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P R E F A C E

Calculus books have become full of clutter, distracting margin notes, and unneeded fea-
tures. This calculus book clears out that clutter so that students can focus on the important 
ideas of calculus. Our goal was to create a clean, streamlined calculus book that is acces-
sible and readable for students while still upholding the standards required in science, 
mathematics, and engineering programs, and that is fl exible enough to accommodate dif-
ferent teaching and learning styles.

Linear Flow with Clean Margins
One thing that is distinctive about this calculus book is that it follows a linear writing style. 
Figures and equations fl ow with the text as part of a clear, structured exposition instead of 
being scattered about in the margins. We feel that this approach greatly increases the clar-
ity of the book and encourages focused reading.

Exposition Before Calculation
Another distinctive feature of this book is that in each section we have separated the expo-
sition and illustrative examples from the longer, more complicated calculational examples. 
Including these longer examples separately from the exposition increases fl exibility: 
Students who want to read and understand the development of the material can do so 
without being bogged down or distracted by large examples, while students who want to 
use the book as a reference for looking up examples that are similar to homework prob-
lems can also do that.

Examples to Learn From
Within the exposition of each section are short examples that quickly illustrate the concepts 
being developed. Following the exposition is a set of detailed, in-depth examples that explore 
both calculations and concepts. We took great pains to provide many steps and illustrations 
in each example in order to aid the student, including details about how to get started on a 
problem and choose an appropriate solution method. One of the elements of the book that we 
are most proud of is the “Checking the Answer” feature, which we have included after selected 
examples to encourage students to learn how to check their own answers.

Building Mathematics
We were very careful in this book to approach mathematics as a discipline that is devel-
oped logically, theorem by theorem. Whenever possible, theorems are followed by proofs 
that are written to be understood by students. We have included these proofs because 
they are part of the logical development of the material, but we have clearly labeled and 
indented each proof to indicate that it can be covered or skipped, according to instructor 
preference. Each exercise set contains an optional subsection of proofs, many of which are 
accessible even to beginning students. In addition, we have emphasized the interconnec-
tions among topics by providing “Thinking Back” and “Thinking Forward” exercises in 
each section and “Capstone” problems at the end of each chapter.

Consistency and Reliability
Another improvement in this book is that it has a consistent and predictable structure. For 
example, instructors can rely on every section concluding with a “Test Your Understanding” 

vii
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Prefaceviii

feature which includes fi ve questions that students can use to self-test and that instruc-
tors can choose to use as pre-class questions. The exercises are always consistently split 
into subsections of different types of problems: “Thinking Back,” “Concepts,” “Skills,” 
“Applications,” “Proofs,” and “Thinking Forward.” In addition, the “Concepts” subsec-
tion always begins with a summary exercise, eight true/false questions, and three example 
construction exercises. Instructors and students alike can rely on this consistent structure 
when assigning exercises and choosing a path of study.

Flexibility
We recognize that instructors use calculus books in many different ways and that the real 
direction of a calculus course comes from the instructor, not any book. The streamlined, 
consistent structure of this book makes it easy to use with a wide variety of courses and 
pedagogical styles. In particular, instructors will fi nd it easy to include or omit sections, 
proofs, examples, and exercises consistently according to their preferences and course re-
quirements. Students can focus on mathematical development or on examples and calcu-
lations as they need to throughout the course. Later, they can use the book as a reliable 
reference.

We think it will be immediately clear to anyone opening this book that what we have 
written is substantially different from the other calculus books on the market today while 
still following the standard topics taught in most modern science, mathematics, and engi-
neering calculus courses. Our hope is that faculty who use the book will fi nd it fl exible for 
different pedagogical approaches and that students will be able to read it on different levels 
as they learn to understand the beauty of calculus.

A Special Taalman/Kohn Option for Underprepared 
Calculus Students
Do some of your calculus students struggle with algebra and precalculus 
 material? The Taalman/Kohn Calculus series has a ready-made option for such 
students, called Calculus I with Integrated Precalculus. This option includes all 
the material in Chapters 0–6 of Taalman/Kohn Calculus, but in a different order 
and with supplementary precalculus and algebra material.

  Chapters 0–3 of Calculus I with Integrated Precalculus cover the same develop-
ment of differential calculus topics as Chapters 0–3 in Taalman/Kohn Calculus, 
but the more complicated calculational examples are deferred to later chapters.

  Chapters 4–6 of Calculus I with Integrated Precalculus revisit differential calculus 
through the lens of studying progressively more challenging types of functions. 
Any exercises or examples from Taalman/Kohn Calculus that were left out of 
Chapters 0–3 of Calculus I with Integrated Precalculus are included in Chap-
ters  4–6. The requisite background precalculus and algebra material is built 
from the ground up.

  Chapters 7–9 of Calculus I with Integrated Precalculus are identical to Chapters 4–6 
of Taalman/Kohn Calculus and cover all topics from integral calculus.

Students who learn Calculus I from Calculus I with Integrated Precalculus can 
 continue with Calculus II using Taalman/Kohn Calculus or any other calculus textbook. 
Students who have weak algebra and precalculus skills can succeed in STEM-level cal-
culus if given the right help along the way, and Calculus I with Integrated Precalculus is 
written specifi cally to  address the needs of those students.

For an examination copy of Calculus I with Integrated Precalculus, please contact 
your local W. H. Freeman & Company representative.

CALCULUS I

LAURA TAALMAN

with Integrated Precalculus
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Test Bank

Computerized (CD-ROM), ISBN: 1-4641-2547-3

Includes multiple-choice and short-answer test items.

Instructor’s Resource Manual

ISBN: 1-4641-2545-7

Provides suggested class time, key points, lecture material, discussion topics, class activi-
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Student Solutions Manual
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Multivariable ISBN: 1-4641-5019-2

Contains worked-out solutions to all odd-numbered exercises in the text.

Software Manuals

Maple™ and Mathematica® software manuals are available within CalcPortal. Printed ver-
sions of these manuals are available through custom publishing. They serve as basic intro-
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Book Companion Web Site at www.whfreeman.com/tkcalculus

For students, this site serves as a FREE 24–7 electronic study guide, and it includes such 
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Online Homework Options
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WebAssign Premium integrates the book’s exercises into the world’s most popular and 
trusted online homework system, making it easy to assign algorithmically generated 
homework and quizzes. Algorithmic exercises offer the instructor optional algorithmic 
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solutions. WebAssign Premium also offers access to resources, including the new Dynamic 
Figures, CalcClips whiteboard videos, tutorials, and “Show My Work” feature. In addition, 
WebAssign Premium is available with a fully customizable e-Book option that includes 
links to interactive applets and projects.

 www.yourcalcportal.com

CalcPortal combines a fully customizable e-Book, exceptional student and instructor re-
sources, and a comprehensive online homework assignment center. Included are algo-
rithmically generated exercises, as well as Precalculus diagnostic quizzes, Dynamic Figures, 
interactive applets, CalcClips whiteboard videos, student solutions, online quizzes, Mathe-
matica and Maple manuals, and homework management tools, all in one affordable, easy-
to-use, and fully customizable learning space.

  webwork.maa.org

W. H. Freeman offers approximately 2,500 algorithmically generated questions (with full so-
lutions) through this free, open-source online homework system at the University of Roch-
ester. Adopters also have access to a shared national library test bank with thousands of 
additional questions, including 1,500 problem sets matched to the book’s table of contents.

Additional Media

 

This easy-to-use Web-based version of the Instructor’s Solutions Manual allows instruc-
tors to generate a solution fi le for any set of homework exercises. Solutions can be down-
loaded in PDF format for convenient printing and posting.

Interactive e-Book at ebooks.bfwpub.com/tkcalculus

The Interactive e-Book integrates a complete and customizable online version of the text 
with its media resources. Students can quickly search the text, and they can personal-
ize the e-Book just as they would the print version, with highlighting, bookmarking, and 
note-taking features. Instructors can add, hide, and reorder content, integrate their own 
material, and highlight key text.

Course Management Systems

W. H. Freeman and Company provides courses for Blackboard, WebCT (Campus Edition 
and Vista), Angel, Desire2Learn, Moodle, and Sakai course management systems. These 
are completely integrated solutions that you can easily customize and adapt to meet your 
teaching goals and course objectives. Visit www.macmillanhighered.com/catalog/other/
coursepack for more information.

 

This two-way radio frequency classroom response system was developed by educators 
for educators. University of Illinois physicists Tim Stelzer, Gary Gladding, Mats Selen, and 
Benny Brown created the i-clicker system after using competing classroom responses and 
discovering that they were neither appropriate for the classroom nor friendly to the stu-
dent. Each step of i-clicker’s development has been informed by teaching and learning. 
i-clicker is superior to other systems from both a pedagogical and a technical standpoint. 
To learn more about packaging i-clicker with this textbook, contact your local sales repre-
sentative or visit www.iclicker.com.
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DEFINITION 3.9 Formally Defining Concavity

Suppose f and f ′ are both differentiable on an interval I.

(a) f is concave up on I if f ′ is increasing on I.

(b) f is concave down on I if f ′ is decreasing on I.

How does this formal definition of concavity correspond with our intuitive notion of con-
cavity? Consider the functions graphed next. On each graph four slopes are illustrated and
estimated. Notice that when f is concave up, its slopes increase from left to right, and when
f is concave down, its slopes decrease from left to right.

Slopes increase when f is concave up Slopes decrease when f is concave down

y

�3

�1 1

4

x

y

3

1 �1

�4

x

F E A T U R E S

3.3 THE SECOND DERIVATIVE AND CURVE SKETCHING

� Using first and second derivatives to define and detect concavity

� The behavior of the first and second derivatives at inflection points

� Using the second-derivative test to determine whether critical points are maxima, minima, or neither

THEOREM 3.4 Rolle’s Theorem

If f is continuous on [a, b] and differentiable on (a, b), and if f (a) = f (b) = 0, then there
exists at least one value c ∈ (a, b) for which f ′(c) = 0.

Actually, Rolle’s Theorem also holds in the more general case where f (a) and f (b) are equal
to each other (not necessarily both zero). For example, Rolle’s Theorem is also true if f (a) =
f (b) = 5, or if f (a) = f (b) = −3, and so on, because vertically shifting a function by adding
a constant term does not change its derivative. However, the classic way to state Rolle’s
Theorem is with f (a) and f (b) both equal to zero.

Proof. Rolle’s Theorem is an immediate consequence of the Extreme Value Theorem from

Section 1.4 and the fact that every extremum is a critical point. Suppose f is continuous on the

closed interval [a, b] and differentiable on the open interval (a, b), with f (a) = f (b) = 0. By the Ex-

treme Value Theorem, we know that f attains both a maximum and a minimum value on [a, b]. If

one of these extreme values occurs at a point x = c in the interior (a, b) of the interval, then x = c
is a local extremum of f . By the previous theorem, this means that x = c is a critical point of f .
Since f is assumed to be differentiable at x = c, it follows that f ′(c) = 0 and we are done.

It remains to consider the special case where all of the maximum and minimum values of

f on [a, b] occur at the endpoints of the interval (i.e., at x = a or at x = b). In this case, since

f (a) = f (b) = 0, the maximum and minimum values of f (x) must both equal zero. For all x in [a, b]

we would have 0 ≤ f (x) ≤ 0, which means that f would have to be the constant function f (x) = 0

on [a, b]. Since the derivative of a constant function is always zero, in this special case we have

f ′(x) = 0 for all values of c in (a, b), and we are done.

xi

Each section opens with a list of the three main section topics. The list provides a focus 
and highlights key concepts.

Defi nitions are clearly boxed, numbered, and labeled for easy reference. To reinforce their 
importance and meaning, defi nitions are followed by brief, often illustrated, examples.

Theorems are developed intuitively before they are stated formally, and simple examples 
inform the discussion. Proofs follow most theorems, although they are optional, given 
instructor preference.
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EXAMPLE 4 Using critical points and Rolle’s Theorem to find local extrema

The function f (x) = x (x− 1)(x− 3) is a cubic polynomial with one local maximum and one
local minimum. Use Rolle’s Theorem to identify intervals on which these extrema exist.
Then use derivatives to find the exact locations of these extrema.

SOLUTION

The roots of f (x) = x (x − 1)(x − 3) are x = 0, x = 1, and x = 3. Since f is a polynomial,
it is continuous and differentiable everywhere. Therefore Rolle’s Theorem applies on the
intervals [0, 1] and [1, 3], and it tells us that at least one critical point must exist inside each
of these intervals.

The critical points of f are the possible locations of the local extrema that we seek. To
find the critical points we must solve the equation f ′(x) = 0. It is simpler to do some algebra
before differentiating:

f ′(x) = d
dx

(x (x − 1)(x − 3)) = d
dx

(x 3 − 4x 2 + 3x) = 3x 2 − 8x + 3.

By the quadratic formula, we have f ′(x) = 0 at the points

x = −(−8) ±
√

82 − 4(3)(3)

2(3)
= 8 ± √

28

6
= 4 ± √

7

3
.

These x-values are approximately x ≈ 0.451 and x ≈ 2.215. If we look at the graph of f ,
then we can see that the smaller of these two x-values is the location of the local maximum
and the larger is the location of the local minimum; see the figure that follows. �

Featuresxii

Color is used consistently and pedagogically in graphs and fi gures to relate like concepts. 
For instance, the color used for rectangles in Riemann sum approximations is also quite 
purposefully used for linear approximations of arc length and rectangular solid approxima-
tions of volume.

Cautions are appropriately placed at points in the exposition where students typically 
have questions about the nuances of mathematical thinking, processes, and notation.

Every section includes short illustrative examples as part of the discussion and develop-
ment of the material. Once the groundwork has been laid, more complex examples and 
calculations are provided. Students fi nd this approach easier to handle because the diffi cult 
calculations do not interfere with the development of why things work. Example solutions 
are explained in detail and include all the steps necessary for student comprehension.

Following many example solutions, Checking the Answer encourages students to learn 
to check their work, using technology such as a graphing calculator when appropriate.

CAUTION It is important to note that although we use the notation x−1 to denote the reciprocal
1

x
, the

notation f−1 does not stand for the reciprocal
1

f
of f . The notation f−1 used in Definition 0.10

is pronounced “f inverse.” We are now using the same notation for two very different
things, but it should be clear from the context which one we mean.

x

(f(a), g(a))

(f(tk), g(tk))

(f(tk�1), g(tk�1))

(f(b), g(b))

y

z

y
x

z

y
x

y

x
54321
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5
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Features xiii

CHECKING
THE ANSWER

The graph of f (x) = x(x − 1)(x − 3) is shown next. Notice that the local extrema do seem
to occur at the values we just found.

Extrema at x ≈ 0.451 and x ≈ 2.215

�1 4

�8

4

Each section closes with fi ve Test Your Understanding questions that test students on the 
concepts and reading presented in the section. Because answers are not provided, instruc-
tors may choose to use these questions for discussion or assessment.

Section Exercises are provided in a consistent format that offers the same types of ex-
ercises within each section. This approach allows instructors to tailor assignments to their 
course, goals, and student audience.

Thinking Back exercises ask students to review relevant concepts from previous sec-
tions and lessons.

Concepts exercises are consistently formatted to start with the following three problems:

• Problem 0 tests understanding.
• Problem 1 consists of eight true/false questions.
• Problem 2 asks the student to create examples based on their understanding of the 

reading.

Skills exercises offer ample practice, grouped into varying degrees of diffi culty.

Applications exercises contain at least two in-depth real-world problems.

Proofs exercises can be completed by students in non-theoretical courses. Hints are 
often provided, and many exercises mimic work presented in the reading and examples. 
Often, these exercises are a continuation of a proof offered as a road map in the narrative.

Thinking Forward exercises plant seeds of concepts to come. In conjunction with the 
Thinking Back exercises, they offer a “tie together” of both past and future topics, there-
by providing a seamless fl ow of concepts.

Chapter Review, Self-Test, and Capstones, found at the end of each chapter, present 
the following categories:

Defi nitions exercises prompt students to recall defi nitions and give an illustrative example.

Theorems exercises ask students to complete fi ll-in-the-blank theorem statements.

Formulas, Notation, and/or Rules exercises vary according to chapter content and 
ask students to show a working understanding of important formulas, equations, nota-
tion, and rules.

Skill Certifi cation exercises provide practice with basic computations from the chapter.

Capstone Problems pull together the essential ideas of the chapter in more challeng-
ing mathematical and application problems.

TEST YOUR? UNDERSTANDING
� Why could we not give a precise mathematical definition of concavity before this section?

� The domain points x = c where f ′′(c) = 0 or where f ′′(c) does not exist are the critical
points of the function f ′. Why?

� Why is it not clear to say a sentence such as “Because it is positive, it is concave up”?
How could this information be conveyed more precisely?

� Why does it make sense that f ′ is increasing when f ′′ is positive?

� Suppose x = c is a critical point with f ′(c) = 0. Why does it make graphical sense that
f has a local minimum at x = c when f is concave up in a neighborhood around x = c?
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Learning something new can be both exciting and daunting. To gain a full understanding 
of the material in this text, you will have to read, you will have to think about the connec-
tions between the new topics and the topics that were previously presented, and you will 
have to work problems—many, many problems. 

The structure of this text should help you understand the material. The material is 
laid out in a linear fashion that we think will facilitate your understanding. Each section 
is separated into two main parts: fi rst, a presentation of new material and then second, a 
set of Examples and Explorations, where you will fi nd problems that are carefully worked 
through. Working through these examples on your own, as you read the steps for guidance, 
will help prepare you for the exercises. 

Reading a mathematics book isn’t like reading a novel: You may have to read some 
parts more than once, and you may need to make notes or work things out on paper. Pay 
special attention to the “Checking Your Answer” features, so that you can learn how to 
check your own answers to many types of questions.

To succeed in calculus, you need to do homework exercises. The exercises in every 
section of this text are broken into six categories: “Thinking Back,” “Concepts,”  “Skills,” 
“Applications,”  “Proofs,” and  “Thinking Forward.”

• As the title suggests, the Thinking Back problems are intended to tie the current material 
to material you’ve seen in previous sections or even previous courses.

• The Concepts problems are designed to help you understand the main ideas presented 
in the section without a lot of calculation. Every group of Concepts exercises begins by 
asking you to summarize the section, continues with eight true/false questions, and 
then asks for three examples illustrating ideas from the section.

• The bulk of the exercises in each section consists of Skills problems that may require 
more calculation.

• The Applications exercises use the concepts from the section in “real-world” problems.
• The Proofs exercises ask you to prove some basic theory from the section.
• Finally, the Thinking Forward questions use current ideas to introduce topics that you 

will see in subsequent sections.

We hope this structure allows you to tie together the material as you work through 
the book. We have supplied the answers to the odd-numbered exercises, but don’t restrict 
yourself to those problems. You can check answers to even-numbered questions by hand 
or by using a calculator or an online tool such as wolframalpha.com. After all, on a quiz or 
test you won’t have the answers, so you’ll have to know how to decide for yourself whether 
or not your answers are reasonable.

Some students may like to work through each section “backwards,” starting by 
 attempting the exercises, then checking back to the examples as needed when they get 
stuck, and, fi nally, using the exposition as a reference when they want to see the big  picture. 
That is fi ne; although we recommend that you at least try reading through the sections in 
order to see how things work for you. Either way, we hope that the separation of examples 
from exposition and the division of homework problems into subsections will help make 
the process of learning this beautiful subject easier. We have written this text with you, the 
student, in mind. We hope you enjoy using it!
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2 Chapter 0 Functions and Precalculus

0.1 FUNCTIONS AND GRAPHS

� Definition of functions and their domain and range

� Graphs, horizontal and vertical line tests, and one-to-one-functions

� Graphical properties and features, asymptotes, and average rate of change

What Is a Function?

Mathematics is a language. In order to understand it, you have to learn how to read it and
speak it with the correct vocabulary. Since calculus is at its heart the study of functions
of real numbers, the universe we will spend most of our time exploring is the set of real
numbers and the relationships between sets of real numbers. Therefore we must begin by
setting out the mathematical language that describes these relationships we call “func-
tions.” Once we all speak the same language, we can start building the theory of calculus.

Functions and their properties will be at the core of everything we study in this text.
In previous courses you likely encountered functions that were given in terms of formulas,
such as

y(x) = x 2,

that relate two variables x and y. To set the stage for studying such functions, we must
first be more precise about what functions are. Instead of thinking of functions merely as
formulas, think of them as describing a certain kind of rule, relationship, or mapping from
the elements of one set to the elements of another set.

DEFINITION 0.1 Functions

A function f from a set A to a set B is an assignment f that associates to each element
x of the domain set A exactly one element f (x) of the codomain, or target, set B.

We will use the notation

f : A → B

to represent a function f together with its domain set A and target set B. This notation is
pronounced “f from A to B.” If x and y are variables that represent elements of the sets A
and B, respectively, then we say that y is a function of x and write y = f (x) or y(x).

The variable x is called the independent variable and represents the “input” of the
function. The function f sends each input x to one and only one “output,” some value of
the dependent variable y. Notice that y depends on x, according to the assignment defined
by the function f .

For example, the assignment f : R → R that squares real numbers is a function, since
each real number x is assigned to one and only one real-number square x 2. Here R de-
notes the set of all real numbers, and f assigns each real-number input to exactly one
real-number output. Some real numbers (such as 3 and −3) get sent to the same square
( f (−3) = f (3) = 9), but this does not violate the definition of function. You can think of a
function as a machine that takes any given input value x and produces exactly one output
value f (x) (pronounced “f of x”), shown as follows:
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f

f (x)

x

x2

9

3

x2

9

�3

So, what isn’t a function? If a rule assigns a real-number input to more than one out-
put, then that rule is not a function. For example, consider the formula y = ±√

x. This
assignment does not define y as a function of x, because the input x = 4 corresponds to
two different y-values, both y = −2 and y = 2. In the “function machine” type of illus-
tration just shown, the number 4 would go into the machine and two numbers, −2 and 2,
would come out at once as outputs. This situation is not allowed for functions.

Returning to the squaring function y = x 2, notice that some real numbers can never
serve as outputs, because squares of real numbers can never be negative. The range, or set
of possible outputs, of the squaring function is [0, ∞). In this text we will usually work with
functions whose domains and ranges are unspecified subsets of real numbers and whose
rules are given by formulas such as f (x) = x 2.

DEFINITION 0.2 Domain and Range of a Function

If f is a function between unspecified subsets of R, then we will take the domain of f to
be the largest subset of R for which f is defined:

Domain( f ) = { x ∈ R | f (x) is defined }.
The range of such a function is the set of all possible outputs that it can attain:

Range( f ) = { y ∈ R | there is some x ∈ Domain( f ) for which f (x) = y }.

For example, the function f (x) = √
x − 1 is defined only when x ≥ 1, and therefore f (x) =√

x − 1 has domain [1, ∞). When we write the square root symbol without the “±” before
it, we always mean the positive square root. This means that f (x) = √

x − 1 can attain only
nonnegative y-values. In fact, every nonnegative value can be expressed in the form

√
x − 1

for some value of x, and therefore the function f (x) = √
x − 1 has range [0, ∞).

A few notes about the notation we just used: The curly-brackets notation used in Def-
inition 0.2 is called set notation, and it is a way to describe a set of real numbers. In this
case the set notation for the domain of f is pronounced “the set of all x contained in R such
that f (x) is defined.” Notice in particular that the symbol “∈” means “contained in” and
the vertical bar means “such that.”

TECHNICAL POINT The name of a function is usually a single letter, such as “f .” The name
of the output of a function f evaluated at an input x is “f (x).” In this situation f is a function,
or relationship, and f (x) is a number that represents the output of the function at the input
value x. However, it is sometimes convenient to write f (x) (the name of the output of the
function) instead of f (the name of the function itself). This allows us to indicate the name
we are using for the independent variable when we reference the function. We may also
write things like “consider the function f (x) = x 2 + 1,” by which we mean “consider the
function f whose output at a real number x is f (x) = x 2 + 1.”
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4 Chapter 0 Functions and Precalculus

Vertical and Horizontal Line Tests

A function whose domain and range are sets of real numbers can be represented as
a collection of pairs (x, f (x)) of real numbers. If we plot these pairs as points in the
Cartesian plane, we obtain the graph of the function. In general we have the following
definition:

DEFINITION 0.3 The Graph of a Function

The graph of a function f is the collection of ordered pairs (x, f (x)) for which x is in the
domain of f . In set notation we can write

Graph( f ) = { (x, f (x)) | x ∈ Domain( f ) }.

For example, the graph of f (x) = x 2 is the collection of ordered pairs of the form (x, x 2), for
x ∈ R. Since f (−1) = (−1)2 = 1 and f (2) = 22 = 4, the points (−1, 1) and (2, 4) are on the
graph of f (x) = x 2. In contrast, the point (1, 2) is not a part of the graph, because f (1) �= 2,
as shown in the following graph:

Graph of f (x) = x 2 and partial table of values

x2x

(1, 2)

(2, 4)

(�1, 1) (1, 1)

�1
1
2

1
1 (not 2)
4

y

x
21�1�2

3

4

2

1

A function always has exactly one output value for every input in the domain, which
means that the graph of a function always passes the following test, which you will prove in
Exercise 90:

THEOREM 0.4 The Vertical Line Test

A graph represents a function if and only if every vertical line intersects the graph in at
most one point.

For example, consider the three graphs that follow this paragraph. The leftmost graph
passes the vertical line test and thus is the graph of a function. The graph in the mid-
dle fails the vertical line test because the vertical line x = 2 intersects the graph in two
points, (2, 1) and (2, 3); therefore the middle graph does not represent a function. The right-
most graph assigns the same output to two distinct inputs, but that is perfectly fine for a
function. Because the graph on the right passes the vertical line test, it is the graph of a
function.
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A graph that is a function A graph that is not a function A function, but not one-to-one
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1

3

4

1 2
x

43

y

If each element of the range of a function is the output of exactly one element of the
domain, then the function is said to be one-to-one. Graphically, we can tell if a function f is
one-to-one by checking to see if it passes the horizontal line test: if f is one-to-one, then
every horizontal line meets the graph of f at most once; see Exercise 91. Algebraically, this
means that a function f is one-to-one if two distinct elements in the domain are always
sent to different elements of the range:

DEFINITION 0.5 One-to-One Function

A function f is one-to-one if, for all a and b in the domain of f ,

a �= b =⇒ f (a) �= f (b).

In this definition the notation ⇒ is pronounced “implies,” and it means that if the
left-hand part of the expression is true, then the right-hand part of the expression is also
true. In other words, the statement “A ⇒ B” is synonymous with the statement “if A,
then B.”

A logically equivalent form of Definition 0.5 is its so-called contrapositive:

f (a) = f (b) =⇒ a = b.

As we will see in Section 0.5, the contrapositive of an implication A ⇒ B is the equivalent
statement (not B) ⇒ (not A). The contrapositive form of Definition 0.5 is often easier to
use, because it is an affirmative rather than a negative statement. For example, f (x) = 3x
is one-to-one because if 3a = 3b, then we can guarantee that a = b. In contrast, the squar-
ing function f (x) = x 2 is not one-to-one, because we cannot guarantee that if a2 = b2, then
a = b (for example, (−3)2 = 32, but −3 �= 3).

Properties of Graphs

The table that follows gives us vocabulary and precise mathematical definitions for various
types of graphical behavior. Rows 1, 2, 5, and 6 describe behaviors that a function could
exhibit at a specific point. The remaining rows describe graphical behaviors that occur over
an interval I of real numbers. Much of the material in the early chapters of this book will
be dedicated to developing techniques for properly defining and identifying these types of
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6 Chapter 0 Functions and Precalculus

properties of functions. For now we present them just to set terminology and to familiarize
ourselves with various types of function behavior.

Vocabulary Definition Behavior

f has a root at x = c f (c) = 0 graph intersects the
x-axis at x = c

f has a y-intercept
at y = b

f (0) = b graph intersects the
y-axis at y = b

f is positive on I f (x) > 0 for all x ∈ I graph is above the x-axis on I

f is increasing on I f (b) > f (a)
for all b > a in I

graph moves up as we
look from left to right on I

f has a local
maximum at x = c

f (c) ≥ f (x)
for all x near x = c

graph has a relative “hilltop”
at x = c

f has a global
maximum at x = c

f (c) ≥ f (x)
for all x ∈ Domain( f )

graph is the highest
at x = c

f is concave up on I will state precisely in
Section 3.3

graph curves upwards on I
like part of a “U”

f has an inflection
point at x = c

will state precisely in
Section 3.3

graph of f changes
concavity at x = c

Of course, there are similar definitions for local and global minima and for negative, de-
creasing, and concave-down behavior; see Exercises 20 and 21. Notice that we describe
extrema (maxima and minima) by where on the x-axis they occur, since we can always find
the corresponding y-values from these x-values. The concept of “near” in the description
of a local maximum will be made more precise in Chapters 1 and 2. Inflection points and
concavity cannot be precisely defined until we learn about derivatives in Chapters 2 and 3.
In that chapter we will also learn ways for algebraically calculating the locations of extrema
and inflection points. Until then, we will have to be content with examining such things
graphically.

For example, the list that follows at the right describes some aspects of the graphical
behavior of the graph y = f (x) shown on the left.

2 3 41

y

x
�1�2�3�4

1

2

3

4

�1

�2

�3

� roots at x = −3, x ≈ −0.4, and x = 3
� y-intercept at y = −1
� local maxima at x = −2 and x = 3
� global maximum at x = −2
� inflection points at x = −1 and x = 2
� positive on (−3, −0.4)
� increasing on (−∞, −2) and (1, 3)
� concave up on (−1, 2)

In fact, technically the function f graphed at the left is increasing on the larger intervals
(−∞, −2] and [1, 3]. This is because we do have f (b) > f (a) for all values b > a in these
closed intervals. Most of the time we will be concerned only with the open intervals on which
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a function is increasing or decreasing, but there will be a few times in later chapters when
we need to consider closed or half-closed intervals. For now, we will use open intervals
unless we require otherwise.

The increasing and/or decreasing behavior of a function is related to its average rate of
change on various intervals. The average rate of change of a function f on an interval [a, b]
measures how much the output f (x) changes over that interval. Average rates of change
will be extremely important in Chapter 2 when we study the derivative.

DEFINITION 0.6 Average Rate of Change

The average rate of change of a function f on an interval [a, b] is the slope of the line
from (a, f (a)) to (b, f (b)), which is given by the quotient

f (b) − f (a)
b − a

.

For example, the function whose properties we just enumerated is increasing on the interval
(1, 3), moving up from (1, f (1)) = (1, −2) to (3, f (3)) = (3, 0). The average rate of change tells
us how much the function increased per unit change in the input, on average:

f (3) − f (1)
3 − 1

= 0 − (−2)
2

= 1

unit up for every unit across. We can also measure average rate of change over intervals
where the function both increases and decreases; for example, with the same function, on
the interval [−3, 3] there is an average rate of change of

f (3) − f (−3)
3 − (−3)

= 0 − 0
6

= 0

units up for every unit across; look at the graph to see why this makes sense.

Sometimes a graph gets closer and closer to a horizontal or vertical line, or asymptote.
In Chapter 1, we will define asymptotes precisely, using limits. For now, we will use the
following definition: A line l is an asymptote of a function f if the difference between the
graph of l and the graph of f gets as small as we want as either x or y increases in magnitude.
For example, the following graph of a function f has vertical asymptotes at x = −2 and
x = 2, and a horizontal asymptote at y = 1:

A function with three asymptotes

y

x
�1�2�3�4�5

�1

�2

�3

1

2

3

4

5

1 2 3 54

Notice that a graph can cross one of its horizontal asymptotes; the preceding graph above
does so at the point (0, 1). This is just one of the reasons that we are avoiding using the
overly loose definition of asymptote that you may have heard in previous courses (“an
asymptote is a line that the graph gets infinitely close to, but never reaches”).
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Examples and Explorations

EXAMPLE 1 Identifying functions and their domains and ranges

Determine whether or not each of the following relationships is a function. For each rela-
tionship that is a function, describe its natural domain and range and determine whether
or not it is one-to-one. For each relationship that is not a function, describe the parts of
the definition of a function that are violated.

(a) The rule g : R → R that assigns each real number x to the numbers whose square is x.

(b) The relationship defined by this table:
x 1 2 3 4 5 6

P(x) 5 2 9 −1 0 9

(c) Let P be the set of all living people in the world, and let W be the set of all women
that have ever lived. Define f : P → W so that each person is assigned to his or her
biological mother.

(d) f (x) = 2 − √
x + 5

(e) h(x) = 1
x 2 − 4

SOLUTION

(a) This rule is not a function, for two reasons. First of all, negative real numbers do not
have real square roots, so g is not defined on the given domain of R. Second, each
positive number x has two numbers whose square is x, namely,

√
x and −√

x, so this
rule would not send each domain element to exactly one output.

(b) The relationship P(x) defined by the table is a function, because the table assigns each
value in the domain {1, 2, 3, 4, 5, 6} to exactly one element of the range {−1, 0, 2, 5, 9}.
This function is not one-to-one because P(3) and P(6) are both equal to 9.

(c) This relationship is a function because each person has one exactly one woman who
is his or her biological mother. No person is without a biological mother, and no
person has more than one biological mother. Here the domain is P and the range is
the subset of W consisting of women that have had biological children. This function
is not one-to-one, since there are examples of different people that have the same
biological mother.

(d) This rule is a function because for each value x for which the formula makes sense, there
is exactly one real number described by 2 − √

x + 5. For x to be in the domain, we must
have x+5 ≥ 0 (since x+5 is under a square-root sign), and thus we must have x ≥ −5.
Therefore the domain of f is [−5, ∞). The range of y = f (x) is the set of y-values that
can occur as outputs. Since

√
x + 5 can take on any value greater than or equal to 0,

the expression 2 − √
x + 5 can take on any value less than or equal to 2. Therefore the

range of f is (−∞, 2]. This function is one-to-one because if f (a) = f (b), then

2 − √
a + 5 = 2 −

√
b + 5 =⇒ √

a + 5 =
√

b + 5

=⇒ a + 5 = b + 5

=⇒ a = b.

(e) The rule h(x) is a function because for each value x at which 1
x2 − 4

is defined, there is
exactly one real number that h describes. The domain of h(x) is the set of all x-values
for which x 2 − 4 �= 0 (since x 2 − 4 is in a denominator). Therefore the domain of
h is everything except x = ±2. To find the range of h(x) we must find the y-values
that can be expressed in the form y = h(x) for some x. Solving for x in terms of y

we obtain x =
√

1
y

+ 4. This means we can find an x that maps via f to y as long as

y �= 0 and 1
y

+ 4 ≥ 0. It can be shown that the solution of the latter inequality is
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(
−∞, − 1

4

]
∪ [0, ∞). Therefore the range of h(x) is

(
−∞, − 1

4

]
∪ (0, ∞). This function

is not one-to-one because, for example, h(1) and h(−1) are both equal to − 1
3

. �

CHECKING
THE ANSWER

The following functions f and h have domains marked in blue on the x-axis and ranges
marked in red on the y-axis:

f has domain [−5, ∞)
and range (−∞, 2]

h has domain x �= ±2

and range
(
−∞, − 1

4

]
∪ (0, ∞)

y

x
�10 �5

�1

�2

2

1

5 10
x

y

�4

0.5

�1

�1�3 �2 2 3 41

�0.5

1

EXAMPLE 2 Evaluating function notation

Given that f (x) = x
√

3 − x, evaluate f (2), f (a), f (x + 1), and f ( f (x)).

SOLUTION

To evaluate f (x) = x
√

3 − x at a given input, simply replace x in the formula with whatever
the input is:

f (2) = 2
√

3 − 2 = 2
√

1 = 2 ;

f (a) = a
√

3 − a ;

f (x + 1) = (x + 1)
√

3 − (x + 1) ;

f ( f (x)) = f (x)
√

3 − f (x) = (x
√

3 − x )
√

3 − x
√

3 − x . �

EXAMPLE 3 Finding a “good” graphing window

Use a graphing utility to find a graphing window that accurately represents the key features
of the graph of the function f (x) = x 3 − 6x 2 − x + 6.

SOLUTION

The three graphs that follow show y = f (x) in various graphing windows. Each of these
windows is “bad” in the sense that the true behavior of the graph of f is not represented.

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−3, 3], y ∈ [−10, 10]

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−100, 100], y ∈ [−50, 50]

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−20, 20], y ∈ [−1000, 1000]

�3 3

�10

10

�100 100

�50

50

�20 20

�1000

1000
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A “good” window (if one exists) is a window in which the local behavior of the graph of f is
clear and the global behavior is accurately represented (the “ends” of the graph keep going
in the direction indicated). The following figure shows the graph of f in a “good” window:

f (x) = x 3 − 6x 2 − x + 6
x ∈ [−3, 7], y ∈ [−40, 40]

�40

�3 7

40

For now we will use trial and error to find an effective graphing window. We will be able to
be more systematic after we have learned more about derivatives and function behavior. �

EXAMPLE 4 Function behavior at points and on intervals

(a) Sketch the graph of a function that has the following characteristics:

� roots at x = −2, x = 1, and x = 3 � local minimum at x = −1

� horizontal asymptote at y = −2 � local maximum at x = 2

(b) Approximate the locations of the inflection points on your graph.
(c) Given the graph that you sketched, find the intervals on which f is

� positive � increasing � decreasing � concave up

SOLUTION

(a) By plotting the points (−2, 0), (1, 0), and (3, 0), drawing a dashed asymptote at y = −2,
and plotting some low point for the function at x = −1 and some high point at x = 2
(the information in the problem does not tell us exactly how high or how low), one
might make the following sketch:

One possible graph of f

y

x
1 2 3 4 5 6 7�1�2�3

�1

�2

�3

3

2

1

�4

(b) The inflection points on this graph occur where the concavity of the graph changes
from a ∪ shape to a ∩ shape, or vice versa. These are the locations where the graph
“flexes.” In our graph, these points occur at approximately x = 1

2
and x = 4. Note that

these points are also the locations of the steepest parts of the graph.
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(c) Given our graph, the function f is positive on (−∞, −2) and (1, 3), increasing on

(−1, 2), decreasing on (−∞, −1) and (2, ∞), and concave up on
(
−∞, 1

2

)
and (4, ∞).

�

EXAMPLE 5 Finding the domain of a function by using equalities and inequalities

Find the domain of the function f (x) =
√

1 − 2x
x + 1

.

SOLUTION

To find the domain of f , we ask which values of x can be validly plugged into the equation
that defines f (x). In order for the value of f to be defined for a real number x, that value of x
must make the quotient underneath the square-root sign nonnegative and the denomina-
tor nonzero. Thus the domain of f (x) is the set of real numbers that simultaneously satisfy
the following:

1 − 2x
x + 1

≥ 0 and x + 1 �= 0.

The only x-values at which the quotient in the inequality can change sign are x = 1
2

and
x = −1, since those are the values that make either the numerator or denominator equal
to zero. To determine the intervals on which the quotient is positive or negative we
need only check its sign between the possible change points x = 1

2
and x = −1. For

example, evaluating the expression at x = −2, x = 0, and x = 1 gives

1 − 2(−2)
−2 + 1

= pos
neg

= negative,

1 − 2(0)
0 + 1

= pos
pos

= positive,

1 − 2(1)
1 + 1

= neg
pos

= negative.

We can record this information on a number line with a sign chart as follows:

� � �

1
2

�1

Since the quotient in question is negative on (−∞, −1) and
(

1
2

, ∞
)

, the function f (x) is not

defined on those intervals. Note that x = 1
2

is in the domain of f because there is no problem

taking the square root of zero. However, since we cannot divide by zero, the function is not

defined at x = −1. Therefore the domain of f is the half-open interval
(
−1, 1

2

]
. �

EXAMPLE 6 A review of factoring techniques

Find the solution sets of each of the following equations:

(a) 2x 3 − 5x 2 − 3x = 0 (b) 3x 2 = 7x − 1 (c) 2x 5 − 32x = 0

SOLUTION

(a) The number of real number solutions of a polynomial equation is at most the value of
the degree, or highest power, of the polynomial. Therefore we can expect the equation
2x 3 − 5x 2 − 3x = 0 to have at most three real number solutions. The right-hand side
of this equation can be easily factored as:

2x 3 − 5x 2 − 3x = x(2x 2 − 5x − 3) = x(2x + 1)(x − 3).
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12 Chapter 0 Functions and Precalculus

The expression 2x 3 − 5x 2 − 3x is zero if and only if one of x, 2x + 1, or x − 3 is zero. In
other words, the solutions of the equation 2x 3 − 5x 2 − 3x = 0 are x = 0, x = − 1

2
, and

x = 3.

(b) We first need to write the equation 3x 2 = 7x−1 in the general form of a quadratic equa-
tion: 3x 2 −7x+1 = 0. This equation cannot be easily factored with the reverse “FOIL”
(first-outside-inside-last) method, so we’ll apply the quadratic formula, which says
that the roots of a quadratic equation of the form ax 2 + bx + c = 0 are

x = −b ± √
b2 − 4ac

2a
.

In this example we have a = 3, b = −7, and c = 1, so the solutions of 3x 2 − 7x + 1 = 0
are

x = −(−7) ±
√

(−7)2 − 4(3)(1)
2(3)

= 7 ± √
49 − 12
6

= 7 ± √
37

6
.

Therefore, the solutions of 3x 2 − 7x + 1 = 0 are x = 1
6

(7 + √
37 ) and x = 1

6
(7 − √

37 ).

Clearly we could not have easily figured that out by doing the “FOIL” method
backwards!

(c) This time the factoring will involve two applications of the well-known factoring for-
mula a2 − b2 = (a + b)(a − b) for the difference of two squares:

2x 5 − 32x = 0

2x(x 4 − 16) = 0

2x(x 2 − 4)(x 2 + 4) = 0 ← formula for a2 − b2 with a = x 2 and b = 4

2x(x − 2)(x + 2)(x 2 + 4) = 0 ← formula for a2 − b2 with a = x and b = 2

Thus 2x 5 − 32x = 0 whenever 2x = 0, x − 2 = 0, x + 2 = 0, or x 2 + 4 = 0. Note that
x 2 + 4 = 0 has no real solutions, because there is no real number that satisfies
x 2 = −4. Therefore the real-number solution set of the original equation 2x 5−32x = 0
is {−2, 0, 2}. �

CHECKING
THE ANSWER

To check the answers in Example 6, simply substitute each proposed solution into the
original equation. Each solution should satisfy the equation. For example, to check that
x = −2, x = 0, and x = 2 are solutions in part (c) of the example we note that

2(−2)5 − 32(−2) = 0, ← evaluate equation at x = −2

2(0)5 − 32(0) = 0, ← evaluate equation at x = 0

2(2)5 − 32(2) = 0. ← evaluate equation at x = 2

Of course, this will not tell you whether you have missed any solutions, but it will tell you
whether the solutions you found are correct.

EXAMPLE 7 Finding the average rate of change of a function on an interval

Calculate the average rate of change of the function f (x) = x 2 − x + 1 (a) on the interval
[0, 3] and (b) on the interval [−1, 1]. Then (c) illustrate these average rates of change
graphically.

SOLUTION

(a) Using the formula from Definition 0.6 we find that the average rate of change of f on
[0, 3] is

f (3) − f (0)
3 − 0

= (32 − 3 + 1) − (02 − 0 + 1)
3 − 0

= 7 − 1
3 − 0

= 6
3

= 2.
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(b) Using the same formula again, we find that the average rate of change of f on [−1, 1] is

f (1) − f (−1)
1 − (−1)

= (12 − 1 + 1) − ((−1)2 − (−1) + 1)
1 − (−1)

= 1 − 3
1 − (−1)

= −2
2

= −1.

Notice that the average rate of change of f (x) = x 2 − x + 1 is different, depending on
what interval we consider.

(c) Graphically, the two average rates we found can be represented as slopes of line
segments, as follows:

Slope of line from
(0, f (0)) to (3, f (3)) is 2

Slope of line from
(−1, f (−1)) to (1, f (1)) is −1

x

y

3

7

3

1

1�1
x

y

3

7

3

1

1�1 �

EXAMPLE 8 A function that is defined in pieces

A piecewise-defined function is a function that is defined in pieces, with different formulas
on different parts of its domain. Let f be the function defined piecewise by

f (x) =
{

x 2, if x ≤ −1
2x, if x > −1.

Find f (−5), f (−1), and f (3), and then sketch a graph of y = f (x).

SOLUTION

Since −5 ≤ −1, we have f (−5) = (−5)2 = 25. Since −1 ≤ −1, we have f (−1) = (−1)2 = 1.
In contrast, since 3 > −1, we have f (3) = 2(3) = 6. To graph f , we begin by graphing the
functions y = x 2 and y = 2x that are used in the definition of f , as shown in the first two
figures that follow:

y = x 2 y = 2x y = f (x)

y

x
321�1�2�3

3

2

�1

�2

�3

1

y

x
321�1�2�3

3

2

�1

�2

�3

1

y

x
321�1�2�3

3

2

�1

�2

�3

1

To graph f , we must restrict the graph of y = x 2 to the interval (−∞, −1] and restrict
y = 2x to (−1, ∞). Whether these intervals are open or closed is important. To find f (−1) we
use the first equation y = x 2: f (−1) = (−1)2 = 1. Note that when we sketched the graph
of f in the third figure, we used open and closed dots to represent the function values
corresponding to the ends of open and closed intervals in the domain, respectively. �
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EXAMPLE 9 Functions involving pairs or triples of real numbers*

In this example we examine functions with multivariable inputs and/or outputs. Let R
2 be

the set of ordered pairs of real numbers, and R
3 the set of ordered triples of real numbers.

We will not need to work with such functions until much later in this book, but we present
them here to illustrate the variety of functions we will be encountering in this course.

(a) Explain why the rule p : R → R
3 defined by p(t) = (3t, t 2 − 1, t) is a function. Then

find p(2).

(b) Explain why the rule q : R
2 → R

2 defined by q(x, y) = (x − y, −3x) is a function. Then
find q(3, 2).

SOLUTION

(a) The rule p(t) is a function because every real number t gets sent to exactly one triple of
numbers. For example, p(2) = (3(2), 22 − 1, 2) = (6, 3, 2).

(b) Similarly, the rule q(x, y) is a function because each pair of numbers (x, y) in the domain
R

2 gets sent to exactly one pair of numbers in the range R
2. For example, q(3, 2) =

(3 − 2, −3(3)) = (1, −9). �

TEST YOUR? UNDERSTANDING
� Why might the notation f (x) be wrongly confused with the notation for a product?

How is it different from the notation for a product? What is the difference between the
notation f and the notation f (x)?

� If a rule f assigns both 4 and 8 to the same output value, can that rule be a function?
Why or why not?

� The vertical line test states that each vertical line has to intersect the graph in at most
one point. Is it okay for a vertical line to pass through the graph at no points, that is, for
the line not to intersect the graph?

� How do we evaluate a function that is defined in pieces? That is, given a function f (x)
defined piecewise, how do we go about finding, say, f (2)?

� Define each of the following with mathematical notation: function, one-to-one, global
maximum, asymptote, root.

EXERCISES 0.1

Thinking Back

Interval notation: Describe each of the following subsets of the
real numbers in interval notation.

� x �= ±3 � x > −2 and x �= 5

� x < 0 or x ≥ 10 � x �< 3 and x �= 4

Solving equations and inequalities: Find the solution sets of the
equations and inequalities that follow. Write your answers in

interval notation (or, if the solution is a discrete set of points,
a list of those points).

� x
x − 2

= 0 � x 3 − 5x 2 + 6x < 0

� x
x − 2

> 0 � x 3 − 5x 2 + 6x = 0

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Functions are the same as equations.
(b) True or False: The domain of every function is a subset

of R.

(c) True or False: The function that for each x has output
f (x) = 1 is a one-to-one function.

(d) True or False: Every global maximum of a function is
also a local maximum.

(e) True or False: Every local minimum of a function is also
a global minimum.

(f) True or False: The graph of a function can never cross
one of its asymptotes.
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(g) True or False: Average rates of change can be thought
of as slopes.

(h) True or False: A function can have different average
rates of change on different intervals.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function that is defined with a formula.
(b) A function that is not defined with a formula.
(c) A formula that does not define a function.

3. State the mathematical definition of a function, and
describe its meaning in your own words. Support your
answer with an example of something that is a function
and an example of something that is not.

4. Suppose P is the set of people alive today and C is the set
of possible eye colors. Let f : P → C be the rule that as-
signs to each person his or her eye color. Is f a function?
Why or why not?

5. Use set notation to define the domain of a function. Then
use the same notation to express the domain of the func-
tion f (x) = √

x.
6. Use set notation to define the range of a function. Then

use the same notation to express the range of the function
f (x) = x 2.

7. Determine whether the points (a) (3, 2), (b) (1, 1), and (c)
(−5, 2) lie on the graph of f (x) = √

x + 1, without refer-
ring to a picture of the graph of f .

8. Describe the graph of the function f (x) = 3x + 2 as a set
of ordered pairs.

9. Consider the function f (x) = x 2 + 1.
(a) Explain why y = 5 is in the range of f .
(b) Explain why y = 0 is not in the range of f .
(c) Argue that the range of f (x) = x 2 + 1 is [1, ∞).

10. Determine whether or not each diagram that follows rep-
resents a function. If it does, find its domain and range,
and determine whether it is one-to-one. If it does not,
explain what goes wrong.

f g h
1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

11. Construct a rule f : {2, 4, 6, 8, 10} → {1, 2, 3, 4} that is a
function. Express this function three ways: as a list, as a
table, and as a diagram. Is your function one-to-one?
What is its range?

12. Construct a rule f : {2, 4, 6, 8, 10} → {1, 2, 3, 4} that is not
a function. Justify your answer.

13. If the graph of a rule y = f (x) passes through (−2, 1) and
(2, 1), could that rule be a function? Why or why not?

14. A constant function is a function f : A → B with the
property that there is some b ∈ B for which f (x) = b for all
x ∈ A. (The output of the function is constantly the same.)
Describe
(a) a constant function f : R → R

(b) a constant function g : R → [−5, −2]
(c) a constant function h : R → R

2

15. The identity function for a set A is the function f : A → A
defined by f (x) = x (so called because the output is identi-
cal to the input). For which of the following domains and
ranges is there a well-defined identity function? Why or
why not?
(a) f : R → R

(b) g : R
2 → R

(c) h : R
3 → R

3

16. Let P be the set of all people living in the United States.
Give examples of each of the following functions and
state their ranges:

(a) the identity function f : P → P
(b) two different constant functions g : P → P
(c) a non-constant, non-identity function g : P → P
(d) a constant function h : P → R

(e) a non-constant function h : P → R

17. Explain in your own words why the vertical line test
determines whether a graph is a function.

18. Explain in your own words why the horizontal line test
determines whether a function is one-to-one.

19. Show that f (x) = x 2 + 1 is not one-to-one, using values
of f (not the horizontal line test).

20. Define what it means for a function f with domain R

to have (a) a global minimum at x = c and (b) a local min-
imum at x = c.

21. Define what it means for a function f with domain R to
be (a) negative on an interval I and (b) decreasing on an
interval I.

22. Make a labeled graph that illustrates why it makes sense
that a function is increasing on an interval I if, for all b > a
in I, we have f (b) > f (a). Include labels for a, b, f (a), and
f (b), and for the interval I.

23. How is the formula for average rate of change related to
the formula for computing slope?

24. Illustrate on a graph of f (x) = 1 − x 2 that the average rate
of change of f on [−1, 3] is −2.

25. For each local maximum x = c in the following graph,
approximate the largest possible δ > 0 so that f (c) ≥ f (x)
for all x ∈ (c − δ, c + δ). Similarly, for the one local min-
imum x = b, find the largest δ so that f (b) ≤ f (x) for all
x ∈ (b − δ, b + δ).

y

x
321�1�2�3

19

�8

�13

26. Use the definition of a local maximum to explicitly argue
why the function graphed in Exercise 25 does not have a
local maximum at x = 0.
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Skills

Find the domain and range of each function in Exercises
27–32. Use a graphing utility or plot points to sketch a graph
of the function, and illustrate the domain and range on the
graph.

27. f (x) = √
x − 1 28. f (x) = √

x − 1

29. f (x) = 1
x + 2

30. f (x) = 1√
5 − x

31. f (x) = 1
x 2 + 1

32. f (x) = 1
x 2 − 1

Find the domain of each function in Exercises 33–42.

33. f (x)=
√

x(x − 2) 34. f (x)= 3x + 1
2x − 1

35. f (x)=
√

(x − 1)(x + 3) 36. f (x)= 1√
x 2 − 4

37. f (x)= 1√
(x − 1)(x + 3)

38. f (x)=
√

1
x 2

− 4

39. f (x)=
√

x 2 − 1
x 2 − 9

40. f (x)= x 3/4

3x − 5

41. f (x)= 1√
x − 1

−
√

x
x − 2

42. f (x)=
√

x 2 − 1√
x 2 − 9

Evaluate each function in Exercises 43–47 at the values
indicated. Simplify your answers if possible. (Note: We will not
need to work with such functions until much later in the book, but
we present them here to illustrate the variety of functions we will
be encountering in this course.)

43. If f (x) = x 2 + 1, find

(a) f (−4) (b) f (a3) (c) f ( f (x))

44. If k(x) = x 2

x + 1
, find

(a) k(5) (b) k(x + h) (c) k(k(x))

45. If l(a, b, c) = √
a2 + b2 + c2, find:

(a) l(5, 3, 2) (b) l(3, 0, 4) (c) l(x, y, z)

46. If g(v) = (v − 1, v, v2), find

(a) g(0) (b) g(1) (c) g(x + 1)

47. If F(u, v, w) = (3u + v, u − w, v + 2w), find

(a) F(2, 3, 5) (b) F(5, 2, 3) (c) F(a, b, 0)

For each piecewise-defined function in Exercises 48–50,
(a) calculate f (−1), f (0), f (1), and f (2), and (b) sketch a graph
of f .

48. f (x) =
{

x 2 + 3, if x < 0
3 − x, if x ≥ 0

49. f (x) =
⎧⎨
⎩

3x + 1, if x ≤ 0
4, if 0 < x ≤ 1

x 3, if x > 1

50. f (x) =
⎧⎨
⎩

4x − 1, if x < 0
2, if x = 0

−3x + 5, if x > 0

Use a graphing utility to sketch a graph of each function in Ex-
ercises 51–56. Use trial and error to find a graphing window so
that your graph represents the local and global behavior of the
function. Include the x and y ranges of your window in your
answer.

51. f (x) = x 2 − 0.1 52. f (x) = (x 2 − 5)7

53. f (x) = x 5 − 3x 4 − 7x 54. f (x) = x 3 − 11x 2 + 10x

55. f (x) = x 2 − 17x − 18 56. f (x) = 2x 2 − 2
x 2 − 3x − 5

Describe the key properties of each graph in Exercises 57–62,
including the following:

� domain and range;

� locations of roots, intercepts, local and global maxima
and minima, and inflection points;

� intervals on which the function is positive or negative,
increasing or decreasing, and concave up or down;

� any horizontal or vertical asymptotes.

57.

�1

y

3

2

1

�1

x
2 31

58. y

3

2

1

�1

x
42 31

59.
7

�4.75

�2 �1 321

2
3.25

y

x

60.
3

2

1

y

�3

�2

�1
�2 �1 321 4

x

61.

2

1

4�4
x

y 62.
3

2

1

y

�3

�2

�1
�2�3 �1 321

x

Sketch the graph of functions f that satisfy the lists of condi-
tions given in Exercises 63–72, if possible.
63. Domain R, concave up everywhere, and decreasing

everywhere.
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64. Domain R, concave down everywhere, and decreasing
everywhere.

65. Domain R, concave up everywhere, increasing every-
where, and negative everywhere.

66. Domain R, concave down everywhere, increasing every-
where, and negative everywhere.

67. Always increasing, with two horizontal asymptotes, one
at y = −2 and one at y = 2.

68. Domain (0, ∞), always negative, and always increasing.

69. Four roots but no y-intercept.
70. Concave down on (−∞, 2), concave up on (2, ∞), and

always increasing.

71. Concave down on (−∞, 0) and concave up on (0, ∞) but
without an inflection point at x = 0.

72. Average rate of change of 3 on [0, 2], average rate of
change of −1 on [0, 1], and average rate of change of 0
on [−2, 2].

In Exercises 73–78, find the average rate of change of the func-
tion f on the interval [a, b].

73. f (x) = −0.5 + 4.2x, [a, b] = [1, 3.5]

74. f (x) = 3, [a, b] = [−100, 100]

75. f (x) = √
x + 1, [a, b] = [1, 9]

76. f (x) = 1 − x
1 + x 3

, [a, b] = [0, 0.5]

77. f (x) = 1
x

, [a, b] = [0.9, 1.1]

78. f (x) = (x − 2)2 + 3
x

, [a, b] = [−2, 2]

Applications
In Exercises 79–82, sketch and label the graph of a function
that describes the given situation.
79. An island warthog population initially grows quickly, but

as space and food become sparse on the island, the pop-
ulation growth slows down. Eventually the population of
the island levels off at 512 warthogs.

80. Susie is late for calculus class and leaves her dorm in a panic.
She hurries towards the math building, but about halfway
there, she realizes she has left her notebook in her room. She
sprints back to her dorm and gets her notebook. Coming out
of the dorm, she sprains her ankle, so the best she can do is
limp as fast as she can to her classroom.

81. Suppose that after you drink a cup of coffee the amount of
caffeine in your body rises sharply and then decreases by
half every hour. You have one cup of coffee in the morning
and then no more.

82. On a dare, you go skydiving. Gravity causes you to fall
faster and faster as you plummet towards the ground.
When you open your parachute, your speed is drastically
reduced. After opening your parachute you approach the
ground at a constant speed.

(a) Graph your distance from the ground as a function of
time.

(b) Graph your velocity as a function of time.

83. For each situation described, identify any independent
and dependent variables, and express their relationship
as an equation in multivariable function notation (see
Example 9):

(a) H is the length of the hypotenuse of the right triangle
with legs of length a and b.

(b) V is the volume of a rectangular prism (“box”) with
dimensions x, y, and z.

84. If your rain-catching bucket starts empty and collects
3 inches of rain during a 6-hour rainstorm, what is the
average rate of change of the level of rainwater in the
bucket over the 6 hours that it rained? Did the rain nec-
essarily collect in the bucket at a constant rate?

85. A disgruntled pet store owner abandoned an unknown
number of groundhogs on a small island in 1996. Since
then it has been determined that the average rate of
change of the groundhog population was 4 groundhogs
per year and that the groundhog population was a lin-
ear function of time. When the abandoned groundhogs
were discovered in 2001, there were 376 groundhogs on
the island. How many groundhogs did the disgruntled
pet store owner originally leave on the island?

86. The number N of operating drive-in movie theatres in the
state of Virginia in various years y is given in the table
below.

y 1958 1967 1972 1977 1982 1999

N 143 90 102 87 56 9

(a) Find the average rate of change in the number of
drive-in movie theatres in Virginia over each time in-
terval between table entries.

(b) Describe the units and real-world significance of
these average rates of change.

(c) Over which time period was the average rate of
change the most drastic? On average, assuming that
no new theatres were built, how many drive-ins
closed per year during that period?

87. In your first job after graduating from college you make
$36,000 a year before taxes. After four years you get a raise
of $2,500. Two years after that you change jobs and go to
work for a company that pays you $49,000 a year.

(a) Construct a piecewise-defined function that de-
scribes your pretax income in the year that is t years
after you graduate from college.

(b) Write down a function that describes the total
amount of money you will have earned t years after
graduating from college.

(c) How many years after graduating from college will
you have earned a total of one million pre-tax dollars?
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88. The following table shows the year 2000 Federal Tax Rate
Schedule for single filers:

Taxable income: The federal tax owed is:

Over Not over Amount Plus % Of amt. over

$0 $26,250 $0 15% $0

$26,250 $63,550 $3,937 28% $26,250

$63,550 $132,600 $14,381 31% $63,550

$132,600 $288,350 $35,787 36% $132,600

$288,350 —— $91,857 39.6% $288,350

(a) How much tax would you owe if you made $18,000
of taxable income? What if you made $180,000?

(b) What percentage of your taxable income did you owe
in taxes if your taxable income was $18,000? What if
your taxable income was $180,000?

(c) Construct a piecewise-defined function describing
the dollar amount of tax T owed by a single person
with m dollars of taxable yearly income. Each piece
of your function will be linear. Do the pieces “match
up”? Does this make financial sense?

Proofs

89. Use Definition 0.2 to prove that the range of the function
f (x) = 3x − 1 is R.

90. Use Definition 0.1 to prove that a graph represents a func-
tion if and only if it passes the vertical line test.

91. Use Definition 0.5 to prove that a function is one-to-one
if and only if its graph passes the horizontal line test.

92. Use the contrapositive form of Definition 0.5 to prove that
the function f (x) = 3x + 1 is one-to-one.

93. Use the definition of decreasing to prove that the function
f (x) = 1 − 3x is decreasing on (−∞, ∞).

94. Use the definition of increasing to prove that the function

f (x) = 1
3 − x

is increasing on (−∞, 3).

95. Prove that the average rate of change of the linear func-
tion f (x) = −2x + 4 on any interval I is always equal
to −2.

96. Show that the average rate of change of every linear func-
tion f (x) = mx + b is constant, that is, the same over any
choice of interval. (Hint: Use [c, d] to denote the interval,
since the letter b is already used in the equation for f (x).)

Thinking Forward

Evaluations for slopes and derivatives: Evaluate each function at
the values indicated. Simplify your answers if possible.

� If f (x) = 4 − x 2, find

(a)
f (1 + 0.1) − f (1)

0.1
(b)

f (1 + 0.001) − f (1)
0.001

� If f (x) = √
x, find

(a)
f (1 + h) − f (1)

h
(b)

f (x) − f (1)
x − 1

� If q(x, h) = (x + h)2 − x 2

h
, find

(a) q(3, 0.5) (b) q(3, h) (c) q(x, 0.5)

Evaluations for series: Evaluate each function at the values in-
dicated. Simplify your answers if possible.

� If S(x, n) = x − x 2

2
+ x 3

3
− x 4

4
+· · ·+ (−1)n+1 x n

n
, find

(a) S
(

1
2

, 5
)

(b) S
(

1
2

, n
)

(c) S(x, 5)

� If c(x, n) = 1 − x 2

2!
+ x 4

4!
− x 6

6!
+ · · · + (−1)n x 2n

(2n)!
,

find

(a) c(π , 3) (b) c(π , n) (c) c(x, 3)

Tangent lines: The tangent line to the graph of a function f at
x = c is the line that passes through the point (c, f (c)) and has
slope determined by the “direction” that the graph is moving.
If you imagine a graph of y = f (x) as a hilly curve that a small
car is driving on, then the tangent line is the line determined
by the car’s headlights at time x = c. For example, the graph
that follows shows the tangent line for f (x) = x 2 at x = 2.

y

x

4

8

12

16

1 2 3 4

� Find the equation of the tangent line for f (x) = 3x + 1
at x = 2. (Hint: Think about the graph.) Why is this not
surprising?

� Find the equation of the tangent line for f (x) = 4 − x 2

at x = 0. Again, think about the shape of the graph
before you attempt to answer this question.

� Use a graph to visually estimate the slope of the
tangent line for f (x) = x 2 at x = 2. Use this slope es-
timate to write down an approximate formula for the
tangent line to f (x) = x 2 at x = 2.
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0.2 OPERATIONS, TRANSFORMATIONS, AND INVERSES

� Constant multiples, sums, products, quotients, and compositions of functions

� Translations, stretches, compressions, and reflections of graphs

� Inverse functions and their properties

Combinations of Functions

So far we have been thinking of functions as operators, that is, a function f takes an input
x and operates on it to produce an output f (x). We now want to think of functions in a
different way, as objects that can be added to, subtracted from, and multiplied or divided
by one another. Of course, sums, differences, products, and quotients of functions f and g
will be defined in terms of sums, differences, products, and quotients of their outputs f (x)
and g(x).

For example, given two functions f and g, we can add them together and get a new
function f + g. How this new function operates on inputs will depend on how the original
two functions operated. In other words, to define the function f + g, we must say what
f + g does to each input x. If x is in the domain of f and in the domain of g, the obvious
choice is to define ( f + g)(x) to be the sum of f (x) and g(x). For example, if f (x) = x 2

and g(x) = 3x + 1, then for all values of x we define ( f + g)(x) to be f (x) + g(x) = x 2 +
3x + 1. In particular, this means that ( f + g)(2) is equal to the sum of f (2) = 22 = 4 and
g(2) = 3(2) + 1 = 7, so that ( f + g)(2) = 4 + 7 = 11. The other arithmetic operations work
similarly on functions:

DEFINITION 0.7 Arithmetic Combinations of Functions

Suppose f and g are functions and k is a real number.

(a) The constant multiple of f by k is the function kf defined by (kf )(x) = k f (x) for
all x in the domain of f .

(b) The sum of f and g is the function f + g defined by ( f + g)(x) = f (x) + g(x) for all
x in the domains of both f and g.

(c) The product of f and g is the function f · g defined by ( f · g)(x) = f (x)g(x) for
all x in the domains of both f and g.

(d) The quotient of f and g is the function f
g

defined by
(

f
g

)
(x) = f (x)

g(x)
for all x in the

domains of both f and g with g(x) �= 0.

There is an additional operation on functions that we do not have for numbers, called
composition. We compose two functions f and g by taking the output from one function
as the input for the other:

DEFINITION 0.8 The Composition of Two Functions

The composition of two functions f and g is the function f ◦ g defined by

( f ◦ g)(x) = f ( g(x))

for all x in the domain of g such that g(x) is in the domain of f .
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For example, if f (4) = 6 and g(10) = 4, then ( f ◦ g)(10) = f (g(10)) = f (4) = 6. You should
think of compositions as nestings of functions. The notation ( f ◦ g) is pronounced
“f composed with g” or sometimes “f circle g.” The notation f ( g(x)) is pronounced
“f of g of x.”

If g : X → Y and f : Y → Z, then their composition is a function ( f ◦ g) : X → Z
that takes an input x first to g(x) and then to f ( g(x)). For example, if f (x) = x 2 and g(x) =
3x + 1 then

( f ◦ g)(x) = f ( g(x)) = f (3x + 1) = (3x + 1)2.

Notice that although the function f appears first (i.e., on the left) in the notation, it is the
function g that gets applied to the input x first. Composition is not a commutative oper-
ation, which means that f ◦ g is not necessarily the same function as g ◦ f . With the same
example of f (x) = x 2 and g(x) = 3x + 1, if we compose in the other order, we get

( g ◦ f )(x) = g( f (x)) = g(x 2) = 3(x 2) + 1.

CAUTION You may have noticed that the notation for composition looks a bit like multiplication
notation, but there is a key difference. When we want to denote multiplication we will
use a small closed dot or no dot at all. To denote composition of functions we will always
use an open circle.

Transformations and Symmetry

Another way we can obtain new functions from old is through transformations. Given
a function f (x) and constants C and k, we could consider such modifications as f (x) + C,
f (x + C), k f (x), and f (kx). Each of these transformations changes f (x) graphically and alge-
braically.

For example, transforming f (x) to f (x) ± C clearly adds C units to every output of f (x).
This means that the graph of y = f (x) shifts up or down vertically C units everywhere, to
become the graph of y = f (x) + C or y = f (x) − C, as illustrated by the red and green
graphs, respectively, shown in the figure next at the left. If we instead add a constant to the
independent variable and transform f (x) to f (x±C), the graph shifts left or right horizontally
by C units, as illustrated in the green and red graphs shown in the figure at the right. (Note
that the shift to the left for f (x + 2) and to the right for f (x − 2) might be the opposite of
what we might initially expect.) These additive transformations are called translations.

f (x) + 2 shifts up 2
f (x) − 2 shifts down 2

f (x + 5) shifts left 5
f (x − 5) shifts right 5

x

�2

�2
�2

�2

y

2

21�1
x

y
�5�5

�5

5

105�5
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If we instead transform f (x) by multiplication to k f (x), then the graph of y = f (x)
expands or contracts vertically by a factor of k to become the graph of y = k f (x), as shown
in the red and green graphs next at the left. In contrast, if we do the same transformation to
the independent variable and transform f (x) to f (k x), this contracts or expands the graph
of y = f (x) by a factor of k in the horizontal direction, as illustrated in the red and green
graphs next at the right.

2f (x) stretches vertically by 2
1
2

f (x) compresses vertically by 2

f (2x) compresses horizontally by 2

f
( 1

2
x
)

stretches horizontally by 2

x

�2

�2

�1

�2

y

2

1

21

�2

�1

�2

�2

6

x

�2�2 �2 �2

�6 �4

y

642

�6

�2

4

2

�2

�4

What happens if we multiply x or f (x) by a negative number? We can answer that ques-
tion by just looking at what happens when we multiply by −1. Changing f (x) to −f (x)
transforms all positive outputs into negative outputs, and vice versa. The graph of y = f (x)
is then reflected across the x-axis to become the graph of y = −f (x), as shown in the red
graph in the figure that follows. If we instead multiply the independent variable by −1,
then we obtain a reflection across the y-axis, as shown in the green graph.

−f (x) reflects across the x-axis
f (−x) reflects across the y-axis

6

x
�6 �4

y

642

�6

�2

4

2

�2

�4

Now if we want to transform f (x) to f (−2x), for example, we can transform f (x) first to f (2x)
and then by reflection to f (−2x).

The table that follows summarizes the graphical and algebraic effects of the transfor-
mations just discussed. You will prove these general results in Exercises 86–88.
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Transformation Graphical Result Algebraic Result

f (x) + C shifts up C units if C > 0
shifts down C units if C < 0

(x, y) → (x, y + C)

f (x + C) shifts left C units if C > 0
shifts right C units if C < 0

(x, y) → (x − C, y)

k f (x) vertical stretch by k if k > 1
vertical compression by k if 0 < k < 1

(x, y) → (x, ky)

f (k x) horizontal compression by k if k > 1
horizontal stretch by k if 0 < k < 1

(x, y) →
(

1
k

x, y
)

−f (x) graph reflects across the x-axis (x, y) → (x, −y)

f (−x) graph reflects across the y-axis (x, y) → (−x, y)

Some graphs do not change under certain transformations. For example, the graph of
f (x) = x 2 shown next at the left remains the same if we reflect it across the y-axis. We say
that this function has y-axis symmetry. As another example, the graph of g(x) = x 3 shown
at the right remains the same if we reflect it first across the y-axis and then across the x-axis.

f (x) = x 2 preserved under y-axis reflection g(x) = x 3 preserved under 180◦ rotation

y

x
321�1�2�3

3

2

�1

�2

�3

1

y

x
321�1�2�3

3

2

�1

�2

�3

1

It turns out that the double-reflection we just described for g(x) = x 3 is equivalent to rota-
tion around the origin by 180◦. You can try this equivalence out for yourself by physically
double-reflecting and rotating the book while looking at the preceding graph of g(x) = x 3.
You can also see the equivalence by using a piece of paper with a smiley-face drawn on the
front: Flipping the paper vertically and then horizontally is equivalent to rotating the paper
by 180 degrees. A function that is preserved under the transformation of 180◦ rotation is
said to have 180◦ rotational symmetry.

These types of symmetries are also called even symmetry and odd symmetry, since
power functions with even powers all have y-axis symmetry and power functions with odd
powers all have rotational symmetry. Because graphical reflections correspond to multi-
plication by −1 , we can describe functions with even and odd symmetry algebraically as
follows:

DEFINITION 0.9 Even and Odd Functions

A function f is an even function if f (−x) = f (x) for all x in the domain of f .

A function f is an odd function if f (−x) = −f (x) for all x in the domain of f .
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For example, the function f (x) = x 2 is even because for all x we have

f (−x) = (−x)2 = x 2 = f (x).

In contrast, the function g(x) = x 3 is odd because for all x we have

g(−x) = (−x)3 = −(x 3) = −g(x).

Note that some functions are neither even nor odd; for example h(x) = x 2 + x is one such
function, because h(−x) = (−x)2 + (−x) = x 2 − x, which is equal neither to h(x) nor to
−h(x). Consequently, the function h(x) = x 2 +x has neither y-axis symmetry nor rotational
symmetry.

Inverse Functions

The inverse of a function f is a function that undoes the action of f . For example, the
function that adds 1 to each real number can be undone by subtracting 1 from each real
number. If two functions undo each other, then composing them results in the identity
function. This property suggests the following definition:

DEFINITION 0.10 The Inverse of a Function

If f and g are functions such that

g( f (x)) = x, for all x in the domain of f

f ( g(x)) = x, for all x in the domain of g

then g is the inverse of f and we denote g by f −1.

Note that the two conditions in this definition guarantee that if a function g is the inverse
of a function f , then f is the inverse of the function g.

For example, the functions f (x) = x 3 and g(x) = 3
√

x are inverses of each other. Intu-
itively, taking the cube of a number is undone by taking the cube root, and vice versa. It is
easy to verify that these two functions satisfy the condition in Definition 0.10:

g( f (x)) = g(x 3) = 3
√

x 3 = x,

f ( g(x)) = f ( 3
√

x ) = ( 3
√

x )3 = x.

CAUTION It is important to note that although we use the notation x −1 to denote the reciprocal 1
x
, the

notation f −1 does not stand for the reciprocal 1
f

of f . The notation f −1 used in Definition 0.10

is pronounced “f inverse.” We are now using the same notation for two very different
things, but it should be clear from the context which one we mean.

Not all functions have inverses. For example, consider the squaring function f (x) = x 2

on the domain R. Since f (2) = 4 and f (−2) = 4, an inverse of f would have to send the
input 4 to both 2 and −2; this is clearly not a function. As the following theorem asserts, a
function has an inverse only if no two inputs are ever sent to the same output:

THEOREM 0.11 Invertible Functions are One-to-One

A function f has an inverse if and only if f is one-to-one.
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Since a function is one-to-one if and only if it passes the horizontal line test, this theorem
implies that a function has an inverse if and only if it passes the horizontal line test. The
proof follows directly from the properties of inverse functions:

Proof. We first prove that if a function is invertible, then it must be one-to-one. If f is an invertible
function, then it has an inverse f −1. Suppose two domain values a and b are sent by f to the same
output f (a) = f (b). Applying f −1 to both sides, we have

f (a) = f (b) =⇒ f −1( f (a)) = f −1( f (b)) =⇒ a = b.

For the converse, suppose f is one-to-one. Then each element b in the range of f is the output of
exactly one element a from the domain. We can define f −1(b) to be this element a. Since f is one-to-
one, this new relationship f −1 will be a function and we will have f −1(b) = a if and only if f (a) = b.
Therefore if f is one-to-one, then f has an inverse.

The properties of inverses given in the next theorem follow directly from our definition
of an inverse function, that is, from the fact that f −1 undoes the function f . Functions that
have inverses are said to be invertible.

THEOREM 0.12 Properties of Inverses

If f is an invertible function with inverse f −1, then the following statements hold.

(a) Domain( f −1) = Range( f ) and Range( f −1) = Domain( f ).

(b) f −1(b) = a if and only if f (a) = b.

(c) The graph of y = f −1(x) is the graph of y = f (x) reflected across the line y = x.

Proof. The proofs of parts (a) and (c) are left to Exercises 91 and 92. To prove part (b), suppose
f −1(b) = a. Applying f to both sides, we have f ( f −1(b)) = f (a). Since f and f −1 are inverses, their
composition is the identity function. Therefore we have b = f (a), as desired. With an entirely similar
argument we can show that if f (a) = b, then f −1(b) = a; see Exercise 93.

For example, consider the one-to-one function f (x) = √
x + 1. To find a function

that undoes f (x) we solve y = √
x + 1 for y, obtaining x = y2 − 1. Changing notation so

that x is again the independent variable, we see that the inverse of f (x) is f −1(x) = x 2 − 1.
The following three figures illustrate the properties from Theorem 0.12 for f (x) = √

x + 1.

f (x) = √
x + 1 with

domain [−1, ∞), range [0, ∞)
Reflect f (x) across the line

y = x to obtain f −1(x)
f −1(x) = x 2 − 1 with

domain [0, ∞), range [−1, ∞)

x

y

4321�1

1

2

3

4

�1

x

y

4321�1

1

2

3

4

�1

(�1, 0) (1, 0)

(0, �1)

(0, 1)

(2, 3)

(3, 2)

y � x

x

y

4321�1

1

2

3

4

�1

Sometimes a function is not invertible on its largest domain, but is invertible on some
smaller, “restricted” domain. For example, the function g(x) = x 2 − 1 is not invertible on
its usual domain R, but it is invertible on the restricted domain [0, ∞). In general, to find
a restricted domain on which a function is one-to-one, we choose a smaller domain on
which the graph passes the horizontal line test; see Example 4.
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Examples and Explorations

EXAMPLE 1 Combinations of functions and their domains

Describe the domains of each of the combinations of f (x) = 1
x

and g(x) = √
x + 1 that

follow. Then find an expression for the combination function.

(a) 3f (b) f + g (c) f
g

(d) f ◦ g (e) g ◦ f

SOLUTION

(a) The domain of 3f is the same as the domain of f , which is x �= 0. We have (3f )(x) =
3f (x) = 3

(
1
x

)
= 3

x
.

(b) The domain of f is x �= 0, and the domain of g is x ≥ −1. The domain of their sum f +g
is the intersection of these domains, or [−1, 0) ∪ (0, ∞). For values of x in this domain
we have ( f + g)(x) = f (x) + g(x) = 1

x
+ √

x + 1.

(c) We have g(x) = 0 only when x = −1, so the quotient f
g

is defined on the intersection

of the domains of f and g with the point x = −1 removed, or (−1, 0) ∪ (0, ∞). On this
domain we have (

f
g

)
(x) = f (x)

g(x)
= 1/x√

x + 1
= 1

x
√

x + 1
.

(d) For a value x to be in the domain of f ◦ g, it must first be in the domain [−1, ∞) of
g. Then the value of g(x) = √

x + 1 must be in the domain of f , so we must have√
x + 1 �= 0, or in other words, x �= −1. Therefore the domain of f ◦ g is (−1, ∞). For

values of x in this domain we have ( f ◦ g)(x) = f ( g(x)) = f (
√

x + 1 ) = 1√
x + 1

. Notice

that this equation is consistent with our calculation of the domain.

(e) For a value x to be in the domain of g◦f , it must first be in the domain (−∞, 0)∪(0, ∞) of
f . Then the value of f (x) = 1

x
must be in the domain of g, so we must have 1

x
∈ [−1, ∞).

Since 1
x

≥ −1 when x ≤ −1 or x > 0, the domain of g ◦ f is (−∞, −1] ∪ (0, ∞). For

values of x in this domain we have ( g◦ f )(x) = g( f (x)) = g
(

1
x

)
=

√
1
x

+ 1. Again notice

that the domain that we found does make sense with this equation. �

EXAMPLE 2 Vertical and horizontal translations, stretches, and reflections

The figure that follows shows a piece of the graph of f (x) = 3 + 2x − x 2 with five marked
points. Find equations and graphs for each of the given transformations. On each graph,
mark the new coordinates of the five marked points.

y

x
2
4
6
8

642
�2
�4
�6
�8

�10

�2�4�6

(a) f (x) + 3, f (x) − 3, f (x + 3), and f (x − 3)

(b) 2 f (x), 1
2

f (x), f (2x), and f
(

1
2

x
)

(c) −f (x) and f (−x)
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SOLUTION

(a) The equations for the four transformations are

f (x) + 3 = (3 + 2x − x 2) + 3 = 6 + 2x − x 2,

f (x) − 3 = (3 + 2x − x 2) − 3 = 2x − x 2,

f (x + 3) = 3 + 2(x + 3) − (x + 3)2 = −4x − x 2, and

f (x − 3) = 3 + 2(x − 3) − (x − 3)2 = −12 + 8x − x 2.

The graphs of the transformations are shifts up, down, left, and right, respectively, of
the original graph by 3 units, as shown in the red graphs in the following figures:

y = f (x) + 3 y = f (x) − 3

x
62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2
x

62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2

y = f (x + 3) y = f (x − 3)

x
62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2
x

62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2

In each case, every point on the original graph is shifted in some direction by 3 units.
For example, the point (1, 4) on the original graph becomes (1, 7) on the graph of
f (x) + 3, (1, 1) on the graph of f (x) − 3, (−2, 4) on the graph of f (x + 3), and (4, 4)
on the graph of f (x − 3). The other four marked points move in a similar fashion.

(b) Algebraically, the four transformations are given by the equations

2 f (x) = 2(3 + 2x − x 2) = 6 + 4x − 2x 2,

1
2

f (x) = 1
2

(3 + 2x − x 2) = 3
2

+ x − 1
2

x 2,

f (2x) = 3 + 2(2x) − (2x)2 = 3 + 4x − 4x 2, and

f
(

1
2

x
)

= 3 + 2
(

1
2

x
)

−
(

1
2

x
)2

= 3 + x − 1
4

x 2.

The first two transformations cause the graph of f to stretch or compress vertically, and
the last two cause the graph to compress or stretch horizontally, as shown in the red
graphs in the next four figures.

y = 2 f (x) y = 1
2

f (x)

x
62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2
x

62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2

y = f (2x) y = f
(

1
2

x
)

x
62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2
x

82�4

y

6
8

4
2

�4
�2

�6
�8

�10

4 6�2
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In the first two transformations it is the y-coordinate that changes; for example, the
point (1, 4) on the original graph moves to (1, 8) for the first transformation and to
(1, 2) for the second. For the last two transformations, it is the x-coordinate that
changes; for example, (1, 4) moves to

(
1
2

, 4
)

for the third transformation and to (2, 4)

for the fourth. The other marked points move in a similar fashion, with either the
x- or the y-coordinate being multiplied or divided by 2.

(c) The equations for the two transformations are

−f (x) = −(3 + 2x − x 2) = −3 − 2x + x 2 and

f (−x) = 3 + 2(−x) − (−x)2 = 3 − 2x − x 2.

The first transformation gives a vertical reflection across the x-axis, with each marked
point (x, y) moving to the point (x, −y), as shown next at the left. The second transfor-
mation causes a horizontal reflection across the y-axis, with each marked point (x, y)
moving to the point (−x, y), as shown at the right.

y = −f (x) y = f (−x)

x
62�4�6

y

6
8

4
2

�4
�2

�6
�8

�10

4�2
x

62�4�6

y

6
8

2

�4
�2

�6
�8

�10

4�2

4

�

EXAMPLE 3 Testing if functions are even or odd

Determine whether each of the following functions is even, odd, or neither:

(a) f (x) = 1
x

(b) g(x) = x 4 − x 2 (c) h(x) = 2 + x
1 + x 2

SOLUTION

(a) To determine whether f is even or odd (or neither) we must calculate f (−x) and deter-
mine if it is equal to f (x), −f (x), or neither. We have

f (−x) = 1
−x

= − 1
x

= −f (x),

so f (x) = 1
x

is an odd function.

(b) The function g(x) is even because

g(−x) = (−x)4 − (−x)2 = x 4 − x 2 = g(x).

(c) Since we have

h(−x) = 2 + (−x)
1 + (−x)2 = 2 − x

1 + x 2 ,

which is equal neither to h(x) nor to −h(x), this function is neither even nor odd. �
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CHECKING
THE ANSWER

The graphs of the functions f , g, and h are shown next. Note that f has rotational symmetry
about the origin, g has y-axis reflectional symmetry, and h does not have either type of
symmetry.

f (x) = 1
x

is an odd function

g(x) = x 4 − x 2

is an even function
h(x) = 2 + x

1 + x2

is neither even nor odd

x
321�3 �2 �1

3

2

1

�3

�1

�2

y

x
21�2 �1

2

3

1

�1

y

x
321�3 �2 �1

3

2

1

�3

�1

�2

y

EXAMPLE 4 Graphically finding a restricted domain on which a function is invertible

Explain why the function f graphed here is not invertible on its domain. Then find three
restricted domains on which the function does have an inverse.

y

x
321�1�2�3

3

4

2

�1

�2

1

SOLUTION

This function is not invertible on the domain R, because it does not pass the horizontal
line test and therefore fails to be a one-to-one function. However, small enough pieces
of the graph of f do pass the horizontal line test and therefore have an inverse on that
restricted domain. The three graphs that follow show the graph of f on the restricted-
domain domains [−1, 1], (−∞, −1], and [1, ∞), respectively. All three of these restricted
graphs pass the horizontal line test and thus are invertible.

y = f (x) on [−1, 1] y = f (x) on (−∞, −1] y = f (x) on [1, ∞)

x
321�3 �2 �1

3

4

2

1

�1

�2

y

x
321�3 �2 �1

3

4

2

1

�1

�2

y

x
321�3 �2 �1

3

4

2

1

�1

�2

y

�
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EXAMPLE 5 The graphical and algebraic relationships of inverse functions

Consider the function f (x) = 2x − 2.

(a) Explain why f must have an inverse. Then sketch graphs of y = f (x) and y = f −1(x)
and explain the relationship between these two graphs.

(b) Find a formula for f −1(x).

(c) Algebraically verify that f ( f −1(x)) = x and f −1( f (x)) = x.

SOLUTION

(a) f (x) = 2x − 2 has an inverse because it is a non-constant linear function and thus
passes the horizontal line test and is one-to-one. By reflecting the graph of
y = f (x) across the line y = x, we obtain the graph of this inverse; see the follow-
ing figures:

y = f (x) reflect across line y = x y = f −1(x)

x
321 4�2 �1

3

4

2

1

�1

�2

y

x
321 4�2 �1

3

4

2

1

�1

�2

y

x
321 4�2 �1

3

4

2

1

�1

�2

y

Whenever (x, y) is a point on the graph of f , the point (y, x) is on the graph of f −1. For
example, in the preceding graphs we see that (2, 2) and (3, 4) are on the graph of f
while (2, 2) and (4, 3) are on the graph of f −1.

(b) We could find a formula for f −1 by using the two-point form of a line and the two
points shown in the rightmost figure. However, we will find it by solving the equation
y = 2x − 2 for x:

y = 2x − 2 =⇒ y + 2 = 2x =⇒ x = 1
2

( y + 2) = 1
2

y + 1.

If y = f (x), then x = f −1( y); thus we have shown that f −1( y) = 1
2

y + 1. Since we

would rather represent the independent variable of f −1 by the traditional letter x,
replace the y’s in the equation with x’s to get f −1(x) = 1

2
x + 1. Notice that this

equation does appear reasonable, given the slope and y-intercept in the rightmost
graph.

(c) For f (x) = 2x − 2 and f −1(x) = 1
2

x + 1, we have

f ( f −1(x)) = f
(

1
2

x + 1
)

= 2
(

1
2

x + 1
)

− 2 = x + 2 − 2 = x,

f −1( f (x)) = f −1(2x − 2) = 1
2

(2x − 2) + 1 = x − 1 + 1 = x.
�
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TEST YOUR? UNDERSTANDING
� When we write ( f + g)(x) = f (x) + g(x), what kind of objects is the first “+” symbol

adding together? What kind of objects is the second “+” adding together?

� Why does it make sense that adding or multiplying a constant to the dependent variable
of y = f (x) would cause a vertical change in the graph?

� Why does it make sense that the graph of y = f (x − 5) would be obtained by shifting
the graph of y = f (x) to the right, rather than to the left?

� In Definition 0.10 we talk about the inverse of f . If a function has an inverse it has only
one. Can you explain why?

� What is the difference between the inverse and the reciprocal of the function f (x) =
2x − 2 from Example 5? Why might someone wrongly confuse these two functions?

EXERCISES 0.2

Thinking Back

Evaulating functions: Find each of the following evaluations of
the function f (x) = x

x − 1
:

� f (1.5) � f (x 2) � f (x 2 + 1)

� f
(

1
x

)
� f ( f (x)) � f ( f (x 2))

Solving equations: Each equation that follows expresses s in
terms of r. Solve for r (i.e., write r in terms of s).

� s = r − 2
3

� s = 3
r − 2

� s = r + 1
r

� s = r + 2
r + 3

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The domain of a function of the form
f + g is equal to the domain of f or the domain of g,
whichever is smaller.

(b) True or False: The domain of a function of the form f ·g
is equal to the intersection of the domains of f and g.

(c) True or False: If the graph of y = f (x) contains the
point (a, b), then the graph of y = f (x) + C must con-
tain the point (a, b + C).

(d) True or False: If the graph of y = f (x) contains the
point (a, b), then the graph of y = f (x + C) must con-
tain the point (a + C, b).

(e) True or False: The inverse of the one-to-one function
f (x) = x 5 is f −1(x) = x −5.

(f) True or False: If f is an invertible function, then

f −1 = 1
f

.

(g) True or False: Every even function is a function that
involves only even exponents.

(h) True or False: If f is an even function and (0, b) is a
point on the graph of y = f (x), then (0, −b) must also
be on the graph of y = f (x).

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A pair of functions f and g for which f ◦ g happens to
be equal to g ◦ f .

(b) A function f that is its own inverse.
(c) A function f that is both even and odd.

3. Explain what the definition of ( f − g)(x) ought to be.
Show that this definition is just a combination of the
definitions of ( f + g)(x) and k f (x).

4. Suppose (2, 5) is a point on the graph of y = f (x). Fill in
the blanks with the transformed coordinates of this point
under each of the following transformations:

(a) is on the graph of f (x) − 4.

(b) is on the graph of f (x − 4).

(c) is on the graph of −7f (x).

(d) is on the graph of f
( 1

3
x
)

.

(e) is on the graph of 3f (x + 1).

(f) is on the graph of f (3x + 1).

5. Fill in the blanks as appropriate. There may be more than
one possible answer.

(a) If the point is on the graph of y = f (x),
then (4, 2) is on the graph of y = f (x − 3).
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(b) If (3, −2) is on the graph of y = f (x), then (6, −2) is
on the graph of the function .

(c) If (1, 4) is on the graph of an even function y = f (x),
then is also on the graph of y = f (x).

(d) If (−2, 5) is on the graph of an odd function y = f (x),
then is also on the graph of y = f (x).

6. Suppose f has domain [1, ∞) and g has domain [−4, 4].
Suppose also that f (x) is nonzero except at x = 2 and x = 5
and that g(x) is nonzero except at x = −1 and x = 1. Find
the domains of the following functions (if possible):

(a) 3 f + 4 g (b)
1

f g
(c)

1
f + g

7. Suppose f is a function with domain [2, ∞) and range
[−3, 3], and let g be a function with domain [−10, ∞) and
range [0, ∞).
(a) What is the domain of the composition g ◦ f ? Justify

your answer.
(b) It is not possible to determine the domain of f ◦ g in

this example; explain why not. What extra informa-
tion would you have to know to be able to determine
the domain of f ◦ g?

(c) Is there enough information here to determine the
domain of the composition f ◦ f ? What about the
function g ◦ g?

8. Use compositions to answer each of the following:

(a) If g(x) = x 2 and f ( g(x)) = 1
x2 + 1

, what is f (x)?

(b) If h(x) = x 2 − 1 and h(l(x)) = 1
x4

− 1, what is l(x)?

(c) If u(x) = 1
1 − x

and y(u(x)) = 1
1 − x

, what is y(x)?

9. Given that y = f (x) has the graph on the left, use transfor-
mations to find a formula in terms of f (x) for the function
graphed on the right.

y = f (x)

2

1

y

�3

�2

�1
�2�3 �1 321

x

�4

A transformation of y = f (x)

2

1

y

�3

�2

�1
�2�3 �1 321

x

�4

10. Given that y = f (x) has the graph on the left, use transfor-
mations to find a formula in terms of f (x) for the function
graphed on the right.

y = f (x)

2

1

y

�3

�2

�1
�2�3 �1 321

x

�4

A transformation of y = f (x)

2

1

y

�3

�2

�1
�2�3 �1 321

x

�4

11. If f (0) = 2, can f be an odd function? What if f (0) is
undefined? Explain your answers.

12. Determine graphically whether each of the following four
functions is even, odd, or neither.

(a)

3

2

1

y

�2

�1
�2�3 �1 321

x

4

(b)
4

2

1

y

�2

�1
�2�3 �1 321

x

3

(c) y

�2 �1 2
x

1

2

1

�1

�2

(d)
3

2

1

y

�3

�2

�1
�2�3 �1 321

x

13. Complete the entries in the following table two ways:
(a) to make an even function and (b) to make an odd
function:

x -3 -2 -1 0 1 2 3

f (x) 4 -2 1

14. Suppose f is a function with domain R whose right-hand
side is as shown here. Sketch the left-hand side of the
graph so that (a) f is an even function, (b) f is an odd
function, and (c) f is neither even nor odd.

4

2

1

y

�2

�1
�2�3 �1 321

x

3

15. Suppose f is an invertible function with inverse f −1. What
is ( f −1)−1? Explain your answer.

16. Given that f is an invertible function, fill in the blanks.

(a) If f (−1) = 0, then f −1(0) = .

(b) If (2, 3) is on the graph of f , then is on the
graph of f −1.

(c) If is on the graph of f , then (−2, 4) is on
the graph of f −1.
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17. If an invertible function f has domain [−1, 1) and range
(−∞, 3], what are the domain and range of f −1? Sketch
the graph of a function f with the domain and range
given, and on the same set of axes sketch the graph of
its inverse f −1.

18. Consider the function f (x) = x 5 + 4x 3 + 2x + 1. Alina
says that f is invertible, because its graph appears to be
one-to-one. Linda says that f is not invertible, because
she cannot figure out how to solve y = x 5 + 4x 3 + 2x + 1
for x in terms of y. Who is correct, and why?

19. Use the values given in the table to fill in the missing
values. There is only one correct way to fill in the table.

x 0 1 2

f (x) 1

g(x) 0 −2

h(x) 1

(−2f )(x) 4

( f + 2g − h)(x) 4

( fg)(x) 2( g
h

)
(x) 3 −1

20. Use the values given in the table to fill in the missing
values. There is only one correct way to fill in the table.

x 1 2 3 4

f (x) 4 3 1 2

g(x) 3 1 2

h(x) 2 4

( f ◦ g)(x) 4

(h ◦ f )(x) 3 2

( g ◦ g)(x)

( g ◦ f ◦ h)(x) 2

Skills

Given that f (x) = x 2 + 1, g(x) = 1
x − 2

, and h(x) = √
x, find

the domain of each function in Exercises 21–29. Then find an
equation for the function and calculate its value at x = 1.

21. ( f + g)(x) 22. (3f h)(x) 23.
( g

h

)
(x)

24. ( g ◦ f )(x) 25. ( g ◦ g)(x) 26. ( g ◦ h ◦ f )(x)

27. g(x − 5) 28. h(3x) + 1 29. h(3x + 1)

The table that follows defines three functions f , g, and h.
Create additional rows for the table for each function in
Exercises 30–38. (For some transformations, you may have to
use different x-values than the ones in the table.)

x 0 1 2 3 4 5 6

f (x) 0 1 3 2 3 0 2

g(x) 1 0 1 1 0 1 0

h(x) 3 2 0 3 2 3 1

30. ( f − g)(x) 31. 2f (x) + 3 32. ( gh)(x)

33. (h ◦ g)(x) 34. ( g ◦ h)(x) 35. ( f ◦ f ◦ f )(x)

36. −h(−x) 37. g(x − 1) 38. f (2x)

Use the graphs of f and g given here to sketch the graphs
of the functions in Exercises 39–50. Label at least four points
on each graph. Don’t find or use equations for the given
graphs.

y = f (x)

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

y = g(x)

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

39. ( f + g)(x) 40. 2 − 3f (x) 41. g
( 1

2
x
)

42. g(x − 2) + 1 43. (−.5f )(x) 44. ( fg)(x)

45. ( f ◦ g)(x) 46. ( g ◦ f )(x) 47. ( f ◦ f )(x)

48. g−1(x) 49.
(

1
f

)
(x) 50.

(
1
g

)
(x)
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Suppose f and g are the piecewise-defined functions defined
here. For each combination of functions in Exercises 51–56,
(a) find its values at x = −1, x = 0, x = 1, x = 2, and x = 3,
(b) sketch its graph, and (c) write the combination as a
piecewise-defined function.

f (x) =
{

2x + 1, if x ≤ 0
x 2, if x > 0 g(x) =

{−x, if x < 2
5, if x ≥ 2

51. ( f + g)(x) 52. 3 f (x) 53. ( g ◦ f )(x)

54. f (x) − 1 55. f (x − 1) 56. g(3x)

Find two nontrivial ways to write each of the functions in
Exercises 57–60 as a composition f = g ◦ h. “Nontrivial”
means that you should not choose g(x) = x or h(x) = x.

57. f (x) = 3x 2 + 5 58. f (x) = (3x + 5)2

59. f (x) = 6
x + 1

60. f (x) = x 2

√
1 + x 2

Determine algebraically whether the functions in Exer-
cises 61–66 are even, odd, or neither. Afterwards, verify your
answers by inspecting the symmetries of the graphs.

61. f (x) = x 4 + 1 62. f (x) = 1 − 2x

63. f (x) = x 3 + x 2 64. f (x) = − 2
5x 3

65. f (x) = x 3

x 2 + 1
66. f (x) = 1

x + 1

Use Definition 0.10 to show that each pair of functions in
Exercises 67–70 are inverses of each other.

67. f (x) = 2 − 3x and g(x) = −1
3

x + 2
3

68. f (x) = x 2 restricted to [0, ∞) and g(x) = √
x

69. f (x) = x
1 − x

and g(x) = x
1 + x

70. f (x) = 1
2x

and g(x) = 1
2x

For each invertible function in Exercises 71–74, sketch the
graph of f −1 and label three points on its graph. If a function
is not invertible, then find a restricted domain on which it is
invertible and sketch a graph of the restricted inverse. Don’t
find or use equations for the given graphs.

71.

3

2

1

y

�1
�2�3 �1 321

x

4

5

72.

3

2

1

y

�1
�2�3 �1 321

x

4

5

73.
4

2

1

y

�2

�1
�2�3 �1 321

x

3

74.
4

2

y

�3
�2
�1�2 �1 21

x
1

3

�4

Find the inverse of each function in Exercises 75–80. Then
check your answers by graphing f and f −1.

75. f (x) = 1 − 5x
2

76. f (x) = 1.2 − 3.5x

77. f (x) = 1 + 1
x

78. f (x) = 2
x + 1

79. f (x) = x − 1
x + 1

80. f (x) = x − 2
x

Applications
81. CarpetKing charges $4.25 per square foot for its Deluxe

ThriftySoft carpet, plus a flat fee of $200.00 for delivery
and installation.

(a) If a square room measures x feet on a side, and S is
the number of square feet of floor in the room, write
down S as a function of x.

(b) Write down a function that describes the cost C of
carpeting a room enclosing S square feet.

(c) Write down a function that describes the cost C of
carpeting a square room that measures x feet on a
side. Explain how this function is a composition.

82. The first table that follows shows the number of deer in
Happyland Forest Park during 1990–1995. The number of
deer seems to affect the number of ticks in the park; the
second table shows the number of ticks that can be ex-
pected for various numbers of deer in the park.

Year 1990 1991 1992 1993 1994 1995

Deer 183 180 177 179 184 181

Deer 177 178 179 180 181 182 183 184

Ticks 850 855 860 865 870 875 880 885

(a) Use the tables to estimate the number of ticks that
were in the park in 1995.

(b) Make a table that predicts the number of ticks in the
park during 1990–1995.

(c) Explain how your table represents a composition of
the deer and tick tables.

83. Juri’s custom printing t-shirt shop charges $12.00 per
t-shirt plus a $20.00 setup fee.

(a) Write a function that describes the cost C of printing
n t-shirts at Juri’s store.

(b) Show that C(n) is an invertible function.
(c) Find the inverse of C(n). What does this inverse func-

tion n(C) represent in terms of C and n?
(d) Use the function you found in part (c) to calculate the

number of shirts you can produce with $150.
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84. The math teachers at Pinnacle High School have discov-
ered a relationship between the number of hours their
students watch television each day and their students’
scores on math tests. The following table shows this
relationship:

Hours of T.V. 0 1 2 3 4 5 6

Grade on test 92 86 80 74 68 62 56

(a) Find a linear function that describes the grade g on
a student’s math test as a function of the number
of hours t of television that the student watches
every day.

(b) Show that your function g(t) is invertible.
(c) Find the inverse of g(t). What does this function t( g)

represent in terms of t and g?
(d) Use t( g) to predict the number of hours that Calvin

watched television each day given that he scored a 40
on his math test. How much television can he be
allowed to watch each day if his mother wants him
to get an 85 on his next test?

Proofs

85. Prove algebraically that if f (x) = x k, where k is a positive
integer, then the graphs of y = f (2x) and y = 2kf (x) are
the same.

86. Prove that if (x, y) is a point on the graph of y = f (x) and
C is a real number, then

(a) (x, y + C) is a point on the graph of y = f (x) + C.
(b) (x − C, y) is a point on the graph of y = f (x + C).

87. Prove that if (x, y) is a point on the graph of y = f (x) and
k �= 0, then

(a) (x, ky) is a point on the graph of y = k f (x).

(b)
( 1

k
x, y

)
is a point on the graph of y = f (k x).

88. Prove that if (x, y) is a point on the graph of y = f (x),
then

(a) (x, −y) is a point on the graph of y = −f (x).
(b) (−x, y) is a point on the graph of y = f (−x).

89. Prove that every odd function that is defined at x = 0
must pass through the origin.

90. Prove that the algebraic definitions of even and odd
functions imply even and odd graphical symmetry,
by showing that:

(a) If (x, y) is a point on the graph of an even function
y = f (x), then (−x, y) is also on the graph.

(b) If (x, y) is a point on the graph of an odd function
y = f (x), then (−x, −y) is also on the graph.

91. Prove Theorem 0.12 (a) by using Definition 0.10 to argue
that the domain of f −1 is the range of f and that the range
of f −1 is the domain of f .

92. Prove Theorem 0.12 (c) by showing that if f is a function
with an inverse f −1 and (x, y) is on the graph of y = f (x),
then (y, x) is on the graph of y = f −1(x). Why does this
conclusion imply that the graph of f −1(x) is the reflection
of the graph of f (x) across the line y = x?

93. Suppose f is invertible with inverse f −1. Prove that if
f (a) = b, then f −1(b) = a.

94. Prove that an invertible function f can have only one in-
verse. (Hint: Suppose g and h are both inverses of a function f ,
and suppose also that there is some real number x0 for which
g(x0) �= h(x0). Show that these suppositions together produce
a contradiction.)

Thinking Forward

Transformations of trigonometric graphs: Consider the function
f (x) = sin x shown in the following figure:

f (x) = sin x

y

�1

x

1

3π

2�
3π

2
π

2�
π

2
�2π 2π�π π

� Use transformations to sketch the graph of the func-

tion f
(

x + π

2

)
. (The resulting graph will be the

graph of cos x, so this problem illustrates the identity

sin
(

x + π

2

)
= cos x.)

� Use transformations to sketch the graph of the func-
tion f (x + 2π ). What do you notice about this new
graph? What does this mean about the function f (x) =
sin x?

� Sketch the graph of the reciprocal
1

f (x)
of f (x). Be

especially careful when considering what happens at
the places where f (x) has zeros. (The resulting graph
will be the graph of csc x, so this problem illustrates

that
1

sinx
= csc x.)

� The function f (x) = sin x is not one-to-one and there-
fore is not invertible. However, f (x) = sin x is invert-

ible on the restricted domain
[
−π

2
,
π

2

]
. Sketch this re-

stricted function, and then sketch its inverse f −1(x).
(The graph of f −1(x) is the graph of the function known
as sin−1 x.)
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0.3 ALGEBRAIC FUNCTIONS

� Power functions, polynomial functions, and rational functions

� Functions that involve absolute values

� Domains, properties, and graphs of algebraic functions

Power Functions

A function is algebraic if it can be expressed in terms of constants and a variable x by using
only arithmetic operations (+, −, ×, and ÷) and rational constant powers of the variable.
For example,

f (x) = 3x 2 − 5
1 − x

and g(x) = (
√

x + 3
√

x )7/2

are algebraic functions, but h(x) = 2 x and k(x) = sin x are not.All algebraic functions are
combinations and/or compositions of power functions:

DEFINITION 0.13 Power Functions

A power function is a function that can be written in the form

f (x) = Ax k

for some nonzero real number A and some rational number k.

In this definition, the constant k is called the power or exponent, and the constant A is
called the coefficient. Note that the exponent k must be a rational number and the vari-
able must be in the base; this means that, for example, f (x) = x π and f (x) = 10 x are not
considered power functions.

Although power functions all have the simple form f (x) = Ax k, they vary greatly
for different values of exponent k. The following graphs illustrate eight common power
functions:

y = x 2 y = x 3

2
x

y

1�1�2

4

3

2

1

2
x

y

1�1�2

2

1

�1

�2

y = x −1 y = x −2

32
x

y

1�1�2�3

3

2

1

�3

�2

�1

32
x

y

1�1�2�3

4

3

2

1

y = x 1/2 y = x 1/3

321 4
x

y

2

1 32
x

y

1�1�2�3

2

1

�2

�1

y = x 2/3 y = x 3/2

2
x

y

1�1�2

2

1

1 2
x

y

2

3

1
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Although all eight of these graphs represent power functions, they are very different. They
have different domains and ranges, some have asymptotes and some do not, some have
sharp corners and some do not, and so on. However, all power functions with integer
powers or positive rational powers have graphs that look similar to one of these eight
graphs. For example, if k is a positive odd integer, then the graph of f (x) = x k looks a lot
like the graph of x 3. If p

q
is a positive rational number with p even and q odd, and if p

q
< 1,

then the graph of g(x) = x p/q looks a lot like the graph of x 2/3.

Polynomial Functions

A polynomial function is a finite sum of power functions that have nonnegative integer
powers. The following definition provides a general notation:

DEFINITION 0.14 Polynomial Functions

A polynomial function of degree n is a function that can be written in the form

f (x) = a n x n + a n−1 x n−1 + a n−2 x n−2 + · · · + a2 x 2 + a1 x + a 0

for some integer n ≥ 0 and some real numbers a 0, a1, . . . a n with a n �= 0.

As a matter of convention, we also say that the constant zero function f (x) = 0 is a
polynomial function (and that its degree is undefined).

The numbers a i (for i = 0, 1, 2, . . . , n) are called the coefficients of the polynomial. Note
that the coefficient belonging to the term containing the power x i is conveniently named
a i; for example, the coefficient of the x 2 term is called a 2. The coefficient a n belonging to
the highest power of x is called the leading coefficient, and the term a n x n containing the
highest power of x with a n �= 0 is called the leading term. The coefficient a 0 is called the
constant term.

We have special names for some polynomials according to their degrees. For example,
polynomials of degrees 0, 1, 2, 3, 4, and 5 are called constant, linear, quadratic, cubic,
quartic, and quintic polynomials, respectively. (Note: We will require non-zero leading
coefficients for quadratics and higher degrees, but not for linear functions; in other words,
we will consider constant functions to be linear.) Higher degrees can sometimes result in
more roots and more turning points in the graph of a polynomial; for example, examine
the following cubic, quartic, and quintic polynomials:

f (x) = x 3 + x 2 − 2x
= x(x − 1)(x + 2)

g(x) = x 4 + x 3 − 2x 2

= x 2(x − 1)(x + 2)
h(x) = x 5 − x 4 − 4x 3 + 4x 2

= x 2(x − 1)(x + 2)(x − 2)

x
321�3 �2 �1

10

5

�5

y

x
321�3 �2 �1

10

5

�5

y

x
321�3 �2 �1

10

5

�5

y
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A quadratic expression is irreducible if it cannot be factored with real-number coeffi-
cients; that is, ax 2 + bx + c is irreducible if it cannot be written in the form a(x − r 1)(x − r 2)
for some real numbers r 1 and r 2. A quadratic expression ax 2 + bx + c is irreducible if and
only if its discriminant b 2 − 4ac is negative; think about the quadratic formula to see why.
For example, the quadratic expressions x 2 + 5 and x 2 + x + 7 are irreducible.

Note that every linear factor (x − r) of a polynomial corresponds to a root x = r of
that polynomial, since if a polynomial f (x) can be factored as f (x) = (x − r)g(x) for some
other polynomial g(x), then f (r) = (r − r)g(r) = 0 and thus x = r is a root of f (x). It happens
that every polynomial function can be factored into linear factors (which correspond to
real-number roots) and/or irreducible quadratic factors (which do not correspond to real-
number roots). However, just because a polynomial has a factorization doesn’t mean that
we have an easy way to actually factor that polynomial!

The next theorem describes four key graphical properties of polynomial functions. The
first part of Theorem 0.15 is related to the Fundamental Theorem of Algebra, and the proof
of this deep theorem is beyond the scope of this course. We will have the tools to prove the
last three parts of Theorem 0.15 once we study limits and derivatives.

THEOREM 0.15 Graphical Properties of Polynomial Functions

If f is a polynomial function of degree n, then the graph of f

(a) has at most n real roots;
(b) has at most n − 1 local extrema;
(c) is “smooth” and “unbroken” on R and has no asymptotes;
(d) behaves like the graph of its leading term at the “ends” of the graph.

The last part tells us that a polynomial function f (x) = a n x n + a n−1 x n−1 + · · · + a1x + a 0
with a n �= 0 will behave like the power function a n x n at its “ends.” This means that the
“ends” of the graph of a polynomial always looks like one of the four graphs that follow,
depending on whether the degree n is even or odd and whether the leading coefficient an is
positive or negative. The dashed part of each graph indicates that this part of the theorem
does not tell us the behavior in the middle of the graph, only at the ends.

n even, an > 0 n odd, an > 0

x

y

x

y

n even, an < 0 n odd, an < 0

x

y

x

y

Rational Functions

A rational number is a number that can be written as a quotient of the simplest possible
numbers you can imagine, namely, integers. Similarly, a rational function is a quotient of
very simple functions, namely, polynomials.
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DEFINITION 0.16 Rational Functions are Quotients of Polynomials

A rational function is a function that can be written as the quotient of two polynomial
functions

f (x) = p(x)
q(x)

= a n x n + an−1 x n−1 + · · · + a1x + a 0

bm x m + bm−1 x m−1 + · · · + b1x + b 0
,

for any x such that q(x) �= 0.

Graphs of rational functions are highly dependent on small changes in their numerators
and denominators; for example, examine the three following rational functions:

f (x) = (x − 3)
(x − 3)(x − 1)

g(x) = (x − 3)2

(x − 3)(x − 1)
h(x) = (x − 3)2

(x − 3)3(x − 1)

x
1 2 3 4�1

4

3

2

1

�1

�2

�3

�4

y

x
1 2 3 4�1

5

4

3

2

1

�1

�2

�3

y

x
1 2 3 4�1

4

3

2

1

�1

�2

�3

�4

y

We say that the graph of a function f has a hole at x = c if the graph of f is a simple unbroken
curve near x = c, but at x = c there is a point missing from the graph. We will have a more
exact definition of holes in Chapter 1. For example, the first graph shown has a hole at(

3, 1
2

)
, and the second graph has a hole at (3, 0).

As the preceding examples suggest, the domain, roots, and holes in the graph of a
rational function are determined by the roots of its numerator and denominator. These
relationships are made precise in Theorems 0.17 and 0.18.

THEOREM 0.17 Graphical Properties of Rational Functions

If f (x) = p(x)
q(x)

is a rational function, then the following are true.

(a) f is not defined at the roots of q(x).

(b) f has roots at the points that are roots of p(x) but not roots of q(x).

(c) f has holes at the points that are roots of both p(x) and q(x), provided that the roots
have higher or equal multiplicity in p(x) than in q(x).

The multiplicity of a root x = c, as mentioned in the theorem, is the number of times that
(x − c) is a factor of the numerator or of the denominator. The first two parts of this theo-
rem follow directly from properties of polynomials, roots, and quotients; see Exercises 92
and 93. The proof of the third part of the theorem will have to wait until we cover limits in
Chapter 1.

The next theorem describes the asymptotes of rational functions in terms of their
numerator and denominator polynomials. Its proof is necessarily postponed until we
have studied limits in Chapter 1.
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THEOREM 0.18 Vertical and Horizontal Asymptotes of Rational Functions

Suppose f (x) = p(x)
q(x)

is a rational function in which p(x) has degree n and q(x) has

degree m.

(a) f has vertical asymptotes at the roots of q(x), provided that the roots have a higher
multiplicity in q(x) than in p(x).

(b) If n < m, then f has a horizontal asymptote at y = 0.

(c) If n = m, then f has a horizontal asymptote at y = an

bn
, the ratio of the leading

coefficients of p(x) and q(x).
(d) If n > m, then the graph of f does not have any horizontal asymptotes.

For example, looking back at our three graphs of rational functions, we see that the first and
third functions are “bottom heavy” (since the degree of the denominator is greater than
that of the numerator) and have horizontal asymptotes at y = 0. The second is “balanced”
(since the degrees of the numerator and denominator are the same) and has a horizontal
asymptote at y = 1.

Absolute Value Functions

Recall that the absolute value |x| of a real number x is equal to x if x is positive (or zero) and
is equal to −x if x is negative. For example, |2| = 2 while |−2| = −(−2) = 2. Thus we can
write the function f (x) = |x| as a piecewise-defined function by splitting the definition of
|x| into two cases: x ≥ 0 and x < 0.

DEFINITION 0.19 The Absolute Value Function

The absolute value function is the piecewise-defined function |x| =
{

x, if x ≥ 0
−x, if x < 0.

The graph of y = |x| is a combination of the graph of y = x on [0, ∞) and the graph of
y = −x on (−∞, 0):

y = |x|

1 2 3 4−1−2−3−4
−1

1

2

3

4

Of course, in general we might wish to take the absolute value of a more complicated
expression. In the more general case we do exactly the same thing: The absolute value will
leave positive quantities untouched, but flip the sign of negative quantities.

DEFINITION 0.20 The Absolute Value of a Function

The absolute value of a function g(x) is |g(x)| =
{

g(x), for all x with g(x) ≥ 0
−g(x), for all x with g(x) < 0.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 10, 2012 11:11

40 Chapter 0 Functions and Precalculus

For example, consider the function g(x) = 2x − 1 and its absolute value f (x) = |g(x)| =
|2x − 1|. When 2x − 1 is positive or zero (i.e., when x ≥ 1/2) the absolute value remains
2x−1. But when 2x−1 is negative (i.e., when x < 1/2) the absolute value of g(x) is −(2x−1).
The graph of y = |2x − 1| is a combination of the graphs of y = 2x − 1 and y = −(2x − 1),
switching between graphs at x = 1/2, as shown in the following figures:

y = 2x − 1 y = −(2x − 1) y = |2x − 1| =
{

2x − 1, if x ≥ 1/2

−(2x − 1), if x < 1/2

x
0.5 21 1.5�0.5�1

3

2

1

�2

�3

�1

y

3

2

1

�2

�3

�1

y

x
0.5 21 1.5�0.5�1

3

2

1

�2

�3

�1

y

x
0.5 21 1.5�0.5�1

Examples and Explorations

EXAMPLE 1 Finding domains of power functions

Find the domains of the following power functions:

(a) f (x) = 3x −2 (b) g(x) = 1
2

x 3/4 (c) h(x) = 2x 4/5 (d) k(x) = 8x −1/2

SOLUTION

(a) If we rewrite the power function so that any roots or denominators are visible, the
calculation of the domain is obvious: f (x) = 3x −2 = 3

x2
is defined everywhere but at

x = 0, so its domain is (−∞, 0) ∪ (0, ∞).

(b) The function g(x) = 1
2

x 3/4 = ( 4
√

x )3

2
is defined everywhere except x < 0, so its domain

is [0, ∞).

(c) The function h(x) = 2x −4/5 = 2
( 5
√

x )4
is defined for all x �= 0, so its domain is (−∞, 0) ∪

(0, ∞).

(d) The function k(x) = 8x −1/2 = 8√
x

fails to be defined for x = 0 and for x < 0, so its

domain is (0, ∞). �

EXAMPLE 2 Modeling a graph with a polynomial

Explain why the graph shown here could be modeled with a polynomial function f . Then say
what you can about the degree and leading coefficient of f , and find a possible equation for f (x).

y

x
3 421�1�2�3�4

9

6

�3

�6

�9

3
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SOLUTION

This graph is defined on all of R, is smooth and unbroken everywhere, and has no asymp-
totes, so it could be part of the graph of a polynomial function f . We will now find a poly-
nomial whose graph is like the one pictured. Since both ends of the graph point upwards,
we know that the degree of f must be even and the leading coefficient of f must be positive.
The fact that the graph has three roots means that degree of f is at least 3. The fact that the
graph has three local extrema means that the degree of f is in fact at least 4.

The roots of f are x = −3, x = −1, and x = 2. Note that the function f behaves differ-
ently at the root x = 2 than at the other roots. Near x = 2 the graph appears to have a
quadratic type of shape. This means that x = 2 is a repeated root of f and therefore that
(x−2) is a factor of f more than once. Given all of this information, we see that one possible
form for f (x) is

f (x) = A(x + 3)(x + 1)(x − 2)2,

where A is some positive constant. The y-intercept (0, 6) marked on the graph can help us
determine A. Since f (0) = 6, we have

6 = A(0 + 3)(0 + 1)(0 − 2)2 =⇒ 6 = A(3)(1)(4) =⇒ 6 = 12A =⇒ A = 1
2
.

Therefore a function that could have the given graph is the quartic polynomial function

f (x) = 1
2

(x + 3)(x − 1)(x − 2)2. �

EXAMPLE 3 Making a rough graph of a rational function

Without a calculator, sketch a rough graph of the function f (x) = 2(x − 1)2(x + 2)
(x − 1)(x + 1)(x − 2)

.

SOLUTION

By Theorems 0.17 and 0.18, we can see immediately from the factors in the numerator and
denominator that the graph of f will have

� a hole at x = 1;

� a root at x = −2;

� vertical asymptotes at x = −1 and x = 2;

� a horizontal asymptote at y = a n

b n
= 1

2
= 2.

A quick sign analysis tells us where the graph of f is above or below the x-axis. We must
check the sign of f on each subinterval between the roots and non-domain points:

1 2

DNE DNE� �� � �
f

�2 �1

Note that on this number line we include tick-marks only at the locations where f (x) is
zero or does not exist. The unlabeled tick-marks are the locations where f (x) is zero, and
the ones labeled “DNE” are the locations where f (x) is not defined.

Plotting a few key points will help us make a more accurate graph. The y-intercept of
the graph is f (0) = 2. The height of the hole at x = 1 will be the value of f at x = 1 after
cancelling common factors:

2(1 − 1)(1 + 2)
(1 + 1)(1 − 2)

= 2(0)(3)
(2)(−1)

= 0.
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Finally, just to get a value to the right side of the graph, we also calculate f (3) = 5. The
figure that follows at the left shows some of the information we have collected. The figure
at the right uses this information and the sign analysis to fill in a rough sketch of the graph.

Some information about the graph A rough sketch of f

y

x
321�1�2

2

5

y

x
321�1�2

2

5

�

EXAMPLE 4 Writing an absolute value expression as a piecewise-defined function

Write the function f (x) = |x 2 − 1| as a piecewise-defined function, and use this piecewise-
defined function to calculate f (−2), f (0), and f (1). Then sketch a graph of f .

SOLUTION

When x 2 − 1 is positive or zero, its absolute value will remain x 2 − 1. When x 2 − 1 is neg-
ative, its absolute value will be −(x 2 − 1). Therefore we have

f (x) = |x 2 − 1| =
{

x 2 − 1, for all x with x 2 − 1 ≥ 0
−(x 2 − 1), for all x with x 2 − 1 < 0.

Although this is one way to write |x 2 − 1| as a piecewise-defined function, it is difficult to
work with. For example, to evaluate f (−2) we would need to know whether x 2 − 1 ≥ 0 or
x 2 − 1 ≤ 0 when x = −2. To simplify this piecewise-defined function, we need to rewrite
the conditions as intervals of x-values. Since x 2 − 1 ≥ 0 when x ≥ 1 or x ≤ −1, and
x 2 − 1 < 0 when −1 < x < 1, we have

f (x) = | x 2 − 1 | =
⎧⎨
⎩

x 2 − 1, if x ≤ −1
−(x 2 − 1), if − 1 < x < 1

x 2 − 1, if x ≥ 1.

Now we can easily use our formula to calculate f when x = −2, x = 0, and x = 1:

f (−2) = (−2)2 − 1 = 3 (use first case, since −2 ≤ −1)

f (0) = −((0)2 − 1) = 1 (use middle case, since −1 < 0 < 1)

f (1) = (1)2 − 1 = 0 (use last case, since 1 ≥ 1).

Of course, we could have just substituted our x-values into the expression |x 2 − 1|, but
we are practicing writing absolute value functions as piecewise-defined functions. This is
a skill that will come in handy when we later try to differentiate or integrate functions that
involve absolute values.

The graph of y = |x 2 − 1| is the same as the graph of y = x 2 − 1 on the intervals
(−∞, −1] and [1, ∞). On the interval (−1, 1), the quantity |x 2 − 1| has the sign oppo-
site that of x 2 − 1, so its graph is the reflection of the negative parts of x 2 − 1 across the
x-axis, as the following figure shows:
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y

x
321�1�2�3

�1

1

2

3

4

�

TEST YOUR? UNDERSTANDING
� Why is not every power function also a polynomial function?

� Why is every polynomial function also a rational function?

� Given that the degree of a polynomial function is the integer n that represents the
highest power of x with a nonzero coefficient in the polynomial, why do you think we
say that the degree of the zero polynomial (the function f defined by f (x) = 0 for all
values of x) is undefined?

� Calculators are notoriously bad at graphing rational functions. Sometimes they connect
a graph over its vertical asymptotes, and most times the holes of a rational function are
not immediately clear from a calculator graph. What do you think causes calculators to
make these errors?

� In Example 4, why does the function f (x) = |x 2 − 1| have break points at x = −1 and
x = 1?

EXERCISES 0.3

Thinking Back

Basic algebra review: The following exercises will help you
review your skill with exponents, fractions, and factoring.

� Calculate the value of
(

8
27

)−2/3

by hand.

� Write
x −3 − x −2

x −1 − 1
in the form Ax k for some real num-

bers A and k.

� Factor 16x 6 − 81x 2 as much as possible.

� Solve the equation
x 3 + x 2 − 2x
x 2 − 4x + 3

= 0.

� Solve the equation
1

3x 2 − 2x − 1
= 2x − 1.

Factoring after root-guessing: Factor as much as possible each
of the polynomial and rational functions that follow. In these
exercises it is necessary to guess a root and use synthetic di-
vision to get started with factoring.

� f (x) = 2x 4 + 6x 2 − 8

� f (x) = x 3 + 4x 2 − 11x + 6

� f (x) = x 3 + 6x 2 + 3x − 10
x 5 + 3x 4 − x − 3

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The sum of any two algebraic functions
is itself an algebraic function.

(b) True or False: Every power function is a polynomial
function.

(c) True or False: Every polynomial function is a rational
function.

(d) True or False: For any real numbers a and b, the poly-
nomial function f (x) = x 4 − ax 3 + bx + 7 has exactly
four real roots.
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(e) True or False: If f is a polynomial function with k real
roots, then the degree of f must be at most k.

(f) True or False: If f is a polynomial function with k
turning points, then the degree of f must be at least
k + 1.

(g) True or False: A rational function is a quotient of two
polynomials, where the denominator polynomial is
not the zero polynomial.

(h) True or False: Every rational function has a horizontal
asymptote.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Three functions that are algebraic.
(b) Three functions that are algebraic and involve quo-

tients, but are not rational.
(c) Three functions that fail to be algebraic.

3. Sketch graphs of y = −2x 3 and y = 3x −2 by hand, with-
out using a calculator. Label three points on each graph.

4. Sketch graphs of y = −3x1/2 and y = x 2/3 by hand, with-
out using a calculator. Label three points on each graph.

5. Sketch graphs of y = x 2, y = x 4, and y = x 6 by hand,
without a calculator, on the same set of axes. Label three
points on each graph.

6. Sketch graphs of y = x 3, y = x 5, and y = x 7 by hand,
without a calculator, on the same set of axes. Label three
points on each graph.

7. If f (x) = Ax k is a power function, is its reciprocal
1

f (x)
also

a power function? If so, write the reciprocal in the form
Cx r for some real numbers C and r.

8. Suppose f (x) = Ax k is a power function, where k is an
integer.

(a) What must be true about k for f to be one-to-one,
and why?

(b) If f is one-to-one, is its inverse f −1 also a power func-
tion? If so, write the inverse in the form f −1(x) = Cx r

for some real numbers C and r.

9. For the polynomial f (x) = x(3x + 1)(x − 2)2, determine
the leading coefficient, leading term, degree, constant
term, and coefficients a1 and a3.

10. For the polynomial f (x) = x 5(1 − 2x)(1 − x 3), determine
the leading coefficient, leading term, degree, constant
term, and coefficients a1 and a5.

11. Use the quadratic formula to explain why a quadratic
polynomial function f (x) = ax 2 + bx + c is irreducible if,
and only if, the discriminant b2 − 4ac is negative. Then
use the discriminant to show that f (x) = 3x 2 + 2x + 6 is
irreducible.

12. Give an example of each of the following types of poly-
nomials:
(a) A quintic polynomial with only one real root.
(b) A polynomial, all of whose roots are rational, but

non-integer, numbers.
(c) A polynomial with integer coefficients that has four

real roots, only two of which are integers.

13. Explain why the graph of f (x) = (x − 1)(x + 2)
(x + 2)2

does not

have a hole in it at x = −2.

14. Use a calculator to graph the function f (x) = x2 + x − 2
x2 − 4

.

This graph has a hole, where the function is not defined;
determine the location of the hole, and trace along the
graph on your calculator until you find it there.

15. Construct an equation of a rational function whose graph
has no roots, no holes, vertical asymptotes at x = ±2, and
a horizontal asymptote at y = 3.

16. Construct an equation of a rational function whose graph
has a hole at the coordinates (−2, 0), vertical asymptotes
at x = 1 and x = −3, and a horizontal asymptote at y =
−5.

17. Suppose f is a rational function with roots at x = 1 and
x = 3, a hole at x = −1, a vertical asymptote at x = 2, and
a horizontal asymptote at y = −1.

(a) Sketch three possible graphs of f . Make the graphs
as different as you can while still having the given
characteristics.

(b) Write down the equations of three functions f that
have the given properties. (Your equations do not
have to match your graphs from part (a).)

18. Suppose f is a rational function with root at x = −2, holes
at x = 0 and x = 3, a vertical asymptote at x = 1, and no
horizontal asymptote.

(a) Sketch three possible graphs of f . Make the graphs
as different as you can while still having the given
characteristics.

(b) Write down the equations of three functions f that
have the given properties. (Your equations do not
have to match your graphs from part (a).)

For each graph y = f (x) shown, sketch the graph of y = | f (x)|.

19.
3

2

1

y

�3

�2

�1
�2�3 �1 321

x

20.
3

2

1

y

�3

�2

�1
�2�3 �1 321

x

21. y

�3 63
x

15

10

5

�15

�10

�5

22.
3

2

1

y

�3

�2

�1
�2�3 �1 321

x
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23. An alternative definition for the absolute value function
is |x| =

√
x 2. Explain in your own words why this def-

inition is equivalent to that of the absolute value func-
tion given in Definition 0.19. This exercise shows that the
absolute value function is algebraic, not just piecewise
algebraic.

24. Suppose that f is a function defined in pieces, using some
functions g and h, as follows:

f (x) =
{

g(x), if x ≤ 2

h(x), if x > 2.

Will the piece of the graph on (−∞, 2] always “match up”
with the piece of the graph on (2, ∞)? Why or why not?
Use graphs to illustrate your answer.

Skills

Find the domain and the zeroes of each function in Exer-
cises 25–34. Check your answers afterwards with graphs.

25. f (x) = − 1
4

x 2/3 26. f (x) = −4
6
√

x 7/3

27. f (x) = 2x −7/4 28. f (x) = x 3 + x 2 − 2x
2x 3 − x 2 − 6x

29. f (x) = (x 2 − 1)−1/4 30. f (x) = |x 2 − 9|−3/4

31. f (x) =
√

3 − x
3
√

x 2 − 3x − 4
32. f (x) = 4

√
x −2 + 1

33. f (x) =
√

x 2 − 1
x 3 − 7x + 6

34. f (x) = 3x −3

x −1/4 − x 3/4

Find equations for each of the functions described in Exer-
cises 35–42.

35. The linear function whose graph has slope −1 and passes
through the point (3, −2).

36. The linear function whose graph passes through the
points (−2, 1) and (3, −4).

37. The linear function whose graph is parallel to y = 2x + 1
and passes through the point (−1, 4).

38. A power function whose graph passes through (0, 0) and
(1, 3).

39. A power function whose graph passes through (0, 0) and
(2, 8).

40. A polynomial function whose graph passes through
(−2, 0), (1, 0), and (3, 0).

41. A polynomial function whose graph passes through (0, 0),
(2, 0), and (4, 0).

42. A polynomial function whose graph passes through (0, 0),
(2, 0), (4, 0), and (1, 2).

Sketch rough graphs of the functions in Exercises 43–56
without using a calculator or graphing utility. Be as accurate
as you can, and identify any roots, holes, or asymptotes.

43. f (x) = 3
√

x + 1 44. f (x) = (x + 3)2/3 − 2

45. f (x) = 1
16 − x 4 46. f (x) = x 4 − 6x 2 + 9

47. f (x) = 2x 4 − x 3 − x 2 48. f (x) = x 4 − 2x 2 + 1

49. f (x) = x 3 − 2x 2 − 4x + 8 50. f (x) = x(x + 2)(x − 3)2

51. f (x) = 2x 3 + 4x 2 − 6x
x 2 − 4

52. f (x) = (x 2 − 4)2

2x 2 − 3x − 2

53. f (x) = (x + 1)(x − 3)(x + 2)
(x + 2)(x − 3)

54. f (x) = (x − 1)(x + 2)
(x + 1)(x − 1)

55. f (x) = 2x 3 + 3x 2 − 2x − 3
x 2 − 2x − 3

56. f (x) =
∣∣∣∣ x 2(x − 3)(x + 2)

x − 1

∣∣∣∣
Given that the graph of f (x) = sin x is as shown here, sketch
graphs of each of the following absolute value transforma-
tions g(x):

x

y

�1

�2

1

2

3π2ππ�3π �2π �π

57. g(x) = | sin x| 58. g(x) = sin |x|
59. g(x) = −2 + | sin x| 60. g(x) = |− 2 + sin x|
For each graph in Exercises 61–72, find a function whose
graph looks like the one shown. When you are finished, use
a graphing utility to check that your function f has the prop-
erties and features of the given graph.

61. y

x

�1
�2

62.

�2

1

y

x
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63.

1

�2 1

y

x

64.

4

�2 �1 1
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x

65.
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x

66.

6

18

�2 1 3
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x

67.

�5.67

1
�2 2 4

y

x

68.

�1

y

x
2 3

3

69.

4

�1 1

y

x

70.

�3
x

�2 1 2

�3

y

71.

8

�1 1 3

y

x

72.

1

2

�1 1

y

x

Write each function in Exercises 73–80 as a piecewise-defined
function where each piece is defined on an interval of
x-values. Then sketch a labeled graph of each piecewise-
defined function.

73. f (x) = |5 − 3x| 74. f (x) = |1.5x + 2.3|
75. f (x) = |x 2 + 1| 76. f (x) = |x 2 − 4|
77. f (x) = |9 − x 2| 78. f (x) = |3 − 4x + x 2|
79. f (x) = |x 2 − 3x − 4| 80. f (x) = |x 3 + x 2 − 2x|

Applications
The following table for Exercises 81 and 82 describes the
number of cars that were on a particular 1-mile stretch of
Route 97 at t hours after 6:00 a.m. Monday morning:

t (hours after 6:00 a.m.) 0 1 2 3

N (cars on 1 mile of road) 0 28 12 18

81. Make a plot of the data given in the preceding table. Sup-
pose you wanted to find a polynomial function N(t) that
passes through each of the four data points. What is the
minimum degree that this polynomial function could be,
and why?

82. Given the same table of car densities,

(a) Find a polynomial function N(t) that goes through all
four data points in the table. (Hint: Use the data to solve
for the coefficients.)

(b) Overlay a plot of the function N(t) you found with the
plot of the data. Does N(t) look the way you expected
it to?

(c) Use your function N(t) to predict the number of cars
that were on that 1-mile stretch at 7:30 a.m. How
many cars does your function predict will be there at
3 p.m.? On what time interval does your model func-
tion make practical sense?

For Exercises 83 and 84, suppose that Emmy is investigat-
ing a release of toxins from a tank farm on the Hanford
nuclear reservation into groundwater. The groundwater even-
tually forms a spring that runs into the Columbia River. The
following table describes the amount of toxins in the spring:

Years after 2006 0 1 2

Concentration of toxin (ppm) 0.53 0.65 0.74

83. Emmy believes that the leak is not getting larger, so that
the concentration of toxin in the spring will approach
some steady constant value. She wants to make estimates
of the date on which the leak started and of the eventual
steady concentration of toxin. Is a polynomial the best
choice of a function to fit to the data for this purpose?
Why or why not?

84. Emmy wants to fit a rational function of the form

T(t) = at + b
t + d

to the data, where t is the number of years

after 2006.

(a) What values should Emmy use for the coefficients a, b
and d?

(b) Use your rational function model to estimate the date
that the leak started.

(c) What asymptotic value will the concentration ap-
proach as time t increases without bound?

(d) What are the potential problems in using this model?
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Proofs

85. Prove that the composition of two power functions is a
power function.

86. Prove that the product of two power functions is a power
function.

87. Prove that the composition of two linear functions is also
a linear function.

88. Prove that the sum of two polynomial functions is a
polynomial.

89. Prove that the product of two cubic polynomials is a
polynomial of degree six.

90. Prove that the sum or product of two rational functions is
a rational function.

91. Prove that (a) every constant function is linear and
(b) every linear function is a polynomial.

92. Prove that the domain of a rational function f (x) = p(x)
q(x)

is

the set { x | q(x) �= 0 }.
93. Prove that the graph of a rational function f (x) = p(x)

q(x)
has

a root at x = c if and only if p(c) = 0 but q(c) �= 0.

Thinking Forward

Algebra for derivatives: Simplify and rewrite each expression
until you can cancel the h in the denominator:

� (x + h)3 − x 3

h
� (x + h) 1/2 − x 1/2

h

� (x + h)−2 − (x)−2

h
� (x + h)−1/2 − x−1/2

h

Alternative algebra for derivatives: Simplify and rewrite each
expression until you can cancel a common factor from the
numerator and denominator:

� t 3 − x 3

t − x
� t 1/2 − x 1/2

t − x

� t−2 − x −2

t − x
� t−1/2 − x−1/2

t − x

0.4 EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS

� Definitions and properties of exponential and logarithmic functions

� Definitions and properties of trigonometric and inverse trigonometric functions

� Graphs and equations involving transcendental functions

Exponential Functions

Functions that are not algebraic are called transcendental functions. In this book we will
investigate four basic types of transcendental functions: exponential, logarithmic, trigono-
metric, and inverse trigonometric functions. Exponential functions are similar to power
functions, but with the roles of constant and variable reversed in the base and exponent:

DEFINITION 0.21 Exponential Functions

An exponential function is a function that can be written in the form

f (x) = Ab x

for some real numbers A and b such that A �= 0, b > 0, and b �= 1.

There is an important technical problem with this definition: We know what it means to
raise a number to a rational power by using integer roots and powers, but we don’t know
what it means to raise a number to an irrational power. We need to be able to raise numbers
to irrational powers to talk about exponential functions; for example, if f (x) = 2 x, then we
need to be able to compute f (π ) = 2π . One way to think of b x where x is irrational is as a
limit:

b x = lim
r→x

r rational

b r.
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The “lim” notation will be explored more in Chapter 1. For now you can just imagine that
if x is rational, then we can approximate b x by looking at quantities b r for various rational
numbers r that get closer and closer to the irrational number x. For example, 2π can be
approximated by 2 r for rational numbers r that are close to π :

2π ≈ 23.14 = 2314/100 = 100
√

2314 .

As we consider rational numbers r that are closer and closer to π , the expression 2 r will get
closer and closer to 2π ; see Exercise 4. In Chapter 7 we will give a more rigorous definition
of exponential functions as the inverses of certain accumulation integrals.

We will assume that you are familiar with the basic algebraic rules of exponents, for
example that b x+y = b xb y, that b0 = 1 for any nonzero b, and that (b x) y = b xy. Proving
those rules requires the more rigorous definition of exponential functions that we will see
in Chapter 5, so for the moment we will take these algebraic rules as given. From those
basic rules it follows that an exponential function f (x) = b x is one-to-one, and that b x is
never zero for any value of x. (See Exercises 85 and 86.)

Interestingly, the most natural base b to use for an exponential function isn’t a simple
integer, like b = 2 or b = 3. Instead, for reasons that will become clear when we study
derivatives, the most natural base is the irrational number known as e, and the function e x

is therefore called the natural exponential function. An approximation of the number e
to 65 digits is:

2.7182818284590452353602874713526624977572470936999595749669676277 . . . .

Of course, since e is an irrational number, we cannot define it just by writing an ap-
proximation of e in decimal notation; we will define e properly once we cover limits in
Chapter 1.

In Exercise 88 you will prove that every exponential function can be written so that its
base is the natural number e, as the next theorem states:

THEOREM 0.22 Natural Exponential Functions

Every exponential function can be written in the form

f (x) = Ae k x

for some real number A and some nonzero real number k.

Every exponential function has a graph similar to either the exponential growth graph
that follows at the left or the exponential decay graph at the right, depending on the values
of k and b. Of course, if the coefficient A is negative, then the graph of f (x) = Ae k x or
f (x) = Ab x will be a reflection of one of these two graphs over the x-axis.

f (x) = e k x with k > 0,
f (x) = b x with b > 1

f (x) = e k x with k < 0,
f (x) = b x with 0 < b < 1

1

1 2�1�2

y

x

2

3

4

1

1 2�1�2

y

x

2

3

4
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Logarithmic Functions

Since every exponential function b x is one-to-one, every exponential function has an in-
verse. These inverses are what we call the logarithmic functions:

DEFINITION 0.23 Logarithmic Functions as Inverses of Exponential Functions

The inverse of the exponential function b x is the logarithmic function

logb x.

As a special case, the inverse of the natural exponential function e x is the natural log-
arithmic function

loge x = ln x.

We require that the base b satisfy b > 0 and b �= 1, because these are exactly the condi-
tions we must have for y = b x to be an exponential function. In Section 7.7 we will define
logarithms another way, in terms of integrals and accumulation functions.

You should already be familiar with the algebraic rules of logarithms, but we restate
them here in case you need a refresher; see Exercises 90–94 for proofs.

THEOREM 0.24 Algebraic Rules for Logarithmic Functions

For all values of x, y, b, and a for which these expressions are defined, we have

(a) logb x = y if and only if b y = x

(b) logb(b x) = x

(c) blogb x = x

(d) logb(x a) = a logb x

(e) logb(xy) = logb x + logb y

(f) logb

(
1
x

)
= − logb x

(g) logb

(
x
y

)
= logb x − logb y

(h) logb x = log a x
log a b

The first three properties follow from properties of inverse functions, and tell us that logb x
is the exponent to which you have to raise b in order to get x. For example, log2 8 is the
power to which you have to raise 2 to get 8; since 23 = 8, we have log2 8 = 3. All of these
rules also apply to the natural exponential function, because ln x is just logb x with base
b = e.

Properties (d) and (e) follow from the algebraic rules of exponents, and properties (f)
and (g) are their immediate consequences. The final property in Theorem 0.24 is called the
base conversion formula, because it allows us to translate from one logarithmic base to
another. The base conversion formula is especially helpful for converting to base e or base
10 so that we can calculate logarithms on a calculator. For example, log7 2 is equal to ln2

ln7
,

which we can approximate using the built-in “ln” key on a calculator.
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The graphs of logarithmic functions can be obtained easily from the graphs of expo-
nential functions by reflection over the line y = x, resulting in the following graphs:

y = b x and y = logb x with b > 1 y = b x and y = logb x with 0 < b < 1

�1
�2 �1

�2

1

2

3

4

5

1 2 3 4 5

y

x

�1
�2 �1

�2

1

2

3

4

5

1 2 3 4 5

y

x

Trigonometric Functions

There are six trigonometric functions defined as ratios of side lengths of right trian-
gles, or, more generally, as ratios of coordinate lengths on the unit circle. We now pro-
vide a quick review of the definitions of these functions and their graphical and algebraic
properties.

We can place any angle in a standard position in the xy-plane by placing its vertex at
the origin and its initial edge along the positive side of the x-axis, as shown next at the
left. The angle then opens up in either a counterclockwise or clockwise direction until it
reaches its terminal edge. A positive angle is measured counterclockwise from its initial
edge, while a negative angle is measured clockwise from its initial edge.

initial
edge

terminal
  edge

y

x

θ

y

1 unit
x

2π units 1 unit

1 radian

y

x

Now consider the unit circle shown in the center diagram. Since the unit circle has ra-
dius r = 1 unit, its circumference is C = 2πr = 2π (1) = 2π units. That’s a circumference
of approximately 6.283185 units, which certainly is not as nice as a number like 360 that
we can easily divide into integer-sized pieces. However, we can still measure everything in
terms of this circumference by defining a new unit of angle measure called a radian that
represents the size of an angle in standard position whose terminal edge intersects the unit
circle after an arc length of 1 unit, as shown in the diagram at the right.

Since the distance all the way around the circle is 2π units, the distance halfway around
is π units and the distance one-quarter of the way around the circle is π

2
units. This means

that an angle of 90◦ measures π

2
radians, an angle of 180◦ measures π radians, and an
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angle of 360◦ measures, of course, 2π radians. The following three diagrams illustrate some
common positive angles in radian measure around the unit circle:

0π

π

2

3π

2

y

x

π

4
3π

4

5π

4
7π

4

y

x

π

6

π

3

5π

6

2π

3

7π

6
4π

3
5π

3

11π

6

y

x

Of course we can also consider negative angles; for example, the angle that opens up in
the clockwise direction for one quarter of the distance around the bottom half of the circle
has radian measure −π

4
. Its terminal edge intersects the unit circle in the same location as

the angle 7π

4
shown in the middle figure. We can also consider angles that go more than

once around the circle; for example, the angle 5π

2
= 2π + π

2
intersects the unit circle at the

same point as the angle π

2
in the diagram at the left.

Given any angle θ in standard position, the terminal edge of θ intersects the unit circle
at some point (x, y) in the xy-plane. We will define the height y of that point to be the sine
of θ , while the cosine of θ will be defined as the x-coordinate of that point.

DEFINITION 0.25 Trigonometric Functions for Any Angle

Given any angle θ measured in radians and in standard position, let (x, y) be the point
where the terminal edge of θ intersects the unit circle. The six trigonometric functions
of an angle θ are the six possible ratios of the coordinates x and y for θ :

(x, y)
(cos θ, sin θ)

θ

y

x

sin θ = y cos θ = x tan θ = y
x

csc θ = 1
y

sec θ = 1
x

cot θ = x
y

Notice that the sine and cosine functions determine the remaining four trigonometric
functions, since tan θ is the ratio sinθ

cosθ
, and the last three trigonometric functions are the

reciprocals of the first three.

You should already be familiar with the basic trigonometric identities, but they are re-
peated next for your review; see Exercises 95–100 for proofs. The first Pythagorean identity,
the even–odd identities, and the shift identities follow easily from the definitions of the
trigonometric functions. The sum identities follow from a geometric argument that we will
not get into here. The remaining identities can all be proved from the previous identities.
In the following identities we are using the notation sin2 x as shorthand for (sin x)2.
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THEOREM 0.26 Basic Trigonometric Identities

Pythagorean Identities Even–Odd Identities Shift Identities

sin2 θ + cos2 θ = 1 sin(−θ ) = − sin θ cos
(
θ − π

2

)
= sin θ

tan2 θ + 1 = sec2 θ cos(−θ ) = cos θ sin
(
θ + π

2

)
= cos θ

1 + cot 2 θ = csc2 θ tan(−θ ) = − tan θ sin(θ + 2π ) = sin θ

cos(θ + 2π ) = cos θ

Sum Identities Difference Identities

sin (α + β) = sin α cos β + sin β cos α sin (α − β) = sin α cos β − sin β cos α

cos (α + β) = cos α cos β − sin α sin β cos (α − β) = cos α cos β + sin α sin β

Double-Angle Identities Alternative Forms Alternative Forms

sin 2θ = 2 sin θ cos θ cos 2θ = 1 − 2 sin2 θ sin2 θ = 1 − cos 2θ

2

cos 2θ = cos2 θ − sin2 θ cos 2θ = 2 cos2 θ − 1 cos2 θ = 1 + cos 2θ

2

The graphs of the six trigonometric functions are shown next. Each of the graphs in the
second row is the reciprocal of the graph immediately above it. Remember that you can use
the graph of a function f to sketch the graph of its reciprocal 1

f
. In particular, the zeros of f

will be vertical asymptotes of 1
f
, large heights on the graph of f will become small heights

on the graph of 1
f
, and vice versa.

y = sin x y = cos x y = tan x

x

y

�1

�2

1

2

3π2ππ�3π �2π �π

�1

�2

1

2

3π2ππ�3π �2π �π

y

x

�1

�2

�3

1

2

3

3π2ππ�3π �2π �π

y

x

y = csc x y = sec x y = cot x

y

x

�1

�2

�3

1

2

3

3π2ππ�3π �2π �π

y

x

�1

�2

�3

1

2

3

3π2ππ�3π �2π �π

y

x

�1

�2

�3

1

2

3

3π2ππ�3π �2π �π
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Inverse Trigonometric Functions

None of the six trigonometric functions are one-to-one, but after restricting domains we
can construct the so-called inverse trigonometric functions. In this section we will focus
on the inverses of only three of the six inverse trigonometric functions: Those for sine,
tangent, and secant. (The inverses of these functions will be particularly useful to us in
Chapter 5 when we study integration techniques, and the inverses of the remaining three
trigonometric functions would add no more to that discussion.) There are many different
restricted domains that we could use to obtain partial inverses to these three functions. We
need to pick one restricted domain for each function and stick with it. In this text we will
use the restricted domains shown below.

y = sin x restricted to

the domain
[
−π

2
,
π

2

] y = tan x restricted to

the domain
(
−π

2
,
π

2

) y = sec x restricted to

the domain
[
0,

π

2

)
∪

(
π

2
, π

]

�1

1

y

x
ππ

2�
�π π

2 �1

1

y

x
ππ

2�
�π π

2 �1

1

y

x
ππ

2�
�π π

2

Each of these restricted functions is one-to-one and thus invertible. The inverses of these
restricted functions, respectively, are the inverse sine, inverse tangent, and inverse secant
functions.

DEFINITION 0.27 The Inverse Trigonometric Functions

(a) The inverse sine function sin−1 x is the inverse of the restriction of sin x to the

interval
[
−π

2
, π

2

]
.

(b) The inverse tangent function tan−1 x is the inverse of the restriction of tan x to the

interval
(
−π

2
, π

2

)
.

(c) The inverse secant function sec−1 x is the inverse of the restriction of sec x to the

interval
[
0, π

2

)
∪

(
π

2
, π

]
.

Notice that since the inputs to the trigonometric functions are angles, it is the outputs of the
inverse trigonometric functions that are angles. We will interchangeably use the alternative
notations arcsin x, arctan x, and arcsec x for these inverse trigonometric functions.

CAUTION Although we use the notation sin2 x to represent (sin x)2 and the notation x −1 to represent
1
x
, the notation sin−1 x does not represent 1

sinx
. Inverse functions in general have nothing

to do with reciprocals, despite what one might imagine from the notation.

All of the properties of sin−1 x, tan−1 x, and sec−1 x come from the fact that they are
the inverses of the restricted functions sin x, tan x, and sec x. For example, we can graph the
inverse trigonometric functions simply by reflecting the graphs of the restricted trigono-
metric functions over the line y = x, as follows:
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y = sin−1 x y = tan−1 x y = sec−1 x

�1 1

y

x

π

�π

π

2�

π

2

�1 1

y

x

π

�π

π

2�

π

2

�1 1

y

x

π

�π

π

2�

π

2

Although sin−1 x and (restricted) sin x are transcendental functions, their composition
sin−1(sin x) = x is algebraic. This is obvious because these functions are inverses of each
other. However, something more general and surprising is true: The composition of any
inverse trigonometric function with any trigonometric function is algebraic; see Example 4.

Examples and Explorations

EXAMPLE 1 Finding values of transcendental functions by hand

Calculate each of the following by hand, without a calculator:

(a) log6 3 + log6 12 (b) cos 5π

6
(c) sin−1 1

2

SOLUTION
(a) log6 3 is the exponent to which we would have to raise 6 to get 3; think 6? = 3. It is not

immediately apparent what this exponent is. Similarly, it is not clear how to calculate
log6 12 without a calculator. However, using the additive property of logarithms we
can write

log6 3 + log6 12 = log6(3 · 12) = log6 36 = 2.

The final equality holds because 62 = 36.

(b) The diagram that follows at the left shows where the angle 5π

6
lies on the unit circle. If

we draw a line from the point (x, y) where the angle meets the unit circle to the x-axis,
we obtain a triangle whose reference angle is 30◦. Using the known side lengths of
a 30–60–90 triangle with hypotenuse of length 1, we can label the side lengths of our
reference triangle, as shown in the middle figure. This in turn means that we know the

coordinates (x, y) =
(
−

√
3

2
, 1

2

)
of the point at which the terminal edge of θ intersects

the unit circle. Therefore cos 5π

6
= −

√
3

2
.

Angle θ = 5π

6
has

reference angle 30◦
Side lengths of a 30–60–90
triangle with hypotenuse 1

π

6
is the angle in

[
−π

2
,
π

2

]

whose sine is equal to
1
2

30°

θ �
6

5π

6
5π

x

y

1

30°

θ � 6
5π

x

y

(�     ,    )2
3

2
1

2
3

2
1 2

1 6
π

30° x

y
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(c) If θ = sin−1 1
2

, then we must have sin θ = 1
2

. There are infinitely many angles whose

sine is 1
2

, but only one of those angles is in the restricted domain
[
−π

2
, π

2

]
. Thus θ =

sin−1
(

1
2

)
is the unique angle in

[
−π

2
, π

2

]
whose sine is 1

2
, as shown in the figure at

the right. Notice that the triangle must be a 30–60–90 triangle (since its height is 1
2

),

and therefore the angle θ we are looking for must be 30◦ (i.e., π

6
radians). Therefore

sin−1 1
2

= π

6
. �

EXAMPLE 2 Solving equations that involve transcendental functions

Solve each of the following equations:

(a) 3.25(1.72) x = 1000 (b) sin θ = cos θ (c) sec−1 x = π

6

SOLUTION

(a) To solve for x we will isolate the expression (1.72) x and then apply the natural logarithm
so that we can get x out of the exponent:

3.25(1.72) x = 1000 =⇒ ln((1.72) x) = ln
(

1000
3.25

)
=⇒ x ln(1.72) = ln

(
1000
3.25

)
.

It is now a simple matter to solve for

x = ln(1000/3.25)
ln(1.72)

≈ 10.564.

(b) If sin θ = cos θ , then θ is an angle whose terminal edge intersects the unit circle at a
point (x, y) with x = y. The only such points on the unit circle are (

√
2/2,

√
2/2) and

(−√
2/2, −√

2/2), as shown in the left-hand diagram that follows. The angles that end
at these points are all of the form θ = π

4
+πk for some integer k. Thus the solution set

for the equation is
{
. . . , − 3π

4
, π

4
, 5π

4
, 9π

4
, . . .

}
.

Diagram to solve sin θ = cos θ Diagram to solve sec−1 x = π

6

45°
45°

2
2 

2
2 

2
2 

2
2 

5π

4

π

4

x

y

2
1 6

π

30°

y

2
3

x

(c) If sec−1 x = π

6
, then

x = sec π

6
= 1

cos
π

6

= 1√
3/2

= 2√
3
.

The angle π

6
and the reference triangle we used for this calculation are shown in the

right-hand diagram. �
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EXAMPLE 3 Domains and graphs of transcendental functions

Find the domain of each of the functions that follow. Then use transformations to sketch
careful graphs of each function by hand, without a graphing utility.

(a) f (x) = 5 − 3e1.7x (b) g(x) = 1
ln(x − 2)

(c) h(x) = 3 sec 2x

SOLUTION

(a) The domain of f (x) = 5−3e 1.7x is R, and the graph of f is a transformation of the expo-
nential growth function e 1.7x shown in the left-hand figure that follows. y = −3e 1.7x

can be obtained by reflecting the leftmost graph over the x-axis and then stretching
vertically by a factor of 3, as shown in the middle figure. The graph of f (x) = 5 − 3e 1.7x

can now be obtained by shifting the middle graph up five units, as shown at the right.

y = e 1.7x y = −3e 1.7x y = 5 − 3e 1.7x

1

1

x

y

3

4

5

6

2

�1
�1

x

y

1

�3

�4

�5

�6

�2

�1
1�1

x

y

5

1

�1

�2

2

3

4

1�1

(b) For the function g(x) = 1
ln(x − 2)

to be defined at a value x, we must have x − 2 > 0,

and thus x > 2. We must also have ln(x − 2) �= 0, which means that x − 2 �= 1,
and thus x �= 3. Therefore the domain of g(x) is (2, 3) ∪ (3, ∞). To sketch the graph of
g(x) = 1

ln(x − 2)
we start with the graph of y = ln x in the left-hand figure that follows,

translate to the right two units as shown in the middle figure, and then sketch the
reciprocal as shown at the right.

y = ln x y = ln(x − 2) y = 1
ln(x − 2)

�1

�2

�3

1

2

3

1 2 3 4 5
x

y

�1

�2

�3

1

2

3

1 2 3 4 5
x

y

�1

�2

�3

1

2

3

1 2 3 4 5
x

y

(c) The function h(x) = 3 sec 2x = 3
cos2x

is defined when cos 2x �= 0. The latter condi-

tion occurs when 2x is not an odd multiple of π

2
and thus when x is not an odd multiple

of π

4
. Therefore the domain of h(x) is x �= π

4
(2k + 1) for positive integers k. To sketch

the graph of h(x), we start with the graph of y = sec x as follows at the left, stretch ver-
tically by a factor of 3 as shown in the middle figure, and then compress horizontally
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by a factor of 2 as shown at the right. (See Section 0.2 for a review of transformations
of graphs.)

y = sec x y = 3 sec x y = 3 sec 2x

�9

�6

3

6

9

�3
ππ

2�
�π π

2

x

y

ππ

2
�π π

2

�9

�6

3

6

9

�3

x

y

π�π
x

y

3

6

9

�9

�6

�3
�

π

2
π

2

�

EXAMPLE 4 Simplifying compositions of inverse trigonometric and trigonometric functions

Write cos(sin−1 x) as an algebraic function, that is, a function that involves only arithmetic
operations and rational powers.

SOLUTION

If we define θ = sin−1 x, then sin θ = x and θ must be in the interval
[

− π

2
, π

2

]
. Let’s first

consider the case where θ is in the first quadrant
[
0, π

2

]
; the reference triangle for such a θ

is shown next at the left. If we wish θ to have a sine of x, then the length of the vertical
leg of the triangle must be x. The hypotenuse of the triangle is length 1, since we are on the
unit circle. We could also have considered that the sine of θ is “opposite over hypotenuse”;
thus one triangle involving our angle θ could have an opposite side of length x and a
hypotenuse of length 1. Using the Pythagorean theorem, we find that the length of the
remaining leg of the triangle is

√
1 − x 2, as shown at the right:

Reference triangle for

an angle θ in
[
0,

π

2

] Use Pythagorean theorem to
determine length of remaining leg

θ
x

y

x1

1 � x2

θ

Now cos θ is the horizontal coordinate of the point on the unit circle corresponding to θ ,
or, in terms of “adjacent over hypotenuse,” we have

cos θ =
√

1 − x 2

1
=

√
1 − x 2.

The case where θ is in the fourth quadrant, that is, where θ ∈
[

− π

2
, 0

]
, is similar and also

shows that cos θ = √
1 − x 2. Therefore we have shown that cos(sin−1 x) is equal to the

algebraic function
√

1 − x 2. �
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CHECKING
THE ANSWER

To verify the strange fact that cos(sin−1 x) = √
1 − x 2, try evaluating both sides at some

simple x-values. While looking at just a few x-values will not prove that the two expressions
are equal for all x, it will at least give us some evidence that the equality is reasonable.
For example, at x = 0 we have

cos(sin−1 0) = cos 0 = 1 and
√

1 − 02 =
√

1 = 1,

and at x = 1 we have

cos(sin−1 1) = cos
(

π

2

)
= 0 and

√
1 − 12 =

√
0 = 0.

As a less trivial example, consider x = 1
2

. At this value we have

cos
(

sin−1
(

1
2

))
= cos

(
π

6

)
=

√
3

2
and

√
1 −

(
1
2

)2
=

√
1 − 1

4
=

√
3
4

=
√

3
2

.

TEST YOUR? UNDERSTANDING
� Why do we require that A �= 0 and b > 0, b �= 1 in the definition of exponential func-

tions? What would the graphs look like when A = 0, when b < 0, b = 0, or b = 1?

� In the reading we calculated log7 2 by finding ln2
ln7

with a calculator. Would we get the

same answer if we computed log10 2
log10 7

?

� How do you convert from radians to degrees, or vice versa?

� How is the graph of the reciprocal of a function related to the graph of that function?
How can that information be useful for remembering the graphs of y = csc x, y = sec x,
and y = cot x?

� How are the unit-circle definitions of the trigonometric functions related to the right-
triangle definitions of trigonometric functions?

EXERCISES 0.4

Thinking Back

Algebra with exponents: Write each of the following expressions
in the form Ab x for some real numbers A and b:

(a) 32x+1 (b) 5 x23−x (c) (23x−5)4

(d)
1

2(3 x−4) (e)
4(3 x)2

2 x
(f)

(1/8) x

3(23x+1)

Inverse functions: Suppose f and g are inverses of each other.

� What can you say about f ( g(x)) and g( f (x))?

� If f has a horizontal asymptote at y = 0, what can you
say about g?

� If f has a y-intercept at y = 1, what can you say about
g?

Famous triangles, degrees, and radians: The following exercises
will help you review and recall basic trigonometry.

� Suppose a right triangle has angles 30◦, 60◦, and 90◦

and a hypotenuse of length 1. What are the lengths of
the remaining legs of the triangle?

� Suppose a right triangle has angles 45◦, 45◦, and 90◦

and a hypotenuse of length 1. What are the lengths of
the remaining legs of the triangle?

� What is a radian? Is it larger or smaller than a degree?
Compare an angle of 1 degree with an angle of 1 ra-
dian, with both angles in standard position.

� Show each of the following angles in standard posi-
tion on the unit circle, in radians:

(a)
3π

4
(b) −4π

3
(c)

17π

6
(d) 21π
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The function f (x) = 3e0.5x − 2 is an
exponential function.

(b) True or False: Every exponential function f (x) = Aekx

has a horizontal asymptote at y=0.
(c) True or False: For all x > 0, ln(x 3) = 3 ln x.

(d) True or False: For all x > 0,
log2 x
log2 3

= log6 x
log6 3

.

(e) True or False: If (x, y) is the point on the unit circle cor-

responding to the angle − 7π

3
, then x is positive and

y is negative.
(f) True or False: The sine of an angle θ is always equal to

the sine of the reference angle for θ .
(g) True or False: For any x, 1 − cos2(5x 3) = sin2(5x 3).

(h) True or False: sec−1 x = 1
cos−1 x

.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two exponential functions and their inverses.
(b) Two x-values at which tan x is not defined.
(c) Two x-values at which sec−1 x is not defined.

3. What is the definition of an exponential function, and
how is such a function different from a power function?
Is the function f (x) = x x a power function, an exponential
function, or neither, and why?

4. In this exercise we will examine two ways to think of ab

when b is an irrational number, and in particular, we will
consider what the quantity 2π represents.

(a) One way to define 2π is to think of it as a limit. If
we take a sequence a1, a2, a3, . . . of rational numbers
that approaches π , then the sequence 2a1 , 2a2 , 2a3 , . . .
should approach 2π . Said in terms of limits, this
means that

2π = lim
a→π

2a,

where each a is assumed to be a rational number. Can
you think of a sequence of rational numbers that gets
closer and closer to π? (Hint: Think about the decimal
expansion of π .)

(b) Another way to consider 2π is to write it as an infinite
product:

2π = 2 3 21/10 24/100 21/1000 25/10000 29/100000 · · · .

What will the next term in the product be? How
could 2π equal the product of infinitely many
numbers? Wouldn’t that make 2π infinitely large?
Calculate some of the later terms in the product (for
example, 25/10000 or 29/100000), and use these calcula-

tions to argue that even though 2π can be written as a
product of infinitely many numbers, it is not necessar-
ily infinitely large.

5. Approximate 2
√

3 by calculating 2r for rational values r
that get closer and closer to

√
3. (Hint: You can use the dec-

imal expansion of
√

3 to get a sequence of rational numbers
that approaches

√
3.)

6. Why can’t we define the number e just by writing it down
in decimal notation to lots of decimal places?

7. Write the exponential function f (x) = 3e−2x in the form
Ab x for some real numbers A and b. Then write the expo-
nential function g(x) = −2(3x) in the form Ae k x for some
real numbers A and k.

8. Fill in each blank with an interval of real numbers.

(a) An exponential function f (x) = Ab x represents expo-
nential growth if b ∈ and exponential decay if
b ∈ .

(b) An exponential function f (x) = Ae kx represents ex-
ponential growth if k ∈ and exponential decay
if k ∈ .

(c) Suppose that e kx = b x for some real numbers k and
b. Then k ∈ (0, ∞) if and only if b ∈ .

(d) Suppose that e kx = b x for some real numbers k and
b. Then k ∈ (−∞, 0) if and only if b ∈ .

9. In the definition of the logarithmic function logb x, what
are the allowable values for the base b, and why?

10. Fill in the blanks in each of the following statements.

(a) For all x ∈ , log2 x = y if and only if x = .

(b) For all x ∈ , 3log 3 x = .

(c) For all x ∈ , log4(4 x) = .

(d) log2 3 is the exponent to which you have to raise
to get .

11. The graphs of y = log2 x and y = log 4 x are shown here.
Determine which graph is which, without using a calcu-
lator. (Hint: Think about the graphs y = 2 x and y = 4 x, and
then reflect those graphs over the line y = x.)

y = log2 x and y = log 4 x

�2

�1

2

1

41 2 3

y

x

12. State the algebraic properties of the natural logarithm
function that correspond to the eight properties of log-
arithmic functions in Theorem 0.24.
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13. Use algebraic properties of logarithms, the graph of y =
ln x, and your knowledge of transformations to sketch

graphs of f (x) = ln(x 2) and g(x) = ln
( 1

x

)
.

14. Solve the inequality ln
( x + 1

x − 1

)
≥ 0.

15. Give a mathematical definition of sin θ for any angle θ .
Your definition should include the words “unit circle,”
“standard position,” “terminal,” and “coordinate.”

16. Give a mathematical definition of tan θ for any angle θ .
Your definition should include the words “unit circle,”
“standard position,” “terminal,” and “coordinate.”

17. Use the definition of the sine function to explain why

sin
(

π

4

)
is equal to both sin

( 9π

4

)
and sin

(
− 7π

4

)
.

18. Fill in each blank with an interval of real numbers.

(a) The function f (x) = cos x has domain and
range .

(b) The function f (x) = csc x has domain and range
.

(c) The restricted tangent function has domain
and range .

(d) The function f (x) = sec−1 x has domain and
range .

19. Suppose θ is an angle in standard position whose ter-
minal edge intersects the unit circle at the point (x, y).

If y = − 1
3

, what are the possible values of cos θ? If you

know that the terminal edge of θ is in the third quadrant,
what can you say about cos θ? What if the terminal edge
of θ is in the fourth quadrant? Could the terminal edge of
θ be in the first or second quadrant?

20. Show that −√
3 is in the range of the tangent function by

finding an angle θ for which tan θ = −√
3.

21. Describe restricted domains for sin x, tan x, and sec x on
which each function is invertible. Then describe the cor-
responding domains and ranges for arcsin x, arctan x, and
arcsec x.

22. Fill in the blanks:

(a) sin−1 x is the angle in the interval whose
is x.

(b) y = arcsin x if and only if sin y = , for all
x ∈ and y ∈ .

(c) If tan−1 x = θ and tan θ is positive, then θ is in the
quadrant.

(d) If arctan x = θ and sin θ = 1
3

, then cos θ = .

23. Which of the following expressions are defined? Why or
why not?

(a) sin−1
(
− 1

25

)
(b) sin−1 3

2

(c) tan−1 100 (d) sec−1 π

4
24. Sketch a graph of the restricted cosine function on the

domain [0, π ], and argue that this restricted function is
one-to-one. Then sketch a graph of cos−1 x, and list the
domains and ranges of the inverse cos−1 x of this re-
stricted function.

25. Without calculating the exact or approximate values of
the following quantities, use the unit circle to determine
whether each of those quantities is positive or negative:

(a) sin−1
(

− 1
5

)
(b) sin−1

(
− 2

3

)

(c) tan−1 2 (d) sec−1(−5)

26. Find all angles whose secant is 2, and then find
sec−1(2).

Skills

Find the domains of the functions in Exercises 27–32.

27. f (x) = ln(x + 1)
ln(x − 2)

28. f (x) = 1
e x − e 2x

29. f (x) = 1√
ln(x − 1)

30. f (x) = 1
1 − tan θ

31. f (x) = √
sec θ 32. f (x) = 2 sin−1(x − 3)

Find the exact values of each of the quantities in Exercises
33–44. Do not use a calculator.

33. ln
(

1
e 2

)
34. log1/2 4

35. 4 log2 6 − 2 log2 9 36.
log7 9

log7 1/3
+ log3 1

37. tan
(
−π

4

)
38. cos

(
48π

3

)

39. csc
(

− 5π

4

)
40. sin(201π )

41. cos−1(−1) 42. sin−1(−1)

43. arcsec
(

− 2√
2

)
44. arctan

(
− 1√

3

)

Solve the equations in Exercises 45–50 by hand. When you are
finished, check your answers either by testing your solutions
or by graphing an appropriate function.

45. 2 x = 3 x−1 46. 2 = 10
(

1 + 0.19
12

)12x

47. log2

(
x − 1
x + 1

)
= 4 48. sin x = 1

2

49. cos 2x = 1 50. sec−1 x = π
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Suppose that cos(θ ) = 1
6

, sin(θ ) > 0, sin(φ) = 3
5

, and cos(φ) <

0. Use trigonometric identities to identify the quantities in
Exercises 51–56.

51. sin(θ ) 52. sin(−φ)

53. cos(2θ ) 54. sin
(
θ + π

2

)

55. the sign of cos(θ + φ) 56. the sign of tan(θ + π )

Write each of the expressions in Exercises 57–60 as an
algebraic expression that does not involve trigonometric or
inverse trigonometric functions.

57. sin(cos−1 x) 58. tan(tan−1 2x)

59. sec2(tan−1 x) 60. sin2(tan−1 x)

61. sin
(

sec−1 3
x

)
62. csc(2 tan−1 x)

63. cos(2 sin−1 5x) 64. tan2
(

2 sec−1 x
3

)

Sketch graphs of the functions in Exercises 65–72 by hand,
without using a calculator or graphing utility. Indicate any
roots, intercepts, and asymptotes on your graphs.

65. f (x) = −
(

1
2

)x

+ 10 66. f (x) = −0.25(3 x−2)

67. f (x) = 20 − 5e−2x 68. f (x) = log1/2 x

69. f (x) = − log2(x − 3) 70. f (x) = sin(2x) + 4

71. f (x) = 2 cos
(

x − π

4

)
72. f (x) = tan−1(x − 2) + π

For each graph in Exercises 73–78, find a function whose
graph looks like the one shown. When you are finished,

use a graphing utility to check that your function f has the
properties and features of the given graph.
73.

�4 �3 �2 �1 41 2 3

�4

�3

�2

�1

2

3

4

1

y

x

74.

�4 �3 �2 �1 41 2 3

�4

�3

�2

�1

2

3

4

1

y

x

75.

�1

�5

10

5

15

1 2

y

x

76.

�5 �4 �3 �2 �1

�4

�3

�2
�1

2

3

4

1

1 2 3

y

x

77.

π�π
�

π
2

π
2

y

x

�1

1

78.

2

3

4

5

6

1

y

x

�2

�1
π�π π

2
π
2

Applications
79. Ten years ago, Jenny deposited $10, 000 into an in-

vestment account. Her investment account now holds
$22, 609.80. Her accountant tells her that her investment
account balance I(t) is an exponential function.

(a) Find an exponential function of the form I(t) = Ae kt

to model Jenny’s investment account balance.
(b) Find an exponential function of the form I(t) = Ab t

to model Jenny’s investment account balance.
80. Suppose there were 500 rats on a certain island in 1973

and 1,697 rats on the same island 10 years later. Assume
that the number R(t) of rats on the island t years after 1973
is an exponential function.

(a) Find an equation for the exponential function R(t)
that describes the number of rats on the island. Let
t = 0 represent the year 1973.

(b) According to your function R(t), how many rats will
be on the island in 2020?

(c) How long did it take for the population of rats to dou-
ble from its 1973 amount? How long did it take for it
to double again? And again?

81. Suppose a rock sample initially contains 250 grams of the
radioactive substance unobtainium, and that the amount
of unobtainium after t years is given by an exponential
function of the form S(t) = Ae k t. The half-life of unob-
tainium is 29 years, which means that it takes 29 years for
the amount of the substance to decrease by half.

(a) Find an equation for the exponential function S(t).
(b) What percentage of unobtainium decays each year?
(c) How long will it be before the rock sample contains

only 6 grams of unobtainium?
82. Again considering the rock sample described in Exer-

cise 81, answer the following questions:

(a) At one point the rock sample contained 900 grams of
unobtainium; how long ago?

(b) What percentage of the unobtainium will be left in
300 years?

(c) How long will it be before 95% of the unobtainium
has decayed?
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83. Alina is flying a kite and has managed to get her kite so
high in the air that she has let out 400 feet of kite string. If
the angle made by the ground and the line of kite string
is 32 degrees, how high is the kite?

32°

x400 feet

84. Suppose two stars are each 60 light-years away from
Earth. The angle between the line of sight to the first
star and the line of sight to the second star is 2 degrees.
In other words, if you look at the first star, then turn
your head to look at the second star, your head will move
through an angle of 2 degrees. How far apart are the stars?

2°
60 light years

60 light years

x

Proofs

85. Prove by contradiction that every exponential function
f (x) = Ab x has the property that f (x) is never zero. (Hint:
Use what you know about the algebraic properties of exponen-
tial functions, and the fact that if f (x) = Ab x is an exponential
function, then neither A nor b is zero.)

86. Use the definition of a one-to-one function to prove
that every exponential function f (x) = Ab x is one-to-one.
(Hint: Use the fact that b x = 1 only when x = 0.)

87. Use the base conversion formula for logarithms to prove
that the function f (x) = log2 x is equal to the function
g(x) = log3 x only when x = 1.

88. Use logarithms to prove that every exponential function
of the form f (x) = Ab x can be written in the form f (x) =
Ae kx, and vice versa.

89. Use the definition of a logarithmic function y = logb x to
prove that for any b > 0 with b �= 1, the quantity logb 1 is
equal to zero.

In Exercises 90–94, assume that x, y, a, and b are values which
make sense in the expressions involved.

90. Use the fact that logarithmic functions are the inverses of
exponential functions to prove that:

(a) logb x = y if and only if b y = x
(b) logb(b x) = x

(c) blogb x = x

91. Prove that logb(x a) = a logb x. (Hint: Start with logb(x a)
and replace x with blogb x.)

92. Prove that logb(xy) = logb x + logb y. (Hint: Show that this
statement is equivalent to the statement xy = blog b x+log b y,
and prove the new statement instead.)

93. Use the results of the two exericses above to prove that:

(a) logb

( 1
x

)
= − logb x

(b) logb

( x
y

)
= logb x − logb y

94. Prove the base conversion formula logb x = loga x
loga b

. (Hint:

Set y = logb x and then show that b y = x.)

95. Use the unit-circle definitions of sine and cosine to prove
the identity sin2 θ + cos2 θ = 1.

96. Use the first Pythagorean identity sin2 θ + cos2 θ = 1 to
prove the second and third Pythagorean identities listed
in Theorem 0.26. (Hint: To prove the second identity, divide
both sides of the first identity by cos2 x. A similar strategy
will prove the third identity.)

97. Use the unit-circle definitions of the trigonometric func-
tions to prove the even-odd identities and the shift iden-
tities listed in Theorem 0.26.

98. Use the sum identities and the even-odd identities to
prove the difference identities listed in Theorem 0.26.

99. Use the sum identities to prove the double-angle iden-
tities listed in Theorem 0.26. (Hint: Note that 2θ is equal
to θ + θ .)

100. The four identities listed as alternative forms in Theo-
rem 0.26 are alternative ways of writing the double-angle
identity cos 2θ = cos2 θ − sin2 θ . Use this double-angle
identity, algebra, and the Pythagorean identities to prove
these four alternative forms.

Thinking Forward

� A special exponential limit: Use a calculator to approx-

imate
eh −1

h
for the following values of h: (a) h = 0.1;

(b) h = 0.01; (c) h = 0.001. As h gets closer to
zero, what number does your approximations seem to
approach?

� Logarithms with absolute values: Sketch a graph of the
function f (x) = ln |x|. What is the domain of this func-
tion? Is the function even, odd, or neither, and why?

� Rewriting trigonometric expressions: Use the double-

angle identity sin2 x = 1−cos2x
2

to rewrite the expres-

sion sin4 x cos2 x in terms of a sum of expressions of the
form A cos kx. (Note: You’ll have to multiply out some
expressions, and use the double-angle identity more
than once.)
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0.5 LOGIC AND MATHEMATICAL THINKING*

� Logical statements that involve quantifiers or implications

� Using a counterexample to show that a statement is false

� Mathematical proof techniques, including direct proof and proof by contradiction

From Definitions to Theorems

Throughout this chapter we have learned a lot of the mathematical language that we will
use throughout the book. It is now time to start thinking about how to build on our basic
definitions and develop the theory of calculus. Developing such a theory is like building
a skyscraper. With our library of mathematical definitions and language we have set the
foundation. Throughout the rest of this book we will build on that foundation by using
logical, mathematical arguments to develop new theorems. Each new theorem will be the
springboard to a new set of definitions and theorems and will form a new level of our
skyscraper. In this section we present an overview of the logic and proof techniques needed
for our construction of calculus.

In what follows we will keep the definitions simple so that we can focus on the logic
and proofs. Most of the mathematical statements we will discuss will concern real num-
bers and whether they are positive, negative, or zero, or will build upon the following five
definitions:

� An integer is a whole number that is positive, negative, or zero. The set of all integers
is

{. . . , −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, . . .}.

� An integer n is divisible by an integer m if we can write n = km for some integer k.

� An integer n is even if we can write n = 2k for some integer k.

� An integer n is odd if we can write n = 2k + 1 for some integer k.

� A rational number is a real number that can be written in the form p
q

for some

integers p and q, where q �= 0.

Quantifiers

We will often be interested in stating that a property is true all of the time, some of the
time, at least once, or none of the time. Logical quantifiers are the key to making such
statements precisely.

DEFINITION 0.28 The Quantifiers “For All” and “There Exists”

Suppose P is a property that depends on a value x.

(a) For all x, property P means that property P holds for all possible values of x.

(b) There exists x such that property P means that property P is true for at least one
value of x.
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For example, consider the following four quantified statements:

For all real numbers x, 2x + 2 = 2(x + 1).

For all integers x, 1
x

is a rational number.

There exists an integer x such that x is even.

There exists a real number x such that 1
x

= 0.

The first statement is true because its claim that 2x + 2 = 2(x + 1) is indeed true for every
real number x. The second statement is false because its claim that 1

x
is rational fails for

x = 0. The third statement is true because many even integers exist; for example, x = 2.
The fourth statement is false because there is not even one real number x for which 1

x
= 0.

For statements with more than one quantifier, the order in which the quantifiers appear
can make a big difference. For example, consider the following two statements, which differ
only in the order that their quantifiers are listed:

“For all x > 0, there exists y > 0 such that y > x.”

“There exists y > 0 such that for all x > 0, y > x.”

The first statement claims that given any positive number x, we can find some number y
that is greater than x. This is clearly true, since we can always choose y as large as we like
to ensure that it is larger than the given number x. The second statment claims that there
is some positive number y with the property that y is greater than every number x. This is
clearly false, since no real number is greater than all other real numbers.

Implications

Statements of the form “If A, then B” are called implications. Most of the theorems in this
book have the form of an implication. The statement A is called the hypothesis, and the
statement B is called the conclusion. We will use implications in this book so often that
we have a shorthand notation for them, namely, “A ⇒ B” (pronounced “A implies B”).

DEFINITION 0.29 Implications

An implication is a statement of the form if A, then B (also written A ⇒ B). Such an
implication is true if, whenever statement A is true, statement B must also be true.

For example, the statement “If x > 2, then x > 0” is an implication. In the arrow notation
we would write this as “x > 2 ⇒ x > 0,” and as a quantified statement we could equiv-
alently write “For all x > 2, x > 0.” The hypothesis of the statement is “x > 2,” and the
conclusion is “x > 0.” Thus, if we know that x is greater than 2, then we can conclude that
x must also be greater than 0.

Suppose we have statements A and B, and the statement that A implies B. Does this
mean that B also implies A? Not necessarily; for example, it is true that x > 2 implies x > 0,
but the reverse implication is not true: x > 0 does not imply x > 2. When we switch the
roles of the hypothesis and the conclusion of an implication, we have a new implication
called the converse of the original.

DEFINITION 0.30 The Converse of an Implication

The converse of the implication A ⇒ B is the implication B ⇒ A.
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If an implication A ⇒ B and its converse B ⇒ A happen to both be true, then we have a
two-way implication. We write this as A ⇐⇒ B, which is pronounced A if and only if B.
For example, the statements “x is even” and “x is divisible by 2” are equivalent; each implies
the other. Thus we can say that “x is even if and only if x is divisible by 2.”

The converse of an implication is obtained when the hypothesis and conclusion switch
places. This results in a very different statement from the original. However, if the hypoth-
esis and conclusion switch places and are negated, then surprisingly, we end up with a
statement that is equivalent to the original.

DEFINITION 0.31 The Contrapositive of an Implication

The contrapositive of the implication A ⇒ B is the statement (Not B) ⇒ (Not A).

The contrapositive of an implication is always logically equivalent to the original implica-
tion. For example, the contrapositive of the statement “If x is an integer, then x is a rational
number” is the statement “If x is not a rational number, then x is not an integer.” These
two statements are logically equivalent (and happen to be true).

Counterexamples

A statement of the form “for all x, property P” is false if there is even one instance x for
which P is false. Such an instance is called a counterexample. For example, the statement
“all cats are grey” means that every cat is grey. If there is one cat that is not grey, then some
cats are not grey, and this shows that the statement “all cats are grey” is false.

DEFINITION 0.32 Counterexamples

A counterexample is an example of a value that makes a statement false.

THEOREM 0.33 Counterexamples to “For All” Statements

Suppose P is a property that depends on a value x. Then the statement “For all x, we
have P” is false if and only if there is a counterexample for which P is false.

For example, consider the statement “For all integers x, 1
x

is a rational number.” This state-

ment is false, because we can find a counterexample: when x = 0, 1
x

is not a rational

number. In contrast, the statement “For all real numbers x, 2x + 2 = 2(x + 1)” is true, since
there are no counterexamples x that do not have the property 2x + 2 = 2(x + 1). Finding a
counterexample is a fast and easy way to prove that a “for all” statement is false. To show
that a “for all” statement is true, however, requires substantially more work, as we will see
shortly in this section.

What about counterexamples to implications? An implication “A ⇒ B” implies nothing
about the truth or falsehood of A. Moreover, if A is false, then the implication “A ⇒ B”
does not imply anything about statement B. For example, consider the statement “If I am
elected, then I will lower your taxes.” A politician who says this, gets elected, but then
does not lower taxes is a liar. But that same politician is not a liar if he fails to get elected,
whether he raises taxes or not. A statement of the form “If A, then B” is false only if there
is an instance when its hypothesis A is true and yet its conclusion B is false.
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THEOREM 0.34 Counterexamples to Implications

Suppose A and B are statements that depend on a value x. Then the statement “For all x,
if A, then B” is false if and only if we can find a counterexample for which A is true but
B is false.

For example, the quantified implication “For all x, if x is positive, then x is even” is false,
because we can exhibit a counterexample, say, x = 3, that is positive but not even. Notice
that there are some values of x that are positive and even, but not all values of x that are
positive are also even.

Simple Mathematical Proofs

A mathematical proof is a logical argument. Every theorem in this book can be proved
with the use of previous theorems or definitions. Calculus, like mathematics in general, is
about building up a logical system of definitions, facts, and theorems that can be used to
investigate functions and describe real-world phenomena. In mathematics, the “building-
up” is just as important as any eventual application, and it is very important that each new
theorem rest on a foundation of previous theorems and definitions. It is not enough simply
to rely on our intuition of what ought to be true; we must make sure that every statement we
assert is true and that every theorem that we state is mathematically and logically sound.

If you’re wondering “when you’ll ever use this stuff,” perhaps the best answer is that
you probably won’t, at least not directly. You probably won’t need to directly use your stud-
ies of Shakespeare or American history, either. If you pursue a career in science, then you
might use calculus to model or analyze real-world situations. If you become a literary critic,
then you probably won’t need to solve equations, find derivatives, or solve integrals. How-
ever, learning calculus and the theory behind it will help teach you how to think. No matter
what you choose to do, the ability to think logically and solve problems will be an invaluable
asset. That is yet another reason that it is so important not only to learn the calculational
mechanics of calculus or how to apply calculus to real-world problems, but also to under-
stand the theory—and thus the proofs—of calculus.

A proof of a statement or theorem of the form “if A, then B” is a logical argument that
starts by assuming the hypothesis A and then argues that the conclusion B must follow.
We assume that A is true, and then make a clear, concise, logical argument that B must
also be true. We indicate that a proof is over by making a box “ ” or by writing “QED,”
which represents the Latin phrase quod erat demonstrandum, meaning “which was to be
demonstrated.”

As a simple example, we present a proof that every integer that is divisible by 10 must be
an even number. Notice that the proof is not much more than a tour through the definitions
of divisibility and even numbers:

Proof. Suppose n is an integer that is divisible by 10. By the definition of divisibility, this means
that we can write n = 10k for some integer k. Rewriting this equation we have n = 2(5k). Since 5k
is also an integer, n satisfies the definition of an even integer. Therefore n is even.

Notice that the proof has a beginning (state the hypothesis), a middle (make a logical
argument), and an end (make the conclusion). This proof is an example of a direct proof,
which means that the conclusion follows from the hypothesis via a fairly straightforward
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logical argument. In the examples and exercises we will also explore more involved
methods of proof, such as proof by contradiction, in which we show that something is
true by proving that it cannot be false.

Examples and Explorations

EXAMPLE 1 Determining the truth or falsehood of quantified statements

Determine whether each of the quantified statements that follow are true or false. If a
statement is true, explain why. If a statement is false, provide a counterexample.

(a) For all real numbers x, x ≤ 12.

(b) For all real numbers x, x 2 ≥ 0.

(c) There exists a real number x such that x 2 = −1.

(d) For all integers x, there is some integer y such that y = x + 1.

(e) There exists some integer x such that for all integers y, y = x + 1.

(f) For all e > 0, there exists d > 0 such that for all x > 0, if x < d, then x 2 < e.

SOLUTION

(a) This statement is false, because not all real numbers are less than or equal to 12. The
real number x = 20 is a counterexample.

(b) This statement is true, because the square of any real number is nonnegative. Therefore
there are no counterexamples to this statement.

(c) This statement is false, since no real number has a square that is negative. Although
the complex number i = √−1 satisfies x 2 = −1, it is not a real number.

(d) Given any integer x, we can always find some other integer y that is 1 greater than x.
For example, given x = 3, we can choose y = 3 + 1 = 4; given x = 4, we can choose
y = 4 + 1 = 5, and so on. The given statement is true.

(e) There is no integer x for which every other integer y is one greater than x. For example,
for x = 3, there is an integer y that is 1 greater (namely, 3 + 1 = 4), but not all integers
y are one greater than 3. The given statement is false.

(f) This one takes some parsing, but it will be worth it since the given statement is similar
to many of those which we will be studying in Chapter 1. Let’s try an example. If e = 9,
can we find some d such that x < d guarantees that x 2 < 9 for all positive values of x?
Yes; if d = 3 and x > 0, then x < 3 guarantees that x 2 < 9. In fact, for any value of e,
the value d = √

e (as well as many other values of d) will make the implication “if
x <

√
e, then x 2 < e” true, since 0 < x <

√
e guarantees that x 2 < e. Therefore the

given statement is true. �

EXAMPLE 2 Finding counterexamples to false implications

Each of the implications that follow is false. Provide counterexamples.

(a) If x is even, then x ≥ 0.

(b) The converse of the statement in part (a).

(c) The contrapositive of the statement in part (a).

SOLUTION

(a) This statement is false because not all even integers are nonnnegative. One counterex-
ample is x = −2, since −2 is even but −2 is not greater than or equal to 0.
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(b) The converse of the given statement is “If x ≥ 0, then x is even.” This statement is
false because not all nonnegative integers are even. One counterexample is x = 3,
since 3 ≥ 0 but 3 is not even. In this example the original statement in part (a) and the
converse here in part (b) both happened to be false. In general, however, a statement
and its converse may or may not have the same truth value, since they are logically
different statements.

(c) The contrapositive of the statement in part (a) is “If x < 0, then x is odd.” Notice that
the negation of the statement x ≥ 0 is not the statement x ≤ 0; why? The contraposi-
tive statement is false, because not all negative numbers are odd. One counterexample
is x = −2, since −2 < 0 but −2 is not odd. Notice that we can use the same counterex-
ample for the contrapositive as for the statement in part (a), since the contrapositive
is logically equivalent to the original statement. �

EXAMPLE 3 A simple calculational proof

Prove that for all real numbers a and b, a 3 − b 3 = (a − b)(a 2 + ab + b 2).

SOLUTION

Sometimes a proof is nothing more than a calculation, written out with justifications for
the steps:

Proof. For any real numbers a and b,

(a − b)(a 2 + ab + b 2) = a 3 + a 2b + ab 2 − a 2b − ab 2 − b 3 ← multiply out

= a 3 − b 3. ← simplify

Therefore, a 3 − b 3 = (a − b)(a 2 + ab + b 2).

EXAMPLE 4 A direct proof

Prove that the sum of any two rational numbers is a rational number.

SOLUTION

Before writing a proof, it is helpful to write down the hypothesis that you are given and
the conclusion that you are trying to show. While doing this, give names to the variables
involved.

Given: a and b are any rational numbers.

Show: a + b is a rational number.

The first line of your proof will be the “given,” the last will be the “show,” and the middle
will be an argument that uses definitions and logical inferences to connect the two. Since
rational numbers are involved, we should remind ourselves of their definition: Recall that
a number is rational if it can be written as the quotient of two integers. This gives us an
updated and more descriptive version of our “given” and “show”:

Given: a = p
q

and b = r
s

for some integers p, q, r, and s with q �= 0 and s �= 0.

Show: a + b can be written in the form u
v

for some integers u and v with v �= 0.

We now have a very clear road map that indicates how we should prove the implication;
we just have to get from the “given” to the “show” by calculating a + b:
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Proof. Suppose a and b are rational numbers. Then we can write a and b as quotients of integers,
say, a = p

q
and b = r

s
, for some integers p, q, r, and s, where q and s are nonzero. With this notation,

the sum of a and b is
a + b = p

q
+ r

s
= p s + q r

q s
.

Since p, q, r, and s are integers, so are p s + q r and q s. Moreover, since q and s are nonzero, so is
q s. Therefore we have written a + b as a valid quotient of two integers, and thus a + b is a rational
number.

EXAMPLE 5 A proof by contradiction

Prove that the sum of a rational number and an irrational number is irrational.

SOLUTION

Let’s begin by writing out the “given” and “show:”

Given: r is a rational number and x is an irrational number.

Show: r + x is irrational.

A number is irrational if it cannot be written as the quotient of two integers. It can be
difficult to show that we can’t write a number as a quotient of two integers, so instead of
using a direct proof we will use the method of proof by contradiction. This means that
we will show that r + x is irrational by showing that it cannot possibly be rational. More
precisely, we will suppose that r + x is rational and then show that this supposition causes
a logical contradiction.

Proof. Suppose r is a rational number and x is an irrational number. Seeking a contradiction,
suppose that the sum r + x is rational. In the previous example we proved that the sum of two
rational numbers is rational. In addition, if a number r is rational, then so is −r. This means that
the sum of the rational numbers r + x and −r must also be rational, so (r + x) + (−r) = x must be
rational. But this conclusion contradicts our assumption that x is irrational. If r + x is rational, we
are led to a contradiction; therefore r + x must be an irrational number.

TEST YOUR? UNDERSTANDING
� What does it mean to say that a statement A “implies” a statement B? How is it different

than asserting that A and B are true?

� What can you say about an implication if its hypothesis is always false? What about if
its conclusion is always true?

� Why is x = 3 not a counterexample to the implication “If x is even, then x ≥ 0”?

� What does it mean to say that an implication and its contrapositive are logically equiv-
alent statements?

� Define each of the following: counterexample, implication, converse, contrapositive.

EXERCISES 0.5

Thinking Back

Basic definitions: Recall the definitions of each of the following
terms or quantities:

� nonnegative � integer

� rational number � irrational number

� |x| � dist(a, b)

� Types of numbers: Are all integers rational? Are all
rational numbers integers? Is 0 a rational number?
Why or why not?

� Inequality opposites: If x > 9 is false for a particular
value of x, does this necessarily mean that x < 9? Why
or why not? What is the logical opposite of the state-
ment “x > 9”?
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: You can show that “For all x, P” is true
by exhibiting just one value of x that makes P true.

(b) True or False: You can show that “For all x, P” is false
by exhibiting just one value of x that makes P false.

(c) True or False: You can show that “There exists x such
that we have P” is true by exhibiting just one value of
x that makes P true.

(d) True or False: You can show that “There exists x such
that we have P” is false by exhibiting just one value
of x that makes P false.

(e) True or False: The converse of an implication is also an
implication.

(f) True or False: When A is true and B is false, the impli-
cation A ⇒ B is false.

(g) True or False: When A is false and B is true, the impli-
cation A ⇒ B is false.

(h) True or False: When A is false and B is false, the impli-
cation A ⇒ B is false.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A true statement involving two quantifiers, and a
false statement involving two quantifiers.

(b) A statement of the form “For all x, A ⇒ B” that has
just one counterexample, and another that has many
counterexamples.

(c) An implication whose converse is false, and an impli-
cation whose converse is true.

3. Suppose the implication “C ⇒ D” is true. If C is true,
what can you say about D? If C is false, what can you say
about D?

4. Suppose the implication “R ⇒ S” is false. What does this
mean about statements R and S?

5. Consider the statement “Every positive real number is
greater than −2.” Write this statement using the quan-
tifier “for all.” Then write a statement that is logically
equivalent but uses “if . . . , then . . .” instead of quanti-
fiers.

6. Consider the statement “The square of any real number
is nonnegative.” Write this statement using the quantifier
“for all.” Then write a statement that is logically equiva-
lent but uses “if . . . , then . . .” instead of quantifiers.

7. Consider the statement “Every square is a rectangle.” Is
this statement true? Write down the converse and the
contrapositive of the statement, and determine whether
they are true or false.

8. What is the converse of the statement C ⇒ D? Is the con-
verse logically equivalent to the original statement? Why
or why not?

9. What is the contrapositive of the statement P ⇒ Q? Is the
contrapositive logically equivalent to the original state-
ment? Why or why not?

10. Prove, by exhibiting examples, that the sum of two irra-
tional numbers can be either rational or irrational. Why is
it okay to prove “by example” here, whereas it is not okay
to prove “by example” in general?

For Exercises 11–16, suppose you know the following (no
more and no less) about a function f (x) at values of x:

If 0 < |x − 3| < 0.1, then | f (x) + 5| < 0.2.

Note that this implication means that if we know that x
is a solution of the double inequality 0 < |x − 3| < 0.1, then
we can conclude that f (x) is a solution of the inequality
| f (x) + 5| < 0.2. Use the meaning of the given implication
to determine whether or not each of the following related im-
plications is guaranteed to be true. (Hint: You may have to solve
inequalities or sketch number lines and think about distances to
determine the meanings of the hypotheses and conclusions of the
implications.)

11. If 0 < |x − 3| < 0.1, then | f (x) + 5| < 0.1.

12. If 0 < |x − 3| < 0.1, then | f (x) + 5| < 0.3.

13. If 0 < |x − 3| < 0.05, then | f (x) + 5| < 0.2.

14. If 0 < |x − 3| < 0.05, then | f (x) + 5| < 0.1.

15. If 0 < |x − 3| < 0.05, then | f (x) + 5| < 0.4.

16. If 0 < |x − 3| < 0.2, then | f (x) + 5| < 0.4.

Skills

Determine whether each statement in Exercises 17–46 is true
or false. Justify your answers with reasoning, examples, or
counterexamples, as appropriate.
17. There is some real number between 2 and 3.
18. Every real number is a rational number.

19. No real number is both rational and irrational.
20. Every real number is either rational or irrational.

21. For all real numbers x, there is some real number y with
y = x 2.

22. For all real numbers x, there is some real number y with
x = y2.

23. If x is an integer greater than 1, then x ≥ 2.

24. All real numbers are either greater than zero or less than
zero.
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25. For all real numbers x, either x is even or x is odd.
26. For all real numbers x, if x < −2, then x 2 > 4.

27. There exists a real number x such that x ≤ 1 and x ≥ 2.
28. There exist real numbers x and y such that x + y = 4.

29. For all real numbers x, if x is negative, then x is irrational.
30. For all real numbers x, if x is an integer, then x is rational.

31. There exists a real number x such that x ≤ 1 or x ≥ 2.
32. There exists a real number x such that x > 0 and x 2 > 10.

33. For all real numbers a and b, if a < b, then 3a+1 < 3b+1.

34. No rational number is both less than
1
2

and greater

than
1
3

.

35. For all real numbers x, x 2 ≥ 0 and |x| ≥ 0.
36. For all real numbers x, either x ≥ 2 or x ≤ 1.

37. There exist real numbers x < 0 and y < 0 such that
xy < 0.

38. There exist real numbers x > 0 and y > 0 such that
xy = 0.

39. For all real numbers x and y, if x < y, then 2x − 1 < 2y − 1.
40. For all real numbers x and y, if x < y, then x 2 < y2.

41. There exists a real number x such that for all real numbers
y, |y| > x.

42. For all real numbers x and y, xy = 0 if and only if x = 0 or
y = 0.

43. For all real numbers x, there exists some y such that
x < y.

44. For all real numbers x, there exists some y such that
x = y2.

45. For all real numbers x and y,
x
y

= 0 if and only if x = 0.

46. There exists a real number x such that for all real numbers
y, y > x.

Suppose A and B represent logical statements. In Exer-
cises 47–54, write (a) the converse and (b) the contrapositive
of the given statement. Simplify each of your statements if
possible.

47. (Not A) ⇒ B 48. A ⇒ (Not B)

49. (Not B) ⇒ (Not A) 50. (Not A) ⇒ (Not B)

51. (A and B) ⇒ C 52. (A or B) ⇒ C

53. A ⇒ (B and C) 54. A ⇒ (B or C)

In Exercises 55–66, write (a) the converse and (b) the contra-
positive of each statement. Simplify your statements as much
as possible. (c) Provide counterexamples if the original, the
converse, and/or the contrapositive statements are false.
55. If x is a real number, then x is rational.
56. If x ≥ 2, then x ≥ 3.

57. If x > 2, then x ≥ 3.
58. If x ≥ 2, then x ≥ 1.

59. If x is negative, then
√

x is not a real number.
60. If x is rational, then x is not irrational.

61. If x ≤ 0, then |x| = −x.
62. If x < −2, then |x| = −x.

63. If x is not zero, then x 2 > x.
64. If x is positive and rational, then x − 1 is positive and

rational.

65. If x is odd, then there is some integer n such that
x = 2n + 1.

66. If x is even, then there is some integer n such that x = 2n.

Applications
Use logic to solve the puzzles in Exercises 67 and 68. Then
write proofs to argue that your solutions are correct.

67. Linda, Alina, Phil, and Stuart are wearing different-
colored hats: either red, yellow, green, or blue. From the
following statements, determine which hat each person is
wearing:
� Neither boy wears a red hat.
� The oldest person wears a green hat.
� Linda is older than Alina.
� Alina never wears yellow or red.
� Stuart is the youngest and hates blue.

68. Xena, Yolanda, and Zeke each have different favorite
fruits: either apples, bananas, or cantaloupes. Use the
statements that follow to determine which person prefers
which fruit. Then write a proof that argues that your
solution is correct.
� Xena likes bananas better than apples.
� Zeke is allergic to cantaloupes.
� Bananas are the favorite fruit of one of the girls.
� Yolanda likes bananas better than cantaloupes.

Consider an Island X where there are exactly two types
of people: those who always tell the truth (“truth-tellers”)
and those who always lie (“liars”). Given the statements in
Exercises 69–71, determine which people are truth-tellers and
which are liars. Then write a proof which argues that your
solution is correct. (These types of puzzles, based on those made
popular by Raymond Smullyan, are a great avenue to developing
your logical thinking skills and your proof-writing abilities.)

69. You meet Liz, Rein, and Zubin, who say the following:

Liz: “We all tell the truth.”
Rein: “Exactly two of us tell the truth.”

Zubin: “Liz and Rein always lie.”

70. You meet Anita, Bill, and Chris, who say the following:

Anita: “At least one of Bill or Chris tells the truth.”
Bill: “Anita is a liar.”

Chris: “Bill is a liar.”

71. You meet Hyun, Jaan, and Kate, and only Kate and Hyun
have something to say:

Kate: “Hyun and Jaan are liars.”
Hyun: “Kate always tells the truth.”
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Proofs

72. Prove that x 2 − y2 = (x − y)(x + y) for all real numbers
x and y.

73. Prove that if x is an irrational number and r is a rational
number, then the difference x − r must be an irrational
number. You may assume that the sum of two rational
numbers is a rational number.

74. Prove that for any real numbers a and b, |b − a| = |a − b|.
75. Prove that the sum of an even integer and an odd integer

is odd.
76. Prove that the sum of an odd integer and an odd integer

is even.

77. Prove that the product of an even integer and an odd
integer is even.

78. The Pythagorean theorem states that if a right triangle has
legs of length a and b, and a hypotenuse of length c, then
a 2 + b 2 = c2. Use the Pythagorean theorem and the defi-
nition of the distance between two real numbers to prove
that the distance between any two points P = (x1, y1) and
Q = (x2, y2) in the plane is given by the “distance for-

mula”
√

(x2 − x1)2 + ( y2 − y1)2. (Hint: Draw an example of
two points P and Q in the plane, label their coordinates, and
use an appropriate right triangle.)

79. Prove that the midpoint
( x1 + x2

2
,

y1 + y2

2

)
between the

points P = (x1, y1) and Q = (x2, y2) is equidistant from
P and Q.

80. Prove that the numbers

x = −b + √
b 2 − 4ac

2a
and x = −b − √

b 2 − 4ac
2a

found by the quadratic formula are solutions of the
quadratic equation ax 2 + bx + c = 0.

81. Use the fact that
(a/b)
(c/d)

= ad
bc

to prove that
(a/b)

c
= a

bc
. You

may assume that all denominators are nonzero.

82. Use the fact that
( a

b

)( c
d

)
= ac

bd
to prove that c

( a
b

)
= ac

b
.

You may assume that any denominators are nonzero.

83. Follow the steps outlined here to prove the triangle in-
equality: |a + b| ≤ |a| + |b| for any real numbers a
and b:

(a) Argue that for any real number x, |x| =
√

x 2.
(b) Show that (a + b)2 ≤ (|a| + |b|)2. (Hint: Start on the

left-hand side, multiply out the expression, and use the
fact that a ≤ |a| and b ≤ |b|.)

(c) Take the square root of both sides of the inequality
from part (b) (this is valid since both sides are posi-
tive), and use part (a) to show that |a + b| ≤ |a| + |b|.

Use the triangle inequality to prove the following two inequal-
ities, for any real numbers a and b:

84. |a − b| ≤ |a| + |b| 85. |a − b| ≥ |a| − |b|
For Exercises 86 and 87, use the definition of absolute value
and systems of inequalities to prove that for any real numbers
x and c, and any positive real number δ, the given statement
is true:
86. |x − c| < δ ⇐⇒ x ∈ (c − δ, c + δ)

87. |x − c| > δ ⇐⇒ x ∈ (−∞, c − δ) ∪ (c + δ, ∞)

88. The “Monty Hall Problem” is a good example of a prob-
lem about which people’s initial intuition is often incor-
rect. On the game show Let’s Make a Deal, the host, Monty
Hall, presents you with a choice of three doors. Behind
one door is a lot of money. Behind the other two doors
are worthless gag prizes. You pick a door and point at it.
Monty Hall knows which door conceals the prize, and he
opens one of the two doors you didn’t pick to show you a
gag prize. Then he gives you the option of keeping your
original choice or switching your choice to the remaining
door.

(a) Is it better to switch or to stick with your original
choice? Or are both choices equally likely to lead to
the money? Think about this problem for awhile and
convince yourself of an answer before you go on to
the next part.

(b) Come up with a proof or argument that would con-
vince another person of the correct answer.

Thinking Forward

Quantified statements about distance: Show that each of the
statements that follow is true by exhibiting a value of δ that
satisfies each statement. These types of statements will be the
backbone of our study of limits in Chapter 1. (Note: The sym-
bols ε and δ are Greek letters that represent real numbers that
are usually positive and quite small. In the third statement you
will need to write δ in terms of ε.)

� There exists a δ > 0 such that for all x, if x is within
distance δ of 2, then 3x + 1 is within distance 1 of 7.

� There exists a δ > 0 such that for all x, if |x − 2| < δ,
then |3x − 6| < 0.3.

� For all ε > 0, there exists a δ > 0 such that if x is within
distance δ of 3, then 2x is within distance ε of 6.

Negating quantified statements about distance: Write down the
negation of each statement that follows. We will see these
types of statements again when we formally define the con-
cept of a limit in Chapter 1.

� For all M > 0, there exists an N > 0 such that for all x,
if x > N, then x 2 > M.

� For all ε > 0, there exists a δ > 0 such that for all x, if
0 < |x − 2| < δ, then |x 2 − 4| < ε.

� For all ε > 0, there exists a δ > 0 such that for all x, if
0 < |x − 4| < δ, then |√x − 2| < ε.
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� a function from a set A to a set B

� the independent variable and the dependent variable of a
function

� the domain and range of a function, in set notation

� the graph of a function, in set notation and as a picture

� a one-to-one function

� a root of a function and a y-intercept of a function

� a local maximum, local minimum, global maximum, or global
minimum of a function

� an inflection point of a function (in rough terms)

� what it means for a function f to be positive, negative,
increasing, or decreasing on an interval I

� what it means (roughly) for a function f to be concave up
or concave down on an interval I

� the average rate of change of a function f on an interval
[a, b]

� a piecewise-defined function

� the form of a power function and the form of a polynomial
function

� the leading coefficient, the leading term, and the constant
term of a polynomial

� the forms of constant, linear, quadratic, cubic, quartic, and
quintic polynomials

� what it means for a quadratic polynomial to be irreducible,
and how this is related to the discriminant

� the form of a rational function

� what it means for a function to be algebraic

� the piecewise-defined form of f (x) = |x|, and more gen-
erally of a function f (x) = |g(x)|

� what it means for a function to be transcendental

� the form of an exponential function, and when this type of
function represents exponential growth or exponential decay

� the natural exponential function and the natural logarithmic
function

� the algebraic definitions of even functions and odd func-
tions, and the graphical meaning of y-axis symmetry and
rotational symmetry

� what it means for functions f and g to be inverses of each
other

� the sine and cosine of an radian angle θ , in terms of coor-
dinates on the unit circle.

� the tangent, cotangent, secant, and cosecant of a radian
angle θ , in terms of the sine and cosine of θ

� the inverse sine, inverse tangent, and inverse secant func-
tions and their domains and ranges

� the meaning of the quantified statement “For all x, P”

� the meaning of the quantified statement “There exists x
such that P”

� the meaning of the implication “If A, then B”

� the hypothesis and the conclusion of an implication

� the converse and the contrapositive of an implication A ⇒ B

� a counterexample to a statement

Theorems

Fill in the blanks to complete each of the following statements
of theorems:

� y = f (x) + C is shifted C units from y = f (x) if C > 0
and C units from y = f (x) if C < 0.

� y = f (x + C) is shifted C units from y = f (x) if C > 0
and C units from y = f (x) if C < 0.

� y = k f (x) is vertically stretched from y = f (x) by a factor
of k if and vertically compressed by a factor of k if

.

� y = f (k x) is horizontally stretched from y = f (x) by a fac-
tor of k if and horizontally compressed by a factor of
k if .

� If f is an invertible function with inverse f −1, then the
domain of f −1 is and the range of f −1 is .

� If f is an invertible function with inverse f −1, then
f −1(b) = a if and only if , and the graph of y = f −1(x)
can be obtained from the graph of y = f (x) by .

� A function has an inverse if and only if the function is
.

� If f is a polynomial function of degree n, then the graph
of f has at most real roots and at most local
extrema.

� If f is a polynomial function, then the graph of f behaves
like the graph of at its “ends.”
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� If f (x) = p(x)
q(x)

is a rational function, then f is not defined

at the roots of , and f has roots at the points that are
roots of but not roots of .

� If f (x) = p(x)
q(x)

is a rational function, then f has holes at the

points that are roots of , provided that .

� If f (x) = p(x)
q(x)

is a rational function, then f has vertical

asymptotes at the points that are roots of , provided
that .

� Suppose f (x) = p(x)
q(x)

is a rational function with

deg( p(x)) = n and deg(q(x)) = m. If n < m, then f
has a horizontal asymptote at ; if n = m, then f has
a horizontal asymptote at ; and if n > m, then f

.

� A statement of the form “For all x, P” is false if and only
if there is a counterexample in which .

� A statement of the form ”For all x, if A, then B” is false if
and only if there is a counterexample in which but

.

Notation and Algebraic Rules

Notation: Describe the meanings of each of the following
mathematical expressions.

� f : A → B � y = f (x) � f (x) = |x|
� (k f )(x) � ( f + g)(x) � ( f · g)(x)

�
(

f
g

)
(x) � ( f ◦ g)(x) � ( f ◦g◦h)(x)

� A ⇒ B � A ⇐⇒ B �

Logarithms: Fill in the blanks to complete each of the algebraic
rules that follow. You may assume that x, y, b, and a are real
numbers whose values make the expressions well-defined.

� logb x = y ⇐⇒ � logb(b x) =

� blogb x = � logb(x a) =

� logb(xy) = � logb

(
1
x

)
=

� logb

(
x
y

)
= � loga x

logb x
=

Trigonometric identities: Fill in the blanks to complete each of
the following trigonometric identities, where θ , α, and β are
angles measured in radians.

� sin2 θ + cos2 θ = � tan2 θ + 1 =

� 1 + cot 2 θ = � sin(−θ ) =

� cos(−θ ) = � tan(−θ ) =

� cos
(
θ − π

2

)
= � sin

(
θ + π

2

)
=

� sin(θ + 2π ) = � cos(θ + 2π ) =

� sin(α + β) = � cos(α + β) =

� sin(α − β) = � cos(α − β) =

� sin 2θ = � cos 2θ =

Skill Certification: Algebra and Functions

Simplifying expressions: Simplify each expression as much as
possible.

1.
x 3 − 23

x − 2 2.

1
2 + h

− 1
2

h

3.
x − 2

x 3 − x 2 − 4x + 4
4.

x 4 + 27x
x 2 + 5x + 6

5. |−2(x 2 + 1)| 6.
|4 − 2x|

x − 2

7. f (x) = x1/4 + x1/3

x 2 8. f (x) = x −2/5
√

4x
3
√

x

9. f (x) = e2 ln x 10. f (x) = log2(8(4 x))

11. f (x) = tan
(

π

3

)
+ tan

(
π

4

)
12. f (x) =

(
sin−1

(
− 1

2

))2

Solving inequalities: Solve each of the inequalities, and express
each solution set in interval notation.

13. 2x 2 − 7x + 3 > 0 14.
x 2 − 9
x − 1

≤ 0

15.
3

x − 2
< 1 16. |3x − 4| <

1
2

17. |5x − 2| > 1 18. |x 2 − 4| < 2

Finding zeros and undefined values: Determine the x-values for
which each function is zero, and the x-values for which each
function does not exist.

19. f (x) = 2x 2 − 5x + 3
x

20. f (x) = 3x 4 − 6x 3 + x 2

21. f (x) = |x − 2| − 5 22. f (x) = 1
x

− 1
1 − x
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23. f (x) = 2(x − 1)2 − 4
x − 1

24. f (x) = 2x 3 − 1
2x 2 − 5x − 3

25. f (x) = e x(1 − 2e x) 26. f (x) = x ln x
e x − 1

27. f (x) = sin(πx)
x

28. f (x) = 1
sec x + 1

29. f (x) = 1

sin−1 x
30. f (x) = arctan(x 2 + 1)

Finding domains: Find the domain of each function, and ex-
press the domain in interval notation.

31. f (x) =
√

x + 2
x

32. f (x) = √
x 2 − 2x − 3

33. f (x) = x + 2
x 2 − x − 6

34. f (x) = 1√
x 2 − 3x

35. f (x) = √
x + √

2 − x 36. f (x) =
√

x − 3
1 − x

37. f (x) = 1
e−1/2x

38. f (x) = ln
( x + 1

x − 1

)

39. f (x) = 1
1
2

− sin x
40. f (x) = tan−1 x

π − sec−1 x

Graphs of basic functions: Sketch the graph of each function by
hand, using your knowledge of simple graphs and transfor-
mations. Label any important points or features.

41. f (x) = 3 − 2x 42. f (x) = 4(x − 1) + 2

43. f (x) = √
x − 3 44. f (x) = (x − 3)2 + 1

45. f (x) = 2x 3 − 1 46. f (x) = √
1 − x

47. f (x) = 1
x

− 2 48. f (x) = 1
x − 2

49. f (x) = |4x − 3| 50. f (x) = |x 2 − 9|

51. f (x) = −2x1/3 52. f (x) = 2x −1/3

53. f (x) = −x(x + 1)2 54. f (x) = 3x 3 + x 2 − 3x − 1

55. f (x) = (x − 1)(x + 2)
(x − 1)2 56. f (x) = x 3 + x 2 + x + 1

2x 2 + x − 1

57. f (x) = 2 x 58. f (x) =
(

1
2

)x

59. f (x) = e3x 60. f (x) = e−3x

61. f (x) = 1 − 5e x 62. f (x) = −3e x−1

63. f (x) = ln x 64. f (x) = log2 x

65. f (x) = log1/2 x 66. f (x) = 1 − 3 ln x

67. f (x) = sin x 68. f (x) = tan x

69. f (x) = sec x 70. f (x) = 2 sin
(

x − π

4

)

71. f (x) = sin−1 x 72. f (x) = tan−1 x

Capstone Problems

A. Transformations of cubic functions: Prove algebraically that
a vertical or horizontal shift or stretch of a cubic func-
tion is also a cubic function. That is, prove that if f (x) is a
cubic function, then so are f (x) + C, f (x + C), k f (x), and
f (k x).

B. Peeking forward to derivatives: Suppose f (x) = 1
x

, and
consider the two-variable function

q(x, h) = f (x + h) − f (x)
h

.

(a) Simplify q(3, h) as much as possible, and argue that

it approaches − 1
9

as h gets closer to 0.

(b) Simplify q(x, h) as much as possible, and argue that

it approaches − 1
x2

as h gets closer to 0.

C. Approximating the area of a region in the plane: Sketch the
region that lies between the graph of f (x) = 20 − 2 x, the
x-axis, and the lines y = 2 and y = 4. Use geometric fig-
ures to approximate upper and lower bounds for the area
of this region.

D. Optimizing the area of a region given its perimeter: Eliza-
beth wants to build a rectangular pen for her dogs with
100 feet of spare fencing.

(a) Write down an equation in terms of length l and
width w for the perimeter P of the pen.

(b) Use the perimeter equation and the constraint on
fencing material to construct a one-variable equation
for the area A of the enclosure.

(c) Sketch a graph of the one-variable function A, and
use the graph to argue that its maximum occurs
when l = w = 25 and the enclosure is square.
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1.1 AN INTUIT IVE INTRODUCTION TO LIMITS

� Examples of the types of limits that are important in calculus

� Intuitive descriptions of two-sided and one-sided limits

� Infinite limits, limits at infinity, and horizontal and vertical asymptotes

Examples of Limits

Limits are the backbone of calculus. Limits are the key to investigating the local behavior of
functions, giving meaning to the slope of a curve, finding areas under curves and volumes
inside surfaces, and determining the long-term behavior of infinite sequences and sums. In
the next section we will formally and mathematically define limits; in this section we focus
on intuitive examples. Let’s start with three examples that illustrate how limits can arise.

Limits of sequences: As a starting point for thinking about the concept of a limit, consider
the following sequence of numbers:

1
2

, 1
4

, 1
8

, 1
16

, 1
32

, 1
64

, . . . , 1
2 k

, . . .

If the pattern of this sequence continues, then the numbers will continue to get smaller and

smaller, approaching zero. We say that 0 is the limit of the sequence
{

1
2k

}
as k approaches

infinity. We can never actually let k be equal to infinity, because infinity is not a real number.
However, we can let k get as large as we like. For each large value of k, the value of 1

2k
is very

small, but not actually zero. When we “take the limit,” we make an important theoretical
transition: Instead of evaluating 1

2k
at a particular value of k, we think about the behavior

of the sequence as k gets larger and larger. We think about what the sequence approaches,
even if it never actually gets there for any real number k.

Limits of sequences of sums: Now consider the sequence defined by adding up more and
more terms from the previous sequence:

1
2

, 1
2
+ 1

4
, 1

2
+ 1

4
+ 1

8
, 1

2
+ 1

4
+ 1

8
+ 1

16
, 1

2
+ 1

4
+ 1

8
+ 1

16
+ 1

32
, . . .

After computing the sums, this sequence is equal to
1
2

, 3
4

, 7
8

, 15
16

, 31
32

, 63
64

, . . .

The terms get closer and closer to 1 as we go further and further out in this sequence of
sums. You may have noticed a pattern in the sequence: It turns out that for any given k,

the value of 1
2

+ 1
4

+ · · · + 1
2k

will be equal to the quantity 2k − 1
2k

. The larger the value of k,

the closer this quantity gets to 1. Moreover, we can get the sum to be as close as we like
to 1 by choosing a sufficiently large value of k. Again, we can’t plug in infinity for k, since
we can’t in real life add up infinitely many numbers, even if those numbers are getting
infinitesimally small, as they are here. However, mathematically we can use the concept of
a limit to notice that this sequence of sums approaches the quantity 1. We will study limits
of sequences of sums in depth in Chapter 7; for now we present this type of limit only as
an interesting example to consider.

Limits of average rates of change: Now let’s switch gears and think of something a little more
practical. Suppose you drop a bowling ball from the top of a 100-foot parking deck and
want to know how fast it is falling when it hits the ground. Suppose that the height of
the ball t seconds after it is dropped is given by s(t) = 100 − 16t 2 feet and thus that
the ball hits the ground after 2.5 seconds. By the old formula “distance equals rate times
time,” the average rate that the ball falls over any time period �t will be r = �s

�t
, where �s

is the elapsed distance over the period �t. A good approximation of the final speed of the
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bowling ball is the average rate in the last half-second, which is

r = s(2.5) − s(2)
2.5 − 2

= 0 − 36
0.5

= −72 feet per second

(negative since the ball is falling downwards). To get a better approximation for the ball’s
final instantaneous velocity, we could calculate the rate over the last quarter-second. The
following table records a sequence of better and better approximations for the final velocity
of the bowling ball:

Time interval [2, 2.5] [2.25, 2.5] [2.4, 2.5] [2.49, 2.5] [2.4999, 2.5]

Average rate −72
ft

sec
−76

ft
sec

−78.4
ft

sec
−79.84

ft
sec

−79.9984
ft

sec

We can’t compute the actual final velocity of the ball this way, because we can’t use r = �s
�t

when �t is zero. But the average rates seem to approach −80 feet per second as �t gets
smaller and smaller. This sounds like another limit, and it is. In fact it is a very famous and
useful type of limit called a derivative that we will introduce in Chapter 2. In general, limits
help us discuss what happens when we let things get infinitesimally small, infinitely large,
or arbitrarily close to some number.

Limits of Functions

Intuitively, a limit is what the output of a function approaches as we let the input of that
function approach some value. In the previous examples, we saw that:

� As k approaches infinity, the quantity 1
2k

approaches 0.

� As k approaches infinity, the sum 1
2

+ 1
4

+ · · · + 1
2k

approaches 1.

� As t approaches 2.5, the average rate s(2.5) − s(t)
2.5 − t

approaches −80 feet per second.

If the values of a function f (x) approach some number L as x gets closer and closer to some
value x = c, we will write

lim
x→c

f (x) = L.

We can also consider limits of functions as x → ∞, that is, as x grows without bound. For
example, in this notation we have

lim
k→∞

1
2 k

= 0 and lim
t→2.5

s(2.5) − s(t)
2.5 − t

= −80.

When considering a limit, it only matters what happens as x gets closer and closer to c,
not what happens when it actually gets there. This means that lim

x→c
f (x) may or may not in

general be the same as the value f (c) of the function at x = c. For example, the functions

f (x) = x + 1 and g(x) = x2 − 1
x − 1

shown in the following figures are not equal at the point

x = 1, but they do approach the same value as x → 1:

lim
x→1

f (x) = 2 and f (1) = 2 lim
x→1

g(x) = 2 but g(1) is undefined

x
1 2

y

�1

1

2

3

x
1 2

y

�1

1

2

3
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The dots on the x-axis represent a sequence of values of x that approach x = 1. When
we evaluate the functions f and g at these values, in both cases we get a sequence
of values of y that gets closer and closer to y = 2. Although f (1) �= g(1), we do have
lim
x→1

f (x) = lim
x→1

g(x) = 2.

We can also consider limits as x grows without bound, and/or as f (x) grows without bound.
The following definition summarizes the notation we will use in each case:

DEFINITION 1.1 Intuitive Description of and Notation for Limits

Suppose f is a function and L and c are real numbers.

(a) Limit: If the values of a function f (x) approach L as x approaches c, then we say
that L is the limit of f (x) as x approaches c and we write

lim
x→c

f (x) = L.

(b) Limit at Infinity: If the values of a function f (x) approach L as x grows without
bound, then we say that L is the limit of f (x) as x approaches ∞ and we write

lim
x→∞ f (x) = L.

(c) Infinite Limit: If the values of a function f (x) grow without bound as x approaches c,
then we say that ∞ is the limit of f (x) as x approaches c and we write

lim
x→c

f (x) = ∞.

(d) Infinite Limit at Infinity: If the values of a function f (x) grow without bound as
x grows without bound, then we say that ∞ is the limit of f (x) as x approaches ∞
and we write

lim
x→∞ f (x) = ∞.

When a limit approaches a real number, we say that the limit exists. When a limit
approaches ∞ or −∞ we say that the limit does not exist (because ∞ and −∞ are not
real numbers), but we will always be as specific as possible and describe the sign of infinity
in such cases. Later we will see more pathalogical limits that “do not exist” in a way other
than being infinite.

When we say that x approaches a real number c, we implicitly mean to consider values
of x that are close to c from either the right or the left. In other words, when trying to
find lim

x→c
f (x), we consider both values of x that are slightly less than c as well as values of

x that are slightly greater than c. Sometimes it is convenient to consider these two cases
separately:

DEFINITION 1.2 Intuitive Description of One-Sided Limits

If the values of a function f (x) approach a value L as x approaches c from the left, we say
that L is the left-hand limit of f (x) as x approaches c and we write

lim
x→c−

f (x) = L.

If the values of a function f (x) approach a value R as x approaches c from the right, we
say that R is the right-hand limit of f (x) as x approaches c and we write

lim
x→c+

f (x) = R.

Note that the notation x → c− does not mean anything about whether c is a positive or
negative number, only that x approaches c from the left. The two-sided limit of f (x) as x → c
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exists if and only if the left and right limits as x approaches c exist and are equal. This means
that both the left and right limits approach the same real number.

For example, the function graphed here has a different limit from the left than from the
right as x approaches 1:

lim
x→1−

f (x) = 2 but lim
x→1+

f (x) = 3

x
1 2

y

�1

1

2

3

The purple sequence of values of x that approach x = 1 from the left determines a sequence
of values of f (x) that approach y = 2, while the red sequence determines values that ap-
proach y = 3. The value of the function at x = 1 happens to be f (1) = 3, but that is
not relevant to either limit calculation. Since the limits from the left and right are not the
same, there is no one real number that the function approaches as x → c and we say the
two-sided limit does not exist.

Infinite Limits, Limits at Infinity, and Asymptotes

Armed with the concept of limits, we can now give proper definitions for horizontal and
vertical asymptotes. If a function f increases or decreases without bound as x approaches a
real number c from either the right or the left, then f has a vertical asymptote at x = c:

DEFINITION 1.3 Vertical Asymptotes

A function f has a vertical asymptote at x = c if one or more of the following are true:

lim
x→c+

f (x) = ∞, lim
x→c−

f (x) = ∞, lim
x→c+

f (x) = −∞, or lim
x→c−

f (x) = −∞.

If f (x) approaches ∞ from both the left and the right as x → c, then we say that lim
x→c

f (x) =
∞, as happens in the leftmost graph that follows. If f (x) approaches −∞ from both the left
and the right,then we say that lim

x→c
f (x) = −∞. If f (x) approaches different signs of infinity

from the left and the right, then the two-sided limit lim
x→c

f (x) does not exist, as happens in

the middle graph.

lim
x→1

f (x) = ∞ lim
x→1−

f (x) = −∞, lim
x→1+

f (x) = ∞ lim
x→∞ f (x) = 10

43
x

y

21�1

�2

�2

2

3

1

�1
43

x

y

21�1

�2

�2

2

3

1

�1

�5

�1

5

10

15

1
x

y
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If the values of a function f (x) approach a real-number value as x increases or decreases
without bound, then f has a horizontal asymptote. For example, the rightmost graph of the
three just presented shows a function with a horizontal asymptote and its corresponding
limit. In general, we have the following definition:

DEFINITION 1.4 Horizontal Asymptotes

A nonconstant function f has a horizontal asymptote at y = L if one or both of the
following are true:

lim
x→∞ f (x) = L, or lim

x→−∞ f (x) = L.

Note that by convention, if f (x) is actually equal to L as x → ∞ or as x → −∞, then we do
not consider f to have a horizontal asymptote at y = L. For example, the constant function
f (x) = 2 has lim

x→∞ f (x) = 2 and yet does not have a horizontal asymptote at y = 2, since f (x)

is constantly equal to 2 as x → ∞.

Examples and Explorations

EXAMPLE 1 Determining limits with tables of values

Use tables of values to find (a) lim
x→1

(x + 1) and (b) lim
x→∞

x
x − 1

.

SOLUTION

(a) To see what happens to x + 1 as x → 1, we choose a sequence of values approaching
x = 1 from the left and a sequence approaching x = 1 from the right, and record the
corresponding values of x + 1:

x .9 .99 .999 1 1.001 1.01 1.1

x + 1 1.9 1.99 1.999 * 2.001 2.01 2.1

From both the left and the right, the values of of x + 1 approach 2. Assuming that this
pattern continues for values of x that are even closer to 1, we have lim

x→1
(x + 1) = 2.

(b) To see what happens to x
x − 1

as x → ∞, we choose a sequence of values of x that gets

larger and larger, and record the corresponding (rounded) values of x
x − 1

:

x 25 50 100 1000 10,000
x

x − 1 1.04167 1.02041 1.0101 1.001 1.0001

As x grows larger, the quantity x
x − 1

approaches 1, so, assuming that the pattern in the

table continues for even larger values of x, we have lim
x→∞

x
x − 1

= 1.
�

EXAMPLE 2 Graphically identifying limits

Determine the limits at any holes, corners, or asymptotes on the graphs of the functions
(a) f , (b) g, and (c) h:

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 15:42

1.1 An Intuitive Introduction to Limits 83

y = f (x) y = g(x) y = h(x)

y

x
321�1�2�3

3

2

�1

�2

�3

1

y

x
321�1�2�3

3

2

�1

�2

�3

1

�3 �2 �1 1 2 3

y

2

1

3

x

SOLUTION

(a) Observe that the graph in question has holes at x = −2 and x = −1 and a corner at
x = 1, so we will examine limits at those three points. As x approaches −2, the height
of the graph of y = f (x) approaches −1. The value of f (x) at x = −2 is f (−2) = 1,
but this is not relevant to what f (x) approaches as x → −2 and thus does not affect the
limit. Therefore lim

x→−2
f (x) = −1.

As x approaches −1, the height of the graph approaches −2. The value f (−1) is not
defined, but that is not relevant to the limit as x → −1. Thus lim

x→−1
f (x) = −2.

As x approaches 1, the height of the graph approaches 2. The value of f (x) at x = 1
happens to also equal 2, although this is irrelevant to the value of the limit as x → 1.
We have lim

x→1
f (x) = 2.

(b) The function g(x) approaches different values as we approach x = 1 from the left and
the right. As x approaches 1 from the left, the height of the graph approaches y = 2. As
x approaches 1 from the right, the height of the graph approaches y = 1. The value of
g(x) at x = 1 happens to be g(1) = 1, but that is not relevant to either limit. Therefore
we have lim

x→1−
g(x) = 2 and lim

x→1+
g(x) = 1, but the two-sided limit lim

x→1
g(x) does not

exist.

(c) The function h(x) has a vertical asymptote at x = −1, with the height of the function
decreasing without bound as we approach from the left and increasing without bound
as we approach from the right. Therefore we have lim

x→−1−
h(x) = −∞ and lim

x→−1+
h(x) =

∞, but the limit lim
x→−1

h(x) does not exist.

Let’s also investigate the limits at the ends of the graph of h(x). On the left side, as
x → −∞, the graph decreases without bound; therefore lim

x→−∞ h(x) = −∞. On the

right side, as x → ∞, the height of the function approaches y = 1. Therefore h(x) has
a horizontal asymptote on the right, and lim

x→∞ h(x) = 1. �

EXAMPLE 3 A function with infinitely many oscillations as x approaches 0

Use a table of values and various graphing windows on a calculator or other graphing utility

to investigate the limit of the function f (x) = sin
(

1
x

)
as x approaches 0.

SOLUTION

Be sure that your calculator or other graphing utility is set to radian mode, rather than de-

gree mode, for this example. To see what happens to the quantity sin
(

1
x

)
as x approaches 0,
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we choose points progressively closer to x = 0 from both the left and the right and record

the corresponding (rounded) values of sin
(

1
x

)
in a table:

x −0.001 −0.0001 −0.00000001 0 0.00000001 0.0001 0.001

sin
( 1

x

)
−0.827 0.306 −0.932 ?? 0.932 −0.306 0.827

From the table we see that as x approaches 0, the values of f (x) seem to jump around! It is

not clear whether or not the function f (x) = sin
(

1
x

)
will eventually approach any particular

value as x → 0. It is impossible to make an educated guess for lim
x→0

sin
(

1
x

)
from this table.

The reason that this is happening is that as x → 0 the function f (x) = sin
(

1
x

)
oscillates

faster and faster between −1 and 1, and never settles down. The graph on the left that
follows shows this function on [−3, 3], and the graph on the right shows the same function
after reducing by a factor of 10 on the x-scale (but keeping the y-scale the same). No matter
how much we “zoom in” towards x = 0, this function will keep oscillating. Therefore

lim
x→0

sin
(

1
x

)
does not exist.

f (x) = sin
( 1

x

)
on [−3, 3] f (x) = sin

( 1
x

)
on [−0.3, 0.3]

�1

�2 �1 1 2
x

�3 3

y

1

�1

�0.2 �0.1 0.1 0.2
x

�0.3 0.3

y

1

�

EXAMPLE 4 Areas under curves as another application of limits

Consider the area between the graph of f (x) = x 2 and the x-axis from x = 0 to x = 1, as
shown in the leftmost figure.

(a) Find the value of the four-rectangle approximation shown in the middle figure.

(b) Find the value of the eight-rectangle approximation shown in the rightmost figure.

(c) Describe what would happen if we were to do similar approximations with more and
more rectangles.

Area under f (x) = x 2 on [0, 1] Four rectangles Eight rectangles

y

1.00

0.75

0.50

0.25

1.000.750.500.25
x

y

1.00

0.75

0.50

0.25

1.000.750.500.25
x

y

1.00

0.75

0.50

0.25

1.000.750.500.25
x
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SOLUTION

(a) The four rectangles in the given middle graph each have width 1
4

, and their heights are

given by f
(

1
4

)
, f

(
2
4

)
, f

(
3
4

)
, and f

(
4
4

)
, from left to right. Therefore, since f (x) = x 2,

the sum of the areas of the four rectangles is
(

1
4

)2 (
1
4

)
+

(
2
4

)2 (
1
4

)
+

(
3
4

)2 (
1
4

)
+

(
4
4

)2 (
1
4

)
= 15

32
≈ 0.4688.

(b) Similarly, the eight rectangles in the given rightmost graph each have width 1
8

, and

their heights are given by f
(

1
8

)
, f

(
2
8

)
, f

(
3
8

)
, . . . , f

(
8
8

)
, from left to right. Therefore

the sum of their eight areas is
(

1
8

)2 (
1
8

)
+

(
2
8

)2 (
1
8

)
+

(
3
8

)2 (
1
8

)
+ · · · +

(
8
8

)2 (
1
8

)
= 51

128
≈ 0.3984.

(c) So what happens when we do similar approximations with more rectangles? Consider
the following three figures, where we consider more and more rectangles:

16 rectangles 32 rectangles 64 rectangles

y

1.00

0.75

0.50

0.25

x
1.000.750.500.25

y

1.00

0.75

0.50

0.25

x
1.000.750.500.25

y

1.00

0.75

0.50

0.25

x
1.000.750.500.25

Clearly as we let the number N of rectangles get larger and larger, the sum of the areas
of the rectangles gets closer and closer to a particular real number, namely, the actual
area under the graph of f (x) = x 2 on [0, 1]. In limit notation we have

lim
N→∞

(N-rectangle area approximation) = (actual area under graph).

It turns out that the area approximations corresponding to the 16-, 32-, and
64-rectangle figures are 0.3652, 0.3491, and 0.3412, respectively. In Chapter 7 we will
develop theory that will allow us to show that these area approximations have a limit
of 1

3
as N → ∞. �

TEST YOUR? UNDERSTANDING
� What is the difference between taking a limit of some quantity as, say, x approaches 2

and actually computing the value of the quantity at x = 2?

� What can you say about the two-sided limit of a function as x → c if the left and right
limits as x → c both exist but are not equal to each other?

� Can a function have more than one horizontal asymptote? More than two? Use
Definition 1.4 to support your answer.

� Explain why the table in Example 1 cannot guarantee that lim
x→1

(x +1) is actually 2 rather

than some other number that is close to 2, such as 2.000035.

� Why does the table in Example 3 suggest that lim
x→0

sin
(

1
x

)
does not exist?

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 15:42

86 Chapter 1 Limits

EXERCISES 1.1

Thinking Back

Finding the pattern in a sequence: For each sequence shown, find
the next two terms. Then write a general form for the kth term
of the sequence.

� 2, 6, 10, 14, 18, 22, . . . � 1, 8, 27, 64, 125, 216, . . .

� 3,
3
4

,
3
9

,
3

16
,

3
25

,
3
36

, . . . � 1,
1
3

,
1
9

,
1

27
,

1
81

,
1

243
, . . .

� 3
5

,
4
7

,
5
9

,
6

11
,

7
13

,
8

15
, . . . � 3

2
,

5
5

,
7

10
,

9
17

,
11
26

,
13
37

, . . .

Distance, rate, and time: A watermelon dropped from the top
of a 50-foot building has height given by s(t) = 50 − 16t 2 feet
after t seconds. Calculate each of the following:

� The average rate of change of the watermelon over
its entire fall, over the first half of its fall, and over the
second half of its fall.

� The average rate of change over the last second, the
last half-second, and the last quarter-second of its fall.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: A limit exists if there is some real num-
ber that it is equal to.

(b) True or False: The limit of f (x) as x → c is the value
f (c).

(c) True or False: The limit of f (x) as x → c might exist
even if the value f (c) does not.

(d) True or False: The two-sided limit of f (x) as x → c
exists if and only if the left and right limits of f (x)
exist as x → c.

(e) True or False: If the graph of f has a vertical asymptote
at x = 5, then lim

x→5
f (x) = ∞.

(f) True or False: If lim
x→5

f (x) = ∞, then the graph of f has

a vertical asymptote at x = 5.
(g) True or False: If lim

x→2
f (x) = ∞, then the graph of f has

a horizontal asymptote at x = 2.
(h) True or False: If lim

x→−∞ f (x) = 2, then the graph of f has

a horizontal asymptote at y = 2.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function f for which f (2) does not exist
but lim

x→2
f (x) does exist.

(b) The graph of a function f for which f (2) exists and
lim
x→2

f (x) exists, but the two are not equal.

(c) The graph of a function f for which neither f (2) nor
lim
x→2

f (x) exist.

3. If lim
x→1−

f (x) = 5 and lim
x→1+

f (x) = 5, what can you say about

lim
x→1

f (x)? What can you say about f (1)?

4. If lim
x→0+

f (x) = −2, lim
x→0−

f (x) = 3, and f (0) = −2, what can

you say about lim
x→0

f (x)?

5. If lim
x→2+

f (x) = 8 but lim
x→2

f (x) does not exist, what can you

say about lim
x→2−

f (x)?

6. If lim
x→−1+

f (x) = −∞ and lim
x→−1−

f (x) = −∞, what can you

say about lim
x→−1

f (x)?

7. If lim
x→−∞ f (x) = ∞, lim

x→∞ f (x) = 3, and lim
x→1+

f (x) = ∞, what

can you say about any horizontal and vertical asymptotes
of f ?

8. Consider the sequence
1
2

,
2
3

,
3
4

,
4
5

, . . .,
k

k + 1
, . . ..

(a) What happens to the terms of this sequence as k gets
larger and larger? Express your answer in limit nota-
tion.

(b) Use a calculator to find a sufficiently large value of k
so that every term past the kth term of this sequence
will be within 0.01 unit of 1.

9. Consider the sequence
1
3

,
1
9

,
1
27

,
1
81

, . . .,
1
3k

, . . ..

(a) What happens to the terms of this sequence as k gets
larger and larger? Express your answer in limit nota-
tion.

(b) Find a sufficiently large value of k so that every term
past the kth term of this sequence will be less than
0.0001.

10. Consider the sequence of sums
1
3

,
1
3

+ 1
9

,
1
3

+ 1
9

+ 1
27

,
1
3

+ 1
9

+ 1
27

+ 1
81

, . . ..

(a) What happens to the terms of this sequence of sums
as k gets larger and larger?

(b) Find a sufficiently large value of k which will guaran-
tee that every term past the kth term of this sequence
of sums is in the interval (0.49999, 0.5).
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11. Consider the sequence of sums 1, 1 + 2, 1 + 2 + 3,
1 + 2 + 3 + 4, 1 + 2 + 3 + 4 + 5, . . ..

(a) What happens to the terms of this sequence of sums
as k gets larger and larger?

(b) Find a sufficiently large value of k that will guarantee
that every term past the kth term of this sequence of
sums is greater than 1000.

12. An orange falling from 20 feet has a height of s(t) =
20 − 16t 2 feet when it has fallen for t seconds.

(a) Graph the position function s(t) and find the time that
the orange will hit the ground.

(b) Make a table to record the average rates that the or-
ange is falling during the last second, half-second,
quarter-second, and eighth-of-a-second of its fall.

(c) From the data in your table, make a guess for the
instantaneous final velocity of the orange at the
moment it hits the ground.

13. If you are on the moon, then an orange falling from
20 feet has a height of s(t) = 20 − 2.65t 2 feet when it
has fallen for t seconds.

(a) Graph the position function s(t) and find the time that
the orange will hit the surface of the moon.

(b) Make a table to record the average rates that the or-
ange is falling during the last second, half-second,
quarter-second, and eighth-of-a-second of its fall on
the moon.

(c) From the data in your table, make a guess for the
instantaneous final velocity of the orange at the
moment it hits the surface of the moon.

14. Consider the area between the graph of f (x) = √
x and

the x-axis on [0, 4].

y

2

1

4321
x

2

1

4321
x

y

(a) Use the four rectangles shown on the left to approxi-
mate the given area, and then use the eight rectangles
shown on the right to obtain another approximation
of that area. Be sure to use the fact that the graph
shown is that of the function f (x) = √

x in your cal-
culations.

(b) Describe what would happen if we did similar ap-
proximations with more and more rectangles, and
make a guess for the resulting limit.

15. Consider the area between the graph of f (x) = 4−x 2 and
the x-axis on [0, 2].

y

2

1

3

1

x

4

2

y

4

2

21

3

1

x

(a) Use the four rectangles shown on the left to approxi-
mate the given area, and then use the eight rectangles
shown on the right to obtain another approximation
of that area. Be sure to use the fact that the graph
shown is that of the function f (x) = 4 − x 2 in your
calculations.

(b) Describe what would happen if we did similar ap-
proximations with more and more rectangles, and
make a guess for the resulting limit.

16. Sketch a function that has the following table of values,
but whose limit as x → ∞ is equal to −∞:

x 100 200 500 1,000 10,000

f (x) 50 55 56.2 56.89 56.99

17. Sketch a function that has the following table of values,
but whose limit as x → 2 does not exist:

x 1.9 1.99 1.999 2 2.001 2.01 2.1

f (x) 3.12 3.09 3.01 - 2.99 2.92 2.87

18. Use a calculator or other graphing utility to graph the

function f (x) = x − 2
x2 − x − 2

.

(a) Show that f (x) is not defined at x = 2. How is this
reflected in your calculator graph?

(b) Use the graph to argue that even though f (2) is

undefined, we have lim
x→2

f (x) = 1
3

.

19. Use a calculator or other graphing utility to graph the

function g(x) = x2 − 2x + 1
x − 1

.

(a) Show that g(x) is not defined at x = 1. How is this
reflected in your calculator graph?

(b) Use the graph to argue that even though g(1) is
undefined, we have lim

x→1
g(x) = 0.

20. Use a calculator or other graphing utility to investigate the

graph f (x) = x sin
( 1

x

)
near x = 0. Be sure to have your

calculator set to radian mode. Use the graphs to make an
educated guess for lim

x→0
f (x).

Skills

Sketch the graphs of functions that have the given limits
and values in Exercises 21–30. (There are multiple correct
answers.)

21. lim
x→−∞ f (x) = 3 and lim

x→∞ f (x) = −∞
22. lim

x→2
f (x) = −4 and lim

x→−∞ f (x) = −∞
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23. lim
x→0+

f (x) = ∞ and lim
x→0−

f (x) = ∞

24. lim
x→5−

f (x) = 3 and lim
x→5+

f (x) = 1

25. lim
x→−∞ f (x) = 2 and lim

x→∞ f (x) = 2

26. lim
x→2−

f (x) = ∞, lim
x→2+

f (x) = −∞, and f (2) = 1

27. lim
x→3−

f (x) = 2, lim
x→3+

f (x) = 2, but f (3) does not exist

28. lim
x→−∞ f (x) = −2 and lim

x→3
f (x) = ∞, f (0) = −5

29. lim
x→2−

f (x) = 2, lim
x→2+

f (x) = −1, and f (2) = 2

30. lim
x→2−

f (x) = 3, lim
x→2+

f (x) = 3, and f (2) = 0

For the function f graphed as follows, approximate each of
the limits and values in Exercises 31–34:

3

2

1

y

�3

�2

�1
�2�4 �3 �1 4321

x

31. lim
x→−2−

f (x), lim
x→−2+

f (x), lim
x→−2

f (x), and f (−2).

32. lim
x→−1−

f (x), lim
x→−1+

f (x), lim
x→−1

f (x), and f (−1).

33. lim
x→2−

f (x), lim
x→2+

f (x), lim
x→2

f (x), and f (2).

34. lim
x→0

f (x), lim
x→1

f (x), lim
x→−∞ f (x), and lim

x→∞ f (x).

For the function g(x) graphed as follows, approximate each of
the limits and values in Exercises 35–38:

3

2

1

y

�3

�2

�1
�2�4 �3 �1 4321

x

35. lim
x→−1−

g(x), lim
x→−1+

g(x), lim
x→−1

g(x), and g(−1).

36. lim
x→1−

g(x), lim
x→1+

g(x), lim
x→1

g(x), and g(1).

37. lim
x→2−

g(x), lim
x→2+

g(x), lim
x→2

g(x), and g(2).

38. lim
x→0

g(x), lim
x→3

g(x), lim
x→−∞ g(x), and lim

x→∞ g(x).

Use tables of values to make educated guesses for each of the
limits in Exercises 39–52.

39. lim
x→2−

(x 2 + x + 1) 40. lim
x→3+

(1 − 3x + x 2)

41. lim
x→2

1
x 2 − 4

42. lim
x→1

1
1 − x

43. lim
x→3

x − 3
(x 2 − 2)(x − 3)

44. lim
x→5

x − 5
x 2 − 25

45. lim
x→2

3
4 − 2 x

46. lim
x→∞(3e−2x + 1)

47. lim
x→−∞

3x + 1
1 − x

48. lim
x→∞

1 + 2x
x − 1

49. lim
x→∞

x + 1
x 2 − 1

50. lim
x→∞

(
1 + 1

2x + 1
+ 1

x 2

)

51. lim
x→∞ sin x 52. lim

x→∞ sin
(

1
x

)

Sketch graphs by hand and use them to make approximations
for each of the limits in Exercises 53–66. If a two-sided limit
does not exist, describe the one-sided limits.

53. lim
x→0

1
x

54. lim
x→−1

(x 3 − 2)

55. lim
x→1

x 2 − 1
x − 1

56. lim
x→−2

x 2 + x − 2
x + 2

57. lim
x→1

x − 1
x 2 − 1

58. lim
x→∞

x − 4
x 2 − 4

59. lim
x→∞(1 − e−x) 60. lim

x→−∞(3e 4x + 1)

61. lim
x→π/2

tan x 62. lim
x→π

csc x

63. lim
x→2

f (x), for f (x) =
{

x 2, if x < 2
1 − 3x, if x ≥ 2

64. lim
x→0

f (x), for f (x) =
{

2x + 1, if x ≤ 0
2x − 1, if x > 0

65. lim
x→1

f (x), for f (x) =
⎧⎨
⎩

x 2 + 1, if x < 1
3, if x = 1

3 − x, if x > 1

66. lim
x→−1

f (x), for f (x) =
⎧⎨
⎩

x + 1, if x < −1
2, if x = −1

−x 2, if x > −1

Use calculator graphs to make approximations for each of the
limits in Exercises 67–74.

67. lim
x→4

(3 − 4x − 5x 2) 68. lim
x→∞(−0.2x 5 + 100x)

69. lim
x→1

3 − x
x − 1

70. lim
x→2

x + 1
x − 2

71. lim
x→∞

x100

2 x
72. lim

x→∞
ln x
x

73. lim
x→0

sin x
x

74. lim
x→0

1 − cos x
x
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Applications
75. There are four squirrels currently living in Linda’s attic. If

she does nothing to evict these squirrels, the number of
squirrels in her attic after t days will be given by the for-

mula S(t) = 12 + 5.5t
3 + 0.25t

.

(a) Verify that there are four squirrels in Linda’s attic at
time t = 0.

(b) Determine the number of squirrels in Linda’s attic af-
ter 30 days, 60 days, and one year.

(c) Approximate lim
t→∞

S(t) with a table of values. What

does this limit mean in real-world terms?
(d) Graph S(t) with a graphing utility, and use the graph

to verify your answer to part (c).
76. The following graph describes the temperature T(t) of a

yam in an oven, where temperature T is measured in de-
grees Fahrenheit and time t is measured in minutes:

Temperature of yam

50
100
150
200
250
300
350
400

T

10 20 30 40 50 60
t

(a) Use the graph to approximate the temperature of the
yam when it is first put in the oven.

(b) Use the graph to approximate lim
t→∞

T(t).

(c) What is the temperature of the oven, and why?

77. In 1960, H. von Foerster suggested that the human
population could be measured by the function

P(t) = 179 × 109

(2027 − t)0.99
.

Here P is the size of the human population. The time t is
measured in years, where t = 1 corresponds to the year
1 a.d., time t = 1973 corresponds to the year 1973 a.d.,
and so on.

(a) Use a graphing utility to graph this function. You will
have to be very careful when choosing a graphing
window!

(b) Use the graph you found in part (a) to approximate
lim

t→2027−
P(t).

(c) This population model is sometimes called the
doomsday model. Why do you think this is? What
year is doomsday, and why?

(d) In part (b), we considered only the left limit of P(t) as
x → 2027. Why? What is the real-world meaning of
the part of the graph that is to the right of t = 2027?

Proofs

78. Prove that for all k > 100, the quantity
1
k2

is in the
interval (0, 0.0001). What does this have to do with the

limit of the sequence
{ 1

k2

}
as k → ∞?

79. For any positive integer k, the following equation holds:

1 + 2 + 3 + · · · + k = k(k + 1)
2

. Use this fact to prove that

for all k > 100, the value of the sum of the first k integers
is greater than 5000. What does this have to do with the
limit of a sequence of sums as k → ∞?

80. Prove that for all x within 0.01 of the value x = 1, the
quantity (x − 1)2 is within the interval (0, 0.0001). What
does this have to do with lim

x→1
(x − 1)2?

81. Prove that for all x within 0.01 of the value x = 1, the
quantity

1
(x − 1)2

is greater than 10, 000. What does this

have to do with lim
x→1

1
(x − 1)2

?

Thinking Forward

Convergence and divergence of sequences: If a sequence
a 1, a 2, a 3, . . . , a k, . . . approaches a real-number limit as
k → ∞, then we say that the sequence {a k} converges. If the
terms of the sequence do not get arbitrarily close to some real
number, then we say that the sequence diverges. Write out
enough terms of each sequence to make an educated guess
as to whether it converges or diverges.

�
{(

1
4

)k}
�

{(
5
4

)k}
�

{
k

k + 2

}
�

{
k + 1

k

}

Convergence and divergence of series: A series can be thought
of as an infinite sum a 1 + a 2 + a 3 + a 4 + · · · + a k + · · · . A
series converges if this sum gets closer and closer to some
real number limit as we add up more and more terms.
Otherwise, the series is said to diverge.

� As you will see in Chapter 8, the series 1 + 1
4

+ 1
9

+
1
16

+ · · · + 1
k2

+ · · · converges. Calculate partial sums

including more and more terms until you are con-
vinced that the sum eventually approaches a real-
number limit and does not grow without bound.

� Although you might think that the series 1 + 1
2

+
1
3

+ 1
4

+ · · · + 1
k

+ · · · converges because its terms

get smaller and smaller, you will see in Chapter 8
that it does not. Calculate partial sums including more
and more terms until you are convinced that this sum
diverges and in fact grows without bound, never
approaching a real-number limit. (A calculator will
come in handy here!)
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1.2 FORMAL DEFINIT ION OF LIMIT

� Moving from an intuitive concept of limit to a formal mathematical definition

� Uniqueness and existence of limits

� Limits from the left and right, limits at infinity, and infinite limits

Formalizing the Intuitive Definition of Limit

In the previous section we gave an intuitive description of limits. Now that we understand
the basic concept, we are ready to give a precise, rigorous mathematical definition. Let’s
start with our intuitive description: For real numbers c and L and a function f , we have
lim
x→c

f (x) = L if the values of f (x) get closer and closer to L as x gets closer and closer to c.

For example, lim
x→2

x 2 = 4 because the values of f (x) = x 2 approach 4 as x approaches 2. From

the left, f (1.9) = (1.9)2 = 3.61, f (1.99) = (1.99)2 = 3.9601, f (1.999) = (1.999)2 ≈ 3.996,
and so on, getting closer and closer to 4. A similar thing happens as x approaches 2 from
the right.

Note that to be able to discuss lim
x→c

f (x), we must know how to calculate f (x) near, but

not necessarily at, the point x = c. Throughout this section we will assume that f (x) is
defined on a punctured interval (c − δ, c) ∪ (c, c + δ), where δ > 0 represents a small
distance to the left and right of x = c, as shown on the number line that follows. Notice
that in our discussion of limits we will never be concerned with what happens at the point
x = c, only near the point x = c.

Punctured δ-interval around c

c � δ c � δc

δ δ

To make the definition of limit precise, we have to be very clear about what we mean
when we say that f (x) “approaches” L. We want to capture the idea that we can make
the values of f (x) not just close to L, but as close as we like to L if only we choose val-
ues of x that are sufficiently close to c. For example, we can guarantee that f (x) = x 2 is
within 0.05 unit of 4 if we choose values of x that are within 0.01 unit of 2. Note that
f (2.01) = (2.01)2 = 4.0401 and f (1.99) = (1.99)2 = 3.9601 are both within 0.05 unit of 4,
and values of x that are closer to 2 will result in values of f (x) that are even closer to 4. If we
want values of f (x) that are even closer to L = 4, then we can just choose values of x that
are even closer to c = 2.

In general, suppose we want to guarantee that the values of f (x) are within some very
small distance ε above or below limit value L, as shown at the left in the graphs that follow.
To do this we must choose values of x that are sufficiently close to c, say, some distance
δ > 0 left or right of c, as shown in the middle graph. The Greek letters delta (δ) and
epsilon (ε) are the traditional letters used for these small distances. The figure at the right
illustrates that a choice of x-value inside the blue punctured δ-interval (c − δ, c) ∪ (c, c + δ)
determines an f (x)-value within the beige ε-interval (L− ε, L+ ε). In these figures we have
omitted the point at x = c to emphasize that we are not concerned with the actual value of
f (x) at the point x = c, only with the behavior of f (x) at points near x = c.
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Want to have f (x)
in (L − ε, L + ε)

So choose x
in (c − δ, c) ∪ (c, c + δ)

If x ∈ (c − δ, c) ∪ (c, c + δ),
then f (x) ∈ (L − ε, L + ε)

L
L � ε

L � ε

y

c
x

cc � δ c � δ
x

y

L
L � ε

L � ε

c

f (x)

x
x

y

L

If the values of f (x) get arbitrarily close to L as x approaches c, then we can choose smaller
and smaller beige ε-intervals (L − ε, L + ε) and in each case always find some blue punc-
tured δ-interval (c − δ, c) ∪ (c, c + δ) that determines values of f (x) which are within ε of the
limit L. The following three figures illustrate this idea:

c
x

L

y

c
x

L

y

c
x

L

y

We want the limit statement lim
x→c

f (x) = L to mean that no matter how small a distance

we choose for ε, we can find some δ so that values of x that are within δ of x = c will yield
values of f (x) that are within ε of y = L. Writing this in terms of intervals gives us the
following definition:

DEFINITION 1.5 Formal Definition of Limit

The limit lim
x→c

f (x) = L means that for all ε > 0, there exists δ > 0 such that

if x ∈ (c − δ, c) ∪ (c, c + δ), then f (x) ∈ (L − ε, L + ε).

Stop and think about that for a minute until it makes sense. Understanding this definition
is the key to understanding limits, and limits are the foundation of everything in calculus.
So take a few minutes, have some tea, and get everything straight in your head before you
continue reading.

Uniqueness of Limits

A limit lim
x→c

f (x) exists if it is equal to some real number L. If a limit exists, then it can be

equal to one and only one number. That sounds obvious, since the values of a function f (x)
cannot approach two different values L and M as x approaches c. However, as we are
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about to see, to prove uniqueness of limits we must carefully apply the formal definition of
limits.

THEOREM 1.6 Uniqueness of Limits

If lim
x→c

f (x) = L and lim
x→c

f (x) = M, then L = M.

Proof. Suppose to the contrary that somehow lim
x→c

f (x) = L and lim
x→c

f (x) = M, with L �= M. Let’s

suppose that L > M, since, if not, then we can just reverse the roles of L and M. If L > M, then we

must have L = M + k for some positive real number k. Now consider ε = k
2

; note that with this
choice of ε, the intervals (L − ε, L + ε) and (M − ε, M + ε) do not overlap.

Since lim
x→c

f (x) = L, we can find δ 1 > 0 such that for all x ∈ (c − δ 1, c) ∪ (c, c + δ 1), we have

f (x) ∈ (L − ε, L + ε). Similarly, since lim
x→c

f (x) = M, we can find δ 2 > 0 such that for all x ∈
(c − δ 2, c) ∪ (c, c + δ 2), we have f (x) ∈ (M − ε, M + ε). Now if we let δ be the smaller of δ 1 and
δ 2, we can say that for any x ∈ (c − δ, c) ∪ (c, c + δ), we can guarantee that both f (x) ∈ (L − ε, L + ε)
and f (x) ∈ (M−ε, M+ε). But this cannot be, since the intervals (L−ε, L+ε) and (M−ε, M+ε) do
not overlap. Therefore we could not have initially had f (x) approaching two different limits L and
M; we must have L = M.

One-Sided Limits

We can consider each limit lim
x→c

f (x) = L from two different directions: from the left and

from the right. We say that we have a left limit lim
x→c−

f (x) = L if, given an ε-interval (L − ε,

L + ε), we can always find a sufficiently small half-neighborhood (c − δ, c) to the left of
x = c so that values of x that are in that left hand δ-interval yield values of f (x) that are in
the ε-interval, as shown in the left-hand graph that follows. We define right limits similarly,
as shown in the right-hand graph:

Can get f (x) in (L − ε, L + ε)
by choosing x in (c − δ, c)

Can get f (x) in (L − ε, L + ε)
by choosing x in (c, c + δ)

x
cc � δ

L
L � ε

L � ε

y

x
c c � δ

L
L � ε

L � ε

y

DEFINITION 1.7 One-Sided Limits

The left limit lim
x→c−

f (x) = L means that for all ε > 0, there exists δ > 0 such that

if x ∈ (c − δ, c), then f (x) ∈ (L − ε, L + ε).

The right limit lim
x→c+

f (x) = L means that for all ε > 0, there exists δ > 0 such that

if x ∈ (c, c + δ), then f (x) ∈ (L − ε, L + ε).
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A two-sided limit lim
x→c

f (x) is equal to some real number L if and only if the correspond-

ing left and right limits exist and are also equal to that same number L.

THEOREM 1.8 For a Limit to Exist, the Left and Right Limits Must Exist and Be Equal

lim
x→c

f (x) = L if and only if lim
x→c−

f (x) = L and lim
x→c+

f (x) = L.

The proof of this theorem is a straightforward application of the definitions of two-sided
and one-sided limits.

Proof. Suppose lim
x→c

f (x) = L. Then for all ε > 0, there is some δ > 0 such that if x ∈ (c − δ, c) ∪
(c, c + δ), then f (x) ∈ (L − ε, L + ε). In particular this means that if x ∈ (c − δ, c) or if x ∈ (c, c + δ),
then we will have f (x) ∈ (L − ε, L + ε). Therefore lim

x→c−
f (x) = L and lim

x→c+
f (x) = L.

For the converse, suppose lim
x→c−

f (x) = L and lim
x→c+

f (x) = L. Then for all ε > 0, there exist num-

bers δ 1 > 0 and δ 2 > 0 such that for either x ∈ (c−δ 1, c) or x ∈ (c, c+δ 2), we have f (x) ∈ (L−ε, L+ε).
If we let δ be the smaller of δ 1 and δ 2, then we can say that for x ∈ (c − δ, c) ∪ (c, c + δ), we can
guarantee that f (x) ∈ (L − ε, L + ε). Therefore lim

x→c
f (x) = L.

Infinite Limits and Limits at Infinity

So far we have formalized the definition of limit only in the case where both x and f (x)
are approaching real numbers. Now we consider what happens if one or both of x and f (x)
approach ±∞. For example, we want lim

x→c
f (x) = ∞ to capture the idea that as x approaches

c, the values of f (x) grow without bound. In other words, lim
x→c

f (x) = ∞ should guarantee

that values of f (x) will lie above any given large number M as long as we choose values of
x that are sufficiently close to c; see the figure that follows at the left.

lim
x→c

f (x) = ∞ lim
x→∞ f (x) = L lim

x→∞ f (x) = ∞

cc � δ c � δ
x

M

y

N
x

L

L � ε

L � ε

y

N

M

x

y

Similarly, we want the limit statement lim
x→∞ f (x) = L to indicate that given any

ε-interval around L, we can choose values of x sufficiently large so that f (x) is in the
ε-interval; see the middle graph. And lim

x→∞ f (x) = ∞ should mean that given any large

number M, we can get values of f (x) that are greater than M if we choose sufficiently large
values of x, say, larger than some big number N, as in the graph at the right. The definition
that follows expresses these three limits in terms of intervals; compare the three parts with
the preceding three figures. You will define other related types of limits in Exercises 37–42.
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DEFINITION 1.9 Limits Involving Infinity

The infinite limit lim
x→c

f (x) = ∞ means that for all M > 0, there exists δ > 0 such that

if x ∈ (c − δ, c) ∪ (c, c + δ), then f (x) ∈ (M, ∞).

The limit at infinity lim
x→∞ f (x) = L means that for all ε > 0, there exists N > 0 such

that
if x ∈ (N, ∞), then f (x) ∈ (L − ε, L + ε).

The infinite limit at infinity lim
x→∞ f (x) = ∞ means that for all M > 0, there exists

N > 0 such that
if x ∈ (N, ∞), then f (x) ∈ (M, ∞).

Examples and Explorations

EXAMPLE 1 Approximating δ given ε for a limit

Use a graph to illustrate and approximate

(a) the largest δ which guarantees that if x ∈ (2 − δ, 2) ∪ (2, 2 + δ), then x 2 ∈ (3, 5).

(b) the largest δ which guarantees that if x ∈ (2 − δ, 2) ∪ (2, 2 + δ), then x 2 ∈ (3.5, 4.5).

What limit statement do these problems have to do with, and why?

SOLUTION

These problems concern the limit statement lim
x→2

x 2 = 4, which by definition means that for

all ε > 0, there exists δ > 0 such that if x ∈ (2 − δ, 2) ∪ (2, 2 + δ), then x 2 ∈ (4 − ε, 4 + ε).
Therefore parts (a) and (b) of this example ask us to find corresponding values of δ for ε = 1
and ε = 0.5, respectively.

(a) To find the largest δ corresponding to ε = 1, we begin by drawing f (x) = x 2 and the
beige ε-interval of width 1 around y = 4, as shown in the graph that follows at the
left. We then draw the vertical blue band shown in the figure, to represent the range of
values of x which determine values of f (x) that are within the horizontal beige band.
The leftmost x-value a in the blue band is a solution of f (a) = a2 = 3, and the rightmost
x-value b for the blue band is a solution of f (b) = b2 = 5. Therefore a = √

3 ≈ 1.732
and b = √

5 ≈ 2.236. Now, what is δ in this case? We can move 2−1.732 = 0.268 unit
to the left of x = 2 and 2.236−2 = 0.236 unit to the right of x = 2. We need the largest δ

that will work in both directions, which is the smaller of the two distances we just found:
δ = 0.236. Then if x ∈ (2 − 0.236, 2) ∪ (2, 2 + 0.236), we can guarantee that x 2 ∈ (3, 5).

If x ∈ (1.732, 2.236), then x 2 ∈ (3, 5) If x ∈ (1.87, 2.12), then x 2 ∈ (3.5, 4.5)

3

4

5

y

2 2.2361.732
x

3.5
4

4.5

2 2.121.87
x

y
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(b) We now repeat the problem with a smaller value of ε. For ε = 0.5 we draw the smaller
horizontal beige ε-bar shown in the preceding graph at the right, and the correspond-
ing vertical blue bar. Solving f (a) = a2 = 3.5 and f (b) = b2 = 4.5, we get a ≈ 1.87
and b ≈ 2.12 as the leftmost and rightmost values of x contained in the vertical blue
bar. Therefore values of x that are at most 2 − 1.87 = 0.13 unit to the left of x = 2 or
at most 2.12 − 2 = 0.12 unit to the right of x = 1 will determine values of f (x) that are
within 0.5 unit of y = 4. The smaller of these two distances is the largest δ that will
work in both directions, namely, δ = 0.12. If x ∈ (2 − 0.12, 2) ∪ (2, 2 + 0.12), then we
can guarantee that x 2 ∈ (3.5, 4.5). �

EXAMPLE 2 Approximating N given ε for a limit at infinity

Use a graph to illustrate and approximate

(a) the smallest N which guarantees that if x ∈ (N, ∞), then x + 1
x

∈ (0.75, 1.25).

(b) the smallest N which guarantees that if x ∈ (N, ∞), then x + 1
x

∈ (0.9, 1.1).

What limit statement do these problems have to do with, and why?

SOLUTION

These problems are about the limit statement lim
x→∞

x + 1
x

= 1, which by definition means

that for all ε > 0, there is some N > 0 such that if x ∈ (N, ∞), then x + 1
x

∈ (1 − ε, 1 + ε).

Therefore parts (a) and (b) of this example ask us to find the corresponding values of N for
ε = 0.25 and ε = 0.1, respectively.

(a) The figure that follows at the left shows f (x) = x + 1
x

and a beige bar representing all the
heights within 0.25 unit of y = 1. The blue area shows all of the values of x for which
the corresponding values of f (x) lie within the beige bar. According to this graph, to
find the leftmost point x = a of the blue area we must solve f (a) = 1.25:

f (a) = 1.25 =⇒ a + 1
a

= 1.25 =⇒ a + 1 = 1.25a =⇒ 1 = 0.25a =⇒ a = 4.

Therefore if x ∈ (4, ∞), then we can guarantee that x + 1
x

∈ (0.75, 1.25).

If x ∈ (4, ∞), then
x + 1

x
∈ (0.75, 1.25) If x ∈ (10, ∞), then

x + 1
x

∈ (0.9, 1.1)

4

1

0.75

1.25

x

y

10

1

0.9

1.1

x

y

(b) We now do the same thing but for ε = 0.1. For this smaller value of ε we must draw a
smaller beige bar around y = 1, which in turn requires a different blue area of values
of x for which the corresponding values of f (x) lie within the ε-bar, as shown in the
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preceding graph at the right. To find the leftmost point x = a of the blue area, we solve
f (a) = 1.1:

f (a) = 1.1 =⇒ a + 1
a

= 1.1 =⇒ a + 1 = 1.1a =⇒ 1 = 0.1a =⇒ a = 10.

Thus for x ∈ (10, ∞) we can guarantee that x + 1
x

∈ (0.9, 1.1). �

EXAMPLE 3 A real–world example of finding δ given ε

Fuel efficiency depends on driving speed. A typical car runs at 100% fuel efficiency when
driven at 55 miles per hour. Suppose that the fuel efficiency percentage at speed s (in MPH)
is given by E(s) = −0.033058(s 2 − 110s). If you want your car to run with at least 95% fuel
efficiency, how close to 55 miles per hour do you have to drive?

SOLUTION

In the language of limits, we are asking: For the limit lim
s→55

E(s) = 100, if ε = 5, what is δ?

The corresponding ε-bar and δ-bar are shown below in the following graph of E(s):

Staying within 5% fuel efficiency

40

105

95

50

60

70

80

90

100

110

10 20 30 40 50 60 70 80 90100
55

E

s
42.7 67.3

The leftmost and rightmost values x = a and x = b of the blue δ-interval shown can be
found by using the quadratic formula to find the two solutions of the equation E(s) = 95
or by using a calculator graph to approximate values. In either case, we find a ≈ 42.7 and
b ≈ 67.3. Therefore, according to the graph you can drive anywhere between 42.7 and 67.3
miles per hour and get at least 95% fuel efficiency. �

TEST YOUR? UNDERSTANDING
� When discussing limits as x→c, why do we consider punctured intervals around

x = c?

� In the definition of limit, why do we need the statement to be true for all values
ε > 0?

� In the proof of Theorem 1.6 we had L = M + k and ε = k
2

. Why does this mean that
(L − ε, L + ε) and (M − ε, M + ε) do not overlap?

� How are left limits and right limits related to two-sided limits?

� How is a limit at infinity different from an infinite limit?

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 15:42

1.2 Formal Definition of Limit 97

EXERCISES 1.2

Thinking Back

Logical quantifiers: Determine whether each of the follow-
ing statements about real numbers is true or false, and
why.

� For all a, there exists some b such that b = a 2.

� For all a, there exists some b such that a = b 2.

� For all a, there exists some b such that b = a + 1.

� For all integers a, there exists some integer b such that
if x ≥ a, then x > b.

� For all integers a, there exists some integer b such that
if x > a, then x = b.

Solving function equations: Solve each of the following equa-
tions for x, and illustrate these solutions on a graph of y = f (x).

� If f (x) = x 3, solve f (x) = 7.5 and f (x) = 8.5.

� If f (x) = √
x − 1, solve f (x) = 1.8 and f (x) = 2.2.

� If f (x) = −0.033058(x 2 − 110x), solve f (x) = 90.

� If f (x) = 2 − x 2 and x > 0, solve f (x) = −7.01 and
f (x) = −6.99.

� If f (x) = x2 − 2x − 3
x − 1

and x < 0, solve f (x) = −2 and

f (x) = 0.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: For lim
x→c

f (x) to be defined, the function f

must be defined at x = c.
(b) True or False: We can calculate a limit of the form

lim
x→c

f (x) simply by finding f (c).

(c) True or False: If lim
x→c

f (x) = 10, then f (c) = 10.

(d) True or False: If f (c) = 10, then lim
x→c

f (x) = 10.

(e) True or False: A function can approach more than one
limit as x approaches c.

(f) True or False: If lim
x→4

f (x) = 10, then we can make f (x)

as close to 4 as we like by choosing values of x suffi-
ciently close to 10.

(g) True or False: If lim
x→6

f (x) = ∞, then we can make f (x)

as large as we like by choosing values of x sufficiently
close to 6.

(h) True or False: If lim
x→∞ f (x) = 100, then we can find val-

ues of f (x) between 99.9 and 100.1 by choosing values
of x that are sufficiently large.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f and a value c such that lim
x→c

f (x) happens

to be equal to f (c).
(b) A function f and a value c such that lim

x→c
f (x) is not

equal to f (c).
(c) A function f and a value c such that lim

x→c
f (x) exists but

f (c) does not exist.

3. What are punctured intervals, and why do we need to use
them when discussing limits?

4. Describe the punctured interval around x = 2 that has a
radius of 3 and the punctured interval around x = 4 that
has a radius of 0.25.

5. Find punctured intervals on which the function

f (x) = 1
x2 − x

is defined, centered around

(a) x = 1.5 (b) x = 0.25 (c) x = 1

6. Find punctured intervals on which the function

f (x) = 1
x ln(x + 2)

is defined, centered around

(a) x = 0 (b) x = −1 (c) x = −1.5
Use interval notation to fill in the blanks that follow. Your
answers will involve δ, ε, N, and/or M.

7. If lim
x→2

f (x) = 5, then for all ε > 0, there is some δ > 0

such that if x ∈ , then f (x) ∈ .
8. If lim

x→3−
f (x) = 1, then for all ε > 0, there is some δ > 0

such that if x ∈ , then f (x) ∈ .

9. If lim
x→∞ f (x) = 2, then for all ε > 0, there is some N > 0

such that if x ∈ , then f (x) ∈ .
10. If lim

x→∞ f (x) = −∞, then for all M > 0, there is some

N > 0 such that if x ∈ , then f (x) ∈ .

11. If lim
x→1+

f (x) = ∞, then for all M > 0, there is some δ > 0

such that if x ∈ , then f (x) ∈ .
12. Sketch a labeled graph that illustrates what is going on

in the proof of Theorem 1.6 in the reading. Your graph
should include two different ε-bars and a graphical rea-
son that they cannot overlap.

13. Sketch a labeled graph that illustrates what is going
on in the proof of Theorem 1.8 in the reading. Your
graph should include two different δ-bars and a graph-
ical reason why they combine to make a punctured delta-
interval.

14. Suppose f is a function with f (2) = 5 where for all ε > 0,
there is some δ > 0 such that if x ∈ (2 − δ, 2) ∪ (2, 2 + δ),
then f (x) ∈ (3 − ε, 3 + ε). Sketch a possible graph of f .

15. If x ∈ (1.5, 2.5), what is the largest interval I = (4 − ε,
4 + ε) for which we can guarantee that x 2 ∈ I?

16. It is false that lim
x→1

(x + 1.01) = 2. Express this fact in a

mathematical sentence involving δ and ε, to show how
the formal definition of limit fails in this case.
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17. It is false that lim
x→∞

1000
x

= ∞. Express this fact in a math-

ematical sentence involving M and N, to show how the
formal definition of limit fails in this case.

18. Show that the limit as x → 2 of f (x) = √
x − 1.1 is not

equal to 1, by finding an ε > 0 for which there is no cor-
responding δ > 0 satisfying the formal definition of limit.

Skills

Write each limit in Exercises 19–42 as a formal statement
involving δ, ε, N, and/or M, and sketch a graph that illus-
trates the roles of these constants. In the last six exercises you
may take f to be any appropriate graph.

19. lim
x→−3

√
x + 7 = 2 20. lim

x→2

x 2 − 4
x + 2

= 0

21. lim
x→−1

(x 3 − 2) = −3 22. lim
x→1−

√
1 − x = 0

23. lim
x→2

x 2 − 4
x − 2

= 4 24. lim
x→1

(x 2 − 3) = −2

25. lim
x→0+

√
x = 0 26. lim

x→3−
(4 − x 2) = −5

27. lim
x→−2+

1
x + 2

= ∞ 28. lim
x→0−

1
x

= −∞

29. lim
x→2+

1
2 x − 4

= ∞ 30. lim
x→0+

1
1 − e x

= −∞

31. lim
x→∞

x
1 − 2x

= −.5 32. lim
x→−∞

1
x 2 + 1

= 0

33. lim
x→∞(x 3 + x + 1) = ∞ 34. lim

x→−∞(1 − 3x) = ∞

35. lim
h→0

(2 + h)2 − 4
h

= 4 36. lim
h→0

1
2 + h − 1

2

h
= −1

4
37. lim

x→c+
f (x) = −∞ 38. lim

x→c−
f (x) = ∞

39. lim
x→−∞ f (x) = L 40. lim

x→−∞ f (x) = −∞
41. lim

x→−∞ f (x) = ∞ 42. lim
x→∞ f (x) = −∞

For each limit lim
x→c

f (x) = L in Exercises 43–54, use graphs

and algebra to approximate the largest value of δ such that if
x ∈ (c − δ, c) ∪ (c, c + δ), then f (x) ∈ (L − ε, L + ε).

43. lim
x→2

x 3 = 8, ε = 0.5

44. lim
x→2

x 3 = 8, ε = 0.25

45. lim
x→5

√
x − 1 = 2, ε = 1

46. lim
x→5

√
x − 1 = 2, ε = 0.2

47. lim
x→π

sin x = 0, ε =
√

2
2

48. lim
x→π

sin x = 0, ε = 1
2

49. lim
x→0

1 − cos x
x

= 0, ε = 1
2

50. lim
x→0

1 − cos x
x

= 0, ε = 1
4

51. lim
x→3

(2 − x 2) = −7, ε = 0.01

52. lim
x→3

(2 − x 2) = −7, ε = 0.001

53. lim
x→−1

x 2 − 2x − 3
x + 1

= −4, ε = 1

54. lim
x→−1

x 2 − 2x − 3
x + 1

= −4, ε = 0.1

For each limit in Exercises 55–64, use graphs and algebra
to approximate the largest δ or smallest-magnitude N that
corresponds to the given value of ε or M, according to the
appropriate formal limit definition.

55. lim
x→1+

1
x 2 − 1

= ∞, M = 1000, find largest δ > 0

56. lim
x→1+

1
x 2 − 1

= ∞, M = 10,000, find largest δ > 0

57. lim
x→∞

3x
x + 1

= 3, ε = 0.5, find smallest N > 0

58. lim
x→∞

3x
x + 1

= 3, ε = 0.1, find smallest N > 0

59. lim
x→∞ ln x = ∞, M = 100, find smallest N > 0

60. lim
x→∞ ln x = ∞, M = 100,000, find smallest N > 0

61. lim
x→−∞3 x = 0, ε = 1

2
, find smallest-magnitude N <0

62. lim
x→−∞3 x = 0, ε = 1

4
, find smallest-magnitude N <0

63. lim
x→∞(4 − x 2) = −∞, M = −100, find smallest N > 0

64. lim
x→∞(4 − x 2) = − ∞, M = − 10,000, find smallest N > 0

Applications
65. Every month, Jack hides $50 under a broken floorboard to

save up for a new boat. After t months of saving, he will
have F(t) = 50t dollars.
(a) The boat Jack wants costs at least $7,465. How many

months does Jack have to save money before he will
have enough to pay for the boat? Illustrate this infor-
mation on a graph of F(t).

(b) Suppose a different boat costs M dollars. Will there
be a value t = N for which F(N) > M? What does
this mean in real-world terms? Illustrate the roles of
M and N on a graph of F(t).

Money saved for Jack’s boat

10,000

7,500

5,000

2,500

F

1921449648
t
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66. Len’s company produces different-sized cylindrical cans
that are each 6 inches tall. The cost to produce a can with
radius r is C(r) = 10πr2 + 24πr cents.

Different cans with radius 6 inches

6 in.

r

Cost of producing a can

3.02.52.01.51.00.5

500

400

300

200

100

C

r

(a) Len’s boss wants him to construct the cans so that
the cost of each can is within 25 cents of $4.00. Given
these cost requirements, what is the acceptable range
of values for r?

(b) Len’s boss now says that he wants the cans to cost
within 10 cents of $4.00. Under these new cost require-
ments, what is the acceptable range of values for r?

(c) Interpret this problem in terms of δ and ε ranges.
Specifically, what is c? What is L? What is ε for part
(a) and part (b)? What are the corresponding values
of δ? Illustrate these values of c, L, ε, and δ on a graph
of C(r).

67. You work for a company that sells velvet Elvis paintings.
The function N( p) = 9.2p2 − 725p + 16, 333 predicts the
number N of velvet Elvis paintings that your company will
sell if they are priced at p dollars each, and is shown in the
following graph. The Presley estate does not allow you to
charge more than $50 per painting.

Velvet Elvis paintings sold

10,000

8,000

6,000

2,000

4,000

N

p
10 20 30 40 50

(a) Use a graphing utility to estimate the price your com-
pany should charge per painting if it wishes to sell
6000 velvet Elvis paintings.

(b) Find the range of prices that would enable your
company to sell between 5000 and 7000 velvet Elvis
paintings.

(c) Interpret this problem in terms of δ and ε ranges.
Specifically, what is c? What is L? What is ε? What
is the corresponding value of δ? Illustrate these val-
ues of c, L, ε, and δ on a graph of N( p).

Proofs

Prove the four limit statements in Exercises 68–71. In the next
section we will present a systematic method for such proofs.

68. Prove that lim
x→1

3x = 3, with these steps:

(a) What is the δ–ε statement that must be shown to
prove that lim

x→1
3x = 3?

(b) Argue that x ∈ (1 − δ, 1) ∪ (1, 1 + δ) if and only if
−δ < x − 1 < δ, with x �= 1. Then use algebra to
show that this means that 0 < |x − 1| < δ.

(c) Argue that 3x ∈ (3 − ε, 3 + ε) if and only if −ε <

3(x − 1) < ε. Then use algebra to show that this
means that 3|x − 1| < ε.

(d) Given any particular ε > 0, what value of δ would
guarantee that if 0 < |x − 1| < δ, then 3|x − 1| < ε?
Your answer will depend on ε.

(e) Put the previous four parts together to prove the limit
statement.

69. Prove that lim
x→2

(7 − x) = 5, with these steps:

(a) What is the δ–ε statement that must be shown to
prove that lim

x→2
7 − x = 5?

(b) Argue that x ∈ (2 − δ, 2) ∪ (2, 2 + δ) if and only if
−δ < x − 2 < δ. Then use algebra to show that this
means that 0 < |x − 2| < δ.

(c) Argue that 7 − x ∈ (5 − ε, 5 + ε) if and only if
−ε < 2 − x < ε. Then use algebra to show that
this means that |x − 2| < ε.

(d) Given any particular ε > 0, what value of δ would
guarantee that if 0 < |x − 2| < δ, then |x − 2| < ε?
Your answer will depend on ε.

(e) Put the previous four parts together to prove the limit
statement.

70. Prove that lim
x→0+

1
x

= ∞, with these steps:

(a) What is the M–δ statement that must be shown to

prove that lim
x→0+

1
x

= ∞?

(b) Argue that x ∈ (0, 0 + δ) if and only if 0 < x < δ.

(c) Argue that
1
x

∈ (M, ∞) if and only if x <
1
M

. You may

assume that M > 0.
(d) Given any particular M > 0, what value of δ would

guarantee that if 0 < x < δ, then x <
1
M

? Your
answer will depend on M.

(e) Put the previous four parts together to prove the limit
statement.

71. Prove that lim
x→∞

1
x

= 0, with these steps:

(a) What is the ε–N statement that must be shown to

prove that lim
x→∞

1
x

= 0?

(b) Argue that x ∈ (N, ∞) if and only if x > N.

(c) Argue that
1
x

∈ (0−ε, 0+ε) if and only if −ε <
1
x

< ε.

Then argue that for this limit, it suffices to consider

0 <
1
x

< ε.
(d) Given any particular ε, what value of N > 0 would

guarantee that if x > N, then 0 <
1
x

< ε? Your
answer will depend on ε.

(e) Put the previous four parts together to prove the limit
statement.
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Thinking Forward

Continuity: As you have already seen, sometimes lim
x→c

f (x) is

equal to f (c), and sometimes it is not. As we will see in
Section 1.4, when the limit of a function f as x → c does
happen to be equal to the value of f (x) at x = c, we say that
the function f is continuous at x = c.

� You may have heard the following loose, only partially
accurate definition of continuity in a previous class:
A function is continuous if you “can draw it without
picking up your pencil.” Why does it make sense that
this would be related to the definition just presented
of continuity in terms of limits?

� State the limit-definition of continuity with a formal
δ–ε statement.

� The function f (x) = x 2 is continuous at every point.
Use this fact and the formal definition of continuity to
calculate lim

x→2
x 2, lim

x→5
x 2, and lim

x→−4
x 2.

Limits of Sequences: We say that an infinite sequence of real
numbers a 1, a 2, a 3, . . . , a k, . . . converges to a limit L, and we
write lim

k→∞
s k = L, if for all ε > 0, there exists some N > 0

such that if k > N, then |a k − L| < ε.

� Use algebra to solve the inequality |a k −L| < ε for a k.
Your answer should be in the form a k ∈ , where
the blank is filled in with interval notation.

� Relate the definition of the convergence of a sequence
to the definition of a limit at infinity.

1.3 DELTA-EPSILON PROOFS*

� Developing an equivalent algebraic definition of limits from our geometric definition

� Finding delta in terms of epsilon so that we can prove a limit statement

� The formal logic of writing delta–epsilon proofs

Describing Limits with Absolute Value Inequalities

In Definition 1.5, we formally defined the limit statement lim
x→c

f (x) = L to mean that for all

ε > 0, there exists δ > 0 such that whenever x ∈ (c − δ, c) ∪ (c, c + δ), we can guarantee that
f (x) ∈ (L − ε, L + ε). This definition of limit has a very geometric flavor, since it is stated
in the language of ε-intervals and punctured δ-intervals. That kind of language is useful
when looking at specific values of ε or δ, but not as useful when trying to prove that every
value of ε has a corresponding value of δ. For the purposes of proving limit statements, we
give the following algebraic definition of limit and prove that it is equivalent to our previous
geometric definition:

DEFINITION 1.10 Algebraic Definition of Limit

The limit lim
x→c

f (x) = L means that for all ε > 0, there exists δ > 0 such that

if 0 < |x − c| < δ, then | f (x) − L| < ε.

THEOREM 1.11 Equivalence of Geometric and Algebraic Definitions of Limit

The two definitions of limit in Definition 1.5 and 1.10 are equivalent. Specifically,

(a) x ∈ (c − δ, c) ∪ (c, c + δ) if and only if 0 < |x − c| < δ;

(b) f (x) ∈ (L − ε, L + ε) if and only if | f (x) − L| < ε.

Proof. We will begin by proving part (b), since it is slightly easier. The statement f (x) ∈ (L − ε,
L + ε) means that L − ε < f (x) < L + ε. Subtracting L from all three parts of this double inequality,
we get −ε < f (x) − L < ε. This is precisely the solution of the inequality | f (x) − L| < ε.
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For part (a) we have a similar situation, except that we must deal with a punctured interval.
The statement x ∈ (c − δ, c) ∪ (c, c + δ) means that c − δ < x < c + δ and x �= c. Subtracting c from
all three parts of the double inequality, we get −δ < x − c < δ, which is the solution set for the
inequality |x − c| < δ. The fact that x �= c means that x − c �= 0. This is equivalent to saying that
|x − c| �= 0, and since the absolute value of a number is always positive or zero, it is also equivalent
to saying that |x − c| > 0. Therefore x ∈ (c − δ, c) ∪ (c, c + δ) if and only if 0 < |x − c| < δ.

Finding a Delta for Every Epsilon

With our new algebraic definition of limit, we have the final tool we need to be able to
effectively prove limit statements. This is the first step towards being able to calculate limits,
something that, perhaps surprisingly, we do not yet know how to do.

Consider for example the limit statement lim
x→2

(3x − 1) = 5. We can examine this limit

with a table of values, noticing that as the values of x approach x = 2 from the left and the
right, the corresponding values of 3x − 1 approach 5:

x 1.9 1.99 1.999 2 2.001 2.01 2.1

3x − 1 4.7 4.97 4.997 - 5.003 5.03 5.3

We can also investigate the limit statement lim
x→2

(3x − 1) = 5 with the following graph of

f (x) = 3x − 1 at the left, noticing that a sequence of values of x approaching x = 2 from
either the left or the right determines a sequence of values of f (x) that approach y = 5:

As x → 2, f (x) → 5
If x ∈

(
2 − 1

3
, 2

)
∪

(
2, 2 + 1

3

)
,

then f (x) ∈ (5 − 1, 5 + 1)

If x ∈
(

2 − 1
6

, 2
)

∪
(

2, 2 + 1
6

)
,

then f (x) ∈
(

5 − 1
2

, 5 + 1
2

)
y

21 3

8

7

6

5

4

3

2

1

x
21 3

y

8

7

6

5

4

3

2

1

x
21 3

y

8

7

6

5

4

3

2

1

x

We can even show that the formal geometric definition of limit holds for a particular ε, by
finding some δ for which x ∈ (2 − δ, 2) ∪ (2, 2 + δ) guarantees that 3x − 1 ∈ (5 − ε, 5 + ε).
For example, it turns out that if ε = 1, then δ = 1

3
will work, as illustrated in the middle

figure shown, and if ε = 1
2

, then δ = 1
6

will work, as in the rightmost figure.

Although the preceding investigations are encouraging evidence, none of them prove
that lim

x→2
(3x − 1) is equal to 5. In the table, perhaps we did not consider values of x close

enough to 2 to see the true behavior of f (x) = 3x − 1, or perhaps the limit is actually 5.0001
and not 5. The three graphs shown each have the same possible problems. To prove that
lim
x→2

(3x−1) = 5 we would need to know for certain that we could get values of f (x) arbitrarily

close to y = 5 by choosing values of x that are sufficiently close to x = 2. For every epsilon
we would have to be able to find a delta.
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Specifically, in this example, we need to show that for any choice of ε > 0, we can find
some δ > 0 such that whenever a real number x satisfies 0 < |x − 2| < δ, we can also
guarantee that x satisfies |(3x − 1) − 5| < ε. Notice that |(3x − 1) − 5| = |3x − 6| = 3|x − 2|,
so what we really need is to conclude that 3|x−2| < ε, i.e., that |x−2| <

ε

3
. But that is easy

if we are allowed to choose a different δ for each ε: Given any ε > 0, simply choose δ = ε

3
.

Then whenever 0 < |x−2| < δ, we also have |x−2| <
ε

3
, as desired. Notice that in both the

second and third of the graphs shown previously, we did in fact choose δ to be one-third
of ε. We have just proved the limit statement lim

x→2
(3x − 1) = 5 by showing that every value

of ε has a corresponding value of δ = ε

3
for which the formal algebraic definition of limit

holds.

Writing Delta-Epsilon Proofs

We have just proved that lim
x→2

(3x − 1) = 5, but our proof meandered about in a paragraph

of discussion. We now present a systematic way to write up delta-epsilon proofs for limit
statements. Remember that in our example what we must show is the following doubly
quantified logical implication:

“For all ε > 0, there exists a δ > 0 such that if 0 < |x − 2| < δ, then |(3x − 1) − 5| < ε.”

Logically, to prove such a statement we must first let ε be an arbitrary positive number and
then choose a value for δ in terms of ε. We must then show that for all values of x with
0 < |x − 2| < δ, we can also say that |(3x − 1) − 5| < ε.

In our example, we already know that for any ε > 0 we should choose δ = ε

3
. Using

this fact, we could arrange our proof very concisely as follows:

Proof. Given ε > 0, choose δ = ε

3
. For all x with 0 < |x − 2| < δ, we have

|(3x − 1) − 5| = |3x − 6| = |3(x − 2)| = 3|x − 2| < 3δ
�= 3

( ε

3

)
= ε.

Therefore whenever 0 < |x − 2| < δ, we also have |(3x − 1) − 5| < ε.

The first three equals signs in the proof are simple algebra. The less-than step followed
from our assumption that |x − 2| < δ. The starred equality followed from the fact that
δ = ε

3
.

In general we will not know at the outset what to choose for δ, as we did just now. In
those cases we can either do a side-calculation to find δ in advance or just leave a blank
space for δ and continue with the proof. When we get to the starred equality, after using
the assumption 0 < |x − c| < δ, we will be able to see what to choose for δ and can fill in
the blank as if we knew it all along; see Example 2. Throughout the examples we will try
our hand at proving all kinds of limit statements, including one-sided limits, infinite limits,
and limits at infinity.

Examples and Explorations

EXAMPLE 1 Finding delta as a function of epsilon

Find formulas for δ in terms of ε for each of the following limit statements:

(a) lim
x→4

(2x + 1) = 9 (b) lim
x→2

(x 2 − 4x + 5) = 1

Then use those formulas to find punctured δ-intervals for ε = 1 and ε = 0.5.
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SOLUTION

(a) The limit statement lim
x→4

(2x + 1) = 9 means that given any ε > 0, there is some δ > 0

so that if 0 < |x − 4| < δ, then we can conclude that |(2x + 1) − 9| < ε. We have

|(2x + 1) − 9| = |2x − 8| = |2(x − 4)| = 2|x − 4|,
so |(2x + 1) − 9| < ε when 2|x − 4| < ε, i.e., when |x − 4| <

ε

2
. Therefore we

should choose δ = ε

2
. In particular, when ε = 1, we have δ = 1

2
= 0.5 and punctured

δ-interval (3.5, 4) ∪ (4, 4.5). When ε = 0.5, we choose δ = 0.5
2

= 0.25, which gives us
the punctured δ-interval (3.75, 4) ∪ (4, 4.25).

(b) The limit statement lim
x→2

(x 2 − 4x + 5) = 1 means that for any ε > 0, we can find δ > 0

so that whenever 0 < |x − 2| < δ, we can conclude that |(x 2 − 4x + 5) − 1| < ε. Notice
that

|(x 2 − 4x + 5) − 1| = |x 2 − 4x + 4| = |(x − 2)2| = |x − 2|2,

which is clearly very closely related to our δ-inequality 0 < |x − 2| < δ. In fact, the
inequality |x−2|2 < ε is equivalent to the inequality |x−2| <

√
ε. Therefore we should

choose δ = √
ε. In particular, when ε = 1, we should choose δ = √

1 = 1 and thus
punctured δ-interval (1, 2)∪ (2, 3). When ε = 0.5, we should choose δ = √

0.5 ≈ 0.707
and thus punctured δ-interval (1.293, 2.707). �

CHECKING
THE ANSWER

To check that our formulas for δ in terms of ε are reasonable, we can graph the functions
and the punctured δ-intervals that we found in each case. For the limit lim

x→4
(2x + 1) = 9,

δ = 0.5 looks right for ε = 1 and δ = 0.25 looks right for ε = 0.5:

If x ∈ (4 − 0.5, 4) ∪ (4, 4 + 0.5),
then f (x) ∈ (9 − 1, 9 + 1)

If x ∈ (4 − 0.25, 4) ∪ (4, 4 + 0.25),
then f (x) ∈ (9 − 0.5, 9 + 0.5)

54321

y

11
10
9
8
7
6
5
4
3
2
1

x
54321

11
10
9
8
7
6
5
4
3
2
1

y

x

For lim
x→2

(x 2 − 4x + 5) = 1, δ = 1 looks right for ε = 1 and δ ≈ 0.707 looks right for ε = 0.5:

If x ∈ (2 − 1, 2) ∪ (2, 2 + 1),
then f (x) ∈ (1 − 1, 1 + 1)

If x ∈ (2 − 0.707, 2) ∪ (2, 2 + 0.707),
then f (x) ∈ (1 − 0.5, 1 + 0.5)

4321

1

2

3

4

y

x
4321

1

2

3

4

y

x
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EXAMPLE 2 Writing basic delta–epsilon proofs

Write delta–epsilon proofs for each of the following limit statements:

(a) lim
x→4

(2x + 1) = 9 (b) lim
x→2

(x 2 − 4x + 5) = 1

SOLUTION

(a) To show that lim
x→4

(2x + 1) = 9 we must start with an arbitrary ε > 0, choose some

δ > 0, and then show that for all x with 0 < |x−4| < δ, we also have |(2x+1)−9| < ε.
From the previous example we know that we should choose δ = ε

2
.

Proof. Given ε > 0, choose δ = ε

2
. For all x with 0 < |x − 4| < δ, we have

|(2x + 1) − 9| = |2x − 8| = |2(x − 4)| = 2|x − 4| < 2δ
�= 2

(
ε

2

)
= ε.

Therefore whenever 0 < |x − 4| < δ, we also have |(2x + 1) − 9| < ε.

If we had not already known that we should choose δ = ε

2
, we could have determined

that choice when we reached the starred equality. At that point we had shown that
|(2x + 1) − 9| was less than 2δ. What we were trying to show was that |(2x + 1) − 9|
was less than ε. If 2δ were equal to ε, then we would be done; solving 2δ = ε for δ, we
arrive at the choice δ = ε

2
.

(b) To show that lim
x→2

(x 2 − 4x + 5) = 1 we must start with an arbitrary ε > 0, choose some

δ > 0, and then show that for all x with 0 < |x − 2| < δ, we also have |(x 2 − 4x +
5) − 1| < ε. From the previous example we know that we should choose δ = √

ε.

Proof. Given ε > 0, choose δ = √
ε. For all x with 0 < |x − 2| < δ, we have

|(x 2 − 4x + 5) − 1| = |x 2 − 4x + 4| = |(x − 2)2| = |x − 2|2 < δ2 �= (
√

ε )2 = ε.

Thus we can conclude that whenever 0 < |x − 2| < δ, we also have |(x 2 − 4x + 5) − 1| < ε.

Again, if we had not already known that we should choose δ = √
ε, then at the starred

equality we would have δ2 where we wish to have ε. Solving δ2 = ε for δ, we get our
choice of δ = √

ε. �

EXAMPLE 3 Proofs for one-sided and infinite limits

Give formal proofs for each of the following limit statements:

(a) lim
x→1+

√
x − 1 = 0 (b) lim

x→∞
1
x

= 0 (c) lim
x→3−

1
3 − x

= ∞

SOLUTION

(a) The limit statement lim
x→1+

√
x − 1 = 0 means that for all ε > 0, there exists δ > 0 such

that if x ∈ (1, 1 + δ), then |√x − 1 − 0| < ε. Other than a small bit of extra work to
translate the meaning of x ∈ (1, 1 + δ), this is a standard delta-epsilon proof.

Proof. Given ε > 0, choose δ = ε2. (The reason for that choice of δ will become clear at the
starred equality that follows.) Suppose x ∈ (1, 1 + δ). Then 1 < x < 1 + δ, which means that
0 < x − 1 < δ. We then have

|√x − 1 − 0| = |√x − 1| = √
x − 1 <

√
δ =

√
ε2 = ε.

Thus we can conclude that whenever x ∈ (1, 1 + δ), we also have |√x − 1 − 0| < ε.
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(b) Geometrically, the limit statement lim
x→∞

1
x

= 0 means that for all ε > 0, there exists

N > 0 such that if x ∈ (N, ∞), then 1
x

∈ (0 − ε, 0 + ε). Algebraically, the implication

after the quantifiers can be rewritten as follows: If x > N, then
∣∣∣ 1

x
− 0

∣∣∣ < ε. This is
what we shall prove.

Proof. Given ε > 0, choose N = 1
ε

. (The reason for that choice of N will become clear at

the starred equality that follows.) If x > N, then
1
x

<
1
N

and x is positive, and therefore
∣∣∣∣1

x
− 0

∣∣∣∣ =
∣∣∣∣1

x

∣∣∣∣ = 1
x

<
1
N

= 1
1
ε

= ε.

Thus we can conclude that whenever x > N, we also have
∣∣∣ 1

x
− 0

∣∣∣ < ε.

(c) Geometrically, the limit lim
x→3−

1
3 − x

= ∞ means that for all M > 0, there exists δ > 0

such that if x ∈ (3 − δ, 3), then 1
3 − x

∈ (M, ∞). Note that x ∈ (3 − δ, 3) means that

3 − δ < x < 3 and therefore that −δ < x − 3 < 0. Multiplying by −1 and flipping
inequalities, this becomes δ > −(x − 3) > 0, or equivalently, 0 < 3 − x < δ. Hence the
implication in our limit statement can be expressed as follows: If 0 < 3 − x < δ, then

1
3 − x

> M. This is what we will prove:

Proof. Given M > 0, choose δ = 1
M

. (As usual, the reason for this choice will become clear

at the starred equality that follows.) For all x with 0 < 3 − x < δ, we have
1

3 − x
>

1
δ

, and

therefore 1
3 − x

>
1
δ

= 1
1
M

= M.

Thus we can conclude that whenever 0 < 3 − x < δ, we also have
1

3 − x
> M.

EXAMPLE 4 A delta–epsilon proof where it is necessary to bound delta from above

Write a delta-epsilon proof for the limit statement lim
x→2

5x 4 = 80.

SOLUTION

To prove the limit statement lim
x→2

5x 4 = 80, we must show that for all ε > 0, there exists a

choice of δ > 0 such that whenever 0 < |x − 2| < δ, we also have |5x 4 − 80| < ε. In our
previous delta-epsilon proofs, the algebra has always magically worked out nicely. In this
example there will be a point at which we get stuck. What will get us out of the jam will
be assuming that δ is no larger than 1. This assumption will allow us to put a bound on
an expression that would otherwise be in our way. For that reason, our choice of δ in this
proof will be the minimum of 1 and an expression that depends on epsilon.

Proof. Given ε > 0, choose δ = min
(

1,
ε

325

)
, i.e., the smaller of 1 and

ε

325
. (The reason for this

elaborate choice of δ will be made clear at the two starred inequalities that follow.) If x is a real
number with 0 < |x − 2| < δ, then we have

|5x 4 − 80| = |5(x 4 − 16)| = 5|(x 2 − 4)(x 2 + 4)|
= 5|(x − 2)(x + 2)(x 2 + 4)|
= 5|x − 2| · |(x + 2)(x 2 + 4)|
< 5δ · |(x + 2)(x 2 + 4)|.
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Because our choice of δ ensures that δ is at most 1, we can say that 0 < |x−2| ≤ 1 and therefore that
x is between 1 and 3. This means that we can bound the troublesome quantity |(x+2)(x 2 +4)| from
above; it is largest when x = 3, so we know that |(x + 2)(x 2 + 4)| is at most |(3 + 2)(32 + 4)| = 65.

Combining this result with the work we just did, we have (using our choice of δ = min
(

1,
ε

325

)
at

the two starred inequalities)

|5x 4 − 80| �
< 5δ · 65 = 325 δ

�≤ 325
(

ε

325

)
= ε.

Thus we can conclude that whenever 0 < |x − 2| < δ, we also have |5x 4 − 80| < ε.

TEST YOUR? UNDERSTANDING
� Why do we say that Definition 1.5 from the previous section is geometric in nature

while we say that Definition 1.10 is algebraic? In what situations might one definition
be more useful than another?

� How can we express the formal definitions for one-sided limits, infinite limits, and
limits at infinity “algebraically,” in the spirit of Definition 1.10?

� Suppose that we have a limit of the form lim
x→c

f (x) = L and that we can find a value of δ

for some given value of ε. Why does this not prove definitively that lim
x→c

f (x) = L?

� In a delta-epsilon proof, how do we come up with a choice for δ in terms of ε?

� Why is it sometimes necessary to require that δ ≤ 1 in a delta-epsilon proof?

EXERCISES 1.3

Thinking Back

Inequalities: Find the solution sets of each of the following
inequalities.

� 0 < |x − 2| < 0.5 � 0 < |x + 5| < 0.1

� |x 2 − 4| < 0.5 � |(3x + 1) − 10| < 1

� 1
x 2

< 0.01 � 1
x 2

> 1000

Logical implications: Suppose A and B are statements and that
the implication “If A, then B” holds.

� If A is true, then what, if anything, can you conclude
about B, and why?

� If A is false, then what, if anything, can you conclude
about B, and why?

� If B is true, then what, if anything, can you conclude
about A, and why?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If x �= c, then |x − c| is strictly greater
than zero.

(b) True or False: If |x−c| is strictly greater than zero, then
x �= c.

(c) True or False: x is a solution of 0 < |x − c| < δ if and
only if c − δ < x < c + δ.

(d) True or False: If 0 < |x − c| < δ, then x ∈ (c − δ, c) ∪
(c, c + δ).

(e) True or False: If | f (x)−L| < ε, then L−ε < f (x) < L+ε.
(f) True or False: If f (x) ∈ (L − ε, L + ε), then 0 < f (x) <

|L + ε|.
(g) True or False: The fact that 0 < |x − 3| < 0.25

guarantees that |(2x − 1) − 5| < 0.5 proves that
lim
x→3

(2x − 1) = 5.

(h) True or False: lim
x→3

(2x − 1) = 5 means that for all δ > 0

there is some ε > 0 such that if 0 < |x − c| < δ, then
|(2x − 1) − 5| < ε.
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2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f with values given in the following table
but whose limit as x → 2 is not equal to 5:

x 1.9 1.99 1.999 2 2.001 2.01 2.1

f (x) 4.7 4.97 4.997 - 5.003 5.03 5.3

(b) An inequality involving absolute values whose solu-
tion set is (2.75, 3) ∪ (3, 3.25).

(c) An inequality involving absolute values whose solu-
tion set is (−0.01, 0) ∪ (0, 0.01).

3. Write down the formal delta-epsilon statement you
would have to prove in order to prove the limit statement

lim
x→−2

3
x + 1

= −3.

4. Suppose you show that |(1 − 2x) − (−5)| < 0.05 for all x
with 0 < |x − 3| < 0.025. Explain why this does not prove
that lim

x→3
(1 − 2x) = −5.

5. Write down a mathematical equation that expresses the
sentence “x is not equal to 5, and the distance between
x and 5 is less than 0.01.” Then write an equation that
means “the distance between f (x) and −2 is less than
0.5.”

6. Why do we have 0 < |x − c| < δ instead of just |x − c| < δ

in Definition 1.10?

Write each of the following inequalities in interval notation:

7. 0 < |x − 2| < 0.1 8. 0 < |x + 3| < 0.05

9. |(x 2 − 1) + 3| < 0.5 10. |(3x + 1) − 2| < 0.1

11. | f (x) − L| < ε 12. 0 < |x − c| < δ

Determine whether each implication that follows is true or
false. Use graphs to justify any implications that are true, and
counterexamples for any implications that are false.

13. If 0 < |x − 2| < 1, then |x 2 − 4| < 0.5.
14. If 0 < |x − 2| < 0.2, then |x 2 − 4| < 1.
15. If 0 < |x − 0| < 0.75, then |x 2 − 0| < 0.5.
16. If 0 < |x + 2| < 0.1 then |x 2 − 4| < 0.4.
17. If 0 < |x + 2| < 0.075, then |x 2 − 4| < 0.4.

18. In Example 2 we proved that lim
x→2

(x 2 − 4x + 5) = 1. Use

the proof to find values of δ corresponding to (a) ε = 1,
(b) ε = 0.1, and (c) ε = 0.01. Illustrate that your choices
of δ work by examining a graph of f (x) = x 2 − 4x + 5 and
sketching appropriate ε and δ intervals.

19. In Example 4 we proved that lim
x→2

5x 4 = 80. Use the

proof to find values of δ corresponding to (a) ε = 5,
(b) ε = 0.01, and (c) ε = 350. Illustrate that your choices
of δ work by examining a graph of f (x) = 5x 4 and sketch-
ing appropriate ε and δ intervals.

20. Use algebra to solve the inequality 0 < |x − c| < δ and
show that its solution set is x ∈ (c − δ, c) ∪ (c, c + δ).

21. Use algebra to solve the inequality | f (x) − L| < ε and
show that its solution set is f (x) ∈ (L − ε, L + ε).

22. Suppose f (x) = mx + b is a linear function with m �= 0,
and let c be any real number.
(a) Show that for all ε > 0, if 0 < |x − c| <

ε

|m| , then

| f (x) − f (c)| < ε.
(b) What does the implication in part (a) have to do with

limits?
(c) Illustrate the implication in part (a) with a labeled

graph. Explain in terms of slopes why it makes sense
that given ε > 0, the corresponding δ > 0 is δ = ε

|m| .

Skills
Use algebra to find the largest possible value of δ or small-
est possible value of N that makes each implication in Exer-
cises 23–28 true. Then verify and support your answers with
labeled graphs.

23. If 0 < |x − 2| < δ, then |(3x − 1) − 5| < 0.25.

24. If 0 < |x − 3| < δ, then
∣∣∣∣1

x
− 1

3

∣∣∣∣ < 0.2.

25. If x ∈ (1, 1 + δ), then
∣∣√x − 1 − 0

∣∣ < 0.5.

26. If x ∈ (3 − δ, 3), then
1

3 − x
> 1000.

27. If x > N, then
∣∣∣∣ 1
x 2

− 0
∣∣∣∣ < 0.001.

28. If x > N, then 1 − 2x < −500.

For each limit statement lim
x→c

f (x) = L in Exercises 29–40, use

algebra to find δ > 0 in terms of ε > 0 so that if 0 <

|x − c| < δ, then | f (x) − L| < ε.

29. lim
x→3

(x + 5) = 8 30. lim
x→−2

(4 − 2x) = 8

31. lim
x→0

(3 − 4x) = 3 32. lim
x→1

(3x + 8) = 11

33. lim
x→0

(5x 2 − 1) = −1 34. lim
x→3

(x 2 − 6x + 5) = −4

35. lim
x→2

(x 2 − 4x + 6) = 2 36. lim
x→0

(x 3 + 1) = 1

37. lim
x→2

1
x

= 1
2

; you may assume δ ≤ 1

38. lim
x→3

1
x

= 1
3

; you may assume δ ≤ 1

39. lim
x→3

(x 2 − 2x − 3) = 0; you may assume δ ≤ 1

40. lim
x→1

2x 4 = 2; you may assume δ ≤ 1

For each limit statement in Exercises 41–44, use algebra to
find δ or N in terms of ε or M, according to the appropriate
formal limit definition.

41. lim
x→−2+

(1 + √
x + 2 ) = 1, find δ in terms of ε

42. lim
x→∞

x − 1
x

= 1, find N in terms of ε

43. lim
x→1−

1
1 − x

= ∞, find δ in terms of M

44. lim
x→∞(x 2 + 2) = ∞, find N in terms of M
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Applications
For Exercises 45 and 46, suppose you work for a company that
manufactures gourmet soup cans. The material for the curved
sides of the cans costs 0.25 cent (a quarter of a cent) per square

Cost of materials for producing a soup can

5 in.

0.5 cents per
square inch

0.1 cents per
linear inch

r

0.25 cents per
square inch

r

inch, the material for the top and bottom costs 0.5 cent per
square inch, and the reinforcing weld around the seams costs
0.1 cent per linear inch. The seams run around the edges of
the top and bottom and also in a straight line from the top to
the bottom of the curved side.

45. Find a formula for the cost C(r) of producing a gourmet
soup can with radius r and height 5 inches, and answer
the following questions:
(a) What is the radius of a can that is 5 inches tall and

costs 30 cents to produce?
(b) Your manager wants you to produce 5-inch-tall cans

that cost between 20 and 40 cents. Write this require-
ment as an absolute value inequality.

(c) What range of radii would satisfy your manager?
Write an absolute value inequality whose solution set
lies inside this range of radii.

46. Find a formula for the cost C(h) of producing a gourmet
soup can with height h and radius 2 inches, and answer
the following questions:
(a) What is the height of a can that has radius 2 inches

and costs 45 cents to produce?
(b) Your manager wants you to produce 2-inch-radius

cans that cost between 40 and 50 cents. Write this
requirement as an absolute value inequality.

(c) What range of heights would satisfy your manager?
Write an absolute value inequality whose solution set
lies within this range of heights.

Proofs

Write delta-epsilon proofs for each of the limit statements
lim
x→c

f (x) = L in Exercises 47–60.

47. lim
x→1

(2x + 4) = 6 48. lim
x→2

(3 − 4x) = −5

49. lim
x→−6

(x + 2) = −4 50. lim
x→−3

(1 − x) = 4

51. lim
x→4

(6x − 1) = 23 52. lim
x→8

(3x − 11) = 13

53. lim
x→0

(3x 2 + 1) = 1 54. lim
x→3

(x 2 − 6x + 11) = 2

55. lim
x→1

(2x 2 − 4x + 3) = 1 56. lim
x→2

(3x 2 − 12x + 15) = 3

57. lim
x→1

x 2 − 1
x − 1

= 2 58. lim
x→2

x 2 − 3x + 2
x − 2

= 1

59. lim
x→5+

√
x − 5 = 0 60. lim

x→2+
3
√

2x − 4 = 0

For each of the limit statements in Exercises 61–66, write a
δ–M, N–ε, or N–M proof, according to the type of limit
statement.

61. lim
x→−2+

1
x + 2

= ∞ 62. lim
x→−2−

1
x + 2

= −∞

63. lim
x→∞

2x − 1
x

= 2 64. lim
x→−∞

2x − 1
x

= 2

65. lim
x→∞(3x − 5) = ∞ 66. lim

x→−∞(3x − 5) = −∞

Prove each of the limit statements in Exercises 67–72. You
will have to bound δ.

67. lim
x→3

(x 2 − 2x − 3) = 0 68. lim
x→−1

(x 2 − 2x − 3) = 0

69. lim
x→5

(x 2 − 6x + 7) = 2 70. lim
x→1

(x 2 − 6x + 7) = 2

71. lim
x→2

4
x 2

= 1 72. lim
x→3

18
x 2

= 2

Thinking Forward

Calculating limits: We still do not have a way to calculate
limits easily. In the following problems you will develop rules
for calculating limits of some very simple functions.

� Explain why it makes intuitive sense that lim
x→c

x = c for

any real number c. Then use a delta–epsilon argument
to prove it.

� Explain why it makes intuitive sense that lim
x→c

x 2 = c2

for any real number c. Then use a delta–epsilon
argument to prove it. (Hint: You will need to assume that
δ ≤ 1.)

� Use the preceding two problems and the result of
Exercise 22 to calculate the following limits:

• lim
x→−1

x • lim
x→4

x • lim
x→π

x

• lim
x→0

x 2 • lim
x→5

x 2 • lim
x→−2

x 2

• lim
x→0

(2x−3) • lim
x→1

(1 − x) • lim
x→3

(3x+1)

� When calculating each of these limits lim
x→c

f (x), you

simply used the value of f (c). Will that method always
work for any limit? Why or why not?
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1.4 CONTINUITY AND ITS CONSEQUENCES

� Continuity of functions at points and on intervals, and basic types of discontinuities

� Simple functions that are continuous on their domains

� The Extreme Value Theorem and the Intermediate Value Theorem

Defining Continuity with Limits

Intuitively, a function is continuous if its graph has no breaks, jumps, or holes. Loosely
speaking, you can sketch the graph of a continuous function “without picking up your
pencil.” We can make the notion of continuity more precise by using limits. For example,
consider the following four graphs:

y = f (x) y = g(x)
y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

y = h(x) y = k(x)
y

x
1 2 3 4

1

2

3

4

y

x
1 2 3 4

1

2

3

4

While the first graph has no breaks or holes, the remaining three graphs all have some sort
of bad behavior at x = 1. It turns out that limits as x → 1 detect exactly this bad behavior:
In each case, the limit as x → 1 is not the same as the value at x = 1. For example, lim

x→1
g(x)

does not exist, but g(1) = 2. For h(x), lim
x→1

h(x) is equal to 1, while the value h(1) is equal to 2.

Finally, for k(x), the limit is lim
x→1

k(x) = 1 but the value k(1) does not exist. On the other hand,

for f (x), we have both lim
x→1

f (x) = 1 and f (1) = 1.

The preceding examples suggest the following definition: A function is continuous at
a point x = c if its limit as x → c is equal to a real number that is the same as the value of
the function at x = c.

DEFINITION 1.12 Continuity of a Function at a Point

A function f is continuous at x = c if lim
x→c

f (x) = f (c).

By considering one-sided limits, we can get a more detailed picture of continuity. For
example, with the previous function g(x), the left limit as x → 1 is not equal to the value g(1)
but the right limit is. We say that g(x) is right continuous at x = 1 but not left continuous.

DEFINITION 1.13 Left and Right Continuity at a Point

A function f is left continuous at x = c if lim
x→c−

f (x) = f (c) and is right continuous at

x = c if lim
x→c+

f (x) = f (c).
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Sometimes it is convenient to talk about continuity of a function on an interval. We say
that a function is continuous on an open interval if it is continuous at each point in the
interval. For non-open intervals we also require one-sided continuity as we approach any
closed endpoints.

DEFINITION 1.14 Continuity of a Function on an Interval

A function f is continuous on an interval I if it is continuous at every point in the interior
of I, right continuous at any closed left endpoint, and left continuous at any closed right
endpoint.

The graphs that follow provide examples of continuity on the four possible types of
bounded intervals. For example, a function f is continuous on I = (1, 3] if it is continu-
ous at every point in the interior (1, 3) and left continuous at the right endpoint x = 3, as
shown in the third figure. In terms of limits this means that lim

x→c
f (x) = f (c) for all c ∈ (1, 3)

and lim
x→3−

f (x) = f (3).

continuous on (1, 3) continuous on [1, 3)

y

x
1 2 3

3

2

1

y

x
1 2 3

3

2

1

continuous on (1, 3] continuous on [1, 3]

y

x
1 2 3

3

2

1

y

x
1 2 3

3

2

1

Types of Discontinuities

When a function is not continuous at a point x = c, we say that it is discontinuous at
x = c. In terms of limits this means that the limit lim

x→c
f (x) is not equal to the value f (c). The

three most basic types of discontinuities that a function can have are illustrated as follows:

removable discontinuity jump discontinuity infinite discontinuity

y

4321

1

2

3

4

x

y

4321

1

2

3

4

x

y

4321

1

2

3

4

x

Intuitively, we say that a discontinuity is removable if we could remove it just by changing
one function value. At a jump discontinuity, the function jumps from one value to another,
and at an infinite discontinuity the function has a vertical asymptote.
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These types of discontinuities can be described precisely in terms of limits as follows:

DEFINITION 1.15 Removable, Jump, and Infinite Discontinuities

Suppose f is discontinuous at x = c. We say that x = c is a

(a) removable discontinuity if lim
x→c

f (x) exists but is not equal to f (c);

(b) jump discontinuity if lim
x→c−

f (x) and lim
x→c+

f (x) both exist but are not equal;

(c) infinite discontinuity if one or both of lim
x→c−

f (x) and lim
x→c+

f (x) is infinite.

For example, in the first figure shown, the limit lim
x→2

f (x) = 1 exists but is not equal to

f (2) = 2, and therefore f (x) has a removable discontinuity at x = 2. The function g(x) in
the second figure has left and right limits lim

x→2−
g(x) = 1 and lim

x→2+
g(x) = 2, respectively; the

limits from both sides exist, but they are not equal to each other, and therefore h(x) has a
jump discontinuity at x = 2. Finally, the function h(x) in the third graph has an infinite limit
from both the left and the right at x = 2, and therefore has an infinite discontinuity at that
point.

Continuity of Very Basic Functions

We say that a function is continuous on its domain if it is continuous on every interval
on which it is defined. The following theorem proves that, unsurprisingly, our simplest
examples of functions are continuous on their domains:

THEOREM 1.16 Continuity of Simple Functions

(a) Constant, identity, and linear functions are continuous everywhere. In terms of
limits, for every k, c, m, and b in R we have

lim
x→c

k = k, lim
x→c

x = c, and lim
x→c

(mx + b) = mc + b.

(b) Power functions are continuous on their domains. In terms of limits, if A is real
and k is rational, then for all values x = c at which x k is defined we have

lim
x→c

Ax k = Ac k.

This is a powerful theorem, because it tells us that we can calculate limits of certain simple
functions at domain points just by evaluating the functions at those points. For example,
f (x) = 1

x
= x−1 is a power function, so by the preceding theorem, it is continuous on

its domain (−∞, 0) ∪ (0, ∞). This means that at any point c �= 0 we can calculate lim
x→c

1
x

by simply calculating the value f (c) = 1
c
. However, the theorem does not tell us how to

calculate lim
x→0

1
x
; we will discuss such limits in a later section.

Technical point: In part (b) of the theorem the limit may sometimes be only one-sided.
For example, f (x) = x 1/2 is defined at x = 0 and to the right of x = 0, but not for x < 0.
Therefore the corresponding limit statement is one-sided: lim

x→0+
x 1/2 = 0.

Although it seems graphically obvious that the simple types of functions described in
Theorem 1.16 are continuous everywhere they are defined, to actually prove continuity
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we need to appeal to the definition of limit. We will prove part (a) here and dis-
cuss the proof of part (b) after we learn about limit rules in the next section. You
will prove that f (x) = x k is continuous on its domain for k = 2, 3, −1, −2, 1

2
, and − 1

2
in

Exercises 89–92.

Proof. (This proof requires material covered in optional Section 1.3.)
The limit lim

x→c
k = k makes intuitive sense because as x approaches c, the number k should simply

remain k; there is no x involved. To prove this limit statement we must show that for all ε > 0, there
is some δ > 0 such that if x ∈ (c − δ, c) ∪ (c, c + δ), then k ∈ (k − ε, k + ε). But k is always in the
interval (k − ε, k + ε), so the implication is trivially true for all values of ε and δ. This is illustrated
in the leftmost figure that follows.

If f (x) = k, choose any δ If f (x) = x, choose δ = ε If f (x) = mx + b, choose δ = ε

|m|

x

y

k � ε

k � ε

k

cc � δ c � δ

rise

run

x

y

c � ε

c � ε

c

cc � δ c � δ

rise

run

x

y

f (c) � ε

f (c) � ε

f (c)

cc � δ c � δ

To prove that lim
x→c

x = c we must show that for all ε > 0, there exists δ > 0 such that if

x ∈ (c − δ, c) ∪ (c, c + δ), then x ∈ (L − ε, L + ε). This clearly holds if we choose δ to be equal to ε,
as shown in the middle figure.

To prove that lim
x→c

(mx + b) = (mc + b) we will use the definition of limit in terms of absolute

value inequalities from Definition 1.10. In the case when m = 0, the linear function f (x) = mx + b
is the constant function f (x) = b; we have already proved that case. If m �= 0, then given ε > 0,
choose δ = ε

|m| . Then for all x satisfying 0 < |x − c| < δ we also have

|(mx + b) − (mc + b)| = |mx − mc| = |m||x − c| < |m|δ = |m|
(

ε

|m|

)
= ε.

It makes intuitive sense that δ should be
ε

m
, since the ratio

ε

δ
is equal to the ratio

rise
run

, or the slope
of f (x) = mx + b, as shown in the rightmost figure.

Extreme and Intermediate Values of Continuous Functions

In this section we examine two important consequences of continuity. First, a continuous
function on a closed interval must be bounded and attain its upper and lower bounds.
Second, if f is continuous between two values x = a and x = b, then the corresponding
values of f (x) go through every possible intermediate value between the y-values f (a) and
f (b). Both of these consequences are intuitively obvious if we think of continuous functions
as having “unbroken” graphs.

For example, consider the function f in the first figure that follows. This function is
continuous on [a, b]. In the second graph we see that f attains its maximum on that interval
at x = M and its minimum at x = m. In the third graph we see that the function attains
every intermediate value K between f (a) and f (b).
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f is continuous on [a, b] Maximum at M, minimum at m Height of y = K at x = c

x

y

a b
x

y

f (m)

f (M)

a M m

y

x

f (b)

f (a)
K

a c b

In general, attaining extreme values and passing through all intermediate values are
properties that hold for every function that is continuous on a closed interval [a, b]:

THEOREM 1.17 The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then there exist values M and m in the interval
[a, b] such that f (M) is the maximum value of f (x) on [a, b] and f (m) is the minimum value
of f (x) on [a, b].

THEOREM 1.18 The Intermediate Value Theorem

If f is continuous on a closed interval [a, b], then for any K strictly between f (a) and f (b),
there exists at least one c ∈ (a, b) such that f (c) = K.

These two important consequences of continuity may seem obvious, but in fact they rely
on a subtle mathematical property of the real numbers called the Least Upper Bound
Axiom. Properly explaining the proofs of these theorems is outside of the scope of this
book.

In the Extreme and Intermediate Value Theorems, the hypothesis that f be continuous
on a closed interval [a, b] is essential. If f either fails to be continuous on the interior of
the interval or fails to be continuous at a closed endpoint, then the conclusions of these
theorems do not necessarily hold. For example, each of the following three functions fails
to be continuous on [a, b] and also fails to satisfy at least one of the conclusions of the two
theorems.

No minimum value on [a, b] No c with f (c) = K No maximum value on [a, b]

y

x

f (b)

f (a)

a b a b

y

x

f (b)

f (a)

K

a c b

y

x

f (b)

f (a)
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An extremely useful special case of the Intermediate Value Theorem is the case when
we consider the intermediate value K = 0. In this case, the Intermediate Value Theorem
says that if f is continuous on [a, b] and f (a) and f (b) have opposite signs, then there exists
at least one c ∈ (a, b) where f (c) = 0. We use an equivalent variant of this special case every
time we solve an inequality by checking signs between roots and discontinuities:

THEOREM 1.19 A Function Can Change Sign Only at Roots and Discontinuities

A function f can change sign (from positive to negative or vice versa) at a point x = c
only if f (x) is zero, undefined, or discontinuous at x = c.

The graph that follows at the left shows a function f that is continuous on [a, b], and changes
sign only at its roots c 1, c 2, and c 3. The graph at the right is discontinuous somewhere in
[a, b] and therefore can change sign as we move from left to right without ever crossing the
y-axis.

f (x) can change sign at roots f (x) can change sign at a discontinuity

f (b)

f (a)

x

y

bc3c2c1a

f (b)

f (a)

ba
x

y

Examples and Explorations

EXAMPLE 1 Limits and continuity of piecewise-defined functions

Describe the continuity or discontinuity of each piecewise-defined function that follows
at x = 1 by using graphs to determine the left, right, and two-sided limits at x = 1. Then
describe the intervals on which each function is continuous.

(a) f (x) =
{

x + 1, if x < 1
3 − x 2, if x ≥ 1

(b) g(x) =
{

4 − x 2, if x ≤ 1
x − 1, if x > 1

SOLUTION

(a) The graph of f looks like y = x + 1 to the left of x = 1 and like y = 3 − x 2 to the right
of x = 1, as shown next at the left. From the graph we see that lim

x→1−
f (x) = 2 and

lim
x→1+

f (x) = 2, and thus lim
x→1

f (x) = 2. We also have f (1) = 3 − 12 = 2. Since the limit

of f (x) as x → 1 is equal to the value of f (x) at x = 1, we can conclude that f is con-
tinuous at x = 1. In fact, according to the graph, the function f is continuous on all of
(−∞, ∞).
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Left and right limits both equal f (1) Only the left limit equals g(1)

�3

y

x
321�1�2−3

3

2

�1

�2

1

y

x
321�1�2�3

4

3

2

�1

�2

1

(b) The graph of g(x) looks like 4 − x 2 to the left of x = 1 and like x − 1 to the right of
x = 1, with value g(1) = 4 − 12 = 3, as shown previously at the right. From the graph
we see that lim

x→1−
g(x) = 3 while lim

x→1+
g(x) = 0. The left and right limits both exist, but

they are not equal; thus g(x) has a jump discontinuity at x = 1. Since lim
x→1−

g(x) = 3 =
g(1) but lim

x→1+
g(x) = 0 �= g(1), we can also say that g(x) is left continuous, but not

right continuous, at x = 1. According to the graph, the function g(x) is continuous on
(−∞, 1] and on (1, ∞). �

EXAMPLE 2 Continuity of a function that is defined separately for rationals and irrationals

Determine graphically whether or not the rather exotic functions that follow are continuous
at x = 0. Although these types of functions are not going to be a major focus in this course,
this example helps get at the root of what continuity really means. You might be surprised
by the solution!

(a) f (x) =
{

1, if x is rational
−1, if x is irrational

(b) g(x) =
{

1, if x is rational
x + 1, if x is irrational

SOLUTION

In the graphs of f and g that follow, the lighter dotted line represents the values of the
function at rational-number inputs and the darker dotted line represents the values at
irrational-number inputs. Note that the graphs of both f and g pass the vertical line test,
since every input x is either rational or irrational and never both.

Overall limit does not exist as x → 0 Limit as x → 0 approaches 1 in both cases

2

�1

1

�2

�1�2

y

21
x

3

�1

1

�1�2

y

21

2

x

(a) We must consider the limit of f as x → 0 separately for rational and irrational values
of x. From the graph at the left, we see that for rational values of x we have lim

x→0
f (x) = 1
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while for irrational values of x we have lim
x→0

f (x) = −1. Note that every punctured inter-

val (−δ, 0) ∪ (0, δ) around x = 0 contains both rational and irrational numbers. Since
the limit of f (x) as x → 0 is different depending on whether we choose rational or
irrational values of x, the overall limit does not exist. Therefore the function f is not
continuous at x = 0.

(b) On the other hand, looking at the graph of g at the right, we see that for rational values
of x we have lim

x→0
g(x) = 1 and for irrational values of x we also have lim

x→0
g(x) = 1.

Therefore lim
x→0

g(x) exists and is equal to 1. Since g(0) is also equal to 1, the function g

is in fact continuous at x = 0, as strange as that may seem. �

EXAMPLE 3 Calculating limits of very basic functions

Use continuity to calculate each of the limits that follow, if possible. If we do not yet have
enough information to calculate a limit, explain why not.

(a) lim
x→3

2 (b) lim
x→3

1
x

(c) lim
x→0

1
x

(d) lim
x→4

√
x − 1

SOLUTION

By Theorem 1.16 we know that the constant function f (x) = 2 and the power function
g(x) = 1

x
are continuous on their domains. Therefore for parts (a) and (b) we can calculate

the limits just by evaluating at x = 3: lim
x→3

2 = 2 and lim
x→3

1
x

= 1
3

.

We do not yet know how to calculate the remaining two limits algebraically. In part (c),
the point x = 0 is not in the domain of g(x) = 1

x
, so we cannot apply Theorem 1.16. In

part (d), the function h(x) = √
x − 1 is not a constant, identity, linear, or power func-

tion, and thus at this point we cannot conclude anything about its continuity or its
limits. �

EXAMPLE 4 A real-world illustration of the Extreme and Intermediate Value Theorems

Consider the function w(t) that describes a particular person’s weight at t years of age
between the ages of 18 and 45. Why does it make sense that this function is continuous
on [18, 45]? What do the Extreme Value Theorem and the Intermediate Value Theorem say
about w(t)?

SOLUTION

The weight function w(t) should be continuous on [18, 45] because a person’s weight
changes continuously over time and cannot jump from one value to another. (We are
assuming typical circumstances, so that a person does not get a serious haircut, lose a limb,
or somehow otherwise get their weight to change drastically in an instant.)

The Extreme Value Theorem tells us that there is some time M ∈ [18, 45] at which the
person’s weight was greatest and some time m ∈ [18, 45] at which that person weighed the
least. In other words, at some time between 18 and 45 years of age, the person must have
had a maximum weight and a minimum weight.

The Intermediate Value Theorem tells us that for every weight K between w(18)
and w(45), there is some time c ∈ (18, 45) for which w(c) = K. For example, if the per-
son weighed w(18) = 130 pounds at age 18 and w(45) = 163 pounds at age 45, then
there must be some age between 18 and 45 at which the person weighed, say, exactly
144 pounds. �

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 15:42

1.4 Continuity and Its Consequences 117

EXAMPLE 5 Applying the Intermediate Value Theorem to a Continuous Function

The function f (x) = x 3 − 3x + 1 is continuous everywhere. (We will see this later in
Section 1.5.) Use the Intermediate Value Theorem to conclude that there is some point c
for which f (c) = 2. Then use a graph of f to approximate at least one such value of c.

SOLUTION

To show that there is some c with f (c) = 2 we need to find values a and b such that K = 2
is between f (a) and f (b), and apply the Intermediate Value Theorem. By trial and error we
can find such values a and b, by testing different values of f (x) until we find one that is less
than and one that is greater than 2. For example,

f (0) = 03 − 3(0) + 1 = 1 < 2,

f (2) = 23 − 3(2) + 1 = 3 > 2.

Since f is continuous on [0, 2] and f (0) < 2 < f (2), by the Intermediate Value Theorem
there is some value c ∈ (0, 2) for which f (c) = 2. Note that the Intermediate Value The-
orem doesn’t tell us where c is, only that such a c exists somewhere in the interval
(0, 2).

We can approximate some values of c for which f (c) = 2 by approximating the values
of x for which the graph of f (x) = x 3 − 3x + 1 intersects the line y = 2:

�1.5

�2.5 2.5

3.5

�1.5

�2.5 2.5

3.5

From this graph we can conclude that f (c) = 2 at c ≈ −1.5, c ≈ −0.4, and c ≈ 1.9. To
get better approximations we could trace along the graph on a calculator or other graphing
utility. �

EXAMPLE 6 Determining sign information between zeroes and discontinuities

Determine the intervals on which the functions that follow are positive or negative. You
may assume that the function in part (a) is continuous everywhere and the function in
part (b) is continuous on each piece.

(a) f (x) = 3x 3 + 3x 2 − 6x (b) g(x) =
⎧⎨
⎩

x + 1, if x < −2
(x + 1)2, if − 2 ≤ x ≤ 1

2 − x, if x > 1

SOLUTION
(a) The roots of f (x) = 3x 3 + 3x 2 − 6x = 3x(x 2 + x − 2) = 3x(x − 1)(x + 2) are x = 0,

x = 1, and x = −2. By Theorem 1.19, in each of the intervals between these points
the function f is either always positive or always negative. We need to test the sign of

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 15:42

118 Chapter 1 Limits

f (x) at one point in each interval. For example, f (−3) = −36 < 0, f (−1) = 6 > 0,
f (0.5) = −1.875 < 0, and f (2) = 24 > 0. Reading from the resulting sign chart shown
at the left, we can see that f (x) = 3x 3 + 3x 2 − 6x is negative on (−∞, −2) ∪ (0, 1) and
positive on (−2, 0) ∪ (1, ∞):

� �� �

�2
f

0 1

�� �� �

�2 �1
g

dc dc

1 2

(b) The piecewise-defined function g can be discontinuous only at its break points x = −2
and x = 1. Furthermore, its first component x+1 is never zero on (−∞, −2), its second
component (x + 1)2 is zero only at x = −1, and its third component 2 − x is zero
when x = 2. By Theorem 1.19 the function g can change sign only at the roots and
discontinuities at −2, −1, 1, and 2. All that now remains is to check the sign of g(x)
one time between each of these points; the results are recorded on the preceding sign
chart at the right. We marked the discontinuous points with “dc” to distinguish them
from the zeros. Reading from this sign chart and keeping careful track of the sign of
g(x) at the break points, we see that g(x) is negative on (−∞, −2)∪ (2, ∞) and positive
on [−2, −1) ∪ (−1, 2]. �

CHECKING
THE ANSWER

We can graph f and g with a calculator or other graphing utility to verify that the sign charts
we found are reasonable. Notice that the intervals where f (x) or g(x) are positive are the
intervals on which their graphs are above the x-axis.

f (x) is above the x-axis on (−2, 0) ∪ (1, ∞) g(x) is above the x-axis on [−2, −1) ∪ (−1, 2)

�3 2

�15

25

�3 2

�15

25

�2

�3 3

4

3

4

�3

2�2

TEST YOUR? UNDERSTANDING
� Use limits to give definitions of each of the following: continuity at a point, continuity

on an interval, left and right continuity.

� Use limits to give definitions of each of the following: removable discontinuity, jump
discontinuity, infinite discontinuity.

� In the reading is a graph of a function with a removable discontinuity. We could make
this graph continuous if we could change just one function value. What value?

� Why would it be difficult to prove at this point that all power functions, no matter what
kind of power, are continuous on their domains?

� The conclusion of the Intermediate Value Theorem tells us of the existence of a point
c ∈ (a, b) with f (c) = K. Why do we need only the open interval (a, b), and not the
closed interval [a, b], in this conclusion?
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EXERCISES 1.4

Thinking Back

Finding roots of piecewise-defined functions: For each function f
that follows, find all values x = c for which f (c) = 0. Check
your answers by sketching a graph of f .

� f (x) =
{

4 − x 2, if x < 0
x + 1, if x ≥ 0

� f (x) =
{

x + 1, if x < 0
4 − x 2, if x ≥ 0

� f (x) =
{

2x − 1, if x ≤ 1
2x 2 + x − 3, if x > 1

Logical existence statements: Determine whether each of the
statements that follow are true or false. Justify your answers.

� If x is an integer, then there exists some positive
integer y such that |y| = x.

� If x is a positive integer, then there exists some
negative integer y such that |y| = x.

� If x ∈ [−2, 2], then there exists some y ∈ (0, 4) such
that y = x 2.

� If x ∈ [0, 100], then there exists some y ∈ [−10, 10]
such that x = y2.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f is both left and right continuous at
x = c, then f is continuous at x = c.

(b) True or False: If f is continuous on the open interval
(0, 5), then f is continuous at every point in (0, 5).

(c) True or False: If f is continuous on the closed interval
[0, 5], then f is continuous at every point in [0, 5].

(d) True or False: If f is continuous on the interval (2, 4),
then f must have a maximum value and a minimum
value on (2, 4).

(e) True or False: If f (3) = −5 and f (9) = −2, then there
must be a value c at which f (c) = −3.

(f) True or False: If f is continuous everywhere, and if
f (−2) = 3 and f (1) = 2, then f (x) must have a root
somewhere in (−2, 1).

(g) True or False: If f is continuous everywhere, and if
f (0) = −2 and f (4) = 3, then f (x) must have a root
somewhere in (0, 4).

(h) True or False: If f (0) = f (6) = 0 and f (2) > 0, then f (x)
is positive on the entire interval (0, 6).

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function with f (4) = 2 that has a
removable discontinuity at x = 4.

(b) The graph of a function that is continuous on its
domain but not continuous at x = 0.

(c) The graph of a function that is continuous on (0, 2]
and (2, 3) but not on (0, 3).

3. If f is a continuous function, what can you say about
lim
x→1

f (x)?

4. Explain what it means for a function f to be continuous
at a point x = c, with a sentence that includes the words
“approaches” and “value.”

5. In our proof that constant functions are continuous, we
used the fact that given any ε > 0, a choice of any δ > 0
will work in the formal definition of limit. Use a graph to
explain why this makes intuitive sense. (This exercise de-
pends on Section 1.3.)

6. In our proof that linear functions are continuous, we used
the fact that given any ε > 0, the choice of δ = ε

|m| will

work in the formal definition of limit. Use a graph to ex-
plain why this makes intuitive sense. (This exercise depends
on Section 1.3.)

7. Given the following function f , define f (1) so that f is con-
tinuous at x = 1, if possible:

f (x) = x 2 − 2x + 1
x 2 − 6x + 5

.

8. Given the following function f , define f (1) so that f is con-
tinuous at x = 1, if possible:

f (x) =
{

3x − 1, if x < 1
x 2 + 1, if x > 1.

Each function in Exercises 9–12 is discontinuous at some value
x = c. Describe the type of discontinuity and any one-sided
continuity at x = c, and sketch a possible graph of f .

9. lim
x→−1−

f (x) = 2, lim
x→−1+

f (x) = 2, f (−1) = 1.

10. lim
x→2−

f (x) = 2, lim
x→2+

f (x) = 1, f (2) = 1.

11. lim
x→0−

f (x) = −1, lim
x→0+

f (x) = 1, f (0) = 0.

12. lim
x→2−

f (x) = −∞, lim
x→2+

f (x) = ∞, f (2) = 3.

13. State what it means for a function f to be continuous at
a point x = c, in terms of the delta–epsilon definition of
limit. (This exercise depends on Section 1.3.)

14. State what it means for a function f to be left continuous
at a point x = c, in terms of the delta–epsilon definition
of limit. (This exercise depends on Section 1.3.)
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15. State what it means for a function f to be right continuous
at a point x = c, in terms of the delta–epsilon definition
of limit. (This exercise depends on Section 1.3.)

16. Sketch a labeled graph of a function that satisfies the
hypothesis of the Extreme Value Theorem, and illustrate
on your graph that the conclusion of the Extreme Value
Theorem follows.

17. Sketch a labeled graph of a function that satisfies the
hypothesis of the Intermediate Value Theorem, and
illustrate on your graph that the conclusion of the Inter-
mediate Value Theorem follows.

18. Sketch a labeled graph of a function that fails to satisfy
the hypothesis of the Intermediate Value Theorem, and
illustrate on your graph that the conclusion of the Inter-
mediate Value Theorem does not necessarily hold.

19. Sketch a labeled graph of a function that fails to satisfy the
hypothesis of the Extreme Value Theorem, and illustrate
on your graph that the conclusion of the Extreme Value
Theorem does not necessarily hold.

20. Explain why the Intermediate Value Theorem allows us to
say that a function can change sign only at discontinuities
and zeroes.

For each of the following sign charts, sketch the graph of a
function f that has the indicated signs, zeros, and discontinu-
ities:

21.
0 1 3

� �� �
f

22.
�� � � �

�4 �2
f

dc dc

0 2

Skills

For each function f graphed in Exercises 23–26, describe the
intervals on which f is continuous. For each discontinuity
of f , describe the type of discontinuity and any one-sided
continuity. Justify your answers about discontinuities with
limit statements.

23.

41 2 3

4

3

2

1

x

y 24.
3

2

1

y

�3

�1
�2�3 �1 321

x

�2

25.

x
�3 �2 �1 1 2 3

�2

2

3

1

y

�1

26.

x
�3 �2 �1 1 2 3

�3

�2

�1

2

3

1

y

Sketch the graph of a function f described in Exercises 27–32,
if possible. If it is not possible, explain why not.

27. f is left continuous at x = 1 and right continuous at x = 1,
but is not continuous at x = 1, and f (1) = −2.

28. f is left continuous at x = 2 but not continuous at x = 2,
and f (2) = 3.

29. f has a jump discontinuity at x = −1 and is left continu-
ous at x = −1, and f (−1) = 2.

30. f has an infinite discontinuity at 0 but is right continuous
at 0, and f (0) = 1.

31. f has a removable discontinuity at x = −2 and is right
continuous at x = −2, and f (−2) = 0.

32. f is continuous on [0, 2) but not on [0, 2].

For each limit in Exercises 33–38, either use continuity to cal-
culate the limit or explain why Theorem 1.16 does not apply.

33. lim
x→−1

6 34. lim
x→−1

x

35. lim
x→−5

(3x − 2) 36. lim
x→3

x 4

37. lim
x→0

x−3 38. lim
x→−5

√
x

In Exercises 39–44, use Theorem 1.16 and left and right lim-
its to determine whether each function f is continuous at its
break point(s). For each discontinuity of f , describe the type
of discontinuity and any one-sided discontinuity.

39. f (x) =
{

x − 3, if x < 3
−(x − 3), if x ≥ 3

40. f (x) =
{

x − 3, if x < 0
−(x − 3), if x ≥ 0

41. f (x) =
⎧⎨
⎩

x 2, if x < 2
4, if x = 2

2x + 1, if x > 2

42. f (x) =
⎧⎨
⎩

√−x, if x < 0
2, if x = 0√
x, if x > 0

43. f (x) =
⎧⎨
⎩

x + 1, if x < 1
3x − 1, if 1 ≤ x < 2

x + 2, if x ≥ 2

44. f (x) =
⎧⎨
⎩

x 3, if x ≤ 0
1 − x, if 0 < x < 3
x − 5, if x ≥ 3
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Use graphs to determine if each function f in Exercises 45–48
is continuous at the given point x = c.

45. f (x) =
{

2 − x, if x rational
x 2, if x irrational, c = 2

46. f (x) =
{

x 2 − 3, if x rational
3x + 1, if x irrational, c = 0

47. f (x) =
{

2 − x, if x rational
x 2, if x irrational, c = 1

48. f (x) =
{

x 2 − 3, if x rational
3x + 1, if x irrational, c = 4

Use the Extreme Value Theorem to show that each function f
in Exercises 49–54 has both a maximum and a minimum value
on [a, b]. Then use a graphing utility to approximate values M
and m in [a, b] at which f has a maximum and a minimum,
respectively. You may assume that these functions are contin-
uous everywhere.

49. f (x) = x 4 − 3x 2 − 2, [a, b] = [−2, 2]

50. f (x) = x 4 − 3x 2 − 2, [a, b] = [0, 2]

51. f (x) = x 4 − 3x 2 − 2, [a, b] = [−1, 1]

52. f (x) = 3 − 2x 2 + x 3, [a, b] = [−1, 2]

53. f (x) = 3 − 2x 2 + x 3, [a, b] = [0, 2]

54. f (x) = 3 − 2x 2 + x 3, [a, b] = [−1, 1]

Use the Intermediate Value Theorem to show that for each
function f , interval [a, b], and value K in Exercises 55–
60, there is some c ∈ (a, b) for which f (c) = K. Then use a
graphing utility to approximate all such values c. You may
assume that these functions are continuous everywhere.

55. f (x) = 5 − x 4, [a, b] = [0, 2], K = 0

56. f (x) = 5 − x 4, [a, b] = [−2, −1], K = 0

57. f (x) = x 3 − 3x 2 − 2, [a, b] = [−2, 4], K = −4

58. f (x) = x 3 − 3x 2 − 2, [a, b] = [0, 2], K = −4

59. f (x) = x 3 − 3x 2 − 2, [a, b] = [2, 4], K = −4

60. f (x) = 2 + x + x 3, [a, b] = [−1, 2], K = 3

Use the Intermediate Value Theorem to show that for each
function f and value K in Exercises 61–66, there must be some
c ∈ R for which f (c) = K. You will have to select an appro-
priate interval [a, b] to work with. Then find or approximate
one such value of c. You may assume that these functions are
continuous everywhere.

61. f (x) = x 3 + 2, K = −15

62. f (x) = −2x 2 + 4, K = 0

63. f (x) = sin x, K = 1
2

64. f (x) = sin x, K =
√

3
2

65. f (x) = |3x + 1|, K = 1

66. f (x) = |2 − 3x|, K = 2

Find the intervals on which each function in Exercises 67–74
is positive or negative. Make clear how your work uses the
Intermediate Value Theorem and continuity. You may assume
that polynomials and their quotients are continuous on the
intervals on which they are defined.

67. f (x) = 2 + 5x + 2x 2 68. f (x) = x 3 − 2x 2 − 3x

69. f (x) = x 2 − 4
x 2 − 1

70. f (x) = (x + 4)(x − 1)
2x + 3

71. f (x) =
{

x − 4, if x ≤ 1
x 2 − 4, if x > 1

72. f (x) =
{

3x + 1, if x < 0
x, if x ≥ 0

73. f (x) =
{

x 3, if x ≤ 2
4x − x 3, if x > 2

74. f (x) =
{

x 2 − 9, if x ≤ −2
x 2 + x − 2, if x > −2

Applications
Explain in practical terms what the Extreme Value Theo-
rem says about each continuous function defined in Exercises
75–77. Then explain in practical terms what the Intermediate
Value Theorem says in each situation.

75. Alina hasn’t cut her hair for six years. Six years ago her hair
was just 2 inches long. Now her hair is 42 inches long. Let
H(t) be the function that describes the length, in inches,
of Alina’s hair t years after she stopped cutting it.

76. Linda collects rain in a bucket outside her back door.
Since the first day of April she has been keeping track
of how the amount of water in the bucket changes as it
fills with rain and evaporates. On April 1 the bucket was
empty, and today it contains 4 inches of water. Let w(t)
be the height, in inches, of rainwater in the bucket t days
after the first day of April.

77. The number of gallons of gas in Phil’s new station wagon t
days after he bought it is given by the function g(t). When

he purchased the station wagon one year ago, the tank
had 19 gallons of gas in it. Today he ran out of gas.

78. Lars was 20 inches tall when he was born, and six foot
one when he died at age 83. Use the Intermediate Value
Theorem to show that there must have been some point
in Lars’s life at which his height in inches was equal to his
age in years. (Hint: Think about when the difference between
his height and age is zero.)

79. As a vacuum cleaner salesman, Alex earns a salary of
$8,500 a year, whether he sells any vacuum cleaners or
not. In addition, for every 30 vacuum cleaners he sells, he
earns a $1,500 commission.
(a) Construct a piecewise-defined function M(v) that de-

scribes the amount of money M that Alex will make in
a year if he sells v vacuum cleaners over the course of
the year. Assume he sells between 0 and 90 vacuum
cleaners in a year.
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(b) Check that your function makes sense by using
it to calculate M(0), M(30), M(59), M(61), and
M(90). Then sketch a graph of M(v) on the interval
0 ≤ v ≤ 90.

(c) The piecewise-defined function M(v) is not contin-
uous. List all the values at which M(v) fails to be
continuous, and use the definition of continuity to
support your answers.

80. One immediate application of the Intermediate Value
Theorem is the method of finding roots called the
Bisection Method. In this problem you will develop this
method and then use it to approximate the square root
of 2.

(a) Suppose f is continuous on R and that a and b are
some real numbers for which f (a) is negative and f (b)
is positive. Explain why the Intermediate Value Theo-
rem guarantees that there must be some point in (a, b)
where f (x) has a root.

(b) Consider the function f (x) = x 2 − 2. Show that f (0)
is negative and f (2) is positive. What conclusion can
we draw from the Intermediate Value Theorem?

(c) We can bisect the interval (0, 2) by finding the mid-
point of the interval, which in this case is x = 1.
Is f (1) positive or negative? Does the Intermedi-
ate Value Theorem say anything about f (x) = x 2 − 2
on the interval (0, 1)? What about on the interval
(1, 2)?

(d) Your answer to part (b) tells you that f (x) = x 2 − 2
must have a root somewhere in the interval (0, 2)
of length 2. Your answer to part (c) tells you that
f (x) = x 2 − 2 must have a root in a shorter interval
of length 1. Now repeat! Bisect the interval of length

1 to find an interval of length
1
2

on which f (x) must
have a root.

(e) Describe why this Bisection Method will in general
give better and better approximations for finding a
root of a given function. In this particular example,
with f (x) = x 2 − 2, why does the Bisection Method
give us an approximation for

√
2?

Proofs

81. Write a delta–epsilon proof that shows that the function
f (x) = 3x − 5 is continuous at x = 2. (This exercise depends
on Section 1.3.)

82. Write a delta–epsilon proof that shows that the function
f (x) = 2x + 1 is continuous at x = 5. (This exercise depends
on Section 1.3.)

83. Write a delta–epsilon proof that shows that the func-
tion f (x) = |x| is continuous. You may find the following
inequality useful: For any real numbers a and b,
||a| − |b|| ≤ |a − b|. (This exercise depends on Section 1.3.)

84. Use what you know about one-sided limits to prove that
a function f is continuous at a point x = c if and only if it
is both left and right continuous at x = c.

For each function f in Exercises 85–86, use the delta–epsilon
definition of continuity to argue that f is or is not continuous
at the indicated point x = c.

85. f (x) =
{

2 − x, if x rational
x 2, if x irrational, c = 2

86. f (x) =
{

2 − x, if x rational
x 2, if x irrational, c = 1

87. Use the Intermediate Value Theorem to prove that every
cubic function f (x) = Ax 3 + Bx 2 + Cx + D has at least one
real root. You will have to first argue that you can find
real numbers a and b so that f (a) is negative and f (b) is
positive.

For each power function f in Exercises 89–93, write a delta–
epsilon proof which proves that f is continuous on its domain.
In each case you will need to assume that δ is less than or equal
to 1. (These exercises depend on Section 1.3.)

88. f (x) = x−1 89. f (x) = x 2

90. f (x) = x 3 91. f (x) = x −2

92. f (x) = x−1/2 93. f (x) = x 1/2

Thinking Forward

Interesting trigonometric limits: For each of the functions that
follow, use a calculator or other graphing utility to examine
the graph of f near x = 0. Does it appear that f is continuous
at x = 0? Make sure your calculator is set to radian mode.

� f (x) =
{1

x
sin(x), if x �= 0

1, if x = 0

� f (x) =
⎧⎨
⎩

sin
(

1
x

)
, if x �= 0

0, if x = 0

� f (x) =
⎧⎨
⎩

x sin
(

1
x

)
, if x �= 0

0, if x = 0

� f (x) =
⎧⎨
⎩

x 2 sin
(

1
x

)
, if x �= 0

0, if x = 0
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1.5 LIMIT RULES AND CALCULATING BASIC LIMITS

� Rules for calculating limits of arithmetic combinations and compositions of functions

� Continuity of algebraic and transcendental functions at domain points

� The Cancellation Theorem and the Squeeze Theorem for calculating limits

Limits of Combinations of Functions

Although we now understand in depth what limit statements mean, at this point we do not
have many tools for calculating limits. We can calculate limits of continuous functions at
domain points by evaluation, and we know that very simple functions, such as constant and
linear functions, are continuous. What about more complicated functions? For example, we
already know from the continuity of power functions that

lim
x→2

x 2 = 22 = 4 and lim
x→2

x 3 = 23 = 8.

Can we use these results to say something about lim
x→2

(x 2+x 3) of the sum of these functions?

The key theorem that follows will help us answer this question; it says that limits behave
well with respect to all of the arithmetic operations and even with respect to composition.

THEOREM 1.20 Rules for Calculating Limits of Combinations

If lim
x→c

f (x) and lim
x→c

g(x) exist, then the following rules hold for their combinations:

Constant Multiple Rule: lim
x→c

kf (x) = k lim
x→c

f (x), for any real number k.

Sum Rule: lim
x→c

( f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x)

Difference Rule: lim
x→c

( f (x) − g(x)) = lim
x→c

f (x) − lim
x→c

g(x)

Product Rule: lim
x→c

( f (x)g(x)) = (lim
x→c

f (x))(lim
x→c

g(x))

Quotient Rule: lim
x→c

f (x)
g(x)

=
lim
x→c

f (x)

lim
x→c

g(x)
, if lim

x→c
g(x) �= 0

Composition Rule: lim
x→c

f ( g(x)) = f (lim
x→c

g(x)), if f is continuous at lim
x→c

g(x)

This theorem is a powerful tool for calculating limits, since it tells us how to find limits
of compound functions in terms of the limits of their components. For example, we can
calculate the limit of the sum x 2 + x 3 as x → 2 by taking the sum of the limits of x 2 and
x 3 as x → 2:

lim
x→2

(x 2 + x 3) = lim
x→2

x 2 + lim
x→2

x 3 = 4 + 8 = 12.

We will postpone the proofs of the limit rules in Theorem 1.20 until the end of this
section so that we can first explore their consequences and practical uses. For example,
an immediate consequence of Theorem 1.20 is that constant multiples, sums, differences,
products, quotients, and compositions of continuous functions are continuous:

THEOREM 1.21 Combinations of Continuous Functions Are Continuous

If f and g are continuous at x = c and k is any constant, then the functions kf , f + g,
f − g, and fg are also continuous at x = c.

Moreover, if g(c) �= 0, then f
g

is continuous at x = c, and if f is also continuous at g(c),

then f ◦ g is continuous at x = c.
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For example, since f (x) = x 2 and g(x) = x 3 are continuous at x = 2, Theorem 1.21 tells
us that ( f + g)(x) = x 2 + x 3 must be also be continuous at x = 2. This makes sense given
Theorem 1.20 because

lim
x→2

( f + g)(x) = lim
x→2

(x 2 + x 3) = lim
x→2

x 2 + lim
x→2

x 3 = 22 + 23 = 4 + 8 = 12 = ( f + g)(2).

Limits of Algebraic Functions

With the limit rules we can now prove that most of the functions we will use in this book
are continuous on their domains. We will start with the algebraic functions. Recall that
a function is algebraic if it can be expressed with the use of only arithmetic operations
(+, −, ×, and ÷) and rational constant powers. Power functions, polynomial functions,
and rational functions are all examples of algebraic functions.

THEOREM 1.22 Continuity of Algebraic Functions

All algebraic functions are continuous on their domains. In particular, if x = c is in the
domain of an algebraic function f , then we can calculate lim

x→c
f (x) by evaluating f (c).

With this theorem we can do lots of basic limit calculations. For example, lim
x→4

x 1/2 =
√

4 =
2, lim

x→1
(3x 4 − 2x) = 3(1)4 − 2(1) = 1, and lim

x→2

1 + x
3 − x

= 1 + 2
3 − 2

= 3. For certain special cases

the limits are only one-sided; for example, lim
x→2+

√
x − 2 = 0. Note that the theorem does

not tell us how to calculate limits at non-domain points; for example, we still do not know
how to calculate lim

x→2

1
x − 2

.

Proof. Algebraic functions are by definition built out of rational powers and arithmetic combina-
tions of real numbers and the variable x. We already know how to handle limits of constant mul-
tiples, sums, products, quotients, and compositions by using the limit rules. We also know from
Theorem 1.16 that lim

x→c
k = k and lim

x→c
x = c. Therefore to show that every algebraic function is con-

tinuous on its domain, it suffices to show that every function of the form f (x) = x k is continuous
on its domain.

We must show that for any rational number k, if x = c is in the domain of x k, then lim
x→c

x k = c k.

There are a few cases to consider. If k is a positive integer, then we just repeatedly apply the product
rule for limits so that we can use the known limit lim

x→c
x = c:

lim
x→c

x k = (lim
x→c

x)(lim
x→c

x) · · · (lim
x→c

x)︸ ︷︷ ︸
k times

= (c)(c) · · · (c)︸ ︷︷ ︸
k times

= c k.

For negative integer powers, we apply the quotient rule for limits and the result for positive integer
powers. In this case we must require c �= 0 so that c will be in the domain of x−k, and we obtain the
following limit:

lim
x→c

x−k = lim
x→c

1
x k

=
lim
x→c

1

lim
x→c

x k
= 1

c k
= c−k.

Although we will not prove so here, it can be shown that lim
x→c

x 1/q = c 1/q when c is in the domain

of x 1/q. Given these facts, the composition rule for limits allows us to prove that x p/q is continuous
at domain points for any rational power

p
q

:

lim
x→c

x p/q = lim
x→c

q√x p = q
√

lim
x→c

x p = q√c p = c p/q.
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Finding Limits by Cancelling or Squeezing

The continuity of algebraic functions and the limit rules can help us calculate a great many
limits, but only at domain points. One thing that can help us at non-domain points is the

cancellation of common factors. For example, consider the limit lim
x→1

x2 − 1
x − 1

. At x = 1 we

have x 2 − 1 = 0 and x − 1 = 0, and therefore the limit is of the form 0
0

. Limits of this form

are said to be indeterminate, which means that they may or may not exist, depending on
the situation. We will examine indeterminate forms in depth in Section 1.6. In the example
we are considering, we can determine the limit by simple cancellation:

lim
x→1

x 2 − 1
x − 1

= lim
x→1

(x − 1)(x + 1)
x − 1

= lim
x→1

(x + 1) = 2.

The cancellation of the common factor x − 1 is valid because (x − 1)(x + 1)
x − 1

and x + 1 differ

only when x = 1, and when we take the limit, we are not concerned with what happens at
the point x = 1. In general, by definition, limits as x → c never have anything to do with
what happens at x = c, which proves the following theorem:

THEOREM 1.23 The Cancellation Theorem for Limits

If lim
x→c

g(x) exists, and f is a function that is equal to g for all x sufficiently close to c except

possibly at c itself, then lim
x→c

f (x) = lim
x→c

g(x).

Another useful tool for calculating new types of limits is the Squeeze Theorem. This
theorem says that if the output of a function f (x) is always bounded between a lower func-
tion l(x) and an upper function u(x), and if the lower and upper functions approach the
same value L as x → c, then f (x) gets squeezed between the lower and upper functions
and also approaches L as x → c.

THEOREM 1.24 The Squeeze Theorem for Limits

If l(x) ≤ f (x) ≤ u(x) for all x sufficiently close to c, but not necessarily at x = c, and if
lim
x→c

l(x) and lim
x→c

u(x) are both equal to L, then lim
x→c

f (x) = L.

Similar results hold for limits at infinity and one-sided limits.

For example, the figure that follows shows a function f that is sandwiched between two
functions u and l as x → 0. Since u(x) and l(x) have the same limit at x → 0 and f (x) is
squeezed between them, we know that f (x) must share that same limit as x → 0.

l(x) ≤ f (x) ≤ u(x)

u(x)

f (x)

l (x)

y

x
4321�1�2�4 �3

3

2

�1

�2

�3

1
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Proof. Given ε > 0, we can choose δ1 > 0 to get u(x) within ε of L and also choose δ2 to get l(x)
within ε of L. If δ = min(δ1, δ2), then whenever x ∈ (c − δ, c) ∪ (c, c + δ), we also have

L − ε < l(x) ≤ f (x) ≤ u(x) < L + ε.

Similar arguments prove that the Squeeze Theorem holds for limits as x → ∞ and x → c+ or
x → c−.

For example, we can use the Squeeze Theorem to calculate the limits of sin θ and cos θ at
x = 0. Consider the following diagrams of portions of the unit circle, with angles measured
in radians and 0 < θ <

π

4
:

0 < sin θ < θ 0 < 1 − cos θ < θ

x

θ � 0sin θ

θ

y

x

θ � 0

cos θ 1 � cos θ

θ

y

According to the leftmost figure, we clearly have 0 < sin θ < θ . Since lim
θ→0+

0 = 0 and

lim
θ→0+

θ = 0, by the Squeeze Theorem we must also have lim
θ→0+

sin θ = 0. In the second

figure we can see that 0 < 1 − cos θ < θ . Thus again by the Squeeze Theorem we
have lim

θ→0+
(1 − cos θ ) = 0. Rewriting this limit with some simple limit rules, we see that

lim
x→0+

cos θ = 1. We can illustrate similar limits as θ → 0− by drawing pictures of small

negative values of θ in the fourth quadrant (see Exercises 22 and 23).

Defining the Number e

Before we can discuss continuity and limits of exponential functions, we must have a
proper definition for the irrational number e that we have so far been approximating as
e ≈ 2.71828. It turns out that this definition itself involves a limit.

DEFINITION 1.25 The Number e

We define e to be the number that (1 + h)1/h approaches as h approaches 0:

e = lim
h→0

(1 + h)1/h.

It is important to note that this is a weak definition, because we have not proven that the
limit in this definition exists. That is, we have not shown that (1 + h)1/h converges to a real
number as h → 0.

For small values of h it is easy to see that the quantity (1 + h)1/h is close to the approx-
imation e ≈ 2.71828 we have been using so far. For example, when h = 0.0001, we have

(1 + 0.0001)1/0.0001 ≈ 2.71815.
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Proving that the limit in Definition 1.25 does converge to a real number is beyond the scope
of this chapter. In Example 5 and Exercise 24 we will use tables of values to show that this
limit is reasonable. We will use accumulation integrals to give another definition of the
number e in Section 4.7.

As we will see in the next chapter, our definition of the number e is partially motivated
by derivatives. Specifically, the reason that e is the natural base for exponential functions
has to do with the slope of the graph of y = e x at x = 0. In the next chapter we will see
that the slope of the graph of an exponential function y = b x at x = 0 is given by the limit

lim
h→0

b h − 1
h

. We can use our definition of e to show that when b = e, this slope is equal to 1:

THEOREM 1.26 Another Characterization of the Number e

The number e satisfies the following limit statement:

lim
h→0

e h − 1
h

= 1.

Proof. For a proper proof of this limit, we need a technique that we will not cover until Sec-
tion 3.6. Thus we give here only a convincing argument that uses approximations. Given that
e = lim

h→0
(1 + h)1/h as in Definition 1.25, for sufficiently small values of h we have

e ≈ (1 + h)1/h ⇐⇒ e h ≈ 1 + h ⇐⇒ e h − 1 ≈ h ⇐⇒ e h − 1
h

≈ 1

Since the preceding approximations get better as h → 0, it is reasonable that lim
h→0

eh −1
h

= 1.

Continuity of Exponential and Trigonometric Functions

We can use the definition of e to prove that exponential and logarithmic functions
are continuous everywhere they are defined. This allows us to calculate limits such as
lim
x→2

3 x = 32 = 9 and lim
x→1

ln x = ln 1 = 0 by simple evaluation.

THEOREM 1.27 Continuity of Exponential and Logarithmic Functions

All exponential and logarithmic functions are continuous on their domains.

Proof. The proof hinges entirely on algebra, limit rules, and the definition of e in Definition 1.25.
We will prove continuity for (a) the natural exponential function and (b) the natural logarithmic
function here, and use limit rules to extend these results to general exponential and logarithmic
functions in Exercises 94–96. The proofs are a little technical, but without them we would not be
able to compute even the simplest limits of exponential and logarithmic functions!

(a) To prove that e x is continuous on its domain R we must show that for all c ∈ R we have
lim
x→c

e x = e c. If we want to use the definition of e, then we need to have a limit as h → 0, so we

define h = x − c. Then x = c + h, and as x → c, we have h → 0. This makes our limit equal to

lim
x→c

e x = lim
h→0

e c+h = lim
h→0

e ce h = e c lim
h→0

e h.

The last step follows from the constant multiple rule for limits, since e c is a constant. At this
point we would be done if we could show that lim

h→0
e h = e0 = 1. In other words, the proof that

e x is continuous for all x essentially boils down to showing that it is continuous at one point,
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namely, 0. To finish the proof we employ a series of algebraic manipulations followed by some
limit rules and the definition of e:

lim
h→0

e h = lim
h→0

(e h − 1 + 1) = lim
h→0

(
e h − 1

h
· h + 1

)
← algebra

=
(

lim
h→0

e h − 1
h

)
( lim

h→0
h) + ( lim

h→0
1) ← limit rules

= (1)(0) + (1) = 1. ← Theorem 1.26

One technical point: In the second line of the above calculation we applied the product rule
for limits, which is only valid when the limits involved are known to exist. Therefore this proof

hinges on knowing that lim
h→0

eh −1
h

exists, which is a nontrivial fact that we will not prove here.

(b) To show that ln x is continuous on its domain, we must show that for all c ∈ (0, ∞) we have
lim
x→c

ln x = ln c. We will use what we just proved about the continuity of e x. By the composition

rule for limits and the fact that e x is continuous everywhere, for c > 0 we have

lim
x→c

e ln x = e
lim
x→c

ln x
.

Since ln x is the inverse of e x, we know that e ln x = x. Therefore for c > 0 we also have

lim
x→c

e ln x = lim
x→c

x = c = e ln c.

Since e x is a one-to-one-function, putting these two calculations together we see that lim
x→c

ln x

must be equal to ln c. (Note that once again, we are making an important assumption here,
that lim

x→c
ln x is equal to some real number. If that number does not exist then we cannot apply

the composition rule for limits here.)

Using similar techniques, we can prove that trigonometric and inverse trigonomet-
ric functions are continuous on their domains. This again allows us to calculate limits of
trigonometric and inverse trigonometric functions at domain points by simple evaluation.
For example, cos x is defined at x = π , and this theorem says that the limit lim

x→π
cos x is

equal to the value cos(π ) = −1. The theorem does not tell us how to calculate lim
x→π

sec x,

however, because π is not in the domain of sec x.

THEOREM 1.28 Continuity of Trigonometric Functions

All trigonometric and inverse trigonometric functions are continuous on their domains.

Proof. We will prove Theorem 1.28 for the functions (a) sin x and (b) sin−1 x. Proofs for other basic
transcendental functions will be covered in Exercises 94–100.

(a) To show that sin x is continuous on its domain, we must show that lim
x→c

sin x = sin c for all

c ∈ R. Following the same technique as for e x, we change variables with h = x − c and relate
to some limits that we already know. Recall that in the discussion after the Squeeze Theorem
we showed that lim

x→0
sin x = 0 and lim

x→0
cos x = 1. We thus have

lim
x→c

sin x = lim
h→0

sin(c + h) ← change variables

= lim
h→0

(sin c cos h + sin h cos c) ← sum identity for sine

= sin c
(

lim
h→0

cos h
) + cos c

(
lim
h→0

sin h
) ← sum and constant multiple rules

= (sin c)(1) + (cos c)(0) = sin c. ← known limits
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(b) Finally, to show that sin−1 x is continuous on its domain [−1, 1] we use the fact that it is the

inverse of sin x restricted to
[
− π

2
,
π

2

]
, with the same method we used for ln x. Before we do

this, a technical point: this proof will show that if lim
x→c

sin−1 is equal to some real number, then

that real number must be sin−1 c. We will assume that lim
x→c

sin−1 exists, a fact that is necessary

for the application of limit rules. By the composition rule for limits and the fact that sin x is
continuous everywhere, for c ∈ [−1, 1] we have

lim
x→c

sin(sin−1 x) = sin( lim
x→c

sin−1 x).

On the other hand, by properties of inverses, for c ∈ [−1, 1] we also have

lim
x→c

sin(sin−1 x) = lim
x→c

x = c = sin(sin−1 c).

Because sin x is a one-to-one function on
[
− π

2
,
π

2

]
, we can put the preceding two calculations

together to conclude that lim
x→c

sin−1 x = sin−1 c.

Delta-Epsilon Proofs of the Limit Rules

The limit rules seem almost obvious; for example, if f (x) approaches L and g(x) approaches
M as x → c, it is reasonable to expect that f (x) + g(x) approaches L + M as x → c. To prove
the limit rules in Theorem 1.20, however, we must appeal to the delta–epsilon definition
of limit.

Proof. (This proof requires material covered in optional Section 1.3.)
We will prove the (a) sum, (b) product, and (c) composition rules and leave the proofs of the
remaining rules to Exercises 91, 92, and 93.

(a) To prove the sum rule for limits, we must show that we can get f (x) + g(x) as close as we like
to L + M by choosing δ so that f (x) and g(x) are each half of that distance from L and M, as
illustrated in the graph that follows at the left. Given ε > 0, choose δ 1 to get f (x) within

ε

2
of L

and choose δ 2 to get g(x) within
ε

2
of M. Then for δ = min(δ 1, δ 2) and x ∈ (c − δ, c) ∪ (c, c + δ),

we have

L − ε

2
< f (x) < L + ε

2
and M − ε

2
< g(x) < M + ε

2
.

Adding these two double inequalities together, we get our desired conclusion:

(L + M) − ε < f (x) + g(x) < (L + M) + ε.

Given ε for f +g,

choose δ to get
ε

2
for f and g

Given ε for fg,
choose δ to get ε′ for f and g

x

y

L � M � �

L � M � �

f  � g

g

f

cc � � c � �

M � �
2

M � �
2

L � �
2

L � �
2

x

y

M � ε�
M � ε�

L � ε�
L � ε�

LM � ε

LM � ε

cc � δ c � δ

fg

g

f
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(b) The proof for the product rule for limits is similar: We will get f (x)g(x) as close as we like to
LM by choosing δ so that f (x) and g(x) are sufficiently close enough to L and M, respectively,
as illustrated in the preceding graph at the right. We will assume here that both L and M are
positive; the other cases are similar. Given ε > 0, choose ε′ > 0 sufficiently small so that ε′ < L,
ε′ < M, and (L + M)ε′ + (ε′)2 < ε. The reason for this odd choice of ε′ will become clear in
a moment. Now choose δ 1 and δ 2 to get f (x) and g(x) within ε′ of L and M, respectively. Then
for δ = min(δ 1, δ 2) and x ∈ (c − δ, c) ∪ (c, c + δ), we have

L − ε′ < f (x) < L + ε′ and M − ε′ < g(x) < M + ε′.

Since L and M are assumed to be positive, we can assume that δ has been chosen small enough
so that for x ∈ (c − δ, c) ∪ (c, c + δ) the values of f (x) and g(x) are also positive. Therefore,
multiplying our two double inequalities together gives

(L − ε′)(M − ε′) < f (x)g(x) < (L + ε′)(M + ε′)

By our choice of ε′ it is easy to show that (L + ε′)(M + ε′) < LM + ε and that LM − ε <

(L − ε′)(M − ε′). Putting these two inequalities together with our double inequality for f (x)g(x),
we can say that for x ∈ (c − δ, c) ∪ (c, c + δ) we have

LM − ε < f (x)g(x) < LM + ε.

(c) To prove the composition rule for limits, let lim
x→c

g(x) = L. We will show that we can get f (g(x)) as

close as we like to f (L) by choosing δ so that g(x) is sufficiently close to L. Since f is continuous
at L, we know that lim

u→L
f (u) = L. Thus given ε > 0, we can choose δ′ > 0 so that whenever

u ∈ (L − δ′, L) ∪ (L, L + δ′), we also have f (u) ∈ ( f (L) − ε, f (L) + ε). In fact, if u = L, then
f (u) = f (L), so we can say a little bit more:

if u ∈ (L − δ′, L + δ′), then f (u) ∈ ( f (L) − ε, f (L) + ε).

Now, lim
x→c

g(x) = L allows us to choose δ > 0 so that

if x ∈ (c − δ, c) ∪ (c, c + δ), then g(x) ∈ (L − δ′, L + δ′).

Given ε for f (u), choose δ′ for u Then given δ′ for u, choose δ for x

u

y

f (L) � ε

f (L) � ε

f (L)

LL � δ� L � δ�

f

u

x

L � δ�

L � δ�

L

cc � δ c � δ

g

The two figures above illustrate our choices for δ′ and δ. Now given our choice of δ we can let
g(x) = u and string together the last two displayed implications above to conclude that

if x ∈ (c − δ, c) ∪ (c, c + δ), then f ( g(x)) ∈ ( f (L) − ε, f (L) + ε).

Examples and Explorations

EXAMPLE 1 Calculating limits by using continuity and limit rules

Calculate the limits that follow, using only the continuity of linear and power functions
and the limit rules in Theorem 1.20. Cite each limit rule that you apply.

(a) lim
x→3

(3x 2 − 2x + 1) (b) lim
x→1

(3x − 1)12
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SOLUTION

(a) We apply the rules for limits of combinations of functions until we have reduced the
problem to limits of functions that we know to be continuous:

lim
x→3

(3x 2 − 2x + 1) = lim
x→3

3x 2 − lim
x→3

2x + lim
x→3

1 ← sum and difference rules

= 3 lim
x→3

x 2 − 2 lim
x→3

x + lim
x→3

1 ← constant multiple rule

= 3(32) − 2(3) + 1 = 22. ← limits of continuous functions

(b) We could find this limit by multiplying out (3x − 1)12 and then applying the sum and
constant multiple rules as we did in part (a), but it is much faster to instead apply
the composition rule for limits. We know that the power function x12 is continuous
everywhere and, in particular, at lim

x→1
(3x − 1) = 2. Therefore we have

lim
x→1

(3x − 1)12 = (lim
x→1

(3x − 1))12 ← composition rule for limits

= ( 3(1) − 1 )12 = 212 = 4096. ← linear functions are continuous
�

EXAMPLE 2 Limits and continuity of piecewise-defined functions

Describe the continuity or discontinuity of each of the following piecewise-defined
functions at x = 1 by algebraically calculating the left, right, and two-sided limits
at x = 1:

(a) f (x) =
{

x + 1, if x < 1
3 − x 2, if x ≥ 1

(b) g(x) =
{

4 − x2, if x ≤ 1
x − 1, if x > 1

SOLUTION

(a) These two functions are the same ones we investigated graphically in Example 1 of
Section 1.4. Here, for each function we must compute the limit as x → 1 and compare
it with the value at x = 1. Since the piecewise-defined function f has a break point
at x = 1 we must compute its left and right limits separately. Because the component
functions x + 1 and 3 − x 2 are continuous, we can calculate the left and right limits
by evaluation:

lim
x→1−

f (x) = lim
x→1−

(x + 1) = 1 + 1 = 2 and

lim
x→1+

f (x) = lim
x→1+

(3 − x 2) = 3 − (1)2 = 2.

Since the left and right limits both exist and are equal to 2, we have lim
x→1

f (x) = 2, which

is equal to the value f (1) = 2. Therefore, f is continuous at x = 2.

(b) Once again we must calculate the left and right limits of g(x) separately. By continuity
of the component functions we have

lim
x→1−

g(x) = lim
x→1−

(4 − x 2) = 4 − (1)2 = 3 and

lim
x→1+

g(x) = lim
x→1+

(x − 1) = 1 − 1 = 0.

Since the left and right limits both exist but are not equal as x → 1, the function g(x) has
a jump discontinuity at x = 1. Because lim

x→1−
g(x) = 3 = g(1) but lim

x→1+
g(x) = 0 �= g(1),

we can also say that g(x) is left continuous, but not right continuous, at x = 1. �
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EXAMPLE 3 Calculating limits

Calculate each of the following limits:

(a) lim
x→0

√
sin

(
x + π

2

)
(b) lim

x→2

2 − x
4 − x 2

(c) lim
x→0

e 2x + e x − 2
e x − 1

SOLUTION

(a) f (x) =
√

sin
(

x + π

2

)
is a combination of functions that are continuous on their do-

mains, and thus is continuous on its domain. Since x = 0 is in the domain of f we can
solve this limit by simple evaluation:

lim
x→0

√
sin

(
x + π

2

)
=

√
sin

(
0 + π

2

)
=

√
1 = 1.

(b) The function f (x) = 2 − x
4 − x2

is algebraic and thus continuous on its domain, but unfor-

tunately x = 2 is not in that domain. As x → 2, both the numerator and the denom-
inator approach 0, and therefore this limit is of the form 0

0
, which is indeterminate.

This means that we don’t know at this point whether or not the limit exists or not, or
if it does, what it might be equal to. We can solve this indeterminacy by doing some
preliminary algebra; after cancellation we get a limit that is no longer indeterminate
and, in fact, that we can find by evaluation at x = 2:

lim
x→2

2 − x
4 − x 2

= lim
x→2

2 − x
(2 − x)(2 + x)

= lim
x→2

1
2 + x

= 1
4
.

(c) As x → 0 both the numerator and the denominator approach zero, so this limit is of
the form 0

0
, which is indeterminate. After factoring and cancelling we can resolve this

problem:

lim
x→0

e 2x + e x − 2
e x − 1

= lim
x→0

(e x − 1)(e x + 2)
e x − 1

= lim
x→0

(e x + 2) = e 0 + 2 = 3. �

EXAMPLE 4 Finding a Limit with the Squeeze Theorem

Use the Squeeze Theorem to find lim
x→0

x 2 sin 1
x
.

SOLUTION

The graph of f (x) = x 2 sin 1
x

follows at the left.

f (x) = x 2 sin
1
x

Squeezed between y = x2 and y = −x 2

�0.4 �0.2 0.2 0.4

y

�0.05

�0.10

0.05

0.10

x
�0.4 �0.2 0.2 0.4

y

�0.05

�0.10

0.05

0.10

x
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From this graph it seems reasonable that lim
x→0

x 2 sin 1
x

= 0. We can use the Squeeze Theorem

to find this limit algebraically. The sine function has outputs that are always between −1
and 1. Therefore −1 < sin 1

x
< 1, which means that −x 2 < x 2 sin 1

x
< x 2, as shown in the

graph at the right. We know that lim
x→0

−x 2 = 0 and lim
x→0

x 2 = 0. Therefore by the Squeeze

Theorem we must also have lim
x→0

x 2 sin 1
x

= 0. �

EXAMPLE 5 Using tables of values to approximate limits related to e

Use tables of values to approximate each of the limits that follow. In the second limit you
will have to use a calculator approximation of e to perform the calculations.

(a) lim
h→0

3 h − 1
h

(b) lim
h→0

e h − 1
h

(c) lim
h→0

(1 + h)1/h

SOLUTION

(a) This limit is similar to the one in Theorem 1.26, but with the base e replaced by 3.

Limits of the form lim
h→0

bh − 1
h

converge to different numbers, depending on the base b,

but such a limit converges to 1 only for the number b = e. Thus we would expect that

lim
h→0

3h − 1
h

should converge to some number other than 1. The following table of values

of 3h − 1
h

suggests that this is indeed the case:

h −0.1 −0.01 −0.001 0 0.001 0.01 0.1

3h − 1
h

1.040415 1.092600 1.098009 ? 1.099216 1.104669 1.161232

If the pattern in the table continues, then we would expect this limit to converge to
some number between 1.098009 and 1.099216. The numbers in that range are close
to 1, but none of them are equal to 1. This is not unexpected, because the base in our
limit, which is 3, is close to the base e ≈ 2.71828 that would cause the limit we seek to
approach exactly 1.

(b) From Theorem 1.26 we know that lim
h→0

eh − 1
h

should approach 1. Let’s see if that is the

case. For small values of h approaching 0 we have

h −0.1 −0.01 −0.001 0 0.001 0.01 0.1

eh − 1
h

0.951626 0.995017 0.999500 ? 1.000500 1.005017 1.051709

As expected, this limit does seem to be approaching 1 as h approaches 0.

(c) We can approximate the limit in Definition 1.25 (and thus the value of e) by using a
table of approximate values of (1 + h)1/h for small values of h:

h −0.1 −0.01 −0.001 0 0.001 0.01 0.1

(1 + h)1/h 2.867972 2.731999 2.719642 ? 2.716924 2.704814 2.593742
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Although (1 + h)1/h does not seem to approach a very nice number as h → 0, it
appears that the limit does exist and is somewhere between 2.719642 and 2.716923. If
we evaluate (1+h)1/h at an extremely small value of h, say, h = 0.000001, then we can
get a relatively accurate approximation for the limit in Definition 1.25 and thus for the
number e:

e ≈ (1 + 0.000001)1/0.000001 ≈ 2.718280. �

TEST YOUR? UNDERSTANDING
� The sum rule for limits says that the limit of a sum is the sum of the limits. In English,

what do the other limit rules say?

� In the proof of the sum rule for limits, in order to get f (x) + g(x) within ε of L + M, how
close do we have to get f (x) and g(x) to L and M, respectively?

� What is the rule for the limit of a constant? What is the rule for the limit of a constant
multiple of a function? How are these two rules different?

� Why does it make sense that cancellation would be a valid operation when dealing with
a limit as x → c, even if what is being cancelled approaches zero as x → c?

� In the Squeeze Theorem for limits, why do we require that the upper and lower func-
tions u(x) and l(x) have the same limit as x → c?

EXERCISES 1.5

Thinking Back

Values of transcendental functions: Without a calculator, find
each of the function values that follow. For some values the
answer may be undefined.

� If f (x) = csc x, find f (π ) and f
(

π

2

)
.

� If f (x) = tan2 x, find f (π ) and f
(

π

2

)
.

� If f (x) = sin−1 x, find f (−1) and f
(

1
2

)
.

� If f (x) = tan−1 √
x, find f (1) and f (3).

The δ–ε definition of limit: Write each limit statement that fol-
lows in terms of the δ–ε definition of limit. Then approximate
the largest value of δ corresponding to ε = 0.5, and illustrate
this choice of δ on a graph of f .

� lim
x→2

(3x − 2) = 4 � lim
x→1

(x 3 − 1) = 0

� lim
x→1

x 2 − 1
x + 3

= 0 � lim
x→0+

√
x + 4 = 2

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The limit of a difference of functions as
x → c is equal to the difference of the limits of those
functions as x → c, provided that all limits involved
exist.

(b) True or False: If f (x) is within 0.25 unit of 7 and g(x)
is within 0.25 unit of 2, then f (x) + g(x) is within
0.5 unit of 9.

(c) True or False: If f (x) is within 0.25 unit of 7 and g(x) is
within 0.25 unit of 2, then f (x)g(x) is within 0.5 unit
of 9.

(d) True or False: Every algebraic function f is continuous
at every real number x = c.

(e) True or False: Every power function f (x) = Ax k is con-
tinuous at the point x = 2.

(f) True or False: The function f (x) = sec x is continuous
at x = π

2
.

(g) True or False: The value of
(x − c)f (x)
(x − c)g(x)

at x = c is equal

to the limit of
f (x)
g(x)

at x = c.
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(h) True or False: The limit of
(x − c)f (x)
(x − c)g(x)

as x → c is equal

to the limit of
f (x)
g(x)

as x → c.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two limits that are initially in an indeterminate form
but can be solved with the Cancellation Theorem.

(b) Two limits that can be solved with the Squeeze
Theorem.

(c) Two limits that we do not yet know how to calculate.

3. State the constant multiple rule, sum rule, product rule,
quotient rule, and composition rule for limits.

4. Explain in your own words the types of functions whose
limits we can calculate with the limit rules in this section.

5. Explain why we can’t calculate every limit lim
x→c

f (x) just by

evaluating f (x) at x = c. Support your argument with the
graph of a function f for which lim

x→c
f (x) �= f (c).

6. Find functions f and g and a real number c such that
lim
x→c

f (x) + lim
x→c

g(x) �= lim
x→c

( f (x) + g(x)). Does this example

contradict the sum rule for limits? Why or why not?

7. Find functions f and g and a real number c such that
(lim
x→c

f (x))(lim
x→c

g(x)) �= lim
x→c

( f (x)g(x)). Does this example

contradict the product rule for limits? Why or why not?
8. Write the constant multiple rule for limits in terms of

delta–epsilon statements.

9. Write the difference rule for limits in terms of delta–
epsilon statements.

10. Write the product rule for limits in terms of delta–epsilon
statements.

11. Explain how the algebraic function

f (x) = (
√

x + 1)3

is a combination of identity, constant, and power func-
tions. Why does this mean that we can calculate limits of
this function at domain points by evaluation?

12. Explain how the algebraic function

f (x) = (x 2 + 1)(4 − 3x)
3x 2

is a combination of identity, constant, and power func-
tions. Why does this mean that we can calculate limits of
this function at domain points by evaluation?

Suppose f and g are functions such that lim
x→3

f (x) = 5,

lim
x→4

f (x) = 2, and lim
x→3

g(x) = 4. Given this information, calcu-

late the limits that follow, if possible. If it is not possible with
the given information, explain why.

13. lim
x→3

(2f (x) − 3g(x)) 14. lim
x→3

−2f (x)

15. lim
x→7

f (x) 16. lim
x→4

f (x)g(x)

17. lim
x→3

f (x) − 3
g(x)

18. lim
x→3

f (g(x))

19. Graph the functions f (x) = x + 1 and g(x) = x2 − 1
x − 1

,

and show that they are equal everywhere except at one
point. Then show that f (x) and g(x) have different values,
but the same limit, at this point.

20. Graph the functions f (x) = 2 − x and g(x) = 4 − x2

x + 2
,

and show that they are equal everywhere except at one
point. Then show that f (x) and g(x) have different values,
but the same limit, at this point.

21. In the Squeeze Theorem for limits, we require that l(x) ≤
f (x) ≤ u(x) for all x sufficiently close to c, but we do
not require this inequality to hold at the point x = c.
Why not?

22. Use a geometric argument and the Squeeze Theorem for
limits to argue that

lim
θ→0−

sin θ = 0

for sufficiently small negative angles θ .

23. Use a geometric argument and the Squeeze Theorem for
limits to argue that

lim
θ→0−

cos θ = 1

for sufficiently small negative angles θ .
24. In this exercise you will use a calculator to investigate the

number e.

(a) Make a table of values that describes the behavior of
the quantity (1 + h)1/h as h → 0.

(b) Make a table of values that describes the behavior of

the quantity
eh − 1

h
as h → 0.

(c) What do your tables of values have to do with Defi-
nition 1.25 and Theorem 1.26?

Skills

Calculate the limits in Exercises 25–28, using only the conti-
nuity of linear and power functions and the limit rules. Cite
each limit rule that you apply.

25. lim
x→1

15(3 − 2x) 26. lim
x→−1

x − 1
(x + 4)(x + 2)

27. lim
x→3

(3x + x 2(2x + 1)) 28. lim
x→0

3
2x 2 − 4x + 1

Calculate each of the limits in Exercises 29–70.

29. lim
x→0

(x 2 − 1) 30. lim
x→2

(x − 1)(x + 1)(x + 5)

31. lim
x→−1

(
x 2 − 3x

x + 2

)
32. lim

x→1.7
(3.1x 2 − 4x + 0.8)

33. lim
x→2

4 + 2x
x + 2

34. lim
x→−2

4 + 2x
x + 2

35. lim
x→1

x 2 − 1
x − 1

36. lim
x→0

x 2 − 1
x − 1

37. lim
x→−3

x + 3
3x 2 + 8x − 3

38. lim
x→−3

3x 2 + 8x − 3
x + 3

39. lim
x→1/2

4x − 2
6x 2 + x − 2

40. lim
x→−2/3

6x 2 + x − 2
3x + 2
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41. lim
x→1+

x − 1√
x − 1

42. lim
x→1+

1 − √
x

1 − x

43. lim
x→1

x + x 2 − 2x 3

x − x 2
44. lim

x→0

x + x 2 − 2x 3

x − x 2

45. lim
h→0

(1 + h)2 − 1
h

46. lim
h→0

(−1 + h)2 − 1
h

47. lim
x→0

2 x − 3 x

4 x
48. lim

x→2+

√
2 x − 4

49. lim
x→4

(3e 1.7x + 1) 50. lim
x→0+

ln(1 + √
x )

51. lim
x→0

e x − 1
e 2x + 2e x − 3

52. lim
x→1

e x − 1
e 2x + 2e x − 3

53. lim
x→0

2x
e x − 1

54. lim
x→0

e x − 1
x

55. lim
x→π

1
csc(x − π )

56. lim
x→1

1 − cos(x − 1)
x

57. lim
x→0

sin x
tan x

58. lim
x→π/2

cot x
cos x

59. lim
x→1

x sin−1 x
2 60. lim

x→3

√
x

tan−1 √
x

61. lim
x→1−

1

sin−1 x
62. lim

x→0

1
sec−1 x

63. lim
h→0

(3 + h)2 − 32

h
64. lim

h→0

(2 + h)2 − 22

h

65. lim
h→0

(1 + h)3 − 13

h
66. lim

h→0

(−1 + h)3 − (−1)3

h

67. lim
h→0

1
1 + h

− 1

h
68. lim

h→0

1
2 + h

− 1
2

h

69. lim
h→0

4
(2 + h)2

− 1

h
70. lim

h→0

4
(1 + h)2

− 4

h

Describe the intervals on which each function f in Exer-
cises 71–78 is continuous. At each point where f fails to be
continuous, use limits to determine the type of discontinuity
and any left- or right-continuity.

71. f (x) =
{

x 2 + 1, if x ≤ 0

1 − x, if x > 0

72. f (x) =
{

3x + 2, if x < −1

5 + 4x 3, if x ≥ −1

73. f (x) =
{

x 2 − 3x − 1, if x �= −2

3, if x = −2

74. f (x) =

⎧⎪⎨
⎪⎩

3x 2

4 + x
, if x < 2

x 2 − 2, if x ≥ 2

75. f (x) =

⎧⎪⎪⎨
⎪⎪⎩

x 2 − 1
x − 1

, if x < 1

0, if x = 1
3x − 1, if x > 1

76. f (x) =
⎧⎨
⎩

x + 1, if x < 3

2, if x = 3
x 2 − 9, if x > 3

77. f (x) =
{

sin x, if x < π

cos x, if x ≥ π

78. f (x) =
⎧⎨
⎩

2 x − 1, if x ≤ 0
4 x − 1
2 x − 1

, if x > 0

Use the Squeeze Theorem to find each of the limits in Exer-
cises 79–86. Explain exactly how the Squeeze Theorem applies
in each case.

79. lim
x→0

x sin
1
x

80. lim
x→0

x sin
1
x 2

81. lim
x→0

(e x − 1) sin
1
x

82. lim
x→0

sin x sin
1
x

83. lim
x→1

(x − 1) cos
1

x − 1
84. lim

x→1
(x − 1)2 cos

1
x − 1

85. lim
x→0

x tan−1 1
x

86. lim
x→0

x 2 tan−1 1
x

Applications
In Exercise 88 in Section 0.1, you constructed a piecewise-
defined function from the 2000 Federal Tax Rate Schedule
that you will use in the next two problems. Specifically, you
found that a person who makes m dollars a year will pay T(m)
dollars in tax, given by the function

0.15m, if 0 ≤ m ≤ 26,250

3,937 + 0.28(m − 26,250), if 26,250 < m ≤ 63,550

14,381 + 0.31(m − 63,550), if 63,550 < m ≤ 132,600

35,787 + 0.36(m − 132,600), if 132,600 < m ≤ 288,350

91,857 + 0.396(m − 288,350), if m > 288,350.

87. Suppose you make $63,550 a year and pay taxes according
to the given formula.

(a) Calculate the value of T(63,550) and the limit of T(m)
as m approaches 63,550 from the left and from the
right.

(b) Use part (a) to argue that the function T(m) is
continuous at m = 63,550. What does this mean in
real-world terms?

88. Suppose you make $288,350 a year and pay taxes accord-
ing to the given formula.

(a) Calculate the value of T(288,350) and the limit of
T(m) as m approaches 288,350 from the left and from
the right.

(b) Use part (a) to argue that the function T(m) is contin-
uous at m = 288,350. What does this mean in real-
world terms?
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Proofs

89. Use limit rules and the continuity of power functions
to prove that every polynomial function is continuous
everywhere.

90. Use limit rules and the continuity of polynomial functions
to prove that every rational function is continuous on its
domain.

91. Prove the constant multiple rule for limits: If
lim
x→c

f (x) = L and k ∈ R, then lim
x→c

kf (x) = kL.

92. Prove the difference rule for limits by applying the sum
and constant multiple rules for limits.

93. Suppose that we know the reciprocal rule for limits: If

lim
x→c

g(x) = M exists and is nonzero, then lim
x→c

1
g(x)

= 1
M

.

This limit rule is tedious to prove and we do not include
it here. Use the reciprocal rule and the product rule for
limits to prove the quotient rule for limits.

94. Use algebra, limit rules, and the continuity of e x to prove
that every exponential function of the form f (x) = Ae kx is
continuous everywhere.

95. Use algebra, limit rules, and the continuity of e x to prove
that every exponential function of the form f (x) = Ab x is
continuous everywhere.

96. Use algebra, limit rules, and the continuity of ln x on
(0, ∞) to prove that every logarithmic function of the
form f (x) = logb x is continuous on (0, ∞).

97. In the reading we used the Squeeze Theorem to prove
that lim

h→0
sin h = 0 and lim

h→0
cos h = 1. Use these facts, the

sum identity for cosine, and limit rules to prove that
f (x) = cos x is continuous everywhere.

98. Use the quotient rule for limits and the continuity of sin x
and cos x to prove that f (x) = tan x is continuous on its
domain.

99. Use the quotient rule for limits and the continuity of cos x
to prove that f (x) = sec x is continuous on its domain.

100. Use the composition rule for limits and the fact that tan x
is continuous on its domain to prove that tan−1 x is con-
tinuous everywhere.

Thinking Forward

Limits for Derivatives: In Chapter 2 we will define the
derivative of a function f at a point x = c to be the slope of
the line that points in the direction of the graph of f at x = c.
Algebraically, the derivative of f at c is given by the following
limit:

lim
h→0

f (c + h) − f (c)
h

.

Such limits are always of the indeterminate form
0
0

, so we
must do algebra before we can resolve the limit.

� Calculate the derivative of f (x) = x 2 at c = 0.

� Calculate the derivative of f (x) = x 2 at c = 2.

� Calculate the derivative of f (x) = x 2 at c = 4.

� Sketch a graph of f (x) = x 2, and sketch the lines that
point in the direction of the curve at (0, f (0)), (2, f (2)),
and (4, f (4)). Relate the slopes of these lines to the an-
swers to the last three exercises.

� Use the definition of the derivative to calculate the
derivative of f (x) = √

x at c = 4. At some point you will
need to multiply numerator and denominator by the
conjugate of

√
4 + h − 2, which is

√
4 + h + 2.

� Use the definition of the derivative to calculate the
derivative of f (x) = x−1/2 at c = 4. As in the previous
calculation, you will need to multiply numerator and
denominator by a conjugate at some point.

� Calculate the derivative of f (x) = e x at c = 0. At some
point you should need the characterization of e given
in Theorem 1.26.
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1.6 INF INITE LIMITS AND INDETERMINATE FORMS

� Calculating limits at infinity and infinite limits

� Recognizing non-indeterminate forms and dealing with indeterminate forms

� Special trigonometric limits

Infinite Limits

The utility of continuity is that it enables us to calculate limits by evaluation. However, we
can’t solve limits by evaluation if continuity fails. For example, consider the limit lim

x→1

1
x − 1

.

The function 1
x − 1

is neither defined nor continuous at x = 1, so we cannot find its limit by

evaluation. If we try to evaluate 1
x − 1

at x = 1, we would not get a real number, because the
denominator would be 0. In terms of limits, we say that

lim
x→1

1
x − 1

is of the form 1
0

, and thus lim
x→1

1
x − 1

is not a real number.

Can we be more specific than just pointing out that limits of type 1
0

“do not exist” (i.e.,

are not real numbers)? Consider the behavior of 1
x − 1

as x approaches 1 from the right, as

shown in the table below. As x → 1+ (see the first row of the table) the values of x − 1
approach 0+ (see the second row). The reciprocals of these values (see the third row) then
approach ∞:

x 1.1 1.01 1.001 1.0001 1.00001 → 1+

x − 1 0.1 0.01 0.001 0.0001 0.00001 → 0+

1
x − 1

10 100 1000 10,000 100,000 → ∞

In symbols, this means that 1
x − 1

→ ∞ as x → 1+. In terms of limits we can express this
behavior from the right by saying that

lim
x→1+

1
x − 1

is of the form 1
0+ , and thus lim

x→1+
1

x − 1
= ∞.

We will prove a more general version of this statement in Theorem 1.29.

From the left, we have a similar situation: As x → 1−, we have x − 1 → 0−, so the

quantity 1
x − 1

will remain negative as x → 1−, and as the magnitude of the denominator

x − 1 gets smaller and smaller, the magnitude of 1
x − 1

gets larger and larger. In terms of

limits we can express this behavior from the left by saying that

lim
x→1−

1
x − 1

is of the form 1
0− , and thus lim

x→1−
1

x − 1
= −∞.

We have now shown that lim
x→1

1
x − 1

does not exist, and more specifically, that the limit is ∞
from the right and −∞ from the left.

If an expression approaches ∞ from both the right and the left, then we say that the
two-sided limit is ∞. For example, since 1

(x − 1)2
approaches ∞ from both the right and the

left as x → 1, we would write lim
x→1

1
(x − 1)2

is of the form 1
0+ , and thus lim

x→1

1
(x − 1)2

= ∞.
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The theoretical basis for the discussion above is summarized in the following theorem:

THEOREM 1.29 Limits Whose Denominators Approach Zero from the Right or the Left

(a) If lim
x→c

f (x)
g(x)

is of the form 1
0+ , then lim

x→c

f (x)
g(x)

= ∞.

(b) If lim
x→c

f (x)
g(x)

is of the form 1
0− , then lim

x→c

f (x)
g(x)

= −∞.

Theorem 1.29 also applies to one-sided limits and to limits as x → ∞ or as x → −∞. We
will prove only the case for limits from the right:

Proof. We will prove the case where lim
x→c+

f (x)
g(x)

is of the form
1

0+ . The other cases are similar; you

will handle another in Exercise 87. Since f (x) → 1 as x → 0, it follows that for any ε1 > 0, we can
find δ 1 > 0 such that

if c < x < c + δ 1, then 1 − ε1 < f (x) < 1 + ε1.

Similarly, since g(x) → 0+ as x → 0, it follows that for any ε2 > 0, we can find δ 2 > 0 such that

if c < x < c + δ 2, then 0 < g(x) < 0 + ε2.

Now to prove that lim
x→c+

f (x)
g(x)

= ∞, take any M > 0. Choose δ to be the minimum of the δ 1 corre-

sponding to ε1 = 1
2

and the δ 2 corresponding to ε2 = 1
2M

. With this choice of δ, we have

if c < x < c + δ, then
f (x)
g(x)

>
1 − ε1

ε2
=

1
2
1

2M

= M.

Limits at Infinity

We have just seen that limits of the form 1
0+ and 1

0− are always infinite. A sort of reverse

of this is also true, and is the subject of our next theorem: Limits of the form 1
∞ and 1

−∞
are always zero. This makes intuitive sense because the reciprocal of a number of large

magnitude is a number of small magnitude. Note that even though the expression “ 1
∞”

does not represent a real number, a limit of that form will be equal to a real number,
namely, 0.

THEOREM 1.30 Limits Whose Denominators Become Infinite Approach Zero

(a) If lim
x→∞

f (x)
g(x)

is of the form 1
∞ , then lim

x→∞
f (x)
g(x)

= 0.

(b) If lim
x→∞

f (x)
g(x)

is of the form 1
−∞ , then lim

x→∞
f (x)
g(x)

= 0.

For example, as x → ∞ we have x + 1 → ∞ and thus 1
x + 1

→ 0; therefore lim
x→∞

1
x + 1

= 0.

Similarly, as x → −∞ we have x + 1 → −∞ and thus 1
x + 1

→ 0; therefore lim
x→−∞

1
x + 1

= 0.

Theorem 1.30 also applies for limits as x → −∞ and as x → c, although we will not prove
that here.
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Proof. We prove the first part and leave the second part to Exercise 88. Since f (x) → 1, it follows
that for any ε1 > 0, we can find N1 > 0 such that

if x > N1, then 1 − ε < f (x) < 1 + ε.

Similarly, since g(x) → ∞, it follows that for any M > 0, we can find N2 > 0 such that

if x > N2, then g(x) > M.

Now to prove that lim
x→∞

f (x)
g(x)

= 0, take any ε > 0. Choose N to be the maximum of the N1 corre-

sponding to ε1 = 1 and the N2 corresponding to M = 2
ε

. With this choice of N, we have

if x > N, then 0 <
f (x)
g(x)

<
1 + ε1

M
= 2(

2
ε

) = ε.

The next theorem lists the limits at infinity of some simple functions. You will prove a
selection of these limits in Exercises 90 and 91.

THEOREM 1.31 Limits of Some Basic Functions at Infinity

(a) If k > 0, then lim
x→∞ x k = ∞ and lim

x→∞ x−k = 0.

(b) If k > 0, then lim
x→∞ ekx = ∞ and lim

x→∞ e−kx = 0.

(c) lim
x→∞ ln x = ∞.

(d) The functions sin x, cos x, tan x, sec x, csc x, and cot x all have periodic behavior
as x → ∞, and thus their limits as x → ∞ do not exist.

(e) lim
x→∞ tan−1 x = π

2
and lim

x→−∞ tan−1 x = −π

2
.

Rather than memorizing these limits, it is better to remember the behavior on the right
side of the graphs of these basic functions, as in the following examples:

x 2 1
x

e x e−x ln x sin x tan−1 x

x

y

x

y y

x

y

x

y

x

y

x

y

?
x

We can say similar things about limits as x → −∞. In fact, in most cases limits as x → −∞
can be rewritten with algebra as limits as x → ∞. It is also helpful to remember the be-
havior on the left side of common graphs to determine limits as x → −∞. Although we
will not prove so in general here, the limit rules from Theorem 1.20 also apply when
x → ∞ and when x → −∞. You will prove this for the sum rule for limits in Exer-
cise 89. For example, given that lim

x→∞ x−2 = 0 and that lim
x→∞ x−3 = 0, we can conclude that

lim
x→∞(x−2 + x−3) = 0 + 0 = 0.

As we will see in Example 4 and Exercise 85, polynomials behave like their leading
terms as x → ∞ and as x → −∞. For example, the function f (x) = 2x 3 − 5x − 1 will be
dominated by its leading term 2x 3 as x takes on larger and larger magnitudes. Therefore f
approaches ∞ as x → ∞, and approaches −∞ as x → −∞. Since rational functions are by
definition quotients of polynomial functions, we can use what we know about the global
behavior of polynomials to determine the global behavior of rational functions:
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THEOREM 1.32 Horizontal Asymptote Theorem for Rational Functions

If f (x) = p(x)
q(x)

is a rational function in which the polynomials p(x) and q(x) have leading

terms a n x n and b m x m, respectively, then

(a) if n < m, then the graph of y = f (x) has a horizontal asymptote at y = 0.

(b) if n = m, then the graph of y = f (x) has a horizontal asymptote at y = an

bm
.

(c) if n > m, then the graph of y = f (x) does not have a horizontal asymptote.

Indeterminate and Non-Indeterminate Forms

If a limit is indeterminate, then we cannot initially say whether or not it exists—or if it
exists, what real number it is equal to. Many indeterminate limits can be resolved with
algebra such as cancellation or factoring. For example, the four limits that follow are all
initially of the indeterminate form 0

0
. After some simple algebra, we see that three limits

exist and one limit becomes infinite. The three that exist are each equal to different real
numbers.

lim
x→1

(x − 1)2

x − 1
= lim

x→1

x − 1
1

= 0
1

= 0 lim
x→1

x − 1
(x − 1)3

= lim
x→1

1
(x − 1)2

= ∞

lim
x→1

x − 1
x − 1

= lim
x→1

1 = 1 lim
x→1

x − 1
3(x − 1)

= lim
x→1

1
3

= 1
3

When a limit is indeterminate, it is essentially because there is a “fight” going on between
two parts of the limit. For example, limits of the form 0

0
approach different things depend-

ing on whether the numerator or the denominator approaches 0 faster. If the numerator
does, then it “wins” the fight and the limit is equal to zero. If the denominator approaches
0 faster, then the limit will become infinite. If the numerator and denominator are balanced
appropriately, then they cancel each other out and the limit will approach a nonzero real
number. Over time you will develop an intuition for what types of expressions are likely to
win such fights, and the examples at the end of this section illustrate algebraic techniques
for resolving such indeterminacies.

The following theorem identifies seven common indeterminate forms for limits:

THEOREM 1.33 Indeterminate Forms for Limits

Each of the following is an indeterminate form, meaning that a limit in one of these
forms may or may not exist, depending on the situation:

0
0

∞
∞ 0 · ∞ ∞ − ∞ 00 1∞ ∞0

To prove this theorem, for each indeterminate form we need only exhibit an example
of a limit of that form that exists and an example of a limit of that form that does not,
as we did before for limits of the indeterminate form 0

0
. Identifying such examples for

the remaining six forms is left to you in Exercises 15–21. Limits that have the first four
types of indeterminate forms listed in Theorem 1.33 can often be solved after simple fac-
toring or cancelling. Limits of the remaining three types pose more of a challenge; see
Section 3.6.
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CAUTION Of course, the indeterminate expression “ 0
0

” is not a real number and we cannot actually
divide the number 0 by the number 0. Theorem 1.33 tells us that limits of this form are
indeterminate, and thus cannot be determined until we somehow rewrite or re-examine
the limit, perhaps by factoring, cancelling, or some other method. Note that this is very
different than saying that a limit “does not exist.”

We have already seen that a limit of the form 1
∞ is equal to zero and a limit of the form

1
0+ is infinite. The following limit forms also always either approach 0 or become infinite

and thus are not indeterminate:

THEOREM 1.34 Non-Indeterminate Forms for Limits

(a) A limit in any of these forms must be equal to 0:
1
∞

0
∞

0
1

0∞ 01

(b) A limit in any of these forms must be ∞:
1

0+
∞
0+

∞
1

∞ + ∞ ∞ · ∞ ∞∞ ∞1

We are not suggesting that you should memorize Theorem 1.34. Each of the limit forms
in the theorem can be easily determined by investigation. We will not give a formal
proof of this theorem, but rather, we can argue that in each case there is no “fight”; it

is clear what limits of each form must approach. For example, in a limit of the form 0
∞ ,

the numerator approaches zero, making the quotient smaller and smaller; at the same
time the denominator grows without bound, which also makes the quotient smaller and

smaller. Thus for the form 0
∞ , the behavior of both the numerator and the denominator

causes the limit to approach 0. You will see some of the other non-indeterminate forms in
Exercises 11–14.

Special Trigonometric Limits

Certain indeterminate limits can be reduced with algebra to two specific trigonometric lim-
its. These limits expand the library of limits that we can compute and will be vital tools for
determining the derivatives of sine and cosine in the next chapter.

THEOREM 1.35 Two Useful Trigonometric Limits

(a) lim
θ→0

sin θ

θ
= 1 (b) lim

θ→0

1 − cos θ

θ
= 0

Notice that the limits in this theorem give us a way to determine a number of related limits
that are initially of the form 0

0
. For example, we can use the first limit to show that

lim
x→0

sin 2x
x

= lim
x→0

sin 2x
2x

(2) = 1(2) = 2,

since as x → 0, we also have 2x → 0. As another example, since x − π → 0 when x → π ,
we have

lim
x→π

sin(x − π )
x − π

= 1.
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Proof. We can intuitively see that the two special trigonometric limits make sense based on the
following figures of portions of the unit circle, with angles measured in radians:

sin θ ≈ θ 1 − cos θ much smaller than θ

θ

sin θ tan θ

1

θ

y

x x

θ � 0

cos θ 1 � cos θ

θ

y

For small positive values of θ , the picture on the left suggests that sin θ ≈ θ and therefore that
sinθ

θ
≈ 1. Similarly, for small positive θ , the picture on the right suggests that 1 − cos θ approaches

0 much faster than θ and therefore that
1 − cosθ

θ
≈ 0.

More formally, from the earlier figure on the left, we can see that sin θ ≤ θ ≤ tan θ . Dividing

all expressions in this chain of inequalitites by sin θ and using the fact that tan θ = sinθ

cosθ
, we have

1 ≤ θ

sin θ
≤ 1

cos θ
.

Since all of the expressions in this chain of inequalities are positive, we can take reciprocals to
obtain:

cos θ ≤ sin θ

θ
≤ 1.

Now by applying the Squeeze Theorem to these two inequalities we have lim
θ→0+

sinθ

θ
= 1. The

argument for θ → 0− is similar, with a picture in the fourth quadrant.

The second trigonometric limit can be proved from the first by using the double-angle formula
cos 2θ = 1 − 2 sin2 θ ; see Exercise 94.

The two figures that follow show the functions y = sinx
x

and y = 1 − cosx
x

. Notice that
neither function is defined at x = 0, but both approach a specific real-number value as
x → 0.

lim
x→0

sinx
x

= 1 lim
x→0

1 − cosx
x

= 0

y

x
3ππ�3π �π

1

y

x

1

�1

3ππ�3π �π

Examples and Explorations

EXAMPLE 1 Calculating limits to determine horizontal asymptotes

Use limits to find any horizontal asymptotes of the following functions:

(a) f (x) = x
x − 1

(b) g(x) = x 2 − 1
x 3 − 4x

(c) h(x) = sin x
x
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SOLUTION

(a) To find horizontal asymptotes we must examine limits as x → ±∞. As x → ∞, we
have x → ∞ and x − 1 → ∞, and therefore

lim
x→∞

x
x − 1

is of the indeterminate form ∞
∞ .

Limits of the indeterminate form ∞
∞ can often be resolved by dividing the numerator

and denominator by the highest power of x that appears, as follows:

lim
x→∞

x
x − 1

= lim
x→∞

x
x − 1

(
1/2x
1/2x

)
= lim

x→∞
1

1 − (1/x)
= 1

1 − 0
= 1.

In a similar fashion we can show that lim
x→−∞

x
x − 1

= 1. Therefore f (x) = x
x − 1

has a

two-sided horizontal asymptote at y = 1.

(b) As x → ∞ we have x 2 − 1 → ∞ in the numerator and x 3 → ∞ and 4x → ∞ in the
denominator. Since ∞−∞ is an indeterminate form, we cannot even be certain what
the denominator x 3 − 4x approaches at this point. To resolve this limit we will once
again divide the numerator and denominator by the highest power of x:

lim
x→∞

x 2 − 1
x 3 − 4x

= lim
x→∞

x 2 − 1
x 3 − 4x

(
1/x 3

1/x 3

)
= lim

x→∞
1/x − 1/x 3

1 − (4/x 2)
= 0 − 0

1 − 0
= 0

1
= 0.

Similarly, lim
x→−∞

x2 − 1
x3 − 4x

is equal to 0. Therefore g(x) = x2 − 1
x3 − 4x

has a two-sided horizontal

asymptote at y = 0.

(c) Looking at h(x) = sinx
x

as x → ∞, we see that the numerator sin x oscillates between
−1 and 1 while the denominator x gets infinitely large. A bounded quantity divided
by a quantity that increases without bound must approach zero; in other words, as
x → ∞ we have

sin x
x

→ bounded
∞ → 0.

The same is true as x → −∞, and thus lim
x→∞

sinx
x

and lim
x→−∞

sinx
x

are both equal to 0.

Therefore the function h(x) = sinx
x

has a two-sided horizontal asymptote at y = 0. �

CHECKING
THE ANSWER

We can use calculator graphs to verify the horizontal asymptotes that we just found. These
graphs also provide verification for the vertical asymptotes in the next example.

f has horizontal asymptote at y = 1 g has horizontal asymptote at y = 0 h has horizontal asymptote at y = 0

�2

�3

5

4
6�6

�3

3

30�30

�0.2

1.2

EXAMPLE 2 Calculating limits to determine vertical asymptotes

Use limits to describe any vertical asymptotes of the following functions:

(a) f (x) = x
x − 1

(b) g(x) = x 2 − 1
x 3 − 4x

(c) h(x) = sin x
x
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SOLUTION

(a) From the formula for f (x), we see that x = 1 is the only serious candidate for a vertical
asymptote. As x → 1 we have x − 1 → 0 and therefore

lim
x→1

x
x − 1

is of the form 1
0
.

This tells us that f (x) = x
x − 1

has a vertical asymptote at x = 1. If we want to describe
the behavior of f near this asymptote more precisely, we can calculate the right and left
limits separately. As x → 1− we have x −1 → 0−, and as x → 1+ we have x −1 → 0+;
therefore

lim
x→1−

x
x − 1

= −∞ and lim
x→1+

x
x − 1

= ∞.

This means that the vertical asymptote at x = 1 is downward-pointing on the left and
upward-pointing on the right; see the leftmost graph from the previous “Checking the
Answer” figures.

(b) The function g(x) factors as

x 2 − 1
x 3 − 4x

= (x − 1)(x + 1)
x(x − 2)(x + 2)

.

The values of x that cause the denominator of this quotient to approach zero are x = 0,
x = 2, and x = −2. None of these values cause the numerator to approach zero, so in
each case we will get a limit that is either ∞ or −∞ from the left and/or the right. In
any case, we know that g(x) has vertical asymptotes at x = 0, x = −2, and x = 2. If we
want to know the precise behavior of g(x) at one of these vertical asymptotes, we can
look from the left and the right. For example, as x → 2− we have x(x − 2)(x + 2) →
2(0−)(4) → 0−, and as x → 2+ we have x(x − 2)(x + 2) → 2(0+)(4) → 0+. Therefore
the left and right limits at x = 2 are

lim
x→2−

x 2 − 1
x 3 − 4x

= lim
x→2−

(x − 1)(x + 1)
x(x − 2)(x + 2)

= −∞

and

lim
x→2+

x 2 − 1
x 3 − 4x

= lim
x→2+

(x − 1)(x + 1)
x(x − 2)(x + 2)

= ∞.

Notice that in these calculations we kept track only of the left/right “±” directions
when we encountered 0. This is because whether a multiplicative factor in the limit
is approaching, say, 1+ or 1−, will not affect the overall sign. On the other hand, the
difference between a factor of 0+ and 0− does affect the sign, which in turn will deter-
mine whether the limit approaches ∞ or −∞. Notice also that we used the factored
form of g(x) to determine the sign of infinity in each case, since it would have been
difficult to determine the sign of the denominator as x → 2+ and as x → 2− in the
unfactored expression for g(x).

(c) The denominator of h(x) = sinx
x

is zero only when x = 0, so x = 0 is the only candidate
for a vertical asymptote. However, at x = 0 we have one of our special limits from
Theorem 1.35:

lim
x→0

sin x
x

= 1.

Therefore h(x) does not have a vertical asymptote at x = 0. Instead, the graph has a
hole, since lim

x→0
h(x) = 1 exists but h(0) does not exist; see the third graph in the Check-

ing the Answer discussion before this example. �
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EXAMPLE 3 Indeterminate forms

Determine whether each of the limits that follows is initially in indeterminate form or non-
indetermine form. Then calculate each limit.

(a) lim
x→∞

3 x − 2 x

1 + 4 x
(b) lim

x→∞(x 2/3 − x 3/4) (c) lim
x→∞

(
1 + 3

x

)2x

SOLUTION

(a) By Theorem 1.31, as x → ∞ the expressions 3 x, 2 x, and 4 x all approach ∞. There-
fore the limit in question is an indeterminate form. An analog of the method of
dividing by the highest power works in this case, but this time we divide numerator
and denominator by the exponential function with the largest base:

lim
x→∞

3 x − 2 x

1 + 4 x = lim
x→∞

3 x − 2 x

1 + 4 x

(
1/4 x

1/4 x

)
= lim

x→∞
(3/4)x − (1/2)x

(1/4)x + 1
= 0 − 0

0 + 1
= 0

1
= 0.

(b) Since 2
3

and 3
4

are positive powers, as x → ∞ we have x 2/3 → ∞ and x 3/4 → ∞.

Therefore the limit in question is of the indeterminate form ∞ − ∞. Limits of this
form can often be resolved by factoring. We have

x 2/3 − x 3/4 = x 2/3(1 − x 1/12),

and as x → ∞ we have x 2/3 → ∞ and (1 − x 1/12) → −∞. Therefore the limit in
question is now of the form (∞)(−∞) which means that

lim
x→∞(x 2/3 − x 3/4) = lim

x→∞ x 2/3(1 − x 1/12) = −∞.

(c) As x → ∞, the base 1 + 3
x

approaches 1 + 0 = 1 and the exponent 2x approaches

∞. Therefore this limit is of the form 1∞, which is indeterminate. Fortunately, with a
substitution we can rewrite the limit in such a way that allows us to apply the definition
of e from Definition 1.25. Let h = 3

x
. Then as x → ∞, we have h → 0+. Using this

relationship and the fact that x = 3
h

, we have

lim
x→∞

(
1 + 3

x

)2x = lim
h→0+

(1 + h)2(3/h) = ( lim
h→0+

(1 + h)1/h)6 = e 6. �

CHECKING
THE ANSWER

We can use intuition to verify that these answers seem reasonable. Remember that each
time a limit has an indeterminate form, two parts of the limit are fighting against each

other. In part (a) of the preceding example, 3x − 2x

1 + 4x
approaches an indeterminate form as

x → ∞. Since 4 x is the exponential function with the largest base in the expression, it is
reasonable to expect that it will dominate the expression as x → ∞, dragging the whole
limit down to zero.

In part (b) we saw that lim
x→∞ x 2/3 − x 3/4 was of the indeterminate form ∞ − ∞. Since

3
4

>
2
3

, x 3/4 should approach ∞ faster than x 2/3 does. Thus it makes sense to expect that

x 3/4 should win the battle and x 2/3 − x 3/4 should eventually approach −∞.

It is difficult to use intuition to verify the limit in part (c), except that we might ex-
pect in this case that as x → ∞ the 1 and the ∞ are balanced in the indeterminate form
1∞, due to the fact that each involve a single power of x. This might lead us to suspect that
the answer is neither 1, nor ∞, but rather some number in between.
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EXAMPLE 4 The global behavior of a polynomial is determined by its leading term

Use limits to show that the polynomial f (x) = x 4 − x 3 − 11x 2 + 9x + 18 behaves like its
leading term x 4 as x → ∞ and x → −∞. Then use graphs to compare the graph of f with
the graph of y = x 4 in different graphing windows.

SOLUTION

It is not immediately obvious how to calculate this limit, because, as x → ∞, the terms x 4

and 9x approach ∞ while the terms −x 3 and −11x 2 approach −∞. Therefore lim
x→∞ x 4− x 3−

11x 2 + 9x + 18 is indeterminate.

However, with some simple algebra we can change this sum and difference of infinities
into a product that is easier to work with. Specifically, we can factor out the largest power
of x:

lim
x→∞(x 4 − x 3 − 11x 2 + 9x + 18) = lim

x→∞ x 4
(

1 − 1
x

− 11
x 2

+ 9
x 3

+ 18
x 4

)
.

Since as x → ∞ we have x 4 → ∞ and the remainder of the expression approaching
1 − 0 − 0 + 0 + 0 = 1, we can say that the limit is equal to ∞.

Similarly, the limit as x → −∞ is also ∞. Notice that the only term which ended up
being relevant in the limit calculation was the leading term. The figures that follow show
the function f (x) = x 4 − x 3 − 11x 2 + 9x + 18 in blue and its leading term y = x 4 in red,
in three different viewing windows. The more we enlarge the graphing window, the more
the graph of the function y = f (x) looks like the graph of y = x 4.

f (x) and x 4 on [−3, 3] f (x) and x 4 on [−6, 6] f (x) and x 4 on [−8, 8]

�3 �2 �1 321

y

20

10

�10

�20

x

�6 �4 �2 642

y

�100

500

400

300

200

100

x

�8 �6 �4 �2 8642

y

3000

2000

1000

x

�

TEST YOUR? UNDERSTANDING
� In terms of large and small numbers, why does it make intuitive sense that limits of the

form 1
0+ must always equal ∞?

� If a limit is of the form 1
0

as x → c, why should we examine the corresponding left and
right limits separately?

� Why does it make sense that limits of the form 1
∞ and of the form 1

−∞ are always equal
to zero?

� Why does it make intuitive sense that limits of the form 0
0

are indeterminate? What
“fight” is happening between the numerator and the denominator? What will happen
if the numerator “wins”? The denominator? If there is a tie?

� Can a function have two different horizontal asymptotes? Can you think of a specific
example?
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EXERCISES 1.6

Thinking Back

Behavior of transcendental functions: Determine whether each
function approaches 0, approaches a nonzero real number, or
becomes infinite as x approaches each indicated value.

� f (x) = csc x, with x → 0 and x → π .

� f (x) = tan2 x, with x → 0 and x → π .

� f (x) = sin−1 x, with x → 0 and x → 1.

� f (x) = tan−1 √
x, with x → 0 and x → 3.

The definition of infinite limits and limits at infinity: Write each
limit statement that follows in terms of the formal definition
of limit. Then approximate the largest value of δ or N corre-
sponding to ε = 0.5 or M = 100, as appropriate, and illustrate
this choice of δ or N on a graph of f .

� lim
x→∞

2x
x − 1

= 2 � lim
x→2+

1
x 2 − 4

= ∞

� lim
x→∞

√
x − 1 = ∞ � lim

x→−∞
1
x

= 0

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f (x) → 0+, then
1

f (x)
→ ∞.

(b) True or False: If f (x) → ∞+, then
1

f (x)
→ 0+.

(c) True or False: If a limit initially has an indeterminate
form, then it can never be solved.

(d) True or False: A limit “does not exist” if there is no real
number that it approaches.

(e) True or False: As limit forms, ∞2 → ∞.

(f) True or False: As limit forms, 2∞ → ∞.

(g) True or False: As limit forms, ∞ − ∞ → 0.

(h) True or False: The limit of a function f as x → c is
always equal to the value f (c), provided that f (c)
exists.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A limit of the form
1
0

that approaches ∞ as x → c+

and −∞ as x → c−.

(b) Two limits that can be solved with the special trigono-
metric limits from Theorem 1.35.

(c) Formulas for three functions that are discontinuous
at x = 3: one removable, one jump, and one infinite
discontinuity.

In Exercises 3–6, lim
x→c

f (x) = L and lim
x→c

g(x) = M for some

real numbers L and M. What, if anything, can you say about

lim
x→c

f (x)
g(x)

in each case?

3. L �= 0 and M �= 0 4. L = 0 and M �= 0

5. L �= 0 and M = 0 6. L = 0 and M = 0

7. Determine which of the given forms are indeterminate.
For each form that is not indeterminate, describe the be-
havior of a limit of that form.

∞ + ∞ ∞ − ∞ ∞ + 1 0 + ∞

8. Determine which of the given forms are indeterminate.
For each form that is not indeterminate, describe the
behavior of a limit of that form.

∞ · ∞ 0 · ∞ 5 · ∞ 5 · 0 0 · 0

9. Determine which of the given forms are indeterminate.
For each form that is not indeterminate, describe the
behavior of a limit of that form.

0
0

0
∞

∞
0

1
0

0
1

∞
1

1
∞

∞
∞

10. Determine which of the given forms are indeterminate.
For each form that is not indeterminate, describe the
behavior of a limit of that form.

01 00 0∞ 1∞ ∞1 ∞0 ∞∞

11. Describe in terms of large and small numbers why it

makes intuitive sense that limits of the form (a)
1
∞ ,

(b)
0
∞ , and (c)

0
1

must equal 0.

12. Describe in terms of large and small numbers why it
makes intuitive sense that limits of the form (a) 0∞ and
(b) 01 must equal 0.

13. Describe in terms of large and small numbers why it

makes intuitive sense that limits of the form (a)
1

0+ ,

(b)
∞
0+ , and (c)

∞
1

must be infinite.

14. Describe in terms of large and small numbers why it
makes intuitive sense that limits of the form (a) ∞ + ∞,
(b) ∞ · ∞, (c) ∞∞, and (d) ∞1 must be infinite.
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To prove that the limit forms in Theorem 1.33 are indetermi-
nate, we need only list explicit examples of limits that do and
do not exist for each form. Do so for each of the limit forms
from Exercises 15–21. For the last three forms you may want
to experiment with a graphing utility to find your examples.

15.
0
0

that approaches (a) 0, (b) 2, (c) ∞.

16.
∞
∞ that approaches (a) 1, (b) 6, (c) ∞.

17. 0 · ∞ that approaches (a) 0 (b) 1, (c) ∞.

18. ∞ − ∞ that approaches (a) 0, (b) 5, (c) ∞.

19. 00 that approaches (a) 1, (b) 0, (c) ∞.

20. 1∞ that approaches (a) 1, (b) e, (c) ∞.

21. ∞0 that approaches (a) 1, (b) 2, (c) ∞.

22. Find the equation of a rational function that could have
the graph shown. Take into account roots, holes, and
vertical and horizontal asymptotes when constructing
your function.

x

y
10

�10

�2 �1 21

2

Skills

Find the roots, discontinuities, and horizontal and vertical
asymptotes of the functions in Exercises 23–34. Support your
answers by explicitly computing any relevant limits.

