have similar shapes. When
subjected to applied stress of same value, the axial stress o} in PFC is smaller
that in NPFC (Fig.3.14a). It can also be seen from Fig.3.14a and Fig. 3.14d that
both axial and radial stresses in the fibre gradually decrease as z/L increases.

Fig. 3.14c demonstrates that there is a greater radial stress in PFC and it decays



142 Chapter 3 Thermo-electro-elastic problems

more rapidly than that in NPFC, which leads to a larger interface shear stress in
the debonded region of PFC in Fig.3.14b due to the Coulomb friction law
[Eq.(3.9.13)]. This phenomenon can be attributed to the piezoelectric effect in
piezoelectric fibre; greater applied stress is required in PFC to produce the
same axial stress as in non-piezoelectric fibre composites. The difference in the
stress fields between these two composite systems is controlled by piezoelectric
coefficients, which were investigated in our previous work [59] for fully
bonded composites. When the piezoelectric coefficients and dielectric constants
are set to be zero, piezoelectric fibre degenerates to non-piezoelectric fibre. Fig.

3.14d shows the variation of electrical field as a function of axial distance z/L.
The variation of £, with z/L is very similar to that of the fibre axial stress.

1.6 0.07
141" —e— Piezoelectric 0.06 [ —a— Piezoelectric
F —+— Non-piezoelectric L —— Non-piezoelectric
121 < 0.05F
- =5 -
A 10p Q 0.04}
9 0.8f o -
T sk = 0.03F
o 0.02 m:
02+ 0.01 i
1 1 1 1 L L 1 1 1
00503 04 06 08 1o *%%5 03 04 06 08 1.0
z/L z/L
(a) (b)
0.025 185
- —=— Piezoelectric 16F
0.020 —+— Non-piezoelectric 14F
4 E 12f
5 0.015 = 10k
8 < sf
“6-\0‘010 \l;l:‘ 6 :
2y L
0.005F 4r
- 2 -
0 1 0 [ L 1 1 1 1 1 1 1 I
00502 04 06 08 10 00 02 04 06 08 10
ziL z/L
(c) (d)

Fig.3.14 Plot of (a) fibre axial stress, (b) interface shear stress, (c) fibre radial stress,

(d) electric field for the piezoelectric fibre push-out under mechanical loading

Fig.3.15 shows the distribution of stresses and electric field as functions of
dimensionless axial distance z/L for a partially debonded piezoelectric
composite system subject to electrical loading and a constant external stress
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o, =1.5 GPa in the fibre push-out test. To study the effect of positive and
negative electric loading on stress transfer, electric potentials of 5000V,

0V and -5000V are applied on the end of a piezoelectric fibre (z=0).
Fig.3.15a shows that the fibre axial stress under negative electric potential
decays more rapidly than under positive electric potential. It can also be seen
from Fig.3.15¢ that negative electric potential leads to a larger radial stress in
piezoelectric fibre than does applied positive electric potential, causing greater
interface frictional shear stress accordingly in the debonded region in Fig.3.15b.
This is because when piezoelectric fibre is subjected to an electric potential
applied parallel to the polarization direction, expansion occurs in the same
direction and shrinkage occurs in the transverse direction [25]. For a positive
applied electric potential, the hoop stress developed is compressive, while for a
negative applied electric potential, the hoop stress developed is tensile. In
Fig.3.15d, the distribution of electric field in piezoelectric fibre is plotted via
a/L, and it depends strongly on the applied electric field.

1.6 0.018
. —+s000 v 0.016
L A v i
r 0.014F
L2r -*==5000 V - -
S osf £ 0.010F
b = 0.008f
506 \ 0.006
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1 1 1 1 1 1 1 1 1
00602 04 06 08 10 %507 04 06 085 10
2L 2L
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0.012 15
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0,004 Lok ey e e,
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Fig.3.15 Plot of (a) fibre axial stress, (b) interface shear stress, (c) fibre radial stress,

(d) electric field for the piezoelectric fibre push-out under electrical and mechanical loading



144

Chapter 3 Thermo-electro-elastic problems

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

(16]

[17]

[18]

Mindlin R D. Equations of high frequency vibrations of thermopiezoelectric crystal
plates.Int. J. Solids Struct., 1974, 10:625-637.

Nowacki W. Some general theorems of thermopiezoelectricity. J. Thermal Stresses, 1978,
1:171-182.