23. f (x) = x 2 − 2x − 3
x − 3

24. f (x) = 2x 2 − 1
x 2 − 2x + 1

25. f (x) = (x+1)(x−2)
(x−2)(x+2)

26. f (x) = (x+1)(x−2)2

(x−2)(x+2)

27. f (x) = (x+1)(x−2)
(x−2)2(x+2)

28. f (x) = (x+1)(x−2)
(x−2)(x+2)2

29. f (x) = 2
4 + e−2x 30. f (x) = 1

2 + 3 x

31. f (x) = 2 x − 4 x

3 x 32. f (x) = 4 x − 6(2 x) + 5
1 − 2 x

33. f (x) = tan−1(3x) + 1 34. f (x) = 1
tan−1 x

Calculate each limit in Exercises 35–80.

35. lim
x→0

−4x−3 36. lim
x→0

2x−3/4

37. lim
x→∞ 2x−4/3 38. lim

x→−∞ −5x 3/5

39. lim
x→∞(

√
x − x) 40. lim

x→−∞(x 4 − x 5)

41. lim
x→∞(−3x 5 + 4x + 11) 42. lim

x→−∞(5 − 2x + 3x 3)

43. lim
x→−4

x 2 + 8x + 16
(x + 4)2(x + 1)

44. lim
x→2

x + 1
(x − 2)2

45. lim
x→0

x 2 + 1
x(x − 1)

46. lim
x→−4

x + 4
x 2 + 8x + 16

47. lim
x→0

x
x 2 − x

48. lim
x→1

x − 1
x 2 − 2x + 1

49. lim
x→∞

(3x + 1)2(x − 1)
1 − x 3

50. lim
x→−∞

1 − 2x 2

(3 − x)(3 + 4x)

51. lim
x→0+

(x−1/3 − x−1/2) 52. lim
x→∞(x−1/3 − x−1/2)

53. lim
x→∞

x−3

x 2 − x−1
54. lim

x→0+

x−3

x 2 − x−1

55. lim
x→0+

x 7/2 − x 8/3

x 2
56. lim

x→∞
x 7/2 − x 8/3

x 2

57. lim
x→∞

4 x − 3 x

5 x 58. lim
x→∞

2 x − 4−x

3 x

59. lim
x→−∞

3 x − 5 x

4 x 60. lim
x→∞

4(3 x)
2 + 3 x

61. lim
x→∞

2e 1.5x

3e 2x + e 1.5x
62. lim

x→∞
1 − 5e 2x

3e x + 4e 2x

63. lim
x→3+

ln(x 2 − 9) 64. lim
x→0+

ln
(

1
x

)

65. lim
x→∞( ln x 2 − ln(2x + 1)) 66. lim

x→∞( ln 3x − ln 2x)

67. lim
x→0

1 − cos 2x
7x

68. lim
x→0

sin 3x
5x

69. lim
x→0

x
1 − cos x

70. lim
x→0

3 sin x + x
x

71. lim
x→0

sin2 3x
x 3 − x

72. lim
x→0

sin(3x 2)
x 3 − x

73. lim
x→0+

x 2 csc 3x
1 − cos 2x

74. lim
x→0

x 2 cot x
sin x

75. lim
x→0

sec x tan x
x

76. lim
x→0

3x 2 cot2 x

77. lim
x→0

(1 + x)2/x 78. lim
x→0

(1 + 2x)3/x

79. lim
x→∞

(
1 + 1

x

)3x

80. lim
x→∞

(
1 − 5

x

)x
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Applications
81. In 1960, H. von Foerster suggested that the human

population could be measured by the function

P(t) = 179 × 109

(2027 − t)0.99
.

The time t is measured in years, where t = 1 corresponds
to the year 1 a.d., t = 1973 corresponds to the year 1973
a.d., and so on. (We saw this “doomsday model” for pop-
ulation in Problem 77 of Section 1.1, on page 89.) Use limit
techniques to calculate lim

t→2027−
P(t). What does this limit

mean in real-world terms?
82. Suppose instead we consider the population model

Q(t) = 44 × 1010

1 + (2027 − t)4/3
,

with t measured in years as in the previous problem.

(a) Use limit techniques to calculate lim
t→∞

Q(t). What does

this limit mean in real–world terms? What happens
in this model in the year 2027?

(b) Use calculator graphs to compare the population
models in this exercise with those in the previous
exercise. Describe the long–term population growth
scenarios that are suggested by these models.

83. Consider a mass hanging from the ceiling at the end of
a spring. If you pull down on the mass and let go, it will
oscillate up and down according to the equation

s(t) = A sin

(√
k
m

t

)
+ B cos

(√
k
m

t

)
,

where s(t) is the distance of the mass from its equilibrium
position, m is the mass of the bob on the end of the spring,
and k is a “spring coefficient” that measures how tight or
stiff the spring is. The constants A and B depend on initial
conditions—specifically, how far you pull down the mass
(s0) and the velocity at which you release the mass (v0).
This equation does not take into effect any friction due to
air resistance.

s(t)
mass, m

spring coefficient, k

v0
s0

(a) Determine whether or not the limit of s(t) as t → ∞
exists. What does this say about the long-term
behavior of the mass on the end of the spring?

(b) Explain how this limit relates to the fact that the equa-
tion for s(t) does not take friction due to air resistance
into account.

(c) Suppose the bob at the end of the spring has a mass
of 2 grams and that the coefficient for the spring is
k = 9. Suppose also that the spring is released in such
a way that A = √

2 and B = 2. Use a graphing utility
to graph the function s(t) that describes the distance
of the mass from its equilibrium position. Use your
graph to support your answer to part (a).

84. In the previous exercise we gave an equation describ-
ing spring motion without air resistance. If we take into
account friction due to air resistance, the mass will oscil-
late up and down according to the equation

s(t) = e (−f / 2m)t
(

A sin
(√

4km − f 2

2m
t
)

+ B cos
(√

4km − f 2

2m
t
))

,

where m, k, A, and B are the constants described in
Problem 83 and f is a positive “friction coefficient” that
measures the amount of friction due to air resistance.

(a) Find the limit of s(t) as t → ∞. What does this say
about the long-term behavior of the mass on the end
of the spring?

(b) Explain how this limit relates to the fact that the new
equation for s(t) does take friction due to air resistance
into account.

(c) Suppose the bob at the end of the spring has a mass
of 2 grams, the coefficient for the spring is k = 9, and
the friction coefficient is f = 6. Suppose also that the
spring is released in such a way that A = 4 and B = 2.
Use a graphing utility to graph the function s(t) that
describes the distance of the mass from its equilib-
rium position. Use your graph to support your answer
to part (a).
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Proofs

85. Use limits to prove that the limits of a polynomial f (x) =
a n x n + a n−1x n−1 + a1 x + a0 are the same as the limits of
its leading term a n x n as x → ∞ and as x → −∞. (Hint:
Show that lim

x→∞ f (x) is equal to lim
x→∞ a n x n by factoring out

a n x n from f (x).)
86. Use limit techniques to prove that a rational function

f (x) = p(x)
q(x)

will have

(a) a horizontal asymptote at y = 0, if the degree of p(x)
is less than the degree of q(x);

(b) a horizontal asymptote at y = an

bm
, where a n and b m

are the leading terms of p(x) and q(x), respectively, if
p(x) and q(x) have the same degree;

(c) no horizontal asymptote, if the degree of p(x) is
greater than the degree of q(x).

87. Prove the second part of Theorem 1.29: If lim
x→c

f (x)
g(x)

is of the

form
1

0− , then lim
x→c

f (x)
g(x)

= −∞.

88. Prove the second part of Theorem 1.30: If lim
x→∞

f (x)
g(x)

is of

the form
1

−∞ , then lim
x→∞

f (x)
g(x)

= 0.

89. Prove that the sum rule for limits also applies for
limits as x → ∞: If lim

x→∞ f (x) = L and lim
x→∞ g(x) = M, then

lim
x→∞( f (x) + g(x)) = L + M.

90. Prove the first part of Theorem 1.31(a): If k > 0, then
lim

x→∞ x k = ∞. (Hint: Given M > 0, choose N = M1/k. Then

show that for x > N it must follow that x k > M.)

91. Prove the second part of Theorem 1.31(a): If k > 0, then
lim

x→∞ x−k = 0.

92. Prove the k = 1 case of the first part of Theorem 1.31(b):
that lim

x→∞ e x = ∞. (Hint: Given M > 0, choose N = ln M.

Then if x > N = ln M, we must have x = ln M + c for some
positive number c. Use this to show that e x > M.)

93. Prove the k = 1 case of the second part of Theo-
rem 1.31(b): that lim

x→∞ e−x = 0.

94. Prove that lim
θ→0

1 − cosθ

θ
= 0 by using the double-angle

identity cos 2θ = 1 − 2 sin2 θ and the other special

trigonometric limit lim
θ→0

sinθ

θ
= 1.

Thinking Forward

A limit representing an instantaneous rate of change: After
t seconds, a bowling ball dropped from 350 feet has height
h(t) = 350 − 16t 2, measured in feet.

350 ft

h

� Calculate the average rate of change of the height of
the bowling ball from t = 3 to t = 3 + h seconds in
the cases where h is equal to 0.5, 0.25, 0.1, and 0.01.

� Write down a formula for the average rate of change
of the height of the bowling ball from time t = 3 to
time t = 3 + h, assuming that h > 0. The only letter
in your formula should be h.

� Take the limit as h → 0+ of the formula you found for
average rate of change in the previous problem. What
does this limit represent in real–world terms?

Taylor Series: In this section we learned that e can be thought
of as the following limit:

lim
h→0

(1 + h)1/h = e.

In the following exercise you will investigate the convergence
of this limit and also get a preview of Taylor series, which we
will see in Chapter 8.

� Use the substitution n = 1
h

to show that the preceding

limit statement is equivalent to the limit statement

lim
n→∞

(
1 + 1

n

)n

= e.

� The Binomial Theorem says that an expression of the
form (a + b) n can be expanded to

(
n
0

)
a nb0 +

(
n
1

)
a n−1b1 +

(
n
2

)
an−1b2 + · · · +

(
n
n

)
x 0y n,

where, for any 0 ≤ k ≤ n, the symbol
( n

k

)
is equal to

n!
k!(n − k)!

. Here n! is n factorial, the product of the in-

tegers from 1 to n. By convention we set 0! = 1. Apply

this expansion to the expression
(

1 + 1
n

)n
.

� Show that as n → ∞ we would expect the preceding
expansion to approach

1 + 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ 1
5!

+ · · · .

(Hint: Think about limits of rational functions and ratios
of leading coefficients.)

� Use a calculator to find the sum of the first six terms
of the sum from the previous problem, and compare
this sum with your calculator’s best approximation of
the number e.
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� the intuitive meaning of the limit statements
lim
x→c

f (x) = L, lim
x→c−

f (x) = L, and lim
x→c+

f (x) = L

� the intuitive meaning of the limit statements
lim
x→c

f (x) = ∞ and lim
x→∞ f (x) = L

� the formal δ–ε definition of the limit statements
lim
x→c

f (x) = L, lim
x→c−

f (x) = L, and lim
x→c+

f (x) = L

� the formal δ–M, N–ε, and N–M definitions of the
limit statements lim

x→c
f (x) = ∞, lim

x→∞ f (x) = L, and

lim
x→∞ f (x) = ∞, respectively

� what we mean when we say that a limit exists, or that a
limit does not exist

� what it means, in terms of limits, for a function f to have
a vertical asymptote at x = c or a horizontal asymptote at
y = L

� what it means, in terms of limits, for a function f to be con-
tinuous at a point x = c, left continuous at x = c, and right
continuous at x = c

� what it means for a function f to be continuous on a closed
interval [a, b], or continuous on an open interval (a, b), or
continuous on a half-closed interval [a, b)

� what it means, in terms of limits, for a function to
have a removable discontinuity, a jump discontinuity, or an
infinite discontinuity at x = c

� the definition of the number e in terms of a limit

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� If lim
x→c

f (x) = L and lim
x→c

f (x) = M, then .

� lim
x→c

f (x) = L if and only if lim
x→c−

f (x) = and

lim
x→c+

f (x) = .

� For δ > 0, x ∈ (c − δ, c) ∪ (c, c + δ) if and only if
0 < < δ.

� For ε > 0, f (x) ∈ (L − ε, L + ε) if and only if < ε.

� The Extreme Value Theorem: If f is on a closed inter-
val [a, b], then there exist values M and m in the interval
[a, b] such that f (M) is and f (m) is .

� The Intermediate Value Theorem: If f is on a closed
interval [a, b], then for any K strictly between and

, there exists at least one c ∈ (a, b) such that .

� A function f can change sign from positive to negative, or
vice versa, at x = c only if f (x) is , , or at
x = c.

� Constant, identity, and linear functions are continuous
everywhere, which means in terms of limits that ,

, and .

� Power functions are continuous everywhere, which
means in terms of limits that .

� All algebraic functions are on their domains, which
means in terms of limits that if x = c is in the domain of
an algebraic function f , then .

� All basic transcendental functions are on their do-
mains, which means in terms of limits that if x = c is in
the domain of a basic exponential, logarithmic, trigono-
metric, or inverse trigonometric function f , then .

� If lim
x→c

g(x) exists and f (x) is a function that is

to g(x) for all x sufficiently close to , but not
necessarily at , then .

� The Squeeze Theorem for Limits: If l(x) ≤ f (x) ≤ u(x) for
all x sufficiently close to , but not necessarily
at , and if lim

x→c
l(x) and lim

x→c
u(x) are both equal

to L, then .

� Suppose
p(x)
q(x)

is a rational function with deg(p(x)) = n

and deg(q(x)) = m. If n < m, then lim
x→∞

p(x)
q(x)

= ;

if n = m, then lim
x→∞

p(x)
q(x)

= ; and if n > m, then

lim
x→∞

p(x)
q(x)

= .
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Limit Rules and Indeterminate Forms

Limits of basic functions: Fill in the blanks to complete the limit
rules that follow. You may assume that k is positive.

� lim
x→c

k = � lim
x→c

x =

� lim
x→c

(mx + b) = � lim
x→c

Ax n =

� lim
x→∞ x k = � lim

x→∞ x−k =

� lim
x→c

b x = � lim
x→c

sin x =

� lim
x→∞ ekx = � lim

x→∞ e−kx =

� lim
x→∞ 2 x = � lim

x→∞(0.75) x =

� lim
x→0+

ln x = � lim
x→∞ ln x =

� lim
x→∞ tan−1 x = � lim

x→−∞ tan−1 x =

� lim
x→0

e x − 1
x

= � lim
x→0

(1 + x)1/x =

� lim
x→0

sin x
x

= � lim
x→0

1 − cos x
x

=

Limits of combinations: Fill in the blanks to complete the limit
rules that follow. You may assume that k and c are any real
numbers and that both lim

x→c
f (x) and lim

x→c
g(x) exist.

� lim
x→c

kf (x) =

� lim
x→c

( f (x) + g(x)) =

� lim
x→c

( f (x) − g(x)) =

� lim
x→c

( f (x)g(x)) =

� lim
x→c

f (x)
g(x)

= , provided that

� lim
x→c

f (g(x)) = , provided that

Indeterminate forms: Identify which of the limit forms listed
here are indeterminate. For each form that is not indetermi-
nate, describe the behavior of a limit of that form.

� 1
0+ � 1

0− � 1
∞ � 1

−∞

� 0
1

� 0
0

� ∞
1

� 0
∞

� ∞
∞ � ∞

0+ � 0 · ∞ � ∞·∞

� ∞(−∞) � ∞ + ∞ � ∞ − ∞ � 00

� 01 � 0∞ � 1∞ � ∞0

� ∞∞ � ∞1 � 0−∞ � ∞−∞

Skill Certification: Basic Limits

Calculating limits: Find each limit by hand.

1. lim
x→0

3x−4 2. lim
x→∞ −2x−1/2

3. lim
x→2

1
2 − x

4. lim
x→1

1
x 2 − 1

5. lim
x→1

2x 3 − x 2 − 2x + 1
x 2 − 2x + 1

6. lim
x→−∞

x 3 + 2x − 1
1 − x 4

7. lim
x→0

3 x − 4 x

3 x
8. lim

x→0

e x − 1
3e2x − 2e x − 1

9. lim
x→0+

ln x
x

10. lim
x→∞ ln

(
x − 1

1 − 3x 2

)

11. lim
x→∞

1 − e x

e2x
12. lim

x→π/2

sin x
x

13. lim
x→∞(

√
x − x) 14. lim

x→0+

√
x − x 3

x 2

15. lim
x→3

1
x − 3

− 1
x

x − 3
16. lim

x→4

2 − √
x

4 − x

17. lim
x→∞(−2x 3 + x 2 − 10) 18. lim

x→0
(x−3 − 2x−1)

19. lim
x→∞

(2x − 1)(x 2 + 1)
x 2 − 4

20. lim
x→∞

(x − 1)(3x + 1)3

(x − 2)4

21. lim
x→∞

√
x

1 − √
x

22. lim
x→−∞ e x tan−1 x

23. lim
x→0

3x
sin 2x

24. lim
x→0

sin2 3x
x

25. lim
x→0

1 − cos x
sin x

26. lim
x→∞ sin(tan−1 x)

27. lim
x→∞

(
1 + 1

x

) x

28. lim
x→0

x 2

e x − 1

29. lim
x→∞ sin x 30. lim

x→∞ sin
1
x

31. lim
x→∞

1
x

sin x 32. lim
x→0

x sin
1
x
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Capstone Problems

A. Continuity of piecewise-defined functions: For each given
function f , find a real number a that makes f continuous
at x = 0, if possible.

(a) f (x) =
{

3x + 1, if x < 0
2x + a, if x ≥ 0

(b) f (x) =

⎧⎪⎨
⎪⎩

a
x + 2

, if x < 0

3, if x = 0
ax + 1, if x > 0

B. Limits that define derivatives: In the next chapter we will be
interested in derivatives, which we will define as limits
of the form

lim
h→0

f (c + h) − f (c)
h

.

(a) Calculate this limit for f (x) = x 3 and c = 0.
(b) Calculate this limit for f (x) = x 3 and c = 2.
(c) Calculate this limit for f (x) = x 3 and general c = x.

This time your answer will be a function of x instead
of a number.

C. The limit of a model at infinity: Leila is interested in the
effect of a stabilized wolf population on the eventual
population of beavers in Idaho. The following table gives
estimated beaver populations B(t) for t = 0, 1, 2, 3, 4, and
5 years after 2005:

t 0 1 2 3 4 5

B(t) 48,112 42,256 47,088 43,684 46,320 44,704

(a) Leila makes a plot of these values of B(t) and notes
that the population of beavers is cyclical with di-
minishing amplitude. She finds that the quadratic
function

M(t) = −51x 2 + 918x + 41, 389

is a good model for the relative maximum data points
at t = 0, 2, and 4, and that

m(t) = 33.25x 2 − 583.5x + 48, 122

is a good model for the relative minimum data points
at t = 1, 3, and 5. Verify that these functions do in fact
pass through the relevant data points, and graph the
data for B(t) along with the two functions.

(b) Do the two quadratics M(t) and m(t) ever meet? If
so, where? What conclusion could Leila make con-
cerning the eventual steady population lim

t→∞
B(t) of

beavers in Idaho?

D. The limit of a rational function model at infinity: Upon fur-
ther reflection, Leila decides that the quadratics used
in the previous problem are unreasonable, since the
quadratic model for the relative maximum values could
be interpreted as indicating that the eventual number of
beavers would be unbounded. She decides to change her
model for the relative maximum beaver populations to

M(t) = 40944 t 2 + 454512 t − 1732032
t 2 + 9 t − 36

.

(a) Verify that this function does pass through the data
points at t = 0, 2, and 4. Is this function continuous
everywhere? (Hint: Consider lim

t→3
M(t).)

(b) Compute lim
t→∞

M(t). What is the significance of this

number?
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C H A P T E R 2

Derivatives
2.1 An Intuitive Introduction to Derivatives

Slope Functions
Position and Velocity
Approximating the Slope of a Tangent Line
Approximating an Instantaneous Rate of Change
Examples and Explorations

2.2 Formal Definition of the Derivative
The Derivative at a Point

lim
h→0

f (x + h) − f (x)
h

The Derivative as a Function
Differentiability
Tangent Lines and Local Linearity
Leibniz Notation and Differentials
Examples and Explorations

2.3 Rules for Calculating Basic Derivatives
Derivatives of Linear Functions

d
dx

(x k) = kx k−1
The Power Rule
The Constant Multiple and Sum Rules
The Product and Quotient Rules
Examples and Explorations

2.4 The Chain Rule and Implicit Differentiation
Differentiating Compositions of Functions df

dx
= df

du
du
dxImplicit Differentiation

Examples and Explorations

2.5 Derivatives of Exponential and Logarithmic
Functions
Derivatives of Exponential Functions
Exponential Functions Grow Proportionally to Themselves
Derivatives of Logarithmic Functions
Derivatives of Inverse Functions*
Examples and Explorations

2.6 Derivatives of Trigonometric and Hyperbolic
Functions
Derivatives of Trigonometric Functions
Derivatives of Inverse Trigonometric Functions
Hyperbolic Functions and Their Derivatives*
Inverse Hyperbolic Functions and Their Derivatives*
Examples and Explorations

Chapter Review, Self-Test, and Capstones
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2.1 AN INTUIT IVE INTRODUCTION TO DERIVATIVES

� Associated slope functions, tangent lines, and secant lines

� Velocity and other instantaneous rates of change

� Approximating slopes of tangent lines and instantaneous rates of change

Slope Functions

We begin our study of the derivative with an intuitive introduction in terms of slopes and
rates of change. We also start thinking about how one might calculate, or at least ap-
proximate, derivatives. In Section 2.2 we will give a formal mathematical definition of the
derivative in terms of limits.

Intuitively speaking, if the graph of a function f is smooth on an interval (a, b)—
meaning that it does not have any corners, cusps, jumps, or holes—then at every point
(x, f (x)) on the the graph of f on the interval (a, b) we can consider the direction, or
slope, of the function at that point. For example, in the figure that follows at the left, the
tangent line drawn at x = −1 points in the same direction as the function f at the point
(−1, f (−1)). More precisely, if you imagine yourself in a tiny car driving along the graph of
f with your headlights on, then that line represents the direction that your headlights are
pointing when you reach the point (−1, f (−1)) from the right or the left. Similarly, the line
drawn at x = 4 represents the direction of the graph of f at the point (4, f (4)).

Tangent lines at x = −1 and x = 4 Slopes of y = f (x) Heights of y = f ′(x)

x
1 3�3 5�1

y

sl
op

e 
8

slope �
4

slope 0

slope 0

sl
op

e 
5

x

y

1 3�3 5�1

5

8

�4

x

y

62 4�2�4

height 8
height 5height 0

height 0
height �4

We can use the graph of a smooth function f to define a new function whose output
at each point x is the slope of the tangent line at x. For example, the slopes shown on the
graph of f in the middle figure are used to define heights on the graph of the associated
slope function shown at the right. This associated slope function is what we will define
in Section 2.2 as the derivative of f (x) and denote as f ′(x) (pronounced “f prime of x”).
Notice the following relationships between a function f and its derivative f ′:

� For each x, the slope of f (x) is the height of f ′(x).
� Where f has a horizontal tangent line, the derivative f ′ has a root.
� Where the graph of f is increasing, the derivative f ′ is above the x-axis.
� Where the graph of f is decreasing, the derivative f ′ is below the x-axis.
� Where f has steep slope, the derivative f ′ has large magnitude.
� Where f has shallow slope, the derivative f ′ has small magnitude.
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Position and Velocity

Suppose an object moves in a straight path so that after t seconds it is a distance of s(t)
units from its starting point. We will call the function s(t) describing the motion of the
object a position function. The moving object has a speed and a direction at any time t,
and the combination of these two measurements defines a velocity function for the object.
Specifically, if we consider one direction on the straight path as the “positive” direction and
the other as the “negative” direction, then the velocity of the object at time t is the speed of
the object times either +1 or −1, depending on the direction in which the object is moving.

The velocity v(t) of such a moving object is a measurement of how the position func-
tion of the object is changing over time. Intuitively, because the way position changes at
a particular moment in time is measured by the slope of its graph, velocity is the associ-
ated slope function for position. In other words, velocity is the derivative of position, or in
symbols, v(t) = s′(t). Similarly, acceleration a(t) measures how velocity changes, and thus
a(t) = v′(t). We will examine these relationships more precisely in Section 2.2.

For example, suppose you throw a grapefruit straight up into the air, releasing it at a
height of 4 feet and an upwards velocity of 32 feet per second, as illustrated in the figure
that follows on the left. On the right is a plot of the height of the grapefruit over time. The
points A, B, C, D, and E show the height s(t), in feet, of the grapefruit at t = 0, t = 0.6, t = 1,
t = 1.75, and t = 2.118 seconds. At A, the grapefruit is moving upwards quickly. Because
of the downwards pull of gravity, the grapefruit is moving upwards more slowly at B. At C
the grapefruit is at the top of its flight and about to fall to the ground. Gravity then causes
the grapefruit to fall faster and faster through D and then finally E when it hits the ground.

Position increases, then decreases

A

B

D

E

C

32 ft/s

4 ft t

s

2.1181.7510.6

A

B

D

E

C
20

4

The next leftmost figure shows the velocity v(t) of the grapefruit. Notice that at times A
and B, when the grapefruit is moving upwards, its velocity is positive; at C, when the
grapefruit turns around at the top of its flight, its velocity is zero; and at D and E, when
the grapefruit is falling to the ground, its velocity is negative. The rightmost figure shows
the constant acceleration of the grapefruit due to gravity.

Velocity is positive, then negative Acceleration is constant

�35.8

t

v

2.1181.7510.6
C

32 A

B

D

E
�32

t

a

2.1181.7510.6

A B C D E
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In general, our earlier list of relationships between a function f (x) and its derivative
f ′(x) translates into a list of relationships between position s(t) and velocity v(t) = s′(t) as
follows:

� For each t, the way position s(t) is changing is measured by velocity v(t).
� When position s(t) is not changing, velocity v(t) is zero.
� When position s(t) is increasing, velocity v(t) is positive.
� When position s(t) is decreasing, velocity v(t) is negative.
� When position s(t) is changing rapidly, velocity v(t) has large magnitude.
� When position s(t) is changing slowly, velocity v(t) has small magnitude.

Approximating the Slope of a Tangent Line

Usually, calculating the slope of a line is a simple matter: Simply take two points (x0, y0)
and (x1, y1) on the line and calculate the “rise over run,” which is equal to the average
rate of change �y

�x
= y1 −y0

x1 −x0
. With tangent lines the situation is more complicated, because

we know only one point on a tangent line, namely, the point (c, f (c)) where it touches the
function. The slope of the tangent line measures the “direction” of the function, but how do
we calculate that from only one point? The key will be to use nearby points on the function
to approximate nearby slopes.

The secant line from a to b for a function f is the line that passes through the points
(a, f (a)) and (b, f (b)). If f is a smooth function and x = z is a point that is close to x = c, then
the slope of the secant line from x = c to x = z will be close to the slope of the tangent line
to f at x = c, as shown in the middle graph that follows:

Tangent line at (c, f (c)) Secant line from
(c, f (c)) to (z, f (z))

Secant line from
(c, f (c)) to (c+h, f (c+h))

6

y

1 2
x

64 53

5

4

3

2

1

c

f (c) f (c)

6

y

1 2
x

64 53

5

4

3

2

1

f (z)

c z

tangent
secant

h

f (c)

6

y

1 2
x

64 53

5

4

3

2

1

f (c � h)

c c � h

tangent
secant

If we choose points z that are closer and closer to the point x = c, we will get secant lines
that get closer and closer to the tangent line we are interested in. Equivalently, we could
think of the second point z as “c plus a little bit,” where the little bit is called h. In other
words, z = c + h, as in the rightmost graph shown.

Since we know two points on a secant line, we can easily calculate its slope. The slope
f ′(c) of the tangent line to f at x = c can be approximated by the slope of a nearby secant
line from x = c to x = z, or equivalently, from x = c to x = c + h:

f ′(c) ≈ f (z) − f (c)
z − c

, or equivalently, f ′(c) ≈ f (c + h) − f (c)
h

.
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The preceding expressions are often called difference quotients, and when we find the
derivative of a function f , we say that we are differentiating the function. If the graph of f
is smooth, then as z gets closer to c, or as h gets closer to 0, these approximations get closer
and closer to f ′(c). In Section 2.2 we will in fact take the limit as z → c, or, equivalently, as
h → 0, to define the derivative exactly.

Approximating an Instantaneous Rate of Change

You may have noticed that the approximations we have been using for f ′(c) are closely
related to the formula for average rate of change. This is no coincidence, since average rates
of change are in fact the same as slopes of secant lines. As we choose points z = c+h closer
and closer to x = c, these average rates of change approach the instantaneous rate of
change of the function at x = c. For a general function f , this instantaneous rate of change
at x = c is the derivative, that is, the slope f ′(c) of the tangent line to f at x = c. In the case
of a position function s(t), the instantaneous rate of change is the velocity v(c) = s′(c).

We can approximate instantaneous rates of change in a position or velocity context in
much the same way as we approximated slopes of tangent lines in the previous discussion.
Suppose an object is moving along a straight path. The distance formula says that for
such a moving object, the distance travelled, average rate, and time elapsed are related by
the formula d = rt (“distance equals rate times time”). We can also write this formula as
r = d

t
, or more accurately, as r = �d

�t
, since we want to consider the change in distance over

a corresponding change in time. If an object starts at position s0 at time t0 and ends at
position s1 at time t1, then we have

average velocity
from t0 to t1

= average rate of change of
position from t0 to t1

= �d
�t

= s1 − s 0

t1 − t 0
.

Now suppose s(t) describes the position of the object at time t and we are interested in find-
ing the velocity v(c) at some time t = c. This instantaneous velocity can be approximated
by the average velocity over a small time interval [c, z], or equivalently, [c, c + h]:

v(c) ≈ s(z) − s(c)
z − c

, or equivalently, v(c) ≈ s(c + h) − s(c)
h

.

Notice that this is just a special case of what we did earlier for a general function f (x) and
its derivative f ′(x) at a point x = c.

We can use derivatives to examine instantaneous rates of change in many contexts. In
general, the derivative of a function y(x) represents the instantaneous rate of change of the
variable y as the variable x varies. The units for the derivative y′(x) are the units for the
variable y divided by the units for the variable x. For example, if time t is measured in hours
and position s(t) is measured in miles, then the velocity v(t) = s′(t) is measured in miles
per hour. As another example, if Q(t) is the amount of money in a savings account after
t years, measured in dollars, then Q′(t) is the rate at which the savings balance changes
over time, with units measured in dollars per year.

Examples and Explorations

EXAMPLE 1 Sketching the graph of an associated slope function

Given the following graph of the smooth function f , sketch the graph of its associated slope
function f ′:
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4321�2 �1
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SOLUTION

A good place to begin is by marking all the locations on the graph of f where the tangent
line is horizontal and thus has slope 0. In this case that happens at x = 0 and at x = 2, as
shown next at the left. Thus the associated slope function f ′ has zeroes at x = 0 and x = 2,
as shown next at the right.

f (x) with slopes marked f ′(x) heights are f (x) slopes

4321�2 �1
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y

x

zero

zero

neg. pos. neg.
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y

x
zero zero

neg. neg.

pos.

Looking again at the graph of f , we see that its tangent lines have positive slope between
x = 0 and x = 2 (see, for example, the positive slope marked at x = 1). This means that,
in the graph of f ′, the heights will be positive between x = 0 and x = 2. Similarly, the
negative slopes on the graph of f to the left of x = 0 and to the right of x = 2 correspond
to negative heights on the graph of f ′. �

EXAMPLE 2 Graphing velocity from the graph of position

Suppose the graph that follows describes your distance from home one morning as you
drive back and forth from your sister’s house. Describe a possible scenario for your travels
that morning. Then sketch the corresponding graph of your velocity.
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Time
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SOLUTION

One possible scenario is this: You drive to your sister’s house for a visit. After talking to
her for a few minutes, you realize you forgot something at home and race back to get
it. In the middle of returning to your sister’s house, you have to stop at a red light for a
couple of minutes. Following the times marked on the time axis, we see that from 0 to a
you drive to your sister’s house, you talk until b, race home from b to c, leave your house
at d and get stopped at the light at e, and move on at f until you get back to your sister’s
house at g.

D
is

ta
nc

e 
fr

om
 h

om
e

a b c d e f g
Time

The graph of your velocity that morning is the graph of the associated slope function
for the given position graph. The slope of the position graph is positive from 0 to a, zero
from a to b, negative and steep from b to c, zero from c to d, positive and steep from d to e,
zero from e to f , positive and steep from f to g, and finally zero again after g. The previous
sentence also describes the height of the corresponding velocity graph, where steep slope
values correspond to large magnitudes of velocity:

V
el

oc
it

y

a b c d e f g
Time

�

EXAMPLE 3 Estimating the slope of a tangent line with a sequence of secant lines

Estimate the slope of the line tangent to the graph of f (x) = − 1
2

x 2 +3x at the point (2, f (2))
by calculating a sequence of slopes of secant lines.

SOLUTION

The tangent line passes through the point (2, f (2)) =
(

2, − 1
2

(2)2 + 3(2)
)

= (2, 4) and is
shown in red in each of the graphs that follow. Since we only know one point on this
line, we cannot compute its slope directly. We will approximate its slope by considering a
sequence the slopes of secant lines on smaller and smaller intervals, namely, [2, 3], [2, 2.5],
[2, 2.25], and [2, 2.1], as shown in the following four graphs below:
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Secant line on [2, 3] Secant line on [2, 2.5]

x

h

z

4
x

y

1 2 3

6

5

4

1

2

3

x z

4
x

y

1 2 3

6

5

4

1

2

3

h

Secant line on [2, 2.25] Secant line on [2, 2.1]
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In our difference quotient notation, these intervals correspond to a sequence of points
z = 3, z = 2.5, z = 2.25, and z = 2.1 that approach c = 2. Equivalently, we can think of this
sequence as a series of h-values h = 1, h = 0.5, h = 0.25, and h = 0.1 approaching zero.

The slope of the secant line from x = 2 to x = 3 in the leftmost graph is given by the
difference quotient:

f (3) − f (2)
3 − 2

=

(
− 1

2
(3)2 + 3(3)

)
−

(
− 1

2
(2)2 + 3(2)

)

3 − 2
= 4.5 − 4

3 − 2
= 0.5.

Similarly, the slopes of the remaining three secant lines are given by the difference quotients:

f (2.5) − f (2)
2.5 − 2

= 0.75, f (2.25) − f (2)
2.25 − 2

= 0.875, and f (2.1) − f (2)
2.1 − 2

= 0.95.

Each of these slopes is an approximation to the slope of the red tangent line. As the graphs
shown suggest, we would expect this sequence of slopes to be getting closer and closer to
the actual slope of the red tangent line; notice for example that, in the last figure shown,
the green secant line is almost indistinguishable from the red tangent line.

In a similar fashion we can calculate the slopes of secant lines from the left of x = 2. For
example, the slope of the secant line from x = 1 to x = 2 is given by the difference quotient:

f (1) − f (2)
1 − 2

=

(
− 1

2
(1)2 + 3(1)

)
−

(
− 1

2
(2)2 + 3(2)

)

1 − 2
= 2.5 − 4

1 − 2
= 1.5.

Over the smaller intervals [1.5, 2], [1.75, 2], and [1.9, 2] we have secant lines with slopes
given by

f (1.5) − f (2)
1.5 − 2

= 1.25, f (1.75) − f (2)
1.7 − 2

= 1.125, and f (1.9) − f (2)
1.9 − 2

= 1.05.

Putting all this information together, we obtain the following table:

Interval [1, 2] [1.5, 2] [1.75, 2] [1.9, 2] * [2, 2.1] [2, 2.25] [2, 2.5] [2, 3]

Slope 1.5 1.25 1.125 1.05 * 0.95 0.875 0.75 0.5

From this table, we might guess that the slope of the tangent line is 1. This guess is only
an estimate; the slope of the tangent line might instead be something like 0.97 or 1.02, but
we don’t have enough information to say otherwise at this point. �

EXAMPLE 4 Estimating instantaneous velocity with a sequence of average velocities

It can be shown that a watermelon dropped from a height of 100 feet will be s(t) =
− 16t 2 + 100 feet off the ground t seconds after it is dropped. Approximate the instan-
taneous velocity of the watermelon at time t = 1 by calculating a sequence of average ve-
locities. Then interpret these average velocities graphically as slopes of secant lines.
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SOLUTION

To estimate the instantaneous velocity at t = 1 we will look at a sequence of small time
intervals near t = 1 and consider the corresponding average velocities. The time intervals
we choose to consider are [1, 2], [1, 1.5], [1, 1.25], and [1, 1.1]. These intervals correspond
to z = 2, 1.5, 1.25, and 1.1, or equivalently, to h = 1, 0.5, 0.25, and 0.1.

Let’s look first at the interval [1, 2]. At t = 1 the watermelon is s(1) = 84 feet from the
ground, and at t = 2 the watermelon is s(2) = 36 feet from the ground, as illustrated
here:

100

0

36

84

t � 1 to t � 2

The average velocity over the first interval is therefore given by the difference quotient:

s(2) − s(1)
2 − 1

= (−16(2)2 + 100) − (−16(1)2 + 100)
1

= 36 − 84

= −48 feet per second.

Similarly, the average velocities over the remaining three time intervals, in feet per second,
are

s(1.5) − s(1)
1.5 − 1

= −40,
s(1.25) − s(1)

1.25 − 1
= −36, and

s(1.1) − s(1)
1.1 − 1

= −33.6.

Each of these average velocities is an approximation to the instantaneous velocity of the
watermelon at time t = 1. Since the approximations should be improving as z gets closer
to 1 (or, equivalently, as h gets closer to 0), we might guess that the instantaneous velocity
of the watermelon at time t = 1 is some value greater than, but close to, −33.6 feet per
second. For example, we might estimate that the instantaneous velocity at time t = 1 is
−33 feet per second.

Each average velocity just calculated is an average rate of change of position, and thus
can be thought of as the slope of a secant line, as in the four graphs shown next. As we
consider smaller and smaller time intervals, we see that the slopes corresponding to these
average velocities approach the slope of the red tangent line to s(t) at t = 1, which in turn
represents the instantaneous velocity at t = 1.

Average rate of change
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TEST YOUR? UNDERSTANDING
� Why does it make intuitive sense that when the graph of a smooth function f has a

horizontal tangent line, the graph of its associated slope function will have a root?

� Why does it make intuitive sense that when the graph of a smooth function f is
increasing, the graph of its associated slope function will be above the x-axis?

� In our initial discussion of position and velocity in this section, we showed graphs for
the position, velocity, and acceleration of a grapefruit thrown into the air. Why does it
make sense that the graph of acceleration is constant, given that the graph of velocity
is a straight line?

� How can we use a sequence of slopes of secant lines to estimate the slope of a tangent
line? Why is considering a sequence of secant lines better than considering just one
secant line?

� In real–world examples, how are the units of a derivative of a function related to the
units of the independent and dependent variables of that function?

EXERCISES 2.1

Thinking Back

� Slope and linear functions: If f is a linear function with
slope −3 such that f (2) = 1, find the following, without
first finding an equation for f (x).

• f (4) • f (7) • f (−2)

� Approximating limits: Use sequences of approximations
to estimate the values of

• lim
x→2

4 − x 2

2 − x
• lim

z→3

z 3 − 27
z − 3

� Identifying increasing and decreasing behavior: Use a
graphing utility to determine the intervals on which
f (x) = −4x 5 +25x 4 −40x 3 is increasing or decreasing.

� Interpreting distance graphically: When flying home for
the holidays, Eva often flies between Denver Inter-
national Airport (DIA) and Chicago O’Hare (ORD).
Suppose Eva’s plane takes off from DIA and 50 miles
from ORD the plane has to circle the airport because
of snow. The plane circles ORD four times and then
lands.

(a) Draw a graph depicting the distance from DIA to
Eva’s plane as a function of time.

(b) Draw a graph depicting the distance from ORD to
Eva’s plane as a function of time.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The slope of the tangent line to a func-
tion f at the point x = 4 is given by f ′(4).

(b) True or False: The instantaneous rate of change of a
function f at the point x = −3 is given by f ′(−3).

(c) True or False: The instantaneous rate of change of a
function f at a point x = a can be represented as the
slope of a secant line.

(d) True or False: Where a function f is positive, its
associated slope function f ′ is increasing.

(e) True or False: Where a function f is decreasing, its
associated slope function f ′ is negative.

(f) True or False: When a function f has a steep slope at
a point on its graph, its instantaneous rate of change
at that point will have a large magnitude.

(g) True or False: When the graph of a function f is de-
creasing with a steep slope, the graph of the as-
sociated slope function f ′ is negative with a large
magnitude.

(h) True or False: Suppose an object is moving in a straight
path with position function s(t). If s(t) is positive and
decreasing, then the velocity v(t) is negative.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function whose associated slope func-
tion f ′ is positive on (−∞, 2) and negative on (2, ∞).

(b) The graph of a function with the following three
properties: The average rate of change of f on [0, 2]
is 3, the average rate of change of f on [0, 1] is
−1, and the average rate of change of f on [−2, 2]
is 0.

(c) The graph of a function f with the following three
properties: The instantaneous rate of change of f at
x = 2 is zero, the average rate of change of f on [1, 2]
is 2, and the average rate of change of f on [2, 4]
is 1.

3. Explain why it is not a simple task to calculate the slope of
the tangent line to a function f at a point x = c. Shouldn’t
calculating the slope of a line be really easy? What goes
wrong here?
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4. Let l be the line connecting two points (a, f (a)) and
(b, f (b)) on the graph of a function f . What does this line
l have to do with the average rate of change of f on the
interval [a, b], and why?

5. Given that s(t) measures the distance an object has trav-

elled over time, explain what the expression
s(b) − s(a)

b − a
has

to do with the distance formula d = rt.
6. How is velocity different from speed? What does it mean

if velocity is negative?

7. What is the relationship between the derivative of a func-
tion f at a point x = c, the slope of the tangent line to the
graph of f at x = c, and the instantaneous rate of change
of f at x = c?

8. On a graph of f (x) = x 2,

(a) draw the tangent line to the graph of f at the point
(2, f (2));

(b) draw the secant line from (2, f (2)) to (2.75, f (2.75));
(c) draw the secant line from (1.75, f (1.75)) to (2, f (2)).
(d) Which secant line is a better approximation to the

tangent line, and why?

9. In Example 3 we estimated the slope of the tangent line to

f (x) = − 1
2

x 2 + 3x at x = 2. Get a better estimate by cal-

culating the slopes of secant lines with values of z even
closer to x = 2—for example, z = 2.01, z = 2.001, and
z = 2.0001.

10. In Example 3 we estimated the slope of the tangent

line to f (x) = − 1
2

x 2 + 3x at x = 2 by finding slopes of

secant lines from x = 2 to various points x = z with z > 2.
Draw a sequence of graphs that illustrates how to do this
for z < 2, and then make specific calculations for z = 1,
z = 1.5, z = 1.75, and z = 1.9. What are the correspond-
ing values of h in this example?

11. For the graph of f appearing next at the left, la-
bel each of the following quantities to illustrate that

f ′(c) ≈ f (c + h) − f (c)
h

:

(a) the locations c, c + h, f (c), and f (c + h)
(b) the distances h and f (c + h) − f (c)

(c) the slopes
f (c + h) − f (c)

h
and f ′(c)

12. For the graph of g(x) appearing next at the right,
label each of the following quantities to illustrate that

g′(c) ≈ g(c + h) − g(c)
h

:

(a) the locations c, c + h, g(c), and g(c + h)
(b) the distances h and g(c + h) − g(c)

(c) the slopes
g(c + h) − g(c)

h
and g′(c)

f (x), Exercises 11 and 13

x

y

g(x), Exercises 12 and 14

x

y

13. Consider again the graph of f at the left. Label each of the

following quantities to illustrate that f ′(c) ≈ f (z) − f (c)
z − c

:

(a) the locations c, z, f (c), and f (z)
(b) the distances z − c and f (z) − f (c)

(c) the slopes
f (z) − f (c)

z − c
and f ′(c)

14. Consider again the graph of g(x) at the right. Label
each of the following quantities to illustrate that g′(c) ≈
g(z) − g(c)

z − c
:

(a) the locations c, z, g(c), and g(z)
(b) the distances z − c and g(z) − g(c)

(c) the slopes
g(z) − g(c)

z − c
and g′(c)

15. For the graph of f shown next at the left, list the following
quantities in order from least to greatest:

(a) the average rate of change of f on [−1, 1]
(b) the instantaneous rate of change of f at x = 1
(c) f ′(−1)

(d)
f (2) − f (−1)

2 − (−1)
16. For the graph of g(x) shown next at the right, list the

following quantities in order from least to greatest:
(a) the average rate of change of g on [0, 1]
(b) the instantaneous rate of change of g at x = 1

(c)
g(−1 + 0.1) − g(−1)

0.1

(d)
g(1) − g(−1)

1 − (−1)

f (x), Exercises 15 and 17

2

1

y

�2

�1

�2 �1 21
x

g(x), Exercises 16 and 18

3

2

y

�1

�2 �1 21
x

1

17. Consider again the function f graphed at the left. At
which values of x does f have the greatest instantaneous
rate of change? The least? At which values of x is the
instantaneous rate of change of f equal to zero?

18. Consider again the function g(x) graphed at the right. For
which values of x does g(x) have a positive instantaneous
rate of change? Negative? Zero?

19. Make a copy of the graph of f used in Exercises 11 and 13,
and sketch additional secant lines to illustrate that as
h → 0 (or equivalently, as z → c) the slopes of the secant
line get closer and closer to the slope of the tangent line
to f at x = c.

20. The derivative of a smooth function f at a point x = c
can also be approximated with a symmetric difference
quotient:

f ′(c) ≈ f (c + h) − f (c − h)
2h

.
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(a) Use a graph to illustrate what the symmetric differ-
ence measures. Why would it be reasonable to use
the two-sided symmetric difference to approximate
f ′(c)? (Hint: Your answer should involve a certain kind
of secant line and a discussion of what happens as h gets
close to 0.)

(b) Use a sequence of symmetric difference approxima-
tions to estimate the derivative of f (x) = x 2 at x = 3.
Illustrate your answer with a sequence of graphs.

Skills

In Exercises 21–24, sketch the graph of a function f that has
the listed characteristics.

21. f (1) = 2, f ′(1) = 0, f ′(3) = 2

22. f ′(−3) = 0, f ′(−1) = 0, f ′(2) = 0

23. f (−1) = 2, f ′(−1) = 3, f (1) = −2, f ′(1) = 3

24. f ′(−2) = 2, f ′(0) = 1, f (1) = −5

Sketch a graph of the associated slope function f ′ for each
function f in Exercises 25–30.

25.
4

3

y

�2 �1 21
x

2

1

26.
3

2

y

�1

�2 �1 21
x

1

27. y

�2 �1 21
x

2

�4

�2

28.
2

y

�2 �1 21
x

1

�2

�1

29.
4

3

y

�4 �2 42
x

2

1

30.
2

1

y

�3

�2

�1

�4

�3 �2 �1 1
x

Now go the other way! Each graph in Exercises 31–34
can be thought of as the associated slope function f ′ for
some unknown function f . In each case sketch a possible
graph of f .

31.
2

y

�3 �2 �1 1
x

1

�2

�1

32.
3

2

1

y

�3

�2

�1
�2 �1 21

x

33.
3

2

1

y

�3

�2

�1
�2 �1 21

x

34.
3

2

1

y

�3

�2

�1
�2 �1 21

x

For each function f and value x = c in Exercises 35–44,
use a sequence of approximations to estimate f ′(c). Illustrate
your work with an appropriate sequence of graphs of secant
lines.

35. f (x) = 4 − x 2, c = 1 36. f (x) = 4 − x 2, c = 0

37. f (x) = x + x 3, c = 0 38. f (x) = x + x 3, c = 1

39. f (x) = ln(x 2+1), c=0 40. f (x) = e x, c = 0

41. f (x) = sin x, c = π

2
42. f (x) = arctan x, c = 0

43. f (x) = |x − 1|, c = 3 44. f (x) = |x 2 − 4|, c = 1

Applications
A bowling ball dropped from a height of 400 feet will be
s(t) = 400 − 16t 2 feet from the ground after t seconds. Use a
sequence of average velocities to estimate the instantaneous
velocities described in Exercises 45–48.

45. When the bowling ball is first dropped, with h = 0.5,
h = 0.25, and h = 0.1

46. After t = 1 seconds, with h = 0.5, h = 0.25, h = −0.5,
and h = −0.2

47. After t = 2 seconds, with h = 0.1, h = 0.01, h = −0.1,
and h = −0.01

48. When the bowling ball hits the ground, with h = −0.5,
h = −0.2, and h = −0.1
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49. Think about what you did today and how far north
you were from your house or dorm throughout the day.
Sketch a graph that represents your distance north from
your house or dorm over the course of the day, and ex-
plain how the graph reflects what you did today. Then
sketch a graph of your velocity.

50. Stuart left his house at noon and walked north on Pine
Street for 20 minutes. At that point he realized he was
late for an appointment at the dentist, whose office was
located south of Stuart’s house on Pine Street; fearing
he would be late, Stuart sprinted south on Pine Street,
past his house, and on to the dentist’s office. When he
got there, he found the office closed for lunch; he was
10 minutes early for his 12:40 appointment. Stuart waited
at the office for 10 minutes and then found out that his
appointment was actually for the next day, so he walked
back to his house. Sketch a graph that describes Stuart’s
position over time. Then sketch a graph that describes
Stuart’s velocity over time.

12:30

12:20

Pine Street

Dentist Home

walk

walk

run

12:40

51. Every morning Linda takes a thirty-minute jog in Central
Park. Suppose her distance s in feet from the oak tree on
the north side of the park t minutes after she begins her
jog is given by the function s(t) shown that follows at the
left, and suppose she jogs on a straight path leading into
the park from the oak tree.

(a) What was the average rate of change of Linda’s
distance from the oak tree over the entire thirty-
minute jog? What does this mean in real-world
terms?

(b) On which ten-minute interval was the average rate
of change of Linda’s distance from the oak tree the
greatest: the first 10 minutes, the second 10 minutes,
or the last 10 minutes?

(c) Use the graph of s(t) to estimate Linda’s average
velocity during the 5-minute interval from t = 5 to
t = 10. What does the sign of this average velocity tell
you in real-world terms?

(d) Approximate the times at which Linda’s (instanta-
neous) velocity was equal to zero. What is the physi-
cal significance of these times?

(e) Approximate the time intervals during Linda’s jog
that her (instantaneous) velocity was negative. What
does a negative velocity mean in terms of this physi-
cal example?

Distance from the oak tree

500

400

300

200

100

y

10 20 30
x

Distance from the post office

0.25

0.5

0.75

1

y

x
605040302010

52. Last night Phil went jogging along Main Street. His dis-
tance from the post office t minutes after 6:00 p.m. is
shown in the preceding graph at the right.

(a) Give a narrative (that matches the graph) of what Phil
did on his jog.

(b) Sketch a graph that represents Phil’s instantaneous
velocity t minutes after 6:00 p.m. Make sure you
label the tick marks on the vertical axis as accurately
as you can.

(c) When was Phil jogging the fastest? The slowest?
When was he the farthest away from the post office?
The closest to the post office?

53. Suppose h(t) represents the average height, in feet, of a
person who is t years old.

(a) In real-world terms, what does h(12) represent and
what are its units? What does h′(12) represent, and
what are its units?

(b) Is h(12) positive or negative, and why? Is h′(12) pos-
itive or negative, and why?

(c) At approximately what value of t would h(t) have a
maximum, and why? At approximately what value of
t would h′(t) have a maximum, and why?

54. A tomato plant given x ounces of fertilizer will suc-
cessfully bear T(x) pounds of tomatoes in a growing
season.

(a) In real-world terms, what does T(5) represent and
what are its units? What does T′(5) represent and
what are its units?

(b) A study has shown that this fertilizer encour-
ages tomato production when less than 20 ounces
are used, but inhibits production when more than
20 ounces are used. When is T(x) positive and when
is T(x) negative? When is T′(x) positive and when is
T′(x) negative?

55. If Katie walked at 3 miles per hour for 20 minutes and
then sprinted at 10 miles an hour for 8 minutes, how fast
would Dave have to walk or run to go the same distance
as Katie did in the same time while moving at a constant
speed? Sketch a graph of Katie’s position over time and
a graph of Dave’s position over time on the same set of
axes.
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t, minutes

a b

d, distance

d, distance

b

Katie

Dave

56. Velocity v(t) is the derivative of position s(t). It is also true
that acceleration a(t) (the rate of change of velocity) is
the derivative of velocity. If a race car’s position in miles
t hours after the start of a race is given by the function
s(t),what are the units of s(1.2)? What are the units and

real-world interpretation of v(1.2)? What are the units
and real-world interpretation of a(1.2)?

57. The total yearly expenditures by public colleges and
universities from 1990 to 2000 can be modeled by the
function E(t) = 123(1.025)t, where expenditures are mea-
sured in billions of dollars and time is measured in years
since 1990.

(a) Estimate the total yearly expenditures by these col-
leges and universities in 1995.

(b) Compute the average rate of change in yearly expen-
ditures between 1990 and 2000.

(c) Compute the average rate of change in yearly expen-
ditures between 1995 and 1996.

(d) Estimate the rate at which yearly expenditures of
public colleges and universities were increasing in
1995.

Proofs

58. Show that if f is a function and z = x + h, then

f (z) − f (x)
z − x

= f (x + h) − f (x)
h

.

59. Suppose f is a linear function with positive slope. Show
that the average rate of change of f on any interval [a, b]
is positive, and then use this fact to show that f is always
increasing.

Thinking Forward

Taking the limit: We have seen that if f is a smooth function,

then f ′(c) ≈ f (c + h) − f (c)
h

. This approximation should get bet-

ter as h gets closer to zero. In fact, in the next section we will
define the derivative in terms of such a limit.

f ′(c) = lim
h→0

f (c + h) − f (c)
h

.

� Use the limit just defined to calculate the exact slope
of the tangent line to f (x) = x 2 at x = 4.

� Instead of choosing small values of h, we could have
chosen values of z close to c. What limit involving
z instead of h is equivalent to the one involving h?

� Use the limit you just found to calculate the exact
slope of the tangent line to f (x) = x 2 at x = 4. Obvi-
ously you should get the same final answer as you did
earlier.
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2.2 FORMAL DEFINIT ION OF THE DERIVATIVE

� Using limits to define derivatives, tangent lines, and instantaneous rates of change

� Differentiability at a point, from one side, and on intervals

� Leibniz notation and multiple derivatives

The Derivative at a Point

In the previous section we examined derivatives intuitively, by discussing tangent lines and
instantaneous rates of change. We will now use limits to make these ideas precise. We have
seen that the slope f ′(c) of the tangent line to f at x = c can be approximated by the slope
of a nearby secant line from x = c to x = c + h, or equivalently, from x = c to x = z:

f ′(c) ≈ f (c + h) − f (c)
h

, or equivalently, f ′(c) ≈ f (z) − f (c)
z − c

.

If the limit of these quantities approaches a real number as h → 0, or as z → c, then we
will define that real number to be the derivative of f at the point x = c.

DEFINITION 2.1 The Derivative of a Function at a Point

The derivative at x = c of a function f is the number

f ′(c) = lim
h→0

f (c + h) − f (c)
h

, or equivalently, f ′(c) = lim
z→c

f (z) − f (c)
z − c

,

provided that this limit exists.

The derivative of a function f at a point x = c measures the instantaneous rate of change of
the function at that point. Notice that this instantaneous rate of change is a limit of average
rates of change.

For example, consider the function f (x) = x 2. We can calculate the derivative of this
function at the point x = 3 with a limit as h → 0 or with a limit as z → 3. Using the h → 0
definition of the derivative, we have

f ′(3) = lim
h→0

(3 + h)2 − 32

h
= lim

h→0

6h + h2

h
= lim

h→0

h(6 + h)
h

= lim
h→0

(6 + h) = 6.

Using the z → c definition of derivative we obtain the same answer:

f ′(3) = lim
z→c

z 2 − 32

z − 3
= lim

z→c

(z + 3)(z − 3)
z − 3

= lim
z→c

(z + 3) = 6.

In both calculations above we have shown the instantaneous rate of change of f (x) = x 2 at
x = 3 is equal to 6. At the instant that we have x = 3, the function f (x) = x 2 is changing at
a rate of 6 vertical units for each horizontal unit. This is equivalent to saying that the slope
of the tangent line is equal to 6, as shown here:

Tangent line to f (x) = x 2 at x = 3 has slope f ′(3) = 6

x
4321�2 �1
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6

3

y
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The Derivative as a Function

By putting all of the point-derivatives of a function together, we can define a function f ′
whose output at any value of x is defined to be the derivative, or instantaneous rate of
change, of f at that point.

DEFINITION 2.2 The Derivative of a Function

The derivative of a function f is the function f ′ defined by

f ′(x) = lim
h→0

f (x + h) − f (x)
h

, or equivalently, f ′(x) = lim
z→x

f (z) − f (x)
z − x

.

The domain of f ′ is the set of values x for which the defining limit of f ′ exists.

The function f ′ is the associated slope function that we investigated in the previous
section, since at each point x its value is the slope of the graph of f . In addition, the func-
tion f ′ represents the instantaneous rate of change at every point x. In particular, if s(t) is a
position function, then its instantaneous rate of change is the velocity function v(t) = s′(t).
Similarly, the instantaneous rate of change of velocity v(t) is the the acceleration function
a(t) = v′(t).

For example, we can calculate the derivative of f (x) = x 2 for all values of x with either
a limit as h → 0 or a limit as z → x; again we choose the first method:

f ′(x) = lim
h→0

(x + h)2 − x 2

h
= lim

h→0

2xh + h2

h
= lim

h→0

h(2x + h)
h

= lim
h→0

(2x + h) = 2x.

Finding f ′(x) for general x is like calculating f ′(c) for all possible values x = c at the same
time. Once we have a formula for f ′(x), we can easily calculate any particular value f ′(c).
For example, evaluating f ′(x) = 2x at x = 3 does give us f ′(3) = 2(3) = 6, as we calculated
before. The following figures show slopes on the graph of f (x) = x 2 together with heights
on the graph of f ′(x) = 2x, for x = −2, x = 0, and x = 3.

Slopes of f (x) = x 2 Heights of f ′(x) = 2x

16

x
�3 �2

y

321 4�1�4

12

8

4

�4

12

x
�3 �2

y

321 4�1�4

6

�12

�6

In this book we will most often use the h → 0 version of the derivative, but will use the
z → x version when it suits our purposes or makes a calculation easier. You will verify that
these two versions of the derivative are equivalent in Exercise 5.

Differentiability

Given a function f and a value x = c, there may or may not be a well-defined tangent line
to the graph of f at (c, f (c)). When there is a well-defined tangent line with a finite slope,
we say that f is differentiable at x = c:

DEFINITION 2.3 Differentiability at a Point

A function f is differentiable at x = c if lim
h→0

f (c + h) − f (c)
h

exists.
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We used the h → 0 definition of the derivative in Definition 2.3, but everything would work
equally well with the equivalent z → c definition of the derivative. If a point-derivative f ′(c)
is infinite, then we say that f has a vertical tangent line at x = c. In this case a line exists that
is tangent to the graph of the function, but since that line is vertical, its slope is undefined
and the function fails to be differentiable at that point.

Like continuity, differentiability can be considered from the left or from the right. A
function is left differentiable at x = c if its left derivative exists, and right differentiable
at x = c if its right derivative exists, where the left and right derivatives are defined with
left and right limits as follows:

DEFINITION 2.4 One-sided Differentiability at a Point

The left derivative and right derivative of a function f at a point x = c are, respectively,
equal to the following, if they exist:

f ′
−(c) = lim

h→0−
f (c + h) − f (c)

h
, f ′

+(c) = lim
h→0+

f (c + h) − f (c)
h

.

We could also use the z → c definition of the derivative to define left and right derivatives,
by considering limits of difference quotients as z → c− and as z → c+.

For example, consider the function f (x) = |x|. This function has a sharp corner at x = 0,
and therefore we would not expect it to have a well-defined tangent line at that point.
Indeed, when we try to calculate f ′(0), we encounter the following limit:

f ′(0) = lim
h→0

|0 + h| − |0|
h

= lim
h→0

|h|
h

.

This limit is initially in the indeterminate form 0
0

, but we cannot cancel anything in it until

we get rid of the absolute value. Recall that if h ≥ 0, then |h| = h, but if h < 0, then |h| = −h.
Looking from the left and the right, we have the following limits:

f ′
−(0) = lim

h→0−
|h|
h

= lim
h→0−

−h
h

= lim
h→0−

−1 = −1,

f ′
+(0) = lim

h→0+
|h|
h

= lim
h→0+

h
h

= lim
h→0+

1 = 1.

Since f ′
−(0) and f ′

+(0) exist but are not equal, f ′(0) does not exist. The first two graphs
shown next illustrate the left and right derivatives at 0, for small negative h and small
positive h, respectively. The third graph shows the graph of the derivative function f ′;
note that this function has a jump discontinuity and is not defined at x = 0.

f has slope −1 as h → 0− f has slope 1 as h → 0+ f ′(0) is undefined

slope �1

�3 �2 �1

1

2

3

4

1 2 3
x

y

h

slo
pe 1

�3 �2 �1

1

2

3

4

1 2 3
x

y

h

�3 �2 �1
�1

�2

1

2

1 2 3
x

y

As with continuity, we say that a function is differentiable on an interval I if it is dif-
ferentiable at every point in the interior of I, right differentiable at any closed left endpoint,
and left differentiable at any closed right endpoint. For example, the first graph shown
next is differentiable on [2, 3], since it is right differentiable at x = 2, even though it is not
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differentiable at x = 2. The second and third graphs show two more ways that a function
could fail to be differentiable.

Corner at x = 2 Cusp at x = 2 Vertical tangent line at x = 2

1

2

3

4

y

x
3 41 2

1

2

3

4

y

x
3 41 2

1

2

3

4

y

x
3 41 2

In the first and second graphs, the left and right derivatives exist at x = 2 but the two-sided
derivative at x = 2 does not. In the third graph, the left, right, and two-sided derivatives at
x = 2 are all infinite, because the tangent line is vertical.

Another way that a function f can fail to be differentiable at a point x = c is if f fails to
be continuous at x = c. Intuitively, if a function is not continuous, then it has absolutely no
chance of being differentiable; think for a minute about secant lines from the left and the
right at a jump or removable discontinuity, for example. (See also Example 6.) What this
means is that although not every continuous function is differentiable, every differentiable
function is continuous:

THEOREM 2.5 Differentiability Implies Continuity

If f is differentiable at x = c, then f is continuous at x = c.

Proof. If f is differentiable at x = c, then lim
x→c

f (x) − f (c)
x − c

= f ′(c) exists; that is, the limit, and thus f ′(c),

is equal to some real number. We will use this fact to show that f is continuous at x = c, by showing
that lim

x→c
f (x) = f (c). By the sum rule for limits, it is equivalent to show that lim

x→c
( f (x) − f (c)) = 0,

which we can do by using the expression for the derivative:

lim
x→c

( f (x) − f (c)) = lim
x→c

(
f (x) − f (c)

x − c
(x − c)

)
← x − c

x − c
= 1 if x �= c

=
(

lim
x→c

f (x) − f (c)
x − c

)
(lim

x→c
(x − c)) ← product rule for limits

= f ′(c) lim
x→c

(x − c) ← definition of the derivative

= f ′(c)(0) = 0. ← limit rules

Tangent Lines and Local Linearity

Although we have an intuitive sense of the tangent line to a graph at a point, up until now
we did not have a formal mathematical definition for this tangent line. Our geometrical
intuition helped us arrive at an algebraic definition for the derivative, but it is the algebraic
definition that now allows us to define the tangent line precisely. Specifically, we define
the tangent line through a point on the graph of a function to be the line whose slope is
given by the derivative of the function at that point.

THEOREM 2.6 Equation of the Tangent Line to a Function at a Point

The tangent line to the graph of a function f at a point x = c is defined to be the line
passing through (c, f (c)) with slope f ′(c), provided that the derivative f ′(c) exists. This
line has equation

y = f (c) + f ′(c)(x − c).
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Proof. We need only calculate the form of the line that passes through the point (c, f (c)) and has
slope f ′(c). Using the point-slope form y − y0 = m(x − x0), we see that this line has equation

y − f (c) = f ′(c)(x − c),

and solving for y, we obtain the desired equation y = f (c) + f ′(c)(x − c).

For example, we saw earlier that the derivative of f (x) = x 2 at x = 3 is equal to f ′(3) = 6.
This means that the tangent line to the graph of f (x) = x 2 at x = 3 has slope f ′(3) = 6
and passes through (3, f (3)) = (3, 9). This line has equation y = 9 + 6(x − 3), which, in
slope-intercept form, is the equation y = 6x − 9.

The tangent line to a function f at a point x = c is the unique line that “agrees with”
both the height of the function and the slope of the function at x = c. This means that near
x = c the graph of a function is very close to the graph of its tangent line. Therefore we can
use the tangent line as a rough approximation to the function f itself near x = c.

DEFINITION 2.7 Local Linearity

If f has a well-defined derivative f ′(c) at the point x = c, then, for values of x near c, the
function f (x) can be approximated by the tangent line to f at x = c with the linearization
of f around x = c given by

f (x) ≈ f (c) + f ′(c)(x − c).

Note that this definition does not assert how good an approximation one can make by using
the tangent line. What constitutes “near” and what constitutes “good” will be determined
by the context of the problem at hand.

For example, since the tangent line to f (x) = x 2 at x = 3 is the line y = 6x − 9, the line
y = 6x − 9 can be used as a rough approximation to the graph of the function f (x) = x 2, at
least for values of x close to 3. This approximation will be better the closer we are to x = 3.
As the following figure shows, the two graphs have nearly the same height at the point
x = 3.5 and are still relatively close even at x = 4.

y = 6x − 9 is close to f (x) = x 2 near x = 3

x
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The concept of local linearity will be particularly helpful for approximating roots with
Newton’s method in Example 8 and Exercises 81–86, as well as for approximating solu-
tions of differential equations with Euler’s method in Section 7.5.

Leibniz Notation and Differentials

Derivatives are used in so many different fields of study that they are represented with a
wide variety of notations. In this book we will focus on two types: first, the “prime” notation
f ′(x) that we have already established, and second, the Leibniz notation df

dx
. If y = f (x),

then we can also write y′(x) or dy
dx

to represent the derivative.
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Leibniz notation is named for one of the founders of calculus and is intentionally struc-
tured to remind us of the connection between derivatives and average rates of change. (The
“prime” notation we have been using so far is due to Lagrange.) Intuitively, the expression
dx represents an infinitesimally small change in x, just as �x represents a small finite change
in x. In Leibniz notation the definition of the derivative as a limit of average rates of change
is strikingly clear:

dy
dx

= lim
�x→0

�y
�x

.

It is sometimes convenient to think of the expressions dy and dx as differentials in a
functional relationship, with dy as a function of dx, in the following sense: We know that
�y
�x

represents the slope of a line with vertical change of �y for a given horizontal change

�x, as in the figure shown next at the left. In the same way we might try to think of dy
dx

as

the slope of a line with a vertical change of dy for a given horizontal change dx, as in the
figure at the right.

�y depends on �x
and gives the height of the function

As differentials, dy depends on dx
and give the height of the tangent line

c x

f (x)

f (c)

�y

�x

x

y

c x

f (c � dx)
f (c) � dy

f (c)
dy

dx

x

y

With this interpretation of dy as a differential we can recast local linearity (Definition 2.7)
as saying that when x is sufficiently close to a point c, we can approximate f (x) by adding
dy to f (c). If x = c + dx as in the rightmost figure, this approximation can be expressed as

f (c + dx) ≈ f (c) + dy.

CAUTION It is important to note that we will not be thinking of dx and dy as numbers, but rather
thinking of dy

dx
as a formal symbol that represents the derivative f ′(x). This formal symbol

suggests meanings such as those given to the differentials in the preceding figure, but dy
dx

is not an actual quotient of numbers; it is a limit of slopes of secant lines as defined in
Definition 2.2.

We can also write Leibniz notation in a slightly different way, called operator notation,
as follows:

dy
dx

= d
dx

( y(x)).

Here we are thinking of d
dx

as a sort of metafunction that operates on functions instead

of numbers: It takes functions as inputs and returns the derivatives of those functions as
outputs. Using operator notation, we can express the statement “if y = x 2, then dy

dx
= 2x”

in the more compact form “ d
dx

(x 2) = 2x.”

Although Leibniz notation is sometimes more convenient or informative than the usual
“prime” notation, it has one drawback: It is cumbersome to write down the point-derivative
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of a function in Leibniz notation. For example, as we showed earlier, the derivative of
f (x) = x 2 is f ′(x) = 2x. This derivative is easy to express in Leibniz notation as d

dx
(x 2) = 2x.

Now suppose we wish to consider the same derivative at the point x = 3. In “prime no-
tation” it is easily expressed as f ′(3) = 2(3) = 6. In Leibniz notation it is more difficult to
work the x = 3 evaluation into the notation. We could write any of the following:

df
dx

∣∣∣
3

= 6, d
dx

(x 2)
∣∣∣
x=3

= 6, or d
dx

(x 2)
∣∣∣
3

= 6.

If f is a function, then its derivative f ′ is a function as well. This means that we can also
consider its derivative, which we call f ′′, the second derivative of f . In Leibniz notation we

write the second derivative as d2f
dx2

. This notation is supposed to suggest the fact that we are

differentiating twice, that is, finding d
dx

(
d
dx

( f (x)
)

. Similarly, we could find the third, fourth,

or fifth derivatives of a function f , and so on. For example, the third derivative of f (x) can
be written as f ′′′(x). For larger values of n we will replace the primes with a parenthetical
notation: for example, f ′′′′′′(x) = f (6)(x). In general, the nth derivative of a function f is
denoted by:

f (n)(x) = d nf
dxn

= d
dx

(
d
dx

(
d
dx

· · ·
(

d
dx︸ ︷︷ ︸

n times

( f (x))
)

· · ·
))

.

Examples and Explorations

EXAMPLE 1 Calculating the derivative at a point

Consider the function f (x) = x 3.

(a) Use the h → 0 definition of the derivative to find f ′(2).

(b) Use the z → x definition of the derivative to find f ′(2).

(c) Find the equation of the tangent line to f (x) = x 3 at x = 2, and graph f (x) = x 3 and
this line on the same set of axes.

SOLUTION

(a) Using the h → 0 definition of the derivative, we have

f ′(2) = lim
h→0

f (2 + h) − f (2)
h

= lim
h→0

(2 + h)3 − 23

h
← derivative with x = 2

= lim
h→0

(8 + 12h + 6h2 + h3) − 8
h

← multiply out (2 + h)3

= lim
h→0

12h + 6h2 + h3

h
= lim

h→0

h(12 + 6h + h2)
h

← algebra

= lim
h→0

(12 + 6h + h2) = 12 + 6(0) + (0)2 = 12. ← cancellation, limit rules

(b) With the z → 2 definition of the derivative the algebra is different, but the final answer
will be the same. Along the way we will need to use the factoring formula a3 − b3 =
(a − b)(a2 + ab + b2), as follows:

f ′(x) = lim
z→2

f (z) − f (2)
z − 2

= lim
z→2

z 3 − 23

z − 2
← derivative with x = 2

= lim
z→2

(z − 2)(z 2 + 2z + 4)
z − 2

← factoring formula

= lim
z→2

(z 2 + 2z + 4) = 22 + 2(2) + 4 = 12. ← cancellation, limit rule
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(c) We have just shown two ways that if f (x) = x 3, then f ′(2) = 12. Thus the tangent line to
f (x) at x = 2 has slope 12 and passes through the point (2, f (2)) = (2, 8). The equation
of this line is

y − 8 = 12(x − 2) =⇒ y = 12x − 24 + 8 =⇒ y = 12x − 16.

When we graph the line along with the original function, we see that indeed the line
y = 12x − 16 is the tangent line to f (x) = x 3 at x = 2:

y = 12x − 16 is the tangent line to f (x) = x 2 at x = 2

y

x
321�1�2�3

12

8

16

�4

�8

4

�

EXAMPLE 2 Calculating the derivative of a function

Consider the function f (x) = x 3.

(a) Use the h → 0 definition of the derivative to find f ′(x).

(b) Use the z → x definition of the derivative to find f ′(x).

(c) Graph the function f (x) = x 3 and the derivative f ′(x) you found in parts (a) and (b),
and argue that one graph is the slope function of the other.

SOLUTION
(a) The calculations in this example will be similar to those in the previous example, except

that we will not specify a specific value of x here. Using the h → 0 definition of the
derivative, we have

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(x + h)3 − x 3

h
← derivative

= lim
h→0

(x 3 + 3x 2h + 3xh2 + h3) − x 3

h
← multiply out (x + h)3

= lim
h→0

3x 2h + 3xh2 + h3

h
= lim

h→0

h(3x 2 + 3xh + h2)
h

← algebra

= lim
h→0

(3x 2 + 3xh + h2) = 3x 2 + 3x(0) + (0)2 = 3x 2. ← cancellation, limit rules

Notice that before we did any algebra, the limit was of the indeterminate form 0
0

. For

derivative calculations with the h → 0 definition, the goal is often to expand and sim-
plify until a common factor of h can be cancelled, as we did here.

(b) With the z → x definition of the derivative the algebra is different, but the final answer
is the same:

f ′(x) = lim
z→x

f (z) − f (x)
z − x

= lim
z→x

z 3 − x 3

z − x
← derivative

= lim
z→x

(z − x)(z 2 + zx + x 2)
z − x

← factoring formula

= lim
z→x

(z 2 + zx + x 2) = x 2 + x 2 + x 2 = 3x 2. ← cancellation, limit rules
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Again, notice that the limit was initially of the indeterminate form 0
0

. For derivative

calculations with the z → x definition, the goal is often to factor and simplify until a
common factor such as z − x can be cancelled, as we just did.

(c) We have just shown two ways that if f (x) = x 3, then f ′(x) = 3x 2. When we graph
these two functions, we can see that at each value of x, the slope of the graph of
f (x) = x 3 is equal to the height of the graph of f ′(x) = 3x 2. In particular notice that the
slopes of f (x) = x 3 are always positive and the graph of f ′(x) = 3x 2 is always positive.

Slopes for f (x) = x 3... ...are heights of f ′(x) = 3x 2

x
321�3 �2 �1

30

20

10

�30
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�20

y
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EXAMPLE 3 Finding the equation of a tangent line

Suppose f (x) = 2
x
. Find the equation of the tangent line to f at x = 1.

SOLUTION

By definition, the tangent line to f at x = 1 has slope f ′(1) and passes through the point

(1, f (1)) =
(

1, 2
1

)
= (1, 2). Before we can find the equation of this line, we must calculate

the value of f ′(1). A lot of algebra will be needed before we can cancel a common factor of
h and solve the limit:

f ′(1) = lim
h→0

f (1 + h) − f (1)
h

= lim
h→0

2
1 + h

− 2
1

h
← derivative with x = 1

= lim
h→0

(
2 − 2(1 + h)

1 + h

)
h

= lim
h→0

2 − 2 − 2h
h(1 + h)

← algebra

= lim
h→0

−2h
h(1 + h)

= lim
h→0

−2
1 + h

= −2
1 + 0

= −2. ← cancellation, limit rules

We now use the point-slope form of a line to find the equation of the line that has slope
f ′(1) = −2 and that passes through the point (1, f (1)) = (1, 2):

y − 2 = −2(x − 1) =⇒ y = −2(x − 1) + 2 =⇒ y = −2x + 4. �

CHECKING
THE ANSWER

We can verify the reasonableness of the answer we just found by graphing the function
f (x) = 2

x
and the line y = −2x + 4 on the same set of axes and checking that the line ap-

pears to be tangent to the graph of f at the point (1, f (1)):
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f (x) = 2
x

and y = −2x + 4

x
2 4�4 �2

4

2

�4

�2

y

EXAMPLE 4 Finding derivatives of functions that involve roots

(a) Use the z → x definition of the derivative to find d
dx

(
√

x ).

(b) Use the h → 0 definition of the derivative to find d
dx

(
√

x ).

SOLUTION

(a) In the calculation that follows we will use the factoring formula a2 − b2 = (a − b)
(a + b) in the case where a = √

z and b = √
x. In other words we will apply the for-

mula z − x = (
√

z − √
x )(

√
z + √

x ). Remember that our goal in this calculation of the
derivative is to factor and simplify until we can cancel something in the numerator
with the same thing in the denominator and take the limit:

d
dx

(
√

x ) = lim
z→x

√
z − √

x
z − x

← derivative

= lim
z→x

√
z − √

x
(
√

z − √
x )(

√
z + √

x )
← factoring formula

= lim
z→x

1√
z + √

x
← cancellation

= 1√
x + √

x
= 1

2
√

x
. ← take limit, algebra

(b) We encounter different algebra when we use the h → 0 definition of the derivative.
The conjugate of an expression of the form

√
a − √

b is
√

a + √
b, and vice versa.

Notice that the product of such an expression and its conjugate does not involve any
square roots, since (

√
a − √

b )(
√

a + √
b ) = a − b. In the calculation that follows we

will simplify our limit by multiplying numerator and denominator by a conjugate, to
clear square roots. Remember that our goal in this calculation is to cancel a common
factor of h so that we can take the limit:

d
dx

(
√

x ) = lim
h→0

√
x + h − √

x
h

← derivative

= lim
h→0

√
x + h − √

x
h

(√
x + h + √

x√
x + h + √

x

)
← multiply by conjugate

= lim
h→0

(x + h) − x

h(
√

x + h + √
x )

= lim
h→0

h

h(
√

x + h + √
x )

← algebra

= lim
h→0

1√
x + h + √

x
= 1√

x + 0 + √
x

= 1
2
√

x
. ← cancel, take limit

�
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EXAMPLE 5 The derivative of a piecewise-defined function

Consider the piecewise-defined function f (x) =
{

3x + 2, if x < 1
6 − x, if x ≥ 1.

(a) Calculate f ′
+(1) and f ′

−(1). What can you say about f ′(1)?

(b) Write down a formula for f ′(x) as a piecewise-defined function.

SOLUTION

(a) We start by finding the right derivative of f at x = 1. In this case we examine h → 0+,
which means that h > 0, and thus 1 + h > 1. Therefore we will use the second part of
the piecewise-defined function f to evaluate f (1 + h) in this case:

f ′
+(1) = lim

h→0+

f (1 + h) − f (1)
h

= lim
h→0+

(6 − (1 + h)) − (6 − 1)
h

= lim
h→0+

6 − 1 − h − 6 + 1
h

= lim
h→0+

−h
h

= lim
h→0+

(−1) = −1.

In contrast, when we calculate the left derivative of f at x = 1, we will have h → 0−,
and thus h < 0. This means that 1+h < 1, so we will use the first part of the piecewise-
defined function f to evaluate f (1 + h). Of course we still have 1 ≥ 1, so we still use
the second part of f to evaluate f (1):

f ′
−(1) = lim

h→0−

f (1 + h) − f (1)
h

= lim
h→0−

(3(1 + h) + 2) − (6 − 1)
h

= lim
h→0−

3 + 3h + 2 − 6 + 1
h

= lim
h→0−

3h
h

= lim
h→0−

3 = 3.

Since the left and right derivatives of f at x = 1 are not equal to each other, the deriva-
tive f ′(1) of f at x = 1 is undefined. Note that f is left differentiable and right differen-
tiable at x = 1, but not differentiable at x = 1.

(b) We have just calculated that f ′(1) does not exist. It now remains to determine f ′(x) for
values of x that are less than or greater than 1. For x < 1 the value of f (x) is equal to
3x + 2. Using the definition of the derivative, we see that for x < 1 we have

f ′(x) = lim
h→0

(3(x + h) + 2) − (3x + 2)
h

= lim
h→0

3x + 3h + 2 − 3x − 2
h

= lim
h→0

3h
h

= lim
h→0

3 = 3.

For x > 1 the value of f (x) is equal to 6 − x. A similar calculation shows that for x > 1
we have

f ′(x) = lim
h→0

(6 − (x + h)) − (6 − x)
h

= lim
h→0

6 − x − h − 6 + x
h

= lim
h→0

−h
h

= lim
h→0

−1 = −1.

Therefore the derivative of the piecewise-defined function f is

f ′(x) =
⎧⎨
⎩

3, if x < 1
undefined, if x = 1

−1, if x > 1,

where “DNE” stands for “does not exist,” representing the fact that the function f ′ is
not defined at x = 1 (i.e., that there is no real number assigned to f ′(1)). �
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CHECKING
THE ANSWER

The figure that follows at the left shows the graphs of the function f and its derivative f ′
from the previous example. We can see from the graph of f that the right derivative of
the function at x = 1 is negative (think about the secant lines when h > 0) while the left
derivative at x = 1 is positive and steeper (think about the secant lines when h < 0). In fact,
since the pieces of this graph are linear, we can clearly see from the graph that the slopes
of the secant lines from the right and the left are −1 and 3, respectively.

y = f (x) y = f ′(x)

x
31 2�1
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4

3

2

1

�1

y

x
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3

2

1

�1

y

Because the left and right derivatives at x = 1 do not agree, there is no well-defined tangent
line at x = 1; the (two-sided) derivative of f at x = 1 does not exist. Graphically, there is
no unique tangent line that passes through the point (1, f (1)). In some sense, the graph of f
has two directions at x = 1, one with slope −1 and one with slope 3. In the graph of f ′ at
the right we see that the slopes of f are recorded correctly, with a slope of 3 for x < 1, a
slope of −1 for x > 1, and an undefined slope for x = 1.

EXAMPLE 6 A function that fails to be continuous also fails to be differentiable

Consider the piecewise-defined function f given by the equation

f (x) =
{

x 2, if x < 3
12, if x ≥ 3.

Argue graphically that f is not differentiable at x = 3 by examining secant lines on the
graph of f from both the left and the right of x = 3.

SOLUTION

The graph of f looks like this:

9

12

3
x

y

On the one hand, for h > 0, the secant lines over intervals of the form [3, 3 + h] all have
slope zero, since, on the interval [3, ∞), the graph of f is a horizontal line. Therefore the
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right derivative of f at x = 3 must be f ′
+(3) = 0. On the other hand, for h < 0, the secant

lines over intervals of the form [3 + h, 3] behave as shown in the following three figures:

Secant line on [2, 3] Secant line on [2.5, 3] Secant line on [2.75, 3]

9

12

3
x

y

9

12

3
x

y

9

12

3
x

y

As h → 0−, we get a sequence of secant lines that are becoming more and more vertical.
The slopes of these secant lines are large and positive, and approach ∞ as h → 0−. There-
fore the left derivative f ′

−(3) does not exist. This means that f is not differentiable at x = 3,
since its left derivative does not exist. �

EXAMPLE 7 Approximating roots with local linearity and Newton’s method

Use local linearity to approximate a root of f (x) = −x 3 − x + 1.

SOLUTION

First of all, notice that by the Intermediate Value Theorem and the fact that f (0) = 1 is
positive and f (1) = −1 is negative, the continuous function f (x) = −x 3 − x + 1 must have
at least one root between x = 0 and x = 1. However, since we cannot factor f (x), we are
unable to solve for the root directly. Our approximation strategy will be to guess a location
for a root, find the tangent line to the function at that point, and then look at the root of
that tangent line. If the tangent line is a good local approximation for the function, then
the root of the tangent line will be close to the root of the function if our initial guess is
close enough. We then repeat the process, using the root of the tangent line as our next
guess for the root of the function, to get better and better approximations of the root we
are looking for. This strategy is known as Newton’s method for approximating roots.

We’ll start with x1 = 0 as our first guess for a root of f (x). Clearly this is not actually a
root of the function, because f (0) = 1 is not equal to zero. Hopefully the tangent line at
x1 = 0 will help us make a better guess for a root. Before we compute the tangent line, we
must find the derivative of f (x) = −x 3 − x + 1. We will leave the bulk of the computational
details to the reader (see Exercise 42):

f ′(x) = lim
h→0

f (x + h) − f (x)
h

= lim
h→0

(−(x + h)3 − (x + h) + 1) − (−x 3 − x + 1)
h

= · · · = −3x 2 − 1.

Therefore the derivative of f at x1 = 0 is f ′(0) = −3(0)2 − 1 = −1, and thus the tangent
line to f (x) at (0, f (0)) = (0, 1) has equation

y = f (0) + f ′(0)(x − 0) = 1 + (−1)(x − 0) = 1 − x.
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Although it is not easy to calculate a root of our original cubic f (x) = −x 3 − x + 1, it is easy
to calculate that 1 is a root of the linear function y = 1 − x. Although x2 = 1 is still not a
root of f (x) (since f (1) = −1), the hope is that repeating this process will get us closer and
closer to a root. The following figure shows our initial guess of (x1, f (x1)) = (0, 1), the root
at x = 1 of the tangent line to f (x) at x1 = 0, and the new guess of (x2, f (x2)) = (1, −1).

f (x) = −x 3 − x + 1 with x1 = 0 and x2 = 1

x
0.5 1.51.0
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Repeating this process, we can use a root of the tangent line to f (x) at x2 to obtain a
revised guess x3 for a root. The tangent line passes through (1, −1) and has slope f ′(1) =
−3(1) − 1 = −4, so its equation is

y = f (1) + f ′(1)(x − 1) = −1 + (−4)(x − 1) = −4x + 3.

The root of this line, and our new guess for a root of f (x), is x3 = 3
4

; see the graph that

follows. Note that already our third approximation, x3, appears quite close to the actual
root of f (x):

f (x) = −x 3 − x + 1 with x2 = 1 and x3 = 3
4

x
0.5 1.51.0
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y

Repeating this process one more time, we obtain x4 ≈ 0.686047, which is in fact extremely
close to the actual root of x ≈ 0.682328. In Exercise 22 you will compare the accuracy of
this method with that of the Bisection Method of finding roots that we used in Exercise 80
of Section 1.4. �

TEST YOUR? UNDERSTANDING
� What is the definition of the derivative of a function f at a point x = c? Give two an-

swers, one with a limit that involves h and one with a limit that involves z.

� When calculating a derivative with the h → 0 definition of the derivative, why is the
limit always initially of the form 0

0
? What about when we use the z → x definition of

the derivative?

� Is a function that is continuous at x = c necessarily differentiable at x = c? Is a function
that is differentiable at x = c necessarily continuous at x = c?
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� What is the connection between the Leibniz notation dy
dx

for the derivative and the
difference quotient �y

�x
?

� How can we express the fifth derivative of a function f at the point x = 2 in Leibniz
notation? In “prime” notation?

EXERCISES 2.2

Thinking Back

Simplifying quotients: Simplify and rewrite the following ex-
pressions until you can cancel a common factor in the numer-
ator and the denominator.

� (x + h)4 − x 4

h
� (x + h)−2 − x−2

h

� z 4 − x 4

z − x
� z−2 − x−2

z − x

Limit calculations: Find each of the following limits.

� lim
h→0

(1 − h) − 1
h

� lim
h→0

(3(−1 + h)2 + 1) − 4
h

� lim
h→0

1
2 + h

− 0.5

h
� lim

z→2

z 2 − 4
z − 2

� lim
z→4

(1 − 3z) + 11
z − 4 � lim

z→1

1
z

− 1

z − 1

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: f ′(x) = f (x + h) − f (x)
h

.

(b) True or False: f ′(x) = lim
x→0

f (x + h) − f (x)
h

.

(c) True or False: f ′(x) = lim
z→0

f (z) − f (x)
z − x

.

(d) True or False: If f (x) = x 3, then f (x + h) = x 3 + h.
(e) True or False: If f (x) = x 3, then f ′(x) =

lim
h→0

f (x3 + h) − f (x)
h

.

(f) True or False: A function f is differentiable at x = c if
and only if f ′−(c) and f ′+(c) both exist.

(g) True or False: If f is continuous at x = c, then f is dif-
ferentiable at x = c.

(h) True or False: If f is not continuous at x = c, then f is
not differentiable at x = c

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function that is continuous, but not
differentiable, at x = 2.

(b) The graph of a function that is left and right differen-
tiable, but not differentiable, at x = 3.

(c) The graph of a function that is differentiable on the
interval [−1, 1] but not differentiable at the point
x = 1.

3. Use limits to give mathematical definitions for each of the
following derivatives, first with the h → 0 definition of
the derivative, and then with the z → x definition:
(a) the derivative of a function f at the point x = 5
(b) the derivative of a function f
(c) the right derivative of a function f at the point x = −2

4. Use limits to give mathematical definitions for:
(a) the slope of the line tangent to the graph of a function

f at the point x = 4
(b) the line tangent to the graph of a function f at the

point x = 4
(c) the instantaneous rate of change of a function f at the

point x = 1
(d) the acceleration at time t = 1.65 of an object that

moves with position function s(t)

5. Explain why the limits lim
h→0

f (x + h) − f (x)
h

and lim
z→x

f (z) − f (x)
z − x

are the same for any function f . (Hint: Consider the substi-
tution z = x + h.)

6. Explain why the limits lim
h→0

f (x + h) − f (x)
h

and lim
z→x

f (z) − f (x)
z−x

are each initially in the form
0
0

. Why would cancelling a

common factor of h or z − x be likely to resolve this inde-
terminate form?

7. The function f (x) = 4x 3 − 5x + 1 is both continuous
and differentiable at x = 2. Write these facts as limit
statements.

8. The function f (x) = 4 − x 2 is both continuous and differ-
entiable at x = 1. Write these facts as limit statements.

9. If lim
x→c

f (x) − f (c)
x − c

exists, what can you say about the differ-

entiability of f at x = c? What can you say about the con-
tinuity of f at x = c?

10. Suppose f (0) = 1, lim
x→0+

f (x) = 1, lim
x→0−

f (x) = 1,

lim
x→0+

f (x) − f (0)
x

= 3, and lim
x→0−

f (x) − f (0)
x

= −2.

(a) Is f continuous and/or differentiable at x = 0? What
about from the left or right?

(b) Sketch a possible graph of f .

11. Suppose f (1) = 3, lim
x→1−

f (x) = 3, lim
x→1+

f (x) = 3,

lim
h→0−

f (1 + h) − f (1)
h

= 2, and lim
h→0+

f (1 + h) − f (1)
h

= 0.
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(a) Is f continuous and/or differentiable at x = 0? What
about from the left or right?

(b) Sketch a possible graph of f .
12. Consider the function f graphed here:

3

1

2

321
x

y

(a) Sketch secant lines from (2, f (2)) to (2 + h, f (2 + h))
on the graph of f , for the following values of h:
h = 0.5, h = 0.25, h = 0.1, h = −0.5, h = −0.25, and
h = −0.1.

(b) Use the secant lines you sketched in part (a)

to graphically evaluate lim
h→0+

f (2 + h) − f (2)
h

and

lim
h→0−

f (2 + h) − f (2)
h

.

(c) Use your answer from part (b) to show that f is not
differentiable at x = 2.

13. Sketch secant lines on a graph of f (x) = |x|, and use them
to argue that the absolute value function is not differen-
tiable at x = 0.

14. The two-sided symmetric difference approximation for
the slope of a tangent line (see Exercise 20 in Section 2.1)
can sometimes be misleading. Use a sequence of sym-
metric difference approximations to estimate the deriva-
tive of f (x) = |x| at x = 0. What does your sequence of ap-
proximations suggest about f ′(0)? Does this seem right?

15. Express the sentence “the derivative of f (x) = 3x 2 − 1 at
x = −4 is −24” in each of the following notations:
(a) prime (b) Leibniz (c) operator

16. Express the sentence “the fourth derivative of f (x) =
3x 2 − 1 is equal to 0” in each of the following notations:
(a) prime (b) Leibniz (c) operator

Suppose f (x) = x 3 − 2x + 1, and let y = f (x). It can be shown
that f ′(x) = 3x 2 −2. Use this information to determine the ex-
pressions in Exercises 17 and 18. (Note: No differentiation will
be necessary, since the derivatives are given. These problems are
just a test of your ability to interpret derivative notation.)

17.
dy
dx

,
df
dx

,
d
dx

( f (x)), and
dy
dx

( f (x)).

18.
dy
dx

∣∣∣
x=2

,
df
dx

∣∣∣
x=2

,
d
dx

( f (x))
∣∣∣
x=2

, and
dy
dx

( f (2))

Express each of the following limit statements as delta–epsilon
statements:

19. f ′(3) = lim
h→0

(3 + h)2 − 9
h

20. f ′(3) = lim
x→3

x 2 − 9
x − 3

21. Suppose that you know that the derivative of f (x) = √
x

is equal to f ′(x) = 1
2
√

x
. Use this fact, local linearity, and

the fact that
√

4 = 2 to approximate the value of
√

4.1.
How close is your approximation with the approximation
of

√
4.1 that you can find with a calculator? (Hint: Consider

the tangent line to f (x) at x = 4, and use it to approximate the
function nearby.)

22. Suppose you wish to find a root of f (x) = x 3 + x 2 + x + 1
in the interval [−3, 2]. Compare the accuracy of Newton’s
method as applied in Example 8 with the accuracy of the
Bisection Method used in Exercise 80 of Section 1.4 for
the same function. Which method gets closest to the root
in three iterations?

Skills
Use (a) the h → 0 definition of the derivative and then
(b) the z → c definition of the derivative to find f ′(c) for
each function f and value x = c in Exercises 23–38.

23. f (x) = x 2, x = −3 24. f (x) = x 3, x = 1

25. f (x) = 1
x

, x = −1 26. f (x) = 1
x 2

, x = 2

27. f (x) = 1 − x 3, x = −1 28. f (x) = x 4 + 1, x = 2

29. f (x) = x 1/2, x = 9 30. f (x) = x −1/2, x = 9

31. f (x) = x − 1
x + 3

, x = 2 32. f (x) = x 2 − 3x
x + 1

, x = 0

33. f (x) = e x, x = 0 34. f (x) = 2e x

35. f (x) = sin x, x = 0 36. f (x) = cos x, x = 0

37. f (x) = tan x, x = 0 38. f (x) = sec x, x = 0

Use the definition of the derivative to find f ′ for each function
f in Exercises 39–54.

39. f (x) = −2x 2 40. f (x) = 4 + x 2

41. f (x) = x 3 + 2 42. f (x) = −x 3 − x + 1

43. f (x) = 2
x + 1

44. f (x) = 2
1 − x

45. f (x) = 1
x 2

46. f (x) = 1
x 3

47. f (x) = 3
√

x 48. f (x) = 3√
x

49. f (x) = √
2x + 1 50. f (x) = 1√

2x + 1

51. f (x) = x − 1
x + 3

52. f (x) = 1
x 2 − 1

53. f (x) = x 3

x + 1
54. f (x) = x 2 − 1

x 2 − x − 2

Use the definition of the derivative to find the derivatives
described in Exercises 55–58.

55. Find
d
dx

(2x 3),
d 2

dx 2
(2x 3), and

d 3

dx 3
(2x 3).

56. Find
d
dx

(2x 3)
∣∣∣
3

,
d 2

dx 2
(2x 3)

∣∣∣
1

, and
d 3

dx 3
(2x 3)

∣∣∣
−2

.
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57. Given f (3)(x) = 3x 2 + 1, find
d 4f
dx 4

and
d 4f
dx 4

∣∣∣
2
.

58. Given
d 2f
dx 2

= 2 − x 2, find f (3)(4) and
d 4

dx 4
( f (x)).

Use the definition of the derivative to find the equations of the
lines described in Exercises 59–64.

59. The tangent line to f (x) = x 2 at x = −3.
60. The tangent line to f (x) = x 2 at x = 0.

61. The line tangent to the graph of y = 1 − x − x 2 at the
point (1, −1).

62. The line tangent to the graph of y = 4x + 3 at the point
(−2, −5).

63. The line that passes through the point (3, 2) and is parallel

to the tangent line to f (x) = 1
x

at x = −1.

64. The line that is perpendicular to the tangent line to f (x) =
x 4 + 1 at x = 2 and also passes through the point (−1, 8).

For each function f graphed in Exercises 65–68, determine the
values of x at which f fails to be continuous and/or differen-
tiable. At such points, determine any left or right continuity or
differentiability. Sketch secant lines supporting your answers.

65.

�2�3 �1 321
x

3

y

2

1

�1

66.
2

y

1

�2

�1

�2�3 �1 321
x

67.
1

y

�2

�3

�2�3 �1 321
x

68.

�2�3 �1 321
x

3

y

2

�1

�1

In Exercises 69–80, determine whether or not f is continuous
and/or differentiable at the given value of x. If not, determine
any left or right continuity or differentiability. For the last four
functions, use graphs instead of the definition of the derivative.

69. f (x) = 1
x

, x = 0 70. f (x) = x 2/3, x = 0

71. f (x) = |x 2 − 4|, x = 2 72. f (x) = |x 2 − 4|, x = −2

73. f (x) =
{

x + 4, if x < 2

3x, if x ≥ 2,
x = 2

74. f (x) =
{

x 2 − 3, if x < 3

x + 2, if x ≥ 3,
x = 3

75. f (x) =
{

x 2, if x ≤ 1
2x − 1, if x > 1, x = 1

76. f (x) =
{

x 2, if x ≤ 1
2x + 4, if x > 1, x = 1

77. f (x) =
⎧⎨
⎩

x sin
(

1
x

)
, if x �= 0

0, if x = 0,
x = 0

78. f (x) =
⎧⎨
⎩

x 2 sin
(

1
x

)
, if x �= 0

0, if x = 0,
x = 0

79. f (x) =
{

1, if x rational
x + 1, if x irrational, x = 1

80. f (x) =
{

x 2, if x rational
2x − 1, if x irrational, x = 1

For each function f (x) and interval [a, b] in Exercises 81–86,
use the Intermediate Value Theorem to argue that the function
must have at least one real root on [a, b]. Then apply Newton’s
method to approximate that root.

81. f (x) = x 2 − 5, [a, b] = [1, 3]
82. f (x) = x 2 − 2, [a, b] = [1, 2]
83. f (x) = x 3 − 3x + 1, [a, b] = [0, 1]
84. f (x) = x 3 − 3x + 1, [a, b] = [1, 2]
85. f (x) = x 3 + 1, [a, b] = [−2, 1]
86. f (x) = x 4 − 2, [a, b] = [1, 2]

Applications
87. In Example 4 of Section 2.1, we saw that a watermelon

dropped from a height of 100 feet will be s(t) = −16t 2 +
100 feet above the ground t seconds after it is dropped.
In that example, we approximated the velocity of such a
watermelon at time t = 1 by calculating a sequence of
average rates of change. Now we can calculate this veloc-
ity exactly, using the definition of the derivative. Do so,
and compare the exact answer to the approximation we
found earlier.

88. On a long road trip you are driving along a straight
portion of Route 188. Suppose that t hours after en-
tering Nevada your distance from the Donut Hole is
s(t) = −10t 2 − 40t + 120 miles.

(a) How long will it take you to reach the Donut Hole
after entering Nevada?

(b) Find your velocity v(t) as you drive toward the Donut
Hole.

(c) Are you accelerating or decelerating as you approach
the Donut Hole? At what rate?

89. Suppose your position s(t) as you drive north along a
straight highway is as shown in the graph that follows
at the left, with t measured in hours and s measured in
miles.
(a) Sketch a graph of your velocity v(t), and use the graph

to describe your velocity over the course of the two-
hour drive.
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(b) Sketch a graph of your acceleration a(t), and use the
graph to describe your acceleration over the course of
the two-hour drive.

Position on highway

21
x

100

y

75

50

25

Carol’s velocity

200

y

302010
x

100

�200

�100

90. While Carol is walking along a straight north-south for-
est path, her velocity, in feet per minute, after t minutes
is given by the preceding graph at the right. Suppose the
“positive” direction is north.

(a) Describe the sort of walk Carol must have taken to
have this velocity graph. Be sure your description ex-
plains the physical significance of the fact that her ve-
locity is zero at t = 15 minutes and the fact that her
velocity is negative for the second half of her walk.

(b) Find Carol’s average acceleration over the 30-minute
walk. Was her acceleration constant over the duration
of her walk? Why or why not?

(c) What was Carol’s average velocity over her entire
walk? Why does your answer make sense?

91. To save up for a car, you take a job working 10 hours a
week at the school library. For the first six weeks the li-
brary pays you $8.00 an hour. After that you earn $11.50
an hour. You put all of the money you earn each week into
a savings account. On the day you start work your sav-
ings account already holds $200.00. Let S(t) be the func-
tion that describes the amount in your savings account t
weeks after your library job begins.

(a) Find the values of S(3), S(6), S(8), S′(3), S′(6), and
S′(8), if possible, and describe their meanings in prac-
tical terms. If it is not possible to find one or more of
these values, explain why.

(b) Write an equation for the function S(t). (Hint: S(t) will
be a piecewise-defined function.) Be sure that your equa-
tion correctly produces the values you calculated in
part (a).

(c) Sketch a labeled graph of S(t). By looking at this
graph, determine whether S(t) is continuous and
whether S(t) is differentiable. Explain the practical
significance of your answers.

(d) Show algebraically that S(t) is a continuous function,
but not a differentiable function.

Proofs

92. Use the definition of the derivative to prove that every
quadratic function f (x) = ax 2 + bx + c has the property
that its graph has a horizontal tangent line at the point

x = − b
2a

.

93. Use the definition of the derivative to prove that our con-
cept of slope for linear functions matches the slope that
is defined by the derivative. In other words, show that if
f (x) = mx + b is any linear function, then f ′(x) = m.

94. Use Problem 93 to prove that a linear function is its own
tangent line at every point. In other words, show that if
f (x) = mx + b is any linear function, then the tangent line
to f at any point x = c is given by y = mx + b.

95. Use the mathematical definition of a tangent line and the
point-slope form of a line to show that if f is differentiable
at x = c, then the tangent line to f at x = c is given by the
equation y = f ′(c)(x − c) + f (c).

96. Prove that if a function f is differentiable at x = c, then f
is continuous at x = c.

(a) We are given that f is differentiable at x = c. Use the
alternative definition of the derivative to write down
what that statement means.

(b) We want to show that f is continuous at x = c.
Use the definition of continuity to show that
this statement is equivalent to the statement
lim
x→c

( f (x) − f (c)) = 0.

(c) Now use part (a) to show that lim
x→c

( f (x) − f (c)) = 0.

(Hint: Multiply ( f (x)−f (c)) by
x − c
x − c

and use the product

rule for limits.)

97. Use the definition of two-sided and one-sided deriva-
tives, together with properties of limits, to prove that
f ′(c) exists if and only if f ′−(c) and f ′+(c) exist and are
equal.

98. Show that if a function y = f (x) is differentiable at x0 and

�y = f (x0 + �x) − f (x0),

then
�y = f ′(x0)�x + ε�x,

where ε is a function satisfying lim
�x→0

ε = 0.
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Thinking Forward

Derivatives of power functions: After differentiating a few power
functions, you may have noticed a pattern emerging. In the
following exercises we will investigate a possible formula for
differentiating power functions.

� Use the z → x definition of the derivative to show that
d
dx

(x 4) = 4x 3.

� Use the z → x definition of the derivative to show

that
d
dx

(x 8) = 8x 7. (Hint: The following factoring formula

will come in handy: If n is a positive integer, then
zn − xn = (z − x)(zn−1 + zn−2x + zn−3x 2 + · · ·+ z 2xn−3 +
zxn−2 + xn−1).)

� Use the preceding two derivative formulas to make a

conjecture about a formula for
d
dx

(xn), where n is a pos-
itive integer.

Derivatives of combinations of functions: We have already seen
that the limit of a sum is the sum of the limits and that the
limit of a product is the product of the limits. Do derivatives
also interact well with sums and products?

� Use the definition of the derivative (or exercises done

previously in this section) to find (a)
d
dx

(3x), (b)
d
dx

(x 2),

and (c)
d
dx

(3x + x 2). Use your answers to make a con-

jecture as to whether or not
d
dx

( f (x)+g(x)) = df
dx

+ dg
dx

.

� Use the definition of the derivative (or exercises done

previously in this section) to find (a)
d
dx

(x − 3),

(b)
d
dx

(2x + 1), and (c)
d
dx

((x − 3)(2x + 1)). Use your

answers to make a conjecture as to whether or not
d
dx

( f (x)g(x)) =
( df

dx

)( dg
dx

)
.

2.3 RULES FOR CALCULATING BASIC DERIVATIVES

� Formulas for differentiating constant, identity, linear, and power functions

� Rules for differentiating constant multiples, sums, products, and quotients

� Using differentiation rules to quickly calculate derivatives and antiderivatives

Derivatives of Linear Functions

You may have noticed by now that using the definition of the derivative to calculate deriva-
tives can be rather tedious. Since derivatives will be used often throughout this course, we
need to develop a faster method of calculating them. Let’s start with linear functions. If f
is a linear function, then it has slope m everywhere, and therefore its derivative is con-
stantly m. Since constant and identity functions are linear functions with slopes 0 and
1, their derivatives are constantly 0 and 1, respectively. These are our first differentiation
rules.

THEOREM 2.8 Derivatives of Constant, Identity, and Linear Functions

For any real numbers k, m, and b,

(a) d
dx

(k) = 0 (b) d
dx

(x) = 1 (c) d
dx

(mx + b) = m

With this differentiation rule we can find derivatives of linear functions very quickly,
without having to consider the definition of the derivative. For example, d

dx
(3) = 0,

d
dx

(3x + 1) = 3, and d
dx

(2x − 99) = 2.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

188 Chapter 2 Derivatives

Proof. We need only prove the third formula, since first two are special cases of that formula. Our
proof is just a general calculation with the definition of the derivative: If m and b are any constants
and f (x) = mx + b, then

f ′(x) = lim
h→0

f (x + h) − f (x)
h

← definition of the derivative

= lim
h→0

(m(x + h) + b) − (mx + b)
h

← use formula for f (x)

= lim
h→0

mx + mh + b − mx − b
h

← algebra

= lim
h→0

mh
h

= lim
h→0

m = m. ← limit of a constant

The Power Rule

You may have already noticed a particular pattern for the derivatives of power functions. In
various examples and exercises in the previous section, we have seen that

d
dx

(x 3) = 3x 2, d
dx

(x 4) = 4x 3, d
dx

(
√

x ) = 1
2
√

x
, and d

dx

(
1
x 3

)
= −3

x 4
.

The pattern becomes clear if we write these derivative formulas in exponent notation:

d
dx

(x 3) = 3x 2, d
dx

(x 4) = 4x 3, d
dx

(x 1/2) = 1
2

x− 1/2, and d
dx

(x−3) = −3x−4.

From these examples it appears that, to take the derivative of x k, we bring down the expo-
nent k to the front of the expression and then decrease the exponent by one, to get kxk−1.
This is in fact the case in general:

THEOREM 2.9 The Power Rule

For any nonzero rational number k, d
dx

(x k) = kx k−1.

Although we require that k be a rational number in this formula, the power rule is actually
true for any nonzero real number k. If k = 0, then x 0 is the constant function 1, which we
already know how to differentiate.

Considering the algebra involved in applying the definition of the derivative, it is a relief
to have such a simple formula for finding derivatives of power functions! With this formula
we can quickly say, for example, that d

dx
(x15) = 15x14 or that d

dx
(x−1000) = −1000 x−1001, or

even that d
dx

(x 17/12) = 17
12

x 5/12. We can also find higher derivatives very easily; for exam-

ple, if f (x) = x 4, then f ′(x) = 4x 3, f ′′(x) = 12x 2, f ′′′(x) = 24x, f (4)(x) = 24, and f (5)(x) = 0.
These functions are graphed next; each one is the associated slope function for the one
before.

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) f (5)(x)

x

y

x

y

x

y

x

y

x

y

x

y
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Proof. We will prove the power rule by cases. The case where k is a positive integer is proved
in what follows. The case where k is a negative integer is left for Exercise 86. The case where k is
a general rational number

p
q

must be put off until after we know about implicit differentiation in

Section 2.4.

Given any positive integer k, we need to apply the definition of the derivative to find
d
dx

(x k). It

turns out that the z → x definition of the derivative is easier to use in this case. Along the way we
will require the following factoring formula: If k is a positive integer, then

z k − x k = (z − x)(z k−1 + z k−2x + z k−3x 2 + · · · + z 2x k−3 + zx k−2 + x k−1).

(You can verify this formula by simply multiplying out the right-hand side of the equation; every-
thing except the first and last terms will cancel, and you will obtain the left side of the equation.)
Now using the definition of the derivative, we have

d
dx

(x k) = lim
z→x

z k − x k

z − x
← definition of the derivative

= lim
z→x

(z − x)(z k−1 + z k−2x + z k−3x 2 + . . . + zx k−2 + x k−1)
z − x

← factoring formula

= lim
z→x

(z k−1 + z k−2x + z k−3x 2 + . . . + zx k−2 + x k−1) ← cancellation

= x k−1 + x k−2x + x k−3x 2 + . . . + xx k−2 + x k−1. ← evaluate limit

= x k−1 + x k−1 + x k−1 + . . . + x k−1 + x k−1 ← there are k of these

= kx k−1.

The Constant Multiple and Sum Rules

In Chapter 1 we saw that limits behave well with respect to arithmetic combinations of
functions. For example, limits commute with sums: The limit of a sum is the sum of the
limits, provided that the limits involved exist. Is the same thing true for derivatives? For
constant multiples and sums, the answer is yes:

THEOREM 2.10 Derivatives of Constant Multiples and Sums of Functions

If f and g are functions and k is a constant, then for all x where the functions involved
are differentiable, we have the following differentiation formulas:

Constant Multiple Rule: (kf )′(x) = kf ′(x)

Sum Rule: ( f + g)′(x) = f ′(x) + g′(x)

Difference Rule: ( f − g)′(x) = f ′(x) − g′(x)

The notation (kf )′(x) indicates that we are differentiating the function kf with respect to x.
In Leibniz notation we would write this differentiation as d

dx
(kf (x)). The difference rule is

of course just a combination of the sum and constant multiple rules, since f (x) − g(x) =
f (x) + (−g(x)).

These rules mean that we can factor out constants and split up sums when calculat-
ing derivatives. For example, derivatives of sums or constant multiples of the functions
f (x) = x 2 and g(x) = x 4 can be expressed as sums or constant multiples of their derivatives
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f ′(x) = 2x and g′(x) = 4x 3, as illustrated here:

d
dx

(5x 2 + 2x 4) = d
dx

(5x 2) + d
dx

(2x 4) ← sum rule

= 5 d
dx

(x 2) + 2 d
dx

(x 4) ← constant multiple rule

= 5(2x) + 2(4x 3) ← power rule

= 10x + 8x 3.

Proof. We will use the definition of the derivative to prove (a) the constant multiple and (b) sum
rules in what follows. The difference rule can also be proved with the definition of the derivative,
or by applying the sum and constant multiple rules; see Exercise 87.

(a) The proof of the constant multiple rule uses the definition of the derivative and the constant
multiple rule for limits. Given a function f (x) and a constant k, we wish to show that the deriva-
tive of the function kf (x) is the same as k times the derivative of f (x). We’ll start from the left
and work to the right:

(kf )′(x) = lim
h→0

kf (x + h) − kf (x)
h

← definition of the derivative for kf (x)

= lim
h→0

k( f (x + h) − f (x))
h

← factor out k from numerator

= lim
h→0

(
k
(

f (x + h) − f (x)
h

))
← factor out k from quotient

= k
(

lim
h→0

f (x + h) − f (x)
h

)
← constant multiple rule for limits

= kf ′(x). ← definition of the derivative for f (x)

(b) Similarly, the proof of the sum rule uses the definition of the derivative and the sum rule for
limits. We wish to show that the derivative of the function f +g is the sum of the derivative of f
and the derivative of g. We will work from the left to the right; our goal is to use the definition
of the derivative to write the left-hand statement as a limit and then use algebra and the sum
rule for limits to split this limit into two limits, one of which will be the derivative of f , and one
the derivative of g:

( f + g)′(x) = lim
h→0

( f (x + h) + g(x + h)) − ( f (x) + g(x))
h

← definition of derivative

= lim
h→0

f (x + h) + g(x + h) − f (x) − g(x)
h

← simplify

= lim
h→0

( f (x + h) − f (x)) + ( g(x + h) − g(x))
h

← reordering terms

= lim
h→0

(
f (x + h) − f (x)

h
+ g(x + h) − g(x)

h

)
← algebra

=
(

lim
h→0

f (x + h) − f (x)
h

)
+

(
lim
h→0

g(x + h) − g(x)
h

)
← sum rule for limits

= f ′(x) + g′(x). ← definition of derivative

The Product and Quotient Rules

We now know that derivatives interact nicely with constant multiples and sums; for
example, the derivative of a sum is the sum of the derivatives. Do derivatives also com-
mute with products and quotients? Sadly, the answer is no. For example, consider the
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functions f (x) = x 2 + 1 and g(x) = x 3, whose derivatives are f ′(x) = 2x and g′(x) = 3x 2. Now
consider the product f (x)g(x) = (x 2 + 1)(x 3) = x 5 + x 3; by the power and sum rules, the
derivative of that product is 5x 4 + 3x 2. However, this is clearly not equal to the product
f ′(x)g′(x) = (2x)(3x 2) = 6x 3.

In general, the derivative of a product is not necessarily the product of its component
derivatives. Similarly, the derivative of a quotient is not in general the quotient of its com-
ponent derivatives. However, we can write the derivative of a product fg or quotient f

g
in

terms of f , g, f ′, and g′, with the following, somewhat surprising, formulas:

THEOREM 2.11 Derivatives of Products and Quotients of Functions

If f and g are functions, then for all x such that both f and g are differentiable, we have
the following differentiation formulas:

Product Rule: ( fg)′(x) = f ′(x) g(x) + f (x) g′(x)

Quotient Rule:
(

f
g

)′
(x) = f ′(x) g(x) − f (x)g′(x)

( g(x))2

Some people remember the product rule by remembering the pattern of differentiating
one piece and not the other in both possible ways and then taking the sum. Some people
remember the quotient rule with a phrase like “lo d-hi minus hi d-lo over lo lo,” although
it might be easier just to remember the quotient rule than to try and remember that! In
any case, you will have to memorize these differentiation formulas, because they will be
needed often throughout this book.

Armed with the product and quotient rules, we can now differentiate a lot more func-
tions. For example, with our earlier example of f (x) = x 2 + 1 and g(x) = x 3, we can differ-
entiate f (x)g(x) without multiplying it out first:

d
dx

( f (x)g(x)) = f ′(x) g(x) + f (x) g′(x) ← product rule

= (2x)(x 3) + (x 2 + 1)(3x 2) ← f ′(x) = 2x, g(x) = 3x 2

= 2x 4 + 3x 4 + 3x 2 ← algebra

= 5x 4 + 3x 2.

This is exactly what we found earlier by multiplying out f (x)g(x) first and then taking the
derivative.

Proof. The proof of the product rule is yet another general calculation using the definition of the
derivative, with a small twist that we will explain shortly. A similar method of proof works for the
quotient rule and is left to Exercise 89. We will have an easier way to prove the quotient rule once
we learn the chain rule in Section 2.4.

Suppose f and g are differentiable functions. We wish to show that ( fg)′ = f ′g + fg′. We will
apply the definition of the derivative to the left side of that equation and then use a long string
of algebra and limit rules to rewrite it in terms of f ′, g, f , and g′. This will be made possible in the
second step of the following calculation by adding and subtracting the same expression, f (x)g(x+h),
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from the numerator.

( fg)′(x) = lim
h→0

f (x + h)g(x + h) − f (x)g(x)
h

← derivative

= lim
h→0

f (x + h)g(x + h) − f (x)g(x + h) + f (x)g(x + h) − f (x)g(x)
h

← algebra

= lim
h→0

( f (x + h) − f (x))g(x + h) + f (x)( g(x + h) − g(x))
h

← factoring

= lim
h→0

(
f (x + h) − f (x)

h
· g(x + h) + f (x) · g(x + h) − g(x)

h

)
← algebra

=
(

lim
h→0

f (x + h) − f (x)
h

)
lim
h→0

g(x + h) + lim
h→0

f (x)
(

lim
h→0

g(x + h) − g(x)
h

)
← limit rules

=
(

lim
h→0

f (x + h) − f (x)
h

)
g(x) + f (x)

(
lim
h→0

g(x + h) − g(x)
h

)
← continuity

= f ′(x) g(x) + f (x) g′(x). ← derivative

The step labeled “continuity” follows from the fact that g(x) is differentiable and therefore contin-
uous, because that is what allows us to say that lim

h→0
g(x + h) = g(x). Notice that throughout the

entire calculation, our goal was to extract the expressions that represent the derivatives of f and g.
The algebra steps were not meant to “simplify”; they were meant to get us closer to the final form
of f ′g + fg′.

Examples and Explorations

EXAMPLE 1 Determining whether the differentiation rules apply

Find the derivatives of each of the functions that follow, using the differentiation rules from
this section, if possible. If it is not possible, explain why not.

(a) f (x) = 2(5 x) (b) g(x) = 34 (c) h(x) = (2x + 3)2 (d) k(x) = √
3x 2 + 1

SOLUTION

(a) We cannot differentiate f (x) = 2(5 x) with any of the rules from this section. In particu-
lar, the power rule applies only to power functions of the form x k, where the variable x
is in the base and a constant k is in the exponent. The function 5 x is not a power func-
tion, but an exponential function, which we will see how to differentiate in Section 2.5.

(b) Since g(x) = 34 = 81 is a constant function, d
dx

(34) = 0.

(c) h(x) = (2x + 3)2 is a composition of functions, and we do not yet have a rule for
differentiating compositions. Therefore we must use algebra to expand the function
first. We could write the function as (2x + 3)(2x + 3) and use the product rule, or we
could just expand (2x +3)2 entirely and then need only the sum and constant multiple
rules. We present the latter approach here:

d
dx

((2x + 3)2) = d
dx

(4x 2 + 12x + 9) ← algebra

= d
dx

(4x 2) + d
dx

(12x) + d
dx

(9) ← sum rule

= 4 d
dx

(x 2) + 12 d
dx

(x) + d
dx

(9) ← constant multiple rule

= 4(2x 1) + 12(1) + 0 = 8x + 12. ← power rule
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(d) The function k(x) =√
3x 2 + 1 is a composition that cannot be simplified, and we

do not yet have a rule for differentiating compositions. (Note in particular that this
function is not equal to

√
3x + 1, because square roots do not distribute over sums;

there is no useful simplification that can be done to this function.) We will see how to
differentiate such functions in Section 2.4. �

EXAMPLE 2 Finding derivatives with and without simplifying first

Differentiate each of the following functions with and without the quotient rule:

(a) f (x) = 4
3x 2 (b) g(x) = x 2

x−3
√

x
(c) h(x) = x 7 + √

x
x 3

SOLUTION

(a) Applying the quotient rule gives us

d
dx

(
4

3x 2

)
=

d
dx

(4) · (3x 2) − (4) · d
dx

(3x 2)

(3x 2)2 ← quotient rule

= (0)(3x 2) − (4)(6x)
9x 4 ← constant and power rules

= −24x
9x 4 = −8

3
x−3. ← algebra

Alternatively, we could simplify f first and then apply the constant multiple and power
rules. We of course will get the same final answer:

d
dx

(
4

3x 2

)
= d

dx

(
4
3

x−2
)

← algebra

= 4
3

d
dx

(x−2) ← constant multiple rule

= 4
3

(−2x−3) = − 8
3

x−3. ← power rule, algebra

(b) If we apply differentiation rules immediately without simplifying first, we need to use
both the quotient and product rules:

d
dx

(
x 2

x−3
√

x

)
=

d
dx

(x 2) · (x−3√x ) − (x 2) · d
dx

(x−3√x )

(x−3
√

x )2
← quotient rule

=
(2x)(x−3√x ) − (x 2)

(
−3x−4√x + x−3

(
1
2

x− 1/2
))

(x −3
√

x )2
. ← more rules

However, if we do some preliminary algebra, then the differentiation steps and final
simplification will both be much, much simpler:

d
dx

(
x 2

x−3
√

x

)
= d

dx
(x 2x 3x− 1/2) ← algebra

= d
dx

(x 9/2) ← algebra

= 9
2

x 7/2. ← power rule

In Exercise 17 you will show that the preceding two answers are equal. Students often
want to differentiate as soon as possible, since the differentiation rules can be easier
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to implement than algebraic simplification. However, in many cases, in the long run,
simplifying before differentiating ends up saving a lot of even messier algebra later on.
Look at the end result of the two calculations we just did, and ask yourself which one
you would rather work with!

(c) Applying the quotient rule first, we have

d
dx

(
x 7 + √

x
x 3

)
=

d
dx

(x 7 + √
x ) · (x 3) − (x 7 + √

x ) · d
dx

(x 3)

(x 3)2 ← quotient rule

=
(

7x 6 + 1
2

x− 1/2
)

(x 3) − (x 7 + √
x )(3x 2)

x 6 . ← sum, power rules

Alternatively, we could do some algebra before differentiating and then apply the sum
and power rules. This gives us a simpler but equivalent answer:

d
dx

(
x 7 + √

x
x 3

)
= d

dx

(
x 7

x 3 + x 1/2

x 3

)
← algebra

= d
dx

(x 4 + x− 5/2) ← algebra

= 4x 3 − 5
2

x− 7/2. ← sum, power rules

Doing algebra before differentiating almost always means that there is much less alge-
bra needed to simplify your answer after differentiating. In Exercise 18 you will show
that the two answers we just found are in fact equal. �

CHECKING
THE ANSWER

You can always check the reasonableness of the answer to a differentiation problem by
graphing both f and f ′ and verifying that f ′ appears to be the associated slope function for
f . Do this for the following graphs, for part (c) of the example:

0
0 3

100

0 3

100

�100

h(x) = x7 +√
x

x3
h′(x) = 4x 3− 5

2
x− 7/2

EXAMPLE 3 Differentiating a piecewise-defined function

Find the derivative of the function f (x) =
⎧⎨
⎩

x 2, if x ≤ 1
1
x

, if x > 1.

SOLUTION

For x < 1 we use the first case of the function to find the derivative:

f ′(x) = d
dx

(x 2) = 2x.
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Similarly, for x > 1 we use the second case:

f ′(x) = d
dx

(
1
x

)
= d

dx
(x−1) = −x−2 = −1

x 2
.

It now remains only to determine what the derivative is at the breakpoint x = 1, if it exists.
The function f will be differentiable at x = 1 if it is continuous at x = 1 and the derivatives
of each of its pieces are equal at x = 1. Since (1)2 = 1

1
, f is continuous at x = 1. However,

since 2(1) �= −1
(1)2

, the derivatives of the left and right pieces are not equal at x = 1. Therefore

f is not differentiable at x = 1, that is, f ′(1) does not exist. Thus the derivative of f is

f ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x, if x < 1

DNE, if x = 1
−1
x 2

, if x > 1.
�

CHECKING
THE ANSWER

Consider the graphs of f and f ′ that follow. Note that f is indeed continuous, but not
differentiable, at x = 1. In the graph of f ′ we have a hole at x = 1. We can see in both graphs
the fact that f ′−(1) = 2 but f ′+(1) = −1. We can also see that, except at x = 1, the slopes
of f (x) do seem to be the same as the heights of f ′(x).

f is not differentiable at x = 1 f ′ is undefined at x = 1

y

x
31 2�1

2

2 x
31 2�1

2

�2

1

�1

y

EXAMPLE 4 Finding antiderivatives

An antiderivative of a function g(x) is a function whose derivative is g(x). In this problem
you may assume that any two functions with the same derivative must differ by a constant.
(We will prove this fact in Section 3.2.)

(a) Find one antiderivative of g(x) = 8x 3.

(b) Describe the set of antiderivatives g(x) = 8x 3.

(c) Find the one antiderivative of g(x) = 8x 3 that passes through (1, 4).

SOLUTION

(a) We can use a targeted guess-and-check method to find an antiderivative of g(x) = 8x 3.
Since differentiating a power function decreases its power by one, we might start with
the function f (x) = x 4, whose derivative is f ′(x) = 4x 3; this is almost what we want,
but off by a factor of two. A good second guess would be f (x) = 2x 4, and indeed its
derivative is f ′(x) = 8x 3, as desired.

(b) We now have one function whose derivative is f ′(x) = 8x 3. Since any two functions
with that derivative must differ by a constant, the functions whose derivative is
f ′(x) = 8x 3 are all the functions of the form f (x) = 2x 4 + C for some real number

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

196 Chapter 2 Derivatives

C, as shown in the next figure at the left. The graph corresponding to our previous
choice of f (x) = 2x 4, with C = 0, is shown in black.

One antiderivative has C = 0 One antiderivative has f (1) = 4

x
1�1

5

4

3

2

1

�1

y

x
1�1

5

4

3

2

1

�1

y

(c) Only one of the antiderivatives of f ′(x) = 8x 3 passes through the point (1, 4), as shown
in red at the right. To find this antiderivative we set f (1) = 4 and solve for C:

f (1) = 4 =⇒ 2(1)4 + C = 4 =⇒ C = 2.

Therefore the only antiderivative of f ′(x) = 8x 3 that passes through (1, 4) is the func-
tion f (x) = 2x 4 + 2. �

TEST YOUR? UNDERSTANDING
� Why are the rules for differentiating constants and the identity function special cases

of the rule for differentiating a linear function?

� What is the difference between the rule for differentiating a constant function and the
constant multiple rule?

� Can you find examples of functions f and g such that the derivative of their quotient is
not the same as the quotient of their derivatives?

� Why do we add and subtract f (x)g(x + h) in the calculation in the proof of the product
rule? What does that enable us to do in the calculation?

� What sorts of functions can we differentiate with the rules in this section? Are there
any functions that we can’t differentiate with these rules?

EXERCISES 2.3

Thinking Back

Factoring formulas: Pull out a linear factor from each of the
following expressions.

� z 2 − 100 � z 3 − 27 � z 6 − 64

Definition-of-derivative calculations: Use the definition of the
derivative to find f ′ for each function.

� f (x) = x 4 � f (x) = x−2

� f (x) = x 2(x + 1) � f (x) = x 2

x + 1

Associated slope functions: For each of the following two func-
tion graphs, sketch a careful, labeled graph of its associated
slope function.

4

3

y

�10 10
x

2

1

3

2

y

1

�2�3 �1 321
x
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
d
dx

(5) = 0.

(b) True or False:
d
dr

(ks + r) = k.

(c) True or False:
d
ds

(ks + r) = k.

(d) True or False:
d
dx

(3x + 1) k = k(3x + 1) k−1.

(e) True or False:
d
dx

( 1
x3

)
= 1

3x2
.

(f) True or False: If f and g are differentiable functions,
then ( f (x)g(x))′ = g′(x)f (x) + f ′(x)g(x).

(g) True or False: If g and h are differentiable functions,

then
(

g(x)
h(x)

)′
= h(x)g′(x) − g(x)h′(x)

(h(x))2
.

(h) True or False: Proving the sum rule for differentiation
involves the definition of the derivative, a lot of alge-
braic manipulation, and the sum rule for limits.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Functions f and g, which illustrate that, in general,
derivatives and products do not commute.

(b) Functions f and g, which illustrate that, in general,
derivatives and quotients do not commute.

(c) Three functions whose derivatives we cannot calcu-
late by using the differentiation rules we have devel-
oped so far.

3. Express the constant multiple, sum, and difference rules
in Leibniz/operator notation.

4. Express the product and quotient rules in Leibniz/
operator notation.

5. Why does it make graphical sense that the derivative of a
constant is zero? That the derivative of the identity func-
tion is constantly equal to 1? That the derivative of a linear
function f (x) = mx + b is equal to m?

6. Why does the proof of the power rule (Theorem 2.9) in
this text work only when k is an integer? Also, at which
point in the proof do we use the fact that k is positive?

7. Explain why the power rule does not say that the deriva-
tive of 3 x is x3x−1. Specifically, why doesn’t 3 x fit the pat-
tern required for the power rule to apply?

8. Explain why the power rule cannot be used to differenti-
ate the function (2 − x) 1/3.

9. Use the product rule to find and state the rule for dif-
ferentiating a product of three functions f , g, and h. In
other words, fill in the blank:( f (x)g(x)h(x))′ = .

Then use your rule to differentiate the function y =
(2x − 1)(x 2 + x + 1)(1 − 3x 4). Check your answer by dif-
ferentiating the function y(x) another way.

10. Two operations commute if they can be done in either or-
der. Does multiplying a function by a constant commute
with differentiation? Does adding two functions com-
mute with differentiation? What about products and quo-
tients and the operation of differentiation?

Given that f , g, and h are functions with values f (2) = 1,
g(2) = −4, and h(2) = 3 and point-derivatives f ′(2) = 3,
g′(2) = 0, and h′(2) = −1, calculate

11. (3f + 4h)′(2) 12. (2f + 3g − h)′(2)

13. ( f h)′(2) 14.
(

f
g

)′
(2)

15. In the text of this section we displayed graphs of f (x) = x 4

and its first five derivatives. Use the slope-height behav-
ior of the graphs to verify that each is the associated slope
function of the one before.

16. Sketch graphs of f (x) = 1
x

and its first five derivatives.

Then use the slope-height behavior of the graphs to ver-
ify that each is the associated slope function of the one
before.

17. In Example 2(b) we calculated a derivative two different
ways. Use algebra to simplify the first answer and show
that it is equal to the second.

18. In Example 2(c) we calculated a derivative two different
ways. Use algebra to simplify the first answer and show
that it is equal to the second.

19. Suppose f is a piecewise-defined function, equal to g(x)
if x < 2 and h(x) if x ≥ 2, where g and h are contin-
uous and differentiable everywhere. If g(2) = h(2), is the
function f necessarily differentiable at x = 2? Why or why
not?

20. Suppose f is a piecewise-defined function, equal to g(x) if
x < 2 and h(x) if x ≥ 2, where g and h are continuous and
differentiable everywhere. If g′(2) = h′(2), is the function
f necessarily differentiable at x = 2? Why or why not?

21. If possible, find constants a and b so that the function f
that follows is continuous and differentiable everywhere.
If it is not possible, explain why not.

f (x) =
{

3x + a, if x < 1

x b/2, if x ≥ 1.

22. If possible, find constants a and b so that the function f
that follows is continuous and differentiable everywhere.
If it is not possible, explain why not.

f (x) =
{

ax − b, if x < 2

bx 2 + 1, if x ≥ 2.
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Skills

Suppose g(x), h(x), and j(x) are differentiable functions with
the values of the function and its derivative given in the fol-
lowing table:

x g(x) h(x) j(x) g′(x) h′(x) j ′(x)
−1 3 0 1 −1 −2 −2

0 2 3 0 −2 3 −2
1 0 −1 −2 −2 −2 −1
2 −2 −2 −3 −1 0 2
3 −3 0 1 0 1 2

Use the table to calculate the values of the derivatives listed in
Exercises 23–28.

23. If f (x) = 3j(x) − 2h(x), find f ′(3).
24. If f (x) = g(x)h(x), find f ′(0).
25. If f (x) = g(x)(h(x) + j(x)), find f ′(2).
26. If f (x) = h(x)g(x)j(x), find f ′(1).

27. If f (x) = 3h(x)
g(x) + j(x)

, find f ′(0).

28. If f (x) = g(x)h(x) + j(x)
h(x)

, find f ′(−1).

Differentiate each of the functions in Exercises 29–34 in two
different ways: first with the product and/or quotient rules and
then without these rules. Then use algebra to show that your
answers are the same.
29. f (x) = x 2(x + 1) 30. f (x) = 3x + 1

x 4

31. f (x) = x 7/2(2 − 5x 3) 32. f (x) = √
x (x−1 + 1)

33. f (x) = x 2 − x 3

√
x

34. f (x) =
√

x
x−2x 3

Use the differentiation rules developed in this section to find
the derivatives of the functions in Exercises 35–64. Note that it
may be necessary to do some preliminary algebra before dif-
ferentiating.

35. f (x) = 4 − 3x 7 36. f (x) = 2x − 3 + 4x 2

37. f (x) = 2(1 + 3x 2) 38. f (x) = 5x 3 − 2x 2 + 7

39. f (x) = 2(3x+1)−4x 5 40. f (x) = x 2 + x(2 − 3x 2)

41. f (x) = (x + 2)(x − 1) 42. f (x) = (x 2 − 3)2

43. f (x) = (3x + 2)3 44. f (x) = (3 − x)2 + 5

45. f (x) = 1 − 6x 3

3
46. f (x) = x

x + 1

47. f (x) = x 2 − 1
x + 1

48. f (x) = x 4 − 7x 3

2x
49. f (x) = π2 50. f (x) = (

√
x − 3

√
x )2

51. f (x) = x 2

5
√

x 2
52. f (x) = x − 1

(x + 1)(x + 2)

53. f (x) =
5
√

x 7 − 2x 4

x 3
54. f (x) = (3x

√
x )−2

55. f (x) = x 7 − 3x 5 + 4
1 − 3x 4

56. f (x) = x 3 + x − 1
x 2 − 7

57. f (x) =
√

1
x 3

+
(

1√
x

)3

58. f (x) = x 2 − 3x
x 2 − 2x + 1

59. f (x) = 2x − 3
5x + 4

60. f (x) = x 3√x (x 2/3)

61. f (x) = 1
(x − 2)(x − 3)

62. f (x) = 1
(x + 1)3

63. f (x) = x 2

x 3 + 5x 2 − 3x
64. f (x) = (x − 2)2

(x 2 + 1)(x − 3)

Find the derivatives of each of the absolute value and
piecewise-defined functions in Exercises 65–72.

65. f (x) = |x| 66. f (x) = |3x + 1|
67. f (x) = |1 − 2x| 68. f (x) = |x 2 − 1|

69. f (x) =
{

x 3, if x < 1
x, if x ≥ 1

70. f (x) =
{

1, if x ≤ −1
x 2/3, if x > −1

71. f (x) =
{−x 2, if x ≤ 0

x 2, if x > 0

72. f (x) =
{

3x + 1, if x ≤ 1
x 3, if x > 1

In Exercises 73–78, find a function that has the given deriva-
tive and value. In each case you can find the answer with an
educated guess-and-check process. It may be helpful to do
some preliminary algebra.

73. f ′(x) = 3x 5 − 2x 2 + 4, f (0) = 1

74. f ′(x) = 7x 2 + 8x11 − 18, f (0) = −2

75. f ′(x) = 1 − 4x 6, f (1) = 3

76. f ′(x) = x(4 − 2x), f (0) = 0

77. f ′(x) = (x 4 − 8)(1 − 3x 5), f (0) = 2

78. f ′(x) = (3x + 1)3, f (2) = 1

Applications
79. A spaceship is moving along a straight path from Venus

into the heart of the Sun. The velocity of the spaceship t
hours after leaving Venus is v(t) = 0.012t 2 + 400 thou-
sands of miles per hour. (To simplify matters we will pre-
tend that Venus is not moving with respect to the sun;
you may assume that everything is fixed in place in this
exercise.)

(a) Say what you can about the initial values s0, v0, and
a0, and then use derivatives and antiderivatives to
find equations for the position and acceleration of the
spaceship.

(b) Is the spaceship always moving towards the sun?
How can you tell?
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(c) Is the spaceship travelling at a constant acceleration?
Is it speeding up or slowing down, or neither? How
can you tell?

(d) The distance between Venus and the sun is about
67 million miles. How long will it take the spaceship
to reach the sun? How fast will the spaceship be go-
ing when it gets there?

SunVenus v(t)

a(t)

Sunt)

t)
x

t, hours

s0 s(t)

80. A bowling ball is thrown down from a 20th-story win-
dow. After 3 seconds, the bowling ball is 26 feet from
the ground and falling at a rate of −106 feet per second
(downwards). You may assume that gravity causes a con-
stant downward acceleration of −32 feet per second.

t, seconds t � 3

v0

h

s(t)

v(t)

h

26 ft

�106 ft/s

(a) If the height s(t) of the bowling ball t seconds after
being thrown is given by a quadratic polynomial
function, use s(3), s′(3), and s′′(3) to find an equation
for s(t).

(b) How high is the 20th-story window from which the
bowling ball was thrown?

(c) How fast was the bowling ball initially thrown?

81. On Earth, a falling object has a downward accelera-
tion of −32 feet per second per second due to grav-
ity. Suppose an object falls from an initial height of
s0 feet, with an initial velocity of v0 feet per sec-
ond. Use antiderivatives to show that the equations for

the position and velocity of the falling object after t
seconds are, respectively, s(t) = −16t 2 + v0t + s0 and
v(t) = −32t + v0.

82. In a science fiction novel, gravity on the planet XV-37 acts
very differently than it does in our universe. An object
dropped from a 1000-foot building on planet XV-37 will
have a downward gravitational acceleration of a(t) = −6t
feet per second per second after falling for t seconds. Use
antiderivatives to find equations for the position and ve-
locity of such a falling object. What might be the conse-
quences of living on this strange planet?

83. In another science fiction novel, gravity on planet Xil-
lian again acts very strangely. The height s(t) of a falling
object on Xillian is always a cubic polynomial function.
Suppose a kiwi fruit is dropped (with initial velocity of
zero) from the top of a Xillian radio tower. After 5 sec-
onds, the kiwi fruit is 100 feet from the ground and falling
at a rate of −200 feet per second. The acceleration of
the kiwi fruit at that moment is −46 feet per second per
second.

t � 5t, seconds

h

v0

s(t) 100 ft

�46 ft/s2

v(t)

h

v0 � 0

a(t)

�200 ft/s

(a) Use the values of s′(0) (note the kiwi initially has ve-
locity zero), s(5), s′(5), and s′′(5) given in the preced-
ing description to find a formula for the height s(t) of
the kiwi fruit t seconds after being dropped from the
Xillian radio tower. Specifically, use these four data
points to solve for the coefficients of a cubic polyno-
mial s(t) = at3 + bt2 + ct + d.

(b) Verify that the function s(t) you just found produces
the correct values for s′(0), s(5), s′(5), and s′′(5) in this
exercise.

(c) How high is the Xillian radio tower from which the
kiwi fruit was dropped?

(d) On Earth, acceleration due to gravity is given by a
constant −32 feet per second per second, that is,
on Earth we always have a(t) = −32 for falling ob-
jects. What is the function a(t) for acceleration due to
Xillian “gravity”? Is this acceleration constant?
What are the physical implications of gravity on
Xillian?

Proofs

84. Use the definition of the derivative to directly prove the
differentiation rules for constant and identity functions.

85. Use the h → 0 definition of the derivative to prove that
the power rule holds for positive integer powers.

86. Prove, in two ways, that the power rule holds for negative
integer powers:

(a) By using the z → x definition of the derivative.
(b) By using the h → 0 definition of the derivative.

87. Prove the difference rule in two ways:

(a) Using the definition of the derivative.
(b) Using the sum and constant multiple rules.

88. Use the definition of the derivative to prove the following
special case of the product rule:

d
dx

(x 2f (x)) = 2 x f (x) + x 2f ′(x).
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89. Use the definition of the derivative to prove the quotient
rule. (Hint: At some point you will have to add and subtract
the quantity f (x)g(x) from the numerator.)

90. The following reciprocal rule tells us how to differentiate
the reciprocal of a function:

d
dx

(
1

f (x)

)
= − f ′(x)

( f (x))2
.

Prove the reciprocal rule in two ways:

(a) By using the definition of the derivative.

(b) By using the quotient rule.

91. Consider the following formula for antidifferentiating
power functions: If f ′(x) = x k and k �= −1, then f (x) =

1
k + 1

x k + 1 + C for some constant C.

(a) Prove this antidifferentiation formula. You may as-
sume that any two functions with the same deriva-
tive differ by a constant, as we will prove in
Section 3.2.

(b) What part of your argument from part (a) breaks
down when f (x) = x−1?

92. Consider the piecewise-defined function

f (x) =
{

g(x), if x ≤ c
h(x), if x > c.

Prove that if g(x) and h(x) are continuous and differen-
tiable at x = c, and if g(c) = h(c) and g′(c) = h′(c), then f
is differentiable at x = c.

Thinking Forward

For each function f that follows, find all of the x-values in the
domain of f for which f ′(x) = 0 and all values for which f ′(x)
does not exist. In later sections we will call these values the
critical points of f .

� f (x) = x 3 − 2x � f (x) = √
x − x

� f (x) = 1
1 + √

x
� f (x) = x 2(x − 1)

(x − 2)2

Taylor polynomials: In the exercises that follow, you will investi-
gate the relationship between the coefficients of a polynomial
and its higher order derivatives. In later chapters this same
sort of idea will be used to locally approximate differentiable
functions with polynomials.

� Prove that if f is any quadratic polynomial function
f (x) = ax 2 + bx + c, then the coefficients of f are com-
pletely determined by the values of f (x) and its deriva-
tives at x = 0, as follows:

a = f ′′(0)
2

, b = f ′(0), and c = f (0).

In particular, this means that if f is any quadratic poly-

nomial function, then f (x) = f ′′(0)
2

x 2 + f ′(0)x + f (0).

� Prove that if f is any cubic polynomial function f (x) =
ax 3 + bx 2 + cx + d, then the coefficients of f are com-
pletely determined by the values of f (x) and its deriva-
tives at x = 0, as follows:

a = f ′′′(0)
6

, b = f ′′(0)
2

, c = f ′(0),

and d = f (0).

This means that every cubic polynomial function can

be written f (x) = f ′′′(0)
6

x 3 + f ′′(0)
2

x 2 + f ′(0)x + f (0).

� Suppose f is any cubic polynomial function
f (x) = ax 3 + bx 2 + cx + d. Prove that the coeffi-
cients a, b, c, and d of f can be expressed in terms
of the values of f (x) and its derivatives at the point
x = 2. (Hint: In other words, show that you can write the
coefficients a, b, c, and d in terms of f (2), f ′(2), f ′′(2), and
f ′′′(2).)

� Suppose f is a polynomial of degree n, and let k be
some integer with 0 ≤ k ≤ n. Prove that if f (x) is of
the form

f (x) = a n x n + a n−1 x n−1 + · · · + a k x k + · · · + a1 x + a 0,

then a k = f (k)(0)
k!

, where f (k)(x) is the kth derivative of

f (x) and k! = k(k − 1) · · · (2)(1). (Hint: Find f (k)(x), and
use it to show that f (k)(0) = k!a k.)
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2.4 THE CHAIN RULE AND IMPLICIT DIFFERENTIATION

� The chain rule for differentiating compositions of functions

� Implicit functions and implicit differentiation

� Using implicit differentiation to prove derivative formulas

Differentiating Compositions of Functions

With the rules we have developed so far, we can differentiate any arithmetic combination
of functions whose components have known derivatives. There is, however, one other way
that functions can be combined: by composition. We still don’t know how to differentiate,
say, the composition y = (x 2 + 1) 1/2. Is the derivative of a composition f ( g(x)) somehow
related to the derivatives of f and g?

Let’s consider a simple example involving rates of change. Suppose you own a small
factory that makes 30 widgets an hour and you make a profit of $10.00 for each widget
made. This means that you can make a profit of $300.00 an hour by making widgets at
your factory. We arrive at this answer by using the product:

300 dollars
hour

=
(

10 dollars
widget

) (
30 widgets

hour

)
.

What does this have to do with the derivative of a composition? Let w(t) be the number
of widgets you have t hours after starting production, and let p(w) be the profit made from
producing w widgets. Then the composition p(w(t)) gives the profit made after t hours. We
are interested in the rate of change of profit per hour, which is the derivative dp

dt
. The fact

that you make a profit of dp
dw

= 10 dollars per widget and the fact that your factory can make
dw
dt

= 30 widgets per hour are also statements about derivatives. Repeating our previous

calculation, we can relate the derivative of the composition p(w(t)) to the derivatives of p(w)
and w(t):

dp
dt

= dp
dw

dw
dt

.

This example suggests that the derivative of a composition is the product of the deriva-
tives of the component functions. That is in fact the case in general:

THEOREM 2.12 The Chain Rule

Suppose f (u(x)) is a composition of functions. Then for all values of x at which u is
differentiable at x and f is differentiable at u(x), the derivative of f with respect to x is
equal to the product of the derivative of f with respect to u and the derivative of u with
respect to x.

In Leibniz notation, we write this as

df
dx

= df
du

du
dx

.

In “prime” notation, we write it as

( f ◦ u)′(x) = f ′(u(x)) u′(x).
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To use the chain rule, we must first recognize a function as a composition f (u(x)) and iden-
tify the “outside” and “inside” functions f and u. For example, the function y = (x 2 + 1) 1/2

can be thought of as a composition y = f (u(x)) with inside function u(x) = x 2 + 1 and out-
side function f (u) = u 1/2. The chain rule says that we should differentiate the outside func-
tion f with respect to u and then multiply the result by the derivative of the inside function:

( f (u(x))′ = f ′(u(x)) u′(x) = 1
2

(u(x))− 1/2u′(x) = 1
2

(x 2 + 1)− 1/2(2x).

For more examples of how to apply the chain rule, see Examples 1 and 2. Most of the
examples of the chain rule in this section will be fairly simple. We will do more complicated
examples in later sections after we have seen how to differentiate exponential, logarithmic,
and trigonometric functions.

The “prime” notation in Theorem 2.12 makes clear why we want u to be differentiable
at x and f to be differentiable at u(x). When it suits our purposes, we can also write ( f (u(x)))′
for ( f ◦ u)′(x). The Leibniz notation suggests why we call it the “chain” rule: We are taking
the derivative of a chain of functions by multiplying a chain of derivatives. If we had a longer
chain of functions, then we would have a longer chain of derivatives; for example, the
derivative of the composition f (u(v(x)) with respect to x is given by the chain of derivatives

df
dx

= df
du

du
dv

dv
dx

.

The chain rule seems sensible if you consider its analog with difference quotients, since
we can cancel �u’s to justify the equation �f

�x
= �f

�u
�u
�x

. However, this cancellation does

not automatically apply to the Leibniz notation, since the differentials df , dx, and du do not
represent numerical quantities. They cannot be cancelled just because the notation makes
it look tempting to do so. The proof of the chain rule requires more work than simply
“cancelling,” but except for a certain technical point, is not that difficult.

Proof. Our proof will start with the definition of the derivative for ( f ◦ g). After some algebra and
a limit rule, a change of variables will give us the result we desire. In the middle of the calculation
we will make a simplifying substitution:

( f ◦ g)′(x) = lim
h→0

f ( g(x + h)) − f ( g(x))
h

← derivative

= lim
h→0

(
f ( g(x + h)) − f ( g(x))

g(x + h) − g(x)
g(x + h) − g(x)

h

)
← algebra

=
(

lim
h→0

f ( g(x + h)) − f ( g(x))
g(x + h) − g(x)

)(
lim
h→0

g(x + h) − g(x)
h

)
← product rule for limits

=
(

lim
k→0

f ( g(x) + k) − f ( g(x))
k

) (
g′(x)

) ← see below

= f ′( g(x)) g′(x) ← derivative

There is one technical point to consider in this proof. In the fourth step we applied the substitution
k = g(x + h) − g(x). Since g(x) is differentiable, it is also continuous; therefore as h → 0, we also
have k = g(x + h) − g(x) → 0. However, the preceding calculation assumes that k = g(x + h) − g(x)
is nonzero for small enough h, which in some situations may not be the case. In the case when this
happens because g(x+h) = g(x) as h→0, it is easy to show that ( f ◦g)′(x) and f ′( g(x))g′(x) are both
zero and therefore equal. There are other cases when this can happen, but handling the details for
those functions is beyond the scope of this course, so we will assume here that g(x) is nice enough
that we can avoid those cases.
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Implicit Differentiation

Consider the equation x 2 + y2 = 1 that describes the circle of radius 1 centered at the origin,
as shown next at the left. Clearly, this graph does not represent a function, since it does not
pass the vertical line test. However, locally, that is, in small pieces, the graph does define y
as a function of x. For example, the top half of the graph shown in the middle figure does
represent a function, as does the graph of the bottom half shown at the right.

x 2 + y2 = 1 y = √
1 − x 2 y = −√

1 − x 2

1�1

1

�1

x

y

1�1

1

�1

x

y

1�1

1

�1

x

y

Although we cannot solve the equation x 2 + y2 = 1 for y and obtain a single well-defined
function, we can still think of the x-values as inputs and the y-values as outputs; the only
difference is that there may be more than one y-value for each x-value. In cases such as
these, we say that y is an implicit function of x.

Thinking locally, we can use our usual differentiation techniques to show that the unit
circle has horizontal tangent lines at (0, 1) and at (0, −1). Looking at the top of the circle,
we have y = √

1 − x 2, with derivative

y′ = 1
2

(1 − x 2)− 1/2(−2x) = −x√
1 − x 2

,

which is clearly zero only when x = 0. Therefore the unit circle has a horizontal tangent
line at the point (0,

√
1 − 02 ) = (0, 1). In a similar fashion we could use the equation y =

−√
1 − x 2 for the bottom half of the circle to find the other horizontal tangent line.

We will not always be able to divide an implicit function into pieces given by actual
functions whose equations we know. That is, we will not always be able to “solve for y.”
However, given an equation that defines an implicit function, we can still find information
about slopes and derivatives simply by differentiating both sides of the equation with re-
spect to x. This technique is known as implicit differentiation. The key to implementing
the technique will be applying the chain rule appropriately.

For example, we can differentiate both sides of the equation x 2 + y2 = 1 from the
previous example. Along the way we will have to remember that we are thinking of
y = y(x) as a function of x and apply the chain rule:

x 2 + y2 = 1 ← given equation

d
dx

(x 2 + ( y(x))2) = d
dx

(1) ← differentiate both sides

2x + 2y dy
dx

= 0 ← power and chain rules

dy
dx

= −2x
2y

= − x
y
. ← solve for dy

dx

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

204 Chapter 2 Derivatives

The use of the chain rule in the differentiation step is crucial to these types of calculations.
Notice that the derivative of x 2 with respect to x is the familiar 2x, but the derivative of y2

with respect to x uses the chain rule to arrive at 2y dy
dx

. Here y is thought of as an implicit

function of x, so the expression y2 is really the composition of the implicit function y(x) with
the squaring function. That is why the chain rule must come into play when we differentiate
y2 with respect to x.

The fact that dy
dx

= − x
y

means that for any point (a, b) that lies on the graph of the circle

x 2 + y2 = 1, the slope of the tangent line to the circle at (a, b) is given by − a
b
. For example,

the point
(

1
2

,
√

3
2

)
is on the graph of the circle because

(
1
2

)2 +
(√

3
2

)2 = 1 and the slope of

the line tangent to the circle at that point is −1/2√
3/2

= − 1√
3

. Similarly, at the point
(
− 1

2
, −

√
3

2

)

the slope of the tangent line is also − 1√
3

, as shown next at the left. At the point (0, 1) on

the circle, the tangent line has slope − 0
1

= 0 and is thus horizontal, and at the point (1, 0)

the tangent line has undefined slope − 1
0

and thus is vertical, as shown at the right.

Slope at (a, b) given by − a
b

Horizontal and vertical tangent lines

��
2
1

�
2
1

� 2
3slope � 1

3

slope � 1
32

3

x

y

x
�1

�1

y
slope 0

und
efined

   slope

1

1

Examples and Explorations

EXAMPLE 1 Applying the chain rule one step at a time

Use the chain rule to differentiate h(x) =
(

x
1 − 3x 2

)4

, writing out all steps.

SOLUTION

We can think of h(x) as a composition f (u(x)) with inside function u(x) = x
1 − 3x 2

and out-

side function f (u) = u4. Applying the chain rule, we have

h′(x) = f ′(u(x))u′(x) ← chain rule

= 4(u(x))3u′(x) ← derivative of outside function

= 4
(

x
1 − 3x 2

)3

u′(x) ← evaluate at inside function

= 4
(

x
1 − 3x 2

)3 (
1(1 − 3x 2) − x(−6x)

(1 − 3x 2)2

)
. ← derivative of inside function
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When you become comfortable using the chain rule, you won’t write out each step sep-
arately as we just did; instead you will simply think something like “the derivative of the
outside with the inside plugged in, times the derivative of the inside,” and write out the
derivative calculation in one step. Note that once again we have not simplified the deriva-
tive that we found. In this text we will not simplify such answers unless we have a specific
use for the derivative in question. �

EXAMPLE 2 Determining which differentiation rule to apply first

For each function f , find the derivative f ′. What is the first differentiation rule that you must
use in each case?

(a) f (x) =
(

3
√

x − 1
x

)−2
(b) g(x) =

√
x 2 − 1

1 − 1
x

(c) h(x)= (x 2−1)5(3x−1)2

SOLUTION

(a) The function f is at its outermost layer a composition of the form (u(x))−2, where
u(x) = 3

√
x − 1

x
. Therefore, the first rule to use is the chain rule. The power rule is

the second differentiation rule we must use, since we need to use the chain rule to even
begin differentiating the function. Before applying the chain rule, we use algebra to
rewrite the function f in a more convenient exponent form:

d
dx

((
3
√

x − 1
x

)−2) = d
dx

((x 1/3 − x−1)−2) ← algebra

= −2(x 1/3 − x−1)−3 · d
dx

(x 1/3 − x−1) ← chain, power rules

= −2(x 1/3 − x−1)−3
(

1
3

x− 2/3 − (−1)x−2
)
. ← difference, power rules

(b) The function g(x) is at its outermost layer a quotient, so we will begin by using
the quotient rule. Again we write roots and fractions as exponents first, so that the
differentiation steps will be easier:

d
dx

( √
x 2 − 1

1 − (1/x)

)
= d

dx

(
(x 2 − 1)1/2

1 − x−1

)
← algebra

=
d
dx

((x 2 − 1) 1/2)(1 − x−1) − (x 2 − 1) 1/2 d
dx

(1 − x−1)

(1 − x−1)2 ← quotient rule

=
1
2

(x 2 − 1)− 1/2(2x)(1 − x−1) − (x 2 − 1) 1/2(0 − (−1)x−2)

(1 − x−1)2 . ← more rules

(c) The function h(x) is at its outermost layer a product, so we begin by applying the prod-
uct rule:
d
dx

((x 2−1)5(3x−1)2) = d
dx

((x 2−1)5)(3x−1)2 + (x 2−1)5 d
dx

((3x−1)2) ← product rule

= 5(x 2−1)4(2x)(3x−1)2 + (x 2−1)5(2)(3x−1)(3). ← more rules
�

EXAMPLE 3 Implicit differentiation and the chain rule

Each of the equations that follow defines y = y(x) as an implicit function of x. Use implicit
differentiation to find y′ = y′(x).

(a) 3x 4 + 2y4 + x + y = 0 (b) x 2y + xy2 = 1
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SOLUTION

(a) Before we begin, note that y = y(x) is an implicit function of x, so when we differentiate
any expression involving y with respect to x, we will need the chain rule. We will write
y and y′ to avoid any confusion with multiplication here, but each time we do so we
will think of the (implicit) functions y(x) and y′(x). Differentiating both sides of the
given equation and then solving for y′ gives

d
dx

(3x 4 + 2y4 + x + y) = d
dx

(0) ← differentiate both sides

3(4x 3) + 2(4y3)y′ + 1 + y′ = 0 ← note x and y are dealt with differently

8y3y′ + y′ = −12x 3 − 1 ← isolate y′ terms to one side

y′(8y3 + 1) = −12x 3 − 1 ← factor out y′ on the left

y′ = −12x 3 − 1
8y3 + 1

. ← divide to finish solving for y′

(b) This time we will need the product rule, since x 2y is the product of the function x 2 and
the implicit function y, and xy2 is the product of the function x and the implicit function
y2. For the latter product we will also require the chain rule. The overall process is much
the same as in the previous calculation:

d
dx

(x 2y + xy2) = d
dx

(1) ← differentiate both sides

(2xy + x 2y′) + (1y2 + x(2yy′)) = 0 ← product and chain rules

x 2y′ + 2xyy′ = −2xy − y2 ← isolate y′ terms to one side

y′(x 2 + 2xy) = −2xy − y2 ← factor out y′ on the left

y′ = −2xy − y2

x 2 + 2xy
. ← divide to finish solving for y′

�

EXAMPLE 4 Finding values and tangent lines on the graph of an implicit function

Consider the equation y3 + xy + 2 = 0 that defines y as an implicit function of x.

(a) Show that y3 − 5y + 2 factors as ( y − 2)( y2 + 2y − 1).

(b) If x = −5, find all the possible values for y.

(c) Find the slope of the line tangent to y3 + xy + 2 = 0 at the point (−5, 2).

SOLUTION

(a) We could factor y3 − 5y + 2 by using synthetic division, which you may have seen in
a previous course, but since the factorization is already given in the problem, all we
need to do is multiply out and check:

( y − 2)( y2 + 2y − 1) = y3 + 2y2 − y − 2y2 − 4y + 2 = y3 − 5y + 2.

(b) Given the factorization from part (a), we substitute x = −5 into the equation
y3 + xy + 2 = 0 and solve for all corresponding values of y:

y3 − 5y + 2 = 0 ← the equation with x = −5

( y − 2)( y2 + 2y − 1) = 0 ← factorization in part (a)

y = 2, y = −1 +
√

2, or y = −1 −
√

2. ← quadratic formula

Thus (−5, 2), (−5, −1 + √
2 ), and (−5, −1 − √

2 ) are points on the graph of
y3 + xy + 2 = 0.
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(c) To find the slope of the tangent line we must first calculate dy
dx

. Using implicit differen-
tiation and the chain rule, we have

y3 + xy + 2 = 0 ← the given equation
d
dx

(( y(x))3 + x · y(x) + 2) = d
dx

(0) ← differentiate both sides

3y2 dy
dx

+ (1)( y) + (x)
(

dy
dx

)
+ 0 = 0 ← chain and product rules

3y2 dy
dx

+ x dy
dx

= −y ← start solving for dy
dx

dy
dx

(3y2 + x) = −y ← algebra

dy
dx

= −y
3y2 + x

. ← algebra

This means that if a point (a, b) is on the graph of y3 +xy+2 = 0, then the line tangent
to the graph of y3 + xy + 2 = 0 at (a, b) has slope

dy
dx

∣∣∣ x = a
y = b

= −b
3b2 + a

.

Therefore the slope of the tangent line at the point (a, b) = (−5, 2) is

dy
dx

∣∣∣ x = −5
y = 2

= −2
3(2)2 + (−5)

= −2
12 − 5

= −2
7

.
�

CHECKING
THE ANSWER

We can use a graphing utility to sketch the graph of the implicit function from the previous
example, as shown next at the left. Notice that for x = −5 there are three corresponding
y-values, as we showed in part (b). At each of these points (−5, y) there is a tangent line
to the graph. From the graph at the right it does appear (taking axes scales into account)
that the slope of the tangent line at (−5, 2) could be approximately − 2

7
.

y3 + xy + 2 = 0 and the points at x = −5 Slope at (−5, 2) is − 2
7

x
10�10 5�5

4

�4

2

�2

y

x
10�10 5�5

4

�4

2

�2

y

EXAMPLE 5 Using implicit differentiation to prove the general power rule

Although we have been using the power rule for general rational powers, we have in fact
proved it only for integer powers.

(a) Use implicit differentiation and the power rule for integer powers to prove that
d
dx

(x 5/3) = 5
3

x 2/3.

(b) Use implicit differentiation and the power rule for integer powers to prove the power
rule for rational powers.
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SOLUTION

(a) If y = x 5/3, then y3 = x 5. With this equation we can use implicit differentiation and
the power rule for integer powers to find y′:

y3 = x 5 ← since y = x 5/3

d
dx

(( y(x))3) = d
dx

(x 5) ← differentiate both sides

3y2y′ = 5x 4 ← chain rule and integer power rule

y′ = 5x 4

3y2 = 5x 4

3(x 5/3)2 ← solve for y′, substitute y = x 5/3

y′ = 5
3

x4−(10/3) = 5
3

x 2/3. ← algebra

(b) Suppose y = x p/q, where p
q

is a rational number. Generalizing the method used in

part (a), we use implicit differentiation on the equation y q = x p to solve for y′:
y q = x p ← since y = x p/q

d
dx

(( y(x))q) = d
dx

(x p) ← differentiate both sides

qy q−1y ′ = px p−1 ← chain rule, integer power rule

y′ = px p−1

qyq−1 = px p−1

q(x p/q)q−1 ← solve for y′, substitute y = x p/q

y′ = px p−1

qx p(q − 1)/q
= p

q
x((p−1)−( p(q − 1)/q)) ← algebra

y′ = p
q

x p/q − 1. ← even more algebra �

TEST YOUR? UNDERSTANDING
� What is the difference between f ′( g(x)) and ( f ( g(x)))′?

� The chain rule formula f ′(u(x))u′(x) is not exactly the same as the product of the deriva-
tives of f and u. What is the difference?

� What is the difference between saying that y is a function of x and saying that y is an
implicit function of x?

� Suppose y is an implicit function of x. Would it be correct or incorrect to say that
d
dx

( y3) = 3y2, and why?

� If f is an invertible function with inverse f −1, then what is the relationship between the
derivatives of f and f −1?

EXERCISES 2.4

Thinking Back
Differentiation review: Without using the chain rule, find the
derivatives of each of the functions f that follow. Some alge-
bra may be required before differentiating.

� f (x) = (3x + 1)4 � f (x) =
(

1
x

+ 1
x 2

)2

� f (x) = (x + 1)2√x � f (x) = (x + 1)2

√
x

Decomposing functions: For each function k that follows, find
functions f , g, and h so that k = f ◦ g ◦ h. There may be more
than one possible answer.

� k(x) = (x 2 + 1)3 � k(x) =
√

1 + (x − 2)2

� k(x) =
√

1
3x + 1

� k(x) = 1√
3x + 1
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The chain rule is used to differentiate
compositions of functions.

(b) True or False: If f and g are differentiable functions,
then the derivative of f ◦ g is equal to the derivative
of g ◦ f .

(c) True or False: If f and g are differentiable functions,

then
d
dx

( f ( g(x))) = f ′(x)g′(x).

(d) True or False: If u and v are differentiable functions,

then
d
dx

(u(v(x))) = u′(v′(x)).

(e) True or False: If h and k are differentiable functions,

then
d
dx

(k(h(x))) = k′(h(x))h′(x).

(f) True or False: If y is an implicit function of x, then
there can be more than one y-value corresponding
to a given x-value.

(g) True or False: The graph of an implicit function can
have vertical tangent lines.

(h) True or False: If y is an implicit function of x and
dy
dx

∣∣
x=2= 0, then the graph of the implicit function

has a horizontal tangent line at (2, 0).
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) Three functions that we could not have differentiated
before learning the chain rule, even after algebraic
simplification.

(b) An equation that defines y as an implicit function
of x, but not as a function of x.

(c) The graph of an implicit function with three horizon-
tal tangent lines and two vertical tangent lines.

3. State the chain rule for differentiating a composition
g(h(x)) of two functions expressed (a) in “prime” notation
and (b) in Leibniz notation.

4. In the text we noted that if f (u(v(x))) was a composition

of three functions, then its derivative is
df
dx

= df
du

du
dv

dv
dx

.

Write this rule in “prime” notation.
5. Write down a rule for differentiating a composition

f (u(v(w(x)))) of four functions (a) in “prime” notation and
(b) in Leibniz notation.

6. Suppose u(x) = √
3x 2 + 1 and f (u) = u2 + 3u5

1 − u
. Use the

chain rule to find
d
dx

( f (u(x))) without first finding the
formula for f (u(x)).

7. Differentiate f (x) = (3x + √
x )2 in three ways. When

you have completed all three parts, show that your three
answers are the same:
(a) with the chain rule
(b) with the product rule but not the chain rule
(c) without the chain or product rules

8. Differentiate f (x) =
(

x4 − 2√
x

)3

in three ways. When you

have completed all three parts, show that your three an-
swers are the same:
(a) with the chain rule
(b) with the quotient rule but not the chain rule
(c) without the chain or quotient rules

Suppose g, h, and j are differentiable functions with the values
for the function and derivative given in the following table:

x g(x) h(x) j(x) g′(x) h′(x) j ′(x)
−3 0 3 1 1 0 2
−2 1 2 3 2 −3 0
−1 3 0 1 −1 −2 −2

0 2 3 0 −2 3 −2
1 0 −1 −2 −2 −2 −1
2 −2 −2 −3 −1 0 2
3 −3 0 1 0 1 2

Use the table to calculate the values of the derivatives listed
in Exercises 9–16.

9. If f (x) = g(h(x)), find f ′(3).

10. If f (x) = h( g(x)), find f ′(3).

11. If f (x) = ( g(x))3, find f ′(−2).

12. If f (x) = g(x 3 − 6), find f ′(2).

13. If f (x) = h( g(j(x))), find f ′(1).

14. If f (x) = j(2x), find f ′(−1).

15. If f (x) = h( g(x)j(x)), find f ′(0).

16. If f (x) = h(h(h(x))), find f ′(1)

17. If y is a function of x, then how is the chain rule involved
in differentiating y3 with respect to x, and why?

18. Show that, for any integers p and q (with q �= 0),

( p − 1) − p(q − 1)
q

= p
q

− 1.

What does this equation have to do with the current
section?
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19. Match the two graphs shown here to the equations
(x + 1)( y2 + y − 1) = 1 and xy2 + y = 1. Explain your
choices.

3

2

1

y

�3

�2

�1
�1�2 4321

x

3

2

1

y

�3

�2

�1
�3�4 �1�2 21

x

20. Match the two graphs shown here to the equations
xy2 + x = 1 and 1 + x + xy2 = 0. Explain your choices.

3

2

1

y

�3

�2

�1
�1

x
1

x

3

2

1

y

�3

�2

�1

Skills

Find the derivatives of the functions in Exercises 21–46. Keep
in mind that it may be convenient to do some preliminary
algebra before differentiating.

21. f (x) = 1
x 3 + 1

22. f (x) = (
√

x + 4)5

23. f (x) = x(3x 2 + 1)9 24. f (x) = √
x 2 + 1

25. f (x) = 1√
x 2 + 1

26. f (x) = 3x + 1√
x 2 + 1

27. f (x) = (x
√

x + 1)−2 28. f (x) = (1 + √
x )2

3x 2 − 4x + 1

29. f (x) =
1
x

− 3x 2

x 5 − 1√
x

30. f (x) = (x + 1)(3x − 4)√
x 3 − 27

31. f (x) = (x 1/3 − 2x)−1 32. f (x) =
√

2 − √
3x + 1

33. f (x) = x− 1/2(x 2 − 1)3 34. f (x) = (x− 1/2(x 2 − 1))3

35. f (x) =
√

3x − 4(2x + 1)6

36. f (x) = x 2 − 3
√

x + 5x 9

√
x−1

37. f (x) = (5(3x 4 − 1)3 + 3x − 1)100

38. f (x) = (1 − 4x)2(3x 2 + 1)9

39. f (x) = 3((x 2 + 1)8 − 7x)− 2/3

40. f (x) = (3x + 1)(x 4 − 3)4

(x + 5)−2(1 + x 2)5

41. f (x) = (5x 4 − 3x 2)7(2x 3 + 1)

42. f (x) = x
√

3x 2 + 1 3
√

2x + 5

43. f (x) = ((2x + 1)−5 − 1)−9

44. f (x) = x(x 2)(
√

x )(x 2/3)

45. f (x) = (x 4 − √
3 − 4x )8 + 5x

46. f (x) =
√

1 +
√

1 + √
1 − 2x

Calculate each of the derivatives or derivative values in
Exercises 47–52.

47.
d 2

dx 2
((x

√
x + 1)−2)

48.
d 2

dx 2

⎛
⎜⎝

1
x

− 3x 2

x 5 − 1√
x

⎞
⎟⎠

49.
d 2

dx 2

(
3

x− 3/2
√

x

)∣∣∣∣
x=2

50.
d 2

dx 2
((5x 4 − 3x 2)7(2x 3 + 1))

51.
d 3

dx 3
(x(3x 2 + 1)9)|x=0

52.
d
dx

(
x 2 + 1

(x 2 + 4)(3x − 2)

)∣∣∣∣
x=−1

Suppose that r is an independent variable, s is a function of r,
and q is a constant. Calculate the derivatives in Exercises 53–
58. Your answers may involve r, s, q, or their derivatives.

53.
d
dr

(s3) 54.
d
dr

(r 3) 55.
d
dr

(q3)

56.
d
dr

(sr 2) 57.
d
dr

(rs2) 58.
d
dr

(qs2)

For each of the equations in Exercises 59–62, y is defined as
an implicit function of x. Solve for y, and use what you find to
sketch a graph of the equation.

59.
1
4

x 2 + y2 = 9 60. (x − 1)2 + ( y + 2)2 = 4

61. x 2 − 3y2 = 16 62. 4y2 − x 2 + 25 = 0

In Exercises 63–68, find a function that has the given deriva-
tive and value. In each case you can find the answer with an
educated guess-and-check process while thinking about the
chain rule.

63. f ′(x) = 5(x 2 + 1)4(2x), f (0) = 1

64. f ′(x) = 5(x 2 + 1)4(2x), f (1) = 25

65. f ′(x) = x(x 2 + 1)4, f (0) = 0

66. f ′(x) = −6x(x 2 + 1)4, f (0) = 1
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67. f ′(x) = √
3x + 1, f (0) = 1

68. f ′(x) = x 2

√
x 3 + 1

, f (1) = 2

Each of the equations in Exercises 69–80 defines y as an
implicit function of x. Use implicit differentiation (without

solving for y first) to find
dy
dx

.

69. 4x 2 − y2 = 9 70. x 2 + y2 = 4

71. xy2 + 3x 2 = 4 72. y6 − 3x + 4 = 0

73. (3x + 1)( y2 − y + 6) = 0 74. x 2y − y2x = x 2 + 3

75.
√

3y − 1 = 5xy 76. (3y2 + 5xy − 2)4 = 2

77.
y2 + 1
3y − 1

= x 78. 3y = 5x 2 + 3
√

y − 2

79.
1
y

− 1
x

= x 2

y + 1
80.

x + 1
y2 − 3

= 1
xy

In Exercises 81–84, use implicit differentiation to algebraically
find each quantity or location related to the given implicit
function.

81. Consider the circle of radius 1 centered at the origin, that
is, the solutions of the equation x 2 + y2 = 1.

(a) Find all points on the graph with an x-coordinate of

x = 1
2

, and then find the slope of the tangent line at

each of these points.
(b) Find all points on the graph with a y-coordinate of

y =
√

2
2

, and then find the slope of the tangent line

at each of these points.
(c) Find all points on the graph where the tangent line is

vertical.
(d) Find all points on the graph where the tangent line

has a slope of −1.

82. Consider the graph of the solutions of the equation
4y2 − x 2 + 2x = 2.

(a) Find all points on the graph with an x-coordinate of
x = 3, and then find the slope of the tangent line at
each of these points.

(b) Find all points on the graph with a y-coordinate of
y = 3, and then find the slope of the tangent line at
each of these points.

(c) Find all points where the graph has a horizontal
tangent line.

(d) Find all points where the graph has a vertical tangent
line.

83. Consider the graph of the solutions of the equation
y3 + xy + 2 = 0.

(a) Find all points on the graph with an x-coordinate of
x = 1, and then find the slope of the tangent line at
each of these points.

(b) Find all points on the graph with a y-coordinate of
y = 1, and then find the slope of the tangent line at
each of these points.

(c) Find all points where the graph has a horizontal tan-
gent line.

(d) Find all points where the graph has a vertical tangent
line.

84. Consider the graph of the solutions of the equation
y3 − 3y − x = 1.
(a) Find all points on the graph with an x-coordinate of

x = −1, and then find the slope of the tangent line at
each of these points.

(b) Find all points on the graph with a y-coordinate of
y = 2, and then find the slope of the tangent line at
each of these points.

(c) Find all points where the graph has a horizontal
tangent line.

(d) Find all points where the graph has a vertical tangent
line.

Applications
85. Linda can sell 12 magazine subscriptions per week and

makes $4.00 for each magazine subscription she sells.
Obviously this means that Linda will make (12)($4.00) =
$48.00 per week from magazine subscriptions. Explain
this result mathematically, using mathematical notation
and the chain rule.

86. If you drop a pebble into a large lake, you will cause a cir-
cle of ripples to expand outward. The area A = A(t) and
radius r = r(t) are clearly functions of t (they change over
time) and are related by the formula A = πr 2.

t, seconds

Area A � A(t)

r � r(t)

(a) If r is measured in inches and t is measured in

seconds, what are the units of
dA
dt

? What are the units

of
dA
dr

?

(b) Find
dA
dr

and explain the practical meaning of
dA
dr

∣∣∣
r=2

.

(c) Find
dA
dt

and explain the practical meaning of
dA
dt

∣∣∣
r=2

.

87. The area of a circle can be written in terms of its radius as
A = πr 2, where both A and r are functions of time. Sup-
pose a circular area from a spotlight on a stage floor is
slowly expanding.

(a) Find
dA
dr

and explain its meaning in practical terms.

(b) Does the rate
dA
dr

depend on how fast the radius of

the circle is increasing? Does it depend on the radius
of the circle? Why or why not?
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(c) Find
dA
dt

and explain its meaning in practical terms.

(d) Does the rate
dA
dt

depend on how fast the radius of

the circle is increasing? Does it depend on the radius
of the circle?

(e) If the radius of the circle of light is increasing at a con-
stant rate of 2 inches per second, how fast is the area
of the circle of light increasing at the moment that the
spotlight has a radius of 24 inches?

Proofs
88. Use the chain rule twice to prove that

d
dx

( f (u(v(x)))) =
f ′(u(v(x)))u′(v(x))v′(x).

89. In Exercise 89 of the Section 2.3 you used the definition of
derivative to prove the quotient rule. Prove it now another

way: by writing a quotient
f
g

as a product and applying the

product, power, and chain rules. Point out where you use
each rule.

90. Use implicit differentiation and the fact that
d
dx

(x 4) = 4x 3

to prove that
d
dx

(x−4) = −4x−5.

91. Use implicit differentiation and the fact that
d
dx

(x 3) = 3x 2

and
d
dx

(x 5) = 5x 4 to prove that
d
dx

(x 3/5) = 3
5

x− 2/5.

92. Use implicit differentiation and the power rule for in-
teger powers (not the general power rule) to prove that
d
dx

(x 2/3) = 2
3

x− 1/3.

93. Use implicit differentiation, the product rule, and the
power rule for positive integer powers to prove the power
rule for negative integer powers.

94. Use implicit differentiation and the power rule for integer
powers to prove the power rule for rational powers.

Thinking Forward
Finding critical points: For each of the following functions f ,
find all of the x-values for which f ′(x) = 0 and all of the
x-values for which f ′(x) does not exist.

� f (x) = x 3
√

3x + 1 � f (x) = (1 − x 4)7

� f (x) = (x 2 +3)(x−2) 3/2 � f (x) = 3x
(

x + 1
x

)

� f (x) =
√

x

x
√

x − 1
� f (x) = (x

√
x + 1 )−2

Finding antiderivatives by undoing the chain rule: For each func-
tion f that follows, find a function F with the property that
F′(x) = f (x). You may have to guess and check to find such a
function.

� f (x) = x
√

1 + x 2 � f (x) = x 2
√

1 + x 3

� f (x) = 1
(2 − 5x)3

� f (x) = 1√
1 + 3x

2.5 DERIVATIVES OF EXPONENTIAL AND LOGARITHMIC
FUNCTIONS

� Formulas for differentiating exponential and logarithmic functions

� Rates of growth of exponential functions

� The method of logarithmic differentiation

Derivatives of Exponential Functions

The power rule tells us that the derivative of x k is kx k−1. This rule works only for power
functions, where the base is the variable x and the power is a constant k; it does not tell
us how to differentiate an exponential function like 2 x or e 3x, where the variable is in the
exponent. To determine such derivatives we must return to the definition of the derivative:

d
dx

(b x) = lim
h→0

b x+h − b x

h
= lim

h→0

b xb h − b x

h
= lim

h→0

b x(b h − 1)
h

= b x

(
lim
h→0

b h − 1
h

)
.

Although we have simplified as much as possible, this is a limit that we do not yet know
how to calculate.
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In one special case we do already know how to evaluate this limit. In Theorem 1.26

we saw that e is the unique number such that lim
h→0

eh − 1
h

= 1. Therefore when b = e, the

preceding calculation looks like this:

d
dx

(e x) = lim
h→0

e x+h − e x

h
= · · · = e x

(
lim
h→0

e h − 1
h

)
= e x(1) = e x.

We have just shown that the function f (x) = e x is its own derivative! This is in fact the exact
reason that we defined the number e the way that we did. As illustrated here, y = e x is its
own associated slope function:

Slope and height of y = e x

both equal 1 at x = 0
Slope and height of y = e x

both equal e ≈ 2.18 at x = 1
Slope and height of y = e x

both equal e 1.5 ≈ 4.48 at x = 1.5

x
21�2 �1

7

y

6

5

4

3

2

1

slo
pe 1

height 1
height e

x
21�2

7

y

6

5

4

3

2

1

slo
pe

 e

�1

height
4.48

x
21�2

7

y

6

5

4

3

2

1

sl
op

e 
4.

48

�1

Other exponential functions of the form e kx or b x have graphs similar to the graph of e x,
but only e x is scaled in exactly the right way to be its own derivative. With the chain rule,
we can use the derivative of e x to find the derivatives of general exponential functions:

THEOREM 2.13 Derivatives of Exponential Functions

For any constant k, any constant b > 0 with b �= 1, and all x ∈ R,

(a) d
dx

(e x) = e x (b) d
dx

(b x) = ( ln b) b x (c) d
dx

(e kx) = ke kx

Proof. The previous discussion proves that
d
dx

(e x) = e x. To prove the second rule we rewrite b x as

(e ln b) x and then apply the chain rule:

d
dx

(b x) = d
dx

((e ln b) x) ← b = e ln b

= d
dx

(e ( ln b) x) ← algebra of exponents

= e ( ln b)x d
dx

(( ln b)x) ← chain rule and derivative of e x

= (e ln b) x( ln b) ← algebra and derivative of linear function

= ( ln b) b x. ← algebra

The proof for e kx is similar, with a simpler application of the chain rule, and is left for
Exercise 69.
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By combining our new differentiation rules for exponential functions with the chain
rule, we obtain the following rules for exponential compositions:

d
dx

(e u(x)) = e u(x)u′(x),

d
dx

(bu(x)) = ( ln b)bu(x)u′(x).

For example, we have

d
dx

(
e x 2+1) = e x 2+1 · d

dx
(x 2 + 1) = e x 2+1(2x),

d
dx

(
2 x 2+1) = ( ln 2)2 x 2+1 · d

dx
(x 2 + 1) = ( ln 2)2 x 2+1(2x).

Exponential Functions Grow Proportionally to Themselves

Notice that all exponential functions have the property that their derivatives are constant

multiples of the original function; for example, d
dx

(e 2x) = 2e 2x is just 2 times the original

function e 2x. This means that the rate of change of an exponential function f is proportional
to the function f itself. In fact, the converse is also true, although we will not have the tools
to prove it until Section 7.5. Together, both proportionalities give us the following two-sided
statement, which will prove useful in many application problems:

THEOREM 2.14 Rates of Change and Exponential Functions

f ′(x) = kf (x) for some constant k if and only if f is an exponential function of the form
f (x) = Ae kx.

Recall that one quantity y is proportional to another quantity x if y is a constant multiple
of x. Therefore the preceding theorem gives us a nice characterization of exponential func-
tions: All exponential functions f , and only exponential functions, have the property that f ′
is proportional to f .

If a word problem states that the rate of change of a function is constant, we immediately
know that the function is linear. Similarly, by Theorem 2.14, if a word problem states that the
rate of change of a function is proportional to the function itself, we immediately know that
that function is exponential. Then it is just a question of finding values A and k to determine
the function f (x) = Ae kx that models the situation. Exponential functions often arise when
modeling populations, for example, since a larger population can produce greater numbers
of offspring than a smaller population and can therefore grow at a faster rate.

Derivatives of Logarithmic Functions

Up to this point, the derivatives that we have seen are similar to their original functions.
For example, derivatives of power functions are power functions, derivatives of polynomials
are polynomials, and derivatives of exponential functions are exponential. Now something
surprising happens: Derivatives of logarithmic functions are not logarithmic. Even more
surprisingly, logarithmic functions are transcendental but their derivatives are algebraic!
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THEOREM 2.15 Derivatives of Logarithmic Functions

For any constant b > 0 with b �= 1, and all appropriate values of x,

(a) d
dx

(logb x) = 1
( ln b)x

(b) d
dx

( ln x) = 1
x

(c) d
dx

( ln |x|) = 1
x

The second rule is a special case of the first, with b = e. Because ln x has domain (0, ∞),
when we say that d

dx
( ln x) = 1

x
, we are also restricting 1

x
to the domain (0, ∞). In the third

rule we generalize the second rule so that we are considering the full domain (−∞, 0) ∪
(0, ∞) of 1

x
.

Proof. We will prove the second rule and leave the proofs of the first and third rules to Exercises 72
and 73, respectively. Since y = ln x and y = e x are inverses, e ln x = x for all x in the domain (0, ∞)
of y = ln x. Differentiating both sides of the equation gives

e ln x = x ← property of inverses

d
dx

(e ln x) = d
dx

(x) ← differentiate both sides

e ln x d
dx

( ln x) = 1 ← exponential and chain rules

d
dx

( ln x) = 1
e ln x

← solve for
d
dx

( ln x)

d
dx

( ln x) = 1
x
. ← since e ln x = x

The two graphs that follow illustrate that the associated slope function for ln |x| is the
function 1

x
. For negative values of x, as we move from left to right, the slopes of ln |x| are

negative with larger and larger magnitude while the heights of 1
x

behave the same way. For

positive values of x, as we move from left to right, the slopes of ln x are positive but getting
smaller while the heights of 1

x
do the same.

Slopes of f (x)= ln |x| Heights of f ′(x)= 1
x

3

2

1

�3

�1

�2

y

x
1 2 3 4�4 �2�3 �1

11

4

2

�2

y

x
2 4�4 �2

�4

The rule for differentiating ln |x| will come in handy for calculating certain derivatives.
Functions that involve many products or quotients or that have variables in both a base
and an exponent can be difficult to differentiate. One strategy for differentiating such
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functions is to apply ln |x| to both sides of the equation y = f (x) and then differenti-
ate both sides. This process is called logarithmic differentiation and is illustrated in
Examples 4 and 5.

By combining our new differentiation rules for logarithmic functions with the chain
rule, we obtain the following rules for logarithmic compositions:

d
dx

( ln u(x)) = 1
u(x)

· u′(x) = u′(x)
u(x)

,

d
dx

(log b u(x)) = 1
( ln b)u(x)

· u′(x) = u′(x)
( ln b)u(x)

.

For example, we have

d
dx

( ln(x 2 + 1)) = 1
x 2 + 1

· 2x = 2x
x 2 + 1

,

d
dx

(log b(x 2 + 1)) = 1
( ln b)(x 2 + 1)

· 2x = 2x
( ln b)(x 2 + 1)

.

Derivatives of Inverse Functions*

We can generalize the technique used in the proof of Theorem 2.15 to obtain a formula for
the derivative of the inverse of any function whose derivative we already know. If f is an
invertible function, then the graph of its inverse y = f −1(x) can be obtained by reflecting
the graph of y = f (x) over the line y = x. This reflection yields the reciprocals of all slopes
on the graph, as shown in the following figure:

The slope of f −1(x) at (b, a) is the
reciprocal of the slope of f (x) at (a, b)

sl
op

e 
r

x
ba

y
f (x)

b

a
f �1(x)
r

1

slope

From this example we might expect that the derivatives of f and f −1 would have some
sort of reciprocal relationship. In particular, we would expect that if f (a) = b and thus
a = f −1(b), then ( f −1)′ (b) = 1

f ′(a)
. Using implicit differentiation and the chain rule, we

can show that this is indeed the case in general:

THEOREM 2.16 Derivatives of Inverse Functions

If f and f −1 are inverse functions and are both differentiable, then, for all appropriate
values of x,

( f −1)′ (x) = 1
f ′( f −1(x))

.
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For example, if f (x) = x 3, then its inverse is the function f −1(x) = x 1/3, since y = x 3 if and
only if y 1/3 = x. By Theorem 2.16, the derivative of f −1(x) = x 1/3 must be

( f −1)′(x) = 1
f ′( f −1(x))

= 1
3( f −1(x))2 = 1

3(x 1/3)2 = 1
3x 2/3 = 1

3
x− 2/3,

just as we would expect from the power rule.

Proof. Since f and f −1 are inverses, we know that their composition in either order is the identity
function. Starting from this fact and applying implicit differentiation, we have

f ( f −1(x)) = x ← definition of inverses

d
dx

( f ( f −1(x))) = d
dx

(x) ← differentiate both sides

f ′( f −1(x))
d
dx

( f −1(x)) = 1 ← chain rule

d
dx

( f −1(x)) = 1
f ′( f −1(x))

. ← solve for
d
dx

( f −1(x))

This result holds whenever x is in the domain of f −1 and f is differentiable at f −1(x).

Examples and Explorations

EXAMPLE 1 Differentiating combinations of exponential and logarithmic functions

Find the derivatives of each of the following functions:

(a) f (x) = e x 2
ln x (b) f (x) = 7e 3x − x 22 x

log5 x
(c) f (x) = ln

((
x 2 − 1
1 − 2x

)2)

SOLUTION

(a) Using the product and chain rules, we have

d
dx

(
e x 2

ln x
) = d

dx

(
e x 2) · ln x + e x 2 · d

dx
( ln x) = 2xe x 2

ln x + e x 2
(

1
x

)
.

(b) The function f (x) is a quotient, so we begin by applying the quotient rule:

f ′(x) =
d
dx

(7e 3x − x 22 x) · log5 x − (7e 3x − x 22 x) · d
dx

(log5 x)

(log5 x)2 ← quotient rule

=

(
21e 3x − d

dx
(x 22 x)

)
(log5 x) − (7e 3x − x 22 x)

(
1

( ln 5)x

)

(log5 x)2 ← other rules

=
(21e 3x − (2x2 x + x 2( ln 2)2 x))(log5 x) − (7e 3x − x 22 x)

(
1

( ln 5)x

)

(log5 x)2 ← product rule

In the preceding calculation, we saved the product rule calculation for the last step. For
lengthy derivative problems it is often helpful to postpone some calculations to later
steps.
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(c) There are a number of ways we could find f ′(x). One way is to jump right in and start
differentiating; although it is possible to do this all in one step, we’ll do the calculation
in a few separate steps to be as clear as possible:

d
dx

(
ln

((
x 2 − 1
1 − 2x

)2))
= 1(

x 2 − 1
1 − 2x

)2 · d
dx

((
x 2 − 1
1 − 2x

)2)
← chain rule

= 1(
x 2 − 1
1 − 2x

)2 (2)
(

x 2 − 1
1 − 2x

)1

· d
dx

(
x 2 − 1
1 − 2x

)
← chain rule

= 1(
x 2 − 1
1 − 2x

)2 (2)
(

x 2 − 1
1 − 2x

)1 (
(2x)(1 − 2x) − (x 2 − 1)(−2)

(1 − 2x)2

)
. ← quotient rule

The first step used the chain rule and the logarithmic rule, the second step used the
chain rule and the power rule, and the last step used the quotient rule.

If we do a little bit of algebra first, the differentiation step becomes much easier:

d
dx

(
ln

((
x 2 − 1
1 − 2x

)2))
= d

dx

(
2 ln

(
x 2 − 1
1 − 2x

))
← algebra

= d
dx

(2( ln(x 2 − 1) − ln(1 − 2x))) ← algebra

= 2
(

1
x 2 − 1

(2x) − 1
1 − 2x

(−2)
)

. ← differentiate

In the preceding calculation, the first two steps were algebra; only the final step in-
volved differentiation. Although the two answers obtained look very different, they
are in fact the same. (As an exercise, use algebra to show this.) �

EXAMPLE 2 Differentiating a piecewise-defined function

Find the derivative of the piecewise-defined function f (x) =
{

e x, if x < 0
e−x, if x ≥ 0.

SOLUTION

From the differentiation rules we have developed, we know that d
dx

(e x) = e x and d
dx

(e−x) =
−e−x. These are the expressions for the derivative of f when x < 0 and when x > 0, respec-
tively. It remains only to determine what happens at the breakpoint x = 0.

If g(x) = e x and h(x) = e−x, then we must first check that g(0) = h(0); since e0 = 1 and
e−0 = 1, this is true. It follows that the function f is continuous at x = 0. Second, we must
check that g′(0) = h′(0). Here g′(0) = e0 = 1 but h′(0) = −e−0 = −1, so although f is
continuous at x = 0, it is not differentiable. The derivative of f is therefore

f ′(x) =
⎧⎨
⎩

e x, if x < 0
undefined, if x = 0

−e −x, if x > 0. �

EXAMPLE 3 A real-world problem that can be modeled with an exponential function

Suppose a population of wombats on a small island is growing at a rate proportional to the
number of wombats on the island. If there were 12 wombats on the island in 1990 and 37
wombats on the island in 1998, how many wombats were on the island in the year 2010?

SOLUTION

We are given that the rate of change W ′(t) of the population of wombats is proportional
to the population W(t) of wombats at time t; in other words, W ′(t) = kW(t) for some real
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number k. By Theorem 2.14, this means that the population W(t) of wombats on the island
must be an exponential function W(t) = Ae kt. We now only need to find constants A and
k that match the information given in the problem.

If we let t = 0 represent 1990 (so that t = 8 will represent 1998), then from the infor-
mation given in the problem, we have W(0) = 12 and W(8) = 37. We will use these two
data points to find A and k. Using the first data point, we have

W(0) = 12 =⇒ Ae k(0) = 12 =⇒ Ae0 = 12 =⇒ A(1) = 12 =⇒ A = 12,

so W(t) = 12e kt for some k. Using the second data point, we can now solve for the value
of k:

W(8) = 37 =⇒ 12e k(8) = 37 =⇒ e 8k = 37
12

=⇒ 8k = ln
(

37
12

)
=⇒ k =

ln
(

37
12

)
8

≈ 0.14.

Thus W(t) = 12e 0.14t. Using this function, we can now easily calculate the number of
wombats that were on the island in the year 2010. Since 2010 is 20 years after 1990, we
need to find

W(20) = 12e 0.14(20) ≈ 197.34.

In the year 2010, there were approximately 197 wombats on the island, assuming of course
that we cannot have “parts” of wombats. �

EXAMPLE 4 Using logarithmic differentiation when products and quotients are involved

Use logarithmic differentiation to calculate the derivative of the function

f (x) =
√

x (x 2 − 1)5

(x + 2)(x − 4)3 .

SOLUTION

Obviously it would take a great deal of work to differentiate this function as it is currently
written. We would have to apply the quotient rule once and the product rule twice, among
other things. We could do some algebra and multiply out some of the factors in the numerator
and the denominator of f (x) to make our job easier, but that is in itself a pretty nasty calculation.
However, it happens to be not nearly as difficult to differentiate the related function ln | f (x)|.
Taking the logarithm of both sides and then differentiating both sides, we have

y =
√

x (x 2 − 1)5

(x + 2)(x − 4)3 ← set y = f (x)

ln |y| = ln
∣∣∣∣

√
x(x 2 − 1)5

(x + 2)(x − 4)3

∣∣∣∣ ← apply ln |x|

ln |y| = ln |√x| + ln |(x 2 − 1)5| − ln |x + 2| − ln |(x − 4)3| ← algebra

ln |y| = 1
2

ln |x| + 5 ln |x 2 − 1| − ln |x + 2| − 3 ln |x − 4| ← algebra

d
dx

( ln |y|) = d
dx

(
1
2

ln |x| + 5 ln |x 2 − 1| − ln |x + 2| − 3 ln |x − 4|
)

← differentiate

1
y

y′ = 1
2x

+ 5(2x)
x 2 − 1

− 1
x + 2

− 3
x − 4

← derivative rules

y′ = y
(

1
2x

+ 10x
x 2 − 1

− 1
x + 2

− 3
x − 4

)
← solve for y′

y′ =
√

x(x 2 − 1)5

(x + 2)(x − 4)3

(
1
2x

+ 10x
x 2 − 1

− 1
x + 2

− 3
x − 4

)
. ← definition of y
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Although the calculation as a whole is algebraically complicated, the differentiation step
was simple. The most difficult part was to remember to use the chain rule when we differ-
entiated d

dx
( ln y) = 1

y
y′. Note also that we used the fact that |ab| = |a||b| and the fact that

|ab| = |a|b in our calculations. �

EXAMPLE 5 Using logarithms to differentiate a function with variables in both base
and exponent

Use logarithmic differentiation to find d
dx

((x 2 − 3) x).

SOLUTION

In this example using logarithmic differentiation is not a choice, but a necessity: Neither
the product rule nor the exponential rule applies to this function. When taking the deriva-
tive of a function that involves the variable in both the base and the exponent, we must
use logarithmic differentiation. After setting y = (x 2 − 3) x and then applying the natural
logarithm to both sides, we will be able to use algebra to remove the variable x from the
exponent and then differentiate both sides:

y = (x 2 − 3) x ← set y = f (x)

ln y = ln((x 2 − 3) x) ← apply ln(x) to both sides

ln y = x ln(x 2 − 3) ← algebra

d
dx

( ln y) = d
dx

(x ln(x 2 − 3)) ← differentiate both sides

1
y

y′ = (1) ln(x 2 − 3) + (x)
2x

x 2 − 3
← chain, product rules

y′ = y
(

ln(x 2 − 3) + 2x 2

x 2 − 3

)
← solve for y′

y′ = (x 2 − 3) x
(

ln(x 2 − 3) + 2x 2

x 2 − 3

)
. ← since y = (x 2 − 3) x

Note that we did not need any absolute values in this calculation, because (x 2 − 3) x is
always positive where it is defined. �

TEST YOUR? UNDERSTANDING
� What differentiation fact is the consequence of the limit statement lim

h→0

eh − 1
h

= 1 that

characterizes the number e?

� In the proof that d
dx

(ln x) = 1
x
, we used the fact that e ln x = x. It is also true that ln(e x) =

x; could we have started with this equality instead? Why or why not?

� What can you say about a quantity that grows at a rate proportional to the amount of
the quantity that is present?

� Although there are absolute values in the fifth line of the calculation in Example 4,
there are no absolute values in the sixth line; what happened to the absolute values and
why?

� Why was logarithmic differentiation necessary in Example 5? In particular, why did
neither the power nor the exponential rule apply?
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EXERCISES 2.5

Thinking Back

Solving exponential and logarithmic equations: Use rules of expo-
nents and logarithms to solve each of the following equations.

� 3(1.2) x = 500 � ln(x 2 + x − 5) = 0

� ln(x + 1)
ln(x − 2)

= 0 � 2 x + 1
3 x − 5

= 0

Compositions: For each function k, find functions f , g, and h
such that k = f ◦ g ◦ h. There may be more than one possible
answer.

� k(x) = ln(
√

x 2 + 5 ) � k(x) = e 1/
√

x+1

� k(x) = ( ln 3x)2 � k(x) = 3 ln(5 x + 2)

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
d
dx

(eπ ) = 0.

(b) True or False:
d
dz

(e z) = e z.

(c) True or False:
d
dx

(1
x

)
= ln x.

(d) True or False:
d
dx

(ln |x|) = 1
|x| .

(e) True or False: If f is an exponential function, then f ′ is
a constant multiple of f .

(f) True or False: If f ′ is a constant multiple of f , then f is
an exponential function.

(g) True or False: Logarithmic differentiation is required
in order to differentiate complicated products and
quotients.

(h) True or False: Logarithmic differentiation is required
in order to differentiate expressions that have a vari-
able in both the base and the exponent.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Three functions f whose derivatives are just constant
multiples of f .

(b) Three functions that are transcendental, but whose
derivatives are algebraic.

(c) A function whose derivative would be difficult or im-
possible to find without the method of logarithmic
differentiation.

3. Does the exponential rule apply to the function f (x) = x x?
What about the power rule? Explain your answers.

4. The natural exponential function is its own derivative.
Explain what this means graphically. (Use words like
“height” and “slope.”)

5. Explain how the formula for differentiating the natural ex-
ponential function is a special case of the formula for dif-
ferentiating exponential functions of the form e kx. Then
explain why it is a special case of the formula for differen-
tiating functions of the form b x.

6. The function f (x) = e x is its own derivative. Are there
other functions with this property? If not, explain why
not. If so, give three examples.

7. Explain how the formula for differentiating the natural
logarithm function is a special case of the formula for dif-
ferentiating logarithmic functions of the form logb x.

8. When we say that
d
dx

( ln x) = 1
x

, we really mean to con-

sider the function
1
x

on the restricted domain (0, ∞).
Why?

9. The graphs of the exponential functions y = 2 x, y = 4 x,
and y = 2(2 x) are shown in the figure at the left. Use your
knowledge of transformations to determine which graph
is which without using a graphing calculator.

y = 2 x, y = 4 x, y = 2(2 x)

6

y

�2 �1 21
x

5

4

3

2

1

y = e x, y = e 3x, y = e−2x

6

y

�2 �1 21
x

5

4

3

2

1

10. The graphs of the exponential functions y = e x, y = e 3x,
and y = e−2x are shown in the preceding graph at
the right. Use your knowledge of transformations to
determine which graph is which without using a graphing
calculator.

11. The functions f (x) = 2(x 2) and g(x) = (2 x)2 look similar,
but are very different functions. (This is why we try to
avoid using the ambiguous notation 2 x 2

.) Calculate f (3)
and g(3), and show that they are not the same (and thus
that f (x) and g(x) are not the same function). Then find all
the values for which f (x) = g(x).

12. Every exponential function of the form f (x) = b x (with
b > 0 and b �= 1) is one-to-one. Explain why this fact im-
plies that b x = b y if and only if x = y.

13. Explain how we know that logarithmic functions are one-
to-one. Why does this mean that A = B if and only if
logb A = logb B (assuming that A and B are positive)?

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

222 Chapter 2 Derivatives

14. What is the definition of the number e? What does

this definition tell you about lim
h→0

e h − 1
h

? Why is this

limit relevant to calculating the derivative of the function
f (x) = e x?

15. Describe the process called logarithmic differentiation.
What types of differentiation problems is logarithmic dif-
ferentiation useful for?

16. Why do we need to consider absolute values when
we apply logarithmic differentiation to f (x) = xe x sin x?
In contrast, why do we not need to consider abso-
lute values when we apply logarithmic differentiation to
f (x) = x x?

Skills

Find the derivatives of each of the functions in Exercises
17–44. In some cases it may be convenient to do some pre-
liminary algebra.

17. f (x) = 1
2 − e 5x

18. f (x) = log2(3x 2 − 5)

19. f (x) = 3x 2e−4x 20. f (x) = e 3x ln(x 2 + 1)

21. f (x) = 1 − x
e x

22. f (x) = ln
(

x 3

x 2 + x + 1

)

23. f (x) = e x(x 2+3x−1) 24. f (x) = e x ln x
x 2 − 1

25. f (x) = e 3 ln x 26. f (x) = 3 x + log3 x

27. f (x) = e (e x) 28. f (x) = e (x e)

29. f (x) = (e x)e 30. f (x) = (x e)e

31. f (x) = ln(x 5)
ln(x 4)

32. f (x) = 11 + eπ − ln 2

33. f (x) = x −3e 2x 34. f (x) = ln(x 22 x)

35. f (x) = x 2 log2(x2 x) 36. f (x) =
√

ln(x 2 + 1)

37. f (x) = ln(x 2 + e
√

x ) 38. f (x) =
√

e x

ln
√

x
39. f (x) = √

log2(3 x − 5) 40. f (x) = ln(x 2+1)(e x)− 1/3

41. f (x) = x 2 ln( ln x) 42. f (x) = ln(x x)

43. f (x) = (2 x) x 44. f (x) = 21−3 x

Describe the derivatives of each of the piecewise-defined
functions in Exercises 45–48.

45. f (x) =
⎧⎨
⎩

2 x, if x ≤ −2
1
x 2

, if x > −2

46. f (x) =
{

ln(−x), if x < 0

ln x, if x ≥ 0

47. f (x) =
{

x 2, if x < 1
1 + ln x, if x ≥ 1

48. f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

− 1
4

x, if x ≤ 0

1
1 + e x

, if x > 0

Use logarithmic differentiation to find the derivatives of each
of the functions in Exercises 49–58.

49. f (x) = √
x ln |2 x + 1| 50. f (x) = 12x 3

√
1 − x

√
x + 1

51. f (x) = 2 x
√

x 3 − 1√
x(2x − 1)

52. f (x) = e 2x(x 3 − 2)4

x(3e 5x + 1)

53. f (x) = xln x 54. f (x) = (2x + 1)3x

55. f (x) =
( x

x − 1

)x
56. f (x) = ( ln x) x

57. f (x) = ( ln x)ln x 58. f (x) =
(

1
x + 1

)x

In Exercises 59–63, find a function f that has the given deriva-
tive f ′. In each case you can find the answer with an educated
guess-and-check process.

59. f ′(x) = 4e 4x(3x 5 − 1) − e 4x(15x 4)
(3x 5 − 1)2

60. f ′(x) = x 2 e x 3
61. f ′(x) = x

x 2 + 3

62. f ′(x) = e x(1 + e x) 63. f ′(x) = e x

1 + e x

Applications
64. An abandoned building contained 45 rats on the first day

of the year and 53 rats 30 days later. Let r(t) be the func-
tion that describes the number of rats in the building
t days after the first of the year.
(a) Find a formula for r(t) given that the rate of change

of the rat population is constant, and use this formula
to predict the number of rats in the building on the
100th day of the year (t = 99).

(b) Find a formula for r(t) given that the rate of change
of the rat population is proportional to the number of
rats in the building, and use this formula to predict

the number of rats in the building on the 100th day
of the year (t = 99).

65. Alina started an investment account with an initial
deposit of one thousand dollars. Following the initial
deposit, the amount of money increased at a rate pro-
portional to her investment account balance. After three
years her balance was $1,260.
(a) Write down a function A(t) that describes the amount

of money in Alina’s investment account t years after
her initial deposit.
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(b) How much money will Alina have in her investment
account after 30 years?

(c) How long will it be before Alina’s initial investment
quadruples?

66. The temperature T, in degrees Fahrenheit, of a yam after
sitting in a hot oven for t minutes is given by the function

T(t) = 350 − 280e−0.2t.

(a) What is the initial temperature of the yam, before it
is put in the oven?

(b) Given that over time the temperature of the yam will
approach the temperature inside the oven, use a limit
to determine the temperature of the oven.

(c) How long will it take for the yam to be within
5 degrees Fahrenheit of the temperature of the oven?

(d) The first derivative of T(t) measures the rate of
change of the temperature of the yam. The second
derivative of T(t) measures the rate of change of the
rate of change of the temperature of the yam. Use
T′(t) and T′′(t) to argue that the temperature of the
yam increases at a decreasing rate. This statement is

related to the odd saying “Cold water boils faster.”
How?

67. A political candidate starts an advertising campaign in
Hamtown, Virginia. The number of people in Hamtown
that have heard of him t days after the start of his cam-
paign is given by

P(t) = 45,000
1 + 35e−0.12t

.

(a) How many people knew about the candidate before
the start of his advertising campaign?

(b) Given that over time the advertising will eventually
reach everyone in the town, use a limit to determine
the population of Hamtown.

(c) How many days will it take for all but one person in
Hamtown to have heard of the candidate?

(d) Find P′(t) and use it to argue that in this model, the
number of people who have heard of the candidate is
always increasing. Does this make sense in the con-
text of this problem?

Proofs

68. Use the definition of the derivative and the definition of
the number e to prove that f (x) = e x is its own derivative.

69. Use the chain rule to prove that
d
dx

(e kx) = ke kx.

70. Use the fact that
d
dx

(b x) = ( ln b) b x to prove that
d
dx

(e kx) =
ke kx.

71. Prove that if f is an exponential function, then f ′(x) is
proportional to f (x).

72. Use implicit differentiation and the fact that logb x is the

inverse of b x to prove that
d
dx

(logb x) = 1

(lnb)x
.

73. Use the definition of |x|, the chain rule, and the fact that
d
dx

( ln x) = 1
x

for x > 0 to prove that
d
dx

( ln |x|) = 1
x

for all

x �= 0.

74. Use a direct application of the fact that
d
dx

( f −1(x)) =
1

f ′( f −1(x))
to prove that

d
dx

( ln x) = 1
x

.

Thinking Forward
L’Hôpital’s rule: At the end of Chapter 3 we will see that, un-
der certain conditions, the limit of a quotient of functions is
equal to the limit of the quotient of the derivatives of those
functions. Specifically, if f (x) and g(x) both approach zero as
x → c, then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

.

Show that each of the following limits is of the form
0
0

and
then use L’Hôpital’s rule to calculate the limit:

� lim
x→0

x 3

1 − 2 x
� lim

x→1

3 x − 3
1 − x 2

� lim
x→1

ln x
x − 1

� lim
x→3

(x − 3)2

1 − e x−3

Differential equations: A function y(x) is exponential if and only
if its derivative is proportional to itself. This means that ex-
ponential functions are solutions of differential equations

of the form
dy

dx
= ky. A solution of a differential equation is a

function y(x) that makes the equation true.

� Show that y(x) = 4e 3x is a solution of the differential

equation
dy

dx
= 3y.

� Show that y(x) = 1.7e−2.1x is a solution of the differ-

ential equation
dy

dx
= −2.1y.

� Show that y(x) = 3(2 x) is a solution of the differential

equation
dy

dx
= ( ln 2)y.

� Describe all of the solutions of the differential equa-

tion
dy

dx
= 3y.

� Describe all of the solutions of the differential equa-

tion
dy

dx
= 3y that satisfy y(0) = 2.
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2.6 DERIVATIVES OF TRIGONOMETRIC AND HYPERBOLIC*
FUNCTIONS

� Derivatives of the six trigonometric functions

� Derivatives of inverse trigonometric functions

� Hyperbolic functions, inverse hyperbolic functions, and their derivatives

Derivatives of Trigonometric Functions

Because trigonometric functions have periodic oscillating behavior, and their slopes also
have periodic oscillating behavior, it would make sense if the derivatives of trigonometric
functions were trigonometric. For example, the two graphs that follow show the function
f (x) = sin x and its derivative f ′(x) = cos x. As we will prove in Theorem 2.17, it turns out
that, at each value of x, the slope of the graph of f (x) = sin x is given by the height of the
graph of f ′(x) = cos x. Before we tackle this fact algebraically, take a minute to verify that
it is the case with these graphs for the values x = −5.2, x = π

2
, and x = 4, as shown in the

following figures:

Slopes of f (x) = sin x at three points Heights of f ′(x) = cos x at three points

x
�5.2

y

4
�
2

1

�1

π
x

�5.2

y

4
�
2

1

�1

π

The six trigonometric functions have the following derivatives:

THEOREM 2.17 Derivatives of the Trigonometric Functions

For all values of x at which the following functions below are defined,

(a) d
dx

(sin x) = cos x

(b) d
dx

(cos x) = − sin x

(c) d
dx

(tan x) = sec2 x

(d) d
dx

(sec x) = sec x tan x

(e) d
dx

(cot x) = − csc2 x

(f) d
dx

(csc x)=− csc x cot x

It is important to note that these formulas for derivatives are true only if angles are mea-
sured in radians; see Exercise 5.

Proof. We will prove the formulas for sin x and tan x from parts (a) and (c) and leave the proofs of
the remaining four formulas to Exercises 83–86.

(a) The proof of the first formula is nothing more than an annotated calculation using the def-
inition of the derivative. To simplify the limit we obtain, we will rewrite sin(x + h) with a

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

2.6 Derivatives of Trigonometric and Hyperbolic Functions 225

trigonometric identity. Our goal after that will be to rewrite the limit so that we can apply the
two trigonometric limits from Theorem 1.35 in Section 1.6. The calculation is as follows:

d
dx

(sin x) = lim
h→0

sin(x + h) − sin x
h

← definition of the derivative

= lim
h→0

(sin x cos h + sin h cos x) − sin x
h

← sum identity for sine

= lim
h→0

sin x(cos h − 1) + sin h cos x
h

← algebra

= lim
h→0

(
sin x

cos h − 1
h

+ cos x
sin h

h

)
← algebra

= sin x
(

lim
h→0

cos h − 1
h

)
+ cos x

(
lim
h→0

sin h
h

)
← limit rules

= (sin x)(0) + (cos x)(1) = cos x. ← trigonometric limits

(c) We do not have to resort to the definition of the derivative in order to prove the formula for

differentiating tan x. Instead we can use the quotient rule, the fact that tan x = sinx
cosx

, and the

formulas for differentiating sin x and cos x:

d
dx

(tan x) = d
dx

(
sin x
cos x

)

=
d
dx

(sin x) · (cos x) − (sin x) · d
dx

(cos x)

(cos x)2
← quotient rule

= (cos x)(cos x) − (sin x)(− sin x)
cos2 x

← derivatives of sin x and cos x

= cos2 x + sin2 x
cos2 x

= 1
cos2 x

= sec2 x. ← algebra and identities

Derivatives of Inverse Trigonometric Functions

We can use the formulas for the derivatives of the trigonometric functions to prove the
following formulas for the derivatives of the inverse trigonometric functions:

THEOREM 2.18 Derivatives of Inverse Trigonometric Functions

For all values of x at which the following functions are defined,

(a) d
dx

(sin−1 x)= 1√
1 − x 2

(b) d
dx

(tan−1 x)= 1
1 + x 2 (c) d

dx
(sec−1 x)= 1

|x|√x 2 − 1

It is extremely important and surprising to note that although inverse trigonometric func-
tions are transcendental, their derivatives are algebraic! This property makes these deriva-
tive formulas particularly useful for finding certain antiderivatives, and in Chapter 6 they
will be part of our arsenal of integration techniques. Of course, all of these rules can be
used in combination with the sum, product, quotient, and chain rules. For example,

d
dx

(sin−1(3x 2 − 1)) = 1√
1 − (3x 2 − 1)2

(6x).
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Proof. We will prove the rule for sin−1 x and leave the remaining two rules to Exercises 87 and 88.
We could apply Theorem 2.16 here, but it is just as easy to do the implicit differentiation by hand.
Since sin(sin−1 x) = x for all x in the domain of sin−1 x, we have

sin(sin−1 x) = x ← sin−1 x is the inverse of sin x

d
dx

(sin(sin−1 x)) = d
dx

(x) ← differentiate both sides

cos(sin−1 x) · d
dx

(sin−1 x) = 1 ← chain rule

d
dx

(sin−1 x) = 1

cos(sin−1 x)
← algebra

d
dx

(sin−1 x) = 1√
1 − sin2(sin−1 x)

← since sin2 x + cos2 x = 1

d
dx

(sin−1 x) = 1√
1 − x 2

. ← sin x is the inverse of sin−1 x

We could also have used triangles and the unit circle to show that the composition cos(sin−1 x) is
equal to the algebraic expression

√
1 − x 2, as we did in Example 4 of Section 0.4.

An interesting fact about the derivatives of the inverse sine and inverse secant functions
is that their domains are slightly smaller than the domains of the original functions. The
graphs of the inverse trigonometric functions are as follows (note their domains):

f (x) = sin−1 x
has domain [−1, 1]

g(x) = tan−1 x
has domain (−∞, ∞)

h(x) = sec−1 x
has domain (−∞, −1] ∪ [1, ∞)

�
2
π

π

x
�1

�π

�

y

1

�
2
π

x
�1

�

y

1

�
2
π

π

�π

�
2

x
�1

�

y

1

�
2
π

π

�π

�
2

If you look closely at the first and third graphs, you should notice that at the ends of
the domains the tangent lines will be vertical. Since a vertical line has undefined slope,
the derivative does not exist at these points. This means that the derivatives of sin−1 x and
sec−1 x are not defined at x = 1 or x = −1; see the first and third graphs shown next:

f ′(x) = 1√
1 − x 2

has domain (−1, 1)

g ′(x) = 1
1 + x 2

has domain (−∞, ∞)

h′(x) = 1

|x|√x 2 − 1
has domain (−∞, −1) ∪ (1, ∞)

x
1�1

3

�1

2

1

y

x
1�1

3

�1

2

1

y

x
1�1

3

�1

2

1

y
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Hyperbolic Functions and Their Derivatives*

The trigonometric functions sine and cosine are circular functions in the sense that they
are defined to be the coordinates of a parameterization of the unit circle. This means that
the circle defined by x 2+y2 = 1 is the path traced out by the coordinates (x, y) = (cos t, sin t)
as t varies; see the following figure at the left:

Points on the circle x 2 + y 2 = 1 Points on the hyperbola x 2 − y 2 = 1

x
2�2 1�1

2

�2

1

�1

y

(x, y) � (cos t, sin t)

x
2�2 1�1

2

�2

1

�1

y

(x, y) � (cosh t, sinh t)

Now let’s consider the path traced out by the hyperbola x 2 − y2 = 1 as shown at the right.
One parameterization of the right half of this hyperbola is traced out by the hyperbolic
functions (cosh t, sinh t) that we will spend the rest of this section investigating.

The hyperbolic functions are nothing more than simple combinations of the exponen-
tial functions e x and e−x:

DEFINITION 2.19 Hypberbolic Sine and Hyperbolic Cosine

For any real number x, the hyperbolic sine function and the hyperbolic cosine function
are, respectively, defined as the following combinations of exponential functions:

sinh x = e x − e−x

2
cosh x = e x + e−x

2

The hyperbolic sine function is pronounced “sinch” and the hyperbolic cosine function
is pronounced “cosh.” The “h” is for “hyperbolic.” As we will soon see, the properties
and interrelationships among the hyperbolic functions are similar to the properties and
interrelationships among the trigonometric functions. These properties will be particularly
useful in Chapter 6 when we attempt to solve certain forms of integrals.

It is a simple matter to use Definition 2.19 to verify that, for any value of t, the point
(x, y) = (cosh t, sinh t) lies on the hyperbola x 2 − y2 = 1; see Exercise 89. We will usually
think of this fact rewritten so that the independent variable is x, as follows:

cosh2 x − sinh2 x = 1.

Here we are using the familiar convention that, for example, sinh2 x is shorthand for
(sinh x)2. Note the similarity between the hyperbolic identity cosh2 t − sinh2 t = 1 and
the Pythagorean identity for sine and cosine. Hyperbolic functions also satisfy many other
algebraic identities that are reminiscent of those that hold for trigonometric functions, as
you will see in Exercises 90–92.

Just as we can define four additional trigonometric functions from sine and cosine, we
can define four additional hyperbolic functions from hyperbolic sine and hyperbolic cosine.
We will be interested primarily in the hyperbolic tangent function:

tanh x = sinh x
cosh x

= e x − e−x

e x + e−x .
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We can also define csch x, sech x, and coth x as the reciprocals of sinh x, cosh x, and tanh x,
respectively.

The graphs of sinh x, cosh x, and tanh x are shown next. In Exercises 13–16 you will
investigate various properties of these graphs.

y = sinh x y = cosh x y = tanh x

8

�8

4

�4

x
321�3 �2 �1

y

8

6

4

2

y

x
321�3 �2 �1

1

�1

y

x
321�3 �2 �1

In Chapter 4 we will see that the graph of y = cosh x is an example of a catenary curve
(see also Exercise 82), which is the shape formed by a hanging chain or cable.

As with any functions that we study, we are interested in finding formulas for the
derivatives of sinh x, cosh x, and tanh x. The similarity between hyperbolic functions and
trigonometric functions continues here. These derivatives follow a very familiar pattern,
differing from the pattern for trigonometric functions only by a sign change.

THEOREM 2.20 Derivatives of Hyperbolic Functions

For all real numbers x,

(a) d
dx

(sinh x) = cosh x (b) d
dx

(cosh x) = sinh x (c) d
dx

(tanh x) = sech2x

If you prefer to stay away from the hyperbolic secant function sech x, you can write the
derivative in part (c) as 1

cosh2 x
.

Proof. The proofs of these differentiation formulas follow immediately from the definitions of the
hyperbolic functions as simple combinations of exponential functions. For example,

d
dx

(sinh x) = d
dx

(
1
2

(e x − e−x)
)

= 1
2

(e x + e−x) = cosh x.

The proofs of parts (b) and (c) are left to Exercises 93 and 94.

Although hyperbolic functions may seem somewhat exotic, they work with the other
differentiation rules just as any other functions do. For example, with the product and chain
rules we can calculate

d
dx

(5x sinh3 x 2) = 5 sinh3 x 2 + 5x(3 sinh2 x 2)(cosh x 2)(2x).

The derivatives of the hyperbolic cotangent, secant, and cosecant functions are also similar
to those of their trigonometric cousins, but at the moment we will be focusing only on
hyperbolic sine, cosine, and tangent.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 22:0

2.6 Derivatives of Trigonometric and Hyperbolic Functions 229

Inverse Hyperbolic Functions and Their Derivatives*

For a function to have an inverse, it must be one-to-one. Looking back at the graphs of
sinh x, cosh x, and tanh x, we see that only cosh x fails to be one-to-one. Just as we did
when we defined the trigonometric inverses, we will restrict the domain of cosh x to a
smaller domain on which it is one-to-one. We will choose the restricted domain of cosh x
to be x ≥ 0. The notation we will use for the inverses of these three functions is what you
would expect: sinh−1 x, cosh−1 x and tanh−1 x.

Since the hyperbolic functions are defined as combinations of exponential functions, it
would seem reasonable to expect that their inverses could be expressed in terms of loga-
rithmic functions. This is in fact the case, as you will see in Exercises 97–99. However, our
main concern here is to find formulas for the derivatives of the inverse hyperbolic functions,
which we can do directly from identities and properties of inverses.

THEOREM 2.21 Derivatives of Inverse Hyperbolic Functions

For all x for which the following are defined,

(a) d
dx

(sinh−1 x) = 1√
x 2 + 1

(b) d
dx

(cosh−1 x) = 1√
x 2 − 1

(c) d
dx

(tanh−1 x) = 1
1 − x 2

Similar formulas can be developed for the inverse hyperbolic cotangent, secant, and cose-
cant functions. Notice the strong similarities between these derivatives and the derivatives
of the inverse trigonometric functions.

Proof. We will prove the rule for the derivative of sinh−1 x and leave the remaining two rules to
Exercises 95 and 96. Starting from the fact that sinh(sinh−1 x) = x for all x, we can apply implicit
differentiation:

sinh(sinh−1 x) = x ← sinh−1 x is the inverse of sinh x

d
dx

(sinh(sinh−1 x)) = d
dx

(x) ← differentiate both sides

cosh(sinh−1 x) · d
dx

(sinh−1 x) = 1 ← chain rule, derivative of sinh x

d
dx

(sinh−1 x) = 1

cosh(sinh−1 x)
. ← algebra

d
dx

(sinh−1 x) = 1√
1 + sinh2(sinh−1 x)

← since cosh2 x − sinh2 x = 1

d
dx

(sinh−1 x) = 1√
1 + x 2

. ← sinh x is the inverse of sinh−1 x

Compare this proof with our proof earlier in this section for the derivative of sin−1 x; the two are
similar.

Examples and Explorations

EXAMPLE 1 Differentiating combinations of trigonometric functions

Find the derivatives of each of the following functions:

(a) f (x) = tan x
x 3 − 2

(b) f (x) = x sin−1(3x + 1) (c) f (x) = sec2 e x
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SOLUTION

(a) The function f (x) = tanx
x3 −2

is a quotient of two functions. By the quotient rule and the
rule for differentiating tangent, we have

d
dx

(
tan x

x 3 − 2

)
=

d
dx

(tan x) · (x 3 − 2) − (tan x) · d
dx

(x 3 − 2)

(x 3 − 2)2

= (sec2 x)(x 3 − 2) − (tan x)(3x 2)
(x 3 − 2)2 .

(b) The function f (x) = x sin−1(3x + 1) is a product of two functions, and thus we begin
with the product rule. We will also need the chain rule to differentiate the composition
sin−1(3x + 1):

f ′(x) = (1) · sin−1(3x + 1) + x · 1√
1 − (3x + 1)2

(3)

= sin−1(3x + 1) + 3x√
1 − (3x + 1)2

.

(c) The function f (x) = sec2 e x is a composition of three functions, and thus we need to
apply the chain rule twice:

d
dx

(sec2 e x) = d
dx

((sec(e x))2) ← rewrite so compositions are clear

= 2(sec e x)1 · d
dx

(sec e x) ← first application of chain rule

= 2(sec e x)(sec e x)(tan e x) · d
dx

(e x) ← second application of chain rule

= 2(sec e x)(sec e x)(tan e x)e x ← derivative of e x

Perhaps the most difficult part of the preceding calculation is that the derivative of sec x
has two instances of the independent variable: d

dx
(sec x) = sec x tan x. This means that

we needed to put the “inside” function e x into both of the slots for variables. �

EXAMPLE 2 Differentiating combinations of hyperbolic functions*

Find the derivatives of each of the following functions:

(a) f (x) = ln(tanh2(x 3 + 2x + 1)) (b) f (x) =
√

cosh−1(e 3x)

SOLUTION

(a) This is a nested chain-rule problem, since f (x) is a composition of multiple functions.
We will work from the outside to the inside, one step at a time:

f ′(x) = 1

tanh2(x 3 + 2x + 1)
d
dx

(tanh2(x 3 + 2x + 1))

= 1

tanh2(x 3 + 2x + 1)
(2 tanh(x 3 + 2x + 1)) d

dx
(tanh(x 3 + 2x + 1))

= 1

tanh2(x 3 + 2x + 1)
(2 tanh(x 3 + 2x + 1))(sech2(x 3 + 2x + 1))(3x 2 + 2).

(b) Once again we have a nested chain-rule situation. Notice in particular how e 3x works
with the derivative of the inverse hyperbolic cosine function:

f ′(x) = 1
2

(cosh−1(e 3x))− 1/2 d
dx

(cosh−1(e 3x)) = 1
2

(cosh−1(e 3x))− 1/2

(
1√

(e 3x)2 − 1

)
(3e 3x).

�
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EXAMPLE 3 Finding antiderivatives that involve inverse trigonometric functions

Find a function f whose derivative is f ′(x) = 1
1 + 4x 2 .

SOLUTION

Since the derivative of tan−1 x is 1
1 + x2

, we might suspect that the function we are looking

for is related to the inverse tangent function. We will use an intelligent guess-and-check
method to find f . Clearly f (x) = tan−1 x isn’t exactly right, since its derivative is missing the
“4.” A good guess might be f (x) = tan−1(4x); let’s try that:

d
dx

(tan−1(4x)) = 1
1 + (4 x)2 (4) = 4

1 + 16x 2 .

Obviously that wasn’t quite right either; but by examining the results we can make a new
guess. We might try tan−1(2x), since the “2x” will be squared in the derivative and become
the “4x 2” we are looking for in the denominator:

d
dx

(tan−1(2x)) = 1
1 + (2x)2 (2) = 2

1 + 4 x 2 .

Now we are getting somewhere; this result differs by a multiplicative constant from the
derivative f ′(x) we are looking for, and that is easy to fix. We need only divide our guess by
that constant. Try the function f (x) = 1

2
tan−1(2x):

d
dx

(
1
2

tan−1(2x)
)

=
(

1
2

) 1
1 + (2x)2 (2) = 1

1 + 4x 2 .

We now know that f (x) = 1
2

tan−1(2x) is a function whose derivative is f ′(x) = 1
1 + 4x2

. Of

course, we could also add any constant to f (x) and not change its derivative; for exam-

ple, f (x) = 1
2

tan−1(2x) + 5 would work as well. In fact, any function of the form f (x) =
1
2

tan−1(2x) + C will have f ′(x) = 1
1 + 4x2

. �

EXAMPLE 4 Finding antiderivatives that involve hyperbolic functions*

Find a function f whose derivative is f ′(x) = e x
√

e 2x − 1
.

SOLUTION

Until we learn more specific antidifferentiation techniques in Chapter 6, a problem like this
is best done by an intelligent guess-and-check procedure. Given that we have the inverse
hyperbolic functions in mind, the best match of the three is the derivative of cosh−1 x. Since
the expression for f ′(x) also involves an e x, let’s revise that guess right away to cosh−1 e x.
Now we check by differentiating with the chain rule:

d
dx

(cosh−1 e x) = 1√
(e x)2 − 1

· e x = e x
√

e 2x − 1
.

We guessed it on the first try! We have just shown that f (x) = cosh−1 e x has the desired
derivative. �

TEST YOUR? UNDERSTANDING
� What trigonometric limits were used to find the derivative of sin x?

� How can we obtain the derivative of sec x from the derivative of cos x?

� What is the graphical reason that the domains of the derivatives of sin−1 x and sec−1 x
are slightly smaller than the domains of the functions themselves?
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� How are hyperbolic functions similar to trigonometric functions? How are they
different?

� How can we obtain the derivative of sinh−1 x from the derivative of sinh x?

EXERCISES 2.6

Thinking Back

Trigonometric and inverse trigonometric values: Without using
a calculator, find the exact values of each of the following
quantities.

� sin
(
−π

3

)
� tan

(
−π

4

)

� sec
(

5π

6

)
� sin−1 1

� tan−1(
√

3 ) � sec−1(−2)

Compositions: For each function k that follows, find functions
f , g, and h such that k = f ◦ g ◦h. There may be more than one
possible answer.

� k(x) = 1
sin(x 3)

� k(x) = sin−1(cos2 x)

� k(x) = tan2(3x + 1) � k(x) = sec(x 3) tan(x 3)

Writing trigonometric compositions algebraically: Prove each
of the following equalities, which rewrite compositions of
trigonometric and inverse trigonometric functions as algebraic
functions.

� cos(sin−1 x) = √
1 − x 2 � sin(cos−1 x) = √

1 − x 2

� sec2(tan−1 x) = 1 + x 2 � tan(sec−1x)=|x|
√

1 − 1
x 2

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: To find the derivative of sin x we have to
use the definition of the derivative.

(b) True or False: To find the derivative of tan x we have to
use the definition of the derivative.

(c) True or False: The derivative of
x4

sinx
is

4x3

cosx
.

(d) True or False: If a function is algebraic, then so is its
derivative.

(e) True or False: If a function is transcendental, then so
is its derivative.

(f) True or False: If f is a trigonometric function, then f ′

is also a trigonometric function.
(g) True or False: If f is an inverse trigonometric function,

then f ′ is also an inverse trigonometric function.
(h) True or False: If f is a hyperbolic function, then f ′ is

also a hyperbolic function.
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) A function that is its own fourth derivative.
(b) A function whose domain is larger than the domain

of its derivative.
(c) Three non-logarithmic functions that are transcen-

dental, but whose derivatives are algebraic.

3. What limit facts and trigonometric identities are used in

the proof that
d
dx

(sin x) = cos x?

4. Sketch graphs of sin x and cos x on [−2π , 2π ].

(a) Use the graph of sin x to determine where sin x is
increasing and and where it is decreasing.

(b) Use the graph of cos x to determine where cos x is
positive and where it is negative.

(c) Explain why your answers to parts (a) and (b) suggest
that cos x is the derivative of sin x.

5. The differentiation formula
d
dx

(sin x) = cos x is valid only

if x is measured in radians. In this exercise you will
explore why this derivative relationship does not hold if
x is measured in degrees.
(a) Set your calculator to degree mode, and sketch a

graph of sin x that shows at least two periods. If the
derivative of sin x is cos x, then the slope of your graph
at x = 0 should be equal to cos 0 = 1. Use your graph
to explain why this is not the case when we use de-
grees. (Hint: Think about your graphing window scale.)

(b) Now set your calculator back to radians mode!
6. Suppose you wish to differentiate g(x) = sin2(x)+cos2(x).

What is the fastest way to do this, and why?

7. The derivatives of the function f (x) = cos(3x 2) that follow
are incorrect. What misconception occurs in each case?
(a) Incorrect: f ′(x) = (− sin x)(3x 2) + (cos x)(6x).
(b) Incorrect: f ′(x) = − sin(6x).

8. The derivatives of the function f (x) = cos(3x 2) that follow
are incorrect. What misconception occurs in each case?

(a) Incorrect: f ′(x) = − sin(3x 2).
(b) Incorrect: f ′(x) = − sin(3x 2)(6x)(6).

9. In the proof that
d
dx

(sin−1 x) = 1√
1 − x2

, we used the fact

that sin(sin−1 x) = x. It is also true that sin−1(sin x) = x;
could we have started with that inequality instead? Why
or why not?

10. Both of the following equations are true: tan(tan−1 x) = x
and tan−1(tan x) = x. We can find the derivative of tan−1 x
by differentiating both sides of one of these equations
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and solving for
d
dx

(tan−1 x). Which one of the equations

should we use, and why?

11. How can the derivative of sin−1 x be equal to both
1√

1 − x2

and
1

cos(sin−1 x)
? Which expression is easier to use, and

why?
12. The function sin−1 x is defined on [−1, 1], but its deriva-

tive
1√

1 − x2
is defined only on (−1, 1). Explain why the

tangent lines to the graph of y = sin−1 x do not exist at
x = ±1. (Hint: Think about the corresponding tangent lines
on the graph of the restricted sine function.)

13. The figure that follows at the left shows the graphs of

y = sinh x, y = cosh x, and y = 1
2

e x. For each of the state-

ments that follows, explain graphically why the statement
is true. Then justify the statement algebraically, using the
definitions of the hyperbolic functions.

(a) sinh x ≤ 1
2

e x ≤ cosh x for all x

(b) lim
x→∞

sinh x
(1/2)e x

= 1 and lim
x→∞

cosh x
(1/2)e x

= 1

Graph for Exercise 13

�2 �1 21
x

3

2

1

y

�3

�2

�1

Graph for Exercise 14

�2 �1 21
x

3

2

1

y

�3

�2

�1

14. The preceding figure at the right shows the graphs

of y = cosh x, y = 1
2

e x, and y = 1
2

e−x. For each of the

statements that follows, explain graphically why the
statement is true. Then justify the statement algebraically,
using the definitions of the hyperbolic functions.

(a) cosh x = 1
2

e x + 1
2

e−x

(b) lim
x→−∞

cosh x
(1/2)e−x

= 1

15. The figure that follows at the left shows the graphs of

y = sinh x, y = 1
2

e x, and y = − 1
2

e−x. For each of

the statements that follows, explain graphically why the
statement is true. Then justify the statement algebraically,
using the definitions of the hyperbolic functions.

(a) sinh x = 1
2

e x − 1
2

e−x

(b) lim
x→−∞

sinh x
−(1/2)e−x

= 1

Graph for Exercise 15

�2 �1 21
x

3

2

1

y

�3

�2

�1

Graph for Exercise 16

1

y

�1

�2�3 �1 321
x

16. The preceding figure at the right shows the graphs of
y = tanh x, y = 1, and y = −1. For each of the state-
ments that follows, explain graphically why the statement
is true. Then justify the statement algebraically, using the
definitions of the hyperbolic functions.

(a) −1 ≤ tanh x ≤ 1
(b) lim

x→∞ tanh x = 1 and lim
x→−∞ tanh x = −1

Skills

Find the derivatives of each of the functions in Exercises
17–50. In some cases it may be convenient to do some pre-
liminary algebra.

17. f (x) = x 2 + 1
cos x

18. f (x) = 2 cos(x 3)

19. f (x) = cot x − csc x 20. f (x) = tan2(3x + 1)

21. f (x) = 4 sin2x+4 cos2x 22. f (x) = sec2 x −1

23. f (x) = 3 sec x tan x 24. f (x) = 3 x sec x + 17

25. f (x) = sin(cos(sec(x))) 26. f (x) = csc2(e x)

27. f (x) = e csc2 x 28. f (x) = e x csc2 x

29. f (x) = −2 x

5x sin x
30. f (x) = log3(3 x)

sin2 x + cos2 x

31. f (x) = x
√

sin x cos x 32. f (x) = sin x csc x
cot x cos x

33. f (x) = 3x 2 ln x
tan x

34. f (x) = ln(3x 2)
tan x

35. f (x) = sin( ln x) 36. f (x) = ln(x sin x)

37. f (x) = sin−1(3x 2) 38. f (x) = 3(sin−1 x)2

39. f (x) = x 2 arctan x 2 40. f (x) = tan−1( ln x)

41. f (x) = sec−1 x 2 42. f (x) = sin(sin−1 x)

43. f (x) = sin−1(sec2 x) 44. f (x) = sin2(sec−1 x)

45. f (x) = sin−1 x
tan−1 x

46. f (x) = sin−1 x
sec−1 x

47. f (x)= ln(arcsec(sin2x)) 48. f (x) = x −2 e 4x sin−1 x

49. f (x) = sec(1+tan−1 x) 50. f (x) = sin(arcsin x)
arctan x
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Find the derivatives of each of the functions in Exercises
51–62. In some cases it may be convenient to do some prelim-
inary algebra. (These exercises involve hyperbolic functions and
their inverses.)

51. f (x) = x sinh x 3 52. f (x) = x sinh3 x

53. f (x) = cosh(ln(x 2 + 1)) 54. f (x) = 3 tanh2 e x

55. f (x) =
√

cosh2 x + 1 56. f (x) = tanh
√

x√
sinh x

57. f (x) = sinh−1(x 3) 58. f (x) = tanh−1(tan x 2)

59. f (x) = sinh−1 x

cosh−1 x
60. f (x) = x

√
tanh−1 x

61. f (x) = sin(e sinh−1 x) 62. f (x) = cosh−1(cosh−1 x)

Use logarithmic differentiation to find the derivatives of each
of the functions in Exercises 63–65.

63. (sin x) x 64. (sec x) x 65. (sin x)cos x

In Exercises 66–71, find a function f that has the given deriva-
tive f ′. In each case you can find the answer with an educated
guess-and-check process.

66. f ′(x) = 2x√
1 − 4x 2

67. f ′(x) = 2√
1 − 4x 2

68. f ′(x) = 1
1 + 9x 2

69. f ′(x) = 3x
1 + 9x 2

70. f ′(x) = 1
9 + x 2

71. f ′(x) = 3√
4 − 9x 2

In Exercises 72–77, find a function f that has the given deriva-
tive f ′. In each case you can find the answer with an edu-
cated guess-and-check process. (Some of these exercises involve
hyperbolic functions.)

72. f ′(x) = 2x√
1 + 4x 2

73. f ′(x) = 2√
1 + 4x 2

74. f ′(x) = 1
1 − 9x 2

75. f ′(x) = 3x
1 − 9x 2

76. f ′(x) = 1
9 − x 2

77. f ′(x) = 3√
4 + 9x 2

Applications
78. In Exercise 83 from Section 1.6 we saw that the oscillating

position of a mass hanging from the end of a spring, ne-
glecting air resistance, is given by the following equation,
where A, B, k, and m are constants:

s(t) = A sin

(√
k
m

t

)
+ B cos

(√
k
m

t

)
.

s(t)
mass, m

spring coefficient, k

v0
s0

(a) Show that the function s(t) has the property that

s′′(t) + k
m

s(t) = 0. This is the differential equation for

the spring motion, an equation involving derivatives
that describes the motion of the bob on the end of the
spring.

(b) Suppose the spring is released from an initial posi-
tion of s0 and with an initial velocity of v0. Show that

A = v0

√ m
k

and B = s0.

79. In Exercise 84 from Section 1.6 we learned that the oscil-
lating position of a mass hanging from the end of a spring,
taking air resistance into account, is given by the follow-
ing equation, where A, B, k, f , and m are constants:

s(t) = e−f /2m t

(
A sin

(√
4km − f 2

2m
t
)

+B cos
(√

4km − f 2

2m
t
))

.

(a) Show that the function s(t) has the property that

s′′(t) + f
m

s′(t) + k
m

s(t) = 0 for some constant f . This is

the differential equation for spring motion, taking air
resistance into account. (Hint: Find the first and second
derivatives of s(t) first, and then show that s(t), s′(t), and
s′′(t) have the given relationship.)

(b) Suppose the spring is released from an initial posi-
tion of s0 with an initial velocity of v0. Show that

A = 2mv0 + f s0√
4km − f 2

and B = s0.

80. Suppose your friend Max drops a penny from the top
floor of the Empire State Building, 1250 feet from the
ground. After t seconds, the penny is a distance of s(t) =
−16t 2 + 1250 from the ground. You are standing about a
block away, 250 feet from the base of the building.

250 ft

1250 ft

�(t)

(a) Find a formula for the angle of elevation α(t) from the
ground at your feet to the height of the penny t sec-
onds after Max drops it. Multiply by an appropriate
constant so that α(t) is measured in degrees.
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(b) Find a formula for the rate at which the angle of ele-
vation α(t) is changing at time t, and use the formula
to determine the rate of change of the angle of eleva-
tion at the time the penny hits the ground.

81. The Gateway Arch in St. Louis is designed as an inverted
catenary curve. The arch is a complex three-dimensional
structure, but some sources model it simply, using the
hyperbolic function

A(x) = 693.8 − 68.8 cosh
(

1
99.7

(x − 299.22)
)

,

where x denotes the distance in feet from one base of the
arch as you approach the other. (This exercise involves
hyperbolic functions.)

x

600

y

400

200

600400200

33 ft

x

y

tram angle

x

y

tram angle

(a) How tall is the arch, according to this model?
(b) There is a tram that takes visitors to an observation

deck in the top of the arch. The cabin of the tram ro-
tates rather like cars on a Ferris wheel to keep visitors
upright, but the outer part of the tram changes angle
with the curve of the arch. What angle does the tram
make with the ground at the bottom of the arch?

(c) Visitors leave the tram at the observation deck 33 feet
from the center of the arch. What angle does the tram
make with the ground there?

82. Ian has climbed a pinnacle that is detached from the main
peak by roping down into the notch dividing them and
then climbing the pinnacle. He pulled an extra rope be-
hind him so that he could get back to the main peak by
using a Tyrolean traverse, meaning that he would use the
rope to go directly back to the peak instead of descend-
ing and then climbing on rock again. When he anchors
the rope, it hangs in a catenary curve, with equation

r(x) = 125 cosh(0.008x − 0.6528).

The point x = 0 is where the rope attaches to the main
peak, while x = 136 is where it attaches to the pinnacle.
Heights are measured in feet above the notch. (This
exercise involves hyperbolic functions.)

x

y

136
x

y

(a) How much higher is the main peak than the detached
pinnacle?

(b) Where is the low point of the rope as it hangs loosely?
How high is the rope above the notch at that point?

(c) What angle does the rope make with the horizontal
where it attaches to the main peak?

Proofs

83. Use the definition of the derivative, a trigonometric
identity, and known trigonometric limits to prove that
d
dx

(cos x) = − sin x.

84. Use the quotient rule and the derivative of the cosine

function to prove that
d
dx

(sec x) = sec x tan x.

85. Use the quotient rule and the derivative of the sine func-

tion to prove that
d
dx

(csc x) = − csc x cot x.

86. Use the quotient rule and the derivatives of the sine and

cosine functions to prove that
d
dx

(cot x) = − csc2 x.

87. Use implicit differentiation and the fact that
tan(tan−1 x) = x for all x in the domain of tan−1 x to prove

that
d
dx

(tan−1 x) = 1
1 + x2

.

88. Use implicit differentiation and the fact that
sec(sec−1 x) = x for all x in the domain of sec−1 x to prove

that
d
dx

(sec−1 x) = 1

|x|√x2 − 1
. You will have to consider

the cases x > 1 and x < −1 separately.
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89. Prove that for any value of t, the point (x, y) =
(cosh t, sinh t) lies on the hyperbola x 2 − y2 = 1. Bonus
question: In fact, these points will always lie on the
right-hand side of the hyperbola; why? (This exercise in-
volves hyperbolic functions.)

Use the definitions of the hyperbolic functions to prove that
each of the identities in Exercises 90–92 hold for all values of
x and y. Note how similar these identities are to those which
hold for trigonometric functions. (These exercises involve hyper-
bolic functions.)
90. (a) sinh(−x) = − sinh x, and (b) cosh(−x) = cosh x

91. sinh(x + y) = sinh x cosh y + cosh x sinh y
92. cosh(x + y) = cosh x cosh y + sinh x sinh y

Prove each of the differentiation formulas in Exercises 93–96.
(These exercises involve hyperbolic functions.)

93.
d
dx

(cosh x) = sinh x

94.
d
dx

(tanh x) = sech2x

95.
d
dx

(cosh−1 x) = 1√
x 2 − 1

96.
d
dx

(tanh−1 x)
1

1 − x 2

Prove that the inverse hyperbolic functions can be written in
terms of logarithms as shown in Exercises 97–99. (Hint for the
first problem: Solve sinh y = x for y by using algebra to get an
expression that is quadratic in e y (i.e., of the form ae 2y + be y + c)
and then applying the quadratic formula.)
(These exercises involve hyperbolic functions.)

97. sinh−1 x = ln(x + √
x 2 + 1 ), for any x.

98. cosh−1 x = ln(x + √
x 2 − 1 ), for x ≥ 1.

99. tanh−1 x = 1
2

ln
(

1 + x
1 − x

)
, for −1 < x < 1.

Thinking Forward

Local extrema and inflection points: In the exercises that follow,
you will investigate how derivatives can help us find the loca-
tions of the maxima and minima of a function.

� Suppose f has a maximum or minimum value at x = c.
If f is differentiable at x = c, what must be true of f ′(c),
and why?

� If f is a differentiable function, then the values x =
c at which the sign of the derivative f ′(x) changes
are the locations of the local extrema of f . Use

this information to find the local extrema of the func-
tion f (x) = sin x. Illustrate your answer on a graph of
y = sin x.

� If f is a differentiable function, then the values x = c
at which the sign of the second derivative f ′′(x)
changes are the locations of the inflection points of
f . Use this information to find the inflection points of
the function f (x) = sin x. Illustrate your answer on a
graph of y = sin x.

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� the graphical interpretations of a tangent line and a secant
line to a graph

� the real–world interpretations of position, velocity, and
acceleration

� the real–world interpretations of average rate of change and
instantaneous rate of change

� the formal definition of the derivative of a function f at a
point x = c (both z → x form and h → 0 form)

� the formal definition of the derivative of a function f , as a
function (both z → x form and h → 0 form)

� the formal definitions of the tangent line and the instanta-
neous rate of change of the graph of a function f at a point
x = c

� what it means for a function f to be differentiable, left dif-
ferentiable, and right differentiable at a point x = c.

� what it means for a function f to be differentiable on an
open or closed interval I

� what it means to say that y is an implicit function of x, and
the meaning of implicit differentiation

� the definitions of the hyperbolic functions sinh x, cosh x,
and tanh x in terms of exponential functions
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Theorems

Fill in the blanks to complete each of the following theorem
statements:

� If a function f is differentiable at x = c, then f is at
x = c.

� If f and f −1 are inverse functions, then for all appropriate
values of x we can write the derivative of f −1(x) in terms
of the derivative of f ′(x) as follows: .

� f ′(x) = kf (x) for some constant k if and only if f is a/an
function.

� For all real numbers x, cosh2 x − sinh2 x = .

Notation and Differentiation Rules

Leibniz notation: Describe the meanings of each of the mathe-
matical expressions that follow. Translate expressions written
in Leibniz notation to “prime” notation, and vice versa.

� f ′(x) � f ′(2) � f ′′(x)

� df
dx

� dy
dx

� d
dx

( y(x))

� dg
dt

∣∣∣∣
t=3

� d
dx

(x 2) � d
dx

∣∣∣∣
−1

(x 2)

� d 2y
dx 2

� d
dx

(
d
dx

(x 2)
)

� f (5)(x)

Derivatives of basic functions: Fill in the blanks to differentiate
each of the given basic functions. You may assume that k, m,
and b are appropriate constants.

� d
dx

(k) = � d
dx

(x) =

� d
dx

(mx + b) = � d
dx

(x k) =

� d
dx

(
√

x ) = � d
dx

(
1
x

)
=

� d
dx

(e x) = � d
dx

(b x) =

� d
dx

(e kx) = � d
dx

(logb x) =

� d
dx

(ln x) = � d
dx

(ln |x|) =

� d
dx

(sin x) = � d
dx

(cos x) =

� d
dx

(tan x) = � d
dx

(sec x) =

� d
dx

(cot x) = � d
dx

(csc x) =

� d
dx

(sin−1 x) = � d
dx

(tan−1 x) =

� d
dx

(sec−1 x) = � d
dx

(sinh x) =

� d
dx

(cosh x) = � d
dx

(tanh x) =

� d
dx

(sinh−1 x) = � d
dx

(cosh−1 x) =

� d
dx

(tanh−1 x) =

Derivatives of combinations: Fill in the blanks to complete each
of the given differentiation rules. You may assume that f and
g are differentiable everywhere.

� (kf )′(x) = � ( f + g)′(x) =

� ( f − g)′(x) = � ( fg)′(x) =

�
(

f
g

)′
(x) = � ( f ◦ g)′(x) =

Skill Certification: Basic Derivatives

Basic definition-of-derivative calculations: Find the derivatives of
the functions that follow, using (a) the h → 0 definition of the
derivative and (b) the z → x definition of the derivative.

1. f (x) = x 2 2. f (x) = x 3

3. f (x) = 1
x

4. f (x) = 1
x 2

5. f (x) = √
x 6. f (x) = 1√

x

Calculating basic derivatives: Find the derivatives of the func-
tions that follow, using the differentiation rules developed
in this chapter. (The last two exercises involve hyperbolic
functions.)

7. f (x) = 1
x 4 − 5x 3 + 2

8. f (x) = x − 2
(x − 1)(x + 3)

9. f (x) = (x
√

2x − 1 )−3 10. f (x) = x−1(4 − x)2
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11. f (x) =
1 − 1

x√
x

12. f (x) = 3x
√

2x + 1
1 − x

13. f (x) = |x| 14. f (x) = |3x + 1|

15. f (x) = e x sin x 16. f (x) = e x

sin x

17. f (x) = sin(e x) 18. f (x) = e sin x

19. f (x) = ln(tan2 x) 20. f (x) = x 3 sec x

21. f (x) =
√

sin−1(x 2) 22. f (x) = sin2 x + cos2 x
csc x

23. f (x) = x23x+1 24. f (x) = x x

25. f (x) =
√

tanh3(x 5) 26. f (x) = sinh−1 x

tanh−1 x

Calculating antiderivatives: For each exercise that follows, find
a function f that has the given derivative f ′ and value f (c).
In each case you can find the answer with an educated
guess-and-check process. The last exercise involves an inverse
hyperbolic function.

27. f ′(x) = −32, f (0) = 4

28. f ′(x) = −32x + 4, f (0) = 100

29. f ′(x) = x(3x + 1), f (2) = 4

30. f ′(x) = 3x 2

√
x 3 + 1

, f (2) = 6

31. f ′(x) = 8e 4x + 1, f (0) = 3

32. f ′(x) = 2x sec x 2 tan x 2, f (0) = 2

33. f ′(x) = 1
1 + 4x

, f (0) = 1

34. f ′(x) = 1
1 + 4x 2

, f (0) = 1

35. f ′(x) = x
1 + 4x 2

, f (0) = 1

36. f ′(x) = 1
1 − 4x 2

, f (0) = 0

Differentiating with respect to different variables: Find each
derivative described.

37. If 3v2 + xv − 1 = 0, find
dv
dx

.

38. If 3v2 + xv − 1 = 0, find
dx
dv

.

39. If A = πr 2, find
dA
dr

.

40. If A = πr 2, and A and r are both functions of time t,

find
dA
dt

.

41. If y = 3x 2t − t k, where x and k are constant, find
dy
dt

.

42. If y = 3x 2t − t k, where t and k are constant, find
dy
dx

.

Capstone Problems

A. The sum rule for differentiation: Use the definition of the
derivative to prove that the derivative of a sum of func-
tions f (x) + g(x) is equal to the sum of their derivatives
f ′(x) + g′(x).

B. The power rule for differentiation: Use the definition of the
derivative and factoring formulas to prove that for any
positive integer k, the derivative of x k is kx k−1.

C. Rates of change from data: The following table lists the
consumption of gasoline in billions of gallons in the
United States from 1994 to 2000:

Year 1994 1995 1996 1997 1998 1999 2000

Gas 109 111 113 117 118 121 122

(a) Compute the average rate of change in gasoline
consumption in the United States for each year
from 1994 to 2000.

(b) During which year was gasoline consumption in-
creasing most rapidly? Least rapidly? Estimate the
instantaneous rates of change in gasoline con-
sumption during those years.

D. Derivatives and graphical behavior: In the next chapter we
will see that we can get a lot of information about the
graph of a function f by looking at the signs of f (x) and
its first and second derivatives. Let’s do this for the func-
tion f (x) = x 3 − 3x 2 − 9x + 27.

(a) Find the roots of f , and then determine the intervals
on which f is positive or negative.

(b) Find the roots of f ′, and then determine the intervals
on which f ′ is positive or negative.

(c) Find the roots of f ′′, and then determine the intervals
on which f ′′ is positive or negative.

(d) The graph of f will be above the x-axis when f (x) is
positive and below the x-axis when f (x) is negative.
Moreover, the graph of f will be increasing when f ′ is
positive and decreasing when f ′ is negative. Finally,
the graph of f will be concave up when f ′′ is pos-
itive and concave down when f ′′ is negative. Given
this information and your answers from parts (a)–(c),
sketch a careful, labeled graph of f .
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3.1 The Mean Value Theorem

The Derivative at a Local Extremum
Rolle’s Theorem
The Mean Value Theorem
Examples and Explorations

3.2 The First Derivative and Curve Sketching
Derivatives and Increasing/Decreasing Functions

� �

f

f ’

Functions with the Same Derivative
The First-Derivative Test
Examples and Explorations

3.3 The Second Derivative and Curve Sketching
Derivatives and Concavity

� �
f ’’

f
Inflection Points
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Examples and Explorations

3.4 Optimization
Finding Global Extrema

l

w
Translating Word Problems into Mathematical Problems
Examples and Explorations

3.5 Related Rates
Related Quantities Have Related Rates

rVolumes and Surface Areas of Geometric Objects
Similar Triangles
Examples and Explorations

3.6 L’Hôpital’s Rule
Geometrical Motivation for L’Hôpital’s Rule

lim
x→c

f (x)
g(x)

L’Hôpital’s Rule for the Indeterminate Forms
0
0

and
∞
∞

Using Logarithms for the Indeterminate Forms 00, 1∞, and ∞0

Examples and Explorations
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3.1 THE MEAN VALUE THEOREM

� Local extrema, critical points, and their relationships

� Rolle’s Theorem and the Mean Value Theorem

� Using critical points to find local extrema

The Derivative at a Local Extremum

Suppose a function f has a local maximum at some point x = c. This means that the value
f (c) is greater than or equal to all other nearby f (x) values. The following definition makes
this notion precise:

DEFINITION 3.1 Local Extrema of a Function

(a) f has a local maximum at x = c if there exists some δ > 0 such that f (c) ≥ f (x) for
all x ∈ (c − δ, c + δ).

(b) f has a local minimum at x = c if there exists some δ > 0 such that f (c) ≤ f (x) for
all x ∈ (c − δ, c + δ).

Intuitively, at a local extremum, the tangent line of a function must be either horizontal or
undefined; for example, consider the following three graphs:

Local maximum with
horizontal tangent line

Local minimum with
horizontal tangent line

Local maximum with
no tangent line

c

y

x
c

y

x
c

y

x

When a function has a horizontal or an undefined tangent line at a point, its derivative
at that point is either zero or undefined. We call such points critical points of the function:

DEFINITION 3.2 Critical Points of a Function

A point x = c in the domain of f is called a critical point of f if f ′(c) = 0 or f ′(c) does
not exist.

Notice that only points in the domain of f are considered critical points. For example, con-
sider the function f (x) = 1

x
, whose derivative is f ′(x) = − 1

x2
. Clearly f ′(0) does not exist;

however, since x = 0 is not in the domain of f , it is not called a critical point.

The preceding graphs suggest that every local extremum is also a critical point. This
seemingly obvious relationship between critical points and extrema turns out to be the
foundation on which we will build two more theorems that are key in our development of
calculus:
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THEOREM 3.3 Local Extrema are Critical Points

If x = c is the location of a local extremum of f , then x = c is a critical point of f .

The converse of this theorem is not true. That is, not every critical point is a local extremum
of f ; see Example 1. Although the implication in Theorem 3.3 is intuitively obvious just
by thinking about graphs and the behavior of the derivative at local maxima and minima,
actually proving it requires a somewhat subtle argument. The key is to look at the left and
right derivatives at a local extremum. Theorem 3.3 is also known as Fermat’s Theorem for
Local Extrema, when formulated equivalently as saying that if x = c is a local extremum and
f is differentiable at x = c, then f ′(c) must be zero.

Proof. We will prove the case for local maxima and leave the similar proof for local minima to
Exercise 64. Suppose x = c is the location of a local maximum of f . If f ′(c) does not exist, then x = c
is a critical point and we are done. It now suffices to show that if f ′(c) exists, then it must be equal
to 0. We will do so by examining the right and left derivatives at x = c.

Since x = c is the location of a local maximum of f , there is some δ > 0 such that for all
x ∈ (c − δ, c + δ), f (c) ≥ f (x), and thus f (x) − f (c) ≤ 0. In the case where x ∈ (c, c + δ), it follows that

x > c, which means that x − c is positive. Thus in this case
f (x) − f (c)

x − c
≤ 0, and therefore

f ′
+(c) = lim

x→c+

f (x) − f (c)
x − c

≤ 0.

By a similar argument for x ∈ (c − δ, c), we have x − c < 0 and f (x) − f (c) ≤ 0, and therefore

f ′
−(c) = lim

x→c−

f (x) − f (c)
x − c

≥ 0.

Since we are assuming that f ′(c) exists, we know that both f ′
+(c) and f ′

−(c) must exist and be equal to
f ′(c). We have just shown both that f ′(c) ≤ 0 and that f ′(c) ≥ 0. Therefore, we must have f ′(c) = 0,
as desired.

Rolle’s Theorem

Suppose a differentiable function f has two roots x = a and x = b. What can you say about
the graph of f between a and b? The three graphs that follow next provide a clue; if the
graph of a function is smooth and unbroken, then somewhere between each root of f the
function must turn around, and at that turning point it must have a local extremum with a
horizontal tangent line:

x
b

y

ca
x

b

y

ca
x

b

y

ca

The preceding discussion is a summary of both the statement and the proof of the following
key theorem:
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THEOREM 3.4 Rolle’s Theorem

If f is continuous on [a, b] and differentiable on (a, b), and if f (a) = f (b) = 0, then there
exists at least one value c ∈ (a, b) for which f ′(c) = 0.

Actually, Rolle’s Theorem also holds in the more general case where f (a) and f (b) are equal
to each other (not necessarily both zero). For example, Rolle’s Theorem is also true if f (a) =
f (b) = 5, or if f (a) = f (b) = −3, and so on, because vertically shifting a function by adding
a constant term does not change its derivative. However, the classic way to state Rolle’s
Theorem is with f (a) and f (b) both equal to zero.

Proof. Rolle’s Theorem is an immediate consequence of the Extreme Value Theorem from
Section 1.4 and the fact that every extremum is a critical point. Suppose f is continuous on the
closed interval [a, b] and differentiable on the open interval (a, b), with f (a) = f (b) = 0. By the Ex-
treme Value Theorem, we know that f attains both a maximum and a minimum value on [a, b]. If
one of these extreme values occurs at a point x = c in the interior (a, b) of the interval, then x = c
is a local extremum of f . By the previous theorem, this means that x = c is a critical point of f .
Since f is assumed to be differentiable at x = c, it follows that f ′(c) = 0 and we are done.

It remains to consider the special case where all of the maximum and minimum values of
f on [a, b] occur at the endpoints of the interval (i.e., at x = a or at x = b). In this case, since
f (a) = f (b) = 0, the maximum and minimum values of f (x) must both equal zero. For all x in [a, b]
we would have 0 ≤ f (x) ≤ 0, which means that f would have to be the constant function f (x) = 0
on [a, b]. Since the derivative of a constant function is always zero, in this special case we have
f ′(x) = 0 for all values of c in (a, b), and we are done.

Just as the Intermediate Value Theorem and the Extreme Value Theorem illustrate basic
properties of continuous functions, Rolle’s Theorem illustrates a basic property of functions
that are both continuous and differentiable. Like those two theorems before, Rolle’s The-
orem is a theorem about existence, not calculation; it tells you that there must exist some
value c ∈ (a, b) where the derivative of f is zero, but it does not tell you what that value is. It
is important to note that the continuity and the differentiability hypotheses of Rolle’s The-
orem are essential: If a function f fails to be continuous on [a, b] or fails to be differentiable
on (a, b), then the conclusion of Rolle’s Theorem does not necessarily follow; see Example 2.

The Mean Value Theorem

The Mean Value Theorem is a generalization of Rolle’s Theorem to the case where f (a) and
f (b) are not necessarily equal. Suppose f is a continuous, differentiable function. What can
we say about the derivative of f between two points x = a and x = b? The three graphs
that follow suggest an answer: Somewhere between a and b the slope of the tangent line
must be the same as the slope of the line from (a, f (a)) to (b, f (b)). If you turn your head so
that the green line is horizontal in each figure, you can see that these figures are similar to
rotated versions of the earlier figures used in illustrating Rolle’s Theorem.

x
b

y

ca
x

b

y

ca
x

b

y

ca

Algebraically, this means that there must be some c ∈ (a, b) whose derivative value f ′(c)
is equal to the average rate of change of f on [a, b]:
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THEOREM 3.5 The Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b), then there exists at least one value
c ∈ (a, b) such that

f ′(c) = f (b) − f (a)
b − a

.

The “mean” in the “Mean Value Theorem” refers to an average. Basically, this theorem says
that if a function is continuous on a closed interval and differentiable on its interior, then
there is always at least one place in the interval where the instantaneous rate of change of
the function is equal to its average rate of change over the whole interval. As a real–world
example, suppose you drove at an average speed of 50 miles per hour on a short road trip.
The Mean Value Theorem guarantees that at some point along your journey you must have
been travelling at exactly 50 miles per hour.

The Mean Value Theorem is intuitively clear if you believe that you can just “turn your
head to the side” and see Rolle’s Theorem. In fact, the proof of the Mean Value Theorem is
based on an algebraic version of this intuition:

Proof. Suppose f is a function that is continuous on [a, b] and differentiable on (a, b), and let l(x)
be the secant line from (a, f (a)) to (b, f (b)). The idea of the proof is to “turn our heads” algebraically.
To rotate so that the secant line l(x) plays the role of the x-axis, we will consider the function g(x) =
f (x) − l(x). The graph of this new function g(x) will have roots at x = a and x = b, and we will be
able to apply Rolle’s Theorem.

Since the secant line l(x) has slope
f (b) − f (a)

b − a
and passes through the point (a, f (a)), its equa-

tion is

l(x) = f (b) − f (a)
b − a

(x − a) + f (a).

This means that the function g(x) = f (x) − l(x) is equal to

g(x) = f (x) − f (b) − f (a)
b − a

(x − a) − f (a).

If we want to apply Rolle’s Theorem to g(x), then we must first verify that g(x) satisfies all the
hypotheses of Rolle’s Theorem. First, g(x) is continuous on [a, b] because it is a combination of
continuous functions. Second, g(x) is differentiable on (a, b) because f is differentiable on (a, b).
Finally, g(a) = 0 and g(b) = 0:

g(a) = f (a) − f (b) − f (a)
b − a

(a − a) − f (a) = f (a) − 0 − f (a) = 0,

g(b) = f (b) − f (b) − f (a)
b − a

(b − a) − f (a) = f (b) − ( f (b) − f (a)) − f (a) = 0.

Since Rolle’s Theorem applies to the function g(x), we can conclude that there exists some
c ∈ (a, b) for which g ′(c) = 0. How does this conclusion relate to our original problem? To answer
that, we must first calculate g ′(x):

g ′(x) = d
dx

(
f (x) − f (b) − f (a)

b − a
(x − a) − f (a)

)
← definition of g(x)

= f ′(x) − f (b) − f (a)
b − a

(1) − 0 ← f (b) − f (a)
b − a

and f (a) are constants

= f ′(x) − f (b) − f (a)
b − a

. ← simplify

Rolle’s Theorem now guarantees that there exists a c ∈ (a, b) for which g ′(c) = 0. By our previous

calculation, for this value of c we have g ′(c) = f ′(c)− f (b) − f (a)
b − a

= 0, and therefore f ′(c) = f (b) − f (a)
b − a

,

as desired.
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Examples and Explorations

EXAMPLE 1 Not every critical point is a local extremum

Show that x = 1 is a critical point of f (x) = x 3 − 3x 2 + 3x. Then use a graph to show that
x = 1 is not a local extremum of f .

SOLUTION

If f (x) = x 3 − 3x 2 + 3x, then f ′(x) = 3x 2 − 6x + 3 and thus f ′(1) = 3(1)2 − 6(1) + 3 = 0.
Therefore x = 1 is a critical point of f . However, looking at the following graph of f , we can
see that f has neither a local minimum nor a local maximum at x = 1:

x = 1 is a critical point but not an extremum

1 2

y

1

2

x
�

EXAMPLE 2 The hypotheses of Rolle’s Theorem are important

Sketch graphs of three functions that fail to satisfy the hypotheses of Rolle’s Theorem, for
which the conclusion of Rolle’s Theorem does not follow.

SOLUTION

The function f in the first graph that follows at the right fails to be differentiable on (1, 3),
and therefore can “turn around” at x = 2 without having a horizontal tangent line. For this
function, there is no value of c ∈ (a, b) with f ′(c) = 0.

f is not differentiable on (1, 3) g is not continuous on [1, 3] h is not continuous on [1, 3]

2 4

y

1 3

2

1

x

y

2

1

2 41 3
x

y

2

1

2 41 3
x

In the second graph, the function g(x) fails to be continuous at the very place where we
would have expected its derivative to be zero. Since this function is not continuous at x = 2,
it is also not differentiable at x = 2, and there is no value c ∈ (1, 3) with g ′(c) = 0.

The third graph illustrates a function h(x) that fails to be continuous at the right end-
point x = 3 of the interval. There is no value c ∈ (1, 3) with h′(c) = 0; the function never
has to “turn around,” since it just jumps down to the root at x = 3. �
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EXAMPLE 3 Applying Rolle’s Theorem

Use Rolle’s Theorem to show that there must exist some value of c in (−2, 5) at which the
function f (x) = x 2 − 3x − 10 has a horizontal tangent line. Then use f ′ to find such a value
c algebraically, and verify your answer with a graph.

SOLUTION

First notice that f (x) = x 2 − 3x − 10 = (x + 2)(x − 5) has roots at x = −2 and at x = 5.
Since f is a polynomial, it is continuous and differentiable. In particular, it is continuous on
[−2, 5] and differentiable on (−2, 5). Therefore Rolle’s Theorem applies to the function f ,
and we can conclude that there must exist some value of c ∈ (−2, 5) for which f ′(c) = 0. At
this value of c the graph of f will have a horizontal tangent line.

Rolle’s Theorem tells us that there exists some c ∈ (−2, 5) where f ′(c) = 0, but it
doesn’t tell us exactly where. We can find such a c by solving the equation f ′(x) = 0. Since
f (x) = x 2 − 3x − 10, we have f ′(x) = 2x − 3, which is equal to zero when x = 3

2
. Therefore f

has a horizontal tangent line at c = 3
2

, which is in the interval (−2, 5). The following graph

illustrates that f (x) = x 2 − 3x − 10 does appear to have a horizontal tangent line at x = 3
2

.

Horizontal tangent at x = 3
2

y

�2
�2 �1

�4

�6

�8

�10

�12

�14

1 2 3 4 5
x

�

EXAMPLE 4 Using critical points and Rolle’s Theorem to find local extrema

The function f (x) = x (x − 1)(x − 3) is a cubic polynomial with one local maximum and one
local minimum. Use Rolle’s Theorem to identify intervals on which these extrema exist.
Then use derivatives to find the exact locations of these extrema.

SOLUTION

The roots of f (x) = x (x − 1)(x − 3) are x = 0, x = 1, and x = 3. Since f is a polynomial,
it is continuous and differentiable everywhere. Therefore Rolle’s Theorem applies on the
intervals [0, 1] and [1, 3], and it tells us that at least one critical point must exist inside each
of these intervals.

The critical points of f are the possible locations of the local extrema that we seek. To
find the critical points we must solve the equation f ′(x) = 0. It is simpler to do some algebra
before differentiating:

f ′(x) = d
dx

(x (x − 1)(x − 3)) = d
dx

(x 3 − 4x 2 + 3x) = 3x 2 − 8x + 3.

By the quadratic formula, we have f ′(x) = 0 at the points

x = −(−8) ±
√

82 − 4(3)(3)
2(3)

= 8 ± √
28

6
= 4 ± √

7
3

.
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These x-values are approximately x ≈ 0.451 and x ≈ 2.215. If we look at the graph of f ,
then we can see that the smaller of these two x-values is the location of the local maximum
and the larger is the location of the local minimum; see the figure that follows. �

CHECKING
THE ANSWER

The graph of f (x) = x(x − 1)(x − 3) is shown next. Notice that the local extrema do seem
to occur at the values we just found.

Extrema at x ≈ 0.451 and x ≈ 2.215

�1 4

�8

4

EXAMPLE 5 Applying the Mean Value Theorem

Use the Mean Value Theorem to show that there is some value c ∈ (0, 2) at which the
tangent line to the function f (x) = x 2 − 2 has slope 2. Then use f ′ to find such a value c
algebraically, and verify your answer with a graph.

SOLUTION

The function f (x) = x 2 − 2 is a polynomial and thus is continuous and differentiable; in
particular it is continuous on [0, 2] and differentiable on (0, 2). Therefore, the Mean Value
Theorem applies to this function on the interval [0, 2]. The slope of the line from (0, f (0))
to (2, f (2)) is

f (2) − f (0)
2 − 0

= (22 − 2) − (02 − 2)
2

= 2 − (−2)
2

= 4
2

= 2.

By the Mean Value Theorem, there must exist at least one point c ∈ (0, 2) with f ′(c) = 2.

To find such a value of c algebraically, observe that the derivative of f (x) = x 2 − 2 is
f ′(x) = 2x + 0 = 2x. We want to find c ∈ (0, 2) with f ′(c) = 2, so we solve:

f ′(c) = 2 =⇒ 2c = 2 =⇒ c = 1.

The point c = 1 is indeed in the interval (0, 2), and f ′(1) = 2, so we are done. The following
figure illustrates that f (x) = x 2 − 2 does appear to have the same slope at x = 1 as the
secant line from (0, f (0)) to (2, f (2)).

f ′(1) equals average rate of change on [0, 2]

y

21�1
�1

4

�2

3

�3

2

�4

1

x

�

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 24, 2012 20:18

3.1 The Mean Value Theorem 247

TEST YOUR? UNDERSTANDING
� Is every critical point a local extremum? Is every local extremum a critical point?

� What is the role of δ in the definitions of local extrema given in Definition 3.1?

� Why do you think f (a) = f (b) would be a sufficient hypothesis in the statement of
Rolle’s Theorem? Think about the situation graphically.

� Can Rolle’s Theorem tell you the exact location of a root of f ′?

� How is the Mean Value Theorem related to Rolle’s Theorem?

EXERCISES 3.1

Thinking Back

Review of definitions and theorems: State each theorem or
definition that follows in precise mathematical language.
Then give an illustrative graph or example, as appropriate.

� f has a local maximum at x = c

� f has a local minimum at x = c

� f is continuous on [a, b]

� f is differentiable on (a, b)

� The secant line from (a, f (a)) to (b, f (b))

� The right derivative f ′
+(c) at a point x = c

� The left derivative f ′
−(c) at a point x = c

� The Extreme Value Theorem

� The Intermediate Value Theorem

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Rolle’s Theorem is a special case of the
Mean Value Theorem.

(b) True or False: The Mean Value Theorem is so named
because it concerns the average (or “mean”) rate of
change of a function on an interval.

(c) True or False: If f is differentiable on R and has an ex-
tremum at x = −2, then f ′(−2) = 0.

(d) True or False: If f has a critical point at x = 1, then
f has a local minimum or maximum at x = 1.

(e) True or False: If f is any function with f (2) = 0 and
f (8) = 0, then there is some c in the interval (2, 8)
such that f ′(c) = 0.

(f) True or False: If f is continuous and differentiable on
[−2, 2] with f (−2) = 4 and f (2) = 0, then there is
some c ∈ (−2, 2) with f ′(c) = −1.

(g) True or False: If f is continuous and differentiable on
[0, 10] with f ′(5) = 0, then f has a local maximum or
minimum at x = 5.

(h) True or False: If f is continuous and differentiable on
[0, 10] with f ′(5) = 0, then there are some values a
and b in (0, 10) for which f (a) = 0 and f (b) = 0.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function with a local minimum at x = 3 that is
continuous but not differentiable at x = 3.

(b) A function with a local maximum at x = −2 that is
not differentiable at x = −2 because of a removable
discontinuity.

(c) A function with a local minimum at x = 1 that
is not differentiable at x = 1 because of a jump
discontinuity.

3. If f has a local maximum at x = 1, then what can you say
about f ′(1)? What if you also know that f is differentiable
at x = 1?

4. If f has a local minimum at x = 0 and a local maximum
at x = 2, what can you say about f ′(0) and f ′(2)? Is there
anything else you can say about f ′?

5. Suppose that f is defined on (−∞, ∞) and differentiable
everywhere except at x = −2 and x = 4, and that f ′(x) = 0
only at x = 0 and x = 5. List all the critical points of f and
sketch a possible graph of f .

6. Suppose that f is defined for x �= 0 and differentiable
everywhere except at x = 0 and x = 1, and that f ′(x) = 0
only at x = ±2. List all the critical points of f and sketch
a possible graph of f .

7. If a continuous, differentiable function f has zeroes at
x = −4, x = 1, and x = 2, what can you say about f ′

on [−4, 2]?
8. If a continuous, differentiable function f is equal to 2 at

x = 3 and at x = 5, what can you say about f ′ on [3, 5]?

9. If a continuous, differentiable function f has values
f (−2) = 3 and f (4) = 1, what can you say about f ′ on
[−2, 4]?

10. Restate Theorem 3.3 so that its conclusion has to do with
tangent lines.

11. Restate Rolle’s Theorem so that its conclusion has to do
with tangent lines.
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12. Restate the Mean Value Theorem so that its conclusion
has to do with tangent lines.

In Exercises 13–22, sketch the graph of a function that satisfies
the given description. Label or annotate your graph so that it
is clear that it satisfies each part of the description.

13. A function that satisfies the hypothesis, and therefore the
conclusion, of Rolle’s Theorem on [2, 6].

14. A function that satisfies the hypothesis, and therefore the
conclusion, of the Mean Value Theorem.

15. A function f that satisfies the hypotheses of Rolle’s Theo-
rem on [−2, 2] and for which there are exactly three values
c ∈ (−2, 2) that satisfy the conclusion of the theorem.

16. A function f that satisfies the hypothesis of the Mean
Value Theorem on [0, 4] and for which there are exactly
three values c ∈ (0, 4) that satisfy the conclusion of the
theorem.

17. A function f that is defined on [−2, 2] with f (−2) = f (2) =
0 such that f is continuous everywhere, differentiable ev-
erywhere except at x = −1, and fails the conclusion of
Rolle’s Theorem.

18. A function f defined on [1, 5] with f (1) = f (5) = 0 such
that f is continuous everywhere except for x = 2, differen-
tiable everywhere except at x = 2, and fails the conclusion
of Rolle’s Theorem.

19. A function f defined on [−3, −1] with f (−3) = f (−1) = 0
such that f is continuous everywhere except at x = −1
and differentiable everywhere except at x = −1, and fails
the conclusion of Rolle’s Theorem.

20. A function f defined on [0, 4] such that f is continuous ev-
erywhere, differentiable everywhere except at x = 2, and
fails the conclusion of the Mean Value Theorem with
a = 0 and b = 4.

21. A function f defined on [−3, 3] such that f is continu-
ous everywhere except at x = 1, differentiable everywhere
except at x = 1, and fails the conclusion of the Mean Value
Theorem with a = −3 and b = 3.

22. A function f defined on [−2, 0] such that f is continuous
everywhere except at x = −2, differentiable everywhere
except at x = −2, and fails the conclusion of the Mean
Value Theorem with a = −2 and b = 0.

Skills

For each graph of f in Exercises 23–26, approximate all the
values x ∈ (0, 4) for which the derivative of f is zero or does
not exist. Indicate whether f has a local maximum, minimum,
or neither at each of these critical points.

23. y
2

�1

1

�2

2 41 3
x

24. y
3

2

1

�1

�2

�3

�1�2

�4

21
x

25. y
4

�1

3

2

1

�2

2 41 3
x

26. y

2

1

2 41 3
x

Find the critical points of each function f in Exercises 27–36.
Then use a graphing utility to determine whether f has a
local minimum, a local maximum, or neither at each of these
critical points.

27. f (x) = (x − 1.7)(x + 3) 28. f (x) = x 3 + x 2 + 1

29. f (x) = 3x 4 + 8x 3 − 18x 2 30. f (x) = (2x − 1)5

31. f (x) = 3x − 2e x 32. f (x) = 3 x − 2 x

33. f (x) = ln 2x
x

34. f (x) = 21−ln x

35. f (x) = cos x 36. f (x) = sec x

For each graph of f in Exercises 37–40, explain why f satis-
fies the hypotheses of Rolle’s Theorem on the given interval
[a, b]. Then approximate any values c ∈ (a, b) that satisfy the
conclusion of Rolle’s Theorem.

37. [a, b] = [−3, 1]

y

2

1

�1�2�3 1
x

38. [a, b] = [−3, 3]

y

�1�2�3 321

3

2

1

�3

�2

�1

x

39. [a, b] = [0, 4]

y

42 31

3

2

1

�3

�2

�1

x

40. [a, b] = [−1, 1]

y

�1�2�3 321

4

3

2

1

�1

x

Determine whether or not each function f in Exercises 41–48
satisfies the hypotheses of Rolle’s Theorem on the given
interval [a, b]. For those that do, use derivatives and
algebra to find the exact values of all c ∈ (a, b) that satisfy the
conclusion of Rolle’s Theorem.
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41. f (x) = x 3 − 4x 2 + 3x, [a, b] = [0, 3]
42. f (x) = x 3 − 4x 2 + 3x, [a, b] = [1, 3]
43. f (x) = x 4 − 3.24x 2 − 3.04, [a, b] = [−2, 2]

44. f (x) = x 2 − 4x
x 2 − 4x + 3

, [a, b] = [0, 4]

45. f (x) = cos x, [a, b] =
[
−π

2
,

3π

2

]

46. f (x) = sin 2x, [a, b] = [0, 2π ]
47. f (x) = e x(x 2 − 2x), [a, b] = [0, 2]

48. f (x) = ln |x 2 − 1|, [a, b] = [−√
2,

√
2

]
For each graph of f in Exercises 49–52, explain why f satisfies
the hypotheses of the Mean Value Theorem on the given in-
terval [a, b] and approximate any values c ∈ (a, b) that satisfy
the conclusion of the Mean Value Theorem.

49. [a, b] = [0, 2]

y

�1�2 321

4

3

2

1

x

50. [a, b] = [−1, 3]

y

�1�2�3 321

8
7
6
5
4
3
2
1

x

51. [a, b] = [−3, 0]
y

�1�2�4 �3 1

6
5
4
3
2
1

�1
�2

x

52. [a, b] = [0, 4]

y
4

�1

3

2

1

�2

2 41 3
x

Determine whether or not each function f in Exercises 53–60
satisfies the hypotheses of the Mean Value Theorem on the
given interval [a, b]. For those that do, use derivatives and al-
gebra to find the exact values of all c ∈ (a, b) that satisfy the
conclusion of the Mean Value Theorem.

53. f (x) = x 2 + 1
x

, [a, b] = [−3, 2]

54. f (x) = x 3 − 2x + 1, [a, b] = [0, 6]
55. f (x) = −x 3 + 3x 2 − 7, [a, b] = [−2, 3]

56. f (x) = (x 2 − 1)(x 2 − 4), [a, b] = [−3, 3]

57. f (x) = ln(x 2 + 1), [a, b] = [0, 1]

58. f (x) = 2 x, [a, b] = [0, 3]

59. f (x) = sin x, [a, b] =
[
0,

π

2

]
60. f (x) = tan x, [a, b] = [−π , π ]

Applications
61. The cost of manufacturing a container for frozen orange

juice is C(h) = h2 − 7.4h + 13.7 cents, where h is the
height of the container in inches. Your boss claims that
the containers will be cheapest to make if they are 4
inches tall. Use Theorem 3.3 to quickly show that he is
wrong.

62. Last night at 6 p.m., Linda got up from her blue easy chair.
She did not return to her easy chair until she sat down
again at 8 p.m. Let s(t) be the distance between Linda and
her easy chair t minutes after 6 p.m. last night.

(a) Sketch a possible graph of s(t), and describe what
Linda did between 6 p.m. and 8 p.m. according to
your graph. (Questions to think about: Will Linda

necessarily move in a continuous and differentiable
way? What are good ranges for t and s?)

(b) Use Rolle’s Theorem to show that at some point
between 6 p.m. and 8 p.m., Linda’s velocity v(t) with
respect to the easy chair was zero. Find such a place
on the graph of s(t).

63. It took Alina half an hour to drive to the grocery store that
is 20 miles from her house.

(a) Use the Mean Value Theorem to show that, at some
point during her trip, Alina must have been travelling
exactly 40 miles per hour.

(b) Why does what you have shown in part (a) make
sense in real-world terms?

Proofs

64. Prove the part of Theorem 3.3 that was not proved in the
reading: If a function f has a local minimum at x = c, then
either f ′(c) does not exist or f ′(c) = 0.

65. Prove Rolle’s Theorem: If f is continuous on [a, b] and dif-
ferentiable on (a, b), and if f (a) = f (b) = 0, then there is
some value c ∈ (a, b) with f ′(c) = 0.

66. Prove the Mean Value Theorem: If f is continuous on
[a, b] and differentiable on (a, b), then there is some value

c ∈ (a, b) with f ′(c) = f (b) − f (a)
b − a

.

67. Use Rolle’s Theorem to prove that if f is continuous and
differentiable everywhere and has three roots, then its
derivative f ′ has at least two roots.

68. Follow the method of proof that we used for Rolle’s
Theorem to prove the following slightly more general
theorem: If f is continuous on [a, b] and differentiable on
(a, b), and if f (a) = f (b), then there is some value c ∈ (a, b)
with f ′(c) = 0.

69. Use Rolle’s Theorem to prove the slightly more general
theorem from Exercise 68: If f is continuous on [a, b] and
differentiable on (a, b), and if f (a) = f (b), then there is
some value c ∈ (a, b) with f ′(c) = 0. (Hint: Apply Rolle’s
Theorem to the function g(x) = f (x) − f (a).)
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Thinking Forward

Sign analyses for derivatives: For each function f that follows,
find the derivative f ′. Then determine the intervals on which
the derivative f ′ is positive and the intervals on which the
derivative f ′ is negative. Record your answers on a sign chart
for f ′, with tick-marks only at the x-values where f ′ is zero or
undefined.

� f (x) = x
x 2 + 1

� f (x) = x 2 3 x

� f (x) = sin x
e x

� f (x) = ln( ln x)

Sign analyses for second derivatives: Repeat the instructions of
the previous block of problems, except find sign intervals for
the second derivative f ′′ instead of the first derivative.

� f (x) = x
x 2 + 1

� f (x) = x 2 3 x

� f (x) = sin x
e x

� f (x) = ln( ln x)

3.2 THE FIRST DERIVATIVE AND CURVE SKETCHING

� The relationship between the derivative and increasing/decreasing functions

� Proving that all antiderivatives of a function differ by a constant

� Using the first-derivative test to determine whether critical points are maxima, minima, or neither

Derivatives and Increasing/Decreasing Functions

In Section 0.4 we defined a function f to be increasing on an interval if, for all a and b in
the interval with b > a, f (b) > f (a). In other words, the height of f at points farther to the
right are higher. Similarly, f is decreasing on an interval if, for all b > a in the interval,
f (b) < f (a). These definitions can be difficult to work with if we wish to find the intervals
on which a given function is increasing or decreasing. Luckily, the derivative will provide
us with an easier method.

We have seen that the first derivative f ′ in some sense measures the direction of the
graph of a function f at each point, since f ′ is the associated slope function for f . In par-
ticular, if f ′ is positive at a point x = c, then the graph of f must be moving in an upwards
direction, that is, increasing, as it passes x = c. Similarly, if f ′(c) is negative, then the graph
of f must be decreasing at x = c. For example, we can divide the real-number line into in-
tervals according to where the function f (x) = x 3−3x 2−9x+11 is increasing or decreasing,
as shown in the figure that follows at the left. This same division into subintervals describes
where the derivative f ′(x) = 3x 2 − 6x − 9 is positive and negative, as shown at the right.

Intervals where f increases/decreases Intervals where f ′ is positive/negative

y

�2�3 �1�4 4 5 61 32

(��, �1] [3, �)[�1, 3]

in
cre

as
in

g

in
cr

ea
si

ngdecreasing

y

�2�3 �1�4 4 5 61 32

(��, �1] [3, �)[�1, 3]

positive

negative

positive
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This relationship between intervals on which f is increasing or decreasing exactly when
f ′ is positive or negative, respectively, holds in general. The only wrinkle is at the extremum
of a function f ; for example, in the graph at the left we say that f is increasing on (−∞, −1],
which includes the extremum at x = −1, because it is true that for all b > a less than or
equal to x = −1 we do have f (b) > f (a). However, the derivative at x = −1 is not positive,
but zero. Therefore f ′ is positive only on the interior (−∞, −1) of the interval, but the
function f is increasing on the entire interval (−∞, −1].

THEOREM 3.6 The Derivative Measures Where a Function is Increasing or Decreasing

Let f be a function that is differentiable on an interval I.

(a) If f ′ is positive in the interior of I, then f is increasing on I.

(b) If f ′ is negative in the interior of I, then f is decreasing on I.

(c) If f ′ is zero in the interior of I, then f is constant on I.

Theorem 3.6 is intuitively obvious if we consider the slopes of tangent lines on in-
creasing and decreasing graphs. To prove this theorem formally we require the Mean Value
Theorem.

Proof. We’ll prove part (a) here and leave the similar proofs of parts (b) and (c) to Exercises 89
and 90, respectively. The key to the proof will be the Mean Value Theorem.

Let f be a function that is differentiable on an interval I and whose derivative f ′ is positive on
the interior of that interval. Suppose also that a, b ∈ I with b > a. By the definition of increasing,
we must show that f (b) > f (a). Since f is differentiable, and thus also continuous, on the interval I,
and since [a, b] is contained in the interval I, f satisfies the hypotheses of the Mean Value Theorem
on [a, b]. Therefore we can conclude that there exists some c ∈ (a, b) such that

f ′(c) = f (b) − f (a)
b − a

.

To show that f (b) > f (a) it suffices to show that f (b) − f (a) > 0; with this in mind we can rearrange
the preceding equation as

f (b) − f (a) = f ′(c) (b − a).

Since c ∈ (a, b), it follows that c is in the interior of I, and thus by hypothesis f ′(c) > 0. Furthermore,
since b > a, we have (b − a) > 0. Therefore f (b) − f (a) is the product of two positive numbers and
must itself be positive, which is what we wanted to show.

Up to this point we could only graphically approximate the intervals on which a function
is increasing or decreasing. With Theorem 3.6 we can now find these intervals algebraically,
by examining the sign of f ′. We have thus reduced the difficult problem of finding the inter-
vals on which a function is increasing or decreasing to the much simpler problem of finding
the intervals on which an associated function—the derivative—is positive or negative.

Functions with the Same Derivative

If two functions differ by a constant, then obviously they will have the same derivative,
because the derivative of a constant is zero. For example, f (x) = x 3 and g(x) = x 3 + 10 differ
by a constant because their difference g(x) − f (x) is equal to the constant 10, and their
derivatives f ′(x) = 3x 2 and g ′(x) = 3x 2 + 0 = 3x 2 are equal.

Although it is less obvious, the converse is also true: Any two functions that have the
same derivative must differ by a constant. Algebraically, this means that if you find one
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antiderivative of a function, then all other antiderivatives of that function differ from the
one that you found by a constant. For example, one antiderivative of 3x 2 is x 3, and thus all
antiderivatives of 3x 2 are of the form x 3 + C for some constant C. Graphically, this means
that if two functions have the same derivative, then one is a vertical shift of the other. For
example, the graph of 3x 2 is shown next at the left and five of its antiderivatives x 3 + C
are shown at the right, for C = 0, C = ±10, and C = ±20. The red graph of y = 3x 2

yields information about every one of the blue graphs y = x 3 + C, regardless of the vertical
shift C.

Graph of y = 3x 2 All antiderivatives of 3x 2 are of the form x 3 + C

y
30

20

10

�1�2�3 321
x

y
40

20

�1

�20

�40

�2�3 321
x

THEOREM 3.7 Functions with the Same Derivative Differ by a Constant

If f ′(x) = g ′(x) for all x ∈ [a, b], then, for some constant C, f (x) = g(x) + C for all
x ∈ [a, b].

Proof. Suppose f ′(x) = g ′(x) for all x ∈ [a, b]. Then f ′(x) − g ′(x) = 0, which by the difference

rule means that
d
dx

( f (x) − g(x)) = 0 on [a, b]. By the third part of Theorem 3.6 this means that
the function f (x) − g(x) is constant for all x ∈ [a, b], say, f (x) − g(x) = C for some real number C.
Therefore f (x) = g(x) + C for all x ∈ [a, b].

The First-Derivative Test

In the previous section we saw that the set of critical points of a function, that is, the values
of x for which f ′ is zero or does not exist—is a complete list of all the possible local extrema
of f . We now develop a method for using the first derivative to determine which critical
points are local maxima, which are local minima, and which are neither.

Suppose f ′(c) = 0 and that f is differentiable near c. Then if f is not constant, there are
four different ways that f can behave near x = c:

f changes from increasing
to decreasing at x = c

f changes from decreasing
to increasing at x = c

maximum

y

c
x

decreasingin
cr

ea
sin

g

minimum

y

c
x

decreasing in
cr

ea
si

ng

f is increasing
on both sides of x = c

f is decreasing
on both sides of x = c

not an
extremum

y

c
x

in
cr

ea
si

ng

in
cr

ea
si

ng not an
extremum

y

c
x

decreasing

decreasing
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On the one hand, if f changes from increasing to decreasing at x = c, then f has a local
maximum at x = c. If f changes from decreasing to increasing at the point x = c, then f has
a local minimum at x = c. On the other hand, if f does not change direction at x = c, then
f does not have a local extremum at x = c. Since a function f is increasing or decreasing
according to whether its derivative is positive or negative, we can record the preceding four
situations on sign charts for f ′, with the corresponding information for f recorded as the
following sign analyses:

f ′ changes from positive
to negative at x = c

f ′ changes from negative
to positive at x = c

max

� �

f

f ’
c

min
� �

f ’

f

c

f ′ is positive
on both sides of x = c

f ′ is negative
on both sides of x = c

f ’
c

neither

� �

f

f ’
c

neither

� �

f

CAUTION Please recall that, throughout this book, we will make tick-marks on sign charts only at the
locations where the function is zero or fails to exist. We will mark with “DNE” any locations
where the function does not exist, but we will not explicitly mark the zeroes. You should
assume that any unlabeled tick-marks on a sign chart are zeroes of the function in question.
Do not make additional tick-marks on your sign charts if you follow this convention.

Using a sign chart for the first derivative f ′ to test whether critical points of f are local
maxima, minima, or neither is quite sensibly known as the first-derivative test. The
statement of the test is wordy and its proof is somewhat technical, but its meaning is equiv-
alent to information obtained from the previous sign chart analyses.

THEOREM 3.8 The First-Derivative Test

Suppose x = c is the location of a critical point of a function f , and let (a, b) be an open
interval around c that is contained in the domain of f and does not contain any other
critical points of f . If f is continuous on (a, b) and differentiable at every point of (a, b)
except possibly at x = c, then the following statements hold.

(a) If f ′(x) is positive for x ∈ (a, c) and negative for x ∈ (c, b), then f has a local maxi-
mum at x = c.

(b) If f ′(x) is negative for x ∈ (a, c) and positive for x ∈ (c, b), then f has a local mini-
mum at x = c.

(c) If f ′(x) is positive for both x ∈ (a, c) and x ∈ (c, b), then f does not have a local
extremum at x = c.

(d) If f ′(x) is negative for both x ∈ (a, c) and x ∈ (c, b), then f does not have a local
extremum at x = c.

Proof. We will prove parts (a) and (c) here and leave the similar proofs of parts (b) and (d) to
Exercises 91 and 92, respectively. The proof will be an application of Theorem 3.6. Suppose x = c
is a critical point of f , and let (a, b) be an interval around x = c satisfying the hypotheses of the
theorem.

To prove part (a), suppose f ′(x) > 0 for x ∈ (a, c) and f ′(x) < 0 for x ∈ (c, b), that is, suppose
that f is increasing on (a, c] and decreasing on [c, b). We will show that f (c) ≥ f (x) for all x ∈ (a, b),
which will tell us that f has a local maximum at x = c. Given any x ∈ (a, b), there are three cases to
consider. First, if x = c, then clearly f (c) = f (x). Second, if a < x < c, then since f is increasing on
(a, c], we have f (x) < f (c). Third, if c < x < b, then since f is decreasing on [c, b), we have f (c) > f (x).
In all three cases we have f (c) ≥ f (x), and therefore f has a local maximum at x = c.
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To prove part (c), suppose that f ′(x) > 0 for all x ∈ (a, c) ∪ (c, b). Then by Theorem 3.6, f must
be increasing on all of (a, b). Now, the point x = c cannot be the location of a local maximum of
f , because, for all x > c in (a, b), f (x) > f (c), since f is increasing on (a, b). But neither can x = c
be a local minimum of f , because, for all x < c in (a, b), f (x) < f (c). Therefore f has neither a local
minimum nor a local maximum at x = c.

Now, to find the local extrema of a function f , we need only find the critical points of
f and then test each one with the first-derivative test. In other words, we find the deri-
vative f ′, determine where f ′ is zero or does not exist, and then make a sign chart for f ′
around these critical points to determine whether f has a local maximum, a local minimum,
or neither at each critical point. This method will find all local extrema for functions f that
are defined on open intervals. For functions defined on closed or half-closed intervals, we
will also have to consider endpoint extrema, which we will discuss in Section 3.4.

Examples and Explorations

EXAMPLE 1 Using the derivative to determine where a function is increasing or decreasing

Use Theorem 3.6 to determine the intervals on which each of the following functions are
increasing or decreasing:

(a) f (x) = x 3 (b) g(x) = x 2 − 2x + 1 (c) h(x) = x 2 + 10x + 1
x − 2

SOLUTION

(a) If f (x) = x 3, then f ′(x) = 3x 2, which is positive as long as x �= 0. Therefore f ′ is positive
on (−∞, 0) and (0, ∞). By Theorem 3.6 we can say that f is increasing on the entire
half-closed intervals (−∞, 0] and [0, ∞). Thus f is increasing on all of R. Notice that,
as shown in the graph that follows, the tangent line to f (x) = x 3 is horizontal at x = 0.
However, the function f (x) = x 3 is still increasing everywhere: For all real numbers
b > a we have b3 > a3, even if one of a or b is zero.

f (x) = x 3 is increasing everywhere

y
8

4

�4

�8

�1�2 21
x

(b) If g(x) = x 2 −2x+1, then g ′(x) = 2x−2. Recall that functions can change signs only at
roots, non-domain points, and discontinuities. The derivative g ′(x) = 2x − 2 is always
defined and continuous, and g ′(x) = 0 when 2x − 2 = 0 (i.e., when x = 1). There-
fore we need only check the sign of g ′(x) to the left and right of x = 1. For example,
g ′(0) = 2(0)−2 = −2 is negative, and g ′(2) = 2(2)−2 = 2 is positive, as the following
sign chart shows:
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tick-mark
means

g’(1) � 0

g’(2) � 2 > 0,
so g’(x) > 0 for
all x in (1, ∞)

g’(0) � �2 < 0,
so g’(x) < 0 for
all x in (�∞, 1)

� �
g’

1

By Theorem 3.6, the information on the sign chart for g ′(x) shows that g(x) is
decreasing on (−∞, 1] and increasing on [1, ∞). However, from this point forward we
will record the closed-endpoint information only when we need it and instead record
only the open-interval information. Therefore here we would say simply that g(x) is
decreasing on (−∞, 1) and increasing on (1, ∞).

(c) By the quotient rule, the derivative of h(x) is

h′(x) = (2x + 10)(x − 2) − (x 2 + 10x + 1)(1)
(x − 2)2

= x 2 − 4x − 21
(x − 2)2 = (x + 3)(x − 7)

(x − 2)2 .

Notice that we simplified the preceding equation so that it would be immediately clear
that h′(x) = 0 when x = −3 and x = 7 and that h′(x) does not exist when x = 2, a
point that is not in the domain of h(x) in the first place. To determine the sign chart
for h′(x) we need only check the sign of h′(x) one time between each of these critical
points and non-domain points. For example, using the factored form of h′(x) we have:

h′(−5) : (−)(−)
(−)2

(positive) h′(0) : (+)(−)
(−)2

(negative)

h′(5) : (+)(−)
(+)2

(negative) h′(10) : (+)(+)
(+)2

(postiive)

We can record this information on a sign chart for h′(x) as follows, with annotations
above the chart for the corresponding increasing/decreasing behavior of h(x):

� � ��
h’

2 7�3

DNE

h

Reading off the sign chart, we see that h(x) is increasing on (−∞, −3) and (7, ∞) and
decreasing on (−3, 2) and on (2, 7). �

CHECKING
THE ANSWER

To check our answers to parts (b) and (c) of the example, we can simply graph g(x) and h(x).
Notice that the graph of g(x) shown next at the left does appear to be decreasing on (−∞, 1)
and increasing on (1, ∞). The graph of h(x) at the right does appear to be increasing on
(−∞, −3) and (7, ∞) and decreasing elsewhere.

g(x) = x 2 − 2x + 1 h(x) = x2 + 10x + 1
x − 2

�1

0

4

3

�40

40

�10 15
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EXAMPLE 2 Interpreting the sign chart for the derivative of a function

Let f be a function whose derivative f ′ has the signs indicated on the sign chart shown.
Recall our convention that tick-marks on this sign chart indicate the locations where f ′ is
zero (if unlabeled) or does not exist (if marked with “DNE”). Use the sign chart to sketch
possible graphs for f and f ′.

� ��
f ’

2�1

DNE

SOLUTION

This sign chart says that f ′ is positive on the intervals (−∞, −1) and (2, ∞), and negative
on the interval (−1, 2). It also says that f ′(−1) = 0 and that f ′(2) does not exist. Given this
information, one possible sketch of f ′ is shown next at the left.

We can determine a lot about the graph of a function f from the graph of its derivative
f ′. The function f must be increasing on (−∞, −1) and (2, ∞), and decreasing on (−1, 2),
with a horizontal tangent line at x = −1, and a non-differentiable point at x = 2. One
possible sketch of a function f that has these characteristics is shown next at the right.
Notice that the information about f ′ does not tell us how high or low to sketch the graph
of f . In fact, any vertical shift of f would do just as well, since every antiderivative of f ′ is of
the form f (x) + C.

Possible graph of f ′ Possible graph of f

y

�1 2
x

y

�1 2
x

�

EXAMPLE 3 Detailed curve-sketching analyses using the first derivative

Sketch the graph of each of the given functions. Along the way, determine all local extrema
and important features of the graph.

(a) f (x) = x 3 − 3x + 2 (b) f (x) = x 2

x 2 − 2x + 1

SOLUTION

(a) For f (x) = x 3 − 3x + 2 we have f ′(x) = 3x 2 − 3. This derivative is always defined and
continuous, so the critical points of f are just the places where f ′(x) = 0:

3x 2 − 3 = 0 =⇒ 3x 2 = 3 =⇒ x 2 = 1 =⇒ x = ±1.

These critical points divide the real-number line into three intervals, namely,
(−∞, −1), (−1, 1), and (1, ∞). We’ll test the sign of f ′ on each interval by testing the
sign of f ′(x) at one point in that interval, say, at x = −2, x = 0, and x = 2:

f ′(−2) = 3(−2)2 − 3 = 12 − 3 = 9 > 0,

f ′(0) = 3(0)2 − 3 = 0 − 3 = −3 < 0,

f ′(2) = 3(2)2 − 3 = 12 − 3 = 9 > 0.
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Recording this information on a sign chart for f ′, with consequences for f illustrated
above the chart, we have

� ��
f ’

f

1�1

minmax

The maximum and minimum of f listed on the chart were identified by the first-
derivative test: Since f ′ changes from positive to negative at x = −1, f changes from
increasing to decreasing there; thus the point x = −1 must be a local maximum of f .
Since f ′ changes from negative to positive at x = 1, f changes from decreasing to
increasing there; thus f must have a local minimum at the point x = 1.

With all the first-derivative information we have collected, we can sketch a rea-
sonable graph of f by plotting just a few points. As a general rule it is a good idea to
plot the points (c, f (c)) for each critical point x = c and then use the information about
the derivative to connect the dots accordingly. In this example, the critical points are
x = −1 and x = 1, so we calculate:

f (−1) = (−1)3 − 3(−1) + 2 = −1 + 3 + 2 = 4,

f (1) = (1)3 − 3(1) + 2 = 1 − 3 + 2 = 0.

Using this information, we can make a sketch of the graph of f (x) = x 3 − 3x + 2, as
shown next. Compare the features of this graph with the information in the sign chart
for f ′:

y
5

4

3

2

1

�1
�1�3 �2 2 31

x

(b) Before we do anything else, we should note that the domain of

f (x) = x 2

x 2 − 2x + 1
= x 2

(x − 1)2

is all points except x = 1. The function f is zero only at x = 0, and at all other points in
its domain it is positive, since both its numerator and denominator are perfect squares.
So far we know that the entire graph of f will be above the x-axis, except at the root
(0, 0) and at the non-domain point x = 1, where something interesting may occur.

To determine local extrema and increasing/decreasing behavior, we must find the

derivative of f (x) = x2

x2 − 2x + 1
. Because we will be interested in where f ′ is zero or does

not exist, we also simplify as much as possible:

f ′(x) = (2x)(x 2 − 2x + 1) − (x 2)(2x − 2)
(x 2 − 2x + 1)2 = −2x(x − 1)

(x − 1)4 = −2x
(x − 1)3 .

This derivative is zero when its numerator is zero but its denominator is not, that is,
when x = 0. The derivative is undefined when x = 1, which makes sense because
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the original function f is also undefined at x = 1. The critical point x = 0 and the
non-domain point x = 1 are the only places at which the sign of f ′ can change.

Now we make a sign chart representing the sign of the derivative f ′ between each
of these critical points. For example, we can find that f ′(−1) < 0, f ′(0.5) > 0, and
f ′(2) < 0:

���
f ’

f

10

DNE

min

We can identify the local minimum at x = 0 indicated on the chart with the first-
derivative test, since f ′(x) changes sign from negative to positive at x = 0. However,
the same type of argument cannot be applied to the point x = 1: Even though f ′(x)
changes sign at x = 1, the function f does not have a local extremum at x = 1, because
it is not defined at that point.

Information about limits can be important to figuring out the key features of a

graph, so we will examine limits of f (x) = x2

x2 − 2x + 1
at any “interesting” places. In this

case the interesting limits to consider are at the point x = 1, where the function does
not exist, and at the ends as x → ±∞. As x → 1 we have x 2 → 1 and x 2 − 2x + 1 =
(x − 1)2 → 0+, and therefore the limit in question is of the form 1

0+ . Thus

lim
x→1

x 2

x 2 − 2x + 1
= ∞.

We can calculate the limit of f as x → ∞ with the familiar strategy of dividing
numerator and denominator by the highest power of x:

lim
x→∞

x 2

x 2 − 2x + 1

(
1/x 2

1/x 2

)
= lim

x→∞
1

1 − 2
x

+ 1
x 2

= 1
1 − 0 + 0

= 1.

A similar argument shows that lim
x→−∞

x2

x2 − 2x + 1
is also equal to 1. (We could also ap-

peal to Theorem 1.32 and notice that the numerator and denominator of the function
in question are polynomials of the same degree, and thus that the limit of the quo-
tient as x → ±∞ is the ratio 1

1
= 1 of the leading coefficients of those polynomials.)

Since lim
x→1

f (x) = ∞, we can see that f has a vertical asymptote at the non-domain

point x = 1, with the function approaching ∞ on both sides of this asymptote. Since
lim

x→∞ f (x) = 1 and lim
x→−∞ f (x) = 1, f has a horizontal asymptote on both the left and

the right at y = 1.

Putting all of this information together, we get the following graph:

y
6

5

4

3

2

1

�4 �2 4 62
x

�
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TEST YOUR? UNDERSTANDING
� If f ′ is positive on (0, 3), why does it make sense that we can say that f is increasing on

all of [0, 3]?

� Can you give an example of a function f for which f ′ is zero on all of (−1, 1)?

� If x 3 − 4x 2 − 2 is one antiderivative of some function f , what can you say about the
other antiderivatives of f ?

� If f is defined, continuous, and differentiable at x = 3, and if f ′ changes sign at x = 3,
then what can you say about f at x = 3?

� Can you sketch an example of a function f with a critical point at x = 2 but no local
extremum at x = 2?

EXERCISES 3.2

Thinking Back

Differentiation: Find the derivative of each function f , and then
simplify as much as possible.

� f (x) = (2x − 1)3(3x + 1)2 � f (x) = (2x − 1)3

(3x + 1)2

� f (x) = 3x 2e−4x � f (x) = sin( ln x)

Solving equations: For each of the following functions g(x), find
the solutions of g(x) = 0 and also find the values of x for which
g(x) does not exist.

� g(x) =
1
2

x−1/2(1 + 5x) − √
x(5)

(1 + 5x)2

� g(x) = 2x
√

x − 1 + x 2
(

1
2

(x − 1)−1/2
)

� g(x) = e x(1 − e x) − e x(−e x)
(1 − e x)2

Sign analyses: For each of the following functions g(x), use
algebra and a sign chart to find the intervals on which g(x)
is positive and the intervals on which g(x) is negative.

� g(x) = 6x 2 − 18x � g(x) = 2 − x − 2x 2 + x 3

� g(x) = (x + 2)(x − 1)4

e x
� g(x) = 3x 2 − 5x − 2

sin2 x

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f ′(x) < 0 for all x ∈ (0, 3), then f is
decreasing on [0, 3].

(b) True or False: If f is increasing on (−2, 2), then f ′(x) ≥
0 for all x ∈ (−2, 2).

(c) True or False: If f ′(x) = 2x, then f (x) = x 2 +C for some
constant C.

(d) True or False: If f ′ is continuous on (1, 8) and f ′(3) is
negative, then f ′ is negative on all of (1, 8).

(e) True or False: If f ′ changes sign at x = 3, then
f ′(3) = 0.

(f) True or False: If f ′(−2) = 0, then f has either a local
maximum or a local minimum at x = −2.

(g) True or False: If x = 1 is the only critical point of f and
f ′(0) is positive, then f ′(2) must be negative.

(h) True or False: If f ′(1) is negative and f ′(3) is positive,
then f has a local minimum at x = 2.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function that is decreasing on (−∞, 0), increasing
on (0, ∞), and undefined at x = 0.

(b) A function that is decreasing on (−∞, 0] and increas-
ing on [0, ∞).

(c) A function that is always positive and always decreas-
ing, on all of R.

3. State the definition of what it means for a function f to be
increasing on an interval I and what it means for a func-
tion f to be decreasing on an interval I.

4. Describe what a critical point is, intuitively and in math-
ematical language. Then describe what a local extremum
is. How are these two concepts related?

5. Can a point x = c be both a local extremum and a criti-
cal point of a differentiable function f ? Both an inflection
point and a critical point? Both an inflection point and a
local extremum? Sketch examples, or explain why such a
point cannot exist.
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6. Suppose f is a function that may be non-differentiable at
some points. Can a point x = c be both a local extremum
and a critical point of such a function f ? Both an inflection
point and a critical point? Both an inflection point and a
local extremum? Sketch examples, or explain why such a
point cannot exist.

7. Suppose f is defined and continuous everywhere. Why is
testing the sign of the derivative f ′ at just one point suf-
ficient to determine the sign of f ′ on the whole interval
between critical points of f ?

8. Describe what the first-derivative test is for and how
to use it. Sketch graphs and sign charts to illustrate your
description.

9. Sketch the graph of a function f with the following prop-
erties:

� f is continuous and defined on R;
� f (0) = 5;
� f (−2) = −3 and f ′(−2) = 0;
� f ′(1) does not exist;
� f ′ is positive only on (−2, 1).

10. Sketch the graph of a function f with the following prop-
erties:

� f is continuous and defined on R;
� f has critical points at x = −3, 0, and 5;
� f has inflection points at x = −3, −1, and 2.

11. Use the definitions of increasing and decreasing to argue
that f (x) = x 4 is decreasing on (−∞, 0] and increasing on
[0, ∞). Then use derivatives to argue the same thing.

12. Use the definition of increasing to argue that f (x) = x 5 is
increasing on all of R. Then use derivatives to argue the
same thing.

13. Suppose f is a function that is continuous and differen-
tiable everywhere and that the derivative of f is

f ′(x) =
√

1 + x 2 − 4.

What are the critical points of f ?

14. Suppose f is a function that is continuous and differen-
tiable everywhere and that the derivative of f is

f ′(x) = (x − 1)(x − 2)
x − 3

.

What are the critical points of f ?

15. If g(x) and h(x) are both antiderivatives of some func-
tion f (x), then what can you say about the function
g(x) − h(x)?

16. If g(x) is an antiderivative of f (x), then what is the rela-
tionship between the functions g(x) + 10 and f (x)?

17. One of the graphs shown is a function f and the other is
its derivative f ′. Which one is which, and why?

Graph I

�2 �1 41 2 3

�5

5

y

x

Graph II

�2 �1 41 2 3

�5

5

y

x

18. One of the graphs shown is a function f and the other is
its derivative f ′. Which one is which, and why?

Graph I

�2 �1 41 2 3

1

�1

y

x

Graph II

�2 �1 41 2 3

y
1

�1

x

Skills

For each function f graphed in Exercises 19–22, sketch a
possible graph of its derivative f ′.

19.

31 2

�2

�1

1
y

x

20.

�4 �2�3 �1 31 2

3

2

1

y

x

21.

�1 31 2

�3

�2

�1

3

2

1

y

x

22.

31 2

�2

�1

2

1

y

x
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Each graph in Exercises 23–26 represents the derivative f ′

of some function f . Use the given graph of f ′ to sketch a pos-
sible graph of f .

23.

1 2

�4

�2

�3

�1�1�2

4

2

3

1

y

x

24.

�3

�2

�1
�2 �1

3

2

1

y

31 2
x

25.

31 2

�2

�1

2

1

y

x

26.

�4 �2�3 �1 31 2

3

2

1

y

x

Use a sign chart for f ′ to determine the intervals on which each
function f in Exercises 27–38 is increasing or decreasing. Then
verify your algebraic answers with graphs from a calculator or
graphing utility.

27. f (x) = 2x 3 − 9x 2 + 1 28. f (x) = x 3 + 4x 2 + 4x − 5

29. f (x) = x
x 2 + 4

30. f (x) = 3x + 1
x 2 − 1

31. f (x) = e x(x − 2) 32. f (x) = e x

1 + e x

33. f (x) = ln(x 2 + 1) 34. f (x) = ln( ln x)

35. f (x) = sin
(

π

2
x
)

36. f (x) = cos2(x)

37. f (x) = sin x cos x 38. f (x) = 1
sin x

Use the first-derivative test to determine the local extrema of
each function f in Exercises 39–50. Then verify your algebraic
answers with graphs from a calculator or graphing utility.

39. f (x) = (x − 2)2(1 + x) 40. f (x) = x 2(x − 1)(x + 1)

41. f (x) = 1 + x + x 2

x 2 + x − 2
42. f (x) = (x − 1)2

x + 2

43. f (x) = 1
3 − 2e x 44. f (x) = e x(x 2 − x − 1)

45. f (x) = cos(π (x + 1)) 46. f (x) = cos(πx)

47. f (x) = arctan x 48. f (x) = sin−1 x 2

49. f (x) = sin(cos−1 x) 50. f (x) = cos(sin−1 x)

For each sign chart for f ′ in Exercises 51–56, sketch pos-
sible graphs of both f ′ and f . On each sign chart, un-
labeled tick-marks are locations where f ′(x) is zero and
x-values where f ′(x) does not exist are indicated by tick-marks
labeled “DNE.”

51.

0 5

�� �
f ’

52.

�2

��
f ’

53.

�3 3

� � �
f ’

54.

0�2 2

� �� �
f ’

55.

3

DNE

1 8

� ���
f ’

56. DNEDNE

�1 4 

� � �
f ’

Sketch careful, labeled graphs of each function f in
Exercises 57–82 by hand, without consulting a calculator or
graphing utility. As part of your work, make sign charts for
the signs, roots, and undefined points of f and f ′, and exam-
ine any relevant limits so that you can describe all key points
and behaviors of f .

57. f (x) = (x − 2)(3x + 1) 58. f (x) = x 2 − x + 100

59. f (x) = x 3 − x 2 − x + 1 60. f (x) = x3 − 9x + 1

61. f (x) = x 3 − 6x 2 + 12x 62. f (x) = x(x 2 − 4)

63. f (x)= (2x + 11)(x 2 + 10) 64. f (x) = 3x 5 − 10x 4

65. f (x) = (1 − x 4)7 66. f (x) = √
x − 1√

x

67. f (x) = x + 1
x − 1

68. f (x) = 1
x

+ 1
x 2

69. f (x) = √
x 2 + 1 70. f (x) = 1√

x 2 − 1

71. f (x) = (x − 1)2

x 2 + x − 6
72. f (x) = (x − 1)2

x 2 − 1

73. f (x) = x 2(x − 1)
(x − 2)2

74. f (x) = x 3

x 2 − 3x + 2

75. f (x) = x ln x 76. f (x) = 2 x

1 − 2 x

77. f (x) = x 23 x 78. f (x) = x 3e x

79. f (x) = ln x
x

80. f (x) = ln((x−1)(x−2))

81. f (x) = e x 3−3x 2+2x 82. f (x) = e ln e x
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Applications
83. Dr. Alina is interested in the behavior of rats trapped in

a long tunnel. Her rat Bubbles is released from the left-
hand side of the tunnel and runs back and forth in the
tunnel for 4 minutes. Bubbles’ velocity v(t), in feet per
minute, is given by the following graph.

Velocity of rat in a long tunnel

3 41 2

�2

�1

5

3

4

1

2

v

t

(a) On which time intervals is Bubbles moving towards
the right-hand side of the tunnel?

(b) At which point in time is Bubbles farthest away from
the left-hand side of the tunnel, and why? Do you
think that Bubbles ever comes back to the left-hand
side of the tunnel?

(c) On which time intervals does Bubbles have a positive
acceleration?

(d) Find an interval on which Bubbles has a negative
velocity but a positive acceleration. Describe what
Bubbles is doing during this period.

84. Calvin uses a slingshot to launch an orange straight up in
the air to see what will happen. The distance in feet be-
tween the orange and the ground after t seconds is given
by the equation s(t) = −16t 2 + 90t + 5. Use this equation
to answer the following questions:

(a) What is the initial height of the orange? What is the
initial velocity of the orange? What is the initial ac-
celeration of the orange?

(b) What is the maximum height of the orange?
(c) When will the orange hit the ground?

For Exercises 85 and 86, suppose that Annie is planning a
kayak trip around Orcas Island in August. The tides create
strong currents in several places on the coast of that island.

t, hours

2

1

�1

�2

c

t
1 2 3 4 5 6 7 8 9 10 11 12

kayak kayak

tide is coming intide is going out

positive
current

negative
current

85. Annie has information from the gauge at Point Lawrence to
help her decide the best time to round that point. The tidal
current velocity (in nautical miles per hour) around Point
Lawrence this August can be modeled very simply as

c(t) = 0.86 cos (0.51t + 2.04).

A positive sign on the current indicates that it is go-
ing roughly north (the tide is coming in), while a neg-
ative sign indicates southward motion of the current. The
time t is given in hours after midnight of the morning
of August 1.

(a) When is c(t) equal to zero? What is the significance
of these times for the tides?

(b) When do the high tides occur? When are the low
tides?

(c) Suppose Annie does not want to have to fight the
current. Approximately when would be good time in-
tervals for Annie to lead her party southward around
the point?

86. After a bad experience on one trip, Annie models the tidal
current velocity around Point Lawrence in a more accu-
rate way as

C(t) = 0.90 cos (0.51t + 2.02) + 0.49 cos
(

0.51t
2

+ 2.13
)

.

(a) Plot this function C(t) together with the function c(t)
from the previous exercise on the same axes.

(b) The maximum currents given by c(t) occurred when
t = −4 ± 12.32n hours, for n an integer. Demonstrate
that C(t) does not have maxima at these points.
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Proofs

87. Prove that every nonconstant linear function is either
always increasing or always decreasing.

88. Prove that every quadratic function has exactly one local
extremum.

89. Prove part (b) of Theorem 3.6: Suppose f is differentiable
on an interval I; if f ′ is negative on the interior of I, then
f is decreasing on I.

90. Prove part (c) of Theorem 3.6: Suppose f is differentiable
on an interval I; if f ′ is zero on the interior of I, then f is

constant on I. (Hint: use the Mean Value Theorem to show
that any two numbers a and b in I must be equal.)

91. Prove part (b) of Theorem 3.8: With hypotheses as stated
in the theorem, if x = c is a critical point of f , where
f ′(x) < 0 to the left of c and f ′(x) > 0 to the right of c,
then f has a local minimum at x = c .

92. Prove part (d) of Theorem 3.8: With hypotheses as stated
in the theorem, if x = c is a critical point of f , where
f ′(x) < 0 to the left and to the right of c, then x = c is
not a local extremum of f .

Thinking Forward

� Second-derivative graphs: The three graphs shown are
graphs of a function f and its first and second deriva-
tives f ′ and f ′′, in no particular order. Identify which
graph is which.

�2

�1

�2�3 �1

2

1

y

Graph I

31 2

�2

�1

�2�3 �1

2

1

y

Graph II

31 2
x x

�2

�1

�2�3 �1

2

1

y

Graph III

31 2
x

� More second-derivative graphs: The three graphs
shown are graphs of a function f and its first and sec-
ond derivatives f ′ and f ′′, in no particular order. Iden-
tify which graph is which.

Graph I Graph II

�3

�2

�1

3

2

1

y

31 2

�3

�2

�1
�2�3 �1

3

2

1

y

31 2
x x

Graph III

�3

�2

�1
�2�3 �1

3

2

1

y

31 2
x

�3 �2 �1
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3.3 THE SECOND DERIVATIVE AND CURVE SKETCHING

� Using first and second derivatives to define and detect concavity

� The behavior of the first and second derivatives at inflection points

� Using the second-derivative test to determine whether critical points are maxima, minima, or neither

Derivatives and Concavity

In Section 0.4 we gave an informal definition of concavity: The graph of a function is
concave up if it “curves upward” and concave down if it “curves downward.” This is equiv-
alent to saying that the graph of a concave-up function lies below its secant lines and above
its tangent lines, and the graph of a concave-down function lies above its secant lines and
below its tangent lines. Now that we know about derivatives, we are finally able to give a
more precise definition of concavity.

DEFINITION 3.9 Formally Defining Concavity

Suppose f and f ′ are both differentiable on an interval I.

(a) f is concave up on I if f ′ is increasing on I.

(b) f is concave down on I if f ′ is decreasing on I.

How does this formal definition of concavity correspond with our intuitive notion of con-
cavity? Consider the functions graphed next. On each graph four slopes are illustrated and
estimated. Notice that when f is concave up, its slopes increase from left to right, and when
f is concave down, its slopes decrease from left to right.

Slopes increase when f is concave up Slopes decrease when f is concave down

y

�3

�1 1

4

x

y

3

1 �1

�4

x

As we have already seen, a function increases where its derivative is positive. Taking this
up one level, we see that the derivative function f ′ is increasing where its derivative function
f ′′ is positive. Therefore we can check whether a function f is concave up or concave down
by looking at the sign of its second derivative:

THEOREM 3.10 The Second Derivative Determines Concavity

Suppose both f and f ′ are differentiable on an interval I.

(a) If f ′′ is positive on I, then f is concave up on I.

(b) If f ′′ is negative on I, then f is concave down on I.
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Proof. We will prove part (a) and leave part (b) to Exercise 91. Suppose that f and f ′ are differ-
entiable on I and that f ′′(x) > 0 for all x in I. Then since the derivative of f ′ is f ′′, it follows from
Theorem 3.6 that f ′ is increasing on I. By the definition of concavity this means that f is concave
up on the interval I.

For example, we can divide the real-number line into intervals according to where the
function f (x) = x 3 is concave up or concave down. This same division into subintervals
describes where the derivative f ′(x) = 3x 2 is increasing or decreasing and where the second
derivative f ′′(x) = 6x is positive or negative:

f concave down, then up f ′ decreasing, then increasing f ′′ negative, then positive

y

�1�2 21
x

(��, 0] [0, �)

conca
ve

 u
p

co
nc

av

e d
own

(��, 0] [0, �)

y

�1�2 21

decreasing in
cr

ea
sin

g

x

(��, 0] [0, �)

y

�1�2 21

negative

positive

x

Inflection Points

Recall from Section 0.1 that the inflection points of a function f are the points in the do-
main of f at which its concavity changes. Since the sign of f ′′ measures the concavity of f ,
we can find inflection points by looking for the places where f ′′ changes sign. For example,
if f (x) = x 3, then f ′′(x) = 6x, which is zero only when x = 0. The sign of f ′′ changes from
negative to positive at x = 0, and therefore the concavity of f changes from down to up at
that inflection point.

If x = c is an inflection point of f and f ′′(c) = 0, then the graph of f could look one of
the following four ways near x = c, depending on how f changes concavity and whether f
is increasing or decreasing:

c

y

x

conca
ve

 u
p

co
nc

av
e d

own

c

y

x

concave up

concave dow
n

c

y

x

concave u
p

co
nc

ave down

c

y

x

concave up

concave dow
n

We know that at an inflection point of a function f , the function changes concavity
and the second derivative f ′′ changes sign. What happens to the first derivative f ′? The
answer lies in the fact that f ′′ is the derivative of f ′. Thus we know that If f ′′ is positive,
then f ′ is increasing, and If f ′′ is negative, then f ′ is decreasing. The four possible scenarios
corresponding to the preceding graphs are shown here:
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c

min
� �

f ’’

f ’

IP f

max
� �

f ’’

f ’

IP f

c

max
� �

f ’’

f ’

IP f

c c

min
� �

f ’’

f ’

IP f

Notice that in each case the sign of f ′′ changes at x = c, causing f to have an inflec-
tion point at x = c and in addition causing f ′ to have a local maximum or minimum at
x = c. If you sketch tangent lines on the four graphs shown, you should be able to see
that the slopes are at their maximum or minimum values at the inflection points. For ex-
ample, in the first graph, the slopes start out large and positive, decrease to a minimum of
zero at x = c, and then increase to larger and larger positive slopes as we move from left
to right.

The Second-Derivative Test

In the previous section we saw how to apply the first-derivative test to determine whether
the critical points of a function were local maxima, local minima, or neither. We can also
use the second derivative to test critical points, by examining the concavity of the function
at each critical point.

Suppose f is a differentiable function and x = c is a critical point of f with f ′(c) = 0.
Then there are four possible ways that f can behave near x = c, as shown in the figures
that follow. In each case we can examine the second derivative at the point x = c:

f ′(c) = 0, f ′′(c) ≤ 0 f ′(c) = 0, f ′′(c) ≥ 0

maximum
y

x
c

co
nc

ave down

minimum

y

x
c

conc a v e u
p

f ′(c) = 0, f ′′(c) = 0 f ′(c) = 0, f ′′(c) = 0

y

x
c

con
c.

 u
p

co
nc

. d
ow

n

not an
extremum

not an
extremum

y

x
c

conc. dow
n

conc. u p

In the first graph, the second derivative is negative at x = c, so f curves downwards and
has a local maximum at that point. In the second graph, the second derivative is positive
at x = c, so f curves upwards and has a local minimum at that point.

In general, knowing that f ′′(c) = 0 does not tell us whether f has a maximum, min-
imum, or neither at x = c. The reason is that f ′′(c) = 0 is a possibility in all four of the
cases just graphed. It is obvious that the last two graphs must have f ′′(c) = 0 because in
those cases the function changes concavity at x = c. Perhaps less obvious is that we could
have f ′′(c) = 0 in the first two graphs, where no inflection points occur; for example see
the function f (x) = x 4 that we will examine later in part (a) of Example 1.

What we have just illustrated with the preceding four graphs is the second-derivative
test. When we applied the first-derivative test to a critical point, we were interested in the
sign of f ′(x) to the left and the right of the critical point. When we use the second derivative
to test a critical point, we will look at the sign of the second derivative at the critical point,
as follows:
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THEOREM 3.11 The Second-Derivative Test

Suppose x = c is the location of a critical point of a function f with f ′(c) = 0, and suppose
both f and f ′ are differentiable and f ′′ is continuous on an interval around x = c.

(a) If f ′′(c) is positive, then f has a local minimum at x = c.

(b) If f ′′(c) is negative, then f has a local maximum at x = c.

(c) If f ′′(c) = 0, then this test says nothing about whether or not f has an extremum
at x = c.

Proof. Suppose both f and f ′ are differentiable in a neighborhood of a critical point x = c with
f ′(c) = 0. To prove part (a), suppose f ′′(c) > 0. Since f ′′ is assumed to be continuous near c, f ′′

must be positive in a small neighborhood (c − δ, c + δ) of c. Because f ′′ is the derivative of f ′, it
follows from Theorem 3.6 that f ′ is increasing on (c − δ, c + δ). Since f ′ is increasing near c, and is
zero at c, we must have f ′(x) < 0 to the immediate left of c and f ′(x) > 0 to the immediate right
of c. Therefore, by the first-derivative test, f has a local minimum at x = c. The proof of part (b) is
similar and is left to Exercise 92.

To prove part (c), it suffices to exhibit three functions with f ′′(c) = 0 at some point c where
one function has a local maximum at x = c, one function has a local minimum at x = c, and one
function does not have a local extremum at x = c. You will do this in Exercise 10.

Curve-Sketching Strategies

When we graph a function by hand, a good place to start is to use algebra, derivatives, and
sign charts to determine the intervals where the function is positive or negative, increasing
or decreasing, and concave up or down, as well as the coordinates of any roots, extrema,
and inflection points of f . Armed with this information and occasionally a few strategic
function values and limits, we can often sketch a fairly accurate graph.

Of course, actually sketching a graph based on the information just described can
take a little bit of practice. One useful thing to notice is that a continuous, differentiable
function can change sign only at it roots, change direction only at its local extrema, and
change concavity only at its inflection points. This means that on the intervals between
such points the graph of the function is relatively homogeneous. In fact, if f is a sufficiently
well-behaved function, then we can connect each adjacent pair of dots determined by the
coordinates of its local extrema and inflection points with one of the following four types
of arcs:

Increasing and
concave up

Increasing and
concave down

Decreasing and
concave up

Decreasing and
concave down

Here is a summary of what you might consider when sketching the graph of a function
f by hand:

� Find the domain of f .

� Determine the roots of f and the intervals on which f is positive or negative. Record
this information on a sign chart for f .
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� Find f ′ and determine the points where f ′ is zero or does not exist. Each of these
points that is in the domain of f is a critical point of f and therefore a possible local
extremum of f .

� Determine the intervals on which f ′ is positive or negative. These are the same as the
intervals on which f is increasing or decreasing, respectively. Record this information
on a sign chart for f ′.

� Determine whether f has a local minimum, local maximum, or neither at each
critical point.

� Find f ′′ and determine the points where f ′′ is zero or does not exist. Each of these
points that is in the domain of f is a critical point of f ′ and therefore a possible
inflection point of f .

� Determine the intervals on which f ′′ is positive or negative. These are the same as
the intervals on which f is concave up or concave down, respectively. Record this
information on a sign chart for f ′′.

� Determine whether or not each critical point of f ′ is an inflection point of f .

� At each local extremum or inflection point x = c, determine the value of f (c). Plot
these key points (c, f (c)).

� At each non-continuous or non-differentiable point x = c in the domain of f , deter-
mine the value of f (c). Use limits of f and f ′ to determine the type of discontinuity
or non-differentiable point. Plot these key points (c, f (c)).

� Calculate limits of f at any non-domain points and as x → ±∞. Determine any
horizontal or vertical asymptotes and the long-term behavior of the graph.

� Between key points and non-domain points, use the sign charts for f ′ and f ′′ to
determine which of the four types of arc shapes the graph will have.

� Graph the function by connecting the key points with arcs.

For some functions you will not be able to obtain all of the information you want, but in
every case you should explore as much as you can until you can confidently determine the
behavior of the graph of f .

Why would we want to spend time using derivatives and algebra to sketch the graph
of a function by hand when we could make essentially the same sketch with a graphing
calculator in just a few keystrokes? One reason is that graphing by hand provides more
specific information, such as the exact locations and values of the key points on the graph.
Moreover, if we do the work by hand, then we can determine a graphing window that
captures all of the important features of the graph and possibly also discern features of
the graph that are not apparent with a graphing calculator, such as holes and asymptotes.
Derivatives, limits, and algebra not only enable us to sketch graphs by hand, but also help
us correctly interpret graphs made by calculators.

Examples and Explorations

EXAMPLE 1 Using the second derivative to determine concavity and inflection points

Use second derivatives to determine the intervals on which each of the functions that follow
are concave up or concave down. Then determine any inflection points.

(a) f (x) = x 4 (b) g(x) = x 3 − 3x + 2

SOLUTION

(a) We start by calculating the first and second derivatives of f :

f (x) = x 4 =⇒ f ′(x) = 4x 3 =⇒ f ′′(x) = 12x 2.
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Therefore f ′′(x) = 0 only when x = 0, and f ′′ is positive to both the left and right of
x = 0, as shown in the following sign chart:

� �
f ’’

f

0

not
IP

Since the sign of f ′′(x) = 12x 2 does not change at x = 0, the function f (x) = x 4 does
not have an inflection point at x = 0. Therefore f (x) = x 4 has no inflection points and
is concave up on both (−∞, 0) and (0, ∞).

(b) Again we start by calculating derivatives:

g(x) = x 3 − 3x + 2 =⇒ g ′(x) = 3x 2 − 3 =⇒ g ′′(x) = 6x.

Therefore g ′′(x) = 0 only when x = 0. Testing the sign of g ′′(x) to the left and right of
x = 0, we have g ′′(−1) = −6 < 0 and g ′′(1) = 6 > 0. This information about g ′′(x) is
summarized in the following sign chart:

� �
g’’

g

0

IP

Thus g is concave down on (−∞, 0), is concave up on (0, ∞), and has an inflection
point at x = 0. �

CHECKING
THE ANSWER

To verify the preceding calculations, we sketch graphs of f and g. In the graph that follows at
the left we see that the curve f (x) = x 4 is flat enough to have zero curvature at x = 0, but has
positive curvature to both the left and the right of the origin. In the graph at the right we see
that g(x) = x 3 − 3x + 2 does have an inflection point at x = 0, where its concavity changes
from concave-down to concave-up. Note that g(x) is the same function we examined in
Example 3(a) of the previous section.

y = x 4 has no inflection points g(x) has an inflection point at x = 0

�2 2

0

15

�3 3

�2

6

EXAMPLE 2 Comparing the first- and second-derivative tests

Determine the local extrema of the function f (x) = x 3 − x 2 + 2, using

(a) the first-derivative test (b) the second-derivative test

SOLUTION

(a) The derivative of f (x) = x 3 − x 2 + 2 is f ′(x) = 3x 2 − 2x = x(3x − 2).

This derivative f ′ is zero at the points x = 0 and x = 2
3

, and always exists. Thus the

only critical points of f are x = 0 and x = 2
3

. To apply the first-derivative test we must
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find the sign of the derivative between each of these points. For example, we could
calculate:

f ′(−1) = 5 > 0, f ′
(

1
2

)
= −1

4
< 0, and f ′(1) = 1 > 0.

The following sign chart summarizes this information about f ′:

� ��
f ’

f

0

max
min

2
3

By the first-derivative test, f has a local maximum at x = 0 and a local minimum at
x = 2

3
.

(b) The calculation for the second derivative starts out the same way, by computing the
derivative f ′(x) = 3x 2 − 2x and then finding the critical points x = 0 and x = 2

3
. The

difference is that we will test the sign of the second derivative f ′′(x) = 6x − 2 at each
of these critical points:

f ′′(0) = −2 < 0 and f ′′
(

2
3

)
= 2 > 0.

By the second-derivative test, since f is concave down at the critical point x = 0, f has
a local maximum at x = 0. Similarly, since f is concave up at the critical point x = 2

3
,

we know that f has a local minimum at x = 2
3

. This is of course the same conclusion
we reached when we applied the first-derivative test. �

EXAMPLE 3 A detailed curve-sketching analysis

Use derivatives, algebra, and sign charts to sketch the graph of f (x) = x 5 − 15x 3. Identify
the coordinates of each root, local extremum, and inflection point.

SOLUTION

We’ll start by finding and then simplifying the functions f , f ′, and f ′′. We will factor each
function as much as possible so that we can easily identify its roots:

f (x) = x 5 − 15x 3 = x 3(x 2 − 15) = x 3(x −
√

15 )(x +
√

15 );

f ′(x) = 5x 4 − 45x 2 = 5x 2(x 2 − 9) = 5x 2(x − 3)(x + 3);

f ′′(x) = 20x 3 − 90x = 10x(2x 2 − 9) = 10x(
√

2x − 3)(
√

2x + 3).

From these factorizations we can see that f has roots at x = 0 and x = ±√
15 ≈ ±3.87,

that the only possible local extrema of f are x = 0 and x = ±3, and that the only possible
inflection points of f are x = 0 and x = ± 3√

2
≈ ±2.12. By checking the signs of f (x), f ′(x),

and f ′′(x) at appropriate values, we obtain the following sign charts:

�� ��
f ’’

0

�� ��
f ’

0 3�3

�� ��
f

0

3
2

�

15� 15

3
2

From this information we can see that f has a maximum at x = −3, a minimum at x = 3,
and inflection points at x = 0 and x = ± 3√

2
. We can also identify the intervals on which
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f is positive or negative, increasing or decreasing, and concave up or concave down, as
summarized in the following three sign charts:

�� � �
f

f

0

neg neg
pos pos

15� 15

�� ��
f ’

f

0 3�3

max
min

�� ��
f ’’

0

f

3
2

�
3
2

IP IP IP

By evaluating f (x) = x 5 − 15x 3 at its key points we can obtain the coordinates of its
roots, extrema, and inflection points:

� roots at (−√
15, 0), (0, 0), and (

√
15, 0);

� local maximum at (−3, 162), local minimum at (3, −162);

� inflection points at
(
− 3√

2
, 100.232

)
, (0, 0), and

(
3√
2

, −100.232
)

.

Now we need only plot these points and connect the dots with appropriate arcs according
to the sign information in the sign charts. For example, we can see from the sign charts for
f , f ′, and f ′′ that between x = −3 and x = − 3√

2
the graph of f should be positive, decreas-

ing, and concave down.

We already have all of the information we need about the derivatives, but for some
people it helps to collect all this information in one place. The arc shapes on each sub-
interval between key points are recorded on the combined number-line chart that follows.
Note that on this number line the tick-marks represent the locations of all interesting points
on the graph of f , meaning that they are a composite of the tick-marks from the three sign
charts for f , f ′, and f ′′.

f
3�3 03

2
�15� 153

2

Although at this point the shape of the graph is pretty clear, for completeness we should
compute limits at any interesting points. The function f (x) = x 5 −15x 3 has no non-domain
points, discontinuities, or non-differentiable points, so the only limits to check are those
as x → ±∞. We can use what we know about the behavior of fifth-degree polynomials, or
we can just compute these limits directly:

lim
x→∞(x 5 − 15x 3) = lim

x→∞(x 3)(x 2 − 15) = ∞,

lim
x→−∞(x 5 − 15x 3) = lim

x→−∞(x 3)(x 2 − 15) = −∞.

This information tells us that the graph has no horizontal asymptotes and indicates what
happens at the “ends” of the graph of f .

Putting all of the information together into a labeled graph, we have

f (x) = x 5 − 15x 3

3�3 3
2

�15� 153
2

y

�100.232

�162.000

162.000

100.232

x

�
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CHECKING
THE ANSWER

We can verify the graph we constructed in the preceding example by using a calculator or
graphing utility to graph f (x) = x 5 − 15x 3 in a similar graphing window. Notice that we
did indeed capture the major features of this graph. In addition, because we did the work
by hand, we know the exact values of every key point on the graph of f .

Calculator graph of f (x) = x 5 − 15x 3

�4.5 4.5

�200

200

EXAMPLE 4 A curve-sketching analysis with asymptotes

Sketch an accurate, labeled graph of the function f (x) = 6
4 − 2x

. Include complete sign
analyses of f , f ′, and f ′′, and calculate any relevant limits.

SOLUTION

Let’s begin by finding and simplifying the first and second derivatives of f (x). The first
derivative of f (x) = 6(4 − 2 x)−1 is

f ′(x) = 6(−1)(4 − 2 x)−2(−( ln 2)2 x) = 6( ln 2)2 x

(4 − 2 x)2 .

Differentiating that result and then simplifying as much as possible so that we can easily
identify roots, we find that the second derivative of f is

f ′′(x) = 6( ln 2)( ln 2)2 x(4 − 2 x)2 − (6( ln 2)2 x)(2)(4 − 2 x)1(−( ln 2)2 x)
(4 − 2 x)4

= 6( ln 2)22 x(4 − 2 x)((4 − 2 x) + 2 · 2 x)
(4 − 2 x)4 = 6( ln 2)22 x(4 + 2 x)

(4 − 2 x)3 .

To determine the intervals on which f , f ′, and f ′′ are positive and negative we must
first locate the values of x for which these functions are zero or do not exist. The function
f (x) = 6

4 − 2x
is never zero, but is undefined where its denominator is zero, at x = 2. Looking

at the formula for f ′(x), we can easily see that it is never zero (since 2 x is never zero), but
is undefined if x = 2 (since the denominator 4 − 2 x is zero for x = 2). Thus x = 2 is the
only critical point of f and the only point we will mark on the number line for f ′. Similarly,
from the formula for f ′′(x), it is clear that f ′′(x) is never zero (since neither 2 x nor 4 + 2 x

can ever be zero), but is undefined at x = 2. Checking signs on either side of x = 2 for each
function, we obtain the following set of number lines:

��
f ’’

2

��
f ’

2

��
f

2
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We now know that f (x) is positive, increasing, and concave up on (−∞, 2) and negative,
increasing, and concave down on (2, ∞). The graph has no roots, no extrema, and no
inflection points.

It remains to calculate any interesting limits. Since the domain of f is (−∞, 2) ∪ (2, ∞),
we must investigate the limits of f (x) = 6

4−2x
as x → ±∞ and as x → 2 from the left and

the right. As x → ∞ the denominator 4 − 2 x of f (x) approaches −∞, and thus

lim
x→∞

6
4 − 2 x

= 0.

As x → −∞, the denominator 4 − 2 x approaches 4, and thus

lim
x→−∞

6
4 − 2 x

= 6
4

= 3
2
.

This information tells us that the graph of f has two horizontal asymptotes: at y = 0 on the
right and at y = 3

2
on the left.

As x → 2− we have 4 − 2 x → 0+ and thus

lim
x→2−

6
4 − 2 x

= ∞,

and as x → 2+ we have 4 − 2 x → 0− and thus

lim
x→2+

6
4 − 2 x

= −∞.

Thus the graph of f has a vertical asymptote at x = 2, where the graph approaches ∞ to
the left of 2 and approaches −∞ to the right of 2.

Putting all of this information together, we can now sketch the graph:

f (x) = 6
4 − 2 x

y

2

1.5

x

�

TEST YOUR? UNDERSTANDING
� Why could we not give a precise mathematical definition of concavity before this section?

� The domain points x = c where f ′′(c) = 0 or where f ′′(c) does not exist are the critical
points of the function f ′. Why?

� Why is it not clear to say a sentence such as “Because it is positive, it is concave up”?
How could this information be conveyed more precisely?

� Why does it make sense that f ′ is increasing when f ′′ is positive?

� Suppose x = c is a critical point with f ′(c) = 0. Why does it make graphical sense that
f has a local minimum at x = c when f is concave up in a neighborhood around x = c?
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EXERCISES 3.3

Thinking Back

Finding the second derivative: For each of the following func-
tions f , calculate and simplify the second derivative f ′′.

� f (x) = x − 1
3x 2 − 4x + 2

� f (x) = x√
x 2 + 1

� f (x) = 1 − x
e x � f (x) = e 3x ln(x 2 + 1)

Solving for zeroes and non-domain points: For each of the fol-
lowing expressions, find all values of x for which g(x) is zero
or does not exist.

� g(x) = 3x 2 − x − 2
x 4 + 2x 2 − 3

� g(x) = 1
x − 2

− 3x + 1
x + 2

� g(x) = sin x
cos x

� g(x) = e 3x(x − 1)
ln x

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f ′′(2) = 0, then x = 2 is an inflection
point of f .

(b) True or False: If f ′′ is concave up on an interval I, then
it is positive on I.

(c) True or False: If f is concave up on an interval I, then
f ′′ is positive on I.

(d) True or False: If f ′′(2) does not exist and x = 2 is in
the domain of f , then x = 2 is a critical point of the
function f ′.

(e) True or False: If f has an inflection point at x = 3 and
f is differentiable at x = 3, then the derivative f ′ has
a local minimum or maximum at x = 3.

(f) True or False: If f ′(1) = 0 and f ′′(1) = −2, then f has
a local minimum at x = 1.

(g) True or False: The second-derivative test involves
checking the sign of the second derivative on each
side of every critical point.

(h) True or False: The second-derivative test always
produces exactly the same information as the
first-derivative test.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function f for which f ′ is positive
everywhere, f ′′(x) > 0 for x < −2, and f ′′(x) < 0 for
x > −2.

(b) The graph of a function f for which f (3) = 0,
f ′(3) = 0, and f ′′(3) = 0.

(c) The graph of a function f for which f (x) is zero at
x = −1, x = 2, and x = 4; f ′(x) is zero at x = −1,
x = 1, and x = 3; and f ′′(x) is zero at x = 0 and
x = 2.

3. Sketch the graph of a function f that is concave up
everywhere. Then draw five tangent lines on the graph,
and explain how you can see that the derivative of f is
increasing.

4. Sketch the graph of a function f that is concave down
everywhere. Then draw five tangent lines on the graph, and
explain how you can see that the derivative of f is decreasing.

5. State the converse of Theorem 3.10(a). Is the converse
true? If so, explain why; if not, provide a counterexample.

6. State the contrapositive of Theorem 3.10(a). Is the
contrapositive true? If so, explain why; if not, provide a
counterexample.

7. Sketch the graph of a function f that has an inflection
point at x = c in such a way that the derivative f ′ has a
local maximum at x = c. Add tangent lines to your sketch
to illustrate that f ′ does have a local maximum at x = c.

8. Sketch the graph of a function f that has an inflection
point at x = c in such a way that the derivative f ′ has a
local minimum at x = c. Add tangent lines to your sketch
to illustrate that f ′ does have a local minimum at x = c.

9. Show that for f (x) = x 6 we have f ′′(0) = 0 but the point
x = 0 is not an inflection point of f .

10. In this problem we will verify part (c) of Theorem 3.11.

(a) For f (x) = x 3, show that f ′(0) = 0 and f ′′(0) = 0
while f does not have a local extremum at x = 0.

(b) For g(x) = x 4, show that g ′(0) = 0 and g ′′(0) = 0
while g has a local minimum at x = 0.

(c) For h(x) = −x 4, show that h′(0) = 0 and h′′(0) = 0
while h has a local maximum at x = 0.

(d) Explain how the parts (a)–(c) show that the second-
derivative test does not tell us anything when the
second derivative at a critical point is zero.

11. We could use part (c) from Theorem 3.6 to add a third part
to Theorem 3.10 that would tell us what it means when
f ′′ is zero in the interior of an interval I. Fill in the blank
accordingly: If f ′′ is zero on I, then f is on I.

12. Describe what the second-derivative test is for and how
to use it. Sketch graphs and sign charts to illustrate your
description.

13. If a function f has four critical points, how many calcula-
tions after finding derivatives are required in order to ap-
ply the first-derivative test? The second-derivative test?

14. Describe in words, and then illustrate in pictures, the four
types of arcs that are the building blocks of most contin-
uous, differentiable graphs.
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For Exercises 15–20,sketch the graph of a function f that has the
indicated characteristics. If a graph is not possible, explain why.

15. f positive, f ′ negative, and f ′′ positive on [0, 3].
16. f negative, f ′ negative, and f ′′ negative on [0, 3].

17. f negative, f ′ positive, and f ′′ positive on [0, 3].
18. f positive, f ′ negative, and f ′′ positive on R.

19. f negative, f ′ negative, and f ′′ negative on R.
20. f negative, f ′ positive, and f ′′ positive on R.

Skills

In Exercises 21–28, graphs of f , f ′, or f ′′ are given. Whichever
is shown, sketch graphs of the remaining two functions.
Label the locations of any roots, extrema, and inflection points
on each graph.
21. Graph of f

642

�8

�4

�2

8

4

y

x

22. Graph of f

1

�10

�5

�3 �2 �1

10

5

y

x

23. Graph of f

2

�8

�6

�4

�2
�4 �2

4

2

y

x

24. Graph of f ′

x
321

�4

�3 �2 �1

8

4

y

25. Graph of f ′

x
21�5 �2 �1�4 �3

10

5

y

26. Graph of f ′

x
321

�6

�3
�3 �2 �1

15

12

9

6

3

y

27. Graph of f ′′

y

x
54321�2 �1

�2

�1

�1

�2

�3

�4

�3

28. Graph of f ′′

x
54321

�6

�4

�2

�1

2
y

Use the second-derivative test to determine the local extrema
of each function f in Exercises 29–40. If the second-derivative
test fails, you may use the first-derivative test. Then verify your

algebraic answers with graphs from a calculator or graphing
utility. (Note: These are the same functions that you examined with
the first-derivative test in Exercises 39–50 of Section 3.2.)

29. f (x) = (x − 2)2(1 + x) 30. f (x) = x 2(x − 1)(x + 1)

31. f (x) = 1 + x + x 2

x 2 + x − 2
32. f (x) = (x − 1)2

x + 2

33. f (x) = 1
3 − 2e x 34. f (x) = e x(x 2 − x − 1)

35. f (x) = cos(π (x + 1)) 36. f (x) = cos(πx)

37. f (x) = arctan x 38. f (x) = sin−1 x 2

39. f (x) = sin(cos−1 x) 40. f (x) = cos(sin−1 x)

Use a sign chart for f ′′ to determine the intervals on which
each function f in Exercises 41–52 is concave up or concave
down, and identify the locations of any inflection points. Then
verify your algebraic answers with graphs from a calculator or
graphing utility.

41. f (x) = (x − 2)4 42. f (x) = (x − 3)3(x − 1)

43. f (x) = x 4 − 2x 3 − 5 44. f (x) = 1
1 + x 2

45. f (x) = 1
x 2 + x + 1

46. f (x) =
√

x
x − 2

47. f (x) = e 3x(1 − e x) 48. f (x) = x
ln x

49. f (x) = e 1+2x−x 2
50. f (x) = 2 x

1 − 2 x

51. f (x) = sin
(

x − π

4

)
52. f (x) = 3 cos

(
π

2
x
)

+ 5

For each set of sign charts in Exercises 53–62, sketch a possible
graph of f .

53.

f ’’

��
f ’

2

�

54.

� �
f ’’

�� �
f ’

�1 2

0.5

55.

f ’’

��
f ’

�2

��

�2
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56.

f ’’

�� �
f ’

�2 2

���

�1 2

57.

f ’’

�� DNE� �
f ’

21

DNE

1

0

��

58.

f ’’

�� DNE� �
f ’

21

DNE

1

�1

��

59.

��
f ’’

��
f ’

�� �
f

�3 �1

�1

�

�

�2 0

0

60.

��
f ’’

� �
f ’

� �
f

�1

�1

�

0

1

61.

� ��
f ’’

� ��
f ’

�� � �
f

�3

�1

�

�

�2 31

1

41

2

62.

� DNEDNE�
f ’’

�
f ’

� � �
f

�1

�

�

� �

0

0

1

DNEDNE

�1 1

�� DNE

1 2�2

Sketch careful, labeled graphs of each function f in Exer-
cises 63–82 by hand, without consulting a calculator or graph-
ing utility. As part of your work, make sign charts for the signs,
roots, and undefined points of f , f ′, and f ′′, and examine any
relevant limits so that you can describe all key points and
behaviors of f .

63. f (x) = x 2 + 3x 64. f (x) = (x − 2)(x + 2)

65. f (x) = x 3 + 3x 2 66. f (x) = 1
x 2 + 3

67. f (x) = x 3 − 2x 2 + x 68. f (x) = (1 − x)4 − 2

69. f (x) = x 3(x + 2) 70. f (x) = x
x 2 + 1

71. f (x) = √
x (4 − x) 72. f (x) = 1

(x − 1)2(x − 2)

73. f (x) = x 2 − 1
x 2 − 5x + 4

74. f (x) = x 2 − x
x 2 − 3x + 2

75. f (x) = 1 − x
e x 76. f (x) = ln(x 2 + 1)

77. f (x) = e x

x
78. f (x) = e 3x − e 2x

79. f (x) = x 2/3 − x1/3 80. f (x) = cos
(

3
(

x − π

2

))

81. f (x) = ( ln x)2 + 1 82. f (x) = sin(tan−1 x)

In Exercises 83–86, use the given derivative f ′ to find any
local extrema and inflection points of f and sketch a possible
graph without first finding an formula for f .

83. f ′(x) = x 3−3x 2+3x 84. f ′(x) = x 4 − 1

85. f ′(x) = 1
x

86. f ′(x) = e x(x + 4)

Applications
87. Jason’s distance in miles north from the corner of Main

Street and High Street t minutes after noon on Tuesday is
given by the following function s(t):

Distance north of Main and High

x
80604020

�2

�1

1

y

(a) Find an interval on which Jason’s velocity is positive
and decreasing. Describe what Jason is doing over
this time interval.

(b) Find a time interval on which Jason is moving north
and his velocity is increasing. Describe what Jason is
doing over this time interval.

(c) Find a time interval on which Jason’s acceleration
and velocity are both negative. Describe what Jason
is doing over this time interval.

(d) At which time is Jason’s velocity at a minimum? What
is he doing at that moment?
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88. Suppose Juri drives for two hours and that his distance
from home in miles is given by the function s(t) shown in
the following figure.

Distance from home

t

100

75

50

25

y

21

(a) Find a time interval on which Juri’s acceleration is po-
sitive. Is his velocity positive or negative on this interval?
Describe what Juri is doing over this time interval.

(b) The graph y = s(t) of Juri’s position has an inflection
point at t = 1 hour. What does this inflection point
say about Juri’s velocity at t = 1? About his accelera-
tion at t = 1?

89. For Exercises 89 and 90, suppose that Ian is a climber
who is planning a path over a glacier in Canada’s Icefield
Range. Glaciers are a little like gelatin: They tend to form
cracks (crevasses) when their surfaces are concave down.
Cracks close up and travel is easy when they are concave
up, as shown in the figure.

h(x)

Using a map, Ian approximates the elevation of the glacier
on a line that runs up through its center as

h(x) = 1.2 + .0095x + 0.037x 2 − 0.0072x 3 + 0.00046x 4,

where both x and h(x) are measured in miles. Find the
areas of the glacier where it is concave down and hence
where Ian will need to move away from the center to avoid
the crevasses.

90. Ian is a bit worried about taking a fall into a crevasse while
carrying a heavy pack and towing a heavy sled. He does
some tests on an old rope, dropping from a tree in his
backyard as shown below.

x(t)

t � 1.2

He cannot measure the force on the rope, but he takes a
video, from which he can find his position (in feet below
the tree limb) at time t > 1.2 seconds as

x(t) = 20 + 7e−0.25t sin(4.7t − 5.8).

(a) Weight is a force, given by mass times acceleration.
Ian weighs 160 pounds, and the acceleration due to
gravity that causes his weight is 32 feet per square
second. What is Ian’s mass? (The units are called
“slugs.”)

(b) Recalling that acceleration is the second derivative
of position x(t), what is the force on Ian at any time
t > 1.2?

(c) Use a graphing calculator or other graphing utility to
make a graph of Ian’s acceleration over time. When is
the upward force on Ian the greatest? Note that since
we are measuring distance below the tree limb, in this
situation an upward force is negative. What is that
force?

Proofs

91. Prove part (b) of Theorem 3.10: If both f and f ′ are differ-
entiable on an interval I, and f ′′ is negative on I, then f is
concave down on I.

92. Prove Theorem 3.11 (b): If x = c is a critical point of f ,
both f and f ′ are differentiable near x = c, and if f ′′(c) is
negative, then f has a local maximum at x = c.

93. Prove that every quadratic function is either always
concave up or always concave down.

94. Prove that every cubic function (i.e., every function of the
form f (x) = ax 3 + bx 2 + cx + d for some constants a,
b, c, and d) has exactly one inflection point. (Note: It is
not enough just to show that the second derivative of any
cubic function has exactly one zero; you must also show that
the sign of the second derivative changes.)

95. Prove that if f ′′ is zero on an interval, then f is linear on
that interval.

Thinking Forward

� Global extrema on an interval: The first-derivative test
can be used to show that the function f (x) = x 2 + 3x

has a local minimum at x = − 3
2

. Is this a global min-

imum of the function? Is there a global maximum?
What are the global extrema (if any) if we consider the
function restricted to the interval [−3, 3]?

� Global extrema and derivatives: The first-derivative
test can be used to show that the function

f (x) = x 3 − x 2 + x has a local maximum at x = 1
3

and

a local minimum at x = 1. Are either of these local
extrema also global extrema? Can the first or second
derivative tell you whether or not a local extremum is
a global extremum?
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3.4 OPTIMIZATION

� Comparing local extrema and endpoint behavior to find global extrema

� Strategies for translating real–world problems into mathematical problems

� Optimizing real–world quantities by solving global extrema problems

Finding Global Extrema

Many real-world problems involve optimization, that is, finding the global maximum and
minimum values of a function on an interval. For example, a company might be inter-
ested in the maximum amount of profit it can make or in the minimum cost of produc-
ing an object. In this section we will learn how to use limits, derivatives, and values to
find the global extrema of a function on an interval, so that we can solve such real-world
problems.

Recall from Section 0.4 that x = c is the location of a global maximum of a function f
on an interval I if f (c) ≥ f (x) for all x ∈ I. Sometimes local extrema are also global extrema,
and sometimes they are not. For example, the following four functions each have a local
maximum at the critical point x = 2:

f has a global maximum
on [1, 5] at x = 2

g has a global maximum
on [1, 5] at x = 5

4

2

5
x

y

1 2

4

2

5
x

y

1 2

h has no global
maximum on [1, 5)

k has no global
maximum on [1, 5)

4

2

5
x

y

1 2

4

2

5
x

y

1 2

Only in the first graph is the local maximum also a global maximum. In the graph of g
the global maximum on [1, 5] is instead at the right endpoint x = 5. In the last two graphs
there is no global maximum on the interval, because there is no point on either graph that
is higher than all other points on its graph.

Although derivatives can help us locate local extrema, they do not always provide
enough information to detect global extrema. The previous figures suggest that to find
a global extremum of a continuous function we must compare the following:

� the values f (c) for each interior local extremum c ∈ I;

� the values f (c) at any closed endpoints x = c of I;

� the limits lim
x→c

f (x) at any open endpoints or non-domain points x = c of I.

Whichever of these three values is largest determines the location, if any, of the global
maximum of f on I. Whichever is smallest determines the location, if any, of the global
minimum. For example, in the graph of f that we just looked at, the value at the local
extremum is f (2) = 2 and at the left and right endpoints we have f (1) = 0 and
f (5) = 0. Since the value is highest at x = 2, that point is the global maximum of f on
[1, 5]. A different thing happens with the graph of h; we again have h(2) = 2 at the
local extremum and h(1) = 0 at the left endpoint, but at the open right endpoint we have
lim

x→5−
h(x) = 4. Since the limit at the open right endpoint is larger than the value at the

left endpoint and the values at any local extrema, the function h has no global maximum
on [1, 5).
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Translating Word Problems into Mathematical Problems

Finding the global extrema of a function f on an interval I is a mathematical problem that
we can tackle with function values, limits, and derivatives. Real–world problems are less
straightforward, since they are expressed in full sentences in which the variables, constants,
functions, and relationships are described in words instead of in mathematical notation.
To solve a real–world optimization problem we must first translate it into a mathematical
global extrema problem. Once we solve the mathematical problem, we can translate the
solution back into the real–world context. This translating procedure is illustrated in the
following diagram:

Answer
in English

Word problem
in English

Mathematical
answer

Mathematical
problem

Translate Translate

???

Solve

Many students have difficulty with word problems because of the translation step, not
because of the mathematical solving step. As a simple example, suppose we wanted to
solve the following real–world problem:

Calvin throws a baseball straight into the air at 50 feet per second, releasing the
ball when his hand is 5 feet above the ground. How high did Calvin throw the
baseball?

To figure out how to answer this problem with calculus, we need to get some equations
and variables to work with. A good place to start is to list what you know and set variable
names as you go along:

� Let s(t) be the height/position of the baseball at time t, in feet.

� We know that the position equation will be of the form s(t) = −16t 2 + v0t + s0.

� v0 = 50 feet per second is the initial velocity of the baseball.

� s0 = 5 feet is the initial position of the baseball.

� We seek the greatest height of the baseball during the time that it is in the air.

� Solving s(t) = 0, we see that the ball hits the ground at t ≈ 3.22 seconds.

At some point while developing this list of facts it is good to collect the information into a
figure, such as this one:

v0 � 50 ft/s

s0 � 5 ft

s(t) � �16t2 � v0t � s0

?

s(t) � 0
t � 0

t ≈ 3.22
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Putting this all together, we see that the mathematical problem that we wish to solve is

Find the global maximum value of s(t) = −16t 2 + 50t + 5 on the interval [0, 3.22].

Compare this mathematical statement with our earlier real–world statement. After the hard
work of translating, we now have a fairly straightforward calculus problem to solve. Here
is an outline of the steps we could use to solve this optimization problem:

� Take the derivative: s′(t) = −32t + 50.

� Find critical points: s′(t) = 0 when t = 50
32

= 1.5625.

� Test critical points: s′′(1.5625) = −32 < 0, so s(t) has a local maximum at
x = 1.5625.

� Check height at local maximum: s(1.5625) ≈ 44.06.

� Check heights at endpoint values: s(0) = 0 and s(3.22) ≈ 0.

� Conclusion: The maximum value of s(t) on [0, 3.22] is approximately 44.06.

Translating back into the real–world context, we can say that Calvin threw the baseball to
a height of just over 44 feet.

In general, when translating a word problem we must identify any variables or func-
tions and express them in mathematical notation with letters and symbols. With those
same letters and symbols we can construct labeled diagrams, formulas, and relationships in
mathematical notation. We must keep translating until we form a well-posed mathematical
problem that we know how to solve with the tools and techniques of calculus. In the con-
text of optimization problems, this means that we must identify a specific function and a
specific interval on which we wish to find a global maximum or minimum value. At this
point we only know how to find global extrema of one-variable functions, so we will some-
times have to use constraint equations to reduce multivariable functions to single-variable
functions; see Example 2.

Examples and Explorations

EXAMPLE 1 Finding global extrema of a function on an interval

Find the global maximum and minimum values, if any, of the function f (x) = 2x 3−
15x 2 + 24x + 20 on the interval (0, 6).

SOLUTION

Our goal will be to use the derivative to identify local extrema on the interior of the interval
and then compare those extrema with values or limits at the ends of the interval. In this
case the interval is open, so we will compare with limits at x → 0 and x → 6. Step by step,
we have

� Take the derivative: f ′(x) = 6x 2 − 30x + 24 = 6(x 2 − 5x + 4) = 6(x − 1)(x − 4).

� Find critical points: f ′(x) = 0 at x = 1 and x = 4.

� Test critical points: f ′′(x) = 12x − 30, so f ′′(1) = −18 < 0 and f ′′(4) = 18 > 0; thus
f has a local maximum at x = 1 and a local minimum at x = 4.

� Check height at local extrema: f (1) = 31 and f (4) = 4.

� Check limits at open endpoints:

lim
x→0+

f (x) = lim
x→0+

(2x 3 − 15x 2 + 24x + 20) = 20,

lim
x→6−

f (x) = lim
x→6−

(2x 3 − 15x 2 + 24x + 20) = 56.
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The local maximum value of f (1) = 31 is exceeded by the limit of f at the right endpoint,
so the function f has no global maximum on (0, 6). The local minimum value of f (4) = 4 is
less than the limit at either end of the interval and therefore is also a global minimum of f
on (0, 6). The graph of f on (0, 6) looks like this:

Global minimum at x = 4,
no global maximum on (0, 6)

y

x

56

20

31

4

641 �

EXAMPLE 2 Optimizing a function on an interval given a constraint

Farmer Joe wants to build a rectangular chicken pen for his chickens. He wants to build
the pen so that it has the largest area possible, and he has only 100 feet of chicken-wire
fencing. What dimensions should he use for the pen?

SOLUTION

Let l and w represent the length and width of the rectangular pen, in feet. We know that
the perimeter P of the pen must be 100 feet, since that is how much chicken-wire fencing
Farmer Joe has; therefore P = 2w + 2l = 100. We are interested in maximizing the area
A = lw of the pen. The following diagram summarizes this information:

l � 50 � w

w

Constraint: P = 2w + 2l = 100

Maximize: A = lw

At this point the function A that we wish to maximize is written in terms of two vari-
ables, but our calculus techniques work only for functions of one variable. Luckily, we can
use the constraint P = 2w + 2l = 100 to solve for one variable in terms of the other; this
will reduce A to a one-variable function that we can optimize. Solving for l in terms of w,
we have

P = 2w + 2l = 100 =⇒ 2l = 100 − 2w =⇒ l = 50 − w.

Using this equation, we can write the area function entirely in terms of w:

A = lw = (50 − w)w = 50w − w2.

We now have a one-variable function A(w) = 50w − w2 to maximize, but on what in-
terval? We need to know which values of w we are willing to consider in this problem.
Clearly we must have w ≥ 0, since the width of the chicken pen cannot be negative. What
is the upper bound on w? The key is to realize that the width w is the largest when the
length l is the smallest. The smallest value that l could have is l = 0, and when l = 0, we
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have 0 = 50 − w, or w = 50. Therefore we must have w ≤ 50. We have now determined
that the underlying mathematical problem for this word problem is

Find the global maximum of A(w) = 50w − w2 on the interval [0, 50].

Now we just have a simple mathematical problem to solve, and we follow the usual
procedure for finding a global extremum on an interval:

� Take the derivative: A′(w) = 50 − 2w.

� Find critical points: A′(w) = 0 at w = 25.

� Test critical points: A′′(w) = −2, so A′′(25) = −2, and by the second-derivative test,
A(w) has a local maximum at w = 25.

� Check height at local extremum: A(25) = 625.

� Check heights at closed endpoints: A(0) = 0 and A(50) = 0.

From this work we see that w = 25 is indeed the global maximum of A(w) on the interval
[0, 50]. Thus the width of the pen should be w = 25 feet long. Since l = 50 − w, the length
of the pen should also be l = 25 feet long, and the pen is square. The final answer to the
word problem is therefore that Farmer Joe should build a square chicken pen where each
side is 25 feet long. �

EXAMPLE 3 Modeling and minimizing a cost function

You work for a company that makes jewelry boxes. Your boss tells you that each jewelry box
must have a square base and an open top and that you can spend $3.75 on the materials
for each box. The people in production tell you that the material for the sides of the box
costs 2 cents per square inch while the reinforced material for the base of the box costs
5 cents per square inch. What is the largest volume jewelry box that you can make and still
stay within budget?

SOLUTION

From a quick reading of the problem we can see that we wish to maximize the volume of
a jewelry box given certain monetary constraints. Let’s begin with a simple picture, assign
variable names, and list what we know in mathematical language. Suppose x is the length
of the sides of the square base and y is the height of the jewelry box, both measured in
inches. The material to make each of the four sides of the box will cost 0.02(xy) dollars,
and the material to make the base of the box will cost 0.05(x 2) dollars. Therefore we must
have 0.02(4xy) + 0.05(x 2) = 3.75, since we have $3.75 to spend on materials. We wish to
maximize the volume V = x 2y of the box:

0.02(xy) dollars

x
x x

x

x

y

y
0.05(x2) dollars

Constraint: 0.02(4xy) + 0.05(x 2) = 3.75

Maximize: V = x 2y

Again, the function to be optimized is written in terms of two variables at this point,
but we can use the constraint to solve for one variable in terms of the other. It is easiest to
solve for y in terms of x:

0.02(4xy) + 0.05(x 2) = 3.75 =⇒ 0.08xy = 3.75 − 0.05x 2 =⇒ y = 3.75 − 0.05x 2

0.08x
.
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We can use this equation for y to write the volume function V in terms of one variable.
Doing this and then simplifying as much as possible, we have

V = x 2y = x 2
(

3.75 − 0.05x 2

0.08x

)
= 1

0.08
x(3.75 − 0.05x 2) = 46.875x − 0.625x 3.

Now we must determine the appropriate domain for V(x) = 46.875x − 0.625x 3 in the
context of this problem. Clearly the smallest that the length x can be is zero. To find
the largest that the base side length x can be, consider that the smallest possible value
of the height of the box is y = 0. When y = 0, we have

0 = 3.75 − 0.05x 2

0.08x
=⇒ 0 = 3.75 − 0.05x 2 =⇒ x =

√
3.75
0.05

=
√

75.

Note that we do not consider the negative square root of 75, since we know that the length
x must be nonnegative. We have now completely translated the original word problem into
the following mathematical problem:

Find the global maximum value of V(x) = 46.875x − 0.625x 3 on the interval [0,
√

75 ].

To solve this problem we will find all the local interior extrema of V(x) in the interval
[0,

√
75 ] and compare their values with the values of V at the endpoints of the interval. The

steps are the same as those from previous examples:

� Take the derivative: V ′(x) = 46.875 − 3(0.625)x 2.

� Find critical points: V ′(x) = 0 when x = ±5, but only x = 5 is in the interval
[0,

√
75 ].

� Test critical points: V ′′(5) = −2(3)(0.625)(5) is negative, so by the second-derivative
test, V(x) has a local maximium at x = 5.

� Check height at local extremum: V(5) = 156.25.

� Check heights at closed endpoints: V(0) = 0 and V(
√

75 ) = 0.

We now see that x = 5 is not only the location of a local maximum, but in fact the location
of the global maximum of V(x) on [0,

√
75 ]. Therefore the largest jewelry box that we can

make with the given cost restrictions has volume 156.25 cubic inches. �

CHECKING
THE ANSWER

When x = 5, we must have y = 3.75 − 0.05(5)2

0.08(5)
= 6.25. To algebraically check some of the

work we have done, we can verify that, with these values for x and y, the cost of producing
the jewelry box is indeed 0.02(4xy) + 0.05(x 2) = $3.75. We can check our work regarding
the optimization of V and the choice of endpoints for the interval by graphing V(x) =
46.875x − 0.625x 3, as shown next. From this graph, it does seem reasonable that at x = 5
we have a global maximum of 156.25 and that the point x = √

75 ≈ 8.66 should be the
right end of the interval for the problem.

9
0

0

160
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EXAMPLE 4 The fastest way to put out a flaming tent

While you are on a camping trip, your tent accidentally catches fire. Luckily, you happen
to be standing right at the edge of a stream with a bucket in your hand. The stream runs
east–west, and the tent is 40 feet north of the stream and 100 feet farther east than you are,
as shown here:

40 feet

100 feet

You can run only half as fast while carrying the full bucket as you can empty handed, and
thus any distance travelled with the full bucket is effectively twice as long. What is the
fastest way for you to get water to the tent?

SOLUTION

On the one hand, notice that if you were to get water immediately and run diagonally to
the tent, you would run the entire distance with a full bucket of water at half your normal
speed. On the other hand, if you were to run along the side of the stream until you were
directly south of the tent, then get water and run north to the tent, you would have a
lot of total distance to run. Clearly, it would be more efficient for you to run along the
side of the stream for a while, fill the bucket, and then run diagonally to the tent. The
question is, how far should you run along the side of the stream before you stop to fill up
the bucket?

We need some mathematical notation to get our heads around this problem. Suppose x
is the distance you will run along the stream before filling your bucket. The distance you will
run with the full bucket is then the hypotenuse of a right triangle with legs of lengths 40 feet
and 100 − x feet. By the Pythagorean theorem, you will have to run

√
402 + (100 − x)2 feet

with a full bucket of water, as shown here:

40 feet

100 � xx

100 feet

402 � (100 � x)2

Since it takes you twice as long to run with a full bucket of water, the total effective distance
you will have to run is

D(x) = x + 2
√

402 + (100 − x)2.
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This is the function we want to minimize. What is the interval of x-values that we are
interested in? From the diagram we can see that x must be between 0 and 100 feet, since
clearly you wouldn’t want to run away from the tent or past the tent. The endpoint cases
x = 0 and x = 100 correspond to the two special cases we discussed earlier: The case when
you get water immediately and the case when you run the full 100 feet before getting water.
We have now translated the word problem into the following mathematical optimization
problem:

Find the global minimum value of D(x) = x + 2
√

402 + (100 − x)2 on the interval [0, 100].

Once again this is a straightforward global extremum problem, and we follow the same
steps as previously; but this time the mathematics is a little more involved:

� Take the derivative: By applying the chain rule twice, we see that the derivative of
D(x) is

D ′(x) = 1 + 2
(

1
2

)
(402 + (100 − x)2)−1/2(2(100 − x)(−1)).

� Find critical points: We need to simplify D ′(x) before we attempt to find its zeroes
or the values where it does not exist. With a bit of algebra we can write D ′(x) in the
form of a quotient:

D ′(x) = 1 + −2(100 − x)√
402 + (100 − x)2

=
√

402 + (100 − x)2 − 2(100 − x)√
402 + (100 − x)2

.

From this quotient form it is easy to pick out any places where D ′(x) is zero or
undefined. The denominator of D ′(x) is never zero, and thus D ′(x) always exists. To
find the values of x for which D ′(x) = 0, we set the numerator equal to 0 and solve:

√
402 + (100 − x)2 − 2(100 − x) = 0√

402 + (100 − x)2 = 2(100 − x)

402 + (100 − x)2 = 4(100 − x)2 ← square both sides

1600 + 10, 000 − 200x + x 2 = 40, 000 − 800x + 4x 2

0 = 3x 2 − 600x + 28400

x = 100 ± 40
3

√
3. ← quadratic formula

Note that x = 100 + 40
3

√
3 ≈ 123.1 is not in the interval [0, 100], but x =

100 − 40
3

√
3 ≈ 76.9 is. In addition, recall that squaring both sides of an equation

sometimes leads to extraneous, or false, solutions; interestingly, x = 100 + 40
3

√
3

happens to be one of those false solutions. Therefore the only critical point of D(x)

is x = 100 − 40
3

√
3 ≈ 76.9.

� Test critical points: The first-derivative test can be applied to show that D(x) has a
local minimum at x = 100 − 40

3

√
3 ∈ [0, 100].

� Check height at local extremum: D(100 − 40
3

√
3 ) ≈ 169.282.

� Check heights at closed endpoints: D(0) ≈ 215.407, D(100) = 180.

The work that we just did shows that the global minimum of D(x) on [0, 100] is at x =
100 − 40

3

√
3. This means that the quickest way to bring water to the burning tent is to run

for 100− 40
3

√
3 ≈ 76.9 feet along the side of the stream, then fill the bucket with water and

run diagonally to the tent. �
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TEST YOUR? UNDERSTANDING
� Why can’t the derivative necessarily detect the global minimum of a function f on an

interval [a, b] if that minimum happens to occur at an endpoint of the interval?

� Suppose a function f satisfies lim
x→3−

f (x) = −∞. Why does this mean that f has no global

minimum on [0, 3]. What can you say about any global minima of f on [0, 6]?

� Suppose a function f satisfies lim
x→1+

f (x) = ∞. What can you say about any global

maxima of f on [−2, 4]?

� What types of real–world problems translate into mathematical problems in which we
must find the global maximum or minimum of a function on an interval?

� What are the general steps for solving an optimization word problem?

EXERCISES 3.4

Thinking Back

Local and global extrema: Use mathematical notation, includ-
ing inequalities as used in the definition of local and global
extrema, to express each of the following statements.

� On the interval [−3, 5], f has a local maximum at
x = 2.

� On the interval [0, 2], f has a global maximum at
x = −1.

� On the interval [−4, 4], f has a global minimum at
x = 0.

� On the interval [0, 5], f has no global minimum.

Critical points: Find the critical points of each of the following
functions.

� f (x) = 3x − 2
x − 1

� f (x) = 1
1 + √

x

� f (x) = sin
(π

2
x
)

� f (x) = e x(x − 2)

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every local maximum is a global
maximum.

(b) True or False: Every global minimum is a local
minimum.

(c) True or False: If f has a global maximum at x = 2
on the interval (−∞, ∞), then the global maximum
of f on the interval [0, 4] must also be at x = 2.

(d) True or False: If f has a global maximum at x = 2 on
the interval [0, 4], then the global maximum of f on
the interval (−∞, ∞) must also be at x = 2.

(e) True or False: If f is continuous on an interval I, then
f has both a global maximum and a global minimum
on I.

(f) True or False: Suppose f has two local minima on the
interval [0, 10], one at x = 2 with a value of 4 and one
at x = 7 with a value of 1. Then the global minimum
of f on [0, 10] must be at x = 7.

(g) True or False: If f has no local maxima on (−∞, ∞),
then it will have no global maximum on the interval
[0, 5].

(h) True or False: If f ′(3) = 0, then f has either a local min-
imum or a local maximum at x = 3.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The graph of a function with a local minimum at x = 2
but no global minimum on [0, 4].

(b) The graph of a function with no local or global
extrema on (−3, 3).

(c) The graph of a function whose global maximum on
[2, 6] does not occur at a critical point.

3. When you try to find the local extrema of a function f on
an interval I, one of the first steps is to find the critical
points of f . Explain why these critical points of f won’t
help you locate any “endpoint” extrema.

4. Explain why you can’t find the global maximum of a func-
tion f on an interval I just by finding all the local extrema
of f and then checking to see which one has the highest
value f (c).
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5. Suppose f is a function that is defined and continuous on
an open interval I. Will the endpoints of I always be local
extrema of f ? Will f necessarily have a global maximum
or minimum in the interval I? Justify your answers.

6. Suppose f is a function that is defined and continuous on
a closed interval I. Will the endpoints of I always be local
extrema of f ? Will f necessarily have a global maximum
or minimum in the interval I? Justify your answers.

7. Suppose f is a function that is discontinuous somewhere
on an interval I. Explain why comparing the values of any
local extrema of f on I and the values or limits of f at the
endpoints of I is not in general sufficient to determine the
global extrema of f on I.

8. Given the following graph of f , graphically estimate the
global extrema of f on each of the six intervals listed:

x

40

30

20

10

�10

y

54321�1�2�3

(a) [−2, 4] (b) (−2, 4) (c) (−1, 1)
(d) (0, 4] (e) [0, 4) (f) (−∞, ∞)

9. Given the following graph of f , graphically estimate the
global extrema of f on each of the six intervals listed:

x

y

642�2�4

6

5

4

3

2

1

(a) [0, 4] (b) [2, 5] (c) (−2, 1)
(d) [0, ∞) (e) (−∞, 0] (f) (−∞, ∞)

10. Given the following graph of f , graphically estimate the
global extrema of f on each of the six intervals listed:

x

y

321�3 �2 �1
�2

�4

8

6

4

2

(a) (−1, 1) (b) [2, ∞) (c) [−2, −1)
(d) [0, 2] (e) (1, ∞) (f) (−∞, ∞)

Skills

Find the locations and values of any global extrema of each
function f in Exercises 11–20 on each of the four given in-
tervals. Do all work by hand by considering local extrema
and endpoint behavior. Afterwards, check your answers with
graphs.

11. f (x) = 2x 3 − 3x 2 − 12x, on the intervals

(a) [−3, 3] (b) [0, 3] (c) (−1, 2] (d) (−2, 1)

12. f (x) = 3x 4 + 4x 3 − 36x 2, on the intervals

(a) [−5, 5] (b) [−2, 2] (c) (−3, 1] (d) (−1, 3)

13. f (x) = −12x + 6x 2 + 4x 3 − 3x 4, on the intervals

(a) [−1, 1] (b) (−1, 1) (c) (−3, 0] (d) [0, 3]

14. f (x) = 3x − 2
x − 1

, on the intervals

(a) [0, 2] (b) [−2, 0] (c) [−1, 1] (d) (−1, 1)

15. f (x) = 1
1 + √

x
, on the intervals

(a) [0, 3] (b) (0, 3) (c) [1, 2] (d) [0, ∞)

16. f (x) = 4√
x 2 + 1

+ 3, on the intervals

(a) (−5, 2] (b) [−5, 2) (c) [1, 10] (d) [0, 20]

17. f (x) = x 3/2(3x − 5), on the intervals

(a) [0, 4] (b) [0, 4) (c) [0, 1) (d) (0, 1)

18. f (x) = sin
(

π

2
x
)

, on the intervals

(a) [−2, 2] (b) (−2, 2) (c) [−1, 1) (d) [0, ∞)

19. f (x) = (x 2 − 4x + 3)−1/2, on the intervals

(a) [0, 4] (b) [0, 10] (c) [0, 3.5] (d) (3, ∞)

20. f (x) = e x(x − 2), on the intervals

(a) [−2, 2] (b) (0, 3) (c) [0, ∞) (d) (−∞, 0]

Find dimensions for each shape in Exercises 21–24 so that the
total area enclosed is as large as possible, given that the total
edge length is 120 inches. The rounded shapes are half-circles,
and the triangles are equilateral.

21. 22.

23. 24.
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Use optimization techniques to answer the questions in
Exercises 25–30.

25. Find two real numbers x and y whose sum is 36 and
whose product is as large as possible.

26. Find two real numbers x and y whose sum is 36 and
whose product is as small as possible.

27. Find real numbers a and b whose sum is 100 and for which
the sum of the squares of a and b is as small as possible.

28. Find the area of the largest rectangle that fits inside a
circle of radius 4.

29. Find the area of the largest rectangle that fits inside a
circle of radius 10.

30. Find the volume of the largest cylinder that fits inside a
sphere of radius 10.

In Exercises 31–34, find the point on the graph of the function
f that is closest to the point (a, b) by minimizing the square of
the distance from the graph to the point.

31. f (x) = 3x + 1 and the point (−2, 1)

32. f (x) = x 2 and the point (0, 3)

33. f (x) = x 2 − 2x + 1 and the point (1, 2)

34. f (x) = √
x 2 + 1 and the point (2, 0)

Applications
A farmer wants to build four fenced enclosures on his farm-
land for his free-range ostriches. To keep costs down, he
is always interested in enclosing as much area as possible
with a given amount of fence. For the fencing projects in
Exercises 35–38, determine how to set up each ostrich pen so
that the maximum possible area is enclosed, and find this
maximum area.

35. A rectangular ostrich pen built with 350 feet of fencing
material.

36. A rectangular ostrich pen built along the side of a river (so
that only three sides of fence are needed), with 540 feet
of fencing material.

37. A rectangular ostrich pen built with 1000 feet of fencing
material, divided into three equal sections by two inte-
rior fences that run parallel to the exterior side fences, as
shown next at the left.

Ostrich pen with three sections Ostrich pen with six sections

38. A rectangular ostrich pen that is divided into six equal sec-
tions by two interior fences that run parallel to the east
and west fences, and another interior fence running par-
allel to the north and south fences, as shown previously
at the right. The farmer has allotted 2400 feet of fencing
material for this important project.

You are in charge of constructing a zoo habitat for prairie
dogs, with the requirement that the habitat must enclose
2500 square feet of area and use as little border fencing
as possible. For each of the habitat designs described in
Exercises 39–42, find the amount of border fencing that the
project will require.

39. A rectangular habitat with a 20-foot-wide nesting hutch
along one side (so that fencing is not needed along those
20 feet), as shown next at the left.

Rectangular habitat with hutch

20 feet

nesting
hutch

Arena-style habitat

40. An arena-style habitat whose front area is a semicircle
and whose back area is rectangular, as shown previously
at the right.

41. A trapezoid-shaped habitat whose angled side is an en-
closed walkway for zoo patrons (so that no fencing is
needed along the walkway), where the walkway makes
an angle of 60◦ with the right fence, as shown next at the
left.

Habitat along walkway

60�

Habitat with mural

60�60�

42. An arena-style trapezoid-shaped habitat whose long
back side is a wall with a landscape mural (so no fencing is
needed along the back wall), where the back wall makes
an angle of 60◦ with the slanted side fences, as shown
previously at the right.
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Alina wants to make keepsake boxes for her two best friends.
She doesn’t have a lot of money, so she wants to make each
box described in Exercises 43–44 so that it holds as much as
possible with a limited amount of material.

43. For Jen, Alina wants to make a box with a square base
whose sides and base are made of wood and whose top
is made of metal. The wood she wants to use costs 5 cents
per square inch, while the material for the metal top costs
12 cents per square inch. What is the largest possible box
that Alina can make for Jen if she only has $20.00 to spend
on materials?

Wood and metal box

0.12 per sq. in.

0.05 per sq. in.

Velvet-lined box

l � 2w w

44. For Eliza, Alina wants to make a rectangular box whose
base is twice as long as it is wide. This box will be lined on
the entire inside with velvet and in addition the outside
of the top of the box is to be lined in velvet. If Alina has
240 square inches of velvet, how can she make Eliza’s box
so that it holds as many keepsakes as possible?

The U.S. Postal Service ships a package under large-package
rates if the sum of the length and the girth of the pack-
age is greater than 84 inches and less than or equal to 108
inches. The length of a package is considered to be the length
of its longest side, and the girth of the package is the dis-
tance around the package perpendicular to its length. In each
of Exercises 45–47, Linda wants to ship packages under the
USPS large-package rates.

45. Linda needs to mail a rectangular package with square
ends (in other words, with equal width and height). What
is the largest volume that her package can have? What is
the largest surface area that her package can have?

h

w
l

46. Linda’s second package must be rectangular and 40
inches in length. What is the largest volume that her
package can have? What is the largest surface area that
her package can have?

47. Linda also needs to mail some architectural plans, which
must be shipped in a cylindrical container. What is the
largest volume that her package can have? What is the
largest surface area that her package can have? (Hints:
The volume of a right circular cylinder with radius r and
height h is V = πr 2h; the total surface area of such a cylinder
is SA = 2πrh + 2πr 2.)

For Exercises 48–50, consider a toy car that moves back and
forth on a long, straight track for 4 minutes in such a way that
the function s(t) = 96t − 84t 2 + 28t 3 − 3t 4 describes how far
the car is to the right of the starting point, in centimeters, after
t minutes.

48. When is the toy car farthest away from the starting point?
Does it ever return to the starting point? For how long
does this model make sense?

49. Within the domain of your model, when is the toy car
moving fastest to the right? When is the toy car moving
fastest to the left?

50. When is the toy car accelerating the fastest to the right?
When is the toy car accelerating fastest to the left?

Suppose you have a 10-inch length of wire that you wish to
cut and form into shapes. In each of Exercises 51–53 you will
determine how to cut the wire to minimize or maximize the
area of the resulting shapes.

51. Suppose you wish to make one cut in the wire and use
the two pieces to form a square and a circle. Determine
how to cut the wire so that the combined area enclosed
by the square and the circle is (a) as small as possible and
(b) as large as possible.

52. Suppose you wish to make one cut in the wire and use
the two pieces to form a square and an equilateral trian-
gle. Determine how to cut the wire so that the combined
area is (a) as small as possible and (b) as large as possible.

53. Suppose you wish to make one cut in the wire and use
the two pieces to form a circle and an equilateral triangle.
Determine how to cut the wire so that the combined area
of these two shapes is (a) as small as possible and (b) as
large as possible.

In each situation described in Exercises 54–62, set up and solve
a global extrema problem that solves the given real–world
optimization problem.

54. Alina needs to make a flyer for her band’s concert. The
flyer must contain 20 square inches of printed material
and for design purposes should have side margins of
1 inch and top and bottom margins of 2 inches. What size
paper should Alina use in order to use the least amount
of paper per flyer as possible?

55. Your company produces cylindrical metal oil drums that
must each hold 40 cubic feet of oil. How should the oil
drums be constructed so that they use as little metal as
possible? Can they be constructed to use as much metal
as possible?

56. An airplane leaves Chicago at noon and travels south at
500 miles per hour. Another airplane is travelling east to-
wards Chicago at 650 miles per hour and arrives at 2:00
p.m.. When were these two airplanes closest to each other,
and how far apart were they at that time?
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arrives at
2:00 P.M.

departed at
12:00 P.M.

closest distance

Chicago

57. The cost of the material for the top and bottom of a cylin-
drical can is 5 cents per square inch. The material for the
rest of the can costs only 2 cents per square inch. If the can
must hold 400 cubic inches of liquid, what is the cheapest
way to make the can? What is the most expensive way?

58. Consider the can-making situation in the previous exer-
cise, but suppose that the cans are made with open tops.
If each can must hold 400 cubic inches of liquid, what
is the cheapest way to make the cans? What is the most
expensive way?

59. A steam pipe must be buried underground to reach from
one corner of a rectangular parking lot to the diagonally
opposite corner. The dimensions of the parking lot are
500 feet by 800 feet. It costs 5 dollars per foot to lay steam
pipe under the pavement but only 3 dollars per foot to
lay the pipe along one of the long edges of the parking
lot. Because of nearby sidewalks, the pipe cannot be laid
along the 500-foot sides of the parking lot. How should
the steam pipe be buried so as to cost as little as possible?

800 feet

500 feet

$3 per ft

$5
 p

er
 ft

60. Suppose you want to make an open-topped box out of a
4×6 index card by cutting a square out of each corner and
then folding up the edges, as shown in the figure. How
large a square should you cut out of each corner in order
to maximize the volume of the resulting box?

6 inches

4 inches

x
x

61. Your family makes and sells velvet Elvis paintings. After
many years of research you have found a function that
predicts how many paintings you will sell in a year, based
on the price that you charge per painting. You always
charge between $5.00 and $55.00 per painting. Specifi-
cally, if you charge c dollars per painting, then you can
sell N(c) = 0.6c2 − 54c + 1230 paintings in a year.

(a) What price should you charge to sell the greatest
number of velvet Elvis paintings, and how many
could you sell at that price? For what price would
you sell the least number of paintings, and how many
would you sell?

(b) Write down a function that predicts the revenue R(c),
in dollars, that you will earn in a year if you charge
c dollars per painting. (Hint: Try some examples first;
for example, what would your yearly revenue be if you
charged $10.00 per painting? What about $50.00? Then
write down a function that works for all values of c.)

(c) What price should you charge to earn the most
money, and how much money would you earn? What
price per painting would cause you to make the least
amount of money in a year, and how much money
would you make in that case?

(d) Explain why you do not make the most money at the
same price per painting for which you sell the most
paintings.

62. While you are on a camping trip, your tent accidentally
catches fire. At the time, you and the tent are both 50
feet from a stream and you are 200 feet away from the
tent, as shown in the diagram. You have a bucket with
you, and need to run to the stream, fill the bucket, and
run to the tent as fast as possible. You can run only half
as fast while carrying the full bucket as you can empty
handed, and thus any distance travelled with the full
bucket is effectively twice as long. Complete parts (a)–(f)
to determine how you can put out the fire as quickly as
possible.

50 feet

200 feet

(a) Let x represent the distance from the point on the
stream directly “below” you to the point on the
stream that you run to. Sketch the path that you
would follow to run from your starting position, to
the point x along the stream, to the tent.

(b) Let D(x) represent the effective distance (counting
twice any distance travelled while carrying a full
bucket) you have to run in order to collect water and
get to the tent. Write a formula for D(x).

(c) Determine the interval I of x-values on which D(x)
should be minimized. Explain in practical terms what
happens at the endpoints of this interval, and calcu-
late the value of D(x) at these endpoints.

(d) Find D ′(x), and simplify as much as possible. Are
there any points (in the interval I) at which D ′(x) is
undefined?
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(e) It is difficult to find the zeroes of D ′(x) by hand. Use
a graphing utility to approximate any zeroes of D ′(x)
in the interval I, and test these zeroes by evaluating
D ′ at each one.

(f) Use the preceding information to determine the
minimum value of D(x), and then use this value to
answer the original word problem.

Proofs
63. Prove that the rectangle with the largest possible area

given a fixed perimeter P is always a square.
64. Prove that the most efficient way to build a rectangular

fenced area along a river—so that only three sides of

fencing are needed—is to make the side parallel to the
river twice as long as the other sides. You may assume
that you have a fixed amount of fencing material.

Thinking Forward
Consider the graph of the function f shown next. Define A(x)
to be the area of the region between the graph of f and
the x-axis from 0 to x. We will count areas of regions above
the x-axis positively and areas of regions below the x-axis
negatively.

A(x) is area under this graph on [0, x]

x

y

542 31
�20

100

�40

80
60
40
20

x

y

542 31
�20

100

�40

80
60
40
20

� Use the graph to approximate the values of A(0), A(1),
A(2), A(3), A(4), and A(5).

� From the graph of f , estimate all local maxima and
minima of A(x).

� From the graph of f , estimate all global maxima and
minima of A(x), if any.

� It turns out that the function f whose graph is shown
is given by the formula f (x) = 12x 3 − 96x 2 + 180x and
that the area function A is given by the formula A(x) =
3x 4 − 32x 3 + 90x 2. What surprising relationship do f
and A have?

� Show that your answers for the local and global ex-
trema of A(x) are reasonable by using optimization
techniques on the area function A(x) = 3x 4 − 32x 3 +
90x 2.

3.5 RELATED RATES

� Using implicit differentiation to obtain relationships between rates

� Formulas for volume, surface area, and relationships between side lengths of triangles

� Techniques for solving related-rates problems

Related Quantities Have Related Rates

If two quantities that change over time are related to each other, then their rates of change
over time will also be related to each other. For example, consider an expanding circle.
Clearly the radius r = r(t) of the circle and the area A = A(t) of the circle are related: If you
know one of these quantities at some time t, then you also know the other, via the formula
A = πr 2. As the circle expands over time, the rate dr

dt
at which its radius increases is related

to the rate dA
dt

at which its area increases. We can find an equation that relates these rates

by applying implicit differentiation to the formula that relates the quantities r and A :

A = πr 2 ← relationship between A and r
d
dt

(A(t)) = d
dt

(π (r(t))2) ← differentiate both sides with respect to t

dA
dt

= π
(

2r dr
dt

)
← chain rule

dA
dt

= 2πr dr
dt

. ← relationship between dA
dt

and dr
dt
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Notice that in this calculation we use A interchangeably with A(t) and r interchangeably
with r(t), employing the explicit function notation only when we need to be reminded that
A and r are functions of t.

According to the formula we just found, the rate dA
dt

depends on both the size of the

radius r at time t and the rate dr
dt

at which the radius is increasing. For example, suppose

that our expanding circle has an initial radius of r(0) = 2 inches at time t = 0, and that the
radius then increases at a constant rate of dr

dt
= 3 inches per second. Then the formula we

found tells us that at the instant the circle has a radius of 4 inches, the area of the circle is
increasing at a rate of

dA
dt

∣∣∣
r=4

= 2π (4)(3) = 24π square inches per second.

In contrast, when the radius of the circle is 20 inches, the area of the circle is increasing at
the faster rate of

dA
dt

∣∣∣
r=20

= 2π (20)(3) = 120π square inches per second.

Notice that although the rate of change of the radius of the circle is constant, the rate at
which the area is changing is not: As the circle gets larger and larger, changes to the radius
create larger and larger changes to the area. We could also determine the rate of change of
the area at a particular time, say, after t = 3 seconds. Since r(t) = 2 + 3t in our example,
at time t = 3 seconds, we have a radius of r(3) = 2 + 3(3) = 11 inches. The rate of change
of the area at this moment is

dA
dt

∣∣∣
t=3

= dA
dt

∣∣∣
r=11

= 2π (11)(3) = 66π square inches per second.

Most related-rates problems involve two rates, one of which is known and one of which
you are asked to find. These rates will be related in some way that is determined by the way
the corresponding quantities are related. Translating a related-rates problem should result
in an equation that relates the two quantities whose rates you are interested in. You can
then implicitly differentiate the equation relating the quantities to get an equation relating
the rates, as we did at the outset of this section.

Volumes and Surface Areas of Geometric Objects

Many related-rates problems involve geometric quantities such as volume, area, and sur-
face area. Many of the formulas for these quantities should already be familiar to you. For
example, here are some formulas for two-dimensional objects: A circle with radius r has
area A = πr 2 and circumference C = 2πr, a rectangle with length l and width w has area
A = l w and perimeter P = 2l + 2w, and any triangle with base b and height h has area
A = 1

2
b h.

We now gather some three-dimensional geometric formulas for reference, although we
will not have the tools to prove them until much later in the book.
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THEOREM 3.12 Volume and Surface Area Formulas

The formulas that follow describe the volume V and surface area S of a rectangular box,
sphere, right circular cylinder, and right circular cone. The lateral (side) surface area L is
also given for the cylinder and cone.

(a) The volume and surface area of a rectangular box
of length x, width y, and height z are

V = xyz

S = 2xy + 2yz + 2xz yx

z

(b) The volume and surface area of a sphere of radius r
are

V = 4
3

πr 3

S = 4πr 2

r

(c) The volume, surface area, and lateral surface area of
a right circular cylinder of radius r and height h are

V = πr 2h

S = 2πrh + 2πr 2

L = 2πrh

r

h

(d) The volume, surface area, and lateral surface area of
a right circular cone of radius r and height h are

V = 1
3

πr 2h

S = πr
√

r 2 + h2 + πr 2

L = πr
√

r 2 + h2

r

h

As always, whenever possible you should think rather than memorize. For example,
let’s walk through why the volume and surface area formulas for the cylinder make sense.
The volume of a cylinder is the product of the area πr 2 of its top and its height h. The
surface area of a cylinder is the sum of two things: the area of its curvy side and the areas of
its top and bottom circles. Notice that if we unrolled the curvy side, it would be a rectangle
whose width is the circumference 2πr of the top and bottom circles and whose height is
h. Therefore the lateral, or side, surface area of the cylinder is the product 2πrh. Of course,
the area of the top and bottom circles each have area πr 2, so the top and bottom together
have area 2πr 2. Thus the total surface area of the cylinder is 2πrh + 2πr 2.

Similar Triangles

It is also common for related-rates word problems to involve the following two well-known
theorems concerning right triangles, which we present here for reference, without proof:
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THEOREM 3.13 Two Theorems About Right Triangles

The following two theorems describe well-known relationships between the side
lengths of right triangles:

(a) The Pythagorean theorem states that if a right triangle
has legs of lengths a and b and hypotenuse of length c,
then:

a2 + b2 = c2

c
b

a

(b) The law of similar triangles states that if two
right triangles have the same three angle measures,
so that one is just a scaled-up version of the other, then
the ratios of side lengths on one triangle are equal to
the ratios of corresponding side lengths on the other.
Specifically, with the side lengths shown in the dia-
gram at the right, we have

h
b

= H
B

, d
b

= D
B

, d
h

= D
H

B

D
H

h

b

d

The reason these theorems about triangles arise in related-rates problems is that both the-
orems give us ways to relate quantities that might change together over time. Finding an
equation that relates two quantities is often the first step in finding an equation that relates
the rates of change of those quantities.

Examples and Explorations

EXAMPLE 1 Relating quantities and rates

In each part that follows, write down an equation that relates the two given quantities.
Then use implicit differentiation to obtain a relationship between the rates at which the
following quantities change over time:

(a) the circumference C and the area A of a circle;

(b) the surface area S and the radius r of a cylinder with a fixed height of 4 units;

(c) the lengths a and b of the legs of a right triangle with hypotenuse of fixed length
7 units.

SOLUTION

(a) We know that a circle of radius r has circumference C = 2πr and area A = πr 2. We
need to find an equation relating C and A. Since C = 2πr, we have r = C

2π
; substituting

the right-hand side into A = πr 2 gives

A = π
(

C
2π

)2
= 1

4π
C2.

Now suppose that the circle is expanding or contracting, so that its area A = A(t)
and circumference C = C(t) are changing over time. By implicitly differentiating the
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preceding equation with respect to t we have

dA
dt

= 1
4π

2C dC
dt

= 1
2π

C dC
dt

.

(b) The formula for the surface area of a cylinder with radius r and height 4 is

S = 2πr(4) + 2πr 2 = 8πr + 2πr 2.

By differentiating both sides we can express the relationship between the radius
r = r(t) and surface area S = S(t) if the cylinder changes size over time:

d(S)
dt

= 8π
dr
dt

+ 2π 2r dr
dt

= (8π + 4πr) dr
dt

.

(c) By the Pythagorean theorem, if a right triangle has legs of length a and b and hy-
potenuse of length 7, then

a2 + b2 = 72.

If the triangle is changing shape or size over time in such a way that the hypotenuse
remains 7 units in length, then by implicit differentiation the rates of change of the leg
lengths a = a(t) and b = b(t) are related as follows:

2a da
dt

+ 2b db
dt

= 0. �

EXAMPLE 2 Relating the changing radius and area of an expanding circle

Suppose a rock dropped into a pond causes a circular wavefront of ripples whose radius
increases at 3 inches per second. How fast is the area of the circle of ripples expanding at
the instant that the circle has a radius of 12 inches?

SOLUTION

Like many related-rates problems, this situation involves (1) two quantities that are related
and (2) known information about the rate of change of one of these quantities; we are then
asked to find information about the rate of change of the other quantity. In this case the
related quantities are the radius r = r(t) and area A = A(t) of the circle, which are related
by the formula A = πr2. Both of these quantities change over time as the circle expands.
We are given that the radius changes constantly at a rate of dr

dt
= 3 inches per second and

asked to find the rate of change dA
dt

of the area at a particular moment. This information is
summarized as follows:

t, seconds

r � r(t)

area A � A(t)

3 in.
per sec

12 in.

r(t) = radius

A(t) = area

Relationship: A = πr 2

Given:
dr
dt

= 3

Find:
dA
dt

∣∣∣
r=12

At this point we are done translating the original real–world problem into a mathematical
related-rates problem that we know how to solve. To get a formula relating the rates of
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change of r(t) and A(t) we differentiate both sides of the area formula, yielding dA
dt

= 2πr dr
dt

.

By evaluating this equation for dA
dt

at r = 12 and using the given information that dr
dt

= 3,

we see that at the moment that the circle has a 12-inch radius, it is expanding at a rate of
dA
dt

∣∣∣
r=12

= 2π (12) dr
dt

= 2π (12)(3) = 72 π square inches per second. �

EXAMPLE 3 Relating the changing volume and radius of an inflating balloon

Suppose a pink spherical party balloon is being inflated at a constant rate of 44 cubic inches
per second.

(a) How fast is the radius of the balloon increasing at the instant that the balloon has a
radius of 4 inches?

(b) How fast is the radius of the balloon increasing at the instant that the balloon contains
100 cubic inches of air?

SOLUTION

This is a related-rates problem because it involves two rates, namely, the rate at which the
balloon is being inflated and the rate of change of the radius of the balloon. We know
something about the first rate and wish to say something about the second. Suppose
r = r(t) is the radius of the balloon in inches after t seconds and V = V(t) is the volume
of the balloon in cubic inches after t seconds. The quantities r and V are related by the
volume equation V = 4

3
πr 3. We are given that the rate of change of the volume is con-

stantly dV
dt

= 44, and we want to find the rate of change dr
dt

of the radius when r = 4 and

when V = 100. The following diagram summarizes this translation of the problem into
mathematical notation:

t, seconds

r � r(t)

volume V � V(t)

4 in.

r(t) = radius

V(t) = volume

Relationship: V = 4
3
πr 3

Given:
dV
dt

= 44

Find:
dr
dt

∣∣∣
r=4

and
dr
dt

∣∣∣
V=100

To get an equation relating the rates dV
dt

and dr
dt

we differentiate both sides of the equa-
tion that relates V and r with respect to t:

dV
dt

= 4
3

π 3r 2 dr
dt

= 4πr 2 dr
dt

.

We know from the given information that dV
dt

is always equal to 44. Therefore we have the
following formula concerning the rate of change of the radius of the balloon:

44 = 4πr 2 dr
dt

.

(a) To find the rate of change of the radius at the instant that the ballon has a 4-inch radius,

we evaluate the preceding equation at r = 4 and then solve for dr
dt

∣∣∣
r=4

:

44 = 4π (42) dr
dt

∣∣∣
r=4

=⇒ dr
dt

∣∣∣
r=4

= 44
4π (16)

≈ 0.2188 inch per second.
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(b) For the second part we must find the rate at which the radius is changing at the mo-
ment that the volume of the balloon is 100 cubic inches. Our formula for the rate of
change of the radius of the balloon depends on r, not V , so we must first use the
equation V = 4

3
πr 3 to determine the value of r when V = 100:

100 = 4
3

πr 3 =⇒ r 3 = 100
(4/3) π

=⇒ r =
(

100
(4/3)π

)1/3

≈ 2.879.

Using our previously developed formula, we find that when the volume of the balloon
is V = 100 cubic inches and thus the radius is approximately r ≈ 2.879 inches, the rate
of change of the radius of the balloon is

44 = 4π (2.879)2 dr
dt

∣∣∣
V=100

=⇒ dr
dt

∣∣∣
V=100

= 44
4π (2.879)2

≈ 0.422 inch per second.
�

EXAMPLE 4 The shadow of a person walking away from a streetlight

Matt is 6 feet tall and is walking away from a 10-foot streetlight at a rate of 3 feet per second.
As he walks away from the streetlight, his shadow gets longer. How fast is the length of
Matt’s shadow increasing when he is 8 feet from the streetlight?

SOLUTION

We are given the rate at which Matt walks away from the streetlight, and we wish to find
the rate of change of the length of Matt’s shadow. To find a relationship between these two
rates we will find a relationship between their underlying variables: the distance s between
Matt and the streetlight and the length l of Matt’s shadow. By the law of similar triangles,

s and l are related by the equation 10
s + l

= 6
l
, as shown in the following diagram:

3 feet/sec

6 ft

s � s(t) l � l(t)

10 ft s(t) = distance

l(t) = length

Relationship:
10

s + l
= 6

l

Given:
ds
dt

= 3

Find:
dl
dt

∣∣∣
s=8

To find the relationship between ds
dt

and dl
dt

we must implicitly differentiate the equation
relating s and l. We will simplify the equation first to make our lives easier:

10
s + l

= 6
l

=⇒ 10l = 6(s + l ) =⇒ 4l = 6s.

Differentiating both sides and then using the fact that ds
dt

= 3 gives us

4 dl
dt

= 6 ds
dt

=⇒ 4 dl
dt

= 6(3) =⇒ dl
dt

= 4.5.

Interestingly, we have just discovered that Matt’s shadow is increasing at a constant rate of
4.5 feet per second. In particular, when Matt is 8 feet from the streetlight, the length of his

shadow is increasing at a rate of dl
dt

∣∣∣
s=8

= 4.5 feet per second. �
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TEST YOUR? UNDERSTANDING
� Suppose r = r(t) is a function of t. Why is d

dt
(r 3) not equal to 3r 2?

� What are the formulas for the volumes of spheres, cylinders, and cones? What about
the formulas for surface area?

� What do we mean when we say that two triangles are similar? What does the law of
similar triangles say?

� In Example 2, why did we not label the diagram of the circle with the number 12? Why
did we use the variable r instead?

� In Example 3 the radius of the balloon increases at a faster rate when the balloon is
smaller. Why does this make sense?

EXERCISES 3.5

Thinking Back

Using the chain rule: Given that r = r(t), s = s(t), and u = u(t)
are functions of t and that c and k are constants, find each of
the following derivatives.

� d
dt

(πu2) � d
dt

(3r + 2s) � d
dt

(cu + rs)

� d
dt

(k + cu3) � d
dt

(cr 2u) � d
dt

(
c + s
k + u

)

Evaluation in Leibniz notation: Given that r = r(t), s = s(t), and
u = u(t) are functions of t, answer each of the following.

� If
ds
dt

= 3s2 − 4, find
ds
dt

∣∣∣
s=2

.

� If r 2 dr
dt

− 2r = 0, find
dr
dt

∣∣∣
r=3

.

� If 4 = 2u
du
dt

and u = 2 + 3t, find
du
dt

∣∣∣
t=4

.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If a square grows larger, so that its side
length increases at a constant rate, then its area will
also increase at a constant rate.

(b) True or False: If a square grows larger, so that its side
length increases at a constant rate, then its perimeter
will also increase at a constant rate.

(c) True or False: If a circle grows larger, so that its ra-
dius increases at a constant rate, then its circumfer-
ence will also increase at a constant rate.

(d) True or False: If a sphere grows larger, so that its radius
increases at a constant rate, then its volume will also
increase at a constant rate.

(e) True or False: The volume of a right circular cone is
one-third of the volume of the right circular cylinder
with the same radius and height.

(f) True or False: If V(r) is the volume of a sphere as a
function of its radius, and S(r) is the surface area of a
sphere as a function of its radius, then V ′(r) = S(r).

(g) True or False: If you unroll the side of a right
circular cylinder with radius r and height h, you get
a flat rectangle with height h and width 2πr.

(h) True or False: Given a right triangle with side lengths
a and c and hypotenuse of length b, we must have
a2 + b2 = c2.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two triangles that are similar to the right triangle with
legs of length 1 and hypotenuse

√
2.

(b) Two triangles with a hypotenuse of length 5.
(c) Two cylinders with a volume of 100 cubic units.

3. Give formulas for the volume and the surface area of a
cylinder with radius y and height s.

4. Give formulas for the volume and the surface area of a
cone with radius u and height w.

5. Give formulas for the volume and the surface area of a
cylinder whose radius r is half of its height h.

6. Give formulas for the volume and the surface area of a
cone whose height h is three times its radius r.

7. State the Pythagorean theorem and give an example of a
triangle that illustrates the theorem.

8. State the law of similar triangles and give an example of
a pair of triangles that illustrate this law.

9. If the volume and radius of a sphere are functions of time,
what is the relationship between the rate of change of the
volume of the sphere and the rate of change of the radius
of the sphere?

10. If the volume and radius of a cone are functions of time,
what is the relationship between the rate of change of the
volume of the cone and the rate of change of the radius
of the cone?
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11. If the volume and equator of a sphere are functions of
time, what is the relationship between the rate of change
of the volume of the sphere and the rate of change of the
equator of the sphere?

12. Suppose the side lengths x, y, and z of a rectangular box
are each functions of time.

(a) How is the rate of change of the volume of the box
related to the rates of change of x, y, and z?

(b) How is the rate of change of the surface area of the
box related to the rates of change of x, y, and z?

13. Suppose the radius r, volume V , and surface area S of a
sphere are functions of time t.

(a) How are
dV
dt

and
dr
dt

related?

(b) How are
dS
dt

and
dr
dt

related?

14. Suppose the radius r, volume V , and surface area S of

a sphere are functions of time t. How are
dV
dt

and
dS
dt

related?

15. Suppose the radius r, height h, and volume V of a

cylinder are functions of time t. How is
dV
dt

related to
dr
dt

if the height of the cylinder is constant?

16. Suppose the radius r, height h, and volume V of a

cylinder are functions of time t. How is
dV
dt

related to
dh
dt

if the radius of the cylinder is constant?

17. Suppose the radius r, height h, and volume V of a
cylinder are functions of time t, and further suppose that
the height of the cylinder is always twice its radius. Write
dV
dt

in terms of h and
dh
dt

.

18. Suppose the radius r, height h, and volume V of a cylin-
der are functions of time t, and further suppose that the

volume of the cylinder is always constant. Write
dr
dt

in

terms of r, h, and
dh
dt

.

Skills

In Exercises 19–26, write down an equation that relates the
two quantities described. Then use implicit differentiation to
obtain a relationship between the rates at which the quantities
change over time.

19. The area A and perimeter P of a square.

20. The area A and perimeter P of an equilateral triangle.

21. The surface area S and height h of a cylinder with a fixed
radius of 2 units.

22. The volume V and radius r of a cylinder with a fixed height
of 10 units.

23. The surface area S and radius r of a cone with a fixed
height of 5 units.

24. The volume V and height h of a cone with a fixed radius
of 3 units.

25. The area A and hypotenuse c of an isosceles right triangle.

26. The area A and hypotenuse c of a triangle that is similar
to a right triangle with legs of lengths 3 and 4 units and
hypotenuse of length 5 units.

Given that u = u(t), v = v(t), and w = w(t) are functions of

t and that k is a constant, calculate the derivative
df
dt

of each

function f (t) in Exercises 27–36. Your answers may involve u,

v, w,
du
dt

,
dv
dt

,
dw
dt

, k, and/or t.

27. f (t) = u2 + kv 28. f (t) = u + v + w

29. f (t) = tv + kv 30. f (t) = kuvw

31. f (t) = 2v
√

u + w 32. f (t) = 3u2v + vt

33. f (t) = w(u + t)2 34. f (t) = w
uv

35. f (t) = ut + w
k

36. f (t) = k
u2w

Applications
37. A rock dropped into a pond causes a circular wave of rip-

ples whose radius increases at 4 inches per second. How
fast is the area of the circle of ripples expanding at the in-
stant that the radius of the circle is 12 inches? 24 inches?
100 inches? Explain why it makes sense that the rate of
change of the area increases as the radius increases.

38. A rock dropped into a pond causes a circular wave of
ripples whose radius increases at 6 inches per second.
How fast is the area of the circle of ripples expanding at
the instant that the area of the circle is 100 square inches?
200 square inches? 1000 square inches? Explain why it
makes sense that the rate of change of the area increases
as the area increases.

In Exercises 39–42, suppose the sides of a cube are expanding
at a rate of 2 inches per minute.

39. How fast is the volume of the cube changing at the
moment that the cube has a side length of 8 inches?

40. How fast is the volume of the cube changing at the
moment that the cube has a side length of 20 inches?

41. How fast is the volume of the cube changing at the
moment that the cube’s volume is 55 cubic inches?

42. How fast is the volume of the cube changing at the
moment that the area of the cube’s base is 10 square
inches?
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In Exercises 43–45, consider a large helium balloon that is
being inflated at the rate of 120 cubic inches per second.

43. How fast is the radius of the balloon increasing at the
instant that the balloon has a radius of 12 inches?

44. How fast is the radius of the balloon increasing at the in-
stant that the balloon contains 300 cubic inches of air?

45. How fast is the surface area of the balloon increasing at
the instant that the radius of the balloon is 15 inches?

In Exercises 46–48, suppose that Stuart is 6 feet tall and is
walking towards a 20-foot streetlight at a rate of 4 feet per
second. As he walks towards the streetlight, his shadow gets
shorter.

46. How fast is the length of Stuart’s shadow changing? Does
it depend on how far Stuart is from the streetlight?

47. How fast is the tip of Stuart’s shadow moving? Does it
depend on how far Stuart is from the streetlight?

48. How fast is the area of the triangle made up of Stuart’s
legs and his shadow changing? Is it increasing or decreas-
ing as Stuart walks towards the streetlight?

In Exercises 49–51, Alina props a 12-foot ladder against the
side of her house so that she can sneak into her upstairs bed-
room window. Unfortunately, the ground is muddy because
of a recent rainstorm, and the base of the ladder slides away
from the house at a rate of half a foot per second.

4 feet

12 ft

foot per second2
1

49. How fast is the top of the ladder moving down the side of
the house when the base of the ladder is 4 feet from the
house?

50. How fast is the top of the ladder moving down the side of
the house when the base of the ladder is 10 feet from the
house?

51. How fast is the area of the triangle formed by the ladder,
the house, and the ground changing when the top of the
ladder is 6 feet from the ground?

In Exercises 52–55, Linda is bored and decides to pour an en-
tire container of salt into a pile on the kitchen floor. She pours
3 cubic inches of salt per second into a conical pile whose
height is always two-thirds of its radius.

52. How fast is the radius of the conical salt pile changing
when the radius of the pile is 2 inches?

53. How fast is the radius of the conical salt pile changing
when the height of the pile is 4 inches?

54. How fast is the height of the conical salt pile changing
when the radius of the pile is 2 inches?

55. How fast is the height of the conical salt pile changing
when the height of the pile is 4 inches?

56. Linda is still bored and is now pouring sugar onto the
floor. The poured-out sugar forms a conical pile whose
height is three-quarters of its radius and whose height
is growing at a rate of 1.5 inches per second. How fast
is Linda pouring the sugar at the instant that the pile of
sugar is 3 inches high?

57. Riley is holding an ice cream cone on a hot summer day.
As usual, the cone has a small hole at the bottom, and ice
cream is melting and dripping through the hole at a rate
of half a cubic inch per minute. The cone has a radius of
2 inches and a height of 5 inches. How fast is the height of
the ice cream changing when the height of the ice cream
in the cone is 3 inches?

5 in.

h

r

2 in.

58. Suppose the width w of a rectangle is decreasing at a
rate of 3 inches per second while the height h of the rect-
angle is increasing at a rate of 3 inches per second. The
rectangle initially has a width of 100 inches and a height
of 75 inches.
(a) Find the rate of change of the area of the rectangle in

terms of its width and height.
(b) On what intervals do the variables w and h make

sense in this problem? On what time interval does
the problem make sense?

(c) When will the area of the rectangle be increasing, and
when will it be decreasing? Answer these questions
both in terms of the width and height of the rectangle
and in terms of time.

59. Suppose the length a of one leg of a right triangle is in-
creasing at a rate of 4 inches per second while the length
b of its other leg is decreasing at a rate of 2 inches per
second. The triangle initially has legs of width a = 1 inch
and b = 10 inches.
(a) Find the rate of change of the area of the triangle over

time, in terms of its width and height.
(b) On what intervals do the variables a and b make

sense in this problem? On what time interval does
the problem make sense?
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(c) When will the area of the triangle be increasing, and
when will it be decreasing? Answer these questions
both in terms of the width and height of the triangle
and in terms of time.

60. Annie is paddling her kayak through the San Juan Islands
and is a quarter of a mile away from where she wants to
cross a channel. She sees a ferry in the channel approach-
ing fast from her left, about 2 miles away. The ferry travels
at about 20 mph, while Annie can do about 3 mph if she
jams.

t, time

kayak3
m.p.h.

ferry
2 miles

0.25 miles
20 m.p.h.

(a) To set up a model for this problem, suppose Annie
is travelling on the x-axis and is approaching the ori-
gin from the right. Suppose also that the ferry is trav-
elling on the y-axis and is approaching the origin
from above. Then x = x(t) represents Annie’s posi-
tion at time t and y = y(t) represents the ferry’s posi-
tion. Given what you know about this problem, what
are x′(t) and y′(t)?

(b) Construct an equation in terms of x = x(t) and y =
y(t) that describes the distance between Annie and
the ferry at time t.

(c) Use implicit differentiation to determine how fast the
distance between Annie and the ferry is decreasing
when she first sees the ferry.

(d) If Annie decides to jam across the channel, will the
ferry hit her?

61. The sun goes down at a rate of about 11 degrees per hour
in Colorado in the middle of summer. Ian finds him-
self contemplating this fact one evening while sitting at
Chasm Lake, below Long’s Peak in Colorado, watching
the sun descend behind the peak. The point on the ridge
where the sun is descending is at 13,200 feet. The lake is
at 11,710 feet. Ian is sitting 3,100 horizontal feet from the
ridge.

11 degrees
per hour

11,710 feet

13,200 feet

x � x(t)

� � �(t)

3100 feet

(a) Suppose x = x(t) is the distance of the edge of the
shadow from the ridge at time t. This distance is re-
lated to the angle θ = θ (t) shown in the figure. Find
a formula for the speed x′(t) of the shadow.

(b) Use the model from part (a) to determine how fast
the shadow of the ridge is moving when it reaches
Ian.

Proofs

62. Prove that the lateral surface area of a right circular cone
is equal to πrl, where r is the radius of the cone and
l is the length of the diagonal of the cone, that is, the
distance from the vertex of the cone to a point on its
circumference.

63. Prove that the rate of change of the volume of a sphere
with respect to its radius r is equal to the surface
area of the sphere. Why does it make geometric sense
that the surface area would be related to this rate of
change?

64. Prove that the rate of change of the volume of a cylinder
with fixed height with respect to its radius r is equal to the
lateral surface area of the cylinder. Why does it make geo-
metric sense that the lateral surface area would be related
to this rate of change?

65. Suppose a right triangle has legs of lengths a and b and a
hypotenuse of length h and that this triangle is changing
size, so that the length of its hypotenuse does not change.

Prove that the ratio of the rates of change
da
dt

and
db
dt

is

equal to − b
a

.

Thinking Forward

Parametric curves: Imagine the curve traced in the xy-plane by
the coordinates (x, y) = (3z + 1, z2 − 4) as z varies, where the
parameter z is a function of time t.

� Plot the points (x, y) in the plane that correspond to
z = −3, −2, −1, 0, 1, 2, and 3.

� If the parameter z moves at 3 units per second and
z = 0 when t = 0, plot the points (x, y) in the plane
that correspond to t = 0, 1, 2, 3, and 4.

� If the parameter z moves at 5 units per second,
find the instantaneous rate of change of the x- and
y-coordinates as the curve passes through the
point (7, 0).

� If the x-coordinate moves at 5 units per second, find
the instantaneous rate of change of the y-coordinate
as the curve passes through the point (7, 0).
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3.6 L’H Ô PITAL’S RULE

� L’Hôpital’s rule for calculating limits of the indeterminate forms
0
0

and
∞
∞

� Rewriting limits of the indeterminate form 0 · ∞ so that L’Hôpital’s rule applies

� Using logarithms to calculate limits of the indeterminate forms 00, 1∞, and ∞0

Geometrical Motivation for L’Hôpital’s Rule

As we have already seen, limits of the form 0
0

are indeterminate. At first glance it is not

clear whether such a limit exists or what it might be equal to. In some cases we can resolve

the indeterminate form 0
0

with some algebra, such as in this example:

lim
x→0

x 2

x 3 − x
= lim

x→0

x
x 2 − 1

= 0
02 − 1

= 0.

Other limits of the indeterminate form 0
0

are not so easy to simplify. In particular, limits of
quotients that involve a mixture of different types of functions are usually more resistant to
algebra. For example, consider the limit

lim
x→0

x 2

2 x − 1
.

As x → 0 we have x 2 → 0 and 2 x − 1 → 1 − 1 = 0, and thus this limit is of the indetermi-
nate form 0

0
. This indeterminate limit cannot be simplified with algebra. So what can we

do?

Let’s approach the problem graphically. The graphs of f (x) = x 2 and g(x) = 2 x − 1 are
shown next at the left. Since we are interested in a limit as x → 0, we should focus on what
happens as we look at smaller and smaller graphing windows around x = 0, as shown in
the second and third graphs.

f (x) = x 2 and g(x) = 2 x − 1 Same graph but in smaller window Graphs are almost linear here

y

x

2

1

�1

�1�2 21

y

x

0.4

0.2

�0.4

�0.2

�0.25�0.50 0.500.25

y

0.08

0.04

�0.08

�0.04

�0.05�0.10 0.100.05
x

Near x = 0, the graph of f (x) = x 2 looks a lot like its horizontal tangent line y = 0, and
the graph of g(x) = 2 x − 1 looks a lot like its tangent line y = x. Thus we would anticipate

the behavior of the quotient f (x)
g(x)

= x2

2x − 1
as x → 0 to be similar to that of the quotient 0

x

of the corresponding tangent lines at x = 0. From this information it would be reasonable

to guess that lim
x→0

x2

2x − 1
= 0. As we are about to see, that is in fact the case. Indeed, we will

soon see that, in general, limits of the indeterminate form 0
0

are related to the limit of the
quotient of the slopes, or derivatives, of those numerator and denominator functions.
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We can also use tangent lines to examine limits of the indeterminate form ∞
∞ . For ex-

ample, consider the limit

lim
x→∞

x 2

2 x − 1
.

This is the same quotient x2

2x − 1
of functions as before, but with a limit as x → ∞ instead

of as x → 0. As x → ∞ we have x 2 → ∞ and 2 x − 1 → ∞, and therefore this limit is of
the indeterminate form ∞

∞ .

Again, we cannot simplify this expression with algebra. Let’s examine what happens as
we look at larger graphing windows to see the behavior of f (x) = x 2 and g(x) = 2 x − 1 as
x → ∞:

f (x) = x 2 and g(x) = 2 x − 1 Same graph but in larger window Graphs are much different out here

y

x

2

1

�1

�1�2 21

y

x
�2 642

60

50

40

30

20

10

y

x
�2 8 10 12642

4000

3000

2000

1000

From the rightmost graph we can see that the heights on the graph of g(x) = 2 x − 1 are in
some sense approaching ∞ in a fundamentally faster way than the heights on the graph of
f (x) = x 2. Specifically, the slopes of g(x) = 2 x −1 are significantly steeper than the slopes of
f (x) = x 2 for large values of x. Accordingly, we would anticipate that as x → ∞ the values

of 2 x − 1 would win the race to ∞ and that the limit lim
x→∞

x2

2x − 1
would therefore be equal

to zero. Once again a ratio of slopes has helped us to guess the value of the limit of a
quotient. This geometric intuition is the basis for the powerful limit technique known as
L’Hôpital’s rule.

L’Hôpital’s Rule for the Indeterminate Forms 0
0

and ∞
∞

The ideas we have developed regarding limits of quotients suggest the theorem that fol-
lows. This key theorem will allow us to solve some limits of the indeterminate form 0

0
or

∞
∞ by relating them to the quotients of the corresponding derivatives:

THEOREM 3.14 L’Hôpital’s Rule

Suppose f and g are differentiable functions on some punctured interval around x = c

on which g(x) is nonzero. If lim
x→c

f (x)
g(x)

is of the indeterminate form 0
0

or ∞
∞ , then

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g ′(x)

,

as long as the second limit exists or is infinite.

The conclusion holds also if x → ∞ (or x → −∞), as long as f and g are differentiable
on some interval (N, ∞) (or (−∞, N )) on which g(x) is nonzero.
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There are a few technical points to notice about the hypotheses of this theorem. First, notice
that the functions f and g must be differentiable with g(x) nonzero for x-values near, but
not necessarily at, x = c. Second, notice that the conclusion does not necessarily hold if
the limit on the right does not exist for some reason other than being infinite. In practice,
most of the functions we look at will satisfy the two conditions we just mentioned. The
vital thing to check when applying L’Hôpital’s rule is that the limit is of the indeterminate
form 0

0
or ∞

∞ . If the limit is not in one of those two indeterminate forms, then L’Hôpital’s

rule cannot be applied.

The proof of L’Hôpital’s rule requires a more general version of the Mean Value
Theorem called the Cauchy Mean Value Theorem. This theorem—and the resulting proof
of L’Hôpital’s rule—are not that difficult, but proper proofs would take us too far afield for
our purposes, so we leave that for future mathematics courses. To simplify matters we will
prove L’Hôpital’s rule only in the special case where f and g are very well behaved and the

limit is of the indeterminate form 0
0

:

Proof. We prove the theorem in the special case where f and g are continuous and differentiable
on an interval around and including x = c, and f (c) = g(c) = 0 but g ′(c) �= 0. We wish to show that

lim
x→c

f (x)
g(x)

= f ′(c)
g ′(c)

.

We will work backwards from the right-hand side of the equality to the left-hand side. Applying
the definition of the derivative to the numerator and the denominator, we have

f ′(c)
g ′(c)

=
lim
x→c

f (x) − f (c)
x − c

lim
x→c

g(x) − g(c)
x − c

= lim
x→c

f (x) − f (c)
g(x) − g(c)

= lim
x→c

f (x) − 0
g(x) − 0

= lim
x→c

f (x)
g(x)

.