Dunn M L. Micromechanics of coupled electroelastic composites: effective thermal
expansion and pyroelectric coefficients. J. Appl. Phys., 1993, 73:5131-5140.

Benveniste Y. Exact results in the micromechanics of fibrous piezoelectric composites
exhibiting pyroelectricity. Proc. R. Soc. Lond., 1993, A441:59-81.

Ashida F, Tauchert T R, Noda N. Potential function method for piezothermoelastic
problems of solids of crystal class 6 mm in cylindrical coordinates. J. Thermal Stresses,
1994, 17:361-375.

Altay G A, Dokmeci M C. Fundamental variational equations of discontinuous
thermopiezoelectric fields. Int. J. Eng. Sci., 1996, 34:769-782.

Noda N, Kimura S. Deformation of a piezothermoelectric composite plate considering the
coupling effect. J. Thermal Stresses, 1998, 21:359-379.

Ashida F, Tauchert T R. Finite difference scheme for inverse transient piezothermoe-
lasticity problems, J. Thermal Stresses, 1998, 21:271-293.

Shang F L, Wang Z K, Li Z H. Thermal stress analysis of a three dimensional crack in a
thermopiezoelectric solid. Eng. Frac. Mech., 1996, 55:737-750.

Yu Shouwen, Qin Qinghua. Damage analysis of thermopiezoelectric properties: part
[ —crack tip singularities. Theore. Appl. Frac. Mech., 1996, 25:263-277.

Yu Shouwen, Qin Qinghua. Damage analysis of thermopiezoelectric properties: part Il
—effective crack model. Theore. Appl. Frac. Mech., 1996, 25:279-288.

Qin Qinghua. Using GSC theory for effective thermal expansion and pyroelectric
coefficient of cracked piezoelectric solids. Int. J. Frac., 1996, 82:R41-R46.

Qin Qinghua. Yu Shouwen. Effective moduli of thermopiezoelectric material with
microcavities, Int. J. Solids Struct., 1998, 35:5085-5095.

Qin Qinghua. Mai Y W, Yu Shouwen, Effective moduli for thermopiezoelectric
materials with microcracks. Int. J. Frac., 1998, 91:359-371.

Qin Qinghua. Mai Y W. Crack growth prediction of an inclined crack in a half-plane
thermopiezoelectric solid. Theore. Appl. Frac. Mech., 1997, 26:185-191.

Qin Qinghua. Mai Y W. Multiple cracks in thermoelectroelastic bimaterials. Theore
Appl. Frac. Mech., 1998, 29:141-150.

Qin Qinghua. Thermoelectroelastic Green’s function for a piezoelectric plate containing
an elliptic hole. Mech. Mater., 1998, 30:21-29.

Qin Qinghua, Mai Y W. Thermoelectroelastic Green’s function and its application for



References 145

bimaterial of piezoelectric materials. Arch. Appl. Mech., 1998, 68: 433-444,

[19] Qin Qinghua, Mai Y W. A closed crack tip model for interface crack in
thermo-piezoelectric materials. Int. J. Solids Struct., 1999, 36:2463-2479.

[20] Qin Qinghua. Green’s function and its application for piezoelectric plate with various
openings. Arch. Appl. Mech., 1999, 69:133-144.

[21] Qin Qinghua. Thermoelectroelastic analysis of cracks in piezoelectric half-plane by BEM.
Compu. Mech., 1999, 23:353-360.

[22] Qin Qinghua. Green’s function for thermopiezoelectric materials with holes of various
shapes. Arch. Appl. Mech., 1999, 69:406-418.

[23] Qin Qinghua. Thermoelectroelastic Green’s function for thermal load inside or on the
boundary of an elliptic inclusion. Mech. Mater., 1999, 31:611-626.

[24] Qin Qinghua. Thermopiezoelectric interaction of macro-and micro-cracks in piezoe-
lectric medium. Theore. Appl. Frac. Mech., 1999, 32:129-135.

[25] Tiersten H F. Linear piezoelectric plate vibrations. New York: Plenum Press, 1969.

[26] Parton V Z, Kudryavtsev B A. Electromagnetoelasticity, piezoelectrics and electrically
conductive solids. New York: Gordon and Breach Science Publishers, 1988.

[27] Mason W P. Piezoelectric crystals and their application to ultrasonics. New York: Van
Nostrand, 1950.

[28] Biot M A. Thermoelasticity and irreversible thermodynamics. J. Appl. Phys., 1956, 27:
240-253.

[29] Nye I F. Physical properties of crystals. Oxford: Oxford University Press, 1957.

[30] Lekhnitskii S G. Theory of elasticity of an anisotropic elastic body, San Francisco:
Holden-Day, 1963.

[31] Stroh A N. Dislocations and cracks in anisotropic elasticity. Phil. Mag., 1958, 3:625-646.

[32] Suo Z. Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. R. Soc.
Lond., 1990, A427:331-358.

[33] Barnett D M, Lothe J. Dislocations and line charges in anisotropic piezoelectric insulators.
Phys. Stat. Sol.(b), 1975, 67:105-111.

[34] Sosa H. Plane problems in piezoelectric media with defects, Int. J. Solids Struct., 1991,
28:491-505.

[35] Qin Qinghua. A new solution for thermopiezoelectric solid with an insulated elliptic hole.
Acta Mechanica Sinica, 1998, 14:157-170.

[36] Qin Qinghua. Mai Y W. A new thermoelectroelastic solution for piezoelectric materials
with various openings. Acta Mechanica, 1999, 138:97-111.

[37] Wang S S, Choi I. The interface crack between dissimilar anisotropic composite materials.
J. Appl. Mech., 1983, 50:169-178.

[38] Lothe J, Barnett D M. Integral formalism for surface waves in piezoelectric crystals:
existence considerations. J. Appl. Phys., 1976, 47:1799-1807.

[39] Chadwick P, Smith G D. Foundations of the theory of surface waves in anisotropic elastic
materials. Adv. Appl. Mech., 1977, 17:303-376.



146 Chapter 3 Thermo-electro-elastic problems

[40] Ting T C T. Some identities and structure of Ni in the Stroh formalism of anisotropic
elasticity. Q. Appl. Mathe., 1988, 46:109-120.

[41] Ting T C T. Explicit solution and invariance of the singularities at an interface crack in
anisotropic composites. Int. J. Solids Struct., 1986, 22:965-983.

[42] Qin Qinghua. Yu S W. Logarithmic singularity at crack tips in piezoelectric media.
Chinese Science Bulletin, 1996, 41:563-566.

[43] Ting T C T. Effects of change of reference coordinates on the stress analysis of
anisotropic elastic materials. Int. J. Solids Struct., 1982, 18:139-152.

[44] Dempsey J P, Sinclair G B. On the stress singularities in the plane elasticity of the
composite wedge. J. Elasticity, 1979, 9:373-391.

[45] Jirousek J, Leon N. A powerful finite element for plate bending. Comp. Meth. Appl.
Mech. Eng., 1977, 12: 77-96.

[46] Qin Qinghua. The Trefftz finite and boundary element method. Southampton: WIT Press,
2000.

[47] Qin Qinghua. Solving anti-plane problems of piezoelectric materials by the Trefftz finite
element approach. Compu. Mech., 2003, 31:461-468.

[48] Qin Qinghua. Variational formulations for TFEM of piezoelectricity. Int. J. Solids Struc.,
2003, 40:6335-6346.

[49] Treffiz E. Bin gegenstiick zum ritzschen verfahren. In: Proceedings 2™ Int. Congress of
Applied mechanics, Zurich, 1926, pp.131-137.

[50] Simpson H C. Spector S J. On the positive of the second variation of finite elasticity,
Arch. Rational Mech. Anal., 1987, 98:1-30.

[51] Zielinski A P, Zienkiewicz O C. Generalized finite element analysis with T-complete
boundary solution functions. Int. J. Numer. Meth. Eng., 1985, 21:509-528.

[52] Ding H I, Wang G Q, Chen W Q. A boundary integral formulation and 2D fundamental
solutions for piezoelectric media. Comput. Meth. Appl. Mech. Eng., 1998, 158:65-80.

[53] Suo Z, Kuo C M, Barnett D M, et al. Fracture mechanics for piezoelectric ceramics. J.
Mech. Phys. Solids, 1992, 40:739-765.

[54] Sneddon I N. Fourier transforms. McGraw-Hill Book Company, Inc., 1951.

[55] Qin Qinghua. Wang J S, Li X L. Effect of elastic coating on fracture behaviour of
piezoelectric fibre with a penny-shaped crack. Composites Structures, 2006, 75:465-471.

[56] Qin Qinghua. Fracture mechanics of piezoelectric materials. Southampton: WIT Press,
2001.