L’Hôpital’s rule can be an extremely powerful tool for resolving indeterminate limits of
the indeterminate form 0

0
or ∞

∞ . In Example 2 we will use the rule to find the limits that
we examined graphically at the start of this section. L’Hôpital’s rule can also be useful for
resolving other indeterminate forms, provided that we can rewrite them so that they are of
the form 0

0
or ∞

∞ ; see Example 3.

Using Logarithms for the Indeterminate Forms 00, 1∞, and ∞0

Recall from Section 1.6 that limits of the form 00, 1∞, and ∞0 are indeterminate. For
example, all three of the following limits are of the indeterminate form 1∞, but each one
of them approaches something different.

lim
x→∞

(
x

x − 1

)x2

= ∞; lim
x→1+

x1/(x2−1) = √
e; lim

x→∞

(
1 + 1

x

)x
= e.

In each of these limits there is a race between how fast the base approaches 1 and how
fast the exponent approaches ∞, and in some sense the winner of that race determines the
limit. But how can we determine who wins this race?

One difficulty with limits of the indeterminate forms 00, 1∞, and ∞0 is that such limits
involve a variable in both the base and the exponent. Fortunately, logarithms have the power
to change exponentiation into multiplication, in the sense that ln(ab) = b ln a. The key to
using logarithms to calculate limits is the following theorem:
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THEOREM 3.15 Relating the Limit of a Function to the Limit of Its Logarithm

(a) If lim
x→c

ln( f (x)) = L , then lim
x→c

f (x) = e L.

(b) If lim
x→c

ln( f (x)) = ∞ , then lim
x→c

f (x) = ∞.

(c) If lim
x→c

ln( f (x)) = −∞ , then lim
x→c

f (x) = 0.

To use this theorem to calculate a limit of the form lim
x→c

u(x)v(x), we consider instead the limit

lim
x→c

ln(u(x)v(x)) = lim
x→c

v(x) ln(u(x)).

Notice that the logarithm allows us to consider the limit of a product rather than a limit
involving an exponent. Once we find this limit L, the theorem tells us that the answer to
our original limit lim

x→c
u(x)v(x) must be e L. If instead of L we get ±∞, our original limit must

be equal to e±∞.

Proof. We will prove only the first part of the theorem. The proof will follow directly from the
composition rule for limits of continuous functions from Section 1.5. Suppose f is a function that is
positive as x approaches c, so that ln( f (x)) is defined near x = c. For functions f with an exponent
and base both involving the variable x, domain restrictions will ensure that this will always be the
case. Since the function f (x) = ln x is continuous on (0, ∞), by the rule for limits of compositions
of continuous functions, we have

L = lim
x→c

ln( f (x)) = ln( lim
x→c

f (x)).

Since L = ln(A) if and only if A = e L, this equation implies that, as desired,

lim
x→c

f (x) = e L.

Examples and Explorations

EXAMPLE 1 Checking to see if L’Hôpital’s rule applies

Determine whether or not L’Hôpital’s rule applies to each of the following limits as they
are written here (without any preliminary algebra or simplification):

(a) lim
x→1

(x − 1)2

x − 1
(b) lim

x→0

x 2

1 + 2 x (c) lim
x→∞(2 x − x 3) (d) lim

x→∞
2 x

1 − 3 x

SOLUTION

(a) L’Hôpital’s rule does apply, since as x → 1, both the numerator (x−1)2 and the denom-

inator x − 1 approach zero, and therefore the limit lim
x→1

(x−1)2

x−1
is of the indeterminate

form 0
0

. The more technical hypotheses of L’Hôpital’s rule are also satisfied by the nu-

merator and denominator, as they are in most common examples. It is also possible to
use algebra to solve this limit.

(b) L’Hôpital’s rule does not apply, since x2

1 + 2x
approaches 02

1 + 20
= 0

2
= 0 as x → 0.

(c) L’Hôpital’s rule does not apply, since 2 x − x 3 is not a quotient.
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(d) L’Hôpital’s rule does apply, since as x → ∞ we have 2 x → ∞ and 1 − 3 x → −∞ and
therefore this limit is of the indeterminate form ∞

−∞ . The negative sign in the denomi-
nator could be factored out, but L’Hôpital’s rule will work even if we do not extract the
negative sign. �

EXAMPLE 2 Applying L’Hôpital’s rule

Use L’Hôpital’s rule to calculate (a) lim
x→0

x 2

2 x − 1
and (b) lim

x→∞
x 2

2 x − 1
.

SOLUTION
(a) Since the limit lim

x→0

x2

2x −1
is of the indeterminate form 0

0
, L’Hôpital’s rule applies and

says that we can calculate it by considering instead the limit of the quotient of the
derivatives of the numerator and denominator:

lim
x→0

x 2

2 x − 1
L′H= lim

x→0

d
dx

(x 2)

d
dx

(2 x − 1)
= lim

x→0

2x
( ln 2)2 x = 2(0)

( ln 2)20 = 0
ln 2

= 0.

Notice that we wrote “L’H” above the equals sign where we applied L’Hôpital’s rule, to
indicate our reasoning in that step. Notice also that we did not apply the quotient rule

to differentiate the quotient f (x)
g(x)

, because that is not the way that L’Hopital’s rule works.

Instead, following L’Hôpital’s rule, we differentiated the numerator and denominator
individually.

(b) The limit lim
x→∞

x2

2x −1
is of the indeterminate form ∞

∞ , so L’Hôpital’s rule applies. Again

we replace the numerator and denominator of our quotient with their derivatives:

lim
x→∞

x 2

2 x − 1
L′H= lim

x→∞

d
dx

(x 2)

d
dx

(2 x − 1)
= lim

x→∞
2x

( ln 2)2 x .

Unfortunately, our application of L’Hôpital’s rule was not sufficient to resolve the limit
here, because if we let x → ∞ we have 2x → ∞ and ( ln 2)2 x → ∞, so our limit is still
in the indeterminate form ∞

∞ . However, this means that we can apply L’Hôpital’s rule
again!

lim
x→∞

x 2

2 x − 1
L′H= lim

x→∞
2x

( ln 2)2 x
L′H= lim

x→∞
2

( ln 2)( ln 2)2 x

As x → ∞ the denominator of this limit approaches ∞, while the numerator is equal
to 2. Therefore we have

lim
x→∞

2
( ln 2)( ln 2)2 x = 0.

Notice that both of the preceding answers agree with what we guessed from a graph-
ical analysis at the start of this section. �

EXAMPLE 3 Rewriting limits in the form 0
0

or ∞
∞ so that L’Hôpital’s rule applies

Use L’Hôpital’s rule to calculate each of the following limits:

(a) lim
x→∞ x 2e−3x (b) lim

x→0+
x ln x (c) lim

x→0

(
1
x

− 1
sin x

)
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SOLUTION
(a) As x → ∞ we have x 2 → ∞ and e−3x → 0, so the limit lim

x→∞ x 2e−3x is in the indeter-

minate form ∞ · 0. Therefore, this limit is not yet in a form to which we can apply
L’Hôpital’s rule. Luckily, limits of the indeterminate form ∞ · 0 can always be rewrit-
ten as a quotient of the form ∞

∞ or as a quotient of the form 0
0

, simply by inverting

one of the factors and placing it in the denominator. We can then choose whichever
of these two indeterminate forms we prefer and apply L’Hôpital’s rule. One way we
could rewrite the limit is

lim
x→∞ x 2e−3x = lim

x→∞
x 2

1/e−3x = lim
x→∞

x 2

e 3x ,

which is of the indeterminate form ∞
∞ . Another way we could write the limit is

lim
x→∞ x 2e−3x = lim

x→∞
e−3x

1/x 2 ,

which is of the indeterminate form 0
0

.

The first way of rewriting seems like it would be easier to deal with, so we apply
L’Hôpital’s rule to that version:

lim
x→∞ x 2e−3x = lim

x→∞
x 2

e 3x ← rewrite to form ∞
∞

L′H= lim
x→∞

2x
3e 3x ← apply L’Hôpital’s rule; still of form ∞

∞
L′H= lim

x→∞
2

9e 3x ← apply L’Hôpital’s rule

= 0. ← since 9e 3x → ∞ as x → ∞

(b) Note that we consider only the limit from the right, since ln x is not defined for negative
numbers. As x → 0+ we have x → 0 and ln x → −∞, and therefore the limit lim

x→0+
x ln x

is in the indeterminate form 0(−∞). In order to apply L’Hôpital’s rule we must rewrite
the limit in the form 0

0
or ∞

∞ . In this case it is easier to leave ln x in the numerator; as
x → 0+ we have

lim
x→0+

x ln x = lim
x→0+

ln x
1/x

← limit is now in the form −∞
∞

L′H= lim
x→0+

1/x
−1/x 2

← apply L’Hôpital’s rule

= lim
x→0+

−x 2

x
← use algebra to simplify

= lim
x→0+

(−x) = 0. ← simplify more and evaluate limit

Note that we could have applied L’Hôpital’s rule a second time in this problem,
since immediately after the first application of the rule the limit was again in the in-
determinate form ∞

∞ . However, simplifying instead resulted in a very simple limit that

we could easily evaluate.

(c) As x → 0, both 1
x

and 1
sinx

become infinite, so the limit lim
x→0

(
1
x

− 1
sinx

)
is potentially

of the indeterminate form ∞ − ∞.
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To be honest, we are playing pretty fast and loose here: Specifically, we are not both-
ering to examine whether the terms 1

x
and 1

sinx
approach ∞ or −∞. Without knowing

that, we don’t know for sure whether this is a limit of the indeterminate form ∞ − ∞
or the non-indeterminate form ∞ + ∞. We could look from the left and right and do
this more precisely if we cared to, but it is easier to instead do some algebra so that we
can apply L’Hôpital’s rule:

lim
x→0

(
1
x

− 1
sin x

)
= lim

x→0

sin x − x
x sin x

← combine fractions; form is now 0
0

L′H= lim
x→0

cos x − 1
sin x + x cos x

← apply L’Hôpital’s rule; still form 0
0

L′H= lim
x→0

− sin x
cos x + cos x − x sin x

← apply L’Hôpital’s rule again

= − sin 0
cos 0 + cos 0 − 0 sin 0

← evaluate limit

= 0
2

= 0. ← use trigonometric values �

CHECKING
THE ANSWER

All three limits we just calculated happened to be equal to zero, the first as x → ∞ and the
last two as x → 0. We can check these limits with calculator graphs:

lim
x→∞ x 2e−3x = 0 lim

x→0+
x ln x = 0 lim

x→0

(
1
x

− 1
sin x

)
= 0

�1 4

0

0.08

0 2

�1.5

1.5

�3 3

�4

4

EXAMPLE 4 Using logarithms to calculate a limit

Use logarithms and L’Hôpital’s rule to calculate each of the following limits:

(a) lim
x→∞ x 1/x (b) lim

x→0+
(sin x) x

SOLUTION
(a) Since x → ∞ and 1

x
→ 0 as x approaches ∞, this limit is of the indeterminate form

∞0. Let’s calculate the related, but different, limit lim
x→∞ ln(x1/x) and see what we get:

lim
x→∞ ln(x1/x) = lim

x→∞
1
x

ln x ← algebra; now the limit is of the form 0 · ∞

= lim
x→∞

ln x
x

← algebra; now the limit is of the form ∞
∞

L′H= lim
x→∞

1/x
1

← apply L’Hôpital’s rule

= lim
x→∞

1
x

= 0. ← simplify and evaluate the limit
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But wait! This is not the answer to our original limit. Since this limit is equal to 0, we
now know by Theorem 3.15 that our original limit must be equal to e0 = 1.

(b) Once again we have a limit that involves a variable in both the base and the expo-
nent, and we will need to use logarithms to resolve this problem. As x → 0+ we have
sin x → 0 and x → 0, so lim

x→0+
(sin x) x is in the indeterminate form 00. Let’s look at the

related limit obtained by first taking the logarithm:

lim
x→0+

ln((sin x) x) = lim
x→0+

x ln(sin x) ← algebra; limit is now of form 0(−∞)

= lim
x→0+

ln(sin x)
1/x

← algebra; limit is now of form −∞
∞

L′H= lim
x→0+

(cos x)/(sin x)
−1/x 2 ← apply L’Hôpital’s rule

= lim
x→0+

−x 2 cos x
sin x

← algebra; limit is now of form 0
0

L′H= lim
x→0+

−2x cos x + x 2 sin x
cos x

← apply L’Hôpital’s rule again

= 0 + 0
1

= 0. ← evaluate the limit

Since this limit is equal to 0, our original limit lim
x→0+

(sin x) x must be equal to e0 = 1. �

TEST YOUR? UNDERSTANDING
� What sorts of limits does L’Hôpital’s rule help us calculate?

� How do you explain in words what L’Hôpital’s rule says we can do to solve limits?

� When calculating a limit by using L’Hôpital’s rule multiple times, how do you know
when to stop applying L’Hôpital’s rule and evaluate the limit?

� How can L’Hôpital’s rule sometimes be used to solve limits of the indeterminate form
0 · ∞?

� How can we use logarithms to solve limits of the indeterminate forms 00, 1∞, and ∞0?

EXERCISES 3.6

Thinking Back

Indeterminate forms: Determine which of the given forms
are indeterminate. For each form that is not indeterminate,
describe the behavior of a limit of that form.

� ∞ · ∞ � ∞
∞ � 00 � ∞∞

� 0
0

� 1∞ � ∞−∞ � 0
∞

� 0∞ � ∞ · 0 � ∞
0 � ∞0

Simple limit calculations: Determine each of the limits that
follow. You should be able to solve all of these very quickly
by thinking about the graphs of the functions.

� lim
x→∞ 2 x � lim

x→∞ x −5 � lim
x→−∞ e 3x

� lim
x→0

1
x 2

� lim
x→0+

ln x � lim
x→∞

(
1
2

)x

� lim
x→π/2

tan x � lim
x→∞ sin x � lim

x→∞ log1/2 x
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If a limit has an indeterminate form, then
that limit does not have a real number as its solution.

(b) True or False: L’Hôpital’s rule can be used to find the

limit of any quotient
f (x)
g(x)

as x → c.

(c) True or False: When using L’Hôpital’s rule, you need
to apply the quotient rule in the differentiation step.

(d) True or False: L’Hôpital’s rule applies only to limits as
x → 0 or as x → ∞.

(e) True or False: L’Hôpital’s rule applies only to limits of

the indeterminate form
0
0

or
∞
∞ .

(f) True or False: If lim
x→2

ln( f (x)) = 4, then lim
x→2

f (x) =
ln 4.

(g) True or False: If lim
x→2

ln( f (x)) = ∞, then lim
x→2

f (x) =
∞.

(h) True or False: If lim
x→2

ln( f (x)) = −∞, then lim
x→2

f (x) =
−∞.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Three limits of the indeterminate form
0
0

, one that

approaches ∞, one that equals 0, and one that
equals 3.

(b) Three limits of the indeterminate form
∞
∞ , one that

approaches ∞, one that equals 0, and one that
equals 3.

(c) Three limits of the indeterminate form 0 · ∞, one
that approaches ∞, one that equals 0, and one that
equals 3.

3. Explain graphically why it makes sense that a limit

lim
x→c

f (x)
g(x)

of the indeterminate form
0
0

would be related to

lim
x→c

f ′(x)
g ′(x)

.

4. Explain graphically why it might make sense that a limit

lim
x→∞

f (x)
g(x)

of the indeterminate form
∞
∞ would be related

to lim
x→∞

f ′(x)
g ′(x)

.

5. Suppose f (x) = x 2 − 1 and g(x) = ln x. Find the equa-
tions of the tangent lines to these functions at x = 1.
Then argue graphically that it would be reasonable to

think that the limit of the quotient
f (x)
g(x)

as x → 1 might be

equal to the limit of the quotient of these tangent lines as
x → 1.

6. Suppose f (x) = 2 x − 4 and g(x) = x − 2. Find the equa-
tions of the tangent lines to these functions at x = 2. Then
argue graphically that it would be reasonable to think

that the limit of the quotient
f (x)
g(x)

as x → 2 might be

equal to the limit of the quotient of these tangent lines as
x → 2.

Each of the limits in Exercises 7–12 is of the indeterminate
form 0 · ∞ or ∞ · 0. Rewrite each limit so that it is (a) in

the form
0
0

and then (b) in the form
∞
∞ . Then (c) determine

which of these indeterminate forms would be easier to work
with when applying L’Hôpital’s rule.

7. lim
x→∞ 2−xx 8. lim

x→0
(2 x − 1)x −2

9. lim
x→∞ x −2 ln x 10. lim

x→0
x 3 ln x

11. lim
x→0

x csc x 12. lim
x→1

√
x − 1 ln(x − 1)

13. Find the error in the following incorrect calculation, and
then calculate the limit correctly:

lim
x→0

x 2 − x
2 x − 1

L′H= lim
x→0

2x − 1
( ln 2)2 x

L′H= lim
x→0

2
( ln 2)22 x

= 2
( ln 2)220

= 2
( ln 2)2

.

14. Find the error in the following incorrect calculation. Then
calculate the limit correctly.

lim
x→∞

e−x

x 2
L′H= lim

x→∞
−e−x

2x
L′H= lim

x→∞
e−x

2
= 0

2
= 0.

Skills

Calculate each of the limits in Exercises 15–20 (a) using
L’Hôpital’s rule and (b) without using L’Hôpital’s rule.

15. lim
x→1

x 2 + x − 2
x − 1

16. lim
x→2

x 2 − 4x + 4
x − 2

17. lim
x→∞

x − 1
2 − 3x 2

18. lim
x→∞

3 x

1 − 4 x

19. lim
x→∞

e 3x

1 − e 2x
20. lim

x→0

2 x − 1
4 x − 1

Calculate each of the limits in Exercises 21–48. Some of these
limits are made easier by L’Hôpital’s rule, and some are not.

21. lim
x→3

2 x − 8
3 − x

22. lim
x→1

x − 1
e x−1 − 1

23. lim
x→2

e 2x−4 − 1
x 2 − 4

24. lim
x→∞

e x − 7
8x 2 + 12x + 5

25. lim
x→∞

2−x

x 2 + 1
26. lim

x→∞
x + 3 x

3 − 2 x
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27. lim
x→0

x −2

x −3 + 1
28. lim

x→∞ x 2e−x

29. lim
x→∞

(
e x − e x

x + 1

)
30. lim

x→0+

(
x −1 − 1

2 x − 1

)

31. lim
x→∞ x

(
1
2

)x
32. lim

x→∞
xe−3x

x 2 + 3x + 1

33. lim
x→∞

xe x

e 2x + 1
34. lim

x→0+

(
2 x − 1

x 2
− 1

1 − e x

)

35. lim
x→∞

e−3x

x 2 + 3x + 1
36. lim

x→∞
ln x

ln(2x + 1)

37. lim
x→0+

log2 x
log2 3x

38. lim
x→2+

ln
(

2 x − 4
x − 2

)

39. lim
x→2+

ln(x − 2)
ln(x 2 − 4)

40. lim
x→0+

ln x
ln x − x + 1

41. lim
x→0

cos x − 1
sin x

42. lim
x→0

sin x
x + sin x

43. lim
x→0

1 − cos x
tan x

44. lim
x→π/2

sin(cos x)
cos x

45. lim
x→0

x cos x
1 − e x 46. lim

x→1

sin( ln x)
x − 1

47. lim
x→0

tan−1 x
sin x

48. lim
x→0

tan−1 x

sin−1 x
Calculate each of the limits in Exercises 49–64. Some of these
limits are made easier by considering the logarithm of the
limit first, and some are not.

49. lim
x→0+

x ln x 50. lim
x→∞ x ln x

51. lim
x→2+

(x − 2) x 2−4 52. lim
x→0+

(x 2 + 1) x

53. lim
x→1+

x 1/(x−1) 54. lim
x→0+

x2x

55. lim
x→∞ x 1/x 56. lim

x→∞

(
1
x

) x

57. lim
x→∞

(
1

x + 1

) x
58. lim

x→∞

( x
x − 1

) x

59. lim
x→1+

(x − 1)ln x 60. lim
x→1+

( ln x) x−1

61. lim
x→0+

x sin x 62. lim
x→0+

(sin 3x)2x

63. lim
x→0+

(cos x)1/x 64. lim
x→0

(1 − cos x) x

A function f dominates another function g as x → ∞ if f (x)
and g(x) both grow without bound as x → ∞ and if

lim
x→∞

f (x)
g(x)

= ∞.

Intuitively, f dominates g as x → ∞ if f (x) is very much larger
than g(x) for very large values of x. In Exercises 65–74, use
limits to determine whether u(x) dominates v(x), or v(x)
dominates u(x), or neither.

65. u(x) = x + 100, v(x) = x

66. u(x) = 5x 2 + 1, v(x) = x 3

67. u(x) = 100x 2, v(x) = 2x100

68. u(x) = x 2, v(x) = 2 x

69. u(x) = 2 x, v(x) = e x

70. u(x) = x10 + 3, v(x) = 10 x + 3

71. u(x) = log2 x, v(x) = log30 x

72. u(x) = ln(x 2 + 1), v(x) = x 2 + 1

73. u(x) = 0.001e 0.001x, v(x) = 100x100

74. u(x) = 0.001x 2 − 100x, v(x) = 100 log3 x

As you will prove in Exercises 93 and 94, exponential growth
functions e kx always dominate power functions x r , and power
functions x r with positive powers always dominate logarith-
mic functions logb x. Use these facts to quickly determine each
of the limits in Exercises 75-80.

75. lim
x→∞

x101 + 500
e x

76. lim
x→∞

e x

x101 + 500

77. lim
x→∞

√
x

300 ln x
78. lim

x→∞
ln x100

x 8

79. lim
x→∞ 2 xx −100 80. lim

x→∞ e−x ln x

Now that we know L’Hôpital’s rule, we can apply it to solve
more sophisticated global optimization problems. Consider
domains, limits, derivatives, and values to determine the
global extrema of each function f in Exercises 81–86 on the
given intervals I and J.

81. f (x) = x ln x, I = (0, 1], J = (0, ∞)

82. f (x) = x 2 ln(0.2x), I = (0, 4], J = (0, ∞)

83. f (x) = x 3e−x, I = [0, ∞), J = (−∞, ∞)

84. f (x) = ln x
ln 2x

, I = [0, 1], J = [1, ∞)

85. f (x) = sin x
1 − cos x

, I = (0, π ], J = (0, 2π )

86. f (x) = e x

1 + x 2
, I = [0, ∞), J = (−∞, ∞)

Applications
In Exercises 87–89, suppose that Leila is a population
biologist with the Idaho Fish and Game Service. Wolves were
introduced formally into Idaho in 1994, but there were some
wolves in the state before that. Leila has been assigned the
task of estimating the rate at which the number of wolves
in Idaho increased naturally, before the animals were in-
troduced. The only information she has is a population
model, which indicates that the wolf population currently

satisfies the formula

w(t) = 835(1 − e−.006t ),

where t is the number of years since 1994.
87. Leila reasons that the average rate of change of wolves

from 1994 to a given time t is given by
w(t)

t
. Why does her

reasoning make sense?
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88. To approximate the rate of increase of wolves per year at
the beginning of 1994, Leila decides to take the limit of
w(t)
t

as t → 0. Why does this approach make sense, and

what is the value of that limit? Is there another way she
could find the same number?

89. Leila must also determine hunting policies to sustain a
population W0 of wolves that satisfy federal guidelines,
while maximizing the sustained elk population E0 for
which the state can sell hunting tags. Her predator-prey

models approximate the number of elk over time as

E(t) = E0 + 72e−0.006t sin(π t/4) + 8te−0.006t sin(π t/4)
1 + 0.2W0

(a) Use the Squeeze Theorem for Limits to show that the

population goes toward
E0

1+0.2W0
as t → ∞.

(b) Explain why L’Hôpital’s Rule is not a good method for
calculating this limit.

Proofs

90. In your own words, prove the special case of L’Hôpital’s
rule that is proved in the reading. Explain each step in
detail.

Exercises 91–94 concern dominance of functions as defined
earlier in Exercises 65–74.

91. Use L’Hôpital’s rule to prove that every exponential growth
function dominates the power function g(x) = x 2.

92. Use L’Hôpital’s rule to prove that every power function
with a positive power dominates the logarithmic function
g(x) = ln x.

93. Use L’Hôpital’s rule to prove that exponential growth
functions always dominate power functions.

94. Use L’Hôpital’s rule to prove that power functions with
positive powers always dominate logarithmic functions.

95. Use logarithms to prove that for any real number r,

lim
x→∞

(
1 + r

x

)x
= e r .

Thinking Forward

Convergence and divergence of sequences: If a sequence
a1, a2, a3, . . . , ak, . . . approaches a real-number limit as
k → ∞, then the sequence {ak} converges. If the terms of the
sequence do not get arbitrarily close to some real number,
then the sequence diverges. Determine the general form {ak}
for each of the following sequences, and then use L’Hôpital’s
rule to determine whether that sequence converges or
diverges.

� 1
2

,
4
4

,
9
8

,
16
16

,
25
32

,
36
64

. . .

� ln 1
ln 2

,
ln 2
ln 3

,
ln 3
ln 4

,
ln 4
ln 5

,
ln 5
ln 6

,
ln 6
ln 7

. . .

� 1
10

,
3

100
,

7
1000

,
15

10,000
,

31
100,000

,
63

1,000,000
, . . .

� 1
301

,
8

304
,

27
309

,
64

316
,

125
325

,
216
336

, . . .
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� f has a local maximum or a local minimum at x = c

� f has a critical point at x = c

� f is increasing or decreasing on an interval I

� f is concave up or concave down on on interval I

� f has a global maximum or a global minimum at x = c

� f does not have any global maximum or does not have
any global minimum

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� If x = c is a local extremum of f , then f ′(c) is either or
.

� Rolle’s Theorem: If f is on [a, b] and on (a, b),
and if , then there exists at least one value c ∈ (a, b)
for which f ′(c) = .

� The Mean Value Theorem: If f is on [a, b] and on
(a, b), then there exists at least one value c ∈ (a, b) for
which f ′(c) = .

� If f is differentiable on an interval I and f ′ is positive in
the interior of I, then f is on I.

� If f is differentiable on an interval I and f ′ is in the
interior of I, then f is decreasing on I.

� If f is differentiable on an interval I and f ′ is zero in the
interior of I, then f is on I.

� If f ′(x) = g ′(x) for all x ∈ [a, b], then for some constant C,
f (x) = for all x ∈ [a, b].

� The first-derivative test: Suppose x = c is a of a differ-
entiable function f . If , then f has a local maximum
at x = c. If , then f has a local minimum at x = c.
If , then f has neither a local maximum nor a local
minimum at x = c.

� Suppose f and f ′ are differentiable on an interval I. If
is positive on I, then f is concave up on I. If is
on I, then f is concave down on I.

� The second-derivative test: Suppose x = c is a of a
twice-differentiable function f . If , then f has a local
maximum at x = c. If , then f has a local minimum
at x = c. If , then this test is inconclusive.

� L’Hôpital’s Rule: If f and g are and g(x) is nonzero

near x = c, and if lim
x→c

f (x)
g(x)

is of the indeterminate

form or , then lim
x→c

f (x)
g(x)

= .

� If lim
x→c

ln( f (x)) = L, then lim
x→c

f (x) = .

� If lim
x→c

ln( f (x)) = , then lim
x→c

f (x) = ∞.

� If lim
x→c

ln( f (x)) = , then lim
x→c

f (x) = 0.

Geometric Formulas and Theorems

Volume and Surface Area Formulas: Write a formula for
(a) the volume and (b) the surface area of each solid described
below.

� A rectangular box of width w, length l, and height h

� A box of height h with a square base of area A

� A sphere of radius r

� A sphere of circumference C

� A right circular cylinder of radius R and height y

� A right circular cylinder whose radius r is half of its
height

� A cone of height y and circular base of area A

Right-Triangle Theorems: Write an equation that describes the
relationships between the variables given for each theorem
that follows. Draw a picture to illustrate the theorem and the
roles of the variables in your equation.

� The Pythagorean Theorem: If a right triangle has legs of
lengths x and y and a hypotenuse of length h, then .

� The Law of Similar Triangles: Suppose two right triangles
have the same angle measures as each other (i.e., they are
similar), where the first has legs of lengths x1 and y1 and a
hypotenuse of length h1 and the second has correspond-
ing legs of lengths x2 and y2 and a hypotenuse of length
h2. Then we have the following three equations involving
ratios: , , and .
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Skill Certification: Curve Sketching and L’Hôpital’s Rule

Intervals of behavior: For each of the following functions f ,
determine the intervals on which f is positive, negative,
increasing, decreasing, concave up, and concave down.

1. f (x) = x 3 + 3x 2 − 9x − 27 2. f (x) = x4/3

3. f (x) = x − 1
x + 3

4. f (x) = 1
(x − 1)(x + 2)

5. f (x) = e 1+x 2
6. f (x) = sin

( x
4

)

7. f (x) = 2 x(2 x − 1) 8. f (x) = sec2 x

Important points: Find all roots, local maxima and minima,
and inflection points of each function f . In addition, deter-
mine whether any local extrema are also global extrema on the
domain of f .

9. f (x) = 3x 4 − 8x 3 10. f (x) = x 3 − 15x 2 − 33x

11. f (x) = x
x 2 + 1

12. f (x) = 1
1 + √

x

13. f (x) = x ln x 14. f (x) = x 4/3 − x1/3

15. f (x) = e x

1 − e x
16. f (x) = tan−1 x 2

Curve sketching: For each function f that follows, construct
sign charts for f , f ′, and f ′′, if possible. Examine function
values or limits at any interesting values and at ±∞. Then
interpret this information to sketch a labeled graph of f .

17. f (x) = x 3 − 2x 2 − 4x + 8 18. f (x) = 1
3x + 1

19. f (x) = x
√

x + 1 20. f (x) = √
x 2 + 2x + 10

21. f (x) = xe x 22. f (x) = ln(x 2 + 1)

23. f (x) = cos x 24. f (x) = tan−1 x

L’Hôpital’s Rule limit calculations: Calculate each of the
limits that follow. Some of these limits are easier to calculate
by using L’Hôpital’s rule, and some are not.

25. lim
x→∞

x−2

x−3 + 1
26. lim

x→0

3 x − 1
2 x − 1

27. lim
x→0

sin x
cos x − 1

28. lim
x→∞ x 3e−x

29. lim
x→∞

ln x
ln(x + 1)

30. lim
x→0

tan−1 x
1 − cos x

31. lim
x→1+

x1/(x−1) 32. lim
x→0+

x1−cos x

Capstone Problems

A. Critical points, extrema, and inflection points: Find examples
of differentiable functions which illustrate that not every
critical point is an extremum and that not every zero of
the second derivative is an inflection point. More specif-
ically, find the following:

(a) A function f with f ′(2) = 0 and an extremum at
x = 2, and a function g with g ′(2) = 0 but no
extremum at x = 2.

(b) A function k with k′′(2) = 0 and an inflection point at
x = 2, and a function h with h′′(2) = 0 but no inflec-
tion point at x = 2.

B. Optimizing perimeter, given area: Suppose that you want
to cut a rectangular shape with a particular area A from
a sheet of material, and that you want the perime-
ter of the shape to be as small as possible. Use
techniques of optimization to argue that the smallest
possible perimeter will be achieved if the rectangular
shape that you cut out is a square.

C. The Mean Value Theorem: Recap the development of the
Mean Value Theorem as follows:

(a) Prove that if f is a differentiable function, then
every extremum x = c of f is also a critical point of f .
(Hint: Show that f ′(c) = 0 by proving that f ′

+(c) ≤ 0
and f ′

−(c) ≥ 0.)
(b) Use part (a) and the Extreme Value Theorem to prove

Rolle’s Theorem. (Hint: Consider the case where f has
an extremum on the interior of the interval first.)

(c) Explain how the Mean Value Theorem is essentially
a rotated version of Rolle’s Theorem and how the
proof in the reading makes use of that fact.

D. Area accumulation functions: Suppose f is the function pic-
tured here, and A(x) is the associated function whose
value at any x ≥ 0 is equal to the area between the graph
of f and the x-axis from 0 to x. The quantity A(2.5) is
shaded in the figure. We will count area below the x-axis
negatively, so that in this example A(5) is less than A(4).

Area function A(x) is defined by
the shaded region as x varies

y

x
A(x)

543x1 2

4

2

�2

�4

�6

(a) On what interval of x-values is A(x) an increasing
function? On what interval is A(x) decreasing?

(b) On what interval of x-values is the function f posi-
tive? On what interval is f negative?

(c) Here is a surprising fact: One of these functions is the
derivative of the other! Use your answers to parts (a)
and (b) to determine whether A′ = f or f ′ = A.
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4.1 ADDIT ION AND ACCUMULATION

� An introduction to accumulation functions and the area under a curve

� Sigma notation and properties of sums

� A preview of limits of sums, the backbone of the definition of the definite integral

Accumulation Functions

With this chapter we begin the study of integrals. While derivatives describe the rates at
which functions change, integrals can describe how functions accumulate. As we will see
throughout this chapter, the concepts of accumulation, area, and differentiation are funda-
mentally intertwined.

For a simple example of how these concepts are intertwined, imagine that you are driv-
ing down a straight road that has stoplights. Suppose that you start from a full stop at one
stoplight, increase your velocity for 20 seconds to reach 60 miles per hour (88 feet per
second), then decrease your velocity for 20 seconds until you come to a full stop at the next
stoplight, as illustrated next at the left. Your speedometer works, so you can tell how fast
you are going at any time. However, your odometer is broken, so you have no idea how far
you have travelled. Using data from your speedometer, you can show that your velocity on
this trip is given by v(t) = −0.22t 2 + 8.8t feet per second, from t = 0 to t = 40 seconds, as
illustrated in the graph shown at the right.

v(t) = −0.22t 2 + 8.8t

t � 40t � 20t � 0

v � 88 ft/s

60 mph0 mph 0 mph v

t
40302010

88

So, how far was it between the two stoplights? If you had travelled at a constant velocity,
this would be an easy application of the “distance equals average rate times time” formula.
For example, driving at exactly 30 miles per hour (44 feet per second) for 40 seconds would
accumulate a distance of d = (44)(40) = 1760 feet.

Unfortunately in our example, velocity varies. However, we can approximate the dis-
tance travelled by assuming a constant velocity over small chunks of time. For example,
we could use v(5), v(15), v(25), and v(35) as constant velocities over the intervals [0, 10],
[10, 20], [20, 30], and [30, 40], respectively. Using the d = rt formula over each of the four
time intervals would give us an approximate distance travelled of

d ≈ d1 + d 2 + d 3 + d 4 = r1 t 1 + r2 t 2 + r 3 t 3 + r 4 t 4

= v(5)(10) + v(15)(10) + v(25)(10) + v(35)(10)

= (38.5)(10) + (82.5)(10) + (82.5)(10) + (38.5)(10) = 2420 feet.

Notice that we have just estimated the distance between the two stoplights by means of
only the readings on your speedometer at t = 5, t = 15, t = 25, and t = 35. Despite
having used only this small amount of information, our estimate is fairly close to the actual
distance, which in this example happens to be just over 2346 feet.
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We can think of the preceding four 10-second distance approximations as areas of four
rectangles, as shown next at the left. For example, over the first time interval we have a rect-
angle of width t 1 = 10, height r1 = v(5) = 38.5, and area d1 = (t 1)(r1) = (38.5)(10) = 385.

Distance was approximated with
a sum of areas of rectangles

Thinner rectangles give a
better approximation

v

t
40302010

88.0
82.5

38.5

v

t

88.0

40302010

Notice that the sum of the areas of these rectangles is a pretty good approximation for the
distance between the stoplights and also a pretty good approximation for the area under
the velocity curve in the figure at the left. Using smaller time intervals would give us thinner
rectangles (as shown at the right), whose combined areas would be a better approxima-
tion for the distance travelled, as well as a better approximation for the area under v(t).
These figures suggest that the exact distance travelled might equal the exact area under the
velocity curve. Furthermore, since we already know that velocity is the derivative of
position, the figures also suggest connections between accumulation, area, and derivatives.
Over the rest of this chapter we will make these notions and connections more precise.

Sigma Notation

From the stoplight example we just discussed, it seems that we will have to do a lot of
adding in order to investigate area and accumulation functions. Our better approxima-
tion with smaller, but more, rectangles involved 16 rectangles with areas to calculate and
add up—and for an even better approximation we might consider 100 or more rectangles.
We now develop a compact notation to represent the sum of a sequence of numbers—in
particular, a sequence of numbers that has a recognizable pattern. This notation is called
sigma notation, since it uses the letter “sigma” (written �), which is the Greek counterpart
of the letter “S” (for “sum”).

DEFINITION 4.1 Sigma Notation

If a k is a function of k, and m and n are nonnegative integers with m ≤ n, then
n∑

k=m

a k = a m + a m+1 + a m+2 + · · · + a n−1 + a n.

As an initial example, consider our earlier sum of four distances. This sum can be written
in sigma notation as follows:

d ≈
4∑

k=1

dk =
4∑

k=1

r kt k = 2420 feet.

The expression in Definition 4.1 is pronounced “the sum from k = m to n of a k.” The
“k = m” below the sigma shows where we should begin the sum, and it also specifies that
the index, or stepping variable, for the sum is k. With sigma notation, the step from one
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value of k to the next is always equal to 1. If we start with k = 1, then the next value of k will
be k = 2, the next will be k = 3, and so on. We end at the value k = n, where n is the num-
ber appearing above the sigma in the notation. The terms a k represent the pattern of the
items to be summed. When we say that a k is a function of k, we mean that, for every integer
index k, the expression for a k determines a unique real number. Since the index k can have
only integer values, it is traditional to use a k rather than the usual function notation a(k).

When printed in a line of text, sigma notation is more compact and looks like this:∑n
k=m a k. Sigma notation always follows the general pattern

ending value∑
k=starting value

(function of k).

To find the value of a sum in sigma notation
∑n

k=m a k you would evaluate the function a k

at k = m, k = m + 1, k = m + 2, and so on until k = n, and then add up all of these values.
To put a given sum into sigma notation you must identify a pattern for the function a k, as
well as starting and ending values for k. For example, we could represent the sum

1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

+ 1
7

+ 1
8

+ 1
9

+ 1
10

with the sigma notation
∑10

k=1
1
k
, since each of the numbers in our sum is of the form 1

k
for

some integer k, with k = 1 for the first term and k = 10 for the last term.

The Algebra of Sums in Sigma Notation

The next theorem expresses two common properties of sums in sigma notation. For the
moment we will restrict our attention to sums whose index k starts at k = 1. However,
Theorem 4.2 is true for sums that begin at any integer k = m.

THEOREM 4.2 Constant-Multiple and Sum Rules for Sums

If a k and b k are functions defined for nonnegative integers k, and c is any real number,
then

(a)
n∑

k=1

ca k = c
n∑

k=1

a k. (b)
n∑

k=1

(a k + b k) =
n∑

k=1

a k +
n∑

k=1

b k.

Part (a) of this theorem is a general version of the distributive property c(x + y) = cx + cy.
Part (b) is a general version of the associative and commutative properties of addition (i.e.,
the fact that we can reorder and regroup the numbers in a sum). A simple example is the
fact that (a1 + b1) + (a 2 + b 2) = (a1 + a 2) + (b1 + b 2). The proof of Theorem 4.2 consists
mostly of translating the sigma notation.

Proof. To prove part (a), we translate the sigma notation to its expanded form and then apply the
distributive property:

n∑
k=1

ca k = ca1 + ca 2 + ca 3 + · · · + ca n−1 + ca n ← write out the sum

= c(a1 + a 2 + a 3 + · · · + a n−1 + a n) ← factor out c

= c
n∑

k=1

a k. ← write in sigma notation
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The proof of part (b) is similar; we will write the sigma notation in expanded form, reorder and
regroup the terms in the sum, and then write the reordered sum in sigma notation:

n∑
k=1

(a k + b k) = (a1 + b1) + (a 2 + b 2) + (a 3 + b 3) + · · · (a n−1 + bn−1) + (a n + b n)

= (a1 + a 2 + a 3 + · · · + a n−1 + a n) + (b1 + b 2 + b 3 + · · · + bn−1 + b n)

=
n∑

k=1

a k +
n∑

k=1

b k.

We can strip off terms from the beginning or end of a sum, or split a sum into two
pieces, by applying the following theorem:

THEOREM 4.3 Splitting a Sum

Given any function a k defined for nonnegative integers k, and given any integers m, n,
and p such that 0 ≤ m < p < n,

n∑
k=m

a k =
p−1∑
k=m

a k +
n∑

k=p

a k.

Proof. The proof of this theorem is fairly simple; we need only write out the terms of the sum. If
m < p < n, we have

n∑
k=m

a k = a m + a m+1 + · · · + ap−1 + ap + ap+1 + · · · + a n−1 + a n ← expand

= (a m + a m+1 + · · · + ap−1) + (ap + ap+1 + · · · + a n−1 + a n) ← regroup

=
p−1∑
k=m

a k +
n∑

k=p

a k. ← sigma notation

Formulas for Common Sums

It can be tedious to calculate a long sum by hand; for example, consider the sum
∑1000

k=1 k 2.
To calculate this sum directly, we would have to write out all 1000 of its terms and then add
them together. Luckily, the next theorem provides formulas for the values of a few simple
sums. Using these formulas, we can quickly calculate any sum whose general term is a
constant, linear, quadratic, or cubic polynomial in k.

THEOREM 4.4 Sum Formulas

If n is a positive integer, then

(a)
n∑

k=1

1 = n (b)
n∑

k=1

k = n(n + 1)
2

(c)
n∑

k=1

k 2 = n(n + 1)(2n + 1)
6

(d)
n∑

k=1

k 3 = n2(n + 1)2

4
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Proof. To prove the first formula we only have to write out the sum

n∑
k=1

1 = 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
n times

= n.

You will prove the second formula by using two cases in Exercises 61 and 62. The third and
fourth formulas are simple to prove by a method called induction, but that method of proof is best
left for a future mathematics course, so we do not include proofs of the third and fourth formulas
at this time.

Examples and Explorations

EXAMPLE 1 Converting from sigma notation to an expanded sum

Write the sum represented by the sigma notation
∑8

k=2 2k in expanded form, and find the
value of the sum.

SOLUTION

The given sigma notation is a compact way of writing “the sum of all numbers of the form
2k, where k is an integer greater than or equal to 2 and less than or equal to 8.” This means
we must find the values of 2k for k = 2, k = 3, and so on until k = 8, and then add all of
these values:

8∑
k=2

2k = 22 + 23 + 24 + 25 + 26 + 27 + 28 = 508.

�

EXAMPLE 2 Converting from an expanded sum to sigma notation

Write the following sum in sigma notation:

3
4

+ 4
5

+ 5
6

+ 6
7

+ 7
8

+ 8
9

+ 9
10

.

SOLUTION

First, we look for a pattern in the numbers of the sum, so we can determine the function
a k. One possible pattern is that each number in the sum is of the form k

k + 1
for some non-

negative integer k. Therefore, we can set a k = k
k + 1

. The first number, 3
4

, corresponds to

the value k = 3. The last number, 9
10

, corresponds to the value k = 9
(
when k = 9, we have

k
k + 1

= 9
10

)
. The sum can be written in sigma notation as

3
4

+ 4
5

+ 5
6

+ 6
7

+ 7
8

+ 8
9

+ 9
10

=
9∑

k=3

k
k + 1

.

�

EXAMPLE 3 Algebraically manipulating sums in sigma notation

Given that
∑4

k=1 a k = 7 and
∑4

k=1 b k = 10, find
∑4

k=1(a k + 3b k).
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SOLUTION

Notice that we do not know what the functions a k and b k are in this problem, and thus we
cannot directly compute

∑4
k=1(a k + 3b k). However, using Theorem 4.2, we have

4∑
k=1

(a k + 3b k) =
4∑

k=1

a k +
4∑

k=1

3b k ← Part (a) of Theorem 4.2

=
4∑

k=1

a k + 3
4∑

k=1

b k ← Part (b) of Theorem 4.2

= 7 + 3(10) = 37. ← using the values of the sums given �

EXAMPLE 4 Sums can be combined only if they start and end at the same value

Use the fact that
∑20

k=2
1
k

≈ 2.5977 and
∑19

k=0

√
k ≈ 57.1938 to estimate

∑19
k=2

( 2
k

+ √
k
)
.

SOLUTION

We could of course just directly calculate the desired sum by adding up terms, but instead
we will combine the two given sums to obtain the information we need. The key is to
rewrite the two sums we were given so that they each begin and end and the same value;
we will rewrite so that they begin at k = 2 and end at k = 19.

We are given that
∑20

k=2
1
k

= 1
2

+ 1
3

+ · · · + 1
19

+ 1
20

is approximately 2.5977. To get the

sum of the k = 2 through k = 19 terms, all we have to do is subtract the extra term 1
20

:

19∑
k=2

1
k

=
( 20∑

k=2

1
k

)
− 1

20
≈ 2.5977 − 1

20
= 2.5477.

Similarly, we can find the sum from k = 2 to k = 19 of
√

k by subtracting the two extra

terms (at k = 0 and k = 1) at the beginning of the sum
∑19

k=0

√
k :

19∑
k=2

√
k =

( 19∑
k=0

√
k
)

−
√

0 −
√

1 ≈ 57.1938 − 0 − 1 = 56.1938.

We can now use Theorem 4.2 to combine these sums and find the value of the desired
sum:

19∑
k=2

(
2
k

+
√

k
)

=
19∑

k=2

2
k

+
19∑

k=2

√
k ← sum of sums

= 2
19∑

k=2

1
k

+
19∑

k=2

√
k ← constant times a sum

≈ 2(2.5477) + 56.1938 = 61.2892. ← add previously computed values �

EXAMPLE 5 Using sum formulas to calculate the value of a sum

Find the value of the sum
∑300

k=1(k 3 − 4k 2 + 2).
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SOLUTION

By writing the sum as three simple sums and using the formulas in Theorem 4.4, we have

300∑
k=1

(k 3 − 4k 2 + 2) =
( 300∑

k=1

k 3
)

− 4
( 300∑

k=1

k 2
)

+ 2
( 300∑

k=1

1
)

← properties of sums

= 3002(301)2

4
− 4

300(301)(601)
6

+ 2(300) ← Theorem 4.4

= 2, 002, 342, 900.

Of course that was a whole lot easier than expanding the sum and then adding all
300 terms! �

EXAMPLE 6 Using a sum formula to calculate the limit of a sum as n → ∞
Find the values of the sum

∑n
k=1

k2

n3
for n = 3, n = 4, n = 100, and n = 1000. Then

investigate what happens as n approaches infinity.

SOLUTION

To find the sums for n = 3 and n = 4, it is easy to expand and calculate the sums directly:

3∑
k=1

k 2

n3
= 12

33
+ 22

33
+ 32

33
= 1

27
+ 4

27
+ 9

27
= 14

27
;

4∑
k=1

k 2

n3
= 12

43
+ 22

43
+ 32

43
+ 42

43
= 1

64
+ 4

64
+ 9

64
+ 16

64
= 30

64
= 15

32
.

Notice that the denominator of each term in the first sum is constantly equal to n3 and
does not change as k changes. Notice also that the sum from n = 1 to n = 4 cannot be
obtained from the sum from n = 1 to n = 3 just by adding a fourth term; all the terms
in the second sum are different from the terms in the first sum. In fact, the second sum is

actually smaller than the first sum, since 14
27

≈ 0.5185 and 15
32

= 0.46875. Although we are

adding more terms in the second sum, each of those terms is smaller than the terms in the
first sum (since their denominators are larger).

To find the sum for n = 100, we will use properties of sums and one of the sum formulas
from Theorem 4.4:

100∑
k=1

k 2

n3 =
100∑
k=1

k 2

1003 = 1
1003

100∑
k=1

k 2 ← pull out the constant 1
1003

= 1
1003

100(101)(201)
6

← sum formula from Theorem 4.4

= 2, 030, 100
6, 000, 000

= 0.33835.

Similarly, the sum from k = 1 to k = 1000 is

1000∑
k=1

k 2

n3 =
1000∑
k=1

k 2

10003 = 1
10003

1000∑
k=1

k 2

= 1
10003

(
1000(1001)(2001)

6

)
= 2, 003, 001, 000

6, 000, 000, 000
≈ 0.33383.
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Notice that even though we just summed up a thousand terms, the sum is a very small
number. In fact, the more terms we sum up, the smaller that number seems to get! It looks
like if we let n continue to grow, the sum from k = 1 to k = n will approach a number that
is approximately 0.33 or so. We can show that this is indeed the case by taking a limit of
the formula we used to compute the two previous sums:

lim
n→∞

n∑
k=1

k 2

n3 = lim
n→∞

1
n3

n∑
k=1

k 2 ← n is constant with respect to k

= lim
n→∞

1
n3

(
n(n + 1)(2n + 1)

6

)
← sum formula from Theorem 4.4

= lim
n→∞

(n + 1)(2n + 1)
6n2 ← algebra

= lim
n→∞

2n2 + 3n + 1
6n2 = 2

6
= 1

3
. ← take the limit �

TEST YOUR? UNDERSTANDING
� Considering the stoplight example at the beginning of this section, how can the approx-

imate distances travelled be interpreted as rectangles? How is exact distance travelled
related to the area under a velocity curve?

� Can you find an example in which
∑n

k=1(a kb k) is not equal to the product of
∑n

k=1 a k

and
∑n

k=1 b k?

� Do two sums in sigma notation have to start and end at the same index value in order
to be combined into one sum? Why or why not?

� How can we express the sum in Example 2 by using sigma notation that starts at k = 4
and ends at k = 10?

� How could a sum of infinitely many things ever be a small finite number, as happened
in Example 6?

EXERCISES 4.1

Thinking Back

� Approximations and limits: Describe in your own words
how the slope of a tangent line can be approximated
by the slope of a nearby secant line. Then describe how
the derivative of a function at a point is defined as a
limit of slopes of secant lines. What is the approxima-
tion/limit situation described in this section?

� Properties of addition: State the associative law for ad-
dition, the commutative law for addition, and the dis-
tributive law for multiplication over addition of real
numbers. (You may have to think back to a previous
algebra course.)

� Sum and constant-multiple rules: State the sum and
constant-multiple rules for (a) derivatives and (b)
limits.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The sum formulas in Theorem 4.4 can
be applied only to sums whose starting index value is
k = 1.

(b) True or False:
∑n

k=0
1

k + 1
+ ∑n

k=1 k 2 is equal to
∑n

k=0
k 3 + k 2 + 1

k + 1
.

(c) True or False:
∑n

k=1
1

k + 1
+ ∑n

k=0 k 2 is equal to
∑n

k=1
k 3 + k 2 + 1

k + 1
.

(d) True or False:
(∑n

k=1
1

k + 1

)(∑n
k=1 k 2

)
is equal to

∑n
k=1

k 2

k + 1
.
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(e) True or False:
∑m

k=0

√
k + ∑n

k=m

√
k is equal to∑n

k=0

√
k.

(f) True or False:
∑n

k=0 a k = −a 0 − a n + ∑n−1
k=1 a k.

(g) True or False:
(∑10

k=1 a k
)2 = ∑10

k=1 a 2
k .

(h) True or False:
∑n

k=1(e x)2 = ex(ex + 1)(2ex + 1)
6

.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A sum that would not be suitable for expressing in
sigma notation.

(b) Two different sigma notation expressions of the same
sum.

(c) A sum from k = 1 to k = n that is smaller for n = 10
than it is for n = 5.

3. Explain why it would be difficult to write the sum
1
3

+ 1
4

+
1
5

+ 1
8

+ 1
11

+ 1
12

+ 1
13

in sigma notation.

4. Use a sentence to describe what the notation
∑100

k=2

√
k

means. (Hint: Start with “The sum of....”)

5. Use a sentence to describe what the notation
∑87

k=3 k 2

means. (Hint: Start with “The sum of....”)

6. Consider the general sigma notation
∑n

k=m a k. What do
we mean when we say that a k is a function of k?

7. Consider the sum
∑q

i=p bi.

(a) Write out this sum in expanded form (i.e., without
sigma notation).

(b) What is the index of the sum? What is the starting
value? What is the ending value? Which part of the
notation describes the form of each of the terms in
the sum?

(c) Do p and q have to be integers? Can they be nega-
tive? What about bi? What else can you say about p
and q?

8. Consider the sum
∑5

k=2
k

1 − k
. Identify the terms a 2, a 3,

a4, and a5.

9. Consider the sum
∑n

k=m a k = 9 + 16 + 25 + 36 + 49.
What is a k? What is m? What is n?

10. Show that
∑9

k=3
k

k + 1
is equal to

∑10
k=4

k − 1
k

by writing out

the terms in each sum.

11. Show that
∑8

k=0
1

k2 + 1
is equal to 2

∑8
k=0

1
2k2 + 2

by writ-

ing out the terms in each sum.

12. Write the sum
4
7

+ 5
8

+ 6
9

+ 7
10

+ 8
11

in sigma notation in

three ways: with a starting value of (a) k = 4, (b) k = 7,
and (c) k = 5.

13. Write the sum 2 + 2
4

+ 2
9

+ 2
16

+ 2
25

in sigma notation in

three ways: with a starting value of (a) k = 1, (b) k = 2,
and (c) k = 0.

14. Split the sum
∑11

k=4

√
k into three sums, each in sigma no-

tation, where the first sum has two terms and the last two
sums each have three terms.

15. Verify that
∑n

k=1 k is equal to
n(n + 1)

2
for the cases (a)

n = 2, (b) n = 8, and (c) n = 9.

16. Verify that
∑n

k=1 k 2 is equal to
n(n + 1)(2n + 1)

6
for the cases

(a) n = 1, (b) n = 5, and (c) n = 10.

17. State algebraic formulas that express the following sums,
where n is a positive integer:

(a)
n∑

k=1

1 (b)
n∑

k=1

k (c)
n∑

k=1

k 2 (d)
n∑

k=1

k 3

18. Explain why terms in the sum in Example 6 with n = 4
are completely different from the terms in the sum when
n = 3. How can the sum from k = 1 to k = 4 be smaller
than the sum from k = 1 to k = 3? What will happen as
n gets larger in this example?

19. Considering the discussion at the end of the stoplight ex-
ample in the reading, would you expect that the area un-
der the graph of a function f is related to the derivative
f ′? Or would you expect that the area under the graph of
a derivative function f ′ is related to the function f ?

20. Consider again the stoplight example from the reading. In
making an approximation for distance travelled, why do
we assume that velocity is constant on small subintervals?
What are some different ways that we could choose which
velocity to use on each subinterval? Illustrate a couple of
these ways with graphs that involve rectangles.

Skills

Write each of the sums in Exercises 21–28 in sigma notation.
Identify m, n, and a k in each problem.

21. 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3

22.
4
3

+ 5
4

+ 6
5

+ 7
6

+ 8
7

+ 9
8

+ 10
9

+ 11
10

23. 3 + 4
8

+ 5
27

+ 6
64

+ 7
125

24.
1
4

+ 1
9

+ 1
16

+ 1
25

+ 1
36

+ 1
49

+ 1
64

25. 5 + 10 + 17 + 26 + 37 + 50 + 65 + 82 + 101
26. 9 + 12 + 15 + 18 + 21 + 24 + 27

27.
1
n

+ 2
n

+ 3
n

+ · · · + n
n

28. −2n − 1n + 0n + 1n + · · · + nn

Write out each sum in Exercises 29–34 in expanded form, and
then calculate the value of the sum.

29.
9∑

k=4

k 2 30.
6∑

k=0

2
k + 1

31.
5∑

k=0

( 1
2

k
)2 ( 1

2

)
32.

10∑
k=3

ln k

33.
9∑

k=0

√
3 + 1

10
k

( 1
10

)
34.

4∑
k=1

((2 + k)2 + 1)
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Find a formula for each of the sums in Exercises 35–40, and
then use these formulas to calculate each sum for n = 100,
n = 500, and n = 1000.

35.
n∑

k=1

(3 − k) 36.
n∑

k=1

(k 3 − 10k 2 + 2)

37.
n∑

k=3

(k + 1)2 38.
n∑

k=1

k 3 − 1
4

39.
n∑

k=1

k 3 − 1
n4

40.
n∑

k=1

k 2 + k + 1
n3

Write each expression in Exercises 41–43 in one sigma nota-
tion (with some extra terms added to or subtracted from the
sum, as necessary).

41. 2
100∑
k=0

a k −
101∑
k=3

a k 42.
40∑

k=1

1
k

−
39∑

k=0

1
k + 1

43. 3
25∑

k=2

k 2 + 2
24∑

k=2

k −
25∑

k=0

1

In Exercises 44–46, find the sum or quantity without com-
pletely expanding or calculating any sums.

44. Given
∑10

k=3 a k = 12 and
∑10

k=2 a k = 23, find a 2.

45. Given
∑4

k=1 a k = 7,
∑4

k=0 b k = 10, and a 0 = 2, find the

value of
∑4

k=0(2a k + 3b k).

46. Given
∑25

k=0 k = 325 and
∑28

k=3(k−3)2 = 14, 910, find the

value of
∑25

k=3(k 2 − 5k + 9).

Determine which of the limit of sums in Exercises 47–52 are
infinite and which are finite. For each limit of sums that is
finite, compute its value.

47. lim
n→∞

n∑
k=1

k 2 + k + 1
n3

48. lim
n→∞

n∑
k=1

(k 2 + k + 1)

49. lim
n→∞

n∑
k=1

(k + 1)2

n3 − 1
50. lim

n→∞

n∑
k=1

k 2 + k + 1
n2

51. lim
n→∞

n∑
k=1

(
1 + k

n

)2

· 1
n

52. lim
n→∞

n∑
k=1

k 3

n4 + n + 1

Applications
53. Considering the stoplight example in the reading with

velocity v(t) = −0.22t 2 + 8.8t as shown next at the left,
approximate the distance travelled by dividing the time
interval [0, 40] into eight pieces and assuming constant
velocity on each piece. Interpret this distance in terms of
rectangles on the graph of v(t).

Velocity of car
v(t) = −0.22t 2 + 8.8t

v

88

t
40302010

Piecewise approximation of
velocity v(t) of race car

100

80

60

40

20

108642

v

t

54. Suppose you drive on a racetrack for 10 minutes with
velocity as shown in the graph at the right.

(a) Describe in words the behavior of your race car over
the 10 minutes as shown in the graph.

(b) Find a piecewise-defined formula for your velocity
v(t), in miles per hour, t hours after you start from

rest. (Note that 1 minute is
1
60

of an hour.)

(c) Approximate the distance you travelled over the
10 minutes by using 10 subintervals of 1 minute over
which you assume a constant velocity. Illustrate this
approximation by showing rectangles on the graph
of v(t).

(d) Given that distance travelled is the area under the
velocity graph, use triangles and squares to calculate
the exact distance travelled.

55. The table that follows describes the activity in a college
tuition savings account over four years. Notice that 2008
was a particularly bad year for investing! Let I(t) be the
amount by which your account increased or decreased in
year t, and let B(t) be the balance of your account at the
end of year t.

Activity in tuition savings account

Year 2005 2006 2007 2008

Deposited $ 600 $ 1200 $ 1200 $ 1200

Earnings $ 10 $ 183 $ 317 $ −1650

Increase $ 610 $ 1383 $ 1517 $ −450

Balance $ 610 $ 1994 $ 3512 $ 3061

(a) Describe in your own words how B(t) is the accumu-
lation function for I(t).

(b) Plot a step-function graph of I(t), and describe how
B(t) relates to the area under that graph.

(c) What, if anything, can you say about B(t) when I(t)
is positive? Negative? If you had to guess that one
of these functions was related to the derivative of the
other, which one would it be?

56. Suppose 100 mg of a drug is administered to a patient
each morning in pill form and it is known that after
24 hours the body processes 80% of the drug from such
a pill, leaving 20% of the drug in the body. The amount
of the drug in the body right after the first pill is taken is
A(1) = 100 mg. 24 hours later, after the second pill has
been taken, the amount in the body is A(2) = 100(0.2) +
100 = 120 mg. 48 hours later, the amount in the body
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right after taking the third pill is A(3) = 100(0.2)(0.2) +
100(0.2) + 100 = 124 mg.

Repeated doses of a drug

100

80

60

40

20

4321

A

t

(a) Explain the calculations for A(1), A(2), and A(3) de-
scribed in the exercise. Which term in A(3) corre-
sponds to the drug left from the first pill?

(b) Interpret the given graph in the context of this
problem. What do the marked points represent?

(c) Express A(n) in sigma notation.
(d) Calculate the amount of drug in the body after the

4th through 10th pills. Do you notice anything spe-
cial about A(n) as n gets larger?

57. Suppose the government enacts a $10 billion tax cut
and that the people who save money from this tax cut
will spend 70% of it and save the rest. This generates
$10(0.7) = $7 billion of extra income for other peo-
ple. Assume these people also spend 70% of their extra

income, and that these transactions continue. Let A(n) be
the accumulated amount of spending, in billions of dol-
lars, that has occurred after n such transactions. For exam-
ple, A(1) is the amount of spending that has occurred after
the first group of people has spent its money, so A(1) =
$10(0.7) = $7 billion. A(2) is the amount of spending that
has occurred after the first and second groups of people
have spent their money, so A(2) = $10(0.7) + $7(0.7) =
$11.9 billion, as shown in the following graph:

Accumulation of tax cut spending

25

20

15

10

5

4321 8765

A

n

(a) Express A(n) in sigma notation.
(b) Calculate A(3), A(4), and A(5).
(c) Estimate the total spending created by this tax cut by

calculating the accumulated spending for at least 10
of these transactions. Interpret your answer in terms
of the given graph.

Proofs

58. Give a simple proof that
∑n

k=5(a k + b k) = ∑n
k=5 a k+∑n

k=5 b k.

59. Give a simple proof that
∑n

k=0 3a k = 3
∑n

k=0 a k.

60. Give a simple proof that if n is a positive integer and c is
any real number, then

∑n
k=1 c = cn.

61. Prove part (b) of Theorem 4.4 in the case when n is even: If

n is a positive even integer, then
∑n

k=1 k = n(n + 1)
2

. (Hint:

Try some examples first, such as n = 6 and n = 10, and think
about how to group the terms to get the sum quickly.)

62. Prove part (b) of Theorem 4.4 in the case when n is odd: If

n is a positive odd integer, then
∑n

k=1 k = n(n + 1)
2

. (Hint:

Use a method similar to the one for the previous exercise, but
take note of what happens with the extra middle term of the
sum.)

Thinking Forward

Functions defined by area accumulation: Let f be the function
that is shown here at the left, and define a new function A so
that for every c ≥ 1, A(c) is the area of the region between the
graph of f and the x-axis over the interval [1, c]. For exam-
ple, A(2) is the area of the shaded region in the graph at the
right.

� Use the graph of f to estimate the values of A(1),
A(2), and A(3). (Hint: Consider the grid lines in the graph
shown at the right.)

� Describe the intervals on which the function f is pos-
itive, negative, increasing, and decreasing. Then de-
scribe the intervals on which the function A is positive,
negative, increasing, and decreasing.

� From the figures, we can see that f is increasing and
positive on [1, ∞) and A is also increasing and posi-
tive on [1, ∞). What would you be able to say about
the area accumulation function A if f were instead

decreasing and positive? Or increasing and negative?
Draw some pictures in your investigation.

Graph of y = f (x)

321

y

x

5

4

3

2

1

6

The shaded area is A(2)

321

y

x

5

4

3

2

1

6

Approximating the area under a curve with rectangles: Suppose
you want to find the area between the graph of a positive
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function f and the x-axis from x = a to x = b. We can approx-
imate such an area by using a sum of areas of small rectangles
whose heights depend on the height f (x) at various points. For
the problems that follow you should choose rectangles so that
each rectangle has the same width and the top left corner of
each rectangle intersects the graph of f .

� Approximate the area between the graph of f (x) = x 2

and the x-axis from x = 0 to x = 4, by using four rect-
angles. Include a picture of the rectangles that you are
using.

� Approximate the same area as earlier, but this time
with eight rectangles. Is this an over-approximation or
an under-approximation of the exact area under the
graph?

Sequences of partial sums: In Exercise 57 we saw a function A(n)
that was defined as a sum of n terms, A(n) = ∑n

k=1 10(0.7)k.

What happens as n approaches infinity? The sum A(n) is called
a partial sum because it represents part of the sum that accu-
mulates if you let n approach infinity.

� Consider the sequence A(1), A(2), A(3), . . ., A(n).
Write out this sequence up to n = 10. What do you
notice?

� As n approaches infinity, this sequence of partial
sums could either converge, meaning that the terms
eventually approach some finite limit, or it could
diverge to infinity, meaning that the terms eventually
grow without bound. Which do you think is the case
here, and why?

4.2 RIEMANN SUMS

� Geometric approximation by the process of subdividing, approximating, and adding up

� Using rectangles to approximate the area under a curve

� Definition and types of Riemann sums in formal mathematical notation

Subdivide, Approximate, and Add Up

As you well know, the formula for finding the area of a circle of radius r is A = πr 2. In
particular, a circle of radius 2 units has area A = π22 = 4π . But wait a moment; where
does this area formula come from? Why is it true? Suppose for a moment that we don’t
know the area formula. How could we find, or at least approximate, the area of a circle of
radius 2? The three diagrams that follow suggest an answer.

2 2 2

In the figure at the left, a circle of radius 2 units is shown with a grid where each square
has side length 1 unit and thus area 1 square unit. We need only count up the approxi-
mate number of squares to approximate the area of the circle. The circle encloses four full
squares, and 12 partial squares. We will approximate by counting each partial square as half
of a square. This is just one of many approximation methods we could use. This method
produces the approximation

A ≈ 4(1) + 12
(

1
2

)
= 10 square units.

As we know, the actual area of the circle is 4π ≈ 12.5664, so the approximation we
found is not very accurate. If instead we use the grid in the second figure shown previously,
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we can obtain a better approximation. In this case, the circle covers 32 full squares
(
each

of area
(

1
2

)2 = 1
4

)
and 28 partial squares (which we will count as half-squares, or 1

8
square

unit each). We now have the approximation

A ≈ 32
(

1
4

)
+ 28

(
1
8

)
= 11.5 square units.

This approximation is closer to the area we expected, since the squares we used were
smaller. An even better approximation can be obtained by using the rightmost figure shown

earlier, in which there are 164 full squares of area
(

1
4

)2 = 1
16

and 60 partial squares that

we’ll count as having an area of 1
32

square units each. This gives us the even better approx-
imation

A ≈ 164
(

1
16

)
+ 60

(
1
32

)
= 12.125 square units.

We just used a grid to subdivide a circle into a number of smaller pieces, approximated
the area of each of those pieces (by counting each piece as either a full square or a half-
square), and then added up each of the small approximated areas. This process of “subdi-
viding, approximating, and adding up” is the cornerstone of the definite integral, which
we will introduce in Section 4.3. After we have learned the theory of integrals, we will
be able to prove that the area formula A = πr 2 for a circle of radius r is correct. (See
Section 5.5.)

Before moving on, notice that we could think of each one of our approximations of
the area of a circle as the output of a sort of approximation function whose inputs are the
possible grid sizes. Smaller grid sizes should produce more accurate approximations. As
the grid sizes get smaller, if those approximations somehow stabilize at a real number,
then we will say that the area of the object is the number to which the approximations
stabilize. This is yet another place where our study of limits will pay off! We will make the
ideas in this paragraph more precise in Section 4.3.

Approximating Area with Rectangles

In the rest of this chapter we will be concerned primarily with finding or approximating
the area under a curve, that is, the area enclosed between the graph of some function and
the x-axis on some interval [a, b]. To keep things simple we will begin by restricting our
attention to positive functions. For example, we might be interested in calculating the area
between the graph of the function f and the x-axis from x = 0 to x = 2 as shown here:

Area between f and the x-axis on [0, 2]

y

x
21

1

We could use a grid of squares to approximate this area, but it is more efficient to use
a set of rectangles whose heights depend on the height of the function f . For example, we
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could subdivide the interval [0, 2] into four smaller intervals of width 1
2

as shown next at

the left. Then we could use the heights of f at the leftmost points of the subintervals to
define four rectangles, as shown in the middle and rightmost figures.

Subdivide interval [0, 2]
into four subintervals

Get heights by using the
left of each subinterval

Create rectangles
to approximate area

y

x
21

1

y

x
21

1

y

x
21

1

In the third figure, the first rectangle has height f (0) and width 1
2

. Therefore, the area

of the first rectangle is f (0)
(

1
2

)
. The remaining three rectangles have heights f (0.5), f (1),

and f (1.5), respectively, all with width 1
2

. Therefore the sum of the areas of these four rect-
angles is

f (0)
(

1
2

)
+ f (0.5)

(
1
2

)
+ f (1)

(
1
2

)
+ f (1.5)

(
1
2

)
.

The function f we have been working with happens to have the unwieldy equation

f (x) = 1
80

(125x 3 − 325x 2 + 175x + 89).

Evaluating f (x) at x = 0, x = 0.5, x = 1, and x = 1.5, we see that the sum of the areas of
the four rectangles is approximately

(1.11)
(

1
2

)
+ (1.39)

(
1
2

)
+ (0.80)

(
1
2

)
+ (0.53)

(
1
2

)
≈ 1.915.

The combined area of the rectangles represents a rough approximation of the area under
the graph of f on [0, 2]. Notice that this answer is reasonable, since the region whose area
we are approximating looks to be about half of the size of the square defined by 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, a square with area 4.

Riemann Sums

We will now develop mathematical notation to formalize the method of using rectangles to
approximate the area under a curve. This formalization will eventually enable us to apply
limits so that we can find the actual area under a curve. Suppose f is a function that is
nonnegative on an interval [a, b]. Consider the area under the graph of f on this interval,
that is, the area of the region bounded above by the graph of f , below by the x-axis, and to
the left and right by the lines x = a and x = b. We will use the subdivide, approximate, and
add up process to define a Riemann sum that will help us to approximate this area.

Subdivide: First, we subdivide the interval [a, b] into n subintervals of equal width �x.
This means that �x = b − a

n
. We will give names to the subdivision points between the

subintervals as shown next at the left. Notice that x 0 = a, x 1 = a + �x, x 2 = a + 2�x, and
so on, until we end at x n = b. In general, the kth subdivision point in the subdivision x k is
equal to a + k�x.
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Subdividing [a, b] into n subintervals Height and width of kth rectangle

x0

�x

x1 x2 x3 x4 xn

a b

�x �x

. . .

f (xk*)

xk�1 xk* xk

�x

Approximate: We now need to define, for each subinterval [x k−1, x k], a rectangle that
approximates the area under the graph of f on that subinterval. We need to choose a
height for the rectangle so that the height is somehow related to the height of the graph of
f . In our previous example we chose the leftmost point of each subinterval, but in general
we can choose any point x ∗

k in [x k−1, x k]. The star in the x ∗
k is supposed to suggest that we

are choosing any point we like in that subinterval. Now we can define a rectangle over the
kth subinterval [x k−1, x k] such that the height of the rectangle is f (x ∗

k ), as shown previously
at the right.

Add up: If we choose n large enough—or equivalently, make �x small enough—then
the combined areas of the rectangles we define with the points x ∗

k will be a decent ap-
proximation for the area under the curve. It now remains only to add up the areas of these
rectangles. The area of the kth rectangle is its height times its width, or f (x ∗

k )�x, so the total
area under the curve is approximated by the sum

f (x ∗
1)�x + f (x ∗

2)�x + f (x ∗
3)�x + · · · + f (x ∗

k )�x + · · · + f (x∗
n)�x.

This sum can be expressed very compactly in sigma notation:
n∑

k=1

f (x ∗
k )�x.

Note that to find this sum, we followed a “subdivide, approximate, and add” pro-
cess. Sums of this form are called Riemann sums, named for the prolific mathematician
Bernhard Riemann, who developed the notion. The following definition summarizes the
notation that we have developed:

DEFINITION 4.5 Riemann Sums

A Riemann sum for a function f on an interval [a, b] is a sum of the form
n∑

k=1

f (x ∗
k ) �x,

where �x = b − a
n

, x k = a + k�x, and x ∗
k is some point in the interval [x k−1, x k].

As we have seen, a Riemann sum for a function f on an interval [a, b] approximates the
area under the graph of f between x = a and x = b. If f is continuous on [a, b], then
as the number of rectangles n approaches infinity, the approximation will get better and
better and approach the actual area under the graph of f on [a, b]. We will make this idea
mathematically precise in Section 4.3.

It is possible to consider Riemann sums for which the interval [a, b] is partitioned into
n subintervals by points a = x 0, x 1, x 2, . . . , x n−1, x n = b that are not equal distances apart.
In such subdivisions we would have a different width (�x)k for each subinterval [x k−1, x k].
This more general theory of Riemann sums defined with arbitrary partitions is important
in later mathematics courses, but is not needed for our study of calculus here.
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Signed Area

When the graph of a function lies below the x-axis, we can still use rectangles to approx-
imate area. For example, consider the following Riemann sum with n = 4 rectangles that
approximates the area of the region between the graph of f (x) = x 2 − 1 and the x-axis on
[0, 1]:

A Riemann sum with n = 4 for
f (x) = x 2 − 1 on [0, 1]

y

x

�1

1.000.750.500.25

Note that the “height” of each of the rectangles in this Riemann sum is negative. For
example, the first rectangle has a height of f (0) = 02 − 1 = −1 and is counted as having an
“area” of −0.25. The left sum in this case is the sum of the areas of these four “negative”
rectangles, −0.25 − 0.234375 − 0.1875 − 0.109375 = −0.78125.

Since, by construction, Riemann sums automatically count the area between a negative
function and the x-axis as a negative number and the area between a positive function and
the x-axis as a positive number, we will say that Riemann sums measure signed area, also
known as net area. For example, if f is the following function graphed on [0, 5], then the
right sum, with 25 rectangles, will have some rectangles counting area positively and some
rectangles counting area negatively, depending on whether f is above or below the x-axis:

Area is counted positively on [0, 2] and [4, 5], and negatively on [2, 4]

y

x
54321

10

5

�5

Types of Riemann Sums

Depending on how we choose the point x ∗
k in each subinterval [x k−1, x k], we get different

types of Riemann sums. For example, we could choose each x ∗
k to be the leftmost point

of the kth subinterval, as shown in the first graph that follows; this is called a left sum.
Alternatively, we could construct a right sum by choosing x ∗

k to be the rightmost point of
the kth subinterval, or a midpoint sum by choosing x ∗

k to be the midpoint, as shown in the
following middle and rightmost graphs, respectively:
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Leftmost point of each
subinterval determines heights

Rightmost point of each
subinterval determines heights

Midpoint of each
subinterval determines heights

y

x
21

1

y

x
21

1

y

x
21

1

Algebraically, these three ways of choosing x ∗
k from each subinterval [x k−1, x k] yield the

following three types of Riemann sums:

DEFINITION 4.6 Left, Right, and Midpoint Sums

Suppose f is a function defined on the interval [a, b]. Given a positive integer n, let
�x = b − a

n
and x k = a + k�x. Then

(a) The n-rectangle left sum for f on [a, b] is
∑n

k=1 f (x k−1) �x.

(b) The n-rectangle right sum for f on [a, b] is
∑n

k=1 f (x k) �x.

(c) The n-rectangle midpoint sum for f on [a, b] is
∑n

k=1 f
( xk−1 + xk

2

)
�x.

Note that given any interval [a, b] and number n of rectangles, we can write �x and x k
in terms of a, b, and n. In practice, we will always need to use the explicit expressions
�x = b − a

n
and x k = a + k�x (as well as using the definition of the function f ) when

evaluating a Riemann sum. For example, the right sum expressed earlier is equal to
n∑

k=1

f
(

a + k
(

b − a
n

)) (
b − a

n

)
.

We can also set up Riemann sums that we can guarantee will be over-approximations
or under-approximations of the actual area under the graph of a continuous function. The
first figure that follows shows the upper sum, where each x ∗

k is chosen so that f (x ∗
k ) is the

maximum value of f on [x k−1, x k]. The upper sum is always greater than or equal to the
actual signed area. Similarly, in the lower sum shown in the second figure we choose x ∗

k
so that f (x ∗

k ) is the minimum value of f on [x k−1, x k]. The lower sum is always less than or
equal to the actual signed area.

Maximum value of f on each
subinterval determines heights

Minimum value of f on each
subinterval determines heights

y

x
21

1

y

x
21

1
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Algebraically, we can express these two types of Riemann sums as follows:

DEFINITION 4.7 Upper and Lower Sums

Suppose f is a function that is continuous on the interval [a, b]. Given a positive integer n,
let �x = b − a

n
and x k = a + k�x. Then

(a) The n-rectangle upper sum for f on [a, b] is
∑n

k=1 f (Mk) �x, where each Mk is
chosen so that f (Mk) is the maximum value of f on [x k−1, x k].

(b) The n-rectangle lower sum for f on [a, b] is
∑n

k=1 f (mk) �x, where each mk is chosen
so that f (mk) is the minimum value of f on [x k−1, x k].

The reason we require that f be continuous on [a, b] is that this is necessary in order for
the Extreme Value Theorem to guarantee that f attains maximum and minimum values on
each subinterval.

The upper sum and the lower sum can be more complicated to calculate than the left,
right, or midpoint sums, but they can be useful if we wish to not only approximate the
area under a curve, but get a bound on how much error is involved in our approximation.
For example, if an upper sum approximation for the area under a curve was calculated to
be 4.4 and a lower sum approximation for the same area was calculated to be 4.1, then
we would know that the actual area was in the interval [4.1, 4.4]. In particular, this would
mean that both the upper sum and the lower sum were within 0.3 square unit of the actual
area under the curve.

We also don’t necessarily have to use rectangles to approximate the area under a curve.
For example, we could use trapezoids instead, as shown here:

Trapezoids on each subinterval
approximate area under a curve

y

x
21

1

The trapezoid sum uses a trapezoid with width �x, left height f (x k−1), and right height
f (x k) to approximate the slice of area in the subinterval [x k−1, x k]. Recall that the area of a

trapezoid with base b and heights h1 and h2 is
(

h1 + h2

2

)
b. This formula for the area suggests

the following algebraic definition:

DEFINITION 4.8 Trapezoid Sums

Suppose f is a function defined on the interval [a, b]. Given a positive integer n, let
�x = b − a

n
and x k = a + k�x. Then

The n-rectangle trapezoid sum for f on [a, b] is
n∑

k=1

f (xk−1)+f (xk)
2

�x.
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TECHNICAL POINT To be honest, in the form of Definition 4.8, the trapezoid sum is not
technically a Riemann sum for f ; recall that the terms in a Riemann sum must be of the
form f (x ∗

k )�x for some x ∗
k ∈ [x k−1, x k]. However, if f is a continuous function, then in each

subinterval we can use the Intermediate Value Theorem to find some x ∗
k in for which f (x ∗

k )
is equal to the average of f (x k−1) and f (x k). This means that when f is continuous, the
trapezoid sum really is a Riemann sum “in disguise.”

Examples and Explorations

EXAMPLE 1 Approximating area with a right sum

Approximate the area between the graph of f (x) = x 2 − 2x + 2 and the x-axis from x = 1
to x = 3, using a right sum with four rectangles.

SOLUTION

We begin by subdividing the interval [1, 3] into four subintervals: [1, 1.5], [1.5, 2], [2, 2.5],
and [2.5, 3], each of width 1

2
. The rightmost points of these four subintervals are, respec-

tively, 1.5, 2, 2.5, and 3. The values of f at these points will be the heights of our four
rectangles, as shown here:

Right sum with four rectangles

31 2

6

5

4

3

2

1

y

x

It is now a simple matter to add up the areas of the four rectangles:

Area ≈ f (1.5)
(

1
2

)
+ f (2)

(
1
2

)
+ f (2.5)

(
1
2

)
+ f (3)

(
1
2

)

= (1.25)
(

1
2

)
+ (2)

(
1
2

)
+ (3.25)

(
1
2

)
+ (5)

(
1
2

)
← plug into f (x) = x 2 − 2x + 2

= 5.75. �

EXAMPLE 2 Understanding the notation used in Riemann sums

Looking back at Example 1, identify each of the following:

a, b; n; �x; x 0, x 1, x 2, x 3, x4; x ∗
1, x ∗

2, x ∗
3, x ∗

4.

SOLUTION

We have a = 1, b = 3, n = 4, and �x = 1
2

. The subdivision points are x 0 = a = 1, x 1 = 1.5,

x 2 = 2, x 3 = 2.5, and x4 = b = 3. The chosen points in each subinterval [x k−1, x k] are
taken to be the rightmost points: x ∗

1 = 1.5, x ∗
2 = 2, x ∗

3 = 2.5, and x ∗
4 = 3. Notice that since

this is a right sum, each x ∗
k is just equal to x k. �
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EXAMPLE 3 Expressing a right sum in sigma notation

Consider again the area between the graph of f (x) = x 2 − 2x + 2 and the x-axis from x = 1
to x = 3. Express the n-rectangle right-sum approximation in sigma notation. Simplify until
k and n are the only variables that appear in your expression. Then use your expression to
calculate the right-sum approximations with n = 4 and n = 8 rectangles.

SOLUTION

We first subdivide [1, 3] into n subintervals, each of width �x = b − a
n

= 3 − 1
n

= 2
n

. The

subdivision points x k are of the form x k = a + k�x = 1 + 2k
n

. Since we are constructing a

right sum, in each subinterval [x k−1, x k] we will choose x ∗
k to be the rightmost point x k. The

kth rectangle in our approximation will have height f (x ∗
k ) and width �x. Using the notation

we have developed, we find that the sum of the areas of the n rectangles is
n∑

k=1

f (x ∗
k )�x =

n∑
k=1

f
(

1 + 2k
n

) (
2
n

)

=
n∑

k=1

((
1 + 2k

n

)2
− 2

(
1 + 2k

n

)
+ 2

) (
2
n

)
=

n∑
k=1

(
1 + 4k 2

n2

) (
2
n

)
.

Substituting n = 4 into this expression and then writing out the sum gives us the same
four-rectangle right-sum approximation that we found in Example 1:

4∑
k=1

(
1 + 4k 2

42

) (
2
4

)
=

(
1 + 4(1)2

16

) (
1
2

)
+

(
1 + 4(2)2

16

) (
1
2

)

+
(

1 + 4(3)2

16

) (
1
2

)
+

(
1 + 4(4)2

16

) (
1
2

)

= (1.25)
(

1
2

)
+ (2)

(
1
2

)
+ (3.25)

(
1
2

)
+ (5)

(
1
2

)

= 5.75.

Similarly, we can substitute n = 8 and then expand the sum to calculate the eight-rectangle
right-sum approximation:

8∑
k=1

(
1 + 4k 2

(8)2

) (
2
8

)
=

(
1 + 4(1)2

64

) (
1
4

)
+

(
1 + 4(2)2

64

) (
1
4

)
+

(
1 + 4(3)2

64

) (
1
4

)

+
(

1 + 4(4)2

64

) (
1
4

)
+

(
1 + 4(5)2

64

) (
1
4

)
+

(
1 + 4(6)2

64

) (
1
4

)

+
(

1 + 4(7)2

64

) (
1
4

)
+

(
1 + 4(8)2

64

) (
1
4

)

= (1.0625)
(

1
4

)
+ (1.25)

(
1
4

)
+ (1.5625)

(
1
4

)
+ (2)

(
1
4

)

+ (2.5625)
(

1
4

)
+ (3.25)

(
1
4

)
+ (4.0625)

(
1
4

)
+ (5)

(
1
4

)

= 5.1875.

Notice that sigma notation does not in general make it easier to calculate the areas of the
rectangles in our approximations. However, the general n-rectangle sigma notation for a
Riemann sum will be very important when we discuss the theory of definite integrals in
the next section. It would also be very useful if you wanted to write a computer program to
approximate the area under a curve, especially with a large number of rectangles. �

EXAMPLE 4 Using the left, midpoint, and trapezoid sums to approximate area

Approximate the area between the graph of f (x) = x 2 − 2x + 2 and the x-axis on [1, 3],
using n = 4 subintervals with (a) the left sum; (b) the midpoint sum; and (c) the trapezoid
sum.
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SOLUTION

(a) As in Example 1, we have �x = 1
2

and x k = 1 + k�x = 1 + k
2

. For a left sum we

choose x ∗
k to be the leftmost point in the interval [x k−1, x k], and therefore we choose

x ∗
k = x k−1 = 1 + k − 1

2
. The left sum with four rectangles is therefore equal to

4∑
k=1

f
(

1 + k − 1
2

) (
1
2

)
= f (1)

(
1
2

)
+ f (1.5)

(
1
2

)
+ f (2)

(
1
2

)
+ f (2.5)

(
1
2

)
= 3.75.

(b) For a midpoint sum we choose x ∗
k to be the midpoint in the interval [x k−1, x k], and

therefore we choose x ∗
k = xk−1 + x k

2
= (1 + k−1

2 ) + (1 + k
2 )

2
= 3 + 2k

4
. The midpoint sum with

four rectangles is therefore equal to
4∑

k=1

f
(

3 + 2k
4

) (
1
2

)
= f (1.25)

(
1
2

)
+ f (1.75)

(
1
2

)
+ f (2.25)

(
1
2

)
+ f (2.75)

(
1
2

)
= 4.625.

(c) For the trapezoid sum we do something completely different and use the heights at
both x k−1 = 1 + k − 1

2
and x k = 1 + k

2
to calculate the area of the kth trapezoid. The

trapezoid sum with four trapezoids is equal to

4∑
k=1

f
(

1 + k − 1
2

)
+ f

(
1 + k

2

)
2

(
1
2

)
= f (1) + f (1.5)

2

(
1
2

)
+ f (1.5) + f (2)

2

(
1
2

)

+ f (2) + f (2.5)
2

(
1
2

)
+ f (2.5) + f (3)

2

(
1
2

)
= 4.75.

The three figures that follow show the three area approximations we just calculated.
Which one do you think is the most accurate, and why? (See Exercise 5.)

Left sum Midpoint sum Trapezoid sum

31 2

6

5

4

3

2

1

y

x
31 2

6

5

4

3

2

1

y

x
31 2

6

5

4

3

2

1

y

x

�

TEST YOUR? UNDERSTANDING
� Recalling the discussion of the circle at the start of this section, can you think of a dif-

ferent way of approximating the area of the circle?

� The Riemann sums presented in this section are not the only sums we could use to
approximate the area under a curve. For example, we could use a “one-third” sum,
which would define x ∗

k to be the point one-third of the way across the interval [x k−1, x k].
How would you write x ∗

k in terms of x k−1 and x k for the one-third sum? What other
methods for choosing x ∗

k can you think of?

� Both the midpoint sum and the trapezoid sum use an average somewhere in their for-
mula. What is the average that is being taken in each case?

� Can you label x 2, x ∗
2, and f (x ∗

2) in each of the Riemann sum figures in this section?

� In general, the left sum will always underestimate the area under an increasing function
and overestimate the area under a decreasing function; why? What about the right
sum?
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EXERCISES 4.2

Thinking Back

Simple area formulas: Give formulas for the areas of each of
the following geometric figures.

� A circle of radius r

� A semicircle of radius r

� A right triangle with legs of lengths a and b

� A triangle with base b and altitude h

� A rectangle with sides of lengths w and l

� A trapezoid with width w and heights h1 and h2

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The n-rectangle lower sum for f on [a, b]
is always equal to the corresponding right sum.

(b) True or False: If f is positive and increasing on [a, b],
then any left sum for f on [a, b] will be an under-
approximation.

(c) True or False: If f (a) > f (b), then any right-sum
approximation for f on [a, b] will be an under-
approximation.

(d) True or False: A midpoint sum is always a better
approximation than a left sum.

(e) True or False: If f is positive and concave up on all of
[a, b], then any left-sum approximation for f on [a, b]
will be an under-approximation.

(f) True or False: If f is positive and concave up on all of
[a, b], then any trapezoid sum approximation for f on
[a, b] will be an over-approximation.

(g) True or False: An upper sum approximation for f on
[a, b] can never be an under-approximation.

(h) True or False: For every function f on [a, b], the left
sum is always a better approximation with 10 rectan-
gles than with 5 rectangles.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A graph of a function f on an interval [a, b] for which
the left sum with four rectangles finds the exact area
under the graph of f from x = a to x = b.

(b) A graph of a function f on an interval [a, b] for which
all trapezoid sums (regardless of the size of n) will find
the exact area under the graph of f from x = a to x = b.

(c) A graph of a function f on an interval [a, b] for
which the upper sum with four rectangles is a much
better approximation than the lower sum with four
rectangles.

3. In the reading we used objects whose area we knew
(squares) to approximate the area of a more complicated
object (a circle). The same kind of technique can be used
to approximate the area of the blob pictured here.

(a) Given that each of the squares in the grid has a side

length of
1
2

square unit, approximate the area of the

blob.
(b) How could you get a better approximation?

4. Consider the area between the graph of a function f and
the x-axis from x = 0 to x = 2, as shown in each of the
two figures that follow.

(a) Use the grid on the left and whatever method you
like to approximate this area. Then use the grid on the
right and the same method to make another approxi-
mation. Which approximation is likely more accurate,
and why?

(b) Use the grid at the left to get an upper bound on the
area of the region. In other words, make an approxi-
mation that you know is greater than the actual area.
Repeat for the grid at the right.

(c) Use the grid at the left to get a lower bound on
the area of the region. In other words, make an ap-
proximation that you know is less than the actual area.
Repeat for the grid at the right.

(d) Use your answers to parts (a)–(c) to come up with
your best possible guess for the actual area under the
curve.

1

y

x
1

1

y

x
1
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5. In Examples 1 and 4 we found four different approxima-
tions for the area between the graph of f (x) = x 2 − 2x + 2
and the x-axis on [1, 3].

(a) Based on the pictures of these approximations given
in the reading, which are over-approximations?
Which are under-approximations? Which approxi-
mation looks like it might be closest to the actual area
under the curve?

(b) The actual area (which we won’t know how to cal-
culate until Section 4.5) under the graph of f (x) =
x 2 − 2x + 2 on [1, 3] is equal to

14
3

≈ 4.6667. Given
this information, which of the approximations in
Examples 1 and 4 was the most accurate? Was that
what you expected?

6. Do you think that one type of Riemann sum (right, left,
midpoint, upper, lower, trapezoid) is usually more accu-
rate than the others? Why or why not?

7. Suppose that the left-sum approximation with eight rect-
angles for the area between the graph of a function f and
the x-axis from x = a to x = b is equal to 8.2 and that the
corresponding right sum approximation is equal to 7.5.

(a) What is the corresponding trapezoid sum approxima-
tion for this area?

(b) Is the corresponding midpoint sum for this area nec-
essarily between 7.5 and 8.2? If so, explain why. If not,
sketch an example of a function f on an interval [a, b]
whose midpoint sum is not between the left sum and
the right sum.

(c) What can you say about the corresponding upper
sum for this area? The corresponding lower sum?

(d) Is it necessarily true that f is decreasing on the en-
tire interval [a, b]? If so, explain why. If not, sketch an
counterexample in which the left sum is greater than
the right sum but f is not decreasing on all of [a, b].

(e) Could the function f be increasing on the entire inter-
val [a, b]? If not, explain why not. If so, sketch a possi-
ble example in which the left sum is greater than the
right sum and f is increasing on all of [a, b].

8. In the reading we mentioned that the trapezoid sum is
the average of the left sum and the right sum. Use the
solutions of Examples 1 and 4 to show that for f (x) =
x 2 − 2x + 2, [a, b] = [1, 3], and n = 4, the trapezoid sum
is indeed the average of the left sum and the right sum.

9. Explain why the upper sum approximation for the area
between the graph of a function f and the x-axis on [a, b]
must always be larger than or equal to any other type of
Riemann sum approximation with the same number n of
rectangles.

10. Consider the area between the graph of a positive func-
tion f and the x-axis on an interval [a, b]. Explain why the

upper sum approximation for this area with n = 8 boxes
must be smaller than or equal to the upper sum approx-
imation with n = 4 boxes. It may help to sketch some
examples.

11. Suppose you wanted to calculate the upper sum approx-
imation for the area between the graph of f (x) = (x − 1)2

and the x-axis from x = 0 to x = 2. List all of the values
M k used for (a) n = 2 rectangles, (b) n = 3 rectangles, and
(c) n = 4 rectangles. Sketch graphs of your rectangles to
illustrate your answers.

12. Repeat Exercise 11, using the lower sum approximation
and the values mk.

13. Suppose v(t) is the velocity of a particle moving on a
straight path, where v is measured in meters per second
and t is measured in seconds. The particle starts moving
at time t0 and moves for �t seconds.

(a) What are the units of v(t0)�t?
(b) Geometrically, what does v(t0)�t represent?
(c) What do these questions have to do with this section?

14. Explain in no more than three sentences how we can
approximate the derivative of a function f at a point c if
we know the graph of f . Then, in no more than three
additional sentences, discuss how the method for ap-
proximating area is similar to, and how is it different from,
approximating the derivative. (Both descriptions should
involve multiple approximations, each better than the
last.)

15. Explain why the sum
∑20

k=1 f
( − 3 + k

2

)
(0.25) can’t be a

right sum for f on [a, b] = [−3, 2].

16. Explain why the sum
∑100

k=1 f (2 + 0.1(k − 1))(0.1) can’t be

a left sum for f on [a, b] = [2, 5].

Each of the sums in Exercises 17–20 approximates the area be-
tween the graph of some function f and the x-axis from x = a
to x = b. Do some “reverse engineering” to determine the
type of approximation (left sum, midpoint sum, etc.) and iden-
tify f (x), a, b, n, �x, and x k. Then sketch the approximation de-
scribed.

17.
4∑

k=1

(
1 + k

2

)2 (
1
2

)

18.
2∑

k=0

ln
(

2 + k
3

) (
1
3

)

19.
100∑
k=1

sin(0.05(k − 1)) + sin(0.05k)
2

(0.05)

20.
9∑

k=1

√(
1 + k − 1

3

) + (
1 + k

3

)
2

(
1
3

)

Skills

Your calculator should be able to approximate the area be-
tween a graph and the x-axis. Determine how to do this on
your particular calculator, and then, in Exercises 21–26, use the
method to approximate the signed area between the graph of
each function f and the x-axis on the given interval [a, b].

21. f (x) = √
x − 1, [a, b] = [2, 3]

22. f (x) = x 2, [a, b] = [0, 3]

23. f (x) = e x, [a, b] = [1, 4]

24. f (x) = sin x, [a, b] = [0, π ]
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25. f (x) = (x − 2)2 + 1, [a, b] = [1, 3]

26. f (x) = 1 − 2 x, [a, b] = [−3, 1]

For each function f and interval [a, b] in Exercises 27–33, use
the given approximation method to approximate the signed
area between the graph of f and the x-axis on [a, b]. Deter-
mine whether each of your approximations is likely to be an
over-approximation or an under-approximation of the actual
area.

27. f (x) = x 2, [a, b] = [0, 3], left sum with
(a) n = 3 (b) n = 6

28. f (x) = sin x, [a, b] = [0, π ], n = 3, with
(a) trapezoid sum (b) upper sum

29. f (x) = √
x − 1, [a, b] = [2, 3], n = 4, with

(a) left sum (b) right sum

30. f (x) = 1 − 2 x, [a, b] = [−3, 1], n = 8, with
(a) left sum (b) right sum

31. f (x) = e x, [a, b] = [1, 4], n = 6, with
(a) midpoint sum (b) trapezoid sum

32. f (x) = 9 − x 2, [a, b] = [0, 5], n = 5, with
(a) midpoint sum (b) lower sum

33. f (x) = (x − 2)2 + 1, [a, b] = [1, 3], lower sum with
(a) n = 2 (b) n = 3 (c) n = 4

For each function f and interval [a, b] in Exercises 34–38, it is
possible to find the exact signed area between the graph of f
and the x-axis on [a, b] geometrically by using the areas of cir-
cles, triangles, and rectangles. Find this exact area, and then
calculate the left, right, midpoint, upper, lower, and trapezoid
sums with n = 4. Which approximation rule is most accurate?

34. f (x) = 5, [a, b] = [−2, 2]

35. f (x) = 3x + 1, [a, b] = [3, 5]

36. f (x) = 4 − x, [a, b] = [0, 6]

37. f (x) = √
1 − x 2, [a, b] = [−1, 1]

38. f (x) = 3 + √
4 − x 2, [a, b] = [−2, 2]

In Exercises 39–44, write out the sigma notation for the
Riemann sum described in such a way that the only letter
which appears in the general term of the sum is k. Don’t calcu-
late the value of the sum; just write it down in sigma notation.

39. f (x) = √
x − 1, [a, b] = [2, 3], right sum, n = 4.

40. f (x) = x 2, [a, b] = [0, 3], left sum, n = 3.

41. f (x) = e x, [a, b] = [1, 4], midpoint sum, n = 6.

42. f (x) = ln x, [a, b] = [2, 5], left sum, n = 100.

43. f (x) = sin x, [a, b] = [0, π ], trapezoid sum, n = 4.

44. f (x) = √
1 − x 2, [a, b] = [−1, 1], midpoint sum, n = 20.

Applications
45. Suppose that, as in Section 4.1, you drive in a car for

40 seconds with velocity v(t) = −0.22t 2 + 8.8t feet per
second, as shown in the graph that follows. If your total
distance travelled is equal to the area under the velocity
curve on [0, 40], then find lower and upper bounds for
your distance travelled by using

(a) the lower sum with n = 4 rectangles;
(b) the upper sum with n = 4 rectangles.

Velocity of car
v(t) = −0.22t 2 + 8.8t

v

88

t
40302010

46. Repeat Exercise 45, using

(a) the midpoint sum with n = 4 rectangles;
(b) the trapezoid sum with n = 4 trapezoids.
If the exact distance travelled is just over 2,346 feet, then
which of these approximations is the most accurate?

47. Dad’s casserole surprise is hot out of the oven, and its
temperature after t minutes is given by the function T(t),

measured in degrees. The casserole cools by changing at
a rate of T ′(t) = −15e−0.5t degrees per minute.

Rate of change of casserole temperature
T ′(t) = −15e−0.5t

T

�5

�10

�15

t
1 2 3 4 5

(a) Discuss what the graph of T ′(t) says about the behav-
ior of the casserole’s temperature after the casserole
is taken out of the oven.

(b) Just as we can approximate distance travelled by
approximating the area under the corresponding
velocity curve, we can approximate the change in
temperature T of the casserole by approximating the
area under the graph of T ′. Why?

(c) Estimate the change in temperature of the casserole
over the first 5 minutes it is out of the oven, using any
Riemann sum you like, with n = 10.

48. The National Oceanic and Atmospheric Administration
tabulates flow data from many American rivers. From
this data they compute and plot median annual flows.
The flows are given by functions whose closed form is
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not known, but for which we can read off values for any
day of the year we like. The following table describes the
flow f (t) in cubic feet per second for Idaho’s Lochsa River,
t days after January 1:

t 0 60 120 180 240 300 360
f (t) 700 1000 6300 4000 500 650 700

(a) Keeping in mind that the data are periodic with
period 365, compute the left Riemann sum for the
function that these data have sampled.

(b) What is the relation between the numbers you
computed and the total amount of water that
flows down the Lochsa annually? Estimate the total
amount of water that flows down the Lochsa each
year.

(c) Most of the flow down the river takes place from April
to July. We can get a better idea of the total flow if we
add a few data points. Recompute the left Riemann
sum, adding the data points (90, 2100), (150, 11000),
and (210, 1000).

(d) What would you need to do to get an even better
estimate of the total flow?

49. To approximate the flow f (t) of the Lochsa River in its
flood stage, we can use a function of the form

g(t) = c1 + c2

(
sin

(
(t − 90)π

105

)
− 2

π

)
,

where the coefficients c1 and c2 are found by evaluating
the following two integrals:

c1 = 1
105

∫ 195

90
f (t) dt,

c2 = 1
9.95

∫ 195

90
f (t)

(
sin

(
(t − 90)π

105

)
− 2

π

)
dt.

(a) Use the data points (t, f (t)) = (90, 2100), (120, 6300),
(150, 11000), and (180, 4000), and left Riemann sums
to approximate the values of the integrals for c1
and c2.

(b) Now that you have found c1 and c2, plot the resulting
function g(t) against the data points from Exercise 48.

Proofs

50. Use Definition 4.7 to prove that for any function f and
interval [a, b], the upper sum with n rectangles is greater
than or equal to the lower sum with n rectangles.

51. Use Definition 4.6 and the definition of increasing to prove
that if a function f is positive and increasing on [a, b], then
the left sum with n rectangles is less than or equal to the
right sum with n rectangles.

52. Use Definitions 4.6 and 4.8 to prove that for any function
f and interval [a, b], the trapezoid sum with n trapezoids
is always the average of the left sum and the right sum
with n rectangles.

53. Use Definition 4.8 to prove that if a function f is positive
and concave up on [a, b], then the trapezoid sum with
n trapezoids is an always an over-approximation for the
actual area.

Thinking Forward

Approximating the length of a curve: Suppose you want to
calculate the driving distance between New York City and
Dallas, Texas.

� Print out a highway map of the United States, and
highlight a route, snaking along with the paths of the
major highways.

� How could we use the method of “subdivide, approx-
imate, and add up” to approximate this driving dis-
tance?

� Make an actual approximation of the driving distance
from New York City to Dallas, Texas, using the route
and method you just described.

� How accurate do you think your approximation is? Is
it an over-approximation or an under-approximation?

Limits of Riemann sums: In the reading we saw that the
area between the graph of f (x) = x 2 − 2x + 2 and the
x-axis on [1, 3] could be approximated with the right sum∑n

k=1

(
1 + 4k2

n2

) ( 2
n

)
. Let A(n) be equal to this n-rectangle

right-sum approximation. The following table describes
various values of A(n):

n 10 100 1000 10, 000
A(n) 5.08 4.7068 4.6707 4.66707

� Describe the meaning of the entries in this table, and
verify that the entry for A(10) is correct.

� Use the table to make a graph of A(n), and discuss
what happens to this graph as n approaches infinity.

� What does your graph tell you about the right-sum
approximations of the area under the graph of f as n
approaches infinity?

Approximations and error: In Section 4.5 we will see that
definite integrals can be computed by taking differences of
antiderivatives; in particular, the Fundamental Theorem of
Calculus will reveal that if f is continuous on [a, b], then∫ b

a f (x) dx = F(b) − F(a), where F is any antiderivative of f .
Armed with this fact, we can check the exact error of Riemann
sum approximations for integrals of functions that we can an-
tidifferentiate.

� Use the given antiderivative fact to find the exact

value of
∫ 4

1
1
x

dx. (Hint: What is an antiderivative of
1
x

?
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In other words, what is a function F whose derivative is

f (x) = 1
x

?)

� What is the actual error that results from a right-sum

approximation with n = 4 for
∫ 4

1
1
x

dx?

� By trial and error with smaller values of n, find
the smallest value of n for which a right sum will

approximate
∫ 4

1
1
x

dx to within 0.25.

� Repeat the preceding steps, but with the midpoint
sum in place of the right sum.

4.3 DEFINITE INTEGRALS

� The exact area under the graph of a function f on [a,b]

� Defining the definite integral as a limit of Riemann sums

� Properties of the definite integral

Defining the Area Under a Curve

We have seen how to approximate areas with Riemann sums, but how do we find the exact
area between the graph of a function f and the x-axis on an interval [a, b]? Consider the area
of the region bounded by the curve f (x) = x 2, the x-axis, and the line x = 1 as shown here:

Area under f (x) = x 2 on [0, 1]

y

x
1

1

We don’t yet have a rigorous mathematical method for finding this area exactly. Using
Riemann sums, we can get approximations for the area. For example, the three figures that
follow illustrate upper-sum approximations using n = 10, n = 50, and n = 100. Notice that
in this case, since f (x) = x 2 is increasing on [0, 1], the upper sum happens to be the same
as the right sum.

Upper sum with n = 10 Upper sum with n = 50 Upper sum with n = 100

1.000.750.500.25

1.00

0.75

0.50

0.25

y

x
1.000.750.500.25

1.00

0.75

0.50

0.25

y

x
1.000.750.500.25

1.00

0.75

0.50

0.25

y

x

As the number n of rectangles gets larger, the upper sum approximation gets closer to the
area under f (x) = x 2 on [0, 1]. The same thing happens if we consider any other Riemann
sum, say, the lower sum, as pictured here for n = 10, n = 50, and n = 100:
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Lower sum with n = 10 Lower sum with n = 50 Lower sum with n = 100

1.000.750.500.25

1.00

0.75

0.50

0.25

y

x
1.000.750.500.25

1.00

0.75

0.50

0.25

y

x

1.00

0.75

0.50

0.25

y

1.000.750.500.25
x

If a sequence of Riemann sum approximations converges to a real number when we
take the limit as n approaches infinity, then we call this number the “area” under the graph.
Notice that up until this point we did not actually have a truly rigorous definition for even
the concept of such an area! The following definition describes this limit and the notation
we will use to refer to it.

DEFINITION 4.9 The Definite Integral of a Function on an Interval

Let f be a function defined on an interval [a, b]. The definite integral of f from x = a to
x = b is defined to be the number∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (x ∗
k ) �x,

if this limit exists, where �x = b − a
n

, x k = a + k �x, and x ∗
k is any choice of point in

[x k−1, x k].

The “
∫

” symbol should remind you of the letter “S” for “Sum.” A Riemann sum describes
a discrete sum of areas of rectangles, while in a loose sense an integral represents a contin-
uous sum of the areas of infinitely many rectangles, each of which is infinitely thin. The a
and b below and above the integral symbol are called the limits of integration, where here
“limits” is used in the sense of “ends,” not in the sense of limits of functions. It may help
you remember this definition if you think of it in the following way: As n → ∞, the finite
sum

(∑)
of n things becomes an integral

(∫ )
that accumulates everything from x = a to

x = b. The discrete list of values f (x ∗
k ) becomes the continuous function f (x), and the small

change �x becomes an “infinitesimal” change dx.

CAUTION The “dx” portion of the definite integral is not optional; it must always be included with
the notation of the definite integral. Just as

d
dx

( )

is how we denote “the derivative of ,” the notation∫ b

a
dx

is how we will denote “the definite integral of on [a, b],” which represents “the
signed area between the graph of and the x-axis on [a, b].” Note that in both
cases there is the presence of a “dx” that represents the result of a limiting process
on a change �x in the independent variable with respect to which the differentiation or
integration/accumulation/area process is taking place.
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Consider again the example with f (x) = x 2 and [a, b] = [0, 1]. For any given n, we have

�x = b − a
n

= 1
n

and x k = a + k�x = k
n
.

We will use the right sum and choose each x ∗
k to be the rightmost point x k = k

n
of the

subinterval [x k−1, x k]. When we take the limit as the number n of subdivisions approaches
infinity, we obtain ∫ 1

0
x 2 dx = lim

n→∞

n∑
k=1

(
k
n

)2 (
1
n

)
.

If, for a given function f and interval [a, b], the limit defining the integral exists for
any choice of points x ∗

k , then we say that f is integrable on [a, b]. It turns out that
every continuous function is integrable on [a, b]. (The proof of this theorem is beyond the
scope of the text and will not be presented here.) However, some discontinuous functions
are still integrable; for example, functions with removable or jump discontinuities are still
integrable, but some functions with vertical asymptotes may not be. You will investigate
various examples of discontinuous functions in Exercises 19 and 20. In Section 5.6 you will
see the somewhat surprising spectacle of certain functions that have vertical asymptotes
and yet are integrable.

Properties of Definite Integrals

Recall from the previous section that Riemann sums measure signed areas: Areas of regions
above the x-axis are counted positively, and areas of regions below the x-axis are counted
negatively. Because definite integrals are defined to be limits of Riemann sums, this means
that definite integrals also automatically count signed areas:

THEOREM 4.10 Definite Integrals Measure Signed Areas

Definite integrals count areas above the x-axis positively and areas below the x-axis
negatively. Algebraically, this means that

(a) If f (x) ≥ 0 on all of an interval [a, b], then
∫ b

a f (x) dx ≥ 0.

(b) If f (x) ≤ 0 on all of an interval [c, d], then
∫ d

c f (x) dx ≤ 0.

For example, if f is the function graphed next, then the definite integral
∫ 5

0 f (x) dx will count
the areas of the regions marked A and C positively and count the area of the region marked
B negatively:

∫ 5

0
f (x) dx measures the signed area A − B + C

y

x
54321

10

5

�5

�

�

�

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

4.3 Definite Integrals 345

The fact that definite integrals are defined in terms of sums and limits allows us to state
many nice properties of definite integrals. In particular, because definite integrals are just
limits of sums, they behave well with sums and constant multiples, as follows:

THEOREM 4.11 Sum and Constant-Multiple Rules for Definite Integrals

For any functions f and g that are integrable on [a, b] and any real number k,

(a)
∫ b

a
( f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx.

(b)
∫ b

a
kf (x) dx = k

∫ b

a
f (x) dx.

Before we present a formal proof of this theorem, let’s think about the first part of it graph-
ically. The first graph that follows shows a left sum for the area between the graph of
f (x) = x 2 and the x-axis on [0, 2]. The second graph shows a left sum (with the same
n) for the area between g(x) = x and the x-axis on the same interval. In the third graph we
see that the sum of these two left sums is itself a left sum for the graph of f (x)+g(x) = x 2+ x
on [0, 2]. As n approaches infinity, the area of the beige rectangles will approach the area
under f , the area of the blue rectangles will approach the area under g, and the sum of the
areas of the beige and blue rectangles will approach the area under f + g.

Left sum for
f (x) = x 2

Left sum for
g(x) = x

Left sum for
f (x) + g(x) = x 2 + x

21

6

5

4

3

2

1

y

x
21

6

5

4

3

2

1

y

x
21

6

5

4

3

2

1

y

x

The key to the algebraic proof of Theorem 4.11 is that sums and constant multiples
commute with limits and with Riemann sums. Since the definite integral is a limit of Riemann
sums, it must be that sums and constant multiples commute with definite integrals.

Proof. Given a positive integer n, define �x = b − a
n

and x k = a + k�x, and let x ∗
k be any point

in the subinterval [x k−1, x k]. Then by the definition of the definite integral, we have
∫ b

a
( f (x) + g(x)) dx = lim

n→∞

n∑
k=1

( f (x ∗
k ) + g(x ∗

k )) �x ← definite integral definition

= lim
n→∞

n∑
k=1

( f (x ∗
k ) �x + g(x ∗

k ) �x) ← algebra

= lim
n→∞

( n∑
k=1

f (x ∗
k ) �x +

n∑
k=1

g(x ∗
k ) �x

)
← split into two sums

= lim
n→∞

n∑
k=1

f (x ∗
k ) �x + lim

n→∞

n∑
k=1

g(x ∗
k ) �x ← sum rule for limits

=
∫ b

a
f (x) dx +

∫ b

a
g(x) dx. ← definite integral definition
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The proof of part (b) is similar: Write the definite integral of y = kf (x) as a limit of Riemann sums,
use properties of sums and limits to pull out the constant k, and then use the definition of the
definite integral again to get k times the definite integral of f . You will write out the details in
Exercise 55.

The following theorem describes what happens if we take a definite integral over a
zero-length interval, or from right to left, or in two pieces:

THEOREM 4.12 Properties Concerning Limits of Integration

If a < b are real numbers and f is integrable on [a, b], then

(a)
∫ a

a
f (x) dx = 0 (b)

∫ a

b
f (x) dx = −

∫ b

a
f (x) dx

Moreover, if c is any real number in [a, b], then

(c)
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx

Again, the properties stated in this theorem follow directly from the definition of the defi-
nite integral as a limit of Riemann sums. The first property makes sense graphically because
the area under the graph of a function f from x = a to x = a would have a width of zero.
You will prove this property algebraically in Exercise 56. The second property enables us
to consider definite integrals like

∫ 1
4 x 2 dx, in which the starting x-value is greater than

the ending x-value. If we integrate “backwards,” say, from x = 4 to x = 1, then we count
the area given by the definite integral negatively. This property can also be proved from the
definition of the definite integral, where in this situation we would have a negative change
�x = a − b

n
. You will prove the property in Exercise 57.

The third part of Theorem 4.12 can also be proved by using the definition of the definite
integral, but instead we present a “convincing argument by picture” in the three figures
shown next. In this picture we have a = 0, b = 3, and c = 1. The area from x = 0 to x = 3
is clearly the sum of the area from x = 0 to x = 1 and the area from x = 1 to x = 3.

Area from x = 0 to x = 1 Area from x = 1 to x = 3 Area from x = 0 to x = 3

31 2

5

4

3

2

1

y

x
31 2

5

4

3

2

1

y

x
31 2

5

4

3

2

1

y

x

Formulas for Three Simple Definite Integrals

In Section 4.5 we will learn a method for quickly calculating many definite integrals. In
the meantime, it will be useful to have a small set of integration formulas that we can use
to solve simple problems. The next theorem describes definite integrals of three common
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functions: constant functions, the identity function, and the squaring function. Using these
formulas, together with the sum and constant-multiple rules for definite integrals, we will
be able to quickly evaluate definite integrals for any quadradic functions.

THEOREM 4.13 Definite Integral Formulas

For any real numbers a, b, and c,

(a)
∫ b

a
c dx = c(b − a) (b)

∫ b

a
x dx = 1

2
(b2 − a2) (c)

∫ b

a
x 2 dx = 1

3
(b3 − a3)

These formulas are just the tip of the iceberg; in Section 4.5 we will show that we can solve
many definite integrals by using antiderivatives, and in Chapter 5 we will develop methods
for quickly evaluating many more types of definite integrals.

TECHNICAL POINT The definite integral formulas in Theorem 4.13 are true even when the
definite integral in question turns out to be a negative number. For example,

∫ 1

−2
x dx = 1

2
(12 − (−2)2) = 1

2
(1 − 4) = −3

2
.

In Section 4.6 we will discuss what it means when a definite integral on an interval [a, b] is
negative.

Proof. We will use the definition of the definite integral to prove part (a) of the theorem. The
proofs of parts (b) and (c) are similar and are left to Exercises 60 and 61. The first two parts of the
theorem can also be argued geometrically; see Exercises 58 and 59. Suppose f (x) = c is a constant
function on [a, b]. Then by the definition of the definite integral, we have

∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (x ∗
k ) �x ← definition of definite integral

= lim
n→∞

n∑
k=1

c
(

b − a
n

)
← f (x) = c and �x = b − a

n

= lim
n→∞ c

(
b − a

n

) n∑
k=1

1 ← pull constants out of sum

= lim
n→∞ c

(
b − a

n

)
(n) ← sum formula

= lim
n→∞ c(b − a) = c(b − a) ← limit of a constant

Examples and Explorations

EXAMPLE 1 Using a sum formula to approximate an area with a large number of rectangles

Find the n-rectangle right-sum approximation for
∫ 4

2 (x 2 +1) dx, and then use it to calculate
approximations with n = 100 rectangles and with n = 1000 rectangles.
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SOLUTION

We’ll find a formula for the n-rectangle approximation and then evaluate at n = 100 and
n = 1000 at the end. Since a = 2 and b = 4, we have �x = b − a

n
= 2

n
, and therefore

x k = a + k�x = 2 + 2k
n

. For the right sum with x ∗
k = x k, we have

n∑
k=1

f (x ∗
k )�x =

n∑
k=1

((
2 + 2k

n

)2
+ 1

) (
2
n

)

=
n∑

k=1

(
8k 2

n3 + 16k
n2 + 10

n

)
← simple algebra

= 8
n3

n∑
k=1

k 2 + 16
n2

n∑
k=1

k + 10
n

n∑
k=1

1 ← separate the sums

= 8
n3

(
n(n + 1)(2n + 1)

6

)
+ 16

n2

(
n(n + 1)

2

)
+ 10

n
(n) ← sum formulas

= 8n(n + 1)(2n + 1)
6n3 + 16n(n + 1)

2n2 + 10. ← simplify

Notice that our expression for the n-rectangle right sum no longer has any sigma notation
in it. This means that it is now a simple matter to evaluate the expression at n = 100 and
at n = 1000. At n = 100 we have

800(101)(201)
6, 000, 000

+ 1600(101)
20, 000

+ 10 = 20.7868,

and at n = 1000 we have

8000(1001)(2001)
6, 000, 000, 000

+ 16000(1001)
2, 000, 000

+ 10 = 20.6787.
�

CHECKING
THE ANSWER

After all that work it is good to do a reality check. The figure that follows shows a graphing
calculator plot of the area that we just approximated. The area we are considering should
be just a little less than the area of the trapezoid with base from (2, 0) to (4, 0) and top

side connecting (2, 5) and (4, 17). This trapezoid has area 5 + 17
2

(2) = 21 square units, just

slightly more than our earlier approximations.

Area under f (x) = x2 + 1 on [2, 4]

0

25

50

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

4.3 Definite Integrals 349

EXAMPLE 2 Calculating a definite integral exactly

Take the limit as n → ∞ of an n-rectangle right sum to calculate
∫ 4

2 (x 2 + 1) dx exactly.

SOLUTION

We already did the hard work in the previous example, and all that remains is to take the
limit as n → ∞. The exact area between the graph of f (x) = x 2 +1 and the x-axis on [2, 4] is

∫ 4

2
(x 2 + 1) dx = lim

n→∞

n∑
k=1

f (x ∗
k )�x ← definite integral definition

= lim
n→∞

(
8n(n + 1)(2n + 1)

6n3 + 16n(n + 1)
2n2 + 10

)
← Example 1

= 16
6

+ 16
2

+ 10 = 62
3

. ← ratios of leading coefficients

In the step where we evaluated the limit, we used the fact that the limit of a “balanced”
rational function with the same degree in the numerator and denominator is equal to the
ratio of leading coefficients.

Notice that we would not have been able to calculate this limit if we did not have a
formula for the Riemann sum from Example 1 that was expressed in terms of n, but with no
“�”. Note also that our previous approximation with n = 1000 was quite accurate; it was
only approximately 0.012 square unit larger than the actual area, 62

3
≈ 20.6667. �

EXAMPLE 3 Using definite integral formulas

Use properties of definite integrals and the definite integral formulas in Theorem 4.13 to
verify the calculation of

∫ 4
2 (x 2 + 1) dx from the previous example.

SOLUTION

Using the sum rule for definite integrals from Theorem 4.11, we can indeed calculate the
same answer that we did in Example 2:

∫ 4

2
(x 2 + 1) dx =

∫ 4

2
x 2 dx +

∫ 4

2
1 dx ← sum rule for definite integrals

= 1
3

(43 − 23) + 1(4 − 2) = 62
3

. ← definite integral formulas �

EXAMPLE 4 Using the algebraic properties of definite integrals

Given that
∫ 3

1 f (x) dx = 4 and
∫ 3

5 2f (x) dx = −3, find
∫ 5

1 f (x) dx. Identify the theorems or
properties that allow each of your steps.

SOLUTION

We pick apart the definite integral we are seeking until we can express it in terms of the
definite integrals that we are given:∫ 5

1
f (x) dx =

∫ 3

1
f (x) dx +

∫ 5

3
f (x) dx ← Theorem 4.12(c)

=
∫ 3

1
f (x) dx −

∫ 3

5
f (x) dx ← Theorem 4.12(b)

=
∫ 3

1
f (x) dx − 1

2

∫ 3

5
2f (x) dx ← Theorem 4.11(b)

= 4 − 1
2

(−3) = 11
2

. ← using what was given
�
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EXAMPLE 5 Interpreting definite integrals as signed areas

Use a graph and properties of definite integrals to argue that
∫ 5

1 (2 − x) dx is negative. Then
find a number a so that

∫ 5
a (2 − x) dx is exactly zero.

SOLUTION

The region between the graph of f (x) = 2 − x and the x-axis on [1, 5] consists of one small
triangular region above the x-axis and one larger triangular region below the x-axis:

The region between f (x) = 2 − x and the x-axis on [1, 5]

y

4

3

2

1

�1

�2

�3

�4

x
�3 �2 �1 1 2 3 4 5 6

The definite integral will count the region above the x-axis positively and the region below
the x-axis negatively; that is,

∫ 2

1
(2 − x) dx > 0 and

∫ 5

2
(2 − x) dx < 0.

Since the region above the x-axis is smaller than the region below the x-axis, we must have

∫ 5

1
(2 − x) dx =

∫ 2

1
(2 − x) dx +

∫ 5

2
(2 − x) dx < 0.

We will have
∫ 5

a (2 − x) dx equal to zero when a = −1, because this is the value for which
the triangle above the x-axis on the interval [a, 1] is the same size as the triangle below
the x-axis on the interval [2, 5]. We could compute the areas of the triangles in question
exactly from the formula for the area of a triangle, but it is sufficient in this case to see the
graph:

The region between f (x) = 2 − x and the x-axis on [−1, 5]

y

4

3

2

1

�1

�2

�3

�4

x
�3 �2 �1 1 2 3 4 5 6

�
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TEST YOUR? UNDERSTANDING
� How is a definite integral different than a Riemann sum?

� What do definite integrals have to do with areas under curves?

� What types of functions are integrable?

� Why does it make sense that if a < c < b, then
∫ b

a f (x) dx = ∫ c
a f (x) dx + ∫ b

c f (x) dx?

� Why is it not surprising that definite integrals behave well with respect to sums and
constant multiples?

EXERCISES 4.3

Thinking Back

� Commuting with sums: What does it mean to say that
derivatives commute with sums? That limits commute
with sums? That sums written in sigma notation com-
mute with sums? Express your answers in words and
algebraically.

� Commuting with constant multiples: What does it mean
to say that derivatives commute with constant mul-
tiples? That limits commute with constant multiples?
That sums written in sigma notation commute with
constant multiples? Express your answers in words
and algebraically.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The left-sum and right-sum approxima-
tions are the same if the number n of rectangles is very
large.

(b) True or False:
∫ 5
−2(x + 2)3 dx is a real number.

(c) True or False:
∫

(5x 2 − 3x + 2) dx is exactly 26.167.

(d) True or False:
∫ −2
−3 f (x) dx = − ∫ 3

2 f (x) dx.

(e) True or False: If
∫ 2

0 f (x) dx = 3 and
∫ 2

0 g(x) dx = 2, then∫ 2
0 f ( g(x)) = 6.

(f) True or False: If
∫ 2

0 f (x) dx = 3 and
∫ 2

0 g(x) dx = 2, then∫ 2
0 f (x)g(x) dx = 6.

(g) True or False: If
∫ 1

0 f (x) dx = 3 and
∫ 0
−1 f (x) dx = 4, then∫ 1

−1 f (x) dx = 7.

(h) True or False: If
∫ 2

0 f (x) dx = 3 and
∫ 4

2 g(x) dx = 4, then∫ 4
0 ( f (x) + g(x)) dx = 7.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function that is not integrable on [2, 10].
(b) A function f for which we currently know how to cal-

culate
∫ 2
−2 f (x) dx exactly.

(c) A function f for which we currently do not know how
to calculate

∫ 2
−2 f (x) dx exactly.

3. Fill in the blanks: The signed area between the graph
of a continuous function f and the x-axis on [a, b] is

represented by the notation and is called
the .

4. Explain why it makes sense that every Riemann sum for a
continuous function f on an interval [a, b] approaches the
same number as the number n of rectangles approaches
infinity. Illustrate your argument with graphs.

5. Fill in the blanks: The definite integral of an integrable
function f from x = a to x = b is defined to be

∫ b

a
f (x) dx = lim

∑
,

where �x = , x k = , and x ∗
k is .

6. Explain geometrically what the definition of the definite
integral as a limit of Riemann sums represents. Include a
labeled picture of a Riemann sum (for a particular n) that
illustrates the roles of n, �x, x k, x ∗

k , and f (x ∗
k ). What hap-

pens in the picture as n → ∞?

7. If f (x) is defined at x = a, then
∫ a

a f (x) dx = 0. Explain why
this makes sense in terms of area.

8. Draw pictures illustrating the fact that if a ≤ c ≤ b, then∫ c

a
f (x) dx +

∫ b

c
f (x) dx =

∫ b

a
f (x) dx.

Use graphs to determine whether each of the following
definite integrals is equal to a positive number, a negative
number, or zero:

9.
∫ 3

−3
(x 2 − 4) dx 10.

∫ 3

−3
|x 2 − 4| dx

11.
∫ 2π

0
cos x dx 12.

∫ 3π/4

−3π/4
cos x dx

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

352 Chapter 4 Definite Integrals

13. Consider the function f graphed here. Shade in the
regions between f and the x-axis on (a) [−2, 6] and
(b) [−4, 2]. Are the signed areas on these intervals
positive or negative, and why?

y

�4

�4 �2

�4

�8

�8

x
8642

14. In a right sum with n = 4 rectangles for the area be-
tween the graph of f (x) = x 2 − 1 and the x-axis on [0, 2],
how many rectangles have negative heights? What if
n = 7? In each case, is the estimate for the signed area
positive or negative? Is the exact value of the signed
area positive or negative?

15. Although the definite integral of a sum of functions is
equal to the sum of the definite integrals of those func-
tions, the definite integral of a product of functions is not
the product of two definite integrals.

(a) Use mathematical notation to write the preceding
sentence in this form:

= , but �= .

(b) Choose two simple functions f and g so that you can
calculate the definite integrals of f , g, and f + g on
[0, 1], and show that the sum of the first two definite
integrals is equal to the third.

(c) Find two simple functions f and g such that∫ 1
0 f (x)g(x) dx is not equal to the product of

∫ 1
0 f (x) dx

and
∫ 1

0 g(x) dx. (Hint: Choose f and g so that you can
calculate the definite integrals involved.)

16. Suppose f is an integrable function [a, b] and k is a
real number. Use pictures of Riemann sums to illustrate
that the right sum for the function kf (x) on [a, b] is k
times the value of the right sum (with the same n) for
f on [a, b]. What happens as n → ∞? What does this
exercise say about the definite integrals

∫ b
a f (x) dx and∫ b

a kf (x) dx?

17. Consider the definite integral
∫ 3

0 x 2 dx.
(a) Write down an n-rectangle right sum for

∫ 3
0 x 2 dx, and

use algebra and a sum formula to write this sum as a
formula in terms of n.

(b) Write down an n-rectangle left sum for
∫ 3

0 x 2 dx, and
use algebra and a sum formula to write this sum as a
formula in terms of n.

(c) Use your answers to (a) and (b) to show that the right
sum and the left sum for

∫ 3
0 x 2 dx are different for

n = 100 and n = 1000.
(d) Use your answers to (a) and (b) to show that the right

sum and the left sum for
∫ 3

0 x 2 dx approach the same
quantity as n → ∞. What does this quantity repre-
sent geometrically?

18. The definite integral of a function f on an interval [a, b] is
defined as a limit of Riemann sums. How can it be that
the sum of the areas of infinitely many rectangles that
are each “infinitely thin” is a finite number? On the one
hand, shouldn’t it be infinite, since we are adding up in-
finitely many rectangles? On the other hand, shouldn’t it
always be zero, since the width of each of the rectangles
is approaching zero as n → ∞?

19. Some discontinuous functions are not integrable. For

example, consider the function f (x) = 1
x 2

on [−2, 2].

(a) Sketch a graph of f on [−2, 2]. What kind of discon-
tinuity does f have, and where?

(b) Why might it be reasonable to think that f is not
integrable on [−2, 2] because of this discontinuity?

(c) What do you think happens to a Riemann sum ap-
proximation for the area between f and the x-axis on
[−2, 2] as n → ∞?

(d) Although your intuition probably told you that the

area between the graph of f (x) = 1
x 2

and the x-axis

on [−2, 2] was likely to be infinite, this is not always
the case for functions with vertical asymptotes. Sur-
prisingly, as we will see in Section 5.6, the function

g(x) = 1
x 2/3

has an asymptote at x = 0 and yet its area

on [−2, 2] is actually finite! Compare the graphs of

f (x) = 1
x 2

and g(x) = 1
x 2/3

, and speculate as to why

this might be the case.
20. Some discontinuous functions are still “nice” enough to

be integrable. For example, consider the function

f (x) =
{

x, if x ≤ 2
x + 3, if x > 2.

(a) Sketch a graph of f on [0, 5]. What kind of disconti-
nuity does f have, and where?

(b) Why is it reasonable that f is integrable on [0, 5]
despite this discontinuity?

(c) What happens to a Riemann sum approximation for
the area between a function f and the x-axis on [0, 5]
as n → ∞?

Skills

Use geometry (i.e., areas of triangles, rectangles, and circles)
to find the exact values of each of the definite integrals in
Exercises 21–28.

21.
∫ 2

0
(2 − x) dx 22.

∫ 1

2
0(4x − 3) dx

23.
∫ 8

−3
24 dx 24.

∫ 4

−2
|3x + 1| dx

25.
∫ 1

−1

√
1 − x 2 dx 26.

∫ r

−r

√
r 2 − x 2 dx
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27.
∫ 3

0
(1 − |x − 1|) dx 28.

∫ 2

−2
(3 +

√
4 − x 2 ) dx

If
∫ 3
−2 f (x) dx = 4,

∫ 6
−2 f (x) dx = 9,

∫ 3
−2 g(x) dx = 2, and∫ 6

3 g(x) dx = 3, then find the values of each definite integral
in Exercises 29–40. If there is not enough information, explain
why.

29.
∫ 6

3
f (x) dx 30.

∫ 6

−2
g(x) dx

31.
∫ 6

−2
( f (x) + g(x)) dx 32.

∫ 6

3
(2f (x) − g(x)) dx

33.
∫ 3

−2
f (x)g(x) dx 34.

∫ 6

−2
( g(x) + x) dx

35.
∫ 6

3
( g(x))2 dx 36.

∫ 3

−2
x f (x) dx

37.
∫ 3

6
( f (x) + g(x)) dx 38.

∫ 6

−2
(4f (x) − 2) dx

39.
∫ −2

3
(2x 2 − 3g(x)) dx 40.

∫ −2

−2
x( f (x) + 3)2 dx

For each definite integral in Exercises 41–46, (a) find the
general n-rectangle right sum and simplify your answer with
sum formulas. Then (b) use your answer to approximate the
definite integral with n = 100 and n = 1000. Finally, (c) take
the limit as n → ∞ to find the exact value.

41.
∫ 5

2
(5 − x) dx 42.

∫ 3

−3
(2x + 1) dx

43.
∫ 1

0
2x 2 dx 44.

∫ 2

−3
x 2 dx

45.
∫ 3

2
(x + 1)2 dx 46.

∫ 2

−1
(1 − x 2) dx

Calculate the exact value of each definite integral in Exer-
cises 47–52 by using properties of definite integrals and the
formulas in Theorem 4.13.

47.
∫ 4

2
(x 2 + 1) dx 48.

∫ 6

0
(3x + 2) dx

49.
∫ 2

5
(9 + 10x − x 2) dx 50.

∫ 3

1
(x + 1)2 dx

51.
∫ 4

0
((2x − 3)2 + 5) dx 52.

∫ 1

6
(3(1 − 2x)2 + 4x) dx

Applications
53. Suppose that once again you drive in a car for 40 sec-

onds with velocity v(t) = −0.22t 2 + 8.8t feet per second,
as shown in the graph that follows. Suppose also that
your total distance travelled is equal to the area under the
velocity curve on [0, 40].

Velocity of car
v(t) = −0.22t 2 + 8.8t

v

88

t
40302010

(a) What definite integral would you have to compute in
order to find your exact distance travelled over the
40 seconds of your trip?

(b) Find the exact value of that definite integral by taking
a limit of Riemann sums.

54. The function for the standard normal distribution is

f (x) = 1√
2π

e−x 2/2

Its graph is that of the bell curve. Probability and statis-
tics books often have tables like the one following, which
lists some approximate areas under the bell curve:

Areas under the bell curve

b
1√
2π

∫ b
−b e−x 2/2 dx

0.5 0.3829

1 0.6827

1.5 0.8664

2 0.9545

2.5 0.9876

Use the information given in the table, properties of def-
inite integrals, and symmetry to find

(a)
1√
2π

∫ 1.5

−0.5
e−x 2/2 dx (b)

1√
2π

∫ 2

1.5
e−x 2/2 dx

Proofs

55. Use the definition of the definite integral as a limit of
Riemann sums to prove Theorem 4.11(b): For any func-
tion f that is integrable on [a, b] and any real number c,∫ b

a c f (x) dx = c
∫ b

a f (x) dx.

56. Use the definition of the definite integral as a limit of
Riemann sums to prove Theorem 4.12(a): For any func-
tion f and real number a,

∫ a
a f (x) dx = 0.

57. Use the definition of the definite integral as a limit of
Riemann sums to prove Theorem 4.12(b): For any
function f that is integrable on [a, b],

∫ a
b f (x) dx =

− ∫ b
a f (x) dx.

58. Give a geometric argument to prove Theorem 4.13(a):
For any real numbers a, b, and c,

∫ b
a c dx = c(b − a). (Hint:

Use a rectangle.)
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59. Give a geometric argument to prove Theorem 4.13(b):

For any real numbers 0 < a < b,
∫ b

a x dx = 1
2

(b2 − a2).
(Hint: Use a trapezoid.)

60. Prove Theorem 4.13(b): For any real numbers a and b, we

have
∫ b

a x dx = 1
2

(b2 − a2). Use the proof of Theo-

rem 4.13(a) as a guide.

61. Prove Theorem 4.13(c): For any real numbers a and b,∫ b
a x 2 dx = 1

3
(b3 − a3). Use the proof of Theorem 4.13(a)

as a guide.

62. Prove that
∫ 3

1 (3x + 4) dx = 20 in three different ways:

(a) algebraically, by calculating a limit of Riemann sums;

(b) geometrically, by recognizing the region in question
as a trapezoid and calculating its area;

(c) with formulas, by using properties and formulas of
definite integrals.

Thinking Forward

Functions defined by area accumulation: We know that for fixed
real numbers a and b and an integrable function f , the def-
inite integral

∫ b
a f (x) dx is a real number. For different real

values of b, we get (potentially) different values for the
integral

∫ b
a f (x) dx.

� Make a table of the values of the integral
∫ b

0 2x dx
corresponding to the values −3, −2, −1, 0, 1, 2, and
3 for b. Conjecture a formula for the relationship
between the values of b and the corresponding value
of the integral.

� What is the word that describes the kind of rela-
tionship that exists between the values of b and the
corresponding value of the integral?

� Now make a table of the values of the inte-
gral

∫ b
1 2x dx corresponding to the values −3, −2,

−1, 0, 1, 2, and 3 for b. Conjecture a formula for the
relationship between the values of b and the corre-
sponding value of the integral.

� What is the relationship between the formula that
describes

∫ b
0 2x dx and the formula that describes∫ b

1 2x dx?

4.4 INDEFINITE INTEGRALS

� The definition of the indefinite integral as a notation for antidifferentiation

� Formulas for integrating some basic functions

� Guessing and checking to solve integrals of combinations of functions

Antiderivatives and Indefinite Integrals

As we have seen throughout the previous chapters, an antiderivative of a function f is a
function F whose derivative is f . For example, an antiderivative of f (x) = 2x is the function
F(x) = x 2. Another antiderivative of f (x) = 2x is the function G(x) = x 2 + 3. In fact, any
function of the form x 2 +C is an antiderivative of f (x) = 2x, and these are the only possible
antiderivatives of f (x) = 2x. In general, the antiderivatives of a given function are all related
to each other, so we call the set of all antiderivatives of f the family of antiderivatives of f .
As we showed in Theorem 3.7 of Section 3.2, any two antiderivatives of a function must
differ by a constant. For convenience we restate that theorem now:

THEOREM 4.14 Functions with the Same Derivative Differ by a Constant

If F and G are differentiable functions, then F ′(x) = G′(x) if and only if G(x) = F(x) + C
for some constant C.

In the previous section we defined the definite integral of a function f on an interval
[a, b] as a limit of Riemann sums used in calculating the signed area between the graph of
a function f and the x-axis on an interval [a, b]. We will now define a completely different
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object called the indefinite integral of a function f . This new object will be a family of
functions, not a number, but we will see in Section 4.5 that these two types of integrals are
related, which is why we’ll call them by similar names.

The indefinite integral of a function is a notation for expressing the collection of all
possible antiderivatives of that function:

DEFINITION 4.15 The Indefinite Integral of a Function

The indefinite integral of a continuous function f is defined to be the family of an-
tiderivatives ∫

f (x) dx = F(x) + C,

where F is an antiderivative of f , that is, a function for which F ′ = f .

For example, since an antiderivative of f (x) = 2x is F(x) = x 2, it follows that all antideriva-
tives of f (x) = 2x are of the form x 2 + C, and therefore that

∫
2x dx = x 2 + C. Note that it

would be equally accurate to use a different antiderivative, such as G(x) = x 2 + 3, and say
that

∫
2x dx = (x 2 + 3) + C.

CAUTION Although the notation and terminology used for indefinite integrals in Definition 4.15 is
similar to what we used for definite integrals in Section 4.3, it is important to note that
at this point we have no proof that the two types of integrals are related. When we see
the Fundamental Theorem of Calculus in Section 4.5, we will make the surprising dis-
covery that the area under a curve is in fact related to families of antiderivatives, and
this relationship will justify why we use such similar notation for two different kinds of
objects.

The “dx” in the notation of Definition 4.15 represents the fact that we are antidifferen-
tiating with respect to the variable x. The constant C represents an arbitrary constant. The
function f inside the integral notation is called the integrand, and when we find

∫
f (x) dx,

we say that we are integrating the function f . The indefinite integral of a function will
often be called simply the integral of that function. The continuity hypothesis is important
(see Exercises 18–20), and we will assume throughout this section that we are working with
intervals where our functions are continuous.

Antidifferentiation Formulas

All of the rules that we have developed for differentiating functions can be used to develop
antidifferentiation rules, which in turn will give us formulas for some common indefinite
integrals. For example, the rule for differentiating power functions says that for any constant

k, d
dx

(x k) = kx k−1. The rule for antidifferentiating a power function should “undo” this

process and is given in the following theorem:

THEOREM 4.16 Integrals of Power Functions

(a) If k �= −1, then
∫

x k dx = 1
k + 1

x k + 1 + C.

(b)
∫

1
x

dx = ln |x| + C. (See Exercise 18 for a technical point.)
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Proof. To prove the first part of the theorem, it suffices to show that if k �= −1, then
1

k + 1
x k + 1 is

an antiderivative of x k. (Note that if k = −1, then
1

k + 1
is not even defined.) In other words, we

need only show that the derivative of
1

k + 1
x k + 1 is x k. This is a simple application of the power and

constant-multiple rules of differentiation:

d
dx

(
1

k + 1
x k+1

)
= 1

k + 1
(k + 1)x k = x k.

The second integration formula in the theorem covers the case when k = −1, since x −1 = 1
x

. This

formula follows immediately from the fact that
d
dx

(ln |x|) = 1
x

.

The next three theorems describe formulas for antidifferentiating–and thus integrating–
other common types of functions. Each of these formulas can be proved by differentiating;
you will do so in Exercises 73–75.

THEOREM 4.17 Integrals of Exponential Functions

(a) If k �= 0, then
∫

e kx dx = 1
k

e kx + C.

(b) If b > 0 and b �= 1, then
∫

b x dx = 1
ln b

b x + C.

For example,
∫

2 x dx = 1
ln2

2 x because d
dx

(
1

ln2
2 x

)
= 1

ln2
(ln 2)2 x = 2 x. Notice that both of

the rules in Theorem 4.17 imply that the integral of e x is itself, that is, that
∫

e x dx = e x +C.

THEOREM 4.18 Integrals of Certain Trigonometric Expressions

(a)
∫

sin x dx = −cos x + C (b)
∫

cos x dx = sin x + C

(c)
∫

sec2 x dx = tan x + C (d)
∫

csc2 x dx = −cot x + C

(e)
∫

sec x tan x dx = sec x + C (f)
∫

csc x cot x dx = −csc x + C

THEOREM 4.19 Integrals Whose Solutions Are Inverse Trigonometric Functions

(a)
∫

1√
1 − x 2

dx = sin−1 x + C.

(b)
∫

1
1 + x 2 dx = tan−1 x + C.

(c)
∫

1

|x|√x 2 − 1
dx = sec−1 x + C.

Finally, if you are covering hyperbolic and inverse hyperbolic functions in your course
(see the last two subsections of Section 2.6), then you should also be familiar with the
next two sets of antidifferentiation formulas, which follow directly from the differentiation
formulas in Theorems 2.20 and 2.21.
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THEOREM 4.20 Integrals of Hyperbolic Functions*

(a)
∫

sinh x dx = cosh x + C

(b)
∫

cosh x dx = sinh x + C

(c)
∫

sech2x dx = tanh x + C

THEOREM 4.21 Integrals Whose Solutions Are Inverse Hyperbolic Functions*

(a)
∫

1√
x 2 + 1

dx = sinh−1 x + C

(b)
∫

1√
x 2 − 1

dx = cosh−1 x + C

(c)
∫

1
1 − x 2 dx = tanh−1 x + C

Antidifferentiating Combinations of Functions

We have rules for differentiating constant multiples, sums, products, quotients, and com-
positions of functions. Only the constant-multiple rule and the sum rule translate directly
into antidifferentiation rules:

THEOREM 4.22 Constant Multiple and Sum Rules for Indefinite Integrals

(a)
∫

kf (x) dx = k
∫

f (x) dx.

(b)
∫

( f (x) + g(x)) dx =
∫

f (x) dx +
∫

g(x) dx.

Proof. Suppose F is any antiderivative of f , that is, F ′(x) = f (x). Then, by the constant-multiple
rule, kF ′(x) = kf (x) for any constant k. Furthermore, for any constant D, F(x) + D is also an an-
tiderivative of f , so (F(x) + D)′ = f (x). Therefore

∫
kf (x) dx = kF ′(x) + C = k

(
F ′(x) + C

k

)
= k(F ′(x) + D) = k

∫
f (x) dx.

Note that in the calculation we just did, D = C
k

is just a constant.

Similarly, if F ′(x) = f (x) and G′(x) = g(x), then, by the sum rule, (F(x) + G(x))′ = f (x) + g(x),
and therefore
∫

f (x) dx +
∫

g(x) dx = (F ′(x) + C1) + (G′(x) + C2) = (F ′(x) + G′(x)) + C =
∫

( f (x) + g(x)) dx,

where C = C1 + C2.

There are no general product, quotient, and chain rules for antidifferentiation. How-
ever, if we think of these differentiation rules “backwards,” then we can say something
about certain types of integrands:
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THEOREM 4.23 Reversing the Product, Quotient, and Chain Rules

(a)
∫

( f ′(x) g(x) + f (x) g′(x)) dx = f (x) g(x) + C

(b)
∫

f ′(x) g(x) − f (x) g′(x)
( g(x))2 dx = f (x)

g(x)
+ C

(c)
∫

f ′( g(x)) g′(x) dx = f ( g(x)) + C

Of course, the trouble is recognizing when an integrand is in one of these special forms.
If we are lucky enough to recognize an integrand as the result of a product, quotient, or
chain rule calculation, then we can make an educated guess at the integral and check our
answer by differentiating. Repeated guess-and-check is at this point our best strategy for
integrating combinations of functions. The first and third parts of Theorem 4.23 will form
the basis for the methods of integration by parts and integration by substitution that we
will see in Chapter 5.

In general, antidifferentiation is much more difficult than differentiation. We can dif-
ferentiate every function that we currently know how to write down; however, at this point
we cannot integrate even very simple functions like ln x or sec x. You should think of inte-
gration as a puzzle, not a procedure. Unlike differentiation, where it is always clear which
rules to apply, and in which order, it is not always immediately clear how to find a given
integral. We will learn some more methods for calculating integrals in Chapter 5, but even
then we will not be able to calculate all integrals. In fact, as we will see in Section 4.7, some
functions have no elementary antiderivative, which means that their antiderivatives cannot
even be written down in terms of the functions we now know.

Examples and Explorations

EXAMPLE 1 Identifying antiderivatives

Which of the following are antiderivatives of f (x) = x 4, and why?

(a) 4x 3 (b) 1
5

x 5 (c) 1
5

x 5 − 2 (d) 1
5

(x 5 − 2)

SOLUTION

An antiderivative of f (x) = x 4 is a function whose derivative is x 4. Choice (a) is clearly
the derivative, not an antiderivative, of f (x) = x 4. The remaining three choices are all an-
tiderivatives of f (x) = x 4, since each of those functions has derivative x 4. �

EXAMPLE 2 Using algebra to identify and then integrate power functions

Find
∫

1
x 2 dx and

∫ √
x 3 dx.

SOLUTION

Solving these integrals is an easy application of Theorem 4.16, once we write the integrands
in the form x k:∫

1
x 2 dx =

∫
x−2 dx = 1

−2 + 1
x−2+1 = 1

−1
x −1 + C = − 1

x
+ C;

∫ √
x 3 dx =

∫
x 3/2 dx = 1

3
2 + 1

x 3/2+1 = 1
5
2

x 5/2 + C = 2
5

√
x 5 + C. �

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

4.4 Indefinite Integrals 359

EXAMPLE 3 Using the sum and constant-multiple rules for indefinite integrals

Find
∫

(5x 3 − sin x) dx, and show explicitly how the sum and constant-multiple rules for
indefinite integrals are applied.

SOLUTION

The function f (x) = 5x 3 − sin x is a sum of constant multiples of functions whose integrals
we know, namely, the functions x 3 and sin x. By Theorem 4.22, we have

∫
(5x 3 − sin x) dx =

∫
(5x 3 + (−sin x)) dx ← write the difference as a sum

=
∫

5x 3 dx +
∫

(−sin x) dx ← sum rule

= 5
∫

x 3 dx −
∫

sin x dx ← constant-multiple rule

= 5
(

1
4

x 4
)

− (−cos x) + C ← antidifferentiation formulas

= 5
4

x 4 + cos x + C.

Notice that we added only one constant C in this calculation. Technically there are two
such constants, since the family of antiderivatives for x 3 is 1

4
x 4 + C1, and the family of

antiderivatives for sin x is −cos x + C2. The C we are using is really the sum C1 + C2. There
is no need to write the two constants C1 and C2 separately, since the sum of two arbitrary
constants is also an arbitrary constant. �

EXAMPLE 4 Recognizing integrands in product, quotient, and chain rule forms

Solve the following indefinite integrals:

(a)
∫

(e x + xe x) dx (b)
∫

5(x 2 + 1)4(2x) dx (c)
∫

2x tan x − x 2 sec2 x
tan2 x

dx

SOLUTION

(a) This integrand looks like it could be the result of a product rule calculation where x and
e x are the factors in the product. We check by differentiating, and indeed d

dx
(xe x) =

1e x + xe x. Therefore
∫

(e x + xe x) dx = xe x + C.

(b) The integrand 5(x2 + 1)4(2x) looks like it could be the result of a chain rule calculation,
with outside function x 5 and inside function x2 + 1. We can check whether this is the
case by differentiating to find d

dx
((x 2 + 1)5) = 5(x 2 + 1)4(2x), which is what we had

hoped for. Therefore
∫

5(x 2 + 1)4(2x) dx = (x 2 + 1)5 + C.

(c) Finally, this integrand could be the result of differentiating a quotient f (x)
g(x)

where the

denominator is g(x) = tan x. Looking at the numerator of the integrand, we might

guess that f (x) = x 2. We now check: d
dx

(
x2

tanx

)
= (2x)tanx − x2 sec2 x

(tanx)2
, which is what we

wanted for the integrand. Therefore
∫ 2x tanx − x2 sec2 x

tan2 x
dx = x2

tanx
+ C. �
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EXAMPLE 5 Integrating by educated guess-and-check

Solve the following indefinite integrals:

(a)
∫

sin 3x dx (b)
∫

xe x 2+1 dx (c)
∫

1
1 + 4x 2 dx

SOLUTION

(a) At first glance the function sin(3x) does not appear to be of the form f ′( g(x))g′(x).
Specifically, if we choose f ′(x) = sin x, so that the inside function is g(x) = 3x,
then the derivative g′(x) = 3 does not appear in the integrand. However, since an
antiderivative of sin x is −cos x, we might try F(x) = −cos 3x as a first guess for an
antiderivative of sin 3x. Testing this guess, we find that d

dx
(−cos 3x) = −(−sin 3x)(3) =

3 sin 3x. This is almost the integrand we are looking for, but with an extra constant mul-
tiple of 3. Accordingly, we update our guess to F(x) = − 1

3
cos 3x, so that the 1

3
at the

front will cancel out the factor of 3 that appears when we apply the chain rule. We now
have

d
dx

(
−1

3
cos 3x

)
= −1

3
(−sin 3x)(3) = sin 3x,

and therefore
∫

sin 3x dx = − 1
3

cos 3x + C.

(b) The first thing to recognize about this problem is that the function x 2 + 1 is an inside
function in the integrand while its derivative 2x is almost part of the integrand: We
have an x instead of a 2x, so we’re missing only a constant multiple. Since the function
e x is its own antiderivative, a good first guess for an antiderivative of xe x 2+1 might be
F(x) = e x 2+1. Checking this guess, we find that d

dx
(e x 2+1) = e x 2+1(2x), which is almost

what we want. To get rid of the extra 2, we update our guess to F(x) = 1
2

e x 2+1; with
this guess we have

d
dx

(
1
2

e x 2+1
)

= 1
2

e x 2+1(2x) = xe x 2+1.

It then follows that
∫

xe x 2+1 dx = 1
2

e x 2+1 + C. It is important to note that the method

used in this example, whereby we update our guess by dividing by what is “missing,”
works only if what is missing is a constant.

(c) In this example we are searching for a function whose derivative is 1
1 + 4x2

. Our inte-

grand is similar in structure to the second integrand in Theorem 4.19, so we will start
the guessing process with tan−1(x). We guess, check, and re-guess until we get the
derivative we seek:

d
dx

(tan−1 x) = 1
1 + x 2 ;

d
dx

(tan−1(4x)) = 1
1 + (4x)2 (4) = 4

1 + 16x 2 ;

d
dx

(tan−1(2x)) = 1
1 + (2x)2 (2) = 2

1 + 4x 2 ;

d
dx

(
1
2

tan−1(2x)
)

=
(

1
2

) 1
1 + (2x)2 (2) = 1

1 + 4x 2 .

Therefore
∫ 1

1 + 4x2
dx = 1

2
tan−1(2x) + C. �
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TEST YOUR? UNDERSTANDING
� How is an indefinite integral related to antiderivatives? In what way is a definite integral

different from an antiderivative?

� Which of the six trigonometric functions do we know how to integrate at this point,
and why?

� Is the integral of a difference of two functions always equal to the difference of the
integrals of those two functions? Why or why not?

� Is the integral of a product of two functions equal to the product of the integrals of
those two functions? Why or why not?

� How can we solve integrals of combinations of functions by guessing and checking?
Why is this a valid method?

EXERCISES 4.4

Thinking Back

� Antiderivatives: If g′(x) = h(x), then is g an antideriva-
tive of h or is h an antiderivative of g?

� Definite integrals: State the definition of the definite in-
tegral of a function f on an interval [a, b].

� The Mean Value Theorem: State the Mean Value
Theorem.

Derivatives and antiderivatives: Find the derivative and an an-
tiderivative of each of the following functions:

� f (x) = π2 � f (x) = ( 11√x )−2

� f (x) = 1
5x

� f (x) = sec2(3x + 1)

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f (x) − g(x) = 2 for all x, then f and g
have the same derivative.

(b) True or False: If f (x) − g(x) = 2 for all x, then f and g
have the same antiderivative.

(c) True or False: If f (x) = 2x, then F(x) = x 2.

(d) True or False:
∫

(x 3 + 1) dx =
( 1

4
x 4 + x + 2

)
+ C.

(e) True or False:
∫

sin(x 2) dx = −cos(x 2) + C.
(f) True or False:

∫
e x cos x dx = e x sin x + C.

(g) True or False:
∫ 1

x 2 + 1
dx = ln |x 2 + 1| + C.

(h) True or False:
∫ 1

x 2 + 1
dx = 1

2x
ln |x 2 + 1| + C.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An integral that can be solved by recognizing the
integrand as the result of a product rule calcu-
lation.

(b) An integral that can be solved by recognizing the
integrand as the result of a chain rule calculation.

(c) Six functions that we do not currently know how to
integrate (and why we cannot integrate each of them
given what we currently know).

3. What is the difference between an antiderivative of a
function and the indefinite integral of a function?

4. Explain why we call the collection of antiderivatives of a
function f a family. How are the antiderivatives of a func-
tion related?

5. Compare the definitions of the definite and indefinite in-
tegrals. List at least three things that are different about
these mathematical objects.

6. Fill in each of the blanks:

(a)
∫

dx = x 6 + C.

(b) x 6 is an antiderivative of .

(c) The derivative of x 6 is .

7. Fill in each of the blanks:

(a)
∫

x 6 dx = + C.

(b) is an antiderivative of x 6.

(c) The derivative of is x 6.

8. Explain why the formula for the integral of x k does not
apply when k = −1. What is the integral of x −1?

9. Explain why at this point we don’t have an integration for-
mula for the function f (x) = sec x whereas we do have an
integration formula for f (x) = sin x.

10. Why don’t we bother to state an integration formula
that has to do with cos−1 x? (Hint: Think about the
derivatives of cos−1 x and sin−1 x.) What would the
integration formula be? Why is it “redundant,” given the
integration formula that has to do with sin−1 x?
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11. Write out all the integration formulas and rules that we
know at this point.

12. Show that F(x) = sin x − x cos x + 2 is an antiderivative of
f (x) = x sin x.

13. Show that F(x) = 1
2

e (x 2)(x 2 − 1) is an antiderivative of

f (x) = x 3e (x 2).

14. Verify that
∫

cot x dx = ln(sin x) + C. (Do not try to solve
the integral from scratch.)

15. Verify that
∫

ln x dx = x(ln x − 1) + C. (Do not try to solve
the integral from scratch.)

16. Show by exhibiting a counterexample that, in general,∫ f (x)
g(x)

dx �=
∫

f (x)dx∫
g(x)dx

. In other words, find two functions f

and g such that the integral of their quotient is not equal
to the quotient of their integrals.

17. Show by exhibiting a counterexample that, in general,∫
f (x)g(x) dx �= (

∫
f (x) dx)(

∫
g(x) dx). In other words, find

two functions f and g so that the integral of their product
is not equal to the product of their integrals.

In the definition of the definite integral we required integrands
to be continuous. If an integrand fails to be continuous every-
where, then a kind of branching can occur in its antideriva-
tives. In Exercises 18–19 we investigate some discontinuous
examples where we choose nonstandard antiderivatives.
Outside of this set of examples we will restrict our attention
to the standard antiderivatives in Theorems 4.16–4.19.

18. Consider the function

F(x) =
{

ln |x|, if x < 0

ln |x| + 4, if x > 0.

Show that the derivative of this function is the function

f (x) = 1
x

. Compare the graphs of F(x) and ln |x|, and

discuss how this exercise relates to the second part of
Theorem 4.16.

19. Consider the function

F(x) =
{

− cot x, if x < 0

− cot x + 100, if x > 0.

Show that the derivative of this function is the function
f (x) = csc2 x. Compare the graphs of F(x) and − cot x,
and discuss how this exercise relates to the fourth part
of Theorem 4.18.

20. Consider the function

F(x) =
{

sec−1 x, −π if x < −1

sec−1 x + π , if x > 1.

Show that the derivative of this function is the function

f (x) = 1

|x|√x2 − 1
. Compare the graphs of F(x) and sec−1 x,

and discuss how this exercise relates to the second part of
Theorem 4.19.

Skills

Use integration formulas to solve each integral in Exer-
cises 21–62. You may have to use algebra, educated guess-
and-check, and/or recognize an integrand as the result of
a product, quotient, or chain rule calculation. Check each
of your answers by differentiating. (Hint for Exercise 54:

tan x = sinx
cosx

).

(Exercises 59–62 involve hyperbolic functions and their inverses;
see Section 2.6.)

21.
∫

(x 2 − 3x 5 − 7) dx 22.
∫

(x 3 + 4)2 dx

23.
∫

(x 2 − 1)(3x + 5) dx 24.
∫ (

2
3x

+ 1
)

dx

25.
∫

(x 2 + 2 x + 22) dx 26.
∫

3
x 2 + 1

dx

27.
∫

x + 1√
x

dx 28.
∫ (

3
x 2

− 4
)

dx

29.
∫

(3.2(1.43)x − 50) dx 30.
∫

5 sin(2x + 1) dx

31.
∫

4(e x−3)2 dx 32.
∫

4e 2x−3 dx

33.
∫

sec(3x) tan(3x) dx 34.
∫

3 csc(πx) cot(πx) dx

35.
∫

3 tan2 x dx 36.
∫

(sin2 x + cos2 x) dx

37.
∫

π dx 38.
∫

x −1

1 − x −1
dx

39.
∫

7√
1 − (2x)2

dx 40.
∫ −3

1 + 16x 2
dx

41.
∫

1

|3x|√9x 2 − 1
dx 42.

∫
1

4 + x 2
dx

43.
∫

2x
1 + x 2

dx 44.
∫

2 sin x cos x dx

45.
∫

(x 2e x + 2xe x) dx 46.
∫

3x 2 sin(x 3 + 1) dx

47.
∫

6x
3x 2 + 1

dx 48.
∫

x 3e 3x 4−2 dx

49.
∫

e3x − 2e4x

e2x
dx 50.

∫
sec2 x + csc2 x dx

51.
∫

x 2(x 3 + 1)5 dx 52.
∫

(tan x + x sec2 x) dx

53.
∫

2x ln x − x
(ln x)2

dx 54.
∫

tan x dx

55.
∫ (

e x√x + e x

2
√

x

)
dx 56.

∫
1

2
√

x
e

√
x dx
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57.
∫ (

1
x

cos x − sin x ln x
)

dx

58.
∫

2x sin x − (x 2 + 1) cos x

sin2 x
dx

59.
∫

3 cosh 2x dx 60.
∫

1

2
√

x 2 − 1
dx

61.
∫

(tanh x + x sech2x) dx 62.
∫

1
(1 + x)(1 − x)

dx

Solve each of the integrals in Exercises 63–68, where a, b, and
c are real numbers with a �= 0, b �= 0, c > 0, and c �= 1.

63.
∫

ae bx+c dx 64.
∫

a
bx c

dx

65.
∫

sec(ax) tan(ax)
b

dx 66.
∫

(b(c x) + a) dx

67.
∫

a
1 + (bx)2

dx 68.
∫

(a sin(bx) − c) dx

Applications
69. Suppose you throw a ball straight up into the air at a

velocity of v0 = 42 feet per second, initially releasing the
ball at a height of 4 feet. Acceleration due to gravity is
constantly a(t) = −32 feet per second squared (negative
since it pulls downward).

Position, velocity, and acceleration
of a ball thrown upwards

y

t4

42

�32

2.521.510.5

(a) Calculate
∫

a(t) dt. Then, given that acceleration is the
derivative of velocity and that the initial velocity was
v0 = 42, find a formula for the velocity v(t) of the ball
after t seconds.

(b) Calculate
∫

v(t) dt. Then, given that velocity is the
derivative of position and that the initial position was
s0 = 4 feet, find a formula for the velocity s(t) of the
ball after t seconds.

(c) Discuss the relationships among the graphs of s(t),
v(t), and a(t) shown in this exercise.

70. Dad’s casserole surprise is for dinner again, and from
previous experiments we know that after the casserole
is taken out of the oven, the temperature of the casse-
role will cool by changing at a rate of T ′(t) = −15e−0.5t

degrees Fahrenheit per minute.

Rate of change of casserole temperature
T ′(t) = −15e−0.5t

T

�5

�10

�15

t
1 2 3 4 5

(a) Calculate
∫

T ′(t) dt. Then, given that the casserole
was T0 = 350 degrees when it was removed from
the oven, find a formula for the temperature T(t) of
the casserole after t minutes.

(b) Calculate T(5) − T(0). Compare your answer with
the answer to the last part of Exercise 47 from Sec-
tion 4.2. Write a few sentences about the connec-
tion that this comparison suggests between Riemann
sums and antidifferentiation.

Proofs

71. Use differentiation to prove the two formulas from
Theorem 4.16 for integrating power functions.

72. Prove that
∫

e x dx = e x + C in two ways: (a) by using the
first part of Theorem 4.17 and (b) by using the second part
of Theorem 4.17.

73. Use differentiation to prove the two formulas from
Theorem 4.17 for integrating exponential functions.

74. Use differentiation to prove the six formulas from
Theorem 4.18 for integrating certain trigonometric func-
tions.

75. Use differentiation to prove the three formulas from
Theorem 4.19 for integrals whose solutions are inverse
trigonometric functions.

76. Prove the first part of Theorem 4.22 in your own words:∫
kf (x), dx = k

∫
f (x) dx.

77. Prove the second part of Theorem 4.22 in your own words:∫
( f (x) + g(x)) dx = ∫

f (x) dx + ∫
g(x) dx.

78. Prove the “forward” direction of Theorem 4.14: If F and G
are differentiable and F ′(x) = G′(x), then G(x) = F(x) + C
for some constant C. (Hint: Show that if F ′(x) = G′(x),
then the function F(x) − G(x) is constant. Recall that if the
derivative of a function is zero, then that function must be
constant.)

79. Prove the “backwards” direction of Theorem 4.14: If F and
G are differentiable and G(x) = F(x)+C for some constant
C, then F ′(x) = G′(x). (Hint: Differentiate both sides of the
equality G(x) = F(x) + C.)
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Thinking Forward

Initial-Value Problems: Find a function f that has the given
derivative f ′ and value f (c), if possible.

� f ′(x) = x 8 − x 2 + 1, f (0) = −1

� f ′(x) = 2
3√x

, f (1) = 2

� f ′(x) = 3e2x + 1, f (0) = 2

� f ′(x) = 3
(

4
5

)x

, f (1) = 0

� f ′(x) = 5
3x − 2

, f (1) = 8

� f ′(x) = 3 sin(−2x) − 5 cos(3x), f (0) = 0

Preview of Differential Equations: Given each of the following
equations involving a function f , find a possible formula for
f (x).

� f ′(x) = f (x) � f ′(x) = 2f (x)

� f ′(t) = sin(bt) � f ′′(t) = cos(t)

4.5 THE FUNDAMENTAL THEOREM OF CALCULUS

� The statement, meaning, and proof of the Fundamental Theorem of Calculus

� Other equivalent formulations of the Fundamental Theorem

� Using the Fundamental Theorem of Calculus to calculate definite integrals exactly

The Fundamental Theorem

So far we have two very different mathematical objects that we call integrals, namely, the
definite integral

∫ b
a f (x) dx and the indefinite integral

∫
f (x) dx. The reason these objects

have such similar names and notation is that they are related by two very important theo-
rems collectively called the Fundamental Theorem of Calculus.

We have already seen that our intuition about average velocity suggests that the area
under a velocity curve is related to the distance travelled. In other words, we suspect
that ∫ b

a
v(t) dt = s(b) − s(a).

We have seen hints of this on multiple occasions in previous sections: The signed area under
the graph of a function such as v(t) on an interval is related to a difference of values of its
antiderivative s(t). This incredible relationship between signed area and antiderivatives is
so important, in fact so fundamental, to the study of calculus that we call it the Fundamental
Theorem of the subject:

THEOREM 4.24 The Fundamental Theorem of Calculus

If f is continuous on [a, b] and F is any antiderivative of f , then

∫ b

a
f (x) dx = F(b) − F(a).
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CAUTION If f is not continuous on [a, b], then the Fundamental Theorem may not apply to f on
that interval, because we can’t even be sure that its signed area on the interval [a, b]
is well defined. For example, consider the function f (x) = 1

(x − 1)2
on the interval [0, 3].

The discontinuity of f at x = 1 is a problem that we won’t learn how to handle until
Section 5.6.

The Fundamental Theorem of Calculus expresses a deep fact about the relationship
between antiderivatives and signed area and moreover provides a very powerful tool for
calculating definite integrals. We will prove the Fundamental Theorem of Calculus at the
end of this section, after we have discussed the various ways that we can use this powerful
tool. In Section 4.7 we will discuss a related theorem called the Second Fundamental
Theorem of Calculus.

Using the Fundamental Theorem of Calculus

When we apply the Fundamental Theorem in practice, we need to identify an antiderivative
of the integrand, evaluate that antiderivative at two points, and then subtract. For example,
since an antiderivative of f (x) = x 2 is F(x) = 1

3
x 3, the Fundamental Theorem tells us

that ∫ 4

1
x 2 dx = F(4) − F(1) = 1

3
(4)3 − 1

3
(1)3 = 21.

The following notation gives us a more efficient way of working with the Fundamental
Theorem in practice:

DEFINITION 4.25 Evaluation Notation

For any function F on an interval [a, b], the difference F(b) − F(a) will be called the eval-
uation of F(x) on [a, b] and will be denoted by

[
F(x)

]b
a = F(b) − F(a).

This notation is also sometimes written as F(x)|ba. We call this the “evaluation” of F(x) on
[a, b] because [F(x)]b

a is the difference of F(x) evaluated at x = b and F(x) evaluated at x =
a. With this new notation, there is no longer a need to give a letter name to the anti-
derivative if we want to write the antidifferentiation step separately from the evaluation
step: ∫ 4

1
x 2 dx =

[
1
3

x 3
]4

1
= 1

3
(4)3 − 1

3
(1)3 = 21.

If F and G are two antiderivatives of a function f (x) on [a, b], then by Theorem 4.14, for
some constant C we have G(x) = F(x)+C for all values of x. This means that the evaluations
of F and G on [a, b] will be equal:

[
G(x)

]b
a = [

F(x) + C
]b

a = (F(b) + C) − (F(a) + C) = F(b) − F(a) = [
F(x)

]b
a.
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For an integrable function f , the indefinite integral
∫

f (x) dx is the family F(x) + C of an-
tiderivatives of f (x). Using evaluation notation, we can reword the Fundamental Theorem
of Calculus to see clearly how definite and indefinite integrals are related:

THEOREM 4.26 The Fundamental Theorem of Calculus in Evaluation Notation

If f is continuous on [a, b], then
∫ b

a
f (x) dx =

[ ∫
f (x) dx

]b

a

In other words, the definite integral of a function f on an interval [a, b] is equal to the
indefinite integral of f evaluated on that interval. The proof of this theorem follows directly
from the Fundamental Theorem, evaluation notation, and the definition of the indefinite
integral, and is left to Exercise 80.

The Net Change Theorem

We can rephrase the Fundamental Theorem of Calculus in terms of a function and its
derivative, rather than in terms of a function and its antiderivative. In this alternative form
of the Fundamental Theorem (which you will prove in Exercise 78), the function f plays the
role of the antiderivative while its derivative f ′ plays the role of the integrand.

THEOREM 4.27 The Net Change Theorem

If f is differentiable on [a, b], then∫ b

a
f ′(x) dx = f (b) − f (a).

In other words, the net change f (b) − f (a) of a function f on [a, b] is equal to the signed
area between the graph of its derivative f ′ and the x-axis on that interval.

In this form, the Fundamental Theorem of Calculus says that in some sense definite inte-
gration “undoes” differentiation, in that if you integrate the derivative of a function from
x = a to x = b, you get something that has to do with the original function (namely,
f (b) − f (a)). This form of the Fundamental Theorem can also be interpreted as saying that
if you accumulate all the instantaneous rates of change of f (x) by integrating its derivative
f ′(x) on the interval [a, b], you get the total change f (b) − f (a) of the values of f (x) on that
interval.

The Net Change Theorem is useful in a variety of practical applications. For example,
at the start of this section we saw that if s(t) and v(t) are the position and velocity functions
of an object travelling in a straight line, then∫ b

a
v(t) dt = s(b) − s(a).

Since v(t) = s′(t), we can rephrase this as
∫ b

a
s′(t) dt = s(b) − s(a).

This formula says that we can find the net change in distance s(t) on [a, b] by finding the
net area between the graph of v(t) = s′(t) and the x-axis on [a, b]. In any situation where
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Q(t) is a quantity that varies over time and whose rate of change is given by the derivative
r(t) = Q′(t), we can say that the net change in Q on an interval is the area under r on that
interval: ∫ b

a
r(t) dt =

∫ b

a
Q′(t) dt = Q(b) − Q(a)

The Proof of the Fundamental Theorem

To prove the Fundamental Theorem of Calculus, we must show that the Riemann sums
that define the definite integral of a function f on an interval can be written in terms of
an antiderivative F of f . The key to doing this will be applying the Mean Value Theorem
to the antiderivative F. This will allow us to relate the average rate of change of F to the
instantaneous rate of change–or derivative–of F. Before reading this proof, you may want
to review the definition of, and notation for, the definite integral of a function (Section 4.3),
as well as the Mean Value Theorem (Section 3.1).

Proof. Suppose f is a continuous function on [a, b], and let F be any antiderivative of f , so that
F ′ = f . Since f is continuous, it must be integrable; in other words, its definite integral from x = a
to x = b is well defined by a limit of Riemann sums, namely,∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (x ∗
k ) �x = lim

n→∞

n∑
k=1

F ′(x ∗
k ) �x,

where, for each n, we define �x = b − a
n

and x k = a + k�x, and where each x ∗
k is a point in the

subinterval [x k−1, x k]. Note that we could write f (x ∗
k ) = F ′(x ∗

k ), because f = F ′ by hypothesis.

We can choose each x ∗
k to be any point we like in the subinterval [x k−1, x k]. The key to this proof

is to use the Mean Value Theorem to choose the points x ∗
k in a very special way. Since, by hypothesis,

F is differentiable on [x k−1, x k], it is also continuous on that subinterval. Therefore the Mean Value
Theorem applies to F on [a, b] = [x k−1, x k] and says that there exists some point ck ∈ [x k−1, x k] such
that

F ′(ck) = F(x k) − F(xk − 1)
x k − xk − 1

.

Because we can choose x ∗
k to be any point we like in [x k−1, x k], we will choose it to be the point ck

that we defined for that subinterval. Since x k − x k−1 = �x, when we substitute this expression for
F ′(x ∗

k ) into our Riemann sum expression for
∫ b

a f (x) dx, we have
∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

F(x k) − F(xk − 1)
�x

�x = lim
n→∞

n∑
k=1

(F(x k) − F(x k−1)).

For every n, this sum is what is known as a telescoping sum; this means that if we write out
the terms of this sum, then, after rearranging terms, we find that most will cancel each other out
and, luckily, the sum will collapse like a folding telescope:

n∑
k=1

(F(x k) − F(x k−1)) = (F(x 1) − F(x 0)) + (F(x 2) − F(x 1)) + (F(x 3) − F(x 2))

+ · · · + (F(x n−1) − F(x n−2)) + (F(x n) − F(x n−1))

= −F(x 0) + (F(x 1) − F(x 1)) + (F(x 2) − F(x 2))

+ · · · + (F(x n−1) − F(x n−1)) + F(x n)

= −F(x 0) + 0 + 0 + · · · + 0 + F(x n) = F(b) − F(a).

Putting this computation together with our Riemann sum calculation of the definite integral and
taking what is now a very simple limit, we have the equality that we seek:∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

(F(x k) − F(x k−1)) = lim
n→∞(F(b) − F(a)) = F(b) − F(a).
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Examples and Explorations

EXAMPLE 1 Distance travelled is the definite integral of velocity

Suppose a car travelled 100 miles along a straight path in two hours. If s(t) describes the
car’s position in feet after t hours and v(t) = s′(t) describes its velocity in miles per hour
after t hours, find the signed area between the graph of v(t) and the t-axis from t = 0 to
t = 2.

SOLUTION

If s(0) = 0 miles, then s(2) = 100 miles. By the Fundamental Theorem of Calculus and the
fact that s(t) is an antiderivative of v(t), the signed area under the graph of v(t) on [0, 2] is

∫ 2

0
v(t) dt = s(2) − s(0) = 100 − 0 = 100.

Note that we didn’t need to know anything about the velocity function to do this calcula-
tion; all we had to know was the change in the position of the car over the time interval
[0, 2]. Neither did we have to calculate any limits or Riemann sums to find the definite
integral

∫ 2
0 v(t) dt. �

EXAMPLE 2 Calculating definite integrals with the Fundamental Theorem of Calculus

Use the Fundamental Theorem of Calculus to calculate the exact values of the following
definite integrals:

(a)
∫ 4

2
(x 2 + 1) dx (b)

∫ π

−π

sin x dx (c)
∫ 2

0

1
x − 1

dx

SOLUTION

(a) Calculating this definite integral exactly with the Fundamental Theorem of Calculus is
as easy as antidifferentiating x 2 + 1 and then evaluating from 2 to 4:

∫ 4

2
(x 2 + 1) dx =

[
1
3

x 3 + x
]4

2
=

(
1
3

(4)3 + 4
)

−
(

1
3

(2)3 + 2
)

= 62
3

.

Notice that the Fundamental Theorem just allowed us to calculate a definite integral
quickly without having to make a lengthy computation of limits of Riemann sums.
Compare this solution with the work we did to investigate the same definite integral
in Examples 1 and 2 from Section 4.3.

(b) Since an antiderivative of sin x is −cos x (check this by differentiating), cos(π ) = −1,
and cos(−π ) = −1, we have∫ π

−π

sin x dx = [ −cos x
]π

−π
= −cos(π ) − (−cos(−π )) = −(−1) − (−(−1)) = 0.

(c) At first glance we might be tempted to apply the Fundamental Theorem and say that∫ 2
0

1
x − 1

dx is equal to
[

ln |x − 1|]2
0 = ln |1|− ln |−1| = 0. But this is not the correct

answer, because 1
x − 1

is not continuous at x = 1, which is part of the interval [0, 2].

The Fundamental Theorem of Calculus can be used only if a function is continuous
on the entire interval [a, b]. At this point we do not have the tools to discuss the area
under the graph of a function with a vertical asymptote in the interval (although we
will in Section 5.6). �
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CHECKING
THE ANSWER

We can use calculator graphs to check that our definite integral calculations are reason-
able. The graphs shown next illustrate the three areas we discussed in the previous exam-
ple. In the example, we found that the first area was 62

3
, which is just over 20 units; this

seems reasonable given the leftmost graph. The middle graph clearly shows an area of 0,
since the regions below and above the x-axis are the same size; this answer matches with
the calculation we made. The rightmost graph shows that the function 1

x − 1
has an asymp-

tote at x = 1 over which we cannot integrate.

∫ 4

2
(x 2 + 1) dx

∫ π

−π

sin x dx Can’t talk about this area yet

0

25

0 5

4�4

�1

1

4

�1

1

�1 3

�6

6

EXAMPLE 3 Using the Fundamental Theorem of Calculus to find a signed area

Find the signed area between the graph of f (x) = 3e 2x−5 − 3 and the x-axis from x = 1 to
x = 3. Use a graph to verify that the sign of your answer is reasonable.

SOLUTION

By definition, the signed area is the definite integral of f on [1, 3]. Using integration

formulas and a little guess and check, we find that F(x) = 3
2

e 2x−5 − 3x is an antiderivative

of f (x) = 3e 2x−5 − 3. By the Fundamental Theorem of Calculus, the signed area is then

∫ 3

1
(3e 2x−5 − 3) dx =

[
3
2

e 2x−5 − 3x
]3

1

=
(

3
2

e 2(3)−5 − 3(3)
)

−
(

3
2

e 2(1)−5 − 3(1)
)

= 3
2

e − 3
2

e−3 − 6 ≈ −1.99726.

To determine whether it is reasonable that our answer is negative, we must first know
where the function f (x) = 3e 2x−5 − 3 is positive and where it is negative. The graph of f
crosses the x-axis when f (x) = 0. Solving 3e 2x−5 − 3 = 0, we get x = 5

2
= 2.5. As you can

see in the following graph of f , f (x) is negative on [1, 2.5] and positive on [2.5, 3]:

y

1 2 3
x

8

6

4

2

�2
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Since the part of the region in question that is below the x-axis is larger than the part of
the region that is above the x-axis, it does make sense that the signed area of the region is
negative. �

CHECKING
THE ANSWER

There are many ways that we can check calculations that use the Fundamental Theorem
of Calculus. First, we can check the antidifferentiation step by differentiating. For instance,
for the previous example we can verify that

d
dx

(
3
2

e 2x−5 − 3x
)

= 3
2

(2)e 2x−5 − 3 = 3e 2x−5 − 3.

Second, we can check the numerical answer of a definite integral calculation by approxi-
mating the value of the definite integral with a graphing calculator or other graphing utility.
We can also quickly check that the size and sign of the numerical answer make sense in
terms of the graph of the function, as we did at the end of the previous example.

EXAMPLE 4 Computing a value of f given a value of f and the area under f ′

Suppose f is a function whose derivative f ′ is shown next. Given that f (1) = 3, use the
Fundamental Theorem of Calculus and the graph of f ′ to approximate f (4).

Graph of f ′ and the area
∫ 4

1
f ′(x) dx

4

3

2

1

1 2 3 4 5

y

x

SOLUTION

By the Fundamental Theorem of Calculus, we know that the value f (1), the value f (4), and
the area under the graph of f ′ on [1, 4] are related. Specifically, we know that∫ 4

1
f ′(x) dx = f (4) − f (1).

Solving for f (4) gives us

f (4) = f (1) +
∫ 4

1
f ′(x) dx.

We are given that f (1) = 3, so all that remains is to approximate the value of the definite
integral. We can do this by using the grid in the given figure. Each box in the grid has a

length and height of half a unit, and therefore each box has an area of
(

1
2

) (
1
2

)
= 1

4
square

units. By counting boxes (and estimating “partial” boxes), we see that the area under the
graph of f ′ from x = 1 to x = 4 covers approximately 26.5 boxes. Therefore the area

in question is approximately 26.5
(

1
4

)
≈ 6.6. This means that the value of f (4) must be

approximately

f (4) = f (1) +
∫ 4

1
f ′(x) dx ≈ 3 + 6.6 = 9.6.
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Notice that we were able to find an approximate value of f (4) even though we were never
given a graph or equation for the function f . �

EXAMPLE 5 Finding net change with a definite integral

A termite colony is slowly dying off in such a way that the number of termites P(t) after
t weeks is changing at a rate of P ′(t) = −576.68(0.794)t. Determine the number of termites
that die in the first three weeks, and interpret your answer as an area under a curve.

SOLUTION

By the Net Change Theorem, we can find the net change in the number of termites over
the first three weeks by calculating a definite integral:

∫ 3

0
−576.68(0.794)t =

[−576.68
ln 0.794

(0.794)t
]3

0

= −576.68
ln 0.794

(0.794)3 − −576.68
ln 0.794

(0.794)0

≈ −1248.58.

Therefore about 1249 termites in the colony die in the first three weeks. To visualize this
answer as the area under a curve, consider the graph of the rate P ′(t) shown next at the
left. Notice that this rate is negative, since the termites are dying, and that the rate has a
large magnitude at first and then tapers towards zero. The net change in termites is shown
at the right, as the signed area between the graph of P ′(t) and the t-axis on the interval
[0, 3].

Rate of change P ′(t) of the termite population Net change in the termite population on [0, 3]

t

P’

�100

�200

�300

�400

�500

�600

987654321 10 t

P’

�600

�500

�400

�300

�200

�100

987654321 10

�

TEST YOUR? UNDERSTANDING
� How does the Fundamental Theorem of Calculus connect definite and indefinite

integrals?

� What important theorem is the key to proving the Fundamental Theorem of Calculus?

� What is the identifying characteristic of a telescoping sum?

� Does the Fundamental Theorem of Calculus necessarily apply to a discontinuous func-
tion? Why or why not?

� How can you check your answer after applying the Fundamental Theorem of Calculus
to calculate a definite integral?
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EXERCISES 4.5

Thinking Back

� Definite integrals: State the definition of the definite in-
tegral of an integrable function f on [a, b].

� Indefinite integrals: State the definition of the indefinite
integral of an integrable function f .

� Approximating with a Riemann sum: Use a right sum
with 10 rectangles to approximate the area under the
graph of f (x) = x 2 on [0, 5].

� Limits of Riemann sums: Use a limit of Riemann sums
to calculate the exact area under the graph of f (x) = x 2

on [0, 5].

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Definite integrals and indefinite inte-
grals are the same.

(b) True or False: If f is integrable on [a, b] and F is any
other function, then

∫ b
a f (x) dx = F(b) − F(a).

(c) True or False: The Fundamental Theorem of Calculus
applies to f (x) = sin x on [0, π ].

(d) True or False: The Fundamental Theorem of Calculus
applies to f (x) = tan x on [0, π ].

(e) True or False: If f is an even function, a is a real
number, and f is integrable on [−a, a], then∫ a
−a f (x) dx = 0.

(f) True or False: If f is an odd function, a is a real number,
and f is integrable on [−a, a], then

∫ a
−a f (x) dx = 0.

(g) True or False: If f is an even function, a is a real num-
ber, and f is integrable on [−a, a], then

∫ 0
−a f (x) dx =∫ a

0 f (x) dx.

(h) True or False: If f is an odd function, a is a real num-
ber, and f is integrable on [−a, a], then

∫ 0
−a f (x) dx =∫ a

0 f (x) dx.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f for which the Fundamental Theorem of
Calculus does not apply on [0, 10].

(b) Three functions f that we do not yet know how to
antidifferentiate.

(c) A non-constant function f for which
∫ 4

0 f (x) dx = 0.

3. Why is the Fundamental Theorem of Calculus such an
incredible, fundamental theorem?

4. State the Fundamental Theorem of Calculus (a) in its
original form, (b) in its alternative form, and (c) by using
an indefinite integral and evaluation notation.

5. What important theorem is the key to proving the Fun-
damental Theorem of Calculus?

6. Why must the integrand be an integrable function in the
Fundamental Theorem of Calculus?

7. Intuitively, the average value of a velocity function should
be the same as the average rate of change of the cor-

responding position function. Explain why this intuition
suggests that the signed area under the velocity graph on
an interval is equal to the difference in the position func-
tion on that interval, and tell what this has to do with the
Fundamental Theorem of Calculus.

8. Why is it not necessary to write down an antiderivative
family when using the Fundamental Theorem of Calculus
to calculate definite integrals? In other words, why don’t
we have to use “+C”?

Suppose f is a function whose derivative f ′ is given by the
graph shown next. In Exercises 9–12, use the given value
of f , an area approximation, and the Fundamental Theorem
to approximate the requested value.

Graph of f ′, the derivative of f

5

4

3

y

�1
�2 �1 4321

x

2

1

2

9. Given that f (3) = 2, approximate f (4).

10. Given that f (0) = −1, approximate f (2).

11. Given that f (2) = 3, approximate f (−2).

12. Given that f (−1) = 2, approximate f (1).

Calculate each definite integral in Exercises 13–14, using (a)
the definition of the definite integral as a limit of Riemann
sums, (b) the definite integral formulas from Theorem 4.13,
and (c) the Fundamental Theorem of Calculus. Then show
that your three answers are the same.

13.
∫ 2

1
3x 2 dx 14.

∫ 4

0
(3x + 2)2 dx

15. In the proof of the Fundamental Theorem of Calculus we
encounter a telescoping sum. Find the values of the fol-
lowing sums, which are also telescoping.

(a)
100∑
k=1

(
1
k

− 1
k + 1

)
(b)

100∑
k=1

k 2 − (k − 1)2

2
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16. Determine whether or not each statement that follows
is equivalent to the Fundamental Theorem of Calculus.
Assume that all functions here are integrable.

(a) If f ′(x) = F(x), then
∫ b

a F(x) dx = [
f (x)

]b
a.

(b)
∫ b

a G(x) dx = [G′(x)]b
a.

(c) If h(x) is the derivative of g(x), then
∫ b

a h(x) dx =
g(b) − g(a).

(d)
[∫

w′(x) dx
]b

a = ∫ b
a w(x) dx.

(e)
[∫

s′(x) dx
]b

a = [s′′(x)]b
a.

17. Determine whether or not each statement that follows
is equivalent to the Fundamental Theorem of Calculus.
Assume that all functions here are integrable.

(a)
∫ b

a f (x) dx = g(b) − g(a), where g′(x) = f (x).

(b) If f ′(x) = F(x), then
∫ b

a f (x) dx = [F(x)]b
a.

(c) If g(x) is any antiderivative of h(x), then∫ b
a h(x) dx = g(a) − g(b).

(d)
∫ b

a h′′(x) dx = [h′(x)]b
a.

(e)
[∫

p(x) dx
]b

a = ∫ b
a p(x) dx.

18. In the proof of the Fundamental Theorem of Cal-
culus, the Mean Value Theorem is used to choose val-
ues x ∗

k in each subinterval [x k−1, x k]. Use the Mean Value
Theorem in the same way to find the corresponding
values x ∗

k for a Riemann sum approximation of
∫ 2

0 x 2 dx
with four rectangles.

Skills

Use the Fundamental Theorem of Calculus to find the exact
values of each of the definite integrals in Exercises 19–64. Use
a graph to check your answer. (Hint: The integrands that involve
absolute values will have to be considered piecewise.)

19.
∫ 1

−1
(x 4 + 3x + 1) dx 20.

∫ 3

−3
(x − 1)(x + 3) dx

21.
∫ 4

1
3(2 x ) dx 22.

∫ 3

0
(x 2 − 4)2 dx

23.
∫ 5

2

1√
x 5

dx 24.
∫ π

−π

sin(3x) dx

25.
∫ 3

1

√
x − 1√

x
dx 26.

∫ 3

1
2x

√
x 2 + 1 dx

27.
∫ π/4

0
sec x tan x dx 28.

∫ π/4

0
sec2 x dx

29.
∫ √

2/4

0

1√
1 − 4x 2

dx 30.
∫ 1/2

0

1
1 + 4x 2

dx

31.
∫ π

−π

(1 + sin x) dx 32.
∫ 4

2
3e 2x−4 dx

33.
∫ 1

0

1
2e x

dx 34.
∫ 4

2

1
4 − 3x

dx

35.
∫ 1

0

1
1 + x 2

dx 36.
∫ 1

0

x
1 + x 2

dx

37.
∫ 1

−1

2 x

4 x dx 38.
∫ π

0
(sin2 x + cos2 x) dx

39.
∫ 2

−3

1
x + 5

dx 40.
∫ 2

−3

1
(x + 5)2

dx

41.
∫ 2

−3

2x
x 2 + 5

dx 42.
∫ 2

−3

x 2 + 5
2x

dx

43.
∫ 4

1

2x + 3
x 2 + 3x + 4

dx 44.
∫ π/2

π/4
csc x cot x dx

45.
∫ 3/2

0

1√
9 − x 2

dx 46.
∫ 3

−3
2 cos(πx) dx

47.
∫ e−3

1

3π

2x + 6
dx 48.

∫ e

1
2(ln x)

(
1
x

)
dx

49.
∫ 1

0
(x 2/3 − x1/3) dx 50.

∫ 4

0

1
(2x + 1)5/2

dx

51.
∫ π/2

0
sin x(1 + cos x) dx 52.

∫ 3

2

ln x
x

dx

53.
∫ 1

−1

e x − xe x

e2x
dx 54.

∫ 2

1

x 2e x − 2xe x

x 4
dx

55.
∫ π/2

π/4
x csc2(x 2) dx 56.

∫ π/4

−π/4
x 2 sec2(x 3) dx

57.
∫ 4

2

3x
1 − x 2

dx 58.
∫ 1

0

2 x − 3 x

4 x dx

59.
∫ 5

−2
|x − 2| dx 60.

∫ 3

−1
|4 − x 2| dx

61.
∫ 4

−2
|2x 2 − 5x − 3| dx 62.

∫ 6

0
|(x − 1)(x − 4)| dx

63.
∫ 5π/4

0
| sin x| dx 64.

∫ 1

−1
|e 2x − 1| dx

Applications
65. Suppose a large oil tank develops a hole that causes oil

to leak from the tank at a rate of r(t) = 0.05t gallons
per hour. Construct and then solve a definite integral to
determine the amount of oil that has leaked from the tank
after one day.

66. Suppose another oil tank with a hole in it takes three
days to leak 11 gallons of oil. Assuming that the rate of
leakage at time t is given by r(t) = kt for some constant k,
set up and solve an equation involving a definite integral
to find k.
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67. A figurine that is part of the display in a mechanical
music box moves back and forth along a straight track
as shown next at the left. The mechanics of the music
box are programmed to move the figurine back and forth
with velocity

v(t) = 0.00015t(t − 5)(t − 10)(t − 15)(t − 20)

inches per second over the 20 seconds that the music pro-
gram plays; see the graph next at the right.

v(t)

Velocity v(t) of the figurine

�1

�2

v

t
2015105

2

1

(a) Use the graph just shown to describe the direction
of motion of the figurine during various parts of the
music program.

(b) Determine the net distance travelled by the figurine
in the first 5 seconds, the first 10 seconds, and the full
20-second music program.

(c) Determine the total amount of distance travelled by
the figurine in either direction along the track.

68. Water is evaporating from an open vase. The rate of evap-
oration changes according to the amount of exposed sur-
face area at the top of the container in such a way that
the rate of change of the volume of water in the vase is
given by

V ′(t) = −0.05π (10 − 0.2t)2

cubic centimeters per hour. The vase initially contains
200 cubic centimeters of water. Use the Net Change The-
orem to determine the amount of time it will take for all
of the water in the vase to evaporate.

69. Many email filters can be trained how to recognize spam
by having a user identify spam messages from a lineup.
Suppose you have looked at 12 messages with the word
“opportunity” in the subject line, and identified 8 of them
to the filter as spam. Now you get a new message with
that word in the subject line, and your filter must com-
pute the probability p that the message is spam. One way
to do that is to identify p as the expected value of the Beta
distribution

f (x) = 6435x 8(1 − x)4.

The expected value of this distribution is

∫ 1

0
x f (x) dx.

Evaluate the probability that the next message you receive
with the word “opportunity” in the subject line will be
spam.

70. During World War II, a handful of German submarines
were captured by the Allies to get access to German
codes. On one of these submarines, the submarine’s
depth had been plotted carefully as D(t), in meters, where
t measures the number of hours after noon on that day.
Unfortunately, during the capture, the information about
D(t) was lost. However, the following graph of the rate of
change D′(t) of the submarine’s depth was recovered:

Rate of change D′(t)
of the depth of a submarine

�40

D’

t
6 854321 7

20

�20

40

(a) At 4:00 p.m., was the submarine rising or falling? Was
it speeding up or slowing down?

(b) Was the submarine closer to the surface at 2:00 p.m.
or at 5:00 p.m.?

(c) At the end of the first two hours of the voyage, had
the submarine risen or fallen from its position at the
beginning? By how much?

(d) Approximately how much did the submarine rise or
fall in the two minutes after 6:00 p.m.?

(e) At what time was the submarine diving at the fastest
rate?

(f) When was the submarine at its highest point?
(g) Suppose the submarine was on the surface when it

was at its highest point. What was the greatest depth
of the submarine during its voyage that day?

71. A specialty bookshop is open from 8:00 a.m. to 6:00 p.m.
Customers arrive at the shop at a rate r(t) arrivals per
hour. A graph of r(t) for the duration of the business day
is shown here, where t is the number of hours after the
shop opens at 8:00 a.m. As a group, the salespeople in the
bookshop can serve customers at a rate of 30 customers
per hour. If there are no salespeople available, customers
have to wait in line until they can be served, and the cus-
tomers are willing to wait as long as is necessary in this
line. Use the graph of r(t) to estimate answers to the ques-
tions that follow.

Rate r(t) of arrivals at a bookshop

10

r

t
6 8 1054321 7 9

40

30

20

50
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(a) At noon, approximately how many people had en-
tered the bookshop so far? Is there a line yet, and if
so, how long is it?

(b) At what rate is the line at the bookshop growing (or
shrinking) at 1:00 p.m.?

(c) At approximately what time of day is the line the
longest, and how many people are in the line at that
time?

(d) At 6:00 p.m. when the bookshop closes, has every cus-
tomer been served or is there still a line at closing
time?

Proofs

Use the Fundamental Theorem of Calculus to give alternative
proofs of the integration facts shown in Exercises 72–76. You
may assume that all functions here are integrable.

72.
∫ b

a
c dx = c(b − a) 73.

∫ b

a
x dx = 1

2
(b2 − a2)

74.
∫ b

a
x 2 dx = 1

3
(b3 − a3) 75.

∫ b

a
kf (x) dx = k

∫ b

a
f (x) dx

76.
∫ b

a
( f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx

77. Prove the Fundamental Theorem of Calculus in your own
words. Use the proof in this section as a guide.

78. Prove that the Net Change Theorem (Theorem 4.27) is
equivalent to the Fundamental Theorem of Calculus.

79. Prove that if two functions F and G differ by a constant,
then [F(x)]b

a = [G(x)]b
a.

80. Use evaluation notation and the Fundamental Theo-
rem of Calculus to prove Theorem 4.26:

∫ b
a f (x) dx =[∫

f (x) dx
]b

a.

Thinking Forward

Functions Defined by Integrals: Suppose A(x) is the function
that for each x > 0 is equal to the area under the graph of
f (t) = t 2 from 0 to x.

� Write an equation that defines A(x) in terms of a defi-
nite integral. (Hint: Let the variable inside the integral be
t, so as not to confuse it with the variable x.)

� Calculate A(0), A(1), A(2), A(3), and A(4).

� Sketch a graph of f (x) = x 2 and a graph of A(x) on the
same set of axes.

� Use the Fundamental Theorem of Calculus to find an
equation for A(x) that does not involve an integral.

� Use the equation for A(x) that you just found to find
A′(x). What do you notice about A′(x) and f (x)?

� Use the graphs of A(x) and f (x) that you drew
earlier to illustrate the relationship between A′(x)
and f (x) that you just discovered. Use the words
increasing, decreasing, positive, and negative in your
discussion.

4.6 AREAS AND AVERAGE VALUES

� Definite integrals of functions whose values are sometimes negative

� Using definite integrals to find the area between two curves

� Average value as a definite integral, and the Mean Value Theorem for Integrals

The Absolute Area Between a Graph and the x-axis

We have seen that Riemann sums, and thus definite integrals, automatically count area
above the x-axis positively and area below the x-axis negatively. But what if we want to
count the true area of a region, counting both area above and below the x-axis positively?
The definite integral will not do this automatically, but we can use absolute values to express
such an absolute area with a definite integral.
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THEOREM 4.28 Signed Area and Absolute Area

For any integrable function f on an interval [a, b],

(a) The signed area between the graph of f and the x-axis from x = a to x = b is given
by the definite integral

∫ b
a f (x) dx.

(b) The absolute area between the graph of f and the x-axis from x = a to x = b,
counting all areas positively, is given by the definite integral

∫ b
a | f (x)| dx.

The first part of this theorem follows directly from the definition of signed area and the
definite integral. The second part of the theorem follows from the fact that the graph of
the absolute value of a function can be obtained by reflecting all the negative portions
of the graph over the x-axis.

For example, consider the region between the graph of f (x) = x − 1 and the x-axis on
[0, 3]. This region consists of a small triangle below the x-axis with area 1/2 and a larger
triangle above the x-axis with area 2; see the figure next at the left. The signed area of this
region is (−1/2) + 2 = 3/2, and the absolute area of the region is (1/2) + 2 = 5/2. The
figure next at the right shows the graph of y = |x − 1|, in which the triangle in the fourth
quadrant has been reflected into the first quadrant.

∫ 3

0
(x − 1) dx = (−1/2) + 2 = 3/2

∫ 3

0
|x − 1| dx = (1/2) + 2 = 5/2

y

x
1 2 3

�1

2

1

y

x
1 2 3

�1

2

1

Although the second part of Theorem 4.28 gives us an expression for absolute area
in terms of a definite integral, we cannot immediately calculate this type of definite inte-
gral with the Fundamental Theorem of Calculus. The reason is that we do not in general
know how to antidifferentiate functions that involve absolute values. However, since we
can write absolute values in terms of piecewise-defined functions, we write any definite
integral of the form

∫ b
a | f (x)| dx as a sum of definite integrals that do not involve absolute

values. Specifically, to calculate the integral of | f (x)|, we will split up the interval [a, b] into
smaller intervals on which f is either always above or always below the x-axis and then
add negative signs as needed to turn negative values into positive values. For example, the
definite integral described earlier can be split as

∫ 3

0
|x − 1| dx = −

∫ 1

0
(x − 1) dx +

∫ 3

1
(x − 1) dx = −(−1/2) + 2 = 5/2.

Areas Between Curves

We can think of the area between the graph of a function f and the x-axis on an interval
[a, b] as the area between two graphs, namely, the graph of f and the graph of y = 0, on
the interval [a, b]. What about the area between the graph of f and the graph of some other
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function g on [a, b]? For example, consider the region between the curves f (x) = x + 2 and
g(x) = x 2 on the interval [−1, 2], as shown here:

Region between f (x) = x + 2
and g(x) = x 2 on [−1, 2]

y

x
�2 �1 1 2

5

4

3

2

1

One way to find the area of this region is to calculate the area under the upper graph
( f (x) = x+2) on [−1, 2] and subtract the area under the lower graph ( f (x) = x 2) on [−1, 2].
These two areas are shown in the first and second figures here:

∫ 2

−1
(x + 2) dx

∫ 2

−1
x 2 dx Subtract beige area from blue area

y

x
�2 �1 1 2

5

4

3

2

1

y

x
�2 �1 1 2

5

4

3

2

1

y

x
�2 �1 1 2

5

4

3

2

1

From these pictures and the properties of definite integrals, we can express the area
between f and g as a definite integral that we could easily calculate:

Area between f (x) = x + 2
and g(x) = x 2 on [−1, 2]

=
∫ 2

−1
(x + 2) dx −

∫ 2

−1
x 2 dx =

∫ 2

−1
((x + 2) − x 2) dx.

The following definition generalizes this method of finding the area between two
curves:

DEFINITION 4.29 The Area Between Two Graphs

If f and g are integrable functions, then the area between the graphs of f and g from
x = a to x = b is ∫ b

a
| f (x) − g(x)| dx.

On any interval [c, d] where f (x) ≥ g(x), we will have | f (x) − g(x)| = f (x) − g(x). The

area between the graphs of f and g on such an interval will be simply
∫ d

c ( f (x) − g(x)) dx.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

378 Chapter 4 Definite Integrals

Similarly, on any interval [r, s] where g(x) ≥ f (x), we will have | f (x) − g(x)| = g(x) − f (x),

and the area between the graphs of f and g on this interval will be
∫ s

r ( g(x) − f (x)) dx. In
general, sometimes f (x) will be greater than g(x), and sometimes it will be less than g(x).
In such cases we will have to split up the interval [a, b] into smaller intervals on which
f (x) is always greater than g(x)–or vice versa–so we can express the area without using any
absolute values, as will be shown in Example 2.

CAUTION The phrase “area between the graphs of f and g” always refers to an absolute area. The
definite integral in Definition 4.29 does not consider the area between f and g to be positive
or negative depending on whether it is, respectively, above or below the x-axis.

The Average Value of a Function on an Interval

So far we have used definite integrals to find areas; we will now investigate how definite
integrals can be used to find the average value of a function on an interval. We will motivate
our development of the definition of average value with a discrete approximation. Suppose
we wish to approximate the average height of a plant during the first four days of its growth,
given that the function f (x) = 0.375x 2 describes the height of the plant, in centimeters, x
days after it breaks through the soil. We can approximate the average height of this plant
by choosing a discrete number of x-values, for example x = 1, x = 2, x = 3, and x = 4, and
averaging the heights f (x) of the plant at these times:

f (1) + f (2) + f (3) + f (4)
4

= 0.375(1)2 + 0.375(2)2 + 0.375(3)2 + 0.375(4)2

4
= 2.8125 cm.

This answer seems reasonable given the graph of the plant height function f (x) shown next;
the height y = 2.8125 does seem to be approximately the average height of the graph over
[0, 4].

Height of the plant after
x days is f (x) = 0.375x 2

h

t
3 41 2

6

5

4

3

2

1

Of course, during the first four days the plant has more than just four heights. The
height of the plant changes continuously as x changes, and we took into account only a
discrete number of plant heights. To make a better approximation of the average height of
the plant, we could average over a larger number of heights; for example, we could consider
the height of the plant every quarter day (at x = 0.25, x = 0.5, x = 0.75, and so on until
x = 4) and average those 16 heights:

f (0.25) + f (0.5) + f (0.75) + · · · + f (3.75) + f (4)
16

≈ 2.1914 cm.

We can make as good an approximation as we like for the average value by choosing
a large enough sample size n. To make n height measurements at equally spaced times,

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

4.6 Areas and Average Values 379

we would measure every b − a
n

= 4
n

days, at times x k = 0 + k
(

4
n

)
for k = 1 to k = n. The

average value of the height function over those n measurements is

f (x 1) + f (x 2) + f (x 3) + · · · + f (x n)
n

=
∑n

k=1 f (x k)
n

= 1
b − a

n∑
k=1

f (x k)�x.

In the last step of the calculation, we used the fact that �x = b − a
n

. This equation should

look awfully familiar to you. As we let n approach infinity we obtain the exact average value
on [a, b]. But as n → ∞ we are taking a limit of Riemann sums, which is a definite integral!

This discussion suggests the following general definition of average value:

DEFINITION 4.30 The Average Value of a Function on an Interval

The average value of an integrable function f on an interval [a, b] is defined to be 1
b − a

times the definite integral of f on [a, b]:

Average value of f
from x = a to x = b

= 1
b − a

∫ b

a
f (x) dx.

Definition 4.30 gives us another way to utilize the power of the Fundamental Theorem of
Calculus. Because we can express the exact average value of a function f on an interval in
terms of a definite integral, we can find that average value as long as we can antidifferentiate
the function f ; see part (a) of Example 3.

The Mean Value Theorem for Integrals

The Mean Value Theorem (Theorem 3.5) guaranteed that for any function f (x) that is con-
tinuous on a closed interval [a, b] and differentiable on (a, b), there is always some point c
in [a, b] where the slope of f is equal to the average rate of change of f on [a, b]. We can
now say a similar thing about finding a point c where the height of a function f is equal to
its average value on an interval [a, b].

Intuitively, the average value of a function f on [a, b] should be between the highest and
lowest values of f on that interval. By the Intermediate Value Theorem from Section 1.4, the
function f has to achieve that average value at some point c ∈ (a, b). This property suggests
the following theorem, which you will prove in Exercise 82:

THEOREM 4.31 The Mean Value Theorem for Integrals

If f is continuous on a closed interval [a, b], then there exists some c ∈ (a, b) such that

f (c) = 1
b − a

∫ b

a
f (x) dx.

Note that the Mean Value Theorem for Integrals tells us only that a certain value x = c must
exist, not what that value is. If we want to actually find the values x = c for which the height
of a function is equal to its absolute value, we have to use the Fundamental Theorem of
Calculus and solve the equation in Theorem 4.31 for x = c.

Our construction in Definition 4.30 means that the average value of a function on an
interval is related to the signed area under the same function on the same interval. Specif-
ically, if f (c) = K is the average value of f on an interval [a, b], then

K = 1
b − a

∫ b

a
f (x) dx ⇒ K(b − a) =

∫ b

a
f (x) dx.
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This means that the signed area under the graph of f from x = a to x = b is equal to K(b−a),
which is the area of a rectangle of height K and width b − a. One way to think of this area
is to imagine the region between the graph of f and the x-axis as the cross section of a
wave of water, as if we are looking, from the side, at water sloshing in a glass tank. When
the water settles, it will have a height of K, which means that its height will be the average
value of the function f on the interval.

For example, consider the following graphs:

Average value y = K
of f on [0, 4]

Area under the graph of
y = f (x) on [0, 4]

Area under the graph of
y = K on [0, 4]

y

x
3 41 2

6

5

4

3

2

1

y

x
3 41 2

6

5

4

3

2

1

y

x
3 41 2

6

5

4

3

2

1

Notice that the area of the shaded region in the middle figure is the same as the area of
the shaded region in the last figure. In addition, the value x = c guaranteed by the Mean
Value Theorem for Integrals is approximately x = 2.3 in this example, since, according to
the figure at the left this is the value at which the height of the function f is equal to the
average value shown at height y = 2.

Examples and Explorations

EXAMPLE 1 Using definite integrals to find signed and absolute areas

Consider the region between the graph of a function f and the x-axis on [−2, 4] as shown
here. Express (a) the signed area and (b) the absolute area of this region in terms of definite
integrals of the function f that do not involve absolute values.

Region between f and x-axis on [−2, 4]

y

x
3 41 2�2 �1

SOLUTION

(a) The signed area of this region is simply the definite integral of f from x = −2 to x = 4;
in other words,

signed area =
∫ 4

−2
f (x) dx.
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(b) The absolute area of the region (counting all areas positively) is
∫ 4
−2 | f (x)| dx. Unfor-

tunately, we do not know how to calculate a definite integral of a function with an
absolute value. However, as usual we can get rid of an absolute value if we are willing
to work piecewise. We will express the absolute area without using absolute values by
using three definite integrals. From x = −2 to x = 1 the function f is negative, and
thus on the interval [−2, 1] we have | f (x)| = −f (x). From x = 1 to x = 3 the function
is positive, so | f (x)| = f (x) on this interval. Finally, from x = 3 to x = 4 the function is
negative, so | f (x)| = −f (x) on [3, 4]. Therefore the absolute area of the region is∫ 4

−2
| f (x)| dx = −

∫ 1

−2
f (x) dx +

∫ 3

1
f (x) dx −

∫ 4

3
f (x) dx.

Notice that in this expression,
∫ 1
−2 f (x) dx is a negative number, and thus − ∫ 1

−2 f (x) dx
will be a positive number. We have essentially just flipped the signs of the definite
integrals that measure area negatively. �

CAUTION In general, absolute values do not commute with definite integrals. In other words,∫ b
a | f (x)| dx is not in general the same as

∣∣∫ b
a f (x) dx

∣∣. This means that to find the absolute
area it is not enough just to take the absolute value of the signed area.

EXAMPLE 2 Using definite integrals to find the area between two graphs

Find the area of the region between the graphs of f (x) = x 2 − x − 2 and g(x) = 4 − x 2 on
the interval [−2, 3].

SOLUTION

According to Definition 4.29, we need to calculate∫ 3

−2
|(x 2 − x − 2) − (4 − x 2)| dx.

However, we do not know how to calculate a definite integral that involves an absolute
value. Once again if we are willing to work piecewise, we can get around this problem.
Our first task is to find the points where f and g intersect. The region whose area we are
interested in calculating is as follows (with f shown in blue and g in red):

Region between f (x) = x 2 − x − 2
and g(x) = 4 − x 2 on [−2, 3]

y

x
4321�1�2�3

6

4

�2

�4

�6

2

The solutions of the equation x 2 −x−2 = 4−x 2 are x = − 3
2

and x = 2, so these are the two

points of intersection shown in the graph. Notice that f is above g on
[
−2, − 3

2

]
, g is above

f on
[
− 3

2
, 2

]
, and f is again above g on [2, 3]. On each of these smaller intervals we can use
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a definite integral to calculate the area between the graphs without requiring an absolute
value. Each such definite integral is easy to calculate with the Fundamental Theorem of
Calculus. Using the fact that f (x) − g(x) = 2x 2 − x − 6, we see that the total area of the
region between the graphs of f and g on [−2, 3] is

∫ 3

−2
| f (x) − g(x)| dx =

∫ −3/2

−2
( f (x) − g(x)) dx +

∫ 2

−3/2
( g(x) − f (x)) dx +

∫ 3

2
( f (x) − g(x)) dx

=
∫ −3/2

−2
(2x 2 − x − 6) dx +

∫ 2

−3/2
−(2x 2 − x − 6) dx +

∫ 3

2
(2x 2 − x − 6) dx

=
[

2
3

x 3 − 1
2

x 2 − 6x
]−3/2

−2
+

[
−

(
2
3

x 3 − 1
2

x 2 − 6x
)]2

−3/2
+

[
2
3

x 3 − 1
2

x 2 − 6x
]3

2

= 23
24

+ 343
24

+ 25
6

= 466
24

.
�

EXAMPLE 3 The difference between average value and average rate of change

Suppose the function f (x) = 0.375x 2 describes the height, in centimeters, of a growing
plant after x days.

(a) Find the average height of the plant during the first four days of its growth.

(b) Find the average rate of growth of the plant over those four days.

SOLUTION

(a) The average height of the plant during the first four days is the average value of the
function f (x) = 0.375x 2 from x = 0 to x = 4, which by Definition 4.30 is

1
4 − 0

∫ 4

0
0.375x 2 dx = 1

4

[
0.375

3
x 3

]4

0
= 1

4

(
0.375

3
(4)3 − 0.375

3
(0)3

)
= 2 cm.

Notice that we reduced the problem of finding the average height of f to the problem of
solving a definite integral. This is something that is simple to do with the Fundamental
Theorem of Calculus, as long as we can find an antiderivative of f . Compare this result
with our earlier approximations for the average height of the plant.

(b) In contrast, the average rate of growth of the plant over the first four days is the
average rate of change of f (x) = 0.375x 2 on [0, 4], which is equal to

f (4) − f (0)
4 − 0

= 0.375(4)2 − 0.375(0)2

4
= 1.5

cm
day

.

Note that this answer makes sense, since the plant grew six centimeters in four days,
and thus its average rate of growth was 6

4
= 1.5 centimeters per day. �

EXAMPLE 4 Interpreting the Mean Value Theorem for Integrals

Answer the following questions about the function f (x) = x 2 on the interval [1, 3]:

(a) Why does the Mean Value Theorem for Integrals apply to this function on this interval?
What can we conclude from it? Interpret this conclusion in terms of an area and in
terms of an average value.

(b) Find a value c that satisfies the conclusion of the Mean Value Theorem for Integrals in
this case.
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SOLUTION

(a) The theorem applies because f (x) = x 2 is continuous on [1, 3]. The conclusion is that
there is some point c ∈ (1, 3) for which f (c) = 1

3 − 1

∫ 3
1 x 2 dx. This means that the

average value of f (x) = x 2 on [1, 3] is equal to the height c2 of the function at the point
c. Multiplying by 3 − 1 we have (3 − 1)f (c) = ∫ 3

1 x 2 dx, which says that the area under
the graph of f (x) = x 2 on [1, 3] is equal to the area of a rectangle with height c 2 and
width 3 − 1.

(b) Of course the Mean Value Theorem for Integrals does not tell us how to find a point
c ∈ (1, 3) at which f achieves its average value, only that such a point must exist.
However, we can easily find the average value by applying the Fundamental Theorem
of Calculus to the expression of average value as a definite integral:

1
3 − 1

∫ 3

1
x 2 dx = 1

2

[
1
3

x 3
]3

1
= 1

2

(
1
3

(3)3 − 1
3

(1)3
)

= 13
3

.

Now it is easy to find a number c ∈ (1, 3) so that f (c) = c2 is equal to this average value:

c 2 = 13
3

=⇒ c = ±
√

13
3

.

Note that −
√

13
3

is not in the interval (1, 3), so the only value c ∈ (1, 3) for which f (c) is

the average value 13
3

is c =
√

13
3

. �

CHECKING
THE ANSWER

In the previous example, we found that the average value of f (x) = x 2 on [1, 3] should

occur at x =
√

13
3

≈ 2.08, and should be f (x) = 13
3

≈ 4.33. This means that the area under

the graph of f on [1, 3] should be equal to the area of the rectangle on [1, 3] with height
approximately 4.33, a result that looks reasonable considering the following two graphs:

Area under f (x) = x 2 on [1, 3] Area under height f (2.08) = 4.33 on [1, 3]

0 4
0

10

0 4
0

16

TEST YOUR? UNDERSTANDING
� What is the difference between signed area and absolute area? Which one does the

definite integral automatically calculate?

� What can you say about f if the signed area between f and the x-axis is zero on an
interval [a, b]? What can you say if the absolute area is zero on that interval?

� Why do we have to know where two graphs f and g intersect in order to calculate the
area between f and g on an interval?

� How can it be that the plant described in the reading grows from 0 to 6 centimeters
in the first 4 days and yet has an average height of only 2 centimeters, rather than 3?
(Hint: Use the shape of the graph.)

� What is the difference between the average value of a function on an interval and the
average rate of change of a function on an interval?
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EXERCISES 4.6

Thinking Back

� Finding sign intervals: Consider the function f (x) =
x3 −4x2 −12x. Find the intervals on which f is positive
and the intervals on which f is negative.

� Finding intersection points: Find the x-coordinates of
the points where the graphs of f (x) = x 3 − 9x 2 and
g(x) = x − 9 intersect.

� The Intermediate Value Theorem: State the Inter-
mediate Value Theorem, and illustrate the theorem
with a graph.

� The Mean Value Theorem: State the Mean Value
Theorem, and illustrate the theorem with a graph.

Absolute values as piecewise-defined functions: Write out each of
the following functions as a piecewise-defined function that
does not involve absolute values.

� f (x) = |x| � f (x) = |2 − 3x|

� f (x) = ∣∣x 2 − 3x − 4
∣∣ � f (x) = ||x − 1| − 1|

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The absolute area between the graph of
f and the x-axis on [a, b] is equal to | ∫ b

a f (x) dx|.
(b) True or False: The area of the region between

f (x) = x − 4 and g(x) = −x 2 on the interval [−3, 3] is
negative.

(c) True or False: The signed area between the graph of f
on [a, b] is always less than or equal to the absolute
area on the same interval.

(d) True or False: The area between any two graphs f and
g on an interval [a, b] is given by

∫ b
a ( f (x) − g(x)) dx.

(e) True or False: The average value of the function f (x) =
x 2 − 3 on [2, 6] is

f (6) + f (2)

2
= 33 + 1

2
= 17.

(f) True or False: The average value of the function f (x) =
x 2 − 3 on [2, 6] is

f (6) − f (2)

4
= 33 − 1

4
= 8.

(g) True or False: The average value of f on [1, 5] is equal
to the average of the average value of f on [1, 2] and
the average value of f on [2, 5].

(h) True or False: The average value of f on [1, 5] is equal
to the average of the average value of f on [1, 3] and
the average value of f on [3, 5].

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f for which the signed area between f and
the x-axis on [0, 4] is zero, and a different function g
for which the absolute area between g and the x-axis
on [0, 4] is zero.

(b) A function f whose signed area on [0, 5] is less than
its signed area on [0, 3].

(c) A function f whose average value on [−1, 6] is
negative while its average rate of change on the same
interval is positive.

3. Without using absolute values, how many definite inte-
grals would we need in order to calculate the absolute

area between f (x) = sin x and the x-axis on
[ − π

2
, 2π

]
?

Will the absolute area be positive or negative, and why?
Will the signed area will be positive or negative, and
why?

4. Without using absolute values, how many definite in-
tegrals would we need in order to calculate the area

between the graphs of f (x) = sin x and g(x) = 1
2

on[ − π

2
, 2π

]
?

5. Suppose f is positive on (−∞, −1] and [2, ∞) and neg-
ative on the interval [−1, 2]. Write (a) the signed area
and (b) the absolute area between the graph of f and the
x-axis on [−3, 4] in terms of definite integrals that do not
involve absolute values.

6. Suppose f (x) ≥ g(x) on [1, 3] and f (x) ≤ g(x) on (−∞, 1]
and [3, ∞). Write the area of the region between the
graphs of f and g on [−2, 5] in terms of definite integrals
without using absolute values.

7. If f is negative on [−3, 2], is the definite integral
∫ 2
−3 f (x) dx

positive or negative? What about the definite integral
− ∫ 2

−3 f (x) dx?

8. Shade in the regions between the two functions shown
here on the intervals (a) [−2, 3]; (b) [−1, 2]; and (c)
[1, 3]. Which of these regions has the largest area? The
smallest?

y

x
�3 �2 1�1 2 3 4

6

�6

�12

12

9. Describe an example that illustrates that
∫ b

a | f (x)| dx is not

equal to |∫ b
a f (x) dx|.
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10. Use the definition of absolute value to explain why the
absolute area

∫ b
a | f (x)| dx counts area positively regardless

of whether it is above or below the x-axis. Include graphs
that support your explanation.

11. Consider the region between f and the x-axis on [−2, 4]
as in the graph next at the left. (a) Draw the rectangles
of the left-sum approximation for the area of this region,
with n = 8. Then express (b) the signed area and (c) the
absolute area of the region with definite integrals that do
not involve absolute values.

Graph for Exercise 11

y

x
�3 �2 1�1 2 3 4 5

2

�2

�4

8

4

6

Graph for Exercise 12

y

x
�3 �2 1�1 2 3

2

�2

�4

4

12. Repeat Exercise 11 for the function f shown above at the
right, on the interval [−2, 2].

13. Consider the region between f and g on [0, 4] as in the
graph next at the left. (a) Draw the rectangles of the left-
sum approximation for the area of this region, with n = 8.
Then (b) express the area of the region with definite inte-
grals that do not involve absolute values.

Graph for Exercise 13

y
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f (x)

x
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Graph for Exercise 14
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14. Repeat Exercise 13 for the function f shown above at the
right, on the interval [−2, 2].

15. Consider the function f shown in the graph next at
the right. Use the graph to make a rough estimate of the
average value of f on [−4, 4], and illustrate this average
value as a height on the graph.

y

x
3

54

21

16. Without calculating any sums or definite integrals, deter-
mine the values of the described quantities. (Hint: Sketch
graphs first.)

(a) The signed area between the graph of f (x) = cos x
and the x-axis on [−π , π ].

(b) The average value of f (x) = cos x on [0, 2π ].

(c) The area of the region between the graphs of f (x) =√
4 − x 2 and g(x) = −√

4 − x 2 on [−2, 2].

17. Suppose f is a function whose average value on
[−2, 5] is 10 and whose average rate of change on
the same interval is −3. Sketch a possible graph for f .
Illustrate the average value and the average rate of change
on your graph of f .

18. Suppose f is a function whose average value on [−3, 1] is
−2 and whose average rate of change on the same in-
terval is 4. Sketch a possible graph for f . Illustrate the
average value and the average rate of change on your
graph of f .

19. State the Mean Value Theorem for Integrals, and explain
what this theorem means. Include a picture with your
explanation. What does the Mean Value Theorem for
Integrals have to do with average values?

20. Explain what the Mean Value Theorem for Integrals has
to do with the Intermediate Value Theorem.

21. Explain why the Mean Value Theorem for Integrals ap-
plies to the function f (x) = x(x − 6) on the interval [1, 5].
Next state the conclusion of the Mean Value Theorem for
Integrals in this particular case, and sketch a graph illus-
trating your conclusion. Then find all the values c ∈ [1, 5]
for which f (c) is equal to the average value of f on [1, 5],
and indicate these values on your graph.

22. Explain why the Mean Value Theorem for Integrals
applies to the function f (x) = x 2 on the interval [−2, 5].
Next state the conclusion of the Mean Value Theorem
for Integrals in this particular case, and sketch a graph
illustrating your conclusion. Then find all the values c ∈
[−2, 5] for which f (c) is equal to the average value of f on
[−2, 5], and indicate these values on your graph.
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Skills

For each function f and interval [a, b] in Exercises 23–25, use
at least eight rectangles to approximate (a) the signed area
and (b) the absolute area between the graph of f and the
x-axis from x = a to x = b. Your work should include a graph
of f together with the rectangles that you used.

23. f (x) = x 2 − 3x − 4, [−5, 5]
24. f (x) = cos x, [−2π , 2π ]
25. f (x) = 1 − e x, [−1, 3]

For each function f and interval [a, b] in Exercises 26–37, use
definite integrals and the Fundamental Theorem of Calculus
to find the exact values of (a) the signed area and (b) the abso-
lute area of the region between the graph of f and the x-axis
from x = a to x = b.

26. f (x) = x 2, [−2, 2]

27. f (x) = 3 − x, [0, 5]
28. f (x) = x 2 − 1, [−1, 3]
29. f (x) = 2x 2 − 7x + 3, [0, 4]
30. f (x) = 1 − x 2, [0, 3]
31. f (x) = 3x 2 + 5x − 2, [−3, 2]
32. f (x) = cos x, [a, b] = [−π , π ]
33. f (x) = (2x − 1)2 − 4, [a, b] = [−2, 4]
34. f (x) = 2 − e−x, [a, b] = [−1, 0]

35. f (x) = 1
2x 3

, [a, b] = [1, 3]

36. f (x) = 3 − 2x
x 2

, [a, b] = [1, 4]

37. f (x) = 1
1 + x 2

, [a, b] = [−1, 1]

For each pair of functions f and g and each interval [a, b] in
Exercises 38–40, use at least eight rectangles to approximate
the area of the region between the graphs of f and g on the
interval [a, b]. Your work should include graphs of f and g to-
gether with the rectangles that you used.

38. f (x) = sin x, g(x) = cos x, [0, π ]

39. f (x) = x, g(x) = 2, [−4, 4]

40. f (x) = e x, g(x) = ln x, [0.5, 2.5]

For each pair of functions f and g and interval [a, b] in
Exercises 41–52, use definite integrals and the Fundamental
Theorem of Calculus to find the exact area of the region be-
tween the graphs of f and g from x = a to x = b.

41. f (x) = 1 + x, g(x) = 2 − x, [0, 3]

42. f (x) = 1 + x, g(x) = x + 2, [0, 3]

43. f (x) = x 2, g(x) = x + 2, [−2, 2]

44. f (x) = x 2, g(x) = x − 2, [−2, 2]

45. f (x) = x 2, g(x) = x + 2, [−3, 3]

46. f (x) = x 2 − x − 1, g(x) = 5 − x 2, [−2, 3]

47. f (x) = x − 1, g(x) = x 2 − 2x − 1, [a, b] = [−1, 3]

48. f (x) = sin x, g(x) = cos x, [a, b] = [ − π

2
,
π

2

]
49. f (x) = x 3, g(x) = (x − 2)2, [a, b] = [−1, 2]

50. f (x) = 2 x, g(x) = x 2, [a, b] = [0, 3]

51. f (x) = 2
1 + x 2

, g(x) = 1, [a, b] = [0,
√

3 ]

52. f (x) = 3
x − 2

, g(x) = 6 − x, [a, b] = [3, 7]

For each function f and interval [a, b] in Exercises 53–55,
approximate the average value of f from x = a to x = b, using
a sample size of at least eight.

53. f (x) = 2 x, [−1, 1]

54. f (x) = ln x, [1, 5]

55. f (x) = sin x, [0, 2π ]

For each function f and interval [a, b] in Exercises 56–67, use
definite integrals and the Fundamental Theorem of Calculus
to find the exact average value of f from x = a to x = b. Then
use a graph of f to verify that your answer is reasonable.

56. f (x) = x − 1, [−1, 3]

57. f (x) = 3x + 1, [0, 4]

58. f (x) = 4 − x 2, [−2, 2]

59. f (x) = 4, [−37.2, 103.75]

60. f (x) = (x + 2)2 − 5, [−5, 0]

61. f (x) = x 2 − 2x − 1, [0, 3]

62. f (x) = 4x 3/2, [a, b] = [0, 2]

63. f (x) = (e x)2, [a, b] = [−1, 1]

64. f (x) = 1
3x + 1

, [a, b] = [2, 5]

65. f (x) = 2 − 3
√

x, [a, b] = [1, 8]

66. f (x) = x 2 sin(x 3 + 1), [a, b] = [−1, 2]

67. f (x) = sin x + x cos x, [a, b] = [−π , π ]

For each function f and interval [a, b] given in Exer-
cises 68–73, find a real number c ∈ (a, b) such that f (c) is the
average value of f on [a, b]. Then use a graph of f to verify that
your answer is reasonable.

68. f (x) = 3x + 1, [a, b] = [2, 6]
69. f (x) = 2x 2 + 1, [a, b] = [−1, 2]
70. f (x) = 9 − x 2, [a, b] = [0, 3]
71. f (x) = 1 + x + 2x 2, [a, b] = [−2, 2]
72. f (x) = 100(1 − x), [a, b] = [0, 10]
73. f (x) = (x + 1)2, [a, b] = [−1, 2]
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Applications
74. You slam on your brakes and come to a full stop exactly

at a stop sign. Your distance from the sign after t seconds
is s(t) = 3t 3−12t 2−9t+54 feet, as shown in the following
graph:

Distance from a stop sign
s(t) = 3t 3 − 12t 2 − 9t + 54

s

60

50

40

30

20

10

t
1 2 3

(a) What does the Mean Value Theorem from Section 3.1
say about your distance and/or velocity from the
stop sign during the time that you are applying your
brakes?

(b) What does the Mean Value Theorem for Integrals say
about your distance from the stop sign during the
time that you are applying the brakes?

(c) What does the Mean Value Theorem for Integrals say
about your velocity during the time that you are ap-
plying the brakes?

75. Suppose the height, in centimeters, of a growing plant
t days after it breaks through the soil is given by
f (t) = 0.36t 2, as shown next at the left.

Height of a growing plant
h(t) = .36t 2

h

6

5

4

3

2

1

t
1 2 3 4

Height of a growing tree
h(t) = .25t 2 + 1

1 2 3 54

h

8

6

4

2

t

(a) What does the Mean Value Theorem from Section 3.1
say about the height of the plant during the first four
days of its growth?

(b) What does the Mean Value Theorem for Integrals say
about the height of the plant during the first four days
of its growth?

76. Suppose the height of a growing tree t years after it is
planted is h(t) = 0.25t 2 + 1 feet, as shown earlier at the
right.

(a) Approximate the average height of the tree during the
first five years of its growth, using a sample size of
n = 5 times and then n = 10 times.

(b) Find the exact average height of the tree during the
first five years of its growth.

(c) What was the average rate of growth of the tree over
the first five years?

77. Wally’s Burger Shack wants to put up a giant sign by Inter-
state 81. According to local sign ordinances, any sign visi-
ble from the interstate must have a frontal square footage
of 529 feet or less. The entire sign will be a gigantic W
cut out from billboard material, as shown in the graph
that follows, where the top edges of the W are at a height
of 55 feet and the boundaries of the W are given by the
functions

f (x) = 0.5(x − 12)2

g(x) = 0.5(x − 24)2

r(x) = (x − 12)2 + 10

s(x) = (x − 24)2 + 10

Shape of Wally’s sign

10

y

20

30

40

50

x
6 12 18 24 30 36

g(x)

s(x)r(x)

f (x)

(a) Write the total area of the front of the W sign in terms
of definite integrals. You will need to find the solu-
tions of f (x) = 55, r(x) = 55, s(x) = 55, and g(x) = 55
as part of your work. Be careful about how you divide
up the region.

(b) Use your answer to part (a) to calculate the exact
frontal square footage of the W sign. Will Wally’s sign
meet the local square footage requirements?

Proofs

78. Prove that for the region between the graph of a function
f and the x-axis on an interval [a, b], the absolute area is
always greater than or equal to the signed area.

79. Prove that for all real numbers a and b with a < b, we
have | ∫ b

a f (x) dx| ≤ ∫ b
a | f (x)| dx.

80. In this exercise you will use two different methods to
prove that, for any real numbers a, b, c, and k,

∫ k

−k
(ax2 + c) dx = 2

∫ k

0
(ax 2 + c) dx.

(a) Prove this equality by using a geometric argument
that involves signed area.

(b) Now prove the equality a different way, by using an
algebraic argument and the Fundamental Theorem of
Calculus.

81. Suppose f is an integrable function on [a, b] and x k =
a + k

( b − a
n

)
.

(a) Use the definition of the definite integral as a limit of
Riemann sums to show that

lim
n→∞

∑n
k=1 f (x k)

n
= 1

b − a

∫ b

a
f (x) dx.

(b) Why is it algebraically sensible that the left-hand side
of the equation is a calculation of average value?
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(c) Why is it graphically sensible that the right-hand side
of the equation is a calculation of average value?

82. Prove the Mean Value Theorem for Integrals by following
these steps:

(a) Use the Extreme Value Theorem to argue that f has
a maximum value M and a minimum value m on the
interval [a, b].

(b) Use an upper sum and a lower sum with one rectan-
gle to argue that m(b−a) ≤ ∫ b

a f (x) dx ≤ M(b−a) and
thus that the average value of f on [a, b] is between m
and M.

(c) Use the Intermediate Value Theorem to argue that
there is some point c ∈ (a, b) for which f (c) is equal to
the average value of f on [a, b].

Thinking Forward

The Second Fundamental Theorem of Calculus: Just as you are
driving past the big oak tree on Main Street, you notice a new
stop sign 54 feet ahead of you. You slam on your brakes and
end up coming to a full stop exactly at the stop sign.

s(t)

50 feet

Suppose that your distance from the stop sign (in feet) t sec-
onds after stepping on the brakes is given by the function
s(t) = 3t 3 − 12t 2 − 9t + 54. By working through the following
five problems you will see another argument that the distance
travelled is related to the signed area under the velocity curve;
this set of problems previews the Second Fundamental The-
orem of Calculus, which we will see in Section 4.7.

� How long did it take you to come to a full stop?

� What was your average distance from the stop sign
from the time that you first saw it to the time that you
came to a stop?

� Use an average rate of change to find your average ve-
locity during the time that you were trying to stop the
car. (Assume that the average velocity is the average
rate of change of position.)

� Find your average velocity from the oak tree to the
stop sign another way, as follows: Differentiate the for-
mula for position to get a formula v(t) for your velocity,
in feet per second, t seconds after hitting the brakes.
Then use a definite integral to find the average veloc-
ity during the time that you were trying to stop the car.
(Your final answer should of course be the same as the
average velocity you found in the last part!)

� You have just calculated your average velocity in

two ways, once using the formula
s(b) − s(a)

b − a
for the

average rate of change of position and once using the

definition
1

b − a

∫ b
a v(t) dt of the average value of v(t) on

[a, b], where a = 0 and b is the amount of time it took
you to stop the car. Use the fact that these two quanti-
ties are equal to discuss the relationship between the
area under the graph of your velocity v(t) on [a, b] and
the total distance that you travelled while trying to
stop the car.

4.7 FUNCTIONS DEFINED BY INTEGRALS

� Functions that measure accumulated area

� The Second Fundamental Theorem of Calculus and constructing antiderivatives

� Defining the natural logarithm function with an integral

Area Accumulation Functions

We have seen many types of functions in this course, most of them being arithmetic combi-
nations and/or compositions of powers of x, exponential functions, logarithmic functions,
trigonometric functions, and inverse trigonometric functions (and hyperbolic and inverse
hyperbolic functions, if you covered them in Section 2.6). Of course there are many more
functions than the ones we have named and notated throughout this course; any assign-
ment of real numbers that associates exactly one real number to each number in the do-
main is a function. For example, we could define a function f so that for each real number
x, the value of f (x) is given by the greatest integer less than x. This function is called the
floor function, as it rounds down to the next-lowest integer. As another example, we could
define a function g so that for each real number x, the value of g(x) is given by the the first
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perfect square greater than x. We can’t express these functions in terms of combinations of
simple functions, but they are functions nonetheless.

In this section we examine a new way of defining functions, where for each input x the
output is given by an accumulation of area. For example, consider the function f (t) on [a, b]
shown next. We can associate with each x in [a, b] a unique area, namely, the area under the
curve on [a, x]. Since each input x corresponds to exactly one area, this relationship defines
a function whose value at any real number x is given by A(x) = ∫ x

a f (t) dt.

Each input x gives a unique area A(x) as output

y

t
x ba

f (t)

This area
is A(x).

DEFINITION 4.32 Area Accumulation Functions

Suppose f is a continuous function on [a, b]. Then the area accumulation function for f
on [a, b] is the function that, for x ∈ [a, b], is equal to the signed area between the graph
of f and the x-axis on [a, x]:

A(x) =
∫ x

a
f (t) dt.

Notice that we have named the variable in the integrand t to distinguish it from the variable
x that represents the input of the area accumulation function. The variable t is called a
“dummy variable,” because it will not appear in the output of our function A(x). We are
using the function f only as a means to define our new function A(x).

For example, for f (t) = √
t on [0, 4], the area accumulation function is

A(x) =
∫ x

0

√
t dt =

[
2
3

t 3/2
]x

0
= 2

3
x 3/2 − 2

3
03/2 = 2

3
x 3/2.

Using this equation for A(x), we can easily calculate values such as A(1), A(2), and A(3),
illustrated, respectively, in the three graphs that follow. As x moves from left to right, A(x)
accumulates more and more area under the graph of f (t) = √

t.

A(1) =
∫ 1

0

√
t dt ≈ 0.67 A(2) =

∫ 2

0

√
t dt ≈ 1.89 A(3) =

∫ 3

0

√
t dt ≈ 3.46

y

t
1 2 3 4

1

2

y

t
1 2 3 4

1

2

y

t
1 2 3 4

1

2

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 21, 2012 18:50

390 Chapter 4 Definite Integrals

In this example, the area accumulation function turned out to be equal to one of the
elementary functions we have studied in this course

(
namely, 2

3
x 3/2

)
. This is not always the

case. For example, the area accumulation function A(x) = ∫ x
0 e−t 2

dt does not have such an
elementary representation; note that in fact we do not even know how to antidifferentiate
e−t 2

, so even if there were such an elementary representation of A(x), we would be unable
to identify it.

The Second Fundamental Theorem of Calculus

In the example we just discussed, you may have noticed something interesting about how A

and f are related. Since A(x) = 2
3

x 3/2, we have A′(x) =
(

2
3

)(
3
2

)
x1/2 = x1/2, which is equal

to f (x). In other words, the derivative of the area accumulation function is the function
whose area we were considering! Said another way, the area accumulation function A is an
antiderivative of the function f . This is true in general: Every area accumulation function
for a continuous function f is an antiderivative of f . The relationship is so important that it
is called the Second Fundamental Theorem of Calculus.

THEOREM 4.33 The Second Fundamental Theorem of Calculus

If f is continuous on [a, b], and we define F(x) = ∫ x
a f (t) dt for all x ∈ [a, b], then

(a) F is continuous on [a, b] and differentiable on (a, b);

(b) F is an antiderivative of f , that is, F ′(x) = f (x).

We will postpone the proof of the Second Fundamental Theorem until the end of this
section, so that we can focus on some of its consequences first.

The Second Fundamental Theorem guarantees that we can always construct an an-
tiderivative for any continuous function f simply by defining an area accumulation func-
tion for f . For example, consider the function f (x) = sin(e x). It is not immediately apparent
how we would antidifferentiate this function. However, we can construct an antiderivative
of f by using the Second Fundamental Theorem: If we define F(x) = ∫ x

0 sin(e t) dt, then we
can see that this function F is an antiderivative of f , since F ′(x) = f (x) by part (b) of the
theorem. We can construct other antiderivatives of f by choosing different values of a; for
example, G(x) = ∫ x

3 sin(e t) dt is also an antiderivative of f (x) = sin(e x).

The second part of the Second Fundamental Theorem immediately gives us a formula
for differentiating certain functions defined by integrals:

THEOREM 4.34 Differentiating Area Accumulation Functions

If f is continuous on [a, b], then for all x ∈ [a, b],

d
dx

∫ x

a
f (t) dt = f (x).

This theorem illustrates yet another way that integration and differentiation can be thought
of as inverse operations: Given a function f and a real number a, if we integrate f from a to x
and then differentiate the resulting function with respect to x, we arrive back at the function
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f we started with. Said another way, the derivative of an area accumulation function for any
function f is equal to the original function f .

The part of the Second Fundamental Theorem expressed in Theorem 4.34 follows im-
mediately from the (first) Fundamental Theorem from Section 4.5, since if F is a function
with F ′ = f , then

d
dx

∫ x

a
f (t) dt = d

dx

[
F(t)

]x
a = d

dx
(F(x) − F(a)) = F ′(x) = f (x).

The nontrivial part of the Second Fundamental Theorem is that such an antiderivative func-
tion F exists in the first place and that moreover it is continuous and differentiable.

We must be careful when using Theorem 4.34. In particular, in order for us to apply the
theorem, the upper limit of the integral must be x and the lower limit of the integral must
be a constant. If the upper limit is instead a function of x, then we will need to apply the
chain rule. The following theorem illustrates how to do this:

THEOREM 4.35 Differentiating a Composition Involving an Area Accumulation Function

If f is continuous on [a, b] and u(x) is differentiable on [a, b], then for all x ∈ [a, b],

d
dx

∫ u(x)

a
f (t) dt = f (u(x))u′(x).

The right-hand side of the equation in Theorem 4.35 looks like the chain rule, with the
important exception that it begins with f (u(x)) rather than f ′(u(x)). In fact, it is the chain
rule, and f (x) is the derivative of the area accumulation function F(x) = ∫ x

a f (t) dt.

Proof. The proof involves recognizing
∫ u(x)

a f (t) dt as a composition and then applying the

chain rule. If F(x) = ∫ x
a f (t) dt, then

∫ u(x)
a f (t) dt is the composition F(u(x)). By the Second Funda-

mental Theorem we know that F ′(x) = f (x). Thus by the chain rule, we have

d
dx

∫ u(x)

a
f (t) dt = d

dx
(F(u(x))) = F ′(u(x))u′(x) = f (u(x))u′(x).

Defining the Natural Logarithm Function with an Integral

At the beginning of this section we saw that the function A(x) = ∫ x
0

√
t dt is equal to the

elementary function 2
3

x 3/2. Many area accumulation functions can be written as elementary

functions. One in particular can be used as the definition of a function we already know quite
well:

DEFINITION 4.36 The Natural Logarithm Function

The natural logarithm function is the function that for x > 0 is defined by

ln x =
∫ x

1

1
t

dt.
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For example, we define ln 2 to be the area between the graph of 1
t

and the x-axis from t = 1

to t = 2, or the number
∫ 2

1
1
t

dt. Since 1
t

is a continuous function, its definite integral on

[1, 2] is a well-defined real number that we can choose to call “ln 2.”

Of course we have already discussed logarithmic functions as the inverses of exponen-
tial functions in Section 0.5. However, our previous development of exponential functions
was not entirely rigorous. In particular, our definition of irrational powers relied on a loose
argument that we could consider them to be limits of rational powers. We can get around
this problem by instead defining ln x with an integral, as just shown, and then defining
exponential functions as the inverses of logarithmic functions. All of the properties of ln x
that you have come to know and love follow directly from this new definition of ln x as an
area accumulation function:

THEOREM 4.37 Properties of the Natural Logarithm Function

(a) ln x is continuous on (0, ∞)

(b) ln x is differentiable on (0, ∞)

(c) d
dx

(ln x) = 1
x

(d) ln 1 = 0

(e) ln x < 0 on (0, 1), ln x > 0 on (1, ∞)

(f) ln x is increasing on (0, ∞)

(g) ln x is concave down on (0, ∞)

(h) ln x is one-to-one on (0, ∞)

Proof. Properties (a)–(c) follow from the Second Fundamental Theorem of Calculus. Properties
(d) and (e) are easily proved by using properties of definite integrals. Properties (f) and (g) can be
proved by considering the first and second derivatives of ln x. We leave the proofs of these properties
to Exercises 71–74 and prove only property (h) here.

To show that F(x) = ln x is one-to-one, we must show that for all a, b ∈ (0, ∞), if F(a) = F(b),

then a = b. Now if F(a) = F(b), then ln a = ln b, and by Definition 4.36 we have
∫ a

1
1
t

dt = ∫ b
1

1
t

dt.

Subtracting all terms to one side and applying parts (b) and (c) of Theorem 4.12 gives

0 =
∫ a

1

1
t

dt −
∫ b

1

1
t

dt = −
∫ 1

a

1
t

dt −
∫ b

1

1
t

dt = −
∫ b

a

1
t

dt.

Since f (t) = 1
t

is positive for all t > 0, the integral
∫ b

a
1
t

dt can be zero only if a is equal to b, which

is what we wanted to show.

Because ln x is one-to-one on its domain, it is invertible. As you might expect, the name
that we will give to its inverse is e x. This means that e x = y if and only if ln y = x. Since
ln x has domain (0, ∞) and range R (as you will argue in Exercise 21), its inverse e x has
domain R and range (0, ∞). We will define general logarithmic functions logb x and gen-
eral exponential functions b x or e kx in a similar fashion, in Exercises 24–26. Every single
property of logarithmic and exponential functions can be derived from this new definition
of logarithms. You will explore some of these properties in Exercises 75–78.

The Proof of the Second Fundamental Theorem

The proof of the Second Fundamental Theorem of calculus is lengthy, but involves little
more than the definition of the derivative and the Squeeze Theorem for limits.
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Proof. Suppose f is continuous on [a, b], and define F(x) = ∫ x
a f (t) dt for x ∈ [a, b]. We’ll leave

the proof that F is continuous on [a, b] to Exercise 66 and show that for all x ∈ (a, b), F is differen-
tiable with derivative F ′(x) = f (x). We calculate the right derivative of F (the calculation for the left
derivative is similar):

F ′(x) = lim
h→0+

F(x + h) − F(x)
h

= lim
h→0+

∫ x+h
a f (t) dt − ∫ x

a f (t) dt
h

= lim
h→0+

∫ x+h
x f (t) dt

h
.

Note that since we are considering only the right derivative here, h is positive. The last step in the
calculation follows from the fact that a < x < x + h, and thus∫ x+h

a
f (t) dt =

∫ x

a
f (t) dt +

∫ x+h

x
f (t) dt.

Let’s examine the quantity
∫ x+h

x f (t) dt for a small value h. This definite integral represents the
signed area between the graph of f (t) and the x-axis from t = x to t = x + h, for example, as shown
in the first figure that follows. For each h > 0, define m h to be a point in [x, x + h] for which f (t)
has a minimum value and define M h to be a point in [x, x + h] for which f (t) has a maximum value,
as shown in the second and third figures. Note that the values m h and M h depend on h and may
change as h → 0+.

∫ x+h

x
f (t) dt Lower sum Upper sum

with one rectangle with one rectangle

y

t
x � hx

f (t)

y

t
x � hx

f (mh)

f (t)

mh

y

t
x � hx

f (Mh)
f (t)

Mh

The area of the rectangle in the second of these figures is f (m h)h, and the area of the rectangle
in the third figure is f (M h)h. Because m h ≤ f (x) ≤ M h for all x ∈ [x, x + h], we have

f (m h)h ≤
∫ x+h

x
f (t) dt ≤ f (M h)h.

Dividing both sides by h (which in this case is positive), this inequality becomes

f (m h) ≤
∫ x+h

x f (x) dt
h

≤ f (M h).

Note that the quantity in the middle is exactly the quantity whose limit we need to find to calculate
F ′(x). Since our results hold for all h > 0, we have

lim
h→0+

f (m h) ≤ lim
h→0+

∫ x+h
x f (t) dt

h
≤ lim

h→0+
f (M h).

Because f is continuous, both f (m h) and f (M h) approach f (x) as h → 0+ and the interval [x, x + h]
shrinks. Therefore both sides of the double inequality approach f (x) as h → 0+, so by the Squeeze
Theorem,

lim
h→0+

∫ x+h
x f (t) dt

h
= f (x).

Since we started this proof by showing that F ′(x) is equal to this limit, we have now shown that
F ′(x) = f (x), as desired.
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Examples and Explorations

EXAMPLE 1 Graphically interpreting an area accumulation function

Suppose f is the function shown here, and define the area accumulation function A(x) =∫ x
1 f (t) dt. Use the graph of f to answer the following questions:

(a) Which is larger, A(2) or A(3)? Which is larger, A(3) or A(6)?
(b) List the intervals on which A(x) is increasing and decreasing.

(c) Sketch a rough graph of the function A(x) on [1, 8].

(d) Use the graphs of f and A to verify that one of these functions is the derivative of the
other.

The function f on [1, 8]

y

t
3 4 5 6 7 81 2

4

3

2

1

�1

�2

SOLUTION

(a) A(2) is the signed area between the graph of f and the x-axis on [1, 2], while A(3)
is the signed area from t = 1 to t = 3; see the first two graphs that follow. Clearly
A(3) > A(2).

A(2) =
∫ 2

1
f (t) dt A(3) =

∫ 3

1
f (t) dt A(6) =

∫ 6

1
f (t) dt

y

t
3 4 5 6 7 81 2

4

3

2

1

�1

�2

y

t
3 4 5 6 7 81 2

4

3

2

1

�1

�2

y

t
3 4 5 6 7 81 2

4

3

2

1

�1

�2

Similarly, A(6) is the signed area between the graph of f and the x-axis on [1, 6], as
shown at the right, and differs from A(3) by the area accumulated between t = 3
and t = 6. The area on [3, 4] is positive, but the area on [4, 6] is negative and larger.
Therefore between t = 3 and t = 6 the accumulation function A(x) actually decreases,
and thus A(6) < A(3).

(b) A(x) is the accumulation of signed area as x moves from the left to the right. When f is
positive, the area function A will increase; when f is negative, the area function A will
decrease. From the graph of f we see that f is positive on (1, 4) ∪ (7, 8) and negative
on (4, 7). Therefore A(x) is increasing on (1, 4) ∪ (7, 8) and decreasing on (4, 7).

(c) To sketch the graph of A(x), first notice that A(1) = ∫ 1
1 f (t) dt = 0. The height A(x) is

the signed area between the graph of f and the x-axis on [1, x], as shown next at the
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left. Using the information about where A is increasing and where it is decreasing,
we can sketch the rough graph of A shown at the right.

The function f (t) on [1, 8] The area accumulation function A(x) on [1, 8]

y

t
3 4 5 6 7 81 2

4

3

2

1

�1

�2

y

x
3 4 5 6 7 81 2

6

4

2

(d) By the Second Fundamental Theorem of Calculus, A is an antiderivative of f , that is,
A′ = f . In the graphs just shown, we can see that for each x, the slope of A at x is equal
to the height of f at x. In particular, A has horizontal tangent lines at approximately
x = 4 and x = 7, and its derivative f has roots at those same points. When A is
increasing, its derivative f is above the x-axis, and when A is decreasing, f is below
the x-axis. �

EXAMPLE 2 Differentiating area accumulation functions

Find the derivatives of each of the following functions:

(a) F(x) =
∫ x

1

cos (ln t)
e sin ( t 2 )

dt (b) F(x) =
∫ 2

x
ln t dt

SOLUTION
(a) In this case we can apply Theorem 4.34 directly:

F ′(x) = d
dx

∫ x

1

cos (ln t)
e sin ( t 2 )

dt = cos (ln x)
e sin (x 2)

.

(b) Here we cannot apply Theorem 4.34 immediately, because the lower limit of integra-
tion is the variable x, rather than a constant. However, we can easily fix this problem
before differentiating:

F ′(x) = d
dx

∫ 2

x
ln t dt = d

dx

(
−

∫ x

2
ln t dt

)
= − d

dx

∫ x

2
ln t dt = − ln x. �

EXAMPLE 3 Differentiating compositions that involve area accumulation functions

Find the derivatives of each of the following functions:

(a) F(x) =
∫ x 2

0
sec t dt (b) F(x) =

∫ 3x

0

x
t 2 + 1

dt

SOLUTION
(a) We cannot apply Theorem 4.34 directly to this function, because the upper limit of

integration is x 2, not x. Instead we need to use the chain rule since the function is
a composition, with outside function A(x) = ∫ x

0 sec t dt and inside function u = x 2.
In other words, F(x) = A(x 2). By the chain rule and the fact that A′(x) = sec x,
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Theorem 4.35 tells us that

F ′(x) = d
dx

∫ x 2

0
sec t dt = d

dx
(A(x 2)) = A′(x 2)(2x) = sec(x 2)(2x).

It may have occurred to you that we could have solved the integral
∫ x

0 sec t dt first and
then found the derivative afterwards. However, in this example we cannot do that,
because we do not know how to integrate the function sec t. Our only option is to use
Theorem 4.35.

(b) In this example the integrand x
t 2 + 1

involves both the variable x and the dummy

variable t. Since the integral varies with t, x can be factored out of the integral:

F(x) =
∫ 3x

0

x
t 2 + 1

dt = x
∫ 3x

0

1
t 2 + 1

dt.

It is now clear that F is really the product of two functions, namely, x and
∫ 3x

0
1

t 2 + 1
dt.

We must use the product rule to differentiate F. We will also need the chain rule, since∫ 3x
0

1
t 2 + 1

dt is the composition of A(x) = ∫ x
0

1
t 2 + 1

with 3x. We have

F ′(x) = d
dx

(
x
∫ 3x

0

1
t 2 + 1

dt
)

← factor out x

= 1
(∫ 3x

0

1
t 2 + 1

dt
)

+ x
(

d
dx

∫ 3x

0

1
t 2 + 1

dt
)

← product rule

=
∫ 3x

0

1
t 2 + 1

dt + x
(

1
(3x)2 + 1

)
(3). ← chain rule �

EXAMPLE 4 Getting comfortable with the integral definition of ln x

Use pictures and properties of definite integrals to illustrate that ln(0.5) is negative, ln 3 is
positive, and ln 4 is greater than ln 3.

SOLUTION

By Definition 4.36, ln(0.5) = ∫ 0.5
1

1
t

dt = − ∫ 1
0.5

1
t

dt, and since the left-hand figure that fol-

lows shows that the signed area under 1
t

on [0.5, 1] is positive, it follows that ln(0.5) is

negative. Similarly, the middle figure shows that ln 3 = ∫ 3
1

1
t

dt is positive, and the right-

hand figure shows that ln 4 represents a larger area than ln 3 does.

ln(0.5) = −
∫ 1

0.5

1
t

dt ln 3 =
∫ 3

1

1
t

dt ln 4 =
∫ 4

1

1
t

dt

y

t
2 3 41

2

1

y

t
2 3 41

2

1

y

t
2 3 41

2

1

�
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EXAMPLE 5 Approximating logarithms with Riemann sums

Use Riemann sums with four rectangles to find upper and lower bounds for ln 3.

SOLUTION

Since 1
t

decreases as t increases, a left sum for ln 3 = ∫ 3
1

1
t

dt will be an over-approximation

and a right sum an under-approximation, as shown here:

Left sum with four rectangles This area is ln 3 Right sum with four rectangles

y

t
2 3 41

2

1

y

t
2 3 41

2

1

y

t
2 3 41

2

1

The left sum just shown uses the values of 1
t

at t = 1, 1.5, 2, and 2.5 to define the heights

of the rectangles and will be greater than the actual area:

ln 3 =
∫ 3

1

1
t

dt ≈ 1
1

(0.5) + 1
1.5

(0.5) + 1
2

(0.5) + 1
2.5

(0.5) ≈ 1.28333.

In contrast, the right sum just shown is less than the actual area:

ln 3 =
∫ 3

1

1
t

dt ≈ 1
1.5

(0.5) + 1
2

(0.5) + 1
2.5

(0.5) + 1
3

(0.5) = 0.95.

Therefore 0.95 < ln 3 < 1.28333. We could, of course, get better upper and lower bounds
for ln 3 by using more rectangles. �

TEST YOUR? UNDERSTANDING
� What is the difference between the variable x and the variable t in Definition 4.32?

� If A(x) = ∫ x
1 t dt, does it make sense to calculate A(0) = ∫ 0

1 f (t) dt?

� If F(x) = ∫ x
π

cos t dt and u(x) = x 2, what is the composition F(u(x))?

� In Example 1, why is A(x) always positive, even though f is sometimes negative? Why
do you think the graph of A is concave down until about x = 5.8?

� What is the difference between the development of ln x and e x in Section 0.5 and the
development presented in this section?
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EXERCISES 4.7

Thinking Back

The relationship between a function and its derivative: Fill in the
blanks if a relationship exists. If there is nothing of substance
to say, write “not applicable.”

� If f has a zero, then f ′ .

� If f ′ has a zero, then f .

� If f is increasing, then f ′ is .

� If f is positive, then f ′ is .

� If f ′ is negative, then f is .

� If f ′′ is negative, then f is .

� If f ′′ is negative, then f ′ is .

Functions and their properties: Give formal mathematical defi-
nitions for each of the following functions.

� A function f from a set A to a set B

� A positive function on [a, b]

� An increasing function on [a, b]

Properties of logarithms and exponents: Determine whether each
of the following statements is true or false.

� ln(a + b) = ln(ab) � ln(a x) = x ln a

� ln
( a

b

)
= ln a − ln b � e a/b = e a − e b

� e ln x = x � ln(e x) = 1

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
d
dv

∫ u
2 f (v) du = f (u)

(b) True or False:
d
dx

∫ x 2

a sin t dt = sin x 2

(c) True or False: If f is continuous on [a, b], then there is

exactly one c ∈ [a, b] with f (c) = 1
b − a

∫ b
a f (x) dx.

(d) True or False: The function A(x) = ∫ x
0 (3 − t) dt is posi-

tive and increasing on [0, 3].
(e) True or False: The function A(x) = ∫ x

0 (3 − t) dt is con-
cave up.

(f) True or False: Every continuous function has an an-
tiderivative.

(g) True or False: Every continuous function has more
than one antiderivative.

(h) True or False: ln 5 = ∫ 5
0

1
t

dt.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f whose area accumulation function is
negative on [0, 5].

(b) A function f whose area accumulation function is
decreasing on [0, 5].

(c) Three antiderivatives of e sin2x.

3. Use a definite integral to express the function whose out-
put at any real number x is the signed area between the
graph of f (t) = t 2 and the t-axis on [2, x].

4. What, if anything, is wrong with the expression for a
function F given by F(x) = ∫ x

2 x 2 dx?
5. Consider the function A(x) = ∫ x

a f (t) dt. What is the
independent variable of this function? What does the
dependent variable represent? Explain why we say that
t is a “dummy” variable.

6. Suppose A(x) = ∫ x
0 f (t) dt, where f is positive and decreas-

ing for x > 0. Is A(x) increasing or decreasing, and why?
7. Suppose A(x) = ∫ x

0 f (t) dt, where f is positive and decreas-
ing for x > 0.

(a) Explain graphically why the graph of A(x) is concave
down.

(b) Find A′′(x) and argue that if f (x) is decreasing, then
A(x) must be concave down.

8. State the Second Fundamental Theorem of Calculus. Why
is this theorem important?

9. The functions A(x) = ∫ x
0 t 2 dt and B(x) = ∫ x

3 t 2 dt differ
by a constant. Explain why this is so in three ways,
as follows:
(a) By comparing the derivatives of A(x) and B(x).
(b) By showing algebraically that A(x) − B(x) is a

constant.
(c) By interpreting A(x) − B(x) graphically.

10. The functions A(x) = ∫ x
−π

cos x dx and B(x) = ∫ x
π

cos x dx
differ by a constant. Explain why this is so in three ways,
using Exercise 9 as a guide.

11. Write the function F(x) = ∫ x 2

3 sin t dt as a composition of
two functions. What is the inside function? What is the
outside function?

12. Let f be the function shown here, and define A(x) =∫ x
0 f (t) dt. List the following quantities in order from

smallest to largest:

(a) A(1) (b) A(3) (c) A(6) (d) A(7)

y

t
�2 1�1 2 3 4 5 6 7

�5

5
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13. Let f be the function graphed in Exercise 12, and define
A(x) = ∫ x

0 f (t) dt. List the following quantities in order
from smallest to largest:

(a) A(0) (b) A(−1) (c) A(−2) (d) A(5)

14. Let f be the function shown next at the left, and de-
fine A(x) = ∫ x

0 f (t) dt. On which interval(s) is A positive?
Negative? Increasing? Decreasing? Sketch a rough graph
of A.

Graph for Exercise 14

y

t
1 2 3 4 5 6

Graph for Exercise 15

y

t
1 2 3 4 5 6

15. Let f be the function shown earlier at the right, and de-
fine A(x) = ∫ x

0 f (t) dt. On which interval(s) is A positive?
Negative? Increasing? Decreasing? Sketch a rough graph
of A.

16. Explain how we get the inequality

f (m h) h ≤
∫ x+h

x
f (t) dt ≤ f (M h) h

in the proof of the Second Fundamental Theorem of
Calculus. Make sure you define m h and M h clearly.

17. Explain precisely how the formula
d
dx

∫ u(x)
a f (t) dt =

f (u(x))u′(x) in Theorem 4.35 is an application of the chain
rule.

18. Are indefinite integrals the “inverse” of differentiation?
In other words, does one undo the other? Simplify each
of the following to answer this question:

(a)
∫

f ′(x) dx (b)
d
dx

∫
f (x) dx

19. Are definite integrals the “inverse” of differentiation? In
other words, does one undo the other? Simplify each of
the following to answer this question:

(a)
∫ b

a
f ′(x) dx (b)

d
dx

∫ b

a
f (x) dx

20. Are area accumulation functions the “inverse” of differ-
entiation? In other words, does one undo the other? Sim-
plify each of the following to answer this question:

(a)
∫ x

a
f ′(t) dt (b)

d
dx

∫ x

a
f (t) dt

21. Use the new definition of ln x from Definition 4.36 to
argue that

(a) ln x has domain (0, ∞) and range R.
(b) e x has domain R and range (0, ∞).

22. Express the signed area between the graph of y = 1
x

and

the x-axis from x = 0.25 to x = 1 in terms of logarithms.

23. Express the signed area between the graph of y = 1
x

and

the x-axis from x = e to x = 10 in terms of logarithms.

Now that we have defined ln x with an integral, we can de-

fine a general logarithm with base b as log b x = 1
lnb

ln x. In

Exercises 24–26 you will investigate this definition of log b x.

24. For which b does the definition of log b x just given make
sense, and why? Is this the same allowable range of
values for b that we saw in our old definition of log b x
from Chapter 0?

25. Use the definition of log b x just given and the new defi-
nition of ln x from Definition 4.36 to express log b x as an
integral.

26. We can now define general exponential functions b x as
the inverses of the general logarithmic functions log b x.
What can you say about log b(b y)? Use this information

to simplify
1

lnb

∫ b y

1
1
t

dt so that it is written without an
integral.

Skills

For each area accumulation function A in Exercises 27–30, (a)
illustrate A(2) graphically, (b) calculate A(2) and A(5), and (c)
find an explicit elementary formula for A(x).

27. A(x) =
∫ x

1
(t 2 + 1) dt 28. A(x) =

∫ x

−π

sin t dt

29. A(x) =
∫ x

3

1
t

dt 30. A(x) =
∫ x

−x
t 3 dt

Use the Second Fundamental Theorem of Calculus to
write down three antiderivatives of each function f in
Exercises 31–34.

31. f (x) = sin2(3 x) 32. f (x) = 1√
1 + e 4x

33. f (x) = e (x 2) 34. f (x) = ln(sin x)
x 2 − 1

Use the Second Fundamental Theorem of Calculus, if needed,
to calculate each the derivatives expressed in Exercises 35–48.

(Recall that the operator
d2

dx2
indicates that you should find the

second derivative.)

35.
d
dx

∫ 4

x
e t 2+1 dt 36.

d
dx

∫ x

2

sin t
t

dt

37.
d
dx

∫ x 2

0
cos t dt 38.

d
dx

∫ x

0
e−t 2

dt

39.
d
dx

∫ √
x

1
x ln t dt 40.

d
dx

((∫ π

sin x

t
cos t

dt
)3 )

41.
d
dx

∫ 8

1
ln t dt 42.

d
dx

∫ x

1
ln t dt
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43.
d 2

dx 2

∫ 1

x 2
ln |t| dt 44.

d 2

dx 2

∫ e x

1
f (t)g(t) dt

45.
d 2

dx 2

∫ 3x

2
(t 2 + 1) dt 46.

d
dx

(
x 2

∫ sin x

0

√
t dt

)

47.
d
dx

∫ x+2

x
sin(t 2) dt 48.

d
dx

∫ √
x

x

e x

x
dt

In Exercises 49–54, find a function f that has the given deriva-
tive f ′ and value f (c). Find an antiderivative of f ′ by hand, if
possible; if it is not possible to antidifferentiate by hand, use
the Second Fundamental Theorem of Calculus to write down
an antiderivative.

49. f ′(x) = 1
2x − 1

, f (1) = 3

50. f ′(x) = 1
x 2 + 1

, f (−1) = 0

51. f ′(x) = 1
x 3 + 1

, f (2) = 0

52. f ′(x) = 2 sin(πx) , f (2) = 4

53. f ′(x) = e−x 2
, f (1) = 0

54. f ′(x) = sin(x 2) , f (0) = 0

For each logarithmic value in Exercises 55–58, use Rie-
mann sums with at least four rectangles to find an over-
approximation and an under-approximation for the value.
(Note: In Exercise 58, you will need to use the fact that log2 x =

1
ln2

ln x.)

55. ln 10 56. ln 0.4

57. ln e 58. log2 4

Applications
59. Suppose a very strange particle moves back and forth

along a straight path in such a way that its velocity after
t seconds is given by v(t) = sin(0.1 t 2), measured in feet
per second. Consider positions left of the starting posi-
tion to be in the negative direction and positions right of
the starting position in the positive direction.

Velocity of very strange particle
v(t) = sin(0.1 t 2)

v

t
2 4 6 8 10

1.0

0.5

�0.5

�1.0

(a) Write down an expression for the position s(t) of the
very strange particle, measured in feet left or right of
the starting position. Your expression for s(t) will in-
volve an integral.

(b) Use your answer to part (a) and a Riemann sum with
10 rectangles to approximate the position of the par-
ticle after 10 seconds of motion.

(c) Verify that the units in your calculation to part (b)
make sense. Why is it clear that the Riemann sum
will have units measured in feet?

(d) What happens to the velocity of the very strange par-
ticle after a long time? What does this mean about
how the particle is moving after, say, about 100 sec-
onds?

60. Jimmy is doing some arithmetic problems. As the
evening wears on, he gets less and less effective, so that
t ≥ 1 minutes after the start of his study session he can

solve r(t) = 1 + 1
t

problems per minute. Assume that it

takes 1 minute for Jimmy to set up his work area; thus he
is not doing arithmetic problems in the first minute.

Problem-solving rate

r(t) = 1 + 1
t

r

t
5 10 15 20 25 30 35 40 45

2.0

1.5

1.0

0.5

(a) How many arithmetic problems per minute can
Jimmy do when he first begins his studies at time
t = 1? What about at t = 4 and t = 20?

(b) Make a rough estimate of the number of arithmetic
problems Jimmy will have completed after 4 minutes.

(c) Use an integral to express the number of arithmetic
problems completed after t minutes, and interpret
this definite integral as a logarithm. Calculate the
number of problems Jimmy can complete in 10 min-
utes and in 20 minutes.

(d) Approximately how long will it take for Jimmy to
finish his arithmetic homework if he must complete
40 problems?

61. The median rate of flow of the Lochsa River (in Idaho)
at the Lowell gauge can be modeled surprisingly accu-
rately as

f (t) = 800 + 3.1p(t),

where p(t) is a function given by (t − 90)(195 − t) for
t ∈ (90, 195) and is zero otherwise. The time t is
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measured in days after the beginning of the year, and the
flow is measured in cubic feet of water per second.

(a) Given a starting day t0, use the Fundamental
Theorem of Calculus to find the function Ft0 (t) that
gives the total amount of water that has flowed past
the Lowell gauge since that day. Note that there are
86400 seconds per day.

(b) In a non-leap year, March 31 is day 90 of the year
and July 14 is day 195. Use the function you found
in part (a) to compute how many cubic feet of water
flowed past the gauge between those days.

(c) Use your function to compute how much water flows
down the Lochsa River in a full year. What fraction
of that amount flows by during the span of time you
examined in part (b)?

62. Ian is climbing every day, using a camp at the base of a
snowfield. His only supply of water is a trickle that comes
out of the the snowfield. The trickle dries at night, be-
cause the temperature drops and the snow stops melting.

Since he has run out of books, to entertain himself he uses
measurements of the water in his cooking pot to model
the flow as

w(t) = 15
(

1 + cos
(

2π (t − 16)
24

))
,

where t is the time in hours after midnight and w(t) is the
rate at which snow is melting into his pot, in gallons per
hour.

(a) About how long does it take Ian to fill his 2-quart pot
at 4 in the afternoon?

(b) What is the total amount of water that flows out of
the snowfield in a single day?

(c) Write an expression for the total amount of water that
flows from the snowfield between any starting time
t0 and an ending time t.

(d) If Ian stashes his pot under the trickle at 5 in the
morning, how long must he wait until he comes back
to a full pot? (Hint: You will need to do this numerically.)

Proofs

63. Prove that if f has an antiderivative (say, G), then the func-
tion A(x) = ∫ x

0 f (t) dt must also be an antiderivative of f .
(Hint: Use the Fundamental Theorem of Calculus.)

64. Suppose f is continuous on all of R. Prove that for all
real numbers a and b, the functions A(x) = ∫ x

a f (t) dt and

B(x) = ∫ x
b f (t) dt differ by a constant. Interpret this con-

stant graphically.

65. The proof of the latter part of the Second Fundamental
Theorem of Calculus in the reading covered only the case
h → 0+. Rewrite this proof in your own words, and then
write a proof of what happens as h → 0−.

66. Prove that if f is continuous on [a, b] and we define F(x) =∫ x
a f (t) dt, then F is continuous on the closed interval [a, b].

(Hint: Argue that F is continuous on (a, b), left-continuous at
a, and right-continuous at b.)

67. Prove Theorem 4.34: If f is continuous on [a, b], then

for all x ∈ [a, b],
d
dx

∫ x
a f (t) dt = f (x). The proof fol-

lows directly from the Second Fundamental Theorem of
Calculus.

68. Prove Theorem 4.35 in your own words: If f is continu-
ous on [a, b] and u(x) is a differentiable function, then for

all x ∈ [a, b],
∫ u(x)

a f (t) dt = f (u(x))u′(x). Be especially clear
about how you use the chain rule.

69. Follow the given steps to give an alternative proof of the
Mean Value Theorem for Integrals (Theorem 4.31): If f
is continuous on a closed interval [a, b], then there exists
some c ∈ (a, b) such that:

f (c) = 1
b − a

∫ b

a
f (x) dx.

(a) Define F(x) = ∫ x
a f (t) dt. What three things does

the Second Fundamental Theorem of Calculus say
about F?

(b) Why does the Mean Value Theorem apply to F on
[a, b], and what conclusion can we obtain from the
Mean Value Theorem?

(c) Show that, for the value c that is guaranteed by the

Mean Value Theorem, f (c) = 1
b − a

∫ b
a f (t) dt.

70. Prove in your own words the last part of Theorem 4.37:

If we define ln x = ∫ x
1

1
t

dt for x > 0, then ln x is one-
to-one on (0, ∞).

Prove each statement in Exercises 71–78, using the new defi-
nition of ln x as an integral and e x as the inverse of ln x.

71. Prove that ln x is continuous and differentiable on its
entire domain (0, ∞).

72. Prove that
d
dx

(ln x) = 1
x

.

73. Prove that ln x is zero if x = 1, negative if 0 < x < 1, and
positive if x > 1.

74. Prove that ln x is increasing and concave down on its
entire domain (0, ∞).

75. Prove that ln(ab) = ln a+ln b for any a, b > 0 by following
these steps:

(a) Use Theorem 4.35 to show that
d
dx

(ln ax) = 1
x

for any
real number a > 0.

(b) Use your answer to part (a) to argue that ln ax =
ln x + C. (Hint: Think about Theorem 4.14.)

(c) Solve for the constant C in the equation from the pre-
vious part, by evaluating the equation at x = 1. Use
your answer to show that ln ax = ln x + ln a. Why
does this argument complete the proof?
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76. Prove that ln x a = a ln x for any x > 0 and any a by fol-
lowing these steps:

(a) Use Theorem 4.35 to show that
d
dx

(ln x a) = a
x

.

(b) Compare the derivatives of ln x a and a ln x to argue
that ln x a = a ln x + C.

(c) Use part (b) with x = 1 and a = 1 to show that C = 0,
and then complete the proof.

77. Use the previous two exercises to prove that for any a,
b > 0, ln

( a
b

) = ln a − ln b.

78. Prove that e a+b = e ae b for any real numbers a and b by
following the steps in parts (a)–(c). You may use any prop-
erties of logarithms proved in the reading or the exercises.

(a) Show that if y = e a+b, then ln y = a + b.

(b) Show that if z = e ae b, then ln z = a + b.

(c) Use parts (a) and (b) to prove that y = z, and there-
fore that e a+b = e ae b.

Thinking Forward

Differential Equations: A differential equation is simply
an equation that involves derivatives. The solution of a
differential equation is the family of functions that make the
differential equation true.

� Consider the differential equation f ′(x) = g(x). What
has to be true about g(x) for the Second Fundamen-
tal Theorem of Calculus to guarantee that a function f
exists that satisfies f ′(x) = g(x)?

� Solve the differential equation f ′(x) = sin x. Remem-
ber, the solution will be a family of functions.

� Solve the differential equation f ′(x) = sin(e x). The so-
lution will be a family of nonelementary functions.

� What family of functions satisfies the differential
equation f ′(x) = f (x)? Notice that a function f sat-
isfying this differential equation has the property that
it is its own derivative.

Initial-Value Problems: An initial-value problem is a differen-
tial equation together with an initial condition that specifies
one value of a function.

� If f 1(x) and f 2(x) are both solutions of the differential
equation f ′(x) = g(x), where g(x) is continuous, then
what can you say about the relationship between f 1
and f 2? What could you say if, in addition, f 1 and f 2
agreed on any given value?

� Find the solution f to the initial-value problem f ′(x) =
sin x, f (π ) = 0.

� Find the solution f to the initial-value problem f ′(x) =
sin(e x), f (π ) = 0.

� Find the solution f to the initial-value problem f ′(x) =
f (x), f (0) = 3.

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� a Riemann sum for a function f on an interval [a, b], includ-
ing the definitions of �x, x k, and x ∗

k

� the geometric interpretations of the n-rectangle left sum,
right sum, and midpoint sum for a function f on an
interval [a, b]

� the geometric interpretations of the n-rectangle upper sum
and lower sum for a function f on an interval [a, b]

� the geometric interpretations of the n-rectangle trapezoid
sum for a function f on an interval [a, b]

� the definite integral of a function f on an interval [a, b] as
a limit of Riemann sums, including the definitions of �x,
x k, and x ∗

k

� the indefinite integral of a continuous function f

� what we mean when we refer to an integrand

� the signed area between the graph of a function f and the
x-axis on [a, b]

� the absolute area between the graph of a function f and
the x-axis on [a, b]

� the area between two curves f and g on [a, b]

� the average value of a function f on [a, b]

� the area accumulation function for a function f on an inter-
val [a, b]

� the formal definition of the natural logarithm function in
terms of an accumulation integral
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Theorems

Fill in the blanks to complete each of the following theorem
statements:

� If F and G are functions, then F ′(x) = G′(x) if and
only if G(x) = .

� The Fundamental Theorem of Calculus: If f is on [a, b],
and if F is any of f , then

∫ b

a
f (x) dx = .

� The Net Change Theorem: If f is on [a, b] and its
derivative f ′ is on [a, b], then

∫ b

a
f ′(x) dx = .

� The Fundamental Theorem of Calculus in Evaluation Nota-
tion: If f is on [a, b], then

∫ b

a
f (x) dx = [ ]b

a.

� The Mean Value Theorem for Integrals: If f is on [a, b],
then there is some c ∈ such that f (c) = .

� The Second Fundamental Theorem of Calculus: Suppose f is
on [a, b] and, for all x ∈ [a, b], we define

F(x) =
∫ x

a
f (t) dt.

Then F is on [a, b] and on (a, b), and

F is an of f , or in other words, = .

� If f is on [a, b], then for all x ∈ [a, b],

d
dx

∫ x

a
f (t) dt = .

� If f is on [a, b] and u(x) is on [a, b], then for all
x ∈ [a, b],

d
dx

∫ u(x)

a
f (t) dt = .

� The function

ln x =
∫ x

1

1
t

dt

is continuous and differentiable on the interval .
Moreover, the following properties follow from this defi-
nition (fill in the blanks or select the correct options):

� d
dx

(ln x) = and ln 1 = .

� ln x < 0 on the interval , and ln x > 0 on the
interval .

� ln x is (increasing)/(decreasing) on its entire domain
and (concave up)/(concave down) on its entire do-
main

� ln x is (one-to-one)/(not one-to-one) on its domain

Notation, Formulas, and Algebraic Rules

Notation: Describe the meanings of each of the following
mathematical expressions or how they are commonly used in
this chapter:

�
n∑

k=m
a k �

m∑
i=1

bi � �x

� x k � [x k−1, x k] � x ∗
k

� f (x ∗
k ) � f (x ∗

k )�x �
∫ b

a
f (x) dx

�
∫

f (x) dx �
∫ b

a
f (x) dx � [F(x)]b

a

The algebra of sums: Fill in the blanks to complete the sum rules
that follow. You may assume that a k and b k are functions de-
fined for nonnegative integers k and that c is any real number.

�
n∑

k=1

ca k = �
n∑

k=1

(a k + b k) =

�
p−1∑
k=m

a k +
n∑

k=p

a k =

Sum formulas: Fill in the blanks to complete each sum formula:

�
n∑

k=1

1 = �
n∑

k=1

k =

�
n∑

k=1

k 2 = �
n∑

k=1

k 3 =

Formulas for Riemann sums: Express each of the types of
Riemann sums that follow in general sigma notation and also
as an expanded sum. You may assume that f is a function

defined on [a, b], n is a positive integer, �x = b − a
n

, and

x k = a + k�x.

� left sum � right sum
� midpoint sum � trapezoid sum
� upper sum � lower sum

The algebra of definite integrals: Fill in the blanks to complete
the definite integral rules that follow. You may assume that f
and g are integrable functions on [a, b], that c ∈ [a, b], and that
k is any real number.

�
∫ b

a
kf (x) dx = �

∫ b

a
( f (x)+g(x)) dx =
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�
∫ a

a
f (x) dx = �

∫ a

b
f (x) dx =

�
∫ c

a
f (x) dx +

∫ b

c
f (x) dx =

Integral Formulas: Fill in the blanks to complete each of the
following integration formulas.
(The last six formulas involve hyperbolic functions and their in-
verses.)

� For k �= −1,
∫

x k dx =

�
∫

1
x

dx =

� For k �= 0,
∫

e kx dx =

� For b > 0 and b �= 1,
∫

b x dx =

�
∫

sin x dx = �
∫

cos x dx =

�
∫

sec 2 x dx = �
∫

csc 2 x dx =

�
∫

sec x tan x dx = �
∫

csc x cot x dx =

�
∫

1
1 − x 2

dx = �
∫

1
1 + x 2

dx =

�
∫

1

|x|√x 2 − 1
dx = �

∫
sinh x dx =

�
∫

cosh x dx = �
∫

sech2x dx =

�
∫

1√
x 2 + 1

dx = �
∫

1√
x 2 − 1

dx =

�
∫

1
1 − x 2

dx =

Indefinite integrals of combinations: Fill in the blanks to com-
plete the integration rules that follow. You may assume that f
and g are continuous functions and that k is any real number.

�
∫

k f (x) dx =

�
∫

( f (x) + g(x)) dx =

�
∫

( f ′(x)g(x) + f (x)g′(x)) dx =

�
∫

f ′(x)g(x) − f (x)g′(x)
( g(x))2

dx =

�
∫

f ′( g(x))g′(x) dx =

Skill Certification: Sums, Integrals, and the Fundamental Theorem

Calculating sums: Determine the value of each of the sums that
follow. Some can be computed directly, some require the use
of sum formulas, and for some you will have to also compute
a limit.

1.
10∑

k=1

1
k 2

2.
4∑

k=1

(
1 + k

2

)2 (
1
2

)

3.
200∑
k=1

(k 2 + 1) 4.
50∑

k=5

(k + 1)3

5. lim
n→∞

n∑
k=1

k 2 + 1
n3

6. lim
n→∞

n∑
k=1

(k + 1)3

n4 + n + 1

Riemann sums: Calculate each of the following Riemann sum
approximations for the definite integral of f on [a, b], using the
given value of n.

7. The left sum for f (x) = √
x on [0, 4], n = 4.

8. The right sum for f (x) = √
x on [0, 4], n = 8.

9. The midpoint sum for f (x) = 9 − x 2 on [0, 3], n = 3.

10. The trapezoid sum for f (x) = 9 − x 2 on [0, 3], n = 6.

11. The upper sum for f (x) = 4x − x 2 on [0, 3], n = 3.

12. The lower sum for f (x) = 4x − x 2 on [0, 3], n = 6.

Calculating definite integrals with limits of Riemann sums: Calcu-
late the exact value of each the following definite integrals by
setting up a general Riemann sum and then taking the limit
as n → ∞.

13.
∫ 5

3
(2x + 4) dx 14.

∫ 4

0
x 2 dx

15.
∫ 3

−2
(4 − x 2) dx 16.

∫ 4

1
(3x + 1)2 dx

Indefinite integrals: Use integration formulas, algebra, and
educated guess-and-check strategies to find the following
integrals.

17.
∫

(3x 4 − x 3 + 2) dx 18.
∫

1 − x + x7

x 2
dx

19.
∫

e x(1 − e 3x) dx 20.
∫

2 cos 3x dx

21.
∫

3
1 + 4x

dx 22.
∫

3
1 + 4x 2

dx

23.
∫

(2x3 x +x 2(ln 3)3 x) dx 24.
∫

x 3 sin x 4 dx

25.
∫

3sech2x dx 26.
∫

1
1 − 2x 2

dx

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 12:25

Chapter Review, Self-Test, and Capstones 405

Definite integrals: Use the Fundamental Theorem of Calculus
to find the exact values of each of the definite integrals that
follow. Sketch the areas described by these definite integrals
to determine whether your answers are reasonable.

27.
∫ 2

−2
(x 2 − 1) dx 28.

∫ 3

1

1
x

dx

29.
∫ π

−π

sin 2x dx 30.
∫ 2

0
e−3x dx

31.
∫ 4

0
(x − 1)(x − 2) dx 32.

∫ π/4

−π/4
sec2 x dx

33.
∫ 1

−1

x
1 + x 2

dx 34.
∫ 1

−1

−1
1 + x 2

dx

Calculating areas and average values: Express each of the fol-
lowing areas or average values with a definite integral, and
then use definite integral formulas to compute the exact value
of the area or average value.
35. The signed area between the graph of f (x) = 3x 2 − 7x + 2

and the x-axis on [0, 4].

36. The absolute area between the graph of f (x) = 3x 2−7x+2
and the x-axis on [0, 4].

37. The average value of the function f (x) = sin 2x on [0, π ].
38. The area between the graphs of f (x) = 4 − x 2 and 1 − 2x

on [−4, 4].

Combining derivatives and integrals: Simplify each of the fol-
lowing as much as possible.

39.
d
dx

∫
x 3 dx 40.

d
dx

∫ x

0
t 3 dt

41.
∫ 2

−2

d
dx

(ln(x 2 + 1)) dx 42.
∫ x

−2

d
dx

(ln(x 2 + 1)) dx

43.
d
dx

∫ 3

0
e−t 2

dt 44.
d
dx

∫ x

0
e−t 2

dt

45.
d
dx

∫ ln x

0
sin3 t dt 46.

d
dx

∫ 3

x
sin3 t dt

Capstone Problems

A. The area under a velocity curve: Return to the very start of
this chapter, and review the discussion of driving down
a straight road with stoplights. Describe in your own
words the relationship velocity, distance, and accumu-
lation functions illustrated in that discussion. Then use
what you know from the material you learned in this
chapter to calculate the exact distance travelled in that
situation.

B. Is integration the opposite of differentiation? In what sense
do derivatives “undo” integrals? In what sense do in-
tegrals “undo” derivatives? In what sense do they not?
In your answer, be sure to consider indefinite integrals,
definite integrals, and accumulation functions defined by
integrals.

C. The Fundamental Theorem of Calculus: Why is the Funda-
mental Theorem of Calculus so fundamental? What does

it allow us to calculate, and what concepts does it relate?
Give an overview outline of the proof of this important
theorem.

D. Defining logarithms with integrals: In this chapter we de-
fined the natural logarithm function as the accumulation
integral

ln x =
∫ x

0

1
t

dt.

(a) Use the graph of y = 1
x

and this definition to describe

the graphical features of y = ln x.

(b) Given this definition of ln x, how would we define the
natural exponential function e x? Why is this a better
definition for e x than the one we introduced in Defi-
nition 1.25?
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C H A P T E R 5

Techniques of Integration
5.1 Integration by Substitution

The Art of Integration ∫
f ′(u)du

Undoing the Chain Rule
Choosing a Useful Substitution
Finding Definite Integrals by Using Substitution
Examples and Explorations

5.2 Integration by Parts
Undoing the Product Rule ∫

u dv = uv −
∫

v duStrategies for Applying Integration by Parts
Finding Definite Integrals by Using Integration by Parts
Examples and Explorations

5.3 Partial Fractions and Other Algebraic Techniques
Proper and Improper Rational Functions

A
x − 2

+ B
x − 3

Partial Fractions
Algebraic Techniques
Examples and Explorations

5.4 Trigonometric Integrals
Using Pythagorean Identities to Set Up a Substitution
Using Double-Angle Formulas to Reduce Powers

∫
sin2 x cos3 x dx

Integrating Secants and Cosecants
Examples and Explorations

5.5 Trigonometric Substitution
Backwards Trigonometric Substitutions

x = a sin uDomains and Simplifications with Trigonometric Substitutions
Rewriting Trigonometric Compositions
Examples and Explorations

5.6 Improper Integrals
Integrating over an Unbounded Interval

. . .

Integrating Unbounded Functions
Improper Integrals of Power Functions
Determining Convergence or Divergence with Comparisons
Examples and Explorations

5.7 Numerical Integration*
Approximations and Error
Error in Left and Right Sums
Error in Trapezoid and Midpoint Sums
Simpson’s Rule
Examples and Explorations

Chapter Review, Self-Test, and Capstones
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5.1 INTEGRATION BY SUBSTITUTION

� Reversing the chain rule to obtain a formula for integration by substitution

� Strategies for choosing a useful substitution

� Two ways of finding definite integrals with integration by substitution

The Art of Integration

In this chapter we will explore a series of techniques for solving integrals. At this point we
know how to calculate simple integrals involving basic antidifferentiation, such as∫

x 3 dx = 1
4

x4 + C,
∫

cos x dx = sin x + C, and
∫

1
1 + x 2 dx = tan−1 x + C.

We have also seen how to use algebra and intelligent guess-and-check methods to calculate
certain types of integrals. However, at this point we do not know how to calculate the vast
majority of integrals.

For example, consider the integrals∫
e x

1 + e x dx,
∫

x 2 cos x dx, and
∫

sin3 x cos3 x dx.

Although differentiating any of these integrands would be quite simple, it is not clear how
to antidifferentiate them. Throughout the chapter we will discuss techniques for calculating
integrals such as the three we just listed, by rewriting the integrals in terms of simpler
ones that we can solve by straightforward antidifferentiation. Even after learning these
techniques, it will still take creativity and problem-solving skills to solve many integrals.
Integration is not a rote calculational activity like differentiation; it is more of an art.

Undoing the Chain Rule

We will begin with a simple technique for rewriting integrals that is based on the chain
rule. Since the derivative of a composition f (u(x)) is f ′(u(x))u′(x), we have the following
theorem:

THEOREM 5.1 A Formula for Integration by Substitution

If f and u are functions such that f ′(u(x))u′(x) is integrable, then∫
f ′(u(x)) u′(x) dx = f (u(x)) + C.

For example, with f (x) = sin x and u(x) = x 2, we have d
dx

(sin x 2) = (cos x 2)(2x), and there-

fore
∫

(cos x 2)(2x) dx = sin x 2 + C. The trouble is, the pattern f ′(u(x))u′(x) is not always easy
to recognize, so it is not always clear when or how to apply Theorem 5.1 to an integral. In
this section we will formalize the procedure of undoing the chain rule with a method known
as integration by substitution, also known as u-substitution.

The key to integration by substitution is a change of variables, a technique by which we
change an integral in terms of a variable x into an integral in terms of a different variable u.
To do this, we must pay close attention to the differential dx that appears in integrals. Con-
sider, for example, a function f whose independent variable is called u. Since the derivative
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of f (u) with respect to u is f ′(u), we have∫
f ′(u) du = f (u) + C.

Notice that this is exactly the familiar equation
∫

f ′(x) dx = f (x)+C, but with the variable x
renamed as u. Now if u = u(x) is a function of x, comparing the equation we just displayed
with the one in Theorem 5.1 tells us that we must have du = u′(x) dx. This is exactly what
we would expect from the notation du

dx
= u′(x) if we imagine multiplying both sides by

dx. In other words, the differentials dx and du act precisely the way the Leibniz notation
du
dx

would suggest, even though Leibniz notation does not represent an actual numerical

quotient. This property motivates the following definition:

DEFINITION 5.2 The Differential of a Function

If u(x) is a differentiable function of x, then the differential du is equal to

du = u′(x) dx.

In particular, note that we cannot just replace dx with du when we change variables
from x to u = u(x). When changing variables in an integral, we will also have to change the
differentials, and this will involve the derivative u′(x). As a simple example, consider again
the integral

∫
(cos x 2)(2x) dx = ∫

2x cos x 2 dx, and let u(x) = x 2. We must differentiate u to
find du:

u = x 2 =⇒ du
dx

= 2x =⇒ du = 2x dx .

Using the boxed equations to substitute u for x 2 and du for 2x dx, integrating with respect
to u, and then writing again in terms of our original variable x, we have∫

2x cos x 2 dx =
∫

cos u du = sin u + C = sin x 2 + C.

Notice that in this example, the substitution u = x 2 changed our original integral into one
that was easier to integrate. Integration by substitution is not a method for antidifferenti-
ating; it is a method for changing a difficult integral into a simpler one.

Choosing a Useful Substitution

The first step in trying to solve an integral is to choose a method of attack. Very few integrals
can be solved immediately from memory with antidifferentiation formulas. Other integrals
can be simplified with an appropriate u-substitution, recognized as backwards quotient or
product rule problems, or simplified with some clever algebra. If we choose to attack an
integral with the method of integration by substitution, our next step will be to try to find
a useful choice for the substitution variable u.

So what makes a good choice for u? The first thing to remember is that we are trying to
match the integrand to the pattern f ′(u(x))u′(x). Therefore it is a good idea to try choices for
u(x) that are inside a composition of functions and whose derivatives u′(x) appear elsewhere
in the integrand as a multiplicative factor. For these reasons, we would expect u = sin x to
be a good choice for each of the following integrals:∫

cos x e sin x dx,
∫

sin5 x cos x dx, and
∫

cos x
sin x

dx.

With this choice of u we have

u = sin x =⇒ du
dx

= cos x =⇒ du = cos x dx ,
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and these integrals would be transformed into, respectively:∫
e u du,

∫
u5 du, and

∫
1
u

du,

each of which can be solved immediately with antidifferentiation formulas. In contrast,
u = sin x would not be a good choice for the integral

∫ sinx
cosx

dx, because in this case the

derivative u′ = cos x would not be a multiplicative part of the integrand. With u = sin x this

integral has the form
∫ u(x)

u′(x)
dx, which does not match the pattern in Theorem 5.1.

Another good rule of thumb is to choose u(x) to be as much of the integrand as possible
while still having things work out with the change in differential from dx to du. This helps
change the integral into one that is as simple as possible. For example, with the integral∫

x 2 sin(x 3 + 1) dx,

a choice of u = x 3 +1 is better than a choice of u = x 3. Once we choose u, we must change
the entire rest of the integral so that it is in terms of the new variable. After substituting
u = x 3 + 1, we will still have x 2 dx to replace, which we can do by considering the differ-
entials as follows:

u = x 3 + 1 =⇒ du
dx

= 3x 2 =⇒ du = 3x 2 dx =⇒ 1
3

du = x 2 dx .

Now by substituting with the boxed expressions, our integral is changed into something
that is easy to integrate:∫

x 2 sin(x 3 +1) dx =
∫

sin u · 1
3

du = 1
3

∫
sin u du = 1

3
(−cos u)+C = − 1

3
cos(x 3 +1)+C.

It is simple to check this calculation by differentiating:

d
dx

(
−1

3
cos(x 3 + 1)

)
= −1

3
(− sin(x3 + 1))(3x2) = x 2 sin(x 3 + 1).

Note also that in this example, the original integrand was not exactly in the form
f ′(u(x))u′(x), since we had u′(x) = 3x 2 but the constant multiple 3 did not appear in our
original integral. However, the method of u-substitution helped us determine the constant
1
3

that was needed to make everything work out.

Occasionally some preliminary algebra can help us find a useful u-substitution. This is
the case for the following two basic integral formulas:

THEOREM 5.3 Integrals of the Tangent and Cotangent Functions

(a)
∫

tan x dx = ln | sec x| + C (b)
∫

cot x dx = − ln | csc x| + C

Proof. The integral
∫

tan x dx looks too simple for applying integration by substitution, until we

rewrite tan x as
sinx
cosx

. We can then choose

u = cos x =⇒ du
dx

= − sin x =⇒ −du = sin x dx .

This substitution changes the integral into
∫

tan x dx =
∫

sin x
cos x

dx = −
∫

1
u

du = − ln |u| + C = − ln | cos x| + C.
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Although we have found the integral of tan x, it is not in the form we see in Theorem 5.3. Using
properties of logarithms and trigonometric functions, we can rewrite our answer as desired:

− ln | cos x| + C = ln
∣∣∣∣ 1
cos x

∣∣∣∣ + C = ln | sec x| + C.

The proof of part (b) is similar and is left to Exercise 92.

Finding Definite Integrals by Using Substitution

There are two methods for calcuating a definite integral
∫ b

a f (x) dx with the use of inte-
gration by substitution. Perhaps the most straightforward way is to use the Fundamental
Theorem of Calculus as expressed in Theorem 4.26, which, when considered with the
method of u-substitution, says the following:

THEOREM 5.4 Evaluating a Definite Integral After a Substitution

If f (x) = g(u(x)) is continuous on [a, b], u(x) is differentiable on (a, b), and G(u) is an
antiderivative of g(u), then

∫ b

a
f (x) dx =

∫ x=b

x=a
g(u) du = [

G(u)
]x=b

x=a = [
G(u(x))

]b
a = G(u(b)) − G(u(a)).

Theorem 5.4 tells us that we can simply use u-substitution (or any integration method,
for that matter) to find

∫
f (x) dx in terms of x and then evaluate this antiderivative

from x = a to x = b. For example, repeating our first example with a definite integral,
we have∫ π

0
2x cos x 2 dx =

∫ x=π

x=0
cos u du = [

sin u
]x=π

x=0 = [
sin x 2]π

0 = sin(π2) − sin 0.

Notice that we are careful to write the limits of integration as x = 0 and x = π when we
change variables to u, so that we remember to substitute back u = x 2 before evaluating
from 0 to π .

Alternatively, we could change the limits of integration so that they themselves are in
terms of the new variable u and then not have to substitute back u = u(x) at the end of the
calculation:

THEOREM 5.5 Another Way to Evaluate a Definite Integral After a Substitution

If f (x) = g(u(x)) is continuous on [a, b], u(x) is differentiable on (a, b), and G(u) is an
antiderivative of g(u), then

∫ b

a
f (x) dx =

∫ u(b)

u(a)
g(u) du = [

G(u)
]u(b)

u(a) = G(u(b)) − G(u(a)).

For example, if we repeat our earlier calculation with this second method, we have u = x 2

and thus u(0) = 02 = 0 and u(π ) = π2. Calculating the same definite integral gives
∫ π

0
2x cos x 2 dx =

∫ π2

0
cos u du = [

sin u
]π2

0 = sin(π2) − sin 0,

which of course is the same as the answer we got earlier. In general, you may choose either
of the two methods according to your preference. In some cases the first method will be
easier, and in some cases the second. Both will always give the same answer.
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Examples and Explorations

EXAMPLE 1 Using integration by substitution when a constant multiple is missing

Use integration by substitution to find
∫

x 6 e 5x 7−2 dx.

SOLUTION

Since 5x 7 − 2 is the inside function of a composition in the integrand and the x 6 part of
its derivative 35x 6 is a multiplicative part of the integrand, we’ll try setting u = 5x 7 − 2
and see what happens. With this choice of u we have

u = 5x 7 − 2 =⇒ du
dx

= 35x 6 =⇒ du = 35x 6 dx =⇒ 1
35

du = x 6 dx .

Using the boxed equations, we can now change variables and differentials to rewrite the
integral in terms of u and du; moreover, this new integral is easy to solve:∫

x 6 e 5x 7−2 dx =
∫

e 5x 7−2(x 6 dx) =
∫

e u
(

1
35

du
)

= 1
35

∫
e u du = 1

35
e u + C = 1

35
e 5x 7−2 + C.

Although it was not necessary, we rewrote the integral in the first step of the calculation to
make sure that the substitution of x 6 dx by 1

35
du was clear. The antidifferentiation step in

the calculation is the step
∫

e u du = e u + C, which is true because d
du

(e u) = e u. Notice that

u-substitution helped us rewrite the original integral into something that was very easy to
antidifferentiate. �

CHECKING
THE ANSWER

We can differentiate with the chain rule to check the answer we just found. Since we can
see that

d
dx

(
1

35
e 5x 7−2

)
= 1

35
e 5x 7−2(35x 6) = x 6e 5x 7−2,

we know that we have integrated correctly.

EXAMPLE 2 Deciding when to use integration by substitution

For each integral, determine whether integration by substitution is appropriate, and if so,
determine a useful substitution u(x).

(a)
∫

x 4
√

x 5 + 1 dx

(b)
∫

x 3
√

x 5 + 1 dx

(c)
∫

cos x sin2 x dx

(d)
∫

cos x tan x dx

(e)
∫

e x

1 + e x dx

(f)
∫

1 + e x

e x dx

SOLUTION

(a) Integration by substitution will work for this integral. If we choose u = x 5 + 1, then
du
dx

= 5x 4, so x 4 dx = 1
5

du. We can rewrite the integral as 1
5

∫ √
u du, which we know

how to integrate.

(b) Integration by substitution won’t work here. The most reasonable choice for u would
be u = x 5 + 1, which makes du

dx
= 5x 4. We cannot write the integral entirely in terms

of u and du with this choice of u. For this integral, no choice of u will work.
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(c) If we choose u = sin x, then du
dx

= cos x, so du = cos x dx. This substitution changes the

integral into
∫

u2 du, which is easy to integrate. The choice u = cos x would not work
in this example; why not?

(d) Neither u = cos x nor u = tan x work as substitutions here, because their derivatives
are not present in the integrands. However, cos x tan x = cos x

(
sinx
cosx

)
is equal to sin x,

which we know how to integrate.

(e) At first glance, it does not appear that integration by substitution will work for this
problem. However, remember that the derivative of e x is itself—and in fact the deriva-
tive of 1 + e x is also e x. Thus we can let u be the denominator u = 1 + e x and get
du
dx

= e x, that is, du = e x dx. This substitution changes the integral into
∫ 1

u
du, which

is easy to integrate.

(f) The method we used in part (e) won’t work here: We cannot use u = 1 + e x and
du = e x dx to change this integral into a new integral involving only u and du. The
problem with this substitution is that the derivative e x is in the denominator; it is not
a multiplicative factor of the integrand. This integral can be solved by using algebra to
write the integrand 1+e x

e x
as 1

e x
+ e x

e x
= e−x + 1. Try it! �

EXAMPLE 3 Choosing a substitution

Use integration by substitution to find (a)
∫

ln x
x

dx and (b)
∫

sin
√

x√
x

dx.

SOLUTION

(a) Clearly u = x will not be a good substitution, since it would not simplify the integral.
Perhaps u = ln x will work. With this choice of u, we have

u = ln x =⇒ du
dx

= 1
x

=⇒ du = 1
x

dx .

At first you might think that there is no 1
x

in the original integrand; we only have ln x

and x. But notice that the quotient lnx
x

is actually equal to the product (ln x)
(

1
x

)
; we do

have 1
x

in the integrand. Changing variables gives us
∫

ln x
x

dx =
∫

(ln x)
(

1
x

dx
)

=
∫

u du = 1
2

u2 + C = 1
2

(ln x)2 + C.

As always, it is a good idea to check by differentiating. Since d
dx

(
1
2

(ln x)2
)

=
1
2

(2 ln x)
(

1
x

)
= lnx

x
, we know we did the integration correctly.

(b) A sensible first choice for u would be u = √
x, since this is the inside function of a

composition in the integrand. With this choice of u we have

u = √
x =⇒ du

dx
= 1

2
x−1/2 = 1

2
√

x
=⇒ 2 du = 1√

x
dx .

We solved for the expression 1√
x

dx because that is the part of the integrand we need

to rewrite in terms of du. With this change of variables we have∫
sin

√
x√

x
dx =

∫
(sin

√
x )

(
1√
x

dx
)

=
∫

(sin u)(2 du)

= 2
∫

sin u du = 2(− cos u) + C = −2 cos
√

x + C.
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Again, we can easily check this answer: d
dx

(−2 cos
√

x ) = −2(− sin
√

x )
(

1
2

x−1/2
)

=
sin

√
x√

x
. �

EXAMPLE 4 Integration by substitution followed by back-substitution

Use integration by substitution and algebra to find
∫

x
√

x − 1 dx.

SOLUTION

This is an example in which integration by substitution works even though the integrand is
not at all in the form f ′(u(x))u′(x). A clever change of variables will allow us to rewrite the
integral so that it can be algebraically simplified. We’ll start by choosing u = x − 1, which
is sensible because this choice of u is the inside function of a composition in the integrand:

u = x − 1 ⇒ du
dx

= 1 ⇒ du = dx .

We can now replace
√

x − 1 with
√

u and dx with du. However, if we do this, there will be
an x left over in our integrand that we haven’t written in terms of u or du. Luckily, we can
use back-substitution to solve for x; since u = x − 1, we have

x = u + 1 .

By using the three boxed equations, we have
∫

x
√

x − 1 dx =
∫

(u + 1)
√

u du =
∫

(u3/2 + u1/2) du ← substitute and simplify

= 2
5

u5/2 + 2
3

u3/2 + C ← antidifferentiate

= 2
5

(x − 1)5/2 + 2
3

(x − 1)3/2 + C.

The original integrand could not be algebraically expanded, but after our clever change of
variables we had an integral that we could multiply out, since the sum was then outside,
rather than inside, the square root. �

CHECKING
THE ANSWER

As usual we can check our integration work by differentiating, and in particular, we know
that the chain rule will be involved. In this case a bit of algebra is needed after differenti-

ating, to show that d
dx

(
2
5

(x − 1)5/2 + 2
3

(x − 1)3/2
)

is equal to x
√

x − 1. Try it!

EXAMPLE 5 Using integration by substitution to solve a definite integral

Use integration by substitution to find
∫ 4

1

x
3x 2 + 1

dx.

SOLUTION

A sensible substitution to try first is

u = 3x 2 + 1 =⇒ du
dx

= 6x =⇒ 1
6

du = x dx .
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A definite integral consists of an integrand and limits of integration. When making our
substitution we have to be mindful of both:

∫ 4

1

x
3x 2 + 1

dx =
∫ 4

1

1
3x 2 + 1

(x dx) =
∫ x=4

x=1

1
u

(
1
6

du
)

= 1
6

∫ x=4

x=1

1
u

du.

Note that this is not the same as writing 1 and 4 as the limits of integration on the new
integral: Since the new integral is in terms of u and du, that would implicitly mean u = 1
and u = 4, which is not what we want. Our new definite integral is easy to evaluate:

1
6

∫ x=4

x=1

1
u

du = 1
6

[
ln |u|]x=4

x=1 = 1
6

[
ln |3x 2 + 1|]4

1 = 1
6

(ln 49 − ln 4). �

EXAMPLE 6 Changing the limits of integration when using substitution

Repeat the calculation of
∫ 4

1

x
3x 2 + 1

dx, this time replacing the limits of integration during

the substitution.

SOLUTION

The choice of u will still be the same as in Example 5. Again we have

u = 3x 2 + 1 =⇒ du
dx

= 6x =⇒ 1
6

du = x dx .

We will now write the limits of integration (x = 1 and x = 4) in terms of the new variable
u. When x = 1 we have u = 3(1)2 + 1 = 4, and when x = 4 we have u = 3(4)2 + 1 = 49;
in other words,

u(1) = 4 and u(4) = 49 .

Using the information in all four boxed equations, we can change variables completely:
∫ 4

1

x
3x 2 + 1

dx =
∫ 4

1

1
3x 2 + 1

(x dx) =
∫ 49

4

1
u

(
1
6

du
)

= 1
6

∫ 49

4

1
u

du.

This time we do not have to write the antiderivative in terms of x before the evaluation step,
because the limits of integration are already written in terms of u:

1
6

∫ 49

4

1
u

du = 1
6

[
ln |u|]49

4 = 1
6

(ln 49 − ln 4).
�

CHECKING
THE ANSWER

As usual, we can check our antidifferentiation steps by differentiating. In addition, we
can check the numerical answer of a definite integral by remembering that it represents

a signed area under a curve. In both examples, our numerical answer was 1
6

(ln 49− ln 4) ≈
0.417588, which we can see is reasonable by using a calculator to approximate the signed
area between the graph of f (x) = x

3x2 +1
and the x-axis on [1, 4].

TEST YOUR? UNDERSTANDING
� What would go wrong if we tried to use the substitution u = x 2 to solve the integral∫

x 2 cos x 2 dx?

� When we change variables in an integral with a substitution u = u(x), how is the dif-
ferential dx related to the new differential du?
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� Why is u = sin x not a good choice of substitution for solving the integral
∫ sinx

cosx
dx?

� Show that 1
6

∫ 4
1

1
u

du = ln4
6

≈ 0.23104. Why is this answer different from the value of

the definite integral 1
6

∫ x=4
x=1

1
u

du that we computed in Example 5?

� Compare the calculations in Examples 5 and 6. How are they the same? How are they
different? What work did you have to do in Example 5 that you did not have to do in
Example 6? Where was the equivalent work done in Example 6?

EXERCISES 5.1

Thinking Back

Algebra review: Simplify each algebraic expression as much as
possible, until the expression is something that would be easy
to antidifferentiate.

�
√

x(x−2 − 5x 2/3) � ln(5x 3) + 3 ln(2 x )

� x + 1
2 3
√

x
� e 3x − 5e−2x

3e 2x

� sec x tan x cos2 x �
√

1 − sin2 x

� 2
√

x − 5
3
√

x
� 2 x(1 − 3 x )

Differentiation review: Differentiate each of the functions that
follow. Simplify your answers as much as possible.

� f (x) = − 1
2

cot x 2 � f (x) = 1
3

ln |3x + 1|

� f (x) = 1
2π

sin2 πx � f (x) = 2
3

(ln x)3/2

� f (x) = (sin x 2)1/2 � f (x) = 1
2

(sin−1 x)2

� f (x) = cos(sin2 x 3) � f (x) = ln(ln(ln x))

Antidifferentiation review: Antidifferentiate each of the follow-
ing functions.

� f (x) = √
x + 3

√
x � f (x) = sec2 5x

� f (x) = 2
3x

� f (x) = sin πx
2

� f (x) = 3
x 2 + 1

� f (x) = −2√
1 − x 2

Expressing geometric quantities with integrals: Express each of
the given geometric quantities in terms of definite integrals.
You do not have to solve the integrals.

� The signed area of the region between the graph of

f (x) = sin x and the x-axis on
[
0,

3π

2

]
.

� The absolute area of the region between the graph of

f (x) = sin x and the x-axis on
[
0,

3π

2

]
.

� The signed area of the region between the graphs of
x 2 and 2 x on [−5, 5].

� The average value of the function f (x) = 1
x

from x = 1
to x = 10.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
∫

g ′(h(x)) h ′(x) dx = g(h(x)) + C.

(b) True or False: If v = u2 + 1, then
∫ √

u2 + 1 du =∫ √
v dv.

(c) True or False: If u = x 3, then
∫

x sin(x 3) dx =
1
3x

∫
sin u du.

(d) True or False:
∫ 3

0 u2 du = ∫ x=3
x=0 (u(x))2 du.

(e) True or False:
∫ 1

0 x 2 dx = ∫ 1
0 u2 du.

(f) True or False:
∫ 4

2 xe x 2−1 dx = 1
2

∫ 4
2 e u du.

(g) True or False:
∫ 3

2 f (u(x))u′(x)dx = ∫ u(3)
u(2) f (u)du.

(h) True or False:
∫ 6

0 f (u(x))u′(x)dx = [∫
f (u)du

]6
0.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Five integrals that can be solved with the method of
integration by substitution.

(b) Five integrals that cannot be solved with the method
of integration by substitution.

(c) Three relatively simple integrals that we cannot solve
with any of the methods we now know.
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3. Explain why
∫ 2x

x2 +1
dx and

∫ 1
x lnx

dx are essentially the

same integral after a change of variables.
4. List some things which would suggest that a certain sub-

stitution u(x) could be a useful choice. What do you look
for when choosing u(x)?

For each integral in Exercises 5–8, write down three integrals
that will have that form after a substitution of variables.

5.
∫

sin u du 6.
∫

u2 du

7.
∫

1√
u

du 8.
∫

e u du

For each function u(x) in Exercises 9–12, write the differential
du in terms of the differential dx.

9. u(x) = x 2 + x + 1 10. u(x) = x 2 + 1

11. u(x) = sin x 12. u(x) = 1
x

13. Suppose u(x) = x 2. Calculate and compare the values of
the following definite integrals:

∫ 5

−1
u2 du,

∫ x=5

x=−1
u2 du, and

∫ u(5)

u(−1)
u2 du.

14. Find three integrals in Exercises 21–70 in which the
denominator of the integrand is a good choice for a
substitution u(x).

15. Find three integrals in Exercises 21–70 that we can anti-
differentiate immediately after algebraic simplification.

16. Consider the integral
∫

sin x cos x dx.
(a) Solve this integral by using u-substitution with u =

sin x and du = cos x dx.

(b) Solve the integral another way, using u-substitution
with u = cos x and du = − sin x dx.

(c) How must your two answers be related? Use algebra
to prove this relationship.

17. Consider the integral
∫

x(x 2 − 1)2 dx.
(a) Solve this integral by using u-substitution.
(b) Solve the integral another way, using algebra to mul-

tiply out the integrand first.
(c) How must your two answers be related? Use algebra

to prove this relationship.

18. Consider the integral
∫ x−2 −4

x3
.

(a) Solve this integral by using u-substitution.
(b) Solve the integral another way, using algebra to sim-

plify the integrand first.
(c) How must your two answers be related? Use algebra

to prove this relationship.

19. Consider the integral
∫ 2
−2 e 5−3x dx.

(a) Solve this integral by using u-substitution while
keeping the limits of integration in terms of x.

(b) Solve the integral again with u-substitution, this time
changing the limits of integration to be in terms
of u.

20. Consider the integral
∫ 4

2
x

x2 −1
dx.

(a) Solve this integral using u-substitution while keeping
the limits of integration in terms of x.

(b) Solve this integral again with u-substitution, this time
changing the limits of integration to be in terms
of u.

Skills

Solve each of the integrals in Exercises 21–70. Some integrals
require substitution, and some do not. (Exercise 69 involves a
hyperbolic function.)

21.
∫

(3x + 1)2 dx 22.
∫

x(x 2 − 1)2 dx

23.
∫

8x
x 2 + 1

dx 24.
∫ (

2
x − 1

− 3
2x + 1

)
dx

25.
∫ √

x + 3
2
√

x
dx 26.

∫
x 2/3 + 1

3
√

x
dx

27.
∫

x csc2 x 2 dx 28.
∫

3 cos(πx) dx

29.
∫

1
3x + 1

dx 30.
∫

x 3 cos x 4 dx

31.
∫

sin πx cos πx dx 32.
∫

x√
3x 2 + 1

dx

33.
∫

sec 2x tan 2x dx 34.
∫ √

x + 1
x

dx

35.
∫

cot5 x csc2 x dx 36.
∫

sin x e cos x dx

37.
∫

x 4(x 3 + 1)2 dx 38.
∫

2xe 3x 2
dx

39.
∫

x1/4 sin x5/4 dx 40.
∫

cos(ln x)
x

dx

41.
∫

x(2 x 2+1)dx 42.
∫

x ln(e x 2+1) dx

43.
∫ √

ln x
x

dx 44.
∫

e
√

x

√
x

dx

45.
∫

ln
√

x
x

dx 46.
∫

(cos x + 1)3/2

csc x
dx

47.
∫

3x + 1
x 2 + 1

dx 48.
∫

1 − x
1 + 3x 2

dx

49.
∫

e x

2 − e x
dx 50.

∫
(x 2 + 1)

√
x dx
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51.
∫

2 − e x

e x
dx 52.

∫
x 2

√
x + 1 dx

53.
∫

sin x cos7 x dx 54.
∫

tan3 x sec2 x dx

55.
∫

x cos x 2

√
sin x 2

dx 56.
∫

x 2

√
x + 1

dx

57.
∫

sin(1/x)
x 2

dx 58.
∫

1
x ln x

dx

59.
∫

x
√

x 2 + 1 dx 60.
∫

sec2 x
tan x + 1

dx

61.
∫

x
√

x + 1 dx 62.
∫

x(x + 1)1/3 dx

63.
∫

x√
3x + 1

dx 64.
∫

1√
x sec

√
x

dx

65.
∫

e x

csc e x
dx 66.

∫
cot x ln(sin x) dx

67.
∫

x 2(x − 1)100 dx 68.
∫

sin−1 x√
1 − x 2

dx

69.
∫

x sinh x 2 dx 70.
∫

e x

√
e 2x − 1

dx

Solve each of the definite integrals in Exercises 71–78. Some
integrals require substitution, and some do not.

71.
∫ 3

0
x(x 2 + 1)1/3 dx 72.

∫ −1

−3

1√
1 − 3x

dx

73.
∫ π

−π

sin x cos x dx 74.
∫ √

4π

0
x sin x 2 dx

75.
∫ 3

2

1

x
√

ln x
dx 76.

∫ 4

2

e 2x

1 + e 2x
dx

77.
∫ 1

0

x
1 + x 4

dx 78.
∫ 1

0
x
√

1 − x dx

79. Consider the function f (x) = x
x2 +1

.

(a) Find the signed area between the graph of f (x) and
the x-axis on [−1, 3] shown next at the left.

(b) Find the area between the graph of f (x) and the graph

of g(x) = 1
4

x on [−1, 3] shown next at the right.

y

x

1.0

0.5

�0.5

�1 1 32

y

x

1.0

0.5

�0.5

�1 1 32

80. Consider the function f (x) = 4xe−x 2
.

(a) Find the signed area of the region between the graph
of f (x) and the x-axis on [−1, 2] shown here:

(b) Find the absolute area of the same region.

y

x

2

1

�1

�2

�1 1 2

81. Consider the function f (x) = lnx
x

shown here:

y

x

0.5

�1.0

�0.5

0.5 2.01.0 1.5

(a) Find the average value of f (x) on
[ 1

2
, 2

]
.

(b) Find a value c ∈
[ 1

2
, 2

]
at which f (x) achieves its

average value.

82. Consider the function f (x) = sin x cos x.

(a) Find the area between the graphs of f (x) and g(x) =
sin x on [0, π ] shown next at the left.

(b) Find the area between the graphs of f (x) and h(x) =
sin 2x on [0, π ] shown next at the right.

y

x

0.5

1.0

�1.0

�0.5

ππ

2
ππ

2

y

x

0.5

1.0

�1.0

�0.5
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Applications
83. Your local weatherman predicts that there will be a rain-

storm this afternoon for three hours and that the rate of
rainfall will be r(t) = 0.6t 2

√
3 − t inches per hour from

t = 0 to t = 3, as shown here. Find the total amount of
rainfall predicted for the storm.

Rate of rainfall
r(t) = 0.6t 2√3 − t

r

t

3

1

2

1 2 3

84. Rajini bends a metal rod into a curve that lines up
with the graph of y = 4x 3/2 from x = 0 to x = 2, as
shown here. Given that the length of a curve y = f (x)
from x = a to x = b can be calculated with the formula∫ b

a

√
1 + ( f ′(x))2 dx, find the length of the thin metal rod.

Shape of metal rod
y = 4x 3/2 on [0, 2]

y

x

12

10

8

6

4

2

1 2

85. One of Dr. Geek’s favorite beakers is exactly like the shape
obtained by revolving the graph of

y = 2
(

ln x
x

)1/2

from x = 1 to x = 10 around the x-axis, as shown in the
figure and measured in inches. Given that the volume of
the shape obtained by revolving f around the x-axis on
[a, b] can be calculated with the formula π

∫ b
a ( f (x))2 dx,

about how much liquid can the beaker hold?

Shape of beaker

y

x

1.0

0.5

1.5

�1.0

�1.5

108642
�0.5

86. A mass hanging at the end of a spring oscillates up and
down from its equilibrium position with velocity

v(t) = 3 cos
(

3t√
2

)
− 3

√
2 sin

(
3t√

2

)

centimeters per second, as shown in the figure. The mass
is at its equilibrium at t = 0. Use definite integrals to de-
termine whether the mass will be above or below its equi-
librium position at times t = 4 and t = 5.

Velocity v(t) of spring

v

t

5

�5

654321

Proofs

87. Prove, in the following two ways, that for any integer k,
the signed area under the graph of the function f (x) =
sin(2(x − (π/4))) on the interval [0, kπ ] is always zero:
(a) by calculating a definite integral;
(b) by considering the period and graph of the function

f (x) = sin(2(x − (π/4))).
88. Prove, in the following two ways, that the signed area

under the graph of the function f (x) = sin x cos2 x on an
interval [−a, a] centered about the origin is always zero:
(a) by calculating a definite integral;
(b) by considering the symmetry of the graph of the

function f (x) = sin x cos2 x.

89. Use the chain rule to prove the formula for integration by
substitution:

∫
f ′(u(x))u′(x) dx = f (u(x)) + C.

90. Use the chain rule and the Fundamental Theorem of Cal-
culus to prove the integration-by-substitution formula for
definite integrals:

∫ b

a
f ′(u(x))u′(x) dx = f (u(b)) − f (u(a)).
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91. Prove the integration formula∫
tan x dx = ln | sec x| + C

(a) by using algebra and integration by substitution to
find

∫
tan x dx;

(b) by differentiating ln | sec x|.

92. Prove the integration formula∫
cot x dx = − ln | csc x| + C

(a) by using algebra and integration by substitution to
find

∫
cot x dx;

(b) by differentiating − ln | csc x|.

Thinking Forward

Trigonometric integrals: The integrals that follow can be
solved by using algebra to write the integrands in the form
f ′(u(x))u′(x) so that u-substitution will apply.

� Solve
∫

sin5 x dx by using the Pythagorean identity
sin2 x + cos2 x = 1 to rewrite the integrand as (1 −
cos2 x)2 sin x and then applying substitution with u =
cos x.

� Solve
∫

sin3 x cos4 x dx by using the Pythagorean iden-
tity sin2 x + cos2 x = 1 to rewrite the integrand as (1 −
cos2 x) cos4 x sin x and then applying substitution with
u = cos x.

� Solve
∫

sec4 x tan3 x dx by using the Pythagorean iden-
tity tan2 x + 1 = sec2 x to rewrite the integrand as
(tan2 x+1) tan3 x sec2 x and then applying substitution
with u = tan x.

5.2 INTEGRATION BY PARTS

� Reversing the product rule to arrive at the formula for integration by parts

� Strategies for deciding when and how to apply integration by parts

� Using integration by parts to calculate definite integrals

Undoing the Product Rule

As we saw in Theorem 4.23, since the derivative of a product u(x)v(x) of differentiable
functions is u′(x)v(x) + u(x)v′(x), we have the following theorem:

THEOREM 5.6 Reversing the Product Rule

If u and v are functions such that u′(x)v(x) + u(x)v′(x) is integrable, then∫
(u′(x)v(x) + u(x)v′(x)) dx = u(x)v(x) + C.

For example, with u(x) = x and v(x) = sin x, we have d
dx

(x sin x) = sin x + x cos x, and thus∫
(sin x + x cos x) dx = x sin x + C.

The pattern u′(x)v(x) + u(x)v′(x) does not often appear in the integrals we will be con-
cerned with; however, products will routinely appear in them. With a little bit of rearrang-
ing we can rewrite the formula in Theorem 5.6 to obtain a formula for a technique called
integration by parts, which will help us solve integrals that involve products. By splitting
up the integral in the theorem and then solving for one of the smaller integrals, we obtain∫

u(x)v′(x) dx = u(x)v(x) −
∫

v(x)u′(x) dx.
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You may have noticed that we just dropped the “+ C” that had appeared in the formula
from Theorem 5.6. This is allowable because there are indefinite integrals on both sides of
the new equation, and thus both sides already represent families of antiderivatives.

Moreover, since we can write the differentials for u and v as du = u′(x) dx and dv =
v′(x) dx, we can write the new formula as follows:

THEOREM 5.7 Formula for Integration by Parts

If u = u(x) and v = v(x) are differentiable functions, then∫
u dv = uv −

∫
v du.

The parts referred to in Theorem 5.7 are u and dv. When applying integration by parts we
will choose u and dv, use them to find du and v, and then apply the integration by parts
formula. For example, to solve

∫
x cos x dx we could choose u = x and dv = cos x dx. We can

find du = u′(x) dx by differentiating u, and we can find v by antidifferentiating dv = v′(x) dx.
Since differentiation intuitively seems like a forward operation, whereas antidifferentiation
goes backwards, a sensible way to organize this work is as follows:

u = x −→ du = 1 dx

v = sin x ←− dv = cos x dx

Now the formula for integration by parts tells us that
∫

x cos x dx = x sin x − ∫
sin x dx. This

is fortunate because it gives us a way to relate an integral that we cannot directly antidiffer-
entiate to an easier integral that is simple to antidifferentiate. Notice that like integration by
substitution, integration by parts does not solve integrals; rather, it is a method for rewriting
a difficult integral into what is presumably a simpler integral.

Strategies for Applying Integration by Parts

Deciding whether or not an integral can be improved by applying the integration-by-parts
formula for some choices of u and dv can sometimes be difficult. In general it is best to try
algebraic simplification and u-substitution before attempting integration by parts.
However, integrands that are certain simple products, such as x cos x, x 2e x, or e x sin x, are
often good candidates for integration by parts.

Note that integrals that look similar can sometimes require different methods of solu-
tion. For example, consider the integrals∫

x e x dx,
∫

x 2 e x dx,
∫

x e (x 2) dx, and
∫

e (x 2) dx.

The first integral can be integrated by parts, with u = x and v = e x, and the second can
be integrated by applying parts twice. However, the third integral is better suited for
u-substitution with u = x 2, and the fourth integrand does not even have an elementary
antiderivative.

Once we do decide to use integration by parts, how do we decide what to choose for
u and dv? A good rule of thumb is that u should be something that gets simpler when dif-
ferentiated, and/or dv should be something that gets simpler (or at least not more compli-
cated) when integrated. In other words, we want to choose u and dv so that the associated
du and v are simpler than what we started with. This makes sense if you remember that
the original integral in terms of u and dv will be replaced by an integral in terms of v and
du that we hope will be simpler.
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Let’s return again to the example
∫

x cos x dx = ∫
u dv. There are four possible ways to

split the integrand into the parts u and dv. The possible choices for u are u = x, u = cos x,
u = x cos x, and u = 1. The following table lists each of these choices, the corresponding
dv, the resulting du and v, and the expressions for uv − ∫

v du:

Choice of u and dv and resulting du and v New integral uv − ∫
v du

u = x −→ du = 1 dx
v = sin x ←− dv = cos x dx

x sin x − ∫
sin x dx

u = cos x −→ du = − sin x dx
v = 1

2
x 2 ←− dv = x dx

1
2

x 2 cos x + 1
2

∫
x 2 sin x dx

u = x cos x −→ du = (cos x − x sin x) dx
v = x ←− dv = dx

x 2 cos x − ∫
(x cos x − x 2 sin x) dx

u = 1 −→ du = 0 dx
v = ??? ←− dv = x cos x dx

not possible to apply formula

At the beginning of this section we solved the integral
∫

x cos x dx by choosing u = x and
dv = cos x dx, as shown in the first row of the table, and that worked out well. If we had
chosen instead u = cos x and dv = x dx, as shown in the second row, we would not have
been so lucky: In that case we would have rewritten our integral

∫
x cos x dx in terms of

the more complicated integral
∫

x 2 sin x dx. The third possible case is to choose u to be
everything but the dx. In this example that does not work out so well. The fourth case is
to choose dv to be the entire integrand. This choice is never going to work, because we
would have to antidifferentiate dv to find v, and antidifferentiating the integrand is what
we couldn’t do in the first place.

CAUTION However you choose u and dv, you must do it so that the integrand is the product of u and
dv. For example, with

∫ x
e x

dx, we could not choose u = x and dv = e x dx, since, with this
second choice, the integrand is not the product of u and dv. We could, however, choose
u = x and dv = 1

e x
dx.

There are instances in which choosing u to be the entire integrand and dv = dx is a
useful choice. In fact, the method of choosing u to be the entire integrand yields a formula
for integrating the natural logarithm function:

THEOREM 5.8 Integral of the Natural Logarithm Function∫
ln x dx = x ln x − x + C.

Proof. At first glance the integral of ln x might not look like it could be a good candidate for
integration by parts, since ln x does not look like a product. If, however, we choose u = ln x to be
the entire integrand and dv = dx, then we have

u = ln x −→ du = 1
x

dx

v = x ←− dv = dx.
Now the formula for integration by parts gives us∫

ln x dx = (ln x)(x) −
∫

x
(

1
x

)
dx = x ln x −

∫
dx = x ln x − x + C.
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As you will show in Exercises 90 and 91, a similar method yields formulas for integrating
two inverse trigonometric functions:

THEOREM 5.9 Integrals of Inverse Sine and Inverse Tangent

(a)
∫

sin−1 x dx = x sin−1 x +
√

1 − x 2 + C

(b)
∫

tan−1 x dx = x tan−1 x − 1
2

ln(x 2 + 1) + C

Finding Definite Integrals by Using Integration by Parts

When using integration by parts to solve a definite integral
∫ b

a f (x) dx, we must evaluate
the entire right-hand side of the integration-by-parts formula from x = a to x = b. The
integration-by-parts formula for definite integrals follows directly from the formula for in-
definite integrals, the Fundamental Theorem of Calculus, and the definition of evaluation
notation:

THEOREM 5.10 Integration by Parts for Definite Integrals

If u = u(x) and v = v(x) are differentiable functions on [a, b], then∫ b

a
u dv =

[ ∫
u dv

]b

a
= [

uv
]b

a −
∫ b

a
v du.

For example, we have already seen that
∫

x cos x dx = x sin x − ∫
sin x dx. This means

that, for instance, on [0, π ] we have∫ π

0
x cos x dx = [

x sin x
]π

0 −
∫ π

0
sin x dx = [

x sin x
]π

0 − [ − cos x
]π

0.

We now have a choice: We can evaluate the expressions x sin x and −cos x on [0, π ] sepa-
rately, or we can combine them first. Here we choose the latter approach for finishing the
calculation:[

x sin x + cos x
]π

0 = (π sin π + cos π ) − (0 sin 0 + cos 0) = −1 − 1 = −2.

Examples and Explorations

EXAMPLE 1 Choosing u and dv when applying integration by parts

Use integration by parts to find

(a)
∫

x e 2x dx (b)
∫

x 2 ln x dx

SOLUTION

(a) Since x gets simpler when differentiated and e 2x at least does not get worse when
antidifferentiated, a sensible choice for parts is u = x and dv = e 2x dx. We can use u
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and dv to solve for du and v:

u = x −→ du = dx

v = 1
2

e 2x ←− dv = e 2x dx

We can now apply the formula for integration by parts to write our integral in terms of
an integral that we hope will be easier to antidifferentiate:∫

x e 2x dx = x
(

1
2

e 2x
)

−
∫

1
2

e 2x dx ← integration-by-parts formula

= 1
2

x e 2x − 1
2

∫
e 2x dx ← simplify

= 1
2

x e 2x − 1
4

e 2x + C. ← antidifferentiate

(b) This time there are six different ways to choose u and dv. For example we could choose
u = x 2, which does indeed get simpler when differentiated. But with that choice of
u we would have dv = ln x dx, whose antiderivative is the relatively messy function
x ln x − x. A better choice is

u = ln x −→ du = 1
x

dx

v = 1
3

x 3 ←− dv = x 2 dx.

Notice that u = ln x gets much simpler when differentiated: It goes from being a tran-

scendental function to being an algebraic function! Even though v = 1
3

x 3 is a little

more complicated than dv = x 2 dx, it is worth it to get rid of the logarithm. There is
also some nice cancelling in the integral

∫
v du:

∫
x 2 ln x dx = (ln x)

(
1
3

x 3
)

−
∫ (

1
3

x 3
)(

1
x

)
dx ← integration-by-parts formula

= 1
3

x 3 ln x − 1
3

∫
x 2 dx ← simplify

= 1
3

x 3 ln x − 1
3

(
1
3

x 3
)

+ C. ← antidifferentiate �

EXAMPLE 2 Deciding when to use integration by parts

For each integral, determine whether integration by parts is appropriate, and if so, deter-
mine useful choices for u and dv.

(a)
∫

x sin x 2 dx

(b)
∫

x 2 sin x dx

(c)
∫

x ln x dx

(d)
∫

ln x
x

dx

(e)
∫

x + 1
e x dx

(f)
∫

e x

e x + 1
dx

SOLUTION

(a) Although the integrand here is a product, integration by parts is not the best strategy
for this integral. This is a classic u-substitution problem, since u = x 2 is the inside of
a composition and its derivative 2x (without the constant 2) is a multiplicative factor
in the integrand. This substitution gives us the integral 1

2

∫
sin u du, which is easy to

solve.
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(b) This time u-substitution cannot help us, because the x 2 is outside of the sine function
while its derivative is inside. A good choice for integration by parts here is u = x 2 and
dv = sin x dx, since the x 2 will become simpler upon differentiating. In this case we
will have to apply integration by parts twice, as we will do in part (a) of Example 3.

(c) This integrand is well suited for integration by parts because it is the product of two
unrelated functions. Although we often like to choose u = x in such integrals (e.g.,
with

∫
x sin x dx or

∫
xe x dx), in this case that would force us to choose dv = ln x dx,

which becomes much more complicated after antidifferentiating. If we instead choose
u = ln x and dv = x dx, then we can successfully apply integration by parts.

(d) Although we could certainly think of the integrand as a product (ln x)
(

1
x

)
, and there is

a choice of parts that will work here (see Exercise 24), this integral is best solved with
u-substitution. With u = ln x, we have du = 1

x
dx and therefore can change variables

to get the very simple integral
∫

u du.

(e) To apply integration by parts it is best to rewrite the integrand as the product e −x(x +
1). The most sensible choice of parts is u = x + 1 (since this expression gets simpler
after differentiating) and dv = e−x dx (since this expression stays about the same after
antidifferentiating).

(f) This integral is best solved with u-substitution, with u = e x + 1. Then we have du =
e x dx and can transform to the simpler integral

∫ 1
u

du. �

EXAMPLE 3 Applying integration by parts multiple times

Use integration by parts to find

(a)
∫

x 2 e x dx (b)
∫

e x sin x dx

SOLUTION

(a) A sensible choice of parts here is u = x 2 and dv = e x dx, since differentiation will im-
prove x 2 and integration will not make e x any worse. This choice of parts results in a
simpler integral, but one that itself requires an application of integration by parts to
solve:∫

x 2e x dx = x 2e x − 2
∫

xe x dx ← parts with u = x 2 and dv = e x dx

= x 2e x − 2
(

xe x −
∫

e x dx
)

← parts with u = x and dv = e x dx

= x 2e x − 2(xe x − e x ) + C. ← antidifferentiation

The first application of integration by parts takes us from an integral involving x 2e x to
one involving the simpler xe x. The second application of integration by parts further
reduces the power of x until we are left with an integral involving simply e x. If the
original integral had been

∫
x 5e x dx, then we could use the same method, integrating

by parts five times to eventually end up with
∫

e x dx.

(b) In some cases, integrating by parts twice brings us back to the original integral.
Although sometimes this is no help at all, in this case it will enable us to construct
an equation involving the original integral, and it will be a simple matter to solve that
equation. Applying parts to the resulting integral with u = e x and dv = sin x dx, and
then applying parts again with u = e x and dv = cos x dx, we get∫

e x sin x dx = −e x cos x +
∫

e x cos x dx = −e x cos x +
(

e x sin x −
∫

e x sin x dx
)

.
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It might seem as if we have gone in a circle, but a sign change has made this into a
very useful equation. For a moment let I represent the integral

∫
e x sin x dx that we are

trying to find. Then the calculation we just did implies that I = −e x cos x + e x sin x − I.

It is now a simple matter to solve this equation for I = 1
2

(−e x cos x + e x sin x) + C. The

“+C” must be there because I represents a family of antiderivatives. We have solved
our integral, without even having to do a final antidifferentiation step! �

CHECKING
THE ANSWER

As usual, we can check our answers by differentiating. In both cases of the previous exam-
ple we applied parts twice, so to differentiate we need to apply the product rule twice. We
have

d
dx

(x 2e x − 2(xe x − e x )) = 2xe x + x 2e x − 2(e x + xe x − e x ) = x 2e x and

d
dx

(
1
2

(−e x cos x + e x sin x)
)

= 1
2

(−e x cos x + e x sin x + e x sin x + e x cos x) = e x sin x.

EXAMPLE 4 Solving a definite integral with integration by parts

Calculate
∫ π/4

0
x sec2 x dx.

SOLUTION

Notice that sec2 x is easy to antidifferentiate, since it is the derivative of tan x. Therefore we
choose

u = x −→ du = dx

v = tan x ←− dv = sec2 x dx

Integrating by parts, we have

∫ π/4

0
x sec2 x dx = [

x tan x
]π/4

0 −
∫ π/4

0
tan x dx.

We can solve the new integral
∫ π/4

0 tan x dx = ∫ π/4
0

sinx
cosx

dx with integration by substitution.

To avoid confusion, since we’ve already used the letter u, let’s use the letter w here:

w = cos x =⇒ dw
dx

= − sin x =⇒ −dw = sin x dx .

Continuing the calculation, we have
∫ π/4

0
x sec2 x dx = [

x tan x
]π/4

0 +
∫ x=π/4

x=0

1
w

dw

= [
x tan x

]π/4
0 + [

ln |w|]x=π/4
x=0 ← antidifferentiate

= [
x tan x

]π/4
0 + [

ln | cos x|]π/4
0 ← since w = cos x

=
(

π

4
tan π

4
− 0 tan 0

)
+

(
ln

∣∣∣cos π

4

∣∣∣ − ln |cos 0|
)

← evaluate

=
(

π

4
− 0

)
+

(
ln

√
2

2
− 0

)

= π

4
+ ln

(√
2

2

)
. �
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CHECKING
THE ANSWER

You can check the integration steps in the previous example by differentiating:

d
dx

(x tan x + ln | cos x|) = tan x + x sec2 x + 1
cos x

(−sin x) = x sec2 x.

You can check the numerical answer by using a graphing calculator to verify that the signed
area under the graph of y = x sec2 x from x = 0 to x = π

4
≈ 0.785 is approximately π

4
+

ln
(√

2
2

)
≈ 0.439:

∫ π/4

0
x sec2 x dx ≈ 0.439

�1 1

�2

2

TEST YOUR? UNDERSTANDING
� What types of functions get simpler when differentiated? What types of functions get

simpler when antidifferentiated? What types of functions have derivatives and/or an-
tiderivatives of about the same complexity?

� What types of integrals are usually amenable to integration by parts? How does inte-
gration by parts help you calculate an integral?

� After choosing u = e x and dv = sin x dx in Example 3(b), we could have chosen u =
cos x and dv = e x dx in the second application of integration by parts. Would this work?

� In Example 3(b) we could have instead chosen u = sin x and dv = e x dx in the first in-
tegration by parts and then a similar u and dv in the second integration by parts. Would
this work?

� Now that we know how to integrate ln x, are there any other elementary functions that
we do not yet know how to antidifferentiate?

EXERCISES 5.2

Thinking Back

Differentiation review: Differentiate each of the functions that
follow. Simplify your answers as much as possible.

� f (x) = xe x − e x

� f (x) = 1
2

x 2 ln x − 1
4

x 2

� f (x) = −e−x(x 2 + 1) − 2xe−x − 2e−x

� f (x) = 1
3

x 3 − 2(xe x − e x ) + 1
2

e 2x

� f (x) = −x cot x + ln | sin x|
� f (x) = x 3 sin x + 3x 2 cos x − 6x sin x − 6 cos x

Review of integration by substitution: Use u-substitution to find
each of the following integrals.

�
∫

e 3x+1 dx �
∫

x e x 2+1 dx

�
∫

ln x
x

dx �
∫

1
x ln x

dx

�
∫

tan x sec2 x dx �
∫

1
1 + x 2

dx

�
∫

sin x
√

cos x dx �
∫

e x sin e x dx
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If u = x 2 + 1, then du = 2x.

(b) True or False: If dv = x 2 dx, then v = 1
3

x 3.

(c) True or False: We can apply integration by parts with

u = ln x and dv = x dx to the integral
∫ lnx

x
dx.

(d) True or False: We can apply integration by parts with

u = x and dv = ln x dx to the integral
∫ lnx

x
dx.

(e) True or False: Integration by parts has to do with re-
versing the product rule.

(f) True or False: Integration by parts is a good method
for any integral that involves a product.

(g) True or False: In applying integration by parts, it is
sometimes a good idea to choose u to be the entire
integrand and let dv = dx.

(h) True or False:
∫ 3

0 xe x dx = xe x − ∫ 3
0 e x dx.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Five integrals for which u-substitution is a better
strategy than integration by parts. List a good choice
for u in each case.

(b) Five integrals for which integration by parts is a bet-
ter strategy than u-substitution. List good choices for
u and dv in each case.

(c) Three integrals that we cannot integrate with only the
techniques we have learned so far.

3. State the integration-by-parts formula for indefinite in-
tegrals, (a) using the notation du and dv and (b) without
using the notation du and dv.

4. State the integration-by-parts formula for definite inte-
grals, (a) using the notation du and dv and (b) without
using the notation du and dv.

5. Write down an integral that can be solved by using
integration by parts with u = x and another integral
that can be solved by using integration by parts with
dv = x dx.

6. Write down an integral that can be solved by using inte-
gration by parts with u = sin x and another integral that
can be solved by using integration by parts with dv =
sin x dx.

7. Write down an integral that can be solved with integra-
tion by parts by choosing u to be the entire integrand and
dv = dx.

8. Suppose v(x) is a function of x. Explain why the integral
of dv is equal to v (up to a constant).

9. Explain why choosing u = 1 (and thus choosing dv to be
the entire integrand, including dx) is never a good choice
for integration by parts.

10. Find three integrals in Exercises 27–70 for which either
algebra or u-substitution is a better strategy than integra-
tion by parts.

11. Find three integrals in Exercises 27–70 for which a good
strategy is to use integration by parts with u = x (and dv
the remaining part).

12. Find three integrals in Exercises 27–70 for which a good
strategy is to apply integration by parts twice.

13. If u(x) = sin 3x and v(x) = x, what are du and dv? Write
down

∫
u dv and

∫
v du in this situation. Which of these

integrals would be easier to find? What does this exercise
have to do with integration by parts?

14. Provide a justification for each equality in the statement
of the integration-by-parts formula for definite integrals
from Theorem 5.10.

15. Explain why [ g(x)]b
a − [h(x)]b

a = [ g(x) − h(x)]b
a. What does

this equation have to do with calculations of definite in-
tegrals with integration by parts?

For each pair of functions u(x) and v(x) in Exercises 16–18, fill
in the blanks to complete each of the following:

(a)
d
dx

(u(x)v(x)) =

(b)
∫

dx = u(x)v(x) + C

(c)
∫

u dv =

16. u(x) = x, v(x) = cos 2x

17. u(x) = ln x, v(x) = x

18. u(x) = x 3, v(x) = e 3x

Each expression that follows is the result of a calculation that
uses integration by parts. That is, each is an expression of the
form uv − ∫

v du for some functions u and v. Identify u, v, du,
and dv, and determine the original integral

∫
u dv.

19.
x 2 x

ln 2
− 1

ln 2

∫
2 x dx

20. −x 2 cos x + 2
∫

x cos x dx

21. − ln x
x 2

+
∫

1
x 3

dx

22.
1
3

x e 3x − 1
3

∫
e 3x dx

23. x tan−1 x −
∫

x
x 2 + 1

dx

24. Consider the integral
∫ lnx

x
dx.

(a) Solve this integral by using integration by parts with

u = ln x and dv = 1
x

dx.

(b) Now solve the integral another way, by using
u-substitution with u = ln x.

(c) How must your answers to parts (a) and (b) be
related? Use algebra to prove that this is so.
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25. Consider the integral
∫

x 2 ln(x 3) dx.
(a) Solve this integral by using integration by parts with

u = ln(x 3) and dv = x 2 dx.
(b) Now solve the integral another way, by using

u-substitution with u = x 3.
(c) How must your answers to parts (a) and (b) be re-

lated? Use algebra to prove this relationship.

26. Consider the integral
∫

x(x + 1)100 dx.
(a) Solve this integral by using integration by parts with

u = x and dv = (x + 1)100 dx.
(b) Now solve the integral another way, by using

u-substitution with u = x + 1 and back-substitution.
(c) How must your answers to parts (a) and (b) be re-

lated? Use graphs to prove this relationship.

Skills

Solve each of the integrals in Exercises 27–70. Some integrals
require integration by parts, and some do not. (The last two
exercises involve hyperbolic functions.)

27.
∫

xe x dx 28.
∫

x sin x dx

29.
∫

x ln x dx 30.
∫

x cos x dx

31.
∫

x sin x 2 dx 32.
∫

x 2 cos x dx

33.
∫

x 2e 3x dx 34.
∫

(3 − x)e 2x dx

35.
∫

x
e x

dx 36.
∫

x 2

e x
dx

37.
∫

3xe x 2
dx 38.

∫
ln(3x) dx

39.
∫

ln(x 3) dx 40.
∫

x ln(x 2) dx

41.
∫

x 2 + 1
e x

dx 42.
∫

x
e x 2+1

dx

43.
∫

3x + 1
x

dx 44.
∫

3x + 1
sec x

dx

45.
∫

(x − e x )2 dx 46.
∫

ln
√

x dx

47.
∫ √

x ln x dx 48.
∫

x ln
√

x dx

49.
∫

x 3e x 2
dx 50.

∫
x 3e−x dx

51.
∫

x csc2 x dx 52.
∫

x 5 cos x 3 dx

53.
∫

x 3 cos x dx 54.
∫

x 2

√
x − 1

dx

55.
∫

x 3 sin x 2 dx 56.
∫

arcsin 2x dx

57.
∫

tan−1 3x dx 58.
∫

sin πx cos πx dx

59.
∫

e 2x sin x dx 60.
∫

e x ln(e 2x) dx

61.
∫

2 x

3 x
dx 62.

∫
sin x
3 x

dx

63.
∫

e−x cos x dx 64.
∫

x 3e x 2
dx

65.
∫

x
cos2 x

dx 66.
∫

sec4 x dx

67.
∫

x tan−1 x dx 68.
∫

x 2 tan−1 x dx

69.
∫

x 2

√
x 2 + 1

dx 70.
∫

x 3 cosh 2x dx

Solve each of the definite integrals in Exercises 71–78. Some
integrals require integration by parts, and some do not.

71.
∫ 2

1
ln x dx 72.

∫ π

0
x sin x dx

73.
∫ 1

−1

x
e x

dx 74.
∫ −π/4

−π/4
x sec x tan x dx

75.
∫ π

0
e x sin x dx 76.

∫ 1

−1
2 x cos x dx

77.
∫ π/2

π/4
x csc2 x dx 78.

∫ 1/2

−1/2
sin−1 x dx

79. Consider the function f (x) = xe−x.
(a) Find the signed area of the region between the graph

of f and the x-axis on [−1, 1] shown in the next figure.
(b) Find the absolute area of the same region.

y

x

1

�3

�2

�1

�1.0 �0.5 1.00.5

80. Consider the function f (x) = 2 + tan−1 x shown in the
next figure.
(a) Find the average value of f (x) on [−4, 4].
(b) Find a value c ∈ [−4, 4] at which f (x) achieves its av-

erage value.

y

x

3

4

1

2

�4 �3 �2 �1 1 2 3 4
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81. Consider the function f (x) = x cos 2x.
(a) Find the signed area between the graph of f (x) and

the x-axis on [0, 3π/4] shown in the figure next at the
left.

(b) Find the area between the graph of f (x) and the graph
of g(x) = − cos 2x on [0, 3π/4] shown in the figure
next at the right.

y

x

1.5
2.0

0.5

1.0

�1.0

�0.5

�2.0
�1.5

3π

4
π

2
π

4

y

x

1.5
2.0

0.5

1.0

�1.0

�0.5

�2.0
�1.5

3π

4
π

2
π

4

82. Consider the function f (x) = ln x.
(a) Find the signed area between the graph of f (x) and

the x-axis on [1/2, 4] shown in the figure next at the
left.

(b) Find the area between the graph of f (x) and the graph
of g(x) = 1 on [1/2, 4] shown in the figure next at the
right.

y

x
0.5

4321

1.5

1.0

�1.0

�1.5

�0.5

y

x
0.5

4321

1.5

1.0

�1.0

�1.5

�0.5

Applications

83. Your local weatherman predicts that there will be a rain-
storm this afternoon for three hours and that the rate of
rainfall will be given by r(t) = 0.6t 2

√
3 − t for those three

hours from t = 0 to t = 3, as shown in the figure. Use
integration by parts (twice) to solve the definite integral
that represents the total amount of rainfall predicted for
the storm. Compare this exercise with Exercise 83 in Sec-
tion 5.1, where you used u-substitution to solve the same
problem.

Rate of rainfall
r(t) = 0.6t 2√3 − t

r

t

3

1

2

1 2 3

84. Suppose the rate at which a population of 100 weasels
catches weasel-mumps is r(t) = 8−2 ln(t+1) weasels per
day, where t > 0 measures the number of days after the
initial outbreak. Find a formula that represents the num-
ber W(t) of weasels that have contracted weasel-mumps
t days after the initial outbreak. Approximately how long
will it be until all but one of the weasels are infected?

Rate of weasel-mump infection
r(t) = 8 − 2 ln(t + 1)

r

t

10

8

6

4

2

4321

85. At Dr. Geek’s house, the wine goblets are shaped exactly
like the shape obtained by revolving the graph of y = ln x
from x = 0.5 to x = 5 around the x-axis, as shown in the
figure and measured in inches. Given that the volume of
the shape obtained from revolving f around the x-axis on
[a, b] can be calculated with the formula π

∫ b
a ( f (x))2 dx,

about how much wine can each glass hold?

Shape of wine goblet

x

y
1.5

�0.5
321

1.0

0.5

�1.0

�1.5

86. Dr. Geek also owns some champagne flutes, which are
shaped exactly like the shape obtained by revolving the

graph of y = lnx
x

from x = 0.6 to x = 5 around the x-axis,

as shown in the figure and measured in inches. Given
that the volume of the shape obtained from revolving
f around the x-axis on [a, b] can be calculated with the
formula π

∫ b
a ( f (x))2 dx, about how much champagne can

each glass hold?

Shape of champagne flute

x

y

�0.5

�1.0

1.0

0.5

321 4 5
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87. Suppose a very odd particle moves back and forth along
a straight path in such a way that its velocity after t sec-
onds is given by v(t) = 5t sin(π t), measured in feet per
second, as shown in the figure. Consider positions left of
the starting position to be in the negative direction and
positions right of the starting position to be in the posi-
tive direction.

Velocity of odd particle
v(t) = 5t sin(π t)

v

10

30

20

�20

�30

�10

t
654321

(a) Use integration by parts to find an equation for the
position s(t) of the very odd particle, measured in feet
left or right of the starting position.

(b) Sketch a graph of s(t), and describe the behavior of
the particle over the first 3 seconds.

(c) Where is the particle at t = 3 seconds, and what it is
doing at that time?

(d) What happens to the position and velocity of the very
odd particle after a long time, say, 100 seconds?

Proofs

88. Use the product rule to derive the formula for integration
by parts in Theorem 5.7.

89. Prove the integration formula∫
ln x dx = x ln x − x + C

(a) by applying integration by parts to
∫

ln x dx;
(b) by differentiating x ln x − x.

90. Prove the integration formula∫
sin−1 x dx = x sin−1 x +

√
1 − x 2 + C

(a) by applying integration by parts to
∫

sin−1 x dx;

(b) by differentiating
√

1 − x 2 + x sin−1 x.

91. Prove the integration formula∫
tan−1 x dx = x tan−1 x − 1

2
ln(x 2 + 1) + C

(a) by applying integration by parts to
∫

tan−1 x dx;

(b) by differentiating x tan−1 x − 1
2

ln(x 2 + 1).

92. Show that choosing a different antiderivative v + C of dv
will yield an equivalent formula for integration by parts,
as follows:

(a) Explain why what we need to show is that uv −∫
v du = u(v + C ) − ∫

(v + C ) du.
(b) Rewrite the equation from part (a), substituting u =

u(x), v = v(x), and du = u′(x) dx.
(c) Prove the equality you wrote down in part (b).

Thinking Forward

Volumes of surfaces of revolution: Consider the region be-
tween the graph of f (x) = ln x and the x-axis on [1, 3]
shown next at the left. If we revolve this region around
the x-axis, then we get the three-dimensional solid shown
at the right. In the problems that follow you will investi-
gate two different methods of finding the volume of this
solid.

f (x) = ln x on [1, 3]

x

y

ln 3

31

Surface of revolution

x

y

ln 3

31

� One way to think of this volume is as an accumulation
of disks as x varies from 1 to 3, as shown next at the
left. The disk at a given x ∈ [1, 3] has radius r = f (x)
and thus area π ( f (x))2. As we will see in Section 6.1,
the definite integral

π

∫ 3

1
( f (x))2 dx

calculates the volume of the solid. Use integration by
parts to calculate this volume.

A disk at x ∈ [1, 3]

x

y

ln 3

31 x

accumulate

A shell at y ∈ [0, ln 3]

x

y

ln 3

3

y

1
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� Another way of thinking of the volume in question
is as an accumulation of nested open cylinders, or
“shells,” as y varies from 0 to ln 3, as shown previously
at the right. The shell at a given y ∈ [0, ln 3] has radius
r = y and length h = 3− f −1( y), and thus surface area
2πy(3− f −1( y)), where f −1( y) = e y here is the inverse
function of f (x) = ln x. As we will see in Section 6.2,
the definite integral

2π

∫ ln 3

0
y (3 − f −1( y)) dy

calculates the volume of the same solid shown in the
previous problem. Use integration by parts to calculate
this volume.

� Since we just calculated the same volume two differ-
ent ways, obviously we should have obtained the same
answer both times. Verify that this is the case for the
previous two volume calculations.

Centroid of a shape: Suppose you cut a shape out of a piece of
cardboard and attempt to balance the shape on the end of a
pencil. The point in the interior at which it balances perfectly
is called the centroid. If f is positive and continuous on [a, b],
then the centroid of the region between the graph of f (x) and
the x-axis on [a, b] is the point (x̄, ȳ), where

x̄ =
∫ b

a x f (x) dx∫ b
a f (x) dx

and ȳ = (1/2)
∫ b

a ( f (x))2 dx∫ b
a f (x) dx

.

� Find the coordinates of the centroid of the region be-
tween the graph of f (x) = x 2 and the x-axis on [0, 3].

� Find the coordinates of the centroid of the region be-
tween f (x) = cos x and the x-axis on [−π/2, π/2].

5.3 PARTIAL FRACTIONS AND OTHER ALGEBRAIC
TECHNIQUES

� Writing improper rational functions by using polynomial long division

� The method and form of partial fractions

� Rewriting quadratics by the method of completing the square

Proper and Improper Rational Functions

The methods of integration by substitution and integration by parts are useful, but they
can’t help us solve every integration problem. Sometimes what we need is some good old-
fashioned algebra. We have already used algebra extensively as part of our integration tool-

box; for example the integral
∫ x3 +1

x
dx is easy to solve if we first apply algebra to rewrite it

as
∫ (

x 2 + 1
x

)
dx. In this section we will examine some fancier algebraic tools for rewriting

and simplifying integrals that involve rational functions.

Let’s start by considering the integral∫
3x 3 + x 2 − 14x − 5

x 2 − 5
dx.

The integrand is an example of an improper rational function, meaning that the degree of
its numerator is greater than or equal to the degree of its denominator. It turns out that
for many integration problems it is easier to work with proper rational functions, that is,
rational functions for which the degree of the numerator is strictly less than the degree of
the denominator.

Luckily, in much the same way that an improper fraction like 3
2

can be written as the

sum of an integer and a proper fraction, namely, 1 + 1
2

, we can rewrite any improper ratio-

nal function as the sum of a polynomial and a proper rational function. As we will see in
Example 1, we have∫

3x 3 + x 2 − 14x − 5
x 2 − 5

dx =
∫ (

(3x + 1) + x
x 2 − 5

)
dx.
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This puts the integral into a form that we know how to deal with, since 3x + 1 is easy to
integrate and x

x2 −5
can be integrated with the simple substitution of u = x 2 −5, du = 2x dx.

It is easy to combine fractions to show that (3x + 1) + x
x2 −5

is equal to 3x3 +x2 −14x−5
x2 −5

.

But of course, what we need to be able to do is go the other way and turn an improper
rational function into the sum of a polynomial and a proper rational function. The technique
for doing this is called polynomial long division, a more general version of the synthetic
division algorithm that you have seen in previous courses. The polynomial long-division
algorithm provides a method to divide any polynomial p(x) by another polynomial q(x). This
algorithm always terminates with a remainder r(x) whose degree is strictly less than that of
q(x), enabling us to rewrite any improper rational function as the sum of a polynomial and
a proper rational function:

THEOREM 5.11 Rewriting Improper Rational Functions

Suppose p(x)
q(x)

is an improper rational function where p(x) and q(x) are polynomial func-

tions with deg( p(x)) = n and deg(q(x)) = m < n. Then

p(x)
q(x)

= s(x) + r(x)
q(x)

,

for some polynomial s(x) of degree n − m and some proper rational function r(x)
q(x)

with

deg(r(x)) < m.

Partial Fractions

Let’s think for a moment about the types of proper rational functions that are easy for us
to integrate. Here are some examples of integrals that we can solve:∫

1
x − 3

dx,
∫

1
(x − 3)4 dx,

∫
1

x 2 + 1
dx,

∫
x

x 2 + 1
dx,

∫
x

(x 2 + 1)3 dx.

The first is an integral involving a logarithm, the second can be done with a simple linear
substitution and a power rule, the third concerns the inverse tangent, and the fourth and
fifth can be solved after the substitution u = x 2 + 1 and du = 2x dx. There are many other
examples, but in these five we see a pattern: Each integrand shown has a denominator that
is some power of a linear or quadratic function.

What about more complicated rational functions? For example, we do not yet have a
method that helps us solve the integral∫

8
(x − 1)2(x 2 + 3)

dx.

What would be helpful at this point is if we could use algebra to rewrite the integrand
8

(x−1)2(x2 +3)
in terms of proper rational functions that we do know how to integrate, that is,

in terms of proper rational functions whose denominators are powers of linear or quadratic
functions. Obvious candidates for these denominators in this example are x − 1, (x − 1)2,
and x 2 + 3, since those are factors of the denominator of our integrand.

As you will see in Example 3, we can rewrite our integral as follows:∫
8

(x − 1)2(x 2 + 3)
dx =

∫ ( −1
x − 1

+ 2
(x − 1)2 + x − 1

x 2 + 3

)
dx.

Again note that it is easy to verify that this decomposition works, simply by combining the
three terms on the right side to show that they are equal to our original proper rational
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function on the left. The question is how to find this rewritten form in the first place! We
will examine two different ways to do that in Examples 3 and 4. Note that we know how to
integrate each of the three parts of the decomposition; the first uses a logarithm, the second
is a power rule calculation, and the third can be split into an integral we can integrate by
substitution and an integral involving the inverse tangent.

It turns out that this type of rewriting is always possible if we use what are called partial
fractions:

THEOREM 5.12 Rewriting Proper Rational Functions with Partial Fractions

Every proper rational function p(x)
q(x)

can be written as a sum of partial fractions, as

follows:

(a) If q(x) has a linear factor x − c with multiplicity m, then for some constants
A1, A2, . . . , A m, the sum will include terms of the form

A1

x − c
+ A2

(x − c)2 + · · · + A m

(x − c)m .

(b) If q(x) has an irreducible quadratic factor x 2 + bx + c with multiplicity m, then for
some constants B1, B2, . . . , Bm and C1, C2, . . . , C m, the sum will include terms of
the form

B1 x + C1

x 2 + bx + c
+ B2 x + C2

(x 2 + bx + c)2 + · · · + Bm x + C m

(x 2 + bx + c)m .

Proving that such a decomposition always exists requires some detailed algebra that is not
within the scope of this course, so we will omit the proof. Such general theory is not our
concern here; we are interested only in finding these partial-fraction decompositions in

particular examples. Given a particular proper rational function r(x)
q(x)

, we need only fac-

tor q(x) and then set up systems of equations to solve for the constants Ai or Bi and Ci.
Theorem 5.12 guarantees that in each case we will be able to succeed in finding such a
decomposition.

Algebraic Techniques

To rewrite an improper rational function as a sum of a polynomial and a proper rational
function as in Theorem 5.11 we must know how to divide one polynomial by another.
Let’s start by reviewing what we do when we apply the long-division algorithm to divide
one integer by another. For example, suppose we use long division to divide 131 by 4:

3 2
)4 1 3 1
1 2

1 1
8
3

We have shown that 4 goes into 131 thirty-two times, with a remainder of 3; in other words
we have shown that 131 = 4(32) + 3. We can also rewrite this equality by dividing both
sides by 4, to obtain 131

4
= 32 + 3

4
.

The algorithm for long division of polynomials is exactly the same, but with powers of
x determining place value instead of powers of 10:
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THEOREM 5.13 Polynomial Long Division

To use polynomial long division to divide a polynomial p(x) by a polynomial q(x) of equal
or lower degree, we fill in the following diagram as described next:

m(x)
)q(x) p(x)

...
R(x)

� Find an expression ax k whose product with the leading term of q(x) is equal to the
leading term of p(x). Record this expression above the line.

� Multiply q(x) by the expression ax k you found in the first step, and subtract the prod-
uct from p(x). For the purposes of the next step, call the resulting polynomial the
“remainder polynomial.”

� Repeat, with p(x) replaced by the remainder polynomial, until the degree of the final
remainder polynomial R(x) is less than the degree of q(x).

At the end of the algorithm, we will have found m(x) and R(x) so that

p(x) = q(x) m(x) + R(x).

In other words,
p(x)
q(x)

= m(x) + R(x)
q(x)

.

A formal proof that the polynomial long-division algorithm always works is more appropri-
ate for a course in abstract algebra, and we will not include the proof here. (See Example 1
for an example of the implementation of polynomial long division.)

Another technique that can be useful when attempting to integrate rational func-
tions is the method known as completing the square. The goal of this method is to write
a quadratic of the form f (x) = x 2 + bx + c in the form (x − k)2 + C for some numbers k
and C; note that this rewritten form has a perfect square in it, from where the method
gets its name. The completed-square form is sometimes more suitable for integration
problems.

THEOREM 5.14 Completing the Square

Every quadratic function x 2 + bx + c can be rewritten in the form

x 2 + bx + c = (x − k)2 + C,

where k = − b
2

and C = c − b2

4
.

In practice, we do not actually memorize the forms of k and C in this theorem. Instead, when
confronted with a quadratic x 2 +bx+ c, we simply add and subtract the quantity (b/2)2 and
then rewrite in the form of a perfect square. For example, the quadratic x 2 + 6x + 10 has
b = 6 and thus (b/2)2 = 9; to complete the square we calculate

x 2 + 6x + 10 = (x 2 + 6x + 10) + 9 − 9 = (x 2 + 6x + 9) + (10 − 9) = (x + 3)2 + 1.
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The proof of Theorem 5.14 is precisely like this calculation; we leave the details to Exer-
cise 63. This particular example is used in an integration problem in Example 5.

You have most likely noticed by now that many integrals need some kind of rewriting
before we can antidifferentiate or apply substitution or integration by parts. Deciding what
kind of algebra to apply is a skill that can be developed only by doing many practice prob-
lems. One thing to keep in mind as you work through such problems is that when we use
algebra it is always our goal to rewrite the integrand in a form that is easier to integrate
than the original. This means that we don’t just apply algebra because we can; we do it to
satisfy a certain goal. Make sure you have such a goal in mind before you apply any algebra.

Examples and Explorations

EXAMPLE 1 Using polynomial long division to rewrite an improper rational function

Solve the integral ∫
3x 3 + x 2 − 14x − 5

x 2 − 5
dx

by writing the improper rational function in the integrand as the sum of a polynomial and
a proper rational function.

SOLUTION

Following the algorithm for polynomial long division to divide p(x) = 3x 3 + x 2 − 14x − 5
by q(x) = x 2 − 5, we have

3x + 1
)x 2 + 0x − 5 3x 3 + x 2 − 14x − 5
−3x 3 + 0x 2 + 15x

x 2 + x − 5
−x 2 + 0x + 5

x

We know to stop the algorithm at this point because the degree of the remainder polyno-
mial x is less than the degree of the divisor polynomial q(x) = x 2 + 5. Using the result of
this calculation, we can rewrite our integral and then perform the integration steps:
∫

3x 3 + x 2 − 14x − 5
x 2 − 5

dx =
∫ (

(3x + 1) + x
x 2 − 5

)
dx ← polynomial long division

= 3
2

x 2 + x + 1
2

ln |x 2 − 5| + C. ← substitution u = x 2 − 5 �

CHECKING
THE ANSWER

As usual, we can check our work by differentiating. To verify that we arrive back at the
original integrand, we will also have to do some algebra:

d
dx

(
3
2

x 2 + x + 1
2

ln |x 2 − 5|
)

=
(

3
2

)
2x + 1 +

(
1
2

) 1
x 2 − 5

(2x) ← differentiate

= (3x + 1)(x 2 − 5)
x 2 − 5

+ x
x 2 − 5

← algebra

= 3x 3 − 15x + x 2 − 5 + x
x 2 − 5

← algebra

= 3x 3 + x 2 − 14x − 5
x 2 − 5

. ← algebra
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EXAMPLE 2 Determining the form of a partial-fraction decomposition

Write each of the proper rational functions that follow as a sum of partial fractions with
coefficients Ai, Bi, and/or Ci. Do not solve for these coefficients; just write out the form of
the partial-fraction decomposition.

(a)
2x

(x − 1)(3x 2 − 2x − 1)
(b)

1
x 3 − 6x 2 + 11x − 6

(c)
x 2 − 1

x 7 + 2x 5 + x 3

SOLUTION

(a) To find the partial-fraction decomposition we must first split the denominator
(x − 1)(3x 2 − 2x − 1) into linear and irreducible quadratic factors. Although the de-
nominator is currently expressed as a product of a linear and a quadratic function, the
quadratic 3x 2 − 2x − 1 is not irreducible and in fact can be factored as (x − 1)(3x + 1).
Therefore we have

2x
(x − 1)(3x 2 − 2x − 1)

= 2x
(x − 1)(x − 1)(3x + 1)

= 2x
(x − 1)2(3x + 1)

.

By Theorem 5.12, the right-hand side has partial-fraction decomposition of the form

2x
(x − 1)2(3x + 1)

= A1

x − 1
+ A2

(x − 1)2 + A3

3x + 1
.

(b) In this case the factorization of the denominator is not particularly easy, but by guess-
ing and verifying that x = 1 is a root (since 13 − 6(1)2 + 11(1) − 6 = 0) and then using
either synthetic division or polynomial long division, we see that

1
x 3 − 6x 2 + 11x − 6

= 1
(x − 1)(x 2 − 5x + 6)

= 1
(x − 1)(x − 2)(x − 3)

.

From the right-hand fraction we obtain the partial-fraction decomposition

1
(x − 1)(x − 2)(x − 3)

= A1

x − 1
+ A2

x − 2
+ A3

x − 3
.

(c) Again we must begin by factoring the denominator:

x 2 − 1
x 7 + 2x 5 + x 3 = x 2 − 1

x 3(x 4 + 2x 2 + 1)
= x 2 − 1

x 3(x 2 + 1)2 .

The fraction to the right of the equals sign can be written as a partial-fraction decom-
position of the form

x 2 − 1
x 3(x 2 + 1)2 = A1

x
+ A2

x 2 + A3

x 3 + B1x + C1

x 2 + 1
+ B2x + C2

(x 2 + 1)2 . �

EXAMPLE 3 Solving for the coefficients in a partial-fractions decomposition

Solve for the coefficients A1, A2, B, and C that satisfy the partial-fraction decomposition

8
(x − 1)2(x 2 + 3)

= A1

x − 1
+ A2

(x − 1)2 + Bx + C
x 2 + 3

.

SOLUTION

By using a common denominator to combine fractions on the right-hand side of the equa-
tion, we have

8
(x − 1)2(x 2 + 3)

= A1(x − 1)(x 2 + 3) + A2(x 2 + 3) + (Bx + C)(x − 1)2

(x − 1)2(x 2 + 3)
.
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After some tedious algebra to expand and then collect terms in the numerator according
to the degrees of x, we can show that the fraction on the right is equal to

(A1 + B)x 3 + (−A1 + A2 − 2B + C )x 2 + (3A1 + B − 2C )x + (−3A1 + 3A2 + C )
(x − 1)2(x 2 + 3)

.

Since this fraction must be equal to our original proper rational function 8
(x−1)2(x2 −3)

, its

numerator must be equal to 8. This means that the terms in the numerator have to be
equal to the terms in 0x 3 + 0x 2 + 0x + 8. Equating the corresponding coefficients of these
terms gives us a system of equations that we can solve for A1, A2, B, and C:⎧⎪⎪⎨

⎪⎪⎩

A1 + B =0
−A1 + A2 − 2B + C =0

3A1 + B − 2C =0
−3A1 + 3A2 + C =8

=⇒

⎧⎪⎪⎨
⎪⎪⎩

A1 =−B
A2 =2B
C =−B

8B =8

=⇒

⎧⎪⎪⎨
⎪⎪⎩

A1 =−1
A2 =2
C =−1
B =1.

Putting these coefficients back into the partial-fractions decomposition, we have

8
(x − 1)2(x 2 + 3)

= −1
x − 1

+ 2
(x − 1)2 + x − 1

x 2 + 3. �

EXAMPLE 4 Another way to solve for the coefficients in a partial-fractions decomposition

Solve for the coefficients A1, A2, and A3 that satisfy the partial-fraction decomposition

1
(x − 1)(x − 2)(x − 3)

= A1

x − 1
+ A2

x − 2
+ A3

x − 3
.

SOLUTION

Again using a common denominator to combine fractions, we have

1
(x − 1)(x − 2)(x − 3)

= A1(x − 2)(x − 3) + A2(x − 1)(x − 3) + A3(x − 1)(x − 2)
(x − 1)(x − 2)(x − 3)

.

At this point we could solve for the coefficients A1, A2, and A3 by the same method we
used in the previous example: expanding the numerator and collecting terms according to
powers of x. However, for partial fractions with many linear factors there is a faster way,
which we outline here.

In order for this partial-fractions decomposition to be valid, we must have A1(x−2)(x−
3) + A2(x − 1)(x − 3) + A3(x − 1)(x − 2) = 1 for all values of x. By examining this equality for
clever values of x, namely, those which make certain factors equal to zero, we can quickly
solve for the coefficients Ai. For example, when x = 1, all of the x − 1 terms are zero and
thus we must have

A1(−1)(−2) + A2(0)(−2) + A3(0)(−1) = 1 =⇒ 2A1 = 1 =⇒ A1 = 1
2
.

Now, for x = 2, we have

A1(0)(−1) + A2(−1)(1) + A3(1)(0) = 1 =⇒ −A2 = 1 =⇒ A2 = −1.

And finally, for x = 3, we have

A1(1)(0) + A2(2)(0) + A3(2)(1) = 1 =⇒ 2A3 = 1 =⇒ A3 = 1
2
.

Therefore the partial-fraction decomposition is
1

(x − 1)(x − 2)(x − 3)
= 1/2

x − 1
+ −1

x − 2
+ 1/2

x − 3
.

Notice that each of the terms in this decomposition is easy to integrate. In fact we can very
quickly compute the integral to be 1

2
ln |x − 1| − ln |x − 2| + 1

2
ln |x − 3| + C. �
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CHECKING
THE ANSWER

It is easy to check the answers to the previous two examples by using common denomina-
tors to combine the terms in the partial-fraction decompositions. For example,

1/2
x − 1

+ −1
x − 2

+ 1/2
x − 3

= (1/2)(x − 2)(x − 3) − (x − 1)(x − 3) + (1/2)(x − 1)(x − 2)
(x − 1)(x − 2)(x − 3)

= (1/2)(x 2 − 5x + 6) − (x 2 − 4x + 3) + (1/2)(x 2 − 3x + 2)
(x − 1)(x − 2)(x − 3)

= 1
(x − 1)(x − 2)(x − 3)

.

EXAMPLE 5 Combining algebraic techniques to integrate a rational function

Solve the integral
∫

x 3 + 4x 2 − 21
x 2 + 6x + 10

dx.

SOLUTION

Since neither substitution nor integration by parts seems to be a useful approach to solv-
ing this integral, and there is no obvious algebraic simplification trick, we will begin by
rewriting the improper rational integrand with the use of polynomial long division. After
using the polynomial long-division algorithm to divide x 3 + 4x 2 − 21 by x 2 + 6x + 10, we
obtain ∫

x 3 + 4x 2 − 21
x 2 + 6x + 10

dx =
∫ (

(x − 2) + 2x − 1
x 2 + 6x + 10

)
dx.

Obviously the x−2 portion of the integrand is easy to deal with, so let’s focus on the proper

rational function 2x−1
x2 +6x+10

. Substitution does not seem to be immediately useful here, so

we might try partial fractions. However, x 2 + 6x + 10 is an irreducible quadratic, since
its discriminant b 2 − 4ac = 36 − 4(1)(10) = −4 is negative; thus, because the denomina-
tor does not factor any further, we cannot decompose this rational function into partial
fractions.

Let’s go back to substitution for a moment. The obvious choice to try is u = x 2 +6x+1,
which gives du = (2x + 6) dx. This du is not exactly what we need for our numerator of
2x − 1, but we can rewrite the numerator by adding and subtracting 6 so that the integral
becomes ∫

(x − 2) dx +
∫

2x + 6
x 2 + 6x + 10

dx +
∫ −7

x 2 + 6x + 10
dx.

Now the first two terms are easy to integrate, so we need only to deal with the third. We
can use the method of completing the square to rewrite this third integral in a form whose
antiderivative is related to the inverse tangent function. By the example following Theo-
rem 5.14, we have x 2 + 6x + 10 = (x + 3)2 + 1. Therefore the integral expression we are
working with is equal to

∫
(x − 2) dx +

∫
2x + 6

x 2 + 6x + 10
dx +

∫ −7
(x + 3)2 + 1

dx.

Finally, with the substitution u = x 2 + 6x + 10 and du = (2x + 6) dx in the second integral,
and the substitution w = x + 3 and dw = dx in the third, we can integrate to obtain

1
2

x 2 − 2x + ln |x 2 + 6x + 10| − 7 tan−1(x + 3) + C. �
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CHECKING
THE ANSWER

We can check by differentiating the function 1
2

x 2 − 2x + ln |(x + 3)2 + 1| − 7 tan−1(x + 3)
and algebraically simplifying to get

x − 2 + 2(x + 3)
(x + 3)2 + 1

− 7
(x + 3)2 + 1

= (x − 2)((x + 3)2 + 1) + 2(x + 3) − 7
(x + 3)2 + 1

= x 3 + 4x 2 − 21
x 2 + 6x + 10

.

TEST YOUR? UNDERSTANDING
� Is x2 +1

x2 −1
a proper rational function or an improper rational function? Why?

� What is the form for the partial-fraction decomposition of the rational function x2 −4
(x−1)6

?

What about x2 −4
(x2 +x+1)6

?

� What are two ways that we could solve for the coefficients in a partial-fractions decom-
position?

� Why is the method of partial fractions a useful technique for solving some integrals?
What do we hope to gain by rewriting an integrand into the form of a partial-fraction
decomposition?

� What does it mean to complete the square of a quadratic expression?

EXERCISES 5.3

Thinking Back

Factoring polynomials: Factor each of the given polynomials
into a product of linear and irreducible quadratic factors. For
the third and fourth polynomials you will have to guess a root
and use synthetic division or other factoring methods.

� x 3 − 2x 2 − x + 2 � x 3 − 1

� x 3 − 4x 2 + x + 6 � x 3 − x 2 − 5x − 3

Integration: Calculate the following integrals.

�
∫

1
(x − 1)2

dx �
∫

x − 1
x 2 − 1

dx

�
∫

1
x 2 + 1

dx �
∫

x
x 2 + 1

dx

�
∫

x 2 + 1
x 3

dx �
∫

x + 1
x 2 + 1

dx

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: f (x) = x+1
x−1

is a proper rational function.

(b) True or False: Every improper rational function can be
expressed as the sum of a polynomial and a proper
rational function.

(c) True or False: After polynomial long division of p(x) by
q(x), the remainder r(x) has a degree strictly less than
the degree of q(x).

(d) True or False: Polynomial long division can be used to
divide two polynomials of the same degree.

(e) True or False: If a rational function is improper, then
polynomial long division must be applied before us-
ing the method of partial fractions.

(f) True or False: The partial-fraction decomposition of
x2 +1

x2(x−3)
is of the form

A
x2

+ B
x−3

.

(g) True or False: The partial-fraction decomposition of
x2 +1

x2(x−3)
is of the form

Bx+C
x2

+ A
x−3

.

(h) True or False: Every quadratic function can be written
in the form A(x − k)2 + C.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A rational function that is its own partial-fraction de-
composition.

(b) A rational function whose partial-fraction decompo-
sition has five terms.

(c) A rational function
p(x)
q(x)

that is of the form (3x + 1) +
1

x2 −1
after polynomial long division.
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3. What is a rational function? What does it mean for a
rational function to be proper? Improper?

4. Explain how to use long division to write the improper

fraction
172

5
as the sum of an integer and a proper

fraction.

5. Suppose you use polynomial long division to divide p(x)
by q(x), and after doing your calculations you end up with
the polynomial x 2 − x + 3 as the quotient above the top
line, and the polynomial 3x − 1 at the bottom as the re-

mainder. Then p(x) = and
p(x)
q(x)

= .

6. Describe two ways in which the long-division algorithm
for polynomials is similar to the long-division algorithm
for integers and then two ways in which the two algo-
rithms are different.

7. Show that the equation p(x) = q(x)m(x) + R(x) is equiva-

lent to the equation
p(x)
q(x)

= m(x) + R(x)
q(x)

for all x for which

q(x) is nonzero.

8. Verify that (x 2 − 1) + x2

x4 +3x2 +4
is a valid result for the

polynomial long-division calculation performed to divide
the polynomial x 6 + 2x 4 + 2x 2 − 4 by the polynomial
x 4 + 3x 2 + 4.

In Exercises 9–11, suppose that you apply polynomial long
division to divide a polynomial p(x) by a polynomial q(x) with
the goal of obtaining an expression of the form

p(x)
q(x)

= m(x) + R(x)
q(x)

.

9. If the degree of p(x) is two greater than the degree of q(x),
what can you say about the degrees of m(x) and R(x)?

10. If the degree of p(x) is equal to the degree of q(x), what
can you say about the degrees of m(x) and R(x)?

11. If the degree of p(x) is less than the degree of q(x), what
happens? Does polynomial long division work? Why or
why not?

In Exercises 12–14, suppose that you want to obtain a partial-

fraction decomposition of a rational function
p(x)
q(x)

according

to Theorem 5.12.

12. What happens if the degree of p(x) is greater than or
equal to the degree of q(x)? Try to perform a partial-
fraction decomposition of the improper rational function

x3

(x−1)(x−2)
, and see what goes wrong.

13. If q(x) is an irreducible quadratic, what can you say about
its partial-fraction decomposition? What if q(x) is a re-
ducible quadratic? Consider the functions q(x) = x 2 + 1
and q(x) = (x − 1)(x − 2) to find your answer.

14. Why do we need to put linear numerators of the form
Bix + Ci in every term of a partial-fraction decomposi-
tion which involves irreducible quadratics? Think about

the example
p(x)
q(x)

= 1
(x2 +1)2

, and figure out what goes

wrong if we attempt to make a decomposition of the form
C1

x2 +1
+ C2

(x2 +1)2
.

15. Use the method of completing the square and what we
know about transformations of graphs to show that the
vertex of the parabola f (x) = x 2 − 3x + 5 is the point
(3/2, 11/4).

16. Theorem 5.14 tells us that if a quadratic ax 2 + bx + c is
monic, meaning that its leading coefficient is a = 1, then
we can express that quadratic in the form (x−k)2 +C with

k = − b
2

and C = c− b2

4
. What happens in the general case

for non-monic quadratics? If ax 2 +bx+ c = (Ax−k)2 +C,
then how can we express A, k and C in terms of a, b, and c?

Skills

Calculate each of the integrals in Exercises 17–46. For some
integrals you may need to use polynomial long division, par-
tial fractions, factoring or expanding, or the method of com-
pleting the square.

17.
∫

3
(x − 2)(x + 1)

dx 18.
∫

6(x + 1)
x(x − 3)

dx

19.
∫

x + 1
(x − 1)2

dx 20.
∫

x + 1
(x − 1)3

dx

21.
∫

(x + 3)(x − 2)
x 2

dx 22.
∫

x 2

(x + 3)(x − 2)
dx

23.
∫

5x 3

(x + 3)(x − 2)
dx 24.

∫
25x 2

(x + 3)(x − 2)2
dx

25.
∫

x
(x 2 + 3)(x − 2)

dx 26.
∫

7(x 2 + 1)
(x 2 + 3)(x − 2)

dx

27.
∫

3 + 3x
x 3 − 1

dx 28.
∫

3x 3

x 3 − 1
dx

29.
∫

2(x − 1)
x 2 − 4x + 5

dx 30.
∫

2(x − 1)
x 2 − 2x + 5

dx

31.
∫

3x 2 − 13x + 13
(x − 2)3

dx 32.
∫

x + 7
x 2 − x − 2

dx

33.
∫ −5x − 5

3x 2 − 8x − 3
dx 34.

∫
x 2 + 4x + 1

x 3 + x 2
dx

35.
∫

x 2 + 2x + 3
x 4 + 4x 2 + 3

dx 36.
∫

x 2 + x + 1
(x 2 + 1)2

dx

37.
∫

1 − 2x
x 2(x 2 + 1)

dx 38.
∫

16x 2(x 2 + 1)
1 − 2x

dx

39.
∫

2x 2 + 4x
x 3 + x 2 + x + 1

dx 40.
∫

x 3

x 3 + x 2 + x + 1
dx

41.
∫

2x(x 2 − 1)
x 2 − 4

dx

42.
∫

(x − 1)(7x − 11)
(x − 2)(x − 3)(x + 1)

dx
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43.
∫

2x 3 − 9x 2 + 7x + 6
2x + 1

dx

44.
∫

(x − 1)(x 2 − 2x − 2)
x − 3

dx

45.
∫

2x 4 − 8x 3 + 9x − 4
x 2 − 4x + 1

dx

46.
∫

2x 4−3x 3+x 2−4x−5
x 3 + 2x + 1

dx

Calculate each of the definite integrals in Exercises 47–52.
Some integrals require partial fractions or polynomial long
division, and some do not.

47.
∫ 4

3

4
x 2 − 4

dx 48.
∫ 1

−1

4(x 2 − 1)
x 2 − 4

dx

49.
∫ 3

1

1
x(x + 1)

dx 50.
∫ 3

1

1
x 2(x + 1)

dx

51.
∫ 1

−1

x 2 − 2x − 4
x − 3

dx 52.
∫ 2

1

1
x(x + 2)(x − 3)

dx

Calculate each of the integrals in Exercises 53–56. Each inte-
gral requires substitution or integration by parts as well as the
algebraic methods described in this section.

53.
∫

sin x
cos x + cos2 x

dx 54.
∫

e x

e 3x − 2e 2x
dx

55.
∫

ln x
x(1 + ln x)2

dx 56.
ln x + 1

x(( ln x)2 − 4)

57. Consider the function f (x) = 1
x2 −4

.

(a) Find the signed area between the graph of f (x) and
the x-axis on [−1, 1] shown next at the left.

(b) Find the area between the graph of f (x) and the graph

of g(x) = 1
4

(x − 1) on [−1, 1] shown next at the right.

y

x

�0.50

�0.25

�1 �0.5 10.5

y

x

�0.50

�0.25

�1 �0.5 10.5

58. Consider the function f (x) = 2
x3 −1

+ 1.

(a) Find the signed area of the region between the graph

of f (x) and the x-axis on
[
−2,

1
2

]
shown in the figure.

(b) Find the absolute area of the same region.

x

y

�1

1

�2 �1

59. Consider the function f (x) = 2x3 +x
(x2 +1)2

.

2

1

y

�2

�1

�1 1
x

(a) Find the average value of f (x) on [0, 2].
(b) Graphically approximate a value of x for which f (x) is

equal to its average value on [0, 2], and use this value
to verify that your answer from part (a) is reasonable.

60. Consider the function f (x) = 16
(x+1)(x−3)2

.

(a) Find the area between the graphs of f (x) and g(x) =
4 − 2x on [0, 2] shown next at the left.

(b) Find the area between the graphs of f (x) and h(x) =
4

x+1
on [0, 2] shown next at the right.

y

x

2

4

6

21

y

x

2

4

6

21

Applications
61. In her work as a population biologist for Idaho Fish and

Game, Leila is assigned the task of modeling a population
p(t) of prairie dogs that ranchers in the eastern part of the
state are complaining about. She uses the so-called logis-
tic growth model, which quickly results in an expression
of the form

r(t) =
∫ p(t)

p0

1

q
(

1 − q
K

) dq,

where K represents the carrying capacity of the land
where the prairie dogs live, r is the rate of reproduction,
and p0 is the initial population of the prairie dogs. Use the
Fundamental Theorem of Calculus to calculate r(t) and
then use your answer to solve for p(t) in terms of r(t), as-
suming that p0 and p(t) both lie between 0 and K.
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62. Leila’s model for the prairie dogs in the previous exercise
was so successful that she was invited to assist a Uni-
versity of Idaho professor in modeling sage grouse pop-
ulations. In contrast to prairie dogs, sage grouse show
evidence of an inverse density dependence: If the num-
ber g of grouse falls too low, then the population is no
longer sustainable and dies off. This relationship can be
represented in a model that satisfies

−rt =
∫ g (t)

g (0)

1
γ (1 − γ /K)(1 − γ /m)

dγ ,

where r > 0, 0 < m < K, and g(t) represents the popula-
tion of grouse at time t.
(a) Evaluate the integral in the case that t satisfies

0 < g(t) < g(0) < m.
(b) It is difficult to solve for g(t), but given that t satisfies

0 < g(t) < g(0) < m < K, differentiate both sides of
the equation with respect to t and use the Fundamen-
tal Theorem of Calculus in solving for g′(t), to show
that lim

t→∞
g(t) = 0. You may assume that all of the lim-

its involved exist. This means that if the grouse are
hunted to a population lower than m, then the grouse
eventually all die off.

Proofs

63. Prove that every quadratic function of the form f (x) =
x 2 + bx + c can be written in the form f (x) = (x − k)2 + C,

with k = − b
2

and C = c − b2

4
.

64. Use the method of completing the square and what
we know about transformations of graphs to prove that

for all real numbers b and c, the vertex of the parabola
with equation f (x) = x 2 + bx + c is located at the point(

− b
2

, c − b2

4

)
.

Thinking Forward

Separable differential equations: Suppose a population P = P(t)

grows in such a way that its rate of growth
dP
dt

obeys the
equation

dP
dt

= P(100 − P).

This is called a differential equation because it is an equa-
tion that involves a derivative. In the series of steps that fol-
low, you will find a function P(t) that behaves according to
this differential equation.

� As we will see in Section 6.5, a differential equation
of this form is separable to the following equivalent
equation involving integrals:

∫
1

P(100 − P)
dP =

∫
1 dt.

� Use partial fractions to show that the integral on the
left side of this equation is equal to

1
100

(ln |P| − ln |100 − P|) + C1.

� Use properties of logarithms to simplify the answer
you found in the previous step.

� Set the answer from the previous step equal
to

∫
1 dt = t + C2, and solve for P = P(t). Along

the way you can combine unknown constants into
new constants; for example, if you encounter C2 − C1,
then you could just rename that constant C and
proceed from there. At the end of your calculations
you should have

P(t) = 100Ae 100 t

1 + Ae 100 t

for some constant A.

� What happens to the function P(t) as t → ∞? What
does that mean about this particular population?
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5.4 TRIGONOMETRIC INTEGRALS

� Using Pythagorean identities to set up trigonometric integrals for simple u-substitutions

� Using trigonometric identities to simplify integrals involving powers of trigonometric functions

� The integrals of secant and cosecant

Using Pythagorean Identities to Set Up a Substitution

Integration by substitution is a powerful tool, but as we have seen, it can be difficult to
recognize an integrand as being in the form f ′(u(x))u′(x). If we are lucky, we can use algebra
to rewrite an integrand to set it up for a particular substitution. In the case of trigonometric
integrands, this algebra often involves the Pythagorean identities, which we repeat here
for convenience:

THEOREM 5.15 Pythagorean Identities

For all values of x at which the following equations are defined,

(a) sin2 x + cos2 x = 1 (b) tan2 x + 1 = sec2 x (c) 1 + cot 2 x = csc2 x

It will help you remember these formulas if you notice that the second identity follows from
the first by dividing both sides by cos2 x and that the third identity follows from the first by
dividing both sides by sin2 x.

With the Pythagorean identities we can freely write even powers of sin x, tan x, and cot x
in terms of even powers of cos x, sec x, and csc x, and vice versa. For example, using the first
Pythagorean identity, we can write cos4 x in terms of sine as

cos4 x = (cos2 x)2 = (1 − sin2 x)2.

With this equation in mind, consider the integral
∫

cos5 x dx. As it is written, we do not
know how to solve the integral. However, we can convert four of the cosines to sines and
have one cosine left over:∫

cos5 x dx =
∫

cos4 x cos x dx =
∫

(cos2 x)2 cos x dx =
∫

(1 − sin2 x)2 cos x dx.

In this new form we have an integrand that can be easily solved with u-substitution with
u = sin x and du = cos x dx:∫

(1 − sin2 x)2 cos x dx =
∫

(1 − u2)2 du =
∫

(1 − 2u2 + u4) du

= u − 2
3

u3 + 1
5

u5 + C = sin x − 2
3

sin3 x + 1
5

sin5 x + C.

In general, we would like to rewrite trigonometric integrands so that they are expressed
in terms of a single trigonometric function multiplied by the derivative of that trigonometric
function. Whether or not we can do this for a particular integral depends on the trigono-
metric functions and powers involved. For example, we can use the method for some in-
tegrals of the form

∫
sinm x cosn x dx when either m or n is odd, since in that case we can

convert all but one sine or cosine into the other function and apply a substitution. For in-
stance, we could set up

∫
sin8 x cos3 x dx for substitution with u = sin x by writing∫

sin8 x cos3 x dx =
∫

sin8 x(1 − sin2 x)︸ ︷︷ ︸ cos x dx.

We could now perform the substitution u = sin x, which would change the bracketed por-
tion of the integral to simply u8(1 − u2), which is easy to multiply out and integrate.
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Similarly, we can use this method for some integrals of the form
∫

secm x tann x dx.
When m is even, all but two of the secants can be converted into tangents. When n is odd,
we can save a sec x tan x and rewrite the rest of the integrand in terms of the secant. Both
of these conditions hold for the integral

∫
sec6 x tan5 x dx, so we can rewrite this integral in

two ways: ∫
sec6 x tan5 x dx =

∫
(tan2 x + 1)2 tan5 x︸ ︷︷ ︸ sec2 x dx,

∫
sec6 x tan5 x dx =

∫
sec5 x(sec2 x − 1)2︸ ︷︷ ︸ sec x tan x dx.

In both cases the integral is set up for a simple substitution, with u = tan x in the first
case and u = sec x in the second case. The bracketed portions of the integrands become
functions of u that are easy to antidifferentiate.

The table that follows summarizes some common situations in which we can use
Pythagorean identities to set up a simple substitution in a trigonometric integral. In this
table it is assumed that m and n are positive integers.

Form Rewritten Form Choose
∫

sinn x dx, n odd
∫

(expression in cos x) sin x dx u = cos x, du = − sin x dx
∫

sinm x cos n x dx, n odd
∫

(expression in sin x) cos x dx u = sin x, du = cos x dx
∫

sinm x cos n x dx, m odd
∫

(expression in cos x) sin x dx u = cos x, du = − sin x dx
∫

sec m x tann x dx, m even
∫

(expression in tan x) sec 2 x dx u = tan x, du = sec 2 x dx
∫

sec m x tann x dx, n odd
∫

(expression in sec x) sec x tan x dx u = sec x, du = sec x tan x dx

Similar rows could be made for integrals that involve powers of cosine or products of
powers of cosecant and cotangent.

You do not need to memorize the preceding table! Instead, notice that in each case
we rewrite the original integral in such a way as to save part of the integrand for the du
that corresponds to our desired choice of u-substitution. Whether or not we can do this
depends whether the exponents involved in the original integral are even or odd. Integrals
that are not in one of the forms in the table will require different solution techniques that
are the focus of the remainder of this section.

The Pythagorean identities can also be applied in less obvious cases. For example, we
can effectively reduce the integral of a power of a tangent by converting two copies of the
tangent at a time. As an illustration of this procedure, consider the integral

∫
tan5 x dx. We

can write

tan5 x = tan3 x tan2 x = tan3 x (sec2 x − 1) = tan3 x sec2 x − tan3 x.

Notice that we have written tan5 x as the sum of a function we can integrate with the tech-
niques discussed earlier and a function that is a lower power of the tangent. Repeating this
kind of reduction will eventually solve this integral, as you will see in Example 4.

Using Double-Angle Formulas to Reduce Powers

Not all integrals involving trigonometric functions can be solved by using Pythagorean
identities and u-substitution. For example, that technique would not work for the inte-
grals

∫
sin6 x dx,

∫
sin2 x cos2 x dx, and

∫
tan5 x dx, because of the parity of the exponents

involved, that is, whether certain exponents are even or odd. The first two of these inte-
grals can be simplified with the use of the double-angle identities, which we repeat here:
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THEOREM 5.16 Double-Angle Identities

For all real numbers x,

(a) sin2 x = 1
2

(1 − cos 2x) (b) cos2 x = 1
2

(1 + cos 2x)

For example, we can write the integral
∫

sin2 x dx as∫
sin2 x dx = 1

2

∫
(1 − cos 2x) dx = 1

2

(
x − 1

2
sin 2x

)
+ C.

For higher even powers of sine or cosine we apply double-angle identities repeatedly,
reducing the power by half each time. For example, since sin4 x = (sin2 x)2, we have

sin4 x =
(

1
2

(1 − cos 2x)
)2

= 1
4

(1 − 2 cos 2x + cos2 2x) = 1
4

(
1 − 2 cos 2x + 1

2
(1 + cos 4x)

)
.

Although it seems like we made the expression sin4 x much more complicated, in fact the
messy expression on the right-hand side of the equation is easy to integrate, piece by piece.

Integrating Secants and Cosecants

Believe it or not, at this point we still do not have formulas for antidifferentiating two of
the six basic trigonometric functions. To finish our investigation of trigonometric integrals,
we give formulas for these integrals:

THEOREM 5.17 Integrals of Secant and Cosecant

(a)
∫

sec x dx = ln | sec x + tan x| + C (b)
∫

csc x dx = − ln | csc x + cot x| + C

Proof. We prove part (a) and leave the proof of part (b) to Exercise 83. Neither integration by
substitution nor integration by parts can immediately improve the integral

∫
sec x dx. However,

there is a particular technique that happens to apply to this integral. If we multiply the integrand
by a certain very special form of 1, we will have an integral that can be evaluated by substitution:

∫
sec x dx =

∫
sec x

(
sec x + tan x
sec x + tan x

)
dx =

∫
sec2 x + sec x tan x

sec x + tan x
dx.

It was not at all obvious why we multiplied by
secx+tanx
secx+tanx

just now. However, now that we have

done so, the following choice of substitution works out surprisingly well:

u = sec x + tan x =⇒ du
dx

= sec x tan x + sec2 x =⇒ du = (sec x tan x + sec2 x) dx

With this change of variables, the integral becomes∫
sec x dx =

∫
1
u

du = ln |u| + C = ln | sec x + tan x| + C.

What about integrating powers of sec x and csc x? Of course, it is easy to integrate sec2 x,
since it is the derivative of tan x. This fact can be exploited when integrating higher powers
of sec x, since we will be able to choose dv = sec2 x dx and integrate it to get v = tan x. For
example, consider the integral

∫
sec4 x dx, with parts chosen as follows:

u = sec2 x −→ du = 2 sec x (sec x tan x) dx

v = tan x ←− dv = sec2 x dx.
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Applying the formula for integration by parts and simplifying a bit, we have∫
sec4 x dx = sec2 x tan x − 2

∫
tan2 x sec2 x dx.

The new integral on the right can be solved by substitution, with u = tan x and du =
sec2 x dx. This method of choosing parts with dv = sec2 x dx is effective for simplifying any
integrand that is a power of a secant, since it reduces the power each time the method is
applied.

Examples and Explorations

EXAMPLE 1 Setting up substitutions with Pythagorean identities

Use algebra and u-substitution to find each of the following integrals:

(a)
∫

sin3 x cos4 x dx (b)
∫

csc4 x cot 3 x dx (c)
∫

sec 3 x tan3 x dx

SOLUTION

(a) Using the Pythagorean identity sin2 x = 1 − cos2 x, we can write the integrand so that
it involves only cosines (the bracketed portion) except for a single copy of sin x:

∫
sin3 x cos4 x dx =

∫
sin2 x sin x cos4 x dx =

∫
(1 − cos2 x) cos4 x︸ ︷︷ ︸ sin x dx

Now with the substitution u = cos x we have −du = sin x dx, and our integral becomes

−
∫

(1 − u2) u4 du = −
∫

(u4 − u6) du = − 1
5

cos5 x + 1
7

cos7 x + C.

Notice that this method worked only because the original power of sin x was odd. If
both powers had been even, we would have needed to use another method, as we will
in Example 2.

(b) We will set up the integral so that we can apply the substitution u = cot x. This means
that we must write the integral in terms of cotangents (the bracketed portion), with
one copy of csc2 x saved for the differential du:∫

csc4 x cot 3 x dx =
∫

csc2 x csc2 x cot 3 x dx =
∫

(1 + cot 2 x) cot 3 x︸ ︷︷ ︸ csc2 x dx

Now with u = cot x and thus −du = csc2 x dx, substitution gives us the new integral

−
∫

(u2 + 1) u3 du = −
∫

(u5 + u3) du = − 1
6

cot 6 x − 1
4

cot 4 x + C.

This method worked only because the original power of csc x was even, which allowed
us to apply a Pythagorean identity to convert all but two of the cosecants into cotan-
gents.

(c) This time the power of secant is odd, so the method used in part (b) will not work.
Instead, we will convert everything to secants (the bracketed portion), with one copy
of sec x tan x saved for the differential:∫

sec 3 x tan3 x dx =
∫

sec 2 x sec x tan2 x tan x dx =
∫

sec 2 x (sec 2 x − 1)︸ ︷︷ ︸ sec x tan x dx.

Now with the substitution u = sec x and thus du = sec x tan x dx, our integral becomes
∫

u2 (u2 − 1) du =
∫

(u4 − u2) du = 1
5

sec 5 x − 1
3

sec 3 x + C.
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The method we just applied works only if the power of secant (respectively, cosecant) is
odd. In part (b) we saw a method that works only if the power of tangent (respectively,
cotangent) is even. If neither of these conditions holds, then we can apply a reduction
method; see Example 4. �

EXAMPLE 2 Reducing powers with double-angle identities

Use double-angle identities to find each of the following integrals:

(a)
∫

cos6 x dx (b)
∫

sin2 x cos2 x dx

SOLUTION

(a) Notice that we cannot use the method of Pythagorean identities as in the previous
example, because the power of cosine is even. Instead, we apply the double-angle
identity for cosine to rewrite cos6 x as

cos6 x = (cos2 x)3 =
(

1
2

(1 + cos 2x)
)3

= 1
8

+ 3
8

cos 2x + 3
8

cos2 2x + 1
8

cos3 2x.

We have now traded the problem of integrating cos6 x for the problem of inte-

grating four simpler functions: 1
8

and 3
8

cos 2x, which are easy to antidifferenti-

ate; 3
8

cos2 2x, which requires another application of the double-angle formula; and
1
8

cos3 2x, which can be solved with a Pythagorean identity and the substitution

u = sin 2x, du = 2 cos 2x dx. We have
∫

cos6 x dx =
∫

1
8

dx +
∫

3
8

cos 2x dx +
∫

3
8

cos2 2x dx +
∫

1
8

cos3 2x dx

= 1
8

x + 3
8

(
1
2

sin 2x
)

+ 3
8

∫
1
2

(1 + cos 4x) dx + 1
8

∫
(1 − sin2 2x) cos 2x dx

= 1
8

x + 3
8

(
1
2

sin 2x
)

+ 3
16

(
x + 1

4
sin 4x

)
+ 1

8

(
1
2

) ∫
(1 − u2) du

= 1
8

x + 3
8

(
1
2

sin 2x
)

+ 3
16

(
x + 1

4
sin 4x

)
+ 1

16

(
u − 1

3
u3

)
+ C

= 1
8

x + 3
8

(
1
2

sin 2x
)

+ 3
16

(
x + 1

4
sin 4x

)
+ 1

16

(
sin 2x − 1

3
sin3 2x

)
+ C.

(b) One way to simplify this integral is to apply double-angle identities to write both sin2 x
and cos2 x in terms of cos 2x and then apply a double-angle identity again to reduce
powers even further:
∫

sin2 x cos2 x dx =
∫ (

1
2

(1 − cos 2x)
)(

1
2

(1 + cos 2x)
)

dx ← double-angle identities

= 1
4

∫
(1 − cos2 2x) dx ← simplify

= 1
4

∫ (
1 − 1

2
(1 + cos 4x)

)
dx ← double-angle identity

= 1
4

∫ (
1
2

− 1
2

cos 4x
)

dx ← simplify

= 1
4

(
1
2

x − 1
8

sin 4x
)

+ C. ← antidifferentiate �
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EXAMPLE 3 Using integration by parts to integrate a power of the secant

Find
∫

sec 3 x dx.

SOLUTION

In this case, Pythagorean identities would not be helpful. However, since we know how to
integrate sec 2 x, we can apply integration by parts with dv = sec 2 x dx:

u = sec x −→ du = sec x tan x dx

v = tan x ←− dv = sec 2 x dx.

Applying the integration-by-parts formula and then a Pythagorean identity, we have

∫
sec 3 x dx = sec x tan x −

∫
sec x tan2 x dx. ← integration by parts

= sec x tan x −
∫

sec x(sec 2 x − 1) dx ← Pythagorean identity

= sec x tan x −
∫

sec 3 x dx +
∫

sec x dx ← expand

= sec x tan x −
∫

sec 3 x dx + ln | sec x + tan x| ← Theorem 5.17

We are now in a fortunate situation, since all we have to do is solve for
∫

sec 3 x dx in the
equation

∫
sec 3 x dx = sec x tan x − ∫

sec 3 x dx + ln | sec x + tan x|. Doing so gives us
∫

sec 3 x dx = 1
2

(sec x tan x + ln | sec x + tan x|) + C. �

EXAMPLE 4 Using Pythagorean identities to reduce to simpler cases and smaller powers

Find each of the following integrals:

(a)
∫

tan5 x dx (b)
∫

sec x tan2 x dx

SOLUTION

(a) The key here is to repeatedly apply a Pythagorean identity to decrease the powers of
the tangent until we have a sum of expressions that we can integrate. We can write

tan5 x = tan3 x (sec 2 x − 1) ← Pythagorean identity

= tan3 x sec 2 x − tan3 x ← expand

= tan3 x sec 2 x − tan x (sec 2 x − 1) ← Pythagorean identity

= tan3 x sec 2 x − tan x sec 2 x + tan x ← expand

The first two expressions can be integrated with the substitution u = tan x and du =
sec 2 x dx, and the third is an expression we already know how to antidifferentiate, as
follows:∫

tan5 x dx =
∫

u3 du −
∫

u2 du +
∫

tan x dx

= 1
4

u4 − 1
3

u3 + ln | cos x| + C = 1
4

tan4 x − 1
3

tan3 x + ln | cos x| + C.
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(b) Again we will apply Pythagorean identities to reduce the powers of the tangents to
expressions that we know how to integrate. We have

sec x tan2 x = sec x(sec 2 x − 1) = sec 3 x − sec x.

We saw how to integrate sec 3 x in Example 3 and how to integrate sec x in Theo-
rem 5.17. Putting these results together, we have

∫
sec x tan2 x dx = 1

2
sec x tan x − 1

2
ln | sec x + tan x| + C. �

EXAMPLE 5 Hyperbolic integrals*

Adapt the techniques of this section to solve the integral
∫

sinh2 x cosh3 x dx.

SOLUTION

Since the hyperbolic functions sinh x, cosh x, and tanh x behave so much like their trigono-
metric counterparts, the techniques of this section can also be used to solve integrals involv-
ing products and powers of hyperbolic functions. Recall from Section 2.6 that (sinh t, cosh t)
is a point on the hyperbola x 2 − y2 = 1 and thus that we have the identity

cosh2 t − sinh2 t = 1.

We can use this identity to set up a convenient substitution:

∫
sinh2 x cosh3 x dx =

∫
sinh2 x(1 + sinh2 x)︸ ︷︷ ︸ cosh x dx.

Now with the substitution u = sinh x and du = cosh x, our integral becomes

∫
u2(1 + u2) du =

∫
(u2 + u4) du = 1

3
u3 + 1

5
u5 + C = 1

3
sinh3 x + 1

5
sinh5 x + C.

�

TEST YOUR? UNDERSTANDING
� Why can’t we use Pythagorean identities and u-substitution to solve the integral∫

sin4 x cos4 x dx? What method could we use instead?

� In Example 1(b) we used a Pythagorean identity followed by substitution with u =
cot x to solve the integral

∫
csc4 x cot 3 x dx. Can you find another way to solve this

integral?

� When we integrated
∫

sec 3 x dx in Example 3, we used integration by parts and identi-
ties to return to the original integral. Would the same thing happen if the power of the
secant were even? Why or why not?

� The technique used in Example 4 also works if the power of the tangent is even. Use this
technique to find

∫
tan6 x dx. What is different about the last steps of the computation

when k is even?

� In solving trigonometric integrals by the techniques in this section, it is often difficult
to check answers by differentiating. Why?
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EXERCISES 5.4

Thinking Back

Pythagorean identities: Prove each of the following
Pythagorean identities in the manner specified.

� Prove that sin2 x + cos2 x = 1 for acute angles x, using
the right-triangle definitions of sine and cosine. Why
is this called a Pythagorean identity?

� Prove that sin2 x+cos2 x = 1 for any angle x, using the
unit-circle definitions of sine and cosine.

� Use the fact that sin2 x + cos2 x = 1 to prove that
tan2 x + 1 = sec 2 x.

� Use the fact that sin2 x + cos2 x = 1 to prove that
1 + cot 2 x = csc2 x.

Double-angle identities: Prove each of the following double-
angle identities by applying the sum identity for the cosine
followed by a Pythagorean identity.

� sin2 x = 1
2

(1 − cos 2x) � cos2 x = 1
2

(1 + cos 2x)

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
∫

cos8 x dx = 1
9

cos9 x + C.

(b) True or False:
∫

cos8 x dx = 1
9

sin9 x + C.

(c) True or False:
∫

cos8 x dx = − 1
9

sin9 x + C.

(d) True or False: If k is positive and odd, then
∫

sink x dx
can be rewritten so that integration by substitution is
possible with u = sin x.

(e) True or False: The best method for integrating∫
sin3 x cos2 x dx is to apply double-angle identities.

(f) True or False: The best method for integrating∫
sec 4 x cos5 x dx is to apply Pythagorean identities.

(g) True or False: The best method for integrating∫
csc2 x cot 3 x dx is to apply substitution with u =

cot x.

(h) True or False: We now know how to integrate all six of
the basic trigonometric functions.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Three integrals that can be rewritten by using the
Pythagorean identity sin2 x + cos2 x = 1 so that inte-
gration by substitution applies.

(b) Three integrals that can be rewritten by using the
Pythagorean identity tan2 x + 1 = sec 2 x so that inte-
gration by substitution applies.

(c) Three integrals that can be improved by using one or
both of the double-angle identities.

3. In Example 1(a) we showed that
∫

sin3 x cos4 x dx =
− 1

5
cos5 x + 1

7
cos7 x + C. Check that this answer is

correct by differentiating and applying trigonometric
identities.

4. Compile lists of (a) the derivatives and (b) the integrals
of the six basic trigonometric functions: sin x, cos x, tan x,
sec x, csc x, and cot x.

5. Given the algebraic trick for integrating sec x used in the
proof of Theorem 5.17, what do you think is the algebraic
trick used for integrating csc x?

6. Find three integrals in Exercises 21–66 that can be solved
by applying Pythagorean identities to set up simple
u-substitutions.

7. Find three integrals in Exercises 21–66 that can be solved
by the application of double-angle formulas.

Describe strategies for solving the types of integrals given in
Exercises 8–18.

8.
∫

cosk x dx, k odd 9.
∫

cosk x dx, k even

10.
∫

cot k x dx, k odd 11.
∫

cot k x dx, k even

12.
∫

csc k x dx, k = 2 13.
∫

csc k x dx, k > 2

14.
∫

sinm x cosn x dx, one of m and n odd

15.
∫

sinm x cosn x dx, both m and n even

16.
∫

sec m x tann x dx, m even

17.
∫

sec m x tann x dx, n odd

18.
∫

sec m x tann x dx, m odd and n even

19. Consider the integral
∫

sin2 x cos2 x dx. We solved this
integral in Example 2(b) by applying double-angle iden-
tities at the very beginning.

(a) Solve this integral by applying the identity sin2 x =
1 − cos2 x.

(b) Solve this integral another way, by applying the iden-

tity sin x cos x = 1
2

sin 2x.

20. Consider the integral
∫

sec 2 x tan3 x dx.

(a) Solve this integral by using integration by substitu-
tion with u = tan x.

(b) Solve this integral another way, by using integration
by substitution with u = sec x.
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Skills

Solve each of the integrals in Exercises 21–66. Some of the
integrals require the methods presented in this section, and
some do not. (The last four exercises involve hyperbolic func-
tions.)

21.
∫

sin2 3x dx 22.
∫

cos2 x dx

23.
∫

cos5 x dx 24.
∫

sin3 x dx

25.
∫

tan 2x dx 26.
∫

csc πx dx

27.
∫

sec 4x dx 28.
∫

tan6 x dx

29.
∫

cot 5 x dx 30.
∫

csc2 x dx

31.
∫

sec 3 2x dx 32.
∫

sec 6 x dx

33.
∫

cos4 x dx 34.
∫

sin6 x dx

35.
∫

csc4 x dx 36.
∫

sin x cos4 x dx

37.
∫

cos 3 x sin4 x dx 38.
∫

sin5 x cos2 x dx

39.
∫

sec x tan3 x dx 40.
∫

sin2 x cos 3 x dx

41.
∫

sin2 3x cos2 3x dx 42.
∫

sec 2 x tan5 x dx

43.
∫

sec 8 x tan x dx 44.
∫

tan2 4x sec 4x dx

45.
∫

sec 3 x tan5 x dx 46.
∫

csc4 x cot 2 x dx

47.
∫

sin13 x cos5 x dx 48.
∫

sec 3 x tan2 x dx

49.
∫

csc x cot 2 x dx 50.
∫

(cot x csc x)3 dx

51.
∫

tan x
cos 3 x

dx 52.
∫

cos 3 x
csc 8 x

dx

53.
∫

sin x sec x dx 54.
∫

cos6 x sin3 x dx

55.
∫

cos 3 x sec 2 x dx 56.
∫

sin x tan x dx

57.
∫

tan2 x csc x dx 58.
∫

tan x cos5 x dx

59.
∫

cos x ln(cos x)
csc x

dx 60.
∫

3
sin2(πx)

dx

61.
∫

(sin x
√

cos x )3 dx 62.
∫

sin3 x
cos x

dx

63.
∫

sinh x cosh2 x dx 64.
∫

sinh5 x cosh2 x dx

65.
∫

tanh x cosh7 x dx 66.
∫

sinh2 x cosh2 x dx

Solve each of the definite integrals in Exercises 67–76.

67.
∫ π

0
sin5 x dx 68.

∫ 3π

0
sin5 x dx

69.
∫ π/2

−π/2
cos 3 x dx 70.

∫ π

−π

sin2 x dx

71.
∫ π

0
sin3 x cos2 x dx 72.

∫ π

−π

sin2 x cos2 x dx

73.
∫ π/4

0
sec 4 x tan2 x dx 74.

∫ π/2

π/4
csc x cot 3 x dx

75.
∫ π/4

0

sin2 x
cos4 x

dx 76.
∫ π/4

0

sin x
cos2 x

dx

77. Consider the function f (x) = 4 sin3 x cos2 x.
(a) Find the signed area between the graph of f (x) and

the x-axis on [−π , π ], shown next at the left.
(b) Find the absolute area between the graph of f (x) and

the x-axis on [−π , π ].
(c) Find the average value of f (x) on

[
0,

π

2

]
, shown next

at the right.

y

x

0.5

�0.5

π�π
�

π

2
π

2

y

x

0.5

π

2
π

4

78. Consider the function f (x) = sin5 x.
(a) Find the area between the graphs of f (x) and

g(x) = sin x on [0, π ], shown next at the left.
(b) Find the area between the graphs of f (x) and

h(x) = sin5 2x on [0, π ], shown next at the right. Note
that the intersection point of the two graphs is at
x = π

3
.

y

x

0.5

1

ππ

2
π

4
3π

4

x

y
1

�1

ππ

3

79. Consider the function f (x) = sin2(πx).

(a) Find the area between the graphs of f (x) and f (x) + 1
2

on [0, 3], shown next at the left.

(b) Find the area between the graphs of f (x) and −f (x)+ 1
2

on [0, 3], shown next at the right.

y

x

0.5

1.0

1.5

32.521.510.5

y

x

�0.5

0.5

1.0

32.521.510.5
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Applications
80. An office building has a thermostat that keeps the tem-

perature between 20 and 26 degrees Celsius for 24 hours
a day. As the heating and cooling units alternate, the tem-
perature starting from midnight is given by

T(t) = 20 sin3
(π

3
x
)

cos 3
(π

3
x
)

+ 22.5,

as shown in the figure. Find the average temperature in
the office building between the hours of 9am and 5pm.

Temperature of office building

T

t
2418126

25

20

15

10

5

81. A wire filament is shaped to match the graph of the func-
tion of y = ln(2 cos x) from x = −π

3
to x = π

3
, measured

in inches, as shown in the figure. Given that the length
of a curve y = f (x) from x = a to x = b can be calculated
with the formula ∫ b

a

√
1 + ( f ′(x))2 dx,

find the length of the filament.

Shape of wire filament

y

x

0.25

0.50

0.75

�
π

6
�

π

3
π

6
π

3

Proofs

82. Prove the integration formula∫
sec x dx = ln | sec x + tan x| + C

(a) by multiplying the integrand by a form of 1 and then
applying a substitution;

(b) by differentiating ln | sec x + tan x|.
83. Prove the integration formula∫

csc x dx = − ln | csc x + cot x| + C

(a) by multiplying the integrand by a form of 1 and then
applying a substitution;

(b) by differentiating − ln | csc x + cot x|.
84. In this problem we will see how to solve integrals of the

form
∫

sin mx cos nx dx by using the trigonometric identity

sin α cos β = 1
2

(sin(α − β) + sin(α + β)).

(a) Explain why the techniques covered earlier in the
reading do not apply to

∫
sin 2x cos 3x dx.

(b) Use the given trigonometric identity to solve∫
sin 2x cos 3x dx.

(c) Use the sum and difference identities for the sine
function to prove the given trigonometric identity.

85. It can be tedious to integrate powers of the sine, espe-
cially for powers that are large and even. The following
reduction formula can help: For k > 2,∫

sink x dx = −1
k

sink−1 x cos x + k − 1
k

∫
sink−2 x dx.

(a) Use the given reduction formula to find
∫

sin4 x dx
and

∫
sin8 x dx. You may have to apply the formula

more than once.
(b) Why is this formula called a reduction formula?
(c) Use integration by parts to prove the reduction for-

mula. (Hint: Choose u = sinn−1 x.)
86. It can be tedious to integrate powers of the secant, espe-

cially for powers that are large. The following reduction
formula can help: For k > 2,∫

sec k x dx = 1
k − 1

sec k−2 x tan x + k − 2
k − 1

∫
sec k−2 x dx.

(a) Use the given reduction formula to find
∫

sec 3 x dx
and

∫
sec 7 x dx. You may have to apply the formula

more than once.
(b) Use integration by parts to prove the reduction for-

mula. (Hint: Choose dv = sec 2 x dx.)

Thinking Forward

Trigonometric substitution: Some integrals that don’t start out
involving trigonometric functions can be cleverly converted
into ones that do, and then we can bring the techniques of
this section to bear. In the next few problems this is how we

will solve the integral
∫ 1

x
√

1−x2
dx.

� The non-intuitive substitution u = sin−1 x is equiva-
lent to the backwards substitution x = sin u. How are
dx and du related?

� Rewrite the given integral by substituting x = sin u
and dx = cos u.

� Use algebra to show that your new integral is equiva-
lent to

∫
csc u dx.

� Solve the integral and write your answer in terms of
x. Your answer will involve both trigonometric and in-
verse trigonometric functions.
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5.5 TRIGONOMETRIC SUBSTITUTION

� Using inverse trigonometric functions as substitutions to solve integrals

� Domain considerations when applying trigonometric substitution

� Writing a trigonometric and inverse trigonometric composition as an algebraic function

Backwards Trigonometric Substitutions

As we have seen, integration is not always a simple, straightforward process. Sometimes,
similar integrals require different solution strategies. For example, consider the four
integrals∫

1√
1 − x 2

dx,
∫

x√
1 − x 2

dx,
∫

x 3
√

1 − x 2
dx, and

∫
1

x 2
√

1 − x 2
dx.

The first three can be solved with methods we have used so far: the first by antidifferentiat-
ing, the second with the substitution u = 1 − x 2, and the third with the same substitution
along with a back-substitution. The fourth integral, however, is more difficult. Fortunately,
a nonintuitive substitution will save the day:

u = sin−1 x =⇒ du
dx

= 1√
1 − x 2

=⇒ du = 1√
1 − x 2

dx .

The differential du looks promising, since 1√
1−x2

does appear in our integrand. The choice

of u = sin−1 x does not appear in the integrand, but we will be able to use back-substitution
to fix that problem, with x = sin u. With this back-substitution we can rewrite our integral
as one that involves trigonometric functions but is much simpler:∫

1

x 2
√

1 − x 2
dx =

∫
1
x 2

(
1√

1 − x 2
dx

)
=

∫
1

sin2 u
du =

∫
csc2 u du.

We can achieve the same result with a slightly different method of back-substitution
called trigonometric substitution. Instead of starting with the substitution u = sin−1 x,
we will start immediately with the substitution x = sin u. Starting over with this choice, we
have

x = sin u =⇒ dx
du

= cos u =⇒ dx = cos u du .

Compare this substitution with the one we did previously; the two substitutions are equiv-
alent, but the one starting with x = sin u is simpler. Notice also that we are thinking of x as
a function of u. With this new version of our substitution and a Pythagorean identity, we
obtain the same simplification as before:∫

1

x 2
√

1 − x 2
dx =

∫
cos u

sin2 u
√

1 − sin2 u
du =

∫
1

sin2 u
du =

∫
csc2 u du.

Although the second calculation involves more algebra, at least it does not involve inverse
trigonometric functions. The rewritten integral is easy to antidifferentiate, and since we
have x = sin u and thus u = sin−1 x, the integral is equal to −cot u + C = −cot(sin−1 x) + C.

Domains and Simplifications with Trigonometric Substitutions

One key thing that made the substitution x = sin u work in our earlier calculation was
that the Pythagorean identity sin2 x + cos2 x = 1 allowed us to simplify the expression
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√
1 − x 2 =

√
1 − sin2 u. The other two Pythagorean identities allow similar simplifications.

In each case we must be very careful concerning the domains of any variables that we use.
Every substitution we make must be compatible with the domain of the integrand.

The three types of trigonometric substitutions and their allowable domains are
described in the following theorem:

THEOREM 5.18 Three Types of Trigonometric Substitutions

Suppose a is a positive real number. The following substitutions can be useful in solving
certain integrals:

(a) If x = a sin u, then
√

a2 − x 2 = a cos u.

This substitution is valid for x ∈ [−a, a] and u ∈
[
−π

2
, π

2

]
.

(b) If x = a tan u, then x 2 + a2 = a2 sec 2 u.

This substitution is valid for x ∈ (−∞, ∞) and u ∈
(
−π

2
, π

2

)
.

(c) If x = a sec u, then
√

x 2 − a2 =
{

a tan u, if x > a
−a tan u, if x < −a.

This substitution is valid for x ∈ (−∞, −a] ∪ [a, ∞) and u ∈
[
0, π

2

)
∪

(
π

2
, π

]
.

The domain considerations in Theorem 5.18 are essential. For example, if x = a sin u, then
x must be between −a and a. Therefore the substitution x = a sin u makes sense only for

integrands whose domain is contained in [−a, a]. Notice that the domain of
√

a2 − x 2 is

precisely [−a, a], so integrals involving
√

a2 − x 2 are well suited for trigonometric substi-
tution with x = a sin u. Furthermore, if x = a sin u and we want to be able to solve for
u = sin−1(x/a), then we must have u in the range of sin−1 x. This is why we require that

u ∈ [−π/2, π/2] in part (a). The domain restrictions for u in the theorem come from the
restricted domains of the sine, secant, and tangent, respectively.

Proof. To prove part (a), suppose x ∈ [−a, a], u ∈ [−π/2, π/2], and x = a sin u. Using the
Pythagorean identity a2 sin2 u + a2 cos2 u = a2, we have

√
a2 − x 2 =

√
a2 − a2 sin2 u =

√
a2 cos2 u = |a cos u| = a cos u.

The last couple of steps in this calculation need some technical discussion. An absolute value ap-
pears in the second-to-last step because for any number A, we have

√
A2 = |A|. Luckily, in this case

we can drop the absolute value sign because we are assuming a > 0 and because cos u is always
positive for u ∈ [−π/2, π/2].

The proof of part (b) is similar to the proof of part (a) and is left to Exercise 94. In this case
there is no domain restriction on x, because x = a tan u can be any real number. This means that
trigonometric substitution with x = a tan u can be used even for integrands that do not involve a
square root.

When using secant for a trigonometric substitution as in part (c), we run into a technical point.
Suppose x ∈ (−∞, a] ∪ [a, ∞), u ∈ [0, π/2) ∪ (π/2, π ], and x = a sec u. Using the Pythagorean
identity a2 tan2 u + a2 = a2 sec 2 u, we can write

√
x 2 − a2 =

√
a2 sec 2 u − a2 =

√
a2 tan2 u = |a tan u| =

{
−a tan u, if x < −a

a tan u, if x > a.
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Once again, absolute values appear because we are taking the square root of a square. However,
this time the absolute values are significant, since tan u is positive for u in the first quadrant [0, π/2)
and negative for u in the second quadrant (π/2, π ]. The former case happens when x ∈ [a, ∞), and
the latter case when x ∈ (−∞, −a]. The piecewise-defined expression for

√
x 2 − a2 means that we

will have to consider the cases x > a and x < −a separately when using substitutions of the form
x = a sec u.

The point of all the work we just did boils down essentially to this: When making
trigonometric substitutions with the sine or tangent, we need not worry about quadrants.
But when making a trigonometric substitution with secant, there will be cases to consider.

Rewriting Trigonometric Compositions

Previously, we used trigonometric substitution to show that
∫

1

x 2
√

1 − x 2
dx = − cot(sin−1 x) + C.

Although we have solved this integral, the form of its answer can be simplified. In fact, as
we will see in a moment, we can always rewrite compositions of trigonometric functions
and inverse trigonometric functions as algebraic functions.

To solve the integral listed above, we used the substitution x = sin u. The domain of our
integrand is x ∈ (−1, 1), and considering this and the restricted domain of sine, we have
u ∈ (−π/2, π/2). Since x = sin u, u is an angle in the first or fourth quadrant whose refer-
ence triangle has altitude x, as shown in the figure that follows. By the Pythagorean theo-
rem, the length of the remaining side of the reference triangle is

√
1 − x 2. This expression

should look familiar: It’s part of our original integrand!

Reference triangles for x = sin u in the first and fourth quadrants

y

x

x
1

1
x

u
u

1 � x2

The quantity x is positive for the first-quadrant triangle and negative for the fourth-
quadrant triangle, but in either case the cotangent of the angle u = sin−1 x is given by the
ratio of the adjacent side to the opposite side.

cot(sin−1 x) = cot u = adj
opp

=
√

1 − x 2

x
.

Combining this with our original work solving the integral, we have
∫

1

x 2
√

1 − x 2
dx = −cot(sin−1 x) + C = −√

1 − x 2

x
+ C.

Luckily, it turns out that when using the substitutions x = a sin u and x = a tan u,
choice of quadrants will never be an issue and we will not have to consider the unit circle.
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From this point forward we will only need to look at one reference triangle in those cases.
Unfortunately, we will have to take quadrants into account when we use the substitution
x = a sec u; we will see this in Example 4, where the choice of quadrant will make a sign
difference.

Examples and Explorations

EXAMPLE 1 Deciding when to use trigonometric substitution

Which of these integrals would be good candidates for trigonometric substitution?

(a)
∫

x
1 + x 2 dx (b)

∫
x 2

1 + x 2 dx (c)
∫

1 + x 2

x 2 dx

SOLUTION

(a) Trigonometric substitution is not necessary here because we can apply regular

u-substitution with u = 1 + x 2. This technique simplifies the integral to 1
2

∫ 1
u

du,

which is easy to solve.

(b) Neither u-substitution nor integration by parts seems useful here. This integral is a
good candidate for trigonometric substitution, with x = tan u. This choice simplifies
the integral to

∫
tan2 u du, which we can solve by the techniques of Section 5.4. Alter-

natively, we could use polynomial long division or other algebraic methods to write
x2

1+x2
as 1 − 1

1+x2
, which is easy to antidifferentiate.

(c) Trigonometric substitution is not necessary here. Applying algebra first, we can write
1+x2

x2
as 1

x2
+ x2

x2
= x−2 + 1, which is easy to antidifferentiate. �

EXAMPLE 2 An integral involving
√

a2 − x 2 and the substitution x = asin u

Use trigonometric substitution to solve the integral
∫

(4 − x 2)−3/2 dx.

SOLUTION

First, notice that the integrand can be expressed as 1(√
4−x2

)3 and therefore does involve the

expression
√

a2 − x 2, where a = 2. Using the substitution x = 2 sin u and the Pythagorean
identity sin2 u + cos2 u = 1, we have

(4 − x 2)−3/2 = (4 − 4 sin2 u)−3/2 =
(√

4 cos2 u
)−3 = (2| cos u|)−3 = 1

8 cos 3 u
.

Theorem 5.18 explains why the absolute values can be ignored in the preceding calculation.

Now with the substitution x = 2 sin u, we have
√

4 − x 2 = 2 cos u and the differential dx =
2 cos u du, and thus we can write∫

(4 − x 2)−3/2 dx =
∫

1
8 cos 3 u

(2 cos u) du

= 1
4

∫
sec 2 u du = 1

4
tan u + C = 1

4
tan

(
sin−1

(
x
2

))
+ C.

The last step in the calculation is a back-substitution obtained by solving x = 2 sin u for
u = sin−1(x/2).

It now remains only to rewrite the answer as an algebraic function. Because we al-
ready know that quadrants are not relevant when using trigonometric substitution with the
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sine, we need to consider only one reference triangle. Since x = 2 sin u, we have sin u = x
2

.

Thinking about “opposite over hypotenuse,” we label the angle u and label two sides of the
triangle with x and 2. The remaining leg of the triangle is determined by the Pythagorean
theorem to be

√
4 − x 2, as follows:

x
2

u

x2 � 4

Now thinking about “opposite over adjacent,” we can easily calculate that

tan
(

sin−1
(

x
2

))
= tan u = x√

4 − x 2
.

Therefore the integral in question is equal to∫
(4 − x 2)−3/2 dx = 1

4
tan

(
sin−1

(
x
2

))
+ C = x

4
√

4 − x 2
+ C.

�

CHECKING
THE ANSWER

Since we took the time to rewrite the trigonometric composition as an algebraic function,
we can check the answer to the previous example by using the quotient rule and some
algebra:

d
dx

(
x

4
√

4 − x 2

)
=

(1)(4
√

4 − x 2 ) − (x)
(

4
(

1
2

)
(4 − x 2)−1/2(−2x)

)
16(4 − x 2)

=
4
√

4 − x 2 + 4x 2

√
4 − x 2

16(4 − x 2)

(√
4 − x 2

√
4 − x 2

)

= 4(4 − x 2) + 4x 2

16(4 − x 2)3/2 = 16
16(4 − x 2)3/2 = (4 − x 2)−3/2.

EXAMPLE 3 An integral involving x2 + a2 and the substitution x = a tan u

Use trigonometric substitution to solve the integral
∫

(x 2 + 5)−3/2 dx.

SOLUTION

This example is similar to the previous one, except that this time the substitution
x = √

5 tan u is suggested. Using a Pythagorean identity and some basic algebra, we have

(x 2 + 5)−3/2 = (5 tan2 u + 5)−3/2 =
√

5 sec 2 u
−3 = (

√
5| sec u|)−3 = 1

(
√

5 )3 sec 3 u
.

With the substitution x = √
5 tan u we also have dx = √

5 sec 2 u du and u = tan−1(x/
√

5),
and thus can write∫

(x 2 + 5)−3/2 dx =
∫

1

(
√

5 )3 sec 3 u
(
√

5 sec 2 u) du

= 1
5

∫
cos u du = 1

5
sin u + C = 1

5
sin

(
tan−1

(
x√
5

))
+ C.
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Once again, we construct a reference triangle to rewrite our answer as an algebraic
function. We have tan u = x√

5
, so relative to the angle u we label the opposite side x and

the adjacent side
√

5. By the Pythagorean theorem, the corresponding hypotenuse has

length
√

x 2 + 5:

x

u

5

x2 � 5

Using this triangle we have

sin
(

tan−1
(

x√
5

))
= sin u = x√

x 2 + 5
.

Therefore our integral is equal to∫
(x 2 + 5)−3/2 dx = 1

5
sin

(
tan−1

(
x√
5

))
+ C = x

5
√

x 2 + 5
+ C.

The astute reader will notice that this example is quite similar to the previous one. To get a
better understanding, compare and contrast the two examples. �

EXAMPLE 4 An integral involving
√

x 2 − a2 and the substitution x = asec u

Use trigonometric substitution to solve the integral
∫

1√
x 2 − 4

dx.

SOLUTION

With the substitution x = 2 sec u we have
1√

x 2 − 4
= 1√

4 sec 2 u − 4
= 1√

4 tan2 u
= 1

2| tan u| .

Unfortunately, at this point a problem arises that we didn’t encounter in the previous two

examples. The difficulty is that in this example the integrand 1√
x2 −4

is defined for x > 2 and

for x < −2, but not in between. Since we are using the substitution x = 2 sec u, we need u
to be in the restricted domain of the secant, which is the first two quadrants. Let’s examine
the two cases.

If x > 2, then x = 2 sec u means that sec u > 1, which happens when u is in the first
quadrant. The tangent function is positive in that quadrant, so if x > 2, then tan u > 0 and
thus | tan u| = tan u. However, if x < −2, then sec u < 1 and thus u is in the second quad-
rant, where the tangent is negative. In that case we have | tan u| = − tan u. Unlike the solu-
tion in the previous two examples, the choice of quadrant will be significant. The problem
here is that our original integrand was defined on a disconnected domain, and we have to
deal with the two pieces of the domain separately.

If x > 2, then | tan u| = tan u, and thus with x = 2 sec u, dx = 2 sec u tan u du, and a
known antidifferentiation formula, we have∫

1√
x 2 − 4

dx =
∫

1
2 tan u

(2 sec u tan u) du =
∫

sec u du

= ln | sec u + tan u| + C = ln
∣∣∣ sec

(
sec−1

(
x
2

))
+ tan

(
sec−1

(
x
2

)) ∣∣∣ + C.
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Still considering the case where x > 2, we see that our reference triangle is in the first
quadrant. Since sec u = x

2
, we have a hypotenuse of length x and an adjacent leg of length 2,

relative to the angle u. By the Pythagorean theorem, the remaining side has length
√

x 2 − 4,
as follows:

y

x
x

2
u

x2 � 4

We clearly have sec(sec−1(x/2)) = x/2. Using the triangle shown we see that

tan
(

sec−1
(

x
2

))
= tan u =

√
x 2 − 4

2
.

Therefore in the case where x > 2, we have∫
1√

x 2 − 4
dx = ln

∣∣∣ sec
(

sec−1
(

x
2

))
+ tan

(
sec−1

(
x
2

)) ∣∣∣ + C = ln
∣∣∣ x

2
+

√
x 2 − 4

2

∣∣∣ + C.

In the case where x < −2, there are two places where our answer could differ from the
answer for x > 2. First, if x < −2 and x = 2 sec u, then sec u is negative, which means that
u is an angle terminating in the second quadrant. The tangent function is negative in that
quadrant, so in this case | tan u| = − tan u. This means that before integrating, we have to
insert a negative sign. By the end of the integration step we still have a negative sign, so
for x < −2, we have∫

1√
x 2 − 4

dx = − ln
∣∣∣ sec

(
sec−1

(
x
2

))
+ tan

(
sec−1

(
x
2

)) ∣∣∣ + C.

Second, when we use a reference triangle to write the answer as an algebraic function, we
will have to consider quadrants. The diagrams that follow show the angle u in the unit circle
and its corresponding reference triangle v.

x
x

2
v

x2 � 4

y

Since the tangent is negative in the second quadrant,

tan
(

sec−1
(

x
2

))
= tan u = −

√
x 2 − 4

2
.

Therefore for x < −2, the solution of our integral is∫
1√

x 2 − 4
dx = − ln

∣∣∣ sec
(
sec−1

(
x
2

))
+ tan

(
sec−1

(
x
2

)) ∣∣∣ + C = − ln
∣∣∣ x

2
−

√
x 2 − 4

2

∣∣∣ + C.

�
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CHECKING
THE ANSWER

In the previous example we got different answers depending on whether we had x > 2 or
x < −2. We can see graphically why this has to be the case, by plotting the integrand f (x)
and one of its antiderivatives F(x) (we chose C = 0 in each case), as shown in the following
graphs:

f (x) = 1√
x 2 − 4

F(x) =

⎧⎪⎪⎨
⎪⎪⎩

ln
∣∣∣ x
2

+
√

x 2 − 4
2

∣∣∣, if x > 2

− ln
∣∣∣ x
2

−
√

x 2 − 4
2

∣∣∣, if x < −2

y

x
642�6 �4 �2

3

2

1

y

x
642�6 �4 �2

2

1

�1

�2

You should be able to convince yourself from looking at these graphs that it is at least
reasonable that the derivative of F(x) is equal to f (x). Notice also that it makes sense that
we had to look at two separate cases to integrate f (x), since that function is defined on two
different intervals (and not between).

EXAMPLE 5 Choosing an appropriate trigonometric substitution

Determine appropriate trigonometric substitutions for each of the integrals that follow.
Apply the substitution and simplify until the integral is one that you know how to solve.

(a)
∫ √

x 2 − 7 dx (b)
∫ √

4x 2 + 9 dx

SOLUTION

(a) This integrand has the form
√

x 2 − a2, with a = √
7. According to Theorem 5.18, this

suggests that we apply trigonometric substitution with x = √
7 sec u. With that substi-

tution we have dx = √
7 sec u tan u du, so we can rewrite the integral as

∫ √
x 2 − 7 dx =

∫ √
7 sec 2 u − 7

√
7 sec u tan u du.

Notice that the domain of the integrand
√

x 2 − 7 is (−∞, −√
7 ]∪ [

√
7, ∞). According

to Theorem 5.18, we must handle the cases x < −√
7 and x >

√
7 separately. Keeping

this in mind, we can apply a Pythagorean identity to write

√
7 sec 2 u − 7 =

√
7 tan2 u =

√
7 |tan u| =

{−√
7 tan u, if x < −√

7
√

7 tan u, if x >
√

7.

This means that for x < −√
7 our integral becomes 7

∫
sec u tan2 u du, and for x >

√
7

our integral becomes −7
∫

sec u tan2 u du. Both of these integrals can be solved with
the methods of Section 5.4.
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(b) This integrand involves an expression that is the sum of two squares: (2x)2 + 32. This
suggests that we should apply trigonometric substitution with 2x = 3 tan u, or equiv-
alently, x = 3

2
tan u. With this choice we have dx = 3

2
sec 2 u du, so our integral can be

written as ∫ √
4x 2 + 9 dx =

∫ √
4

(
3
2

tan u
)2 + 9

(
3
2

sec 2 u
)

du.

After a little bit of algebra the latter integral simplifies to 9
2

∫
sec 3 u du, which we know

how to solve by the methods of the previous section. �

EXAMPLE 6 Completing the square before trigonometric substitution

Determine an appropriate trigonometric substitution for the following integral:∫
1√

x 2 − 6x + 13
dx

Then apply the substitution and simplify until the integral is one that you know how to
solve.

SOLUTION

To use trigonometric substitution, we need to have an expression of the form
√

a2 − x 2,
x 2 + a2, or

√
x 2 − a2 in the integrand. To obtain a sum or difference of perfect squares we

will apply the method of completing the square to the quadratic x 2 − 6x + 13:

x 2 − 6x + 13 = (x 2 − 6x + 9) − 9 + 13 = (x − 3)2 + 4.

We added and subtracted 9 from the quadratic so that it would involve the perfect square
x 2 − 6x + 9 = (x − 3)2. In general, recall from Section 5.3 that to complete the square of
a quadratic x 2 + bx + c, we add and subtract (b/2)2. This enables us to write the quadratic
in terms of the perfect square (x − (b/2))2 and some other constant. Now that we have
completed the square, we have

∫
1√

x 2 − 6x + 13
dx =

∫
1√

(x − 3)2 + 4
dx.

The part of the integrand inside the radical is almost of the form x 2 + a2. Instead, it is of the
form (x − 3)2 + a2 (with a = 2). Therefore we will choose the substitution x − 3 = 2 tan u.
This means that dx = 2 sec 2 u du, and our integral becomes

∫
1√

x 2 − 6x + 13
dx =

∫
1√

(x − 3)2 + 4
=

∫
1√

4 tan2 u + 4
(2 sec 2 u) du,

which simplifies easily to
∫

sec u du, an integral that we know how to solve. �

TEST YOUR? UNDERSTANDING
� In the first subsection we did one example two different ways. In the first way we had

du = 1√
1−x2

dx, and in the second we had dx = cos u du. Why are these the same if

x = sin u?

� What are the three trigonometric identities that come in handy for simplifying after
performing a trigonometric substitution?

� Why would trigonometric substitution not be a good strategy for solving the integral∫ 1
x2(1−x2)

dx?
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� Why do we have to consider cases for different domains and quadrants when doing a
trigonometric substitution with secant, but not when we use trigonometric substitution
with sine or tangent?

� We can use the unit circle and reference triangles to write certain trigonometric compo-
sitions as algebraic functions. What will go wrong if we use that technique to simplify
sin(2 cos−1 x), and how can we fix it?

EXERCISES 5.5

Thinking Back

Domains and ranges of inverse trigonometric functions: For each
function that follows, (a) list the domain and range, (b) sketch
a labeled graph, and (c) discuss the domains and ranges in the
context of the unit circle.

� f (x) = sin−1 x � f (x) = tan−1 x

� f (x) = sec−1 x � f (x) = sin−1
( x

3

)

Working with inverse trigonometric functions: Solve each of the
following problems by hand, using reference triangles in the
unit circle.

� If x = tan u and u ∈
(
−π

2
,
π

2

)
, find sin u.

� If x = 3 sin u and u ∈
[
−π

2
,
π

2

]
, find cot u.

� If x = sec u and u ∈
[
0,

π

2

)
, find tan u.

� If x = sec u and u ∈
(

π

2
, π

]
, find tan u.

Review of trigonometric integrals: Use the methods of the pre-
vious section to find each of the following integrals.

�
∫

sec x dx �
∫

sec 2 x dx

�
∫

sec 3 x dx �
∫

sec x tan2 x dx

Review of other integration methods: Use any method except
trigonometric substitution to find each of the following inte-
grals.

�
∫

1√
1 − x 2

dx �
∫

x√
x 2 − 9

dx

�
∫

9 + x 2

x
dx �

∫
1 + x 4

1 + x 2
dx

�
∫

1
1 + 4x 2

dx �
∫

x 3

√
x 2 + 1

dx

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The substitution x = 2 sec u is a suitable

choice for solving
∫ 1

x2 −4
dx.

(b) True or False: The substitution x = 2 sec u is a suitable

choice for solving
∫ 1√

x2 −4
dx.

(c) True or False: The substitution x = 2 tan u is a suitable

choice for solving
∫ 1

x2 +4
dx

(d) True or False: The substitution x = 2 sin u is a suitable
choice for solving

∫
(x2 + 4)−5/2 dx

(e) True or False: Trigonometric substitution is a useful
strategy for solving any integral that involves an ex-
pression of the form

√
x 2 − a2.

(f) True or False: Trigonometric substitution doesn’t
solve an integral; rather, it helps you rewrite in-
tegrals as ones that are easier to solve by other
methods.

(g) True or False: When using trigonometric substitution
with x = a sin u, we must consider the cases x > a
and x < −a separately.

(h) True or False: When using trigonometric substitution
with x = a sec u, we must consider the cases x > a
and x < −a separately.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An integral to which we could reasonably apply
trigonometric substitution with x = tan u.

(b) An integral to which we could reasonably apply
trigonometric substitution with x = 4 sec u.

(c) An integral to which we could reasonably apply
trigonometric substitution with x − 2 = 3 sin u.

3. Show that if x = tan u, then dx = sec 2 u du, in the follow-
ing two ways: (a) by using implicit differentiation, think-
ing of u as a function of x and (b) by thinking of x as a
function of u.

4. Show by differentiating (and then using algebra) that

− cot(sin−1 x) and −
√

1−x2

x
are both antiderivatives of

1

x2
√

1−x2
. How can these two very different-looking func-

tions be antiderivatives of the same function?
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5. Consider the integral
∫ 1

x2
√

1−x2
dx from the reading at

the beginning of the section.

(a) Use the inverse trigonometric substitution u = sin−1 x
to solve this integral.

(b) Use the trigonometric substitution x = sin u to solve
the integral.

(c) Compare and contrast the two methods used in
parts (a) and (b).

6. Give an example of an integral for which trigonometric
substitution is possible but an easier method is available.
Then give an example of an integral that we still don’t
know how to solve given the techniques we know at this
point.

7. Why don’t we ever have cause to use the trigonometric
substitution x = cos u?

8. Explain how to know when to use the trigonometric
substitutions x = a sin u, x = a tan u, and x = a sec u. De-
scribe the trigonometric identity and the triangle that will
be needed in each case. What are the possible values for
x and u in each case?

9. Why don’t we need to have a square root involved in order
to apply trigonometric substitution with the tangent? In
other words, why can we use the substitution x = a tan u
when we see x 2+a2, even though we can’t use the substi-
tution x = a sin u unless the integrand involves the square
root of a2 − x 2? (Hint: Think about domains.)

10. Explain why it makes sense to try the trigonometric sub-
stitution x = sec u if an integrand involves the expression√

x 2 − 1.

11. Which of the integrals that follow would be good can-
didates for trigonometric substitution? If trigonometric
substitution is a good strategy, name the substitution.
If another method is a better strategy, explain that
method.

(a)
∫

4 + x 2

x
dx (b)

∫
x

4 + x 2
dx

(c)
∫

x 2

4 + x 2
dx (d)

∫
16 − x 4

4 + x 2
dx

12. Explain why using trigonometric substitution with x =
a tan u often involves a triangle with side lengths a and

x and hypotenuse of length
√

x 2 + a2.

13. Explain why, if x = a sin u, then
√

a2 − x 2 = a cos u. Your
explanation should include a discussion of domains and
absolute values.

14. Explain why, if x = a tan u, then
√

x 2 + a2 = a sec u. Your
explanation should include a discussion of domains and
absolute values.

15. Explain why, if x = a sec u, then
√

a2 sec 2 u − a2 is
−a tan u if x < −a and is a tan u if x > a. Your explana-
tion should include a discussion of domains and absolute
values.

16. Why is it okay to use a triangle without thinking about
the unit circle when simplifying expressions that re-
sult from a trigonometric substitution with x = a sin u
or x = a tan u? Why do we need to think about

the unit circle after trigonometric substitution with
x = a sec u?

17. Why doesn’t the definite integral
∫ 3

2

√
1 − x 2 dx make

sense? (Hint: Think about domains.)
18. Find three integrals in Exercises 39–74 that can be solved

by using a trigonometric substitution of the form x =
a tan u.

19. Find three integrals in Exercises 39–74 that can be solved
without using trigonometric substitution.

In Exercises 20–27, use reference triangles and the unit cir-
cle to write the given trigonometric compositions as algebraic
functions.

20. cot(sec−1 x) 21. cos(sin−1 x)

22. tan
(

sin−1
( x

3

))
23. sin

(
tan−1

( x
2

))

24. If x + 3 = 4 tan u, then write sec u as an algebraic function
of x.

25. If x − 5 = 3 sin u, then write tan2 u as an algebraic func-
tion of x.

26. Write tan(2 sec−1 x) as an algebraic function.

27. Write sin(2 cos−1 x) as an algebraic function.

Complete the square for each quadratic in Exercises 28–33.
Then describe the trigonometric substitution that would be
appropriate if you were solving an integral that involved that
quadratic.

28. x 2 − 4x − 8 29. x 2 + 6x − 2

30. 2x 2 − 4x + 1 31. x 2 − 5x + 1

32. x − 3x 2 33. 2(x + 2)2

34. Solve
∫ x2

1+x2
dx the following two ways:

(a) with the substitution u = tan−1 x;
(b) with the trigonometric substitution x = tan u.

35. Solve
∫ 1

x2 +9
dx the following two ways:

(a) with the trigonometric substitution x = 3 tan u;
(b) with algebra and the derivative of the arctangent.

36. Solve
∫ x+2

(x2 +4x)3/2
dx the following two ways:

(a) with the substitution u = x 2 + 4x;
(b) by completing the square and then applying the

trigonometric substitution x + 2 = 2 sec u.

37. Solve
∫ x

4+x2
dx the following two ways:

(a) with the substitution u = 4 + x 2;
(b) with the trigonometric substitution x = 2 tan u.

38. Solve the integral
∫

x 3
√

x 2 − 1 dx three ways:
(a) with the substitution u = x 2 − 1, followed by back-

substitution;
(b) with integration by parts, choosing u = x 2 and dv =

x
√

x 2 − 1 dx;
(c) with the trigonometric subsitution x = sec u.
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Skills

Solve each of the integrals in Exercises 39–74. Some integrals
require trigonometric substitution, and some do not. Write
your answers as algebraic functions whenever possible.

39.
∫ √

4 − x 2

x 2
dx 40.

∫
x 3

√
x 2 + 1 dx

41.
∫

x√
x 2 − 1

dx 42.
∫

x
√

x 2 + 1 dx

43.
∫

1√
3 − x 2

dx 44.
∫

1
(x 2 + 4)3/2

dx

45.
∫ √

9 − x 2

x
dx 46.

∫
x 2 + 9

x 3/2
dx

47.
∫ √

3 − x
√

x − 1 dx 48.
∫ √

4 − x
√

x − 2 dx

49.
∫

1

x 2
√

x 2 − 9
dx 50.

∫ √
x 2 − 4
2x

dx

51.
∫

(1 − x 2)−3/2 dx 52.
∫

1

x 2
√

x 2 + 3
dx

53.
∫

1
x 2 − 4x + 13

dx 54.
∫

x√
1 − 4x 2

dx

55.
∫

3 + x√
9 − 4x 2

dx 56.
∫

1√
x 2 + 9

dx

57.
∫ √

x 2 − 8x + 25 dx 58.
∫ √

x 2 + 6x + 18 dx

59.
∫

(3 − x 2)3/2 dx 60.
∫

x 3

3x 2 + 5
dx

61.
∫ √

2 − x 2 dx 62.
∫

1
(x 2 + 1)5/2

dx

63.
∫ √

x 2 − 1
x

dx 64.
∫

1

x 2
√

4 − x 2
dx

65.
∫

1√
x 2 − 2

dx 66.
∫ √

x 2 − 2 dx

67.
∫

x 3
√

x 2 + 1 dx 68.
∫

x 5
√

x 2 − 1 dx

69.
∫

ln(x 2 + 1) dx 70.
∫

ln(4 + x 2) dx

71.
∫

e 2x
√

e 2x + 1 dx 72.
∫

e 2x(1 − e 4x)3/2 dx

73.
∫

1

e x
√

e 2x + 3
dx 74.

∫
x sin−1 x dx

Solve each of the integrals in Exercises 75–78 by using poly-
nomial long division to rewrite the integrand. This is one way
that you can sometimes avoid using trigonometric substitu-
tion; moreover, sometimes it works when trigonometric sub-
stitution does not apply.

75.
∫

x 3

x 2 + 4
dx 76.

∫
x 2 − 1
x 2 + 1

dx

77.
∫

x 4 − 3
2 + 3x 2

dx 78.
∫

x 3 − 3x 2 + 2x − 3
x 2 + 1

dx

Solve each of the definite integrals in Exercises 79–86. Some
integrals require trigonometric substitution, and some do not.

79.
∫ 4

0
x
√

x 2 + 4 dx 80.
∫ 5

3

√
x 2 − 9 dx

81.
∫ 5

4

1

x
√

x 2 + 9
dx 82.

∫ 2

1

1

x
√

9 − x 2
dx

83.
∫ 1/2

1/4

1

x 2
√

1 − x 2
dx 84.

∫ 1

−1
x 3

√
9x 2 − 1 dx

85.
∫ 2

1

3
(9 − 2x 2)3/2

dx 86.
∫ 4

0
x 3

√
x 2 + 4 dx

We can extend the technique of trigonometric substitution to
the hyperbolic functions. Use Theorem 2.20 and the identity
cosh2 x − sinh2 x = 1 to solve each integral in Exercises 87–
90 with an appropriate hyperbolic substitution x = a sinh u or
x = a cosh u. (These exercises involve hyperbolic functions.)

87.
∫

1√
x 2 + 4

dx 88.
∫

1√
2x 2 − 3

dx

89.
∫

x 2

(x 2 + 1)3/2
dx 90.

∫
x 3

(x 2 − 4)3/2
dx

Applications
91. A pharmaceutical company is designing a new drug

whose shape in tablet form is obtained by rotating the

Shape of a tablet

y

x

6

�6

642�2�4�6

4

�2

�4

2

graph of f (x) = 2(42−x 2)1/4 on the interval [−6, 6] around
the x-axis, where units are measured in millimeters.

As we will see in Section 6.1, the volume of such a solid is

given by π
∫ b

a ( f (x))2 dx, where a and b are the places where
the graph of f (x) meets the x-axis.

(a) Write down a specific definite integral that represents
the amount of material, in cubic millimeters, required
to make the tablet.

(b) Use trigonometric substitution to solve the definite
integral and determine the amount of material
needed.
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92. The main cable on a certain suspension bridge follows a
parabolic curve with equation f (x) = (0.025x)2, measured
in feet, as shown in the following figure:

Main cable of a suspension bridge

50

100

150

y

500250�250�500
x

As we will see in Section 6.3, the length of a curve f (x)
from x = a to x = b can be calculated from the formula∫ b

a

√
1 + ( f ′(x))2 dx.

(a) Write down a specific definite integral that repre-
sents the length of the main cable of the suspension
bridge.

(b) Use trigonometric substitution to solve the definite in-
tegral and determine the length of the cable.

Proofs

93. Prove that the area of a circle of radius r is πr 2, as follows:
(a) Write down a definite integral that represents the

area of the circle of radius r centered at the origin.
(Hint: The equation of such a circle is x 2 + y2 = r 2.)

(b) Use trigonometric substitution to solve the definite
integral you found in part (a). (Hint: Change the limits
of integration to match your substitution.)

94. Prove part (b) of Theorem 5.18: For x ∈ (−∞, ∞)
and u ∈ (−π/2, π/2), the substitution x = a tan u gives
x 2 + a2 = a sec u. Your proof should include a discussion
of domains and a consideration of absolute values.

Thinking Forward

Arc length of a curve: Suppose we want to find the length of
the curve traced out by the graph of a function f (x) on an
interval [a, b]. The obvious way to approximate this length
is to use a series of straight line segments such as the one
shown in the figure.

Approximating length with a line segment

�yk

�x

By the distance formula, the length of the kth segment is√
(�x)2 + (�yk)2, where �yk will be different for each seg-

ment we use.

� Use algebra to show that the distance of the kth seg-
ment can be rewritten as

√
1 +

(
�yk

�x

)2

�x.

� Approximate the length of the graph of f (x) = √
9 − x 2

on [−3, 3], using four line segments and the distance
formula. Then make a better approximation with eight
line segments.

� As we will see in Section 6.3, the definite integral

L =
∫ b

a

√
1 + ( f ′(x))2 dx

calculates the length of the curve of f (x) from x = a to
x = b. Explain intuitively what this might have to do
with the distance formula calculation.

� Use the formula just given for arc length to write down
a specific definite integral that represents the length
of f (x) = √

9 − x 2 on [−3, 3]. Then use trigonometric
substitution to solve that definite integral.

� Verify your previous answer by using the formula for
the circumference of a circle.

Surface area of a solid of revolution: If f (x) is a differentiable
function with a continuous derivative, then the surface area
of the solid of revolution obtained by rotating the region un-
der the graph of f (x) on the interval [a, b] around the x-axis is
given by the definite integral

S = 2π

∫ b

a
f (x)

√
1 + ( f ′(x))2 dx.

� Calculate the surface area of the solid of revolution ob-
tained by revolving the region between f (x) = 2x 3 and
the x-axis on [0, 3] around the x-axis.

� Use the formula just given for surface area to write
down and solve a specific definite integral to show that
the surface area of a sphere of radius r is given by the
formula S = 4πr 2.
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5.6 IMPROPER INTEGRALS

� Defining improper integrals over unbounded intervals and for unbounded functions

� Determining the convergence or divergence of improper integrals of power functions

� The comparison test for improper integrals

Integrating over an Unbounded Interval

So far we have examined definite integrals
∫ b

a f (x) dx only for continuous functions f (x)
over finite intervals [a, b], since those are the conditions under which the Fundamental
Theorem of Calculus applies. If f (x) fails to be continuous on the interval or if the interval
itself is unbounded, then the Fundamental Theorem of Calculus does not apply and we
say that the integral is improper. In this section we develop definitions and strategies for
examining such improper integrals.

For example, consider the functions 1√
x
, 1

x
, and 1

x 2
on the interval [1, ∞), as shown

in the three figures that follow. Perhaps unsurprisingly, for the first two graphs there is an
infinite amount of area between the graph of the function and the x-axis on this unbounded
interval. However, you might be shocked to learn that for the third graph this area turns
out to be finite!

∫ ∞

1

1√
x

dx is infinite
∫ ∞

1

1
x

dx is infinite
∫ ∞

1

1
x 2

dx is finite

y

x
. . .

B3 421

1

2

x

y

1

2

. . .

B3 421

y

1

2

x . . .
B3 421

How could the graph of 1
x 2

be positive on all of [1, ∞) and yet collect only a finite

amount of area on this interval? Let’s look at the area under each graph for intervals of the
form [1, B), with B getting larger and larger:

B = 5 B = 10 B = 50 B = 100 B = 500 B = 1000 B → ∞∫ B

1

1√
x

dx 6.787 20.415 235.036 666.000 7,452.893 21,081.184 → ∞ ?

∫ B

1

1
x

dx 1.609 2.302 3.912 4.605 6.215 6.908 → ∞ ??

∫ B

1

1
x2

dx 0.800 0.900 0.980 0.990 0.998 0.999 → 1 ???

As B increases, the area under the graph of 1√
x

on [1, B) seems to grow without bound. The

same seems true of 1
x
, but the growth is much slower. For 1

x2
, however, the area under the

graph on [1, B) seems to stay below 1 no matter how large a value we take for B. The graph

of 1
x2

decreases in some fundamentally faster way than the other two graphs, so much so

that it collects only a finite amount of area.
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We can investigate these areas algebraically over finite intervals [1, B) by using the
Fundamental Theorem of Calculus. For B > 1 we have∫ B

1

1√
x

dx = [
2
√

x
]B

1 = 2
√

B − 2
√

1 = 2
√

B − 2,

∫ B

1

1
x

dx = [
ln |x|]B

1 = ln B − ln 1 = ln B,

∫ B

1

1
x 2

dx =
[
− 1

x

]B

1
= − 1

B
+ 1

1
= 1 − 1

B
.

We can now see that the values of the first two definite integrals will grow without bound
as B → ∞, since lim

B→∞
(2

√
B − 2) → 2(∞) − 2 = ∞ and lim

B→∞
ln B = ∞. In contrast, since

lim
B→∞

(1 − (1/B)) = 1 − 1
∞ = 1, the value of the third definite integral approaches 1.

In general, we define integrals over unbounded intervals as limits of integrals over
ever-larger finite intervals:

DEFINITION 5.19 Improper Integrals over Unbounded Intervals

Suppose a and b are any real numbers and f (x) is a function.

(a) If f is continuous on [a, ∞), then
∫ ∞

a
f (x) dx = lim

B→∞

∫ B

a
f (x) dx.

(b) If f is continuous on (−∞, b], then
∫ b

−∞
f (x) dx = lim

A→−∞

∫ b

A
f (x) dx.

(c) If f is continuous on (−∞, ∞), then define the integral over (−∞, ∞) as a sum
of the first two cases, splitting at any real number c:

∫ ∞

−∞
f (x) dx = lim

A→−∞

∫ c

A
f (x) dx + lim

B→∞

∫ B

c
f (x) dx

In all three cases, if the limits involved exist, then we say that the improper integral
converges to the value determined by those limits, and if the limits are infinite or fail
to exist, then we say that the improper integral diverges.

Remember that a limit exists if it is equal to a finite number, so an improper integral con-
verges if it is equal to some finite number and diverges if it is infinite or for some other
reason does not have a well-defined limit. In Exercise 81 you will use properties of definite
integrals to prove that we can in fact split the integral in the third part of the theorem at any

point c that we like. In the terminology of this theorem, the improper integrals
∫ ∞

1
1√
x

dx

and
∫ ∞

1
1
x

dx diverge while the improper integral
∫ ∞

1
1
x2

dx converges to 1.

Integrating Unbounded Functions

We now know how to extend our theory of definite integrals to unbounded intervals. What
about over finite intervals, but where the function itself is unbounded? The Fundamental
Theorem of Calculus does not apply to integrands that have discontinuities such as vertical
asymptotes, but we can again use limits to determine whether integrals of unbounded
functions converge or diverge.
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For example, consider the same three functions we were working with earlier, but over
a different graphing window to illustrate their behavior on [0, 1], as shown in the next three
figures. Each graph has a vertical asymptote at x = 0. In the second and third figures the
area between the graph and the x-axis on [0, 1] will turn out to be infinite, and in the first
figure the graph of 1√

x
will turn out to have a finite area over [0, 1].

∫ 1

0

1√
x

dx is finite
∫ 1

0

1
x

dx is infinite
∫ 1

0

1
x2

dx is infinite

x
A 1 2

y

1

2

3

4

5
. .

 .

A
x

1 2

y

1

2

3

4

5

. .
 .

x

y

1

1

2

3

4

5

A 2

. .
 .

As suggested by the labels under the axes in each figure, what we should think about is the
area under these curves on intervals of the form (A, 1) as A gets closer and closer to 0 from
the right. For 0 < A < 1 the Fundamental Theorem of Calculus tells us that

∫ 1

A

1√
x

dx = [
2
√

x
]1

A = 2
√

1 − 2
√

A = 2 − 2
√

A,

∫ 1

A

1
x

dx = [
ln |x|]1

A = ln 1 − ln A = − ln A,

∫ 1

A

1
x 2

dx =
[
− 1

x

]1

A
= −1

1
+ v1A = 1

A
− 1.

As A → 0+, we have
√

A → 0, ln A → −∞, and 1
A

→ ∞, so the first integral will approach

2 and the second and third will both approach ∞. Therefore, of these three functions, only
1√
x

has a finite area over [0, 1].

The preceding example suggests how we should define improper integrals
∫ b

a f (x) dx for
which f (x) has a discontinuity at an endpoint of [a, b]. In cases where f (x) is discontinuous
somewhere in the interior of [a, b], we have to split the integral at the discontinuity:

DEFINITION 5.20 Improper Integrals over Discontinuities

Suppose a and b are any real numbers and f (x) is a function.

(a) If f is continuous on (a, b] but not at x = a, then
∫ b

a
f (x) dx = lim

A→a+

∫ b

A
f (x) dx.

(b) If f is continuous on [a, b) but not at x = b, then
∫ b

a
f (x) dx = lim

B→b−

∫ B

a
f (x) dx.

(c) If f is continuous on [a, c) ∪ (c, b] but not at x = c, then we can define the integral
over [a, b] as the sum of the first two cases:

∫ b

a
f (x) dx = lim

B→c−

∫ B

a
f (x) dx + lim

A→c+

∫ b

A
f (x) dx

In all three cases, if the limits involved exist, then we say that the improper integral
converges to the value determined by those limits, and if the limits are infinite or fail
to exist, then we say that the improper integral diverges.
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Improper Integrals of Power Functions

The function 1
x

is a kind of boundary between power functions whose integrals converge

and power functions whose integrals diverge. On both [0, 1] and [1, ∞) the improper inte-
gral of 1

x
diverges. A power function of the form 1

x p
has an improper integrals that converges

or diverges on an interval according to whether that power function is less than or greater
than 1

x
on that interval. We use the letter p in our notation here because the integrals we

are studying now are closely related to certain infinite sums that we will later call p-series
in Chapter 7.

More precisely, in Exercises 74 and 75 you will use limits of proper definite integrals to
show that, for improper integrals over [1, ∞), we have the following theorem:

THEOREM 5.21 Improper Integrals of Power Functions on [1, ∞)

(a) If 0 < p ≤ 1, then 1
xp

≥ 1
x

for x ∈ [1, ∞) and
∫ ∞

1
1
xp

dx diverges.

(b) If p > 1, then 1
x p

<
1
x

for x ∈ [1, ∞) and
∫ ∞

1
1
x p

dx converges to 1
p−1

.

Notice that we do not bother to consider power functions like x 2 or x 3 in this theorem,
since those functions are increasing on [1, ∞) and therefore have improper integrals that

obviously diverge over that interval. The statements in the theorem about whether 1
xp

is

greater or less than 1
x

are there to help us remember whether we have convergence or di-

vergence in each case. Theorem 5.21 will be a key tool in our investigation both of improper
integrals in this section and of power series in Chapter 7.

In addition, in Exercises 76 and 77 you will prove that improper integrals of power
functions over [0, 1] also either converge or diverge according to how closely they compare
to 1

x
, as follows:

THEOREM 5.22 Improper Integrals of Power Functions on [0, 1]

(a) If 0 < p < 1, then 1
x p

<
1
x

for x ∈ [0, 1] and
∫ 1

0
1
x p

dx converges to 1
1−p

.

(b) If p ≥ 1, then 1
x p

≥ 1
x

for x ∈ [0, 1] and
∫ 1

0
1
x p

dx diverges.

Again we do not consider power functions such as x 2 or x 3 in the theorem because their
integrals over [0, 1] are not improper. (See Example 2 for an illustration of the four cases in
the two previous theorems.)

Determining Convergence or Divergence with Comparisons

We now have a complete understanding of the convergence or divergence of improper inte-
grals of power functions. These special examples of improper integrals will be the yardsticks
against which we compare many other types of improper integrals. This comparison will
enable us to determine the convergence or divergence of many improper integrals without
actually doing any integration or antidifferentiation.
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Loosely speaking, the key idea that will allow us to compare two improper integrals
is this: Improper integrals that are smaller than convergent ones will also converge, and
improper integrals that are larger than divergent ones will also diverge. This idea makes
intuitive sense because a (positive) quantity that is smaller than a finite number will also
be finite and a quantity that is larger than an infinite quantity will also be infinite. More
precisely, we have the following theorem:

THEOREM 5.23 Comparison Test for Improper Integrals

Suppose f and g are functions that are continuous on an interval I.

(a) If the improper integral of f on I converges and 0 ≤ g(x) ≤ f (x) for all x ∈ I where
the functions are defined, then the improper integral of g on I also converges.

(b) If the improper integral of f on I diverges and 0 ≤ f (x) ≤ g(x) for all x ∈ I where
the functions are defined, then the improper integral of g on I also diverges.

Theorem 5.23 applies to all the types of improper integrals we have studied. For exam-
ple, for improper integrals on an unbounded interval [a, ∞), the theorem says that

∫ ∞

a
f (x) dx converges and

0 ≤ g(x) ≤ f (x) for all x ∈ [a, ∞)
=⇒

∫ ∞

a
g(x) dx also converges;

∫ ∞

a
f (x) dx diverges and

g(x) ≥ f (x) for all x ∈ [a, ∞)
=⇒

∫ ∞

a
g(x) dx also diverges.

It is important to note that Theorem 5.23 says nothing about improper integrals that are
larger than convergent ones or about improper integrals that are smaller than divergent
ones.

For example, consider the improper integrals
∫ ∞

1
1
x 2

dx and
∫ ∞

1
sin2 x

x 2
dx. We already

know that the first of these converges. Considering the fact that −1 ≤ sin x ≤ 1, we
have 0 ≤ sin2 x ≤ 1 and therefore 0 ≤ sin2 x

x 2
≤ 1

x 2
. These facts taken together tell us that∫ ∞

1
sin2 x

x 2
dx must also converge, even without our having to integrate the function sin2 x

x 2
.

Proof. We will prove the theorem in the case for convergence of improper integrals over un-
bounded intervals of the form [a, ∞) and leave similar proofs of other cases to Exercises 78–80.

Suppose that f (x) is a function for which the improper integral
∫ ∞

a f (x) dx converges. If g(x) is a

function satisfying 0 ≤ g(x) ≤ f (x) for all x ∈ [a, ∞), then for all B > a, we have the following
inequality of definite integrals:

0 ≤
∫ B

a
g(x) dx ≤

∫ B

a
f (x) dx.

Now taking the limit as B → ∞ on each side, we get

0 ≤ lim
B→∞

∫ B

a
g(x) dx ≤ lim

B→∞

∫ B

a
f (x) dx.

By the definition of improper integrals on unbounded intervals, this double inequality is equivalent
to

0 ≤
∫ ∞

a
g(x) dx ≤

∫ ∞

a
f (x) dx.

We are given that
∫ ∞

a f (x) dx converges, say, to some real number L. Then the inequality we found

shows that
∫ ∞

a g(x) dx must converge to a real number between 0 and L.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 19:17

472 Chapter 5 Techniques of Integration

Examples and Explorations

EXAMPLE 1 Writing improper integrals as limits of definite integrals

Express each improper integral that follows as a sum of limits of proper definite integrals.
Do not calculate any integrals or limits; just write them down.

(a)
∫ 1

0
(3x − 1)−2/3 dx (b)

∫ 1

0

1
x ln x

dx (c)
∫ ∞

1

1
(x − 2)2 dx

SOLUTION

The graphs of the three functions we are attempting to integrate are shown here:

(3x − 1)−2/3 on [0, 1]
1

x ln x
on [0, 1]

1
(x − 2)2 on [1, ∞)

y

x
1

1

2

3

. .
 .

. .
 .

1
3

. . .

. . .

y

x
10.750.500.25

5

10

15

20 . . .

. .
 .

. .
 .y

54321

5

4

3

2

1

We have to split each improper integral into a sum of integrals so that in each integral only
one endpoint requires a limit. In parts (a) and (b) this will mean splitting into two integrals,
and in part (c) we will require three integrals.

(a) The function y = (3x − 1)−2/3 is continuous everywhere except at x = 1
3

, where it has

a vertical asymptote. Since x = 1
3

is in the interior of the interval [0, 1], we must split

the integral into two improper integrals:
∫ 1

0
(3x − 1)−2/3 dx =

∫ 1/3

0
(3x − 1)−2/3 dx +

∫ 1

1/3
(3x − 1)−2/3 dx.

Each of these improper integrals can be written as a limit of definite integrals, which
gives us

∫ 1

0
(3x − 1)−2/3 dx = lim

B→1/3−

∫ B

0
(3x − 1)−2/3 dx + lim

A→1/3+

∫ 1

A
(3x − 1)−2/3 dx.

If either of these limits of integrals diverges, then the entire improper integral diverges.
If both limits of integrals converge, then the original improper integral is equal to the
sum of those limits. (See Exercise 29.)

(b) The function y = 1
x lnx

has vertical asymptotes at both endpoints of the interval [0, 1],

so we have to split this improper integral somewhere between x = 0 and x = 1. The

point x = 1
2

is as good a place as any to make the split:

∫ 1

0

1
x ln x

dx =
∫ 1/2

0

1
x ln x

dx +
∫ 1

1/2

1
x ln x

dx.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 19:17

5.6 Improper Integrals 473

Now taking limits at the endpoints where there are vertical asymptotes, we have

∫ 1

0

1
x ln x

dx = lim
A→0+

∫ 1/2

A

1
x ln x

dx + lim
B→1−

∫ B

1/2

1
x ln x

dx.

You will determine whether this improper integral converges or diverges in Exercise 47.

(c) The graph of y = 1
(x−2)2

has a vertical asymptote at x = 2, and we need to express the

improper integral over [1, ∞). This means that we will need to split the integral at
x = 2, as well as at some later point, say, x = 3, in order to separately consider the
limit as x → ∞. This approach forces a split into three integrals:

∫ ∞

1

1
(x − 2)2 dx =

∫ 2

1

1
(x − 2)2 dx +

∫ 3

2

1
(x − 2)2 dx +

∫ ∞

3

1
(x − 2)2 dx.

Taking limits at the points where we have vertical asymptotes and as x → ∞, we have

∫ ∞

1

1
(x − 2)2 dx = lim

B→2−

∫ B

1

1
(x − 2)2 dx + lim

A→2+

∫ 3

A

1
(x − 2)2 dx + lim

C→∞

∫ C

3

1
(x − 2)2 dx.

We used the letter C in the last limit only to distinguish it from the variable B that we
used in the first limit. For calculations involving these improper integrals, see Exer-
cises 30 and 31. �

EXAMPLE 2 Calculating improper integrals of power functions

For each power function f (x) that follows, use limits of definite integrals to determine

whether
∫ 1

0 f (x) dx and
∫ ∞

1 f (x) dx converge or diverge. Find the values of those improper
integrals which converge.

(a) f (x) = 1
3
√

x
(b) f (x) = 1

x
(c) f (x) = 1

x 3

SOLUTION

(a) Since f (x) = 1
3
√

x
is continuous on (0, 1] but has a vertical asymptote at x = 0,

Definition 5.20 and the Fundamental Theorem of Calculus tell us that the improper
integral on [0, 1] converges:

∫ 1

0

1
3
√

x
dx = lim

A→0+

∫ 1

A

1
3
√

x
dx = lim

A→0+

[
3
2

x 2/3
]1

A
= lim

A→0+

(
3
2

− 3
2

A 2/3
)

= 3
2
.

f (x) = 1
3
√

x
dx is also continuous on [1, ∞), and therefore Definition 5.19 and the Fun-

damental Theorem of Calculus tell us that the improper integral on [1, ∞) diverges:

∫ ∞

1

1
3
√

x
dx = lim

B→∞

∫ B

1

1
3
√

x
dx = lim

B→∞

[
3
2

x 2/3
]B

1
= lim

B→∞

(
3
2

B 2/3 − 3
2

)
= ∞.

(b) Earlier in the reading we used limits of definite integrals to determine that
∫ 1

0
1
x

dx and∫ ∞
1

1
x

dx both diverge.
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(c) Again we apply the definitions of improper integrals to get

lim
A→0+

∫ 1

A

1
x 3

dx = lim
A→0+

[
−1

2
x−2

]1

A
= lim

A→0+

(
−1

2
+ 1

2
A−2

)
= −1

2
+ 1

2(0+)
= ∞,

lim
B→∞

∫ B

1

1
x 3

dx = lim
B→∞

[
−1

2
x−2

]B

1
= lim

B→∞

(
−1

2
B−2 + 1

2

)
= − 1

2(∞)
+ 1

2
= 1

2
. �

CHECKING
THE ANSWER

First, notice that the preceding two answers do match with the statements in Theo-
rems 5.21 and 5.22. For p = 1

3
only the integral on [0, 1] converges, and it converges to

1
1−p

= 1
1−(1/3)

= 3
2

; for p = 1 neither improper integral converges; and for p = 3 only the

integral on [1, ∞) converges, to 1
p−1

= 1
3−1

= 1
2

.

In addition, we can examine the graphs of 1
3
√

x
, 1

x
, and 1

x3
. Of course we cannot tell

whether the areas of regions are infinite or finite just by visual inspection, but when we
look at all three graphs together, the answers do seem plausible:

1
3
√

x
on [0, 1] and [1, ∞) 1

x
on [0, 1] and [1, ∞)

1
x 3 on [0, 1] and [1, ∞)

x
. . .

321

1

2

3

1
3 ∞

y

. .
 .

x
. . .

y

321

1

2

3

∞
∞

. .
 . y

. . .
321

1

2

3

1
2

∞

. .
 .

EXAMPLE 3 Calculating improper integrals

Use limits of definite integrals to calculate each of the following improper integrals:

(a)
∫ ∞

0
e−x dx (b)

∫ 5

0

1
(x − 3)4/5 dx (c)

∫ ∞

−∞
1

1 + x 2 dx

SOLUTION

(a) The function y = e−x has no vertical asymptotes and is in fact continuous on [0, ∞).
Therefore we have

∫ ∞

0
e−x dx = lim

B→∞

∫ B

0
e−x dx ← definition of improper integral

= lim
B→∞

[−e−x]B
0 ← antidifferentiate

= lim
B→∞

(−e−B + 1) ← evaluate

= − 1
∞ + 1 = 1. ← calculate limit
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(b) The function y = 1
(x−3)4/5

has a vertical asymptote at x = 3 but is continuous on [0, 3)∪
(3, 5]. We can solve this improper integral by splitting at x = 3:∫ 5

0

1
(x − 3)4/5 dx =

∫ 3

0

1
(x − 3)4/5 dx +

∫ 5

3

1
(x − 3)4/5 dx ← split at x = 3

= lim
B→3−

∫ B

0

1
(x − 3)4/5 dx + lim

A→3+

∫ 5

A

1
(x − 3)4/5 dx ← use limits

= lim
B→3−

[
5(x − 3)1/5]B

0 + lim
A→3+

[
5(x − 3)1/5]5

A ← antidifferentiate

= lim
B→3−

(5(B−3)1/5 − 5(−3)1/5) + lim
A→3+

(5(2)1/5 − 5(A−3)1/5) ← evaluate

= 0 + 5(31/5) + 5(21/5) − 0 = 5(31/5 + 21/5). ← calculate limit

(c) The function y = 1
1+x2

is continuous on all of (−∞, ∞), so we need only split this

improper integral into two pieces so that we can handle the limits to ∞ and −∞ sep-
arately. We might as well make the split at x = 0:

∫ ∞

−∞
1

1 + x 2 dx =
∫ 0

−∞
1

1 + x 2 dx +
∫ ∞

0

1
1 + x 2 dx ← split at x = 0

= lim
A→−∞

∫ 0

A

1
1 + x 2 dx + lim

B→∞

∫ B

0

1
1 + x 2 dx ← use limits

= lim
A→−∞

[
tan−1 x

]0
A + lim

B→∞
[

tan−1 x
]B

0 ← antidifferentiate

= lim
A→−∞

(0 − tan−1 A) + lim
B→∞

(tan−1 B − 0) ← evaluate

= π

2
+ π

2
= π. ← calculate limit

�

EXAMPLE 4 Using the comparison test to determine convergence or divergence

Determine whether each of the first two improper integrals listed here converges or
diverges by applying the comparison test with simpler improper integrals. For the third

improper integral, explain why the comparison test with 1
x2

does not give information;

then determine convergence or divergence by using limits of definite integrals.

(a)
∫ ∞

1

1
xe x dx (b)

∫ 1

0

1 + x
x 3 dx (c)

∫ ∞

2

1
x 2 − x

dx

SOLUTION
(a) To use the comparison test we have two choices: If we think that this improper inte-

gral converges, then we should try to find a function larger than 1
xe x

on [1, ∞), which

we know converges on that interval. If instead we think that the improper integral
diverges, then we should try to find a function smaller than 1

xe x
on [1, ∞), which we

know diverges.

A good first try might be to notice that xe x ≥ x for all x ∈ [1, ∞), from which we

can deduce that 0 <
1

xe x
≤ 1

x
on [1, ∞). But we know from Theorem 5.21 that

∫ ∞
1

1
x

dx

diverges, and knowing that our improper integral is less than something infinite does
not tell us whether it is infinite or finite.
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As another try, notice that since e x ≥ x for all x ∈ [1, ∞), we must have xe x ≥ x 2

and thus 0 <
1

xe x
≤ 1

x2
. Now we are getting somewhere: Since

∫ ∞
1

1
x2

dx converges by

Theorem 5.21, we know from Theorem 5.23 that the smaller improper integral∫ ∞
1

1
xe x

dx must also converge. In symbols, we have
∫ ∞

1

1
xe x dx ≤

∫ ∞

1

1
x 2 dx,

which is finite, and thus
∫ ∞

1
1

xe x
dx must also be finite. Note that the comparison test

has not told us the value of our improper integral, only that it must converge to some
finite value.

(b) For all x ∈ (0, 1] we have

1 + x ≥ x =⇒ 1 + x
x 3 ≥ x

x 3 =⇒ 1 + x
x 3 ≥ 1

x 2 .

(Alternatively, we could obtain this inequality by noticing that 1+x
x3

= 1
x3

+ 1
x2

≥ 1
x2

on (0, 1].) We also know by Theorem 5.22 that the improper integral of 1
x2

diverges on
[0, 1]. Combining these facts, we have∫ 1

0

1 + x
x 3 dx ≥

∫ 1

0

1
x 2 dx = ∞,

and thus, by the comparison test,
∫ 1

0
1+x
x 3

dx is also infinite and thus diverges.

(c) First notice that since 0 ≤ x 2 − x ≤ x 2 for all x ∈ [2, ∞), it follows that 1
x2 −x

≥ 1
x2

on

that interval. But a comparison with this function whose improper integral on [2, ∞)
converges can tell us only that our improper integral is greater than something that is
finite, which does not tell us whether our improper integral is finite or infinite.

Resorting to calculation instead, we can use a limit of definite integrals that we can
solve by the method of partial fractions:∫ ∞

2

1
x 2 − x

dx = lim
B→∞

∫ B

2

1
x 2 − x

dx ← definition of improper integral

= lim
B→∞

∫ B

2

1
x(x − 1)

dx ← algebra

= lim
B→∞

∫ B

2

(
−1

x
+ 1

x − 1

)
dx ← partial fractions

= lim
B→∞

[ −ln |x| + ln |x − 1|]B
2 ← antidifferentiate

= lim
B→∞

(− ln B + ln(B − 1) + ln 2 − ln 1) ← evaluate

= lim
B→∞

(
ln

(
B − 1

B

)
+ ln 2

)
← properties of logarithms

= ln 1 + ln 2 = ln 2. ← calculate limit

From this calculation we see that the improper integral converges. �

TEST YOUR? UNDERSTANDING
� What types of power functions have improper integrals that converge on [1, ∞)? That

diverge? What about on [0, 1]?

� Why do we have to split the improper integral
∫ ∞
−∞

1
1+x2

dx at some point x = c in order

to calculate it in terms of limits of definite integrals?

� Why do we have to split the improper integral
∫ 2

0
1

(x−1)2
dx at x = 1 in order to calculate

it in terms of limits of definite integrals?
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� Why does the Fundamental Theorem of Calculus not apply directly to improper in-
tegrals? What hypotheses of the Fundamental Theorem of Calculus fail to be true for
improper integrals?

� Why is it not helpful to know that an improper integral has a larger value than a con-
vergent improper integral or a smaller value than a divergent improper integral?

EXERCISES 5.6

Thinking Back

Limits: Solve each of the following limits.

� lim
x→∞ x−2/3 � lim

x→∞ x−4/3 � lim
x→0+

x−2/3

� lim
x→0+

x−4/3 � lim
x→1−

1
x ln x � lim

x→0+

1
x ln x

� lim
x→∞ e−x 2 � lim

x→∞ xe−x 2 � lim
x→π/2−

sec x

Integration: Solve each of the following indefinite integrals.

�
∫

(3x − 1)−2/3 dx �
∫

1
x ln x

dx

�
∫

xe−x 2
dx �

∫
ln x

x
dx

�
∫

1
x(x − 1)

dx �
∫

sec x dx

The Fundamental Theorem of Calculus: Solve each of the fol-
lowing definite integrals.

�
∫ 100

1

1
3
√

x 4
dx �

∫ 100

1

1
4
√

x 3
dx

�
∫ 1

0.01

1
3
√

x 4
dx �

∫ 1

0.01

1
4
√

x 3
dx

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The Fundamental Theorem of Calculus

applies to
∫ 2

0
1

1−x
dx.

(b) True or False: The Fundamental Theorem of Calculus

applies to
∫ ∞

2
1

1−x
dx.

(c) True or False: If f (x) is positive and decreasing, then
the area between the graph of f (x) and the x-axis on
[1, ∞) must be finite.

(d) True or False: If f (x) is positive and decreasing, then
the area between the graph of f (x) and the x-axis on
[1, ∞) must be infinite.

(e) True or False: If p > 1, then
∫ ∞

1
1
xp

dx = 1
p−1

.

(f) True or False: If p < 1, then
∫ 1

0
1
xp

dx = 1
1−p

.

(g) True or False: If
∫ ∞

1 f (x) dx converges and 0 ≤ f (x) ≤
g(x) for all x ∈ [1, ∞), then

∫ ∞
1 g(x) dx must diverge.

(h) True or False: If
∫ ∞

1 f (x) dx diverges and 0 ≤ f (x) ≤ g(x)
for all x ∈ [1, ∞), then

∫ ∞
1 g(x) dx must diverge.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Three power functions whose improper integrals on
[1, ∞) converge.

(b) Three power functions whose improper integrals on
[0, 1] converge.

(c) A function with the property that both its improper
integral on [1, ∞) and its improper integral on [0, 1]
diverge.

3. What sorts of situations should you look for in order to
determine whether an integral is improper?

4. What do we mean when we say that an improper inte-
gral converges? What do we mean when we say that an
improper integral diverges?

5. Why is it very easy to conclude that
∫ 1

0
1
e x

dx converges

without making any integration calculations?

6. Why is it very easy to conclude that
∫ ∞

1 x 2 dx diverges
without making any integration calculations?

7. The Fundamental Theorem of Calculus does not apply to
the integral

∫ 5
0 (x − 3)−4/3 dx; why not? What would the

Fundamental Theorem of Calculus calculate for this in-
tegral if we applied it anyway? Would it give the correct
answer?

8. Why does it make sense that
∫ ∞

1
1
x p

dx diverges when

0 < p ≤ 1? Consider how
1
x p

compares with
1
x

in this
case.

9. Why does it make sense that
∫ 1

0
1
x p

dx diverges when

p ≥ 1? Consider how
1
x p

compares with
1
x

in this case.

10. Draw pictures to illustrate why the comparison test for
improper integrals makes intuitive sense for both conver-
gence comparisons and for divergence comparisons.
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11. What, if anything, does the divergence of
∫ ∞

1
1
x

dx and the

comparison test tell you about the convergence or diver-

gence of
∫ ∞

1
1

x+1
dx, and why?

12. What, if anything, does the convergence of
∫ ∞

1
1
x2

dx and

the comparison test tell you about the convergence or di-

vergence of
∫ ∞

1
1

x2 +1
dx, and why?

13. Why can’t the comparison test make conclusions about∫ ∞
1

1
x+1

dx based on the divergence of
∫ ∞

1
1
x

dx? What

graphical way could you argue for divergence instead?
(Hint: Think about transformations of graphs.)

14. Why can’t the comparison test make conclusions about∫ ∞
2

1
(x−1)2

dx based on the convergence of
∫ ∞

2
1
x2

dx?

What graphical way could you argue for the convergence
instead?

Express each improper integral in Exercises 15–20 as a sum of
limits of proper definite integrals. Do not calculate any inte-
grals or limits; just write them down.

15.
∫ ∞

1

1
x − 1

dx 16.
∫ ∞

1

1
x − 2

dx

17.
∫ 5

1

1
2x 2 − 10x + 12

dx 18.
∫ 4

0

1
3x 2 − 4x + 1

dx

19.
∫ ∞

−∞

e−x 2

x 2
dx 20.

∫ ∞

2

1
x ln(x − 2)

dx

Skills

Use limits of definite integrals to calculate each of the
improper integrals in Exercises 21–56.

21.
∫ ∞

1

1
3
√

x 4
dx 22.

∫ ∞

1

1
4
√

x 3
dx

23.
∫ 1

0

1
3
√

x 4
dx 24.

∫ 1

0

1
4
√

x 3
dx

25.
∫ 1

0
x−0.99 dx 26.

∫ 1

0
x−1.01 dx

27.
∫ ∞

1
x−0.99 dx 28.

∫ ∞

1
x−1.01 dx

29.
∫ 1

0
(3x − 1)−2/3 dx 30.

∫ ∞

3

1
(x − 2)2

dx

31.
∫ ∞

1

1
(x − 2)2

dx 32.
∫ ∞

1

1 + x
x 2

dx

33.
∫ 4

0

2x − 4
x 2 − 4x + 3

dx 34.
∫ ∞

4

2x − 4
x 2 − 4x + 3

dx

35.
∫ ∞

0
xe−x 2

dx 36.
∫ ∞

0
xe−x dx

37.
∫ ∞

0
x 2e−x dx 38.

∫ 1

0

1√
x e

√
x

dx

39.
∫ ∞

0

1√
x e

√
x

dx 40.
∫ ∞

0

x
(x 2 + 1)2

dx

41.
∫ ∞

−∞

x
(x 2 + 1)2

dx 42.
∫ ∞

0

x
(x 2 + 1)

dx

43.
∫ π/2

0
sec x dx 44.

∫ π/2

0
tan x dx

45.
∫ 1

0

ln x
x

dx 46.
∫ ∞

1

ln x
x

dx

47.
∫ 1

0

1
x ln x

dx 48.
∫ ∞

1

1
x ln x

dx

49.
∫ ∞

e

1
x(ln x)2

dx 50.
∫ e

1

1
x(ln x)2

dx

51.
∫ ∞

1/π

sin (1/x)
x 2

dx 52.
∫ 1

0

1
x(x − 1)

dx

53.
∫ 2

1

1
x(x − 1)

dx 54.
∫ ∞

2

1
x(x − 1)

dx

55.
∫ 2

0

x − 2
x(x − 1)

dx 56.
∫ ∞

2

x − 2
x(x − 1)

dx

Determine the convergence or divergence of each improper
integral in Exercises 57–64 by comparing it to simpler im-
proper integrals whose convergence or divergence is known
or can be found directly.

57.
∫ ∞

1

x

1 + sin2 x
dx 58.

∫ ∞

1

1 + x
x 2

dx

59.
∫ ∞

1

1
x 2 + 1

dx 60.
∫ ∞

1

x + 2
x 2

dx

61.
∫ ∞

1

1 + ln x
x

dx 62.
∫ ∞

1

x + ln x
x 3

dx

63.
∫ ∞

1

1 + ln x
x 3

dx 64.
∫ ∞

1

1 + ln x
x 2

dx

The Limit Comparison Test: If two functions f (x) and g(x) be-
have in a similar way on [a, ∞), then their improper integrals
on [a, ∞) should converge or diverge together. More specifi-
cally, the limit comparison test says that if

lim
x→∞

f (x)
g(x)

= L
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for some positive real number L, then the improper integrals∫ ∞
a f (x) dx and

∫ ∞
a g(x) dx either both converge or both di-

verge. We will learn more about limit comparison tests in
Chapter 7. Use this test to determine the convergence or di-
vergence of the integrals in Exercises 65–70.

65.
∫ ∞

2

1
(x − 1)2

dx 66.
∫ ∞

1

1
x + 0.001

dx

67.
∫ ∞

1

1
3x 2 − 1

dx 68.
∫ ∞

1

x 2 − x + 3
x4 + 1

dx

69.
∫ ∞

1

x
4
√

x 3 + 100
dx 70.

∫ ∞

1

1 + e x

xe x
dx

Applications
For Exercises 71 and 72, suppose that in the course of Emmy’s
job as a civil engineer at Hanford, she needs to find out how
much radioactive cesium was present in the mixture in a cer-
tain tank when it was first filled exactly 12 years ago. Suppose
Q(0) is the number of pounds of radioactive cesium that was
initially in the tank 12 years ago, at time T = 0. The amount
of cesium in the tank at any time T ≥ 0 is the amount that
remains to decay, which for some constant k is equal to

Q(t) =
∫ ∞

T
ke−0.023t dt.

71. If Emmy measures 0.95 lb of cesium in the tank now,
how much cesium was in the tank when it was first filled
12 years ago?

72. In another location in the tank farm, there is a tank that
was filled with a different, known mixture that contained
1.5 lb of radioactive cesium when the tank was filled.
However, there is no record of when this tank was filled.

Emmy measures 0.85 lb of cesium in the tank now. How
long ago was the tank filled?

73. Frank is evaluating electric motors to drive automated
mixing for some waste tanks that he must maintain. One
pump is advertised to have a probability of failure that
follows the exponential distribution

f (t) = 0.31e−0.31t,

where the time t > 0 is measured in years. Frank knows
that the expected time of failure for something following
this distribution is ∫ ∞

0
t f (t)dt.

How long can he expect one of these pumps to last?

Proofs

Prove each statement in Exercises 74–77, using limits of def-
inite integrals for general values of p.

74. If 0 < p ≤ 1, then
∫ ∞

1
1
x p

dx diverges.

75. If p > 1, then
∫ ∞

1
1
x p

dx converges to
1

p−1
.

76. If 0 < p < 1, then
∫ 1

0
1
x p

dx converges to
1

1−p
.

77. If p ≥ 1, then
∫ 1

0
1
x p

dx diverges.

Prove each statement in Exercises 78–80, using the definition
of improper integrals as limits of proper definite integrals.

78. If
∫ ∞

a f (x) dx diverges and 0 ≤ f (x) ≤ g(x) for all x ∈ [a, ∞),

then
∫ ∞

a g(x) dx also diverges.

79. Suppose f (x) and g(x) are both continuous on (a, b] but

not at x = a. If
∫ b

a f (x) dx converges and 0 ≤ g(x) ≤ f (x)

for all x ∈ (a, b], then
∫ b

a g(x) dx also converges.

80. Suppose f (x) and g(x) are both continuous on (a, b] but

not at x = a. If
∫ b

a f (x) dx diverges and 0 ≤ f (x) ≤ g(x) for

all x ∈ (a, b], then
∫ b

a g(x) dx also diverges.

81. Suppose f (x) is continuous on R and that for some
real number c, both

∫ c
−∞ f (x) dx and

∫ ∞
c f (x) dx exist. Use

properties of definite integrals to prove that for all real
numbers d,

∫ c

−∞
f (x) dx +

∫ ∞

c
f (x) dx

is equal to

∫ d

−∞
f (x) dx +

∫ ∞

d
f (x) dx.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 19:17

480 Chapter 5 Techniques of Integration

Thinking Forward

Gabriel’s Horn: If we rotate the graph of f (x) = 1
x

on [1, ∞)

around the x-axis, we get what is known as Gabriel’s Horn,
as shown in the figure.

Graph of f (x) = 1
x

rotated around x-axis

y

. . .

�1

1

1 5432

We already know that the area
∫ ∞

1
1
x

dx under the graph of
1
x

on [1, ∞) is infinite. Does this mean that the volume of

Gabriel’s Horn will also be infinite? The answer, surprisingly,
is no. Let’s find out why.

It turns out that the volume of the solid of revolution obtained
by rotating the graph of a function y = f (x) around the x-axis

on an interval [a, b] is given by the formula

Volume = π

∫ b

a
( f (x))2 dx.

It also turns out that the surface area of such a solid of revo-
lution is given by the formula

Surface Area = 2π

∫ b

a
f (x)

√
1 + ( f ′(x))2 dx.

� Set up an improper integral that describes the volume
of Gabriel’s Horn. Then solve the improper integral to
show that the volume of Gabriel’s Horn is not infinite,
but rather is equal to π .

� Get ready to be surprised again: Although the volume
of Gabriel’s Horn is finite, the surface area of Gabriel’s
Horn is infinite! That means that it would take an infi-
nite amount of paint to coat the outside of Gabriel’s
Horn, even though it takes only a finite amount of
paint to fill up the inside. Set up an improper inte-
gral that describes the surface area of Gabriel’s Horn.
Then use the limit comparison test (see Exercises 65–

70) with
1
x

to show that the surface area of Gabriel’s

Horn is infinite.

5.7 NUMERICAL INTEGRATION*

� Error bounds for certain left, right, trapezoid, and midpoint sums

� Simpson’s Rule for approximating areas under curves

� Using error bounds to calculate definite integrals to within specified degrees of accuracy

Approximations and Error

Even with a whole chapter of integration techniques under our belt, there are many inte-
grals that we do not know how to solve. For example, the definite integrals∫ 1.5

0
e−x 2

dx,
∫ 2

1

x
e x − 1

dx, and
∫ π/2

0
cos(cos x) dx

have relatively simple integrands, although it turns out that their antiderivatives cannot be
expressed in closed form, that is, as combinations of the types of functions we have studied
in this course. However, each of the integrands in these integrals is continuous and thus
is integrable, which means that each of the given definite integrals is equal to some real
number that we can approximate by using Riemann sums.

Approximating is easy; the tough part is knowing when your approximation is “good.”
For example, suppose we want to get a rough estimate of the number of seconds in a day.
The actual answer is of course that there are (60 seconds)(60 minutes)(24 hours) = 86,400
seconds in each day, but if you wanted to calculate quickly in your head you might instead
consider the simpler product (60)(60)(20) = 72,000. This approximation is good for know-
ing roughly what order of magnitude we are talking about, but not good enough for most
practical applications. In this case we can see that our simple approximation is off by an
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error of 4,400 seconds. But how do we know how good or bad an approximation is without
knowing the exact value we are approximating?

The error of an approximation is the difference between the approximated value and
the actual value of what is being calculated. When we are interested only in the magnitude
of such error and not in whether our approximation is more or less than the actual value,
we consider the absolute value of the error:

|error| = |true value − approximation|.
When we use a Riemann sum, we are approximating an exact signed area under a

curve. The resulting error will typically be large if we use only a few rectangles, but becomes
smaller when we use a large number of rectangles. In general, the error E(n) incurred by
using a given n-rectangle Riemann sum is the difference between the actual area and the
approximated area:

|E(n)| =
∣∣∣
∫ b

a
f (x) dx −

n∑
k=1

f (x ∗
k ) �x

∣∣∣.
But how can we possibly find this error without knowing the exact value of

∫ b
a f (x) dx in

the first place? It turns out that in specific situations we can get bounds on the error even
without knowing the value of the definite integral. This means that in those situations we
will be able to approximate definite integrals to whatever degree of accuracy we choose.

Error in Left and Right Sums

Since we will be calculating and comparing many types of Riemann sums in this section, it
will be useful to have some descriptive notation for such sums. Suppose we wish to examine
the signed area between the graph of a function f and the x-axis on [a, b]. We will denote
the left-sum and right-sum n-rectangle approximations for this area, respectively, as

LEFT(n) =
n∑

k=1

f (x k−1)�x = ( f (x 0) + f (x 1) + f (x 2) + · · · + f (x n−1)) �x,

RIGHT(n) =
n∑

k=1

f (x k)�x = ( f (x 1) + f (x 2) + f (x 3) + · · · + f (x n)) �x.

Sometimes these sums are over-approximations of the actual area, and sometimes they
are under-approximations, depending on the behavior of the function f . If f happens to
be monotonic on [a, b], in other words either always increasing on [a, b] or always de-
creasing on [a, b], we can say more. For example, consider the monotonically decreasing
function f shown following at the left. For this function, the four-rectangle left sum is an
over-approximation and the four-rectangle right sum is an under-approximation.

∫ b

a
f (x) dx LEFT(4) RIGHT(4)

x

y

ba

f (a)

f (b)
x

y

ba

f (a)

f (b)
x

y

ba

f (a)

f (b)
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In fact, for any number n of rectangles, the area under a monotonically increasing or
decreasing graph will be between the left-sum and right-sum approximations, as described
in the following theorem:

THEOREM 5.24 Left and Right Sums of Monotonic Functions

Suppose f is integrable on [a, b] and let n be a positive integer.

(a) If f is increasing on [a, b], then LEFT(n) ≤ ∫ b
a f (x) dx ≤ RIGHT(n).

(b) If f is decreasing on [a, b], then RIGHT(n) ≤ ∫ b
a f (x) dx ≤ LEFT(n).

Proof. We will prove part (b) and leave the entirely similar proof of part (a) to Exercise 58. Suppose
we partition [a, b] into n rectangles over subintervals of the form [x k−1, x k]. If f is monotonically
decreasing, then for each k we have f (x k−1) ≥ f (x) ≥ f (x k) for all x ∈ [x k−1, x k], and thus the area
under f on [x k−1, x k] will be less than the area of the kth left-sum rectangle and greater than the
area of the kth right-sum rectangle.

The fact that the actual area under a monotonic function is always sandwiched between
the left sum and the right sum can actually tell us something about the amount of error
in those Riemann sum approximations. The shaded rectangles in the figures that follow
represent the combined error from the left sum and the right sum. These errors join up to
form a rectangle that can be stacked into a larger rectangle whose area | f (b) − f (a)|�x is
the difference |LEFT(n) − RIGHT(n)|, regardless of the value of n:

Difference between LEFT(4) and RIGHT(4) Difference between LEFT(8) and RIGHT(8)

x Δx

y

ba

f (a)

f (b)

|f (b) � f (a)|

x

y

ba

f (a)

f (b)

|f (b) � f (a)|

Δx

Since the stack of rectangles represents the combined error from the left and right
sums, it follows that the error from either of these approximations must itself be less than
| f (b) − f (a)|�x. This argument holds for any monotonically decreasing function, and we
can say similar things when f is monotonically increasing. Therefore we have proved the
following theorem:

THEOREM 5.25 Error Bounds for Left and Right Sums

Suppose f is integrable and monotonic on [a, b] and n is a positive integer. Then we can
bound the error E LEFT(n) of the left sum as follows:

|E LEFT(n)| ≤ |LEFT(n) − RIGHT(n)| = | f (b) − f (a)| �x.

The error |E RIGHT(n)| of the corresponding right sum has the same bound.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 19:17

5.7 Numerical Integration* 483

As we will see in Example 1, we can use these error bounds to ensure that our left- or
right-sum approximations of area are to within any desired degree of accuracy.

Error in Trapezoid and Midpoint Sums

What about bounding error for other types of Riemann sums? Recall from Section 4.2 the
trapezoid and midpoint sums for n subdivisions, which can be expressed, respectively, as

TRAP(n) =
n∑

k=1

f (x k−1) + f (x k)
2

�x = ( f (x0) + 2f (x1) + 2f (x2) + · · · + f (xn))
(

�x
2

)
,

MID(n) =
n∑

k=1

f
(

x k−1 + x k

2

)
�x, =

(
f
(

x0 + x1

2

)
+ f

(
x1 + x2

2

)
+ · · · + f

(
xn−1 + xn

2

))
�x.

It turns out that we can guarantee that these sums are either over-approximations
or under-approximations depending on whether the function f is concave up or concave
down. For example, consider the concave-up function f shown following at the left. It is
immediately obvious that the trapezoid sum approximation must be greater than the actual
area under the curve, as shown in the middle figure.

∫ b

a
f (x) dx TRAP(4) MID(4)

ba

f (a)

f (b)

x

y

ba

f (a)

f (b)

x

y

ba

f (a)

f (b)

x

y

What is less obvious is that the midpoint sum of a concave-up function, as shown in the
third figure, will always be an under-approximation of the actual area. For concave-down
functions the situation is reversed, with the actual area sandwiched between the smaller
trapezoid sum and the larger midpoint sum, as stated in the following theorem:

THEOREM 5.26 Trapezoid and Midpoint Sums of Functions with Consistent Concavity

Suppose f is integrable on [a, b] and let n be a positive integer.

(a) If f is concave up on [a, b], then MID(n) ≤ ∫ b
a f (x) dx ≤ TRAP(n).

(b) If f is concave down on [a, b], then TRAP(n) ≤ ∫ b
a f (x) dx ≤ MID(n).

Proof. We will use geometric arguments to prove part (a) and leave the similar proof of part (b)
to Exercise 59. That the trapezoid sum is an over-approximation for concave-up functions is clear
from our earlier middle diagram. Specifically, upwards concavity guarantees that the secant line
from (x k−1, f (x k−1)) to (x k, f (x k)) will always be completely above the graph of f on [x k−1, x k].
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That the midpoint sum is an under-approximation for concave-up functions becomes clear if
we reinterpret each midpoint rectangle as a trapezoid. Given a subinterval [x k−1, x k], consider the
midpoint trapezoid on the interval to be the trapezoid whose top is formed by the line tangent
to the graph of f at the midpoint of the subinterval. From the figure it is clear that the midpoint
trapezoid will have the same area as the midpoint rectangle whose height is given by the height of
f (x) at the midpoint of the subinterval. Now look at the figure on the right; since f is concave up,
the midpoint tangent line on each subinterval will be below the graph. Therefore the area of each
midpoint trapezoid will be less than the area under the curve on that subinterval.

Midpoint trapezoid Reinterpretation of MID(4) with trapezoids

ba

f (a)

f (b)

x

y

Because the area under the graph of a consistently concave-up or concave-down func-
tion will always be between the trapezoid sum and the midpoint sum, the error for either
of those sums is less than the difference of those sums. This is entirely analogous to what
we saw in Theorem 5.25. We can actually get an even better bound if we are able to restrict
the behavior of the second derivative:

THEOREM 5.27 Error Bounds for Trapezoid and Midpoint Sums

Suppose f is integrable and either always concave up or always concave down on [a, b],
and let n be a positive integer. Then we can bound both ETRAP(n) and EMID(n) as follows:

(a) |ETRAP(n)| ≤ |TRAP(n) − MID(n)| (b) |EMID(n)| ≤ |TRAP(n) − MID(n)|

If we suppose further that f ′′ is bounded on [a, b], that is, that there is some positive real
number M such that | f ′′(x)| ≤ M for all x ∈ [a, b], then we can say that:

(c) |ETRAP(n)| ≤ M(b − a)3

12n2 (d) |EMID(n)| ≤ M(b − a)3

24n2

The proof of the second part of this theorem can be found in many numerical analysis texts.
You will explore why these bounds are reasonable in Exercise 18. In Example 2 you will use
the same bounds to calculate trapezoid and midpoint sums to specified degrees of accuracy.

Simpson’s Rule

So far all of our approximations of a definite integral
∫ b

a f (x) dx have utilized piecewise-
linear approximations of f . In other words, after subdividing [a, b], we approximated each
piece of f with a line. For example, the left sum just represents the area under the graph of a
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piecewise-linear step function that agrees with f on the left-hand side of each subinterval.
The trapezoid sum uses a continuous piecewise-linear function whose pieces are secant
lines of the graph of f , connecting the heights of the function at the subdivision points.

One way to get a more accurate approximation of a definite integral is to use a non-
linear approximation instead. For example, we could approximate each piece of f with a
parabola instead of a line. The first figure that follows shows some function f on [a, b], and
the second figure shows how we could approximate the area under the graph of f with
three parabola-topped rectangles. We choose the parabola p(x) on each subinterval to be
the unique parabola that passes through the leftmost height, the midpoint height, and the
rightmost height on that subinterval; see the third figure.

y = f (x) on [a, b] Approximation of
∫ b

a f (x) dx
with parabola-topped rectangles

A closer look at
the first parabola

y

x
a b

y

x
x0 x1 x2 x3 x4 x5 x6

f (x)

p(x)

y

x
x0 x1 x2

The example we just discussed was specifically chosen so that the parabolas would be
easily distinguishable from the original function. In other words, the example does not
show a very accurate approximation! However, in general, approximation by parabolas can
be extremely accurate; imagine using 20 parabolas along the graph of f , and consider how
closely such an approximation would match the function.

So how do we calculate a particular parabola-based area approximation? One way
would be to actually find the equations of each little quadratic parabola piece and then
use definite integral formulas for quadratics to calculate the area under each such piece.
Doing this in practice, however, would be quite time-consuming. The next theorem can
help make the process faster; it provides a specific formula for calculating the area under
a quadratic on an interval that uses only the values of the quadratic at the endpoints and
the midpoint of the interval. This nice theorem will allow us to bypass the step of actually
finding the equation of each parabola.

THEOREM 5.28 The Definite Integral of a Quadratic in Terms of Endpoints and Midpoint

If p(x) is a quadratic function on [A, B], then
∫ B

A
p(x) dx = B − A

6

(
p(A) + 4p

(
A + B

2

)
+ p(B)

)
.

The proof of this convenient formula is just an application of known definite integral
formulas and a bunch of algebra and is left to Exercise 62.

It turns out to be convenient to construct our parabolas on pairs of intervals. For ex-
ample, in the middle figure just shown we divided [a, b] into n = 6 subintervals and then
constructed three parabolas to approximate the curve y = f (x). In Exercise 63 you will show
that this process leads to the following summation formula:
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THEOREM 5.29 Simpson’s Rule

Suppose f is integrable on [a, b] and n is a positive even integer. Let �x = b−a
n

and

x k = a + k�x. Then we can approximate
∫ b

a f (x) dx with n
2

parabola-topped rectangles

by using the following sum, which is known as Simpson’s Rule:

SIMP(n) = ( f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + · · · + 2f (x n−2) + 4f (x n−1) + f (x n))
(

�x
3

)
.

Intuitively, it makes sense that, for most functions, an approximation using pieces of
parabolas could be more accurate than an approximation with pieces of lines. The following
theorem backs up this intuition with a bound on the error from Simpson’s Rule that is
clearly better than the error bounds we found for left, right, trapezoid, and midpoint sums:

THEOREM 5.30 Error Bound for Simpson’s Rule

Suppose f is an integrable function on [a, b] whose fourth derivative is bounded. Then
there is some positive real number M such that | f (4)(x)| ≤ M for all x ∈ [a, b]. In this
situation we can bound the error ESIMP(n) from Simpson’s Rule as follows:

|ESIMP(n)| ≤ M(b − a)5

180n4 .

The proof of Theorem 5.30 can be found in many numerical analysis texts, and we will not
concern ourselves with it here.

Notice that all of the error bounds we have discussed have a requirement that either f or
some derivative of f be bounded. For the left and right sums we required f to be monotonic,
which implies that f is bounded. This restriction in turn puts some kind of limit on how
much the height function f can change on [a, b]. For the trapezoid and midpoint sums we
required f ′′ to be bounded, which in a sense puts a limit on the curviness of f on [a, b].
Notice that curvier functions will tend to have less accurate trapezoid sum approximations.
For Simpson’s Rule we required a bound on the fourth derivative, which also puts some
limits on how wildly behaved f can be on [a, b] and therefore limits how much error can
arise by using parabolas to approximate the function on that interval.

Examples and Explorations

EXAMPLE 1 Guaranteeing a level of accuracy from a right sum

Suppose we wish to approximate the definite integral
∫ 1.5

0 e−x 2
dx with an n-rectangle right

sum so that we can be sure that our estimate is within 0.005 of the actual answer. How large
will we have to make n?

SOLUTION

As we mentioned at the start of this section, the integral
∫ 1.5

0 e−x 2
dx has no closed-form

solution. This means that we cannot calculate its actual value with the Fundamental
Theorem of Calculus, because we would be unable to perform the antidifferentiation step.
Therefore in this example we have no choice but to approximate the value of the definite
integral, and in addition we do not know the value of the actual answer we are attempting
to approximate.
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The graph of f on [a, b] that appears first in this section happens to be the graph
of f (x) = e−x 2

on the interval [a, b] = [0, 1.5] that we are concerned with in this exam-
ple. The function f (x) = e−x 2

is monotonically decreasing on [0, 1.5] because its derivative
f ′(x) = −2xe−x 2

is always negative on that interval. Therefore Theorem 5.25 applies. We
have a = 0, b = 1.5, and �x = 1.5−0

n
= 1.5

n
, so the magnitude of the error from using an

n-rectangle right sum has the following bound:

|E RHS(n)| ≤ | f (b) − f (a)|�x =
∣∣∣e−(1.5)2 − e−0 2

∣∣∣ (1.5
n

)
≈ 1.3419

n
.

We want to find n such that |ERHS(n)| is less than 0.005. To do this we just have to find n
such that the error bound is less than 0.005, so we need:

1.3419
n

< 0.005 =⇒ 1.3419
0.005

< n =⇒ n > 268.38.

This means that n = 269 is the first positive integer for which the n-rectangle right sum
will be within 0.005 of the actual area under the curve.

In case you’re interested, the actual value of the definite integral is approximately
0.856188, and the right-sum approximation with 269 rectangles is approximately 0.853693;
notice that our approximation is indeed within 0.005 of the actual answer. �

EXAMPLE 2 Finding bounds for the error from trapezoid and midpoint sums

Consider the signed area between the graph of f (x) = x 2 − 2x + 2 and the x-axis on the
interval [0, 3].

(a) Find trapezoid and midpoint sum approximations for this area with n = 4.

(b) Describe error bounds for the approximations from part (a) in two different ways (with
Theorem 5.26 and with Theorem 5.27).

(c) Use the Fundamental Theorem of Calculus to find the actual area, and then verify that
the error bounds computed in part (b) are accurate.

SOLUTION

(a) The function f (x) = x 2 − 2x + 2 on [a, b] = [0, 3] just happens to be the function f on
[a, b] that we used in our discussion of the trapezoid and midpoint sums before The-
orem 5.26. We begin by dividing the interval [0, 3] into n = 4 subintervals of width

�x = 3
4

, with subdivision points x0 = 0, x1 = 3
4

, x2 = 3
2

, x3 = 9
4

, and x4 = 3. Using the

equation f (x) = x 2 − 2x + 2, we find that the n = 4 trapezoid sum approximation is

TRAP(4) =
(

f (0) + 2f
(

3
4

)
+ 2f

(
3
2

)
+ 2f

(
9
4

)
+ f (3)

)(
3/4
2

)
= 201

32
≈ 6.28125.

To find MID(4), we must first find the midpoints of the four subintervals; these mid-
points are x ∗

1 = 3
8

, x ∗
2 = 9

8
, x ∗

3 = 15
8

, and x ∗
4 = 21

8
. Therefore the n = 4 midpoint sum

approximation is

MID(4) =
(

f
(

3
8

)
+ f

(
9
8

)
+ f

(
15
8

)
+ f

(
21
8

)(
3
4

))
= 375

64
≈ 5.85938.

(b) Theorem 5.26 applies because f ′(x) = 2x − 2 is positive on all of [0, 3] and thus f is
concave up on that entire interval. Therefore the actual area under f on [0, 3] is greater
than MID(4) = 375

64
≈ 5.85938 and smaller than TRAP(4) = 201

32
≈ 6.28125. In partic-

ular, by the first part of Theorem 5.27 this means that

|E TRAP(4)| and |E MID(4)| ≤
∣∣∣201

32
− 375

64

∣∣∣ = 27
64

≈ 0.421875.

Accordingly, we can expect both the n = 4 trapezoid sum and the n = 4 midpoint sum
to be within about 0.421875 of the actual area under f on [0, 3].
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The second part of Theorem 5.27 has the potential to give us a much better error
bound in the sense that we should be confident in our n = 4 approximations to an
even greater degree of accuracy. Let’s see if that is the case in this example. We first
have to get a bound M on the second derivative that is as good as possible. The second
derivative of f (x) = x 2 − 2x + 2 is f ′′(x) = 2, and thus clearly | f ′′(x)| ≤ 2 for all values
x ∈ [0, 3], so we can take M = 2. Note that we are lucky to have an extremely good
bound for f ′′ in this example, since we know that it is constantly 2. We can now say
that

|E TRAP(4)| ≤ M(b − a)3

12n2 = 2(3 − 0)3

12(42)
= 9

32
≈ 0.28125

and

|E MID(4)| ≤ M(b − a)3

24n2 = 2(3 − 0)3

24(42)
= 9

64
≈ 0.140625.

From the n = 4 trapezoid sum approximation, it follows that the actual value of∫ 3
0 f (x) dx is within 9

32
of 201

32
(i.e., between 192

32
= 6 and 210

32
≈ 6.5625). With the n = 4

midpoint sum we can guarantee even better accuracy, namely, that the actual value of∫ 3
0 f (x) dx is within 9

64
of 375

64
(i.e., between 366

64
≈ 5.71875 and 384

64
= 6).

(c) In general, we use approximations with error bounds to investigate definite integrals
that we are unable to solve exactly. However, in this example the definite integral∫ 3

0 (x 2−2x+2) dx is easy to solve exactly, so we can actually verify that the error bounds
we just found are accurate. Using the Fundamental Theorem of Calculus, we obtain∫ 3

0
(x 2 − 2x + 2) dx =

[
1
3

x 3 − x 2 + 2x
]3

0
= 6.

In part (b) we used Theorem 5.26 to argue that the value of this definite integral
was within 0.421875 of both the trapezoid sum approximation of 6.28125 and the
midpoint sum approximation of 5.85938. This meant that we could guarantee that
the value of the definite integral was both in the interval [5.859375, 6.703125] and
in the interval [5.437505, 6.281255], which is true, because we just showed that the
exact value was 6. We then used Theorem 5.27 to obtain better error bounds, which
allowed us to guarantee that the value of the definite integral was in both the interval
[6, 6.5625] and the interval [5.71875, 6]. In fact, notice that the only number in both
of those intervals happens to be the exact answer of 6. �

EXAMPLE 3 Arriving at the Simpson’s Rule formula when n = 6

Show that the Simpson’s Rule formula in Theorem 5.29 results from repeated application
of Theorem 5.28 in the case where n = 6 with n

2
= 3 parabolas.

SOLUTION

Suppose f is an integrable function on an interval [a, b]. In this case we have three quadratic
functions p1(x), p2(x), and p3(x) that approximate f (x) on the double subintervals [x 0, x 2],
[x 2, x 4], and [x 4, x6], and agreeing with f (x) at the endpoints and midpoints of these subin-
tervals. Note that the midpoints of the parabola pieces are the odd subdivision points x1,
x3, and x5. We can approximate the area under f on [a, b] by adding up the areas under
these three parabola pieces p1(x), p2(x), and p3(x):∫ b

a
f (x) dx ≈

∫ x 2

x 0

p1(x) dx +
∫ x 4

x 2

p2(x) dx +
∫ x 6

x 4

p3(x) dx.

By applying Theorem 5.28 to the first double subinterval [x0, x2] we see that∫ x 2

x 0

p1(x) dx = x2 − x0

6
( p1(x0) + 4p1(x1) + p1(x2)).
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Similarly, on the second and third double subintervals [x2, x4] and [x4, x6] we have
∫ x 4

x 2

p1(x) dx = x4 − x2

6
( p1(x2) + 4p1(x3) + p1(x4)),

∫ x 6

x 4

p1(x) dx = x6 − x4

6
( p1(x4) + 4p1(x 5) + p1(x6)).

By construction, the values of p1(x) at x0, x1, and x2 are the same as the corresponding
values of f (x). Similarly, the values of p2(x) and p3(x) agree with the values of f (x) at the
corresponding endpoints and midpoints. Moreover, the width of each double subinterval
is 2�x, and thus x2 −x0

6
, x4 −x2

6
, and x6 −x4

6
are each equal to �x

3
. Therefore

∫ b
a f (x) dx is ap-

proximated with Simpson’s Rule by the sum

( f (x0) + 4f (x1) + f (x2))�x
3

+ ( f (x2) + 4f (x3) + f (x4))�x
3

+ ( f (x4) + 4f (x5) + f (x6))�x
3

.

A little algebra shows that Simpson’s Rule indeed says what is predicted by Theorem 5.29:
∫ b

a
f (x) dx ≈ ( f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + 4f (x5) + f (x6))�x

3
.

Note that if we knew the function f and the interval [a, b], then we could easily calculate
the preceding sum. �

TEST YOUR? UNDERSTANDING
� What does it mean for a function to be monotonic on an interval?

� Why do we require that f be monotonic on all of [a, b] in Theorem 5.24?

� Why do we require that f be either always concave up or always concave down on [a, b]
in Theorem 5.26?

� As we saw in the reading, a trapezoid sum with n trapezoids can be written in the form

( f (x0) + 2f (x1) + 2f (x2) + · · · + f (xn))
(

�x
2

)
. Why are f (x0) and f (xn) not multiplied by 2

in this expression?

� Simpson’s Rule approximates the area under a curve by approximating a function with
pieces of parabolas. How do we define the parabolas that are used on each subinterval?

EXERCISES 5.7

Thinking Back

Monotonicity and concavity: For each function f and interval
[a, b], use derivatives to determine whether or not f is mono-
tonic on [a, b] and whether or not f has consistent concavity
on [a, b].

� f (x) = x 3 − 2x 2, [a, b] = [1, 3]

� f (x) = x 3 − 2x 2, [a, b] = [0, 1]

� f (x) = sin
(

π

2
x
)

, [a, b] = [−1, 1]

Bounding the second derivative: Consider the function f (x) =
x 2(x − 3).

� To the nearest tenths place, find the smallest number
M so that | f ′′(x)| ≤ M for all x ∈ [0, 2].

� To the nearest tenths place, find the smallest number
M so that | f ′′(x)| ≤ M for all x ∈ [0, 4].

Determining quadratics: For each of the following problems,
find the equation of the unique quadratic function p(x) with
the given properties.

� The graph of p(x) is a parabola that agrees with f (x) =
x 3 + 1 at f (−1), f (0), and f (1).

� The graph of p(x) is a parabola that agrees with the

function f (x) = 1
x

at x = 1, x = 2, and x = 3.

� The graph of p(x) is a parabola that agrees with the

function f (x) = sin x at x = 0, x = π

2
, and x = π .
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If we knew the value of the error from a
given Riemann sum calculation, then we would know
the actual value of the signed area under the curve.

(b) True or False: We can sometimes get a bound on the
error from a given Riemann sum calculation even
without knowing the actual value of the signed area
under the curve.

(c) True or False: A left sum with n = 10 rectangles will
always have a larger error than the corresponding left
sum with n = 100 rectangles.

(d) True or False: A right sum with n = 10 rectangles for
a monotonically decreasing function will always have
a larger error than the corresponding right sum with
n = 100 rectangles.

(e) True or False: If f is monotonically increasing on [a, b],
then the error incurred from using the left sum with
n rectangles will always be less than the difference of
the right and left sums with n rectangles.

(f) True or False: If f is concave down on [a, b], then
every trapezoid sum on that interval will be an under-
approximation.

(g) True or False: If f is concave down on [a, b], then
every midpoint sum on that interval will be an over-
approximation.

(h) True or False: Simpson’s Rule with n = 10 subdivi-
sions (and thus 5 parabolas) will always be more
accurate than the trapezoid sum with n = 10 trape-
zoids.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f on an interval [a, b] for which the left
sum and the trapezoid sum are over-approximations
for every n.

(b) A function f on an interval [a, b] for which the right
sum and the trapezoid sum are over-approximations
for every n.

(c) A function f on an interval [a, b] for which Simpson’s
Rule has no error at all.

3. Suppose f is monotonicically increasing on [a, b]. Use
pictures to explain why the error incurred from using
the left sum with n rectangles to approximate

∫ b
a f (x) dx

will always be less than or equal to the difference of
the right sum with n rectangles and the left sum with n
rectangles.

4. Suppose f is concave down on [a, b]. Use pictures to
explain why the error incurred from using the trapezoid
sum with n trapezoids to approximate

∫ b
a f (x) dx will al-

ways be less than or equal to the difference of the trape-
zoid sum with n trapezoids and the midpoint sum with n
rectangles.

5. Sketch an example that shows that the inequality
LEFT(n) ≤ ∫ b

a f (x) dx ≤ RIGHT(n) is not necessarily true
if f is not monotonically increasing on [a, b].

6. Sketch an example that shows that the inequality
MID(n) ≤ ∫ b

a f (x) dx ≤ TRAP(n) is not necessarily true if
f is not concave up on all of [a, b].

7. Sketch an example that shows that the left-sum error
bound |ELEFT(n)| ≤ | f (b) − f (a)| �x does not necessarily
hold for functions f that fail to be monotonic on [a, b].

8. If f is monotonically increasing on [a, b], which of
the given approximations is guaranteed to be an over-
approximation for

∫ b
a f (x) dx? (Select all that apply.)

(a) left sum (b) right sum

(c) trapezoid sum (d) midpoint sum

9. If f is concave down on all of on [a, b], which of the given
approximations is guaranteed to be an over-approximation
for

∫ b
a f (x) dx? (Select all that apply.)

(a) left sum (b) right sum

(c) trapezoid sum (d) midpoint sum

10. The error bounds for right and left sums in Theorem 5.25
apply only to monotonic functions. Suppose f is a pos-
itive integrable function that is increasing on [a, c] and
decreasing on [c, b], with a < c < b. How could you use
a right or left sum to make an estimate of

∫ b
a f (x) dx and

still get a bound on the error? Draw a picture to help il-
lustrate your answer.

11. The error bounds for trapezoid and midpoint sums in
Theorem 5.27 apply only to functions with consistent
concavity. Suppose f is a positive integrable function that
is concave down on [a, c] and concave up on [c, b], with
a < c < b. How could you use a trapezoid or midpoint
sum to make an estimate of

∫ b
a f (x) dx and still get a

bound of the error? Draw a picture to help illustrate your
answer.

12. Explain what we mean when we say that the right,
left, trapezoid, and midpoint sum approximations for∫ b

a f (x) dx involve piecewise-linear approximations of the
function f .

13. What is a “midpoint trapezoid,” and what does it have to
do with the midpoint sum? How do midpoint trapezoids
help us determine whether the midpoint sum will be an
over-approximation or under-approximation?

14. Theorem 5.27 allows us to estimate MID(n) with twice
the accuracy (i.e., half the error) of TRAP(n). Is this what
you would have expected from looking at graphical exam-
ples? Why do you think the midpoint sum is so accurate?
(Hint: Think about “midpoint trapezoids” and how they are
defined.)

15. Suppose f is a function with f (x) > 0, f ′(x) ≤ 0, and
f ′′(x) ≤ 0.

(a) Put the right-sum, left-sum, trapezoid-sum, and
midpoint-sum approximations of

∫ b
a f (x) dx in order

from smallest to largest. (The order will not depend
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on the number n of rectangles.) Explain your answer
with a picture.

(b) The true value of
∫ b

a f (x) dx must lie between two of
the approximations that you listed in part (a). Which
two, and why?

16. The following table describes 12 different approximations

of the value of
∫ 2

1
1
x

dx:

Method n = 4 n = 8 n = 16

Right sum 0.634524 0.662872 0.677766

Left sum 0.759524 0.725372 0.709016

Trapezoid sum 0.697024 0.694122 0.693391

Midpoint sum 0.693147 0.693147 0.693147

(a) The actual value of
∫ 2

1
1
x

dx is ln 2 ≈ 0.69314718. Cre-

ate a table showing the errors corresponding to each
of the 12 approximations. What do you notice as n
increases in each row?

(b) What do you notice about the sign of the errors of
the right and left sums? What about the signs of the
errors of the trapezoid and midpoint sums?

(c) How do the errors of the right and left sums com-
pare with the errors of the trapezoid and midpoint
sums for each n? How do the errors from the trape-
zoid sums compare with the errors from the midpoint
sums?

17. The table that follows describes four different approxi-
mations of the value of

∫ 5
2 f (x) dx for some differentiable

function f . Use the weighted average formula given in
Exercise 61 to find an estimate of

∫ 5
2 f (x) dx that you would

expect to be more accurate than any of the estimates in
the table, and explain your answer.

Method n = 1000

Right sum 1.09794591

Left sum 1.09927925

Trapezoid sum 1.09861258

Midpoint sum 1.09861214

18. Suppose f is a positive, increasing, concave-up function
on an interval [a, b], and let c be the midpoint of the in-
terval. Let A be the point (a, 0), B be the point (b, 0), C be
the point (c, f (c)), D be the point (b, f (b)), E be the point
(a, f (a)), R be the point (b, f (c)), and S be the point (a, f (c)).

(a) Draw a picture illustrating the situation described.
What does the area of trapezoid ABDE represent?

(b) Draw a line through point C that is parallel to the
line connecting D and E. Let P be the point on
the line with x-coordinate b. Let Q be the point on
the line with x-coordinate a. What does the area
of the rectangle ABRS represent? What can you say
about the areas of the rectangle ABRS and the trape-
zoid ABPQ?

(c) Let A1 be the area between the line PQ and the graph
of f . Let A2 be the area between the line DE and
the graph of f . How do these areas compare in size?
What do the areas represent? How do your answers
to these questions help motivate the statement of
Theorem 5.27?

19. Verify that the formula in Theorem 5.28 is true in the case
where p(x) = 3x 2 − x + 4 and [A, B] = [1, 5].

20. Sketch the graph of some function f on [2, 5] for which

SIMP(6) (i.e., with
n
2

= 3 parabola-topped rectangles) is

an under-approximation for
∫ b

a f (x) dx.

21. Show that the summation expression for Simpson’s Rule
in Theorem 5.29 follows from repeated applications of the
formula for the definite integral of a quadratic in Theo-
rem 5.28, in the case where n = 4 (i.e., where there are
n
2

= 2 parabolas).

22. In this exercise we investigate two cases where an approx-
imation with Simpson’s Rule happens to find the exact
value of a definite integral.

(a) Explain why Simpson’s Rule finds the exact value of∫ b
a f (x) dx if f is a quadratic function. (Hint: Think about

Theorem 5.28.)

(b) Explain why Simpson’s Rule finds the exact value of∫ b
a f (x) dx if f is a cubic function. (Hint: Think about M

in the formula for the error bound in Theorem 5.30.)

Skills

Calculate each definite integral approximation in Exer-
cises 23–40, and then find an error bound for your approx-
imation. If it is possible to calculate the definite integral
exactly, then do so and verify that the error bounds you found
are accurate.

23.
∫ 4

0
(x 2 + x) dx, right sum, n = 4

24.
∫ 4

0
(x 2 + x) dx, right sum, n = 8

25.
∫ 3

1
e−x dx, left sum with n = 6

26.
∫ 3

1
e−x dx, left sum, n = 10

27.
∫ 3

1
e−x dx, trapezoid sum, n = 6

28.
∫ 3

1
e−x dx, midpoint sum, n = 6

29.
∫ 7

1
ln x dx, midpoint sum, n = 12

30.
∫ 7

1
ln x dx, trapezoid sum, n = 12
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31.
∫ 2

0

√
1 + x 3 dx, trapezoid sum with n = 8

32.
∫ 2

0

√
1 + x 3 dx, right sum, n = 8

33.
∫ 3

0
cos(x 2) dx, left sum, n = 9

34.
∫ 3

0
cos(x 2) dx, midpoint sum, n = 9

35.
∫ 4

−2
x(x + 1)(x − 2) dx, Simpson’s Rule, n = 12

36.
∫ 4

−2
x(x + 1)(x − 2) dx, Simpson’s Rule, n = 24

37.
∫ 2

−1
(x 4 − 4x 3 + 4x 2) dx, Simpson’s Rule, n = 4

38.
∫ 2

−1
(x 4 − 4x 3 + 4x 2) dx, Simpson’s Rule, n = 8

39.
∫ π

−π

cos x dx, Simpson’s Rule, n = 8

40.
∫ π

−π

cos x dx, Simpson’s Rule, n = 12

Approximate each definite integral in Exercises 41–52 with
the indicated method and to the given degree of accuracy.
Then calculate the definite integral exactly, and verify that the
error bounds you found are accurate.

41.
∫ 1

−1
xe x dx, left sum, within 0.5

42.
∫ 1

−1
xe x dx, right sum, within 0.5

43.
∫ 4

2

1
x

dx, right sum, within 0.05

44.
∫ 4

2

1
x

dx, left sum, within 0.05

45.
∫ 3

0
x 2 dx, midpoint sum, within 0.1

46.
∫ 3

0
x 2 dx, trapezoid sum, within 0.1

47.
∫ 4

1
x 2/3, trapezoid sum, within 0.005

48.
∫ 4

1
x 2/3, midpoint sum, within 0.005

49.
∫ 2

0
10e−x dx, Simpson’s Rule, within 0.01

50.
∫ 2

0
10e−x dx, Simpson’s Rule, within 0.001

51.
∫ π

0
sin x dx, Simpson’s Rule, within 0.0005

52.
∫ π

0
sin x dx, Simpson’s Rule, within 0.00005

Applications

53. Dad’s casserole surprise is hot out of the oven. It cools at
a rate of T ′(t) = 15e−0.5t degrees per minute. The change
in temperature T(t) over an interval is equal to the area
under the graph of T ′(t) over that interval.

(a) Estimate the change in temperature of the casse-
role during its first 4 minutes out of the oven, using
LEFT(4), RIGHT(4), MID(4), TRAP(4), and SIMP(4).

(b) Give a bound on the errors involved in each approx-
imation.

54. The table that follows shows the velocity in meters per
second of a parachutist at various times. The distance
travelled by the parachutist over an interval of time is
equal to the area under the velocity curve on the same
interval.

t 1 2 3 4

v(t) 9 17 23 28

(a) The parachutist’s acceleration is decreasing because
of air resistance. What does this fact imply about v(t)?

(b) Assuming that the velocity curve is increasing and
concave down as the data suggests, find the best pos-
sible upper and lower bounds on the distance the
parachutist fell from time t = 0 to t = 4 seconds.

55. The rate r of increase of the gross domestic product
(GDP), in percent per year, for the United States from
1993 to 2001 is recorded in the table shown here. For
example, in 1993 the GDP rose 2.7% from January 1 to
December 31. You may assume that there is no growth
from December 31 of one year to January 1 of the next
year.

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001

r 2.7 4.0 2.7 3.6 4.4 4.3 4.1 3.8 0.3

(a) Use Simpson’s Rule to estimate the total percentage
change in GDP from January 1, 1993, to December
31, 2001.

(b) If the GDP was $6,880 billion on January 1, 1993,
what was the GDP on December 31, 2001? Use the
best approximating tool available to you.

(c) Estimate a bound for the fourth derivative of r over
the period from 1993 to 2001, and use that informa-
tion to determine an error bound for your estimate of
the total change in r.

56. Annie is building a kayak using wood and fabric. She
needs to know the length of a sheet of polyurethane fab-
ric to buy, which depends on the arc length of the longest
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surface of her kayak. The bottom of her kayak follows
the curve

h(x) = (6 × 10−4) x 4,

where h is the height of the bottom of the kayak above
the ground when it is resting upright, and x is the dis-
tance from the center of the kayak. The kayak is 13 feet
long; that is, it extends 6.5 feet from the center in either
direction.
(a) Approximate the length of the curve along the bottom

of Annie’s kayak by using nine equally spaced points
along the bottom of the kayak, and straight line seg-
ments between each adjacent pair of points.

(b) Make another approximation of the length of the
curve along the bottom of Annie’s kayak by Simpson’s
rule on the same nine equally spaced points, given

that the length of this curve is given by the definite
integral ∫

−6.5,6.5

√
1 + (h′(x))2 dx.

57. The flow (in cubic feet per second) down the Lochsa River
over the course of a year is given in the table that follows,
where t measures days after January 1 and r(t) measures
the rate of flow at time t. Use Simpson’s Rule to approxi-
mate the total amount of water that flows down the river
in a year. What did you do to account for the fact that a
year has 365 days in it?

t 0 60 120 180 240 300 360
r(t) 700 1000 6300 4000 500 650 700

Proofs

58. Prove part (a) of Theorem 5.24: If f is integrable and
monotonically increasing on [a, b], then, for any positive
integer n, LEFT(n) ≤ ∫ b

a f (x) dx ≤ RIGHT(n).

59. Use geometric arguments to support part (b) of Theo-
rem 5.26: If f is integrable and concave down on [a, b]
and n is any positive integer, then TRAP(n) ≤ ∫ b

a f (x) dx ≤
MID(n).

60. Prove that the trapezoid sum is equivalent to the average
of the left and right sums:

TRAP(n) = LEFT(n) + RIGHT(n)
2

.

61. Prove that Simpson’s Rule is equivalent to the following
weighted average of the trapezoid and midpoint sums:

SIMP(2n) = 1
3

TRAP(n) + 2
3

MID(n).

62. Use steps (a) and (b) that follow to prove Theorem 5.28:
if p(x) is a quadratic function on [A, B], then

∫ B

A
p(x) dx = B − A

6

(
p(A) + 4p

(
A + B

2

)
+ p(B)

)
.

(a) First, calculate the integral of an arbitrary quadratic
p(x) = a0 + a1x + a2x 2 over an interval [A, B].

(b) Now use the fact that the parabola p(x) passes

through the points (A, p(A)),
( A+B

2
, p

( A+B
2

))
, and

(B, p(B)) to show that what you found in part (a) is
equivalent to the desired formula.

63. Prove that by repeated application of the formula for
the definite integral of a quadratic in Theorem 5.28, we
can arrive at the Simpson’s Rule approximation given in
Theorem 5.29. (Hint: Apply Theorem 5.28 to the subintervals
[x k, x k+2] where k is even.)

Thinking Forward

Approximating with power series: For values of x in the interval

(−1, 1), the rational function f (x) = 1
1−x

turns out to be equal
to

lim
n→∞

n∑
k=1

x k.

� Calculate the preceding sum when x = 1
2

for n = 5,
n = 10, and n = 20, and compare these numbers with

the quantity f
( 1

2

)
. What is the error in each case?

� Repeat the previous problem for x = 2, and argue that
the sum does not provide a good approximation of f (2).
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� the differential of a differentiable function u(x)

� what it means for a rational function to be improper

� what it means for a definite integral to be improper

� what it means for an improper integral to converge or to
diverge

� the error |E(n)| of an approximation of a definite integral
by a Riemann sum

� the geometric interpretations of the
n
2

-parabola Simpson’s

Rule approximation for the definite integral of a function
f on an interval [a, b]

Theorems
Fill in the blanks to complete each of the following theorem
statements:

� If f and u are functions such that f ′(u(x))u′(x) is ,
then we can use integration by substitution to solve∫

f ′(u(x))u′(x) dx = .

� If f (x) = g(u(x)) is on [a, b], u(x) is on (a, b),
and G(u) is an of g(u), then integration by sub-
stitution for definite integrals gives the following string
of equalities (fill in the upper and lower limits that are
marked by asterisks; there are two possible ways to do
this):∫ b

a
f (x) dx =

∫ ∗

∗
g(u) du = [

G(u)
]∗
∗

= [
G(u(x))

]∗
∗ = G(u(b)) − G(u(a)).

� If u and v are functions such that u′(x)v(x) + u(x)v′(x)
is , then we can use the product rule in reverse to
obtain ∫

(u′(x)v(x) + u(x)v′(x)) dx = .

� If u = u(x) and v = v(x) are differentiable functions, then
the following integration-by-parts formula holds:∫

u dv = − .

� If u = u(x) and v = v(x) are differentiable functions
on [a, b], then the following integration-by-parts formula
holds for definite integrals:∫ b

a
u dv = [ ]b

a = − .

� Suppose
p(x)
q(x)

is an rational function with

deg( p(x)) = n and deg(q(x)) = m < n. Then we can
write p(x)

q(x)
= + ,

for some polynomial s(x) of degree n−m and some proper

rational function
r(x)
q(x)

with deg(r(x)) < .

� In a partial-fractions decomposition of a proper rational

function
p(x)
q(x)

, if q(x) has a linear factor x − c with mul-

tiplicity m, then for some constants A1, A2, . . . , A m, the
sum will include terms of the forms .

� In a partial-fractions decomposition of a proper rational

function
p(x)
q(x)

, if q(x) has an irreducible quadratic factor

x 2 + bx + c with multiplicity m, then for some constants
B1, B2, . . . , Bm and C1, C2, . . . , C m, the sum will include
terms of the forms .

� By applying polynomial long division to divide a polyno-
mial p(x) by a polynomial q(x) of equal or lower degree,
we can obtain polynomials m(x) and R(x) such that the
following equation is true:

p(x) = + .

Equivalently, we have the following equation:

p(x)
q(x)

= + .

� Every quadratic function x 2 + bx + c can be rewritten in
the form x 2 + bx + c = (x − k)2 + C, where k = and
C = .

� If a is a positive real number, and if x ∈ and
u ∈ , then the substitution x = a sin u gives us√

a2 − x 2 = .

� If a is a positive real number, and if x ∈ and
u ∈ , then the substitution x = a tan u gives us
x 2 + a2 = .

� If a is a positive real number, and if x ∈ and
u ∈ , then the substitution x = a sec u gives us√

x 2 − a2 = if x < −a and
√

x 2 − a2 = if
x > a.

� If the improper integral of a function f on an interval I
converges, and if for all x ∈ I where the functions f
and g are defined, then the improper integral of g(x) on I
also converges.
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� If the improper integral of f on I diverges, and 0 ≤ f (x) ≤
g(x) for all x ∈ I where the functions are defined, then the
improper integral of g on I must .

� If f is integrable and increasing on [a, b] and n is a positive
integer, then

LEFT(n) ≤ ≤ RIGHT(n).

� If f is integrable and monotonic on [a, b] and n is a posi-
tive integer, then

|ELEFT(n)| ≤ | − | = | |�x.

� If f is integrable and either always concave up or always
concave down on [a, b] and n is a positive integer, then

|ETRAP(n)| ≤ and |EMID(n)| ≤ .

� If f is integrable and either always concave up or always
concave down on [a, b], n is a positive integer, and f ′′ is
bounded on [a, b] so that there is some positive real num-
ber M such that ≤ M for all x ∈ [a, b], then

|ETRAP(n)| ≤ and |EMID(n)| ≤ .

� If p(x) is a quadratic function on [A, B], then we can ex-

press
∫ B

A p(x) dx in terms of p(A), p
( A+B

2

)
, and p(B) as

follows: .

� If f is integrable and f (4) is bounded on [a, b] so that there
is some positive real number M such that ≤ M for
all x ∈ [a, b], then

|ESIMP(n)| ≤ .

Rules of Algebra and Integration

Pythagorean identities: Use Pythagorean identities to rewrite
each of the following trigonometric expressions.

� sin2 x = � cos4 x =

� tan2 x = � sec 6 x =

� cot 2 x = � csc 8 x =

Double-angle identities: Use double-angle identities to rewrite
each of the following trigonometric expressions until no
exponents are involved.

� sin2 x = � cos2 x =

� sin4 x = � cos6 x =

Integration formulas: Fill in the blanks to complete each of the
following integration formulas.

�
∫

tan x dx = �
∫

cot x dx =

�
∫

ln x dx = �
∫

sin−1 x dx =

�
∫

tan−1 x dx = �
∫

sec x dx =

�
∫

csc x dx =

Defining improper integrals: Fill in the blanks, using limits and
proper definite integrals to express each of the following types
of improper integral.

� If f is continuous on [a, ∞), then
∫ ∞

a
f (x) dx = .

� If f is continuous on (−∞, b], then
∫ b

−∞
f (x) dx = .

� If f is continuous on (−∞, ∞), then for any real
number c, ∫ ∞

−∞
f (x) dx = + .

� If f is continuous on (a, b] but not at x = a, then
∫ b

a
f (x) dx = .

� If f is continuous on [a, b) but not at x = b, then
∫ b

a
f (x) dx = .

� If f is continuous on [a, c) ∪ (c, b] but not at x = c, then
∫ b

a
f (x) dx = + .

Convergence and divergence of basic improper integrals: Deter-
mine whether each of the given improper integrals converges
or diverges. For those that converge, give the exact solution of
the integral.

�
∫ 1

0

1
x p dx, for 0 < p < 1 �

∫ ∞

1

1
x p dx, for 0 < p < 1

�
∫ 1

0

1
x p dx, for p = 1 �

∫ ∞

1

1
x p dx, for p = 1

�
∫ 1

0

1
x p dx, for p > 1 �

∫ ∞

1

1
x p dx, for p > 1
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Skill Certification: Integration Techniques

Integration techniques: Use whatever method you like to solve
each of the given definite and indefinite integrals. These
integrals are neither in order of difficulty nor in order of
technique. Many of the integrals can be solved in more than
one way.

1.
∫

cos7 x dx 2.
∫

(e 3 ln x)2 dx

3.
∫

x sec x tan x dx 4.
∫

x 2 sin x + 1
x

dx

5.
∫

ln 2x
x 2

dx 6.
∫

sin−1 x dx

7.
∫

cot 6 x dx 8.
∫

x 3 sin x dx

9.
∫

2πx(8 − x 3/2) dx 10.
∫

csc4 x cot 4 x dx

11.
∫ 1

0
ln(1 + 3x) dx 12.

∫ π/2

0
sin2 x cos5 x dx

13.
∫ √

x
1 − x

√
x

dx 14.
∫

e x cos 2x dx

15.
∫

sin(ln x) dx 16.
∫

sin4 3x dx

17.
∫

ln
(

x 3

2x + 1

)
dx 18.

∫
sin3 x√

cos x
dx

19.
∫

(ln x)3 dx 20.
∫

csc3 x dx

21.
∫

tan3 x sec 3 x dx 22.
∫

(x ln x)−1 dx

23.
∫ 2

1

x 2 + 3x + 7√
x

dx 24.
∫

tan x ln(cos x) dx

25.
∫

csc 3x dx 26.
∫

(sin x + e x )2 dx

27.
∫ 3

1

e1/x

x 2
dx 28.

∫
x 3 cos x 2 dx

29.
∫

x(x + 5)7/2 dx 30.
∫

e x tan e x dx

31.
∫

x + 1
x 4 + 3x 2

dx 32.
∫

sec 5 x tan3 x dx

33.
∫

x 3

e x 2 dx 34.
∫

x
√

1 − x
√

x − 5 dx

35.
∫

2 xe x dx 36.
∫

x 4

(x − 1)2(x + 2)
dx

37.
∫

7x 2 + 6x + 5
x 3 + x 2 + x − 3

dx 38.
∫

1

e x
√

4 + e 2x
dx

39.
∫

1
(9 − 4x 2)3/2

dx 40.
∫

2x 3 + x 2 + 2
x 3 + 1

dx

41.
∫

ln(tan−1 x)
x 2 + 1

dx 42.
∫ √

x
1 + x

dx

43.
∫

x sech2x 2 dx 44.
∫

sinh2 x cosh3 x dx

45.
∫

sinh−1 x√
x 2 + 1

dx 46.
∫

x 2

(x 2 − 4)3/2
dx

Areas and average values: Set up and solve definite integrals to
calculate the exact values of each of the given geometric quan-
tities. Verify that your answers are reasonable with graphs.

47. The signed area between the graph of f (x) = x2 −1
x2 +1

and

the x-axis on the interval [−4, 4].

48. The absolute area between the graph of f (x) = sin2 x cos x
and the x-axis on the interval [0, π ].

49. The area between the graphs of f (x) = sin2 x and

g(x) = 1
4

on the interval [0, π ].

50. The area between the graphs of f (x) = ln x and g(x) =
(ln x)2 on the interval

[ 1
2

, 5
]
.

51. The average value of the function f (x) = xe−x on the in-
terval [−1, 3].

52. The average value of the function f (x) = 2x−1
(x+2)(x2 +1)

on

the interval [0, 10].

Improper integrals: Set up and solve limits of definite integrals
to calculate each of the following improper integrals.

53.
∫ 8

0
x −1/3 dx 54.

∫ ∞

1
x −1/4 dx

55.
∫ ∞

0
x ln x dx 56.

∫ 1

0

1
x(ln x)2

dx

57.
∫ π/2

0
sec x tan3 x dx 58.

∫ ∞

1

1

x 2
√

x 2 − 1
dx

Numerical integration: Approximate each of the following
definite integrals with the indicated method and to the given
degree of accuracy. (These problems assume that you have cov-
ered Section 5.7)

59.
∫ 1

−1
e−x 2

dx, right sum, within 0.5

60.
∫ π

0
sin x 2 dx, midpoint sum, within 0.1

61.
∫ 3

0

√
1 + x 3 dx, Simpson’s Rule, within 0.01
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Capstone Problems

A. Integration strategies: Make a flowchart or diagram that
describes a strategy for choosing integration techniques.
Given a particular integral, what techniques might you
try first? What features of the integrand would lead you
to choose one technique over another?

B. Impossible integrals: Even with all of the techniques of
this chapter, there are still plenty of integrals that we
cannot solve.
(a) List three functions f (x) that we cannot integrate

with the techniques that we have learned so far.
Describe why each of our integration techniques
fails or does not apply to each of your three inte-
grals.

(b) For each of your functions f (x), use the Second Fun-
damental Theorem of Calculus (Theorem 4.33) to
write down an antiderivative of f (x).

(c) For each of your functions f (x), choose an inter-
val [a, b] over which f (x) is defined and continu-
ous and consider the definite integral

∫ b
a f (x) dx. Use

Riemann sums to approximate the values of each
of these definite integrals to within an accuracy of
0.05. (See Section 5.7.)

C. Comparing polynomial long division and synthetic division:
There are two methods that we can use to divide a poly-
nomial by a linear function. In this exercise you will
compare those two methods.

(a) Find the quotient that results by dividing the polyno-
mial x 3 − 4x 2 − 7x + 10 by the linear function x − 5,
using polynomial long division.

(b) Repeat the same calculation, this time using syn-
thetic division.

(c) Use a comparison of the coefficients that appear in
your two calculations to investigate how synthetic
division is just a shorthand for polynomial long
division.

D. Improper integrals and infinite sums: Consider the im-
proper integral ∫ ∞

1

x
e x

dx

(a) Show, by calculating a limit of definite integrals, that
this improper integral converges.

(b) Sketch a right sum with �x = 1 for the given im-
proper integral.

(c) Use the sketch you made in part (b) to argue that

∞∑
k=2

k
e k

converges, that is, that the sum of infinitely many

numbers
2
e2

+ 3
e3

+ 4
e4

+ · · · is a finite real number.
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C H A P T E R 6

Applications of Integration
6.1 Volumes by Slicing

Approximating Volume by Slicing
Volume as a Definite Integral of Cross-Sectional Area
Volumes by Disks and Washers
Distances Defined by a Point on a Graph
Examples and Explorations

6.2 Volumes by Shells
Approximating Volume by Shells
Finding a Riemann Sum for Volumes by Shells
A Definite Integral for Volume by Shells
Examples and Explorations

6.3 Arc Length and Surface Area
Approximating Arc Length
A Definite Integral for Arc Length
Approximating Surface Area
A Definite Integral for Surface Area
Examples and Explorations

6.4 Real-World Applications of Integration
Mass and Density
Work and Force
Hydrostatic Force
Representing Varying Quantities with Definite Integrals
Centroids and Centers of Mass
Examples and Explorations

6.5 Differential Equations*
Differential Equations and Initial-Value Problems
Separable Differential Equations
Slope Fields
Euler’s Method
Applications of Initial-Value Problems
Examples and Explorations
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6.1 VOLUMES BY SLICING

� Approximating volumes of solids of revolution with disks and washers

� Finding exact volumes by accumulating cross-sectional area

� Using definite integrals to describe volumes of solids of revolution

Approximating Volume by Slicing

Some geometric quantities are easy to calculate, such as the area of a rectangle, length of
a line segment, or volume of a cylinder. Harder to calculate are things like the area of a
region with curved boundary, length of a curve, or volume of a curvy solid. In Chapter 4 we
calculated the area under a curve by using a “subdivide, approximate, and add” strategy
and then taking a limit to obtain a definite integral. We now apply the same strategy to
volumes. Let’s start by trying to find the volume of a sphere.

Of course, you probably already know that the formula for the volume V of a sphere
with radius r is V = 4

3
πr 3. But why? Let’s approximate the volume of a sphere of radius 2

to find out. We can construct this sphere by considering the region bounded by the graph
of

√
4 − x 2 and the x-axis on [−2, 2] and rotating this region around the x-axis, as shown in

the first figure that follows. In the second figure we show an approximation of this region
with rectangles. If we rotate these rectangles around the x-axis along with the region as
shown in the third figure, then they become cylinders that approximate the sphere.

Region bounded by
f (x ) = √

4 − x 2 and x-axis
Six rectangles approximate

the area of the region
Six disks approximate

the volume of the sphere

y

x
�2 �1 21

�2

1

�1

2

y

x
�2 �1 21

�2

1

�1

2

y

x
�2 �1 21

�2

1

�1

2

��

����

We can approximate the volume of the sphere by adding up the volumes of these cylin-
ders, which we will call disks. We have n = 6 disks, each of width �x = 2

3
. These values

define subdivision points x k = −2 + k
(

2
3

)
, for k = 0, 1, 2, 3, 4, and 5. The heights of the

rectangles in the middle figure are defined by the values of f (x) at the midpoints x ∗
k of each

subinterval [x k−1, x k]. Each disk has radius f (x ∗
k ) and thus volume π f (x ∗

k )2
(

2
3

)
. The volume

of the sphere is therefore approximately

6∑
k=1

πf (x ∗
k )2

(
2
3

)
=

6∑
k=1

π
(√

4 − (x ∗
k )2

)2 (
2
3

)
= π

6∑
k=1

(4 − (x ∗
k )2)

(
2
3

)
.

To make our approximation better, we could start with more rectangles and get more
cylinders, each of which is a better approximation to its part of the sphere. For n disks and
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�x = 2 − (−2)
n

= 4
n

, we have

n∑
k=1

πf (x ∗
k )2

(
4
n

)
=

n∑
k=1

π
(√

4 − (x ∗
k )2

)2 (
4
n

)
= π

n∑
k=1

(4 − (x ∗
k )2)

(
4
n

)
.

To find the exact volume we would try to take the limit as n approaches infinity. This should
sound very familiar, because it is a limit of Riemann sums. That is fantastic news, because
it means that we will be able to write down definite integrals that represent volumes, and
definite integrals are much easier to calculate than limits of sums.

Volume as a Definite Integral of Cross-Sectional Area

As a warm-up, recall the definition of the area under a curve. For any continuous,
nonnegatively-valued function f (x) on [a, b], we defined the area under the graph of f on
[a, b] to be

Area = lim
n→∞

n∑
k=1

f (x ∗
k )�x =

∫ b

a
f (x) dx,

where �x = b − a
n

, x k = a + k�x, and x ∗
k is a point in [x k−1, x k]. Here f (x ∗) represents a

height, �x is a width, and their product f (x ∗
k )�x is the area of a rectangle that approximates

a slice of the area under the graph of f , as shown here in the leftmost figure:

Accumulate heights f (x ∗
k )

to obtain area
Accumulate cross-sectional areas

A(x ∗
k ) to obtain volume

y

xa xk* b

�x
height
f (xk*)

y

x
xk* ba

�x
area
A(xk*)

So how should we define volume? This is a similar situation. Suppose we have a three-
dimensional solid with cross sections that are defined in some homogeneous way, such
as that shown in the rightmost figure. We subdivide the solid by slicing it, and then we
approximate the volume of each slice by multiplying a cross-sectional area A(x ∗

k ) at some
point x ∗

k by the width �x. If the cross sections of the solid vary continuously, then we can
get a formula for A(x ∗

k ). In the preceding rightmost graph, the cross-sectional areas happen
to be squares whose diagonals depend on f (x ∗

k ).

DEFINITION 6.1 Volume as a Definite Integral of Cross-Sectional Areas

If S is a solid whose cross sections between x = a and x = b have areas given by a con-
tinuous function A(x) on [a, b], then the volume of S is

Volume = lim
n→∞

n∑
k=1

A(x ∗
k )�x =

∫ b

a
A(x) dx,

where �x = b − a
n

, x k = a + k�x, and x ∗
k ∈ [x k−1, x k].
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Of course if we sliced instead in the y-direction, then we could make a similar definition,
but with area as a function of y instead of x and integrating from some point y = A to some
point y = B instead of from x = a to x = b.

Volumes by Disks and Washers

A solid of revolution is a three-dimensional object obtained by rotating a planar region
around an axis, or line. For example, consider the planar region R bounded by f (x) = x 2,
the x-axis, and the line x = 2, as shown in the first figure that follows. By rotating this region
around different lines we can obtain many different solids of revolution. For example, the
second figure shows the solid of revolution obtained by rotating R around the x-axis, and
the third figure shows the solid of revolution obained by rotating R around the y-axis.

A planar region Rotated around x-axis Rotated around y-axis

y

4

2
x x

y

4

2

y

x

4

2

Solids of revolution usually have cross sections that are either disks or washers, which
are large disks with a smaller disk removed from the center. For example, the solid shown
in the second figure has disk cross sections if we slice along the x-axis, and the solid in the
third figure has washer cross sections if we slice along the y-axis. If the cross sections are
disks, then we can define volume as the accumulation of the areas of those disks:

DEFINITION 6.2 Volume as a Definite Integral Using Disks

Suppose S is a solid of revolution obtained by rotating a region on [a, b] around a hori-
zontal axis. If the cross sections of S are disks with radii given by a continuous function
r(x) on [a, b], then the volume of S is

Volume of solid with
disk cross sections

= lim
n→∞

n∑
k=1

π (r ∗
k )2�x = π

∫ b

a
(r(x))2 dx,

where �x = b − a
n

, x k = a + k�x, x ∗
k ∈ [x k−1, x k], and r ∗

k = r(x ∗
k ).

In this definition, the cross section at each x ∗
k is a disk with radius r ∗

k as shown next
at the left, so its cross-sectional area is A(x ∗

k ) = π (r ∗
k )2. If the cross section of a solid of

revolution at each x ∗
k is a washer with large radius R ∗

k and small radius r ∗
k , as shown next

at the right, then its cross-sectional area is A(x ∗
k ) = π ((R ∗

k )2 − (r ∗
k )2) and its volume can be

defined as the accumulation of those areas.
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Representative disk in the x direction Representative washer in the x direction

y

x
xk* ba xk*

radius rk* �x

y

x
bxk* xk*

�x
large
radius Rk*

small
radius rk*

DEFINITION 6.3 Volume as a Definite Integral Using Washers

Suppose S is a solid of revolution obtained by rotating a region on [a, b] around a hor-
izontal axis. If the cross sections of S are washers with large radii given by a continu-
ous funtion R(x) and small radii given by a continuous function r(x) on [a, b], then the
volume of S is

Volume of solid with
washer cross sections

= lim
n→∞

n∑
k=1

π ((R ∗
k )2 − (r ∗

k )2)�x = π

∫ b

a
((R(x))2 − (r(x))2) dx,

where �x = b − a
n

, x k = a + k�x, x ∗
k ∈ [x k−1, x k], R ∗

k = R(x ∗
k ), and r ∗

k = r(x ∗
k ).

We have similar definitions for solids of revolution obtained by rotation around a verti-
cal axis on an interval [A, B] of y-values. The only differences in that case are that the radius
functions will be functions of y rather than x and that we will integrate from A to B with
respect to y instead of from a to b with respect to x, as shown in the following two figures:

Representative disk in the y direction Representative washer in the y direction

x

y

�y

A

B

yk*

radius rk*

y

x
A

B

yk*

small
radius rk*

large
radius Rk*�y

The analogs of Definitions 6.2 and 6.3 for integrating along the y-axis are then

Volume of solid with
disk cross sections

= lim
n→∞

n∑
k=1

π (r ∗
k )2�y = π

∫ B

A
(r(x))2 dy,

Volume of solid with
washer cross sections

= lim
n→∞

n∑
k=1

π ((R ∗
k )2 − (r ∗

k )2)�y = π

∫ B

A
((R(x))2 − (r(x))2) dy.

Distances Defined by a Point on a Graph

In setting up definite integrals to represent volumes by disks or washers, the first step is
to determine the radius functions. When we slice across the x direction, radius functions
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often depend on the function f that was rotated to obtain the solid or on some boundary
x-value. When we slice across the y direction, radius functions often depend on f −1 or a
boundary y-value. As a handy reference, the following two figures show the vertical and
horizontal distances defined by a point on a graph:

Vertical and horizontal distances
in terms of y = f (x)

Vertical and horizontal distances
in terms of x = f −1( y)

y � f (x)

f (xk*)

f (xk*)

y

x
xk*

xk*

f �1(y) � x

f�1(xk*)

f�1(xk*)

yk*

yk*

y

x

Notice that to find the distance between the y-axis and a point on the graph in the second
figure, we need to use f −1( y ∗

k ). This means that f has to be an invertible function (at least
on a restricted domain) and that we have to be able to actually figure out what its inverse is.

Examples and Explorations

EXAMPLE 1 Using disks to approximate volume

Approximate the volume of a sphere of radius 2 with six disks.

SOLUTION

Let’s use the six disks that were defined in the reading at the start of this section. Recall
that a sphere of radius 2 can be obtained by rotating the region under the graph of f (x) =√

4 − x 2 around the x-axis. For reference, the diagrams of these disks and the rectangles
that define them are repeated here:

Six rectangles approximate
the area under f (x) = √

4 − x 2
Six disks approximate

the volume of the sphere

y

x
�2 �1 21

�2

1

�1

2

y

x
�2 �1 21

�2

1

�1

2

��

����

We have n = 6 disks, and thus �x = 2
3

. The six subintervals are
[
−2, − 4

3

]
,

[
− 4

3
, − 2

3

]
,

[
− 2

3
, 0

]
,

[
0, 2

3

]
,

[
2
3

, 4
3

]
, and

[
4
3

, 2
]
.
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The radii of the six disks shown in the figure earlier at the right are the heights of the
six rectangles in the graph shown earlier at the left, which are obtained by evaluating the
function f (x) = √

4 − x 2 at the midpoints of the six subintervals. Thus the radii of the six
disks are

f
(
−5

3

)
, f (−1), f

(
− 1

3

)
, f

(
1
3

)
, f (1), and f

(
5
3

)
.

The volume of a cylinder with radius r and height h is πr 2h, and our disks are cylinders
with radii as given earlier and heights (for us they appear as widths) each �x = 2

3
. The sum

of their volumes is

π
(

f
(
− 5

3

))2 (
2
3

)
+ π ( f (−1))2

(
2
3

)
+ π

(
f
(
− 1

3

))2 (
2
3

)

+π
(

f
(

1
3

))2 (
2
3

)
+ π ( f (1))2

(
2
3

)
+ π

(
f
(

5
3

))2 (
2
3

)
.

Evaluating with f (x) = √
4 − x 2 and simplifying, we find that the combined volume of the

six disks is
22
27

π + 2π + 70
27

π + 70
27

π + 2π + 22
27

π ≈ 33.9758 cubic units.

This approximation is close to what our old formula for the volume of a sphere predicts:
4
3
πr 3 = 4

3
π (2)3 ≈ 33.5103 cubic units. �

EXAMPLE 2 Using disks to construct a definite integral for volume

Find the exact volume of a sphere of radius 2 by using a definite integral to calculate the
volume of the solid of revolution obtained by rotating the area under the graph of f (x) =√

4 − x 2 on [−2, 2] around the x-axis.

SOLUTION

We can rotate a representative rectangle at x ∗
k to obtain a representative disk at x ∗

k . The
radius of this disk is given by the height f (x ∗

k ) of the function, as shown in the following
figure:

A representative disk

y

x
2

�2

1

�1

2

radius
f (xk*)

�x

�2 �1 xk*

Therefore the volume of this representative disk is

π ( f (x ∗
k ))2�x = π

(√
4 − (x ∗

k )2
)2

�x = π (4 − (x ∗
k )2)�x.

We need to accumulate the volumes of these disks from x = −2 to x = 2, so, converting to
definite integral form, we find that the volume of the sphere is

π

∫ 2

−2
(4 − x 2) dx = π

[
4x − 1

3
x 3

]2

−2
= π

((
4(2) − 1

3
(2)3

)
−

(
4(−2) − 1

3
(−2)3

))
= 32π

3
.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 17:8

506 Chapter 6 Applications of Integration

Note that of course our answer here exactly matches the answer we get from the formula

for the volume of a sphere: V = 4
3
π (2)3 = 32π

3
. �

EXAMPLE 3 Using washers to construct a definite integral for volume

Find the volume of the solid of revolution obtained by rotating the region between the
graphs of f (x) = x + 1 and g(x) = x 2 − 4x + 5 on [1, 4] around the x-axis.

SOLUTION

The leftmost figure that follows shows the region in question, and the middle figure shows
the solid of revolution whose volume we wish to find. Once again we can take a represen-
tative rectangle for the region at x ∗

k and rotate it around the x-axis to obtain a representative
slice of the solid at x ∗

k , which in this case is washer shaped, as shown in the rightmost figure.

The region between
f and g on [1, 4]

The solid obtained by
rotation around the x-axis

Representative washer with
radii defined by f and g

y

x
1 4

�2

�5

2

5

y

1 4
�2

�5

2

5

x

y

1 4
�2

�5

2

5

x
xk*

large
radius
f (xk*) small

radius
g (xk*)

�x

The representative washer has large radius given by f (x ∗
k ) and small radius given by g(x ∗

k ).
Since the volume of a washer with large radius R, small radius r, and thickness �x is
πR2�x − πr 2�x = π (R2 − r 2)�x, the volume of the representative washer at x ∗

k is given
by π (( f (x ∗

k ))2 − ( g(x ∗
k ))2)�x.

We must accumulate these washers from x = 1 to x = 4, so, using the volume formula
we just constructed and the equations for f (x) and g(x), we find that the volume of the
solid is

π

∫ 4

1
((x + 1)2 − (x 2 − 4x + 5)2) dx = π

∫ 4

1
(−x 4 + 8x 3 − 25x 2 + 42x − 24) dx

= π
[
− 1

5
x 5 + 8

4
x 4 − 25

3
x 3 + 42

2
x 2 − 24x

]4

1

= 117
5

π ≈ 73.513 cubic units. �

EXAMPLE 4 Finding volume by integrating along the y-axis

Find the volume of the cone obtained by rotating the region between f (x) = 3
2

x and g(x) = 3

on [0, 2] around the y-axis.

SOLUTION

The first figure that follows shows the region bounded by f (x) = 3
2

x and g(x) = 3 from

x = 0 to x = 2, and the middle figure shows this region rotated around the y-axis. Since
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we rotated around the y-axis rather than the x-axis, we will choose a representative
rectangle in the horizontal rather than the vertical direction. Then this rectangle will
become a representative disk when we rotate it around the y-axis, as shown in the right-
most figure.

The region between
f and g on [0, 2]

The solid obtained by
rotation around the y-axis

Representative disk with
radius defined by f −1

x
�2 �1 21

y

3

2

1

�2 �1 21

y

x

3

2

1

�y

x
�2 �1 21

y

3

1

yk*

radius
f �1(yk*)

The representative disk at height y ∗
k has thickness �y and radius f −1( y ∗

k ). Since f (x) = 3
2

x,

we have y = 3
2

x and thus x = 2
3

y. Therefore f −1( y) = 2
3

y, and the volume of the represen-
tative disk at y ∗

k is

π ( f −1( y ∗
k ))2�y = π

(
2
3

y ∗
k

)2
�y = 4

9
π ( y ∗

k )2�y.

To find the volume of the cone we must accumulate disks like the one just described,
vertically from y = 0 to y = 3. This gives us a definite integral in terms of y and dy instead
of x and dx, but all of our previous solving techniques still work, no matter what letter we
happen to be using. The volume of the cone is therefore given by

4
9
π

∫ 3

0
y 2 dy = 4

9
π

[
1
3

y 3
]3

0
= 4π

9

(
1
3

(3)3 − 1
3

(0)3
)

= 4π.

Notice that 4π is the volume predicted by the formula for the volume of a cone of radius
r = 2 and height h = 3: V = 1

3
πr 2h = 1

3
π (2)2(3) = 4π . In Exercise 63 you will use a general

version of the preceding calculation to prove the cone volume formula. �

EXAMPLE 5 Setting up more complicated volume integrals

Use definite integrals to express the volumes of the following solids of revolution:

(a) The solid obtained from the region bounded by the graph of f (x) = 3 ln x, the
line y = 2, and the x- and y-axes by rotating around the x-axis.

(b) The solid obtained from the region bounded by the graph of f (x) = x 2 + 2 and the
line y = 2 on the interval [0, 1] by rotating around the line y = 1.

SOLUTION

(a) The region and the solid it defines when rotated around the x-axis are shown in the first
figure. The graph of f (x) = 3 ln x intersects the line y = 0 when x = 1 and intersects
the line y = 2 when x = e 2/3. The vertical cross sections of this solid are sometimes
disks and sometimes washers, as shown in the second and third figures.
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The solid obtained by rotating
the region around the x-axis Disk cross sections on [0, 1] Washer cross sections on [1, e 2/3]

�2

y

x
2
3e

2

1

�2

y

x
2
3e

2

1xk*

radius 2�x

�2

y

x
2
3e

2

1 xk*

large
radius 2

small
radius
f (xk*)

�x

Since the cross sections change character at x = 1, we have to use two definite integrals
to compute this volume. We must accumulate disks of radius 2 from x = 0 to x = 1
and then accumulate washers with large radius 2 and small radius f (x ∗

k ) = 3 ln x ∗
k from

x = 1 to x = e 2/3. The volume of the solid is therefore represented by

π

∫ 1

0
22 dx + π

∫ e 2/3

1
(22 − (3 ln x)2) dx = π

∫ 1

0
4 dx + π

∫ e 2/3

1
(4 − 9(ln x)2) dx.

(b) The region and the line that we plan to rotate about are shown in the first figure that
follows. The second figure shows the solid of revolution that results. To get a good
picture of a representative washer, draw the mirror image of the region over the line
y = 1. Then draw a representative rectangle in the region, and imagine rotating this
rectangle down to its mirror image. The resulting washer is shown in the third figure.

The region and the
axis of rotation

The solid obtained by
rotation around y = 1

Representative washer with
radii defined by f and y = 1

1

y

x

�1

1

2

3

y

�1

1

2

3

1
x

y

x

�1

1

2

3

R � f(xk*) � 1 f (xk*)

r � 1

1xk*

�x

Because we rotated around a line other than one of the coordinate axes, determining
the large and small radii of the representative washer takes some concentration. In
the figure at the right we have labeled the associated distances very carefully. Notice
that the large radius of the washer is R = f (x ∗

k ) − 1 and the small radius is constantly
r = 1. Accumulating these washers from x = 0 to x = 1, we see that the volume of
the solid is represented by the definite integral

π

∫ 1

0
(( f (x) − 1)2 − 12) dx = π

∫ 1

0
((x 2 + 1)2 − 1) dx = π

∫ 1

0
(x 4 + 2x 2) dx. �

TEST YOUR? UNDERSTANDING
� For a solid S defined by revolving a region R around an axis or a line, how is an approx-

imation of R by rectangles related to an approximation of S by disks and/or washers?

� If S is a solid whose cross-sectional area at x ∈ [a, b] is A(x), what has to be true about
A(x) for volume approximations to converge to the definite integral

∫ b
a A(x) dx?
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� What type of situation would require us to integrate along the y-axis instead of the
x-axis to use disks or washers, and why?

� What is the vertical distance between the x-axis and a point on the graph of y = f (x)?
What is the horizontal distance between the y-axis and a point on the graph?

� In Example 3, would we get the same answer if we subtracted the volume of the solid
obtained by rotating g(x) = x 2 − 4x + 5 around the x-axis from the volume of the solid
obtained by rotating f (x) = x + 1 around the x-axis? Why or why not?

EXERCISES 6.1

Thinking Back

Definite integrals: Calculate each of the following definite in-
tegrals, using integration techniques and the Fundamental
Theorem of Calculus.

�
∫ 3

−3
(9 − x 2) dx �

∫ 1

0
(x 4 + 2x 2) dx

�
∫ 1

0
4 dx �

∫ e 2/3

1
(4 − 9(ln x)2) dx

�
∫ 2

0
(4y 2 − y4) dy �

∫ 1

0
(2 − √

y )2 dy

Definite integrals for geometric quantities: Let f (x) = √
x and

g(x) = 2 − x. Express each of the given quantities in terms of
definite integrals. Do not solve the integrals; just set them up.

� The area under the graph of f (x) on [0, 4].

� The absolute area under the graph of g(x) on [0, 4].

� The area between f (x) and g(x) on [0, 4].

� The average value of f (x) on [0, 4].

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every sum is a Riemann sum and can be
turned into a definite integral.

(b) True or False: Every sum involving only continuous
functions is a Riemann sum and can be turned into
a definite integral.

(c) True or False: The volume of a disk can be obtained
by multiplying its thickness by the circumference of a
circle of the same radius.

(d) True or False: The volume of a disk can be obtained by
multiplying its thickness by the area of a circle of the
same radius.

(e) True or False: The volume of a cylinder can be obtained
by multiplying the height of the cylinder by the area
of a circle of the same radius.

(f) True or False: The volume of a washer can be ex-
pressed as the difference of the volume of two disks.

(g) True or False: The volume of a right cone is exactly one
third of the volume of a cylinder with the same radius
and height.

(h) True or False: The volume of a sphere of radius r is

V = 4
3
πr 3.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A region that, when revolved around the x-axis, has
both disk and washer cross sections.

(b) A region that, when revolved around the y-axis, has
both disk and washer cross sections.

(c) A solid of revolution for which it is not possible to use
the disk or washer method.

3. Consider the rectangle bounded by y = 3 and y = 0 on
the x-interval [2, 2.25].

(a) What is the volume of the disk obtained by rotating
this rectangle around the x-axis?

(b) What is the volume of the washer obtained by rotat-
ing this rectangle around the line y = 5?

4. Consider the rectangle bounded by x = 1 and x = 4 on
the y-interval [3, 3.5].

(a) What is the volume of the disk obtained by rotating
this rectangle around the line x = 4?

(b) What is the volume of the washer obtained by rotat-
ing this rectangle around the y-axis?

5. Consider the region between f (x) = 5 − x 2 and the x-axis
between x = 0 and x = 4. Draw a Riemann sum ap-
proximation of the area of this region, using a midpoint
sum with four rectangles, and explain how it is related to a
four-disk approximation of the solid obtained by rotating
the region around the x-axis.

6. For a four-disk approximation of the volume of the solid
obtained from the region between f (x) = 5 − x 2 and the
x-axis between x = 0 and x = 4 by rotating around the
x-axis, illustrate and calculate

(a) �x and each x k;
(b) some x ∗

k in each subinterval [x k−1, x k];
(c) each f (x ∗

k );
(d) the volume of the second disk.
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7. For a four-washer approximation of the volume of the
solid obtained from the region between f (x) = x 2 and
the y-axis between y = 0 and y = 4 by rotating around
the x-axis, illustrate and calculate

(a) �x and each x k;
(b) some x ∗

k in each subinterval [x k−1, x k];
(c) each f (x ∗

k );
(d) the volume of the second washer.

8. For a four-disk approximation of the volume of the solid
obtained from the region between f (x) = x 2 and the y-
axis between y = 0 and y = 4 by rotating around the
y-axis, illustrate and calculate

(a) �y and each y k;
(b) some y ∗

k in each subinterval [y k−1, y k];
(c) each f −1( y ∗

k );
(d) the volume of the second disk.

Write each of the limits in Exercises 9–11 in terms of definite
integrals, and identify a solid of revolution whose volume is
represented by that definite integral.

9. lim
n→∞

n∑
k=1

π (1 + x ∗
k )2

(
1
n

)
, with x ∗

k = x k = 2 + k
(

1
n

)

10. lim
n→∞

n∑
k=1

π (1 + y ∗
k )2

(
3
n

)
, with y ∗

k = y k = 1 + k
(

3
n

)

11. lim
n→∞

n∑
k=1

π (4 − (x ∗
k )2)

(
2
n

)
, with x ∗

k = x k = k
(

2
n

)

12. Suppose that for some b > 0, the region between y = √
x

and y = 0 on [0, b], rotated around the x-axis, has volume
V = 8π . Without solving any integrals, find the volume of
solid obtained by rotating the region bounded by y = √

x,
y = √

b, and x = 0 around the x-axis.

For each pair of definite integrals in Exercises 13–18, decide
which, if either, is larger, without computing any integrals.

13. π

∫ π/2

0
cos2 x dx and π

∫ π

π/2
cos2 x dx

14. π

∫ 1

0
e 2x dx and π

∫ 1

0
(e 2x − 1) dx

15. π

∫ 2

0
x 4 dx and π

∫ 2

0
(16 − x 4) dx

16. π

∫ 3

0
x 2 dx and π

∫ 3

0
(9 − x 2) dx

17. π

∫ 2

0
x 4 dx and π

∫ 4

0
y dy

18. π

∫ 4

0
y dy and π

∫ 8

4
(8 − y) dy

Each of the definite integrals in Exercises 19–24 represents the
volume of a solid of revolution obtained by rotating a region
around either the x- or y-axis. Find this region.

19. π

∫ 3

1
(16 − (x + 1)2) dx 20. π

∫ π

0
sin2 x dx

21. π

∫ 3

1
(x 2 − 2x + 1) dx 22. π

∫ 2

0
y dy

23. π

∫ 5

1

(
y − 1

2

)2

dy 24. π

∫ 4

0
(22 − (

√
y )2) dy

Write the volume of the two solids of revolution that follow
in terms of definite integrals that represent accumulations of
disks and/or washers. Do not compute the integrals.

25. y

x

y � f (x)

2�2

3

�3

26. y

2

y � f (x)

x
4

1

�1

�2

Skills

Consider the region between f (x) = √
x and the x-axis on

[0, 4]. For each line of rotation given in Exercises 27–30,
use four disks or washers based on the given rectangles to
approximate the volume of the resulting solid.

27. Around the x-axis
y

�2

2

�2
x

2 4

28. Around the y-axis

x

y

�2

2

�2�4 2 4

29. Around the line y = −1

y

�2

2

�2
x

�1

1

�3

�4

2 4

30. Around the line x = 5
y

�2

2

x
2 4 6 8 10
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Consider the region between the graph of f (x) = 3
x

and the
x-axis on [1, 3]. For each line of rotation given in Exercises 31–
34, use definite integrals to find the volume of the resulting
solid.

31. Around the x-axis
y

�1
�2

�4

�3

1
2
3

4

x
2 3 41

32. Around the line y = −1

y

�1
�2

�4

�3

1
2
3

4

x
2 3 41

33. Around the y-axis

y

�1
�2

1
2
3

4

x
2 31�1�2�3

34. Around the line x = 1
y

�1
�2

1
2
3

4

5
6

x
2 31�1�2�3

Consider the region between the graph of f (x) = x−2 and the
x-axis on [2, 5]. For each line of rotation given in Exercises 35–
40, use definite integrals to find the volume of the resulting
solid.

35. Around the y-axis

y

�2

�4

�6

�8

2

4

�2
x

4 6 82�4�6 10

36. Around the x-axis
y

�2

�4

�6

�8

2

4

6

�2
x

4 6 82 10

37. Around the line y = 3

y

�2

�4

�6

�8

2

4

6

�2
x

4 6 82�4�6 10

38. Around the line y = −2

y

�2

�4

�6

�8

2

4

6

�2
x

4 6 82 10

39. Around the line x = 2
y

�2

�4

�6

�8

2

4

6

�2
x

4 6 82�4�6 10

40. Around the line x = 6
y

�2

�4

�6

�8

2

4

6

�2
x

4 6 82�4�6 10

Consider the region between the graph of f (x) = 4 − x 2 and
the line y = 5 on [0, 2]. For each line of rotation given in
Exercises 41–44, use definite integrals to find the volume of
the resulting solid.

41. Around the y-axis

y

�2

4

2

6

�1
x

2 31�2�3

42. Around the line x = 2
y

�2

4

2

6

8

x
4 5321�1

43. Around the line x = 3
y

�2

4

2

6

8

x
4 5 6321

44. Around the line y = 5

4 5321�1

y

4

2

6

8

10

x

Consider the region between the graphs of f (x) = 5 − x and
g(x) = 2x on [1, 4]. For each line of rotation given in Exer-
cises 45 and 46, use definite integrals to find the volume of
the resulting solid.

45. Around the x-axis
y

�2
�4
�6
�8

2

4
6
8

x
2 3 41

46. Around the line x = 1
y

�2
�4
�6
�8

2

4
6
8

x
2 3 41
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Consider the region between the graphs of f (x) = x 2 and
g(x) = 2x on [0, 2]. For each line of rotation given in Exer-
cises 47–50, use definite integrals to find the volume of the
resulting solid.

47. Around the y-axis

y

2

4

�2

�1
x

2 31�2�3

48. Around the x-axis
y

�4

2

4

�2

�1
x

2 31

49. Around the line y = −1

y

�4

2

4

�6

�2

�1
x

2 31 4

50. Around the line x = 3
y

�2

4

6

2

x
5 642 31

Consider the region between the graphs of f (x) = (x − 2)2

and g(x) = x on [1, 4]. For each line of rotation given in
Exercises 51–54, use definite integrals to find the volume of
the resulting solid.

51. Around the x-axis
y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

52. Around the y-axis

�3�4

y

�2

2

4

6

�2 �1
x

2 3 41

53. Around the line y = −1

y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

54. Around the line x = 1

�3�4

y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

Consider the region between the graph of f (x) = 1 − cos x
and the x-axis on [0, π ]. For each line of rotation given in Ex-
ercises 55–58, write down definite integrals that represent the
volume of the resulting solid and then use a calculator or com-
puter to approximate the integrals.

55. Around the x-axis
y

�1

�2

2

1

3

4

x
2πππ

2
3π

2

56. Around the y-axis

π
�1

x
2π

y

�2

2

1

3

�π

57. Around the line x = π

π 2π
�1

y

�2

2

1

3

4

x

58. Around the line y = 2

π
x

2π�π
�1

y

�2

2

1

3

4

Applications
59. Rebecca plans to visit the Great Pyramid of Giza in Cairo,

Egypt. The Great Pyramid has a square base with each
side approximately 756 feet in length.

(a) An interesting fact about the Great Pyramid of Giza
is that the perimeter of its base is equal to the circum-
ference of a circle whose radius is equal to the height
of the pyramid. Use this fact to find the height of the
Great Pyramid, rounded to the nearest integer.

(b) The volume of a square-based pyramid with base area

A and height h is given by the formula V = 1
3

Ah. Use

this formula to find the volume of the Great Pyramid.
(c) Find the volume of the Great Pyramid another, much

more difficult way: Set up a definite integral that rep-
resents the volume, and solve it. Use the given dia-
gram as a starting point, and justify your answer.

Great Pyramid of Giza

y

x

s

h

r

60. Two of Dr. Geek’s friends got married this year, one in
June and one in July. His traditional gift for such occa-
sions is a fancy crystal bowl, whose volume corresponds
to how much he likes the future spouse of the recipient.
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Crystal hexagonal bowl

y

8

x
�8 �4 4 8

Crystal octagonal bowl

y

6

x
�8 �4 4 8

(a) For the June wedding, Dr. Geek gave a fancy hexago-
nal crystal bowl with base hexagon of radius 4 inches,
top hexagon of radius 8 inches, and height of 8 inches.

The area of a hexagon with radius r is A = 3
√

3
2

r 2.

What is the volume of this bowl, in cubic inches?
(b) For the July wedding, Dr. Geek gave a fancy octago-

nal crystal bowl with base radius 4, top radius 8, and
height 6 inches. The area of an octagon with radius
r is A = 2

√
2r 2. What is the volume of this bowl, in

cubic inches?

Proofs

61. Use a definite integral to prove that the volume formula

V = 1
3
πr 2h holds for a cone of radius 3 and height 5.

62. Use a definite integral to prove that the volume formula

V = 4
3
πr 3 holds for a sphere of radius 3.

63. Use a definite integral to prove that a cone of radius r and

height h has volume given by the formula V = 1
3
πr 2h.

64. Use a definite integral to prove that a sphere of radius r

has volume given by the formula V = 4
3
πr 3.

Thinking Forward

Slicing to obtain a definite integral for work: The “subdivide,
approximate, and add” strategy works for more than just
geometric quantities like area, length, and volume. In this
problem you will investigate the use of a slicing process to
write work as a definite integral.

� The work involved in lifting an object is the product
of the weight of the object and the distance it must
be lifted. Suppose a flat, wide cylinder that weighs
50 pounds must be lifted from ground level to a height
of 10 feet. How much work does this require, in foot-
pounds?

� Now suppose we want to pump all of the water out
of the top of a 4-foot-high cylindrical tank with radius
10 feet. It takes more work to pump out the water from

the bottom of the tank than it does to pump it out from
the top of the tank. With the given figure as a guide,
use horizontal slices to set up and solve a definite in-
tegral that represents the work required to pump all
of the water out of the top of the tank.

y � 4

yk*

y � 0

10

y

�y
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6.2 VOLUMES BY SHELLS

� Approximating volumes of solids of revolution with shells

� Setting up Riemann sums for shells by using an alternative volume formula

� Using definite integrals to describe volumes of solids of revolution with shells

Approximating Volume by Shells

We now develop an alternative method for calculating the volume of a solid of revolution,
using “shells” rather than slices. This new method will help us find some volumes that are
inconvenient to find by using disks or washers.

For example, consider the region bounded by the graph of f (x) = −x 2 − x + 8 and the
x-axis from x = 0 to x = 2, rotated about the y-axis. To use disks to approximate the volume
of this solid we could slice the region into horizontal rectangles, for example as shown in
the figure that follows at the left. When we revolve these rectangles about the y-axis, they
produce four disks stacked on top of one another, as shown in the figure at the right.

Four horizontal rectangles A stack of four disks

y

x
�2 �1 21

2

4

6

8

x
� � 21

y

2

4

6

1

8

Unfortunately, it is difficult to find the radii of these disks, since it is not easy to solve the
equation y = −x 2 − x + 8 for x. This makes it difficult to use the slicing/disk method here.

What happens if we instead try to use vertical rectangles, as shown next at the left?
When we revolve these rectangles around the y-axis, each rectangle makes a shell rather
than a disk or washer, as shown at the right. The green shell is a washer that is wrapped
around the other shells. The blue shell is an even taller washer that wraps around an even
taller purple washer, which in turn wraps around a very tall pink cylinder. Instead of slicing
the solid horizontally or vertically, we have sliced it in layers from the inside out, like the
layers of an onion.

Four vertical rectangles Four nested shells

x
�2 �1 21

2

4

6

8

y

x
�2 �1 1 2

y

8

4

6

2
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To get an approximation for the volume of the solid we just add up the volumes of these
four shells. In this example, shells are easier to work with than disks because the heights
of the shells are determined by f (x) rather than the hard-to-compute f −1(x).

Finding a Riemann Sum for Volumes by Shells

Before we can construct a definite integral to represent the exact volume of a solid of rev-
olution with the shell method, we need to know how to calculate the volume of a repre-
sentative shell such as the one shown in the next figure. This shell has height f (x ∗

k ) and
thickness �x.

x
b

height
f (xk*)

k*

y

a

�x
radius

So what is the radius of this shell? Really, there are two radii, an inner radius r1 and an
outer radius r2, where r2 − r1 is the thickness �x of the shell. The shell can be thought of as
a cylinder of radius r2 and height h = f (x ∗

k ) with a smaller cylinder of radius r2 and height
h = f (x ∗

k ) removed. Therefore its volume is

V = πr 2
2 h − πr 2

1 h = π (r 2
2 − r 2

1) f (x ∗
k ).

This formula is not in the right form for constructing a definite integral, because it does
not explicitly involve �x, which we need in our expression if we want to construct a Rie-
mann sum. We can get around this problem by calculating the volume of a shell in terms
of its average radius.

THEOREM 6.4 The Volume of a Shell

A shell with inner radius r1, outer radius r2, and height h is said to have average radius
r = r1 + r2

2
and thickness �x = r2 − r1. Such a shell has volume V = 2πrh �x.

The volume formula in this theorem makes intuitive sense, because a shell is a thickened
cylinder and the formula is the product of the lateral surface area 2πrh and the thickness �x.

Proof. Given a shell with inner radius r1, outer radius r2, and height h, define r = r1 + r2

2
and

�x = r2 − r1. With this notation we have

2πrh �x = 2π
( r1 + r2

2

)
h(r2 − r1) = π (r1 + r2)(r1 − r2)h = π (r 2

2 − r 2
1)h,

which is the volume of the shell.

Now suppose we are given a partition x0, x1, . . . , xn of [a, b]. If the kth shell has width
�x, average radius r k = xk + xk−1

2
, and height f (x ∗

k ), then the sum of the volumes of the n

shells is given by
n∑

k=1

2π r k f (x ∗
k ) �x.
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This is almost a Riemann sum, since the summand is the product of a function 2πr k f (x ∗
k )

of the partition points and a factor of �x. As n → ∞ and thus �x → 0, the radius r k that is
the midpoint of each subinterval will get closer and closer to x ∗

k , and the limit of this sum
will converge to a definite integral.

A Definite Integral for Volume by Shells

In general, the heights of a representative shell may be given by something more compli-
cated than just the height f (x ∗

k ) of some function, depending on the region that is rotated.
But in any case, if the shell height function is continuous, then we can use shells to express
the volume of the solid of revolution as a definite integral.

DEFINITION 6.5 Volume as a Definite Integral Using Shells

Suppose S is a solid of revolution obtained by rotating a region on [a, b] around a vertical
axis. If S can be represented with nested shells whose average radii and heights are given
by continuous functions r(x) and h(x) on [a, b], then the volume of S is

Volume of solid
with nested shells

= lim
n→∞

n∑
k=1

2π r kh ∗
k �x = 2π

∫ b

a
r(x) h(x) dx,

where �x = b − a
n

, x k = a + k�x, x ∗
k ∈ [x k−1, x k], r k = xk + xk−1

2
, and h ∗

k = h(x ∗
k ).

Of course, there is a similar definition for the volume of a solid of revolution obtained
by rotating around a horizontal axis and integrating along an interval [A, B] of y-values. In
this case the radius and height functions for the shells will be functions of y rather than
x. The following two figures illustrate examples of shells to be integrated in the x and y
directions:

Shells in the x direction Shells in the y direction

a

y

radius rk

xk* b*****
x

height
hk*

�x

xxxkkk

y

xA

radius rk

yk*

B
height

hk*

�ykkk*

When integrating by shells in the x direction, we will have the radius function in terms of
x and the height function in terms of some function of x. When integrating by shells in
the y direction, we will have the radius function in terms of y and the height function in
terms of some function of y, usually given by boundary values or some inverse function.
The formula that is analogous to Definition 6.5 for integrating along the y-axis is

Volume of solid
with nested shells

= lim
n→∞

n∑
k=1

2π r kh ∗
k �y = 2π

∫ B

A
r(x) h(x) dy.
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Examples and Explorations

EXAMPLE 1 Approximating a volume with shells

Consider the solid obtained by rotating the region between f (x) = −x 2 − x + 8 and the
x-axis on [0, 2] around the y-axis. Approximate the volume of this region with four
shells.

SOLUTION

Let’s use the four shells that were defined at the start of the reading, whose heights were
defined at the midpoints of each subinterval. For reference, we repeat the diagrams here:

Four rectangles approximate
the area under f (x) = −x 2 − x + 8

Four shells approximate
the volume of the solid

x
�2 �1 21

2

4

6

8

y

x
�2 �1 1 2

y

8

4

6

2

The centermost shell is the tall pink disk defined on [0, 0.5]. This disk has radius r = 0.5
and height defined by the value of the function at the midpoint x = 0.25 of the inter-
val: h = f (0.25) = −(0.25)2 − 0.25 + 8 = 7.8125. Therefore the first, innermost shell has
volume

πr 2h = π (0.5)2 f (0.25) ≈ 6.04 cubic units.

The next shell is the purple shell defined on [0.5, 1] with outer radius r2 = 1, inner
radius r1 = 0.5, and height defined by the function at the midpoint x = 0.75 of the interval:
h = f (0.75) = −(0.75)2 − (0.75) + 8 = 6.6875. Therefore the volume of the second, purple
shell is

π (r 2
2 − r 2

1)h = π (12 − 0.52) f (0.75) ≈ 15.76 cubic units.

We could have instead used the shell volume formula described just before Theorem 6.4 to
compute the volume of the solid. The purple shell has average radius r = 0.75, thickness
�x = 1

2
, and height h = f (0.75) = 6.6875. Using the new formula, we see that once again

the volume of the purple shell is

2πrh �x = 2π (0.75) f (0.75)
(

1
2

)
≈ 15.76 cubic units.

Using similar methods, we can calculate that the volumes of the blue and green shells
are approximately 20.37 and 17.52 cubic units, respectively. The volume V of the solid of
revolution is approximately the sum of the volumes of the four shells:

V ≈ 6.04 + 15.76 + 20.37 + 17.52 = 59.69 cubic units. �
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CHECKING
THE ANSWER

To verify that our answer is reasonable, we can compare the solid (shown next at the left)
with a very rough approximation whose volume is easy to calculate (shown at the right).

Solid of revolution Very rough approximation

x
�2 �1 21

2

4

6

8

y

x
�2 �1 2

2

6

1

2

4

6

8

2

y

The solid in the second figure is just a disk of radius 2 and height 2 with a cone of radius 2
and height 6 on top, so its volume is

π22(2) + 1
3
π22(6) = 16π ≈ 50.2655.

This number does make our earlier approximation of 59.69 seem reasonably accurate, since
the actual solid is somewhat larger than our cone-on-disk approximation.

EXAMPLE 2 Using shells to construct a definite integral for volume

Find the exact volume of the solid obtained by rotating the region between the graph of
f (x) = −x 2 − x + 8 and the x-axis on [0, 2] around the y-axis.

SOLUTION

The first figure that follows shows the region in question, and the second figure shows
the resulting solid of revolution. If we take a vertical representative rectangle in the region
and rotate it around the y-axis, then we obtain a representative shell for the solid at x ∗

k , as
shown in the third figure.

The region between f
and the x-axis on [0, 2]

The solid obtained by
rotation around the y-axis

Representative shell
with height defined by f

y

x
�2 �1 21

2

4

6

8

x
�2 �1 21

2

4

6

8

y

�2 2
x

xk*

y

radius xk*

height
f (xk*)

�x

If we imagine x ∗
k to be the midpoint of the subinterval [x k−1, x k], then this representative

shell has average radius x ∗
k , height f (x ∗

k ) and thickness �x. Therefore the volume of the
representative shell at x ∗

k is 2πx ∗
k f (x ∗

k )�x.

Accumulating these shells from the inside out, from x = 0 at the center to x = 2 on the
outside, and applying the function f (x) = −x 2 − x+8, we can write the volume of the solid
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as the definite integral

2π

∫ 2

0
x (−x 2 − x + 8) dx = 2π

∫ 2

0
(−x 3 − x 2 + 8x) dx

= 2π
[
− 1

4
x 4 − 1

3
x 3 + 8

2
x 2

]2

0

= 2π
((

− 1
4

(2)4 − 1
3

(2)3 + 4(2)2
)

−
(
− 1

4
(0)4 − 1

3
(0)3 + 4(0)2

))

= 56
3

π.

Notice that this volume of 56
3

π ≈ 58.6431 cubic units is not far off from the four-shell

approximation we did in the previous example. �

EXAMPLE 3 Finding volume by integrating along the y-axis with shells

Find the volume of the solid obtained by rotating the region bounded by the graph of
f (x) = 3 ln x, the line y = 2, and the x- and y-axes around the x-axis.

SOLUTION

The three figures that follow illustrate, respectively, the region in question, the resulting
solid, and a representative shell obtained by rotating a horizontal rectangle around the
x-axis. Note that this is the same solid whose volume we computed by using disks and
washers in the first part of Example 5 of Section 6.1.

The region between f ,
x = 0, y = 0, and y = 2

The solid obtained by
rotation around the x-axis

Representative shell with
height defined by f −1

�2

y

x

2

2
3e

1

�2

y

x
2
3e

2

1

radius
yk*

�2

y

x

2

2
3e

yk*

height f�1(yk*)

�y

The representative shell at y ∗
k has average radius y ∗

k , (horizontal) height f −1( y ∗
k ), and

thickness �y. Therefore the volume of this representative shell is 2πy ∗
k f −1( y ∗

k ) �y. Since
f (x) = y = 3 ln x, we have f −1( y) = e y/3. Accumulating the shells from the inside at y = 0
to the outside at y = 2, we get the volume integral

2π

∫ 2

0
y e y/3 dy.

This definite integral can be solved by using integration by parts with u = y and
dv = e y/3 dy:

2π

∫ 2

0
y e y/3 dy = 2π

([
3ye y/3]2

0 − 3
∫ 2

0
e y/3 dy

)

= 2π
([

3ye y/3]2
0 − [

9e y/3]2
0

)

= 2π ((6e 2/3 − 0) − (9e 2/3 − 9e 0))

= 2π (−3e 2/3 + 9).
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The volume of 2π(−3e 2/3 + 9) ≈ 19.83 cubic units does seem appropriate given the di-
mensions of the solid in question and given that the volume of the cylinder that encloses
our solid is π (2)2e 2/3 ≈ 24.48 cubic units. �

EXAMPLE 4 Setting up a variety of volume integrals

Consider the region bounded by the graph of f (x) = e x and the lines y = 0, y = 3, x = 0,
and x = 2. Use definite integrals to express the volumes of the following solids of revolu-
tion:

(a) The solid obtained by rotating the region around the x-axis. Do this problem in two
ways: first by integrating in the x direction and then by integrating in the y direction.

(b) The solid obtained by rotating the region around the y-axis. Again, do this prob-
lem in two ways: first by integrating in the x direction and then by integrating in the
y direction.

SOLUTION

The region in question is shown in the first figure that follows. This region changes char-
acter at x = ln 3, since that is the solution of the equation e x = 3. The second figure shows
the solid resulting from rotating this region around the x-axis, and the third figure shows
the result of rotating the region around the y-axis.

The region Revolved around x-axis Revolved around y-axis

y

2ln 3

�3

�1

1

3

x

y

2ln 3

�3

�1

1

3

x

x
�2 2

�1

1

3

�ln 3 ln 3

y

(a) Integrating in the x direction, we can use disks to write the volume of the solid in the
center graph as the sum of two definite integrals. From x = 0 to x = ln 3 the radius of
the disk at x ∗

k will be given by e x ∗
k , and from x = ln 3 to x = 2 the radius of the disk at

x ∗
k is 3. The volume can be written as

π

∫ ln 3

0
(e x)2 dx + π

∫ 2

ln 3
(3)2 dx.

Integrating in the y direction, we can use shells. From y = 0 to y = 1, each shell will
have a (horizontal) height of 2 − 0 = 2. From y = 1 to y = 3, the (horizontal) height
of the shell at y ∗

k will be the difference 2 − ln y ∗
k . Therefore the volume of the solid is

2π

∫ 1

0
y (2) dy + 2π

∫ 3

1
y (2 − ln y) dy.

Of course, the two definite integral expressions we just constructed should find the
same volume. Calculate them and see!

(b) We now turn to the solid shown earlier at the right. Integrating in the x direction pro-
duces shells in this case. From x = 0 to x = ln 3 the shell at x ∗

k will have a height of
e x ∗

k , and from x = ln 3 to x = 2 the shell will have a height of 3. Therefore the volume
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of the solid can be written as the following sum of definite integrals:

V2 = 2π

∫ ln 3

0
xe x dx + 2π

∫ 2

ln 3
x(3) dx.

To integrate in the y direction, we have to use disks and washers. From y = 0 to y = 1
the disk at y ∗

k will have a radius of 2, and from y = 1 to y = 3 a rectangle at y ∗
k will

produce a washer with inner radius given by ln( y ∗
k ) (since y = e x, we have x = ln y)

and an outer radius of 2. Therefore, we can write the volume of the solid as

V2 = π

∫ 1

0
(2)2 dy + π

∫ 3

1
(22 − (ln y)2) dy.

Again, the two definite integral expressions we found should give the same volume.
Calculating a volume in two ways, when possible, can be a good method for checking
your work. �

TEST YOUR? UNDERSTANDING
� Why was the shell volume formula 2πrh �x more useful than the shell volume formula

π (r 2
2 − r 2

1)h for constructing a Riemann sum?

� With shells, why do we integrate from the center of a solid to the outside, instead of
from one side to the other?

� What is the analog of Definition 6.5 for using the shell method in the y direction?

� Why, geometrically, is the answer found in Example 3 reasonable?

� What do the disks, washers, and shells used in the various parts of Example 4 look
like?

EXERCISES 6.2

Thinking Back

Definite integrals: Calculate each of the following definite in-
tegrals, using integration techniques and the Fundamental
Theorem of Calculus.

�
∫ 1

0
(3 − x)(x 2 + 1) dx �

∫ 4

0
x (2 − √

x ) dx

�
∫ 6

0
x ((x − 3)2 + 2) dx �

∫ 2

1
x e x/3 dx

�
∫ 1

0
(e x)2 dx �

∫ 4

2
x ln x dx

�
∫ 5

1
ye y dy �

∫ e

1
(ln y)2 dy

�
∫ π

0
y sin y dy �

∫ 4

2
y
√

6 − y dy

Finding volumes geometrically: Use volume formulas to find the
exact volumes of the solids pictured here.

� y

2

1

3

4

x
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3

4
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� y
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x
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CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 14:50

522 Chapter 6 Applications of Integration

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The thickness of a shell with inner radius
r and outer radius R is R − r.

(b) True or False: The average radius of a shell with inner

radius r and outer radius R is
r + R

2
.

(c) True or False: A shell with height h and average radius
r has volume πr 2h�x.

(d) True or False: A shell with height h, average radius r,
and thickness �x has volume πr 2h�x.

(e) True or False: A shell with height h, outer radius r, and
thickness �x has volume 2πrh�x.

(f) True or False: Rotating a vertical rectangle around the
y-axis results in a shell.

(g) True or False: Rotating a horizontal rectangle around
the y-axis results in a shell.

(h) True or False: Rotating a horizontal rectangle around
the x-axis results in a shell.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A solid of revolution around the x-axis whose volume
can be computed with disks/washers but not shells.

(b) A solid of revolution around the y-axis whose volume
can be computed with shells but not disks/washers.

(c) A solid of revolution whose volume can be computed
both with shells and with disks/washers.

3. Consider the rectangle bounded by y = 1 and y = 4 on
the x-interval [1, 1.5]. Calculate the volume of the geo-
metric object obtained by rotating this rectangle around
(a) the x-axis (b) the y-axis
(c) the line x = 1 (d) the line y = 1
(e) the line x = 2 (f ) the line y = −1

4. Consider the rectangle bounded by x = 1 and x = 3 on
the y-interval [2, 2.5]. Calculate the volume of the geo-
metric object obtained by rotating this rectangle around
(a) the x-axis (b) the y-axis
(c) the line x = 1 (d) the line y = 2
(e) the line x = −1 (f ) the line y = 3

5. In what way are shells the same as washers? How are they
different?

6. Consider the region between f (x) = x 2 and the x-axis
between x = 0 and x = 2. Draw a Riemann sum approx-
imation of the area of this region, using a midpoint sum
with four rectangles, and explain how this Riemann sum
approximation is related to a four-shell approximation
of the solid obtained by rotating the region around the
y-axis.

7. For a four-shell approximation of the volume of the solid
obtained from the region between f (x) = x 2 and the
x-axis between x = 0 and x = 2 by rotating the region
around the y-axis, illustrate and calculate

(a) �x and each x k;
(b) the midpoint x ∗

k of each subinterval [x k−1, x k];
(c) each f (x ∗

k );
(d) the volume of the second shell.

8. For a four-shell approximation of the volume of the solid
obtained from the region between f (x) = x 2 and the
x-axis between x = 0 and x = 2 by rotating the region
around the x-axis, illustrate and calculate

(a) �y and each y k;
(b) the midpoint y ∗

k of each subinterval [ y k−1, y k];
(c) each f −1( y ∗

k );
(d) the volume of the second shell.

Write each of the limits in Exercises 9 and 10 as a definite inte-
gral, and identify the corresponding solid of revolution, given
that x ∗

k and y ∗
k represent midpoints of subintervals.

9. lim
n→∞

n∑
k=1

2π ( y ∗
k )3

( 2
n

)
, with y k = 2k

n

10. lim
n→∞

n∑
k=1

2π (x ∗
k ) 3/2

( 4
n

)
, with x k = 4k

n

Each of the definite integrals in Exercises 11–16 represents
the volume of a solid of revolution obtained by rotating a re-
gion around either the x- or y-axis, computed with the shell
method. Find this region.

11. 2π

∫ π/4

0
x cos x dx 12. 2π

∫ 1

0
x(x 2) dx

13. 2π

∫ 5

4
y
√

y − 4 dy 14. 2π

∫ 1

0
(x 2 − x 3) dx

15. 2π

∫ e

1
y ln y dy 16. 2π

∫ 1

0
(3y − 3y 2) dy

Write the volumes of the solids of revolution shown in
Exercises 17–20 in terms of definite integrals that represent
accumulations of shells. Do not solve the integrals.

17. y

�1

2

1

�2

21
x

3

y � f (x)
18. y

�1
x

21�2

2

1

3
y � f (x)

19. y

x

y � f (x)

2�2

3

�3

20. y

�2

1
�1

x

y � f (x)

1

2
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For each solid described in Exercises 21–24, set up volume in-
tegrals using both the shell and disk/washer methods. Which
method produces an easier integral in each case, and why? Do
not solve the integrals.

21. The region between the graph of f (x) = |x| and the x-axis
on [−2, 2], revolved around the x-axis.

22. The region between the graph of f (x) = 1
x

and the lines

y = 0, y = 1, x = 0, and x = 2, revolved around the y-axis.

23. The region between the graph of f (x) = x 2 + 1 and the
x-axis on [0, 1], revolved around the line x = 3.

24. The region between the graph of f (x) = x 2 + 1 and the
x-axis on [0, 1], revolved around the line y = −2.

Skills

Consider the region between f (x) = √
x and the x-axis on

[0, 4]. For each line of rotation given in Exercises 25–28, use
four shells based on the given rectangles to approximate the
volume of the resulting solid.
25. Around the x-axis

x

y

�2

2

�2 2 4

26. Around the y-axis

x

y

�2

2

�2�4 2 4

27. Around the line y = −1

x

y

�2

2

�1

�4

�3

1

�2 2 4

28. Around the line x = 5
y

�1

�2

�3

1

2

3

x
2 3 4 5 6 7 8 9 101

Consider the region between f (x) = 4 − x 2 and the x-axis on
[0, 2]. For each line of rotation given in Exericses 29–32, use
the shell method to construct definite integrals to find the vol-
ume of the resulting solid.
29. Around the y-axis

�2

y

�2

2

4

�1
x

1 2

30. Around the x-axis
y

�4

�2

2

4

�1
x

1 2

31. Around the line x = 2
y

�4

2

4

6

x
1 3 42

32. Around the line y = 4

y

2

6

8

�1
x

1 32

4

Consider the region between f (x) = x − 2 and the x-axis on
[2, 5]. For each line of rotation given in Exercises 33–38, use
the shell method to construct definite integrals to find the vol-
ume of the resulting solid.

33. Around the y-axis

�2
x

4 6 82�4�6 10

y

�2

�4

�6

2

4

�8

34. Around the x-axis
y

�2

�4

�6

2

4

6

�8

�2
x

4 6 82 10

35. Around the line y = 3

�2
x

4 6 82�4�6 10

y

�2

�4

�6

2

4

�8

6

36. Around the line y = −2

6

�2
x

4 6 82 10

y

�2

�4

�6

2

4

�8

37. Around the line x = 2

�2
x

4 6 82�4�6 10

y

�2

�4

�6

2

4

�8

6

38. Around the line x = 6

6

�2
x

4 6 82�4 10 12

y

�2

�4

�6

2

4

�8

Consider the region between f (x) = 4 − x 2 and the line y = 5
on [0, 2]. For each line of rotation given in Exercises 39–42,
use the shell method to construct definite integrals to find the
volume of the resulting solid.
39. Around the y-axis

y

�2

4

2

6

�1
x

2 31�2�3

40. Around the line x = 2
y

�2

4

2

6

8

x
4 5321�1
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41. Around the line x = 3
y

�2

4

2

6

8

x
4 5 6321

42. Around the line y = 5

4 5321�1

y

4

2

6

8

10

x

Consider the region between f (x) = x +1 and the line y = −2
on [1, 5]. For each line of rotation given in Exercises 43 and 44,
use the shell method to construct definite integrals to find the
volume of the resulting solid.

43. Around the line x = 5
y

�2

4

2

6

x
8 10642

44. Around the y-axis

y

�2

4

2

6

x
4 62�4 �2�6

Consider the region between f (x) = (x − 2)2 and g(x) = x
on [1, 4]. For each line of rotation given in Exercises 45–48,
use the shell method to construct definite integrals to find the
volume of the resulting solid.

45. Around the x-axis
y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

46. Around the y-axis

�3�4

y

�2

�4

�6

2

4

�2 �1
x

2 3 41

47. Around the line y = −1

y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

48. Around the line x = 1

�3�4

y

�2

�4

�6

2

4

6

�2 �1
x

2 3 41

Use definite integrals to find the volume of each solid of revo-
lution described in Exercises 49–61. (It is your choice whether
to use disks/washers or shells in these exercises.)

49. The region between the graph of f (x) = 4 − x 2 and the
line y = 4 on [0, 2], revolved around the y-axis.

50. The region between the graph of f (x) = e 2x and the x-axis
on [0, 4], revolved around the x-axis.

51. The region between the graph of f (x) = (x − 3)2 + 2 and
the x-axis on [0, 6], revolved around the y-axis.

52. The region between the graph of f (x) = x 2 and the x-axis
on [0, 3], revolved around the line y = 10.

53. The region between the graphs of f (x) = √
x and

g(x) = x 2 on [0, 1], revolved around the x-axis.
54. The region between the graph of f (x) = e x and the line

y = e on [0, 1], revolved around the x-axis.

55. The region between the graph of f (x) = 9 − x 2 and the
x-axis on [0, 3], revolved around the x-axis.

56. The region between the graph of f (x) = (x − 2)2 and the
x-axis on [0, 4], revolved around the x-axis.

57. The region between the graph of f (x) = x 2 − 4x + 4 and
the x-axis on [0, 2], revolved around the y-axis.

58. The region bounded by the graphs of f (x) = 2 ln x, y = 0,
y = 3, and x = 0, revolved around the x-axis.

59. The region bounded by the graphs of f (x) = 2
x

, y = 0,

y = 3, x = 0, and x = 2, revolved around the x-axis.

60. The region between the graph of f (x) = x 2 + 2 and the
x-axis on [−1, 3], revolved around the line x = −1.

61. The region bounded by the graphs of f (x) = |x| and y = 2
on [−2, 2], revolved around the line x = 3.

Applications
62. Mark carves napkin rings out of wooden spheres. His

napkin rings have height h = 8 and radius R = 5, mea-
sured in centimeters, as shown next at the left. Alina also
carves napkin rings out of spheres, but she likes bigger
napkins, so she carves them with height h = 8 and ra-
dius R = 6, as shown at the right. Use the shell method
to show that Mark’s and Alina’s napkin rings use exactly
the same amount of wood. (This is an example of the fa-
mous Napkin Ring Theorem; see Exercise 70).

Napkin ring

y

�2

�4

�6

2

4

6

6
x

�6 2 2 4�4

Bigger napkin ring

y

�2

�4

�6

2

4

�2
x

2�

6

44 666666666666666666
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63. Alan makes beads that have the shape of flattened
spheres with holes drilled through for stringing. The
beads can be modeled by revolving the curve f (x) =
3 − 0.15x 2 on [−4, 4] around the x-axis, as shown in the
next figure, in which units are in centimeters. Use the
shell method to determine the amount of material re-
quired to make 100 beads of this shape.

Shape of a bead

�2

�4

x
4

��2222

Proofs

64. The disk and shell methods for calculating volume of
solids of revolution always give the same answer (when
they are both computable). Prove that this is so for any
solid of revolution defined by revolving the region be-
tween a linear function y = mx + c and the x-axis on
[a, b], where m, c, a, and b are positive.

65. Prove that a shell with average radius r, height h, and
thickness �x has volume V = 2πrh �x.

66. Use a definite integral with the shell method to prove that

the volume formula V = 1
3
πr 2h holds for a cone of radius

3 and height 5.

67. Use a definite integral with the shell method to prove

that the volume formula V = 4
3
πr 3 holds for a sphere of

radius 3.

68. Use a definite integral with the shell method to prove that
a cone of radius r and height h has volume given by the

formula V = 1
3
πr 2h.

69. Use a definite integral with the shell method to prove
that a sphere of radius r has volume given by the formula

V = 4
3
πr 3.

70. Prove the Napkin Ring Theorem: If a napkin ring is made by
removing a cylinder of height h from a sphere, then the
volume of the resulting shape does not depend on the
radius of the sphere! Look at the figures in Exercise 62 to
see why this result is surprising.

Thinking Forward

More “subdivide, approximate, and add”: We have already seen
how to use limits and a “subdivide, approximate, and add”
strategy to calculate area by approximating with rectangles
and to calculate volume by using disks, washers, or shells.
What else can we calculate in this way?

� Consider the curve traced out by the graph of a func-
tion y = f (x) on an interval [a, b]. Come up with a
proposal for approximating the length of such a curve
with a “subdivide, approximate, and add” strategy.
What would play the role of rectangles, disks, wash-
ers, or shells in this case?

� Consider the surface of revolution obtained by revolv-
ing the graph of a function y = f (x) around the x-
axis on an interval [a, b]. Come up with a proposal for

approximating the surface area of such an object with
a “subdivide, approximate, and add” strategy. What
do you think would play the role of rectangles, disks,
washers, or shells in this case?

� Suppose you wish to find the mass of a metal rod that
is made up of a material whose density increases lin-
early from the left end to the right end. Mass is equal
to density times volume, but since density is varying
in this example, we need to somehow use a “subdi-
vide, approximate, and add” strategy. Come up with
a proposal for how to use this strategy to calculate the
mass of the rod. Again, consider what the best choice
would be for the role of the pieces in this example.
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6.3 ARC LENGTH AND SURFACE AREA

� Approximating arc length with a sum of line-segment lengths

� Approximating surface area with a sum of frustum surface areas

� Using definite integrals to calculate exact arc lengths and surface areas

Approximating Arc Length

We have now used the “subdivide, approximate, and add” strategy to define definite inte-
grals for areas under curves and for volumes of solids of revolution. We will now use the
same strategy to find lengths of curves and surface areas of solids of revolution. To illustrate
the process in the context of lengths of curves, let’s try to find the length of part of a circle.

You probably already know that the circumference C of a circle of radius r is given by
C = 2πr. But where does that magical formula come from? If we didn’t know this formula,
how could we approximate the circumference of a circle, say, of radius 2? Since such a circle
is given by the equation x 2 + y 2 = 4, the function f (x) = √

4 − x 2 on [−2, 2] traces out its
top half, as shown here:

f (x) = √
4 − x 2 on [−2, 2]

y

x
�2 �1 21

1

2

The most obvious way to approximate the length of this curve is with line segments,
much like the way that you would approximate the length of a curvy highway on a map by
using straight segments. For example, we could divide the interval [−2, 2] into four subin-
tervals and approximate the length of the curve on each subinterval with a line segment,
as shown in the first figure that follows. To get a better approximation of the length of the
curve, we could use more line segments, as shown, for example, in the second figure.

Four-segment approximation Eight-segment approximation

y

x
�2 �1 21

1

2

y

x
�2 �1 21

1

2

In order to use our “subdivide, approximate, and add” strategy to find the exact length
of a curve, we will need to take a limit, letting the size of the subintervals get smaller and
smaller. Before we can apply such a limit, we need to set up some general notation, much
like the notation we used when we defined the area under a curve.

Suppose we wish to approximate the length of a curve f (x) on an interval [a, b]. If
we divide [a, b] into n subintervals of equal width, then each subinterval will have width
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�x = b − a
n

. If we define x k = a + k�x for k = 0, 1, . . . , n, then the kth subinterval is the

interval [x k−1, x k]. Each subinterval will have width �x, and the line segment on the kth
subinterval will change vertically by �y k = f (x k) − f (x k−1) units on that subinterval, as il-
lustrated in the next figure. Notice that �x does not depend on the choice of k, but �y k
does, since the graph of f increases and decreases at different rates as we move from x = a
to x = b.

Notation for the kth line segment

y

x

�yk

�x

xk � 1

f (xk � 1)

f (xk)

xk

We can use the distance formula to calculate the length l k of each line segment:

l k = length of kth line segment =
√

(�x)2 + (�y k)2.

With just a little bit of algebra we can factor out a �x, as follows:

l k =
√

(�x)2 + (�y k)2 =
√

(�x)2

(
1 + (�y k)2

(�x)2

)
=

√
1 +

(
�y k

�x

)2
�x.

As we will see in Theorem 6.7, this second form for the distance will be much more use-
ful. Now given a function f (x), an interval [a, b], and a number of subdivisions n, we have
defined n subintervals, each with a line segment that approximates a small piece of the
curve. Adding up the lengths of these line segments gives us an approximation for the
length of the curve:

length of f (x) on [a, b] ≈
n∑

k=1

l k =
n∑

k=1

√
1 +

(
�y k

�x

)2
�x.

You will calculate such an approximation by hand in Example 1. For any individual ap-
proximation all this notation is not particularly necessary, but as we will see in a moment,
such notation will enable us to obtain a Riemann sum, and thus a definite integral, for arc
length.

A Definite Integral for Arc Length

So what is the exact length of the curve? For sufficiently well behaved functions the approxi-
mation we just developed gets better as we let the number n of line segments get larger and
larger, since this makes the width �x of the subintervals get smaller and smaller. Therefore
to get the exact length we need to take the limit of our n-subinterval approximation as n
approaches infinity. For nice-enough functions this limit will converge to a real number,
and we define that number to be the arc length of f (x) on [a, b].
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DEFINITION 6.6 The Arc Length of a Function on an Interval

Suppose f (x) is a differentiable function with a continuous derivative. Then the arc
length of f (x) from x = a to x = b is

Arc length of f (x)
from x = a to x = b

= lim
n→∞

n∑
k=1

√
1 +

(
�y k

�x

)2
�x,

where �x = b − a
n

, x k = a + k�x, and �y k = f (x k) − f (x k−1) for all k = 0, 1, 2, . . . , n.

The limit of sums in this definition should look familiar to you. It is a kind of Riemann
sum, and therefore it can be written as a definite integral.

THEOREM 6.7 Arc Length as a Definite Integral

Suppose f (x) is a differentiable function with a continuous derivative on [a, b]. Then the
arc length of f (x) from x = a to x = b can be represented by the definite integral

Arc length of f (x)
from x = a to x = b

=
∫ b

a

√
1 + ( f ′(x))2 dx.

If you think about it for a moment, you will see that Theorem 6.7 says something very
interesting: The length of the curve traced out by the graph of a function f (x) on an interval

[a, b] is the same as the area under the graph of
√

1 + ( f ′(x))2 on that same interval. There
is a nice consequence to this: We already know how to calculate definite integrals, and
therefore Theorem 6.7 makes it simple for us to calculate certain exact arc lengths.

Considering the definition of the definite integral, we can see how the limit of sums in
Definition 6.6 becomes the definite integral in Theorem 6.7, at least if we believe that �yk

�x
becomes f ′(x) as n → ∞. The key to showing the latter, and thus the key to the proof of
Theorem 6.7, is the Mean Value Theorem.

Proof. If f (x) is a differentiable function, then the Mean Value Theorem applies to the function
f (x) on each subinterval [x k−1, x k] and guarantees that there exists some point x ∗

k ∈ (x k−1, x k) at
which

f ′(x ∗
k ) = f (x k) − f (x k−1)

x k − x k−1
= �y k

�x
,

where �y k = f (x k) − f (x k−1). Therefore, there is a point x ∗
k in each subinterval such that the defini-

tion of arc length can be written as

lim
n→∞

n∑
k=1

√
1 +

(
�y k

�x

)2

�x = lim
n→∞

n∑
k=1

√
1 + ( f ′(x ∗

k ))2 �x.

Since the derivative f ′(x) is assumed to be continuous, so is the function
√

1 + ( f ′(x))2. In

addition, �x = b − a
n

and x k = a+k �x. Therefore this limit of sums represents the definite integral

of
√

1 + ( f ′(x))2 on the interval [a, b]. In other words,

lim
n→∞

n∑
k=1

√
1 + ( f ′(x ∗

k ))2 �x =
∫ b

a

√
1 + ( f ′(x))2 dx.
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Approximating Surface Area

The tools we have developed for calculating arc length can be adapted to define the area
of a surface of revolution. Given the graph of a function f (x) on an interval [a, b], we
can revolve just the graph–not the area under the graph–around some axis to obtain a
surface. As we did for arc length, we can use a piecewise-linear approximation of the graph
of y = f (x) and a “subdivide, approximate, and add” strategy to find the area of such a
surface.

For example, consider the graph shown next at the left. Revolving this graph around
the x-axis produces the surface in the middle figure. One way to approximate the area
of this surface is by approximating the graph with two straight line segments and then
revolving these line segments around the x-axis to obtain truncated cones, as illustrated in
the rightmost figure.

Graph of y = f (x) on [a, b] Surface of revolution Approximation by two frustums

y

x
a

y � f (x)

b

y

x
a b

y

a b
x

The truncated cones in this example are called frustums. In Exercise 81 you will use the
fact that a frustum is obtained by removing the top of a cone to prove that the surface area
of a frustum is given by the following formula:

THEOREM 6.8 The Surface Area of a Frustum

A frustum with radii p and q and slant length s, as shown in the figure, has surface area

S = 2πrs,

where r = p + q
2

is the average radius of the frustum.

p

s

q

To remember the formula S = 2πrs, it may help to notice that it is a lot like the formula
S = 2πrl for the surface area of a cylinder, except that in the case of a frustum the length is
measured at a slant and the radius is an average radius.

Now suppose we wish to use frustums to approximate the surface area of the surface
obtained by revolving the graph of a function y = f (x) around the x-axis on the interval
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[a, b]. Just as we did with arc length, we subdivide [a, b] into n subintervals [x k−1, x k], each
of width �x = b − a

n
, with corresponding vertical changes �y k = f (x k) − f (x k−1) on each

subinterval as shown here:

Notation for the kth frustum

y

x
xkxk � 1

f (xk � 1)

f (xk)

�x

�yk

We must find the surface area of each frustum and then add up all those surface areas.
Following the same algebra as we used for arc length, we can calculate the slant length of
each frustum:

s k = slant length of kth frustum =
√

(�x)2 + (�y k)2 =
√

1 +
(

�y k

�x

)2

�x.

The average radius of each frustum depends on the function y = f (x):

r k = average radius of kth frustum = f (x k−1) + f (x k)
2

.

Using the formula for the surface area of a frustum and adding up these surface areas, we
obtain an approximation for the surface area of the surface of revolution:

surface area of S ≈
n∑

k=1

2πr ks k =
n∑

k=1

2π

(
f (x k−1) + f (x k)

2

) √
1 +

(
�y k

�x

)2

�x.

You will calculate such an approximation by hand in Example 5, and just as happened for
arc length, we can use the notation we have developed to obtain a definite integral for
surface area.

A Definite Integral for Surface Area

We have already done the “legwork” needed to define surface area as a limit of sums of
frustums:

DEFINITION 6.9 The Area of a Surface of Revolution

Suppose f (x) is a positive, differentiable function with a continuous derivative. The
surface area of the solid of revolution obtained by revolving f (x) around the x-axis from
x = a to x = b is

Surface area under f (x)
from x = a to x = b

= lim
n→∞

n∑
k=1

2π

(
f (x k − 1) + f (x k)

2

) √
1 +

(
�y k

�x

)2

�x,

where �x = b − a
n

, x k = a + k�x, and �y k = f (x k) − f (x k−1) for all k = 0, 1, 2, . . . , n.

Intuitively, as n → ∞, the average radius f (xk−1) + f (xk)
2

will be given by the height f (x)

of the function and the quotient �yk

�x
will be given by the derivative f ′(x). This gives us the

following definite integral formula for surface area:
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THEOREM 6.10 Surface Area as a Definite Integral

Suppose f (x) is a positive, differentiable function with a continuous derivative. The
surface area of the solid of revolution obtained by revolving f (x) around the x-axis from
x = a to x = b is

Surface area under f (x)
from x = a to x = b

= 2π

∫ b

a
f (x)

√
1 + ( f ′ (x))2 dx.

Proof. To obtain a definite integral we will attempt to write the expression in Definition 6.9 as a
Riemann sum. That means that we need the terms of the sum to be in the form g(x ∗

k )�x for some
function g and some choice of point x ∗

k in each subinterval. This will be a two-step process.

As we saw in the proof of Theorem 6.7, the Mean Value Theorem guarantees that on each

subinterval [x k−1, x k] we can find some point x ∗
k at which f ′(x ∗

k ) = �yk

�x
.

Now consider the expression
f (xk−1) + f (xk)

2
for the average radius. Since f is continuous and

this average lies between f (x k−1) and f (x k), the Intermediate Value Theorem guarantees that there

is some point x ∗∗
k at which f (x ∗∗

k ) is equal to
f (xk−1) + f (xk)

2
.

Although in general x ∗
k and x ∗∗

k will not be the same number in [x k−1, x k], as n → ∞ and thus
�x → 0 these two numbers will get closer and closer to each other. Thus we almost have a Riemann
sum. There are some technical details here that we are omitting, but given that x ∗

k ≈ x ∗∗
k and using

the fact that f (x) and f ′(x) are assumed to be continuous, we obtain

lim
n→∞

n∑
k=1

2πf (x ∗∗
k )

√
1 + ( f ′ (x ∗

k ))2 �x = 2π

∫ b

a
f (x)

√
1 + ( f ′ (x))2 dx.

We now have a way to use a definite integral to calculate the exact surface area of a
surface of revolution. However, this method is practical only if the resulting definite integral
is one that we know how to solve. In the examples and exercises we will choose functions
very carefully so that the definite integrals are solvable with the techniques we have covered
in this course.

Examples and Explorations

EXAMPLE 1 Using line segments to approximate the length of a curve

Approximate the length of the curve f (x) = √
4 − x 2 from x = −2 to x = 2 with four line

segments. Then find a better approximation that uses eight line segments.

SOLUTION

We begin by dividing the interval [−2, 2] into four subintervals of equal size: [−2, −1],
[−1, 0], [0, 1], and [1, 2]. The four line segments in question are shown next at the left.

Four-segment approximation Eight-segment approximation

y

x
�2 �1 21

1

2

y

x
�2 �1 21

1

2
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It is easy to calculate the lengths of these line segments with the distance formula; for
example, the first line segment starts at the point (−2, f (−2)) = (−2, 0) and ends at the
point (−1, f (−1)) = (−1,

√
3 ) and therefore has length

√
(−1 − (−2))2 + (

√
3 − 0)2 = √

1 + 3 = 2.

Similarly, by using the coordinates of (−1, f (−1)), (0, f (0)), (1, f (1)), and (2, f (2)) we can
calculate that the lengths of the remaining three line segments are 1.035, 1.035, and 2. The
sum of these four lengths approximates the length of the curve:

2 + 1.035 + 1.035 + 2 = 6.070.

Clearly this approximation should be an under-approximation of the actual length, since
the lengths of the lines are shorter than the lengths of the curves they approximate. Because
the curve in question is half of the circumference of a circle of radius 2, the length of the
curve should be 1

2
(2π (2)) = 2π ≈ 6.28319. Our four-segment approximation is an under-

approximation by about 0.21263 unit.

To get a better approximation with the eight line segments shown earlier at the right,
we need to make eight distance formula calculations. The first line segment extends from

(−2, 0) to (−1.5,
√

1.75 ) and thus has length
√

(−1.5 − (−2))2 + (
√

1.75 − 0)2 = √
0.25 + 1.75 =

√
2 ≈ 1.41421.

The remaining seven line segments can be calculated similarly, and the sum of the eight
lengths gives us an eight-segment approximation for the arc length of the curve:

1.414 + 0.646 + 0.540 + 0.504 + 0.504 + 0.540 + 0.646 + 1.414 ≈ 6.208.

Note that the eight-segment approximation is indeed closer to the length we would expect
from the circumference formula and in fact under-approximates the exact value of 2π ≈
6.28319 by only about 0.07519 unit. �

EXAMPLE 2 Approximating arc length in general notation

Approximate the length of one period of the function f (x) = sin x by using the formula and
notation in Definition 6.6, with n = 4. For each k, describe x k, y k, and �y k.

SOLUTION

We will approximate the arc length of f (x) = sin x from x = 0 to x = 2π . Since we are using
n = 4 line segments, as shown in the following figure, we have �x = π

2
:

Arc length of f (x) = sin x on [0, 2π ]
approximated by four line segments

y

x
3π

2
π

2
π 2π

�1

1
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We could use the distance formula to find the length of each of these line segments without
bothering with notation at all, as in the previous example. However, the purpose of this
example is to practice using the notation from Definition 6.6. We have

x 0 = 0, x 1 = π

2
, x 2 = π , x 3 = 3π

2
, and x 4 = 2π.

Evaluating the function f (x) = sin x at these points gives

f (x 0) = f (0) = sin 0 = 0,

f (x 1) = f
(

π

2

)
= sin π

2
= 1,

f (x 2) = f (π ) = sin π = 0,

f (x 3) = f
(

3π

2

)
= sin 3π

2
= −1, and

f (x 4) = f (2π ) = sin 2π = 0.

Although �x = π

2
is the same on each subinterval, the changes in the y-values vary:

�y1 = f (x 1) − f (x 0) = 1 − 0 = 1,

�y2 = f (x 2) − f (x 1) = 0 − 1 = −1,

�y3 = f (x 3) − f (x 2) = −1 − 0 = −1, and

�y4 = f (x 4) − f (x 3) = 0 − (−1) = 1.

In the notation of Definition 6.6, the lengths of the four line segments are thus

√
1 +

(
�y1

�x

)2
�x =

√
1 +

(
1

π/2

)2 (
π

2

)
≈ 1.8621,

√
1 +

(
�y2

�x

)2
�x =

√
1 +

(
−1
π/2

)2 (
π

2

)
≈ 1.8621,

√
1 +

(
�y3

�x

)2
�x =

√
1 +

(
−1
π/2

)2 (
π

2

)
≈ 1.8621, and

√
1 +

(
�y4

�x

)2
�x =

√
1 +

(
1

π/2

)2 (
π

2

)
≈ 1.8621.

In this example, all four of the line segments happen to be the same length; of course that is
not usually the case! The reason it is here is that sin x just happens to have the same shape
of arc on each of the four pieces we are examining. Adding up all of these lengths, we get
the following approximation for the length of one period of the sine function:

4∑
k=1

√
1 +

(
�y k

�x

)2
�x ≈ 1.8621 + 1.8621 + 1.8621 + 1.8621 ≈ 7.4484.

�

CHECKING
THE ANSWER

The answer of 7.4484 we just found does seem roughly reasonable for the length of one
period of the sine function, considering its graph. To get a better check on our approxima-
tion, we could compute the definite integral

∫ 2π

0

√
1 + ( f ′ (x))2 dx =

∫ 2π

0

√
1 +

(
d
dx

(sin x)
)2

dx =
∫ 2π

0

√
1 + cos2 x dx.
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Unfortunately, we do not know how to calculate this integral. However, it represents an
area, and we can use a graphing calculator to approximate area. The area in question is
shown in the following figure:

The area under the graph of√
1 + ( f ′ (x))2 = √

1 + cos2 x on [0, 2π ]

y

x
3π

2
π 2π

1

π

2

This area is not the area under the graph of f (x) = sin x. Rather, it is the area under the graph
of

√
1 + ( f ′ (x))2 = √

1 + cos2 x from x = 0 to x = 2π . Using a graphing calculator, we can
approximate this area as 7.6404; therefore the arc length of f (x) = sin x from x = 0 to x = 2π

is approximately 7.6404. This verifies that 7.4484 was indeed a reasonable approximation
of the arc length of one period of f (x) = sin x.

EXAMPLE 3 Using a definite integral to calculate exact arc length

Construct and solve a definite integral to find the exact length of the curve traced out by
f (x) = x 3/2 on the interval [0, 3].

SOLUTION

By the arc length formula in Theorem 6.7, the arc length of f (x) = x 3/2 on [0, 3] is given by

∫ 3

0

√
1 +

(
d
dx

(x 3/2)
)2

dx =
∫ 3

0

√
1 +

(
3
2

x 1/2
)2

dx =
∫ 3

0

√
1 + 9

4
x dx.

Applying the simple substitution u = 1 + 9
4

x, du = 9
4

dx, we can write this definite inte-
gral as

4
9

∫ x=3

x=0

√
u du = 4

9

[
2
3

u 3/2
] x=3

x=0
= 4

9

[
2
3

(
1 + 9

4
x
)3/2

] x=3

x=0

= 8
27

( (
1 + 9

4
(3)

)3/2 −
(

1 + 9
4

(0)
)3/2 )

= 8
27

( (
31
4

)3/2
− 1

)
≈ 6.096. �

CHECKING
THE ANSWER

The answer we just found appears reasonable if we consider a rough estimate of the length
of the curve traced out by the graph of f (x) = x 3/2 from x = 0 to x = 3, as shown in the next
figure. By the distance formula, the diagonal line from (0, 0) to (3, 5) has length

√
32 + 52 ≈

5.83, just a little less than our approximation of 6.096 for the length of the curve.
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f (x) = x 3/2 on [0, 3]

y

x
321

1

2

3

4

5

EXAMPLE 4 Recovering the formula for the circumference of a circle

Construct and solve a definite integral to find the circumference of a circle of radius 2.

SOLUTION

As we have already discussed in this section, to calculate the circumference of a circle of ra-
dius 2 we can instead calculate the arc length of f (x) = √

4 − x 2 on the interval [−2, 2]
and then multiply that answer by 2. Using the definite integral formula for arc length,
we have∫ 2

−2

√
1 + ( f ′ (x))2 dx =

∫ 2

−2

√
1 +

(
d
dx

(√
4 − x 2

))2
dx ← definition of f (x)

=
∫ 2

−2

√
1 +

(
1
2

(4 − x 2)− 1/2(−2x)
)2

dx ← differentiate f (x)

=
∫ 2

−2

√
1 + x 2

4 − x 2
dx =

∫ 2

−2

√
(4 − x 2) + x 2

4 − x 2
dx ← algebra

=
∫ 2

−2

√
4

4 − x 2
dx = 2

∫ 2

−2

1√
4 − x 2

dx. ← algebra

Fortunately, 1√
4 − x2

is a function whose integral we can find by using either algebra and

the antiderivative of the arcsine (Sections 2.6 and 4.4) or trigonometric substitution (Sec-
tion 5.5). With those techniques we find that∫

1√
4 − x 2

dx = sin−1 x
2

+ C.

Less fortunately, since 1√
4 − x2

is not defined at x = ± 2, the definite integral in question

is actually an improper integral. To solve it we will have to split the integral and consider
limits at the endpoints x = ± 2 (see Section 5.6):

2
∫ 2

−2

1√
4 − x 2

dx = 2
(

lim
A→−2+

∫ 0

A

1√
4 − x 2

dx + lim
B→2−

∫ B

0

1√
4 − x 2

dx
)

= 2
(

lim
A→−2+

[
sin−1 x

2

]0

A
+ lim

B→2−

[
sin−1 x

2

]B

0

)

= 2
(

lim
A→−2+

(
sin−1 0 − sin−1 A

2

)
+ lim

B→2−

(
sin−1 B

2
− sin−1 0

))
.

Since sin−1 0 = 0, sin−1 1 = π

2
, and sin−1 − 1 = −π

2
, we have

2
∫ 2

−2

1√
4 − x 2

dx = 2
((

0 −
(
−π

2

))
+

(
π

2
− 0

))
= 2π.
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Therefore, the length of the graph of f (x) = √
4 − x 2 from x = −2 to x = 2 is 2π units.

This arc length is half of the arc length of the circumference of a circle with radius 2, so
the circumference of a circle of radius 2 is 2(2π ) = 4π units. This is exactly the answer we
expected, since, by the formula for the circumference of a circle, we should have C = 2πr =
2π (2) = 4π . �

TECHNICAL POINT Although it may seem as if the preceding example could be used to re-
derive the formula for the circumference of a circle, note that solving the definite integral
involved the use of inverse trigonometric functions, which are defined from trigonometric
functions, which are in turn defined with the use of the unit circle and the fact that the unit
circle has circumference 2π .

EXAMPLE 5 Approximating the surface area of a sphere with frustums

Use four frustums to approximate the surface area of the sphere of radius 2 centered at the
origin. This sphere can be realized by rotating the curve f (x) = √

4 − x 2 from x = −2 to
x = 2 around the x-axis.

SOLUTION

Subdividing the interval [−2, 2] into four subintervals and then rotating a corresponding
piecewise-linear approximation of y = √

4 − x 2 around the x-axis yields four frustums (two
are actually cones):

Approximating a sphere with four frustums

y

�1�2 1 2

�2

�1

1

x

2

In our subdivision notation we have x 0 = −2, x 1 = −1, x 2 = 0, x 3 = 1, and x 4 = 2, with
�x = 1. We can treat the cones at the end as cones or as frustums; either surface area
formula will work. For simplicity we will treat them as frustums.

Since f (−2) =
√

4 − (−2)2 = 0 and f (−1) =
√

4 − (−1)2 = √
3, the first frustum

(a cone) has average radius and slant length given by

r1 = f (−2) + f (−1)
2

=
√

3
2

,

s1 =
√

(−2 − (−1))2 + ( f (−2) − f (−1))2 = √
1 + 3 = 2.

Therefore the surface area of the first frustum is 2πr1s1 = 2π
(√

3
2

)
(2).
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In a similar fashion we can find the volumes of the remaining three frustums to obtain
the following approximation for the surface area S of a sphere:

S = 2πr1 s1 + 2πr2 s2 + 2πr3 s3 + 2πr4 s4

= 2π

(√
3

2

)
(2) + 2π

(√
3 + 2
2

)(√
8 − 4

√
3

)

+ 2π

(√
3 + 2
2

)(√
8 − 4

√
3

)
+ 2π

(√
3

2

)
(2)

≈ 46.04. �

CHECKING
THE ANSWER

In this case we happen to know the exact value of the surface area of a sphere of radius 2,
since the surface area of a sphere of radius r is given by the formula S = 4πr 2. Thus the
exact answer to the preceding problem is 4π (2)2 = 16π ≈ 50.265.

EXAMPLE 6 Using a definite integral to calculate exact surface area

Construct and solve a definite integral to find the exact surface area of the surface of revo-
lution obtained by revolving the graph of f (x) = x 3 around the x-axis on [0, 1].

SOLUTION

Since the derivative of f (x) = x 3 is f ′(x) = 3x 2, the surface area formula in Theorem 6.10
gives us the following definite integral to solve:

2π

∫ 1

0
x 3

√
1 + 9x 4 dx.

This integral is simple to solve by using substitution, with u = 1+9x 4 and du = 36x 3. With
this substitution the integral becomes

2π
(

1
36

) ∫ x=1

x=0

√
u du = π

18

[
2
3

u 3/2
] x=1

x=0

= π

18

(
2
3

(1 + 9(1)4) 3/2 − 2
3

(1 + 9(0)4) 3/2
)

= π

18

(
2
3

√
1000 − 2

3

)
.

This number is approximately equal to 3.56, which is a reasonable size for the surface area
obtained by revolving f (x) = x 3 around the x-axis on [0, 1]. �

TEST YOUR? UNDERSTANDING
� In the four-segment approximation of the arc length of f (x) = √

4 − x 2 on [−2, 2], what
is it about the graph of the function that causes some line segments to be longer than
others, even though we are dividing the interval [−2, 2] into equal pieces?

� Why would you expect an arc length approximation with six segments to be a better
approximation than one with three segments?

� What is the difference between Definition 6.6 and Theorem 6.7? What needs to be
proved to show Theorem 6.7?

� What parts of the construction of the definite integral for surface area are generalized
from the construction of the definite integral for arc length?

� How are the Mean Value Theorem and the Intermediate Value Theorem involved in the
proof of Theorem 6.10?
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EXERCISES 6.3

Thinking Back

Approximating area with rectangles: Approximate the area rep-
resented by each of the following definite integrals by using a
right sum with n = 4 rectangles.

�
∫ 2

0
(
√

x + 1) dx �
∫ 4

3

1
x − 2

dx

Riemann sums: For each given definite integral, write the inte-
gral as a Riemann sum of the form lim

n→∞
∑n

k=1 f (x ∗
k ) �x, using

a right sum (i.e., using the rightmost point of each subinterval
as x ∗

k ).

�
∫ e

1
ln x dx �

∫ π

−π

sin x dx

Review of integration techniques: Solve each of the following
definite integrals.

�
∫ 4

0

√
3 + 16x dx �

∫ 2

−2

√
26 dx

�
∫ 3

0

3√
9 − x 2

dx �
∫ π/2

π/4
csc x dx

Approximating definite integrals: Use a calculator or computer
algebra system to approximate the values of the following
definite integrals.

�
∫ 3

−1

√
1 + e 2x dx �

∫ 2π

0

√
1 + sin2 x dx

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If we subdivide an interval [a, b] into n
subintervals, then each subinterval has width �x =
b−a

n
.

(b) True or False: If we subdivide an interval [a, b] into
n subintervals at points x 0 = a, x 1, . . . , xn−1, xn = b,
then the kth subdivision point xk is given by a + k.

(c) True or False: The distance formula says that if �x =
x k − x k−1 and �y k = f (x k) − f (x k−1), then the dis-
tance from (x k−1, f (x k−1)) to (x k, f (x k)) is given by√

(�x)2 + (�y k)2.
(d) True or False: For any real numbers a and b,

√
a2 + b2 = a2

√
1 + ( b

a

)2
.

(e) True or False: We cannot use the definite integral for-
mula for arc length for a function f (x) on [a, b] if f (x)
has a discontinuity on an interval [a, b].

(f) True or False: An approximation of arc length by line
segments can sometimes be an over-approximation.

(g) True or False: An approximation of surface areas by
frustums can sometimes be an over-approximation.

(h) True or False: The area of a frustum can be expressed
in terms of average radius and slant length.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A graph of a function f (x) on [a, b] whose arc length
is poorly approximated by four line segments.

(b) An equation of a function f (x) on [a, b] that gives rise
to an arc length integral that we do not know how to
solve.

(c) An equation of a surface of revolution defined by re-
volving a function f (x) on [a, b] around the x-axis that
gives rise to a surface area integral that we do not
know how to solve.

3. What is the definition of the arc length of a continuous
function f (x) on an interval [a, b]? Explain this definition
in words in terms of a limit of sums, and explain the
meaning of the notation used in the definition.

4. Suppose f (x) is a differentiable function with a continuous
derivative. Describe the arc length of f (x) on the interval
[a, b] in terms of a definite integral. Why is this definite
integral equal to the definition of arc length for f (x) on
[a, b]?

5. How is the Mean Value Theorem involved in proving that
the arc length of a function on an interval can be repre-
sented by a definite integral?

6. Fill in the blank: The length of the graph of y = x 2 on
[2, 4] is equal to the area under the graph of the function

on the same interval.

7. Fill in the blank: The area under the graph of y = √
1 + e 2x

on [0, 2] is equal to the length of the graph of the function
on the same interval.

8. In this exercise you will investigate whether approximat-
ing arc length with line segments results in an under-
approximation or an over-approximation.

(a) Sketch graphs of the functions f (x) = 4 − x 2, g(x) =
e x, and h(x) = 3x + 1 on [−2, 2].

(b) Suppose you wanted to approximate the arc length of
each of these functions on [−2, 2] by using eight line
segments. Draw these line segments on each graph.

(c) Determine graphically whether each approximation
is greater than, less than, or equal to the actual arc
length for each function listed in part (a).

(d) Explain why approximating the length of a curve
with line segments will always yield either an under-
approximation or an exact answer.

9. Suppose you want to approximate the arc length of
f (x) = tan x on the interval [0, π ]. Would you get a good
approximation if you subdivided the interval [0, π ] into
five subintervals and added up the lengths of the line
segments over each subinterval? Why or why not? (Hint:
Draw the line segments.)
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10. Use definite integrals to show that the graphs of f (x) = 1
x

and g(x) = − 1
x

have the same arc length on [1, 3]. (Hint:
You do not have to solve the integrals!) Why does this equal-
ity make sense in terms of graphical transformations?

11. Use definite integrals to show that f (x) = x 2 − 3 and
g(x) = 5 − x 2 have the same arc length on [0, 2]. (Hint: You
do not have to solve the integrals!) Why does this equality
make sense in terms of transformations?

12. Do you think that the function f (x) = 2x 2 has twice the
arc length of g(x) = x 2 on the interval [0, 3]? Why or
why not?

13. Write down a definite integral that describes the circum-
ference of a circle of radius 5. Don’t try to solve the inte-
gral; just write it down.

14. Write down a definite integral that describes the arc
length around an ellipse with horizontal radius of 3 units
and vertical radius of 2 units. The ellipse in this exercise
extends 6 units across and 4 units vertically and has equa-

tion
x2

9
+ y2

4
= 1. Don’t try to solve the integral; just write

it down.

15. In this exercise you will approximate the arc length of
f (x) = cos x on [0, π ] in two ways and compare your
answers.
(a) By using four line segments and the distance formula.
(b) By using a right sum with four rectangles to approx-

imate the area under the graph of the function y =√
1 + sin2 x on [0, 2].

(c) Why do the approximations you found in parts (a)
and (b) both approximate the arc length of
f (x) = cos x on [0, π ]? Which, if either, do you think
might be a better approximation?

16. In this exercise you will approximate the arc length
of f (x) = x 2 on [0, 2] in two ways and compare your
answers.
(a) By using four line segments and the distance formula.
(b) By using a right sum with four rectangles to approx-

imate the area under the graph of the function y =√
1 + 4x 2 on [0, 2].

(c) Why do the approximations you found in parts (a)
and (b) both approximate the arc length of f (x) = x 2

on [0, 2]? Which, if either, do you think might be a
better approximation?

17. Suppose you wish to use n frustums to approximate the
area of the surface obtained by revolving the graph of a
function y = f (x) around the x-axis on [a, b]. Use a labeled
graph to explain why the slant length s k of the kth frustum
is given by

s k =
√

(�x)2 + (�y k)2.

18. Suppose you wish to use n frustums to approximate the
area of the surface obtained by revolving the graph of a
function y = f (x) around the x-axis on [a, b]. Use a labeled
graph to explain why the average radius r k of the kth frus-
tum is given by

r k = f (x k−1) + f (x)
2

.

Skills

In Exercises 19–24, approximate the arc length of f (x) on [a, b],
using n line segments and the distance formula. Include a
sketch of f (x) and the line segments.

19. f (x) = x 3, [a, b] = [−2, 2], n = 4
20. f (x) = cos x, [a, b] = [0, π ], n = 3
21. f (x) = ln x, [a, b] = [1, 3], n = 4
22. f (x) = e x, [a, b] = [−1, 3], n = 4

23. f (x) = √
9 − x 2, [a, b] = [−3, 3], n = 3

24. f (x) = √
9 − x 2, [a, b] = [−3, 3], n = 6

In Exercises 25–30, approximate the arc length of f (x) on

[a, b], using the approximation
∑n

k=1

√
1 +

(
�yk

�x

)2
�x with

the given value of n. In each problem list the values of �y k
for k = 1, 2, . . . , n.
25. f (x) = x 3, [a, b] = [−2, 2], n = 4
26. f (x) = cos x, [a, b] = [0, π ], n = 3
27. f (x) = ln x, [a, b] = [1, 3], n = 4
28. f (x) = e x, [a, b] = [−1, 3], n = 4
29. f (x) = √

9 − x 2, [a, b] = [−3, 3], n = 3

30. f (x) = √
9 − x 2, [a, b] = [−3, 3], n = 6

Find the exact value of the arc length of each function f (x) in
Exercises 31–46 on [a, b] by writing the arc length as a definite
integral and then solving that integral.
31. f (x) = 3x + 1, [a, b] = [−1, 4]
32. f (x) = 4 − x, [a, b] = [2, 5]

33. f (x) = 2x 3/2 + 1, [a, b] = [1, 3]
34. f (x) = x 3/2, [a, b] = [0, 2]
35. f (x) = (2x + 3) 3/2, [a, b] = [−1, 1]
36. f (x) = 2(1 − x) 3/2 + 3, [a, b] = [−2, 0]

37. f (x) = √
9 − x 2, [a, b] = [−3, 3]

38. f (x) = √
1 − x 2, [a, b] = [−1, 1]

39. f (x) = 1
3

x 3/2 − x 1/2, [a, b] = [0, 1]

40. f (x) = (1 − x 2/3) 3/2, [a, b] = [0, 1]
41. f (x) = (4 − x 2/3) 3/2, [a, b] = [0, 2]
42. f (x) = x 2, [a, b] = [−1, 1]

43. f (x) = x 2 − 1
8

ln x, [a, b] = [1, 2]

44. f (x) = ln(cos x), [a, b] =
[
0,

π

4

]

45. f (x) = ln(sin x), [a, b] =
[

π

4
,

3π

4

]

46. f (x) = x 4 + 3
6x

, [a, b] = [1, 3]

Each definite integral in Exercises 47–52 represents the
arc length of a function f (x) on an interval [a, b]. Determine
the function and interval.

47.
∫ 5

−2

√
1 + 9e 6x dx 48.

∫ π

0

√
1 + sin2 x dx

49.
∫ 3

2

√
x 4 + 1

x 4
dx 50.

∫ 2

0

√
1 + 36x dx
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51.
∫ π/4

0
sec x dx 52.

∫ 1

0

√
1 + 9x 4 dx

You may have noticed that even very simple functions give rise
to arc length integrals that we have no idea how to compute.
In Exercises 53–56, use a graphing calculator to approximate
a definite integral that represents the arc length of the given
function f (x) on the interval [a, b].

53. f (x) = x 3, [a, b] = [−1, 1]

54. f (x) = x 2 + 1, [a, b] = [0, 4]

55. f (x) = 3x 2 − 1, [a, b] = [1, 2]

56. f (x) = ln x, [a, b] = [1, 3]

In Exercises 57–62, use n frustums to approximate the area
of the surface of revolution obtained by revolving the curve
y = f (x) around the x-axis on the interval [a, b].

57. f (x) = x 2, [a, b] = [0, 4], n = 2

58. f (x) = x 2, [a, b] = [0, 4], n = 4

59. f (x) = x 3, [a, b] = [1, 3], n = 4

60. f (x) = ln x, [a, b] = [1, 4] n = 3

61. f (x) = sin x, [a, b] = [0, π ], n = 2
62. f (x) = sin x, [a, b] = [0, π ], n = 4

In Exercises 63–72, set up and solve a definite integral to find
the exact area of each surface of revolution obtained by re-
volving the curve y = f (x) around the x-axis on the interval
[a, b].

63. f (x) = x, [a, b] = [0, 2]

64. f (x) = 1
x

, [a, b] = [1, 10]

65. f (x) = √
x, [a, b] = [0, 4]

66. f (x) = √
25 − x 2, [a, b] = [−5, 5]

67. f (x) = √
3x + 1, [a, b] = [0, 3]

68. f (x) = e−x, [a, b] = [−1, 1]

69. f (x) = e 4x, [a, b] = [−1, 1]
70. f (x) = x 2, [a, b] = [−1, 1]

71. f (x) = sin x, [a, b] = [0, π ]

72. f (x) = cos x, [a, b] =
[
−π

2
,
π

2

]

Applications
73. Suppose a drinking fountain expels water so that it falls

in the shape of the parabola f (x) = 3 − 1
2

x 2, measured

in inches, as shown in the given figure. Set up and solve
a definite integral that measures the distance that water
travels starting from when it leaves the fountain (at x = 0)
and ending when it hits the surface of the fountain (when
f (x) = 0).

Path of water from a drinking fountain

y

1

2

3

1
x

32

74. Dr. Geek built a skate ramp in his backyard modeled af-

ter the function f (x) = 11 sin
( 1

42
x 2

)
, measured in feet,

as shown in the next figure. Set up a definite integral that
measures the distance required to skate from one side of
the ramp to the other. The starting and ending x-values
should both satisfy f (x) = 11 feet. Use a graphing calcu-
lator to approximate the value of this definite integral.

Curve of skate ramp

y

�4
x

84�8

11

Proofs

75. Suppose f (x) is a continuous function on an interval [a, b],
and let n be a positive integer. With the notation �x,
x k, and �y k given in Definition 6.6, prove that the sum∑n

k=1

√
(x k − x k−1)2 + ( f (x k) − f (x k−1))2 is equal to the

sum
∑n

k=1

√
1 +

(
�yk

�x

)2
�x.

76. Use Definition 6.6, the Mean Value Theorem, and the def-
inition of the definite integral to prove Theorem 6.7: The
arc length of a sufficiently well behaved function f (x) on
an interval [a, b] can be represented by the definite inte-
gral

∫ b
a

√
1 + ( f ′ (x))2 dx.

77. Prove, in two ways, that the arc length of a linear
function f (x) = mx + c on an interval [a, b] is equal to

(b − a)
√

1 + m2:

(a) by using the distance formula;
(b) by using Theorem 6.7.

78. Use Theorem 6.7 to prove that a circle of radius 5 has
circumference 10π .

79. Use Theorem 6.7 to prove that a circle of radius r has
circumference 2πr.
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80. Prove that if f is continuous on [a, b] and C is any
real number, then f (x) and f (x) + C have the same arc
length on [a, b]. Then explain why this makes sense
graphically.

81. In this exercise you will prove that the surface area of a
frustum with radii p and q and slant length s is equal

to SA = 2πrs, where r = p + q
2

is the average radius of

the frustum. The argument will hinge on the fact that
a frustum is a cone with its top removed, as shown
here:

t

s

q

p

(a) Use similar triangles to prove that, in the notation of
the given diagram, pt + ps = qt.

(b) We know from Theorem 3.12 that the surface area
of a cone with radius A and height B is given by
πA

√
A2 + B2. Use the Pythagorean theorem to prove

that this expression implies that the surface area of
a cone with radius A and slant height C is given by
πAC.

(c) Express the surface area of the frustum in the figure as
the difference of the area of the larger cone and the
area of the smaller cone, and use the previous two
parts of this problem to prove that the surface area of
the frustum is SA = π ( p + q)s.

(d) Finally, use the relationship r = p + q
2

to prove that

the surface area of the frustum is S = 2πrs.
82. Use Theorem 6.10 to prove that a sphere of radius 5 has

surface area 100π .

83. Use Theorem 6.10 to prove that a sphere of radius r has
surface area 4πr 2.

84. Prove the surprising fact that the arc length of the cate-
nary curve traced out by the hyperbolic function f (x) =
cosh x on any interval [a, b] is equal to the area under the
same graph on [a, b].

Thinking Forward
Arc length of parametric curves: A curve in the plane is defined
by parametric equations if we can express the points on the
curve in the form (x(t), y(t)) for some pair of continuous func-
tions x(t) and y(t). You should think of t as a parameter and
x(t) and y(t) as tracing out the x- and y-coordinates of the
curve as t changes. A classic example of a parametric curve
is (cos t, sin t), which traces out the unit circle as t increases
from 0 to 2π .

� Calculate the coordinates (cos t, sin t) for the values

t = 0,
π

4
,

5π

6
,

3π

2
, and 2π , and verify that these co-

ordinates define the points pictured in the following
diagram:

(cos t, sin t) traces out a circle

y

�0.5

�0.5

0.5

x
0.5

t � 0

t � 2π

4
π

t � 6
5π

t � 2
3π

t �

�1

1

1�1

� To approximate the arc length of a parametric curve on
some interval from t = a to t = b, we subdivide [a, b]
into n pieces to define t1 = a, t2, t3, . . . , tn, and con-
sider the line segments connecting (x(t k−1), y(t k−1))
and (x(t k), y(t k)) for each k = 1, 2, . . . , n. Define �x k
and �y k for the kth line segment in terms of the coor-
dinates shown in the following figure:

Notation for the kth line segment

y

x

tk

tk � 1

xk � 1

f (tk � 1)

f (tk)

xk

�x

�yk

� Mimic the argument in the reading for this section to
argue that a reasonable definition for the arc length of
a parametric curve (x(t), y(t)) from t = a to t = b is

lim
n→∞

n∑
k=1

√
(�x k)2 + (�y k)2,

where �x k and �y k are defined as in the previous
problem.

� Use algebra and the concept of Riemann sums to ar-
gue that the arc length of a parametric curve (x(t), y(t))
from t = a to t = b should be represented by the defi-
nite integral

∫ b

a

√
(x′(t))2 + ( y′(t))2 dt.

� Use this new description of arc length to show that
the circumference of the unit circle is 2π , by thinking
of the unit circle as the parametric curve (cos t, sin t)
from t = 0 to t = 2π and applying the definite inte-
gral formula from the previous problem.
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6.4 REAL-WORLD APPLICATIONS OF INTEGRATION

� Definitions of mass, weight, density, work, force, and hydrostatic force

� Using definite integrals to represent accumulations of varying quantities

� Examples of real-world physics problems

Mass and Density

We now examine applications from physics that can be solved by our “subdivide,
approximate, and add” strategy, and thus with definite integrals. The first concept that
will concern us is mass. Mass is different from, but related to, weight. Mass is an inherent
quantity that does not depend on which gravitational force is acting on the object. Mass
measures the amount of matter in an object, while weight measures the force of gravity on
the object.

A small object that is very dense (like a small rock) can have the same mass as a larger
object that is less dense (for example, a very large serving of cotton candy). Density is
mass per unit volume, and is traditionally labeled by the letter ρ, the lowercase Greek letter
“rho.” The mass of an object is then the product of its density and its volume:

DEFINITION 6.11 Mass Given a Constant Density

The mass of an object with density ρ and volume V is m = ρV .

For example, gold has a density of approximately 19.3 grams per cubic centimeter, so
the mass of a gold coin of radius 1.5 centimeters and thickness 0.2 centimeter is

m = ρV =
(

19.3 grams
cm3

)
(π (1.5)2(0.2)cm3) ≈ 27.28 grams.

A silver coin of the same dimensions has a smaller mass, since silver has a lower density
of approximately 10.5 grams per cubic centimeter:

m = ρV =
(

10.5 grams
cm3

)
(π (1.5)2(0.2)cm3) ≈ 14.84 grams.

This simple mass formula works only for objects that are homogeneous, with same density
everywhere. When density varies, finding mass is more complicated. The key will be to slice
the object in such a way that for each piece, we can assume that the density is approximately
constant, as we will soon see.

Work and Force

The second concept from physics that we will be interested in is work. Clearly it takes more
work to lift a heavy object (say, a car) than it takes to lift a lighter object (say, a book). It also
takes more work to lift an object a long distance (such as lifting a car 30 feet) than a short
distance (such as lifting a car 1 inch off the ground). The work required to lift an object is
thus the product of its weight and the distance that it must be moved.
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DEFINITION 6.12 Work Given a Constant Distance

The work required to lift an object with a weight of F through a distance d is W = Fd.

We use the letter F for weight because the weight of an object is the force exerted on it
by gravity. This force is the product F = ωV of the object’s weight per unit volume, or its
weight-density, and its volume.

For example, water has a weight-density of ω = 62.4 pounds per cubic foot. How much
work does it take to lift a full bucket of water with radius 1 foot and height 2 feet to a height
of 3 feet off the ground? The water in the bucket weighs

F = ωV = 62.4(π (1)2(2)) = 124.8 π pounds.

Assuming that the weight of the bucket is negligible, the work required to lift such a full
bucket of water a distance of 3 feet off the ground is

W = Fd = (124.8 π pounds)(3 feet) ≈ 1176 foot-pounds.

Note that work involves units called foot-pounds; this is because work is the product of
force (measured in pounds) and distance (measured in feet). In physics, one might see
force measured in newtons and distance measured in meters, in which case work would be
measured in newton-meters which are also called joules.

The simple work formula just presented applies only when force and displacement are
constant. If either the weight of an object or the distance that it is to be moved is variable,
then finding work will require integrals, as we will soon see.

Hydrostatic Force

Our final physics concept is hydrostatic force, which is the force exerted on a surface by a
volume of water or some other liquid. The force exerted on the bottom, horizontal surface
of any tank or container is equal to the weight of the water above it. Force due to gravity
is equal to weight, which is equal to weight-density times volume, which, for water in a
container, is equal to weight-density, times area, times depth and thus:

DEFINITION 6.13 Hydrostatic Force Given a Constant Depth

The hydrostatic force exerted by a liquid of weight-density ω and depth d on a hori-
zontal wall of area A is given by F = ωAd.

For example, in a rectangular swimming pool measuring 10 feet by 30 feet that has a
constant depth of 5 feet, the hydrostatic force on the bottom surface of the pool is

F = ωAd =
(

62.4 lbs

ft 3

)
(300 ft 2)(5 ft) = 93,600 pounds.

In fact, the same principle applies to the force exerted against any wall (horizontal,
vertical, or otherwise) by a mass of water. The reason is that the pressure, or force per
square foot of area, exerted by the water is the same in all directions. However, a non-
horizontal wall will be at different depths at various points on the wall, and the force from
the water will be different at these various points. The water in a pool will exert a great

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 17:8

544 Chapter 6 Applications of Integration

deal of force near the bottom of a side wall, but less force near the top of that side wall.
We will have to use a slicing technique–and thus, eventually, definite integrals–to find the
hydrostatic force exerted on nonhorizontal walls.

Representing Varying Quantities with Definite Integrals

Mass, work, and hydrostatic force have simple formulas when all the associated quantities
are constant. But what happens when things vary? How do we calculate the mass of an
object of varying density, or the work required to pump water of varying depths out of a
tank, or the hydrostatic force on the side wall of a pool?

The key, of course, is to consider slices on which any varying quantities can be approx-
imated with constant values. Then the simple formulas we developed earlier will apply on
each slice, and we can add up all the slice-approximations to find an approximation for the
total mass, work, or hydrostatic force. Subdivide, approximate, and add . . . and of course
if we set things up right, then we will be able to express our approximation as a Riemann
sum, take a limit, and obtain a definite integral for the exact answer!

Let’s walk through this process with a particular example. Consider the task of pumping
all the water out of the top of a cylindrical hot tub that is 4 feet deep and has a radius of
3.5 feet. The water at the bottom of the tub has to be moved farther than the water at the
top of the tub, so the distance involved is variable. If we consider a thin horizontal slice of
the hot tub, we can assume without too much error that all the water in that slice has to be
moved the same upward distance; see the following figure:

Horizontal slice of hot tub

y � 4

yk*

y � 0

3.5

y

�y

This figure introduces some needed notation. We are imagining that the bottom of the hot
tub is at y = 0 and and the top is at y = 4. We divide the interval from y = 0 to y = 4 into n
subintervals [ y k−1, y k] of thickness �y. A representative slice of the hot tub at some height
y ∗

k ∈ [ y k−1, y k] is shown in the figure.

The slice at y ∗
k needs to be moved upwards d k = 4−y ∗

k units in order to be pumped out
of the tub. This slice is a disk with volume V k = πr 2h = π (3.5)2�y cubic feet. Water weighs
ω = 62.4 pounds per cubic foot. Since for constant quantities we have W = Fd = ωVd,
the work W k required to pump the kth slice of water out of the hot tub is

W k = F k d k = ωV k d k = 62.4(π (3.5)2�y)(4 − y ∗
k ) foot-pounds.

By repeating this approximation for each horizontal slice and then adding all these approx-
imations, we can get an approximation for the total work W required to pump all of the
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water out of the hot tub:

W ≈
n∑

k=1

(62.4)(π )(3.5)2(4 − y ∗
k )�y.

You should recognize this as a Riemann sum. As n gets larger, we make thinner and thinner
slices and better approximations. In the limit, as n → ∞, this approximation approaches
the actual work required. Accumulating slices of work from y = 0 to y = 4, the actual
amount of work required is given by the definite integral

W =
∫ 4

0
(62.4)(π )(3.5)2(4 − y) dy.

With basic integration techniques it is easy to solve this integral to find that the total
amount of work required to pump all of the water out of the top of the hot tub is
6115.2 π ≈ 19, 211.5 foot-pounds.

Let’s review what just happened from a more general perspective. The sum we found
earlier was a Riemann sum that converged to a definite integral because it was of the form∑n

k=1 f ( y ∗
k )�y for some continuous function f ( y). In this case the function was

f ( y) = 62.4π(3.5)2(4 − y) = (weight-density)(cross-sectional area)(distance) = ωAd,

where d = d(y) is a function of y. Compare this with the formula W = Fd = ωVd for work.
The difference is that V = A�y; we extracted this �y so that we could form a Riemann
sum. In the definite integral, �y becomes dy.

In other examples we will follow the same basic strategy: Subdivide, or slice, so that
quantities are constant; use physics formulas to approximate quantities on each slice;
extract a �x or �y to write the sum as a Riemann sum; and then take the limit to get a
definite integral that we can solve.

Centroids and Centers of Mass

As a geometric application of the techniques of this section, we will investigate the cen-
troid, otherwise known as the center of mass, of a thin plate of material. Let’s consider
the simple case where the plate is defined by the region between a positive function f (x) and
the x-axis, as shown next at the left. The centroid of a thin plate of material in the shape
of this region is the point (x̄, ȳ) where the plate would balance horizontally, as shown at
the right.

A region in the plane and its centroid Balancing horizontally on the centroid

y

x
321

1

2

3

4

5
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As one might expect, the centroid of a rectangular region is easy to find; it is found at the
center of the rectangle. It is also easy to find the centroid of a collection of rectangles, be-
cause the centroid of a composite object is a weighted average of the centroids of its pieces.
Specifically, suppose a region with area A is divided into a collection of regions with ar-
eas A1, A2, . . . An and centroids (x̄ 1, ȳ 1), (x̄ 2, ȳ 2), . . . , (x̄ n, ȳ n). Then the centroid (x̄, ȳ) of the
combined region can be obtained by taking the average of the centroids of the rectangles,
weighted by their areas, with coordinates as follows:

x̄ = x̄ 1A 1 + x̄ 2 A 2 + · · · + x̄ n A n

A
,

ȳ = ȳ 1A 1 + ȳ 2 A 2 + · · · + ȳ n A n

A
.

An example of this situation with three rectangular regions is shown next at the left,
with the centroid of each rectangle marked with an “x” and the centroid of the overall
shape marked with a dot. Note that in our weighted average, the third “x” will count the
most, since it is the centroid of the largest rectangle. This particular set of rectangles was
not arbitrary; the figure at the right shows the same collection of rectangles set against
the region we illustrated at the start of this subsection. It is reasonable to imagine that the
centroid of the collection of rectangles is an approximation for the centroid of this region.
(See Example 6.)

The centroid of a collection of rectangles Approximating the centroid of a region

y

x
321

1

2

3

4

5

y

x
321

1

2

3

4

5

We are now on very familiar ground. Suppose we want to find the centroid of a region
between the graph of some function f (x) and the x-axis on an interval [a, b]. Following our
usual “subdivide, approximate, and add” strategy, we begin by subdividing the interval
[a, b] into n subintervals of the form [x k−1, x k], where x k = a + k �x and �x = b − a

n
. For

each k, we then choose x ∗
k to be the midpoint of the subinterval [x k−1, x k] and consider the

rectangle on that subinterval whose height is f (x ∗
k ) as shown here:

The centroid of a representative rectangle

f (xk*)

f (xk*)

xk � 1 xk* xk

�x
y

x

f(xk*)
2(xk*,          )
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The centroid of this rectangle is at its center, which is the point

(x̄ k, ȳ k) =
(

x ∗
k , 1

2
f (x ∗

k )
)
.

The area of this kth rectangle is
A k = f (x ∗

k )�x.

Using our weighted average formula from earlier, we find that the centroid of the collection
of all n rectangles has coordinates

x̄ =
∑n

k=1 x̄ k A k∑n
k=1 A k

=
∑n

k=1 x ∗
k f (x ∗

k )�x∑n
k=1 f (x ∗

k )�x
,

ȳ =
∑n

k=1 ȳ k A k∑n
k=1 A k

=
∑n

k=1
1
2

f (x ∗
k )f (x ∗

k )�x∑n
k=1 f (x ∗

k )�x
.

Finally, we notice that the numerators and denominators of x̄ and ȳ are Riemann sums!
Taking the limit as n → ∞ allows us to describe the exact centroid of the region in terms
of definite integrals:

THEOREM 6.14 The Centroid of a Region Under a Curve

Let f be an positive, integrable function on [a, b]. Then the centroid (x̄, ȳ) of the region
between the graph of f (x) and the x-axis on the interval [a, b] is the point

(x̄, ȳ) =
⎛
⎝

∫ b
a x f (x) dx∫ b
a f (x) dx

,

1
2

∫ b
a f (x)2 dx∫ b

a f (x) dx

⎞
⎠.

By construction, this formula works only for finding centroids of regions between the graph
of some function f (x) and the x-axis. A similar construction allows us to describe the
centroid between two graphs f (x) and g(x) on an interval [a, b] (see Example 7 for this
construction):

THEOREM 6.15 The Centroid of a Region Between Two Curves

Let f and g be integrable functions on [a, b]. The centroid (x̄, ȳ) of the region between
the graphs of f (x) and g(x) on the interval [a, b] is the point

(x̄, ȳ) =
⎛
⎝

∫ b
a x| f (x) − g(x)| dx∫ b
a | f (x) − g(x)| dx

,

1
2

∫ b
a | f (x)2 − g(x)2| dx∫ b
a | f (x) − g(x)| dx

⎞
⎠.

The absolute values in these expressions play the same role as those we saw in the calcula-
tions of the area between two curves as those we saw in Section 4.6. Specifically, they allow
us to write the centroid as one formula regardless of whether f (x) ≥ g(x) or f (x) ≤ g(x).
Just as in Section 4.6, when calculating centroids you must divide the interval [a, b] into
subintervals according to these inequalities.

Examples and Explorations

EXAMPLE 1 Finding work when distance and volume vary

Find the work involved in pumping all of the water out of the top of a cone-shaped tank
that is 4 feet tall and has a radius of 3.5 feet at the top.
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SOLUTION

The first thing we have to do is establish some notation. Suppose that the bottom of the
tank is at height y = 0 and the top of the tank is at height y = 4. A representative horizontal
slice at some point y ∗

k is shown next at the left.

Horizontal slice of conical tank Use the law of similar triangles

�y

y

y � 4

yk*

y � 0

rk

3.5

4
yk*

rk

3.5

We can use the law of similar triangles (see the diagram at the right) to find the radius r k
of this slice:

r k

y ∗
k

= 3.5
4

=⇒ r k = 3.5
4

y ∗
k .

The volume of the slice is V k = πr 2�y, the weight-density of water is ω = 62.4 pounds
per cubic foot, and the vertical distance that the water in the kth slice must move is ap-
proximately d k = 4 − y ∗

k . Since for constant quantities we have W = Fd = ωVd, the work
involved in pumping out the representative slice of water is

W k = F k d k = ωV k d k = (62.4)(π )
(

3.5
4

y ∗
k

)2
�y · (4 − y ∗

k ) foot-pounds.

Thus the work W required to pump all of the water out of the top of the conical tank is
approximately

W ≈
n∑

k=1

(62.4)(π )
(

3.5
4

)2
( y ∗

k )2(4 − y ∗
k )�y.

This is a Riemann sum, so as n → ∞ we obtain a definite integral. Accumulating slices
from y = 0 to y = 4, we find that the amount of work required to pump all of the water
out of the top of the tank is

W =
∫ 4

0
(62.4)(π )

(
3.5
4

)2
y 2(4 − y) dy

= 47.775 π

∫ 4

0
(4y 2 − y 3) dy = 47.775 π

[
4
3

y 3 − 1
4

y 4
]4

0

= 3201.91 π foot-pounds. �

EXAMPLE 2 Finding mass when density varies

Suppose a cylindrical rod with a radius of 2 centimeters and a length of 24 centimeters
is made of a combination of silver and gold in such a way that the density of the rod x
centimeters from the left end is given by the function ρ(x) = 10.5 + 0.01527x 2 grams per
cubic centimeter. Find the total mass of the rod.
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SOLUTION

The following diagram shows a thin representative slice of the rod at some point x ∗
k cen-

timeters from the left end:

Representative slice of rod with varying mass

x � 24xk*x � 0

2

�x

Each representative slice is a disk of radius 2 and thickness �x, and therefore volume
π (2)2�x. We can assume without too much error that the density throughout the entire
thin slice is ρ k = ρ(x ∗

k ) = 10.5 + 0.01527(x ∗
k )2 grams per cubic centimeter. Since for con-

stant values we have m = ρV , the mass of the slice is

m k = ρ kV k = (10.5 + 0.01527(x ∗
k )2)(π (2)2�x).

The approximate mass of the entire rod is thus given by the sum

m ≈
n∑

k=1

4π (10.5 + 0.01527(x ∗
k )2) �x.

As n → ∞, this Riemann sum approaches the actual mass of the rod. Accumulating mass
from x = 0 to x = 24, we see that the total mass of the rod is

m =
∫ 24

0
4π (10.5 + 0.01527x 2) dx

= 4π
[
10.5x + 0.01527

3
x 3

]24

0
= 1289.46 π ≈ 4050.95 grams. �

EXAMPLE 3 Finding mass when density and volume vary

Alina has made a gelatin mold that is 4.5 inches tall, 6 inches across, and in the shape of the
top of a downwards-pointing parabola that has been revolved around the y-axis. She put
strawberry pieces into the gelatin mold, but they have tended to settle down to the bottom.
This causes the density of the gelatin mold to vary linearly with height in such a way that
the density at the very top of the mold is 0.25 ounce per cubic inch, while the density at the
very bottom of the mold is 1.3 ounces per cubic inch. Find the mass of the entire gelatin
mold.

SOLUTION

We first need to find functions that describe the shape and density of the gelatin mold.
This is not difficult to do, using the information given in the problem. It turns out that
the shape of the gelatin mold is the solid of revolution obtained by rotating the graph of
y = 4.5−0.5x 2 on [0, 3] around the x-axis and that the density of the gelatin mold at height
y is approximately given by the function ρ( y) = 1.3 − 0.233y. (See Exercises 10 and 11.)

In this example, both the density and the volume vary with the slice of the object.
The next figure shows a representative slice at some height y ∗

k . We can assume without
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introducing too much error that the entire slice has a constant density of ρ k = ρ( y ∗
k ) =

1.3 − 0.233y ∗
k ounces per cubic inch.

Strawberries settle to the bottom

y

�3 3

4.5

y � 0

rk yk*

y � 4.5

�y

According to this graph, if r k is the radius corresponding to the height y ∗
k , then y ∗

k = 4.5 −
0.5r 2

k , and thus r k = √
9 − 2y ∗

k . The volume of the representative slice is therefore

V k = πr 2
k �y = π

(√
9 − 2y ∗

k

)2
�y = π (9 − 2y ∗

k )�y.

Since for constant values we have m = ρV , the mass of our representative slice is

m k = ρ kV k = (1.3 − 0.233y ∗
k )(π )(9 − 2y ∗

k )�y.

The total mass m of the gelatin mold can be approximated by the sum of the approximate
masses of each of the slices:

m ≈
n∑

k=1

π (1.3 − 0.233y ∗
k )(9 − 2y ∗

k )�y.

This is a Riemann sum, and as n → ∞ the sum converges to a definite integral.
Accumulating slices from y = 0 to y = 4.5, we get the total mass of the gelatin mold:∫ 4.5

0
π (1.3 − 0.233y)(9 − 2y) dy = π

∫ 4.5

0
(11.7 − 4.697y + 0.466y 2) dy

= π
[
11.7y − 4.697

2
y 2 + 0.466

3
y 3

]4.5

0
≈ 60.4682 ounces. �

EXAMPLE 4 Finding hydrostatic force when depth varies

Consider a swimming pool that measures 10 feet by 30 feet, with a constant depth of
5 feet. Find the hydrostatic force exerted on one of the shorter side walls of the pool.

SOLUTION

The force exerted by the water on the side walls varies with depth. However, if we consider
a very thin horizontal slice of the wall, then we can assume without too much error that
the entire slice is at the same depth. The following diagram shows a representative slice of
the side wall at some height y ∗

k from the bottom of the pool:

Representative slice of side wall

5

30

10

y � 0

yk*
y � 5

�y
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The area of the representative wall slice is A k = 10�y square feet. Water has a weight-
density of ω = 62.4 pounds per cubic foot. When values are constant, hydrostatic force is
given by F = ωAd. Therefore, assuming that the entire thin slice of wall is at a depth of
d k = 5 − y ∗

k feet, we find that the hydrostatic force on that slice of wall is given by

F k = ωA kd k = 62.4(10�y)(5 − y ∗
k ).

The hydrostatic force on the entire side wall is thus approximately

F ≈
n∑

k=1

62.4(10)(5 − y ∗
k ) �y.

As n approaches ∞ and we accumulate slices from y = 0 to y = 5, this Riemann sum ap-
proaches a definite integral. The hydrostatic force on a shorter side wall of the pool is

∫ 5

0
62.4(10)(5 − y) dy = (62.4)(10)

[
5y − 1

2
y 2

]5

0
= 7800 pounds.

�

EXAMPLE 5 Finding hydrostatic force when depth and area vary

Consider a rectangular swimming pool that is 30 feet long and 10 feet wide, with a depth
of 4 feet at the shallow end and 8 feet at the deep end. Suppose the shallow end of the
pool makes up the first 10 feet of the pool and is followed by 10-foot linear ramp along
which the depth of the pool increases from 4 feet to 8 feet and then a final length of
10 feet for the deep end. Find the hydrostatic force exerted on one of the long sides of the
pool.

SOLUTION

The next diagram shows a side view of the pool, as well as two types of horizontal slices.
If y ∗

k is between y = 0 and y = 4, then the length of the slice varies with the depth of the
pool. If y ∗

k is between y = 4 and y = 8, then the length of the slice is always 30 feet.

rk

30

10

10

10 4

yk*
y � 8

y � 0

y � 4
yk*

�y

For y ∗
k between y = 0 and y = 4, the kth slice has width �y and length 10 + r k, where r k

is the distance that the slice extends into the ramp part of the pool. By the law of similar
triangles and the triangles whose legs are shown as dotted lines in the figure, we have

r k

y ∗
k

= 10
4

=⇒ r k = 5
2

y ∗
k .

The area of the kth slice, between y = 0 and y = 4, is A k =
(

10 + 5
2

y ∗
k

)
�y. Again, the

weight-density of water is ω = 62.4 pounds per cubic foot. When values are constant, hy-
drostatic force is given by F = ωAd. Since we are assuming that the entire slice is at depth
d k = 8 − y ∗

k , the hydrostatic force on each slice between y = 0 and y = 4 is

F k = ωA kd k = 62.4
((

10 + 5
2

y ∗
k

)
�y

)
(8 − y ∗

k ).
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The total hydrostatic force on the part of the side wall from y = 0 to y = 4 (the lower half
of the wall) is thus approximately

F lower ≈
n∑

k=1

62.4
(

10 + 5
2

y ∗
k

)
(8 − y ∗

k )�y.

As n → ∞ and we accumulate slices from y = 0 to y = 4, this sum converges to a definite
integral that represents the hydrostatic force Flower on the bottom half of the wall:

F lower =
∫ 4

0
62.4

(
10 + 5

2
y
)

(8 − y) dy = 21, 632 pounds.

By an argument similar to the one used in the previous example, we can show that the
hydrostatic force from y = 4 to y = 8 (the upper half of the side wall) is given by the definite
integral

F upper =
∫ 8

4
62.4(30)(8 − y) dy = 59, 904 pounds.

(We leave it to you to solve these integrals.) The total hydrostatic force exerted on a long
side wall is the sum of these two forces:

F = F lower + F upper = 21, 632 pounds + 59, 904 pounds = 81, 536 pounds.

Notice that in this problem we never needed to use the fact that the pool was 10 feet wide!
Surprisingly, the answer is the same whether the pool is 10 feet wide or 100 feet wide; the
hydrostatic force exerted on the side wall does not depend on how far the pool extends
from that wall. �

EXAMPLE 6 Approximating the centroid of a region

Use three rectangles to approximate the centroid of the region between the graph of f (x) =
x 2√3 − x and the x-axis on [0, 3].

SOLUTION

Subdividing [0, 3] into three intervals and then defining rectangles whose heights match
the function at the midpoints of those subintervals gives the following picture:

y

x
321

1

2

3

4

5

The centroids of the rectangles are at their centers, and, given the graph and equation for
f (x), these centroids are

(x̄ 1, ȳ 1) =
(

0.5, 1
2

f (0.5)
)

=
(

0.5, 1
2

((0.5)2
√

3 − 0.5 )
)

≈ (0.5, 0.1976),

(x̄ 2, ȳ 2) =
(

1.5, 1
2

f (1.5)
)

=
(

1.5, 1
2

((1.5)2
√

3 − 1.5 )
)

≈ (1.5, 1.3778),

(x̄ 3, ȳ 3) =
(

2.5, 1
2

f (2.5)
)

=
(

2.5, 1
2

((2.5)2
√

3 − 2.5 )
)

≈ (2.5, 2.2097).
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Note that these coordinates do seem reasonable compared with the points marked “x” in
the preceding figure.

The three rectangles each have �x = 1 and height defined by f (x) at their midpoints
x = 0.5, 1.5, and 2.5, and therefore have the following areas:

A1 = f (0.5) �x = ((0.5)2
√

3 − 0.5 )(1) ≈ 0.3953,

A2 = f (1.5) �x = ((1.5)2
√

3 − 1.5 )(1) ≈ 2.7557,

A3 = f (2.5) �x = ((2.5)2
√

3 − 2.5 )(1) ≈ 4.4194.

Note again that these values seem reasonable compared with the three rectangles we
graphed earlier. The area of the three rectangles together is naturally A = A1 + A2 + A3 ≈
7.5704.

Finally, to find the coordinates of the centroid of the collection of three rectangles we
must take the average of the three centroids we found, weighted by the areas of the cor-
responding rectangles. This gives us the following approximation for the centroid (x̄, ȳ) of
the region:

x̄ ≈ x̄1 A1 + x̄2 A2 + x̄3 A3

A
≈ 0.5(0.3953) + 1.5(2.7557) + 2.5(4.4194)

7.5704
≈ 2.0316,

ȳ ≈ ȳ1 A1 + ȳ2 A2 + ȳ3 A3

A
≈ 0.1976(0.3953) + 1.3778(2.7557) + 2.2097(4.4194)

7.5704
≈ 1.8018.

Therefore the centroid of the region between f (x) = x 2√3 − x and the x-axis on [0, 3] is
approximately (x̄, ȳ) ≈ (2.0316, 1.8018). You will find a finer approximation with n = 6 rect-
angles in Exercise 32 and find this centroid exactly in Exercise 36. �

EXAMPLE 7 Expressing a centroid in terms of Riemann sums and definite integrals

Consider the region between the graphs of f (x) = e 1−x and g(x) = x 2 on the interval [0, 1].
Express the centroid of this region in terms of (a) Riemann sums and (b) definite integrals.

SOLUTION

(a) The region whose centroid we wish to calculate is shown next at the left. We can
already visually judge that this centroid should be close to, say, (0.3, 1). The figure
at the right shows a representative rectangle at some point x ∗

k in [0, 1].

0.5 1.0

3

y

x

2.5

2

1.5

1

0.5 g(xk*)

xk*

f (xk*)

1.0

3

y

x

Note that the top of this rectangle is at height f (x ∗
k ) = e 1−x ∗

k and the bottom is at height
g(x ∗

k ) = (x ∗
k )2. Thus the height of the marked point in the center of the rectangle is
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the average f (x∗
k ) + g(x∗

k )
2

, and therefore the centroid of the rectangle is

(x̄ k, ȳ k) =
(

x ∗
k ,

f (x ∗
k ) + g(x ∗

k )
2

)
.

The height of the rectangle is the difference f (x ∗
k )−g(x ∗

k ), and therefore the area of the
rectangle is

A k = ( f (x ∗
k ) − g(x ∗

k ))�x.

We can now approximate the coordinates of the centroid of the region in terms of
Riemann sums by taking a weighted average of the centroids of the rectangles:

x̄ ≈
∑n

k=1 x ∗
k

(
f (x ∗

k ) − g(x ∗
k )

)
�x∑n

k=1
(

f (x ∗
k ) − g(x ∗

k )
)
�x

,

ȳ ≈
∑n

k=1
f (x ∗

k ) + g(x ∗
k )

2

(
f (x ∗

k ) − g(x ∗
k )

)
�x∑n

k=1
(

f (x ∗
k ) − g(x ∗

k )
)
�x

=
∑n

k=1
1
2

(
f (x ∗

k )2 − g(x ∗
k )2

)
�x∑n

k=1
(

f (x ∗
k ) − g(x ∗

k )
)
�x

.

(b) Taking the limit as n → ∞ and using the equations f (x) = e 1−x and g(x) = x 2, we ob-
tain an expression for the coordinates of the centroid of the region in terms of definite
integrals:

x̄ =
∫ 1

0 x( f (x) − g(x)) dx∫ 1
0 ( f (x) − g(x)) dx

=
∫ 1

0 x(e 1−x − x 2) dx∫ 1
0 (e 1−x − x 2) dx

,

ȳ =
1
2

∫ 1
0 ( f (x)2 − g(x)2) dx∫ 1
0 ( f (x) − g(x)) dx

=
1
2

∫ 1
0 ((e 1−x)2 − (x 2)2) dx∫ 1

0 (e 1−x − x 2) dx
.

Calculating these definite integrals (some require preliminary algebra or integration by
parts) gives us a centroid of (x̄, ȳ) ≈ (0.338, 1.081), which does seem compatible with
our initial visual approximation. �

TEST YOUR? UNDERSTANDING
� Would the work required to pump the water out of the top of a hot tub be the same as

the work required to pump the water out of the bottom? Why or why not?

� Would the work required to pump the water out of a buried conical tank be the same
as the work required to lift the entire conical tank up to ground level? Why or why not?

� Why did we have to consider two types of horizontal slices in Example 5?

� Where does the expression | f (x)2 − g(x)2| come from in the formula for the centroid of
a region between two curves in Theorem 6.15?

� Each example in this section followed the same general procedure. Can you explain this
procedure in your own words?

EXERCISES 6.4

Thinking Back
Definite integrals: Calculate each of the following definite in-
tegrals, using integration techniques and the Fundamental
Theorem of Calculus.

�
∫ 10

0
4π (11.2 + 0.072x 2) dx

�
∫ 4

0
(62.4π )(3.5)2(4 − y) dy

�
∫ 4

0
62.4

(
10 + 5

2 y
)

(8 − y) dy

� π

∫ 100

0
(0.75x + 250)(200 − x) dx

� π

∫ 6

0
(−2y + 1.12)

(
100 − 25

2
y
)

dy
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� Setting up and solving a word problem involving arc
length: Calvin wants to hang some Christmas lights
along the edge of the front side of his garage roof.
The edge of the front side of the roof of his garage is a
curve in the shape of a downwards-pointing parabola
extending 3 feet above the ceiling of the garage and
12 feet across. How long a string of Christmas lights
does Calvin need?

� Setting up and solving a word problem involving volume:
A specialty glass flask has a bulb-shaped bottom half
and a cylindrical top half. The bulb consists of a sphere
with a radius of 10 centimeters whose top and bottom
are truncated by 2 centimeters. The cylindrical tube
has a radius just large enough to connect to the bulb
and is 7 centimeters tall. Find the volume of the flask.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Mass and weight are the same.
(b) True or False: A large object can have less mass than a

smaller object.
(c) True or False: An object can have one mass on Earth

and another mass on the moon.
(d) True or False: An object can have one weight on Earth

and another weight on the moon.
(e) True or False: Water has a weight-density of 62.4 foot-

pounds.
(f) True or False: It always takes more work to lift a heavy

object than a light object for the same distance.
(g) True or False: Hydrostatic force can be measured only

on horizontal walls.
(h) True or False: Hydrostatic force is stronger at greater

depths than it is at lesser depths.
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) An object whose density is constant throughout, and
another whose density varies.

(b) A situation where work can be calculated without an
integral, and another situation where a definite inte-
gral is needed to calculate work.

(c) An example of something that is measured in foot-
pounds.

3. What is the difference between mass and weight?
4. What is the difference between density and weight-

density?

5. Why is a definite integral needed to calculate the hydro-
static force exerted on a vertical wall of a swimming pool,
but no integral is needed to calculate the hydrostatic force
on the bottom of the pool?

6. Describe the “subdivide, approximate, and add” strategy
that is used in each of the examples in this section. Why is
it necessary? How does it work? What do Riemann sums
and definite integrals have to do with it?

7. Explain how the values of �x and x k (or �y and y k) in
a Riemann sum determine the limits of integration on
the definite integral obtained by taking the limit of the
Riemann sum as n → ∞.

8. What do we mean when we say that a sum is a Riemann
sum? What has to be true about a Riemann sum for us to
be able to guarantee that it converges to a definite integral
when we take the limit as n → ∞?

9. Why is the task of pumping all of the water out of the top
of a hot tub different from the task of lifting the entire
hot tub 4 feet in the air (even assuming that the hot tub
itself doesn’t weigh anything)? Which task requires more
work?

10. Use the information in the description of the problem in
Example 3 to show that the height of the gelatin mold is
given by the function y = 4.5 − 0.5x 2 and that the den-
sity of the gelatin mold at height y is given by the linear
function ρ( y) = 1.3 − 0.233y.

11. If the approximating sum in Example 3 runs from k = 1
to k = n, why does the definite integral have 0 and 4.5 as
its limits of integration?

12. Make a list of all of the physics formulas introduced in
this section. Give an example of an application of each
formula, together with appropriate units.

13. Strangely, the hydrostatic force exerted on the side wall
of a pool does not depend on how much water is behind
that wall, but only on the depth of the water. Explain why
this makes sense.

14. Mass is the product of density and volume. When we
integrate to find accumulated mass, we integrate the
product of density and cross-sectional area. Express the
previous two sentences in mathematical notation. Then
explain why volume is used in one, but area in the other.

15. Work is the product of weight-density, volume, and dis-
tance. When we integrate to find accumulated work, we
integrate the product of weight-density, cross-sectional
area, and distance. Express the previous two sentences in
mathematical notation. Then explain why volume is used
in one, but area in the other.

16. Hydrostatic force is the product of weight-density, area,
and depth. When we integrate to find accumulated
hydrostatic force, we integrate the product of weight-
density, length, and depth. Express the previous two sen-
tences in mathematical notation. Then explain why area
is used in one, but length in the other.

17. Consider a region in the plane divided into disjoint rect-
angles with areas A1, A2, . . . , An and individual centroids
(x̄1, ȳ1), (x̄2, ȳ2), . . . , (x̄n, ȳn). The centroid of this region is

(x̄, ȳ) =
(∑n

k=1 x k A k∑n
k=1 A k

,
∑n

k=1 y k A k∑n
k=1 A k

)
.
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Explain what it means to say that this is a “weighted” average
of the coordinates of the centroids of the rectangles.
18. In Theorem 6.14 there are four definite integrals in the ex-

pression for the centroid of a region under a curve. Explain
where each of these definite integrals comes from in the

construction of this centroid by Riemann sums. Then give
a similar explanation for the four definite integrals in the
expression for the centroid of a region between two curves
given in Theorem 6.15. In this second theorem, why are
there absolute values?

Skills

Use physics formulas to calculate each quantity in Exer-
cises 19–24.

19. The mass of an object with density 12 grams per cubic
centimeter in the shape of a cylinder with radius 4 cen-
timeters and height 10 centimeters.

20. The mass of an object with density 600 grams per cubic
centimeter in the shape of a cone with radius 0.5 meters
and height 1 meter.

21. The work required to lift an object that weighs 20 pounds
to a height of 100 feet.

22. The work required to lift an object 2 feet into the air, given
that the object has a weight-density of 50 pounds per
cubic foot and that the object is a cylinder with radius
2 inches and height 6 inches.

23. The hydrostatic force exerted by water on the bottom of a
full, 2-foot deep rectangular tank with a 3 × 4 foot base.

24. The hydrostatic force exerted by a liquid of weight-density
70 pounds per cubic foot on the bottom of a cylindrical
tank with height 8 feet and radius 2 feet.

Use four slices to construct an approximation of each of the
quantities described in Exercises 25–30. In each case include
a labeled diagram and an explicit list of the values of �x and
each x k and x ∗

k (or �y and each y k and y ∗
k ).

25. The mass of a cylindrical rod with radius of 2 centimeters
and length of 24 centimeters whose density at a point x
centimeters from the left end is ρ(x) = 10.5 + 0.01527x 2

grams per cubic centimeter.

26. The mass of the solid of revolution obtained by rotating
the graph of y = 4.5 − 0.5x 2 on [0, 3] around the y-axis
and whose density at height y is ρ( y) = 1.3 − 0.233y
ounces per cubic inch.

27. The work required to pump all of the water out of a cone
with top radius 3.5 feet and height 4 feet.

28. The work required to pump all of the water out of a cylin-
der with radius 3.5 feet and depth 4 feet.

29. The hydrostatic force exerted by water on one of the sides
of a small cubical tank that is 4 feet to a side.

30. The hydrostatic force exerted by water on one of the
shorter side walls of a rectangular container that is 3 feet
long, 4 feet wide, and 2 feet deep.

In Exercises 31–34, use a weighted average over n rectangles
to approximate the centroid of the region described. (Hint: It
may help to draw a picture.)

31. The region between f (x) = √
x and the x-axis on [a, b] =

[1, 9], with n = 2.
32. The region between f (x) = x 2

√
3 − x and the x-axis on

[a, b] = [0, 3], with n = 6.
33. The region between f (x) = x 3 and the line y = 8 on

[a, b] = [0, 2], with n = 4.
34. The region between f (x) = x 2 and g(x) = 64 − x 2 on

[a, b] = [0, 8], with n = 4.

In Exercises 35–40, use definite integrals to calculate the cen-
troid of the region described. Use graphs to verify that your
answers are reasonable.

35. The region between f (x) = √
x and the x-axis on [a, b] =

[1, 9]. (Compare with Exercise 31.)
36. The region between f (x) = x 2

√
3 − x and the x-axis on

[a, b] = [0, 3]. (Compare with Exercise 32.)

37. The region between f (x) = x 3 and the line y = 8 on
[a, b] = [0, 2]. (Compare with Exercise 33.)

38. The region between f (x) = ln x and g(x) = 2 − ln x on
[a, b] = [1, e 2].

39. The region between f (x) = sin x and the line y = 1
2

on
[a, b] = [0, π ].

40. The region between f (x) = x 2 and g(x) = 64 − x 2 on
[a, b] = [0, 8]. (Compare with Exercise 34.)

Applications
Find each mass described in Exercises 41–48.

41. The mass of a block of copper that has a square base with
sides measuring 20 centimeters and a height of 13 cen-
timeters. Copper has a density of 8.93 grams per cubic
centimeter.

42. The mass of a gold walking stick in the shape of a tall,
thin cylinder that is 4 feet high and 3 inches wide. Gold
has a density of 19.3 grams per cubic centimeter. (Cau-
tion: Watch your units! You will need to use the conversion
2.54 cm = 1 inch.)

43. The mass of a 12-inch rod with a square cross section
of side length 1.5 inches, with density x inches from the

left end given by ρ(x) = 4.2 + 0.4x − 0.03x 2 grams per
cubic inch.

44. The mass of a cylindrical rod with a radius of 3 cen-
timeters and a length of 20 centimeters, made of a com-
bination of copper and aluminum in such a way that
the density of the rod x centimeters from the left end is
ρ(x) = 8.93 − 0.015x grams per cubic centimeter.

45. The mass of a 10-centimeter rod with square cross sec-
tion of side length 1 centimeter, made of a combina-
tion of metals in such a way that the density of the rod
x centimeters from the left end is ρ(x) = 15 − 0.5x grams
per cubic centimeter.
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46. The mass of a rectangular block of metal that is 30 cen-
timeters wide, 21 centimeters long, and 14 centimeters
tall, given that its density y centimeters from its base is
ρ( y) = 6.8 + 0.14y grams per cubic centimeter.

47. Last week Jack made an upside-down pudding cake that
was 8 inches tall and 10 inches across, in the shape of the
top of a downwards-pointing parabola that has been re-
volved around the y-axis. The raisins he put in the cake
have tended to drift towards the bottom of the cake over
the past week (nobody seems to want to eat this cake!)
in such a way that the density of the cake at the very
top of the mold is 0.15 ounce per cubic inch, while the
density at the very bottom of the cake is 1.12 ounces per
cubic inch.
(a) Describe Jack’s upside-down pudding cake as a solid

of revolution, by identifying the region to be revolved
and the axis of revolution.

(b) Describe the density of Jack’s upside-down pudding
cake as a linear function of the height y of a point in
the cake.

(c) Find the weight of Jack’s upside-down pudding cake.
48. A solid cone of metal with a radius of 10 centimeters and a

height of 15 centimeters is made of a combination of met-
als in such a way that, if the cone is pictured with its point
up, then the density of the metal in the cone increases
by 0.35 gram per cubic centimeter for each centimeter of
height.

(a) Describe the metal cone as a solid of revolution, by
identifying the region to be revolved and the axis of
revolution.

(b) Given that the density at the bottom of the cone is
7.25 grams per cubic centimeter, find a function ρ( y)
that describes the density of the cone y centimeters
above its base.

(c) Using the density function you found in part (b), find
the total mass of the cone.

Find the work described in each of Exercises 49–60.

49. The work required to lift a full cylindrical soda fountain
cup 1 foot into the air, given that the cup is full and has
a radius of 3 inches and a height of 6 inches. You may
assume that soda has the same weight-density as water.
(Caution: Watch your units!)

50. The work required to lift a bathtub full of water 30 feet into
the air, given that the bathtub itself weighs 150 pounds
and it holds a rectangular volume of water measuring
5 feet by 2 feet by 2 feet.

51. The work required to pump all of the water out of the top
of a giant rectangular hot tub that is 5 feet wide, 8 feet
long, and 3 feet deep.

52. The work required to pump all of the water out of the top
of a spherical tank with a radius of 27 feet.

53. The work required to pump all of the water out of the top
of an upright conical tank that is 10 feet high and has a
radius of 4 feet at the top.

54. The work required to pump all of the water out of the top
of an upright conical tank that is 12 feet high and has a
radius of 6 feet at the top.

55. The work required to pump all the water out of the top
of a tank and up to ground level, given that the tank is a
large upright cylinder with a radius of 4 feet and a height
of 13 feet, buried so that its top is 3 feet below the surface.

56. The work required to pump all the liquid out of the top of
a tank and up to 4 feet above ground level, given that the
tank is a giant upright cylinder with a radius of 8 feet and
a height of 20 feet, buried so that its top is 2 feet below
the surface. The tank is only two-thirds full and contains
a strange liquid that weighs 71.8 pounds per cubic foot.

57. The work required to pump all of the liquid out of the top
of a cylindrical tank on a tanker truck (so that the cylin-
der is on its side) with a length of 100 feet and a radius of
8 feet. The tank is full of a liquid that weighs 42.3 pounds
per cubic foot. Be careful; in this problem the slices are
not cylinders!

58. Buffy has tied a rope to a 50-pound sword so that she can
hoist it up to her upstairs bedroom window, 23 feet off
the ground. How much work will it take for Buffy to lift
the sword up to her window, assuming that the weight
of the rope is negligible?

59. Willow has tied a rope to a 20-pound mallet so that she
can hoist it up to her upstairs bedroom window, 18 feet
off the ground. How much work will it take for Willow to
lift the mallet up to her window, assuming that the rope
weighs 0.25 pound per foot?

60. Xander has tied a rope to a 100-pound block of ice so that
he can hoist it up to his upstairs bedroom window, 22 feet
off the ground. How much work will it take for Xander to
lift the block of ice up to his window, assuming that the
weight of the rope is negligible and the block of ice melts
off 2 pounds of water for each foot it is lifted?

Find the hydrostatic force described in each of Exercises
61–69.
61. The hydrostatic force on the bottom of a full cylindri-

cal water glass with a radius of 2 inches and a height of
7 inches.

62. The hydrostatic force on the bottom of a full cylindrical
beer stein with a radius of 6 centimeters and a height of
20 centimeters. You may assume that the weight-density
of beer is the same as for water.

63. The hydrostatic force exerted on one of the long sides of
a giant rectangular hot tub that is 5 feet wide, 8 feet long,
and 3 feet deep.

64. The hydrostatic force exerted on one of the long sides of a
rectangular swimming pool that is 8 feet long, 6 feet wide,
and 4.5 feet deep.

65. The hydrostatic force exerted by the water in a birdbath on
its cylindrical side, given that the birdbath is in the shape
of a cylinder that is 1 foot deep with a radius of 0.4 foot.

66. The hydrostatic force exerted on a dam in the shape of an
isosceles triangle whose top is 200 feet wide and whose
total height is 100 feet, given that the dam is holding back
a body of water that reaches to the top of the dam.

67. The hydrostatic force exerted on a dam in the shape of a
trapezoid whose top is 400 feet long and whose base is
250 feet long, given that the dam is holding back a body
of water that reaches all 200 feet from the bottom to the
top of the dam.
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68. The hydrostatic force exerted on one of the long sides of a
swimming pool that is 24 feet long and 10 feet wide, with
a shallow end that has a depth of 3 feet (for the first 4 feet
of the pool) and a deep end that has a depth of 15 feet
(for the last 8 feet of the pool). The middle portion of the
bottom of the pool is a straight ramp leading down from
the shallow depth to the depth at the deep end.

69. The hydrostatic force exerted on one of the long sides of
a pool that is 20 feet long and 8 feet wide, with a shallow
end that has a depth of 4 feet (for the first 6 feet of the
pool) and a deep end that has a depth of 12 feet (for the
last 6 feet of the pool), and with a middle portion that is
a straight ramp.

Use centroids to solve the real-world problems in Exer-
cises 70–71.
70. Ian is making some snow flukes, which are metal sheets

that can be used to prevent a fall on steep snow. The

flukes are in the shape of a polygon with vertices (0, 8),
(6, 8), (6, 2), (3, 0.5), and (0, 8) with all distances given in
inches. Ian needs to clip a cable to the centroid of the
fluke. Where should he attach the cable?

71. Leila needs to find a location for a radio repeater that will
monitor the signals from a pack of radio-collared wolves.
In order to get the strongest signal, she wants to locate
the repeater at the centroid of the range of the wolf pack.
The valley in which the wolves live encompasses roughly
the union of the rectangle 0 ≤ x ≤ 8, 0 ≤ y ≤ 4 and the
part of the ellipse

(x − 6)2

4
+ ( y − 2)2

100
= 1

that lies above the x-axis, where all distances are in miles.
Where should Leila put the repeater?

Proofs

72. Use the physics formulas given in this text to prove that
the work required to lift a cube of liquid with weight-
density ω and side length s through a distance of d feet
is W = ωs2d.

73. Suppose an object has horizontal cross sections for x ∈
[a, b], so that the functions for density ρ(x) and area A(x)
are continuous. Use physics formulas and the definition
of the definite integral to prove that the accumulated
mass of such an object is

m =
∫ b

a
ρ(x) A( x) dx.

74. Suppose an object whose particles are to be displaced
has vertical cross sections for y ∈ [a, b], so that the func-
tions for weight-density ω( y), area A( y), and displace-
ment d( y) are continuous. Use physics formulas and the
definition of the definite integral to prove that the accu-
mulated work required is

W =
∫ b

a
ω( y) A( y) d( y) dy.

75. Suppose the wall of a container has vertical cross sec-
tions for y ∈ [a, b], so that the functions for weight-
density ρ( y), length l( y), and depth d(x) are continuous.

Use physics formulas and the definition of the definite
integral to prove that the accumulated hydrostatic force
on such a wall is

F =
∫ b

a
ω( y) l( y) d( y) dy.

76. Use a Riemann sum argument to prove that the centroid
(x̄, ȳ) of the region between two curves f (x) and g(x) on an
interval [a, b] has coordinates

x̄ =
∫ b

a x| f (x) − g(x)| dx∫ b
a | f (x) − g(x)| dx

,

ȳ =
1
2

∫ b
a | f (x)2 − g(x)2| dx∫ b
a | f (x) − g(x)| dx

.

As part of your argument you will need to explain the rea-
son for the four definite integrals in these expressions, as
well as the absolute value signs that appear in the expres-
sion. Your argument should also contain the words “rect-
angle,” “weighted average,” and ”limit.”

Thinking Forward

� The volume of a torus: A torus is a donut-shaped ob-
ject that is obtained by rotating a circle around an
axis. For example, we could revolve the circle with
equation y 2 + (x − 3)2 = 1 (i.e., the circle with radius
1 and center at (0, 3)) around the y-axis to obtain a
torus. Use a “subdivide, approximate, and add” strat-
egy to find the volume of this torus. (Hint: The func-
tions

√
1 − y 2 + 3 and −√

1 − y 2 + 3 will be involved;
why? You can use disks/washers or shells to find this
volume.)

� Pappus’s Centroid Theorem: The volume of a solid ob-
tained by revolving a region in the plane around an
axis that does not intersect that region is equal to
V = 2πrA, where r is the distance from the centroid
of the region to the axis and A is the area of the region.
Use this theorem to find the volume of the torus de-
scribed in the previous problem without having to set
up any definite integrals. Then discuss why the the-
orem makes intuitive sense in terms of an alternative
“subdivide, approximate, and add” strategy for find-
ing volume in this case.
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6.5 DIFFERENTIAL EQUATIONS*

� Using antidifferentiation and separation of variables to solve differential equations

� Using slope fields and Euler’s method to approximate solutions of differential equations

� Common forms of initial-value problems and their applications

Differential Equations and Initial-Value Problems

Recall that an equation is nothing more than two mathematical expressions connected by
an equals sign. For example, x 2−4 = 0 is a single-variable equation, and its set of solutions
is the set the values of x that make the equation true, namely, x = 2 and x = −2. Similarly,
y = x 2 − 4 is a two-variable equation, and its set of solutions is the set of ordered pairs
(x, y) that make the equation true, namely, the ordered pairs of the form (x, y) = (x, x 2 − 4)
that, when graphed together, make up the parabola that is the graph of y = x 2 − 4.

If an equation involves the derivative dy
dx

of some function y(x), then we say that the

equation is a differential equation. For example, two examples of differential equations are
dy
dx

= x 2 and dy
dx

= y.

Once again, the solutions of these equations are the objects that make the equations true.
For example, the solutions of dy

dx
= x 2 are the functions y(x) whose derivatives equal x 2,

namely, the functions of the form y(x) = 1
3

x 3 +C. The solutions of dy
dx

= y are the functions

y(x) that are equal to their own derivatives, namely, the functions y(x) = Ae x. In general, a
solution of a differential equation is a function that makes the equation true.

A first-order differential equation is an equation that involves the first derivative dy
dx

, a

function y, and independent variable x. Higher order differential equations involve higher
order derivatives. Many of the first-order differential equations we will study are of the
form dy

dx
= g(x, y), where g(x, y) is some function of the variables x and y. The simplest case

occurs when g involves only the variable x. Such a differential equation can be solved by
antidifferentiation:

THEOREM 6.16 Differential Equations Whose Solutions Are Antiderivatives

The solution of a differential equation of the form dy
dx

= g(x) is the family y(x) = G(x)+C
of antiderivatives of g(x).

Proof. If G(x) is an antiderivative of g(x), then G′(x) = g(x), which means that y(x) = G(x) is a

solution of the differential equation
dy
dx

= g(x). Moreover, we know that two functions of x have

the same derivative precisely when they differ by a constant. This means that every solution of the

differential equation
dy
dx

= f (x) must be of the form y(x) = G(x) + C.

A differential equation of the form dy
dx

= g(x, y) with initial condition y(x 0) = y0 is called

an initial-value problem. Provided that various continuity, differentiability, and bounded-
ness conditions are satisfied, an initial-value problem will have one and only one solution
y(x). The details can be found in any standard differential equations textbook. For our pur-
poses it is sufficient to say that when we consider an initial-value problem in this book, it
will be one for which these conditions are met and it will have one and only one solution.

For example, the differential equation dy
dx

= x 2 has many solutions, all of the form

y(x) = 1
3

x 3 + C. Only one of these solutions also satisfies the initial condition y(0) = 2,
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namely, the function y(x) = 1
3

x 3 + 2. Therefore y(x) = 1
3

x 3 + 2 is the unique solution of the

initial-value problem dy
dx

= x 2 and y(0) = 2. This solution is shown next at the left, high-

lighted amongst other solutions of the differential equation dy
dx

= x 2. Similarly, the function

y(x) = 2e x is the unique solution of the initial-value problem dy
dx

= y and y(0) = 2, as illus-

trated at the right.

y(x) = 1
3

x 3 + 2 is the only solution

of
dy
dx

= x 2 that satisfies y(0) = 2

y(x) = 2e x is the only solution

of
dy
dx

= y that satisfies y(0) = 2

y

x
�2 �1 21

�2

�4

�6
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y

x
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�4

�8

�12
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8
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Separable Differential Equations

We have seen that differential equations of the form dy
dx

= g(x) can be solved if we can

antidifferentiate the function g(x). How do we solve differential equations that involve the
independent variable y? The answer is that sometimes we can and sometimes we cannot.
One particular technique is useful for differential equations for which the y-related infor-
mation can be separated from the x-related information. Note that in this section we will
be assuming that the functions y(x) we work with are continuous on their domains.

Let’s consider the simple example dy
dx

= y. Our strategy will be to move all the y-related

parts of the differential equation to the side with the derivative dy
dx

and then integrate both

sides:

dy
dx

= y =⇒ 1
y

dy
dx

= 1 =⇒
∫

1
y

dy
dx

dx =
∫

1 dx =⇒
∫

1
y

dy =
∫

1 dx.

The last step followed from integration by substitution, with y(x) playing the role of what
we would normally call u(x) when substituting. Notice that Leibniz notation makes it easy
for us to remember this substitution, since it has the effect of “cancelling the dx” in the
notation.

After considering the work we just did, we now have a way to move towards finding
the solutions y(x) to the differential equation: We simply perform the integration and solve
for y(x). This gives us

ln |y| + C1 = x + C2 =⇒ ln |y| = x + C =⇒ |y| = e x+C = eCe x =⇒ y = Ae x.

Along the way we just defined C1 and C2 as arbitrary constants, with C = C2 − C1 as their
difference and A = ±e C. All that matters by the end of this calculation is that A is some
constant. If we knew a particular initial value for y(x), then we could solve uniquely for this
constant A.

For a more complicated differential equation like dy
dx

= y + xy, we can use a similar

technique, rearranging the equation so that all the y-related expressions are on the left
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side with a multiplier of dy
dx

and all the x-related expressions are on the right, as follows:

dy
dx

= y + xy =⇒ dy
dx

= y(1 + x) =⇒ 1
y

dy
dx

= 1 + x.

We could then integrate both sides and solve for y to find the family of solutions of the
differential equation; see Example 1.

This technique is called separation of variables, because the initial step involves sep-
arating the y-related and x-related parts of the differential equation. We say that a differen-
tial equation dy

dx
= g(x, y) is separable if we can write it in the form dy

dx
= p(x)q( y) for some

functions p(x) and q(x). With such a separable differentiable equation we have

1
q(y)

dy
dx

= p(x).

Integrating both sides with respect to x and applying u-substitution with u = y and du =
dy = y′(x) dx = dy

dx
dx, we have the following theorem:

THEOREM 6.17 Solving a Differential Equation by Separation of Variables

Given a separable differential equation dy
dx

= p(x)q( y), it follows that∫
1

q( y)
dy =

∫
p(x) dx.

Solving both of these integrals and then solving for y(x), if possible, yields a solution of
the differential equation.

Of course, in some cases one or both integration steps will be impossible, or perhaps after
integrating we might be unable to solve for the function y(x). But if everything works out,
then this method gives us a nice way to solve more complicated differential equations with
our antidifferentiation skills.

Slope Fields

Every differential equation dy
dx

= g(x, y) is at its heart a statement about the slopes of some

function y(x) at various points (x, y) in the plane. For example, a solution of the differential
equation dy

dx
= x 2 is a function y(x) whose slope at each of its graphed points (a, b) is equal

to a2. If we draw small line segments at each point (a, b) in the plane, each with slope a2,

we get the slope field shown next at the left. The solutions of dy
dx

= x 2 are all of the form

y(x) = 1
3

x 3 + C, and each of these functions flows along with the small line segments in

the slope field. Similarly, a slope field for the differential equation dy
dx

= y consists of line

segments whose slope at (a, b) is equal to b, as shown at the right. The curves that flow
through this slope field are the solutions y(x) = Ae kx.

Slope at (a, b) is equal to a2 Slope at (a, b) is equal to b

y

x
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In the first slope field, the slopes are the same across each column because the differ-
ential equation dy

dx
= x 2 does not involve the variable y. Similarly, in the second slope field

the slopes are the same in each row because dy
dx

= y does not involve the variable x. In

Example 2 you will construct a slope field that depends on both x and y. In general, we can
sketch a slope field for any differential equation:

DEFINITION 6.18 The Slope Field of a Differential Equation

Given a differential equation dy
dx

= g(x, y) and a lattice of points in the plane, the associ-

ated slope field is a collection of line segments drawn at each point (x, y) in the lattice,
with the property that the slope of the segment drawn at (x, y) is equal to g(x, y).

Euler’s Method

The method of tracing through a slope field to approximate a solution of a differential
equation can be put into algebraic form with the technique known as Euler’s method.
Consider for example the initial-value problem consisting of the differential equation
dy
dx

= y and the initial value y(0) = 2. We will use slope field information to construct a

sequence of points going forward from this initial condition that approximate values of the
solution of the given differential equation.

By construction, the solution y(x) we would like to approximate must pass through the
initial point (x 0, y0) = (0, 2). We also know from the differential equation dy

dx
= y that the

slope of the function y(x) at this point is given by dy
dx

∣∣
(0,2) = 2. Near the point (0, 2) we would

expect the function y(x) to behave a lot like its tangent line, so we will follow this slope for
a step of �x = 0.5 to the right, as illustrated here:

Getting from (x 0, y0) to (x 1, y1)

y

x
0.5

2

3

(x0, y0)

(x1, y1)

�y1 � ?

�x � 0.5

slope 2

So what are the coordinates of our new points (x 1, y1)? Clearly we have x 1 = x 0 + �x =
0 + 0.5 = 0.5. To find the new y-coordinate y1 we must find the change �y1 between y0
and y1. Using the slope information, we have

2 = �y1

0.5
=⇒ �y1 = 1.

Since y0 = 2, it follows that y1 = y0 + �y1 = 2 + 1 = 3.

We have just followed the slope dy
dx

∣∣
(x 0,y0) from our initial point (x 0, y0) to a new point

(x 1, y1). This new point will in general not be on the actual graph of the solution y(x) to the
differential equation, but it will be a reasonable approximation to a point on the graph of
the solution. We can repeat the process, following the slope dy

dx

∣∣
(x 1,y1) to get from the point

(x 1, y1) to another new point (x 2, y2), and so on. This produces a sequence of points that
we can connect to form an approximation of the solution function y(x). In the next figure
at the left is the result of continuing the process with �x = 0.5 for four steps. At the right
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is the result of following the same process with �x = 0.25 for eight steps; see Example 3
for the details.

Euler’s method with �x = 0.5 Euler’s method with �x = 0.25

y

x
0.5 1 1.5 2

2

4

6

8

10

12

14

16

y

x
0.5 1 1.5 2

2

4

6

8

10

12

14

16

In each of these figures the Euler’s method approximation is shown, compared with
the actual solution y(x) = 2e x of the initial-value problem dy

dx
= y, y(0) = 2. Notice that

the approximation is better when we use a smaller value of �x and therefore update our
slope information more frequently. Notice also that Euler’s method approximations start
out close to the solution graph but then tend to drift away as errors compound in each step
of the process. In general, Euler’s method provides us with a useful way of approximating
solutions of initial-value problems that are too complicated to solve algebraically:

DEFINITION 6.19 Euler’s Method of Approximating the Solution of an Initial-Value Problem

Given an initial-value problem with differential equation dy
dx

= g(x, y) and initial condi-

tion y(x 0) = y0, and given a value �x > 0, define a sequence of points (x k, y k) by the
iterative formula

(x k+1, y k+1) = (x k + �x, y k + �y k), where �y k = g(x k, y k) �x.

This sequence of points forms an Euler’s method approximation to the solution y(x) of
the initial-value problem.

Applications of Initial-Value Problems

Many real-world situations can be modeled by initial-value problems. When we have
information about the rate of change and initial value of a quantity, we can often set up
a model of an initial-value problem whose solution will be the function that describes that
quantity. We will describe three such models next, each of which results in a differential
equation that can be solved exactly by the technique of separation of variables.

One of the simplest situations is when a quantity Q(t) grows at a rate proportional
to itself. This happens often with simple growth and decay models, as you will see in
Exercises 65–67.

THEOREM 6.20 Exponential Growth and Decay Models

If a quantity Q(t) changes over time at a rate proportional to its value, then that quantity
is modeled by a differential equation of the form

dQ
dt

= kQ

for some proportionality constant k, where k > 0 represents growth and k < 0 represents
decay. The solution of this differential equation that satisfies the initial value Q(0) = Q0
is

Q(t) = Q0e kt.
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The proof of this theorem requires that we solve the differential equation dQ
dt

= kQ with

initial condition Q(0) = Q0. The work is similar to what we did in our motivating example
for the technique of separation of variables, so the details of the proof are left to Exercise 75.

Of course, real-life situations are often more complicated. For example, it makes sense
to imagine that a population of animals on an island might grow at a rate proportional to
the number of animals on the island; when there are more animals on the island, there
are also more animals around to make offspring. However, at some point there may be too
many animals on the island to be supported by the available food and shelter. In this case
we say that the island has a carrying capacity of some maximum number L of animals.
The following logistic model describes such a situation, where for small population values
the growth rate is approximately exponential with some natural growth rate k, but for
population values near the carrying capacity L the growth rate levels off to zero:

THEOREM 6.21 Logistic Growth Model

If a population P(t) has natural growth rate k and is restricted by a carrying capacity L,
then it can be modeled by the differential equation

dP
dt

= kP
(

1 − P
L

)
.

The solution of this differential equation that satisfies the initial value P(0) = P0 is

P(t) = LP0

P0 + (L − P0)e−k t
.

To prove this theorem we must solve the initial-value problem that represents logistic
growth and show that we obtain the given solution. This can be done by separation of
variables followed by partial fractions, either in general (see Exercise 76) or on a case-by-
case basis (see Exercises 68 and 69).

We can also use differential equations to model the changing temperature of an object.
If a hot or cold object is in an environment with a constant ambient temperature, then the
object will cool down or heat up until its temperature matches that of its environment. In
an ideal situation this happens in such a way that the rate of change of the temperature
of the object is proportional to the difference of the ambient temperature and the current
temperature of the object. In this situation we have the following differential equation,
attributed to Newton:

THEOREM 6.22 Newton’s Law of Cooling and Heating

If an object with temperature T(t) is placed in a location with a constant ambient tem-
perature A, then the temperature of the object can be modeled by a differential equation
of the form

dT
dt

= k(A − T )

for some proportionality constant k. The solution of this differential equation that satis-
fies the initial value T(0) = T0 is

T(t) = A − (A − T0)e−kt.

It is not difficult to solve this initial-value problem by the technique of separation of vari-
ables; you will work out the details of the proof in general in Exercise 78 and in specific
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cases in Exercises 70 and 71. Note that in practice we might encounter a situation where
we know the temperature of the object not at time t = 0, but at some other point in time.
In those situations the equation for T(t) in Theorem 6.22 will involve different constants,
which are not difficult to solve for after performing separation of variables to solve the
differential equation; see Example 4.

Examples and Explorations

EXAMPLE 1 Using separation of variables to solve initial-value problems

Solve each of the following initial-value problems:

(a) dy
dx

= sin x, y(0) = 2 (b) dy
dx

= y 2, y(0) = 3 (c) dy
dx

= y + xy, y(0) = 2

SOLUTION

(a) The differential equation dy
dx

= sin x does not involve the dependent variable at all, so

technically it is already separated. By antidifferentiating, the solutions of this differen-
tial equation are of the form

y(x) = −cos x + C.

Using the initial condition y(0) = 2, we get

2 = −cos 0 + C =⇒ 2 = −1 + C =⇒ C = 3.

Therefore the solution of the initial-value problem is the function y(x) = −cos x + 3.
(b) We can write this differential equation in separable form as dy

dx
= (1)( y 2); in the nota-

tion of Theorem 6.17 we have p(x) = 1 and q(x) = y 2. Dividing both sides by the y 2

expression and integrating both sides, we obtain

dy
dx

= y 2 =⇒ 1
y 2

dy
dx

= 1 =⇒
∫

y−2 dy =
∫

1 dx =⇒ −y−1 = x + C.

Notice that we did not add a constant after integrating the left side of the equation; this
is because any constant on that side can be absorbed into the constant on the right side.
All that remains now is to solve for y:

− 1
y

= x + C =⇒ y = − 1
x + C

.

We can use the initial condition y(0) = 3 to solve for C:

y(0) = 3 =⇒ 3 = − 1
0 + C

=⇒ C = −1
3
.

Therefore the solution of the initial-value problem is y(x) = − 1
x − (1/3)

.

(c) The differential equation dy
dx

= y + xy involves both x and y. As we saw earlier in the

reading, we can separate the variables and then integrate:

dy
dx

= y + xy =⇒ dy
dx

= y(1 + x) =⇒
∫

1
y

dy =
∫

1 + x dx

=⇒ ln |y| = x + 1
2

x 2 + C.

Now solving for y, we have

|y| = e x+( 1/2)x 2+C =⇒ y = Ae x+( 1/2)x 2
.
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Notice that C is an arbitrary constant from the integration step, and we have defined
A = ± e C to simplify the expression and take care of the absolute value. We are given
the initial value y(0) = 2, which yields:

y(0) = 2 =⇒ 2 = Ae 0 =⇒ A = 2.

Therefore the solution we seek is y(x) = 2e x+( 1/2)x 2
. �

CHECKING
THE ANSWER

To check our answers to the previous example we need only differentiate and plug in val-
ues to compare against the original initial-value problems. Let’s do this for part (c). If

y(x) = 2e x+( 1/2)x 2
, then we have dy

dx
= 2e x+( 1/2)x 2

(1 + x) = y(1 + x) = y + xy, as we started

with in that problem. Moreover, y(0) = 2e 0+( 1/2)(0) = 2(1) = 2, as desired.

EXAMPLE 2 Sketching a slope field and tracing solution curves

Sketch a slope field for the differential equation dy
dx

= 2xy on a lattice of points contained

within −2 ≤ x ≤ 2 and −10 ≤ y ≤ 10. Then use the slope field to sketch graphs of three
approximate solutions of the differential equation.

SOLUTION

Let’s start by looking at the slopes at a few chosen points in the lattice. We have dy
dx

= g(x, y)

with g(x, y) = 2xy. At each point (a, b) in the lattice we want to sketch a line segment with
slope g(a, b) = 2ab. For example, at the point (0, 0) we draw a segment with slope 2(0)(0),
and at the point (1, 2) we draw a segment with slope 2(1)(2) = 4. Clearly, for positive a and
b, the slope 2ab will be positive. Likewise, if a and b are both negative, then the slope 2ab
will be positive, and if a and b have opposite signs, then the slope 2ab will be negative. In all
cases, the magnitude of the slope will grow larger as a and/or b increase, and grow smaller
as a and/or b decrease. After plotting a few of these line segments to get an initial idea, we
can sketch the slope field shown here at the left:

Slope field for
dy
dx

= 2xy Three solution curves in the slope field

y

x
�2 �1 21

�5

�10

5

10

y

x
�2 2

�10

10

Three curves through the slope field are shown in the figure at the right. Each of these is
an approximate solution of the differential equation dy

dx
= 2xy. �

CHECKING
THE ANSWER

Sometimes we sketch a slope field because we cannot solve a differential equation by hand.
That is not the case in Example 2, and so we can check whether our slope field is reason-
able by actually solving the differential equation dy

dx
= 2xy. A straightforward separation-

of-variables calculation (see Exercise 21) shows that the solutions are each of the form
y(x) = Ae x 2

for some constant A. This means that the graphs of, for example, y(x) = 3e x 2
,

y(x) = 1
4

e x 2
, and y(x) = −e x 2

should flow through the slope field. And in fact, these are
precisely the three functions that we traced through the slope field earlier at the right.
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EXAMPLE 3 Applying Euler’s method

Consider the differential equation dy
dx

= y with initial condition y(0) = 2. Use Euler’s

method with �x = 0.25 to approximate the solution y(x) to this initial-value problem on
the interval [0, 2].

SOLUTION

We want to approximate the solution of dy
dx

= y that passes through the point (x 0, y0) =
(0, 2). Euler’s method with �x = 0.25 allows us to construct a sequence of eight more co-
ordinate points (x 1, y1), . . . , (x 8, y8) over the interval [0, 2]. Each (x k+1, y k+1) is obtained
from the previous point (x k, y k) by stepping over �x and up or down g(x k, y k)�x according
to the value of dy

dx

∣∣
(x k,y k) = g(x k, y k) = y k:

(x 0, y0) = (0, 2);

(x 1, y1) = (x 0 + �x, y0 + g(x 0, y0)�x) = (0 + 0.25, 2 + 2(0.25)) = (0.25, 2.5);

(x 2, y2) = (x 1 + �x, y1 + g(x 1, y1)�x) = (0.25 + 0.25, 2.5 + 2.5(0.25)) = (0.5, 3.125);

(x 3, y3) = (x 2 + �x, y2 + g(x 2, y2)�x) = (0.5 + 0.25, 3.125 + 3.125(0.25)) = (0.75, 3.91);

(x 4, y4) = (x 3 + �x, y3 + g(x 3, y3)�x) = (0.75 + 0.25, 3.91 + 3.91(0.25)) = (1, 4.89);

(x 5, y5) = (x 4 + �x, y4 + g(x 4, y4)�x) = (1 + 0.25, 4.89 + 4.89(0.25)) = (1.25, 6.11);

(x 6, y6) = (x 5 + �x, y5 + g(x 5, y5)�x) = (1.25 + 0.25, 6.11 + 6.11(0.25)) = (1.5, 7.64);

(x 7, y7) = (x 6 + �x, y6 + g(x 6, y6)�x) = (1.5 + 0.25, 7.64 + 7.64(0.25)) = (1.75, 9.55);

(x 8, y8) = (x 7 + �x, y7 + g(x 7, y7)�x) = (1.75 + 0.25, 9.55 + 9.55(0.25)) = (2, 11.94).

When plotted and connected by line segments, this sequence of points produces a
piecewise-linear approximation to the solution of the initial-value problem dy

dx
= y with ini-

tial condition y(0) = 2. This is the same piecewise-linear approximation that we sketched
in the rightmost figure preceding Definition 6.19. �

EXAMPLE 4 Using Newton’s Law of Cooling

Suppose your teacher sets down a fresh cup of coffee onto a table in a classroom that
is kept at a constant temperature of 68◦ Fahrenheit. After giving a fascinating 45-minute
lecture on differential equations she remembers her cup of coffee, which has now cooled
to a lukewarm 75◦ Fahrenheit. Assuming that the proportionality constant for Newton’s
Law of Cooling in this case is k = 0.065, how hot was the coffee before the lecture started?

SOLUTION

Newton’s Law of Cooling tells us that the coffee should get cooler until it matches the
temperature of the 68◦ room. We are told that for this particular cup of coffee and room
environment, the rate of this cooling will be proportional to the difference in temperatures
of the coffee and the room, with proportionality constant k = 0.065. In other words, if T(t)
is the temperature of the coffee after t minutes, then we have the differential equation

dT
dt

= 0.065(68 − T ).

Notice that T starts out hotter than the 68◦ room, so the rate of change dT
dt

= 0.065(68−T )
is negative, as we would expect.
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Let us start by solving this differential equation. After applying separation of variables,
we have ∫

1
68 − T

dT =
∫

0.065 dt.

Integrating both sides gives us the equation

− ln |68 − T| = 0.065t + C,

and after solving this equation for T, we have

T = 68 − Be−0.065t,

where B = e−C is some constant.

We do not know the initial temperature T(0) of the coffee at the start of the teacher’s
lecture, but we do know that the temperature of the coffee after 45 minutes is T(45) = 75◦.
Substituting this number into our equation for T(t) results in

75 = 68 − Be−0.065(45) ⇒ B = −7
e−0.065(45)

≈ −130.44.

Therefore the temperature of the coffee is given by the equation T(t) = 68 + 130.44e−0.065t.

Now that we have an equation for the temperature T(t) of the coffee, we can easily cal-
culate T(0) to obtain the initial temperature of the teacher’s coffee. This initial temperature
was approximately T(0) = 68 + 130.44e−0.065(0) = 198.44 degrees Fahrenheit. �

CHECKING
THE ANSWER

As a reality check, let’s graph the function T(t) = 68 + 130.44e−0.065t and verify that it is a
good model for the temperature of the coffee as it cools:

Temperature T(t) of coffee

T

t
15 30 45 60

75
68

198.44

Notice that the coffee starts out at nearly 200◦, and then its temperature declines, first
quickly and then more slowly, approaching the ambient temperature of the room. Accord-
ing to this model the coffee’s temperature after t = 45 minutes is 75◦, as we wanted. Notice
also that as t → ∞ the temperature of the coffee becomes asymptotically close to the tem-
perature of the 68◦ classroom, as we would expect. This model function T(t) does indeed
seem to match with what we would expect from the teacher’s cooling cup of coffee.

TEST YOUR? UNDERSTANDING
� What does it mean for a function y(x) to be a solution of a differential equation? What

about a solution of an initial-value problem?

� What does it mean for a differential equation to be separable? Can you give an example
of a differential equation that is not separable?

� What is a slope field associated with a differential equation, and how are the slopes of
the line segments in a slope field related to the differential equation?
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� When using Euler’s method, how do we use slope information to determine how to get
each point (x k+1, y k+1) from the previous point (x k, y k)?

� Why does the differential equation for Newton’s Law of cooling make real-world sense?

EXERCISES 6.5

Thinking Back

Integration: Solve each of the following indefinite integrals.

�
∫

1
y 2

dy �
∫

1
1 − y

dy

�
∫

1
y 2 + 1

dy �
∫

y
y 2 + 1

dy

�
∫

1
y(1 − y)

dy �
∫

1
y(1 − 3y)

dy

Local linearity: In each problem that follows we are given
values for f (c) and f ′(c) for some c. Use this information
to approximate f (c + h) for the given value of h.

� f (0) = 2, f ′(0) = 1, h = 1

� f (1) = −1, f ′(1) = −3, h = 0.5

� f (−2) = −3, f ′(−2) = 2, h = 0.25

� f (1.5) = 6.2, f ′(1.5) = 2.2, h = 0.1

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: A solution of an initial-value problem is
a function that satisfies both the differential equation
and the initial value.

(b) True or False: If y1(x) and y2(x) are both solutions of

some differential equation
dy
dx

= g(x, y), then y1(x) −
y2(x) = C for some constant C.

(c) True or False: Solving a differential equation
dy
dx

= g(x)

by antidifferentiating is just a special case of solving
by separation of variables.

(d) True or False: The differential equation
dy
dx

= x + y is
separable.

(e) True or False: In a slope field for a differential equation
dy
dx

= g(x, y), the slope of the line segment at (a, b) is

given by
dy
dx

∣∣∣
(a,b)

.

(f) True or False: In a slope field for a differential equa-

tion
dy
dx

= g( y), the slope at (2, b) will be the same as

the slope at (3, b).
(g) True or False: Euler’s method is a way to construct a

piecewise-linear approximation of the solution of an
initial-value problem.

(h) True or False: For populations well below carrying
capacity, the logistic growth model is similar to an
exponential model.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two differential equations that are separable and two
that are not separable.

(b) A slope field that describes solution functions of the
form f (x) = x 2 + C.

(c) Three real-world situations that could be modeled
with initial-value problems.

3. What is the difference between a solution of a differential
equation and a solution of an initial-value problem?

4. Suppose you solve an initial-value problem of the form
dy
dx

= g(x, y) with y(0) = y0 and obtain an explict solu-

tion function y(x). How could you check that your func-
tion y(x) is indeed a solution of the initial-value problem?

5. Verify that y(x) = √
x + C is a solution of the differential

equation
dy
dx

= 1
2y

for every constant C.

6. Verify that y(x) = √
t + 9 is a solution of the initial-value

problem
dy
dx

= 1
2y

and y(0) = 3.

7. A falling object accelerates downwards due to gravity at
a rate of 9.8 meters per second squared. Suppose an ob-
ject is dropped and falls to the ground from a height of
100 meters.

(a) Set up and solve a first-order initial-value problem
whose solution is the velocity v(t) of the object at
time t.

(b) Use your answer to part (a) to set up and solve a first-
order initial-value problem whose solution is the po-
sition s(t) of the object at time t.

8. Explain, using the chain rule and/or u-substitution, why∫
1

q(y)
dy
dx

dx =
∫

1
q(y)

dy.

9. Why do we use the terminology ”separable” to describe
a differential equation that can be written in the form
dy
dx

= p(x)q( y)? Once we have a differential equation in

this form, how does the technique of separation of vari-
ables work?
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10. In the process of solving
dy
dx

= y by separation of vari-

ables, we obtain the equation |y| = e x+C. After solving
for y, this equation becomes y = Ae x. How is A related to
C? What happened to the absolute value?

11. In the process of solving the differential equation
dy
dx

=
1 − y by separation of variables, we obtain the equation
− ln |1 − y| = x + C. After solving for y, this equation
becomes y = 1−Ae−x. Given that y > 1, how is A related
to C?

12. Explain in your own words how the slopes of the line seg-
ments in a slope field for a differential equation are related
to the differential equation.

13. How does a slope field help us to understand the solu-
tions of a differential equation? How can a slope field
help us sketch an approximate solution of an initial-value
problem?

14. Given an initial-value problem, we can apply Euler’s
method to generate a sequence of points (x 0, y0), (x 1, y1),
(x 2, y2), and so on. How are these coordinate points re-
lated to the solution of the initial-value problem?

15. Explain how the equality
dy
dx

∣∣
(x k ,y k) = �yk

�x
is relevant to

Euler’s method.
16. Suppose your bank account grows at 3 percent interest

yearly, so that your bank balance after t years is B(t) =
B0(1.03)t.
(a) Show that your bank balance grows at a rate propor-

tional to the amount of the balance.
(b) What is the proportionality constant for the growth

rate, and what is the corresponding differential equa-
tion for the exponential growth model of B(t)?

17. Suppose a population P(t) of animals on a small island

grows according to a logistic model of the form
dP
dt

=
kP

(
1 − P

500

)
for some constant k.

(a) What is the carrying capacity of the island under this
model?

(b) Given that the population P(t) is growing and that
0 < P(t) < 500, is the constant k positive or negative,
and why?

(c) Explain why
dP
dt

≈ kP for small values of P.

(d) Explain why
dP
dt

≈ 0 for values of P that are close to

the carrying capacity.

18. Suppose an object is heating up according to a model
for Newton’s Law of Cooling with temperature satisfying
dT
dt

= k(350 − T ) for some constant k.

(a) What is the ambient temperature of the environment
under this model?

(b) Given that the temperature T(t) is increasing and that
0 < T < 350, is the constant k positive or negative,
and why?

(c) Use the differential equation to argue that the object’s
temperature changes faster when it is much cooler
than the ambient temperature than when it is close
to the ambient temperature.

(d) Part (c) is the basis for the oft-misunderstood saying
“Cold water boils faster.” Why?

Skills
Use antidifferentiation and/or separation of variables to solve
each of the differential equations in Exercises 19–28. Your
answers will involve unsolved constants.

19.
dy
dx

= (x 3 + 4)2 20.
dy
dx

= x + 1√
x

21.
dy
dx

= 2xy 22.
dy
dx

= −3xy

23.
dy
dx

= x 2y 24.
dy
dx

= xy 2

25.
dy
dx

= 3x + 1
xy

26.
dy
dx

= y sin x

27.
dy
dx

= xe−y 28.
dy
dx

= x 2e−y

Use antidifferentiation and/or separation of variables to solve
each of the initial-value problems in Exercises 29–52.

29.
dy
dx

= 3y, y(0) = 4 30.
dy
dx

= 3x, y(0) = 4

31.
dy
dx

= −6x 2, y(1) = 3 32.
dy
dx

= −5y, y(0) = 2

33.
dy
dx

= 1 − y, y(0) = 4 34.
dy
dx

= 1
y

, y(0) = 3

35.
dy
dx

= 3
y

, y(0) = 2 36.
dy
dx

= 6
x

, y(1) = 7

37.
dy
dx

= xy, y(0) = −1 38.
dy
dx

= √
4y, y(1) = 1

39.
dy
dx

= e x+y, y(0) = 2 40.
dy
dx

= 2x
y 2

, y(0) = 4

41.
dy
dx

= x
1 + x 2

, y(0) = 4

42.
dy
dx

= 10 − 7y, y(0) = 1
11

43.
dy
dx

= 9.8 − 0.3
150

y, y(0) = 1000

44.
dy
dx

= 0.4y − 100, y(0) = 0

45.
dy
dx

= −2(1 − 3y), y(0) = 2

46.
dy
dx

= −2y(1 − 3y), y(0) = 2

47.
dy
dx

= 3y(1 − y), y(0) = 1

48.
dy
dx

= xy + x + y + 1, y(0) = c

49.
dy
dx

= y 2 cos x, y(π ) = 1 50.
dy
dx

= y 3 cos x, y(π ) = 1

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 29, 2012 17:8

6.5 Differential Equations* 571

51.
dy
dx

= x 2 − 2
y 2

, y(0) = 8

52.
dy
dx

= y + 1
x 2 + 1

, y(0) = 1

For each initial-value problem
dy
dx

= g(x, y) with y(x 0) = y0 in

Exercises 53–58, use Euler’s method with the given �x to ap-
proximate four additional points on the graph of the solution
y(x). Use these points to sketch a piecewise-linear approxi-
mation of the solution.

53.
dy
dx

= −2y, y(0) = 3; �x = 0.25

54.
dy
dx

= 1
x

, y(1) = 1; �x = 0.25

55.
dy
dx

= x + y, y(0) = 0; �x = 0.5

56.
dy
dx

= x
1 − y

, y(0) = 2; �x = 0.1

57.
dy
dx

= x
y

, y(0) = 2; �x = 0.5.

58.
dy
dx

= x 2 − y, y(1) = 0; �x = 0.25

Sketch slope fields for each of the differential equations in Ex-
ercises 59–64, and within each slope field sketch four different
approximate solutions of the differential equation.

59.
dy
dx

= −y 60.
dy
dx

= 1 − x

61.
dy
dx

= x + y 62.
dy
dx

= x − y

63.
dy
dx

= y − 2x 64.
dy
dx

= e x − y

Applications
The situations in Exercises 65–67 concern exponential growth

models of the form
dQ
dt

= kQ. When the constant of pro-

portionality k (also called the continuous growth rate, when
expressed as a percentage) happens to be negative rather
than positive, this differential equation models exponential
decay.
65. Suppose that the current population of Freedonia is

1.08 million people and that the continuous growth rate
of the population is 1.39%.

(a) Set up a differential equation describing
dP
dt

, and solve

it to get a formula for the population P(t) of Freedonia
t years from now.

(b) According to your model, how long ago was it that
the population of Freedonia was just half a million
people?

(c) How long will it take for the population of Freedonia
to double from its current size?

66. Suppose X(t) is the number of milligrams of the drug
Xenaphoril that is present in the body t hours after it is in-
gested. As the drug is absorbed, the quantity of the drug
decreases at a rate proportional to the amount of the drug
in the body.

(a) Set up a differential equation describing
dX
dt

, and

solve it to get a formula for X(t). Your answer will
involve two constants.

(b) The half-life of a drug is the number of hours that
it takes for the quantity of the drug to decrease by
half. In an exponential decay model, the half-life will
be the same no matter when we start measuring the
amount of the drug. If Xenaphoril has a half-life of
4 hours, what is the constant of proportionality for
this model?

(c) Given the constant of proportionality you found in
part (b), how much of a 20-mg dose of Xenaphoril
remains after 10 hours?

67. The amount of the radioactive isotope carbon-14 present
in small quantities can be measured with a Geiger
counter. Carbon-14 is replenished in live organisms, and
after an organism dies the carbon-14 in it decays at a rate

proportional to the amount of carbon-14 present in the
body. Suppose C(t) is the amount of carbon-14 in a dead
organism t years after it dies.

(a) Set up a differential equation describing
dC
dt

, and
solve it to get a formula for C(t). Your answer will in-
volve two constants.

(b) The half-life of carbon-14 is 5730 years. (See part (b)
of the previous problem for the definition of half-life.)
Use this half-life to find the value of the proportion-
ality constant for the model you found in part (a).

(c) Suppose you find a bone fossil that has 10% of its
carbon-14 left. How old would you estimate the fos-
sil to be?

The situations in Exercises 68 and 69 concern logistic growth

models of the form
dP
dt

= kP
(

1 − P
L

)
for some constant of

proportionality k (also called the natural growth rate) and
some carrying capacity L.

68. Suppose that the country of Freedonia has a carrying ca-
pacity of 5 million people, with natural growth rate and
initial population as given in Exercise 65.

(a) Set up a differential equation describing
dP
dt

, and solve

it to get a formula for the population P(t) of Freedonia
t years from now.

(b) How long will it be before the population of Freedo-
nia is half of the carrying capacity?

(c) How fast is Freedonia’s population changing when
the population is at half of carrying capacity? What
about when the population has reached 90% of car-
rying capacity?

69. Suppose 100 rabbits are shipwrecked on a deserted island
and their population P(t) after t years is determined by
a logistic growth model, where the natural growth rate
of the rabbits is k = 0.1 and the carrying capacity of the
island is 1000 rabbits.
(a) Set up a differential equation describing

dP
dt

, and solve

it to get a formula for the population P(t) of rabbits on
the island in t years.

(b) Sketch a graph of the population P(t) of rabbits on the
island over the next 100 years.
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(c) It turns out that a population governed by a logistic
model will be growing fastest when the population is
equal to exactly half of the carrying capacity. In how
many years will the population of rabbits be growing
the fastest?

The situations in Exercises 70 and 71 concern Newton’s

Law of Cooling and Heating and models of the form
dT
dt

=
k(A − T ) for some proportionality constant k and constant
ambient temperature A.

70. A cold drink is heating up from an initial temperature
T(0) = 2◦C to room temperature of 22◦C according to
Newton’s Law of Heating with constant of proportional-
ity 0.05◦C.

(a) Set up a differential equation describing
dT
dt

, and

solve it to get a formula for the temperature of the
drink after t minutes.

(b) Use the differential equation and/or its solution to de-
termine the units of the constant of proportionality.

(c) How long will it take for the drink to warm up to
within 1 degree of room temperature?

71. A crime scene investigator finds a body at 8 P.M., in a
room that is kept at a constant temperature of 70◦F. The
temperature of the body is 88.8◦F at that time. Thirty min-
utes later the temperature of the body is 87.5◦F.

(a) Set up a differential equation describing
dT
dt

, and

solve it to get a formula for the temperature of the
body t minutes after the time of death. Your answer
will involve a proportionality constant k.

(b) Use the information in the problem to determine k.
(c) Assuming that the body had a normal temperature of

98.6◦F at the time of death, estimate the time of death
of the victim.

In Exercises 72 and 73 you will set up and solve differential
equations to model different population growth scenarios.

72. A colony of bacteria is growing in a large petri dish in such
a way that the shape of the colony is a disk whose area A(t)
after t days grows at rate proportional to the diameter d
of the disk. Suppose the colony has an area of 2 cm2 on
the first day and 5 cm2 on the third day.
(a) Set up a differential equation that describes this situ-

ation, and solve it to get an equation for the area A(t)
of the colony after t days. Your answer will involve a
proportionality constant k.

(b) Use the information in the problem to determine k.
(c) Given that the petri dish has a diameter of 6 inches

and that the colony started in the exact center of the
dish, how long will it take for the colony to fill the
entire petri dish?

73. Another model for population growth is what is called
supergrowth. It assumes that the rate of change in a popu-
lation is proportional to a higher power of P than P1. For
example, suppose the rate of change of the world’s hu-
man population P(t) is proportional to P1.1.

(a) Set up a differential equation that describes
dP
dt

, and

solve it to get an equation for the world popula-
tion P(t). Your answer will involve two unsolved
constants.

(b) Given that the world population was estimated to be
6.451 billion in 2005 and 6.775 billion in 2010, what
is the value of the proportionality constant for this
supergrowth model?

(c) According to your model, when will the world popu-
lation be 7 billion?

Proofs

74. Show that if y1(x) and y2(x) are both solutions of the dif-
ferential equation

dy
dx

= ky, then the sum y1(x) + y2(x) is

also a solution of the differential equation.

75. Prove Theorem 6.20 by solving the initial-value problem
dQ
dt

= kQ with Q(0) = Q0, where k is a constant.

76. Prove Theorem 6.21 by solving the initial-value problem
dP
dt

= rP
(

1 − P
K

)
with P(0) = P0, where r and K are con-

stants. (Hint: After separation of variables you will need to
use partial fractions to solve the integral that concerns P. Be-
fore solving for P, use properties of logarithms to simplify the
expression.)

77. Use the solution of the logistic model
dP
dt

= kP
(

1 − P
L

)
to prove that as t → ∞, the population P(t) approaches

the carrying capacity L. Assume that the constant k is
positive.

78. Prove Theorem 6.22 by solving the initial-value problem
dT
dt

= k(A − T ) with T(0) = T0, where k and A are con-

stants.

79. Use the solution of the differential equation
dT
dt

= k(A−T)

for the Newton’s Law of Cooling and Heating model to
prove that as t → ∞, the temperature T(t) of an object
approaches the ambient temperature A of its environ-
ment. The proof requires that we assume that k is posi-
tive. Why does this make sense regardless of whether the
model represents heating or cooling?

Thinking Forward

Implicit solution curves: Sometimes the solution of a differen-
tial equation will be an implicit solution, meaning that y will
be given as an implicit function of x, not an explicit function

of x. For each differential equation
dy
dx

= g(x, y) that follows,

find an equation that gives y as an implicit function of x. Then
draw the continuous curve that satisfies this differential equa-
tion and passes through the point (2, 0).

� dy
dx

= −x
y

� dy
dx

= x
y

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 14:50

Chapter Review, Self-Test, and Capstones 573

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or algebraic example, if possible.

� the volume of a solid with cross-sectional area function given
by A(x) on [a, b], both as a limit of Riemann sums and as
a definite integral

� the volume of a solid with disk cross sections whose radii are
given by r(x) on [a, b], both as a limit of Riemann sums
and as a definite integral

� the volume of a solid with washer cross sections whose outer
and inner radii are given, respectively, by R(x) and r(x) on
[a, b], as a limit of Riemann sums

� the volume of a solid with nested shell sections whose heights
and average radii are given, respectively, by h(x) and r(x)
on [a, b], as a limit of Riemann sums

� the arc length of the graph of a continuous, differen-
tiable function y = f (x) whose derivative is also conti-
nuous, from x = a to x = b, as a limit of Riemann sums

� if f is a continuous, differentiable function with a continu-
ous derivative, the area of the surface of revolution obtained
by revolving y = f (x) around the x-axis on [a, b], as a limit
of Riemann sums

� the definition of a differential equation and what it means
for a function to be a solution of a differential equation

� the definition of an initial-value problem and what it
means for a function to be a solution of an initial-value
problem

� what it means for a differential equation to be sep-
arable

� the definition of a slope field for a differential equation,
including the specific property that holds at each lattice
point (x, y)

� the method of approximation known as Euler’s method,
including the iterative formula that describes a new co-
ordinate point (x k+1, y k+1) in terms of the previous point
(x k, y k)

Theorems

Fill in the blanks to complete each of the following theorem
statements.

� The volume of a shell with height h, average radius r, and
thickness �x is V = .

� The surface area of a frustum with average radius r and
slant length s is S = .

� If a quantity Q(t) changes over time at a rate proportional
to its value, then that quantity is modeled by a differ-

ential equation of the form
dQ
dt

= , with solution
Q(t) = .

� If a population P(t) changes over time with natural growth
rate k and carrying capacity L, then it can be modeled

by the differential equation
dP
dt

= , with solution

P(t) = .
� If an object with temperature T(t) is in a location with con-

stant ambient temperature A, then the temperature of the
object can be modeled by a differential equation of the

form
dT
dt

= , with solution T(t) = .

Formulas and Geometric Quantities

Definite integral formulas for geometric quantities: Write down
definite integrals to express each of the given geometric quan-
tities. You may assume that f (x) is continuous and differen-
tiable, with a continuous derivative.

� The volume of the solid obtained by revolving f (x) on [a, b]
around the x-axis, by the disk method.

� The volume of the solid obtained by revolving f (x) on [a, b]
around the y-axis, by the disk method.

� The volume of the solid obtained by revolving f (x) on [a, b]
around the x-axis, by the shell method.

� The volume of the solid obtained by revolving f (x) on [a, b]
around the y-axis, by the shell method.

� The arc length of the curve formed by y = f (x) on [a, b].

� The area of the surface obtained by revolving f (x) on [a, b]
around the x-axis.

� The centroid (x̄, ȳ) of the region between the graph of
an integrable function f and the x-axis on an interval
[a, b].

� The centroid (x̄, ȳ) of the region between the graphs of
two integrable functions f and g on an interval [a, b].
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Finding distances related to graphs: In setting up definite inte-
grals for volume problems, it is often necessary to describe
various distances in terms of f , f −1, x ∗

k , and/or y ∗
k . Describe

these distances for each figure that follows.
� For the following figure, write the distances A and B in

terms of f or f −1 and the point x ∗
k .

y

x

A

B

y � f (x)

xk*

� For the following figure, write the distances A and B in
terms of f or f −1 and the point y ∗

k .

y

x

A

B

y � f (x)

yk*

� For the following figure, write the distances A, B, and C
in terms of f or f −1, the point x ∗

k , and K.

xk*

y

x

C

B

Ay � f (x)

K

� For the following figure, write the distances A, B, and C
in terms of f or f −1, the point y ∗

k , and K.

xk*�K

yk*

y � f (x)

y

x
C

BA

Concepts from physics: Fill in the blanks to complete the de-
scriptions of each of the following physical quantities and
units.

� The mass of an object with density ρ and volume V is
given by m = .

� If density is measured in grams per cubic centimeter and
volume is measured in cubic centimeters, then mass is
measured in units of .

� The work required to lift an object with a weight F through
a distance d is given by W = .

� If weight is measured in pounds and distance is measured
in feet, then work is measured in units of .

� The hydrostatic force exerted by a liquid of weight-density
ω and depth d on a horizontal wall of area A is given by
F = .

� If weight-density is measured in pounds per cubic foot
and distance is measured in feet, then hydrostatic force is
measured in units of .

Skill Certification: Definite Integrals for Geometry and Applications
Sketching disks, washers, and shells: Sketch the three disks,
washers, or shells that result from revolving the rectangles
shown in the given figures around the given lines.

y

�1

�2

1

2

�1�2
x

1 2

1. the x-axis 2. the y-axis

3. the line x = −1 4. the line y = −1

Sketching a representative disk, washer, or shell: Sketch a repre-
sentative disk, washer, or shell for the solid obtained by re-
volving the regions shown in the given figures around the
given lines.

y

1

x
1 2 3 4 5

2

3

5. the x-axis 6. the y-axis

7. the line x = 7 8. the line y = 3
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Finding geometric quantities with definite integrals: Set up and
solve definite integrals to find each volume, surface area, or
arc length that follows. Solve each volume problem both with
disks/washers and with shells, if possible.

9. The volume of the solid obtained by revolving the re-
gion between the graph of f (x) = x 2 and the y-axis for
0 ≤ x ≤ 2 around (a) the x-axis and (b) the y-axis.

10. The volume of the solid obtained by revolving the region
between the graph of f (x) = 9 − x 2 and the x-axis on
[−3, 3] around (a) the x-axis and (b) the line y = −3.

11. The volume of the solid obtained by revolving the region
between the graphs of f (x) = √

x and g(x) = x 3 on [0, 1]
around (a) the y-axis and (b) the line x = 2.

12. The arc length of the curve traced out by the graph of

f (x) = ln(csc x) on the interval
[

π

4
,
π

2

]
.

13. The area of the surface obtained by revolving the curve
f (x) = sin(πx) around the x-axis on [−1, 1].

14. The centroid of the region between the graph of f (x) = x 2

and the x-axis on [0, 2].
15. The centroid of the region between the graphs of f (x) =√

x and g(x) = 4 − x on [0, 4].

Real-world applications of definite integrals: Set up and solve
definite integrals to answer each of the following questions.

16. Find the mass of a 30-centimeter rod with square cross
sections of side length 2 centimeters, given that the den-
sity of the rod x centimeters from the left end is ρ(x) =
10.5 + 0.01527x 2 grams per cubic centimeter.

17. Find the work required to pump all of the water out of the
top of a cylindrical hot tub that is 8 feet in diameter and
3 feet deep.

18. Find the hydrostatic force exerted on one of the long sides
of a rectangular swimming pool that is 20 feet long, 12 feet
wide, and 6 feet deep.

Differential equations: Solve each of the following initial-value
problems. (These problems assume that you covered Section 6.5.)

19.
dy
dx

= 5y, y(0) = 1 20.
dy
dx

= 3 − 4y, y(0) = 2

21.
dy
dx

= 2y(1 − 5y), y(0) = 1

22.
dy
dx

= y 2 sin x, y(π ) = 1

Capstone Problems

A. Proving geometric properties of spheres: Set up and solve
definite integrals to prove each of the following geomet-
ric formulas concerning the sphere with radius r.

(a) Volume: V = 4
3
πr 3 (with disks)

(b) Volume: V = 4
3
πr 3 (with shells)

(c) Equator: C = 2πr
(d) Surface area: S = 4πr 2

B. Approximating volumes with frustums: In Section 6.3 we
used frustums to approximate surface areas. We could
also use frustums, instead of disks, to approximate
volumes.
(a) Consider the solid of revolution obtained by revolv-

ing the graph of f (x) = x 2 around the x-axis on [0, 2].
Use four frustums to approximate the volume of this
solid.

(b) Suppose we used a limit of volumes of frustums
to develop a definite integral formula for volume.
Would we obtain a different definite integral for-
mula? Why or why not?

C. Center of mass when density varies: In Section 6.4 we
saw both how to find the mass of a rod whose den-
sity varies and how to find the center of mass of a pla-
nar region with constant density. Combine these two
ideas in a “subdivide, approximate, and add” strategy
to construct a formula for determining the center of
mass of a planar region whose density varies. You may
assume that the density at any point in the region is
given by some function ρ(x) that depends only on the
x-coordinate.

D. A differential equation for escape velocity: To get a satellite
up into space, it needs to escape the gravitational pull of
the earth. The velocity it must attain to break free from the
earth is called its escape velocity. Let s = s(t) be the po-
sition of the satellite above the surface of the earth. As an
object moves away from the earth, the acceleration due to
gravity is reduced. In fact, the acceleration due to gravity
on an object s kilometers from the surface of the earth is

a = a(t) = gR2

(R + s)2
,

where R is the radius of the earth and g is the accelera-
tion due to gravity on the surface of the earth. The sign on
g is negative, pointing in the direction toward the earth.

Knowing that a = dv
dt

, we can rewrite our equation for

acceleration due to gravity as a differential equation:

dv
dt

= gR2

(R + s)2
.

(a) Use the chain rule to show that

v
dv
ds

= gR2

(R + s)2
.

(b) Use separation of variables to solve the differential
equation.

(c) Find the escape velocity of the satellite, that is, the
smallest value of v(0) for which the velocity v(t) will
never be zero.
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Sequences and Series
7.1 Sequences

Sequences of Numbers
Recursively Defined Sequences
Geometric and Arithmetic Sequences
Monotonic Sequences
Bounded Sequences
Examples and Explorations

7.2 Limits of Sequences
Convergence or Divergence of a Sequence
Theorems About Convergent Sequences
Convergence and Divergence of Basic Sequences
Bounded Monotonic Sequences
Examples and Explorations

7.3 Series
Adding Up Sequences to Get Series
Convergence and Divergence of Series
The Algebra of Series
Geometric Series
Examples and Explorations

7.4 Introduction to Convergence Tests
An Overview of Convergence Tests for Series

. . .

The Divergence Test
The Integral Test
Convergence and Divergence of p-Series and the

Harmonic Series
Approximating a Convergent Series
Examples and Explorations

7.5 Comparison Tests
The Comparison Test

lim
k→∞

ak

bk

The Limit Comparison Test
Examples and Explorations

7.6 The Ratio and Root Tests
The Ratio Test lim

k→∞
ak+1

akThe Root Test
Examples and Explorations
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7.1 SEQUENCES

� Sequences as functions whose domains are subsets of the nonnegative integers

� Common sequences defined with formulas and with recursion

� Monotonic sequences and bounded sequences

Sequences of Numbers

In this chapter we will discuss two distinct, yet related, infinite processes: sequences and
series. Informally, a sequence is an infinite list of numbers and a series is a sum of an
infinite list of numbers. To examine series in more generality we must first make our idea
of a sequence more precise.

Here are a few examples of sequences:

3, 4, 5, 6, 7, . . .

1, 1, 2, 3, 5, 8, . . .

2, 3, 5, 7, 11, 13, . . .

1, 1
2

, 1
3

, 1
4

, 1
5

, 1
6

, . . .

1, −1
3

, 1
7

, − 1
13

, 1
21

, − 1
31

, . . .

1, −1, 1, −1, 1, −1, . . .
π , π , π , π , π , π , . . .

It is not hard to see the pattern in, say, the fourth sequence shown; the kth term in the
list is of the form 1

k
. We can think of this sequence as a function that, for each positive

integer k, returns a real number 1
k
. This is how we will define sequences in general:

DEFINITION 7.1 Sequences of Real Numbers

A sequence of real numbers {ak} is a function from the positive integers to the real
numbers. For each positive integer index k, the output ak is called the kth term of the
sequence.

To start a sequence at some integer r other than k = 1, we can use the more general notation
{ak}∞k=r. For example, the sequence 3, 4, 5, 6, 7, . . . can be expressed in many different ways
depending on where we choose to start the index: {k + 2} = {k + 2}∞k=1 , or {k}∞k=3 , or even
{k − 5}∞k=8.

If we let Z
+ represent the positive integers, then a sequence {ak} defined on Z

+ can be
expressed in function notation as

a : Z
+ → R.

Although in regular function notation we would represent the output for a given k ∈ Z
+

as a(k), with sequences the convention is instead to use a subscripted letter such as ak.
This subscript notation, and the fact that we are using k rather than x as our input vari-
able, stresses that the inputs make up a discrete list of positive integers, not arbitrary real
numbers.
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Sometimes it is easy to find a straightforward formula for the general term of a
sequence, and sometimes it is not. For example, the sixth sequence in our previous list is

{1, −1, 1, −1, 1, −1, . . .} = {(−1)k+1},
since (−1)k+1 is equal to 1 if k is odd and equal to −1 if k is even. An equation that allows us
to compute the value of each term of a sequence from its index is called a closed formula.
The fifth sequence in our list also has a closed formula, although it is one that is more
difficult to identify: {

1, −1
3

, 1
7

, − 1
13

, 1
21

, − 1
31

, . . .
}

=
{

(−1)k+1

k 2 − k + 1

}
.

In some cases we cannot find a simple algebraic formula; for example, the third sequence
in our list was {2, 3, 5, 7, 11, 13, . . .}, which is the sequence whose kth term ak is equal to the
kth prime number.

Recursively Defined Sequences

Some sequences are best described in terms of previous terms instead of with a closed
formula. For example, the second sequence in our previous list is the Fibonacci sequence

{ f k} = {1, 1, 2, 3, 5, 8, 13, 21, 34, . . .}.
This famous sequence is obtained by starting with f 1 = 1 and f 2 = 1 and then defining
each subsequent term to be the sum of the two previous terms in the sequence. Thus f 3 =
f 1 + f 2 = 1 + 1 = 2 and f 7 = f 5 + f 6 = 5 + 8 = 13. We can completely describe all of the
terms in the Fibonacci sequence as follows:

f 1 = 1, f 2 = 1; and for k ≥ 3, f k = f k−2 + f k−1.

In general, sequences that are defined by specifying one or more initial terms and then
defining remaining terms as functions of previous terms are called recursive sequences.

DEFINITION 7.2 Recursive Sequences

A sequence {ak} is said to be recursively defined if there is some index K so that for
k > K, the value of ak is determined by a 1, a 2, . . . , ak−1. The equation defining ak in
terms of a 1, a 2, . . . , ak−1 is called a recursion formula.

As another example of a recursively defined sequence, recall that the factorial of a positive
integer k, denoted by k!, is the product of all the positive integers from 1 to k:

k! = 1(2)(3) · · · (k − 1)(k).

By convention we also say that the factorial of 0 is equal to 0! = 1; see Exercise 6. We can
recursively define the factorial sequence{

k!
}∞

k=0 = {1, 1, 2, 6, 24, 120, 720, . . .}
as follows:

0! = 1; and for k ≥ 1, k! = k · (k − 1)!

A closed formula and a recursion formula give us different types of information about
a sequence. For example, consider this sequence of nonnegative powers of two:

{
2k} = {

1, 2, 4, 8, 16, . . .
}∞

k=0.
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The closed formula ak = 2k tells us exactly how to compute the kth term of the sequence,
no matter how large a value of k we choose. We can easily see that the 100th term of this
sequence is 299. The same sequence can also be recursively defined as follows:

a 0 = 1; and for k ≥ 1, ak = 2ak−1.

Although it is obvious from looking at the sequence {1, 2, 4, 8, 16, . . .} that every term
is twice the previous term, the recursion formula makes it explicit. One computational
advantage of a recursively defined sequence is that the recursion formula relates new terms
to terms we’ve already computed. One disadvantage is that in order to compute a new term
we must have already computed all previous terms. For example, to use the recursive defi-
nition to compute the 100th term , we need to have previously computed a99, and to have
computed a99, we need to have also computed a98, and so on.

Geometric and Arithmetic Sequences

The sequence {2k} is an example of a type of sequence that is common enough to deserve
its own definition.

DEFINITION 7.3 Geometric Sequences

A geometric sequence is a sequence in which each term differs from the previous term
by a constant multiplicative factor r. We will commonly desire to start such sequences
at k = 0: {

cr k}∞
k=0 = {

c, cr, cr 2, cr 3, . . .
}
.

For example {3 · 2k}∞k=0 = {3, 3 · 2, 3 · 22, 3 · 23, . . .} is a geometric sequence starting at 3 and
with multiplicative factor 2. Note that each term of the sequence is two times the previous
term. In general, we can define a geometric sequence { g k} recursively as follows:

g0 = c; and for k ≥ 1, g k = r g k−1.

If the terms are nonzero, then the ratio of successive terms in a geometric sequence is
constant, since g k

g k−1
= r.

The additive “cousin” of the geometric sequence is the arithmetic sequence, where
instead of multiplying by a constant to get the next term, we add a constant:

DEFINITION 7.4 Arithmetic Sequences

An arithmetic sequence is a sequence in which each term differs from the previous term
by a constant additive increment d:{

c + dk
}∞

k=0 = {c, c + d, c + 2d, c + 3d, . . .}.

For example, {ak} = {5, 7, 9, 11, 13, . . .} is an arithmetic sequence with starting value a 0 = 5
and additive difference d = 2. This example immediately suggests how to write an additive
sequence recursively:

a0 = c; and for k ≥ 1, ak = ak−1 + d.

The difference of successive terms in an arithmetic series is constant, since ak − ak−1 = d.
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Monotonic Sequences

In Section 7.2 we will be interested in the long-term behavior of sequences—specifically,
whether sequences converge or diverge as k → ∞. One important idea that will help
us answer such questions is monotonicity. A monotonic sequence is a sequence whose
terms either always increase as the index grows or always decrease. For example, the
sequence {2, 4, 6, 8, . . .} is monotonically increasing, while the sequence {1, −1, 1, −1, . . .}
is not monotonic. More precisely, we have the following definition:

DEFINITION 7.5 Monotonic Sequences

A monotonic sequence {ak} is a sequence that is either always increasing or always
decreasing, where

(a) a sequence {ak} is increasing if ak+1 ≥ ak for all k ≥ 1;

(b) a sequence {ak} is decreasing if ak+1 ≤ ak for all k ≥ 1.

Note that the definitions of increasing and decreasing are just the discrete versions
of our definitions from Section 0.1 where we said that a function f (x) is increasing if
f (b) ≥ f (a) when a < b, and is decreasing if f (b) ≤ f (a) when a < b. A sequence can
also satisfy the stronger condition of being strictly increasing or strictly decreasing,
which means that the inequalities (≤ and ≥) in the preceding definition become strict
inequalities (< or >).

When we study the long-term behavior of a sequence, we do not actually care if the
sequence is always monotonic; we only need to know if it is eventually monotonic. For
example, we say that a sequence {ak} is eventually increasing if it is increasing after some
index K, or more precisely, if there is some positive integer K for which ak ≥ ak−1 for all
k ≥ K; see Exercises 11–14.

The graphs that follow show three examples of sequence behavior. The first is the se-

quence {ak} =
{

1
k

}
, the second is {bk} =

{
k2

2k

}
, and the third is {ck} =

{
(−1)k + k

2k

}
.

Strictly decreasing Eventually decreasing Not monotonic

y

x
3 4 5 6 7 8 9 101 2

0.25

0.5

0.75

1

y

x
3 4 5 6 7 8 9 101 2

0.25

0.5

0.75

1

y

x
3 4 5 6 7 8 9 101 2

0.25

0.5

0.75

1

For some sequences, monotonicity is easy to determine; for example, we can see just
by inspection that the sequence {k 2} = {1, 4, 9, 16, 25, . . .} clearly has the property that
ak+1 > ak for k ≥ 1 and thus is strictly increasing. We can also prove it algebraically: Since
2k + 1 > 0 whenever k ≥ 1, we have

ak+1 = (k + 1)2 = k 2 + 2k + 1 > k 2 = ak.
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For more complicated sequences it is useful to have different tests for monotonicity. The
following theorem provides three such tests:

THEOREM 7.6 Three Tests for Monotonicity

A sequence {ak} is increasing if it passes any of the following tests:

(a) The difference test: ak+1 − ak ≥ 0 for all k ≥ 1.

(b) The ratio test: all terms are positive, and ak + 1

ak
≥ 1 for all k ≥ 1.

(c) The derivative test: a′(x) ≥ 0 for all x > 1, given that a(x) is a function that is dif-
ferentiable on [1, ∞) and whose value at any positive integer k is a(k) = ak.

The obvious analogs of these tests work to determine other types of monotonicity
(decreasing, strictly increasing, eventually increasing, etc.).

The difference test follows directly from the definition of monotonicity; the ratio test follows
from the fact that a fraction a

b
is greater than or equal to 1 exactly when the numerator is

greater than or equal to the denominator; and the derivative test is based on our usual test
for increasing behavior in differentiable functions. You will formally prove these three tests
in Exercises 94, 95, and 96.

As an illustration of the three monotonicity tests, we will use each of them to prove that
the sequence {ak} = {k 2} is strictly increasing. This sequence passes the difference test for
strictly increasing behavior because, for k ≥ 1, we have 2k + 1 > 0, and thus

ak+1 − ak = (k + 1)2 − k 2 = k 2 + 2k + 1 − k 2 = 2k + 1 > 0.

The sequence {ak} = {k 2} has all positive terms, so we can also use the ratio test to show

that it is strictly increasing. When k ≥ 1, we have 2k + 1
k2

> 0, and thus

ak+1

ak
= (k + 1)2

k 2 = k 2 + 2k + 1
k 2 = k 2

k 2 + 2k + 1
k 2 = 1 + 2k + 1

k 2 > 1.

Finally, if we consider the function a(x) = x 2, then we clearly have a′(x) = 2x, which is
positive for all x > 1. Together with the derivative test, this fact proves that the sequence
{k 2} is strictly increasing.

Not all three monotonicity tests are equally useful for all sequences. For example, the
derivative test for monotonicity can be applied only if we can find a differentiable function
a(x) that agrees with the sequence {ak} on the positive integers. By contrast, sequences that
involve exponential factors or factorials are particularly suited to the ratio test for mono-
tonicity, because of the ease at which cancellation occurs in those cases; see Example 5.

Bounded Sequences

Another concept that will be useful in our later study of the long-term behavior of
sequences is boundedness. Loosely speaking, we are interested in whether the terms of
a sequence always lie above or below a certain value. For example, the sequence{

1
k

}
=

{
1, 1

2
, 1

3
, 1

4
, . . .

}
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has terms that are clearly always less than or equal to 1 and always strictly greater than

zero, so we say that
{

1
k

}
is bounded above by 1 and bounded below by zero. In general we

have the following definition:

DEFINITION 7.7 Bounded Sequences

(a) A sequence {ak} is bounded above if there exists a number M such that ak ≤ M
for all k.

(b) A sequence {ak} is bounded below if there exists a number m such that ak ≥ m for
all k.

If a sequence is both bounded above and bounded below, then we say that it is a
bounded sequence. If a sequence fails to be bounded above, fails to be bounded
below, or both, then we say that it is an unbounded sequence.

For example, the sequence
{

1
k

}
is bounded above by 1 and bounded below by zero. The

geometric sequence
{
2k

}∞
k=0 is bounded below by zero or any negative number, but is not

bounded above. The sequence
{
(−1)kk

}∞
k=0 is bounded neither above nor below.

{ 1
k

} {
2k}∞

k=0

{
(−1)kk

}∞
k=0

y

x
61 52 3 4

2

�1

1

0

y

x
1 2 3 4

16

1
2
4

8

y

x
61 52 3 4

6

0

4

2

�4

�2

An upper bound M that is less than or equal to all other upper bounds for a sequence
is called the least upper bound for the sequence. Likewise, a lower bound m that is greater
than or equal to all other lower bounds for a sequence is called the greatest lower bound
for the sequence. These are in some sense the “best” bounds for the sequence. As we just

mentioned, the sequence
{

1
k

}
is bounded above by 2 and below by −1, but its least upper

bound is M = 1 and its greatest lower bound is m = 0.

The sequence
{ 1

k

}
has a least upper bound and a greatest lower bound

x

y

61 52 3 4

2

�1

1

0
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A deep assumption that we make about the structure of the real numbers R is that every
subset of R, which is bounded above, has a least upper bound. This is known as the Least
Upper Bound Axiom and, in an upper-level math course, you will find that it is the key to
proving the Extreme Value Theorem and the Intermediate Value Theorem, both of which
we saw in Section 1.4. Since each sequence is an infinite set of real numbers, the Least
Upper Bound Axiom says that every bounded sequence has both a least upper bound and
(similarly) a greatest lower bound.

Examples and Explorations

EXAMPLE 1 Using a closed formula to find the terms of a sequence

Give the first four terms of the following sequences:

(a)
{

sin k
k

}
(b)

{
1 + (−1)k

k

}∞

k=2
(c)

{
k 2 + k

}∞
k=3

SOLUTION

We evaluate each of these sequences for the four smallest integers in their domains and
obtain

(a) sin 1, sin 2
2

, sin 3
3

, sin 4
4

(b) 3
2

, 2
3

, 5
4

, 4
5

(c) 12, 20, 30, 42 �

EXAMPLE 2 Changing the indexing of a sequence

Express the sequence {
1 + (−1)k

k

}∞

k=2

so that the indexing begins with 1.

SOLUTION

It can be helpful to introduce a different letter for the index. We will use n. That is, we wish
to express the given sequence in the form {an}∞n=1. We need to find a linear relationship
between k and n only for the first term of the sequence. When we find that, every other
term will follow the pattern as well, since both k and n are incremented by 1. Thus, to

change
{

1 + (−1)k

k

}∞
k=2

, we need n = 1 when k = 2. We obtain the relationship k = n + 1.

We use this equation and replace each k in 1 + (−1)k

k
with n + 1 to obtain

{
1 + (−1)n+1

n + 1

}∞

n=1
.

Note the index is a “dummy” variable: Any letter will suffice. In fact, if you wish to
reuse k, you may, as long as you now replace each n with a k in the new expression. �

CHECKING
THE ANSWER

We may easily check to ensure that our new expression for the sequence
{

1 + (−1)n+1

n + 1

}∞
n=1

gives the same first four terms we had in Example 1. Substituting 1, 2, 3, and 4 for n, we
obtain the values

1 + (−1)1+1

1 + 1
= 3

2
, 1 + (−1)2+1

2 + 1
= 2

3
, 1 + (−1)3+1

3 + 1
= 5

4
, 1 + (−1)4+1

4 + 1
= 4

5
.

We see that our values agree.
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EXAMPLE 3 Finding a formula for a sequence

Find a closed formula for each of the following sequences:

(a) 0, 1
2

, 2
3

, 3
4

, 4
5

, 5
6

, . . . (b) 1, − 1
2

, 1
4

, −1
8

, 1
16

, − 1
32

, . . .

(c) 0, 1
3

, 0, 1
5

, 0, 1
7

, 0, 1
9

, . . .

SOLUTION

There are many correct expressions for each of these sequences, but any answer requires
discerning a pattern in the listed terms, assuming there is one.

(a) In the first list, we have a list of quotients, with each numerator 1 less than the matching
denominator. (Note that we are thinking of 0 as 0

1
.) The denominators start with 1 and

increase by 1 for each term in the sequence. Thus
{

k − 1
k

}
= 0, 1

2
, 2

3
, 3

4
, 4

5
, 5

6
, . . .

We may also start the indexing with a different nonnegative integer. For example,{
k−3
k−2

}∞
k=3

represents the same sequence.

(b) Here we see that each term is a power of
(
− 1

2

)
. We have

{(
−1

2

)k}∞
k=0

= 1, − 1
2

, 1
4

, −1
8

, 1
16

, − 1
32

, . . .

(c) For the third sequence, we will use a conditional definition for the terms of the se-
quence {ak}:

ak =
⎧⎨
⎩

0, if k is odd
1

k + 1
, if k is even. �

EXAMPLE 4 Building a recursion formula

The sequence 1, 1, 1, 3, 5, 9, 17, 31, . . . has the property that the first three terms are 1 and
after that every term is the sum of the previous three terms. Express this sequence by using
a recursion formula.

SOLUTION

The description of the given sequence is quite similar to the description of the Fibonacci
sequence, but here we are adding three terms instead of two to obtain each new term. We
will denote this sequence by {t k}. Thus we have

t 1 = t 2 = t 3 = 1, and t k = t k−3 + t k−2 + t k−1 for k ≥ 4.

If we prefer, we may also define the sequence by

t 1 = t 2 = t 3 = 1, and t k+3 = t k + t k+1 + t k+2 for k ≥ 1.

The two recursion formulas tell us that, starting with the fourth term, each term in the
sequence is the sum of the previous three. �
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EXAMPLE 5 Checking for boundedness and monotonicity

Determine whether the following sequences are bounded and/or monotonic:

(a)
{

sin k
k

}
(b)

{
k 3

e k

}
(c) {k 2 − k} (d)

{
10k

k!

}

SOLUTION

(a) The sequence
{

sin k
k

}
is bounded because −1 ≤ sin k

k
≤ 1 for every k ∈ Z

+. The
sequence is not monotonic, because the signs of sin k vary as k increases. The changing
signs of the terms mean that the sequence cannot be monotonic.

(b) To analyze the sequence
{

k3

e k

}
we use the function f (x) = x3

e x
and the derivative test.

You should verify that f ′(x) = x 2e−x(3 − x). We see that the derivative is positive for
x < 3 and negative for x > 3. Thus, this sequence is eventually decreasing. The deriva-
tive also tells us that the largest term in the sequence will occur when k = 3, so 27

e3

is an upper bound for the sequence. Since all terms in the sequence are positive,
zero is a lower bound. The sequence is bounded and eventually decreasing.

(c) For variety we will use the difference test on our third sequence, although the derivative
test would probably be more efficient. We let ak = k 2 − k; thus

ak+1 − ak = [(k + 1)2 − (k + 1)] − [k 2 − k] = 2k.

Since 2k is positive when k is positive, this sequence is strictly increasing. The sequence
is bounded below by its first term, 0, but because it is an increasing sequence, the more
important issue concerns the existence of an upper bound. If we think of ak = k 2 − k
as ak = k(k − 1), we see that ak may be expressed as a product of two factors, each
of which increases without bound. Therefore, the given sequence increases without
bound.

(d) The ratio test is particularly useful for gaining information about sequences that con-
tain exponential factors or factorials. All of the terms are positive in our final sequence{

10k

k!

}
. We have ak = 10k

k!
and ak+1 = 10k+1

(k + 1)
. Thus,

a k+1

ak
= 10 k+1/(k + 1)!

10 k/k!
= 10 k+1k!

10 k(k + 1)!
= 10

k + 1
.

This quotient is greater than 1 for 1 < k < 9, but is less than 1 when k > 10. The se-
quence is eventually strictly monotonically decreasing. �

EXAMPLE 6 Analyzing a sequence with “factorial-like” factors

Discuss the monotonicity and boundedness of the sequence

2
1

,
22

1 · 3
,

23

1 · 3 · 5
,

24

1 · 3 · 5 · 7
, . . .

SOLUTION

Before testing a sequence for monotonicity, it is often helpful to find a nice, succinct form for
the general term of the sequence ak. The numerators in this sequence are powers of 2, but
there is no commonly used notation for the denominators, which, although factorial-like,
are not factorials. Here we will let

ak = 2 k

1 · 3 · 5 · · · (2k − 1)
.
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That is, the denominator of the general term ak is a product of all odd integers from 1
through 2k − 1. Because the terms are all positive, and because they involve exponential
factors in the numerators and factorial-like factors in the denominators, the ratio test will
be our choice to check for monotonicity. We have

ak = 2 k

1 · 3 · 5 · · · (2k − 1)
and ak+1 = 2k+1

1 · 3 · 5 · · · (2k − 1) · (2k + 1)
.

That is, the denominator of ak+1 contains one more odd factor, 2k+1, than the denominator
of ak. Now, using the ratio test, we obtain

ak+1

ak
= 2k+1/(1 · 3 · 5 · · · (2k − 1) · (2k + 1))

2 k/(1 · 3 · 5 · · · (2k − 1))
= 2k+1 · 1 · 3 · 5 · · · (2k − 1)

2 k · 1 · 3 · 5 · · · (2k − 1) · (2k + 1)
.

You should verify that
ak+1

ak
= 2

2k + 1
.

This ratio is less than 1 for every positive integer k; thus the sequence is strictly decreasing.

Since all of the terms of the sequence are positive, it is bounded below by zero, and
because the sequence is strictly decreasing, the first term, 2, is an upper bound for the
sequence. Therefore, the sequence is bounded.

We are done analyzing this sequence, but we would like to note that its terms
may be rewritten with factorials. If we multiply the numerator and denominator of
ak = 2k

1·3·5· · ·(2k − 1)
by the product 2 · 4 · 6 · · · (2k), the new denominator will be (2k)!.

It may seem that this just moves the problem of having factorial-like terms to the nu-
merator, but since each of the factors of 2 · 4 · 6 · · · (2k) is even, we may rewrite this
product as

2 · 4 · 6 · · · (2k) = 2 kk!

Thus, if we wish, we may express ak as the quotient 22kk
2k

. As we’ve already seen, this

manipulation is not necessary to analyze the sequence. In addition, not all factorial-like
products can be handled in a similar fashion. However, this trick may be used when a
quotient contains a product of all odd integers from 1 through 2k − 1, as we have here. �

EXAMPLE 7 Modeling drug levels with a sequence

Many prescribed drugs must reach a “maintenance level” in the bloodstream to be effec-
tive. Say a person takes D milligrams of wonder drug Excellenté per day and that whatever
level of Excellenté is in the bloodstream, p% is eliminated in one 24-hour period.

(a) Find a recurrence relation that models the maintenance level of Excellenté in a patient’s
bloodstream.

(b) Assume that 40% of Excellenté is eliminated from a patient’s body in every 24-hour
period and that 100 milligrams are taken daily. Use the result from part (a) to find the
level of Excellenté in the bloodstream during the first week. Round each answer to the
nearest milligram.

SOLUTION

(a) Since the daily dosage is D, we let L1 = D. That is, if we assume that the drug dissolves
instantly in the patient’s bloodstream, L1 is the amount present immediately after the
drug is taken. Twenty-four hours later p% has been eliminated from the bloodstream,
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but another dose is taken; therefore the amount of Excellenté in the blood immediately
after the second dose will be

L 2 =
(

1 − p
100

)
L 1 + D.

The situation is similar after every 24-hour period; therefore we obtain the recursively
defined sequence

L 1 = D and L k+1 =
(

1 − p
100

)
L k + D for k ≥ 1.

(b) Using the given quantities and our model from (a), we have, in milligrams,

L 1 = 100, and L k+1 = 0.6L k + 100 for k ≥ 1.

Thus,
L 2 = 0.6(100) + 100 = 160, L 3 = 0.6(160) + 100 = 196,

L 4 = 0.6(196) + 100 = 217.6 ≈ 218, L 5 = 0.6(218) + 100 ≈ 231,

L 6 = 0.6(231) + 100 ≈ 239, L 7 = 0.6(239) + 100 ≈ 243 milligrams. �

EXAMPLE 8 Finding the roots of a function by using Newton’s method

Recall that in Example 7 of Section 2.2 we discussed Newton’s method. Newton’s method
provides a recursive formula for approximating roots of equations of the form f (x) = 0. To
use Newton’s method, guess an approximate value, x 0, for the root of f (x) = 0 and then
use

x k+1 = x k − f (x k)
f ′(x k)

for k ≥ 0

to form other approximations that are often more accurate. When this method works, it
usually works quickly. We usually terminate the procedure when the absolute value of the
difference of two consecutive approximations, |x k+1 − x k|, is smaller than a predetermined
level of accuracy.

Use Newton’s method to approximate a root for the functions

(a) f (x) = x 2 − 5 (b) g(x) = e x − x 3

both with x 0 = 1. Terminate your sequence when |x k+1 − x k| < 0.01.

SOLUTION

(a) Here, we have

x k+1 = x k − f (x k)
f ′(x k)

= x k − x 2
k − 5
2x k

= x 2
k + 5
2x k

.

Thus,

x1= 12 + 5
2 · 1

= 3, x2= 32 + 5
2 · 3

= 7
3

, x3 = (7/3)2 + 5
2 · (7/3)

= 47
21

, x4 = (47/21)2 + 5
2 · (47/21)

= 2207
987

.

Note that

|x4 − x3| =
∣∣∣2207

987
− 47

21

∣∣∣ = 2
987

< 0.01,

so this is where we terminate our sequence. If we had wanted more accuracy in our
approximation, we could have calculated a few more terms in the sequence.
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Note also that the roots of the equation x 2 − 5 = 0 are ±√
5 ≈ ±2.2360679 and

that 2207
987

≈ 2.360688, so Newton’s method has produced a very good approximation

for
√

5 in relatively few steps. More generally, Newton’s method provides an effec-
tive algorithm for approximating

√
a when applied to the function f (x) = x 2 − a with

a > 0.

(b) For our second function g(x) = e x − x 3, we have

x k+1 = x k − g(x k)
g′(x k)

= x k − e x k − x 3
k

e x k − 3x 2
k

.

You should verify that

x1 ≈ 7.0993, x2 ≈ 6.2942, x3 ≈ 5.6031, x4 ≈ 5.0646,

x5 ≈ 4.7154, x6 ≈ 4.5640, x7 ≈ 4.5372, and x8 ≈ 4.5364.

Since |x8 − x7| < 0.01, this is where we terminate our approximations. �

CHECKING
THE ANSWER

Following is a plot of the graph of g:

y

x
51 2 3 4�2 �1

20

�10

10

We have approximated one of the two roots of g, but interestingly, not the root closest to
our seed value x 0 = 1. This is one of the pitfalls of Newton’s method. In other cases, it may
fail entirely; see Exercises 84 and 85. However, it is often an excellent tool for approximating
roots of functions.

EXAMPLE 9 Showing that a set of rational numbers does not have a least upper bound in Q

Show that the set S = {x ∈ Q : 0 ≤ x 2 ≤ 2} has a least upper bound in R, but not in Q.

SOLUTION

We will start by showing that
√

2 is the least upper bound of set S in R. Set S consists of
all the rational numbers that are in the interval (−√

2,
√

2 ). So,
√

2 is certainly an upper
bound for S in R. If u is a positive real number such that 0 < u <

√
2, then 0 < u2 < 2.

So u is not an upper bound for S. Therefore,
√

2 is the least upper bound for the set S
in R.

We now show that S does not have a least upper bound in Q. If it did, the least upper
bound would be some rational number q such that

√
2 < q. However, between every two

distinct real numbers there is a rational number. So there is a rational number u such that√
2 < u < q. Therefore, 2 < u2 < q2. This implies that u is another upper bound for the set

S in Q and, therefore, contradicts the fact that q was the least upper bound for S in Q. Our
point here is that since every rational number is also a real number, every set of rationals
will have a least upper bound, which may be irrational, as it is in this example. �

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 19:28

7.1 Sequences 591

TEST YOUR? UNDERSTANDING
� What is a sequence? What is the difference between a sequence and any other function?

� What is recursion? How can recursion be used to define a sequence?

� What does it mean for a sequence to be monotonic? What is the distinction between
an increasing sequence and a strictly increasing sequence?

� What does it mean for a sequence to be bounded? How can you recognize boundedness
in the graph of a sequence? What is meant by a least upper bound? What is meant by
a greatest lower bound?

� What are the tests for monotonicity? How do these tests work? Why do they work?

EXERCISES 7.1

Thinking Back

Functions: Provide definitions for each of the following:

� function

� the domain of a function

� the codomain of a function

� the function f is increasing on interval [a, b]

� the function f is strictly increasing on interval [a, b]

� the function f is decreasing on interval [a, b]

� the function f is strictly decreasing on interval [a, b]

� the function f is constant on interval [a, b]

� the function f is bounded on interval [a, b]

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every sequence is a function.
(b) True or False: The third term of the sequence {k+1}∞k=1

is 4.
(c) True or False: The third term of the sequence {k 2}∞k=2

is 9.
(d) True or False: Every sequence of real numbers is either

increasing or decreasing.
(e) True or False: Every sequence of numbers has a small-

est term.
(f) True or False: Every recursively defined sequence has

an infinite number of distinct outputs.
(g) True or False: Every sequence has an upper bound, a

lower bound, or both an upper bound and a lower
bound.

(h) True or False: Every monotonic sequence has an upper
bound, a lower bound, or both an upper bound and
a lower bound.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A strictly increasing sequence with an upper bound.
(b) A decreasing sequence without a lower bound.
(c) A sequence of real numbers that is neither increasing

nor decreasing.

3. What is a sequence?
4. What is a term of a sequence?

5. What is meant by the index of a term of a sequence?

6. Give a recursive definition for K! for integers k ≥ 0. Be
sure you define 0! as part of your answer.

7. Give the first five terms of the following recursively
defined sequence:

a1 = 1, and ak = ak−1 + 2 for k ≥ 2.

Also, give a closed formula for the sequence.
8. Give the first five terms of the following recursively

defined sequence:

a1 = 2, and ak = ak−1 + 2 for k ≥ 2.

Also, give a closed formula for the sequence.

9. Give a recursive definition for the sequence 1, 2, 3, 4, . . .
of positive integers. (Hint: Let a1 = 1.)

10. The Lucas numbers are defined recursively as follows:

L 1 = 1, L 2 = 3, and L k = L k−2 + L k−1 for k ≥ 3.

What are L 3, L 4, L 5, and L 6?

11. Define what it means for a sequence {ak} to be eventually
strictly increasing.

12. Define what it means for a sequence {ak} to be eventually
decreasing.

13. Define what it means for a sequence {ak} to be eventually
strictly decreasing.

14. Define what it means for a sequence {ak} to be eventually
monotonic.

15. What does it mean for a sequence {ak} to be bounded
above? Bounded below? Bounded?

16. Explain why a sequence that is bounded above has
infinitely many upper bounds.
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17. Give an example of a sequence with neither an upper
bound nor a lower bound.

18. Explain why every monotonic sequence has an upper
bound, a lower bound, or both an upper bound and a
lower bound.

19. Explain why we require the terms of the sequence
{ak} to be positive when we use the ratio test from
Theorem 7.6.

20. State a variation of the ratio test from Theorem 7.6 that
would allow you to use ratios to test a sequence {ak} for
monotonicity when each ak < 0.

21. The Fibonacci numbers may be computed with the
formula

f k = (1 + √
5 ) k − (1 − √

5 ) k

2 k
√

5
.

Use this formula to compute f 1, f 2, f 3, f 4, and f 5. (Imagine
computing f 100.)

22. What is the least upper bound property for nonempty
subsets of real numbers? Does the least upper bound
property hold for subsets of the rational numbers? Does
it hold for subsets of the integers?

23. Make a statement expressing a property analogous to the
least upper bound property for nonempty subsets of real
numbers that are bounded below.

24. Let {ak} be the sequence a1 = 3, a2 = 3.1, a3 = 3.14,
a4 = 3.141, . . .. That is, each term ak contains the first k
decimal digits of π .

(a) Explain why ak is a rational number for each positive
integer k.

(b) Explain why the sequence {ak} is increasing.
(c) Provide an upper bound for the sequence {ak}.
(d) What is the least upper bound of the sequence {ak}?
(e) Use this sequence to explain why the Least Upper

Bound Axiom does not apply to the set of rational
numbers.

Skills

In Exercises 25–30 find a plausible formula for the general
term of the given sequence.

25. {0, 1, 0, 1, 0, 1, . . .}
26. {1, 7, 13, 19, 25, . . .}

27.
{

1
3

,
2
9

,
1
9

,
4

81
,

5
243

, . . .
}

28.
{

5, − 5
2

,
5
4

, −5
8

,
5
16

, . . .
}

29.
{

2
3

,
3
5

,
4
7

,
5
9

, . . .
}

30.
{

1,
1
2

,
1
6

,
1

24
,

1
120

, . . .
}

In Exercises 31–36 provide the first five terms of the given
sequence. Unless specified, assume that the first term has
index 1.

31.
{

1 − (−1) k

k

}
32.

{
n

2n + 1

}

33. ak = cos(k x)
x k + k 2 34.

{
(−1)k−1x 2k

2k!

}

35.
{√

k
k

}
36.

{
1
2

+ 1
4

+ 1
8

+ · · · + 1
2 k

}

Find the least upper bound of the sequences in Exercises
37–42.

37.
{

2 − 1
k 2

}
38.

{
1
2

,
2
3

,
3
4

,
4
5

, . . .
}

39. {−k} 40. {0, 1, 0, 1, 0, 1, . . .}

41.
{

1
2

+ 1
4

+ 1
8

+ · · · + 1
2 k

}

42. {2, 2.7, 2.71, 2.718, 2.7182, . . .}

In Exercises 43–46 give the first five terms for a geometric
sequence {cr k}∞k=0 with the specified values of c and r.

43. c = 3, r = 1
2

44. c = −2, r = −1
3

45. c = −2, r = −3 46. c = −1, r = −1
2

Write each of the arithmetic sequences in Exercises 47–50 in
the form {c + dk}∞k=0.

47. −3, 7, 17, 27, . . . 48. −6, −7.1, −8.2, −9.3, . . .

49. 1, −1, . . . 50. 5, π , . . .

In Exercises 51–54 use the difference test in Theorem 7.6 to
analyze the monotonicity of the given sequence.

51.
{
k 2 − 5k

}
52. {√k − √

k + 1 }

53.
{

k
k + 2

}
54.

{
1
k!

}

In Exercises 55– 58 use the ratio test in Theorem 7.6 to analyze
the monotonicity of the given sequence.

55.
{

k 2

k!

}
56.

{√
1 − 1

k

}

57.
{

3 k

2 · 4 · 6 · · · (2k)

}
58.

{
(k!)2

(2k)!

}

In Exercises 59–62 use the derivative test in Theorem 7.6 to
analyze the monotonicity of the given sequence.

59.
{√

k + 1
k

}
60. {k 2 − k}

61.
{

sin k
k

}
62.

{
k!

(k + 1)!

}
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Determine whether the sequences in Exercises 63–74 are
monotonic or not. Also determine whether the given se-
quence is bounded or unbounded.

63.
{

2 − k − 1
10

}
64.

{
1
2k

}

65. ak = (−1) k

k
66. ak = k 2

k!

67. {1, −1, 1, −1, 1, . . .} 68.
{

1,
3
4

,
8
9

,
15
16

,
24
25

, . . .
}

69.
{

cos k
k

}
70.

{
cos(2πk)

k

}

71.
{

e k

k!

}
72.

{
(2k)!
(k!)2

}

73.
{
(−1) kk

}
74.

{
5
(

1 −
(

1
10

)k )}

In Exercises 75–78 use Newton’s method (see Example 8) to
approximate a root for the given function with the specified
value of x 0. Terminate your sequence when |xn+1−xn| < 0.001.

75. f (x) = x 3 − 2, x 0 = 1

76. f (x) = e x + sin x, x 0 = 0

77. f (x) = e x + sin x, x 0 = −2

78. f (x) = √
x + 1 − 1

x
, x 0 = 1

79. Use Newton’s method to derive the recursion formula

x k+1 = 1
2

(
x k + a

x k

)

for approximating
√

a. (Hint: Let f (x) = x 2 − a.)

Use the result of Exercise 79 to approximate the square roots
in Exercises 80–83. In each case, start with x 0 = 1 and stop
when |x k+1 − x k| < 0.001.

80.
√

2 81.
√

3

82.
√

4 83.
√

101

84. Explain why Newton’s method will fail if you choose a
value of x 0 for which f ′(x 0) = 0.

85. Newton’s method will also fail when the difference of suc-
cessive approximations, |x k+1 − x k|, does not decrease as
k increases.

(a) Show that this happens for the function f (x) = 3
√

x − 2
when you choose x 0 = 1.

(b) What is the root of f (x) = 3
√

x − 2?

Applications
Use the result of Example 7 to approximate the levels of the
drug Excellenté during the first week, assuming the dosages
and decay rates in Exercises 86–88.

86. L 1 = 200, p = 50

87. L 1 = 100, p = 25

88. L 1 = 300, p = 60

89. Suppose you invest $100.00 in a bank that pays you
5% interest compounded annually. The balance in the
account after k years is given by ak = 100(1 + 0.05) k. To
the nearest cent, determine the first five terms of the se-
quence, starting at k = 0. What does k = 0 mean in prac-
tical terms? Determine whether the sequence is bounded.
Determine whether the sequence is increasing, decreas-
ing, or not monotonic.

Proofs

90. Prove that the ratio of successive terms of a nonzero
geometric sequence is constant.

91. Prove that a sequence {ak} that is both increasing and
decreasing is constant.

92. Prove that every sequence of the form {ak}∞k=n can be
rewritten as a sequence of the form {αk}∞k=1.

93. Prove that if {ak}∞k=1 is a sequence of positive real num-
bers, then the sequence {Sn}∞n=1, where the sequence
Sn = a1 + a2 + · · · + an, is an increasing sequence.

94. Let {ak} be a sequence. Prove Theorem 7.6 (a) along with
the following variations:

(a) Show that when ak+1 − ak ≥ 0 for every k ≥ 1, the
sequence is increasing.

(b) Show that when ak+1 − ak > 0 for every k ≥ 1, the
sequence is strictly increasing.

(c) Show that when ak+1 − ak ≤ 0 for every k ≥ 1, the
sequence is decreasing.

(d) Show that when ak+1 − ak < 0 for every k ≥ 1, the
sequence is strictly decreasing.

95. Let {ak} be a sequence of positive terms. Prove Theo-
rem 7.6 (b) along with the following variations:

(a) Show that when
ak+1

ak
≥ 1 for every k ≥ 1, the

sequence is increasing.

(b) Show that when
ak+1

ak
> 1 for every k ≥ 1, the

sequence is strictly increasing.

(c) Show that when
ak+1

ak
≤ 1 for every k ≥ 1, the

sequence is decreasing.

(d) Show that when
ak+1

ak
< 1 for every k ≥ 1, the

sequence is strictly decreasing.
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96. Let a(x) be a differentiable function on the interval [1, ∞),
and let ak = a(k) for every positive integer k. Prove
Theorem 7.6 (c) along with the following variations:
(a) Show that when a′(x) ≥ 0 for x > 1, the sequence {ak}

is increasing.

(b) Show that when a′(x) > 0 for x > 1, the sequence {ak}
is strictly increasing.

(c) Show that when a′(x) ≤ 0 for x > 1, the sequence {ak}
is decreasing.

(d) Show that when a′(x) < 0, for x > 1, the sequence
{ak} is strictly decreasing.

Thinking Forward

� A sequence of sums: Consider the sequence
{ 1

k!

}∞

k=0
.

The associated sequence {Sn}∞n=0, where

Sn = 1 + 1 + 1
2!

+ · · · + 1
n!

,

is a sequence of sums. In Chapter 8 we will see that
this sequence converges to the number e. Evaluate Sn
for n = 1, 2, 3, 10. How close is S10 to e?

� A sequence of polynomials: Consider the sequence

of monomials
{ xk

k!

}∞

k=0
. The associated sequence

{ p n}∞n=0, where pn = 1 + x + · · · + xn

n!
is a sequence of

polynomials. This latter sequence of polynomials has
a very interesting connection with the graph of the ex-
ponential function f (x) = e x. Graph various p n versus
f (x) in a window containing the point (0, 1). What do
you notice? Take the derivatives of pn and f (x), evalu-
ate them at x = 0, and take notice of what happens.

7.2 LIMITS OF SEQUENCES

� What it means for a sequence to converge or diverge

� Algebraic properties of convergent sequences

� The relationships among monotonicity, boundedness, and convergence for sequences

Convergence or Divergence of a Sequence

Since a sequence is essentially an infinite list of numbers indexed by 1, 2, 3, . . . , k, . . ., one of
the most fundamental questions we can ask about a sequence is what happens as k → ∞.
We have already set up machinery to answer such questions for functions f (x) as x → ∞.
Recall from Definition 1.9 that we say lim

x→∞ f (x) = L when, for any ε > 0, there exists some

N > 0 such that whenever x > N, the value of f (x) lies in the horizontal bar defined by
(L − ε, L + ε); see the following figure at the left:

lim
x→∞ a(x) = L lim

k→∞
ak = L

N
x

L

L � ε

L � ε

y

N
x

L

L � ε

L � ε

y
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If we restrict our attention to integer inputs, as in the right-hand figure, then the same
machinery can be used to define what we mean by lim

k→∞
ak = L:

DEFINITION 7.8 The Limit of a Convergent Sequence

Suppose {ak} is a sequence of real numbers. We say that lim
k→∞

ak = L for some real num-

ber L, or equivalently that ak → L, if the following statement is true:

For any ε > 0, there exists some N > 0 such that if k > N, then ak ∈ (L − ε, L + ε).

If ak → L for some real number L, then we say that the sequence {ak} converges to L. If
no such L exists, then we say that the sequence diverges.

Informally, for any value of ε, we can find some N so that all terms ak after aN are “close
enough” to L. We call the set of sequence terms after some index N a tail of the sequence.
Thus, if a sequence is convergent, we can always find some N so that the entire tail of the
sequence after index N is as close to L as we like.

Although not every sequence {ak} is the integer part of a continuous function a(x) in a
simple way, when that is the case, the limit of a(x) as x → ∞ determines the limit of ak as
k → ∞.

THEOREM 7.9 Limits of Sequences Defined by Continuous Functions

Let a(x) be a function that is continuous on [1, ∞) and {ak} be the sequence defined by
ak = a(k) for every k ∈ Z

+. If lim
x→∞ a(x) = L, then lim

k→∞
ak = L.

For example, since we already know that lim
x→∞

1
x

= 0, we can say that the limit of the se-

quence
{

1
k

}
is also zero. The proof of this theorem follows directly from the definitions of

limits at infinity for functions and sequences and is left to Exercise 75.

When a sequence diverges, it can be for a number of reasons. For example, the sequence
{(−1) k} diverges because it oscillates forever between −1 and 1, never approaching any one
real number L. Other sequences diverge because their terms increase or decrease without
bound; in this case we say that ak → ∞ or ak → −∞. The next two figures illustrate the
situation when ak → ∞. Once again we can define this notion by using the machinery of
limits that we developed in Chapter 1 for functions.

lim
x→∞ a(x) = ∞ lim

k→∞
ak = ∞

N

M

x

y

N

M

x

y
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DEFINITION 7.10 Sequences that Diverge to ∞ or −∞
Suppose {ak} is a sequence of real numbers.

(a) We say that lim
k→∞

ak = ∞, or equivalently, that ak → ∞, if the following statement

is true:

For any M > 0, there exists some N > 0 such that if k > N, then ak > M.

(b) We say that lim
k→∞

ak = −∞, or equivalently, that ak → −∞, if the following state-

ment is true:

For any M > 0 , there exists some N > 0 such that if k > N, then ak < −M.

For example, the sequence of natural numbers {k} = {1, 2, 3, . . .} diverges to ∞ and the
sequence of odd negative integers {−2k + 1} = {−1, −3, −5, . . .} diverges to −∞.

Theorems About Convergent Sequences

Sequences are functions, and therefore the properties of limits that we established in Sec-
tion 1.5 for functions f (x) as x → ∞ also apply to sequences {ak} as k → ∞. The following
theorems recast the constant-multiple, sum, product, quotient, composition, and unique-
ness rules for limits in terms of the notation of convergent sequences:

THEOREM 7.11 Basic Limit Rules for Convergent Sequences

If {ak} and {bk} are convergent sequences with ak → L and bk → M as k → ∞, and if c
is any constant, then

(a) c ak → c L

(b) (ak + bk) → L + M

(c) akbk → L M

(d) If M 
= 0, then
ak

bk
→ L

M

The proofs of these limit rules for sequences are analogous to the proofs we did in Sec-
tion 1.5; see Exercises 67–70.

THEOREM 7.12 More Limit Rules for Convergent Sequences

Suppose {ak} is a sequence.

(a) Limits of Functions of Sequences: If ak → L and f is a function that is continuous
at L, then f (ak) → f (L).

(b) Uniqueness of Limits for Sequences: If ak → L and ak → M, then L = M.

(c) Squeeze Theorem for Sequences: If {m k} and {M k} are sequences that both converge
to L, and if m k ≤ ak ≤ M k for all k, then ak → L.

(d) The Limit of the Absolute Value of a Sequence: If |ak| → 0, then ak → 0.

Again, you may find the proofs of analogous properties in Section 1.5.
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Part (a) of this theorem can be particularly useful. For example, since the sequence
{

1
n

}
converges to 0, we can conclude that the sequence {e 1/n} converges to e 0 = 1. The proofs
of the four parts of this theorem are essentially the same as the proofs of the analogous
theorems from Chapter 1; see Exercises 71–74.

One of the conditions specified in the Squeeze Theorem (Theorem 7.12 (c)) may be
relaxed slightly. As long as the inequality mn ≤ an ≤ Mn holds eventually, the conclu-
sion of the theorem will remain valid. For example, it may be shown that for all k ≥ 5,

0 <
3

k2 − 8
<

1
k
. Therefore, since the constant sequence {0} and the sequence

{
1
k

}
both con-

verge to 0, the sequence
{

3
k2 − 8

}
must also converge to zero.

Informally, a subsequence of a sequence {ak} is an (infinite) subset of {ak}, which main-
tains the order of the terms of the sequence. For example, if we start with the sequence

given by
{

(−1)k+1

k

}
, then

{
(−1)k+1

k

}
= 1, − 1

2
, 1

3
, − 1

4
, 1

5
, − 1

6
, . . . .

If we select every other term, starting with 1, we obtain the subsequence

1, 1
3

, 1
5

, 1
7

, 1
9

, . . . .

More formally, we have Definition 7.13. Recall that Z
+ denotes the positive integers.

DEFINITION 7.13 Subsequence

Let {ak} be a sequence and f : Z
+ → Z

+ be a strictly increasing function. Then the
sequence {a f (k)} is called a subsequence of {ak}.

In the example immediately preceding the definition, the increasing function that selects
the desired terms is f (k) = 2k − 1.

THEOREM 7.14 Subsequences of Convergent Sequences Converge

Let {ak} be a sequence that converges to L. Then every subsequence of {ak} also con-
verges to L.

The converse of Theorem 7.14 is not true. For example, consider the sequence {ak}, where

ak =
⎧⎨
⎩

k, if k is odd
1
k

, if k is even

= 1, 1
2

, 3, 1
4

, 5, 1
6

, . . . .

The subsequence {a2k} =
{

1
2k

}
→ 0, but the sequence {ak} diverges. In Exercise 88 we ask

you to prove Theorem 7.14.

Convergence and Divergence of Basic Sequences

Since we will encounter geometric sequences so frequently in this course, let us summarize
their convergence and divergence properties:
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THEOREM 7.15 Convergence and Divergence of Geometric Sequences

Let {r k}∞k=0 be a geometric sequence.

(a) If |r| > 1, then {r k} diverges.

(b) If r = −1, then {r k} diverges.

(c) If r = 1, then {r k} converges to 1.

(d) If |r| < 1, then {r k} converges to 0.

The results of this theorem are unsurprising if we consider some examples for various
values of r:

{(−2) k} diverges
{(

− 1
2

)k}
converges to 0

y

x
2 4 6 8

300
200
100

�300

�200

�100

y

2 4 6 8

0.5

0.25

�0.5

�0.25

x

{(
1
2

)k}
converges to 0 {2 k} diverges to ∞

x

y

2 4 6 8

0.5

0.25

�0.5

�0.25

x

y

2 4 6 8

300
200
100

�300

�200

�100

Proof. Parts of this theorem are equivalent to corresponding statements about limits that we have
already proved. For example, if we already know that r > 1, then lim

x→∞ r x = ∞. Similarly, if we

already know that 0 ≤ r < 1, then lim
x→∞ r x = 0. Also when r = 1, lim

x→∞ 1 x = 1. By Theorem 7.9, this

proves Theorem 7.15 for all positive values of r.

In Example 4 we provide a formal proof that the geometric sequence {(−1) k}∞k=0 diverges. In
Exercise 63 we ask you to prove that {r k}∞k=0 diverges when r < −1.

In order to develop an intuition for the long-term behavior of sequences, it is impor-
tant to understand a few simple examples. Many such examples rely on the concept of
dominance that we defined in the exercises of Section 3.6. In the language of sequences,
an increasing sequence {ak} dominates another increasing sequence {bk} if ak

bk
→ ∞, or

equivalently, if bk

ak
→ 0. Intuitively, dominance essentially means that {ak} grows at a fun-

damentally faster rate than {bk}, and we can represent this faster growth with the no-
tation ak >> bk. The dominance relationships between various basic sequences are as
follows:

THEOREM 7.16 Dominance Relationships for Simple Sequences

For any real numbers a > 0 and b > 1, the following string of dominances holds:

ln k << k a << b k << k!, for k sufficiently large.

We already established in Section 3.6 that logarithmic functions are dominated by power
functions, which in turn are dominated by exponential functions. The fact that factorial
expressions dominate even exponential functions becomes clear when we use the ratio
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test from Theorem 7.6 to analyze the sequence of quotients
{

k!
bk

}
. We ask you to provide

the details of this analysis in Exercise 64.

The next theorem summarizes the convergence results that follow immediately from
the dominance relationships presented in Theorem 7.16.

THEOREM 7.17 Convergence of Sequences Based on Dominance Ratios

For any real numbers a > 0 and b > 1, the following sequences converge to zero:{
ln k
k a

}
,

{
ln k
b k

}
,

{
ln k
k!

}
,

{
k a

b k

}
,

{
k a

k!

}
,

{
b k

k!

}
.

It is also useful to gain an intuition into the convergence and divergence of basic se-
quences that involve exponents. Sometimes this intuition is obvious; for example it is clear

that { p k} and {k p} must diverge to ∞ for all p > 1. It is also clear that {k−p} =
{

1
k p

}
must

converge to zero. A few of the less obvious basic sequences involving exponents are sum-
marized in the following theorem:

THEOREM 7.18 Some Convergent Sequences Involving Exponents

For any real number p > 0, the following sequences converge:

(a) p1/k → 1 (b) k1/k → 1 (c)
(

1
k

)p → 0

We will prove the first part of Theorem 7.18 and leave the proofs of parts (b) and (c) to
Exercises 65 and 66, but before we do, we will examine the first few terms of one of these
sequences. The first five terms of the sequence {k1/k} are

1, 21/2 ≈ 1.414, 31/3 ≈ 1.442, 41/4 ≈ 1.414, and 51/5 ≈ 1.380.

When k = 1000, we have 10001/1000 ≈ 1.007. Of course, this reasoning does not constitute
a proof that k1/k → 1, but it does indicate that the result is plausible.

Proof. (a) We could prove this statement by using L’Hôpital’s rule and the logarithm methods of
Section 3.6 to show that lim

x→∞ p 1/x = 1, but we will follow a different path and use the first part of

Theorem 7.12. We already know that the sequence
{ 1

k

}
converges to zero. Since the exponential

function p x is continuous for p > 0, part (a) of Theorem 7.12 tells us that the sequence { p1/k}
converges to p 0 = 1.

Bounded Monotonic Sequences

In the previous section, we defined what it means for a sequence to be bounded and what
it means for a sequence to be monotonic. These two concepts are important individually,
but when we combine them, we get a very powerful convergence theorem:

THEOREM 7.19 Bounded Monotonic Sequences Always Converge

If {ak} is both bounded and (eventually) monotonic, then {ak} converges.
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This theorem should make immediate intuitive sense. For example, if a monotonically in-
creasing sequence never gets above a certain value M, then the values of its tail terms keep
getting larger and yet never get above M. This means that the terms of the sequence must
at some point level off at or before that upper bound M.

The proof of this theorem is fairly technical and requires the Least Upper Bound
Axiom, which we discussed in the previous section. This says that every nonempty subset
of the real numbers that is bounded above has a least upper bound.

Proof. We will prove the theorem in the case where {ak} is bounded and increasing. The case
where {ak} is bounded and decreasing is similar. The sequence is a set of real numbers. Since this
set is assumed to be bounded, it must have an upper bound. In fact, by the Least Upper Bound
Axiom there must be a real number that is its least upper bound; call that number M.

We now appeal to the definition of convergence in Definition 7.8. Given any ε > 0, there must
be some index N for which aN > M − ε. This statement is true because if there were not such an
N, then every term in the tail of the sequence would be less than or equal to M − ε, and this would
contradict the fact that M is the least upper bound of {ak}. Since {ak} is by assumption an increasing
sequence, it must be that for all k > N,

ak ≥ aN > M − ε.

Since M is an upper bound of {ak}, it follows that M ≥ ak for all k. Combining this result with the
double inequality we have

M − ε < ak ≤ M < M + ε,

which is precisely what we need to show that ak ∈ ( M−ε, M+ε). By the definition of convergence
for sequences we have shown that {ak} converges. In fact we have shown more than that: We have
shown that an increasing bounded sequence converges to its least upper bound.

It is important to note that the converse of Theorem 7.19 is not true. That is, not ev-
ery convergent sequence is necessarily bounded and (eventually) monotonic. For example,
the sequence {(−1/2)n} converges to zero, but is not (even eventually) monotonic, since it
alternates between positive- and negative-valued terms. However, we do have the follow-
ing partial converse:

THEOREM 7.20 Convergent Sequences are Bounded

If a sequence converges, then it is bounded.

The proof of this theorem is left to Exercise 85.

Examples and Explorations

EXAMPLE 1 Finding the limit of a sequence

Use the theorems from this section to find the limit of the sequence
{

k − 2
k 2 + k − 7

}
.

SOLUTION

With a quotient like the one given, we will often use Theorem 7.11(d). Notice that we need
to know that the limits of the numerator and denominator exist prior to using the theorem.
As the quotient is initially stated, neither the sequence in the numerator nor the sequence
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in the denominator has a limit. Therefore, our first step is algebraic, to ensure that the new
numerator and new denominator are both convergent. To evaluate this limit, we use various
parts of Theorem 7.11 provisionally and then verify at the end that all the hypotheses of
the theorems have been satisfied:

lim
k→∞

k − 2
k 2 + k − 7

= lim
k→∞

(1/k) − (2/k 2)
1 + (1/k) − (7/k 2)

← multiply by 1/k 2

1/k 2

=
lim

k→∞
((1/k) − (2/k 2))

lim
k→∞

(1 + (1/k) − (7/k 2))
← Theorem 7.11 (d)

=
lim

k→∞
(1/k) − lim

k→∞
(2/k 2)

lim
k→∞

1 + lim
k→∞

(1/k) − lim
k→∞

(7/k 2)
← Theorem 7.11 (a and b)

=
lim

k→∞
(1/k) − 2 lim

k→∞
(1/k 2)

lim
k→∞

1 + lim
k→∞

(1/k) − 7 lim
k→∞

(1/k 2)
← Theorem 7.11 (a)

= 0 − 2 · 0
1 + 0 − 7 · 0

= 0 ← Theorem 7.18 (c) �

EXAMPLE 2 Using the convergence theorems for sequences

Use Theorems 7.15–7.18 to analyze the following sequences:

(a)
{(

999
1000

)k}
(b)

{
100 k

k!

}
(c)

{
k!

10000 k

}
(d)

{(
1

100

)1/k}

SOLUTION

(a) The sequence
{(

999
1000

)k}
is geometric. Since

∣∣∣ 999
1000

∣∣∣ < 1, the sequence converges to
zero.

(b) The dominance of factorial growth over polynomial growth is one of the relationships

expressed in Theorem 7.16. Therefore, 100k

k!
→ 0.

(c) Here, again, since factorial growth dominates polynomial growth, k!
10000k

→ ∞.

(d) By Theorem 7.18 (a)
(

1
100

)1/k → 1. �

EXAMPLE 3 Using boundedness and monotonicity

Use the boundedness and monotonicity of the following sequences to analyze their con-
vergence properties:

(a)
{

sin k
k

}
(b)

{
k 3

e k

}
(c) {k 2 − k}

SOLUTION

In Example 5 of Section 7.1 we discussed the boundedness and monotonicity of these
three sequences. We now extend the work we started there to determine whether those
sequences converge or diverge.
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(a) In Section 7.1 we saw that the sequence
{

sink
k

}
is bounded but not monotonic. Such

a sequence may or may not converge. Since −1 ≤ sin k ≤ 1 and k > 1, we also have

−1
k

≤ sin
k

≤ 1
k
.

But lim
k→∞

(
± 1

k

)
= 0; thus, by the Squeeze Theorem, the sequence

{
sink

k

}
converges

to zero.

(b) In Section 7.1 we saw that the sequence
{

k3

e k

}
is both bounded and eventually mono-

tonic. Therefore, by Theorem 7.19, this sequence converges. Theorem 7.19 does not tell
us the limit of the sequence. In Exercise 19 we will ask you to show that the sequence
converges to zero.

(c) The sequence {k 2 −k} is monotonic, but not bounded. Theorem 7.20 implies that every
unbounded sequence diverges. �

EXAMPLE 4 Showing that a geometric sequence diverges

Show that the geometric sequence {(−1) k}∞k=0 diverges.

SOLUTION

The sequence takes on only the values 1 and −1. We claim that there is no limit for this
sequence. Suppose to the contrary that there was a limit L. Then for ε = 1, there would be
a positive integer N such that for all integers n > N, we would have |an − L| < 1. There are
some n > N that are even and some that are odd. For those that are even, |an −L| = |1−L|.
For those that are odd, |an − L| = |(−1) − L|. Now, using algebra, the triangle inequality,
and the definition of absolute value, we see that

2 = 1 − (−1) = ∣∣1 − (−1)
∣∣ = ∣∣1 − L + L − (−1)

∣∣
≤ ∣∣1 − L

∣∣ + ∣∣L − (−1)
∣∣ = ∣∣1 − L

∣∣ + ∣∣(−1) − L
∣∣ < 1 + 1 = 2.

Since 2 < 2 is not true, our assumption about the existence of the limit L is false. Therefore,
the given sequence has no limit. �

EXAMPLE 5 Using the hypotheses of a convergence theorem

Show that lim
k→∞

ak + lim
k→∞

bk does not necessarily equal lim
k→∞

(ak + bk) for divergent se-

quences {ak} and {bk}.

SOLUTION

Consider the sequences defined by ak = (−1) k and bk = (−1)ak = (−1)k+1. As shown in
Example 4, the sequence {(−1) k} diverges, so lim

k→∞
ak does not exist. Similarly, lim

k→∞
bk does

not exist. Therefore, the sum of these limits, lim
k→∞

ak + lim
k→∞

bk, does not exist. By contrast,

lim
k→∞

(ak + bk) = 0, because for each k ∈ Z
+, ak + bk = 0. �

TEST YOUR? UNDERSTANDING
� What is the definition of the limit of a sequence? How is this definition similar to and

different from the limit of a function f (x) as x → ∞?

� What is the tail of a sequence? Why is it important?

� Is it true that for any sequences {ak} and {bk}, lim
k→∞

(ak ± bk) = lim
k→∞

ak ± lim
k→∞

bk? If so,

explain. If not, what is needed to make the statement true?
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� What is the Squeeze Theorem? How can the Squeeze Theorem be used to help under-
stand the convergence of a sequence?

� What is the Completeness Axiom for the real numbers? Does a nonempty subset of
the rational numbers that is bounded above always have a rational least upper bound?
Does a nonempty subset of the integers that is bounded above always have an integer
as a least upper bound?

EXERCISES 7.2

Thinking Back

Analyzing the behavior of a continuous function: Consider the

function f (x) = x3

e x
on the interval [0, ∞).

� Where is f increasing and where is f decreasing? Is the
function bounded above and/or below? Does f have
a limit as x → ∞?

The asymptotic behavior of a continuous function: Let y = f (x) be
an increasing function defined on the interval [0, ∞).

� Provide a condition that f must satisfy in order for f
to have a horizontal asymptote as x → ∞. Use the
words “upper bound” in your answer.

� Explain why the lack of an upper bound means that
the graph of the function f does not have a horizontal
asymptote.

� Explain the connection between the answers you just
gave and the convergence or divergence of an increas-
ing sequence.

� Provide an example of a continuous function f de-
fined on the interval [0, ∞) such that f is neither in-
creasing nor decreasing on any interval of the form
[a, ∞), where a > 0, yet f has a horizontal asymptote
at y = 0.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If the tail of a sequence converges, the
sequence converges.

(b) True or False: If {ak} and {bk} are two divergent
sequences, then the sequence {ak + bk} diverges.

(c) True or False: If {ak} is a convergent sequence of
rational numbers, it must converge to a rational
number.

(d) True or False: Every convergent sequence is bounded.
(e) True or False: Every bounded sequence is convergent.

(f) True or False: lim
k→∞

k1000000

(1.000001)k
= 0

(g) True or False: Every increasing sequence of negative
numbers converges.

(h) True or False: Every increasing sequence of positive
numbers converges.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A sequence {ak} of irrational numbers that converges
to a rational number.

(b) A bounded sequence without a limit.

(c) A convergent sequence that is not eventually
monotonic.

3. Explain why the convergence of a sequence depends only
on the convergence of the tail of the sequence.

In Exercises 4–11, give examples of sequences satisfying the
given conditions or explain why such an example cannot exist.

4. Two convergent sequences {ak} and {bk} such that the
sequence {ak + bk} converges.

5. Two convergent sequences {ak} and {bk} such that the
sequence {ak − bk} diverges.

6. Two divergent sequences {ak} and {bk} such that the
sequence {ak · bk} converges.

7. Two divergent sequences {ak} and {bk} such that the
sequence {ak · bk} diverges.

8. Two divergent sequences {ak} and {bk} such that the

sequence
{ ak

bk

}
converges.

9. Two divergent sequences {ak} and {bk} such that the

sequence
{ ak

bk

}
diverges.

10. Two convergent sequences {ak} and {bk} such that the

sequence
{ ak

bk

}
converges.

11. Two convergent sequences {ak} and {bk} such that the

sequence
{ ak

bk

}
diverges.

12. Explain what is important about monotonic and bounded
sequences.

In Exercises 13–16, give examples of sequences satisfying the
given conditions or explain why such an example cannot
exist.

13. A convergent sequence that is not eventually monotonic.

14. An increasing sequence that is not strictly increasing.

15. A decreasing sequence that is bounded below but is not
bounded above.
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16. A bounded and convergent sequence that is not eventu-
ally monotonic.

17. Find a divergent sequence {ak} such that the sequence

given by
{ k!

ak

}
converges.

18. What do we mean when we say factorial growth dominates
exponential growth? Provide an example illustrating this
fact.

19. Complete Example 3 by showing that the limit of the

sequence
{

k3

ek

}
is 0.

20. State the converse of Theorem 7.19. Explain why Theo-
rem 7.20 is a partial converse.

21. Discuss the boundedness and monotonicity of the
geometric sequence {cr k}∞k=0 with c > 0 and r > 0. De-
termine the values of r for which the sequence converges
and the values of r for which the sequence diverges. If the
sequence converges, find the limit of the sequence.

22. Discuss the boundedness and monotonicity of the
geometric sequence {cr k}∞k=0 with c > 0 and r < 0. In ad-
dition, determine whether the sequence converges or di-
verges. If it converges, find the limit of the sequence.

Skills

For each of the sequences in Exercises 23–52 determine
whether the sequence is monotonic or eventually monotonic
and whether the sequence is bounded above and/or below. If
the sequence converges, give the limit.

23. {11} 24.
{

1 + 1
k

}

25.
{

sin
(

kπ
2

)}
26. {cos(kπ )}

27.
{

(−1) k

k + 6

}
28. {k1/10}

29. {(3−k − 2)} 30.
{(

1
5

)k }

31.
{

k − 2−k

2 k

}
32.

{
2 k − 2−k

2 k

}

33.
{

k
2 + k

}
34.

{
k 2 − 2

k 2 + 2k + 2

}

35.
{(

1 + 1
k

)2 }
36.

{(
1 + 1

k

)k }

37.
{

2 k

k!

}
38.

{
k2 − 2

k 2 + 2k + 2

}

39. {31/k} 40. {k!}

41. {(42 + (−1) k)} 42.
{

k
k 2 + 2k + 2

}

43.
{(

2k 2

k 2 + 2k + 2

)3 }
44.

{
k 2 − 1

10000k + 2

}

45.
{(

42 − k
k 2 − 2k + 50

)}
46.

{
tan

(
kπ
2

)}

47.
{

1 · 3 · 5 · · · (2k − 1)
10 k

}
48.

{
1 · 3 · 5 · · · (2k − 1)
1 · 4 · 7 · · · (3k − 2)

}

49.
{

sin k
k

}
50.

{
k + 1
k + 7

}

51.
{

(k!)2

(2k)!

}
52.

{
(k!)3

(3k)!

}

For the sequences in Exercises 53 and 54, determine whether
the sequence converges or diverges. If the sequence con-
verges, give the limit.

53. {(k!) 1/k} 54. {k 1/k!}

Evaluate the limits in Exercises 55–60. Use the theorems in
this section to justify each step of your work.

55. lim
k→∞

sin k
2 k

(Hint: Use the Squeeze Theorem.)

56. lim
k→∞

(
1 + 1

k

)(
2 − 1

k

)

57. lim
k→∞

k − 7
3k + 5

58. lim
k→∞

k 3 + 1
k 2

59. lim
k→∞

(
√

k 2 + k − k)

60. lim
k→∞

(
√

k 3 + k + 1 − √
k 3 − k − 1 ) (Hint: Write as a quo-

tient and rationalize the numerator.)

Applications
61. Suppose you invest $100.00 in a bank that pays you a

nominal annual interest rate of 6%. The bank offers you
the option of compounding your money n times over the
course of a year. Your balance in the account after one year
is given by

ak = 100.00
(

1 + 0.06
k

)k

.

Find the balance in the account, rounded to the nearest
cent, if you compound the interest k times during the year,

where k is 1, 2, 6, 12, 52, and 365. You should see that
the balance at the end of the year is increasing. Do
you believe the sequence is bounded? If so, by what
value? Be as specific as possible.

62. We may use a recursively defined sequence to ap-
proximate the current amount of a radioactive ele-
ment. For example, radioactive radium changes into
lead over time. The rate of decay is proportional to the
amount of radium present. Experimental data sug-
gests that a gram of radium decays into lead at a rate
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of
1

2337
gram per year. Let ak be the amount of radium

at the end of year k. Since the decay rate is constant,
if we use a linear model to approximate the amount
that remains after one year has passes, we have

a1 = a0 − 1
2337

a0 = 2336
2337

a0.

More generally, we obtain the recursion formula

ak+1 = 2336
2337

ak.

Use this formula to estimate how much radium remains
after 100 years if we start off with a 0 = 10 grams of
radium.

Proofs

63. Prove that the geometric sequence {r k}∞k=0 diverges when
r < −1.

64. Prove that the sequence of factorials {k!} dominates every
sequence of exponential functions {b k}, where b > 0, by
applying the ratio test from Theorem 7.6 to the sequence

of quotients
{ k!

b k

}
.

Complete the proof of Theorem 7.18 by evaluating the limits
of the sequences in Exercises 65 and 66.

65. Explain why lim
k→∞

k1/k is an indeterminate form. Use

L’Hôpital’s Rule or another valid method to prove that
k1/k → 1.

66. Prove that
( 1

k

)p
→ 0, when p > 0.

In Exercises 67–70, let {ak} and {bk} be convergent sequences
with ak → L and bk → M as k → ∞ and let c be a constant.
Prove the indicated basic limit rules from Theorem 7.11. You
may wish to model your proofs on the proofs of the analogous
statements from Section 1.5.

67. Prove that cak → cL.
68. Prove that (ak + bk) → L + M.

69. Prove that akbk → LM.

70. Prove that if M 
= 0, then
ak

bk
→ L

M
.

In Exercises 71–74 let {ak} be a sequence. Prove the indicated
limit rules from Theorem 7.12. You may wish to model your
proofs on the proofs of the analogous statements from Sec-
tion 1.5.

71. Prove that if ak → L and ak → M, then L = M.
72. Prove that if {ak} → L and f is a function that is continu-

ous at L, then f (ak) → f (L).

73. Prove that if {m k} and {M k} are sequences that both con-
verge to L, and if m k ≤ ak ≤ M k for all k, then ak → L.

74. Prove that if |ak| → 0, then ak → 0.

75. Prove Theorem 7.9. That is, let a : [1, ∞) → R be a con-
tinuous function and let ak = a(k) for every k ∈ Z

+. Show
that if lim

x→∞ a(x) = L, then {ak} → L.

76. Prove that the converse of Theorem 7.9 is not true by
finding a continuous function a : [1, ∞) → R such that
lim

x→∞ a(x) does not exist but {a(k)} converges.

77. Prove that if {ak} is a sequence of nonzero terms with the

property that lim
k→∞

ak = ∞, then
1
ak

→ 0.

Prove the statements about the convergence or divergence of
sequences in Exercises 78–83, referring to theorems in the sec-
tion as necessary. For each of these statements, assume that r
is a real number and p is a positive real number.

78. k p → ∞ 79.
(

1
k

)p

→ 0

80. If r = 1, then r k → 1.

81. If |r| > 1, then the sequence {r k} diverges and |r| k → ∞.

82. If |r| < 1, then the sequence r k → 0.

83.
k r

(1 + p) k
→ 0.

84. Prove that if lim
k→∞

ak = L, then lim
k→∞

ak+1 = L.

85. Prove that every convergent sequence is bounded.
86. Consider the sequence {ak} defined recursively by a1 = 1

and for k > 1, ak = √
2ak−1. Prove that ak → 2 by first

proving that the limit must exist. (Hint: Use induction to
show that the terms of the sequence may be expressed with the
closed formula for ak = 21−(1/2)k−1

.)

87. Let {ak} be a sequence such that a2k → L and a2k+1 → L.
Prove that {ak} → L. (What you will have proven is that
if the even terms and odd terms of a sequence both con-
verge to L, then the sequence converges to L.)

88. Prove Theorem 7.14. That is, show that if {ak} is a se-
quence that converges to L, then every subsequence of
{ak} also converges to L.

Thinking Forward

� A sequence of sums: Consider the sequence {ak}∞k=0

where ak = 1+ 1
2
+ 1

4
+· · ·+ 1

2k
. Note that after the ze-

roth term, every term is given by a sum. As k increases,
the sum increases, so we see that this is an increasing
sequence. Find a closed formula for ak to show that
the sequence is bounded and therefore converges.

� Another sequence of sums: Consider the sequence

{ak}∞k=1 where ak = 1+ 1
2
+ 1

3
+· · ·+ 1

k
. Draw the graph

of this sequence together with the graph of f (x) = 1
x

.

Argue that ak ≥ ∫ k
1

1
x

dx. What is lim
k→∞

∫ k
1

1
x

dx? What

does the value of this improper integral imply about
the convergence of {ak}?
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7.3 SERIES

� Series as limits of partial sums of sequences

� Convergence of series in terms of convergence of sequences of partial sums

� Geometric series and when they converge or diverge

Adding Up Sequences to Get Series

If we take an infinite sequence and add up all of its terms, we get what is known as a series:

DEFINITION 7.21 Series of Real Numbers

A series
∑∞

k=1 ak is the sum of the terms of a sequence {ak} of real numbers:
∞∑

k=1

ak = a1 + a2 + a3 + · · · + ak + · · · .

For each positive integer index k, ak is called the kth term of the series.

Of course if we wish to, we can also choose to start a series at an index other than k = 1.
For example,

∑∞
k=3

1
k2

= 1
9

+ 1
16

+ 1
25

+ · · · is a series.

Given a sequence, we can sum up the terms to get a series. We can also consider partial
sums of a series to obtain another sequence:

DEFINITION 7.22 The Sequence of Partial Sums Associated with a Series

Given a series
∑∞

k=1 ak, for each positive integer n we can consider the partial sum, Sn,
of the first through nth terms. That is,

Sn = a1 + a2 + a3 + · · · + an.

Considered together these form a sequence of partial sums:

{Sn} =
{ n∑

k=1

ak

}
= {a1, (a1 + a2), (a1 + a2 + a3), . . . , (a1 + a2 + a3 + · · · + an), . . .}.

In other words, every series is a limit of partial sums:

∞∑
k=1

ak = lim
n→∞

n∑
k=1

ak = lim
n→∞ Sn.

We can determine the long-term behavior of a series by examining the long-term behavior
of its partial sums. For example, the series

∞∑
k=0

2 k = 1 + 2 + 22 + 23 + · · · + 2 k + · · ·

is the sum of a sequence of infinitely many numbers, each larger than the one before it.
The partial sums for this series grow as we add up more and more terms, and the sum of
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all the terms will be infinite. In other words, the sequence of partial sums clearly diverges
to ∞:

{Sn} = {1, 1 + 2, 1 + 2 + 22, 1 + 2 + 22 + 23, . . .} = {1, 3, 7, 15, 31, . . .}.
In contrast, we will soon see that the series

∞∑
k=0

(
1
2

)k
= 1 + 1

2
+

(
1
2

)2
+

(
1
2

)3
+ · · · +

(
1
2

)k
+ · · ·

adds up to the real number 2. Just as with Riemann sums, in this example we are adding
up infinitely many terms but the terms themselves are becoming infinitely small. Later in
the section we will see that the sequence of partial sums for this sequence converges to 2;
no matter how many terms in the series we add up, the sum never gets larger than 2:

{Sn} =
{

1, 1 + 1
2

, 1 + 1
2

+
(

1
2

)2
, 1 + 1

2
+

(
1
2

)2
+

(
1
2

)3
, . . .

}

=
{

1, 3
2

, 7
4

, 15
8

, 31
16

, . . .
}

, which converges to 2.

Convergence and Divergence of Series

In general, a series will converge to a real number, or not, depending on whether the limit
of its partial sums converges to a real number:

DEFINITION 7.23 Convergence or Divergence of a Series

Suppose
∑∞

k=1 ak is a series whose sequence of partial sums is Sn = ∑n
k=1 ak. We say

that the series converges to a limit L if {Sn} converges to L; that is,
∞∑

k=1

ak = L when lim
n→∞

( n∑
k=1

ak

)
= lim

n→∞ Sn = L.

In this case we say that the sum of the series is L. We say that a series diverges if its
sequence of partial sums diverges.

Although sequences of partial sums may seem to be an additional complication, basing
the convergence of a series on such sequences is the most natural thing we can do. The
sequence of partial sums simply considers adding one additional term at a time. If the limit
of the sequence of partial sums converges as we add more and more terms, then we say
that the series converges, too.

Unfortunately, not every sequence whose terms become infinitely small will have a
corresponding series that converges. For example, we will soon see that the series

∞∑
k=1

1
k

= 1 + 1
2

+ 1
3

+ · · · + 1
k

+ · · ·

does not add up to a finite real number, even though the terms of the sequence
{

1
k

}
tend

to zero. The fact that the series
∑∞

k=1
1
k

diverges is not immediately clear from examining

the first few terms of its sequence of its partial sums:

{Sn} =
{

1, 1 + 1
2

, 1 + 1
2

+ 1
3

, 1 + 1
2

+ 1
3

+ 1
4

, . . .
}

=
{

1, 3
2

, 11
6

, 25
12

, 137
60

, . . .
}
.

Although it is difficult to tell from just the first few terms, we will see in Section 7.4 that this
sequence of partial sums eventually grows without bound, even though with each term we
are adding smaller and smaller numbers to the partial sums.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 19:28

608 Chapter 7 Sequences and Series

Determining whether a given series converges or diverges is not always an easy task.
In fact, most of the rest of this chapter is devoted to developing techniques for determining
whether series converge or diverge.

The Algebra of Series

Convergent series obey most of the algebraic rules we might expect, although in Section 7.7
we will see that there are some surprises, too. The following theorem guarantees that series
behave well with respect to sums and constant multiples:

THEOREM 7.24 Sums and Constant Multiples of Convergent Series

If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series and c is any real number, then

(a)
∞∑

k=1

c ak = c
∞∑

k=1

ak (b)
∞∑

k=1

(ak + bk) =
∞∑

k=1

ak +
∞∑

k=1

bk

This theorem is unsurprising, since we already know that both limits and sums commute
with sums and constant multiples. We will prove part (b) and leave the proof of part (a) to
Exercise 84.

Proof.
(b) The result follows from looking at limits of partial sums:

∞∑
k=1

(ak + bk) = lim
n→∞

n∑
k=1

(ak + bk) ← definition of series

= lim
n→∞

( n∑
k=1

ak +
n∑

k=1

bk

)
← sums commute with sums

= lim
n→∞

n∑
k=1

ak + lim
n→∞

n∑
k=1

bk ← sums commute with limits

=
∞∑

k=1

ak +
∞∑

k=1

bk. ← definition of series

Just as the tail of a sequence is what determines whether or not the sequence converges,
the tail of a series is what determines the convergence or divergence of the series. This
means that adding or removing any finite number of terms from the start of a series does
not change its convergence properties. Of course if a series is convergent and we add or
remove terms, then this does change the sum of the series. The proof involves splitting a
sum from 1 to ∞ into two sums, one from 1 to M − 1 and one from M to ∞; the details are
left to Exercise 86.

THEOREM 7.25 The Tail of a Series Determines the Convergence of the Series

For any integer M, the series
∑∞

k=1 ak and
∑∞

k=M ak either both converge or both di-

verge. In addition, if
∑∞

k=M ak converges to L, then
∑∞

k=1 ak converges to a1 + a2 + a3 +
· · · + aM−1 + L.
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Geometric Series

In Section 7.1 we defined a geometric sequence as a sequence of the form {cr k}∞k=0 for some
constants c and r. If we add up the terms of a geometric sequence, we get a geometric
series

∑∞
k=0 cr k. The next theorem completely characterizes the behavior of all geometric

series. Not only can we determine exactly which geometric series converge or diverge just
by looking at r, but we can also determine the exact sum of any convergent geometric series.

Since we can always factor a constant multiple out of a series, it suffices to characterize
the behavior of geometric series of the form

∑∞
k=0 r k:

THEOREM 7.26 Convergence and Divergence of Geometric Series

Suppose r is a nonzero real number. Then

(a) For |r| < 1, the geometric series
∑∞

k=0 r k converges to the sum 1
1 − r

.

(b) For |r| ≥ 1, the geometric series
∑∞

k=0 r k diverges.

For example, on the one hand, we can tell immediately from this theorem that the series∑∞
k=0 5(1.1) k must diverge, since |1.1| ≥ 1. On the other hand, we can immediately de-

duce not only that the series
∑∞

k=0 5(0.9) k converges (since |0.9| < 1), but also what sum
it converges to:

∞∑
k=0

5(0.9) k = 5
∞∑

k=0

(0.9) k = 5
(

1
1 − 0.9

)
= 50.

To prove this useful theorem, we will perform a clever algebraic manipulation to de-
termine a formula for the partial sums of a geometric series and then examine the limit of
these partial sums for various values of r.

Proof. We first note that if r = 1, then we have the series
∑∞

k=0 1 = 1+1+1+· · · , which diverges

to ∞. Thus for the rest of the proof we may assume that r 
= 1.

Let
∑∞

k=0 r k be a geometric series with r 
= 1. For any positive integer n, the nth partial sum of

this series is
Sn = 1 + r + r 2 + r 3 + · · · + r n.

If we multiply both sides of the preceding equation by r, we obtain

rSn = r + r 2 + r 3 + r 4 + · · · + r n+1.

Now an interesting thing happens. If we subtract the corresponding sides of the foregoing two
equations, then all terms on the right-hand side cancel except for two terms, and we get

Sn − rSn = 1 − r n+1.

Factoring out Sn from the left side and then dividing both sides by r − 1 (note that we specifically
assumed that r 
= 1 so that we could be sure that we were not dividing by zero in this step), we get
a simple formula for the nth partial sum of the geometric series:

Sn = 1 − r n+1

1 − r
.

To determine whether or not the series
∑∞

k=0 r k converges or diverges, we need to examine
lim

n→∞ Sn in the cases |r| < 1, |r| > 1, and r = −1. Note that the only part of Sn that depends upon n

is the r n+1 term in the numerator.
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If |r| < 1, then r n+1 → 0 as n → ∞ and therefore we have a convergent geometric series whose
sum is ∞∑

k=1

r k = lim
n→∞

1 − r n+1

1 − r
= 1

1 − r
.

If r > 1, then r n+1 → ∞ as n → ∞ and therefore the geometric series diverges:

∞∑
k=1

r k = lim
n→∞

1 − r n+1

1 − r
→ ∞.

If r < −1, then the magnitude of r n+1 increases without bound as n → ∞ and the geometric series
oscillates and diverges.

Finally, if r = −1, then the term r n+1 = (−1)n+1 alternates between 1 and −1 for integer values
of n as n → ∞ and again the limit of partial sums diverges.

We will spend much of the next three sections studying various methods that help us
determine whether or not a series converges; but most of the time we will not be able to
compute the actual sum of a convergent series. Geometric series are a rare example of series
for which we can determine not only convergence, but also an exact sum. There is only one
other type of series whose sums we can calculate exactly, and that is telescoping series; see
Example 2.

Examples and Explorations

EXAMPLE 1 Analyzing series for convergence

Determine whether the following series converge or diverge:

(a)
∞∑

k=5

(0.8)k (b)
∞∑

k=1

1 (c)
∞∑

k=0

(−1)k

If a series converges, find its sum.

SOLUTION

(a) Any series in which the quotient of every two consecutive terms is the same constant is

a geometric series. That is the case here, since (0.8)k+1

(0.8)k
= 0.8. When the absolute value

of this quotient is less than 1, as we have here, the series will converge. The geometric
series ∞∑

k=0

cr k = c + cr + cr 2 + · · · + cr k + · · ·

converges to c
1 − r

if |r| < 1. In our series, since the first term is (0.8)5 and r = 0.8, the

series converges to (0.8)5

1 − 0.8
= (0.8)5

0.2
= 1.6384.

(b) We next consider the series in which every term is the constant 1. That is,
∞∑

k=1

1 = 1 + 1 + 1 + · · · + 1 + · · ·

Here the sequence of partial sums is

{Sn} = 1, (1 + 1), (1 + 1 + 1), . . .

= 1, 2, 3, . . .

We see that the sequence of partial sums is Z
+, which diverges. Thus, the series

diverges as well.
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(c) Not every divergent series diverges to infinity. For our third series, we have

∞∑
k=0

(−1) k = 1 − 1 + 1 − 1 + · · · + (−1) k + · · ·

Here, the sequence of partial sums is{
Sn

}∞
n=0 = 1, (1 − 1), (1 − 1 + 1), (1 − 1 + 1 − 1), . . .

= 1, 0, 1, 0, . . .

This sequence of partial sums diverges. Thus, the series diverges as well. �

EXAMPLE 2 A telescoping series

Use a sequence of partial sums to determine whether the series
∑∞

k=1
1

k(k + 1)
converges or

diverges. If the series converges, find its value.

SOLUTION

You should verify that the kth term of this series has the partial-fraction decomposition

1
k(k + 1)

= 1
k

− 1
k + 1

.

Therefore we may rewrite the series in the form

∞∑
k=1

1
k(k + 1)

=
∞∑

k=1

(
1
k

− 1
k + 1

)
.

Now using this decomposition, we construct the nth term in the sequence of partial sums:

Sn =
(

1
1

− 1
2

)
+

(
1
2

− 1
3

)
+

(
1
3

− 1
4

)
+ · · · +

(
1
n

− 1
n + 1

)
.

Note that between each two consecutive pairs, the second term of a pair cancels with the
first term of the subsequent pair. The cancellation between these values gives rise to the
term “telescoping” series in that each term in the sequence of partial sums collapses like a
folding telescope. Because of the telescoping within the summation for Sn, we have

Sn = 1 − 1
n + 1

.

We now take the limit of Sn as n → ∞ and see that lim
n→∞

(
1 − 1

n + 1

)
= 1. Therefore the

series sums to 1.

Before we proceed to other examples, we note that telescoping series have the charac-
teristic that each term of the series can be written as a sum of two or more summands and
that once they are decomposed in this way, there will be cancellation between terms in the
sequence of partial sums. That cancellation in a telescoping series is not always as simple
as the cancellation in this example. You will see other telescoping series in the exercises. �

EXAMPLE 3 Finding terms of a sequence of partial sums

Find the first five terms in the sequence of partial sums for the series
∑∞

k=0
1
k!

.

SOLUTION

The series is
∑∞

k=0
1
k!

= 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

+ · · · .
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The first five terms in the sequence of partial sums are

S0 = 1
0!

= 1

S1 = 1
0!

+ 1
1!

= 1 + 1 = 2

S2 = 1
0!

+ 1
1!

+ 1
2!

= 1 + 1 + 1
2

= 5
2

S3 = 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

= 1 + 1 + 1
2

+ 1
6

= 8
3

S4 = 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ 1
4!

= 1 + 1 + 1
2

+ 1
6

+ 1
24

= 65
24

.

In Chapter 8 we will see that this series converges to e. �

EXAMPLE 4 Working with geometric series

Show that each of the sums that follow defines a geometric series, and then determine
which series converge and which diverge. Find the sum of each convergent series.

(a)
∞∑

k=0

7(0.9)k (b)
∞∑

k=5

1
100

(−1.00001)k (c) − 43
5

+ 43
25

− 43
125

+ 43
625

· · ·

SOLUTION

(a) The first of these series is in the standard form for a geometric series with c = 7 and
r = 0.9. Since |r| = |0.9| < 1, by Theorem 7.26 the series converges to c

1 − r
= 7

1 − 0.9
=

70.

(b) The second series is almost in the standard form for a geometric series, but the index
starts with 5, rather than 0. However, recall that the convergence of a series depends
not upon the first few terms, but only upon the tail of the series. In this geometric series,
r = −1.00001. Of course, |−1.00001| > 1, so by Theorem 7.26, this series diverges.

(c) A geometric series may be defined recursively as a sum of terms in which every term
after the first term, c, is the same constant multiple, r, of the previous term. In the

third series in this example we see that the first term is c = − 43
5

. Every term after that

is − 1
5

times the previous term. Since |r| =
∣∣∣− 1

5

∣∣∣ < 1, the given series is a convergent
geometric series. Its sum is

−43/5
1 − (−1/5)

= −43
6

. �

EXAMPLE 5 Expressing repeating decimals as geometric series

Express the following repeating decimal expansions as geometric series and as the quotient
of two integers:

(a) 0.123123123 . . . (b) 6.2353535 . . .

SOLUTION

(a) Every decimal that is eventually repeating may be expressed as a geometric series and
as the quotient of two integers, that is, as rational numbers. Note that

0.123123123 . . . = 0.123(1 + 0.001 + (0.001)2 + (0.001)3 + · · · )

=
∞∑

k=0

0.123(0.001) k = 0.123
1 − 0.001

= 0.123
0.999

= 123
999

= 41
333

.
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(b) The repetition in the expansion of our second decimal, 6.2353535 . . ., does not start
until after the tenths place. To mimic the technique from (a), we need the repetition of
the decimal to start at the decimal point. To accomplish this we may simultaneously
multiply and divide by 10 to obtain 1

10
(62.353535 . . .). Now, working with the decimal

0.353535 . . ., we have

0.353535 . . . = 0.35(1 + 0.01 + (0.01)2+(0.01)3 + · · · )

=
∞∑

k=0

0.35(0.01) k = 0.35
1 − 0.01

= 0.35
0.99

= 35
99

.

Thus,

6.2353535 . . . = 1
10

(
62 + 35

99

)
= 6173

990
.

�

CHECKING
THE ANSWER

These results may easily be checked with a calculator to see if our rational numbers have
the correct decimal expansions. For example, when we divide 6173 by 990, we obtain
6.2353535 . . ..

EXAMPLE 6 Changing the index of a series

Rewrite the series
∑∞

k=5
k

k 2 + 3
with the index starting at zero.

SOLUTION

We introduce a different letter, j, as the new index. We want j = 0 when k = 5, giving the
relationship k = j + 5. If we replace each k with j + 5 in the original expression for the
series, we will have achieved our goal. We have

∞∑
j=0

j + 5
( j + 5)2 + 3

=
∞∑

j=0

j + 5
j 2 + 10j + 28

. �

CHECKING
THE ANSWER

We may check the answer by evaluating the original expression of the series for the first
few values of k and doing the same for the first few values of j in our new expression. From
the original expression, we have

∞∑
k=5

k
k 2 + 3

= 5
28

+ 6
39

+ 7
52

+ · · · .

For the new expression, we have
∞∑

j=0

j + 5
j 2 + 10j + 28

= 5
28

+ 6
39

+ 7
52

+ · · · .

The first three terms of the two expressions agree.

TEST YOUR? UNDERSTANDING
� What is a series? What is a sequence of partial sums?

� How do we define convergence for a series?

� What is meant by the “tail” of a series? Why does the tail of a series determine the
convergence of the series?

� What is a geometric series? Which geometric series converge and which diverge?

� What is a telescoping series? Why are telescoping series given this name?
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EXERCISES 7.3

Thinking Back

Working with sequences: Determine which of the sequences
that follow converge and which diverge. Explain your reason-
ing for each sequence.

� {1 − r n+1} for 0 < r < 1

� {1 − r n+1} for r > 1

� {1 − r n+1} for −1 < r < 0

� {1 − r n+1} for r < −1

� {nr} for r > 0

� {nr} for r < 0

� Convergence of an Improper Integral: If the function
f : [1, ∞) → R is continuous on its domain, what
does it mean for the improper integral

∫ ∞
1 f (x) dx

to converge? What does it mean for the integral to
diverge?

� Convergence of a Sequence: Let {an} be a sequence. What
does it mean for the sequence to converge? What does
it mean for the sequence to diverge?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If the sequence {an} converges, then the
series

∑∞
n=1 an converges.

(b) True or False: If a series
∑∞

k=1 ak diverges and {Sn} is
its sequence of partial sums, then lim

n→∞ Sn = ∞.

(c) True or False: If two series
∑∞

k=1 ak and
∑∞

k=1 bk both

diverge, then the series
∑∞

k=1(ak + bk) diverges.

(d) True or False: If
∑∞

k=1 ak and
∑∞

k=1 bk are two con-
vergent series, then for any real numbers c and d,∑∞

k=1(cak + dbk) = c
∑∞

k=1 ak + d
∑∞

k=1 bk.

(e) True or False: If the series
∑∞

k=0 an+k converges to 5,
then the series

∑∞
k=100 ak converges to a value L < 5.

(f) True or False: If the series
∑∞

k=N ak converges, then∑∞
k=N ak = ∑∞

k=0 an+k.

(g) True or False: If a geometric series
∑∞

k=0 cr k converges,
then lim

k→∞
cr k = 0.

(h) True or False: The series
∑∞

k=1 ak where a1 = 4 and
ak+1 = ak

2
for k > 1, converges to 7.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A convergent geometric series
∑∞

k=0 cr k with r < 0.

(b) A divergent geometric series
∑∞

k=0 cr k with r < 0.

(c) A divergent series that is not a geometric series.

3. What is meant by the sequence of partial sums for a series∑∞
k=1 ak? Why does it make sense to define the conver-

gence of a series in terms of the convergence of its se-
quence of partial sums?

4. What is meant by the tail of a series? Why does it make
sense that the tail of a series determines the convergence
of the series?

5. What is the relationship between
∑∞

k=1 ak and
∑∞

k=10 ak?
If you knew that

∑∞
k=10 ak converged to 42, what other

information would you need to know to find the sum of∑∞
k=1 ak?

6. Explain why the sequence of partial sums of the series∑∞
k=1 ak in which ak > 0 for every k ∈ Z

+ is strictly in-
creasing.

7. Explain how to change the index of the series
∑∞

k=1 ak to
start with an initial value other than 1.

8. What is a geometric progression? What determines the
convergence of a geometric progression?

9. What is a geometric series? What determines the conver-
gence of a geometric series?

10. Let
∑∞

k=1 cr k be a series with c and r ∈ R. Explain why the
convergence of this series depends only upon the magni-
tude of r and not on c.

11. Explain why all the terms of a divergent geometric series
are nonzero.

12. What is a telescoping series? Give an example of a con-
vergent telescoping series and an example of a divergent
telescoping series.

13. Find a series
∑∞

k=1 ak with all nonzero terms that con-
verges to 1.

14. Let α ∈ R. Explain why you can find a series
∑∞

k=1 ak

with all nonzero terms that converges to α. You may wish
to use your answer to Exercise 13.

15. Find two divergent series
∑∞

k=1 ak and
∑∞

k=1 bk such that
the series

∑∞
k=1(ak + bk) converges. Carefully use the se-

quence of partial sums for this new series to show that
your answer is correct.

16. Find two divergent series
∑∞

k=1 ak and
∑∞

k=1 bk such that
the series

∑∞
k=1(ak − bk) converges. Carefully use the se-

quence of partial sums for this new series to show that
your answer is correct.

17. Find two convergent geometric series
∑∞

k=0 ak = L and∑∞
k=0 bk = M such that the series

∑∞
k=0(ak · bk) con-

verges. Does this series converge to L M?
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18. Find two convergent geometric series
∑∞

k=0 ak = L and∑∞
k=0 bk = M with all positive terms such that

∑∞
k=0

ak

bk

converges but whose sum is not
L
M

.

19. Find two divergent geometric series
∑∞

k=0 ak and
∑∞

k=0 bk

with all positive terms such that
∑∞

k=0
ak

bk
converges.