[57] Yang J H, Lee K Y. Penny shaped crack in a piezoelectric cylinder surrounded by an
elastic medium subjected to combined in-plane mechanical and electrical loads. Int. J.
Solids Struct., 2003, 40:573-590.

[58] Xiao Z M, Bai J. Numerical simulation on a coated piezoelectric sensor interacting with a
crack. Finite Elem. Anal. Des., 2002, 38: 691-706.

[59] Qin Qinghua, Wang J S, Kang Y L. A theoretical model for electroelastic analysis in
piezoelectric fibre push-out test. Adv. Appl. Mech., 2006, 75:527-540.



References 147

[60] Wang J S, Qin Qinghua. Debonding criterion for the piezoelectric fibre push-out test. Phil.
Mag. Letters, 2006, 86:123-136.

[61] LiuHY, Qin Qinghua, Mai Y W. Theoretical model of piezoelectric fibre pull-out. Int. J.
Solid Struct., 2003, 47:5511-5519.

[62] Zhang X, Liu HY, Mai Y W, et al. On steady-state fibre pull-out I: the stress field with an
elastic interfacial coating. Compo. Sci. Tech., 1999, 59:2179-2189.

[63] Jiang, X Y, Kong X G. Micro-mechanical characteristics of fibre/matrix interfaces in
composite materials. Compo. Sci. Tech., 1999, 59:635-642.

[64] Zhou L M, Mai Y W, Ye L. Analyses of fibre push-out test based on the fracture
mechanics approach. Compo. Eng., 1995, 5:1199-1219.



“This page left intentionally blank.”



Chapter 4 Thermo-magneto-electro-elastic
problems

4.1 Introduction

In the previous chapter we presented the linear theory of piezoelectricity and its
application to various engineering problems. Extension of the theory and the
methodology to thermo-magneto-electro-elastic problems is described in this
chapter. First, we present a brief review of the developments in this field. As
mentioned in [1], Suchtelen [2] appears to have been the first to report the
magnetoelectric coupling effect in piezoelectric-piezomagnetic composites. He
indicated that the magnetoelectric effect is a product property that results from
the interaction between different properties of the two phases in composites.
Later, Boomgaaed et al [3] further explored the magneto-electric effect of
BaTiO3-CoFe,0,4 composites. To investigate fundamental theories and solution
procedures, Lee [4], He [5], and Qing et al [6] constructed a variety of variational
principles for magneto-electro-elastic materials. Alshits et al [7] studied the
existence of surface waves in piezoelectric and piezomagnetic composites. Using
a perturbation method, Lee et al [8] investigated stress effects on the electroma-
gnetic resonance of circular dielectric disks. Li and Dunn [9] and Li [ 10] obtained
formulas for predicting the average magneto-electro-elastic field and effective
material properties of magneto-electro-elastic solids containing a multi-inclusion
or inhomogeneity using the micromechanics approach. The investigation of
general solution procedures should also be mentioned, it includes: eight sets of
constitutive equations [l]; analytical solutions for simply-supported and
multilayered magneto-electro-elastic plates [11, 12], for magneto-electro-elastic
plates with polygonal inclusions [13], and for functionally graded and layered

magneto-electro-elastic plates [14]; general solutions of three-dimensional
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magneto-electro-elastic solids based on the potential function approach [15, 16];
and hyperboloidal notch problems [17]. Recently, Liu et al [18] presented
closed-form expressions of elastic, electric and magnetic fields for a moving
dislocation in a magneto-clectro-clastic solid and found that the magneto-
electro-elastic ficld exhibits the singularity of » ' near the dislocation core.
Using the methods of Laplace and finite sine transformations, Ootao and
Tanigawa [19] obtained the transient solution for a simply supported and
multilayered magneto-electro-thermo-elastic strip due to unsteady and nonu-
niform heat supply in the width direction. Soh and Liu [20] presented an
analytical expression for the interfacial debonding problem of a piezoelectric-
piezomagnetic composite with a circular inclusion. In addition, it should be noted
that the application of fracture mechanics to magneto-electro-elastic problems
has been a fruitful subject, including but not limited to the work on interfacial
cracks [21], plane cracks under out-of-plane deformation [22], crack-tip fields
and energy release rate [23], collinear cracks [24], parallel cracks in a bimaterial
solid [25], constant moving cracka under anti-plane deformat