20. Find two convergent geometric series
∑∞

k=0 ak = L and∑∞
k=0 bk = M with all positive terms such that

∑∞
k=0

ak

bk
diverges.

Skills

In Exercises 21–28 provide the first five terms of the series.

21.
∞∑

k=1

1
k 2 + 2

22.
∞∑

n=1

n + 1
n!

23.
∞∑

j=0

(−1) j+1 24.
∞∑

n=3

(2n + 1)

25.
∞∑

i=0

i!
(i + 1)!

26.
∞∑

k=0

k!
(2k)!

27.
∞∑

n=0

(−1)n

(2n)!
28.

∞∑
n=1

(−1)n n2

n!

In Exercises 29–36 provide the first five terms of the sequence
of partial sums for the given series. You may find it useful to
refer to your answers to Exercises 21–28.

29.
∞∑

k=1

1
k 2 + 2

30.
∞∑

n=1

n + 1
n!

31.
∞∑

j=0

(−1) j+1 32.
∞∑

n=3

(2n + 1)

33.
∞∑

i=0

i!
(i + 1)!

34.
∞∑

k=0

k!
(2k)!

35.
∞∑

n=0

(−1)n

(2n)!
36.

∞∑
n=1

(−1)n n2

n!

Evaluate the finite sums in Exercises 37–42.

37.
100∑
k=0

1
2 k

38.
50∑

k=1

1
3 k

39.
1000∑
k=0

2 k 40.
60∑

j=1

3 j

41.
150∑
k=6

(
2
3

)k

42.
200∑

j=11

(
3
2

)j

Given that a0 = −3, a1 = 5, a2 = −4, a3 = 2, and∑∞
k=2 ak = 7, find the values of the specified quantities

in Exercises 43–46.

43.
∞∑

k=0

ak 44.
∞∑

k=1

ak

45.
∞∑

k=3

ak 46.
∞∑

k=4

ak

For each of the geometric series in Exercises 47–60, determine
whether the series converges or diverges. Give the sum of each
convergent series.

47.
∞∑

k=0

3
2 k 48.

∞∑
n=1

(−1)n+1

3n

49.
∞∑

j=2

2 j

3
50.

∞∑
n=4

4
11n

51.
∞∑

k=0

π
( e

3

)k
52.

∞∑
k=0

e
(π

3

)k

53.
∞∑

k=2

(
−3

5

)k

54.
∞∑

k=0

(
−9

8

)k

55.
∞∑

k=0

2 k+2

5 k−1
56.

∞∑
k=0

4 k+1

3 2k

57.
∞∑

k=0

(−3)k+1

4 k−2
58.

∞∑
k=0

5 k+1

(−6)k

59.
80
3

− 20
3

+ 5
3

− 5
12

+ · · ·

60.
99
40

− 99
20

+ 99
10

− 99
5

+ · · ·

Show that each series in Exercises 61–66 is a telescoping
series. For each series, provide the general term Sn in its se-
quence of partial sums and find the sum of the series if it
converges.

61.
∞∑

k=1

(
1
k

− 1
k + 2

)
62.

∞∑
k=1

3
k 2 + 3k + 2

63.
∞∑

k=0

(
1
3 k

− 1
3 k+1

)
64.

∞∑
k=1

1
k(k + 1)(k + 2)

65.
∞∑

k=1

ln
k

k + 1
66.

∞∑
k=2

ln
1

k 2 − 1

For each series in Exercises 67–70, find all values of x for which
the series converges.

67.
∞∑

k=0

x k 68.
∞∑

k=0

(
3
x

)k

69.
∞∑

k=0

(sin x) k 70.
∞∑

k=0

( cos x
2

) k
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Express each of the repeating decimals in Exercises 71–78 as a
geometric series and as the quotient of two integers reduced
to lowest terms.

71. 0.237237237 . . . 72. 3.454545 . . .

73. 0.305130513051 . . . 74. 2.2131313 . . .

75. 1.272727 . . . 76. 0.6345345 . . .

77. 0.199999 . . . 78. 0.99999 . . .

Applications
79. Whenever a certain ball is dropped, it always rebounds

to a height 60% of its original position. What is the total
distance the ball travels before coming to rest when it is
dropped from a height of 1 meter?

1 m

80. Whenever a certain ball is dropped, it always rebounds to
a height p% (0 < p < 100) of its original position. What
is the total distance the ball travels before coming to rest
when it is dropped from a height of h meters?

In Exercises 81–83, find the areas of fractals by using proper-
ties of geometric series.

81. The figure shown is drawn recursively and then shaded.
The largest square has side length 1 unit. A smaller square
is inscribed in the square so that each vertex is at the mid-
point of the larger square. This process is repeated recur-
sively, resulting in shading as depicted in the figure. What
is the area of the shaded portion of the picture?

82. The figure shown is drawn recursively and then shaded.
The largest square has side length 1 unit. A square whose
side length is r% as long as the larger square is inscribed
with one vertex on each edge of the larger square. This
process is repeated recursively, resulting in shading as de-
picted in the figure. What is the area of the shaded portion
of the picture?

83. The figure shown is called a Sierpinski triangle. It may be
constructed recursively as follows: We start with a large
black equilateral triangle. Every time we see a black equi-
lateral triangle, we inscribe a white equilateral triangle
with each vertex at the midpoint of a side of the black
triangle. If the side of the largest triangle is 1 unit and
this process is repeated recursively, what is the area of the
white-shaded region?

Proofs

84. Prove Theorem 7.24 (a). That is, show that if c is a
real number and

∑∞
k=1 ak is a convergent series, then∑∞

k=1 cak = c
∑∞

k=1 ak.

85. Prove that if
∑∞

k=1 ak converges to L and
∑∞

k=1 bk con-
verges to M, then the series

∑∞
k=1 (ak + bk) = L + M.

86. Prove Theorem 7.25. That is, show that the series
∑∞

k=1 ak

and
∑∞

k=M ak either both converge or both diverge. In ad-
dition, show that if

∑∞
k=M ak converges to L, then

∑∞
k=1 ak

converges to a1 + a2 + a3 + · · · + aM−1 + L.

87. Let
∑∞

k=0 cr k and
∑∞

k=0 bv k be two convergent geo-
metric series. Prove that

∑∞
k=0(cr k · bv k) converges. If

neither c nor b is 0, could the sum of this series be(∑∞
k=0 cr k

)(∑∞
k=0 bv k

)
?

88. Let
∑∞

k=1 ak be a convergent series and
∑∞

k=1 bk be a
divergent series. Prove that the series

∑∞
k=1 (ak + bk)

diverges.

89. Let
∑∞

k=0 cr k and
∑∞

k=0 bv k be two convergent geometric
series. If b and v are both nonzero, prove that

∞∑
k=0

cr k

bv k

is a geometric series. What condition(s) must be met for
this series to converge?
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Thinking Forward
Improper Integrals: Determine whether the following improper
integrals converge or diverge.

�
∫ ∞

1

1
x

dx

�
∫ ∞

1

1
x 2

dx

� An Improper Integral and Infinite Series: Sketch the func-

tion f (x) = 1
x

for x ≥ 1 together with the graph of

the terms of the series
∑∞

k=1
1
k

. Argue that for every

term Sn of the sequence of partial sums for this series,

Sn >
∫ n+1

1
1
x

dx. What does this result tell you about

the convergence of the series?

7.4 INTRODUCTION TO CONVERGENCE TESTS

� Convergence tests for series

� The divergence test and the integral test

� Approximating series by using partial sums

An Overview of Convergence Tests for Series

The rest of this chapter will be dedicated to determining which series converge and which
diverge. In some sense the convergence of a sum of a sequence is a question of how fast the
terms of that sequence converge to zero. If the terms of a sequence converge to zero, then
the sum of that sequence might converge or it might not. For example we will soon see that

the sum 1+ 1
22

+ 1
32

+ 1
42

+· · · converges, but the sum 1+ 1
2
+ 1

3
+ 1

4
+· · · is infinite, even though

both of the sequences
{

1
k2

}
and

{
1
k

}
converge to zero. The first sequence tends to zero fast

enough that its sum is a real number, but the second sequence somehow does not tend to
zero fast enough. Determining exactly what “fast enough” means is a nontrivial question.

At this point we can determine the convergence or divergence of certain series by look-
ing at limits of partial sums or by recognizing a series as a geometric series. For most series,
we will need a much bigger toolbox. For the rest of this chapter we will discuss various tests
to help us decide which series converge and which diverge. These tests are as follows:

� The Divergence Test (Section 7.4)

� The Integral Test (Section 7.4)

� The Comparison Test (Section 7.5)

� The Limit Comparison Test (Section 7.5)

� The Ratio Test (Section 7.6)

� The Root Test (Section 7.6)

� The Alternating Series Test (Section 7.7)

� The Ratio Test for Absolute Convergence (Section 7.7)

At the end of Section 7.7 you will find a table that compares and contrasts the eight tests
and comments on when they are most useful.

The Divergence Test

If the terms of a sequence converge to zero, then the sum of those terms might be finite or
might be infinite. But if the terms of a sequence do not converge to zero, then we can be
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certain that the sum of those terms will be infinite. For example, the sequences {2, 22, 23, . . .}
and {1, 1, 1, . . .} clearly have the infinite sums 2 + 22 + 23 + · · · and 1 + 1 + 1 + · · · ,
respectively.

THEOREM 7.27 The Divergence Test

If the sequence {ak} does not converge to zero, then the series
∑∞

k=1 ak diverges.

The divergence test gives us a quick way to determine that certain series diverge, but it can
never tell us if a series converges. If we notice that the terms of a series do not converge
to zero, then the divergence test immediately tells us that the series diverges. For example,

the series
∑∞

k=1
k

k + 1
must diverge because its sequence of terms

{
k

k + 1

}
converges to 1,

not 0. Note that if the terms of a series do converge to zero, then the divergence test tells
us nothing at all.

Proof. It is easier to prove the contrapositive of the divergence test, so we will prove that if a series∑∞
k=1 ak converges, then its sequence of terms {ak} must converge to zero.

Suppose
∑∞

k=1 ak converges to a sum L. Then the sequence of partial sums

{Sn} = {a1 + a2 + · · · + an}
converges to L. Notice that the difference between the nth and (n − 1)th partial sums is equal to
the nth term of the series:

Sn − Sn−1 = (a1 + a2 + a3 + · · · + an) − (a1 + a2 + a3 + · · · + an−1) = an.

Note that {Sn−1} is just the sequence {Sn} with a different index. Therefore since {Sn} converges to
L, we also have {Sn−1} converges to L. Now we can calculate the limit of the original terms an of our
series:

lim
n→∞ an = lim

n→∞(Sn − Sn−1) = L − L = 0.

This means that the sequence of terms {an} converges to zero.

The Integral Test

Suppose {ak} is a sequence of positive numbers that converges to zero, and suppose that
we are interested in its sum. Recall that we can often think of {ak} as a sequence of heights
on the graph of some continuous function a(x), as shown in the leftmost figure that follows.
We can also think of each term ak as the area of a rectangle with height ak and width �x = 1
in two different ways, as shown in the middle and rightmost figures. The sum of the areas
of these rectangles is intimately related to the area under the graph of a(x) on [1, ∞), an
area that we can often calculate with an improper integral.

{ak} and a(x)
∞∑

k=1

ak >

∫ ∞

1
a(x) dx

∞∑
k=2

ak <

∫ ∞

1
a(x) dx

y

S1

S2

S3

x
. . .

3 4 5 621

y

x
. . .

3 4 5 621

S1

S2

S3

y

x
. . .

3 4 5 621

S1

S2

S3
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From the middle figure we see that if the integral of a(x) on [1, ∞) diverges, then so
will the sum of {ak} from k = 1 to ∞, since the sum is larger than the area under the curve.
From the rightmost figure we see that if the integral of a(x) on [1, ∞) converges, then so
will the sum of {ak} from k = 2 to ∞, since that sum is smaller than the area under the
curve. But then when k = 1, the term a1 must be finite, so the sum of {ak} from k = 1 to ∞
will also converge.

In general, a series and its associated improper integral always converge or diverge
together:

THEOREM 7.28 The Integral Test

If a(x) is a function that is continuous, positive, and decreasing on [1, ∞), and if {ak} is
the sequence defined by ak = a(k) for every k ∈ Z

+, then
∞∑

k=1

ak and
∫ ∞

1
a(x) dx

either both converge or both diverge.

The integral test provides a way to test the convergence or divergence of a series on the
basis of the convergence or divergence of a related improper integral. This can be a useful
test when we recognize the terms ak as a function a(x) that we know how to integrate. It is
important to note that a convergent series and its associated convergent improper integral
do not in general converge to the same number L. The integral test tells us only whether
or not a series converges; it does not tell us the actual sum of the series.

Proof. To prove this theorem it suffices to show that a series
∑∞

k=1 ak converges if and only if the
improper integral

∫ ∞
1 a(x) dx converges, for some function a(x) that agrees with ak on the positive

integers. We will show that convergence of the series implies convergence of the integral, and leave
the converse to Exercise 54.

Suppose the series
∑∞

k=1 ak converges to some value L. Since a k > 0 for every k, the sequence
of partial sums Sn = a1 +a2 +· · ·+an is an increasing sequence that converges to L. Note that Sn is a

left Riemann sum for
∫ n+1

1 a(x) dx. Since a(x) is assumed to be continuous, positive, and decreasing,
this left Riemann sum is an upper sum; see the previous middle figure. Therefore, for every positive
integer n,

0 ≤
∫ n+1

1
a(x) dx ≤ Sn ≤ L.

Now, by Theorem 7.19,
{∫ n

1 a(x) dx
}

is an increasing sequence that is bounded above by L and
therefore converges to some value less than or equal to L. Thus, the improper integral

∫ ∞
1 a(x) dx =

lim
n→∞

∫ n
1 a(x) dx converges, which is what we set out to show.

Convergence and Divergence of p-Series and the Harmonic Series

We have already seen that we can completely classify the convergence and divergence of
geometric series of the form

∑∞
k=1 r k. These series have exponential terms, in the sense

that the variable index k is in the exponent, and a constant r is in the base, of each term.
We can also consider series with power function terms, in the sense that the variable index
k is in the base, and a constant p is in the exponent, of each term. Such series are called
p-series and are of the form

∞∑
k=1

k−p =
∞∑

k=1

1
k p

.
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The case when p = 1 is called the harmonic series:
∞∑

k=1

1
k
.

The integral test allows us to completely classify the convergence and divergence of
p-series:

THEOREM 7.29 Convergence and Divergence of p-series

Suppose p is any real number. Then

(a) For p > 1, the p-series
∑∞

k=1
1
k p

converges.

(b) For p = 1, the harmonic series
∑∞

k=1
1
k

diverges.

(c) For p < 1, the p-series
∑∞

k=1
1
k p

diverges.

Proof. In Theorem 5.21 of Section 5.6, we showed that∫ ∞

1

1
x p

dx

converges when p > 1 and diverges for p ≤ 1. Therefore, by the integral test, a p-series also con-
verges for p > 1 and diverges for p ≤ 1.

Again, we point out that a convergent series does not in general have the same value
as its associated improper integral. For example, when p = 2,

∫ ∞

1

1
x 2

dx = lim
b→∞

[
−1

x

]b

1
= lim

b→∞

(
−1

b
+ 1

)
= 1.

The fact that this integral is finite means that the associated p-series
∑∞

k=1
1
k2

must also
converge. However, this p-series converges, not to 1, but rather to the much more surprising
value ∞∑

k=1

1
k 2

= π 2

6
.

Approximating a Convergent Series

Using the proof of the integral test, we may deduce that when the following series and
related improper integrals both converge, their values are related by the inequalities

∫ ∞

2
a(x) dx ≤

∞∑
k=2

a(k) ≤
∫ ∞

1
a(x) dx ≤

∞∑
k=1

a(k).

Thus, if we can evaluate these improper integrals, we can compute an upper and lower
bound for the value of the series. (Similarly, but less likely, if we know the sum of the
series in the preceding inequality, we may compute bounds for the value of the improper
integral.)

This string of inequalities may be generalized to provide a method for bounding the
error when we approximate the sum of a convergent series with one of its partial sums. We
need a definition first, however:
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DEFINITION 7.30 The Remainder of a Convergent Series

If
∑∞

k=1 ak is a convergent series with sum L, then we may approximate L with the nth
partial sum Sn = ∑n

k=1 ak. The nth remainder is defined by R n = L − Sn = ∑∞
k=n+1 ak.

The remainder is the error that arises from using Sn to approximate the sum of the series.
The next theorem gives us a tool for understanding the magnitude of this error when
we have a series that, by the integral test, we know converges. If we choose a “large
enough” value of n to force the remainder to be small, the nth partial sum will be a good
approximation.

THEOREM 7.31 Approximating the Remainder for a Series That Converges by the Integral
Test

If a function a is continuous, positive, and decreasing, and if the improper integral∫ ∞
1 a(x) dx converges, then the nth remainder, R n, for the series

∑∞
k=1 a(k) is bounded

by

0 ≤ R n ≤
∫ ∞

n
a(x) dx.

Furthermore, if we define Bn = ∫ ∞
n a(x) dx, then

Sn ≤
∞∑

k=1

a(k) ≤ Sn + Bn.

As we mentioned before, the proof of the first string of inequalities in Theorem 7.31 is a
generalization of the proof of the inequalities we proved in the integral test. The proof is
left for Exercise 55. The second string of inequalities in Theorem 7.31 follows from the fact
that the sequence of partial sums for a series satisfying the conditions of the integral test
monotonically increases as it converges to the sum of the series. We use Theorem 7.31 in
Example 2.

Examples and Explorations

EXAMPLE 1 Choosing a convergence test

Determine whether the series
∑∞

k=1
k

ek2 converges or diverges. Prove that the answer is
correct by applying an appropriate convergence test.

SOLUTION

Frequently, more than one convergence test may be used to show that a given series con-
verges or diverges. Right now, when you are presented with a new series,

∑∞
k=1 ak, you can

quickly answer the following two questions:

� Does ak 
→ 0 as k → ∞? If so, then, by the divergence test, the series diverges.
� Does ak = a(k), where a is a continuous, positive, and decreasing function on

[1, ∞)? If so, is the improper integral
∫ ∞

1 a(x) dx “relatively easy” to evaluate? If
it is, you may use the integral test.

After we introduce other convergence tests in the sections that follow, there will be new
questions to add to this list. Every time you are presented with a new series, you can quickly
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run through these questions to help you decide which test might be applicable. After you
analyze the behavior of a variety of series, it should become more apparent which test(s)
may be applied to a given series.

For the series given in this example, we see that k
ek2 → 0 as k → ∞. Therefore, the

divergence test fails here.

Next, note that the function a(x) = xe −x 2
is continuous, positive, and decreasing on

[1, ∞) and that a(k) = k
ek2 . Thus, if we can evaluate the improper integral

∫ ∞
1 xe−x 2

dx, we
will understand the behavior of the series. We now consider

∫ ∞

1
xe−x 2

dx = lim
b→∞

∫ b

1
xe−x 2

dx ← the definition of the improper integral

= lim
b→∞

−1
2

e−x 2
∣∣∣b

1
← the Fundamental Theorem of Calculus

= lim
b→∞

(
1
2e

− 1
2e b 2

)
← evaluation of the antiderivative at the endpoints

= 1
2e

← evaluation of the limit

Since the improper integral converges, by the integral test the series converges as well. �

EXAMPLE 2 Approximating a convergent series and finding a bound for the remainder

Use the third term, S3, in the sequence of partial sums to approximate the sum of the series∑∞
k=1

k
ek2 , and use Theorem 7.31 to find a bound on the remainder.

SOLUTION

To use Theorem 7.31 we must show that the series converges and that it satisfies the
hypotheses of the integral test. We did this in Example 1. We now compute S3:

S3 = 1
e

+ 2
e 4

+ 3
e 9

≈ 0.404881.

Theorem 7.31 tells us that the third remainder R3 is bounded by

0 ≤ R3 ≤
∫ ∞

3
xe−x 2

dx = 1
2e 9

= B3 ≈ 0.000062.

Thus, if
∑∞

k=1
k

ek2 = L, then,
S3 ≤ L ≤ S3 + B3.

That is, L ∈ (0.404881, 0.404943). This approximation is quite good already.

We mentioned before that when we approximate a quantity, we usually begin with an
understanding of how large an error we can tolerate. When we approximate a convergent
series, this means that we should ensure that the remainder is smaller than the desired
error. For the series in this example, if we wish the remainder to be less than, say, 10−10, we
need to find the smallest value of n such that Bn ≤ 10−10. That is, we need to find n so that

∫ ∞

n
xe−x 2

dx = 1
2e n2 ≤ 10−10.

We leave it to you to show that n = 5 is the smallest positive integer satisfying the
inequality. Thus, S5 = 1

e
+ 2

e4
+ 3

e9
+ 4

e16
+ 5

e25
≈ 0.4048813986 with the desired

accuracy. �
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EXAMPLE 3 Using the divergence test

Determine whether the series
∞∑

k=1

(
k

k + 1

)k
converges or diverges.

SOLUTION

We hope that the limit:

lim
x→∞

(
1 + 1

x

)x

is familiar to you. Its value is e. If you do not recall this fact, review Chapter 1. Since we
have 1 + 1

x
= x + 1

x
, we also have

lim
k→∞

(
k

k + 1

)k
= 1

e

= 0.

By the divergence test, the series diverges. �

EXAMPLE 4 Analyzing a category of series for convergence

Find all values of p for which the series
∑∞

k=1
k

(1 + k 2) p
converge.

SOLUTION

When p <
1
2

, k
(1+k2)p

→ ∞ as k → ∞. Therefore, by the divergence test, the series

diverge. When p = 1
2

, k
(1+k2)p

→ 1 as k → ∞. Again, by the divergence test, the series di-

verges. For p >
1
2

, the function x
(1+x2)p

is continuous, positive, and decreasing for x ≥ 1

and, therefore, satisfies the hypotheses of the integral test. Thus, when we know the posi-
tive values of p for which the improper integrals∫ ∞

1

x
(1 + x 2) p dx

converge, we will know the values of p for which the series converge. Using the substitution
u = 1 + x 2, we obtain the integral

1
2

∫ ∞

2

du
u p .

We have previously seen that this improper integral converges when p > 1 and diverges
when 0 < p ≤ 1. Therefore, our series

∑∞
k=1

k
(1+k 2)p

converge when p > 1 and diverge

otherwise. �

TEST YOUR? UNDERSTANDING
� What is the divergence test? What does the divergence test tell you about a series?

What can the divergence test not tell you about a series?

� What is the integral test? How is the integral test used? What conditions must be met
for the integral test to be effective?

� How do we show that a series converges or diverges?

� What is the remainder of a convergent series? How is the remainder related to the
sequence of partial sums?

� How is the integral test extended to find a bound on the error for an approximation to
a series?
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EXERCISES 7.4

Thinking Back

The contrapositve: What is the contrapositive of the implication
“If A, then B.”?

Find the contrapositives of the following implications:

� If a quadrilateral is a square, then it is a rectangle.

� If a positive integer is prime, then it has exactly two
positive divisors.

� If r < 0, then |r| = −r.

� If a divides b and b divides c, then a divides c.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If ak → 0, then
∑∞

k=1 ak converges.
(b) True or False: If

∑∞
k=1 ak converges, then ak → 0.

(c) True or False: The improper integral
∫ ∞

1 f (x) dx con-
verges if and only if the series

∑∞
k=1 f (k) converges.

(d) True or False: The harmonic series converges.
(e) True or False: If p > 1, the series

∑∞
k=1 k−p converges.

(f) True or False: If f (x) → 0 as x → ∞, then
∑∞

k=1 f (k)
converges.

(g) True or False: If
∑∞

k=1 f (k) converges, then f (x) → 0
as x → ∞.

(h) True or False: If
∑∞

k=1 ak = L and {Sn} is the sequence
of partial sums for the series, then the sequence of
remainders {L − Sn} converges to 0.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A divergent series
∑∞

k=1 ak in which ak → 0.

(b) A divergent p-series.

(c) A convergent p-series.

3. What is meant by a p-series?
4. Which p-series converge and which diverge?

5. Given a series
∑∞

k=1 ak, in general the divergence test is
inconclusive when ak → 0. For a geometric series, how-
ever, if the limit of the terms of the series is zero, the series
converges. Explain why.

6. Let f (x) be a function that is continuous, positive, and
decreasing on the interval [1, ∞) such that lim

x→∞ f (x) =

α > 0. What can the divergence test tell us about the se-
ries

∑∞
k=1 f (k)?

7. Let f (x) be a function that is continuous, positive, and
decreasing on the interval [1, ∞) such that lim

x→∞ f (x) =
α > 0. What can the integral test tell us about the series∑∞

k=1 f (k)?

8. Explain how you could adapt the integral test to
analyze a series

∑∞
k=1 f (k) in which the function

f : [1, ∞) → R is continuous, negative, and increasing.

9. Provide a more general statement of the integral test
in which the function f is continuous and eventually
positive, and decreasing. Explain why your statement is
valid.

10. What is meant by the remainder R n of a series
∑∞

k=1 ak?

11. For a convergent series satisfying the conditions of the
integral test, why is every remainder R n positive? How
can R n be used along with the term Sn from the sequence
of partial sums to understand the quality of the approxi-
mation Sn?

12. Explain why, if n is an integer greater than 1, the series∑∞
k=1

1
n
√

k
diverges.

13. Explain why a function a(x) has to be continuous in order
for us to use the integral test to analyze a series

∑∞
k=1 ak

for convergence.
14. Sketch the graph of a function a(x) that is continuous,

positive, and decreasing on the interval [1, ∞). Use your
graph to explain the geometrical relationships between
the improper integral

∫ ∞
1 a(x) dx and the series

∑∞
k=1 a(k)

and
∑∞

k=2 a(k).

15. Find an example of a continuous function f : [1, ∞) → R

such that
∫ ∞

1 f (x) dx diverges and
∑∞

k=1 f (k) converges.

Skills

In Exercises 16–23 use the divergence test to analyze the given
series. Each answer should either be the series diverges or the
divergence test fails, along with the reason for your answer.

16.
∞∑

k=1

1
k

17.
∞∑

k=1

1
k2

18.
∞∑

k=1

k
3k2 + 100

19.
∞∑

k=1

k
3k + 100

20.
∞∑

k=1

1
k k

21.
∞∑

k=1

k!
k k
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22.
∞∑

k=1

(
k

1 + k

)k 2

23.
∞∑

k=1

k2 + 1
k!

In Exercises 24–31, explain why the integral test may be used
to analyze the given series and then use the test to determine
whether the series converges or diverges.

24.
∞∑

k=1

k
e k

25.
∞∑

k=0

e−k

26.
∞∑

k=2

1
k(ln k)2

27.
∞∑

k=2

1

k
√

ln k

28.
∞∑

k=1

1 + k
k2

29.
∞∑

k=4

2k − 4
k2 − 4k + 3

30.
∞∑

k=1

(3k − 1)− 2/3 31.
∞∑

k=3

1

(k − 2)2

Use either the divergence test or the integral test to determine
whether the series in Exercises 32–43 converge or diverge.
Explain why the series meets the hypotheses of the test you
select.

32.
∞∑

k=1

1
2

k−3/4 33.
∞∑

k=1

k−3/2

34.
∞∑

k=1

tan−1 k
1 + k2

35.
∞∑

k=1

k
2 + k2

36.
∞∑

k=1

k
k2 + 3

37.
∞∑

k=1

ln k
k

38.
∞∑

k=1

1
3k + 5

39.
∞∑

k=1

k 3e−k 4

40.
∞∑

k=1

sin(1/k)
k2

41.
∞∑

k=2

1
k (k − 1)

42.
∞∑

k=1

2k

k 5
43.

∞∑
k=1

k
3k

For each series in Exercises 44–47, do each of the following:

(a) Use the integral test to show that the series converges.
(b) Use the 10th term in the sequence of partial sums to

approximate the sum of the series.
(c) Use Theorem 7.31 to find a bound on the tenth remainder,

R10.
(d) Use your answers from parts (b) and (c) to find an interval

containing the sum of the series.
(e) Find the smallest value of n so that R n ≤ 10−6.

44.
∞∑

k=1

k
e k

45.
∞∑

k=0

e−k

46.
∞∑

k=2

1
k(ln k)2

47.
∞∑

k=1

1
k2

In Exercises 48–51 find all values of p so that the series con-
verges.

48.
∞∑

k=1

ln k
kp 49.

∞∑
k=2

1
k (ln k)p

50.
∞∑

k=1

1
(c + k)p , where c > 0 51.

∞∑
k=1

k
(1 + k2)p

Applications
52. Leila, in her capacity as a population biologist in Idaho,

is trying to figure out how many salmon a local hatchery
should release annually in order to revitalize the fishery.
She knows that if p k salmon spawn in Redfish Lake in a
given year, then only 0.2 pk fish will return to the lake from
the offspring of that run, because of all the dams on the
rivers between the sea and the lake. Thus, if she adds the
spawn from h fish, from a hatchery, then the number of
fish that return from that run k will be p k+1 = 0.2( p k +h).
(a) Show that the sustained number of fish returning

approaches p∞ = h
∑∞

k=1 0.2 k as k → ∞.
(b) Evaluate p∞.
(c) How should Leila choose h, the number of hatchery

fish to raise in order to hold the number of fish re-
turning in each run at some constant P?

53. Leila finds that there are more factors affecting the num-
ber of salmon that return to Redfish Lake than the dams:
There are good years and bad years. These happen at
random, but they are more or less cyclical, so she models

the number of fish q k returning each year as q k+1 =
(0.14(−1)k + 0.36)(q k + h), where h is the number of fish
whose spawn she releases from the hatchery annually.
(a) Show that the sustained number of fish returning in

even-numbered years approaches approximately

qe = 3h
∞∑

k=1

0.11k.

(Hint: Make a new recurrence by using two steps of the
one given.)

(b) Show that the sustained number of fish returning in
odd-numbered years approaches approximately

qo = 61
11

h
∞∑

k=1

0.11k.

(c) How should Leila choose h, the number of hatchery
fish to breed in order to hold the minimum number
of fish returning in each run near some constant P?
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Proofs

54. Let a : [1, ∞) → R be a continuous, positive, and de-
creasing function. Complete the proof of the integral test
(Theorem 7.28) by showing that if the improper integral∫ ∞

1 a(x) dx converges, then the series
∑∞

k=1 a(k) does too.

55. Prove Theorem 7.31. That is, show that if a function a is
continuous, positive, and decreasing, and if the improper
integral

∫ ∞
1 a(x) dx converges, then the nth remainder, R n,

for the series
∑∞

k=1 a(k) is bounded by

0 ≤ R n =
∞∑

k=n+1

a(k) ≤
∫ ∞

n
a(x) dx.

56. Use the divergence test to prove that a p-series
∑∞

k=1
1
k p

diverges when p < 0.

57. Use the divergence test to prove that a geometric series∑∞
k=1 cr k diverges when |r| ≥ 1 and c 
= 0.

Thinking Forward

� A series of monomials: Find all values of x for which the
series

∑∞
k=1(4x)k converges.

� A series of monomials: Find all values of x for which the

series
∑∞

k=1

( x
3

)k
converges.

7.5 COMPARISON TESTS

� Analyzing series by comparing them with series whose behavior we understand

� Using inequalities to compare series

� Using limits to compare series

The Comparison Test

Our first comparison is analogous to the comparison test for improper integrals we dis-
cussed in Section 5.6. In fact, if we combine the comparison test for improper integrals and
the integral test, Theorem 7.28, we immediately obtain the next theorem.

THEOREM 7.32 The Comparison Test

Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series with nonnegative terms such that 0 ≤ ak ≤ bk

for every positive integer k. If the series
∑∞

k=1 bk converges, then the series
∑∞

k=1 ak
converges.

We should also mention the contrapositive of Theorem 7.32. That is, given the same hy-
potheses for the two series, if the series

∑∞
k=1 ak diverges, then the series

∑∞
k=1 bk diverges.

As you may recall from your work with the comparison test for improper integrals,
using a comparison test requires finesse. When we are trying to discover whether a given
series

∑∞
k=1 ck converges or diverges, we must think through a few questions:

� We fully understand the behavior of geometric series and p-series. Is the series a
geometric series or a p-series? If it is, we are done.

� If the series is not a geometric series or a p-series, is it “similar enough” to one so
that we can use the comparison test? If it is, we must ensure that the correct in-
equality holds. That is, if

∑∞
k=1 dk represents a geometric series or p-series with

terms similar to the terms of
∑∞

k=1 ck, and if the series
∑∞

k=1 dk converges, we

would need the inequality 0 ≤ ck ≤ dk to hold for every k. If it does, then the
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series
∑∞

k=1 ck converges as well. If, however,
∑∞

k=1 dk diverges, then we need the
inequality 0 ≤ dk ≤ ck to hold for every k. In this case we would deduce that the
series

∑∞
k=1 ck diverges.

� If the series
∑∞

k=1 ck is not similar to a geometric series or a p-series, is it similar to
another series whose behavior we can more easily analyze? If so, we may carry out
the preceding comparison to analyze our series

∑∞
k=1 ck.

We use the comparison test in one example here and another later in our explorations.

Consider the series
∑∞

k=1
k − 1

k3 + k + 1
. This series is neither geometric nor a p-series. How-

ever, it is similar to the convergent p-series
∑∞

k=1
1
k 2

. We chose
∑∞

k=1
1
k 2

because the dom-

inant term in the numerator of k−1
k3 + k + 1

is k, the dominant term in the denominator is k 3,

and the quotient k
k3

= 1
k 2

. Now, since the p-series converges, we need the inequality

0 ≤ k − 1
k 3 + k + 1

≤ 1
k2

to hold for every positive integer k. You should verify that this inequality is valid for
every positive integer. Thus, the convergence of

∑∞
k=1

1
k 2

implies the convergence of∑∞
k=1

k − 1
k3 + k + 1

.

If the inequality had not held for every k, using the comparison test would not have been
quite as simple. For example, if we start with the similar-looking series

∑∞
k=1

k + 1
k3 − k + 1

, we

would still want to compare that series with the p-series
∑∞

k=1
1
k 2

, so we would still suspect

that the series
∑∞

k=1
k + 1

k3 + k + 1
converges. In this case, however, the required inequality

0 ≤ k + 1
k 3 − k + 1

≤ 1
k2

does not hold for every positive integer. (For example, 2 + 1
23 − 2 + 1


≤ 1
22

.) We could try to

find a different convergent series to compare successfully against
∑∞

k=1
k + 1

k3 + k + 1
, using the

comparison test, but we may use the limit comparison test, presented next, more easily.

The Limit Comparison Test

As we have just shown, although the comparison test can work effectively, we do not always
have the required inequality between the terms of the given series and the most obvious
comparison series. The limit comparison test provides another method of comparison, in
which we do not have to consider inequalities. However, in exchange for avoiding inequal-
ities, we must evaluate a limit.

THEOREM 7.33 The Limit Comparison Test

Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series with positive terms.

(a) If lim
k→∞

ak

bk
= L, where L is any positive real number, then either both series con-

verge or both series diverge.

(b) If lim
k→∞

ak

bk
= 0 and

∑∞
k=1 bk converges, then

∑∞
k=1 ak converges.

(c) If lim
k→∞

ak

bk
= ∞ and

∑∞
k=1 bk diverges, then

∑∞
k=1 ak diverges.
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The main result of Theorem 7.33 is found in part (a). Parts (b) and (c) are occasionally useful
side results. Before we prove part (a) formally, consider the significance of lim

n→∞
ak

bk
= L. This

limit tells us that when k is “large,” the terms of series
∑∞

k=1 ak are roughly L times the size
of the terms of the other series. But recall that multiplying the terms of a series by a nonzero
constant does not change the convergence or divergence of the series. Thus, if one series
converges, the other does also.

Proof. We will prove part (a) of Theorem 7.33 and leave parts (b) and (c) for Exercises 56 and 57.

Let lim
k→∞

ak

bk
= L, where L is a positive real number. Thus, for any ε > 0, there is an integer N

such that
∣∣∣ ak

bk
− L

∣∣∣ < ε when k ≥ N.

We now assume that the series
∑∞

k=1 bk converges and let ε = L. We have
ak

bk
< 2L, or equiva-

lently, ak < 2Lbk for k ≥ N. Therefore,

∞∑
k=N

ak <

∞∑
k=N

2Lbk = 2L
∞∑

k=N

bk.

Recall that removing finitely many terms from a series does not change its convergence. Thus, from
the preceding inequality above we see that the convergence of the series

∑∞
k=1 bk implies that the

series
∑∞

k=1 ak converges as well.

Next we assume that the series
∑∞

k=1 bk diverges and let ε = L
2

. We now have
ak

bk
>

L
2

, or equiv-

alently, ak >
L
2

bk for k ≥ N. Here,

∞∑
k=N

ak >

∞∑
k=N

L
2

bk = L
2

∞∑
k=N

bk.

Removing finitely many terms from a series does not change its divergence. Thus, from this new
inequality we see that the divergence of the series

∑∞
k=1 bk implies the divergence of

∑∞
k=1 ak.

As we mentioned earlier, to analyze the convergence of the series
∑∞

k=1
k + 1

k3 + k + 1
the most

“obvious” series to use for a comparison is the convergent p-series
∑∞

k=1
1
k 2

. We do not

have the necessary inequality between the terms of the two series to successfully use the
comparison test, but the limit comparison test will succeed. Consider the limit

lim
k→∞

(k + 1)/(k 3 + k + 1)
1/k2 = lim

k→∞
k 3 + k2

k 3 + k + 1
= 1.

Since this limit is positive and finite, and because we already know the the p-series con-
verges, we have proven that the series

∑∞
k=1

k + 1
k3 + k + 1

converges as well.

To use either of the comparison tests on a series
∑∞

k=1 ak successfully, follow these
steps:

1. If the general term of your series is a quotient, consider the dominant term in the
numerator n k and the dominant term in the denominator dk.

2. Consider the series
∑∞

k=1
nk

dk
. Simplify the quotient nk

dk
as much as possible.

3. If the new series is a geometric series, a p-series, or another series whose behavior
you can easily analyze, you now suspect that the original series

∑∞
k=1 ak has the same

behavior as your new series
∑∞

k=1
nk

dk
.

4. Complete the details of your analysis, using either the comparison test or limit compar-
ison test. Be sure to show that you have the correct inequality if you use the comparison
test. That is,
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� If the series
∑∞

k=1
nk

dk
converges, you must have

0 ≤ ak ≤ n k

dk
for every k ∈ Z

+.

� If the series
∑∞

k=1
nk

dk
diverges, you must have

0 ≤ n k

dk
≤ ak for every k ∈ Z

+.

� If you use the limit comparison test, you must compute the limit

lim
k→∞

ak

n k/dk
.

If this limit is positive and finite, the series
∑∞

k=1 ak converges if and only if
∑∞

k=1
nk

dk

does.

Examples and Explorations

EXAMPLE 1 Using the comparison test

Determine whether the series
∑∞

k=1
k 3/2 − 1
5k3 + 3

converges or diverges.

SOLUTION

Recall the list of questions we started in Example 1 of Section 7.4:

� Does ak 
→ 0 as k → ∞? If so, then, by the divergence test, the series diverges.
� Does ak = a(k), where a is a continuous, positive, and decreasing function on

[1, ∞)? If so, is the improper integral
∫ ∞

1 a(x) dx “relatively easy” to evaluate? If
it is, you may use the integral test.

We now add the following question:

� Is there another related series whose terms are similar to those of the given series
and whose behavior you either know or can more easily determine? If so, you may
use one of the comparison tests.

You may show that the divergence test would fail on the series given here and that the
integral test would be impractical. We will use the comparison test, comparing the given
series with

∑∞
k=1

1
5k3/2

. The latter series converges, since it is a multiple of a convergent
p-series. For every positive integer k, we have

0 ≤ k 3/2 − 1
5k 3 + 3

≤ k 3/2

5k 3 = 1
5

1
k 3/2 .

Now, since the series
∑∞

k=1
1

5k 3/2
converges, by the comparison test we know that the se-

ries
∑∞

k=1
k 3/2 −1
5k 3 +3

converges as well. The comparison test worked well here because the

inequalities are exactly those required to show that the given series converges. We could
also have used the limit comparison test. You will be asked to supply the details for this in
Exercise 19. �

EXAMPLE 2 Using the limit comparison test

Determine whether the series
∑∞

k=1(3k2 + k + 1)−1/2 converges or diverges.

SOLUTION

The divergence test would fail on this series, and again, the integral test would be imprac-
tical. We note that each term of the series is positive and that

(3k2 + k + 1)−1/2 = 1√
3k2 + k + 1

.
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If we consider the dominant term in the denominator, we are led to compare the series
with the harmonic series

∑∞
k=1

1
k
. To use the limit comparison test we evaluate

lim
k→∞

1/
√

3k2 + k + 1
1/k

= lim
k→∞

k√
3k2 + k + 1

= 1√
3
.

Since the harmonic series diverges and this limit is positive and finite, the given series
diverges as well. Note that the initial quotient in the preceding equation is the result of the
division of 1√

3k 2 + k + 1
by 1

k
. We could also have used the reciprocal instead. If we had, the

limit of that quotient would have been
√

3. Again, since the harmonic series diverges and
this limit is positive and finite, the given series diverges. �

TEST YOUR? UNDERSTANDING
� What is the comparison test? How is the comparison test used?

� How is the comparison test for series related to the comparison test for improper inte-
grals that we introduced in Section 5.6?

� What is the limit comparison test? How is the limit comparison test used?

� Which series are good to use in comparisons? How do you find a series to use for a
comparison?

� What are the advantages and disadvantages of the comparison test versus the limit
comparison test?

EXERCISES 7.5

Thinking Back

The comparison test: In Section 5.6 we discussed the compari-
son test for improper integrals.

� What is the comparison test for improper integrals?

� How is the comparison test for improper integrals used
to analyze the convergence or divergence of an im-
proper integral?

� Which improper integrals are used in the comparison
test?

The limit comparison test: In Section 5.6 we discussed a limit
comparison test for improper integrals.

� What is the limit comparison test for improper inte-
grals?

� How is the limit comparison test for improper inte-
grals used to analyze the convergence or divergence of
an improper integral?

� Which improper integrals are used in the limit com-
parison test?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If 0 ≤ f (x) ≤ g(x) for every x ≥ 0 and
the improper integral

∫ ∞
0 g(x) dx converges, then the

improper integral
∫ ∞

0 f (x) dx converges.

(b) True or False: If 0 ≤ f (x) ≤ g(x) for every x > 0 and

lim
x→∞

f (x)
g(x)

= 3, then the improper integrals
∫ ∞

0 g(x) dx

and
∫ ∞

0 f (x) dx both converge.

(c) True or False: If 0 ≤ ak <
1
k

for every positive integer

k, then the series
∑∞

k=1 ak converges.

(d) True or False: If
1
k 2

< bk for every positive integer k,

then the series
∑∞

k=1 bk diverges.

(e) True or False: If ak ≤ bk for every positive integer k and
the series

∑∞
k=1 bk converges, then the series

∑∞
k=1 ak

converges.
(f) True or False: If

∑∞
k=1 ak and

∑∞
k=1 bk both diverge,

then
∑∞

k=1(ak · bk) diverges.
(g) True or False: If ak and bk are both positive for every

positive integer k and lim
k→∞

ak

bk
= 1

2
, then

∑∞
k=1 ak and∑∞

k=1 bk both converge.

(h) True or False: If
∑∞

k=1 ak and
∑∞

k=1 bk both converge,
then lim

k→∞
ak

bk
is finite.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 19:28

7.5 Comparison Tests 631

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A p-series you could use as a comparison to show that

the series
∑∞

k=1

√
k + 2

k 2 + k + 1
converges.

(b) A p-series you could use as a comparison to show that

the series
∑∞

k=1 sin
( 1

k

)
diverges.

(c) A p-series other than
∑∞

k=1
1
k 2

you could use
with the comparison test to show that the series∑∞

k=1
k − 1

k3 + k + 1
converges.

3. Explain how you could adapt the comparison test to
analyze a series

∑∞
k=1 ak in which all of the terms are

negative.
4. Use the comparison test to explain why the series∑∞

k=1
1
α
√

k
diverges when α is an integer greater than 1.

5. Provide a more general statement of the comparison test
in which the inequality 0 ≤ ak ≤ bk holds only for in-
tegers k > K, where K is an arbitrary positive integer.
Explain why your statement is valid.

6. Explain how you could adapt the limit comparison test
to analyze a series

∑∞
k=1 ak in which all of the terms are

negative.

7. Provide a more general statement of the limit comparison
test in which

∑∞
k=1 ak and

∑∞
k=1 bk are two series whose

terms are eventually positive. Explain why your statement
is valid.

8. If you suspect that a series
∑∞

k=1 ak diverges, explain why
you would need to compare the series with a divergent
series, using either the comparison test or the limit com-
parison test.

9. If you suspect that a series
∑∞

k=1 ak converges, explain
why you would want to compare the series with a conver-
gent series, using either the comparison test or the limit
comparison test.

10. Briefly outline the advantages and disadvantages of
using the two comparison tests to analyze the behavior
of a series

∑∞
k=1 ak.

Exercises 11–13 concern the series
∑∞

k=2
1

k lnk
.

11. Use the integral test to show that the series
∑∞

k=2
1

k lnk
diverges.

12. Let 0 < p < 1. Show that 0 ≤ 1
k lnk

≤ 1
k p

for large values

of k. Explain why we cannot use a p-series with 0 < p < 1
in a comparison test to verify the divergence of the series∑∞

k=2
1

k lnk
.

13. Let 0 < p < 1. Evaluate the limit lim
k→∞

1/(k ln k)
1/k p

. Explain

why we cannot use a p-series with 0 < p < 1 in a
limit comparison test to verify the divergence of the

series
∑∞

k=2
1

k lnk
.

Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series with positive terms.
Answer the questions about the limit comparison test in
Exercises 14–18.

14. If lim
k→∞

ak

bk
= L, where L is a positive finite number, what

may we conclude about the two series?

15. Fill in the blanks and select the correct word:
If lim

k→∞
ak

bk
= 0 and

∑∞
k=1 converges, then

∑∞
k=1

(converges/diverges).

16. If lim
k→∞

ak

bk
= 0 and

∑∞
k=1 ak converges, explain why we

cannot draw any conclusions about the behavior of∑∞
k=1 bk.

17. Fill in the blanks and select the correct word:
If lim

k→∞
ak

bk
= ∞ and

∑∞
k=1 diverges, then

∑∞
k=1

(converges/diverges).

18. If lim
k→∞

ak

bk
= ∞ and

∑∞
k=1 ak diverges, explain why we

cannot draw any conclusions about the behavior of∑∞
k=1 bk.

19. In Example 1 we used the comparison test to show that

the series
∑∞

k=1
k3/2 − k − 1

5k3 + 3
converges. Use the limit com-

parison test to prove the same result.
20. In Example 1 of Section 7.4 we used the integral test to

show that the series
∑∞

k=1
k

e k 2 converges. Use the limit

comparison test with the series
∑∞

k=1
1
ek

to prove the
same result.

Skills

In Exercises 21–30 use one of the comparison tests to de-
termine whether the series converges or diverges. Explain
how the given series satisfies the hypotheses of the test you
use.

21.
∞∑

k=0

3k2 + 1
k 3 + k2 + 5

22.
∞∑

k=1

3
(1 + 2k)2

23.
∞∑

k=2

3k − 5

k
√

k 3 − 4
24.

∞∑
k=1

√
k

1 + k2

25.
∞∑

k=1

1 + ln k
k

26.
∞∑

k=1

1
k + 0.01

27.
∞∑

k=1

1 + ln k
k2

28.
∞∑

k=1

1
(k − π )2

29.
∞∑

k=1

1 + ln k
k 3

30.
∞∑

k=1

(
sin k

k

)2

Use any convergence test from this section or the previous sec-
tion to determine whether the series in Exercises 31–48 con-
verge or diverge. Explain how the series meets the hypotheses
of the test you select.

31.
∞∑

k=1

k−1/2 32.
∞∑

k=1

k−4/3
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33.
∞∑

k=1

k−3/4

k + 2
34.

∞∑
k=1

cos
(

1
k

)

35.
∞∑

k=1

sin
(

1
k

)
36.

∞∑
k=1

1
1 + k2

37.
∞∑

k=1

ln k
k

38.
∞∑

k=1

sin
(

1
k2

)

39.
∞∑

k=1

√
k + 1 − √

k
k

40.
∞∑

k=1

1√
k + 1 + √

k

41.
∞∑

k=1

k2e−k 3
42.

∞∑
k=1

1
3
√

k + 1 + 3
√

k

43.
∞∑

k=1

k2

e k
44.

∞∑
k=1

2k

k2

45.
∞∑

k=1

1√
ke

√
k

46.
∞∑

k=3

k + 1
(k − 2)3

47.
∞∑

k=1

1
2k + 7

48.
∞∑

k=1

√
k

k2 + 3

In Exercises 49 and 50 find all values of p so that the series
converges.

49.
∞∑

k=1

kp

e k
50.

∞∑
k=1

(ln k)p

k2

Applications
51. There are many ways to harness wave energy. One of

them relies on a hollow platform that is anchored to the
ocean floor. Waves wash over the top of the platform into
the basin in its center, where the only way for water to get
out is to pass through turbines, generating power.

. . .

Power generationV � wk

w1 w2

Tide

When the tide is going out, the amount of water each
wave leaves in the central basin is given by a random w k,
where 0 ≤ w k ≤ Wr α(k). Here, W is the amount of wa-
ter deposited by the largest wave at high tide, r < 1, and
α(k) is a polynomial in k with positive coefficients and no
constant term. Although the number of waves for a given
tide is actually finite, it is easiest to use the infinite se-
ries V = ∑∞

k=0 w k to model the total water arriving in the
basin. Does this series converge? Explain your answer.

52. Sandy is studying the relationship of light in a forest to
the density of the canopy. She models this relationship

simply by supposing that a fixed amount of radiance Iω
at a frequency ω passes through the vegetation canopy.
Once light is below the vegetation, a fraction s is reflected
from the surface while a different fraction, c ≥ s, is re-
flected from the vegetation canopy. The total ambient
light inside the forest is the sum of all these direct and
reflected lights: the direct light, plus that reflected from
the surface, plus that reflected from the surface and then
reflected from the vegetation, and so on.

. . .
s

sc

s2c

s2c2

Iω

Sandy writes the relationship she has found as

Itot = Iω(1 + s + sc + s 2c + s 2c 2 + · · · ).

Does this series converge? Why or why not?

Proofs

53. Prove that if
∑∞

k=1 ak is a convergent series with ak ≥ 0
for every positive integer k, then the series

∑∞
k=1 a 2

k con-
verges.

54. Prove that if
∑∞

k=1 ak is a convergent series with ak ≥ 0
for every positive integer k, then the series

∑∞
k=1

ak

k
con-

verges.

55. Prove that if
∑∞

k=1 ak and
∑∞

k=1 bk are two convergent
series with ak ≥ 0 and bk ≥ 0 for every positive integer k,
then the series

∑∞
k=1(ak · bk) converges.

In Exercises 56 and 57 we ask you to complete the proof of
Theorem 7.33. For these exercises let

∑∞
k=1 ak and

∑∞
k=1 bk be

two series with positive terms.

56. Show that if lim
k→∞

ak

bk
= ∞ and

∑∞
k=1 bk diverges, then∑∞

k=1 ak diverges.

57. Show that if lim
k→∞

ak

bk
= 0 and

∑∞
k=1 bk converges, then∑∞

k=1 ak converges.
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Thinking Forward

� A series of monomials: Find all values of x for which the

series
∑∞

k=1
x2k

k 2
converges.

� A series of monomials: Find all values of x for which the

series
∑∞

k=0
|x|
4k

converges.

7.6 THE RATIO AND ROOT TESTS

� Series containing powers, factorials, and/or factorial-like terms

� Using the ratio test to determine the convergence of a series

� Using the root test to determine the convergence of a series

The Ratio Test

In this section we discuss two more convergence tests for series with positive terms: the
ratio test and the root test. As we will see, the statements of these tests are quite similar.
Both tests involve the evaluation of a limit. The magnitude of the appropriate limit can tell
us whether the series converges or diverges. Unlike the limit we use in the limit comparison
test, the limits we take for the tests in this section do not rely upon the terms of a secondary
series. The ratio test, in particular, will be used extensively throughout the remainder of this
chapter and in Chapter 8.

THEOREM 7.34 The Ratio Test

Let
∑∞

k=1 ak be a series with positive terms, and assume ρ = lim
k→∞

ak+1

ak
exists.

(a) If ρ < 1, the series converges.

(b) If ρ > 1, the series diverges.

(c) If ρ = 1, the test is inconclusive. (Use a different test!)

The main concept used in the proof of the ratio test is that a series in which lim
k→∞

ak+1

ak
= ρ

behaves like the geometric series
∑

ρk.

Proof. Let
∑∞

k=1 ak be a series with positive terms, and let ρ = lim
k→∞

ak+1

ak
.

We first assume that ρ < 1. In this case, there is a positive real number r such that

ρ < r < 1. Since ρ = lim
k→∞

ak+1

ak
and r > ρ, all values of the quotient

ak+1

ak
will be less than r for

sufficiently large values of k. That is, there is a positive integer N such that, for k ≥ N,
ak+1

ak
< r. In

particular,
aN+1 < aNr.

The analogous inequalities hold for all subsequent successive pairs of terms of the series. For
example,

aN+2 < aN+1r

as well. Combining these two inequalities, we obtain aN+2 < aNr 2. By induction, we may prove
that

aN+n < aNr n
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for every positive integer n. (We leave this detail to Exercise 66.) We now consider the tail of the
original series:

∞∑
k=N

ak = aN + aN+1 + aN+2 + · · · + aN+n + · · ·

< aN + aNr + aNr 2 + · · · + aNr n + · · · ← since aN+n < aNr n for every positive integer n

= aN(1 + r + r 2 + · · · + r n + · · · )

Note that since aN ∈ R and r < 1, the preceding series is a convergent geometric series. Because this
geometric series converges, by the comparison test and the fact that the tail of a series determines
the convergence of the entire series, the series

∑∞
k=1 ak converges.

We now show that if ρ > 1 the series diverges. Since ρ = lim
k→∞

ak+1

ak
and ρ > 1, there is a positive

integer N such that for every k ≥ N, ak+1 > ak. Thus, after index N, the terms of the series form an
increasing sequence. Furthermore, since aN > 0, it follows that lim

k→∞
ak 
= 0. The divergence test

implies that when ρ > 1 the series
∑∞

k=1 ak diverges.

Recall from Section 7.4 that a p-series
∑∞

k=1
1
k p

converges when p > 1 and diverges otherwise.

In Example 1 we will show that for the (divergent) harmonic series
∑∞

k=1
1
k

and the (convergent)

p-series
∑∞

k=1
1
k 2

the limit of the quotient of successive terms of the series is 1. This will complete

the proof by showing that the ratio test is inconclusive when ρ = 1.

The ratio test works particularly well on series containing exponential factors, facto-

rials, and/or factorial-like products. Since the terms of the series
∑∞

k=0
2k

k!
contain both

exponentials and factorials, the series is a perfect candidate for the ratio test. Here ak = 2k

k!

and ak+1 = 2k+1

(k + 1)!
, and we compute

lim
k→∞

ak+1

ak
= 2k+1/(k + 1)!

2k/k!
= lim

k→∞
2k+1

(k + 1)!
· k!

2k
= lim

k→∞
2

k + 1
= 0.

Since this limit is less than 1, the series converges.

The Root Test

THEOREM 7.35 The Root Test

Let
∑∞

k=1 ak be a series with positive terms, and assume ρ = lim
k→∞

k
√

ak = lim
k→∞

(a k)1/k

exists.

(a) If ρ < 1, the series converges.

(b) If ρ > 1, the series diverges.

(c) If ρ = 1, the test is inconclusive. (Use a different test!)

The main idea in the proof of the root test is the same as it was in the proof of the ratio
test: A series in which lim

k→∞
k
√

ak = ρ behaves like the geometric series
∑

ρk. Therefore,

the proof of Theorem 7.35 may be modeled on our proof of the ratio test. This is left for
Exercise 68. The root test works particularly well on series containing exponential factors

or other factors with kth powers. The series
∑∞

k=1

(
2k

3k − 1

)k
is one such series. Here,

lim
k→∞

(ak)1/k = lim
k→∞

((
2k

3k − 1

)k )1/k = lim
k→∞

2k
3k − 1

= 2
3
.

Since this value is less than 1, the series converges.
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Examples and Explorations

EXAMPLE 1 Using the ratio test

Use the ratio test to determine the convergence or divergence of the following series:

(a)
∞∑

k=0

10 k

k!
(b)

∞∑
k=1

3k

k 5 (c)
∞∑

k=2

23k−1

(2k − 3)!

SOLUTION

(a) We have already mentioned that the ratio test is particularly effective on series contain-
ing exponential factors, factorials, or factorial-like products. Each of the given series
in this example contains at least one of these. Also, note that the terms of these series

are positive for every value of k. In the first series we let ak = 10k

k!
. Thus, ak+1 = 10k+1

(k + 1)!
and

ρ = lim
k→∞

ak+1

ak
= lim

k→∞
10 k+1/ (k + 1)!

10 k/k!
= lim

k→∞
10 k+1

(k + 1)!
k!

10 k
= lim

k→∞
10

k + 1
= 0.

Since ρ < 1, the series converges. Before we continue, be sure you understand the
mechanics of the steps we just used. In particular, make sure you understand why
(k + 1)!

k!
= k + 1.

(b) Here we let ak = 3k

k5
and ak+1 = 3k+1

(k+1)5
. Then

ρ = lim
k→∞

ak+1

ak
= lim

k→∞
3k+1/(k + 1)5

3 k/k 5
= lim

k→∞
3k+1

(k + 1)5

k 5

3k
= lim

k→∞
3k 5

(k + 1)5 = 3.

Since ρ > 1, the series diverges. Before proceeding to the final series in this example
we should note that we could also have used the divergence test to show that the
given series diverges. Since exponential functions dominate polynomials, it follows

that 3k

k5
→ ∞ as k → ∞.

(c) For our final series we let ak = 23k−1

(2k − 3)!
and

ak+1 = 23(k+1)−1

(2(k + 1) − 3)!
= 23k+2

(2k − 1)!
.

Note that to form ak+1 we replaced each occurrence of k by k + 1 in our formula for ak
and then simplified. Now,

ρ = lim
k→∞

ak+1

ak
= lim

k→∞
23k+2/(2k − 1)!
23k−1/(2k − 3)!

= lim
k→∞

23k+2

(2k − 1)!
(2k − 3)!

23k−1
.

We will need to simplify the rightmost quantity before we evaluate the limit. When we
simplify the exponential factors in the numerator and denominator, we have

23k+2

23k−1
= 2(3k+2)−(3k−1) = 23 = 8.

From the definition of the factorial, we obtain

(2k − 3)!
(2k − 1)!

= (2k − 3)!
(2k − 1)(2k − 2)(2k − 3)!

= 1
(2k − 1)(2k − 2)

.

Therefore,

ρ = lim
k→∞

8
(2k − 1)(2k − 2)

= 0.

By the ratio test, the series converges. �
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EXAMPLE 2 Showing that the ratio test is inconclusive when ρ = 1

Show that the ratio test fails to determine the divergence of the harmonic series
∑∞

k=1
1
k

or the convergence of the p-series
∑∞

k=1
1
k 2

.

SOLUTION

We consider the harmonic series first. For the harmonic series, ak = 1
k

and ak+1 = 1
k + 1

.
Thus,

lim
k→∞

ak+1

ak
= lim

k→∞
1/(k + 1)

1/k
= lim

k→∞
k

k + 1
= 1.

We now consider
∑∞

k=1
1
k 2

. Here we have ak = 1
k 2

and ak+1 = 1
(k + 1)2

. Hence,

lim
k→∞

ak+1

ak
= lim

k→∞
1/(k + 1)2

1/k2 = lim
k→∞

k2

(k + 1)2 = 1.

We already know that the harmonic series diverges and the p-series with p = 2 con-
verges. This shows that the ratio test is inconclusive when ρ = lim

k→∞
ak+1

ak
= 1.

Recall that we have already mentioned that the ratio test can be effective on series
containing exponential factors, factorials, and/or factorial-like products. The two p-series
in this example do not fall into this category. In particular, the ratio test will always be
inconclusive for series whose terms are rational functions. �

EXAMPLE 3 Analyzing a series containing products similar to factorials

Determine the convergence or divergence of the following series:

(a) 2
4

+ 2 · 4
4 · 7

+ 2 · 4 · 6
4 · 7 · 10

+ · · · + 2 · 4 · 6 · · · (2k)
4 · 7 · 10 · · · (3k + 1)

+ · · ·

(b) 1
2

+ 1 · 3
2 · 4

+ 1 · 3 · 5
2 · 4 · 6

+ · · · + 1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · (2k)

+ · · ·

SOLUTION

The terms of each of these series consist of quotients of factorial-like products. The ratio
test will be the first convergence test we try on both series, but we will see that it succeeds
only on the first.

(a) For the first series, we let ak = 2 ·4 ·6···(2k)
4 ·7 ·10···(3k + 1)

. Then the numerator of ak+1 contains all

of the same factors as the numerator of ak, along with the factor 2(k + 1) = 2k + 2.
Similarly, the denominator contains all of the same factors, along with 3(k + 1) + 1 =
3k + 4. Thus, ak+1 = 2 ·4 ·6 ···(2k)(2k + 2)

4 ·7 ·10···(3k + 1)(3k + 4)
and

ρ = lim
k→∞

ak+1

ak

= lim
k→∞

2 · 4 · 6 · · · (2k)(2k + 2)/(4 · 7 · 10 · · · (3k + 1)(3k + 4))
2 · 4 · 6 · · · (2k)/(4 · 7 · 10 · · · (3k + 1))

← the definition of ρ

= lim
k→∞

2 · 4 · 6 · · · (2k)(2k + 2)
4 · 7 · 10 · · · (3k + 1)(3k + 4)

4 · 7 · 10 · · · (3k + 1)
2 · 4 · 6 · · · (2k)

← invert and multiply

= lim
k→∞

2k + 2
3k + 4

= 2
3
. ← simplify the expression

and evaluate the limit
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Since ρ < 1, this series converges. Be sure that you understand the algebra in the pre-
ceding steps.

(b) The algebra required to use the ratio test on our second series is quite similar, so we will
evaluate ρ with less explanation. However, check that you understand the following
work. We have

ρ = lim
k→∞

1 · 3 · 5 · · · (2k − 1)(2k + 1)/(2 · 4 · 6 · · · (2k) · (2k + 2))
1 · 3 · 5 · · · (2k − 1)/(2 · 4 · 6 · · · (2k))

= lim
k→∞

2k + 1
2k + 2

= 1.

As we predicted, the ratio test is inconclusive.

We regroup the factors of the kth term of the series:

1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · (2k)

= 1
2k

· 3
2

· 5
4

· · · 2k − 1
2k − 2

.

Then we note that the quotients 3
2

, 5
4

, · · · , 2k − 1
2k − 2

are all greater than 1. We now have

1 · 3 · 5 · · · (2k − 1)
2 · 4 · 6 · · · (2k)

≥ 1
2k

.

Next we use the comparison test to show that our series diverges. Since each term of
the series

∑∞
k=1

1
2k

is one-half of the corresponding term of the (divergent) harmonic

series, this series diverges. Note also that, because 1 · 3 · 5 ···(2k − 1)
2 · 4 · 6 ···(2k)

≥ 1
2k

, each term of

our series is greater than the corresponding term of the divergent series, so by the
comparison test our series diverges as well. �

EXAMPLE 4 Using the root test

Use the root test, if appropriate, to determine the convergence or divergence of the follow-
ing series:
∞∑

k=0

10 k

k!

∞∑
k=1

3k

k 5

∞∑
k=2

23k−1

(2k − 3)!

SOLUTION

These are the same three series we analyzed in Example 1. We have mentioned that the root
test is particularly effective on series containing exponential factors. In general, it should
not be used on a series containing factorials or products like factorials. Therefore, of the

three given series, only
∑∞

k=1
3k

k5
is a candidate for the root test. We have

ρ = lim
k→∞

(ak)1/k = lim
k→∞

(
3k

k 5

)1/k

= lim
k→∞

(3k)1/k

(k 5)1/k
.

The numerator in the limit simplifies to 3, and the denominator is equal to (k1/k)5. Recall
that k1/k → 1 as k → ∞. (You will show this in the Thinking Back exercises at the end of this
section.) Therefore, when we take the limit in the preceding equation, we obtain ρ = 3.
Since ρ > 1, the series diverges.

Compare the analysis and algebra we did for this series in Example 1 with the work
we did here. When the ratio and root tests may both be used successfully to analyze a
series, sometimes the work required for one of these tests is significantly simpler than the
work required for the other. For the series we just worked with, how do you think the tests
compare? �

EXAMPLE 5 Showing that the root test is inconclusive when ρ = 1

Show that the root test fails to determine the divergence of the harmonic series
∑∞

k=1
1
k

or

the convergence of the p-series
∑∞

k=1
1
k 2

.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 19:28

638 Chapter 7 Sequences and Series

SOLUTION

We consider the harmonic series first. For the harmonic series, ak = 1
k
. We have

lim
k→∞

(ak)1/k = lim
k→∞

1
k1/k

= 1.

Therefore, the root test fails.

For the series
∑∞

k=1
1
k 2

,

lim
k→∞

(ak)1/k = lim
k→∞

1
(k2)1/k

= lim
k→∞

1
k 2/k

.

Again, the limit of the denominator is indeterminate and of the type ∞0. We leave it to you
to show that lim

k→∞
1

k2/k
= 1 .

As we mentioned in Example 1, we already know that the harmonic series diverges and
the p-series with p = 2 converges. These two series show that the root test cannot discern
convergence from divergence when ρ = lim

k→∞
(ak)1/k = 1.

We point out again that the root test is most effective on series with exponential factors
or series with other types of factors involving kth powers. Since p-series do not contain
factors of these types, we should not expect the root test to work here. Again, as with
the ratio test, the root test will always be inconclusive for series whose terms are rational
functions. �

TEST YOUR? UNDERSTANDING
� What is the statement of the ratio test?

� Given a series
∑∞

k=1 ak, to use the ratio test we let ρ = lim
k→∞

ak+1

ak
. If ρ < 1, the series

converges and if ρ > 1, the series diverges. Why does the value 1 mark the boundary
between convergence and divergence?

� What characteristics should you look for in a series before you try the ratio test?

� What is the statement of the root test?

� What characteristics should you look for in a series before you try the root test?

EXERCISES 7.6

Thinking Back

� An indeterminate form of the type ∞0: Explain why
lim
k→∞

k1/k has an indeterminate form of the type ∞0.

Then show that this limit equals 1.

� Basic functions: What is a monomial? What is a power
function? What is a polynomial? What is a rational
function?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If ak is a nonzero polynomial function,
the series

∑∞
k=1 ak will diverge.

(b) True or False: The ratio test will be inconclusive for
a series

∑∞
k=1 ak where ak is a nonzero polynomial

function of k.

(c) True or False: The ratio test will be inconclusive for
a series

∑∞
k=1 ak where ak is a rational function

of k.
(d) True or False: If the function ak contains factorials, the

ratio test will be effective in determining the conver-
gence or divergence of the series

∑∞
k=1 ak.

(e) True or False: The proof of the ratio test uses the
fact that a geometric series

∑∞
k=1 r k converges when

|r| < 1.
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(f) True or False: The root test can be used successfully
to determine the convergence or divergence of every
p-series.

(g) True or False: The root test is only used to an-
alyze the convergence of a series of the form∑∞

k=1 (ak)k.

(h) True or False:
(n + 2)!

n!
= 2.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A series containing factorials on which the ratio test
will be effective in determining convergence or diver-
gence.

(b) A series containing factorials on which the ratio test
will be ineffective in determining convergence or
divergence.

(c) A series on which the root test will be effective in de-
termining convergence or divergence.

3. Let p(x) be a nonzero polynomial function. Evaluate

lim
x→∞

p(x + 1)
p(x)

.

4. Use Exercise 3 to explain why the ratio test will be
inconclusive for every series

∑∞
k=1 ak in which ak is a

polynomial.

5. Let r(x) be a nonzero rational function. Evaluate

lim
x→∞

r(x + 1)
r(x)

.

6. Use Exercise 5 to explain why the ratio test will be incon-
clusive for every series

∑∞
k=1 ak in which ak is a rational

function of k.

7. Explain how you could adapt the ratio test to analyze a
series

∑∞
k=1 ak in which the terms of the series are all

negative.
8. Provide a more general statement of the ratio test in

which the terms of the series are eventually all positive.
Explain why your statement is valid.

9. Let
∑∞

k=1 ak be a series in which all the terms are posi-
tive. If lim

k→∞
ak+1

ak
> 1, explain why both the ratio test and

the divergence test could be used to show that the series
diverges.

10. Explain why the ratio test does not work in determining

the convergence or divergence of the series
∑∞

k=1
k!

(k + 2)!
.

What test would be more effective to analyze this series?

11. Let m(x) = Ax r be a power function. Evaluate lim
x→∞m(x)1/x.

12. Use Exercise 11 to explain why the root test will be in-
conclusive for every series

∑∞
k=1 ak in which ak is a power

function.

13. Explain how you could adapt the root test to analyze a
series

∑∞
k=1 ak in which the terms of the series are all

negative.
14. Provide a more general statement of the root test in which

the terms of the series are eventually all positive. Explain
why your statement is valid.

15. Explain why it would be difficult to use the root test on

the series
∑∞

k=1
1
k!

.

16. Explain why the series
∑∞

k=1
1
k3

converges. Which con-

vergence tests could be used to prove this?

17. Explain why the series
∑∞

k=0
1
3k

converges. Which con-

vergence tests could be used to prove this?

18. Explain why the series
∑∞

k=0
1
k!

converges. Which conver-

gence tests could be used to prove this?

19. Explain why the ratio test cannot be used on the series

1 + 1
5

+ 1
10

+ 1
50

+ 1
100

+ 1
500

+ · · · . Then show that the

series converges and find its sum.
20. Let α and β be two distinct positive numbers less than 1.

Explain why the ratio test cannot be used on the series
α+β +α2 +β2 +α3 +β3 +· · · . Then show that the series
converges and find its sum.

Skills

Simplify the quotients in Exercises 21–28 without using a
calculator.

21.
8!
10!

22.
700!
699!

23.
k!

(k + 2)!
24.

(2n − 2)!
(2n)!

25.
4!

(2!)!
26.

6!
(3!)!

27.
(n + 1)!
(n − 2)!

28.
1 · 3 · 5 · · · (2k − 1)
1 · 3 · 5 · · · (2k + 1)

In Exercises 29–34 use the ratio test to analyze whether the
given series converges or diverges. If the ratio test is inconclu-
sive, use a different test to analyze the series.

29.
∞∑

k=0

5k

k!
30.

∞∑
k=1

5k

k 5

31.
∞∑

k=0

1
k 3 + 1

32.
∞∑

k=1

k!
(2k)!

33.
∞∑

k=1

2 · 4 · 6 · · · (2k)
1 · 3 · 5 · · · (2k − 1)

34.
∞∑

k=1

1 · 4 · 7 · · · (3k − 2)
2 · 4 · 6 · · · (2k)
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In Exercises 35–40 use the root test to analyze whether the
given series converges or diverges. If the root test is inconclu-
sive, use a different test to analyze the series.

35.
∞∑

k=1

5k

k 5
36.

∞∑
k=1

5k

k2 4k+1

37.
∞∑

k=0

1
k 3 + 1

38.
∞∑

k=2

(
1

ln k

)k

39.
∞∑

k=1

(
1 + 4k
5k − 1

)k

40.
∞∑

k=1

k k

k!

Use any convergence test from Sections 7.4–7.6 to determine
whether the series in Exercises 41–59 converge or diverge. Ex-
plain why each series that meets the hypotheses of the test you
select does so.

41.
∞∑

k=1

(
k + 1
3k + 1

)k

42.
∞∑

k=1

3
k(k + 2)

43.
∞∑

k=1

4
k + 3

44.
∞∑

k=1

k 3

k2 + 7

45.
∞∑

k=0

k!
(k + 3)!

46.
∞∑

k=1

k 3

2k

47.
∞∑

k=1

√
k

k2 + 3
48.

∞∑
k=1

( 1
k 2

)√
k

49.
∞∑

k=1

3k

k k
50.

∞∑
k=0

2k!

k!

51.
∞∑

k=1

(2k)!
(k!)!

52.
∞∑

k=0

k!
3k 2

53.
∞∑

k=1

2 · 5 · 8 · · · (3k − 1)
3 · 5 · 7 · · · (2k + 1)

54.
∞∑

k=0

2 · 5 · 8 · · · (3k + 2)
1 · 5 · 9 · · · (4k + 1)

55.
∞∑

k=1

(
k

k + 1

)k 2

56.
∞∑

k=1

e 1/k

k2

57.
∞∑

k=1

k!
1 · 3 · 5 · 7 · · · (2k − 1) 58.

∞∑
k=0

1 · 4 · 7 · · · (3k + 1)
100 k

59.
∞∑

k=1

1 · 4 · 7 · · · (3k − 2)
3 · 6 · 9 · · · (3k)

(Hint: See Example 3.)

60. (a) Show that the series
∑∞

k=1
lnk
k 2

converges.

(b) Use the result from part (a) to show that
∑∞

k=1
lnk
k n

converges for every integer n > 2.

61. Let n be a positive integer and let r > 1.

(a) Show that the series
∑∞

k=1
kn

rk
converges.

(b) Explain why part (a) proves that lim
k→∞

kn

r k
= 0.

(c) Explain why part (b) proves that exponential growth
dominates polynomial growth.

62. Let r > 1.
(a) Show that the series

∑∞
k=1

r k

k!
converges.

(b) Explain why part (a) proves that lim
k→∞

r k

k!
= 0.

(c) Explain why part (b) proves that factorial growth
dominates exponential growth.

63. (a) Show that the series
∑∞

k=1
k!
kk

converges.

(b) Explain why part (a) proves that lim
k→∞

k!
kk

= 0.

(c) Explain why part (b) proves that the function k k dom-
inates factorial growth.

Applications
In Exercises 64 and 65 we use the product notation

∏ n
j=1 rj.

(The symbol 	 is a capital π .) This notation is analogous to
the summation notation

∑ n
k=1 ak, but means the product of

the entries, rather than their sum. That is,

n∏
j=1

rj = r1 · r2 · r3 · · · r n.

64. Leila needs to determine the number of trout to stock a
lake with annually. She has evidence that between 65%
and 95% of the trout persist in the lake from year to year.
The actual percentage varies with the amount of fishing,
as well as the weather, the number of insects available,
and the fraction of the trout that are of a reproductive age.
Denote the fraction of fish that persist from one year to
the next by r k ∈ [0.65, 0.95]. For simplicity, Leila assumes
that lim

k→∞
r k = 0.80. The number of fish she stocks an-

nually is denoted s, with the steady number of fish in the

lake given by

f∞ = s
(

1 +
∞∑

i=0

( i∏
j=0

rj

))
.

(a) Use the ratio test to show that this series converges.
(b) Can Leila use the given assumptions to find f∞?

Explain.

65. In Exercise 64, Leila actually needs to estimate the steady
number of fish f∞ that will be in the lake for a given an-
nual stocking rate s. She supposes that s = 420 and that in
the first 10 years of stocking the rates of persistence ri are
all equal to the mean: ri = 0.80 for i = 1, 2, . . . , 10. Note
that she assumes that after the first 10 years the values of
r k can again vary between 0.65 and 0.95.
(a) Neglecting f 0, find f 10 = s

∑ 10
i=0

∏i
j=1 rj for the given

values of s and ri.
(b) Use Theorem 7.31 to find an upper bound for the

error in this estimate for f∞.
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Proofs
66. Use the principle of mathematical induction to prove that

if ak+1 < akr for every k ≥ N, then aN+n < aNr n. Proving
this implication completes our proof of the ratio test.

67. Prove that the ratio test will be inconclusive on every
series of the form

∑∞
k=1 ak where ak is a rational function

of k.
68. Prove the root test. You may model your proof on the

proof of the ratio test.

Exercises 69–72 build to a proof that the root test is inconclu-
sive on every series

∑∞
k=1 ak where ak is a rational function

of k.

69. Let ak = ck m, where c > 0 and m ∈ Z. Prove that
lim
k→∞

(ck m)1/k = 1. Explain why this shows that the root

test is inconclusive for every series of the form
∑∞

k=1 ck m,
including every p-series.

70. Let c1 be a real number, c2 be a positive real number, and
m1 ≤ m2 be two nonnegative integers.

(a) Explain why, for large values of k, we have

0 < c1k m 1 + c2k m 2 ≤ (c1 + c2) k m 2 .

(b) Use part (a), the result of Exercise 69, and the Squeeze
Theorem to show that lim

k→∞
(c1k m 1 + c2k m 2 )1/k = 1.

Explain why this shows that the root test is inconclu-
sive for every series of the form

∑∞
k=1 (c1k m 1 + c2k m 2 ).

71. (a) Use the result of Exercise 70 and mathematical in-
duction to show that if cm > 0 and each mj is a non-
negative integer with m1 ≤ m2 ≤ · · · ≤ mn, then
lim
k→∞

(c1k m1 + c2k m2 + · · · + cnk mn )1/k = 1.

(b) Explain why part (a) shows that the root test
is inconclusive for every series of the form∑∞

k=1 (c1k m 1 + c2k m 2 + · · · + c nk m n ).

72. Use the result of Exercise 71 to show that the root test is
inconclusive for every series of the form

∑∞
k=1 ak where

ak is a rational function of k.

Thinking Forward
� A series of monomials: Find all values of x for which the

series
∑∞

k=1
x2k

k!
converges.

� A series of monomials: Find all values of x for which the

series
∑∞

k=1

( x
k

)k
converges.

7.7 ALTERNATING SERIES

� The alternating series test and approximating convergent alternating series

� The difference between absolute and conditional convergence

� A summary of convergence tests for series

Alternating Series

Unlike the divergence test, all of the convergence tests we discussed in Sections 7.4, 7.5
and 7.6 have required our series to have nonnegative terms. In this section we relax that
requirement and discuss how to handle certain series in which the signs are arbitrary. We
begin, however, with a discussion of series in which the signs alternate.

DEFINITION 7.36 Alternating Series

Let {ak} be a sequence of positive numbers. A series of the form
∞∑

k=1

(−1)k+1ak or
∞∑

k=1

(−1)kak

is called an alternating series.

So, for an alternating series with each ak > 0, we have one of two possible forms:

a1 − a2 + a3 − a4 + · · · + (−1)k+1ak + · · ·
−a1 + a2 − a3 + a4 − · · · + (−1)kak + · · ·
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We have already studied one type of alternating series. A geometric series
∑∞

k=0 cr k is an
alternating series exactly when r < 0. For example, we have the alternating geometric series

∞∑
k=0

3
(
−1

2

)k
= 3 − 3

2
+ 3

4
− 3

8
+ · · ·

An alternating series that we will see quite often is the alternating harmonic series

∞∑
k=1

(−1)k+1

k
= 1 − 1

2
+ 1

3
− 1

4
+ · · · .

THEOREM 7.37 The Alternating Series Test

Let {ak} be a sequence of positive numbers.

If ak+1 < ak for every k ≥ 1 and lim
k→∞

ak = 0,

then the alternating series
∞∑

k=1

(−1)k+1ak and
∞∑

k=1

(−1)kak

both converge.

Note that an arbitrary series that meets the two conditions (7.37) and (7.37) may or may
not converge. For example, both the harmonic series and the p-series with p = 2 satisfy
those two conditions, but the former series diverges and the latter series converges. The
two conditions ensure convergence only when the series is alternating. For example, the
alternating harmonic series converges because it meets the two conditions of Theorem 7.37
and it is an alternating series.

The figure shown next illustrates the main ideas of the proof of the alternating series
test with the graph of the first 10 terms of the sequence of partial sums {Sn} for the alternat-
ing harmonic series. In the graph we see that the subsequence {S2n−1} is strictly decreasing
and is bounded below. Similarly, the subsequence {S2n} is strictly increasing and is bounded
above. Since the terms of the series ak → 0, these two subsequences converge to the same
value: the sum of the series, L. The graph of the sequence of partial sums for every alter-
nating series of the form

∑∞
k=1(−1)k+1ak satisfying the conditions of the alternating series

test will be similar.

The first 10 terms of the sequence of partial sums {Sn} for the alternating harmonic series

y

L

x
3 4 5 6 7 8 9 1021

S11

S2

S3 S5

S4
S6

S7 S9

S8 S10
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Proof. Let {ak} be a strictly decreasing sequence of positive numbers such that ak → 0 as k → ∞.

We will show that the alternating series
∑∞

k=1(−1)k+1ak converges and leave the convergence of the
alternating series

∑∞
k=1(−1)kak for Exercise 66. Consider the sequence of partial sums {Sn} given by

S1 = a1

S2 = a1 − a2

S3 = a1 − a2 + a3

S4 = a1 − a2 + a3 − a4

S5 = a1 − a2 + a3 − a4 + a5
...

...

We consider the subsequence {S2n−1} of {Sn}. That is,

{S2n−1} = S1, S3, S5, S7, . . .

We will show that {S2n−1} is bounded and strictly decreasing, and is, therefore, convergent. Consider
the terms S2n−1 and S2n+1. We have

S2n−1 = a1 − a2 + a3 − · · · − a2n−2 + a2n−1

S2n+1 = a1 − a2 + a3 − · · · − a2n−2 + a2n−1 − a2n + a2n+1

We will group the summands of these terms in two different ways to prove our assertions, but first
we note that since the sequence {ak} is strictly decreasing, each difference

ak − ak+1 > 0.

Now,

S2n−1 = a1 − (a2 − a3) − · · · − (a2n−2 − a2n−1)

S2n+1 = a1 − (a2 − a3) − · · · − (a2n−2 − a2n−1) − (a2n − a2n+1).

Each of the paired differences in these sums is positive, and since

S2n+1 = a1 − (a2 − a3) − · · · − (a2n−2 − a2n−1) − (a2n − a2n+1) = S2n−1 − (a2n − a2n+1),

we have S2n−1 > S2n+1. Therefore, the sequence {S2n−1} is strictly decreasing.

Every decreasing sequence is bounded above by its first term. We now show that the sequence
{S2n−1} is bounded below by zero. Consider the following grouping of the general term S2n−1:

S2n−1 = (a1 − a2) + (a3 − a4) + · · · + (a2n−3 − a2n−2) + a2n−1.

Again, each of the paired differences in the formula is positive, as is a2n−1. Thus S2n−1, the sum of
positive numbers, is positive. Therefore, the sequence is bounded below by zero. We now know
that the sequence {S2n−1} is bounded and strictly decreasing. Therefore, it converges to some value.
Call this value L.

We will show that the subsequence {S2n} also converges to L. Consider

S2n = a1 − a2 + a3 − · · · − a2n−2 + a2n−1 − a2n = S2n−1 + a2n.

The limit
lim

n→∞ S2n = lim
n→∞ (S2n−1 + a2n) = L + 0 = L,

since S2n−1 → L and an → 0 as n → ∞. Because the subsequences {S2n−1} and {S2n} both converge
to L, the entire sequence of partial sums {Sn} converges to L. Therefore the series

∑∞
k=1(−1)k+1ak

converges.

In our proof of the alternating series test, we could have shown that the subsequence
{S2n} is strictly increasing and bounded above. However, we did not need those two facts
in the proof. You will prove these facts in Exercise 67.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 30, 2012 19:28

644 Chapter 7 Sequences and Series

Given any convergent series
∑∞

k=1 bk, the terms of the sequence of partial sums, {Sn},
may always be used to approximate the sum L of the series. Given an arbitrary convergent
series, however, we cannot always be sure how good an approximation a term Sn in the
sequence of partial sums is for L. The next theorem tells us that, in the sequence of partial
sums for an alternating series satisfying the conditions of the alternating series test, the
term Sn is within an+1 of L.

THEOREM 7.38 Approximating the Remainder for a Convergent Alternating Series

Let L be the sum of an alternating series satisfying the hypotheses of the alternating
series test. For any term Sn in the sequence of partial sums,

|L − Sn| < an+1.

Furthermore, the sign of the difference L − Sn is the sign of the coefficient of the term
an+1.

Proof. We consider an alternating series of the form
∑∞

k=1 (−1)k+1 ak and leave the case of an
alternating series of the form

∑∞
k=1 (−1)k ak for Exercise 68.

In our proof of the alternating series test we showed that the subsequence {S2n−1} of {Sn} was
strictly decreasing and converged to a limit L. Similarly, one may show that the subsequence {S2n}
of {Sn} is strictly increasing. In the proof, we did show that the subsequence {S2n} converges to L.
Thus, for every n, either

Sn < L < Sn+1 or Sn+1 < L < Sn,

depending upon whether n is even or odd, respectively. In either case,

Sn+1 − Sn = (−1)n+2 an+1.

If n is even, subtracting Sn throughout Sn < L < Sn+1, we obtain

0 < L − Sn < (−1)n+2 an+1 = an+1.

If n is odd, when we subtract Sn throughout Sn+1 < L < Sn, we obtain

(−1)n+2 an+1 < L − Sn < 0.

Note that since n is odd, we have (−1)n+2 an+1 = −an+1. If we multiply through by −1 in
(−1)n+2 an+1 < L − Sn < 0, we obtain

0 < Sn − L < an+1.

Considering the two inequalities 0 < L − Sn < an+1 and 0 < Sn − L < an+1 together, whether n is
even or odd, we have the desired inequality

|L − Sn| < an+1.

Moreover, we note that the sign of the difference L − Sn is the sign of the coefficient of the term
an+1.

We have already mentioned that the alternating harmonic series
∑∞

k=1
(−1)k+1

k
satisfies

the conditions of the alternating series test. If we add the first 10 terms of the series to
obtain the 10th partial sum, S10, we obtain

S10 = 1 − 1
2

+ 1
3

− 1
4

+ · · · − 1
10

≈ 0.646.
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This is an approximation for the sum L of the series. By Theorem 7.38, the error in us-
ing S10 is at most 1

11
≈ 0.091. That is, |L − 0.646| < 0.091. Furthermore, the approximation

S10 ≈ 0.646 is less than L, since the coefficient of a11 is positive. Therefore, we are en-
sured that the actual value of the sum L lies in the interval [S10, S10 + a11], or, with decimal
approximations,

0.646 < L < 0.737.

(In Chapter 8 we will prove that the sum of the alternating harmonic series is ln 2 ≈ 0.693.
We see that ln 2 is indeed in the interval we computed.) We also note that although the
alternating harmonic series converges, it converges quite slowly, in that it takes many terms
of the series to obtain a good approximation for the sum.

Absolute and Conditional Convergence

Consider the two alternating p-series
∞∑

k=1

(−1)k+1

k
and

∞∑
k=1

(−1)k+1

k2 .

We have already seen that the alternating series test may be used to prove that the
alternating harmonic series converges. You should verify that the second alternating series
shown also satisfies the conditions of the alternating series test and, therefore, converges.
However, these two series are different in that, if you sum the absolute values of the terms,
rather than the terms themselves, one of the resulting series diverges and one converges.
That is,

∞∑
k=1

∣∣∣∣∣
(−1)k+1

k

∣∣∣∣∣ =
∞∑

k=1

1
k

and
∞∑

k=1

∣∣∣∣∣
(−1)k+1

k2

∣∣∣∣∣ =
∞∑

k=1

1
k2 ,

and we have already determined that the harmonic series diverges and the p-series with
p = 2 converges. This distinction is the basis for our definitions of absolute convergence
and conditional convergence.

DEFINITION 7.39 Absolute Convergence

The series
∑∞

k=1 bk is said to converge absolutely, or be absolutely convergent, if the

series
∑∞

k=1 |bk| converges.

We see that the series
∑∞

k=1
(−1)k+1

k 2
converges absolutely, since

∑∞
k=1

∣∣∣ (−1)k+1

k 2

∣∣∣ = ∑∞
k=1

1
k2

converges.

DEFINITION 7.40 Conditional Convergence

A convergent series
∑∞

k=1 bk is said to converge conditionally, or be conditionally

convergent, if the series
∑∞

k=1 |bk| diverges.

The alternating harmonic series is conditionally convergent because it converges, but the

corresponding series of absolute values,
∑∞

k=1

∣∣∣ (−1)k+1

k

∣∣∣ = ∑∞
k=1

1
k
, diverges.

The alternating series test was the first convergence test we studied that can directly
handle series with some negative terms. However, as its name suggests, the alternating
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series test may be applied only to alternating series. The next theorem allows us to examine
series in which the signs of the terms are less rigidly specified.

THEOREM 7.41 Absolute Convergence Implies Convergence

If the series
∑∞

k=1 bk converges absolutely, then it converges.

The content of Theorem 7.41 may seem slightly odd to you, but recall that the definitions
of convergence and absolute convergence are distinct, so there is something to prove here.

Proof. Since the series
∑∞

k=1 bk converges absolutely, the series
∑∞

k=1 |bk| converges. Consider
the sum |bk| + bk, and note that for every k ∈ Z

+,

0 ≤ |bk| + bk ≤ 2 |bk| .
Now, the series

∑∞
k=1 2 |bk| converges, since

∑∞
k=1 2 |bk| = 2

∑∞
k=1 |bk|. Thus, by the comparison

test, the series
∞∑

k=1

(|bk| + bk)

converges. Finally, using both parts of Theorem 7.24, the difference of two convergent series is
convergent, and it follows that

∞∑
k=1

(|bk| + bk) −
∞∑

k=1

|bk| =
∞∑

k=1

((|bk| + bk) − |bk|) =
∞∑

k=1

bk.

We have thus shown that the series
∑∞

k=1 bk converges.

As we mentioned, Theorem 7.41 allows us to analyze the convergence of many (not neces-
sarily alternating) series in which there are both positive and negative terms. For example,
consider the series

1 − 1
4

+ 1
9

− 1
16

− 1
25

+ 1
36

+ 1
49

− 1
64

− 1
81

+ · · ·

The series of absolute values is

1 + 1
4

+ 1
9

+ 1
16

+ 1
25

+ 1
36

+ 1
49

+ 1
64

+ 1
81

+ · · · =
∞∑

k=1

1
k 2

.

This is a convergent p-series. Therefore, the given series converges absolutely, and by
Theorem 7.41 it also converges.

The Curious Behavior of a Conditionally Convergent Series

By this point in your study of mathematics you should be very familiar with the commuta-
tive and associative laws of addition. That is, for real numbers a, b, and c,

a + b = b + a and (a + b) + c = a + (b + c).

We also know that these properties may be combined to show that a finite sum of real
numbers may be computed in any order we wish, without affecting the result. However,
as we will see in a moment, the same may not be true when we rearrange the terms of
an infinite sum. In particular, we will see that if we rearrange the terms of the alternating
harmonic series, we can make it converge to a different value. Admittedly, we do have to
rearrange infinitely many of the terms for the sum to change, but the sum does change.
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Earlier in the section we showed that the alternating harmonic series
∞∑

k=1

(−1)k+1

k
= 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · ·

converges to a positive number L in the interval (0.646, 0.737) when the terms are in the
order shown. For the argument we present next, we just need the fact that L > 0. Rearrange
the terms of the alternating harmonic series as follows: Start with the first positive term,
and then subtract the next two negative terms, add the next positive term and subtract the
next two negative terms, etc. That is,

1 − 1
2

− 1
4

+ 1
3

− 1
6

− 1
8

+ 1
5

− 1
10

− 1
12

+ · · ·
Take a moment to convince yourself that every term from the alternating harmonic series
appears exactly once in our new sum, with the same sign it had in the original arrangement.

We now group the terms from the new arrangement as follows:(
1 − 1

2

)
− 1

4
+

(
1
3

− 1
6

)
− 1

8
+

(
1
5

− 1
10

)
− 1

12
+ · · ·

= 1
2

− 1
4

+ 1
6

− 1
8

+ 1
10

− 1
12

+ · · ·

= 1
2

(
1 − 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ · · ·

)

= 1
2

∞∑
k=1

(−1)k+1

k
= 1

2
L

With this arrangement, the sum is 1
2

L, and since L > 0, the sum cannot equal L. This
argument shows that the order of the summation is significant for the alternating harmonic
series. Similarly, if we start with any conditionally convergent series, changing the order
of (infinitely many) terms can result in a different sum. Perhaps more strangely, given a
conditionally convergent series, we can find a rearrangement that will sum to any value we
choose! For more on this, see Exercises 71–74.

The Ratio Test for Absolute Convergence

Now that we have studied absolute and conditional convergence, we should think about
convergence tests that will tell us when a series converges absolutely or converges condi-
tionally. Each of the convergence tests we have studied may be adapted to analyze a series
for absolute convergence. When presented with a series

∑∞
k=1 bk containing both positive

and negative terms, we should always look at the series of absolute values,
∑∞

k=1 |bk|, first.
If this series converges, then

∑∞
k=1 bk converges absolutely. By Theorem 7.41, the series∑∞

k=1 bk also converges. Thus, we can often use a single convergence test to determine that
a series converges and converges absolutely.

To determine that a series converges conditionally we always need to use two tests:
one to show that the series

∑∞
k=1 bk converges and a second to show that the series of

absolute values,
∑∞

k=1 |bk|, diverges. A single test can never suffice to determine conditional
convergence.

Although the convergence tests we have studied may be adapted to analyze a se-
ries for absolute convergence, the variant of the ratio test we studied in Section 7.6 war-
rants special mention. Recall that, to use the ratio test, we must have a series of the form∑∞

k=1 ak with each ak > 0. To use the test, we examine lim
k→∞

ak+1

ak
. In the ratio test for

absolute convergence, we need a series with nonzero terms,
∑∞

k=1 bk, and instead examine

lim
k→∞

∣∣∣ bk+1

bk

∣∣∣. We mention the ratio test for absolute convergence now because we will use
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it frequently in Chapter 8. The proof of the ratio test for absolute convergence is almost
identical to the proof we saw in Section 7.6 and is left for Exercise 70.

THEOREM 7.42 The Ratio Test for Absolute Convergence

Let
∑∞

k=1 bk be a series with nonzero terms, and assume ρ = lim
k→∞

∣∣∣ bk+1

bk

∣∣∣ exists.

(a) If ρ < 1, the series converges absolutely.

(b) If ρ > 1, the series diverges.

(c) If ρ = 1, the test is inconclusive. (Use a different test!)

The ratio test for absolute convergence works very well on many series containing ex-

ponential factors, factorials, and/or factorial-like products. The series
∑∞

k=0
(−3)k

(2k)!
is a good

candidate. Here, bk = (−3)k

(2k)!
and b k+1 = (−3)k+1

(2(k + 1))!
. Thus,

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(−3)k+1/(2k + 2)!

(−3)k/(2k)!

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(−3)k+1

(2k + 2)!
· (2k)!

(−3)k

∣∣∣∣∣
= lim

k→∞
3

(2k + 2)(2k + 1)
= 0.

Therefore, this series converges absolutely.

A Summary of Convergence Tests

The following table provides a compact summary of the statements of the convergence
tests we’ve studied in Sections 7.4–7.7, along with a few notes about them:

Test Theorem Comments

Divergence
Test
Section 7.4

Given the series
∑∞

k=1 ak,
if lim

n→∞ ak 
= 0, the series diverges.
Can be used only to determine that a
series diverges. Cannot be used to
determine convergence.

Integral Test
Section 7.4

If f : [1, ∞) → R is a continuous,
positive, and decreasing function,
then the improper integral∫ ∞

1 f (x) dx and the series
∑∞

k=1 f (k)
either both converge or both
diverge.

The function f must be relatively easy
to integrate. This test is not appropri-
ate for series containing factorials or
factors like factorials.

Comparison
Test
Section 7.5

Let
∑∞

k=1 ak and
∑∞

k=1 bk be two
series with nonnegative terms
such that 0 ≤ a k ≤ bk for every
positive integer k. If the series∑∞

k=1 bk converges, then the
series

∑∞
k=1 ak converges.

Given a series to analyze, both
comparison tests require you to find a
related series different enough to be
easy to analyze but similar enough to
provide a meaningful comparison.

Limit
Comparison
Test
Section 7.5

Let
∑∞

k=1 ak and
∑∞

k=1 bk be two
series with positive terms. If
lim
k→∞

ak

bk
= L, where L is any

positive real number, then either
the series both converge or both
diverge.

It is often easier to evaluate lim
k→∞

ak

bk
,

rather than ensure the required
inequalities of the comparison test.
There is an extension of the limit
comparison test. See Section 7.4
for details.
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Test Theorem Comments

Ratio Test
Section 7.6

Let
∑∞

k=1 ak be a series with
nonnegative terms, and let
ρ = lim

k→∞
ak+1

ak
.

If ρ < 1, the series converges.
If ρ > 1, the series diverges.
If ρ = 1, the test is inconclusive.

Works well on series contain-
ing exponential factors, factorials,
and/or factors like factorials.

Root Test
Section 7.6

Let
∑∞

k=1 ak be a series with
positive terms, and let
ρ = lim

k→∞
k

√
ak = (ak)1/k.

If ρ < 1, the series converges.
If ρ > 1, the series diverges.
If ρ = 1, the test is inconclusive.

Works well on series containing
exponential factors, or other fac-
tors with kth powers.

Alternating
Series Test
Section 7.7

Let {ak} be a strictly decreasing
sequence of positive numbers
such that lim

k→∞
ak = 0. Then the

alternating series
∑∞

k=1(−1)k+1ak

and
∑∞

k=1(−1)kak both converge.

There is an extension of this test
that guarantees that for a series
satisfying the conditions of the
test, if Sn is any term in the
sequence of partial sums, then
|L − Sn| < a n+1, where L is the
sum of the series.

Absolute
Convergence
Implies
Convergence
Section 7.7

If the series
∑∞

k=1 bk converges
absolutely, then it converges.

Examine the series of absolute
values,

∑∞
k=1 |bk|. If this series

converges, the series
∑∞

k=1 bk

converges absolutely.

This test can never be used by
itself to determine that a series
converges conditionally.

Ratio Test for
Absolute
Convergence
Section 7.7

Let
∑∞

k=1 bk be a series with
nonzero terms, and let

ρ = lim
k→∞

∣∣∣ bk+1

bk

∣∣∣.
If ρ < 1, the series converges
absolutely.
If ρ > 1, the series diverges.
If ρ = 1, the test is inconclusive.

Examples and Explorations

EXAMPLE 1 Using the alternating series test

Use the alternating series test to show that the series
∑∞

k=0
(−1)k

k!
converges, and find an

approximation to the sum within 10−6 of its value.

SOLUTION

The given series is an alternating series. Although the absolute values of the first two terms
are both 1, after that the absolute values of the terms monotonically decrease to zero, so the
series satisfies the conditions of the alternating series test. Therefore, the series converges.
To calculate an approximation within 10−6 of the sum of the series, we find the first term
whose absolute value is smaller than 10−6. That is, we find the smallest value of k such that
1
k!

≤ 10−6. You may verify that 1
9!

> 10−6 and 1
10!

< 10−6. Thus, if we compute the ninth

partial sum, S9, we have

S9 = 1
0!

− 1
1!

+ 1
2!

− 1
3!

+ 1
4!

− 1
5!

+ 1
6!

− 1
7!

+ 1
8!

− 1
9!

≈ 0.36787919.
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In addition, Theorem 7.38 tells us that S9 is less than the sum of the series, L, because L−S9

has the same sign as the term “+ 1
10!

”. Furthermore, our approximation, S9, is somewhat

better than we specified, because L − S9 < a10 ≈ 2.8 × 10−7. We have L ∈ (S9, S9 + a10).
Therefore L ∈ (0.36787919, 0.36787947). �

CHECKING
THE ANSWER

In Chapter 8 we will see that the series
∑∞

k=0
(−1)k

k!
converges to 1

e
. The value 1

e
is in the

interval we obtained in Example 1.

EXAMPLE 2 Analyzing series for absolute convergence, conditional convergence,
and divergence

Determine whether the series

(a)
∞∑

k=0

(−2)k

1 + 2k
(b)

∞∑
k=2

(−1)k

k ln k
(c)

∞∑
k=1

(−1)kk2

k!

converge absolutely, converge conditionally, or diverge.

SOLUTION

(a) The divergence test often makes it (relatively) easy to see if a series diverges. The limit
lim

k→∞
(−2)k

1+2k
does not exist, because when k is even, the quotient approaches 1, and when

k is odd, it approaches −1. Therefore, the series
∑∞

k=0
(−2)k

1 + 2k
diverges. Note that the

limits of the terms of the other two series are both zero. Thus, the divergence test fails
on those series and we must use other tests.

(b) If we can show that the series of absolute values converges, we will have proved
both absolute convergence and convergence, by Theorem 7.41. Consider the series of
absolute values

∞∑
k=2

∣∣∣ (−1)k

k ln k

∣∣∣ =
∞∑

k=2

1
k ln k

.

We see that this series satisfies the conditions of the integral test. We compute the
improper integral∫ ∞

2

1
x ln x

dx = lim
b→∞

ln
∣∣ ln x

∣∣b
2 = lim

b→∞
(
ln

∣∣ ln b
∣∣ − ln

∣∣ ln 2
∣∣) = ∞.

Since this improper integral diverges, the series of absolute values diverges. This tells
us that the original series does not converge absolutely. However, if we can show that
the original series converges, we will know that it converges conditionally. We see that
the original series is an alternating series. We have already mentioned that the limit of
the terms of the series is zero. By the alternating series test, since 1

(k + 1)ln(k + 1)
<

1
k lnk

for every k ≥ 2, the series
∑∞

k=2
(−1)k

k lnk
converges, and, therefore, converges condition-

ally. Before we analyze the remaining series, we repeat:

Demonstrating conditional convergence for a series
∑∞

k=1 ak always requires the use of
(at least) two convergence tests; you must show that the series

∑∞
k=1 ak converges and

that the series
∑∞

k=1 |ak| diverges.

(c) When presented with a series containing factorials or factors similar to factorials, one
of the two ratio tests is usually the best choice. (This does not mean that these tests

have to succeed; recall Example 3 from Section 7.6!) Since the series
∑∞

k=1
(−1)kk 2

k!
has

both positive and negative terms, we use the ratio test for absolute convergence. We
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have ak = (−1)kk 2

k!
. Thus, ak+1 = (−1)k+1(k + 1)2

(k + 1)!
. We now evaluate

lim
k→∞

∣∣∣∣∣
(−1)k+1(k + 1)2/(k + 1)!

(−1)kk2/k!

∣∣∣∣∣ = lim
k→∞

(k + 1)2

(k + 1)!
· k!

k2 = lim
k→∞

k + 1
k2 = 0.

Therefore, by the ratio test for absolute convergence, the series
∑∞

k=1
(−1)kk 2

k!
converges

absolutely. �

EXAMPLE 3 Modifying the root test to check for absolute convergence

Modify and use the root test to analyze the series
∞∑

k=1

(
−2

k

)k
.

SOLUTION

Theorem 7.35, the root test, may be used on a series only if the terms are (eventually) all
positive. However, just as we modified the ratio test, we may adapt the root test to check
for absolute convergence. Given a series

∑∞
k=1 ak, instead of examining lim

k→∞
(ak)1/k, we let

ρ = lim
k→∞

|ak|1/k. As with the ratio test for absolute convergence,

� if ρ < 1, the series converges absolutely;
� if ρ > 1, the series diverges;
� if ρ = 1, the test fails.

For our series we have

ρ = lim
k→∞

|ak|1/k = lim
k→∞

∣∣∣ (−2
k

)k ∣∣∣1/k = lim
k→∞

2
k

= 0.

So, the series converges absolutely. �

TEST YOUR? UNDERSTANDING
� What is an alternating series? What additional conditions must an alternating series

meet in order to satisfy the conditions of the alternating series test?

� When a series meets the conditions of the alternating series test, how is the test ex-
tended to provide a bound on the remainder when a term from the sequence of partial
sums is used to approximate the sum of the series?

� What is absolute convergence? What is the relationship between absolute convergence
and convergence?

� What is conditional convergence? What is the relationship between conditional con-
vergence and absolute convergence?

� How is it possible to use a single convergence test to show that a series converges
absolutely? Why are two convergence tests required to show that a series converges
conditionally?

EXERCISES 7.7

Thinking Back

� A strictly increasing sequence of partial sums: If ak > 0
for k ∈ Z

+, explain why the sequence of partial sums
for the series

∑∞
k=1 ak is strictly increasing.

� A bounded sequence of partial sums: If the series
∑∞

k=1 ak

converges, explain why the sequence of partial sums is
bounded.
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
∑∞

k=1(−1)k+1ak is an alternating series.
(b) True or False: If ak > 0 for k ∈ Z

+ and the alter-
nating series

∑∞
k=1(−1)kak converges, then the series∑∞

k=1(−1)k+1ak converges.

(c) True or False: If ak > 0 for k ∈ Z
+ and the series∑∞

k=1 ak converges, then the series also converges ab-
solutely.

(d) True or False: If a function f satisfies the hypotheses
of the integral test, then the series

∑∞
k=1(−1)k+1f (k)

converges.
(e) True or False: If a series

∑∞
k=1 ak converges condition-

ally, then the series
∑∞

k=1 |ak| diverges.

(f) True or False: If
∑∞

k=1 ak is a series such that

lim
k→∞

∣∣∣ ak+1

ak

∣∣∣ = 1, then the series converges con-

ditionally.
(g) True or False: If

∑∞
k=1 ak is a series such that

lim
k→∞

k
√

|ak| < 1, then the series converges absolutely.

(h) True or False: If we rearrange infinitely many terms of
the alternating harmonic series, we can change the
value of its sum.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A series that converges absolutely.

(b) A series that converges conditionally.

(c) A series
∑∞

k=1 ak such that lim
k→∞

∣∣∣ ak+1

ak

∣∣∣ = 1, but the

series is absolutely convergent.

3. What is an alternating series?

Exercises 4–8 concern the alternating series test. To use this
test we need a series of the form

∞∑
k=1

(−1)k+1ak or
∞∑

k=1

(−1)kak,

where
(i) {ak} is a sequence of positive numbers;

(ii) the sequence {ak} is strictly decreasing;
(iii) lim

k→∞
ak = 0.

4. Find an example of a divergent series of the form∑∞
k=1(−1)k+1ak

(a) that satisfies conditions (i) and (iii), but not con-
dition (ii);

(b) that satisfies conditions (i) and (ii), but not con-
dition (iii).

5. A series can fail two of the three conditions, (i), (ii)
and (iii), and still converge. Which of the three con-
ditions must an alternating series pass in order to
converge?

6. Explain why a series satisfying the hypotheses of the
alternating series test has a sum with the same sign as
the first term in the series.

7. Explain why the sum of a series satisfying the hypotheses
of the alternating series test is between any two consec-
utive terms in its sequence of partial sums.

8. Outline the steps you would use to approximate the sum
of a convergent series satisfying the hypotheses of the
alternating series test to within ε of its value.

9. What condition(s) must a series
∑∞

k=1 ak satisfy in order
for the series to be absolutely convergent?

10. What condition(s) must a series
∑∞

k=1 ak satisfy in order
for the series to be conditionally convergent?

11. Explain why one convergence test can suffice to show
that a series converges absolutely, even though it al-
ways requires two to show that a series converges
conditionally.

12. Explain why you must use two convergence tests to show
that a series

∑∞
k=1 ak converges conditionally.

13. Explain why every convergent series consisting of positive
terms is absolutely convergent.

14. Fill in each blank with an inequality involving p: The

series
∑∞

k=1
(−1)k+1

k p
converges absolutely if ,

converges conditionally if , and diverges if
.

15. Fill in the blanks: Let f be a function with domain
[1, ∞). If the function | f | is and , and
if converges, then the series con-
verges absolutely.

16. Fill in the blanks: Let
∑∞

k=1 ak and
∑∞

k=1 bk be two
series such that 0 ≤ ≤ for every

. If the series converges absolutely,
then the series converges absolutely.

17. Let {ak} be a sequence of positive numbers. Explain why,
if the series

∑∞
k=1 a2k−1 and

∑∞
k=1 a2k both converge ab-

solutely, the series
∑∞

k=1 ak converges absolutely.
18. Which convergence tests can be used only on series in

which the terms eventually all have the same sign?

19. Give an example of divergent series
∑∞

k=1 ak and
∑∞

k=1 bk

such that the series
∑∞

k=1 akbk converges.
20. Give an example of convergent series

∑∞
k=1 ak and∑∞

k=1 bk such that the series
∑∞

k=1 akbk diverges.
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Skills

Determine whether the series in Exercises 21–23 converge or
diverge. Note that these series do not satisfy the criteria of the
alternating series test.

21. 1 − 1
2

− 1
2

+ 1
3

+ 1
3

+ 1
3

− 1
4

− 1
4

− 1
4

− 1
4

+ · · ·

22. 1 − 1
2

− 1
3

+ 1
4

+ 1
5

− 1
6

− 1
7

+ 1
8

+ 1
9

− 1
10

+ · · ·

23. 1 − 1
23

+ 1
32

− 1
43

+ 1
52

− 1
63

+ 1
72

− 1
83

+ 1
92

− · · ·

Use the alternating series test to determine whether the series
in Exercises 24–29 converge or diverge. If a series converges,
determine whether it converges absolutely or conditionally.

24.
∞∑

k=1

(−k)k

k!
25.

∞∑
k=0

(−1)k+1

1 + k2

26.
∞∑

k=2

(−1)k+1

(ln k)2
27.

∞∑
k=0

(−2)k+1

1 + 3 k

28.
∞∑

k=0

(−1)k+1k!
(2k + 1)!

29.
∞∑

k=0

(−1)kk2

1 + k2

Use the ratio test for absolute convergence to determine
whether the series in Exercises 30–35 converge absolutely or
diverge.

30.
∞∑

k=1

(−k)k

k!
31.

∞∑
k=0

(−3)k+1

(2k)!

32.
∞∑

k=1

(−5)k

(k + 1)! − k!
33.

∞∑
k=0

(−7)k

(2k + 1)!

34.
∞∑

k=0

(−2)k1 · 3 · 5 · · · (2k + 1)
1 · 4 · 7 · · · (3k + 1)

35.
∞∑

k=0

(−1)k1 · 3 · 5 · · · (2k + 1)
1 · 4 · 7 · · · (3k + 1)

Use any convergence tests from Sections 7.4–7.7 to deter-
mine whether the series in Exercises 36–51 converge abso-
lutely, converge conditionally, or diverge. Explain why the
series meets the hypotheses of the test you select.

36.
∞∑

k=1

1
(2k − 1)(2k + 1)

37.
∞∑

k=2

1
k2 − 1

38.
∞∑

k=2

(−1)k

k ln k ln(ln k)
39.

∞∑
k=1

(−1)kk
k + 1

40.
∞∑

k=2

(−1)k ln k
k 3 + 1

41.
∞∑

k=2

(−1)k ln k
k + 1

42.
∞∑

k=1

(−1)k

√
k 3 + 3k2 − 5

k2 + 3
43.

∞∑
k=2

(−1)k ln k
k2 − 1

44.
∞∑

k=1

(−1)ke−k 45.
∞∑

k=1

(−1)k
3
√

k2 + 3k + 1
k + 1

46.
∞∑

k=1

(−1)kke−k 2
47.

∞∑
k=1

(−1)ke−k 2

48.
∞∑

k=1

sin
√

k
k 3/2

49.
∞∑

k=1

cos k
k2

50.
∞∑

k=1

cos3
(

1
k

)
51.

∞∑
k=1

sin3
(

1
k

)

In Exercises 52–57 do each of the following:
(a) Show that the given alternating series converges.
(b) Compute S10 and use Theorem 7.38 to find an interval

containing the sum L of the series.
(c) Find the smallest value of n such that Theorem 7.38 guar-

antees that Sn is within 10−6 of L.

52.
∞∑

k=1

(−1)k

k 3
53.

∞∑
k=1

(−1)k+1

k2

54.
∞∑

k=0

(−1)k

(2k + 1)!
55.

∞∑
k=0

(−1)k

(2k)!

56.
∞∑

k=0

(−1)k+1k!
(2k + 1)!

57.
∞∑

k=0

(−1)k(k + 1)
k!

In Exercises 58–61, find the values of p that make the series
converge absolutely, the values that make the series converge
conditionally, and the values that make the series diverge.

58.
∞∑

k=2

(−1)k+1

kp ln k
59.

∞∑
k=1

(−1)k+1 ln k
kp

60.
∞∑

k=0

(−1)kkpe−k 2
61.

∞∑
k=0

(−1)kkp e−k

Applications
62. On the coast of Oregon, near Newport, there is a sandbar

in a tidal area that blocks water going out to sea. Some
water can escape from the side of the pool that devel-
ops behind the bar. As the tide is going out, waves wash
over the bar into the pool behind it. The depth of water
left by the kth wave is w k, where lim

k→∞
w k = 0. Between

waves, a little water flows out the side outlet. The deeper
the water in the pool, the deeper is the channel at the

outlet, so that the amount of water flowing out of the pool
between waves is 0.03dk, where dk is the depth of the wa-
ter in the pool after the kth wave. It follows that the depth
of water in the pool is

d0 − 0.03d0 + w1 − 0.03d1 + w2 − 0.03d2 + · · · .

Does this series converge? (Hint: Notice that we have
dk = (1 − 0.03)d k−1 + w k.)
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63. Alex is measuring nitrates from agricultural runoff from
a new point source. The nitrates flow into a small pond,
where Alex measures them. The contamination comes in
pulses: The pond gains nitrates, then clean water flows
for a while and the contaminated water flows away, and
then another dump of nitrates occurs. Considering the
flow of nitrates into the pond and the flow of the water
and nitrate mixture out, Alex finds that the total amount
of nitrate in the lake at his kth measurement satisfies
A k = 8069 − Ak−1

7
. The water in the pond was initially

clean, so A0 = 0.
(a) Show that

Ak − Ak−1

Ak−1 − Ak−2
= − 1

7
.

(b) Show that AN = ∑N
k=1(A k − A k−1).

(c) The lake started clean. Show that

lim
N→∞

AN =
∞∑

k=1

(A k − A k−1)

converges.

Proofs

64. Prove that every convergent geometric series converges
absolutely.

65. Show that if a series
∑∞

k=1 ak converges absolutely, the
series

∑∞
k=1 a 2

k also converges.

66. Let {ak} be a strictly decreasing sequence of positive
numbers such that ak → 0 as k → ∞. Show that
the alternating series

∑∞
k=1(−1)kak converges. (Hint: We

have already shown that the hypotheses imply that the series∑∞
k=1(−1)k+1ak converges.)

67. Let {ak} be a strictly decreasing sequence of positive num-
bers such that ak → 0 as k → ∞. Show that the subse-
quence {S2n} of the sequence of partial sums {Sn} for the
alternating series

∑∞
k=1(−1)k+1ak is strictly increasing and

is bounded above by a1.

68. Let
∑∞

k=1(−1)kak be an alternating series that satisfies the
hypotheses of the alternating series test. Prove that if Sn
is a term in the sequence of partial sums, then

|L − Sn| < an+1

and, furthermore, the sign of the difference, L − Sn, is the
sign of the coefficient of the term an+1.

69. Prove that if the series
∑∞

k=1 ak diverges, then the series∑∞
k=1 |ak| also diverges.

70. Prove the ratio test for absolute convergence. That is, let∑∞
k=1 bk be a series with nonzero terms, and let ρ =

lim
k→∞

∣∣∣ bk+1

bk

∣∣∣.
(a) Show that if ρ < 1, the series converges absolutely.
(b) Show that if ρ > 1, the series diverges.
(c) Show that the test fails when ρ = 1, by finding a

convergent series
∑∞

k=1 ck such that
∣∣∣ ck+1

ck

∣∣∣ → 1 as

k → ∞ and a divergent series
∑∞

k=1 dk such that∣∣∣ dk+1

dk

∣∣∣ → 1 as k → ∞.

Changing the order of the summands in a conditionally con-
vergent series can change the value of the sum. We showed
this earlier in the section for the alternating harmonic series

∑∞
k=1 (−1)k + 1/k. In Exercises 71–74 we will continue work-

ing with the alternating harmonic series to prove a few other,
related properties.

71. Prove that the series consisting of just the positive terms
of the alternating harmonic series diverges. That is, show

that
∑∞

k=1
1

2k − 1
diverges.

72. Prove that the series consisting of just the negative terms
of the alternating harmonic series diverges. That is, show

that
∑∞

k=1

(
− 1

2k

)
diverges.

73. Let α be any real number. Show that there is a rearrange-
ment of the terms of the alternating harmonic series that
converges to α. (Hint: Argue that if you add up some finite

number of the terms of
∑∞

k=1
1

2k − 1
, the sum will be greater

than α. Then argue that, by adding in some other finite num-

ber of the terms of
∑∞

k=1

(
− 1

2k

)
, you can get the sum to be less

than α. By alternately adding terms from these two divergent
series as described in the preceding two steps, explain why the
sequence of partial sums you are constructing will converge
to α.)

74. Show that there is a rearrangement of the terms of the
alternating harmonic series that diverges to ∞. (Hint: Ar-
gue that if you add up some finite number of the terms of∑∞

k=1
1

2k − 1
, the sum will be greater than 1. Then argue

that, by adding in some other finite number of the terms of∑∞
k=1

(
− 1

2k

)
, you can get the sum to be less than 1. Next,

explain why you can get the sum to be greater than 2 if you

add in more terms of
∑∞

k=1
1

2k − 1
. Then argue again that you

can get the sum to be less than 2 by adding in more terms

of
∑∞

k=1

(
− 1

2k

)
. By alternately adding terms from these two

divergent series in a similar fashion as just described, explain
why the sum can then go above 3, then below 3, above 4, then
below 4, etc. Explain why such a process results in a sequence
of partial sums that diverges to ∞.)

Thinking Forward

� A series of monomials: Use the ratio test for absolute
convergence to find all values of x for which the series∑∞

k=1
x k

k
converges.

� A series of monomials: Use the ratio test for absolute
convergence to find all values of x for which the series∑∞

k=1
x k

k!
converges.
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition or
description with a graph or an algebraic example.

� A sequence of real numbers, including the meaning of a term
of the sequence

� A geometric sequence

� An arithmetic sequence

� A monotonic sequence, including the definitions of in-
creasing sequences, decreasing sequences, strictly increas-
ing sequences, strictly decreasing sequences, eventually in-
creasing sequences, and eventually decreasing sequences

� A bounded sequence

� The limit of a sequence

� A series, including the meaning of a term of the series

� The sequence of partial sums for a given series

� The sum of a convergent series

� The remainder of a convergent series

� An alternating series

� Absolute convergence for a series

� Conditional convergence for a series

Theorems

Fill in the blanks to complete each of the following theorem
statements:

Tests for Monotonicity: A sequence {ak} is increasing if it passes
any of the following tests:

� The Difference Test: ≥ 0 for all k ≥ 1.

� The Ratio Test: All terms are positive and ≥ 1
for all k ≥ 1.

� The Derivative Test: ≥ 0 for all x ≥ 1, given that
a(x) is a function that is on [1, ∞) and whose
value at any positive integer k is a(k) = .

Basic Limit Rules for Convergent Sequences: If {ak} and {bk} are
convergent sequences with ak → L and bk → M as k → ∞,
and if c is any constant, then

� cak → .

� (ak + bk) → .

� akbk → .

� If M 
= 0, then
ak

bk
→ .

� If f is a function that is at L, then f (ak) → .

� If ak → L and ak → M, then .

� If {m k} and {M k} are convergent sequences that both con-
verge to L, and if m k ak M k for all k, then
ak → .

� If |ak| → , then ak → .

� Let {ak} be a sequence that converges to L. Then every
subsequence of {ak} .

� If {ak} is both bounded and (eventually) monotonic,
then {ak} .

Sums and Constant Multiples of Convergent Series: If
∑∞

k=1 ak
and

∑∞
k=1 bk are convergent series and c is any real number,

then

� ∑∞
k=1 c ak = .

� ∑∞
k=1(ak + bk) = + .

Sequences and Series

Geometric Sequences: Fill in the blanks.

� For r , the sequence {r k} diverges.

� For r , the sequence {r k} converges to .

Dominance Relationships for Sequences: Order the following
sequences by dominance when a > 0 and b > 1:

� {k!} � {ln k} � {b k} � {k a}

Some Convergent Sequences Involving Exponents: For any real
number p > 0, the following sequences converge. Fill in each
blank with the appropriate value.

� p1/k → � k1/k → �
(

1
k

)p

→
Geometric Series and p-series: Suppose r is a nonzero real num-
ber and p > 0. Fill in the blanks.

� Geometric Series: For r , the geometric series∑∞
k=0 r k converges to the sum .
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� Geometric Series: For r the geometric series
∑∞

k=0 r k

diverges.

� p-series: For p , the p-series
∑∞

k=0
1
k p

converges and
for p , the series diverges.

Convergence Tests for Series: Fill in the blanks.

� The Divergence Test: If the sequence {ak} does not converge
to , then the series

∑∞
k=1 ak .

� The Integral Test: If a(x) is a function that is , ,
and on [1, ∞) and {ak} is the sequence defined by
ak = for every k ∈ Z

+, then
∑∞

k=1 ak and
∫ ∞

1 a(x) dx
either both or both .

� The Comparison Test: Let
∑∞

k=1 ak and
∑∞

k=1 bk be two se-
ries with terms such that 0 ak bk for ev-
ery positive integer k. If the series

∑∞
k=1 bk , then

the series
∑∞

k=1 ak .

� The Limit Comparison Test: Let
∑∞

k=1 ak and
∑∞

k=1 bk be
two series with positive terms.

If lim
k→∞

ak

bk
= L, where L is , then either the series

both converge or both diverge.

If lim
k→∞

ak

bk
= 0 and

∑∞
k=1 bk , then

∑∞
k=1 ak .

(There are two correct ways to fill in the last two blanks.)

� The Ratio Test: Let
∑∞

k=1 ak be a series with nonnegative
terms, and let ρ = lim

k→∞
.

If ρ < 1, the series .

If ρ > 1, the series .

If ρ = 1, .

� The Root Test: Let
∑∞

k=1 ak be a series with nonnegative
terms, and let ρ = lim

k→∞
.

If ρ < 1, the series .

If ρ > 1, the series .

If ρ = 1, .

� The Alternating Series Test: Let {ak} be a sequence of pos-
itive numbers.
If ak+1 ak for every k ≥ 1 and lim

k→∞
ak = , then∑∞

k=1(−1)k+1ak .

� The Ratio Test for Absolute Convergence: Let
∑∞

k=1 ak be a
series with nonzero terms, and let ρ = lim

k→∞
.

If ρ < 1, the series .

If ρ > 1, the series .

If ρ = 1, .

Skill Certification: Limits, Convergence, and Divergence

Limits of sequences: Determine whether the sequences that fol-
low are bounded, monotonic and/or eventually monotonic.
Determine whether each sequence converges or diverges. If
the sequence converges, find its limit.

1.
{

e k

k

}
2.

{
e−k ln

1
k

}

3.
{

2k2 + 1
3k2 − 1

}
4.

{
(2k)!

5k

}

5.
{

k2

k + 3
− k2

k + 4

}
6.

{
sin

( π

2k

)}

7.
{

k!
1 · 3 · 5 · · · (2k − 1)

}
8.

{
1 · 3 · 5 · · · (2k − 1)

3 · 6 · 9 · · · (3k)

}

Sequences of partial sums: For each of the series that follow,
(a) provide the first five terms in the sequence of partial sums
{S k}, (b) provide a closed formula for S k, and (c) find the sum
of the series by evaluating lim

k→∞
S k.

9.
∞∑

k=0

(
1

k + 3
− 1

k + 4

)

10.
∞∑

k=0

(
2k

(k + 3)!
− 2k+1

(k + 4)!

)

11.
∞∑

k=0

(
(1/2)k

ln(k + 2)
− (1/2)k+1

ln(k + 3)

)

12.
∞∑

k=2

ln
(

k
k + 1

)

Geometric series: For each of the series that follow, find the sum
or explain why the series diverges.

13.
∞∑

k=4

(
1
3

)k+2

14.
∞∑

k=0

3
(−2

5

)k

15.
∞∑

k=0

(1)k 16.
∞∑

k=0

5k+3

23k+1

Convergence or divergence of a series: For each of the series that
follow, determine whether the series converges or diverges.
Explain the criteria you are using and why your conclusion is
valid.

17.
∞∑

k=1

ln k 18.
∞∑

k=1

ln
(

1
k2

)

19.
∞∑

k=1

k
ln k

20.
∞∑

k=1

ln k
k
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21.
∞∑

k=1

k
3k

22.
∞∑

k=1

(
1
k2

)√
k

23.
∞∑

k=1

k
1 + k2

24.
∞∑

k=0

5k + k
k! + 3

25.
∞∑

k=2

1
k
√

e
26.

∞∑
k=0

k!10 k

3k

27.
∞∑

k=1

1

k + √
k

28.
∞∑

k=0

5k

(k + 1)!

29.
∞∑

k=0

1
2k + sin k

30.
∞∑

k=0

52k+1

(2k + 1)!

Conditional and absolute convergence: For each of the series that
follow, determine whether the series converges absolutely,
converges conditionally, or diverges. Explain the criteria you
are using and why your conclusion is valid.

31.
∞∑

k=1

(−1)k ln k 32.
∞∑

k=1

(−1)k 1√
k(1 + k)

33.
∞∑

k=1

(−1)ke−k 34.
∞∑

k=1

(−1)k+1 sin
(π

k

)

35.
∞∑

k=0

(−2)k

1 + 2k
36.

∞∑
k=1

(−1)k+1 sin
(π

k

)

37.
∞∑

k=0

(−1)k

3 k
38.

∞∑
k=1

(−1)k k
4 k

39.
∞∑

k=1

(−1)k

√
k

3k − 1
40.

∞∑
k=1

(−1)k+1 k100

2 k

Capstone Problems

A. Find the limits of the sequences {(k!) 1/k} and {k 1/k !} if
they converge.

B. Let 0 < a < b. Does the sequence {(a k +b k) 1/k} converge
or diverge? If it converges, find its limit. If it diverges, ex-
plain why.

C. Determine whether the series
∑∞

k=0 ke−k 2
converges or

diverges. Explain the criteria you are using and why your
conclusion is valid. Confirm your conclusion by using as
many different convergence tests as you can.

D. Consider the series
∑∞

k=1
sin k
k p

, where p ≥ 1.

(a) Explain why the divergence test fails on this series
and none of the other convergence tests discussed in
Sections 7.4–7.6 apply to the series.

(b) Show that the series converges when p > 1.
(c) Show that the convergence tests from Section 7.7 fail

to determine the convergence or divergence of this
series when p = 1.

(d) Do you think the series
∑∞

k=1
sin k

k
converges or

diverges?

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman November 27, 2012 22:3

this page left intentionally blank



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:49

C H A P T E R 8

Power Series
8.1 Power Series

Power Series
The Interval of Convergence of a Power Series
Power Series in x − x0

Examples and Explorations

8.2 Maclaurin Series and Taylor Series
Maclaurin Polynomials and Taylor Polynomials
Taylor Series and Maclaurin Series
Examples and Explorations

8.3 Convergence of Power Series
The Remainder
Basic Manipulations of Maclaurin Series
Examples and Explorations

8.4 Differentiating and Integrating Power Series
Differentiating a Power Series

∫ ( ∞∑
k=0

ak(x − x 0) k
)

dxIntegrating a Power Series
Examples and Explorations

Chapter Review, Self-Test, and Capstones

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:49

660 Chapter 8 Power Series

8.1 POWER SERIES

� Infinite sums of polynomials

� The power series in x and the power series in x − x0

� The interval of convergence of a power series

Power Series

In this chapter we will extend our study of series to include series of monomials of the
form

∑∞
k=0 ak x k and

∑∞
k=0 ak(x − x 0) k. These are called power series. Before we start that

discussion, we remind you that the tangent line to a differentiable function f (x) at a point x 0
may be used to approximate f on an interval containing x 0. In this chapter we will discuss
how higher degree polynomials can also be used to approximate functions. A power series
is a generalization of these polynomials.

DEFINITION 8.1 Power Series in x

Let {ak}∞k=0 be a sequence of real numbers and let x be a variable. A power series in x is
a series of the form

∑∞
k=0 ak x k. That is,

∞∑
k=0

ak x k = a0 + a1 x + a2 x 2 + a3 x 3 + · · · + ak x k + · · ·

If c is a real number at which the series of constants
∑∞

k=0 ak c k converges, the power
series

∑∞
k=0 ak x k is said to converge at c.

For example, if ak = 1 for every k ≥ 0, we obtain the geometric series
∑∞

k=0 x k. We al-
ready know that this series converges to 1

1 − x
when |x| < 1 and diverges otherwise. That is,

∞∑
k=0

x k = 1
1 − x

when |x| < 1.

Now consider this formula from the following perspective: On the interval (−1, 1), the
function f (x) = 1

1 − x
may be represented by the power series

∞∑
k=0

x k = 1 + x + x 2 + x 3 + · · · .

This means that as we add more terms to the series, the sequence of partial sums, given
by the polynomials 1, 1 + x, 1 + x + x 2, 1 + x + x 2 + x 3, · · · approximates the function

f (x) = 1
1 − x

more closely on the interval (−1, 1). We see this behavior in the following figure:

The polynomials 1 + x, 1 + x + x 2, and 1 + x + x 2 + x 3

approximate the function f (x) = 1
1 − x

y

x
�1 1

1 � x � x2 � x3

1 � x � x2

1 � x

2

f (x) � 1
1 � x

1
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More generally:

� We say the power series in x,
∑∞

k=0 ak x k, converges to a0 when x = 0. Because of this
behavior, every power series in x defines a function whose domain is a nonempty
subset of the real numbers.

� A power series in x is a generalization of a polynomial, since if each ak = 0 when
k > n, we obtain the nth-degree polynomial a0 + a1 x + a2 x 2 + · · · + an x n.

We already know that polynomials, from a computational standpoint, form a relatively
simple class of functions; they are easy to evaluate, differentiate, and integrate. We will
see that our most familiar functions can be expressed in terms of a power series, at least
on some finite interval. In addition, if a function can be expressed as a convergent power
series in x, we may use polynomials to approximate the function on an interval centered at
x = 0, as we illustrated with the function f (x) = 1

1 − x
.

The Interval of Convergence of a Power Series

We have already seen that every power series in x converges when x = 0. In a moment we
will discuss a theorem that summarizes the possibilities for the types of intervals on which
a power series in x can converge. Before we get to that theorem, however, we need the
following one:

THEOREM 8.2 The Convergence of a Power Series in x at a Nonzero Point Implies
Convergence on an Interval

Let
∑∞

k=0 ak x k be a power series in x.

(a) If the series converges at c �= 0, then the series converges absolutely for all real
numbers b such that |b| < |c|.

(b) If the series diverges at c, then the series diverges for all real numbers d such that
|c| < |d|.

Proof. For Theorem 8.2 (a) we are given that the power series
∑∞

k=0 ak x k converges at c �= 0.
That is, the series of constants

∑∞
k=0 ak c k converges. Since this series converges, the Divergence

Test implies that lim
k→∞

ak c k = 0. Furthermore, since every convergent sequence is bounded, there

is a real number M > 0 such that
∣∣ak c k

∣∣ ≤ M for every k ≥ 0. We will now show that the series∑∞
k=0

∣∣ak b k
∣∣ converges when |b| < |c|. This inequality implies that

∣∣∣ b
c

∣∣∣ < 1. For every k ≥ 0, we

have

0 ≤ ∣∣ak b k
∣∣ =

∣∣∣∣ak c k
(

b
c

)k ∣∣∣∣ ≤ M
∣∣∣∣ b

c

∣∣∣∣
k

.

Since
∣∣∣ b

c

∣∣∣ < 1, the geometric series
∑∞

k=0 M
∣∣∣ b

c

∣∣∣ k
converges. Thus, by the preceding inequality

and the comparison test, the series
∑∞

k=0

∣∣ak b k
∣∣ converges. Hence, the series

∑∞
k=0 ak b k converges

absolutely and we have proven (a).

The proof of part (b) is left for Exercise 61.
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As a consequence of Theorem 8.2 we have the following theorem:

THEOREM 8.3 The Convergence of a Power Series in x

Let
∑∞

k=0 ak x k be a power series in x. Exactly one of the following occurs:

(a) The series converges only at x = 0.

(b) There exists a positive real number ρ such that the series converges absolutely for
every x ∈ (−ρ, ρ) and diverges if x < −ρ or x > ρ.

(c) The series converges absolutely for every real number x.

Consider the following schematic illustrating the parts of Theorem 8.3:

(a)
0

(b)

(c)

0 ρ�ρ

0

Each of the conditions (a), (b), and (c) of Theorem 8.3 defines both an interval of conver-
gence and a radius of convergence for the power series:

� When a power series in x satisfies part (a) of Theorem 8.3, we say that the interval
of convergence for the series is trivial and the radius of convergence is 0.

� Next, note that part (b) of the theorem does not say whether the power series con-
verges at either ρ or −ρ. In fact, a power series in x satisfying part (b) may converge
at both ±ρ, at neither of these points, or at just one of these points. Thus, here the
interval of convergence will have one of the forms

[−ρ, ρ], (−ρ, ρ), [−ρ, ρ) and (−ρ, ρ].

For any of these intervals, the radius of convergence is said to be ρ. When the se-
ries converges at ρ or −ρ, the convergence may be either conditional or absolute,
depending upon the particular series. (See Exercise 62 for more on this.)

� Finally, in part (c) we say that the interval of convergence is R and that the radius of
convergence is infinite.

We will discuss several examples later in the section.

Power Series in x − x0

We wish to generalize the concept of a power series slightly. In the sections that follow we
will be looking for power series representations for specified functions. At the beginning
of the current section we saw that the function f (x) = 1

1 − x
may be represented by the

following power series in x:

1
1 − x

=
∞∑

k=0

x k.

We also saw that the graphs of the terms of the sequence of partial sums

1, 1 + x, 1 + x + x 2, 1 + x + x 2 + x 3, · · ·
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approximate the function with increasing accuracy on an interval centered at x = 0 as we
include more summands. We may form similar power series at points other than x = 0.
When we do, we obtain a power series in x − x 0. Just as we hoped to find power series in x
that converge on an interval centered at x = 0, we wish to find power series in x − x 0 that
converge on an interval centered at x = x 0.

DEFINITION 8.4 Power Series in x − x0

Let {ak}∞k=0 be a sequence of real numbers, let x be a variable, and let x 0 be a real number.
A power series in x − x 0 is a series of the form

∑∞
k=0 ak (x − x 0) k. That is,

∞∑
k=0

ak (x − x 0) k = a0 + a1(x − x 0) + a2(x − x0)2 + a3(x − x 0)3 + · · · + ak (x − x 0) k + · · ·

If c is a real number at which the series of constants
∑∞

k=0 ak (c − x 0) k converges, the
power series

∑∞
k=0 ak (x − x 0) k is said to converge at c.

For example, if x 0 = 3 and ak =
(
− 1

2

)k+1
, we have the series

∞∑
k=0

(
−1

2

)k+1
(x − 3) k = −1

2
+ 1

4
(x − 3) − 1

8
(x − 3)2 + 1

16
(x − 3)3 − · · · .

In Section 8.3 we will see that this power series in x − 3 also converges to the function
f (x) = 1

1 − x
, but the series converges for every real number in the interval (1, 5). In the

following figure we graph the function f (x) = 1
1 − x

along with linear, quadratic, and cubic

polynomials from the sequence of partial sums:

Polynomial approximations to the function f (x) = 1
1 − x

near x = 3

y

x

�1

�2

1

2

P3(x)

P1(x)

P2(x)

1 2 3 4

f (x) � 1
1 � x

5

Note that if we start with a power series in x − x 0 and let x 0 = 0, we obtain a power
series in x, so every power series in x is also a power series in x − x 0 where x 0 = 0. Thus,
a power series in x − x 0 is a generalization of a power series in x. Theorem 8.3 outlined
the possibilities for the radius of convergence and interval of convergence for a power
series in x. The following theorem is the generalization of Theorem 8.3 for a power series
in x − x 0:
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THEOREM 8.5 The Convergence of a Power Series in x − x0

Let
∑∞

k=0 ak (x − x 0) k be a power series in x − x 0. Exactly one of the following occurs:

(a) The series converges only at x = x 0.

(b) There exists a positive real number ρ such that the series converges absolutely for
every x ∈ (x 0 − ρ, x 0 + ρ) and diverges if x < x 0 − ρ or x > x 0 + ρ.

(c) The series converges absolutely for every real number x.

The following schematic illustrates the three parts of Theorem 8.5 for an interval of
convergence for a power series in x − x 0:

(a)
x0

(b)

(c)

x0 x0 � ρx0 � ρ

x0

Each of the conditions (a), (b), and (c) of Theorem 8.5 defines both an interval of con-
vergence and a radius of convergence for the power series:

� If the power series converges only at x 0, we say that the interval of convergence for
the series is trivial and the radius of convergence is 0.

� If the series converges on a finite but nontrivial interval, we say that the radius of
convergence is ρ. Part (b) of Theorem 8.5 does not tell us whether the series con-
verges or diverges at either of the two points x 0 + ρ and x 0 − ρ. Thus, in this case,
the interval of convergence has one of the following forms:

[x 0 − ρ, x 0 + ρ], (x 0 − ρ, x 0 + ρ), [x 0 − ρ, x 0 + ρ) and (x 0 − ρ, x 0 + ρ].

When the series converges at x 0 + ρ or x 0 − ρ, the convergence at either point may
be either conditional or absolute, depending upon the particular series.

� If a power series in x − x 0 converges everywhere, we say that the interval of conver-
gence is R and that the radius of convergence is infinite.

In the sections that follow, we will show how power series arise and how they may be
used to help us understand the behavior of functions.

Examples and Explorations

EXAMPLE 1 Finding the interval of convergence and radius of convergence for a power series
in x

Find the interval of convergence and radius of convergence for the following power series
in x:

∞∑
k=0

1
1 + 2 k

x k = 1
2

+ 1
3

x + 1
5

x 2 + 1
9

x 3 + · · ·

If the radius of convergence is finite, analyze the behavior of the series at the endpoints of
the interval of convergence.
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SOLUTION

Although occasionally it will be more convenient to use the root test, throughout this chap-
ter our primary tool for finding the interval of convergence for a power series will be the
ratio test for absolute convergence.

For this series we let bk = 1
1+2k

x k. Therefore, b k+1 = 1
1+2k+1

x k+1, and thus

lim
k→∞

∣∣∣∣b k + 1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
x k + 1/(1 + 2k + 1)

x k/(1 + 2k)

∣∣∣∣∣ ← the ratio test for absolute convergence

= lim
k→∞

|x| 1 + 2k

1 + 2k + 1
← algebraic simplification of the quotient

= lim
k→∞

|x| (1/2k) + 1
(1/2k) + 2

← division by 2 k in the numerator
and denominator

= 1
2

|x| . ← evaluation of the limit

Before we proceed, notice that in the second line of the calculation we dropped the absolute

value around the quotient 1 + 2k

1+2k+1
because it would be redundant, since each term in the

quotient is positive. However, the absolute value is necessary around the variable x, since
that variable may take on both positive and negative values.

Now, from the ratio test for absolute convergence we know that the series will converge
absolutely if the limit is less than 1. Therefore we set up the inequality

1
2

|x| < 1,

or equivalently, |x| < 2. This inequality tells us that the radius of convergence for our series
is 2 and that the series converges absolutely when |x| < 2 or equivalently when −2 < x < 2.
Since the latter interval is finite, we will have to analyze the series at both endpoints of the
interval, which we’ll do in a moment. Before we do, we note that our results conform to
part (b) of Theorem 8.3.

Now we consider the endpoints of the interval of convergence. We’ll analyze the
behavior of the power series when x = 2 and leave the analysis for x = −2 for Exercise 8.
We evaluate our series when x = 2 and obtain

∞∑
k=0

1
1 + 2k

2k =
∞∑

k=0

2k

1 + 2k
.

Consider the limit of the terms of this series as k → ∞: lim
k→∞

2k

1 + 2k
= 1. Thus, by the diver-

gence test, the power series diverges when x = 2. In Exercise 8 you will show that the
power series also diverges when x = −2. Therefore the interval of convergence for this
power series is (−2, 2).

Before we proceed to another example, we summarize a few of the main ideas we’ve
used in this example. Our main tool for finding the radius of convergence and interval
of convergence for any power series is the ratio test for absolute convergence. When you
simplify bk+1

bk
, remember to leave the variable x in an absolute value even if the other factors

of the quotient are positive. When we are presented with a power series in x, if the radius
of convergence ρ is positive and finite:

� The series converges absolutely for every value in the interval (−ρ, ρ).
� You will need to analyze the behavior of the power series individually at both ρ

and −ρ.
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� The series may converge at one or both of the endpoints of the interval of con-
vergence, but if it converges absolutely at either endpoint, then as you will see in
Exercise 62, it will converge absolutely at the other endpoint.

� The ratio test for absolute convergence will always fail to uncover the convergence
or divergence at the endpoints of a finite interval of convergence. We ask you to
explain this phenomenon in Exercise 17. �

EXAMPLE 2 More examples of finding the interval of convergence and radius of convergence
for power series in x

Find the interval of convergence and radius of convergence for the following power series
in x:

(a)
∞∑

k=0

k! x k (b)
∞∑

k=1

(
2
k

)k
x 3k.

If the radius of convergence is finite, analyze the behavior of the series at the endpoints of
the interval of convergence.

SOLUTION

(a) For the first series given, we again use the ratio test for absolute convergence. We let
bk = k! x k. Thus, b k+1 = (k + 1)! x k+1, and we have

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(k + 1)! x k+1

k! x k

∣∣∣∣∣ = lim
k→∞

|x|(k + 1).

Now, if x = 0, the preceding limit is zero, so the series converges absolutely at that
point. However, if x �= 0, the limit will be infinite. Therefore, by the ratio test for
absolute convergence, we see that this series converges only when x = 0. The interval
of convergence is trivial and the radius of convergence is 0.

(b) For variety we use the modified root test on the second series given. This is a reasonable
choice for that series because the factors of the terms of the series involve kth powers.

We let bk =
(

2
k

)k
x 3k and evaluate

lim
k→∞

k
√

|bk| = lim
k→∞

k
√

|(2/k)kx 3k| = lim
k→∞

|x|3 2
k
.

Note that we evaluate the preceding limit as k → ∞. No matter what value the variable
x takes on, this limit is zero. That is, lim

k→∞
|x|3 2

k
= 0. Therefore, by the modified root test,

the series converges absolutely for every value of x. Thus, the interval of convergence
is R and the radius of convergence is infinite. �

EXAMPLE 3 Finding the interval of convergence and radius of convergence for power series in
x − x0

Find the interval of convergence and radius of convergence for the following power series:

(a)
∞∑

k=1

(−1) k+1 1
k

(x + 2)k (b)
∞∑

k=0

1
(2k + 1)!

(x − π )k

If the radius of convergence is finite, analyze the behavior of the series at the endpoints of
the interval of convergence.
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SOLUTION

(a) For a power series in x − x 0, our primary tool for analyzing the interval of convergence
is, again, the ratio test for absolute convergence. For the first series given, we let bk =
(−1)k+1 1

k
(x + 2)k. Here, b k+1 = (−1)k+1 1

k + 2
(x + 2)k+1 and we evaluate

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(−1)k+2(x + 2)k+1/(k + 1)

(−1)k+1(x + 2)k/k

∣∣∣∣∣ = lim
k→∞

|x + 2| k
k + 1

.

Since we are evaluating this limit as k → ∞, its value is |x + 2|. By the ratio test
for absolute convergence we know that the series will converge absolutely when
|x + 2| < 1. We now know that the radius of convergence is 1, and the interval of con-
vergence contains (−3, −1). Since this a finite interval, we also analyze the behavior
of the series at the endpoints of the interval. When x = −1,

∞∑
k=1

(−1)k+1 1
k

(−1 + 2)k =
∞∑

k=1

(−1)k+1 1
k
.

This is the alternating harmonic series that we already know converges conditionally.
When x = −3,

∞∑
k=1

(−1)k+1 1
k

(−3 + 2)k =
∞∑

k=1

(−1)k+1 1
k

(−1)k = −
∞∑

k=1

1
k
.

This is just a constant multiple of the harmonic series, which diverges. Thus, our
interval of convergence is (−3, −1].

(b) For our other given series, we let bk = 1
(2k+1)!

(x−π )k. Here, bk+1 = 1
(2(k+)+1)!

(x−π )k+1

and we evaluate

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(x − π )k+1/(2(k + 1) + 1)!

(x − π )k/(2k + 1)!

∣∣∣∣∣ = lim
k→∞

|x − π | (2k + 1)!
(2k + 3)!

= lim
k→∞

|x − π | 1
(2k + 2)(2k + 3)

.

Make sure you understand the simplification of the quotients in this equation. Since
we are evaluating the limit as k → ∞, the limit is zero for any value of x. Thus, this
power series converges for every real number, and the radius of convergence is infinite.

�

EXAMPLE 4 Analyzing a power series given in another form

Show that if m and b are real numbers and m �= 0, then a series of the form

∞∑
k=0

ak(mx + b)k

is a power series in x + b
m

. Then find the interval of convergence and radius of convergence
for the series

∞∑
k=0

(−1)k k
3k + 1

(2x − 3)k.

If the radius of convergence is finite, analyze the behavior of the series at the endpoints of
the interval of convergence.
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SOLUTION

The series
∑∞

k=0 ak(mx + b)k is not in the form of a power series in x − x 0, but it can be put

into that form. Since (mx + b)k = m k
(

x + b
m

)k
, we have

∞∑
k=0

ak(mx + b)k =
∞∑

k=0

ak m k
(

x + b
m

)k
.

Thus, the series is a power series in x + b
m

.

We do not need to put the series into this alternative form to find the radius of conver-
gence or interval of convergence, however. We may use the ratio test for absolute conver-
gence on the original form of the series. For the series

∑∞
k=0(−1)k k

3k + 1
(2x − 3)k, we have

bk = (−1)k k
3k + 1

(2x − 3)k and b k+1 = (−1)k+1 k+1
3(k+1)+1

(2x − 3)k+1. We evaluate

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(−1)k+1(k + 1)(2x − 3)k+1/(3k + 4)

(−1)k k(2x − 3)k/(3k + 1)

∣∣∣∣∣ = lim
k→∞

|2x − 3| (k + 1)(3k + 1)
k(3k + 4)

.

Here the limit is |2x − 3|. By the ratio test for absolute convergence, we know that the se-

ries will converge absolutely when |2x − 3| < 1 or, equivalently, when
∣∣∣x − 3

2

∣∣∣ <
1
2

. Thus,

the radius of convergence is 1
2

, and the interval of convergence contains (1, 2). Since this

is a finite interval, we also analyze the behavior of the series at the endpoints. When
x = 1,

∞∑
k=0

(−1)k k
3k + 1

(2 · 1 − 3)k =
∞∑

k=0

k
3k + 1

.

Since lim
k→∞

k
3k + 1

= 1
3

, the power series diverges at x = 1. In Exercise 9 we ask you to show

that the power series also diverges when x = 2. Therefore, the interval of convergence for
the series is (1, 2). �

TEST YOUR? UNDERSTANDING
� What is a power series? What is the difference between a series of constants and a

power series?

� What is the difference between a power series in x and a power series in x − x 0?

� What is the difference between a polynomial and a power series?

� What is meant by the interval of convergence of a power series? What is meant by the
radius of convergence of a power series?

� How are the interval of convergence and radius of convergence of a series determined?
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EXERCISES 8.1

Thinking Back

� Translating the graph of a function: What is the rela-
tionship between the graph of a function f (x) and the
graph of f (x − x 0) when x 0 is a positive constant?
When x 0 is a negative constant?

� Odd and Even Functions: What is the definition of an
odd function? An even function?

� Fill in the blanks: The graph of every odd function is
symmetric about . The graph of every even
function is symmetric about .

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
∑∞

k=1
1
k

x−k is a power series in x.

(b) True or False:
∑∞

k=0
1
k!

(x − 2)k is a power series in
x − 2.

(c) True or False:
∑∞

k=0
(−1)k

(2k+1)!
x 2k+1 is a power series

in x.
(d) True or False: The series

∑∞
k=0 k!(x + 3)k converges

when x = 3.
(e) True or False: If a power series in x converges con-

ditionally when x = 3, it converges absolutely at
x = −2.

(f) True or False: If a power series in x diverges when
x = 3, it diverges at x = −4.

(g) True or False: If a power series in x − 4 converges
absolutely when x = 10, it converges absolutely
at x = −1.

(h) True or False: If a power series in x + 5 converges con-
ditionally when x = 3, it converges conditionally at
x = −13.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A power series in x with a finite radius of conver-
gence.

(b) A power series in x − 4 with an infinite radius of con-
vergence.

(c) A power series in x+3 that converges only at x = −3.

3. What is a power series in x?
4. What is a power series in x − x 0?

5. Explain why
∑∞

k=0(x − k)k is not a power series.

6. What is meant by the interval of convergence for a power
series in x? How is the interval of convergence deter-
mined? If a power series in x has a nontrivial interval of
convergence, what types of intervals are possible?

7. What is meant by the interval of convergence for a power
series in x−x 0? How is the interval of convergence deter-
mined? If a power series in x− x 0 has a nontrivial interval
of convergence, what types of intervals are possible?

8. Show that
∑∞

k=0
1

1+2k
x k, the power series in x from

Example 1, diverges when x = −2.

9. Complete Example 4 by showing that the power series∑∞
k=0(−1)k k

3k + 1
(2x − 3)k diverges when x = 2.

10. Show that the power series
∑∞

k=0
(−1)k

2k+1
x 2k+1 converges

conditionally when x = 1 and when x = −1. What does
this behavior tell you about the interval of convergence
for the series?

11. Show that the power series
∑∞

k=1
(−1)k

k
x k converges con-

ditionally when x = 1 and diverges when x = −1. What
does this behavior tell you about the interval of conver-
gence for the series?

12. Show that the power series
∑∞

k=1
(−1)k

k2
x k converges ab-

solutely when x = 1 and when x = −1. What does this
behavior tell you about the interval of convergence for the
series?

13. What is x 0 if the interval of convergence for the power
series

∑∞
k=0 ak (x − x 0)k is (2, 10]?

14. What is x 0 if ( p, q) is the interval of convergence for the
power series

∑∞
k=0 ak (x − x 0)k?

15. What is x 0 if the power series
∑∞

k=0 ak (x − x 0)k converges
conditionally at both x = −4 and x = 8.

16. Is it possible for a power series to have (0, ∞) as its inter-
val of convergence? Explain your answer.

17. Let
∑∞

k=0 ak x k be a power series in x with a positive
and finite radius of convergence ρ. Explain why the
ratio test for absolute convergence will fail to determine
the convergence of this power series when x = ρ or
when x = −ρ.

18. Let
∑∞

k=0 ak x k be a power series in x with radius of con-
vergence ρ. What is the radius of convergence of the
power series

∑∞
k=0 ak (x−x 0)k? Make sure you justify your

answer.

19. Let ak �= 0 for each value of k, and let
∑∞

k=0 ak x k be a
power series in x with a positive and finite radius of con-
vergence ρ. What is the radius of convergence of the

power series
∑∞

k=0
1
ak

x k?

20. Let
∑∞

k=0 ak x k be a power series in x with interval of con-
vergence [−2, 2). What is the radius of convergence of the
power series

∑∞
k=0 ak (x − 3)k? Justify your answer.
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Skills

Find the interval of convergence for each power series in
Exercises 21–48. If the interval of convergence is finite, be
sure to analyze the convergence at the endpoints.

21.
∞∑

k=0

1
k!

x k 22.
∞∑

k=0

(−2)k

k!
x k

23.
∞∑

k=0

(−1)k

(2k)!
x 2k 24.

∞∑
k=0

(−1)k

(2k + 1)!
x 2k+1

25.
∞∑

k=1

(−1)k

k + 1
x k 26.

∞∑
k=0

(−1)k

2k + 1
x 2k+1

27.
∞∑

k=1

1
k

(x + 2)k 28.
∞∑

k=1

1
k 2

(x + 3)k

29.
∞∑

k=1

2k + 1
k 3

(x − π )k 30.
∞∑

k=1

(−1)k 1
k k

(x − 1)k

31.
∞∑

k=1

(−1)k

√
k

k 3

(
x − 3

2

)k

32.
∞∑

k=1

2 k + 1√
k

x k

33.
∞∑

k=0

(−1)k k 2

3 k

(
x − 1

2

)k

34.
∞∑

k=0

1
3 k + 5 k

x k

35.
∞∑

k=0

(k!)2

(2k)!
(x + 2)k 36.

∞∑
k=0

1
3 k + 5 k

(x + 3)k

37.
∞∑

k=0

k!x k 38.
∞∑

k=1

5
k

x k

39.
∞∑

k=1

ln k
k 2

(
x + 5

3

)k

40.
∞∑

k=1

√
k + 1
k 2

(
x + 1

2

)k

41.
∞∑

k=0

k + 1
3 k

(2x − 5)k 42.
∞∑

k=0

k 2

4 k + 3
(3x + 7)k

43.
∞∑

k=0

√
k

k!
(4x + 7)k 44.

∞∑
k=0

(−1)k

(2k + 1)!
(3x + 7)2k+1

45.
∞∑

k=1

1
2 · 4 · 6 · · · (2k)

x k 46.
∞∑

k=0

1
1 · 3 · 5 · · · (2k + 1)

x k

47.
∞∑

k=1

1
k k

(x − 3)k

48.
∞∑

k=0

k 3

1 · 3 · 5 · · · (2k + 1)
(x + 1)k

In Exercises 49–52 find the radius of convergence for the given
series.

49.
∞∑

k=0

k!
(k + m)!

x k, where m ∈ Z
+

50.
∞∑

k=0

k!
((k + m)!)2

x k, where m ∈ Z
+

51.
∞∑

k=0

k!
(k + m)!(k + n)!

x k, where m ∈ Z
+ and n ∈ Z

+

52.
∞∑

k=0

(k!)m

(mk)!
x k, where m ∈ Z

+

In Exercises 53–58 explain why the series is not a power series
in x − x 0. Then use the ratio test for absolute convergence to
find the values of x for which the given series converge.

53.
∞∑

k=0

(
1

x + 1

)k

54.
∞∑

k=0

(−1)k 1
k!

x−k

55.
∞∑

k=0

(sin x)k

k!
56.

∞∑
k=1

(−1)k

k

(
x

x − 1

)k

57.
∞∑

k=1

1
k 3

(
x + 2
x − 3

)k

58.
∞∑

k=1

(−1)kk!
k 2

(
3x

x − 2

)k

Applications
59. Leila, in her capacity as a wildlife biologist, is faced with

concerns over the viability of the beaver population in
Idaho in the presence of the wolves that have moved to
the area. She has read papers that show that if the beaver
population in an area stays above a certain solution b(w)
of a differential equation, where w represents the num-
ber of wolves in that area, then the population is viable.
However, if the number of beavers falls below that func-
tion, then the population will collapse. Leila’s solution of

the differential equation for the function is

b(w) = 39w 2/3
∞∑

n=0

w n

19200 nn!
.

(a) Where does this series converge?

(b) Plot an approximation to b on the interval [0, 500].
How do you choose how many terms to use?
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60. Leila is managing elk hunting for one herd in a region
of Idaho. She is responsible for picking a hunting rate h,
where h represents the fraction of the herd remaining
after hunting season is over. Each year, the herd size
changes by a number �k independently of the hunting
rate. If P is the initial population of elk, then the number
remaining after the first hunting season is Ph, the num-
ber remaining after the second is (Ph+�1)h, the number
remaining after the third is ((Ph + �1)h + �2)h, and so

on. The number after n seasons is

Phn+1 +
n∑

k=1

�k hn−k.

Leila needs to prevent the size of the herd from going to
zero or to infinity as n → ∞. Given that 0 < h ≤ 1, what
conditions on �k are required?

Proofs

61. Prove part (b) of Theorem 8.2. That is, let
∑∞

k=0 ak x k be
a power series in x, and show that if the series diverges
at c, then the series diverges for all real numbers d such
that |c| < |d|. (Hint: Use contradiction and part (a) of the
theorem.)

62. Let
∑∞

k=0 ak x k be a power series in x with a finite radius
of convergence ρ. Prove that if the series converges abso-
lutely at either ±ρ, then the series converges absolutely
at the other value as well.

63. Let
∑∞

k=0 ak(x − x 0)k be a power series in x − x 0 with a
finite radius of convergence ρ. Prove that if the series
converges absolutely at x 0 ± ρ, then the series converges
absolutely at the other value as well.

64. Prove that if (−ρ, ρ] is the interval of convergence for the
series

∑∞
k=0 ak x k, then the series converges conditionally

at ρ. (Hint: Consider Exercise 62).

65. Prove that if (x 0 −ρ, x 0 +ρ] is the interval of convergence
for the series

∑∞
k=0 ak (x − x 0)k, then the series converges

conditionally at x 0 + ρ.
66. Prove that if the power series

∑∞
k=0 ak x k has a posi-

tive and finite radius of convergence ρ, then the series∑∞
k=0 ak x 2k has radius of convergence

√
ρ.

67. Prove that if the power series
∑∞

k=0 ak x k and
∑∞

k=0 ak x 2k

have the same radius of convergence ρ, then ρ is 0, 1, or
infinite. (Hint: Use Exercise 66).

68. Prove that if the power series
∑∞

k=0 ak x k has a positive
and finite radius of convergence ρ, and if m is a positive
integer greater than 1, then the series

∑∞
k=0 ak x mk has

radius of convergence m
√

ρ.

69. Let b be a nonzero constant. Prove that the radius of con-

vergence of the power series
∑∞

k=0 b kx k is
1
|b| .

70. Let
∑∞

k=0 ak x k be a power series with a positive and
finite radius of convergence ρ, and let c �= 0. Prove that
the series

∑∞
k=0 ak (c x)k has radius of convergence

ρ

|c| .

71. A certain power series
∑∞

k=0 ak x k has the properties that
a0 and a1 are nonzero and a k+2 = ak for every k > 0.

(a) Prove that the radius of convergence ρ for the series
is finite, and find the value of ρ.

(b) Prove that the series diverges at the endpoints of the
interval of convergence.

(c) What is the sum of the series for x ∈ (−ρ, ρ)? Give
your answer in terms of x, a0, and a1.

72. Recall that a rational function is the quotient of two poly-
nomials. Prove that if ak is a rational function of k, then
the power series in x

∑∞
k=0 ak x k has radius of convergence

ρ = 1.

Thinking Forward

� Constructing a power series of the form
∑∞

k=0
f (k)(0)

k!
x k:

Using f (x) = sin x, construct the power series
∑∞

k=0
f (k)(0)

k!
x k.

� Graphing sin x and a polynomial approximation: Graph
the function sin x, together with the polynomial
formed from the first three nonzero terms you found
in the previous problem, on the interval [−π , π ]. What
do you observe about the graphs of the two functions?
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8.2 MACLAURIN SERIES AND TAYLOR SERIES

� Maclaurin polynomials and Taylor polynomials

� Taylor series

� Maclaurin series

Maclaurin Polynomials and Taylor Polynomials

We know that when a function f is differentiable at a point x 0, the tangent line to the graph
of f at the point (x 0, f (x 0)) and with equation y = f (x 0) + f ′(x 0)(x − x 0) is the best linear
approximation to the graph “close” to the point of tangency, as depicted in the figure that
follows. Since this equation is that of a first-degree polynomial, we use the notation P1(x)
to denote the tangent function. That is, P1(x) = f (x 0) + f ′(x 0)(x − x 0).

y

x
x0

f (x0)

f(x)

P1(x)

The tangent line has two properties that make it a good approximation for the function
close to the point of tangency: It has the same value as the function at x = x 0, and it has
the same derivative as the function at x = x 0. That is, P1(x 0) = f (x 0) and P ′

1(x 0) = f ′(x 0).

For a function f with an nth-order derivative at the point x 0, we may similarly approx-
imate the function with an nth-degree polynomial of the form

Pn(x) = a0 + a1(x − x 0) + a2(x − x 0)2 + · · · + ak (x − x 0)k + · · · + an(x − x 0)n

if we insist that Pn(x) and f (x) share the following n + 1 properties: Pn and f have the same
value at x 0, Pn

′ and f ′ have the same value at x 0, Pn
′′ and f ′′ have the same value at x 0, . . .,

and finally P(n)
n and f (n) have the same value at x 0. To construct such a polynomial, we

must determine the constants a0, a1, a2, . . . , an so that the polynomial Pn(x) shares the
necessary properties with the function f (x).

Now consider the kth derivative of Pn(x). Since the kth derivative of a polynomial of
degree less than k is 0, the first nonzero term of P(k)

n (x) is ak k!, and we have

P(k)
n (x) = ak k! + a k+1((k + 1)k(k − 1) · · · 2)(x − x 0) + a k+2((k + 2)(k + 1)k · · · 3)(x − x 0)2

+ · · · + an(n(n − 1)(n − 2) · · · (n − k + 1))(x − x 0)n−k.

Now, if we evaluate this equation when x = x 0, we obtain P(k)
n (x 0) = ak k!. Since we wish

to have P(k)
n (x 0) = f (k)(x 0), we must have ak = f (k)(x0)

k!
. This holds for each integer 0 ≤ k ≤ n,

where we interpret f (0) to be the function f itself. Therefore, the nth-degree polynomial we
hope to use to approximate f at x 0 is

Pn(x) = f (x 0) + f ′(x 0)(x − x 0) + f ′′(x 0)
2!

(x − x 0)2 + · · · + f (n)(x 0)
n!

(x − x 0)n

=
n∑

k=0

f (k)(x 0)
k!

(x − x 0)k.
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This important function is the basis for the following definition:

DEFINITION 8.6 Taylor Polynomials and Maclaurin Polynomials

Let f be a function with an nth-order derivative at the point x 0. We define the nth Taylor
polynomial for f at x 0 to be the function

Pn(x) =
n∑

k=0

f (k)(x 0)
k!

(x − x 0)k.

If x 0 = 0, we also call this the nth Maclaurin polynomial for f , which is of the form,

Pn(x) =
n∑

k=0

f (k)(0)
k!

x k.

For example, the function f (x) = ln x has derivatives of all orders at every point in its
domain, so we may find the third Taylor polynomial for ln x at x = 1. We have

f ′(x) = 1
x

, f ′′(x) = − 1
x 2

and f ′′′(x) = 2
x 3

.

To form the third Taylor polynomial P3 at x = 1, we evaluate the function and these three
derivatives at x = 1:

f (1) = 0, f ′(1) = 1
1

= 1, f ′′(1) = − 1
12

= −1 and f ′′′(1) = 2
13

= 2.

Therefore, P3(x) = (x−1)− 1
2

(x−1)2+ 1
3

(x−1)3. Note that we have divided by the appropriate

factorials to obtain the coefficients. We may also easily obtain the first and second Taylor
polynomials for ln x at x = 1 by truncating P3 appropriately. That is, P1(x) = x − 1 is simply

the tangent line to the function when x = 1, and P2(x) = (x − 1) − 1
2

(x − 1)2 is the second-

order Taylor polynomial at x = 1. Following are plots of P1, P2, and P3, along with a plot of
the logarithm function:

y

x
1

�1

1 P1(x) ln x

P2(x)

P3(x)

Note that each of these three polynomials approximates the natural logarithm function
close to x = 1 and that the quality of the approximations improves as the degree of the
Taylor polynomial increases.

Taylor Series and Maclaurin Series

Mathematicians love to go to extremes. Notice that our definitions of the Taylor polynomial
at x = x 0 and the Maclaurin polynomial may be easily generalized to the following:
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DEFINITION 8.7 Taylor Series and Maclaurin Series

Let f be a function with derivatives of all orders at the point x 0. We define the Taylor
series for f at x 0 to be the following power series in x − x 0:

∞∑
k=0

f (k)(x 0)
k!

(x − x 0)k.

If x 0 = 0, we also call this the Maclaurin series for f , which is of the form,

∞∑
k=0

f (k)(0)
k!

x k.

This is a wonderful definition, but what relationship does a Taylor series at x 0 have to
the original function f that is used to generate the series? Before answering that question,
we will construct the Maclaurin series for the sine function:

n f (n)(x) f (n)(0)
f (n)(0)

n!

0 sin x 0 0

1 cos x 1 1

2 − sin x 0 0

3 − cos x −1 − 1
3!

...
...

...
...

2k (−1)k sin x 0 0

2k + 1 (−1)k cos x (−1)k (−1)k 1
(2k + 1)!

...
...

...
...

The Maclaurin series for the sine function is

0 + x + 0x 2 − 1
3!

x 3 + 0x 4 + 1
5!

x 5 + 0x 6 − · · · ,

or
∑∞

k=0
(−1)k

(2k + 1)!
x 2k+1. In the following figure, we plot the sine function and the Maclaurin

series for the sine, along with the 1st, 3rd, 5th and 17th Maclaurin polynomials for the sine
function:

x

y
P1(x)

P3(x)

P5(x) P17(x)

sin x

2ππ�π�2π

�1

1
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Note that the sine function and the 17th Maclaurin polynomial overlap almost perfectly
on the interval (−2π , 2π ) and the sine function and its Maclaurin series are identical for
every value of x, a fact that we will prove in Section 8.3.

We would like to repeat that a Maclaurin polynomial is just a Taylor polynomial when
x 0 = 0. Taylor series and Maclaurin series bear the same relationship. Although the dif-
ference between the concepts is small, these are the traditional ways the names are
used.

Examples and Explorations

EXAMPLE 1 Finding Maclaurin polynomials for ex

Graph the exponential function e x along with its first, second, and third Maclaurin poly-
nomials.

SOLUTION

For any function f with a derivative of order 3 at x = 0, the first three Maclaurin polynomials
are P1(x) = f (0) + f ′(0) x, P2(x) = f (0) + f ′(0) x + f ′′(0)

2!
x 2, and

P3(x) = f (0) + f ′(0) x + f ′′(0)
2!

x 2 + f ′′′(0)
3!

x 3.

Since every derivative of f (x) = e x is e x, we have f (k)(0) = 1 for every nonnegative integer
k. Therefore the first, second, and third Maclaurin polynomials for e x are

P1(x) = 1 + x, P2(x) = 1 + x + 1
2

x 2 and P3(x) = 1 + x + 1
2

x 2 + 1
6

x 3.

Following are the graphs:

P3(x)
ex

P2(x)

P1(x)

y

�1 1

1

2

x
�

EXAMPLE 2 Finding the Maclaurin series for ex

Find the Maclaurin series for the exponential function e x, and find the interval of conver-
gence for the series.

SOLUTION

In order to have a Maclaurin series, a function f must have a derivative of every order at

x = 0. When this is the case, the Maclaurin series for f is given by
∑∞

k=0
f (k)(0)

k!
x k. We now
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build upon the work we started in Example 1. As we mentioned, when f (x) = e x, f (k)(0) = 1

for every nonnegative integer k. Thus, the Maclaurin series for e x is
∑∞

k=0
1
k!

x k.

To find the interval of convergence of the series, we use the ratio test for absolute con-
vergence, with bk = 1

k!
x k and b k+1 = 1

(k+1)!
x k+1 :

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
x k+1/(k + 1)!

x k/k!

∣∣∣∣∣ ← the ratio test for absolute convergence

= lim
k→∞

|x| k!
(k + 1)!

← algebraic simplification of the quotient

= lim
k→∞

|x| 1
k + 1

← reduction of the factorials

= 0. ← evaluation of the limit

Since the limit is zero for every value of x, the series has an infinite radius of convergence
and the interval of convergence is R. �

EXAMPLE 3 Finding Taylor series for ln x at x = 2

Find the Taylor series for ln x at x = 2 and the interval of convergence for the series. Also,
graph the Taylor polynomials of degrees 1, 2, and 3 for ln x at x = 2.

SOLUTION

Since f (x) = ln x has derivatives of every order at every point in its domain, a Taylor series

may be constructed for every x > 0. At x = 2 the Taylor series is given by
∑∞

k=0
f (k)(2)

k!
(x−2)k.

To complete the series, we need to find the general form of the kth derivative of ln x at
x = 2. Toward that end, we construct the following table:

k f (k)(x) f (k)(2)
f (k)(2)

k!

0 ln x ln 2 ln 2

1
1
x

1
2

1
2

2 − 1
x 2

− 1
22

− 1
2 · 22

3
2
x 3

2
23

2
3!23

4 − 3!
x 4

− 3!
24

− 3!
4!24

...
...

...
...

k (−1)k−1 (k − 1)!
x k

(−1)k−1 (k − 1)!
2 k

(−1)k−1 (k − 1)!
k!2 k

= (−1)k−1 1
k2 k

(To be thorough, we should use the principle of mathematical induction to prove that

d k

dx k
(ln x) = (−1)k−1 (k − 1)!

x k
.
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We leave this step for Exercise 69.) Using the information in the table, we see that the Taylor
series for ln x at x = 2 is

∞∑
k=0

f (k)(2)
k!

(x − 2)k = ln 2 +
∞∑

k=1

(−1)k−1(k − 1)!/2 k

k!
(x − 2)k = ln 2 +

∞∑
k=1

(−1)k−1

k2 k
(x − 2)k.

Note that the “zeroth” derivative does not fall into the same pattern as every other deriva-
tive. Therefore, we split that term, ln 2, off from the summation of the rest of the terms.

To find the interval of convergence for this series, we let

bk = (−1)k−1

k2 k
(x − 2)k and b k+1 = (−1)k

(k + 1)2 k+1
(x − 2)k+1

and evaluate

lim
k→∞

∣∣∣∣b k+1

bk

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(−1)k(x − 2)k+1/((k + 1)2 k+1)

(−1)k−1(x − 2)k/(k2 k)

∣∣∣∣∣ ← ratio test for absolute convergence

= lim
k→∞

|x − 2| k2 k

(k + 1)2 k+1
← algebraic simplification of

the quotient

= lim
k→∞

|x − 2| k
2(k + 1)

← reduction

= 1
2
|x − 2|. ← evaluation of the limit

By the ratio test for absolute convergence, the series will converge absolutely when
1
2
|x − 2| < 1 or, equivalently, when |x − 2| < 2. The radius of convergence is 2, and

the series converges absolutely for 0 < x < 4. In Exercise 3 you will show that the series
diverges when x = 0 and converges conditionally when x = 4. Thus, the interval of con-
vergence for this series is (0, 4].

Finally, in the following figure, we graph the natural logarithm function along with

the Taylor polynomials P1(x) = ln 2 + 1
2

(x − 2), P2(x) = ln 2 + 1
2

(x − 2) − 1
8

(x − 2)2, and

P3(x) = ln 2 + 1
2

(x − 2) − 1
8

(x − 2)2 + 1
24

(x − 2)3:

P3(x)

P2(x)

P1(x)

ln x

y

x
1 2 3

1

�

EXAMPLE 4 Constructing binomial series

For a nonzero constant p, the Maclaurin series for (1 + x)p is called the binomial series.

Show that the binomial series is given by
∑∞

k=0

(
p
k

)
x k, where

(
p
k

)
=

{p( p − 1)( p − 2) · · · ( p − k + 1)
k!

, if k > 0

1, if k = 0.
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SOLUTION

Let f (x) = (1 + x)p. We begin by constructing the following table:

k f (k)(x) f (k)(0)

0 (1 + x)p 1

1 p(1 + x)p−1 p

2 p( p − 1)(1 + x)p−2 p( p − 1)

3 p( p − 1)( p − 2)(1 + x)p−3 p( p − 1)( p − 2)
...

...
...

k p( p − 1)( p − 2) · · · ( p − k + 1)(1 + x)p−k p( p − 1)( p − 2) · · · ( p − k + 1)

Using the information in this table, we see that the Maclaurin series for (1 + x)p is

1 + px + p( p − 1)
2!

x 2 + p( p − 1)( p − 2)
3!

x 2 + · · · + p( p − 1)( p − 2) · · · ( p − k + 1)
k!

x k + · · · .

We define the binomial coefficient
(

p
k

)
by

(
p
k

)
=

{p( p − 1)( p − 2) · · · ( p − k + 1)
k!

, if k > 0

1, if k = 0.

The binomial coefficients
(

p
k

)
just defined are generalizations of the binomial coefficients

you may have previously studied, for the case where p is a nonnegative integer and p ≥ k.
For example, if p = 3, then

(
3
0

)
= 1,

(
3
1

)
= 3

1
= 3,

(
3
2

)
= 3 · 2

2!
= 3,

(
3
3

)
= 3 · 2 · 1

3!
= 1.

Note that
(

3
k

)
= 0 for all integers k > 3, since the numerator of

(
3
k

)
would contain a factor

of 0. Thus, here we would have the binomial series (1 + x)3 = 1 + 3x + 3x 2 + x 3, as
expected.

In Exercise 58 we ask you to find the interval of convergence for binomial series. �

EXAMPLE 5 Constructing the binomial series for
√

1 + x

Use the result from Example 4 to find the binomial series for f (x) = √
1 + x.

SOLUTION

We have f (x) = (1 + x)1/2. Thus,

√
1 + x =

∞∑
k=0

(
1/2

k

)
x k

= 1 + 1
2

x +
1
2

(
−1

2

)
2!

x 2 +
1
2

(
−1

2

)(
− 3

2

)
3!

x 3 +
1
2

(
−1

2

)(
− 3

2

)(
− 5

2

)
4!

x 4 + · · ·

= 1 + 1
2

x − 1
8

x 2 + 1
16

x 3 − 5
128

x 4 + · · · . �
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TEST YOUR? UNDERSTANDING
� What is a Maclaurin polynomial and what is a Taylor polynomial? What is the difference

between a Maclaurin polynomial and a Taylor polynomial?

� What is the relationship between the tangent line to a function f at x = x 0 and a Taylor
polynomial for f at x = x 0?

� What is a Maclaurin series and what is a Taylor series? What is the difference between
a Maclaurin series and a Taylor series?

� What is the relationship between a Maclaurin polynomial of degree n for a function f
and the Maclaurin series for f ?

� What is the relationship between a Taylor polynomial of degree n for a function f at
x = x 0 and the Taylor series for f at x = x 0?

EXERCISES 8.2

Thinking Back

� Polynomials: What is a polynomial? What is the
domain of every polynomial function?

� Derivatives and linear approximations: If a function f is
differentiable at the point x 0, what is the equation of
the line tangent to the graph of f at x 0? Why is this
line a good approximation for f near x 0?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If a function f is differentiable at 0, then
f has a first-order Maclaurin polynomial.

(b) True or False: If a function f has derivatives of every
order at x = 5, then f has a Taylor series at x = 5.

(c) True or False: The first-order Maclaurin polynomial for
f (x) = |x| is P1(x) = x.

(d) True or False: If a function f has a Taylor polynomial
of order n at x = 3, then f has a Taylor polynomial of
order k at x = 3 for every k < n.

(e) True or False: If a function f has an nth-order Taylor
polynomial Pn(x) at x = π , then f (n)(π ) = Pn(π ).

(f) True or False: If a function f has a Maclaurin series,
then f has derivatives of every order at every point in
its domain.

(g) True or False: If a function f has a Taylor series at a
point x 0, then f has derivatives of every order at x 0.

(h) True or False: If a function f has a Taylor series at a
every point in its domain, then f has a Maclaurin
series.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function with a Maclaurin polynomial of order 3.

(b) A function with domain R without a Maclaurin poly-
nomial.

(c) A function with a Taylor series for every x 0 ∈ R.

3. Show that the series

ln 2 +
∞∑

k=1

(−1)k−1

k2 k
(x − 2)k

from Example 3 diverges when x = 0 and converges con-
ditionally when x = 4.

4. What is a Taylor polynomial for a function f at a point x 0?

5. Let f be a twice-differentiable function at a point x 0.
Using the words value, slope, and concavity, explain why
the second Taylor polynomial P2(x) might be a good
approximation for f close to x 0.

6. Let f be a twice-differentiable function at a point x 0.
Explain why the sum

f (x) + f ′(x)(x − x 0) + f ′′(x)
2

(x − x 0)2

is not the second-order Taylor polynomial for f at x 0.

7. What is a difference between the Maclaurin polynomial
of order n and the Taylor polynomial of order n for a
function f ?

8. What is a difference between a Maclaurin polynomial and
the Maclaurin series for a function f ?

9. What is a difference between a Taylor polynomial and the
Taylor series for a function f at a point x 0?

10. What is the relationship between a Maclaurin series and
a power series in x?

11. If a function f has a Maclaurin series, what are the
possibilities for the interval of convergence for that
series?

12. If a function f has a Taylor series at x 0, what are the pos-
sibilities for the interval of convergence for that series?
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13. Let f (x) = 3x 2 −2x+5. Find the first-, second-, and third-
order Maclaurin polynomials, P1(x), P2(x), and P3(x), for
f . Explain why f (x) = P2(x) = P3(x). Graph f (x), P1(x),
and P2(x).

14. Let f (x) = 4x 3 − 5x 2 − 6x + 7. Find the first- through
fourth-order Maclaurin polynomials, P1(x), P2(x), P3(x),
and P4(x), for f . Explain why f (x) = P3(x) = P4(x). Graph
f (x), P1(x), P2(x), and P3(x).

15. Let f (x) = 3x 2 −2x+5. Find the first-, second-. and third-
order Taylor polynomials, P1(x), P2(x), and P3(x), for f at 1.
Explain why f (x) = P2(x) = P3(x).

16. Let f (x) = 4x 3 − 5x 2 − 6x + 7. Find the first- through
fourth-order Taylor polynomials, P1(x), P2(x), P3(x), and
P4(x), for f at 1. Explain why f (x) = P3(x) = P4(x).

17. Let f (x) = ax 3 + bx 2 + cx + d, where a, b, c, and d are con-
stants. Find the first- through fourth-order Taylor poly-
nomials, P1(x), P2(x), P3(x), and P4(x), for f at x 0. Explain
why f (x) = P3(x) = P4(x).

18. Let f (x) be an nth-degree polynomial function.
(a) Explain why f has a Taylor series for every value of x 0.
(b) Explain why Pm(x), the mth-order Taylor polynomial

for f at x 0, equals f (x) for every integer m ≥ n.

19. Let f (x) = x7/3.
(a) Find P1(x) and P2(x), the Maclaurin polynomials of

orders 1 and 2 for f . Graph f (x) together with P1(x)
and P2(x).

(b) Explain why f does not have a Maclaurin polynomial
of order 3.

20. Use the ideas in Exercise 19 to find a function that has
a Maclaurin polynomial of order 3 but does not have a
Maclaurin polynomial of order 4. Find a function f such
that f has a Maclaurin polynomial of order n but does not
have a Maclaurin polynomial of order n + 1.

Skills

In Exercises 21–30 find the fourth Maclaurin polynomial P4(x)
for the specified function.

21. cos x 22. e x

23. sin x 24. ln(1 + x)

25. cos 2x 26. sin 3x

27.
√

1 − x 28.
1 + x
1 − x

29. x sin x 30. x 2e x

In Exercises 31–40 find the Maclaurin series for the speci-
fied function. Note: These are the same functions as in Ex-
ercises 21–30.

31. cos x 32. e x

33. sin x 34. ln(1 + x)

35. cos 2x 36. sin 3x

37.
√

1 − x 38.
1 + x
1 − x

39. x sin x 40. x 2e x

In Exercises 41–48 find the fourth Taylor polynomial P4(x) for
the specified function and the given value of x 0.

41. cos x,
π

2
42. e x, 1

43. sin x, π 44.
√

x, 1

45. ln x, 3 46. 3
√

x, 1

47. cos 2x,
π

4 48. sin 3x,
π

6
In Exercises 49–56 find the Taylor series for the specified
function and the given value of x 0. Note: These are the same
functions and values as in Exercises 41–48.

49. cos x,
π

2
50. e x, 1

51. sin x, π 52.
√

x, 1

53. ln x, 3 54. 3
√

x, 1

55. cos 2x,
π

4
56. sin 3x,

π

6
Exercises 57–62 concern the binomial series discussed in
Example 4. In Exercises 59–62 use the binomial series to find
the Maclaurin series for the given function.

57. Show that if p is a positive integer, then the binomial
series for f (x) = (1 + x) p is a polynomial.

58. Show that the radius of convergence for the binomial se-
ries is 1 when p is not a positive integer. What is the radius
of convergence when p is a positive integer? (Hint: Con-
sider Exercise 57.)

59. 3
√

1 + x 60.
1

(1 + x)2

61.
1√

1 + x
62. (1 + x)2/3

63. Let f (x) =
{

0, if x = 0

e−1/x 2
, if x �= 0

(a) Use the definition of the derivative at a point to show
that f has derivatives of all orders at x = 0.

(b) Show that f (k)(0) = 0 for every nonnegative
integer k.

(c) What is the Maclaurin series for f ?

(d) Explain why the Maclaurin series does not converge
to f (x).
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Applications
The second-order differential equation

x2y ′′ + xy ′ + (x 2 − p 2) = 0,

where p is a nonnegative integer, arises in many applications
in physics and engineering, including one model for the vibra-
tion of a beaten drum. The solution of the differential equa-
tion is called the Bessel function of order p, denoted by Jp(x).
It may be shown that Jp(x) is given by the following power
series in x:

Jp(x) =
∞∑

k=0

(−1)k

k!(k + p)!22k+p
x 2k+p.

Exercises 64–68 concern these Bessel functions.

64. What is the interval of convergence for J0(x)?

65. Find and graph the first four terms in the sequence of par-
tial sums of J0(x).

66. What is the interval of convergence for J1(x)?

67. Graph the first four terms in the sequence of partial sums
of J1(x).

68. What is the interval of convergence for Jp(x) where p is a
nonnegative integer?

Proofs
69. Use the principle of mathematical induction to prove that

dk

dxk
(ln x) = (−1)k−1 (k − 1)!

xk
, for k ≥ 1.

70. Let f be a function with an nth-order derivative at a point

x 0, and let Pn(x) = ∑n
k=0

f (k)(x0)
k!

(x − x 0)k. Prove that

f (k)(x 0) = P(k)
n (x 0) for every nonnegative integer k ≤ n.

Thinking Forward
� Graphing differences: Let P1(x), P2(x), and P3(x) be the

first three Maclaurin polynomials for the function e x.
Make separate graphs of the functions e x − P1(x),
e x − P2(x), and e x − P3(x) on the interval [−2, 2]. What
do you observe? In particular, for each of these func-
tions, for what values of x is the graph of the function
within 0.1 of the x-axis?

� Graphing more differences: Let P1(x), P2(x), and P3(x) be
the first three Maclaurin polynomials for the function
ln(1+x). (Hint: You may use your answer from Exercise 24
to construct these polynomials.)

Make separate graphs of the functions ln(1 + x)−
P1(x), ln(1 + x) − P2(x), and ln(1 + x) − P3(x) on the
interval (−1, 3). What do you observe? In particular,
for each of these functions, for what values of x is the
graph of the function within 0.1 of the x-axis?

8.3 CONVERGENCE OF POWER SERIES

� The remainder of a power series

� Taylor’s Theorem and Lagrange’s form for the remainder

� Algebraic manipulations of power series

The Remainder

In Section 7.4 we defined the remainder of a convergent series of constants to be the
difference of the sum L of the series and a term sn from the sequence of partial sums.
The remainder measures the error incurred in using sn to approximate L. We now define
the analogous concept for Taylor series and Maclaurin series.

DEFINITION 8.8 The Remainder of a Function

Let f be a function with an nth-order derivative at every point on an open interval con-
taining the point x 0, and let Pn(x) = ∑n

k=0
f (k)(x0)

k!
(x − x 0)k, the nth Taylor polynomial for

f at x 0. We define the nth remainder for f , denoted by R n(x), to be

R n(x) = f (x) − Pn(x).
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The remainder measures the error incurred in using the Taylor polynomial, Pn(x), to
approximate the function f (x). As the notation implies, the remainder is a function of x.
By the definition of the Taylor polynomial at x = x 0, the remainder will always be zero at
x 0 and generally is greater the farther x is from the point x 0. For example, we have seen

that the fifth Maclaurin polynomial for the sine function is P5(x) = x − x3

3!
+ x5

5!
. Therefore,

the fifth remainder for the sine function at x = 0 is R5(x) = sin x −
(

x − x3

3!
+ x5

5!

)
, shown

next:

R5(x) for sin x at x = 0

x

y

1 2 3�1�2�3

�1

�2

1

2

Since the remainder is very close to zero on the interval (−1.5, 1.5), P5(x) is an excellent
approximation for the sine function on that interval.

We wish to understand the behavior of R n(x) as n → ∞. If lim
n→∞ R n(x) = 0 on some

interval I, then the Taylor polynomials become better approximations for the function f
as we include terms of higher degree, and, furthermore, the Taylor series is an alternative
representation for f on the interval I. We will see that a Taylor series may converge to the
function that generated it for every real number, converge to the function on a finite interval
centered around the point x = x 0, or converge only at the point x 0. To see this, we need a
tool to analyze the remainder.

THEOREM 8.9 Taylor’s Theorem

Let f be a function that can be differentiated n+1 times in some open interval I contain-
ing the point x 0, and let R n(x) be the nth remainder for f at x = x 0. The nth remainder
for f is given by

R n(x) =
∫ x

x 0

(x − t)n

n!
f (n+1)(t) dt.

Proof. By the Fundamental Theorem of Calculus, we have
∫ x

x 0

f ′(t) dt = f (x) − f (x 0).

The bulk of our proof of Theorem 8.9 comes from repeatedly applying integration by parts to in-
tegrals derived from this equation. Using integration by parts on the integral, with u = f ′(t) and
dv = dt, we have du = f ′′(t) dt and may let v = t − x. (Our variable here is t. Think of x as a constant
of integration.) We obtain

∫ x

x 0

f ′(t) dt = f ′(t)(t − x)
∣∣ x
x 0

−
∫ x

x 0

(t − x) f ′′(t) dt

= f ′(x 0)(x − x 0) +
∫ x

x 0

(x − t) f ′′(t) dt.
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We apply integration by parts again, this time to the integral we just obtained with u = f ′′(t) and

dv = (x − t) dt. Then du = f ′′′(t) dt and v = − (x − t)2

2
. (Remember that our variable is t.) Thus,

∫ x

x 0

(x − x 0)f ′′(t) dt =
[
−f ′′(t)

(x − t)2

2

] x

x 0

+
∫ x

x 0

(x − t)2

2
f ′′′(t) dt

= f ′′(x 0)
2

(x − x 0)2 +
∫ x

x 0

(x − t)2

2
f ′′′(t) dt.

We now combine the preceding equations to obtain

f (x) = f (x 0) + f ′(x 0)(x − x 0) + f ′′(x 0)
2

(x − x 0)2 +
∫ x

x 0

(x − t)2

2
f ′′′(t) dt.

In Exercise 87 you will use the principle of mathematical induction to prove that

f (x) = f (x 0) + f ′(x 0)(x − x 0) + f ′′(x 0)
2

(x − x 0)2 + · · ·

+ f (n)(x 0)
n!

(x − x 0)n +
∫ x

x 0

(x − t)n

n!
f (n+1)(t) dt

= Pn(x) +
∫ x

x 0

(x − t)n

n!
f (n+1)(t) dt.

If we now compare this with our definition of R n(x), we have our result.

Unfortunately, it is usually difficult to analyze the remainder by using the integral in
Theorem 8.9. Instead, the next theorem gives us a more useful tool for understanding the
remainder.

THEOREM 8.10 Lagrange’s Form for the Remainder

Let f be a function that can be differentiated n + 1 times in some open interval I con-
taining the point x 0, and let R n(x) be the nth remainder for f at x = x 0. For each point
x ∈ I, there is at least one c between x 0 and x such that

R n(x) = f (n+1)(c)
(n + 1)!

(x − x 0)n+1.

Theorem 8.10 follows from Theorem 8.9 and Theorem 4.31 of Section 4.6. We ask you to
prove Theorem 8.10 in Exercise 88.

We now use Theorem 8.10 to prove that the sine function and its Maclaurin series are
identical for every real number; that is,

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x 2k+1.

We let f (x) = sin x. We know that for every n ≥ 0, f (n+1)(x) is one of the four functions
± sin x and ± cos x. For any of these functions,

∣∣ f (n+1)(c)
∣∣ ≤ 1 for every value of x, so, using

Lagrange’s form for the remainder, we have

∣∣R n(x)
∣∣ =

∣∣∣∣∣
f (n+1)(c)
(n + 1)!

x n+1

∣∣∣∣∣ ≤ |x|n+1

(n + 1)!
.
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We now show that lim
n→∞

∣∣R n(x)
∣∣ = 0 for every value of x. Note that we are taking the limit

as n → ∞, so we may regard x as being fixed. Previously we proved that for every value of
x, |x|n

n!
→ 0 as n → ∞. Therefore by the Squeeze Theorem, lim

n→∞
∣∣R n(x)

∣∣ = 0, which implies

that lim
n→∞ R n(x) = 0. Since lim

n→∞ R n(x) = 0 for every value of x, the sine function is equal to

its Maclaurin series.

There are several important Maclaurin series that we will be using regularly. All of these
series are summarized in the following table:

Function Series Interval of Convergence

sin x
∞∑

k=0

(−1)k

(2k + 1)!
x 2k+1

R

cos x
∞∑

k=0

(−1)k

(2k)!
x2k

R

e x
∞∑

k=0

1
k!

x k
R

1
1 − x

∞∑
k=0

x k (−1, 1)

ln(1 + x)
∞∑

k=1

(−1)k+1

k
x k (−1, 1]

tan−1 x
∞∑

k=0

(−1)k

2k + 1
x 2k+1 [−1, 1]

cosh x
∞∑

k=0

1
(2k)!

x2k
R

sinh x
∞∑

k=0

1
(2k + 1)!

x 2k+1
R

We have already proven that the sine function and its Maclaurin series are equal for
every value of x and that the function 1

1 − x
and its Maclaurin series are equal on the interval

(−1, 1). In Exercise 89 you will prove that cosine and its Maclaurin series are equal for
every x. We will prove that e x and its Maclaurin series are equal in Example 1. We derive
the Maclaurin series for the hyperbolic cosine in Example 2 and leave the derivation of the
hyperbolic sine function to Exercise 91. The convergence of the remaining two series in this
table is proven in Section 8.4.

Basic Manipulations of Maclaurin Series

In this subsection we will discuss three methods for obtaining a new Taylor series from
known series relatively quickly: substitution, multiplication by a monomial, and the mul-
tiplication of two series. Given a function f that has derivatives of all orders at a point x 0,
Definition 8.7 provides the pattern for constructing the Taylor series for the function. To
form the series, we compute f (k)(x) for every k and then evaluate f (k)(x 0). Unfortunately,
finding higher order derivatives even for a relatively simple function can become quite
complicated. For example, think about constructing the Maclaurin series for f (x) = sin(x 2).
Since the sine function and x 2 both have derivatives of all orders everywhere, the com-
position function has derivatives of all orders at x = 0. We need to find a pattern for the
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derivatives of f . When we start taking the derivatives, we find that

f ′(x) = 2x cos(x 2), f ′′(x) = 2 cos(x 2) − 4x 2 sin(x 2), f ′′′(x) = −12x sin(x 2) − 8x 3 cos(x 2), . . .

Certainly, a pattern is developing, but the derivatives become increasingly unwieldy with
increasing order. Fortunately, there is a simpler way to find the Maclaurin series for this
function. We have already shown that sin x = ∑∞

k=0
(−1)k

(2k + 1)!
x 2k + 1 and that this series con-

verges for every real number. To construct the Maclaurin series for sin(x 2), all we have to do
is substitute x 2 for each occurrence of x in the Maclaurin series for the sine. That is, since

sin x =
∞∑

k=0

(−1)k

(2k + 1)!
x 2k+1

the Maclaurin series for sin(x 2) is

sin(x 2) =
∞∑

k=0

(−1)k

(2k + 1)!
(x 2)2k+1 =

∞∑
k=0

(−1)k

(2k + 1)!
x 4k+2.

That was fast! Because the Maclaurin series for the sine converges for every real number,
this new series will also converge for all real numbers.

More generally, given the Maclaurin series for a function f ,
∑∞

k=0
f (k)(0)

k!
x k, and a mono-

mial cx m, where c ∈ R and m ∈ Z
+ we have the Maclaurin series for f (cx m),

∞∑
k=0

f (k)(0)
k!

(cx m)k =
∞∑

k=0

f (k)(0)
k!

c kx mk.

If the Maclaurin series
∑∞

k=0
f (k)(0)

k!
x k converges for every real number, so will the new series∑∞

k=0
f (k)(0)

k!
c kx mk. If the Maclaurin series

∑∞
k=0

f (k)(0)
k!

x k converges for every real number in

the interval defined by |x| < ρ, the new series will converge on the interval defined by the
inequality |cx m| < ρ, that is |x| < m

√
ρ/|c|.

Next, when we have a Maclaurin series for f (x) that converges on an interval I, we may
also quickly find the Maclaurin series for cx mf (x), where c ∈ R and m is a nonnegative
integer. We already know that for a convergent series of constants,

c
∞∑

k=0

ak =
∞∑

k=0

cak.

We may similarly multiply a Maclaurin series by the monomial cx m. That is, when

f (x) = ∑∞
k=0

f (k)(0)
k!

x k converges on some interval I, the Maclaurin series for cx mf (x) is

cx mf (x) = cx m
∞∑

k=0

f (k)(0)
k!

x k =
∞∑

k=0

c
f (k)(0)

k!
x k+m,

with interval of convergence I.

For example, we may immediately find the Maclaurin series for x3

1−x
, since this function

is just x 3 · 1
1 − x

. So

x 3

1 − x
= x 3

∞∑
k=0

x k =
∞∑

k=0

x k+3 =
∞∑

k=3

x k.
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Make sure you understand each of the preceding steps. Multiplication by a nonzero mono-
mial does not change the interval of convergence, so this new Maclaurin series converges

to x3

1−x
on the interval (−1, 1).

Finally, given two functions f and g with convergent Taylor series at x 0, f (x) =∑∞
k=0 ak(x − x 0)k and g(x) = ∑∞

k=0 bk(x − x 0)k, and with intervals of convergence I1 and I2,
respectively, we may form the Taylor series at x 0 for the product function f ·g by multiplying
the two known series. That is,

f (x) g(x) =
∞∑

k=0

ck(x − x 0)k,

where

ck =
k∑

m=0

amb k−m = a0 bk + a1b k−1 + · · · + a k−1b1 + ak b0.

The interval of convergence for the new series is I1 ∩ I2. See Example 7.

Examples and Explorations

EXAMPLE 1 Showing that the exponential function and its Maclaurin series are identical for
every x

Use Lagrange’s form for the remainder to prove that

e x =
∞∑

k=0

1
k!

x k

for every real number.

SOLUTION

Lagrange’s form for the remainder is R n(x) = f (n+1)(c)
(n+1)!

(x − x 0)n+1, where c is between x0 and

x. Here, since f (x) = e x, we have f (n+1)(c) = e c for every n ≥ 0. Furthermore, since x 0 = 0,
we also have e c < e|x|, so

∣∣R n(x)
∣∣ =

∣∣∣∣ e c

(n + 1)!
x n + 1

∣∣∣∣ ≤ e |x| |x|n + 1

(n + 1)!
.

We now take the limit

lim
n→∞

∣∣R n(x)
∣∣ ≤ lim

n→∞ e |x| |x|n + 1

(n + 1)!
= 0.

The limit is zero because the quotient |x|n+1

(n+1)!
→ 0 as n → ∞ and we are taking the limit

with respect to n, not x. This limit implies that lim
n→∞ R n(x) = 0 as well. Thus, the Maclaurin

series for the exponential function converges to e x for every value of x. �

EXAMPLE 2 Deriving the Maclaurin series for the hyperbolic cosine

Show that cosh x = ∑∞
k=0

1
(2k)!

x 2k.
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SOLUTION

We saw in Section 2.6 that cosh x = e x + e−x

2
. Since e x = ∑∞

k=0
1
k!

x k = 1+x+ x2

2!
+ x3

3!
+ x4

4!
+· · · ,

by substitution we have

e−x =
∞∑

k=0

1
k!

(−x)k = 1 − x + x 2

2!
− x 3

3!
+ x 4

4!
− · · · .

When we add the series for e x and e−x, all of the terms with odd exponents sum to
zero. That is,

ex + e−x = 2 + 2x2

2!
+ 2x4

4!
+ 2x6

6!
+ · · · .

Dividing the resulting series by 2, we obtain the series

cosh x =
∞∑

k=0

1
(2k)!

x 2k. �

EXAMPLE 3 Evaluating Maclaurin series at points in their intervals of convergence

Find the sums of the following series:

(a)
∞∑

k=0

(−5)k

k!
(b)

∞∑
k=2

(−1)kπ2k+1

(2k + 1)!

SOLUTION

In Chapter 7 we would only have asked whether these series converge or diverge. Since
both series involve factorials, the most obvious convergence tests to try would be the
ratio test or the ratio test for absolute convergence. However, we do not have to use any
convergence test to show that the series converge.
(a) Note that the first series is the Maclaurin series for e x when x = −5. Since the Maclau-

rin series for e x converges for every value of x, we have
∑∞

k=0
(−5)k

k!
= e−5.

(b) Similarly, the Maclaurin series for sin x also converges for every value of x. The second
series is almost the Maclaurin series for sin x when x = π . Since

0 = sin π =
∞∑

k=0

(−1)kπ2k+1

(2k + 1)!
= π − π3

3!
+

∞∑
k=2

(−1)kπ2k+1

(2k + 1)!
,

we have ∞∑
k=2

(−1)kπ2k+1

(2k + 1)!
= π3

6
− π.

�

EXAMPLE 4 Using the Maclaurin series for f (x) to find a Maclaurin series for f (cx m)

Use the Maclaurin series for f (x) = 1
1 − x

= ∑∞
k=0 x k to find the Maclaurin series for the

function 1
4 + x2

and find the interval of convergence for the series.

SOLUTION

We begin with a small algebraic manipulation. To be able to use the Maclaurin series for
1

1 − x
to find a Maclaurin series for 1

4 + x2
we first rewrite this function in the form

1
4 + x 2

= 1
4

·
(

1

1 + (x/2)2

)
= 1

4
·
(

1
1 − (−(x/2)2)

)
← algebra

= 1
4

f (−(x/2)2) ← substitution
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Thus, if we substitute −
(

x
2

)2
for x in the series for f (x) = 1

1 − x
and multiply by 1

4
, we get

our series for 1
4 + x2

. That is,

1
4 + x 2

= 1
4

∞∑
k=0

(
−

(
x
2

)2 )k = 1
4

∞∑
k=0

(
−1

4

)k
x 2k.

To find the interval of convergence for this new series, we make the same substitution in
the inequality that defines the interval of convergence for our original series. That is, we

replace x by −
(

x
2

)2
in the inequality |x| < 1. We obtain

∣∣∣−(
x
2

)2 ∣∣∣ < 1 or, equivalently, x 2 < 4.

The solution of this inequality is |x| < 2. Therefore, the series for 1
4 + x2

converges to the
function on the interval (−2, 2). �

EXAMPLE 5 Manipulating a known Maclaurin series to find a new Maclaurin series

Find the Maclaurin series and its interval of convergence for f (x) = x2

27 − x3
.

SOLUTION

We know that the function 1
1 − x

has the Maclaurin series
∑∞

k=0 x k with interval of conver-

gence (−1, 1). We rewrite the given function f (x) as

f (x) = x 2

27 − x 3
= x 2

27
·
(

1

1 − (x/3)3

)
.

You should check that the algebra is correct. We may find the Maclaurin series for 1

1−(x/3)3

by substituting
(

x
3

)3
into the series

∑∞
k=0 x k. We obtain

1
1 − (x/3)3

=
∞∑

k=0

( (
x
3

)3 )k =
∞∑

k=0

(
x
3

)3k
.

This series will converge when

∣∣∣( x
3

)3∣∣∣ < 1 or, equivalently, |x| < 3.

To find the Maclaurin series for f (x), we multiply the series we just found by x2

27
. Thus,

x 2

27 − x 3
= x 2

27

∞∑
k=0

(
x
3

)3k =
∞∑

k=0

x 3k+2

33k+3
.

Since multiplication by a monomial does not affect the interval of convergence, this series
converges on the interval (−3, 3). �

EXAMPLE 6 Deriving a Taylor series from a Maclaurin series

Find the Taylor series for f (x) = sin(x − π ) at π .
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SOLUTION

First note that we could use Definition 8.7 to find the desired Taylor series. However, since

we already know that sin t = ∑∞
k=0

(−1)k

(2k+1)!
t 2k + 1, we may obtain the Taylor series by sub-

stituting x − π for t in both versions of the function. We have

sin(x − π ) =
∞∑

k=0

(−1)k

(2k + 1)!
(x − π )2k+1.

Furthermore, because the interval of convergence for the Maclaurin series is R, the interval
of convergence for this Taylor series is also R. �

EXAMPLE 7 Multiplying two Maclaurin series

Find the fourth Maclaurin polynomial, P4(x), for e x ln(1 + x).

SOLUTION

We know the Maclaurin series for both e x and ln(1 + x); namely, these are:

e x =
∞∑

k=0

x k

k!
= 1 + x + x 2

2
+ x 3

6
+ x 4

24
+ · · · and

ln(1 + x) =
∞∑

k=1

(−1)k+1

k
x k = x − x 2

2
+ x 3

3
− x 4

4
+ · · ·

We build the series for e x ln(1 + x) term by term, by multiplying the preceding two series
together. The constant term of the new series will be the product of the constant terms of
the series for e x and ln(1 + x). These constants are 1 and 0, respectively, so the new series
has 0 as its constant term. The coefficient of the x term is

1 · 1 + 1 · 0 = 1.

The coefficient of the x 2 term is

1 ·
(
−1

2

)
+ 1 · 1 + 1

2
· 0 = 1

2
.

Similarly, the coefficient of the x 3 term is

1 · 1
3

+ 1 ·
(
−1

2

)
+ 1

2
· 1 + 1

6
· 0 = 1

3
.

Finally, the coefficient of the x 4 term is

1 ·
(
−1

4

)
+ 1 · 1

3
+ 1

2
·
(
−1

2

)
+ 1

6
· 1 + 1

24
· 0 = 0.
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Since the coefficient of the quartic term is 0, it follows that P4(x) = P3(x), and we have

P4(x) = x + 1
2

x 2 + 1
3

x 3.

We were not asked to find the entire Maclaurin series for e x ln(1+x), nor were we asked
for the interval of convergence for the series. Nonetheless, the interval of convergence for
the product function is the intersection of the intervals of convergence of the two series.
Since the Maclaurin series for e x converges everywhere, the interval of convergence for the
Maclaurin series for e x ln(1 + x) would be the same as the interval of convergence for the
Maclaurin series for ln(1 + x), namely, (−1, 1]. �

EXAMPLE 8 Using a Maclaurin polynomial to approximate the graph of a function

Find a Maclaurin polynomial for sin x whose graph differs by less than 0.001 from the graph
of sin x on the interval [−π , π ].

SOLUTION

We wish to find a value of n to ensure that |R n(x)| ≤ 0.001 on the interval [−π , π ]. Using
Theorem 8.10, we know that

R n(x) = f (n+1)(c)
(n + 1)!

(x − x 0)n+1 where c is between x0 and x.

When f (x) = sin x, we know that f (n+1)(x) is one of the functions ± sin x and ± cos x. For
each of these functions, | f (n+1)(x)| ≤ 1. Letting x 0 = 0, we have

∣∣R n(x)
∣∣ =

∣∣∣∣∣
f (n+1)(c)
(n + 1)!

x n+1

∣∣∣∣∣ ≤ |x|n+1

(n + 1)!
.

To ensure that |R n(x)| ≤ 0.001 on [−π , π ], we find the smallest value of n such that

|π |n+1

(n + 1)!
≤ 0.001.

We leave it to you to check that when n = 11, the quotient |π |11+1

(11+1)!
> 0.001, but |π |12+1

(12+1)!
≤

0.001. Therefore, P12(x) = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− x11

11!
approximates sin x to within 0.001 of

its actual value on the interval [−π , π ]. We graph this polynomial next and see that it does
indeed look like an excellent approximation to the sine function on the interval [−π , π ]:

P12(x) for sin x

x

y

π�π

�1

1
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When |x| > π , P12(x) ceases to be a good approximation for sin x. If we want to approx-
imate the sine function over a larger interval or find a closer approximation over the same
interval, we would need to use a Maclaurin polynomial of a higher degree. �

TEST YOUR? UNDERSTANDING
� What is meant by the remainder of a function? What does the remainder measure?

� What does Taylor’s Theorem tell us about the remainder? Why is Lagrange’s form for
the remainder more useful for analyzing the remainder?

� What are the Maclaurin series for sin x, cos x, e x, 1
1 − x

, ln(1 + x), and tan−1 x?

� If you know the Maclaurin series for a function f (x), how can you use that series to
quickly find the Maclaurin series for f (cx m), where c �= 0 and m ∈ Z

+? How can the
interval of convergence for the new series be found from the interval of convergence
for the original series?

� If you know the Maclaurin series for a function f (x), how can you use that series to
quickly find the Maclaurin series for cx mf (x), where c �= 0 and m ∈ Z

+? What is the
relationship between the interval of convergence for the new series and the interval of
convergence for the original series?

EXERCISES 8.3

Thinking Back

� Analyzing the quality of an approximation for a definite in-
tegral: How is Theorem 5.27 used to analyze the qual-
ity of a midpoint approximation M n for a definite in-
tegral

∫ b
a f (x) dx?

� Analyzing the quality of an approximation for the sum of
an alternating series: If ak > 0 for every positive integer
k and the series

∑∞
k=1(−1)k+1ak satisfies the conditions

of the alternating series test, how can an+1 be used to
analyze the quality of the partial sum

∑n
k=1(−1)k+1ak

as an approximation for the sum of the series?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every Maclaurin series converges to the
function used to generate the series.

(b) True or False: Every Taylor series converges to the
function used to generate the series at at least one
point.

(c) True or False: If f is a function with derivatives of all
orders at the point x 0, the nth remainder of f is given

by R n(x) = ∑∞
k=n+1

f (k)(x0)
k!

(x − x 0)k.

(d) True or False: If f is a function with derivatives of all
orders at the point x 0, the nth remainder of f is given

by R n(x) = ∫ x
x 0

(x−t)n

n!
f (n+1)(t) dt.

(e) True or False: If f is a function with derivatives of all
orders at the point x 0, the nth remainder of f is given

by R n(x) = f (n+1)(c)
(n + 1)!

(x − x 0)n+1, where c is between x 0

and x.

(f) True or False: The nth remainder measures the
error in using the Taylor polynomial Pn(x) to
approximate the function that generated the
polynomial.

(g) True or False: If the Maclaurin series for f (x) con-
verges to f (x) on the interval (−ρ, ρ), the Maclau-
rin series for f (x 3) converges to f (x 3) on the interval
(−ρ3, ρ3).

(h) True or False: If the Maclaurin series for f (x) converges
to f (x) on the interval (−ρ, ρ), the Maclaurin series for
x 3f (x) converges to x 3f (x) on the interval (−ρ, ρ).

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) The third remainder R3(x) for sin x when P3(x) is the
third Taylor polynomial for sin x at

π

4
.

(b) The integral given by Taylor’s Theorem equal to the
third remainder R3(x) for sin x when P3(x) is the third
Taylor polynomial for sin x at

π

4
.

(c) Lagrange’s form for the third remainder R3(x) for sin x
when P3(x) is the third Taylor polynomial for sin x
at

π

4
.
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3. If the series
∑∞

k=0 ak x k converges to the function f (x) on
the interval (−2, 2), provide a formula for ak in terms of
the function f .

4. If the series
∑∞

k=0 bk(x − 3)k converges to the function g(x)
on the interval (−2, 8), provide a formula for bk in terms
of the function g.

5. If the series
∑∞

k=0 c k(x − x 0)k converges to the function
h(x) for every real number, provide a formula for c k in
terms of the function h.

6. Explain why lim
n→∞

|x|n
n!

= 0 for every value of x.

7. Let f (x) = 1
1 − x

and g(x) = 1
ax + b

. Show that if b �= 0,

then g(x) = 1
b

f
(
− a

b
x
)

.

8. Given a function f and a Taylor polynomial for f at x 0,
what is meant by the nth remainder R n(x)? What does
R n(x) measure?

9. If f (x) = 4x 3 − 5x 2 + 6x + 1 and P3(x) is the third Taylor
polynomial for f at −1, what is the third remainder R3(x)?
What is R4(x)? (Hint: You can answer this question without
finding any derivatives.)

10. If f (x) is an nth-degree polynomial and Pn(x) is the nth
Taylor polynomial for f at x 0, what is the nth remainder
R n(x)? What is R n+1(x)?

11. What is Taylor’s Theorem?
12. What is Lagrange’s form for the remainder? Why is

Lagrange’s form usually more useful for analyzing the

remainder than the definition of the remainder or the
integral provided by Taylor theorem?

13. Why is it helpful to know the Maclaurin series for a few
basic functions?

14. If m is a positive integer, how can we find the Maclau-
rin series for the function f (cx m) if we already know the
Maclaurin series for the function f (x)? How do you find
the interval of convergence for the new series?

15. If m is a positive integer, how can we find the Maclau-
rin series for the function cx mf (x) if we already know the
Maclaurin series for the function f (x)? How do you find
the interval of convergence for the new series?

16. How may we find the Maclaurin series for f (x)g(x) if we
already know the Maclaurin series for the functions f (x)
and g(x)? How do you find the interval of convergence for
the new series?

Use an appropriate Maclaurin series to find the values of the
series in Exercises 17–22.

17.
∞∑

k=0

(−π )k

k!
18.

∞∑
k=0

(−1)kπ2k

(2k)!

19.
∞∑

k=0

(−1)k

2k + 1

(
1√
3

)2k+1

20.
∞∑

k=1

(−1)k

k

(
1
π

)k

21.
∞∑

k=0

(−1)kπ2k+1

(2k + 1)!
22.

∞∑
k=1

(
− 1

π

)k

Skills

In Exercises 21–30 in Section 8.2 you were asked to find the
fourth Maclaurin polynomial P4(x) for the specified function.
In Exercises 23–32 we ask you to give Lagrange’s form for the
corresponding remainder, R 4(x).

23. cos x 24. e x

25. sin x 26. ln(1 + x)

27. tan−1 x 28. tan x

29.
√

1 − x 30.
1 + x
1 − x

31. x sin x 32. x 2e x

In Exercises 31–34 in Section 8.2 you were asked to find
the Maclaurin series for the specified function. Now find
the Lagrange’s form for the remainder R n(x), and show that
lim

n→∞ R n(x) = 0 on the specified interval.

33. cos x, R 34. e x, R

35. sin x, R 36. ln(1 + x), (−1/2, 1/2)

In Exercises 41–48 in Section 8.2, you were asked to find the
fourth Taylor polynomial P4(x) for the specified function and
the given value of x 0. In Exercises 37–44 give Lagrange’s form
for the remainder R 4(x).

37. cos x,
π

2
38. e x, 1

39. sin x, π 40.
√

x, 1

41. ln x, 3 42. 3
√

x, 1

43. tan x,
π

4
44. tan−1 x, 1

In Exercises 49–54 in Section 8.2 you were asked to find the
Taylor series for the specified function at the given value of x 0.
In Exercises 45–50 find the Lagrange’s form for the remainder
R n(x), and show that lim

n→∞ R n(x) = 0 on the specified interval.

45. cos x,
π

2
, R 46. e x, 1, R

47. sin x, π , R 48.
√

x, 1, (1/2, 3/2)

49. ln x, 3, (2, 4) 50. 3
√

x, 1, (1/2, 3/2)

Find the Maclaurin series for the functions in Exercises 51–60
by substituting into a known Maclaurin series. Also, give the
interval of convergence for the series.

51. e x 3
52. e−3x 2

53. sin(−5x 2) 54. x cos(x 2)

55.
1

8 + x 3
56.

x
9 − x 2
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57.
e x + e−x

2
58.

e x − e−x

2

59. cos2 x (Hint: Use the identity cos2 x = 1
2

(1 + cos 2x)).

60. sin2 x (Hint: Use the identity cos2 x = 1
2

(1 − cos 2x)).

Use appropriate Maclaurin series to find the first four nonzero
terms in the Maclaurin series for the product functions in
Exercises 61–66. Also, give the interval of convergence for the
series.

61. e x sin x 62. e x cos x

63. e x ln(1 + x 3) 64. (sin 2x)(tan−1 x 3)

65.
sin x

1 − x 2 66.
tan−1 x
1 − x 3

Use appropriate Maclaurin series to express the quantities in
Exercises 67–76 as alternating series. Then use Theorem 7.38
to approximate the value of the specified quantities to within
0.001 of their actual value. How many terms in each series
would be needed to approximate the given quantity to within
10−6 of its value? In Exercises 73–76 be sure to convert to
radian measure first.

67. e−0.3 68. e−2

69. ln 1.5 70. ln 1.3

71. tan−1 0.4 72. tan−1(−0.6)

73. sin 2◦ 74. sin 1◦

75. cos 5◦ 76. cos 10◦

In Exercises 77–82,

(a) Use appropriate Maclaurin series to express the quantities
in series form.

(b) Use Lagrange’s form for the remainder to bound the error
in using the 5th degree Maclaurin polynomial to approx-
imate the given quantity.

(c) Find the smallest value of n so that the nth degree Maclau-
rin polynomial approximation to the given quantity is
guaranteed to be accurate to within 10−6.

77. e 0.3 78. e 0.9

79. ln 0.5 80. ln 0.7

81. sin 1 82. cos 2

83. Let

f (x) =
⎧⎨
⎩

sin x
x

, if x �= 0

1, if x = 0

(a) Use the definition of the derivative to prove that f is
differentiable at 0.

(b) Use the Maclaurin series for sin x to find a Maclaurin
series for f .

84. Let

f (x) =
⎧⎨
⎩

1 − cos x
x

, if x �= 0

0, if x = 0

(a) Use the definition of the derivative to prove that f is
differentiable at 0.

(b) Use the Maclaurin series for cos x to find a Maclaurin
series for f .

Applications
85. Emmy is a civil engineer who has to approximate the

slope of the water table along a certain line in the Hanford
Nuclear Reservation. She can dig only three test holes
to evaluate the depth of groundwater at certain points.
She finds that the water table lies at (0, 35), (300, 38), and
(600, 42), with all distances given in feet and positive ver-
tical distances representing distances below the surface.

y
600300

x

water table

38 ft35 ft 42 ft

(a) Using the data from the first two wells, estimate the
slope of the water table. Use this slope to write an
equation of a line that describes the water table.

(b) Considering the equation of the line from part (a)
as the first two terms of a Maclaurin series for the
function w(x) describing the water table, write an
expression for the error in this linear approximation.

(c) Verify that the graph of the quadratic

w2(x) = 1
180000

x 2 + 1
120

x + 35

passes through the three data points describing the
water table.

(d) Use the quadratic from part (c) to estimate the error
in the linear approximation to the water table.
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86. In 2009, Mirec was a civil engineer in Fargo, North
Dakota. He was charged with monitoring the Red River
as it flooded catastrophically in March of that year.
By measuring the flow of the river very precisely, he
was able to estimate the flow f (t) and many of its
derivatives as of March 8, which he considered to be
time t = 0. He found that f (0) = 988.9, f ′(0) = −853.8,

f ′′(0) = 1026.9, f ′′′(0) = −528.1, f (4)(0) = 141.3, and
f (5)(0) = −15.0.
(a) Use these data to compute a Maclaurin polynomial of

degree 5 for the flow.
(b) Mirec had to predict when the maximum flow would

occur for t > 0. What day did he predict?

Proofs

87. Use the principle of mathematical induction to complete
the proof of Theorem 8.9. That is, show that

f (x) =
n∑

k=0

f (k)(x 0)
k!

(x − x 0)k +
∫ x

x 0

(x − t)n

n!
f (n+1)(t) dt.

88. Use Theorem 8.9 and Theorem 4.31 of Section 4.6 to
prove Theorem 8.10. That is, show that if f is a function
that can be differentiated n + 1 times in some open in-
terval I containing the point x 0, and if R n(x) is the nth
remainder for f at x = x 0, then for each point x ∈ I
there is at least one c between x 0 and x such that R n(x) =
f (n+1)(c)
(n + 1)!

(x − x 0)n+1.

89. Use Lagrange’s form for the remainder to prove that the
Maclaurin series for the cosine,

cos x =
∞∑

k=0

(−1)k

(2k)!
x 2k,

converges for every real number.
90. Let f be a function with the property that

∣∣ f (n)(x)
∣∣ < M

for every nonnegative integer n and every real number x,
where M is a positive number. Use Lagrange’s form for
the remainder to prove that the Taylor series for f at any
point x 0 converges to f for every real number.

91. Use the Maclaurin series for e x and e−x to prove that

sinh x =
∞∑

k=0

1
(2k + 1)!

x 2k + 1.

Thinking Forward

� The derivative of a series: Show that if you take the
derivative of the Maclaurin series for e x term by term,
you get the same series back again. That is, show that

d
dx

(e x) =
∞∑

k=0

x k

k!
.

� The derivative of a series: Show that if you take the
derivative of the Maclaurin series for sin x term by
term, you get the series for cos x. That is, show that

d
dx

(sin x) =
∞∑

k=0

(−1)k

(2k)!
x 2k = cos x.

8.4 DIFFERENTIATING AND INTEGRATING POWER SERIES

� Differentiating a power series term by term

� Integrating a power series term by term

� Using a Taylor polynomial to approximate a function

Differentiating a Power Series

In Section 8.3 we discussed two methods for altering a Maclaurin series to obtain a new
series: function composition and multiplication. We extend this idea by discussing the cal-
culus of power series. The next two theorems tell us that we may differentiate and integrate
power series term by term.
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THEOREM 8.11 Differentiating a Power Series

If
∑∞

k=0 ak(x − x 0)k is a power series in x − x 0 that converges to a function f (x) on an
interval I, then the derivative of f is given by

f ′(x) = d
dx

( ∞∑
k=0

ak(x − x 0)k
) ∗=

∞∑
k=0

ak
d
dx

((x − x 0)k) =
∞∑

k=1

k ak(x − x 0)k−1.

The interval of convergence for this new series is I, with the possible exception that if I
is a finite interval, the convergence at the endpoints of I may be different than it was for
the initial series.

The starred equality in Theorem 8.11 is the most significant. The first equality just ex-
presses the fact that the function f and its power series are equal. The third equality says
that d

dx
((x−x 0)k) = k(x−x 0)k−1. In Chapter 2 we proved that the derivative of a finite sum is

the sum of the derivatives, but here we have an infinite sum. The second equality says that
this summation property of the derivative in finite situations also holds for a convergent
power series. The proof of Theorem 8.11 is beyond the scope of this course.

Integrating a Power Series

THEOREM 8.12 Integration of Power Series

Let
∑∞

k=0 ak(x − x 0)k be a power series in x − x 0 that converges to a function f (x) on an
interval I.

(a) The indefinite integral of f is given by

∫
f (x) dx =

∫ ( ∞∑
k=0

ak(x − x 0)k
)

dx

∗=
∞∑

k=0

ak

∫
(x − x 0)kdx =

∞∑
k=0

ak

k + 1
(x − x 0)k+1 + C,

where C is a constant. The interval of convergence for this new series is I, with the
possible exception that if I is a finite interval, the convergence at the endpoints of I
may be different than it was for the initial series.

(b) If c and d are two points in I, then the definite integral of f on the interval [c, d] is
given by

∫ d

c
f (x) dx =

∫ d

c

( ∞∑
k=0

ak(x − x 0)k
)

dx ∗=
∞∑

k=0

ak

∫ d

c
(x − x 0)kdx

=
∞∑

k=0

ak

k + 1

[
(x − x 0)k+1]d

c =
∞∑

k=0

ak

k + 1
((d − x 0)k+1 − (c − x 0)k+1).
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As in Theorem 8.11, the starred equalities in Theorem 8.12 are the most significant. The first
equalities in parts (a) and (b) express the fact that the power series converges to the function
f . All of the other equalities indicate basic facts about antiderivatives and definite integrals.
In Chapter 4 we proved that the indefinite integral of a finite sum is the sum of the indefinite
integrals, but in part (a) we have an infinite sum. Part (b) makes the analogous statement
for definite integrals. The starred equalities say that these properties of antiderivatives and
definite integrals are also valid for convergent power series. As with Theorem 8.11, the
proof of Theorem 8.12 is beyond the scope of this course.

Examples and Explorations

EXAMPLE 1 Using the derivative to find the Maclaurin series for 1
(1−x)2

Find the Maclaurin series for 1
(1 − x)2

.

SOLUTION

We begin by noting that d
dx

(
1

1 − x

)
= 1

(1−x)2
. Since the Maclaurin series for 1

1 − x
is

∑∞
k=0 x k,

we may use Theorem 8.11 to find the Maclaurin series for 1
(1−x)2

:

1
(1 − x)2

= d
dx

(
1

1 − x

)
= d

dx

( ∞∑
k=0

x k
)

=
∞∑

k=0

d
dx

(x k) =
∞∑

k=1

k x k−1 =
∞∑

k=0

(k + 1)x k.

Note that we changed the indexing of the series in the final step. This series has the same
radius of convergence as the original series, namely 1, but the new series may converge at
±1 even though the original series diverges at both endpoints.

When x = 1, we have the series
∑∞

k=0(k + 1), which diverges by the divergence test.
Similarly, when x = −1, we obtain the series

∑∞
k=0(−1)k(k + 1), which also diverges by the

divergence test. Thus the interval of convergence for the series is (−1, 1). �

EXAMPLE 2 Using integration to find the Maclaurin series for ln(1 + x)

Find the Maclaurin series for ln(1 + x).

SOLUTION

We could of course use Definition 8.7 to find the Maclaurin series for ln(1 + x). However,
we already know that

1
1 − x

=
∞∑

k=0

x k on the interval (−1, 1).

If we replace each x in this equation with −x, we obtain the Maclaurin series for 1
1 + x

:
That is,

1
1 − (−x)

= 1
1 + x

=
∞∑

k=0

(−x)k =
∞∑

k=0

(−1)kx k.

This series has the same interval of convergence, (−1, 1).
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Now, since ∫ x

0

1
1 + t

dt = ln(1 + t)
∣∣x
0 = 1

1 + x
,

if we integrate our series for 1
1+t

, we will have our Maclaurin series for ln(1 + x). That is,

ln(1 + x) =
∫ x

0

1
1 + t

dt =
∫ x

0

∞∑
k=0

(−1)kt k dt =
∞∑

k=0

(−1)k
(∫ x

0
t k dt

)

=
∞∑

k=0

[
(−1)k

k + 1
t k+1

]x

0
=

∞∑
k=0

(−1)k

k + 1
xk+1x − 1

2
x 2 + 1

3
x 3 − · · · .

The new series is guaranteed to have the same interval of convergence as the series for
the function 1

1 + x
, with the possible exception of the endpoints, which for this series

are ±1. By changing the indexing of the series, we may also express this as

ln(1 + x) =
∞∑

k=1

(−1)k+1

k
x k.

Finally, we need to see if the series converges at the endpoints of the interval. When

x = 1, we have the alternating harmonic series
∑∞

k=1
(−1)k+1

k
. In Section 7.7 we showed that

the alternating harmonic series converges conditionally. At that time we mentioned that
the alternating harmonic series converges to ln 2, and we now see why. When x = −1,

we obtain the series
∑∞

k=1
(−1)k+1

k
(−1)k = − ∑∞

k=1
1
k
. This is the (negative of the) har-

monic series, which we know diverges. Thus the interval of convergence for the series
is (−1, 1]. �

EXAMPLE 3 Using integration to find the Maclaurin series for tan−1 x

Outline the steps for finding the Maclaurin series for tan−1 x.

SOLUTION

The procedure for finding the Maclaurin series for tan−1 x is quite similar to the work we

did in Example 2. Since d
dx

(tan−1 x) = 1
1 + x2

, we will perform the following steps:

� Substitute −x 2 for x in the series for 1
1 − x

to find the Maclaurin series for 1
1 + x2

.

� Use the same substitution in the inequality |x| < 1 to find the interval of convergence
for the new series.

� Integrate the latter series to find the series for tan−1 x. Be sure to include a single
constant of integration. The resulting new series will have the same interval of con-
vergence as the series for 1

1 + x2
, with the possible change at the endpoints of the

interval.
� Evaluate the function tan−1 x and the series at x = 0 to determine the value of the

constant of integration.
� Determine whether the series converges absolutely, converges conditionally, or

diverges at each endpoint of the interval of convergence. �

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:49

698 Chapter 8 Power Series

EXAMPLE 4 Using a Maclaurin series to approximate a definite integral

Approximate the definite integral
∫ 1

0 e−x 2
dx to within 0.001 of its value.

SOLUTION

The function e−x 2
does not have an elementary antiderivative. Therefore, we cannot use the

Fundamental Theorem to evaluate the integral. We could use the techniques of Chapter 4
to approximate the integral, but Theorem 8.12 gives us another effective tool for approxi-
mating its value. Since

e x =
∞∑

k=0

x k

k!
,

if we substitute −x 2 for x in this series, we immediately obtain the Maclaurin series for
e−x 2

:

e−x 2 =
∞∑

k=0

(−x 2)k

k!
=

∞∑
k=0

(−1)k x 2k

k!
.

Now, using Theorem 8.12, we have

∫ 1

0
e−x 2

dx =
∫ 1

0

( ∞∑
k=0

(−1)k x 2k

k!

)
dx =

∞∑
k=0

(−1)k

k!

( ∫ 1

0
x 2k dx

)

=
∞∑

k=0

[
(−1)k

k!
x 2k+1

2k + 1

]1

0

=
∞∑

k=0

(−1)k

k!
1

2k + 1

= 1 − 1
3

+ 1
10

− 1
42

+ 1
216

− 1
1320

+ · · · .

This is a convergent alternating series that satisfies the conditions of the alternating series
test. By Theorem 7.38 of Section 7.7, to approximate the value of the integral to within
0.001 of its value, we look for the first term of the series whose value is less than 0.001 and

sum all the terms that precede it. Thus, the sum 1 − 1
3

+ 1
10

− 1
42

+ 1
216

≈ 0.7475 is within
1

1320
≈ 0.00076 of the actual value of the integral. In fact, by Theorem 7.38,

0.7467 ≈
5∑

k=0

(−1)k

k!
1

2k + 1
<

∫ 1

0
e−x 2

dx <

4∑
k=0

(−1)k

k!
1

2k + 1
≈ 0.7475.

The terms of this series decrease in magnitude so quickly, that including a few extra terms
would provide a much more accurate approximation for the integral. �

TEST YOUR? UNDERSTANDING
� If you know the Maclaurin series for a function f , how can you use that series to quickly

find the Maclaurin series for f ′? What is the relationship between the interval of conver-
gence for the Maclaurin series for f and the interval of convergence for the Maclaurin
series for f ′?

� If you know the Taylor series for a function f at x = x 0, how can you use that series to
quickly find the Taylor series for f ′ at x = x 0? What is the relationship between the in-
terval of convergence for the Taylor series for f at x = x 0 and the interval of convergence
for the Taylor series for f ′ at x = x 0?
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� If you know the Maclaurin series for a function f , how can you use that series to quickly
find the Maclaurin series for

∫
f (x) dx? What is the relationship between the interval

of convergence for the Maclaurin series for f and the interval of convergence for the
Maclaurin series for

∫
f (x) dx?

� If you know the Taylor series for a function f at x = x 0, how can you use that series to
quickly find the Taylor series for

∫
f (x) dx at x = x 0? What is the relationship between

the interval of convergence for the Taylor series for f at x = x 0 and the interval of
convergence for the Taylor series for

∫
f (x) dx at x = x 0?

� If you know the Maclaurin series for the function f (x), how can you combine tech-
niques introduced in this section with the techniques from Section 8.3 to quickly find
the Maclaurin series for the function

∫
c1x m1 f (c2x m2 ) dx, where c1 and c2 are real num-

bers and m1 and m2 are positive integers? How would you determine the interval of
convergence for the new series?

EXERCISES 8.4

Thinking Back

� The derivative of a sum: Prove that
d
dx

( f 1(x) + f 2(x)) =
d
dx

( f1(x)) + d
dx

( f2(x)). How would you prove that

d
dx

( n∑
k=1

f k(x)
)

=
n∑

k=1

d
dx

( f k(x))?

� The integral of a sum: Prove that
∫

( f 1(x) + f 2(x))dx =∫
f 1(x) dx + ∫

f 2(x) dx. How would you prove that

∫ ( n∑
k=1

f k(x)
)

dx =
n∑

k=1

( ∫
f k(x) dx

)
?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If a function f has a Taylor series at x = 5
that converges to f for every value of x, then the func-
tion f ′ has a Taylor series at x = 5 that converges to
f ′ for every value of x.

(b) True or False: If the series
∑∞

k=0 ak (x − 5)k converges
to the function f (x) for every value of x, then the

series
∑∞

k=0
ak

k + 1
(x − 5)k+1 converges to a function

G(x) where G′(x) = f (x) for every value of x.

(c) True or False: If the series
∑∞

k=0 ak x k converges ab-
solutely on the interval (−ρ, ρ), then for every x ∈
(−ρ, ρ),

d
dx

(∑∞
k=0 ak x k

) = ∑∞
k=0(k + 1)a k+1 x k.

(d) True or False: If the interval of convergence for the
series

∑∞
k=0 ak x k contains the points c and d, then

∫ d

c

( ∞∑
k=0

ak x k
)

dx =
∞∑

k=0

ak

k + 1
(d k+1 − c k+1).

(e) True or False: If the series
∑∞

k=0 ak x k converges ab-
solutely on the interval (−ρ, ρ), then for every x ∈
(−ρ, ρ),

∫ (∑∞
k=0 ak x k

)
dx = ∑∞

k=0
ak

k + 1
x k+1.

(f) True or False: If the interval of convergence of the
power series

∑∞
k=0 ak x k is (−3, 3), then the interval

of convergence of the power series
∑∞

k=1 k ak x k−1 is
(−3, 3).

(g) True or False: If the interval of convergence of the
power series

∑∞
k=0 ak x k is (−3, 3), then the interval

of convergence of the power series
∑∞

k=0
ak

k + 1
x k+1 is

[−3, 3].

(h) True or False: If the interval of convergence of the
power series

∑∞
k=0 ak x k is (−3, 3), then the interval of

convergence of the power series
∑∞

k=0
ak

k + 1
x k+1 con-

tains (−3, 3).

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f with a Maclaurin series that has [−2, 2]
as its interval of convergence such that the Maclau-
rin series for f ′ converges only on the interval
(−2, 2).
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(b) A function f such that both f and f ′ have Taylor series
with (0, 6] as their interval of convergence.

(c) A function f such that both f and f ′ have Taylor series
in (x − π ) with R as their interval of convergence.

3. If f (x) = ∑∞
k=0 ak (x − x 0)k, what is f (x 0)? What is f ′(x 0)?

What is f ′′(x 0)? What is f (k)(x 0)?

4. Let f (x) = ∑∞
k=0 ak(x − x 0)k and let G be an antiderivative

for f . Explain why we do not have enough information to
determine G(x 0). What is G′(x 0)? What is G′′(x 0)? What
is G(k)(x 0)?

5. Let f (x) = ∑∞
k=0 ak(x − x 0)k and let G be the antideriva-

tive for f with the property that G(x 0) = 7. Find the Taylor
series in x 0 for G.

6. Let f (x) be a function such that the power series in x − x 0,∑∞
k=0 ak (x− x 0)k converges absolutely to f on the interval

I. If G1 and G2 are two antiderivatives for f , explain why
the power series in x − x 0 for G1 and G2 have the same
interval of convergence.

7. In Example 1 we used Theorem 8.11 to find the Maclau-

rin series for
1

(1 − x)2
. Explain how Theorem 8.11 could be

used to find the Maclaurin series for
1

(1 − x)k
, where k is a

positive integer greater than 2.

8. If f is a function such that f (0) = 1 and f ′(x) = f (x) for
every value of x, find the Maclaurin series for f .

9. If f is a function such that f (0) = 2 and f ′(x) = −3f (x) for
every value of x, find the Maclaurin series for f .

10. If f is a function such that f (0) = −3 and f ′(x) = 2f (x) for
every value of x, find the Maclaurin series for f .

Perform the following steps for the power series in x − x 0 in
Exercises 11–16:

(a) Find the interval of covergence, I, for the series.

(b) Let f be the function to which the series converges on I.
Find the power series in x − x 0 for f ′.

(c) Find the power series in x − x 0 for F(x) = ∫ x
x 0

f (t) dt.

11.
∞∑

k=0

2 kx k 12.
∞∑

k=0

5 k

k!
(x − 3)k

13.
∞∑

k=0

(−1)k

(2k)!
x k 14.

∞∑
k=0

1
k + 2

x 3k+1

15.
∞∑

k=1

(−1)k

k
(x + 5)k 16.

∞∑
k=0

(−1)k k!
(2k)!

(x − 7)2k

17. (a) Explain why the definite integral I = ∫ 0.5
0

dx
1 + x3

exists.

(b) Explain how to use Simpson’s method to approxi-
mate I to within 0.001 of its actual value.

(c) Use substitution in the Maclaurin series for
1

1 − x
to

find a Maclaurin series for
1

1 + x3
.

(d) Explain how to use Theorems 7.38 and 8.12 to
approximate I to within 0.001 of its actual value.

18. (a) Explain why the definite integral I = ∫ 2
0

dx
1 + x3

exists.

(b) Explain how to use Simpson’s method to approxi-
mate the value of I to within 0.001 of its actual value.

(c) Explain why you cannot use the method of Exer-
cise 17 (b) and (c) to approximate I.

19. (a) Explain why the definite integral I = ∫ 0.5
0 sin(x 2) dx

exists.

(b) Explain how to use Simpson’s method to approxi-
mate I to within 0.001 of its actual value.

(c) Use substitution in the Maclaurin series for sin x to
find a Maclaurin series for sin(x 2).

(d) Explain how to use Theorems 7.38 and 8.12 to
approximate I to within 0.001 of its actual value.

20. (a) Explain why the definite integral I = ∫ 2
0 sin(x 2) dx

exists.

(b) Explain how to use Simpson’s method to approx-
imate the value of I to within 0.001 of its actual
value.

(c) Use your answer from Exercise 19 (b) to explain how
to use Theorems 7.38 and 8.12 to approximate I to
within 0.001 of its actual value.

21. Show that when you take the derivative of the Maclaurin
series for the sine function term by term you obtain the
Maclaurin series for cosine.

22. Show that when you take the derivative of the Maclaurin
series for the cosine function term by term you obtain the
negative of the Maclaurin series for the sine.

23. Show that when you take the derivative of the Maclau-
rin series for the exponential function term by term you
obtain the same series you started with. Why does that
make sense?

24. (a) Verify that

d
dx

(x sin(x 3)) = sin(x 3) + 3x 3 cos(x 3).

(b) Use multiplication and/or substitution in the Maclau-
rin series for the sine and the cosine to find the
Maclaurin series for x sin(x 3), sin(x 3), and 3x 3 cos(x 3).

(c) Use Theorem 8.11 to find the Maclaurin series for
d
dx

(x sin(x 3)), and show that this series is the sum of

the Maclaurin series for sin(x 3) and 3x 3 cos(x 3) you
obtained in part (b).
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Skills

In Exercises 25–30, find Maclaurin series for the given pairs of
functions, using these steps:

(a) Use substitution and/or multiplication and the Maclaurin

series for
1

1 − x
to find the Maclaurin series for the given

function. Also, provide the interval of convergence for the
series you found.

(b) Use Theorem 8.11 and your answer from part (a) to find
the Maclaurin series for the given function. Also, provide
the interval of convergence for the series you found.

25. (a)
1

1 + x 2
(b)

x

(1 + x 2)2

26. (a)
1

1 − x 3
(b)

x 2

(1 − x 3)2

27. (a)
1

1 + 8x 3
(b)

x 2

(1 + 8x 3)2

28. (a)
1

3 − x
(b)

1

(3 − x)2

29. (a)
1

4 − x 2
(b)

x

(4 − x 2)2

30. (a)
1

(3 − x)2 (b)
1

(3 − x)3

(Hint: See Exercise 28).

In Exercises 31–34, find Maclaurin series for the given pairs of
functions, using these steps:

(a) Use substitution in the appropriate Maclaurin series to
find the Maclaurin series for the given function.

(b) Use Theorem 8.11 and your answer from part (a) to find
the Maclaurin series for the given function.

(c) Find the Maclaurin series for the function in (b), us-
ing multiplication and substitution with the appropriate
Maclaurin series. Compare your answers from (b) and (c).

31. (a) sin(x 2) (b) x cos(x 2)

32. (a) cos(4x 3) (b) x 2 sin(4x 3)

33. (a) e−x 2
(b) xe−x 2

34. (a) tan−1
(

x 2

3

)
(b)

x
9 + x 4

In Exercises 35–40, explore the Taylor series for the given pairs
of functions, using these steps:

(a) Find the Taylor series for the given function at the speci-
fied value of x 0 and determine the interval of convergence
for the series.

(b) Use Theorem 8.11 and your answer from part (a) to find
the Taylor series for the given function for the same value
of x 0. Also, find the interval of convergence for your series.

35. (a)
1

1 − x
, x 0 = 3 (b)

1
(1 − x)2

36. (a)
1

1 − x
, x 0 = −3 (b)

1
(1 − x)2

37. (a)
1

2 − x
, x 0 = 3 (b)

1

(2 − x)2

38. (a)
1

2 − x
, x 0 = −3 (b)

1

(2 − x)2

39. (a)
1

1 − 3x
, x 0 = 3 (b)

1

(1 − 3x)2

40. (a)
1

1 − 3x
, x 0 = −3 (b)

1

(1 − 3x)2

In Exercises 41–50, find Maclaurin series for the given pairs of
functions, using these steps:

(a) Use substitution and/or multiplication and the appropri-
ate Maclaurin series to find the Maclaurin series for the
given function f .

(b) Use Theorem 8.12 and your answer from part (a) to find
the Maclaurin series for the antiderivative F = ∫

f that
satisfies the specified initial condition.

41. (a) f (x) = sin(x 3) (b) F(0) = 2

42. (a) f (x) = x cos(x 3) (b) F(0) = −1

43. (a) f (x) = e−x 2/3 (b) F(0) = 0

44. (a) f (x) = tan−1(x 2) (b) F(0) = π

45. (a) f (x) = 1
1 + x 3

(b) F(0) = −5

46. (a) f (x) = ln(4 + x 2) (b) F(0) = −2

47. (a) f (x) = x 2 sin(5x 2) (b) F(0) = 1

48. (a) f (x) = x 3 cos
( x

2

)
(b) F(0) = −4

49. (a) f (x) = x 2e−3x 2 (b) F(0) = 1

50. (a) f (x) = x 4 tan−1(3x 3) (b) F(0) = 0

Use Theorem 8.12 and the results from Exercises 41–50 to find
series equal to the definite integrals in Exercises 51–60.

51.
∫ 2

0
sin(x 3) dx 52.

∫ 1

0
x cos(x 3) dx

53.
∫ 1

−1
e−x 2/3 dx 54.

∫ 0.2

0.1
tan−1(x 2) dx

55.
∫ 0.3

0

dx
1 + x 3 56.

∫ 1

0.5
ln(4 + x 2) dx

57.
∫ 2

1
x 2 sin(5x 2) dx 58.

∫ 2

0.5
x 3 cos

( x
2

)
dx
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59.
∫ 1

0.5
x 2e−3x 2

dx 60.
∫ 0.3

0
x 4 tan−1(3x 3) dx

Use the results from Exercises 51–60 and Theorem 7.38 to
approximate the values of the definite integrals in Exer-
cises 61–70 to within 0.001 of their values.

61.
∫ 2

0
sin(x 3) dx 62.

∫ 1

0
x cos(x 3) dx

63.
∫ 1

−1
e−x 2/3 dx 64.

∫ 0.2

0.1
tan−1(x 2) dx

65.
∫ 0.3

0

dx
1 + x 3 66.

∫ 1

0.5
ln(4 + x 2) dx

67.
∫ 2

1
x 2 sin(5x 2) dx 68.

∫ 2

0.5
x 3 cos

( x
2

)
dx

69.
∫ 1

0.5
x 2e−3x 2

dx 70.
∫ 0.3

0
x 4 tan−1(3x 3) dx

Applications
71. Airy’s equation y ′′ = xy was developed to describe the

patterns of light that pass through a circular aperture and
that are caused by diffraction at the edges of the aperture.
Show that the function

y0(x) = 1 +
∞∑

k=1

x 3k

(2 · 3)(5 · 6) · · · ((3k − 1) · 3k)

is a solution of Airy’s equation.

72. Annie throws a rock into the water near her camp on a
very calm morning and watches the ripples spread from
the point where the rock splashed. She knows that those
ripples can be described radially by Bessel functions. The
Bessel function of order p is given by

Jp(x) =
∞∑

k=0

(−1)kx 2k+p

k!(k + p)!22k+p
.

Show that

x J0(x) = d
dx

(
x J1(x)

)
.

Proofs

73. Prove that if the series
∑∞

k=0 ak x k and
∑∞

k=0 bk x k both
converge to the same sum for every value of x in some
nontrivial interval, then ak = bk for every nonnegative
integer k.

74. Let f be an even function with Maclaurin series represen-
tation

∑∞
k=0 ak x k. Prove that a2k+1 = 0 for every nonneg-

ative integer k.

75. Let f be an odd function with Maclaurin series represen-
tation

∑∞
k=0 ak x k. Prove that a2k = 0 for every nonnega-

tive integer k.

Thinking Forward

� The complex number i: If we define i = √−1, show that
i 2 = −1, i 3 = −i, and i 4 = 1.

� Euler’s Formula: Use the results of the previous exercise
and the Maclaurin series for the sine, the cosine, and
the exponential function to derive Euler’s formula

e ix = cos x + i sin x.
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition or
description with a graph or an algebraic example.

� power series in x

� power series in x − x 0

� interval of convergence

� radius of convergence

� Maclaurin polynomial

� Taylor polynomial

� Maclaurin series

� Taylor series

� the remainder of a function

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� Let
∑∞

k=0 ak x k be a power series in x. Exactly one of the
following is true:

The series converges only at .

There exists a positive real number ρ such that the series
converges absolutely for every x ∈ and diverges if
x or x .

The series converges absolutely for every .

� Let
∑∞

k=0 ak (x − x 0)k be a power series in x − x 0. Exactly
one of the following is true:

The series converges only at .

There exists a positive real number ρ such that the series
converges absolutely for every x ∈ and diverges if
x or x .

The series converges absolutely for every .

� Lagrange’s Form for the Remainder: Let f be a function that
can be differentiated n + 1 times in some open interval I
containing the point x 0, and let R n(x) be the nth remain-
der for f at x = x 0. For each point x ∈ I, there is at least
one c between and such that R n(x) = .

Derivatives and Integrals of Power Series

The Calculus of Power Series: Let
∑∞

k=0 ak(x − x 0)k be a power
series in x − x 0 that converges to a function f (x) on an
interval I.

� The derivative of f is given by f ′(x) = .

The interval of convergence for this new series is ,
with the possible exception that .

� The indefinite integral of f is given by
∫

f (x) dx =
.

The interval of convergence for this new series is ,
with the possible exception that .

� If c and d are two points in I, then the definite integral of
f on the interval [c, d ] is given by

∫ d
c f (x) dx = .

Skill Certification: Working with Power Series

Interval of convergence and radius of convergence: Find the in-
terval of convergence and radius of convergence for each of
the given power series. If the interval of convergence is finite,
test the series for convergence at each of the endpoints of the
interval.

1.
∞∑

k=2

1
ln k

x k 2.
∞∑

k=2

(−1)k 1

k (ln k)2 x k

3.
∞∑

k=1

ln k(x − 3)k 4.
∞∑

k=1

k k(x + 1)k
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5.
∞∑

k=0

5 k

(2k)!
(x + 2)k 6.

∞∑
k=1

k!
k k

(x − 4)k

7.
∞∑

k=1

(−1)k

k2 k
(x − 2)k 8.

∞∑
k=1

(x − 3)k

Maclaurin and Taylor polynomials: Find third-order Maclaurin
or Taylor polynomial for the given function about the indicated
point.

9. tan−1 x, x 0 = 0 10. tan x, x 0 = π

3

11. x sin x, x 0 = 0 12. sin x, x 0 = π

2

13.
(
x 2 + 1

)3/2, x 0 = 0 14.
√

x, x 0 = 1

Maclaurin and Taylor series: Find the indicated Maclaurin or
Taylor series for the given function about the indicated point,
and find the radius of convergence for the series.

15. sin x, x 0 = 0 16. sin x, x 0 = π

2
17. e x, x 0 = 0 18. e x, x 0 = 1

19.
1

1 − x
, x 0 = 0 20.

1
1 − x

, x 0 = 2

21.
1
x

, x 0 = 1 22.
1
x

, x 0 = −1

23.
√

x, x 0 = 1 24.
√

x, x 0 = 2

Recognizing power series: Use the Maclaurin series for sin x,
cos x, and e x to find the values of the following series.

25. π − π3

3!
+ π5

5!
− π7

7!
+ · · ·

26. π − π2

2!
+ π3

3!
− π4

4!
+ π5

5!
+ · · ·

27. 1 − π2

22 · 2!
+ π4

24 · 4!
− π6

26 · 6!
+ · · ·

28. e − e 3

3!
+ e 5

5!
− e 7

7!
+ · · ·

Manipulating power series: Find power series representations
for the indicated functions.

29. Use the Maclaurin series for e x to find power series rep-
resentations for g(x) = x 2e x, g′(x), and

∫
g(x) dx.

30. Use the Maclaurin series for
1

1 − x
to find a power series

representation for
x2

(1 − x3)2
.

31. Use the Maclaurin series for
1

1 − x
to find power series

representations for
1

1 + x
, ln(1 + x),

∫
ln(1 + x) dx, and∫ 2

0 ln(1 + x) dx.
32. Use the Maclaurin series for cos x to find series represen-

tations for cos(x 3),
∫

cos(x 3) dx, and
∫ 1

0 cos(x 3) dx.

Approximations using power series: Use the indicated power se-
ries to approximate each of the following quantities.

33. Find the Maclaurin series for e−x, and use it to approx-

imate
1√
e

to within 0.001 of its value. How many terms

would you need to approximate
1√
e

to within 10−6 of its

value?
34. Find the Maclaurin series for e−x 2

, and use it to approxi-
mate

∫ 1
0 e−x 2

dx to within 0.001 of its value. How many
terms would you need to approximate the integral to
within 10−6 of its value?

35. Find the Maclaurin series for sin(x 2), and use it to
approximate

∫ 3
0 sin(x 2) dx to within 0.001 of its value.

How many terms would you need to approximate the in-
tegral to within 10−6 of its value?

36. Find the Maclaurin series for cos(x 4), and use it to
approximate

∫ 1
0 cos(x 4) dx to within 0.001 of its value.

How many terms would you need to approximate the in-
tegral to within 10−6 of its value?

Capstone Problems

A. Use the Maclaurin series for sin x, cos x, and e x to prove
that

(a)
d
dx

(sin x) = cos x

(b)
d
dx

(cos x) = − sin x

(c)
d
dx

(e x) = e x

B. Consider the definite integral
∫ 1

0 tan−1 x dx.

(a) Evaluate the integral using integration by parts.

(b) Recall that

tan−1 x =
∞∑

k=0

(−1)k

2k + 1
x 2k+1,

with interval of convergence [−1, 1]. Use Theo-
rem 8.12 to evaluate the integral by integrating the
Maclaurin series.

(c) Assuming that you can rearrange the terms of the
series, show that your answers to (a) and (b) are
equivalent.
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C. Consider the first-order linear initial-value problem
y ′ − y = 1, y(0) = 2.

(a) Use the techniques of Section 6.5 to show that y =
3e x − 1 is the solution to the initial-value problem.

(b) Follow these steps to find a series solution to the
problem:

� Assume that y may be represented by a power
series in x. That is, y = ∑∞

k=0 ak x k. Explain why
a0 = 2.

� Use Theorem 8.11 to explain why the power se-
ries for y ′ is y ′ = ∑∞

k=1 kak x k−1.
� Reindex the series for y ′ to show that y ′ =∑∞

k=0(k + 1)a k+1x k.
� Use the differential equation y ′ − y = 1 to com-

bine the series for y ′ and y, and thereby show
that

∞∑
k=0

((k + 1)a k+1 − ak) x k = 1.

� Explain why the preceding series implies that
a1 − a0 = 1 and therefore a1 = 3.

� Explain why we have the recursion formula
a k+1 = ak

k + 1
for every k ≥ 1.

� Use the recursion formula to determine the val-
ues of ak for k ≥ 2.

� Use the values for a0, a1, a2, . . . to find a series
solution of the differential equation.

� Show that your series solution is equal to the
function 3e x − 1.

D. Consider the initial-value problem y ′ − 2xy = x,
y(0) = 1.

(a) Use the techniques of Section 6.5 to solve the initial-
value problem.

(b) Use the series technique outlined in Problem D to
solve the initial-value problem.

(c) Show that your two solutions are equivalent.
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Examples and Explorations

9.2 Polar Coordinates
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9.1 PARAMETRIC EQUATIONS

� Defining and graphing parametric equations

� Finding slopes of tangent lines on parametric curves

� Finding the arc length of a parametric curve

Parametric Equations

In most of this book up to now we have studied functions of the form y = f (x), where y
is explicitly expressed as a function of x. There are advantages to using equations of this
form. In particular, they are often relatively easy to analyze and graph with the tools of
calculus. However, there are disadvantages as well. One fundamental limitation is that not
every curve of interest has a simple representation in this form. As we saw in Section 2.4,
this limitation can be partially addressed by using implicitly defined functions of the form
F(x, y) = c. In this section we discuss a different method for expressing relationships in
the plane: parametric equations. When we use parametric equations, each variable is ex-
pressed independently as a function of a new variable, called a parameter. The knobs on an
Etch A Sketch R© toy show how each variable of a graph can be controlled individually. In
a more complex setting, machine tools are also guided parametrically.

DEFINITION 9.1 Parametric Equations in Two Variables

Parametric equations in two variables are a pair of functions

x = f (t) and y = g(t),

where the parameter t is defined on some interval I of real numbers.

A parametric curve is the set of points in the coordinate plane:

{(x(t), y(t)) | t ∈ I}.

For example, we will soon show that the pair of equations

x = t + 1, y = t 2 − 4 for t ≥ −2

has the graph shown next on the left, and that the pair of equations

x = t − sin t, y = 1 − cos t for t ∈ [0, 4π ]

has the graph shown on the right.

The graph of x = t + 1, y = t2 − 4 The graph of x = t − sin t, y = 1 − cos t

y

x
�2

�2

�4

2 4

2

4

x
π 2π 3π 4π

1

2

y
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In these equations we used the letter t as the parameter, so we say that the curves are
parametrized by t. The particular letter that we use is not important. However, we will often
think of t as representing time. When this is the case, we say that the curve is parametrized
by time. On other occasions, the parameter may represent a rotation; in that case we might
use the angles θ or φ as our parameter.

There are two important reasons for introducing parametric equations. First, some
curves are most naturally expressed with parametric equations. Second, such equations
can be generalized to express curves in three-dimensional space. (See Sections 10.5 and
11.1.) In many applications, we will have a curve or phenomenon we wish to understand
and parametric equations will be the easiest way to describe the motion involved.

To gain a basic understanding of parametric equations, however, we continue by ignor-
ing these important reasons, at least for now. Instead we will start with some parametric
equations and look for the curves they describe.

Graphing Parametric Equations

The most basic way to plot any curve is to plot points and then “connect the dots.” This
is probably the first technique you learned when you started graphing functions. It is also
the way your graphing calculator and most computer algebra systems plot curves. In fact,
this is the very reason that graphs of curves with discontinuities often are not plotted well
by a calculator. To start we will use the “connect the dots” approach to plot the parametric
curve given by

x = t + 1 and y = t 2 − 4 for t ∈ [−2, ∞).

Using these equations, we may generate the following table that contains the coordinates
of several points on the curve:

t −2 −1 0 1 2 3

x = t + 1 −1 0 1 2 3 4

y = t 2 − 4 0 −3 −4 −3 0 5

We then plot the points (x, y) and connect the dots with a curve, as follows:

t � �1 t � 1
t � 0

t � �2 t � 2

t � 3
y

x
�2

�2

�4

2 4

2

4

y

x
�2

�2

�4

2 4

2

4

Observe that we have added an arrowhead to one end of the curve in the second figure.
This is because, as the parameter t increases, it imposes a direction on the curve. For the
values of t that we happened to consider, the curve begins at the smallest value, t = −2,
and the arrow indicates the direction of motion as t increases. It is important to note that a
given curve in the plane could be parametrized many different ways. Different parametric
equations could traverse the same curve in the opposite direction. Other equations could
traverse the same curve, but double back on portions of the curve over certain subintervals.
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For example, in Exercises 14 and 15 we will ask you to show that the parametrization

x = 2t + 1 and y = 4t 2 − 4 for t ∈ [−1, ∞)

traces exactly the same curve as the one shown, and that the equations

x = sin t + 1 and y = sin2 t − 4 for t ∈ (−∞, ∞)

repeatedly trace a portion of the same parabola.

If the parametric equations are simple enough, we may also graph the curve by elimi-
nating the parameter. The process of eliminating the parameter usually takes one of two
forms. If the function x = f (t) is invertible and we can find a simple expression for the
inverse, t = f −1(x), then we may obtain y = g( f −1(x)). For example, this is possible with
the preceding equations by solving x = t + 1 for t, yielding t = x − 1. We then replace t
with x − 1 in the equation for y, giving the equation

y = (x − 1)2 − 4.

This equation defines an upwards-opening parabola whose vertex is at the point (1, −4),
just as we saw earlier. However, note that when we eliminated the parameter we lost in-
formation: The equation y = (x − 1)2 − 4 neither contains information about the direction
of motion imposed by the parameter nor tells us that the parametric equations specify only
a portion of the parabola.

We may use a variation of this procedure when y = g(t) is invertible and we can find a
simple expression for the inverse, t = g−1( y). In this case, we are expressing either x or y as
a function of the other variable, and that allows us to use the techniques of earlier chapters
to analyze the resulting function.

Another way to eliminate the parameter results in a relationship in which y is expressed
implicitly as a function of x. For example, if x = 2 sin t and y = 2 cos t, then when we
square both equations, add the two left-hand sides, and add the two right-hand sides,
we obtain x 2 + y 2 = 4 sin2 t + 4 cos2 t. Using one of the Pythagorean identities, we have
x 2 + y 2 = 4. Thus, the graph of these parametric equations lies on the circle with radius 2
and centered at the origin.

Direction of Motion and Tangent Lines

In general, the parametric equations x = f (t) and y = g(t) do not have to be either continu-
ous or differentiable. For the time being we will assume that the functions are differentiable,
and, to allow us to use the chain rule, we will also assume that y is locally a differentiable
function of x for a point at which x is a differentiable function of t.

We may use the derivatives of the parametric equations to obtain information about
the direction of motion along the parametric curve with increasing values of t. When we
compute dx

dt
and dy

dt
and examine the signs of these derivatives, we easily determine the

direction in which the curve is being drawn. For example, for the parametric equation x =
t + 1 and y = t 2 − 4 for t ≥ −2, we have

dx
dt

= 1 and dy
dt

= 2t.

Thus, for all values of t, since dx
dt

> 0, the curve is being traced from left to right. Since
dy
dt

< 0 for −2 ≤ t < 0 and dy
dt

> 0 for t > 0, the curve is moving down at first, but then

starts rising.

To understand the slope of a parametric curve we may use the chain rule,
dy
dt

= dy
dx

dx
dt

.
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Thus, if dx
dt

�= 0, then
dy
dx

= dy/dt
dx/dt

= y ′(t)
x ′(t)

.

For example, the slope of the tangent line to the curve given by x = t+1 and y = t 2 −4
when t = 4 is

dy/dt
dx/dt

∣∣∣∣
t=4

= 2t
1

∣∣∣∣
t=4

= 8.

More generally, we use this idea to define the tangent line to a parametric curve.

DEFINITION 9.2 The Slope of a Parametric Curve and the Tangent Line to a Parametric Curve

Let x = x(t), y = y(t) be parametric equations for t in some interval I, and let t0 be a
point in I at which x ′(t0) and y ′(t0) both exist.

(a) If x ′(t0) �= 0, we define the slope of the parametric curve at the point (x(t0), y(t0))
to be

m = y ′(t0)
x ′(t0)

.

If x ′(t0) = 0, we define the slope to be

m = lim
t→t0

y ′(t)
x ′(t)

,

provided that the limit exists.

(b) If the slope m is defined, the tangent line to the parametric curve at the point t0 is
given by the equation

y − y(t0) = m(x − x(t0)).

Note that certain tangents to parametric curves are vertical lines. As an extension to

the preceding definition we may say that if lim
t→t0

y ′(t)
x ′(t)

= ±∞, then the parametric curve has

a vertical tangent line at (x(t0), y(t0)) whose equation is x = x(t0).

Even when the functions f and g are differentiable, the curve defined by the parametric
equations x = f (t), y = g(t) may have cusps or other anomalies. For example, the function
in the figure that follows at the left is not differentiable at the cusps, although we will soon
see that the parametric equations we use to define the curve are differentiable everywhere.
In addition, a given parametric curve may have points with two or more tangent lines; see,
for example, the following figure at the right:

Cusps are points of
non-differentiability

A point on a parametric curve
with two tangents

x

y

x

y
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Arc Length

In Section 6.3 we saw that the arc length of a continuous function f (x) on an interval [x1, x2]
is given by the formula ∫ x2

x1

√
1 + ( f ′(x))2 dx.

We will extend this definition to functions defined parametrically.

Suppose C is a parametric curve defined by x = f (t) and y = g(t) for t ∈ [a, b]. We can
approximate the curve C with line segments:

Curve C can be approximated with line segments

x

(f(a), g(a))

(f(tk), g(tk))

(f(tk�1), g(tk�1))

(f(b), g(b))

y

We need to use general notation to compute the sum of the lengths of the approximating
line segments. Toward that end we subdivide the interval [a, b] into n equal pieces and
define �t = b − a

n
. Then, for k = 0, 1, 2, . . . , n, we define tk = a + k�t. The length of C

can be approximated by the sum of the lengths of the segments extending from the points
( f (t k−1), g(t k−1)) to the points ( f (t k), g(t k)). Notice that this is the same process we followed
in Section 6.3, except that here we are subdividing the interval on which the parameter is
defined. Using the distance formula and then adding up the lengths of each of the line
segments, we arrive at the following approximation for the length of the curve C as the
parameter t varies from a to b:

n∑
k=1

√
( f (tk) − f (tk−1))2 + ( g(tk) − g(tk−1))2.

As in Section 6.3, the length of the curve C for t ∈ [a, b] is defined as the limit of the
approximate quantity as the number of pieces in our subdivision increases without bound.

DEFINITION 9.3 The Arc Length of a Parametric Curve

Let C be a curve in the plane with parametrization x = f (t), y = g(t) for t ∈ [a, b], where
f and g are differentiable functions of t such that the parametrization is a one-to-one
function from the interval [a, b] to the curve C. Then the length of the curve C is

lim
n→∞

n∑
k=1

√
( f (t k) − f (t k−1))2 + ( g(t k) − g(t k−1))2,

where �t = b − a
n

and tk = a + k�t.

The requirement in Definition 9.3 that the parametrization be a one-to-one function from
the interval [a, b] to the curve C ensures that C is traversed exactly once as t increases from
a to b. This means that the parametrization does not trace any part of the curve more than
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once. (Actually, this requirement can be relaxed somewhat; we can allow isolated points to
be duplicated, and the definition will still hold.)

You may have noticed that the expression in Definition 9.3 looks almost like a limit of
Riemann sums. The following theorem tells us how to interpret this quantity as a definite
integral:

THEOREM 9.4 The Arc Length of a Parametric Curve

Let C be a curve in the plane with parametrization x = f (t), y = g(t) for t ∈ [a, b] such
that the parametrization is a one-to-one function from the interval [a, b] to the curve C.
If x = f (t) and y = g(t) are differentiable functions of t such that f ′(t) and g ′(t) are
continuous on [a, b], then the length of the curve C is given by

∫ b

a

√
( f ′(t))2 + ( g ′(t))2 dt.

Proof. By Definition 9.3, the length of the curve C is

lim
n→∞

n∑
k=1

√
( f (t k) − f (t k−1))2 + ( g(t k) − g(t k−1))2.

Some simple algebra then shows that this is equivalent to

lim
n→∞

n∑
k=1

√(
f (t k) − f (t k−1)

�t

)2

+
(

g(t k) − g(t k−1)
�t

)2

�t,

where �t = b − a
n

and t k = a + k�t. Applying the Mean Value Theorem to f and g, we find that for
each k there are points t ∗

k and t ∗∗
k in [t k−1, t k] such that

f ′(t ∗
k ) = f (t k) − f (t k−1)

�t
and g ′(t ∗∗

k ) = g(t k) − g(t k−1)
�t

.

Thus the length of C is

lim
n→∞

n∑
k=1

√
( f ′(t ∗

k ))2 + ( g ′(t ∗∗
k ))2�t.

This last quantity is almost the limit of a Riemann sum. It is not the limit of a Riemann sum because
t ∗

k and t ∗∗
k are, in general, different points. However, since f ′ and g ′ are both continuous, it can be

shown that t ∗
k and t ∗∗

k get sufficiently close to each other as n → ∞ for this not to matter. (The
proof of this fact is outside of the scope of the text.) Applying the preceding final result, we find
that the limit of our sum is the desired integral

∫ b

a

√
( f ′(t))2 + ( g ′(t))2 dt.

Examples and Explorations

EXAMPLE 1 Parametrizing the unit circle

Sketch the parametric curves determined by the following parametric equations:

(a) x = cos t, y = sin t, t ∈ [0, π ] (b) x = cos t, y = sin t, t ∈ [π , 2π ]

(c) x = sin(3t), y = cos(3t), t ∈ [0, 2π ] (d) x = 1 − t 2

1 + t 2 , y = 2t
1 + t 2 , t ∈ [0, ∞)
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SOLUTION
(a) We will start by eliminating the parameter, but also plot a few points along the way.

If we square the equations for x and y, we obtain x 2 = cos2 t and y 2 = sin2 t. Now
adding these two equations and applying the Pythagorean identity, we have

x 2 + y 2 = cos2 t + sin2 t = 1.

Therefore x 2 + y 2 = 1, which means that the parametric curve is (at least a portion of)
a circle of radius 1 and centered at the origin. We want to know where on this circle the
parametric curve lies, and we also want to know the direction of motion as t increases.
Consider the following three values of t: t = 0, t = π

2
, and t = π . Corresponding to

these values we have (x(0), y(0)) = (cos 0, sin 0) = (1, 0),
(

x
(

π

2

)
, y

(
π

2

))
=

(
cos π

2
, sin π

2

)
= (0, 1), and (x(π ), y(π )) = (cos π , sin π ) = (−1, 0).

In addition, as t increases (slightly) from 0, both x and y will be positive. Thus, we see
that the parametric curve is the top half of the unit circle and the direction of motion
is counterclockwise; see the first figure that follows at the left.

(b) We eliminated the parameter from these equations in part (a). A similar analysis
of the behavior of the variables x and y as t increases from π to 2π shows that
this parametrization gives us the bottom half of the unit circle, with the direction
of motion still being counterclockwise; see the middle figure. The details are left to
Exercise 35.

(c) We again eliminate the parameter by squaring each equation and adding. Once more,
we obtain x 2 + y 2 = 1. As before, the curve is some portion of the unit circle centered at
the origin. Now, however, when t = 0, we are at the point (x(0), y(0)) = (sin 0, cos 0) =
(0, 1). Furthermore, as t increases from 0, x increases and y decreases; therefore the
direction of motion is clockwise. Finally, we note that for t ∈ [0, 2π ] both x = sin 3t
and y = cos 3t go through three periods. Therefore, the unit circle is traversed three
times in the clockwise direction with these equations; see the following figure at the
right:

t � 0t � π
x

y

t � 2πt � π
x

y

x

y

(d) We will see that this pair of equations is quite a different parametrization of the unit
circle. Although it does not involve trigonometric functions, we may again eliminate
the parameter by squaring each equation and adding the result:

x 2 + y 2 =
(

1 − t 2

1 + t 2

)2

+
(

2t
1 + t 2

)2

= 1 − 2t 2 + t 4 + 4t 2

(1 + t 2)2

= 1 + 2t 2 + t 4

(1 + t 2)2 = (1 + t 2)2

(1 + t 2)2 = 1.

Thus, the parametric curve is again at least a portion of the unit circle. To determine
which portion (and in what direction and with what speed), we begin by evaluating x
and y for two values of t:
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t 0 1

x = 1 − t 2

1 + t 2
1 0

y = 2t
1 + t 2

0 1

Since the parameter t can vary from 0 to ∞, we also evaluate the following limits:

lim
t→∞

x(t) = lim
t→∞

1 − t 2

1 + t 2 = −1, lim
t→∞

y(t) = lim
t→∞

2t
1 + t 2 = 0.

Putting all this information together, we arrive at the following parametric curve:

t � 0
x

y

t � 1

t → ∞

Note that every point on the top half of the unit circle is traversed exactly once, except
for (−1, 0), which is not part of the parametrization. In addition, unlike the motion
in parts (a), (b), and (c), the motion here does not take place at a uniform speed.
For example, as t increases from 0 to 1, the particle moves all the way from (1, 0)
to (0, 1), but as t increases from 1, the particle moves from (0, 1) toward, but never
reaches (−1, 0). �

EXAMPLE 2 Graphing an astroid

Sketch the graph of the curve described by the parametric equations

x = cos3 θ and y = sin3 θ.

SOLUTION

We begin by tabulating the coordinates of several points for some convenient values
of θ :

θ 0
π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6

x = cos3 θ 1
3
√

3
8

√
2

4
1
8

0 −1
8

−
√

2
4

−3
√

3
8

y = sin3 θ 0
1
8

√
2

4
3
√

3
8

1
3
√

3
8

√
2

4
1
8

θ π
7π

6
5π

4
4π

3
3π

2
5π

3
7π

4
11π

6

x = cos3 θ −1 −3
√

3
8

−
√

2
4

−1
8

0
1
8

√
2

4
3
√

3
8

y = sin3 θ 0 −1
8

−
√

2
4

−3
√

3
8

−1 −3
√

3
8

−
√

2
4

−1
8
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We plot these points in the figure that follows on the left:

y

x
�1 �0.5

�1

0.5 1

1

�0.5

0.5

y

x
�1 �0.5

�0.5

�1

0.5 1

0.5

1

In addition, the slope of the curve at each point is a function of θ :

dy
dx

= dy/dθ

dx/dθ
= sin2 θ cos θ

−cos2 θ sin θ
= −tan θ.

Thus, the slope of the tangent line to the curve when θ = 0 is zero. We also see that
the slope of the tangent line at every point in the first quadrant is negative, and since

lim
θ→π/2−

(− tan θ ) = −∞, the slopes are nearly vertical close to the point (0, 1). When we

analyze the tangents to the curve in the other three quadrants in a similar fashion, and
connect the points appropriately, we obtain the graph on the right, known as an astroid.

Finally, we note that we can also eliminate the parameter. Here we have x 2/3 = cos2 θ

and y 2/3 = sin2 θ . When we add these two equations together, we obtain x 2/3 + y 2/3 = 1,
whose graph is the same astroid. �

EXAMPLE 3 Finding parametric equations for the cycloid

Find the parametric equations that describe the curve traced by a point on the circumfer-
ence of a wheel as it rolls along a straight path.

SOLUTION

We see that this is a more realistic application of parametric equations. We may visualize
the given curve as the path traced by a point on a bicycle tire as it rolls along a road. In this
situation we wish to understand a curve, and parametric equations provide an effective tool
to describe it.

We let the radius of the wheel be r and, for convenience, we place our wheel on a track
formed by the x-axis, with the point tracing the curve starting at the origin. The gray circle
in the figure that follows shows the initial position of the wheel, and the black circle shows
the wheel after it has rolled a short distance. The blue curve is what we wish to describe
with the use of parametric equations.

x
x

O Q

C
r

y S

rθ

r cos θθ

y

P(x, y)

r sin θ
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To parametrize the blue curve, we need to find a parameter that can be used to describe
both the x- and y-coordinates of each point on the curve; one such parameter is the angle θ ,
measured in radians, through which the wheel has rotated. We need to express the coor-
dinates of each point P = P(x, y) on the curve in terms of the parameter θ . On the one

hand, first note that the arc PQ
�

from P to Q subtended by θ has length rθ and that this
length is precisely equal to the length of the horizontal segment OQ. (To see this think of
rolling the black circle back to its original position.) On the other hand, the length of OQ
is also equal to x plus the length of segment PS. Since PS = r sin θ and OQ = rθ , it follows
that x = rθ − r sin θ . Notice that we have now described the coordinate x in terms of the
parameter θ (and the constant r).

Similarly, y plus the length of vertical segment SC is equal to the radius r. Since the
length of SC is r cos θ , we have y = r − r cos θ . Therefore, we can express the cycloid with
the parametric equations

x = r θ − r sin θ , y = r − r cos θ , θ ∈ R.

The following graph shows the cycloid after two revolutions of the circle:

x
πr 2πr 3πr 4πr

r

2r

y

�

EXAMPLE 4 Finding tangent lines on the cycloid

Find the equations of the tangent lines to the cycloid x = rθ − r sin θ , y = r − r cos θ at
θ = π

2
.

SOLUTION

To find the equations of the tangent lines, we must first determine the derivative dy
dx

in terms
of the parameter θ . The parametric equations for the cycloid are

x = rθ − r sin θ , y = r − r cos θ , θ ∈ R.

It is easy to find the derivatives of the coordinates x and y with respect to the parameter θ :

dx
dθ

= r − r cos θ , dy
dθ

= r sin θ.

Now, using Definition 9.2, we have
dy
dx

= dy/dθ

dx/dθ
= r sin θ

r − r cos θ
= sin θ

1 − cos θ
.

This means that at θ = π

2
, the slope of the tangent line will be sin(π/2)

1 − cos(π/2)
= 1. The point

on the cycloid corresponding to θ = π

2
is

(x, y) =
(

r
(

π

2
− sin π

2

)
, r − r cos π

2

)
=

(
r
(

π

2
− 1

)
, r

)
.

Therefore, the equation of the tangent line at θ = π

2
will be

y − r = 1
(

x − r
(

π

2
− 1

))
, or equivalently, y = x + r

(
2 − π

2

)
.
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The following figure shows the tangent line from this example as well as the horizontal
tangent line from Example 5:

x
πr 2πr 3πr

r

2r

y
π

2y � x � r(2 � �)
y � 2r

�

EXAMPLE 5 Horizontal and vertical tangent lines on the cycloid

Find all the points on the graph of the cycloid x = rθ − r sin θ , y = r − r cos θ , θ ∈ R

at which the tangent line is either horizontal or vertical, and find the equations of the
horizontal tangent lines.

SOLUTION

The graph of the cycloid will have a horizontal tangent line wherever the numerator of
dy
dx

= sinθ

1 − cosθ
is zero and the denominator is nonzero. This occurs when θ is any odd

multiple of π . Now we have to find the equations of these horizontal tangent lines. If θ

is an odd multiple of π , then cos θ = −1 and therefore at such values of θ we are at the
y-coordinate y = r − r(−1) = 2r. Thus the equation of the horizontal tangent line at this
point is y = 2r, which should be obvious from looking at the graph of the cycloid. In addi-
tion, this horizontal line is tangent to the cycloid at every at point where the cycloid has a
zero slope.

In the computations we just did, we found the locations and equations of the horizontal
tangent lines on the graph of the cycloid. To find the vertical tangent lines, we must find
the values of θ for which the denominator of dy

dx
= sinθ

1 − cosθ
is zero but the numerator is

nonzero, and the values of α such that

lim
θ→α

sin θ

1 − cos θ

is undefined. In Exercise 73 you will show that the latter occurs at each even multiple
of π . �

EXAMPLE 6 Analyzing the concavity of a parametric curve

Let x = x(t) and y = y(t) be the parametric equations for a curve C. Show that if x and y
are both twice-differentiable functions of t, then the concavity at a point on C is given by

d 2y
dx 2 =

dx
dt

d 2y
dt 2

− d 2x
dt 2

dy
dt(

dx
dt

)3

when dx
dt

�= 0.

Use this result to confirm that the cycloid given by x = rθ −r sin θ , y = r−r cos θ is concave
down everywhere except when θ is an even multiple of pi.

SOLUTION

We first note that by the chain rule we have

d 2x
dt 2 = d

dt

(
dx
dt

)
= d

dx

(
dx
dt

)
dx
dt

.
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Therefore, when dx
dt

�= 0,

d
dx

(
dx
dt

)
= d 2x/dt 2

dx/dt
.

Similarly, we may show that
d
dx

(
dy
dt

)
= d 2y/dt 2

dx/dt
.

Now, since dy
dx

= dy/dt
dx/dt

, it follows that

d 2y
dx 2 = d

dx

(
dy
dx

)
= d

dx

(
dy/dt
dx/dt

)

=
dx
dt

d
dx

(
dy
dt

)
− d

dx

(
dx
dt

)
dy
dt(

dx
dt

)2 ← the quotient rule

=
dx
dt

d 2y/dt 2

dx/dt
− d 2x/dt 2

dx/dt
dy
dt(

dx
dt

)2 ← the earlier equalities

=
dx
dt

d 2y
dt 2

− d 2x
dt 2

dy
dt(

dx
dt

)3 . ← algebra

For the cycloid, since x = rθ − r sin θ and y = r − r cos θ , we have

dx
dθ

= r − r cos θ ,
d 2x
dθ2 = r sin θ ,

dy
dθ

= r sin θ , and
d 2y
dθ2 = r cos θ.

Combining these equations with the formula for d2y
dx2

, we obtain

d 2y
dx 2 = (r − r cos θ )(r cos θ ) − (r sin θ )(r sin θ )

(r − r cos θ )3

= r 2(cos θ − 1)
r 3(1 − cos θ )3 ← algebra and sin2 θ + cos2 θ = 1

= − 1
r(1 − cos θ )2 . ← algebra

Since r is a positive constant, the quotient − 1
r(1 − cosθ )2

< 0 when θ is not a multiple of 2π .

Therefore, the cycloid is concave down when θ is not an even multiple of π . �

EXAMPLE 7 Finding the arc length of a parametric curve

Find the arc length of one arch of the cycloid traced by a point on the circumference of a
wheel with radius r units (i.e., the portion of the graph of the cycloid that represents one
full rotation of the wheel).

SOLUTION

One such arch is given by the portion of the cycloid corresponding to θ ∈ [0, 2π ], since one
full rotation of the wheel corresponds to 2π radians. For θ ∈ [0, 2π ], the desired arc length
is given by ∫ 2π

0

√
( f ′(θ ))2 + ( g ′(θ ))2 dθ ,
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where f (θ ) = rθ − r sin θ and g(θ ) = r − r cos θ . Thus, the arc length is∫ 2π

0

√
(r − r cos θ )2 + (r sin θ )2 dθ = r

∫ 2π

0

√
2 − 2 cos θ dθ = 8r.

The details of the last step (in which the definite integral is calculated to be equal to 8r) are
left for Exercise 40. �

TEST YOUR? UNDERSTANDING
� What is the definition of parametric equations?

� How do you graph parametric equations by plotting points? By eliminating the param-
eter?

� How do you find the derivative of a curve defined parametrically? How do you find the
locations of any horizontal or vertical tangent lines on a parametric curve?

� The cycloid in Example 3 is the graph of some function of x—that is, y = h(x)—since the
graph passes the vertical line test. Can you eliminate the parameter from the equations
in Example 3 to find h(x)?

� How can a definite integral be used to calculate the arc length of a parametric curve?
How does this definite integral arise from a limit of approximations arrived at with the
use of line segments?

EXERCISES 9.1

Thinking Back

Eliminating a variable: Find a relationship between variables x
and y by eliminating the variable t.

� x = t 2, y = t 6

� x = sin t, y = sin t
� x = sin t, y = cos t
� x = sinh t, y = cosh t

Arc length: Find the arc length of the following curves on the
given intervals.

� y = 3x − 4, x ∈ [0, 5]

� y = √
4 − x 2, x ∈ [0, 2]

� y = x3/2, x ∈ [0, 4]
� y = x 2, x ∈ [0, 1]

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every function y = f (x) can be written
in terms of parametric equations.

(b) True or False: Given parametric equations x = x(t) and
y = y(t), the parameter can be eliminated to obtain
the form y = f (x).

(c) True or False: Every parametric curve passes the verti-
cal line test.

(d) True or False: Every curve in the plane has a unique
expression in terms of parametric equations.

(e) True or False: If the functions x = f (t) and y = g(t)
are differentiable for every t ∈ R, then the paramet-
ric curve defined by x and y is differentiable for every
value of t.

(f) True or False: A curve parametrized by x = x(t), y =
y(t) has a horizontal tangent line at (x(t0), y(t0)) if
y ′(t) = 0.

(g) True or False: A curve parametrized by x = x(t), y =
y(t) has a horizontal tangent line at (x(t0), y(t0)) if
x ′(t) �= 0 and y ′(t) = 0.

(h) True or False: The cycloid curve associated with a cir-
cle of radius r is made up of a series of semicircles of
radius r.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Parametric equations x = f (t), y = g(t) on the inter-
val [0, 1) that trace the unit circle exactly once clock-
wise, starting at the point (1, 0).

(b) Parametric equations x = f (t), y = g(t) on the interval
[0, 2π ) that trace the circle centered at (2, −3) with ra-
dius 5 exactly once counterclockwise, starting at the
point (7, −3).

(c) Parametric equations x = f (t), y = g(t) whose graph
is not the graph of a function y = f (x).

3. If x = x(t) and y = y(t) are differentiable functions of t,
determine the direction of motion along the curve
when
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(a) x ′(t) > 0 and y ′(t) > 0.
(b) x ′(t) > 0 and y ′(t) < 0.
(c) x ′(t) < 0 and y ′(t) > 0.
(d) x ′(t) < 0 and y ′(t) < 0.

4. Complete the following definition: Parametric equa-
tions are .

Use the results of Exercise 3 to analyze the direction of
motion for the parametric curves given by the equations in
Exercises 5–8.

5. x = t 2, y = t 3, t ∈ R

6. x = sin t, y = cos t, t ∈ R

7. x = e t, y = ln t, t > 0
8. x = t 3 − t, y = t 3 + t, t ∈ R

In Exercises 9–11 parametrizations are provided for portions
of the same function. For each problem do the following:

(i) Eliminate the parameter to show that the curves are por-
tions of the same function.

(ii) Describe the portion of the graph that each parametriza-
tion describes.

(iii) Discuss the direction of motion along the graph for each
parametrization.

9. (a) x = t, y = t 2 − 1, t ≥ 0
(b) x = −t, y = t 2 − 1, t ≥ 0

10. (a) x = t 2, y = t 3, t ≥ 0
(b) x = t 2, y = t 3, t ≤ 0

11. (a) x = t, y = sin t, t ≥ 0
(b) x = t − 1, y = sin(t − 1), t ≥ 1

12. Suppose a parametric curve is given by parametric equa-
tions x = x(t), y = y(t) for t in some interval I. How can
we find the slope of the parametric curve at some point
(x(t0), y(t0))? What is the equation of the tangent line to
the parametric curve at the point t0?

13. Explain how we can find the locations at which a para-
metric curve determined by x = x(t) and y = y(t) has
horizontal or vertical tangent lines.

14. Show that the parametrization x = 2t + 1, y = 4t 2 − 4
for t ∈ [−1, ∞) has the same graph as the one we plotted
point by point in the reading.

15. Explain why the parametrization x = sin t + 1, y =
sin2 t − 4 for t ∈ (−∞, ∞) repeatedly traces the same
small portion of the graph of the function y = x 2 −2x−3.

Skills

In Exercises 16–23 sketch the parametric curve by plotting
points.

16. x = t, y = t 2, t ∈ R

17. x = 3t + 1, y = t, t ∈ [−2, 5]
18. x = 3t + 1, y = 2t, t ∈ [0, 8]

19. x = 1 − 2t, y = 5 − 3t, t ∈ R

20. x = 2t − 1, y = 3t + 5, t ∈ R

21. x = t 3 − t, y = t 3 + t, t ∈ R

22. x = 2 sin3 t, y = 2 cos3 t, t ∈ [0, 2π ]

23. x = cos5 t, y = sin5 t, t ∈ [0, 2π ]

In Exercises 24–34 sketch the parametric curve by eliminating
the parameter.

24. x = 2t − 1, y = 3t + 5, t ∈ R

25. x = 2t − 1, y = 3t 2 + 5, t ∈ R

26. x = t + 2, y = e t, t ∈ R

27. x = tan t, y = tan t, t ∈
(
−π

2
,
π

2

)

28. x = cos 2t, y = −sin 2t, t ∈ [0, 2π ]

29. x = 3 cos t, y = 4 sin t, t ∈ [0, 2π ]
30. x = sin t, y = cos 2t, t ∈ [0, 2π ]

31. x = cosh t, y = sinh t, t ∈ R

32. x = sec t, y = tan t, t ∈
(
−π

2
,
π

2

)

33. x = csc t, y = cot t, t ∈ (0, π )
34. x = log10 t, y = ln t, t ∈ (0, ∞)

35. Finish Example 1 (b) by showing that the graph of the
parametric equations x = cos t, y = sin t, t ∈ [π , 2π ] is
the bottom half of the unit circle centered at the origin
with a counterclockwise direction of motion.

In Exercises 36–39 provide a parametrization with the given
properties

36. The curve is a circle centered at the origin. It is traced once,
clockwise, starting at the point (0, 1) with t ∈ [0, 2π ].

37. The curve is a circle centered at the origin. It is traced
once, counterclockwise, starting at the point (0, 3) with
t ∈ [0, 1].

38. The curve is a circle centered at the point (a, b). It is traced
once, counterclockwise, starting at the point (a+r, b) with
t ∈ [0, 2π ].

39. The curve is a circle centered at the origin. It is traced once,
counterclockwise, and contains all points of the unit circle
except for (0, −1) with t ∈ R.

40. Complete the calculation in Example 7 by using the

trigonometric identity sin2
(

θ

2

)
= 1

2
(1 − cos θ ) to show

that
∫ 2π

0

√
1 − cos θ dθ = 4

√
2.

In Exercises 41–44 find an equation for the line tangent to the
parametric curve at the given value ot t.

41. x = 2t − 1, y = 3t + 5, t = −1.
42. x = t + 2, y = e t, t = 0.

43. x = t 2, y = (2 − t)2, t = 1
2

.

44. x = cos3 t, y = sin3 t, t = π

4
.

In Exercises 45–48 use Example 6 to find
d2y
dx2

for the paramet-

ric curve at the given value of t. Note that these are the same
parametric equations as in Exercises 41–44.

45. x = 2t − 1, y = 3t + 5, t = −1.
46. x = t + 2, y = e t, t = 0.
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47. x = t 2, y = (2 − t)2, t = 1
2

.

48. x = cos3 t, y = sin3 t, t = π

4
.

In Exercises 49–53 sketch the parametric curve and find its
length.

49. x = 1 + t 2, y = 3 + 2t 3, t ∈ [0, 1]
50. x = cos θ + θ sin θ , y = sin θ − θ cos θ , θ ∈ [0, 2π ]

51. x = sin3 θ , y = cos3 θ , θ ∈ [0, 2π ]
52. x = e t cos t, y = e t sin t, t ∈ [0, 1]

53. x = 5 + 2t, y = e t + e−t, t ∈ [0, 1]
54. Show that the graph of the parametric equations

x = a + (c − a)t, y = b + (d − b)t, t ∈ [0, 1]

is a line segment from (a, b) to (c, d ).

In Exercises 55–60 use the result of Exercise 54 to find para-
metric equations for the line segments connecting the given
pairs of points in the direction indicated.

55. From (1, −3) to (6, 7) 56. From (6, 7) to (1, −3)

57. From (1, 4) to (−3, 5) 58. From (−3, 5) to (1, 4)

59. From (π , 3) to (π , 8) 60. From (0, e) to (−6, e)

61. Use the arc length formula for parametric equations and
your answer to Exercise 55 to find the distance between
the points (1, −3) and (6, 7). Verify your answer by using
the distance formula to compute the distance.

62. A trochoid is a generalization of a cycloid in which the
point tracing the path is on a spoke of the wheel, instead
of on the circumference. Thus, if the radius of the wheel
is r, the point is k units from the center of the wheel, such
that either k < r or k > r. (When k > r, you can think
of the point being on a flange extending the radius of the
wheel. This case occurs as train wheels roll, since there
is an extension of each wheel beyond the portion of the
wheel rolling on the track.) Find parametric equations for
the trochoid.

x

y

63. An epicycloid is another variation of a cycloid in which
the point tracing the path is on the circumference of a
wheel, but the wheel is rolling without slipping on the
outside of another wheel, instead of along a horizontal
track. If the radius of the rolling wheel is k and the radius
of the fixed wheel is r, find parametric equations for the
epicycloid.

k

θ
P(x, y)

(r, 0)

y

x

64. The involute of a circle is the curve described by the end-
point P of a thread as it unwinds from a fixed circular
spool. For simplicity suppose that the radius of the cir-
cular spool is r and that when the spool is placed with its
center at the origin, the point P starts at (r, 0). Assume that
the thread is unwinding counterclockwise. Find para-
metric equations for the point P. (Hint: If the string is
taut at all times as it unwinds, the length of segment PT
is rθ .)

T

P(x, y)θ

y

x

Applications
65. (a) Find an integral that represents the length of an el-

liptical track whose equations are given by the para-
metric equations x = sin θ , y = 3 cos θ , θ ∈ [0, 2π ],
where x and y are in kilometers.

(b) Approximate the length of the track, using the mid-
point method with 20 subintervals.

66. Annie needs to make a crossing in her kayak from an
island to a north–south coastline 3 miles due east. It is
foggy, so she cannot see any landmarks to steer by. In-
stead, she takes a compass heading due east and sticks to
it all the way across. Tidal currents in the channel push

her boat southward at a speed proportional to the dis-
tance from either shoreline. She paddles at 2 miles per
hour from west to east. That is, her east–west position
changes with time as x ′(t) = 2. Her north–south posi-
tion changes as y ′(t) = 1.778t 2 − 2.667t. Her starting
position was (0, 0), at time t = 0.
(a) Solve the two given differential equations by integrat-

ing with respect to t to find a parametric description
of Annie’s path across the channel.

(b) How far south of her starting point does Annie make
landfall?
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(c) Use a numerical integration technique to determine
the distance she paddles.

1 2 3
x

y

t, hours

3333333333333333333333333333
x

t, hours

x’(t) � 2

333333333333333

kayak

current

67. Annie has to make the same crossing as in Exercise 66
two weeks later, again in a fog. Remembering how far
off course she was pushed previously, she takes a com-
pass heading 15 degrees north of east this time. Thus, her

eastward speed is x ′(t) = 2 cos
π

12
and her north–south

velocity is y ′(t) = 0.444x(t)(x(t) − 3) + 2 sin
π

12
.

(a) Solve the two given differential equations by inte-
grating with respect to t to find a parametrization of
Annie’s path across the channel.

(b) How far south of her starting point does Annie make
landfall this time?

(c) How far does she paddle? How long does she
paddle?

Proofs

68. Show that every function y = f (x) can be written as para-
metric equations.

69. Use your result from Exercise 68 to show that the arc
length formula for a function y = f (x) is a special case
of the arc length formula for a parametric curve.

70. Let c and d be constants, and for t ∈ [a, b] let f (t) and g(t)
be differentiable functions with continuous first deriva-
tives. Prove that the arc length of the parametric curve
given by x = f (t), y(t) = g(t) for t ∈ [a, b] is equal to
the arc length of the parametric curve defined by x =
c + f (t), y(t) = d + g(t) for t ∈ [a, b] for every c and d
in R.

71. Let k > 0 be a constant, and let f (t) and g(t) be differen-
tiable functions of t with continuous first derivatives for
every t ∈ [a, b]. Prove that the arc length of the curve de-
fined by the parametric equations

x = k f (t), y = kg(t), t ∈ [a, b]

is k times as long as the arc length of the curve defined by
the parametric equations

x = f (t), y = g(t), t ∈ [a, b].

What is the arc length of the curve defined by the equa-
tions

x = f (kt), y = g(kt), t ∈ [a/k, b/k]?

72. Show that the parametric curve associated with the linear
parametric equations

x = m 1t + b1, y = m 2t + b 2, t ∈ R

is a line if m 1 and m 2 are not both zero. For what values of
m 1 and m 2 will y be a function of x? In this case, what is
the slope of the line? What do the equations describe if m 1
and m 2 are both zero? Find parametric equations x = f (t),
y = g(t) such that neither f nor g is a linear function, but
the parametric curve associated with the equations is a
line.

73. In Example 5 we saw that the cycloid

x = rθ − r sin θ , y = r − r cos θ , θ ∈ R

has a horizontal tangent line at each odd multiple of π .
Show that the cycloid has a vertical tangent at each even

multiple of π by showing that lim
θ→2kπ

dy
dx

does not exist

wherever k is an integer.

Thinking Forward

Parametric equations in three dimensions: Parametric equations
can also be used to describe curves in three dimensions. Try
to visualize the graphs described by the following parametric
equations.

� A line through the origin:

x = t, y = −3t, z = 2t, t ∈ R

� A helix centered on the z-axis:

x = cos t, y = sin t, z = t, t ∈ R

� An expanding helix:

x = t cos t, y = t sin t, z = t, t ∈ [0, ∞)
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9.2 POLAR COORDINATES

� Polar coordinates are defined

� Conversion formulas between rectangular and polar coordinates are derived

� Principles of graphing with polar coordinates are introduced

Plotting Points in Polar Coordinates

We begin by specifying a point called the pole and a ray emanating from the pole called
the polar axis, as follows:

y

x
polar axis

pole

In the preceding figure you will notice that we’ve placed the pole at the origin of a
rectangular coordinate system and the polar axis along the positive x-axis. This is the con-
vention we always use with polar coordinates. As we will see later in the section, this con-
vention will also allow us to derive formulas for converting between polar coordinates and
rectangular coordinates.

In a polar system we use the coordinate pair (r, θ ) to represent a point in the plane.
The first coordinate r is the signed distance from the pole, while θ is an angular measure,
in radians, from the polar axis. When θ > 0, we rotate counterclockwise from the polar
axis, and when θ < 0, we rotate clockwise. When r > 0, we measure r units along the ray
specified by the value of θ . When r < 0, we measure |r| units in the opposite direction,
which is equivalent to moving in the positive direction along the ray θ + π , as shown here:

For r > 0 we move along the ray θ ;
for r < 0 we move along θ + π

θ

θ � π

r < 0

r > 0

y

x

In the rectangular coordinate system, once scales on the axes are specified, there is a
one-to-one correspondence between points in the plane and coordinates that name points.
This relationship does not hold in the polar coordinate system. We have the following
theorem:
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THEOREM 9.5 Equivalent Polar Coordinates

(a) The polar coordinates (r, θ + 2πk) represent the same point for every integer k.

(b) The polar coordinates (−r, θ + π ) represent the same point as (r, θ ) for any value
of θ .

(c) The polar coordinates (0, θ ) represent the pole for any value of θ .

Converting Between Polar and Rectangular Coordinates

To convert from polar coordinates to rectangular coordinates, we will write the coordinates
x and y as functions of the coordinates r and θ . Then, given r and θ , we will easily be
able to find the corresponding x and y. The figure that follows shows a point in the first
quadrant of the plane and its geometric representation in terms of both rectangular and
polar coordinates. In the other three quadrants we can draw similar figures and reach the
same conclusions as we do shortly; however, for simplicity we will use the first-quadrant
picture as our general example.

θ

r y

x

(x, y) or (r, θ)

y

x

Using the triangle shown, we see that cos θ = x
r

and sin θ = y
r
. This gives us the following

theorem:

THEOREM 9.6 Converting from Polar to Rectangular Coordinates

If a point in the plane is represented by (r, θ ) in polar coordinates, then the rectangular
coordinates of the point are given by (x, y), where

x = r cos θ and y = r sin θ.

Note that given the polar coordinates (r, θ ) of any point in the plane, there will be a unique
pair of rectangular coordinates (x, y) representing the point.

To convert from rectangular coordinates to polar coordinates, we need to have a way of
finding r and θ given any coordinates x and y. Applying the Pythagorean theorem and the
definition of the tangent function to the triangle in the figure shown, we have the following
relationships:

THEOREM 9.7 Converting from Rectangular to Polar Coordinates

If a point in the plane is represented by (x, y) in rectangular coordinates, then the polar
coordinates (r, θ ) of the point satisfy the following formulas:

r 2 = x 2 + y 2 and tan θ = y
x
.
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Notice that the formulas in Theorem 9.7 do not give unique values of r and θ for given
values of x and y. This is to be expected, since every point in the plane has multiple po-
lar coordinate representations. For example, the rectangular coordinates (1, 1) may be ex-

pressed as
(√

2, π

4
+ 2kπ

)
or

(
−√

2, 3π

4
+ 2kπ

)
, for any positive integer k.

The Graphs of Some Simple Polar Coordinate Equations

In rectangular coordinates, the simplest possible equations are those of the form x = a and
y = b, where a and b are constants. Appropriately enough, the graphs of these equations are
very simple as well: vertical and horizontal lines, respectively. In polar coordinates we first
consider the equations r = c and θ = α, where c and α are constants. For any real number c,
the polar equation r = c describes the set of points |c| units from the pole. Therefore, the
graph of r = c is a circle with radius |c| centered at the pole, as shown next at the left. For
any real number α, the polar equation θ = α describes the set of points with polar angle α.
At first you might think that this would give a graph of the ray with polar angle θ . However,
remember that when θ = α, the value of r can be either positive or negative. Therefore,
the graph of θ = α is a line through the pole, as shown here at the right:

r = c θ = α.

�c�

y

x

y

x
α

Two other simple categories of polar equations are those defined by

r = 2a cos θ and r = 2a sin θ ,

where a �= 0. The following theorem tells us that these are the equations of circles passing
through the pole and tangent to one of the coordinate axes.

THEOREM 9.8 Circles Tangent to the Coordinate Axes at the Pole

For a �= 0, the graphs of the equations

r = 2a cos θ and r = 2a sin θ

are the circles whose equations in rectangular coordinates are

(x − a)2 + y 2 = a2 and x 2 + ( y − a)2 = a2,

respectively.

Proof. We prove that (x − a)2 + y 2 = a2 is another equation for r = 2a cos θ and leave the other
case for Exercise 68. We multiply both sides of r = 2a cos θ by r and use the facts that r 2 = x 2 + y 2

and x = r cos θ to obtain
x 2 + y 2 = 2ax.
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If we subtract 2ax from each side of the equation and then complete the square, we get

(x − a)2 + y 2 = a2,

as required. The graph of this equation is the circle with radius a and centered at the point (a, 0).
The circle is tangent to the y-axis and passes through the pole.

Examples and Explorations

EXAMPLE 1 Plotting points with polar coordinates

Plot the points that have polar coordinates
(

2, π

3

)
and

(
−1, −π

2

)
.

SOLUTION

To plot
(

2, π

3

)
, we first locate the ray θ = π

3
and move 2 units (in the positive direction)

along this ray, as shown next at the left. Similarly, to plot the point
(
−1, −π

2

)
, we first

find the ray θ = −π

2
and move 1 unit in the negative direction along that ray. Note that

this operation is equivalent to moving one unit in the positive direction along the ray θ =
−π

2
+ π = π

2
, as shown here at the right:

y

x

π

3

(2,    )π

3
2

y

x

π

2

�
π

2

(1,    ) or (�1, �   )π

2
π

2

1

�

EXAMPLE 2 Converting from polar to rectangular coordinates

Find the rectangular coordinates of the points that have polar coordinates
(

2, π

3

)
and(

−1, −π

2

)
.

SOLUTION

We use the conversion formulas given in Theorem 9.6. For the first of the two pairs of
coordinates we have

x = 2 cos π

3
and y = 2 sin π

3
.

The rectangular coordinates are (1,
√

3 ).

The second coordinate pair converts to

x = −1 cos
(
−π

2

)
= 0 and y = −1 sin

(
−π

2

)
= 1.

Compare these results with those you obtained in Example 1. �
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EXAMPLE 3 Finding all the polar coordinate representations for a point

Find all of the pairs of polar coordinates for the point with rectangular coordinates (1,
√

3 ).

SOLUTION

We use the conversion formulas given in Theorem 9.7 along with the fact that the point

(1,
√

3 ) lies in the first quadrant. We have r 2 = 12 + (
√

3 )2 = 4 and tan θ =
√

3
1

= √
3.

Thus, either r = 2 and θ = π

3
+ 2πk, where k ∈ Z, or r = −2 and θ = 4π

3
+ 2πk, where

k ∈ Z. Note that although the angles θ = 4π

3
+ 2πk are in the third quadrant for each k,

the fact that r < 0 still gives us a point in the first quadrant.

This example builds on Example 2. When we converted the point
(

2, π

3

)
to rectangular

coordinates, we got the unique answer of that example. However, since every point in the
polar plane has infinitely many names, when we convert back to polar coordinates we
expect infinitely many answers. �

EXAMPLE 4 Graphing polar equations by converting to rectangular coordinates

Graph the equations r = 4 cos θ and r = 5 csc θ.

SOLUTION

We will begin with the polar equation r = 4 cos θ . From Theorem 9.8 we know that this is
the equation for the circle whose equation in rectangular coordinates is (x − 2)2 + y 2 = 4,
as shown next at the left.

Now consider the polar equation r = 5 csc θ . We begin by multiplying both sides of the
equation by sin θ to obtain

r sin θ = 5.

By Theorem 9.6 we have r sin θ = y; combining this equation with the preceding one, we
must have y = 5. Therefore, the graph of r = 5 csc θ is a horizontal line at height 5, as
shown here at the right:

r = 4 cos θ r = 5 csc θ

y

x
2 4

y

y � 5

x

�

CAUTION We graphed the polar equation r = 5 csc θ in Example 4 by transforming it to rectangular
coordinates. Using Theorems 9.6 and 9.7, we can always transform an equation in polar
coordinates to one in rectangular coordinates. However, as the next example demonstrates,
we cannot expect that every polar equation will have a simple expression in rectangular co-
ordinates. Therefore, we may not understand the polar equation any better by transforming
it to rectangular coordinates.

EXAMPLE 5 Converting a polar equation to an equation in rectangular coordinates

Convert the polar equation r = cos 2θ to rectangular coordinates.
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SOLUTION

We begin by using the double-angle identity for cosine, cos 2θ = cos2 θ − sin2 θ . We now
have r = cos2 θ − sin2 θ . Since cos θ = x

r
and sin θ = y

r
, we have

r = x 2

r 2 − y 2

r 2 ,

or equivalently,
r 3 = x 2 − y 2.

Finally, because r = ±(x 2 + y 2)1/2, we obtain the equation

±(x 2 + y 2)3/2 = x 2 − y 2.

We could now use the techniques of Section 2.4 to graph ±(x 2 + y 2)3/2 = x 2 − y 2.
However, that would be making the problem of graphing the relatively simple polar equa-
tion r = cos 2θ a complicated mess involving implicit functions. In the next section we will
be discussing methods for graphing polar equations like r = cos 2θ directly. �

TEST YOUR? UNDERSTANDING
� What are the formulas for converting between rectangular coordinates and polar coor-

dinates? How are these formulas derived?

� Why does every point in the plane have a unique pair of rectangular coordinates
that represents the point, but have infinitely many pairs of polar coordinates that rep-
resent it?

� Why are the polar coordinates
(

8, −π

6

)
not a representation of the point with rectangu-

lar coordinates (−4, 4
√

3 ), even though these values of r, θ , x, and y satisfy the formulas
r 2 = x 2 + y 2 and tan θ = y

x
?

� Why is the graph of the equation r = 2a cos θ a circle in the polar plane?

� Why is the graph of the equation r = b sec θ a line in the polar plane?

EXERCISES 9.2

Thinking Back

Plotting in a rectangular coordinate system:

� Plot the points (1, 1), (1, 2), (1, 3), and (1, 4) in a rect-
angular coordinate system. Fill in the blank: These
points all lie on the same line.

� Plot the points (−1, −2), (0, −2), (1, −2), and
(2, −2) in a rectangular coordinate system. Fill in the
blank: These points all lie on the same
line.

� Plot the equations x = −3 and y = 5 in a rectangu-
lar coordinate system. Where do the graphs of these
two equations intersect?

Completing the square:

� Consider the equation x 2 +y 2 = 4x. Use the method
of completing the square to show that this equation
is equivalent to (x − 2)2 + y 2 = 4. (This calculation
was used in Example 4.)

� Find the center and radius of the circle with equation

x 2 + y 2 + 6x − 8y − 44 = 0

by completing the square.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Each point in the plane has a unique
representation in rectangular coordinates.

(b) True or False: Each point in the plane has a unique
representation in polar coordinates.

(c) True or False: If b �= c, then the graphs of the polar
equations r = b and r = c are different.

(d) True or False: If α �= β, then the graphs of the polar
equations θ = α and θ = β are different.
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(e) True or False: The graph of r = csc θ for −π

2
< θ <

π

2
is a horizontal line in a polar coordinate system.

(f) True or False: In a polar coordinate system, the coor-
dinates (r, θ ) and (r, θ + π ) represent the same point
if and only if r = 0.

(g) True or False: When A and B are nonzero constants,
the graph of r = A sin θ + B cos θ is a circle in a polar
coordinate system.

(h) True or False: Every function r = f (θ ) in a polar coordi-
nate system can be expressed in terms of rectangular
coordinates x and y.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two pairs of polar coordinates for the point (0, 3)
given in rectangular coordinates.

(b) Two equations for the line y = x in polar coordinates.
(c) The equations of two distinct circles with radius 2 tan-

gent to the the x-axis at the pole in polar coordinates.

3. Explain why every point in the polar coordinate plane
has infinitely many different polar coordinate represen-
tations.

4. Consider the point in the plane given by polar coordinates

(r, θ ) =
(

2,
π

3

)
.

(a) Express this point in polar coordinates where r = 2,
but θ �= π

3
, if possible.

(b) Express this point in polar coordinates where θ = π

3
,

but r �= 2, if possible.
(c) Express this point in polar coordinates where r �= 2

and θ �= π

3
, if possible.

5. Explain why the point (r, θ ) =
(

8, −π

3

)
is not a polar

representation of the point with rectangular coordinates
(x, y) = (−4, 4

√
3 ), even though these values of r, θ , x,

and y satisfy the formulas r 2 = x 2 + y 2 and tan θ = y
x

.
Include a picture with your explanation.

6. Explain why the graphs of r = 3 and r = −3 are identical
in a polar coordinate system.

7. Find all values of c such that the graphs of r = c and
r = −c are the same in a polar coordinate system.

8. Explain why the graphs of θ = π

2
and θ = −π

2
are iden-

tical in a polar coordinate system.

9. Find all values of α such that the graphs of θ = α and
θ = −α are the same in a polar coordinate system.

10. In Example 5 we converted the simple polar equation
r = cos 2θ into the messy rectangular equation ±(x 2 +
y 2)3/2 = x 2 − y 2. Does this rectangular equation have a
simpler rectangular coordinate form? If so, what is it? If
not, why not?

11. Explain why the inequalities r > 0 and 0 < θ <
π

2
together describe the points in the first quadrant. Use
similar inequalities to describe the points in the third
quadrant.

12. Explain why the inequality 0 ≤ r ≤ 2 describes the points
inside or on the circle with radius 2 and centered at the
origin. Use a similar inequality to describe the points in
the annulus shown here:

y

x
4 6

13. Find all polar coordinates that represent the point (1, 0)
given in rectangular coordinates.

14. Find all polar coordinates that represent the point (0, 1)
given in rectangular coordinates.

15. Find all polar coordinates that represent the point (−1, 0)
that is also given in polar coordinates.

16. Find all values of a and b such that (a, b) represents the
same point whether it is given in rectangular coordinates
or polar coordinates.

Skills

In Exercises 17–23 the polar coordinates for several sets of
points are given. Find the rectangular coordinates for each of
the points, and then plot and label the points in the same polar
coordinate system.

17.
(

3,
π

6

)
,

(
−3,

π

6

)
,

(
3, −π

6

)
and

(
−3, −π

6

)

18. (1, 0), (2, 0), (3, 0), and (4, 0)

19.
(

5,
π

2

)
,

(
−5, − 3π

2

)
,

(
5,

5π

2

)
and

(
−5, −π

2

)

20.
(

0,
π

6

)
,

(
0,

π

3

)
, (0, π ) and (0, −π )

21.
(

1,
π

4

)
,

(
2,

π

4

)
,

(
3,

π

4

)
and

(
4,

π

4

)

22. (2, 0),
(

2,
π

4

)
,

(
2,

π

2

)
, (2, π ) and

(
2,

3π

2

)

23.
(

1, −π

2

)
,

(
2, −π

2

)
,

(
3, −π

2

)
and

(
4, −π

2

)

In Exercises 24–31 find all polar coordinate representations for
the point given in rectangular coordinates.

24. (0, 0) 25. (1, 0)

26. (0, −3) 27. (0, 2)

28. (3, 4) 29. (6, 2
√

3 )

30. (−2, 0) 31. (3, −3)
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In Exercises 32–47 convert the equations given in polar coor-
dinates to rectangular coordinates.

32. θ = π 33. θ = π

4

34. θ = −π

6 35. θ = 7π

6

36. r = 2 cos θ 37. r = 5 sin θ

38. r = −3 sec θ 39. r = 6 csc θ

40. r = tan θ 41. r = sin 2θ

42. r 2 = sin θ 43. r 2 = cos θ

44. r = sin 4θ 45. r = θ

46. r = cos 4θ 47. r = sin3 θ

In Exercises 48–55 convert the equations given in rectangular
coordinates to equations in polar coordinates.
48. x = 0 49. y = 0

50. x = 4 51. y = x

52. y = √
3x 53. y = −3

54. y = x + 1 55. y = mx

In Exercises 56–59 convert the equations given in polar coor-
dinates to equations in rectangular coordinates.
56. r = 1, r = −2, r = 3.

57. r = k, for each positive integer k less than 10.

58. θ = 0, θ = π

4
, θ = −π

2
.

59. θ = kπ

6
, for each positive integer k less than 12.

Applications
In Exercises 60 and 61 Ian is a rock climber. Rock protection
these days relies on a process called camming. The idea for
camming devices is that they push harder against the rock
when they are loaded with the force of a fall.

60. Ian has one cam that is 1 inch wide, with a point where
the rope attaches on its right corner, so that the device
pivots on its left corner. In other words, the left corner
of the cam becomes the center of a circle, and the point
where the rope attaches follows the curve r = 1.

x
x

θ

r �
 1

1
0.75

y

(a) If a crack is 0.75 inch wide, at what angle must Ian
turn the device in order to put it into the crack?
(Hint: compute the x-coordinate of the right edge of the
device.)

(b) If Ian falls, the rope will pull on the right edge of the
cam while the left edge remains wedged in a fixed
position. What happens to the width of the cam in
the crack?

61. Ian has another camming device, one that has two arms
extending from a point where the rope attaches in the
center.

y

xθθθθθθθθθθθθθθθ

0.5

x

r 

0.75

The outside edge of each arm follows the curve r = 0.75.
The ends of the arms make an angle ±θ with the rope,
and the rope pulls along the ray θ = 0. Ian can retract the
arms so that θ is small in order to put the device into a
crack, and then a spring pulls them back so that each arm
wedges against the walls of the crack.

(a) Ian puts the device into a horizontal crack that is
1 inch tall. What angle do the arms make with the
rope? (Hint: Compute the y-coordinates of the two arm
ends.)

(b) What happens if Ian falls, causing the rope to pull
outwards (rightwards) in the crack?
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Proofs

62. Prove that the graph of the equation

r = k sec θ , −π

2
< θ <

π

2
,

is a vertical line for any value of k �= 0.

63. Prove that the graph of the equation

r = k csc θ , 0 < θ < π ,

is a horizontal line for any value of k �= 0.
64. Let a �= 0. Prove that the graph of the equation

r = a
1 − cos θ

is a parabola in a polar coordinate system. When a �= 0,
what is the graph of the equation r = a

1 − sinθ
?

65. Let a �= 0 and 0 < b < 1. Prove that the graph of the
equation

r = a
1 − b cos θ

is an ellipse in a polar coordinate system. When a �= 0 and
b > 1, what is the graph of the equation r = a

1 − bcosθ
?

66. In this problem you will prove the three parts of
Theorem 9.5:

(a) Prove that the polar coordinates (r, θ + 2πk) repre-
sent the same point for every integer k.

(b) Prove that the point with polar coordinates
(−r, θ + π ) represents the same point as (r, θ ) for
any value of θ .

(c) Prove that the polar coordinates (0, θ ) represent the
pole for any value of θ .

67. Show that the graph of the equation r = k cos θ is a circle
tangent to the y-axis for any k �= 0. What are the center
and radius of the circle?

68. Finish the proof of Theorem 9.8 by showing that the graph
of the equation r = 2k sin θ is a circle with center (0, k) and
radius k tangent to the x-axis for any k �= 0.

69. Modify the proof of Theorem 9.8 to show that the graph
of the equation r = k sin θ + l cos θ is a circle. Find the
center and radius in terms of k and l.

70. Find and prove a formula for the distance between the
points (r1, θ1) and (r2, θ2) when they are plotted in a polar
coordinate system.

Thinking Forward

� Understanding symmetry:

When a function y = f (x) has the property that
f (−x) = f (x) for every value of x in the domain
of f , the function is said to be an even function and
its graph in a rectangular coordinate system is sym-
metrical with respect to the y-axis. When a func-
tion r = f (θ ) has the property that f (−θ ) = f (θ ) for
every value of θ in the domain of f , what geometrical
property would the graph of r = f (θ ) have when it is
plotted in a polar coordinate system?

� Understanding symmetry:

When a function y = f (x) has the property that
f (−x) = −f (x) for every value of x in the domain of
f , the function is said to be an odd function and its
graph in a rectangular coordinate system is symmetri-
cal with respect to the origin. When a function r = f (θ )
has the property that f (−θ ) = −f (θ ) for every value of
θ in the domain of f , what geometrical property would
the graph of r = f (θ ) have when it is plotted in a polar
coordinate system?
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9.3 GRAPHING POLAR EQUATIONS

� A general method for graphing polar curves is provided

� Symmetry tests for polar curves are discussed

� Several categories of polar curves are introduced

Using the θ r-plane to Get Information About a Polar Graph

In Section 9.2 we introduced polar coordinates and studied how points and some simple
equations are graphed. We can always transform an equation in polar coordinates to an
equation in rectangular coordinates. Some polar equations have nice rectangular coordi-
nate representations. Since we are now experts at graphing curves in a rectangular coor-
dinate system, the transformed equation may be easier to graph. However, as we saw in
Example 5 of Section 9.2, the transformation process to rectangular coordinates does not
always result in a nice equation. To aid in our understanding of graphing polar equations in
the polar plane (see the figure that follows at the left), we introduce the θr-plane (figure at
right), which is simply a rectangular coordinate system with the variable θ plotted on the
horizontal axis and the variable r plotted on the vertical axis.

The polar plane The θr-plane

θ

r

(r, θ)

y

x

r

θ

r

(r, θ)
θ

In Example 4 we graphed the equation r = 4 cos θ in the polar plane. We reproduce
that graph next at the left. The figure at the right shows the graph of the same equation in
the θr-plane.

r = 4 cos θ in the polar plane r = 4 cos θ in the θr-plane

y

x
(2, 0) (4, 0)

r

θ

�
π

2
π

2
3π

2
2ππ

4

�4

What is the connection between these two graphs? More generally, assuming that we are
successful at graphing an equation r = f (θ ) in the θr-plane, how can we use the properties
of that graph to draw the desired curve in the polar plane? Our reason for doing this should
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be clear: We have a great deal of experience drawing curves in a rectangular coordinate
system, and we wish to draw upon this experience to help us learn to understand curves
in the polar plane.

First consider the inequalities that determine the four quadrants in the polar plane, as
shown in the following table:

Quadrant Inequality

I 0 < θ <
π

2

II
π

2
< θ < π

III π < θ <
3π

2

IV
3π

2
< θ < 2π

The following diagrams show the same information in the polar plane (left) and in the
θr-plane (right):

y

x

III

IVIII

r

θ
π

2
3π

2
2ππ

IV I II III IV I

Notice that in the θr-plane the quadrant numbers start repeating; this is because, for
example, quadrant I in the polar plane corresponds to angles 0 < θ <

π

2
as well as angles

2π < θ <
5π

2
and, in fact, to any angle in an interval of the form

(
0 + 2πk, π

2
+ 2πk

)
,

where k is an integer.

The figure at the right illustrates the correspondence with the polar plane quadrants
only when r is positive. Recall that when r is negative points are plotted in the diagonally
opposite quadrant. The following figure shows this situation schematically:

r

θ
π

2
3π

2
2ππ

IV

II

I

III

II

IV

III

I

IV

II

I

III
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Given the graph of a polar equation in the θr-plane, what does this information tell us
about the graph of the curve in the polar plane? Consider again the graph of r = 4 cos θ .
The following figure regraphs that equation with various pieces color-coded according to
the sectors shown in the previous graph:

r = 4 cos θ in the θr-plane

4

�4

r

θ
π

2
3π

2
π

I

IV I

IV

Notice that the black and blue portions of the graph will appear in the first quadrant when
graphed in polar coordinates while the red and green portions will be in the fourth quadrant
of the polar plane. This analysis tells us why the graph plotted appears only in the first and
fourth quadrants; however, it does not tell us why the graph is a circle.

Certain points in the θr-plane can tell us a great deal about the corresponding graph in
the polar plane. For example, consider those points in the θr-plane that lie on the θ-axis.
The r-coordinate of each of these points is zero. Since every point in the polar form (0, θ )
is drawn at the pole of the polar plane, each point on the θ-axis corresponds to the pole in
the polar plane. In terms of the previous color-coded graph, this means that the points at
θ = π

2
and θ = 3π

2
(and, in fact, for θ any odd multiple of π

2
) correspond to the pole in the

polar plane.

The points in the θr-plane with θ-coordinate of the form πk and π

2
+ πk for some

integer k are also good reference points. Points with θ = πk will correspond to points in
the polar plane that lie on the horizontal axis. Points with θ = π

2
+ πk will correspond to

points on the vertical axis in the polar plane. In terms of the color-coded graph, this means
that the only vertical intercept of r = 4 cos θ in the polar plane will be at the pole (since the
points where θ = π

2
+ πk have r = 0). Moreover, there are only two horizontal intercepts

of r = 4 cos θ in the polar plane. We have already identified the horizontal intercept at
the pole, and the only other horizontal intercept appears at the single point with polar
coordinates (4, 0) or (−4, π ) or (4, 2π ), etc. Notice that by examining certain points on the
graph in the θr-plane, we have obtained all of the quadrant and intercept information for
the corresponding graph in the polar plane.

Symmetry in Polar Graphs

In Section 0.2 we discussed functions whose graphs are symmetrical with respect to the
y-axis and functions whose graphs are symmetrical with respect to the origin. These func-
tions are called even and odd, respectively. Graphs that do not represent functions can also
show these symmetries. For example, the graph that follows at the left is symmetrical with
respect to the vertical axis, but it is not the graph of a function in rectangular coordinates
because it fails the vertical line test. Similarly, the graph at the right is symmetrical with
respect to the origin, but it is not the graph of a function in rectangular coordinates.
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Symmetry with respect to the vertical axis Symmetry with respect to the origin

y

x

y

x

There is one more type of symmetry we’d like to consider: symmetry with respect to
the x-axis. Using rectangular coordinates, we have the following definition (compare this
with the definition of y-axis symmetry given in Definition 0.9 of Section 0.2):

DEFINITION 9.9 Symmetry with Respect to the x-axis

A graph in the xy-plane is said to be symmetrical with respect to the x-axis if, for every
point (x, y) on the graph, the point (x, −y) is also a point on the graph.

Following is an example of a graph that is symmetrical with respect to the x-axis:

Symmetry with respect to the x-axis

y

x

We have now considered three types of symmetry. It is an interesting fact that if a graph
has any two of those types of symmetry, it also has the third! The proof is straightforward
and is left for Exercise 56.

THEOREM 9.10 Relationships Among Symmetries in the Plane

Consider the following three types of symmetry:

(a) symmetry with respect to the vertical axis;

(b) symmetry with respect to the horizontal axis;

(c) symmetry with respect to the origin.

If a graph in the plane has any two of these symmetries, then it has the third as well.

We are particularly concerned about symmetries in the polar plane because many of the
equations we will be graphing have one or all of these symmetries. Such symmetries may
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be recognized in the polar plane by understanding the relationships between r and θ . By
writing the definitions of these symmetries in terms of r and θ , we arrive at the properties
summarized in the following theorem:

THEOREM 9.11 Symmetries in the Polar Plane

(a) A graph is symmetrical with respect to the x-axis if, for every point (r, θ ) on the
graph, the point (r, −θ ) is also on the graph.

(b) A graph is symmetrical with respect to the y-axis if, for every point (r, θ ) on the
graph, the point (−r, −θ ) is also on the graph.

(c) A graph is symmetrical with respect to the origin if, for every point (r, θ ) on the
graph, the point (−r, θ ) is also on the graph.

You can visualize these symmetry properties in the figure shown next at the left.

CAUTION Note that because every point in the polar plane has multiple representations in terms of
its polar coordinates, the symmetries in Theorem 9.11 may also be expressed in terms of
other relationships between coordinates on the graph. For example, if (r, π − θ ) is on the
graph whenever (r, θ ) is on the graph, then the graph will be symmetrical with respect to
the y-axis; see the following figure at the right:

y

x

(r, θ)

r

(r, �θ)

(�r, �θ)

(�r, θ)

θ

(r, θ)

y

x

r

(r, π � θ)

θ

For example, we can see that the polar graph r = 4 cos θ is symmetrical with respect
to the x-axis. Later we will examine a polar function that has all three types of symmetry
mentioned in Theorem 9.11. Of course, polar graphs can lack all of these symmetries. For
example, consider one of the simplest polar equations: r = θ , θ ≥ 0. This simple equation
has a quite beautiful graph, known as the spiral of Archimedes.

The spiral of Archimedes

y

x
(2π, 0)

(4π, 0)

(6π, 0)
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Before we proceed to our examples, we list several of the more common polar curves
in the following compendium:

Equation Name Example

r = a ± b cos θ

r = a ± b sin θ ,
where a, b ∈ R,
a �= 0, b �= 0

Cardioid when
∣∣∣ a

b

∣∣∣ = 1 r = 1 + cos θ

Limaçon when
∣∣∣ a

b

∣∣∣ �= 1

� with inner loop when
∣∣∣ a

b

∣∣∣ < 1 r = 1 + 2 cos θ

� dimpled when 1 <

∣∣∣ a
b

∣∣∣ < 2 r = 3 + 2 cos θ

� convex when
∣∣∣ a

b

∣∣∣ > 2 r = 5 + 2 cos θ

r = a sin kθ
r = a cos kθ ,
where a ∈ R

and k ∈ Z

Circle when |k| = 1 r = sin θ

Rose curve with 2k petals when
k �= 0 is even

r = cos 2θ

Rose curve with k petals when
k �= ±1 is odd

r = cos 3θ

r 2 = ±a sin 2θ

r 2 = ±a cos 2θ ,
where a ∈ R and a �= 0

Lemniscate r 2 = sin 2θ

r 2 = cos 2θ

We will explore each of these curves shortly.
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The names of several of the curves in the table are derived from the Greek and/or Latin.
“Limaçon” comes from the Latin “limax,” or snail. “Cardioid” is derived from the Greek
word “kardia,” or heart. “Lemniscate” has antecedents in both Greek and Latin; “lemni-
cos” and “lemniscus” both mean “ribbon.”

Examples and Explorations

EXAMPLE 1 Showing that the graphs of polar equations have symmetry

Show that r = 4 cos θ is symmetrical with respect to the x-axis and that r = cos 2θ is
symmetrical with respect to the x-axis, the y-axis, and the origin.

SOLUTION

The cosine is an even function; therefore 4 cos(−θ ) = 4 cos θ for every value of θ . Thus, if
(r, θ ) is on the graph of r = 4 cos θ , then (r, −θ ) will also be on the graph. Therefore, the
graph of r = 4 cos θ is symmetrical with respect to the x-axis.

We next turn to the equation r = cos 2θ . Showing that the graph of this equation is
symmetrical with respect to the x-axis is similar to our analysis of r = 4 cos θ and is left for
Exercise 15. To show that the graph is symmetrical with respect to the y-axis we will show
that cos(2(π − θ )) = cos 2θ for every value of θ . We have

cos(2(π − θ )) = cos(2π − 2θ ) ← distributive property

= cos(−2θ ) ← periodicity of cosine

= cos 2θ. ← symmetry of cosine

Therefore, r = cos 2θ is symmetrical with respect to the y-axis. We are now done because,
by Theorem 9.10, r = cos 2θ must also be symmetrical with respect to the origin. �

EXAMPLE 2 Graphing a cardioid

Graph the polar equation r = 1 + cos θ.

SOLUTION

We take this opportunity to show how some of the properties of the graphs of the polar
functions in our earlier compendium may be constructed. First, notice that since 1 + cos θ

is periodic with period 2π , we need only consider values of θ in the interval [0, 2π ). Now
consider the graph of r = 1 + cos θ in the θr-plane. This is the graph of cos θ shifted up
one unit, as shown in the next figure. From certain points on this graph, we will be able to
extract quadrant and intercept information about the polar graph.

r = 1 + cos θ in the θr-plane

r

θ
π

2
3π

2
2ππ

2

1
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As we discussed earlier in this section, the points on the horizontal axis in the preceding
graph correspond to the pole in the polar graph of the equation, so we know that the
polar graph of r = 1 + cos θ passes through the pole. Moreover, the points on the graph
where θ is an integral multiple of π correspond to horizontal intercepts on the polar graph;
in the given graph, the points at θ = 0 and θ = 2π both correspond to the horizontal
intercept (r, θ ) = (2, 0) on the polar graph and the point at θ = π corresponds to the pole,
as already mentioned. Finally, at odd multiples of θ = π

2
, the given graph indicates that

the polar graph of r = 1 + cos θ will have vertical intercepts at the polar coordinates
(

1, π

2

)

and
(

1, 3π

2

)
. This intercept information is recorded in the graph that follows at the left. We

can also obtain quadrant information as shown in the following figure at the right:

Some points on the polar graph
of the cardioid

Sectors in the θr-plane
indicate quadrants in the polar plane

y

x
(2, 0)

π

2

3π

2

(1,    )

(�1,      )

I II III IV

r

θ
π

2
3π

2
2ππ

2

1

When we test for symmetry, we see that 1 + cos(−θ ) = 1 + cos θ ; therefore the graph
in the polar plane will be symmetrical with respect to the horizontal axis. This means that
we need only consider values of θ in the interval [0, π ]. The following table shows values
of r for several angles θ ∈ [0, π ]:

θ 0
π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6
π

r 2 1 +
√

3
2

1 +
√

2
2

3
2

1
1
2

1 −
√

2
2

1 −
√

3
2

0

Plotting the intercepts and points from the table gives us the figure that follows at the
left. Finally, we connect the plotted points with a smooth curve and use the symmetry of
the graph to obtain the graph on the right, called a cardioid.

Points on the graph of r = 1 + cos θ The cardioid r = 1 + cos θ

y

x
(2, 0)(1, 0)

π

2(1,    )

y

x
(2, 0)

π

2(1,    )

As mentioned in our chart before the examples, there are other equations whose graphs
are cardioids in the polar plane. For example, the graph of the equation r = 2(1 − sin θ ) is
another cardioid:
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The cardioid r = 2(1 − sin θ )

y

x
(2, 0)

3π

2(�4,      )

�(2, π)

In the Exercise 39 we ask you to graph this curve. �

EXAMPLE 3 Graphing a limaçon

Graph the curve defined by the polar equation r = 1
2

+ cos θ .

SOLUTION

The graph here is a member of the class of curves called the limaçons. We again start by
graphing the equation r = 1

2
+ cos θ in the θr-plane:

r = 1
2

+ cos θ in the θr-plane

r

π

2
3π

2
2ππ

1

θ

As in Example 2, r = 1
2

+ cos θ is periodic with period 2π and its graph in the polar plane

will be symmetrical with respect to the x-axis. Therefore we need only consider values of
θ in the interval [0, π ]. Horizontal intercepts occur at integral multiples of π , resulting in

the polar points
(

3
2

, 0
)

and
(
− 1

2
, π

)
. We will have a third horizontal intercept at the pole,

corresponding to the value where r = 0. Here 0 = 1
2
+cos θ has the unique solution θ = 2π

3

on the interval [0, π ], and that solution corresponds to the polar point
(

0, 2π

3

)
. The only

additional vertical intercept occurs when θ = π

2
; here we have the polar point

(
1
2

, π

2

)
.

Unlike the situation in Example 2, the sign of r varies when θ is in the interval [0, π ].
We have r > 0 when 0 ≤ θ <

2π

3
and r < 0 when 2π

3
< θ ≤ π . Here all values of

θ in the interval
(

0, π

2

)
will be graphed in the first quadrant of the polar plane. Second-

quadrant angles in the interval
(

π

2
, 2π

3

)
will be graphed in the second quadrant of the polar

plane, while second-quadrant angles in the interval
(

2π

3
, π

)
will be graphed in the fourth

quadrant of the polar plane! The following table lists the values of r for several angles
θ ∈ [0, π ]:
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θ 0
π

6
π

4
π

3
π

2
2π

3
3π

4
5π

6
π

r
3
2

1
2

+
√

3
2

1
2

+
√

2
2

1
1
2

0
1
2

−
√

2
2

1
2

−
√

3
2

−1
2

The figure that follows at the left shows a plot of the intercepts and points given in the
preceding table. By connecting these points with a smooth curve and using the symmetry
of the graph, we obtain the limaçon shown at the right. As mentioned earlier, the term
“limaçon” is derived from the Latin word for snail. The snail’s “shell” is more obvious in
the plotted points than in the final graph.

Points on the graph of r = 1
2

+ cos θ The limaçon r = 1
2

+ cos θ

y

x
1
2(   , 0)

1
2

3
2(   , 0)

π

2(   ,    )

y

x
1
2(   , 0) 3

2(   , 0)

1
2

π

2(   ,    )

1
2(�   ,     )3π

2

�

EXAMPLE 4 A rose with four petals

Graph the polar equation r = cos 2θ .

SOLUTION

In Example 1 we showed that the graph of r = cos 2θ is symmetrical with respect to the
x-axis, with respect to the y-axis, and with respect to the origin. These symmetries will save
us a considerable amount of work as we graph the given curve. In particular, we need only

graph the curve on the interval
[
0, π

2

]
and then let the symmetry of the graph do the rest

of the work.

We start our analysis by graphing the equation in the θr-plane:

r = cos 2θ in the θr-plane

π

2

r

2ππ 3π

2

1

�1

θ

The only horizontal intercepts on the interval θ ∈
[
0, π

2

]
will occur at the polar point (1, 0)

and when r is zero. We obtain the other horizontal intercept at the pole by finding the

unique solution of the polar equation 0 = cos 2θ for θ ∈
[
0, π

2

]
. This occurs when θ = π

4
.

On our interval there will be one vertical intercept, at the polar point
(
−1, π

2

)
.
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From the graph, we can see that the sign of r varies when θ is in the interval
[
0, π

2

]
. We

have r > 0 on the interval
[
0, π

4

)
and r < 0 on

(
π

4
, π

2

]
. Thus the values of θ in the interval(

0, π

4

)
will be graphed in the first quadrant while the values of θ in the interval

(
π

4
, π

2

)
will

be graphed in the third quadrant. The following table lists values of r for several angles in

the interval
[
0, π

2

]
:

θ 0
π

12
π

8
π

6
π

4
π

3
3π

8
5π

12
π

2

r 1

√
3

2

√
2

2
1
2

0 −1
2

−
√

2
2

−
√

3
2

−1

Plotting the intercepts and points from the table gives us the picture shown next at the left.
We connect these points with a smooth curve and use the symmetry of the graph to obtain
the four-petaled rose graphed at the right.

Points on the graph of r = cos 2θ The rose r = cos 2θ

y

x
(1, 0)

3π

2(�1,      )

y

x
(1, 0)(�1, π)

π

2(1,    )

3π

2(�1,      )
�

In Exercise 55 you are asked to show that when n is a positive odd integer, the polar
rose r = cos nθ or r = sin nθ is traced twice on the interval [0, 2π ]. This implies that when
n is odd, we need only graph r = sin nθ on the interval [0, π ]. In addition, in Exercise 58
you are asked to show that for every integer n, the graph of r = sin nθ is symmetrical with
respect to the y-axis. These facts will prove useful in the next example.

EXAMPLE 5 A rose with three petals

Graph the polar equation r = sin 3θ.

SOLUTION

Because r = sin 3θ is a rose defined with the sine function and the odd integer n = 3, we

need only consider the graph of r = sin 3θ for θ ∈
[
0, π

2

]
. The only horizontal intercepts

of r = sin 3θ on the interval
[
0, π

2

]
will occur at the pole (0, 0). However, the curve will

pass through the pole twice, initially when θ is zero and again when θ is π

3
. On our interval

there will be one more vertical intercept at
(
−1, π

2

)
.

The sign of r varies when θ is in the interval
[
0, π

2

]
: r > 0 on

[
0, π

3

)
and r < 0 on(

π

3
, π

2

]
. Thus the values of θ in the interval

(
0, π

3

)
will be graphed in the first quadrant,

while the values of θ in the interval
(

π

3
, π

2

)
will be graphed in the third quadrant. We again

tabulate values of r for several angles in the interval
[
0, π

2

]
:

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:51

744 Chapter 9 Parametric Equations, Polar Coordinates, and Conic Sections

θ 0
π

18
π

12
π

9
π

6
2π

9
π

4
5π

18
π

3
7π

18
5π

12
4π

9
π

2

r 0
1
2

√
2

2

√
3

2
1

√
3

2

√
2

2
1
2

0 −1
2

−
√

2
2

−
√

3
2

−1

Plotting the intercepts and these points gives us the graph shown next at the left. Con-
necting the points with a smooth curve and using the symmetry of the graph, we obtain
the three-petaled rose graphed at the right.

Points on the graph of r = sin 3θ The rose r = sin 3θ

y

x
(1, 0)1

2(   , 0)

1
2

π

2(   ,    )

3π

2(�1,      )

1
2(�   ,     )3π

2

y

x
0.5�0.5

�1

0.5

�

EXAMPLE 6 A lemniscate

Graph the polar equation r 2 = sin 2θ.

SOLUTION

First we note that θ cannot be a second- or fourth-quadrant angle, because if θ were in one
of those quadrants, then sin 2θ would be negative (since the sine is negative on the intervals
(π , 2π ) and (3π , 4π )). In this case, because r 2 ≥ 0, the equation r 2 = sin 2θ could not hold.
Therefore the graph of our equation will appear only in the first and third quadrants of the
polar plane.

We next show that the graph of r 2 = sin 2θ is symmetrical with respect to the origin. It
suffices to show that for each point (r, θ ) on the graph of r 2 = sin 2θ , the point (r, θ + π )
is also on the graph. We have sin(2(θ + π )) = sin(2θ + 2π ) = sin 2θ = r 2. Thus, (r, θ + π )
satisfies the equation r 2 = sin 2(θ + π ), so (r, θ + π ) is a point on the graph. Therefore the
graph of r 2 = sin 2θ is symmetrical with respect to the origin.

We again tabulate values of r for several angles in the interval
[
0, π

2

]
:

θ 0
π

12
π

8
π

6
π

4
π

3
3π

8
5π

12
π

2

r 0

√
2

2

√√
2

2

√√
3

2
1

√√
3

2

√√
2

2

√
2

2
0

Plotting the intercepts and points from the table gives us the graph shown next at the left.
We connect these points with a smooth curve and use the symmetry of the graph to obtain
the lemniscate graphed at the right.
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Points on the graph of r 2 = sin 2θ The lemniscate r 2 = sin 2θ

y

x
0.5

0.5

y

x
0.5�0.5

0.5

�0.5

�

CHECKING
THE ANSWER

It is important to understand the basics of graphing polar curves by hand, but a graph-
ing calculator or computer algebra system may be used to check your work. Calculators
or software can also be used to graph many interesting examples that are too complicated
to graph by hand. For example, the three figures that follow show some polar curves sug-
gested by T. H. Fay (American Mathematical Monthly, 96 (1989), 442–443). The figures
were graphed with the computer program Mathematica.

y

x

y

x

y

x

TEST YOUR? UNDERSTANDING
� Given a polar equation, why is it helpful to graph the equation in the θr-plane first?

� When θ is a first-quadrant angle, in which quadrants might the polar point corre-
sponding to θ on the graph of an equation F(r, θ ) = 0 appear? What about when θ is a
second-, third-, or fourth-quadrant angle? Why does this happen?

� How are the symmetries of a graph in polar coordinates recognized?

� When a polar function is symmetrical about both the x- and y-axes, why is it also sym-
metric about the origin?

� Which polar equations have polar graphs that are circles, cardioids, limaçons, roses,
etc.?

EXERCISES 9.3

Thinking Back

� Finding points of intersection: Graph the functions

y = 1 + sin x and y = cos x,

and find all points of intersection.
� Finding points of intersection: Graph the functions

y = 1
2

+ cos x and y = 1
2

− cos x,

and find all points of intersection.

� Translations of graphs: What is the relationship
between the graphs of the functions

y = f (x) and y = f (x − k)

when k > 0?
� Translations of graphs: What is the relationship

between the graphs of the functions

y = f (x) and y = f (x) + k

when k > 0?
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If
π

2
< θ < π , then the point (r, θ ) is

located in the second quadrant when it is plotted in a
polar coordinate system.

(b) True or False: The graph of r = sin 5θ is a five-petaled
rose.

(c) True or False: The graph of r = cos 6θ is a six-petaled
rose.

(d) True or False: If a graph in the polar plane is symmet-
rical with respect to the origin, then for every polar
point (r, θ ) on the graph, the polar point (−r, θ + 2π )
is also on the graph.

(e) True or False: The graph of a polar function r = f (θ )
is symmetrical with respect to the y-axis if, for every
point (r, θ ) on the graph, the point (r, −θ ) is also on
the graph.

(f) True or False: When k is a positive integer, the polar
roses r = sin kθ and r = cos kθ are symmetrical with
respect to both the x-axis and y-axis if and only if k is
even.

(g) True or False: In the rectangular coordinate system the
graph of the equation (x 2+y 2) 2 = k(x 2−y 2) is a lem-
niscate for every k > 0.

(h) True or False: In the rectangular coordinate system the
only function y = f (x) that is symmetrical with re-
spect to both the y-axis and the origin is y = 0.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An equation in polar coordinates whose graph is a
cardioid.

(b) An equation in polar coordinates whose graph is a
limaçon.

(c) An equation in polar coordinates whose graph is a
lemniscate.

3. How can the graph of an equation r = f (θ ) in the
θr-plane be used to provide information about the graph
of the same equation in the polar plane?

4. Explain the significance of the following figure:

r

θ
π

2
3π

2
2ππ

IV

II

I

III

II

IV

III

I

IV

II

I

III

What is being shown in this figure?

5. This problem concerns the connections between the polar
plane and the θr-plane.

(a) Which points in the θr-plane correspond to the pole
in the polar plane, and why?

(b) Which points in the θr-plane correspond to the hor-
izontal axis in the polar plane, and why?

(c) Which points in the θr-plane correspond to the ver-
tical axis in the polar plane, and why?

6. What is the relationship between the graphs of r = f (θ )
and r = f (θ − k) in the θr-plane for k > 0? What is the re-
lationship between the two graphs in polar coordinates?

7. Fill in the blanks:

(a) On a graph that is symmetrical with respect to the x-

axis in the polar plane, if the polar point
(

2,
π

3

)
is on

the graph, then the polar point is also on the
graph.

(b) On a graph that is symmetrical with respect to the

y-axis in the polar plane, if the polar point
(

2,
π

3

)
is

on the graph, then the polar point is also on
the graph.

(c) On a graph that is symmetrical with respect to the y-
axis in the Cartesian coordinate system, if the point
(3, 5) is on the graph, then the point is also
on the graph.

(d) On a graph that is symmetrical with respect to the

origin in the polar plane, if the polar point
(

2,
π

3

)
is

on the graph, then the polar point is also on
the graph.

(e) On a graph that is symmetrical with respect to the
origin in the Cartesian coordinate system, if the point
(3, 5) is on the graph, then the point is also
on the graph.

8. Fill in the blanks:

(a) If the point (r, θ + π ) is on the graph of a polar curve
whenever the point (r, θ ) is on the graph, then the
curve is symmetrical .

(b) If the point is on the graph of a polar curve
whenever the point (r, θ ) is on the graph, then the
curve is symmetrical with respect to the origin. (There
is more than one way to answer this question cor-
rectly!)

(c) If the point (−r, −θ ) is on the graph of a polar curve
whenever the point (r, θ ) is on the graph, then the
curve is symmetrical .

9. For each of the following, give an example of a polar equa-
tion whose graph has the type(s) of symmetry listed, if
possible. If such an equation doesn’t exist, explain why.
(a) symmetry about the x-axis
(b) symmetry about the y-axis
(c) symmetry about the origin
(d) symmetry about the origin but not about the x-axis
(e) symmetry about the x-axis, y-axis, and origin
(f) symmetry about the x-axis and y-axis but not about

the origin
10. For each type of polar curve, give a general form of the

polar equation for that curve:

(a) a line passing through the pole
(b) a circle centered at the pole
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(c) a cardioid
(d) a limaçon
(e) a rose with an odd number of petals
(f) a rose with an even number of petals
(g) a lemniscate
(h) the spiral of Archimedes

11. What type of polar curve is named for a heart? For a snail?
For a ribbon?

12. What is the difference between a cardioid and a
limaçon?

13. Which kind(s) of symmetry does the rose r = cos 5θ

have? How many petals does this curve have? Which

kind(s) of symmetry does the rose r = sin 8θ have? How
many petals does this curve have?

14. Using polar coordinates, the graphs of the equations
r = cos kθ and r = sin kθ are roses with k petals when
k ≥ 3 is an odd integer. What are the polar graphs of
these equations when k = 1? What are the graphs of
these equations when k is a negative odd integer?

15. Finish Example 1 by showing that r = cos 2θ is symmet-
rical with respect to the horizontal axis.

16. In this section we graphed many polar equations, and
most of our examples followed similar procedures. De-
scribe a general procedure for sketching the graph of a
polar equation.

Skills

Graph the equations in Exercises 17–24 in the θr-plane. Label
each arc of your curve with the quadrant in which the corre-
sponding polar graph will occur.

17. r = 1 − cos θ

18. r = 1
2

− sin θ

19. r = 2 + sin θ

20. r = sin 2θ

21. r = cos2 θ

22. r = θ , r ≤ 0

23. r = sec θ

24. r = 1 + sin 3θ

Graph the equations in Exercises 25–32 in the polar plane.
Compare your graphs with the corresponding graphs in Ex-
ercises 17–24.

25. r = 1 − cos θ

26. r = 1
2

− sin θ

27. r = 2 + sin θ

28. r = sin 2θ

29. r = cos2 θ

30. r = θ , r ≤ 0

31. r = sec θ

32. r = 1 + sin 3θ

Find the smallest interval necessary to draw a complete graph
of the functions in Exercises 33–38, and then graph each func-
tion using a graphing calculator or computer algebra system.

33. r = cos(2θ/5)

34. r = 4 cos 3θ + cos 2θ

cos θ

35. r = 4 cos θ + cos 9θ

cos θ

36. r = e sin θ − 2 cos 4θ

37. r = e sin θ − 2 cos 4θ + sin5(θ/12)

38. r = e cos 2θ − 1.5 cos 4θ

39. Graph the cardioid r = 2(1 − sin θ ).

For each pair of functions in Exercises 40–45,

(a) Algebraically find all values of θ where f 1(θ ) = f 2(θ ).

(b) Sketch the two curves in the same polar coordinate
system.

(c) Find all points of intersection between the two curves.

40. f 1(θ ) = sin 2θ and f 2(θ ) = −sin 2θ

41. f 1(θ ) = sin θ and f 2(θ ) = cos θ

42. f 1(θ ) = 1 and f 2(θ ) = 2 sin 2θ

43. f 1(θ ) = 1 + sin θ and f 2(θ ) = 1 − cos θ

44. f 1(θ ) = sin θ and f 2(θ ) = sin 2θ

45. f 1(θ ) = sin2 θ and f 2(θ ) = cos2 θ

46. Graph the cardioids r = 1 + cos θ , r = 2(1 + cos θ ), and
r = 3(1 + cos θ ) in the same polar coordinate system.
What are the relationships among these three graphs?
How does changing the constant k in the graph of the
cardioid r = k(1 + cos θ ) affect the graph? What happens
when k < 0?

47. Graph the cardioids r = 1 + sin θ and r = 1 − sin θ . What
is the relationship between these two graphs?

48. Graph the limaçons r = 1
2

+ sin θ , r = 1 + sin θ , r = 2 +
sin θ , and r = 3 + sin θ . Make a conjecture about the be-
havior of graphs of limaçons of the form r = a + sin θ for
various values of a. In particular, try to understand which
values of a will give a limaçon with an inner loop. Which
values of a will give a limaçon with a dimple? Which val-
ues of a will give a convex limaçon?

49. Graph the limaçons r = 3 + cos θ , r = 3 + 3 cos θ , r = 3+
4 cos θ , and r = 3 + 6 cos θ . Make a conjecture about the
behavior of graphs of limaçons of the form r = 3 + b cos θ

for various values of b. In particular, try to understand
which values of b will give a limaçon with an inner
loop. Which values of b will give a limaçon with a dim-
ple? Which values of b will give result in a convex
limaçon?
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50. Consider the polar equation r 2 = cos 2θ .

(a) Show that the polar graph of this equation is sym-
metrical with respect to the x-axis.

(b) Show that the polar graph of this equation is sym-
metrical with respect to the origin.

(c) Explain why the polar graph of the equation is sym-
metrical with respect to the y-axis.

(d) Use the techniques of this section to graph the
equation.

(e) How could you graph the equation with a calculator
or computer algebra system?

51. Find an equation for the curve obtained as the set of mid-
points of every chord with one endpoint at (1, 0) on the
unit circle r = 1. Express your answer (a) with parametric
equations, (b) in rectangular coordinates, and (c) in polar
coordinates.

y

x
(1, 0)

52. The graph of r = cos
( 5

2
θ
)

is the flower-like graph with

10 petals, shown next at the left:

y

x
(1, 0)(�1, π)

3π

2(�1,      )

π

2(1,    )

(�1, π)

y

x
(1, 0)

3π

2(�1,      )

π

2(1,    )

The graph of r = cos
( 5

3
θ
)

is also a flower-like graph, but

with 5 petals, shown in the preceding figure at the right.

(a) Why does the graph of r = cos
( 5

2
θ
)

have 10 petals

while the graph of r = cos
( 5

3
θ
)

has only 5?

(b) Let
p
q

be a positive rational number reduced to low-

est terms with p > q. How many petals will the curve

r = cos
( p

q
θ
)

have? What is the smallest interval of

the form [0, b] required to obtain the graphs of these
curves? Explain how to calculate b in terms of p and
q.

(c) What is the graph of r = cos kθ when k is an irrational
number?

Applications
53. Annie is using wood framing and a fabric shell to design a

kayak. For simplicity, she considers making the cross sec-
tion of the kayak follow the curve r = A(1 − 0.5 sin θ ),
where A = 1 at the middle of the kayak and becomes
smaller as the cross section is taken farther from the mid-
dle of the boat. Sketch the cross section of the boat when
A = 1.

54. Annie is concerned that her kayak will be too deep—that
it will draw too much water or else have too much free-
board to be easy to paddle. She decides to investigate a

cross-section function of the form

r = A(1 − 0.5 sin θ )(1 + 0.2 cos2 θ ).

(a) How does Annie need to alter the choice of A so that
the width of this boat is the same as that without the
term (1 + 0.2 cos2 θ )?

(b) Sketch this cross section with Annie’s choice of A
from part (a).

(c) Describe in words the effect that the multiplicative
term (1 + 0.2 cos2 θ ) has on the cross section of the
kayak. How is that effect achieved?

Proofs
55. Prove that when n is a positive odd integer, the polar rose

r = cos nθ or r = sin nθ is traced twice on the interval
[0, 2π ] and thus has exactly n petals.

56. Prove Theorem 9.10. That is, show that if a graph in the
plane has any two of three types of symmetry, namely,
symmetry about the x-axis, symmetry about the y-axis,
and symmetry about the origin, then it has the third type
of symmetry as well.

57. Prove that, for every even integer n, the graph of
r = sin nθ is symmetrical with respect to the x-axis.

58. Prove that, for every integer n, the graph of r = sin nθ is
symmetrical with respect to the y-axis.

59. Prove that, for every even integer n, the graph of
r = cos nθ is symmetrical with respect to the y-axis.

60. Prove that, for every integer n, the graph of r = cos nθ is
symmetrical with respect to the x-axis.

Thinking Forward
� Volume of a cylinder: Find the volume of the right cir-

cular cylinder with height 2 units and cross-sectional
circle given by the equation r = 4 cos θ .

� Volume of a sphere: Find the volume of the sphere
whose equator is given by the equation r = 4 cos θ .
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9.4 COMPUTING ARC LENGTH AND AREA
WITH POLAR FUNCTIONS

� A formula for finding the area bounded by a polar curve is derived

� We explain how polar functions can be expressed with parametric equations

� A formula for finding the arc length of a polar curve is derived

Computing the Area Bounded by Polar Curves

We’ve seen that many interesting regions in the plane are bounded by polar functions of
the form r = f (θ ). We will start this section by discussing how to compute the area of such
a region without transforming the equation into rectangular coordinates.

When working in rectangular coordinates, we used rectangles as our most “basic”
shape—that is, as the building blocks for approximating areas of more complicated re-
gions. When working in polar coordinates, it is more natural to approximate a region with
sectors of circles. For example, consider a region R in the polar plane bounded by two rays
θ = α and θ = β and a polar function of the form r = f (θ ), as shown next at the left.
(Regions of this type will be the typical polar regions we wish to approximate; compare our
work here with our work in rectangular coordinates when we considered the area under
the graph of a function y = f (x) from x = a to x = b.) The following figure at the right
shows the region R approximated with “wedges” (i.e., sectors of circles):

y

x

R

a

b r � f (θ)

y

x
a

b r � f (θ)

Of course, before we can use sectors of circles to approximate areas, we must determine
how to find the area of a sector of a circle. Consider a sector of a circle with radius r and
that has a central angle φ (measured in radians):

y

x

r

φ
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The area of the sector is a fraction of the area of the circle. Specifically, it is φ

2π
times the

area of the entire circle
(

i.e., φ

2π
(πr 2) = 1

2
φr 2

)
, as stated in the following theorem:

THEOREM 9.12 The Area of a Sector of a Circle

In a circle of radius r, the area of a sector with central angle φ, in radians, is given by

Area = 1
2
φr 2.

We will now return to the region R and its approximation with wedges. Although we
could easily approximate the area of this region with a fixed number of wedges, we want to
find the exact area; therefore we need to fix a general notation. The procedure is strikingly
similar to our work with Riemann sums in Chapter 4, except that instead of dealing with
approximating rectangles in rectangular coordinates, we will be dealing with approximat-
ing sectors in polar coordinates.

Let n be a positive integer, and define

�θ = β − α

n
and θ k = α + k�θ.

We also choose some point θ∗
k in each interval [θ k−1, θ k] and let Sk be the sector of the circle

with radius f (θ ∗
k ) centered at the origin and extending from the radius with polar angle θ k−1

to the radius with polar angle θ k. These are the sectors shown earlier as wedges.

By Theorem 9.12, the area of the kth sector Sk is 1
2

( f (θ∗
k))2�θ . The approximate area of

the region R is the sum of the areas of the sectors:

Area of region R ≈
n∑

k=1

1
2

( f (θ∗
k))2�θ.

Notice that this is a Riemann sum for the function 1
2

( f (θ ))2 on the interval [α, β]. Therefore,
the area of R will be the limit of the Riemann sum as n → ∞. That is,

Area of region R = lim
n→∞

n∑
k=1

1
2

( f (θ∗
k))2�θ.

We now have the following theorem:

THEOREM 9.13 The Area of a Region in the Polar Plane Bounded by a Function r = f (θ )

Let α and β be real numbers such that 0 ≤ β − α ≤ 2π . Let R be the region in the
polar plane bounded by the rays θ = α and θ = β and a positive continuous function
r = f (θ ). Then the area of region R is

1
2

∫ β

α

( f (θ ))2 dθ.

Computing Arc Length in Polar Coordinates

Every polar function of the form r = f (θ ) can be easily rewritten in terms of parametric
equations of the form x = x(θ ) and y = y(θ ). Recall that to transform from polar coordinates
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to rectangular coordinates we use

x = r cos θ , y = r sin θ.

If r = f (θ ), we immediately obtain

x = f (θ ) cos θ , y = f (θ ) sin θ.

These are the parametric equations that we sought.

For example, to express the cardioid with equation r = 1 + cos θ in terms of parametric
equations, we have

x = (1 + cos θ ) cos θ , y = (1 + cos θ ) sin θ.

By thinking of polar functions as parametric equations, we can use the work we just did
to find the arc length of a polar curve. If we combine the parametric equations x = f (θ ) cos θ

and y = f (θ ) sin θ with Theorem 9.4 of Section 9.1, which tells us how to compute
the arc length of a curve defined by parametric equations, we arrive at the following
theorem:

THEOREM 9.14 The Arc Length of a Polar Curve

Let r = f (θ ) be a differentiable function of θ such that f ′(θ ) is continuous for all θ ∈
[α, β]. Furthermore, assume that r = f (θ ) is a one-to-one function from [α, β] to the
graph of the function. Then the length of the polar graph of r = f (θ ) on the interval
[α, β] is ∫ β

α

√
( f ′(θ ))2 + ( f (θ ))2 dθ.

Proof. Theorem 9.4 tells us that when x and y are functions of the parameter θ , the arc length of
the curve on the interval [α, β] is

∫ β

α

√(
dx
dθ

)2

+
(

dy
dθ

)2

dθ.

Combining this integral with the parametric equations for the curve, x = f (θ ) cos θ and
y = f (θ ) sin θ , we have arc length

∫ β

α

√(
d

dθ
( f (θ ) cos θ )

)2

+
(

d
dθ

( f (θ ) sin θ )
)2

dθ.

Taking the derivatives inside the radical gives

∫ β

α

√
( f ′(θ ) cos θ − f (θ ) sin θ )2 + ( f ′(θ ) sin θ + f (θ ) cos θ )2 dθ.

After expanding the terms under of the radical and simplifying (you will do this in Exercise 58), we
obtain our result: ∫ β

α

√
( f ′(θ ))2 + ( f (θ ))2 dθ.

Examples and Explorations

EXAMPLE 1 Finding the area bounded by a polar rose

Calculate the area bounded by the curve r = cos 2θ .
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SOLUTION

This is the first of three examples in which we use Theorem 9.13 to find areas of polar
regions. As with all area computations, we must understand the area we are trying to com-
pute. When we can, we will use the symmetry of the region to simplify our work.

Recall that we graphed this polar rose in Example 4 in Section 9.3. We reproduce that
graph here, with one portion of the graph shaded:

y

x
(1, 0)

To compute the area of the curve we will use the symmetry of the rose. We will calculate
only the area of the shaded region of the figure—that is one-half of one of the petals (and

one-eighth of the total area). The shaded region corresponds to the values of θ in
[
0, π

4

]
.

Therefore the area of the shaded region is

1
2

∫ π/4

0
cos2 2θ dθ.

The value of this integral is π

16
. (You should be able to work out the details.) Since the area of

the shaded region is one-eighth of the region bounded by the polar rose, the area bounded

by the rose is π

2
square units. �

CAUTION In Example 1 we used the symmetry of the region to help us compute the area of a polar
rose. Using such symmetries will often make area computations easier. We could also have
computed the entire area from the integral

1
2

∫ 2π

0
cos2 2θ dθ ,

because the entire curve gets traced once on the interval [0, 2π ]. However, it is not always
correct to integrate over the interval [0, 2π ] to find the area of a polar rose. When n ≥ 3
is odd, any polar rose of the form r = cos nθ or r = sin nθ is traced twice on the interval
[0, 2π ]. Therefore, to find the areas bounded by these roses, we could use integrals of the
form

1
2

∫ π

0
cos2 nθ dθ or 1

2

∫ π

0
sin2 nθ dθ.

For these functions, integrating over the interval [0, 2π ] would give an answer that is twice
the correct value.

EXAMPLE 2 Finding the area between the loops of a limaçon

Calculate the area between the interior and exterior loops of the limaçon r = 1
2

+ cos θ .
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SOLUTION

This is the limaçon we graphed in Example 3 in Section 9.3. We reproduce that graph here,
again with one portion shaded:

y

x
1
2(   , 0) 3

2(   , 0)

1
2

π

2(   ,    )

1
2(�   ,     )3π

2

To compute the area between the loops of the limaçon, we will make use once more of
the symmetry of the region. We will calculate the area of the shaded region of the figure.
This area is one-half of our desired area. To do our calculation, we will first find the area
between the x-axis and top half of the outer loop of the limaçon. Next, we will find the area
between the x-axis and the top half of the inner loop. The difference of these areas will give
us the area of the shaded region.

To compute the area between the x-axis and the top half of the outer loop of the limaçon,
we use the integral

1
2

∫ 2π/3

0

(
1
2

+ cos θ
)2

dθ.

The upper limit of this integral is 2π

3
, because that is the smallest positive value of θ at

which r = 0 and the curve goes through the pole. The value of the integral is π

4
+ 3

√
3

16
. The

area between the x-axis and the top half of the inner loop of the limaçon is given by the
integral

1
2

∫ 4π/3

π

(
1
2

+ cos θ
)2

dθ.

We integrate here over the interval
[
π , 4π

3

]
because this is the interval that traces the desired

portion of the curve. Note that we could also have integrated over the interval
[

2π

3
, π

]
. This

would have given us the area between the x-axis and the bottom half of the inner loop of
the limaçon. Since the two halves of the inner loop have equal area, the values of the two

integrals would be equal. The value of either of these integrals is π

8
− 3

√
3

16
. Therefore, the

shaded region has area

π

4
+ 3

√
3

16
−

(
π

8
− 3

√
3

16

)
= π + 3

√
3

8
.

The area between the two loops is twice this value, π + 3
√

3
4

. �

EXAMPLE 3 Finding the area between two polar curves

Calculate the area of the region in the polar plane that is inside the circle r = 3 cos θ , but
outside the cardioid r = 1 + cos θ .
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SOLUTION

The region in question is shown as the shaded part of the following graph:

y

x
(2, 0)(1, 0) (3, 0)

π

3

π

2(1,    )

3π

2(�1,      )

Using the symmetry of the region, we know that it is enough to compute the area of the
top half of the region and then multiply by 2. Solving 3 cos θ = 1 + cos θ for θ ∈ [0, π ],
we see that the two curves intersect when θ = π

3
. Therefore the area of the top half of the

region is given by the definite integral

1
2

∫ π/3

0
((3 cos θ )2 − (1 + cos θ )2) dθ.

The value of this integral is π

2
. Since the area of the shaded region is one-half of the original

region, the desired area is π square units. �

EXAMPLE 4 Computing the arc length of a polar curve

Compute the arc length of the cardioid defined by the polar equation r = 1 + cos θ .

SOLUTION

By Theorem 9.14, we need only evaluate the integral
∫ 2π

0

√(
d

dθ
(1 + cos θ )

)2
+ (1 + cos θ )2 dθ.

After differentiating and simplifying, we find that the integral is equal to
∫ 2π

0

√
sin2 θ + 1 + 2 cos θ + cos2 θ dθ =

∫ 2π

0

√
2 + 2 cos θ dθ.

The value of this definite integral is 8 (as you will show in Exercise 16). Therefore the arc
length of the cardioid r = 1 + cos θ is 8 units. �

TEST YOUR? UNDERSTANDING
� Why is the integral

∫ β

α

1
2

( f ( θ ))2 dθ used to compute the area of a region in the polar

plane bounded by the function r = f (θ )? Why not just use the integral
∫ β

α
f (θ ) dθ?

� Given two polar equations r = f (θ ) and r = g(θ ), why is it insufficient to solve the
equation f (θ ) = g(θ ) for θ in order to find the points of intersection of the two graphs?
How do you find all points of intersection on the graphs of f and g?

� How can the symmetries of the graphs of polar functions be used to simplify area cal-
culations? Why is it important to know where curves intersect themselves or each other
when you are calculating an area?

� How do you transform a polar function of the form r = f (θ ) into parametric equations
x = x(θ ) and y = y(θ )?

� How do you compute the arc length of a polar function r = f (θ )?
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EXERCISES 9.4

Thinking Back

Calculate each of the following definite integrals (these are
precisely the definite integrals that were encountered in the
reading for this section):

� 1
2

∫ π/4

0
cos2 2θ dθ

� 1
2

∫ π

0
cos2 3θ dθ

� 1
2

∫ 2π/3

0

(
1
2

+ cos θ

)2

dθ

� 1
2

∫ 4π/3

π

(
1
2

+ cos θ

)2

dθ

� 1
2

∫ π/3

0
((3 cos θ )2 − (1 + cos θ )2) dθ

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: To approximate the area of the region in
the polar plane bounded by the function r = f (θ ) and
the rays θ = α and θ = β, we can use a sum of areas
of sectors of circles.

(b) True or False: Suppose we subdivide the interval of

angles θ ∈
[

π

4
,
π

2

]
into four equal subintervals. Then

�θ = π

16
.

(c) True or False: The area of the region in the polar plane
bounded by the function r = f (θ ) and the rays θ = α

and θ = β is given by the definite integral
∫ β

α
f (θ ) dθ .

(d) True or False: The area between the continuous func-
tion r = f (θ ) and the θ-axis on the interval [α, β] in
the θr-plane is given by the integral

∫ β

α
| f (θ )| dθ .

(e) True or False: Since the graph of r = 2 cos θ is
a circle with radius 1, the value of the integral
1
2

∫ 2π

0 (2 cos θ )2 dθ is π .

(f) True or False: The polar equation r = cos 4θ is traced
twice as θ varies from 0 to 2π .

(g) True or False: Every polar function of the form r = f (θ )
can be written with parametric equations.

(h) True or False: If r = f (θ ) is a differentiable
function for 0 ≤ θ ≤ 2π , then the integral∫ 2π

0

√
( f (θ ))2 + ( f ′(θ ))2 dθ represents the length of

the curve r = f (θ ) for 0 ≤ θ ≤ 2π .
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) An integral that represents the area of a circle with
radius a in polar coordinates.

(b) An integral that represents the circumference of a cir-
cle with radius a in polar coordinates.

(c) An integral that represents the circumference of a cir-
cle with radius a in terms of parametric equations.

3. When we use rectangular coordinates to approximate the
area of a region, we subdivide the region into vertical

strips and use a sum of areas of rectangles to approximate
the area. Explain why we use a “wedge” (i.e., a sector of a
circle) and not a rectangle when we use polar coordinates
to compute an area.

4. When we investigated area in rectangular coordinates in
Chapter 4, we often tried to find the areas of regions
under curves y = f (x) from x = a to x = b. In the po-
lar plane, the typical region whose area we wish to find is
a region R bounded by two rays θ = α and θ = β and a
polar function of the form r = f (θ ). Why is this our basic
type of region in the polar plane?

5. In this section we described a method for approximating
the area of a polar region bounded by two rays θ = α and
θ = β and a polar function r = f (θ ). The method involved
a “subdivide, approximate, and add” strategy in which we
fixed some general notation. Draw a carefully labeled pic-
ture that illustrates the roles of �θ , θ∗

k , and f (θ∗
k) for one

approximating sector Sk.
6. Explain how we arrive at the definite integral formula

1
2

∫ β

α
( f (θ ))2 dθ in Theorem 9.13 for computing the

area bounded by a polar function r = f (θ ) on an inter-
val [α, β]. (Your explanation should include a limit of
Riemann sums.) What would the integral

∫ β

α
f (θ ) dθ

represent?

7. Why do we require that 0 ≤ β − α ≤ 2π in the statement
of Theorem 9.13?

8. Consider the three-petaled polar rose defined by r =
cos 3θ . Explain why the definite integral

1
2

∫ 2π

0 cos2 3θ dθ

calculates twice the area bounded by the petals of this
rose.

9. Explain how the symmetries of the graphs of polar func-
tions can be used to simplify area calculations.

10. Explain how to use parametric equations to transform a
polar function r = f (θ ).

11. Explain how to use parametric equations to transform the
function y = f (x).

12. What is the formula for computing the arc length of a
polar curve r = f (θ ) where θ ∈ [α, β]? What conditions
on the polar function f (θ ) are necessary for this formula
to hold?
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13. Rick wants to show that the circumference of a unit circle
is 2π . He decides to use the arc length formula given in
Theorem 9.14 with the function r = sin θ on the interval
[0, 2π ] and obtains 2π as the length. Explain the two mis-
takes he made and how they cancelled to give the correct
answer.

14. Give a geometric explanation of why

n
2

∫ 2π/n

0
r 2 dθ = πr 2

for any positive real number r and any positive integer n.
Would the equation also hold for non-integer values of n?

15. The following integral expression may be used to find the
area of a region in the polar coordinate plane:

1
2

∫ π/4

0
sin2 θ dθ + 1

2

∫ π/2

π/4
cos2 θ dθ.

Sketch the region and then compute its area. (If you pre-
fer, you may use a simpler integral to compute the same
area.)

16. Complete Example 4 by evaluating the integral∫ 2π

0

√
2 + 2 cos θ dθ .

Skills

In Exercises 17–25 find a definite integral expression that rep-
resents the area of the given region in the polar plane, and
then find the exact value of the expression.

17. The region enclosed by the spiral r = θ and the x-axis on
the interval 0 ≤ θ ≤ π .

18. The region inside one loop of the lemniscate r 2 = sin 2θ .

19. The region between the two loops of the limaçon r =
1 + √

2 cos θ .
20. The region between the two loops of the limaçon r =√

3 − 2 sin θ .

21. The region inside the cardioid r = 3 − 3 sin θ and outside
the cardioid r = 1 + sin θ .

22. The region inside both of the cardioids r = 3−3 sin θ and
r = 1 + sin θ .

23. The region inside the circle x 2 + y 2 = 1 to the right of the

vertical line x = 1
2

.

24. The region bounded by the limaçon r = 1+k sin θ , where
0 < k < 1. Bonus: Explain why the area approaches π as
k → 0.

25. The graph of the polar equation r = sec θ − 2 cos θ for

θ ∈
(
−π

2
,
π

2

)
is called a strophoid. Graph the strophoid

and find the area bounded by the loop of the graph.

In Exercises 26–30 find a definite integral that represents the
length of the specified polar curve, and then find the exact
value of the integral.

26. The spiral r = θ for 0 ≤ θ ≤ 2π .

27. The spiral r = e θ for 0 ≤ θ ≤ 2π .
28. The spiral r = e θ for 2kπ ≤ θ ≤ 2(k + 1)π .

29. The spiral r = eαθ for 0 ≤ θ ≤ 2π , where α is a nonzero
constant.

30. The cardioid r = 2 − 2 sin θ , for 0 ≤ θ ≤ 2π .

In Exercises 31–36 find a definite integral that represents the
length of the specified polar curve, and then use a graph-
ing calculator or computer algebra system to approximate the
value of the integral.

31. One petal of the polar rose r = cos 2θ .
32. One petal of the polar rose r = cos 3θ .

33. One petal of the polar rose r = cos 4θ .
34. The entire limaçon r = 1 + 2 sin θ .

35. The inner loop of the limaçon r = 1 + 2 sin θ .
36. The limaçon r = 2 + cos θ .

37. Complete Example 2 by evaluating the integral expression
∫ 2π/3

0

(
1
2

+ cos θ

)2

dθ −
∫ 4π/3

π

(
1
2

+ cos θ

)2

dθ.

Each of the integrals or integral expressions in Exercises 38–44
represents the area of a region in the plane. Use polar coordi-
nates to sketch the region and evaluate the expressions.

38.
1
2

∫ 2π

0
(1 + sin θ )2 dθ

39.
∫ π

0
(1 + cos θ )2 dθ

40.
∫ π/2

−π/2
(2 − sin θ )2 dθ

41.
∫ π/2

0
sin 2θ dθ

42. 3
∫ π/2

0
sin2 3θ dθ

43.
1
2

∫ 2π

0
(2 + sin 4θ )2 dθ

44.
∫ π/2

−π/4

(√
2

2
+ sin θ

)2

dθ −
∫ −π/4

−π/2

(√
2

2
+ sin θ

)2

dθ

45. Use Theorem 9.13 to show that the area of the circle
defined by the polar equation r = a is πa2.

46. Use Theorem 9.13 to show that the area of the circle
defined by the polar equation r = 2a cos θ is πa2.

47. Use Theorem 9.14 to show that the circumference of the
circle defined by the polar equation r = a is 2πa.

48. Use Theorem 9.14 to show that the area of the circle
defined by the polar equation r = 2a sin θ is 2πa.

49. Find the area interior to two circles with the same radius
if each circle passes through the center of the other. (Hint:
Consider the circles r = a and r = 2a cos θ .)
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Applications
50. Annie is designing a kayak with central cross section

given by r = 1 − 0.5 sin θ , where r is measured in feet.

Kayak and central cross section

(1, 0)

y

x
(�1, π)

3π

2(�1,      )

She will cover the kayak with an impermeable
polyurethane fabric. The fabric comes in rolls 1 meter
wide. Annie needs to use the length of the fabric to run
the length of her boat, so she hopes to be able to use just
two widths of the fabric to cover the boat. Will she be able
to?

51. Annie’s second potential design for the central cross
section of her kayak is

r = 0.83(1 − 0.5 sin θ )(1 + 0.2 cos2 θ ).

New kayak and its central cross section

y

x
(1, 0)(�1, π)

3π

2(�1,      )

Will this design allow Annie to use just two widths of the
fabric? (Hint: Use a numerical integration technique to ap-
proximate the length of the cross section.)

52. Ian sometimes sews his own outdoor gear. He wants
to make a body-hugging climbing pack. The bottom of
the pack is the area outside the circle r = 14, but in-
side r = 14

√
2 sin θ , where r is measured in inches. Ian

requires the pack to carry 2500 cubic inches of gear. If
the pack has vertical sides, how tall does Ian need to
make it?

Proofs

53. Prove that the area of a sector with central angle φ in a

circle of radius r is given by A = 1
2
φr 2.

54. Prove that the area enclosed by one petal of the polar rose
r = cos 3θ is the same as the area enclosed by one petal
of the polar rose r = sin 3θ .

55. Prove that the area enclosed by all of the petals of the
polar rose r = cos 2nθ is the same for every positive
integer n.

56. Prove that the area enclosed by all of the petals of the
polar rose r = sin(2n + 1)θ is the same for every positive
integer n.

57. Prove that the part of the polar curve r = 1
θ

that lies inside

the circle defined by the polar equation r = 1 has infinite
length.

58. Complete the proof of Theorem 9.14 by verifying that

( f ′(θ ) cos θ − f (θ ) sin θ )2 + ( f ′(θ ) sin θ + f (θ ) cos θ )2

is equal to
( f ′(θ ))2 + ( f (θ ))2.

Thinking Forward

The cardioid defined by r = 1 + cos θ and its interior is
translated one unit perpendicular to the xy-plane to define a
“cylinder.”

� Volume: Find the volume of the cylinder.

� Surface area: Find the surface area of the cylinder.
Remember to include the top and bottom of the solid
in your calculations.
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9.5 CONIC SECTIONS*

� Circles, ellipses, parabolas, and hyperbolas

� Using rectangular coordinates to express conics

� Using polar coordinates to express conics

Circles and Ellipses

When the line y = x is revolved about the y-axis, we obtain a double cone. The point where
the two cones meet is called the vertex. Any plane that does not pass through the vertex
will intersect the cone in a curve called a conic section. There are four basic curves that
may be formed when a plane intersects this cone:

A circle

x

y

An ellipse

x

y

A parabola

x

y

A hyperbola

x

y

A plane through the vertex will intersect the cone in either a single point, a line, or a pair of
intersecting lines. These intersections are considered to be degenerate conic sections. For
the remainder of this section we will assume that our conic sections are not degenerate.

x

y

x

y

x

y

As shown, a plane perpendicular to the y-axis but that misses the vertex of the cone
intersects the cone in a circle. If such a plane is tilted slightly, the curve of intersection will
be an ellipse. As we know, the equation of the circle with center (x0, y0) and radius R can
be written in the form (x − x 0)2 + ( y − y 0)2 = R2. When the circle is centered at the origin,
its equation can be written in the form x 2 + y 2 = R2. Such an equation can also be written
in the form

x 2

R2 + y 2

R2 = 1.
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If we allow the denominators of the two quotients in this equation to be different positive
constants, we obtain the equation

x 2

A2 + y 2

B2 = 1.

You may know that the graph of such an equation is an ellipse.

x 2

9
+ y 2

4
= 1

x 2

9
+ y 2

16
= 1

y

x
3�3 center

major axis, 2A minor axis, 2B
2

�2

A

B

center

y

x
3�3

�4

4

A

B
minor axis, 2A major axis, 2B

When A > B, the graph of the ellipse x2

A2
+ y2

B2
= 1 is wider than it is tall. In this case,

the segment of length 2A is called the major axis of the ellipse and the segment of length
2B is called the minor axis. When A < B, the ellipse is taller than it is wide. In this case,
2B is the length of the major axis and 2A is the length of the minor axis. We may consider
a circle to be an ellipse in which the major and minor axes are equal.

More classically, each conic section has a geometric definition. For example, the geo-
metric definition for an ellipse is given in Definition 9.15:

DEFINITION 9.15 Ellipse

Given two points in a plane, called foci, an ellipse is the set of points in the plane such
that the sum of the distances to the two foci is a constant.

We will show that the curve with equation x2

A2
+ y2

B2
= 1, where A > B, satisfies Defini-

tion 9.15. The argument when A < B is similar.

y

x

A

A

A

B

�  A2 � B2 A2 � B2

Let V represent the graph of the equation x2

A2
+ y2

B2
= 1. From this equation, we may see

that V is symmetric with respect to both the x- and y-axes. Furthermore, the points (−A, 0),
(A, 0), (0, −B), and (0, B) are all on V . We will show that the sum of the distances from
every point on V to the points (−√

A2 − B2, 0) and (
√

A2 − B2, 0) is the constant 2A. This
will demonstrate that V is an ellipse and that (−√

A2 − B2, 0) and (
√

A2 − B2, 0) are the
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coordinates of the foci. We begin by letting C = √
A2 − B2 and (x, y) be a point on V .

Also,

C 2 = A2 − B2 and y 2 = B2 − B2x 2

A2 .

Let D1 represent the distance from (x, y) to the point (C, 0). Thus,

D2
1 = (x − C)2 + y 2

= x 2 − 2Cx + C 2 + B2 − B2x 2

A2 ← y 2 = B2 − B2x 2

A2

= A2 − 2Cx + x 2 − B2x 2

A2 ← C 2 = A2 − B2

= A4 − 2A2Cx + (A2 − B2)x 2

A2 ← algebra

= A4 − 2A2Cx + C 2x 2

A2 ← C 2 = A2 − B2

Since both the numerator and denominator of the last expression are perfect squares, D1 =
A2 − Cx

A
. In Exercise 55 you will be asked to perform a similar computation to show that the

distance D2 from the point (x, y) to the point (−C, 0) is D2 = A2 + Cx
A

. The sum of these
distances is

D1 + D2 = A2 − Cx
A

+ A2 + Cx
A

= 2A.

This gives us the following theorem (the proof of part (b) is similar to the preceding
argument and is left for Exercise 56):

THEOREM 9.16 The Equation and Foci of an Ellipse

(a) If A > B > 0, the graph of the equation x2

A2
+ y2

B2
= 1 is an ellipse with foci

(±√
A2 − B2, 0).

(b) If 0 < A < B, the graph of the equation x2

A2
+ y2

B2
= 1 is an ellipse with foci

(0, ±√
B2 − A2).

For example, the foci of the ellipse x2

25
+ y2

16
= 1 are (±√

25 − 16, 0) = (±3, 0). Furthermore,

the sum of the distances from every point on this ellipse to the foci is 10 units, the length
of the major axis.

10 � α

α

y

x
1 532 4�5 �2�3�4 �1

�3

�1

�2

3

2

1

Parabolas

As a conic section, a parabola is obtained when the plane slicing a cone is parallel to a side
of the cone. We studied parabolas extensively in Chapter 0. We know that the graph of the
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equation y = x 2 is an upwards-opening parabola with its vertex at the origin. We also saw
that the graph of the equation y = a(x − x0)2 +y0 is a parabola, as long as a �= 0. The vertex
of the new parabola is (x0, y0), while the constant a scales the graph of y = x 2 vertically. In
addition, if a < 0, the new parabola opens downwards.

We may also define a parabola geometrically:

DEFINITION 9.17 Parabola

A parabola is the set of all points in the plane equidistant from a given fixed line in the
plane, called the directrix of the parabola, and a given fixed point called the focus of
the parabola.

We show that the curve P with equation y = ax 2, where a > 0, satisfies Definition 9.17. We

will see that the focus is on the positive y-axis with coordinates
(

0, 1
4a

)
and the directrix is

the horizontal line with equation y = − 1
4a

.

y

x

focus

directrix

(x, �     )
y � � 14a

1
4a

1
4a

� 14a

(x, y)

If we choose an arbitrary point (x, y) on the parabola, the distance from (x, y) to the line

with equation y = − 1
4a

is y + 1
4a

, while its distance from the point
(

0, 1
4a

)
is

√
x 2 +

(
y − 1

4a

)2
=

√
x 2 + y 2 − y

2a
+ 1

16a2
← algebra

=
√

y
a

+ y 2 − y
2a

+ 1
16a2

← y = ax 2

=
√

y 2 + y
2a

+ 1
16a2

← algebra

= y + 1
4a

. ← the quantity is a perfect square

Since the distances from any point on P to the directrix and the focus are equal, P
satisfies Definition 9.17. We generalize this result in the following theorem:

THEOREM 9.18 The Focus and Directrix of a Parabola

Let y = a(x − x0)2 + y0 with a �= 0 be the equation of a parabola. The coordinates of the

focus of the parabola are
(

x0, y0 + 1
4a

)
, and the equation of the directrix is y = y0 − 1

4a
.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:51

762 Chapter 9 Parametric Equations, Polar Coordinates, and Conic Sections

Hyperbolas

The final conic section we will discuss is the hyperbola. A hyperbola is formed when a
plane intersects both halves of the double cone (in a nondegenerate way). The most fa-
miliar hyperbola is the graph of the function y = 1

x
, although the graphs of the equations

x 2 − y 2 = 1 and y 2 − x 2 = 1 are also hyperbolas.

y = 1
x

x 2 − y 2 = 1 y 2 − x 2 = 1

y

x
1�1

�1

1

y

x
1 2�2 �1

�2

�1

2

1

y

x
1 2�2 �1

�2

�1

2

1

We will be discussing primarily hyperbolas with defining equations x2

A2
− y2

B2
= 1 and

y2

B2
− x2

A2
= 1, where A and B are positive constants.

Hyperbolas may also be defined geometrically:

DEFINITION 9.19 Hyperbola

Given two points in a plane, called foci, a hyperbola is the set of points in the plane for
which the difference of the distances to the two foci is constant. The line containing the
foci is called the focal axis, the midpoint of the segment connecting the foci is called
the center of the hyperbola, and the points where the focal axis intersects the hyperbola
are called the vertices of the hyperbola.

y

xA�A

�  A2 � B2 A2 � B2

focus focal axis

center vertex

(x, y)

The proof of the following theorem is quite similar to the proof of Theorem 9.16 and is left
for Exercises 57 and 58:

THEOREM 9.20 The Equation, Foci, and Asymptotes of a Hyperbola

Let A and B be positive.

(a) The graph of the equation x2

A2
− y2

B2
= 1 is a hyperbola with foci (±√

A2 + B2, 0).

(b) The graph of the equation y2

B2
− x2

A2
= 1 is a hyperbola with foci (0, ±√

A2 + B2).

The lines y = B
A

x and y = − B
A

x are asymptotes for these hyperbolas.
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x2

A2
− y2

B2
= 1 y2

B2
− x2

A2
= 1

�  A2 � B2 A2 � B2

y

x

y � �   xB
A y �    xB

A

y

x

�  A2 � B2

A2 � B2

y � �   xB
A y �    xB

A

For example, since A = 3 and B = 4 in the equation x2

9
− y2

16
= 1, the foci of this hyperbola

are (±5, 0) and the graph has asymptotes y = 4
3

x and y = − 4
3

x.

Conic Sections in Polar Coordinates

In Definiton 9.17 we saw that a parabola is the set of all points in the plane equidistant from
a given fixed line in the plane, where the line is called the directrix of the parabola and the
fixed point is called the focus of the parabola. If we let F and l be the focus and directrix of
the parabola, respectively, we may rephrase this definition by saying that a parabola is the
set of all points P in the plane such that the ratio of the distance from F to P to the distance
from l to P is 1. If we let FP represent the length of the segment from F to P, we have

FP
the distance from l to P

= 1.

We may generalize this idea to provide alternative geometric definitions for ellipses and
hyperbolas. We have already seen that circles have very simple representations in polar
coordinates. The alternative definitions will allow us to find simple polar coordinate rep-
resentations for parabolas, ellipses, and hyperbolas. For consistency, we may orient any of
these three conics as shown here:

xF

focus

directrix
x � D

P(x, y)(D, y)

d

F

(D, y)

That is, we will use rightwards-opening parabolas with equations x = c( y − y0)2 for c > 0.
For the parabola there is a single vertical directrix, l, with equation x = D. If we let P = (x, y)
be a point on the parabola, then the distance from P to l is DP and the distance from P to
the focus, F, is FP. Here we have

FP
DP

= 1.
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The ellipses we consider will have equations x2

A2
+ y2

B2
= 1, where A > B and, thus, where

the major axis of the ellipse is on the x-axis. The hyperbolas we will consider are centered
at the origin, open to the left and right and, therefore, have equations x2

A2
− y2

B2
= 1. Ellipses

and hyperbolas also have directrices. In fact, every ellipse and every hyperbola has two
directrices.

y

x

l

D

�A

F

P

A

y

x

l

D

A�A
F

P

If F is the focus of an ellipse or a hyperbola V , and D is a point on the directrix closest
to that focus, then for every point P on V , we have

FP
DP

= e,

where e is a positive constant called the eccentricity of the curve. Recall that when A > B, the

foci of the ellipse x2

A2
+ y2

B2
= 1 are (±√

A2 − B2, 0) and the foci of the hyperbola x2

A2
− y2

B2
= 1

are (±√
A2 + B2, 0).

DEFINITION 9.21 The Eccentricity of Conic Sections

(a) The eccentricity e of a parabola is 1.

(b) When A > B > 0, the eccentricity of the ellipse x2

A2
+ y2

B2
= 1 is e =

√
A2 −B2

A
, and

when 0 < A < B, e =
√

B2 −A2

B
.

(c) The eccentricity of the hyperbola x2

A2
− y2

B2
= 1 is e =

√
A2 +B2

A
, and for y2

B2
− x2

A2
= 1,

e =
√

A2 +B2

B
.

Note that from Definition 9.21 (b), 0 < e < 1 for an ellipse, and from Definition 9.21 (c),

e > 1 for a hyperbola. For example, the eccentricity of the ellipse x2

25
+ y2

16
= 1 is

e =
√

25 − 16
5

= 3
5

.

In Exercise 59 you will show that, for an ellipse or a hyperbola, the eccentricity is also

e = the distance between the foci
the distance between the vertices

.
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We use the eccentricity to define the directrices of ellipses and hyperbolas:

DEFINITION 9.22 Directrices of Ellipses and Hyperbolas

(a) When A > B, the directrices of the ellipse x2

A2
+ y2

B2
= 1 are the vertical lines x = A

e

and x = −A
e

, where e is the eccentricity of the ellipse. When B > A, the directrices

of the ellipse are the horizontal lines y = B
e and y = −B

e , where e is the eccentricity
of the ellipse.

(b) The directrices of the hyperbola x2

A2
− y2

B2
= 1 are the vertical lines x = A

e
and

x = −A
e

, where e is the eccentricity of the hyperbola. The directrices of the hy-

perbola y 2

B 2 − x 2

A 2 = 1 are the horizontal lines y = B
e and y = −B

e , where e is the
eccentricity of the hyperbola.

Continuing with the brief example we started before, we see that the directrices of the

ellipse x2

25
+ y2

16
= 1 are the lines x = ±A

e
= ± 5

3/5
= ± 25

3
.

With these definitions for eccentricity and directrices established, we have the following
theorem:

THEOREM 9.23 Eccentricity as the Ratio of Two Distances

Let F be the focus of a parabola, an ellipse, or a hyperbola, and let l be the directrix of
the curve closest to F. If P is a point on the curve and D is the point on l closest to P,
then

FP
DP

= e.

The proof of Theorem 9.23 is mostly computational and is left for Exercises 60 and 61.

Note that the eccentricity of an ellipse is in the interval (0, 1), the eccentricity of a
parabola is 1 and the eccentricity of a hyperbola is greater than 1. We are now ready to
express the equations for ellipses, parabolas, and hyperbolas in polar coordinates. We use
a polar coordinate system in which the pole is at a focus, F, of the conic section. We position
the parabola so that the directrix is perpendicular to the polar axis and the parabola opens
to the right. For the ellipse and hyperbola, the focal axis should coincide with the polar axis.
Let V represent any of these conics and P be a point on V . Let x = u be the equation of the
directrix closest to the pole. The following figure illustrates the situation for an ellipse:

θ

y

x

l

D

u � r cos θ

u
F

P
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Now, the distance from the focus to the curve is FP = r. The distance from P to the directrix
is DP = u − r cos θ . By Theorem 9.23 we have

FP
DP

= r
u − r cos θ

= e.

When we solve this equation for r, we get the following theorem:

THEOREM 9.24 Conics in Polar Coordinates

The graph of the polar equation

r = eu
1 + e cos θ

is a conic with eccentricity e and directrix x = u.

Examples and Explorations

EXAMPLE 1 Finding the foci, eccentricity, and directrices for an ellipse

The graph of each of the equations that follow is an ellipse. Find the foci, eccentricity, and
directrices for each.

(a)
x 2

16
+ y 2

4
= 1 (b) 9x 2 + 25y 2 = 900

(c)
x 2

16
+ y 2

25
= 1 (d) x 2 + 4x + 9y 2 − 18y − 23 = 0

SOLUTION

(a) Theorem 9.16 tells us that when A > B, the foci of the ellipse with equation x2

A2
+ y2

B2
= 1

are (±√
A2 − B2, 0). Therefore, the foci of the ellipse with equation x2

42
+ y2

22
= 1 have

coordinates (±√
42 − 22, 0) = (±2

√
3, 0).

From Definition 9.21, the eccentricity of the ellipse with equation x2

A2
+ y2

B2
= 1 is

e =
√

A2 − B2

A
when A > B. Here we have e = 2

√
3

4
=

√
3

2
.

From Definition 9.22, the directrices of the ellipse with equation x2

A2
+ y2

B2
= 1 are the

vertical lines x = ±A
e

when A > B. Here, the directrices have equations

x = ± 4√
3/2

= ±8
√

3
3

.

(b) Before we use the theorem and definitions we mentioned in part (a), we need to rewrite
the equation in the correct form. Here, 9x 2 + 25y 2 = 900 is equivalent to

x 2

102 + y 2

62 = 1.

Therefore, the foci of this ellipse have coordinates (±√
102 − 62, 0) = (±8, 0). The

eccentricity of the ellipse is e = 8
10

= 4
5

, and the directrices have equations

x = ± 10
4/5

= ±25
2

.
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(c) Theorem 9.16 also tells us that when A < B, the foci of the ellipse with equation

x 2

A2 + y 2

B2 = 1

are (0, ±√
B2 − A2 ). Therefore, the foci of the ellipse with equation x2

16
+ y2

25
= 1 have

coordinates (0, ±√
52 − 42 ) = (0, ±3).

We use Definitions 9.21 and 9.22 to find the eccentricity and directrices of this ellipse.
The eccentricity will be

e =
√

B2 − A2

B
,

and the directrices will be horizontal lines with equations

y = B
e

and y = −B
e
.

Here, we have e =
√

52 −42

5
= 3

5
. The directrices have equations y = ± 5

3/5
= ± 25

3
.

(d) For our final equation in this group, we complete the square for each variable in the
equation x 2 + 4x + 9y 2 − 18y − 23 = 0. After completing the squares, we have the
equation

(x + 2)2 + 9( y − 1)2 = 36.

Dividing both sides of the equation by 36, we obtain

(x + 2)2

62 + ( y − 1)2

22 = 1.

The graph of this equation is the graph of the ellipse x2

62
+ y2

22
= 1 translated two

units to the left and one unit up. The ellipse with equation x2

62
+ y2

22
= 1 has foci

(±√
62 − 22, 0) = (±4

√
2, 0). The eccentricity of this ellipse is e = 4

√
2

6
= 2

√
2

3
, and

the directrices have equations x = ± 6

2
√

2/3
= ± 9

√
2

2
. Therefore, the foci of the ellipse

with equation (x + 2)2

62
+ (y − 1)2

22
= 1 are (−2 ± 4

√
2, 1). Translating an ellipse does not

change its eccentricity, but the directrices are x = −2 ± 9
√

2
2

. �

EXAMPLE 2 Finding the focus and directrix for a parabola

Find the focus and directrix for the parabola with equation y = 4x 2 + 16x + 65.

SOLUTION

We begin by completing the square. Here, we have y = 4(x + 4)2 + 1. By Theorem 9.18, the

focus of the parabola with equation y = a(x − x0)2 + y0 is
(

x0, y0 + 1
4a

)
and the equation

of the directrix is y = y0 − 1
4a

. Here a = 4, x0 = −4, and y0 = 1. Therefore, the focus is the

point
(
−4, 1 + 1

4·4
)

=
(
−4, 17

16

)
and the directrix has equation y = 1 − 1

4·4 = 15
16

. �

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:51

768 Chapter 9 Parametric Equations, Polar Coordinates, and Conic Sections

EXAMPLE 3 Finding the foci, asymptotes, eccentricity, and directrices for a hyperbola

The graph of each of the equations that follow is a hyperbola. Find the foci, asymptotes,
eccentricity, and directrices for each.

(a)
x 2

16
− y 2

4
= 1 (b) 9x 2 − 25y 2 = 900

(c)
y 2

25
− x 2

16
= 1 (d) x 2 + 4x − 9y 2 − 18y − 41 = 0

SOLUTION

(a) Theorem 9.20 tells us that the foci of the hyperbola with equation x2

A2
− y2

B2
= 1 are

(
√

A2 + B2, 0) and (−
√

A2 + B2, 0).

Therefore, the foci of the hyperbola with equation x2

42
− y2

22
= 1 have coordinates

(±
√

42 + 22, 0) = (±2
√

5, 0).

The same theorem also tells us that the hyperbola will have asymptotes y = ± B
A

x. The

asymptotes for this hyperbola have equations y = ± 2
4

x = ± 1
2

x.

From Definition 9.21, the eccentricity of the hyperbola with equation x2

A2
− y2

B2
= 1 is

e =
√

A2 + B2

A
. Here we have e = 2

√
5

4
=

√
5

2
.

From Definition 9.22, the directrices of the hyperbola with equation x2

A2
− y2

B2
= 1 are

the vertical lines x = ±A
e

. Here, the directrices have equations x = ± 4√
5/2

= ± 8
√

5
5

.

(b) Before we use the theorem and definitions we mentioned in part (a), we need to rewrite

the equation in the correct form. Here, 9x 2 −25y 2 = 900 is equivalent to x2

102
− y2

62
= 1.

Therefore, the foci of this hyperbola have coordinates (±√
102 + 62, 0) = (±2

√
34, 0).

The asymptotes have equations y = ± 6
10

x = ± 3
5

x. The eccentricity of the hyperbola is

e = 2
√

34
10

=
√

34
5

, and the directrices have equations x = ± 10√
34/5

= ± 25
√

34
17

.

(c) Theorem 9.20 also tells us that the foci of the hyperbola with equation y2

B2
− x2

A2
= 1

are (0, ±√
A2 + B2 ). Therefore, the foci of the hyperbola with equation y2

25
− x2

16
= 1

have coordinates (0, ±√
42 + 52 ) = (0, ±√

41 ). The asymptotes of a hyperbola with

this type of equation are again y = ± B
A

x. Here, they have the equations y = ± 5
4

x.

We use Definitions 9.21 and 9.22 to find the eccentricity and directrices of this
hyperbola. The eccentricity will be

e =
√

A2 + B2

B
,

and the directrices will be horizontal lines with equations

y = B
e

and y = −B
e
.

Thus, e =
√

42 + 52

5
=

√
41
5

and the directrices have equations y = ± 5√
41/5

= ± 25
√

41
41

.
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(d) For our final equation in this group, begin by completing the square for each variable
in the equation x 2 + 4x − 9y 2 − 18y − 41 = 0. You should confirm that this results in
the equation

(x + 2)2 − 9( y + 1)2 = 36.

Dividing both sides of the equation by 36, we obtain

(x + 2)2

62 − ( y + 1)2

22 = 1,

whose graph is the hyperbola with equation x2

62
− y2

22
= 1, translated two units to

the left and one unit down. The hyperbola with equation x2

62
− y2

22
= 1 has foci

(±√
62 + 22, 0) = (±2

√
10, 0). The asymptotes have equations y = 2

6
x = 1

3
x and

y = − 1
3

x. The eccentricity of this hyperbola is e = 2
√

10
6

=
√

10
3

, and the directrices

have equations x = ± 6√
10/3

= ± 9
√

10
5

.

Therefore, the foci of our hyperbola are (−2 ± 2
√

10, −1). The asymptotes are the
lines y + 1 = 1

3
(x + 2) and y + 1 = − 1

3
(x + 2), or equivalently, y = 1

3
x − 1

3
and

y = − 1
3

x − 5
3

. Translating the hyperbola did not change its eccentricity, but the di-

rectrices are x = −2 ± 9
√

10
5

. �

EXAMPLE 4 Using polar coordinates to graph conics

Use polar coordinates to graph each of the following equations:

(a) r = 1
1 + cos θ

(b) r = 2
1 + 2 cos θ

(c) r = 1
2 + cos θ

SOLUTION

By Theorem 9.24, the graph of the equation r = eu
1 + ecosθ

is a conic with a focus at the pole
and with eccentricity e and directrix x = u.

(a) For r = 1
1 + cosθ

the eccentricity is e = 1, so the graph is a parabola. The directrix will

be the vertical line x = 1.

r = 1
1 + cos θ

x

y

1
2

1

1
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(b) For r = 2
1 + 2cosθ

the eccentricity is e = 2, so the graph is a hyperbola. The directrix will

be the vertical line x = 1.

r = 2
1 + 2 cos θ

x

y

2
3

2

21

(c) Note that

r = 1
2 + cos θ

= 1/2
1 + 1/2 cos θ

.

Here the eccentricity is e = 1
2

, so the graph is an ellipse. The directrix will be the
vertical line x = 1.

r = 1
2 + cos θ

1
x

y

1
3

1
2

�

TEST YOUR? UNDERSTANDING
� What is a conic section? How many different types of conic sections are there? What

are the degenerate conic sections? What are the nondegenerate conic sections?

� What is the definition of a circle? What is the definition of an ellipse? What are the foci
of an ellipse? What are the major and minor axes of an ellipse? What are the directrices
of an ellipse? How do you recognize the equation for an ellipse in rectangular coordi-
nates?

� What is the definition of a parabola? What is the focus of a parabola? What is the
directrix of a parabola? How do you recognize the equation for a parabola in rectangular
coordinates?

� What is the definition of a hyperbola? What are the foci of a hyperbola? What are the
directrices of a hyperbola? How do you recognize the equation for a hyperbola in rect-
angular coordinates?

� What are the eccentricities of the conic sections? Specifically, what is the eccentricity
of a parabola? In what intervals are the eccentricities for a ellipse and a hyperbola?
How do you recognize the equation for a parabola, an ellipse, or a hyperbola in polar
coordinates?
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EXERCISES 9.5

Thinking Back

Finding the center and radius for a circle by completing the square:
Each of the equations that follow is an equation for a circle.
Find the center and radius for each.

� x 2 + y 2 − y − 3
4

= 0

� x 2 + 4x + y 2 − 21 = 0

� x 2 + 3x + y 2 + y + 3
2

= 0

Completing the square: Find the sets of points satisfying each
of the following equations.

� x 2 − 6x + y 2 + 2y + 10 = 0
� x 2 − 8x + y 2 − 10y + 40 = 0
� x 2 − 6x + y + 40 = 0
� x + y 2 − 4y − 5 = 0

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: A conic section is the intersection of a
double cone and a plane.

(b) True or False: A point is a conic section.
(c) True or False: An ellipse is the set of points in the plane

equidistant from two distinct points.
(d) True or False: Given a line L and a point P not on L, a

parabola is the set of points in the plane equidistant
from L and P.

(e) True or False: A parabola is also a hyperbola.
(f) True or False: If the focus of a parabola is on the direc-

trix of the parabola, the parabola is degenerate.
(g) True or False: Given two distinct points in a plane, a

hyperbola is the set of points in the plane for which
the quotient of the distances to the two points is
constant.

(h) True or False: The graph of the polar equation r =
1

1 + sinθ
is a parabola.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A degenerate conic section.
(b) The equation for a hyperbola whose asymptotes are

the coordinate axes.
(c) The equation for a parabola that opens to the left, in

polar coordinates.

Complete the definitions in Exercises 3–5.

3. Given two points in a plane, called , an ellipse
is the set of points in the plane for which .

4. Given a fixed line in the plane, called the , and
a given fixed point called the , a parabola is the
set of all points in the plane .

5. Given two points in a plane, called , a hyper-
bola is the set of points in the plane for which .

6. Explain why there are infinitely many different ellipses
with the same foci.

7. Explain why there are infinitely many different hyperbo-
las with the same foci.

8. Three noncollinear points determine a unique circle. Do
three noncollinear points determine a unique ellipse? If
so, explain why. If not, provide three noncollinear points
that are on two distinct ellipses.

9. The graph of the equation
x2

A2
+ y2

B2
= 1 is an ellipse for

any nonzero constants A and B.
(a) If A > B, what is the eccentricity of the ellipse?
(b) If A < B, what is the eccentricity of the ellipse?
(c) Explain why the eccentricity, e, of an ellipse is always

between 0 and 1.
(d) If A > B, what is lim

A→B
e? What happens to the shape

of the ellipse as A → B?
(e) If A > B, what is lim

A→∞
e? What happens to the shape

of the ellipse as A → ∞?

10. The graph of the equation
x2

A2
− y2

B2
= 1 is a hyperbola for

any nonzero constants A and B.

(a) What is the eccentricity of the hyperbola?
(b) Explain why the eccentricity, e, of a hyperbola is

always greater than 1.
(c) What is lim

A→0
e? What happens to the shape of the

hyperbola as A → 0?
(d) What is lim

A→∞
e? What happens to the shape of the

hyperbola as A → ∞?

11. When A > B, the directrices of the ellipse with equation
x2

A2
+ y2

B2
= 1 are the lines with equations x = ± A

e
, where

e is the eccentricity of the ellipse. What are the equations
for the directrices when A < B?

12. The directrices of the hyperbola with equation
x2

A2
− y2

B2
= 1

are the lines with equations x = ± A
e

, where e is the
eccentricity of the hyperbola. What are the equations for the

directrices of the hyperbola with equation
y2

B2
− x2

A2
= 1?
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13. Sketch the graphs of the equations

r = 1
1 + cos θ

and r = 1
1 + sin θ

.

What is the relationship between these graphs? What is
the eccentricity of each graph?

14. Sketch the graphs of the equations

r = 2
1 + 2 cos θ

and r = 2
1 + 2 sin θ

.

What is the relationship between these graphs? What is
the eccentricity of each graph?

15. Sketch the graphs of the equations

r = 2
2 + cos θ

and r = 2
2 + sin θ

.

What is the relationship between these graphs? What is
the eccentricity of each graph?

16. Let α, β, and γ be nonzero constants. Show that the

graph of r = α

β + γ cosθ
is a conic section with eccentricity∣∣∣ γ

β

∣∣∣ and directrix x = α

γ
.

17. Let α, β, and γ be nonzero constants. Show that the
graph of r = α

β + γ sinθ
is a conic section with eccentricity∣∣∣ γ

β

∣∣∣ and directrix y = α

γ
.

Skills

Complete the square to describe the conics in Exercises 18–21.

18. 2x 2 + 4x + y 2 − 6y − 3 = 0

19. 2x 2 + 4x − y 2 − 6y − 23 = 0
20. 4x + y 2 − 6y − 3 = 0

21. y 2 − 8y − 4x 2 − 8x − 13 = 0

Use Cartesian coordinates to express the equations for the
parabolas determined by the conditions specified in Exer-
cises 22–31.

22. directrix x = 3, focus (0, 1)
23. directrix y = 0, focus (0, 1)
24. directrix x = −1, focus (2, 5)

25. directrix y = −6, focus (2, −8)
26. directrix x = x0, focus (x1, y1), where x0 �= x1

27. directrix y = y0, focus (x1, y1), where y0 �= y1

28. r = 3
1 + cos θ

29. r = 4
1 + sin θ

30. r = α

1 + cos θ
31. r = α

1 + sin θ

Use Cartesian coordinates to express the equations for the
ellipses determined by the conditions specified in Exer-
cises 32–37.

32. foci (±1, 0), major axis 4
33. foci (±√

5, 1), major axis 6

34. foci (3, ±5), major axis 12

35. foci
(

0, ± 3
√

3
2

)
, minor axis 3

36. foci (±α, 0), major axis 4α

37. foci (0, ±α), minor axis 2α

Use Cartesian coordinates to express the equations for the
hyperbolas determined by the conditions specified in Exer-
cises 38–43.

38. foci (±2, 0), directrices x = ±1

39. foci (±6, 0), directrices x = ±1
40. foci (0, ±4), directrices y = ±1

41. foci (0, ±4), directrices y = ±2
42. foci (3, 1) and (7, 1), directrix x = 4

43. foci (3, 1) and (3, 9), directrix y = 4

Use polar coordinates to graph the conics in Exercises 44–51.

44. r = 2
1 + 3 cos θ

45. r = 2
1 − 3 cos θ

46. r = 2
1 + cos θ

47. r = 5
1 + cos θ

48. r = 2
4 + cos θ

49. r = 2
4 + sin θ

50. r = 1
1 − cos θ

51. r = 2
2 + sin θ

Applications
In the late sixteenth century Johannes Kepler showed that the
planets in our solar system revolve around the sun in elliptical
orbits. Exercises 52–54 deal with the orbits of the Earth and
Mars. These orbits are described by their eccentricities. If the
coordinates for the orbit of a planet are oriented so that the
major axis of the ellipse is aligned along the x-axis, then the

Cartesian equation for the ellipse is
x2

A2
+ y2

B2
= 1, with A > B.

Recall that in this case 2A is called the major axis of the ellipse.
The semimajor axis has length A.

52. Show that the eccentricity satisfies the equation B2 =
A2(1 − e 2).

53. Measurements indicate that Earth’s orbital eccentricity is
0.0167 and its semimajor axis is 1.00000011 astronomical
units.

(a) Write a Cartesian equation for Earth’s orbit.
(b) Give a polar coordinate equation for Earth’s orbit,

assuming that the sun is the focus of the elliptical
orbit.
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Earth Sun

Mars

x

y y 54. Measurements indicate that the orbital eccentricity of
Mars is 0.0935 and its semimajor axis is 1.517323951
astronomical units.

(a) Write a Cartesian equation for the orbit of Mars.
(b) Do x and y have the same meaning as in Exercise 53?
(c) Give a polar coordinate equation for the orbit of Mars,

assuming that the sun is the focus of the elliptical
orbit.

Proofs

55. Let A > B > 0. Show that the distance from any point on

the graph of the curve with equation
x2

A2
+ y2

B2
= 1 to the

point (−C, 0) is D2 = A2 + Cx
A2

, where C = √
A 2 − B 2 .

56. Prove Theorem 9.16 (b). That is, show that if 0 < A < B,

the graph of the curve with equation
x2

A2
+ y2

B2
= 1 is an

ellipse with foci (0, ±√
B2 − A2 ).

57. Prove Theorem 9.20 (a). That is, show that the graph of

the equation
x2

A2
− y2

B2
= 1 satisfies Definition 9.19, where

the points with coordinates (±√
A2 + B2, 0) are the foci of

the hyperbola.
58. Prove Theorem 9.20 (b). That is, show that the graph of

the equation
y2

B2
− x2

A2
= 1 satisfies Definition 9.19, where

the points with coordinates (0, ±√
A2 + B2 ) are the foci

of the hyperbola.

59. Prove that for an ellipse or a hyperbola the eccentricity is
given by

e = the distance between the foci
the distance between the vertices

.

In Exercises 60 and 61 we ask you to prove Theorem 9.23 for
ellipses and hyperbolas.

60. Consider the ellipse with equation
x2

A2
+ y2

B2
= 1, where

A > B. Let F be the focus with coordinates (
√

A2 − B2, 0).

Let e =
√

A2 − B2

A
and l be the vertical line with equation

x = A
e

. Show that for any point P on the ellipse,
FP
DP

= e,

where D is the point on l closest to P.

61. Consider the hyperbola with equation
x2

A2
− y2

B2
= 1.

Let F be the focus with coordinates (
√

A2 + B2, 0). Let

e =
√

A2 + B2

A
and l be the vertical line with equation

x = A
e

. Show that for any point P on the hyperbola,
FP
DP

= e, where D is the point on l closest to P.

Thinking Forward

Analogs of conic sections in three dimensions: Sketch each of the
following.

� Given two points in three-dimensional space, a cer-
tain type of ellipsoid may be described as the set of
points for which the sum of the distances to the two
points is a constant.

� A certain type of paraboloid is the set of all points
in three-dimensional space equidistant from a given
plane and a given fixed point not on the plane.

� Given two points in three-dimensional space, a cer-
tain type of hyperboloid may be described as the set
of points for which the difference of the distances to
the two points is a constant.
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CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition or
description with a graph or an algebraic example.

� Parametric equations in two variables

� The slope of a parametric curve x = x(t), y = y(t) at the
point (x(t0), y(t0))

� Symmetry with respect to the x-axis

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� Let C be a curve in the plane with parametrization x =
f (t), y = g(t) for t ∈ [a, b] such that the parametrization is
a function from the interval [a, b] to the curve
C. If x = f (t) and y = g(t) are differentiable functions of
t such that f ′(t) and g ′(t) are on [a, b], then the
length of the curve C is given by .

� For a �= 0, the graph of the equation r = 2a cos θ is the
whose equation in rectangular coordinates is

.

� For a �= 0, the graph of the equation r = 2a sin θ is the
whose equation in rectangular coordinates is

.

� A graph is symmetrical with respect to the x-axis if, for ev-
ery point (r, θ ) on the graph, the point is also
on the graph.

� A graph is symmetrical with respect to the y-axis if, for ev-
ery point (r, θ ) on the graph, the point is also
on the graph.

� A graph is symmetrical with respect to the origin if, for ev-
ery point (r, θ ) on the graph, the point is also
on the graph.

� Let α and β be real numbers such that 0 ≤ β − α ≤ 2π .
Let R be the region in the polar plane bounded by the
rays θ = α and θ = β and a positive continuous function
r = f (θ ). Then the area of region R is .

� Let r = f (θ ) be a differentiable function of θ such that
f ′(θ ) is continuous for all θ ∈ [α, β]. Furthermore, assume
that r = f (θ ) is a one-to-one function from [α, β] to the
graph of the function. Then the length of the polar graph
of r = f (θ ) on the interval [α, β] is .

Algebraic Rules

The calculus of parametric equations: Let x = f (t) and y = g(t),
where f and g are differentiable functions.

� dy
dx

= .

� The arc length of the curve defined by the parametric
equations on the interval [a, b] is .

Conversion formulas: Fill in the blanks to convert between
rectangular coordinates and polar coordinates.

� r = . � θ = .

� x = . � y = .

The calculus of polar functions: Let r = f (θ ), where f is a positive
differentiable function.

� The area enclosed by the function f and the rays θ = α

and θ = β is , provided that .
� The arc length of the curve defined by f on the interval

[a, b] is .

Skill Certification: Parametric Equations and Polar Coordinates

Sketching parametric equations: Sketch the curves defined by
the given sets of parametric equations. Indicate the direction
of motion on each curve.

1. x = t 2, y = t 3, t ∈ [−2, 2]
2. x = 3t + 1, y = −2t + 3, t ∈ [0, 1]

3. x = sin t, y = cos t, t ∈ [0, 4π ]
4. x = sin t, y = cos 2 t, t ∈ [0, 4π ]

5. x = sec t, y = tan t, t ∈
(
−π

2
,
π

2

)

6. x = tan t, y = 1 + sec 2 t, t ∈
(
−π

2
,
π

2

)
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7. x = sinh t, y = cosh t, t ∈ R

8. x = sinh t, y = cosh2 t, t ∈ R

Lengths of parametric curves: Find the arc lengths of the curves
defined by the parametric equations on the specified intervals.

9. x = t 2, y = t 3, t ∈ [−2, 2]
10. x = 3t + 1, y = −2t + 3, t ∈ [0, 1]
11. x = sin kt, y = cos kt, t ∈ [0, 2π ], where k is a constant
12. x = cosh t, y = t, t ∈ [0, 1]

Graphs of polar functions: Use polar coordinates to graph each
of the following functions.

13. r = sin θ 14. r = 3 cos θ

15. r = sin 3θ 16. r = 3 cos 4θ

17. r = 2 − 2 sin θ 18. r = 4 − 2 cos θ

19. r = 2 − √
8 sin θ 20. r = 3 − 2 cos θ

21. r 2 = − sin 2θ 22. r 2 = 3 cos 2θ

The arc length of polar functions: Find the arc lengths of the
following polar functions.

23. r = a, where a is a positive constant, for θ ∈ [0, 2π ]
24. r = a cos θ , where a is a positive constant, for θ ∈ [0, π ]
25. r = a sin θ for θ ∈ [0, π ]
26. r = sin θ + cos θ for θ ∈ [0, π ]

27. r = 1 − sin θ for θ ∈ [0, 2π ]

28. r = a sin θ +b cos θ , where a and b are positive constants
for θ ∈ [0, π ]

29. r = sec θ for θ ∈
[
−π

6
,
π

6

]

30. r = csc θ for θ ∈
[

π

4
,

3π

4

]

Areas of regions bounded by polar functions: Find the areas of the
following regions.

31. The area bounded by the function r = a, where a is a
positive constant.

32. The area bounded by the function r = a cos θ , where a is
a positive constant.

33. The area bounded by one petal of r = cos 2θ .
34. The area bounded by one petal of r = sin 3θ .
35. The area bounded by r = 1 − sin θ

36. The area between the inner and outer loops of r =
1 − √

2 cos θ .
37. The area bounded by one loop of r 2 = − sin 2θ .
38. The area bounded by one loop of r 2 = 4 cos 2θ .

39. The area that is inside both lemniscates r 2 = cos 2θ and
r 2 = sin 2θ .

40. The area inside both polar roses r = sin 3θ and r = cos 3θ .

Capstone Problems

A. A hypocycloid is another generalization of a cycloid in
which the point tracing the path is on the circumference
of a wheel, but the wheel is rolling without slipping on
the inside of another wheel. If the radius of the rolling
wheel is k and the radius of the fixed wheel is r, find
parametric equations for the hypocycloid.

x

y

P(x, y)

φ
θ

k

What is the path if the radius of the smaller wheel is
exactly one-half the radius of the larger wheel?

B. A certain set of parametric equations has the properties
that

x ′(t) = x(t), y ′(t) = x(t)y(t), x(0) = 1 and y(0) = e.

(a) Solve the system of differential equations. (Hint: Start
by solving the initial-value problem x ′(t) = x(t) with
x(0) = 1.)

(b) Graph the parametric curve defined by x = x(t) and
y = y(t) by eliminating the parameter.

C. When k ≥ 2 is an integer, the polar graph of r = sin kθ or
r = cos kθ is a rose.
(a) How many petals does the rose have when k is an

integer?
(b) What can you say about the symmetries of either

r = sin kθ or r = cos kθ when k is rational? Use a
graphing calculator or a computer algebra system to
graph several cases before answering the question.

(c) What can you say about the polar graph of r = sin kθ
or r = cos kθ when k is irrational?

D. Let r1 and r2 be positive real numbers and 0 < θ2 − θ1 <

π . Prove that the area of the triangle with vertices (0, 0),
(r1, θ1), and (r2, θ2) in the polar plane is

r1r2

2
sin(θ2 − θ1).
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Vectors
10.1 Cartesian Coordinates

Three-Dimensional Space in Rectangular Coordinates
An Introduction to Planes
Distances, Spheres, and Cylinders
Quadric Surfaces
Examples and Explorations

10.2 Vectors
The Algebra and Geometry of Vectors
Unit Vectors
Using Vectors to Analyze Forces
Examples and Explorations

10.3 Dot Product
The Dot Product
Projections
The Triangle Inequality
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10.1 CARTESIAN COORDINATES

� The three-dimensional rectangular coordinate system

� Computing distances between two points

� The equation of a sphere

Three-Dimensional Space in Rectangular Coordinates

In this chapter we will study vectors and see how they are used in the descriptions of lines
and planes in three dimensions. We will see that vectors have interrelated geometric and
analytic properties. By studying the connections between the geometric and algebraic prop-
erties of vectors we will be able to gain a fuller understanding of vectors, lines, and planes.

In previous chapters we used a two-dimensional coordinate system almost exclusively.
Until we reached Chapter 9, we focused on rectangular or Cartesian coordinates to name
the points in the plane. Beginning with this section we expand this concept to describe a
three-dimensional Cartesian system. In Chapter 13 we will discuss other useful coordinate
systems for three-dimensional space. To construct a three-dimensional rectangular system
we choose an origin O and three mutually perpendicular coordinate axes intersecting at O.
The coordinate axes are ordered and usually labeled x, y, and z. We will typically draw the
system as shown here:

A three-dimensional Cartesian coordinate system

O

x

y

z

In this figure the z-axis is vertical, increasing as you go up, the y-axis increases from
left to right, and the x-axis should be interpreted as pointing straight out from the page,
increasing as it comes toward you. The figure shown is an example of a right-handed sys-
tem, because it obeys the following “right-hand rule”: If the index finger of the right hand
points in the positive x direction and the middle finger of the right hand points in the pos-
itive y direction, then the right thumb will naturally point in the positive z direction as the
hand shown here illustrates:

x

y

z
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The coordinate system shown next at the left is also a right-handed system. However,
there are labelings of the axes that give left-handed systems, as in the figure on the right.

Another right-handed
Cartesian coordinate system A left-handed system

O

y

z

x

O

y

x

z

We used a different labeling of the axes when we discussed surfaces of revolution in Chap-
ter 6. That labeling also gave us a right-handed system.

In Exercise 14 we will ask you about other possible labelings of the axes and about which
labelings give right-handed systems. The notion of right-handedness will be crucial in Sec-
tion 10.4, when we discuss the cross product. For now, it is just a convenient convention.

Once the axes are drawn, to complete the Cartesian system, a linear scale should be
added to each axis, as is done with any two-dimensional rectangular system. Given the
axes and their scales, there is a one-to-one correspondence between the points in the three-
dimensional system and ordered triples of real numbers (a, b, c).

We will often use the abbreviations 2-space or R
2 (pronounced “R two”) to denote

two-dimensional space. Similarly, we will use 3-space or R
3 for three-dimensional space.

To locate a point (a, b, c) in a three-dimensional Cartesian coordinate system we move
the appropriate number of units along each of the three coordinate axes. For example, the
point (2, 3, −5) is the unique point 2 units in the positive x direction from the yz-plane,
3 units in the positive y direction from the xz-plane, and 5 units in the negative z direction
from the xy-plane. The following figure below is illustrative:

(2, 3, �5)

�5

2 3

y

x

z

An Introduction to Planes

Two distinct intersecting lines in R
3 determine a unique plane. In particular, when taken

in pairs, the coordinate axes determine coordinate planes. The x- and y-axes determine
the xy-plane. Similarly, the x- and z-axes determine the xz-plane, and the y- and z-axes
determine the yz-plane.
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As you know, in a two-dimensional rectangular system the coordinate axes divide the
plane into four parts known as quadrants. Similarly, in a three-dimensional system, the
three coordinate planes divide the system into eight parts, known as octants. The octant
in which x, y, and z are all positive is called the first octant. The other seven octants are
usually not numbered; however, they can be distinguished by the signs of the coordinates.

For example, the octant determined by the inequalities x < 0, y < 0, and z > 0 lies at
the top (since z > 0), left (since y < 0) and back (since x < 0) of the following system:

O

x

y

z

In mathematics, as in linguistics, it is important to realize that even simple statements
are sensitive to the contexts in which they are made. For example, consider the mathemat-
ical sentence “x = 3.” The three figures that follow illustrate different geometrical inter-
pretations of this sentence. On a number line, x = 3 is a point, as we see on the left. In a
two-dimensional system, x = 3 is the equation for a line parallel to the y-axis, as shown
in the middle. In a three-dimensional system, the same equation x = 3 represents a plane
parallel to the yz-plane. Every point on this plane has the property that its x-coordinate
is 3.

x = 3 on a line

Three interpretations of the equation x = 3

x = 3 in the plane x = 3 in three dimensions

0 3 x
3

y

x

y

z

3

More generally, any equation of the form x = a, y = b, or z = c represents a plane
parallel to one of the coordinate planes. Of course there are planes in 3-space other than
those parallel to the coordinate planes. We discuss planes fully in Section 10.6.

Distances, Spheres, and Cylinders

We know that in 2-space the distance between the points (x 1, y 1) and (x 2, y 2) can be com-
puted with the Pythagorean theorem;

distance =
√

(x 2 − x 1)2 + ( y 2 − y 1)2.
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Distance in R
2 Distance in R

3

y

x

(x2, y2)

(x1, y1) (x2, y1)

x2

y2

x2 � x1

y2 � y1

y1

x1

y

x

z

x1

x2

y1

y2

z2 � z1

x2 � x1y2 � y1

(x2, y2, z2)

(x2, y2, z1)

(x1, y1, z1)

To find the distance between two points in R
3 we need to extend this formula appropriately.

DEFINITION 10.1 The Distance Formula in R
3

Let (x 1, y 1, z 1) and (x 2, y 2, z 2) be two points in R
3. We define the distance between

these points to be √
(x 2 − x 1)2 + ( y 2 − y 1)2 + (z 2 − z 1)2 .

For example, to find the distance between the points (2, 1, −4) and (−3, 2, 1) we compute

distance =
√

(2 − (−3))2 + (1 − 2)2 + (−4 − 1)2 = √
25 + 1 + 25 =

√
51.

The distance between the points is
√

51 ≈ 7.14 units.

To find the midpoint of a line segment connecting points P(x 1, y 1, z 1) and Q(x 2, y 2, z 2)
we may just average the corresponding coordinates. That is, the midpoint of the segment

PQ is the point
(

x1 + x2

2
, y1 +y2

2
, z1 + z2

2

)
. We ask you to prove this fact in Exercise 62. We may

also use the idea of the midpoint of a segment to define what it means for two points to
be symmetric about a third point. We say that P(x 1, y 1, z 1) and Q(x 2, y 2, z 2) are symmetric
about a point R(x 3, y 3, z 3) if R is the midpoint of the segment PQ. For example, to find
the point Q symmetric to P(−1, 2, 4) about the point R(2, 7, −1), we see that Q must have
coordinates (5, 12, −6) so that R is the midpoint of PQ.

A circle can be defined to be the set of points in a plane at a fixed distance from a
given central point. Using the distance formula, we know that the equation of a circle in
the xy-plane can be written as

(x − x 0)2 + ( y − y 0)2 = r 2,

where the center of the circle is (x 0, y 0) and the radius (distance) is r. We may use a similar
equation to describe the points on a sphere.

DEFINITION 10.2 Spheres

A sphere is the set of points in three-dimensional space at a fixed distance from a given
central point. The sphere with center (x 0, y 0, z 0) and radius r > 0 is given by the formula

(x − x 0)2 + ( y − y 0)2 + (z − z 0)2 = r 2.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 14:34

782 Chapter 10 Vectors

For example, the equation of the sphere centered at (−2, 3, 1) with radius 4 is

(x + 2)2 + ( y − 3)2 + (z − 1)2 = 16.

In common usage a cylinder is a circle translated a finite distance in a direction out of
the plane of the circle. We now define a cylinder in a more general way. The curves we
translate can be any curves in the plane.

DEFINITION 10.3 Cylinders

Let C be a curve in some plane P , and let l be a line that intersects P , but does not lie
in P . A cylinder is the set of all points in R

3 that are on lines parallel to l that intersect
C. The curve C is called the directrix of the cylinder. The lines in the cylinder parallel to
l are called rulings of the cylinder.

In the following examples each directrix is a curve in the xy-plane and the rulings are
parallel to the z-axis:

directrix

ruling

y
x

z

directrix

x
y

z

ruling

directrix

ruling

y

x

z

A circular cylinder A noncircular cylinder A parabolic cylinder

y
x

z

x

y

z

y

x

z

Most of the cylinders we will consider have rulings that are perpendicular to the plane
containing the directrix. These cylinders are said to be right cylinders. The preceding
examples are all right cylinders. As we mentioned earlier in this section, a given equation
can have different graphs depending upon the context. When we consider the equation
y = x 2 in R

2, we see that the graph is the familiar parabola. But when we consider the
graph of this equation in R

3, we observe that it is the right parabolic cylinder shown in the
preceding, rightmost figure. In fact, the graph of any curve given by a function y = f (x) is a
right cylinder when considered in R

3. (Think of translating the graph in the direction of the
z-axis.)
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Quadric Surfaces

A conic section can be thought of as the graph of a second-degree polynomial in two vari-
ables,

Ax 2 + By 2 + Cxy + Dx + Ey + F = 0,

where A, B, C, . . . , F are constants. Quadric surfaces are the three-dimensional analogs
of conic sections. A quadric surface is the graph of a second-degree polynomial in three
variables; its equation is

Ax 2 + By 2 + Cz 2 + Dxy + Exz + Fyz + Gx + H y + I z + J = 0,

where A, B, C, . . . , J are constants. We will not need to consider this most general form for
quadric surfaces because, under suitable translations and rotations, every quadric surface
can be written in one of the following two forms:

Cz = Ax 2 + By 2 and Cz 2 = Ax 2 + By 2 + D.

If any of the constants in either of the preceding equations is zero, the corresponding
quadric surface is said to be degenerate. The only type of degenerate quadric surface we
will mention in detail is the one we get when the constant D = 0 in the second equation.
The graphs of these surfaces are the cones we discuss next. All other degenerate quadric
surfaces are right cylinders of conic sections. For example, if we let A = C = 1 and B = 0
in the equation Cz = Ax 2 + By 2, we have z = x 2. The graph of this equation in R

3 is the
right parabolic cylinder with directrix z = x 2 shown here:

y

x

z

The cones and all nondegenerate quadric surfaces can be written in one of the following
six forms for positive constants a, b, and c, possibly after another rotation:

1. Elliptic Cones: z 2 = x 2

a 2
+ y 2

b 2

2. Ellipsoids: x 2

a 2
+ y 2

b 2
+ z 2

c 2
= 1

3. Hyperboloids of One Sheet: x 2

a 2
+ y 2

b 2
− z 2

c 2
= 1

4. Hyperboloids of Two Sheets: x 2

a 2
+ y 2

b 2
− z 2

c 2
= −1

5. Elliptic Paraboloids: z = x 2

a 2
+ y 2

b 2

6. Hyperbolic Paraboloids: z = x 2

a 2
− y 2

b 2

.
To help us understand these surfaces we will look at:

� the intercepts, the places where the graphs cross the coordinate axes,

� the traces, the intersections with the coordinate planes, and

� the sections, intersections with arbitrary planes parallel to the coordinate planes.
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1. Elliptic Cones: z 2 = x 2

a 2
+ y 2

b 2
.

The only place where the graph intersects one of the coordinate axes is the origin. The
horizontal sections are ellipses with equations c 2 = x 2

a 2
+ y 2

b 2
. The trace in the xz-plane

is the pair of intersecting lines z = ± x
a
. Similarly, the trace in the yz-plane is the pair

of intersecting lines z = ± y
b
. The following graph is one such elliptic cone:

The elliptic cone z 2 = x 2

4
+ y 2

9

y

x

z

2. Ellipsoids: x 2

a 2
+ y 2

b 2
+ z 2

c 2
= 1.

An ellipsoid is a three-dimensional analog of an ellipse. The x-intercepts are (±a, 0, 0),
the y-intercepts are (0, ±b, 0), and the z-intercepts are (0, 0, ±c). To find the trace in the

xy-plane we set z = 0 and see that we obtain the ellipse with equation x 2

a 2
+ y 2

b 2
= 1.

Similarly, the traces in the xz-plane and yz-plane are the ellipses x 2

a 2
+ z 2

c 2
= 1 and

y 2

b 2
+ z 2

c 2
= 1, respectively.

The ellipsoid
x 2

9
+ y 2

16
+ z 2

4
= 1

z

y

x

3. Hyperboloids of One Sheet: x 2

a 2
+ y 2

b 2
− z 2

c 2
= 1.

The x-intercepts are (±a, 0, 0) and the y-intercepts are (0, ±b, 0). There are no
z-intercepts, since the equation − z 2

c 2
= 1 has no solutions. The trace in the xy-plane is

the ellipse with equation x 2

a 2
+ y 2

b 2
= 1. Similarly, every section parallel to the xy-plane

is an ellipse, and the size of these ellipses increases with distance from the xy-plane.

When we set y = 0 to find the trace in the xz-plane, we see that we obtain a hyperbola

with equation x2

a2
− z2

c2
= 1. Similarly, the trace in the yz-plane is the hyperbola with

equation y2

b2
− z2

c2
= 1.
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The hyperboloid
x 2

9
+ y 2

16
− z 2

4
= 1

z

x

y

4. Hyperboloids of Two Sheets: x 2

a 2
+ y 2

b 2
− z 2

c 2
= −1.

As the name implies, the graph of a hyperboloid of two sheets consists of two pieces.

There are no x- or y-intercepts because, when z = 0, the equation x 2

a 2
+ y 2

b 2
= −1 has

no real solutions. We can see that there are z-intercepts at (0, 0, ±c) and that all points
on the hyperboloid have the property that z ≥ c or z ≤ −c. For these values of z,
the sections parallel to the xy-plane are all ellipses. The trace in the xz-plane is the

hyperbola with equation x 2

a 2
− z 2

c 2
= −1. Similarly, the trace in the yz-plane is the

hyperbola with equation y 2

b 2
− z 2

c 2
= −1.

The hyperboloid
x 2

9
+ y2

16
− z 2

4
= −1

y

x

z

5. Elliptic Paraboloids: z = x 2

a 2
+ y 2

b 2
.

The only place where the graph of this elliptic paraboloid intersects any of the coordi-

nate axes is the origin. The trace in the xz-plane is the parabola with equation z = x 2

a 2
,

and the trace in the yz-plane is the parabola with equation z = y 2

b 2
. When a = b, the

graph is the surface of revolution formed when the graph of z = x 2

a 2
(in the xz-plane)

is revolved around the z-axis.

The elliptic paraboloid z = x 2

4
+ y 2

9

y
x

z
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6. Hyperbolic Paraboloids: z = x 2

a 2
− y 2

b 2
.

Again, the only place where this paraboloid intersects any of the coordinate axes is at

the origin. The trace in the xy-plane is the pair of intersecting lines y = ± b
a
x. The trace

in the xz-plane is the (upwards-opening) parabola with equation z = x 2

a 2
, and the trace

in the yz-plane is the (downwards-opening) parabola with equation z = − y 2

b 2
.

The hyperbolic paraboloid z = x 2

4
− y 2

9

z

y

x

.Examples and Explorations

EXAMPLE 1 Graphing a cylinder

Graph the cylinder in R
3 defined by z = sin y, 0 ≤ y ≤ 2π.

SOLUTION

We begin by graphing the sine curve in the yz-plane, as shown next on the left, and then
translate this graph, using the x-axis as a ruling, to obtain the graph on the right.

y

z z

y

x

�

EXAMPLE 2 Inscribing a cube in a sphere

Find the side length of the largest cube that can be inscribed in a sphere of radius 1.

SOLUTION

The largest cube that can be inscribed in the sphere has a main diagonal that is a diameter
of the sphere.
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s

1

Therefore, the main diagonal of the cube will have length 2 units. If we let s be the length
of each side of the cube, then, by the distance formula, we have s2 + s2 + s2 = 22, or
equivalently, 3s2 = 4. So, each side of the cube should measure 2

3

√
3 units. �

EXAMPLE 3 Inscribing a sphere between a cube and a sphere

Find the radius of the largest sphere that can be inscribed between the cube and sphere
from Example 2.

SOLUTION

The following figure shows the sphere whose diameter we wish to find, along with the
radius of the larger sphere:

1

3
2

3

6
1

2
1 3�

The large sphere has radius 1 and each side of the cube measures 2
3

√
3 units. Therefore,

the portion of this radius that extends above the cube has length 1 − 1
2

· 2
3

√
3 = 1 − 1

3

√
3

units. This is the diameter of the smaller sphere. Therefore the radius of the smaller sphere
is 1

2
− 1

6

√
3 units. �

TEST YOUR? UNDERSTANDING
� What is the difference between a right-handed coordinate system and a left-handed

coordinate system?

� What are the coordinate planes in three-dimensional space? How are they drawn?

� How are the distances between two points computed in two-dimensional space and
three-dimensional space? How could the distance formula be generalized to find the
distance between two points in n-dimensional space?

� What are the graphical representations of the equations x = a and y = b in R
2?

What are the graphical representations of the equations x = a, y = b, and z = c in
3-space?

� How do you write an equation of a sphere with a given center and radius?
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EXERCISES 10.1

Thinking Back

Lines parallel to the coordinate axes: Provide equations for the
specified lines.

� The line parallel to the x-axis and containing the
point (π , e).

� The line parallel to the y-axis and containing the
point (π , e).

� The line parallel to the y-axis and containing the
point (0, 5).

Circles in R
2: Provide equations for the specified circles.

� The circle in R
2 with center (3, 6) and tangent to

the x-axis.

� The circle in R
2 with center (3, 6) and tangent to the

y-axis.

� The circle in R
2 with center (−4, 3) and containing

the point (5, −2).

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The distance between two distinct
points can be zero.

(b) True or False: In the Cartesian plane the equation
x = 5 represents a line.

(c) True or False: In three-dimensional space the equation
x = 5 represents a line.

(d) True or False: In four-dimensional space the equation
x = 5 represents a plane.

(e) True or False: The equation

x 2 + y 2 + z 2 + 2x − 4y − 10z + 50 = 0

represents a sphere with center (−1, 2, 5).
(f) True or False: If a sphere in R

3 has its center in the
first octant and is tangent to each of the coordinate
planes, then its center is at the point (c, c, c) for some
constant c.

(g) True or False: When two distinct spheres intersect,
they intersect in either a point or a circle.

(h) True or False: Three noncollinear points in R
3 deter-

mine a unique plane.
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) A plane parallel to the yz-plane.
(b) A sphere tangent to the xy-plane.
(c) A sphere tangent to all three coordinate planes.

3. Consider the equations y = 5 and x = −3.

(a) What do these equations represent in a two-
dimensional system?

(b) What do these equations represent in a three-
dimensional system?

4. Consider the equation x + 2y = 4.

(a) What does this equation represent in a two-
dimensional system?

(b) What does this equation represent in a three-
dimensional system?

5. What are the coordinates of the vertices of a cube with
side length 2, whose center is at the origin, and whose
faces are parallel to the coordinate planes?

6. The sides of a 2 × 3 × 4 rectangular solid are parallel to
the coordinate planes. The coordinates of four of its ver-
tices are (1, −2, 3), (−1, −2, −1), (−1, 1, 3), and (1, −2, 3).
What are the coordinates of the other four vertices?

7. What is the definition of a sphere?
8. What is the definition of a cylinder? What is the directrix?

What is a ruling?

9. Consider the equation x 2 + y 2 = 4.

(a) What does this equation represent in a two-
dimensional system?

(b) What does this equation represent in a three-
dimensional system?

10. Consider the equation z = y 2.

(a) What does this equation represent in the yz-plane?
(b) What does this equation represent in a three-

dimensional system?

11. What point is symmetric about the origin to the point
(5, −6, 7)?

12. What point is symmetric to the point (−1, 3, 6) with
respect to the xy-plane?

13. What point is symmetric to the point (3, −7, −4) with
respect to the plane z = 1?

14. Find all of the x, y, z labelings of the axes in the diagram
that follows. Determine which of your labelings are right-
handed systems and which are left-handed systems.
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15. Show that exchanging two of the axes labels on a right-
handed system creates a left-handed system. What does
exchanging two pairs of axes labels do (for example,
exchanging x and y and then exchanging the “new” y
and z)?

16. Sketch the point (2, 3, 4) in a three-dimensional
Cartesian coordinate system, and then answer the
following questions:

(a) Do the coordinates (2, 3, 4) represent a unique point
in a three-dimensional Cartesian coordinate system?

(b) Are there any other coordinates (a, b, c) that would
have the same location as (2, 3, 4) in your graph?

(c) How far from the xy-plane is the point (2, 3, 4)?
(d) How far from the xz-plane is the point (2, 3, 4)?
(e) How far from the yz-plane is the point (2, 3, 4)?
(f) How far from the x-axis is the point (2, 3, 4)?
(g) How far from the origin is the point (2, 3, 4)?
(h) How far from the point (1, −2, 3) is the point (2, 3, 4)?
(i) What is the equation of the sphere with center (2, 3, 4)

and passing through the point (1, −2, 3)?
(j) What is the equation of the plane parallel to the

xy-plane and that contains the point (2, 3, 4)?
(k) What is the equation of the plane parallel to the

xz-plane and that contains the point (2, 3, 4)?
(l) What is the equation of the plane parallel to the

yz-plane and that contains the point (2, 3, 4)?

17. How does the Pythagorean theorem generalize to higher
dimensions? In particular, how would you compute the
distance between two points in four-dimensional space?
Five-dimensional space? n-dimensional space?

18. The points in the first octant satisfy the inequalities x > 0,
y > 0, z > 0. For each of the other seven octants, find a
set of inequalities that describes the points in the octant.
Use the inequalities to label the octants of the following
right-handed coordinate system:

O

x

y

z

19. Use inequalities to describe each of the following sets, and
sketch the regions:
(a) The region in the first octant above the plane z = 3.
(b) The region inside the sphere with center (1, 2, 4) and

radius 5.
(c) The region inside the right circular cylinder with di-

rectrix x 2 + y 2 − 4x + 6y − 12 = 0.
20. Sketch the right circular cylinders:

x 2 + y 2 = 1, x 2 + z 2 = 4, and y 2 + z 2 = 9.

Skills

Find the distance between the given pair of points in Exer-
cises 21–28.

21. (−2, 3) and (5, −6)
22. (4, 0) and (−5, 12)

23. (1, 4, 7) and (−2, 3, 5)
24. (3, 0, −1) and (2, −8, 0)

25. (−1, 4, −3) and (−4, 3, 1)
26. (4, 5, 8, −2) and (−1, 3, −3, 6)

27. (−1, 3, 5, 2, 0) and (0, 6, 1, −2, 3)
28. (0, 0, . . . , 0) and (1, 1, . . . , 1) in n-space

In Exercises 29–35 find an equation of a sphere with the
specified characteristics.

29. center (3, −2, 5) and radius 5
30. center (4, −2, −3) and radius 3
31. center (2, 5, −7) and tangent to the xy-plane
32. center (2, 5, −7) and tangent to the yz-plane

33. center (2, 5, −7) and containing the origin

34. containing the point (1, 4, 7) and whose center is (−2, 3, 5)

35. containing the point (3, 0, −1) and whose center is
(2, −8, 0)

Use the midpoint formula to find the equations of the spheres
in Exercises 36 and 37.

36. the sphere in which the segment with endpoints (3, −2, 6)
and (5, 6, 4) is a diameter

37. the sphere in which the segment with endpoints (6, −1, 4)
and (−3, 3, 1) is a diameter

In Exercises 38 and 39 find the center and radius of the sphere
with the given equation.
38. x 2 + y 2 + z 2 − 2x + 6y − 8z + 17 = 0

39. x 2 + y 2 + z 2 + 3y − 5z + 3 = 0
40. Find the equations of the intersections of the sphere

x 2 + y 2 + z 2 − 2x + 6y − 8z + 17 = 0

with each of the coordinate planes.
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Graph the quadric surfaces given by the equations in Exer-
cises 41–48.

41. x 2 = y 2

9
+ z 2

9

42. z 2 = x 2

9
+ y 2

25

43. x 2 + y 2 + 1 = z 2

44. x 2 + y 2 − z 2 = 1

45. z = x 2

9
+ y 2

25

46. 9x 2 + 16y 2 + 16z 2 = 144

47. z = x 2 − y 2

48. z = x 2 + y 2

49. A circle is inscribed in a square so that each side of the
square is tangent to the circle. A smaller circle is inscribed
in the square so that this circle is tangent to two sides of
the square and is tangent to the larger circle, as shown in
the following figure:

What is the ratio of the radius of the smaller circle to the
radius of the larger circle?

50. A sphere is inscribed in a cube so that each face of the
cube is tangent to the sphere. A smaller sphere is in-
scribed in the cube so that this sphere is tangent to three
sides of the cube and is tangent to the larger sphere, as
shown in the following figure:

What is the ratio of the radius of the smaller sphere to the
radius of the larger sphere? (Hint: Try Exercise 49 first.)

51. Show that the triangle with vertices (5, 4, −1), (3, 6, −1),
and (3, 4, 1) is equilateral.

52. Show that the triangle with vertices (1, 2, −2), (−3, 2, −6),
and (−3, 6, −2) is equilateral.

53. Show that the points (1, 5, 0), (3, 8, 6), and (7, −7, 4) are
the vertices of a right triangle and find its area.

A regular tetrahedron is a solid with four faces in which each
face is an equilateral triangle of the same size. In Exercises 54
and 55 you are asked some basic questions about regular
tetrahedra.

54. (a) Show that the three points (1, 0, 0), (0, 1, 0), and
(0, 0, 1) are the vertices of an equilateral triangle.

(b) Determine the two values of a so that the four points
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (a, a, a) are the vertices
of a regular tetrahedron.

55. Find the equations of the spheres that circumscribe the
two tetrahedra you determined in Exercise 54 (b). (Hint:
The center of the sphere is the point (x0, y0, z0), where x0 is the
mean of the x-coordinates of the four vertices of the tetrahe-
dron, etc.)

56. Show that the six points (1, 0, 0), (−1, 0, 0), (0, 1, 0),
(0, −1, 0), (0, 0, 1), and (0, 0, −1) form the vertices of a reg-
ular octahedron. (A regular octahedron is an eight-sided
solid in which each face is an equilateral triangle of the
same size, and in which four triangles come together at
each vertex.)

57. Find the volume of the octahedron given in Exercise 56.

(Hint: Recall that the volume of a pyramid is
1
3

· height ·
area of base.)

Applications
58. Ian is doing a high traverse. One morning he looks at

the map and notes that if he considers his camp to be
at the origin, then his objective is at (5.9, 3.3, −0.37). All
distances are in miles.
(a) How far away is his objective, as the crow flies?
(b) In order to reach his objective, Ian has to go over

a high pass that lies at (4.2, 4.4, 0.15) relative to his
camp. Find a more realistic estimate of how far he has
to go to his objective than that from part (a).

59. Annie is in a kayak in the middle of a channel between
Orcas Island and Blakely Island, two of the San Juan Is-
lands in Washington State. She knows from readings she
has taken in the past that if she considers the town of
Deer Harbor to be at the origin, then the summit of Con-
stitution Peak is at (7.9, 4.0), while the summit of Blakely
Peak is at (9.3, −3.4). All distances are given in miles. She
pulls out her compass and finds that the summit of Con-
stitution Peak is 15 degrees east of north from her, while
the summit of Blakely Peak is at 100 degrees from north.
How far is Annie from Deer Harbor?
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60. The Subaru reflecting telescope on Mauna Kea, Hawaii,
has a mirror in the shape of a circular paraboloid with a
diameter of 8.3 meters and a focal length of 15 meters.
While there are some tricks to how that focal length plays
out in practice, if we put the center of the telescope at the
origin, pointed straight up, then the effective focus would
be at (0, 0, p), where p satisfies 4pz = x 2 + y 2, with all
distances given in meters. How high above the xy-plane
is the edge of the telescope?

A reflecting telescope

y

x
?

diameter

focus (0, 0, p)

61. The Hyper Potato Chip Company makes potato chips in
the shape of hyperbolic paraboloids. Each chip satisfies

the equation z = x 2

a 2
− y 2

a 2
when the center of the chip

is placed at the origin. The height of each Hyper chip is
0.16 inch, the length is 2.6 inches, and the width is 1.6
inches. Find the parameter a and write the equation of a
Hyper chip.

A Hyper chip

y

x

z

1.6 in.

2.6 in.

.16 in.

Proofs

62. Prove that the midpoint of the line segment connect-
ing the point (x 1, y 1, z 1) to the point (x 2, y 2, z 2) is( x 1 + x 2

2
,

y1 +y2

2
,

z1 + z2

2

)
.

63. Given any edge E of a tetrahedron, there is exactly one
edge E ′ that does not share a face with E . We will call E
and E ′ opposite edges of the tetrahedron. Prove that the

line segments connecting the midpoints of the opposite
edges of a regular tetrahedron bisect each other.

64. Prove that the midpoint of the line segment connect-
ing the points (x 1, x 2, . . . , xn) and ( y 1, y 2, . . . , yn) in R

n

is
( x 1 + y1

2
,

x 2 + y2

2
, . . . ,

xn + yn

2

)
.

Thinking Forward

Hyperspheres: A four-dimensional hypersphere is the set of all
points in R

4 that are the same distance from a given central
point.

� What is the equation of the hypersphere with center
(1, 2, 3, 4) and passing through the point (2, 5, 3, −4)?

� What is the equation of the hypersphere in which the
segment with endpoints (1, 2, 3, 4) and (2, 5, 3, −4) is a
diameter?

� Hyperspheres can be defined in R
n for any integer

n > 3. How would you define a hypersphere in R
n?
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10.2 VECTORS

� Vectors in R
2 as ordered pairs and in R

3 as ordered triples

� The geometry of vectors

� Using vectors to analyze forces

The Algebra and Geometry of Vectors

The mass and temperature of an object are examples of physical quantities that can be
represented adequately with a single numeric value, a magnitude known as a scalar. Other
quantities, such as displacements, velocities, and forces, need two measures—a magnitude
and a direction—to represent them. Such quantities are represented by vectors.

DEFINITION 10.4 Vectors in R
2 and R

3

A vector in R
2 is an ordered pair 〈x, y〉 subject to the following operations of addition

and scalar multiplication:

(a) The sum of vectors 〈x 1, y 1〉 and 〈x 2, y 2〉 is given by

〈x 1, y 1〉 + 〈x 2, y 2〉 = 〈x 1 + x 2, y 1 + y 2〉.
(b) The scalar multiple of vector 〈x, y〉 by a real number c, a scalar, is given by

c〈x, y〉 = 〈cx, cy〉.
Similarly, a vector in R

3 is an ordered triple 〈x, y, z〉 subject to the following oper-
ations of addition and scalar multiplication:

(c) The sum of vectors 〈x 1, y 1, z 1〉 and 〈x 2, y 2, z 2〉 is given by

〈x 1, y 1, z 1〉 + 〈x 2, y 2, z 2〉 = 〈x 1 + x 2, y 1 + y 2, z 1 + z 2〉.

(d) The scalar multiple of vector 〈x, y, z〉 by scalar c is given by

c〈x, y, z〉 = 〈cx, cy, cz〉.

We will often use boldface type to denote vectors; for example u = 〈1, −5〉 is a vector in
R

2 and v = 〈π , e, −0.3〉 is a vector in R
3. The entries of a vector are referred to as compo-

nents. Thus, for the preceding vector v, the x-component is π , the y-component is e, and
the z-component is −0.3.

We will (almost) exclusively deal with vectors in R
2 and R

3; however, it should be clear
that vectors with n components may be defined in an analogous fashion, as a set of ordered
n-tuples with an addition and a scalar multiplication.

There are two geometric models that we may use for vectors in R
2 and R

3. First, we
may think of the vectors as position vectors. In this model we interpret the vector 〈a, b〉
from R

2 as an arrow in the plane whose initial point is at the origin and whose terminal
point is (a, b). Similarly, we interpret the vector 〈a, b, c〉 from R

3 as an arrow in 3-space
whose initial point is at the origin and whose terminal point is (a, b, c).
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The position vector 〈a, b〉 in R
2 The position vector 〈a, b, c〉 in R

3

x

〈a, b〉

y

b

a

y

x

z

a
b

c

〈a, b, c〉

Our second geometric model is a variation of the preceding one. We may think of a
vector 〈a, b〉 as any translation of the the position vector from the previous model. Thus,
any parallel arrow with the same length pointing in the same direction is another model
for the vector 〈a, b〉.

Any parallel translation of a vector is the same vector

x

y

A similar model may be applied to vectors in R
3.

Using the second model, we may geometrically add two vectors u and v as follows: As
we show next, we place vector u in the diagram and then place the initial point of v at the
terminal point of u. The vector u + v is the vector that extends from the initial point of u
to the terminal point of v.

Constructing u + v geometrically

y

x

v

u

u � v

Another important concept is the magnitude of a vector, along with its synonyms
“norm” and “length.” We use the Pythagorean theorem in our definition.
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DEFINITION 10.5 The Magnitude, Norm, or Length of a Vector

The magnitude, norm, or length of a vector v is denoted by ‖v‖.
In R

2, when v = 〈a, b〉,
‖v‖ =

√
a 2 + b 2.

In R
3, when v = 〈a, b, c〉,

‖v‖ =
√

a 2 + b 2 + c 2.

The magnitude of 〈a, b〉 is
√

a 2 + b 2 The magnitude of 〈a, b, c〉 is
√

a 2 + b 2 + c 2

a2 � b2

x

〈a, b〉

y

a2 � b2 � c2

y
x

z

〈a, b, c〉

For example, the norm of the vector v = 〈1, −2〉 is ‖v‖ =
√

12 + (−2)2 = √
5.

‖v‖ = √
5

x

〈1, �2〉

y

5 2

1

1

�2

When we multiply a vector by a scalar k > 0, we obtain the vector kv that has the
same direction as v but whose magnitude is equal to the magnitude of v multiplied by k.
When k < 0, kv is the vector with direction opposite to the direction of the vector v that
has magnitude equal to the magnitude of v multiplied by |k|. The following figure shows a
vector v along with two scalar multiples of v:

A vector v and two scalar multiples of v

v

2
1 v

v4
3

�
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DEFINITION 10.6 Equal Vectors

Two vectors are said to be equal if and only if their corresponding components are
equal.

In R
2, 〈x 1, y 1〉 = 〈x 2, y 2〉 if and only if x 1 = x 2 and y 1 = y 2.

In R
3, 〈x 1, y 1, z 1〉 = 〈x 2, y 2, z 2〉 if and only if x 1 = x 2, y 1 = y 2, and z 1 = z 2.

DEFINITION 10.7 The Zero Vector in R
2 and R

3

The zero vector in R
2 is 0 =〈0, 0〉 and the zero vector in R

3 is 0 = 〈0, 0, 0〉.

Vectors in R
2 and R

3 obey many of the familiar algebraic properties that real num-
bers do.

THEOREM 10.8 Algebraic Properties of Vectors

(a) Vector addition is commutative:

For any two vectors u and v with the same number of components,

u + v = v + u.

(b) Vector addition is associative:

For any three vectors u, v, and w, each with the same number of components,

(u + v) + w = u + (v + w).

(c) Scalar multiplication distributes over vector addition:

For any scalar c and any two vectors u and v with the same number of
components,

c(u + v) = cu + cv.

In Exercises 57, 58, and 59 we ask you to use Definition 10.4 to prove the three parts of
Theorem 10.8. The following figure illustrates geometrically why vector addition is com-
mutative. Since we may get from point A to point B via either of the paths u + v or v + u,
and the figure formed is a parallelogram, addition is commutative.

v
v

y

x
u

u

u � v

By simply relabeling two of the vectors from the preceding illustration of addition, we
see how we may subtract vectors geometrically. If we let w = u + v, then v = w − u, as
the following figure illustrates:
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Constructing w − u geometrically

w

y

x
u

w � u

We see that when u and w are placed at the same initial point, w − u is the vector that
extends from the terminal point of u to the terminal point of w.

We may use scalar multiplication to define what it means for two vectors to be parallel.

DEFINITION 10.9 Parallel Vectors

Two vectors are said to be parallel if and only if one of the vectors is a scalar multiple
of the other.

As a consequence of this definition, the zero vector is parallel to every other vector, since,
given any vector v, 0v = 0.

We also mention that there is a vector extending from a point P(x 0, y 0, z 0) to a point
Q(x 1, y 1, z 1). In this case we use the notation

−→
PQ = 〈

x 1 − x 0, y 1 − y 0, z 1 − z 0
〉
.

That is,
−→
PQ is the vector whose initial point is P and whose terminal point is Q.

Q(x1, y1, z1)
PQ

x1 � x0

y1 � y0

z1 � z0

y

x

z

P(x0, y0, z0)

For example, if P(8, 5, −3) and Q(13, 5, −8), then
−→
PQ = 〈

13 − 8, 5 − 5, −8 − (−3)
〉 =

〈5, 0, −5〉.

Unit Vectors

Often our primary interest is the direction of a nonzero vector v. At such times we may use
a vector with length 1 and that is parallel to v. Vectors with length equal to 1 unit are called
unit vectors.
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DEFINITION 10.10 Unit Vectors

A vector u is said to be a unit vector if ‖u‖ = 1.

To find a unit vector u with the same direction as a given vector v �= 0, we may multiply
v by the reciprocal of its norm, as the following theorem states:

THEOREM 10.11 Unit Vectors

Given any nonzero vector v, the vector 1
‖v‖v is a unit vector in the direction of v.

We ask you to prove Theorem 10.11 in Exercise 60.

It is convenient to have a special notation for the unit vectors pointing in the positive
direction of each of the coordinate axes. Hence, we make the following definition:

DEFINITION 10.12 Standard Basis Vectors in R
2 and R

3

The standard basis vectors in R
2 are

i = 〈1, 0〉 and j = 〈0, 1〉.
The standard basis vectors in R

3 are

i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 , and k = 〈0, 0, 1〉.

The standard basis vectors in R
2 The standard basis vectors in R

3

j

y

x
i

j

k

i
y

x

z

Any vector in R
2 or R

3 can be written in terms of the appropriate standard basis vectors.
The vector v = 〈a, b〉 can be written as v = ai + bj. Thus, 〈8, −9〉 = 8i − 9j. Similarly, the
vector v = 〈a, b, c〉 can be written as v = ai + bj + ck. Thus, 〈−7, 2, −3〉 = −7i + 2j − 3k.

Using Vectors to Analyze Forces

There are many applications involving vectors. Any quantity with both a magnitude and
a direction may be analyzed with the use of vectors. Two common vector applications are
displacements and forces. We discuss the analysis of forces here.

According to Newton’s second law of motion, the vector sum of all of the forces acting
on a body equals the mass m of the body times its acceleration: F = ma. Thus, if a body
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is not in motion, the sum of the forces acting upon it must be zero. As a simple exam-
ple, the figure that follows shows a weight of 50 pounds suspended by a single rope.
The rope exerts a force equal to 50 pounds, acting upwards, as the force of gravity acts
downwards.

The vector forces in each direction
must have the same magnitude

v

�v

This same principle applies in more complicated contexts, as we will see shortly. A mass
m is suspended from a ceiling by two chains that form angles α and β. The sum of the three
vectors u, v, and w must be zero as long as the object is not in motion.

The sum of the vectors u, v, and w must be zero

m

α β

u v

w

We explore a specific example of this type in Example 3.

Examples and Explorations

EXAMPLE 1 Adding and subtracting vectors

Let u = 〈3, 8〉 and v = 〈2, −4〉. Compute u + v and u − v, and then sketch all four of these
vectors.

SOLUTION

Using Definition 10.4, we have

u + v = 〈
3 + 2, 8 + (−4)

〉 = 〈5, 4〉 and u − v = 〈
3 − 2, 8 − (−4)

〉 = 〈1, 12〉.
To add the two vectors geometrically we place the initial point of one of the vectors at the
terminal point of the other. In the figure that follows at the left we have placed v at the
tip of u. The sum is the vector extending from the initial point of u to the terminal point
of v.
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v � �2, �4〉

u � v � �5, 4〉

u � �3, 8〉

y

x
3 5

4

8

v � �2, �4〉

u � v � �1, 12〉

u � �3, 8〉
y

x
32

8

�4

To subtract two vectors geometrically we position their initial points together, as we
see in the right-hand figure. The vector u − v extends from the terminal point of v to the
terminal point of u. �

EXAMPLE 2 Finding a unit vector in the same direction as a given nonzero vector

Find a unit vector with the same direction as the vector v = 〈4, −3, 5〉.

SOLUTION

The vector v has norm ‖v‖ =
√

42 + (−3)2 + 52 = √
50 = 5

√
2. The unit vector in the di-

rection of v is the vector 1
‖v‖v = 1

5
√

2
〈4, −3, 5〉. If we wish, we may distribute the scalar and

rationalize the denominators to obtain
〈

2
5

√
2, − 3

10

√
2, 1

2

√
2

〉
. �

EXAMPLE 3 Finding the forces in cables suspending an object

The figure that follows shows a 50-pound weight suspended by two cables. Find the force
in each of the cables attached to the ceiling.

The sum of the vector forces equals zero

vu

50 lbs

w

45° 60°

SOLUTION

Since the weight is stationary, the sum of the three vectors is u+v+w = 0. We decompose
each vector into its horizontal and vertical components, using the standard convention that
motion to the right is positive on the x-axis and motion upward is positive on the y-axis.
Therefore,

u = − cos 45◦‖u‖i + sin 45◦‖u‖j = −
√

2
2

‖u‖i +
√

2
2

‖u‖j,

v = cos 60◦‖v‖i + sin 60◦‖v‖j = 1
2
‖v‖i +

√
3

2
‖v‖j, and

w = −50j.
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In order to have u + v + w = 0, the sum of the three x-components and the sum of the
three y-components must both be zero. So,

√
2

2
‖u‖ = 1

2
‖v‖ and

√
2

2
‖u‖ +

√
3

2
‖v‖ = 50 pounds.

From the first of these equations, we have
√

2‖u‖ = ‖v‖, which we can substitute into the
second equation to obtain ‖u‖ = 100√

2 + √
6

≈ 25.9 pounds. Therefore ‖v‖ ≈ 36.6 pounds. �

TEST YOUR? UNDERSTANDING
� What are the geometric and analytic interpretations of a vector in R

2? In R
3?

� How are vectors added and subtracted geometrically? Algebraically?

� What does it mean for one vector to be a scalar multiple of another vector? How can
you tell whether two vectors are parallel?

� What is a unit vector? How do you find a unit vector with the same direction as a given
vector?

� How can you use vectors to analyze the forces acting on an object?

EXERCISES 10.2

Thinking Back

Properties of addition: Provide definitions for the following
properties.

� the commutative property of addition for real numbers

� the associative property of addition for real numbers

� the distributive property of multiplication over addition
for real numbers

Computing distances: Find the distances between the specified
pairs of points.

� (−3, 4) and (6, −5)

� (11, 12, 13) and (11, 12, −2)

� (5, −2, −1) and (3, 0, −4)

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every vector has a norm.
(b) True or False: Given any vector v, there is a unit vector

in the direction of v.
(c) True or False: The unit vector in the direction of a given

nonzero vector v is always shorter than v.
(d) True or False: Given two points A and B in 3-space,

the vector from A to B is denoted by
−→
BA.

(e) True or False: The vector 〈a, b〉 in R
2 can be interpreted

as the vector 〈a, b, 0〉 in R
3.

(f) True or False: Standard basis vectors are unit vectors.
(g) True or False: For any nonzero vector v, the vector −v

has the same length as v but points in the opposite
direction.

(h) True or False: If v = −→
AB, then −v = −→

BA.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A unit vector in R
2 that is not parallel to either i or j.

(b) A vector in R
3 with magnitude 5.

(c) Two distinct vectors parallel to 〈1, 2, −3〉, each with
norm 3.

In Exercises 3–8, let A, B, C, D, . . . , Z be points in R
3. Sim-

plify the given quantity.

3.
−→
AB + −→

BC 4.
−→
AB + −→

BC + −→
CD

5.
−→
AB + −→

BA 6.
−→
BD − −→

CD

7.
−→
AB + −→

BC + −→
CA 8.

−→
AB + −→

BC + · · · + −→
YZ

9. How do you add two vectors algebraically? Geometri-
cally?

10. How do you subtract two vectors algebraically? Geomet-
rically?

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:53

10.2 Vectors 801

11. Find a vector parallel to 〈a, b, c〉 but twice as long.
12. Find a vector parallel to 〈a, b, c〉 but half as long and point-

ing in the opposite direction.

13. If the initial point of the vector 〈2, 3, −5〉 is the point
(−3, 2, 4), what is the terminal point of the vector?

14. If the terminal point of the vector 〈2, 3, −5〉 is the point
(−3, 2, 4), what is the initial point of the vector?

15. Find the terminal point of a vector of magnitude 5 that
is parallel to the vector 〈1, 2, 3〉 and whose initial point is
(0, 3, −2).

16. Let v0 = 〈a, b〉 and let v = 〈x, y〉. Describe the sets of
points in R

2 satisfying the following properties:
(a) ‖v‖ = 4
(b) ‖v‖ ≤ 4
(c) ‖v − v0‖ = 4

17. Let v0 = 〈a, b, c〉 and let v = 〈x, y, z〉. Describe the sets of
points in R

3 satisfying the following properties:
(a) ‖v‖ = 4
(b) ‖v‖ ≤ 4
(c) ‖v − v0‖ = 4

18. Let v = 〈w, x, y, z〉. Describe the sets of points in R
4 satis-

fying ‖v‖ = 4.

19. How do you generalize the ideas of this section to vectors
with four components? To vectors with n components?

20. What is the set of all position vectors in R
2 of magni-

tude 5?

21. What is the set of all position vectors in R
3 of magni-

tude 5?
22. Consider the vector v = 〈2, 3, 7〉.

(a) Graph v.
(b) What vector is symmetric about the origin to v?

Graph that vector.
(c) What vector is symmetric about the xy-plane to v?

Graph that vector.
(d) What vector is symmetric about the point (0, 3, 0)

to v? Graph that vector.
(e) What vector is symmetric about the plane z = 2 to v?

Graph that vector.

Skills

In each of Exercises 23–28, find u + v and u − v. Also, sketch
u, v, u + v, and u − v.

23. u = 〈2, −6〉, v = 〈6, 2〉
24. u = 〈3, −4〉, v = 〈−1, 5〉
25. u = 〈1, −2〉, v = 〈−3, 6〉
26. u = 〈4, 0〉, v = 〈0, 3〉
27. u = 〈1, −4, 6〉, v = 〈2, −4, 7〉
28. u = 〈3, 6, 11〉, v = 〈1, −2, 3〉
In Exercises 29–32 find

−→
PQ.

29. P = (3, 6), Q = (−3, −2)
30. P = (5, −3), Q = (3, −6)

31. P = (1, −2, 5), Q = (1, −7, −2)
32. P = (−1, 5, 4), Q = (−1, 6, 4)

In Exercises 33–36 find the norm of the vector.

33. v = 〈3, −4〉 34. v =
〈 1

2
,

1
3

,
1
4

〉

35. v =
〈 1

3
,

1
3

, − 1
3

〉
36. v = 〈0, 0, 6〉

In Exercises 37–42, find ‖v‖ and find the unit vector in the
direction of v.

37. v = 〈3, −4〉 38. v =
〈√

1
3

, −
√

2
3

〉

39. v =
〈 1

5
,

1
3

〉
40. v = 〈2, 1, −5〉

41. v = 〈1, 1, 1〉 42. v =
〈√

2
2

,
1
2

,
1
2

〉

In Exercises 43–51 find a vector with the given properties.

43. Find a vector in the direction of 〈3, 1, 2〉 and with
magnitude 5.

44. Find a vector in the direction of 〈−1, 2, 3〉 and with
magnitude 3.

45. Find a vector in the direction of 〈8, −7, 2〉 and with
magnitude 2.

46. Find a vector in the direction of 〈9, 0, −6〉 and with
magnitude 7.

47. Find a vector in the direction opposite to 〈−1, −4, −6〉 and
with magnitude 7.

48. Find a vector in the direction opposite to 〈−4, 5, −1〉 and
with magnitude 3.

49. Find a vector in the direction opposite to 〈0, −3, 4〉 and
with magnitude 10.

50. Find a unit vector in the direction opposite to 〈3, 4, 5〉.
51. Find a vector of length 3 that points in the direction

opposite to 〈1, −2, 3〉.
52. Let P = (2, 3, 0, −1) and Q = (3, −2, 1, 6) be points in

four-dimensional space.

(a) Find
−→
PQ.

(b) Find ‖ −→
PQ‖.

(c) Find the unit vector in the direction of
−→
PQ.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:53

802 Chapter 10 Vectors

Applications
53. A weight of 100 pounds is suspended by two ropes as

shown in the accompanying figure. What are the mag-
nitudes of the forces in each of the ropes?

100 lbs

45° 30°

54. Each bolt attached in a certain ceiling is known to be able
to withstand a force of 200 pounds before it pulls out.
What is the maximum weight of an object that can be sus-
pended in the following system?

?

45° 45°

55. Annie has to make a crossing by kayak from Stuart Island
to Speiden Island, two islands in the San Juan archipelago
that are part of Washington State.
(a) If she crosses due south during a slack tide at a leisurely

2 mph, what is a vector describing her velocity?
(b) If she crosses in a perfectly southeastern direction at

slack tide at 2 mph, what is a vector describing her
velocity?

(c) The tides can pump through the Stuart–Speiden
channel at a good clip. The outgoing tide can move
due west at 2 mph. When faced with this situation,
Annie turns on the jets and paddles southeast at
3 mph. What is a vector describing her velocity?

56. Ian is descending Middle Cascade Glacier in North
Cascades National Park in Washington State.
(a) Near the top of the glacier, he is descending a

30-degree slope due northwards at 3 mph. Give a
vector describing his velocity.

(b) Toward the middle of the glacier the slope steep-
ens. Now Ian is descending directly northeast at a
45-degree angle. His speed is only 2 mph. What is
a vector describing his velocity?

(c) Now Ian needs to exit the glacier before he runs into
the icefall. He contours due east, so that he is nei-
ther ascending nor descending. He is moving only at
1.5 mph now. What is a vector describing his velocity?

Proofs

57. Prove part (a) of Theorem 10.8 for vectors in R
3; that is,

show that for u = 〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉,
u + v = v + u.

58. Prove part (b) of Theorem 10.8 for vectors in R
3; that is,

show that for u = 〈u 1, u 2, u 3〉 , v = 〈v 1, v 2, v 3〉 and
w = 〈w 1, w 2, w 3〉,

(u + v) + w = u + (v + w).

59. Prove part (c) of Theorem 10.8 for vectors in R
3; that

is, show that for u = 〈u 1, u 2, u 3〉, v = 〈v 1, v 2, v 3〉 and
scalar c,

c(u + v) = c u + c v.

60. Prove Theorem 10.11; that is, show that when v �= 0, the

scaled vector
1

‖v‖ v is a unit vector with the same direction
as v.

61. Let c and d be a scalars and let v be a vector in R
3. Show

that the following distributive property holds:

(c + d )v = c v + d v.

62. Use a vector argument to prove that the segment con-
necting the midpoints of two sides of a triangle is parallel
to the third side of the triangle and half of its length.

63. Use vector methods to show that the diagonals of a par-
allelogram bisect each other.

64. Let Quad(PQRS) denote the quadrilateral in the xy-plane
with vertices P, Q, R, and S. If P ′ is the midpoint of side
PQ, Q′ is the midpoint of side QR, R ′ is the midpoint
of side RS, and S′ is the midpoint of side SP, prove that
Quad(P ′Q ′R ′S ′) is a parallelogram.

Thinking Forward

Perpendicular vectors in R
2

� How many vectors are there in R
2 that are perpendic-

ular to a given nonzero vector 〈a, b〉?
� How many unit vectors are there in R

2 that are perpen-
dicular to a given nonzero vector 〈a, b〉?

� Find a vector in R
2 that is perpendicular to the vector

〈1, 3〉.
� Find a unit vector in R

2 that is perpendicular to the
vector 〈1, 3〉.

Perpendicular vectors in R
3

� How many vectors are there in R
3 that are perpendic-

ular to a given nonzero vector 〈a, b, c〉?
� How many unit vectors are there in R

3 that are perpen-
dicular to a given nonzero vector 〈a, b, c〉?

� Find a unit vector in R
3 that is perpendicular to both

vectors i and k.
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10.3 DOT PRODUCT

� The dot product

� The geometry of the dot product

� Projecting one vector onto another

The Dot Product

In Section 10.2 we discussed how to multiply a vector v by a scalar k. Recall that kv is a
vector parallel to v with magnitude |k| times the magnitude of v and with the same direction
if k > 0 and the opposite direction if k < 0. Here we will define the dot product, which
allows us to multiply two vectors with the same number of components. In Section 10.4
we will discuss the cross product, a different method for multiplying two vectors in R

3.

DEFINITION 10.13 Dot Product

Let u = 〈u 1, u 2〉 and v = 〈v 1, v 2〉 be vectors in R
2. We define the dot product, u · v,

to be
u · v = u 1v 1 + u 2v 2.

Let u = 〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉 be vectors in R
3. We define the dot product,

u · v, to be
u · v = u 1v 1 + u 2v 2 + u 3v 3.

For example, the dot product of the vectors 〈1, 4〉 and 〈7, −3〉 from R
2 is

〈1, 4〉 · 〈7, −3〉 = 1 · 7 + 4 · (−3) = 7 − 12 = −5,

and the dot product of the vectors 〈2, 7, 6〉 and 〈−1, 2, −2〉 from R
3 is

〈2, 7, 6〉 · 〈−1, 2, −2〉 = 2 · (−1) + 7 · 2 + 6 · (−2) = −2 + 14 − 12 = 0.

Note that in both cases the dot product is a scalar, not a vector. For most of the rest of this
section we will discuss the significance of the dot product and what this scalar tells us about
the relationship between the two vectors. Note also that Definition 10.13 could easily be
generalized to allow us to find the dot product of two vector in R

n.

Theorem 10.14 collects several basic algebraic properties of the dot product. We prove
part (b) for vectors in R

3 and leave the proofs of the other parts of the theorem for
Exercise 62.

THEOREM 10.14 Algebraic Properties of the Dot Product

For any vectors u, v, and w, and any scalar k,

(a) u · v = v · u

(b) u · (v + w) = u · v + u · w

(c) k(u · v) = (ku) · v = u · (kv)

(d) v · v = ‖v‖2
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Proof. Let u = 〈u 1, u 2, u 3〉, v = 〈v 1, v 2, v 3〉, and w = 〈w 1, w 2, w 3〉. Using the definitions of vector
addition and the dot product, we have

u · (v + w) = 〈u 1, u 2, u 3〉 · (〈v 1, v 2, v 3〉 + 〈w 1, w 2, w 3〉)
= 〈u 1, u 2, u 3〉 · 〈v 1 + w 1, v 2 + w 2, v 3 + w 3〉
= u 1(v 1 + w 1) + u 2(v 2 + w 2) + u 3(v 3 + w 3)

= u 1 v 1 + u 1 w 1 + u 2 v 2 + u 2 w 2 + u 3 v 3 + u 3 w 3

= (u 1 v 1 + u 2 v 2 + u 3 v 3) + (u 1 w 1 + u 2 w 2 + u 3 w 3)

= 〈u 1, u 2, u 3〉 · 〈v 1, v 2, v 3〉 + 〈u 1, u 2, u 3〉 · 〈w 1, w 2, w 3〉
= u · v + u · w.

Note that this proof may be generalized to vectors in R
n. Similarly, the other parts of

Theorem 10.14 may be generalized to vectors in R
n.

We obtain a scalar as the dot product of the two vectors u and v. What does this number
tell us about the geometric relationship between the two vectors? Before we answer that
question, we need to mention that the angle between two nonzero vectors u and v is the
angle 0 ≤ θ ≤ π created when u and v are considered as position vectors. (If either u = 0
or v = 0, then the angle between u and v is undefined.)

The angle between two nonzero vectors is 0 ≤ θ ≤ π

u

v

θ

y

x

z

THEOREM 10.15 The Geometry of the Dot Product

Let u and v be vectors. Then the dot product

u · v =
{

0, if either u = 0 or v = 0

‖u‖‖v‖ cos θ , if u �= 0 and v �= 0, where θ is the angle between u and v.

This theorem provides a relationship between the dot product of two vectors, their lengths,
and the angle between them.

In Exercise 56 we ask you to prove Theorem 10.15 for vectors in R
2. We will prove it for

vectors in R
3 in a moment. Before we do, let us remind you of the Law of Cosines, which

we will use in our proof.

THEOREM 10.16 Law of Cosines

In a triangle with side lengths a, b, and c, where θ is the angle between the sides of
length a and b,

a 2 + b 2 − 2ab cos θ = c 2.
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θ a

b

c

We are now ready to prove Theorem 10.15 for vectors in R
3.

Proof. Let u = 〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉. If either u or v is 0, then

u 1 v 1 + u 2 v 2 + u 3 v 3 = 0 + 0 + 0 = 0,

and we are done.

If neither u nor v is 0 but they are parallel, then u = k v for some scalar k, and θ , the angle
between u and v, is either 0 or π . If θ = 0, then cos θ = 1 and u = kv for some positive scalar k.
Using the appropriate algebraic properties of Theorem 10.14, we have

u · v = kv · v = k‖v‖2 = ‖u‖‖v‖.
In Exercise 58 we ask you to analyze the case where u = kv and k < 0.

If neither u nor v is 0, and if 0 < θ < π , consider the following triangle formed from the vectors
u and v:

v

u

u � v

θ

From the Law of Cosines we know that

‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ = ‖u − v‖2.

Rearranging, we get

‖u‖‖v‖ cos θ = 1
2

(‖u‖2 + ‖v‖2 − ‖u − v‖2).

To finish our proof we will show that the right-hand side of this last equality is the dot product
u · v.

Since u = 〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉, we have u − v = 〈u 1 − v 1, u 2 − v 2, u 3 − v 3〉. We
also have the following norms:

‖u‖2 = u 2
1 + u 2

2 + u 2
3,

‖v‖2 = v 2
1 + v 2

2 + v 2
3, and

‖u − v‖2 = (u 1 − v 1)2 + (u 2 − v 2)2 + (u 3 − v 3)2.

Therefore,
1
2

(‖u‖2 + ‖v‖2 − ‖u − v‖2) equals

1
2

((u 2
1 + u 2

2 + u 2
3) + (v 2

1 + v 2
2 + v 2

3) − (u 2
1 − 2u 1v 1 + v 2

1 + u 2
2 − 2u 2v 2 + v 2

2 + u 2
3 − 2u 3v 3 + v 2

3))

= u 1 v 1 + u 2 v 2 + u 3 v 3 = u · v.

We now have our result.

As a corollary to Theorem 10.15 we may immediately determine when the angle
between two vectors is acute, right, or obtuse:
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THEOREM 10.17 The Angle Between Two Vectors and the Dot Product

Let θ be the angle between nonzero vectors u and v. Then

θ is

⎧⎨
⎩

acute, if and only if u · v > 0
right, if and only if u · v = 0

obtuse, if and only if u · v < 0.

The details of the proof are left for Exercise 60.

DEFINITION 10.18 Orthogonal Curves and Vectors

(a) Two curves are said to be orthogonal at a point of intersection if the tangent lines
to the curves at the point of intersection are perpendicular.

(b) Two nonzero vectors are orthogonal if the angle between them is a right angle.

(c) The zero vector is orthogonal to every vector.

Orthogonal curves Orthogonal vectors

f

g

y

x

We have the following theorem, whose proof is left for Exercise 61:

THEOREM 10.19 The Dot Product Test for Orthogonality

Vectors u and v are orthogonal if and only if u · v = 0.

Projections

Although our coordinate systems consist of mutually perpendicular axes, in certain ap-
plications one nonzero vector u is of particular significance. When this is the case, we
may wish to write another vector v as a sum of two vectors, one of which is parallel to u,
the other orthogonal to u.

DEFINITION 10.20 Vector Projections and Vector Components

Let u be a nonzero vector and let v be any vector. We define the vector projection of v
onto u, denoted v‖, and the vector component of v orthogonal to u, denoted v⊥, as
the pair of vectors having the following three properties:

(a) v‖ is parallel to u.

(b) v⊥ is orthogonal to u.

(c) v‖ + v⊥ = v.
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(Note that we will be using the notations v‖ and v⊥ only temporarily. The formal notations
are given shortly.)

In Exercise 63 we ask you to prove that such a decomposition of v is unique.

Geometrically we have one of the situations shown in the following two figures:

v

u

θ

v⊥ 

v‖

θv
u

v⊥ v|| 

Since u · v = ‖u‖‖v‖ cos θ , we have

‖v‖ cos θ = 1
‖u‖u · v = u · v

‖u‖ .

Observe that the signed quantity ‖v‖ cos θ is positive when 0 ≤ θ < 90◦ and negative
when 90◦ < θ ≤ 180◦. In either case, ‖v‖‖ = ‖v‖| cos θ |.

We use ‖v‖ cos θ = u·v
‖u‖ in the following definition:

DEFINITION 10.21 The Component of a Projection

Let u be any nonzero vector. Then the component of the projection of v onto u is the
scalar

compuv = u · v
‖u‖ .

It bears repeating that compuv is a signed quantity and its sign depends upon the size of
the angle between u and v.

From our earlier discussion, v‖ equals compuv times the unit vector in the direction of u,
and we have

v‖ = u · v
‖u‖

u
‖u‖ = u · v

‖u‖2 u.

We now introduce the more formal notation for v‖.

DEFINITION 10.22 The Vector Projection

Let u be any nonzero vector. Then the vector projection of v onto u is

projuv := u · v
‖u‖2 u.

Finally, since v‖ + v⊥ = v, the vector component of v orthogonal to u is

v⊥ = v − projuv.

The Triangle Inequality

You are probably familiar with the statement: “The shortest distance between two points
is a straight line.” This is the famous triangle inequality. In the figure shown next, we have
two paths from point A to point B. One is u + v, while the other is u followed by v. Since
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u+v is the straight path between the two points, its length must be shorter than the length
of the path given by u followed by v. This inequality may be phrased in terms of vectors,
as in the next theorem.

The shortest distance between points A and B is the straight line

A

B

u � v v

u

This figure illustrates why the statement about the shortest distance is a statement about
triangles!

THEOREM 10.23 The Triangle Inequality

Given vectors u and v, ‖u + v‖ ≤ ‖u‖ + ‖v‖, and ‖u + v‖ = ‖u‖ + ‖v‖ if and only if
u = 0 or v = 0 or u = kv for some positive scalar k.

Proof. First note that if u = 0 or v = 0, then ‖u + v‖ = ‖u‖ + ‖v‖. If neither u nor v is 0, but
u = kv for some positive scalar k, then

‖u + v‖ = ‖k v + v‖ = (k + 1)‖v‖ = k‖v‖ + ‖v‖ = ‖u‖ + ‖v‖.
We now use the dot product to prove the inequality. We have

‖u + v‖2 = (u + v) · (u + v)

= u · u + u · v + v · u + v · v

= ‖u‖2 + 2u · v + ‖v‖2

= ‖u‖2 + 2‖u‖‖v‖ cos θ + ‖v‖2

≤ ‖u‖2 + 2‖u‖‖v‖ + ‖v‖2

= (‖u‖ + ‖v‖)2.

So, ‖u + v‖2 ≤ (‖u‖ + ‖v‖)2. Since magnitudes are nonnegative, we have our result,

‖u + v‖ ≤ ‖u‖ + ‖v‖.

Examples and Explorations

EXAMPLE 1 Finding the angle between two vectors

Find the angle between u = 〈1, 2, 3〉 and v = 〈2, 1, −4〉.
SOLUTION

Here,
u · v = 2 + 2 − 12 = −8,

‖u‖ =
√

12 + 22 + 32 =
√

14, and

‖v‖ =
√

22 + 12 + (−4)2 =
√

21.

Therefore, if θ is the angle between u and v, then cos θ = u · v
‖u‖‖v‖ = −8√

14
√

21
≈ −0.4666.

Thus, θ ≈ 117.8◦. �
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EXAMPLE 2 Using the dot product to show orthogonality

Show that the triangle with vertices P = (6, 2, 2), Q = (2, 0, −1), and R = (5, 1, −2) is a right
triangle.

SOLUTION

We can form the vectors

−→
PQ = 〈−4, −2, −3〉 ,

−→
PR = 〈−1, −1, −4〉 , and

−→
QR = 〈3, 1, −1〉.

For �PQR to be a right triangle, we need one right angle. Using the dot product, we see

that although
−→
PQ is orthogonal to neither

−→
PR nor

−→
QR (check this), we do have

−→
PR · −→

QR = (−1)(3) + (−1)(1) + (−4)(−1) = 0.

Therefore the angle at vertex R is a right angle. Thus �PQR is a right triangle. �

EXAMPLE 3 Finding the projection of one vector onto another

Given vectors u = 〈8, 2〉 and v = 〈−4, 5〉, find compuv, projuv the vector projection of v
onto u, and the component of v orthogonal to u.

SOLUTION

The component of the projection of v onto u is

compuv = 〈8, 2〉 · 〈−4, 5〉
‖〈8, 2〉‖ = −22√

68
.

The vector projection of v onto u is compuv times the unit vector in the direction of u.
Thus,

projuv = u · v
‖u‖2

u = 〈8, 2〉 · 〈−4, 5〉
‖〈8, 2〉‖2

〈8, 2〉 = −11
34

〈8, 2〉.

The vector component of v orthogonal to u is given by

v − projuv = 〈−4, 5〉 −
(
−11

34
〈8, 2〉

)
=

〈
− 24

17
, 96

17

〉
.

The following figure shows these vectors:

34
11proju v � ��u

17
24

17
96v⊥ � ���, ��

v

u

x

y

5

8�4

2

�
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EXAMPLE 4 Finding the distance from a point to a line

Find the distance from the point P = (1, 4, −2) to the line determined by the points
Q = (3, −2, 5) and R = (0, 4, −3).

SOLUTION

The diagram that follows is a schematic illustrating the given situation. The distance we
seek is merely the magnitude of the vector component of

−→
QP = 〈

1 − 3, 4 − (−2), −2 − 5
〉 = 〈−2, 6, −7〉

orthogonal to
−→
QR = 〈

0 − 3, 4 − (−2), −3 − 5
〉 = 〈−3, 6, −8〉.

R

P

?

Q

We may first find

proj−→
QR

−→
QP =

−→
QR · −→

QP

‖−→
QR‖2

−→
QR = 〈−3, 6, −8〉 · 〈−2, 6, −7〉

‖〈−3, 6, −8〉‖2 〈−3, 6, −8〉 = 98
109

〈−3, 6, −8〉.

Thus the vector component of
−→
QP orthogonal to

−→
QR is

−→
QP − proj−→

QR

−→
QP = 〈−2, 6, −7〉 − 98

109
〈−3, 6, −8〉 =

〈
76
109

, 66
109

, 21
109

〉
.

The distance from P to the line determined by the points Q and R is the magnitude of
this vector, or

∥∥∥〈
76

109
, 66

109
, 21

109

〉∥∥∥ =
√(

76
109

)2
+

(
66
109

)2
+

(
21
109

)2
=

√
10573
109

≈ 0.94. �

TEST YOUR? UNDERSTANDING
� What is the definition of the dot product u · v, and what is the geometric relationship

among u, v, and u · v?

� How is the angle between two vectors defined and how is it computed?

� What does it mean to project one vector onto another? When would you want to com-
pute such a projection? How is the projection computed?

� How do you find the vector component of one vector orthogonal to another
vector?

� What is the triangle inequality? How is it proved? Why is the inequality |a+b| ≤ |a|+|b|,
where a and b are real numbers, also called the triangle inequality?
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EXERCISES 10.3

Thinking Back

� Law of Cosines: Use the Law of Cosines to find the
measures of the angles of a triangle with side lengths
2, 3, and 4.

� The distance between a point and a sphere: Find the short-
est distance from the point (11, −3, 5) to the sphere
(x + 2)2 + ( y − 3)2 + z 2 = 16.

� The Triangle Inequality: Given a = 5 and b = −3, verify
that the triangle inequality |a + b| ≤ |a| + |b| holds.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: For all vectors u and v in R
3, u ·v = v ·u.

(b) True or False: The component of the projection of v
onto u, compuv, is a vector.

(c) True or False: The projection of v onto u, projuv, is a
vector in the direction of v.

(d) True or False: Two curves are said to be orthogonal at a
point if they intersect at the point.

(e) True or False: If θ is the angle between two nonzero
vectors u and v, then cos θ = u · v

‖u‖‖v‖ .

(f) True or False: If u and v are nonzero vectors such
that projuv = projvu, then u and v are either equal or
orthogonal.

(g) True or False: If u · v = ‖u‖‖v‖, where u and v are
nonzero, then u = k v, where k > 0.

(h) True or False: The product (u ·v) ·w is defined for vec-
tors u, v, and w.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two nonzero vectors in R
3 whose dot product is

zero.
(b) A function y = f (x) that is orthogonal to the function

y = sin x at x = 0.
(c) A vector v �= i such that projiv = i.

3. State the definition of the dot product.
4. What does it mean geometrically for two vectors to be

orthogonal at a point? What does it mean algebraically?
What do we mean when we say that two curves are
orthogonal at a point of intersection?

5. Why is the Law of Cosines a generalization of the
Pythagorean theorem?

6. Let v = a i + b j and w = c i + d j. Give conditions on the
constants a, b, c, and d that guarantee that
(a) v is parallel to w.
(b) v is perpendicular to w.

7. Let v = ai + bj + ck and w = αi + β j + γ j. Give condi-
tions on the constants a, b, c, α, β, and γ that guarantee
that
(a) v is parallel to w.
(b) v is perpendicular to w.

8. What is the relationship between ‖v‖ and v · v?

9. Let u be a nonzero vector.
(a) Show that u · v = u · w does not necessarily imply

that v = w.
(b) What geometric relationship must u, v, and w satisfy

if u · v = u · w?
10. Let u and v, be nonzero vectors.

(a) When does compuv = compvu?
(b) When does projuv = projvu?

11. What geometric relationship must two vectors have in
order for ‖u + v‖ = ‖u‖ + ‖v‖?

12. Consider the position vector i = 〈1, 0〉 in R
2. Describe

the set of position vectors v in R
2 with the property that

v · i = 0.

13. Consider the position vector i = 〈1, 0, 0〉 in R
3. Describe

the set of position vectors v in R
3 with the property that

v · i = 0.
14. Consider the position vector i = 〈1, 0〉 in R

2. Describe
the set of position vectors v in R

2 with the property that
projiv = i.

15. Consider the position vector i = 〈1, 0, 0〉 in R
3. Describe

the set of position vectors v in R
3 with the property that

projiv = i.
16. Let v0 = 〈a, b〉. Describe the set of points (x, y) such that,

for v = 〈x, y〉,
(a) v · v0 = 0.
(b) (v − v0) · v0 = 0.
(c) (v − v0) · v = 0.

17. Recall that when two lines are perpendicular, their slopes
are negative reciprocals.
(a) Find a vector parallel to the line y = mx + b.
(b) If m �= 0, find the slope of any line perpendicular to

y = mx + b and find a vector parallel to that perpen-
dicular line.

(c) Show that the dot product of the vectors in parts (a)
and (b) is zero.
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18. Let v1 and v2 be two nonzero position vectors in R
2 that

are not scalar multiples of each other. Explain why, given
any vector w in R

2, there are scalars c1 and c 2 such that
w = c1v1 + c 2v2.

19. To illustrate the concept in Exercise 18:
(a) Explain why the vectors v1 = 〈1, −2〉 and v2 = 〈3, 5〉

are not scalar multiples of each other.
(b) Find scalars c1 and c 2 such that 〈5, 1〉 = c1v1 + c 2v2.

Skills

In Exercises 20-23, find the dot product of the given pairs of
vectors and the angle between the two vectors.

20. u = 〈1, 2〉 , v = 〈3, 5〉
21. u = 〈2, 0, −5〉 , v = 〈−3, 7, −1〉
22. u = 〈3, −1, 2〉 , v = 〈−4, −6, 3〉
23. u = 〈−5, 1, 3〉 , v = 〈−3, 2, 7〉
In Exercises 24-27, find compuv, projuv, and the component
of v orthogonal to u.

24. u = 〈1, 2〉 , v = 〈3, 5〉
25. u = 〈3, −1, 2〉 , v = 〈−4, −6, 3〉
26. u = 〈2, 0, −5〉 , v = 〈−3, 7, −1〉
27. u = 〈3, 1, −2〉 , v = 〈−6, −2, 4〉
In Exercises 28-31, find projuv and projvu.

28. u = 〈1, 4〉 , v = 〈2, −3〉
29. u = 〈3, −4〉 , v = 〈16, 12〉
30. u = 〈3, 0, 1〉 , v = 〈2, 2, −5〉
31. u = 〈1, −5, −1〉 , v = 〈0, 1, 0〉
In Exercises 32–36, (a) compute u · v, (b) find the angle
between u and v, and (c) find projuv.

32. Let u = 〈1, 5〉 and v = 〈2, 7〉.
33. Let u = 〈−2, 3, 5〉 and v = 〈13, −5, 8〉.
34. Let u = 〈0, 3, −4〉 and v = 〈−5, 6, 0〉.
35. Let u = 〈2, 4, −1, 2〉 and v = 〈−1, 3, −2, 6〉.
36. Let u = 〈5, −2, 3, 4〉 and v = 〈0, −1, 1, 7〉.
For Exercises 37 and 38, let P = (2, 5, 7), Q = (−2, 1, −5), and
R = (−3, 0, 4).

37. Find the distance between the point P and the line deter-
mined by the points Q and R.

38. Find the altitude of triangle �PQR from vertex R to side
PQ.

39. Find the angle between the diagonal of a face of a cube
and the adjoining edge of the cube that is not an edge of
that face.

40. Find the angle between the diagonal of a cube and an
adjoining edge of the cube.

41. Find the angle between the diagonal of a cube and an
adjoining diagonal of one of the faces of the cube.

42. Find the angle between two distinct diagonals of a cube.

Exercises 43–53 deal with direction angles and direction
cosines. Let v be a nonzero vector in R

3. The direction an-
gles α, β, and γ of v are the angles that v makes with the
positive x-, y- and z-axes, respectively. The direction cosines
of v are cos α, cos β, and cos γ .

Find the direction angles and direction cosines for the vectors
given in Exercises 43–46.

43. 〈1, 2, 3〉 44. 〈−2, 0, 3〉
45. 〈−1, 1, −4〉 46. 〈−3, 4, 2〉
47. Show that for any vector v in R

3,

v = ‖v‖ ((cos α)i + (cos β)j + (cos γ )k) ,

where α, β, and γ are the direction angles of v.
48. Use Exercise 47 to show that if cos α, cos β, and cos γ are

the direction cosines of a vector v, then

cos2 α + cos2 β + cos2 γ = 1.

In Exercises 49-51, two direction cosines are given. Use Exer-
cise 48 to find the third direction cosine.

49. cos α = 1
2

, cos β = 1
2

.

50. cos β = 1
4

, cos γ = 1
3

.

51. cos α = 1
2

, cos γ =
√

3
4

.

52. Let v be a vector in R
n.

(a) How would you compute the direction angles and
direction cosines for v?

(b) Show that if α1, α 2, . . . , αn are the direction angles
for v, then cos2 α1 + cos2 α 2 + · · · + cos2 αn = 1.

53. Let v = 〈1, 1, 1, . . . , 1〉 be a vector in R
n.

(a) Use Exercise 52 to find the direction angles
α1, α 2, . . . , αn.

(b) Show that αi → π

2
as n → ∞.
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Applications
54. Ian is climbing a glacier to a col, a gap in a ridge. The

snow is steep, so he is zigzagging up, first northeast, then
southeast, always 45 degrees away from due east, and
always at 30 degrees from the horizontal. He travels at
0.5 mile per hour in whichever direction he heads.

(a) What is the component of his velocity horizontally,
due east?

(b) The map shows that the col is
1
4

mile east of him.

How long will it take Ian to get there?

55. Annie is making a north-to-south crossing from one
island to another, with a tidal current in the channel.
The current in the channel is moving at 1 mph due west.
Annie has pointed her kayak in the direction 〈1, −4〉 and
is paddling at 2 mph.

(a) What angle does Annie’s boat make with a direct
southerly heading?

(b) What is the component of Annie’s velocity toward the
south?

(c) The crossing is 2 miles due south. How long will it
take Annie?

Proofs

56. Let u and v be two nonzero vectors in R
2. Prove that

u · v = ‖u‖‖v‖ cos θ , where θ is the angle between u
and v.

57. Show that for any vector v in R
3,

v = (v · i)i + (v · j)j + (v · k)k.

58. Show that u·v = ‖u‖‖v‖ cos θ when u and v are nonzero
vectors such that u = kv with k < 0.

59. Use the fact that u · v =‖u‖‖v‖ cos θ to prove the
Cauchy–Schwarz inequality |u · v| ≤ ‖u‖‖v‖. What
relationship must u and v have in order for |u · v| =
‖u‖‖v‖?

60. Let θ be the angle between nonzero vectors u and v.
Prove each of the following:
(a) θ is acute if and only if u · v > 0
(b) θ is right if and only if u · v = 0
(c) θ is obtuse if and only if u · v < 0

61. Prove that vectors u and v are orthogonal if and only if
u · v = 0. (This is Theorem 10.19.)

62. Prove the following statements from Theorem 10.14 for
vectors in R

3:
(a) u · v = v · u
(b) k(u · v) = (k u) · v = u · (k v)
(c) v · v = ‖v‖2

63. Let u be a nonzero vector and let v be any vector. Show
that the decomposition v = v‖ + v⊥, where v‖ is parallel
to u and v⊥ is orthogonal to u, is unique. (Hint: Assume
that there is another decomposition with these properties, and
show that the two decompositions must be identical.)

64. Use a vector argument to prove that a parallelogram is
a rectangle if and only if the diagonals have the same
length.

65. Use a vector argument to prove that a parallelogram is a
rhombus if and only if the diagonals are perpendicular.

Thinking Forward

Lines and vectors: Find the specified unit vectors.

� Two unit vectors parallel to the line y = 3
5

x − 7.

� Two unit vectors parallel to the line y = mx + b.

� Two unit vectors perpendicular to the line y = 3
5

x − 7.

� Two unit vectors perpendicular to the line y = mx + b.
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10.4 CROSS PRODUCT

� Multiplying two vectors in R
3 using the cross product

� The geometry of the cross product

� The relationship between the algebra and the geometry of the cross product

Determinants of 3×3 Matrices

Before we get to the definition of the cross product, it will be convenient to discuss how to
compute the determinant of a 3-by-3 matrix, or, more briefly, a 3×3 matrix. First, a matrix
is a rectangular array of entries. Here we are interested primarily in 3 × 3 matrices (i.e.,
arrays with 3 rows and 3 columns):

⎡
⎢⎣

a1 a 2 a 3

b1 b 2 b 3

c1 c 2 c 3

⎤
⎥⎦ .

The determinant of a square matrix is a value derived from the entries of the matrix. In
particular, for a 3 × 3 matrix we may use the following definition:

DEFINITION 10.24 The Determinant of a 3 × 3 Matrix

The determinant of the 3 × 3 matrix A =
⎡
⎣ a1 a 2 a 3

b1 b 2 b 3
c1 c 2 c 3

⎤
⎦, denoted by det A, is the

sum

det

⎡
⎣ a1 a 2 a 3

b1 b 2 b 3
c1 c 2 c 3

⎤
⎦ = a1b 2c 3 − a1b 3c 2 + a 2b 3c1 − a 2b1c 3 + a 3b1c 2 − a 3b 2c1.

At first it might seem difficult to remember how to compute this sum. Fortunately, there
is a nice visual trick that can be used to help. Compare the products along the six colored
“diagonals” shown in the following matrix with the final sum in Definition 10.24. Note
that four of the six diagonals wrap around the matrix as they descend.

Every 3 × 3 matrix has six “diagonals”

a1

b1

c1

a2

b2

c2

a3

b3

c3

If the diagonal goes down from left to right, add the product. If the diagonal goes down
from right to left, subtract the product. The resulting sum is the determinant of the 3 × 3
matrix.

For example, to compute the determinant of the matrix

M =

⎡
⎢⎣

1 −2 5

0 3 −1

−3 2 4

⎤
⎥⎦ ,
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we add the products along the six diagonals, making sure to use the appropriate signs:

det M = (1)(3)(4) + (−2)(−1)(−3) + (5)(0)(2) − (1)(−1)(2) − (−2)(0)(4) − (5)(3)(−3)

= 12 − 6 + 0 + 2 + 0 + 45 = 53.

The determinant is defined for all square matrices, but for larger square matrices a
recursive definition is used. For example, the determinant of a 4 × 4 matrix is a modi-
fied sum of the determinants of four 3 × 3 matrices, the determinant of a 5 × 5 matrix is
a modified sum of the determinants of five 4 × 4 matrices, etc. As a result, these determi-
nants have more summands than those that lie along diagonals. In general, the determi-
nant of an n × n matrix involves the sum of n! products, with each product containing n
factors. For example, computing the determinant of a 5×5 matrix involves the sum of 5! =
120 products, each with 5 factors. In this text we will be using only the determinants of
3 × 3 matrices to compute cross products. The study of matrices and determinants belongs
to a branch of mathematics called linear algebra. Here we are introducing the minimum
necessary to help us define the cross product.

The Cross Product

Our final vector product, the cross product, will be defined in terms of the determinant of
a matrix containing the components of two vectors. Later in this section we will examine
geometric properties of this product. We will also see that the cross product can be used to
determine areas of parallelograms and, along with the dot product, to compute the volumes
of solids known as parallelepipeds. In Section 10.6 we will see how the cross product is used
to find equations of planes in R

3.

The cross product differs from our two previous vector products in that it is defined only
for vectors in R

3. (Recall that when we multiply a vector by a scalar, the vector can have
any number of components and that we may take the dot product on any two vectors with
the same number of components.)

DEFINITION 10.25 The Cross Product

Let u = 〈u 1, u 2, u 3〉 = u 1i + u 2j + u 3k and v = 〈v 1, v 2, v 3〉 = v 1i + v 2j + v 3k. Then
the cross product of u and v, denoted by u × v, is

u × v = det

⎡
⎣ i j k

u 1 u 2 u 3
v 1 v 2 v 3

⎤
⎦ = (u 2v 3 − u 3v 2)i + (u 3v 1 − u 1v 3)j + (u 1v 2 − u 2v 1)k.

For example, we’ll compute the cross product of the vectors u = 〈−1, 3, 4〉 and
v = 〈2, 0, −5〉:

u × v = det

⎡
⎢⎣

i j k

−1 3 4

2 0 −5

⎤
⎥⎦

= (3 · (−5) − 4 · 0)i + (4 · 2 − (−1) · (−5))j + (−1 · 0 − 3 · 2)k

= −15i + 3j − 6k = 〈−15, 3, −6〉.
Shortly we will discuss the geometric relationship between u, v, and u × v, but right now
at least we know how to compute a cross product.

One simple geometric consequence of the definition is that the cross product of two
parallel vectors is 0.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:53

816 Chapter 10 Vectors

THEOREM 10.26 The Cross Product of Parallel Vectors

The cross product of two parallel vectors u and v in R
3 is u × v = 0.

The proof of Theorem 10.26 follows from the definition of the cross product and is left for
Exercise 65.

Algebraic Properties of the Cross Product

The cross product may be the first product you’ve encountered that is not commutative.
However, it is anticommutative. That is, for every two vectors u and v in R

3, we have the
following:

THEOREM 10.27 The Cross Product Is Anticommutative

For any vectors u and v in R
3,

v × u = −(u × v).

The proof of Theorem 10.27 follows from the definition of the cross product and is left for
Exercise 66.

THEOREM 10.28 Multiplication by a Scalar and the Cross Product

For any vectors u and v in R
3 and any scalar c,

c(u × v) = (c u) × v = u × (c v).

Again the proof follows from the definition of the cross product. This proof is left for Exer-
cise 67.

As with multiplication and addition of scalars, the cross product is distributive over
addition. Because the cross product is not commutative, we need to state two distributive
properties. Again, their proofs follow from the definition of the cross product; they are left
for Exercise 68.

THEOREM 10.29 Distributive Properties of the Cross Product

Let u, v, and w be vectors in R
3. Then

(a) u × (v + w) = u × v + u × w.

(b) (u + v) × w = u × w + v × w.

The final algebraic property we discuss here provides a relationship between the dot
product and cross product and will be used shortly to help us understand the geometry of
the cross product. It is known as Lagrange’s identity.

THEOREM 10.30 Lagrange’s Identity

Let u and v be vectors in R
3. Then

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2.
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The proof of Theorem 10.30 entails expanding the quantities on both sides of Lagrange’s
identity. This task is left for Exercise 70.

The Geometry of the Cross Product

We begin by showing that the cross product u × v is orthogonal to both u and v. As an
immediate consequence the cross product is orthogonal to any plane containing both u
and v.

THEOREM 10.31 The Cross Product u × v is Orthogonal to Both u and v
Let u and v be vectors in R

3. Then
(a) u · (u × v) = 0.

(b) v · (u × v) = 0.

Proof. We prove part (a) and leave part (b) for Exercise 69. Let u = 〈u 1, u 2, u 3〉 and
v = 〈v 1, v 2, v 3〉. Then, by the definition of the cross product,

u × v = 〈u 2v 3 − u 3v 2, u 3v 1 − u 1v 3, u 1v 2 − u 2v 1〉
and

u · (u × v) = 〈u 1, u 2, u 3〉 · 〈u 2v 3 − u 3v 2, u 3v 1 − u 1v 3, u 1v 2 − u 2v 1〉
= u 1(u 2v 3 − u 3v 2) + u 2(u 3v 1 − u 1v 3) + u 3(u 1v 2 − u 2v 1)

= 0.

Recall that for vectors u and v, we have u · v = ‖u‖‖v‖ cos θ , where θ is the angle
between the vectors. The magnitude of the cross product is related to the magnitudes of
the vectors and the angle between them.

THEOREM 10.32 The Cross Product u × v and the Angle Between u and v
Let u and v be nonzero vectors in R

3 with the same initial point. Then

‖u × v‖ = ‖u‖‖v‖ sin θ ,

where θ is the angle between u and v.

Proof. By Lagrange’s identity

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2.

But since u · v = ‖u‖‖v‖ cos θ , we have

‖u × v‖2 = ‖u‖2‖v‖2 − (‖u‖‖v‖ cos θ )2 = ‖u‖2‖v‖2(1 − cos2 θ ) = ‖u‖2‖v‖2 sin2 θ.

Taking the square root of the leftmost and rightmost quantities produces our desired result.

Two nonparallel vectors determine a parallelogram. The cross product can help us find the
area of that parallelogram.

The area of the parallelogram is ‖u‖‖v‖ sin θ

θ

v

u

‖v‖ sin θ
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THEOREM 10.33 The Area of a Parallelogram

Let u and v be vectors in R
3. Then the area of the parallelogram determined by u and v

is given by ‖u × v‖.

Proof. We first consider the case where u and v are parallel vectors. Here the parallelogram de-
termined by u and v is degenerate; that is, it is collapsed into a line segment and has zero area. By
Theorem 10.26 u × v = 0, so ‖u × v‖ = ‖0‖ = 0.

If u and v are not parallel, then the area of the parallelogram determined by u and v is the
product of the length of one of the sides and the distance between that side and the opposite side.

In our parallelogram, ‖u‖ is the length of one side. In the parallelogram shown in the previous
figure, we see that the distance from that side to the opposite side is ‖v‖ sin θ . Therefore the area
of the parallelogram is ‖u‖‖v‖ sin θ = ‖u × v‖.

We have already discussed what it means for a three-dimensional coordinate system
to be left- or right-handed. Similarly, three vectors u, v, and w that cannot be translated
into the same plane are said to form a right-handed triple if, when the index finger of the
right hand points in the direction of u and the middle finger of the right hand points in the
direction of v, then the right thumb will naturally point in the direction of w. In particular,
for any two nonparallel vectors u and v in R

3, the vectors u, v, and u × v always form a
right-handed triple.

The vectors u, v, and u × v form a right-handed triple

u � v

u

v

THEOREM 10.34 Two Nonparallel Vectors and Their Cross Product Form a Right-Handed Triple

Let u and v be nonparallel vectors in R
3. Then the vectors u, v, and u × v form a right-

handed triple.

Proof. Let u and v be nonparallel position vectors in R
3. We may position our coordinate axes so

that u lies along the positive x-axis and v lies in the xy-plane and has a positive y-coordinate. That
is, u = 〈u 1, 0, 0〉 and v = 〈v 1, v 2, 0〉 with u 1 > 0 and v 2 > 0. The sign of v 1 may be positive, zero,
or negative. Two of these possibilities are illustrated here:

Vectors u and v with v 1 > 0 Vectors u and v with v 1 < 0

y

xu

v

y

xu

v
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In any of the three cases, when we take the cross product we obtain

u × v = det

⎡
⎣ i j k

u 1 0 0
v 1 v 2 0

⎤
⎦ = 〈0, 0, u 1v 2〉.

Since u × v has a positive z-coordinate, we have our desired result.

The next theorem reiterates several of the basic geometric properties of the cross prod-
uct that we have already proved. We summarize these properties in Theorem 10.35 because
they may be used as an alternative (geometric) definition of the cross product. When they
are used as such, the algebraic properties follow as a consequence.

THEOREM 10.35 The Geometry of the Cross Product

Let u and v be vectors in R
3.

If u and v are parallel then u × v = 0.

If u and v are not parallel, then u × v has the following properties:

(a) ‖u × v‖ = ‖u‖‖v‖ sin θ .

(b) u × v is perpendicular to any plane containing both u and v.

(c) u, v, and u × v form a right-handed triple.

Triple Scalar Product

We cannot randomly combine three vectors u, v, and w from R
3 with dot and cross prod-

ucts. For example, the combination (u · v) · w is not defined, since u · v is a scalar and we
need two vectors to form a dot product. Similarly, (u · v) × w is not defined. (Why?) How-
ever, the product u · (v × w) is defined and has an important geometrical interpretation.
In addition, we will see that u · (v × w) = (u × v) · w. Both of these are examples of triple
scalar products. In Exercise 80 we discuss the vector triple product u × (v × w).

A parallelepiped is a three-dimensional analog of a parallelogram, in much the same
way that a cube is a three-dimensional analog of a square. Specifically, a parallelepiped is
a six-sided solid whose surface consists of three pairs of parallel faces, each of which is a
parallelogram. Any three vectors u, v, and w in R

3 that do not lie in the same plane will
determine a parallelepiped.

The parallelepiped determined by u, v, and w

w

u

v

In Theorem 10.33 we saw that the area of a parallelogram involves a cross product. Similarly,
the volume of the parallelepiped involves a triple scalar product.
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THEOREM 10.36 The Triple Scalar Product and the Volume of Parallelepipeds

Let u, v, and w be vectors in R
3. Then |u · (v × w)| is the volume of the parallelepiped

determined by u, v, and w. Furthermore, the volume of the parallelepiped is u · (v × w)
if and only if u, v, and w form a right-handed triple.

Proof. Let F denote one of the sides of the parallelepiped determined by vectors v and w. From
Theorem 10.33 we know that the area of F is ‖v × w‖. The distance between F and the opposite
face is the distance from the terminal end of u to F . There are two cases to consider: u and v × w
are either on the same side of F or on opposite sides of F .

Suppose u and v × w are on the same side of F . Then u, v, and w must form a right-handed
triple. Since v × w is perpendicular to F , the distance from the terminal end of u to F is the
component, compv×wu = ‖u‖ cos φ, of the projection of u onto v×w, where φ is the angle between
u and v × w. The following figure shows an example of this case:

A parallelepiped determined by the
right-handed triple u, v, and w

v � w

‖u‖ cos φ φ
u

w

v

F

Here, since u and v × w are on the same side of F , φ < 90◦ and cos φ > 0. Thus the volume of the
parallelepiped is ‖u‖‖v × w‖ cos φ = u · (v × w).

In the case where u and v × w are on opposite sides of F , φ > 90◦ and cos φ < 0. Thus the
volume of the parallelepiped is −‖u‖‖v × w‖ cos φ = −u · (v × w).

We now have our desired result: The volume of the parallelepiped is u · (v × w) if and only if
u, v, and w form a right-handed triple, and in any case the volume is |u · (v × w)|.

Theorem 10.36 also gives us a simple computational criterion for determining when
three vectors lie in the same plane: The triple scalar product u · (v × w) is equal to zero if
and only if u, v, and w are coplanar.

The following theorem describes relationships between dot and cross products:

THEOREM 10.37 Properties of the Triple Scalar Product

Let u, v, and w be vectors in R
3. Then

(a) u · (v × w) = v · (w × u) = w · (u × v)

(b) u · (v × w) = (u × v) · w

Part (b) of Theorem 10.37 says, roughly, that in a triple scalar product the dot and cross
products can be “exchanged.” We prove part (a) next and leave part (b) for Exercise 76.

Proof. First suppose that u, v, w form a right-handed triple. Then v, w, u, and w, u, v do also.
(Why?) Thus, from Theorem 10.36, the three triple scalar products u · (v × w), v · (w × u), and
w · (u × v) all give the volume of the parallelepiped determined by u, v and w. Therefore they are
all equal.
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For the converse, if u, v, w do not form a right-handed triple, then neither v, w, u nor w, u, v
do. Here the volume of the parallelepiped determined by u, v, and w is

−u · (v × w) = −v · (w × u) = −w · (u × v).

Therefore in this case we also have u · (v × w) = v · (w × u) = w · (u × v).

Examples and Explorations

EXAMPLE 1 Using a cross product to find the area of a parallelogram

(a) Use Definition 10.25 to compute u × v for vectors u = 〈2, 0, −3〉 and v = 〈−1, 4, 2〉.
(b) Find the area of the parallelogram determined by u and v.

SOLUTION

(a) We use Definition 10.25 to compute the cross product:

u × v = det

⎡
⎢⎣

i j k

2 0 −3

−1 4 2

⎤
⎥⎦

= ((0)(2) − (−3)(4))i + ((−3)(−1) − (2)(2))j + ((2)(4) − (0)(−1))k

= 12i − j + 8k.

(b) The area of the parallelogram determined by u and v is

‖u × v‖ = ‖12i − j + 8k‖ =
√

122 + (−1)2 + 82 =
√

209 ≈ 14.5 square units. �

CHECKING
THE ANSWER

We may check the plausibility of our cross product u × v with the dot products:

u · (u × v) = 〈2, 0, −3〉 · 〈12, −1, 8〉 = 2 · 12 + 0(−1) − 3 · 8 = 0 and

v · (u × v) = 〈−1, 4, 2〉 · 〈12, −1, 8〉 = −1 · 12 + 4(−1) + 2 · 8 = 0.

These calculations show that the cross product we obtained is orthogonal to both of the
vectors u and v.

EXAMPLE 2 Cross products involving the standard basis vectors

Find the cross products of the standard basis vectors:

i × i i × j i × k
j × i j × j j × k
k × i k × j k × k

SOLUTION

The cross product of two parallel vectors is 0. Since every vector is parallel to itself, we
immediately have

i × i = j × j = k × k = 0.

Each of the basis vectors is a unit vector, and the angle between two distinct basis vectors
is 90◦. Therefore the norm of the cross product of two distinct basis vectors is 1 by property
(a) of Theorem 10.35.
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By property (b) of the same theorem, we know that the cross product of any two distinct
basis vectors must be (plus or minus) the remaining basis vector. For example, i × j =
±k. We need only determine which of i, j, and ±k forms a right-handed triple. Here, i,
j, and k form such a triple (check this), so i × j = k. Also, because the cross product is
anticommutative, if we reverse the order within i × j = k, we will have j × i = −k.

The complete list of the cross products using the basis vectors is

i × i = 0 i × j = k i × k = −j

j × i = −k j × j = 0 j × k = i

k × i = j k × j = −i k × k = 0. �

EXAMPLE 3 Finding the area of a triangle determined by three points

Find the area of the triangle with vertices A = (4, −2), B = (7, 3), and C = (−1, 3).

SOLUTION

We first find the vectors
−→
AB = 〈

7 − 4, 3 − (−2)
〉 = 〈3, 5〉 and

−→
AC = 〈−1 − 4, 3 − (−2)

〉 = 〈−5, 5〉.

The area of the triangle with vertices at A, B, and C is one-half of the area of the paral-

lelogram determined by
−→
AB and

−→
AC. We would like to use the technique of Example 1 to

find the area of the parallelogram, but in order to take the cross product of two vectors,
they must have three components. Here we can treat the xy-plane as part of 3-space by

thinking of the xy-plane as the plane in R
3 with z = 0. That is, we let

−→
AB = 〈3, 5, 0〉 and

−→
AC = 〈−5, 5, 0〉.

Now,

Area �ABC = 1
2

∥∥−→
AB × −→

AC
∥∥ = 1

2

∥∥∥∥∥∥∥
det

⎡
⎢⎣

i j k

3 5 0

−5 5 0

⎤
⎥⎦

∥∥∥∥∥∥∥
= 1

2

∥∥(0 − 0)i + (0 − 0)j + (15 − (−25)k
∥∥ = 1

2
‖40k‖

= 20 square units. �

EXAMPLE 4 Finding the volume of a parallelepiped

(a) Find the volume of the parallelepiped determined by u = 〈0, 3, −2〉, v = 〈5, 3, −1〉,
and w = 〈−3, 2, 7〉.

(b) Do the vectors u, v, and w form a right-handed triple or a left-handed triple?

SOLUTION

(a) The volume of the parallelepiped determined by u, v, and w is the absolute value of
the triple scalar product u · (v × w). Although we could first evaluate the cross product
v × w and then take the dot product of the resulting vector with u, it is slightly more
efficient to just take the absolute value of the determinant of the 3 × 3 matrix formed
from the components of u, v, and w as the rows. (In Exercise 78, we ask you to explain
why this always works.)
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Thus, the required volume is

|u · (v × w)| =
∣∣∣∣∣∣det

⎡
⎣ 0 3 −2

5 3 −1
−3 2 7

⎤
⎦

∣∣∣∣∣∣ = |0 + 9 − 20 + 0 − 105 − 18| = | − 134|

= 134 cubic units.

(b) By Theorem 10.36, the vectors u, v, and w form a left-handed triple, since the triple
scalar product u · (v × w) = −134 < 0. �

TEST YOUR? UNDERSTANDING
� How do you find the determinant of a 3 × 3 matrix?

� What is the definition of the cross product?

� What are the geometric properties of the cross product?

� How do you find the area of a parallelogram determined by two vectors? How do you
find the volume of a parallelepiped determined by three vectors?

� How do you find the area of a triangle determined by three points?

EXERCISES 10.4

Thinking Back

� Coordinate system: Explain what it means for a coordi-
nate system to be right-handed and what it means for
a coordinate system to be left-handed.

� Orthogonal vectors: Let u and v be two nonparallel
position vectors in R

3 lying in the xy-plane. Find
two unit vectors orthogonal to both u and v without
using the cross product.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: For any two vectors u and v in R
3,

u × v = v × u.
(b) True or False: If u and v are two vectors in R

3, then
u × v = u · v.

(c) True or False: If u×v = v×u, then u and v are parallel.
(d) True or False: If u, v, and w are vectors in R

3, then
(u × v) × w = u × (v × w).

(e) True or False: The triple scalar product can be used to
find the volume of a parallelepiped.

(f) True or False: If u, v, and w are vectors in R
3, then

u · (v × w) = −v · (u × w).
(g) True or False: If u and v are nonparallel vectors in R

3,
then

u · v
‖u×v‖ = cot θ , where θ is the angle between

u and v.
(h) True or False: If u and v are unit vectors in R

3, then
u × v is also a unit vector.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two nonzero vectors u and v in R
3 such that

u × v = v × u.

(b) Three vectors u, v, and w in R
3 such that (u×v)×w �=

u × (v × w).
(c) Three vectors u, v, and w in R

3 such that (u×v)×w =
u × (v × w).

3. What is the definition of the cross product?
4. How is the determinant of a 3 × 3 matrix used in

the computation of the determinant of two vectors u =
〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉?

5. If u and v are nonzero vectors in R
3, what is the geometric

relationship between u, v, and u × v?
6. What is Lagrange’s identity? How is it used to understand

the geometry of the cross product?

7. If u and v are nonzero vectors in R
3, why do the equa-

tions u · (u × v) = 0 and v · (u × v) = 0 tell us that the
cross product is orthogonal to both u and v?

8. What is meant by the parallelogram determined by
vectors u and v in R

3? How do you find the area of
this parallelogram?

9. Sketch the parallelogram determined by the two vectors
〈1, 2〉 and 〈3, −1〉. How can you use the cross product to
find the area of this parallelogram?

10. What is meant by the triangle determined by vectors u
and v in R

3? How do you find the area of this triangle?

11. If ‖u × v‖ = ‖u‖‖v‖, what is the geometric relationship
between u and v?
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12. Give an example of three vectors in R
3 that form a right-

handed triple. Explain how you can use the same three
vectors to form a left-handed triple.

13. Give an example of three nonzero vectors u, v, and w in
R

3 such that u × v = u × w but v �= w. What geo-
metric relationship must the three vectors have for this to
happen?

14. What is the definition of the triple scalar product for
vectors u, v, and w in R

3?

15. If the triple scalar product u ·(v×w) is equal to zero, what
geometric relationship do the vectors u, v, and w have?

16. What is a parallelepiped? What is meant by the paral-
lelepiped determined by the vectors u, v, and w? How
do you find the volume of the parallelepiped determined
by u, v, and w?

17. If u, v, and w are three vectors in R
3, what is wrong with

the expression u × v × w?
18. If u, v, and w are three vectors in R

3, which of the follow-
ing products make sense and which do not?
(a) u · (v · w)
(b) u · (v × w)
(c) u × (v · w)
(d) u × (v × w)

19. If u and v are vectors in R
3 such that u · v = 0 and

u × v = 0, what can we conclude about u and v?
20. If u, v, and w are three mutually orthogonal vectors in R

3,
explain why u × (v × w) = 0.

21. If u and v are vectors in R
3 such that u × v = v × u, what

can we conclude about u and v?

Skills

In Exercises 22–29 compute the indicated quantities when
u = 〈2, 1, −3〉, v = 〈4, 0, 1〉, and w = 〈−2, 6, 5〉.
22. u × v and v × u

23. u × w and w × u

24. v × w and w × v

25. (u × v) × w and u × (v × w)
26. (u × v) · w and w · (v × u)

27. Find the area of the parallelogram determined by the
vectors u and v.

28. Find the area of the parallelogram determined by the
vectors v and w.

29. Find the volume of the parallelepiped determined by
vectors u, v, and w. Do u, v, and w form a right-
handed triple?

In Exercises 30–35 compute the indicated quantities when
u = 〈−3, 1, −4〉, v = 〈2, 0, 5〉, and w = 〈1, 3, 13〉.
30. u × v and v × u

31. u × w and w × u
32. v × w and w × v

33. (u × v) · w and u · (v × w)
34. Find the area of the parallelogram determined by the

vectors u and v.

35. Find the volume of the parallelepiped determined by the
vectors u, v, and w.

In Exercises 36–41 use the given sets of points to find:

(a) A nonzero vector N perpendicular to the plane deter-
mined by the points.

(b) Two unit vectors perpendicular to the plane determined
by the points.

(c) The area of the triangle determined by the points.

36. P(1, 4, 6), Q(−3, 5, 0), R(3, 2, −1)

37. P(4, 3, −2), Q(0, 0, 3), R(−1, 3, 6)
38. P(3, 1, 8), Q(0, 6, −1), R(−3, 5, −3)

39. P(2, −5, 1), Q(−4, 5, 8), R(−1, −5, 3)
40. P(4, −2), Q(−2, 0), R(1, −5)

(Hint: Think of the xy-plane as part of R
3.)

41. P(1, 6), Q(0, −3), R(−5, 4)
(Hint: Think of the xy-plane as part of R

3.)

Suppose a triangle has side lengths a, b, and c. The

semiperimeter of the triangle is defined to be s = 1
2

(a+b+ c).

We can use the side lengths of the triangle to calculate its area
by applying Heron’s formula:

Area =
√

s(s − a)(s − b)(s − c).

Use Heron’s formula to compute the areas of the triangles
determined by the points P, Q, and R in Exercises 42–44:

42. P, Q, and R from Exercise 36

43. P, Q, and R from Exercise 37
44. P, Q, and R from Exercise 41

45. Heron’s formula allows us to compute the area of a trian-
gle from its side lengths.
(a) Explain why knowing the side lengths of a quadrilat-

eral is not sufficient to compute the area of the quadri-
lateral.

(b) Explain why knowing the side lengths of a quadri-
lateral and the length of one diagonal is sufficient to
compute the area of the quadrilateral.

(c) Explain why knowing the side lengths of a quadrilat-
eral and the measure of the angle at one vertex is also
sufficient to compute the area of the quadrilateral.

Use the results of Exercise 45 to find the areas of the quadri-
laterals PQRS specified in Exercises 46–49.

46. PQ = 6, QR = 7, RS = 8, SP = 9, PR = 10

47. PQ = 6, QR = 7, RS = 8, SP = 9, QS = 10
48. PQ = 6, QR = 7, RS = 8, SP = 6, ∠P = 60◦

49. PQ = 7, QR = 8, RS = 8, SP = 9, ∠R = 60◦
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In Exercises 50–53 the coordinates of points P, Q, R, and S are
given. (a) Determine whether quadrilateral PQRS is a paral-
lelogram. (b) Find the area of quadrilateral PQRS.

50. P(0, 0), Q(−1, 3), R(−4, −1), S(−3, −2)

51. P(−1, 3), Q(2, 5), R(4, 1), S(1, −1)
52. P(2, 7), Q(3, −1), R(1, −10), S(−1, −2)

53. P(−1, 3), Q(2, 5), R(6, 3), S(4, −2)

In Exercises 54–57 the coordinates of points P, Q, R, and S are
given. (a) Show that the four points are coplanar. (b) Deter-
mine whether quadrilateral PQRS is a parallelogram. (c) Find
the area of quadrilateral PQRS.

54. P(0, 0, 0), Q(1, −2, 5), R(−1, 2, 11), S(−2, 4, 6)

55. P(2, −3, 8), Q(−2, 4, 6), R(7, 18, −7), S(15, 4, −3)
56. P(1, 2, 6), Q(4, 1, −5), R(3, 6, 8), S(0, 4, 13)

57. P(3, 4, −2), Q(7, 0, 6), R(2, 1, 7), S(5, −2, 13)

Applications
Some crystals have rhombohedral structures. A rhombohe-
dron is a parallelepiped in which all of the edge lengths are
equal and each of the six faces is a congruent rhombus. Find
the volumes of the rhombohedral crystals described in Exer-
cises 58 and 59.

A rhombohedral crystal

58. Each side length is 1 cm, and the acute angles in each
face measure 60◦. (Hint: Let vector i form one of the edges of
the rhombohedron, and let a second nonparallel edge be in the
xy-plane.)

59. Each side length is 2 cm, and the acute angles in each face
measure 45◦. (See the hint in the previous exercise.)

Turning a bolt with a wrench produces a torque vector that
drives the bolt forward. The magnitude of the torque vec-
tor is ‖r‖‖F‖ sin θ , where r is the vector along the handle of
the wrench, F is the force vector applied to the handle of the
wrench, and θ is the angle between these two vectors. There-
fore, the magnitude of the torque is ‖r × F‖. In Exercises 60
and 61, find the magnitude of the torque. Express each answer
in foot-pounds.

The torque vector

torque φ

r

F

60. A force of 20 lb is applied to a wrench with a 6-inch han-
dle at an angle of 60◦.

61. A force of 40 lb is applied to a wrench with a 9-inch han-
dle at an angle of 90◦.

Proofs

62. Prove that the determinant of a 3 × 3 matrix with integer
entries is an integer.

63. Let A be a 3 × 3 matrix with determinant D, and let A′ be
a 3 × 3 matrix obtained from A by exchanging two rows.
Prove that det A′ = −D.

64. Let B be a 3× 3 matrix with determinant d, and let B′ be a
3×3 matrix obtained from B by exchanging two columns.
Prove that det B′ = −d.

65. Use the definition of the cross product to prove that
the cross product of two parallel vectors is 0. (This is
Theorem 10.26.)

66. Use the definition of the cross product to prove that
the cross product of two vectors u and v is anticom-
mutative; that is, prove that u × v = −v × u. (This is
Theorem 10.27.)

67. Let u and v be vectors in R
3 and let c be a

scalar. Prove that c(u × v) = (cu) × v = u × (cv). (This is
Theorem 10.28).

68. Let u, v, and w be vectors in R
3. Prove:

u × (v + w) = u × v + u × w and

(u + v) × w = u × w + v × w.

(This is Theorem 10.29.)

69. Let u and v be vectors in R
3. Prove that v · (u × v) = 0.

(This is Theorem 10.31(b).)
70. Let u and v be vectors in R

3. Prove Lagrange’s identity,
Theorem 10.30:

‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2.
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71. Let u, v, and w be three vectors in R
3 in which the com-

ponents of each vector are integers.
(a) Prove that the volume of the parallelepiped deter-

mined by u, v and w is an integer.
(b) Find examples of vectors u and v with integer com-

ponents that show that the area of the parallelogram
determined by u and v can be either an integer or an
irrational number.

72. Let u, v, and w be three mutually perpendicular vectors
in R

3.
(a) Prove that u × (v × w) = 0.
(b) Show that |u · (v × w)| = ‖u‖‖v‖‖w‖.

73. Let u and v be vectors in R
3 such that u ·v �= 0. Prove that

if θ is the angle between u and v, then tan θ = ‖u×v‖
u · v

.

74. Let u, v, and w be vectors in R
3. Prove that u×v = u×w

if and only if u is parallel to v − w.

75. Let u, v, and w be vectors in R
3 with u �= 0. Show that if

u × v = u × w and u · v = u · w, then v = w.
76. Let u, v, and w be vectors in R

3. Prove that

u · (v × w) = (u × v) · w.

(This is part (b) of Theorem 10.37.)

77. Prove that, for vectors r, s, u, and v in R
3,

(r × s) · (u × v) = (r · u)(s · v) − (r · v)(s · u).

78. Let u = 〈u 1, u 2, u 3〉, v = 〈v 1, v 2, v 3〉, and
w = 〈w 1, w 2, w 3〉. Show that

u · (v × w) = det

⎡
⎢⎣

u 1 u 2 u 3

v 1 v 2 v 3

w 1 w 2 w 3

⎤
⎥⎦ .

79. Prove that if vectors r, s, u, and v in R
3 can all be trans-

lated to the same plane, then

(r × s) × (u × v) = 0.

80. The product u × (v × w) is an example of a vector called
a vector triple product.
(a) Show that if v = 〈v 1, v 2, v 3〉 and w = 〈w 1, w 2, w 3〉,

then i × (v × w) = w 1v − v 1w.
(b) Derive similar expressions from j × (v × w) and

k × (v × w).
(c) Use your results from parts (a) and (b) to show that

u × (v × w) = (u · w)v − (u · v)w.
(d) Use your results from part (c) and the anticommuta-

tivity of the cross product to derive a similar expres-
sion for the vector triple product (u × v) × w.

(e) Use your results from parts (c) and (d) to show that
the cross product is not associative.

(f) Under what conditions is

u × (v × w) = (u × v) × w?

Thinking Forward

Planes in R
3: Different geometric conditions can be used to

specify a plane. The following questions ask you to explain
why the specified conditions uniquely determine a plane.

� Explain why two nonparallel vectors and a point
uniquely determine a plane containing both vectors
and the point.

� Explain why a single nonzero vector and a point
uniquely determine a plane containing the point.
(Hint: Think of the collection of vectors orthogonal to the
given vector with the given point as the initial point of all
of the vectors.)

� Give two other sets of geometric conditions that
would uniquely determine a plane in R

3.
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10.5 LINES IN THREE-DIMENSIONAL SPACE

� Using vectors to construct equations for lines in R
3

� Parallel, intersecting, and skew lines

� Computing the distance from a point to a line

Equations for Lines

Recall that the general form for the equation of a line in the xy-plane is ax+by = d, where a,
b, and d are scalars. An equation of this form is called a linear equation in two variables.
In this section we will discuss how to write equations of lines in three-dimensional space.

It seems natural to think that the graph of a linear equation in three variables,

ax + by + cz = d, where a, b, c, and d are scalars,

would be a line in 3-space. However, as we will see in Section 10.6, the graphs of such
equations are planes, not lines! (Recall our discussion of these equations in Section 10.2.
There we examined the linear equation x = 3 and saw that in 3-space the graph of the
equation was a plane parallel to the yz-plane. The equation x = 3 is a simple example of
an equation of the form ax + by + cz = d, with a = 1, b = c = 0, and d = 3.) So, if the
graph of a linear equation in three variables is not a line, what types of equations do give
lines?

As you know, a line in the plane can be determined by two distinct points or by a point
and a direction, specified by a slope. In 3-space the situation is analogous: A line can be
determined by two distinct points or by a single point and a direction, specified by a vector.
To determine an equation for a line,L, in 3-space we will use a point, P0, onL and a direction
vector, d, parallel to L. If we are given two points, we can immediately compute a direction
vector and start by finding a parametrization for L. If P0 = (x 0, y 0, z 0) and P1 = (x 1, y 1, z 1)
are two distinct points on L, then a direction vector for L is

d = −→
P0P1 = 〈

x 1 − x 0, y 1 − y 0, z 1 − z 0
〉
.

We now let P0 be the point (x 0, y 0, z 0) and d be the vector 〈a, b, c〉. Point P0 corresponds
to the position vector P0 = 〈x 0, y 0, z 0〉. Every point on L can be obtained by adding a suit-
able multiple of d to the position vector P0, as in the following figure:

A line in a three-dimensional Cartesian coordinate system

tdd
P0

P0 � td

y

x

z

L

That is, every point on L is of the form P0 + td, for some value of our parameter t. This
result immediately gives us a vector function, r(t), for the line L. That is,

r(t) = P0 + td, or

r(t) = 〈
x 0, y 0, z 0

〉 + t 〈a, b, c〉 , or

r(t) = 〈
x 0 + at, y 0 + bt, z 0 + ct

〉
,
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where −∞ < t < ∞. Any of these three equations is a parametrization for L. From the
last of the equations, we may immediately find parametric equations for the line L:

x(t) = x 0 + at, y(t) = y 0 + bt, z(t) = z 0 + ct, where −∞ < t < ∞.

Assuming that none of the components of the vector d is zero, we can solve each of the
preceding equations for the parameter t to obtain

t = x − x 0

a
, t = y − y 0

b
, t = z − z 0

c
.

We may use these equations to eliminate the parameter t to find a symmetric form for the
line L:

x − x 0

a
= y − y 0

b
= z − z 0

c
.

Thus, we may use a vector equation, parametric equations, or the symmetric form to
specify a line, and given any one of these, we may quickly obtain the others.

For example, to find an equation of the line L containing the points P = (3, 2, −3) and
Q = (−1, 4, 2), we immediately have a direction vector

d = −→
PQ = 〈−1 − 3, 4 − 2, 2 − (−3)

〉 = 〈−4, 2, 5〉.
Using P for our point on L, we obtain

r(t) = 〈3, 2, −3〉 + t 〈−4, 2, 5〉 , −∞ < t < ∞, and

r(t) = 〈3 − 4t, 2 + 2t, −3 + 5t〉 , −∞ < t < ∞.

Either of these two equations is a vector function whose graph is L. If we prefer to express
L by means of parametric equations, we have

x(t) = 3 − 4t, y(t) = 2 + 2t, z(t) = −3 + 5t, −∞ < t < ∞.

Finally, if we want to use the symmetric form, we have

x − 3
−4

= y − 2
2

= z + 3
5

.

Two Lines in R
3

Given two lines in the plane, the lines either intersect, are parallel, or are identical. In three-
dimensional space there is a fourth possibility: The lines may be skew; that is, they neither
are parallel nor intersect. For example, on a cube, some edges intersect and some are par-
allel, but the lines containing the highlighted edges in the following cube are skew:

Skew lines

Given the equations of two lines, we can use the direction vectors of the lines to start
our analysis of the relationship between the lines. If the direction vectors of the two lines are
scalar multiples of each other, then the lines are either parallel or identical. If the direction
vectors of the two lines are not multiples of each other, the lines either intersect or are skew.
To complete the analysis, we determine whether or not the lines share a point. Parallel lines
that share a point are identical. Nonparallel lines that share a point (obviously) intersect.
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The Distance from a Point to a Line (Revisited)

The distance from a point, P, to a line, L, is the distance from P to the closest point on
L. This is the distance along a line through P and perpendicular to L. That distance can
be computed with the technique of Example 4 from Section 10.3. Here, we provide an
alternative method.

Let r(t) = P0 + td, −∞ < t < ∞, be a parametrization for L. Thus, P0 is on L and d
is parallel to L, as in the following figure:

θ

P

Q
d

P0

L

Now, suppose Q is the point on the line L that is closest to the point P, as in the figure
shown. If we knew the location of the point Q, then we could immediately use the distance

formula to calculate the length of
−→
PQ. Typically, though, we do not know the location of Q.

However, we do see that ‖−→
PQ‖ = ‖ −→

P0P‖ sin θ , where θ is the angle between
−→
P0P and d.

Now, by Theorem 10.32,

‖d × −→
P0P‖ = ‖d‖‖−→

P0P‖ sin θ.

Thus, we have

‖−→
PQ‖ = ‖−→

P0P‖ sin θ = ‖d × −→
P0P‖

‖d‖ .

To summarize, we have the following theorem:

THEOREM 10.38 The Distance from a Point to a Line

Given a point P and a line L parameterized by r(t) = P0 + td, the distance from P to L
is

‖d × −→
P0P‖

‖d‖ .

Examples and Explorations

EXAMPLE 1 Expressing the equation of a line in symmetric form when one component of the
direction vector is zero

Find an equation of the line L containing the points P = (−5, 6, −1) and Q = (4, 6, −7).
Write the answer as a parametrization, in terms of parametric equations, and in symmetric
form.

SOLUTION

A direction vector for the line is
−→
PQ = 〈

4 − (−5), 6 − 6, −7 − (−1)
〉 = 〈9, 0, −6〉.
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However, any nonzero multiple of
−→
PQ may be used instead. Here we will take d = 1

3

−→
PQ =

〈3, 0, −2〉 as our direction vector. Now, using P for our point on L, we have

r(t) = 〈−5, 6, −1〉 + t 〈3, 0, −2〉 , −∞ < t < ∞,

r(t) = 〈−5 + 3t, 6, −1 − 2t〉 , −∞ < t < ∞.

Either of these two equations is a parametrization.

Using the second of the two forms, we have the parametric equations

x(t) = −5 + 3t, y(t) = 6, z(t) = −1 − 2t, −∞ < t < ∞.

There is also a symmetric form for a line L if one of the three components of the direc-
tion vector d is zero. When P0 = 〈x 0, y 0, z 0〉 and d = 〈a, 0, c〉, then, as before, we have the
parametrization

r(t) = P0 + td, −∞ < t < ∞
= 〈

x 0 + at, y 0, z 0 + ct
〉
, −∞ < t < ∞.

We have the following parametric equations for L:

x(t) = x 0 + at, y(t) = y 0, z(t) = z 0 + ct, −∞ < t < ∞.

The symmetric form for L is
x − x 0

a
= z − z 0

c
, y = y 0.

Thus, for our line L, we have
x + 5

3
= z + 1

−2
, y = 6.

There are analogous expressions when one of the other components of the direction vector
is zero. �

EXAMPLE 2 Converting from symmetric form to parametric equations

Given the symmetric equations

x − 4
5

= y + 2
−3

= z − 1
7

for a line L, find parametric equations for L.

SOLUTION

We introduce the parameter, t, as follows:

t = x − 4
5

= y + 2
−3

= z − 1
7

.

So,

x − 4 = 5t

y + 2 = −3t

z − 1 = 7t,

where −∞ < t < ∞. These equations are parametric equations for L. We may also write
the system in the form

x(t) = 4 + 5t, y(t) = −2 − 3t, z(t) = 1 + 7t, −∞ < t < ∞. �
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EXAMPLE 3 Determining when two lines are parallel

Consider the lines L1 and L2 respectively given by the parametrizations

r 1(t) = 〈3 + 5t, −1 − 6t, 4t〉, −∞ < t < ∞, and

r 2(t) = 〈4 − 10t, 7 + 12t, −1 − 8t〉, −∞ < t < ∞.

Are lines L1 and L2 parallel? If they are, find the distance between them.

SOLUTION

Two distinct lines L1 and L2 are parallel if they have (nonzero) parallel direction vectors,
d1 and d2, respectively. That is, the lines are parallel if there is a scalar, k, such that d2 is
equal to kd1.

Lines L1 and L2 have direction vectors d1 = 〈5, −6, 4〉 and d2 = 〈−10, 12, −8〉, respec-
tively. Since d2 = −2d1, the lines are either parallel or identical. Two parallel lines are iden-
tical if they share a point. We may use any point on either of the lines and check whether
that point is on the other line. One convenient point on L1 is r 1(0) = 〈3, −1, 0〉. Is (3, −1, 0)
also on L2? It is if there is a solution of the system of equations

4 − 10t = 3

7 + 12t = −1

−1 − 8t = 0.

Note that the unique solution of the last of these equations is t = − 1
8

, but this value does

not satisfy either of the other equations. Therefore, there is no value of t that simultaneously
satisfies all three of the preceding equations. This fact tells us that the lines L1 and L2 are
parallel, but not identical.

To find the distance between the two lines, we choose any point on one of the lines
and find the distance from that point to the other line. We already know that (3, −1, 0)
is on L1. We will therefore use this point as P. We need a point on L2, so we will use

r 2(0) = 〈4, 7, −1〉. That is, we will let P0 = (4, 7, −1). Thus
−→
P0P = 〈−1, −8, 1〉. Finally, the

direction vector d2 = 〈−10, 12, −8〉. We are now ready to use the distance formula given
in Theorem 10.38. The distance from the point P to the line L2, and therefore the distance
between L1 and L2, is

‖〈−10, 12, −8〉 × 〈−1, −8, 1〉‖
‖〈−10, 12, −8〉‖ = ‖〈−52, 18, 92〉‖√

308
=

√
2873
77

≈ 6.1 units.

As an extension of this example, consider the parametrization

r 3(t) = 〈−12 + 15t, 17 − 18t, −12 + 12t〉, −∞ < t < ∞.

A direction vector for this parametrization is d3 = 〈15, −18, 12〉, which is a scalar multiple
of d1. Furthermore, the point (3, −1, 0) is on the line determined by r 3(t), since the system
of equations

−12 + 15t = 3

17 − 18t = −1

−12 + 12t = 0

has the solution t = 1. Thus, r 3 is a different parametrization for L1.

Note that the two parameters are not equal at the point (3, −1, 0); that is,

r 1(0) = 〈3, −1, 0〉 = r 3(1).

This is irrelevant! The significant concepts here are that the lines are parallel and they share
a point; therefore they must represent the same line. �
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EXAMPLE 4 Determining when two lines intersect

Do the lines L1 and L2, respectively given by

r 1(t) = 〈−8 − 5t, 3 − t, 4〉, −∞ < t < ∞, and r 2(t) = 〈6 + t, 4 + 2t, 1 + 3t〉, −∞ < t < ∞,

intersect?

SOLUTION

We see immediately that the direction vectors for these lines are d1 = 〈−5, −1, 0〉 and
d2 = 〈1, 2, 3〉, which are not parallel. (Why?) Do the lines share a point? If so, the lines
intersect. If not, they are skew.

Finding a candidate for a point of intersection here is more delicate than in Example 3,
where we could have used any point on either of the lines. We cannot just equate the cor-
responding components, as written, and try to solve for t. If you try this, you will see that
the system

−8 − 5t = 6 + t, 3 − t = 4 + 2t, 4 = 1 + 3t

has no solution. However, as we will see in a moment, the lines do intersect! The difficulty
here is with the parameters. Although we’ve used the letter t as the parameter for each line,
there are two distinct parameters, one for L1 and a second for L2. To proceed, we change
the name of the variable for one of the parameters. Let

r 2(u) = 〈6 + u, 4 + 2u, 1 + 3u〉, −∞ < u < ∞.

Now we equate the corresponding components of r 1 and r 2 to obtain the system

−8 − 5t = 6 + u, 3 − t = 4 + 2u, 4 = 1 + 3u.

This system has the unique solution t = −3, u = 1. Thus, the lines do intersect at

r 1(−3) = r 2(1). �

CHECKING
THE ANSWER

To verify our conclusion, we evaluate

r 1(−3) = 〈−8 − 5(−3), 3 − (−3), 4
〉 = 〈7, 6, 4〉

and
r 2(1) = 〈6 + 1, 4 + 2 · 1, 1 + 3 · 1〉 = 〈7, 6, 4〉.

These calculations confirm that the point (7, 6, 4) is on both lines.

EXAMPLE 5 Finding the distance from a point to a line

Find the distance from the point P = (2, 0, 1) to the line given by

r(t) = 〈3 − t, −5 + 4t, 6〉 , −∞ < t < ∞.

SOLUTION

Here, P0 = (3, −5, 6) corresponds to r(0) and d = 〈−1, 4, 0〉 is the direction vector for the

line. Thus, ‖d‖ = √
17 and

−→
P0P = 〈−1, 5, −5〉. The norm of d× −→

P0P is computed as follows:

‖d × −→
P0P‖ =

∥∥∥∥∥∥∥
det

⎡
⎢⎣

i j k

−1 4 0

−1 5 −5

⎤
⎥⎦

∥∥∥∥∥∥∥
= ‖−20i − 5j − k‖ =

√
426.

By Theorem 10.38, the distance from P to the line is ‖d×
−→
P0P‖

‖d‖ =
√

426
17

≈ 5.0 units. �
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TEST YOUR? UNDERSTANDING
� How do you find an equation of a line determined by two points?

� How do you find an equation of a line parallel to a given vector and passing through a
given point?

� Given a parametrization of a line, parametric equations of a line, or the equation of the
line in symmetric form, how do you find the other forms?

� What are parallel lines, intersecting lines, and skew lines in 3-space?

� How do you find the distance from a point to a line?

EXERCISES 10.5

Thinking Back

Lines in the plane: Write the equation of the specified lines in
R

2 as vector parametrizations and in symmetric form.

� y = 2x + 5

� The line perpendicular to the line y = 2x + 5 and con-
taining the point (2, −1).

� y = mx + b

� The line perpendicular to the line y = mx + b and
containing the point (0, b).

� The distance between two points in the plane: What is the
formula for computing the distance between points
(x 1, y 1) and (x 2, y 2)?

� The distance between a point and a line in the plane: De-
scribe a method for computing the distance between
the point (x 0, y 0) and the line y = mx + b.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Two parallel lines that share a point are
identical.

(b) True or False: If the direction vector for a line is not a
multiple of one of the standard basis vectors, then the
line will intersect all three coordinate planes.

(c) True or False: If a line r(t) = P1 + td, −∞ < t < ∞,
is parallel to the xz-plane then d must have the form
〈a, 0, c〉 for some real numbers a and c.

(d) True or False: If r 1(t) = P1 + td1, −∞ < t < ∞, and
r 2(t) = P2 + td2, −∞ < t < ∞, are vector
parametrizations for lines in 3-space with d1 �= d2,
then the lines do not intersect.

(e) True or False: If r 1(t) = P1 + td1, −∞ < t < ∞, and
r 2(t) = P2 + td2, −∞ < t < ∞, are vector
parametrizations for lines in 3-space with P1 = P2,
then the lines intersect.

(f) True or False: Let r 1(t) = P1 + td1, −∞ < t < ∞, and
r 2(t) = P2 + td2, −∞ < t < ∞, be vector
parametrizations for lines in 3-space. If P1 �= P2 and
d1 �= d2, then the lines cannot be identical.

(g) True or False: Let r 1(t) = P1 + td1, −∞ < t < ∞, and
r 2(t) = P2 + td2, −∞ < t < ∞, be vector
parametrizations for lines in 3-space. If P1 �= P2 and
d1 �= d2, then the lines cannot be parallel.

(h) True or False: If r 1(t) = P1 + td1, −∞ < t < ∞,
and r 2(t) = P2 + td2, −∞ < t < ∞, are vector

parametrizations for lines in 3-space with d1 �= d2,
then the lines are skew.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A line in R
3 that is parallel to the xz-plane.

(b) A line in R
3 through the origin.

(c) A line parallel to the z-axis.

3. What is a linear equation in three variables? Give an ex-
ample. What is the graph of a linear equation in three
variables?

4. Provide two sets of geometric conditions that can be used
to determine a line.

5. Let P and Q be distinct points in R
3. Provide a step-

by-step procedure for finding the equation of the line
containing P and Q.

6. Let P = (a, b, c) and Q = (α, β, γ ) be distinct points in R
3.

Explain why the parametrization

x = a + (α − a)t, y = b + (β − b)t, z = c + (γ − c)t,

for 0 ≤ t ≤ 1, describes the line segment connecting
P and Q. What parametrization would describe the seg-
ment from Q to P?

7. Explain how the slopes of two lines in R
2 can be used to

determine whether the lines are parallel or identical. If the
two lines are not parallel or identical, what must be true
about the lines?

8. Explain how the direction vectors of two lines in R
3 can

be used to determine whether the two lines are parallel
or identical. If the two lines are not parallel or identical,
what are the possibilities for them?
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9. Find an equation of the line containing the point (−1, 3, 7)
with direction vector 〈2, −4, 9〉.
(a) Use a different direction vector to find another equa-

tion for the same line.
(b) Find an equation for the same line with the form

x = at + 5, y = bt + y 0, z = ct + z 0.

10. Find an equation of the line containing the point
(x 0, y 0, z 0) with direction vector 〈a, b, c〉.
(a) Use a different direction vector to find another equa-

tion for the same line.
(b) Assuming that a �= 0, find an equation for the same

line with the form

x = at + 5, y = bt + y 0, z = ct + z 0.

11. Find the points where the line

r(t) = 〈4 − 3t, 8 + 7t, 5 + t〉 , −∞ < t < ∞,

intersects each of the coordinate planes.
12. If a, b, and c are nonzero, find the points where the line

r(t) = 〈
x 0 + at, y 0 + bt, z 0 + ct

〉
intersects each of the coordinate planes. If a = 0, explain
why the line is parallel to the yz-plane.

13. Find the points where the line

x = t + 2, y = 2t − 5, z = −4t − 7

intersects each of the coordinate planes.
14. Find the points where the line

x = −3t + 5, y = 4, z = 2t + 11

intersects the xy-plane and yz-plane. Explain why the
line does not intersect the xz-plane.

15. Find the point where the line

x = −7, y = t, z = 5

intersects the xz-plane. Explain why the line does not
intersect the other two coordinate planes.

16. Let
x = at + x 0, y = bt + y 0, z = ct + z 0

be parametric equations for a line L in R
3. If x 0, y 0, and

z 0 are all nonzero, give conditions on a, b, and c so that
(a) L intersects all three coordinate planes.
(b) L intersects the xy- and yz-planes, but not the

xz-plane.
(c) L intersects exactly one of three coordinate planes.

17. Let L be the line determined by the equation

r(t) = 〈2 + 7t, 3 − 5t, 2t〉, −∞ < t < ∞.

(a) Give parametric equations for L.
(b) Write an equation for L in symmetric form.

18. Let L be the line determined by the equation

x
4

= y+2
5

= − z−8
3

.

(a) Provide a vector parametrization for L.
(b) Give parametric equations for L.

19. Let L be the line determined by the system of equations

x(t) = 4, y(t) = 3 − 5t, z(t) = t, −∞ < t < ∞.

(a) Provide a vector parametrization for L.
(b) Write an equation for L in symmetric form.

20. We wish to find the distance from the point P to the line
L as shown in the figure that follows. We know the coor-
dinates of points P and P0, but we do not know the coor-
dinates of point Q.
(a) If you knew the measure of angle θ , explain how you

would find the distance from point P to line L.

θ

P

Q
d

P0

L

(b) Using a cross product, explain how you can find the
distance from point P to line L even if you do not
know the measure of angle θ .

Skills

In Exercises 21 and 22, find the equation of the line containing
the given points in slope–intercept form. Then, use the tech-
nique of this section to find a vector parametrization for the
same line. Finally, show that your equations are equivalent.

21. P(0, 5), Q(2, −1)
22. P(3, −2), Q(6, 4)

In Exercises 23–28, find an equation of the line containing the
given point and parallel to the given vector. Express your an-
swer (a) as a vector parametrization, (b) in terms of parametric
equations, and (c) in symmetric form.

23. P(0, 0, 0), d = 〈1, 2, −4〉

24. P(2, 3, 5), d = 〈2, 3, 5〉
25. P(−1, 3, 7), d = 〈2, 0, 4〉
26. P(x 0, y 0, z 0), d = 〈a, b, c〉
27. P(3, 1), d = 〈2, 5〉
28. P(1, 3, −2, 4), d = 〈4, −1, 5, 8〉
In Exercises 29–34, find an equation of the line containing the
given pair of points. Express your answer (a) as a vector pa-
rametrization, (b) in terms of parametric equations, and (c) in
symmetric form.

29. P(0, 0, 0), Q(4, −1, 6)
30. P(3, −1, 7), Q(5, 8, −2)
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31. P(−4, 11, 0), Q(4, 11, 2)
32. P(x 0, y 0, z 0), Q(x 1, y 1, z 1)

33. P(1, 6), Q(4, 5)
34. P(3, −1, 2, 6), Q(1, 4, 5, −2)

35. (a) Find a vector parametrization for the line containing
the points P(x 0, y 0, z 0) and Q(x 1, y 1, z 1).

(b) Apply a restriction to your parameter from part (a) so
that the result parametrizes the segment from P to Q.

In Exercises 36–39, use the result of Exercise 35 to find para-
metric equations for the line segment connecting point P to
point Q.

36. P(0, 2, 3), Q(4, 5, −1)

37. P(1, 7, 3), Q(−1, −2, 5)
38. P(0, 0, 0), Q(1, 2, 3)

39. P(3, −1, 4), Q(−1, 5, 9)

In Exercises 40–45, determine whether the given pairs of lines
are parallel, identical, intersecting, or skew. If the lines are par-
allel, compute the distance between them. If the lines inter-
sect, find the point of intersection and the angle at which the
lines intersect.

40. r 1(t) = 〈2 + t, 5 − 3t, 6 + 7t〉,
r 2(u) = 〈3 − u, 4 + 3u, 5 − 2u〉

41. r 1(t) = 〈2t + 6, −t + 1, 3t〉,
r 2(t) = 〈−4t + 3, 2t − 1, −6t + 2〉

42. r 1(t) = 〈3 − t, 7 + t, 4 + 5t〉,
r 2(t) = 〈3 − t, 4 + 3t, 5 − 2t〉

43. r 1(t) = 〈5t + 2, −4t, t − 7〉,
r 2(t) = 〈−3t + 4, −t + 12, −2t − 1〉

44. r 1(t) = 〈4 + 5t, 6, 7 − 2t〉,
r 2(t) = 〈6 − 4t, −3 + 3t, −1 + 4t〉

45. r 1(t) = 〈2 + 5t, 6 − 4t, 8 + t〉,
r 2(u) = 〈2 − 10u, 3 + 8u, −2u〉

In Exercises 46–49, calculate the distance from the given point
to the given line in the following two ways: (a) using the
method of Example 4 from Section 10.3 and (b) using The-
orem 10.38 from this section.

46. Point P(−6, 3, 0) to the line determined by the points
Q(3, −1, 5) and R(4, 5, −2).

47. Point P(0, 1, −2) to the line given by

r(t) = 〈1 + 5t, −6 + t, −4t〉.
48. Point P(−6, 3, 0) to the line given by

x−3
4

= y+2
6

= z.

49. Point P(2, 5) to the line y = 2x − 3.

50. Find the distance from the point P(2, 3, −1, 4) to the line
determined by the points Q(1, 0, 4, 8) and R(3, 4, −1, 6).

51. Find values for α such that the lines determined by

r 1(t) = 〈4 − t, −6 + 2t, 6 + 5t〉 and

r 2(t) = 〈αt, 2 − 2αt, 3 + 15t〉
are (a) parallel and (b) orthogonal.

Applications
52. Emmy is a civil engineer at the Hanford Nuclear Reser-

vation in Washington State. She has discovered a leak of
toxic wastes in one of the tank farms of the facility. The
tank farm is huge, and she does not know which tank
is leaking. Worse yet, the tanks are all underground. In-
specting the tanks would require digging up the entire
tank farm, an operation that is considered too expensive.
Instead, Emmy has wells dug in several locations around
the tank farm, to try to trace the leak back to its source. If
the earth’s surface is considered to be the xy-plane, then
the bottom of the tank farm is the plane z = −40, where
the distance is given in feet. Emmy’s wells find con-
taminated groundwater at the points (758, 60, −49) and
(1033, 247, −55). If the waste is leaking from the bottom
of one of the tanks and is moving along a straight path,
what is the location of the tank she should check first for
the leak?

53. Ian is climbing Mount Logan in Canada’s Icefield Range.
He has made a second camp high on a ridge of the
mountain. He does not know how high his camp is,

but he notices that a summit far away lines up perfectly
with a nearer minor point whose height he can read
on his map. When Ian considers the summit of Mount
Logan to be (0, 0, 5.96), he finds that the far summit is at
(11.2, −5.6, 4.2) and the nearer point is at (5.4, −2.5, 4.5).
All the coordinates are given in kilometers. Ian’s camp is
due east of the summit of Mount Logan. How high is Ian
on the mountain? How far is he from the summit?

N

S

EW

Mount Logan camp

(11.2, �5.6)
elev 4.2

(5.4, �2.5)
elev 4.5

Proofs

54. Let L1 and L2 be lines in R
3, with P1 and Q1 points on L1

and P2 and Q2 points on L2. Show that L1 is parallel to

L2 if and only if
−→

P1Q1 is parallel to
−→

P2Q2.

55. Prove that the distance from the point P to the line given

by the equation r(t) = P0 + td is given by
‖d×

−→
P0P‖

‖d‖ .
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Thinking Forward

� Lines tangent to spheres: Let S denote the unit sphere
centered at the origin. How many lines are there that
are tangent to S? How many lines are there that are
tangent to S at each point on the sphere? How many
lines are there that are tangent to S and parallel to one
of the coordinate planes? How many lines are there
that are tangent to S and parallel to one of the coor-
dinate axes?

� Planes tangent to spheres: Let S denote the unit sphere
centered at the origin. How many planes are there
that are tangent toS? How many planes are there that
are tangent to S at each point on the sphere? How
many planes are there that are tangent to S and paral-
lel to one of the coordinate planes? How many planes
are there that are tangent to S and parallel to one of
the coordinate axes?

10.6 PLANES

� Using a normal vector and a point to construct the equation for a plane

� Computing the distance from a point to a plane

� Determining whether two planes are parallel or intersect

The Equation of a Plane

In our final section of the chapter we discuss planes in three-dimensional space. Just as
curves in two dimensions have tangent lines, surfaces have tangent planes, and those
planes can be used as approximations for the surface. We will visit these topics in Chap-
ter 12.

There are several geometric conditions that determine a unique plane. For example,
each of the following sets of information uniquely determines one plane in R

3:

� three noncollinear points;

� a line and a point not on the line;

� two distinct intersecting lines;

� two (distinct) parallel lines.

Our path to the equation of a plane, however, involves a point on the plane and a single vec-
tor, N, called a normal vector, orthogonal to the plane. We will also see, in examples and
exercises, how we can find an equation for the plane given any of the conditions just listed.

Let P0 = (x 0, y 0, z 0) be a given point on a plane P and let N = 〈a, b, c〉 be a vector

orthogonal to P . Place N so that its initial point is at P0, and consider the vector
−→
P0P, where

P is an arbitrary point on P .

A plane is determined by a point on the plane
and a vector orthogonal to the plane

P

P0

N

P
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Note that since N is orthogonal to P , it is orthogonal to every vector lying in P . In

particular, N is orthogonal to the vector
−→
P0P, and thus N · −→

P0P = 0. If P = (x, y, z), then

N · −→
P0P = 〈a, b, c〉 · 〈

x − x 0, y − y 0, z − z 0
〉 = 0.

Carrying out the dot product, we obtain the following equation for a plane:

a(x − x 0) + b( y − y 0) + c(z − z 0) = 0.

This equation is analogous to the point–slope form for the equation of a line that we studied
in Chapter 0.

We may rearrange the last equation to obtain

ax + by + cz = ax 0 + by 0 + cz 0.

Since a, b, c, x0, y0, and z0 are all constants, if we let d = ax0 + by0 + cz0, then

ax + by + cz = d,

the general form for the equation of a plane. Recall from the last section that equations
of this form are called linear equations and the graph of a linear equation in three variables
is a plane.

For example, to find the equation of the plane that has the normal vector N = 〈5, −3, 8〉
and contains the point (2, −7, 1), we set up the equation

〈5, −3, 8〉 · 〈
x − 2, y − (−7 ), z − 1

〉 = 0.

We can then write the equation in either of the forms

5(x − 2) − 3( y + 7) + 8(z − 1) = 0 and 5x − 3y + 8z = 39.

Geometric Conditions That Determine Planes

We now know how to find the equation of a plane given a normal vector to the plane and
a point on the plane. When we are given different geometric conditions that determine a
plane, we will follow this same procedure to find the equation of the plane.

Suppose we know three noncollinear points on a plane and we wish to find the equa-
tion for the plane. We can use the three points to find a normal vector for the plane and then
use this normal vector and any one of the three points to find the equation of the plane,
as we did at the beginning of this section. One normal vector to the plane containing P, Q,

and R is the cross product N = −→
PQ × −→

PR, as shown in the following figure:

A plane is determined by three noncollinear points

R

QP

N

We will discuss how to find the equation of a plane by using one more of the sets
of geometric conditions that determine the plane. You should then consider how to find
equations for planes by using the other sets of geometric conditions.

A given line and a point not on the line define a plane uniquely. When you have the
equation for a line, r(t) = P0 + td, together with a point, P, not on the line, you immediately
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know that P and P0 are two distinct points on some planeP . In addition, the direction vector
d for the line gives you one vector parallel to the plane. We already know that we can find
a vector normal to P if we have two nonparallel vectors that are parallel to the plane (since

we can then use their cross product). Vectors d and
−→
P0P meet our requirements. Thus, we

will use N = d × −→
P0P and point P0 to find the equation of the plane.

A plane is determined by a line and a point not on the line

P

P0 d

N

L

Distances

The distance from a point P, to a plane, P , is the distance from P to the closest point on P .
This is the distance along a line through P and orthogonal to P .

When we have the equation of a plane, we can immediately find a vector, N, normal
to the plane. One way to find the distance from point P to plane P would be to find the
equation of the line L containing P with direction vector N. We could then locate the point
Q of intersection of L and P . Finally we could use the distance formula to calculate the
distance from P to Q.

Finding the distance from a point to a plane

�

?

Q

R

PN

L

The method just outlined would work, but is more than we need to just find the distance
from P to the plane. The extra work comes when we perform several steps to find the point

of intersection, Q. It turns out that we do not need to find Q. We do need to find ‖−→
QP‖, and

this magnitude is |comp N
−→
RP |, where R can be any point on the plane P .

To summarize, we have the following theorem:

THEOREM 10.39 The Distance from a Point to a Plane

Given a point P and a plane P containing a point R with normal vector N, the distance
from P to P is

|comp N
−→
RP | = |N · −→

RP |
‖N‖ .
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The following theorem is a direct consequence of Theorem 10.39:

THEOREM 10.40 The Distance Between a Plane and the Origin

Let P = (x 0, y 0, z 0) be any point on the plane P . The distance between the origin and
P is given by |〈x 0, y 0, z 0〉 · n| where n is a unit normal vector for P .

The proof of Theorem 10.40 is left for Exercise 62. We may also adapt Theorem 10.39 to
find the distance between parallel planes P1 and P2.

Finding the distance between two parallel planes

�

?

Q

N

P1

P2

R2

R1

Since P1 and P2 are parallel, they have a common normal vector N. We need a single
point on each of the planes. Suppose that R1 = (x 1, y 1, z 1) is on P1 and R2 = (x 2, y 2, z 2) is
on P2. We may now apply Theorem 10.39 to compute the distance to obtain the following:

THEOREM 10.41 The Distance Between Parallel Planes

Given a point R1 on a plane P1 and a point R2 on a parallel plane P2 with common
normal vector N, the distance from P1 to P2 is

|N · −→
R1R2 |

‖N‖ .

For our final distance computation we compute the distance between two skew lines.
When two lines L1 and L2 are skew, we can find a unique pair of parallel planes such that
each of the parallel planes contains one of the skew lines. To visualize this situation, think
of a translation that takes one of the lines onto the x-axis. The same translation moves the
other line to another line somewhere in the coordinate system that is skew in relation to
the x-axis. Now, rotate this new system around the x-axis until the skew line lies in a plane
parallel to the xy-plane, say, z = c. This rotation leaves the x-axis fixed. The planes z = 0
and z = c are the unique parallel planes that contain these transformed lines. Since our
translation and rotation did not change the relative orientations of the lines, if you rotate the
lines back and then translate the lines back to their original positions, these two operations
together will take the planes z = 0 and z = c to the unique pair of parallel planes containing
the original skew lines. Furthermore, since the distance between the planes z = 0 and z = c
is |c|, that is also the distance between the original skew lines. This will not be our method
for computing the distance between skew lines, but we hope that it makes the geometry
easier to understand.

Our method computes the distance between the unique parallel planes that contain the
skew lines. If we had the normal vector to these parallel planes, we could use Theorem 10.41
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to compute the distance. The normal vector N may be computed from the direction vectors
d1 and d2 for L1 and L2. As the following figure shows, the normal vector N = d1 × d2:

d2

d1

?

L 1

L 2

N

Combining this reasoning with Theorem 10.41, we have

THEOREM 10.42 The Distance Between Skew Lines

Let L1 and L2 be nonparallel lines with equations r 1(t) = P1 + td1 and r 2(t) = P2 + td2,
respectively. Then the distance between L1 and L2 is given by

|(d1 × d2) · −→
P1P2|

‖d1 × d2‖ .

Intersecting Planes

We now turn our attention to intersections; two planes may intersect, and a line may
intersect a plane. Two distinct planes in 3-space either intersect or are parallel. Given the
equations of two planes, we can immediately tell whether or not they intersect by exam-
ining the normal vectors of the planes. If the normal vectors are parallel, then the planes
are parallel and possibly even identical. The planes are identical if and only if the original
equations are equivalent. As the following figure illustrates, when the normal vectors are
not parallel, the planes will intersect in a line. To find the equation of the line of intersec-
tion, we will need a direction vector for the line and a point on the line. The direction vector
can be found with the use of the cross product.

The line of intersection of two planes is orthogonal to each of the normal vectors

N1

N2

Thus, to find the equation of the line of intersection of two intersecting planes P1 and
P2, we find their respective normal vectors N1 and N2. We also determine a single point
on the line of intersection. We use the cross product N1 ×N2 as the direction vector for the
line of intersection in order to determine the equation of the line.
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Given a line and a plane in 3-space, one of three things must occur: The line and plane
can intersect in a unique point, the line and plane can be parallel, or the line may lie in the
plane. We can determine which of these situations occurs by looking at the dot product of
the direction vector for the line and the normal vector for the plane. If d is the direction
vector for the line and N is the normal vector for the plane, we consider d · N. If d · N = 0,
the two vectors are orthogonal, so either the line and plane are parallel or the line is in the
plane. If d · N �= 0, the line and plane intersect in a unique point.

Examples and Explorations

EXAMPLE 1 Finding the equation of a plane determined by three points

Show that the three points P = (2, −1, 5), Q = (9, 3, 7), and R = (4, 7, −5) are noncollinear,
and find the equation of the plane they determine.

SOLUTION

We form the vectors
−→
PQ = 〈

9 − 2, 3 − (−1), 7 − 5
〉 = 〈7, 4, 2〉 and

−→
PR= 〈

4 − 2, 7 − (−1), −5 − 5
〉 = 〈2, 8, −10〉

and note that they are not parallel, since neither of them is a scalar multiple of the other.
This implies that the three points are noncollinear. Next, we compute our normal vector.
To find a normal vector we may take the cross product of the two vectors we just found.

We let N = −→
PQ × −→

PR = 〈7, 4, 2〉 × 〈2, 8, −10〉 = 〈−56, 74, 48〉. Finally, since P, Q, and R are
all in the plane, we are free to choose any of them as our designated point. We will use P.
We now have an equation for the plane:

−56(x − 2) + 74( y + 1) + 48(z − 5) = 0.

Note that the components of N are all multiples of 2. This is because the components

of both vectors are integers and all components of
−→
PR are multiples of 2. To make our cal-

culation (slightly) simpler, we could have scaled
−→
PR by 1

2
before we took the cross product.

Scaling either
−→
PQ or

−→
PR by a nonzero constant leaves the relative geometry of the vectors

unchanged. Certainly, if
−→
PQ and

−→
PR are not parallel, then

−→
PQ and k(

−→
PR) are not parallel

for any nonzero scalar k. Had we scaled
−→
PR by 1

2
, we would have obtained the normal

vector

Ñ = −→
PQ ×

(
1
2

−→
PR

)
= 〈−28, 37, 24〉.

Using this as our normal vector, we would have gotten

−28(x − 2) + 37( y + 1) + 24(z − 5) = 0

as the equation for our plane. This equation is equivalent to the one we found before. �

EXAMPLE 2 Finding the equation of a plane determined by a line and a point not on the line

Show that the point Q(3, −4, −1) is not on the line, L, determined by

r(t) = 〈8 − 3t, −2 + 5t, 6 + 2t〉.
Give a general form for the equation of the plane P determined by Q and L.
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SOLUTION

If P were on L, there would be a value of t that simultaneously satisfied the system of
equations

8 − 3t = 3, −2 + 5t = −4, 6 + 2t = −1.

Since the solutions of each of the three equations are different, Q is not on L.

We quickly note that the vector d = 〈−3, 5, 2〉 is a direction vector for L and point
Q0(8, −2, 6) is on L. Another vector parallel to the plane of interest is Q0Q

−→
. Here,

Q0Q
−→ = 〈

3 − 8, −4 − (−2), −1 − 6
〉 = 〈−5, −2, −7〉.

To find a normal vector to the plane, we use the cross product of d and Q0Q
−→

:

d × Q0Q
−→ = 〈−3, 5, 2〉 × 〈−5, −2, −7〉 = 〈−31, −31, 31〉.

Since we are interested primarily in the direction of this vector, we may scale it by any
nonzero value to obtain simpler coefficients. We will scale the cross product by − 1

31
and let

N = 〈1, 1, −1〉.
We can use either Q or Q0 as our point on the plane. If we use Q to obtain the equation

for the plane, we arrive at the equation

1(x − 3) + 1( y + 4) − 1(z + 1) = 0.

A general form for the equation of the plane is x + y − z = 0. �

EXAMPLE 3 Finding the distance from a point to a plane

Find the distance from the point P = (6, 3, −2) to the plane given by 3x − y + 2z = 4.

SOLUTION

We need a point on the plane. Verify that R = (0, 0, 2) is on the plane. We can immediately

find the vector
−→
RP and a normal vector N to the plane. In this example we have

−→
RP =

〈6, 3, −4〉 and N = 〈3, −1, 2〉. Thus, the distance from P to the plane can be computed as
follows:

|compN
−→
RP | = |N· −→

RP |
‖N‖ = |〈3, −1, 2〉 · 〈6, 3, −4〉|

‖〈3, −1, 2〉‖ = |18 − 3 − 8|√
32 + 12 + 22

= 7√
14

=
√

14
2

.
�

EXAMPLE 4 Finding the distance between two parallel planes

Show that the plane P1 with equation −4x + 6y + 2z = 1 and the plane P2 given by
2x − 3y − z = 5 are parallel. Then compute the distance between P1 and P2.

SOLUTION

The plane P1 has the normal vector N1 = 〈−4, 6, 2〉 and the plane P2 has the normal vector
N2 = 〈2, −3, −1〉. Notice that the vectors N1 and N2 are scalar multiples of each other. This
means that the planes P1 and P2 are parallel.

Now, the point R1 = (0, 0, 1/2) is on plane P1 and the point R2 = (0, 0, −5) is on plane
P2. (Check these.) We use Theorem 10.41 to compute the distance between the planes:

|〈2, −3, −1〉 · −→
R1R2 |

‖〈2, −3, −1〉‖ = |〈2, −3, −1〉 · 〈0, 0, −11/2〉|
‖〈2, −3, −1〉‖ = 11

√
14

28
. �
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EXAMPLE 5 Finding the distance between two skew lines

Find the distance between the skew lines L1 and L2, respectively given by the vector func-
tions

r 1(t) = 〈5 + 3t, −7 + t, 2 − 5t〉 and r 2(t) = 〈−2t, 7, 1 − 3t〉.

SOLUTION

Before we begin to compute the distance, we should really think about the relationship
of the lines L1 and L2. Are they really skew? Might they intersect, be parallel, or even be
identical?

Direction vectors for L1 and L2 are d1 = 〈3, 1, −5〉 and d2 = 〈−2, 0, −3〉, respectively.
Since these direction vectors are not scalar multiples of each other, the lines either intersect
or are skew. Now, at this point we could look for a point of intersection. However, let
us think about the process we are about to start. We are about to compute the distance
between L1 and L2. If this distance is zero, the lines intersect. If the distance is positive,
the lines are skew.

We first find the normal vector N:

N = d1 × d2 = 〈3, 1, −5〉 × 〈−2, 0, −3〉 = 〈−3, 19, 2〉.
(Check this.) We will use P1 = r 1(0) = (5, −7, 2) and P2 = r 2(0) = (0, 7, 1) as our points on

L1 and L2, respectively. Thus,
−→

P1P2 = 〈−5, 14, −1〉. Finally, we use Theorem 10.42 to find
the distance between L1 and L2. This distance is

|N· −→
P1P2 |

‖N‖ = |〈−3, 19, 2〉 · 〈−5, 14, −1〉|
‖〈−3, 19, 2〉‖ = 279

374

√
374.

Since the distance is nonzero, the lines are skew. �

EXAMPLE 6 Finding the line of intersection of two planes

Show that the planes whose equations are −x + 2y − 4z = 6 and 3x + 5y − z = 4 intersect,
and find parametric equations for the line of intersection.

SOLUTION

The normal vector to −x + 2y − 4z = 6 is N1 = 〈−1, 2, −4〉, while the normal vector to
3x + 5y − z = 4 is N2 = 〈3, 5, −1〉. These normal vectors are not parallel; therefore the
planes must intersect. The line of intersection must be orthogonal to each of the normal
vectors. To find the direction vector, d, for the line of intersection, we use the cross product.
Here,

d = N1 × N2 = 〈−1, 2, −4〉 × 〈3, 5, −1〉 = 〈18, −13, −11〉.

To find the equation for the line of intersection, we now need only a point on the line,
which will, of course, lie on each of the planes. Unless the line is parallel to one of the
coordinate planes, it will intersect all three coordinate planes. In this example, our line will
intersect all three coordinate planes, because all three components of d are nonzero. To
simplify our search for a point of intersection, we can decide to find such a point in one
of the coordinate planes. Here, we will look for the point of intersection in the xy-plane.
Thus, we will set z = 0 in each of the equations −x + 2y − 4z = 6 and 3x + 5y − z = 4, to
obtain the system

−x + 2y = 6 and 3x + 5y = 4,
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which has the solution x = −2 and y = 2. Thus, the point (−2, 2, 0) is in each of the planes
and therefore on our line of intersection. Parametric equations for the line of intersection
are

x(t) = −2 + 18t, y(t) = 2 − 13t, z(t) = −11t, −∞ < t < ∞. �

EXAMPLE 7 Understanding the geometry of a line and a plane

Let L be the line given by r(t) = 〈4 + t, −3 + 5t, 2 − 3t〉 and P be the plane with equation
−x + 5y + 6z = 5. Show that L and P intersect and find the point of intersection.

SOLUTION

The vector d = 〈1, 5, −3〉 is a direction vector for L, while the vector N = 〈−1, 5, 6〉 is nor-
mal to P . We compute the dot product:

d · N = 〈1, 5, −3〉 · 〈−1, 5, 6〉 = −1 + 25 − 18 = 6 �= 0.

Since the dot product is not zero, the line and plane intersect. Because L and P intersect,
there will be a value of the parameter t = t 0 such that r(t 0) is on the plane. That is, the
coordinates (x(t 0), y(t 0), z(t 0)) given by

x(t 0) = 4 + t 0, y(t 0) = −3 + 5t 0, z(t 0) = 2 − 3t 0

satisfy the equation of the plane. Since −x + 5y + 6z = 5, we have

−x(t 0) + 5y(t 0) + 6z(t 0) = 5.

Equivalently,
−(4 + t 0) + 5(−3 + 5t 0) + 6(2 − 3t 0) = 5.

Solving this equation for t 0, we obtain t 0 = 2. We now have the point of intersection,

(x(2), y(2), z(2)) = (6, 7, −4). �

TEST YOUR? UNDERSTANDING
� How do you use a point on a plane and a vector normal to the plane to find the equation

of the plane?

� How do you use other geometric conditions to find the equation of a plane? For exam-
ple, how do you find the equation of a plane containing three noncollinear points or a
plane containing two intersecting lines?

� How do you find the distance from a point to a plane? How do you find the distance
between two parallel planes? How do you find the distance between two skew lines?

� How do you determine when two planes intersect? How do you find the line of inter-
section when they do?

� How do you determine when a line intersects a plane? How do you find the point of
intersection when it does?

EXERCISES 10.6

Thinking Back

� Linear equations: Explain why the equation

2x − 3y = 5

represents a line in the xy-plane, but represents a
plane in a three-dimensional coordinate system.

� Orthogonal vectors: Show that u = 〈1, 2, −3〉 is orthog-
onal to av + bw, where v = 〈1, 1, 1〉, w = 〈−1, 2, 1〉,
and a and b are any real numbers. Interpret this state-
ment geometrically.
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The graph of every linear equation in R
3

is a line.
(b) True or False: Three distinct points determine a plane.
(c) True or False: Two distinct lines in R

3 always deter-
mine a plane.

(d) True or False: Three concurrent lines determine a
plane. (Concurrent means that the three lines inter-
sect in a common point.)

(e) True or False: If two distinct lines in R
3 are not skew,

they determine a unique plane.
(f) True or False: If two distinct planes in R

3 intersect, they
intersect in a unique line.

(g) True or False: If the direction vector of a line is parallel
to the normal vector to a plane, the line and plane are
parallel.

(h) True or False: Let P1 and P2 be distinct planes
with normal vectors N1 and N2, respectively. If
N1 × N2 = 0, the planes are parallel.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A plane parallel to x + 3y − 4z = 7.
(b) A line orthogonal to the plane x + 3y − 4z = 7.
(c) A plane orthogonal to the line

x = 3t − 5, y = −2t + 7, z = −4.

3. Let ax + by + cz = d be the equation of a plane with a, b,
c, and d all nonzero. What are the coordinates of the in-
tersection of the plane and the x-, y-, and z-axes? Explain
how to use these points to sketch the plane.

4. Explain why two planes orthogonal to the same vector are
either parallel or identical.

5. Let v = 〈a, b, c〉 and w = 〈α, β, γ 〉, where v and w are not
parallel vectors. Explain why the planes ax + by + cz = d
and α x + β y + γ z = δ intersect.

6. Explain why there are infinitely many different planes
containing any given line in R

3. What form does the
equation of a plane containing the x-axis have?

7. What does it mean for three points to be collinear? How
do you determine that three given points are collinear?
What does it mean for three points to be noncollinear?

8. Explain why three noncollinear points determine a unique
plane. Explain how you would use the coordinates of the

points to find the equation of the plane. Explain why three
collinear points do not determine a unique plane.

9. Explain why a line L and a point P not on L determine a
unique plane. Explain how you would use the equation of
L and the coordinates P to find the equation of the plane.
Explain why P and L do not determine a unique plane if
P is on L.

10. Explain why two intersecting lines determine a unique
plane. Explain how you would use the equations of the
lines to find the equation of the plane.

11. Explain why two distinct parallel lines determine a unique
plane. Explain how you would use the equations of the
lines to find the equation of the plane.

12. Explain why two skew lines do not determine a plane.

13. Explain why any two skew lines lie on a unique pair of
parallel planes.

14. The angle θ between two intersecting planes, called the
dihedral angle, is defined to be the angle between the
two normal vectors to the planes, where

θ = cos−1 N1 · N2

‖N1‖‖N2‖ .

Draw a figure that illustrates the dihedral angle and ex-
plain why the definition given is a reasonable definition.

15. Given the equations

x = at + x 0, y = bt + y 0, z = ct + z 0

for a line L and
α x + β y + γ z = δ

for a plane P , explain how to determine whether L is
orthogonal to P .

16. Explain how to tell when two planes are perpendicular.

17. When a line L intersects a plane P the angle between
them is defined to be the complement of the acute angle
between the direction vector for the line and the normal
vector to the plane. Draw a figure that illustrates this an-
gle, and explain why the definition given is a reasonable
definition.

18. Explain the similarities in the derivations of the formulas
for the distances from a point to a plane and from a point
to a line.

19. Explain the derivation of the formula for finding the dis-
tance between two skew lines L1 and L2. Why does this
formula work?

20. Two distinct nonparallel planes intersect in a line. Outline
a procedure for finding the equation of the line of inter-
section.

Skills

In Exercises 21–30, find the equations of the planes deter-
mined by the given conditions.

21. The plane contains the origin and is normal to the vector
〈4, −1, 5〉.

22. The plane contains the point (−2, 3, −1) and is normal to
the vector 3i − 2j.

23. The plane contains the point (2, −1, 6) and is normal to
the vector 〈2, −1, 6〉.
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24. The plane contains the points (1, 0, 0), (0, 1, 0), and (0, 0, 1).

25. The plane contains the points (2, 4, 3), (3, −5, 0), and
(−4, 1, 6).

26. The plane contains the points (−4, 0, 0), (0, 3, 0), and
(0, 0, 5).

27. The plane contains the points (x 0, 0, 0), (0, y 0, 0), and
(0, 0, z 0).

28. The plane contains the point (1, 2, −5) and the line deter-
mined by r(t) = 〈−4 + t, 3 + 5t, 2 − 3t〉.

29. The plane contains the point (−4, 1, 3) and the line deter-
mined by r(t) = 〈3 + 7t, −2 + t, 3 + 4t〉.

30. The plane contains the point (−4, 1, 3) and is normal to
the line determined by r(t) = 〈−4 + t, 3 + 5t, 2 − 3t〉.

31. Show that the lines determined by

r 1(t) = 〈−2 − 5t, 3 + 2t, 4t〉 and

r 2(t) = 〈8 + 15t, 1 − 6t, 3 − 12t〉
are parallel, and then find an equation of the plane con-
taining both lines.

32. Show that the lines determined by

r 1(t) = 〈3 − 5t, −2 + t, 6〉 and

r 2(t) = 〈4 + 15t, 5 − 3t, 4〉
are parallel, and then find an equation of the plane con-
taining both lines.

33. Show that the lines determined by

r 1(t) = 〈7, 3 − 4t, 2 + 6t〉 and

r 2(t) = 〈6 − t, 3 + 8t, 9 − 5t〉
intersect, and then find an equation of the plane contain-
ing the two lines.

34. Show that the lines determined by

r 1(t) = 〈3 − t, 4 − 4t, −3 + 4t〉 and

r 2(t) = 〈5 − t, −6 + 2t, −2 + t〉
intersect, and then find an equation of the plane contain-
ing both lines.

In Exercises 35–38, find an equation of the line of intersection
of the two given planes.
35. x + 2y + 3z = 4 and −2x + y − 4z = 6
36. y − 5z = 3 and 6x − 7y = 5

37. x = 4 and 3x − 5y + 2z = −3
38. x − 2z = 7 and x − 3y − 4z = 0

39. Find the distance from the point (2, 0, −3) to the plane
3x − 4y + 5z = 1.

40. Show that the planes given by 2x − 4y − 3z = 5 and
−4x + 8y + 6z = 1 are parallel, and find the distance
between the planes.

41. Show that the planes given by 2x − 3y + 5z = 7 and
−6x + 9y − 15z = 8 are parallel, and find the distance be-
tween the planes.

42. Show that the planes given by y − 7z = 16 and 2y − 14z =
5 are parallel, and find the distance between the planes.

43. Show that the lines with the equations

x+1
2

= y−3
−4

= z−2
5

and
x−4

3
= y+1

2
= z

3

are skew, find the equations of the parallel planes con-
taining the lines, and find the distance between the lines.

Use your answers from Exercise 14 to find the angle between
the indicated planes in Exercises 44 and 45.

44. 7x − 3y + 5z = 6 and 2x + 3y − z = 1

45. −x + 7y − 2z = 5 and 3x + 5y − 4z = 2

Use Exercise 17 to find the angle between the indicated lines
and planes in Exercises 46 and 47.

46. r(t) = 〈5 + 2t, 6 − t, 4 + 5t〉 and 3y + 5z = −4

47. r(t) = 〈3 + 5t, 2 − t, 4 − 3t〉 and −10x + 2y + 6z = 7

In Exercises 48–51, determine whether the given line is paral-
lel to, intersects, or lies in the given plane. If the line is parallel
to the plane, calculate its distance from the plane. If the line
intersects the plane, find the point and angle at which they
intersect.

48. r(t) = 〈t, −5 − 2t, −1 + 3t〉 and 4x − 5y + 2z = 5

49. r(t) = 〈3 − 2t, −4, 5 − 4t〉 and 2x + 5y − z = 7
50. r(t) = 〈4 + t, 6 − 5t, −3t〉 and 3x + 3y − 4z = 30

51. r(t) = 〈5 + 6t, 3 − t, 0〉 and 7y − 5z = 3
52. At every point on a sphere (x−a)2+( y−b)2+(z−c)2 = r 2,

there is some plane tangent to the sphere. Explain how to
find the equation of the tangent plane at any given point.

53. Use your answer in Exercise 52 to find the equations of
the planes tangent to the given spheres at the specified
points.

(a) x 2 + y 2 + z 2 = 1 at
(

1
2

,
1
4

,
√

11
4

)
.

(b) (x − 1)2 + ( y + 2)2 + z 2 = 9 at (3, 0, 1).

Applications
54. Emmy is trying to get information about the water table

below the Hanford reservation. She has drilled wells that
show that the water table can be found at (0, 0, −35) and
(300, 0, −38). She drills one more well and finds the water
table at (0, 300, −37).
(a) Find a plane that approximates the water table.
(b) If she drills another hole at x = 300, y = 300, how

deep does she expect to find the water table?

55. Annie is sitting on a beach in the evening, looking out at a
mooring buoy. She wonders how deep the water is at the
buoy. She assumes that the beach slopes out as a plane.
She is sitting at a point (150, 30, 5) relative to the buoy,
where a z-coordinate of zero represents sea level and the
coordinates are given in feet. The point on the shore that
is closest to the buoy looks as if it is around (120, 40, 0) rel-
ative to the buoy. There is a piece of driftwood down the
beach that seems to be at about (140, 60, 5). How deep is
the water at the buoy?
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Proofs

56. Let L1 and L2 be two skew lines. Prove that no plane con-
tains both L1 and L2.

57. Prove that the planes determined by the equations ax +
by + cz = d and α x + β y + γ z = δ are perpendicular if
and only if aα + bβ + cγ = 0.

58. Let a, b, and c be position vectors terminating in some
plane P . Show that (a × b) + (b × c) + (c × a) is normal
to P .

59. (a) Show that the distance from the point P(x 0, y 0, z 0) to
the plane with equation ax + by + cz + d = 0 is

|ax 0 + by 0 + cz 0 + d|√
a 2 + b 2 + c 2

.

(b) Use the result of part (a) to recalculate the distance in
Exercise 39.

60. Let r 1(t) = P1 + td1 and r 2(t) = P2 + td2 be parametriza-
tions for two nonparallel lines. Prove that the lines inter-
sect if and only if the three vectors P1 − P2, d1, and d2
are coplanar.

61. Let r 1(t) = P0 + td1 and r 2(u) = Q0 + ud2 respectively
be the equations of lines L1 and L2. Show that
(P0 − Q0) · (d1 × d2) = 0 if and only if L1 and L2 lie in
the same plane.

62. Prove Theorem 10.40. That is, show that if P = (x 0, y 0, z 0)
is a point on plane P , then the distance between the
origin and P is given by

∣∣〈x 0, y 0, z 0
〉 · n

∣∣, where n is a unit
normal vector to P .

Thinking Forward

� A plane tangent to a surface: A particular smooth sur-
face has tangent vectors vx = i − 3j and vy = i + 4k
at the point P(2, −3, 4). Find the equation of the
tangent plane to the surface by finding the nor-
mal vector to the plane N = vx × vy containing the
point P.

� A plane tangent to a surface: A particular smooth sur-
face has tangent vectors vx = i + αj and vy = i + βk
at the point P(x 0, y 0, z 0). Find the equation of the
tangent plane to the surface by finding the normal
vector to the plane N = vx × vy containing the
point P.

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a sketch or an algebraic example.

� a sphere in R
3

� a cylinder in R
3, along with the directrix and the rulings

of the cylinder

� vectors in R
2 and R

3

� the scalar multiple of a vector

� the magnitude, norm, or length of a vector

� the dot product of two vectors

� the standard basis vectors in R
2 and R

3

� orthogonal curves and vectors

� the projection of one vector onto another

� the determinant of a 3 × 3 matrix

� the cross product of two vectors from R
3

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� Given any nonzero vector v, the vector is a unit
vector in the direction of v.

� For any vectors u = 〈u 1, u 2, u 3〉 and v = 〈v 1, v 2, v 3〉,
u · v = .

� If u and v are two nonzero vectors, then u ·v =
cos θ , where θ is .

� Law of Cosines: In a triangle with side lengths a, b, and c,
where θ is the angle between the sides of length a and b,
a 2 + b 2 − = c 2.

� Let θ be the angle between nonzero vectors u and v.
Then

θ is

⎧⎨
⎩

if and only if u · v > 0
if and only if u · v = 0
if and only if u · v < 0.
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� The Triangle Inequality: Given any vectors u and v,
‖u + v‖ ‖u‖ + ‖v‖.

� The cross product of two parallel vectors u and v in R
3 is

.

� For any vectors u and v in R
3, v × u = (u × v).

� For any vectors u and v in R
3 and any scalar c,

c(u × v) = = .

� For vectors u and v in R
3, u · (u × v) = and

v · (u × v) = .

� Let u and v be nonzero vectors in R
3 with the same ini-

tial point. Then ‖u × v‖ = sin θ , where θ is
.

� If u and v are nonparallel vectors in R
3, then u, v, and

u × v form a triple.

� If u, v, and w are vectors in R
3, then is

the volume of the parallelepiped determined by u, v,
and w.

� The distance from a point P to a line L parametrized by
r(t) = P0 + td is .

� The distance from a point P to a plane P containing a
point R with normal vector N is .

Notation and Algebraic Rules for Vectors

Notation: Describe the meanings of each of the following
mathematical expressions:

� R
2 � R

3 � 〈a, b〉
� 〈a, b, c〉 �

−→
PQ � ‖v‖

� i � j � k

� u · v � u × v � compuv

� projuv

Algebraic Properties of Vector Arithmetic: Each of the statements
that follow demonstrates a commutative rule, an associative
rule, or a distributive rule of vector arithmetic. Fill in the blanks
and give the name of the relevant property.

� For any two vectors u and v with the same number of
components, u + v = .

� For any three vectors u, v and w, each with the same
number of components, (u + v) + w = .

� For any scalar c and any two vectors u and v with the same
number of components, c(u + v) = .

� For any vectors u, v, and w, u · (v + w) = .

� For any vectors u and v, and any scalar k, k(u · v) =
= .

� Let u, v, and w be vectors in R
3. Then u × (v + w) =

.

� u, v, and w be vectors in R
3. Then (u+v)×w = .

Skill Certification: Working in R
3

Distances between points: Find the distance between each pair
of points.

1. (1, 2, −3) and (4, 7, −3) 2. (−5, 7, 0) and (0, 6, −3)

3. (1, 5, −2) and (3, 9, −1) 4. (4, 6, 2) and (1, 3, −5)

Equations of Spheres: Find the equation of the specified sphere.

5. center (2, −3, 4), radius 6
6. center (2, −3, 4), tangent to the xz-plane
7. the segment with endpoints (1, 5, −2) and (3, 9, −1) is a

diameter
8. center (4, 6, 2), (1, 3, −5) is a point on the sphere

Products and Norms: In Exercises 9–24 let u = i, v = 2j, and

w = i + 2j + 1
2

k.

9. Sketch the position vectors u, v, and w.
10. Sketch the parallelogram determined by u and v.
11. Sketch the parallelepiped determined by u, v, and w.
12. Compute ‖u‖, and use the result to label your sketches

in Exercises 9–11.

13. Compute ‖v‖, and use the result to label your sketches
in Exercises 9–11.

14. Compute ‖w‖, and use the result to label your sketches
in Exercises 9–11.

15. Compute u · v.
16. Compute u × v.
17. Compute the angle between u and v.
18. Compute the area of the parallelogram determined by u

and v.
19. Compute the lengths of the diagonals of the parallelo-

gram determined by u and v.
20. Find a vector orthogonal to both u and v.
21. Find a unit vector orthogonal to both u and v.
22. Compute the volume of the parallelepiped determined

by u, v, and w.
23. Compute the areas of the six faces of the parallelepiped

determined by u, v, and w.
24. Compute the lengths of the four diagonals of the para-

llelepiped determined by u, v, and w. (Hint: u + v + w
is one of the diagonals.)
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Products and Norms: Let u = 〈2, 4, −1〉, v = 〈0, −3, 2〉, and
w = 〈−1, 1, 5〉. Use these vectors to find the specified quanti-
ties in Exercises 25–36.

25. ‖u‖ 26. ‖v‖
27. u · v 28. u × v

29. the angle between u and v
30. the area of the parallelogram determined by u and v
31. the lengths of the diagonals of the parallelogram deter-

mined by u and v
32. a vector orthogonal to both u and v
33. a unit vector orthogonal to both u and v
34. the volume of the parallelepiped determined by u, v,

and w
35. the areas of the six faces of the parallelepiped deter-

mined by u, v, and w
36. the lengths of the four diagonals of the parallelepiped

determined by u, v, and w

Lines and Planes Determined by Points: Consider the three
points P(2, −3, 5), Q(3, 1, 0), and R(−1, 0, 7). Find the follow-
ing.

37. an equation for the line containing P and Q
38. an equation for the line containing P and R
39. an equation for the plane containing P, Q, and R
40. the area of the triangle determined by P, Q, and R

Intersections and Distances: Let P be the point with coordi-
nates (1, 2, −3), L be the line with equation r(t) = 〈2 + 5t,
−3+t, −4t〉, and P be the plane with equation x−3y+4z = 5.
Find the following.

41. the distance from P to L
42. the distance from P to P
43. the point at which L intersects P
44. the angle at which L intersects P

Capstone Problems

A. A weight of p pounds is suspended by two ropes as
shown in the figure that follows. What are the magni-
tudes of the forces in each of the ropes?

p lbs

α β

B. Explain why the solid with vertices (1, 0, 0), (−1, 0, 0),
(0, 1, 0), (0, −1, 0), (0, 0, 1), and (0, 0, −1) is a regular
octahedron.

(a) Find the area of each face.
(b) Find the equations of the three lines that form the

edges of the face of the octahedron with vertices
(1, 0, 0), (0, 1, 0), and (0, 0, 1).

(c) Find the equation of each face of the octahedron.
(d) Find the volume of the octahedron.

C. Find the equation of the sphere with center (1, −3, 5) and
tangent to the plane with equation 3x−5y−2z = 6. Find
the equation of the sphere with center (α, β, γ ) and tan-
gent to the plane with equation ax + by + cz = d.

D. One molecule of methane is composed of one carbon
atom (chemical symbol C) and four hydrogen atoms
(chemical symbol H). Therefore the chemical formula for
methane is CH4. Geometrically, if we picture the carbon
atom at the center of the molecule, the four hydrogen
atoms would lie at the four vertices of a regular tetra-
hedron. (Recall that a regular tetrahedron is a solid with
four congruent faces, each of which is an equilateral tri-
angle.) Each of the hydrogen atoms is bonded to the car-
bon atom, but the hydrogens are not bonded to each
other. Following is a schematic of methane inside a reg-
ular tetrahedron:

φ

C

H

H

H

H

To aid you in visualizing the molecule, it might help
to place the carbon atom at the origin of a three-
dimensional coordinate system with two of the hydro-
gen atoms in the xz-plane at (a, 0, c) and (−a, 0, c). Then
the other two hydrogen atoms must lie in the yz-plane
at (0, a, −c) and (0, −a, −c), as shown here:

(�a, 0, c)

(0, �a, �c)

(0, a, �c)

(a, 0, c)

y

x

z

Since the carbon is at the origin, the coordinates of these
four points also give the components of the vectors from
the carbon atom to the hydrogen atoms.

(a) In methane the H–C–H bond angles are all equal.
Explain why this means that

〈a, 0, c〉 · 〈−a, 0, c〉 = 〈a, 0, c〉 · 〈0, a, −c〉.
(b) What are the H–C–H bond angles in methane?
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11.1 VECTOR-VALUED FUNCTIONS

� Defining curves in R
3 with parametric equations in three variables

� Vector functions in R
2 and R

3

� Curves defined with parametric equations in R
2 and R

3

Parametric Equations in R
3

For most of this book we have studied functions f : X → Y whose domains and codomains
are subsets of the real numbers. In this chapter we broaden our study to include functions
whose codomains are subsets of R

2 or R
3. Such functions are called vector-valued functions

or vector functions. The graph of such a function is a curve in the plane, with codomain R
2,

or a curve in 3-space, with codomain R
3. We will still use the basic concepts of calculus to

analyze these functions, their graphs, and their applications.

Recall that in Chapter 9 we defined parametric equations in R
2 to be a pair of

functions

x = x(t) and y = y(t),

where t is a parameter defined on some interval I of real numbers. At the time we also
remarked that the definition could be extended to three-dimensional space, which we do
here:

DEFINITION 11.1 Parametric Equations in R
3

Parametric equations in R
3 are triples of functions

x = x(t), y = y(t), and z = z(t),

where the parameter t is defined on some interval I of real numbers.

The parametric curve, or space curve, associated with the equations is the set of points

{(x(t), y(t), z(t)) ∈ R
3 | t ∈ I }.

For example, the equations

x = cos t, y = sin t, z = t, t ∈ [0, 4π ]

are parametric equations in three variables. (See Example 1.)

Vector-Valued Functions

Another way to express a curve defined by parametric equations, using slightly different
notation, is with a vector-valued function. Our definition follows:
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DEFINITION 11.2 Vector Functions with Three Components

Let
x = x(t), y = y(t), and z = z(t)

be three real-valued functions, each of which is defined on some interval I ⊆ R. A vector
function, or vector-valued function, r(t), with three components is a function of the
form

r(t) = 〈
x(t), y(t), z(t)

〉 = x(t)i + y(t)j + z(t)k.

The variable t in the vector function is called the parameter. The functions x = x(t),
y = y(t), and z = z(t) are called the components of r(t). The vector curve, or space
curve, associated with the vector function is the set of points

{(x(t), y(t), z(t)) | t ∈ I}
in R

3.

Note that for every value of t ∈ I, the value of the function is a vector. When we consider
a vector-valued function that represents the position of a particle, we always interpret the
vector as a position vector and the vector curve as the set of terminal points of all the
position vectors of the particle. That is, the collection of points

(x(t), y(t), z(t)) for t ∈ I,

is the vector curve for r(t) = 〈
x(t), y(t), z(t)

〉
since these are the terminal points of the vectors〈

(x(t), y(t), z(t)
〉

for t ∈ I.

A vector curve is illustrated in the following figure:

The collection of terminal points of the position vectors
forms the graph of a vector function

r(t)

y

x

z

We could similarly define a vector function with two components to be a function of
the form r(t) = 〈

x(t), y(t)
〉 = x(t)i + y(t)j, where x(t) and y(t) are functions of t on some

interval I ⊆ R. This is an alternative way of expressing a function defined by two parametric
equations.

Note that we will sometimes consider a vector function and a real-valued function of a
single variable, f (t), simultaneously. When we do, we will refer to f (t) as a scalar function.

Parametrized Curves

The space curve associated with the vector function r(t) = 〈
x(t), y(t), z(t)

〉
is the set of

points {(x(t), y(t), z(t)) | t ∈ I ⊆ R}. Along with the curve itself, the parameter, t, imposes
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directionality on the curve, pointing in the direction in which t is increasing. This direc-
tionality is indicated with an arrow.

To understand a space curve, it can be helpful to analyze its projection onto one of
the coordinate planes. For example, rather than immediately drawing r(t) = 〈

x(t), y(t), z(t)
〉

in 3-space, we may consider the image of the parametric curve defined by x = x(t) and
y = y(t) in the xy-plane. We could similarly consider the projections onto the yz- and
xz-planes. If we judiciously select which two components to consider, we will obtain the
best information.

For example, consider the function r(t) = 〈cos t, sin t, t〉 for t ∈ [0, 4π ]. Temporarily ig-
noring the z-component of this function, we have the parametric equations x = cos t and
y = sin t. From our work in Chapter 9, we recognize that these equations describe the
unit circle centered at the origin. In addition, the curve is traced twice, counterclockwise,
starting at the point (1, 0) as t increases on the interval [0, 4π ], as in the following figure:

The projection of the vector function onto the xy-plane

y

x
(1, 0)

To incorporate the z-coordinate, we note that z increases as t increases. The complete vector
curve will spiral around the z-axis as t increases, and we obtain the following circular helix:

y

x

z

1

To visualize a vector curve, it may help to tabulate the points in 3-space that correspond to
a few values of the parameter t. We do this in the examples that follow.

Scalars, scalar functions, and vector-valued functions may be combined algebraically
in various ways. For example, the product of the scalar k and the vector function
r(t) = 〈

x(t), y(t), z(t)
〉

is

k r(t) = k
〈
x(t), y(t), z(t)

〉 = 〈
k x(t), k y(t), k z(t)

〉
.

The product of a scalar function f (t) and the vector function r(t) = 〈
x(t), y(t), z(t)

〉
is

f (t) r(t) = f (t)
〈
x(t), y(t), z(t)

〉 = 〈
f (t) x(t), f (t) y(t), f (t) z(t)

〉
.
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The dot product and cross product of the vector functions r 1(t) = 〈
x 1(t), y 1(t), z 1(t)

〉
and

r 2(t) = 〈
x 2(t), y 2(t), z 2(t)

〉
are, respectively,

r 1(t) · r 2(t) = 〈
x 1(t), y 1(t), z 1(t)

〉 · 〈
x 2(t), y 2(t), z 2(t)

〉
= x 1(t) x 2(t) + y 1(t) y 2(t) + z 1(t) z 2(t) and

r 1(t) × r 2(t) = 〈
x 1(t), y 1(t), z 1(t)

〉 × 〈
x 2(t), y 2(t), z 2(t)

〉
= 〈

y 1(t) z 2(t) − y 2(t) z 1(t), x 2(t) z 1(t) − x 1(t) z 2(t), x 1(t) y 2(t) − x 2(t) y 1(t)
〉
.

Note that the dot product is a scalar function and the cross product is a vector function.
The structures of the various products formed with two component vector functions are
similar.

Limits and Continuity of Vector Functions

The limit of a vector-valued function may be defined in terms of the limits of the compo-
nents.

DEFINITION 11.3 The Limit of a Vector Function

Let r(t) = 〈
x(t), y(t), z(t)

〉
be a vector-valued function defined on a punctured interval

around t 0. The limit of r(t) as t approaches t 0, denoted by lim
t→t 0

r(t), is defined by

lim
t→t 0

r(t) = lim
t→t 0

〈
x(t), y(t), z(t)

〉 = lim
t→t 0

x(t) i + lim
t→t 0

y(t) j + lim
t→t 0

z(t) k,

provided that each of the limits, lim
t→t 0

x(t), lim
t→t 0

y(t), and lim
t→t 0

z(t), exists.

Similarly, the limit of the vector function r(t) = 〈
x(t), y(t)

〉
is

lim
t→t 0

r(t) = lim
t→t 0

〈
x(t), y(t)

〉 = lim
t→t 0

x(t)i + lim
t→t 0

y(t)j,

provided that each of the limits, lim
t→t 0

x(t) and lim
t→t 0

y(t), exists.

As in Definition 11.3, our definition of the continuity of a vector-valued function relies on
the continuity of the component functions.

DEFINITION 11.4 The Continuity of a Vector Function

Let r(t) be a vector-valued function defined on an open interval I ⊆ R, and let t 0 ∈ I.
The function r(t) is said to be continuous at t 0 if

lim
t→t 0

r(t) = r(t 0).

For a vector function r(t) = 〈
x(t), y(t), z(t)

〉
this definition means that r is continuous at t 0 if

and only if lim
t→t 0

r(t) = 〈
x(t 0), y(t 0), z(t 0)

〉
. The analogous statement holds for a vector func-

tion with two components. We also define continuity on an interval, using the ideas of
Chapter 1.
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DEFINITION 11.5 The Continuity of a Vector Function on an Interval

A vector function r(t) is continuous on an interval I if it is continuous at every interior
point of I, right continuous at any closed left endpoint, and left continuous at any closed
right endpoint.

Examples and Explorations

EXAMPLE 1 Graphing a circular helix by plotting points

Graph the circular helix defined by r(t) = 〈cos t, sin t, t〉 for t ∈ [0, 4π ] by plotting points on
the curve.

SOLUTION

We’ve tabulated the coordinates of several points on the curve for values of t in the interval
[0, 4π ]:

t 0 π/2 π 3π/2 2π

(x, y, z) (1, 0, 0) (0, 1, π/2) (−1, 0, π ) (0, −1, 3π/2) (1, 0, 2π )

t 5π/2 3π 7π/2 4π

(x, y, z) (0, 1, 5π/2) (−1, 0, 3π ) (0, −1, 7π/2) (1, 0, 4π )

These points and the helix are shown in the following figure:

y

x

z

�

EXAMPLE 2 Graphing a spiral

Graph the vector curve defined by r(t) = 〈t sin t, t cos t〉 for t ∈ [0, 4π ].

SOLUTION

We have already seen that the graph of the parametric equations x = sin t, y = cos t for
t ∈ [0, 4π ] is a circle with radius 1 and centered at the origin. The graph of this parametriz-
ation starts at (0, 1) when t = 0, and the circle is traced twice, in a clockwise direction for
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t ∈ [0, 4π ]. The graph of r(t) is related. If we square x = t sin t and y = t cos t and add, we
obtain

x 2 + y 2 = t 2 sin2 t + t 2 cos2 t = t 2.

This is not the equation of a circle, but we know that
√

x 2 + y 2 = t is the distance from the
origin. That is, the distance from the origin increases with t as the particle revolves around
the origin. When t = 0, we have (x, y) = (0, 0), and the graph will spiral out clockwise as t
increases. To obtain a more precise graph, we will plot a few values of (x, y) corresponding
to values of the parameter in the table.

We also evaluate a few reference points for the space curve in the following table:

t 0 π/2 π 3π/2 2π

(x, y) (0, 0) (π/2, 0) (0, −π ) (−3π/2, 0) (0, 2π )

t 5π/2 3π 7π/2 4π

(x, y) (5π/2, 0) (0, −3π ) (−7π/2, 0) (0, 4π )

We plot these points along with the spiral in the following figure:

y

x
�

7π

2 �
3π

2

2π

�3π

�π

5π

2

4π

π

2

�

EXAMPLE 3 Graphing a conical helix

Graph the vector curve defined by r(t) = 〈t sin t, t, t cos t〉 for t ∈ [0, 4π ].

SOLUTION

We begin by considering a projection of this curve onto the xz-plane. The graph in the
xz-plane will be defined by the parametric equations x = t sin t, z = t cos t. The graph of
these equations is the spiral we graphed in Example 2, except in the xz-plane rather than
in the xy-plane.

Note that when we include the y-coordinate, we obtain a helix that winds around the
y-axis. We evaluate a few reference points for the space curve in the following table:

t 0 π 2π 3π 4π

(x, y, z) (0, 0, 0) (0, π , −π ) (0, 2π , 2π ) (0, 3π , −3π ) (0, 4π , 4π )

These points and the curve are shown next. This curve is an example of a conical helix
because the graph can be drawn on the surface of a cone.
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yx

z

yx

z

�

CHECKING
THE ANSWER

Elegant graphs such as the ones we have shown may be produced with a computer algebra
system like Maple, Mathematica, or Matlab. However, many simple curves may be drawn
by hand using the techniques introduced in this section.

EXAMPLE 4 Evaluating the limit of a vector function

Evaluate the limits of the following vector functions if they exist:

lim
t→0

〈
t sin

1
t

,
t

e t − 1

〉
and lim

t→2

〈
t − 2

t 2 − 4
,

2 t − 4
t − 2

,
t

t − 2

〉

SOLUTION

The limit of the first vector function exists if and only if the two limits

lim
t→0

t sin
1
t

and lim
t→0

t
e t − 1

exist. We may use the Squeeze Theorem to show that lim
t→0

t sin 1
t

= 0 and L’Hôpital’s Rule

to show that lim
t→0

t
et −1

= 1. Therefore, lim
t→0

〈
t sin 1

t
, t

et −1

〉
= 〈0, 1〉.

For the other vector function, the limits of the first two components exist, since

lim
t→2

t − 2
t 2 − 4

= lim
t→2

1
t + 2

= 1
4

and lim
t→2

2 t − 4
t − 2

= lim
t→2

(ln 2)2 t = 4 ln 2.

However, the limit of the third component, lim
t→2

t
t−2

, does not exist. Therefore,

lim
t→2

〈
t − 2

t 2 − 4
,

2 t − 4
t − 2

,
t

t − 2

〉

does not exist. �

TEST YOUR? UNDERSTANDING
� What are parametric equations in two variables? How does the definition generalize to

parametric equations in three variables?

� What techniques can you use to graph parametric equations in three variables?

� What is a vector-valued function? How is the definition related to the definition of
parametric equations?

� What techniques can you use to graph a vector function in three variables?

� If one or more of the components of a vector function is discontinuous, how does that
affect the graph of the function?
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EXERCISES 11.1

Thinking Back

Parametric equations for the unit circle: Find parametric equa-
tions for the unit circle centered at the origin of the xy-plane
that satisfy the given conditions.

� The graph is traced counterclockwise once on the
interval [0, 2π ] starting at the point (1, 0).

� The graph is traced clockwise once on the interval
[0, 2π ] starting at the point (1, 0).

� The graph is traced counterclockwise twice on the in-
terval [0, 2π ] starting at the point (1, 0).

� Parametric equations for a circle: Find parametric equa-
tions whose graph is the circle with radius ρ centered
at the point (a, b) in the xy-plane such that the graph
is traced counterclockwise k > 0 times on the interval
[0, 2π ] starting at the point (a + ρ, b).

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every curve in the plane has a unique
expression in terms of a vector-valued function with
two components.

(b) True or False: Every space curve has a unique expres-
sion in terms of a vector-valued function with three
components.

(c) True or False: The graph of two parametric equations
in two variables is also the graph of a vector-valued
function with two components.

(d) True or False: Every vector-valued function in three
variables can be expressed in terms of three paramet-
ric equations.

(e) True or False: The graph of three parametric equa-
tions is also the graph of a vector-valued function
with three components.

(f) True or False: If r(t) is a vector-valued function with
domain R, lim

t→c
r(t) exists for every c ∈ R.

(g) True or False: If a point t 0 is in the domain of a vector
function r(t), then lim

t→t 0
r(t) = r(t 0).

(h) True or False: Every vector function is continuous at
every point in its domain.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Parametric equations with three components for a
circular helix winding around the x-axis

(b) A vector-valued function with two components
whose graph is a spiral starting at the origin

(c) A vector-valued function with three components
whose graph is a circle contained in the plane 5 units
from the yz-plane.

3. Let y = f (x). What is the definition of lim
x→c

f (x) = L?

4. Let r(t) = 〈
x(t), y(t), z(t)

〉
. What is the definition of lim

t→c
r(t)?

5. Explain why we do not need an “epsilon–delta” definition
for the limit of a vector-valued function.

6. Let y = f (x). State the definition for the continuity of the
function f at a point c in the domain of f .

7. Let r(t) = 〈
x(t), y(t), z(t)

〉
. Provide a definition for the con-

tinuity of the vector function r at a point c in the domain
of r.

8. Most of the parametric equations and vector-valued func-
tions we have studied have component functions that are
continuous. What happens when one of the component
functions is discontinuous at a point? For example, the
“floor” function z(t) = �t� has a jump discontinuity for ev-
ery integer t. What is the graph of the equations

x = cos 2π t, y = sin 2π t, z = �t�, t ∈ R?

9. Let r(t) = 〈
x(t), y(t)

〉
, t ∈ [a, b], be a vector-valued func-

tion, where a < b are real numbers and the functions x(t)
and y(t) are continuous. Explain why the graph of r is con-
tained in some circle centered at the origin. (Hint: Think
about the Extreme Value Theorem.)

10. Let r(t) = 〈
x(t), y(t)

〉
, t ∈ [a, ∞), be a vector-valued func-

tion, where a is a real number. Explain why the graph
of r may or may not be contained in a circle centered at

the origin. (Hint: Graph the functions r 1(t) =
〈 1

t
,

1
t

〉
and

r 2(t) = 〈t, t〉, both with domain [1, ∞).)

11. Let r(t) = 〈
x(t), y(t), z(t)

〉
, t ∈ [a, b], be a vector-valued

function, where a < b are real numbers and the func-
tions x(t), y(t), and z(t) are continuous. Explain why the
graph of r is contained in some sphere centered at the
origin.

12. Let r(t) = 〈
x(t), y(t), z(t)

〉
, t ∈ [a, ∞), be a vector-valued

function, where a is a real number. Explain why the graph
of r may or may not be contained in some sphere cen-
tered at the origin. (Hint: Consider the functions r 1(t) =
〈cos t, sin t, 1/t〉 and r 2(t) = 〈cos t, sin t, t〉, both with do-
main [1, ∞).)

13. As we saw in Example 1, the graph of the vector-valued
function r(t) = 〈cos t, sin t, t〉, for t ∈ [0, 2π ] is a circular
helix that spirals counterclockwise around the z-axis and
climbs as t increases. Find another parametrization for
this helix so that the motion along the helix is faster for a
given change in the parameter.

14. As we saw in Example 1, the graph of the vector-valued
function r(t) = 〈cos t, sin t, t〉, for t ∈ [0, 2π ] is a circular
helix that spirals counterclockwise around the z-axis and
climbs as t increases. Find another parametrization for
this helix so that the motion is downwards.
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15. Let r(t) = 〈
x(t), y(t)

〉
, t ∈ [a, ∞), be a vector-valued func-

tion, where a is a real number. Under what conditions
would the graph of r have a horizontal asymptote as
t → ∞? Provide an example illustrating your answer.

16. Let r(t) = 〈
x(t), y(t)

〉
, t ∈ [a, ∞), be a vector-valued func-

tion, where a is a real number. Under what conditions
would the graph of r have a vertical asymptote as t → ∞?
Provide an example illustrating your answer.

17. What is the dot product of the vector functions r 1(t) =〈
x 1(t), y 1(t)

〉
and r 2(t) = 〈

x 2(t), y 2(t)
〉
?

18. Compute the cross product of the vector functions r 1(t) =〈
x 1(t), y 1(t)

〉
and r 2(t) = 〈

x 2(t), y 2(t)
〉

by thinking of R
2 as

the xy-plane in R
3. That is, let r 1(t) = 〈

x 1(t), y 1(t), 0
〉

and
r 2(t) = 〈

x 2(t), y 2(t), 0
〉
, and take the cross product of these

vector functions.

In Exercises 19–21 sketch the graph of a vector-valued func-
tion r(t) = 〈

x(t), y(t)
〉

with the specified properties. Be sure to
indicate the direction of increasing values of t.

19. Domain t ≥ 0, r(0) = 〈0, 3〉, r(1) = 〈−2, 1〉, lim
t→∞

x(t) = −5,

and lim
t→∞

y(t) = −∞.

20. Domain t ≥ 0, r(0) = 〈1, 0〉, r(2) = 〈0, −1〉, lim
t→∞

x(t) = −2,

and lim
t→∞

y(t) = −3.

21. Domain t ∈ R, r(2) = 〈1, 1〉, r(0) = 〈−3, 3〉, r(−2) =
〈−5, −5〉, lim

t→−∞
x(t) = ∞, lim

t→−∞
y(t) = −∞, and

lim
t→∞

r(t) = 〈0, 0〉.
22. Given a vector-valued function r(t) with domain R, what

is the relationship between the graph of r(t) and the graph
of kr(t), where k > 1 is a scalar?

23. Given a vector-valued function r(t) with domain R, what
is the relationship between the graph of r(t) and the graph
of r(kt), where k > 1 is a scalar?

24. Explain why the graph of every vector-valued function
r(t) = 〈

cos t, sin t, f (t)
〉

lies on the surface of the cylinder
x 2 + y 2 = 1 for every continuous function f .

25. Explain why the graph of every vector-valued function
r(t) = 〈cos t, sin t, cos t〉 lies on the intersection of the two
cylinders x 2 + y 2 = 1 and y 2 + z 2 = 1.

Skills

Find parametric equations for each of the vector-valued func-
tions in Exercises 26–34, and sketch the graphs of the func-
tions, indicating the direction for increasing values of t.

26. r(t) = 〈sin 3t, cos 3t〉 for t ∈ [0, 2π ]

27. r(t) = 〈2 − sin t, 4 + cos t〉 for t ∈ [0, 2π ]
28. r(t) = 〈sin t, cos 2t〉 for t ∈ [0, 2π ]

29. r(t) = 〈1 + sin t, 3 − cos 2t〉 for t ∈ [0, 2π ]

30. r(t) = (3 + t)i +
(

3 − 1
t

)
j for t > 0

31. r(t) = 〈
t, t 2, t 3

〉
for t ∈ [0, 2]

32. r(t) = 〈
cos2 t, 4 sin t, t

〉
for t ∈ [0, 2π ]

33. r(t) = 〈
cos2 t, sin 2t

〉
for t ∈ [0, 2π ]

34. r(t) = 〈t sin t, t cos t, t〉 for t ∈ [0, 4π ]

Evaluate and simplify the indicated quantities in Exer-
cises 35–41.

35.
〈
1, 3t, t 3

〉 + 〈
t, t 2, t 3

〉
36.

〈
1, t, t 2

〉 − 〈
t, t 2, t 3

〉
37. 5 〈cos t, sin t〉
38. t 〈sin t, cos t〉
39. 〈sin t, cos t〉 · 〈cos t, − sin t〉
40. ((sin t) i + (cos t) j + tk) × ((cos t) i + (sin t) j)

41.
〈
1, t, t 2

〉 × 〈
t, t 2, t 3

〉
Evaluate the limits in Exercises 42–45.

42. lim
t→0

〈sin 3t, cos 3t〉
43. lim

t→π
〈sin t, cos t, sec t〉

44. lim
t→1−

〈
ln t,

e t − 1
t − 1

, e t
〉

45. lim
t→0+

〈
sin t

t
,

1 − cos t
t

,
(

1 + 1
t

)t 〉

Find and graph the vector function r(t) = 〈
x(t), y(t)

〉
deter-

mined by the differential equations in Exercises 46–48.

46. x ′(t) = x, y ′(t) = x 2, x(0) = 1, y(0) = 2. (Hint: Start by
solving the initial-value problem x ′(t) = x, x(0) = 1.)

47. x ′(t) = 1 + x 2, y ′(t) = x 2, x(0) = 0, y(0) = 1 (Hint: Start
by solving the initial-value problem x ′(t) = 1+x 2, x(0) = 0.)

48. x ′(t) = −y, y ′(t) = x, x(0) = 1, y(0) = 0 (Hint: What
familiar pair of functions have the given properties?)

49. Show that the graph of the vector function r(t) =
〈3 sin t, 5 cos t, 4 sin t〉 is a circle. (Hint: Show that the graph
lies on a sphere and in a plane.)

Applications
50. Annie is conscious of tidal currents when she is sea kayak-

ing. This activity can be tricky in an area south-southwest
of Cattle Point on San Juan Island in Washington State.
Annie is planning a trip through that area and finds that
the velocity of the current changes with time and can be

expressed by the vector function
〈
0.4 cos

(
π (t − 8)

6

)
, −1.1 cos

(
π (t − 11)

6

)〉
,
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where t is measured in hours after midnight, speeds are
given in knots, and 〈0, 1〉 points due north.

Cattle Point on San Juan Island

Cattle Pt.CatatCatCatCatCatatCatCatCaCatCatatCatCaCatCaC tletlelltletleltletletlele Pt Pt PtPt PtPPtPtPtPPtPPP ...Cattle Pt.

t, hours

(a) What is the velocity of the current at 8:00 a.m.?
(b) What is the velocity of the current at 11:00 a.m.?
(c) Annie needs to paddle through here heading south-

east, 135 degrees from north. She wants the current
to push her. What is the best time for her to pass this
point? (Hint: Find the dot product of the given vector
function with a vector in the direction of Annie’s travel,
and determine when the result is maximized.)

51. Arne is a wingsuit base jumper in Norway. He is working
out a jump from a cliff high above a fjord. After a couple
of seconds, he will be 1500 meters above the bottom of
the fjord, will reach his terminal velocity of 14 meters per
second towards the ground, and will travel 30 meters per
second horizontally. He calls the time when this happens
t = 0. Below the cliff from which he jumped, the ground
slopes to a second cliff, 300 meters above the water of the
fjord. Arne must clear that second cliff, 2000 meters due
south from his point at t = 0. For t ≥ 0, his position func-
tion is given by

〈
A sin

(
π t
21

)
,

A
2

t, 1200 − 14t
〉
.

Approximately how large can A be while still allowing
Arne to clear the second cliff?

The cliffs above the fjord

t � 0

300 ft

1500 ft

2000 ft

52. The DNA molecule takes the shape of a double
helix—two helices that stay a roughly uniform distance
apart.
(a) Neglecting actual dimensions, we can model one

strand of DNA using the vector function

h1(t) = 〈
cos(t), sin(t), αt

〉
.

Sketch the graph of h1. What is the effect of the
parameter α?

(b) A second strand of DNA can be constructed by shift-
ing the first. Does the graph of

h2(t) = 〈
cos(t), sin(t), αt + β

〉
ever intersect that of h1?

(c) The distance between two curves is the minimum
distance between any two points on the curves. What
is the distance between h1 and h2 if α = 1 and β = π?
(Hint: Write two points on the curves using parameters
t 1 and t 2, expand the formula for the distance between
them, and then use a trigonometric identity for addition.
Then let s = t 1 − t 2 and minimize.)

A DNA molecule

h1

t1
t2

h2

y
x

z

53. Every description of the DNA molecule says that the
strands of the helices run in opposite directions. This
is meant as a statement about chemistry, not about
the geometric shape of the double helix. Consider two
helices

h1(t) = 〈cos t, sin t, αt〉 , and

h2(t) = 〈sin t, cos t, αt〉.
(a) Sketch these two helices in the same coordinate sys-

tem, and show that they run geometrically in differ-
ent directions.

(b) Explain why it is impossible for these two helices to
fail to intersect, and hence why they could not form
a configuration for DNA.
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Proofs
54. Let r(t) = 〈

x(t), y(t)
〉

be a vector-valued function defined
on an open interval containing the point t 0. Prove that
r(t) is continuous at t 0 if and only if x(t) and y(t) are both
continuous at t 0.

55. Prove that the graph of the vector function r(t) =
〈t sin t, t cos t, t〉, where t ≥ 0, is a conical helix by show-
ing that it lies on the graph of the cone described by
z = √

x 2 + y 2.
56. Let c1 and c 2 be scalars, r 1(t) and r 2(t) be continuous vec-

tor functions with two components, and t 0 be a point in
the domains of both r 1 and r 2. Prove that

lim
t→t 0

(c1r 1(t) + c 2r 2(t)) = c1r 1(t 0) + c 2r 2(t 0).

57. Let r 1(t) and r 2(t) be continuous vector functions with
two components, and let t 0 be a point in the domains of
both r 1 and r 2. Prove that

lim
t→t 0

(r 1(t) · r 2(t)) = r 1(t 0) · r 2(t 0).

58. Let r 1(t) and r 2(t) be continuous vector functions with
three components, and let t 0 be a point in the domains
of both r 1 and r 2. Prove that

lim
t→t 0

(r 1(t) × r 2(t)) = r 1(t 0) × r 2(t 0).

59. Prove that the dot product of the continuous vector-
valued functions r 1(t) = 〈

x 1(t), y 1(t)
〉

and r 2(t) = 〈
x 2(t),

y 2(t)
〉

is a continuous scalar function.
60. If α, β, and γ are nonzero constants, the graph of a vector

function of the form r(t) = 〈
αt, βt 2, γ t 3

〉
is called a twisted

cubic. Prove that a twisted cubic intersects any plane in at
most three points.

61. Let x 1(t), x 2(t), y 1(t), and y 2(t) be differentiable scalar
functions. Prove that the dot product of the vector-valued
functions r 1(t) = 〈

x 1(t), y 1(t)
〉
and r 2(t) = 〈

x 2(t), y 2(t)
〉
is a

differentiable scalar function.

Thinking Forward
� The derivative of a vector function: Give a definition for

the differentiability of a vector-valued function.
� The integral of a vector function: Give a definition for the

definite integral of a vector-valued function.

11.2 THE CALCULUS OF VECTOR FUNCTIONS

� Differentiation and integration of vector functions

� Velocity and acceleration for vector-valued functions

� The geometry of the derivative of a vector-valued function

The Derivative of a Vector Function

In order for the vector function r(t) = 〈
x(t), y(t), z(t)

〉
to be differentiable, we need each of

the component functions x, y, and z to be differentiable.

DEFINITION 11.6 The Derivative of a Vector Function

Let
x = x(t), y = y(t), and z = z(t)

be three real-valued functions, each of which is differentiable at every point in some
interval I ⊆ R. The derivative of the vector function r(t) = 〈

x(t), y(t), z(t)
〉

is

r ′(t) = 〈
x ′(t), y ′(t), z ′(t)

〉 = x ′(t)i + y ′(t)j + z ′(t)k.

Similarly, the derivative of the vector function r(t) = 〈
x(t), y(t)

〉
is

r ′(t) = 〈
x ′(t), y ′(t)

〉 = x ′(t)i + y ′(t)j.

In these cases we say that the function r is differentiable.

For example, if r(t) = 〈
sin t, cos t, t 2

〉
for t ∈ R, then r ′(t) = 〈cos t, −sin t, 2t〉.
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Recall that in Chapter 2 the derivative of a (scalar) function was defined in terms of a
limit. Thus, the derivatives of the component functions, x ′(t), y ′(t), and z ′(t), are defined in
terms of a limit, and we have the following theorem, the proof of which is left for Exercise 62:

THEOREM 11.7 The Derivative of a Vector-Valued Function

Let r(t) be a differentiable vector function with either two or three components. The
derivative of r(t) is given by

r ′(t) = lim
h→0

r(t + h) − r(t)
h

.

When you prove Theorem 11.7, be sure to interpret r(t + h) correctly. For a vector function
in R

3,

r(t + h) = 〈
x(t + h), y(t + h), z(t + h)

〉
.

In R
2, r(t + h) has the analogous meaning.

THEOREM 11.8 The Chain Rule for Vector-Valued Functions

Let t = f (τ ) be a differentiable real-valued function of τ , and let r(t) be a differentiable
vector function with either two or three components such that f (τ ) is in the domain of
r for every value of τ on some interval I. Then

dr
dτ

= dr
dt

dt
dτ

.

Proof. We will prove the Chain Rule for the case where r(t) = 〈
x(t), y(t)

〉
and leave the case where

r(t) has three components to Exercise 67. In either case, the hard work was actually done in Chap-
ter 2 when we proved the Chain Rule for the composition of two scalar functions. By the definition
of the derivative of a vector-valued function,

d
dτ

(r(t)) = d
dτ

(〈
x(t), y(t)

〉) ← the definition of r

=
〈

d
dτ

(x(t)) ,
d

dτ
( y(t))

〉
← the definition of the derivative of a vector function

=
〈

dx
dt

dt
dτ

,
dy
dt

dt
dτ

〉
← the Chain Rule for scalar functions

=
〈

dx
dt

,
dy
dt

〉
dt
dτ

← multiplication of a vector function by a scalar function

= dr
dt

dt
dτ

← the definition of the derivative of a vector function

Returning to the example we used earlier, let r(t) = 〈
sin t, cos t, t 2

〉
for t ∈ R, and let

t = e 3τ . Then

dr
dτ

= 〈cos t, −sin t, 2t〉(3e 3τ ) = 〈
cos e 3τ , −sin e 3τ , 2e 3τ

〉
(3e 3τ )

= 〈
3e 3τ cos e 3τ , −3e 3τ sin e 3τ , 6e6τ

〉
.
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The Geometry of the Derivative

We use Theorem 11.7 to interpret the geometry of the derivative. Recall from Section 10.2
that the difference v − w of two vectors with the same initial point may be interpreted as
the vector that extends from the terminal point of w to the terminal point of v. Thus, for
position vectors r(t+h) and r(t), the numerator of the quotient r(t + h) − r(t)

h
is the vector that

points from the terminal point of r(t) to the terminal point of r(t + h), as shown here at the
left:

r(t)

r(t � h) r(t � h) � r(t)

C

yx

z

r’(t)

r(t)

C

yx

z

If the scalar, h, in the denominator of the quotient is positive, the direction of r(t+h)−r(t)
h

is the same as the direction of r(t + h) − r(t), although their magnitudes may differ. (A
similar argument may be made when h < 0.) As with the derivative of a function of a single
variable, the derivative is tangent to the curve at r(t). As shown in the graph on the right, we
will always assume that the initial point of the derivative r ′(t) is positioned at the terminal
point of the vector r(t). This ensures that the derivative is tangent to the curve C at r(t).

We may also use the derivative of the vector function to construct a tangent line to the
vector curve.

DEFINITION 11.9 The Tangent Line to a Vector Curve

Let r(t) = 〈
x(t), y(t), z(t)

〉
be a differentiable vector function on some interval I ⊆ R, and

let t 0 be a point in I such that r ′(t 0) = 0. The tangent line to the vector curve defined
by r(t) at r(t 0) is given by

L(t) = r(t 0) + t r ′(t 0).

From Definition 11.9 we see that the tangent line is the line containing the point r(t 0)
whose direction vector is r ′(t 0).

Velocity and Acceleration

Recall that when t represents time and y = s(t) represents the position function of a particle
moving along a straight path, s ′(t) and s ′′(t) represent the velocity and acceleration of the
particle, respectively. We define the velocity and acceleration of a particle moving along a
space curve determined by a vector function in an analogous fashion.
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DEFINITION 11.10 Velocity, Speed, and Acceleration along a Space Curve

Let r(t) = 〈
x(t), y(t), z(t)

〉
be a differentiable vector-valued function defined at every point

in some time interval I ⊆ R, and let C be the space curve defined by r(t).

(a) The velocity, v, of the particle as it moves along C is given by

v(t) = r ′(t) = 〈
x ′(t), y ′(t), z ′(t)

〉
.

(b) The speed of the particle as it moves along C is given by

‖v(t)‖ = ∥∥〈
x ′(t), y ′(t), z ′(t)

〉∥∥.
(c) In addition, if r(t) is twice differentiable, the acceleration, a, of the particle as it

moves along C is given by

a(t) = v ′(t) = r ′′(t) = 〈
x ′′(t), y ′′(t), z ′′(t)

〉
.

Note that velocity and acceleration are vectors, but speed is a scalar, since it is the norm of
the velocity.

Derivatives of Vector Products

Recall that there are three products that apply to vectors: Vectors may be multiplied by
scalars, two vectors with the same number of components may be multiplied by means of
the dot product, and two three-component vectors may be multiplied via the cross product.
The same products apply to vector functions. Fortunately, the derivatives of these product
functions follow the rules we would predict.

THEOREM 11.11 Derivatives of Products of Vector Functions

Let k be a scalar, f (t) be a differentiable scalar function, and r(t) be a differentiable vector
function. Then

(a) d
dt

(kr(t)) = kr ′(t).

(b) d
dt

( f (t)r(t)) = f ′(t)r(t) + f (t)r ′(t).

Furthermore, if r 1(t) and r 2(t) are differentiable vector functions with both having either
two or three components, then

(c) d
dt

(r 1(t) · r 2(t)) = r ′
1(t) · r 2(t) + r 1(t) · r ′

2(t).

Finally, if r 1(t) and r 2(t) are both differentiable three-component vector functions, then

(d) d
dt

(r 1(t) × r 2(t)) = r ′
1(t) × r 2(t) + r 1(t) × r ′

2(t).

Recall that the dot product is commutative, so the order of the products in Theorem 11.11 (c)
is not significant, but since the cross product is not commutative, the order of the products
in Theorem 11.11 (d) is significant.

The proof of each part of Theorem 11.11 follows directly from the definitions of the
derivative and the relevant product. We will prove Theorem 11.11(c) when r 1(t) and r 2(t)
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are differentiable vector functions with two components. The proofs of all other parts of
Theorem 11.11 are left for Exercises 63–66.

Proof. Let r 1(t) = 〈
x 1(t), y 1(t)

〉
and r 2(t) = 〈

x 2(t), y 2(t)
〉
. Then

r 1(t) · r 2(t) = 〈
x 1(t), y 1(t)

〉 · 〈
x 2(t), y 2(t)

〉 = x 1(t) x 2(t) + y 1(t) y 2(t).

Thus, when we take the derivative, we have

d
dt

(r 1(t) · r 2(t)) = d
dt

(x 1(t) x 2(t) + y 1(t) y 2(t))

= x ′
1(t) x 2(t) + x 1(t) x ′

2(t) + y ′
1(t) y 2(t) + y 1(t) y ′

2(t)

= (x ′
1(t) x 2(t) + y ′

1(t) y 2(t)) + (x 1(t) x ′
2(t) + y 1(t) y ′

2(t))

= 〈
x ′

1(t), y ′
1(t)

〉 · 〈
x 2(t), y 2(t)

〉 + 〈
x 1(t), y 1(t)

〉 · 〈
x ′

2(t), y ′
2(t)

〉
= r ′

1(t) · r 2(t) + r 1(t) · r ′
2(t).

When the magnitude of a vector function is constant, the function and its derivative are
orthogonal, as stated in the next theorem. This result is not terribly surprising: In R

2, any
vector function with constant magnitude k has a graph that is at least a portion of a circle
with radius k centered at the origin, and every tangent to a circle is orthogonal to the radius
at the point of tangency. The three-dimensional case is similar: Every vector function with
constant magnitude k has a graph that lies on the boundary of a sphere of radius k and that
is centered at the origin. The following figures illustrate the two- and three-dimensional
cases (left and right, respectively).

y

x
r(t)

r’(t)

x

r’(t)

y

z

THEOREM 11.12 A Vector Function with a Constant Magnitude Is Orthogonal to Its Derivative

Let r(t) be a differentiable vector function such that ‖r(t)‖ = k for some constant k. Then

r(t) · r ′(t) = 0.

Proof. Since the magnitude of r(t) is constant, so is its square. That is,

‖r(t)‖2 = k 2,

where k 2 is a constant. However, recall that

‖r(t)‖2 = r(t) · r(t).

So we have
r(t) · r(t) = k 2.
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We now take the derivative of each side of the latter equation, using Theorem 11.11 (c) to take the
derivative of the left side, and obtain

r(t) · r ′(t) + r ′(t) · r(t) = 2r(t) · r ′(t) = 0.

Since their dot product is zero, the vectors r(t) and r ′(t) are orthogonal.

Integration of a Vector Function

Recall from Chapter 4 that every function that is continuous on an interval [a, b] is integrable
on [a, b]. We use this property in the following definition:

DEFINITION 11.13 The Integral of a Vector Function

Let x = x(t), y = y(t), and z = z(t) be three real-valued functions with antiderivatives∫
x(t) dt,

∫
y(t) dt, and

∫
z(t) dt,

respectively, on some interval I ⊆ R. Then the vector function∫
r(t) dt =

∫
(x(t)i + y(t)j + z(t)k) dt = i

∫
x(t) dt + j

∫
y(t) dt + k

∫
z(t) dt

is an antiderivative of the vector function r(t) = 〈
x(t), y(t), z(t)

〉
.

Similarly, if x(t), y(t), and z(t) are all integrable on the interval [a, b], then the definite
integral of the vector function r(t) from a to b is the vector

∫ b

a
r(t) dt =

∫ b

a
(x(t)i + y(t)j + z(t)k) dt = i

∫ b

a
x(t) dt + j

∫ b

a
y(t) dt + k

∫ b

a
z(t) dt.

Note that every antiderivative of a vector function is another vector function and any two
antiderivatives of the same function differ by a constant (vector). However, the definite
integral of a vector function is unique and is a constant (vector). In order for a vector func-
tion r(t) = 〈

x(t), y(t), z(t)
〉

to be integrable, each of its component functions must be inte-

grable. This condition tells us that we could also find
∫ b

a r(t) dt as the limit of a Riemann
sum if necessary. We explore antiderivatives and definite integrals in the examples and
exercises.

Examples and Explorations

EXAMPLE 1 The derivative of a vector function

Find the derivative of the vector function r(t) = 〈cos t, sin t, t〉, and find the tangent lines to
the curve defined by r at t = π

4
and t = π.

SOLUTION

To find the derivative of r(t), we take the derivative of each component function to obtain
r ′(t) = 〈−sin t, cos t, 1〉.
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We now find the tangent line when t = π

4
. Since

r
(

π

4

)
=

〈√
2

2
,
√

2
2

, π

4

〉
and r ′

(
π

4

)
=

〈
−

√
2

2
,
√

2
2

, 1
〉
,

the equation of the tangent line at t = π

4
is

L1(τ ) =
〈√

2
2

,
√

2
2

, π

4

〉
+ τ

〈
−

√
2

2
,
√

2
2

, 1
〉
.

Because we may use any nonzero multiple of the direction vector as the direction vector
for our line, we may also express the line as

L1(τ ) =
〈√

2
2

,
√

2
2

, π

4

〉
+ τ 〈−1, 1,

√
2 〉.

Similarly, when t = π , the tangent line will pass through the terminal point of the po-
sition vector r(π ) = 〈−1, 0, π〉 and will have the direction vector r ′(π ) = 〈0, −1, 1〉. The
equation of this line is

L2(τ ) = 〈−1, 0, π〉 + τ 〈0, −1, 1〉. �

EXAMPLE 2 Using derivatives to understand the graph of a vector function

Graph the vector function r(t) = t 2i + (3t − 2t 3)j.

SOLUTION

Let C represent the graph of the function. We begin by noting that C will lie entirely in
the first and fourth quadrants, since x = t 2. We also note that because x = t 2 is an even
function and y = 3t−2t 3 is an odd function, C will be symmetric with respect to the x-axis.
To understand the complete graph we need only analyze the vector function for positive
values of t. We first note that the only time C will intersect the y-axis is when x = 0, but
C will intersect the x-axis for the three values of t when 3t − 2t 3 = 0, namely, t = 0 and

t = ±
√

3
2

.

We take the derivative and obtain

r ′(t) = 2ti + (3 − 6t 2)j.

We can find where the curve C has horizontal tangents by finding the values where dy
dx

= 0.

By the chain rule we know that dy
dx

= dy/dt
dx/dt

. Here we have

dy
dx

= dy/dt
dx/dt

= 3 − 6t 2

2t
.

We see that the slope of the tangent lines to C will be zero when t = ± 1√
2

and will be

undefined when t = 0. For t > 0, we note that dx
dt

is positive, dy
dt

> 0 when t ∈ (0, 1/
√

2 ),

and dy
dt

< 0 when t >
1√
2

. Therefore, the graph will have a relative maximum when t = 1√
2

.

We also note that y > 0 for t ∈ (0,
√

3/2 ) and y < 0 for t >
√

3/2. Incorporating this infor-
mation into a graph, we obtain the figure that follows on the left. We then use symmetry
to obtain the complete graph on the right.
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y

x
1 2

y

x
1 2

�

EXAMPLE 3 The integral of a vector function

Find the antiderivative of the vector function r(t) = 〈cos t, sin t, t〉, and compute the definite
integral of r from 0 to π .

SOLUTION

We integrate∫
r(t) dt =

∫
〈cos t, sin t, t〉 dt = i

∫
cos t dt + j

∫
sin t dt + k

∫
t dt =

〈
sin t, −cos t, t 2

2

〉
+ C,

where C is a vector constant and has the form C = 〈c1, c 2, c3〉 for scalar constants c1, c 2,
and c3.

We use the Fundamental Theorem of Calculus to evaluate the definite integral∫ π

0
r(t) dt.

We already have an antiderivative
〈
sin t, −cos t, t2

2

〉
for r(t). Thus, to compute the definite

integral, we evaluate this antiderivative at 0 and π and take the difference. That is,∫ π

0
r(t) dt =

〈
sin t, −cos t, t 2

2

〉∣∣∣∣
π

0
=

〈
0, 1, π 2

2

〉
− 〈0, −1, 0〉 =

〈
0, 2, π 2

2

〉
.

�

Example 3 was a rather mechanical and artificial use of the integral. In a slightly more
satisfying example, we are given a formula for a tangent vector and are asked to find a
vector function that contains a particular point.

EXAMPLE 4 Finding a position vector given its velocity vector

A particle is moving along a space curve. The velocity vector for the curve is given by v(t) =〈
sin t, t 2, t 3

〉
. When t = 0, the position of the particle is (3, −2, 5). Find the position function

for the curve.

SOLUTION

We begin by integrating v(t) = r ′(t) = 〈
sin t, t 2, t 3

〉
:

r(t) =
∫

v(t) dt =
∫ 〈

sin t, t 2, t 3〉 dt = (−cos t + c1) i +
(

t 3

3
+ c 2

)
j +

(
t 4

4
+ c3

)
k.

We now use the initial position r(0) = 3i − 2j + 5k = (−cos 0 + c1) i +
(

03

3
+ c 2

)
j +(

04

4
+ c3

)
k. Solving the system

3 = −1 + c1, −2 = 0 + c 2, 5 = 0 + c3,
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we obtain c1 = 4, c 2 = −2, and c3 = 5. Thus,

r(t) = (−cos t + 4) i +
(

t 3

3
− 2

)
j +

(
t 4

4
+ 5

)
k.

�

CHECKING
THE ANSWER

We may check our answer to Exercise 4 in two steps. First we take the derivative of r(t) =
(−cos t + 4) i +

(
t3

3
− 2

)
j +

(
t4

4
+ 5

)
k and obtain

r ′(t) = (sin t)i + t 2j + t 3k,

giving us the correct tangent vector function.

Next, we evaluate

r(0) = (−cos 0 + 4) i +
(

0 3

3
− 2

)
j +

(
0 4

4
+ 5

)
k = 〈3, −2, 5〉.

Thus, we have the correct solution.

EXAMPLE 5 Finding the angle between two intersecting vector functions

Show that the conical helices defined by the vector functions r 1(t) = 〈t cos t, t sin t, t〉 and
r 2(t) = 〈t sin t, t, t cos t〉 intersect at the origin, and then find the angle of intersection
between the curves.

SOLUTION

Since both r 1(0) = (0, 0, 0) and r 2(0) = (0, 0, 0), the two helices intersect at the origin. We
now find the tangent vectors to both graphs. The derivatives are

r ′
1(t) = 〈cos t − t sin t, sin t + t cos t, 1〉 and r ′

2(t) = 〈sin t + t cos t, 1, cos t − t sin t〉.
The tangent vectors when t = 0 are r ′

1(0) = 〈1, 0, 1〉 and r ′
2(0) = 〈0, 1, 1〉. Recall that the

cosine of the angle θ between two vectors u and v is given by cos θ = u · v
‖u‖‖v‖ . Thus, the

cosine of the angle between the helices at the origin is

cos θ = 〈1, 0, 1〉 · 〈0, 1, 1〉
‖〈1, 0, 1〉‖‖〈0, 1, 1〉‖ = 1√

2
√

2
= 1

2
.

Therefore, the (acute) angle of intersection between the two curves is 60◦. �

TEST YOUR? UNDERSTANDING
� We defined the derivative of a vector-valued function in terms of the derivatives of its

component functions. Why do we bother stating and proving Theorem 11.7, which says
that we can find a derivative by using the limit of a difference quotient?

� Given a vector-valued function r and its graph C, what geometric relationship does the
derivative function have to C?

� Under what conditions are a vector-valued function and its derivative orthogonal?

� For a vector-valued function r(t), when would the velocity vector v(t) and acceleration
vector a(t) be orthogonal?

� Given an acceleration vector a(t), how would you find the position vector r(t)?
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EXERCISES 11.2

Thinking Back

Differentiability: Use the definition of the derivative to find the
derivatives of the following functions.

� f (x) = x 2

� f (x) = x 3 − 1

� f (x) = √
x + 1

Integrability: Use the definition of the definite integral to eval-
uate the following integral.

�
∫ 4

1
(x + 3) dx

�
∫ 2

0
x 2 dx

�
∫ 3

1
(x 2 − 3) dx

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If r(t) is a vector-valued function with
domain R, then lim

h→0
r(t + h) exists.

(b) True or False: If r(t) is a vector-valued function with

domain R, then lim
h→0

r(t+h)−r(t)
h

exists.

(c) True or False: Given a differentiable vector-valued
function r(t), if ‖r(t)‖ is constant, then r(t) · r ′(t) = 0.

(d) True or False: Given a differentiable vector-valued
function r(t), if r(t) · r ′(t) = 0, then ‖r(t)‖ is constant.

(e) True or False: Given a twice-differentiable vector-
valued function r(t), if ‖r(t)‖ is constant, then
r ′(t) · r ′′(t) = 0.

(f) True or False: Given a differentiable vector-valued
function r(t), if ‖r(t)‖ is constant, then r(t)×r ′(t) = 0.

(g) True or False: Given a twice-differentiable vector-
valued function, the velocity and acceleration vectors
are never equal.

(h) True or False: If r(t) is a vector-valued function defined
on the interval [a, b], then

∫ b
a r(t) dt exists.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A differentiable vector function.
(b) A differentiable vector function r(t) = 〈

x(t), y(t), z(t)
〉

in which none of the component functions is a con-
stant but ‖r(t)‖ is constant.

(c) A twice-differentiable vector function r(t) = 〈
x(t),

y(t), z(t)
〉

in which none of the component functions
is a constant but r(t) = r ′(t) for every t.

3. State what it means for a scalar function y = f (x) to be
differentiable at a point c.

4. State what it means for a vector function r(t) = 〈
x(t),

y(t), z(t)
〉

to be differentiable.

5. Explain why we do not need to explicitly use a limit in
the definition for the derivative of a vector function r(t) =〈
x(t), y(t), z(t)

〉
.

6. Given a differentiable vector-valued function r(t), explain
why r ′(t 0) is tangent to the curve defined by r(t) when
the initial point of r ′(t 0) is placed at the terminal point
of r(t 0).

7. Give an example of a vector-valued function r(t) that is
not differentiable at at least one point in its domain. Ex-
plain why your example is not differentiable at that point.
Graph the function, and discuss the problem there is with
constructing a tangent vector at the point of nondifferen-
tiability.

8. In our discussion of the geometry of the derivative we
graphed a differentiable vector function r(t) and the dif-

ference quotient
r(t+h)−r(t)

h
for positive values of h. Draw

the corresponding picture for negative values of h, and ex-

plain why lim
h→0−

r(t+h)−r(t)
h

will result in the same tangent

vector.

9. State what it means for a scalar function y = f (x) to be
integrable on an interval [a, b].

10. State what it means for a vector function r(t) = 〈
x(t),

y(t), z(t)
〉

to be integrable.

11. Explain why we do not need to explicitly use a limit in
the definition for the definite integral of a vector function
r(t) = 〈

x(t), y(t), z(t)
〉
.

12. This exercise has to do with the integrability of vector
functions.

(a) Explain why every vector function r(t) = 〈
x(t),y(t), z(t)

〉
defined on [a, b] is integrable if each of the compo-
nent functions x(t), y(t), and z(t) is continuous.

(b) When a vector function r(t) defined on [a, b] is in-
tegrable, r(t) = ∫ b

a r(t) dt may be difficult to evaluate.

Explain why.

13. Complete the following definition: If r(t) = 〈
x(t), y(t), z(t)

〉
is a differentiable position function, then the velocity
vector v(t) is . . ..

14. Complete the following definition: If r(t) = 〈
x(t), y(t), z(t)

〉
is a twice-differentiable position function, then the accel-
eration vector a(t) is . . ..

15. Let t = f (τ ) be a differentiable real-valued function of
τ , and let r(t) be a differentiable vector function with
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either two or three components such that f (τ ) is in the
domain of r for every value of τ on some interval I. Find
d

dτ
(r( f (τ ))).

16. Find the derivative of the vector-valued function r(t) =
t 2i − 6t 2j, t > 0, and show that the derivative at any
point t 0 is a scalar multiple of the derivative at any other
point. What does this property say about the graph of r?
Use that information to sketch the graph of r.

17. Find the derivative of the vector-valued function r(t) =〈
t 3, 5t 3, −2t 3

〉
, t > 0, and show that the derivative at any

point t 0 is a scalar multiple of the derivative at any other

point. What does this property say about the graph of r?
Sketch the graph of r.

18. The graph of every vector-valued function r(t) is a curve
in the xy-plane. If r is twice differentiable, explain how
information about r ′(t) and r ′′(t) can be used to graph r.

19. What is the relationship between the graph of a differen-
tiable vector function r(t) and the graph of

∫
r ′(t) dt, one

of the antiderivatives of r ′(t)?
20. Given a differentiable vector function r(t) defined on

[a, b], explain why the integral
∫ b

a ‖r ′(t)‖ dt would be a
scalar, not a vector.

Skills

In Exercises 21–23 you are given a vector function r and a

scalar function t = f (τ ). Compute
dr
dτ

in the following two
ways:

(a) By using the chain rule
dr
dτ

= dr
dt

dt
dτ

.

(b) By substituting t = f (τ ) into the formula for r.

Ensure that your two answers are consistent.

21. r(t) = 〈
t, t 2, t 3

〉
, t = sin τ

22. r(t) = 〈cos t, sin t, t〉 , t = τ 3

23. r(t) = 〈
t 2 sin t 2, t, t 2 cos t 2

〉
, t = √

τ

In Exercises 24–29 a vector function and a point on the graph
of the function are given. Find an equation for the line tangent
to the curve at the specified point, and then find an equation
for the plane orthogonal to the tangent line containing the
given point.

24. r(t) = 〈
t, t 2, t 3

〉
, (2, 4, 8)

25. r(t) = te ti + t ln t j, (e, 0, 0)

26. r(t) =
〈
sec t,

1
t+1

, e t ln(t + 1)
〉

, (1, 1, 0)

27. r(t) = 〈sin t, cos t, 2 sin 2t〉, (1, 0, 0)

28. r(t) = 〈
t, t, t 3/2

〉
, (4, 4, 8)

29. r(t) = cos 3t i + sin 4t j + t k,
(

0, 0,
π

2

)

Find the velocity and acceleration vectors for the position
vectors given in Exercises 30–34.

30. r(t) = 〈
t, t 2, t 3

〉
31. r(t) = te ti + t ln t j

32. r(t) =
〈
sec t,

1
t
, e t ln t

〉

33. r(t) = 〈sin t, cos t, 2 sin 2t〉
34. r(t) = cos 3t i + sin 4t j + t k

In Exercises 35–39 a vector function r(t) and scalar function

t = f (τ ) are given. Find
dr
dτ

.

35. r(t) = 〈
t, t 2, t 3

〉
, t = τ 3 + 1

36. r(t) = te ti + t ln t j, t = eτ

37. r(t) = 〈
sec t, 1/t, e t ln t

〉
, t = τ−1

38. r(t) = 〈sin t, cos t, 2 sin 2t〉 , t = √
τ 2 + 1

39. r(t) = cos 3t i + sin 4t j + t k, t = 5τ − 2

Evaluate the integrals in Exercises 40–44.

40.
∫ 〈

t, t 2, t 3〉 dt

41.
∫

〈sin t, cos t, tan t〉 dt

42.
∫ 2

1

〈
te t, ln t, tan−1 t

〉
dt

43.
∫ 2π

0
〈sin t, cos t, t〉 dt

44.
∫ 2π

0
‖〈sin t, cos t, t〉‖ dt

Use the given velocity vectors v(t) = r ′(t) and initial positions
in Exercises 45–48 to find the position function r(t).

45. v(t) = 〈
t, t 2

〉
, r(0) = 〈3, −4〉

46. v(t) = 〈
0, sec t tan t, sec2 t

〉
, r(π ) = 〈−2, 4, 3〉

47. v(t) = e t i + ln t j, r(1) = i − 6j

48. v(t) = cos t i + sin t j + t k, r(0) = −i + 5j

Use the given acceleration vectors a(t) = v ′(t) = r ′′(t) and
initial conditions in Exercises 49–52 to find the position fun-
ction r(t).

49. a(t) = 〈
2t, 3t 2

〉
, v(0) = 〈1, −2〉 , r(0) = 〈2, −3〉

50. a(t) = 〈
1, sec t tan t, sec2 t

〉
,

v(π ) = 〈0, 3, −1〉 , r(π ) = 〈4, 5, −2〉
51. a(t) = −32j, v(0) = 5 i + 5 j, r(0) = 26 j

52. a(t) = 〈
sin 3t, t 2, cos 3t

〉
, v(0) = 〈0, 0, 0〉 , r(0) = 〈2, −5, 3〉

53. Find all points of intersection between the vector function
r(t) = 〈

t, t 2, t 3
〉

and the plane defined by 3x − 3y + z = 1.
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Find all points of intersection between the graphs of the vec-
tor functions in Exercises 54–56, and find the acute angle of
intersection of the curves at those points.

54. r 1(t) = 〈
t, t 2

〉
and r 2(t) = 〈

t 2, t
〉

55. r 1(t) = 〈3 cos t, 3 sin t〉 and r 2(t) = 〈2 + 2 sin t, 2 cos t〉
56. r 1(t) = 〈cos t, sin t, t〉 and r 2(t) = 〈sin t, cos t, t〉

57. A certain vector function has the properties that its graph
is a space curve passing through the point (0, 1, 2) and that
its tangent vector at every point on the curve is equal to
the position vector. Find the position function and sketch
its graph.

Applications
58. Annie is making a crossing from south to north between

two islands. The distance between the islands is 2 miles.
A current in the channel pushes her off her line and slows
her progress towards the opposite island. Her position t
hours after leaving the southern island is

(0.255t 3 − 0.479t 2, 2t − 0.958t 2 + 0.511t 3).

Space coordinates are measured in miles from her start-
ing position; time is measured in hours.

(a) What is Annie’s actual velocity vector at any time t?
(b) Where is Annie’s speed a minimum? What is her

speed at that point?

59. Arne is a wingsuit base jumper in Norway. He wants to
jump off a cliff above a fjord, 900 meters atop the valley
floor. He knows that when he jumps, his downward ac-
celeration due to gravity will be constant while there will
be an upward acceleration depending on the air catching
his wingsuit. He will convert about half of that upward
acceleration into forward motion, which will cause drag.
We ignore that, since he is still basically falling. Thus, his
acceleration will be approximately〈−0.5dy ′(t), −9.8 − dy ′(t)

〉
,

where y(t) denotes his vertical distance (in meters) from
the jump point. The constant d ≈ 0.36 is a parameter
describing air resistance. Note that after he jumps, y will
always be negative.

(a) What is Arne’s velocity at time t in terms of his posi-
tion relative to the start?

(b) Observe that the second coordinate of his velocity is
his vertical speed, which is actually y ′(t). Use this fact
to write an expression for y(t) in terms of y ′(t).

(c) Arne’s horizontal speed away from his jump point is
the first coordinate of his velocity; call it x ′(t). Write
an expression for x ′(t) in terms of y ′(t).

(d) Use parts (b) and (c) and integrate one more time to
find a vector in terms of y(t) describing Arne’s posi-
tion at any time t.

(e) The cliff Arne jumps from is vertical for the first 100
meters down, but it quickly slopes out below that. To
survive the jump, Arne must clear a point 200 me-
ters below him and 80 meters horizontally away. He
quickly makes a calculation showing that it will take
him more than 7.4 seconds to fall 200 meters. Can he
make it?

Proofs

60. Prove that the tangent vector is always orthogonal to
the position vector for the vector-valued function r(t) =〈
sin t, sin t cos t, cos2 t

〉
.

61. Let r(t) be a vector-valued function whose graph is a curve
C, and let a(t) be the acceleration vector. Prove that if a(t)
is always zero, then C is a straight line.

62. Prove Theorem 11.7 for vectors in R
2. That is, let x(t) and

y(t) be two scalar functions, each of which is differentiable
on an interval I ⊆ R, and let r(t) = 〈

x(t), y(t)
〉

be a vector
function. Prove that

r ′(t) = lim
h→0

r(t + h) − r(t)
h

.

63. Let k be a scalar and r(t) be a differentiable vector func-

tion. Prove that
d
dt

(kr(t)) = kr ′(t). (This is Theorem 11.11
(a).)

64. Let f (t) be a differentiable scalar function and r(t) be a
differentiable vector function. Prove that

d
dt

( f (t)r(t)) = f ′(t)r(t) + f (t)r ′(t).

(This is Theorem 11.11 (b).)

65. Let r 1(t) and r 2(t) be differentiable vector functions with
three components each. Prove that

d
dt

(r 1(t) · r 2(t)) = r ′
1(t) · r 2(t) + r 1(t) · r ′

2(t).

(This is Theorem 11.11 (c).)
66. Let r 1(t) and r 2(t) both be differentiable three-

component vector functions. Prove that

d
dt

(r 1(t) × r 2(t)) = r ′
1(t) × r 2(t) + r 1(t) × r ′

2(t).

(This is Theorem 11.11 (d).)

67. Let t = f (τ ) be a differentiable real-valued function of τ ,
and let r(t) be a differentiable vector function with three
components such that f (τ ) is in the domain of r for every

value of τ on some interval I. Prove that
dr
dτ

= dr
dt

dt
dτ

. (This
is Theorem 11.8.)

68. Let r(t) be a differentiable vector function. Prove that
d
dt

(‖r‖) = 1
‖r‖ r · r ′. (Hint: ‖r‖2 = r · r.)
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69. Let r(t) be a differentiable vector function such that
r(t) · r ′(t) = 0 for every value of t. Prove that ‖r(t)‖
is a constant.

70. For constants α, β, and γ , the graph of a vector-valued
function of the form

r(t) = αeγ t(cos t)i + αeγ t(sin t)j + βeγ tk, t ≥ 0

is called a concho-spiral. Prove that the angle between
the tangent vector to a concho-spiral and the vector k is
constant.

71. Prove that if a particle moves along a curve at a con-
stant speed, then the velocity and acceleration vectors are
orthogonal.

Thinking Forward

� Unit Tangent Vectors in R
2: Given the vector function

r(t) = 〈
t 2, t 3

〉
, find a vector of length 1 tangent to the

curve at the point r(1). How many vectors in R
2 are

there of length 1 that are orthogonal to this tangent
vector?

� Unit Tangent Vectors in R
3: Given the vector function

r(t) = 〈
t, t 2, t 3

〉
, find a vector of length 1 tangent to the

curve at the point r(1). How many vectors in R
3 are

there of length 1 that are orthogonal to this tangent
vector?

� Orthogonal Vectors: For any constants a, b, and c, show
that the velocity and acceleration vectors for

r(t) = 〈a sin bt, a cos bt, ct〉
are orthogonal.

� Horizontal Vectors: For any constants a, b, and c, show
that the acceleration vector for

r(t) = 〈a sin bt, a cos bt, ct〉
is parallel to the xy-plane.

11.3 UNIT TANGENT AND UNIT NORMAL VECTORS

� The unit tangent and principal unit normal vectors to a space curve

� The osculating plane, the plane of “best fit” to a space curve

� The binormal vector to a space curve

Unit Tangent and Unit Normal Vectors

Our goal for the remainder of this chapter is to understand the graphs of vector functions
and the motion of particles whose trajectories can be specified by a vector function. No
matter what parametrization, r(t), we use for a curve C, the derivative vector r ′(t) will be
tangent to C at the terminal point of r(t), assuming that r(t) is differentiable and r ′(t) = 0.
We will be interested primarily in the direction of the tangent vector, not its magnitude, so
we make the following definition:

DEFINITION 11.14 The Unit Tangent Vector

Let r(t) be a differentiable vector function on some interval I ⊆ R such that r ′(t) = 0
on I. The unit tangent function is defined to be

T(t) = r ′(t)
‖r ′(t)‖ .

As we do with the tangent vector r ′(t), we will always position the initial point of the
unit tangent vector T(t) at the terminal point of r(t) to ensure that T(t) is tangent to the
curve C, as shown in the following figure:
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C

T

T

T

T

Since the magnitude of the unit tangent vector is constant, Theorem 11.12 tells us that
T(t) and its derivative are always orthogonal. We use this property in the following definition:

DEFINITION 11.15 The Principal Unit Normal Vector

Let r(t) be a differentiable vector function on some interval I ⊆ R such that the derivative
of the unit tangent vector T ′(t) = 0 on I. The principal unit normal vector at r(t) is
defined to be

N(t) = T ′(t)
‖T ′(t)‖ .

Definition 11.15 ensures that the principal unit normal vector is a unit vector, that it is
orthogonal to the tangent vectors, and that it points in the direction in which C is bending.
The following figure illustrates these properties:

N

N

N
N

C

T

T

T

T

The Osculating Plane and the Binormal Vector

We do not expect curves, even curves in the plane, to contain straight segments. For ex-
ample, the parabola defined by the equation y = x 2 does not contain any linear pieces.
However, we have mentioned that the tangent line is the best linear approximation to a
differentiable function at the point of tangency. Analogously, we do not expect portions of
space curves to be planar. That is, there may not be a plane that contains even a small seg-
ment of a space curve, but we may use the unit tangent and principal unit normal vectors
to define a plane, the osculating plane, in which the curve fits “best.”

DEFINITION 11.16 The Osculating Plane and the Binormal Vector

Let r(t) = 〈
x(t), y(t), z(t)

〉
be a differentiable vector function on some interval I ⊆ R such

that the derivative of the unit tangent vector T ′(t 0) = 0 where t 0 ∈ I. The binormal
vector B at r(t 0) is defined to be

B(t 0) = T(t 0) × N(t 0),

and the osculating plane at r(t 0) is defined by

B(t 0) · 〈
x − x(t 0), y − y(t 0), z − z(t 0)

〉 = 0.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:55

876 Chapter 11 Vector Functions

N
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The preceding figure illustrates Definition 11.16. At a point on the curve C the vectors T
and N determine a unique plane, the osculating plane. (Osculating comes from the Latin
“osculum” meaning “kiss.”) From its definition, the binormal vector B is orthogonal to
both T and N, and therefore to the osculating plane. Vectors T, N, and B are three mutually
perpendicular unit vectors. (We ask you to prove this in Exercise 47.) In the order T, N, B
they also form a right-hand coordinate system, called the TNB-frame, moving frame, or
Frenet frame. This frame allows for a more in-depth understanding of the motion of a
particle moving along a space curve.

When we are working with a curve in the xy-plane, since both T and N lie in the plane,
the xy-plane is the osculating plane. In this case, we may think of the xy-plane as part of
a three-dimensional coordinate system, with every binormal vector parallel to the z-axis.
Thus, for a planar curve, at every point where the binormal vector exists, B(t 0) = ±k.

Examples and Explorations

EXAMPLE 1 Finding a unit tangent vector and a unit normal vector in the plane

Find the unit tangent and principal unit normal vectors to the graph of the sine function
y = sin x at x = π

2
and at x = 5π

4
.

SOLUTION

Any function of the form y = f (x) has the parametrization x = t, y = f (t). Thus, we may
use the vector function r(t) = 〈t, sin t〉 to compute the desired vectors. The unit tangent
vector

T(t) = r ′(t)
‖r ′(t)‖ = 〈1, cos t〉

‖〈1, cos t〉‖ = 〈1, cos t〉√
1 + cos2 t

.

To compute the principal unit normal vector N(t) = T ′(t)
‖T ′(t)‖ , we first use the quotient rule

to find T(t). You may check that:

T ′(t) = sin t 〈cos t, −1〉
(1 + cos2 t)3/2 .

Dividing T ′(t) by its magnitude and simplifying, we obtain

N(t) = sin t 〈cos t, −1〉
| sin t|√1 + cos 2 t

.

Evaluating the unit tangent vector and principal unit normal vector at t = π

2
, we get

T
(

π

2

)
= 〈1, 0〉 and N

(
π

2

)
= 〈0, −1〉.

This result should not be a surprise. At π

2
we expect there to be a horizontal tangent and a

vertical normal vector pointing into the curve. In addition, since we chose a parametrization

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:55

11.3 Unit Tangent and Unit Normal Vectors 877

that traced the curve from left to right, the tangent vector should (and does) point to the
right.

At t = 5π

4
we obtain

T
(

5π

4

)
=

〈
1, cos(5π/4)

〉
√

1 + cos2(5π/4)
=

〈
1, −√

2/2
〉

√
1 + 1/2

= 1√
3

〈√
2, −1

〉
and N

(
5π

4

)
= 1√

3

〈
1,

√
2

〉
. �

CHECKING
THE ANSWER

Now, given that we are dealing with the function y = sin x, perhaps it seemed that the
preceding computations were (unnecessarily) complicated. If they did, you were right! For
a differentiable function of the form y = f (x), we have other techniques for finding the de-
sired unit vectors. Since f ′(x 0) is the slope of f at x 0, we can immediately obtain the tangent
vector,

〈
f ′(x), 1

〉
. If we divide this vector by its magnitude, we will obtain the equation of the

unit tangent vector at x 0. Recall that two nonvertical lines in the plane are perpendicular if
and only if their slopes are negative reciprocals. Therefore, a normal vector at x 0 will be a
multiple of ± 〈

1, −f ′(x 0)
〉
. To obtain the principal unit normal vector at x 0, we again divide

by the magnitude and choose the correct sign, the one that points into the curve. Exam-
ple 2 repeats these computations with a space curve, for which the additional complexity
is necessary. Before continuing to that example, repeat the calculations in Example 1, us-
ing the analysis just outlined to find the unit tangent and principal unit normal vectors to
y = sin x at x = π

2
and at x = 5π

4
. Make sure your results agree with the answers we found

in Example 1.

EXAMPLE 2 Finding the equation of an osculating plane

Find the unit tangent and principal unit normal vectors to the graph of the helix defined
by the vector function r(t) = 〈cos t, sin t, t〉 at t = π

2
and at t = 5π

4
. Then, use these vectors

to construct the equations of the osculating planes at those points on the curve.

SOLUTION

We start by computing

r ′(t) = 〈−sin t, cos t, 1〉.
Thus,

T(t) = r ′(t)
‖r ′(t)‖ = 〈−sin t, cos t, 1〉

‖〈−sin t, cos t, 1〉‖ = 〈−sin t, cos t, 1〉√
2

.

To compute N(t) we will divide T ′(t) by its magnitude. In this example, since the radical
in the denominator of the final quotient in the preceding equation is a constant, it will
cancel when we divide. Thus, to make our computation slightly simpler, we will divide the
derivative of 〈−sin t, cos t, 1〉 by its magnitude. We obtain

N(t) = 〈−cos t, −sin t, 0〉
‖〈−cos t, −sin t, 0〉‖ = 〈−cos t, −sin t, 0〉√

1
= 〈−cos t, −sin t, 0〉.

We now evaluate these functions to obtain the required vectors at t = π

2
and at t = 5π

4
. At

t = π

2
we have

T
(

π

2

)
=

〈−sin(π/2), cos(π/2), 1
〉

√
2

= 〈−1, 0, 1〉√
2

and

N
(

π

2

)
= 〈−cos(π/2), −sin(π/2), 0

〉 = 〈0, −1, 0〉.
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At t = 5π

4
we have

T
(

5π

4

)
=

〈−sin(5π/4), cos(5π/4), 1
〉

√
2

=
〈√

2/2, −√
2/2, 1

〉
√

2
=

〈
1
2

, − 1
2

,
√

2
2

〉
and

N
(

5π

4

)
=

〈
−cos

(
5π

4

)
, −sin

(
5π

4

)
, 0

〉
=

〈√
2

2
,
√

2
2

, 0
〉
.

Finally, we construct the equations of the osculating planes. For the equation of a plane,
we need a point on the plane and a vector orthogonal to the plane. For an osculating plane
at a point t 0, we will use the terminal point of the vector r(t 0) and the binormal vector
B(t 0) = T(t 0) × N(t 0), respectively.

At t = π

2
we have r

(
π

2

)
=

〈
0, 1, π

2

〉
and

B
(

π

2

)
= T

(
π

2

)
× N

(
π

2

)
= 〈−1, 0, 1〉√

2
× 〈0, −1, 0〉 = 〈1, 0, 1〉√

2
.

For simplicity we may use 〈1, 0, 1〉 as the vector orthogonal to the osculating plane and
obtain the equation x + z = π

2
for the osculating plane.

Similarly, at t = 5π

4
we have r

(
5π

4

)
=

〈
−

√
2

2
, −

√
2

2
, 5π

4

〉
and

B
(

5π

4

)
=

〈
1
2

, − 1
2

,
√

2
2

〉
×

〈√
2

2
,
√

2
2

, 0
〉

=
〈
− 1

2
, 1

2
,
√

2
2

〉
.

Again, for simplicity we may use
〈− 1, 1,

√
2

〉
as the vector orthogonal to the osculating

plane. Therefore, when t = 5π

4
, we obtain the equation −x + y + √

2z = 5π
√

2
4

for the
osculating plane. �

CHECKING
THE ANSWER

There are several things we can check in our answers to Example 2.

� As the parameter t increases, the helix is spiraling upwards. Therefore, each tangent
vector should have a positive z-component. Note that T(t) = 〈−sint,cost,1〉√

2
. The

z-component is always 1√
2

.

� Each of the answers should be a unit vector. (They are, as you can check.)
� At each of the points, the tangent and normal vectors should be orthogonal. Here

we can use the dot product. For example, at t = 5π

4
,

T
(

5π

4

)
· N

(
5π

4

)
=

〈
1
2

, − 1
2

,
√

2
2

〉
·
〈√

2
2

,
√

2
2

, 0
〉

= 0.

TEST YOUR? UNDERSTANDING
� How is the unit tangent vector defined? Why is the unit tangent vector useful?

� How is the principal unit normal vector defined? Why are the unit tangent vector at a
point P and the principal unit normal vector at P always orthogonal?

� Why does the principal unit normal vector always point “into” the curve?

� How is the osculating plane defined? What is its geometric relationship to a space curve
at a point?

� What is the binormal vector?
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EXERCISES 11.3

Thinking Back

� Unit vectors: If v is a nonzero vector, explain why
v

‖v‖
is a unit vector.

� Equation of a plane: Find the equation of the plane
determined by the vectors 〈1, −3, 5〉 and 〈2, 4, −1〉 and
containing the point (0, 3, −2).

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: For every position vector, r(t),
r ′(t) · r ′′(t) = 0.

(b) True or False: If ‖T ′(t)‖ = 0, then N(t) is not defined.
(c) True or False: The cross product of two unit vectors is

another unit vector.
(d) True or False: If C is a curve in the xy-plane and the

principal unit normal vector, N, is defined at the point
P0 on C, then the xy-plane is the osculating plane for
C at P0.

(e) True or False: If a vector function has a unit tangent
vector and a principal unit normal vector at a point,
then it has a binormal vector at that point also.

(f) True or False: If the unit tangent vector, T(t), the prin-
cipal unit normal vector, N(t), and the binormal vec-
tor B(t), are all defined for some value of t, then
B(t) × N(t) = −T(t).

(g) True or False: If the unit tangent vector, T(t), the
principal unit normal vector, N(t), and the binor-
mal vector B(t), are all defined at some point t, then
T(t) · (N(t) × B(t)) = 1.

(h) True or False: A space curve can have infinitely many
different osculating planes.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A differentiable vector-valued function r(t) that does
not have a unit tangent vector at any point.

(b) A twice-differentiable vector-valued function with a
unit tangent vector at every point but that does not
have a unit normal vector at any point.

(c) A nonconstant differentiable vector function r(t) =〈
x(t), y(t)

〉
for which the xy-plane is not the osculating

plane.

3. Imagine that you are driving on a twisting mountain road.
Describe the unit tangent vector, principal unit normal
vector, and binormal vector as you ascend, descend, twist
right, and twist left.

4. Given a differentiable vector-valued function r(t), what is
the definition of the unit tangent vector T(t)?

5. Under what conditions does a differentiable vector-
valued function r(t) not have a unit tangent vector at a
point in the domain of r(t)?

6. Let L be a straight line in R
3. Find vector functions with

the following properties:

(a) The graph of r 1(t) is L, and r 1(t) has a unit tangent
vector for every value of t.

(b) The graph of r 2(t) is L, and there is a least one value
of t at which r 2(t) does not have a unit tangent vector.

7. Given a differentiable vector-valued function r(t), what is
the relationship between r ′(t 0) and T(t 0) at a point t 0 in
the domain of r(t)?

8. Given a differentiable vector-valued function r(t), what
are the advantages and disadvantages in using r ′ or T to
analyze the behavior of r(t)?

9. Given a twice-differentiable vector-valued function r(t),
what is the definition of the principal unit normal vector
N(t)?

10. Given a twice-differentiable vector-valued function r(t),
why does the principal unit normal vector N(t) point into
the curve? (Hint: Use the definition!)

11. Given a twice-differentiable vector-valued function r(t)
and a point t 0 in its domain, what are the geometric rela-
tionships between the unit tangent vector T(t 0), the prin-

cipal unit normal vector N(t 0), and
dN
dt

∣∣∣
t 0

?

12. Under what conditions does a twice-differentiable vector-
valued function r(t) not have a principal unit normal
vector at a point in the domain of r(t)?

13. Given a twice-differentiable vector-valued function r(t),
what is the definition of the binormal vector B(t)?

14. We’ve seen that the graph of a continuous function y =
f (x) is the same as the graph of the vector-valued func-
tion r(t) = 〈

t, f (t)
〉
. What is the direction of the binormal

vector B(t) when the graph of f is concave up? When the
graph is concave down? What happens to B(t) at a point
of inflection?

15. Under what conditions does a twice-differentiable vector-
valued function r(t) not have a binormal vector at a point
in the domain of r(t)?

16. Given a twice-differentiable vector-valued function r(t)
and a point t 0 in its domain, what is the osculating plane
at r(t 0)?

17. Carefully outline the steps you would use to find the
equation of the osculating plane at a point r(t 0) on the
graph of a vector function.

18. If the osculating plane is the same at every point on a
space curve, what must be true about the curve?

19. Given the three mutually perpendicular vectors T(t 0),
N(t 0), and B(t 0) at a point r(t 0), how many distinct planes
contain the point and two of the vectors?
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20. Let C be the graph of a vector-valued function r. The plane
determined by the vectors N(t 0) and B(t 0) and contain-
ing the point r(t 0) is called the normal plane for C at r(t 0).
Find the equation of the normal plane to the helix deter-
mined by r(t) = 〈cos t, sin t, t〉 for t = π .

21. Let C be the graph of a vector-valued function r. The plane
determined by the vectors T(t 0) and B(t 0) and contain-
ing the point r(t 0) is called the rectifying plane for C at
r(t 0). Find the equation of the rectifying plane to the helix
determined by r(t) = 〈cos t, sin t, t〉 when t = π .

Skills

For each of the vector-valued functions in Exercises 22–28,
find the unit tangent vector.
22. r(t) = 〈

t, t 2
〉

23. r(t) = 〈
t 2 + 5, 5t, 4t 3

〉
24. r(t) = 〈cos αt, sin αt〉
25. r(t) = 〈

cos3 t, sin3 t
〉

26. r(t) = 〈
t, t 2, t 3

〉
27. r(t) = 〈3 sin t, 5 cos t, 4 sin t〉
28. r(t) = 〈sin 2t, cos 2t, t〉
For each of the vector-valued functions in Exercises 29–34,
find the unit tangent vector and the principal unit normal
vector at the specified value of t.

29. r(t) = 〈
t, t 2

〉
, t = 1

30. r(t) = 〈a sinh t, b cosh t〉, where a and b are positive,
t = 0

31. r(t) = 〈cos αt, sin αt〉, where α > 0, t = π

32. r(t) = 〈
cos3 t, sin3 t

〉
, t = π

4

33. r(t) = 〈3 sin t, 5 cos t, 4 sin t〉 , t = π

34. r(t) = 〈sin 2t, cos 2t, t〉 , t = π

4

For each of the vector-valued functions in Exercises 35–39,
find the unit tangent vector, the principal unit normal vector,
the binormal vector, and the equation of the osculating plane
at the specified value of t.

35. r(t) =
〈
t, t 2,

2
3

t 3
〉

at t = 1

36. r(t) =
〈

t√
2

,
√

t,
1
3

t 3/2
〉

at t = 1

37. r(t) = 〈
e t, e−t,

√
2t

〉
at t = 0

38. r(t) = 〈3 sin t, 5 cos t, 4 sin t〉 at t = π

4

39. r(t) = 〈sin 2t, cos 2t, t〉 at t = π

2

Using the definitions of the normal plane and rectifying plane
in Exercises 20 and 21, respectively, find the equations of these
planes at the specified points for the vector functions in Exer-
cises 40–42. Note: These are the same functions as in Exer-
cises 35, 37, and 39.

40. r(t) =
〈
t, t 2,

2
3

t 3
〉

at t = 1

41. r(t) = 〈
e t, e−t,

√
2t

〉
at t = 0

42. r(t) = 〈sin 2t, cos 2t, t〉 at t = π

2

Applications
43. Annie is kayaking with her friend Jim. Jim is inexperi-

enced, and soon his boat is upside down. Being inexperi-
enced, he also fails to execute a roll, so he has to swim.
Since they are both in single kayaks, they cannot get
him back in the boat, so Jim grabs his kayak and Annie’s
kayak, and Annie tows the whole lot towards shore. There
is a current, so if they did not paddle, they would follow a
path defined by the vector function r(t) = 〈

t 1.5, t(1.7 − t)
〉
,

where t represents time in hours.

(a) For 0 ≤ t ≤ 1.7, where would they move fastest if
they did not paddle at all?

(b) Their best strategy to get to shore is to paddle exactly
orthogonally to the current, towards the land that is
on the inside of the path of the current. If they get
things in order and start paddling at t = 0.1, in what
direction are they paddling?

44. Ian is planning a return from a mountain in the Cascades.
He will descend to around 6000 feet and then follow a
contour, staying high and out of the trees to make travel
easy, until he is at a point directly above a trail. He will
then descend directly to the trail. The contour at 6000 feet
follows the curve r(x) = 〈

x, 0.45x2 + x
〉
. Ian uses his map

to determine that he will be at the point where he needs
to descend to the trail when he can first see a mountain
peak that is on a compass heading of 30 degrees; that is,
when the tangent to the level curve is 30 degrees east of
north.

(a) Where does that happen? What is the unit tangent
vector at that point?

(b) When he reaches that point, he will descend directly
down the slope, orthogonally to the contour. Down-
hill is generally north. What compass heading will
that be? What is the unit normal vector there?
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Proofs

45. Prove that the cross product of two orthogonal unit vec-
tors is a unit vector.

46. Let y = f (x) be a function with domain R and that is dif-
ferentiable at every point in its domain, and let r(t) =〈
t, f (t)

〉
.

(a) Explain why the graph of r is the same as the graph
of y = f (x).

(b) Prove that the unit tangent vector at r(α) is parallel to
the tangent line to f at α.

(c) Prove that the principal unit normal vector for r is
undefined at every inflection point of f .

47. Let r(t) = 〈
x(t), y(t), z(t)

〉
be a differentiable vector function

on some interval I ⊆ R such that the derivative of the unit
tangent vector T ′(t 0) = 0, where t 0 ∈ I. Prove that the
binormal vector

B(t 0) = T(t 0) × N(t 0)

(a) is a unit vector;
(b) is orthogonal to both T(t 0) and N(t 0).

Also, prove that T(t 0), N(t 0), and B(t 0) form a right-
handed coordinate system.

Thinking Forward

� Equation of a circle: Find an equation for the circle of
radius ρ whose center is ρ units from the point (a, b)
in the direction of the vector 〈α, β〉.

� Equation of a sphere: Find an equation for the sphere of
radius ρ whose center is ρ units from the point (a, b, c)
in the direction of the vector 〈α, β, γ 〉.

11.4 ARC LENGTH PARAMETRIZATIONS AND CURVATURE

� The arc length of a curve in R
3

� Arc length parametrizations

� The curvature of planar curves and space curves

The Arc Length of Space Curves

We begin this section with a reminder of some of the work we did in Section 9.1. Let x = x(t)
and y = y(t) be differentiable functions of t. In Definition 9.3 we said that the arc length of
the parametric curve determined by x and y on an interval [a, b] was

lim
n→∞

n∑
k=1

√
(x(t k) − x(t k−1))2 + ( y(t k) − y(t k−1))2,

where 	t = b − a
n

and t k = a + k	t. Then, in Theorem 9.4 we argued that the arc length

could be evaluated with the use of
∫ b

a

√
(x ′(t))2 + ( y ′(t))2 dt.

We now express Definition 9.3 and Theorem 9.4 in the language of vector functions.
The vector function r(t) = x(t)i + y(t)j has the same graph as the parametric equations.
Definition 9.3 would say that the arc length of the vector curve on the interval [a, b] would
be lim

n→∞
∑n

k=1 ‖r(t k) − r(t k−1)‖, where 	t = b − a
n

and t k = a + k	t. Similarly,
∫ b

a ‖r ′(t)‖ dt

represents the length of the vector curve for t ∈ [a, b]. These formulas are valid, since

‖r(t k) − r(t k−1)‖ =
√

(x(t k) − x(t k−1))2 + ( y(t k) − y(t k−1))2 and

‖r ′(t)‖ =
√

(x ′(t))2 + ( y ′(t))2 ,

by the Pythagorean theorem and the definition of the norm of a vector, respectively.

The great thing about these forms is that they carry over to space curves (or even to
curves in higher dimensions)! Thus, we have the following definition:
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DEFINITION 11.17 The Arc Length of a Vector Curve

Let C be a curve in R
3 given by the vector function r(t) = 〈

x(t), y(t), z(t)
〉

for t ∈ [a, b],
where x, y, and z are differentiable functions of t and such that the function is one-to-
one from the interval [a, b] to the curve C. The length of the curve C from a to b, denoted
by l(a, b), is

l(a, b) = lim
n→∞

n∑
k=1

‖r(t k) − r(t k−1)‖,

where 	t = b − a
n

and t k = a + k	t.

The following figure illustrates the idea behind the definition of arc length:

The arc length of a vector curve may be approximated by using segments

(x(a), y(a), z(a))

(x(tk), y(tk), z(tk))

(x(tk�1), y(tk�1), z(tk�1))

(x(b), y(b), z(b))x

y

z

We also have the following theorem:

THEOREM 11.18 The Arc Length of a Vector Curve

Let C be a curve in R
3 given by the vector function r(t) = 〈

x(t), y(t), z(t)
〉

such that the
function is one-to-one from the interval [a, b] to the curve C. If x, y, and z are differen-
tiable functions of t such that x ′, y ′, and z ′ are continuous on [a, b], then the length of
the curve C from r(a) to r(b) is given by

l(a, b) =
∫ b

a
‖r ′(t)‖dt.

A proof of Theorem 11.18 may be adapted from the proof of Theorem 9.4 in Section 9.1
and is left to you.

Arc Length Parametrizations

We have already discussed the geometry of the relationship between a differentiable vector
function and its derivative. The derivative gives us information about the rate and direction
of motion of a particle moving along a vector curve. Recall that for a real-valued function of
the form y = f (x), the second derivative gives us more subtle information about the shape
of the curve and the sign of f ′′ tells us whether a curve is concave up or concave down.
Space curves are even more complicated than planar curves. A single number cannot tell
us everything about how a space curve is bending. However, we do want to know about
the “curvature” of a space curve. We will get to that definition later in this section.
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To help us define curvature in a relatively easy way, we need to settle on a particular type
of parametrization for a given vector curve. You should have already realized that a given
vector curve has many different parametrizations. For example, in Chapter 9 we examined
several parametrizations for the unit circle. In fact, every vector curve has infinitely many
different parametrizations. For example, for every nonzero value of k, the vector function
r(t) = 〈cos kt, sin kt〉 for t ≥ 0 provides a different parametrization of the unit circle. The
differences between two of these parametrizations are the rate at which the particle traces
the circle and the direction of motion. For every value of k, the particle starts at the point
(1, 0) when t = 0. The motion is clockwise when k < 0 and counterclockwise when k > 0.
The rate at which the particle moves increases linearly with k. For example, when k = 1, the
particle traces the unit circle once on the interval [0, 2π ), but if k = 5, the particles traces
the circle 5 times on the same interval.

Similarly, every vector curve in R
3 has infinitely many parametrizations. The particular

type of parametrization that we need for our upcoming definition of curvature is called an
“arc length parametrization.”

DEFINITION 11.19 Arc Length Parametrization

Let C be the graph of a differentiable vector function r(t) defined on an interval I. The
function r(t) is said to be an arc length parametrization for C if

∫ d

c
‖r ′(t)‖ dt = d − c

for every c and d ∈ I. Also, C is said to be parametrized by arc length.

When a curve is parametrized by arc length, the length of every segment of the curve is
equal to the change in the value of the parameter. For example, r 1(t) = 〈cos t, sin t〉 and
r 2(t) = 〈cos 2t, sin 2t〉 are both parametrizations of the unit circle. The function r 1(t) is an
arc length parametrization of the unit circle, since

∫ d

c

∥∥r ′
1(t)

∥∥dt =
∫ d

c
‖〈−sin t, cos t〉‖dt =

∫ d

c

√
sin2 t + cos2 t dt =

∫ d

c
dt = d − c.

However, the function r 2(t) is not an arc length parametrization of the unit circle, since
∫ d

c

∥∥r ′
2(t)

∥∥ dt =
∫ d

c
‖〈−2 sin 2t, 2 cos 2t〉‖dt

=
∫ d

c

√
4 sin2 2t + 4 cos2 2t dt =

∫ d

c
2 dt = 2(d − c).

In the next theorem we will see that when we use an arc length parametrization, the
derivative of r with respect to arc length is particularly simple.

THEOREM 11.20 The Derivative of a Vector Function with Respect to Arc Length

Let C be a curve in R
3 given by the differentiable vector function r(t) = 〈

x(t), y(t), z(t)
〉

such that r(t) is one-to-one from the interval [a, b] to the curve C and has a nonzero
derivative. If we define the real-valued function s(t) by

s(t) =
∫ t

a
‖r ′(τ )‖dτ ,

then
dr
ds

= T(t)

is the unit tangent vector function for C.
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Proof. We first note that ∫ t

a
‖r ′(τ )‖dτ = l(a, t) = s(t).

That is, s(t) represents the arc length of C between the terminal points of r(a) and r(t).

Now, by the Fundamental Theorem of Calculus

s ′(t) = ds
dt

= ‖r ′(t)‖,

and by the chain rule,
dr
dt

= dr
ds

ds
dt

.

Solving for
dr
ds

and using the fact that
ds
dt

= ‖r ′(t)‖, we have

dr
ds

= r ′(t)
‖r ′(t)‖ .

We see that
dr
ds

has the same direction as r ′(t) and remind you that any nonzero vector divided by

its magnitude is a unit vector. Thus,
dr
ds

= T(t), the unit tangent vector to C.

With most parametrizations of a curve, both the direction and magnitude of the tangent
vectors change as a particle traverses the curve. However, Theorem 11.20 tells us that when
a curve is parametrized by arc length, since the derivative is a unit vector, only the directions
of the tangent vectors are changing. This change in the unit tangent vectors is the basis for
the following definition:

DEFINITION 11.21 Curvature

Let C be the graph of a vector function r(s) defined on an interval I, parametrized by arc
length s, and with unit tangent vector T. The curvature κ of C at a point on the curve is
the scalar given by

κ =
∥∥∥∥dT

ds

∥∥∥∥.

The magnitude of the rate of change of
the unit tangent vector defines curvature

C

The following theorem tells us the relationship between the derivative of the unit tangent
vector, curvature, and the principal unit normal vector:

THEOREM 11.22 The Relationship Between dT
ds

, κ, and N
Let C be the graph of a vector function r(s) defined on an interval I and parametrized by
arc length s. If the unit tangent vector T has a nonzero derivative, then

dT
ds

= κN.

The proof of Theorem 11.22 follows from the facts that the vector functions d T
ds

, d T
dt

, and N

are scalar multiples of each other and that ‖N‖ = 1. The details are left for Exercise 64.
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Although Definition 11.21 provides an elegant way to express and understand cur-
vature, it is usually impractical in computations, because, unfortunately, arc length
parametrizations are frequently difficult to construct.

The next two theorems provide more computationally efficient alternatives for com-
puting the curvature.

THEOREM 11.23 Formulas for the Curvature of a Space Curve

Let C be the graph of a twice-differentiable vector function r(t) defined on an interval I
with unit tangent vector T(t). Then the curvature κ of C at a point on the curve is given
by

(a) κ = ‖T ′(t)‖
‖r ′(t)‖ .

(b) κ = ‖r ′(t) × r ′′(t)‖
‖r ′(t)‖3 .

Proof. Let s be an arc length parameter for C.

(a) By the chain rule,

κ =
∥∥∥∥dT

ds

∥∥∥∥ =
∥∥∥∥dT/dt

ds/dt

∥∥∥∥ = ‖T ′(t)‖
‖r ′(t)‖ .

(b) By the chain rule and Theorem 11.20,

r ′(t) = dr
dt

= dr
ds

ds
dt

= T
ds
dt

.

Differentiating with respect to t by the product rule, we obtain

r ′′(t) = d T
dt

ds
dt

+ T
d 2s
dt 2

.

Now, first by the chain rule and then by Theorem 11.22, we have

r ′′(t) = d T
ds

ds
dt

ds
dt

+ T
d 2s
dt 2

= κN
(

ds
dt

)2

+ T
d 2s
dt 2

.

Using the preceding equations to form the cross product r ′(t) × r ′′(t), we obtain

r ′(t) × r ′′(t) = T
ds
dt

×
(

κN
(

ds
dt

)2

+ T
d 2s
dt 2

)

= κ (T × N)
(

ds
dt

)3

+ (T × T)
ds
dt

d 2s
dt 2

= κB
(

ds
dt

)3

= κB‖r ′(t)‖3,

since T × N = B and the cross product of any three-component vector with itself is 0. Finally,
if we take the norms of the first and last parts in the preceding chain of equalities and divide
by ‖r ′(t)‖3, we have our result.

Even with Theorem 11.23, the computation of the curvature can be quite laborious. We
provide a complete calculation in Example 3.

It is also convenient to have formulas for the curvature of planar curves. The following
theorem gives us a simpler method for computing the curvature of a function of the form
y = f (x) and for finding the curvature of a curve defined by a vector function with two
components:
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THEOREM 11.24 Formulas for Curvature in the Plane

(a) Let y = f (x) be a twice-differentiable function. Then the curvature of the graph of
f is given by

κ = | f ′′(x)|
(1 + ( f ′(x))2)3/2 .

(b) Let C be the graph of a vector function r(t) = 〈
x(t), y(t)

〉
in the xy-plane, where x

and y are twice-differentiable functions of t such that x ′(t) and y ′(t) are not simul-
taneously zero. Then the curvature κ of C at a point on the curve is given by

κ = |x ′(t)y ′′(t) − x ′′(t)y ′(t)|
((x ′(t))2 + ( y ′(t))2)3/2 .

We ask you to prove Theorem 11.24 in Exercises 65 and 66.

We make two final definitions to aid our understanding of curves. For a vector curve C
with a positive curvature at a point, we define the radius of curvature and osculating circle.

DEFINITION 11.25 Radius of Curvature and Osculating Circle

Let C be the graph of a vector function r, and let r(t 0) be the position vector for a point
on C at which the curvature κ > 0.

(a) The radius of curvature ρ of C at r(t 0) is given by

ρ = 1
κ

.

(b) The osculating circle to the curve C at r(t 0) is the circle in the osculating plane,
with radius ρ, and whose center is the terminal point of the position vector
r(t 0) + ρN(t 0).

As we mentioned in Section 11.3, when a curve C is planar, the osculating plane is the
plane. In this case, the osculating circle also lies in the plane. The figure appearing next at
the left shows a portion of the sine curve and the osculating circles when x = π

2
and when

x = 5π

4
. In Example 2 we discuss how to find the equations of these circles. The figure at

the right is a space curve, also with two osculating circles.

y

x
π

2
5π

44

T
T

N

N

In two or three dimensions, an osculating circle is the circle that fits the shape of the curve
“the best,” in that the curvatures of the curve and the osculating circle are the same at the
point of tangency.
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Examples and Explorations

EXAMPLE 1 Finding the arc length of a space curve

Find the arc length of the helix defined by r(t) = 〈cos αt, sin αt, βt〉 on the interval [a, b],
where a, b, α, and β are constants.

SOLUTION

The integral ∫ b

a
‖r ′(t)‖ dt =

∫ b

a
‖〈−α sin αt, α cos αt, β〉‖ dt

represents the specified arc length and equals∫ b

a

√
α2 sin2 αt + α2 cos2 αt + β2 dt =

∫ b

a

√
α2 + β2 dt = (b − a)

√
α2 + β2.

�

EXAMPLE 2 Finding osculating circles in the plane

Find the equations of the osculating circles to the graph of the sine function y = sin x at
x = π

2
and at x = 5π

4
.

SOLUTION

This is a continuation of Example 1 in Section 11.3. In that example, we found the unit
tangent and principal unit normal vectors to the curve at x = π

2
and at x = 5π

4
. Next, we

need the curvature. Using Theorem 11.24(a), we have

κ = | f ′′(x)|
(1 + ( f ′(x))2)3/2 = |−sin x|

(1 + cos2 x)3/2 .

At x = π

2
, we have κ = 1. The radius of curvature ρ = 1

κ
= 1. Therefore, the center of the

osculating circle will be one unit from the point
(

π

2
, sin

(
π

2

))
=

(
π

2
, 1

)
in the direction of

the principal unit normal vector N
(

π

2

)
= 〈0, −1〉. Thus, the osculating circle will have its

center at
(

π

2
, 0

)
and have radius 1. The equation of this circle is

(
x − π

2

)2 + y 2 = 1.

At x = 5π

4
,

κ = | −sin(5π/4)|(
1 + cos2(5π/4)

)3/2 =
√

2/2
(3/2)3/2 = 2

3
√

3
.

The radius of curvature is the reciprocal of κ , so ρ = 3
√

3
2

. The principal unit normal vector

N
(

5π

4

)
= 1√

3

〈
1,

√
2

〉
. The osculating circle will have its center at the terminal point of the

position vector
〈

5π

4
, sin

(
5π

4

)〉
+ ρN

(
5π

4

)
=

〈
5π

4
+ 3

2
,
√

2
〉

and have radius 3
√

3
2

. The equa-

tion of the circle is
(

x − 5π

4
− 3

2

)2 + ( y − √
2 )2 = 27

4
. The graph of the function, along with

these two osculating circles, appears on the left preceding Example 1. �

EXAMPLE 3 Finding the center and radius of an osculating circle to a space curve

Find the center and radius of the osculating circle to the graph of the helix defined by the
vector function r(t) = 〈cos t, sin t, t〉 at t = π

2
and at t = 5π

4
.
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SOLUTION

This is also a continuation of an example from Section 11.3. In Example 2 of that section,
we found the unit tangent and principal unit normal vectors to the helix at t = π

2
and at

t = 5π

4
. Now we need the curvature. Using Theorem 11.23(b), we have

κ = ‖r ′(t) × r ′′(t)‖
‖r ′(t)‖3 = ‖〈−sin t, cos t, 1〉 × 〈−cos t, −sin t, 0〉‖

‖〈−sin t, cos t, 1〉‖3 = ‖〈sin t, −cos t, 1〉‖
√

2
3 = 1

2
.

The curvature at every point on the helix is 1
2

. (Why does it make sense that the curvature
on this helix is constant?) The radius of curvature is constantly 2. Finally, we only need the
center points for the two circles. At t = π

2
, the center of the osculating circle will be

r
(

π

2

)
+ 2N

(
π

2

)
=

〈
0, 1, π

2

〉
+ 2 〈0, −1, 0〉 =

〈
0, −1, π

2

〉
.

The osculating circle will therefore have its center at
(

0, −1, π

2

)
and have radius 2.

At t = 5π

4
, the center of the osculating circle will be

r
(

5π

4

)
+ 2N

(
5π

4

)
=

〈
−

√
2

2
, −

√
2

2
, 5π

4

〉
+ 2

〈√
2

2
,
√

2
2

, 0
〉

=
〈√

2
2

,
√

2
2

, 5π

4

〉
.

The osculating circle will therefore have its center at
(√

2
2

,
√

2
2

, 5π

4

)
and have radius 2. �

TEST YOUR? UNDERSTANDING
� How is the arc length of a vector-valued function defined? Why is this definition con-

sistent with the definitions of arc length you learned for differentiable functions of the
form y = f (x) and for parametric equations x = x(t) and y = y(t)?

� What does it mean for a vector function to be parametrized by arc length?

� How is curvature defined? Why is the definition of curvature difficult to use?

� For a twice-differentiable function y = f (x), how is the curvature at a point x 0 related
to the concavity of the graph at x 0?

� What is the radius of curvature at a point P on a curve? How is the osculating circle at P
defined?

EXERCISES 11.4

Thinking Back

� The arc length of the sine function: Find the arc length of
the sine function y = e x/2 + e−x/2 for 0 ≤ x ≤ 1.

� The arc length of the cycloid: Find the arc length of the
cycloid x = θ −sin θ , y = 1 −cos θ , for 0 ≤ θ ≤ 2π .

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: For every differentiable vector-valued
function r,

∫ b
a ‖r ′(t)‖ dt ≥ (b − a).

(b) True or False: Every vector-valued function has an arc
length parametrization.

(c) True or False: Every straight line has constant curva-
ture.

(d) True or False: The radius of curvature is the reciprocal
of the curvature.

(e) True or False: The radius of curvature is zero at every
point on a straight line.

(f) True or False: If a vector-valued function r is differen-
tiable for some value of t, its curvature at that point is
positive.

(g) True or False: If a vector-valued function r is twice dif-
ferentiable at some value t 0, then the osculating circle
is defined at r(t 0).
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(h) True or False: If a vector-valued function r has a prin-
cipal unit normal vector for some value t 0, then the
osculating circle at r(t 0) is defined.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An arc length parametrization for a straight line in the
plane.

(b) A space curve with constant curvature.
(c) A space curve with varying curvature.

3. Define what it means for a curve to be parametrized by
arc length.

4. Explain how a ruler made of string could be used to
understand an arc length parametrization.

5. Why are the concepts of “concave up” and “concave
down” insufficient for quantifying how a space curve
bends?

6. Let C be the graph of the vector-valued function r(t).
Define the curvature at a point on C.

7. What makes Definition 11.21 for curvature easy to under-
stand? What makes it difficult to use?

8. Let P0 be a point on a curve C with positive curvature κ .
Define the radius of curvature at P0.

9. Compare the definition of curvature with the four formu-
las given in Theorems 11.23 and 11.24. Discuss when each
formula would be the easiest to use.

10. Sam and Ben are arguing about the curvature of a func-
tion y = f (x). Sam claims that the maximum curvature of
every such function occurs at a relative extremum. Ben
disagrees. Who is right? If Sam is right, prove the result.
If Ben is right, provide a counterexample that disproves
Sam’s claim.

11. Recall that the graph of the vector function r(t) =
〈a + αt, b + βt, c + γ t〉 is a straight line in R

3 if constants
α, β, and γ are not all zero.

(a) Show that the curvature at every point on this line is
zero and the radius of curvature at every point is un-
defined.

(b) Explain why what you showed in part (a) makes
sense.

12. Let α > 0.

(a) Explain why the graph of the vector function r(t) =
〈a + α cos t, b + α sin t〉 is a circle C with center (a, b)
and radius α.

(b) Show that the curvature at every point on C is
1
α

and
the radius of curvature at every point is α.

(c) Explain why the osculating circle at every point on C
is the circle C.

(d) Explain why the answers to parts (a), (b), and (c)
make sense.

13. Give a step-by-step procedure for finding the equation of
the osculating circle at a point on a planar curve where
the curvature is nonzero.

14. Give a step-by-step procedure for finding the center and
radius of the osculating circle at a point on a space curve
where the curvature is nonzero.

15. Show that the second derivative of the function of y = x 2

is constant, but its curvature varies with x.
16. Show that the curvature of the function of y =√

1 − x 2, x ∈ (−1, 1), is constant, but its second deriva-
tive varies with x.

In Exercises 17–21 sketch the graph of a vector-valued func-
tion r(t) = x(t)i + y(t)j with the specified properties.

17. r(1) = 〈1, 2〉 , κ(1) = 3, N(1) =
〈 3

5
,

4
5

〉

r(3) = 〈−3, 5〉 , κ(3) = 3, N(3) =
〈

1√
2

,
1√
2

〉

18. r(0) = 〈0, 0〉 , κ(0) = 0, N(0) is undefined

r(2) = 〈3, 7〉 , κ(2) = 1, N(2) = 〈1, 0〉
19. r(1) = 〈3, 5〉 , ρ(1) = 3, N(1) = 〈1, 0〉

r(4) = 〈−2, 4〉 , ρ(4) = 2, N(4) =
〈√

3
3

,
√

6
3

〉

20. κ is always 0, r(0) = 〈2, 0〉 , r(1) = 〈0, 2〉

21. κ is always
1
2

, r(0) = 〈2, 0〉 , r(1) = 〈0, 2〉

Skills

Find the arc length of the curves defined by the vector-valued
functions on the specified intervals in Exercises 22–27.

22. r(t) = 〈3t − 4, −2t + 5, t + 3〉 , [1, 5]

23. r(t) = 〈3 cos 4t, 3 sin 4t〉 ,
[
0,

π

2

]

24. r(t) = 〈t −sin t, 1 −cos t〉 , [0, 2π ]

25. r(t) = 〈
4 sin t, t 3/2, −4 cos t

〉
, [0, 4]

26. r(t) = 〈
e t,

√
2t, e−t

〉
, [0, 1]

27. r(t) = 〈
e t sin t, e t cos t, e t

〉
, [0, π ]

In Exercises 28–30 show that the given vector-valued func-
tions are not arc length parametrizations. Then find an

arc length parametrization for the curves defined by those
functions.

28. r(t) = 〈3 cos t, 3 sin t〉
29. r(t) = 〈3 + 2t, 4 − t, −1 + 5t〉
30. r(t) = 〈cos t, sin t, t〉
In Exercises 31–35 find the curvature of the given function at
the indicated value of x. Then sketch the curve and the oscu-
lating circle at the indicated point.

31. y = e x, x = 0

32. y = sin x, x = π

2

33. y = csc x, x = π

2
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34. y = √
x, x = 2

35. y = 1
3

(x 2 + 2)3/2, x = 1

Find the curvature of each of the functions defined by the
parametric equations in Exercises 36–38.

36. x = k cos t, y = k sin t

37. x = a cos t, y = b sin t

38. x = cos t + t sin t, y = sin t − t cos t

Find the curvature of each of the vector-valued functions
defined in Exercises 39–44.
39. r(t) = 〈t −sin t, 1 −cos t〉
40. r(t) = 〈

t, t 2, t 3
〉

41. r(t) = 〈t sin t, t cos t, t〉
42. r(t) = 〈t sin t, t cos t, 2t〉
43. r(t) = 〈t sin t, t cos t, αt〉, where α is a constant

44. r(t) = 〈sin t, cos t, cosh t〉
45. Find the value(s) of x where the curvature is greatest on

the graph of y = x 3.
46. Show that the curvature on the parabola defined by

y = x 2 is greatest at the origin.

47. Show that the curvature is constant at every point on the
circular helix defined by r(t) = 〈a cos t, a sin t, bt〉, where a
and b are positive constants.

48. Find the points on the graphs of y = e x and y = ln x
where the curvature is maximal. Explain how the two
answers are related.

49. Let r(t) =
〈
cos t, sin t,

1
t

〉
, t > 0. Show that lim

t→∞
κ = 1 and

lim
t→0+

κ = 0.

50. Find the curvature on the graph of the elliptical helix
defined by r(t) = 〈a cos t, b sin t, ct〉, where a, b, and c are
positive constants.

Exercises 51 and 52 derive the equations necessary to define
the torsion τ of a space curve. (Torsion measures the rate at
which a space curve twists away from the osculating plane.)
In each of these exercises, let C be a space curve and let r(s)

be an arc length parametrization for C such that
d T
ds

and
dN
ds

exist at every point on C.

51. Explain why
dB
ds

exists at every point on C. (Hint: Differen-

tiate B = T × N with respect to arc length.)

52. Use Exercise 51 and Theorem 11.12 to show that
dB
ds

is

parallel to N. (Hint: Recall that
d T
ds

= κN.) Since
dB
ds

and

N are parallel, we define the torsion τ to be the scalar such

that
dB
ds

= −τN.

53. Use Exercise 52 to show that
dN
ds

= −κT+ τB, where κ is

the curvature. (Hint: Differentiate N = B × T with respect
to arc length.)

Use the definition of torsion in Exercise 52 to compute the
torsion of the vector functions in Exercises 54–56.

54. r(t) = 〈cos t, sin t, t〉
55. r(t) = 〈cosh t, sinh t, t〉
56. r(t) = 〈3 sin t, 5 cos t, 4 sin t〉
57. Use the results of Exercise 52 to show that the torsion of

a planar curve C is zero at every point on C.

Applications
58. Ian will walk along a contour on the side of a mountain to

get from a point he calls the origin to the point (2, 0), with
distances measured in miles. Unfortunately, the moun-
tainside is riven by gullies and ridges. Thus, his route will
follow the curve

r(t) = 〈
1.2t − 0.5t 2 + 0.1t 4, 0.15 sin(6π t)

〉
.

How far does Ian actually have to walk?

59. Travelling along a contour on a mountainside is usually
most difficult at the points of greatest curvature of the

route, since these indicate deep gullies or sharp, rocky
promontories that must be passed.

(a) Sketch the graph of Ian’s route from the previous
problem.

(b) Sketch each component of the curve describing his
route. What information does that give you about the
curvature?

(c) Roughly where does Ian expect the greatest difficul-
ties?

Proofs

60. Use Theorem 11.24 to prove that the curvature of a linear
function y = mx + b is zero for every value of x.

61. Use Theorem 11.24 to prove that the curvature is zero
at a point of inflection of a twice-differentiable function
y = f (x).

62. Prove that a planar curve with constant curvature is
either a line or a circle. Give an example of a space
curve with constant curvature that is neither a line nor a
circle.

63. Prove that the magnitude of the acceleration of a particle
moving along a curve, C, with a constant speed is propor-
tional to the curvature of C.

64. Let C be the graph of a vector function r(s) defined on an
interval I and parametrized by arc length s.

(a) If the unit tangent vector T has a nonzero derivative,
use the chain rule and the definitions of the unit tan-
gent vector T and principal unit normal vector N to

show that
d T
ds

,
d T
dt

, and N are scalar multiples of each
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other. In particular, argue that
d T
ds

= αN for some
scalar α.

(b) Use the fact that N is a unit vector to show that the
constant α in part (a) must equal κ .

65. Let y = f (x) be a twice-differentiable function. Show that
the curvature of the graph of f is given by

κ = | f ′′(x)|
(1 + ( f ′(x))2)3/2

.

This is part (a) of Theorem 11.24. (Hint: Use the parame-
trization x = t, y = f (t).)

66. Let C be the graph of a vector function r(t) = 〈
x(t), y(t)

〉
in

the xy-plane, where x(t) and y(t) are twice-differentiable
functions of t. Show that the curvature κ of C at a point
on the curve is given by

κ = |x ′(t)y ′′(t) − x ′′(t)y ′(t)|
((x ′(t))2 + ( y ′(t))2)3/2

.

This is part (b) of Theorem 11.24.

Thinking Forward
A decomposition of the acceleration vector: Find compv(t)a(t),
where v and a are the velocity and acceleration vectors,
respectively, of the following functions.

� r(t) = 〈
t, t 2, t 3

〉
� r(t) = 〈cos t, sin t, t〉
� r(t) = 〈

e t sin t, e t cos t, e t
〉

11.5 MOTION

� The behavior of objects subject to the force of gravity

� The displacement and distance of projectiles

� The tangential and normal components of the acceleration vector

Motion Under the Force of Gravity

In Chapter 2 we discussed motion along a straight path. The motions we examined were
of two types: straight up and down, and straight back and forth. Now that we have studied
vector functions, we are ready to widen the discussion to motion along curves in a plane
and motion along a space curve. We begin by discussing motion under the force of gravity.

Imagine a catapult that can propel a rock with an initial velocity of 30 miles per hour.
A number of questions arise:

� If the catapult always releases the rock at the same angle to the horizontal, how far
will the rock travel?

� Along what path would the rock travel?
� What is the maximum height reached by the rock?
� How long will it take until the rock hits the ground?
� How fast will the rock be travelling upon impact?
� If the catapult can be moved to the top of a hill, would the rock travel farther?
� If the angle at which the catapult releases the rock can be adjusted, what angle

would maximize the distance the rock travels?
� Will the motion be planar?

We will answer some of these questions in this section and leave others to the exercises.

To begin our analysis we will assume that wind resistance and friction are negligible
and that our object is a point mass. Recall that (on Earth) the gravitational constant g is
32 feet per second per second in the English system, and 9.8 meters per second per second
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in the metric system. We know from experience that a thrown object travels in a curved
path. When we ignore wind resistance, we may assume that the motion is planar and use
a two-dimensional coordinate system that places the initial position of the object at (0, h),
where h is the starting height of the projectile (as it is released). The following diagram
illustrates the starting point of our analysis:

vx
�g j

vy

v0

(0, h)

h

C

θ

y

x(0, 0)

We assume that the projectile moves along a planar curve C given by the vector function
r(t) = 〈

x(t), y(t)
〉
. The initial velocity of the vector function is

v0 = v(0) = r ′(0) = vxi + vyj = ‖v0‖ cos θ i + ‖v0‖ sin θ j.

We also assume that the acceleration of the projectile after it is released is due solely to
gravity, which is constant and acts downwards. Therefore, r ′′(t) = a(t) = −gj. We will now
be able to find the vector function v by integrating a. That is,

v(t) =
∫

a(t) dt =
∫ 〈

0, −g
〉

dt = 〈
c1, −gt + c 2

〉
,

where c1 and c 2 are constants of integration. We may evaluate these constants because we
know the initial velocity v(0) = 〈‖v0‖ cos θ , ‖v0‖ sin θ〉 = 〈c1, c 2〉. Consequently,

c1 = ‖v0‖ cos θ and c 2 = ‖v0‖ sin θ.

We have the velocity function

v(t) = 〈‖v0‖ cos θ , −gt + ‖v0‖ sin θ
〉
.

Now, we integrate v to find r :

r(t) =
∫

v(t) dt =
∫ 〈‖v0‖ cos θ , −gt + ‖v0‖ sin θ

〉
dt

=
〈
(‖v0‖ cos θ ) t + C1, − 1

2
gt 2 + (‖v0‖ sin θ ) t + C2

〉
.

Here C1 and C2 are new constants of integration that may be evaluated by using the initial
position of the projectile. We positioned our coordinate system so that r(0) = 〈0, h〉. So, we
obtain C1 = 0 and C2 = h; thus, the parametrization for C is

r(t) =
〈
(‖v0‖ cos θ ) t, − 1

2
gt 2 + (‖v0‖ sin θ ) t + h

〉
.

It follows that the path of the projectile is a parabola, because when we eliminate the
parameter t from the equations

x = (‖v0‖ cos θ ) t, y = −1
2

gt 2 + (‖v0‖ sin θ ) t + h,

we obtain the quadratic function

y = − g
2‖v0‖2 cos2 θ

x 2 + (tan θ )x + h.

(Recall that v0, θ and h are all constants.)

We will consider extended examples next.
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Displacement and Distance Travelled

We are all familiar with the sentence:

The shortest distance between two points is a straight line.

This shortest distance is the displacement, while the length of the curve traversed by an
object is the distance travelled. In terms of vector functions we have the following defini-
tion:

DEFINITION 11.26 Displacement Versus Distance Travelled

Let the vector-valued function r(t) represent the position function for a particle travelling
on a curve C. If the domain of r is an interval I containing points a and b:

(a) The displacement of the the particle from a to b is given by the vector r(b) − r(a).

(b) The distance travelled by the particle from a to b is given by the scalar
∫ b

a ‖r ′(t)‖dt.

The following figure illustrates these definitions:

r(a)

r(b)

displacement

y

x

z

The displacement vector is the vector with initial point r(a) and terminal point r(b). The
distance travelled is this length of the curve connecting r(a) and r(b). As a quick example,
for the helix defined by the vector function r(t) = 〈cos t, sin t, t〉, the displacement vector
from 0 to 2π is

r(2π ) − r(0) = 〈cos 2π , sin 2π , 2π〉 − 〈cos 0, sin 0, 0〉 = 〈1, 0, 2π〉 − 〈1, 0, 0〉 = 〈0, 0, 2π〉,
while the distance travelled by a particle on the helix from 0 to 2π is∫ 2π

0
‖r ′(t)‖dt =

∫ 2π

0
‖〈−sin t, cos t, 1〉‖dt =

∫ 2π

0

√
sin2 t + cos2 t + 1 dt

=
∫ 2π

0

√
2 dt = 2

√
2π.

Tangential and Normal Components of Acceleration

We have already seen that every vector in R
3 can be decomposed into a sum of three vectors

that are directed along the x-, y-, and z-axes. Doing this requires nothing more than writing
a vector v in the form v = ai + bj + ck. Rather than using this type of decomposition,
however, when we are working with curves resulting from the motion of objects in R

3, it
is often convenient to decompose the acceleration vector into a sum of two vectors, one of
which is in the direction of the unit tangent vector T and the other is in the direction of
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the principal unit normal vector N. These two components are known as the tangential
component of acceleration and the normal component of acceleration, respectively, and
are illustrated as follows:

a
N

T
P0

aT aN

θ

Even the graph of a very complicated vector function in R
3 is locally planar, as long as

the function is twice differentiable. As we mentioned in Section 11.3, the osculating plane
fits a space curve “best” at a point P0 on the curve, and the osculating plane is determined
by the point P0 and the unit tangent and principal unit normal vectors at P0.

THEOREM 11.27 The Tangential and Normal Components of Acceleration

Let r(t) be a twice-differentiable vector function with either two or three components
and with derivatives r ′(t) = v(t) and r ′′(t) = a(t). Then the tangential component of
acceleration aT is given by

aT = v · a
‖v‖

and the normal component of acceleration aN is given by

aN = ‖v × a‖
‖v‖ .

Proof. Since vectors v and T are scalar multiples, compTa = compva. From the figure shown, if
θ is the angle between vectors a and v, then

aT = ‖a‖ cos θ = ‖v‖‖a‖ cos θ

‖v‖ = v · a
‖v‖ .

Similarly,

aN = ‖a‖ sin θ = ‖v‖‖a‖ sin θ

‖v‖ = ‖v × a‖
‖v‖ .

Note that if r(t) = 〈
x(t), y(t)

〉
, then to take the cross product in Theorem 11.27, we would let

v(t) = 〈
x ′(t), y ′(t), 0

〉
, and let a(t) = 〈

x ′′(t), y ′′(t), 0
〉
. The normal component of acceleration

is also called centripetal acceleration.

Examples and Explorations

EXAMPLE 1 The Human Cannonball

Chuckles the Human Cannonball is to be shot from the circus cannon. The muzzle of the
cannon is 10 feet above ground level and is initially at an angle of 30◦ with the horizontal.
The muzzle velocity of the cannon is 30 mph. The square net to catch Chuckles measures
20 feet on each side and is placed at a height of 6 feet, 30 feet directly in front of the muzzle
of the cannon. Should Chuckles call an ambulance?
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10 ft

30 ft
6 ft

30°

20 ft

SOLUTION

We place our coordinate system so that the muzzle of the cannon is at (0, 10). The lead-
ing edge of the net will then be at (30, 6). The muzzle speed of 30 mph is equivalent to
44 feet/sec. At the angle of 30◦, Chuckles ’ initial velocity function will be

v0 = 44 cos 30◦i + 44 sin 30◦j = 22
√

3i + 22j.

Since, in general, r(t) =
〈
(‖v0‖ cos θ ) t, − 1

2
gt 2 + (‖v0‖ sin θ ) t + h

〉
, here we have

r(t) =
〈
(‖v0‖ cos θ ) t, − 1

2
gt 2 + (‖v0‖ sin θ ) t + h

〉
=

〈
22

√
3t, −16t 2 + 22t + 10

〉
,

where we have used the gravitational constant g = 32 feet/sec2. We next find the time
it takes until Chuckles would reach the net’s height of 6 feet. To do this we set the
y-component of r(t) equal to 6 and solve for t.

That is, we solve −16t 2 + 22t + 10 = 6 and obtain the roots t = 11±√
185

16
. In this con-

text, only the positive root t = 11 + √
185

16
is relevant. It would take Chuckles approximately

1.53 seconds before he reached a height of 6 feet. We now use the x-component of r(t)
to find the horizontal distance that Chuckles would travel in 1.53 seconds and obtain the
distance 22

√
3(1.53) ≈ 58.3 feet. Since the net extends only from 30 feet to 50 feet from

the cannon muzzle, Chuckles should prepare for a bad landing. �

EXAMPLE 2 The Human Cannonball, part 2

Chuckles the Human Cannonball is unhappy with the planned scenario of Example 1. If
the angle of the cannon can be adjusted, at what angle should Chuckles ask to be shot
so that he hits the middle of the net? You may assume that all other constants given in
Example 1 remain the same.

SOLUTION

We now have the vector function

r(t) = 〈
(44 cos θ ) t, −16t 2 + (44 sin θ ) t + 10

〉
.

We need to find the values of t and θ such that the x-component is 40 and the y-component
is 6. That is, we need to solve the system of equations

(44 cos θ ) t = 40 and −16t 2 + (44 sin θ ) t + 10 = 6

simultaneously for t and θ . There are four pairs of values for t and θ that satisfy this system
of equations, but only the two pairs in which t is positive make sense contextually. One
pair is t ≈ 0.94 second and θ ≈ 14◦. The other pair is t ≈ 2.68 seconds and θ ≈ 70◦. (We
ask you to solve the same system of equations in Exercise 25.) �
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CHECKING
THE ANSWER

In Example 1 Chuckles would have gone over 55 feet if he had been shot at an angle of
30◦. It makes sense that if he is shot at a smaller angle of elevation, he wouldn’t travel
as far. In Exercise 33 we will ask you to prove that in a ground-to-ground trajectory, a
projectile always travels the greatest horizontal distance when it is shot at an angle of 45◦
with the horizontal. Therefore, it also makes sense that there would be a second solution
in Example 2 in which the angle of elevation would be greater than 45◦. This doesn’t, of
course, tell us that the numbers we found are correct, only that they are reasonable.

EXAMPLE 3 The Human Cannonball, part 3

Chuckles the Human Cannonball is happier with the scenario of Example 2, but he needs
to decide which of the two angles would be preferable. The big top tent he is under is
50 feet tall.

SOLUTION

If Chuckles is shot at the smaller angle, he would hit the net at a more shallow angle, which
might lead to his skidding off the net. For this reason the steeper angle might be preferable.
However, we should also consider his speed upon impact and the maximum height he
would reach if he were shot at the two angles. We consider his speed upon impact and the
maximum height he would reach if he were shot at an angle of 70◦. We leave the analysis
at the initial angle of 14◦ for Exercise 26.

Since the velocity function under the force of gravity is

v(t) = 〈‖v0‖ cos θ , −gt + ‖v0‖ sin θ
〉
,

we have

v(t) = 〈‖v0‖ cos θ , −gt + ‖v0‖ sin θ
〉 = 〈44 cos 70◦, −32t + 44 sin 70◦〉

= 〈15.0, −32t + 41.3〉.
To find Chuckles’ speed upon impact, recall that speed is the magnitude of velocity and
that, at an angle of 70◦, he will hit the net after about 2.7 seconds. Therefore, his speed
upon impact will be

‖v(2.7)‖ = ∥∥〈
15.0, −32(2.7) + 41.3

〉∥∥ = ‖〈15.0, −45〉‖ ≈ 47 feet per second.

To find the maximum height we consider the y-component of the position function r(t).
This is

y(t) = −16t 2 + (44 sin 70◦)t + 10 = −16t 2 + 41.3t + 10.

The maximum height will be attained when y ′(t) = −32t + 41.3 = 0. (Why?) Thus, the
maximum height occurs at about 1.3 seconds. The corresponding height is

y(1.3) = −16(1.3)2 + 41.3(1.3) + 10 ≈ 37 feet.

He has plenty of room to spare! �

EXAMPLE 4 Finding centripetal acceleration

A girl is swinging a small plane attached to a string 2 feet long in a circle over her head at
a rate of 20 revolutions per minute. If the circle is horizontal at a height of 6 feet above the
ground, find a vector function that models the path of the plane and find the centripetal
acceleration of the plane.
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SOLUTION

The vector function

r(t) =
〈
2 cos

(
2π

3
t
)

, 2 sin
(

2π

3
t
)

, 6
〉

has the motion described, where t is measured in seconds. Note that every 3 seconds the
plane would complete exactly one revolution, as specified. The velocity and acceleration
vectors are, respectively,

v(t) =
〈
− 4π

3
sin

(
2π

3
t
)

, 4π

3
cos

(
2π

3
t
)

, 0
〉

and

a(t) =
〈
− 8π 2

9
cos

(
2π

3
t
)

, − 8π 2

9
sin

(
2π

3
t
)

, 0
〉
.

The centripetal acceleration, or equivalently, the normal component of acceleration, aN,
is given by

a N = ‖v × a‖
‖v‖ =

∥∥∥∥
〈
− 4π

3
sin

(
2π

3
t
)

, 4π

3
cos

(
2π

3
t
)

, 0
〉
×

〈
−8π 2

9
cos

(
2π

3
t
)

, − 8π 2

9
sin

(
2π

3
t
)

, 0
〉∥∥∥∥∥∥∥〈

− 4π

3
sin

(
2π

3
t
)

, 4π

3
cos

(
2π

3
t
)

, 0
〉∥∥∥

=
∥∥〈

0, 0, 32π3/27
〉∥∥

4π/3
= 32π3/27

4π/3
= 8π2

9
.

Note that in this example the velocity and acceleration vectors are orthogonal. When this
occurs, the normal component of acceleration will be the magnitude of the acceleration
vector, as we find here. �

TEST YOUR? UNDERSTANDING
� How are the vector functions giving the velocity and position of an object moving under

the acceleration due to gravity derived from the gravitational constant?

� Why does a projectile subject to gravity move in a parabolic arch?

� How are the component functions for the position and velocity of a projectile used to
determine the height reached by the object, the distance travelled by the object, and
the travel time of the projectile?

� What are the normal and tangential components of acceleration? How is the osculating
plane related to the components of acceleration?

� What is centripetal acceleration?

EXERCISES 11.5

Thinking Back

� Projecting one vector onto another: Show that the for-
mula for the projection of a vector v onto a nonzero
vector u is given by projuv = u · v

‖u‖ , where u = 0.

� The difference between a vector and its projection onto an-
other vector: If u = 0 and v is an arbitrary vector, what
is the geometric relationship between v, projuv, and
v − projuv?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: When the wind resistance is negligi-
ble, a projectile travels on a parabolic path if its initial
velocity has a nonzero horizontal component.

(b) True or False: The velocity of a projectile is zero when
it has reached its maximum height.

(c) True or False: If the wind resistance is negligible, the
horizontal component of velocity is constant.

(d) True or False: The acceleration of a projectile is −gk,
where g is the gravitational constant.

(e) True or False: The velocity of a moving particle is
defined to be the absolute value of its speed.
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(f) True or False: Centripetal acceleration and the normal
component of acceleration are identical.

(g) True or False: The sum of the tangential component of
acceleration and the normal component of accelera-
tion is the acceleration.

(h) True or False: If ‖r(b) − r(a)‖ = ∫ b
a ‖r ′(t)‖ dt for every

a and b in the domain of r, then the curve defined by
r is parametrized by arc length.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A nonconstant vector function r(t) defined on an
interval [a, b] for which

‖r(b) − r(a)‖ =
∫ b

a
‖r ′(t)‖dt.

(b) A vector function with a nonzero acceleration vec-
tor such that the normal component of acceleration is
always zero.

(c) A vector function with a nonzero acceleration vector
such that the tangential component of acceleration is
always zero.

3. Explain why an object thrown horizontally on a planet
with a smaller gravitational force than Earth’s would
travel farther.

In our derivation of the position function r(t) =〈
(‖v0‖ cos θ ) t, − 1

2
g t 2 + (‖v0‖ sin θ ) t + h

〉
for the motion

of a projectile, we ignored air resistance and wind effects. In
Exercises 4 and 5 we ask you to think about how these effects
would change the model.

4. Air resistance is a type of friction. It is a vector that is pro-
portional to, and acting in the opposite direction from,
the velocity. How would incorporating air resistance
change the development of our model of the motion of a
projectile?

5. We may model the wind as a vector with a direction. How
would including the wind change the development of our
model of the motion of a projectile?

6. A projectile reaches its maximum height H at time t 0 > 0.

What fraction of H does it reach at time
1
2

t 0?

7. Given that an object is moving along the graph of a vector
function r(t) defined on an interval [a, b], what is meant
by the displacement of the object from t = a to t = b?

8. If an object is moving along the graph of a vector function
r(t) defined on an interval [a, b], how can the distance the
object travels from t = a to t = b be calculated?

9. Define each of the following: the tangential component of
acceleration, the normal component of acceleration, and
centripetal acceleration. How are each of these quantities
computed?

10. In the graph that follows, a portion of a curve is drawn,
along with the unit tangent vector, T, principal unit nor-
mal vector, N, and acceleration vector, a, at point P. Add
the vectors projTa and projNa to the graph, and label the
magnitudes of these vectors appropriately.

T
N

a

P

11. Imagine that you are driving on a twisting mountain road.
Describe the tangential and normal components of accel-
eration as you ascend, descend, twist right, and twist left.

12. Two marbles roll off a table at the same moment. One
of the marbles has a horizontal speed of 1 inch per sec-
ond, and the other has a horizontal speed of 4 inches per
second.

(a) Which marble hits the ground first?
(b) If the surface of the table is 3 feet from the ground,

what are the speeds of the marbles as they hit?

13. Let f (t) be a nonconstant continuous function.

(a) Explain why a particle moving along the vector func-
tion r(t) = 〈

f (t), ( f (t))2
〉

is on a parabolic path.
(b) What condition must f (t) satisfy so that

r(t) · a(t) = 0?

Skills

In Exercises 14–17, find (a) the displacement vectors from
r(a) to r(b), (b) the magnitude of the displacement vector,
and (c) the distance travelled by a particle on the curve from
a to b.

14. r(t) = 〈
t, t 2

〉
, a = 2, b = 3

15. r(t) = 〈t sin t, t cos t〉 , a = 0, b = π

16. r(t) = 〈
e t sin t, e t cos t, e t

〉
, a = 0, b = 1

17. r(t) = 〈α sin βt, α cos βt, γ t〉 , a = 0, b = 1

Find the tangential and normal components of acceleration
for the position functions in Exercises 18–22

18. r(t) = 〈
t, t 2

〉
19. r(t) = 〈sin 3t, cos 4t〉
20. r(t) = 〈t sin t, t cos t〉
21. r(t) = 〈

e t sin t, e t cos t, e t
〉

22. r(t) = 〈2 sin t, 3 cos t, cos 2t〉
23. Find the tangential and normal components of accelera-

tion for a particle moving along the circular helix defined
by r(t) = 〈cos t, sin t, t〉.

24. Find the tangential and normal components of accelera-
tion for a particle moving along the conical helix defined
by r(t) = 〈t cos t, t sin t, t〉.
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Applications
25. Finish Example 2 by solving the system of equations

(44 cos θ ) t = 40 and −16t 2 + (44 sin θ ) t + 10 = 6

for θ and t. (Hint: Solve the first equation for cos θ and the
second equation for sin θ , and use a Pythagorean identity.)

26. Finish Example 3 by calculating the maximum height
Chuckles the Human Cannonball will reach and the
speed at which he will hit the net if he is shot from the
cannon at an elevation of 14◦.

Complete Exercises 27–31 using the appropriate gravitational
constants from the table that follows. In each exercise you may
ignore wind resistance.

g in m/sec2 g in ft/sec2

Earth 9.8 32

Moon 1.6 5.2

Mars 3.7 12.1

Jupiter 24.8 81

27. In 1968 Bob Beamon set an Olympic record in the long
jump in the Mexico City Olympic Games with a jump of
8.90 meters.

(a) Assuming that his angle of elevation was 30◦, how
fast was he running as he jumped?

(b) Assuming that he could have performed the long jump
on the moon with the same initial velocity and same
angle of elevation, how far would Beamon have gone?

28. There is considerable controversy surrounding who hit
the longest home run in professional baseball. However,
any ball that travels 500 feet in the air is considered “mon-
umental.” Assuming that a hitter contacts a ball 4 feet
from the ground and that the ball leaves the bat with a 45◦

angle of elevation and subsequently travels a horizontal
distance of 500 feet, answer the following questions:

(a) How fast is the speed of the ball right after contact?
(b) What is the maximum height reached by the ball?
(c) How long does the ball spend in the air after being

hit?
(d) On May 22, 1963, Mickey Mantle, playing for the

New York Yankees, hit a home run that struck a point

on the façade of the right-field roof of the old Yan-
kee Stadium approximately 115 feet high and 370 feet
from home plate. Explain why this is not enough in-
formation to determine how far the ball would have
travelled if it had not hit the façade.

29. In 1974 Nolan Ryan, then playing for the California
Angels, was credited with throwing one of the fastest
pitches in professional baseball history. The pitch reached
a speed of 100.9 mph.

(a) Assume that the horizontal distance from the
pitcher’s mound to the catcher’s glove was 60 feet,
that the ball left Ryan’s hand at a height of 6 feet, and
that it was caught by the catcher with his hand at a
height of 3 feet. What was the angle of elevation of
the pitch as it left Ryan’s hand?

(b) If Ryan had thrown the ball at the same speed and
from the same height at an angle of elevation of 45◦,
what horizontal distance would the ball have trav-
elled before it hit the ground?

30. A certain type of tank gun can be shot with a muzzle
velocity of 1500 meters per second.

(a) At what angle should the cannon be shot to hit a tar-
get 1 kilometer away? You may assume that the target
and the muzzle of the cannon are at the same height.

(b) What is the range of the cannon? Assume that the
muzzle of the cannon is 5 meters high.

(c) If the tank is repositioned atop a small hill so that the
muzzle of the cannon is now 20 meters above the sur-
rounding area, what is the new range of the cannon?

(d) If the cannon were on Jupiter with its muzzle 5 meters
high, what would its range be?

31. An aircraft is flying toward the tank gun discussed in Ex-
ercise 30. Assume that the muzzle of the gun is 5 meters
high and the gun can fire with a maximum angle of eleva-
tion of 60◦. At what altitude should the pilot of the plane
fly to keep out of the gun’s range?

32. In 1971, during NASA’s Apollo 14 mission to the moon,
astronaut Alan Shepard hit a golf ball that is estimated to
have travelled 2400 feet on the lunar surface, almost a half
mile. Assuming a similar terrain, and ignoring wind resis-
tance, how far would his shot have travelled on Earth?

Proofs

33. Show that a ball thrown with an angle of elevation of 45◦

will travel farther than if it is thrown at any other angle.
(Hint: Assume that the initial and final heights of the ball are
equal, that the initial velocity is fixed, and that friction and
wind resistance are negligible.)

34. Prove that an object thrown at an acute angle of eleva-
tion travels along a parabolic path, if wind resistance is
ignored.

35. Let r(t) be a vector function whose graph is a space curve
containing distinct points P and Q. Prove that if the accel-
eration is always 0, then the graph of r is a straight line.

36. Assuming that the initial height of a projectile is zero,
prove that doubling the initial velocity of the projectile
has the effect of multiplying the maximum height of the
projectile and the horizontal distance travelled by the pro-
jectile by a factor of 4.

37. Prove that the normal component of acceleration is 0 at a
point of inflection on the graph of a twice-differentiable
function y = f (x). (Hint: The graph of y = f (x) is also the
graph of the vector function r(t) = 〈

t, f (t)
〉
.)

38. Prove that if a particle moves along a curve at a constant
speed, then a N = ‖a‖ and a T = 0. Is the converse true?
That is, if a N = ‖a‖ and a T = 0, must the particle be mov-
ing at a constant speed?
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Thinking Forward

� The graph of a function f : R
2 → R

A vector-valued function with two components can be
thought of as a function with a domain that is a subset
of R and a codomain R

2. We’ve seen that the graph of
such a function is a curve in the plane. We may also
define functions that have a subset of R

2 as the do-
main and the codomain R. In general terms, what is
the graph of such a function? (One such function is
f (x, y) = x 2 − 3x sin y 2.)

� The graph of a function f : R
3 → R

A vector-valued function with three components can
be thought of as a function with a domain that is a
subset of R and a codomain R

3. The graph of such a
function is a space curve. We may also define func-
tions that have a subset of R

3 as the domain and the
codomain R. In general terms, what is the graph of
such a function? (One such function is f (x, y, z) =
x + 2y − 5xyz.)

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or an algebraic example.

� parametric equations in R
2 and R

3

� a vector function or vector-valued function in R
2 and R

3

� a space curve

� the limit of a vector function r(t) as t approaches t 0

� the derivative of a vector function r(t)

� an antiderivative of a vector function r(t)

� the definite integral of a vector function r(t) on an interval
[a, b]

� the unit tangent function for a differentiable vector function
r(t)

� the principal unit normal vector at r(t)

� the binormal vector at r(t 0)

� the osculating plane at r(t 0)

� an arc length parametrization for the graph of a differen-
tiable function r(t)

� the curvature at a point on the graph of a vector function
r(s)

� the radius of curvature at a point on the graph of a vector
function r(t)

� the osculating circle at a point on the graph of a vector func-
tion r(t)

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� The derivative of a vector function r(t) is given by r ′(t) =
lim
h→0

.

� The Chain Rule for Vector-Valued Functions: Let t = f (τ ) be
a differentiable real-valued function of τ , and let r(t) be
a differentiable vector function with either two or three
components such that f (τ ) is in the domain of r for every

value of τ on some interval I. Then
dr
dτ

= .

� Let C be the graph of a twice-differentiable vector func-
tion r(t) defined on an interval I and with unit tangent

vector T(t). Then the curvature κ of C at a point on the

curve is given by κ = ‖ ‖
‖ ‖ and κ = ‖ × ‖

‖ ‖3
.

� Let y = f (x) be a twice-differentiable function. Then the

curvature of the graph of f is given by κ = | |
( )3/2

.

� Let C be the graph of a vector function r(t) = 〈
x(t), y(t)

〉
in

the xy-plane, where x(t) and y(t) are twice-differentiable
functions of t such that x ′(t) and y ′(t) are not simultane-
ously zero. Then the curvature κ of C at a point on the

curve is given by κ = | |
( )3/2

.
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Notation and Rules

Notation: Describe the meanings of each of the following
mathematical expressions.

� r(t) � v(t) � a(t)

� T(t) � N(t) � B(t)

� κ � ρ � a T

� aN

Derivatives of Products: Fill in the following blanks to complete
a differentiation rule for vectors.

� Let k be a scalar and r(t) be a differentiable vector func-

tion. Then
d
dt

(kr(t)) = .

� Let f (t) be a differentiable scalar function and r(t) be a dif-

ferentiable vector function. Then
d
dt

( f (t)r(t)) = .

� If r 1(t), r 2(t) are differentiable vector functions,
both having either two or three components, then
d
dt

(r 1(t) · r 2(t)) = .

� If r 1(t) and r 2(t) are both differentiable three-component

vector functions, then
d
dt

(r 1(t) × r 2(t)) = .

� Let r(t) be a differentiable vector function such
that ‖r(t)‖ = k for some constant k. Then
r(t) · r ′(t) = .

Skill Certification: The Calculus of Vector Functions

Sketching vector functions: Sketch the following vector func-
tions.

1. r(t) = 〈
t, t 3

〉
, t ∈ R

2. r(t) = 〈cos t, t〉, t ∈ R

3. r(t) = 〈t, sin 2t, cos 2t〉, t ∈ [0, 4π ]
4. r(t) = 〈t, t cos t, t sin t〉, t ∈ [0, 4π ]

Finding limits: Find the given limits if they exist. If a limit does
not exist, explain why.

5. lim
t→0

〈
1/(3 + t) − 1/3

t
,

(3 + t)2 − 9
t

〉

6. lim
t→−3

〈 |t + 3|
t + 3

,
|t + 3|
t − 3

〉

7. lim
t→0

〈
sin t

t
,

1 −cos t
t

, (1 + t)1/t
〉

8. lim
t→1

〈
(ln t)t−1 , t (1/t)−1,

sin (ln t)
t − 1

〉

Velocity and acceleration vectors: Find the velocity and acceler-
ation vectors for the given vector functions.

9. r(t) = 〈t, 2t − 3, 3t + 5〉 10. r(t) = 〈
t, 2t 2, 3t 3

〉
11. r(t) = 〈cos 2t, sin 3t〉 12. r(t) = 〈

e t, t, e−t
〉

Unit tangent vectors: Find the unit tangent vector for the given
function at the specified value of t.

13. r(t) = 〈
t, t 3

〉
, t = 2

14. r(t) = 〈3 sin 2t, 3 cos 2t〉, t = π

3

15. r(t) = 〈α sin βt, α cos βt〉, t = 0

16. r(t) = 〈t, 5 sin 3t, 5 cos 3t〉, t = π

6
17. r(t) = 〈t, 2t sin t, 2t cos t〉, t = π

18. r(t) = 〈t, α sin βt, α cos βt〉, t = 0

Principal unit normal vectors: Find the principal unit normal
vector for the given function at the specified value of t.

19. r(t) = 〈
t, t 3

〉
, t = 2

20. r(t) = 〈3 sin 2t, 3 cos 2t〉, t = π

3

21. r(t) = 〈α sin βt, α cos βt〉, where α and β are positive,
t = 0

22. r(t) = 〈t, 5 sin 3t, 5 cos 3t〉, t = π

6

23. r(t) = 〈t, 2t sin t, 2t cos t〉, t = π

24. r(t) = 〈t, α sin βt, α cos βt〉, t = 0

Binormal vectors and osculating planes: Find the binormal vector
and equation of the osculating plane for the given function at
the specified value of t.

25. r(t) = 〈
t, t 3

〉
, t = 2

26. r(t) = 〈3 sin 2t, 3 cos 2t〉, t = π

3

27. r(t) = 〈α sin βt, α cos βt〉, t = 0

28. r(t) = 〈t, 5 sin 3t, 5 cos 3t〉, t = π

6

29. r(t) = 〈t, 2t sin t, 2t cos t〉, t = π

30. r(t) = 〈t, α sin βt, α cos βt〉, t = 0

Osculating circles: Find the equation of the osculating circle to
the given function at the specified value of t.

31. r(t) = 〈
t, t 3

〉
, t = 2

32. r(t) = 〈3 sin 2t, 3 cos 2t〉, t = π

3

33. r(t) = 〈α sin βt, α cos βt〉, t = 0

Osculating circles: Find the center and radius of the osculating
circle to the given vector function at the specified value of t.

34. r(t) = 〈t, 5 sin 3t, 5 cos 3t〉, t = π

6

35. r(t) = 〈t, 2t sin t, 2t cos t〉, t = π

36. r(t) = 〈t, α sin βt, α cos βt〉, t = 0
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Osculating circles: Find the equation of the osculating circle to
the given scalar function at the specified point.

37. f (x) = x 2, (0, 0) 38. f (x) = cos x, (0, 1)

39. f (x) = e x, (0, 1) 40. f (x) = ln x, (1, 0)

Capstone Problems

A. A certain vector function r(t) has the properties that its
graph is a space curve passing through the point (4, −3, 6)
and that its derivative is r ′(t) = −2r(t). Find r(t).

B. Let y = f (x) be a twice-differentiable function.

(a) Carefully outline the steps required to find the equa-
tion of the osculating circle at an arbitrary point x 0 in
the domain of f .

(b) Write a program, using a computer algebra system
such as Maple, Mathematica, or Matlab, to animate
the osculating circle moving along the graph of the
function y = sin x.

C. Let r(t) = 〈
x(t), y(t), z(t)

〉
be a twice-differentiable func-

tion.
(a) Carefully outline the steps required to find the unit

tangent vector, principal unit normal vector, and
binormal vector at an arbitrary point t 0 in the domain
of r.

(b) Write a program, using a computer algebra system
such as Maple, Mathematica, or Matlab, to animate
the Frenet frame moving along the graph of the func-
tion r(t) = 〈cos t, sin t, t〉.

D. Suppose a small planet is orbiting the sun. Its position
relative to the center of the sun is given by some vector
function r = r(t). When we put Newton’s second law of
motion together with his law of gravitation, with the sun
at the origin, we find that the position of the planet at

time t satisfies
d 2r
dt2

= − GMr
r 3

, where G is the gravitational

constant, M is the mass of the sun, and r = ‖r‖. Define

u = r × dr
dt

. It turns out that u is a constant vector.

(a) Use the relation v1 × (v1 × v2) = −‖v1‖2v2 for or-
thogonal vectors v1 and v2 to show that

d 2r
dt 2

× u = GM
r

dr
dt

.

(b) Antidifferentiate the result of part (a), using the fact
that u is constant to show that

dr
dt

× u = GM
r
r

+ w

for some constant vector w.

(c) Since
dr
dt

× u is orthogonal to u and r is orthogonal

to u, it follows that w is orthogonal to u. If we let θ

denote the angle from w to r, then (r, θ ) represents
polar coordinates for the position of the planet in the
rw-plane. Use this fact and the relation

(v1 × v2) · v3 = v1 · (v2 × v3)

to show that

‖u‖2 = GMr + ‖w‖r cos θ.

(d) Convert the last expression in part (c) to Carte-
sian coordinates to conclude that the satellite’s orbit
around the planet is an ellipse (or circle) whenever
‖w‖ < GM. This is Kepler’s first law of planetary mo-
tion: Planets follow an elliptical path around the sun.
The law can be generalized to describe the orbit of
any relatively small body around a much larger body.
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Multivariable Functions
12.1 Functions of Two and Three Variables

Functions of Two Variables
Graphing a Function of Two Variables
Functions of Three Variables
Level Curves and Level Surfaces
Examples and Explorations

12.2 Open Sets, Closed Sets, Limits, and Continuity
Open Sets and Closed Sets
The Limit of a Function of Two or More Variables
The Continuity of a Function of Two or More Variables
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12.3 Partial Derivatives
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Higher Order Partial Derivatives
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12.4 Directional Derivatives and Differentiability
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Differentiability
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12.5 The Chain Rule and the Gradient
The Chain Rule
The Gradient
Using the Gradient to Compute the Directional Derivative
Examples and Explorations
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12.7 Lagrange Multipliers
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12.1 FUNCTIONS OF TWO AND THREE VARIABLES

� Functions of two and three variables

� The graphs of linear functions of two variables and surfaces of revolution

� Level curves and level surfaces

Functions of Two Variables

Recall that a function f : A → B is an assignment that associates to each element x of the
domain set A exactly one element f (x) of the codomain set B. Calculus is a tool that allows us
to analyze and understand functions. Thus far we have focused primarily on the following
types of functions:

� For the first third of this text, we studied primarily the calculus of functions for
which the sets A and B are subsets of the real numbers.

� When we studied sequences in Chapter 7, we insisted that the domain be the set
of natural numbers while the target set was usually a subset of the real numbers.

� The vector-valued functions we studied in Chapter 11 had domains that were sub-
sets of the real numbers and target sets that were subsets of R

n for a fixed value of
n ≥ 2.

We now turn our attention to functions whose domains are subsets of either R
2 or R

3 but
that have a target set that is a subset of the real numbers. We will first consider functions
whose domains are subsets of R

2 and soon discuss functions whose domains are sub-
sets of R

3. We refer to these as functions of two variables and functions of three variables,
respectively.

For example, consider the addition of two real numbers x and y. We may take addition
to be a function f : R

2 → R that uses the rule

f (x, y) = x + y.

Note that we already have a slight, but common, abuse of notation. Since we denote
elements of R

2 in one of the notations 〈x, y〉 or (x, y), perhaps we should write f (〈x, y〉)
or f ((x, y)); however, we use the simpler and more common notation f (x, y).

The order of the input variables x and y is significant in a function of two variables.
Consider the function g : R2 → R defined by the rule g(x, y) = 5x − y. For this function we
do not generally have g(a, b) = g(b, a). For example, g(1, 0) = 5 · 1 − 0 = 5 and g(0, 1) =
5 · 0 − 1 = −1. (When would we have g(a, b) = g(b, a)?)

As with functions whose domains are subsets of R, we often do not specify the domain
of a function when it is a subset of R

2. If the function is defined by an equation, we assume
that the domain is the largest subset of R

2 for which the equation is defined. The range of
a function of two variables is the set of possible outputs.

DEFINITION 12.1 The Domain and Range of a Function of Two Variables

If f is a function that takes an element from an unspecified subset of R
2 into R, then we

will take the domain of f to be the largest subset of R
2 for which f is defined:

Domain( f ) = {(x, y) ∈ R
2| f (x, y) is defined}.

The range of f is the set of all possible outputs of f . That is,

Range( f ) = {z ∈ R | there exists (x, y) ∈ Domain( f ) with f (x, y) = z}.
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For example, the domain of the function h(x, y) = √
xy consists of all points (x, y) ∈ R

2

such that the product xy ≥ 0. The latter is the case on the coordinate axes and when the
signs of x and y are the same (i.e., in the first and third quadrants). The range of h consists
of all nonnegative real numbers.

The domain of h(x, y) = √
xy

y

x

y

x

z

Graphing a Function of Two Variables

When we wish to analyze the behavior of a function, it is often helpful to understand the
graph of the function.

DEFINITION 12.2 The Graph of a Function of Two Variables

The graph of a function of two variables, f , is the collection of ordered triples whose first
two coordinates are in the domain of f . That is,

Graph( f ) = {(x, y, f (x, y)) ∈ R
3 | (x, y) ∈ Domain( f )}.

In other words the graph of a function of two variables is a particular subset of a three-
dimensional Cartesian coordinate system. Consider the first function we mentioned in this
chapter: f (x, y) = x + y. The graph of f is the subset of R

3 given by

Graph( f ) = {(x, y, x + y) | (x, y) ∈ R
2}.

If we let z = f (x, y) = x + y, we see that the graph of f consists of exactly those points in
the plane z = x + y.

The graph of f (x, y) = x + y

y

x

z

2

4

2

In Exercise 69 we ask you to prove that when a, b, and c are constants, the graph of the
function f (x, y) = ax + by + c is a plane.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:57

906 Chapter 12 Multivariable Functions

In Chapter 6 we discussed another type of surface that may be readily expressed by a
function of two variables. Recall that when we revolve the graph of a continuous function
f that exists on an interval [a, b], where 0 ≤ a < b, around the y-axis, we obtain a surface
of revolution. As a reminder, consider the surface we obtain when we revolve the graph of
the function f (x) = x 2, on the interval [0, 2], around the z-axis. Following are the graphs of
the function and the surface:

The function z = x 2 The surface of revolution z = x 2 + y 2

x

4

21

3

2

1

z

y
x

z

2

4

It is quite easy to express this surface as a function of two variables. When the interval
we are using is [a, b] with 0 ≤ a < b, we replace every occurrence of the variable x by the
quantity

√
x 2 + y 2 in the formula for the function and evaluate z = f (

√
x 2 + y 2 ). In our

simple example here we have z = (
√

x 2 + y 2 )2 = x 2 + y 2. We provide other examples in
the subsections that follow.

We will see that graphs of functions of two variables can be considerably more compli-
cated than graphs of functions of a single variable. As we progress through this chapter, we
will discuss limits, continuity, and differentiability for functions of two and three variables.
Understanding these concepts will enable us to analyze the functions more thoroughly. In
general, if a function of two variables is sufficiently well behaved, its graph will be a surface
in three-dimensional space R

3. The graph of the plane z = x + y is one such example. But
graphs of functions of two variables can be much more complicated. Here we see a graph
of a portion of the surface defined by the function f (x, y) = sin(xy):

The graph of f (x, y) = sin(xy)

y

x

z

Functions of Three Variables

We now turn our attention to functions of three variables (i.e., those functions whose do-
mains are subsets of R

3 and whose codomains are subsets of R). An example of a function
of three variables is given by the formula f (x, y, z) = xy + z − 7. As before, we usually do
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not specify the domain of a function when it is a subset of R
3. Rather, we assume that the

domain is the largest subset of R
3 for which the rule is defined. The range of a function of

three variables is the set of possible outputs of the function.

DEFINITION 12.3 The Domain and Range of a Function of Three Variables

If f is a function that takes an element from an unspecified subset of R
3 into R, then we

will take the domain of f to be the largest subset of R
3 for which f is defined:

Domain( f ) = {(x, y, z) ∈ R
3 | f (x, y, z) is defined}.

The range of f is the set of all possible outputs of f . That is,

Range( f ) = {w ∈ R | there exists (x, y, z) ∈ Domain( f ) with f (x, y, z) = w}.

For example, the domain of the function f (x, y, z) = √
xyz consists of all points (x, y, z) ∈

R
3 such that the product xyz ≥ 0. The latter is the case on the coordinate planes, in the

first octant (when x, y, and z are all positive), and in those octants where exactly one of the
signs of x, y, and z is the positive. The range of this function consists of all nonnegative real
numbers.

DEFINITION 12.4 The Graph of a Function of Three Variables

The graph of a function of three variables, f , is the collection of ordered quadruples
whose first three coordinates are in the domain of f . That is,

Graph( f ) = {(x, y, z, f (x, y, z)) ∈ R
4 | (x, y, z) ∈ Domain( f )}.

In other words the graph of a function of three variables is a particular subset of a
four-dimensional Cartesian coordinate system! Note that we are not providing even a sin-
gle example of the graph of a function of three variables here. We have mentioned that
the graph of a sufficiently well-defined function of two variables is a surface (basically a
two-dimensional object) in three-dimensional space R

3. The graph of even the simplest
function of three variables is a so-called hypersurface (three-dimensional object) existing
in four-dimensional space, R

4. Later in this section we will discuss how to use level sur-
faces to help visualize such objects, but it is often more efficient to try to understand them
by using the techniques of calculus and not try to sketch them.

Level Curves and Level Surfaces

A topographic map renders a portion of the surface of the Earth in a two-dimensional form:

0 11/2 2 3 4 5 km

Yepocapa
Acatenango

Meseta
Fuego

Quebrada Trinidad    

3300

3300
3100

3500

3500

3700

21
00

25
00

2100
2500

29
00

Barranca Honda
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The map shows the Fuego and Acatenango volcanic complexes in Guatemala. Each curve
on the map displays those points on the surface of these complexes that are at the same
elevation. For example, the curve marked 3100 displays the points on the surface at 3100
meters. Thus, if you walked along that curve, you would neither ascend nor descend as
you circumnavigated the volcanos. This topographic map gives us a way to understand the
surface of the indicated region in Guatemala, although the map itself is flat. We will use this
idea to help us understand functions of two variables. We make the following definition:

DEFINITION 12.5 Level Curves

Let f be a function of two variables and let c be a point in the range of f . The level curve
for f at height c is the curve in the plane with equation f (x, y) = c.

Thus, each point on the level curve is at the same height on the surface determined by
the function. The collection of level curves for a function of two variables, f , in effect, gives
us a topographic map for the surface of the graph of f . For example, consider f (x, y) =√

9 − (x 2 + y 2 ), a function of two variables. The range of f is the interval [0, 3]. If we choose
the values 0, 1, 2, and 3 for c, we have the equations

√
9 − (x 2 + y 2 ) = 0,

√
9 − (x 2 + y 2 ) = 1,

√
9 − (x 2 + y 2 ) = 2 and

√
9 − (x 2 + y 2 ) = 3.

The graphs of these four equations are the following level curves, although note that the
only point that satisfies the equation

√
9 − (x 2 + y 2) = 3 is the origin (0, 0):

Level curves for f (x, y) = √
9 − (x 2 + y 2 )

y

x

3

�3

�3

3

2

3

0
1

Now, if we stack these circles at the appropriate heights and interpolate similar circles
between them, we can envision the hemisphere that is the graph of f :

The graph of f (x, y) = √
9 − (x 2 + y 2 )

y

x

z

3

3
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As we mentioned earlier, the graph of a function of three variables is a four-dimensional
object. To aid our understanding of these functions, we can sometimes use level surfaces
analogous to the level curves we have defined.

DEFINITION 12.6 Level Surfaces

Let f be a function of three variables and let c be a point in the range of f . The level sur-
face for f at height c is the surface in three-dimensional space with equation f (x, y, z) = c.

We now consider an example quite similar to the one we just discussed. Let the function
g(x, y, z) = √

9 − (x 2 + y 2 + z 2 ). The range of g is the interval [0, 3]. We will find the level
surfaces for c = 0, 1, 2, and 3. When c = 0, we have 0 = √

9 − (x 2 + y 2 + z 2 ), or equiva-
lently, x 2 +y 2 +z 2 = 9. Thus, the level surface for c = 0 is a sphere of radius 3 and centered
at the origin. You may check that the level surface for c = 1 is the sphere of radius

√
8 and

centered at the origin; the level surface for c = 2 is the sphere of radius
√

5, also centered
at the origin; and the level ”surface” for c = 3 is the single point (0, 0, 0). We see that each
level surface of the graph of g is a sphere and that the radii of the level spheres get smaller
as c increases from 0 to 3. The level surfaces are concentric spheres centered at the origin.

Three level surfaces for g(x, y, z) = √
9 − (x 2 + y 2 + z 2 )

y

x

z

3

In fact, the graph of g is the “top” half of the hypersphere defined by the equation
w 2 + x 2 + y 2 + z 2 = 9. The spheres that are the level surfaces for g are analogous to the
circles that are the level curves for the function f we discussed before. Understanding the
geometry of a function with one fewer variable can help us understand the graph of a figure
that exists in a higher dimension.

Examples and Explorations

EXAMPLE 1 Understanding the basic properties of functions of two variables

For each of the following functions of two variables, evaluate the function at the given
values and find the domain and range of the function:

(a) f (x, y) = 3x − 4y + 5; (3, 4), (4, 3) (b) g(x, y) = x 2 − y 2

x
; (2, 5), (3, 0)

(c) h(r, s) = ln(2r + s)
2r + s

; (1, 0) , (0, e)

SOLUTION

(a) We first evaluate the function for the specified pairs of coordinates:

f (3, 4) = 3 · 3 − 4 · 4 + 5 = 9 − 16 + 5 = −2 and

f (4, 3) = 3 · 4 − 4 · 3 + 5 = 12 − 12 + 5 = 5.
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In particular, we note that the order of the coordinates is significant when we evaluate
this function. The domain of the function f (x, y) = 3x −4y+5 is R

2, since the function
is defined for every ordered pair in R

2. Finally, the range of f is R, because every real
number can be obtained (in infinitely many different ways). For example, if we let r

be an arbitrary nonzero real number, the ordered pair
(

r−5
3

, 0
)

has the property that

f
(

r−5
3

, 0
)

= r. Thus, the function f maps R
2 onto R.

(b) We evaluate the function g for the specified pairs of coordinates:

g(2, 5) = 2 2 − 5 2

2
= 4 − 25

2
= −21

2
and g(3, 0) = 3 2 − 0 2

3
= 3.

The domain of the function g is the set of all ordered pairs {(x, y) ∈ R
2 | x 	= 0}, since g

is defined for all ordered pairs except when x = 0. As with f , the range of g is R, because
every real number can be obtained as an output from g. For example, g(r, 0) = r and
g(r, r) = 0 for every nonzero real number r.

(c) Before we evaluate the function h for the specified pairs of coordinates, note that we
are using different letters to represent our variables, but h is just another function of
two variables. When we evaluate h for a particular coordinate pair, we assume that the
first value in the pair is the r-value and the second is the s-value, since we wrote the
function as h(r, s). Thus,

h(1, 0) = ln (2 · 1 + 0)
2 · 1 + 0

= ln 2
2

and h(0, e) = ln (2 · 0 + e)
2 · 0 + e

= 1
e
.

Because the domain of the natural logarithm is all positive real numbers, the domain
of the function h is the set of all ordered pairs {(r, s) ∈ R

2 | 2r + s > 0}, shown here:

The domain of h(r, s) = ln(2r + s)
2r + s

r

1

1

s

Finding the range of h is slightly more difficult. As an aid, we note that if we let
w = 2r+s, we may represent the function in the form h(w) = lnw

w
. Using the techniques

of single-variable calculus, you may show that this function has the following graph:

The graph of h(w) = ln w
w

w
4321

h(w)

�1
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It can be shown that the maximum of this function, 1/e, occurs when w = e and
that lim

w→0+
lnw
w

= −∞. Therefore the range of the function lnw
w

is (−∞, 1/e]. Since the

quantity 2r + s can take on any real value, this interval will also be the range of

h(r, s) = ln(2r+s)
2r+s

. �

EXAMPLE 2 Composing functions of two variables

Consider the functions

g(t) = t 3, h(t) = t 2 − 7, f (x, y) = x 2 − y, w(x, y) = x
y

, and r(t) = 〈sin t, cos t〉

For each of the following, simplify the expression or explain why it is not possible to eval-
uate that particular expression:

(a) f ( g(t)) (b) g( f (x, y)) (c) w( g(t), h(t)) (d) w(r(t)) (e) f (w(x, y))

SOLUTION

(a) This composition is not defined. The range of the function g is R, but the domain of f
is R

2.

(b) This composition is defined, and

g( f (x, y)) = g(x 2 − y) = (x 2 − y)3.

(c) This composition is also defined, and

w( g(t), h(t)) = g(t)
h(t)

= t 3

t 2 − 7
.

(d) The output of the vector function r is the ordered pair 〈sin t, cos t〉, so this composition
is defined and

w(r(t)) = sin t
cos t

= tan t.

(e) This composition is not defined. The range of the function w is a subset of R, but the
domain of f is R

2. �

EXAMPLE 3 Graphing surfaces of revolution

Sketch the surfaces formed when the graphs of the following functions on the specified
intervals are revolved around the z-axis:

(a) f (x) = x − 1 on the interval [0, 2] (b) g(x) = x 3 − x on the interval [−1, 0]

Also, find the equation for each surface as a function of two variables.

SOLUTION

We begin by noting that, for each function, we are considering the dependent variable to
be z. Thus the graph of the function f on the interval [0, 2] is a line segment, and the graph
of g on the interval [−1, 0] is a portion of the cubic function, both in the xz-plane.

(a) For our first function, since our interval is [0, 2], all we need to do to obtain the equa-
tion of the first surface of revolution as a function of two variables is to replace x with√

x 2 + y 2 in the formula for the function f and obtain

z = f
(√

x 2 + y 2

)
=
√

x 2 + y 2 − 1.
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The graphs of the function and the surface are as follows:

The function f (x) = x − 1 The surface of revolution z = √
x 2 + y 2 − 1

z

x

1

�1

21
y

x

z

2

1

�1

1

(b) For our second function, our interval is [−1, 0]. When we have an interval [a, b] with
a < b ≤ 0, we consider the function g(−x) on the interval [−b, −a] instead. Here we
have

g(−x) = ((−x) 3 − (−x)) = x − x 3 on [0, 1],

and we proceed as we did in part (a). To obtain the equation of the second surface of
revolution as a function of two variables, we replace the occurrences of x with

√
x 2 + y 2

in the formula for g(−x) and obtain

z = g
(
−
√

x 2 + y 2

)
= (x 2 + y 2)1/2 − (x 2 + y 2)3/2.

Here are the graphs of the functions and the surface:

The functions
g(x) on [−1, 0] and g(−x) on [0, 1]

The surface of revolution
z = (x 2 + y 2 )1/2 − (x 2 + y 2 )3/2

z

x
1�1

g(�x)g(x)

y

x

z

1

�

EXAMPLE 4 Drawing level curves

Let f (x, y) = − 8x
x2 + y2 + 1

. Sketch level curves f (x, y) = c for c = −3, −2, −1, 0, 1, 2, and 3.

SOLUTION

For each value of c, we will graph the set of points that are solutions of the equation
− 8x

x2 + y2 + 1
= c. We begin with c = 0. The equation − 8x

x2 + y2 + 1
= 0 holds exactly when

x = 0. Thus, the level curve here is the y-axis.
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Next, when c = 1, we have the equation

− 8x
x 2 + y 2 + 1

= 1.

The denominator of the function is never zero. Therefore, we obtain the equivalent equa-
tion −8x = x 2 + y 2 + 1 when we multiply both sides of the given equation by x 2 + y 2 + 1.
Then,

−8x = x 2 + y 2 + 1

x 2 + 8x + y 2 = −1 ← arithmetic

(x + 4)2 + y 2 = 15 ← completing the square

At this point we recognize that the level curve when c = 1 is the circle with radius
√

15 and
centered at (−4, 0). Nearly identical calculations reveal that the level curve when c = −1 is
given by the equation (x − 4)2 + y 2 = 15, whose graph is the circle with radius

√
15 and

centered at (4, 0).

The other level curves we wish to find are also circles. Similar calculations provide the
information in the following table:

c equation radius center

2 (x + 2)2 + y 2 = 3
√

3 (−2, 0)

−2 (x − 2)2 + y 2 = 3
√

3 (2, 0)

3
(

x + 4
3

)2
+ y 2 = 7

9

√
7

3

(
− 4

3
, 0
)

−3
(

x − 4
3

)2
+ y 2 = 7

9

√
7

3

( 4
3

, 0
)

Therefore, we have the following graph of the level curves:

Level curves for f (x, y) = − 8x
x 2 + y 2 + 1

x

y

1 �1

�22

�33

4

�4

�4

4

We may extend the analysis we used to obtain these level curves to find the range of the
function f . (See Exercise 8.)

Finally, the graph of f shown next was generated by a computer algebra system. The
breaks between the colors correspond to the level curves we just found. If you have access
to such a program, it can greatly aid your understanding of the graphs of functions of two
variables.
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y

y

x

x

z

f (x, y) = − 8x
x 2 + y 2 + 1

�

EXAMPLE 5 Understanding the basic properties of functions of three variables

For each of the following functions of three variables, evaluate the function at the given
values and find the domain and range of the function:

(a) f (x, y, z) = xyz + xy + z; (1, 2, 3) (b) g(x, y, z) = x 2 − y 2

x + z
; (−3, 2, 4)

(c) h(r, s, t) = ln(r + s + t)
r + s + t

; (e, e 2, −e)

SOLUTION

(a) We first evaluate the function for the specified triple of coordinates:

f (1, 2, 3) = 1 · 2 · 3 + 1 · 2 + 3 = 6 + 2 + 3 = 11.

The domain of the function f (x, y, z) = xyz + xy + z is R
3, since the function is defined

for every ordered triple in R
3. Finally, the range of f is R, because every real number

can be obtained (in infinitely many different ways). For example, let r be an arbitrary
real number, then the ordered triple (0, 0, r) has the property that f (0, 0, r) = r. Thus,
the function f maps R

3 onto R.

(b) We first evaluate the function g for the specified triple of coordinates:

g(−3, 2, 4) = (−3)2 − 2 2

−3 + 4
= 9 − 4

1
= 5.

The domain of the function g is the set of all ordered triples {(x, y, z) ∈ R
3 | x + z 	= 0},

since g is defined for all triples except when x + z = 0. That is, the domain of g consists
of all points in R

3 except those points on the plane defined by the equation x + z = 0.
The range of g is R, because every real number can be obtained as an output from g.
For example, if we let r be an arbitrary nonzero real number, the ordered pair (r, 0, 0)
has the property that g(r, 0, 0) = r.

(c) This function is quite similar to the function found in part (c) of Example 1. Thus, our
analysis will be quite similar. We have

h(e, e 2, −e) = ln(e + e 2 − e)
e + e 2 − e

= 2
e 2

.
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Since the domain of the natural logarithm is all positive real numbers, the domain
of the function h is the set of all ordered triples {(r, s, t) ∈ R

3 | r + s + t > 0}. That
is, the domain consists of all points in R

3 above the plane defined by the equation
r + s + t = 0.

As in part (c) of Example 1, the range of h(r, s, t) = ln(r+s+t)
r + s + t

is the interval
(−∞, 1/e].

�

TEST YOUR? UNDERSTANDING
� What is a function of two variables? What is a function of three variables? What is a

function of n variables?

� How do you determine the domain of a function of two or three variables? What is the
range of a function?

� Why is the graph of a linear function of two variables a plane?

� How many dimensions are required to sketch the graph of a function of two variables?
How many dimensions are required to sketch the graph of a function of three variables?

� What is a level curve? What is a level surface? How can level curves be used to un-
derstand a function of two variables? How can level surfaces be used to understand a
function of three variables?

EXERCISES 12.1

Thinking Back

� The definition of a function: Explain why Definition 0.1 is
general enough to include functions of two and three
variables.

� The domain and range of a function of two variables: Ex-
plain why Definition 0.2 is not general enough to de-
fine the domain or range of a function of two or three
variables.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The domain of a function of two vari-
ables is a subset of R

2.
(b) True or False: The range of a function of two variables

is a subset of R
2.

(c) True or False: The graph of a function of two variables
is a subset of R

3.
(d) True or False: The domain of a function of three vari-

ables is a subset of R.
(e) True or False: The range of a function of three variables

is a subset of R.
(f) True or False: The graph of a function of three variables

is a subset of R
4.

(g) True or False: The graph of a linear function of two
variables is a plane.

(h) True or False: If a function f : R → R is continuous
on an interval [0, p] then the surface formed when
the graph of f is rotated about the y-axis may be
expressed as a function of two variables.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function of two variables whose graph is a plane.
(b) A function of two variables whose graph is the surface

of revolution formed when the graph of a function of
a single variable is revolved around the y-axis.

(c) A function of two variables for which each level curve
is a parabola.

3. Let f : R → R be a function of a single variable. Explain
why the graph of f is a subset of R

2.
4. Let f : R

2 → R be a function of two variables. Explain
why the graph of f is a subset of R

3.

5. Let f : R
3 → R be a function of three variables. Explain

why the graph of f is a subset of R
4.
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6. (a) Graph f (x) = x.

(b) Graph the function f (x, y) = x + y. Explain why the
graph of f (x, y) = x + y contains the origin, (0, 0, 0).

(c) The graph of the function

f (x, y, z) = x + y + z

is a hyperplane of dimension 3 in R
4. Explain why

“hyperplane” is a good name for the graph. (“Hy-
per” is from a Greek word meaning over or beyond.
The Latin equivalent is super, meaning essentially the
same thing.) Explain why the graph of f contains the
origin, (0, 0, 0, 0).

(d) Fill in the blanks: The graph of the function
f (x 1, x 2, . . . , x n) = x 1 + x 2 + · · · + x n is a hyperplane
of dimension in .

7. (a) Graph the function f (x) = √
1 − x 2.

(b) Graph the function f (x, y) = √
1 − x 2 − y 2. (Hint: Let

z = √
1 − x 2 − y 2, and then square both sides of the

equation.)

(c) The graph of the function

f (x, y, z) =
√

1 − x 2 − y 2 − z 2

is half of a hypersphere of dimension 3. Explain why
“hypersphere” is a good name for the graph and why
the graph is only half of the hypersphere. What equa-
tion defines the entire hypersphere?

(d) Fill in the blanks: The graph of the function

f (x 1, x 2, . . . , x n) =
√

1 − x 2
1 − x 2

2 − · · · − x 2
n is half of

a of dimension in .

8. Find the range of the function f (x, y) = − 8x
x2 + y2 + 1

from

Example 4 by finding the largest value, M, and smallest
value, m, of c for which the equation

− 8x
x 2 + y 2 + 1

= c

has a solution. (Hint: Find the two values for c such that the
level “curves” are a single point. Then show that the given
equation has a solution for every value of c between those two
values.)

9. Let z = f (x, y) be a function of two variables. Explain why
the two sets {(x, y) | (x, y, z) ∈ Graph( f )} and Domain( f )
are identical.

10. Let z = f (x, y) be a function of two variables. Explain why
the two sets {z | (x, y, z) ∈ Graph( f )} and Range( f ) are
identical.

11. Let w = f (x, y, z) be a function of three variables. Explain
why the two sets {(x, y, z) | (x, y, z, w) ∈ Graph( f )} and
Domain( f ) are identical.

12. Let w = f (x, y, z) be a function of three variables. Ex-
plain why the two sets {w | (x, y, z, w) ∈ Graph( f )} and
Range( f ) are identical.

In Exercises 13–21, provide a rough sketch of the graph of a
function of two variables with the specified level “curve(s).”
(There are many possible correct answers to each question.)

13. One level curve consists of a single point.
14. One level curve consists of exactly two points.
15. One level curve is a circle together with the point that is

the center of the circle.
16. One level curve consists of all the points (m, n) where m

and n are both integers.

17. All of the level curves are circles except one, which is a
point.

18. All of the level curves are circles.

19. Some level curves consist of two concentric circles.
20. Some level curves consist of infinitely many concentric

circles.

21. All of the level curves are squares.

Skills

In Exercises 22–28, evaluate the given function at the specified
points in the domain, and then find the domain and range of
the function.

22. f (x, y) = x 2y 3,
( 1

2
,

4
3

)
, (0, π )

23. f (x, y) = x 2 − y 2, (1, 5), (−3, −2)

24. g(x, y) = x 2 + y 2

x + y
, (π , 1), (4, 5)

25. g(x, y) = ln(xy)√
1 − x

, (−e, −1),
( 1

2
, 2
)

26. f (x, y) = sin(x − y)
x − y

, (0, π ),
(

π

2
,
π

3

)

27. f (x, y, z) = x 2 + y 2 + z 2, (1, 0, −5),
( 1

2
, −1,

1
3

)

28. f (x, y, z) = x + y + z
xyz

, (1, −2, 6), (−3, −2, 4)

In Exercises 29–36, let

g 1(t) = sin t, g 2(t) = cos t, g 3(t) = 1 − t,

f 1(x, y) = x 2 + y 2, f 2(x, y) = x 2

y 2
, f 3(x, y, z) = x + y

y + z
,

r 1(t) = 〈1 + t, t − 1〉, r 2(t) = 〈t, t 2, t 3〉.
Either simplify the specified composition or explain why the
composition cannot be formed.

29. f 1( g 1(t), g 2(t)) 30. g 1( f 1(x, y), f 2(x, y))

31. g 1( g 2(t)) 32. f 1(r 1(t))

33. f 3( g 2(t), g 1(t), g 3(t)) 34. f 1( f 2(x, y), f 3(x, y, z))
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35. r 2( g 3(t)) 36. r 2( f 3(x, y, z))

In Exercises 37–42, sketch the surface of revolution formed
when the given function on the specified interval is revolved
around the z-axis and find a function of two variables with the
surface as its graph.

37. f (x) = x, [0, 3] 38. f (x) = √
x, [0, 4]

39. f (x) = x 2, [0, 2] 40. f (x) = x 3/2, [0, 1]

41. f (x) = sin x,
[
0,

π

2

]
42. f (x) = cos x,

[
0,

π

2

]

In Exercises 43–52, sketch the level curves c = −3, −2, −1, 0,
1, 2, 3 if they exist for the specified function.

43. f (x, y) = x + y 44. f (x, y) = 3x
y

45. f (x, y) = 3x
y 2

46. f (x, y) = √
xy

47. f (x, y) = 4 − (x 2 + y 2) 48. f (x, y) = x 2 − y 2

49. f (x, y) = sin(x + y) 50. f (x, y) = cos(xy)

51. f (x, y) = y csc x 52. f (x, y) = y sec x

In Exercises 53–58, determine the level surfaces c = −3, −2,
−1, 0, 1, 2, 3 if they exist for the specified function.

53. f (x, y, z) = x + 2y + 3z 54. f (x, y, z) = −2x − y + 4z

55. f (x, y, z) = x
y − z

56. f (x, y, z) = x 2 + y 2

z

57. f (x, y, z) = x 2 + y 2 + z 2

58. f (x, y, z) = √
1 − (x 2 + y 2 + z 2)

In Exercises 59–62, match the given function of two variables
with the surfaces in Figures I–IV and with the level curves in
Figures A–D. Make sure you explain your reasoning.

59. f (x, y) = x 2 − y 2

60. f (x, y) = e−(x+1)2−( y+1)2 + e−(x−1)2−( y−1)2

61. f (x, y) = e−x 2 + e−y 2

62. f (x, y) = sin x + sin y

I II

y

x

z

y

x

z

III IV

y

x

z

y

x

z

A B
y

x x

y

C D

x

y

x

y

63. We may express the volume of a right circular cylinder by
using the function of two variables, V(r, h) = πr 2h, where
r is the radius of either end of the cylinder and h is the
height of the cylinder. What is the domain of the func-
tion V(r, h)? Express the surface area, S, of a cylinder as a
function of variables r and h.

64. Express the volume, V , and surface area, S, of a right cir-
cular cone with radius r and height h as functions of two
variables. What is the domain of each function?

65. Express the volume, V , and surface area, S, of a rectangu-
lar parallelepiped (i.e., a box) with side lengths x, y, and
z as functions of three variables. What is the domain of
each function?

66. Express the formulas for converting from polar coordi-
nates to rectangular coordinates found in Section 9.2 as
functions of two variables. What is the domain of each
function?
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Applications
67. Leila has been gathering data on the population den-

sity of caribou in a valley of the Selkirk Range in British
Columbia, Canada. In winter, the caribou stay close to
the bottom of the valley. Leila models the population for
February with the function

pF(x, y) = 13e−( y+0.5x−2)2
e−0.2(x−1)2

,

where x and y are measured in miles from the center of
the valley.

(a) Where are the caribou most likely to be found?
(b) During the summer, there is a stream in the valley.

What is a vector in the direction of the stream?

68. Emmy is still trying to track down a leak in her Hanford
tank farm. She has modeled the depth of a layer of basalt
under the farm as a plane, but she has come to realize
that there is a joint in the basalt that drops the level by a
foot north of the curve with equation x = 50 + 0.3y1.25.
Thus, her model for the basalt layer is now

b(x, y) = −40 − 1
350

x + 1
725

y − u(x − 50 + 0.3y1.25),

where u is the unit step function. The toxic solution must
flow along the impenetrable layer of basalt. What is the
route of its flow, and what is a vector giving the direction
of its flow at any point?

Proofs

69. For constants a, b, and c, a function of two variables of the
form f (x, y) = ax + by + c is called a linear function of
two variables. Show that the graph of the linear func-
tion f (x, y) = ax + by + c is a plane with normal vector
〈a, b, −1〉 containing the point (0, 0, c).

70. Let z = f (x, y) be a function of two variables. Prove that
when c1 	= c 2, the level curves defined by the equations
f (x, y) = c1 and f (x, y) = c 2 do not intersect.

71. Let z = f (x, y) be a function of two variables. Prove that if
the level curves defined by the equations f (x, y) = c1 and

f (x, y) = c 2 intersect, then the curves are identical. (Hint:
See Exercise 70.)

72. Let w = f (x, y, z) be a function of three variables. Prove
that when c1 	= c 2, the level surfaces defined by the equa-
tions f (x, y, z) = c1 and f (x, y, z) = c 2 do not intersect.

73. Let w = f (x, y, z) be a function of three variables. Prove
that if the level surfaces defined by the equations
f (x, y, z) = c1 and f (x, y, z) = c 2 intersect, then the sur-
faces are identical. (Hint: See Exercise 72.)

Thinking Forward

� A kind of derivative for a function of two variables: Ex-

plain why the derivative of the function
3x
y4

is
3
y4

if x is

the variable and y is a constant and is − 12x
y5

if y is the

variable and x is a constant. What is the derivative if
both x and y are constants?

� A kind of derivative for a function of three variables: Ex-
plain why the derivative of the function xe−4z sin y is
e−4z sin y if x is the variable and y and z are constants,
and the derivative is xe−4z cos y if y is the variable and x
and z are constants, and the derivative is −4xe−4z sin y
if z is the variable and x and y are constants. What is
the derivative if x, y, and z are all constants?
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12.2 OPEN SETS, CLOSED SETS, L IMITS, AND CONTINUITY

� Open sets and closed sets

� The limit for a function of two or more variables

� The continuity of functions of two or more variables

Open Sets and Closed Sets

The tools of calculus introduced in Chapters 1 and 2 allow us to analyze functions of a
single variable. The definitions of the limit, continuity, and differentiability require that
our functions be defined on an open interval. Some theorems, such as the Extreme Value
Theorem, require that our functions be defined on a closed interval. To understand these
concepts for functions of two and three variables, we will spend the next few pages defining
terms like open sets, closed sets, and bounded sets. It may be helpful to review the basic calculus
concepts and theorems you studied in those earlier chapters before proceeding through this
section.

We first define the following:

DEFINITION 12.7 Open Disks and Open Balls

Let ε > 0.

(a) Let (x 0, y 0) ∈ R
2. A subset of R

2 of the form

{(x, y) | (x − x 0)2 + ( y − y 0)2 < ε}
is said to be an open disk in R

2.

(b) Let (x 0, y 0, z 0) ∈ R
3. A subset of R

3 of the form

{(x, y, z) | (x − x 0)2 + ( y − y 0)2 + (z − z 0)2 < ε}
is said to be an open ball in R

3.

Thus, an open disk is a subset of R
2 contained within a circle, not including the points on

the circumference of the circle. Similarly, an open ball is a subset of R
3 contained within a

sphere, not including the points on the surface of the sphere.

An open disk in R
2 An open ball in R

3

y

x

z

x
y

These basic objects allow us to define open sets in R
2 and R

3.
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DEFINITION 12.8 Open Sets in R
2 and R

3

(a) A subset S of R
2 is said to be open if, for every point (x, y) ∈ S, there is an open

disk D such that (x, y) ∈ D ⊆ S.

(b) A subset S of R
3 is said to be open if, for every point (x, y, z) ∈ S, there is an open

ball B such that (x, y, z) ∈ B ⊆ S.

A set S in the plane is open if, for every point in S, there
is an open disk that both contains the point and is a subset of the set S

The following four examples illustrate the definition of an open set in R
2 (consider the

analogous examples in R
3):

1. Every open disk is itself an open set. For example, the unit open disk
U = {(x, y) | x 2 + y 2 < 1}

is an open set because, for every point (x, y) in U, there is another smaller, open disk
D such that (x, y) ∈ D ⊆ U.

The unit disk U = {(x, y) | x 2 + y 2 < 1} is an open set

y

x

1

�1

�1 1

2. If we let W be the unit disk together with any point on the circumference of the circle,
say, (1, 0), then the set W will not be an open set. That is,

W = {(x, y) | x 2 + y 2 < 1} ∪ {(1, 0)}.
The point (1, 0) is in W , so this set is not open, because there is no open disk containing
(1, 0) that is a subset of W .

The set W = {(x, y) | x 2 + y 2 < 1} ∪ {(1, 0)} is not an open set

y

x

1

�1

�1 1
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3. Similarly, if we let U = {(x, y) | x 2 + y 2 ≤ 1}, our set includes all points inside and on
the circumference of the unit circle. Like the set W , this set is also not open.

4. The empty set, denoted by ∅, contains no elements and is a subset of every set. As a
subset of R

2, the empty set is open, since it vacuously satisfies Definition 12.8 (a).

DEFINITION 12.9 The Complement of a Set in R
2 and R

3

(a) Let A be a subset of R
2. The complement of A, denoted Ac, is the set

Ac = {(x, y) ∈ R
2 | (x, y) /∈ A}.

(b) Let A be a subset of R
3. The complement of A, denoted Ac, is the set

Ac = {(x, y, z) ∈ R
3 | (x, y, z) /∈ A}.

That is, the complement of a set A is the set of all points not in A. For example, the com-
plement of the unit disk U = {(x, y) | x 2 + y 2 < 1} is the set Uc = {(x, y) | x 2 + y 2 ≥ 1}.

The complement of the unit disk in R
2

y

x

1

�1

�1 1

We ask you to prove the following theorem in Exercise 63:

THEOREM 12.10 The Complement of the Complement of a Set Is the Original Set

If S is a subset of R
2 or R

3, then (S c)c = S.

We use the idea of the complement of a set to define a closed set.

DEFINITION 12.11 Closed Sets in R
2 and R

3

A subset S of R
2 or R

3 is said to be closed if its complement, S c, is open.

For example, the set Uc = {(x, y) | x 2 +y 2 ≥ 1} is a closed set because it is the complement
of the open set U = {(x, y) | x 2 + y 2 < 1}. Note that a set is not closed just because it is
not open. Later, in Example 1, we will show that the set {(x, y) | x ≥ 0 and y > 0} is neither
open nor closed. In that respect, this set is similar to a half-open, half-closed interval like
[0, 1).

We ask you to prove the following theorem in Exercise 64:

THEOREM 12.12 The Complement of a Closed Set Is an Open Set

If S is a closed subset of R
2 or R

3, then S c is an open set.

We now define the boundary of a set.
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DEFINITION 12.13 The Boundary of a Subset of R
2 or R

3

(a) Let A be a subset of R
2. A point (x, y) is said to be a boundary point of A if every

open disk containing (x, y) in R
2 intersects both A and Ac.

(b) Let A be a subset of R
3. A point (x, y, z) is said to be a boundary point of A if every

open ball containing (x, y, z) in R
3 intersects both A and Ac.

The set of all boundary points of a set A is called the boundary of A and is denoted
by ∂A.

The boundary of the unit disk U = {(x, y) | x 2 + y 2 < 1} consists exactly of the points
on the unit circle. That is, ∂U = {(x, y) | x 2 + y 2 = 1}.

Every open disk containing a point on the unit circle intersects both U and Uc

y

Uc

U
x

1

�1

�1 1

U

There are many interesting theorems about open and closed sets in R
2 and R

3. We ask
you to prove several of these in the exercises.

Recall that we have already defined what it means for a function to be bounded. We
now define what it means for a set to be bounded.

DEFINITION 12.14 Bounded Subsets of R
2 and R

3

(a) A subset A of R
2 is said to be bounded if A is a subset of some open disk D in R

2.

(b) A subset A of R
3 is said to be bounded if A is a subset of some open ball B in R

3.

A subset of R
2 or R

3 that is not bounded is said to be unbounded.

For example, the set A in the following figure is bounded, while the set consisting of
the coordinate axes in R

2 or R
3 is unbounded.

A is a bounded set The points on the coordinate axes form an unbounded set

A x

y

Now that we have set forth these preliminary definitions, after a brief review of the
definition of the limit of a function of a single variable, we will be ready to define the limit
of a function of two or three variables.
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The Limit of a Function of Two or More Variables

Recall that for a function, f , of a single variable, we defined lim
x→a

f (x) = L if, for every ε > 0,

there is a δ > 0 such that | f (x) − L| < ε whenever 0 < |x − a| < δ. The definition makes
precise the informal idea that a function f has a limit L at a point a if the output values of
f are “close to” L for values of the input variable x that are “close to” a. We will use this
definition as a model to define the limit for functions of two and three variables. Before
we get to the new definition, however, note that the definition of the limit implies that
the function f be defined on a punctured open interval. In Exercise 7 we ask how this is
accomplished.

There is very little that needs to be changed in the definition of a limit for a function
of a single variable to form a definition for the limit of a function of two or three variables.
Certainly the types of domains are different: The domain of a function of two variables
consists of a set of ordered pairs, and the domain of a function of three variables consists
of a set of ordered triples.

DEFINITION 12.15 The Limit of a Function of Two or More Variables

Let f be a function of two or more variables. The limit of f at a is L if, for every ε > 0,
there is a δ > 0 such that | f (x)−L| < ε whenever 0 < ‖x−a‖ < δ. In this case we write
lim
x→a

f (x) = L.

In the case where f is a function of two variables, we may let x = 〈
x, y
〉

and a = 〈a, b〉,
therefore lim

x→a
f (x) = L means that for every ε > 0, there is a δ > 0 such that

| f (x, y) − L| < ε whenever 0 <

√
(x − a)2 + ( y − b)2 < δ.

Similarly, if f is a function of three variables, we may let x = 〈
x, y, z

〉
and a = 〈a, b, c〉. Here,

lim
x→a

f (x) = L means that for every ε > 0, there is a δ > 0 such that

| f (x, y, z) − L| < ε whenever 0 <

√
(x − a)2 + ( y − b)2 + (z − c)2 < δ.

The vector notation of Definition 12.15 can be used in place of the preceding two
expanded statements. We will use the more succinct notation when appropriate.

Limits of combinations of functions of two or three variables obey the same types of
algebraic properties we saw for limits of functions of a single variable in Chapter 1.

THEOREM 12.16 Rules for Calculating Limits of Combinations

If lim
x→a

f (x) and lim
x→a

g(x) exist, then the following rules hold for their combinations:

Constant Multiple Rule: lim
x→a

kf (x) = k lim
x→a

f (x) for any real number k.

Sum Rule: lim
x→a

( f (x) + g(x)) = lim
x→a

f (x) + lim
x→a

g(x).

Difference Rule: lim
x→a

( f (x) − g(x)) = lim
x→a

f (x) − lim
x→a

g(x).

Product Rule: lim
x→a

( f (x)g(x)) = (
lim
x→a

f (x)
)(

lim
x→a

g(x)
)
.

Quotient Rule: lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
, if lim

x→a
g(x) 	= 0.
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Another important theorem concerning limits of functions of a single variable
has an analog for functions of two or more variables. Theorem 1.8 tells us that the func-
tion f : R → R has the two-sided limit lim

x→a
f (x) = L if and only if the two one-sided limits

lim
x→a+

f (x) and lim
x→a−

f (x) are both equal to L. Before we state the analogous theorem for func-

tions of two or more variables, we define what we mean by the limit of a function of two
or more variables along a path.

DEFINITION 12.17 The Limit of a Function of Two or Three Variables Along a Path

(a) Let f be a function of two variables defined on an open set S ⊆ R
2. If the graph of

the continuous vector function
〈
x(t), y(t)

〉
is a curve C ⊂ S such that lim

t→t 0

〈
x(t), y(t)

〉 =
〈a, b〉, then we define the limit of f as (x, y) approaches (a, b) along C, denoted by

lim
(x,y)→(a,b)

C

f (x, y), to be lim
t→t 0

f (x(t), y(t)).

(b) Let f be a function of three variables defined on an open set S ⊆ R
3. If the

graph of the continuous vector function
〈
x(t), y(t), z(t)

〉
is a curve C ⊂ S such that

lim
t→t 0

〈
x(t), y(t), z(t)

〉 = 〈a, b, c〉, then we define the limit of f as (x, y, z) approaches

(a, b, c) along C, denoted by lim
(x,y,z)→(a,b,c)

C

f (x, y, z), to be lim
t→t 0

f (x(t), y(t), z(t)).

The following schematic illustrates three such curves containing a point (a, b) in an open
subset of R

2.

C1

S C3

C2

(a, b)

THEOREM 12.18 The Limit of a Function of Two or More Variables Along Distinct Paths

Let f be a function of two or more variables defined on an open set S. Then the limit
lim
x→a

f (x) = L exists if and only if lim
x→a

C

f (x) = L for every path C containing the point (a, b).

Given an open set S containing a point a, there are infinitely many paths containing
a that are also contained in S. Thus, it is impractical to prove that a limit of two or more
variables exists by showing that the limit of the function along each path is the same. The-
orem 12.18 is usually applied when the limit does not exist and we can find two distinct
paths C1 and C2 such that

lim
x→a

C1

f (x) 	= lim
x→a

C2

f (x).

For example, consider the function f (x, y) = xy
x2 + y2

. We will show that lim
(x,y)→(0,0)

f (x, y) does

not exist by evaluating the limit along two paths containing the origin and getting different
values. First consider the limit along the x-axis (i.e., when y = 0):

lim
(x,y)→(0,0)

x-axis

f (x, y) = lim
(x,y)→(0,0)

x-axis

xy
x 2 + y 2 = lim

x→0

x · 0
x 2 + 0

= lim
x→0

0 = 0.
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However, along the line y = x,

lim
(x,y)→(0,0)

y=x

f (x, y) = lim
(x,y)→(0,0)

y=x

xy
x 2 + y 2 = lim

x→0

x · x
x 2 + x 2 = lim

x→0

x 2

2x 2 = lim
x→0

1
2

= 1
2
.

Since the two limits do not agree, it follows from Theorem 12.18 that lim
(x,y)→(0,0)

f (x, y) does

not exist.

The Continuity of a Function of Two or More Variables

Recall that if f is a function of a single variable, f is said to be continuous at a point a in the
domain of f if lim

x→a
f (x) = f (a). We will define what it means for a function of two or more

variables to be continuous at a point in its domain with an analogous definition.

DEFINITION 12.19 The Continuity of Functions of Two or Three Variables

Let f be a function of two or three variables defined on an open set S, and let a be a
point in S. Then f is continuous at a if lim

x→a
f (x) = f (a).

Also, f is continuous on S if f is continuous at every point a ∈ S.

If the domain of f is R
2 or R

3 and f is continuous at every point in its domain, then f is
continuous everywhere.

Since continuity is defined in terms of a limit, it follows that sums, differences, and products
of continuous functions will also be continuous. In addition, quotients will be continuous
as long as we do not divide by zero. Most of the functions we work with on a regular basis
are continuous at every point in their domains. For example, the function f (x, y) = xy

x2 +y2
we

discussed just after Theorem 12.18 is continuous at every point in its domain. This domain
is the set of all points in R

2 except the origin, so if a and b are not both zero, we will have

lim
(x,y)→(a,b)

xy
x 2 + y 2 = ab

a 2 + b 2 .

This function is discontinuous at the origin for two reasons: The function is not defined at
the origin, and lim

(x,y)→(0,0)

xy
x2 +y2

does not exist.

Examples and Explorations

EXAMPLE 1 Understanding open sets, closed sets, and boundaries

For each of the following subsets of R
2, determine whether the set is open, closed, or

neither open nor closed. Find the boundary of each set as well.

(a) S 1 = {(x, y) ∈ R
2 | x ≥ 0} (b) S 2 = {(x, y) ∈ R

2 | y 	= 0}
(c) S 3 = {(x, y) ∈ R

2 | x ≥ 0 and y > 0}

SOLUTION

(a) The set S1 is the right half-plane. The complement of S 1 is S c
1 = {(x, y) ∈ R

2 | x < 0}.
Any point (a, b) with a < 0 is in S c

1. The open ball B1 = {(x, y) | (x−a)2 +( y−b)2 < a 2}
contains (a, b) and is a subset of S c

1. Therefore, S c
1 is an open set. Its complement

(S c
1)c = S 1 is a closed set. The boundary of S 1 is the y-axis, since every open ball
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containing a point on the y-axis contains points of both S 1 and S c
1 but points off the

y-axis do not share this property. The following figure is illustrative:

The set S 1 is closed because S c
1 is open

x

y

S1

S1
C

(a,b)(a,b)

(b) The set S2 consists of all points in the plane, except for those on the x-axis. We will
show that this set is open. If we choose the point (a, b) ∈ S 2, then b 	= 0. The open ball
B2 = {(x, y) | (x − a)2 + ( y − b)2 < b 2} contains (a, b) and is a subset of S 2 whether
b > 0 or b < 0. (In the illustration that follows, b < 0.) Therefore, S 2 is an open
set. The boundary of S 2 is the x-axis, since every open ball containing a point on the
x-axis contains points of both S 2 and S c

2 but points not on the x-axis do not share this
property.

The set S 2 is open

x

y

S2

(a, b)

(c) The set S3 consists of all points in the first quadrant, along with those points on the
positive y-axis. We will show that S 3 is neither open nor closed. S 3 is not open because,
although (0, 1) ∈ S 3, we cannot find an open ball containing (0, 1) that is also a subset
of S 3, since every open ball containing (0, 1) contains points of both S 3 and S c

3. To
show that S 3 is not closed, we will show that S c

3 is not open. Although (1, 0) ∈ S c
3,

every open ball that contains (1, 0) intersects both S 3 and S c
3. Therefore, S 3 is neither

open nor closed. The boundary of S 3 is ∂S 3 = {(x, 0) | x ≥ 0} ∪ {(0, y) | y ≥ 0}.
The set S 3 is neither open nor closed

x

1

1

y

S3
1

1

�
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EXAMPLE 2 Evaluating limits of functions of two and three variables

Evaluate the limits:

(a) lim
(x,y,z)→(2,−2,3)

(xy 2 + 4xyz) (b) lim
(x,y)→(0,0)

x 2y 3 + 5xy − 3
x + y − 1

(c) lim
(x,y)→(0,3)

(sin x)(cos y)
e x y − 2

SOLUTION

(a) The function in the first limit is a polynomial function of three variables. Just as poly-
nomials of a single variable are continuous for every real number, polynomials of two
variables are continuous for every point in R

2 and polynomials of three variables are
continuous for every point in R

3. Therefore, to determine the limit, we may evaluate
the function f (x, y, z) = xy 2 + 4xyz at (2, −2, 3). We obtain

lim
(x,y,z)→(2,−2,3)

(xy 2 + 4xyz) = 2(−2)2 + 4 · 2(−2)3 = −40.

(b) Similarly, rational functions of two or three variables are also continuous where they

are defined. The values where the second function g(x, y) = x2y3 +5xy−3
x+y−1

is discontinu-

ous are those points where the denominator is zero, namely, all points along the line
defined by the equation x + y = 1. Since the origin does not satisfy this equation, the
function g is continuous at (0, 0). Therefore,

lim
(x,y)→(0,0)

x 2y 3 + 5xy − 3
x + y − 1

= 0 203 + 5 · 0 · 0 − 3
0 + 0 − 1

= 3.

(c) Since the function in our final limit is an algebraic combination of the sine, cosine,
and exponential functions, all of which are transcendental functions, it will also be
continuous where it is defined. The points where the function h(x, y) = (sinx)(cosy)

e x y −2
will

be discontinuous will be the solutions of the equation e x y = 2, or equivalently, points

on the hyperbola defined by the equation y = ln2
x

. The point (0, 3) does not satisfy this

equation, so the function h is continuous at (0, 3). Therefore,

lim
(x,y)→(0,3)

(sin x)(cos y)
e x y − 2

= (sin 0)(cos 3)
e 0·3 − 2

= 0.
�

EXAMPLE 3 Showing that a limit does not exist

Explain why lim
(x,y)→(6,3)

x2 +xy−6y2

x2 − 4y2
does not exist.

SOLUTION

The function f (x, y) = x2 +xy−6y2

x2 − 4y2
is a rational function of two variables, but the point (6, 3)

is not in the domain of f because the polynomial that forms the denominator of f evaluates
to 0 at (6, 3). However, the numerator also evaluates to 0 at that point. Thus, this limit is
an indeterminate form of the type 0

0
. As we did with rational functions of a single variable,

we may try to simplify the quotient, so that we may use a multivariable version of the

Cancellation Theorem to evaluate the limit. Since x2 +xy−6y2

x2 − 4y2
= (x−2y)(x+3y)

(x − 2y)(x + 2y)
, we have

lim
(x,y)→(6,3)

x 2 + xy − 6y 2

x 2 − 4y 2 = lim
(x,y)→(6,3)

(x − 2y)(x + 3y)
(x − 2y)(x + 2y)

.

Now, we are tempted to cancel the common factor that occurs in the numerator and de-
nominator and say that

lim
(x,y)→(6,3)

(x − 2y)(x + 3y)
(x − 2y)(x + 2y)

= lim
(x,y)→(6,3)

x + 3y
x + 2y

.
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However, the equality between the two limits is not valid. There is an analog to the Can-
cellation Theorem for limits of functions of more than one variable, but the analog would
apply only when the cancellation of factors introduces a single point into the domain

of the reduced function. In our example, although the functions f (x, y) = x2 +xy−6y2

x2 − 4y2
and

g(x, y) = x+3y
x + 2y

are equivalent when x 	= 2y, they are not equivalent for points on the line

x = 2y. However, Definition 12.15 requires that, for lim
(x,y)→(a,b)

f (x, y) to exist, the function f

must be defined on an open set containing the point (a, b), with the possible exception that

f does not have to be defined at the point (a, b) itself. Thus, although lim
(x,y)→(6,3)

x+3y
x + 2y

= 5
4

, we

cannot conclude that our original limit has the same value. The function f (x, y) = x2 +xy−6y2

x2 − 4y2

is undefined along the line defined by x = 2y, and thus f is undefined for infinitely many

points in every open set containing the point (6, 3). Therefore lim
(x,y)→(6,3)

x2 +xy−6y2

x2 − 4y2
does not

exist.

However, if C is any curve in the plane that intersects the line x = 2y only at the point
(6, 3), then

lim
(x,y)→(6,3)

C

x 2 + xy − 6y 2

x 2 − 4y 2 = lim
(x,y)→(6,3)

x + 3y
x + 2y

= 5
4
.

�

EXAMPLE 4 Evaluating limits along paths

Show that lim
(x,y)→(0,0)

x2y
x4 + y2

does not exist by evaluating the limit along the curves defined

by the parabolas y = mx 2.

SOLUTION

In Exercise 13 you will show that

lim
(x,y)→(0,0)

C

x 2y
x 4 + y 2 = 0

when C is either the x- or y-axis. However, the fact that these limits exist and agree is not
enough to conclude that the limit is zero. When we evaluate the limit of the function along
a parabola of the form y = mx 2, we will see that the result depends upon the value of m.
From this observation, we conclude that the limit does not exist. We have

lim
(x,y)→(0,0)

y=mx 2

x 2y
x 4 + y 2 = lim

x→0

x 2 · mx 2

x 4 + (mx 2)2 = lim
x→0

mx 4

x 4(1 + m2)
= lim

x→0

m
1 + m2 = m

1 + m2 .

Since this limit is a nonconstant function of m, lim
(x,y)→(0,0)

x2y
x4 + y2

does not exist. �

EXAMPLE 5 Using polar coordinates to evaluate limits

Evaluate the limits

(a) lim
(x,y)→(0,0)

x 2y
x 2 + y 2 (b) lim

(x,y)→(0,0)

xy
x 2 + y 2

if they exist.

SOLUTION

In Chapter 9 we saw that we could translate between rectangular coordinates and polar
coordinates by using the equations r 2 = x 2 + y 2, tan θ = y

x
, x = r cos θ , and y = r sin θ .
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Changing to polar coordinates can be useful when a function contains the factor x 2 + y 2,
which we find in both of the given limits.

(a) First,

lim
(x,y)→(0,0)

x 2y
x 2 + y 2 = lim

r→0

(r cos θ )2(r sin θ )
r 2 = lim

r→0

r 3 sin θ cos2 θ

r 2 = lim
r→0

r sin θ cos2 θ.

Since we are taking the limit as r → 0, and the limit contains a factor of r, its value is
zero for every value of θ .

(b) We also convert the second limit to polar coordinates and obtain

lim
(x,y)→(0,0)

xy
x 2 + y 2 = lim

r→0

(r cos θ )(r sin θ )
r 2 = lim

r→0

r 2 sin θ cos θ

r 2 = lim
r→0

sin θ cos θ.

Here, the value of the limit depends upon the angle θ . Therefore, the limit can be
different along different paths approaching the origin. For example,

lim
(x,y)→(0,0)

θ=0

xy
x 2 + y 2 = lim

r→0
0 = 0 and lim

(x,y)→(0,0)
θ=π/4

xy
x 2 + y 2 = lim

r→0

1
2

= 1
2
.

Thus lim
(x,y)→(0,0)

xy
x2 +y2

does not exist. �

EXAMPLE 6 Examining the continuity of a piecewise-defined function

Determine where the functions

(a) f (x, y) =
⎧⎨
⎩

x 2y
x 2 + y 2

, if (x, y) 	= (0, 0)

0, if (x, y) = (0, 0)
(b) g(x, y) =

⎧⎨
⎩

xy
x 2 + y 2

, if (x, y) 	= (0, 0)

0, if (x, y) = (0, 0)

are continuous.

SOLUTION

These are the same functions we discussed in Example 5, except that their values have been
defined at the origin. Since rational functions are continuous everywhere in their domains,
both of the given functions are continuous everywhere, with the possible exception of the
origin.

(a) Because we already showed that

lim
(x,y)→(0,0)

x 2y
x 2 + y 2 = lim

(x,y)→(0,0)
f (x, y) = 0 = f (0, 0),

the function f is also continuous at the origin. Therefore, f is continuous everywhere.

(b) Although g is continuous everywhere except the origin, there is no way to define the
function at (0, 0) to make g continuous, since we have already seen that lim

(x,y)→(0,0)
g(x, y)

does not exist. �

TEST YOUR? UNDERSTANDING
� What are open and closed sets in R? In R

2? In R
3?

� What is a bounded set in R? In R
2? In R

3?

� What is the definition of the limit of a function of one variable? Of two variables? Of
three variables? What does it mean intuitively for these limits to exist?

� What do we mean by the limit of a function of two or three variables along a path?
What is the analogous concept for a function of a single variable?

� What is the definition of the continuity of a function of one variable at a point? Of two
variables? Of three variables?
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EXERCISES 12.2

Thinking Back

� Intervals: What is meant by an open interval in R?
What is meant by a closed interval in R? Is every in-
terval either open or closed?

� Limits: If f is a function of a single variable, what is the
intuitive interpretation of lim

x→a
f (x)? What is the formal

definition?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The complement of a closed subset of
R

2 is an open subset of R
2.

(b) True or False: Every subset of R
2 is either open or

closed.
(c) True or False: There are subsets of R

2 that are both
open and closed.

(d) True or False: If a subset S of R
3 is neither open nor

closed, then S c is neither open nor closed.
(e) True or False: If lim

(x,y)→(0,0)
f (x, y) = L, then f (0, 0) = L.

(f) True or False: If

lim
(x,y)→(a,b)

f (x, y) = L, then lim
(x,y)→(a,b)

C

f (x, y) = L

for every path C containing (a, b).
(g) True or False: If

lim
(x,y)→(a,b)

C

f (x, y) = L

for every path C containing (a, b), then f (x, y) is con-
tinuous at (a, b).

(h) True or False: If f (x, y) is continuous everywhere and
lim

(x,y)→(0,0)
f (x, y) = L, then f (0, 0) = L.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An open subset of R
3.

(b) A closed subset of R
3.

(c) A subset of R
3 that is both open and closed.

3. If

lim
(x,y)→(1,−3)

C1

f (x, y) = 5 and lim
(x,y)→(1,−3)

C2

f (x, y) = 5,

where C1 and C2 are two distinct curves in R
2 con-

taining the point (1, −3), what can you say about
lim

(x,y)→(1,−3)
f (x, y)?

4. If
lim

(x,y)→(−2,0)
C1

g(x, y) = 5 and lim
(x,y)→(−2,0)

C2

g(x, y) = 8,

where C1 and C2 are two distinct curves in R
2 containing

the point (−2, 0), what can you say about lim
(x,y)→(−2,0)

g(x, y)?

5. If
lim

(x,y)→(3,−7)
C

f (x, y) = 5

for every curve C in R
2 containing the point (3, −7), what

can you say about lim
(x,y)→(3,−7)

f (x, y)? What can you say

about f (3, −7)?
6. If g : R

3 → R is continuous at the point (a, b, c) and C is a
curve in R

3 containing the point (a, b, c), what can we say
about

lim
(x,y,z)→(a,b,c)

C

g(x, y, z)?

7. How does the definition of the limit of a function of a sin-
gle variable, f , imply that f is defined on the union of two
open intervals?

8. How does the definition of the limit of a function of two
variables, f , imply that f is defined on an open subset of
R

2?

9. How does the definition of the limit of a function of three
variables, f , imply that f is defined on an open subset of
R

3?
10. Explain how the definition of the limit of a function of two

or three variables along a path simplifies to the limit of a
function of a single variable.

11. Review the definition of continuity of a function of a sin-
gle variable, f , at a point. Why is it necessary for f to be
defined on the union of two open intervals?

12. Review the definition of continuity of a function of two or
three variables, f , at a point. Why is it necessary for f to
be defined on an open subset of R

2 or R
3?

13. Show that when C is either the x- or y-axis, we have

lim
(x,y)→(0,0)

C

x2y
x4 +y2

= 0.

14. Copy the figure that follows onto a sheet of paper. Now
cut a slit along the dashed line, leave the left side of the
paper on the table, and gently raise the right side of the
paper along the slit.
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(a, b)

C1

C2 C5

C4

C3

((

(a) Explain how the paper may be interpreted as the
graph of a function of two variables, f (x, y).

(b) If the tabletop is the xy-plane, explain why

lim
(x,y)→(a,b)

C1

f (x, y) = lim
(x,y)→(a,b)

C2

f (x, y) = 0.

(c) Explain why

lim
(x,y)→(a,b)

C3

f (x, y) = lim
(x,y)→(a,b)

C4

f (x, y) = lim
(x,y)→(a,b)

C5

f (x, y) > 0.

(d) Explain why lim
(x,y)→(a,b)

f (x, y) does not exist.

15. Provide a definition for lim
(x,y)→(a,b)

f (x, y) = ∞. Model your

definition on Definitions 1.9 and 12.15.
16. Provide a definition for lim

(x,y,z)→(a,b,c)
f (x, y, z) = ∞. Model

your definition on Definitions 1.9 and 12.15.

17. Find functions f (x, y) and g(x, y) and a point (a, b) ∈ R
2

such that

lim
(x,y)→(a,b)

f (x, y)+ lim
(x,y)→(a,b)

g(x, y) 	= lim
(x,y)→(a,b)

( f (x, y)+g(x, y)).

Does this example contradict the sum rule for limits of a
function of two variables?

18. Find functions f (x, y) and g(x, y) and a point (a, b) ∈ R
2

such that(
lim

(x,y)→(a,b)
f (x, y)

)(
lim

(x,y)→(a,b)
g(x, y)

)
	= lim

(x,y)→(a,b)
( f (x, y)g(x)).

Does this example contradict the product rule for limits
of a function of two variables?

19. Let f be a function of two variables that is continuous
everywhere.

(a) Explain why the function
f (x,y)
x − y

is continuous if and

only if x 	= y.

(b) Use Definition 12.15 to explain why lim
(x,y)→(a,a)

f (x,y)
x − y

does not exist for any real number a.
20. Let f be a function of three variables that is continuous

everywhere.

(a) Explain why the function
f (x,y,z)
x + y + z

is continuous if and

only if x + y + z 	= 0.
(b) Use Definition 12.15 to explain why

lim
(x,y,z)→(a,b,−(a+b))

f (x,y,z)
x+y+z

does not exist for any pair (a, b) of real numbers.

Skills

In Exercises 21–26, (a) determine whether the given subset of
R

2 is open, closed, both open and closed, or neither open nor
closed, (b) find the complement of the set, and (c) find the
boundary of the given set.

21. all points (x, y) such that x > 0 and y > 0

22. all points on the coordinate axes

23. all points satisfying the inequality |x| + |y| ≤ 1

24. all points (x, y) such that |x| < 1 and |y| ≤ 2

25. the empty set

26. R
2

In Exercises 27–32, (a) determine whether the given subset of
R

3 is open, closed, both open and closed, or neither open nor
closed, (b) find the complement of the set, and (c) find the
boundary of the given set.

27. all points (x, y, z) such that x > 0, y < 0 and z < 0

28. all points on the coordinate axes

29. all points on the xy-plane

30. all points (x, y, z) such that |x| < 1, |y| < 2, and |z| > 3

31. the empty set

32. R
3

Evaluate the limits in Exercises 33–40 if they exist.

33. lim
(x,y)→(−2,π )

x 2y 3 sin y 34. lim
(x,y,z)→(3,−4,π/4)

x 2y
tan z

35. lim
(x,y)→(1,2)

x 2 + y 2

x 2 − y 2
36. lim

(x,y)→(−2,1)

x 3 − y 3

x 2 − y 2

37. lim
(x,y)→(3,3)

x=3

x 3 − y 3

x 2 − y 2
38. lim

(x,y)→(3,3)
y=3

x 3 − y 3

x 2 − y 2

39. lim
(x,y)→(3,3)

y=x

x 3 − y 3

x 2 − y 2
40. lim

(x,y)→(3,3)

x 3 − y 3

x 2 − y 2

In Exercises 41–46, use polar coordinates to analyze the given
limits.

41. lim
(x,y)→(0,0)

x 2

x 2 + y 2
42. lim

(x,y)→(0,0)

y 2

x 2 + y 2

43. lim
(x,y)→(0,0)

x 2y 2

x 2 + y 2
44. lim

(x,y)→(0,0)

x 2y 3

x 4 + 2x 2y 2 + y 4

45. lim
(x,y)→(0,0)

xy√
x 2 + y 2

46. lim
(x,y)→(0,0)

sin(x 2 + y 2)
x 2 + y 2
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Determine the domains of the functions in Exercises 47–56,
and find where the functions are continuous.

47. f (x, y) = x 2

x 2 − y 2
48. f (x, y, z) = xy 2

x + y − z

49. f (x, y) = √
x 2 + y 50. f (x, y, z) = ln(x 2 + y 2 + z 2)

51. f (x, y, z) = sin(x + y + z)√
x + y + z

52. f (x, y, z) = e−x y z

53. f (x, y) =
⎧⎨
⎩

xy√
x 2 + y 2

, if (x, y) 	= (0, 0)

0, if (x, y) = (0, 0)

54. f (x, y) =
⎧⎨
⎩

xy
x 2 + y 2

, if (x, y) 	= (0, 0)

0, if (x, y) = (0, 0)

55. f (x, y) =

⎧⎪⎨
⎪⎩

sin(x 2 + y 2)
x 2 + y 2

, if (x, y) 	= (0, 0)

1, if (x, y) = (0, 0)

56. f (x, y) =
{

e−1/(x 2+y 2), if (x, y) 	= (0, 0)

0, if (x, y) = (0, 0)

Applications
The ideal gas law states that the pressure, P, volume, V , tem-
perature in degrees Kelvin, T, and amount, n, of a gas are

related by the equation P = nRT
V

, where R is the universal gas

constant. In Exercises 57–60, assume that the amount of the
gas is constant and evaluate the specified limits.

57. If the volume is held fixed, what is lim
T→0

P? Explain why this

makes sense.
58. If the volume is held fixed, what is lim

T→∞
P? Explain why

this makes sense.

59. If the temperature is held fixed, what is lim
V→0+

P? Explain

why this makes sense.
60. If the temperature is held fixed, what is lim

V→∞
P? Explain

why this makes sense.

61. Emmy is charting a layer of basalt beneath a Hanford tank
farm. She has determined that on the south end of the
tank farm the basalt lies at

b1(x, y) = −40 − 1
350

x + 1
725

y,

while on the north the plane of the top of the basalt seems
to be at

b2(x, y) = −39.5 − 1
150

x + 1
300

y.

(a) If the surface of the basalt layer is continuous, what is
the line of intersection of these planes on the Earth’s
surface?

(b) If the surface of the basalt layer is continuous, where
should it be when x = 150 at the intersection of the
planes?

(c) Emmy drills a test hole at that point and finds that the
basalt lies at −41.2 feet. What conclusions might she
draw from this result?

62. Annie is intrigued by the currents off the western point of
Patos Island, one of the San Juan Islands that are part of
Washington State. The currents coming off the north side
of the island can be faster than those coming off the south
side. She models the speed of the current as a function

of x and y, using s(x, y) = 1 + 0.25y√
x2 + y2

, where distances

are given in miles, the origin is a point in the water just
west of the point of the island, and Patos Island can be
considered to lie to the right of the origin. For simplicity
Annie just lets the current speed function go right over
the island, although obviously there is no water there.

(a) Show that the speed of the current far north of the
island is approximately 1.25 mph.

(b) Show that the speed of the current far south of the
island is approximately 0.75 mph.

(c) Show that if Annie paddles through the origin along
a line x = my with m constant, then her speed is
constant.

(d) The speed of the current is evidently not defined at
the origin, but does lim

(x,y)→(0,0)
s(x, y) exist? Explain. Can

you imagine what the water looks like at the origin?

Proofs

63. Prove Theorem 12.10. That is, show that (S c )c = S when
S is a subset of R

2 or R
3.

64. Prove that if S is a closed subset of R
2 or R

3, then S c is an
open set. This is Theorem 12.12.

65. Let S be a subset of R
2 or R

3. Prove that a set S is open if
and only if ∂S ∩ S = ∅.

66. Let S be a subset of R
2 or R

3. Prove that a set S is closed
if and only if ∂S ⊆ S.

67. Let S be a subset of R
2 or R

3. Prove that ∂S = ∂ (S c).

68. Let S be a subset of R
2 or R

3. Prove that ∂S is a closed set.

69. Let S be a subset of R
2 or R

3. Prove that ∂ (∂S) ⊆ ∂S.
70. Prove that the empty set is both an open subset and a

closed subset of R
2.

71. Prove that R
2 is both an open subset and a closed subset

of R
2.
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Thinking Forward

� The derivative along a cut edge: Let f (x, y) = x 2y 3. Find
the rate of change of f in the (positive) y direction
when the surface is cut by the plane with equation
x = 2. Find the rate of change of f in the (positive)
x direction when the surface is cut by the plane with
equation y = 1.

� The derivative when two variables are held fixed: Let
f (x, y, z) = x 2y 3√z. Find the rate of change of f in the
(positive) z-direction when the values of x and y are
constant. Find the rate of change of f in the (positive)
y direction when the values of x and z are constant.
Find the rate of change of f in the (positive) x direc-
tion when the values of y and z are constant.

12.3 PARTIAL DERIVATIVES

� Partial derivatives of functions of two and three variables

� The geometry of partial derivatives

� Higher order partial derivatives

Partial Derivatives of Functions of Two and Three Variables

Recall that a function f of a single variable is differentiable at a point c in its domain if
lim
h→0

f (c+h)−f (c)
h

exists. When this limit exists, the derivative f ′(c) gives us the slope of the

tangent line to the graph of the function at the point (c, f (c)). In the next section we will
discuss what it means for a function of two variables, f (x, y), to be differentiable at a point in
its domain. However, right now we remark that the graph of a function of two variables is
a surface and the analogous tangent “object” to a function of two variables is a plane, not a
line. In fact, a function of two variables whose graph is sufficiently smooth at a point (x 0, y 0)
in the domain of f has infinitely many tangent lines at the point (x 0, y 0, f (x 0, y 0)). Each of
these tangent lines lies in the plane tangent to the surface at (x 0, y 0, f (x 0, y 0)). In order to
understand the plane tangent to a surface, we begin by defining the partial derivatives of
a function of two variables.

DEFINITION 12.20 Partial Derivatives for a Function of Two Variables

Let f be a function of two variables defined on an open set S containing the point (x 0, y 0).

(a) The partial derivative with respect to x at (x 0, y 0), denoted by f x(x 0, y 0), is the
limit

lim
h→0

f (x 0 + h, y 0) − f (x 0, y 0)
h

,

provided that this limit exists.

(b) Similarly, the partial derivative with respect to y at (x 0, y 0), denoted by
f y(x 0, y 0), is the limit

lim
h→0

f (x 0, y 0 + h) − f (x 0, y 0)
h

,

provided that this limit exists.

We may also define the partial-derivative functions f x(x, y) and f y(x, y). The domains of
these functions are the sets of all points where the respective limits mentioned in Defini-
tion 12.22 exist. The partial derivatives measure the rates of change of the function f in the
x and y directions. For example, when f (x, y) = 9 − x 2 − y 2,

f x(2, 1) = lim
h→0

f (2 + h, 1) − f (2, 1)
h

= lim
h→0

(9 − (2 + h)2 − 12) − 4
h

= lim
h→0

−4h − h2

h
= lim

h→0
(−4 − h) = −4.
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The following figure shows the graph of f :

y
x

z

1

The cut edge toward the right is the intersection of the surface with the plane y = 1.
When we compute f x(2, 1), we are finding the rate of change of this curve in the (positive)
x direction.

In Exercise 23 we ask you to use the definition to show that f y(2, 1) = −2. This partial
derivative represents the rate of change of the surface in the positive y direction at the point
(2, 1). We may visualize this partial derivative as the rate of change of the curve created
when the surface is cut by the plane x = 2.

More generally, a partial derivative with respect to x provides the rate of change of
the function in the x direction. That is, if we fix the y-variable at y 0, we may think of the
function f (x, y 0) as a function of a single variable x, and the partial derivative tells us the
rate of change of that function. To visualize this, we may think of the curve created when
the surface f (x, y) is cut by the vertical plane y = y 0. The partial derivative f x(x 0, y 0) is
the slope of the tangent line of this function at (x 0, y 0). Similarly, when we take the partial
derivative of the function with respect to y, we fix x 0 and the result is a function of the single
variable y.

We may also define partial derivatives for functions of three variables.

DEFINITION 12.21 Partial Derivatives for a Function of Three Variables

Let f be a function of three variables defined on an open set S containing the point
(x 0, y 0, z 0).

(a) The partial derivative with respect to x at (x 0, y 0, z 0), denoted by f x(x 0, y 0, z 0),
is the limit

lim
h→0

f (x 0 + h, y 0, z 0) − f (x 0, y 0, z 0)
h

,

provided that this limit exists.

(b) The partial derivative with respect to y at (x 0, y 0, z 0), denoted by f y(x 0, y 0, z 0),
is the limit

lim
h→0

f (x 0, y 0 + h, z 0) − f (x 0, y 0, z 0)
h

,

provided that this limit exists.

(c) The partial derivative with respect to z at (x 0, y 0, z 0), denoted by f z(x 0, y 0, z 0),
is the limit

lim
h→0

f (x 0, y 0, z 0 + h) − f (x 0, y 0, z 0)
h

,

provided that this limit exists.
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From the preceding definitions, we see that to compute the partial derivative f x for a
function of two variables, we treat the variable y like a constant and take the derivative of
the function as if it were a function of the single variable x. Similarly, to compute f y, we treat
the variable x like a constant and take the derivative of the function as if it were a function
of the single variable y. When f is a function of three variables, to find f x, we treat both y
and z like constants and take the derivative of the function as though it were a function of
the single variable x. Analogous statements hold for finding partial derivatives with respect
to y and z. This discussion leads to the following shortcuts:

� Let f (x, y) be a function of two variables. The partial derivative f x(x, y) may be com-
puted by treating y like a constant and taking the derivative of the resulting function
of the single variable x, using any appropriate rules for finding derivatives. Similarly,
the partial derivative f y(x, y) may be computed by treating x like a constant and taking
the derivative of the resulting function of the single variable y, using any appropriate
rules for finding derivatives.

� Let f (x, y, z) be a function of three variables. The partial derivative f x(x, y, z) may be
computed by treating y and z like constants and taking the derivative of the result-
ing function of the single variable x, using any appropriate rules for finding deriva-
tives. The partial derivative f y(x, y, z) may be computed by treating x and z like con-
stants and taking the derivative of the resulting function of the single variable y,
using any appropriate rules for finding derivatives. Finally, the partial derivative
f z(x, y, z) may be computed by treating x and y like constants and taking the derivative
of the resulting function of the single variable z, using any appropriate rules for finding
derivatives.

For example, if f (x, y, z) = x sin( yz) + y 2, we have the following partial derivatives:

f x(x, y, z) = sin( yz), f y(x, y, z) = xz cos( yz) + 2y, and f z(x, y, z) = xy cos( yz).

There are alternative notations for partial derivatives. For example, when w = f (x, y, z),
we may use the following notation:

∂w
∂x

= ∂

∂x
( f ) = ∂ f

∂x
= f x(x, y, z),

∂w
∂y

= ∂

∂y
( f ) = ∂ f

∂y
= f y(x, y, z),

∂w
∂z

= ∂

∂z
( f ) = ∂ f

∂z
= f z(x, y, z).

Note that we are using the notation ∂

∂x
as an operator meaning “take the partial deriva-

tive with respect to x” of the function, and ∂w
∂x

is the partial derivative.

Higher Order Partial Derivatives

In Section 12.6 we will see how partial derivatives are used to locate points in the domain
where the relative extremes of a function of two variables occur. We will also see how higher
order partial derivatives may be used to classify those points as maxima, minima, or neither
maxima nor minima.
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DEFINITION 12.22 Second-Order Partial Derivatives

Let f (x, y) be a function of two variables. We define the following four second-order
partial derivatives for f :

(a) ∂2f
∂x 2

= ∂

∂x

(
∂ f
∂x

)
= f x x(x, y). (b) ∂2f

∂x∂y
= ∂

∂x

(
∂ f
∂y

)
= f yx(x, y).

(c) ∂2f
∂y∂x

= ∂

∂y

(
∂ f
∂x

)
= f x y(x, y). (d) ∂2f

∂y 2
= ∂

∂y

(
∂ f
∂y

)
= f yy(x, y).

Similarly, there are nine different second-order partial derivatives for a function of three

variables. Note that in parts (b) and (c) of the definition above we have ∂2f
∂x∂y

= f yx(x, y) and

∂2f
∂y∂x

= f x y(x, y), respectively. These are not typographical errors. When we write ∂2f
∂x∂y

, we

mean take the partial derivative of the function f first with respect to variable y and then
take the partial derivative of the result with respect to x. The notation f yx has an analogous
meaning. The order in which the partial derivatives is taken in part (c) is reversed. The
partial derivatives in parts (b) and (c) are referred to as mixed partial derivatives.

When f (x, y) = x cos y + x 2, we have the following partial derivatives:

f x(x, y) = cos y + 2x and f y(x, y) = −x sin y.

The second-order partial derivatives are:

f x x(x, y) = 2, f x y(x, y) = −sin y = f yx(x, y), and f yy(x, y) = −x cos y.

Note that the mixed partial derivatives f x y(x, y) and f yx(x, y) are equal. This does not
always happen, but the mixed partial derivatives will be equal everywhere in an open set S
if the mixed second-order partial derivatives are continuous on S.

THEOREM 12.23 Clairaut’s Theorem: The Equality of the Mixed Second-Order Partial
Derivatives

Let f (x, y) be a function defined on an open subset S of R
2. If the second-order partial

derivatives of f are continuous everywhere in S, then f x y(x, y) = f yx(x, y) at every point
in S.

We will omit the proof of Clairaut’s theorem.

In our earlier example, the function and all of its partial derivatives were continuous
everywhere in R

2. Therefore, by Clairaut’s theorem the mixed partial derivatives f x y and
f yx are guaranteed to be equal, as we computed.

Although we will rarely have the need, we may similarly find third- or even higher-
order partial derivatives for functions of two or more variables. We explore a few examples
shortly.

Finding a Function When the Partial Derivatives Are Given

Earlier in this section we saw that the function f (x, y) = x cos y + x 2 has the partial deriva-
tives

f x(x, y) = cos y + 2x and f y(x, y) = −x sin y.
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Is there a way to reverse this process? That is, given two functions g(x, y) and h(x, y), is it
possible to find a function F(x, y) such that g(x, y) = Fx(x, y) and h(x, y) = Fy(x, y)? Although
we cannot do this for every pair of functions g and h, we can do it when the functions satisfy
the following theorem:

THEOREM 12.24 The Existence of a Function with Specified Partial Derivatives

Let g(x, y) and h(x, y) be functions with continuous partial derivatives g y(x, y) and
h x(x, y), respectively. Then there exists a function F(x, y) such that Fx(x, y) = g(x, y) and
Fy(x, y) = h(x, y) if and only if g y(x, y) = h x(x, y).

For example, consider the pair of functions g(x, y) = y 2e x y 2
and h(x, y) = 2xye x y 2 − sin y.

There is a function F(x, y) such that

Fx(x, y) = g(x, y) = y 2e x y 2
and Fy(x, y) = h(x, y) = 2xye x y 2 − sin y

since g y(x, y) = (2y + 2xy 3)e x y 2 = h x(x, y). In a moment we will outline a procedure for
finding F. We first note, however, that for the pair ĝ(x, y) = e x y and ĥ(x, y) = e x y, such a
function does not exist, since ĝ y(x, y) = xe x y 	= ye x y = ĥ x(x, y). Theorem 12.24 tells us that
a function F exists only when functions g and h have the specified relationship.

Given that the functions g and h satisfy the condition in Theorem 12.24, we now outline
the steps required to find a function F(x, y). We will use the given pair of functions g(x, y) =
y 2e x y 2

and h(x, y) = 2xye x y 2 − sin y. To find F, we start by considering the form of a function
F whose partial derivative with respect to x is g(x, y) = Fx(x, y) = y 2e x y 2

. We integrate g(x, y)
with respect to x, treating y like a constant:∫

y 2e x y 2
dx = e x y 2 + q( y) = F(x, y).

Note:

� Instead of having a simple “constant of integration,” we have an unknown function
q( y), because when we take the partial derivative of any function of y with respect
to x, the derivative is zero.

� We can check our work in two ways. First, we may compute ∂

∂x
(F(x, y)) to ensure that

it would result in the function g that we were given. Second, we will take ∂

∂y
(F(x, y))

to ensure that this partial derivative is consistent with the function h(x, y) that we
were given. We carry out this step next.

We compute
∂

∂y
(F(x, y)) = ∂

∂y
(e x y 2 + q( y)) = 2xye x y 2 + q ′( y).

In order for this partial derivative, 2xye x y 2 + q ′( y), to equal h(x, y) = 2xye x y 2 −sin y, we
must have q ′( y) = −sin y. This happens when q( y) = cos y + C, where C is any constant.
Therefore, F(x, y) = e x y 2 + cos y + C is the function we sought. We may check this result
by showing that Fx(x, y) = g(x, y) = y 2e x y 2

.

To summarize, given functions g(x, y) and h(x, y), there is a function F(x, y) such that
g(x, y) = Fx(x, y) and h(x, y) = Fy(x, y) if and only if g y(x, y) = h x(x, y). When this is the
case, you may find F as follows:

� Evaluate
∫

g(x, y) dx = F(x, y). Be sure to include a “function of integration,” q( y),
as part of the antiderivative.

� Compute ∂

∂y
(F(x, y)).
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� Set ∂

∂y
(F(x, y)) = h(x, y), and solve the resulting equation for q ′( y).

� Finish constructing F(x, y) by finding an antiderivative for q ′( y).
� Check your work by showing that Fx(x, y) = g(x, y).

Theorem 12.24 may be rephrased in terms of a first-order differential equation. A dif-
ferential equation of the form

g(x, y) + h(x, y) dy
dx

= 0

is said to be exact if g y(x, y) = h x(x, y). In this case, the implicitly defined function F(x, y)+
C = 0, where C is a constant, is the solution of the differential equation. Using the same
functions as before, we see that the differential equation

y 2e x y 2 + (2xye x y 2 −sin y) dy
dx

= 0

is exact, since if g(x, y) = y 2e x y 2
and h(x, y) = 2xye x y 2 − sin y, then

g y(x, y) = (2y + 2xy 3)e x y 2 = h x(x, y).

The solution of this differential equation is the function F(x, y) = e x y 2 + cos y + C = 0.

Examples and Explorations

EXAMPLE 1 Using the definition to compute partial derivatives

Use the definition to find the indicated partial derivatives for the following functions:

(a) f y when f (x, y) = x
y

(b) ∂g
∂z

when g(x, y, z) = z 2

xy 3

SOLUTION

(a) f y(x, y) = lim
h→0

f (x, y + h) − f (x, y)
h

← the definition of f y

= lim
h→0

x
y + h

− x
y

h
← the function is x

y

= lim
h→0

− hx
hy( y + h)

← algebra

= lim
h→0

− x
y( y + h)

← Cancellation Theorem

= − x
y 2 ← evaluation of the limit

(b)
∂g
∂z

= lim
h→0

g(x, y, z + h) − g(x, y, z)
h

← the definition of ∂g
∂z

= lim
h→0

(z + h)2

xy 3
− z 2

xy 3

h
← the function is z 2

xy 3

= lim
h→0

2zh + h2

hxy 3 ← algebra

= lim
h→0

2z + h
xy 3 ← Cancellation Theorem

= 2z
xy 3 ← evaluation of the limit

�
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CHECKING
THE ANSWER

We can check our answers by using “shortcuts” for finding derivatives. Since f (x, y) = xy−1,
to find f y we treat x as though it were a constant and take the derivative of the resulting
function of y. We obtain f y(x, y) = −xy−2, which is equivalent to the derivative we found
in part (a). Similarly, if we treat both x and y as constants in the function g and take the
derivative of the resulting function of z, we obtain the result we found in part (b).

EXAMPLE 2 Finding the partial derivatives of a function of two variables at a point and interpret-
ing them graphically

Let f (x, y) = x
y 2

− y
x

.

(a) Find the first-order partial derivatives f x and f y.

(b) Evaluate f x(−1, 2) and f y(−1, 2), and find equations for the lines tangent to the surface
in the x and y directions at the point (−1, 2, f (−1, 2)).

(c) Find an equation for the plane containing the point (−1, 2, f (−1, 2)) and the lines from
part (b).

SOLUTION

(a) The first-order partial derivatives are

f x(x, y) = 1
y 2

+ y
x 2

and f y(x, y) = − 2x
y 3

− 1
x
.

(b) At (−1, 2), we have f (−1, 2) = 7
4

, f x(−1, 2) = 9
4

, and f y(−1, 2) = 5
4

. These partial

derivatives represent the rates of change of the function f in the x direction and y
direction, respectively, at the point (−1, 2). Therefore, direction vectors of the lines

tangent to the surface at (−1, 2) are i + 9
4

k and j + 5
4

k. Thus, the line tangent to the

surface at
(
−1, 2, 7

4

)
in the x direction is given by the parametric equations

x = −1 + t, y = 2, z = 7
4

+ 9
4

t.

Similarly, the line tangent to the surface at
(
−1, 2, 7

4

)
in the y direction is given by the

parametric equations

x = −1, y = 2 + t, z = 7
4

+ 5
4

t.

(c) To obtain the normal vector for the plane containing the two intersecting lines we
found in part (b), we take the cross product of the direction vectors for the lines. That is,

N =
〈
0, 1, 5

4

〉
×
〈
1, 0, 9

4

〉
=
〈

9
4

, 5
4

, −1
〉
.

The equation for the plane orthogonal to this vector and containing the point(
−1, 2, 7

4

)
is 〈

9
4

, 5
4

, −1
〉
·
〈
x + 1, y − 2, z − 7

4

〉
= 0,

or equivalently, 9
4

x + 5
4

y − z = − 3
2

. �

EXAMPLE 3 Finding the equation of a plane containing the tangent lines in the x and y directions

Let f (x, y) be a function with first-order partial derivatives f x(a, b) and f y(a, b) at a point
(a, b) in the domain of f .

(a) Find equations for the lines tangent to the surface in the x and y directions at the point
(a, b, f (a, b)).

(b) Find an equation for the plane containing the point (a, b, f (a, b)) and the lines from
part (a).
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SOLUTION
(a) Our analysis follows the work we did in Example 2. The partial derivatives represent

the rates of change of the function f in the x and y directions, respectively, at the
point (a, b). Therefore, direction vectors of the lines tangent to the surface at (a, b) are
i+ f x(a, b)k and j+ f y(a, b)k. Thus, the line tangent to the surface at (a, b, f (a, b)) in the
x direction is given by the parametric equations

x = a + t, y = b, z = f (a, b) + f x(a, b)t.
Similarly, the line tangent to the surface at (a, b, f (a, b)) in the y direction is given by
the parametric equations

x = a, y = b + t, z = f (a, b) + f y(a, b)t.
(b) To obtain the normal vector for the plane containing the two intersecting lines we

found in part (b), we take the cross product of the direction vectors for the lines. That is,

N = 〈
0, 1, f y(a, b)

〉× 〈
1, 0, f x(a, b)

〉 = 〈
f x(a, b), f y(a, b), −1

〉
.

The equation for the plane orthogonal to this vector and containing the point
(a, b, f (a, b)) is 〈

f x(a, b), f y(a, b), −1
〉 · 〈x − a, y − b, z − f (a, b)

〉 = 0,

or equivalently, f x(a, b)(x − a) + f y(a, b)( y − b) = z − f (a, b). �

CHECKING
THE ANSWER

We may use the general form for the equation of the plane to check our result from Exam-

ple 2. We had the point (−1, 2, f (−1, 2)) =
(
−1, 2, 7

4

)
and partial derivatives f x(−1, 2) = 9

4

and f y(−1, 2) = 5
4

. Therefore, the equation of the plane is

9
4

(x + 1) + 5
4

( y − 2) = z − 7
4

,

which we see is equivalent to our final answer in Example 2.

EXAMPLE 4 Computing higher order partial derivatives

Let f (x, y) = x
y 2

− y
x

.

(a) Find all second-order partial derivatives for f , and show that the mixed second-order
partial derivatives are equal.

(b) Show that the mixed third-order partial derivatives f x x y, f x yx, and f yx x are all equal.

SOLUTION

(a) We found the first-order partial derivatives ∂ f
∂x

= 1
y 2

+ y
x 2

and ∂ f
∂y

= − 2x
y 3

− 1
x

in

Example 2. We have
∂2f
∂x 2 = ∂

∂x

(
1

y 2 + y
x 2

)
= −2y

x 3 ,

∂2f
∂y∂x

= ∂

∂y

(
1

y 2 + y
x 2

)
= − 2

y 3 + 1
x 2 ,

∂2f
∂x∂y

= ∂

∂x

(
− 2x

y 3 − 1
x

)
= − 2

y 3 + 1
x 2

,

∂2f
∂y 2 = ∂

∂y

(
− 2x

y 3 − 1
x

)
= 6x

y 4 .

Note that the partial derivatives ∂2f
∂y∂x

and ∂2f
∂x∂y

are equal.

(b) We may compute the required third-order partial derivatives by taking the appropriate
partial derivatives of the results from part (a).
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f x x y = ∂

∂y

(
∂2f
∂x 2

)
= ∂

∂y

(
−2y

x 3

)
= − 2

x 3 ,

f x yx = ∂

∂x

(
∂2f
∂y∂x

)
= ∂

∂x

(
− 2

y 3 + 1
x 2

)
= − 2

x 3 .

Since f yx x = ∂

∂x

(
∂2f
∂x∂y

)
and we already know that ∂2f

∂x∂y
= ∂2f

∂y∂x
, we may conclude that

f yx x = − 2
x3

as well. �

EXAMPLE 5 Finding a function when the partial derivatives are given

Show that there is a function F(x, y) such that Fx(x, y) = g(x, y) and Fy(x, y) = h(x, y) when

g(x, y) = y cos(xy) and h(x, y) = x cos(xy) + 3y 2.

Then find F.

SOLUTION

We use Theorem 12.24 to show that there is such a function. Since the partial derivatives

g y(x, y) = cos(xy) − xy sin(xy) = h x(x, y),

Theorem 12.24 guarantees that a function F(x, y) exists.

Now, to find F, we integrate g(x, y) with respect to x:∫
y cos(xy) dx = sin(xy) + q( y) = F(x, y).

As we remarked in our discussion earlier in this section, we may check our work by finding
both first-order partial derivatives of this function to be sure that ∂

∂x
(F(x, y)) = g(x, y) and

∂

∂y
(F(x, y)) is consistent with h(x, y). You should check that ∂

∂x
(F(x, y)) = g(x, y). Checking

the consistency of the other partial derivative is part of our procedure. Here,
∂

∂y
(F(x, y)) = ∂

∂y
(sin(xy) + q( y)) = x cos(xy) + q ′( y).

In order for this partial derivative, x cos(xy) + q ′( y), to equal h(x, y) = x cos(xy) + 3y 2,
we must have q ′( y) = 3y 2. This happens when q( y) = y 3 + C, where C is any constant.
Therefore, F(x, y) = sin(xy) + y 3 + C is the function we sought.

If we are given a point on the graph of F, we may use that information to evaluate the
constant C. For example, here, if we want the graph of F to contain the point (0, 2, 5), then
we must have

F(0, 2) = sin(0 · 2) + 23 + C = 8 + C = 5.

Therefore, C = −3, and our function is F(x, y) = sin(xy) + y 3 − 3. �

CHECKING
THE ANSWER

We may check our answer by finding the partial derivatives of our function

F(x, y) = sin(xy) + y 3 + C

Since Fx(x, y) = y cos(xy) = g(x, y) and Fy(x, y) = x cos(xy) + 3y 2 = h(x, y), our work was
correct.

EXAMPLE 6 Solving an exact differential equation

Show that the differential equation

y cos(xy) + (x cos(xy) + 3y 2) dy
dx

= 0

is exact. Solve the initial-value problem F
(

π

3
, 6
)

= 200.
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SOLUTION

Showing that the differential equation is exact requires the same steps that we performed
in Example 5. If we let g(x, y) = y cos(xy) and h(x, y) = x cos(xy) + 3y 2, then g y(x, y) =
cos(xy)−xy sin(xy) = h x(x, y), so the differential equation is exact. Furthermore, the general
solution of the differential equation is F(x, y) + C = 0, where F(x, y) is the same function
we found in Example 5. That is,

F(x, y) = sin(xy) + y 3 + C = 0.

To solve the initial-value problem, we determine the value of C that satisfies F
(

π

3
, 6
)

= 200.

When x = π

3
and y = 6, we have sin(2π ) + 63 + C = 200. The unique solution of this

equation is C = −16. Therefore, the solution to the initial-value problem is

sin(xy) + y 3 − 16 = 0 �

TEST YOUR? UNDERSTANDING
� What are the definitions of the partial derivatives with respect to x and y for a function

f (x, y)? How are these definitions similar to the definition for the derivative of a function
of a single variable? How are they different?

� What are the geometrical interpretations for f x(a, b) and f y(a, b) at a point (a, b) in the
domain of a function f ? When these partial derivatives exist, how can we find the equa-
tions of lines tangent to the surface defined by f in the x and y directions? How can we
find the equation of the plane containing these lines?

� How may the shortcuts for derivatives of a function of a single variable be applied to
find partial derivatives of functions of two or three variables?

� How are higher order partial derivatives computed? What is meant by mixed second-
order partial derivatives? What conditions are sufficient to guarantee that the mixed
second-order partial derivatives are equal?

� What condition(s) must g(x, y) and h(x, y) satisfy for these functions to equal the first-
order partial derivatives of a function F(x, y)? That is, when will g(x, y) = Fx(x, y) and
h(x, y) = Fy(x, y)? What is the procedure for finding F?

EXERCISES 12.3

Thinking Back

� Finding a direction vector for a tangent line: Find a di-
rection vector for the line tangent to the curve y = x 3

when x = 2.

� Finding the equation of the plane containing two inter-
secting lines: Show that the lines given by r1(t) =
〈3t − 4, −4t + 1, t〉 and r 2(t) = 〈−t + 2, 2t − 9, −2t + 7〉
intersect, and find the equation of the plane contain-
ing the lines.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The partial derivative of a function f (x, y)

with respect to x is defined by lim
h→0

f (x+h,y)−f (x,y)
h

if

the limit exists.

(b) True or False: The partial derivative of a function g(r, s)

with respect to s is defined by lim
h→0

g(r,s+h)−g(r,s)
h

if

the limit exists.

(c) True or False: The second-order partial derivative of a
function f (x, y) with respect to x and y is defined by

lim
h→0

f (x+h,y+h)−f (x,y)
h

if the limit exists.
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(d) True or False: If (a, b) is a point in the domain of a func-
tion f (x, y) with continuous partial derivatives, then
f x(a, b) = f y(a, b).

(e) True or False: If (a, b) is a point in the domain of a
function f (x, y) with continuous second-order partial
derivatives, then f x y(a, b) = f y x(a, b).

(f) True or False: If (a, b) is a point in the domain of
a function f (x, y) at which the second-order partial
derivatives exist but are not continuous, then

f x y(a, b) 	= ∂2f
∂y∂x

(a, b).

(g) True or False: If f (x, y) = |x|y, then f x(x, y) at (0, 0) does
not exist.

(h) True or False: If f (x, y) = |x|y, then f y(x, y) at (0, 0) does
not exist.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function f (x, y) such that f x(x, y) = y 2e x y 2
.

(b) A function g(x, y) such that
∂g
∂y

= xy + e 4x sin 3y.

(c) A function F(x, y) such that Fx(x, y) = sec2 x + 1
2

y 2 +
4
3

e 4x cos 3y and Fy(x, y) = xy − e 4x sin 3y.

3. Draw a line on a piece of paper. If the paper is on a hor-
izontal surface, how does the pitch or slope of the line
change as you rotate the paper on the tabletop?

4. Draw a line on a piece of paper. If the paper is on an
angled surface, how does the pitch or slope of the line
change as you rotate the paper on the surface? Why
would it not make sense to talk about the slope of a plane?

5. Let (x 0, y 0) be a point in the domain of the function f (x, y)
at which f x(x 0, y 0) and f y(x 0, y 0) both exist. Explain how
these partial derivatives may be interpreted as the slopes
of lines tangent to the surface defined by f (x, y) at the
point (x 0, y 0).

6. Let f (x) be a differentiable function of a single variable x.

(a) What is the relationship between the graph of f (x)
and the graph of the function of two variables,
g(x, y) = f (x)?

(b) For what values of x and y do the first-order partial
derivatives of g exist?

(c) What are
∂g
∂x

and
∂g
∂y

? Why do these partial derivatives

make sense?

7. Let f ( y) be a differentiable function of a single variable y.

(a) What is the relationship between the graph of f ( y)
and the graph of the function of two variables,
g(x, y) = f ( y)?

(b) For what values of x and y do the first-order partial
derivatives of g exist?

(c) What are
∂g
∂x

and
∂g
∂y

? Why do these partial derivatives

make sense?
8. The function f (x, y) = |xy| is graphed in the figure that

follows. Use the definition of the partial derivatives to
show that f x(0, 0) = f y(0, 0) = 0. What are the equations

of the lines tangent to the surface in the x and y directions
at (0, 0, 0)? What is the equation of the plane containing
these two lines?

y

x

z

9. The function g(x, y) = x 2 − y 2 is graphed in the figure
that follows. Use the definition of the partial derivatives
to show that g x(0, 0) = g y(0, 0) = 0. What are the equa-
tions of the lines tangent to the surface in the x and y
directions at (0, 0, 0)? What is the equation of the plane
containing these two lines?

z

y

x

10. Compare the graphs in Exercises 8 and 9. Which of these
surfaces do you think has a well-defined tangent plane at
(0, 0, 0)?

11. Let f (x, y) =
{

0, if xy = 0
1, if xy 	= 0.

Use the definition of the

partial derivatives to show that f x(0, 0) = f y(0, 0) = 0.
Explain why this example shows that the existence of
the partial derivatives at a point (x 0, y 0) for a func-
tion f (x, y) does not guarantee that f is continuous at
(x 0, y 0).

12. Consider the function f defined in Exercise 11.

(a) Use the definition of the partial derivatives to show
that f x(x 0, 0) exists for every value of x 0 but f y(x 0, 0)
exists only when x 0 = 0.

(b) Use the definition of the partial derivatives to show
that f y(0, y 0) exists for every value of y 0 but f x(0, y 0)
exists only when y 0 = 0.

13. Let f (x, y, z) =
{

0, if xyz = 0
1, if xyz 	= 0.

Use the definition of the

partial derivatives to show that f x(0, 0, 0) = f y(0, 0, 0) =
f z(0, 0, 0) = 0. Explain why this example shows that the
existence of the partial derivatives at a point (x 0, y 0, z 0) for
a function f (x, y, z) does not guarantee that f is continuous
at (x 0, y 0, z 0).
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14. Consider the function f defined in Exercise 13. Use
the definition of the partial derivatives to show that
f x(x 0, y 0, 0) and f y(x 0, y 0, 0) exist for every value of x 0 and
y 0 but f z(x 0, y 0, 0) exists only when at least one of x 0 and
y 0 is zero.

15. Assume that f (x, y) is a function of two variables with par-
tial derivatives of every order. Assume also that the order
in which the partial derivatives are taken is significant.

(a) How many different second-order partial derivatives
does f have?

(b) How many different third-order partial derivatives
does f have?

(c) How many different nth-order partial derivatives
does f have?

16. Assume that g(x, y, z) is a function of three variables with
partial derivatives of every order. Assume also the order
in which the partial derivatives are taken is significant.
(a) How many different second-order partial derivatives

does g have?
(b) How many different third-order partial derivatives

does g have?
(c) How many different nth-order partial derivatives

does g have?

17. Assume that f (x, y) is a function of two variables with par-
tial derivatives of every order. Assume also that the order
in which the partial derivatives are taken is not significant.

(a) How many different second-order partial derivatives
does f have?

(b) How many different third-order partial derivatives
does f have?

(c) How many different nth-order partial derivatives
does f have?

18. Assume that g(x, y, z) is a function of three variables with
partial derivatives of every order. Assume also that the
order in which the partial derivatives are taken is not
significant.
(a) How many different second-order partial derivatives

does g have?
(b) How many different third-order partial derivatives

does g have?
(c) How many different nth-order partial derivatives

does g have?

19. Let f (x, y) and g(x, y) be functions of two variables with

the property that
∂ f
∂x

= ∂g
∂x

for every point (x, y) ∈ R
2.

What is the relationship between f and g?
20. Let f (x, y) and g(x, y) be functions of two variables with

the property that
∂ f
∂y

= ∂g
∂y

for every point (x, y) ∈ R
2.

What is the relationship between f and g?

21. Let f (x, y) and g(x, y) be functions of two variables with

the property that
∂ f
∂x

= ∂g
∂x

and
∂ f
∂y

= ∂g
∂y

for every point

(x, y) ∈ R
2. What is the relationship between f and g?

22. Let f (x, y, z) and g(x, y, z) be functions of three variables

with the property that
∂ f
∂y

= ∂g
∂y

for every point (x, y, z) ∈
R

3. What is the relationship between f and g?

Skills

Use the definition of the partial derivative to find the partial
derivatives specified in Exercises 23–26.

23. f y(2, 1) when f (x, y) = 9 − x 2 − y 2

24. f x(0, −3) and f y(0, −3) when f (x, y) = 3x
y 2

25.
∂ f
∂x

,
∂ f
∂y

and
∂ f
∂z

when f (x, y, z) = xy2

z

26.
∂g
∂x

and
∂g
∂y

when g(x, y) =
√

y
x + 1

Find the first-order partial derivatives for the functions in
Exercises 27–36.
27. f (x, y) = e x sin(xy) 28. g(x, y) = tan−1(xy 2)

29. f (x, y) = x y
30. g(x, y) = ln(y2 +1)

x
31. f (x, y) = x sin y 32. g(x, y) = x cos y

33. f (r, θ ) = r sin θ 34. g(r, θ ) = r cos θ

35. f (x, y, z) = xy 2

x + z

36. g(x, y, z) = 2xy + 2xz + 2yz

In Exercises 37–42, use the partial derivatives you found
in Exercises 27–32 and the point (x 0, y 0) specified to (a)
find the equation of the line tangent to the surface defined

by the function in the x direction, (b) find the equation of the
line tangent to the surface defined by the function in the y di-
rection, and (c) find the equation of the plane containing the
lines you found in parts (a) and (b).

37. Exercise 27,
(

0,
π

2

)
38. Exercise 28, (1, 0)

39. Exercise 29, (e, 3) 40. Exercise 30, (3, 0)

41. Exercise 31,
(

2,
π

3

)
42. Exercise 32, (1, π )

In Exercises 43–50, compute all of the second-order partial
derivatives for the functions in Exercises 27–34 and show that
the mixed partial derivatives are equal.

43. Exercise 27 44. Exercise 28

45. Exercise 29 46. Exercise 30

47. Exercise 31 48. Exercise 32

49. Exercise 33 50. Exercise 34

For the partial derivatives given in Exercises 51–54, find the
most general form for a function of two variables, f (x, y), with
the given partial derivative.

51.
∂ f
∂x

= 0 52.
∂ f
∂y

= 0

53.
∂ f
∂x 2

= 0 54.
∂2f
∂y∂x

= 0
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For the partial derivatives given in Exercises 55–58, find the
most general form for a function of three variables, f (x, y, z),
with the given partial derivative.

55.
∂ f
∂x

= 0 56.
∂ f
∂y

= 0

57.
∂ f
∂x 2

= 0 58.
∂2f
∂y∂x

= 0

For each pair of functions in Exercises 59–62, use Theo-
rem 12.24 to show that there is a function of two variables,
F(x, y), such that

∂F
∂x

= g(x, y) and
∂F
∂y

= h(x, y). Then find F.

59. g(x, y) = e x cos y, h(x, y) = −e x sin y + 2y

60. g(x, y) = 1
xy

−sin x, h(x, y) = − ln x
y 2

61. g(x, y) = y
1 + x 2y 2

, h(x, y) = x
1 + x 2y 2

62. g(x, y) = 2x
y

, h(x, y) = − x 2

y 2

Solve the exact differential equations in Exercises 63–66.

63. e y + (xe y − 7)
dy
dx

= 0

64. y cos(xy) − 3 + (x cos(xy) + 2)
dy
dx

= 0

65. e x ln y + x 3 + e x

y
dy
dx

= 0

66.
12x 3

y 5
− 15x 4

y 6

dy
dx

= 0

Applications
67. Recall that the volume, V , of a cylinder is given by

V(r, h) = πr 2h. Find
∂V
∂r

and
∂V
∂h

. What are the physical

interpretations of these partial derivatives?

68. The pressure P of an ideal gas is given by P(n, T, V) =
nRT

V
, where n is the amount of the gas, R is a con-

stant, T is the temperature of the gas in degrees Kelvin,

and V is the volume of the gas. Find
∂P
∂n

,
∂P
∂V

, and
∂P
∂T

.
What are the physical interpretations of these partial
derivatives?

69. Annie is covering the kayak she is building with fabric.
She knows that the shape of the fabric, when stretched
across the ribs of her kayak, satisfies the differential equa-
tion f x x + f yy = 0.

(a) Annie has no interest in solving that equation; she is
just building a kayak. You, however, should show that
αe n x sin ny and βe n y sin nx are solutions for any real
numbers n, α, and β.

(b) Assuming that she needed something to do besides
apply the fabric to her kayak, Annie measured and
normalized the function describing the ribs near the
bow to find that they have the shape given by

f (x, 0) = 0.04 sin
(πx

2

)
,

f (x, 1) = 0.04 eπ/2 sin
(πx

2

)
,

f (0, y) = 0,

f (1, y) = 0.04 eπy/2.

What solution f (x, y) from part (a) satisfies these condi-
tions? Sketch the solution.

70. Alex is modeling traffic patterns at a bottleneck on a free-
way as it leaves Denver. He uses a well-known equation
u x + u t = 0, where u = u(x, t) is a scaled traffic density at
a point x on the highway at time t.

(a) Show that u n(x, t) = sin(n(x − t)) is a solution of the
equation for any integer n.

(b) Alex finds that in heavy traffic at the bottleneck the
solution of his equation can look like

24 +
N∑

n=1

sin(n(x − t))
n

for some integer N.

Show that this is a solution, and plot it for N = 8. Can
you tell what happens as N gets large?

Proofs

71. Let z = ( f (x, y))n. Show that

∂z
∂x

= n( f (x, y))n−1 ∂ f
∂x

and
∂z
∂y

= n( f (x, y))n−1 ∂ f
∂y

.

72. Let z = f (x, y)g(x, y). Show that

∂z
∂x

= ∂ f
∂x

g(x, y) + f (x, y)
∂g
∂x

and

∂z
∂y

= ∂ f
∂y

g(x, y) + f (x, y)
∂g
∂y

.

73. Let z = f (x,y)
g(x,y)

. Show that

∂z
∂x

= f x(x, y)g(x, y) − f (x, y)g x(x, y)
( g(x, y))2

and

∂z
∂y

= f y(x, y)g(x, y) − f (x, y)g y(x, y)
( g(x, y))2

.
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74. Let p(x) be a polynomial of degree n, q( y) be any function
of y, and f (x, y) = p(x)q( y). Prove that

∂n+1f
∂x n+1

= 0.

75. Let f (x) be a differentiable function of x, g( y) be a differ-
entiable function of y, and h(x, y) = f (x) + g( y). Prove

that
∂2h
∂x∂y

= ∂2h
∂y∂x

.

76. Let f (x) be a differentiable function of x, g( y) be a differ-
entiable function of y, and h(x, y) = f (x)g( y). Prove that

∂2h
∂x∂y

= ∂2h
∂y∂x

.

Thinking Forward

A chain rule for functions of two variables: Let f (x, y) = x 2y 3,
x = s cos t, and y = s sin t.

� Find
∂ f
∂x

and
∂ f
∂y

.

� Find
∂x
∂s

and
∂x
∂t

.

� Find
∂y
∂s

and
∂y
∂t

.

� Substitute the expressions for x and y into f (x, y).

� Find
∂ f
∂s

and
∂ f
∂t

using the preceding results.

� Make a conjecture about the relationship between
∂ f
∂s

,
∂ f
∂x

,
∂ f
∂y

,
∂x
∂s

, and
∂y
∂s

.

12.4 DIRECTIONAL DERIVATIVES AND DIFFERENTIABIL ITY

� Directional derivatives

� Differentiability of functions of two and three variables

� The tangent plane to a function of two variables

The Directional Derivative

In Section 12.3 we defined the partial derivatives for a function of two or three variables.
Recall that when f (x, y) is a function of two variables, the partial derivatives ∂ f

∂x
and ∂ f

∂y
tell

us the rate of change of the function f in the (positive) x and y directions, respectively,
when these derivatives exist. How can we compute the rate of change of f in a different
direction? To do this we define the directional derivative of f in the direction of a specified
unit vector u.

DEFINITION 12.25 The Directional Derivative of a Function of Two Variables

Let f (x, y) be a function of two variables defined on an open set containing the point
(x 0, y 0), and let u = 〈α, β〉 be a unit vector. The directional derivative of f at (x 0, y 0)
in the direction of u, denoted by Du f (x 0, y 0), is given by

lim
h→0

f (x 0 + αh, y 0 + βh) − f (x 0, y 0)
h

,

provided that this limit exists.

Note that when u = i or u = j, the directional derivative is ∂ f
∂x

or ∂ f
∂y

, respectively. That is,

for a point (x 0, y 0) in the domain of f at which the partial derivatives exist,

Di f (x 0, y 0) = f x(x 0, y 0) and Dj f (x 0, y 0) = f y(x 0, y 0).
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Thus, the directional derivative generalizes the partial derivatives. The figure shown next
indicates the geometry of the directional derivative. We may visualize Du f (x 0, y 0) as the
slope of the cut edge at the point (x 0, y 0, f (x 0, y 0)) when we slice the surface z = f (x, y)
with a vertical plane parallel to the vector u containing the point.

z

y

x

u
1

2

To compute the directional derivative of the function f (x, y) = x2

y
at the point (−1, 2) in

the direction of the vector v = 〈3, −4〉, we first need to find a unit vector u with the same
direction as v. We have

u = 1
‖v‖v = 1√

3 2 + (−4)2
〈3, −4〉 =

〈
3
5

, − 4
5

〉
.

Thus, the directional derivative

Du f (−1, 2) = lim
h→0

(−1 + 3h/5)2

2 − 4h/5
− (−1)2

2
h

= lim
h→0

−20h + 9h2

h(50 − 20h)
= lim

h→0

−20 + 9h
50 − 20h

= −2
5
.

Geometrically, the number − 2
5

describes the slope of the line tangent to the cut edge

of the graph when the surface defined by f (x, y) = x2

y
is sliced by the vertical plane

parallel to the vector u =
〈

3
5

, − 4
5

〉
and containing the point (−1, 2). We may use all

of this information to find the equation of the line tangent to the surface at the point

(−1, 2, f (−1, 2)) =
(
−1, 2, 1

2

)
. Here, that equation is

x = −1 + 3
5

t, y = 2 − 4
5

t, z = 1
2

− 2
5

t.

More generally, for a point (x 0, y 0) in the domain of a function f (x, y) and a unit vector
u = 〈α, β〉 for which the directional derivative Du f (x 0, y 0) exists, the equation of the line
tangent to the surface defined by f at the point (x 0, y 0, f (x 0, y 0)) will be

x = x 0 + αt, y = y 0 + βt, z = f (x 0, y 0) + Du f (x 0, y 0)t.

We may also define the directional derivative for a function of three variables.

DEFINITION 12.26 The Directional Derivative of a Function of Three Variables

Let f (x, y, z) be a function of three variables defined on an open set containing the point
(x 0, y 0, z 0), and let u = 〈α, β, γ 〉 be a unit vector. The directional derivative of f at
(x 0, y 0, z 0) in the direction of u, denoted by Du f (x 0, y 0, z 0), is given by

lim
h→0

f (x 0 + αh, y 0 + βh, z 0 + γ h) − f (x 0, y 0, z 0)
h

,

provided that this limit exists.
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As with a directional derivative for a function of two variables, when u is one of the
standard basis vectors,

Di f (x 0, y 0, z 0) = f x(x 0, y 0, z 0),

Dj f (x 0, y 0, z 0) = f y(x 0, y 0, z 0),

Dk f (x 0, y 0, z 0) = f z(x 0, y 0, z 0).

Differentiability

Recall that for a function y = f (x) defined on an open interval containing the point x 0, we
defined the derivative of f in terms of the limit of the difference quotient; that is,

f ′(x 0) = lim
h→0

f (x 0 + h) − f (x 0)
h

,

provided that the limit exists. Unfortunately, we cannot use a definition analogous to this
to define the differentiability of a function of two or more variables. In Exercise 98 of
Section 2.2 we asked you to show that if a function y = f (x) is differentiable at x 0 and

y = f (x 0 + 
x) − f (x 0), then


y = f ′(x 0)
x + ε
x,

where ε is a function satisfying lim

x→0

ε = 0. This property tells us that the function f is

“locally linear” near x 0 and, furthermore, that we may use the tangent line at (x 0, f (x 0))
to approximate the function f on some interval containing x 0. We will use an analogous
property to define differentiability for a function of two or three variables.

DEFINITION 12.27 Differentiability for Functions of Two Variables

Let z = f (x, y) be a function of two variables defined on an open set containing the
point (x 0, y 0), and let 
z = f (x 0 + 
x, y 0 + 
y) − f (x 0, y 0). The function f is said to
be differentiable at (x 0, y 0) if the partial derivatives f x(x 0, y 0) and f y(x 0, y 0) both exist
and


z = f x(x 0, y 0)
x + f y(x 0, y 0)
y + ε1
x + ε2
y,

where ε1 and ε2 are functions of 
x and 
y, and both go to zero as (
x, 
y) → (0, 0).

In general, it is cumbersome to use Definition 12.27 to show that a function of two variables
is differentiable. Fortunately, when the the partial derivatives are continuous at (x 0, y 0), we
may use the following theorem:

THEOREM 12.28 The Continuity of the Partial Derivatives Guarantees Differentiability

If f (x, y) is a function of two variables with partial derivatives ∂ f
∂x

and ∂ f
∂y

that are contin-

uous on some open set containing the point (x 0, y 0), then f is differentiable at (x 0, y 0).

Theorem 12.28 allows us to verify much more readily where a function is differentiable, for

most of the common functions we study. For example, consider the function f (x, y) = x2

y
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that we discussed earlier in the section. The partial derivatives f x(x, y) = 2x
y

and f y(x, y) =
− x2

y2
of this function are continuous at every point in the domain of f . That is, they are

continuous on the set S = {(x, y) | y 	= 0}. Therefore, f is differentiable on S. As this exam-
ple illustrates, every rational function of two variables will be differentiable everywhere the
function is defined, because the only places where the partial derivatives will be discontin-
uous are the points where the function itself is discontinuous.

It bears repeating that a function with partial derivatives at a point (x 0, y 0) may or may
not be differentiable at (x 0, y 0). For example, the function

f (x, y) =
{

0, if x = 0 or y = 0
1, otherwise

has the property that fx(0, 0) = 0 = fy(0, 0). Although these partial derivatives exist, f is
not differentiable at the origin, because f does not satisfy Definition 12.27. In fact, the
function is not even continuous at the origin.

When a function of two variables, f (x, y), is differentiable at a point (x 0, y 0), we may
modify the equality 
z = f x(x 0, y 0)
x + f y(x 0, y 0)
y + ε1
x + ε2
y from Definition 12.27
to find the equation of the plane tangent to the surface defined by f at (x 0, y 0). If we let

x = x − x 0, 
y = y − y 0, and 
z = z − f (x 0, y 0), we immediately have the equation of
the tangent plane when we drop the terms ε1
x and ε2
y.

THEOREM 12.29 Using the Partial Derivatives to Find the Equation of the Tangent Plane

Let f (x, y) be a function of two variables that is differentiable at the point (x 0, y 0). Then
the equation of the plane tangent to the surface defined by f (x, y) at (x 0, y 0) is

f x(x 0, y 0)(x − x 0) + f y(x 0, y 0)( y − y 0) = z − f (x 0, y 0).

Before we give the definition of what it means for a function of three variables to be
differentiable, recall that the graph of a function of three variables is a three-dimensional
object existing in four-dimensional space, R

4. If this graph is sufficiently well behaved, the
natural tangent object to the surface is a hyperplane in R

4. Perhaps the easiest way to
think about a hyperplane is by considering the general equation that defines one. Just as
the equation a1x 1 + a 2x 2 = b defines a line in R

2 and the equation a1x 1 + a 2x 2 + a 3x 3 = b
defines a plane in R

3, the equation a1x 1 + a 2x 2 + a 3x 3 + a 4x 4 = b defines a hyperplane
in R

4.

DEFINITION 12.30 Differentiability for Functions of Three Variables

Let w = f (x, y, z) be a function of three variables defined on an open set containing
the point (x 0, y 0, z 0), and let 
w = f (x 0 + 
x, y 0 + 
y, z 0 + 
z) − f (x 0, y 0, z 0). The
function f is said to be differentiable at (x 0, y 0, z 0) if the partial derivatives f x(x 0, y 0, z 0),
f y(x 0, y 0, z 0), and f z(x 0, y 0, z 0) all exist and


w = f x(x 0, y 0, z 0)
x + f y(x 0, y 0, z 0)
y + f z(x 0, y 0, z 0)
z + ε1
x + ε2
y + ε3
z,

where ε1, ε2, and ε3 all go to zero as (
x, 
y, 
z) → (0, 0, 0).
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The following theorem for functions of three variables is an analog of Theorem 12.28
for functions of two variables:

THEOREM 12.31 The Continuity of the Partial Derivatives Guarantees Differentiability

If f (x, y, z) is a function of three variables with partial derivatives ∂ f
∂x

, ∂ f
∂y

, and ∂ f
∂z

that are

continuous on some open set containing the point (x 0, y 0, z 0), then f is differentiable at
(x 0, y 0, z 0).

The hyperplane that may be used to approximate a differentiable function of three vari-
ables, w = f (x, y, z), “close to” a point of differentiability (x 0, y 0, z 0) is given by the equation

f x(x 0, y 0, z 0)(x − x 0) + f y(x 0, y 0, z 0)( y − y 0) + f z(x 0, y 0, z 0)(z − z 0) = w − f (x 0, y 0, z 0).

This equation may be generalized to even higher dimensions.

Examples and Explorations

EXAMPLE 1 Computing directional derivatives

Find the directional derivative of f (x, y) = x
y2

in the direction of the vector 3i − 2j at the

point (5, −3).

SOLUTION

Before we compute any directional derivative, we need to have a unit vector in the correct
direction. We divide the vector 3i − 2j by its magnitude

√
3 2 + (−2)2 = √

13 and obtain
the unit vector u = 3√

13
i − 2√

13
j. Now,

Du f (5, −3) = lim
h→0

5 + (3/
√

13 )h

(−3 − (2/
√

13 )h)2
− 5

(−3)2

h

= lim
h→0

1
h

· 9(5 + (3/
√

13 )h) − 5(−3 − (2/
√

13 )h)2

9(−3 − (2/
√

13 )h)2

= lim
h→0

1
h

·
45 + 27√

13
h − 45 − 60√

13
h − 20

13
h2

9
(
−3 − 2√

13
h
)2 = lim

h→0

− 33√
13

− 20
13

h

9
(
−3 − 2√

13
h
)2

= − 11

27
√

13
.

�

EXAMPLE 2 Using partial derivatives to determine where a function is differentiable

Find the first-order partial derivatives for the functions

(a) f (x, y) = x 2√y
x − 1

(b) g(x, y) = ln x
tan−1 y

(c) P(r, θ , φ) = rθ

φ

Use the partial derivatives to determine the sets on which the functions are differentiable.

SOLUTION

(a) The partial derivatives of f are

∂ f
∂x

= x(x − 2)
√

y
(x − 1)2 and

∂ f
∂y

= x 2

2(x − 1)
√

y
.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 1, 2012 19:57

12.4 Directional Derivatives and Differentiability 951

These partial derivatives are continuous wherever the denominators are nonzero and
y > 0. They are continuous on the set S 1 = {(x, y) | x 	= 1 and y > 0}, and f is
differentiable at every point in S 1.

(b) The partial derivatives of g are

∂g
∂x

= 1
x tan−1 y

and
∂g
∂y

= − ln x
(1 + y 2)(tan−1 y)2

.

Since the domain of g consists of just the points in R
2 for which x > 0 and y 	= 0, both of

these partial derivatives are continuous only on the set S 2 = {(x, y) | x > 0 and y 	= 0}.
Our function g is differentiable at every point in S 2.

(c) Finally, for P we have

∂P
∂r

= θ

φ
,

∂P
∂θ

= r
φ

, and
∂P
∂φ

= − rθ

φ2 .

These partial derivatives are continuous everywhere in the domain of P. That is, they
are continuous on the set S 3 = {(r, θ , φ) | φ 	= 0}. The function P is differentiable at
every point in its domain. �

EXAMPLE 3 Finding the equation of the tangent plane

Find the equation of the tangent plane to the function

(a) f (x, y) = x 2√y
x − 1

at (3, 4). (b) g(x, y) = ln x
tan−1 y

at (e, 1).

SOLUTION

These are the two functions we discussed in Example 2.
(a) From the work we have already done, we know that the partial derivatives of f are

continuous on an open set containing the point (3, 4). At (3, 4), we have f (3, 4) = 9,

f x(3, 4) = 3(3−2)
√

4
(3−1)2

= 3
2

, and f y(3, 4) = 32

2(3−1)
√

4
= 9

8
. Thus, the equation of the

tangent plane is
3
2

(x − 3) + 9
8

( y − 4) = z − 9, or equivalently, 12x + 9y − 8z = 0.

(b) At (e, 1), we have g(e, 1) = 4
π

, g x(e, 1) = 4
πe

, and g y(e, 1) = − 8
π2

. Thus, the equation of
the tangent plane is

4
πe

(x − e) − 8
π 2

( y − 1) = z − 4
π

.
�

TEST YOUR? UNDERSTANDING
� What is a directional derivative? What is the geometric significance of a directional

derivative for a function of two variables? What is the relationship between a directional
derivative and a partial derivative?

� Why do we need to use a unit vector when we are computing a directional derivative?
What happens if you do not use a unit vector when you compute a directional deriva-
tive? How do you compute a directional derivative for a function of two variables? For
a function of three variables?

� What is the definition of differentiability for a function of two variables? How is the
definition of differentiability for a function of two variables related to the definition of
differentiability for a function of a single variable?
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� What is the definition of differentiability for a function of three variables? How could
you generalize this definition to a function of four (or more) variables?

� When f (x, y) is a differentiable function of two variables at (x 0, y 0), why is

f x(x 0, y 0)(x − x 0) + f y(x 0, y 0)( y − y 0) = z − f (x 0, y 0)

the equation of the tangent plane at (x 0, y 0)?

EXERCISES 12.4

Thinking Back

� Collinear tangent lines: Show that the left- and right-
hand derivatives exist for the function f (x) = x 3 at
x = 2. Show also that the lines with slopes f ′−(2) and
f ′+(2) at the point (2, 8) are collinear.

� Noncollinear tangent lines: Show that the left- and
right-hand derivatives exist for the function f (x) =
|x| + 3 at x = 0. Show also that the lines with slopes
f ′−(0) and f ′+(0) at the point (0, 3) are not collinear.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f (x, y) is a function of two variables,
then Dj f (a, b) = f y(a, b), provided that these deriva-
tives exist at (a, b).

(b) True or False: If u is a unit vector and the directional
derivative Du f (a, b) exists for a function of two vari-
ables, f , then Duf (a, b) = −D−u f (a, b).

(c) True or False: If f (x, y) is a function of two variables and
Du f (a, b) exists for some unit vector u, then Dv f (a, b)
exists for every unit vector v.

(d) True or False: If f (x, y, z) is a function of three variables
and v ∈ R

3 is a nonzero vector, then Dv/‖v‖f (a, b, c) =
1

‖v‖ Dv f (a, b, c).

(e) True or False: If the partial derivatives f x(a, b) and
f y(a, b) both exist for a function of two variables,
f (x, y), then f is differentiable at the point (a, b).

(f) True or False: A function of two variables, f (s, t), is dif-
ferentiable at the point (a, b) if the partial derivatives
fs and ft are continuous on an open set containing the
point (a, b).

(g) True or False: If a function of two variables, f (x, y),
is differentiable at the point (a, b), then Du f (a, b) =
Dv f (a, b) for all unit vectors u and v.

(h) True or False: If f (x, y) is differentiable at the point
(a, b), then there is a unit vector u such that
Du f (a, b) 	= 1.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function of two variables, f (x, y), such that
Du f (0, 0) = 0 for every unit vector u ∈ R

2.
(b) A function of three variables, f (x, y, z), such that

f x(0, 0, 0) = f y(0, 0, 0) = f z(0, 0, 0) = 0 but f is not
differentiable at (0, 0, 0).

(c) A function of three variables, f (x, y, z), such that
Du f (0, 0, 0) = 0 for every unit vector u ∈ R

3.

3. How many unit vectors are there in R
1? How many unit

vectors are there in R
n for n > 1?

4. Let u be a unit vector in R
2.

(a) Explain why −u is a unit vector.
(b) If (a, b) is a point in the domain of the function of two

variables, f (x, y), at which Du f (a, b) exists, what is the
relationship between Du f (a, b) and D−u f (a, b)?

5. What is the definition of the directional derivative for a
function of two variables, f (x, y)? Be sure to include the
words “unit vector” in your definition.

6. What is the definition of the directional derivative for a
function of three variables, f (x, y, z)? Be sure to include
the words “unit vector” in your definition.

7. Let v be a vector in R
n and let f be a function of n vari-

ables. How would we define the directional derivative of
f in the direction of a unit vector u ∈ R

n at v?
8. Let f (x, y) = x + y and u = 〈α, β〉 be a unit vector.

(a) Use the definition of the directional derivative to find
Du f (1, 2).

(b) Explain why 〈kα, kβ〉 is a unit vector only when
|k| = 1.

(c) Assume that |k| 	= 1 and evaluate the limit

lim
h→0

(1 + (kα)h) + (2 + (kβ)h) − (1 + 2)
h

.

(d) Use your results from parts (a) and (c) to explain why
it is necessary to use a unit vector in the definition of
the directional derivative.

9. Let f (x, y) = xy and u = 〈α, β〉 be a unit vector.

(a) Use the definition of the directional derivative to find
Du f (−1, 3).

(b) Assume that |k| 	= 1 and evaluate

lim
h→0

(−1 + (kα)h)(3 + (kβ)h) − (−1 · 3)
h

.
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(c) Use your results from parts (a) and (b) to explain why
it is necessary to use a unit vector in the definition of
the directional derivative.

10. Let f (x, y) = e x sin y and u = 〈α, β〉 be a unit vector.

(a) Use the definition of the directional derivative to find
Du f (0, π ).

(b) Assume that |k| 	= 1 and evaluate

lim
h→0

e kαh sin(π + k β h)
h

.

(Hint: sin(A + B) = sin A cos B + sin B cos A.)
(c) Use your results from parts (a) and (b) to explain why

it is necessary to use a unit vector in the definition of
the directional derivative.

11. Let f (x) be a function of a single variable. Define the di-
rectional derivative of f in the direction of the unit vector
u = 〈α〉 at a point c. What are the only possible values
for α?

12. Use your definition from Exercise 11 to show that the
directional derivative of a function of a single variable
f (x) at a point c in the direction of i is f ′(c) and that
the directional derivative of f at c in the direction of
−i is −f ′(c).

13. What does it mean for a function of two variables, f (x, y),
to be differentiable at a point (a, b)?

14. If the function f (x, y) is differentiable at a point (a, b), ex-
plain why the tangent lines to the graph of f at (a, b) in the
x and y directions are sufficient to determine the tangent
plane to the surface.

15. Let u 1 and u 2 be two nonparallel unit vectors in R
2. If

the function f (x, y) is differentiable at a point (a, b), ex-
plain why the tangent lines to the graph of f at (a, b) in
the u 1 and u 2 directions are sufficient to determine the
tangent plane to the surface.

16. What does it mean for a function of three variables,
f (x, y, z), to be differentiable at a point (a, b, c)?

17. If the function f (x, y, z) is differentiable at a point (a, b, c),
explain why the tangent lines to the graph of f at (a, b, c)
in the x, y, and z directions are sufficient to determine the
tangent hyperplane to the surface.

18. Let u 1, u 2, and u3 be three unit vectors in R
3 that can-

not be put into the same plane. If the function f (x, y, z)
is differentiable at a point (a, b, c), explain why the tan-
gent lines to the graph of f at (a, b, c) in the u 1, u 2, and
u3 directions are sufficient to determine the tangent hy-
perplane to the surface.

19. Using Definition 12.30 as a model, provide a definition of
differentiability for a function of n variables.

20. Using Theorem 12.31 as a model, provide a conjecture you
think would be sufficient to guarantee that a function of
n variables is differentiable at a point in its domain.

Skills

In Exercises 21–28, find the directional derivative of the given
function at the specified point P and in the direction of the
given unit vector u.

21. f (x, y) = x 2 − y 2 at P = (2, 3), u =
〈√

2
2

,
√

2
2

〉

22. f (x, y) = x 2 − y 2 at P = (2, 3), u = 3
5

i − 4
5

j

23. f (x, y) = x
y 2

at P = (−2, 1), u =
〈√

10
10

, −3
√

10
10

〉

24. f (x, y) = x
y 2

at P = (−2, 1), u = − 5
13

i + 12
13

j

25. f (x, y) =
√

y
x

at P = (4, 9), u =
〈
−

√
17

17
, −4

√
17

17

〉

26. f (x, y) =
√

y
x

at P = (4, 9), u = 15
17

i + 8
17

j

27. f (x, y, z) = x 2 + y 2 − z 3 at P = (2, −2, 2), u =
〈

3
5

, 0,
4
5

〉

28. f (x, y, z) = x 2 + y 2 − z 3 at P = (2, −2, 2),

u = 2
3

i − 2
3

j + 1
3

k

In Exercises 29–34, find the equation of the line tangent to the
surface at the given point P and in the direction of the given
unit vector u. Note that these are the same functions, points,
and vectors as in Exercises 21–26.

29. f (x, y) = x 2 − y 2 at P = (2, 3), u =
〈√

2
2

,
√

2
2

〉

30. f (x, y) = x 2 − y 2 at P = (2, 3), u = 3
5

i − 4
5

j

31. f (x, y) = x
y 2

at P = (−2, 1), u =
〈√

10
10

, −3
√

10
10

〉

32. f (x, y) = x
y 2

at P = (−2, 1), u = − 5
13

i + 12
13

j

33. f (x, y) =
√

y
x

at P = (4, 9), u =
〈
−

√
17

17
, −4

√
17

17

〉

34. f (x, y) =
√

y
x

at P = (4, 9), u = 15
17

i + 8
17

j

In Exercises 35–38, find the directional derivative of the given
function at the specified point P and in the direction of the
given vector v.

35. f (x, y) = x 2 − y 2 at P = (3, 3), v = 〈−1, 5〉
36. f (x, y) = x

y 2
at P = (9, −3), v = 2i + 7j

37. f (x, y) =
√

y
x

at P = (1, 16), v = 〈2, −1 〉

38. f (x, y, z) = x 2 + y 2 − z 3 at P = (0, −2, 5),
v = −i + 3j + 5k
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In Exercises 39–42, show that the directional derivative of the
given function at the specified point P is zero for every unit
vector u.

39. f (x, y) = xy + 2x − y at P = (1, −2)

40. f (x, y) = 3x 2 − 4xy + 2y 2 at P = (0, 0)

41. f (x, y) = (x + 1)y 2 at P = (−1, 0)

42. f (x, y, z) = x 2 + y 2 − z 3 at P = (0, 0, 0)

Find all points where the first-order partial derivatives of
the functions in Exercises 43–54 are continuous. Then use
Theorems 12.28 and 12.31 to determine the sets in which the
functions are differentiable.

43. f (x, y) = x 2 − y 2 44. f (x, y) = x
y 2

45. f (x, y) = x
x 2 + y 2 − 1

46. f (x, y) = x
x 2 + y 2

47. f (x, y) = sin(xy) 48. f (x, y) = cos(xy)

49. f (x, y) = tan(xy) 50. f (x, y) = tan(x + y)

51. f (x, y) =
√

y
x

, x > 0, y ≥ 0

52. f (x, y) = ln(xy 2)

53. f (x, y, z) = x 2 + y 2 − z 3

54. f (x, y, z) = x
y 2 + z 2

Use the first-order partial derivatives of the functions in
Exercises 55–64 to find the equation of the plane tangent to

the graph of the function at the indicated point P. Note that
these are the same functions as in Exercises 43–52.

55. f (x, y) = x 2 − y 2, P = (1, −3)

56. f (x, y) = x
y 2

, P = (−4, 7)

57. f (x, y) = x
x 2 + y 2

, P = (−3, 0)

58. f (x, y) = x
x 2 + y 2 − 1

, P = (1, −3)

59. f (x, y) = sin(xy), P =
(

2,
π

2

)

60. f (x, y) = cos(xy), P = (π , −3)

61. f (x, y) = tan(xy), P =
(

1, −π

4

)

62. f (x, y) = tan(x + y), P = (0, π )

63. f (x, y) =
√

y
x

, P = (1, 9)

64. f (x, y) = ln(xy 2), P = (1, −3)

Use the first-order partial derivatives of the functions in Exer-
cises 65 and 66 to find the equation of the hyperplane tangent
to the graph of the function at the indicated point P. Note that
these are the same functions as in Exercises 53 and 54.

65. f (x, y, z) = x 2 + y 2 − z 3, P = (1, −5, 3)

66. f (x, y, z) = x
y 2 + z 2

, P = (4, 0, 2)

Applications
67. Ian is travelling along a glacier on a line directly north-

east. The elevation of the glacier in that area is described
by the function

f (x, y) = 1.2 − 0.2x 2 − 0.3y 2 + 0.1xy − 0.25x,

where x, y, and f are given in miles.

(a) If Ian is at the point (0, 0), how steeply is he descend-
ing?

(b) In what direction would Ian have to turn in order to
contour across (i.e., neither ascend nor descend) the
glacier?

68. Alex is laying out a new road that will descend from the
mountains near Boulder, Colorado. The local topography
is described by the function

f (x, y) = 1.1 − 0.2x + 0.05y 2 + 0.1xy.

All distances are given in miles. The technical require-
ments for the road stipulate that the road must be built at
a 6% grade. That is, the road will descend 6 feet for every
100 feet it travels horizontally. If Alex’s current position
is (−0.5, 0) and the road is going generally southeast, in
which direction does he need to look to survey the next
section of road?

Proofs

69. Let (a, b) be a point in the domain of the function of two
variables, f (x, y), and u be a unit vector for which Du f (a, b)
exists. Prove that D−u f (a, b) = −Du f (a, b).

70. Let f (x, y) be a function of two variables and k be a con-
stant. Prove that if f is differentiable at the point (a, b) and
Du f (a, b) = k for every unit vector u ∈ R

2, then k = 0.

71. Let f (x, y) be a function of two variables. Prove that if f is
differentiable at the point (a, b), then there is a unit vector,
u, such that Du f (a, b) 	= 1. (Hint: See Exercise 70.)
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Thinking Forward

� Paraboloid: Sketch the paraboloid that is the graph of
the function f (x, y) = 4 − x 2 − y 2. What is the point
(a, b) at which the function attains its maximum value?
What is the directional derivative Du f (a, b) for any unit
vector u?

� Hyperboloid: Sketch the hyperboloid that is the graph
of the function g(x, y) = x 2 − y 2. Does the function
g have any extreme values? What is the directional
derivative Du g(0, 0) for any unit vector u?

12.5 THE CHAIN RULE AND THE GRADIENT

� The chain rule for functions of two or more variables

� The gradient

� The gradient and directional derivatives

The Chain Rule

In Theorem 12.29 we saw that if a function of two variables, f (x, y), is differentiable at a point
(x 0, y 0) in its domain, then the equation of the plane tangent to the surface is given by

f x(x 0, y 0)(x − x 0) + f y(x 0, y 0)( y − y 0) = z − f (x 0, y 0).

Just as a line tangent to the graph of a function of a single variable may be used to
approximate the function close to the point of tangency, we may use the tangent plane to
approximate a differentiable function of two variables. If we let 
x = x − x 0, 
y = y − y 0,
and 
z = z − f (x 0, y 0), the previous equation becomes


z = f x(x 0, y 0)
x + f y(x 0, y 0)
y.

This equation may be interpreted to say that, close to the point of tangency, the difference
between the value of the function f and the corresponding value on the tangent plane is
approximately f x(x 0, y 0)
x + f y(x 0, y 0)
y. We will use this property to prove the chain
rule for functions of two or more variables.

Recall that when y = f (x) is a function of the single variable x, and x is a function of
another variable t, we may find the rate of change of f with respect to t with the chain rule,
dy
dt

= dy
dx

dx
dt

. If any of our functions is a function of two or more variables, we need to adapt

the chain rule to fit the particular functions we have.

THEOREM 12.32 Chain Rule (Version I)

Given functions z = f (x, y), x = u(t), and y = v(t), for all values of t at which u and v are
differentiable, and if f is differentiable at (u(t), v(t)), then

dz
dt

= ∂z
∂x

dx
dt

+ ∂z
∂y

dy
dt

.

For example, if z = x 2 sin y, x = t 3, and y = e 5t, then

dz
dt

= ∂z
∂x

dx
dt

+ ∂z
∂y

dy
dt

= (2x sin y)(3t 2) + (x 2 cos y)(5e 5t).

Although this equation is correct, it is better to replace x and y with their respective func-
tions of t and simplify the result:

dz
dt

= (2(t 3) sin(e 5t))(3t 2) + ((t 3)2 cos(e 5t))(5e 5t) = 6t 5 sin(e 5t) + 5t 6e 5t cos(e 5t).
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In Example 1 we verify this derivative by first replacing x and y with their respective func-
tions of t and then taking the derivative of the resulting function.

THEOREM 12.33 Chain Rule (Version II)

Given functions z = f (x, y), x = u(s, t), and y = v(s, t), for all values of s and t at which u
and v are differentiable, and if f is differentiable at (u(s, t), v(s, t)), then

∂z
∂s

= ∂z
∂x

∂x
∂s

+ ∂z
∂y

∂y
∂s

and ∂z
∂t

= ∂z
∂x

∂x
∂t

+ ∂z
∂y

∂y
∂t

.

For example, if z = e x cos y, x = s2t 3, and y = s
t
, then

∂z
∂s

= ∂z
∂x

∂x
∂s

+ ∂z
∂y

∂y
∂s

= (e x cos y)(2st 3) + (−e x sin y)
(

1
t

)
.

Again, although this equation is correct, it is better to replace x and y with their respective
functions of s and t and simplify the result:

∂z
∂s

=
(

e s2t 3
cos

(
s
t

))
(2st 3) +

(
−e s2t 3

sin
(

s
t

))(
1
t

)
= es2t 3

(
2st 3 cos

(
s
t

)
− 1

t
sin
(

s
t

))
.

In Example 2 we continue this example by finding ∂z
∂t

and verifying that both of these partial

derivatives are correct by replacing x and y with their respective functions of s and t and
then taking the partial derivatives of the resulting function.

We now prove Theorem 12.32. The proof of Theorem 12.33 is similar and is left for
Exercise 65.

Proof. Let x = u(t), y = v(t), and t 0 be a point in the domains of both u and v, where the functions
are differentiable and where f is differentiable at (x 0, y 0) = (u(t 0), v(t 0)). By Definition 12.27, at
(x 0, y 0) we have


z = ∂ f
∂x


x + ∂ f
∂y


y + ε1
x + ε2
y,

where ε1 → 0 and ε2 → 0 as (
x, 
y) → (0, 0). If we divide both sides of this equation by 
t, we
obtain


z

t

= ∂ f
∂x


x

t

+ ∂ f
∂y


y

t

+ ε1

x

t

+ ε2

y

t

.

If we let 
x = u(t 0 +
t)−u(t 0) and 
y = v(t 0 +
t)−v(t 0), then 
x → 0 and 
y → 0 as 
t → 0.
Consequently, ε1 → 0 and ε2 → 0 as 
t → 0. Taking the limit of the quotients, we get:

dz
dt

= lim

t→0


z

t

= lim

t→0

(
∂ f
∂x


x

t

+ ∂ f
∂y


y

t

+ ε1

x

t

+ ε2

y

t

)

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

.

After examining Theorems 12.32 and 12.33, you may be able to guess that there is a
more comprehensive version of the chain rule, which we state in the following theorem:

THEOREM 12.34 Chain Rule (Complete Version)

Given functions z = f (x 1, x 2, . . . , x n) and x i = u i(t 1, t 2, . . . , t m) for 1 ≤ i ≤ n, for
all values of t 1, t 2, . . . , t m at which each u i is differentiable, and if f is differentiable at
(u1(t 1, t 2, . . . , t m), u2(t 1, t 2, . . . , t m), . . . , u n(t 1, t 2, . . . , t m)), then

∂z
∂t j

= ∂z
∂x 1

∂x 1

∂t j
+ ∂z

∂x 2

∂x 2

∂t j
+ · · · + ∂z

∂x n

∂x n

∂t j
, for 1 ≤ j ≤ m.
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The Gradient

In Section 12.6 we will be finding extrema for functions of two variables. Recall that the
extreme values of a function of a single variable occur at the function’s critical points (i.e.,
those points at which the derivative either is zero or does not exist). For functions of two
variables, we will use the gradient of the function to find extrema.

DEFINITION 12.35 The Gradient

Let z = f (x, y) be a function of two variables. The gradient of f is the vector function
defined by

∇f (x, y) = ∂ f
∂x

i + ∂ f
∂y

j = 〈
f x(x, y), f y(x, y)

〉
.

Similarly, if w = f (x, y, z) is a function of three variables, then the gradient of f is the
vector function defined by

∇f (x, y, z) = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k = 〈
f x(x, y, z), f y(x, y, z), f z(x, y, z)

〉
.

The domain of the gradient is the set of all points in the domain of f at which the partial
derivatives exist.

The symbol ∇f is read “the gradient of f ,” “grad f ,” or “del f .”

Recall that when the first-order partial derivatives of f are continuous in a neighbor-
hood of a point P, the function is differentiable at P. Therefore, if the gradient of f is con-
tinuous in a neighborhood of a point P, the function is differentiable at P. In particular, a
differentiable function of two variables, f (x, y), can have an extreme value only at a point
at which the gradient is the zero vector, since such points are the only places where the
tangent plane might be horizontal (a necessary, but insufficient, condition for having an
extreme). Therefore, our first step for locating extreme values will be to find those places
where the gradient is zero. We see that for a function of two or three variables, the gradient
plays the role that the derivative plays for functions of a single variable.

Using the Gradient to Compute the Directional Derivative

In Section 12.4 we introduced the directional derivative and defined it in terms of a limit.
As we will see in the following theorem, the gradient provides a shortcut for finding the
directional derivative when the first-order partial derivatives of the function exist:

THEOREM 12.36 The Gradient and the Directional Derivative

Let f (x, y) be a function of two variables and (x 0, y 0) be a point in the domain of f at
which f is differentiable. Then, for every unit vector u ∈ R

2,

Du f (x 0, y 0) = ∇f (x 0, y 0) · u.

Similarly, if u ∈ R
3 is a unit vector, f (x, y, z) is a function of three variables, and (x 0, y 0, z 0)

is a point in the domain of f at which f is differentiable, then

Du f (x 0, y 0, z 0) = ∇f (x 0, y 0, z 0) · u.

Recall that in Section 12.4 we used Definition 12.26 to find the directional derivative of the
function f (x, y) = x2

y
at the point (−1, 2) in the direction of the unit vector u =

〈
3
5

, − 4
5

〉
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and saw that Du f (−1, 2) = − 2
5

. We now compute the same derivative, but using Theo-
rem 12.36. First we need the gradient of f :

∇f (x, y) = ∂ f
∂x

i + ∂ f
∂y

j = 2x
y

i − x 2

y 2
j.

At (−1, 2), ∇f (−1, 2) = −i − 1
4

j. Now, using the theorem, we have

Du f (−1, 2) = ∇f (−1, 2) · u =
(
−i − 1

4
j
)

·
(

3
5

i − 4
5

j
)

= −2
5
.

Although the computation using the definition was not terrible, Theorem 12.36 certainly
saves time, particularly when the limit in the definition is difficult to work with.

We now prove Theorem 12.36.

Proof. We prove the theorem when f is a function of two variables and leave the case when f is a
function of three variables for Exercise 66. By Definition 12.26 we have

Du f (x 0, y 0) = lim
h→0

f (x 0 + αh, y 0 + βh) − f (x 0, y 0)
h

,

where u = 〈α, β〉. We now define the function F(h) = f (x 0 + αh, y 0 + βh) and note that F is a
function of the single variable h, because α, β, x 0, and y 0 are all constants. Thus,

Du f (x 0, y 0) = lim
h→0

F(h) − F(0)
h

= F′(0),

by the definition of the derivative. If we let x = x 0 + α · h and y = y 0 + β · h, then, by the chain
rule, Theorem 12.32, it follows that

F ′(h) = ∂ f
∂x

∂x
∂h

+ ∂ f
∂x

∂x
∂h

= f x(x, y)α + f y(x, y)β.

Now, when h = 0, x = x 0 and y = y 0. Thus, if we evaluate the equation for F ′(h) at h = 0, we have

F ′(0) = Du f (x 0, y 0) = f x(x 0, y 0)α + f y(x 0, y 0)β = ∇f (x 0, y 0) · u,

the result we seek.

The gradient of a function f (x, y) gives us information about two important geomet-
ric properties of the function. Theorem 12.37 tells us that the gradient ∇f points in the
direction in which f increases most rapidly, and Theorem 12.38 says that the gradient at
(x 0, y 0) is orthogonal to the level curve f (x, y) = c 0, where c 0 = f (x 0, y 0). In the figure that
follows, the green gradient vectors are orthogonal to the level curves and point in the di-
rection in which the function increases most rapidly. Generally, that means that they point
in the direction in which the level curves are most tightly spaced. If you are a hiker familiar
with topographic maps, this is saying that the shortest path to the peak crosses the level
curves quickly. It may be a difficult trek, but it does minimize the distance you have to
travel.

The gradient vectors are orthogonal to the level curves
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THEOREM 12.37 The Gradient Points in the Direction of Greatest Increase

Let f be a function of two or three variables, and let P be a point in the domain of f at
which f is differentiable. Then the gradient of f at P points in the direction in which f
increases most rapidly.

Proof. We prove the theorem when f is a function of two variables and leave the case when f is a
function of three variables for Exercise 74. By Theorem 12.36,

Du f (x 0, y 0) = ∇f (x 0, y 0) · u = ‖∇f (x 0, y 0)‖‖u‖ cos θ ,

where θ is the angle between the vectors ∇f (x 0, y 0) and u. Now, since u is a unit vector, ‖u‖ = 1.
Thus,

Du f (x 0, y 0) = ‖∇f (x 0, y 0)‖ cos θ.

The quantity on the right is greatest when θ = 0. Therefore, the directional derivative is greatest
when u is parallel to the gradient.

Going back to the function f (x, y) = x2

y
, we have ∇f (−1, 2) = −i− 1

4
j. This vector points in

the direction in which f increases most quickly at the point (−1, 2), and the rate of change
of f in that direction is the magnitude

∥∥∇f (−1, 2)
∥∥ =

∥∥∥−i − 1
4

j
∥∥∥ =

√
(−1)2 +

(
− 1

4

)2
=

√
17
4

.

The function decreases most rapidly in the opposite direction, −∇f (−1, 2) = i + 1
4

j, and

the rate of change of f in this direction is −
√

17
4

.

THEOREM 12.38 Gradient Vectors are Orthogonal to Level Curves

Let f be a function of two variables, and let (x 0, y 0) be a point in the domain of f at
which f is differentiable. If C is the level curve containing the point c 0 = f (x 0, y 0), then
∇f (x 0, y 0) and C are orthogonal at f (x 0, y 0).

Proof. Let x = g(t), y = h(t) be a parametrization for the level curve C at height f (x 0, y 0) = c 0

such that g(t 0) = x 0 and h(t 0) = y 0. The curve C has equation f (x, y) = c 0, or in terms of the
parametrization, F(t) = f ( g(t), h(t)) = c 0. Now, by Theorem 12.32 and the fact that F(t) is a constant
function, we have

F ′(t) = ∂ f
∂x

∂x
∂t

+ ∂ f
∂y

∂y
∂t

= 0.

In particular, at t = t 0

F ′(t 0) = ∇f (x 0, y 0) · 〈 g ′(t 0), h′(t 0)
〉 = 0.

But
〈
g′(t 0), h′(t 0)

〉
is the tangent vector to the level curve C at t = t 0. Therefore, the equation tells us

that the gradient at (x 0, y 0) and the level curve are orthogonal at f (x 0, y 0).

Examples and Explorations

EXAMPLE 1 Verifying a derivative (chain rule, version I)

Let z = x 2 sin y, x = t 3, and y = e 5t. Verify that

dz
dt

= 6t 5 sin(e 5t) + 5t 6e 5t cos(e 5t)

by replacing x and y with their respective functions of t and then taking the derivative of
the resulting function.
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SOLUTION

Earlier in the section we used Theorem 12.32 to obtain the derivative shown. Now we
express z as a function of t:

z = (t 3)2 sin(e 5t) = t 6 sin(e 5t).

Taking the derivative with respect to t, we have

dz
dt

= 6t 5 sin(e 5t) + 5t 6e 5t cos(e 5t).
�

EXAMPLE 2 Using the chain rule (version II) to find a partial derivative

Let z = e x cos y, x = s2t 3, and y = s
t
. Earlier in the section we found ∂z

∂s
. Now we use The-

orem 12.33 to find ∂z
∂t

, and then we verify that both of these partial derivatives are correct

by replacing x and y with their respective functions of s and t and taking the appropriate
partial derivatives of the resulting function.

SOLUTION

By Theorem 12.33,

∂z
∂t

= ∂z
∂x

∂x
∂t

+ ∂z
∂y

∂y
∂t

= (e x cos y)(3s2t 2) + (−e x sin y)
(
− s

t 2

)
.

This result is correct, but it is preferable to write the function as a function of just s and t.
We use x = s2t 3 and y = s

t
to do so:

∂z
∂t

=
(

e s2t 3
cos
(

s
t

))
(3s2t 2) +

(
−e s2t 3

sin
(

s
t

))(
− s

t 2

)
= e s2t 3

(
3s2t 2 cos

(
s
t

)
+ s

t 2
sin
(

s
t

))
.

To verify these partial derivatives, we first write z as a function of s and t; that is,

z = e s2t 3
cos
(

s
t

)
.

We now find ∂z
∂s

and ∂z
∂t

, using the appropriate derivative rules:

∂z
∂s

= 2st 3e s2t 3
cos
(

s
t

)
− 1

t
e s2t 3

sin
(

s
t

)
.

If we factor this equation, we obtain what we had earlier in the section, namely,

∂z
∂s

= e s2t 3
(

2st 3 cos
(

s
t

)
− 1

t
sin
(

s
t

))
.

Finally,
∂z
∂t

= 3s2t 2e s2t 3
cos
(

s
t

)
+ s

t 2
e s2t 3

sin
(

s
t

)
.

This is equivalent to the result we obtained before. �

EXAMPLE 3 Using the chain rule

If w = f (x, y, z), x = u(s, t), y = v(s, t), and z = w(s, t) are differentiable functions at every
point in their domains, what are ∂w

∂s
and ∂w

∂t
?

SOLUTION

We have
∂w
∂s

= ∂w
∂x

∂x
∂s

+ ∂w
∂y

∂y
∂s

+ ∂w
∂z

∂z
∂s

and ∂w
∂t

= ∂w
∂x

∂x
∂t

+ ∂w
∂y

∂y
∂t

+ ∂w
∂z

∂z
∂t

.
�
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EXAMPLE 4 Finding and interpreting the gradient

Find the gradient of each of the following functions:

(a) f (x, y) = e y sin
(

x
y

)
(b) g(x, y, z) = xy 2 − z

xy 3

Then find the direction in which the function f increases most rapidly at the point (π , 1)
and the rate of change of f in that direction. Finally, find the direction in which g decreases
most rapidly at the point (2, −1, 4) and the rate of change of g in that direction.

SOLUTION

(a) The gradient of f is

∇f (x, y) = e y

y
cos
(

x
y

)
i + e y

(
sin
(

x
y

)
− x

y 2
cos
(

x
y

))
j.

At (π , 1), ∇f (π , 1) = e cos (π ) i+ e (sin (π ) − π cos (π )) j = − ei+πej. This is the direc-
tion in which f increases most rapidly at (π , 1), and the magnitude

‖∇f (π , 1)‖ = ‖ − ei + πej‖ =
√

e 2 + π2e 2 = e
√

1 + π2

is the rate of change of f in that direction.

(b) The gradient of g is

∇g(x, y, z) =
(

y 2 + z
x 2y 3

)
i +

(
2xy + 3z

xy 4

)
j − 1

xy 3
k.

At (2, −1, 4),

∇g(2, −1, 4) =
(

(−1)2 + 4
2 2(−1)3

)
i +

(
2 · 2 · (−1) + 3 · 4

2 · (−1)4

)
j − 1

2 · (−1)3
k

= 2j + 1
2

k.

This is the direction in which g increases most rapidly at (2, −1, 4), so g decreases most
rapidly in the opposite direction, −2j − 1

2
k. The rate of decrease in this direction is the

negative of the magnitude

‖∇g(2, −1, 4)‖ =
√

2 2 + (1/2)2 = 1
2

√
17.

�

EXAMPLE 5 Finding a function given its gradient

Find the function f (x, y) whose gradient is ∇f (x, y) = (2x + x 2y 2)e x y 2
i + 2x 3ye x y 2

j.

SOLUTION

This is really the same type of problem we saw in Example 5 in Section 12.3. In that example
we were given functions g(x, y) and h(x, y) and we used them to find a function f such that
f x(x, y) = g(x, y) and f y(x, y) = h(x, y). Now we have g(x, y) = f x(x, y) = (2x + x 2y 2)e x y 2

and h(x, y) = f y(x, y) = 2x 3ye x y 2
. Recall that, to ensure that such a function f existed, we

showed that ∂g
∂y

= ∂h
∂x

. Here,

∂

∂y
((2x + x 2y 2)e x y 2

) = (6x 2y + 2x 3y 3)e x y 2 = ∂

∂x
(2x 3ye x y 2

),

so we should be able to find a function f with the given gradient.
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Since the function 2x 3ye x y 2
is slightly simpler than the other function, we choose to

integrate this function with respect to y as the first step in finding f :

f (x, y) =
∫

2x 3ye x y 2
dy = x 2e x y 2 + q(x).

(If you are wondering how we integrated this function, try a u-substitution with u = xy 2.)
Next, to find q(x), we differentiate f (x, y) with respect to x and ensure that the resulting
derivative equals (2x + x 2y 2)e x y 2

. That is,
∂

∂x
(x 2e x y 2 + q(x)) = (2x + x 2y 2)e x y 2 + q ′(x).

Thus, we must have q ′(x) = 0 and q(x) = C, where C is a constant. We now have f (x, y) =
x 2e x y 2 + C. �

CHECKING
THE ANSWER

We may check our answer by showing that for

f (x, y) = x 2e x y 2 + C, we have ∇f (x, y) = (2x + x 2y 2)e x y 2
i + 2x 3ye x y 2

j.

EXAMPLE 6 Showing that gradient vectors are orthogonal to level curves

Show that the gradient vectors are orthogonal to the level curves for the function f (x, y) =
x 2 + y 2.

SOLUTION

The graph of f (x, y) = x 2 +y 2 is a paraboloid, each of whose level curves is a circle centered
at the origin. The gradient is ∇f (x, y) = 2xi+2yj; thus, every gradient vector points directly
outward from the origin. For the point (x 0, y 0) the gradient is ∇f (x 0, y 0) = 2x 0i+2y 0j, and
a tangent vector to the level curve containing the point (x 0, y 0) is y 0i − x 0j. The following
figure shows the level curves x 2 + y 2 = c for c = 1, 2, 3, and 4.

x

y

The gradient vector and tangent vector are orthogonal. �

TEST YOUR? UNDERSTANDING
� If f is a function of variables x 1, x 2, . . . , x n, and each of these variables is a function of

t 1, t 2, . . . , t m, how would we find ∂ f
∂t1

? How many summands would there be in this

partial derivative?

� What is the gradient? What does the gradient tell us about a function?

� If f is a function of two variables, what is the relationship between the gradient of f and
the level curves of f ?

� How can the gradient be used to compute the directional derivative of a function?

� Given the gradient of a function of two variables, how would we find the function?
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EXERCISES 12.5

Thinking Back

� Chain rule: If f is a function of x and x is a function of
t, how is the chain rule used to find the rate of change
of f with respect to t?

� Critical points: What is the definition of a critical point
for a function of a single variable? How do we use crit-
ical points to locate the extrema of the function?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If z = f (x, y) and x = u(s, t), then
∂z
∂s

=
∂z
∂x

∂x
∂s

.

(b) True or False: If z = f (x, y) and x = u(t), then
dz
dt

=
∂z
∂x

dx
dt

.

(c) True or False: If z = f (x, y), then ∇f (x, y) = ∂z
∂x

+ ∂z
∂y

.

(d) True or False: If z = f (x, y) and ∇f (1, 3) = 0, then the
graph of f is differentiable at (1, 3).

(e) True or False: If z = f (x, y) and u is a unit vector, then
Du f (a, b) = ∇f (a, b) · u.

(f) True or False: If f (x, y, z) is differentiable at (a, b, c) and
u ∈ R

3 is a unit vector, then Du f (a, b, c) = ∇f (a, b, c) ·
u.

(g) True or False: If w = f (x, y, z) is differentiable at (a, b, c),
then −∇f (a, b, c) points in the direction in which f is
decreasing most rapidly at (a, b, c).

(h) True or False: If z = f (x, y) is differentiable at (−1, 0),
and if f (−1, 0) = 4, then ∇f (−1, 0) is orthogonal to
the level curve f (x, y) = 4 at (−1, 0).

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function z = f (x, y) for which ∇f (0, 0) = 0 but f is
not differentiable at (0, 0).

(b) A function z = f (x, y) for which ∇f (0, 0) = 0 for every
point in R

2.
(c) A function z = f (x, y) and a unit vector u such that

Du f (0, 0) 	= ∇f (0, 0) · u.

3. Let z = e−x(3xy − 4x + y 2), x = sin t, and y = cos t.

(a) Find
dz
dt

by using the Chain Rule, Theorem 12.32.

(b) Find
dz
dt

by evaluating f (x(t), y(t)) = f (sin t, cos t) and
taking the derivative of the resulting function.

(c) Show that your answers from parts (a) and (b) are the
same. Which method was easier?

4. Let z = e−x y 2
, x = s sin t, and y = s2 cos t.

(a) Find
∂z
∂s

by using the Chain Rule, Theorem 12.33.

(b) Find
∂z
∂s

by evaluating f (x(s, t), y(s, t))=f (s sin t, s2cos t)
and taking the partial derivative with respect to s of
the resulting function.

(c) Show that your answers from parts (a) and (b) are the
same. Which method was easier?

5. Explain why the chain rule from Chapter 2 is a special case
of Theorem 12.34 with n = 1 and m = 1.

6. Explain why Theorem 12.32 is a special case of Theo-
rem 12.34 with n = 2 and m = 1.

7. Explain why Theorem 12.33 is a special case of Theo-
rem 12.34 with n = 2 and m = 2.

8. Consider the function f (x, y) = 2x + 3y.

(a) Why is the graph of f a plane?
(b) In what direction is f increasing most rapidly at the

point (−1, 4)?
(c) In what direction is f increasing most rapidly at the

point (x 0, y 0)?
(d) Why are your answers to parts (b) and (c) the same?

9. Continue with the function f (x, y) = 2x + 3y from Exer-
cise 8.

(a) What are the level curves of f ?
(b) Show that every gradient vector, ∇f (x, y), is orthogo-

nal to every level curve of f .
10. Consider the function f (x, y) = ax + by, where neither a

nor b is zero.

(a) Why is the graph of f a plane?
(b) In what direction is f increasing most rapidly at the

point (2, −3)?
(c) In what direction is f increasing most rapidly at the

point (x 0, y 0)?
(d) Why are your answers to parts (b) and (c) the same?

11. Continue with the function f (x, y) = ax + by from Exer-
cise 10.

(a) What are the level curves of f ?
(b) Show that every gradient vector, ∇f (x, y), is orthogo-

nal to every level curve of f .
12. If a function f (x, y) is differentiable at (a, b), explain how to

use the gradient ∇f (a, b) to find the equation of the plane
tangent to the graph of f at (a, b).

13. If a function f (x, y, z) is differentiable at (a, b, c), explain
how to use the gradient ∇f (a, b, c) to find the equation of
the hyperplane tangent to the graph of f at (a, b, c).
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14. Sketch level curves z = 1, 4, 9, and 16 for the function
z = x 2 + y 2. Include the graphs of three gradient vectors
on each level curve. What do you observe?

15. Sketch level curves z = 9, 16, 21, and 24 for the function
z = 25 − x 2 − y 2. Include the graphs of three gradient
vectors on each level curve. What do you observe?

16. Sketch level curves z = 1, 4, 9, and 16 for the function

z = x2

4
+ y2

9
. Include the graphs of three gradient vectors

on each level curve. What do you observe?

17. Sketch level curves z = −1, 0, and 1 for the function
z = x 2 − y 2. Include the graphs of three gradient vectors
on each level curve. What do you observe?

18. When would you have to use the definition of the direc-
tional derivative rather than the shortcut Du f (x 0, y 0) =
∇f (x 0, y 0) · u?

19. Imagine using a topographic map to plan a hike on a
mountain. If your hike stays on a single contour line, what
does that mean about the difficulty of the hike? If you
intentionally hike perpendicularly to the contour lines,
what does that mean about the difficulty of the hike?

20. An isotherm is a curve on a weather map connecting
points on the map that have the same temperature. From
a point on an isotherm, which direction would result in
the greatest temperature change?

Skills

Use Theorem 12.32 to find the indicated derivatives in Exer-
cises 21–26. Express your answers as functions of a single vari-
able.

21.
dz
dt

when z = sin x cos y, x = e t, and y = t 3.

22.
dz
dt

when z = x 3e y, x = sin t, and y = cos t.

23.
dx
dt

when x = r cos θ , r = t 2 − 5, and θ = t 3 + 1.

24.
dy
dt

when y = r sin θ , r = t 3, and θ = √
t.

25.
dr
dt

when r = √
x 2 + y 2, x = √

t, and y = t 2.

26.
dθ

dt
when θ = tan−1

(y
x

)
, x = e t, and y = e 2t.

Use Theorem 12.33 to find the indicated derivatives in Ex-
ercises 27–30. Express your answers as functions of two
variables.

27.
∂z
∂s

when z = x 2y 3, x = t sin s, and y = s cos t.

28.
∂z
∂t

when z = x 2y 3, x = t sin s, and y = s cos t.

29.
∂z
∂r

when z = (x 2 + xy)e y, x = r cos θ , and y = r sin θ .

30.
∂z
∂θ

when z = (x 2 + xy)e y, x = r cos θ , and y = r sin θ .

Use Theorem 12.34 to find the indicated derivatives in Exer-
cises 31–36. Be sure to simplify your answers.

31.
dx
dt

when x = ρ sin φ cos θ , ρ = t 2, φ = t 3, and θ = t 4.

32.
dx
dt

when x = ρ sin φ sin θ , ρ = √
t, φ = 3

√
t, and θ = 4

√
t.

33.
∂w
∂ρ

when w = (x 2 + z)e y, x = ρ sin φ cos θ ,

y = ρ sin φ sin θ , z = ρ cos φ.

34.
∂w
∂θ

when w = (x 2 + z)e y, x = ρ sin φ cos θ ,
y = ρ sin φ sin θ , z = ρ cos φ.

35.
dρ
dt

when ρ = √
x 2 + y 2 + z 2, x = √

t, y = t 2, z = t 3.

36.
dθ

dt
when θ = tan−1

(yz
x

)
, x = e t, y = e 2t, z = e3t.

Find the gradient of the given functions in Exercises 37–42.

37. z = x 2 sin y + y sin x 38. z = tan−1
(y

x

)

39. f (x, y) = √
x 2 + y 2 40. f (x, y) = y sec−1

(
1
x

)

41. f (x, y, z) = √
x 2 + y 2 + z 2

42. f (x, y, z) = cos−1

(
z√

x 2 + y 2 + z 2

)

In Exercises 43–48:

(a) Find the direction in which the given function increases
most rapidly at the specified point.

(b) Find the rate of change of the function in the direction you
found in part (a).

(c) Find the direction in which the given function decreases
most rapidly at the specified point.

Note: These are the same functions as in Exercises 37–42.

43. z = x 2 sin y + y sin x at
(
π ,

π

2

)

44. z = tan−1
(y

x

)
at (1,

√
3 )

45. f (x, y) = √
x 2 + y 2 at (2, −3)

46. f (x, y) = y sec−1 x at (2, 5)

47. f (x, y, z) = √
x 2 + y 2 + z 2 at (2, −1, −2)

48. f (x, y, z) = cos−1

(
z√

x 2 + y 2 + z 2

)
at (

√
10, −1, 5 )

In Exercises 49–54, find the directional derivative of the given
function at the specified point P and in the specified direction
v. Note that some of the direction vectors are not unit vectors.

49. z = e x tan y, P =
(

0,
π

4

)
, v = 3i − j

50. z = 3x 4 − 5y 2, P = (1, −2) , v =
〈

5
13

, −12
13

〉

51. z = ln
(

x
y 2

)
, P = (7, 1), v = −i − 4j

52. z = √
x 2 + y 2, P = (−3, 4) , v = 〈4, −3〉
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53. w = x sin y cos z, P =
(

3,
π

4
, −π

2

)
, v = i − 2j + 3k

54. w = ln
(

x 2

yz

)
+ ln

(
z

xy

)
− ln

(
x

y 2

)
, P = (3, 5, 8) ,

v = 13i + 21j + 34k

In Exercises 55–60, find a function of two variables with the
given gradient.

55. ∇f (x, y) =
〈
−3

x
,

1
y

〉

56. ∇f (x, y) = (
2x + cos x cos y

)
i −sin x sin yj

57. ∇f (x, y) = − y
x 2 + y 2

i + x
x 2 + y 2

j

58. ∇f (x, y) = 〈
y 2e x y 2

, 2xye x y 2 〉

59. ∇f (x, y) =
〈

y
(x + y)2

, − x
(x + y)2

〉

60. ∇f (x, y) =
(

1
y

− y
x 2

)
i +

(
1
x

− x
y 2

)
j

Applications
61. Ian is travelling along a glacier. The elevation of the glacier

in his area is described by the function

f (x, y) = 1.2 − 0.2x 2 − 0.3y 2 + 0.1xy − 0.25x,

where x, y, and f are given in miles.

(a) What is the direction that Ian would need to go
to descend most steeply if he is at the point
(0.5, −0.5)?

(b) In what direction would Ian have to turn in order to
contour (i.e., , neither ascend nor descend) across the
glacier?

62. Emmy is tracking down another source of contamination
at Hanford, this time in a warehouse containing numer-
ous 55-gallon drums of waste. Detectors placed through-
out the facility have measured a certain amount of radia-
tion at different points. From these measurements, Emmy
has constructed a polynomial approximation to the radia-
tion given by

f (x, y) = −0.0156x 2 − 0.0392y 2 + 0.0268xy + 1.7x + 20,

where the radiation is measured in microrems per hour
and the distances x and y are measured in feet from a
corner of the warehouse. At what location in the ware-
house should Emmy start her search for the contaminated
drum?

Proofs

63. Prove that ‖∇f (x, y, z)‖ = 1 for every point in the do-
main of the function f (x, y, z) = √

x 2 + y 2 + z 2 except the
origin.

64. Use at least two methods to prove that
dr
dt

= 0 when

r =√x 2 + y 2, x =α cos t, and y =α sin t if α is a constant.

65. Prove Theorem 12.33. That is, show that if z = f (x, y),
x = u(s, t), and y = v(s, t), then, for all values of s and t at
which u and v are differentiable, and if f is differentiable
at (u(s, t), v(s, t)), it follows that

∂z
∂s

= ∂z
∂x

∂x
∂s

+ ∂z
∂y

∂y
∂s

and
∂z
∂t

= ∂z
∂x

∂x
∂t

+ ∂z
∂y

∂y
∂t

.

66. Prove Theorem 12.36 when f is a function of three
variables. That is, show that if (x 0, y 0, z 0) is a point in the
domain of f (x, y, z) at which the first-order partial deriva-
tives of f exist, and if u ∈ R

3 is a unit vector for which
the directional derivative Du f (x 0, y 0, z 0) also exists, then
Du f (x 0, y 0, z 0) = ∇f (x 0, y 0, z 0) · u.

In Exercises 67–72 you will prove several basic properties of
the gradient for functions of two variables. In each exercise,
assume that f and/or g is differentiable.

67. Prove that ∇f = 0 if f is the constant function f (x, y) = c.

68. Prove that ∇(αf )(x, y) = α∇f (x, y), where α is a constant.

69. Prove that

∇( f (x, y) + g(x, y)) = ∇f (x, y) + ∇g(x, y).

70. Prove that

∇(αf (x, y) + βg(x, y)) = α∇f (x, y) + β∇g(x, y),

where α and β are constants.

71. Prove that

∇( f (x, y)g(x, y)) = f (x, y)∇g(x, y) + g(x, y)∇f (x, y).

72. Prove that

∇
(

f (x, y)
g(x, y)

)
= g(x, y)∇f (x, y) − f (x, y)∇g(x, y)

( g(x, y))2
,

where g(x, y) 	= 0.

73. Analogous properties hold for functions of three vari-
ables. What would you have to change in the proofs in
Exercises 67–72 to make them work for functions of three
variables?

74. Let f (x, y, z) be a function of three variables, and let P be a
point in the domain of f at which f is differentiable. Prove
that the gradient of f at P points in the direction in which
f increases most rapidly. (This is Theorem 12.37.)
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Thinking Forward

� The gradient at a maximum: If a function of two vari-
ables, f (x, y), is differentiable at a point (x 0, y 0) where
the function has a maximum, what is ∇f (x 0, y 0)?

� The gradient at a minimum: If a function of three
variables, f (x, y, z), is differentiable at a point
(x 0, y 0, z 0) where the function has a minimum,
what is ∇f (x 0, y 0, z 0)?

12.6 EXTREME VALUES

� Local and global extrema of functions of two variables

� Critical points of functions of two variables

� Using critical points to find the local extrema of functions of two variables

The Gradient at a Local Extremum

Many of the ideas in this section parallel the analogous concepts for functions of a single
variable. It would be worthwhile to review the definitions of local extrema and critical points
for functions of a single variable. Before proceeding in this section, we also suggest that you
think about how the first- and second-derivative tests can be adapted for functions of two
variables, if at all. Further, we suggest that when you are done with this section, think about
how the concepts presented here might be adapted to analyze functions of three or more
variables.

Suppose a function f (x, y) has a local maximum at some point (x 0, y 0). This means that
the value of f (x 0, y 0) is greater than or equal to all other “nearby” values of the function.
More precisely, we have the following definition:

DEFINITION 12.39 Local and Global Extrema of a Function of Two Variables

(a) A function f (x, y) has a local or relative maximum at (x 0, y 0) if f (x 0, y 0) ≥ f (x, y)
for every point (x, y) in some open disk containing (x 0, y 0).

(b) A function f (x, y) has a local or relative minimum at (x 0, y 0) if f (x 0, y 0) ≤ f (x, y)
for every point (x, y) in some open disk containing (x 0, y 0).

(c) A function f (x, y) has a local or relative extremum at (x 0, y 0) if f has either a local
maximum or a local minimum at (x 0, y 0).

(d) A function f (x, y) has a global or absolute maximum at (x 0, y 0) if f (x 0, y 0) ≥ f (x, y)
for every point (x, y) in the domain of f .

(e) A function f (x, y) has a global or absolute minimum at (x 0, y 0) if f (x 0, y 0) ≤ f (x, y)
for every point (x, y) in the domain of f .

(f) A function f (x, y) has a global or absolute extremum at (x 0, y 0) if f has either a
global maximum or a global minimum at (x 0, y 0).

Clearly, every global extremum is also a local extremum. At a local extremum, the plane
tangent to the function must be either horizontal or undefined. Consider the following
three graphs:
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Local maximum with
horizontal tangent plane

Local minimum with
horizontal tangent plane

Local maximum with
no tangent plane

When a function has a horizontal tangent plane at a point P, its gradient at P is zero.
Such a point is called a stationary point. When a function is not differentiable at a point,
its gradient there is either zero or undefined. Points at which either of these things occur
are called critical points.

DEFINITION 12.40 Stationary Points of a Function of Two Variables

A point (x 0, y 0) in the domain of a function f (x, y) is called a stationary point of f if f
is differentiable at (x 0, y 0) and ∇f (x 0, y 0) = 0.

In the first two of the preceding three graphs, the functions have stationary points where
the graphs have the horizontal tangent planes. The condition that f (x, y) needs to be differ-
entiable at (x 0, y 0) is necessary, since ∇f (x 0, y 0) = 0 does not ensure that f is differentiable
at (x 0, y 0). Consider, for example, the function

f (x, y) =
{

0, if x = 0 or y = 0
1, otherwise.

In Section 12.4, we saw that ∇f (0, 0) = 0 but that f is not differentiable at the origin.
Therefore, (0, 0) is not a stationary point for f .

DEFINITION 12.41 Critical Points of a Function of Two Variables

A point (x 0, y 0) in the domain of a function f (x, y) is called a critical point of f if (x 0, y 0)
is a stationary point of f or if f is not differentiable at (x 0, y 0).

Therefore, each of the three graphs shown before has a critical point at its local ex-
tremum. In fact, a local extremum can occur only at a critical point.

THEOREM 12.42 Local Extrema Occur at Critical Points

If f (x, y) has a local extremum at (x 0, y 0), then (x 0, y 0) is a critical point of f .
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The proof of Theorem 12.42 is similar to the proof of Theorem 3.3 in Section 3.1 and is left
for Exercise 56.

The converse of Theorem 12.42 is not true. For example, consider the function g(x, y) =
x 2 − y 2:

g(x, y) = x 2 − y 2

z

y

x

Here we have ∇g(0, 0) = 0, but the function has neither a maximum nor a minimum at
(0, 0). This example leads us to the definition of a saddle point.

DEFINITION 12.43 Saddle Points of a Function of Two Variables

A point (x 0, y 0) in the domain of a function f (x, y) is called a saddle point of f if (x 0, y 0)
is a stationary point of f at which there is neither a maximum nor a minimum.

The term “saddle point” comes from the fact that the graphs of the surfaces near the sim-
plest saddle points look like saddles, as we see in the graph of g(x, y) = x 2 − y 2. However,
the graphs near other saddle points can look far more complicated. For example, the graph
of f (x, y) = x 2y − y 3, which also has a saddle point at the origin, is as follows:

z

yx

The Second-Derivative Test for Classifying Local Extrema

We will now discuss a method for determining whether a function has a local maximum,
local minimum, or saddle point at each stationary point. This test uses the second-order
partial derivatives of the function. You may be wondering why we are not starting by dis-
cussing a test that uses the first-order partial derivatives. The short answer is that such a
test is somewhat impractical. You will explore the reason for that in Exercise 7.
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Before we discuss the second-order partial derivative test, we define the discriminant
of a function of two variables.

DEFINITION 12.44 The Hessian and the Discriminant of a Function of Two Variables

Let f (x, y) be a function with continuous second-order partial derivatives on some open
set S.

(a) The Hessian of f is the 2 × 2 matrix of second-order partial derivatives:

Hf =

⎡
⎢⎢⎢⎣

∂2f
∂x 2

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y 2

⎤
⎥⎥⎥⎦

.

(b) The discriminant of f is the determinant of the Hessian. That is,

det(Hf ) = ∂2f
∂x 2

∂2f
∂y 2 −

(
∂2f
∂x∂y

)2

.

Note that since we require that the second-order partial derivatives be continuous to form
either the Hessian or the discriminant, the determinant of the Hessian matrix is equivalent
to the discriminant because Theorem 12.23 guarantees the equality of the mixed second-
order partial derivatives.

The discriminant of a function of two variables is a related function of two variables.
For example, when f (x, y) = x 3e 2y, we have the first-order partial derivatives

∂ f
∂x

= 3x 2e 2y and ∂ f
∂y

= 2x 3e 2y

and the second-order partial derivatives

∂2f
∂x 2 = 6xe 2y,

∂2f
∂y 2 = 4x 3e 2y, and

∂2f
∂x∂y

= 6x 2e 2y.

Therefore, the discriminant is

det(Hf (x, y)) = (6xe 2y)(4x 3e 2y) − (6x 2e 2y)2 = −12x 4e4y.

We finally note that the Hessian may be generalized to functions of three or more variables,
although we will not be using the Hessian in these contexts. We will be using the Hessian
and the discriminant to analyze the stationary points of a function of two variables. The
Hessian of a function of three variables may be used in a similar manner.

THEOREM 12.45 The Second-Order Partial-Derivative Test for Classifying Stationary Points

Let f (x, y) be a function with continuous second-order partial derivatives on some open
disk containing the point at (x 0, y 0). If f has a stationary point at (x 0, y 0), then

(a) f has a relative maximum at (x 0, y 0) if det(Hf (x 0, y 0)) > 0 with f x x(x 0, y 0) < 0 or
f yy(x 0, y 0) < 0.

(b) f has a relative minimum at (x 0, y 0) if det(Hf (x 0, y 0)) > 0 with f x x(x 0, y 0) > 0 or
f yy(x 0, y 0) > 0.

(c) f has a saddle point at (x 0, y 0) if det(Hf (x 0, y 0)) < 0.

(d) If det(Hf (x0, y0)) = 0, no conclusion may be drawn about the behavior of f at
(x 0, y 0).
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Before we prove Theorem 12.45, we consider two examples. First, for the function

f (x, y) = x 2 + xy + y 2 + 3x − 6y,

we have f x(x, y) = 2x + y + 3 and f y(x, y) = x + 2y − 6. When we solve the system of
equations

2x + y + 3 = 0 and x + 2y − 6 = 0,

we find the only stationary point of f , namely, (−4, 5). The second-order partial derivatives
are f x x(x, y) = 2, f yy(x, y) = 2, and f x y(x, y) = 1. Therefore, det(Hf (−4, 5)) = 2 · 2 − 12 = 3.

Since det(Hf (−4, 5)) > 0, f x x(−4, 5) > 0, and f yy(−4, 5) > 0, it follows by Theorem 12.45
that f has a local minimum at (−4, 5).

Next, if we let g(x, y) = x 6 + y 6, then ∇g(x, y) = 6x 5i + 6y 5j. The point (0, 0) is the only
stationary point for g. The second-order partial derivatives are gx x(x, y) = 30x 4, f yy(x, y) =
30y 4, and f x y(x, y) = 0. Therefore, det(Hg(0, 0)) = 0. Thus, no conclusion can be drawn
from Theorem 12.45 about the behavior of g at the origin. However, since g(0, 0) = 0 and
g(x, y) > 0 for every point in R

2 except the origin, we may deduce that g has an absolute
minimum of 0 at the origin, without using the theorem.

We will prove Theorem 12.45 in a moment, but perhaps the following remarks will
help explain the reasoning in the proof: Recall that the sign of the second derivative of a
function of a single variable determines whether a function is concave up or concave down.
Similarly, the sign of the second-order directional derivative Du(Du f (x, y)) = D2

u f (x, y) may
be used to determine whether the function is concave up or concave down in the direction
of the unit vector u. If D2

u f (x 0, y 0) > 0 for every unit vector at a stationary point (x 0, y 0),
then the function has a local minimum at the stationary point. Similarly, if D2

u f (x 0, y 0) < 0
for every unit vector at the stationary point, then the function has a local maximum there.

One final note before we turn to the proof: Recall that the discriminant of a quadratic
polynomial y = ax 2 + bx + c is the quantity b 2 − 4ac and the discriminant of a function of
two variables is given in Definition 12.44. In the proof of Theorem 12.45, we use this term
in both contexts.

Proof. In Exercise 55 you will prove that for a function f (x, y) with continuous second-order partial
derivatives, the second directional derivative in the direction of the unit vector u = 〈α, β〉 is given
by

D2
u f (x, y) = α2f x x(x, y) + 2αβ f x y(x, y) + β2f yy(x, y).

Now let (x 0, y 0) be a stationary point of f , and let

A = f x x(x 0, y 0), B = f x y(x 0, y 0), and C = f yy(x 0, y 0).

Before proceeding further, note that AC − B 2 is the discriminant, det(Hf (x 0, y 0)). We have

D2
u f (x 0, y 0) = α2A + 2αβB + β2C.

Now, if α 	= 0 and we let m = β

α
, then

D2
u f (x 0, y 0) = α2

(
A + 2

β

α
B +

(
β

α

)2

C
)

= α2 (A + 2mB + m2C
)
.

The polynomial q(m) = A + 2Bm + Cm2 is a quadratic in m and has the same roots as D2
u f (x 0, y 0).

Now, if the discriminant, 4B2 − 4AC, of this polynomial is negative, then q(m) has no real roots.
Thus, if AC − B2 > 0, then q(m) has no real roots, and the sign of q(m) never changes. In order
for AC − B2 to be positive, the signs of A and C must be the same. So, if A = f x x(x 0, y 0), C =
f yy(x 0, y 0), and AC − B2 = det(Hf (x 0, y 0)) are all positive, the function is concave up in every
direction at the stationary point (x 0, y 0), and it follows that f has a local minimum at (x 0, y 0). If
A and C are both negative with AC − B2 > 0, the function is concave down in every direction at
(x 0, y 0), and it follows that f has a local maximum at (x 0, y 0). If AC − B2 < 0, the polynomial q(m)
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has two real roots, and then the function f is concave up in some directions and concave down
in other directions. Therefore, f has a saddle at the stationary point. If AC − B2 = 0, we cannot
draw any conclusions about the function. In Exercises 10-12 we ask you to show that a function
can have a local maximum, local minimum, or saddle point when AC − B2 = 0. Finally, if α = 0,
then β 	= 0, and we may modify the argument by factoring β2 instead of α2 out of the equation for
D2

u f (x, y).

Examples and Explorations

EXAMPLE 1 Finding and analyzing stationary points

Find the local extrema of the function f (x, y) = x 3 − 3xy − y 3. Classify each extreme point
as a local or global minimum or maximum.

SOLUTION

Our function is a polynomial. Every polynomial in two variables is differentiable at every
point in R

2, so the only critical points of f will be stationary points. The gradient of f is

∇f (x, y) = (3x 2 − 3y)i + (−3x − 3y 2)j.

To find the stationary points, we look for the points that make the gradient 0. We look for
solutions of the system of equations

3x 2 − 3y = 0 and −3x − 3y 2 = 0.

Using the first equation, we see that y = x 2. Substituting x 2 for y in the second equation
and simplifying, we obtain x(x 3 + 1) = 0. This equation has solutions x = 0 and x = −1.
Since x 2 = y, we have the two stationary points (0, 0) and (−1, 1).

Now, the second-order partial derivatives of f are

f x x(x, y) = 6x, f yy(x, y) = −6y, and f x y(x, y) = −3.

The discriminant is det(Hf (x, y)) = (6x)(−6y) − (−3)2 = −36xy − 9. At the stationary
points, we have det(Hf (0, 0)) = −9 and det(Hf (−1, 1)) = 27. By Theorem 12.45, since
det(Hf (0, 0)) < 0, there is a saddle point at (0, 0), and since det(Hf (−1, 1)) > 0 and
f x x(−1, 1) = −6 < 0, f has a local maximum at (−1, 1).

Finally, it is good to know if there is an absolute maximum at (−1, 1) or just a rela-
tive maximum. We have f (−1, 1) = 1, but when x = 0, lim

y→−∞ f (0, y) = lim
y→−∞(−y 3) = ∞.

Therefore, f has just a relative maximum at (−1, 1). �

EXAMPLE 2 Tabulating information about stationary points

Find the local extrema of the function g(x, y) = 3x 2y−3y+y 3. Classify each extreme point
as a local or global minimum or maximum.

SOLUTION

Again, the function is a polynomial, so the only critical points of g will be stationary points.
The gradient of g is

∇g(x, y) = g x(x, y)i + g y(x, y)j = 6xyi + (3x 2 − 3 + 3y 2)j.

To find the stationary points, we look for solutions of the system of equations

6xy = 0 and 3x 2 − 3 + 3y 2 = 0.
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From the first equation, we see that one of x and y must be zero. Substituting x = 0 into the
second equation and solving for y, we have y = ±1. Similarly, if y = 0, solving for x yields
x = ±1. Thus, we have exactly four stationary points: (0, 1), (0, −1), (1, 0), and (−1, 0).

The second-order partial derivatives of g are

g x x(x, y) = 6y, g yy(x, y) = 6y, and g x y(x, y) = 6x.

The discriminant is det(Hg(x, y)) = (6y)(6y) − (6x)2 = 36( y 2 − x 2). When there are sev-
eral stationary points, it is convenient to tabulate the relevant information about the dis-
criminant and second-order partial derivatives in order to classify the stationary points.
Accordingly, we construct the following table:

(x 0, y 0) det(Hg(x 0, y 0)) = 36( y2
0 − x2

0) gx x(x 0, y 0) = 6y 0 g(x 0, y 0) conclusion

(0, 1) 36 6 −2 minimum

(0, −1) 36 −6 2 maximum

(1, 0) −36 0 saddle point

(−1, 0) −36 0 saddle point

It remains to determine whether the function has an absolute minimum at (0, 1) or just
a relative minimum, and an absolute maximum at (0, −1) or just a relative maximum. Note
that when x = 0, we have the limits

lim
y→∞ g(0, y) = lim

y→∞(−3y + y 3) = ∞ and lim
y→−∞ g(0, y) = lim

y→−∞(−3y + y 3) = −∞.

Therefore, g has a relative minimum at (0, 1) and a relative maximum at (0, −1). �

EXAMPLE 3 Optimizing a function of two variables

Max is planning to construct a box with five wooden sides and a glass front. If the wood
costs $5 per square foot and the glass costs $10 per square foot, what dimensions should
Max use for the box to minimize the cost of the materials if the box needs to have a volume
of 12 cubic feet?

SOLUTION

Following is a schematic of the box:

z

xy

glass

Using the dimensions in the figure and the fact that the volume of the box is to be 12 cubic
feet, we have the constraint V = xyz = 12 between the variables. The glass front has area
yz. Therefore, the cost of the glass will be $10yz. The back wooden face will cost $5yz, the
left and right sides will each cost $5xz, and the top and bottom will each cost $5xy. Thus,
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in dollars, the cost of the box will be 10xy + 10xz + 15yz. Now, from our constraint on the
volume, we have z = 12

xy
, which we may use in our equation for the cost to rewrite our

function with just two variables:

C(x, y) = 10xy + 120
y

+ 180
x

, where x > 0 and y > 0.

To find the stationary points, we find the first-order partial derivatives

C x = 10y − 180
x 2

and C y = 10x − 120
y 2

.

Setting these partial derivatives equal to zero and solving simultaneously, we obtain x = 3
and y = 2. We also have the second-order partial derivatives

C x x = 360
x 3

, C yy = 240
y 3

, and C x y = 10.

Thus, the discriminant at (3, 2) is det (HC(3, 2)) =
(

360
27

)(
240

8

)
− 10 2 = 300 > 0, and since

Cx x(3, 2) > 0 as well, this stationary point gives us a minimum cost for the box. These
values tell us that the glass should be a square 2 feet on each side and the other dimension
of the box should be 3 feet. �

EXAMPLE 4 Using the derivative to find the distance from a point to a plane

In Theorem 10.39 in Chapter 10 we showed that the distance between a point P and a

plane P is given by |N·
−→
RP|

‖N‖ , where R is any point in the plane and N is a normal vector for

P . Use the minimization techniques discussed in this section to show that the distance
from the point P(x 0, y 0, z 0) to the plane P with equation ax + by + cz = d is also given by

|ax 0 + by 0 + cz 0 − d|√
a2 + b 2 + c 2

.

SOLUTION

Let (x, y, z) be an arbitrary point in the plane P . We wish to minimize the distance from P
to (x, y, z) given by

distance =
√

(x − x 0)2 + ( y − y 0)2 + (z − z 0)2.

However, as we have previously mentioned, if we minimize the square of the distance, we
accomplish the same goal. We will minimize

distance2 = (x − x 0)2 + ( y − y 0)2 + (z − z 0)2

subject to the constraint that ax+by+ cz = d. Now, at least one of the coefficients a, b, and
c is nonzero. Without loss of generality, we assume that c 	= 0, so we have z = d−ax−by

c
.

Thus, we will minimize the function

D(x, y) = (x − x 0)2 + ( y − y 0)2 +
(

d − ax − by
c

− z 0

)2
.

Here,

∇D =
(

2 (x − x 0) − 2a
c

(
d − ax − by

c
− z 0

))
i +

(
2( y − y 0) − 2b

c

(
d − ax − by

c
− z 0

))
j.
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Setting ∇D = 0 and solving for x and y is cumbersome, but the unique stationary point for
D is (

ad − aby 0 − acz 0 + b 2x 0 + c 2x 0

a2 + b 2 + c 2 ,
bd − abx 0 − bcz 0 + a2y 0 + c2y 0

a2 + b 2 + c 2

)
.

In Exercise 13, you are asked to provide the details of this result. In Exercise 14, you are
also asked to show that this point provides an absolute minimum for the function D. In

Exercise 15, you are asked to show that this minimal value is (ax0 +by0 +c z0 −d)2

a2 +b2 +c2
, and we

have the desired result. �

TEST YOUR? UNDERSTANDING
� What are stationary points? What are critical points? What are saddle points?

� Where do the local extrema of a function of two variables occur? How do we use the
first-order partial derivatives to find local extrema?

� How do we use the second-order partial derivatives to classify the stationary points of
a function of two variables?

� What is the main idea in the proof of Theorem 12.45 that is used to classify the stationary
points of a function of two variables?

� How could the ideas from this section be adapted to find the extrema of functions of
three variables? How would the definitions have to be modified? Could Theorem 12.45
be generalized to handle three variables?

EXERCISES 12.6

Thinking Back

� First-Derivative Test: Review the first-derivative test
for functions of a single variable. Explain how the
test works, what conditions a function must satisfy to
make the test useful, and when, if ever, the test might
fail.

� Second-Derivative Test: Review the second-derivative
test for functions of a single variable. Explain how the
test works, what conditions a function must satisfy to
make the test useful, and when, if ever, the test might
fail.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If ∇f (a, b) = 0, then f has a stationary
point at (a, b).

(b) True or False: If (a, b) is a stationary point of a function
f (x, y), then (a, b) is a critical point of f .

(c) True or False: If (a, b) is a critical point of a function
f (x, y), then (a, b) is a stationary point of f .

(d) True or False: If (a, b) is a saddle point of a function
f (x, y), then (a, b) is a critical point of f .

(e) True or False: If f (x, y) has a local maximum at (a, b),
then f (a, b) > f (x, y) for every point in some open disk
containing (a, b).

(f) True or False: The function f (x, y) = π has an absolute
minimum at every point in R

2.
(g) True or False: A function f (x, y) can have an absolute

maximum and an absolute minimum at every point
in R

2.

(h) True or False: If the graph of f (x, y) is a plane and
Du f (a, b) 	= 0 for some point (a, b), then f has no ex-
trema.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function of two variables with a local minimum at
(1, −3).

(b) A function of two variables with a point of nondiffer-
entiability at (4, −5).

(c) A function of two variables with a saddle point at
(0, 0).

3. How do you find the critical points of a function of two
variables, f (x, y)? What is the significance of the critical
points?

4. What is a stationary point of a function of two variables,
f (x, y)? What, if anything, is the difference between a crit-
ical point and a stationary point of f ?

5. What is a saddle point of a function of two variables,
f (x, y)?
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6. Explain why every saddle point is both a stationary point
and a critical point.

7. Review the first-derivative test for a function of a single
variable, set forth in Theorem 3.8 from Section 3.2. Ex-
plain why it might be difficult to design or implement an
analogous test for a function of two or more variables.

8. In the proof of Theorem 12.45 we argued that, for a unit
vector 〈α, β〉, if α = 0, then β 	= 0. Explain why by finding
the only possible values of β.

9. In the proof of Theorem 12.45 we mentioned that if the
quantity AC − B2 > 0, then the signs of A and C are the
same. Explain why.

Theorem 12.45 is inconclusive when the discriminant, det(Hf ),
is zero at a stationary point. In Exercises 10–12 we ask you to
illustrate this fact by analyzing three functions of two variables
with stationary points at the origin.

10. Show that the function f (x, y) = x 4 + y 4 has a sta-
tionary point at the origin. Show that the discriminant
det(Hf (0, 0)) = 0. Explain why f has an absolute mini-
mum at the origin.

11. Show that the function g(x, y) = − (x 4 + y 4) has a sta-
tionary point at the origin. Show that the discriminant
det(Hg(0, 0)) = 0. Explain why g has an absolute maxi-
mum at the origin.

12. Show that the function h(x, y) = x 3 + y 3 has a sta-
tionary point at the origin. Show that the discriminant
det(Hh(0, 0)) = 0. Show that there are points arbitrar-
ily close to the origin such that h(x, y) > 0. Show that
there are points arbitrarily close to the origin such that
h(x, y) < 0. Explain why all this shows that h has a saddle
at the origin.

In Exercises 13–16 we ask you to complete some of the details
we omitted in Example 4.

13. Show that the unique solution of the system of equations

2(x − x 0) − 2a
c

(
d − ax − by

c
− z 0

)
= 0 and

2( y − y 0) − 2b
c

(
d − ax − by

c
− z 0

)
= 0

is
(

ad − aby 0 − acz 0 + b 2x 0 + c 2x 0

a2 + b 2 + c 2
,

bd − abx 0 − bcz 0 + a2y 0 + c 2y 0

a2 + b 2 + c 2

)
.

14. Use Theorem 12.45 to show that the point

(
ad − aby 0 − acz 0 + b 2x 0 + c 2x 0

a2 + b 2 + c 2
,

bd − abx 0 − bcz 0 + a2y 0 + c 2y 0

a2 + b 2 + c 2

)

provides an absolute minimum for the function

D(x, y) = (x − x 0)2 + ( y − y 0)2 +
(

d − ax − by
c

− z 0

)2

.

15. Show that the minimal value of

D(x, y) = (x − x 0)2 + ( y − y 0)2 +
(

d − ax − by
c

− z 0

)2

,

is
(ax0 +by0 +c z0 −d)2

a2 +b2 +c2
by evaluating

D
(

ad − aby 0 − acz 0 + b 2x 0 + c 2x 0

a2 + b 2 + c 2
,

bd − abx 0 − bcz 0 + a2y 0 + c 2y 0

a2 + b 2 + c 2

)
.

16. Let P be the plane ax + by + cz = d, N = 〈a, b, c〉 be the
normal vector to P , R be a point on P , and P be the point
(x 0, y 0, z 0). Show that the distance formula we derived for
computing the distance from point P to plane P in Chap-

ter 10,
|N·

−→
RP|

‖N‖ , is equivalent to the distance formula we

derived in Example 4. That is, show that

|N·
−→
RP |

‖N‖ = |ax 0 + by 0 + cz 0 − d|√
a2 + b 2 + c 2

.

17. Let P be the point (x 1, y1, z1), P0 be the point (x 0, y 0, z 0),
d be the vector 〈a, b, c〉, and L be the line parametrized by
r(t) = P0 + td. In Chapter 10 we showed that the distance

from P to L is
‖d×

−→
P0P‖

‖d‖ . Explain how to derive this dis-

tance formula by minimizing a function of a single vari-
able.

18. Show that f (x, y) = √
x 2 + y 2 has a critical point at (0, 0).

Explain why f has an absolute minimum at (0, 0) and why
you cannot use Theorem 12.45 to show this.

19. Every function of a single variable, f (x) = x n, where n is
a positive integer greater than 1 will have a critical point
at x = 0. For which values of n will there be a relative
minimum at x = 0? For which values of n will there be an
inflection point at x = 0? Are there any other possibilities
for the behavior of the function at x = 0?

20. Consider a function of two variables, f (x, y) = x my n,
where m and n are positive integers. What conditions
do m and n have to satisfy in order for f to have a rela-
tive minimum at the origin? What conditions do m and
n have to satisfy in order for f to have a saddle point at
the origin? Are there any other possibilities for the be-
havior of the function at the origin? It may be helpful to
refer to your answers to Exercise 19 before you answer this
question.
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Skills

In Exercises 21–26, find the discriminant of the given function.

21. f (x, y) = e 2x cos y 22. g(x, y) = e−3x sin(2y)

23. f (s, t) = s3e t/2 24. g(s, t) = s2t e−s t 2

25. f (θ , φ) = cos θ sin φ 26. g(θ , φ) = cos θ cos φ

In Exercises 27–30, use the result from Example 4 to find the
distance from the point P to the given plane.

27. P = (3, 5, −2), x − 3y + 4z = 8

28. P = (−1, 3, 5), 5x − 2y − 7z + 2 = 0

29. P = (4, 0, −3), 12y − 5z = 7

30. P = (−3, 2, 6), x = 3y + 5z

In Exercises 31–52, find the relative maxima, relative minima,
and saddle points for the given functions. Determine whether
the function has an absolute maximum or absolute minimum
as well.

31. f (x, y) = 3x 2 + 3x + 6y 2 − 7

32. g(x, y) = 4x 2 − 8xy + y 2 + 3y + 5

33. f (x, y) = x 3 + y 3 − 12x − 3y + 15

34. g(x, y) = x 3 + 6x 2 + 6y 2 − 4

35. f (x, y) = x 3 − 12xy + y 3

36. g(x, y) = x 4 − 8x 2y + y 4

37. f (x, y) = 2x 2 − 2xy + 4y 2 + 3x + 9y − 5

38. g(x, y) = 8x 3 − 3xy 2 + 2y 3 − 4x − 2

39. f (x, y) = 8xy + 1
x

+ 1
y

40. g(x, y) = e x cos y

41. f (x, y) = x sin y

42. g(x, y) = x 2 + sin y − 3

43. f (x, y) = e x 2
cos y

44. g(x, y) = 5x − 4y 2 + x ln y, y > 0

45. f (x, y) = e x y

46. g(x, y) = 1
x 2 + y 2

47. f (x, y) = 1
x 2 + y 2 − 1

48. g(x, y) = 1
x 2 + y 2 + 1

49. f (x, y) = x 2y 2

50. g(x, y) = xy 2

51. f (x, y) = x 3y 2

52. g(x, y) = x 3y

Applications
53. Bob plans to build a rectangular wooden box. The ply-

wood he will use for the bottom costs $2 per square foot.
The pine for the sides costs $5 per square foot, and the
oak for the top costs $7 per square foot. What should the
dimensions of the box be to minimize the cost of a box
with a volume of 20 cubic feet?

54. Bob plans to build a rectangular wooden box. The wood
he will use for the bottom costs $A per square foot. The
wood for the sides costs $B per square foot, and the wood
for the top costs $C per square foot. What should the di-
mensions of the box be to minimize the cost of a box with
a volume of V cubic feet?

Proofs

55. Prove that for a function f (x, y) with continuous second-
order partial derivatives, the second directional derivative
in the direction of the unit vector u = 〈a, b〉 is given by

D2
u f (x, y) = a2 f x x(x, y) + 2abf x x(x, y) + b 2 f yy(x, y).

56. Prove Theorem 12.42. That is, show that if f (x, y) has a
local extremum at (x 0, y 0), then (x 0, y 0) is a critical point
of f . (Hint: Consider the functions of a single variable, g(x) =
f (x, y 0) and h( y) = f (x 0, y).)

57. Prove that if the square of the distance from the point
(x 0, y 0) to the line with equation αx + β y = γ is mini-
mized, then the distance from (x 0, y 0) to the line is also
minimized.

58. Prove that if the square of the distance from the point
(x 0, y 0) to the curve with equation g(x, y) = 0 is mini-
mized, then the distance from (x 0, y 0) to the curve is also
minimized.

Thinking Forward

� A function without extrema: What is the domain of the
function f (x, y) = 3x − 4y? Explain why f (x, y) has no
local extrema on its domain.

� Extrema on a closed and bounded set: How could we find
the maximum and minimum values of the function
f (x, y) = 3x − 4y if we restrict the domain to the disk
x 2 + y 2 ≤ 1?
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12.7 LAGRANGE MULTIPLIERS

� Constrained extrema

� The method of Lagrange multipliers

� The Extreme Value Theorem for functions of two or more variables

Constrained Extrema

In Example 3 of the previous section, we discussed how to construct a box with five
sides made of wood and one side made of glass. We saw that if the wood costs $5 per
square foot and the glass costs $10 per square foot, the cost of constructing the box is
C(x, y) = 10xy + 10xz + 15yz. In Section 12.6, we discussed how to optimize functions of
two independent variables. Fortunately, we were also told that the volume of the box was
to be 12 cubic feet, giving the constraint equation 12 = xyz. This constraint equation al-
lowed us to eliminate one of the variables. In the example, we showed that the values x = 3
and y = z = 2 together minimize the function subject to the constraint. Now, consider the
gradient of the function C(x, y, z) = 10xy + 10xz + 15yz at the point (3, 2, 2). Since

∇C(x, y, z) = (10y + 10z)i + (10x + 15z)j + (10x + 15y)k,

we have ∇C(3, 2, 2) = 40i + 60j + 60k. In addition, if we write the constraint equation in
the form g(x, y, z) = xyz − 12 = 0, we may also compute the gradient of this function at
the point (3, 2, 2). When we do, we obtain

∇g(x, y, z) = yzi + xzj + xyk and ∇g(3, 2, 2) = 4i + 6j + 6k.

Note that ∇C(3, 2, 2) is a multiple of ∇g(3, 2, 2). This is not a coincidence; it is a consequence
of the main theorem of this section, presented next. The technique we discuss here is called
the method of Lagrange multipliers, or, more simply, Lagrange’s method. This technique
tells us that the gradient of a function of several variables is always a scalar multiple of the
gradient of the constraint equation at a point that optimizes the function.

THEOREM 12.46 The Method of Lagrange Multipliers

Let f and g be functions with continuous first-order partial derivatives. If f (x, y) has a
relative extremum at a point (x 0, y 0) subject to the constraint g(x, y) = 0, then ∇f (x 0, y 0)
and ∇g(x 0, y 0) are parallel. Thus, if ∇g(x 0, y 0) 	= 0,

∇f (x 0, y 0) = λ∇g(x 0, y 0)

for some scalar λ.

Although we have stated Theorem 12.46 in terms of functions of two variables, it is also
true if f and g are both functions of three or more variables.

DEFINITION 12.47 Lagrange Multiplier

The scalar λ mentioned in Theorem 12.46 is called a Lagrange multiplier.
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The following figure shows a schematic illustrating Theorem 12.46.

The blue curves are level curves for a function f (x, y). The red curve is the graph of a con-
straint equation g(x, y) = 0. At an extreme of f subject to the constraint, the gradients of
both f and g are parallel. These are the green vectors shown in the figure.

Before we prove Theorem 12.46, we again consider our earlier example, to see how
Lagrange’s method works. We optimize the function C(x, y, z) = 10xy+10xz+15yz subject
to the constraint g(x, y, z) = xyz − 12 = 0. We’ve seen that

∇C(x, y, z) = (10y + 10z)i + (10x + 15z)j + (10x + 15y)k and ∇g(x, y, z) = yzi + xzj + xyk.

By Theorem 12.46, we must then have

∇C(x, y, z) = λ∇g(x, y, z)

for some constant λ. This equation gives rise to the following system of three equations
with four unknowns:

10y + 10z = λyz,

10x + 15z = λxz, and

10x + 15y = λxy.

We are unable find a unique solution for such a system. We need a fourth equation relating
the variables. Fortunately we have the constraint equation xyz = 12. The resulting system
of four equations in four unknowns is nonlinear, since each of the original three equations
has a term that is the product of three variables. Solving a nonlinear system can require nu-
merical tricks. Indeed, many nonlinear systems of equations are impossible to solve exactly.
Here, a little perseverance does pay off. It is often helpful to solve each of the equations
involving λ for λ and equate the results. When we do this for the preceding system, we
obtain

λ = 10y + 10z
yz

= 10x + 15z
xz

= 10x + 15y
xy

,

or equivalently,
10
z

+ 10
y

= 10
z

+ 15
x

= 10
y

+ 15
x

.

Since 10
z

+ 15
x

= 10
y

+ 15
x

, we must have y = z, and since 10
z

+ 10
y

= 10
z

+ 15
x

, we must also

have y = z = 2
3

x. Now, because xyz = 12, it follows that x = 3 and y = z = 2, the same
result we obtained in Section 12.6. Note that we did not solve the system for λ: The actual
value of λ is not significant.

We are now ready to prove Theorem 12.46.

Proof. Let z = f (x, y) be the function of two variables that we wish to optimize subject to the
constraint g(x, y) = 0. Assume that ∇g(x, y) 	= 0 for any point in the domain of g, let C be the curve
determined by g(x, y) = 0, and let r(t) = 〈

x(t), y(t)
〉

be a parametrization for C. Along the curve
C, z may be expressed as a function of the single variable t: z = f (x(t), y(t)). By the chain rule, the

derivative
dz
dt

is given by
dz
dt

= ∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

,
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or equivalently,
dz
dt

= f x(x, y)x ′(t) + f y(x, y)y ′(t).

But note that ∇f (x, y) = f x(x, y)i + f y(x, y)j and r ′(t) = x ′(t)i + y ′(t)j is the tangent function to
the curve C. Now, if t 0 is a point that optimizes f subject to the constraint g(x, y) = 0, then the

derivative
dz
dt

∣∣∣
t=t 0

= 0. So, at t 0, the dot product ∇f (x(t 0), y(t 0)) · r ′(t 0) = 0. Thus, the vectors

∇f (x(t 0), y(t 0)) and r ′(t 0) are orthogonal. But by Theorem 12.38, ∇g(x(t 0), y(t 0)) is also orthogo-
nal to C at (x(t 0), y(t 0)). Therefore, ∇f (x(t 0), y(t 0)) and ∇g(x(t 0), y(t 0)) are parallel, since they are
orthogonal to the same vector.

Optimizing a Function on a Closed and Bounded Set

Recall that the Extreme Value Theorem tells us that every continuous function on a closed
interval will have both a maximum value and a minimum value on the interval. We have
the following analogous theorem for functions of two variables:

THEOREM 12.48 The Extreme Value Theorem for a Function of Two Variables

Let f be a continuous function of two variables defined on the closed and bounded set
S. Then there exist points (xM, yM) and (xm, ym) in S such that f (xM, yM) is the maximum
value of f on S and f (xm, ym) is the minimum value of f on S.

The proof of Theorem 12.48 lies outside the scope of this text. An analogous theorem also
holds when f is a function of more than two variables, and we will use that theorem when
appropriate.

Given a continuous function f defined on a closed and bounded set S, we may use the
following outline to find those points (xM, yM) and (xm, ym) which maximize and minimize
f on S:

1. Find the stationary points and other critical points of f .
2. Select only those critical points that lie in S.
3. Evaluate the function at each of the critical points found in step 2.
4. Use the method of Lagrange multipliers to locate the points on the boundary of S that

maximize and minimize f .
5. Evaluate the function at each of the critical points on the boundary of S.
6. Use the extrema from steps 3 and 5 to find the maximum and minimum values of the

function f on S.

Optimizing a Function with Two Constraints

We may extend the ideas of this section to optimize a function of three variables, w =
f (x, y, z), subject to two constraints. In this context, the constraints, g(x, y, z) = 0 and
h(x, y, z) = 0, define surfaces in R

3. Assuming that these surfaces intersect in a curve, we
would be attempting to find the maximum and minimum values of f on this curve of in-
tersection. To do this, we attempt to solve the system given by

∇f (x 0, y 0, z 0) = λ∇h(x 0, y 0, z 0) + μ∇h(x 0, y 0, z 0),

where λ and μ are both Lagrange multipliers. (See Example 5.)
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Examples and Explorations

EXAMPLE 1 Optimizing a function subject to a constraint

Find the maximum and minimum of the function f (x, y) = xy subject to the constraint
x 2 + 4y 2 = 16.

SOLUTION

We could solve the equation x 2 + 4y 2 = 16 for either x or y and use the resulting equation
to rewrite the function f in terms of a single variable. However, we will use Lagrange’s
method to optimize the function. We start by writing the constraint in the form g(x, y) =
x 2 + 4y 2 − 16 = 0 and find

∇f (x, y) = yi + xj and ∇g(x, y) = 2xi + 8yj.

We now set up the system of equations determined by ∇f (x, y) = λ∇g(x, y), where λ is a
constant. Here we have

y = 2λx and x = 8λy.

Our third equation relating the variables is the constraint equation x 2 +4y 2 = 16. We solve
each of the two equations for λ and equate the results:

y
2x

= λ = x
8y

.

We may now deduce that x 2 = 4y 2. Using this relationship in the constraint equation, we
find that 2x 2 = 16. Therefore, x = ±2

√
2, and from this we have y = ±√

2. Thus, we have
the four pairs of coordinates

(2
√

2,
√

2 ), (2
√

2, −
√

2 ), (−2
√

2,
√

2 ), and (−2
√

2, −
√

2 ).

Finally, we evaluate the function f (x, y) at each of these points and obtain

f (2
√

2,
√

2 ) = 4, f (2
√

2, −
√

2 ) = −4, f (−2
√

2,
√

2 ) = −4, and f (−2
√

2, −
√

2 ) = 4.

The maximum value of f subject to the constraint is 4. This maximum occurs at both
(2

√
2,

√
2 ) and (−2

√
2, −√

2 ). The minimum value of the function is −4. The minimum
occurs at both (−2

√
2,

√
2 ) and (2

√
2, −√

2 ). �

CHECKING
THE ANSWER

We may check our answers by evaluating the gradients of f and g at the points we just
found and showing that they are indeed parallel. For example, since

∇f (x, y) = yi + xj and ∇g(x, y) = 2xi + 8yj,

we have

∇f (2
√

2,
√

2 ) =
√

2i + 2
√

2j and ∇g(2
√

2,
√

2 ) = 4
√

2i + 8
√

2j.

Note that ∇f (2
√

2,
√

2 ) = 1
4
∇g(2

√
2,

√
2 ). The gradients are indeed parallel when (x, y) =

(2
√

2,
√

2 ). Similarly, at each of the other three points we found in Example 1, we have
∇f (x 0, y 0) = 1

4
∇g(x 0, y 0).
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EXAMPLE 2 Analyzing the result of an optimization problem

Analyze the result of Example 1 by graphing the level curves of the function
f (x, y) = xy corresponding to the constrained extrema, along with the constraint equation
x 2 + 4y 2 = 16.

SOLUTION

In Example 1 we found that the maximum and minimum of f (x, y) = xy subject to the
constraint x 2 +4y 2 = 16 were 4 and −4, respectively. We graph the level curves xy = 4 and
xy = −4 along with the following ellipse, which is the graph of the equation x 2 +4y 2 = 16:

y
xy � �4

xy � 4

xy � 4

xy � �4

x

1

�1

�2

�2 2

2

�4 4

Note that the level curves and the ellipse are tangent at the maxima and minima. In the
first and third quadrants, the level curve is the graph of xy = 4. This graph intersects the
ellipse at (2

√
2,

√
2 ) and (−2

√
2, −√

2 ). Since the curves are tangent at these two points,
the gradients of the two curves would be orthogonal to the curves at those points. There-
fore, the gradients would be parallel at those points. We show only one of these gradients
in the preceding figure, because they overlap.

The figure that follows at the left shows the ellipse, together with four additional level
curves of the function f . Note that the ellipse is tangent only to the level curves f (x, y) = 4
and f (x, y) = −4.

x 2 + 4y 2 = 16, along with the
level curves f (x, y) = ±2, ±4, ±6

The graph of f (x, y) = xy
restricted to x 2 + 4y 2 = 16

y

x

�2

�2

�4

�4

�6 6

�66

4

4

2

2

z

y

x

The figure at the right shows the graph of the surface defined by f (x, y) = xy, to-
gether with the curve on that surface resulting from the constraint x 2 + 4y 2 = 16. On this
graph, you see the two maxima and two minima that we found. �

EXAMPLE 3 Understanding the difference between a function and a constraint

Find the maximum and minimum of the function f (x, y) = x 2 + 4y 2 − 16 subject to the
constraint xy = 0.
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SOLUTION

Here we have reversed the roles of the function and the constraint given in Example 1. We
could proceed as outlined before, but note that since we now have the constraint xy = 0,
either x or y must be zero. If x = 0, then f (0, y) = 4y 2 − 16, which has minimum value
−16 when y = 0, but no maximum value, since the function increases without bound as
y → ±∞. Similarly, if y = 0, then f (x, 0) = x 2 − 16. Again, there is a minimum of −16
when x = 0 and no maximum value. Therefore, subject to the constraint, the function
f (x, y) = x 2 + 4y 2 − 16 has a minimum of −16 = f (0, 0) and no maximum value.

Our point here is that if you confuse the function and the constraint, you may obtain
vastly different results. Make sure that you understand which function you are trying to
optimize and which function is your constraint. �

EXAMPLE 4 Optimizing a function on a closed and bounded domain

Find the maximum and minimum of the function f (x, y) = x 3 + 9x 2 + 6y 2 on the region
x 2 + y 2 ≤ 9.

SOLUTION

Since f is a polynomial, the only critical points of f are stationary points. We have ∇f (x, y) =
(3x 2 + 18x)i + 12yj. The stationary points of f will satisfy the equations

3x(x + 6) = 0 and 12y = 0.

The only points satisfying these two equations are (0, 0) and (−6, 0). Of these points, only
(0, 0) satisfies the inequality x 2 + y 2 ≤ 9, so it is a point where the maximum or minimum
may occur. We ignore the other point, since it is outside the domain.

We now consider points on the boundary of the region. These points are given by the
constraint x 2 + y 2 = 9. We let g(x, y) = x 2 + y 2 − 9 = 0. Now, ∇g(x, y) = 2xi + 2yj. By
Lagrange’s method, we have the system of equations 3x 2 + 18x = 2λx and 12y = 2λy.
From the second of these equations, we see that either y = 0 or λ = 6. If y = 0, then by the
constraint equation, x = ±3. Using λ = 6 in the first of the equations, we have 3x 2+6x = 0,
so either x = −2 or x = 0. Again using the constraint when x = −2, we obtain y = ±√

5,
and when x = 0, we have y = ±3.

We now have a list of seven points where the maximum and minimum of the function
on the given domain may occur:

(0, 0), (3, 0), (−3, 0), (−2,
√

5 ), (−2, −
√

5 ), (0, 3), and (0, −3).

When we evaluate the function at these seven points, we see that

f (0, 0) = 0, f (3, 0) = 108, f (−3, 0) = 54, f (−2, ±
√

5 ) = 58, and f (0, ±3) = 54.

We see that the maximum of f on the region is 108 and the minimum of the function on
the region is 0. Note that it was not necessary to use the second-derivative test to analyze
f at (0, 0), since we were looking for the maximum and minimum of the function on the
given region and we had to analyze the behavior of f only at the finite number of points
we obtained in the previous steps. When we evaluated the function at the seven points we
found, the minimum value of the function and the maximum value of the function at those
points had to give the two values we wanted.

Although we successfully answered the question posed in this example, in Exercise 13
you will show that the function f (x, y) = x 3 +9x 2 +6y 2 with domain R

2 has only a relative
minimum at (0, 0), not an absolute minimum, and that f has a saddle point at the other
stationary point, (−6, 0). �
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EXAMPLE 5 Optimizing a function of three variables with two constraints

Find the points in R
3 that are farthest from the origin and that lie on both the cylinder

y 2 + z 2 = 1 and the plane x + 2y + 3z = 0.

SOLUTION

As usual, it is sufficient (and easier) to maximize the square of the distance from the origin,
D(x, y, z) = x 2 +y 2 + z 2, subject to the constraints g(x, y, z) = y 2 + z 2 −1 = 0 and h(x, y, z) =
x + 2y + 3z = 0. As the following figure illustrates, geometrically we are looking for the
point(s) on the ellipse formed by the intersection of the cylinder and plane farthest from
the origin.

z

y

x

The gradients of the three functions we are interested in are

∇D(x, y, z) = 2xi + 2yj + 2zk,

∇g(x, y, z) = 2yj + 2zk, and

∇h(x, y, z) = i + 2j + 3k.

We wish to solve the system ∇D(x, y, z) = λ∇g(x, y, z) + μ∇h(x, y, z) subject to g(x, y, z) = 0
and h(x, y, z) = 0. This leads to the following system of five equations:

2x = 0 + μ,

2y = λ · 2y + μ · 2,

2z = λ · 2z + μ · 3,

y 2 + z 2 = 1, and

x + 2y + 3z = 0.

Since μ = 2x, we may eliminate μ to obtain a system with only four equations in four
variables:

y = λy + 2x, z = λz + 3x, y 2 + z 2 = 1, x + 2y + 3z = 0.

A little thought tells us that if either y = 0 or z = 0, the system does not have a solution.
So we may solve the first two of these equations for λ and equate the results. We obtain

y − 2x
y

= z − 3x
z

,

or equivalently, x(2z − 3y) = 0. So, either x = 0 or z = 3
2

y.

If x = 0, then when we solve the equations y 2 + z 2 = 1 and 2y + 3z = 0 for y and z,

we have (x, y, z) =
(

0, 3√
13

, − 2√
13

)
or (x, y, z) =

(
0, − 3√

13
, 2√

13

)
. These two points are both

1 unit from the origin.
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Now, using z = 3
2

y we solve the system y 2 +
(

3
2

y
)2 = 1 and x + 2y + 3 · 3

2
y = 0

and obtain the points
(
−√

13, 2√
13

, 3√
13

)
and

(√
13, − 2√

13
, − 3√

13

)
. These two points are

each
√

14 units from the origin. They are the two points on the cylinder and plane that are
farthest from the origin. The other two points are the points on the cylinder and plane that
are closest to the origin. �

TEST YOUR? UNDERSTANDING
� What is a constraint equation? Does every continuous function have a maximum value

and minimum value subject to a constraint?

� What is a Lagrange multiplier? What is the method of Lagrange multipliers? If we
try to optimize the function of three variables, w = f (x, y, z), subject to the constraint
g(x, y, z) = 0, how many equations do we obtain when we use the method of Lagrange
multipliers? How many variables are in the system?

� What methods do you know to find the maxima and minima of a function of two or
more variables subject to a constraint?

� What is the Extreme Value Theorem for a function of two variables? Three variables?
What is the relationship between the Extreme Value Theorem for a function of a single
variable to the Extreme Value Theorem for a function of two or more variables?

� Outline the steps you should take to find the maximum value and minimum value of a
function of two variables on a closed and bounded set. Would the steps change if you
had a function of three variables on a closed and bounded set?

EXERCISES 12.7

Thinking Back

� Optimizing a function of two variables subject to a con-
straint: If you wish to find the maximum and minimum
of the function f (x, y) = xy subject to the constraint
x 2 + 4y 2 = 16, you may eliminate one variable of f
by solving the constraint equation for either x or y
and rewriting f in terms of a single variable. Do this
and then use the techniques of Chapter 3 to find the
maximum and minimum of the resulting function.

� Optimizing a function of three variables subject to a con-
straint: If you wish to find the maximum and minimum
of the function f (x, y, z) = xyz subject to the constraint
x 2 + 4y 2 + 9z 2 = 16, you may eliminate one variable
of f by solving the constraint equation for x, y, or z and
rewriting f in terms of two variables. Do this and then
use the techniques of Section 12.6 to find the maxi-
mum and minimum of the resulting function.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every function of two variables f (x, y)
subject to a constraint g(x, y) = 0 has both a maxi-
mum and a minimum value.

(b) True or False: The function f (x, y, z) = xy
y+z

has both a

minimum and a maximum on the region defined by
x 2 + y 2 + z 2 ≤ 1.

(c) True or False: The function f (x, y, z) = e sin x y cos(xy+z)
has both a minimum and a maximum on the region
defined by x 2 + y 2 + z 2 ≤ 1.

(d) True or False: The function f (x, y) = xy + 2y − 5xy 2

has both a minimum and a maximum on the region
defined by x 2 + y 2 ≥ 1.

(e) True or False: The function y = x 2 has both a maxi-
mum and a minimum for x ∈ (−2, 2).

(f) True or False: If f (x 0, y 0) is the maximum value of f on
a region R, then f (x 0, y 0) is the maximum value of f .

(g) True or False: If f (x 0, y 0) is the maximum value of f on
its domain, then f (x 0, y 0) is the maximum value of f
on every closed and bounded region R.

(h) True or False: If f (x, y) is a continuous function and if
m and M are the minimum and maximum values of f
on its domain, then m ≤ f (x, y) ≤ M on every closed
and bounded region R.
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2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A function of two variables f (x, y), along with a con-
straint g(x, y) = 0, that could be optimized with the
method of Lagrange multipliers.

(b) A function of two variables f (x, y), along with a con-
straint g(x, y) = 0, that could be optimized by elimi-
nating one of the variables.

(c) A function of two variables f (x, y) that has neither
a maximum nor a minimum value on the set x 2 +
y 2 ≤ 4.

3. What is the distinction between the function z = f (x, y)
and the constraint equation g(x, y) = 0 when we use the
method of Lagrange multipliers?

4. Outline a method for optimizing a function of two vari-
ables, z = f (x, y).

5. Describe two methods for optimizing a function z =
f (x, y) subject to a constraint.

6. What is meant by a “closed” subset of R
2? What is meant

by a “bounded” subset of R
2?

7. Give an example of each of the following:
(a) A subset of R

2 that is neither closed nor bounded.
(b) A subset of R

2 that is closed but not bounded.
(c) A subset of R

2 that is not closed but is bounded.
(d) A subset of R

2 that is closed and bounded.
8. What is meant by a “closed” subset of R

3? What is meant
by a “bounded” subset of R

3?

9. Give an example of each of the following:
(a) A subset of R

3 that is neither closed nor bounded.
(b) A subset of R

3 that is closed but not bounded.
(c) A subset of R

3 that is not closed but is bounded.
(d) A subset of R

3 that is closed and bounded.
10. Outline the steps required to find the minimum and max-

imum of a function of two variables on a closed and
bounded set R.

11. Given a function of three variables, w = f (x, y, z), and a
constraint equation g(x, y, z) = 0, how many equations
would we obtain if we tried to optimize f by the method
of Lagrange multipliers?

12. Given a function of n variables, z = f (x 1, x 2, . . . , x n), and
a constraint equation, g(x 1, x 2, . . . , x n) = 0, how many
equations would we obtain if we tried to optimize f by
the method of Lagrange multipliers?

13. In Example 4 we found that the function f (x, y) = x 3 +
9x 2 + 6y 2 has stationary points at (0, 0) and (−6, 0).

(a) Use the second-derivative test to show that f has a
saddle point at (−6, 0).

(b) Use the second-derivative test to show that f has a
relative minimum at (0, 0).

(c) Use the value of f (−10, 0) to argue that f has a rel-
ative minimum at (0, 0), and not an absolute mini-
mum, without using the second-derivative test.

In Exercises 14–17, by considering the function f (x, y) = x 2y
subject to the constraint x +y = 0, you will explore a situation
in which the method of Lagrange multipliers does not provide
an extremum of a function.

14. Show that the only point given by the method of
Lagrange multipliers for the function f (x, y) = x 2y sub-
ject to the constraint x + y = 0 is (0, 0).

15. Explain why (0, 0) is not an extremum of f (x, y) = x 2y sub-
ject to the constraint x + y = 0.

16. Why does the method of Lagrange multipliers fail with
this function?

17. Optimize f (x, y) = x 2y subject to the constraint ax + by =
0 for nonzero constants a and b. Are there any nonzero
values of a and b for which the method of Lagrange mul-
tipliers succeeds?

18. Explain how you could use the method of Lagrange mul-
tipliers to find the extrema of a function of two vari-
ables, f (x, y), subject to the constraint that (x, y) is on the
boundary of the rectangle R defined by a ≤ x ≤ b and
c ≤ y ≤ d.

19. Explain the steps you would take to find the extrema of a
function of two variables, f (x, y), if (x, y) is a point in the
rectangle R defined by a ≤ x ≤ b and c ≤ y ≤ d.

20. Explain how you could use the method of Lagrange mul-
tipliers to find the extrema of a function of two variables,
f (x, y), subject to the constraint that (x, y) is a point on the
boundary of a triangle T in the xy-plane.

21. Explain the steps you would take to find the extrema of
a function of two variables, f (x, y), if (x, y) is a point in a
triangle T in the xy-plane.

22. When you use the method of Lagrange multipliers to find
the maximum and minimum of f (x, y) = x + y subject to
the constraint xy = 1, you obtain two points. Is there a
relative maximum at one of the points and a relative min-
imum at the other? Which is which?

23. Let f (x, y) be a differentiable function such that ∇f (x, y) 	=
0 for every point in the domain of f , and let R be a
closed, bounded subset of R

2. Explain why the maximum
and minimum of f restricted to R occur on the boundary
of R.

Skills

In Exercises 24–32, find the maximum and minimum of the
function f subject to the given constraint. In each case explain
why the maximum and minimum must both exist.

24. f (x, y) = x + y when x 2 + y 2 = 16

25. f (x, y) = x + y when x 2 + 4y 2 = 16

26. f (x, y) = xy when x 2 + y 2 = 16

27. f (x, y) = xy when x 2 + 4y 2 = 16

28. f (x, y, z) = x + y + z when x 2 + y 2 + z 2 = 9

29. f (x, y, z) = x + y + z when x 2 + 4y 2 + 16z 2 = 64

30. f (x, y, z) = xyz when x 2 + y 2 + z 2 = 9
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31. f (x, y, z) = xyz when x 2 + 4y 2 + 16z 2 = 64

32. f (x, y, z) = xy when x 2 + y 2 + z 2 = 9

In Exercises 33–38, find the point on the given curve closest to
the specified point. Recall that if you minimize the square of
the distance, you have minimized the distance as well.

33. (0, 0) and x3 + y3 = 1

34. (0, 0) and x 2 + y 3 = 1

35. (0, 0) and
√

x + √
y = 1

36. (1, 1) and
√

x + √
y = 2

37. (0, 0) and x n + y n = 1 for n a positive, odd integer

38. (0, 0) and x n + y n = 1 where n > 2 is a positive, even
integer

In Exercises 39–43, find the point on the given surface closest
to the specified point.

39. xyz = 1 and (0, 0, 0)

40. x + 2y − 3z = 7 and (0, 0, 0)

41. ax + by + cz = d and (0, 0, 0)

42. ax + by + cz = d and (α, β, γ )

43. x + 2y − 3z = 4 and (−1, 5, 3)

In Exercises 44–49, find the maximum and minimum of the
given function on the specified region. Also, give the points
where the maximum and minimum occur.

44. f (x, y) = 3x 2 − 5y 2 on the circular region x 2 + y 2 ≤ 1

45. f (x, y) = 3x 2 + 5y 2 on the square with vertices (1, 1),
(−1, 1), (−1, −1), and (1, −1)

46. f (x, y) = x 2 + y on the circular region x 2 + y 2 ≤ 4

47. f (x, y) = x 2 + y on the square with vertices (1, 0), (0, 1),
(−1, 0), and (0, −1)

48. f (x, y) = x
y

on the circular region x 2 + ( y − 2)2 ≤ 1

49. f (x, y) = x
y

on the rectangle given by −1 ≤ x ≤ 1,

1 ≤ y ≤ 4

50. Find the dimensions of the rectangular solid with maxi-
mum volume such that all sides are parallel to the coor-
dinate planes; one vertex is at the origin; and the vertex
diagonally opposite is in the first octant and on the plane
with equation 2x + 5y + 6z = 30.

51. Find the dimensions of the rectangular solid with maxi-
mum volume such that all sides are parallel to the coor-
dinate planes; one vertex is at the origin; and the vertex
diagonally opposite is in the first octant and on the plane
with equation ax + by + cz = d, where a, b, c, and d are
positive real numbers.

52. Find the points in R
3 closest to the origin and that lie on

the cylinder x 2 + y 2 = 4 and the plane x − 3y + 2z = 6.

53. Find the points in R
3 closest to the origin and that lie on

the cone z 2 = x 2 + y 2 and the plane x + 2y = 6 .

Applications
54. Julia plans to make a cylindrical vase in which the bottom

of the vase is to be 0.3 cm thick and the curved, lateral
part of the vase is to be 0.2 cm thick. If the vase needs to
have a volume of 1 liter, what should its dimensions be to
minimize its weight?

0.2 cm

0.3 cm

1 liter

55. Bob is building a toy chest for his son that will be a rectan-
gular box with an open top. The base will be made from
plywood that costs $2 per square foot, and the sides will
be made from oak that costs $5 per square foot. What di-
mensions should Bob make the toy chest if he wants it to
have a capacity of 10 cubic feet but wishes to minimize
the cost of the wood?

Proofs

56. Let T be a triangle with side lengths a, b, and c. The

semiperimeter of T is defined to be s = 1
2

(a + b + c).
Heron’s formula for the area A of a triangle is

A =
√

s(s − a)(s − b)(s − c).

Use Heron’s formula and the method of Lagrange mul-
tipliers to prove that, for a triangle with perimeter P, the
equilateral triangle maximizes the area.

57. Prove that a square maximizes the area of all rectangles
with perimeter P.

58. Prove that if you minimize the square of the distance
from the origin to a point (x, y) subject to the constraint
g(x, y) = 0, you have minimized the distance from the
origin to (x, y) subject to the same constraint.

59. Prove that if you minimize the square of the distance
from the origin to a point (x, y, z) subject to the constraint
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g(x, y, z) = 0, then you have minimized the distance from
the origin to (x, y, z) subject to the same constraint.

60. Let a and b be nonzero real numbers and let r > 0.
Prove that the point closest to the origin on the circle
(x − a)2 + ( y − b)2 = r 2 is on the line that contains the
points (0, 0) and (a, b).

61. Let (α, β) and (a, b) be distinct points in R
2, and let r

be a positive real number. Use the result of Exercise 60
to prove that the point closest to (α, β) on the circle
(x − a)2 + ( y − b)2 = r 2 is on the line that contains the
points (α, β) and (a, b).

62. Let a, b, and c be nonzero real numbers and let r > 0.
Prove that the point closest to the origin on the sphere
(x − a)2 + ( y − b)2 + (z − c)2 = r 2 is on the line that
contains the points (0, 0, 0) and (a, b, c).

63. Let (α, β, γ ) and (a, b, c) be distinct points in R
3, and let

r be a positive real number. Use the result of Exercise 62
to prove that the point closest to (α, β, γ ) on the sphere

(x−a)2+( y−b)2+(z−c)2 = r 2 is on the line that contains
the points (α, β, γ ) and (a, b, c).

The arithmetic mean of the real numbers a1, a 2, . . . , a n is
1
n

(a1 + a 2 + · · · + a n). If a i > 0 for 1 ≤ i ≤ n, then the

geometric mean of a1, a 2, . . . , a n is (a1a 2 · · · a n)1/n. In Ex-
ercises 64–66 we ask you to prove that the geometric mean
is always less than the arithmetic mean for a set of positive
numbers.

64. Use the method of Lagrange multipliers to show that
√

xy ≤ 1
2

(x + y) when x and y are both positive.

65. Use the method of Lagrange multipliers to show that
3
√

xyz ≤ 1
3

(x + y + z) when x, y, and z are all positive.

66. Use the method of Lagrange multipliers to show

that (a1a 2 · · · an)1/n ≤ 1
n

(a1 + a 2 + · · · + an) when
a1, a 2, . . . , a n are all positive.

Thinking Forward

� A Double Summation: Let

m∑
i=1

n∑
j=1

f (i, j) =
m∑

i=1

( n∑
j=1

f (i, j)
)
.

Evaluate
15∑

i=1

10∑
j=1

ij 2.

� Reordering a Double Summation: Explain why

m∑
i=1

n∑
j=1

f (i, j ) =
n∑

j=1

m∑
i=1

f (i, j ).

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to future chapters.

Definitions

Give precise mathematical definitions or descriptions of each
of the following concepts that follow. Then illustrate the defi-
nition with a graph or an algebraic example.

� a level curve for f (x, y)

� a level surface for f (x, y, z)

� an open disk in R
2

� an open ball in R
3

� an open subset of R
2 or R

3

� the complement of a subset R
2 or R

3

� a closed subset of R
2 or R

3

� the boundary of a subset of R
2 or R

3

� a bounded subset of R
2 or R

3

� the ε–δ definition of the statement lim
x→a

f (x) = L, where f

is a function of two or more variables

� the limit of a function of two or three variables along a path

� what it means in terms of a limit for a function f of two or
three variables to be continuous at a point in the domain
of f

� the limit definition of the partial derivatives f x(x 0, y 0) and
f y(x 0, y 0)

� the limit definition of the partial derivatives f x(x 0, y 0, z 0),
f y(x 0, y 0, z 0), and f z(x 0, y 0, z 0)

� the limit definition of the directional derivative of a func-
tion of two or three variables, f , at a point P in the direc-
tion of a unit vector u

� the gradient of a function f of two or three variables

� a function f of two or three variables has a local minimum
or a local maximum at a point P

� a function f of two or three variables has a global minimum
or a global maximum at a point P
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� a function f of two or three variables has a stationary point
at a point P

� a function f of two or three variables has a critical point at
a point P

� a function f (x, y) has a saddle point at a point (x 0, y 0)

� the Hessian and discriminant of a function f (x, y)

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� If S is a closed subset of R
3, then S c is subset

of R
3.

� Let f (x, y) be a function defined on an open subset S of
R

2. If the second-order partial derivatives of a function
f (x, y) are in a (an) subset S of R

2, then
f x y(x, y) = f y x(x, y) at every point in S.

� If f (x, y) is a function of two variables with the partial

derivatives
∂ f
∂x

and
∂ f
∂y

that are on

containing the point (x 0, y 0), then f is differentiable at
(x 0, y 0).

� Let f (x, y) be a function of two variables that is differ-
entiable at the point (x 0, y 0). The equation of the plane
tangent to the surface defined by f (x, y) at (x 0, y 0) is

.

� The chain rule: Given functions z = f (x, y), x = u(s, t), and
y = v(s, t), for all values of s and t at which u and v are
differentiable, and if f is differentiable at (u(s, t), v(s, t)),
∂z
∂s

= and
∂z
∂t

= .

� Let f (x, y) be a function of two variables and (x 0, y 0) be
a point in the domain of f at which the first-order par-
tial derivatives of f exist. If u ∈ R

2 is a for
which the directional derivative Du f (x 0, y 0) also exists,
then Du f (x 0, y 0) = .

� If f (x, y) is a function of two or three variables and P is a
point in the domain of f at which f is differentiable, then
the of f at P points in the direction in which f

.
� If f (x, y) has a local extremum at (x 0, y 0), then (x 0, y 0) is a

of f .

Notation, Algebraic Rules, and Optimization

Notation: Describe the meanings of each of the following
mathematical expressions:

For A ⊂ R
2,

� Ac � ∂A

� f x(x 0, y 0) � f y(x 0, y 0) � f z(x 0, y 0, z 0)

� ∂w
∂x

� ∂w
∂y � ∂w

∂z

� Du f (x 0, y 0) � ∇f (x, y) � ∇f (x, y, z)

Limits of combinations: Fill in the blanks to complete the limit
rules. You may assume that lim

x→a
f (x) and lim

x→a
g(x) exist and that

k is a scalar.

� lim
x→a

kf (x) = .

� lim
x→a

( f (x) + g(x)) = .

� lim
x→a

( f (x) − g(x)) = .

� lim
x→a

( f (x)g(x)) = .

� lim
x→a

( f (x)g(x)) = , provided that .

Function optimization: Fill in the blanks to complete optimiza-
tion facts.

� Let f (x, y) be a function with continuous second-order
partial derivatives on some open disk containing the point
(x 0, y 0). If (x 0, y 0) is a stationary point in the domain of f ,
then

(a) f has a relative maximum at (x 0, y 0) if
det(Hf (x 0, y 0)) with f x x(x 0, y 0) or
f yy(x 0, y 0) .

(b) f has a relative minimum at (x 0, y 0) if
det(Hf (x 0, y 0)) with f x x(x 0, y 0) or
f yy(x 0, y 0) .

(c) f has a saddle point at (x 0, y 0) if det(Hf (x 0, y 0))
.

(d) No conclusion may be drawn about the behavior of f
at (x 0, y 0) if det(Hf (x 0, y 0)) .

� Let f and g be functions with continuous first-order par-
tial derivatives. If f (x, y) has a relative extremum at a
point (x 0, y 0) subject to the constraint g(x, y) = 0, then

and are parallel.
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Skill Certification: The Calculus of Multivariable Functions

Level curves: Sketch the level curves f (x, y) = c of the following
functions for c = −3, −2, −1, 0, 1, 2, and 3:

1. f (x, y) = −2y
x

2. f (x, y) = y 2 − x 2

3. f (x, y) = x −sin−1 y 4. f (x, y) = x sec y

Evaluating limits: Evaluate the following limits, or explain why
the limit does not exist.

5. lim
(x,y)→(1,2)

x 2 + y 2

x 2 − y 2
6. lim

(x,y)→(4,π )
tan−1

(y
x

)

7. lim
(x,y)→(0,0)

x 3 + y 3

x 2 + y 2
8. lim

(x,y)→(0,0)

x + y
x 2 + y 2

9. lim
(x,y,z)→(1,0,−1)

sin(xy)
x 2 − y 2 + z 2 10. lim

(x,y,z)→(0,0,0)

x 2 + y 2

x 2 + y 2 + z 2

11. lim
(x,y)→(0,0)

x=0

x 2 + y 2

x 2 − y 2
12. lim

(x,y)→(0,0)
y=0

x 2 + y 2

x 2 − y 2

Continuity: Find the set of points where the function is con-
tinuous.

13. f (x, y) = x + y
x − y

14. f (x, y) = x + y
x 2 + y 2

15. f (x, y) = ln xy 16. f (x, y) = cos
(

1
x − y

)

17. f (x, y, z) = x + y + z
x − 2y + 3z

18. f (x, y, z) = x + y + z
x 2 + y 2 + z 2

Partial derivatives: Find all first- and second-order partial
derivatives for the following functions:

19. f (x, y) = x + y
x 2 + y 2 20. f (x, y) = x 2 − y 2

x 2 + y 2

21. f (x, y) = xye x 2
22. f (x, y) = tan−1

( y
x

)

23. f (x, y, z) = xz 2e y 24. f (x, y, z) = ln(x + y + z)

Directional derivatives: Find the directional derivative of the
given function at the specified point P in the direction of

the given vector. Note: The given vectors may not be unit
vectors.

25. f (x, y) = y
x

, P = (4, 3), v = 〈2, −3〉

26. f (x, y) = y
x

, P = (4, 3), v = 〈3, −2〉

27. f (x, y) = x + y
x 2 + y 2

, P = (1, 2), v = 〈3, −2〉

28. f (x, y) = xy
x 2 + y 2

, P = (−2, 1), v =
〈

3
5

, −4
5

〉

29. f (x, y, z) = xy 2z 3, P = (0, 0, 0), v = 〈1, −2, −1〉

30. f (x, y, z) =
√

xy
z

, P = (2, 3, 1), v = 〈2, 1, −2〉

Gradients: Find the gradient of the given function, and find the
direction in which the function increases most rapidly at the
specified point P.

31. f (x, y) = y
x

, P = (4, 3)

32. f (x, y) = x
y

, P = (4, 3)

33. f (x, y) = x sin y, P =
(

3,
π

2

)

34. f (x, y) = tan−1
(y

x

)
, P = (−2, 2)

35. f (x, y, z) = x 2y
z

, P = (0, 3, −1)

36. f (x, y, z) = ln(x + y + z), P = (e, 0, −1)

Extrema: Find the local maxima, local minima, and saddle
points of the given functions.

37. f (x, y) = 2x 2 + y 2 + y + 5

38. f (x, y) = x 3 − 12xy − y 3

39. f (x, y) = x 3 + y 3 − 6x 2 + 3y 2 − 4

40. f (x, y) = x 4 + y 4 + 4xy

Capstone Problems

A. Chain Rule: Let z = f (x, y), x = x(s, t), and y = y(t).

(a) Find
∂z
∂s

and
∂z
∂t

.

(b) Use the results of part (a) to find
∂z
∂s

and
∂z
∂t

when

z = x 2 sin y, x = e s/t, and y = t 3. Express your an-
swer in terms of s and t.

B. Laplace’s equation: A function f (x, y) is said to satisfy

Laplace’s equation if
∂2f
∂x2

+ ∂2f
∂y2

= 0.

(a) Show that the function f (x, y) = tan−1
( y

x

)
satisfies

Laplace’s equation.

(b) Show that the function f (x, y) = ln
( y

x

)
does not sat-

isfy Laplace’s equation.

C. Extrema on a closed and bounded set: Find and classify
the maxima, minima, and saddle points of the function
f (x, y) = y 3 − 3x 2y on the square region with vertices
(±3, ±3).

D. The Method of Least Squares: The method of least squares
is one way to fit a line to a collection of data points.
The object of this method is to find the slope m and y-
intercept b for a regression line y = mx + b that provides
the minimal sum for the squares of the vertical distances
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from the data points to the line, as indicated in the fol-
lowing figure:

y
�y2

�y1
�yn

x

5

4

872 3 4 651

3

2

1

Most scientific calculators have built-in programs to find
the equation of the regression line for a collection of data

points (x 1, y1), (x 2, y 2), . . . , (x n, yn), but here we ask you
to first prove that:

(a)
m = (

∑
x k)(

∑
y k) − n(

∑
x ky k)

(
∑

x k)2 − n(
∑

x 2
k )

and

b = 1
n

(∑
y k − m

∑
x k

)
,

where each of the summations is evaluated from
k = 1 to k = n.

Use the results of part (a) to find the equations of the re-
gression lines for the following collections of data:

(b) (1, 2), (3, 4), (5, 5), (6, 8)
(c) (1, 2), (1, 4), (5, 2), (5, 4)
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Double and Triple Integrals
13.1 Double Integrals over Rectangular Regions

Volumes
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Iterated Integrals and Fubini’s Theorem
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General Regions in the Plane
Double Integrals over General Regions
Algebraic Properties of Double Integrals
Examples and Explorations

13.3 Double Integrals in Polar Coordinates
Polar Coordinates and Double Integrals
Double Integrals in Polar Coordinates over General Regions
Examples and Explorations
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The Center of Mass and First Moments
Moments of Inertia
Probability Distributions
Examples and Explorations

13.5 Triple Integrals
Triple Integrals over Rectangular Solids
Iterated Integrals and Fubini’s Theorem
Triple Integrals over General Regions
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13.6 Integration with Cylindrical and
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Cylindrical Coordinates
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Integration with Spherical Coordinates
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2
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3

Examples and Explorations

Chapter Review, Self-Test, and Capstones

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 17:27

992 Chapter 13 Double and Triple Integrals

13.1 DOUBLE INTEGRALS OVER RECTANGULAR REGIONS

� Computing volumes bounded by functions of two variables

� Defining double integrals as the limit of a Riemann sum

� Using Fubini’s theorem to evaluate double integrals as iterated integrals

Volumes

Consider the following two questions:

� How can we compute the volume of a solid?
� How can we compute the mass of a solid whose density varies from point to

point?

The way in which we will answer these two questions is quite similar to the methods we
used in single-variable calculus. For example, to find the volume of the solid bounded above
by the surface and below by the xy-plane, in the left-hand figure that follows, we subdi-
vide the volume into vertical slices whose volumes we can reasonably approximate, as we
see in the middle figure, and then, take a limit as the size of the pieces goes to zero and,
simultaneously, the number of pieces goes to infinity. This brief outline summarizes much
of what we will do in this chapter.

z

y
x

z

y
x

z

y
x

We will begin by reviewing and extending the summation notation we introduced in
Chapter 4.

Double and Triple Summations

Recall that
n∑

k=1

a k = a 1 + a 2 + a 3 + · · · + a n−1 + a n.

We take this idea a step or two further by introducing double and triple sums.
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DEFINITION 13.1 Double Sums and Triple Sums

(a) The double summation
m∑

j=1

n∑
k=1

a jk is given by

m∑
j=1

n∑
k=1

a jk =
m∑

j=1

( n∑
k=1

a jk

)

=
m∑

j=1

(a j1 + a j2 + a j3 + · · · + a jn)

= a11 + a12 + a13 + · · · + a1n

+ a 21 + a 22 + a 23 + · · · + a 2n

+ ...
...

... · · · ...

+ a m1 + a m2 + a m3 + · · · + a mn.

(b) Similarly, the triple summation
l∑

i=1

m∑
j=1

n∑
k=1

a ijk is given by

l∑
i=1

m∑
j=1

n∑
k=1

a ijk =
l∑

i=1

( m∑
j=1

( n∑
k=1

a ijk

))
.

For example, consider the following double sum:

2∑
j=1

3∑
k=1

j 2k = (12 · 1 + 12 · 2 + 12 · 3) + (22 · 1 + 22 · 2 + 22 · 3) = 1 + 2 + 3 + 4 + 8 + 12 = 30.

We know that, for finite sums, addition obeys both the commutative and associative
rules. In Exercises 71 and 72 you will use these properties to prove the following theorem:

THEOREM 13.2 Changing the Order of a Finite Double or Triple Sum

For positive integers l, m, and n,

(a)
m∑

j=1

n∑
k=1

a jk =
n∑

k=1

m∑
j=1

a jk

(b)
l∑

i=1

m∑
j=1

n∑
k=1

a ijk =
m∑

j=1

n∑
k=1

l∑
i=1

a ijk =
n∑

k=1

l∑
i=1

m∑
j=1

a ijk

Note that there are three additional permutations of the summations in Theorem 13.2(b)
equal to those listed.

Double Integrals over Rectangular Regions

Starting with Section 13.2, we will allow more complicated domains, but we begin by con-
sidering functions defined on rectangular regions. Let a < b and c < d be real numbers and
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R be the rectangle in the xy-plane defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d},
as shown in the following figure at the left:

c

y

a b
x

d

R

a
c

b

z

y

x

d

R

We also assume that f (x, y) > 0 is a function defined at every point of R , as we see in the
figure on the right. Here is our procedure for finding the volume V of the solid bounded
below by R and bounded above by the graph of f :

� We subdivide the interval [a, b] into m equal subintervals, each of width �x = b−a
m

,
and also let x j = a + j�x for 0 ≤ j ≤ m.

� Similarly, we subdivide the interval [c, d ] into n equal subintervals, each of width
�y = d−c

n
, and let y k = a + k�y for 0 ≤ k ≤ n.

� The preceding subdivisions partition the rectangle into m × n congruent rectangles
as follows:

c

y

a x1 x2 xj b
x

y1

y2

yk

d
(xj

*, yk
*)

�x

�y

R

� For each j = 1, 2, . . . , m and k = 1, 2, . . . , n, we select a point (x ∗
j , y ∗

k ) in the subrect-
angle R j k = {(x, y) | x j−1 ≤ x ≤ x j and y k−1 ≤ y ≤ y k}. One such point is shown
in the previous figure.

� We let �A be the common area of each subrectangle. That is, �A = �x�y.
� The product f (x ∗

j , y ∗
k )�A approximates the volume of the solid bounded below by

the rectangle R jk and above by the graph of f .
� When we sum these approximate volumes over all of the subrectangles, we obtain

an approximation for the volume of V .

The summations
m∑

j=1

n∑
k=1

f (x ∗
j , y ∗

k )�A =
n∑

k=1

m∑
j=1

f (x ∗
j , y ∗

k )�A

are both Riemann sums for f on R .
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We now define � to be the length of the diagonal of each subrectangle. That is,

� =
√

(�x)2 + (�y)2.

Taking the limit as � → 0 ensures that m → ∞ and n → ∞. We use the limit of the Rie-
mann sum as � → 0 to define the volume of the solid V , provided that the limit exists. The
following definitions formalize these ideas:

DEFINITION 13.3 Riemann Sums for Functions of Two Variables

Let a < b and c < d be real numbers, let R be the rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d},
and let f (x, y) be a function defined on R . The sums

m∑
j=1

n∑
k=1

f (x ∗
j , y ∗

k )�A =
n∑

k=1

m∑
j=1

f (x ∗
j , y ∗

k )�A

are Riemann sums for f on R , where x j, x ∗
j , y k, y ∗

k , �x, �y, and �A are defined as
outlined before.

DEFINITION 13.4 Double Integrals

Let a < b and c < d be real numbers, let R be the rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d},
and let f (x, y) be a function defined on R . Provided that the limits exist, the double
integral of f over R is

∫∫
R

f (x, y) dA = lim
�→0

m∑
j=1

n∑
k=1

f (x ∗
j , y ∗

k )�A = lim
�→0

n∑
k=1

m∑
j=1

f (x ∗
j , y ∗

k )�A,

where the double sums are Riemann sums, as outlined in Definition 13.3, and where
� = √

(�x)2 + (�y)2. When the limits exist, the function f is said to be integrable on R .

Note that as � → 0, the increment of area �A → 0. For every function that is continuous
on a rectangular region, the limit will exist and the function will be integrable.

DEFINITION 13.5 The Volume of a Solid and the Signed Volume

Let a < b and c < d be real numbers, let R be the rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d},
and let f (x, y) be an integrable function defined on R .

(a) The signed volume between the graph of f and the rectangle R is defined to be
the double integral

∫∫
R f (x, y) dA.

(b) The (absolute) volume between the graph of f and the rectangle R is defined to
be the double integral

∫∫
R | f (x, y)| dA.
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As a consequence of Definition 13.5, if f (x, y) ≥ 0 on R , then the double integral∫∫
R f (x, y) dA represents the volume of the solid bounded above by the graph of f and

below by the rectangle R .

In Example 1, we compute the volume of the solid bounded above by the graph of the
function f (x, y) = x 2y on the rectangle

R = {(x, y) | 1 ≤ x ≤ 3 and 2 ≤ y ≤ 5}

by using Definition 13.4 to evaluate the double integral
∫∫

R x 2y dA. We will see that such
computations are rather lengthy and time consuming. Fortunately, we have an alternative.

Iterated Integrals and Fubini’s Theorem

As we mentioned, using the definition to evaluate a double integral is a lengthy process.
When we can, we will use iterated integrals to evaluate double integrals.

DEFINITION 13.6 Iterated Integrals

Let a, b, c, and d be real numbers. We define the following iterated integrals:

(a)
∫ b

a

∫ d

c
f (x, y) dy dx =

∫ b

a

(∫ d

c
f (x, y) dy

)
dx

(b)
∫ d

c

∫ b

a
f (x, y) dx dy =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy.

The general idea here is that the subdivisions that are used to construct a Riemann sum for
a double integral over a rectangle R may be added most easily in one of two orders:

c

y

a x1 x2 xj b
x

y1

y2

yk

d
R

c

y

a x1 x2 xj b
x

y1

y2

yk

d
R

As the figures show, either we sum over the subrectangles, first moving up each column
and then moving to the right, or we sum along the rows from left to right and then move
up. The first order of summation gives us part (a) of Definition 13.6. The other order gives
us the iterated integral in part (b).
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We will evaluate an iterated integral after we introduce Fubini’s theorem, which tells us
that we may use an iterated integral, rather than the definition of the double integral, to
evaluate a double integral.

THEOREM 13.7 Fubini’s Theorem

Let a < b and c < d be real numbers, let R be the rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d},
and let f (x, y) be continuous on R . Then

∫∫
R

f (x, y) dA =
∫ d

c

∫ b

a
f (x, y) dx dy =

∫ b

a

∫ d

c
f (x, y) dy dx.

Proof. A rigorous proof of Fubini’s theorem is beyond the scope of this text, but we provide a less
formal argument. From the definition of the integral as a limit of a Riemann sum, we have

∫ d

c

∫ b

a
f (x, y) dx dy =

∫ d

c

(∫ b

a
f (x, y) dx

)
dy = lim

n→∞

n∑
k=1

(
lim

m→∞

m∑
j=1

f (x ∗
j , y ∗

k )�x
)
�y,

where �x = b−a
m

, �y = d−c
n

, and (x ∗
j , y ∗

k ) is a sample point in the jkth subrectangle. We know that

for the finite summations
n∑

k=1

m∑
j=1

f (x ∗
j , y ∗

k )�x�y =
m∑

j=1

n∑
k=1

f (x ∗
j , y ∗

k )�y�x.

Fubini’s theorem follows from the fact that when f is continuous, the orders of both the limits and
the sums may be interchanged:

∫ d

c

∫ b

a
f (x, y) dx dy = lim

n→∞

n∑
k=1

(
lim

m→∞

m∑
j=1

f (x ∗
j , y ∗

k )�x
)
�y

= lim
m→∞

m∑
j=1

(
lim

n→∞

n∑
k=1

f (x ∗
j , y ∗

k )�y
)
�x

=
∫ b

a

∫ d

c
f (x, y) dy dx.

To illustrate Fubini’s theorem, let

R = {(x, y) | 1 ≤ x ≤ 3 and 2 ≤ y ≤ 5}.

Then

∫∫
R

x 2y dA =
∫ 5

2

∫ 3

1
x 2y dx dy =

∫ 3

1

∫ 5

2
x 2y dy dx.

For rectangular regions, the level of difficulty of the two iterated integrals we may use to
evaluate the double integral is the same. In Section 13.2 we will discuss how to evaluate
double integrals over more complicated regions. At that time we will see that, for a more
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complicated region, one of the two orderings of the iterated integrals can make the evalu-
ation process much simpler. Here we evaluate∫∫

R
x 2y dA =

∫ 5

2

∫ 3

1
x 2y dx dy ← Fubini’s theorem

=
∫ 5

2

( ∫ 3

1
x 2y dx

)
dy ← evaluation procedure for the

iterated integral

=
∫ 5

2

[
1
3

x 3y
]x=3

x=1
dy ← the Fundamental Theorem of

Calculus

=
∫ 5

2

(
27
3

y − 1
3

y
)

dy =
∫ 5

2

26
3

y dy ← evaluation of the inner
antiderivative

=
[

13
3

y 2
]y=5

y=2
← the Fundamental Theorem of

Calculus

= 13
3

(25 − 4) = 91. ← evaluation of the outer
antiderivative

Note that when we evaluate the inner integral with respect to x, we treat the other variable,
y, as a constant. Not until we evaluate the outer integral with respect to y do we consider
y as a variable. In Exercise 17 you will use the other order of integration to evaluate this
double integral.

Examples and Explorations

EXAMPLE 1 Using the definition to evaluate a double integral

Let
R = {(x, y) | 1 ≤ x ≤ 3 and 2 ≤ y ≤ 5}.

Use the definition of the double integral to evaluate
∫∫

R x 2y dA.

SOLUTION

Before we evaluate the integral, we note that it represents the volume of the solid bounded
above by the graph of f (x, y) = x 2y and below by the xy-plane on the rectangular region
R , since x 2y ≥ 0 on R . This solid is shown here:

3

1
5

222222222

z

y
x R

To use Definition 13.5 to evaluate the integral, for our starred points (x ∗
j , y ∗

k ) we will

choose (x j, y k) = (1 + j�x, 2 + k�y) for each j and k. Thus, the double integral of x 2y on R
is given by ∫∫

R
x 2y dA = lim

�→0

m∑
j=1

n∑
k=1

(1 + j�x)2(2 + k�y)�A.
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Recall that using the definition to compute a definite integral of a function of a single vari-
able can be quite time consuming. Still, we will use the definition to evaluate this double
integral, but will use Fubini’s theorem to evaluate other double integrals.

We start working on the Riemann sum. Since the index of the “interior” summation is k,
m∑

j=1

n∑
k=1

(1 + j�x)2(2 + k�y)�A =
m∑

j=1

(
1 + j�x

)2
�A

( n∑
k=1

(2 + k�y)
)
.

Now, using properties of summations from Chapter 4, we have
n∑

k=1

(2 + k�y) = 2n + 1
2

n(n + 1)�y.

Combining the preceding two equations gives
m∑

j=1

(1 + j�x)2�A
( n∑

k=1

(2 + k�y)
)

=
m∑

j=1

(1 + j�x)2�A
(

2n + 1
2

n(n + 1)�y
)
.

Again using properties of summations from Chapter 4, we obtain
m∑

j=1

(1 + j�x)2 =
m∑

j=1

(1 + 2j�x + j 2(�x)2) = m + m(m + 1)�x + 1
6

m(m + 1)(2m + 1)(�x)2.

Incorporating this result into the original Riemann sum, we have
m∑

j=1

n∑
k=1

(1 + j�x)2(2 + k�y)�A =
(

m + m(m + 1)�x + 1
6

m(m + 1)(2m + 1)(�x)2
) (

2n + 1
2

n(n + 1)�y
)

�A.

But recall that �x = b−a
m

= 2
m

, �y = d−c
n

= 3
n

and �A = �x�y = 6
mn

, so the Riemann
sum equals(

m + m(m + 1) 2
m

+ 1
6

m(m + 1)(2m + 1)
(

2
m

)2 ) (
2n + 1

2
n(n + 1) 3

n

)
6

mn

= 6
(

1 + 2(m + 1)
m

+ 2(m + 1)(2m + 1)
3m2

) (
2 + 3(n + 1)

2n

)
.

We are finally ready to evaluate the limit of the Riemann sum! We get∫∫
R

x 2y dA = lim
�→0

6
(

1 + 2(m + 1)
m

+ 2(m + 1)(2m + 1)
3m2

) (
2 + 3(n + 1)

2n

)

= lim
m→∞

(
lim

n→∞ 6
(

1 + 2(m + 1)
m

+ 2(m + 1)(2m + 1)
3m2

) (
2 + 3(n + 1)

2n

))

= 6
(

1 + 2 + 4
3

) (
2 + 3

2

)
= 91. �

CHECKING
THE ANSWER

Note that we evaluated this double integral earlier in the section by using Fubini’s theorem.
Of course, we obtained the same result.

EXAMPLE 2 Using Fubini’s theorem

Use Fubini’s theorem to evaluate the following double integrals:

(a)
∫∫

R 1
xy sin(x 2y) dA, where R 1 = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ π}.

(b)
∫∫

R 2
(sin x + e−2y) dA, where R 2 = {(x, y) | 0 ≤ x ≤ π and 0 ≤ y ≤ 1}.

(c)
∫∫

R 3
ln y dA, where R 3 =

{
(x, y) | 0 ≤ x ≤ 5 and 1

e
≤ y ≤ e

}
.
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SOLUTION

(a) Our first integral represents the volume of the solid bounded above by the graph
of xy sin(x 2y) and below by the xy-plane on the rectangular region R 1, since
xy sin(x 2y) ≥ 0 on R 1. Following is a graph of this solid:

z

y
x

R 1
π1

By Fubini’s theorem,
∫∫

R 1

xy sin(x 2y) dA =
∫ 1

0

∫ π

0
xy sin(x 2y) dy dx =

∫ π

0

∫ 1

0
xy sin(x 2y) dx dy.

As we mentioned earlier, for rectangular regions the levels of difficulty of the two iter-
ated integrals given by Fubini’s theorem should be quite similar. We choose the second
integral here. We begin by evaluating

∫ 1
0 xy sin(x 2y) dx. Note that when we integrate

the “interior” integral with respect to x, we treat y as a constant. Therefore, we may use
substitution to find an antiderivative for the function xy sin(x 2y) with respect to x. The
function − 1

2
cos(x 2y) is such an antiderivative. We may check this by taking the partial

derivative ∂

∂x

(
− 1

2
cos(x 2y)

)
and observing that it is, indeed, xy sin(x 2y). Therefore,

∫ 1

0
xy sin(x 2y) dx =

[
− 1

2
cos(x 2y)

]x=1

x=0
= −1

2
(cos(12y) − cos(02y)) = 1

2
(1 − cos y).

We now have∫∫
R 1

xy sin(x 2y) dA =
∫ π

0

∫ 1

0
xy sin(x 2y) dx dy =

∫ π

0

1
2

(1 − cos y) dy.

The integral on the right is a definite integral like those we saw in Chapter 4. We have∫ π

0

1
2

(1 − cos y) dy =
[

1
2

( y − sin y)
]y=π

y=0
= π

2
.

Note that the answer here is a constant. Recall that when f (x) is an integrable function
on an interval [a, b], the value of the definite integral

∫ b
a f (x) dx is a constant. Similarly,

when f (x, y) is an integrable function on a rectangle R , the value of the double integral∫∫
R f (x, y) dA is a constant.

Before we proceed to the other double integrals, we summarize the steps we just
used:

� Use Fubini’s theorem to express the double integral as an iterated integral.
� Choose an order of integration. The levels of difficulty of the two iterated in-

tegrals given by Fubini’s theorem may differ. Choose the order that is easier to
evaluate.

� Whichever of the two iterated integrals you choose, work on the “interior” in-
tegral first, treating the other variable as a constant. (In the example we just

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 17:27

13.1 Double Integrals over Rectangular Regions 1001

completed, the interior variable was x and the exterior variable was y. You may
use any of the integration techniques from Chapter 5 in the process.)

� When you are done with this interior integration, you should have a new definite
integral that involves just the exterior variable. (In the preceding example, the last
step involved evaluating a definite integral with respect to y.)

� Evaluate the exterior integral.
� The result should be a constant.

(b) Our second integral represents the volume of the solid bounded above by the graph
of sin x + e−2y and below by the xy-plane on the rectangular region R 2, since
sin x + e−2y ≥ 0 on R 2. Following is a graph of this solid:

π

1

z

y

x

R 2

Again by Fubini’s theorem,∫∫
R 2

(sin x + e−2y) dA =
∫ π

0

∫ 1

0
(sin x + e−2y) dy dx =

∫ 1

0

∫ π

0
(sin x + e−2y) dx dy.

We evaluate the first iterated integral here. We begin by evaluating
∫ 1

0 (sin x + e−2y) dy.
We integrate with respect to y, treating x as a constant. Therefore,∫ 1

0
(sin x + e−2y) dy =

[
(sin x)y − 1

2
e−2y

]y=1

y=0
= sin x + 1 − e−2

2
.

We now integrate this function with respect to x on the interval [0, π ]:∫ π

0

(
sin x + 1 − e−2

2

)
dx =

[
− cos x + 1 − e−2

2
x
]x=π

x=0
= 2 + π (1 − e−2)

2
.

(c) Our third integral represents a signed volume, since the graph of ln y takes on both
positive and negative values on the rectangular region R 3, as shown in the following
figure:

y

z

eeeeeeeeeeeeee

x

e
1

5

R 3

Here we have∫∫
R 3

ln y dA =
∫ 5

0

∫ e

1/e
ln y dy dx =

∫ e

1/e

∫ 5

0
ln y dx dy.
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We now evaluate the second iterated integral. Note that the function ln y is constant
with respect to x; therefore,∫ 5

0
ln y dx = [

(ln y)x
]x=5

x=0 = 5 ln y.

We integrate this function with respect to y on the interval
[

1
e
, e
]
:

∫ e

1/e
5 ln y dy = 5

[
y ln y − y

]y=e
y=1/e = 5

(
(e ln e − e) −

(
1
e

ln 1
e

− 1
e

))
= 10e−1. �

EXAMPLE 3 Computing volume

Find the volume of the solid between the graph of the function f (x, y) = x sin y and the
rectangle R ,

R = {(x, y, 0) | −1 ≤ x ≤ 2 and 0 ≤ y ≤ π}
in the xy-plane.

SOLUTION

Following is a graph of the function f on the rectangular region R :

2

�1

y

z

x R

π

Note that f (x, y) ≥ 0 on the rectangle R 1 = {(x, y) | 0 ≤ x ≤ 2 and 0 ≤ y ≤ π} and
f (x, y) ≤ 0 on the rectangle R 2 = {(x, y) | −1 ≤ x ≤ 0 and 0 ≤ y ≤ π}. Therefore the
volume we want is given by the difference∫∫

R
|x sin y| dA =

∫∫
R 1

x sin y dA −
∫∫

R 2

x sin y dA.

We will use Fubini’s theorem to compute both of these double integrals:
∫∫

R 1

x sin y dA =
∫ 2

0

∫ π

0
x sin y dy dx and

∫∫
R 2

x sin y dA =
∫ 0

−1

∫ π

0
x sin y dy dx.

Both iterated integrals require us to compute the integral∫ π

0
x sin y dy = [−x cos y

]y=π

y=0 = 2x.

We now finish the evaluation of the two iterated integrals:
∫∫

R 1

x sin y dA =
∫ 2

0
2x dx = [

x 2]x=2
x=0 = 4 and

∫∫
R 2

x sin y dA =
∫ 0

−1
2x dx = [

x 2]x=0
x=−1 = −1.

Therefore, the volume
∫∫

R |x sin y| dA = 4 − (−1) = 5. �
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TEST YOUR? UNDERSTANDING
� What are double sums and triple sums?

� What is a Riemann sum for a function of two variables over a rectangular region?

� What is the definition of a double integral?

� What is an iterated integral? How are iterated integrals defined? What is the difference
between a double integral and an iterated integral?

� How is the volume between the graph of a function of two variables f (x, y) and the xy-
plane defined? Not every double integral gives a volume. Why? Which double integrals
represent volumes? Which do not?

EXERCISES 13.1

Thinking Back

� Using summation formulas: Verify that the formulas∑n
k=1 k = n(n+1)

2
and

∑n
k=1 k 2 = n(n+1)(2n+1)

6
hold

when n = 4 and n = 7.

� Using the definition to compute a definite integral: Evalu-
ate the definite integral

∫ 4
1 x 2 dx as the limit of a right

Riemann sum.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False:
10∑

j=1

15∑
k=1

j k 2 =
10∑

k=1

15∑
j=1

j 2k

(b) True or False:
m∑

j=1

n∑
k=1

j 2k 3 =
( m∑

j=1

j 2
)( n∑

k=1

k 3
)

(c) True or False:
m∑

j=1

n∑
k=1

e j k 2 =
( m∑

j=1

e j
)( n∑

k=1

e k 2
)

(d) True or False: If f (x, y) is continuous on the rectan-
gle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, then∫∫

R f (x, y) dA exists.

(e) True or False: If f (x, y) is continuous on the rectan-
gle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, then∫∫

R f (x, y) dA = ∫ b
a

∫ d
c f (x, y) dx dy.

(f) True or False: If f (x, y) is continuous on the rectan-
gle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, then∫∫

R f (x, y) dA = ∫ b
a

∫ d
c f (x, y) dy dx.

(g) True or False: If f (x, y) is continuous on the rectan-
gle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, then∫ a

b

∫ c
d f (x, y) dy dx = ∫ b

a

∫ d
c f (x, y) dy dx.

(h) True or False: If f (x, y) is continuous on the rectan-
gle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, then∫ d

c

∫ b
a f (x, y) dx dy = ∫ b

a

∫ d
c f (x, y) dy dx.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two different sigma notation expressions of the same
double sum.

(b) A double summation whose value is zero although
none of the summands is zero.

(c) A nonzero function f (x, y) defined on the rectangle
R = {(x, y) | −2 ≤ x ≤ 2 and −3 ≤ y ≤ 3} such that∫∫

R f (x, y) dA = 0.

3. Express the sum 3e4 + 3e9 + 3e16 + 4e4 + 4e9 + 4e16 using
double-summation notation.

4. Express the sum
2
5

+ 2
6

+ 2
7

+ 2
8

+ 4
5

+ 4
6

+ 4
7

+ 4
8

using
double-summation notation.

5. How many summands are in
∑13

j=3
∑20

k=5
j 2

e j k
?

6. How many summands are in
∑m

j=j0

∑n
k=k 0

j k?

7. How many summands are in
∑15

i=2
∑17

j=3
∑19

k=4
i

j+k
?

8. How many summands are in
∑l

i=i0

∑m
j=j0

∑n
k=k 0

k ij k?

9. Discuss the similarities and differences between the defi-
nition of the definite integral found in Chapter 4 and the
definition of the double integral found in this section.

10. Explain how to construct a Riemann sum for a function of
two variables over a rectangular region.

11. Explain how to construct a midpoint Riemann sum for a
function of two variables over a rectangular region for
which each (x ∗

j , y ∗
k ) is the midpoint of the subrectangle

R j k = {(x, y) | x j−1 ≤ x ∗
j ≤ x j and y k−1 ≤ y ∗

k ≤ y k}.
Refer to your answer to Exercise 10 or to Definition 13.3.

12. What is the difference between a double integral and an
iterated integral?
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13. State Fubini’s theorem.
14. Explain why using an iterated integral to evaluate a dou-

ble integral is often easier than using the definition of the
double integral to evaluate the integral.

15. Explain how the Fundamental Theorem of Calculus is
used in evaluating the iterated integral

∫ b
a

∫ d
c f (x, y) dy dx.

16. Explain how the Fundamental Theorem of Calculus is
used in evaluating the iterated integral

∫ d
c

∫ b
a f (x, y) dx dy.

17. Earlier in this section, we showed that we could use
Fubini’s theorem to evaluate the integral

∫∫
R x 2y dA and

we showed that
∫ 5

2

∫ 3
1 x 2y dx dy = 91. Now evaluate

the double integral by evaluating the iterated integral∫ 3
1

∫ 5
2 x 2y dy dx.

Explain why it would be difficult to evaluate the double inte-
grals in Exercises 18 and 19 as iterated integrals.

18.
∫∫

R
e x y dA,

where R = {(x, y) | 1 ≤ x ≤ 2 and 1 ≤ y ≤ 3}
19.

∫∫
R

cos(xy) dA,

where R =
{

(x, y) | π

4
≤ x ≤ π

2
and

π

2
≤ y ≤ π

}
20. Use the results of Exercises 18 and 19 to explain why it

may not be possible to evaluate a double integral by us-
ing an iterated integral.

21. Show that
∫ b

a

∫ d
c f (x, y) dy dx does not always equal∫ d

c

∫ b
a f (x, y) dx dy by evaluating these two iterated inte-

grals for f (x, y) = x−y
(x+y)3

when a = c = 0 and b = d = 1.

Why does this result not violate Fubini’s theorem?
22. Outline the steps required to find the volume of the

solid bounded by the graph of a function f (x, y) and the
xy-plane for a ≤ x ≤ b and c ≤ y ≤ d.

Skills

Evaluate the sums in Exercises 23–28.

23.
3∑

j=1

2∑
k=1

j k 24.
3∑

j=1

2∑
k=1

k j

25.
3∑

j=1

4∑
k=1

(3j − 4k) 26.
m∑

j=1

n∑
k=1

( j − k)

27.
4∑

i=1

3∑
j=1

2∑
k=1

ij 2k 3 28.
l∑

i=1

m∑
j=1

n∑
k=1

ij 2k 3

Use Definition 13.4 to evaluate the double integrals in Exer-
cises 29–32.

29.
∫∫

R
xy dA

where R = {(x, y) | 0 ≤ x ≤ 2 and 1 ≤ y ≤ 4}
30.

∫∫
R

x 2y dA

where R = {(x, y) | −1 ≤ x ≤ 0 and 0 ≤ y ≤ 2}
31.

∫∫
R

xy 3 dA

where R = {(x, y) | −2 ≤ x ≤ 2 and −1 ≤ y ≤ 1}
32.

∫∫
R

x 2y 3 dA

where R = {(x, y) | 1 ≤ x ≤ 3 and 0 ≤ y ≤ 2}
Evaluate each of the integrals in Exercises 33–36 as an iter-
ated integral, and then compare your answers with those you
found in Exercises 29–32.

33. The integral in Exercise 29.

34. The integral in Exercise 30.

35. The integral in Exercise 31.

36. The integral in Exercise 32.

Evaluate each of the double integrals in Exercises 37–54 as
iterated integrals.

37.
∫∫

R
(3 − x + 4y) dA,

where R = {(x, y) | 0 ≤ x ≤ 1 and −1 ≤ y ≤ 3}

38.
∫∫

R
y 2 dA,

where R = {(x, y) | −3 ≤ x ≤ 2 and −2 ≤ y ≤ 2}
39.

∫∫
R

(2 − 3x 2 + y 2) dA,

where R = {(x, y) | −3 ≤ x ≤ 2 and 3 ≤ y ≤ 5}
40.

∫∫
R

(x − e y) dA,

where R = {(x, y) | −3 ≤ x ≤ 2 and −2 ≤ y ≤ 2}
41.

∫∫
R

sin(x + 2y) dA,

where R =
{

(x, y) | 0 ≤ x ≤ π and 0 ≤ y ≤ π

2

}

42.
∫∫

R
x sin x cos y dA,

where R = {(x, y) | −3 ≤ x ≤ 2 and −2 ≤ y ≤ 2}
43.

∫∫
R

xe x y dA,

where R = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ ln 5}
44.

∫∫
R

x 2 cos(xy) dA,

where R = {(x, y) | 0 ≤ x ≤ π and 0 ≤ y ≤ 1}
45.

∫∫
R

x
x+y

dA,

where R = {(x, y) | 1 ≤ x ≤ 4 and 0 ≤ y ≤ 3}
46.

∫∫
R

x 3e x 2y dA,

where R = {(x, y) | 0 ≤ x ≤ 4 and −1 ≤ y ≤ 1}
47.

∫∫
R

y sin x dA,

where R =
{

(x, y) | 0 ≤ x ≤ π

2
and 0 ≤ y ≤ 1

}

48.
∫∫

R
sin(2x + y) dA,

where R =
{

(x, y) | 0 ≤ x ≤ π

2
and 0 ≤ y ≤ π

2

}

49.
∫∫

R
y 2 sin x dA,

where R = {(x, y) | 0 ≤ x ≤ π and 0 ≤ y ≤ 3}
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50.
∫∫

R
xy sin(x 2) dA,

where R = {(x, y) | 0 ≤ x ≤ √
π and 0 ≤ y ≤ 1}

51.
∫∫

R
y cos(xy) dA,

where R =
{

(x, y) | 0 ≤ x ≤ π

2
and 0 ≤ y ≤ 1

}

52.
∫∫

R
e x+y dA,

where R = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}
53.

∫∫
R

x 2e x y dA,

where R = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1}
54.

∫∫
R

dA
x2 +2xy+y2

,

where R = {(x, y) | 1 ≤ x ≤ 2 and 0 ≤ y ≤ 1}
In Exercises 55–58, find the signed volume between the graph
of the given function and the xy-plane over the specified
rectangle in the xy-plane.

55. f (x, y) = 3x − 2y 5 + 1,
where R = {(x, y) | −4 ≤ x ≤ 6 and 0 ≤ y ≤ 7}

56. f (x, y) = x 2 − y 3 + 4,
where R = {(x, y) | 0 ≤ x ≤ 3 and −2 ≤ y ≤ 3}

57. f (x, y) = y 3e x y 2
,

where R = {(x, y) | 0 ≤ x ≤ 2 and −2 ≤ y ≤ 3}
58. f (x, y) = xy 3e x 2y 2

,
where R = {(x, y) | −2 ≤ x ≤ −1 and −2 ≤ y ≤ 0}

In Exercises 59–64, find the volume between the graph of the
given function and the xy-plane over the specified rectangle.

59. f (x, y) = xy,
where R = {(x, y) | −2 ≤ x ≤ 3 and −1 ≤ y ≤ 5}

60. f (x, y) = −2x 2y 3,
where R = {(x, y) | −2 ≤ x ≤ 3 and −1 ≤ y ≤ 5}

61. f (x, y) = sin x cos y,
where R = {(x, y) | 0 ≤ x ≤ π and 0 ≤ y ≤ π}

62. f (x, y) = y
x

e y,
where R = {(x, y) | 1 ≤ x ≤ e and 0 ≤ y ≤ 2}

63. f (x, y) = x
y

+ y
x

,

where R = {(x, y) | 1 ≤ x ≤ 3 and 1 ≤ y ≤ 5}
64. f (x, y) = x 2ye x y,

where R = {(x, y) | 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2}
Use midpoint Riemann sums with the specified numbers of
subintervals to approximate the iterated integrals in Exer-
cises 65–68. (See Exercise 11 for the definition of a midpoint
Riemann sum for a double integral.)

65.
∫ 1

0

∫ 3/2
0 e x y dx dy. Let each subrectangle be a square with

side length
1
2

unit.

66.
∫ π

0

∫ 1
0 sin(xy) dy dx. Use four subrectangles by dividing

each of the intervals [0, π ] and [0, 1] into two equal pieces.

67.
∫ 1

0

∫ π/2
0 cos(xy) dx dy. Use six subrectangles by dividing

the interval
[
0,

π

2

]
into three equal pieces and the interval

[0, 1] into two equal pieces.

68.
∫ 1

0

∫ 1
0 y sin(x 2) dx dy. Let each subrectangle be a square

with side length
1
3

unit.

Applications
69. Emmy oversees the operations of a number of sedimen-

tation tanks, into which a toxic solution is dumped so
that the toxic materials will settle out. The base of each
tank is a square with side lengths of 80 feet, but she does
not know the volume of any of the tanks. She defines a
function

r(t) =
{−(t − 10)2

100
+ 1, if t < 10

1, if t ≥ 10.

z

y

x

40

40

�40

With this function, one-fourth of a tank is described by
the surface −12r(x)r( y) for x ∈ [0, 40), y ∈ [0, 40). The
rest of the tank is the same function reflected about the
lines x = 40 and y = 40 and the point (40, 40). What is
the volume of each tank?

70. Leila has been assigned the task of estimating the num-
ber of caribou in a rectangular management unit (an area
of land) during the summer. She imposes coordinates
on the unit, which is 4 miles wide by 5 miles long (i.e.,
[0, 4] × [0, 5]). She does not have time to commission a
count of population, but she knows from a past study
that the density of caribou in this region in July is ap-
proximated by d(x, y) = 0.08x 2y 2 − 0.456x 2y − 0.08x 2 −
0.328xy 2 + 1.87xy + 0.328x − 0.061y 2 + 0.347y + 0.061.
Roughly how many caribou can be found in the manage-
ment unit?
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Proofs

71. Prove Theorem 13.2(a). That is, prove that∑m
j=1
∑n

k=1 a jk = ∑n
k=1
∑m

j=1 a jk.

72. List the other five orders for the summations in∑l
i=1
∑m

j=1
∑n

k=1 a ijk, and prove that all six orders for the
summations are equal.

73. Let a < b and c < d be real numbers, and let R be the
rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}
in the xy-plane. If g(x) is continuous on the interval [a, b]
and h( y) is continuous on [c, d ], use Fubini’s theorem to
prove that∫∫

R
g(x)h( y) dA =

(∫ b

a
g(x) dx

)(∫ d

c
h( y) dy

)
.

74. Let a and b be positive real numbers, and let

R = {(x, y) | −a ≤ x ≤ a and −b ≤ y ≤ b}.
Assuming that g and h are continuous on their domains,
prove that

∫∫
R g(x)h( y) dA = 0 if either g or h is an odd

function.

75. Let a < b and c < d be real numbers, and let R be the
rectangle in the xy-plane defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}.
Prove that

∫∫
R dA = (b−a)(d−c). What is the relationship

between R and the product (b − a)(d − c)?

Thinking Forward

� Riemann sums for functions of three variables: Provide a
definition of a Riemann sum for a function of three
variables. Model your definition on Definition 13.3.

� Triple integrals: Provide a definition for a triple integral∫∫∫
S f (x, y, z) dV , where S is a rectangular box in R

3

given by S = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2
and c 1 ≤ z ≤ c 2}. Model your definition on Defini-
tion 13.4.

13.2 DOUBLE INTEGRALS OVER GENERAL REGIONS

� Analyzing bounded regions in the plane

� Defining and computing double integrals on general regions

� The algebraic properties of double integrals

General Regions in the Plane

In Section 13.1 we defined the double integral of a function of two variables over a rect-
angular region. We now wish to generalize this concept to define a double integral over a
general region � (omega) bounded by a simple closed curve—that is, a two-dimensional
region in which the boundary may be represented by a finite collection of curves with dif-
ferentiable parametrizations. Following is an example of such a region:

�

Unlike definite integrals, which are defined on finite intervals, for double intervals over
regions more complicated than a rectangle we have to make an effort to understand the
region � over which the double integral is defined.
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In particular, the regions we use must be subdivided into subregions that fall into one
of the following two types:

DEFINITION 13.8 Type I and Type II Regions

(a) Let y = g 1(x) and y = g 2(x) be two functions defined on the interval [a, b] such
that g 1(x) ≤ g 2(x) for every x ∈ [a, b]. The region � bounded above by g 2(x), below
by g 1(x), on the left by the line x = a, and on the right by the line x = b is said to
be a type I region.

(b) Let x = h 1( y) and x = h 2( y) be two functions defined on the interval [c, d ] such
that h 1( y) ≤ h 2( y) for every y ∈ [c, d]. The region � bounded on the left by h 1(x),
on the right by h 2( y), below by the line y = c, and above by the line y = d is said
to be a type II region.

A type I region is shown next at the left, and a type II region next on the right.

ba

y

x

g2(x)

g1(x)

d

c

h2(y)

h1(y)

y

x

Many regions naturally fall into one or the other of these two categories. Some regions,
however, may be considered to be either a type I or a type II region. For example, consider
the area in the first quadrant between the functions y = √

x and y = x 3:

y

x

1

1

x3
�

x

As a type I region, � is bounded above by y = √
x and below by y = x 3 for x ∈ [0, 1]. As a

type II region, � is bounded on the left by x = y 2 and on the right by x = 3
√

y for y ∈ [0, 1].

Many regions need to be subdivided so that their subregions fall more simply into one
of the two categories. For example, the region � bounded above by the semicircle with
equation y = √

4 − x 2 and below by the quarter circle y = −√
4 − x 2 on the interval

[−2, 0] and by the x-axis on the interval [0, 2] may be subdivided into the two subregions
� 1 and � 2, as pictured next. We see that � 1 and � 2 are type I regions.
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�2

2
�2

�1

y

x
�2

Note, however, that there are always many ways to subdivide such a region. If we wish, we
may divide this region into three quarter circles, each of which may be considered to be a
type I or a type II region. For example, � 2, shown in the preceding figure, is also a type II
region, bounded on the left by x = −√4 − y 2 and on the right by the y-axis on the interval
−2 ≤ y ≤ 0.

Double Integrals over General Regions

We now expand our definition of the double integral to allow us to compute a double
integral over a general region � whose boundary is a simple closed curve. Let f (x, y) be
defined on �. Note that since � is bounded, there exists a rectangle R = {(x, y) | a ≤ x ≤ b
and c ≤ y ≤ d} such that � is a subset of R (i.e., � ⊆ R ).

DEFINITION 13.9 Double Integrals over General Regions

Let � be a region in the xy-plane bounded by a simple closed curve, let f (x, y) be a
function defined on �, and let R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d} be a rectangle
containing �. We define the double integral of f over � to be∫∫

�

f (x, y) dA =
∫∫

R
F(x, y) dA,

where

F(x, y) =
{

f (x, y), if (x, y) ∈ �

0, if (x, y) �∈ �,

provided that the double integral
∫∫

R F(x, y) dA exists.

As with double integrals defined on rectangular regions, we will try to evaluate double
integrals on general regions with Fubini’s theorem. To use Fubini’s theorem in this context,
when we wish to integrate the function f (x, y) over the type I region � bounded above by
g 2(x), below by g 1(x), on the left by the line x = a, and on the right by the line x = b, we
set up the iterated integral∫∫

�

f (x, y) dA =
∫ b

a

∫ g 2(x)

g 1(x)
f (x, y) dy dx.

Similarly, to integrate f (x, y) over the type II region bounded on the left by h 1(x), on the
right by h 2( y), below by the line y = c, and above by the line y = d, we set up the iterated
integral ∫∫

�

f (x, y) dA =
∫ d

c

∫ h 2( y)

h 1( y)
f (x, y) dx dy.
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Note that in each case the limits of the outer integration are constants, and the limits of
the inner integration are functions of the outer variable of integration.

For example, let � be the following triangular region in the first quadrant:

y

x

1

21

�

To evaluate the double integral of a function f (x, y) on this region, we may treat � either
as the type I region bounded below by y = 0 and above by y = 1

2
x for x ∈ [0, 2] or as the

type II region bounded on the left by the function x = 2y and on the right by the function
x = 2 for y ∈ [0, 1]. Therefore,∫∫

�

f (x, y) dA =
∫ 2

0

∫ x/2

0
f (x, y) dy dx =

∫ 1

0

∫ 2

2y
f (x, y) dx dy.

Depending upon the function f (x, y), one of these two iterated integrals may be signifi-
cantly easier to evaluate. When f (x, y) = cos(x 2), treating � as a type I region results in
a significantly simpler integral, since the inner integral may be easily evaluated with the
Fundamental Theorem of Calculus:∫ x/2

0
cos(x 2) dy = [

y cos(x 2)
]y=x/2

y=0 = 1
2

x cos(x 2).

To finish evaluating the iterated integral, we now use substitution to find an antiderivative
for the resulting function. We have∫ 2

0

1
2

x cos(x 2) dx =
[

1
4

sin(x 2)
]x=2

x=0
= 1

4
sin 4.

By contrast, if we try to evaluate the double integral by using the iterated integral∫ 1

0

∫ 2

2y
cos(x 2) dx dy,

we are immediately stymied by the fact that the function cos(x 2) does not have a simple
antiderivative when we are integrating first with respect to the variable x.

This example illustrates how crucial it is to be able to analyze a given planar region as
both a type I region and a type II region. When we write a double integral as an iterated
integral, one of the two possible orders of integration can result in a computation that is
significantly easier than the other. In such a case, the relatively simple chore of selecting
the appropriate order of integration saves a great deal of work integrating.

Algebraic Properties of Double Integrals

The algebraic properties set forth in the next theorem are similar to the algebraic properties
of definite integrals we studied in Chapter 4. The proofs of these properties follow from the
definition of the double integral and are left for Exercises 67 and 68.
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THEOREM 13.10 Algebraic Properties of the Double Integral

Let f (x, y) and g(x, y) be integrable functions on the general region �, and let c ∈ R.
Then

(a)
∫∫

�

cf (x, y) dA = c
∫∫

�

f (x, y) dA.

(b)
∫∫

�

( f (x, y) + g(x, y)) dA =
∫∫

�

f (x, y) dA +
∫∫

�

g(x, y) dA.

As we mentioned earlier in the section, we may also need to decompose a region into
subregions. The following theorem tells us that the double integral is well behaved with
respect to reasonable subdivisions:

THEOREM 13.11 Subdividing the Region on Which a Double Integral Is Defined

Let f (x, y) be an integrable function on the general region �. If � 1 and � 2 are general
regions that are subsets of � that do not overlap, except possibly on their boundaries,
and if � = � 1 ∪ � 2, then∫∫

�

f (x, y) dA =
∫∫

� 1

f (x, y) dA +
∫∫

� 2

f (x, y) dA.

Example 1 provides an application of Theorem 13.11 that illustrates how to split a region
into subregions for integration.

Examples and Explorations

EXAMPLE 1 Expressing a planar region as a type I region and a type II region

Express the double integral
∫∫

�
f (x, y) dA as an iterated integral over the following region

�, itself expressed as both a type I region and a type II region:

y

4

2

�4

x

y � �x

y �   x

�

SOLUTION

It is slightly easier to express � as type I region. To envision the boundary components of
a type I region, it often helps to draw a “typical” vertical strip, as shown in the figure at the
left.
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� as a type I region � as two type II regions

4

y
2

�4

x

�

�x

�2

�1

4

y
2

�4

�y

�y

x

Each vertical strip that crosses the region is bounded below by the function y = −x and
above by the function y = √

x. Such vertical strips would cover � as x varies over the interval
[0, 4]. Thus, to integrate f (x, y) over � as a type I region, we have

∫∫
�

f (x, y) dA =
∫ 4

0

∫ √
x

−x
f (x, y) dy dx.

To understand the region as a type II region, we draw two horizontal strips. Above the
x-axis, these strips are bounded on the left by the function x = y 2 and on the right by the
line x = 4. Such strips would cover � 1 as y varies over the interval [0, 2], as pictured at the
right. Similarly, below the x-axis such strips are bounded on the left by the function x = −y
and on the right by the line x = 4. They would cover � 2 as y varies over the interval [−4, 0].
Thus, to integrate a function f (x, y) over � as a type II region, we would have∫∫

�

f (x, y) dA =
∫ 0

−4

∫ 4

−y
f (x, y) dx dy +

∫ 2

0

∫ 4

y 2
f (x, y) dx dy.

Note that we have used Theorem 13.11 to break the integral over � into the integrals over
� 1 and � 2. Also, observe that for all three iterated integrals shown, the limits of the outer
integrals are constants. The limits of the inner integrals are functions of the outer variable,
although they may be constant functions. �

EXAMPLE 2 Drawing a region determined by an iterated integral

Sketch the regions determined by the iterated integrals:

(a)
∫ π/4

−3π/4

∫ sin x

cos x
xy dy dx (b)

∫ 2

0

∫ √
2−y

0
xe x 2

dx dy

SOLUTION

(a) The region described by the first integral is bounded below by the function y = cos x
and above by y = sin x for values of x in the interval [−3π/4, π/4]. This region is shown
here at the left:

y

x
π

2
3π

4

1

�1

� �
π

4
π

4�

y

2

1

1
x
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(b) The region described by the second integral is bounded on the left by the line x = 0
and on the right by the function x = √

2 − y for values of y in the interval [0, 2]. For
convenience, to sketch the function x = √

2 − y, we may rewrite it as y = 2 − x 2,
where x ≥ 0. This region is shown at the right. �

EXAMPLE 3 Evaluating an iterated integral

Evaluate the iterated integrals from Example 2.

SOLUTION

To evaluate an iterated integral, we begin by evaluating the inner integral.

(a) Thus, when we evaluate
∫ π/4
−3π/4

∫ sin x
cos x xy dy dx, we start with

∫ sin x

cos x
xy dy =

[
1
2

xy 2
]y=sin x

y=cos x
= 1

2
x(sin2 x − cos2 x) = − 1

2
x cos(2x).

For the rightmost equality, we used the double-angle identity for the cosine. We now

integrate this function on the interval
[
− 3π

4
, π

4

]
to complete the evaluation of the it-

erated integral:

∫ π/4

−3π/4

(
−1

2
x cos(2x)

)
dx =

[
−
(

1
4

x sin(2x) + 1
8

cos(2x)
)]π/4

−3π/4
= −π

4
.

Note that we used integration by parts to find the antiderivative of the function.

(b) For the second iterated integral,
∫ 2

0

∫√
2−y

0 xe x 2
dx dy, we again work first on the inner

integral. Here we use substitution to find the antiderivative:

∫ √
2−y

0
xe x 2

dx =
[

1
2

e x 2
]√2−y

0
= 1

2
(e 2−y − 1).

We now evaluate the outer integral:

∫ 2

0

1
2

(e 2−y − 1) dy =
[
−1

2
(e 2−y + y)

]2

0
= 1

2
(e 2 − 3). �

EXAMPLE 4 Reversing the order of integration in an iterated integral

Reverse the order of integration in the iterated integral
∫ 2

0

∫√
2−y

0 xe x 2
dx dy. Then evaluate

the new iterated integral and show that the result is the same as the value obtained in
Example 3.

SOLUTION

This is one of the integrals we have been discussing since Example 2. In that example, we
drew the region �, expressed as a type II region. To reverse the order of integration we
must first express � as a type I region. Using the work we did in Example 2, we see that
the region is bounded above by y = 2 − x 2 and below by y = 0, where x is in the interval[
0,

√
2
]
. Thus,

∫ 2

0

∫ √
2−y

0
xe x 2

dx dy =
∫ √

2

0

∫ 2−x 2

0
xe x 2

dy dx.
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Again, working on the inner integral, we have
∫ 2−x 2

0
xe x 2

dy = [
xe x 2

y
]2−x 2

0 = (2x − x 3)e x 2
.

To finish this example we evaluate the outer integral. Using the techniques of integration
by substitution and integration by parts, we obtain

∫ √
2

0
(2x − x 3)e x 2

dx =
[

1
2

(3 − x 2)e x 2
]√2

0
= 1

2
(e 2 − 3).

As we have previously mentioned, when we evaluate an iterated integral, sometimes one
order of integration leads to a computation that is significantly simpler than the other order
of integration. Which order of integration did you find easier for this integral, the one we
did in Example 3, or the one we just completed? �

TEST YOUR? UNDERSTANDING
� What is a general region in the xy-plane? What is a type I region? What is a type II

region? Is every general region either a type I region or a type II region?

� How is the definition of the double integral over a rectangular region used to define
the double integral of a function over a general region? Why does this definition make
sense?

� How is a region that is neither a type I region nor a type II region decomposed into
subregions that are type I or type II?

� Which order of integration in an iterated integral is associated with a type I region, and
which order of integration in an iterated integral is associated with a type II region?
Why?

� How can the shape of a region � help or hinder in the evaluation of the double integral∫∫
�

f (x, y) dA? Does the interval [a, b] ever make a definite integral
∫ b

a g(x) dx easier or
harder to evaluate?

EXERCISES 13.2

Thinking Back

� Finding the area between two curves: If g 1(x) and g 2(x)
are two continuous functions such that g 1(x) ≤ g 2(x)
on the interval [a, b], find a definite integral represent-
ing the area between the graphs of the two functions
on [a, b].

� Finding the area between two curves: If h 1( y) and h 2( y)
are two continuous functions such that h 1( y) ≤ h 2( y)
on the interval [c, d ], find a definite integral represent-
ing the area between the graphs of the two functions
on [c, d ].

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Every rectangular region in the plane,
with its sides parallel to the coordinate axes, may be
considered to be either a type I region or a type II
region.

(b) True or False: Every rectangular region in the plane
may be considered to be a type I region or a type II
region.

(c) True or False: Every region in the plane can be ex-
pressed as either a single type I region or a single
type II region.

(d) True or False: A general region in the plane with a
polygonal boundary can be decomposed into finitely
many type I and type II regions.
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(e) True or False: To evaluate the double integral∫∫
�

f (x, y) dA where � is a type I region, you integrate
first with respect to y.

(f) True or False: If � is the set of all points satisfying
the inequality x 2 + y 2 ≤ 4, then

∫∫
�

f (x, y) dA =∫ 2
−2

∫√
4−y 2

−
√

4−y 2
f (x, y) dx dy.

(g) True or False: If f is a continuous function and � =
� 1 ∪ � 2, then

∫∫
�

f (x, y) dA = ∫∫
� 1

f (x, y) dA +∫∫
� 2

f (x, y) dA.

(h) True or False: If f is a positive continuous func-
tion defined on a region �, and if � ⊂� , then∫∫

�
f (x, y) dA ≤ ∫∫

�
f (x, y) dA.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A non-rectangular region that can be expressed as a
single type I region or as a single type II region.

(b) A rectangular region � that can be expressed neither
as a single type I region nor as a single type II region.

(c) A region � that can be expressed as a single type II
region, but that requires two type I regions intersect-
ing only on their boundaries, in order to express �

simply.

3. Explain the difference between a type I region and a
type II region.

4. Let R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d} be a rectan-
gular region. Explain why R is both a type I region and a
type II region.

Which of the iterated integrals in Exercises 5–8 could correctly
be used to evaluate the double integral

∫∫
R f (x, y) dA, where

f (x, y) is a continuous function and R is the rectangular re-
gion bounded by the lines x = 1, x = 4, y = 2, and y = 6? For
each incorrect integral, how could it be changed to give the
correct value?

5.
∫ 4

1

∫ 6

2
f (x, y) dy dx 6.

∫ 1

4

∫ 2

6
f (x, y) dy dx

7.
∫ 4

1

∫ 6

2
f (x, y) dx dy 8.

∫ 6

2

∫ 4

1
f (x, y) dx dy

Which of the iterated integrals in Exercises 9–12 could cor-
rectly be used to evaluate the double integral

∫∫
�

f (x, y) dA,
where f (x, y) is a continuous function and � is the right trian-
gular region bounded below by the x-axis, on the left by the
y-axis, and along the hypotenuse by the line y = −x + 2? For
each incorrect integral, how could it be changed to give the
correct value?

9.
∫ 2

0

∫ −x+2

0
f (x, y) dy dx 10.

∫ −x+2

0

∫ 2

0
f (x, y) dx dy

11.
∫ 2

0

∫ −y+2

0
f (x, y) dx dy 12.

∫ 0

2

∫ 0

−y+2
f (x, y) dx dy

13. The following region � is bounded by the functions y =
1
2

x and y = √
x :

y

1 2 3 4

2

1

x

y � �x1
2

�

y �   x

Express � as a type I region and as a type II region. Re-
ferring to Definition 13.8, if � is a type I region, what are
a and b? If � is a type II region, what are c and d?

14. Explain why the double integral
∫∫

�
dA gives the area of

the region �. Illustrate your explanation with an example.

15. Let g 1(x) and g 2(x) be two continuous functions such that
g 1(x) ≤ g 2(x) on the interval [a, b], and let � be the region
in the xy-plane bounded by g 1 and g 2 on [a, b]. Use your
answer to Exercise 14 to set up an iterated integral whose
value is the area of �. How is this iterated integral related
to the definite integral you would have used to compute
the area of � in Chapter 4?

16. Let h 1( y) and h 2( y) be two continuous functions such
that h 1(x) ≤ h 2(x) on the interval [c, d ], and let � be the
region in the xy-plane bounded by h 1 and h 2 on [c, d ].
Use your answer to Exercise 14 to set up an iterated in-
tegral whose value is the area of �. How is this iterated
integral related to the definite integral you would have
used to compute the area of � in Chapter 4?

17. Use the results of Exercises 15 and 16 to find the area of
the region � shown in Exercise 13.

18. Express the area of the region � between the function
f (x) = x 2 and the x-axis on the interval [−3, 3] as an
iterated integral, integrating first with respect to x. Express
the area of � as a sum of two iterated integrals, integrat-
ing first with respect to y in each. Now evaluate your in-
tegrals.

19. Express the area of the region � between the function
f (x) = x 3 and the x-axis on the interval [−3, 3] as a sum
of two iterated integrals, integrating first with respect to
x in each. Express the area of � as a sum of two different
iterated integrals, integrating first with respect to y. Now
evaluate your integrals.

20. When you wish to evaluate the definite integral
∫ b

a f (x) dx
of a continuous function f , the interval [a, b] is never an
impediment to using the Fundamental Theorem of Cal-
culus. However, when you wish to evaluate the double
integral

∫∫
�

g(x, y) dA of a continuous function g over a
region �, the region can make the evaluation process eas-
ier or harder. Why?
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Skills

Let f (x, y) be a continuous function. For each region � shown
in Exercises 21–24, set up one or more (if necessary) iterated
integrals to compute

∫∫
�

f (x, y) dA, (a) where you integrate
first with respect to y and (b) where you integrate first with
respect to x.

21. y

1

1

x

y � ex

e

22.

x

y

3

3
y � x

y � �x
�3

23. y

x
�2 2

24. y

21
x

π

4

y � �� x � �π

4
π

2y � tan�1(x)

Let f (x, y) be a continuous function. Sketch each region � de-
scribed in Exercises 25–28. Then set up one or more (if nec-
essary) iterated integrals to compute

∫∫
�

f (x, y) dA, (a) where
you integrate first with respect to y and (b) where you inte-
grate first with respect to x.

25. � =
{

(x, y) | 0 ≤ x ≤ π

4
and sin x ≤ y ≤ cos x

}

26. � = {(x, y) | −2 ≤ x ≤ 2 and |x| ≤ y ≤ 2}
27. � = {(x, y) | |x| + |y| ≤ 1}
28. � = {(x, y) | x 2 + y 2 ≤ 9}
In Exercises 29–34, sketch the region determined by the limits
of the iterated integrals and then give another iterated integral
(or a sum of iterated integrals if necessary) using the opposite
order of integration.

29.
∫ 2

1

∫ e x

ln x
f (x, y) dy dx 30.

∫ 2

0

∫ −x+4

x
f (x, y) dy dx

31.
∫ π/2

0

∫ sin y

0
f (x, y) dx dy 32.

∫ 8

0

∫ 3√y

0
f (x, y) dx dy

33.
∫ π/2

0

∫ 1

sin y
f (x, y) dx dy 34.

∫ 8

0

∫ 2

3√y
f (x, y) dx dy

In Exercises 35–40, find the volume of the solid bounded
above by the given function over the specified region �.
35. f (x, y) = 10 − 2x + y, with � the region from Exercise 21.
36. f (x, y) = 10 − 2x + y, with � the region from Exercise 22.

37. f (x, y) = √
4 − x 2 − y 2, with � the region from Exer-

cise 23.
38. f (x, y) = x 2y, with � the region from Exercise 25.

39. f (x, y) = sin x cos y, with � the region from Exercise 26.

40. f (x, y) = 1 − |x| − |y|, with � the region from Exercise 27.

Find the volumes of the solids described in Exercises 41–44.

41. The portion of the first octant bounded by the coordinate
planes and the plane 3x + 4y + 6z = 12.

42. The solid bounded above by the plane with equation
2x + 3y − z = 2 and bounded below by the triangle with
vertices (1, 0, 0), (4, 0, 0), and (0, 2, 0).

43. The solid bounded above by the paraboloid with equa-
tion z = 8 − x 2 − y 2 and bounded below by the rectangle
R = {(x, y) | 1 ≤ x ≤ 2 and 0 ≤ y ≤ 2} in the xy-plane.

44. The solid bounded above by the hyperboloid with equa-
tion z = x 2 − y 2 and bounded below by the square
with vertices (2, 2, −4), (2, −2, −4), (−2, −2, −4), and
(−2, 2, −4).

Evaluate the iterated integrals in Exercises 45–48 by revers-
ing the order of integration. Explain why it is easier to re-
verse the order of integration than evaluate the given iterated
integral.

45.
∫ 9

0

∫ 3

√
y

√
1 + x 3 dx dy 46.

∫ √
π

0

∫ √
π

x
cos( y 2) dy dx

47.
∫ √

3

0

∫ π/3

tan−1 x
sec y dy dx 48.

∫ 1

0

∫ cot−1 y

π/4
csc x dx dy
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In Exercises 49–58, sketch the region determined by the iter-
ated integral and then evaluate the integral. For some of these
integrals, it may be helpful to reverse the order of integration.

49.
∫ 3

0

∫ 2x−3

x+2
(x 2 + 3xy) dy dx

50.
∫ 3

0

∫ 2y−3

y+2
(x 2 + 3xy) dx dy

51.
∫ 9

4

∫ √
x

2
(x 3 + y 2) dy dx 52.

∫ 9

4

∫ √
y

2
(x 2 + 3xy) dx dy

53.
∫ π/4

0

∫ sec x

tan x
y dy dx 54.

∫ 1

0

∫ e x

−e x
sin (e x) dy dx

55.
∫ 1

0

∫ 1

y
e x 2

dx dy 56.
∫ π/4

0

∫ sec x

0
sec x dy dx

57.
∫ 3π/4

π/4

∫ csc y

0
csc y dx dy

58.
∫ 3

0

∫ √
9−y 2

0

√
9 − x 2 dx dy

In Exercises 59–62, evaluate the double integral over the spec-
ified region.

59.
∫∫

�
xe x 3

dA, where � is the triangular region with vertices
(0, 0), (2, 0), and (2, 2).

60.
∫∫

�
xe x 3

dA, where � is the triangular region in the first
quadrant bounded below by the x-axis, bounded above
by the line y = mx, where m > 0, and bounded on the
right by the line with equation x = 1.

61.
∫∫

�
x 2y 3 dA, where � is the region in the first quadrant

bounded by the graphs of the curves y = x 2 and x = y 2.
62.

∫∫
�

dA, where � is the region in the first quadrant
bounded by the graphs of the curves y = x m and y = x n,
where m and n are distinct positive integers.

Applications
63. Emmy oversees the operation of a sedimentation lagoon

that was built and lined using the natural contours of the
terrain. The bottom of the lagoon is the part of the surface

z = 1
10

|x| + 1
10

|y| − 3

that lies below the z = 0 plane, where all units are in
meters and z = 0 represents the water level. What is the
volume of the lagoon?

64. Leila is designing a new summer range management unit
for caribou in the Selkirk Mountains in the Idaho pan-
handle. The old unit was laid out as a rectangle, which
had nothing to do with the behavior of the caribou. The

new one is supposed to resemble the actual area in which
the caribou live. Leila has used a study which indicates
that the density of caribou in this region in July is ap-
proximated by d(x, y) = 0.08x 2y 2 − 0.456x 2y − 0.08x 2 −
0.328xy 2+1.87xy+0.328x−0.061y 2+0.347y+0.061. Her
proposed southern boundary for the management unit is
a mountain ridge that roughly follows the curve 0.0195x4,
while the northern border is a political boundary at

x
4

+4.

The western boundary is a state line on which she places
the y-axis. Roughly how many caribou can be found in
the management unit?

Proofs

65. Let f (x, y) be an integrable function on the rectangle R =
{(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}, and let α ∈ R. Use the
definition of the double integral to prove that∫∫

R
α f (x, y) dA = α

∫∫
R

f (x, y) dA.

66. Let f (x, y) and g(x, y) be integrable functions on the rect-
angle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}. Use the
definition of the double integral to prove that∫∫

R
( f (x, y) + g(x, y)) dA

=
∫∫

R
f (x, y) dA +

∫∫
R

g(x, y) dA.

67. Prove Theorem 13.10 (a). That is, show that if f (x, y) is an
integrable function on the general region � and c ∈ R,
then ∫∫

�

α f (x, y) dA = α

∫∫
�

f (x, y) dA.

68. Prove Theorem 13.10 (b). That is, show that if f (x, y) and
g(x, y) are integrable functions on the general region �,
then ∫∫

�

( f (x, y) + g(x, y)) dA

=
∫∫

�

f (x, y) dA +
∫∫

�

g(x, y) dA.

69. Let a, b, and c be positive real numbers. Prove that the
volume of the pyramid with vertices (0, 0, 0), (a, 0, 0),

(0, b, 0), and (0, 0, c) is
1
6

abc.

70. Let a and c be positive real numbers. Prove that the vol-
ume of the right-square pyramid with vertices (a, a, 0),

(−a, a, 0), (a, −a, 0), (−a, −a, 0), and (0, 0, c) is
4
3

a 2c. (Hint:

Use the result of Exercise 69.)
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Thinking Forward

� Three iterated integrals: Let [a 1, a 2], [b 1, b 2], and
[c 1, c 2] be three closed intervals. Explain why the triple
integral ∫ a 2

a 1

∫ b 2

b 1

∫ c 2

c 1

dz dy dx

computes the volume of the rectangular solid with
length a 2 − a 1, width b 2 − b 1, and height c 2 − c 1.

� Three more iterated integrals: Evaluate the triple integral

∫ 2

0

∫ −(3/2)x+3

0

∫ 4−2x−(4/3)y

0
dz dy dx,

and give a physical interpretation to the integral.

13.3 DOUBLE INTEGRALS IN POLAR COORDINATES

� Expressing a double integral with polar coordinates

� Finding areas of regions bounded by functions expressed with polar coordinates

� Finding volumes of solids bounded by functions expressed with polar coordinates

Polar Coordinates and Double Integrals

In Chapter 9 we saw that every point in the coordinate plane can be expressed with polar
coordinates (r, θ ), where θ , in radians, measures the counterclockwise rotation from the
positive x-axis and r measures the signed distance that the point is from the origin on the
line determined by θ . In Chapter 9 we allowed r and θ to be any real numbers. In this
section, where we discuss how to use polar coordinates to evaluate double integrals, we
will insist that r ≥ 0 and that θ be a real number in an interval of width 2π , typically
θ ∈ [0, 2π ] or θ ∈ [−π , π ].

In the first two sections of this chapter we discussed how to use rectangular coordinates
to integrate functions of two variables. Here, we extend this idea to functions and regions
that are more naturally expressed with polar coordinates. That is, we wish to find∫

R
f (r, θ ) dA,

where f is a function of r and θ and the region R is also expressed in terms of r and θ .
In Section 13.1 we began with a basic rectangular region, which we then partitioned into
subrectangles. Here we start with a polar “rectangle” defined by the inequalities

0 ≤ a ≤ r ≤ b and α ≤ θ ≤ β,

as shown in the following figure at the left:

A polar “rectangle” The subdivided rectangle

b

a

α
β

y

x

y

x

�θ

�r
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In the right-hand figure, we see the same region divided into “subrectangles.” We fol-
low a procedure analogous to that we used in Section 13.1. We assume that f (r, θ ) is a
function defined at every point of R . We will outline the steps required to find the volume
V of the solid bounded below by R and bounded above by the graph of f in a moment, but
first we need to understand how to compute the area of one of the subregions, shown in
the right-hand figure.

The areas of the “subrectangles” depend upon the values of �r and �θ . Consider the
annulus with inner radius rj−1 and outer radius of rj, as shown in the following figure at
the left:

The annulus with inner and outer radii rj−1 and rj A slice of the annulus

r j�1

rj

�θ

�r

The area of the annulus is given by

π (r 2
j − r 2

j−1) = π (rj + rj−1)(rj − rj−1) = 2π
rj + rj−1

2
�r.

Note that if we let r̂j = rj +rj−1

2
, then r̂j ∈ [rj−1, rj]. Thus, the area of the annulus is 2π r̂j�r.

The area of a “slice” of the annulus corresponding to an angular rotation of �θ will be

(2π r̂j�r)�θ

2π
= r̂j�r�θ.

We are now ready to approximate the volume V of the solid bounded below by R and above
by the graph of f :

� We subdivide the interval [a, b] into m equal subintervals, each of width �r = b−a
m

,
and we also let rj = a + j�r for 0 ≤ j ≤ m.

� Similarly, we subdivide the interval [α, β] into n equal subintervals, each of width
�θ = β−α

n
, and we let θ k = α + k�θ for 0 ≤ k ≤ n.

� The subdivisions we just created partition the polar rectangle into m × n polar rect-
angles, like the one shown earlier at the right.

� For each j = 1, 2, . . . , m and k = 1, 2, . . . , n, we select a point (r ∗
j , θ ∗

k ) in the sub-
rectangle R j k = {(r, θ ) | rj−1 ≤ r ∗

j ≤ rj and θk−1 ≤ θ ∗
k ≤ θk}.

y

x

�θ

�r

(rj
*, θk

*)
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One such point is shown in the preceding figure.

� The area of a subregion is given by r̂j�r�θ , where r̂j ∈ [rj−1, rj].
� The product f (r ∗

j , θ ∗
k )r̂j�r�θ approximates the volume of the solid bounded below

by the rectangle R j k and above by the graph of f .
� When we sum these approximate volumes over all of the subregions, we obtain an

approximation for the volume of V :

m∑
j=1

n∑
k=1

f (r ∗
j , θ ∗

k ) r̂j�r�θ.

The limit of this summation provides the iterated integral of the function on the polar region
R , namely, ∫ β

α

∫ b

a
f (r, θ )r dr dθ = lim

�→0

m∑
j=1

n∑
k=1

f (r ∗
j , θ ∗

k ) r̂j�r�θ ,

where � =
√

(�r)2 + (�θ )2.

We evaluate this type of iterated integral just as we evaluated iterated integrals ex-
pressed with rectangular coordinates. For example, we may prove that the volume of a
sphere with radius R is 4

3
πR3 by integrating the function f (x, y) = √

R2 − (x 2 + y 2) over
the polar rectangle R = {(r, θ ) | 0 ≤ r ≤ R and 0 ≤ θ ≤ 2π}. Before we integrate, however,
we must express f in polar coordinates. Recall that r 2 = x 2 + y 2. Therefore z = √

R2 − r 2.
The volume of the top hemisphere is given by the integral

∫ 2π

0

∫ R

0

√
R2 − r 2 r dr dθ.

The inner integral is evaluated as
∫ R

0

√
R2 − r 2 r dr =

[
− 1

3
(R2 − r 2)3/2

]R

0
= 1

3
R3.

We now evaluate the outer integral:
∫ 2π

0

1
3

R3 dθ =
[

1
3

R3θ
]2π

0
= 2

3
πR3.

Therefore the volume of the entire sphere is 4
3
πR3.

Double Integrals in Polar Coordinates over General Regions

We may also use polar coordinates to evaluate an iterated integral over a more general
region

� = {(r, θ ) | f 1(θ ) ≤ r ≤ f 2(θ ) and α ≤ θ ≤ β}.
For a polar function g(r, θ ) defined on the region �, we have

∫ β

α

∫ f 2(θ)

f 1(θ)
g(r, θ ) r dr dθ.

If g(r, θ ) ≥ 0 on �, then the iterated integral represents the volume of the solid bounded
above by the function g(r, θ ) over the region �. If g(r, θ ) takes on both positive and negative
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values on �, then the double integral represents the signed volume of the solid between
the graph of the function g(r, θ ) and the coordinate plane over the region �.

For example, consider the following figures:

x

y

z

4

2
2

y

x
2

�

To find the volume of the solid bounded below by the disk whose boundary is the circle
with equation r = 2 cos θ in the coordinate plane and bounded above by the paraboloid
z = 4 − x 2 − y 2, we evaluate the integral∫ π

0

∫ 2 cos θ

0
(4 − r 2) r dr dθ.

Note that:

� Our limits of integration for θ are 0 and π , because the entire circle is traced once
over this interval.

� Our limits of integration for r are 0 and 2 cos θ , since every “slice” emanating from
the origin has those boundaries, as we see in the right-hand figure.

� We have replaced x 2 + y 2 with r 2 to express the function with polar coordinates.
� If we had preferred, we could have used the expression

2
∫ π/2

0

∫ 2 cos θ

0
(4 − r 2) r dr dθ

to evaluate the volume, since both the circular region and the surface are symmetric
with respect to the xz-plane.

To evaluate either of the preceding integrals, we begin with the inner integration:∫ 2 cos θ

0
(4 − r 2) r dr =

[
2r 2 − 1

4
r 4
]2 cos θ

0
= 8 cos2 θ − 4 cos4 θ.

To finish the computation of the volume, we have∫ π

0
(8 cos2 θ − 4 cos4 θ ) dθ =

[
5
2
θ + 5

2
sin θ cos θ − sin θ cos3 θ

]π
0

= 5
2
π.

Every double integral expressed with rectangular coordinates may also be expressed
with polar coordinates. Recall that we may use the equations

x = r cos θ and y = r sin θ

to change from rectangular coordinates to polar coordinates. Therefore, the double integral∫∫
�

f (x, y) dA

may also be expressed as ∫∫
�

f (r cos θ , r sin θ ) r dr dθ.
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13.3 Double Integrals in Polar Coordinates 1021

The value of making this transformation depends upon the region � and the particular
function f we are trying to integrate. If � has a more “natural” expression in polar coor-
dinates, or if f has a simpler antiderivative in polar coordinates, the change to polar co-
ordinates may make the evaluation of the integral considerably easier. We look at such an
integral in Example 4.

Examples and Explorations

EXAMPLE 1 Finding the area bounded by a polar rose

Use a double integral to calculate the area bounded by the curve r = cos 4θ .

SOLUTION

As with all area computations, we must understand the region whose area we are trying
to compute. When we can, we will use the symmetry of the region to simplify our work. In
Chapter 9 we saw that the graph of an equation of the form r = cos nθ or r = sin nθ is a
polar rose when n > 1 is an integer. In addition, if n is even, the figure has 2n petals; if n is
odd, the figure has n petals. The graph of this curve is as follows:

y

x

To compute the area bounded by the curve, we will use the symmetry of the rose. Note
that we have shaded one of the eight petals of the rose. The values of θ for which the graph
passes through the origin correspond to the roots of cos 4θ (i.e., odd multiples of π/8).
A sample radial slice of each petal starts at the origin and ends on the curve. The shaded
region corresponds to the values of θ in the interval [−π/8, π/8]. The double integral whose
value is the area of the shaded region is

∫ π/8

−π/8

∫ cos 4θ

0
r dr dθ.

Evaluating the inner integral first, we obtain
∫ cos 4θ

0
r dr =

[
1
2

r 2
]cos 4θ

0
= 1

2
cos2 4θ.

Now, evaluating the outer integral, we have
∫ π/8

−π/8

1
2

cos2 4θ dθ =
[

1
4
θ + 1

16
sin 4θ cos 4θ

]π/8

−π/8
= π

16
.

Since the area of the shaded region is one-eighth of the region bounded by the polar rose,
the area bounded by the rose is π

2
square units. �
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EXAMPLE 2 Finding the area between two polar curves

Use a double integral to calculate the area of the region in the polar plane that is inside
both the circle r = 3 cos θ and the cardioid r = 1 + cos θ .

SOLUTION

By the symmetry of the graphs, half of the region whose area we wish to calculate is the
shaded portion of the following figure:

y

x
2 3

π

3

We will compute the area of the top half of the region and then multiply by 2. Solving the
equation 3 cos θ = 1 + cos θ , we see that the two curves intersect when θ = π

3
. In the

figure, we have drawn the ray θ = π

3
. The iterated integral that represents the area of the

portion of the shaded region for values of θ ≤ π

3
is

∫ π/3

0

∫ 1+cos θ

0
r dr dθ ,

and the iterated integral that represents the area of the portion of the shaded region for
π

3
≤ θ ≤ π

2
is ∫ π/2

π/3

∫ 3 cos θ

0
r dr dθ.

In Exercise 12 you will show that the values of these two integrals are 1
4
π + 9

16

√
3 and

3
8
π − 9

16

√
3, respectively. Therefore, the area of the shaded region is 5

8
π and the value of

the area we wish to compute is 5
4
π square units. �

EXAMPLE 3 Using a double integral to prove the area formula for the circle

Use a double integral to prove that the area of a circle with radius R is πR2.

SOLUTION

We will compute the area of the circle whose equation is r = R. The area is given by the
iterated integral ∫ 2π

0

∫ R

0
r dr dθ.

The inner integral is ∫ R

0
r dr =

[
1
2

r 2
]R

0
= 1

2
R2.
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We now evaluate the outer integral:

∫ 2π

0

1
2

R2 dθ =
[

1
2

R2θ
]2π

0
= πR2.

In Exercises 63 and 64 you will prove this result twice more by finding the area of the circles
with equations r = 2R cos θ and r = 2R sin θ . �

EXAMPLE 4 Changing an integral from rectangular to polar coordinates

Evaluate the integral
∫ 2

0

∫ √
16−x 2

√
3x

(x 2 + y 2) dy dx.

SOLUTION

We may try to evaluate the integral as it is written. To do this, we evaluate the inner integral
first:

∫ √
16−x 2

√
3x

(x 2 + y 2) dy =
[
x 2y + 1

3
y 3
]√16−x 2

√
3x

=
(

x 2
√

16 − x 2 + 1
3

(16 − x 2)3/2
)

−
(√

3x 3 + 1
3

3
√

3x 3
)

= x 2
√

16 − x 2 + 1
3

(16 − x 2)3/2 − 2
√

3x 3.

Now, to finish the problem, we would need to evaluate the integral

∫ 2

0

(
x 2
√

16 − x 2 + 1
3

(16 − x 2)3/2 − 2
√

3x 3
)

dx.

With diligence, we would use trigonometric substitution to find an antiderivative for the
integrand, but we present an alternative.

We may replace the original integrand x 2 + y 2 with its polar coordinate equivalent r 2.
We shall similarly see that the region described by the limits of the integral may be ex-
pressed with polar coordinates. These are two essential things to consider when you are de-
ciding between using rectangular and polar coordinates. The region in question is bounded
above by the graph of the function y = √

16 − x 2 and bounded below by the line whose
equation is y = √

3x, where x ∈ [0, 2]. Here is the region:

y

x
2

4
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This region is a sector of the circle r = 4, where π

3
≤ θ ≤ π

2
. We may now rewrite

the integral in terms of polar coordinates. Whenever we convert from rectangular to polar
coordinates, we must replace either dy dx or dx dy by r dr dθ . As we already mentioned, in
this example we replace x 2 + y 2 with r 2. The limits for the integration with respect to r
extend from 0 to 4, and the limits for θ extend from π

3
to π

2
. Therefore we have

∫ 2

0

∫ √
16−x 2

√
3x

(x 2 + y 2) dy dx =
∫ π/2

π/3

∫ 4

0
r 3 dr dθ.

We first evaluate the inner integral:∫ 4

0
r 3 dr =

[
1
4

r 4
]4

0
= 64.

We now finish by evaluating the outer integral:∫ π/2

π/3
64 dθ = [

64θ
]π/2
π/3 = 64

(
π

2
− π

3

)
= 32

3
π.

�

EXAMPLE 5 Using polar coordinates to compute a volume

Find the volume of the solid bounded above by the sphere x 2 + y 2 + z 2 = 8 and bounded
below by the cone with equation z = √

x 2 + y 2.

SOLUTION

The sphere and cone intersect along a circle. If we rewrite the equations in the forms z 2 =
8 − x 2 − y 2 and z 2 = x 2 + y 2 and equate the results, we see that x 2 + y 2 = 4. The disk
bounded by the circle defined by this equation is the region over which we need to integrate
the difference of the two functions. The graph that follows at the left shows the entire
hemisphere and cone, along with the disk in the xy-plane, over which we will integrate.
The open figure depicted at the right shows a quarter of the left-hand figure.

z

y
x

2
2

2

2

z

y

x

To find the volume of the solid, we will integrate the difference of the two functions
over the indicated circle in the xy-plane. In polar coordinates, the equations of the top
hemisphere and the cone are z = √

8 − r 2 and z = r, respectively. The equation of the circle
of intersection of the sphere and cone projected onto the xy-plane is r = 2. Therefore, the
iterated integral representing the volume is∫ 2π

0

∫ 2

0

(√
8 − r 2 − r

)
r dr dθ.

We now evaluate the iterated integral by first working on the inner integral:∫ 2

0

(
r
√

8 − r 2 − r 2 ) dr =
[
− 1

3
(8 − r 2 )3/2 − 1

3
r 3
]2

0
= 16

3

(√
2 − 1

)
.
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We next integrate the rightmost quantity with respect to θ over the interval [0, 2π]:∫ 2π

0

16
3

(
√

2 − 1) dθ = 32
3

π (
√

2 − 1).

This is the volume of the region we wished to find. �

CHECKING
THE ANSWER

The volume we were asked to find is the volume of the solid of revolution created when
the region in the first quadrant bounded above by the graph of y = √

8 − x 2 and below by
the line y = x is rotated about the y-axis, as we illustrate in the following figures:

y

x

1

2

1 2
y

x

z

We may evaluate the volume of this region using either the washer method or the shell
method, both of which we discussed in Chapter 6. Using the shell method, we have

2π

∫ 2

0
x
(√

8 − x 2 − x
)

dx.

You should check that the value of this integral is also 32
3

π (
√

2 − 1).

TEST YOUR? UNDERSTANDING
� How are polar coordinates used to express double integrals?

� What are the formulas needed to convert from rectangular to polar coordinates? What
are the formulas needed to convert from polar to rectangular coordinates?

� How are iterated integrals used to calculate areas between functions that are expressed
in polar coordinates? How can a single integral be used to express such areas?

� How are iterated integrals used to calculate the volumes bounded by functions that are
expressed in polar coordinates?

� How is an integral that is expressed in rectangular coordinates rewritten in terms of
polar coordinates? When would such rewriting be advantageous? When would it be
disadvantageous? How would an integral that is expressed in polar coordinates be ex-
pressed in terms of rectangular coordinates?

EXERCISES 13.3

Thinking Back

Each of the integral expressions that follow represents the area
of a region in the plane bounded by a function expressed in
polar coordinates. Use the ideas from this section and from
Chapter 9 to sketch the regions, and then evaluate each inte-
gral.

� 1
2

∫ π

0
cos2 3θ dθ

� 4
∫ π/4

0
cos2 2θ dθ

�
∫ 2π/3

0

(
1
2

+ cos θ

)2

dθ −
∫ 4π/3

π

(
1
2

+ cos θ

)2

dθ

� 1
2

∫ 5π/6

π/6
((3 sin θ )2 − (1 + sin θ )2) dθ
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: To approximate the area of the region in
the polar plane bounded by the function r = f (θ ) and
the rays θ = α and θ = β, we can use a sum of areas
of sectors of circles.

(b) True or False: Suppose we subdivide the interval of

angles θ ∈
[

π

4
,
π

2

]
into four equal subintervals. Then

�θ = π

16
.

(c) True or False: If f (θ ) ≥ 0 on the interval [α, β], then
the area of the region in the polar plane bounded by
the function r = f (θ ) and the rays θ = α and θ = β

is given by the iterated integral
∫ β

α

∫ f (θ )
0 dr dθ .

(d) True or False: If f (θ ) ≥ 0 on the interval [α, β], then
the volume of the solid bounded above by the
function g(r, θ ) = r 2, over the region in the polar
plane bounded by the function r = f (θ ) and the rays
θ = α and θ = β, is given by the iterated integral∫ β

α

∫ f (θ )
0 r 2 dr dθ .

(e) True or False: Since the graph of r = 2 cos 2θ is
a circle with radius 1, the value of the integral∫ 2π

0

∫ 2 cos θ

0 r dr dθ is π .

(f) True or False: The polar equation r = sin 4θ is traced
twice as θ varies from 0 to 2π .

(g) True or False:
∫ π

0

∫ 5

1
(x 3 + y 3)2 dy dx =

∫ π

0

∫ 5

1
(θ3 + r 3)2 dr dθ.

(h) True or False:

∫ 2

0

∫ √
4−x 2

0
(x 2 + y 2)3 dy dx =

∫ π/2

0

∫ 2

0
r 7 dr dθ.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An iterated integral that represents the area of a circle
with radius R express with polar coordinates.

(b) An iterated integral using polar coordinates that rep-
resents the volume of a sphere with radius R.

(c) An iterated integral in rectangular coordinates that
would be easier to evaluate by using polar coordinates.

3. Let α < β and a < b. In polar coordinates, a polar rectan-
gle is bounded by the two rays θ = α and θ = β and the
two circles r = a and r = b. Sketch a polar rectangle and
explain why this is the basic region for integration in the
polar coordinate plane.

4. When we use rectangular coordinates to approximate the
area of a region, we subdivide the region into vertical
strips and approximate the area by using a sum of areas
of rectangles. Explain why we use a wedge (i.e., a sector
of a circle), and not a rectangle, when we employ polar
coordinates to compute an area.

5. In this section we described a method for approximating
the volume bounded by a function f above a polar region
bounded by two rays θ = α and θ = β and between two
circles r = a and r = b. The method employed a “sub-
divide, approximate, and add” strategy that involved us-
ing some general notation. Draw a carefully labeled pic-
ture that illustrates the roles of �θ , θ ∗

k , �r, and r ∗
j for one

approximating region.
6. In Section 9.4 we showed that the area in the polar co-

ordinate plane bounded by the function r = f (θ ) on the

interval [α, β] is given by the integral
1
2

∫ β

α
( f (θ ))2 dθ . In

this section we discussed how to use the iterated integral∫ β

α

∫ f (θ )
0 r dr dθ to compute the same area. Explain why the

value of these two integrals is the same.

7. Let 0 < f 1(θ ) < f 2(θ ) on the interval [α, β]. What does

the integral
∫ β

α

∫ f2(θ )
f1(θ ) dr dθ represent in a rectangular θr-

coordinate system? What does the integral represent in a
polar coordinate system?

8. Why do we require that 0 ≤ β − α ≤ 2π when we are
trying to find the volume of a solid bounded above by the
graph of a function z = g(r, θ ), over a region bounded
by the polar functions r = f 1(θ ) and r = f 2(θ ), where
f 1(θ ) ≤ f 2(θ ) on the interval [α, β]? If 0 ≤ β − α ≤ 2π ,
does that condition ensure that the integral

∫ β

α

∫ f 2(θ )

f 1(θ )
g(r, θ ) r dr dθ

will represent the volume we want?

9. Consider the three-petaled polar rose defined by r =
cos 3θ . Explain why the iterated integral

∫ 2π

0

∫ cos 3θ

0 r dr dθ

calculates twice the area bounded by the petals of this
rose.

10. Explain how the symmetries of the graphs of polar func-
tions can be used to simplify area calculations.

11. Give a geometric explanation why

n
∫ 2π/n

0

∫ R

0
r dr dθ = πR2

for any positive real number R and any positive integer n.
Would the equation also hold for nonintegral values of n?

12. Complete Example 2 by showing that∫ π/3

0

∫ 1+cos θ

0
r dr dθ = 1

4
π + 9

16

√
3

and ∫ π/2

π/3

∫ 3 cos θ

0
r dr dθ = 3

8
π − 9

16

√
3.

In Exercises 13–20, we explore the relationship between the
shell method for finding volumes of solids of revolution dis-
cussed in Chapter 6 and the method of double integrals using
polar coordinates.

13. Sketch a function z = f (x) in the xz-plane such that f (x) ≥
0 on the interval [0, b]. Use the shell method to find an in-
tegral that represents the volume of the solid of revolution
obtained when the region bounded above by the graph
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of f and bounded below by the x-axis on the interval [0, b]
is rotated about the z-axis.

14. Explain why the function z = g(x, y) = f (
√

x 2 + y 2 ) is
the equation of the surface obtained when the graph of
f is rotated about the z-axis. Sketch the surface obtained
when your function from Exercise 13 is rotated about the
z-axis.

15. Use the techniques of Section 13.2 to obtain an iterated
integral that employs rectangular coordinates to repre-
sent the volume of the solid that is bounded above by the
graph of the function g from Exercise 14 and below by the
xy-plane over the circular disk x 2 + y 2 ≤ b2.

16. Use the techniques of this section to obtain an iterated
integral that employs polar coordinates to represent the
volume of the solid discussed in Exercise 15.

17. Show that the integrals from Exercises 13 and 16 evaluate
to the same quantity.

18. Let 0 < a < b. Use the shell method to find an integral
that represents the volume of the solid of revolution ob-
tained when the region bounded above by the graph of f
and bounded below by the x-axis on the interval [a, b] is
rotated about the z-axis.

19. Use the techniques of this section to obtain an iterated
integral that employs polar coordinates to represent the
volume of the solid bounded above by the graph of the
function g from Exercise 14 and below by the xy-plane
over the annulus a 2 ≤ x 2 + y 2 ≤ b2.

20. Show that the integrals from Exercises 18 and 19 evaluate
to the same quantity.

Skills

Each of the integrals or integral expressions in Exercises 21–28
represents the area of a region in the plane. Use polar coordi-
nates to sketch the region and evaluate the expressions.

21.
∫ 2π

0

∫ 1+sin θ

0
r dr dθ 22. 2

∫ π

0

∫ 1+cos θ

0
r dr dθ

23. 2
∫ π/2

−π/2

∫ 2−sin θ

0
r dr dθ 24. 2

∫ π/2

0

∫ sin θ

0
r dr dθ

25. 2
∫ π/2

0

∫ sin 3θ

0
r dr dθ 26.

∫ 2π

0

∫ 2+sin 4θ

0
r dr dθ

27. 2
∫ π/2

−π/4

∫ (
√

2/2)+sin θ

0
r dr dθ − 2

∫ −π/4

−π/2

∫ (
√

2/2)+sin θ

0
r dr dθ

28. 2
∫ 2π/3

0

∫ (1/2)+cos θ

0
r dr dθ − 2

∫ 4π/3

π

∫ (1/2)+cos θ

0
r dr dθ

In Exercises 29–38, find an iterated integral in polar coordi-
nates that represents the area of the given region in the polar
plane and then evaluate the integral.

29. The region enclosed by the spiral r = θ and the x-axis on
the interval 0 ≤ θ ≤ π .

30. The region inside one loop of the lemniscate r 2 = sin 2θ .

31. The region between the two loops of the limaçon r =
1 + √

2 cos θ .
32. The region between the two loops of the limaçon r =√

3 − 2 sin θ .

33. The region inside the cardioid r = 3 − 3 sin θ and outside
the cardioid r = 1 + sin θ .

34. The region where the two cardioids r = 3 − 3 sin θ and
r = 1 + sin θ overlap.

35. The region inside the circle x 2 + y 2 = 1 and to the right

of the vertical line x = 1
2

.

36. One loop of the curve r = 4 sin 3θ .

37. The region bounded by the limaçon r = 1+k sin θ , where
0 < k < 1. Explain why it makes sense for the area to
approach π as k → 0.

38. The graph of the polar equation r = sec θ − 2 cos θ is
called a strophoid. Graph the strophoid and find the area
bounded by the loop of the graph.

Each of the integrals or integral expressions in Exercises 39–46
represents the volume of a solid in R

3. Use polar coordinates
to describe the solid, and evaluate the expressions.

39. 2
∫ 2π

0

∫ 4

0
r
√

16 − r 2 dr dθ

40. 2
∫ 2π

0

∫ R

0
r
√

R2 − r 2 dr dθ

41.
∫ 2π

0

∫ 2

0
(4r − r 3) dr dθ

42.
∫ π

0

∫ R

0
(R2r − r 3) dr dθ

43.
∫ 2π

0

∫ 3

0
(6r − 2r 2) dr dθ

44. h
∫ 2π

0

∫ R
0

(
r − r2

R

)
dr dθ

45.
∫ 5π/4

−π/4

∫ (
√

2/2)+sin θ

0
r dr dθ

46. 2
∫ π/2

−π/4

∫ (
√

2/2)+sin θ

0
r dr dθ − 2

∫ −π/4

−π/2

∫ (
√

2/2)+sin θ

0
r dr dθ

In Exercises 47–56, use polar coordinates to find an iterated
integral that represents the volume of the solid described and
then find the volume of the solid.

47. The region enclosed by the paraboloids z = x 2 + y 2 and
z = 16 − x 2 − y 2.

48. The region enclosed by the paraboloids z = x 2 + y 2 and
z = R2 − x 2 − y 2.

49. The region between the cone with equation z = √
x 2 + y 2

and the unit sphere centered at the origin.
50. The region between the cone with equation z = √

x 2 + y 2

and the sphere centered at the origin and with radius R.
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51. The region bounded above by the unit sphere centered at

the origin and bounded below by the plane z = 3
5

.

52. The region bounded above by the unit sphere centered at
the origin and bounded below by the plane z = h where
0 ≤ h ≤ 1.

53. The region between two spheres with radius 1 if each
passes through the center of the other.

54. The region between two spheres with radius R if each
passes through the center of the other.

55. The region bounded below by the graph of the cone with
equation z = √

x 2 + y 2 and bounded above by the plane
z = h, where h > 0.

56. The region bounded below by the graph of the cone with
equation z = √

x 2 + y 2 and bounded above by the plane
z = 8 − x

2
.

Sketch the region of integration for each of integrals in Exer-
cises 57–60, and then evaluate the integral by converting to
polar coordinates.

57.
∫ 3

√
2/2

0

∫ √
9−x 2

x
dy dx

58.
∫ 1

0

∫ √
4−y 2

(
√

3/3)y

√
x 2 + y 2 dx dy

59.
∫ 4

0

∫ √
16−x 2

0
e x 2

e y 2
dy dx

60.
∫ 1

1/2

∫ √
1−x 2

−√
1−x 2

(
2 ln x + ln

(
1 +

( y
x

)2 ))
dy dx

Applications
61. Leila has been assigned the task of determining the risk

to elk herds from the wolf population in a certain region
of Idaho. She needs to find out the number of wolves near
two distinct elk herds, one centered at the origin and the
other 12 miles due north. She estimates the density of
wolves in the region as 0.08 wolf per square mile. How
many wolves would she expect to find within 12 miles of
both herds?

62. Emmy needs to determine the volume of a sedimentation
tank. The tank is circular with a radius of 75 feet as viewed
from above, with a small concrete island that contains
circulation and monitoring equipment in the center. The
island has a radius of 7 feet. The depth of the tank at any
distance r from the center is d(r) = 0.15 × 10−13r 8 − 15,
where the surface of the solution in the tank is at depth
zero. What is the volume of the tank?

Proofs

63. Use a double integral to prove that the area of the circle
with radius R and equation r = 2R cos θ is πR2.

64. Use a double integral to prove that the area of the circle
with radius R and equation r = 2R sin θ is πR2.

65. Use a double integral in polar coordinates to prove that

the volume of a sphere with radius R is
4
3
πR3.

66. Let h and R be positive real numbers. Explain why the re-
gion bounded above by the graph of the function f (x, y) =
h − h

R

√
x 2 + y 2 and below by the xy-plane is a cone with

height h and radius R. Use a double integral with polar co-

ordinates to prove that the volume of this cone is
1
3
πR2h.

67. Use a double integral with polar coordinates to prove that
the area of a sector with central angle φ in a circle of radius

R is given by A = 1
2
φR2.

68. Use a double integral with polar coordinates to prove that
the area enclosed by one petal of the polar rose r = cos 3θ

is the same as the area enclosed by one petal of the polar
rose r = sin 3θ .

69. Use a double integral with polar coordinates to prove
that the combined area enclosed by all of the petals of
the polar rose r = cos 2nθ is the same for every positive
integer n.

70. Use a double integral with polar coordinates to prove that
the combined area enclosed by all of the petals of the po-
lar rose r = sin(2n + 1)θ is the same for every positive
integer n.

Thinking Forward

� A triple integral using cylindrical coordinates: Show that
the triple integral

∫ 2π

0

∫ R

0

∫ h

0
r dz dr dθ = πR2h.

Explain why this integral gives the volume of a right
circular cylinder with radius R and height h.

� A triple integral using spherical coordinates: Evaluate the
triple integral

∫ π

0

∫ 2π

0

∫ R

0
ρ2 sin φ dρ dθ dφ.

Note that this integral gives the volume of a sphere
with radius R.
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13.4 APPLICATIONS OF DOUBLE INTEGRALS

� Using an iterated integral to find the mass of an object in the plane

� Finding the center of mass and centroid of a planar region

� Using double integrals to define the moment of inertia and the radius of gyration

The Mass of a Planar Region

In Section 6.4 we saw that the mass of a linear rod parallel to the x-axis with varying density
ρ(x) > 0 is given by the integral ∫ b

a
ρ(x) dx.

In the current section we first discuss how to find the mass of a region lying in the xy-plane
when the density is a function of both variables x and y. Recall that in Sections 13.1 and 13.2
we discussed a strategy for computing the volume of a solid bounded above by a positive
function f (x, y) over a rectangular region in the plane and over a more general region in R

2,
respectively. We employ the same strategy here to find the mass of an object in the plane
when the density of the object is given by the function ρ(x, y), where ρ(x, y) > 0 for every
point in the domain, as indicated in the following figure.

Region in the plane with variable density ρ(x, y)

ρ (x, y)

�

The technique of subdividing, approximating, and adding is precisely what is required here
to approximate the mass of a planar region whose density is given by ρ(x, y). Therefore, in
the limit, to find the exact value of the mass of such a region in the plane, we may use the
double integral

Mass =
∫∫

�

ρ(x, y) dA.

Depending upon the density function ρ and the region �, we may choose to evaluate
the double integral as either a type I or type II region, using rectangular coordinates, or
we may choose to use polar coordinates. For example, consider the triangular region �

with vertices (1, 1), (2, 0), and (2, 3). If the density at every point in � is proportional to
the distance the point is from the y-axis, then ρ(x, y) = kx, where k > 0 is a constant of
proportionality. It is somewhat easier to treat � as a type I region. The equations of the
boundary segments are shown in the following figure:

y

x
1 2

1

3

x � 2

y � 2x � 1

y � �x � 2

�
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Therefore, the integral ∫ 2

1

∫ 2x−1

−x+2
kx dy dx

represents the mass of the region. In Exercise 15 you will show that the value of this in-
tegral is 5

2
k. In Example 2, we discuss finding the mass of a region when the use of polar

coordinates provides a simpler computation.

The Center of Mass and First Moments

Consider a system of two point masses on the x-axis: mass m 1 at point x1 and mass m 2 at
point x 2. The center of mass, x, of this simple system may be found with the formula:

x = m 1 x1 + m 2 x 2

m 1 + m 2
.

For example, if a mass of 3 grams is located at x = 2 and a mass of 6 grams is located at
x = 5, the center of mass of this system is found at x = 3·2+6·5

3+6
= 4, as shown in the

following figure:

x
x � 4�2 5

3 grams 6 grams

This value conforms to our experience that the center of mass of the system should be
closer to the larger mass.

Similarly, for n point masses m 1, m 2, m 3, . . . , m n, at the x-coordinates x1, x 2,
x 3, · · · , x n, respectively, the center of mass of this system is given by

x = m 1 x1 + m 2 x 2 + · · · + m n x n

m 1 + m 2 + · · · + m n
=
∑n

k=1 m k x k∑n
k=1 m k

.

We may generalize this idea to point masses in two (or three) dimensions:

(x1, y1)

m1

(x2, y2)

m2

(x3, y3)

m3 (xn, yn)

mn

Thus, for point masses, m 1, m 2, m 3, . . . , m n, at the coordinate pairs (x1, y1), (x 2, y 2),
(x 3, y 3), . . . , (x n, y n), the center of mass of this system is given by the point ( x, y ), where

x =
∑n

k=1 m k x k∑n
k=1 m k

and y =
∑n

k=1 m ky k∑n
k=1 m k

.

Note that the computations for x and y are independent of each other; x depends only
on the masses and their x-coordinates and y depends only on the masses and their
y-coordinates.

We now turn our attention to finding the center of mass of a planar region with a density
function ρ(x, y). Such a region is called a lamina ( plural laminæ). We employ our usual
strategy of subdividing the region into small pieces, approximating the mass of each small
subregion by a single value of the density function over the subregion and then adding all
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those values. In this context, we may approximate the x- and y-coordinates of the center
of mass independently. The following figure provides a schematic:

A lamina �

(xk
*, yk

*)
ρ (xk

*, yk
*)

The approximate mass of each subregion is given by its (approximate) density ρ(x ∗
k , y ∗

k )
times its area �A. In the denominators that follow, we sum over all of the subregions. In
the numerators, we need the extra factors x ∗

k and y ∗
k , as we are trying to approximate x and

y, respectively. Thus, x and y may be approximated by

x ≈
∑n

k=1 x ∗
kρ(x ∗

k , y ∗
k )�A∑n

k=1 ρ(x ∗
k , y ∗

k )�A
and y ≈

∑n
k=1 y ∗

kρ(x ∗
k , y ∗

k )�A∑n
k=1 ρ(x ∗

k , y ∗
k )�A

.

In the limit, as the mesh of our grid goes to zero, we obtain the exact coordinates of x
and y:

x =
∫∫

�
x ρ(x, y) dA∫∫

�
ρ(x, y) dA

and y =
∫∫

�
y ρ(x, y) dA∫∫

�
ρ(x, y) dA

.

We use the integrals in the numerators in the following definition:

DEFINITION 13.12 First Moments About the x- and y-axes

Let � be a lamina in the xy-plane in which the density at each point is given by the
continuous function ρ(x, y).

(a) The first moment of the mass in � about the y-axis is

M y =
∫∫

�

x ρ(x, y) dA.

(b) The first moment of the mass in � about the x-axis is

M x =
∫∫

�

y ρ(x, y) dA.

Thus, if we let m = ∫∫
�

ρ(x, y) dA, then m is the mass of the lamina � and the coordinates
of the center of mass are

x = M y

m
and y = M x

m
.

The first moments are also known as the linear moments. Upon first glance, you
might think that there are errors in the definitions of the first moment. We see, for ex-
ample, that M y = ∫∫

�
x ρ(x, y) dA. To help remember this notation, recall that the factor x

in the integrand measures the distance from the y-axis—hence the designation M y. The
first moments M y and M x provide measures of the distribution of the mass with respect
to the y- and x-axes, respectively. It is possible to generalize these concepts to measure
the distributions about other vertical and horizontal lines. For example, to measure the
distribution of the mass about the vertical line x = x 0, we would evaluate the integral∫∫

�
(x − x 0) ρ(x, y) dA. We will not be using these more general moments in this text.
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Returning to our earlier example, we again consider the triangular region � with
vertices (1, 1), (2, 0), and (2, 3). Recall that the density at every point in � was proportional
to the point’s distance from the y-axis. At that time, we computed the mass of the lamina as

m =
∫ 2

1

∫ 2x−1

−x+2
kx dy dx = 5

2
k,

where k is a constant of proportionality. The integrals we need for the first moments
require only minor adjustments:

M y =
∫ 2

1

∫ 2x−1

−x+2
kx 2 dy dx = 17

4
k,

and

M x =
∫ 2

1

∫ 2x−1

−x+2
kxy dy dx = 27

8
k.

Therefore,

x = M y

m
= (17/4)k

(5/2)k
= 17

10
and y = M x

m
= (27/8)k

(5/2)k
= 27

20
.

Note that the center of mass, (17/20, 27/20), is located within the region �. When a region
is convex, the center of mass lies within the region. Physically, when the center of mass
lies within the region, the lamina may be balanced at that point.

When the density of a two-dimensional region � is constant, the center of mass is also
called the centroid of �. In Exercise 20, you will explain why the centroid relates only to
the geometry of the region and not to its mass.

Moments of Inertia

The moment of inertia of an object measures how difficult it is to change the angular mo-
mentum of the object. The moment of inertia of a spinning wheel is what makes it difficult
for the wheel to stop when it is rotating. The integrals required to calculate the moments
of inertia about the x- and y-axes are quite similar to those needed for the first moments.

DEFINITION 13.13 Moments of Inertia

Let � be a lamina in the xy-plane for which the density at each point is given by the
continuous function ρ(x, y).

(a) The moment of inertia about the y-axis of the lamina is

I y =
∫∫

�

x 2 ρ(x, y) dA.

(b) The moment of inertia about the x-axis of the lamina is

I x =
∫∫

�

y 2 ρ(x, y) dA.

(c) The moment of inertia about the origin of the lamina, also known as the polar
moment, is

Io =
∫∫

�

(x 2 + y 2) ρ(x, y) dA.
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The moments of inertia are also known as the second moments. We may use these
moments of inertia to compute the radius of gyration about the y-axis, the x-axis, and the
origin. If the lamina has mass m, these are

R y =
√

I y

m
, R x =

√
I x

m
, and R o =

√
Io

m
,

respectively. The radii of gyration are the radial distances at which the mass of the lamina
could be concentrated without changing its rotational inertia. We compute the moments
of inertia and radii of gyration for a region in Examples 4 and 5.

Probability Distributions

We’ve seen that when we integrate a density function ρ over a laminar region �, we obtain
the mass of the lamina. Similarly, if we know a population density over a planar region, we
may compute the population. We provide such a computation in Example 6. We may also
use an iterated integral to find the probability of an event when we know a joint proba-
bility distribution function. Recall that a continuous probability distribution function on
an interval [a, b] is a positive-valued function f defined on [a, b] such that

∫ b
a f (x) dx = 1.

A joint probability distribution function of two variables on a subset X ⊂ R
2 is a positive-

valued function f : X → [0, ∞) such that
∫∫

X f (x, y) dA = 1. To compute the probability of
an event Z ⊂ X, we evaluate the integral

∫∫
Z f (x, y) dA. Joint probability distribution func-

tions of more than two variables are defined in an analogous manner, but we shall not be
using them in this text.

Examples and Explorations

EXAMPLE 1 Finding the centroid of a triangular region

Find the centroid of the triangular region with vertices (1, 1), (2, 0), and (2, 3).

SOLUTION

This is the same triangular region we used earlier in the section, but here we assume that
the density ρ is constant:

y

x
1 2

1

3

x � 2

y � 2x � 1

y � �x � 2

�

Since ρ is constant, we may factor it out of the integral. In our computation for x we
have

x =
∫∫

�
x ρ dA∫∫

�
ρ dA

= ρ
∫∫

�
x dA

ρ
∫∫

�
dA

=
∫∫

�
x dA∫∫

�
dA

.
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Similarly, we would have

y =
∫∫

�
y dA∫∫

�
dA

.

The integrals in the rightmost denominators each evaluate to the area of �. For this ex-
ample, we may use either the indicated double integral or, since � is a triangle, the area
formula for triangles to compute the area of �. We cannot avoid setting up an iterated inte-
gral, however, because we need to evaluate the integrals in the numerators. Here we need
to evaluate the following three related integrals:

Area =
∫ 2

1

∫ 2x−1

−x+2
dy dx, M y =

∫ 2

1

∫ 2x−1

−x+2
x dy dx, and M x =

∫ 2

1

∫ 2x−1

−x+2
y dy dx.

These integrals evaluate to

Area = 3
2

, M y = 5
2

, and M x = 2.

Therefore, we have

x = M y

Area of �
= 5/2

3/2
= 5

3
and y = M x

Area of �
= 2

3/2
= 4

3
.

Thus, the centroid of the triangle is (5/3, 4/3). Note that this point is inside the triangle. As
we mentioned when we computed the center of mass in our earlier example, if a region �

is convex, the centroid must be located within �. �

EXAMPLE 2 Using polar coordinates to find a mass

Find the mass of the semicircular lamina whose boundary on the left is given by the line
x = 1 and on the right is given by (x − 1)2 + y 2 = 1 if the density at every point is pro-
portional to its distance from the origin.

SOLUTION

The lamina we have described is shown here:

y

x
21

π

4

�
π

4

Since the density is proportional to the distance from the origin, it may be expressed
easily in polar coordinates as a function of the radial distance r. That is, ρ(r) = kr, where
k > 0 is a constant of proportionality. The equation of the circle in polar coordinates is
r = 2 cos θ , and the vertical line x = 1 in polar coordinates is given by r = sec θ . Finally, we
use r dr dθ for our increment of area, dA. Therefore, the mass of the plate is given by

∫ π/4

−π/4

∫ 2 cos θ

sec θ

kr 2 dr dθ.
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To evaluate this iterated integral, we first evaluate the inner integral:∫ 2 cos θ

sec θ

kr 2 dr =
[

1
3

kr 3
]2 cos θ

sec θ
= 1

3
k(8 cos3 θ − sec3 θ ).

We may now use the techniques of Chapter 5 to evaluate the outer integral:∫ π/4

−π/4

1
3

k(8 cos3 θ − sec3 θ ) dθ = 1
9

k(17
√

2 + 3 ln(
√

2 − 1)).

You will show the details of this integration in Exercise 22. �

EXAMPLE 3 Using polar coordinates to find a center of mass

Find the center of mass of the semicircular lamina from Example 2.

SOLUTION

To start, we note that the y-coordinate of the center of mass is y = 0, since the region �

and the density function are symmetric with respect to the x-axis. Now, we have already
computed the mass of the plate, using the integral∫ π/4

−π/4

∫ 2 cos θ

sec θ

kr 2 dr dθ.

We still need to calculate M y, the first moment of the mass about the y-axis. For M y, all we
have to do is introduce x into the preceding integrand. Since we are using polar coordinates,
we will use the fact that x = r cos θ instead. Therefore,

M y =
∫ π/4

−π/4

∫ 2 cos θ

sec θ

kr 3 cos θ dr dθ = 1
60

k(157
√

2 + 15 ln(
√

2 − 1)).

You will show the details of this integration in Exercise 23. Thus, the x-coordinate of the
center of mass is given by

M y

mass
= x =

k
60

(157
√

2 + 15 ln(
√

2 − 1))

k
9

(17
√

2 + 3 ln(
√

2 − 1))
= 471

√
2 + 45 ln(

√
2 − 1)

340
√

2 + 60 ln(
√

2 − 1)
≈ 1.4638.

Again, as a quick check on the reasonableness of the answer, the point ( x, y ) ≈ (1.4638, 0)
is within the region �. �

CHECKING
THE ANSWER

In Example 3, we used the symmetry of the region � and the density function to claim that
y = 0. If we wish, we may evaluate an iterated integral to compute M x. Here, since the
variable of integration on the inner integral is r, we may factor the integral as follows:

M x =
∫ π/4

−π/4

∫ 2 cos θ

sec θ

kr 3 sin θ dr dθ =
(∫ π/4

−π/4
sin θ dθ

)(∫ 2 cos θ

sec θ

kr 3 dr
)

.

Now, since sine is an odd function and the interval [−π/4, π/4] is symmetric with respect
to the origin, it follows that

∫ π/4
−π/4 sin θ dθ = 0, and therefore M x and y are both zero, as

we reasoned before.

EXAMPLE 4 Finding the moments of inertia for a triangular region

Find the moments of inertia for the triangular lamina � in the xy-plane and with vertices
(1, 1), (2, 0), and (2, 3) if the density at every point in � is proportional to the distance the
point is from the y-axis.
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SOLUTION

This is the same region we used in previous examples. We have ρ(x, y) = k x, where k > 0
is a constant of proportionality. Earlier in the section we saw that

M y =
∫ 2

1

∫ 2x−1

−x+2
kx 2 dy dx and M x =

∫ 2

1

∫ 2x−1

−x+2
kxy dy dx.

The integrals we need for I y and I x require the extra factors x and y, respectively. In Exer-
cises 18 and 19 you will show that the values of these integrals are

I y =
∫ 2

1

∫ 2x−1

−x+2
kx 3 dy dx = 147

20
k and I x =

∫ 2

1

∫ 2x−1

−x+2
kxy 2 dy dx = 28

5
k.

From Definition 13.13, we see that Io = I y + I x. Here we have Io = 147
20

k + 28
5

k = 259
20

k. �

EXAMPLE 5 Finding the radii of gyration for a triangular region

Find the radii of gyration about the x-axis, y-axis, and origin for the triangular lamina �

with vertices (1, 1), (2, 0), and (2, 3) if the density at every point in � is proportional to the
the distance the point is from the y-axis.

SOLUTION

In Example 4 we computed the moments of inertia for this region, and earlier in this section
we saw that the mass of � is m = 5

2
k. The radii of gyration with respect to the y-axis, x-axis,

and origin are, respectively,

R y =
√

I y

m
=
√

(147/20)k
(5/2)k

=
√

147
50

, R x =
√

I x

m
=
√

(28/5)k
(5/2)k

=
√

56
5

, and

R o =
√

Io

m
=
√

(259/20)k
(5/2)k

=
√

259
50

.

�

EXAMPLE 6 Determining a population from a population density

A biologist is culturing a population of bacteria in a circular petri dish with a radius of
5 centimeters. She introduces bacteria into the dish and incubates the dish for 24 hours.
At the end of that time she estimates that the colony of bacteria in the dish contains 100
bacteria per square centimeter at the center of the dish, with the population decreasing
linearly to the edge of the dish. She estimates the population density to be 10 bacteria per
square centimeter at the edge. Approximately how many bacteria are in the dish?

SOLUTION

This problem is nearly identical to those in which we were given a (mass) density function
ρ for a laminar region �. To find the total mass, we used an iterated integral to integrate
the density function ρ over the region �. We will do the same here to find the population
of bacteria. We start by imposing a polar coordinate system on the circular petri dish, with
the center of the dish at the origin. Since there are 100 bacteria per square centimeter at the
origin and the density decreases linearly to 10 bacteria per square centimeter at the edge
of the dish, the function ρ(r, θ ) = 100 − 18r gives us the population density at every point
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in the petri dish for r ∈ [0, 5]. Therefore, the population of bacteria in the dish is given by
the iterated integral ∫ 2π

0

∫ 5

0
(100 − 18r) r dr dθ.

The value of this integral is 1000π ≈ 3100 bacteria. Note that we have rounded our answer,
since the biologist clearly approximated her values for the two population densities. �

TEST YOUR? UNDERSTANDING
� Given a system of point masses in the plane, how is the center of mass of the system

computed? How is this idea used to find the center of mass of a lamina � whose density
function is ρ(x, y)?

� What is the centroid of a region �? What is the relationship between the centroid of a
region and its center of mass? Why is the centroid of � independent of the mass of �?

� How is the moment of inertia of a region � with respect to the x- and y-axes defined?
How are these definitions related to the definitions of the first moments of � with
respect to the x- and y-axes? What is meant by the polar moment?

� How are the radii of gyration with respect to the x- and y-axes, R x, and R y defined for
a region �? What integrals need to be computed to find R x and R y?

� How are the integrals for masses, first moments, and moments of inertia related? Which
of the three integrals is easiest to step up? Given one of these integrals, how would you
modify it to set up the other integrals? When would rectangular coordinates be easier
to use for these integrals? When would polar coordinates be easier to use?

EXERCISES 13.4

Thinking Back

� Mass of a rod: Suppose a thin rod with a radius of 1
centimeter and a length of 20 centimeters has a vary-
ing density such that the density of the rod x cen-
timeters from the left end is given by the function
ρ(x) = 10 + 0.01x 2 grams per cubic centimeter. Find
the mass of the rod.

� More questions about the rod: How far from the left end
of the rod is the center of mass in the previous prob-
lem? How far from the left end of the rod is the mo-
ment of inertia? How far from the left end of the rod
is the radius of gyration?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The center of mass of a lamina, �, in the
xy-plane is a point in �.

(b) True or False: The centroid of a region, �, in the
xy-plane is a point in �.

(c) True or False: The center of mass of a circular region
is the center of the circle for every density function
ρ(x, y).

(d) True or False: The centroid of a circular region is the
center of the circle.

(e) True or False: The first moment of the mass in a lamina
� about the x-axis is given by M x = ∫∫

�
x ρ(x, y) dA,

where ρ(x, y) is the lamina’s density function.
(f) True or False: If M x and I x are the first and second mo-

ments, respectively, for a lamina in the xy-plane, then
xM x = I x.

(g) True or False: If I x, I y, and Io are the moments of in-
ertia of a lamina about the x-axis, y-axis, and origin,
respectively, then Io = I x + I y.

(h) True or False: If m is the mass of a lamina, I y is the mo-
ment of inertia of the lamina about the y-axis, and
R y is the radius of gyration about the y-axis, then

R 2
y = I y/m.
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2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A lamina � in the xy-plane and a density function
ρ(x, y) such that the center of mass of � and the cen-
troid of � are the same.

(b) A lamina � in the xy-plane and a non-constant den-
sity function ρ(x, y) such that the center of mass of �

and the centroid of � are the same.
(c) A lamina � in the xy-plane such that the center of

mass is not in �.
Identify the quantities determined by the integral expressions
in Exercises 3–11. If x and y are both measured in centimeters
and ρ(x, y) is a density function in grams per square centime-
ter, give the units of the expression.

3.
∫∫

�

dA

4.
∫∫

�

x dA and
∫∫

�

y dA

5.

∫∫
�

x dA∫∫
�

dA
and

∫∫
�

y dA∫∫
�

dA

6.
∫∫

�

ρ(x, y) dA

7.
∫∫

�

x ρ(x, y) dA and
∫∫

�

y ρ(x, y) dA

8.

∫∫
�

x ρ(x, y) dA∫∫
�

ρ(x, y) dA
and

∫∫
�

y ρ(x, y) dA∫∫
�

ρ(x, y) dA

9.
∫∫

�

x 2ρ(x, y) dA and
∫∫

�

y 2ρ(x, y) dA

10.
∫∫

�

(x 2 + y 2)ρ(x, y) dA

11.

√∫∫
�

x 2 ρ(x, y) dA∫∫
�

ρ(x, y) dA
and

√∫∫
�

y 2 ρ(x, y) dA∫∫
�

ρ(x, y) dA

Throughout this section we computed several integrals relat-
ing to the triangular region � with vertices (1, 1), (2, 0), and
(2, 3). In Exercises 12–19 you are asked to provide the details
of those computations.

12. Show that the area of � is
3
2

by using the area formula for
triangles and by evaluating the integral

∫ 2

1

∫ 2x−1

−x+2
dy dx.

13. Show that when the density of the region is constant, the
first moment about the y-axis is

M y =
∫ 2

1

∫ 2x−1

−x+2
x dy dx = 5

2
.

14. Show that when the density of the region is constant, the
first moment about the x-axis is

M x =
∫ 2

1

∫ 2x−1

−x+2
y dy dx = 2.

15. Show that when the density of the region is proportional
to the distance from the y-axis, the mass of � is given by

∫ 2

1

∫ 2x−1

−x+2
kx dy dx = 5

2
k.

16. Show that when the density of the region is proportional
to the distance from the y-axis, the first moment about
the y-axis is

M y =
∫ 2

1

∫ 2x−1

−x+2
kx 2 dy dx = 17

4
k.

17. Show that when the density of the region is proportional
to the distance from the y-axis, the first moment about
the x-axis is

M x =
∫ 2

1

∫ 2x−1

−x+2
kxy dy dx = 27

8
k.

18. Show that when the density of the region is proportional
to the distance from the y-axis, the moment of inertia
about the y-axis is

I y =
∫ 2

1

∫ 2x−1

−x+2
kx 3 dy dx = 147

20
k.

19. Show that when the density of the region is proportional
to the distance from the y-axis, the first moment about
the x-axis is

I x =
∫ 2

1

∫ 2x−1

−x+2
kxy 2 dy dx = 28

5
k.

20. Explain why the location of the centroid relates only to
the geometry of the region and not its mass.

21. Find the moments of inertia about the x- and y-axes for
the semicircular lamina described in Example 2. Assume
that the density at every point is proportional to the dis-
tance of the point from the origin.

22. Complete Example 2 by showing that

∫ π/4

−π/4

k
3

(8 cos3 θ − sec3 θ ) dθ

= k
9

(17
√

2 + 3 ln(
√

2 − 1)).

23. Complete Example 3 by showing that

∫ π/4

−π/4

∫ 2 cos θ

sec θ

kr 3 cos θ dr dθ

= k
60

(157
√

2 + 15 ln(
√

2 − 1)).
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Skills

In Exercises 24–30, let T be the triangular region with vertices
(0, 0), (1, 1), and (1, −1).

24. Find the centroid of T .

25. If the density at each point in T is proportional to the
point’s distance from the y-axis, find the mass of T .

26. If the density at each point in T is proportional to the
point’s distance from the y-axis, find the center of mass
of T .

27. If the density at each point in T is proportional to the
point’s distance from the y-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of T about the x- and y-axes.

28. If the density at each point in T is proportional to the
point’s distance from the x-axis, find the mass of T .

29. If the density at each point in T is proportional to the
point’s distance from the x-axis, find the center of mass
of T .

30. If the density at each point in T is proportional to the
point’s distance from the x-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of T about the x- and y-axes.

In Exercises 31–37, let T2 be the triangular region with ver-
tices (1, 0), (2, 1), and (2, −1). Note that T2 is a translation of
the triangle we used in Exercises 24–30.

31. Find the centroid of T2.
32. If the density at each point in T2 is proportional to the

point’s distance from the y-axis, find the mass of T2.

33. If the density at each point in T2 is proportional to the
point’s distance from the y-axis, find the center of mass
of T2.

34. If the density at each point in T2 is proportional to the
point’s distance from the y-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of T2 about the x- and y-axes.

35. If the density at each point in T2 is proportional to the
square of the point’s distance from the y-axis, find the
mass of T2.

36. If the density at each point in T2 is proportional to the
square of the point’s distance from the y-axis, find the
center of mass of T2.

37. If the density at each point in T2 is proportional to the
square of the point’s distance from the y-axis, find the
moments of inertia about the x- and y-axes. Use these
answers to find the radii of gyration of T2 about the
x- and y-axes.

In Exercises 38–44, let R be the rectangular region with ver-
tices (0, 0), (b, 0), (0, h), and (b, h).

38. Find the centroid of R .

39. If the density at each point in R is proportional to the
point’s distance from the y-axis, find the mass of R .

40. If the density at each point in R is proportional to the
point’s distance from the y-axis, find the center of mass
of R .

41. If the density at each point in R is proportional to the
point’s distance from the y-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of R about the x- and y-axes.

42. If the density at each point in R is proportional to the
square of the point’s distance from the y-axis, find the
mass of R .

43. If the density at each point in R is proportional to the
square of the point’s distance from the y-axis, find the
center of mass of R .

44. If the density at each point in R is proportional to the
square of the point’s distance from the y-axis, find the
moments of inertia about the x- and y-axes. Use these
answers to find the radii of gyration of R about the x- and
y-axes.

In Exercises 45–51, let C = {(x, y) | x 2 + y 2 ≤ 1}.
45. Find the centroid of C.
46. If the density at each point in C is proportional to the

point’s distance from the y-axis, find the mass of C.

47. If the density at each point in C is proportional to the
point’s distance from the y-axis, find the center of mass
of C.

48. If the density at each point in C is proportional to the
point’s distance from the y-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of C about the x- and y-axes.

49. If the density at each point in C is proportional to the
point’s distance from the origin, find the mass of C.

50. If the density at each point in C is proportional to the
point’s distance from the origin, find the center of mass
of C.

51. If the density at each point in C is proportional to the
point’s distance from the origin, find the moments of in-
ertia about the x-axis, the y-axis, and the origin. Use these
answers to find the radii of gyration of C about the x-axis,
the y-axis, and the origin.

In Exercises 52–58, let S = {(x, y) | x 2 + y 2 ≤ 1 and x ≥ 0}.
52. Find the centroid of S.

53. If the density at each point in S is proportional to
the point’s distance from the y-axis, find the mass
of S.

54. If the density at each point in S is proportional to the
point’s distance from the y-axis, find the center of mass
of S.

55. If the density at each point in S is proportional to the
point’s distance from the y-axis, find the moments of in-
ertia about the x- and y-axes. Use these answers to find
the radii of gyration of S about the x- and y-axes.

56. If the density at each point in S is proportional to the
point’s distance from the origin, find the mass of S.

57. If the density at each point in S is proportional to the
point’s distance from the origin, find the center of mass
of S.
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58. If the density at each point in S is proportional to the
point’s distance from the origin, find the moments of in-
ertia about the x-axis, the y-axis, and the origin. Use these
answers to find the radii of gyration of S about the x-axis,
the y-axis, and the origin.

59. Let � be a lamina in the xy-plane. Suppose � is com-
posed of two non-overlapping laminæ � 1 and � 2, as
follows:

(x2, y2)� �

(x1, y1)� �
�

�1

�2

Show that if the masses and centers of masses of � 1 and
� 2 are m 1 and m 2, and ( x 1, y 1) and ( x 2, y 2), respectively,
then the center of mass of � is ( x, y ), where

x = m 1 x 1 + m 2 x 2

m 1 + m 2
and y = m 1 y 1 + m 2 y 2

m 1 + m 2
.

60. Let � be a lamina in the xy-plane. Suppose � is com-
posed of n non-overlapping laminæ � 1, � 2, . . . , �n.
Show that if the masses of these laminæ are m 1, m 2, . . . ,
m n and the centers of masses are ( x 1, y 1), ( x 2, y 2), . . . ,
( x n, y n), then the center of mass of � is ( x, y ), where

x =
∑n

k=1 m k x k∑n
k=1 m k

and y =
∑n

k=1 m k y k∑n
k=1 m k

.

Use the results of Exercises 59 and 60 to find the centers of
masses of the laminæ in Exercises 61–67.

61. In the following lamina, all angles are right angles and the
density is constant:

y

x
2

1

2

1

62. Use the lamina from Exercise 61, but assume that the den-
sity is proportional to the distance from the x-axis.

63. In the following lamina, all angles are right angles and the
density is constant:

y

x
b2

h1

h2

b1

64. In the following lamina, all angles are right angles and the
density is constant:

y

x
1 3

4

6

�3 �1

65. Use the lamina from Exercise 64, but assume that the den-
sity is proportional to the distance from the x-axis.

66. The lamina in the figure that follows is bounded above by
the lines with equations y = x + 2a and y = −x + 2a
and below by the x-axis on the interval −a ≤ x ≤ a. The
density of the lamina is constant.

y

x
a

2a

�a

67. Use the lamina from Exercise 66, but assume that the den-
sity is proportional to the distance from the x-axis.

Applications
68. Leila has been required to track down a grizzly that at-

tacked a person. The bear once had a radio collar, but
has lost it. From the old data, Leila knows that the bear’s
range is roughly a region bounded by the x-axis, the
y-axis, and the line y = 4.3 − 0.8x. The bear is equally
likely to be found in any part of that region. The proba-
bility density function for the bear’s location is f (x, y) =

0.0873. There is a trail that lies roughly along the y-axis.
How far must Leila’s team bushwhack from the trail in
order for her team to have a 50% chance of finding the
bear on the first day of the search?

69. In Exercise 68, what is the expected distance from the road
at which the bear is likely to be found? (Hint: Compute the
first moment in the x-direction for the distribution.)
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Proofs

Recall that a median of a triangle is a segment connecting a
vertex of a triangle to the midpoint of the opposite side. Let
T be the triangle with vertices (0, 0), (a, 0), and (c, d). In Exer-
cises 70–72, prove the given statements.

70. The medians of triangle T are concurrent; that is, all three
medians intersect at the same point, P.

71. Use the integral definition for the centroid to show that
the centroid of T is point P from Exercise 70.

72. Prove that the centroid of triangle T is two-thirds of the
way from each vertex to the opposite side.

73. Prove that the centroid of a circle is the center of the circle.
74. Recall that an annulus is the region between two concen-

tric circles. Prove that the centroid of an annulus is the
common center of the two circles.

Thinking Forward

� A triple iterated integral: Let α, β, γ , δ, ε, and ζ be real
numbers. Evaluate the triple iterated integral

∫ β

α

∫ δ

γ

∫ ζ

ε

dz dy dx.

What does this integral represent?

� A triple iterated integral of a density function: Let α, β,
γ , δ, ε, and ζ be real numbers, and let ρ(x, y, z) be a
function giving the density at each point of a three-
dimensional rectangular solid. What does the triple in-
tegral ∫ β

α

∫ δ

γ

∫ ζ

ε

ρ(x, y, z) dz dy dx.

represent?

13.5 TRIPLE INTEGRALS

� Generalizing integration to functions of three variables

� Computing triple integrals defined on rectangular solids and on more general regions

� Computing mass, center of mass, and moments of inertia of three-dimensional solids

Triple Integrals over Rectangular Solids

In Section 13.1 we defined the double integral of a function of two variables over a rect-
angular region in the plane. We will be building upon Definition 13.4 to define the triple
integral of a function of three variables over a region in R

3 that is a rectangular solid, such
as the following one:

z

y
x

Later in this section we will extend our definition to more general regions in R
3. We

will define the triple integral in terms of the limit of a Riemann sum, just as we did for the
double integral. Rather than belabor the details, we quickly outline the steps needed to
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define a triple integral. If you have questions, then you should reread Section 13.1, which
discusses the steps more completely for double integrals. We start with Riemann sums for
a function of three variables.

DEFINITION 13.14 Riemann Sums for a Function of Three Variables

Let a 1 < a 2, b 1 < b 2, and c 1 < c 2 be real numbers, let R be the rectangular solid defined
by

R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2},
and let f (x, y, z) be a function defined on R . The sum

l∑
i=1

m∑
j=1

n∑
k=1

f (x ∗
i , y ∗

j , z ∗
k )�V

is a Riemann Sum for f on R , where

�x = a 2 − a 1

l
, �y = b 2 − b 1

m
, �z = c 2 − c 1

n
, �V = �x�y�z,

x i = a 1 + i�x for 0 ≤ i ≤ l, yj = b 1 + j�y for 0 ≤ j ≤ m, zk = c 1 + k�z for 0 ≤ k ≤ n,

and x ∗
i ∈ [x i−1, x i], y ∗

j ∈ [ yj−1, yj], z ∗
k ∈ [z k−1, z k].

Note that the nested summations in Definition 13.14 may be done in any of 3! = 6 orders.
The order we give in the definition is just one of those six, and we could have used any of
the other five instead.

We now define � to be the length of the space diagonal of each rectangular solid. That
is,

� =
√

(�x)2 + (�y)2 + (�z)2.

When we take the limit � → 0, this ensures that l → ∞, m → ∞, and n → ∞ simultane-
ously. We use the limit of the Riemann sum as � → 0 to define the triple integral, provided
that the limit exists.

DEFINITION 13.15 Triple Integrals

Let a 1 < a 2, b 1 < b 2, and c 1 < c 2 be real numbers, let R be the rectangular solid
defined by

R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2},
and let f (x, y, z) be a function defined on R . Provided that the limit exists, the triple
integral of f over R is

∫∫∫
R

f (x, y, z) dV = lim
�→0

l∑
i=1

m∑
j=1

n∑
k=1

f (x ∗
i , y ∗

j , z ∗
k )�V ,

where the triple sum in the equation is a Riemann sum as outlined in Definition 13.14,
and where � = √

(�x)2 + (�y)2 + (�z)2. When the triple integral exists on R , the func-
tion f is said to be integrable on R .

Note that as � → 0, the increment of volume �V → 0 as well. The summations in Defini-
tion 13.15 can be ordered in five other ways to obtain the same value for the triple integral.
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At this point you may be wondering what the value of a particular triple integral rep-
resents about the function f (x, y, z). As we have seen before, the answer depends upon the
context. For example, if f is the constant function f (x, y, z) = 1, the triple integral

∫∫∫
R dV

would be a complicated way to compute the volume of the rectangular solid R . If this were
the only application of triple integration, we would not be bothering with the concept.
However, recall that in Section 13.4 we showed that the double integral

∫ b
a

∫ d
c ρ(x, y) dy dx

gives the mass of the laminar rectangle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d} if ρ(x, y)
is the density function for the lamina. Similarly, if ρ(x, y, z) ≥ 0 is a density function of a
rectangular solid R , the triple integral

∫∫∫
R ρ(x, y, z) dV gives the mass of the solid. Later

in this section we will see how to use triple integrals to find the center of mass and mo-
ments of inertia for three-dimensional regions also. These will be our primary applications
of triple integration.

Iterated Integrals and Fubini’s Theorem

As we saw in Section 13.1, it is usually simpler to evaluate a double integral by using an
iterated integral rather than the definition. The situation here is similar.

DEFINITION 13.16 Iterated Triple Integrals

Let a 1, a 2, b 1, b 2, c 1, and c 2 be real numbers. The iterated triple integral is
∫ a 2

a 1

∫ b 2

b 1

∫ c 2

c 1

f (x, y, z) dz dy dx =
∫ a 2

a 1

(∫ b 2

b 1

(∫ c 2

c 1

f (x, y, z) dz
)

dy
)

dx.

Again, there are five other orderings we could use to construct an iterated triple integral.
For example,

∫ b 2

b 1

∫ c 2

c 1

∫ a 2

a 1

f (x, y, z) dx dz dy =
∫ b 2

b 1

(∫ c 2

c 1

(∫ a 2

a 1

f (x, y, z) dx
)

dz
)

dy.

For a region that is a rectangular solid, the different orderings for the integrals usually do
not significantly change the level of difficulty in a problem. The ordering shown in Defini-
tion 13.16 is the one we will try first in most problems.

We have a version of Fubini’s theorem that tells us that we may use an iterated triple
integral, rather than the definition of the triple integral, to evaluate a triple integral.

THEOREM 13.17 Fubini’s Theorem for Triple Integrals

Let a 1, a 2, b 1, b 2, c 1, and c 2 be real numbers, and let R be the rectangular solid
defined by

R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2}.
If f (x, y, z) is continuous on R , then

∫∫∫
R

f (x, y, z) dV =
∫ a 2

a 1

∫ b 2

b 1

∫ c 2

c 1

f (x, y, z) dz dy dx

and is also equal to any of the other five possible orderings for the iterated triple integral.
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The proof of this version of Fubini’s theorem is again beyond the scope of the text, but here
is an example illustrating how it is used: Let

R = {(x, y, z) | 1 ≤ x ≤ 3, 2 ≤ y ≤ 6, and 4 ≤ z ≤ 7}.
Assume that the density at each point of R is proportional to the distance of the point from
the xy-plane. That is, ρ(x, y, z) = kz, where k is a constant of proportionality. We may use
Theorem 13.17 to find the mass of R . The mass of the solid is given by∫∫∫

R
kz dV =

∫ 3

1

∫ 6

2

∫ 7

4
kz dz dy dx.

Here we have∫∫∫
R

kz dV =
∫ 3

1

∫ 6

2

∫ 7

4
kz dz dy dx ← Fubini’s theorem

=
∫ 3

1

(∫ 6

2

(∫ 7

4
kz dz

)
dy
)

dx ← evaluation procedure for the iterated
integral

=
∫ 3

1

(∫ 6

2

[
1
2

kz 2
]z=7

z=4
dy
)

dx ← the Fundamental Theorem of
Calculus

=
∫ 3

1

(∫ 6

2

(
1
2

k(49 − 16)
)

dy
)

dx ← evaluation of the innermost
antiderivative

=
∫ 3

1

[
33
2

ky
]y=6

y=2
dx =

∫ 3

1
66k dx ← evaluation of the next integral

= [
66k x

]x=3
x=1 = 132k. ← evaluation of the outer integral

If we had used any of the five other orders of integration to evaluate the triple integral, we
would have obtained the same result.

Triple Integrals over General Regions

We now expand our definition of the triple integral to allow us to compute a triple integral
over more general regions. The general regions we will use are of three types. First, consider
a region � xy in the xy-plane and two functions z = g 1(x, y) and z = g 2(x, y) defined on
� xy such that g 1(x, y) ≤ g 2(x, y) for every point in � xy. We define the three-dimensional
region � to be the set

� = {(x, y, z) | g 1(x, y) ≤ z ≤ g 2(x, y) for (x, y) ∈ � xy}.
For example, in the following figure, � xy is the circle in the xy-plane, with radius 2, and
centered at the origin, and the solid shown is bounded below by the plane with equation
g 1(x, y) = 1

2
x − 1

2
y − 2 and is bounded above by the paraboloid with equation g 2(x, y) =

4 − x 2 − y 2:

y

z

x
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The other two types of regions we will be using are defined in a similar manner. In
one, we start with a region � xz in the xz-plane and consider two functions y = h 1(x, z) and
y = h 2(x, z) such that h 1(x, z) ≤ h 2(x, z) for every (x, z) ∈ � xz. In the other, we start with a
region � yz in the yz-plane and consider two functions x = k1( y, z) and x = k 2( y, z) such
that k1( y, z) ≤ k 2( y, z) for every ( y, z) ∈ � yz.

DEFINITION 13.18 Triple Integrals over General Regions

Let � be a general region in R
3 of one of the three types just described, and let

R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2}
be a rectangular solid containing �. We define the triple integral of f over � to be∫∫∫

�

f (x, y, z) dV =
∫∫∫

R
F(x, y, z) dV ,

where

F(x, y, z) =
{

f (x, y, z), if (x, y, z) ∈ �

0, if (x, y, z) �∈ �

provided that the triple integral
∫∫∫

R
F(x, y, z) dV exists.

We will use Fubini’s theorem to evaluate triple integrals on such general regions. To
use Fubini’s theorem in this context, when we wish to integrate the function f (x, y, z) over
a region � bounded below by g 1(x, y) and above by g 2(x, y) over a region � xy in the xy-
plane, we evaluate ∫∫∫

�

f (x, y, z) dV =
∫∫

� xy

∫ g 2(x,y)

g 1(x,y)
f (x, y, z) dz dA.

Once we have evaluated the inner integral
∫ g 2(x,y)

g 1(x,y) f (x, y, z) dz, we evaluate the remaining
double integral, using the techniques we discussed in Sections 13.2 and 13.3, depending
upon the particular integral we are facing. We evaluate integrals over the other general
regions in an analogous manner.

For example, to evaluate the triple integral of the function f (x, y, z) = 5x − 3y over the
tetrahedral region � bounded by the coordinate planes and the plane containing the points
(2, 0, 0), (0, 3, 0), and (0, 0, 6), we first try to visualize �. The region, which lies in the first
octant, is shown here at the left:

x
y

6

z

32

3

2

y

x

3
2y � ��x � 3

�

Because this region is relatively simple, we may consider it as belonging to any of the
three general types we outlined earlier. We will consider it to be of the first type. The
equation of the plane containing the three specified points as a function of x and y is
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g 2(x, y) = −3x − 2y + 6. Since � is bounded below by the xy-plane, we use g 1(x, y) = 0.
Therefore, ∫∫∫

�

(5x − 3y) dV =
∫∫

� xy

∫ −3x−2y+6

0
(5x − 3y) dz dA,

where � xy is the triangular region shown at the right. Here it is particularly easy to find
� xy, since it is the bottom face of the tetrahedron. More generally, however, � xy is the
projection of � onto the xy-plane. To evaluate the double integral over � xy we may treat
this region as either a type I region or a type II region, as described in Section 13.2. For this
example, we will treat � xy as a type I region. Thus we have

∫∫
� xy

∫ −3x−2y+6

0
(5x − 3y) dz dA =

∫ 2

0

∫ −(3/2)x+3

0

∫ −3x−2y+6

0
(5x − 3y) dz dy dx.

Before we evaluate this triple integral, notice that the limits of the innermost integral are
functions of the variables of the outer two integrals (although one of them is a constant
function), the limits of the middle integral are functions of the variable of the outermost
integral (although, again, one of them is a constant function), and the limits of the outer-
most integral are constants. When we complete the evaluation of the iterated integral, we
will see that our answer is also a constant. These are properties you should always have
when you set up and evaluate an iterated triple integral. Now,

∫ 2

0

∫ −(3/2)x+3

0

∫ −3x−2y+6

0
(5x − 3y) dz dy dx

=
∫ 2

0

∫ −(3/2)x+3

0

[
(5x − 3y)z

]z=−3x−2y+6
z=0 dy dx ← the Fundamental

Theorem of Calculus

=
∫ 2

0

∫ −(3/2)x+3

0
(−15x 2 − xy + 6y 2 + 30x − 18y) dy dx ← evaluation and

multiplication

=
∫ 2

0

[
−15x 2y − 1

2
xy 2 + 2y 3 + 30xy − 9y 2

]y=−(3/2)x+3

y=0
dx ← the Fundamental

Theorem of Calculus

=
∫ 2

0

(
117

8
x 3 − 261

4
x 2 + 171

2
x − 27

)
dx ← evaluation and

simplification

=
[

117
32

x4 − 87
4

x 3 + 171
4

x 2 − 27x
]x=2

x=0
= 3

2
. ← the Fundamental

Theorem of Calculus

In this example, we see that the evaluation of even a relatively simple triple integral over a
simple region can necessitate a lengthy computation. None of the steps in this computation
are terribly difficult, but there are certainly many points at which small mistakes can lead
to an incorrect result. Care must be taken in setting up and evaluating triple integrals, as
we will see in the examples that follow.

Applications of Triple Integration

The applications we discussed in Section 13.4 generalize to three-dimensional space in a
natural way. We have already mentioned that if we know the density function ρ(x, y, z) for a
region � ⊂ R

3, then
∫∫∫

�
ρ(x, y, z) dV represents the mass of �. The definitions for the first

and second moments and for the center of mass of a three-dimensional region are closely
related to the definitions we made for laminæ in R

2.
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DEFINITION 13.19 First Moments About the Coordinate Planes

Let � be a region in R
3 in which the density at each point is given by the continuous

function ρ(x, y, z).

(a) The first moment of the mass in � with respect to the yz-plane is

M yz =
∫∫∫

�

x ρ(x, y, z) dV.

(b) The first moment of the mass in � with respect to the xz-plane is

M xz =
∫∫∫

�

y ρ(x, y, z) dV.

(c) The first moment of the mass in � with respect to the xy-plane is

M xy =
∫∫∫

�

z ρ(x, y, z) dV.

Just as we did with laminæ, the center of mass of a region � ⊂ R
3 is computed from

the first moments and the mass of �. If the mass of � is m = ∫∫∫
�

ρ(x, y, z) dV , then the
center of mass of � is ( x, y, z ), where

x = M yz

m
, y = M xz

m
, and z = M xy

m
.

We may also define moments of inertia about the three coordinate axes and use them
to compute the radius of gyration about each axis.

DEFINITION 13.20 Moments of Inertia About the Coordinate Axes

Let � be a region in R
3 in which the density at each point is given by the continuous

function ρ(x, y, z).

(a) The moment of inertia of � about the x-axis is

I x =
∫∫∫

�

( y 2 + z 2) ρ(x, y, z) dV.

(b) The moment of inertia of � about the y-axis is

I y =
∫∫∫

�

(x 2 + z 2) ρ(x, y, z) dV.

(c) The moment of inertia of � about the z-axis is

I z =
∫∫∫

�

(x 2 + y 2) ρ(x, y, z) dV.

To compute the radii of gyration about the x-, y-, and z-axes, we use

R x =
√

I x/m, R y =
√

I y/m, and Rz =
√

I z/m,

respectively. These are the radial distances at which the mass of the solid could be con-
centrated without changing its rotational inertia about the specified axis. We will provide
examples of all of these computations in the examples that follow.
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Examples and Explorations

EXAMPLE 1 Finding the volume of a rectangular parallelepiped

Set up the six iterated triple integrals that could be used to find the volume of the rectan-
gular parallelepiped defined by

R = {(x, y, z) | −1 ≤ x ≤ 3, 2 ≤ y ≤ 4, and 1 ≤ z ≤ 6}.
Evaluate one of the triple integrals to show that the volume of the parallelepiped is the
product of its length, width, and height.

SOLUTION

The following rectangular solid measures 4 units in the x direction, 2 units in the y direction,
and 5 units in the z direction:

(3, 4, 1)
(3, 2, 1)

(3, 2, 6)

(�1, 4, 6)
(�1, 2, 6)

(�1, 4, 1)

y
x

z

The volume of this solid is 4 × 2 × 5 = 40 cubic units.

The first iterated integral we could use to compute the volume is

Volume =
∫∫∫

R
dV =

∫ 3

−1

∫ 4

2

∫ 6

1
dz dy dx.

This order of integration is typically the first one we try. We will discuss the reasons for this
in Example 3. Here we note that the innermost integration is with respect to z, the middle
integration is with respect to y, and the outer integration is with respect to x. Therefore,
the limits on the inner, middle, and outer integrals are the values that correspond to those
variables from the definition of the parallelepiped. To obtain the other five possible iterated
integrals, we permute the differentials dx, dy, and dz, moving the limits of integration in
the corresponding way. Thus, we also have

Volume =
∫ 4

2

∫ 3

−1

∫ 6

1
dz dx dy =

∫ 3

−1

∫ 6

1

∫ 4

2
dy dz dx

=
∫ 6

1

∫ 3

−1

∫ 4

2
dy dx dz =

∫ 4

2

∫ 6

1

∫ 3

−1
dx dz dy =

∫ 6

1

∫ 4

2

∫ 3

−1
dx dy dz.

We now evaluate the triple integral, using the first ordering we provided. Note that we
work from the innermost integral to the outermost integral:∫ 3

−1

∫ 4

2

∫ 6

1
dz dy dx =

∫ 3

−1

∫ 4

2

[
z
]6

1dy dx =
∫ 3

−1

∫ 4

2
5 dy dx

=
∫ 3

−1

[
5y
]4

2 dx =
∫ 3

−1
10 dx

= [
10x
]3
−1 = 40.
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Our answers agree: The volume of R is 40 cubic units. As we mentioned earlier in the
section, we would not have bothered to define triple integration if this were the only ap-
plication. For example, in Example 2 we find the mass of the solid R , assuming that the
density is a nonconstant function. �

EXAMPLE 2 Finding the mass of a rectangular parallelepiped

Find the mass of the solid R from Example 1, assuming that the density at every point of
R is proportional to the distance of the point from the xz-plane.

SOLUTION

Instead of integrating the constant function f (x, y, z) = 1 to find the volume of R , here we
integrate the density function ρ(x, y, z) = ky, where k is a constant of proportionality, to
find the mass of the solid. Almost all of the work involved in setting up the iterated triple
integral was done in Example 1; the only change is the integrand. We choose the same
order of variables that we used before:

Mass =
∫∫∫

R
ky dV =

∫ 3

−1

∫ 4

2

∫ 6

1
ky dz dy dx

=
∫ 3

−1

∫ 4

2

[
kyz
]6

1 dy dx =
∫ 3

−1

∫ 4

2
5ky dy dx

=
∫ 3

−1

[
5
2

ky 2
]4

2
dx =

∫ 3

−1
30k dx

= [
30k x

]3
−1 = 120k.

Note again that there are five other orders we could have used for the iterated integral. For
this particular problem, the levels of difficulty for the integrations would be similar. �

EXAMPLE 3 Finding the volume of a pyramid

Use a triple integral to find the volume of the pyramid P whose base is the square with
vertices (1, 0, 0), (0, 1, 0), (−1, 0, 0), and (0, −1, 0) and whose top vertex is (0, 0, 1).

SOLUTION

The pyramid P is shown in the following figure at the left:

The pyramid Q � xy

x
(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

(0, �1, 0)

z

y

x

z

y

(0, 0, 1)

(0, 1, 0)
(1, 0, 0)

z

1

1
y

�xy

By the symmetry of P , the pyramid Q in the middle figure has a volume that is one-
quarter of the volume of P . We will find the volume of Q and then multiply by 4 to obtain
the volume of P . The oblique planar face of Q has equation x+y+ z = 1. We mentioned in
Example 1 that we would explain the reason for typically choosing the order of integration
specified by dz dy dx. When we have a function of two variables, we tend to think of z as
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a function of x and y. Similarly, when we have a function of a single variable, we tend to
think of y as a function x. This is the convention we have grown accustomed to and that
may cause us to prefer it. Notice that in the iterated integral we evaluated in Example 2, the
upper limit on the innermost integral is a function of two variables. We preferred to express
the equation of the oblique planar face as a function of x and y. Similarly, when we provide
the limits on the middle integral, we need to express one or both boundaries as functions of
a single variable. When we do so, we prefer to express the limits on this integral as functions
of x. The projection of Q onto the xy-plane gives the region � xy shown at the right. The
right-hand boundary of � xy may be expressed either as y = −x + 1 or as x = −y + 1. We
prefer the former, which is the upper limit that we use on the middle integral. In Example 6
we will use one of the other orders of integration to construct an iterated triple integral, but
for now the volume of Q is given by the following iterated triple integral:

Volume of Q =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
dz dy dx =

∫ 1

0

∫ −x+1

0
[z]−x−y+1

0 dy dx

=
∫ 1

0

∫ −x+1

0
(−x − y + 1)dy dx =

∫ 1

0

[
−xy − 1

2
y 2 + y

]−x+1

0
dx

=
∫ 1

0

(
1
2

x 2 − x + 1
2

)
dx =

[
1
6

x 3 − 1
2

x 2 + 1
2

x
]1

0
= 1

6
cubic units.

Multiplying this answer by 4, we find that the volume of P is 2
3

cubic unit. �

CHECKING
THE ANSWER

Recall that the volume of a pyramid is 1
3

(area of the base)(height). Each side of the square

base of pyramid P has length
√

2. The height of P is 1. Therefore, the volume of P is
1
3

√
2 · √

2 · 1 = 2
3

cubic unit, as we just found.

EXAMPLE 4 Finding the center of mass of a pyramid

Find the center of mass of the pyramid P from Example 3, assuming that the density of the
pyramid is uniform.

SOLUTION

By the symmetries of P and its density function, the first moments of the mass with respect
to the yz- and xz-planes are both zero. Therefore, if we let ( x, y, z ) be the center of mass
of P , then both x and y are zero. To find z, we could compute both the mass of P and
the first moment M xy of P when the density function ρ(x, y, z) = k, where k is a constant.
However, note that the z-coordinates for the centers of mass of the pyramids P and Q
are equal. Although the x- and y-coordinates of the centers of mass of P and Q would be
different, we already know that x = y = 0 for P . Therefore, using our work from Example 3,
we find that the mass of Q is given by

m =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k dz dy dx = 1

6
k.

The moment of inertia of Q with respect to the xy-plane is

M xy =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
kz dz dy dx =

∫ 1

0

∫ −x+1

0

[
1
2

kz 2
]−x−y+1

0
dy dx

=
∫ 1

0

∫ −x+1

0

1
2

k(−x − y + 1)2dy dx =
∫ 1

0

[
−1

6
k(−x − y + 1)3

]−x+1

0
dx

=
∫ 1

0

1
6

k(−x + 1)3 dx =
[
− 1

24
k (−x + 1)4

]1

0
= 1

24
k.
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Therefore, the z-coordinate of the center of mass of both P and Q is

z = M xy

m
= k/24

k/6
= 1

4
,

and the center of mass of P is (0, 0, 1/4). Note that the point (0, 0, 1/4) lies inside the pyra-
mid. This shows that our result is plausible. �

EXAMPLE 5 Finding the moments of inertia and radii of gyration for a pyramid

Find the moments of inertia about the coordinate axes for the pyramid Q from Example 3,
assuming that its density is uniform. Use those moments to find the radius of gyration
about each coordinate axis.

SOLUTION

In Example 4 we saw that the mass of Q is

m =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k dz dy dx = 1

6
k.

To find the moment of inertia about the x-axis, we modify this integral by including the
factor ( y 2 + z 2) in the integrand. Thus, we have

I x =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k( y 2 + z 2) dz dy dx.

The evaluation procedure for this integral is quite similar to those in Examples 3 and 4. In
Exercise 15 you will show that I x = 1

30
k.

To find the radius of gyration about the x-axis, we compute R x =
√

Ix

m
, where m is the

mass of Q. We get

R x =
√

I x

m
=
√

(1/30)k
(1/6)k

=
√

5
5

.

Now, to find the moments of inertia about the y- and z-axes, and the corresponding
radii of gyration, we could evaluate the integrals

I y =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k(x 2 + z 2) dz dy dx, I z =

∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k(x 2 + y 2) dz dy dx,

and follow that by calculating R y = √
I y/m and Rz = √

I z/m. You will do exactly that in
Exercises 16 and 17. Here we ask you to convince yourself that pyramid Q has rotational
symmetry about the line given by the parametric equations

x = t, y = t, z = t

x

z

y

1

1
1
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A rotation of π

3
about this line takes each coordinate axis to one of the others, depending

upon the direction of the rotation. In the rotation shown in the preceding figure, the x-axis
would rotate onto the y-axis, etc. This means that the moments of inertia and the radii of
gyration for all three coordinate axes must be equal. That is,

I x = I y = I z = 1
30

k and R x = R y = Rz =
√

5
5

.
�

EXAMPLE 6 Finding the mass of a slice of a cylinder

Find the mass of the slice of the right circular cylinder x 2 + z 2 = 4 bounded on the left by
the xz-plane and on the right by the plane with equation x − y + z = −4 if the density at
each point in the cylinder is proportional to the distance of the point from the xz-plane.

SOLUTION

The region we have described is shown here:

z

yx 42

2

6

The density function we need to integrate is ρ(x, y, z) = ky, where k is a positive constant
of proportionality. Let C represent the slice of the cylinder under consideration. We need
to evaluate the triple integral ∫∫∫

C
ky dV.

No matter which order of integration we settle upon, the function ρ will be relatively sim-
ple to integrate. The order we will use depends upon the characteristics of the region. In
particular, we will consider the projection of C onto the coordinate planes and decide which
is simplest. Since the cylinder is symmetric with respect to the y-axis, the projection of C
onto the xz-plane will be the circle with radius 2, centered at the origin of that plane. Let
C xz be this projection.

C xz

y

x
2

Cxz

The projections of C onto the other coordinate planes would be more difficult to ana-
lyze; thus we will integrate first with respect to y. The limits on this integral are y = 0 and
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y = x + z + 4, the equations of the planes that form the boundaries of C. We now have
∫∫∫

C
ky dV =

∫∫
Cx z

∫ x+z+4

0
ky dy dA.

We next turn our attention to setting up iterated integrals to evaluate the double integral
over Cx z. The region Cx z is bounded above by the semicircle with equation z = √

4 − x 2 and
below by the semicircle with equation z = −√

4 − x 2. Thus, we have
∫∫∫

C
ky dV =

∫ 2

−2

∫ √
4−x 2

−√
4−x 2

∫ x+z+4

0
ky dy dz dx.

The evaluation of this integral is left for you in Exercise 18. As we see in this exam-
ple, the main difficulty in evaluating a triple integral often lies in analyzing the region
of integration. When you evaluate the preceding integral, you will see that it is a chore,
but you will still be using only basic integration techniques that were first introduced in
Chapter 5. �

TEST YOUR? UNDERSTANDING
� What is a Riemann sum for a function of three variables? How many different orderings

are possible for the nested summations? Does the order of the summations matter?

� How is the triple integral for a function f over a rectangular solid defined? How is this
definition similar to the definition of the double integral of a function over a rectangular
region? How is it different?

� What is an iterated triple integral? What is Fubini’s theorem? How are iterated integrals
used to compute triple integrals? How many choices are possible when you order the
variables of integration in an iterated triple integral?

� What are the three types of three-dimensional regions we discussed in this section?
What are the orders of integration associated with each of these different regions?

� What applications of triple integration did we discuss in this section? How are integrals
for masses, first moments of mass, and moments of inertia related to each other?

EXERCISES 13.5

Thinking Back

� Using iterated double integrals to compute area: Let � be
the region in the first quadrant bounded by the x-axis
and the lines with equations x = 1 and y = x. Set up
iterated double integrals that represent the area of �

in which � is treated first as a type I region and then
as a type II region.

� Using iterated double integrals to compute mass: Let � be
the first-quadrant region bounded by the y-axis and
the lines with equations y = x and y = 2−x. If the den-
sity at each point of � is given by the function ρ(x, y),
set up iterated double-integral expressions that repre-
sent the mass of � in which � is treated first as a type I
region and then as a type II region.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: If f (x, y, z) is a continuous function
on the rectangular solid defined by R = {(x, y, z) |
a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2}, then∫∫∫

R f (x, y, z) dV = ∫ a 2

a 1

∫ b 2

b 1

∫ c 2

c 1
f (x, y, z) dx dy dz.

(b) True or False: If f (x, y, z) is a continuous function
on the rectangular solid defined by R = {(x, y, z) |
a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2}, then∫∫∫

R f (x, y, z) dV = ∫ a 2

a 1

∫ c 2

c 1

∫ b 2

b 1
f (x, y, z) dy dz dx.

(c) True or False: If f (x, y, z) is a continuous function
of three variables and � = � 1 ∪ � 2 is a subset
of R

3, then
∫∫∫

�
f (x, y, z) dV = ∫∫∫

� 1
f (x, y, z) dV +∫∫∫

� 2
f (x, y, z) dV .
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(d) True or False: If � is a bounded subset of R
3, then there

is a rectangular solid R with its sides parallel to the
coordinate planes such that � ⊆ R .

(e) True or False: If f is a positive continuous func-
tion defined on a region � and � ⊆ �, then∫∫∫

�
f (x, y, z) dV ≤ ∫∫∫

�
f (x, y, z) dV .

(f) True or False: If ρ(x, y, z) gives the density at every
point of a region �, then the first moment of the
mass in � with respect to the xy-plane is M xy =∫∫∫

�
xy ρ(x, y, z) dV.

(g) True or False: If ρ(x, y, z) gives the density at every
point of a region �, then the moment of inertia of
� about the x-axis is I x = ∫∫∫

�
( y 2 + z 2) ρ(x, y, z) dV.

(h) True or False: If g 1 (x, y) ≤ g 2(x, y) on the square region
R = {(x, y) | 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2}, then the iter-
ated integral

∫ g 2(x,y)
g 1(x,y)

∫ 2
0

∫ 2
0 dV represents the volume

of the solid bounded below by g 1(x, y) and above by
g 2(x, y) on R .

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) An iterated triple integral over a rectangular solid
such that the integral gives the mass of the solid.

(b) An iterated triple integral over a non-rectangular
solid such that the integral gives the volume of the
solid.

(c) An iterated triple integral over a solid such that the
integral gives the moment of inertia of the solid about
the y-axis.

3. Explain why
l∑

i=1

m∑
j=1

n∑
k=1

i j 2k 3 =
m∑

j=1

n∑
k=1

l∑
i=1

i j 2k 3.

4. Explain how to construct a Riemann sum for a function of
three variables over a rectangular solid.

5. Explain how to construct a midpoint Riemann sum for
a function of three variables over a rectangular solid for
which each (x ∗

i , y ∗
j , z ∗

k ) is the midpoint of the subsolid
R ijk = {(x, y, z) | xi−1 ≤ x ∗

i ≤ x i, yj−1 ≤ y ∗
j ≤ y j,

and z k−1 ≤ z ∗
k ≤ z k}. Refer either to your answer to Exer-

cise 4 or to Definition 13.14.
6. Discuss the similarities and differences between the def-

inition of the double integral found in Section 13.1
and the definition of the triple integral found in this
section.

7. What is the difference between a triple integral and an
iterated triple integral?

8. Let f (x, y, z) be a continuous function of three variables,
let

� xy = {(x, y) | a ≤ x ≤ b and h 1(x) ≤ y ≤ h 2(x)}
be a set of points in the xy-plane, and let

� = {(x, y, z) | (x, y) ∈ � xy and g 1(x, y) ≤ z ≤ g 2(x, y)}
be a set of points in 3-space. Find an iterated triple inte-
gral equal to the the triple integral

∫∫∫
�

f (x, y, z) dV . How

would your answer change if

� xy = {(x, y) | a ≤ y ≤ b and h 1( y) ≤ x ≤ h 2( y)}?
9. Let f (x, y, z) be a continuous function of three variables,

let

� y z = {( y, z) | a ≤ y ≤ b and h 1( y) ≤ z ≤ h 2( y)}
be a set of points in the yz-plane, and let

� = {(x, y, z) | ( y, z) ∈ � y z and g 1( y, z) ≤ x ≤ g 2( y, z)}
be a set of points in 3-space. Find an iterated triple in-
tegral equal to the triple integral

∫∫∫
�

f (x, y, z) dV . How
would your answer change if

� y z = {( y, z) | a ≤ z ≤ b and h 1(z) ≤ y ≤ h 2(z)}?

10. Let f (x, y, z) be a continuous function of three variables,
let

� x z = {(x, z) | a ≤ x ≤ b and h 1(x) ≤ z ≤ h 2(x)}
be a set of points in the xz-plane, and let

� = {(x, y, z) | (x, z) ∈ � x z and g 1(x, z) ≤ y ≤ g 2(x, z)}
be a set of points in 3-space. Find an iterated triple in-
tegral equal to the triple integral

∫∫∫
�

f (x, y, z) dV . How
would your answer change if

� x z = {(x, z) | a ≤ z ≤ b and h 1(z) ≤ x ≤ h 2(z)}?
11. Let ρ(x, y, z) be a density function defined on the rectan-

gular solid R where

R = {(x, y, z) | −1 ≤ x ≤ 3, 0 ≤ y ≤ 2, and 2 ≤ z ≤ 7}.
Set up iterated integrals representing the mass of R ,
using all six distinct orders of integration.

12. Let ρ(x, y, z) be a density function defined on the rectan-
gular solid R where

R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤ z ≤ c 2}.
Set up iterated integrals representing the mass of R ,
using all six distinct orders of integration.

13. Let ρ(x, y, z) be a density function defined on the tetra-
hedron � with vertices (0, 0, 0), (2, 0, 0), (0, 4, 0), and
(0, 0, 3). Set up iterated integrals representing the mass
of �, using all six distinct orders of integration.

14. Let ρ(x, y, z) be a density function defined on the tetrahe-
dron � with vertices (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c),
where a, b, and c are positive real numbers. Set up iterated
integrals representing the mass of �, using all six distinct
orders of integration.

In Exercises 15–17, evaluate the three integrals that can be
used to find the moments of inertia for the pyramid Q de-
scribed in Example 5 and then use those values to find the radii
of gyration about the coordinate axes. Recall that the mass of

Q is
1
6

k.

15. Show that

I x =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k( y 2 + z 2) dz dy dx = 1

30
k.
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16. Show that

I y =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k(x 2 + z 2) dz dy dx = 1

30
k.

Use your answer to show that R y =
√

5
5

.

17. Show that

I z =
∫ 1

0

∫ −x+1

0

∫ −x−y+1

0
k(x 2 + y 2) dz dy dx = 1

30
k.

Use your answer to show that Rz =
√

5
5

.

18. Complete Example 6 by evaluating the iterated integral

∫ 2

−2

∫ √
4−x 2

−√
4−x 2

∫ x+z+4

0
ky dy dz dx.

Identify the quantities determined by the integral expressions
in Exercises 19–24. If x, y, and z are all measured in centimeters
and ρ(x, y, z) is a density function in grams per cubic centime-
ter on the three-dimensional region �, give the units of the
expression.

19.
∫∫∫

�

dV 20.
∫∫∫

�

ρ(x, y, z) dV

21.
∫∫∫

�

x ρ(x, y, z) dV 22.

∫∫∫
�

z ρ(x, y, z) dV∫∫∫
�

ρ(x, y, z) dV

23.
∫∫∫

�

(x 2 + z 2)ρ(x, y, z)dV

24.

√∫∫∫
�

(x 2 + z 2) ρ(x, y, z) dV∫∫∫
�

ρ(x, y, z) dV

Skills

Evaluate the iterated integrals in Exercises 25–30.

25.
∫ 1

0

∫ 4

2

∫ 5

−1
(x + yz 2) dx dy dz

26.
∫ 3

1

∫ 5

−1

∫ 3

0
xy 2z dz dy dx

27.
∫ 1

0

∫ 6−y

0

∫ 3−3y−(1/2)z

0
( y − z) dx dz dy

28.
∫ 1

0

∫ 3−3y

0

∫ 6y

0

x
y

dz dx dy

29.
∫ π/2

0

∫ cos y

0

∫ sin y

0
(2x + y) dz dx dy

30.
∫ 1

0

∫ 3

0

∫ sin−1 x

0
(x + y) dz dy dx

Evaluate the triple integrals in Exercises 31–34 over the spec-
ified rectangular solid regions.

31.
∫∫∫

R
x 2yz dV , where

R = {(x, y, z) | −2 ≤ x ≤ 1, 0 ≤ y ≤ 3, and 1 ≤ z ≤ 5}

32.
∫∫∫

R
(x + 2y + 3z) dV , where

R = {(x, y, z) | 0 ≤ x ≤ 4, 1 ≤ y ≤ 5, and 2 ≤ z ≤ 7}

33.
∫∫∫

R
z sin x cos y dV , where

R =
{

(x, y, z) | 0 ≤ x ≤ π ,
3π

2
≤ y ≤ 2π , and 1 ≤ z ≤ 3

}

34.
∫∫∫

R
ln(xy z 2) dV , where

R = {(x, y, z) | 1 ≤ x ≤ 3, 1 ≤ y ≤ e, and 1 ≤ z ≤ 2}

Describe the three-dimensional region expressed in each iter-
ated integral in Exercises 35–44.

35.
∫ 4

−2

∫ 6

2

∫ 5

0
f (x, y, z) dy dx dz

36.
∫ 5

−1

∫ 2

−3

∫ 8

4
f (x, y, z) dz dx dy

37.
∫ 3

0

∫ 3

0

∫ 3−y

0
f (x, y, z) dz dy dx

38.
∫ 2

0

∫ 3

0

∫ 4

4x/3
f (x, y, z) dz dx dy

39.
∫ 3

0

∫ 1−y/3

0

∫ 2−(2/3)y−2z

0
f (x, y, z) dx dz dy

40.
∫ 2

0

∫ 1−3x/2

0

∫ 0

2x+(4/3)y−4
f (x, y, z) dz dy dx

41.
∫ 3

−3

∫ √
9−x 2

−√
9−x 2

∫ √
9−x 2−y 2

−
√

9−x 2−y 2
f (x, y, z) dz dy dx

42.
∫ 3

−3

∫ √
9−x 2

−√
9−x 2

∫ 3

−3
f (x, y, z) dz dy dx

43.
∫ 3

−3

∫ √
9−y 2

−
√

9−y 2

∫ 9−y 2−z 2

0
f (x, y, z) dx dz dy

44.
∫ 3

−3

∫ √
9−z 2

−√
9−z 2

∫ 3−√
x 2+z 2

0
f (x, y, z) dy dx dz
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In Exercises 45–52, rewrite the indicated integral with the
specified order of integration.
45. Exercise 35 with the order dx dy dz.
46. Exercise 36 with the order dy dz dx.

47. Exercise 37 with the order dx dy dz.
48. Exercise 38 with the order dx dy dz.

49. Exercise 39 with the order dz dy dx.
50. Exercise 40 with the order dx dy dz.

51. Exercise 41 with the order dy dx dz.
52. Exercise 42 with the order dy dx dz.

Find the masses of the solids described in Exercises 53–56.

53. The first-octant solid bounded by the coordinate planes
and the plane 3x + 4y + 6z = 12 if the density at each
point is proportional to the distance of the point from the
xz-plane.

54. The solid bounded above by the plane with equation
2x + 3y − z = 2 and bounded below by the triangle with
vertices (1, 0, 0), (4, 0, 0), and (0, 2, 0) if the density at each
point is proportional to the distance of the point from the
xy-plane.

55. The solid bounded above by the paraboloid with equa-
tion z = 8 − x 2 − y 2 and bounded below by the rectangle
R = {(x, y, 0) | 1 ≤ x ≤ 2 and 0 ≤ y ≤ 2} in the xy-plane
if the density at each point is proportional to the square
of the distance of the point from the origin.

56. The solid bounded above by the hyperboloid with equa-
tion z = x 2 − y 2 and bounded below by the square
with vertices (2, 2, −4), (2, −2, −4), (−2, −2, −4), and
(−2, 2, −4) if the density at each point is proportional to
the distance of the point from the plane with equation
z = −4.

Applications
In Exercises 57–60, let R be the rectangular solid defined by
R = {(x, y, z) | 0 ≤ x ≤ 4, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2}.
57. Assume that the density of R is uniform throughout.

(a) Without using calculus, explain why the center of
mass is (2, 3/2, 1).

(b) Verify that the center of mass is (2, 3/2, 1), using the
appropriate integral expressions.

58. Assume that the density of R is uniform throughout, and
find the moment of inertia about the x-axis and the radius
of gyration about the x-axis.

59. Assume that the density at each point in R is proportional
to the distance of the point from the xy-plane.

(a) Without using calculus, explain why the x- and y-

coordinates of the center of mass are x = 2 and y = 3
2

,
respectively.

(b) Use an appropriate integral expression to find the
z-coordinate of the center of mass.

60. Assuming that the density at each point in R is propor-
tional to the distance of the point from the xy-plane, find
the moment of inertia about the x-axis and the radius of
gyration about the x-axis.

In Exercises 61–64, let R be the rectangular solid defined by
R = {(x, y, z) | 0 ≤ a 1 ≤ x ≤ a 2, 0 ≤ b 1 ≤ y ≤ b 2, 0 ≤ c 2 ≤
z ≤ c 2}.
61. Assume that the density of R is uniform throughout.

(a) Without using calculus, explain why the center of

mass is
( a1 +a2

2
,

b1 +b2

2
,

c1 +c2

2

)
.

(b) Verify that
( a1 +a2

2
,

b1 +b2

2
,

c1 +c2

2

)
is the center of

mass by using the appropriate integral expressions.
62. Assume that the density of R is uniform throughout, and

find the moment of inertia about the x-axis and the radius
of gyration about the x-axis.

63. Assume that the density at each point in R is proportional
to the distance of the point from the yz-plane.

(a) Without using calculus, explain why the y- and z-

coordinates of the center of mass are y = b1 +b 2

2
and

z = c1 +c2

2
, respectively.

(b) Use an appropriate integral expression to find the
x-coordinate of the center of mass.

64. Assuming that the density at each point in R is propor-
tional to the distance of the point from the yz-plane, find
the first moment of inertia about the x-axis and the radius
of gyration about the x-axis.

Let a, b, and c be positive real numbers. In Exercises 65–68, let
T be the tetrahedron with vertices (0, 0, 0), (a, 0, 0), (0, b, 0),
and (0, 0, c).

65. Assume that the density at each point in T is uniform
throughout.

(a) Find the x-coordinate of the center of mass of T .
(b) Explain how to use your answer from part (a) to find

the y- and z-coordinates of the center of mass with-
out doing any other computations.

66. Assume that the density of T is uniform throughout. Set
up the integrals required to find the moment of iner-
tia about the x-axis and the radius of gyration about the
x-axis.

67. Assume that the density at each point in T is proportional
to the distance of the point from the xz-plane. Set up the
integral expressions required to find the center of mass of
T .

68. Assuming that the density at each point in T is propor-
tional to the distance of the point from the yz-plane, set
up the integrals required to find the first moment of iner-
tia about the x-axis and the radius of gyration about the
x-axis.
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Proofs

69. Let R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤
z ≤ c 2}. If α(x), β( y), and γ (z) are integrable on the in-
tervals [a 1, a 2], [b 1, b 2], and [c 1, c 2], respectively, use Fu-
bini’s theorem to prove that∫∫∫

R
α(x)β( y)γ (z) dV

=
(∫ a 2

a 1

α(x) dx
)(∫ b 2

b 1

β( y) dy
)(∫ c 2

c 1

γ (z) dz
)

.

70. Let a, b, and c be positive real numbers, and let R =
{(x, y, z) | −a ≤ x ≤ a, −b ≤ y ≤ b, and −c ≤ z ≤ c}.
Prove that

∫∫∫
R α(x)β( y)γ (z) dV = 0 if any of α, β, and γ

is an odd function.

71. Let R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤
z ≤ c 2}. Prove that

∫∫∫
R

dV = (a 2 − a 1)(b 2 − b 1)(c 2 − c 1).

What is the relationship between R and the product
(a 2 − a 1)(b 2 − b 1)(c 2 − c 1)?
72. Let f (x, y, z) be an integrable function on the rectangular

solid R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤ y ≤ b 2, and c 1 ≤
z ≤ c 2}, and let κ ∈ R. Use the definition of the triple
integral to prove that

∫∫∫
R

κf (x, y, z) dV = κ

∫∫∫
R

f (x, y, z) dV.

73. Let f (x, y, z) and g(x, y, z) be integrable functions on the
rectangular solid R = {(x, y, z) | a 1 ≤ x ≤ a 2, b 1 ≤
y ≤ b 2, and c 1 ≤ z ≤ c 2}. Use the definition of the triple
integral to prove that

∫∫∫
R

( f (x, y, z) + g(x, y, z)) dV

=
∫∫∫

R
f (x, y, z) dV +

∫∫∫
R

g(x, y, z) dV.

Thinking Forward

� Cylindrical coordinates: When we use polar coordinates
in the xy-plane and the usual z-coordinate, we are
using cylindrical coordinates. Let � xy be a region in
the xy-plane such that for each point (r, θ ) in � xy,
h 1(θ ) ≤ r ≤ h 2(θ ) and α ≤ θ ≤ β. Then, if g 1(x, y) ≤
z ≤ g 2(x, y) for each (x, y) in � xy, explain why
∫∫∫

�

f (x, y, z) dV =
∫∫

� xy

∫ g 2(x,y)

g 1(x,y)
f (x, y, z) dz dA

=
∫ β

α

∫ h 2(θ )

h 1(θ )

∫ g 2(r cos θ , r sin θ )

g 1(r cos θ , r sin θ )
f (r cos θ , r sin θ , z) r dz dr dθ.

� Cylindrical coordinates: Use the results of the previous
exercise to explain why the triple integral

∫ 2π

0

∫ 3

0

∫ 9−r 2

0
kr 2 dz dr dθ

represents the mass of a solid bounded below by the
xy-plane and bounded above by the paraboloid with
equation z = 9 − x 2 − y 2 if the density at every point
in the solid is proportional to the distance of the point
from the origin. Then determine the mass of the solid.
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13.6 INTEGRATION WITH CYLINDRICAL AND SPHERICAL
COORDINATES

� Generalizing polar coordinates to three dimensions

� Converting between rectangular coordinates, cylindrical coordinates, and spherical coordinates

� Constructing triple integrals with cylindrical and spherical coordinates

Cylindrical Coordinates

In this section we will discuss two generalizations of polar coordinates to three-
dimensional space: cylindrical coordinates and spherical coordinates. We will also discuss how
these coordinate systems may be used in triple integrals. We will see that the cylindrical co-
ordinate system uses two linear measures and one angular measure to locate each point in
R

3 and the spherical coordinate system uses one linear measure and two angular measures
to locate points.

In the cylindrical coordinate system, we use polar coordinates in the xy-plane and the
usual z-coordinate to locate positions off of the xy-plane. As we see in the following fig-
ure, given a point P with rectangular coordinates (x, y, z), r measures the distance from the
projection of P in the xy-plane to the origin and θ measures the angular rotation from the
x-axis to the ray containing the origin and the point (x, y, 0):

z

yr

y

θ

z

(x, y, 0) � (r, θ, 0)

(x, y, z) � (r, θ, z)

x x

That is, if (x, y, z) is a point in R
3 given in rectangular coordinates, then, in cylindrical

coordinates we have (r, θ , z), where

r 2 = x 2 + y 2, tan θ = y
x

, and z = z.

Note that the values for r and θ are computed just as they were when we were discussing
polar coordinates in the plane. Since our primary motivation in this chapter is integration,
we will typically choose r ≥ 0 and restrict values of θ to an interval of length 2π , usually
either [0, 2π ] or [−π , π ].

When we have the coordinates of a point (r, θ , z) in cylindrical coordinates, the rectan-
gular coordinates are (x, y, z), where

x = r cos θ , y = r sin θ , and z = z.

From Section 13.5, we know that, for a three-dimensional region, �, that is bounded
below by the function g 1(x, y) and above by g 2(x, y) on the domain � xy, the triple integral
of the function f (x, y, z) is

∫∫∫
�

f (x, y, z) dV =
∫∫

� xy

∫ g 2(x,y)

g 1(x,y)
f (x, y, z) dz dA.
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In Section 13.5 we discussed how to use rectangular coordinates to evaluate the exterior
double integral over the region � xy. However, in Section 13.3 we saw that the increment
of area dA is given by r dr dθ in polar coordinates. Therefore, to use cylindrical coordinates
to evaluate the triple integral of f , we replace each occurrence of x in f , g 1, and g 2 with
r cos θ and each occurrence of y with r sin θ and we use r dz dr dθ in place of the increment
of volume dV . We also need to express the region � xy in terms of polar coordinates, as we
did in Section 13.3.

For example, we will compute the mass of the region � bounded above by the
paraboloid with equation g(x, y) = 4 − x 2 − y 2 and bounded below by the xy-plane, as-
suming that the density at each point is proportional to the distance of the point from the
xy-plane. The triple integral we wish to evaluate is

∫∫∫
�

kz dV . Using rectangular coordi-
nates, we could evaluate

∫ 2

−2

∫ √
4−x 2

−√
4−x 2

∫ 4−x 2−y 2

0
kz dz dy dx.

However, using cylindrical coordinates, we will have a simpler iterated integral. With cylin-
drical coordinates, the equation of the paraboloid is z = 4 − r 2. The projection of the solid
onto the xy-plane is a circle with radius 2 and centered at the origin. The equation of this
circle is r = 2 for θ ∈ [0, 2π ]. Finally, our increment of volume is dV = r dz dr dθ . Therefore,
the mass may be computed by

∫ 2π

0

∫ 2

0

∫ 4−r 2

0
kzr dz dr dθ =

∫ 2π

0

∫ 2

0

[
1
2

krz 2
]4−r 2

0
dr dθ

=
∫ 2π

0

∫ 2

0

1
2

kr(4 − r 2)2dr dθ

= −
∫ 2π

0

[
1

12
k(4 − r 2)3

]2

0
dθ

=
∫ 2π

0

16
3

k dθ =
[

16
3

kθ
]2π

0
= 32π

3
k.

Every iterated triple integral requires three integrations, so we expect the computation to
require at least that much work, but as we see in this example, using the cylindrical co-
ordinate system here provides a much simpler path toward the solution. Evaluating the
equivalent iterated triple integral in rectangular coordinates would be even more laborious.

Consider using cylindrical coordinates to evaluate triple integrals when the projection
of the region of integration � onto the xy-plane, � xy, has a “natural” expression in po-
lar coordinates. This will always occur when � displays rotational symmetry about the
z-axis.

Spherical Coordinates

Let (x, y, z) be the rectangular coordinates of a point P in R
3. As we just discussed, we may

also express the coordinates of P as cylindrical coordinates (r, θ , z), where

r 2 = x 2 + y 2, tan θ = y
x

, and z = z.

In the spherical system, the coordinates of a point P in R
3 are given by (ρ, θ , φ), where

ρ is the distance that P is from the origin, θ is the same angle we used in the cylindrical
system, and φ ∈ [0, π ] is the angle that the ray from the origin through P makes with the
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positive z-axis, as we see in the figure that follows at the left. The figure at the right shows
the relationships between the spherical, cylindrical, and rectangular coordinates.

z

P

ρ
φ

θ

(x, y, 0) � (r, θ, 0)

(ρ, θ, φ)

y
x

z

r

P

y

r � ρ sin φ

ρ
φ z � ρ cos �

(x, y, 0) � (r, θ, 0)

(x, y, z) � (ρ, θ, φ)

x
θ y

x

The angles θ and φ will be measured in radians. We will always assume that 0 ≤ φ ≤ π

and that θ lies in some interval of length 2π , typically θ ∈ [0, 2π ] or θ ∈ [−π , π ]. In the
figures that follow, we show a sphere, a plane, and a cone. These are the graphs obtained
when ρ, θ , and φ, respectively, are constant.

ρ = ρ 0 θ = θ 0 φ = φ 0

z

y

x

θ

z

y
x

y
x

z

We summarize the relationships between the variables of our three-dimensional coor-
dinate systems in the following theorem:

THEOREM 13.21 Converting Between the Three-Dimensional Coordinate Systems

Let P be a point in R
3 with coordinates (x, y, z) in the rectangular coordinate system,

(r, θ , z) in the cylindrical coordinate system, and (ρ, θ , φ) in the spherical coordinate
system.

(a) The cylindrical coordinates and rectangular coordinates for P are related by the
following equations:

r =
√

x 2 + y 2, tan θ = y
x

, and z = z

x = r cos θ , y = r sin θ , and z = z.

(b) The cylindrical coordinates and spherical coordinates for P are related by the fol-
lowing equations:

ρ =
√

r 2 + z 2, θ = θ , and tan φ = r
z

r = ρ sin φ, θ = θ , and z = ρ cos φ.

(c) The rectangular coordinates and spherical coordinates for P are related by the fol-
lowing equations:

ρ =
√

x 2 + y 2 + z 2, tan θ = y
x

, and cos φ = z√
x 2 + y 2 + z 2

x = ρ sin φ cos θ , y = ρ sin φ sin θ , and z = ρ cos φ.
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For example, if the rectangular coordinates of a point P are (1,
√

3, 2
√

3 ), then

r =
√

x 2 + y 2 =
√

12 + (
√

3 )2 = 2, z = 2
√

3, and tan θ = y
x

=
√

3
1

=
√

3.

Therefore, θ = π

3
and the cylindrical coordinates for P are

(
2, π

3
, 2

√
3
)

. Now that we have
the cylindrical coordinates for P, we may use either those or the rectangular coordinates for
P to find the spherical coordinates for P. We’ll use the cylindrical coordinates. We have

ρ =
√

r 2 + z 2 =
√

22 + (2
√

3 )2 = 4, θ = π

3
, and tan φ = r

z
= 2

2
√

3
= 1√

3
.

Therefore, since φ ∈ [0, π ], we have φ = π

6
. So the spherical coordinates for P are

(
4, π

3
, π

6

)
.

Integration with Spherical Coordinates

Recall that to integrate a function f (r, θ ) over a region � ⊂ R
2, we use dA = r dr dθ for our

increment of area. That is, ∫∫
�

f (r, θ ) dA =
∫∫

�

f (r, θ ) r dr dθ.

Similarly, as we saw earlier in this section, when we integrate a function f (r, θ , z) over a
region � ⊂ R

3, we use dV = r dz dr dθ for our increment of volume and obtain∫∫∫
�

f (r, θ , z) dV =
∫∫∫

�

f (r, θ , z) r dz dr dθ.

When we use spherical coordinates, we must also adapt our increment of volume. Here,
we will have dV = ρ2 sin φ dρ dθ dφ. To see this, start by considering an increment
of volume in spherical coordinates determined by �ρ = ρi − ρi−1, �θ = θ j − θ j−1, and
�φ = φ k − φ k−1. When �ρ, �θ , and �φ are small, this region is nearly a rectangular solid,
as shown next. Thus, its volume may be approximated by the product of its three dimen-
sions.

ρ�φ

z

�θ

�φ
φ

ρ sin φ �θ

�ρ

yx

The measure of the side of this solid determined by �ρ is just that linear measure.
The approximate measure of the side determined by �φ is ρ�φ, since it is the arc of the
circle of radius ρ subtended by the angle �φ. The projection of the third side into the
xy-plane is shown in the figure. This projection is an arc of a circle with radius r (in cylin-
drical coordinates) subtended by the angle �θ . Therefore, the measure of the projection
is r�θ . However, since r = ρ sin φ, the approximate measure of the third side is r�θ =
ρ sin φ�θ . Multiplying these three factors together, we have �V = ρ2 sin φ �ρ �θ �φ.
When we take the limit as �ρ, �θ , and �φ all tend to zero, we have the volume differential
dV = ρ2 sin φ dρ dθ dφ. Therefore, when we have a function f ( ρ, θ , φ) given in spherical
coordinates and defined on a three-dimensional region �, the integral of f on � is∫∫∫

�

f ( ρ, θ , φ) ρ2 sin φ dρ dθ dφ.
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Typically, the spherical coordinate system is used when the boundaries of a solid are
spheres or parts of spheres. For example, let E be the portion of the unit sphere centered
at the origin in the first octant, as shown in the following figure:

y

center of mass

z

x

E

1

1

1

We will find the center of mass of E , assuming that it has uniform density k. To find the
x-coordinate of the center of mass, x, we start by computing the first moment with respect
to the yz-plane. We have

M yz =
∫∫∫

E
kx dV =

∫ π/2

0

∫ π/2

0

∫ 1

0
kρ3 sin2 φ cos θ dρ dθ dφ,

since x = ρ sin φ cos θ and dV = ρ2 sin φ dρ dθ dφ. In Exercise 18 you will show that M yz =
1
16

πk. Similarly, the mass, m, of E is given by the integral

m =
∫∫∫

E
k dV =

∫ π/2

0

∫ π/2

0

∫ 1

0
kρ2 sin φ dρ dθ dφ.

However, we may circumvent this computation because the value of that integral has to
be one-eighth of the volume of a sphere times the (uniform) density k. That is, m =
1
8

(
4
3
π

)
k = 1

6
πk. In Exercise 19 we ask that you evaluate the integral to obtain this re-

sult. Therefore, x = Myz

m
= 3

8
. Because of the symmetry of E , the y- and z-coordinates of

the center of mass must also be 3
8

. So the center of mass of E is
(

3
8

, 3
8

, 3
8

)
. (In Exercises 20

and 21, you are asked to show that M xy and M x z both equal 1
16

πk to confirm this result.)

Examples and Explorations

EXAMPLE 1 Finding the volume of a region between a cylinder and a sphere

Use rectangular, cylindrical, and spherical coordinates to set up triple integrals representing
the volume inside the sphere with equation x 2 + y 2 + z 2 = 4 but outside the cylinder with
equation x 2 + y 2 = 1.

SOLUTION

The sphere is centered at the origin and has radius 2. The z-axis is the axis of symmetry for
the cylinder with radius 1. The graph is as follows:

y

z

x

2111
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Let � represent the region. Since � is symmetric with respect to the z-axis, when we
use rectangular coordinates we will integrate first with respect to z. The projection of �

onto the xy-plane is the annulus � xy, shown here:

y

x
21

�xy

It would require several subdivisions to represent � xy as a sum of type I and type II
regions. However, we can use rectangular coordinates to represent the volume of � by
setting up a triple integral giving the volume of the entire sphere and then subtracting a
triple integral that represents the portion of the volume of the sphere inside the cylinder.
That is, the volume of � is

∫ 2

−2

∫ √
4−x 2

−√
4−x 2

∫ √
4−x 2−y 2

−
√

4−x 2−y 2
dz dy dx −

∫ 1

−1

∫ √
1−x 2

−√
1−x 2

∫ √
4−x 2−y 2

−
√

4−x 2−y 2
dz dy dx.

Note that it is more natural to represent � xy with polar coordinates than with rectan-
gular coordinates. This is why it will be easier to represent the volume of � with cylindrical
coordinates than it was with rectangular coordinates. In cylindrical coordinates, the equa-
tions of the upper and lower hemispheres are z = √

4 − r 2 and z = −√
4 − r 2, respectively.

We must also remember to include the factor r in the integrand when we use cylindrical
coordinates. Therefore, the triple integral representing the volume of � is

∫ 2π

0

∫ 2

1

∫ √
4−r 2

−√
4−r 2

r dz dr dθ.

Lastly, we will use spherical coordinates to set up a triple integral for the volume.
In spherical coordinates, the equation of the sphere is ρ = 2. Since x = ρ sin φ cos θ and
y = ρ sin φ sin θ , the equation of the cylinder x 2 + y 2 = 1 in spherical coordinates is

( ρ sin φ cos θ )2 + ( ρ sin φ sin θ )2 = 1.

We ask you to show in Exercise 22 that this equation simplifies to ρ = csc φ. To set up the
iterated integral, we also need the correct interval of values for φ. The sphere and cylinder
intersect when csc φ = 2. The values of φ satisfying this relationship within the interval
[0, π ] are φ = π

6
and φ = 5π

6
. Recall that when we integrate with spherical coordinates, we

must include the factor ρ2 sin φ in the integrand. Therefore, the volume of � is given by
∫ 5π/6

π/6

∫ 2π

0

∫ 2

csc φ

ρ2 sin φ dρ dθ dφ.
�

EXAMPLE 2 Finding the volume of a region between a cone and a sphere

Use rectangular, cylindrical, and spherical coordinates to set up triple integrals representing
the volume bounded below by the cone with equation z = √

x 2 + y 2 and bounded above
by the unit sphere centered at the origin.
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SOLUTION

The z-axis is the axis of symmetry for the cone. Its vertex is at the origin and it opens upward.
Here is the graph:

y

x

z

1
2

Let � represent the region. Since � is symmetric with respect to the z-axis, when we
use rectangular coordinates we will integrate first with respect to z. The cone and sphere
intersect at height z = 1√

2
in a circle with radius 1√

2
. Therefore, the projection of � onto

the xy-plane is a circle � xy with radius 1√
2

and centered at the origin. The equation for this

circle is x 2 + y 2 = 1
2

.

The region � xy may be treated as either a type I or type II region. We will treat it as a
type I region. Using rectangular coordinates, we find that the volume of � is

∫ 1/
√

2

−1/
√

2

∫ √
(1/2)−x 2

−
√

(1/2)−x 2

∫ √
1−x 2−y 2

√
x 2−y 2

dz dy dx.

We will now use an iterated integral with cylindrical coordinates to represent the vol-
ume of �. In cylindrical coordinates, the equation of the upper hemisphere of the unit
sphere is z = √

1 − r 2 and the equation of the cone is z = r. We include the factor r in the
integrand when we use cylindrical coordinates, and we obtain the integral

∫ 2π

0

∫ 1/
√

2

0

∫ √
1−r 2

r
r dz dr dθ

for the volume of �.

Finally, we will use spherical coordinates to set up a triple integral for the volume. In
spherical coordinates, the equation of the sphere is ρ = 1 and the equation of the cone
is φ = π

4
. Recall that when we integrate with spherical coordinates, we must include

the factor ρ2 sin φ in the integrand. Therefore, the volume of � is given by
∫ π/4

0

∫ 2π

0

∫ 1

0
ρ2 sin φ dρ dθ dφ.

�

TEST YOUR? UNDERSTANDING
� How do you convert between rectangular and polar coordinates in R

2? How do you
convert between rectangular and cylindrical coordinates in R

3? How do you convert
between rectangular and spherical coordinates? How do you convert between cylin-
drical and spherical coordinates?

� What do x, y, and z represent in rectangular coordinates? What range of values is used
for x, y, and z in rectangular coordinates? If α, β, and γ are constants, what are the
graphs of x = α, y = β, and z = γ in rectangular coordinates?
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� What do r, θ , and z represent in cylindrical coordinates? What range of values is used
for r in cylindrical coordinates? What range of values is used for θ in cylindrical coordi-
nates? What range of values is used for z in cylindrical coordinates? If α, β, and γ are
constants, what are the graphs of r = α, θ = β, and z = γ in cylindrical coordinates?

� What do ρ, θ , and φ represent in spherical coordinates? What range of values is used for
ρ in spherical coordinates? What range of values is used for θ in spherical coordinates?
What range of values is used for φ in spherical coordinates? If α, β, and γ are constants,
what are the graphs of ρ = α, θ = β, and φ = γ in spherical coordinates?

� Under what conditions should you use rectangular, cylindrical, or spherical coordinates
in evaluating triple integrals?

EXERCISES 13.6

Thinking Back

� Graphing with polar coordinates: Use polar coordinates
in R

2 to graph each of the following equations:

� r = 3 � θ = π

3

� r = 2 cos θ � r = 1 + 2 sin θ

� Rectangular versus polar coordinates: When is it easier
to use the rectangular coordinate system in R

2? When
is it easier to use the polar coordinate system?

� Integrating with polar coordinates: Let � be a region in
R

2. Provide a double integral that represents the area
of � when you integrate with polar coordinates.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: With cylindrical coordinates, the graph
of the function z = √

2r cos θ − r 2 is a hemisphere.
(b) True or False: With spherical coordinates, the graph of

φ = π

2
is the xy-plane.

(c) True or False: With spherical coordinates, for every
value of a ∈ (0, π ) the intersection of the graphs of
φ = a and ρ = 1 is a circle with radius 1.

(d) True or False: The graph of z = r in cylindrical coordi-
nates is the same as the graph of φ = π

4
in spherical

coordinates.
(e) True or False: If f is an integrable function of three vari-

ables on a region �, then∫∫∫
�

f (x, y, z) dz dy dx

=
∫∫∫

�

f (r, θ , z) dz dr dθ.

(f) True or False: If f is an integrable function of three vari-
ables on a region �, then∫∫∫

�

f (x, y, z) dz dy dx

=
∫∫∫

�

f (x(r, θ ), y(r, θ ), z) r dz dr dθ.

(g) True or False: The integral∫ 2π

0

∫ 2π

0

∫ R

0
ρ2 sin φ dρ dθ dφ = 4

3
πR3.

(h) True or False: The rectangular, cylindrical, and spher-
ical coordinate systems are the only coordinate sys-
tems in R

3.
2. Examples: Construct examples of the thing(s) described in

the following. Try to find examples that are different than
any in the reading.

(a) A region in R
3 that is most easily expressed with rect-

angular coordinates.
(b) A region in R

3 that is most easily expressed with
cylindrical coordinates.

(c) A region in R
3 that is most easily expressed with

spherical coordinates.

3. What are the graphs of the constant functions x = x 0,
y = y 0, and z = z 0 in the rectangular coordinate system?

4. What are the graphs of the constant functions r = r 0,
θ = θ 0, and z = z 0 in the cylindrical coordinate system?

5. What are the graphs of the constant functions ρ = ρ 0,
θ = θ 0, and φ = φ 0 in the spherical coordinate system?

6. For what values of α ∈ [0, π ] in the spherical coordinate
system is the graph φ = α not a cone?

Fill in the blanks for the conversion formulas in Exercises 7–12.

7. To convert from rectangular to cylindrical coordinates:
r = , θ = , z = .
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8. To convert from cylindrical to rectangular coordinates:
x = , y = , z = .

9. To convert from rectangular to spherical coordinates:
ρ = , θ = , φ = .

10. To convert from spherical to rectangular coordinates:
x = , y = , z = .

11. To convert from cylindrical to spherical coordinates:
ρ = , θ = , φ = .

12. To convert from spherical to cylindrical coordinates:
r = , θ = , z = .

13. What are the six forms used to express the volume incre-
ment dV when you use rectangular coordinates to evalu-
ate a triple integral? How do you decide which order to
use?

14. The volume increment dV = when you use
cylindrical coordinates to evaluate a triple integral. Why
is this the standard order of integration for cylindrical co-
ordinates?

15. The volume increment dV = when you use
spherical coordinates to evaluate a triple integral. Why is
this the standard order of integration for spherical coor-
dinates?

16. What geometric conditions do you look for when you are
deciding which coordinate system to use in R

3?

17. What geometric conditions do you look for when you are
deciding which coordinate system to use when you are
evaluating a triple integral?

In Exercises 18–21, we ask you to confirm a result from earlier
in the section. Let E be the portion of the unit sphere centered
at the origin in the first octant. Assume that E has uniform
density k.

18. Show that the first moment of E is M y z = 1
16

πk.

19. Show that the mass of E is
1
6
πk by evaluating the integral

∫∫∫
E

k dV =
∫ π/2

0

∫ π/2

0

∫ 1

0
kρ2 sin φ dρ dθ dφ.

20. Set up the appropriate triple integral with spherical coor-

dinates to show that M xy = 1
16

πk.

21. Set up the appropriate triple integral with spherical coor-

dinates to show that M x z = 1
16

πk.

22. From Example 1, recall that x 2 +y 2 = 1 is the equation of
the cylinder with radius 1, whose axis of symmetry is the
z-axis. Show that the equation of this cylinder in spherical
coordinates is ρ = csc φ.

Skills

Find the coordinates specified in Exercises 23–28.

23. Give the cylindrical and spherical coordinates for the
point with rectangular coordinates (1, 0, 0).

24. Give the cylindrical and spherical coordinates for the
point with rectangular coordinates (−6, 6, 6).

25. Give the rectangular and spherical coordinates for the
point with cylindrical coordinates (

√
48, π/3, 4).

26. Give the rectangular and spherical coordinates for the
point with cylindrical coordinates (4, π/3, 6).

27. Give the rectangular and cylindrical coordinates for the
point with spherical coordinates (8, π/2, π ).

28. Give the rectangular and cylindrical coordinates for the
point with spherical coordinates (6, π/4, π/4).

Describe the graphs of the equations in Exercises 29–38 in R
3,

and provide alternative equations in the specified coordinate
systems.

29. Change x = 4 to the cylindrical and spherical systems.
30. Change z = x+y to the cylindrical and spherical systems.
31. Change r = 2 to the rectangular and spherical systems.
32. Change r = 4 sin θ to the rectangular and spherical

systems.

33. Change θ = π

2
to the rectangular system.

34. Change θ = α, where α is a constant, to the rectangular
system.

35. Change ρ = 2 to the rectangular and cylindrical systems.

36. Change φ = π

4
to the rectangular and spherical systems.

37. Change φ = π

2
to the rectangular and cylindrical systems.

38. Change φ = 3π

4
to the rectangular and cylindrical

systems.

The iterated integrals in Exercises 39–42 use cylindrical co-
ordinates. Describe the solids determined by the limits of
integration.

39.
∫ 2π

0

∫ 3

0

∫ r

0
f (r, θ , z) r dz dr dθ

40.
∫ π

0

∫ 2

1

∫ r 2

0
f (r, θ , z) r dz dr dθ

41.
∫ π

0

∫ 2 sin θ

0

∫ √
16−r 2

0
f (r, θ , z) r dz dr dθ

42.
∫ π/2

0

∫ 1

0

∫ √
1−r 2

0
f (r, θ , z) r dz dr dθ

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 3, 2012 20:36

13.6 Integration with Cylindrical and Spherical Coordinates 1067

The iterated integrals in Exercises 43–46 use spherical co-
ordinates. Describe the solids determined by the limits of
integration.

43.
∫ π

π/2

∫ 2π

0

∫ 2

0
f (ρ, θ , φ)ρ2 sin φ dρ dθ dφ

44.
∫ π/2

0

∫ π/2

0

∫ 1

0
f (ρ, θ , φ)ρ2 sin φ dρ dθ dφ

45.
∫ π/4

0

∫ 2π

0

∫ 3 sec θ

0
f (ρ, θ , φ)ρ2 sin φ dρ dθ dφ

46.
∫ π/2

π/4

∫ 2π

0

∫ 3 csc θ

0
f (ρ, θ , φ)ρ2 sin φ dρ dθ dφ

Use a triple integral with either cylindrical or spherical co-
ordinates to find the volumes of the solids described in
Exercises 47–56.

47. The region inside both the sphere with equation x 2 +y 2 +
z 2 = 4 and the cylinder with equation x 2 + ( y − 1)2 = 1.

48. The region inside the cylinder with equation x 2 + ( y −
1)2 = 1, bounded below by the xy-plane and bounded
above by the cone with equation z = √

x 2 + y 2.

49. The region bounded below by the xy-plane, bounded
above by the sphere with radius 2 and centered at the ori-
gin, and outside the cylinder with equation x 2 + y 2 = 1.

50. The region bounded below by the plane with equation
z = c and bounded above by the sphere with equation
x 2 + y 2 + z 2 = R2, where c and R are constants such that
0 < c < R.

51. The region bounded above by the plane with equation
z = x and bounded below by the paraboloid with equa-
tion z = x 2 + y 2.

52. The region bounded above by the sphere with equation
ρ = 2 and bounded below by the cone with equation
φ = π

3
.

53. The region in the next figure which is bounded below
by the xy-plane, bounded above by the hyperboloid with
equation x 2 + y 2 − z 2 = 1, and inside the cylinder with
equation x 2 + y 2 = 5.

x

z

y5
1

54. The first-octant region bounded above by the sphere with
equation ρ = R and bounded below by the plane with
equation z = x + y.

55. The region bounded above by the sphere with equation
ρ = R and bounded below by the cone with equation
φ = α. Explain why the volume should be zero if α = 0

and
4
3
πR3 if α = π .

56. The region bounded above by the sphere with equation
ρ = R and bounded below by the plane with equation
z = b, where 0 ≤ b ≤ R. Explain why the volume should

be
2
3
πR3 if b = 0 and zero if b = R. Use that result to find

the volume of the region when −R ≤ b < 0.

Find the specified quantities for the solids described in Exer-
cises 57–66.

57. The mass of the region from Exercise 47, assuming that
the density at every point is proportional to the square of
the point’s distance from the z-axis.

58. The mass of the region from Exercise 48, assuming that
the density at every point is proportional to the square of
the point’s distance from the xy-plane.

59. The center of mass of the region from Exercise 49, assum-
ing that the density at every point is proportional to the
point’s distance from the z-axis.

60. The center of mass of the region from Exercise 50, assum-
ing that the density at every point is proportional to the
point’s distance from the xy-plane.

61. The mass of the region from Exercise 51, assuming that
the density at every point is proportional to the square of
the point’s distance from the xy-plane.

62. The moment of inertia about the z-axis of the region from
Exercise 52, assuming that the density at every point is
inversely proportional to the point’s distance from the
z-axis.

63. The moment of inertia about the z-axis of the region from
Exercise 53, assuming that the density at every point is
inversely proportional to the point’s distance from the
z-axis.

64. The mass of the region from Exercise 54, assuming that
the density at every point is proportional to the point’s
distance from the xy-plane.

65. The center of mass of the region from Exercise 55, assum-
ing that the density of the region is constant.

66. The moment of inertia about the xy-plane of the region
from Exercise 56, assuming that the density of the region
is constant.
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Applications
67. Emmy is responsible for a tank that is circular when

viewed from above. The tank has a radius of 75 feet. An
island with a radius of 8 feet lies at the center of the tank
and contains monitoring equipment. Emmy knows that
the sides of the tank are vertical but the bottom of the
tank is the surface of a sphere of radius 150 feet, forming
a bowl at the bottom. At the edge of the tank, the depth
is 8 feet. What is the volume of the tank?

68. Annie is a sea-kayaking guide who finds herself with time
on her hands in the winter. She is building a wood-and-
fabric kayak for herself, but is concerned about its capac-
ity for cargo. The outside surface of the kayak satisfies the
equation

r = (49 − l 2 )(2 − sin θ )
147

,

where the coordinates are cylindrical, r is the distance
from a line joining the tips of the boat, and l is the hori-
zontal distance from the center.

(a) What is the volume of the kayak?
(b) When Annie sits in a kayak, the seat and her body fill

about 5 cubic feet of the boat. The stringers, which are
supports inside that run the length of the kayak, take
up space, so the interior has a radius that is 1.5 inches
smaller than what you calculated in part (a). Approx-
imately how much cargo space will she actually have
in the kayak?

Proofs

69. Let a be a constant. Prove that the equation of the plane
x = a is r = a sec θ in cylindrical coordinates.

70. Let b be a constant. Prove that the equation of the plane
y = b is r = b csc θ in cylindrical coordinates.

71. Let a be a constant. Prove that the equation of the plane
x = a is ρ = a csc φ sec θ in spherical coordinates.

72. Let b be a constant. Prove that the equation of the plane
y = b is r = b csc φ csc θ in spherical coordinates.

73. Let R be the radius of the base of a cone and h be the
height of the cone. Use cylindrical coordinates to set up

and evaluate a triple integral proving that the volume of

the cone is
1
3
πR2h.

74. Let R be the radius of a sphere. Use cylindrical coordi-
nates to set up and evaluate a triple integral proving that

the volume of the sphere is
4
3
πR3.

75. Repeat Exercise 73, but using spherical coordinates.
76. Repeat Exercise 74, but using spherical coordinates.

Thinking Forward

A non-standard coordinate system in R
2: Imagine a coordinate

system in R
2 in which the coordinate axes u and v are not per-

pendicular, as shown in the figure.

v

u
2 3 41

4

3

2

1

� Explain why every point in R
2 has unique coordinates in

this coordinate system.

� What is the area of each of the small parallelo-
grams in the figure?

� If a is a vector parallel to the u-axis and b is a vector
parallel to the v-axis, what is the area of the parallelo-
gram determined by a and b?

A non-standard coordinate system in R
3: Imagine a three-

dimensional analog to the coordinate system described in the
previous problem, except that now there are three coordinate
axes meeting at an origin but the three axes are not mutually
perpendicular.

� What is the volume of each parallelepiped determined
by a unit change in the u, v, and w directions?

� If a, b, and c are vectors parallel to the u-, v-, and
w-axes, respectively, what is the volume of the par-
allelepiped determined by a, b, and c?
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13.7 JACOBIANS AND CHANGE OF VARIABLES

� Using nonstandard coordinate systems in R
2

� Using nonstandard coordinate systems in R
3

� Using Jacobians to construct double and triple integrals

Change of Variables in R
2

The first integration technique that we discussed in Chapter 5 was integration by substitu-
tion. At that time we saw that

∫ b

a
f ( g(x))g′(x) dx =

∫ d

c
f (u) du,

where u = g(x), c = g(a), and d = g(b). The point of changing the variable in that context
was to obtain an integral

∫ d
c f (u) du that was simpler to evaluate than the original integral.

We studied related phenomena when we introduced polar coordinates, cylindrical coordi-
nates, and spherical coordinates. Some integrals are easier to evaluate when we represent
them in those coordinate systems. No matter how comfortable we may feel with the rectan-
gular coordinate system, analyzing an integral with an alternative coordinate system often
makes the evaluation of a double or triple integral simpler. For example, we discussed how
to evaluate a double integral

∫∫
�

g(x, y) dA when we analyzed � as a type I region or a
type II region in Section 13.2, but then, in Section 13.3, we extended our discussion by
analyzing � in terms of polar coordinates. In Section 13.3 we saw that

∫∫
�

g(x, y) dA =
∫ β

α

∫ f 2(θ)

f 1(θ)
g(r cos θ , r sin θ ) r dr dθ

when the boundary components of � are determined by the polar functions r = f 1(θ ) and
r = f 2(θ ) for θ ∈ [α, β]. In the current section we will learn how to generalize this idea so
that we can use other coordinate systems to analyze double and triple integrals.

Typically we start with some region � in R
2. We wish to find a function T : � → �′ such

that �′ is a simpler subset of R
2. Such functions are called transformations. In particular,

we will require the transformations that we use in this section to be both one-to-one and
differentiable at every point in the interior of �. As the following schematic illustrates, we
consider the points in � to be given by the rectangular coordinates (x, y) and the points in
our target to be given by coordinates (u, v):

y

x

v

u

vj � v (x, y)

ui � u (x, y)
T

�

�'

T�1
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The goal is to determine a transformation T such that T(�) = �′ may be more simply
analyzed in the new coordinate system. In our schematic, the image set �′ is a rectangle,
but the image set does not need to be that simple.

The coordinates u and v are both functions of x and y. That is,

u = u(x, y) and v = v(x, y).

Since we require T to be one-to-one on the interior of �, it is also invertible. Therefore, the
x- and y-coordinates in the interior of � are functions of u and v; that is,

x = x(u, v) and y = y(u, v).

The grid lines in � in the previous figure at the left are level curves of the form u i = u(x, y)
for 1 ≤ i ≤ m and v j = v(x, y) for 1 ≤ j ≤ n. Optimally, the boundaries of � are also level
curves. If we let �u = u i+1 − u i and �v = v j+1 − v j, then when the mesh of the grid is
relatively small, each subregion, such as the highlighted region in the left-hand figure, may
be approximated by a parallelogram. We expand this subregion in the following figure:

δx
δv

δy
δv〈     ,      〉�v

δx
δu

δy
δu〈     ,      〉�u

We may normalize the vectors
〈
∂x
∂u

, ∂y
∂u

〉
and

〈
∂x
∂v

, ∂y
∂v

〉
at a typical point (x, y) so that they

both have unit length. In this case, the sides of the parallelogram have length
〈
∂x
∂u

, ∂y
∂u

〉
�u

and
〈
∂x
∂v

, ∂y
∂v

〉
�v. As we know from Chapter 10, the area of this parallelogram is given by

the magnitude of the cross product

(〈
∂x
∂u

,
∂y
∂u

, 0
〉
�u
)

×
(〈

∂x
∂v

,
∂y
∂v

, 0
〉
�v
)

=
(〈

∂x
∂u

,
∂y
∂u

, 0
〉
×
〈
∂x
∂v

,
∂y
∂v

, 0
〉)

�u�v.

Recall that the cross product

〈
∂x
∂u

,
∂y
∂u

, 0
〉
×
〈
∂x
∂v

,
∂y
∂v

, 0
〉

= det

⎡
⎢⎢⎢⎣

i j k
∂x
∂u

∂y
∂u

0

∂x
∂v

∂y
∂v

0

⎤
⎥⎥⎥⎦ =

(
∂x
∂u

∂y
∂v

− ∂x
∂v

∂y
∂u

)
k.

Furthermore, the quantity ∂x
∂u

∂y
∂v

− ∂x
∂v

∂y
∂u

is the determinant of the 2 × 2 matrix:

det

⎡
⎢⎣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎤
⎥⎦ = ∂x

∂u
∂y
∂v

− ∂x
∂v

∂y
∂u

.

We use this determinant in the next definition.
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DEFINITION 13.22 The Jacobian for a Transformation in R
2

Let � and �′ be subsets of R
2. If the transformation T : � → �′ has a differentiable

inverse with x = x(u, v) and y = y(u, v), then we define the Jacobian of the transforma-
tion T, denoted by ∂(x,y)

∂(u,v)
, to be the determinant of the matrix of partial derivatives; that

is

∂(x, y)
∂(u, v)

= det

⎡
⎢⎣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎤
⎥⎦ = ∂x

∂u
∂y
∂v

− ∂x
∂v

∂y
∂u

.

Using Definition 13.22, we see that the area of the parallelogram we were discussing is∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣�u�v.

Now, to approximate the integral of a function g(x, y) over a region �, we may use the
Riemann sum

m∑
i=1

n∑
j=1

g(x i, y j)�A =
m∑

i=1

n∑
j=1

g(x(u i, v j), y(u i, v j))
∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣�u�v.

When we take the limit of this Riemann sum as m → ∞ and n → ∞, we have∫∫
�

g(x, y) dA =
∫∫

�′
g(x(u, v), y(u, v))

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ du dv.

If the preceding iterated integral is simple enough, we may use it to evaluate the double
integral.

Our formulas for converting between rectangular and polar coordinates define a trans-
formation if we omit the origin and insist that � ∈ [0, 2π ). Recall that to convert from
rectangular to polar coordinates, we use

r =
√

x 2 + y 2 and tan θ = y
x
.

To convert from polar coordinates to rectangular coordinates, we use

x = r cos θ and y = r sin θ.

Thus, subject to the restrictions we mentioned, the Jacobian of the transformation is

∂(x, y)
∂(r, θ )

= det

⎡
⎢⎣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

⎤
⎥⎦ = det

[
cos θ sin θ

−r sin θ r cos θ

]
= r(cos2 θ + sin2 θ ) = r.

This is the result we expect, since we know that
∫∫

�

g(x, y) dA =
∫∫

�′
g(r cos θ , r sin θ )

∣∣∣∣ ∂(x, y)
∂(r, θ )

∣∣∣∣ dr dθ =
∫∫

�′
g(r cos θ , r sin θ ) r dr dθ.

That is, the factor r we introduced in order to use polar coordinates to evaluate a double
integral is just the Jacobian of the transformation.

To find a change of variable in order to simplify an integral
∫∫

�
f (x, y) dA, we determine

invertible and differentiable functions u = u(x, y) and v = v(x, y) that allow us to analyze �

more easily. To use Definition 13.22 to find the Jacobian we must also find the inverse of the
transformation, which requires us to determine the functions x = x(u, v) and y = y(u, v).
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Rather than go through this step, we may use the fact that ∂(x,y)
∂(u,v)

∂(u,v)
∂(x,y)

= 1. The proof of

this equation is left for Exercise 60.

Change of Variables in R
3

The situation is quite similar in three dimensions. As we have already seen, a three-
dimensional region may be easier to analyze with a coordinate system other than the
rectangular system in R

3. Rather than derive the analogous iterated triple integral in as
great a detail as we did for the two-dimensional case, we will summarize the changes. We
start with some region � initially expressed with rectangular coordinates in R

3. A function
T : � → �′ is a transformation in R

3. We require our transformations in R
3 to be both

invertible and differentiable in the interior of �. We consider the points in � to be given by
the rectangular coordinates (x, y, z) and the points in our target to be given by coordinates
(u, v, w).

The coordinates u, v, and w are all functions of x, y, and z. That is,

u = u(x, y, z), v = v(x, y, z), and w = w(x, y, z).

Since T is invertible, it follows that x, y, and z are each functions of u, v, and w:

x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w).

We use level surfaces to subdivide �:

u i = u(x, y, z) for 1 ≤ i ≤ l, v j = v(x, y, z) for 1 ≤ j ≤ m, and w k = w(x, y, z) for 1 ≤ k ≤ n.

Optimally, the boundaries of � are level surfaces.

We subdivide � into small pieces, each of which may be approximated with a small
parallelepiped, as follows:

δx
δw

δy
δw

δz
δw〈     ,      ,      〉�w

δx
δv

δy
δv

δz
δv〈     ,      ,      〉�v

δx
δu

δy
δu

δz
δu〈     ,      ,      〉�u

The volume of the parallelepiped is given by the triple scalar product
((〈

∂x
∂u

,
∂y
∂u

,
∂z
∂u

〉
�u
)

×
(〈

∂x
∂v

,
∂y
∂v

,
∂z
∂v

〉
�v
))

·
(〈

∂x
∂w

,
∂y
∂w

,
∂z
∂w

〉
�w

)
=

(〈
∂x
∂u

,
∂y
∂u

,
∂z
∂u

〉
×
〈
∂x
∂v

,
∂y
∂v

,
∂z
∂v

〉)
·
〈

∂x
∂w

,
∂y
∂w

,
∂z
∂w

〉
�u�v�w.

Recall that the triple scalar product is equal to the determinant of an appropriate 3 × 3
matrix. We use this matrix to define the Jacobian of a transformation in R

3.
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DEFINITION 13.23 The Jacobian for a Transformation in R
3

Let � and �′ be subsets of R
3. If the transformation T : � → �′ has a differentiable

inverse with x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w), then we define the Jacobian
of the transformation T, denoted by ∂(x,y,z)

∂(u,v,w)
, to be the determinant of the matrix of partial

derivatives; that is,

∂(x, y, z)
∂(u, v, w)

= det

⎡
⎢⎢⎢⎢⎢⎣

∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w

⎤
⎥⎥⎥⎥⎥⎦

.

Thus, we may express the volume of the parallelepiped as
∣∣∣ ∂(x,y,z)
∂(u,v,w)

∣∣∣�u�v�w. Using this
expression in a Riemann sum and taking the appropriate limit, we see that

∫∫∫
�

g(x, y, z) dV =
∫∫∫

�′
g(x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ du dv dw.

If the preceding iterated integral is simple enough, we may use it to evaluate the triple
integral.

The procedure just given is consistent with the evaluation procedure we established
when we introduced spherical coordinates in Section 13.6. From Theorem 13.21, we know
that, given the spherical coordinates ( ρ, θ , φ) of a point, we may obtain the rectangular
coordinates of the point with

x = ρ sin φ cos θ , y = ρ sin φ sin θ , and z = ρ cos φ.

In Exercise 52 you are asked to compute the Jacobian of this transformation and show that

∂(x, y, z)
∂( ρ, θ , φ)

= det

⎡
⎢⎢⎢⎢⎢⎣

∂x
∂ρ

∂y
∂ρ

∂z
∂ρ

∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

⎤
⎥⎥⎥⎥⎥⎦

= −ρ2 sin φ.

Therefore, we again find that
∫∫∫

�

g(x, y, z) dV =
∫∫∫

�′
g(x( ρ, θ , φ), y(ρ, θ , φ), z(ρ, θ , φ))

∣∣∣∣ ∂(x, y, z)
∂(ρ, θ , φ)

∣∣∣∣ dρ dθ dφ

=
∫∫∫

�′
g(x(ρ, θ , φ), y( ρ, θ , φ), z(ρ, θ , φ)) ρ2 sin φ dρ dθ dφ.

Examples and Explorations

EXAMPLE 1 Evaluating a double integral by changing the variable

Evaluate the double integral
∫∫

�

1
(x+y)2

dA, where � is the trapezoidal region in the first

quadrant bounded by the lines x + y = 1 and x + y = 4 and the x- and y-axes.
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SOLUTION

Following is the region �:

y
4

1

x
1 4

�

It would be possible to decompose � into two type I regions or two type II regions, but we
will use a change of variable that allows us to evaluate the integral with a single iterated
integral. The difficulty here is that, relative to the x- and y-axes, the region is mildly com-
plicated. If one of our coordinate axes were parallel to the parallel sides of the trapezoid
and the other were perpendicular to those sides, we would be able to treat � more simply.
Fortunately, we may accomplish this aim with the change of variable

u = x + y and v = y − x.

Note that the level curves for u = x + y are lines with slope −1 and the level curves for v
are lines with slope 1, as we suggested. With this transformation, the equation of the lines
x+y = 1 and x+y = 4 are expressed more simply as u = 1 and u = 4, respectively. Solving
the system u = x+y and v = y−x simultaneously, we may express x and y as the following
functions of u and v:

x = 1
2

(u − v) and y = 1
2

(u + v).

Using these functions, we see that the x-axis ( y = 0) has equation v = −u and the y-axis
(x = 0) has equation v = u. Therefore, under the transformation, the graph of �′ in the
uv-plane is as follows:

v
4

1

�1

�4

u
1 4

�'

Our new variables make it easier to treat �′ as a type I region. Before we set up the
appropriate double integral, we need the Jacobian of the transformation. It is

∂(x, y)
∂(u, v)

= det

⎡
⎢⎣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎤
⎥⎦ = det

⎡
⎢⎣

1
2

1
2

−1
2

1
2

⎤
⎥⎦ = 1

2
.

Now, the double integral will be
∫∫

�

1
(x + y)2 dA = 1

2

∫ 4

1

∫ u

−u

1
u2 dv du.
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Note that because the Jacobian is a constant for this transformation, we were able to factor
it out of the iterated integral. The most difficult part of the process is finding the appropriate
change of variable to simplify � and, therefore, the double integral. The transformation we
used was not the only one we could have used, but it sufficed to simplify the integral. We
leave the evaluation of the iterated integral to Exercise 22. �

EXAMPLE 2 Evaluating another double integral by changing the variable

Evaluate the double integral
∫∫

� 2

x
y

dA, where � 2 is the first-quadrant region bounded by

the lines y = 1
4

x and y = 4x and the curves y = 1
x

and y = 4
x
.

SOLUTION

Following is the region:

�2

y

x
42

4

2

It would be possible to decompose � 2 into three type I regions or three type II regions,
but we will use a change of variable that allows us to evaluate the integral with a single
iterated integral. Note that the curves y = 1

x
and y = 4

x
may also be expressed as xy = 1

and xy = 4, respectively. If we let u = xy, then we may express these two curves as u = 1
and u = 4. The lines y = 1

4
x and y = 4x may be expressed as y

x
= 1

4
and y

x
= 4, respectively.

If we let v = y
x
, we may express these lines as v = 1

4
and v = 4. Thus, in the uv-plane, the

graph of � 2 is transformed to the rectangle � ′
2, as shown in the following figure:

v

u
1 4

4

4
1

�'2

We will treat � ′
2 as a type I region, although we could just as easily treat it as a type II

region.

Before we set up the appropriate double integral, we need the Jacobian of the transfor-
mation. Here we will use the fact that ∂(x,y)

∂(u,v)
∂(u,v)
∂(x,y)

= 1. We have

∂(u, v)
∂(x, y)

= det

⎡
⎢⎣

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

⎤
⎥⎦ = det

⎡
⎢⎣

y − y
x 2

x 1
x

⎤
⎥⎦ = 2y

x
.
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Now, since y
x

= v, it follows that ∂(u,v)
∂(x,y)

= 2v. Thus, ∂(x,y)
∂(u,v)

= 1
2v

.

Alternatively, we could solve the system

u = xy and v = y
x

for x and y. In Exercise 25, you will show that

x =
√

u
v

= u1/2 v−1/2 and y = √
uv = u1/2 v1/2

and to use these equations to show that ∂(x,y)
∂(u,v)

= 1
2v

. Either way, we need to express the

Jacobian in terms of the new variables, here u and v.

We are now ready to rewrite the double integral in terms of the new variables. Since
v = y

x
, we have x

y
= 1

v
; thus, the double integral will be

∫∫
� 2

x
y

dA = 1
2

∫ 4

1

∫ 4

1/4

1
v 2

dv du.

The factor 1
2

in front of the integral was originally a factor of the Jacobian. Again, the

most difficult part of this process is finding the appropriate change of variable to simplify
� 2 and, therefore, the double integral. We leave the evaluation of the iterated integral to
Exercise 26. �

EXAMPLE 3 Finding the area of an elliptical annulus

Find the area between the ellipses with equations 4x 2 + 9y 2 = 36 and 4x 2 + 9y 2 = 144.

SOLUTION

Let S represent this annulus, shown in the following figure:

y

x
63

4

2

If this were a circular annulus, it would be quite easy to find its area. Fortunately, using
a suitably chosen transformation we can obtain a circular annulus. Let u = 2x and v = 3y.
The equations of the ellipses are 4x 2 + 9y 2 = 36 and 4x 2 + 9y 2 = 144, or equivalently,
(2x)2 + (3y)2 = 36 and (2x)2 + (3y)2 = 144. Now, using the transformation, we have

u2 + v2 = 36 and u2 + v2 = 144.

That is, S ′ is a circular ellipse with inner radius 6 and outer radius 12. In order to find the
Jacobian of the transformation, we solve for x and y in terms of u and v. Here we have
x = 1

2
u and y = 1

3
v. Thus, the Jacobian of the transformation is

∂(x, y)
∂(u, v)

= det

⎡
⎢⎣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎤
⎥⎦ = det

⎡
⎢⎣

1
2

0

0 1
3

⎤
⎥⎦ = 1

6
.
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The area of the ellipse is given by the double integral∫∫
S

dA =
∫∫

S ′

∣∣∣∣ ∂(x, y)
∂(u, v)

∣∣∣∣ dA =
∫∫

S ′

1
6

dA.

In our previous examples, we used rectangular coordinates to evaluate the transformed
integrals, but here it is simpler to use polar coordinates. We obtain

∫∫
S

dA = 1
6

∫ 2π

0

∫ 12

6
r dr dθ = 18π. �

CHECKING
THE ANSWER

We could also have computed the area of this annulus by means of the area formula for an
ellipse, or

Area = πab,

where a and b are the lengths of the semimajor and semiminor axes of the ellipse. In this
example, the area of the larger ellipse is 4 · 6π = 24π and the area of the smaller ellipse is
2 · 3π = 6π . Therefore, the area of the annulus is 18π , as we saw before.

TEST YOUR? UNDERSTANDING
� What is the integration-by-substitution formula for evaluating a definite integral? Why

is this formula consistent with the change-of-variable formula that uses Jacobians for
evaluating a double integral? What is the “Jacobian” in the integration-by-substitution
formula?

� How is a Jacobian related to an area in R
2? How is it related to a volume in R

3?

� What is the Jacobian when you convert from rectangular coordinates to polar coor-
dinates in R

2? The Jacobians for the transformations from rectangular coordinates to
polar coordinates in R

2 and from rectangular coordinates to cylindrical coordinates in
R

3 are equal. Why does this make sense?

� What is the Jacobian for the transformation from rectangular coordinates to spherical
coordinates in R

3?

� What do we look for when we are considering a coordinate system to help us evaluate
a double or triple integral?

EXERCISES 13.7

Thinking Back

� Integration by substitution: What is the integration-by-
substitution formula for definite integrals? How is it
derived?

� Integrating with polar coordinates: Let � be a region in
R

2. Give a double integral that represents the area of
� when you integrate with polar coordinates.

� Integrating with cylindrical coordinates: Let � be a re-
gion in R

3. Give a triple integral that represents the
volume of � when you integrate with cylindrical coor-
dinates.

� Integrating with spherical coordinates: Let � be a region
in R

3. Give a triple integral that represents the volume
of � when you integrate with spherical coordinates.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: There is a transformation in R
2 that takes

a circle to a rectangle.

(b) True or False: There is a transformation in R
2 that takes

a parallelogram to a square.
(c) True or False: There is a transformation in R

3 that takes
a cylinder to a rectangular solid.

(d) True or False: There is a transformation in R
3 that takes

a sphere to a rectangular solid.
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(e) True or False: If u = 2x + y and v = x − 2y, then

x = 2
5

u + 1
5

v and y = 1
5

u − 2
5

v.

(f) True or False: If u = 2x + y and v = x − 2y, then
∂(x,y)
∂(u,v)

= 1
5

.

(g) True or False: Given a rectangular region R in the
xy-plane and a square region R ′ in the uv-plane,
there is a transformation taking R to R ′.

(h) True or False: Given a rectangular region R in the
xy-plane and a square region R ′ in the uv-plane,
there is a unique transformation taking R to R ′.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A transformation T : R
2 → R

2 whose Jacobian is a
positive constant.

(b) A transformation T : R
2 → R

2 whose Jacobian
varies.

(c) A transformation T : R
3 → R

3 whose Jacobian is a
negative constant.

3. Let T be a transformation in R
2. How is the Jacobian of

the transformation related to the change in the increment
of area, �A?

Let R be the rectangle in the Cartesian coordinate system
with vertices (1, 0), (3, 2), (2, 3), and (0, 1). Use R to answer
Exercises 4–9.

4. Set up and evaluate iterated double integrals equal to∫∫
R x 2y dA, treating R as a union of type I regions.

5. Set up and evaluate iterated double integrals equal to∫∫
R x 2y dA, treating R as a union of type II regions.

6. Show that the boundaries of R are the lines with equa-
tions x + y = 1, x + y = 5, x − y = 1, and x − y = −1.

(a) Use these equations to explain why the change of
variables u = x+y and v = x−y results in the simpler
system of equations in the uv-coordinate system.

(b) Sketch the graph of the transformed rectangle R ′ in
the uv-coordinate system.

7. Use your transformation from Exercise 6 to express x and
y as functions of u and v, and find the Jacobian of the
transformation.

8. Find the Jacobian of the transformation from Exercise 6,

using the fact that
∂(x,y)
∂(u,v)

∂(u,v)
∂(x,y)

= 1.

9. Set up and evaluate a single iterated double integral equal
to
∫∫

R x 2y dA in which you integrate with respect to u and

v rather than with respect to x and y.

Let a and b be constants. Use the transformation T : R
2 → R

2

defined by u = x + a and v = y + b to answer Exercises 10–13.

10. What does this transformation do to the point with co-
ordinates (x 0, y 0)? What does the transformation do to a
vertical line x = x 0? What does the transformation do to
a horizontal line y = y 0?

11. What does this transformation do to a region �? In par-
ticular, if a = 3, b = 4, and � is the rectangle defined by

the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, what is the
image of � under the given transformation?

12. What are x and y as functions of u and v? What is the
Jacobian of this transformation? How does your answer
conform to the answer to Exercise 3?

13. Explain why this transformation would or would not be
useful for evaluating a double integral.

Let a and b be positive constants. Use the transformation
T : R

2 → R
2 defined by u = ax and v = by to answer

Exercises 14–17.

14. What does this transformation do to the point with co-
ordinates (x 0, y 0)? What does the transformation do to a
vertical line x = x 0? What does the transformation do to
a horizontal line y = y 0?

15. What does this transformation do to a region �? In par-

ticular, if a = 3, b = 1
2

, and � is the square defined by the
inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, what is the image
of � under the given transformation?

16. What are x and y as functions of u and v? What is the
Jacobian of this transformation? How does your answer
conform to the answer to Exercise 3?

17. If we allow either a or b to be negative, how would that
change your answers to Exercises 14 and 16?

Let θ ∈ [0, 2π ). Use the transformation T : R
2 → R

2 defined
by u = (sin θ )x− (cos θ )y and v = (cos θ )x+ (sin θ )y to answer
Exercises 18 and 19.

18. What does this transformation do to a region �? In par-
ticular, if θ = π

6
and � is the rectangle defined by the

inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ 2, what is the image
of � under the given transformation?

19. What are x and y as functions of u and v? What is the
Jacobian of this transformation? How does your answer
conform to the answer to Exercise 3?

20. Let T : R
3 → R

3 be a transformation. How is the Jaco-
bian of the transformation related to the change of the
increment of volume, �V?

Exercises 21–23 continue the work started in Example 1.

21. Evaluate the double integral
∫∫

�

1
(x+y)2

dA without using

a change of variables. Note that you will need to treat �

as the union of two type I regions or two type II regions.

22. Complete Example 1 by evaluating the iterated integral
1
2

∫ 4
1

∫ u
−u

1
u2

dv du.

23. Find the areas of the trapezoid � and the transformed
trapezoid �′ in Example 1. What is the relationship
between these two areas and the Jacobian of the trans-
formation?

Exercises 24–26 continue the work started in Example 2.

24. We mentioned that to evaluate the double integral∫∫
� 2

x
y

dA without using a change of variables, you would

need to decompose � 2 into a union of three type I regions
or three type II regions. What are those decompositions?
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25. Show that if u = xy and v = y
x

, then

x =
√

u
v

= u1/2 v−1/2 and y = √
uv = u1/2 v1/2.

Use these formulas to show that
∂(x,y)
∂(u,v)

= 1
2v

.

26. Complete Example 2 by evaluating the iterated integral

∫∫
� 2

x
y

dA = 1
2

∫ 4

1

∫ 4

1/4

1
v2

dv du.

Skills

In Exercises 27–32, functions x = x(u, v) and y = y(u, v) are
given that determine transformations from an xy-coordinate
system to a uv-coordinate system in R

2. Use these functions
to determine a region in the xy-plane that has the image spec-
ified for the given values of u and v, and find the Jacobian of
the transformation.

27. x = u − v and y = u + v for 0 ≤ u ≤ 2 and 0 ≤ v ≤ 1
28. x = 3u + 4v and y = 4u − 3v for 1 ≤ u ≤ 3 and 1 ≤ v ≤ 5

29. x = u
v

and y = uv for 1 ≤ u ≤ 2 and 1 ≤ v ≤ 3

30. x = u 2 + v 2 and y = u 2 − v 2 for 0 ≤ u ≤ 4 and 0 ≤ v ≤ 4

31. x = u sin v and y = u cos v for 0 ≤ u ≤ 2 and 0 ≤ v ≤ π

32. x = u sec v and y = u tan v for 0 ≤ u ≤ 2 and 0 ≤ v ≤ π

4

For each double integral in Exercises 33–38, (a) sketch the
region �, (b) use the specified transformation to sketch the
transformed region, and (c) use the transformation to evalu-
ate the integral.

33.
∫∫

�
(x + y)2 dA, where � is the trapezoid with vertices

(1, 3), (3, 1), (9, 3), and (3, 9). Use the transformation given
by u = x + y and v = x − y.

34. Evaluate the integral from Exercise 33, but use the trans-
formation given by u = x + y and v = 3x − y.

35. Evaluate the integral from Exercise 33, but use the trans-
formation given by u = x + y and v = x

y
.

36.
∫∫

�
xy dA, where � is the trapezoid with vertices (2, 3),

(3, 2), (5, 3), and (3, 5). Use the transformation from Exer-
cise 33.

37. Evaluate the double integral from Exercise 36, using the
transformation given by u = x + y and v = 2y − x.

38.
∫∫

�

(
y3

x
− xy

)
dA, where � is the region in the first and

second quadrants that is bounded above by the hyper-
bola y 2 − x 2 = 12, bounded below by the hyperbola
y 2 − x 2 = 3, and bounded on the left and right by the
lines y = −2x and y = 2x, respectively. Use the transfor-
mation given by u = y

x
and v = y 2 − x 2.

Evaluate the double integrals in Exercises 39–48. Use suitable
transformations as necessary.

39.
∫∫

�
(x−y)3 dA, where � is the parallelogram with vertices

(0, 0), (3, 0), (5, 2), and (2, 2).

40.
∫∫

�
xy dA, where � is the parallelogram from Exercise 39.

41.
∫∫

�

2y−x
3x+y+1

dA, where � is the parallelogram with ver-

tices (0, 0), (2, 1), (1, 4), and (−1, 3).

42.
∫∫

�
(3x 2 − 5xy − 2y 2) dA, where � is the parallelogram

from Exercise 41.

43.
∫∫

�

(
x2

y2
+ x 2y 2

)
dA, where � is the following region:

xy � 3

1
3y � �x

y

x
3 9

3

9

y � 3x

xy � 27

44.
∫∫

�
xy 3 dA, where � is the region from Exercise 43.

45.
∫∫

�

y2

x3
dA, where � is the following region:

y

x
1 42

4

8

16

y � 2x
y � 2x2

y � x2

y � x

46.
∫∫

�

y+xy
x2

dA, where � is the region from Exercise 45.

47.
∫∫

�

x3

y3
dA, where � is the following region:

y

x

1

2

y � 2x

y2 � x2 � 4

y2 � x2 � 1

1
3 3

2

48.
∫∫

�
x 2
(

1 − 1
y2

)
dA, where � is the region from Exer-

cise 47.
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Applications
49. Joe plans to build a swimming pool in his backyard in the

shape of parallelogram to fit the contours of his property
in the dimensions shown in the following figure:

25 feet
15 feet

3 feet
deep

8 feet
deep60°0°60°60°

The shallow end of the pool will start at a depth of 3 feet
and will increase linearly to a depth of 8 feet on the oppo-
site side of the pool. How much water will the pool hold?

50. Joe also plans to build a goldfish pond in the front of his
house in the shape of an ellipse with a 5-foot major axis
and a 3-foot minor axis. The water in the pond will be
deepest at the center of the pond. The depth of the water,
in feet, at any point in the pond will be given by the func-

tion d(x, y) = 2

√
x2

25
+ y2

9
− 2, where (x, y) = (0, 0) rep-

resents the center of the surface of the pond. How much
water will the pond hold?

Proofs

51. The formulas for converting from cylindrical coordinates
to rectangular coordinates are

x = r cos θ , y = r sin θ , and z = z.

Prove that the Jacobian
∂(x,y,z)
∂(r,θ ,z)

= r.

52. The formulas for converting from spherical coordinates to
rectangular coordinates are

x = ρ sin φ cos θ , y = ρ sin φ sin θ , and z = ρ cos φ.

Prove that the Jacobian
∂(x,y,z)
∂(ρ,θ ,φ)

= −ρ2 sin φ.

Let α, β, γ , and δ be constants. A transformation T : R
2 → R

2,
where

x = αu + βv and y = γ u + δv,

is called a linear transformation of R
2. Use this transforma-

tion to answer Exercises 53–55.

53. Prove that a linear transformation takes a line ax + by = c
in the xy-plane to a line in the uv-plane if the Jacobian of
the transformation is nonzero.

54. Prove that there is a linear transformation that takes a
line in the xy-plane to a point in the uv-plane if the
Jacobian of the transformation is zero.

55. Assuming that the Jacobian is nonzero, find expressions
for u and v as functions of x and y.

56. Let α i, β i, and γ i be constants for i = 1, 2, and 3. A trans-
formation T : R

3 → R
3 defined by

x = α1 u + β 1 v + γ 1 w,

y = α2 u + β 2 v + γ 2 w, and

z = α3 u + β 3 v + γ 3 w.

is called a linear transformation of R
3. Prove that this

transformation takes a plane ax + by + cz = d in the xyz-
coordinate system to a plane in the uvw-coordinate sys-
tem if the Jacobian of the transformation is nonzero.

57. Use a change of variables to prove that the area of the

ellipse with equation
( x

a

)2
+
( y

b

)2
= 1 is πab.

y

x
�a a

�b

b

58. Use a change of variables to prove that the volume of the

ellipsoid with equation
( x

a

)2
+
( y

b

)2
+
( z

c

)2
= 1 is

4
3
πabc.

59. Prove the following chain rule for Jacobians: If x and y are
differentiable functions of u and v, and if u and v are dif-
ferentiable functions of s and t, then

∂(x, y)
∂(s, t)

= ∂(x, y)
∂(u, v)

∂(u, v)
∂(s, t)

.

60. Let � and �′ be subsets of R
2. Use the results of Exer-

cise 59 to prove that if a transformation T : � → �′ is
invertible, and if both T and T−1 are differentiable, then

∂(x, y)
∂(u, v)

∂(u, v)
∂(x, y)

= 1.
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Thinking Forward

Determinants of 3 × 3 matrices: Let

A =
⎡
⎣ a 11 a 12 a 13

a 21 a 22 a 23
a 31 a 32 a 33

⎤
⎦ .

The determinant of A, det(A), may be defined in terms
of determinants of 2 × 2 matrices as follows:

det(A) = a 11 det
[

a 22 a 23
a 32 a 33

]

− a 12 det
[

a 21 a 23
a 31 a 33

]
+ a 13 det

[
a 21 a 22
a 31 a 32

]
.

� Show that the previous definition of det(A) provides
the same result as the procedure we used to find the
determinant of a 3 × 3 matrix earlier in this section.

� Use the preceding definition to find

det

⎡
⎣ 1 3 4

−2 5 −1
−4 2 −3

⎤
⎦ .

� In an analogous fashion, find a recursion formula for
computing the determinant of a 4 × 4 matrix in terms
of determinants of 3 × 3 matrices.

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Before you progress to the next chapter, be sure you are familiar with the definitions, concepts, and basic skills outlined here.
The capstone exercises at the end bring together ideas from this chapter and look forward to the next chapter.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or an algebraic example.

� a Riemann sum for a function z = f (x, y) defined on a rect-
angle R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}

� the double integral of f over

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}
� the double integral of f over a general region

� ⊆ {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}
� the Jacobian of a transformation T : � → �′

Theorems

Fill in the blanks to complete each of the following theorem
statements:

� Fubini’s theorem: Let a < b and c < d be real numbers, and
let R be the rectangle defined by

R = {(x, y) | a ≤ x ≤ b and c ≤ y ≤ d}.
If f (x, y) is continuous on R , then

∫∫
R f (x, y) dA =

.

� If f (x, y) is an integrable function and c ∈ R, then∫∫
�

cf (x, y) dA = .

� If f (x, y) and g(x, y) are integrable functions, then∫∫
�

( f (x, y) + g(x, y)) dA = .

� Let f (x, y) be an integrable function on the general re-
gion �. If � 1 and � 2 are general regions that are
subsets of , and if � = � 1 ∪ � 2, then∫∫

�
f (x, y) dA = .

Notation and Algebraic Rules

Notation: Give the meanings of each of the following mathe-
matical expressions:

�
m∑

j=1

n∑
k=1

a j k �
l∑

i=1

m∑
j=1

n∑
k=1

a ijk

�
∫∫

R
f (x, y) dA �

∫ b

a

∫ g 2(x)

g 1(x)
f (x, y) dy dx

�
∫ d

c

∫ h 2( y)

h 1( y)
f (x, y) dx dy �

∫∫∫
R

f (x, y, z) dV

�
∫ b

a

∫ h 2(x)

h 1(x)

∫ g 2(x,y)

g 1(x,y)
f (x, y, z) dz dy dx.

� ∂(x, y)
∂(u, v)

� ∂(x, y, z)
∂(u, v, w)

Converting between coordinate systems: Provide the conversion
formulas between each of the coordinate systems that follow.
Include a sketch indicating the reason for each formula.

� Given rectangular coordinates x and y, the polar coordi-
nates are r = and tan θ = .
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� Given polar coordinates r and θ , the rectangular coordi-
nates are x = and y = .

� Given rectangular coordinates x, y, and z, the cylindri-
cal coordinates are r = , tan θ = , and
z = .

� Given cylindrical coordinates r, θ , and z, the rectan-
gular coordinates are x = , y = , and
z = .

� Given rectangular coordinates x, y, and z, the spheri-
cal coordinates are ρ = , θ = , and
φ = .

� Given spherical coordinates ρ, tan θ , and cos φ, the spher-
ical coordinates are x = , y = , and
z = .

� Given cylindrical coordinates r, θ , and z, the spheri-
cal coordinates are ρ = , θ = , and
tan φ = .

� Given spherical coordinates ρ, θ , and φ, the cylindri-
cal coordinates are r = , θ = , and
z = .

First and Second Moments: Let ρ(x, y) be a continuous den-
sity function for a lamina � in the xy-plane. Provide iterated
integrals or iterated integral expressions that could be used to
compute each of the following quantities:

� the mass of �

� the first moment of the mass in � about the y-axis

� the first moment of the mass in � about the x-axis

� the center of mass of �

� the moment of inertia of the mass in � about the y-axis

� the moment of inertia of the mass in � about the x-axis

� the moment of inertia of the mass in � about the origin

� the radius of gyration of the mass in � about the y-axis

� the radius of gyration of the mass in � about the x-axis

� the radius of gyration of the mass in � about the origin

Skill Certification: Integrating Functions of Two and Three Variables

Using the definition to evaluate a double integral: Evaluate the
given double integrals as a limit of a Riemann sum. For each
integral, let R = {(x, y) | 0 ≤ x ≤ 2 and 1 ≤ y ≤ 4}.

1.
∫∫

R
(x + 2y) dA 2.

∫∫
R

(xy 2) dA

Evaluating a double integral as an iterated integral: Use Fubini’s
theorem to evaluate the given double integrals. For each in-
tegral, show that you obtain the same result when you in-
tegrate using both possible orders of integration when R =
{(x, y) | 0 ≤ x ≤ 2 and 1 ≤ y ≤ 4}.

3.
∫∫

R
(x + 2y) dA 4.

∫∫
R

(xy 2) dA

Evaluating iterated integrals: Sketch the region determined by
the limits of the given iterated integrals, and then evaluate the
integrals.

5.
∫ 1

0

∫ √
x

x 2
x 2y 3 dy dx 6.

∫ 2

0

∫ √
4−x 2

0
y 3 dy dx

7.
∫ 1

0

∫ √
1−y 2

−
√

1−y 2

x
y + 1

dx dy 8.
∫ 2

1

∫ 1/x

0

√
xy dy dx

9.
∫ 4

1

∫ 1/y

0

x
y

dx dy 10.
∫ 2

0

∫ y

0
x
√

y 2 − x 2 dx dy

Reversing the order of integration: Sketch the region determined
by the limits of the given iterated integrals, and then evaluate
the integrals by reversing the order of integration.

11.
∫ 4

0

∫ 2

√
x

y cos x dy dx 12.
∫ √

π

0

∫ √
π

x
sin y 2 dy dx

13.
∫ 9

0

∫ 3

√
y

1
1 + x 3

dx dy 14.
∫ 16

0

∫ 2

4√x

1
1 + y 5

dy dx

15.
∫ 4

0

∫ 4

y
e y/x dx dy 16.

∫ 1

0

∫ 1

√
x

e x/y 2
dy dx

Using polar coordinates to evaluate iterated integrals: Sketch the
region determined by the limits of the given iterated integrals,
and then evaluate the integrals.

17.
∫ π/2

0

∫ 3

0
r 2 dr dθ 18.

∫ 3π/2

π/2

∫ 4

1
r 3/2 dr dθ

19.
∫ π/2

0

∫ 2 sin θ

0
r 3 dr dθ 20.

∫ 2π

0

∫ 1+sin θ

0
r dr dθ

Using polar coordinates to evaluate iterated integrals: Evaluate the
given iterated integrals by converting them to polar coordi-
nates. Include a sketch of the region.

21.
∫ 2

0

∫ √
4−y 2

0
e x 2+y 2

dx dy

22.
∫ 4

0

∫ √
4y−y 2

0

1√
x 2 + y 2

dx dy

23.
∫ 3

−3

∫ √
9−x 2

−√
9−x 2

x + 2y
x 2 + y 2

dy dx

24.
∫ 0

−5

∫ 0

−√
25−x 2

3
(4 + x 2 + y 2)3

dy dx

Evaluating triple integrals: Each of the triple integrals that fol-
lows represents the volume of a solid. Sketch the solid and
evaluate the integral.

25.
∫ 2

0

∫ 4

1

∫ 3

−2
dx dy dz 26.

∫ 5

1

∫ 0

−2

∫ 3

−1
dz dy dx

27.
∫ 4

0

∫ 3−(3/4)x

0

∫ 2−(1/2)x−(2/3)y

0
dz dy dx

28.
∫ 3

0

∫ 2−2y/3

0

∫ 4−(4/3)y−2z

0
dx dz dy
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29.
∫ 2

−2

∫ √
4−x 2

0

∫ y

0
dz dy dx

30.
∫ 2π

0

∫ 2

0

∫ 5

0
r dz dr dθ

31.
∫ 2π

0

∫ 3

0

∫ √
9−r 2

0
r dz dr dθ

32.
∫ 2π

0

∫ 4

0

∫ 4

r
r dz dr dθ

33.
∫ 2π

0

∫ 4

0

∫ 4−r

0
r dz dr dθ

34.
∫ π

0

∫ 2

0

∫ r sin θ

0
r dz dr dθ

35.
∫ π

0

∫ 2π

0

∫ 5

0
ρ2 sin φ dρ dθ dφ

36.
∫ π/4

0

∫ 2π

0

∫ 4 sec θ

0
ρ2 sin φ dρ dθ dφ

Capstone Problems

A. Show that
∫ 1

0

∫ 1

0

x − y
(x + y)3

dy dx �=
∫ 1

0

∫ 1

0

x − y
(x + y)3

dx dy.

Explain why this does not contradict Fubini’s theorem.

B. A hole with radius
R
2

is drilled though the center of a
sphere with radius R, as shown in the following figure.
Find the volume of the resulting solid. (Hint: You may as-
sume that the equation of the sphere is x 2 +y 2 +z 2 = R2 and
the equation of the cylinder through the sphere is x 2 + y 2 =
(R/2)2.)

y

z

x
2
R

R

C. Find the center of mass and moment of inertia about the
z-axis for the solid from Problem B, assuming that it has
a uniform density.

D. Evaluate the integral
∫∫

T
ln

(
y−x
x+y

)
dA,

where T is the first-quadrant triangular region with
vertices (2, 3), (2, 4), and (3, 4).
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14.1 VECTOR FIELDS

� An overview of vector analysis

� Assigning a vector to each point in Euclidean space

� Conservative vector fields and their potential functions

Calculus and Vector Analysis

In this final chapter, we unify and generalize our understanding of integration and the
Fundamental Theorem of Calculus. We will generalize the original notion of integration
that was introduced in Chapter 4 to enable us to integrate over curves other than the
x-axis, extend the integration results of Chapter 13 to allow us to perform double integra-
tion over regions other than regions in the xy-plane, and see new multivariate extensions
of the Fundamental Theorem of Calculus. The basic ideas will be the same, but the con-
text in which we implement them will be more subtle and more varied. Now would be an
excellent time to review what you have studied about the integration of functions of one
variable, vector-valued functions, and multivariate functions.

Here are two examples of the types of questions we will address in this chapter. First,
consider a fence whose base is a straight line, like the x-axis, and another fence whose base
is along an undulating hill:

y

x

y

x

Both fences clearly have well-defined areas. To find the area of the first, we integrate

A =
∫

h(x) dx,

where h(x) is a function that tells us the height of the fence above the x-axis. The area of
the second fence is not quite this integral, since the curve of its base will distort the fence.
Still, the fence height and its base appear smooth, so its area ought to be expressible as
a one-variable integration of something, where we integrate along the green curve in the
figure. The resulting integral will combine ideas we used for computing arc lengths and
areas in previous chapters. The resulting integral will have the form

A =
∫

h(t)ϕ(t) dt,

where ϕ(t) is a factor that accounts for the bending of the base.

Similarly, in Section 6.4 we discussed work W as the product of force F and distance d,
or W = Fd. From this equation, we saw how to choose an appropriate integral to cal-
culate the work done in pumping water out the top of a tank, opposite the downward
force of gravity. If we wanted to know the work required to move an object along a more
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complicated path, and opposed to a variable force, we would expect that this, too, could be
expressed as an integral, perhaps now with multiple inputs.

In Section 14.2 we will see how to solve both of these problems. For now, we introduce
a new mathematical object that is necessary for the solution.

Vector Fields

One immediate question that confronts us when considering how to generalize the Funda-
mental Theorem of Calculus to several dimensions is the issue of what, exactly, we are trying
to integrate. As we saw in the preceding example we might be interested in finding the area
of a fence whose base is curved; we might also be interested in the work done by that fence
as it stays upright in a windstorm, when whirling wind exerts forces of different strengths
and in different directions on the fence at different points. This idea of varying forces asso-
ciated with points in space or points in the plane motivates the notion of a vector field.

A vector field is a function that assigns a vector to each point in its domain. Thus, a
vector field in the plane has inputs that are points in the xy-plane and outputs that are
vectors in the xy-plane; a vector field in R

3 has inputs that are points in R
3 and outputs

that are vectors in R
3.

DEFINITION 14.1 Vector Field

A vector field in R
2 is a function F(x, y) with domain D ⊆ R

2 and whose outputs are
vectors in R

2 of the form

F(x, y) = 〈
F 1(x, y), F 2(x, y)

〉
for each point (x, y) in D.

Similarly, a vector field in R
3 is a function G(x, y, z) with domain D ⊆ R

3 and whose
outputs are vectors in R

3 of the form

G(x, y, z) = 〈
G 1(x, y, z), G 2(x, y, z), G 3(x, y, z)

〉
for each point (x, y, z) in D.

In this chapter, the only vector fields we are interested in are those whose domains are
well-behaved enough to support vector analysis. Thus, for the remainder of our discussion
of vector fields, we will always suppose that every vector field has a domain D that is open,
connected, and simply connected. This means that D is open in the sense of Chapter 12;
that, for any two points P and Q in D, there is a path from P to Q that lies in D; and that
any loop in D can be smoothly contracted to a point in D. In general, a two-dimensional
region is simply connected if it does not contain any holes.

A region in R
2 that is simply connected A region in R

2 that is not simply connected
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A region in R
3 that is simply connected A region in R

3 that is not simply connected

A three-dimensional region may have holes and yet still be simply connected, as shown
in the following sequence of figures:

We will also usually assume that the vector field in question is sufficiently smooth so
that the component functions are continuous and have continuous first partial derivatives.

The notion of a vector field in R
n may of course be defined analogously for any natural

number n, but we will not need such vector fields in this text.

Following are pictures of the vector fields F(x, y) = 2i + 0j and G(x, y) = i − j, where
at each point (x, y) we draw the vector

〈
F1(x, y), F2(x, y)

〉
:

F(x, y) = 2i + 0j G(x, y) = i − j

�8

y

x
8�8

8

�8

y

x
8�8

8

Note that these diagrams show only some of the vectors. A true representation would look
like a solid block of color, because every point in the plane would have a vector associated
with it. The following vector fields F(x, y) = 〈x, y〉 and G(x, y) = 〈sin x, sin y〉 are slightly
more interesting:
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F(x, y) = 〈x, y〉 G(x, y) = 〈sin x, sin y〉

�1

y

x
1�1

1

�

y

x
2ππ�2π �π

�2π

�π

2π

π

π π

�2π�

�π

π

2π

π π

Note that in the vector field F the magnitudes of the vectors in the codomain increase
as we move away from the origin and have constant magnitude on concentric circles about
the origin. For example, ‖F(x, y)‖ = 1 if and only if (x, y) lies on the unit circle. In addition,
all vectors emanating from points near the origin point away from the origin. In such a
situation the origin is called a source. In all of our vector fields, the vectors are drawn so
that their lengths are representative of their magnitudes.

In the vector field G, all vectors emanating from points near the origin again point away
from the origin, so the origin is a source. In addition because of the periodicity of the sine
function, all coordinate pairs of the form (2kπ , 2nπ ), where k and n are both integers, are
also sources. Note, however, that all of the vectors that emanate from points surrounding
(π , π ) point towards (π , π ). Such a point is called a sink. Again by the periodicity of the sine,
all points of the form ((2k +1)π , (2n +1)π), where k and n are both integers, are also sinks.

Conservative Vector Fields

Some vector fields, such as F(x, y) = 〈x, y〉, can be written as the gradient of a function. For
example, we might have

F(x, y) = ∇f (x, y), where f (x, y) = x 2

2
+ y 2

2
and ∇f = ∂ f

∂ x
i + ∂ f

∂ y
j

This is one of the infinitely many possible choices for the function f (x, y). It is also true that

F(x, y) = ∇g(x, y), where g(x, y) = x 2

2
+ y 2

2
+ α,

for any choice of the constant α.

If a vector field can be expressed as a gradient, then it has many mathematically desir-
able attributes, including being easy to integrate along curves, a property we will see in the
next section. Such fields are known as conservative vector fields.

DEFINITION 14.2 Conservative Vector Field

A conservative vector field F is a vector field that can be written as the gradient of some
function f . That is,

F(x, y) = ∇f (x, y) = ∂ f
∂x

i + ∂ f
∂y

j

if f (x, y) is a function of two variables, or

F(x, y, z) = ∇f (x, y, z) = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k

if f (x, y, z) is a function of three variables.

In either case, any function f whose gradient is equal to F is called a potential function
for F.
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Recall that if a function g(x, y) has continuous first and second partial derivatives, then

∂2g
∂y∂x

= ∂2g
∂x∂y

.

So, to verify that F(x, y) = 〈F 1(x, y), F 2(x, y)〉 is a conservative vector field with a potential
function f (x, y) (with continuous second partial derivatives), it is sufficient to check that

∂F 1

∂y
= ∂F 2

∂x
,

since equality of these first partial derivatives of the components of F means that the mixed
second-order partial derivatives of f are equal. In fact, a vector field

F(x, y) = 〈F 1(x, y), F 2(x, y)〉,

whose first partial derivatives ∂ F1

∂y
and ∂ F2

∂x
are both continuous on an open subset of R

2, is

conservative if and only if ∂ F1

∂y
= ∂ F2

∂x
.

The situation is similar for vector fields in R
3, except there are more mixed partial

derivatives to check. Note that potential functions are not unique. As we saw earlier, if
f (x, y) is a potential function for a conservative vector field F(x, y), then so is f (x, y) + α for
any constant α.

In some cases it will be enough to know that a vector field is conservative; in others, it
will be important to find a potential function for the field. By thinking through the defini-
tions of conservative vector fields and potential functions, we can see that the question is
one of recovering a function from its partial derivatives. That is easy to do by integrating,
but there is a subtle point to consider.

For example, let

G(x, y, z) = 6xzi + cos yj + 3x 2 k.

By checking all six mixed second partial derivatives, we find that G is indeed conservative.
Now, we want a potential function g(x, y, z) whose gradient is G. Any g that satisfies

∂g
∂x

= 6xz, ∂g
∂y

= cos y, ∂g
∂z

= 3x 2

will work. We let G 1(x, y, z) = 6xz, G 2(x, y, z) = cos y, and G 3(x, y, z) = 3x 2 and begin by
integrating G 1 with respect to x:

∫
G 1(x, y, z) dx =

∫
6xz dx = 3x 2z + α = g(x, y, z).

But the gradient of this function is not G(x, y, z). Here we have

∇g(x, y, z) = 6xzi + 0j + 3x 2 k.

We are missing a term that will give the correct partial derivative for y. Since the terms
of g that do not involve x are constants with respect to differentiation by x, we can fix the
problem by integrating all the terms of G 2 that do not involve x, integrating the terms of G 3
that involve neither x nor y, and adding the results to the function g that we have already
found. This gives ∫

G 2(x, y, z) dy =
∫

cos y dy = sin y + α.
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Since none of the terms of G 3 involve only z, when we add sin y + α to our previous func-
tion and set the constant term to zero, we obtain

g(x, y, z) = 3x 2z + sin y.

You may check that

∇g(x, y, z) = 〈6xz, cos y, 3x 2〉 = G(x, y, z).

More generally, to find the potential functions f (x, y) and g(x, y, z) for the respective
conservative vector fields

F(x, y) = 〈F 1(x, y), F 2(x, y)〉 and G(x, y, z) = 〈G 1(x, y, z), G 2(x, y, z), G 3(x, y, z)〉,
we construct

f (x, y) =
∫

F 1(x, y) dx + B and g(x, y, z) =
∫

G 1(x, y, z) dx + B + C,

where B is the integral with respect to y of the terms in F 2(x, y) or G 2(x, y, z) that have no
x factor and C is the integral with respect to z of the terms in G 3(x, y, z) that have no x or y
factor.

It is also possible, and sometimes more convenient, to perform these integrations
in other orders. Consider the complexities of the component functions when you are
deciding.

Examples and Explorations

EXAMPLE 1 Drawing vector fields in the plane

Sketch or use graphing software to create plots of the following vector fields in R
2:

(a) F(x, y) = 〈x, −y〉 (b) G(x, y) = y
x 2 + y 2

i + x
x 2 + y 2

j

SOLUTION

Following are the two vector fields:

F(x, y) = 〈x, −y〉 G(x, y) = y
x 2 + y 2

i + x
x 2 + y 2

j

�1

y

x
1�1

1

�

y

x
�1

1

�1

1

Each vector in the field is computed using the component functions. For example,
F (1, 1/2) = 〈1, −1/2〉. Our graphs are drawn with software, but they may be drawn by
hand. �
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EXAMPLE 2 Drawing vector fields in R
3

Sketch or use graphing software to create plots of the given vector fields in R
3. Identify any

sources or sinks in each vector field.

(a) F(x, y, z) = 〈x, y, z〉 (b) G(x, y, z) = yi − xj + zk

SOLUTION

Three-dimensional vector fields can be a little difficult to understand, even when we use
graphing software. As an aid, it may be useful to visualize the analogous vector field one
dimension lower.

(a) The vector field F(x, y) = 〈x, y〉 that we drew earlier in the section is a two-dimensional
analog for the field shown next. Each vector points away from the origin, their mag-
nitudes increase as you move away from the origin, and the magnitudes are constant
on spheres centered at the origin. Note that to determine any particular vector in the
field, we evaluate the function at a point. For example, F(1, 2, 3) = 〈1, 2, 3〉.

F(x, y, z) = 〈x, y, z〉

y
x

z

Note that the origin is a source in this vector field, since all vectors emanating from
points near the origin point away from it.

(b) We first sketch the two-dimensional vector field G(x, y) = yi − xj shown next at the
left. We see that the vectors are tangent to concentric circles centered at the origin
and that their magnitudes increase as you move away from the origin. In the three-
dimensional vector field G(x, y, z) = y i−x j+z k shown at the right, the k-components
of the vectors increase as you move away from the xy-plane as well.

G(x, y) = yi − xj G(x, y, z) = yi − xj + zk

�1

y

x
1�1

1

y
x

z

This vector field has no sources or sinks. �
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EXAMPLE 3 Determining whether a vector field is conservative

Determine whether the vector fields from Example 1 are conservative.

(a) F(x, y) = 〈x, −y〉 (b) G(x, y) = y
x 2 + y 2

i + x
x 2 + y 2

j

SOLUTION

A vector field F(x, y) = 〈F 1(x, y), F 2(x, y)〉 is conservative if and only if

∂F 1

∂y
= ∂F 2

∂x

when ∂ F1

∂y
and ∂ F2

∂x
are both continuous on some open subset of R

2.

(a) For the vector field F(x, y) = 〈x, −y〉,
∂F 1

∂y
= ∂

∂y
(x) = 0 and

∂F 2

∂x
= ∂

∂x
(−y) = 0.

Since these partial derivatives are the same, F(x, y) is indeed conservative.

(b) For the vector field G(x, y) = y
x2 +y2

i + x
x2 +y2

j,

∂G 1

∂y
= ∂

∂y

( y
x 2 + y 2

)
= x 2 − y 2

(x 2 + y 2) 2 and
∂G 2

∂x
= ∂

∂x

( x
x 2 + y 2

)
= y 2 − x 2

(x 2 + y 2) 2 .

Since ∂G1

∂y
�= ∂G2

∂x
and these partial derivatives are continuous on every open subset of

R
2 not containing the origin, G(x, y) is not conservative. �

EXAMPLE 4 Finding a potential function for a vector field in R
2

Find a potential function for the vector field F(x, y) = 〈x, −y〉 from Example 1.

SOLUTION

Since
F(x, y) = 〈x, −y〉,

f (x, y) =
∫

x dx + B = x 2

2
+ α + B,

where α is an arbitrary constant and B is the integral with respect to y of the terms in F 2(x, y)
in which the factor x does not appear. In this case, that is all of F 2(x, y), so

B =
∫

(−y) dy = −y 2

2
+ β,

where β is an arbitrary constant. Setting the constants equal to zero since they do not affect
the gradient of f (x, y), we have

f (x, y) = x 2

2
− y 2

2
.

�

CHECKING
THE ANSWER

We can verify this solution by computing ∇f directly:

∇f (x, y) = f x(x, y)i + f y(x, y)j = xi − yj = F(x, y).
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EXAMPLE 5 Finding a potential function for a vector field in R
3

Find a potential function for

G(x, y, z) =
(

y
x 2 + 1

+ z
)

i + tan−1 xj + (x + cos z) k.

SOLUTION

We start by integrating G 1(x, y, z). We have

g(x, y, z) =
∫ (

y
x 2 + 1

+ z
)

dx + B + C = y tan−1 x + xz + α + B + C,

where α is an arbitrary constant, B is the integral with respect to y of the terms in G 2(x, y, z)
in which the factor x does not appear, and C is the integral with respect to z of the terms
in G 3(x, y, z) in which neither the factor x nor the factor y appears. In this case B = 0,
because the only term in G 2(x, y, z) is tan−1 x and this part of the function g(x, y, z) is
already recovered by the integral of G 1(x, y, z). For C, however, there is a term with no
x- or y-component, so

C =
∫

cos z dz = sin z + β,

where β is an arbitrary constant. Combining these results and setting the arbitrary con-
stants to zero, we see that

g(x, y, z) = y tan−1 x + xz + sin z

is a potential function for G(x, y, z). �

CHECKING
THE ANSWER

We can verify this solution by computing ∇g(x, y, z) directly:

∇g(x, y, z) = 〈 g x, g y, g z〉 =
(

y
x 2 + 1

+ z
)

i + tan−1 x j + (x + cos z) k = G(x, y, z).

TEST YOUR? UNDERSTANDING
� Which curve is longer, the curve y = 0 for 0 ≤ x ≤ π or the curve y = sin x for

0 ≤ x ≤ π? Why? With the answer to this question in mind, which of the fences
pictured in the illustration on page 1086 has a greater area? Why?

� Which of the vector fields pictured in this section would carry an object caught within
towards the origin? Why?

� If f (x, y, z) is a potential function for F(x, y, z), then what is ∇f (x, y, z)?

� What does it mean to say that a vector field F(x, y) is conservative? How would you
show that a vector field failed to be conservative?

� Given a conservative vector field, how do we find its potential function? How does the
procedure for finding a potential function for a conservative vector field in the plane
differ from the procedure for finding a potential function for a conservative vector field
in R

3?
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EXERCISES 14.1

Thinking Back

� Work as an integral of force and distance: Find the
work done in moving an object along the x-axis from
the origin to x = π

2
if the force acting on the object at

a given value of x is F(x) = x sin x.

Vector geometry: Use properties of vectors to obtain each of the
specified quantities.

� Find a unit vector that points in the direction of
F(3, 3,

√
13 ) for the vector field

F = z(x − y)2i + √
y j + k.

� Find the equation of a line through the origin and
parallel to F(3, 3,

√
13 ).

Calculus of vector-valued functions: Calculate each of the
following.

� d
dt

(r(t)), where r(t) = 3 cos 2 t i + 5 t j + t
t2 +1

k.

�
∫

r(t) dt, where r(t) = e t i + t 3 j − 4k.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: A vector field is a function whose out-
puts are scalars.

(b) True or False: A vector field is a function whose out-
puts are vectors.

(c) True or False: A vector field is a function whose inputs
are scalars.

(d) True or False: A vector field in R
3 is a function whose

inputs are points in R
3.

(e) True or False: A conservative vector field has infinitely
many potential functions.

(f) True or False: Every vector field F(x, y) is the gradient
of some function f (x, y).

(g) True or False: If two functions have the same gradient,
they are the same function.

(h) True or False: Work is the integral of force times dis-
tance.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A vector field in R
2 and another in R

3.
(b) A conservative vector field.
(c) A vector field that is not conservative.

3. What are the inputs of a vector field in the Cartesian
plane?

4. What are the inputs of a vector field in R
3?

5. What are the outputs of a vector field in the Cartesian
plane?

6. What are the outputs of a vector field in R
3?

7. What does it mean to say that a vector field is conserva-
tive?

8. Do the vectors in the range of F(x, y) = x i + yj point
towards or away from the origin?

9. What is the difference between the graphs of

G(x, y) = i + j and F(x, y) = 2i + 2j?

10. What is the difference between the graphs of

G(x, y, z) = −i − j − k and F(x, y, z) = i + j + k?

11. What is the difference between the graphs of

G(x, y) = x i + yj and F(x, y) = −x i + −yj?

12. What is the difference between the graphs of

G(x, y, z) = 2i − 3j + zk and F(x, y, z) = −2i + 3j − zk?

13. Consider the vector field F(x, y, z) = 〈yz, xz, xy〉. Find a
vector field G(x, y, z) with the property that, for all points
in R

3, G(x, y, z) = 2F(x, y, z).
14. What is the difference between vector fields

F(x, y) = 〈x 2, y 2〉 and G(x, y) = 〈x 2, y 2, 0〉?

15. How would you show that a given vector field in R2 is not
conservative?

16. How would you show that a given vector field in R3 is not
conservative?

Skills

In Exercises 17–24, find a potential function for the given
vector field.

17. F(x, y) = 〈3x 2 cos y, −x3 sin y〉
18. F(x, y) = 〈e y sec 2 x, e y tan x〉

19. G(x, y) = 〈5x4 + y, x − 12y3〉
20. G(x, y) = i − j

21. F(x, y, z) = yz i + xz j + xyk

22. F(x, y, z) = e y 2
i + (2xye y 2 + sin z)j + y cos zk
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23. G(x, y, z) = cos yi + (sin z − x sin y)j + y cos zk
24. G(x, y, z) = 〈ye xy+z, xe xy+z, e xy+z〉
Sketch the vector fields in Exercises 25–32.

25. F(x, y) = 2i + 0j 26. F(x, y) = 0i + 2j

27. F(x, y) = i + j 28. F(x, y) = 2i + 2j

29. F(x, y) = i − j 30. F(x, y) = −i + j

31. F(x, y) = xi + 2yj 32. F(x, y) = −2xi − 3yj

Show that the vector fields in Exercises 33–40 are not conser-
vative.
33. F(x, y) = 〈xy, −y〉
34. F(x, y) = 〈x 2 + y 2, cos y〉
35. G(x, y) = 1

x 2 + y
i + y

x
j

36. G(x, y) = yi − x j

37. F(x, y, z) = 2i − z j + e y zk

38. F(x, y, z) = tan( yz)i + (xz sec 2( yz) − 2)j + 4z 3k

39. G(x, y, z) = 〈3, yz, z + 12〉
40. G(x, y, z) = 〈e y + z, xe y + z, x + y〉
Determine whether or not each of the vector fields in Exer-
cises 41–48 is conservative. If the vector field is conservative,
find a potential function for the field.

41. F(x, y) = e yi + sin yj

42. F(x, y) =
〈
tan−1 y,

x
1 + y 2

〉

43. G(x, y) = 〈2x + y cos(xy), x cos(xy) − 1〉
44. G(x, y) = yx 2i + e yj

45. F(x, y, z) = 〈ye 2z + 1, xe 2z, 2xye 2z〉
46. F(x, y, z) = i + 2j − 3k

47. G(x, y, z) = (z − y)i − xyj + (xz + y)k

48. G(x, y, z) = 〈sin( yz), cos( yz), x 2〉

Applications
49. Construct a vector field to describe each of the situations

that follow. There may be more than one choice of con-
stant that gives an accurate answer. (Hint: Examples from
the section and earlier exercises may be useful, as well as plot-
ting a few vectors from a given field.)
(a) A thin film of water flowing across a flat plate from

right to left at a constant rate.
(b) A thin film of liquid flowing across a flat plate diago-

nally from top left to bottom right at a constant rate.
(c) A thin film of liquid flowing on a flat plate rotating

counterclockwise about the origin.
50. Write a vector field to describe each of the flows that fol-

low. As in Exercise 49, there may be more than one choice
of constant that gives an accurate answer.
(a) A thin film of liquid flowing across a flat plate from

top to bottom at a constant rate.

(b) A thin film of liquid flowing across a flat plate in the
direction of 3i + 2j at a constant rate.

(c) Fluid rotating clockwise around the origin.

51. Annie uses a vector field to model the current in a chan-
nel in the San Juan Islands in Washington State. She has
imposed a coordinate system centered at the origin of the
area she is interested in, and she is looking at the region
[−1, 1] × [−1, 1]. The velocity of the current is given by
〈0.9 − x 2 + 0.5y 2, xy〉.
(a) Sketch the vector field.
(b) Is the vector field conservative? If so, what is an equa-

tion of a potential function? Explain the relationship
between the potential function and the current.

(c) Can you tell where the land that influences the cur-
rent lies?

Proofs

52. Prove that a conservative vector field has infinitely many
potential functions.

53. Prove that if two functions f (x, y) and g(x, y) have the same
gradient, then they differ by at most a constant.

Thinking Forward

Integration of vector fields: In order to answer the questions
posed at the beginning of this section, we ought to be able
to use the “subdivide, approximate, and add” strategy from
Chapter 6. The results—area and work—should be scalars.

� How might the integral to find the arc length of r(t)
from t = a to t = b in Section 11.4 be modified to pro-
duce the area of a fence whose base is r(t) and whose
height is given by h(t) = h(x(t), y(t))?

� Write down some possible interpretations of what in-
tegrating a vector field along a curve to find work
could mean, bearing in mind that the result should
be a scalar.
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14.2 LINE INTEGRALS

� Defining the integral of a multivariate function along a curve

� Defining the integral of a vector field along a curve

� Using the Fundamental Theorem of Line Integrals

Integrals Along Curves in Space

In this section, we address both of the problems posed at the beginning of the chapter: how
to find the area of a fence whose base is not the x-axis and how to compute work along a
curve in space. We will also see an extension of the Fundamental Theorem of Calculus.

Since both of our motivating questions have to do with curves in space, we recall the
discussion in Section 11.4 of parametrized curves in R

2 and R
3. In general, in order for us to

be able to compute the arc length of a curve C, we need the curve to be described by a vector
function r(t) = 〈x(t), y(t), z(t)〉 such that r : [a, b] → C is one-to-one, ‖r ′(t)‖ �= 0 for all
t ∈ [a, b], and each of the component functions x(t), y(t), and z(t) is differentiable and has
a continuous first derivative. Throughout the rest of the chapter, we will call such curves
and parametrizations smooth. For a smooth curve C with smooth parametrization r(t) and
endpoints r(a), r(b), Theorem 11.18 gives the arc length L of C as

L(a, b) =
∫ b

a
‖r ′(t)‖ dt.

Line Integrals of Multivariate Functions

Our process for computing the area of a fence whose base is a smooth curve C uses the
same ideas we found in Definition 4.9, when we defined the definite integral. When we
computed the area under a curve on an interval, we used the “subdivide, approximate,
and add” strategy. We saw that the area is the limit of the sum of areas of approximating
subrectangles. More formally,

A = lim
n→∞

n∑
k=1

(height of kth rectangle × width of kth rectangle).

In Chapter 4 this equation became

A = lim
n→∞

n∑
k=1

f (x ∗
k )�x =

∫ b

a
f (x) dx.

Here we want to say the same thing, adjusting for the fact that our curve C is smoothly
parametrized by r(t) for a ≤ t ≤ b. So now the width of an approximating subrectangle is
given by

‖r ′(t)‖ =
√(

dx
dt

)2
+
(

dy
dt

)2
+
(

dz
dt

)2
,

and the height is given by f (t ∗
k ), where, as before, t ∗

k is an arbitrary value of t in the kth
subdivision of [a, b], as seen in the following figure:
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Approximating the area of a function defined on a curve

Combining these insights, we define the integral of a multivariate function along a curve
in space.

DEFINITION 14.3 Line Integral of a Multivariate Function

Let C be a curve in R
3 with a smooth parametrization r(t) = 〈x(t), y(t), z(t)〉 for t ∈ [a, b].

Then the integral of f (x, y, z) along C is
∫

C
f (x, y, z)ds =

∫ b

a
f (x(t), y(t), z(t))‖r ′(t)‖ dt.

The definition for curves in R
2 is analogous. They are the same as curves in R

3, except that
all z-components are zero. Also, note the new notation:

ds = ‖r ′(t)‖ dt.

The integral along C is sometimes referred to as the integral with respect to arc length.

Line integrals of multivariate functions act like the single-variable integrals of Chapter 4
because, after the substitutions for f (x, y, z) and ‖r ′(t)‖ in terms of t, they are single-variable
integrals. Note that if f (x, y, z) is constantly equal to 1, the line integral returns just the arc
length of C. This situation is parallel to that for single-variable integrals: The interval [a, b]
has length b − a, and ∫ b

a
1 dx = b − a.

Line integrals are additive, like single-variable integrals. That is, if C = C1 ∪ C2, where C1
and C2 overlap in a single point, then∫

C
f (x, y, z) ds =

∫
C 1

f (x, y, z) ds +
∫

C 2

f (x, y, z) ds.

This property is particularly useful when a natural parametrization of C by r(t) has r ′(t) = 0
at a point. We can then rewrite the integral along C as a sum of two integrals that do not
have this problem. If a curve C is not itself smooth, but can be written as a finite sum of
smooth curves, we say that C is piecewise smooth.

Another point of similarity between line integrals and single-variable integrals is that
the direction of integration matters. Recall from Chapter 4 that

∫ b

a
f (x) dx = −

∫ a

b
f (x) dx.

The same is true for the integral along a curve C with endpoints P and Q. If r 1(t) is a smooth
parametrization of C that starts at P and ends at Q, and if r 2(t) is a smooth parametrization
of C that starts at Q and ends at P, then the integral along C using r 1(t) will be the negative
of the integral along C using r 2(t).
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Line Integrals of Vector Fields

In Chapter 6 we discussed the concept of work. We now generalize this concept to include
work done by a variable force acting along a curve in space. We represent the force acting
in each of the i, j, and k directions as a vector field whose component functions vary with
location in space:

F(x, y, z) = F 1(x, y, z)i + F 2(x, y, z)j + F 3(x, y, z)k.

Here F 1(x, y, z) measures the action of F(x, y, z) in the i direction, F2(x, y, z) measures the
action of F(x, y, z) in the j direction, and F3(x, y, z) measures the action of F(x, y, z) in the k
direction.

To compute work done by a vector field along a curve, we follow our usual strategy of
subdividing, approximating, and adding, followed by taking a limit as the size of the sub-
divisions approaches zero. In this case, the limit will be the integral of the vector field along
the curve. Subdividing the curve uses the position vector 〈x n −x n−1, y n −y n−1, z n −z n−1〉 to
approximate the curve between points (x n, y n, z n) and (x n−1, y n−1, z n−1). To compute the
action of the vector field F(x, y, z) on this small piece of the curve, F 1(x n, y n, z n) is used to ap-
proximate F 1, the action of F(x, y, z) in the i direction for that subdivision. The components
F 2(x n, y n, z n) and F 3(x n, y n, z n) are similarly used in the j and k directions. This approxi-
mation is a constant force in a fixed direction, so we multiply F 1(x n, y n, z n) · (x n − xn−1) to
get the action of F(x, y, z) in the i direction. Also, summing in the j and k directions, we
have

W ≈ F 1(x n, y n, z n) · (x n − x n−1) + F 2(x n, y n, z n) · ( y n − y n−1) + F 3(x n, y n, z n) · (z n − z n−1)

as the approximate work done by F(x, y, z) on the nth subdivided piece of the curve. Adding
the action along the n pieces of the subdivided curve, we obtain
M∑

n=1

(F 1(x n, y n, z n) · (x n − x n−1) + F 2(x n, y n, z n) · ( y n − y n−1) + F 3(x n, y n, z n) · (z n − z n−1)).

As M approaches infinity, the change in x, y, and z becomes r ′(t) and F(x n, y n, z n) becomes
the value of the field at a point; thus, the limit of the summation becomes∫ b

a

(
F 1(x, y, z) · ∂

∂x
r(t) + F 2(x, y, z) · ∂

∂y
r(t) + F 3(x, y, z) · ∂

∂z
r(t)
)

dt

=
∫ b

a
F(x, y, z) · r ′(t)dt =

∫
C

F(x, y, z) · dr.

This result motivates our definition of the line integral of a vector field.

DEFINITION 14.4 Line Integral of a Vector Field

Suppose that C is a smooth curve in R
3 with a smooth parametrization r(t) for t ∈ [a, b]

and with a vector field F(x, y, z) = F 1i+F 2j+F 3k whose component functions are each
continuous on C and whose domain is open, connected, and simply connected. Then
the line integral of F(x, y, z) along C is

∫
C

F(x, y, z) · dr =
∫ b

a
(F 1(x, y, z)x ′(t) + F 2(x, y, z)y ′(t) + F 3(x, y, z)z ′(t)) dt.

Two alternative ways of writing this integral are∫
C

F(x, y, z) · dr =
∫

C
(F 1 dx + F 2 dy + F 3 dz) =

∫
C

F · T ds,
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where T is the unit tangent vector. You are encouraged to check that all of the representa-
tions really are equivalent by carrying out the relevant substitutions and simplifications. For
example, since the unit tangent vector is T = r ′(t)

‖r ′(t)‖ and the differential is ds = ‖r ′(t)‖ dt,

upon cancellation we see that
∫

C F ·T ds is equivalent to the line integral given in Definition
14.4.

As with the line integrals of multivariate functions discussed earlier in the section,
changing the direction of travel along C changes the sign. If r(t) and q(t) are smooth
parametrizations that traverse the curve C in opposite directions, then∫

C
F(x, y, z) · dr = −

∫
C

F(x, y, z) · dq.

The Fundamental Theorem of Line Integrals

Line integrals of vector fields can be complicated to compute in practice, depending on
the curve C and the choice of r(t) to describe it. In the case of conservative vector fields,
however, the fact that F(x, y, z) is a gradient allows us to reduce the line integral of the vector
field to subtraction.

THEOREM 14.5 The Fundamental Theorem of Line Integrals

Let C be a smooth curve that is the graph of the vector function r(t) defined on the
interval [a, b] with P = r(a) and Q = r(b). If F(x, y, z) is a conservative vector field with
F(x, y, z) = ∇f (x, y, z) on an open, connected, and simply connected domain containing
the curve C, then ∫

C
F(x, y, z) · dr = f (Q) − f (P).

Before we prove Theorem 14.5, note that P = r(a) and Q = r(b). These equations rep-
resent a common abuse of notation, because P and Q are points, but r(a) and r(b) are
vectors. By this we mean that if P is the point (x 0, y 0, z 0), then r(a) = 〈x 0, y 0, z 0〉 and
f (P) = f (x 0, y 0, z 0).

Proof. If F(x, y, z) = ∇f (x, y, z) and r(t) is a smooth parametrization of C with r(a) = P and
r(b) = Q, and if ‖r ′(t)‖ �= 0 for all t ∈ [a, b], then

F(x, y, z) = ∂ f
∂x

i + ∂ f
∂y

j + ∂ f
∂z

k and r ′(t) = dx
dt

i + dy
dt

j + dz
dt

k.

Therefore,

F · dr =
(

∂ f
∂x

dx
dt

+ ∂ f
∂y

dy
dt

+ ∂ f
∂z

dz
dt

)
dt.

By the chain rule, we have

F · dr = d
dt

( f (x(t), y(t), z(t))) dt = d
dt

( f (t)) dt.

Therefore, ∫
C

F · dr =
∫ b

a

d
dt

( f (t)) dt

= f (x(b), y(b), z(b)) − f (x(a), y(a), z(a))

= f (Q) − f (P).

Theorem 14.5 is very useful, since it allows us to avoid finding an explicit parametriza-
tion of C and many important vector fields in the sciences are conservative. In Exercise 65,
you will show that a consequence of this theorem is that line integrals of conservative vector
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fields depend only on the endpoints of curves, not on the curves themselves. Such integrals
are therefore said to be independent of path.

Examples and Explorations

EXAMPLE 1 Area of a fence whose base is a curve in the plane

Find the area of a wall whose base is the part of the circle of radius 2 centered at the origin,
lying in the first quadrant, and whose height at point (x, y) is given by f (x, y) = 2x + y.

SOLUTION

Following is an illustration of the wall, along with the plane defined by z = 2x + y:

y

x

z

2

4

2 22222222222222

The quarter-circle base of the wall may be parametrized by r(t) = 〈2 cos t, 2 sin t〉, where
0 ≤ t ≤ π

2
, so

‖r ′(t)‖ =
√

4 sin 2 t + 4 cos 2 t = 2.

We then substitute into the two-variable version of Definition 14.3:
∫

C
f (x, y) ds =

∫ b

a
f (x(t), y(t))‖r ′(t)‖ dt

=
∫ π/2

0
(2(2 cos t) + 2 sin t) · 2 dt

= [
8 sin t − 4 cos t

]π/2
0 = 12.

As usual, when we are computing an area, it is important to remember that integration
gives the signed area; thus, if f (x, y) were negative at any point on C, we would need to
compensate by integrating | f (x, y)|. �

EXAMPLE 2 Integrating a multivariate function along a curve in R
3

Find ∫
C

f (x, y, z) ds,

where C is the line segment from (1, 4, 2
√

3 ) to (3, 7, 4
√

3 ) and

f (x, y, z) = x + y + z.

SOLUTION

Recall that the line segment from the point (a, b, c) to the point (d, e, f ) may be parametrized
by

r(t) = 〈
a + t(d − a), b + t(e − b), c + t( f − c)

〉
, for 0 ≤ t ≤ 1.
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In this case we have

r(t) = 〈1 + 2t, 4 + 3t, 2
√

3 + 2
√

3 t〉 for t ∈ [0, 1].

So,

r ′(t) = 〈2, 3, 2
√

3 〉, ‖r ′(t)‖ = 5,

and on the curve,

f (x(t), y(t), z(t)) = 5 + 2
√

3 + (5 + 2
√

3 )t.

Substituting gives

∫
C

f (x, y, z) ds =
∫ 1

0
(5 + 2

√
3 + (5 + 2

√
3 )t)5 dt

= 5
[
(5 + 2

√
3 )t + 1

2
(5 + 2

√
3 )t 2

]1

0

= 75
2

+ 15
√

3.

�

EXAMPLE 3 Computing line integrals of vector fields

Find the line integral
∫

C F · dr for each of the following vector fields along the given curve:

(a) F(x, y) = 〈−y, x〉, where C 1 is the straight segment from (3, 0) to (8, π ).

(b) F(x, y, z) = 〈e y, xe z, y 2〉, where C 2 is the curve given by r(t) = 〈t, 2, t 2〉, for −2 ≤ t ≤ 2.

SOLUTION

(a) The curve C 1 is smoothly parametrized by

r(t) = 〈3 + 5t, π t〉 , 0 ≤ t ≤ 1.

Thus, r ′(t) = 〈5, π〉. So,

∫
C 1

F(x, y) · dr =
∫ 1

0
〈−π t, 3 + 5t〉 · 〈5, π〉dt

=
∫ 1

0
3π dt = 3π.

(b) For C 2 and F(x, y, z),

r(t) = 〈t, 2, t 2〉, for −2 ≤ t ≤ 2.

Therefore, r ′(t) = 〈1, 0, 2t〉. So,

∫
C 2

F(x, y, z) · dr =
∫ 2

−2
〈e 2, te t 2

, 4〉 · 〈1, 0, 2t〉 dt

=
∫ 2

−2
(e 2 + 8t) dt

= [e 2t + 4t 2] 2
−2

= (2e 2 + 16) − (−2e 2 + 16) = 4e 2. �
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EXAMPLE 4 Applying the Fundamental Theorem of Line Integrals

Use the Fundamental Theorem of Line Integrals to evaluate the following:

(a) The line integral ∫
C 1

F(x, y) · dr,

where F(x, y) =
〈
6x 2 ln( y+1), 2x3

y+1

〉
and C 1 is the straight segment from (1, 1) to (3, 7).

(b) The line integral ∫
C 2

G(x, y, z) · dr,

where G(x, y, z) = 〈yze xyz, xze xyz, xye xyz〉 and C 2 is the circular helix about the z-axis
given by

r(t) = 〈cos t, sin t, t〉, for t ∈
[

π

4
, 3π

4

]
.

SOLUTION

(a) The Fundamental Theorem of Line Integrals makes it quite easy to carry out these
integrations; it is enough to verify that the vector field in question is conservative,
compute the potential function, substitute according to the theorem, and subtract. In
the case of the first field,

∂

∂y
(6x 2 ln( y + 1)) = 6x 2

y + 1
= ∂

∂x

(
2x3

y + 1

)
,

so F is conservative. Integrating, we find a potential function for F:

f (x, y) = 2x 3 ln( y + 1).

By the Fundamental Theorem,∫
C 1

F(x, y) · dr = f (3, 7) − f (1, 1) = 54 ln 8 − 2 ln 2 = 162 ln 2 − 2 ln 2 = 160 ln 2.

(b) In the case of the second field, it is easier to integrate g 1(x, y, z) = yze xyz with respect
to x and check that the resulting function can be adjusted as necessary to produce a
potential function for G. Integration yields

g(x, y, z) = e xyz; G(x, y, z) = ∇g(x, y, z).

Therefore, g(x(t), y(t), z(t)) = e t cos t sin t. Evaluating r(π/4) and r(3π/4) gives us
(
√

2/2,
√

2/2, π/4) as the starting point of C 2 and (−√
2/2,

√
2/2, 3π/4) as the end-

point of C 2. Then∫
C 2

G(x, y, z) · dr = g
(

−
√

2
2

,
√

2
2

, 3π

4

)
− g

(√
2

2
,
√

2
2

, π

4

)
= e−3π/8 − eπ/8.

�

EXAMPLE 5 Evaluating line integrals of vector functions along closed curves

Integrate each of the following vector fields along the specified closed curve C:

(a) F(x, y) = ( y + 2)i + (x + 3)j, where C is the unit circle in the plane, traversed counter-
clockwise starting and ending at (1, 0).

(b) G(x, y) = yi−y 2j, where C is the square with vertices (1, 0), (0, 1), (−1, 0), and (0, −1),
traversed counterclockwise starting and ending at (1, 0).
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SOLUTION
(a) The vector field F(x, y) is conservative, since ∂

∂y
( y + 2) = 1 = ∂

∂x
(x + 3), so we can use

the Fundamental Theorem of Line Integrals. A potential function for F(x, y) is

f (x, y) = 2x + xy + 3y.

The unit circle is smoothly parametrized by r(t) = (cos t)i + (sin t)j for t ∈ [0, 2π ]. So,
r ′(t) = 〈− sin t, cos t〉. Since we are integrating over a closed curve, we expect to end
where we started. As we know, when we evaluate r(t) at t = 0 and t = 2π , we start
and stop at (1, 0). Applying the Fundamental Theorem gives∫

C
F(x, y) · dr = f (1, 0) − f (1, 0) = 0.

The zero value we obtain here is not a coincidence: In Exercise 64 you will prove that
the integral of any conservative vector field along any closed curve is equal to zero.

(b) The vector field G(x, y) is not conservative, since ∂

∂y
( y) = 1 but ∂

∂x
( y 2) = 0. Because

the vector field is not conservative, we may not use the Fundamental Theorem of Line
Integrals. For this, piecewise-smooth, simple closed curve, we will perform a separate
integration for each of the sides of the square, as indicated in the following figure:

�1

y

x
1�1

1

C1

C4C3

C2

We parametrize each side of the square as follows:

� For side C 1 we use x = 1 − t and y = t, where 0 ≤ t ≤ 1.
� For C 2 we use x = 1 − t and y = 2 − t, where 1 ≤ t ≤ 2.
� For C 3 we use x = −3 + t and y = 2 − t, where 2 ≤ t ≤ 3.
� Finally, for C 4 we use x = −3 + t and y = −4 + t, where 3 ≤ t ≤ 4.

To evaluate the line integral, we have∫
C

G(x, y) · dr =
∫

C 1

G(x, y) · dr +
∫

C 2

G(x, y) · dr +
∫

C 3

G(x, y) · dr +
∫

C 4

G(x, y) · dr.

On C 1 we have G(x(t), y(t)) = 〈t, −t 2〉 and dr = 〈−1, 1〉dt. Therefore,
∫

C 1

G(x, y) · dr =
∫ 1

0
〈t, −t 2〉 · 〈−1, 1〉 dt

=
∫ 1

0
(−t − t 2) dt

=
[
− 1

2
t 2 − 1

3
t 3
]1

0
= −5

6
.
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On C 2 we have G(x(t), y(t)) = 〈2 − t, −(2 − t) 2〉 and dr = 〈−1, −1〉 dt. Hence,∫
C 2

G(x, y) · dr =
∫ 2

1
〈2 − t, −(2 − t) 2〉 · 〈−1, −1〉 dt

=
∫ 2

1
(t − 2 + (2 − t) 2)dt

=
[

1
2

t 2 − 2t − 1
3

(2 − t)3
] 2

1
= −1

6
.

The integrals for sides C 3 and C 4 are similar. You should check that the values of these
integrals are − 1

6
and − 5

6
, respectively. Therefore,

∫
C

G(x, y) · dr = − 5
6

− 1
6

− 1
6

− 5
6

= −2
�

EXAMPLE 6 Computing the work done along a curve

Find the work done by the vector field F(x, y) = y 2i − x 2j along the curve parametrized by
x = t 2, y = t 3, for 0 ≤ t ≤ 2.

SOLUTION

To find the work, we compute the line integral
∫

C F(x, y) · dr, where r(t) = 〈t 2, t 3〉. Here we
have F(x(t), y(t)) = 〈t 6, −t 4〉 and dr = 〈2t, 3t 2〉 dt. Thus,∫

C
F(x, y) · dr =

∫ 2

0
〈t 6, −t 4〉 · 〈2t, 3t 2〉 dt

=
∫ 2

0
(2t 7 − 3t 6) dt =

[
1
4

t 8 − 3
7

t 7
] 2

0
= 64

7
.

�

TEST YOUR? UNDERSTANDING
� How does the integral of a multivariate function along a smooth curve resemble a

single-variable integral from Chapter 4? Why does it do so?

� What does ds stand for in terms of r(t)?

� What does dr stand for in terms of r(t)?

� Why does the integral of any conservative vector field along any smooth or piecewise-
smooth curve depend only on the endpoints and not on the curve?

� Why does the integral of any conservative vector field along any smooth or piecewise-
smooth closed curve always equal zero?

EXERCISES 14.2

Thinking Back

Average value: Review the average value formula from Sec-
tion 4.6. Use the formula to compute the average value of the
following functions.

� g(x) = x 2 + x + 2 on [1, 5]

� f (x) = cos x on [π , 2π ]

Arc length: Review the discussion of arc length in Sections 6.3
and 11.4. Compute the length of the following curves.

� The plane curve 〈t, t 2〉 from t = 4 to t = 6

� The circular helix given by r(t) = cos z i + sin z j + zk
from z = 0 to z = 2π
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Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The integral of a multivariate function
along a smooth curve C produces a scalar.

(b) True or False: The integral of a vector field F(x, y) along
a smooth curve C produces a vector.

(c) True or False: A smooth parametrization r(t) must
have r ′(t) �= 0 for all points on the curve.

(d) True or False: If a curve is not itself smooth, but can be
written as a finite sum of smooth curves, it is possible
to integrate either a multivariate function or a vector
field along the curve by integrating over each smooth
piece separately.

(e) True or False: If a vector field is conservative, it cannot
be integrated along any curve.

(f) True or False: The Fundamental Theorem of Line In-
tegrals applies to the integral of a conservative vector
field along a smooth curve.

(g) True or False: Every integral of a vector field along a
smooth curve can be evaluated with the Fundamen-
tal Theorem of Line Integrals.

(h) True or False: The integral of a vector field along a
smooth closed curve is always zero.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A smooth parametrization of the straight line be-
tween two points in R

3.
(b) A smooth curve C that is not a straight line, and a

smooth parametrization of C.
(c) A vector field F(x, y) such that the integral of F(x, y)

around the unit circle is zero.

3. Write, but do not evaluate, the line integral
∫

C f (x, y, z) ds
as an integral explicitly in terms of t if f (x, y, z) = e x y z and
r(t) = t i + t 2 j + t 4 k for a ≤ t ≤ b.

4. Make a chart of all the new notation in this section, in-
cluding what each item means in terms you already un-
derstand.

For each integral in Exercises 5–8, give the vector field that is
being integrated.

5.
∫

C
(x + y) dx + xy dy

6.
∫

C
cos(x 2y) dx − 3e y dy

7.
∫

C
xy 2 dx + (xy − z) dy + cos y dz

8.
∫

C
xyz dx + sin(zy) dy + (z − x) dz

9. Write the first alternative form of
∫

C F(x, y) · dr for F(x, y)
and C 1 from Example 3. (This alternative form is de-
scribed immediately after Definition 14.4 and is used in
Exercises 5–8.)

10. Write the first alternative form of
∫

C G(x, y, z) · dr for
G(x, y, z) and C 2 from Example 3. (This alternative form
is described immediately after Definition 14.4 and is used
in Exercises 5–8.)

11. Translate ds into terms of r(t).
12. Translate dr into terms of r(t).

13. Write
∫

C F(x, y) · dr explicitly as an integral of t, where

F(x, y) = 〈x 2y, x − y〉 and r(t) = 〈2t, e t〉 for a ≤ t ≤ b.

14. Write
∫

C F(x, y.z) · dr explicitly as an integral of t, where
F(x, y, z) = 〈zy − x, xz − y, xy − z〉 and r(t) = 〈t, cos t, sin t〉
for a ≤ t ≤ b.

15. Give a smooth parametrization r(t) for the unit circle,
starting and ending at (1, 0) and travelling in the coun-
terclockwise direction.

16. Give a smooth parametrization r(t) for the unit circle,
starting and ending at (1, 0) and travelling in the clock-
wise direction.

17. Give a smooth parametrization r(t) for the circular helix
with radius 2 and centered about the y-axis, starting at
(2, 0, 0) and completing two full revolutions.

18. Give a smooth parametrization r(t) for the straight line
between the points (π , e, 1) and (3, 7, 13).

19. In Chapter 4 we defined the average value of an inte-

grable function f on the interval [a, b] to be
1

b−a

∫ b
a f (x) dx.

Generalize this expression to a formula that will give
the average value of f (x, y, z) along a smooth curve C
parametrized by r(t) for a ≤ t ≤ b.

20. Use your intuition from Exercise 19 to propose a formula
for the average value of F(x, y, z) along a smooth curve C
parametrized by r(t) for a ≤ t ≤ b.

Skills

In Exercises 21–28, evaluate the multivariate line integral of
the given function over the specified curve.

21. g(x, y) = x, with C the graph of y = x 2 in the xy-plane
from the origin to (2, 4).

22. f (x, y) = e x y, with C the line with equation x = 3y for
−1 ≤ y ≤ 1.

23. f (x, y) = x 2 + y 2, with C the unit circle traversed counter-
clockwise.
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24. f (x, y) = x 2 +y 2, with C the unit circle traversed clockwise.

25. f (x, y, z) = ex+y+z, with C the straight line segment from
the origin to (1, 2, 3).

26. g(x, y, z) = xyz, with C the curve parametrized by r(t) =〈√2
3

t 3, t 2, t
〉

for 1 ≤ t ≤ 4.

27. f (x, y, z) = e x 2+y+z 2
, with C the circular helix of radius

1, centered about the z-axis, and parametrized by r(t) =
〈cos t, sin t, t〉 from height 0 to π .

28. f (x, y, z) = e x 2+y 2+z 2
, with C the circular helix of radius

1, centered about the y-axis, and parametrized by r(t) =
〈cos t, t, sin t〉 for π ≤ y ≤ 3π .

Evaluate each of the vector field line integrals in Exercises 29–
36 over the indicated curves.

29. F(x, y) = i − j, with C the curve with equation y − x 2 = 1
for 5 ≤ x ≤ 10.

30. F(x, y) = y i − x j, with C the circle of radius 2, centered
at the origin, and traversed counterclockwise starting at
(2, 0).

31. F(x, y) and C are as in Exercise 29, but C is traversed in the
reverse direction, from x = 10 to x = 5.

32. F(x, y, z) = 2z i + ln x j + xz k, with C the curve
parametrized by 〈t, ln t, t〉 for 1 ≤ t ≤ e 2.

33. F(x, y) = y sin xy i + x cos xy j, with C the cardioid given
by r = 1 + 2 cos θ from θ = 0 to θ = 2π .

34. F(x, y, z) = yz i+x j+z 2 k, with C the straight line segment
from the origin to (1, 0, 4).

35. F(x, y, z) = −x 2y i + x3 j + y 2 k, with C the circular he-
lix parametrized by x = cos t, y = sin t, z = t, for
2π ≤ t ≤ 3π .

36. F(x, y, z) = 2
1−z

i + j − 1
z2 +1

k, with C the curve

parametrized by x = ln(1 + t), y = ln(1 − t 2), z = t,
for 3 ≤ t ≤ 7.

Use the Fundamental Theorem of Line Integrals, if applicable,
to evaluate the integrals in Exercises 37–44. Otherwise, show
that the vector field is not conservative.

37. F(x, y) =
〈 1

x
+ln y,

1
y
+ x

y

〉
, with C the straight line segment

from (π , e) to (1, π ).
38. F(x, y) = 〈2x ln 2, 2y〉, with C the straight line segment

from (3, 7) to (0, 1).

39. F(x, y, z) = 〈−z, 1, x〉, with C the circular helix given by
x = cos t, y = t, z = sin t, for 0 ≤ t ≤ 2π .

40. F(x, y) =
〈 xex

(x+y+4)2
,

−ex

(x+y+4)2

〉
, with C the cardioid given

by r = (1 + 2 sin θ ) from θ = 0 to θ = π .

41. F(x, y, z) = yz xy ln z i+ xz xy ln z j+ zxy

z
k, with C any curve

from (0, 0, 1) to (2, 16, 3).
42. F(x, y, z) = (cos(zy) − sin(zy)) i − (xz sin(zy) + xz cos(zy))

j − (xy sin(zy) + xy cos(zy)) k, with C any curve from(
5,

π

2
,
π

3

)
to (2, 0, 2π ).

43. F(x, y, z) = z sin x i + x ln( y + 4) j + y k, with C the
unit circle traversed counterclockwise starting at the
point (1, 0).

44. F(x, y, z) = (z 3 +1) i+x cos z j+xye xyz k, with C the curve
parametrized by r(t) = t 2i + t 3j − tk for 0 ≤ t ≤ 4.

Evaluate the line integrals in Exercises 45–50.

45.
∫

C F(x, y) · dr, where F(x, y) = −y i + x j and C is the spiral
x = t cos t, y = t sin t, for π ≤ t ≤ 2π .

46.
∫

C F(x, y, z) · dr, where

F(x, y, z) = y 2

z
i + 2xy

z
j − xy 2

z 2
k

and C is the portion of the conical helix x = t cos t, y =
t sin t, z = t, for t = π to t = 3π

2
.

47.
∫

C f (x, y) ds, where f (x, y) = (x 2 +y 2)1/2 and C is the curve
parametrized by x = t sin t, y = t cos t, for 0 ≤ t ≤ 4π .

48.
∫

C F(x, y, z) · dr, where

F(x, y, z) = ln(z + 4)
x

i + xyz j + y k

and C is the curve parametrized by x = 4t, y = t 2,
z = 1 − t, for 0 ≤ t ≤ 1.

49.
∫

C F(x, y, z) · dr, where

F(x, y, z) = ( yze xyz + 2) i + (xze xyz − 1) j + xye xyz k

and C is the curve of intersection of the surface z =√
x 2 + y 2 and the plane z − x + y = 10.

50.
∫

C f (x, y, z) ds, where f (x, y, z) = (x+z)3y and C is the curve
parametrized by x = 2 − t, y = 4t, z = t + 5, for t = 1 to
t = 4.

Applications

In Exercises 51–54, assume that a thin wire in space follows
the given curve C and that the density of the wire at any point
on C is given by ρ(x, y, z). Find the mass of the wire by comput-
ing the line integral of the density function along the specified
curve.

51. C is the portion of the unit circle that lies in the first quad-
rant, and ρ(x, y) = ln(e 2

√
x 2 + y 2 ).

52. C is the straight line through (5, −10) and (0, 2), and
ρ(x, y) = e x+y.

53. C is parametrized by r(t) =
〈
2t + 1, 10 − t,

t2

2

〉
from t = 0

to t = 1, and ρ(x, y, z) = (x + 2y)
√

2z + 5.
54. C is the conical helix parametrized by r(t) = 〈t cos t,

t sin t, t〉 from t = 0 to t = 3π , and ρ(x, y, z) =√
x 2 + y 2 + z 2.
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In Exercises 55–58, find the work done by the given vector field
F along the specified curve C.

55. F(x, y) = yi − x j, where C is the portion of the circle of
radius 2, centered at the origin, and in the first quadrant,
traversed counterclockwise from (2, 0) to (0, 2).

56. F(x, y) = xe y i + 2yj, where C is the curve y = ln x from
(e, 1) to (e 2, 2).

57. F(x, y, z) = x ln yi + z j + z 2 k, where C is the curve
parametrized by 〈t, e t, e−t〉 from (1, e, 1/e) to (ln 2, 2, 1/2).

58. F(x, y, z) = yz i + xz j + xyk, where C is the curve
that is on the hyperbolic saddle and is parametrized by
〈cos t, sin t, cos 2 t − sin 2 t〉 for 0 ≤ t ≤ π

4
.

For a function f (x, y) defined along a curve C in the plane, we
may define the average value of f on C to be the integral of f
along C, divided by the length of C:

favg(C) =
∫

C f (x, y) ds∫
C ds

.

A similar definition applies to functions of three variables. (See
also Exercise 19.) In Exercises 59 and 60, use these definitions
to find the average value of the specified function along the
given curve.

59. f (x, y) = sin−1 y cos−1 x, with C the portion of the unit cir-
cle that lies in the first quadrant.

60. g(x, y, z) = xze xyz, with C the straight line segment from
the origin to the point (1, 1, 1).

61. If C is a smooth closed curve in the plane, the flux of a
vector field F(x, y) across C measures the net flow out of
the region enclosed by C and is defined to be

∫
C

F(x, y) · n ds,

where n is a unit vector that is perpendicular to C
and points in the “outward” direction. Find the flux of
F(x, y) = xe x 2+y 2

i + ye x 2+y 2
j across the boundary of the

unit circle. (On the unit circle, n = 〈x, y〉.)
62. Ian is planning a trip into the Wind River Range of

mountains in Wyoming. He will carry ice gear, rock gear,
and backpacking gear to a total of 80 pounds. He will fol-
low a trail so that his position is given by

〈0.7t 2 + 1, 1.5t(2 − t), 0.1t 3〉 for t ∈ [0, 1].

Distances are given in miles. How much work does Ian
have to do to carry his pack on this trail?

63. Annie is making a crossing from one island to another,
with a strong current in the channel. Her path is given by
r(t) = 〈t, 0.2t(1.2 − t)〉 for t ∈ [0, 1.2], while the velocity
of the current is V = 〈0, 0.9x(1.2 − x)〉, with the times in
hours and the speeds in miles per hour.

(a) Is the velocity of the current a conservative vector
field?

(b) Evaluate the line integral of the velocity of the current
along the curve of Annie’s paddling path.

(c) What is the physical significance of the line integral?

Proofs

64. Prove that if F is a conservative vector field, then the line
integral of F along any smooth closed curve C is zero.

65. Prove that if F(x, y, z) is a conservative vector field, then
line integrals of F(x, y, z) are independent of path.

Thinking Forward

Integration across a surface: In the next section, we will use the
results of this section to enable us to deal with integrals on
surfaces. We already know some of the basics, developed in
Chapter 11.

� Our original computation of the arc length of a space
curve in Chapter 11 used the “subdivide, approxi-
mate, and add” strategy and then took a limit, to end
up with

∫ ‖r(t)‖ dt = ∫
ds as the integral used to com-

pute arc length. How could this construction be mod-
ified to compute the area of a surface S that is not part
of the xy-plane?

� What should be added to the answer to the previous
problem to compute the average value of a function
f (x(t), y(t), z(t)) across a smooth surface S ?

� How could the integral of a vector field along a curve
that we developed in this section be generalized to in-
tegrate a vector field across a surface?
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14.3 SURFACES AND SURFACE INTEGRALS

� Using parametric equations to define surfaces

� Computing the integral of a multivariate function on a surface

� Using an integral to compute the flow through a surface

Parametrized Surfaces

In this section we will address the question of how to compute double integrals over sur-
faces that do not lie in a coordinate plane, and we will see how to integrate a vector field
across a surface. In essence, this section generalizes double integrals in the same way that
the previous section generalized integrals of functions of one variable. Surface area in the
context of integrating over surfaces plays a role analogous to that of arc length in the context
of line integrals: In both cases, the basic size of the object is calculated.

The surfaces we are most familiar with are those that are the graphs of functions of two
variables, z = f (x, y). One such surface, given by z = x 2 −y 2 for x ∈ [−1, 3] and y ∈ [−1, 3],
is the following:

y

x

z

3

��������11111111111111111

3

11111111111111111111

As we have done in other contexts, we will move back and forth between expressing a
surface S in terms of points and in terms of position vectors.

Some surfaces cannot be expressed in the form z = f (x, y) but may still be obtained
by distorting a portion of a plane while preserving its two-dimensionality. In general, a
surface is the image of a region of the uv-plane under a change of variables like those we
studied in Section 13.7. Just as a curve C is called a parametrized curve when described by
r(t) = x(t)i + y(t)j + z(t)k, a surface S given by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k,

for points (u, v) ∈ D, where D is a region in the uv-plane, is known as a parametrized
surface. Typically D is a relatively simple subset of the uv-plane, such as a rectangle or a
circle. For instance, consider the half of the unit sphere in R

3 that lies on the nonnegative
side of the xz-plane:

y

x

z
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This surface can be parametrized by

r(u, v) = 〈sin u sin v, cos u, sin u cos v〉 , where u ∈
[
0, π

2

]
and v ∈ [0, 2π ].

Since we are interested in doing calculus, we want to deal only with smooth surfaces
and parametrizations. A parametrization

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k for (u, v) ∈ D

is smooth if it is differentiable, if it has a continuous first derivative, and if ∇r(u, v) �= 0
for all (u, v) ∈ D. A surface S is smooth if it has a smooth parametrization. We will also
work only with surfaces that are orientable; that is, surfaces for which there is a consis-
tent choice of normal vector n. Planes and spheres have this property. The Möbius band
is an example of a nonorientable surface, since there is no consistent choice of normal
vector.

Planes are orientable Spheres are orientable A Möbius band is nonorientable

Nonorientable surfaces will not be discussed in this book, although they are interesting in
their own right.

Surface Area and Surface Integrals of Multivariate Functions

If we restrict our attention to smooth surfaces, we can use the “subdivide, approximate, and
add” strategy first to approximate surface area and then to take the limit of increasingly
fine approximations. This limit will result in an integration that yields the exact surface
area.

Just as we approximated curves by their tangent vectors, we approximate surfaces
by their tangent planes. Recall from Section 12.3 that the vectors 〈1, 0, f x(x 0, y 0)〉 and
〈0, 1, f y(x 0, y 0)〉 both lie in the plane tangent to the graph of z = f (x, y) at the point
(x 0, y 0, f (x 0, y 0)).

z

x
y
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Since these vectors lie in the tangent plane, the parallelogram they determine is a piece of
the tangent plane. We will use such parallelograms to approximate the area of the surface.

Starting with the familiar case, suppose we are interested in the area of the surface S
described by

xi + yj + z(x, y)k

for (x, y) ∈ D ⊆ R
2, with z(x, y) smooth on D. By partitioning D into n subregions and

choosing (x n, y n) in each region, we can use the area of the parallelogram with sides〈
1, 0, zx(x n, y n)

〉
	x and

〈
0, 1, zy(x n, y n)

〉
	y,

y

z

〈0, 1,  zy(xn, yn)〉

x

〈0, 1,  zx(xn, yn)〉

as shown in the preceding figure, to approximate the area of the part of the surface that
lies over the nth subregion:

An ≈ ∥∥〈1, 0, z x(x n, y n)
〉
	x × 〈

0, 1, z y(x n, y n)
〉
	y
∥∥

≈
√

(z x(x n, y n)) 2 + (z y(x n, y n)) 2 + 1	x	y.

Adding approximations over the subregions, we have

Surface area ≈
M∑

n=1

√
(z x(x n, y n)) 2 + (z y(x n, y n)) 2 + 1	x	y.

The limit as the sizes of the subregions approach zero gives the exact surface area:

Surface area =
∫

D

√
(z x) 2 + (z y) 2 + 1 dA

=
∫∫

S

√
(z x) 2 + (z y) 2 + 1 dy dx.

If instead S is a general surface parametrized by r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, then
the approximation is done with the formulas

r u(u, v) = x ui + y uj + z uk and r v(u, v) = x vi + y vj + z vk,

both of which lie in the plane tangent to S at the point (x(u, v), y(u, v), z(u, v)). Substituting
‖r u × r v‖ for ‖〈1, 0, z x(x n, y n)〉 × 〈0, 1, z y(x n, y n)〉‖ in the approximation for An, and dA for
	x 	y yields

Surface area =
∫

D
‖r u(x, y, z) × r v(x, y, z)‖ dA.

This equation motivates our definition of the area of a surface and simplifies some notation
as well.
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DEFINITION 14.6 Surface Area

The surface area of a smooth surface S is∫
S

1 dS.

(a) If S is given by z = f (x, y) for (x, y) ∈ D ⊆ R
2, then

dS =
√(

∂z
∂x

)2 +
(

∂z
∂y

)2 + 1 dA.

(b) If S is parametrized by r(u, v) for (u, v) ∈ D, then

dS = ‖r u × r v‖ dA

= ‖r u × r v‖ du dv.

Once we know how to find the area of a surface, it is easy to see what we ought to do
to integrate a function f (x, y, z) on that surface: multiply the area integrand dS by f (x, y, z),
and integrate. Then the integral of a function f (x, y, z) over a surface S is∫

S
f (x, y, z) dS

The motivation for this definition of the integral of a function over a surface is the same
as our motivation for the integral of a function along a curve. In each case, the integrand
becomes

(value of function ) × (size of region),

where the size of the region is a length or an area, depending on the dimension. Thus, our
definition of the integral of a multivariate function over a surface is as follows:

DEFINITION 14.7 Surface Integral of a Multivariate Function

The integral of f (x, y, z) over a smooth surface S is∫
S

f (x, y, z) dS =
∫∫

D
f (x(u, v), y(u, v), z(u, v))‖r u × r v‖ dA

=
∫∫

D
f (x(u, v), y(u, v), z(u, v))‖r u × r v‖ du dv,

where D is the domain of the smooth parametrization of S by r(u, v).

This definition is more tricky in practice than it appears, since S may be quite complex. One
of the attractive features of the Divergence Theorem, which appears later in this chapter, is
that it provides an alternative way of evaluating some surface integrals.

The Flux of a Vector Field Across a Surface

Integrating a vector field over a surface is similar to integrating a vector field along a curve,
although in the case of a surface there is a conceptual change beyond the increase in
dimension. The interaction of vector field and surface of most general interest is the flux
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through the surface; that is, the measurement of what is transferred through the surface by
the action of the vector field. As an example, consider the passage of fluid through a mem-
brane. If we know the rates and directions of flow at every point on the surface, we should
be able to find the total flow through the surface by integrating the rates of flow at every
point on the surface. We are thus summing the action of vector field F(x, y, z) through the
surface, in the direction normal to the surface at that point. Because we are interested only
in the direction that is perpendicular, and not a magnitude, we will represent the normal
direction by a unit normal vector n. Because we have restricted our attention to surfaces
that are orientable, any surface we consider has a continuous and well-defined unit nor-
mal vector. We need only to decide in which direction we want to travel across the surface.
For instance, the vectors k and −k are both unit vectors perpendicular to the xy-plane; to
evaluate the flux of a vector field through the xy-plane, as shown in the figure that follows,
we would need to know which direction we were interested in, k or −k.

�k

k

Now that we have resolved to count the activity of F(x, y, z) in the direction normal to S ,
our usual strategy of “subdivide, approximate, and add” will involve subdividing the surface
into small subregions, then choosing an arbitrary point (x n, y n, z n) in each subregion, and
approximating the total flow through that region by computing F(x n, y n, z n) · n, where n is
the unit normal vector at (x n, y n, z n).

DEFINITION 14.8 Flux of a Vector Field Across a Surface

If F(x, y, z) is a continuous vector field defined on an oriented surface S given by r(u, v)
for (u, v) ∈ D with unit normal vector n, then the flux of F(x, y, z) through S is∫

S
F(x, y, z) · n dS.

(a) If S is the graph of z = z(x, y), then∫
S

F(x, y, z) · n dS =
∫∫

D
(F(x, y, z) · n)‖z x × z y‖ dy dx.

(b) If S is parametrized by u and v, then∫
S

F(x, y, z) · n dS =
∫∫

D
(F(x, y, z) · n)‖r u × r v‖ du dv.

Note that n, being a unit normal vector to S , satisfies

n = ± r u × r v

‖r u × r v‖ .

We might be tempted to cancel the magnitudes and simply integrate F · (r u × r v), but this
is correct only if r u × r v happens to point in the desired direction.
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Examples and Explorations

EXAMPLE 1 Computing surface areas

Find the areas of the following surfaces:

(a) The portion of the plane z = 3x + 5y that lies above the rectangle [0, 1] × [1, 5] in the
xy-plane.

(b) The unit sphere.

SOLUTION

(a) The portion of the plane we seek is the graph of the function f (x, y) = 3x + 5y with
f x = 3 and f y = 5. Then

dS = √
9 + 25 + 1 dA =

√
35 dA.

So, ∫
S

dS =
∫ 5

1

∫ 1

0

√
35 dx dy = 4

√
35.

(b) The unit sphere is parametrized by

r(u, v) = 〈cos u sin v, sin u sin v, cos v〉 for u ∈ [0, 2π ] and v ∈ [0, π ].

Thus,

r u = 〈−sin u sin v, cos u sin v, 0〉 and r v = 〈cos u cos v, sin u cos v, −sin v〉.
You should verify that

‖r u × r v‖ = sin v.

So, ∫
S

dS =
∫ 2π

0

∫ π

0
sin v dv du = 4π.

�

CHECKING
THE ANSWER

(a) The surface here is a parallelogram whose four vertices are (0, 1, f (0, 1)) = (0, 1, 5),
(1, 1, f (1, 1)) = (1, 1, 8), (1, 5, f (1, 5)) = (1, 5, 28), and (0, 5, f (0, 5)) = (0, 5, 25). This
parallelogram is congruent to the parallelogram determined by the vectors 〈1, 0, 3〉
and 〈0, 4, 20〉. As we saw in Section 10.4, the area of the latter parallelogram is
‖〈1, 0, 3〉 × 〈0, 4, 20〉‖. You may check that the value of this norm is also 4

√
35.

(b) The surface area of a sphere with radius R is given by 4πR2. Since the radius was 1 in
our example, we obtained the correct result.

EXAMPLE 2 Integrating a multivariate function on a surface

Integrate the indicated functions over the accompanying surfaces:

(a) The function g(x, y, z) = 4x 2 + 4y 2 + 1 over the portion of the surface S defined by
z = 1 − x 2 − y 2 and that lies above the unit disk in the xy-plane.

(b) The function h(x, y, z) = e x−2z, where S is the surface parametrized by

r(u, v) = 〈2u + 3v, 7v, u + 5v〉 for 0 ≤ u ≤ π and 2 ≤ v ≤ 4.
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SOLUTION

(a) This surface is the graph of z as a function of x and y, where ∂z
∂x

= −2x and ∂z
∂y

= −2y,

so we have

dS =
√

4x 2 + 4y 2 + 1 dA

and ∫
S

g(x, y, z) dS =
∫∫

unit disk
(4x 2 + 4y 2 + 1)

√
4x 2 + 4y 2 + 1 dA.

It is easier to evaluate this integral with polar coordinates. Recall that x 2 + y 2 = r 2 and
dA = r dr dθ . Since we are integrating above the unit disk, we have

∫ 2π

0

∫ 1

0
(4r 2 + 1)

√
4r 2 + 1 r dr dθ =

∫ 2π

0

∫ 1

0
r(4r 2 + 1)3/2 dr dθ

=
∫ 2π

0

1
20

[
(4r 2 + 1)5/2]r=1

r=0 dθ

=
∫ 2π

0

55/2 − 1
20

dθ = π (25
√

5 − 1)
10

.

(b) This surface is parametrized by r(u, v) = 〈2u + 3v, 7v, u + 5v〉. We have

r u = 〈2, 0, 1〉 and r v = 〈3, 7, 5〉.
Then

dS = ‖r u × r v‖dA = ‖〈−7, −7, 14〉‖ dA = 7
√

6 dA.

We rewrite h in terms of the parameters u and v, giving

h(x(u, v), y(u, v), z(u, v)) = e (2u+3v)−2(u+5v) = e−7v.

So,

∫
S

h(x, y, z) dS = 7
√

6
∫

D
e−7vdA

= 7
√

6
∫ π

0

∫ 4

2
e−7v dv du

= 7
√

6
∫ π

0

[
−1

7
e−7v

]4

2
du

=
√

6
∫ π

0
(e−14 − e−28) du =

√
6π (e 14 − 1)

e 28 .
�

EXAMPLE 3 The mass of a lamina

Recall that a lamina is a two-dimensional object with a density function ρ and that the
mass is the integral of the density function over the region occupied by the lamina.

Find the mass of each lamina:

(a) S is the portion of the cone z = √
x 2 + y 2 that lies above the disk of radius 3 in the

xy-plane and centered at the origin. S has the constant density function ρ(x, y, z) = k.

(b) S is the same surface, but with density function ρ(x, y, z) = x 2 + y 2 + z 2.
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SOLUTION

(a) This surface, shown next, is a graph of z in terms of x and y, with
∂z
∂x

= x√
x 2 + y 2

and
∂z
∂y

= y√
x 2 + y 2

.

z

x
y

So,

dS =
√

x 2

x 2 + y 2
+ y 2

x 2 + y 2
+ 1 dA =

√
2 dA.

The mass of this lamina is given by
∫

S
k dS =

∫
D

k
√

2 dA,

where D is the circle with radius 3 and centered at the origin. Because of the symmetry
of the lamina, it is convenient to integrate with polar coordinates. We have

∫ 2π

0

∫ 3

0
k
√

2 r dr dθ =
∫ 2π

0

[
k
√

2r 2

2

]3

0
dθ

=
∫ 2π

0

9k
√

2
2

dθ = 9k
√

2π.

(b) In this case the differential, dS, is the same as before, but

ρ(x, y, z) = x 2 + y 2 + z 2 = x 2 + y 2 +
(√

x 2 + y 2
)2 = 2x 2 + 2y 2,

since z = √
x 2 + y 2. So,

∫
S

ρ(x, y, z) dS =
∫

D
(2x 2 + 2y 2)

√
2 dA

=
∫ 2π

0

∫ 3

0
2r 2

√
2 r dr dθ

=
∫ 2π

0

∫ 3

0
2
√

2r 3 dr dθ

=
∫ 2π

0

[√
2

2
r 4
]3

0
dθ

=
∫ 2π

0

81
√

2
2

dθ = 81
√

2π.
�

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

14.3 Surfaces and Surface Integrals 1117

EXAMPLE 4 Finding the flux through a surface

Find the fluxes of

(a) F(x, y, z) = yzi + 3x cos zj − 4y 2xk through the rectangle 1 ≤ y ≤ 10 and 2 ≤ z ≤ 4 in
the yz-plane in the positive x direction.

(b) F(x, y, z) = xi + yj + zk through the upper half of the unit sphere in the direction of
the unit normal vector with positive z-component.

SOLUTION

(a) This surface is just a piece of the yz-plane. It is parametrized by

yj + zk 1 ≤ y ≤ 10, 2 ≤ z ≤ 4.

Because of the orientation, n = i, so

F(x, y, z) · n = ( yzi + 3x cos zj − 4y 2xk) · i = yz.

The flux of F(x, y, z) through S is∫
S

F · n dS =
∫ 10

1

∫ 4

2
yz dz dy = 297.

(b) Here the surface is given by

z =
√

1 − x 2 − y 2.

The choice of n should have a positive z-component. We recall from Chapter 12 that
if z = f (x, y), then the vector〈

1, 0, ∂z
∂x

〉
×
〈
0, 1, ∂z

∂y

〉
=
〈
− ∂z

∂x
, − ∂z

∂y
, 1
〉

is normal to the surface. This vector already has a positive z-component, so all we have
to do is scale it to form a unit vector. We have

v =
〈
− ∂z

∂x
, − ∂z

∂y
, 1
〉

=
〈

x√
1 − x 2 − y 2

,
y√

1 − x 2 − y 2
, 1

〉

perpendicular to the surface. This equation yields
v

‖v‖ = n =
〈
x, y,

√
1 − x 2 − y 2

〉

as the desired unit normal. We can also use that information to compute

dS =
√

x 2

1 − x 2 − y 2 + y 2

1 − x 2 − y 2 + 1 dA = 1√
1 − x 2 − y 2

dA.

If we let D be the unit disk in the xy-plane and centered at the origin, then the flux
through S in the positive z direction is∫

S
F(x, y, z) · n dS =

∫
D

(
〈x, y, z〉 ·

〈
x, y,

√
1 − x 2 − y 2

〉) 1√
1 − x 2 − y 2

dA

=
∫

D

(〈
x, y,

√
1 − x 2 − y 2

〉
·
〈
x, y,

√
1 − x 2 − y 2

〉) 1√
1 − x 2 − y 2

dA

=
∫

D

1√
1 − x 2 − y 2

dA

=
∫ 2π

0

∫ 1

0

r√
1 − r 2

dr dθ

=
∫ 2π

0

[− (1 − r 2)1/2]1
0 dθ

=
∫ 2π

0
1 dθ = 2π.

�
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TEST YOUR? UNDERSTANDING
� How was the “subdivide, approximate, and add” approach used in motivating the

definition of surface area?

� What is measured by
∫

S dS?

� What is measured by
∫

S f (x, y, z) dS?

� Why does this section refer only to vector fields in R
3?

� What is measured by
∫

S F · n dS?

EXERCISES 14.3

Thinking Back

� Area: Finding the area of a region in the xy-plane is
one of the motivating applications of integration. It is
also a special case of the surface area calculation devel-
oped in this section. Find the area of the region in the
xy-plane bounded by the curves y = x 2 and x = √

y.

� Double integrals: The double integrals of Chapter 13
were our first exposure to surface integrals, on the
very well-behaved surface of the xy-plane. Evaluate
f (x, y) = x 2 − y 2 on the region bounded by the x-axis
and the curve defined by y = 4 − x 2.

� Average value: Recall that the average value of a func-
tion of two variables f (x, y) on a region 
 is given by
the quotient ∫∫



f (x, y) dA∫∫



dA
.

Compute the average value of g(x, y) = xy on the first-
quadrant region bounded by y = x and y = x 2.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The result of integrating a vector field
over a surface is a vector.

(b) True or False: The result of integrating a function over
a surface is a scalar.

(c) True or False: For a region R in the xy-plane, dS = dA.
(d) True or False: In computing

∫
S f (x, y, z) dS, the direc-

tion of the normal vector is irrelevant.
(e) True or False: If f (x, y, z) is defined on an open region

containing a smooth surface S , then
∫

S f (x, y, z) dS
measures the flow through S in the positive z direc-
tion determined by f (x, y, z).

(f) True or False: If F(x, y, z) is defined on an open region
containing a smooth surface S , then

∫
S F(x, y, z) · n dS

measures the flow through S in the direction of n de-
termined by the field F(x, y, z).

(g) True or False: In computing
∫

S
F(x, y, z) · n dS,

the direction of the normal vector is irrelevant.

(h) True or False: In computing
∫

S
F(x, y, z) · n dS

with n pointing in the correct direction, we could use
a scalar multiple of n, since the length will cancel in
the dS term.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) Two different surfaces with the same area. (Try to
make these very different, not just shifted copies of
each other.)

(b) Let S be the surface parametrized by

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k.

Give two different unit normal vectors to S at the
point r(u 0, v 0).

(c) A smooth surface that can be smoothly parametrized
as r(x, z) = 〈x, f (x), z〉.

3. Why do surface integrals of multivariate functions not in-
clude an n term, whereas surface integrals of vector fields
do include this term?
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4. Make a chart of all the new notation, definitions, and
theorems in this section, including what each new item
means in terms you already understand.

5. Compute a general formula for dS for any plane ax + by +
cz = k if c �= 0.

6. Relate the integrand F · n dS to the discussions of work in
Sections 6.4 and 14.2.

7. Give a smooth parametrization of the upper half of the
unit sphere in terms of x and y.

8. Compute dS for your parametrization in Exercise 7.
9. Give a smooth parametrization, in terms of u and v, of the

sphere of radius k and centered at the origin.
10. Compute dS for your parametrization in Exercise 9.

11. Given a smooth surface S described as a function
z = f (x, y), calculate the upwards-pointing normal
vector for S .

12. Give a smooth parametrization for a “generalized cylin-
der” S , given by extending the curve y = x 2 upwards and
downwards from z = −2 to z = 3.

13. Compute n for the surface S in Exercise 12.

14. Generalize your answer to Exercise 12 to give a param-
etrization and a normal vector for the extension of any
differentiable plane curve y = f (x) through a ≤ z ≤ b.

15. Use what you know about average value from previous
sections to propose a formula for the average value of a
multivariate function f (x, y, z) on a smooth surface S .

16. Use what you know about averages to propose a for-
mula for the average rate of flux of a vector field F(x, y, z)
through a smooth surface S in the direction of n.

17. If S is parametrized by r(u, v), why is dS = ‖r u × r v‖ du dv
the correct factor to use to account for distortion of area?

18. Examine the parametrization of surfaces and the compu-
tation of dS in light of the discussion of change of variables
and the Jacobian in Section 13.7. How are these ideas re-
lated?

19. Give a formula for a normal vector to the surface S de-
termined by x = f ( y, z), where f ( y, z) is a function with
continuous partial derivatives.

20. Give a formula for a normal vector to the surface S de-
termined by y = g(x, z), where g(x, z) is a function with
continuous partial derivatives.

Skills

Find the areas of the given surfaces in Exercises 21–26.

21. S is the portion of the plane with equation y− z = π

2
that

lies above the rectangle determined by 0 ≤ x ≤ 4 and
3 ≤ y ≤ 6.

22. S is the portion of the plane with equation x = y + z that
lies above the region in the xy-plane that is bounded by
y = x, y = 5, y = 10, and the y-axis.

23. S is the portion of the saddle surface determined by z =
x 2 − y 2 that lies above and/or below the annulus in the

xy-plane determined by the circles with radii
√

3
2

and
√

2
and centered at the origin.

24. S is the portion of the surface determined by x = 9−y 2 −
z 2 that lies on the positive side of the yz-plane (i.e., where
x ≥ 0).

25. S is the portion of the surface parametrized by r(u, v) =
〈3u − v, v + u, v − u〉 whose preimage (the domain in the
uv-plane) is the unit square [0, 1] × [0, 1].

26. S is the lower branch of the hyperboloid of two sheets
z 2 = x 2 + y 2 + 1 that lies below the annulus determined
by 1 ≤ r ≤ 2 in the xy-plane.

Integrate the given function over the accompanying surface in
Exercises 27–34.
27. f (x, z) = e−(x 2+z 2), where S is the unit disk centered at the

point (0, 2, 0) and in the plane y = 2.
28. f (x, y, z) = x 2 −y+3z, where S is the portion of the plane

with equation 2x−6y+3z = 1 whose preimage in the xz-
plane is the region bounded by the coordinate axes and
the lines with equations z = 4 and x = z.

29. f (x, y, z) = xyz 2, where S is the portion of the cone√
3 z = √

x 2 + y 2 that lies within the sphere of radius 4
and centered at the origin.

30. f (x, y, z) = e z, where S is the portion of the unit sphere in
the first octant.

31. f (x, y, z) = y
x

√
4z 2 + 1, where S is the portion of the

paraboloid z = x 2 + y 2 that lies above the rectan-
gle determined by 1 ≤ x ≤ e and 0 ≤ y ≤ 2 in the
xy-plane.

32. f (x, y, z) = e
√

8y 2−4z+1(4z + 8x 2 + 1)−1/2, where S is the
portion of the saddle surface with equation z = y 2 − x 2

that lies above the region in the xy-plane bounded by the
line with equation y = x in the first quadrant, the line
with equation y = −x in the second quadrant, and the
unit circle.

33. f (x, y, z) = x − z + y 2, where S is given by

r(u, v) = (u + v) i + 2
√

u 2 + v 2 j + (u − v) k

on the region in the uv-plane bounded by the graphs of
v = u and v = u 2.

34. f (x, y, z) = 1
x ln(z+2y)

, where S is the surface given by

r(u, v) = 2u i + (u + v) j + (2u − 2v) k for 3 ≤ u ≤ 7
and 2 ≤ v ≤ 10.

Find the flux of the given vector field through the given surface
in Exercises 35–42.

35. F(x, y, z) = cos(xyz) i + j − yzk, where S is the portion
of the surface with equation z = y3 − y 2 that lies above
and/or below the rectangle determined by −3 ≤ x ≤ 2
and −1 ≤ y ≤ 1 in the xy-plane, with n pointing in the
positive z direction.

36. F =
〈
x ln(xz), 5z,

1
y2 +1

〉
, where S is the region of the plane

with equation 12x − 9y + 3z = 10, where 2 ≤ x ≤ 3 and
5 ≤ y ≤ 10, with n pointing upwards.
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37. F(x, y, z) = −xz i − yz j + z 2 k, where S is the cone with
equation z = √

x 2 + y 2 between z = 2 and z = 4, with n
pointing outwards.

38. F(x, y, z) = 〈yz, xz, xy〉, where S is the portion of the sad-
dle determined by z = x 2 − y 2 that lies above the region
in the xy-plane bounded by the x-axis and the parabola
with equation y = 1 − x 2.

39. F(x, y, z) = z cos yz j + z sin yz k, where S is the portion of
the plane with equation 2x − 8y − 10z = 42 that lies on
the positive side of the rectangle with corners (0, −π , 0),
(0, π , 0), (0, π , π ), and (0, −π , π ) in the yz-plane.

40. F(x, y, z) = i + j + k, where S is the lower half of the unit
sphere, with n pointing outwards.

41. F(x, y, z) = 5 i+13 j+2 k, where S is the unit sphere, with
n pointing outwards.

42. F(x, y, z) = −y i + x j − e y z k, where S is the cylinder with
equation x 2 +y 2 = 9 from z = 2 to z = 4, with n pointing
outwards.

Evaluate the integrals in Exercises 43–48.

43. Find
∫

S 1 dS, where S is the portion of the surface deter-
mined by z = x 2 − √

3y that lies above the region in the
xy-plane bounded by the x-axis and the lines with equa-
tions y = 2x and x = 3.

44. Find
∫

S F(x, y, z) · n dS if

F(x, y, z) = ln(x 2 + y 2 + 1)
z + 3

i + y
y + 1

j + e z 2
k,

where S is the portion of the sphere with radius 2, cen-
tered at the origin, and that lies below the plane with
equation z = −√

2, with n pointing outwards.

45. Find the integral of f (x, y, z) = z 3 + z(x 2 + 2y) on the por-
tion of the unit sphere that lies in the first octant, above

the rectangle
[
0,

1
2

]
×
[
0,

1
3

]
in the xy-plane.

46. Find
∫

S 1 dS, where S is the portion of the surface with
equation x = e y z − e−yz that lies on the positive side of
the circle of radius 3 and centered at the origin in the yz-
plane.

47. Find
∫

S F(x, y, z) · n dS if

F(x, y, z) = 2xz i + 2yz j − 18k

and S is the portion of the hyperboloid x 2 + y 2 − 9 = z 2

that lies between the planes z = −4 and z = 0, with n
pointing outwards.

48. Find the integral of f (x, y, z) = x − y − z on the portion
of the plane with equation 10x − √

33y + 36z = 30 with
2 ≤ x ≤ 7 and 1 ≤ z ≤ 2.

Applications
Find the masses of the laminæ in Exercises 49 and 50.

49. The lamina occupies the region of the hyperbolic saddle
with equation z = x 2 − y 2 that lies above and/or below
the disk of radius 2 about the origin in the xy-plane where
the density is uniform.

50. The lamina occupies the region of the hyperboloid with
equation z 2 + 4 = x 2 + y 2 that lies above and/or below
the disk of radius 5 about the origin in the xy-plane, and
the density function, ρ(x, y, z), is proportional to distance
from the origin.

Find the flux of the given vector field through a permeable
membrane described by surface S in Exercises 51 and 52 .

51. F(x, y, z) = yi + x j + k, where S is the paraboloid with
equation z = 4x 2 + y 2 + 1 that lies above the an-
nulus determined by 1 ≤ x 2 + y 2 ≤ 4 in the
xy-plane.

52. F(x, y, z) = −z i + y j + x k, where S is the surface with
equation y = cos z for 1 ≤ x ≤ 5 and 0 ≤ z ≤ π

2
.

53. Suppose that an electric field is given by

E = 2yi + 2xyj + yzk.

Compute the flux
∫

S E · n dA of the field through the unit
cube [0, 1] × [0, 1] × [0, 1].

54. Suppose that an electric field is given by

E = K
(x 2 + y 2 + z 2)3/2

(x i + yj + zk),

where K is a constant. Show that the flux of the field
through any sphere centered at the origin is constant.

Mac owns a farm in the Palouse, a large agricultural region in
the northwestern United States. One field on his farm can be
modeled as the surface s(x, y) = 0.24

√
x 2 + y 2 on the square

[0, 0.25]× [0, 0.25], where all distances are given in miles. Use
this information to answer Exercises 55 and 56.

55. What is the actual area of Mac’s field?

z

y

x

.25

.25

.2
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56. Mac is concerned with evapotranspiration from his land:
the process wherein moisture from the soil evaporates, or
is taken up by plants and then transpired into the air. The
problem is that certain parts of his field tend to be drier
than others, and since the whole field is tilted so as to
face south, the entire field dries out more quickly than if
it were flat. The rate at which the field dries out depends

on how much solar radiation hits Mac’s land (i.e., a flux of
radiation into the field). On a hot day in July at noon, the
rays of the sun hit the earth parallel to the line 〈0, t, −3t〉
for t ∈ R. Compare the solar flux through this field with
that through the horizontal rectangle [0, 0.25] × [0, 0.25]
in the xy-plane that underlies it.

Proofs

57. Show that reversing the orientation of a surface S reverses
the sign of

∫
S F(x, y, z) · n dS.

58. Show that the two definitions of dS in Definition 14.6 are
equivalent, by showing that if S is a surface described by
r(x, y) = (x, y, z(x, y)) for (x, y) ∈ D, then

‖rx(x, y) × ry(x, y)‖ =
√(

∂z
∂x

)2

+
(

∂z
∂y

)2

+ 1.

59. Let R be a simply connected region in the xy-plane. Show
that the portion of the paraboloid with equation z =
x 2 + y 2 determined by R has the same area as the por-
tion of the saddle with equation z = x 2 − y 2 determined
by R.

60. Let a, b, and c be nonzero constants. Find a general for-
mula for the area of the portion of the plane with equation
ax + by + cz = k that lies above a rectangle [α, β] × [γ , δ]
in the xy-plane.

Thinking Forward

� Integrating vector fields over three-dimensional regions:
Let W be a three-dimensional region in R

3. If a vec-
tor field measures the movement of a gas or a fluid
in space, what should the integral of a field over W
measure?

� Comparing double integrals and surface integrals: Think
about how surface integrals compared and contrasted
with double integrals in the plane. What changes and
what is the same in these two cases?

� Computations in R
4: In R

3, a surface is determined by
(1) its normal vector at every point and (2) one point
on the surface. An intuitive way to think of this is that,
in R

3, n tells us which direction is not occupied by the
surface because it is perpendicular to the surface. It
can be difficult to visualize, but the same procedure
can lifted to solids in R

4. How might we write an inte-
gral to determine the volume of a three-dimensional
region W in R

4? How might we integrate over sur-
faces in R

4?
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14.4 GREEN’S THEOREM

� Defining the del operator, ∇
� Understanding the relationships between the divergence and the curl

� Extending the Fundamental Theorem of Calculus into the plane

The Fundamental Theorem of Calculus and Green’s Theorem

In this section, and in the two that follow, we generalize the spirit of the Fundamental
Theorem of Calculus in a new way. Recall that the Fundamental Theorem says that, under
appropriate conditions, ∫ b

a
f (x) dx = F(b) − F(a),

where F(x) is an antiderivative of f (x). One way of interpreting this theorem is that it relates
the behavior of the function F(x) on the boundary of a set in R to the behavior of the
derivative of F(x) in the interior of the region. The region in question is the interval [a, b];
its boundary is the set containing points a and b, and its interior is the open interval (a, b).

Given a function g(x, y) defined on a bounded region R of the plane, it is reasonable,
therefore, to ask if there is some relationship between

∫
R g(x, y) dA and an operation on the

curve C that is the boundary of R. Since the boundary curve is more complicated than the
two endpoints of an interval in R, we expect that this operation will be more complicated;
we shall see that it is an integration. Similarly, we can hope that there is a relationship
between f (x, y, z) defined on a bounded region R in R

3 and an operation on the surface S
that forms the boundary of R. As in the case of line and surface integrals, we will sometimes
find that vector fields are relevant to the discussion.

The Del Operator, the Divergence, and the Curl

The theorems of the next three subsections are improved by compact notation involving
two quantities associated with vector fields: the divergence and the curl. To state these quan-
tities, it is convenient and traditional to define a vector operator: the del operator, ∇.

DEFINITION 14.9 The Del Operator, ∇
The del operator, ∇, is the vector of operations

∇ = ∂

∂x
i + ∂

∂y
j + ∂

∂z
k

or, in R
2,

∇ = ∂

∂x
i + ∂

∂y
j.

This operator is used in dot or cross products with vector fields. For example, if

F(x, y, z) = (x + y)i + e x yzj + (x − y + z 2)k,

then

∇ · F(x, y, z) = ∂

∂x
(x + y) + ∂

∂y
e x yz + ∂

∂z
(x − y + z 2)

= 1 + xze x yz + 2z
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and

∇ × F(x, y, z) =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

× ((x + y)i + e x yzj + (x − y + z 2)k)

=
(

∂

∂y
(x − y + z 2) − ∂

∂z
(e x yz)

)
i +

(
∂

∂z
(x + y) − ∂

∂x
(x − y + z 2)

)
j

+
(

∂

∂x
(e x yz) − ∂

∂y
(x + y)

)
k

= (−1 − xye x yz)i − j + ( yze x yz − 1)k.

For a vector field in R
3, the operation ∇ · F(x, y, z) produces a scalar that is the sum

of F ’s directional derivatives in each of the i, j, and k directions. If F(x, y, z) represents the
flow of a gas or fluid, then the sign of this scalar corresponds to whether the gas or fluid is
compressing (∇ · F(x, y, z) is negative) or expanding (∇ · F(x, y, z) is positive). The scalar is
known as the divergence of the vector field F(x, y, z).

DEFINITION 14.10 Divergence of a Vector Field

The divergence of vector field F is the dot product of ∇ and F.

(a) In R
2, if F(x, y) = F 1(x, y)i + F 2(x, y)j, then

div F(x, y) = ∇ · F(x, y) = ∂F 1

∂x
+ ∂F 2

∂y
.

(b) In R
3, if F(x, y, z) = F 1(x, y, z)i + F 2(x, y, z)j + F 3(x, y, z)k, then

div F(x, y, z) = ∇ · F(x, y, z) = ∂F 1

∂x
+ ∂F 2

∂y
+ ∂F 3

∂z
.

The divergence at a point of a vector field measures the magnitude of the rate of change of
the vector field away from a source or towards a sink.

In a similar vein, the cross product ∇ × F is called the curl of the field. At a point in the
vector field, the curl corresponds physically to the circulation or rotation of the field at that
point. This interpretation of the curl is motivated by applications in engineering and physics.

DEFINITION 14.11 Curl of a Vector Field

The curl of a vector field F(x, y, z) = F 1(x, y, z)i + F 2(x, y, z)j + F 3(x, y, z)k is the cross
product of ∇ with F(x, y, z):

curl F = ∇ × F(x, y, z) =
(

∂F 3

∂y
− ∂F 2

∂z

)
i +

(
∂F 1

∂z
− ∂F 3

∂x

)
j +

(
∂F 2

∂x
− ∂F 1

∂y

)
k.

If F(x, y) = (F 1(x, y), F 2(x, y)) is a vector field in R
2, we define the curl of F to be

curl (F1(x, y), F2(x, y), 0). So,

curl F = curl (F 1(x, y), F 2(x, y), 0) = ∇ × 〈F 1(x, y), F 2(x, y), 0〉

=
(

∂F 2

∂x
− ∂F 1

∂y

)
k.

Using the same field as before, namely, F(x, y, z) = (x + y)i + e x yzj + (x − y + z 2)k, we have

div F = 1 + xze x yz + 2z,
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which is a scalar because it is the result of a dot product, and

curl F = (−1 − xye x yz)i − j + ( yze x yz − 1)k,

which is a vector because it is the result of a cross product.

Recall that the cross product is not commutative: ∇ × F �= F × ∇. In Chapter 10, we
saw that the cross product may be computed as the determinant of a 3 × 3 matrix. We may
use that approach to find the curl as well:

∇ × F(x, y, z) = ∇ × 〈
F 1(x, y, z), F 2(x, y, z), F 3(x, y, z)

〉

= det

⎡
⎢⎢⎣

i j k
∂

∂x
∂

∂y
∂

∂z
F 1(x, y, z) F 2(x, y, z) F 3(x, y, z)

⎤
⎥⎥⎦ .

There is a special relationship between the divergence and curl of a field, on the one
hand, and the curl of a conservative vector field, on the other:

THEOREM 14.12 Divergence of Curl and Curl of a Gradient

(a) If F = 〈F 1(x, y, z), F 2(x, y, z)〉 is a vector field in R
2 or F = 〈F 1(x, y, z),

F 2(x, y, z), F 3(x, y, z)〉 is a vector field in R
3, for which F 1, F 2, and F 3 have

continuous second-order partial derivatives, then

div(curl F) = ∇ · (∇ × F) = 0.

(b) For a multivariate function f in R
2 or R

3 with continuous second partial derivatives,

curl ∇f = ∇ × (∇f ) = 0.

In each case proofs may be obtained by using the equality of mixed partial derivatives. We
ask you to prove these identities in Exercises 55 and 56.

Green’s Theorem

Our next extension of the Fundamental Theorem of Calculus is in the plane. Consider a
region R of the plane whose boundary is a smooth, simple closed curve C, oriented coun-
terclockwise.

R

Green’s Theorem asserts that integrating along the boundary curve C is equal to inte-
grating a double integral over the interior of R. Recall the notation from Section 14.2: For a
vector field F(x, y) = 〈F 1(x, y), F 2(x, y)〉 and a curve r(t) = 〈x(t), y(t)〉, for a ≤ t ≤ b,

∫
C

F(x, y) · dr =
∫

C
F 1(x, y) dx + F 2(x, y) dy =

∫ b

a

(
F 1(x, y) dx

dt
+ F 2(x, y) dy

dt

)
dt.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

14.4 Green’s Theorem 1125

THEOREM 14.13 Green’s Theorem

Let F(x, y) = 〈F 1(x, y), F 2(x, y)〉 be a vector field defined on a region R in the plane whose
boundary is a smooth or piecewise-smooth, simple closed curve C. If r(t) is a parame-
trization of C in the counterclockwise direction (as viewed from the positive z-axis), then∫

C
F(x, y) · dr =

∫
C

F 1(x, y) dx + F 2(x, y) dy =
∫∫

R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA.

Proof. A thorough proof of Green’s Theorem is beyond the scope of this text. However, we will
sketch the proof for a region that can be described both as the set of points lying between smooth
functions g 1(x) and g 2(x), for a ≤ x ≤ b, with g 1(a) = g 2(a) and g 1(b) = g 2(b), and also as the set
of points lying between smooth functions h 1( y) and h 2( y), for c ≤ y ≤ d, with h 1(c) = h 2(c) and
h 1(d ) = h 2(d ).

x
b

z

a

c

d

h2(y)h1(y)

g1(x)

g2(x)

R

To prove Green’s Theorem for this region, let C be the boundary curve traversed in the coun-
terclockwise direction. Then C = C 1 ∪ C 2, where C 1 = r 1(t) = (t, g 1(t)) for a ≤ t ≤ b and
C 2 = r 2(t) = (t, g 2(t)) for a ≤ t ≤ b. (Since we are going around the boundary of R counterclock-
wise, our path along C 2 will be in the negative direction.)

Fix a vector field F(x, y) = F 1(x, y)i + F 2(x, y)j. Then, for a given x ∈ [a, b],
∫ g 2(x)

g 1(x)

∂F 1

∂y
dy = [

F 1(x, y)
]g 2(x)

g 1(x) = F 1(x, g 2(x)) − F 1(x, g 1(x)).

So, ∫ b

a

∫ g 2(x)

g 1(x)

∂F 1

∂y
dy dx =

∫ b

a
F 1(x, g 2(x)) − F 1(x, g 1(x)) dx

= −
∫ a

b
F 1(x, g 2(x)) dx −

∫ b

a
F 1(x, g 1(x)) dx = −

∫
C

F 1(x, y) dx.

A parallel argument shows that
∫ d

c

∫ h 2( y)

h 1( y)

∂F 2

∂x
dx dy =

∫ d

c
F 2(h 2( y), y) − F 2(h 1( y), y) dy

=
∫ d

c
F 2(h 2( y), y) dy +

∫ c

d
F 2(h 1( y), y) dy =

∫
C

F 2(x, y) dy.

Combining the two results gives the desired equality:∫
C

F(x, y) · dr =
∫∫

R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA.

Green’s Theorem can be used to evaluate line integrals over simple closed curves with
reverse (clockwise) parametrizations. Since reversing the direction of travel in a parame-
trization of a curve changes the sign of the resulting line integral, we can multiply both
sides of the preceding equation by −1 to obtain a formula for clockwise-traversed curves.
(See Example 5.)
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The relationship between interior double integrals and boundary line integrals given
by Green’s Theorem also applies to regions S that are not themselves bounded by smooth
or piecewise-smooth simple closed curves, provided that S can be written as a sum of such
regions. For instance, if Q is the annular region Q = {(x, y) | 4 ≤ x 2 + y 2 ≤ 16} shown
next at the left, we may represent this region as the union of R 1 and R 2, where each of the
subregions has a piecewise-smooth simple closed boundary, as in the figure at the right:

Q C

R 1

r12

r22

r11

r21

R 2

Moreover, if both R 1 and R 2 have parametrizations with counterclockwise orientations, as
indicated in the two figures, then the line integrals along the pairs r 11, r 21 and r 12, r 22 will
cancel in the total summation, since we are integrating the same vector field F(x, y) along
the same curve in opposite directions. So these curves can be disregarded in our treatment
of Q. Looking at the curves that form the boundary of Q, we see that it is important that the
inner curve D be parametrized in the clockwise direction, because of how its components
must be parametrized as boundaries of R 1 and R 2. Taking all this into account, we may
conclude that ∫

C
F(x, y) · dr +

∫
D

F(x, y) · dr =
∫∫

Q

(
∂F 2

∂y
− ∂F 1

∂x

)
dA,

where C is the outer edge traversed counterclockwise and D is the inner edge traversed
clockwise.

Green’s Theorem can be restated in terms of both the divergence and the curl.

THEOREM 14.14 Green’s Theorem: Curl and Divergence Expressions

Let R be a region in the plane to which Green’s Theorem applies, with smooth boundary
curve C oriented in the counterclockwise direction by r(t) = 〈(x(t), y(t)〉 for a ≤ t ≤ b,
with vector field F(x, y) = 〈(F 1(x, y), F 2(x, y)〉 defined on R .

(a) Green’s Theorem, curl form:
A unit vector perpendicular to the xy-plane and thus to the region R in the positive
direction is just n = k. So we can rewrite Green’s Theorem as∫

C
F(x, y) · dr =

∫∫
R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA =

∫∫
R

curl F · k dA.

(b) Green’s Theorem, divergence form:
If we restrict our attention to the plane, we see that a unit vector that lies in the
xy-plane and is perpendicular to the curve C is given by

n = y ′(t)√
(x ′(t)) 2 + ( y ′(t)) 2

i + −x ′(t)√
(x ′(t)) 2 + ( y ′(t)) 2

j.

Then Green’s Theorem is equivalent to the statement∫
C

F(x, y) · n ds =
∫∫

R
div F dA.
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Note that in Theorem 14.14 (a) we treat F as a vector field in R
3 whose k-component is

zero, since the integrand on the right-hand side of the equation is the k-component of the
curl of a vector field in R

3.

Proof.
(a) The curl form of Green’s Theorem is the direct result of labeling the terms in the original

statement of the theorem.

(b) The divergence form requires a little manipulation:∫
C

F(x, y) · n ds

=
∫ b

a

(
F 1(x, y)

y ′(t)√
(x ′(t)) 2 + ( y ′(t)) 2

+ F 2(x, y)
−x ′(t)√

(x ′(t)) 2 + ( y ′(t)) 2

)√
(x ′(t))2 + ( y ′(t))2 dt

=
∫

C
F 1(x, y) dy − F 2(x, y) dx =

∫
C

−F 2(x, y) dx + F 1(x, y) dy.

Applying Green’s Theorem to this last line integral gives∫
C

−F 2(x, y) dx + F 1(x, y) dy =
∫∫

R

(
∂F 1

∂x
+ ∂F 2

∂y

)
dA

=
∫∫

R
div F dA.

These equivalent formulations do not affect our application of Green’s Theorem; rather,
they foreshadow the generalization of the theorem to regions that are surfaces other than
the xy-plane, to Stokes’ Theorem, and to a higher dimensional analog called the Diver-
gence Theorem. There are various statements of Green’s Theorem, including the diver-
gence and curl forms, throughout mathematical literature.

Examples and Explorations

EXAMPLE 1 Computing the divergence and the curl

(a) Compute the divergence of F(x, y) = x 2i + xyj.

(b) Compute the divergence and curl of G(x, y, z) = 1
xyz

i + e x yzj + 1
z 2 + 1

k.

SOLUTION

(a) We use Definition 14.10 to find the divergence of F:

div F(x, y) = ∇ · F(x, y)

= ∂F 1

∂x
+ ∂F 2

∂y

= 2x + x = 3x.

(b) We again use Definition 14.10 to find the divergence of G, or

G(x, y, z) = G 1(x, y, z)i + G 2(x, y, z)j + G 3(x, y, z)k = 1
xyz

i + e x yzj + 1
z 2 + 1

k.

We have
div G(x, y, z) = ∇ · G(x, y, z)

= ∂G 1

∂x
+ ∂G 2

∂y
+ ∂G 3

∂z

= − yz
(xyz) 2 + xze x yz − 2z

(z 2 + 1) 2 .
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We now use Definition 14.11 to compute the curl:

curl G(x, y, z) = ∇ × G(x, y, z)

=
(

∂G 3

∂y
− ∂G 2

∂z

)
i +

(
∂G 1

∂z
− ∂G 3

∂x

)
j +

(
∂G 2

∂x
− ∂G 1

∂y

)
k

= (0 − xye x yz)i +
(

− xy
(xyz) 2 − 0

)
j +

(
yze x yz + xz

(xyz) 2

)
k

= −xye x yzi − xy
(xyz) 2 j +

(
yze x yz + xz

(xyz) 2

)
k.

�

EXAMPLE 2 Verifying Green’s Theorem

Verify Green’s Theorem for the unit disk in the xy-plane with boundary curve C, traversed
counterclockwise, where F(x, y) = xi + 2xj.

SOLUTION

Let R be the unit disk and C be the boundary curve parametrized by

r(t) = 〈cos t, sin t〉 , for 0 ≤ t ≤ 2π.

So, dr
dt

= 〈−sin t, cos t〉, for 0 ≤ t ≤ 2π . We also express the vector field F in terms of the
parameter t:

F(x(t), y(t)) = 〈x(t), 2x(t)〉 = 〈cos t, 2 cos t〉.
Then ∫

C
F(x, y) · dr =

∫ 2π

0
(−cos t sin t + 2 cos 2 t) dt.

You should verify that 1
2

cos 2 t + sin t cos t + t is an antiderivative of −cos t sin t + 2 cos 2 t.
Therefore,

∫ 2π

0
(− cos t sin t + 2 cos 2 t) dt =

[
1
2

cos 2 t + sin t cos t + t
]2π

0
= 2π.

We will now perform the double integration given by Green’s Theorem. Since F(x, y) =
xi + 2xj, we have ∂ F2

∂x
= 2 and ∂ F1

∂y
= 0. Therefore,

∫∫
R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA =

∫∫
R

2 dA

=
∫ 2π

0

∫ 1

0
2 r dr dθ

=
∫ 2π

0

[
r 2]1

0 dθ = 2π.

As expected, our results agree. �

EXAMPLE 3 Computing with Green’s Theorem

Evaluate
∫

C F(x, y) · dr, where F(x, y) = xyi + xy 3j and C is the boundary of the rectangle in
the xy-plane and whose sides are the coordinate axes and the lines y = 2 and x = 3.
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SOLUTION

This problem shows some of the strength of Green’s Theorem. Parametrizing the four dis-
tinct pieces of C would not be difficult in this case, but it would be tedious. Meanwhile, the
region R that C encloses is very easy to describe. Applying Green’s Theorem, we have∫

C
F(x, y) · dr =

∫∫
R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA

=
∫ 3

0

∫ 2

0
( y3 − x)dy dx

=
∫ 3

0

[
1
4

y 4 − xy
] 2

0
dx

=
∫ 3

0
(4 − 2x) dx

= [
4x − x 2]3

0 = 3. �

EXAMPLE 4 Using Green’s Theorem with a conservative vector field

Use Green’s Theorem to evaluate ∫
C

F(x, y) · dr,

where C is the boundary of the first-quadrant region R that lies between the curves y = x 2

and y = x and where the conservative vector field F(x, y) = ∇f (x, y), in which f (x, y) = e x y.

SOLUTION

Computing the partial derivatives of f (x, y), we have
F(x, y) = ye x yi + xe x yj.

Then, ∫
C

F(x, y) · dr =
∫

R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA

=
∫

R
((e x y + xye x y) − (e x y + xye x y)) dA = 0.

Green’s Theorem, together with the equality of the second-order mixed partial deriva-
tives, gives us another proof of the Fundamental Theorem of Line Integrals for smooth
or piecewise-smooth simple closed curves. If F(x, y) = F 1(x, y)i + F 2(x, y)j is conservative,
then, by the equality of the mixed partial derivatives,

∂F 2

∂x
= ∂F 1

∂y
.

So, for a conservative vector field and a smooth or piecewise-smooth simple closed curve
C that is the boundary of a region R ,∫

C
F(x, y) · dr =

∫
R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA =

∫
R

0 dA = 0.
�

CHECKING
THE ANSWER

Applying the Fundamental Theorem of Line Integrals to∫
C

F(x, y) · dr

directly, where C is parametrized by r(t) for a ≤ t ≤ b, gives∫
C

F(x, y) · dr = f (x(b), y(b)) − f (x(a), y(a)) = 0,

since the curve’s being closed entails that (x(b), y(b)) = (x(a), y(a)).
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EXAMPLE 5 Using Green’s Theorem for curves with reverse orientation

Use Green’s Theorem to evaluate
∫

C F(x, y) · dr, where F(x, y) = yi + 2xj and C is the
boundary of the region bounded by the x-axis and the curve y = 1 − x 2, traversed in
the clockwise direction.

SOLUTION

From Section 14.2, we know that reversing the direction of travel along a curve changes
the sign of the line integrals along that curve. Here, since F(x, y) = yi + 2xj, we have

∂

∂x
(2x) − ∂

∂y
( y) = 2 − 1 = 1.

So, in this case, Green’s Theorem implies that∫
C

F(x, y) · dr = −
∫∫

R
1 dA

= −
∫ 1

−1

∫ 1−x 2

0
1 dy dx

=
∫ 1

−1
x 2 − 1 dx

=
[

1
3

x3 − x
]1

−1
= −4

3
.

�

EXAMPLE 6 Analyzing water flow in a river channel

The Los Angeles River is channelized for much of its length. The channelized portion of the
river flows in concrete banks with uniform width and slope and runs straight from north
to south. Therefore, the velocity vector of the flow is F = 0i + f ( y)j. Suppose we measure
the rate of flow at two points that are close to one another.

(a) One day the flow is found to have speed 0.4 feet per second at the top and bottom
edges of a rectangle R with boundary C enclosing the river. Find

∫
C F · dr.

(b) Suppose that another day we find that the rate of flow at the lower edge of the rectangle
is slightly higher than the flow at the top. Use the divergence form of Green’s Theorem
to explain what unusual phenomenon is occurring in Los Angeles that day.

SOLUTION

(a) Since the flow at the top and bottom is the same, the edge vectors have opposite signs,
and the x-component of the velocity field is zero, it follows that the integral is zero.

(b) We have

0 <

∫
C

F · n ds =
∫∫

R

∂ f
∂y

dA.

But since the river is channelized, ∂ f
∂y

> 0 at some points in R . This means that the

flow is increasing, so it must be raining. �

TEST YOUR? UNDERSTANDING
� What is the definition of the divergence of a vector field? What does the divergence

measure?

� What is the definition of the curl of a vector field? What does the curl measure?

� How is Green’s Theorem similar to the Fundamental Theorem of Calculus from Chap-
ter 4?
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� How can Green’s Theorem be used to compute line integrals around smooth or
piecewise-smooth simple closed curves that are parametrized in the clockwise direc-
tion?

� In our examples, we used Green’s Theorem to reduce line integrals to double integrals
(though the reverse direction is also sometimes useful, as we will see in the exercises).
In what way is this use different from our use of the Fundamental Theorem of Calculus
from Chapter 4?

EXERCISES 14.4

Thinking Back

Remembering the Fundamental Theorem of Calculus: Answer
the following questions about the Fundamental Theorem of
Calculus.

� Consider the “region” in R
1 given by the interval

[a, b]. What is the boundary of this region? What is
its interior?

� Suppose that g(x) is a differentiable function on [a, b].
Express g(b) − g(a) in terms of a function on the inte-
rior of [a, b].

� Express
∫ b

a f (x) dx in terms of something on the
boundary of [a, b].

Intractable Integrals: One of the virtues of Green’s Theorem—
in both directions—is that it gives us a way to rewrite difficult
integrals in a form we hope will be easier to manipulate.

� Give an example of a differentiable function f (x, y)
that is not obviously integrable.

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The del operator, ∇, converts vectors
into scalars.

(b) True or False: The del operator, ∇, measures the rota-
tion of a vector field.

(c) True or False: The divergence of a vector field is a
scalar.

(d) True or False: The curl of a vector field is a vector.
(e) True or False: The curl of a gradient vector field is

0.
(f) True or False: Both the Fundamental Theorem of Cal-

culus (Theorem 4.24) and Green’s Theorem relate
the integral of a function on a (mathematically well-
behaved) region to a quantity measured on the
boundary of that region.

(g) True or False: The curl of a vector field measures how
much the field is compressing or expanding.

(h) True or False: The conclusion of Green’s Theorem does
not depend on the direction of parametrization of the
boundary curve in question.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A smooth simple closed curve parametrized in the
counterclockwise direction.

(b) A smooth simple closed curve parametrized in the
clockwise direction.

(c) A simple closed curve that is not smooth, but is piece-
wise smooth, parametrized in the counterclockwise
direction.

3. In what sense is the integrand of the double integral in
Green’s Theorem the antiderivative of the vector field?

4. Make a chart of all the new notation, definitions, and
theorems in this section, including what each new item
means in terms you already understand.

5. Give two examples of quantities that may be computed
by
∫

C F · dr.
6. Give three examples of quantities that may be computed

by
∫∫

R G(x, y) dA.

7. Explain how your answer to Exercise 6 is relevant to the
discussion of Green’s Theorem.

8. Draw the annular region bounded by r = 1 and r = 2.
Divide it into two regions, each of which is suitable for
the application of Green’s Theorem.

9. If the velocity of a flow of a gas at a point (x, y, z) is repre-
sented by F and the gas is compressing at that point, what
does this imply about the divergence of F at the point?

10. Give an example of a field with negative divergence at the
origin.

11. If the velocity of a flow of a gas at a point (x, y, z) is repre-
sented by F and the gas is expanding at that point, what
does this imply about the divergence of F at the point?

12. Give an example of a field with positive divergence at
(1, 0, π ).

13. Use the vector field F(x, y) = x 2e yi + cos x sin yj and
Green’s Theorem to write the line integral of F(x, y) about
the unit circle, traversed counterclockwise, as a double in-
tegral. Do not evaluate the integral.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

1132 Chapter 14 Vector Analysis

14. Use the same vector field as in Exercise 13 together with
the divergence form of Green’s Theorem to write the line
integral of F(x, y) about the unit circle as a double integral.
Do not evaluate the integral.

15. Use the same vector field as in Exercise 13, and compute
the k-component of the curl of F(x, y).

16. Use the curl form of Green’s Theorem to write the line in-
tegral of F(x, y) about the unit circle as a double integral.
Do not evaluate the integral.

Skills

Compute the divergence of the vector fields in Exer-
cises 17–22.

17. F(x, y) = yx 2i − x cos yj

18. G(x, y) = 〈x cos(xy), y cos(xy)〉
19. G(x, y, z) = yz 2 i − x sin z j + x 2e x y k

20. G(x, y, z) = (x 2 + y − z)i − 2y cos zj + e x 2+y 2+z 2
k

21. F(x, y, z) = sin−1(xy)i + ln( y + z)j + 1
(2x + 3y + 5z + 1)

k

22. F(x, y, z) = xe y z i + ye x z j + ze x y k

Compute the curl of the vector fields in Exercises 23–28.

23. F(x, y, z) = sin−1(xy)i + ln( y + z)j + 1
(2x + 3y + 5z + 1)

k

24. G(x, y, z) = (x 2 + y − z)i − 2y cos zj + e x 2+y 2+z 2
k

25. F(x, y, z) = xe y zi + ye x zj + ze xyk

26. F(x, y) = −4x 2yi + 4xy 2j

27. F(x, y) = cos(x + y)i + sin(x − y)j

28. G(x, y, z) = (2y + 3z)i + 2xy 2j + (zx − y)k

Use Green’s Theorem to evaluate the integrals in Exer-
cises 29–34.

29. Find
∫

C F · dr, where F(x, y) = −4x 2yi + 4xy 2j and C is
the unit circle traversed counterclockwise.

30. Find
∫

C F · dr, where F(x, y) = ( y3 + 3x 2y)i + 2x j and C is
the boundary of the half of the unit circle that lies above
the x-axis, traversed counterclockwise.

31. Find
∫

C F · dr, where F(x, y) = (x + 2y)i + (x − 2y)j and
C is the boundary of the region bounded by the curves
x = y 2, x = 4, traversed counterclockwise.

32. Find
∫

C F ·dr, where F(x, y) = y ln(x +1) 2i+ j and C is the
boundary of the square with vertices at (0, 0), (0, 2), (2, 0),
and (2, 2), traversed counterclockwise.

33. Find
∫

C F · dr, where

F(x, y) = xe x 2+y 2
i + (10 sin y + x)j

and C is the boundary of the region in the third quadrant
bounded by y = x and the x-axis, for x ∈ [−1, 0], traversed
counterclockwise.

34. Find
∫

C F · dr, where F(x, y) = xyi + 4(x − y)j and C is the
boundary of the region bounded by the curves x = 1, x =
e, y = e x, and y = ln x, traversed counterclockwise.

Verify Green’s Theorem by working Exercises 35–42 in pairs.
In each pair, evaluate the desired integrals first directly and
then using the theorem.
35. Directly compute (i.e., without using Green’s Theorem)∫

C F(x, y) · dr, where F(x, y) = y 2i − xyj and C is the unit
circle traversed counterclockwise.

36. Use Green’s Theorem to evaluate the line integral in
Exercise 35.

37. Directly compute (i.e., without using Green’s Theorem)∫
C F(x, y) · dr, where

F(x, y) = (2 x + y)i + (2x − y)j

and C is the triangle described by x = 0, y = 0, and
y = 1 − x, traversed counterclockwise.

38. Use Green’s Theorem to evaluate the line integral in Ex-
ercise 37.

39. Directly compute (i.e., without using Green’s Theorem)∫∫
R (3y − 3x) dA, where R is the portion of the disk of

radius 2, centered at the origin, and lying above the
x-axis.

40. Use Green’s Theorem to evaluate the double integral in
Exercise 39.

41. Directly compute (i.e., without using Green’s Theorem)∫∫
R (e x + e y) dA, where R is the region bounded by the

lines x = 1, x = ln 2, y = 0, and y = 2.
42. Use Green’s Theorem to evaluate the double integral in

Exercise 41.

Evaluate the integrals in Exercises 43–46 directly or using
Green’s Theorem.

43.
∫

C F·dr, where F(x, y) = y2 xi+xy ej and C is the boundary
of the square with vertices at (0, 0), (0, 1), (1, 0), and (1, 1),
traversed clockwise.

44.
∫

C F(x, y) · dr, where F(x, y) = 1
2

x 2y3i + xyj and C is the

circle of radius 3, centered at the origin, traversed clock-
wise.

45.
∫∫

R (2xe x 2+y 2 + 2ye−(x 2+y 2)) dA, where R is the annulus
bounded by r = 1 and r = 2.

46.
∫∫

R (3xy − 4x 2y) dA, where R is the unit disk.
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Applications
47. Find the work done by the vector field

F(x, y) = (cos(x 2) + 4xy 2)i + (2 y − 4x 2y )j

in moving an object around the unit circle, starting and
ending at (1, 0).

48. Find the work done by the vector field

F(x, y) = x 3y 2i + ( y − x)j

in moving an object around the triangle with vertices
(1, 1), (2, 2), and (3, 1), starting and ending at (2, 2).

49. Find the work done by the vector field

F(x, y) = xe
√

x 2+y 2

√
x 2 + y 2

i + ye
√

x 2+y 2

√
x 2 + y 2

j

in moving an object around the unit circle, starting and
ending at (1, 0).

50. Find the work done by the vector field

F(x, y) = (cos x − 3ye x)i + sin x sin yj

in moving an object around the periphery of the rectangle
with vertices (0, 0), (2, 0), (2, π ), and (0, π ), starting and
ending at (2, π ).

51. The current through a certain passage of the San Juan
Islands in Washington State is given by

F = 〈
F 1(x, y), F 2(x, y)

〉 = 〈
0, 1.152 − 0.8x 2〉 .

Consider a disk R of radius 1 mile and centered on this
region. Denote the boundary of the disk by ∂R.

(a) Compute
∫∫

R

(
∂ F2

∂x
− ∂ F1

∂y

)
dA.

(b) Show that∫
∂R

F · n ds =
∫ 2π

0
(1.152 − 0.8 cos 2 θ ) sin θ dθ.

Conclude that Green’s Theorem is valid for the cur-
rent in this area of the San Juan Islands.

(c) What do the integrals from Green’s Theorem tell us
about this region of the San Juan Islands?

52. Emmy has to examine how well a waste tank with radius
50 feet is stirred. The current at the edge of the tank moves
at

π

4
radians per minute in a counterclockwise direction.

Emmy knows that if the vector field of the current ve-
locity is v = 〈v 1(x, y), v 2(x, y)〉, then the average value of
∂v2

∂x
− ∂v1

∂y
in the tank must be at least 1.5 in order to get

adequate mixing in the tank. Does she need to speed up
stirring for this tank?

50 ft
z

v

53. Traffic can be described by fluid properties such as den-
sity and momentum; hence it is usually modeled as a
continuum. Consider a straight road with multiple lanes
going due north. Fast traffic uses the lanes farther left,
and slower traffic uses the ones to the right. Denote the
velocity of traffic at any point of the road by v(x, y) =
〈0, v 2(x, y)〉. Also; that is, assume that the speed in any

particular lane is constant; that is,
∂v2

∂y
= 0.

(a) What can we say about the curl
∂v2

∂x
− ∂v1

∂y
at any point

on the road? What does it mean for that quantity to
be small? What if it is large? Does this quantity have
anything to do with traffic safety?

(b) Suppose that v 2(x, y) = 75 − αx in miles per hour,
where x is measured in miles. Compute both sides of
Green’s Theorem for the traffic flow over a segment
of highway described by S = [0, 0.0113]×[0, 0.5] with
boundary C. In other words, verify that

∫
C

v(x, y) · dr =
∫∫

S

(
∂v 2

∂x
− ∂v 1

∂y

)
dx dy.

(c) What is the significance of either of the integrals from
part (b) for the traffic? Comment on whether the integral
on the left or the integral on the right would be easier for
traffic engineers to calculate from measurements.

54. Traffic engineers use road tubes to measure the number
and speed of cars passing a line in the road. Suppose traf-
fic engineers set road tubes on a freeway whose inner
edge lies along the circle x 2 + y 2 = 0.2 and whose outer
edge is x 2 + y 2 = 0.2113. The traffic is flowing counter-
clockwise in the first quadrant of the circles. The road
tubes lie along the lines y = 0 and x = 0, and the mea-
surements show that the speed of cars along the inner cir-
cle is 69 mph while along the outside circle it is 61 mph.
Denote the stretch of road in the first quadrant by S with
oriented boundary C, and denote the velocity of the cars
at any point by v(x, y).

C
y

x

v(x, y)

δ

(a) Compute
∫

C v(x, y) ·dr. What is the significance of the
sign of this quantity?

(b) Use Green’s Theorem to compute the average curl of
the traffic on this stretch of road:

1
A

∫∫
S

(
∂v 2

∂x
− ∂v 1

∂y

)
dx dy.

Here, A is the area of the roadway.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

1134 Chapter 14 Vector Analysis

Proofs
55. Let F be a vector field in R

2 or R
3. Prove that

div curl F = 0. (This is Theorem 14.12, part (a).)
56. Let f be a function of two or three variables. Prove that

curl ∇f = 0. (This is Theorem 14.12, part (b).)

57. Prove that, for any conservative vector field F(x, y),∫∫
R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA = 0

for any simply connected region R ⊂ R
2 whose boundary

is smooth or piecewise smooth.

58. Give an example of a vector field defined on a simply
connected region R ⊂ R

2 whose boundary is smooth or
piecewise smooth, that is not a conservative field, but
whose integral over the unit disk does have the property
that ∫∫

R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA = 0.

Your example shows that the converse of Exercise 57 fails.

Thinking Forward
� Generalizing Green’s Theorem: How might we gener-

alize Green’s Theorem to two-dimensional regions
that are surfaces in R

3, rather than patches in the
xy-plane? What sort of statement do you expect?

� Another generalization of Green’s Theorem: How might
we generalize Green’s Theorem to higher dimen-
sions? What sort of relationship might we hope to
find between a triple integral over a (reasonably well-
behaved) three-dimensional region of space and a
double integral over the surface that is the boundary
of this region?

14.5 STOKES’ THEOREM

� Generalizing Green’s Theorem to smooth surfaces other than the plane

� Expressing Stokes’ Theorem in terms of the curl

� Computations using Stokes’ Theorem

A Generalization of Green’s Theorem

The goal of this section is to generalize Green’s Theorem to regions that are two dimen-
sional but that do not lie in the xy-plane. For this to work, we will need our surfaces to be
well behaved enough that they act like a small portion of the xy-plane that floated off into
space and were deformed only in a smooth (or piecewise-smooth) way, as shown in the
following figure:

z

x

y

Recall from Section 14.3 that we restrict our attention to surfaces that are smooth or piece-
wise smooth. In these circumstances, Green’s Theorem still holds, provided that we take
account of the distortion of the surface.
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Stokes’ Theorem

The generalized form of Green’s Theorem known as Stokes’ Theorem is traditionally written
in terms of the curl of a vector field. Recall that the curl form of Green’s Theorem states
that, under appropriate restrictions on C and R ,

∫
C

F(x, y) · dr =
∫∫

R
curl F(x, y) · k dA.

In the context of a general surface, what matters is that k is a unit vector normal to R and
pointing in the direction from which C was parametrized counterclockwise. Generalizing
gives Stokes’ Theorem:

THEOREM 14.15 Stokes’ Theorem

Let S be a smooth or piecewise-smooth oriented surface with a smooth or piecewise-
smooth boundary curve C. Suppose that S has an (oriented) unit normal vector n and
that C has a parametrization that traverses C in the counterclockwise direction with
respect to n. If F(x, y, z) = F 1(x, y, z)i + F 2(x, y, z)j + F 3(x, y, z)k is a vector field on an
open region containing S , then∫

C
F(x, y, z) · dr =

∫∫
S

curl F(x, y, z) · n dS.

If S is a region of the xy-plane, then the unit normal is k and the right-hand side of the
preceding equation is

∫∫
S

(
∂F 2

dx
− ∂F 1

dy

)
dA,

which is Green’s Theorem. Another way to think of this is that Green’s Theorem is a special
case of Stokes’ Theorem for regions in the xy-plane.

Proof. A thorough proof of Stokes’ Theorem is beyond the scope of this course; however, we do
provide a sketch.

To sketch the proof, first consider a plane P in space, other than the xy-plane. Since P is a plane,
we could relabel points and treat the new plane as the xy-plane. This would involve a change of
variables using the techniques of Chapter 13. Green’s Theorem will hold here, since the relabeled
plane behaves exactly like the old xy-plane in every respect. (For an example, consider substituting
the xz-plane for the xy-plane. It is not too difficult to figure out what Green’s Theorem should be
in the xz-plane.)

Now consider an oriented smooth surface S in space. Since S is smooth, we can seek to un-
derstand it by subdividing it into many small subregions, each of which is closely approximated by
the tangent plane at a point in the subregion. On this tiny piece of tangent plane, Green’s Theorem
applies. With a careful trace through definitions and notation, we can show that when we modify
Green’s Theorem to account for the plane no longer being the xy-plane, the new integrand will be
curl F(x, y, z) · n dS, as is required by Stokes’ Theorem.

Next we recall the discussion of Green’s Theorem for regions that are sums of regions bounded
by simple closed curves, like the annular region discussed in the previous section. As the following
figure indicates, we approximate the surface with small portions of approximating tangent planes. It
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takes a bit more work to show that the line integrals around adjoining pieces of these approximating
tangent planes cancel as they do for the annular region. (The subtlety in this case is that the planes
are different.)

A smooth surface approximated with portions of tangent planes

Once this is done, we resort to our usual plan of taking a limit of approximations to find the
exact value. The outline of the proof of Stokes’ Theorem follows the same “subdivide, approximate,
and add” strategy that we have used in previous integration results. The major steps are as follows:

� Show that Green’s Theorem can be applied in any plane and that when it is, the integrand is
as desired.

� Subdivide S into subregions, and argue that S is well approximated by gluing lots of subdivi-
sion tangent planes together.

� Argue that applying Green’s Theorem to all these tiny tangent planes cancels all shared bor-
ders, leaving only the perimeter.

� Approximate the true integral by calculating the sum of Green’s Theorem on tangent planes.

� Add up the subregion approximations, and take a limit as the subregions become arbitrarily
small. Addition becomes integration in the limit.

Examples and Explorations

EXAMPLE 1 Verifying Stokes’ Theorem

Verify Stokes’ Theorem for the vector fields

(a) F(x, y, z) = yzi + xzj + xyk and (b) G(x, y, z) = −yi + xj + e zk

on the surface defined by S = {(x, y, z) | z = 1 − x 2 − y 2, x 2 + y 2 ≤ 1}, with outward unit
normal vector.

SOLUTION

The graph of S is the part of the downwards-opening paraboloid z = 1 − x 2 − y 2 that lies
above the xy-plane, with boundary curve, C, equal to the unit circle in the xy-plane.

To verify Stokes’ Theorem, we separately compute∫∫
S

curl F(x, y, z) · n dS and
∫

C
F(x, y, z) · dr

and compare the results.

(a) For F(x, y, z) = yzi + xzj + xyk,

curl F(x, y, z) = ∇ × F(x, y, z) = 0.
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This equation implies that
∫∫

S
curl F(x, y, z) · n dS = 0.

Turning to the line integral of F(x, y, z) about the boundary of S , we observe that
F(x, y, z) is conservative:

F(x, y, z) = ∇f , where f (x, y, z) = xyz.

By the Fundamental Theorem of Line Integrals,
∫

C
F(x, y, z) · dr = 0,

because C is closed. (Note that Theorem 14.12 also explains why curl F(x, y, z) = 0,
since F(x, y, z) is conservative.)

(b) Recall that, for a surface S given by z = f (x, y), a normal vector is N =
〈
− ∂z

∂x
, − ∂z

∂y
, 1
〉
.

This vector in general needs to be scaled before it becomes a unit normal vector, and
it may point in the opposite of the desired direction, depending on orientation of S . In
this case,

N = 〈
2x, 2y, 1

〉
,

which does point in the desired direction, away from the z-axis. The scaling will cancel
in the integration.

Combining the above with the fact that curl G(x, y, z) = curl (−yi+ xj+ ez k) = 2k,
we have ∫∫

S
curl G(x, y, z) · N dS =

∫∫
2 dA

=
∫ 2π

0

∫ 1

0
2 r dr dθ

=
∫ 2π

0

[
r 2]1

0 dθ

=
∫ 2π

0
1 dθ = 2π.

To compute the line integral
∫

C G(x, y, z) · dr directly, we first note that C is
parametrized by

r(t) = cos ti + sin tj + 0k for 0 ≤ t ≤ 2π

with

dr = 〈−sin t, cos t, 0〉 dt for 0 ≤ t ≤ 2π.

On the curve C,

G(x, y, z) = −yi + xj + e zk = −sin ti + cos tj + 1k.

Substituting gives
∫

C
G(x, y, z) · dr =

∫ 2π

0
(sin2 t + cos 2 t) dt =

∫ 2π

0
1 dt = 2π.

Again, we have verified Stokes’ Theorem. �
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EXAMPLE 2 Using Stokes’ Theorem for a graph y= f (x, z)

Use Stokes’ Theorem to compute
∫

C F(x, y, z) · dr, where

F(x, y, z) = xyzi + ( y − 2)j + yzk

and C is the boundary of the region of the plane

x + y + z = 4

that lies to the right of the triangular region 0 ≤ z ≤ 4, 0 ≤ x ≤ z in the xz-plane, oriented
in the positive y direction.

SOLUTION

The surface shown next is the graph of y = 4 − x − z.

x

y

4

4
4

z

Modifying our previous calculation of N for surfaces z = f (x, y), we have the normal
vector

N =
〈
− ∂y

∂x
, 1, − ∂y

∂z

〉
= 〈1, 1, 1〉.

Computing curl F(x, y, z) yields:

curl F(x, y, z) = zi + xyj − xzk.

Then, ∫∫
S

curl F(x, y, z) · N dS =
∫ 2

0

∫ z

0
(z + xy − xz) dx dz

=
∫ 2

0

∫ z

0
(z + x(4 − x − z) − xz) dx dz

=
∫ 2

0

[
xz + 1

2
(4 − 2z)x 2 − 1

3
x3
]z

0
dz

=
∫ 2

0

(
3z 2 − 4

3
z 3
)

dz

=
[
z 3 − 1

3
z4
] 2

0
= 8

3
.

�

EXAMPLE 3 Using Stokes’ Theorem for an arbitrary surface

Use Stokes’ Theorem to evaluate the integral of the vector field

F(x, y, z) = 〈
e x yz, −xy 2z, xyz 2〉

around the curve C given by y 2 + z 2 = 9 in the plane x = 5 and traversed in the counter-
clockwise direction when viewed from the right (i.e., where x > 5).
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SOLUTION

Here any smooth orientable surface whose boundary is C will do. We make the simple
choice of a disk of radius 3 in the plane x = 5 and with center (5, 0, 0). This plane is parallel
to the yz-plane. Hence, a unit normal vector is i.

Evaluating F(x, y, z), we have

curl F = ∇ × 〈
e x yz, −xy 2z, xyz 2〉

= 〈
xz 2 + xy 2, xye x yz − yz 2, −y 2z − xze x yz〉 .

If we let D be the disk with radius 3, centered on the x-axis, and in the plane x = 5,
substituting according to Stokes’ Theorem gives∫

C
F(x, y, z) · dr =

∫∫
S

curl F(x, y, z) · n dS =
∫∫

D
(xz 2 + xy 2) dA

=
∫∫

D
x(z 2 + y 2) dA.

To finish the integration, we will use polar coordinates. Here, r 2 = z 2+y 2 and dA = r dr dθ .
Furthermore, since x = 5, we have∫∫

D
x(z 2 + y 2) dA =

∫ 2π

0

∫ 3

0
5r 2 r dr dθ =

∫ 2π

0

[
5
4

r 4
]3

0
dθ

=
∫ 2π

0

405
4

dθ = 405π

2
.

�

TEST YOUR? UNDERSTANDING
� What is the relationship between Green’s Theorem and Stokes’ Theorem?

� What is the relationship between Stokes’ Theorem and the Fundamental Theorem of
Calculus?

� Why are both sides of the equation in Stokes’ Theorem potentially more complicated
than they are in either the Fundamental Theorem of Calculus or Green’s Theorem?

� Suppose that S 1 and S 2 are two different smooth oriented surfaces with a common
boundary curve C and a common orientation relative to C. (That is, travelling counter-
clockwise along C with respect to S 1 is the same direction as travelling counterclock-
wise with respect to S 2.) Let F(x, y, z) be a vector field that is defined on an open set
containing both surfaces. What does Stokes’ Theorem imply about∫∫

S 1

F(x, y, z) · n1 dS and
∫∫

S 2

F(x, y, z) · n 2 dS

if, for example, S 1 is the hemisphere that is the graph of z = √
1 − x 2 − y 2 and

S 2 is the paraboloid that is the graph of z = 4(x 2 + y 2 − 1), as shown in the fig-
ures that follow? Both of these graphs are bounded by the unit circle in the xy-plane.

z

S1

x

y11

S2

11 1111111111111111111

z

y
x

� In the examples, why are n and dS never explicitly separated? (It may be useful to look
at Section 14.3.)
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EXERCISES 14.5

Thinking Back

Antecedents: Stokes’ Theorem is an immediate generalization
of Green’s Theorem, but it is related to other theorems as well.
For instance, it can also be viewed as a two-dimensional ver-
sion of the Fundamental Theorem of Line Integrals.

� Review the Fundamental Theorem of Line Integrals in
Section 14.2. For conservative vector fields, what does
the theorem imply about

∫
C 1

F · dr and
∫

C 2
F · dr if C 1

and C 2 are two smooth curves with common initial and
terminal points and F is smooth?

� Review the Fundamental Theorem of Calculus in
Chapter 4. What parts of the Stokes’ Theorem equa-
tion correspond to the interval of integration, the inte-
grand, and the antiderivative?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: Stokes’ Theorem asserts that the flux of
a vector field through a smooth surface with a smooth
boundary is equal to the line integral of this field
about the boundary of the surface.

(b) True or False: Stokes’ Theorem can be interpreted as a
generalization of Green’s Theorem.

(c) True or False: Stokes’ Theorem applies only to conser-
vative vector fields.

(d) True or False: Stokes’ Theorem is always used as a way
to evaluate difficult surface integrals.

(e) True or False: Stokes’ Theorem can be interpreted as a
generalization of the Fundamental Theorem of Line
Integrals.

(f) True or False: If F(x, y, z) is a conservative vector field,
then Stokes’ Theorem and Theorem 14.12 together
give an alternative proof of the Fundamental Theo-
rem of Line Integrals for simple closed curves.

(g) True or False: Stokes’ Theorem can be interpreted as
a generalization of the Fundamental Theorem of
Calculus.

(h) True or False: Stokes’ Theorem can be used to evaluate
surface area.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A smooth surface with a smooth boundary.
(b) A surface that is not smooth, but that has a smooth

boundary.
(c) A surface that is smooth, but does not have a smooth

boundary.

3. Write two different normal vectors for a smooth surface
S given by (x, y, g(x, y)) at the point (x 0, y 0, g(x 0, y 0)).

4. Make a chart of all the new notation, definitions, and
theorems in this section, including what each new thing
means in terms you already understand.

5. Suppose that S 1 is the upper half of the unit sphere,
with outwards-pointing normal n 1, and S 2 is a balloon-
shaped surface whose boundary is the unit circle and

whose orientation leads to counterclockwise parametriz-
ation of the unit circle. If F(x, y, z) is a smooth vector field
defined on a region large enough to include both surfaces,
what is the relationship between

∫∫
S 1

curl F · n 1 dS and∫∫
S 2

curl F · n 2 dS?

6. In what way is Green’s Theorem a special case of Stokes’
Theorem?

7. If curl F(x, y, z) · n is constantly equal to 1 on a smooth
surface S with a smooth boundary curve C, then Stokes’
Theorem can reduce the integral for the surface area to a
line integral. State this integral.

8. In what way is Stokes’ Theorem a generalization of the
Fundamental Theorem of Line Integrals?

9. Why is the orientation of S important to the statement of
Stokes’ Theorem? What will change if the orientation is
reversed?

10. Draw a picture of a smooth surface with subdivisions and
locally approximating tangent planes.

11. Give an example of a vector field whose orientation does
not affect the outcome of Stokes’ Theorem.

12. In your own words, explain how the “subdivide, approx-
imate, and add” strategy from Chapter 4 is applied in the
sketch of the proof of Stokes’ Theorem.

13. Why is dA in Green’s Theorem replaced by dS in Stokes’
Theorem?

14. Given a smooth surface S with boundary curve the unit
circle traversed counterclockwise, rewrite∫∫

S
curl F(x, y, z) · n dS

as a double integral in the plane.

15. Given an integral of the form
∫

C F · dr, what considera-
tions would lead you to evaluate the integral with Stokes’
Theorem?

16. Given an integral of the form
∫∫

S curl F(x, y, z) ·ndS, what
considerations would lead you to evaluate the integral
with Stokes’ Theorem?

17. Why does the statement of Stokes’ Theorem require that
the surface S be smooth or piecewise smooth? What, if
anything, goes wrong if this condition is not met?

18. Why does the statement of Stokes’ Theorem require that
the boundary curve C be smooth or piecewise smooth?
What, if anything, goes wrong if this condition is not met?
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Skills

Evaluate the integrals in Exercises 19–32. In some cases,
Stokes’ Theorem will help; in other cases, it may be preferable
to evaluate the integrals directly.

19.
∫

C F(x, y, z) · dr, where C is the boundary of the triangle
in the plane y = 2 and with vertices (1, 2, 0), (0, 2, 0), and
(0, 2, 1), with the normal vector pointing in the positive y
direction and

F(x, y, z) = 3yz i + e x j + x 2zk.

20.
∫

C F(x, y, z) · dr, where C is in the plane z = 12 − x − y,
with upwards-pointing normal vector, and is the bound-
ary of the region that lies above the square in the xy-plane
and with vertices (3, 5, 0), (3, 7, 0), (4, 5, 0), and (4, 7, 0),
and where

F(x, y, z) = ( y − z)i + 2xj + 5xzk.

21.
∫∫

S curl F(x, y, z) ·n dS, where S is the portion of the plane
x + y − z = 0 with upwards-pointing normal vector and

F(x, y, z) = yze x y zi + xze x y zj + xye x y zk.

22.
∫∫

S curl F(x, y, z) · n dS, where S is the portion of the
paraboloid z = x 2 + y 2 that lies above the square −1 ≤
x ≤ 1, 0 ≤ y ≤ 2 in the xy-plane with upwards-pointing
normal vector and

F(x, y, z) = x3yz i + xy 2z j + yzk.

23.
∫

C F(x, y, z) · dr, where C is the closed curve in the plane
y = x and formed by the curves x = z and x 2 = z, tra-
versed counterclockwise with respect to normal vector
n = 〈1, −1, 0〉, and where

F(x, y, z) = 7xyi − z j + 3xyzk.

24.
∫

C F(x, y, z) · dr, where C is the boundary of the region in
the plane z = 2x − y + 10 and that lies above the curves
x = 1, x = 2, and y = e x, and where

F(x, y, z) = (3x + y)i + ( y − 2z)j + (2 + 3z)k.

25.
∫∫

S curl F(x, y, z) · n dS, where S is the cap of the unit
sphere that lies below the xy-plane and inside the cylin-

der x 2 + y 2 = 1
9

with outwards-pointing normal vector
and where

F(x, y, z) = −yz 2i + xz 2j + 3−x y zk.

26.
∫∫

S curl F(x, y, z) · n dS, where S is the portion of the hy-
perbolic paraboloid z = x 2 − y 2 that lies inside the ellip-
tical cylinder 4x 2 + 9y 2 = 36 with upwards-pointing
normal vector and F(x, y, z) = (1 − yz sin(xyz))i−
(1 + xz sin(xyz))j + (1 − xy sin(xyz))k.

27.
∫

C F(x, y, z) · dr, where C is the curve in the plane
x − y + z = 20 and that lies above the curves y = 4
and y = x 2 in the xy-plane, traversed counterclockwise
with respect to n = 〈1, −1, 1〉, and where F(x, y, z) =
(2x − 3y + 4z)i + (5x + y − z)j + (x + 4y + 2z)k.

28.
∫

C F(x, y, z) · dr, where C is the curve on the paraboloid
z = x 2 +y 2 that lies above the unit circle, traversed coun-
terclockwise with respect to the outwards-pointing nor-
mal vector, and where

F(x, y, z) = (3x + y − z)i + (4y − 2z)j + (x − 3z)k.

29.
∫∫

S curl F(x, y, z) · n dS, where S is the portion of the
surface y = √

4 − x 2 − z 2 that lies between y = 4 and
y = √

3 with normal vector pointing in the positive y di-
rection and where

F(x, y, z) = (−4z − xz 2)i + sin(xyz)j + (4x + x 2z)k.

30.
∫∫

S curl F(x, y, z) · n dS, where S is the portion of the

surface z = e x 2+y 2
that lies above the plane z = 1

4
with

upwards-pointing normal vector and where

F(x, y, z) = ln(2x + 1)i + 2 y+1j + xe yk.

31.
∫

C F · dr, where C is the intersection of the surface z =
e−(x 2+y 2) and the cylinder x 2 + y 2 = 9 and where

F(x, y, z) = 〈
3x + 3, 4x + ln( y 2 + 1) − z, 2x + y

〉
.

32.
∫∫

S curl F(x, y, z) ·n dS, where S is the bottom sheet of the
hyperboloid z 2 = x 2 + y 2 + 1 that lies above the plane
z = 2

√
2 with outwards-pointing normal vector.

The hypothesis of Stokes’ Theorem requires that the vector
field F be defined and continuously differentiable on an open
set containing the surface S bounded by C, that C be simple,
smooth, and closed, and that S be oriented and smooth. For
each of the situations in Exercises 33–36, show that Stokes’
Theorem does not apply.

33. F(x, y, z) =
〈 x

x2 +y2
, − y

x2 +y2
, z 2
〉
, and C is the unit circle.

34. F(x, y, z) = 〈ln(xy + 1) + 5 x 3 y 2 z, 4xz 2〉, and C is the
boundary of the square in the plane z = 6 and with ver-
tices at (2, 0, 6), (−2, 0, 6), (2, 4, 6), and (−2, 4, 6).

35. S is the portion of the cone z = √
x 2 + y 2 inside the cylin-

der x 2 + y 2 = k 2 for some k ≥ 0.
36. S is the pyramid with vertices at (0, 0, 6), (2, 0, 0),

(−2, 0, 0), (0, 3, 0), and (0, −3, 0).

Applications
For a given vector field F(x, y, z) and simple closed curve C,
traversed counterclockwise to a chosen normal vector n, the
circulation of F(x, y, z) around C measures the rotation of
the fluid about C in the direction counterclockwise to the
aforementioned chosen normal vector and is defined to be∫

C F(x, y, z) · dr. Find the circulation of the given vector field
around C in Exercises 37 and 38.

37. F(x, y, z) = i + j + k, and C is the curve of intersection of

the plane θ = π

4
or θ = 5π

4
and the unit sphere.

38. F(x, y, z) = 〈3y, −x, e x+y〉, and C is the intersection of the
cone z = √

x 2 + y 2 and the unit sphere.
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Consider once again the notion of the rotation of a vector
field. If a vector field F(x, y, z) has curl F = 0 at a point P,
then the field is said to be irrotational at that point. Show
that the fields in Exercises 39–42 are irrotational at the given
points.

39. F(x, y, z) = 〈− sin x, 3y 3, 4z + 12〉, P = (2, 3, 4).

40. F(x, y, z) = 〈y + z, x + z, x + y〉, P = (1, −1, 1).

41. F(x, y, z) = 〈2xyz, x 2z, x 2y〉, P = (1, 1, 1).

42. F(x, y, z) = ∇f (x, y, z), where f (x, y, z) is a function defined
on R

3 and has continuous first and second partial deriva-
tives, and where P = (x 0, y 0, z 0).

Find the work done by the given vector field moving
around the curve in the indicated direction in Exercises 43
and 44.

43. F(x, y, z) = yz i + 2xz j + xyk, and C is the curve formed
by the intersection of the plane 12x + 2y − z = 15 and
the cylinder y 2 + z 2 = 4, traversed counterclockwise with
respect to the normal vector n = 〈12, 2, −1〉.

44. F(x, y, z) =
〈

2x
x2 +y2 +z2 +1

,
2y

x2 +y2 +z2 +1
,

2z
x2 +y2 +z2 +1

〉
,

and C is the curve created by the intersection of the plane
z = 4 with the surface x 2 + 2y − z = 0, when y ≥ 0,
together with the line segment connecting the points
(2, 0, 4) and (−2, 0, 4), traversed counterclockwise with
respect to the normal vector k.

45. The current through a certain region of the San
Juan Islands in Washington State is given by
F = 〈0, 1.152 − 0.8x 2〉. Consider a disk R of radius 1 mile
centered on this region. Denote the boundary of the disk
by ∂R.
(a) Compute

∫∫
R ∇ × F · n dA.

(b) Show that∫∫
∂R

F · dr =
∫ 2π

0
(1.152 − 0.8 cos 2 θ ) sin θ dθ = 0.

Conclude that Stokes’ Theorem is valid for the cur-
rent in this region of the San Juan Islands.

(c) What do the integrals from Stokes’ Theorem tell us
about this region of the San Juan Islands?

Proofs

46. (a) Use Stokes’ Theorem and the Fundamental Theorem
of Line Integrals to show that

∫∫
S

curl F(x, y, z) · n dS = 0

for any conservative vector field F.
(b) Without using Stokes’ Theorem, show that

∫∫
S

curl F(x, y, z) · n dS = 0

for any conservative vector field F.

47. Show that if C is a smooth curve in a plane z = r,
where r is an arbitrary constant, that is parallel to the xy-
plane, and if F(x, y, z) = 〈F 1(x, y, z), F 2(x, y, z), F 3(x, y, z)〉,
then

∫
C F · dr does not depend on F 3.

48. State and prove a version of Exercise 47 for smooth curves
in planes of the form x = r and of the form y = r.

49. Let C be a smooth simple closed curve in the plane
ax + by + cz = k with nonzero constants a, b, c, and k, and

let F(x, y, z) = 〈F 1(x, y, z), F 2(x, y, z), F 3(x, y, z)〉 be a vector
field whose component functions are linear. Show that∫

C F · dr depends only on the area enclosed by C.

50. Show that
∫

C F · dr = 0 does not imply that F is conser-
vative, by (1) computing

∫
C F · dr for C the unit circle and

F(x, y, z) = xi − yj + 2 z ln(z + 1)k and (2) showing that F
is not conservative but has zero curl.

51. Suppose S 1 and S 2 are two smooth surfaces with the
same smooth boundary curve C and that traversing the
boundary in the counterclockwise direction determined
by the orientation of the surfaces describes the same
direction of travel along C. Moreover, let F(x, y, z) be a
smooth vector field defined on a region containing both
surfaces. Show that∫∫

S 1

curl F(x, y, z) · n dS =
∫∫

S 2

curl F(x, y, z) · n dS

In this case, the integral is surface independent, a prop-
erty analogous to the path independence of line integrals
for conservative vector fields.

Thinking Forward

Generalizing to Higher Dimensions: Stokes’ Theorem is about a
surface inside of R

3. But the essence of the theorem has to do
with integrating over a surface, and does not use any proper-
ties that R

3 has which R
4 does not.

� How would a version of Stokes’ Theorem for R
4 need

to change to accommodate the extra dimension?

� If we take the perspective that Stokes’ Theorem is a
two-dimensional version of the Fundamental Theo-
rem of Line Integrals, it is natural to ask what a three-
dimensional version of Stokes’ Theorem would look
like. Make a conjecture about a three-dimensional
version of Stokes’ Theorem. (Note that the previous
question asks about a surface in R

4, while this ques-
tion is about a three-dimensional region in R

4.)
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14.6 THE DIVERGENCE THEOREM

� Extending the Fundamental Theorem of Calculus to three-dimensional regions

� The Divergence Theorem

� Justifying the Divergence Theorem

The Divergence Theorem

Our final theorem of vector analysis presents the Divergence Theorem, another generaliza-
tion of Green’s Theorem and, in turn, of the Fundamental Theorem of Calculus. Here the
essential boundary-to-interior relationship is extended to three-dimensional solids, whose
boundaries are surfaces.

To set up the Divergence Theorem, we will need to discuss bounded three-dimensional
regions in space. The sort of solids we are interested in are regions W ⊆ R

3 whose bound-
aries are smooth (or piecewise-smooth), simple closed oriented surfaces. Intuitively, we
want the boundary of W to be a reasonably well-behaved surface with a choice of inward
and outward normal vector. Recall our requirement that all vector fields we use in this chap-
ter be smooth; that is, that their component functions be continuous and have continuous
first derivatives.

To see how Green’s Theorem can be scaled up in dimension, let W be a reasonably
well-behaved region in R

3. For example, W might be described as

{(x, y, z) | a ≤ x ≤ b, g 1(x) ≤ y ≤ g 2(x), f 1(x, y) ≤ z ≤ f 2(x, y)}
or analogous solids for each of the other five permutations of x, y, and z.

Recall the divergence form of Green’s Theorem, which reads, under the usual assump-
tions about F(x, y, z), C, and R,

∫
C

F(x, y) · n ds =
∫∫

R
div F dA.

If W is as described, then Green’s Theorem applies to every slice of W that is parallel to
the xy-plane. On the basis of past experience, it is reasonable to suppose that subdividing
the height range into small subintervals, using a choice from within each subinterval to
approximate, and adding the approximations will, in the limit, yield the correct value.

On the left-hand side of the preceding equation, we have an integral of line integrals,
which should result in a two-dimensional, or surface, integral. On the right-hand side of
the equation, we have a double integral, which should result in a volume.

The Divergence Theorem says that this is in essence what happens:

THEOREM 14.16 Divergence Theorem

Suppose W is a region in R
3 bounded by a smooth or piecewise-smooth closed oriented

surface S . If F(x, y, z) is defined on an open region containing W , then∫∫∫
W

div F(x, y, z) dV =
∫∫

S
F(x, y, z) · n dS

where n is the outwards unit normal vector.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

1144 Chapter 14 Vector Analysis

Proof. Again, a thorough proof of this theorem is beyond the scope of this book. We sketch a
direct proof of the Divergence Theorem for very well-behaved regions in R

3.

To prove the Divergence Theorem for the type of region W that we have described, it suffices
to prove that ∫∫∫

W

∂F 1

∂x
dV =

∫∫
S

F 1(x, y, z)i · n dS,

∫∫∫
W

∂F 2

∂y
dV =

∫∫
S

F 2(x, y, z)j · n dS, and

∫∫∫
W

∂F 3

∂z
dV =

∫∫
S

F 3(x, y, z)k · n dS

where n = 〈n 1, n 2, n 3〉 and F = 〈F 1, F 2, F 3〉. We prove the last equation for regions W as we have
described them. Such regions can be understood as the regions between S 1 = {(x, y, z) | z =
f 1(x, y)} and S 2 = {(x, y, z) | z = f 2(x, y)} for points (x, y) in the region D of the xy-plane described
by a ≤ x ≤ b, g 1(x) ≤ y ≤ g 2(x). Then∫∫

S
F 3(x, y, z)k · n dS =

∫∫
S 2

F 3(x, y, z)k · n dS +
∫∫

S 1

F 3(x, y, z)k · n dS.

We let M =
∥∥∥∥
〈
∂F2

∂x
,
∂F2

∂y
, −1

〉∥∥∥∥ On S 2, n has a positive k-component, so n = 1
M

〈
− ∂ F2

∂x
, − ∂ F2

∂y
, 1
〉
,

and on S 1, n1 has a negative k-component, so n1 = 1
M

〈
∂ F2

∂x
,
∂ F2

∂y
, −1

〉
, and n1 = −n. Substituting,

we have ∫∫
S

F 3(x, y, z) k · n dS =
∫∫

S 2

F 3(x, y, z) k · n dS −
∫∫

S 1

F 3(x, y, z) k · n dS

=
∫∫

S

(∫ f 2(x,y)

f 1(x,y)

∂F 3

∂z
dz
)

dS =
∫∫∫

W

∂F 3

∂z
dV.

One way to give a physical intuition for the Divergence Theorem is to recall that the
divergence of a vector field in R

3 measures whether or not a gas represented by the field
is expanding or compressing. If a gas occupies a region of space, and it is expanding, then
the left-hand side of the Divergence Theorem—the integral of div F—will be positive. At
the same time, if a gas in a region is expanding, we would expect that it will have a positive
flux flowing out through its boundary. This is part of what the Divergence Theorem asserts:
Since both sides of the equation give the same value, in particular they have the same sign.
The finer detail in the theorem keeps track of the exact relationship.

The Divergence Theorem can be extended to relate surface and volume integrals for
solids bounded by more than one closed surface. This procedure is similar to that for
Green’s Theorem and, as in that case, requires some bookkeeping to make sure that the
theorem is being applied correctly. An example is given in Example 3.

A Summary of Theorems About Vector Analysis

Having arrived at the end of a chapter on vector analysis, which is in turn at the end of
a three-semester calculus sequence, it is appropriate to examine some of the most salient
results side by side, to appreciate their similarities as well as their differences arising from
context. A summary of the chief results of this chapter and their precursors follows. You may
find it a useful exercise to reconsider the notation, background assumptions, and context
pertaining to each theorem.
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Theorem Name Integral Statement Reference

Fundamental Theorem
∫ b

a
f (x) dx = F(b) − F(a) Theorem 4.24of Calculus

Fundamental Theorem of
∫

C
∇f (x, y, z) · dr = f (Q) − f (P) Theorem 14.5Line Integrals

Green’s Theorem
∫∫

R

(
∂F 2

∂x
− ∂F 1

∂y

)
dA =

∫
C

F(x, y) · dr Theorem 14.13

Stokes’ Theorem
∫∫

S
curl F(x, y, z) · n dS =

∫
C

F(x, y, z) · dr Theorem 14.15

Divergence Theorem
∫∫∫

W
div F(x, y, z) dV =

∫∫
S

F(x, y, z) · n dS Theorem 14.16

Examples and Explorations

EXAMPLE 1 Verifying the Divergence Theorem

Verify the conclusion of the Divergence Theorem for the vector field

F(x, y, z) = x 2i + y 2j + z 2j

with region R , the unit ball centered at the origin.

SOLUTION

To compute ∫∫
S

F(x, y, z) · n dS,

recall that S , the unit sphere that is the boundary of R , is parametrized by

r(φ, θ ) = (cos θ sin φ, sin θ sin φ, cos φ) , for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π.

Then

rφ(φ, θ ) = 〈cos θ cos φ, sin θ cos φ, − sin φ〉 and r θ (φ, θ ) = 〈−sin θ sin φ, cos θ sin φ, 0〉 .

The cross product,

r φ × r θ = 〈
cos θ sin 2 φ, sin θ sin 2 φ, cos φ sin φ

〉
,

and ‖rφ × rθ‖ = sin φ. For all values of φ and θ , the vector rφ × r θ points away from the
origin and thus in the direction of the outwards unit normal. Therefore, we let

n = rφ × rθ

sin φ
= 〈cos θ sin φ, sin θ sin φ, cos φ〉 .

On S ,
F(x, y, z) = 〈

cos 2 θ sin 2 φ, sin 2 θ sin 2 φ, cos 2 φ
〉
.

So,

F(x, y, z) · n = 〈
cos 2 θ sin 2 φ, sin 2 θ sin 2 φ, cos 2 φ

〉 · 〈cos θ sin φ, sin θ sin φ, cos φ〉
= cos3 θ sin3 φ + sin3 θ sin3 φ + cos3 φ.
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Substituting, we have
∫∫

S
F(x, y, z) · n dS =

∫ 2π

0

∫ π

0
(cos3 θ sin3 φ + sin3 θ sin3 φ + cos3 φ) dφ dθ

=
∫ 2π

0

[
(cos3 θ + sin3 θ )

(
− 1

3
sin2 φ cos φ − 2

3
cos φ

)
− 1

3
cos2 φ sin φ − 2

3
φ
]π

0
dθ

=
∫ 2π

0

4
3

(cos3 θ + sin3 θ ) dθ

= 4
3

[
sin θ − 1

3
sin3 θ − cos θ + 1

3
cos3 θ

]2π

0
= 0.

To compute the triple integral given by the Divergence Theorem, we find

div F(x, y, z) = 2x + 2y + 2z.

Since R is the unit sphere, this integral is most convenient to evaluate in spherical coordi-
nates. Converting div F(x, y, z) into spherical coordinates gives∫∫∫

R
div F(x, y, z) dV

= 2
∫ 2π

0

∫ π

0

∫ 1

0
( ρ cos θ sin φ + ρ sin θ sin φ + ρ cos φ) ρ2 sin φ dρ dφ dθ

= 2
∫ 2π

0

∫ π

0

∫ 1

0
ρ3(cos θ sin2 φ + sin θ sin2 φ + cos φ sin φ) dρ dφ dθ

= 2
∫ 2π

0

∫ π

0

[
1
4
ρ4(cos θ sin2 φ + sin θ sin2 φ + cos φ sin φ)

]1

0
dφ dθ

= 1
2

∫ 2π

0

∫ π

0
(cos θ sin2 φ + sin θ sin2 φ + cos φ sin φ) dφ dθ

= 1
2

∫ 2π

0

[
(cos θ + sin θ )

(
1
2
φ − 1

4
sin 2φ

)
+ 1

2
sin2 φ

]π
0

dθ

= π

4

∫ 2π

0
(cos θ + sin θ ) dθ

= π

4

[
sin θ − cos θ

]2π

0 =0.
�

EXAMPLE 2 Using the Divergence Theorem

Use the Divergence Theorem to evaluate the following flux integrals:

(a)
∫∫

S
F(x, y, z) · n dS,

where

F(x, y, z) = xi + ze x zj + xyzk

and S is the surface of the rectangular solid bounded by the planes x = 0, x = 5, y = 0,
y = 3, z = 0, and z = 7.

(b)
∫∫

S
G(x, y, z) · n dS

where

G(x, y, z) = (e yz − x 2yz)i + xy 2zj + 2zk

and S is the surface of the ellipsoid x 2 + y 2 + 4z 2 = 16.
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SOLUTION

(a) Computing the divergence of F(x, y, z), we find that

div F = 1 + xy.

Applying the Divergence Theorem allows us to rewrite the integral:∫∫
S

F(x, y, z) · n dS =
∫∫∫

R
(1 + xy) dz dy dx

=
∫ 5

0

∫ 3

0

∫ 7

0
(1 + xy) dz dy dx

=
∫ 5

0

∫ 3

0
(7 + 7xy) dy dx

=
∫ 5

0

[
7y + 7

2
xy 2
]3

0

=
∫ 5

0

(
21 + 63

2
x
)

dx

=
[
21x + 63

4
x 2
]5

0
= 1995

4
.

(b) Computing the divergence of G(x, y, z), we find that

div G = −2xyz + 2xyz + 2 = 2.

Applying the Divergence Theorem allows us to rewrite the surface integral as a volume
integral, which we evaluate by means of cylindrical coordinates.∫∫

S
G · n dS =

∫∫∫
R

div G dV

=
∫ 2π

0

∫ 4

0

∫ √
4−(r 2/4)

−
√

4−(r 2/4)
2 r dz dr dθ

=
∫ 2π

0

∫ 4

0

[
2rz
]√4−(r 2/4)

−
√

4−(r 2/4)
dr dθ

=
∫ 2π

0

∫ 4

0
4r

√
4 − 1

4
r 2 dr dθ

=
∫ 2π

0

[
−16

3

(
4 − 1

4
r 2
)3/2

]4

0
dθ

=
∫ 2π

0

128
3

dθ

= 256π

3
.

�

EXAMPLE 3 Using the Divergence Theorem for a region bounded by two surfaces

Use the Divergence Theorem to evaluate∫∫
S 1

F(x, y, z) · n dS −
∫∫

S 2

F(x, y, z) · n dS,

where
F(x, y, z) = xi + yj + zk,

S 1 is the surface of the sphere of radius 4 centered at the origin, and S 2 is the unit sphere.
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SOLUTION

The region is bounded by two concentric spheres:

z

y

x

4
111111111

Computing div F, we find that div F = 1 + 1 + 1 = 3. Now, applying the Divergence
Theorem gives

∫∫
S 1

F(x, y, z) · n dS −
∫∫

S 2

F(x, y, z) · n dS =
∫ 2π

0

∫ π

0

∫ 4

1
3ρ2 sin φ dρ dφ dθ

=
∫ 2π

0

∫ π

0

[
ρ3 sin φ

]4
1 dφ dθ

=
∫ 2π

0

∫ π

0
63 sin φ dφ dθ

=
∫ 2π

0

[−63 cos φ
]π

0 dθ

=
∫ 2π

0
126 dθ = 252π.

�

EXAMPLE 4 Calculating an electric field intensity by using Gauss’ Law

Gauss’ Law is a method for calculating an electric field intensity E generated by simple
charge distributions. Given some charge density ρ(x) in a region 
 enclosed by a surface
S , Gauss’ Law states that the electric field at any point x ∈ 
 satisfies

∇ · E(x) = ρ(x)
ε 0

,

where ε 0 is a constant called the permittivity of free space. Integrate both sides of this
equation and apply the Divergence Theorem to establish the following integral form of
Gauss’ Law: ∫∫

S
div E dA = 1

ε 0

∫∫∫



ρ dV.

SOLUTION

Integrating both sides of the the equation, we see that∫∫∫



∇ · E dV = 1
ε 0

∫∫∫



ρ dV.

Applying the Divergence Theorem to the left side and noting that the boundary of the
region 
 is S gives ∫∫

S
div E dA = 1

ε 0

∫∫∫



ρ dV.
�
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TEST YOUR? UNDERSTANDING
� What is the relationship between the Divergence Theorem and the Fundamental

Theorem of Calculus?

� What relationship exists among the Divergence Theorem, Green’s Theorem, and
Stokes’ Theorem?

� If we wish to use the Divergence Theorem to compute the flux of a vector field flowing
into a closed bounded region W ⊆ R

3, how does the theorem need to be adapted?

� In Example 1, what properties of the vector field caused the outcome to be zero?

� How do the change-of-variables factors arise in each of the integrals in Example 1?

EXERCISES 14.6

Thinking Back

A Long Look Back: Here at end of the chapter, which is in
turn the end of the course, and moreover the end of a mul-
tisemester calculus odyssey, it is appropriate to reflect on the
unifying questions, insights, and results that characterize the
subject.

� How do the definitions of differentiation and integra-
tion that we have made throughout this text rely on
the earlier idea of a limit that we defined in Chapter 1?

� How does the strategy of subdivision, approximation,
and addition interact with limits in the justifications
of the theorems given in Chapter 14?

� Are there any questions about integration that you
had before reading this chapter that are now resolved?
What are they?

� Are there any questions about integration that you
had before reading this chapter that you still have?
What are they?

� Do you have any new questions about integration
now that had not occurred to you before reading this
chapter? What are they?

Concepts

0. Problem Zero: Read the section and make your own sum-
mary of the material.

1. True/False: Determine whether each of the statements that
follow is true or false. If a statement is true, explain why.
If a statement is false, provide a counterexample.

(a) True or False: The Fundamental Theorem of Line In-
tegrals, Green’s Theorem, Stokes’ Theorem, and the
Divergence Theorem bear a family resemblance to
the Fundamental Theorem of Calculus and can in
some way be interpreted as generalizations of that
theorem.

(b) True or False: The vector field F in the statement of the
Divergence Theorem must satisfy the condition we
have required throughout this chapter that the com-
ponent functions of F be continuous with continuous
derivatives on an open region that contains the re-
gion in which we wish to apply the theorem.

(c) True or False: The Divergence Theorem is interesting
only as a tool for evaluating difficult flux integrals.

(d) True or False: It is often, though not always, easier to
integrate over a region in R

3 than to evaluate a sur-
face integral.

(e) True or False: The Divergence Theorem is a general-
ization of the technique of integration by parts.

(f) True or False: The Divergence Theorem is a conse-
quence of Stokes’ Theorem.

(g) True or False: The Divergence Theorem can be used to
calculate the flux through a region that is bounded by
two distinct smooth simple closed surfaces.

(h) True or False: The Divergence Theorem is a general-
ization of Green’s Theorem.

2. Examples: Construct examples of the thing(s) described in
the following. Try to find examples that are different than
any in the reading.

(a) A simple closed surface that is smooth.
(b) A simple closed surface that is not smooth, but is

piecewise smooth.
(c) A simple closed surface that is neither smooth nor

piecewise smooth.

3. Does the Divergence Theorem apply to surfaces that are
not closed?

4. Make a chart of all the new notation, definitions, and
theorems in this section, including what each new item
means in terms you already understand.

5. Give an intuitive explanation of why the paraboloid z =
x 2 + y 2 is smooth but the surface of the rectangular solid
bounded by the coordinate planes and the planes x = 14,
y = 5, and z = 32 is only piecewise smooth.
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6. Give an intuitive explanation of why the surface of a tetra-
hedron is piecewise smooth but the surface of the cone
z = √

x 2 + y 2 is not.

7. (a) Let F(x, y, z) = x i + yj + zk, and let S be the unit
sphere. Make a sketch of the field. Without evaluat-
ing the integral, do you expect that

∫∫
S F ·n dS will be

positive, negative, or zero? Why?
(b) Let F(x, y, z) = 3i + 7j + 9k, and let S be the unit

sphere. Make a sketch of the field. Without evaluat-
ing the integral, do you expect that

∫∫
S F ·n dS will be

positive, negative, or zero? Why?
(c) Use the Divergence Theorem to check your guesses

in parts (a) and (b).
8. Recall from Section 14.4 that the divergence of a vector

field is related to the expansion or compression of a gas
whose motion is represented by that field. If a gas whose
motion is represented by a vector field is expanding (or
compressing) in a region of space, what effect should that
have on the flux of the vector field out of (or into) a closed
region W? Making some additional assumptions about
the direction of the vectors in F may help you to think
about this situation.

9. If F(x, y, z) = ∇f (x, y, z) is a conservative vector field, what
will div F be?

10. Give an example of a conservative vector field whose
divergence is not uniformly equal to zero in R

3.

11. Give an example of a conservative vector field whose
divergence is uniformly equal to zero in R

3.
12. Give an example of a non-conservative vector field whose

divergence is uniformly equal to zero in R
3.

13. Give an example of a non-conservative vector field whose
divergence is never equal to zero in R

3.
14. Considering your answers to Exercises 10–13, what do

you conjecture is true or not true about conservative vec-
tor fields in the context of the Divergence Theorem?

Decide whether or not each of the integrals in Exercises 15–20
can be evaluated by means of the Divergence Theorem. (You
do not need to evaluate the integrals.)

15.
∫∫

S F(x, y, z) · n dS, where S is the cone y = √
x 2 + z 2

between y = 0 and y = 4 and where

F(x, y, z) = xyzi + 2 x y zj + x
y 2 + 1

k.

16.
∫∫

S F(x, y, z) · n dS, where S is the surface of the tetra-
hedron bounded by the three coordinate planes and the
plane 3x + 2y + 6z = 12 and where

F(x, y, z) = z sin yi − x cos z j + z cos yk.

17.
∫∫

S F(x, y, z) · n dS, where S is the unit sphere and

F(x, y, z) = 〈e
√

x 2+y 2+z 2
, ln(x 2y 2z 2), 5x 3z〉.

18.
∫∫

S F(x, y, z) · n dS, where S is the portion of the surface
x = z 3 that lies between the planes y = 13 and y = 42
and where

F(x, y, z) =
〈
cos(xy),

1
y 2z 2 + 1

, x + y
〉
.

19.
∫∫

S F(x, y, z) · n dS, where S is the portion of the hyper-
boloid of two sheets x 2 + y 2 + 1 = z 2 that lies between
the planes z = 5 and z = 10 and where

F(x, y, z) = 〈
x 2 − 2y + z 2, 4x + z − 2, 2 x y z〉 .

20.
∫∫

S F(x, y, z) · n dS, where S is the surface of the torus
parametrized by

x = (3 + cos v) cos u, y = (3 + cos v) sin u, z = sin v

and where F(x, y, z) = (3x − z)i − x 2z j + xy 7k.

Skills

In Exercises 21–24, compute the divergence of the given vector
field.

21. F(x, y, z) = xi + yj + zk

22. F(x, y, z) = yz cos zi + (z − x)j + e xyk

23. F(x, y, z) = xe x y zi + ye x y zj + ze x y zk

24. F(x, y, z) = cos xi − y sin zyj + cos zk

In Exercises 25–40, evaluate the integral
∫∫

S
F(x, y, z) · n dS

for the specified function F(x, y, z) and the given surface S . In
each integral, n is the outwards-pointing normal vector.

25. F(x, y, z) = 4x 3yz i + 6x 2y 2z j + 6x 2yz 2k, and S is the sur-
face of the first-octant cube with side length π and with
one vertex at the origin.

26. F(x, y, z) = xy 2i + y(z − 3x)j + 4xyzk, and S is the sur-
face of the region W bounded by the planes y = 0, y = z,
z = 3, x = 0, and x = 4.

27. F(x, y, z) = e zx sin yi + e z cos yj + e x tan−1 yk, and S is the
surface of the region W that lies within the unit sphere

and above the plane z =
√

2
2

.

28. F(x, y, z) = x 3i + y 3j + z 3k, and S is the sphere of radius
3 and centered at the origin.

29. F(x, y, z) = 15xz 2i+15yx 2j+15y 2zk, and S is the surface
of the lower half of the unit sphere, along with the unit
circle in the plane.

30. F(x, y, z) = 4xyi − yz j + z 3xk, and S is the surface of the
region W that lies within the cone z = √

x 2 + y 2 and be-
tween the planes z = 1 and z = 4.

31. F(x, y, z) = 〈xz, yz, xyz〉, and S is the surface of the cylinder
with equation x 2 + y 2 = 9 for −2 ≤ z ≤ 2.

CONFIRMING PAGES



TKmaster2010 WHF00153/FREE087-Taalman December 2, 2012 18:42

14.6 The Divergence Theorem 1151

32. F(x, y, z) = 〈e x 2+y 2+z 2
, 3y − z, ye x〉, and S is the unit

sphere.

33. F(x, y, z) = sin y cos z i + yz 2j + zx 2k, and S is the surface
of the region W bounded by the paraboloid y = x 2 + z 2

and the planes y = 1 and y = 4.
34. F(x, y, z) = 〈2x−y, yz−ye 2x, x 2 +yz〉, and S is the surface

of the region that lies within x = y 2 + z 2 and x = 2z + 1.

35. F(x, y, z) =
〈
x 2y 2, 2xy,

2x z3

3

〉
, and S is the surface of the

region that lies within the hyperboloid with equation
x 2 = z 2 + y 2 + 1 and between the planes x = 1 and
x = 4.

36. F(x, y, z) = x2 z ln 2i + (x − y + z)j + (2y + 4z)k, and S is
the surface of the first-octant region W bounded by the
coordinate planes and the plane x + y + 2z = 2.

37. F(x, y, z) =
〈 xe

2
, zx − ye,

3ez
2

+ ln(x 2y 2z 2 + 1)
〉
, and S is

the surface of the sphere of radius 3 and centered
at (2, 1, 3).

38. F(x, y, z) = 〈e x 2+z 2
, 4y, e x 2+z 2 〉, and S is the surface of the

right circular cylinder of radius 1 whose axis is the line
〈2, t, 2〉 that runs parallel to the y-axis. The left and right
sides of the cylinder lie in the planes y = 3 and y = 0,
respectively.

39. F(x, y, z) = 8x i−13yj+ (13z−12e y)k, and S is the surface
of the region W that lies above the region |y| ≤ |x|, y ≥ 0
in the xy-plane, within the unit circle, and below the sad-
dle z = x 2 − y 2.

40. F(x, y, z) = 4 cos z + 2x i + (3y − z)j + 12zk, and S is the
surface of the region W bounded below by z = x 2 + y 2

and above by the sphere x 2 + y 2 + z 2 = 2 centered at the
origin.

In Exercises 41–44, find the fluxes of the vector fields through
the given surfaces in the direction of the outwards-pointing
normal vector.

41. F(x, y, z) = 〈xe y, ln(xyz), xyz 2〉, and S is the surface of the
rectangular solid with vertices (1, 1, 1), (1, 5, 1), (1, 1, 4),
(1, 5, 4), (7, 1, 1), (7, 5, 1), (7, 1, 4), and (7, 5, 4).

42. F(x, y, z) = 2xz i + 4xy j − 8zy k, and S is the surface de-
termined by y = 4 − x 2, y ≥ 0, 0 ≤ z ≤ 5.

43. F(x, y, z) = 〈y cos z, 3y, sin(xy)〉, and S is the surface of the
pyramid with the square base in the xy-plane and with
vertices (1, 1, 0), (−1, 1, 0), (1, −1, 0), (−1, −1, 0) and apex
(0, 0, 4).

44. F(x, y, z) =
〈
x 2y 2z 2, z − x − y,

y
z+1

〉
, and S is the surface

of the region bounded by z = x 2, x = 0, and 4x + 2z = 4.

Applications
45. The current through a certain region of the San Juan Is-

lands in Washington State is given by F = 〈0, 1.152 −
0.8x 2〉. Consider a disk R of radius 1 centered on this re-
gion. Denote the circle that comprises the boundary of
the disk by ∂R.

(a) Compute
∫∫

R ∇ · F dA.
(b) Show that

∫
∂R F · n ds = 0. Conclude that the Diver-

gence Theorem is valid for the current in this region
of the San Juan Islands.

(c) What do the values of the integrals from the Diver-
gence Theorem tell us about this region of the San
Juan Islands?

46. Suppose that an electric field is given by E = 〈2y, 2xy, yz〉.
Use the Divergence Theorem to compute the flux∫∫

S E dA of the field through the surface of the unit cube
[0, 1] × [0, 1] × [0, 1].

47. Consider a straight road with multiple lanes going due
north. The road is 0.0113 mile wide. Denote the velocity

of traffic at any point of the road by v(x, y) = 〈0, v 2(x, y)〉.
Traffic engineers are using road tubes along the lines
y = 0 and y = 1 to monitor the speed of traffic.

(a) Suppose that the road tubes indicate that v 2(x, 1) =
v 2(x, 0) − 5. Compute∫

C
v · n ds < 0,

and discuss what this inequality means for traffic in
this stretch of road.

(b) Compute the average divergence

1
A

∫∫
S
∇ · v dx dy

of v on this stretch, where A is the area of the road-
way. What is the significance of the average diver-
gence as regards the traffic?

Proofs

48. Show that if F(x, y, z) = curl G(x, y, z) for some smooth
vector field G, and if S is a smooth or piecewise-smooth
simple closed surface, then∫∫

S
F · n dS = 0.

49. Show that if F is conservative, it does not follow that∫∫
S F(x, y, z) · n dS = 0, by using the Divergence Theorem

to evaluate
∫∫

S F(x, y, z) · n dS, where F(x, y, z)=∇f (x, y, z),

f (x, y, z) = x 2 + y 2 + z 2, and S is the unit sphere with
outwards-pointing normal vector.

50. Suppose that F(x, y, z) = curl G(x, y, z) for some smooth
vector field G and W is a region in R

3 that is bounded by
a smooth simple closed surface. Use the table of integral
theorems on page 1145 to equate

∫∫∫
W div F(x, y, z) dV

with a line integral.
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51. Suppose S is any smooth or piecewise-smooth simple
closed surface enclosing a region W in R

3, and let

F(x, y, z) = 〈
ax + b, cy + d, ez + f

〉
,

where a, b, c, d, e, and f are scalars and a, b, and c are
not all zero. Find a condition for the relationship of a, b,
and c that will guarantee that

∫∫
S F · n dS is positive for

any choice of smooth or piecewise-smooth simple closed
surface S in R

3.

52. Let F(x, y, z) and S be as in Exercise 51. Find a condition
for the relationship of a, b, and c which will guarantee that∫∫

S F · n dS = 0 for any choice of smooth or piecewise-
smooth simple closed surface S in R

3.

53. Show that if
∫∫

S F(x, y, z) ·n dS = 0, it does not follow that
F is conservative.

Thinking Forward

Calculus in R
4 and beyond: The results of this chapter have

illustrated several ways that the Fundamental Theorem of
Calculus generalizes to two and three dimensions. Earlier
chapters have shown us how to integrate and find partial
derivatives of functions taking any finite number of inputs. It
is reasonable to ask, then, if the Fundamental Theorem has
analogs in R

n, n ≥ 4.

� What do you think the Divergence Theorem for R
4

might say? What is the guiding intuition for a Diver-
gence Theorem in R

n?
� As in the case of generalizing Green’s Theorem to R

3,
there is more than one way to try to generalize the
Divergence Theorem to R

4 and beyond. What is a way
to generalize the Divergence Theorem that is different
from the preceding answer you gave.

Calculus for functions from R
n to R

m: Vector fields can be con-
strued as functions from, say, R

3 to R
3, both multivariate and

vector-valued. There are many applications for functions of
the general form

f(x 1, . . . , x n) = 〈 f 1(x 1, . . . , x n), . . . fm(x 1, . . . , x n)〉,

where n and m are natural numbers. Consider f : R
4 → R

5.
There are 4×5 = 20 partial derivatives of f , but if f has smooth
component functions, we can still expect to do calculus.

� What might an integral of f represent? How might we
handle the partial derivatives of f in a matrix?

Analysis: This book is an introduction to, among other things,
the theory of integration. But there are more questions to ask.

� Is there a way to integrate a function with dense
discontinuities—for example, the function whose out-
put is 1 if the input is irrational and zero otherwise?
This function cannot be integrated by the methods of
Chapter 4, but there is a way to expand the notion of
integration that will allow us to integrate the function
on finite intervals. This and other questions are ad-
dressed in analysis courses.

CHAPTER REVIEW, SELF-TEST, AND CAPSTONES

Be sure you are familiar with the definitions, concepts, and basic skills outlined here. The capstone exercises at the end bring
together ideas from this chapter.

Definitions

Give precise mathematical definitions or descriptions of each
of the concepts that follow. Then illustrate the definition with
a graph or an algebraic example.

� a vector field

� a conservative vector field

� a potential function

� a smooth parametrization

� the integral of a function of two or three variables along a
curve C

� the line integral of a vector field F(x, y, z) along a
curve C

� the surface area of a smooth surface S

� The integral of f (x, y, z) over a smooth surface S

� the flux of a vector field across a surface

� the divergence of a vector field

� the curl of a vector field
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Theorems

Fill in the blanks to complete each of the following theorem
statements:

� The Fundamental Theorem of Line Integrals: If F(x, y, z) is
a vector field with F(x, y, z) = ∇f (x, y, z) on an

, , and domain containing
the curve C with endpoints P and Q, then∫

C
F(x, y, z) · dr = .

� For any vector field F in R
2 or R

3,

div (curl F) = = .

� For multivariate functions f in R
2 or R

3 with continuous
second partial derivatives,

curl ∇f = = .

� Green’s Theorem: Let F(x, y) = 〈F 1(x, y), F 2(x, y)〉 be a vec-
tor field defined on a region R in the xy-plane whose
boundary is a curve C. If r(t) is a parametriz-
ation of C in the counterclockwise direction (as viewed
from the positive z-axis), then∫

C
F(x, y) · dr =

∫
C

dx + dy

=
∫∫

R
( − ) dA.

� Stokes’ Theorem: Let S be a or surface with
a or boundary curve C. Suppose that S has
an (oriented) unit normal vector n and that C has a pa-
rametrization which traverses C in the direction
with respect to n. If F(x, y, z) = F 1(x, y, z)i + F 2(x, y, z)j +
F 3(x, y, z)k is a vector field on an open region containing
S , then ∫

C
F(x, y, z) · dr =

∫∫
S

dS.

� Divergence Theorem: Suppose W is a region in R
3 bounded

by a or surface S . If F(x, yz) is defined
on an open region containing W , then

∫∫∫
W

div F(x, y, z) dV =
∫∫

S
dS

where n is the outwards .

Notation and Integration Rules

Notation: Describe the meanings of each of the following
mathematical expressions.

� ∇ � div F(x, y, z) � curl F(x, y, z)

Integration Theorems: Assuming that the necessary hypothe-
ses are present for each of the following integration theorems,
provide an alternative method for evaluating the given inte-
gral.

� The Fundamental Theorem of Calculus:∫ b

a
f (x) dx =

� The Fundamental Theorem of of Line Integrals:∫
C

∇f (x, y, z) · dr =

� Green’s Theorem:
∫∫

R

(
∂ f 2

∂x
− ∂ f 1

∂y

)
dA =

� Stokes’ Theorem:∫∫
S

curl F(x, y, z) · n dS =

� Divergence Theorem:
∫∫∫

W
div F(x, y, z) dV =

Skill Certification: Vector Calculus

Potential Functions: Find a potential function for each vector
field.

1. F(x, y) = 〈3x 2y 2, 2x 3y〉
2. F(x, y) = y 2

x
i + 2y ln x j

3. G(x, y, z) = xze y 2
i + 2xyze y 2

j + xe y 2
k

4. G(x, y, z) = 〈2xy 2ze x 2y z, (1 + x 2yz)e x 2y z, x 2y 2e x 2y z〉

Conservative Vector Fields: Determine whether the vector fields
that follow are conservative. If the field is conservative, find a
potential function for it.

5. F(x, y) = 2x
y

i + x 2

y 2
j

6. F(x, y) = 〈(1 + xy)e x y, e x y〉
7. F(x, y) = 〈 y 3e x y 2

, (1 + 2xy 2)e x y 2 〉
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8. F(x, y, z) =
〈y

z
,

x
z

, − xy
z 2

〉

9. G(x, y, z) = cos y sin zi − x sin y sin zj − x cos y cos zk

10. G(x, y, z) = y 2zi + 2xyzj + xy 2k

Line Integrals: Evaluate the line integral of the given function
over the specified curve.

11.
∫

C F(x, y) · dr, where F(x, y) = 7y 2i − 3xyj and C is the
line segment x = t, y = 3t for 0 ≤ t ≤ 1.

12.
∫

C F(x, y) · dr, where F(x, y) = 〈8x 2y, −9xy 2〉 and C is the
curve parametrized by x = t 2, y = t 3 for 0 ≤ t ≤ 1.

13.
∫

C F(x, y) · dr, where F(x, y) = x
x2 +y2

i − y
x2 +y2

j and C is

the unit circle centered at the origin.
14.

∫
C F(x, y, z) · dr, where F(x, y, z) = yz i + xz j + xyk and C

is the curve parametrized by x = t 2, y = t−2, z = t for
1 ≤ t ≤ 3.

15.
∫

C F(x, y, z) · dr, where F(x, y, z) = 〈e x, e y, e z〉 and C is the
line segment from (0, 0, 0) to (1, 1, 1).

16.
∫

C F(x, y, z) · dr, where F(x, y, z) = 〈e x, e y, e z〉 and C is the
curve parametrized by x = t, y = t 2, z = t 3 for 0 ≤ t ≤ 1.
Compare your answer with that of Exercise 15.

Surface Area: Find the area of each of the following surfaces.

17. The portion of the plane 2x + 3y + 4z = 12 that lies in the
first octant.

18. The portion of the plane 2x + 3y + 4z = 12 that lies inside
the cylinder with equation x 2 + y 2 = 9.

19. The portion of the sphere with equation x 2 +y 2 +z 2 = 16
that lies inside the cylinder with equation x 2 + y 2 = 9.

20. The portion of the paraboloid with equation z = 9 − x 2 −
y 2 that lies above the xy-plane.

Flux: Find the outward flux of the given vector field through
the specified surface.

21. F(x, y, z) = 〈x, y, z〉 and S is the portion of the cone with
equation z = √

x 2 + y 2 for z ≤ 3.
22. F(x, y, z) = 〈x, y, z〉 and S is the sphere with equation

x 2 + y 2 + z 2 = 9.
23. F(x, y, z) = xyzi and S is the portion of the plane with

equation x + y + z = 4 in the first octant.
24. F(x, y, z) = x 2i+y 2j+ z 2k and S is the top half of the unit

sphere centered at the origin.

Divergence and Curl: Find the divergence and curl of the fol-
lowing vector fields.

25. F(x, y) = (3x + 4y)i + (x − 5y)j
26. F(x, y) = x 2yi + xy 3j
27. F(x, y, z) = (x − y)i + ( y − z)j + (z − x)k
28. F(x, y, z) = ( y 2 − z 2)i + (z 2 − x 2)j + (x 2 − y 2)k

Green’s Theorem: Use Green’s Theorem to evaluate the integral∫
C F · dr for the given vector field and curve.

29. F(x, y) = ( y 2 +1)i+2xyj and C is the circle with equation
x 2 + y 2 = 9, traversed counterclockwise.

30. F(x, y) = 〈e x cos y, e x sin y〉 and C is the ellipse with equa-
tion 3x 2 + 4y 2 = 25, traversed counterclockwise.

31. F(x, y) = xyj and C is the square with vertices (±3, ±3),
traversed counterclockwise.

32. F(x, y) = yi−x j and C is the square with vertices (±3, ±3),
traversed counterclockwise.

Stokes’ Theorem: Evaluate the integrals that follow. In some
cases Stokes’ Theorem will help; in other cases it may be
preferable to evaluate the integrals directly.

33.
∫

C F(x, y, z) · dr, where

F(x, y, z) = ( y 2 − x 2)i + (z 2 − y 2)j + (x 2 − y 2)k,

C is the triangle with vertices (2, 0, 0), (0, 6, 0), and (0, 0, 3),
and n points upwards.

34.
∫

C F(x, y, z) · dr, where F(x, y, z) = 〈 y 3, −4z, 4x 2〉, C is the
circle in the xy-plane parametrized by x = 2 cos t, y =
2 sin t, and n points upwards.

35.
∫∫

S curl F(x, y, z) · n dS, where

F(x, y, z) = 〈
5y, 5x, z 2〉 ,

S is the portion of the unit sphere x 2 + y 2 + z 2 = 1 above

the plane z = 1
2

, and n is the upwards-pointing normal
vector.

36.
∫∫

S curl F(x, y, z) · n dS, where

F(x, y, z) = 〈
x 3yz, xy 2z, yz

〉
,

S is the portion of the hyperboloid z = x 2 − y 2 + 1 that
lies above the square with vertices (±1, ±1), and n is the
upwards-pointing normal vector.

Divergence Theorem: Evaluate the integral
∫∫

S
F(x, y, z) · n dS

for the specified vector field F and surface S . In each case, n is
the outwards-pointing normal vector.

37. F(x, y, z) = x 2yi + y 2z j + xz 2k and S is the hemisphere
bounded above by x 2 + y 2 + z 2 = 1 and bounded below
by the xy-plane.

38. F(x, y, z) = x 2i + y 2j + z 2k and S is the surface of the
rectangular solid described by the inequalities 0 ≤ x ≤ 3,
0 ≤ y ≤ 2, and 0 ≤ z ≤ 1.

39. F(x, y, z) = x 3z i+xyj+4yzk and S is the boundary of the
frustum of the cone with equation x = √

y 2 + z 2 between
the planes x = 2 and x = 5.

40. F(x, y, z) = xyi + xyz j + yzk and S is the boundary of the
cylinder with equation x 2 + z 2 = 4 for 0 ≤ y ≤ 5.
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Capstone Problems

A. Let F = F(x, y, z) and G = G(x, y, z). Prove that

∇(F · G) = (F · ∇)G + (G · ∇)F

+ F × (∇ × G) + G × (∇ × F).

B. The Laplacian of a function f of two or three variables is
the divergence of the gradient. That is,

∇ 2f = ∇ · (∇f ).

The vector Laplacian of a vector field

F(x, y, z) = 〈
F 1(x, y, z), F 2(x, y, z), F 3(x, y, z)

〉
is

∇ 2F = 〈∇ 2F 1, ∇ 2F 2, ∇ 2F 3
〉
.

Prove that, for a vector field F = F(x, y, z),

∇ × (∇ × F) = ∇(∇ · F) − ∇ 2F.

C. Show that
∫

C F · dr = πρ2 when F(x, y) = −yi + x j and
C is the circle with radius ρ centered at the origin and
traversed counterclockwise.

(a) Formulate a conjecture for the value of the integral∫
C F ·dr, where F(x, y) = −yi+x j and C is any simple

closed curve.
(b) Prove your conjecture.
(c) Use your conjecture to find the area of the ellipse

with parametrization

x = a cos t and y = b sin t.

D. Let F = F(x, y, z) and G = G(x, y, z) be vector fields de-
fined on a region R enclosed by an orientable surface S
with outwards unit normal vector n. Prove that if

∇ · F = ∇ · G and ∇ × F = ∇ × G

on R and F · n = G · n on S , then F = G on S .
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A N S W E R S T O O D D P R O B L E M S

Chapter 0

Section 0.1

1. F, F, F, T, F, F, T, T.

3. See the reading at the beginning of this section.

5. Domain( f ) = {x ∈ R | f ( x) is defined}; for f ( x) = √
x

the domain is Domain( f ) = {x ∈ R | x ≥ 0}.
7. (a) Yes:

√
3 + 1 = 2; (b) No:

√
1 + 1 �= 1; (c) No:√−5 + 1 is undefined.

9. (a) f (2) = 5; (b) There is no x with f ( x) = 0; (c) You can
solve y = x2 + 1 for x if and only if y ∈ [1, ∞).

11. One example is f (2) = 3, f (4) = 1, f (6) = 3, f (8) = 2,
f (10) = 1.

13. Yes, it could be a function; however, it would not be
one-to-one.

15. (a) This is well-defined as the function f ( x) = x, for
x ∈ R. (b) Not well-defined, since we would need
f (0) = 0, and f (3) = 3, but 0 and 3 are not in the target
set (0, 3). (c) This is well-defined as the multivariable
function f ( x, y, z) = ( x, y, z), for ( x, y, z) ∈ R

3.

17. See the reading near Theorem 0.27.

19. f (2) = f (−2)

21. (a) f ( x) < 0 for all x ∈ I; (b) f (b) < f (a) for all b > a in I

23. Average rate of change of f on [a, b] is given by
f (b)−f (a)

b−a
. Here f (b) − f (a) is the difference �y of

y-values, or the “rise.” Similarly, b − a is the difference
�x of x-values, or the “run.”

25. The largest possible δ for the local maximum at x = 2 is
approximately δ = 1.5.

27. Domain [1, ∞), range [0, ∞)

29. Domain x �= −2, range y �= 0

31. Domain R, range (0, 1]

33. (−∞, 0] ∪ [2, ∞)

35. (−∞, −3] ∪ [1, ∞)

37. (−∞, −3) ∪ (1, ∞)

39. (−∞, −3) ∪ (−3, −1] ∪ [1, 3) ∪ (3, ∞)

41. (1, 2) ∪ (2, ∞)

43. (a) 17; (b) a6 + 1; (c) ( x2 + 1)2 + 1 = x4 + 2x2 + 2.

45. (a)
√

25 + 9 + 4 = √
38; (b)

√
9 + 0 + 16 = 5;

(c)
√

x2 + y2 + z2

47. (a) (9, −3, 13); (b) (17, 2, 8); (c) (3a + b, a, b).

49. f (−1) = −2, f (0) = 1, f (1) = 4, f (2) = 8

51. One good window for this graph is x ∈ [−1, 1],
y ∈ [−0.3, 1].

53.

�2 4

�40

10

�2 4

�40

10

55. 75

�6 23

�75

75

�6 23

�75

57. (a) Domain R, range [−1, ∞); (b) roots at x = 0 and
x = 2, y-intercept at y = 0, local and global minimum at
x = 1 (with a value of f (1) = −1), no local or global
maxima, no inflection points; (c) positive on
(−∞, 0) ∪ (2, ∞), negative on (0, 2), decreasing on
(−∞, 1), increasing on (1, ∞), concave up on R,
concave down nowhere; (d) no asymptotes.

59. (a) Domain R, range [−4.75, ∞); (b) roots at x ≈ −1.6
and x = 0, y-intercept at y = 0, local and global
minimum at x = −1 (with a value of f (−1) = −4.75),
local minimum at x = 2 (with value f (2) = 2), local
maximum at x = 1 (with value f (1) = 3.25), inflection
points at x ≈ 0 and x ≈ 1.5; (c) positive on
(−∞, 1.6) ∪ (0, ∞), negative on (−1.6, 0), decreasing on
(−∞, −1) ∪ (1, 2), increasing on (−1, 1) ∪ (2, ∞),
concave up on (−∞, 0) ∪ (1.5, ∞), concave down on
(0, 1.5); (d) no asymptotes.

61. (a) Domain R, range (1, 2]; (b) no roots, y-intercept at
y = 2, local and global maximum at x = 0 (with a value
of f (0) = 2), no local or global minima, inflection points
at x = −1 and x = 1; (c) positive on (−∞, ∞), negative
nowhere, increasing on (−∞, 0), decreasing on (0, ∞),
concave up on (−∞, −1) ∪ (1, ∞), concave down on
(−1, 1);
(d) horizontal asymptote at y = 1.

63. One example is the graph of f ( x) = 2−x.

65. Not possible.
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67.

x

y

�8 �4 84

2

�1

1

�2

69. One example is the graph of f ( x) = (x2 −1)(x2 −4)
x

.

71.

x

y

�8 �4 84

2

�1

1

�2

73. 4.2

75.
√

10−√
2

8
77. − 100

99

79.

x

y
512

81.

x

y

83. (a) Independent variables a and b, dependent variable
H, function equation H(a, b) = √

a2 + b2;
(b) independent variables x, y, and z, dependent
variable V , function equation V( x, y, z) = xyz.

85. 356 groundhogs

87. (a) I(t) =
⎧⎨
⎩

36,000, if 0 ≤ t < 4
38,500, if 4 ≤ t < 6
49,000, if t ≥ 6.

(b) M(t) =
⎧⎨
⎩

36,000t, if 0 ≤ t < 4
144,000 + 38,500(t − 4), if 4 < t ≤ 6
221,000 + 49,000(t − 6), if t ≥ 6.

(c) You will have earned a total of one million dollars
after approximately 21.9 years.

89. The range of f is the set of real numbers y such that
there is some x with 3x − 1 = y. This range is R, since

for any real number y, the number x = y+1
3

has the

property that f ( x) = 3
( y+1

3

)
− 1 = y.

91. It suffices to show that f is not one-to-one if and only if
it fails the Horizontal Line Test. Not one-to-one means
there exists some a �= b in the domain of f such that
f (a) = f (b). This is precisely what it means for f to
intersect the horizontal line y = f (a) in two places,
namely, (a, f (a)) and (b, f (b)) = (b, f (a)).

93. For all a and b in (−∞, ∞), we have a < b ⇒
−3a > −3b ⇒ 1 − 3a > 1 − 3b ⇒ f (a) > f (b).

95. For all real numbers a and b,
f (b)−f (a)

b−a
= (−2b+4)−(−2a+4)

b−a
= −2(b−a)

b−a
= −2.

Section 0.2

1. F, T, T, F, F, F, F, F.

3. ( f −g)( x) = ( f +(−g))( x) = f ( x)+(−g)( x) = f ( x)−g( x).

5. (a) One answer is (1, 2); (b) one answer is f
( 1

2
x
)

;

(c) (−1, 4); (d) (2, −5).

7. (a) The domain is the set of x such that x ∈ [2, ∞) and
f ( x) ∈ [−10, ∞). Since the range of f , [−3, 3], always
satisfies the second condition, the domain of g ◦ f is
[2, ∞). (b) We would need to know which x-values
guarantee that g( x) ∈ [2, ∞). (c) Not enough
information for f ◦ f ; the domain of g ◦ g is [−10, ∞).

9. f (2x)

11. If f is odd then f (0) is either 0 or undefined.

13. (a) f (−2) = 1, f (−1) = −2, f (3) = 4 (f (0) could be
anything); (b) f (−2) = −1, f (−1) = 2, f (0) = 0, and
f (3) = −4.

15. ( f −1)−1 = f .

17. f −1 has domain (−∞, 3] and range [−1, 1).

19. The missing entries in the first column are −3, −2, 0, 0.
The missing entries in the second column are
−2, 3, 3, −6. The missing entries in the third column are
−1, 2, 2, −7.

21. Domain x �= 2; ( f + g)( x) = x2 + 1 + 1
x−2

;

( f + g)(1) = 1.

23. Domain (0, 2) ∪ (2, ∞);
( g

h

)
( x) =
( 1

x−2

)
/
√

x;( g
h

)
(1) = −1.

25. Domain x �= 2, x �= 5
2

; (g ◦ g)( x) = 1
1

x−2
−2

;

(g ◦ g)(1) = − 1
3

.

27. Domain x �= 7; g( x − 5) = 1
(x−5)−2

; g(1 − 5) = − 1
6

.

29. Domain x ≥ − 1
3

; h(3x + 1) = √
3x + 1; h(3(1) + 1) = 2

31. The new row is 3, 5, 9, 7, 9, 3, 7.

33. The new row is 2, 3, 2, 2, 3, 2, 3.

35. The new row is 0, 1, 3, 2, 3, 0, 2.

37. For x = 1, 2, 3, 4, 5, 6, 7 we have
g( x − 1) = 1, 0, 1, 1, 0, 1, 0, respectively.
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39.

x

y

�3 �2 �1 321

2

�4

�2

�6

41.

x

y

�3 �2 �1 1 2

2

1

�2

�1

�3

43. y
3

2

�1

�2

1

�3

x
�3 �2 �1 321

45.

x

y

�3 �2 �1 321

4

�8

�4

�12

47.

x

y

�3 �2 �1 321

2

�4

�2

�6

49. y
3

2

�1

�2

1

�3

x
�3 �2 �1 321

51. ( f + g)(−1) = 0, ( f + g)(0) = 1, ( f + g)(1) = 0,
( f + g)(2) = 9, ( f + g)(3) = 14;

( f + g)( x) =
⎧⎨
⎩

x + 1, if x ≤ 0
x2 − x, if 0 < x < 2
x2 + 5, if x ≥ 2.

53. ( g ◦ f )(−1) = 1, ( g ◦ f )(0) = −1, ( g ◦ f )(1) = −1,
( g ◦ f )(2) = 5, ( g ◦ f )(3) = 5;

( g ◦ f )( x) =
⎧⎨
⎩

−(2x + 1), if x ≤ 0
−x2, if 0 < x <

√
2

5, if x ≥ √
2.

55. f (−1 − 1) = −3, f (0 − 1) = −1, f (1 − 1) = 1,
f (2 − 1) = 1, f (3 − 1) = 4;

f ( x − 1) =
{

2x − 1, if x ≤ 1
( x − 1)2, if x > 1.

57. One way: g( x) = 3x + 5, h( x) = x2; another way:
g( x) = x + 5, h( x) = 3x2.

59. One way: g( x) = 6
x

, h( x) = x + 1; another way:

g( x) = 6x, h( x) = 1
x+1

.

61. Even, since f (−x) = (−x)4 + 1 = f ( x).

63. Neither, since f (−x) �= f ( x) and f (−x) �= −f ( x).

65. Odd, since f (−x) = −f ( x).

67. f ( g( x)) = 2 − 3
(
− 1

3
x + 2

3

)
= x and

g( f ( x)) = − 1
3

(2 − 3x) + 2
3

= x.

69. f ( g( x)) = f
( x

1+x

)
= x/(1 + x)

1 − ( x/(1 + x))
= x (for x �= −1);

similarly, g( f ( x)) = x for x �= 1.

71.

x
84 62

y
3

2

�1

�2

1

�3

73. f is invertible on the restricted domain [0, 2], and its
inverse has the following graph:

x

y

�4 �3 �2 �1 42 31

2

1

75. f −1( x) = 1−2x
5

77. f −1( x) = 1
x−1

79. f −1( x) = −x−1
x−1

81. (a) S( x) = x2; (b) C(S) = 4.25S + 200;
(c) C( x) = 4.25x2 + 200; C( x) is the composition
C(S( x)).

83. (a) C(n) = 20 + 12n. (b) Suppose there were a and b in
the domain (−∞, ∞) of C(n) with C(a) = C(b). In this
case 20 + 12a = 20 + 12b, so 12a = 12b, and therefore
we must have a = b. (c) n(C) = C−20

12
. This function

describes the number n of shirts that you can have
made for C dollars. (d) n(150) ≈ 10.83, so you can make
10 full shirts.

85. f (2x) = (2x)k = 2 kx k = 2 kf ( x).

87. (a) If ( x, y) is on the graph of f , then y = f ( x), so
kf ( x) = ky; thus ( x, ky) is a point on the graph of kf ( x).
(b) If ( x, y) is on the graph of f , then y = f ( x), so

f
(

k
( 1

k
x
))

= f ( x) = y, so
( 1

k
x, y
)

is on the graph of

f (kx).

89. If f is odd then for all x in the domain of f we have
f (−x) = −f ( x). In particular, f (−0) = −f (0), so
f (0) = −f (0). This means we must have f (0) = 0.

91. Since f −1( f ( x)) = x for all x in the domain of f , we
know that f −1 is defined for all values f ( x) in the range
of f . Therefore the domain of f −1 is the range of f .
Similarly, since f ( f −1( x)) = x, the range of f −1 is in the
domain of f .

93. If f (a) = b then f −1( f (a)) = f −1(b) and therefore
a = f −1(b).
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Section 0.3

1. T, F, T, F, F, T, T, F.

3. The graphs look like:

y
30

20

�10

�20

10

�30

x
�3 �2 �1 321

x

y

�3 �2 �1 2 31

30

10

20

5.

x

y

�3 �2 �1 2 31

10

2

4

8

6

7. Yes;
1

f (x)
= 1

Axk
= 1

A
x−k, so C = 1

A
and r = −k.

9. Leading coefficient 3, leading term 3x 4, degree 4,
constant term 0, coefficients a1 = 4, a3 = −11.

11. If b 2 − 4ac < 0, then
√

b 2 − 4ac is not a real number, so
by the quadratic formula the quadratic has no real roots.
If f ( x) = 3x2 + 2x + 6, then
b 2 − 4ac = 22 − 4(3)(6) = −68 is negative.

13. After reducing, f ( x) becomes
x−1
x+2

, which has a vertical
asymptote at x = −2.

15. One answer is f ( x) = 3x2 +1
(x+2)(x−2)

.

17. (a) Graph the functions given in part (b) to see three

possible answers; (b) f ( x) = −(x−1)(x−3)(x+1)
(x−2)2(x+1)

;

f ( x) = −(x−1)(x−3)(x+1)2

(x−2)2(x+1)2
; f ( x) = −(x−1)2(x−3)(x+1)

(x−2)(x+1)(x2 +1)
.

19. y
4

2

�2

�4

x
�3 �2 �1 321

21. y
15

�15

x
�3 7

23. If x ≥ 0 then
√

x2 = x, and if x < 0 then
√

x2 = −x.

25. Domain R, zero at x = 0

27. Domain (0, ∞), never zero

29. Domain (−∞, −1) ∪ (1, ∞), never zero

31. Domain (−∞, −1) ∪ (−1, 3], zero at x = 3

33. Domain (−∞, −1] ∪ [6, ∞), zero at x = −1

35. y + 2 = −( x − 3)

37. y − 4 = 2(x + 1)

39. One possible answer is f ( x) = 2x2.

41. One possible answer is f ( x) = x( x − 2)( x − 4).

43.
3

2

1

y

�3

�2

�1
�2�3�4 �1 21

x

45. y
1

�1

x
�3 �2 �1 321

47.

x

y

�0.5 1

49.

x

y

�2 2

8

51. The graph of f has roots at x = 0, x = −3, and x = 1,
vertical asymptotes at x = ±2, and no horizontal
asymptotes.

53. y

�1

4

x
�2 3

55. The graph of f has a hole at x = −1, roots at x = − 3
2

and x = 1, a vertical asymptote at x = 3, and no
horizontal asymptotes.

57. The parts of the graph of y = sin x that are below the
x-axis should be reflected across the x-axis to obtain the
graph of g( x).

59. The graph should look like the one you found in
Exercise 57, but shifted down two units.

61. f ( x) = 2
x 63. f ( x) = −( x + 2)( x − 1)3

65. f ( x) = ( x − 2)2 + 2 67. f ( x) = −4(x2 +1)(x−4)
(x+2)(x−2)(x−4)

69. f ( x) = −4(x−1)(x+1)
(x2 +1)2

71. f ( x) = |2( x + 1)( x − 3)|
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73. |5 − 3x| =

⎧⎪⎨
⎪⎩

5 − 3x, if x ≤ 5
3

3x − 5, if x >
5
3

x

y

�2 �1 52 3 41

10

8

6

4

2

75. |x2 + 1| = x2 + 1 for all real numbers x

x
�2 �1 21

y
5

4

3

2

1

77. |9 − x2| =
{

9 − x2, if − 3 ≤ x ≤ 3
−(9 − x2), if x < −3 or x > 3.

x
�6 �3 63

y
25

20

15

10

5

79. |x2 − 3x − 4| =
⎧⎨
⎩

x2 − 3x − 4, if x ≤ −1
−( x2 − 3x − 4), if − 1 < x < 4

x2 − 3x − 4, if x ≥ 4.

x

y

�2 �1 2 65431

12

4

8

81. The minimum possible degree is 3.

83. No, since polynomials increase or decrease without
bound and do not have asymptotes. A rational function
might be a better choice.

85. If f ( x) = Ax k and g( x) = Bx l are power functions, then
( f ◦ g)( x) = f (Bx l) = A(Bx l)k = (AB k)x lk is also a power
function.

87. If f ( x) = mx + b and g( x) = nx + c then
f ( g( x)) = f (nx + c) = m(nx + c) + b = (mn)x + (mc + b).

89. If f ( x) = Ax 3 + lower-degree terms and
g( x) = Bx 3 + lower-degree terms, then
f ( x)g( x) = ABx 6 + lower-degree terms. Since f and g
are cubic we know that A and B are nonzero. Thus AB
must also be nonzero, and therefore fg is of degree 6.

91. (a) If f ( x) = k for all k, then f ( x) = k = 0x + k is also a
linear function. (b) If f ( x) = mx + b is a linear function
with m �= 0, then f is a polynomial of degree 1 with
coefficients a1 = m and a0 = b. If f ( x) = mx + b with
m = 0 then f is a polynomial of degree zero with sole
coefficient a0 = b.

93. A number of the form f (c) = p(c)
q(c)

is equal to zero when

its numerator p(c) is zero but its denominator q(c) is not.

Section 0.4

1. F, T, T, T, T, F, T, F.

3. A function is exponential if it can be written in the form
f ( x) = Ab x; the variable is in the exponent and a
constant is in the base. For a power function, the
situation is reversed. x x is neither a power nor an
exponential function because a variable appears in both
the base and the exponent.

5.
√

3 ≈ 1.73205. We have 21.7 ≈ 3.2490, 21.73 ≈ 3.3173,
21.732 ≈ 3.3219, 21.7320 ≈ 3.3219, 21.73205 ≈ 3.3220, and
so on. Each of these approximations gets closer to the
value of 2

√
3.

7. f ( x) = 3(e−2) x ≈ 3(0.135) x, g( x) = − 2e(ln 3)x ≈ − 2e1.0986x.

9. We must have b > 0 and b �= 1, since those conditions
are necessary for b x to be an exponential function.

11. The graph that passes through (2, 1) is log2 x; the graph

that passes through
(

2,
1
2

)
is log4 x.

13. f ( x) = 2 ln x is the graph of ln x stretched vertically by a
factor of 2; g( x) = − ln x is the graph of ln x reflected
over the x-axis.

15. If θ is an angle in standard position, then sin θ is the
vertical coordinate y of the point ( x, y) where the
terminal edge of θ intersects the unit circle.

17. The terminal edges of the angles
π

4
,

9π

4
, and − 7π

4
all

meet the unit circle at the same point (and in particular,
at the same y-coordinate).

19. cos θ = x is −
√

8
3

if θ is in the third quadrant;

cos θ =
√

8
3

if θ is in the fourth quadrant; θ cannot be in
the first or second quadrant.
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21. See Definition 0.27 for the restricted domains of the
trigonometric functions, and thus the ranges of the
inverse trigonometric functions. The domain of arcsin x
is [−1, 1], the domain of arctan x is all of R, and the
domain of arcsec x is (−∞, −1] ∪ [1, ∞). Their ranges
are the restricted domains of sin x, tan x, and sec x,
respectively.

23. Only (a) and (c) are defined.

25. (a) Negative; (b) Negative; (c) Positive; (d) Positive

27. (2, 3) ∪ (3, ∞) 29. (2, ∞)

31. . . . ∪
(
− 5π

2
, − 3π

2

)
∪
(
−π

2
,
π

2

)
∪
( 5π

2
,

7π

2

)
∪ . . .

33. −2 35. 4

37. −1 39.
√

2

41. π 43. 3π

4

45. x = ln3
ln(3/2)

≈ 2.70951 47. x = − 17
15

49. x = πk, where k is any integer

51.
√

35
6

53. − 17
18

55. Negative 57.
√

1 − x 2

59. x 2 + 1 61.
√

1 −
( 3

x

)2

63. 1 − 2(5x)2

65. Start with the graph of y =
( 1

2

) x
, then reflect over the

x-axis and shift up by 10 units.

67.

x

y

�1 21

20

15

69.

x
84 62 73 51

y
6
5
4
3
2

�1
�2

1

�3

71. y
2

1

�2

�1

x
π

4
5π

4
3π

4
π

4�
5π

4�
3π

4�

73. f ( x) = 2e−x − 3

75. f ( x) = −5e−x + 10 77. f ( x) = − cos 2x

79. (a) I(t) ≈ 10, 000e 0.08t; (b) I(t) = 10, 000(1.085)t.

81. (a) S(t) = 250e−ln 2/29t ≈ 250e−0.0239t, or equivalently,
S(t) = 250(0.97638)t; (b) 2.39%; (c) 156 years

83. 211.97 feet

85. Seeking a contradiction, suppose that A and b are
nonzero real numbers with Ab x = 0 for some real
number x. Since A �= 0 we know b x = 0, and therefore
that x(ln b) = ln(b x) = ln 0. But this is a contradiction
because ln 0 is undefined, so the product x(ln b) of real
numbers cannot equal ln 0.

87. log2 x = log3 x ⇔ lnx
ln2

= lnx
ln3

⇔ (ln 3)(ln x) =
(ln 2)(ln x) ⇔ (ln x)(ln 3 − ln 2) = 0 ⇔ ln x = 0 ⇔ x = 1.

89. y = logb x if and only if b y = x. Since the only solution
of b y = 1 is y = 0 (if b �= 0), we know that logb 1 = 0.

91. Since x = blog b x, we have log b( x a) = log b((blog b x)a) =
log b(b(log b x)a = (log b x)a = a log b x.

93. (a) log b

( 1
x

)
= log b( x−1) = − log b x;

(b) log b

( x
y

)
= log b( xy−1) = log b x − log b y.

95. (a) For any angle θ , (cos θ , sin θ ) are the coordinates of
the point where the terminal edge of θ meets the unit
circle. Since the equation of the unit circle is x 2 + y2 = 1
and we have x = cos θ and y = sin θ , we must have
sin2 θ + cos2 θ = 1.

97. For any angle θ , sin θ is the y-coordinate where the
terminal edge of θ meets the unit circle. The angle −θ is
the angle of the same magnitude as θ but opening in
the clockwise direction from the x-axis, and therefore its
terminal edge will be the same as the terminal edge of θ

except reflected across the x-axis. Therefore the
y-coordinates of these two terminal edges have the
same magnitude but opposite signs; in other words,
sin(−θ ) = − sin θ . The remaining even/odd identities
can be proved in a similar fashion.

99. sin 2θ = sin(θ + θ ) = sin θ cos θ + sin θ cos θ =
2 sin θ cos θ . The identity for cos 2θ is proved similarly,
and the alternative forms follow from the first two
forms and the Pythagorean identity.

Section 0.5

1. F, T, T, F, T, T, F, F.

3. If C is true, then D must be true. If C is false, then D
may or may not be true.

5. “For all x > 0, we have x > −2.” and “If x > 0, then
x > −2.”

7. The original statement is true. The converse is “Every
rectangle is a square,” which is false. The contrapositive
is “Everything that is not a rectangle is not a square,”
which is true.

9. The contrapositive is “Not(Q)⇒Not(P),” which is
logically equivalent to P ⇒ Q.

11. False. 13. True.

15. True.

17. True. The negation is “For all real numbers x, x ≤ 2 and
x ≥ 3.”

19. True. The negation is “There exists a real number that is
both rational and irrational.”
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21. True. The negation is “There exists x such that, for all y,
y �= x 2.” (In other words, “There exists x for which there
is no y with y = x 2.)”

23. True. The negation is “There is some integer x greater
than 1 for which x < 2.”

25. False. One counterexample is x = 1.35.

27. False.

29. False. One counterexample is x = −1.

31. True. One example is x = 3.

33. True. The negation is “There exist real numbers a and b
such that a < b but 3a + 1 ≥ 3b + 1.”

35. True. 37. False.

39. True.

41. True. One example is x = −1, since for all y we have
|y| > −1.

43. True.

45. False. The only counterexample where the two sides of
the double implication are not equivalent is x = 0,
y = 0.

47. (a) B ⇒ (Not A); (b) (Not B) ⇒ A

49. (a) (Not A) ⇒ (Not B); (b) A ⇒ B

51. (a) C ⇒ (A and B); (b) Not(C ) ⇒ (Not A) or (Not B)

53. (a) (B and C ) ⇒ A; (b) ((Not B) or (Not C )) ⇒ (Not A)

55. (a) The converse is “If x is rational, then x is a real
number.” (b) The contrapositive is “If x is irrational,
then x is not a real number.” (c) x = π is a
counterexample to the original and the contrapositive.

57. (a) The converse is “If x ≥ 3, then x > 2.” (b) The
contrapositive is “If x < 3, then x ≤ 2.” which is false.
(c) x = 2.5 is a counterexample to both the original and
the contrapositive.

59. (a) The converse is “If
√

x is not a real number, then x is
negative.” (b) The contrapositive is “If

√
x is a real

number, then x is nonnegative. (c) No possible
counterexamples for any of the statements.

61. (a) The converse is “If |x| = −x, then x ≤ 0.” (b) The
contrapositive is “If |x| �= −x, then x > 0.” (c) No
possible counterexamples for any of the statements.

63. (a) The converse is “If x 2 > x, then x is not zero.”
(b) The contrapositive is “If x 2 ≤ x, then x = 0.”
(c) x = 0.5 is a counterexample to the original statement
and its contrapositive; the converse happens to be true.

65. (a) The converse is “If there is some integer n such that
x = 2n + 1, then x is odd.” (b) The contrapositive is “If
there is no integer n such that x = 2n + 1, then x is not
odd.” (c) No possible counterexamples for any of the
statements.

67. Linda wears a red hat, Alina wears a blue hat, Phil
wears a green hat, Stuart wears a yellow hat.

69. Liz and Rein are liars, and Zubin tells the truth. Here is
an argument that proves this solution is correct: If Liz
told the truth then everyone would, which would
contradict Rein’s and Zubin’s statements. Therefore Liz
must be a liar. Now if Rein is telling the truth, then by
Rein’s statement, Zubin must tell the truth also, but
Zubin’s statement would be false; another
contradiction. Therefore Rein must be lying. This makes
Zubin’s statement true, so Zubin is telling the truth.

71. Kate and Hyun are liars and Jaan tells the truth. Here’s
why: Seeking a contradiction, suppose Kate tells the
truth. Then by her statement both Hyun and Jaan lie. If
Hyun lies then her statement means that Kate also lies,
which is a contradiction. Therefore we can assume that
Kate lies. Thus Hyun’s statement is false, so Hyun is a
liar. But by Kate’s false statement, at least one of Hyun
or Jaan tells the truth. Therefore Jaan tells the truth.

73. Suppose x is irrational and r is rational. Seeking a
contradiction, suppose x − r is rational. Since the sum
of two rational numbers is rational, we know that
( x − r) + r = x must be rational. But this contradicts the
hypothesis that x is irrational; therefore x − r must be an
irrational number.

75. If n is even and m is odd then there are integers k and l
such that n = 2k and m = 2l + 1. Then
n + m = (2k) + (2l + 1) = 2(k + l ) + 1. Since k + l is an
integer, this means that n + m is odd.

77. Let n = 2k and m = 2l + 1 and compute n times m.

79. If M =
( x1 +x2

2
,

y1 +y2

2

)
, the distance formula easily

shows that dist(M, P) = dist(M, Q).

81. If a, b, and c are any real numbers with b �= 0 and c �= 0,

then
a/b

c
= a/b

c/1
= a(1)

bc
= a

bc
.

83. Follow the outline given in the problem.

85. |a − b| + |b| ≥ |(a − b) + b| = |a| so |a − b| ≥ |a| − |b|.
87. |x − c| > δ if and only if x − c > δ or x − c < −δ, which

is equivalent to having x > c + δ or x < c − δ, meaning
that x ∈ (c + δ, ∞) ∪ x ∈ (−∞, c − δ).

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 1

Section 1.1

1. T, F, T, F, F, T, F, T.

3. lim
x→1

f ( x) = 5; cannot say anything about f (1)

5. lim
x→2−

f ( x) is not equal to 8.

7. f has a horizontal asymptote at y = 3 and a vertical
asymptote at x = 1.

9. (a) The terms get smaller; lim
k→∞

1
3k

= 0. (b) For every

k > 8 the terms will be less than 0.0001.
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11. (a) The terms get larger and larger as more numbers are
added. (b) For every k > 44 the terms will be greater
than 1000.

13. (a) By solving s(t) = 0 we see that the orange hits the
surface of the moon at about t = 2.75 seconds. The
average rate of change on [1.75, 2.75] is −11.925 feet
per second; on [2.25, 2.75] it is −13.25, on [2.5, 2.75] it
is −13.9125, and on [2.625, 2.75] it is −14.2438. (b) We
might estimate −14.5 feet per second on impact.

15. (a) 6.25 for four rectangles, and 5.8125 for eight. (b) If
we did this for more and more rectangles, the area
approximation would decrease to become closer and
closer to the actual area under the curve. We might
estimate 5.5 square units from our earlier work. (The
actual answer turns out to be about 5.33.)

17. Let the graph of the function escape out to ±∞ at x = 2
with a vertical asymptote at the last minute.

19. (a) g(1) is of the form
0
0

and therefore is not defined. A
calculator graph is shown here. It is not immediately
clear that g( x) is not defined at x = 1. Tracing along the
graph near x = 1 might reveal a hole in the graph,
depending on your calculator. (b) Even though g(1) is
undefined, the function values do approach 0 as x → 1,
so the limit exists and is equal to 0.

�1 4

�1

3

�1 4

�1

3

21.

x

y

�3 �2 �1 321

3

�3

�6

23.

x

y

�2 �1 21

5

4

3

2

1

25.

x

y

�3 �2 �1 321

3

2

1

27.

x

y

�1 54321

3

2

1

29.

x
�1 3 41 2

y
3

2

�1

�2

1

�3

31. −2, −2, −2, −2

33. −2, 2, DNE, 2

35. ∞, −∞, DNE, undefined 37. −1, −1, −1, −2

39. 7

41. DNE: −∞ from the left and ∞ from the right.

43. 1
7

45. DNE: ∞ from the left and −∞ from the right.

47. −3 49. 0

51. DNE: sin x oscillates between −1 and 1 as x → ∞.

53. DNE: −∞ from the left and ∞ from the right.

55. 2 57. 1
2

59. 1

61. DNE: ∞ from the left and −∞ from the right.

63. DNE: 4 from the left and −5 from the right.

65. 2 67. −93

69. DNE: −∞ from the left and ∞ from the right.

71. 0 73. 1

75. (a) S(0) = 12
3

= 4; (b) 17, 19, 21; (c) 22; (d) 22.

77. (a) Your y-range will have to be quite large; (b) ∞; (c)
population explosion past what any finite-sized planet
can handle; (d) in this model no world would be left
after 2027.

79. For k = 101 we have
101(101+1)

2
= 5151, and for larger

k the quantity
k(k+1)

2
will be still larger.

81. By the previous problem, if x is within 0.01 of x = 1
then ( x − 1)2 is in the interval (0, 0.0001), and thus
0 < ( x − 1)2 < 0.0001. Therefore

1
(x−1)2

>
1

0.0001
= 10, 000.

Section 1.2

1. F, F, F, F, F, F, T, T.

3. See the reading at the beginning of the section.

5. (a) (1, 1.5) ∪ (1.5, 2); (b) (0, 0.25) ∪ (0.25, 0.5);
(c) (0, 1) ∪ (1, 2)

7. If x∈(2 − δ, 2) ∪ (2, 2 + δ), then f ( x)∈(5 − ε, 5 + ε).

9. If x ∈ (N, ∞), then f ( x) ∈ (2 − ε, 2 + ε).

11. If x ∈ (1, 1 + δ), then f ( x) ∈ (M, ∞).
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13. Combine the two figures above Theorem 1.8. The two
blue one-sided δ-bars combine to make a punctured
δ-interval around x = c.

15. (1.75, 6.25)

17. There is some M > 0 for which there is no N > 0

that would guarantee that if x > N, then
1000

x
> M.

19. For all ε > 0, there exists a δ > 0 such that if
x ∈ (−3 − δ, −3) ∪ (−3, −3 + δ), then√

x + 7 ∈ (2 − ε, 2 + ε).

x
�3 � δ �3 � δ�3

2

2 � ε

2 � ε

y

21. For all ε > 0, there exists a δ > 0 such that if
x ∈ (−1 − δ, −1) ∪ (−1, −1 + δ), then
x 3 − 2 ∈ (−3 − ε, −3 + ε).

x
�1 � δ �1 � δ

�1

�3

�3 � ε

�3 � ε

y

23. For all ε > 0, there exists a δ > 0 such that if

x ∈ (2 − δ, 2) ∪ (2, 2 + δ), then
x2 −4
x−2

∈ (4 − ε, 4 + ε).

x
2 � δ 2 � δ2

4

4 � ε

4 � ε

y

25. For all ε > 0, there exists a δ > 0 such that if x ∈ (0, δ),
then

√
x ∈ (−ε, ε).

x
0 � δ

0 � ε

0 � ε

y

27. For all M > 0, there exists a δ > 0 such that if
x ∈ (−2, −2 + δ), then

1
x+2

∈ (M, ∞).

x

�2 � δ

M

y

�2

29. For all M > 0, there exists a δ > 0 such that if
x ∈ (2, 2 + δ), then

1
2x −4

∈ (M, ∞).

x

M

y

2 � δ

2

31. For all ε > 0, there is some N > 0 such that if
x ∈ (N, ∞), then

x
1−2x

∈ (−0.5 − ε, −0.5 + ε).

x
N

y

�0.5 � ε

�0.5 � ε
�0.5

33. For all M > 0, there is some N > 0 such that if
x ∈ (N, ∞), then x 3 + x + 1 ∈ (M, ∞).

x
N

M

y
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35. For all ε > 0, there exists a δ > 0 such that if

h ∈ (−δ, 0) ∪ (0, δ), then
(2+h)2 −4

h
∈ (4 − ε, 4 + ε).

x
0 � δ 0 � δ

y

4

4 � ε

4 � ε

37. For all M < 0, there exists some δ > 0 such that if
x ∈ (c, c + δ), then f ( x) ∈ (−∞, M).

x

M

y

c � δc

39. For all ε > 0 there is some N < 0 such that if
x ∈ (−∞, N), then f ( x) ∈ (L − ε, L + ε).

x
N

y

L � ε

L � ε
L

41. For all M > 0, there is some N < 0 such that if
x ∈ (−∞, N), then f ( x) ∈ (M, ∞).

x
N

M

y

43. δ = (8.5)1/3 − 2 ≈ 0.0408 45. δ = 3

47. δ = π

4

49. δ ≈ 1.11, using a calculator approximation to solve
1−cosx

x
= 1

2
.

51. δ ≈ 0.016662 53. δ = 1

55. δ ≈ 0.0005 57. N = 5

59. N = e 100 61. N =
ln
(

1
2

)

ln3
≈ −0.63093

63. N = √
104 ≈ 10.198

65. (a) 149.3 months; (b) yes, since lim
t→∞

50t = ∞.

67. (a) $18.68; (b) between $16.20 and $21.50;
(c) L = 6000, c = 18.68, ε = 1000, δ = 2.48.

69. (a) For all ε > 0, there exists δ > 0 such that if
x ∈ (2 − δ, 2) ∪ (2, 2 + δ), then 7 − x ∈ (5 − ε, 5 + ε). (b)
2 − δ < x < 2 + δ and x �= 2 means that −δ < x − 2 < δ

and x �= 2. This means that |x − 2| < δ and x − 2 �= 0,
and thus 0 < |x − 2| < δ. (c) 5 − ε < 7 − x < 5 + ε

means that −ε < 2 − x < ε, and thus that |2 − x| < ε,
which is equivalent to |x − 2| < ε. (d) For a given ε > 0,
choose δ = ε.
(e) Given any ε > 0, let δ = ε. If
x ∈ (2 − δ, 2) ∪ (2, 2 + δ, then 0 < |x − 2| < δ by part (b).
Thus by part (d), |x − 2| < ε, and therefore
7 − x ∈ (5 − ε, 5 + ε) by part (c).

71. (a) For all ε > 0, there exists N > 0 such that if

x ∈ (N, ∞), then
1
x

∈ (0 − ε, 0 + ε). (b) x ∈ (N, ∞) is

equivalent to x > N. (c)
1
x

∈ (−ε, ε) means that

−ε <
1
x

< ε. For the limit we are considering,
1
x

approaches y = 0 from above, so we actually wish to

show that we can guarantee 0 <
1
x

< ε. (d) For a given

ε > 0, choose N = 1
ε

. (e) Given any ε > 0, let N = 1
ε

. If
x ∈ (N, ∞) then x > N > 0 by part (b). Thus by our

choice from part (d), 0 <
1
ε

< x, and thus 0 <
1
x

< ε. By

part (c) this means −ε <
1
x

< ε and thus
1
x

∈ (0 − ε, 0 + ε).

Section 1.3

1. T, T, F, T, T, F, F, F.

3. For all ε > 0, there exists a δ > 0 such that if
0 < |x + 2| < δ, then

∣∣∣ 3
x+1

+ 3
∣∣∣ < ε.

5. 0 < |x − 5| < 0.01; | f ( x) + 2|<0.5

7. x ∈ (1.9, 2) ∪ (2, 2.1)

9. x 2 − 1 ∈ (−3.5, −2.5) (note that there are in fact no
x-values with this property)

11. f ( x) ∈ (L − ε, L + ε)

13. The statement is false. One counterexample is x = 1.5,
since x = 1.5 satisfies 0 < |x − 2| < 1, but not
|x 2 − 4| < 0.5, since (1.5)2 = 2.25.

15. The statement is false. One counterexample is x = 0.74;
this value satisfies 0 < |x − 0| < 0.75 but not
|x 2 − 0| < 0.5, since (0.74)2 = 0.5476.
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17. The statement is true. Sketch the graph of y = x 2 and
show an ε interval around y = 4 with ε = 0.4 (i.e., show
the horizontal “bar” between y = 3.6 and y = 4.4).
Then draw the δ interval around x = −2 with δ = 0.075,
excluding x = −2 (i.e., show the vertical “bar” between
x = −2.075 and x = −1.925, excluding x = −2).
Indicate on your graph that every x-value in
(−2.075, −2) ∪ (−2, −1.925) has an f ( x)-value in
(3.6, 4.4).

19. (a) δ = 5
325

; (b) δ = .01
325

; (c) δ = 1

21. See the proof of Theorem 1.11.

23. δ = 0.25
3

25. δ = 0.25

27. N = √
1000 ≈ 31.62 29. δ = ε

31. δ = ε

4 33. δ =
√

ε

5
35. δ = √

ε 37. δ = min(1, 2ε)

39. δ = min(1, ε/5) 41. δ = ε2

43. δ = 1
M

45. With C(r) = 0.25(2πr(5)) + 0.5(2πr2) + 0.1(2(2πr) + 5),
we have (a) r ≈ 1.94 inches; (b) |C(r) − 30| < 10;
(c) r ∈ (1.43, 2.38), so |r − 1.94| < 0.44.

47. Given ε > 0, choose δ = ε/2. Then if 0 < |x − 1| < δ,
we have |(2x + 4) − 6| = 2|x − 1| < 2δ = ε.

49. Given ε > 0, choose δ = ε. Then if 0 < |x + 6| < δ, we
have |( x + 2) − (−4)| = |x + 6| < δ = ε.

51. Given ε > 0, choose δ = ε

6
. Then if 0 < |x − 4| < δ, we

have |(6x − 1) − (23)| = |6x − 24| = 6|x − 4| < 6δ = ε.

53. Given ε > 0, choose δ = √
ε/3. Then if 0 < |x| < δ, we

have
|(3x 2 + 1) − 1| = |3x 2| = 3|x|2 < 3δ2 = 3(

√
ε/3)2 = ε.

55. Given ε > 0, choose δ =
√

ε

2
. Then if 0 < |x − 1| < δ,

we have |(2x 2 − 4x + 3) − 1| = |2x 2 − 4x + 2| =
2|x 2 − 2x + 1| = 2|x − 1|2 < 2δ2 = ε.

57. Given ε > 0, choose δ = ε. Then if 0 < |x − 1| < δ, we

have
∣∣∣∣ x

2 −1
x−1

− 2
∣∣∣∣ =
∣∣∣∣ x

2 −2x+1
x−1

∣∣∣∣ = |x − 1| < δ = ε.

59. Given ε > 0, choose δ = ε2. Then if 5 < x < 5 + δ, we
have 0 < x − 5 < δ and thus |√x − 5 − 0| = √

x − 5 <√
δ = ε.

61. Given M > 0, choose δ = 1/M. Then if
x ∈ (−2, −2 + δ), we have 0 < x + 2 < δ, and thus

1
x+2

>
1
δ

= 1
1/M

= M.

63. Given ε > 0, choose N = 1
ε

. Then if x > N, we have∣∣∣ 2x−1
x

− 2
∣∣∣ = ∣∣∣ 2x−1−2x

x

∣∣∣ = 1
|x| <

1
N

= ε.

65. Given M > 0, choose N = M+5
3

. Then if x > N, we
have 3x − 5 > 3N − 5 = M.

67. Given ε > 0, choose δ = min(1, ε/5). Then if
0 < |x − 3| < δ, we have |( x 2 − 2x − 3) − 0| =
|x 2 − 2x − 3| = |x − 3||x + 1| < δ|x + 1| ≤ δ(5) ≤ ε.

69. Given ε > 0, choose δ = min(1, ε/5). Then if
0 < |x − 5| < δ, we have |( x 2 − 6x + 7) − 2| =
|x 2 − 6x + 5| = |x − 5||x − 1| < δ|x − 1| ≤ δ(5) = ε.

71. Given ε > 0, choose δ = min(1, ε/3). Then if
0 < |x − 2| < δ, we have∣∣∣ 4

x2
− 1
∣∣∣ = |2−x||2+x|

x2
< δ

|2+x|
x2

≤ δ(3) = ε.

Section 1.4

1. T, T, F, F, F, F, T, F.

3. lim
x→1

f ( x) = f (1)

5. See the reading.

7. Define f (1) to be 0.

9. Removable discontinuity, neither left nor right
continuous. One possible graph is:

x
�1�2�3�4 1

y

3

4

2

�1

1

11. Jump discontinuity, neither left nor right continuous.
One possible graph is:

y
3

2

�1

�2

1

�3

x
�3 �2 �1 321

13. For all ε > 0, there exists δ > 0 such that whenever
x ∈ (c − δ, c + δ), we also have f ( x) ∈ ( f (c) − ε, f (c) + ε).

15. For all ε > 0, there exists δ > 0 such that whenever
x ∈ (c, c + δ), we also have f ( x) ∈ ( f (c) − ε, f (c) + ε).

17. See the reading.

19. The graph below is not continuous on [1, 3], and there
is no minimum value on that interval.

y
4

3

2

1

x
4321
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21. y
3

2

�1

�2

1

�3

x
�1 421 3

23. Continuous on (−∞, 2) ∪ (2, ∞), removable
discontinuity at x = 2, neither left- nor right continuous
at x = 2.

25. Continuous on (−∞, −1) ∪ (−1, 1] ∪ (1, ∞), removable
discontinuity at x = −1, infinite discontinuity at x = 1,
left continuous at x = 1.

27. Not possible.

29. y
4

3

2

�1

�2

1

x
�3�4 �2 �1 21

31. Not possible. 33. 6

35. −17

37. Can’t do this yet, since 0 is not in the domain of x−3.

39. Continuous at x = 3.

41. Jump discontinuity and left continuous at x = 2.

43. Continuous at x = 1, jump discontinuity and right
continuous at x = 2.

45. Not continuous at x = 2.

47. Continuous at x = 1.

49. (a) Since f is continuous on [−2, 2], the Extreme Value
Theorem guarantees that f will attain global maximum
and minimum values on [−2, 2]. (b) The maximum
value on that interval occurs twice, at x = −2 and at
x = 2, and the minimum value occurs both at x ≈ −1.22
and at x ≈ 1.22.

51. (a) Since f is continuous on [−1, 1], the Extreme Value
Theorem guarantees that f will attain global maximum
and minimum values on [−1, 1]. (b) The maximum
value on that interval occurs at x = 0, and the minimum
value occurs twice, at x = −1 and x = 1.

53. (a) Since f is continuous on [0, 2], the Extreme Value
Theorem guarantees that f will attain global maximum
and minimum values on [0, 2]. (b) The minimum value

on that interval occurs at x = 4
3

, and the maximum
value occurs twice, at x = 0 and x = 2.

55. (a) Since f is continuous on [0, 2] and K = 0 is between
f (0) = 5 and f (2) = −11, the Intermediate Value
Theorem guarantees that there is some c ∈ (0, 2) such
that f (c) = 0. (b) Using a graph we can approximate that
in (0, 2) there is one such value of c, namely, c ≈ 1.5.

57. (a) Since f is continuous on [−2, 4] and K = −4 is
between f (−2) = −22 and f (4) = 14, the Intermediate
Value Theorem guarantees that there is some c ∈ (−2, 4)
such that f (c) = −4. (b) Using a graph we can
approximate that in (−2, 4) there are three such values
of c, namely, c = 1, c ≈ −0.73, and c ≈ 2.73.

59. (a) Since f is continuous on [2, 4] and K = −4 is
between f (2) = −6 and f (4) = 14, the Intermediate
Value Theorem guarantees that there is some c ∈ (2, 4)
such that f (c) = −4. (b) Using a graph we can
approximate that in (2, 4) there is one such value of c,
namely, c ≈ 2.73.

61. (a) Since f is continuous everywhere, the Intermediate
Value Theorem applies on any interval [a, b]. For
example, since f (−3) = −25 < −15 and
f (0) = 2 > −15, the Intermediate Value Theorem
guarantees that there is some c ∈ (−3, 0) for which
f (c) = −15. (b) Using a graph we can approximate that
c ≈ −2.57 is such a value.

63. (a) Since f is continuous everywhere, the Intermediate
Value Theorem applies on any interval [a, b]. For

example, since f (0) = 0 <
1
2

and f
(

π

2

)
= 1 >

1
2

, the

Intermediate Value Theorem guarantees that there is

some c ∈
(

0,
π

2

)
for which f (c) = 1

2
. (b) c = π

6
is such a

value.
65. (a) Since f is continuous everywhere, the Intermediate

Value Theorem applies on any interval [a, b]. For

example, since f
(
− 1

3

)
= 0 < 1 and f (2) = 7 > 1, the

Intermediate Value Theorem guarantees that there is
some c ∈ (0, 7) for which f (c) = 1. (b) c = 0 is such a
value.

67. Positive on (−∞, −2) ∪
(
− 1

2
, ∞
)

, negative on(
−2, − 1

2

)

69. Positive on (−∞, −2) ∪ (−1, 1) ∪ (2, ∞), negative on
(−2, −1) ∪ (1, 2)

71. Positive on (2, ∞), negative on (−∞, 2)

73. Positive on (0, 2], negative on (−∞, 0) ∪ (2, ∞)

75. The length H(t) of Alina’s hair is a continuous function
because her hair can’t suddenly get longer or shorter
without going through a continuous change, so the
theorems apply. We are given that H(0) = 2 and
H(6) = 42. The Extreme Value Theorem says that Alina’s
hair had a maximum and a minimum length sometime
in the last 6 years. The Intermediate Value Theorem
says that Alina’s hair has been every length between 2
and 42 inches at some point during the last 6 years.
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77. The Extreme Value Theorem says that at some point in
the past year, there was a time when Phil’s wagon
contained the most gas and a time when it contained
the least. The Intermediate Value Theorem says that for
every amount between 0 and 19 gallons of gas, there
was at least one time in the past year that Phil’s wagon
contained that amount of gas.

79. (a) M(v) =

⎧⎪⎪⎨
⎪⎪⎩

8,500, if 0 ≤ v < 30
10,000, if 30 ≤ v < 60
11,500, if 60 ≤ v < 90
13,000, if v = 90.

(b) M(0) = 8, 500, M(30) = 10, 000, M(59) = 10, 000,
M(61) = 11, 500, and M(90) = 13, 000; (c) M(v) fails to
be continuous at v = 30, v = 60, and v = 90.

81. Given ε > 0, let δ = ε/3. If 0 < |x − 2| < δ, then
|(3x − 5) − (3(2) − 5)| = |3x − 6| = 3|x − 2| < 3δ = ε.

83. Given ε > 0, choose δ = ε. If 0 < |x − c| < δ, then
||x| − |c|| < |x − c| < δ = ε.

85. f is not continuous at c = 2. For example, consider
ε = 1. No matter how small we take δ > 0, there are
irrational values of x with 0 < |x − 2| < δ for which
| f ( x) − f (c)| = |x 2 − 0| = x 2 is outside of the interval
(0 − ε, 0 + ε) = (−1, 1).

87. If A > 0 then for large magnitude N we will have
f (−N) < 0 < f (N), and if A < 0 then for large
magnitude N we will have f (−N) > 0 > f (N). In either
case the Intermediate Value Theorem applies to the
continuous cubic function f (x) on [−N, N] and
therefore f (x) has at least one real root on [−N, N].

89. Suppose c ≥ 0; the proof for c ≤ 0 is similar. Given

ε > 0, let δ = min
(

1,
ε

2c+1

)
. If 0 < |x − c| < δ, then

since δ ≤ 1 we have c − 1 < x < c + 1. Then
|x 2 − c2| = |x − c| · |x + c| < δ · |x + c| ≤ δ|(c + 1) + c| =
δ(2c + 1) = ε

2c+1
(2c + 1) = ε.

91. Suppose c > 0; the proof for c < 0 is similar. Given

ε > 0, let δ = min
(

1, ε · (c−1)2c2

2c+1

)
. If 0 < |x − c| < δ,

then since δ ≤ 1 we have c − 1 < x < c + 1. Then∣∣∣ 1
x2

− 1
c2

∣∣∣ = |c2 −x2|
|x2c2| = |c−x|·|c+x|

x2c2
<

δ|c+x|
x2c2

≤
δ|c+(c+1)|

(c−1)2c2
= ε.

93. Suppose c > 0. Given ε > 0, let

δ = min
(

1, ε ·
√

c−1+√
c

2c+1

)
. If 0 < |x − c| < δ, then

since δ ≤ 1 we have c − 1 < x < c + 1. Then |√x −√
c| =

|x2 −c2|√
x+√

c
= |x−c|·|x+c|√

x+√
c

<
δ|x+c|√

x+√
c

≤ δ|(c+1)+c|√
c−1+√

c
= ε.

Section 1.5

1. T, T, F, F, T, F, F, T.

3. See Theorem 1.20.

5. Consider the limit lim
x→1

x−1
x2 −1

.

7. f ( x) = x, g( x) = 1
x

, c = 0 is one example. This does not
contradict the product rule for limits because one of the
limits does not exist as x → 0.

9. For all ε > 0, there exists δ > 0 such that if
0 < |x − c| < δ, then |( f ( x) − g( x)) − (L − M)| < ε,
where L = lim

x→c
f ( x) and M = lim

x→c
g( x).

11. To get this function we add the power function
√

x and
the constant function 1, and then compose the result
with the power function x 3. Thus by the sum and
composition rules for limits, and the fact that power
and constant functions are continuous, we know that
this function f is continuous and thus we can calculate
its limits at domain points by evaluation.

13. −2 15. Not enough information.

17. 1
2

19. The graph of g looks just like the graph of f but with a
hole at x = 1. f (1) = 2 but g(1) is undefined, while both
functions approach 2 as x approaches 1.

21. Limits as x → c are not determined by function values
at the point x = c; they are determined by the behavior
of the function in question as x approaches c.

23. Consider a picture like the ones that follow the Squeeze
Theorem for limits in the reading, but think of them
upside-down.

25. Using the constant multiple rule followed by the
continuity of linear functions, we have
lim
x→1

15(3 − 2x) = 15 lim
x→1

(3 − 2x) = 15(3 − 2(1)) = 15.

27. Applying the sum rule, the product rule, the constant
multiple rule, and then the continuity of power and
linear functions, in that order, we have
lim
x→3

(3x + x 2(2x + 1)) = lim
x→3

(3x) + lim
x→3

( x 2(2x + 1)) =
lim
x→3

(3x)+ lim
x→3

x 2 · lim
x→3

(2x+1) = 3(3)+ (32)(2(3)+1) = 72.

29. −1 31. 4

33. 2 35. 2

37. − 1
10

39. 4
7

41. 0 43. 3

45. −1 47. 0

49. 3e 1.7(4) + 1 51. 1
4

53. 2 55. 0

57. 1 59. π

6

61. 2
π

63. 6

65. 3 67. −1

69. −1 71. Continuous on R.

73. Continuous on (−∞, −2) and on (−2, ∞); neither left
nor right continuous at x = −2.

75. Continuous on (−∞, 1) and on (1, ∞); neither left nor
right continuous at x = 1.

77. Continuous on (−∞, π ) and (π , ∞); right but not left
continuous at x = π .

79. 0 81. 0
83. 0 85. 0

87. (a) T(63,550) = $14381.50; (b) this value for T(63, 550)
matches up with the value of the next piece
14, 381.5 + 0.31(m − 63, 550) when m = 63, 550. This
means that when you change tax brackets, the higher
tax rate only applies to the amount over 63, 550.
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89. If f ( x) = anx n + an−1x n−1 + · · · + a1x + a0 is a
polynomial function and c is a real number, then by the
sum rule, constant multiple rule, and limit of a constant,
we have lim

x→c
f ( x) = an lim

x→c
x n + an−1 lim

x→c
x n−1 + · · · +

a1 lim
x→c

x + a0. Since power functions with positive

integer powers are continuous everywhere, we can
solve each of the component limits by evaluation,
which gives us lim

x→c
f ( x) = anc n + an−1c n−1 + · · · +

a1x + a0 = f (c). Therefore the polynomial function f is
continuous at x = c.

91. Given ε > 0, we can choose δ > 0 so that if
x ∈ (c − δ, c) ∪ (c, c + δ) ,then f ( x) is within

ε

|k| of L.

Then |kf ( x) − kL| = |k|| f ( x) − L| < |k|(ε/|k|) = ε.

93. If lim
x→c

f ( x) exists and lim
x→c

g( x) exists and is nonzero, then

by the product and reciprocal rules for limits we have

lim
x→c

f (x)
g(x)

= lim
x→c

f ( x)
1

g(x)
= lim

x→c
f ( x) lim

x→c

1
g(x)

=

lim
x→c

f ( x)
1

lim
x→c

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)
.

95. Given c ∈ R, lim
x→c

f ( x) = lim
x→c

Ab x = A lim
x→c

(e ln b) x =
A(lim

x→c
e x)ln b = A(e c)ln b = A(e ln b)c = Abc = f (c).

97. Mimic the proof in the reading that sin x is continuous
everywhere.

99. If x = c is in the domain of sec x, then c is not a multiple

of
π

2
, and cos c �= 0. Therefore lim

x→c
sec x = lim

x→c

1
cosx

is the

quotient of lim
x→c

1 by lim
x→c

cos x = cos c, or
1

cosc
= sec c.

Section 1.6

1. T, T, F, T, T, T, F, F.

3. lim
x→c

f (x)
g(x)

= L
M

5. lim
x→c

f (x)
g(x)

is infinite

7. ∞ + ∞ → ∞, ∞ − ∞ is indeterminate, ∞ + 1 → ∞,
and 0 + ∞ → ∞.

9. See Theorems 1.27 and 1.28.

11. (a) The numerator approaches 1 while the denominator
gets larger and larger, which makes the quotient get
smaller and smaller; (b) see the reading; (c) the
denominator approaches 1 while the numerator gets
smaller and smaller, which makes the quotient get
smaller and smaller.

13. (a) The numerator approaches 1 while the denominator
gets smaller and smaller, which makes the quotient get
larger and larger; (b) the numerator gets larger and
larger, making the quotient get larger and larger, while
at the same time the denominator gets smaller and
smaller, making the quotient get larger and larger still;
(c) the denominator approaches 1 while the numerator
gets larger and larger, which makes the quotient get
larger and larger.

15. (a) lim
x→2

(x−2)2

x−2
; (b) lim

x→2

2x−2
x−2

; (c) lim
x→2

x−2
(x−2)3

17. (a) lim
x→∞ x
( 1

x2

)
; (b) lim

x→∞ x
( 1

x

)
; (c) lim

x→∞ x 2
( 1

x

)

19. (a) lim
x→0+

x x; (b) lim
x→∞(e−x 2

)1/x; (c) lim
x→∞(e−x 2

)
− 1

x .

21. (a); lim
x→∞ x1/x (b) lim

x→∞(2 x)1/x; (c) lim
x→∞ x1/ln x.

23. Root at x = −1, hole at x = 3, no asymptotes.

25. Root at x = −1, hole at x = 2, vertical asymptote at
x = −2, horizontal asymptote at y = 1.

27. Root at x = −1, no holes, vertical asymptotes at x = ±2,
horizontal asymptote at y = 0.

29. No roots, no holes, no vertical asymptotes, horizontal

asymptotes at y = 0 on the left and y = 1
2

on the right.

31. Root at x = 0, no holes, no asymptotes.

33. Root at − tan1
3

≈ −0.519, no holes, no vertical

asymptotes, horizontal asymptotes at y = −π

2
+ 1 on

the left and
π

2
+ 1 on the right.

35. lim
x→0+

−4x−3 = −∞, lim
x→0−

−4x−3 = ∞

37. 0 39. −∞
41. −∞ 43. − 1

3

45. DNE; lim
x→0−

x2 +1
x(x−1)

= ∞, lim
x→0+

x2 +1
x(x−1)

= −∞

47. −1 49. −9

51. −∞ 53. 0

55. 0 57. 0

59. ∞ 61. 0

63. −∞ 65. ∞
67. 0

69. −∞ from the left, ∞ from the right

71. 0 73. ∞
75. 1 77. e 2

79. e 3

81. ∞; population explosion impossible for any finite-sized
planet to contain.

83. (a) lim
t→∞

s(t) does not exist, since both sine and cosine

oscillate between −1 and 1 as x → ∞. (b) There is no
friction to damp the oscillations of the spring. (c)

s(t) = √
2sin
(√

9
2

t
)

+ 2cos
(√

9
2

t
)

x
20105 15

y
3

2

�1

�2

1

�3
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85. lim
x→∞(anx n + an−1x n−1 + · · · + a1x + a0) =
lim

x→∞

(
anx n
(

1 + an−1

anx
+ · · · + a1

anxn−1
+ a0

anxn

))
=(

lim
x→∞ anx n

)
(1 + 0 + · · · + 0 + 0) = lim

x→∞ anx n.

87. Mimic the proof of the first part of Theorem 1.24, but
using −M < 0.

89. Given ε > 0, choose N1 > 0 to get f ( x) within
ε

2
of L

and choose N2 > 0 to get g( x) within
ε

2
of M. Then for

N = max(N1, N2) and x > N we have
(L + M) − ε < f ( x) + g( x) < (L + M) + ε.

91. By Theorem 1.25 and the previous exercise,

lim
x→∞ x−k = lim

x→∞
1
xk

→ 1
∞ → 0.

93. By Theorem 1.25 and the previous exercise,

lim
x→∞ e−x = lim

x→∞
1
ex

→ 1
∞ → 0.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 2

Section 2.1

1. T, T, F, F, T, T, T, T.

3. We only know one point on the line.

5. d is the difference s(b) − s(a) in position, t is the

difference b − a in time, and r = d
t
.

7. They are all the same.

9. The secant lines have slopes 0.995, 0.9995, and 0.99995,
so again 1 is a good estimate for the slope of the
tangent line.

11. (a) In order, the x-coordinate of the first dot, the
x-coordinate of the second dot, the y-coordinate of the
first dot, and the y-coordinate of the second dot. (b)
The horizontal and vertical distances, respectively,
between the first and second dot. (c) The slope of the
line connecting the two dots, and the slope of the line
tangent to the graph at the first dot.

13. The answers are the same as those in Exercise 11.

15. (c) < (d) < (a) < (b)

17. x = 0.5; x = −1 (or x = 2); x = −0.4 and x = 1.3

19.

c

y

x

21. At x = 1 your graph should have a height of 2 and a
horizontal tangent line. At x = 3 your graph should be
drawn so that its tangent line has a slope of 2.

23. Your graph should go through the points (−1, 2) and
(1, −2), and the tangent line at each of those points
should have slope 3.

25.

x
�1�2 21

y

3

4

2

1

27. Your graph of y = f ′( x) should have zeroes at x = −1.5,
x = 0, and x = 1.5, should be positive on (−∞, −1.5)
and (0, 1.5), and should be negative on (−1.5, 0) and
(1.5, ∞).

29. Clearly the graph of f ′ should have a root at x = 0 and
should be positive on (−∞, 0) and negative on (0, ∞).
There is one more thing to notice here, however; the
graph of f gets very “flat” at its ends, so its tangent lines
have very shallow slopes as x → ∞ and as x → −∞.
Therefore, the graph of the derivative should be
approaching zero as x → ∞ and as x → −∞. Thus
your graph of f ′ should also have a two-sided
horizontal asymptote at y = 0

31. Your graph should have horizontal tangent lines at
x = −2 and at x = 0. Moreover, the tangent lines to the
graph of your function should have a negative slope
everywhere on (−∞, −2), a positive slope everywhere
on (−2, 0), and a negative slope everywhere on (0, ∞).

33. y
3

2

�1

�2

1

�3

x
�2 �1 21

35. For h = 1, h = 0.5, h = 0.25, and h = 0.1, respectively,
we have secant lines with slopes −3, −2.5, −2.25, and
−2.1. One estimate of f ′(1) is −2.

37. For h = 1, h = 0.5, h = 0.25, and h = 0.1, respectively,
we have secant lines with slopes 2, 1.25, 1.0625, and
1.01. One estimate of f ′(0) is 1.

39. For h = 1, h = 0.5, h = 0.25, and h = 0.1, respectively,
we have secant lines with slopes 0.6931, 0.4463, 0.2425,
and 0.0995. One estimate of f ′(0) is 0.

41. For h = 1, h = 0.5, h = 0.25, and h = 0.1, respectively,
we have secant lines with slopes −0.4597, −0.2448,

−0.1244, and −0.04996. One estimate of f ′
(

π

2

)
is 0.
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43. For h = 1, h = 0.5, h = 0.25, and h = 0.1, respectively,
we have secant lines with slopes 1, 1, 1, and 1. One
estimate of f ′(3) is 1.

45. Average velocities on [0, 0.5], [0, 0.25], [0.0.1] are −8,
−4, and −1.6 feet per second, respectively. We would
expect the initial velocity to be 0.

47. Average velocities on [2, 2.1] and [2, 2.01] are −65.6
and −64.16 feet per second. Average velocities on
[1.9, 2] and [1.99, 2] are −62.4 and −63.84 feet per
second, respectively. We might expect the velocity at
time t = 2 to be about 64 feet per second.

49. Although this book does know what you did today, we
will not repeat it here.

51. (a) Her average rate of change is zero on [0, 30]; this
means that after 30 minutes she is exactly as far away
from the oak tree as she was at time t = 0. (b) The
second 10 minutes. (c) One approximation might be
140−280

10−5
= −28 feet per minute. The fact that the sign

is negative indicates that she is moving toward the oak
tree. (d) t ≈ 4 minutes, t ≈ 12 minutes, t ≈ 25 minutes.
These are the times she changes direction. (e) (4, 12)
and (25, 30). These are the times she is moving toward
the oak tree.

53. (a) h(12) is the average height of a 12-year-old, in feet.
h′(12) is measured in feet per year and represents the
instantaneous rate of change of the height of a
12-year-old person; that is, h′(12) is the rate at which an
average 12-year-old is growing (in feet per year). (b)
h(12) is positive; h′(12) is positive. (c) h(t) might have a
maximum at t ≈ 60 years ( people may tend to slouch or
get shorter as they get older); h′(t) might have a
maximum at t ≈ 14 years ( growth spurt).

55. 5 miles per hour

57. (a) About 139.163 billion dollars; (b) about 3.445 billion
dollars per year; (c) about 3.479 billion dollars per year;
(d) something a little bit less than the previous answer
(the actual answer turns out to be about 3.436 billion
dollars a year).

59. If f ( x) = mx + c with m > 0, then on any interval [a, b]
the average rate of change of f is
f (b)−f (a)

b−a
= (mb+c)−(ma+c)

b−a
= m, which is positive by

assumption. This means that for all b > a we have
f (b) = f (a) + m(b − a), and thus f (b) > f (a); this the
definition of what it means for f to be increasing.

Section 2.2

1. F, F, F, F, F, F, F, T.

3. (a) f ′(5) = lim
h→0

f (5+h)−f (5)
h

= lim
z→5

f (z)−f (5)
z−5

;

(b) f ′( x) = lim
h→0

f (x+h)−f (x)
h

= lim
z→x

f (z)−f (x)
z−x

;

(c) f ′+(−2) = lim
h→0+

f (−2+h)−f (−2)
h

= lim
z→−2+

f (z)−f (−2)
z+2

.

5. Let z = x + h. Then h → 0 is equivalent to z → x, and
z − x = h.

7. lim
x→2

(4x 3 − 5x + 1) = 23 and lim
h→0

(4(2+h)3 −5(2+h)+1)−23
h

exists.
9. f is differentiable, and thus continuous, at x = c.

11. Continuous yes, differentiable no, left and right
differentiable yes.

13. See the graphs in the reading in the discussion about
differentiability.

15. (a) If f ( x) = 3x 2 − 1 then f ′(−4) = −24. (b) If

f ( x) = 3x 2 − 1 then
df
dx

∣∣∣
−4

= −24. (c)
d
dx

∣∣∣
−4

(3x 2 − 1) = −24.

17. 3x 2 − 2, 3x 2 − 2, 3x 2 − 2, and (3x 2 − 2)( x 3 − 2x + 1);
the last notation represents a product of the derivative
and the function.

19. For all ε > 0, there exists δ > 0 such that if
h ∈ (−δ, 0) ∪ (0, δ), then
(3+h)2 −9

h
∈ ( f ′(3) − ε, f ′(3) + ε).

21. Since f ′(4) = 1

2
√

4
= 1

4
, the tangent line to f at x = 4

has equation y = f (4) + f ′(4)( x − 4) = 2 + 1
4

( x − 4).
The value of f ( x) at x = 4.1 should be close to the value
of this linear function at x = 4.1, which is
2 + 1

4
(4.1 − 4) = 2.025. This is rather close to the

calculator approximation of
√

4.1 = 2.02485.

23. lim
h→0

(−3+h)2 −(−3)2

h
= −6; lim

z→−3

z2 −9
z−3

= −6

25. lim
h→0

1
−1+h

+1

h
= −1; lim

z→−1

1
z

+1

z+1
= −1

27. lim
h→0

(1−(−1+h)3)−(1−(−1)3)
h

= −3; lim
z→−1

(1−z3)−2
z+1

= −3

29. lim
h→0

√
9+h−3

h
= 1

6
; lim

z→9

√
z−3

z−9
= 1

6

31. lim
h→0

(2+h)−1
(2+h)+3

− 2−1
2+3

h
= 4

25
; lim

z→2

z−1
z+3

− 1
5

z−2
= 4

25

33. lim
h→0

eh −1
h

= 1; lim
z→0

ez−1

z−0
= 1

35. lim
h→0

sinh−0
h

= 1; lim
z→0

sinz−0
z−0

= 1

37. lim
h→0

tanh−0
h

= 1; lim
z→0

tanz−0
z−0

= 1

39. lim
h→0

(−2(x+h)2)−(−2x2)
h

= −4x

41. lim
h→0

((x+h)3 +2)−(x3 +2)
h

= 3x 2

43. lim
z→x

2
z+1

− 2
x+1

z−x
= −2

1
(x+1)2

45. lim
z→x

1
z2

− 1
x2

z−x
= −2

x3
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47. lim
h→0

3
√

x+h−3
√

x
h

= 3
2
√

x

49. lim
z→x

√
2z+1−√

2x+1
z−x

= 1√
1+2x

51. lim
h→0

(x+h)−1
(x+h)+3

− x−1
x+3

h
= 4

(x+3)2

53. lim
h→0

(x+h)3

x+h+1
− x3

x+1
h

= 2x3 +3x2

(x+1)2

55. 6x 2, 12x, and 12. 57. 6x and 12

59. y = −6x − 9 61. y + 1 = −3( x − 1)

63. y − 2 = −( x − 3)

65. Continuous everywhere except at x = 2, and neither left
nor right continuous at that point. Not differentiable,
but left and right differentiable, at x = −1. Not
differentiable, and not left or right differentiable, at
x = 2.

67. Continuous everywhere except at x = −1, where it is
only left continuous. Not differentiable at x = −1. Left
but not right differentiable at x = −1.

69. lim
x→0

1
x

does not exist, and neither does lim
h→0

1
0+h

− 1
0

h

since
1
0

is undefined. Therefore f is neither continuous
nor differentiable at x = 0, from either side.

71. lim
h→0−

|(2+h)2 −4|−0
h

= −4, lim
h→0+

|(2+h)2 −4|−0
h

= 4, so f

is both left and right differentiable at x = 2, but not
differentiable at x = 2.

73. f ′−(2) = lim
h→0−

((2+h)+4)−3(2)
h

= 1;

f ′+(2) = lim
h→0+

3(2+h)−3(2)
h

= 3; f ′(2) does not exist.

75. f ′−(1) = lim
h→0−

(1+h)2 −(1)2

h
= 2;

f ′+(1) = lim
h→0+

(2(1+h)−1)−(1)2

h
= 2; f ′(1) = 2.

77. Continuous but not differentiable at x = 0.

79. Not continuous and not differentiable at x = 1.

81. f (1) = −4 is less than zero and f (3) = 4 is greater than
zero. Since f is continuous on [1, 3], the Intermediate
Value Theorem tells us that f must have a root between
x = 1 and x = 3.

83. f (0) = 1 is greater than zero and f (1) = −1 is less than
zero. Since f is continuous on [0, 1], the Intermediate
Value Theorem tells us that f must have a root between
x = 0 and x = 1.

85. f (−2) = −7 is less than zero and f (1) = 2 is greater
than zero. Since f is continuous on [−2, 1], the
Intermediate Value Theorem tells us that f must have a
root between x = −2 and x = 1.

87. lim
h→0

s(1+h)−s(1)
h

= −32.

89. (a) The graph has a bump/hill shape with roots at x = 0
and at x = 2. The physical interpretation is that your
velocity is always positive and that you start out with a
zero velocity, speed up, and then eventually slow back
down to a zero velocity. (b) The graph has a root at
about x = 1 and is positive on [0, 1) and negative on
(1, 2] (for example, a line with negative slope passing
through (1, 0)). This represents the fact that you were
speeding up, and then slowing down, during your trip.

91. (a) S(3) = 200 + 8(10)(3) = $440,
S(6) = 200 + 8(10)(6) = $680, and
S(8) = 200 + 8(10)(6) + 11.5(10)(2) = $910. S′(3) = 80
dollars per week, S′(8) = 11.5(10) = $115 dollars per
week. Cannot compute S′(6) because the rate at which
you are paid changes at that point.
(b) S(t) = 200 + 8(10)t, if t ≤ 6 and
S(t) = 680 + 11.5(10)(t − 6), if t > 6. (c) Continuous but
not differentiable. (d) lim

t→6
s(t) = s(6) = 680, but

lim
h→0+

s(6+h)−s(6)
h

= 115 while lim
h→0−

s(6+h)−s(6)
h

= 80.

93. lim
h→0

(m(x+h)+b)−(mx+b)
h

= lim
h→0

mh
h

= lim
h→0

m = m.

95. The tangent line to f at x = c has slope f ′(c) and passes
through the point (c, f (c)). Putting this slope and point
into the point-slope form of a line gives the desired
answer.

97. f ′(c) exists when lim
h→0

f (c+h)−f (c)
h

exists, which is true

precisely when f ′+(c) = lim
h→0+

f (c+h)−f (c)
h

and

f ′−(c) = lim
h→0−

f (c+h)−f (c)
h

exist and are equal.

Section 2.3

1. T, F, T, F, F, T, T, T.

3. d
dx

(kf ( x)) = k
df
dx

;
d
dx

( f ( x) + g( x)) = df
dx

+ dg
dx

;
d
dx

( f ( x) − g( x)) = df
dx

− dg
dx

5. See the first paragraph in the reading.

7. The power rule only applies to functions of the form x k,
and 3 x cannot be written in this form because there is a
variable in the exponent.

9. The rule is f ′( x)g( x)h( x) + f ( x)g′( x)h( x) + f ( x)g( x)h′( x).
Then y′ = (2)( x 2 + x + 1)(1 − 3x 4) + (2x − 1)(2x + 1)
(1 − 3x 4) + (2x − 1)( x 2 + x + 1)(−12x 3).

11. 5 13. 8

15. f has negative slope for x < 0 and positive slope for
x > 0, so f ′( x) is negative on x < 0 and positive on
x > 0. Then f ′ has positive slope everywhere, so f ′′( x) is
positive everywhere. Continue this type of argument for
the remaining graphs.

17. As you can see, this algebra is no fun. If you remember
to simplify functions before differentiating then you will
not have this problem.
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19. No; we can say f is continuous at x = 2, but it might
approach that breakpoint x = 2 with different slopes
from the left and the right.

21. a = −2, b = 6 23. 4

25. 1 27. 27
2

29. (a) f ′( x) = (2x)( x + 1) + ( x 2)(1). (b) Multiply out first to
get f ( x) = x 3 + x 2; then f ′( x) = 3x 2 + 2x. (c) Multiply
out the answer in part (a) to get the answer in part (b).

31. (a) f ′( x) = 7
2

x5/2(2 − 5x 3) + x7/2(−15x 2). (b) Multiply

out first to get f ( x) = 2x7/2 − 5x13/2; then

f ′( x) = 7x5/2 − 65
2

x11/2. (c) Multiply out the answer in
part (a) to get the answer in part (b).

33. (a) f ′( x) = (2x−3x2)
√

x−(x2 −x3)(1/2)x−1/2

x
. (b) Expand

first to get f ( x) = x1.5 − x2.5; then
f ′( x) = 1.5x0.5 − 2.5x1.5. (c) Multiply out the answer in
part (a) to get the answer in part (b).

35. f ′( x) = −3(7x 6) 37. f ′( x) = 12x

39. f ′( x) = 2(3) − 4(5x 4) 41. f ′( x) = 2x + 1

43. f ′( x) = 81x 2 + 108x + 36 45. f ′( x) = −6x 2

47. f ′( x) = d
dx

( x − 1) = 1, for x �= −1

49. f ′( x) = 0 51. f ′( x) = 8
5

x3/5

53. f ′( x) = − 8
5

x−13/5 − 2

55. f ′( x) = (7x6 −15x4)(1−3x4)−(x7 −3x5 +4)(−12x3)
(1−3x4)2

57. f ′( x) = −3x−5/2

59. f ′( x) = 23
(4+5x)2

61. It is easier to differentiate after simplifying to

f ( x) = 1
x2 −5x+6

. We have

f ′( x) = 0(x2 −5x+6)−(1)(2x−5)
(x2 −5x+6)2

= −2x+5
(x2 −5x+6)2

.

63. f ′( x) = 2x(x3 +5x2 −3x)−x2(3x2 +10x−3)
(x3 +5x2 −3x)2

65. f ′( x) =
⎧⎨
⎩

−1, if x < 0
DNE, if x = 0

1, if x > 0.

67. f ′( x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2, if x <
1
2

DNE, if x = 1
2

2, if x >
1
2
.

69. f ′( x) =
⎧⎨
⎩

3x 2, if x < 1
DNE, if x = 1

1, if x > 1.

71. f ′( x) =
{−2x, if x ≤ 0

2x, if x > 0.

73. f ( x) = 1
2

x 6 − 2
3

x 3 + 4x + 1

75. f ( x) = − 4
7

x 7 + x + 18
7

77. f ( x) = − 3
10

x10 + 4x 6 + 1
5

x 5 − 8x + 2

79. (a) a(t) = 0.024t, s(t) = 0.004t3 + 400t (assuming initial
position is s0 = 0 at Venus). a0 = 0 thousands of miles
per hour per hour, v0 = 400 miles per hour, s0 = 0
miles. (b) Yes, since the velocity is always positive. (c)
No, the acceleration is increasing (since a(t) = 0.024t
grows larger as t increases). (d) Approximately 140
hours, at which time it will be going about 635.2
thousand miles per hour.

81. If a(t) = −32 then (by antidifferentiating)
v(t) = −32t + C, and v(0) = v0 implies that C = v0.
Now (by antidifferentiating) s(t)= − 16t 2 + v0t + K, and
s(0) = s0 implies that K = s0.

83. (a) s(t) = − 2
5

t 3 − 17t 2 + 575; (b) s(5) = 100,
s′(5) = −200, s′′(5) = −46, s′(0) = 0; (c) 575 feet;

(d) a(t) = − 12
5

t − 34 is not constant.

85. Suppose k is a positive integer.
d
dx

( x k) = lim
h→0

(x+h)k −xk

h

= lim
h→0

(xk +khxk−1 +h2 ·(lower-order terms))−xk

h

= lim
h→0

khxk−1 +h2 ·(lower-order terms)
h

= lim
h→0

(kx k−1 + h · (lower-order terms)) = kx k−1.

87. ( f − g)′( x) = d
dx

( f + (−g))

= d
dx

( f ) + d
dx

(−g) = d
dx

( f ) + (−1)
d
dx

( g)f ′( x) − g′( x).

89.
(

f
g

)′
( x) = lim

h→0

f (x+h)
g(x+h)

− f (x)
g(x)

h

= lim
h→0

(
f (x+h)g(x)−f (x)g(x+h)

g(x+h)g(x)

)

h

= lim
h→0

f (x+h)g(x)−f (x)g(x+h)
hg(x+h)g(x)

= lim
h→0

f (x+h)g(x)−f (x)g(x)+f (x)g(x)−f (x)g(x+h)
hg(x+h)g(x)

= lim
h→0

g(x)( f (x+h)−f (x))−f (x)(g(x+h)−g(x))
hg(x+h)g(x)

= lim
h→0

(
g(x)

f (x+h)−f (x)
h

−f (x)
g(x+h)−g(x)

h

)

g(x+h)g(x)

=
g(x)
(

lim
h→0

f (x+h)−f (x)
h

)
−f (x)
(

lim
h→0

g(x+h)−g(x)
h

)

lim
h→0

(g(x+h)g(x))

= g(x)f ′(x)−f (x)g′(x)
lim
h→0

(g(x+h)g(x))
= f ′(x)g(x)−f (x)g′(x)

(g(x))2
.
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91. (a) Since any two functions with the same derivative
differ by a constant, it suffices to prove that the

derivative of
1

k+1
x k+1 is x k. By the power rule and the

constant multiple rule we have
d
dx

( 1
k+1

x k+1
)

=
1

k+1
d
dx

( x k+1) = 1
k+1

(k + 1)x(k+1)−1 = x k. (b) If k = −1

then there will be division by zero in the calculation
from part (a). Therefore, this proof does not work in the
case where f ( x) = x−1.

Section 2.4

1. T, F, F, F, T, T, T, F.

3. (a) ( g(h( x)))′ = g′(h( x))h′( x) and (b)
dg
dx

= dg
dh

dh
dx

.

5. (a) ( f (u(v(w( x)))))′ = f ′(u(v(w( x))))u′(v(w( x)))

v′(w( x))w′( x); (b)
df
dx

= df
du

du
dv

dv
dw

dw
dx

7. (a)
d
dx

((3x + √
x)2) = 2(3x + √

x)
(

3 + 1
2

x−1/2
)

.

(b)
d
dx

((3x + √
x)(3x + √

x)) =
(

3 + 1
2

x−1/2
)

(3x + √
x)+

(3x + √
x)
(

3 + 1
2

x−1/2
)

. (c)
d
dx

(9x 2 + 6x3/2 + x) =
18x + 9x1/2 + 1.

9. −2 11. 6

13. 4 15. −12

17. If y = y( x) then
d
dx

(y3) = d
dx

((y( x))3) = 3(y( x))2y′( x).

19. ( x + 1)( y2 + y − 1) = 1 is shown in the right graph, and
xy2 + y = 1 is shown in the left graph.

21. f ′( x) = −( x 3 + 1)−2(3x 2)

23. f ′( x) = (3x 2 + 1)9 + 54x 2(3x 2 + 1)8

25. f ′( x) = − 1
2

( x 2 + 1)−3/2(2x)

27. f ′( x) = −2( x
√

x + 1)−3
(√

x + 1 + x
( 1

2
( x + 1)−1/2

))

29. f ′( x) = (−x−2 −6x)(x5 −x−1/2)−(x−1 −3x2)(5x4 +(1/2)x−3/2)
(x5 −x−1/2)2

31. −1( x1/3 − 2x)−2
( 1

3
x−2/3 − 2

)

33. − 1
2

x−3/2( x 2 − 1)3 + x−1/23( x 2 − 1)2(2x)

35. f ′( x) = 1
2

(3x − 4(2x + 1)6)−1/2(3 − 24(2x + 1)5(2))

37. f ′( x) = 100(5(3x 4−1)3+3x−1) 99(15(3x 4−1)2(12x 3)+3)

39. f ′( x) = 3
(
− 2

3

)
(( x 2 + 1)8 − 7x)−5/3(8( x 2 + 1)7(2x) − 7)

41. f ′( x) = 7(5x 4 − 3x 2)6(20x 3 − 6x)(2x 3 + 1)
+(5x 4 − 3x 2)7(6x 2)

43. −9((2x + 1)−10 − 1)−10(−10(2x + 1)−6)

45. f ′( x) = 8( x 4 −√
3 − 4x)7

(
4x 3 − 1

2
(3 − 4x)−1/2(−4)

)
+5

47. (−3)(x5 +2x4 +x3)−(−2−3x)(5x4 +8x3 +3x2)
(x5 +2x4 +x3)2

49. 0 51. 162

53. 3s2s′ 55. 0

57. s2 + 2rss′

59. Combine the graphs of y =
√

9 − 1
4

x 2 and

y = −
√

9 − 1
4

x 2.

61. Combine the graphs of y =
√

1
3

x 2 − 16
3

and

y = −
√

1
3

x 2 − 16
3

.

63. f ( x) = ( x 2 + 1)5

65. f ( x) = 1
10

( x 2 + 1)5 − 1
10

67. f ( x) = 2
9

(3x + 1)3/2 + 7
9

69. dy
dx

= 4x
y

71. dy
dx

= −6x−y2

2xy

73. dy
dx

= −3(y2 −y+6)
(3x+1)(2y−1)

75. dy
dx

= 5y
3
2

(3y−1)−1/2 −5x

77. dy
dx

= (3y−1)2

2y(3y−1)−3(y2 +1)

79. dy
dx

= 2x3y2(y+1)−y2(y+1)2

x4y2 −x2(y+1)2

81. (a) Slope is − 1√
3

at the point
(

1
2

,
√

3
2

)
and

1√
3

at the

point
(

1
2

, −
√

3
2

)
. (b) Slope is −1 at the point(√

2
2

,
√

2
2

)
, and 1 at the point

(
−

√
2

2
,
√

2
2

)
. (c) (1, 0)

and (−1, 0). (d)
(√

2
2

,
√

2
2

)
and
(

−
√

2
2

, −
√

2
2

)

83. (a) (1, −1); (b) (−3, 1); (c) none; (d) (−3, 1)

85. If Linda sells magazines at a rate of
dm
dt

= 12 magazine

subscriptions per week, and she makes
dD
dm

= 4 dollars
per magazine, then by the chain rule, the amount of
money she makes each week is
dD
dt

= dD
dm

dm
dt

= 4(12) = 48 dollars per week.

87. (a)
dA
dr

= 2πr. (b) No; Yes.

(c)
dA
dt

= d
dt

(π (r(t))2) = 2πr(t)r′(t) = 2πr
dr
dt

. (d) Yes;

Yes. (e)
dA
dt

∣∣∣
r=24

= 2π (24)(2) = 96π .

89. d
dx

(
f (x)
g(x)

)
= d

dx
( f ( x)( g( x))−1)

= d
dx

( f ( x)) · ( g( x))−1 + f ( x) · d
dx

(( g( x))−1)

= f ′( x) · ( g( x))−1 + f ( x) · (−g( x))−2g′( x)

= f ′(x)
g(x)

− f (x)g′(x)
(g(x))2

= f ′(x)g(x)−f (x)g′(x)
(g(x))2

.

91. Mimic the proof in Example 5(a).
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93. Let y = x−k, where −k is a negative integer. Then
x ky = 1, so by implicit differentiation and the product
rule, we have kx k−1y + x ky′ = 0, and therefore

y′ = −kxk−1x−k

xk
= −kx−k−1.

Section 2.5

1. T, T, F, F, T, T, F, T.

3. No, since the base is a variable. No, since the exponent
is a variable.

5. When k = 1 we have
d
dx

(e x) = d
dx

(e 1x) = 1e 1x = e x.
When b = e we have
d
dx

(b x) = d
dx

(e x) = (ln e)e x = (1)e x = e x.

7. ln x is of the form log b x with b = e.

9. The graph passing through (0, 2) is 2(2 x); the graph
passing through (0, 1) and (1, 4) is 4 x; the graph passing
through (2, 4) is 2 x.

11. f (3) = 29 = 512 and g(3) = 82 = 64. The solutions of
2( x 2) = (2 x)2 are x = 0 and x = 2.

13. Consider that logarithmic functions are the inverses of
exponential functions, and use the definition of
one-to-one.

15. Logarithmic differentiation is the process of applying
ln |x| to both sides of an equation y = f ( x) and then
differentiating both sides in order to solve for f ′( x). It is
useful for finding derivatives of functions that involve
multiple products or quotients, and functions that have
variables in both a base and an exponent.

17. f ′( x) = −(2 − e 5x)−2(−5e 5x)

19. f ′( x) = 6xe−4x − 12x 2e−4x

21. f ′( x) = (−1)ex −(1−x)ex

e2x

23. e x( x 2 + 3x − 1) + e x(2x + 3)

25. f ′( x) = 3x 2, with x > 0 27. f ′( x) = e (e x)e x

29. f ′( x) = e ex+1 31. f ′( x) = 0

33. f ′( x) = −3x−4e 2x + x−3(2e 2x)

35. f ′( x) = 2x log2 x + x
ln2

+ 3x 2

37. f ′( x) = 1
x2 +e

√
x

(
2x + e

√
x
( 1

2
x−1/2
))

39. f ′( x) = 1
2

(log2(3x − 5))−1/2
( 1

ln2
1

3x −5
(ln 3)3 x

)

41. f ′( x) = 2x ln(ln x) + x 2 1
lnx

· 1
x

43. f ′( x) = (ln 2)2x 2
(2x)

45. f ′( x) =

⎧⎪⎨
⎪⎩

(ln 2)2 x, if x < −2
DNE, if x = −2

− 2
x3

, if x > −2.

47. f ′( x) =

⎧⎪⎪⎨
⎪⎪⎩

2x, if x < 1

DNE, if x = 1
1
x

, if x ≥ 1.

49. f ′( x) = 1
2

( x ln |2 x + 1|)−1/2
(

ln |2 x + 1| + (ln2)x2x

2x +1

)

51. f ′( x) = 2x
√

x3 −1√
x(2x−1)

(
ln 2 + 3x2

2(x3 −1)
− 1

2x
− 2

2x−1

)

53. f ′( x) = xln x(2)(ln x)
( 1

x

)

55. f ′( x) =
( x

x−1

) x (
ln x − ln( x − 1) + 1 − x

x−1

)

57. f ′( x) = (ln x)ln x
( ln(lnx)

x
+ 1

x

)

59. f ( x) = e4x

3x5 −1
61. f ( x) = 1

2
ln |x 2 + 3| + C

63. f ( x) = ln(1 + e x) + C

65. (a) A(t) = 1000e 0.077t; (b) A(30) ≈ $10,074.42; (c) t ≈ 18
years.

67. (a) 1250 people; (b) 45,000 people; (c) about 119 days;

(d) P′(t) = 45,000(0.12)(35)e−0.12t

(1+35e−0.12t)2
, which is always

positive; this means that the graph of P(t) is always
moving up as we move from left to right.

69. d
dx

(e k x) = e k x · d
dx

(kx) = e k x · k = ke k x

71. If f ( x) = Ae k x is exponential, then
f ′( x) = Ake k x = k(Ae k x) = kf ( x), so f ′( x) is
proportional to f ( x).

73. For x > 0 we have |x| = x and therefore
d
dx

(ln |x|) = d
dx

(ln x) = 1
x

. For x < 0 we have |x| = −x
and therefore by the chain rule we have
d
dx

(ln |x|) = d
dx

(ln(−x)) = 1
−x

(−1) = 1
x

.

Section 2.6

1. T, F, F, T, F, T, F, T.

3. See the proof in the reading.

5. (a) If x is in degrees, then the slope of the graph of sin x
at x = 0 is very small, and in particular not equal to
cos 0 = 1. To convince yourself of this, graph sin x (in
degrees) together with the line y = x (which has slope 1
at x = 0).

7. (a) cos(3x 2) is a composition, not a product, but the
product rule was applied; (b) the chain rule was applied
incorrectly, with the derivative of 3x 2 written on the
inside instead of the outside.

9. No, because to differentiate sin−1(sin x) = x we would
first need to know how to differentiate sin−1 x, which is
exactly what we would be trying to prove.

11. The expressions are equal; the algebraic expression is
clearly easier to evaluate at a given number.
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13. (a) Use the fact that
1
2

e−x ≥ 0 for all x, and split the
expressions in the definitions of cosh x and sinh x into
sums. (b) Calculate the two limits by dividing top and
bottom by e x and show they are both equal to 1.

15. (a) Think about the graph of the sum of
1
2

e x and − 1
2

e−x.

(b) Calculate lim
x→−∞

1
2

(ex −e−x)

1
2

e−x
by dividing top and

bottom by e−x, and Show that this limit is equal to 1.

17. f ′( x) = 2xcosx+(x2 +1)sinx
cos2 x

19. f ′( x) = − csc2 x + csc x cot x

21. f ′( x) = 0

23. f ′( x) = 3 sec x sec2 x + 3 sec x tan2 x

25. f ′( x) = cos(cos(sec x))(−sin(sec x))(sec x tan x)

27. f ′( x) = e csc2 x(2 csc x)(−csc x cot x)

29. f ′( x) = −(ln2)2x(5xsinx)+2x(5sinx+5xcosx)
25x2 sin2 x

31. f ′( x) = √
sin x cos x + 1

2
x(sin x cos x)−1/2(cos2 x − sin2 x)

33. f ′( x) = (6x lnx+3x)tanx−3x2 lnxsec2 x
tan2 x

35. f ′( x) = cos(ln x)
( 1

x

)

37. f ′( x) = 6x√
1−9x4

39. f ′( x) = 2x arctan x 2 + x 2
( 2x

1+x4

)

41. f ′( x) = 2x

|x2|√x4 −1

43. f ′( x) = 1√
1−sec4 x

(2 sec x)(sec x tan x)

45.

tan−1 x√
1−x2

− sin−1 x
1+x2

(tan−1 x)2

47. f ′( x) = 1
arcsec(sin2 x)

1

sin2 x
√

sin4 x−1
(2 sin x cos x)

49. f ′( x) = sec(1 + tan−1 x) tan(1 + tan−1 x) ×
( 1

1+x2

)

51. f ′( x) = sinh x 3 + 3x 3 cosh x 3

53. f ′( x) = sinh(ln( x 2 + 1))
( 1

x2 +1

)
(2x)

55. f ′( x) = 1
2

(cosh2 x + 1)−1/2(2 cosh x sinh x)

57. f ′( x) = 3x2

√
x6 +1

59. f ′( x) =
1√

x2 +1
(cosh−1 x)−sinh−1 x

(
1√

x2 −1

)

(cosh−1 x)2

61. f ′( x) = cos(e sinh−1 x)e sinh−1 x 1
x2 +1

63. f ′( x) = (sin x) x
(

ln(sin x) + xcosx
sinx

)

65. f ′( x) = (sin x)cos x

(
−sinx ln(sin x) + cos2 x

sinx

)

67. f ( x) = sin−1 2x 69. f ( x) = 1
6

ln(1 + 9x 2)

71. f ( x) = sin−1
( 3x

2

)
73. f ( x) = sinh−1 2x

75. f ( x) = − 1
6

ln(1 − 9x 2) 77. f ( x) = sinh−1
( 3x

2

)

79. (a) To simplify things, let C =
√

4km−f 2

2m
; since k, m, and

f are all constants, so is C. Then follow the given hint.
(b) Set s(0) = s0 and s′(0) = v0 and solve for A and B.

81. (a) 625 feet, according to the model (the official number
is 630). (b) About 82 degrees from horizontal. (c) About
13 degrees from horizontal.

83. Mimic the proof in the reading for
d
dx

(sin x), except
using a sum identity for cosine in the second step.

85. d
dx

(csc x) = d
dx

( 1
sinx

)
= (0)(sinx)−(1)(cosx)

(sinx)2
= −cosx

sin2 x
=

−
( 1

sinx

) ( cosx
sinx

)
= − csc x cot x.

87. Differentiating both sides of tan(tan−1 x) = x gives us

sec2(tan−1 x)
d
dx

(tan−1 x) = 1, and therefore
d
dx

(tan−1 x) = 1
sec2(tan−1 x)

. By one of the Thinking Back

problems in this section, we have sec2(tan−1 x) = 1 + x 2,

and therefore
d
dx

(tan−1 x) = 1
1+x2

.

89. x 2 − y2 = cosh2 t − sinh2 t =
(

et −e−t

2

)2

−
(

et +e−t

2

)2

=
e2t −2ete−t +e−2t −e2t −2ete−t +e−2t

2
= 1. For the bonus

question, consider whether cosh t can ever be negative.

91. Expand the right-hand side using the definitions and
simplify to get the left-hand side.

93. Mimic the proof in the reading that was given for the
derivative of sinh x.

95. Mimic the proof in the reading that was given for the
derivative of sinh−1 x.

97. ey −e−y

2
= x =⇒ e y − 1

ey
= 2x =⇒ e2y −1

ey
= 2x =⇒

e 2y − 2xe y − 1 = 0. This is quadratic in e y, and the

quadratic formula gives e y = 2x±√
4x2 +4
2

, and thus

y = ln( x ± √
x 2 + 1). Since logarithms are only defined

for positive numbers we have y = ln( x + √
x 2 + 1).

99. Start with y = tanh x = sinhx
coshx

and use the exercises
above.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.
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Chapter 3

Section 3.1

1. T, T, T, F, F, T, F, F.

3. f ′(1) is either 0 or does not exist. If f is differentiable at
x = 1 then f ′(1) must equal 0.

5. x = −2, x = 0, x = 4, x = 5.

7. f ′ has at least two zeroes in the interval [−4, 2].

9. There is some c ∈ (−2, 4) with f ′(c) = − 1
3

.

11. If f is continuous on [a, b], differentiable on (a, b), and if
f (a) = f (b) = 0, then there exists at least one value
c ∈ (a, b) for which the tangent line to f at x = c is
horizontal.

13. The graph of f ( x) = ( x − 2)( x − 6) is one example.

15. Your graph should have roots at x = −2 and x = 2 and
horizontal tangent lines at three places between these
roots.

17. One example is an “upside-down V” with roots at
x = −2 and x = 2 where the top point of the V occurs at
x = −1.

19. One example is the function f that is equal to x + 3 for
−3 ≤ x < −1 and equal to 0 for x = −1.

21. Draw a graph that happens to have a slight “cusp” just
at the place where its tangent line would have been
equal to the average rate of change.

23. f ′( x) = 0 at x = 3
2

and f ′( x) does not exist at x = 3. f

has a local maximum at x = 3
2

and a local minimum at
x = 3.

25. f ′( x) = 0 at x ≈ 0.5, x ≈ 2, and x ≈ 3.5. f has a local
minimum at x ≈ 0.5 and a local minimum at x = 3.5.
There is neither a maximum nor a minimum at x ≈ 2.

27. One critical point at x = −0.65, a local minimum.

29. Critical points x = −3, x = 0, x = 1, a local minimum,
maximum, and minimum, respectively.

31. One critical point at x = ln
( 3

2

)
, a local maximum.

33. Undefined at x = 0. One critical point at x = e
2

, a local
maximum.

35. Critical points at points of the form x = πk where k is
an integer; local minima at the odd multiples
x = π (2k + 1), local maxima at the even multiples
x = π (2k).

37. From the graph, f appears to be continuous on [−3, 1]
and differentiable on (−3, 1), and moreover
f (−3) = f (1) = 0, so Rolle’s Theorem applies. Therefore
there is some c ∈ (−3, 1) such that f ′(c) = 0. In this
example there are three such values of c, namely
c ≈ −2.3, c = −1, and c = 0.3.

39. From the graph, f appears to be continuous on [0, 4]
and differentiable on (0, 4), and moreover
f (0) = f (4) = 0, so Rolle’s Theorem applies. Therefore

there is some c ∈ (0, 4) such that f ′(c) = 0. In this
example there are three such values of c, namely
c ≈ 0.5, c ≈ 2, and c ≈ 3.5.

41. f is continuous and differentiable everywhere, and
f (0) = f (3) = 0, so Rolle’s Theorem applies;

c = 1
3

(4 − √
7 ) and c = 1

3
(4 + √

7 ).

43. f is continuous and differentiable everywhere, and
f (−2) = f (2) = 0, so Rolle’s Theorem applies;
c ≈ −1.27279, c ≈ 0, and c ≈ 1.27279.

45. f is continuous and differentiable everywhere, and

cos
(
−π

2

)
= cos
( 3π

2

)
= 0, so Rolle’s Theorem applies;

c = 0, c = π .

47. f is continuous and differentiable everywhere, and
f (0) = f (2) = 0, so Rolle’s Theorem applies; c = √

2.

49. f appears continuous on [0, 2] and differentiable on
(0, 2); there is one value x = c that satisfies the
conclusion of the Mean Value Theorem, roughly at
x ≈ 1.2.

51. f appears continuous on [−3, 0] and differentiable on
(−3, 0); there are two values x = c that satisfy the
conclusion of the Mean Value Theorem, at c ≈ −2.8 and
c ≈ −0.9.

53. f is not continuous or differentiable on [−3, 2], so the
Mean Value Theorem does not apply.

55. f is continuous and differentiable on [−2, 3];
c ≈ −0.5275 and c ≈ 2.5275.

57. f is continuous on [0, 1] and differentiable on (0, 1), so
the Mean Value Theorem applies; c ≈ 0.4028.

59. f is continuous and differentiable everywhere, so the

Mean Value Theorem applies; c = cos−1
( 2

π

)
≈ 0.88.

61. C(h) is a differentiable function, and C′(4) = 0.6 �= 0, so
C(h) cannot have a local minimum at h = 4.

63. (a) Let s(t) be Alina’s distance from the grocery store (in
miles) at time t. Then s(0) = 20 and s(0.5) = 0; since s(t)
is continuous and differentiable, the MVT applies, and
tells you that there is some time c ∈ (0, 0.5) where

s′(c) = 0−20
0.5−0

= −40 miles per hour (the negative sign

means she is travelling towards the store).
(b) Questions to think about: Could Alina possibly have
been travelling under 40 miles per hour for her whole
trip? Or over 40 miles an hour for her whole trip? If her
velocity was less than 40 miles per hour at some point,
and more than 40 miles per hour at some other point,
can she have avoided going exactly 40 miles per hour at
some time during her trip? Why or why not?

65. See the proof in the reading.

67. Suppose r1, r2, and r3 are the roots of f . Since f is
continuous and differentiable everywhere, Rolle’s
Theorem guarantees that f ′ will have at least one root
on [r1, r2], and at least one root on [r2, r3]; therefore f ′

has at least two roots.
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69. g( x) is continuous on [a, b] and differentiable on (a, b)
because f is. Moreover, g(a) = f (a) − f (a) = 0 and
g(b) = f (b) − f (a) = f (a) − f (a) = 0, so Rolle’s Theorem
applies to g( x). Therefore we can conclude that there is
some c ∈ (a, b) such that g ′(c) = 0. Since
g ′( x) = f ′( x) − 0 = f ′( x), this also means that f ′(c) = 0,
as desired.

Section 3.2

1. T, T, T, F, F, F, F, F.

3. See the first paragraph in the reading.

5. Yes; yes; no.

7. A function can only change sign at roots and
discontinuities or non-domain points, and the critical
points of f are exactly these types of points for f ′.

9.

x
�2 1

y

�3

5

11. If a < b ≤ 0 then a4 > b4, and if 0 < a < b then a4 < b4.
With derivatives, we have f ′( x) = 4x 3, which is
negative for x < 0 and positive for x > 0.

13. x = ±√
15;

15. There is some constant C such that g( x) − h( x) = C for
all x in their domains.

17. f is shown in Graph II and f ′ is shown in Graph I.

19. y
6

4

�2

2

x
321

21. Your graph of f ′ should have roots at x = 0 and x = 2,
and should be positive on (0, ∞) and negative on
(−∞, 0). In particular this means that your graph of f ′

should “bounce” off the x-axis at x = 2.
23. y

4

3

2

�1
�2

1

�4

�3

x
�2 �1 21

25. Your graph of f should have horizontal tangent lines at
x = 1 at x = 3, and should be decreasing on (−∞, 1)
and (1, 3) and increasing on (3, ∞). The graph of f has
an inflection point, but not a local extremum, at x = 1,
and a local minimum at x = 3.

27. Increasing on (−∞, 0) and (3, ∞); decreasing on (0, 3).

29. Decreasing on (−∞, −2) and (2, ∞); increasing on
(−2, 2).

31. Decreasing on (−∞, 1) and increasing on (1, ∞).

33. Decreasing on (−∞, 0) and increasing on (0, ∞).

35. Increasing on intervals of the form [2k + 1, 2k + 3]
where k is an integer, and decreasing elsewhere.

37. Increasing on intervals of the form
[
−π

4
+ πk,

π

4
+ πk
]
,

decreasing elsewhere.

39. Local maximum at x = 0, local minimum at x = 2

41. Local maximum at x = − 1
2

43. No local extrema

45. Local maxima at all odd integers, local minima at all
even integers

47. No local extrema

49. Local maximum at x = 0

51. Possible pictures of f and f ′, respectively:

y

x
5

y

x
5

53. Possible pictures of f and f ′, respectively:

y

x
�3 3

y

x
�3 3

55. Your graph of f should be increasing on (−∞, 1), (3, 8),
and (8, ∞) and decreasing on (1, 3). It should also have
horizontal tangent lines at x = 1 (a local maximum) and
x = 8 (not an extremum), and be nondifferentiable at
x = 3 (a local minimum). Your graph of f ′ should be
positive on (−∞, 1), (3, 8), and (8, ∞) and negative on
(1, 3). It should also have roots at x = 1 and x = 8 and
be undefined at x = 3.
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57. Defined everywhere, roots at x = − 1
3

and x = 2.

Positive on
(
−∞, − 1

3

)
∪ (2, ∞) and negative

elsewhere. Local minimum at x = 5
6

. Increasing on( 5
6

, ∞
)

and decreasing elsewhere. lim
x→−∞ f ( x) = ∞ and

lim
x→∞ f ( x) = ∞.

59. Defined everywhere, roots at x = −1 and x = 1. Positive
on (−1, 1) and negative elsewhere. Local minimum at

x = 1. Increasing on
(
−∞, − 1

3

)
and (1, ∞) and

decreasing elsewhere. lim
x→∞ f ( x) = ∞ and

lim
x→−∞ f ( x) = −∞.

61. Defined everywhere, root at x = 0. Positive on (0, ∞)
and negative elsewhere. Critical point at x = 2 that is
not a local extremum. Increasing everywhere (yes, even
including x = 2 – although answering (−∞, 2) ∪ (2, ∞)
is sufficient for our purposes here). lim

x→−∞ f ( x) = −∞
and lim

x→∞ f ( x) = ∞.

63. Defined everywhere, root at x = − 11
2

. Positive on(
− 11

2
, ∞
)

and negative elsewhere. Local maximum at

x = −2, local minimum at x = − 5
3

. Increasing on

(−∞, −2) ∪
(
−2, − 5

3

)
and decreasing elsewhere.

lim
x→−∞ f ( x) = −∞ and lim

x→∞ f ( x) = ∞.

65. Defined everywhere, roots at x = ±1. Positive on (−1, 1)
and negative elsewhere. Local maxmimum at x = 0.
Increasing on (−∞, 0) and decreasing elsewhere.
lim

x→−∞ f ( x) = −∞ and lim
x→∞ f ( x) = −∞.

67. Defined everywhere except at x = 1, where there is a
vertical asymptote; root at x = −1. Positive on
(−∞, −1) ∪ (1, ∞) and negative elsewhere it is defined.
No local extrema. Always decreasing. lim

x→−∞ f ( x) = 0

and lim
x→∞ f ( x) = 0, so there is a horizontal asymptote at

y = 0.

69. Defined everywhere; no roots. Positive everywhere.
Local minimum at x = 0. Increasing on (0, ∞) and
decreasing elsewhere. lim

x→∞ f ( x) = ∞ and

lim
x→−∞ f ( x) = ∞.

71. Defined except at x = −3 and x = 2 where there are
vertical asymptotes; root at x = 1. Positive on
(−∞, −3) ∪ (2, ∞) and negative elsewhere. Local

maximum at x = 1, local minimum at x = 11
3

.
Horizontal asymptote at y = 1.

73. Defined except at x = 2 where there is a vertical
asymptote; roots at x = 0 and x = 1. Positive on
(1, 2) ∪ (2, ∞) and negative elsewhere. Local maximum
at x = 0, local minima at x = 3 − √

5 and x = 3 + √
5.

Increasing on (−∞, 0) ∪ (3 − √
5, 2) ∪ (3 + √

5, ∞) and
decreasing elsewhere. No horizontal asymptote.

75. Defined on (0, ∞); root at x = 1. Positive on (1, ∞) and
negative elsewhere it is defined. Local minimum at

x = 1
e

. Increasing on
( 1

e
, ∞
)

and decreasing elsewhere

it is defined. lim
x→0+

f ( x) = ∞, so there is a vertical

asymptote at x = 0. lim
x→∞ f ( x) = ∞.

77. Defined everywhere, root at x = 0. Positive everywhere
except x = 0. Local minimum at x = 0, local maximum

at x = −2
ln3

. Increasing on
(
−∞,

−2
ln3

)
∪ (0, ∞) and

negative elsewhere. lim
x→−∞ f ( x) = 0, so there is a

horizontal asymptote on the left at y = 0.
lim

x→∞ f ( x) = ∞, so there is no horizontal asymptote on

the right.

79. Defined on (0, ∞), root at x = 1. Positive on (1, ∞) and
negative elsewhere it is defined. Local maximum at
x = e. Increasing on (0, e) and decreasing elsewhere it is
defined. lim

x→0+
f ( x) = −∞, so there is a vertical

asymptote at x = 0. lim
x→∞ f ( x) = 0, so there is a

horizontal asymptote at y = 0.

81. Defined everywhere, no roots. Positive everywhere.

Local maximum at x = 1 − 1√
3

, local minimum at

x = 1 + 1√
3

. Increasing on(
− ∞, 1 − 1√

3

)
∪
(

1 + 1√
3

, ∞
)

and decreasing

elsewhere. lim
x→−∞ f ( x) = 0, so there is a horizontal

asymptote on the left at y = 0. lim
x→∞ f ( x) = ∞, so there

is no horizontal asymptote on the right.

83. (a) (0, 2.5); (b) t = 2.5; (c) (0, 1) and (3.3, 4); (d) (3.5, 3.8)
is such an interval; Bubbles is moving towards the left
side of the tunnel and is slowing down while doing so.

85. (a) When t = (1/0.51)((2n + 1)(π/2) − 2.04); at these
times the tide is going neither in nor out, and thus
these are times of low and high tides. (b) The high tides
occur when n = 1, 5, 9, . . . in the expression from part
(a); the low tides occur when n = 3, 7, 11, . . .. (c) Just
before low tide, as the current is moving south.

87. Given that f ( x) = mx + b where m �= 0 (so f is
nonconstant), show that f ′ is either always positive or
always negative. Since f ′( x) = m is a (nonzero)
constant, this is clearly the case.

89. Mimic the proof from the reading of part (a) of the
theorem.

91. Mimic the proof from the reading of part (a) of the
theorem.

Section 3.3

1. F, F, F, T, T, F, F, F.

3. See the discussion following Definition 3.9.

5. The converse is “If f is concave up on I, then f ′′ is
positive on I,” which is false (f ′′( x) might be zero at
some point).

7. The graph of f ( x) = −x 3 has this property at x = 0.

9. f ′′( x) = 30x 4, so f ′′(0) = 0. However, f ′′(−1) > 0 and
f ′′(1) > 0, so f ′′ does not change sign at x = 0; therefore
x = 0 is not an inflection point of f .

11. Linear
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13. 5, 4.

15. Draw an arc connecting (0, 5) and (3, 1) that is concave
up.

17. Draw an arc connecting (0, −5) and (3, −1) that is
concave up.

19. The function f ( x) = −e x has these properties on all
of R.

21. Possible graph of f ′ followed by possible graph of f ′′:

y
8

4
6

�2
�4

2

�10
�8
�6

x
�2 62 4

y
8

4
6

�2
�4

2

�10
�8
�6

x
�2 62 4

23. Your graph of f ′ should have roots at x = −3 and at
x = 0 and should be positive on (−∞, −3) and negative
on (−3, 0) and (0, ∞). Your graph of f ′′ should have
roots at x ≈ −2 and x = 0 and should be negative on
(−∞, −2) ∪ (0, ∞) and positive on (−2, 0).

25. Possible graph of f followed by possible graph of f ′′

y
10

5

x
�5 �4 �3 �2 �1 21

y
5

x
�5

�5

�4 �3 �2 �1 21

27. Your graph of f ′ should be decreasing on (−∞, 2) and
increasing on (2, ∞), with a local minimum at x = 2.
Your graph of f should be concave down on (−∞, 2)
and concave up on (2, ∞), with an inflection point at
x = 2.

29. Local maximum at x = 0, local minimum at x = 2

31. Local maximum at x = − 1
2

33. No local extrema

35. Local maxima at all odd integers, local minima at all
even integers

37. No local extrema

39. Local maximum at x = 0

41. Always concave up; no inflection points.

43. Concave up on (−∞, 0) ∪ (1, ∞), concave down on
(0, 1); inflection points at x = 0 and x = 1.

45. Concave up on (−∞, −1) ∪ (0, ∞), concave down on
(−1, 0); inflection points at x = −1 and x = 0.

47. Concave up on
(

− ∞, ln
( 9

16

))
, concave down on(

ln
( 9

16

)
, ∞
)

; inflection point at ln
( 9

16

)
.

49. Concave up on
(

− ∞, 1 −
√

2
2

)
∪
(

1 +
√

2
2

, ∞
)

,

concave down on
(

1 −
√

2
2

, 1 +
√

2
2

)
; inflection points

at x = 1 ±
√

2
2

.

51. Concave down on intervals of the form(
π

4
+ 2πk,

5π

4
+ 2πk
)

for integers k, concave up

elsewhere; inflection points at points of the form
π

4
+ πk for integers k.

53. y

x
2

55. y

x
�2

57. y

x
21

59. Among other things, your graph should have roots at
x = −3 and x = −1, a local minimum at x = −2, and
inflection points at x = −1 and x = 0.

61. Among other things, your graph should have roots at
x = −3, x = 1, and x = 4, a local maximum at x = −2, a
local minimum at x = 3, and inflection points at
x = −1, x = 1, and x = 2.

63. Defined everywhere, roots at x = −3 and x = 0. Positive
on (−∞, −3) ∪ (0, ∞) and negative elsewhere. Local

minimum at x = − 3
2

. Increasing on
(
− 3

2
, ∞
)

and

decreasing elsewhere. No inflection points. Concave up
everywhere. lim

x→∞ f ( x) = ∞ and lim
x→−∞ f ( x) = ∞.

65. Defined everywhere, roots at x = −3 and x = 0. Positive
on (−3, 0) ∪ (0, ∞) and negative elsewhere. Local
maximum at x = −2, local minimum at x = 0.
Increasing on (−∞, −3) ∪ (0, ∞) and decreasing
elsewhere. Inflection point at x = −1. Concave up on
(−1, ∞) and concave down elsewhere. lim

x→∞ f ( x) = ∞
and lim

x→−∞ f ( x) = −∞.

67. Defined everywhere, roots at x = −1 and x = 0. Positive
on (0, ∞) and negative elsewhere. Local maximum at

x = 1
3

, local minimum at x = 1. Increasing on

(−∞, −1) ∪
(
− 1

3
, ∞
)

and decreasing elsewhere.

Inflection point at x = − 2
3

. Concave up on
(
− 2

3
, ∞
)

and concave down elsewhere. lim
x→∞ f ( x) = ∞ and

lim
x→−∞ f ( x) = −∞.
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69. Defined everywhere, roots at x = −2 and x = 0. Positive
on (−∞, −2) ∪ (0, ∞) and negative elsewhere. Local

minimum at x = − 3
2

. Increasing on
(
− 3

2
, ∞
)

and

decreasing elsewhere. Inflection points at x = −1 and
x = 0. Concave up on (−∞, −1) ∪ (0, ∞) and concave
down elsewhere.

71. Defined for x ≥ 0, roots at x = 0 and x = 4. Positive on
(0, 4) and negative elsewhere it is defined. Local

maximum at x = 4
3

. Increasing on
(

0,
4
3

)
and

decreasing elsewhere it is defined. No inflection points.
Always concave down. lim

x→∞ f ( x) = −∞.

73. Defined everywhere except at x = 1 and x = 4; root at
x = −1. Positive on (4, ∞) and negative elsewhere it is
defined. No local extrema. Decreasing everywhere. No
inflection points. Concave up on (4, ∞) and concave

down elsewhere it is defined. lim
x→1

f ( x) = − 2
3

but f (1) is

not defined, so f has a hole at x = 1. lim
x→4

f ( x) is infinite

(∞ from the right and −∞ from the left), so f has a
vertical asymptote at x = 4. lim

x→±∞ f ( x) = 1, so f has a

horizontal asymptote at x = 1.

75. Defined everywhere, root at x = 1. Positive on (−∞, 1)
and negative elsewhere. Local minimum at x = 2.
Increasing on (2, ∞) and decreasing elsewhere.
Inflection point at x = 3. Concave up on (−∞, 3) and
concave down elsewhere. lim

x→−∞ f ( x) = ∞ and

lim
x→∞ f ( x) = 0, so there is a horizontal asymptote on the

right – but not the left – at y = 0.

77. Local minimum at x = 1.

79. Defined everywhere, roots at x = 0 and x = 1. Never
positive, and negative everywhere except at the roots.

Local minimum at x = 1
8

, local maximum at x = 0.
Increasing on (−∞, 0) ∪ (1, ∞) and decreasing
elsewhere. Inflection point at x = 1. Concave up on
(−∞, 0) ∪ (0, 1) and concave down elsewhere.
lim

x→∞ f ( x) = ∞ and lim
x→−∞ f ( x) = −∞.

81. Defined for x > 0, no roots. Always positive. Local
minimum at x = 1. Increasing on (1, ∞) and decreasing
elsewhere it is defined. Inflection point at x = e.
Concave up on (0, e) and concave down elsewhere it is
defined. lim

x→0+
f ( x) = ∞ so there is a vertical asymptote

at x = 0. lim
x→∞ f ( x) = ∞ so there is no horizontal

asymptote.

83. f has a local minimum at x = 0, no local maxima, and
no inflection points.

85. f has no local extrema and no inflection points.

87. (a) [0, 15]; he is north of the corner, walking north and
slowing down. (b) [60, 80]; he is south of the corner,
walking south and speeding up. (c) [15, 40]; he is
walking south and speeding up ( first north and then
south of the corner). (d) At t = 40; he is south of the
corner, walking south; he just finished speeding up (in

the southward direction) and is now just starting to
slow down (but still walking in the southward
direction).

89. The glacier is concave down for x ∈ (2.532, 5.294).

91. Mimic the proof of part (a) of the same theorem.

93. If f ( x) = ax 2 + bx + c, then f ′′( x) = 2a. If a > 0 then
f ′′( x) > 0 for all x, so f is always concave up. If a < 0
then f ′′( x) < 0 for all x, so f is always concave down.

95. If f ′′( x) = 0 on an interval I, then f ′( x) = k must be
constant, and therefore f ( x) = kx + c must be linear.

Section 3.4

1. F, T, T, F, F, F, F, F.

3. The derivative may or may not be zero (or fail to exist)
at the endpoints of the interval.

5. There will not be any endpoint extrema; there may or
may not be a global maximum (or minimum) on the
interval.

7. For example, f might have a vertical asymptote on I.

9. (a) Global minimum at x = 0, no global maximum.
(b) Global minimum at x = 5, global maximum at x = 2.
(c) Global minimum at x = 0, no global maximum.
(d) Global minimum at x = 0, no global maximum.
(e) Global minimum at x = 0, no global maximum.
(f ) Global minimum at x = 0, no global maximum.

11. (a) Global maximum at x = −1 with value f (−1) = 7,
global minimum at x = −3 with value f (−3) = −45.
(b) Global maximum at x = 0 with value f (0) = 0,
global minimum at x = 2 with value f (2) = −20. (c) No
global maximum, global minimum at x = 2 with value
f (2) = −20. (d) Global maximum at x = −1 with value
f (−1) = 7, no global minimum.

13. (a) Global maximum at x = −1 with value f (−1) = 11,
global minimum at x = 1 with value f (1) = −5. (b) No
global maximum or global minimum. (c) Global
maximum at x = −1 with value f (−1) = 11, no global
minimum. (d) Global maximum at x = 0 with value
f (0) = 0, global minimum at x = 3 with value
f (3) = −117.

15. (a) Global maximum at x = 0 with value f (0) = 1,

global minimum at x = 3 with value f (3) = 1

1+√
3

.

(b) No global maximum or global minimum. (c) Global

maximum at x = 1 with value f (1) = 1
2

, global

minimum at x = 2 with value f (2) = 1

1+√
2

. (d) Global

maximum at x = 0 with value f (0) = 1, no global
minimum.

17. (a) Global maximum at x = 4 with value f [4] = 56,
global minimum at x = 1 with value f (1) = −2. (b) No
global maximum, global minimum at x = 1 with value
f (1) = −2. (c) Global maximum at x = 0 with value
f (0) = 0, no global minimum. (d) No global maximum,
no global minimum.
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19. (a) Global minimum at x = 0 and x = 4 with value

f (0) = f (4) = 1√
3

; no global maximum. (b) Global

minimum at x = 10 with value f (10) = 1

3
√

7
, no global

maximum. (c) Global minimum at x = 0 with value

f (0) = 1√
3

, no global maximum. (d) No global

minimum, no global maximum.

21. The most optimal solution is to let the horizontal
straight edges have length zero, resulting in a circle of

radius
60
π

.

23. The horizontal top and bottom edges should have
length ≈ 19.6903 units, and the vertical edges should
have length 13.1268 units.

25. x = 18 and y = 18 27. a = 50, b = 50

29. 200 31.
(
− 1

5
,

2
5

)

33.
( 2−√

6
2

, 1.75
)

or
( 2+√

6
2

, 1.75
)

35. A square pen with sides of length
175

2
feet will produce

the maximum area of 7656.25 square feet.

37. Four parallel north-south fences of length 125 feet, and
two east-west fences of length 250 feet. The resulting
pen will have an area of 31, 250 square feet.

39. 180 feet of border fencing

41. About 143 feet of border fencing

43. The base of the box should have sides of length 6.26
inches, and the height of the box should be
approximately 10.65 inches. The resulting largest
possible volume is approximately 417.48 cubic inches.

45. The largest possible volume is 11, 664 cubic inches; the
largest possible surface area is 3, 332.6 square inches.

47. The largest possible volume is 14, 851 cubic inches; the
largest possible surface area is 462.6 square inches.

49. At t = 0 minutes; at the right endpoint of the model
(one such endpoint could be t = 5).

51. The minimum area occurs when you cut the wire so
that 4.399 inches of wire are used to make the circle.
The maximum area occurs when you don’t cut the wire
at all, and use all 10 inches to make the circle.

53. The minimum area occurs when you cut the wire so
that 0.577 inches of wire are used to make the circle.
The maximum area occurs when you don’t cut the wire
at all, and use all 10 inches to make the circle.

55. To get the minimum surface area, the oil drums should

be constructed so they are
40

π202/3
≈ 3.0767 feet high

with a radius of
201/3

π
≈ 1.8533 feet. There is no global

maximum.
57. To minimize the cost, the cans should be made with a

radius of 2
( 5

π

)1/3
≈ 2.335 inches, and a height of

≈ 11.6754 inches. It is not possible to maximize the
cost.

59. The steam pipe should be buried along the 800-foot
side of the parking lot for 425 feet, and then diagonally
under the parking lot to the opposite corner.

61. (a) You would sell the most (975 paintings) at $5.00
apiece. You would sell the least (15 paintings) at $45.00
apiece. (b): R(c) = c(0.6c2 − 54c + 1230).
(c) You would earn the most money ($8327.10) by
selling the paintings for $15.28 apiece. You would earn
the least money ($672.90) by selling the paintings for
$44.72 apiece. (d) Although you sell the most paintings
when charging $5.00 apiece, you only earn $5.00 for
each of those paintings.

63. If the sides of the rectangle have length x and y, then

P = 2x + 2y, so y = 1
2

(P − 2x). Therefore the area is

A = xy = x
( 1

2
(P − 2x)

)
, which has derivative

A′( x) = 1
2

P − 2x. Thus the only critical point of A( x) is

x = P
4

. Since A′
(P

4
− 1
)

> 0 and A′
(P

4
+ 1
)

< 0, the

first-derivative test tells us that A( x) has a local

maximum at x = P
4

; in fact it is the global maximum of

A( x) on
[
0,

P
2

]
. Therefore A is maximized when x = P

4(
and thus y = P

4

)
, i.e., when the rectangle is a square.

Section 3.5

1. F, T, T, F, T, T, T, F.

3. V = πy2s, SA = 2πys + 2πy2

5. V = π

4
h3, SA = 3

2
πh2

7. See Theorem 3.13(a) for the statement of the theorem.
A triangle with legs of lengths 3 and 4 will have a
hypotenuse of length

√
32 + 42 = √

25 = 5.

9. dV
dt

= 4πr 2 dr
dt

11. dV
dt

= E2

2π 2

dE
dt

, or equivalently,
dV
dt

= 2r 2 dE
dt

.

13. (a)
dV
dt

= 4πr 2 dr
dt

; (b)
dS
dt

= 8πr
dr
dt

.

15. dV
dt

= 2πrh
dr
dt

17. dV
dt

= 3π

4
h 2 dh

dt

19. A = P2

16
21. SA = 4πh + 8π

23. SA = πr
√

r 2 + 25 + πr 2 25. A = c2

4

27. f ′ = 2uu′ + kv′ 29. f ′ = v + tv′ + kv′

31. f ′ = 2v′√u + w + v(u′ +w′)√
u+w

33. f ′ = w′(u + t) 2 + 2w(u + t)(u′ + 1)

35. f ′ = 1
k

(u′t + u + w′)

37. dA
dt

∣∣∣
r=12

= 96π
in2

sec
;

dA
dt

∣∣∣
r=24

= 192π
in2

sec
;

dA
dt

∣∣∣
r=100

= 800π
in2

sec
.
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39. dV
dt

∣∣∣
s=8

= 6(8) 2 = 384 cubic inches per minute.

41. dV
dt

∣∣∣
x= 3√55

= 6( 3
√

55) 2 ≈ 86.77 cubic inches per minute.

43. dr
dt

∣∣∣
r=12

= 5
24π

in
sec 45. 16

in2

sec

47. Suppose x is Stuart’s distance from the streetlight, l is
the length of his shadow, and y = x + l is the distance
from the tip of his shadow to the streetlight. Then
dy
dt

∣∣∣
x=10

= − 40
7

ft
sec

; this does not depend on x.

49. 2√
128

≈ 0.177 feet per second downwards.

51. The area is growing by 6 square feet per second at that
particular moment.

53. dr
dt

∣∣∣
h=4

= 1
8π

in
sec

55. dh
dt

∣∣∣
h=4

= 1
12π

in
sec

57. dh
dt

∣∣∣
h=3

= − 25
72π

in
min

59. (a)
dA
dt

= 2b − a for all times t. (b) 1 ≤ a < 21 and
0 < b ≤ 10, with 0 ≤ t < 5. (c) The area is increasing
when 2b > a and decreasing when 2b < a. In terms of
time, the area is increasing from time t = 0 to time
t = 2.375 and then decreasing from time t = 2.375 to
time t = 5.

61. (a) We see that x(t)/(13200 − 11710) = tan(π/2 − θ (t)).
It follows that x′ = −1490 sec 2(π/2 − θ )θ ′. (b) Now
θ ′ = −(11π/180)/60 radians per minute (negative
because the sun is going down), and when it hits Ian
the shadow makes tan θ = 1490/3100. It follows that
x′ = 25.4 feet per minute.

63. d
dr

( 4
3
πr 3
)

= 4πr 2

65. Mimic the work in Example (c).

Section 3.6

1. F, F, F, F, T, F, T, F.

3. See the discussion at the beginning of the section.

5. y = 2( x − 1) is the line tangent to f at x = 1, and
y = x − 1 is the line tangent to g( x) at x = 1. Very close
to x = 1 the graphs of f and g are very close to the
graphs of these tangent lines.

7. lim
x→∞

x
2x

→ ∞
∞ and lim

x→∞
1/2x

1/x
→ 0

0
; the first form works

better.

9. lim
x→∞

lnx
x2

→ ∞
∞ and lim

x→∞
x−2

1
lnx

→ 0
0

; the first form works

better.

11. lim
x→0

x
sinx

→ 0
0

and lim
x→0

cscx
x−1

→ ∞
∞ ; the first form works

better.
13. The only error is in the second application of L’Hôpital’s

Rule (it does not apply).

15. (a) lim
x→1

2x+1
1

= 3; (b) lim
x→1

( x + 2) = 3

17. (a) lim
x→∞

1
−6x

= 0; (b) lim
x→∞

1
x

− 1
x2

2
x2

−3
= 0−0

0−3
= 0

19. (a) lim
x→∞

3e3x

−2e2x
= lim

x→∞
3ex

−2
= −∞; (b) lim

x→∞
1

1
e3x

− 1
ex

= −∞

21. −8 ln 2 23. 1
2

25. 0 27. 0

29. ∞ 31. 0

33. 0 35. 0

37. 1 39. 1

41. 0 43. 0

45. −1 47. 1

49. ∞ 51. 1

53. e 55. 1

57. 0 59. 1

61. 1 63. 1

65. lim
x→∞

x+100
x

= 1, so neither dominates.

67. lim
x→∞

2x100

100x2
= ∞, so v( x) dominates u( x).

69. lim
x→∞

ex

2x
= ∞, so v( x) dominates u( x).

71. Neither function dominates.

73. lim
x→∞

0.001e0.001x

100x100
= ∞, so u( x) dominates v( x).

75. 0 77. ∞
79. ∞
81. On I, f has a global maximum at x = 1 and a global

minimum at x = 1
e

, since lim
x→0+

f ( x) = 0. On J, f has no

global maximum and a global minimum at x = 1
3

, since
lim

x→∞ f ( x) = ∞.

83. On I, f has a global maximum at x = 3 and a global
minimum at x = 0. On J, f has a global maximum at
x = 3 but no global minimum.

85. On I, f has no global maximum and a global minimum
at x = π , since lim

x→0+
f ( x) = ∞. On J, f has no global

minimum and no global maximum, since
lim

x→0+
f ( x) = ∞ and lim

x→2π−
f ( x) = −∞.

87. �w
�t

= w(t)−w(0)
t−0

= w(t)
t

.

89. Split into a sum of two limits, the first of which is

lim
t→∞

E(t) = E0

1+0.2W0
and the second of which is of the

form
∞
∞ and which by L’Hopital’s Rule is equal to 0.

91. If f ( x) = Ae k x is exponential and g( x) = x 2, then by
applying L’Hôpital’s rule twice, we have

lim
x→∞

Aek x

x2
= lim

x→∞
Akek x

2x
= lim

x→∞
Ak2ek x

2
, which in the limit

is equal to ∞.
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93. If f ( x) = Ae kx is exponential and g( x) = Bxr is a power
function, then by applying L’Hôpital’s rule r times, we
have
lim

x→∞
Aek x

Bxr
= lim

x→∞
Akek x

Brxr−1
= · · · = lim

x→∞
Akrek x

Br(r−1)(r−2)···(1)
,

which is of the form
∞

constant
→ ∞.

95. lim
x→∞ ln

((
1 + r

x

) x)
= lim

x→∞x ln
(

1 + r
x

)
=

lim
x→∞

ln
(

1+ r
x

)
1
x

= lim
x→∞

1

1+ r
x

(−r
x2

)

−1
x2

= lim
x→∞

r

1+ r
x

= r, and

thus lim
x→∞

(
1 + r

x

) x
= er .

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 4

Section 4.1

1. T, T, T, F, F, F, F, F.

3. The terms in the sum do not appear to have a
consistent pattern.

5. The sum of the squares of the integers greater than or
equal to 3 and less than or equal to 87.

7. (a) bp + bp+1 + · · · + bq−1 + bq. (b) Index is i, starting
value is p, ending value is q, bi describes each term in
the sum. (c) p and q must be nonnegative integers; bi
can be any real number; also, we must have p ≤ q.

9. One possible answer is ak = k 2, m = 3, n = 7.

11. The first sum is 1 + 1
2

+ 1
5

+ 1
10

+ · · · + 1
65

; the second

sum is 2
( 1

2
+ 1

4
+ 1

10
+ 1

20
+ · · · + 1

130

)
.

13. (a)
∑ 5

k=1
2
k2

; (b)
∑ 6

k=2
2

(k−1)2
; (c)
∑ 4

k=0
2

(k+1)2
.

15. (a)
∑ 2

k=1 k = 1 + 2 = 3, and
2(2+1)

2
= 6

2
= 3;

(b)
∑ 8

k=1 k = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36, and
8(8+1)

2
= 72

2
= 36;

(c)
∑ 9

k=1 k = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45,

and
9(9+1)

2
= 90

2
= 45.

17. See Theorem 4.4.

19. The area under f ′ should be related to the function f ,
since in the example the area under v(t) = s′(t) is
related to the distance travelled s(t).

21.
∑ 8

k=1 3; m = 1, n = 8, ak = 3

23.
∑ 5

k=1
k+2
k3

and
∑ 7

k=3
k

(k−2)3
are the most obvious ways.

25.
∑ 10

k=2(k 2 + 1) 27.
∑ n

k=1
k
n

29. 16 + 25 + 36 + 49 + 64 + 81 = 271

31. 0 + 1
8

+ 1
2

+ 9
8

+ 2 + 25
8

= 55
8

33. Approximately
0.17321 + 0.17607 + 0.17889 + 0.18166 + 0.18439 +
0.18708+0.18973+0.19235+0.19494+0.19748 ≈ 1.8558

35. 3n − n(n+1)
2

; −4750; −123,750; −497, 500.

37. n(n+1)(2n+1)
6

+ 2
n(n+1)

2
+ n − 13; 348, 537; 42, 042, 737;

334, 835, 487.

39. 1
n4

(
n2(n+1)2

4
− n
)

; 0.255024; 0.251001; 0.2505

41. 2a0 + 2a1 + 2a2 − a101 +∑ 100
k=3 ak

43.
∑ 25

k=2(3k 2 + 2k − 1) − 52 45. 48

47. lim
n→∞

2n3 +6n2 +10n
6n3

= 1
3

49. lim
n→∞

n+n(n+1)+ 1
6

n(n+1)(2n+1)

n3 −1
= 1

3

51. lim
n→∞

(
1 + n2 +n

n2
+ 2n3 +3n2 +n

6n3

)
= 1 + 1 + 2

6
= 7

3

53. Answers can vary depending on what you choose to
use as your velocity in each subinterval. Using the initial
velocity of each 5-second chunk we approximate that
the distance travelled is d ≈ 5v(0) + 5v(5) + 5v(10) +
5v(15) + 5v(20) + 5v(25) + 5v(30) + 5v(35) = 2310 feet.

55. (a) In any year t, B(t) is the sum of the increases
I(1), I(2), . . . I(t). (b) The graph of I(t) is a series of
rectangles with heights I(1), I(2), and so on. For any
year t, B(t) is the sum of the areas of the first through tth
rectangles. (c) In any given year, if I is positive then B
will increase that year; if I is negative then B will
decrease that year. It seems like I could be related to the
derivative of B.

57. (a) A(n) =∑ n
k=1 10(0.7)k; (b) A(3) = 15.33 billion,

A(4) = 17.73 billion, and A(5) = 19.41 billion;
(c) A(10) = 22.67 billon, so the total might be about
23 billion dollars.

59.
∑ n

k=0 3ak = 3a0 + 3a1 + 3a2 + · · · + 3an =
3(a0 + a1 + a2 + · · · + an) = 3

∑ n
k=0 ak.

61. Pairing the first and last terms in the sum
1 + 2 + 3 + . . . + n gives a sum of n + 1. Pairing the
second and second-to-last terms also gives a sum of
n + 1. Continuing in this fashion we obtain

n
2

pairs
whose sum is n + 1.

Section 4.2

1. F, T, F, F, F, T, T, F.

3. (a) Counting partial squares as half-squares, the blob

has an approximate area of 46
( 1

4

)
+ 36
( 1

8

)
= 16

square units. (b) Two possible ways to improve the
approximation are to count partial squares more
accurately depending on their sizes, or to use a finer
grid.
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5. (a) The right sum is an over-approximation, and the left
sum an under-approximation, in this example. Both the
midpoint sum and the trapezoid sum look like very
close approximations. (b) The midpoint sum was off by
the smallest amount, with an error of only about 0.0417.

7. (a) 7.85; (b) No; (c) upper sum is ≥ 8.2, lower sum is
≤ 7.5; (d) No; (e) No.

9. The heights of the rectangles used with the upper sum
are by definition always greater than or equal to the
heights of the rectangles used for any other Riemann
sum.

11. (a) M1 = 0, M2 = 2; (b) M1 = 0, M2 = 2
3

(
or

4
3

)
,

M3 = 2; (c) M1 = 0, M2 = 1
2

, M3 = 3
2

, M4 = 2.

13. (a) Meters; (b) the area of a rectangle; (c) looks like
distance should be related to the area under the velocity
curve.

15. Part of the sum indicates that we have �x = 1
2

, whereas
another part tells us that �x = 0.25.

17. Right sum with f ( x) = x 2, N = 4, �x = 1
2

, and

xk = 1 + k
2

; thus a = 1 and b = 3.

19. Trapezoid sum with f ( x) = sin x, N = 100, �x = 0.05,
and xk = 0 + 0.05k (so xk−1 = 0 + 0.05(k − 1)); thus
a = 0 and b = 0 + 0.05(100) = 5.

21. 1.219 23. 51.88

25. 8
3

27. (a) 5; (b) 6.875

29. (a) 1.16641; (b) 1.26997 31. (a) 51.3434; (b) 52.9562

33. (a) 2; (b) 2.148; (c) 2.25

35. Exact = 26; LS = 24.5; RS = 27.5; midpoint = 26;
upper = 27.5; lower = 24.5; trapezoid = 26

37. Exact = π

2
; LHS ≈ 1.366; RHS ≈ 1.366;

midpoint ≈ 1.630; upper ≈ 1.866; lower ≈ 0.866;
trapezoid ≈ 1.366.

39.
∑4

k=1
1
4

√
k
4

+ 1

41.
∑6

k=1 e (2k+3)/4
( 1

2

)

43.
∑4

k=1

sin(
π

4
(k−1))+sin(

π

4
k)

2
(
π

4
)

45. (a) 1320 feet; (b) 3080 feet

47. With a right sum we approximate that the change in
temperature is −24.2385 degrees.

49. (a) c1 ≈ 6114.15, c2 ≈ 8722.35; (b) plotting
g(t) = 6114.15 + 8722.35(sin((t − 90)π/105) − 2/π )
with the four data points between 90 and 195 days
gives a relatively good fit.

51. Since f is increasing, we have xk−1 ≤ xk; now apply
Definition 4.6.

53. Draw a picture of a concave up function with a
trapezoid sum approximation. Compare the trapezoid
to the area under the curve. What do you notice?

Section 4.3

1. F, T, F, F, F, F, T, F.

3.
∫ b

a f ( x)dx; the definite integral of f on [a, b]

5.
∫ b

a f ( x)dx = lim
n→∞
∑ n

k=1 f ( x∗
k )�x, where �x = b−a

n
,

xk = a + k�x,a nd x∗
k is a point in the kth subinterval

[xk−1, xk].

7. The region between the graph of f and the x-axis from
x = a to x = a has a width of zero.

9. A larger portion of the region between the graph of
f ( x) = x 2 − 4 and the x-axis on [−3, 3] is negative, so
the definite integral is negative.

11. 0

13. (a) Negative; (b) negative

15. (a)
∫ b

a ( f ( x) + g( x))dx = ∫ b
a f ( x)dx + ∫ b

a g( x)dx, but∫ b
a f ( x) · g( x)dx �= ∫ b

a f ( x)dx · ∫ b
a g( x)dx. (b) With f ( x) = x

and g( x) = 1,
∫ 1

0 f ( x)dx = 1
2

,
∫ 1

0 g( x)dx = 1, and∫ 1
0 ( f ( x) + g( x))dx = 3

2
. (c) With f ( x) = x and g( x) = x,∫ 1

0 f ( x)dx = 1
2

and
∫ 1

0 g( x)dx = 1
2

, but
∫ 1

0 f ( x)g( x) = 1
3

.

17. (a)
∑ n

k=1

( 3k
n

) 2 ( 3
n

)
= 27

n3

( n(n+1)(2n+1)
6

)

(b)
∑ n

k=1

( 3
n

(k − 1)
) 2 ( 3

n

)
=

27
n3

( n(n+1)(2n+1)
6

− 2
n(n+1)

2
+ n
)

(c) For n = 100, RHS

≈ 9.13545 and LHS ≈ 8.86545; for n = 1000, RHS
≈ 9.0135 and LHS ≈ 8.9865. (d) Both expressions
approach 9 as n → ∞.

19. (a) Infinite discontinuity (vertical asymptote) at x = 0;
(b) the area accumulated would be infinite; (c) a
sequence of Riemann sum approximations would not
converge to a real number as n → ∞; (d) compare the
two graphs and speculate.

21. 2 23. 264

25. π

2 27. 1
2

29. 5 31. 14

33. Not enough information. 35. Not enough information.

37. −8 39. − 52
3

41. (a)
∑ n

k=1

(
5 −
(

2 + 3k
n

)) ( 3
n

)
= 3

n
(3n) − 9

n2

( n(n+1)
2

)
.

(b) 4.455, 4.4955; (c)
9
2

.

43. (a)
∑ n

k=12
( k

n

) 2 ( 1
n

)
= 2

n3

( n(n+1)(2n+1)
6

)
. (b) 0.6767,

0.667667; (d)
2
3

.
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45. (a)
∑ n

k=1

((
2 + k

n

)
+ 1
) 2 ( 1

n

)
= 1

n
(9n) + 6

n2

( n(n+1)
2

)

+ 1
n3

( n(n+1)(2n+1)
6

)
. (b) 12.3684, 12.3368; (c)

37
3

.

47. 62
3

49. −93

51. 136
3

53. (a)
∫ 40

0 (−0.22t 2 + 8.8t)dt; (b) 2346.67 feet.

55.
∫ b

a c f ( x)dx = lim
n→∞
∑ n

k=1 cf ( x∗
k )�x =

c lim
n→∞
∑ n

k=1 f ( x∗
k )�x = c

∫ b
a f ( x)dx.

57. If
∫ b

a f ( x)dx = lim
n→∞
∑ n

k=1 f ( xk)�x, then∫ a
b f ( x)dx = lim

n→∞
∑ n

k=1 f ( xn−k)(−�x) =
− lim

n→∞
∑ n

k=1 f ( xk)�x = − ∫ b
a f ( x)dx.

59. The area in question is a trapezoid with heights a and b
and width b − a, therefore area
a+b

2
(b − a) = 1

2
(b 2 − a 2).

61. Simplify
∑ n

k=1

(
a + k(b−a)

n

) 2 ( b−a
n

)
, apply sum

formulas, and then take the limit as n → ∞. Remember
that a and b are constants.

Section 4.4

1. T, F, F, T, F, F, F, F.

3. An antiderivative of f is just one function whose
derivative is f , while the indefinite integral

∫
f ( x)dx is

the family of all antiderivatives of f .

5. See Definitions 4.9 and 4.15. The definite integral is a
number while the indefinite integral is a family of
functions; the definite integral concerns area while the
indefinite integral concerns antiderivatives; we calculate
definite integrals using Riemann sums, but we calculate
indefinite integrals by antidifferentiating.

7. All blanks should contain
1
7

x 7.

9. At this point we don’t know of a function whose
derivative is sec x, but we do know of a function whose
derivative is sin x (it is − cos x).

11. See the theorems in this section.

13. d
dx

( 1
2

e ( x 2)( x 2 − 1)
)

= x 3e ( x 2)

15. d
dx

( x(ln x − 1)) = 1(ln x − 1) + x
( 1

x
− 0
)

= ln x

17. One easy example is f ( x) = x, g( x) = x 2.

19. F′( x) = csc 2 x for both x < 0 and x > 0. The piecewise
antiderivative F( x) here differs from the one in Theorem
4.18 by being shifted up 100 units on the right of the
y-axis. Notice from the graphs that this does
transformation does not affect the slope of the graph of
F( x).

21. 1
3

x 3 − 1
2

x 6 − 7x + C 23. 3
4

x 4 + 5
3

x 3 − 3
2

x 2 − 5x + C

25. 1
3

x 3 + 1
ln2

(2 x) + 4x + C 27. 2
3

x3/2 + 2x1/2 + C

29. 3.2
ln(1.43)

(1.43)x − 50x + C 31. 2e 2x−6 + C

33. 1
3

sec(3x) + C 35. 3(tan x − x) + C

37. πx + C 39. 7
2

sin−1(2x) + C

41. 1
3

sec−1(3x) + C 43. ln |1 + x 2| + C

45. x 2e x + C 47. ln |3x 2 + 1| + C

49. e x − e 2x + C 51. 1
18

( x 3 + 1) 6 + C

53. x2

lnx
+ C 55. e x√x + C

57. ln x cos x + C 59. 3
2

sinh 2x + C

61. x tanh x + C 63. a
b

e bx+c + C

65. 1
ab

sec(ax) + C 67. a
b

tan−1(bx) + C

69. (a) v(t) = −32t + 42 feet per second;
(b) s(t) = −16t 2 + 42t + 4 feet.

71. See the proof in the reading.

73. d
dx

( 1
k

e k x
)

=
( 1

k

)
(k)e k x = e k x, and

d
dx

( 1
lnb

b x
)

=
( 1

lnb

)
(ln b)b x = b x.

75. Each of the integrands is the derivative of the
corresponding inverse trigonometric function in its
solution.

77. See the proof in the reading.

79. By the sum rule for differentiation, and the fact that the
derivative of a constant is zero,
d
dx

(G( x)) = d
dx

(F( x) + C) implies that G′( x) = F′( x) + 0.

Section 4.5

1. F, F, T, F, F, T, T, F.

3. The Fundamental Theorem of Calculus relates the
concept of signed area under a curve to antiderivatives,
which enables us to quickly find the exact areas under
curves, and connects the important concepts of definite
integrals and indefinite integrals.

5. The Mean Value Theorem

7. 1
b−a

∫ b
a v(t)dt is equal to

s(b)−s(a)
b−a

, so∫ b
a v(t)dx = s(b) − s(a). Since s(t) is an antiderivative of

v(t), this is an example of the equation in the
Fundamental Theorem.

9. f (4) ≈ 4.125

11. f (−2) ≈ 2.5

13. (a) lim
n→∞

( 3
n

(n) + 6
n2

n(n+1)
2

+ 3
n3

n(n+1)(2n+1)
6

)
= 7;

(b) 3
( 1

3

)
(2 3 − 1 3) = 7; (c)

[
3
( 1

3

)
x 3
] 2

1
= 7

15. (a)
100
101

; (b) 5000

17. Equivalent to FTC: (a), (d), and (e).
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19. 12
5

21. 42
ln2

23. − 2
3

(5)−3/2 + 2
3

(2)−3/2 25. 4 − 2
√

3

27.
√

2 − 1 29. π

8

31. 2π 33. − 1
2e

+ 1
2

35. π

4 37. 3
ln4

39. ln 7 − ln 2 41. ln 9 − ln 14

43. ln(32) − ln(8) 45. π

6

47. 3π

2
− π ln 8 49. − 3

20

51. 3
2

53. 1
e

+ e

55. 1
2

cot
(

π 2

16

)
− 1

2
cot
(

π 2

4

)

57. − 3
2

ln 5 59. 25
2

61. 343
12

63. 3 − 1√
2

65.
∫ 24

0 0.05tdt =
[ 0.05

2
t 2
] 24

0
= 14.4 gallons.

67. (a) Supposing that the “positive” direction is to the
right, the figurine moves right along the track for the
first five seconds, then left for the next five seconds,
then right again, then left again. (b) approximately 5.27
inches, 3.125 inches, and 0 inches. (c) approximately
14.84 inches.

69. 9
14

71. (a) 80, and there is a line of about 5 people at noon; (b)
50 customers per hour; (c) at 3:00 p.m. there are about
40 people in the line; (d) every customer has been
served.

73.
∫ b

a xdx =
[ 1

2
x 2
]b

a
= 1

2
b 2 − 1

2
a 2 = 1

2
(b 2 − a 2).

75. If F is an antiderivative of f , then kF is an antiderivative
of kf . Therefore

∫ b
a kf ( x)dx = kF(b) − kF(a) =

k(F(b) − F(a)) = k[F( x)]b
a = k
∫ b

a f ( x)dx.

77. See the proof in the reading.

79. If G( x) = F( x) + C then [G( x)]b
a = [F( x) + C]b

a =
(F(b) + C) − (F(a) + C) = F(b) − F(a) = [F( x)]b

a.

Section 4.6

1. F, F, T, F, F, F, F, T.

3. Three (although two of them will be equal ); positive;
negative

5. (a)
∫ 4
−3 f ( x)dx; (b)

∫ −1
−3 f ( x)dx − ∫ 2

−1 f ( x)dx + ∫ 4
2 f ( x)dx

7. negative; positive

9. One possible example is f ( x) = x on [−2, 2].

11. (a) See graph that follows; (b)
∫ 4
−2 f ( x)dx;

(c)
∫ −1
−2 f ( x)dx − ∫ 3

−1 f ( x)dx + ∫ 4
3 f ( x)dx.

y
8

6

4

�2

2

�4

x
�3 �2 �1 54321

13. (a) See graph that follows; (b)
∫ 1

0 ( g( x) − f ( x))dx

+ ∫ 3
1 ( f ( x) − g( x))dx + ∫ 4

3 ( g( x) − f ( x))dx.

y
6

4

2

�2

�4

�6

x
�1 54321

15. Approximately − 10
3

17. Draw any graph where the average height of the graph
on [−2, 5] is 10, and the slope from (−2, f (−2)) to
(5, f (5)) on your graph is −3.

19. See the reading.

21. f is continuous on [1, 5], so the Mean Value Theorem for
Integrals applies and says that there is some c ∈ (1, 5)
for which f (c) = c(c − 6) is equal to the average value

1
5−1

∫ 5
1 x( x − 6)dx of the function f . You can compute

this average value; it is equal to − 23
3

. Therefore, there is

some c ∈ (1, 5) such that f (c) = − 23
3

. We can solve the

equation f (c) = − 23
3

to find such a value of c. Actually
there are two such values: c ≈ 1.8453 and c ≈ 4.1547.

23. Using a left sum with n = 10, we have (a) 43.333; (b) 80.

25. Using a left sum with n = 8, we have (a) −11.1973;
(b) 12.2229.

27. (a)
5
2

; (b)
13
2

29. (a) − 4
3

; (b)
109
12

31. (a)
25
2

; (b) 25.2 33. (a) 54, (b)
194
3

35. (a)
2
9

, (b)
2
9

37. (a)
π

2
, (b)

π

2

39. Using a left sum with n = 8, we have 22.

41. 13
2

43. 38
6
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45. 15 47. 19
3

49. 145
12

51. −2 + √
3 + π

3

53. ( f (−1) + f (−0.75) + f (−0.5) + f (−0.25) + f (0) +
f (0.25) + f (0.5) + f (0.75))

( 1
4

)
≈ 1.981

55. One possible approximation is(
f
(

π

4

)
+ f
(

π

2

)
+ · · · + f (2π )

) (
π

4

)
= 0

57. 7 59. 4

61. −1 63. 1
2

(e 2 − e−2)

65. 11
28

67. 0

69. c = 1 71. c = −3+√
201

12

73. −1 + √
3

75. (a) There is some time c ∈ (0, 4) when

f ′(c) = f (4)−f (0)
4−0

= 1.44; therefore there is some time c

in the first four days when the rate of growth of the
plant is 1.44 centimeters per day. (b) There is some time
c during the first four days when the height of the plant
is equal to the average height of the plant over those
four days. Since this average height is 1.92 feet, we
know that there is some c ∈ (0, 4) such that f (c) = 1.92.
We can solve for c = 2.3094.

77. (a)
∫ 5.29

1.51 (55 − f ( x))dx + ∫ 18
5.29(r( x) − f ( x))dx +∫ 30.71

18 (s( x) − g( x))dx + ∫ 34.49
30.71 (55 − g( x))dx;

(b) 561.9 square feet (too big!)

79. Write out the Riemann sum for each side; the absolute
values on the right-hand side factor out of both the sum
and the limit.

81. See the reading concerning the development of average
value in the plant height example.

Section 4.7

1. F, F, F, T, F, T, T, F. 3.
∫ x

2 t 2dt

5. x is the independent variable; A( x) is the dependent
variable, which represents the signed area under the
graph of f (t) from t = 0 to t = x; t does not affect the
dependent or independent variable.

7. (a) As x increases, the signed area A( x) accumulated
also increases, but at a rate that decreases. Thus the rate
of change of the rate of change of A( x) is negative, so

A( x) is concave down). (b) A′′( x) = d
dx

( d
dx

∫ x
0 f (t)dt

)
=

d
dx

( f ( x)) = f ′( x); therefore, f decreasing ⇒ f ′ negative
⇒ A′′ negative ⇒ A concave down.

9. (a) A′( x) and B′( x) are both equal to x 2, so A( x) and
B( x) differ by a constant. (b) A( x) − B( x) = ∫ x

0 t 2 dt
− ∫ x

3 t 2 dt = ∫ 3
0 t 2 dt, which is a constant. (c)

∫ 3
0 t 2 dt is

the signed area under the graph of y = x 2 from x = 0 to
x = 3.

11. F( x) = A( g( x)), where A( x) = ∫ x
3 sin t dt is outside and

g( x) = x 2 is inside.

13. A(5) < A(0) < A(−1) < A(−2)

15. A( x) is positive on approximately [0, 2] and negative on
[2, 6]. A( x) increases on [0, 1], then decreases on [1, 5],
then increases again on [5, 6]. The graph of A has the
following shape:

y

x
63 4 521

17. See the proof of Theorem 4.35.

19. (a) f (b) − f (a); (b) 0.

21. (a) ln x = ∫ x
1

1
t

dt is defined on (0, ∞) because
1
x

is

continuous on (0, ∞). Moreover, ln x = ∫ x
1

1
t

dt is zero
for x = 1, increases without bound as x → ∞, and
decreases without bound as x → 0+; therefore ln x has
range (−∞, ∞). (b) Follows from the fact that we define
e x to be the inverse of ln x.

23. ln 10 − 1

25. logb x = 1
lnb

∫ x

1

1
t
dt, or logb x =

∫ x

1

1
(lnb)t

dt

27. (a) A(2) is the signed area under the graph of t 2 + 1

from t = 1 to t = 2; (b) A(2) = 10
3

, A(5) = 136
3

;

(c) A( x) = 1
3

x 3 + x − 4
3

29. (a) A( x) is the signed area under the graph of
1
t

from
t = 3 to t = x; (b) A(2) = ln 2 − ln 3, A(5) = ln 5 − ln 3;
(c) A( x) = ln x − ln 3

31.
∫ x

0 sin 2(3t)dt,
∫ x

2 sin 2(3t)dt,
∫ x
−1 sin 2(3t)dt

33.
∫ x

0 e (t 2) dt,
∫ x
−2 e (t 2) dt,

∫ x
10 e (t 2) dt

35. −e x 2+1 37. cos( x 2)(2x)

39.
∫ √

x
1 ln tdt + 1

2

√
x ln

√
x 41. 0

43. −2 ln |x 2| − 4 45. 54x

47. sin(( x + 2) 2) − sin( x 2) 49. f ( x) = 1
2

ln |2x − 1| + 3

51. f ( x) =
∫ x

2

1
t3 +1

dt 53. f ( x) = ∫ x
1 e−t 2

dt

55. Using left and right sums with 9 rectangles,
1.92897 < ln 10 < 2.82897.

57. Using left and right sums with four rectangles,
0.877269 < ln e < 1.14881.
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59. (a) s(t) = ∫ t
0 sin(0.1w 2)dw; (b) about 2.41143 feet to the

right of the starting position; (c) each rectangle has a
height measured in feet per second and a width
measured in seconds, thus an area that is measured in
feet; (d) by looking at the graph of v(t) = sin(0.1t 2), the
velocity oscillates faster and faster between 1 and −1
feet per second.

61. (a) Ft0 (t) = ∫ t
t0

86400f ( x)dx = 86400[−1.033x 3

+441.75x 2 − 53605x]t
t0

; (b) F90(195) ≈ 58.9 billion cubic
feet; (c) about 17.971 billion cubic feet, about 76% of
which flows through between days 90 and 195.

63. If G is an antiderivative of f , then by the Fundamental
Theorem of Calculus we have

∫ b
a f ( x)dx=G(b)−G(a).

Therefore, A( x)= ∫ x
0 f (t)dt = G( x) − G(0). Since A and

G differ by a constant, they have the same derivative,
namely, f ; thus A is an antiderivative of f .

65. See the proof given in the reading.

67. This is a just a rewording of the Second Fundamental
Theorem, since F( x) = ∫ x

a f (t)dt and the Second
Fundamental Theorem tells us that the derivative of F
is f .

69. (a) F′ = f , F is continuous on [a, b], and F is
differentiable on (a, b). (b) There exists a number

c ∈ (a, b) such that F′(c) = F(b)−F(a)
b−a

. (c) f (c) = F′(c) =
F(b)−F(a)

b−a
=
∫ b

a f (t)dt−∫ a
a f (t)dt

b−a
=
∫ b

a f (t)dt
b−a

.

71. Since
1
t

is continuous for t > 0, the first part of the
Second Fundamental Theorem guarantees that if

ln x =
∫ x

1

1
t

dt, then ln x is continuous and differentiable

on (0, ∞).

73. ln 1 =
∫ 1

1

1
t

dt = 0. Since the signed area under
1
t

is

positive over any interval in (0, ∞), if 0 < x < 1, then

ln x =
∫ x

1

1
t

dt = −
∫ 1

x

1
t

dt is negative. Similarly, if

x > 1, then ln x =
∫ x

1

1
t

dt is positive.

75. (a)
d
dx

(ln ax) = d
dx

∫ ax

1

1
t

dt = 1
ax

(a) = 1
x

. (b) ln ax and

ln x have the same derivative, so they must differ by a
constant, that is, ln ax = ln x + C. (c) ln a = ln 1 + C, so
ln a = 0 + C, so C = ln a. Then just rename x to be b to
complete the proof.

77. ln
a
b

= ln(ab−1) = ln a + ln(b−1) = ln a − ln b

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 5

Section 5.1

1. T, F, F, F, T, F, T, F.

3. Both integrals turn into
∫

1
u

du after a change of

variables; u = x 2 + 1 in the first case, u = ln x in the
second.

5. Three possible answers are
∫

3x 2 sin(x 3) dx,∫
sin(lnx)

x
dx, and

∫
sin(

√
x+2)

2
√

x
dx.

7. Three possible answers are
∫

3√
3x+1

dx,
∫

cosx√
sinx

dx,

and
∫

1

x
√

lnx
dx.

9. du = (2x + 1) dx

11. du = cos x dx

13.
∫ 5
−1 u 2 du = 126

3
= 42;∫ x=5

x=−1 u 2 du = 1
3

(5) 6 − 1
3

(−1) 6 = 5208;∫ u(5)
u(−1) u 2 du = ∫ 25

1 u 2 du = 1
3

(25) 3 − 1
3

(1) 3 = 5208

15. Three of the many such integrals are in Exercises 34, 37,
and 51.

17. (a)
1
2

∫
u 2 du = 1

6
(x 2 − 1) 3 + C;

(b)
∫

(x 5 − 2x 3 + x) dx = 1
6

x 6 − 1
2

x 4 + 1
2

x 2 + C;
(c) the answers differ by a constant:
1
6

(x 2 − 1) 3 = 1
6

x 6 − 1
2

x 4 + 1
2

x 2 − 1
6

.

19. (a) − 1
3

∫ x=2
x=−2 e u du = − 1

3
[e 5−3x] 2

−2 = − 1
3

(e−1 − e 11);

(b) − 1
3

∫ −1
11 e u du = − 1

3
[e u]−1

11 = − 1
3

(e−1 − e 11)

21. 1
9

(3x + 1) 3 + C 23. 4 ln(x 2 + 1) + C

25. 1
2

(
√

x + 3) 2 + C 27. − 1
2

cot x 2 + C

29. 1
3

ln |3x + 1| + C 31. 1
2π

sin 2 πx + C

33. 1
2

sec 2x + C 35. − 1
6

cot 6 x + C

37. 1
11

x 11 + 1
4

x 8 + 1
5

x 5 + C 39. − 4
5

cos(x5/4) + C

41. 1
2ln2

2x 2+1 + C 43. 2
3

(ln x)3/2 + C

45. 1
4

(ln x) 2 + C

47. 3
2

ln(x 2 + 1) + tan−1 x + C

49. − ln |2 − e x| + C 51. −2e−x − x + C

53. − 1
8

cos 8 x + C 55. (sin x 2)1/2 + C

57. cos
( 1

x

)
+ C 59. 1

3
(x 2 + 1)3/2 + C

61. 2
5

(x + 1)5/2 − 2
3

(x + 1)3/2 + C
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63. 2
27

(3x + 1)3/2 − 2
9

(3x + 1)1/2 + C

65. − cos(e x) + C

67. 1
103

(x − 1) 103 + 2
102

(x − 1) 102 + 1
101

(x − 1) 101 + C

69. 1
2

cosh x 2 + C 71. 3
8

(104/3 − 1)

73. 0 75. 2
√

ln 3 − 2
√

ln 2

77. π

8

79. 1/4 + (5/2) ln 2 − (1/2) ln 10

81. (a) 0; (b) c = 1. 83. 4.27569 inches

85. 33.2128 cubic inches

87. (a)
∫ kπ

0 sin
(

2
(

x − π

4

))
dx = − 1

2
sin(2kπ ) = 0 for any

integer k; (b) f is a general sine function with period
π whose graph is half above and half below the
x-axis.

89. Since
d
dx

(f (u(x))) = f ′(u(x))u′(x), we have∫
f ′(u(x))u′(x) dx = f (u(x)) + C.

91. See the proof of Theorem 5.3.

Section 5.2

1. F, T, F, F, T, F, T, F.

3.
∫

u dv = uv − ∫ v du;
(b)
∫

u(x)v′(x) dx = u(x)v(x) − ∫ v(x)u′(x) dx

5.
∫

x sin x dx;
∫

x ln x dx 7.
∫

ln x dx

9. If u = 1, then integrating dv is equivalent to solving the
original integral.

11. Exercises 28, 27, and 30 are three such examples.

13. du = 3 cos 3x dx and dv = dx;
∫

u dv = ∫ sin 3x dx, and∫
v du = ∫ 3x cos 3x dx. The first integral is clearly easier,

and the second integral can be rewritten in terms of the
first using integration by parts.

15. [ g(x)]b
a − [h(x)]b

a = ( g(b) − g(a)) − (h(b) − h(a)) =
( g(b) − h(b)) − ( g(a) − h(a)) = [ g(x) − h(x)]b

a.

17. (a)
d
dx

(x ln x) = ln x + 1; (b)
∫

(ln x + 1) dx = x ln x + C;

(c)
∫

ln x dx = x ln x − ∫ 1 dx

19. u = x, v = 1
ln2

2 x 21. u = ln x, v = −x−2

23. u = tan−1 x, dv = dx

25. (a) x 3 ln x − 1
3

x 3 + C; (b)
1
3

(x 3 ln x 3 − x 3) + C; (c) Your
answers should differ by a constant, which in this case
is C = 0.

27. xe x − e x + C 29. 1
2

x 2 ln x − 1
4

x 2 + C

31. − 1
2

cos x 2 + C 33. 1
3

x 2e3x − 2
9

xe3x + 2
27

e3x + C

35. −xex − ex + C 37. 3
2

ex 2 + C

39. 3(x ln x − x)

41. −e−x(x 2 + 1) − 2xe−x − 2e−x + C

43. 3x + ln x + C

45. 1
3

x 3 − 2(xe x − e x) + 1
2

e2x + C

47. 2
3

x3/2 ln x − 4
9

x3/2 + C 49. 1
2

x 2ex 2 − 1
2

ex 2 + C

51. −x cot x + ln | sin x| + C

53. x 3 sin x + 3x 2 cos x − 6x sin x − 6 cos x + C

55. − 1
2

x 2 cos x 2 + 1
2

sin x 2 + C

57. x tan−1 3x − 1
6

ln |1 + 9x 2| + C

59. − 1
5

e2x cos x + 2
5

e2x sin x + C

61. 1
ln(2/3)

(2/3)x + C

63. 1
2

e−x sin x − 1
2

e−x cos x + C

65. x tan x − ln | sec x| + C

67. 1
2

x 2 tan−1 x + 1
2

tan−1 x − 1
2

x + C

69. 1
2

x
√

x 2 + 1 − 1
2

sin h−1 x + C

71. 2 ln 2 − 1 73. − 2
e

75. 1
2

eπ + 1
2

77. 1
4

(π + 2 ln 2)

79. (a) − 2
e

; (b) 1 + −2+e
e

81. (a) − 1
4

− 3π

8
; (b)

5π

8
(2 + π )

83. 4.27569 inches

85. About 15.47 cubic inches

87. (a) − 5
π

cos(π t) + 5
π 2

sin(π t); (b) the particle moves
right, then left, then right again, a greater distance each
time – see the picture of s(t) that follows; (c) at t = 3
seconds it is more than 4 feet to the right, and it is just
turning around to come back to the starting position;
(d) after a long time the particle oscillates back and forth
by greater and greater distances, moving faster and
faster to cover more distance in the same time period.

0 3

�3

5

0 3

�3

5

3

CONFIRMING PAGES



TKansfinal WHF00153/FREE087-Taalman December 4, 2012 15:24

A-36

89. (a) See the proof of Theorem 5.8;

(b)
d
dx

(x ln x − x) = ln x + x
( 1

x

)
− 1 = ln x.

91. (a) Let u = tan−1 x and dv = dx to get

x tan−1 x −
∫

x
x2 +1

dx, and then use substitution with

w = x 2 + 1 to turn this into x tan−1 x − 1
2

∫
1
w

dw =
x tan−1 x − 1

2
ln |w| + C = x tan−1 x − 1

2
ln(x 2 + 1) + C.

(b)
d
dx

(x tan−1 x − 1
2

ln(x 2 + 1)) =
tan−1 x + x

( 1
x2 +1

)
− 1

2

( 1
x2 +1

)
(2x) = tan−1 x.

Section 5.3

1. F, T, T, T, T, F, F, T.

3. A rational function is a function that can be expressed
as a quotient of polynomials. A rational function is
proper if the degree of its numerator is strictly less than
the degree of its denominator, and improper otherwise.

5. p(x) = q(x)(x 2 − x + 3) + (3x + 1);
p(x)
q(x)

= (x 2 − x + 3) + 3x−1
q(x)

7. Divide both sides by q(x) and simplify.

9. m(x) will have degree 2 and the degree of R(x) will be
strictly less than the degree of q(x).

11. Hint: Try an example, and then think about it in general.

13. If q(x) is an irreducible quadratic then
p(x)
q(x)

is its own

partial fractions decomposition; there is nothing further
we can decompose. If q(x) is a reducible quadratic then
q(x) is a product l1(x)l2(x) of two linear functions, and
we can obtain a partial fractions decomposition of the

form
A1

l1(x)
+ A2

l2(x)
; in the example given, we have

l1(x) = x − 1 and l2(x) = x − 2.

15. y = x 2 − 3x + 5 =
(

x − 3
2

) 2
+ 11

4
can be obtained from

the graph of y = x 2 by translating
3
2

units to the right

and
11
4

units up.

17. ln |x − 2| − ln |x + 1| + C

19. ln |x − 1| − 2(x − 1)−1 + C

21. x + ln |x| + 6
x

+ C

23. 5
2

x 2 − 5x + 8 ln |x − 2| + 27 ln |x + 3| + C

25. 1
7

(
2 ln |x − 2| − ln |x 2 + 3| + √

3 tan−1
(

1√
3

x
))

+ C

27. 2 ln |x − 1| − ln |x 2 + x + 1| + C

29. ln |x 2 − 4x + 5| + 2 tan−1(x − 2) + C

31. 3 ln |x − 2| + (x − 2)−1 + 1
2

(x − 2)−2 + C.

33. 1
3

ln |3x + 1| − 2 ln |x − 3| + C

35. 1
2

ln |x 2 + 1| + tan−1 x − 1
2

ln |x 2 + 3| + C

37. −x−1 − 2 ln |x| + ln |x 2 + 1| − tan−1 x + C

39. − ln |x + 1| + 3
2

ln(x 2 + 1) + tan−1 x + C

41. x 2 + 3 ln |x 2 − 4| + C 43. 1
3

x 3 − 5
2

x 2 + 6x + C

45. 2
3

x 3 − 2x + 1
2

ln |x 2 − 4x + 1| + C

47. ln 2 − ln 6 + ln 5 49. ln 3 − ln 4 + ln 2

51. 2 + ln 4 − ln 2 53. − ln | cos x| + 1
1+ lnx

+ C

55. ln |1 + ln x| + 1
1+ lnx

+ C 57. (a) − ln3
2

; (b)
1
4

59. (a)
1
2

(
ln 5 − 2

5

)
≈ 0.605; (b) x ≈ 0.669; note that

f (0.668) ≈ 0.605.

61. r(t) = ln
( p(t)(K−p0)

p0(K−p(t))

)
, and thus p(t) = p0Ker(t)

K−p0 +p0er(t)
.

63. Either mimic the example after Theorem 5.14 by adding

and subtracting
( b

2

) 2
, or else just simply multiply out

f (x) =
(

x + b
2

)2
+
(

c − b2

4

)
and show that it is equal to

x 2 + bx + c.

Section 5.4

1. F, F, F, F, F, F, T, T.

3. d
dx

(
− 1

5
cos 5 x + 1

7
cos 7 x
)

=
cos 4 x sin x − cos 6 x sin x = cos 4 x sin x(1 − cos 2 x) =
cos 4 x sin x sin 2 x = sin 3 x cos 4 x.

5. Multiply the integrand by
cscx+cotx
cscx+cotx

.

7. Three possible examples are the integrals in Exercises
21, 22, and 41.

9. Reduce powers with double-angle identities

11. Apply the identity cot 2 x = csc 2 x − 1 repeatedly until
the integrand is converted into a sum of expressions
that we can integrate. The power of cotangent will
eventually decrease to zero.

13. Use parts with u = csck−2 x and dv = csc 2 x.

15. Reduce powers with double-angle identities.

17. Use tan 2 x = sec 2 x − 1 to rewrite the integrand entirely
in terms of secant, saving one copy of sec x tan x for the
differential of the substitution u = sec x.

19. (a) Rewrite as
∫

(1 − cos 2 x) cos 2 x dx = ∫ cos 2 x dx
− ∫ cos 4 x dx and then apply double-angle identities to
reduce powers;

(b)
∫ ( 1

2
sin 2x
) 2

dx = 1
8

(
x − 1

4
sin 4x
)

+ C.

21. 1
2

x − 1
12

sin(6x) + C

23. sin x − 2
3

sin 3 x + 1
5

sin 5 x + C
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25. − 1
2

ln | cos 2x| + C

27. 1
4

ln | sec 4x + tan 4x| + C

29. − 1
4

cot 4 x + 1
2

cot 2 x + ln | sin x| + C

31. 1
4

sec 2x tan 2x + 1
4

ln | sec 2x + tan 2x| + C

33. 3
8

x + 1
4

sin 2x + 1
32

sin 4x + C

35. One way is to use parts with u = csc 2 x and
dv = csc 2 x dx to get − csc 2 x cot x − 2

∫
csc 2 x cot 2 x dx.

Then use substitution with u = cot x to get

− csc 2 x cot x + 2
3

cot 3 x + C.

37. 1
5

sin 5 x − 1
7

sin 7 x + C 39. 1
3

sec 3 x − sec x + C

41. − 1
8

x − 1
96

sin(12x) + C 43. 1
8

sec 8 x + C

45. 1
7

sec 7 x − 2
5

sec 5 x + 1
3

sec 3 x + C

47. 1
14

sin 14 x − 1
8

sin 16 x + 1
18

sin 18 x + C

49. − 1
2

csc x cot x + 1
2

ln | csc x + cot x| + C

51. 1
3

sec 3 x + C 53. − ln | cos x| + C

55. sin x + C 57. 1
cosx

+ C

59. − 1
2

cos 2 x ln(cos x) + 1
4

cos 2 x + C

61. 2
9

cos9/2 x − 2
5

cos5/2 x + C

63. 1
3

cosh 3 x + C 65. 1
7

cosh 7 x + C

67. 16
15

69. 4
3

71. 4
15

73. 8
15

75. 1
3

77. (a) 0; (b)
32
15

; (c)
16

15π

79. (a) 1.5; (b)
1
2

+ 3
√

3
π

81. ln(7 + 4
√

3) inches

83. See the proof of Theorem 5.17 in the reading.

85. (a)
∫

sin 4 x dx = − 1
4

sin 3 x cos x + 3
8

x − 3
16

sin 2x + C,

and
∫

sin 8 x dx = − 1
8

sin 7 x cos x − 7
48

sin 5 x cos x −
35

192
sin 3 x cos x + 35

128
x − 35

256
sin 2x. (b) The formula

reduces the power of sin x in the integrand by two every
time we apply it. (c ) Apply integration by parts with
u = sink−1 x and dv = sin x dx, so that v = − cos x and
du = (k − 1) sink−2 x cos x dx. After applying the
integration by parts formula, multiply out the integrand
to obtain a term of the form (k − 1)

∫
sink x dx. Then

solve for
∫

sink x dx.

Section 5.5

1. T, T, T, F, F, T, F, T.

3. (a) 1 = sec 2 u
du
dx

, so dx = sec 2 u du; (b)
dx
du

= sec 2 u, so

dx = sec 2 u du
5. See the reading.

7. In terms of the Pythagorean identity, sine and cosine
behave the same way; we can always use x = sin u
instead of x = cos u.

9. x = a sin u makes sense only for x ∈ [−1, 1], but the
domain of a 2 − x 2 is (−∞, ∞). On the other hand,
x = a tan u makes sense for x ∈ (−∞, ∞), i.e.,
everywhere that x 2 + a 2 is defined.

11. (a) Use algebra; (b) use conventional substitution with
u = 4 + x 2; (c) use trigonometric substitution with
x = 2 tan u; (d) use algebra after writing
16 − x 4 = (4 − x 2)(4 + x 2).

13. See the proof of Theorem 5.18.

15. See the proof of Theorem 5.18.

17.
√

1 − x 2 is not defined on [2, 3]; its domain is [−1, 1].

19. Three of the many such integrals are in Exercises 41, 42,
and 46.

21.
√

1 − x 2 23. x√
x2 +4

25. tan 2 u = (x−5)2

9−(x−5)2

27. sin(2 cos−1 x) = 2x
√

1 − x 2

29. (x + 3) 2 − 11; x + 3 = √
11 sec u

31.
(

x − 5
2

) 2
− 21

4
; x − 5

2
=

√
21
2

sec u

33. 12 − 2(x + 2) 2; x + 2 = √
6 sin u

35. (a)
∫

1
9tan2 u+9

(3 sec 2 u) du = 1
3

tan−1 x
3

+ C;

(b)
1
9

∫
1( x

3

)2
+1

dx = 1
3

tan−1 x
3

+ C.

37. (a)
1
2

∫
1
u

du = 1
2

ln |4 + x 2| + C

(b)
∫

2tanu
4+4tan2 u

(2 sec 2 u) du = − ln
∣∣∣∣ 2√

x2 +4

∣∣∣∣+ C

39. −
√

4−x2

x
− sin−1 x

2
+ C

41. (x 2 − 1)1/2 + C 43. sin−1 x√
3

+ C

45.
√

9 − x 2 − 3 ln
(√

9−x2 +3
x

)
+ C

47. 1
2

(x − 2)
√

1 − (x − 2) 2 + 1
2

sin−1(x − 2) + C

49.
√

x2 −9
9x

+ C 51. x√
1−x2

+ C

53. 1
3

tan−1
( x−2

3

)
+ C
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55. − 1
4

√
9 − 4x 2 + 3

2
sin−1 2x

3
+ C

57. 1
2

(x − 4)
√

(x − 4) 2 + 9 + 9
2

ln
∣∣∣ 1

3

√
(x − 4) 2 + 9

+ 1
3

(x − 4)
∣∣∣+ C

59.
√

3 − x 2
( 15

8
x − 1

4
x 3
)

+ 27
8

sin−1
(

x√
3

)
+ C

61. 1
2

x
√

2 − x 2 + sin−1
(

x√
2

)
+ C

63. If x > 1, we have
√

x 2 − 1 − sec−1 x + C; if x < −1, we
have

√
x 2 − 1 + sec−1 x + C.

65. ln(2(
√

x 2 − 2 + x)) + C

67. 1
5

(x 2 + 1)5/2 − 1
3

(x 2 + 1)3/2

69. x ln(1 + x 2) − 2x + 2 tan−1 x + C

71. 1
3

(e2x + 1)3/2 + C 73. − 1
3

√
e2x +3
ex

+ C

75. 1
2

x 2 − 2 ln(x 2 + 4) + C

77. − 2
9

x + 1
9

x 3 − 23

9
√

6
tan−1
(√

3
2

x
)

+ C

79. 1
3

(20)3/2 − 1
3

(4)3/2

81. 1
3

ln 10 − 1
3

ln(3 + √
34)

83. −√
3 + √

15 85. 2
3

− 1

3
√

7

87. sinh−1 x
2

+ C

89. sinh−1 x − tanh(sinh−1 x) + C

91. (a) 4π

∫ √
42

−√
42

√
42 − x 2 dx; (b) using trigonometric

substitution with x = √
42 sin u, we obtain a volume of

approximately 829 cubic millimeters.

93. (a) 2
∫ r
−r

√
r 2 − x 2 dx

(b) 2
∫ π/2

−π/2

√
r 2 − r 2 sin 2 u(r cos u) du =

2r 2
∫ π/2

−π/2
cos 2 u du = 2r 2

( 1
2

) ∫ π/2

−π/2
(1 + cos 2u) du =

r 2
[
u + 1

2
sin 2u
]π/2

−π/2
= πr 2

Section 5.6

1. F, F, F, F, T, T, F, T.

3. The interval over which we are integrating could be
infinite, or the function to be integrated could have a
discontinuity or a vertical asymptote on the
interval.

5. The integrand
1
ex

is continuous on [0, 1], in particular
with no vertical asymptotes; this integral is not
improper.

7. The Fundamental Theorem of Calculus does not apply
here because (x − 3)−4/3 is not continuous at x = 3,
inside the interval [0, 5]. Applying it anyway would give

the incorrect answer
−3
21/3

+ 3
(−3)1/3

, when the correct

answer is that the improper integral diverges.

9. If p ≥ 1 and x ∈ [0, 1] then
1
xp

is greater than
1
x

, whose
improper integral on [0, 1] is known to diverge.

11. Since
1

x+1
<

1
x

for x ≥ 1 and
∫ ∞

1

1
x

dx diverges, this

comparison does not tell us anything.

13. 1
x+1

≤ 1
x

, but knowing that an improper integral is less

than a divergent one does not give us any information.

Instead, note that the graph of y = 1
x+1

is just a

horizontal translation of the graph of y = 1
x

. This
means their improper integrals are related; how?

15. We can split at any point in [1, ∞), for example at x = 2

to get:
∫ 2

1

1
x−1

dx +
∫ ∞

2

1
x−1

dx.

17.
∫ 2

0

1
2x2 −10x+12

dx +
∫ 2.5

2

1
2x2 −10x+12

dx

+
∫ 3

2.5

1
2x2 −10x+12

dx +
∫ 5

3

1
2x2 −10x+12

dx

19. Choosing x = ±1 for the splits, we have
∫ −1

−∞
e−x2

x2
dx +
∫ 0

−1

e−x2

x2
dx +
∫ 1

0

e−x2

x2
dx +
∫ ∞

1

e−x2

x 2
dx.

21. 3 23. Diverges

25. 100 27. Diverges

29. 21/3 + 1 31. Diverges

33. Diverges 35. 1
2

37. 2 39. 2

41. 0 43. Diverges

45. Diverges 47. Diverges

49. 1 51. 2

53. Diverges 55. Diverges

57. Diverges by comparison with
1
x

59. Converges by comparison with
1
x2

61. Diverges by comparison with
1
x

63. Converges by comparison with
1
x2

65. Converges by limit comparison with
1
x2
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67. Converges by limit comparison with
1
x2

69. Diverges by comparison with
1

x1/3

71. About 1.25 pounds.

73. About 3.23 years.

75. If p > 1, then∫ ∞

1

1
xp

dx = lim
B→∞

∫ B

1
x−p dx = lim

B→∞

[
1

−p+1
x−p+1
]B

1
=

lim
B→∞

(
1

1−p
B1−p − 1

1−p

)
= 1

p−1
. Note that we used the

fact that p > 1 to take the limit, since in that case we
have 1 − p < 0 and B1−p → 0 as B → ∞.

77. If p ≥ 1, then
∫ 1

0

1
xp

dx = lim
A→0+

∫ 1

A
x−p dx =

lim
A→0+

[
1

−p+1
x−p+1
] 1

A
= lim

A→0+

(
1

1−p
− 1

1−p
A1−p
)

diverges.

79. Mimic the proof of the case of Theorem 5.23 in the
reading.

81. We will suppose that d > c; the case where d < c is
similar. We have

∫ d
−∞ f (x) dx + ∫∞

d f (x) dx =
(
∫ c
−∞ f (x) dx + ∫ d

c f (x) dx) + ∫∞
d f (x) dx = ∫ c

−∞ f (x) dx +
(
∫ d

c f (x) dx + ∫∞
d f (x) dx) = ∫ c

−∞ f (x) dx + ∫∞
c f (x) dx.

Section 5.7

1. T, T, F, T, T, T, T, F.

3. Use pictures similar to the three immediately before
Theorem 5.24, but with an increasing function.

5. One example is f (x) = −x 2 + 2x + 3 on [0, 3], with
n = 3 left and right sums.

7. The same example from Problem 5 works here as well.

9. Midpoint sum

11. Do the approximation separately on [a, c] and on [c, b]
and calculate bounds for the error on each piece using
Theorem 5.27. The total error will be less than or equal
to the sum of the absolute values of the two errors you
calculated.

13. See the discussion in the reading prior to Theorem 5.27.

15. (a) LEFT(n) < MID(n) < TRAP(n) < RIGHT(n);
(b) between TRAP(n) and MID(n).

17. Using the weighted average from Exericse 61, the
n = 1000 Simpson’s Rule approximation is 1.09861229,
which we would expect to be an even better
approximation.

19. By the old formula we have∫ 5
1 (3x 2 − x + 4) dx = 3

∫ 5
1 x 2 dx − ∫ 5

1 x dx + ∫ 5
1 4 dx =

3
( 1

3

)
(5 3 − 1 3) −

( 1
2

)
(5 2 − 1 2) + 4(5 − 1) = 128 and

by the new formula we also have∫ 5
1 (3x 2 − x + 4) dx = 5−1

6
((3(1) 2 − 1 + 4) + 4(3(3) 2 −

3 + 4) + (3(5 2) − 5 + 4)) = 128.

21. Mimic Example 3 but with n = 4 instead of n = 6.

23. RIGHT(4) = 40. Since f ′(x) = 2x + 1 is positive on [0, 4]
we know that f (x) = x 2 + x is monotonically increasing
on [0, 4]. Therefore we can guarantee that

|ERIGHT(4)| ≤ | f (4) − f (0)|
( 4−0

4

)
= 20. The actual area

is about 29.33, which is within the error bounds of our
approximation.

25. LEFT(6) = 0.37404. Since f ′(x) = −e−x is negative on
[1, 3] we know that f (x) = e−x is monotonically
decreasing on [1, 3]. Therefore we can guarantee that

|ELEFT(6) |≤| f (3) − f (1)|
( 3−1

6

)
= ∣∣e−3 − e−1

∣∣ ( 1
3

)
=

0.106031. The actual area is approximately 0.318092,
which is within the error bounds for our approximation.

27. TRAP(6) = 0.321033. Since f ′′(x) = e−x is positive on
[1, 3] we know that f (x) = e−x is concave up on [1, 3].
Moreover, | f ′′(x)| = |e−x| ≤ e−1 for all x ∈ [1, 3].
Therefore we can guarantee that

|ETRAP(6)| ≤ e−1(3−1)3

12(6)2
= 0.00681258.

29. MID(12) = 7.63016. Since f ′′(x) = − 1
x2

is negative on
[1, 7] we know that f (x) = ln x is concave down on

[1, 7]. Moreover | f ′′(x)| = | − 1
x2

| ≤ 1
12

= 1 for all

x ∈ [1, 7]. Therefore |EMID(12)| ≤ 1(7−1)3

24(12)2
= 0.0625.

31. TRAP(8) = 3.25174; using the fact that | f ′′(x)| ≤ 2 for
all x ∈ [0, 2] (this is not the best possible bound), we
can guarantee that |ETRAP(8)| ≤ 0.0208333.

33. LEFT(9) ≈ 0.996; |ELEFT(9)| ≤ 0.484.

35. SIMP(12) = 24. Since f [4] = 0 for all x ∈ [−2, 4] we can
guarantee that ESIMP(12) ≤ 0, i.e., that the estimate is in
fact exact.

37. SIMP(4) = 3.7266. Since f ′[4] = 24 for all x ∈ [−1, 2]
we can guarantee that ESIMP(4) ≤ 0.1266.

39. SIMP(8) = 0. Since f ′[4] ≤ 1 for all x ∈ [−π , π ] we can
guarantee that ESIMP(8) ≤ 0.013.

41. Since f (x) = xe x is monotonically increasing on [−1, 1],
Theorem 5.25 guarantees we can have |ELEFT(n)| ≤ 0.5 if
we choose n = 13 or higher. We have
LEFT(13) = 0.509077.

43. Since f (x) = 1
x

is monotonically decreasing on [2, 4],
Theorem 5.25 guarantees we can have |ELEFT(n)| ≤ 0.05
if we choose n = 10 or higher. We have
RIGHT(10) = 0.668771.

45. Since f (x) = x 2 is concave up on [0, 3] with f ′′(x) = 2 for
all x, Theorem 5.27 guarantees we can have
|EMID(n)| ≤ 0.1 if we choose n = 5 or higher. We have
MID(5) = 8.91.

47. Since f (x) = x2/3 is concave down on [1, 4] with

| f ′′(x)| ≤ 2
9

for all x ∈ [1, 4], Theorem 5.27 guarantees
we can have |EMID(n)| ≤ 0.005 if we choose n = 10 or
higher. We have TRAP(10) = 5.44578.
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49. Since f (x) = 10e−x dx has | f [4](x)| ≤ 10 for all x ∈ [0, 2],
Theorem 5.30 guarantees we can have |ESIMP(n)| ≤ 0.01
if we choose n = 4 or higher, meaning that we should
use 2 or more parabola-topped rectangles. We have
SIMP(4) = 8.64956.

51. Since f (x) = sin x has | f [4](x)| ≤ 1 for all x, Theorem
5.30 guarantees we can have |ESIMP(n)| ≤ 0.0005 if we
choose n = 8 or higher, meaning that we should use 4
or more parabola-topped rectangles. We have
SIMP(8) = 2.00027.

53. (a) LEFT(4) = 32.96 degrees, RIGHT(4) = 19.99
degrees, MID(4) = 25.6717 degrees, TRAP(4) = 26.48
degrees, and SIMP(4) = 25.94 degrees. (b)
|ELEFT(4)| < 12.97, |ERIGHT(4)| < 12.97, |EMID(4)| < 0.625,
|ETRAP(4)| < 1.25, and |ESIMP(4)| < 0.208.

55. Hints: For (a) you need to use four parabolas, over the
intervals [1993, 1995], [1995, 1997], [1997, 1999], and
[1999, 2001]. In part (b) note that the area under the
graph of r on an interval is the change in the GDP over
that interval. For part (c) you can make a table of
difference quotients to estimate r′, and then repeat that
process to estimate higher derivatives.

57. Remember that the period of time must be in seconds.
A discrete integral for the total flow is
φ ≈ (1/3)(60 × 60 × 60 × 24(700 + 4 × 1000 + 2 × 6300
+4 × 4000 + 2 × 500 + 4 × 650 + 700))
+60(24(700 × 5) × 60) = 65, 275, 200, 000. The answer
is in cubic feet of water. Inasmuch as the last flow is
700 cfs, as is the first, and the flow is periodic, it seems
obvious that we should take the flow to be a constant
700 cfs for the last five days of the year, which is where
that last term comes from.

59. Mimic the proof of part (a) of the theorem given in the
reading.

61. Use the expanded sum expressions for the trapezoid
sum with n subdivision points called x0, x2, x4, . . . x2n,
the midpoint sum with the same n subdivision points
and thus midpoints x1, x3, x5, . . . , x2n−1, and compare to
Simpson’s Rule with all 2n subdivision points
x0, x1, x2, . . . x2n.

63. Generalize the method shown for n = 6 in Example 3 to
arbitrary n.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 6

Section 6.1

1. F, F, F, T, T, T, T, T.

3. (a) 2.25π ; (b) 5.25π

5. Mimic the example and illustrations in the reading at
the beginning of the section.

7. (a) �x = 1
2

, subdivision points x0 = 0, x1 = 0.5, x2 = 1,
x3 = 1.5, and x4 = 2; (b) using midpoints, x∗

1 = 0.25,
x∗

2 = 0.75, x∗
3 = 1.25, and x∗

4 = 1.75; (c) corresponding
values f (x∗

1) = 0.0625, f (x∗
2) = 0.5625, f (x∗

3) = 1.5625,
and f (x∗

4) = 3.0625;

(d) (16π − π ((0.75) 2) 2)
( 1

2

)
≈ 24.6357.

9. π
∫ 3

2 (1 + x) 2 dx; the solid obtained by rotating the
region between the graph of f (x) = 1 + x and the x-axis
on [2, 3] around the x-axis.

11. π
∫ 2

0 (4 − x 2) dx; the solid obtained by rotating the
region between the graph of f (x) = √

4 − x 2 and the
x-axis on [0, 2] around the x-axis.

13. They are equal.

15. The second one is larger.

17. The second one is larger.

19. The region between f (x) = x + 1 and the line y = 4
from x = 1 to x = 3, rotated around the x-axis.

21. The region between f (x) = x − 1 and the x-axis on
[1, 3], rotated around the x-axis.

23. The region between the graph of f (x) = 2x + 1 and the
line y = 5 on the x-interval [0, 2], rotated about the
y-axis.

25. π
∫ 0
−3 2 2 dy + π

∫ 3
0 (2 2 − ( f −1(y)) 2) dy

27. π + 2π + 3π + 4π = 10π

29. 3π + (2 + 2
√

2)π + (3 + 2
√

3)π + 8π ≈ 70.03

31. π

∫ 3

1

( 3
x

) 2
dx = 6π

33. π
∫ 1

0 (3 2−1 2) dy+π

∫ 3

1

(( 3
y

)2
−1 2
)

dy = 8π+4π = 12π

35. π
∫ 3

0 (5 2 − (y + 2) 2) dy = 36π

37. π
∫ 5

2 (3 2 − (3 − (x − 2)) 2) dx = 18π

39. π
∫ 3

0 (3 2 − ((y + 2) − 2) 2) dy = 18π

41. π
∫ 4

0 (2 2 − (
√

4 − y) 2) dy+π
∫ 5

4 (2 2) dy = 8π +4π = 12π

43. π
∫ 4

0 ((3 − (
√

4 − y)) 2 − 1 2) dy + π
∫ 5

4 (3 2 − 1 2) dy =
8π + 8π = 16π

45. π
∫ 5/3

1 ((5 − x) 2 − (2x) 2) dx +π
∫ 4

5/3((2x) 2 − (5 − x) 2) dx =
112π

27
= 1813π

27
= 1925π

27

47. π
∫ 4

0

(
(
√

y) 2 −
( y

2

) 2 )
dy = 8π

3

49. π
∫ 2

0 ((2x + 1) 2 − (x 2 + 1) 2) dx = 104π

15

51. π
∫ 4

1 (x 2 − ((x − 2) 2) 2) dx = 72π

5

53. π
∫ 4

1 ((x + 1) 2 − ((x − 2) 2 + 1) 2) dx = 117π

5

55. π
∫ π

0 (1 − cos x) 2 dx ≈ 14.80

57. π
∫ 2

0 (π − cos−1(1 − y)) 2 dy ≈ 18.4399
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59. (a) 481 feet; (b) 91,636,272 cubic feet;

(c )
∫ 481

0

(
756 − 756

481
x
) 2

dx = 91, 636, 272.

61. The cone can be obtained by rotating the region under

y = 3
5

x around the x-axis; this solid has volume

π

∫ 5

0

( 3
5

x
) 2

dx = 15π .

63. A cone of radius r can be obtained by rotating the
region under the graph of y = r

h
x around the x-axis;

this solid has volume π

∫ h

0

( r
h

x
) 2

dx = 1
3
πr 2h.

Section 6.2

1. T, T, F, F, F, T, F, T.

3. (a) Washer of volume
15π

2
; (b) shell of volume

15π

4
;

(c) cylinder of volume
3π

4
; (d) disk of volume

9π

2
;

(e) shell of volume
9π

4
; (f ) washer of volume

21π

2
.

5. Shells have the same types of dimensions as washers,
but what we think of as a height on a shell is considered
a thickness on a washer, and vice-versa.

7. (a) �x = 0.5, subdivision points x0 = 0, x1 = 0.5,
x2 = 1, x3 = 1.5, and x4 = 2; (b) midpoints x∗

1 = 0.25,
x∗

2 = 0.75, x∗
3 = 1.25, and x∗

4 = 1.75; (c) corresponding
values f (x∗

1) = 0.0625, f (x∗
2) = 0.5625, f (x∗

3) = 1.5625,

and f (x∗
4) = 3.0625; (d) 2πrh�x = 2π · 3

4
· 9

16
· 1

2
= 27

64
π

9.
∫ 2

0 2πy 3 dy = 2π
∫ 2

0 y(y 2) dy; the solid obtained by
rotating the region between the graph of f (x) = √

x, the
y-axis, and the line y = 2 around the x-axis

11. The region between the graph of f (x) = cos x and the

x-axis on the interval
[
0,

π

4

]
, rotated around the y-axis

13. The region between y = x 2 + 4 and y = 5 from x = 0 to
x = 1, rotated around the x-axis

15. The region between y = e x and y = e from x = 0 to
x = 1, rotated around the x-axis

17. 2π
∫ 2

0 y(3 − f −1(y)) dy 19. 2π
∫ 2

0 x(f (x) + 3) dx

21. With shells: 2(2π
∫ 2

0 y(2 − y) dy); with disks:
2(π
∫ 2

0 x 2 dx); disks are easier in this case.

23. With shells: 2π
∫ 1

0 (3 − x)(x 2 + 1) dx; with washers:
π
∫ 1

0 (3 2 − 2 2) dy + π
∫ 2

1 ((3 −√y − 1) 2 − 2 2) dy; shells
are easier.

25. 3.093 + 8.099 + 9.572 + 5.154 = 25.92

27. 10.953 + 14.082 + 16.671 + 18.426 = 60.132

29. 2π
∫ 2

0 x(4 − x 2) dx = 8π

31. 2π
∫ 2

0 (2 − x)(4 − x 2) dx = 40π

3

33. 2π
∫ 5

2 x(x − 2) dx = 36π

35. 2π
∫ 3

0 (3 − y)(5 − (y + 2)) dy = 18π

37. 2π
∫ 5

2 (x − 2)(x − 2) dx = 18π

39. 2π
∫ 2

0 x(5 − (4 − x 2)) dx = 12π

41. 2π
∫ 2

0 (3 − x)(5 − (4 − x 2)) dx = 16π

43. 2π
∫ 5

1 (5 − x)((x + 1) + 2) dx = 256π

3

45. 2π
∫ 1

0 y((2 + √
y ) − (2 − √

y )) dy

+ 2π
∫ 4

1 y((2 + √
y ) − y) dy = 8π

5
+ 64π

5
= 72π

5

47. 2π
∫ 1

0 (y + 1)((2 + √
y ) − (2 − √

y )) dy

+ 2π
∫ 4

1 (y + 1)((2 + √
y ) − y) dy = 64π

15
+ 287π

15
= 117π

5

49. 2π
∫ 2

0 x(4 − (4 − x 2)) dx = 2π
∫ 2

0 x 3 dx = 8π

51. 2π
∫ 6

0 x((x − 3) 2 + 2) dx = 180π

53. 2π
∫ 1

0 y(
√

y − y 2) dy = 3π

10

55. With disks: π
∫ 3

0 (9 − x 2) 2 dx = 648π

5

57. With shells: 2π
∫ 2

0 x(x 2 − 4x + 4) dx = 8π

3

59. With disks: π
∫ 2/3

0 9 dx + π

∫ 2

2/3

( 2
x

) 2
dx = 10π ; with

shells: 2π
∫ 1

0 2y dy + 2π

∫ 3

1

(
2
y

)
y dy = 10π

61. With shells: 2π
∫ 0
−2(3 − x)(2 + x) dx

+2π
∫ 2

0 (3 − x)(2 − x) dx = 44π

3
+ 28π

3

63. 2π

∫ 3

0.6
y

(
2

√
1

0.15
(3 − y)

)
dy ≈ 125.463 cubic

centimeters.
65. See the proof of Theorem 9.4.

67. The sphere can be obtained by rotating the region
under y = √

9 − x 2 around the x-axis; with the shell
method, this solid has volume 2π

∫ 3
0 x(2

√
9 − x 2) dx.

We can solve this integral with the substitution
u = 9 − x 2, du = −2x dx to obtain a volume of 36π , just
as predicted by the volume formula.

69. A sphere of radius r can be obtained by rotating the
region between the graph of y = √

r 2 − x 2 and the
x-axis on [−r, r] around the x-axis. Using integration by
substitution with u = r 2 − x 2, du = −2x dx, the volume
of this solid is 2π

∫ r
0 x(

√
r 2 − x 2 − (−√

r 2 − x 2)) dx =
2π
∫ r

0 x(2
√

r 2 − x 2) = 4
3
πr 3. Technical note: Usually we

can’t do the shell method along the x-axis when we’ve
rotated a region around the x-axis; it works here only
because the solid is a perfect sphere, so it is equivalent
to rotating the region between the graph of
x = √r 2 − y 2 and the y-axis from y = −r to y = r
around the y-axis.
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Section 6.3

1. T, F, T, F, T, F, F, T.

3. See Definition 9.6.

5. See the proof of Theorem 9.7.

7. y = e x

9. No; f (x) has a vertical asymptote at x = π

2
.

11. Both arc lengths are given by the definite integral∫ 2
0

√
1 + 4x 2 dx, so they are equal. This makes sense

because f (x) = x 2 − 3 and g(x) = 5 − x 2 differ by a
vertical flip and shift only; these transformations should
not affect the arc length.

13. 2
∫ 5

−5

√
1 +
(

−x√
25−x2

) 2

dx

15. (a) 3.79009; (b) 3.81994; (c) it is unclear which
approximation might be the best.

17. See the reading before Definition 9.9.

19. 16.97

21. 2.3

23. 2 + 4
√

3 ≈ 8.9282

25. �y1 = 7, �y2 = 1, �y3 = 1, �y4 = 7; 16.97

27. �y1 ≈ 0.405, �y2 ≈ 0.288, �y3 ≈ 0.223, �y4 ≈ 0.182;
approximately 2.3

29. �y1 = 2
√

2, �y2 = 0, �y3 = −2
√

2; 2 + 4
√

3 ≈ 8.9282

31.
∫ 4
−1

√
10 dx=5

√
10

33.
∫ 3

1

√
1 + 9x dx = 2

27
(28)3/2 − 2

27
(10)3/2

35.
∫ 1
−1

√
28 + 18x dx = 1

27
(46)3/2 − 1

27
(10)3/2

37.
∫ 3

−3

3√
9−x2

dx = 3π

39. 1
2

∫ 1

0

1+x√
x

dx = 4
3

41. 2
∫ 2

0 x−1/3 dx = 3(22/3)

43.
∫ 2

1

1+16x2

8x
dx = 3 + ln2

8
≈ 3.087

45.
∫ 3π/4
π/4 csc x dx = ln(2

√
2 + 3)

47. f (x) = e3x, [a, b] = [−2, 5]

49. f (x) = 1
x

, [a, b] = [2, 3]

51. f (x) = ln | cos x|, [a, b] = [0,
π

4
]

53. One approximation is 3.09573

55. One approximation is 9.05755

57. 8π
√

5 + 40π
√

37

59. π

64
(35

√
377 + 91

√
1385 + 189

√
3737 + 341

√
8297)

61. π
√

π 2 + 4

63. 4
√

2π

65. π

6
(17

√
17 − 1)

67. π

18
(343 − 133/2

69. π

16
(4e 4

√
16e 8 + 1 + ln(4e 4 + √

16e 8 + 1) −
4e−4

√
16e−8 + 1 − ln(4e−4 + √

16e−8 + 1)

71. 2π
√

2 + π ln(
√

2 + 1) − π ln(
√

2 − 1)

73.
∫ √

6
0

√
1 + x 2 dx =

√
21
2

+ 1
2

ln(
√

6 + √
7 ≈ 4.0545

inches
75. See the discussion in the reading preceding Definition

9.6.
77. (a) The distance from (a, f (a)) = (a, ma + c) to

(b, f (b)) = (b, mb + c) is given by√
(b − a) 2 + ((mb + c) − (ma + c)) 2 =√
(b − a) 2 + m 2(b − a) 2 = (b − a)

√
1 + m 2. Since the

graph of f (x) = mx + c is a line, this is the exact arc
length. (b) If f (x) = mx + c, then f ′(x) = m, which is
constant, so the arc length is given by∫ b

a

√
1 + m 2 dx = [

√
1 + m 2]b

a = √
1 + m 2(b − a).

79. If f (x) = √
r 2 − x 2 (the top half of the circle), then

f ′(x) = − x√
r2 −x2

. Thus the circumference of the circle

is twice the arc length of the top half:

2
∫ r

−r

√
1 +
(
− x√

r2 −x2

) 2

dx = 2
∫ r

−r

r√
r2 −x2

dx. Using

trigonometric substitution with x = r sin u (and
changing the limits of integration accordingly), this is
equal to

2r
∫ π/2

−π/2
1 du = 2r[u]π/2

−π/2 = 2r
(

π

2
−
(
−π

2

))
= 2πr.

81. (a) Use the fact that
s+t

q
= t

p
. (b) Use the fact that

C = √
A 2 + B 2. (c) Start with the fact that the surface

area of the frustum is S = πq(s + t) − πpt. (d) Combine
the given relationship with the equation S = π (p + q)s.

83. Apply the definite integral formula in Theorem 9.10 to
the function f (x) = √

r 2 − x 2 on the interval [−r, r], and
then solve the integral. Simplify the integrand as much
as possible before attempting to integrate!

Section 6.4

1. F, T, F, T, F, T, F, T.

3. See the reading at the beginning of the section.

5. The depth at the bottom of the pool is constant, but the
depth along the side walls varies at different parts of the
wall.

7. If you know xk, �x, and N, then you can solve for a and

b, since xk = a + k �x and �x = b−a
N

.
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9. It would require 38,422.9 foot-pounds of work to lift the
entire full hot tub; it would take significantly less work
to pump the water out of the tub, since only the water
at the bottom of the tub has to move 4 feet (the rest of
the water has a shorter distance to travel).

11. Hint: Think about the definitions of �y and yk.

13. Hydrostatic force is calculated using the area of a slice of
the pool wall, not the volume of a slice of the entire
pool.

15. See the paragraphs in the reading just before the
Examples and Explorations subsection. The extra
dimension �x becomes the differential dx when we
pass from a Riemann sum to a definite integral.

17. In the numerators each individual centroid coordinate
is multiplied by the area of the corresponding rectangle,
which makes centroid coordinates from larger
rectangles count more than those from smaller
rectangles.

19. 1920π grams 21. 2000 foot-pounds

23. 1497.6 pounds

25. �x = 6, x0 = 0, x1 = 6, x2 = 12, x3 = 18, x4 = 24. If we
choose x∗

1 = 0, x∗
2 = 6, x∗

3 = 12, and x∗
4 = 18, then the

mass is approximately 3746.95 grams.

27. �y = 1, y0 = 0, y1 = 1, y2 = 2, y3 = 3, y4 = 4. If we
choose y∗

1 = 0.5, y∗
2 = 1.5, y∗

3 = 2.5, and y∗
4 = 3.5, then

the work is approximately 3301.97 foot-pounds.

29. �y = 1, y0 = 0, y1 = 1, y2 = 2, y3 = 3, y4 = 4. If we
choose y∗

1 = 0.5, y∗
2 = 1.5, y∗

3 = 2.5, and y∗
4 = 3.5, then

the force is 7987.2 pounds.

31. (x̄, ȳ) ≈ (5.417, 1.142) 33. (x̄, ȳ) ≈ (0.819, 4.604)

35. (x̄, ȳ) =
( 363

65
,

15
13

)
37. (x̄, ȳ) =

( 4
5

,
32
7

)

39. (x̄, ȳ) ≈
(

π

2
, 0.6
)

41. 46, 436 grams

43. m = (1.5) 2
∫ 12

0 (4.2 + 0.4x − 0.03x 2) dx = 139.32 grams

45. 125 grams

47. (a) The solid of revolution obtained by revolving the

region between the graph of y = 8 − 2
25

x 2 and the
x-axis on [0, 10] around the y-axis;

(b) ρ(y) = − 0.97
8

y + 1.12;

(c) m = π

∫ 8

0

(
− 0.97

8
y + 1.12

) (
100 − 25

2
y
)

dy

= 1001.12 ounces
49. 6.126 foot-pounds

51. W = (62.4)(40)
∫ 3

0 (3 − y) dy = 11,232 foot-pounds

53. W = (62.4)
( 4π

25

) ∫ 10
0 y 2(10 − y) dy = 26,138.1

foot-pounds

55. W = (62.4)(16π )
∫ 13

0 (16 − y) dy = 387,366 foot-pounds

57. W = (42.3)(100)(2)
∫ 8

0

√
64 − (8 − y) 2(16 − y) dy +

(42.3)(100)(2)
∫ 16

0

√
64 − (16 − y) 2(16 − y) dy ≈

6, 289, 650 foot-pounds.

59. W = (20)(18) + (.25)
∫ 18

0 (18 − y) dy = 400.5
foot-pounds.

61. 3.1765 pounds

63. F = (62.4)(8)
∫ 3

0 (3 − y) dy = 2246.4 pounds

65. F = (62.4)(0.8π )
∫ 1

0 (1 − y) dy = 78,4142 pounds

67. F = 62.4
∫ 200

0

( 150
200

y + 250
)

(200 − y) dy = 3.744 × 10 8

pounds

69. F = 62.4
∫ 8

0 (6+y)(12−y) dy+62.4
∫ 12

8 (20)(12−y) dy ≈
47,257 pounds.

71. Leila should put the repeater approximately at
coordinates (4.85, 4.26).

73. m = ρV = ρA�x. Adding up the mass on each cross
section gives a Riemann sum of the form∑n

k=1 ρ(x∗
k )A(x∗

k )�x. Since ρ and A are continuous
functions, this Riemann sum converges to a definite
integral.

75. F = ωAd = ωld�y. Adding up the hydrostatic force on
each cross section gives a Riemann sum of the form∑n

k=1 ω(x∗
k )l(x∗

k )d(x∗
k )�y. Since ω, l, and A are

continuous functions, this Riemann sum converges to a
definite integral.

Section 6.5

1. T, F, T, F, T, T, T, T.

3. A solution of a differential equation is one of possibly
many functions that makes the differential equation
true, while a solution of an initial-value problem is the
unique function that makes both the differential
equation and the initial value true.

5. If y(x) = √
x + C then

dy
dx

= 1
2

(x + C)−1/2 = 1

2
√

x+C
= 1

2y
.

7. (a) The initial-value problem is
dv
dt

= −9.8 with v(0) = 0.
The solution is v(t) = −9.8t. (b) The initial-value

problem is
ds
dt

= −9.8t with s(0) = 100. The solution is

s(t) = 100 − 4.9t 2.

9. The x and y parts of the differential equation have been
“separated” into factors. A differential equation in
separable form can be solved by dividing both sides by
q(y), integrating both sides, and then solving for y, if
each of these steps are possible.

11. A = e−C

13. The solutions of the differential equation flow through
the slope field; this means that we can trace out
approximate solution curves in the slope field. For an
initial-value problem we can begin at the initial value
and then trace out a curve by flowing along with the
slope field to obtain a sketch of the unique solution.
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15. When using Euler’s method to approximate a solution

of
dy
dx

= g(x, y) we have at each step a vertical change of
�yk = g(xk, yk)�x. The value g(xk, yk) is the same as
dy
dx

∣∣∣
(xk ,yk)

.

17. (a) 500. (b) Since 0 < P < 500 we have 0 < 1 − P
500

< 1;

since P is growing we have
dP
dt

> 0. Therefore k must be

positive. (c) When P is small, the quantity
P

500
is also

small, so
dP
dt

≈ kP(1 − 0) = kP. (d) When P ≈ 500 we

have
P

500
≈ 1, and therefore

dP
dt

≈ kP(1 − 1) = 0.

19. y(x) = 1
7

x 7 + 2x 4 + 16x + C

21. y(x) = Aex 2

23. y(x) = Ae1/3x 3 25. y = ±√6x + 2 ln |x| + C

27. y(x) = ln
( 1

2
x 2 + C

)
29. y(x) = 4e3x

31. y(x) = −2x 3 + 5 33. y(x) = 3e−x + 1

35. y(x) = √
6x + 4 37. y(x) = −e1/2x 2

39. y(x) = − ln(−e x + 1 + e−2) 41. y(x) = 1
2

ln |1 + x 2| + 4

43. y = 4900 − 3900e−x/500
45. y = 1

3
(1 + 5e6x)

47. y = 2e3x

1+2e3x
49. y(x) = 1

1−sinx

51. y(x) = 3
√

x 3 − 6x + 512

53. (x1, y1) = (0.25, 1.5), (x2, y2) = (0.5, 0.75), (x3, y3) =
(0.75, 0.375), (x4, y4) = (1, 0.1875). A plot of these points
gives:

y
3

2

1

x
10.750.500.25

55. (x1, y1) = (0.5, 0), (x2, y2) = (1, 0.25), (x3, y3) =
(1.5, 0.875), (x4, y4) = (2, 2.0625). A plot of these points
gives:

y
2

1.5

0.5

1

x
2.01.510.5

57. (x1, y1) = (0.5, 2), (x2, y2) = (1, 2.125), (x3, y3) =
(1.5, 2.36), (x4, y4) = (2, 2.68). A plot of these points
gives:

y
3

2

1

x
21.510.5

59. y

x
2�2

2

�2

61.

�2

y

x
2�2

2

63. y

x

3

�3

3�3

65. (a)
dP
dt

= 0.0139P; with initial value P(0) = 1.08 million

the solution is P(t) = 1.08e0.0139t. (b) Between 55 and 56
years ago. (c) Just under 50 years.

67. (a)
dC
dt

= −kC for some proportionality constant k. The

solution is C(t) = Ae−kt for some constant A that
represents the initial amount C(0) of carbon when the

organism died. (b) k = ln2
5730

≈ 0.00012. (c) About
19, 188 years old.
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69. (a)
dP
dt

= 0.1P
(

1 − P
1000

)
, and by separation of

variables followed by partial fractions (or the formula in

Theorem 9.21) we obtain P(t) = 1000(100)e0.1t

1000+100(e0.1t −1))
.

(b) The graph is shown next. (c) According to the
logistic model, the population will be growing the
fastest in about 21.97 years.

y
1000

800

600

400

200

x
10080604020

71. (a) We’ll set t = 0 at 8 pm and measure time in hours.

The differential equation is
dT
dt

= k(70 − T), and its

solution is T(t) = 70 + 18.8ekt. (b) k ≈ 0.1433. (c) Just
after 5 pm.

73. (a) The differential equation is
dP
dt

= kP1.1, and its

solutions are of the form P(t) = (−0.1kt + C)−10.
(b) With t = 0 set at 2005 we have
P(t) = (−0.1(0.008)t + 0.83)−10. (c) In mid-2013.

75. By separation of variables we have
∫

1
Q

dQ =
∫

k dt,

which gives ln |Q| = kt + C. Thus |Q| = ekt+C so
Q = Aekt. Since Q(0) = Q0 we have Q0 = Aek(0) and
thus A = Q0.

77. lim
t→∞

P(t) = lim
t→∞

LP0ekt

L+P0(ekt −1)
= lim

t→∞
LP0

Le−kt +P0 −P0e−kt
=

LP0

P0
= L.

79. lim
t→∞

(A − (A − T0)e−kt = A − 0 = A. If the model

represents cooling, then T > A and thus A − T < 0; in

this case we wish the rate of change
dT
dt

= k(A − T) to
be negative, which it will be if k > 0. For a model of
heating we have T < A and thus A − T > 0 and we
want a positive rate of change, which again requires
k > 0.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 7

Section 7.1

1. T, T, F, F, F, F, F, T.

3. A function whose domain is Z
+

5. The subscript k for the term ak

7. 1, 3, 5, 7, 9, ak = 2k − 1

9. ak = ak−1 + 1, for k ≥ 2.

11. There exists an N > 0 such that for all k > N, ak+1 > ak.

13. There exists an N > 0 such that for all k > N, ak+1 < ak.

15. Bounded above: there exists a real number M such that
M > ak for every k. Bounded below: there exists a real
number m such that m < ak for every k. Bounded: both
bounded above and bounded below.

17.
{

(−1) k k
}

19. The necessary inequalities will not hold if some or all of
the terms are negative.

21. f1 = f2 = 1, f3 = 2, f4 = 3 and f5 = 5

23. Every nonempty subset S of the real numbers that is
bounded below has a greatest lower bound.

25. ak = (1/2)(1 + (−1) k) 27. ak = k
( 1

3

) k

29. ak = k+1
2k+1

31. 2, 0,
2
3

, 0,
2
5

33. cos(x)
x+1

,
cos(2x)
x2 +4

,
cos(3x)
x3 +9

,
cos(4x)
x4 +16

.
cos(5x)
x5 +25

35. 1,
√

2
2

,
√

3
3

,
1
2

,
√

5
5

37. 2

39. −1 41. 1

43. 3, 3
( 1

2

)
, 3
( 1

2

) 2
, 3
( 1

2

) 3
, 3
( 1

2

) 4

45. −2, −2 (−3) , −2 (−3) 2 , −2 (−3) 3 , −2 (−3) 4

47. {−3 + 10k}∞k=0 49. {1 − 2k}∞k=0

51. ((k + 1) 2 − 5(k + 1)) − (k 2 − 5k) = 2k − 4 > 0 for k ≥ 3,
so the sequence is eventually strictly increasing.

53. k+1
k+3

− k
k+2

= 2
(k+2)(k+3)

> 0 for k ≥ 0, so the

sequence is strictly increasing.

55. (k+1)2/(k+1)!
k2/k!

= k+1
k2

< 1 for k ≥ 2, so the sequence is

eventually strictly decreasing.

57. 3k+1/(2 ·4·6···(2k)(2k+2))
3k/(2 ·4·6···(2k))

= 3
2k+2

< 1 for k ≥ 1, so the

sequence is strictly decreasing.

59. When f (x) =
√

x+1
x

, f ′(x) = − x+2

2x2
√

x+1
, which is

negative for x > 0, so the sequence is strictly decreasing.

61. When f (x) = sinx
x

, f ′(x) = xcosx−sinx
x2

, which changes
sign infinitely often for x > 0. The test fails, but the
sequence is neither increasing nor decreasing.

63. Decreasing and unbounded

65. Not monotonic, bounded

67. Not monotonic, bounded

69. Not monotonic, bounded

71. Eventually decreasing, bounded

73. Not monotonic, unbounded
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75. x5 ≈ 1.26097 77. x7 ≈ −25.1327

79. xk+1 = xk − x2
k −a
2xk

= 1
2

(
xk + a

xk

)

81. x3 ≈ 1.7321 83. x6 ≈ 10.0499

85. (a) The signs of xk alternate, and starting with x2 the
magnitudes of the terms increase. Therefore, two
successive terms will never be very close. (b) f (2) = 0.

87. To the nearest milligram the levels are:
100; 175; 231; 273; 305; 329; 347.

89. 100; 105; 110.25; 115.76; 121.55. n = 0 represents the
initial investment. The sequence is increasing without
bound.

91. Since {ak} is increasing ak+1 ≥ ak for every k. Since {ak}
is decreasing ak+1 ≤ ak for every k. Therefore ak+1 = ak
for every k.

93. Use the difference test Sn+1 − Sn = an+1 > 0, therefore
{Sn} is an increasing sequence.

95. If each case, we may multiply both sides of the given
inequality by ak, maintaining the direction of the
inequality since each term is positive.

Section 7.2

1. T, F, F, T, F, T, T, F.

3. By the definition of convergence, only the terms after N
that depend on the given ε determine convergence.
These are precisely the terms that define the tail of the
sequence.

5. If the sequences {ak} and {bk} both converge, the
sequence {ak − bk} converges by Theorem 7.11.

7. Let ak = bk = k 9. Let ak = k 2 and bk = k

11. Let ak = 1
k

and bk = 1
k2 13.

{
(−1)k

k

}

15. Such a sequence is not possible. The first term of the
sequence is an upper bound for the sequence.

17. ak = (k!) 2

19. The limit lim
x→∞

x3

ex
is an indeterminate form of the type

∞
∞ . We may use L’Hôpital’s Rule to show that

lim
x→∞

x3

ex
= 0.

21. For 0 < r < 1 the sequence is bounded, monotonically
decreasing and converges to zero. For r = 1 the
sequence is constant, and converges to c. For r > 1 the
sequence is unbounded, monotonically increasing and
diverges.

23. Constant, therefore monotonic and bounded,
converges to 11

25. Not eventually monotonic, bounded, no limit

27. Not eventually monotonic, bounded, converges to zero

29. Strictly decreasing, bounded, converges to −2

31. Eventually strictly decreasing, bounded, converges to
zero

33. Strictly increasing, bounded, converges to 1

35. Strictly decreasing, bounded, converges to 1

37. Eventually strictly decreasing, bounded, converges to
zero

39. Strictly decreasing, bounded, converges to 1

41. Not monotonic, bounded, does not converge

43. Strictly increasing, bounded, converges to 8

45. Eventually strictly increasing, bounded, converges to 42

47. Eventually strictly increasing, bounded below, but not
bounded above, diverges to ∞

49. Not monotonic, bounded, converges to zero

51. Monotonically decreasing, bounded, converges to zero

53. Monotonically increasing, unbounded, diverges

55. The sine function is bounded between −1 and 1. So

−1 ≤ sin(2 k) ≤ 1, and thus − 1
2k

≤ sin(2k)
2k

≤ 1
2k

. Both{
− 1

2k

}
and
{ 1

2k

}
converge to zero by Theorem 7.15. By

Theorem 7.19 the limit is therefore zero.

57. lim
k→∞

k−7
3k+5

= lim
k→∞

1−(7/k)
3+(5/k)

= 1
3

59. Multiply the numerator and denominator by√
k 2 + k + k, then divide the numerator and

denominator of the new expression by k. The limit is
1
2

.

61. To the nearest cent the answers are
106.00, 106.09, 106.15, 106.17, 106.18, and 106.18. The
sequence is bounded by 100e0.06

63. Assume that the sequence converges to L for r < −1,
then by Theorem 7.12 the sequence

{|r k|}∞k=0 converges
to |L|. However, this sequence is also geometric and its
convergence contradicts the fact that geometric
sequences diverge when the base is greater than 1.

65. The limit is indeterminate of the type ∞ 0. By

L’Hôpital’s Rule lim
x→∞

lnx
x

= 0. Exponentiating we have

lim
x→∞ x1/x = e 0 = 1.

67. If c = 0, the sequence is constant and converges to zero.
So assume c �= 0. Let ε > 0 be given. Since the
sequence {ak} → L, there is an N > 0 such that for
every k > N, |ak − L| <

ε

|c| . Thus, for k > N,

|cak − cL| < ε. Therefore, {cak} → cL.

69. Let ε > 0 be given. Since {bk} → M, there is an N1 > 0
such that bk − M| <

ε

2(1+|L|) and an N2 > 0 such that

bk − M| < 1 for k > N1 and k > N2, respectively. For
k > N2 we also have |bk| < 1 + |M|. Similarly, since
{ak} → L, there is an N3 > 0 such that for every k > N3,
|ak − L| <

ε

2(1+|M|) . Let N = max(N1, N2, N3). Now,

|akbk − LM| = |akbk − Lbk + Lbk − LM| ≤
|ak − L||bk| + |bk − M||L|. From our analysis above, for
k > N this last quantity is less than or equal to

ε

2(1+|M|) (1 + |M|) + ε

2(1+|L|) |L| <
ε

2
+ ε

2
= ε.

Therefore, akbk → LM.
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71. See the proof of Theorem 1.6.

73. See the proof of Theorem 1.29.

75. If lim
x→∞ a(x) = L, then there is an N > 0 such that for

every x > N, |a(x) − L| < ε. Since ak = a(k), for every
k > N we have |ak − L| < ε. Therefore, ak → L.

77. Let ε > 0 be given. Since ak → ∞, there is an N > 0

such that for every k > N we have ak >
1
ε

. For k > N,

we therefore have
1
ak

< ε. So,
1
ak

→ 0.

79. The terms of the sequence
{( 1

k

) p
}

are the reciprocals

of the terms of the sequence {k p}, so you may use your
answer from Exercise 78.

81. If |r| > 1, then the subsequence
{
r2k
}

is monotonically
increasing and unbounded, therefore the sequence r n

diverges.

83. Use L’Hôpital’s Rule to show that lim
x→∞

xr

(1+p)x
= 0.

85. If the sequence {ak} converges to L, then for ε = 1 there
is an N > 0 such that |ak − L| < 1 for k > N. Thus, for
n > N we have |ak| < max(|L − 1|, |L + 1|). Let
M = max(|a1|, |a2|, . . . , |aN |, |L − 1|, |L + 1|). For every k,
|ak| < M.

87. Let ε > 0. There is an N1 > 0 such that for k > N1,
|a2k − L| < ε. Similarly, there is an N2 > 0 such that for
k > N2, |a2k+1 − L| < ε. Let N = max(N1, N2). For every
k > N we have |ak − L| < ε. Thus, ak → L.

Section 7.3

1. F, F, F, T, F, T, T, F.

3. The sequence of partial sums is the sequence an where
Sn =∑n

k=1 ak. When we add any list of numbers, we
always add one new summand at a time. This is
precisely what we do when we form the sequence of
partial sums.

5.
∑∞

k=1 ak =∑ 9
k=1 ak +∑∞

k=10 ak. To find the sum of∑∞
k=10 ak, you would need to know

∑ 9
k=1 ak.

7.
∑∞

k=1 ak =∑∞
j=s aj−s+1

9. A series that can be written in the form
∑∞

k=0 cr k. A
geometric series will converge if |r| < 1.

11. Since a geometric series has the form
∑∞

k=0 cr k, the only
way for a geometric series to contain a zero term is if
one or both of c or r is zero. When this occurs the series
converges to c.

13.
∑∞

k=1
1
2k

15. Use
∑∞

k=1 1 and
∑∞

k=1(−1). Then each term of the series∑∞
k=1(1 − 1) is zero.

17. Use
∑∞

k=0

( 1
2

) k
for both series. This series converges to

2, but the product series
∑∞

k=0

( 1
4

) k
converges to

4
3

.

19. The series
∑∞

k=0 2 k and
∑∞

k=0 4 k both diverge, but the

series.
∑∞

k=0
2k

4k
converges to 2.

21. 1
3

,
1
6

,
1
11

,
1
18

,
1
27 23. −1, 1, −1, 1, −1

25. 1,
1
2

,
1
3

,
1
4

,
1
5

27. 1, − 1
2!

,
1
4!

, − 1
6!

,
1
8!

29. 1
3

,
1
2

,
13
22

,
64
99

,
203
297 31. −1, 0, −1, 0, −1

33. 1,
3
2

,
11
6

,
25
12

,
137
60

35. 1,
1
2!

,
13
24

,
389
720

,
4357
8064

37. 2 − 1
2100

39. 2 1001 − 1

41. 3
( ( 2

3

) 6
−
( 2

3

) 151 )
43. 9

45. 11

47. The series converges to 6.

49. The series diverges.

51. The series converges to
3π

3−e
.

53. The series converges to
9
40

.

55. The series converges to
100
3

.

57. The series converges to − 192
7

.

59. The series converges to
64
3

.

61. Sn =
(

1 − 1
3

)
+
( 1

2
− 1

4

)
+
( 1

3
− 1

5

)
+ · · · +( 1

n−1
− 1

n+1

)
+
( 1

n
− 1

n+2

)
= 1 + 1

2
− 1

n+1
− 1

n+2
.

The series converges to
3
2

.

63. Sn =
(

1 − 1
3

)
+
( 1

3
− 1

32

)
+
( 1

32
− 1

33

)
+ · · · +( 1

3n
− 1

3n+1

)
= 1 − 1

3n+1
. The series converges to 1.

65. The series diverges.

67. x ∈ (−1, 1)

69. The series converges for every value of x except odd
multiples of

π

2
.

71. 237
∑∞

k=1(0.001) k = 79
333

73. 3051
∑∞

k=1(0.0001) k = 339
1111

75. 1 + 27
∑∞

k=1(0.01) k = 14
11

77. 1
10

(
1 + 9
∑∞

k=1(0.1) k
) = 1

5

79. 4 meters 81. 2
3

83.
√

3
4

85. Let {Sn} be the sequence of partial sums for the first
series and {Tn} be the sequence of partial sums for the
second series. We know that these sequences converge
to L and M, respectively. By Theorem 7.11 this
sequence, {an + bn}, that is the sequence of partial sums
for the series

∑∞
k=1 (ak + bk), converges to L + M.
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87. The series
∑∞

k=0

(
cr k · bv k

)
is a convergent geometric

series since |rv| < 1. The series of the products cannot
converge to the product of the sums of the two series.

89. The series
∑∞

k=0
crk

bvk
=
( c

b

)∑∞
k=0

( r
v

) k
, which is a

geometric series. The series will converge if
∣∣∣ r

v

∣∣∣ < 1.

Section 7.4

1. F, T, F, F, T, F, F, T.

3.
∑∞

k=1
1
kp

5. For a geometric series
∑∞

k=1 cr k, the limit lim
k→∞

cr k = 0 if

and only if |r| < 1. The geometric series converges if
and only if |r| < 1.

7. The series diverges.

9. If f : [1, ∞) → R is a continuous function that is
eventually positive and decreasing, then the improper
integral

∫∞
1 f (x)dx and the series

∑∞
k=1 f (k) either both

converge or both diverge. The statement is valid
because the “tail” of a series determines its convergence
or divergence.

11. Rn is an upper bound on the error in using Sn to
approximate the sum of the series. If we can ensure that
Rn is small, we can ensure the quality of the
approximation is good.

13. If a(x) is not continuous, then the improper integral∫∞
1 a(x)dx may not be defined.

15. sin(πx)

17. The divergence test fails since lim
k→∞

1
k 2

= 0.

19. The series diverges since lim
k→∞

k
3k+100

= 1
3

.

21. The divergence test fails since lim
k→∞

k!
kk

= 0.

23. The divergence test fails since lim
k→∞

k 2 +1
k!

= 0.

25. The function f (x) = e−x is continuous, positive, and
decreasing on the interval [0, ∞). The series converges
because the improper integral

∫∞
0 e−xdx = 1.

27. The function f (x) = 1

x
√

lnx
is continuous, positive, and

decreasing on the interval [2, ∞). The series diverges

because the improper integral
∫∞

2
dx

x
√

lnx
diverges.

29. The function f (x) = 2x−4
x2 −4x+3

is continuous, positive,

and decreasing on the interval [4, ∞). The series

diverges because the improper integral
∫∞

4
2x−4

x2 −4x+3
dx

diverges.

31. The function f (x) = 1

(x−2)2 is continuous, positive, and

decreasing on the interval [3, ∞). The series converges

because the improper integral
∫∞

3
dx

(x−2)2 converges.

33. A convergent p-series, p = 3/2

35. The function f (x) = k
2+k 2

satisfies the conditions of the

integral test and the integral
∫∞

1
x

2+x2
dx diverges.

37. The function f (x) = lnx
x

is continuous, positive and

eventually decreasing. Since the integral
∫∞

1
lnx
x

dx
diverges, the series diverges.

39. The series converges. Use the integral test.

41. This telescoping series converges to 1. You can also use
the integral test to show that the series converges.

43. The series converges. Use the integral test.

45. (b) S10 ≈ 1.581950, (c) R10 = e−10 ≈ 0.000045,
(d) (1.581950, 1.581995), (e) 14

47. (b) S10 ≈ 1.5, (c) R10 = 0.1, (d) (1.5, 1.6), (e) 1000000

49. p > 1 51. p > 1

53. (a) We have q2 = (0.22)(q1 + h),
q4 = (0.11) 2q0 + 0.33h(0.11), and more generally
q2N = (0.11)Nq0 + 0.33h

∑N−1
k=0 (0.11)k. (b)

q3 = 0.11q1 + 0.61h, q5 = (0.11) 2q1 + 0.61h(0.11), and
more generally q2N+1 = (0.11)Nq1 + 0.61h

∑N−1
k=0 (0.11)k.

(c) The sum during the even-numbered years is

0.33h
1

1−0.11
≈ 0.371h. So Leila needs 0.371h = P. That

is, h ≈ 2.697P.
55. Since f is continuous, positive, and decreasing, each

summand f (k) ≤ ∫ k
k−1 f (x)dx. Therefore,∑∞

k=n+1 f (k) ≤ ∫∞
n f (x)dx.

57. Let c > 0. There are several cases to consider. When
r ≤ −1, lim

k→∞
cr k does not exist. When r = 1,

lim
k→∞

cr k = c. When r > 1, lim
k→∞

cr k = ∞. The situations

when c < 0 are similar.

Section 7.5

1. T, F, F, F, F, F, F, F.

3. Use the comparison test to analyze the series∑∞
k=1(−ak).

5. Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series with
nonnegative terms such that 0 ≤ ak ≤ bk for every
positive integer k larger than some positive integer K. If
the series

∑∞
k=1 bk converges, then the series

∑∞
k=1 ak

converges. This is valid because the convergence or
divergence of a series only depends upon the “tail” of
the series.

7. Let
∑∞

k=1 ak and
∑∞

k=1 bk be two series whose terms are
eventually positive. The three parts of the theorem
remain unchanged. This is valid because the
convergence or divergence of a series only depends
upon the “tail” of the series.

9. If the series converges and you compare it to a divergent
series you will not gain any useful information.
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11. The improper integral
∫∞

2
dx

x lnx
diverges.

13. The value of the limit is zero. Since p-series diverge for
0 < p < 1, we don’t get any useful information from the
limit comparison test.

15. bk, ak, converges 17. bk, ak, diverges

19. The p-series
∑∞

k=1
1

k3/2
converges and

lim
k→∞

(k3/2 −k−1)/(5k3 +3)
1/k3/2

= 1
5

. Therefore the given series

converges.

21. Compare the series to the harmonic series using the
limit comparison test to show that the series diverges.

23. The terms of this series are positive starting with k = 2.

Compare the series to the convergent p-series
∑∞

k=1
1

k3/2

using the limit comparison test to show that the given
series converges.

25. The terms of this series are positive. Compare the series
to the harmonic series using either comparison test to
show that the given series diverges.

27. The terms of this series are positive. Compare the series
to the convergent p-series with p = 3/2. Since

lim
k→∞

(1+ lnk)/k2

1/k3/2
= 0, by the limit comparison test the

given series converges.

29. The terms of this series are positive. Compare the series
to the convergent p-series with p = 2. Since

lim
k→∞

(1+ lnk)/k2

1/k2
= 0, by the limit comparison test the

given series converges.

31. A divergent p-series, p = 1
2

33. Use either comparison test with the p-series
∑∞

k=1
1

k7/4

to show that the series converges.

35. Use the limit comparison test with the harmonic series
to show that the series diverges.

37. Use the comparison test with the harmonic series to
show that the series diverges.

39. Use the limit comparison test with the p-series∑∞
k=1

1
k3/2

to show that the series converges.

41. The series converges. Use the integral test.

43. The series converges. Use the integral test.

45. The series converges. Use the integral test.

47. Use the limit comparison test with the harmonic series
to show that the series diverges.

49. p ∈ R

51. It converges. Write α(n) = a1n + a2n 2 + · · · + aNnN .

Since all the coefficients are positive, then α(n) > a1n. It

follows that V =∑∞
n=0 wn < W

∑∞
n=0(ra1 )n = W

1−ra1
.

53. Since
∑∞

k=1 ak converges and all terms are nonnegative,
there is an N > 0 such that for all n > N we have
ak < 1. Therefore, when n > N we also have a 2

k < ak.
Therefore, by the comparison test the series

∑∞
k=1 a 2

k
converges.

55. We compare the series
∑∞

k=1(ak · bk) to the series using

the limit comparison test. We have lim
k→∞

ak ·bk

ak
= lim

k→∞
bk.

By the divergence test, the value of this limit is zero.
Therefore, since the series

∑∞
k=1 ak converges, by the

limit comparison test the series
∑∞

k=1(ak · bk) converges.

57. Since lim
k→∞

ak

bk
= 0, there is an N > 0 such that for every

k > N 0 < ak < bk. Therefore, by the comparison test
the series

∑∞
k=1 ak converges.

Section 7.6

1. T, T, T, F, T, F, F, F.

3. 1

5. 1

7. The ratio test could be used on the series
∑∞

k=1(−ak).

9. The series satisfies the hypotheses of the ratio test.
Since the terms are positive and lim

k→∞
ak+1

ak
> 1,

lim
k→∞

ak �= 0, therefore the series diverges by the

divergence test.

11. 1

13. The root test could be used on the series
∑∞

k=1(−ak).

15. It is not immediately apparent how to evaluate

lim
k→∞

( 1
k!

)1/k
. It is more practical to use the ratio test.

17. It is a convergent geometric series. You could also show
this using the integral, comparison, limit comparison,
ratio, or root tests.

19. lim
k→∞

ak+1

ak
does not exist, but the series is the sum of two

convergent geometric series;
∑∞

k=0
1

10k
= 10

9
and

1
5

∑∞
k=0

1
10k

= 2
9

. So the sum is
4
3

.

21. 1
90

23. 1
(k+2)(k+1)

25. 12 27. n 3 − n

29. The series converges by the ratio test.

31. The ratio test is inconclusive, but the series converges.

33. The ratio test is inconclusive, but the series diverges by
the divergence test.

35. The series diverges.

37. The root test is inconclusive, but the series converges.

39. The series converges.

41. Each term of the series is positive, and it converges by
the ratio test.
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43. Compare the series to
∑∞

k=1
1
k

using the limit
comparison test to show that the series diverges.

45. The series converges. You may show this by comparing

it to the convergent p-series,
∑∞

k=1
1
k3

using the limit
comparison test.

47. Each term of the series is positive, and it converges by
the limit comparison test.

49. Each term of the series is positive, and it converges by
the root test.

51. Each term of the series is positive, and it converges by
the ratio test.

53. Each term of the series is positive, and it diverges by the
ratio test.

55. Each term of the series is positive, and it converges by
the root test.

57. Each term of the series is positive, and it converges by
the ratio test.

59. Each term of the series is greater than the

corresponding term of the divergent series
∑∞

k=1
1
3k

,
thus the series diverges by the comparison test.

61. (a) Use the ratio test. (b) Use the divergence test. (c) By
the definition of dominance.

63. (a) Use the ratio test. (b) Use the divergence test. (c) By
the definition of dominance.

65. (a) 420
1−r11

1−r
≈ 1920. (b) f10 + ∫∞

10 0.95 xdx ≈ 1931.

67. See Exercise 5.

69. Use L’Hôpital’s Rule to show that lim
x→∞ x1/x = 1. From

this we may show that lim
k→∞

(ck m)1/k = 1. Every p-series

has this form.
71. (a) For large values of k, each term of the series is less

than (c1 + c2 + · · · + cn)kmn . (b) Part (a) shows that the
root test is inconclusive for the series.

Section 7.7

1. F, T, T, F, T, F, T, T.

3. A series of the form
∑∞

k=1(−1)k+1ak or
∑∞

k=1(−1)kak
where {ak} is a sequence of positive numbers.

5. If lim
k→∞

ak �= 0 the series will diverge by the divergence

test.
7. Since the signs of the terms of the series are alternating

and their magnitudes are monotonically decreasing, the
terms of the sequence of partial sums have the stated
property.

9. The series
∑∞

k=1 |ak| must converge.

11. Look at the definitions. For absolute convergence you
must only show that the series

∑∞
k=1 |ak| converges; to

show conditional convergence, you must show that the
series
∑∞

k=1 |ak| diverges and the series
∑∞

k=1 ak
converges.

13. If all of the terms of the series
∑∞

k=1 ak are positive, then∑∞
k=1 ak =∑∞

k=1 |ak|, so if the series converges it is
absolutely convergent.

15. Montonically decreasing, lim
x→∞ f (x) = 0,

∫∞
1 f (x) dx,∑∞

k=1 f (k)

17. By Theorem 7.24

19. Let
∑∞

k=1 ak =∑∞
k=1 bk =∑∞

k=1
1
k

21. The series diverges.

23. The series converges.

25. The series converges absolutely.

27. The series converges.

29. The series diverges by the divergence test.

31. The series converges absolutely.

33. The series converges absolutely.

35. The series converges absolutely.

37. The series is a convergent telescoping series. It
converges absolutely.

39. The series diverges.

41. The series converges conditionally.

43. The series converges absolutely.

45. The series converges conditionally.

47. The series converges absolutely.

49. The series converges absolutely.

51. The series converges absolutely.

53. (b) S10 = 0.817, L ∈ (0.817, 0.827), (c) n = 999

55. (b) S10 = 0.5403023058681397174018, L ∈
(0.5403023058681397174009, 0.5403023058681397174018),
(c) n = 5

57. (b) S10 = 0.36787946, L ∈ (0.36787943, 0.36787946),
(c) n = 11

59. When p > 1 the series converges absolutely, when
0 < p ≤ 1 the series converges conditionally and when
p ≤ 0 the series diverges.

61. The series converges absolutely for every value of p.

63. (a) As long as the denominator isn’t zero we have
An −An−1

An−1 −An−2
= 8069−An−1(1+1/7)

8069−An−2(1+1/7)

= 8069−(8069−An−2(1/7))(1+1/7)
8069−An−2(1+1/7)

= 8069−8069
8069−An−2(1+1/7)

− (8069−An−2(1+1/7))(1/7)
8069−An−2(1+1/7)

= − 1
7
.

(b) It is a telescoping sum. (c) Since it is an alternating
series and the nth term goes to zero as n → ∞. The
alternating series test applies and shows that it
converges. It is also a geometric series, whose sum is
7060.375.
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65. If
∑∞

k=1 ak converges, then for some N > 0 every ak < 1
when k > N. Thus, for k > N, a 2

k < ak. By the
comparison test, the series

∑∞
k=N+1 a 2

k converges and
thus the series

∑∞
k=1 a 2

k converges.

67. Model your proof on the argument found in the proof
of the alternating series test.

69. This is the contrapositive of Theorem 7.41.

71. Compare the series to the harmonic series using the
limit comparison test.

73. Use the hint!

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 8

Section 8.1

1. F, T, T, F, T, T, T, F.

3. A series of the form
∑∞

k=0 ak x k.

5. The bases of the factors (x − k) k vary with the index.

7. The interval of values of x for which the series
converges. It is often best to use the ratio test for
absolute convergence to find those values for which

lim
k→∞

∣∣∣ ak+1

ak

∣∣∣ |x − x0| < 1. The interval of convergence can

be an open interval centered at x0, a half-open interval
centered at x0, a closed interval centered at x0, or R.

9. When x = 2 we have the series
∑∞

k=0(−1) k k
3k+1

. Since

lim
k→∞

(−1) k k
3k+1

�= 0, the power series diverges when

x = 2.
11. When x = 1 we have the alternating harmonic series,

which converges conditionally. When x = −1 we have
the harmonic series, which diverges. These two pieces
of information, together with Theorem 8.3, tell us the
series has the interval of convergence (−1, 1].

13. 6

15. 2

17. If the radius of convergence is ρ the limit

lim
k→∞

∣∣∣ ak+1

ak
ρ

∣∣∣ = 1, which means that the ratio test for

absolute convergence fails at the endpoints of the
interval of convergence.

19. 1
ρ

21. R

23. R 25. (−1, 1]

27. [−3, −1) 29. [π − 1, π + 1]

31.
[ 1

2
,

5
2

]
33.
(
− 5

2
,

7
2

)

35. (−6, 2) 37. 0

39.
[
− 8

3
, − 2

3

]
41. (1, 4)

43. R 45. R

47. R 49. 1

51. R

53. The powers of x + 1 are negative; x < −2 and x > 0

55. Powers of sin x; R

57. Powers of
x+2
x−3

; x ≤ 1
2

59. (a) On [0, ∞). (b) There are many ways to answer this
question. Use enough terms that the error is not visible
on the graph. Since the range of the function is
approximately [0, 2500] on the interval, to ensure that
the error is smaller than, e.g. 2%, we should require
395̇002/3(500/19200)n/n! < 50, which occurs for n = 2.
It follows that one or two terms suffice to get a good
picture.

61. The statement follows from the contrapositive of part
(a) of Theorem 8.2.

63. At x0 + ρ consider the series∑∞
k=0

∣∣ak((x + ρ) − x0) k
∣∣ =∑∞

k=0

∣∣akρ
k
∣∣. This is

precisely the series of absolute values when the original
series is evaluated at x0 − ρ. Therefore, if the original
series converges absolutely at one endpoint of the
interval of convergence, it converges absolutely at the
other endpoint as well.

65. If the series converges absolutely at x0 + ρ, then by
Exercise 63 it converges absolutely at x0 − ρ as well.

67. By Exercise 66, if the radius of convergence, ρ, of both
series is finite, then ρ = √

ρ. The only solutions to this
equation are 0 and 1.

69. Use the ratio test for absolute convergence.

71. (a) Since ak+2 = ak for every k > 0, the series
∑∞

k=0 akx k

may be rewritten as a0
∑∞

k=0 x2k + a1
∑∞

k=0 x2k+1. These
two series both have radius of convergence 1, so the
series has radius of convergence 1. (b) The two series

mentioned above diverge at ±1. (c)
a0 +a1x
1−x2

Section 8.2

1. T, T, F, T, F, F, T, F.

3. At x = 0, we have ln 2 −∑∞
k=1

1
k

which diverges, since
the harmonic series diverges. At x = 4, we have

ln 2 +∑∞
k=1

(−1)k−1

k
that converges conditionally.

5. The second Taylor polynomial has the same value, the
same slope for its tangent line, and the same concavity
as the function f at the point x0.

7. A Maclaurin polynomial is an approximation to the
function f at zero. A Taylor polynomial at x0 is an
approximation to f at x0.

9. A Taylor polynomial of degree n is an approximation to
the function f at x0. It is possible for a Taylor series for a
function f to converge to f on the interval of
convergence for the series. In this case the series is an
alternate way to represent the function on the interval
of convergence.
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11. The single point 0; an interval with one of the forms
(−ρ, ρ), (−ρ, ρ], [−ρ, ρ), [−ρ, ρ] where ρ > 0, or R.

13. P1(x) = 5 − 2x, P2(x) = P3(x) = 5 − 2x + 3x 2. For any
polynomial function f of degree n, the mth Maclaurin
polynomial for f , Pm(x) = f (x) when m ≥ n.

x

y

�1 1

10

8

6

4

2

15. P1(x) = 6 + 4(x − 1),
P2(x) = P3(x) = 6 + 4(x − 1) + 3(x − 1) 2. For any
polynomial function f of degree n, the mth Taylor
polynomial for f , Pm(x) = f (x) when m ≥ n.

x

y

�1 21

10

8

6

4

2

17. P1(x) = (ax 3
0 + bx 2

0 + cx0 + d) + (3ax 2
0 + 2bx0 + c)(x − x0),

P2(x) = (ax 3
0 + bx 2

0 + cx0 + d) + (3ax 2
0 + 2bx0 + c)(x − x0)+

(3ax0 + b)(x − x0) 2, P3(x) = P4(x) = (ax 3
0 + bx 2

0 + cx0 + d)

+(3ax 2
0 +2bx0 +c)(x−x0)+(3ax0 +b)(x−x0) 2 +a(x−x0) 3.

For any polynomial function f of degree n, the mth
Taylor polynomial for f , Pm(x) = f (x) when m ≥ n.

19. (a) P1(x) = P2(x) = 0. (b) The third derivative of f is
undefined at 0.

x

y

�1 1

4

2

1

2

21. 1 − 1
2

x 2 + 1
24

x 4 23. x − 1
6

x 3

25. 1 − 2x 2 + 2
3

x 4

27. 1 − 1
2

x − 1
8

x 2 − 1
16

x 3 − 5
128

x 4

29. x 2 − 1
6

x 4 31.
∞∑

k=0

(−1)k

(2k)!
x2k

33.
∞∑

k=0

(−1)k

(2k+1)!
x2k+1 35.

∞∑
k=0

(−4)kx2k

(2k)!

37. 1 − 1
2

x −
∞∑

k=2

1·3·5···(2k−3)
2kk!

x k

39.
∞∑

k=0

(−1)k

(2k+1)!
x2k+2

41. −
(

x − π

2

)
+ 1

6

(
x − π

2

) 3

43. −(x − π ) + 1
6

(x − π ) 3

45. ln 3 + 1
3

(x − 3) − 1
18

(x − 3) 2 + 1
81

(x − 3) 3 − 1
324

(x − 3) 4

47. −2
(

x − π

4

)
+ 4

3

(
x − π

4

)3

49.
∞∑

k=0

(−1)k+1

2k+1

(
x − π

2

)2k+1

51.
∞∑

k=0

(−1)k+1

2k+1
(x − π )2k+1

53. ln 3 +
∞∑

k=1

(−1)k+1

k3k
(x − 3) k

55.
∞∑

k=0

(−1)k+122k+1

k!

(
x − π

4

)2k+1

57. When p is a positive integer, the coefficients defined by( p
k

) = p(p−1)(p−2)·(p−k+1)
k!

are all 0 for integers k > p.

59.
∞∑

k=0

(
1/3

k

)
x k

61.
∞∑

k=0

(−1/2
k

)
x k

63. (a) and (b) f ′(0) = lim
h→0

e−1/h2

h
= 0. Using induction,

show that f (k)(0) = 0 for every k ∈ Z
+. (c) The Maclaurin

series is the constant function 0. (d) The series made of
(infinitely many) zeroes converges to zero for every
value of x, but the function f (x) = 0 if and only if x = 0.

65. 1, 1 − 1
4

x 2, 1 − 1
4

x 2 + 1
64

x 4, 1 − 1
4

x 2 + 1
64

x 4 − 1
2304

x 6

x

y

�4 �2 42

3

2

�1

1

�3

�2

67. 1
2

x,
1
2

x − 1
16

x 3,
1
2

x − 1
16

x 3 + 1
384

x 5,
1
2

x − 1
16

x 3+
1

384
x 5 − 1

18,432
x 7
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�2

x

y

�4 �2 42

3

2

�1

1

�3

69. When k = 1
d
dx

(ln x) = 1
x

= (−1)1−1 (1−1)!
x1

. Next
assume the statement holds for k,
dk+1

dxk+1
(ln x) = −(k + 1)(−1)k−1 (k−1)!

xk+1
= (−1) k k!

xk+1
.

Therefore, the statement holds for k ≥ 1.

Section 8.3

1. F, T, F, T, T, T, F, T.

3. ak = f (k)(0)
k!

5. ck = h(k)(x0)
k!

7. 1
b

f
(
− a

b
x
)

= 1
b

1
1+(a/b)x

= 1
ax+b

9. R3(x) = R4(x) = 0.

11. Taylor’s Theorem gives us the formula

Rn(x) =
∫ x

x0

(x−t)n

n!
f (n+1)(t)dt for computing the nth

remainder in terms of an integral.

13. When you know a few such series you can use them to
quickly find the Maclaurin series for many related
functions.

15. If the Maclaurin series for f (x) is
∑∞

k=0 akx k, the
Maclaurin series for cx mf (x) is

∑∞
k=0 cakxk+m. The

intervals of convergence for the two series are the same.

17. e−π 19. π

6

21. 0 23. − sinc
120

x 5

25. cosc
120

x 5 27. 120c4 −240c2 +24
5!(1+c2)5

29. − 7
256(1−c)9/2

x 5 31. 5sinc+ccosc
120

x 5

33. Rn(x) = f (n+1)(c)xn+1

(n+1)!
. Since f (x) = cos x, the derivatives

cycle through − sin x, − cos x, sin x and cos x.

lim
n→∞
∣∣Rn(x)
∣∣ ≤ |x|n+1

(n+1)!
= 0

35. Rn(x) = f (n+1)(c)xn+1

(n+1)!
. Since f (x) = sin x, the derivatives

cycle through cos x, − sin x, − cos x and sin x.

lim
n→∞
∣∣Rn(x)
∣∣ ≤ |x|n+1

(n+1)!
= 0

37. − sinc
120

(
x − π

2

) 5 39. cosc
120

(x − π ) 5

41. 1
5c5

(x − 3) 5

43.
(

88(1+tan2 c)2 tan2 c+16(1+tan2 c)3

120

+ 16tan4 c(1+tan2 c)
120

)(
x − π

4

) 5

45. |Rnx| ≤
∣∣∣x− π

2

∣∣∣n+1

(n+1)!

47. |Rnx| ≤ |x−π |n+1

(n+1)!

49. 1
(n+1)cn+1

(x − 3)n+1 51.
∞∑

k=0

x3k

k!
, R

53.
∞∑

k=0
(−1)k+1 52k+1x4k+2

(2k+1)!
, R 55. 1

8

∞∑
k=0

(
− 1

8

) k
x3k, (−2, 2)

57.
∞∑

k=0

x2k

(2k)!
, R 59. 1 +

∞∑
k=1

(−1) k 22k−1x2k

(2k)!
, R

61. x + x 2 + 1
3

x 3 − 1
30

x 5
R 63. x 3 + x 4 + 1

2
x 5 − 1

3
x 6

R

65. x + 5
6

x 3 + 101
120

x 5 + 4241
5040

x 7(−1, 1)

67. e−0.3 =∑∞
k=0

(−0.3)k

k!
≈∑ 3

k=0
(−0.3)k

k!
= 0.7405. Use

∑ 6
k=0

(−0.3)k

k!
.

69. ln 1.5 =∑∞
k=1

(−1)k+10.5k

k
≈∑ 7

k=1
(−1)k+10.5k

k
≈ 0.4058.

Use
∑ 15

k=1
(−1)k+10.5k

k
.

71. tan−1 0.4 =∑∞
k=0

(−1)k0.42k+1

2k+1
≈∑ 2

k=0
(−1)k0.42k+1

2k+1

≈ 0.3807. Use
∑ 5

k=0
(−1)k0.42k+1

2k+1
.

73. sin
π

90
=∑∞

k=0
(−1)k(π/90)2k+1

(2k+1)!
≈ π

90
≈ 0.0349. Use

∑ 1
k=0

(−1)k(π/90)2k+1

(2k+1)!
.

75. cos
π

36
=∑∞

k=0
(−1)k(π/36)2k

(2k)!
≈∑ 1

k=0
(−1)k(π/36)2k

(2k)!
≈

0.9962. Use
∑ 2

k=0
(−1)k(π/36)2k

(2k)!
.

77. (a) e0.3 =∑∞
k=0

(0.3)k

k!
, (b)
∣∣R5(x)
∣∣ ≤ e0.3(0.3)6

720
, (c) 7

79. (a) ln 0.5 = −∑∞
k=1

(0.5)k

k
, (b)

1
6

, (c) 999, 999

81. (a) sin 1 =∑ 9
k=0

(−1)k

(2k+1)!
, (b)

1
720

, (c) 11

83. (a) lim
h→0

((sinh)/h)−1
h

= 0. (b)
∑∞

k=0
(−1)k

(2k+1)!
x2k

85. (a) y = 1
100

x + 35. (b) From Theorem 8.10, the error

term is of form
w′′(c)x2

2
for some c ∈ [0, 300].

(d) Assuming that the quadratic is somewhat close to
w(t), the error term is approximated by w′′

2(x)x 2/2. This
is bounded above by

max0≤x≤300 w′′
2(x)300 2/2 = 1

90000
90000/2 = 1/2. We

estimate that the line is at most half a foot off of the
water table over the entire 300 foot interval.
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87. The partial proof of Theorem 8.9 in the text shows that
the theorem holds for k = 1 and k = 2. Assume the
theorem is valid for an arbitrary value of k. Applying
integration by parts to the integral with u = f (n+1)(t) and

dv = (x−t)n

n!
dt, we see that the integral in the statement

equals
f (n+1)(x0)
(n+1)!

(x − x0)n+1 + ∫ x
x0

(x−t)n+1

n!
f (n+2)(t)dt.

When we combine this with the summation∑n
k=0

f (k)(x0)
(k)!

(x − x0) k we have the result.

89. Model your proof on the argument found after
Theorem 8.10, showing that the remainder for sin x
goes to 0 as n → ∞.

91. Model your proof on the argument found Example 2.

Section 8.4

1. T, T, T, T, F, F, F, T.

3. f (x0) = a0, f ′(x0) = a1, f ′′(x0) = 2a2, f (k)(x0) = k!ak

5. G(x) = 7 +∑∞
k=0

ak

k
(x − x0) k

7. Since
dk−1

dxk−1

( 1
1−x

)
= (k−1)!

(1−x)k
to find the Maclaurin

series for
1

(1−x)k
we could take the (k − 1)st derivative

of the series for
1

1−x
, term by term, and divide each

term by k!.

9. 2
∑∞

k=0
(−1)k3k

k!
x k

11. (a)
(
− 1

2
,

1
2

)
, (b)
∑∞

k=0(k + 1)2k+1x k, (c)
∑∞

k=1
2k−1

k
x k

13. (a) (−∞, ∞), (b)
∑∞

k=0
(−1)k+1(k+1)

(2k+2)!
x k,

(c)
∑∞

k=1
(−1)k+1

k(2k−2)!
x k

15. (a) (−6, −4], (b)
∑∞

k=0(−1)k+1(x + 5)k,

(c)
∑∞

k=2
(−1)k+1

(k−1)k
(x + 5) k

17. The function
1

1+x3
is continuous on the interval [0, 0.5].

(a) Use Theorem 5.30 to find the number of terms
required to give an approximation accurate to within
0.001 of its actual value. Then form the Simpson’s
approximation with the appropriate number of terms.
(b)
∑∞

k=0(−1) kx3k (c) Evaluate the definite integral of
the series from part (b) term by term from 0 to 0.5. Sum
all of the terms that are greater than 0.001. This is the
approximation.

19. The function sin(x 2) is continuous on the interval
[0, 0.5]. (a) Use Theorem 5.30 to find the number of
terms required to give an approximation accurate to
within 0.001 of its actual value. Then form the
Simpson’s approximation with the appropriate number

of terms. (b)
∑∞

k=0
(−1)k

(2k+1)!
x4k+2 (c) Evaluate the definite

integral of the series from part (b) term by term from 0
to 0.5. Sum all of the terms that are greater than 0.001.
This is the approximation.

21. d
dx

(∑∞
k=0

(−1)k

(2k+1)!
x2k+1
)

=∑∞
k=0

(−1)k

(2k+1)!
d
dx

(
x2k+1
) =

∑∞
k=0

(−1)k

(2k)!
x2k

23. d
dx

(∑∞
k=0

(−1)k

k!
x k

)
=∑∞

k=0
(−1)k

k!
d
dx

(
x k
) =

∑∞
k=0

(−1)k

k!
x k

25. (a)
∑∞

k=0(−1) kx2k, (−1, 1),

(b)
∑∞

k=1(−1)k+1kx2k−1, (−1, 1)

27. (a)
∑∞

k=0(−2) kx3k,
(
− 1

2
,

1
2

)
,

(b)
∑∞

k=1(−2)k−3kx3k−1,
(
− 1

2
,

1
2

)

29. (a)
∑∞

k=0
1

22k+2
x2k, (−2, 2), (b)

∑∞
k=1

k
22k+2

x2k−1, (−2, 2)

31. (a)
∑∞

k=0
(−1)k

(2k+1)!
x4k+2, (b)

∑∞
k=0

(−1)k

(2k)!
x4k+1

33. (a)
∑∞

k=0
(−1)k

k!
x2k, (b)

∑∞
k=0

(−1)k

k!
x2k+1

35. (a)
∑∞

k=0
1

(−2)k+1
(x − 3) k, (1, 5),

(b)
∑∞

k=0
k+1

(−2)k+2
(x − 3) k, (1, 5)

37. (a)
∑∞

k=0(−1)k+1(x − 3) k, (2, 4),

(b)
∑∞

k=0(−1) k(k + 1)(x − 3) k, (2, 4)

39. (a) − 1
8

∑∞
k=0

(
− 3

8

) k
(x − 3) k,

( 1
3

,
17
3

)
,

(b) − 1
24

∑∞
k=0

(
− 3

8

)k+1
(k + 1)(x − 3) k,

( 1
3

,
17
3

)

41. (a)
∑∞

k=0
(−1)k

(2k+1)!
x6k+3, (b) 2 +∑∞

k=0
(−1)k

(6k+4)(2k+1)!
x6k+4

43. (a)
∑∞

k=0

(−1
3

) k x2k

k!
, (b)
∑∞

k=0

(−1
3

) k x2k+1

(2k+1)(k!)

45. (a)
∑∞

k=0(−1) kx3k, (b) −5 +∑∞
k=0

(−1)k

3k+1
x3k+1

47. (a)
∑∞

k=0(−1) k 52k+1

(2k+1)!
x4k+4,

(b) 1 +∑∞
k=0(−1) k 52k+1

(4(k+1)(2k+1)!
x4k+5

49. (a)
∑∞

k=0
(−3)kx2k+2

k!
, (b) 1 +∑∞

k=0
(−3)kx2k+3

(2k+3)k!

51.
∞∑

k=0

(−1)k

(3k+2)(2k+1)!
26k+3 53. 2

∞∑
k=0

(−1)k

(2k+1)3kk!

55.
∞∑

k=0

(−1)k

3k+1
(0.3)3k+1

57.
∞∑

k=0

(−1)k52k+1

(4k+5)(2k+1)!
(24k+5 − 1)

59.
∞∑

k=0

(−3)k

(2k+3)k!
−∑∞

k=0
(−3)k

22k+3(2k+3)k!

61.
10∑

k=0

(−1)k26k+3

(3k+2)(2k+1)!
≈ 0.45254

63.
3∑

k=0

2(−1)k

(2k+1)3kk!
≈ 1.79824
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65.
1∑

k=0

(−1)k

(3k+1)
0.33k+1 ≈ 0.29798

67.
27∑

k=0

(−1)k52k+1

(4k+5)(2k+1)!
(24k+5 − 1) ≈ −0.039348

69.
9∑

k=0

(−1)k3k

(2k+3)k!
(1 − 0.52k+3 ≈ 0.48101

71. y′′
0(x) =∑∞

k=1
(3k)(3k−1)x3k−2

(2·3)(5·6)· · ·((3k−1)·3k)
=

x +∑∞
k=2

x3k−2

(2·3)(5·6)· · ·((3k−4)·(3k−3))
. On the other side

of the equation we see that

xy0(x) = x + x
∑∞

k=1
x3k

(2·3)(5·6)· · ·((3k−1)·3k)
=

x +∑∞
k=1

x3k+1

(2·3)(5·6)· · ·((3k−1)·3k)
=

x +∑∞
k=2

x3k−2

(2·3)(5·6)· · ·((3(k−1)−1)·3(k−1))
. These are the

same, so y0 is a solution to Airy’s equation.

73. The two series are the Maclaurin series for some
function f (x). Thus, the series

∑∞
k=0(ak − bk)x k is a

Maclaurin series for the zero function. Thus, each
coefficient ak − bk = 0.

75. Let f be an odd function with f (x) =∑∞
k=0 akx k. Since f

is odd, we have f (x) = −f (−x) for every x in the
domain. This means that f (x) =∑∞

k=0(−1)k+1akx k.
From Exercise 73 we have that ak = (−1)k+1ak for every
k. This is only possible if a2k = 0 for every k.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 9

Section 9.1

1. T, F, F, F, F, F, T, F.

3. (a) To the right and up. (b) To the right and down. (c) To
the left and up. (d) To the left and down.

5. Up and to the left when t < 0, up and to the right when
t > 0.

7. Up and to the right

9. (i) y = x 2 − 1, (ii) (a) the right half of the parabola,
(b) the left half of the parabola; (iii) motion to the right
as t increases for (a), and motion to the left as t
increases for (b).

11. The graphs are the portions of y = sin x to the right of
the y-axis. The direction of motion for both is to the
right.

13. There is a horizontal tangent line at a value, t0, where
dy
dt

= 0 and
dx
dt

�= 0 or when lim
t→t0

dy/dt
dx/dt

= 0. There is a

vertical tangent line at value t0 where
dy
dt

�= 0 and
dx
dt

= 0 or when lim
t→t0

dy/dt
dx/dt

= ±∞.

15. Since the sine function is periodic and −1 ≤ sin t ≤ 1
for all values of t, the values of x and y will also be
bounded; 0 ≤ x ≤ 2 and −4 ≤ y ≤ −3.

17.

�2

x

y

�5 155 10

5

4

3

2

�1

1

19. y
8
7
6
5
4
3
2

�1

1
x

�3 �2 �1 321

21.

�6
�8

�4

x

y

�5 5

10

2

6
8

�2

4

�10

23.

x

y

�1 1

1

�1

25. y = 3
( x+1

2

) 2
+ 5

x

y

�3 �2 �1 1

8

6

2

4

27. y = x

x

y

29.
( x

3

) 2
+
( y

4

) 2
= 1

�2

x

y

�3 �2 �1 1 2 3

4

2

3

�1

1

�4

�3
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31. x 2 − y 2 = 1

y
3

2

�1

�2

1

�3

x
321

33. x 2 − y 2 = 1, same graph as in Exercise 31

35. x 2 + y 2 = 1, when t = π , (x, y) = (−1, 0), t = 3π

2
,

(x, y) = (0, −1) and t = 2π , (x, y) = (1, 0)

37. x = −3 sin(2π t), y = 3 cos(2π t)

39. x = 2t
1+t2

, x = 1−t2

1+t2

41. y − 2 = 3
2

(x + 3)

43. y − 9
4

= −3
(

x − 1
4

)

45. 0

47. 8

49. 2
27

(
10

√
10 − 1
)

x

y

21

5

4

3

1

2

51. 6

x

y

�1 1

1

�1

53. e − 1
e

x

y

31 2

1

�1

55. x = 1 + 5t, y = −3 + 10t, t ∈ [0, 1]

57. x = 1 − 4t, y = 4 + t, t ∈ [0, 1]

59. x = π , y = 3 + 5t, t ∈ [0, 1]

61. 5
√

5

63. x = (k + r) cos θ − k cos
( (k+r)θ

k

)
,

y = (k + r) sin θ − r sin
( (k+r)θ

k

)

65.
∫ 2π

0

√
cos 2 t + 9 sin 2 tdt ≈ 13.4

67. (a) x(t) = 1.932t, y(t) = 0.552t 3 − 1.287t 2 + 0.518t,
(b) 0.232 miles, (c) 3.044 miles

69. When x = t and y = f (t), we have∫ b
a

√
(x′(t)) 2 + (y′(t)) 2dt = ∫ b

a

√
1 + ( f ′(t)) 2dt.

71.
∫ b

a

√
((kf )′(t)) 2 + ((kg)′(t)) 2dt =

k
∫ b

a

√
( f ′(t)) 2 + ( g ′(t)) 2dt = k times the arc length of

the second set of parametric equations. The arc length
of the final set of parametric equations is the same as
the length of the second set of parametric equations.

73. dy
dx

= sinθ

1−cosθ
. By L’Hôpital’s rule

lim
θ→2kπ+

sinθ

1−cosθ
= lim

θ→2kπ+
cosθ

sinθ
= ∞ and

lim
θ→2kπ−

sinθ

1−cosθ
= lim

θ→2kπ−
cosθ

sinθ
= −∞. Thus, there is a

vertical tangent line at each even multiple of π .

Section 9.2

1. T, F, F, F, T, T, T, T.

3. The value of θ in the polar coordinates for a point P
measures the angular rotation of P from the x-axis.
Adding an integer rotation of 2π doesn’t change the
location of the point.

5. The point
(

8, −π

3

)
is in the fourth quadrant. The point

(−4, 4
√

3) is in the second quadrant.

7. The graphs of r = c and r = −c are the same for every
real number c.

9. α = k
π

2
for any integer k.

11. Every point, (r, θ ), is on a ray in the first quadrant when
r > 0 and 0 < θ <

π

2
. The points in the third quadrant

are given by the inequalities r > 0 and π < θ <
3π

2
.

13. (1, 2kπ ) and (−1, (2k + 1)π ) for every integer k.

15. (1, (2k + 1)π ) and (−1, 2kπ ) for every integer k.

17.
( 3

√
3

2
,

3
2

)
,
(

− 3
√

3
2

, − 3
2

)
,
( 3

√
3

2
, − 3

2

)
,
(

− 3
√

3
2

,
3
2

)

19. (0, 5), (0, −5), (0, 5), (0, 5)

21.
(√2

2
,
√

2
2

)
,
(√

2,
√

2
)

,
( 3

√
2

2
,

3
√

2
2

)
,
(

2
√

2, 2
√

2
)

23. (0, −1), (0, −2), (0, −3), (0, −4)

25. (1, 2kπ ) and (−1, (2k + 1)π ) for any integer k.
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27.
(

2,
π

2
+ 2πk
)

and
(
−2, −π

2
+ 2πk
)

for any integer k

29.
(

4
√

3,
π

6
+ 2πk
)

and
(
−4

√
3,

7π

6
+ 2πk
)

for any

integer k.

31.
(

3
√

2, −π

4
+ 2πk
)

and
(
−3

√
2,

3π

4
+ 2πk
)

for any

integer k.

33. y = x 35. y =
√

3
3

x

37. x 2 +
(

y − 5
2

) 2
=
( 5

2

) 2
39. y = 6

41. (x 2 + y 2)3/2 = 2xy 43. ±(x 2 + y 2)3/2 = x.

45. x tan
√

x 2 + y 2 = y 47. (x 2 + y 2) 2 = y 3

49. θ = 0. 51. θ = π

4
.

53. r = −3 csc θ . 55. tan θ = m

57. x 2 + y 2 = k 2

59. For k = 1 and k = 7, y =
√

3
3

x. For k = 2 and k = 8,

y = √
3x. For k = 3 and k = 9, x = 0. For k = 4 and

k = 10, y = −√
3x. For k = 5 and k = 11, y = −

√
3

3
x.

For k = 6 and k = 12, y = 0.

61. (a) Assuming the arms of the cam remain symmetrically

placed, each
3
4

inch arm must fit in a half inch of the

crack. Thus, we require 0.75 sin θ = 1
2

, so θ = sin−1 2
3

.
(b) This causes the cam to push even harder against the
walls of the crack.

63. Since csc θ = r
y

, we have, r = k
r
y

, or equivalently y = k.

65. We have a = r − br cos θ . In rectangular coordinates this
can be written

√
x 2 + y 2 = a + bx. Squaring both sides,

completing the square, and simplifying, we may obtain(
x − ab

1−b2

) 2
+ y2

1−b2
=
( a

1−b2

) 2
which is the

equation of an ellipse if 0 < b < 1. If b > 1 the equation
gives a hyperbola.

67. Since cos θ = x
r
, we have r = a

x
r
, or equivalently

r 2 = x 2 + y 2 = ax. When you complete the square for

this equation you obtain
(

x − a
2

) 2
+ y 2 =

( a
2

) 2
. So the

graph of the equation is a circle with center
( a

2
, 0
)

and

radius
a
2

.

69. Since cos θ = x
r

and sin θ = y
r

, we have r = k
y
r

+ l
x
r
, or

equivalently r 2 = x 2 + y 2 = lx + ky. When you
complete the square for this equation you obtain(

x − l
2

) 2
+
(

y − k
2

) 2
= k2 + l2

4
. So the graph of the

equation is a circle with center
( l

2
,

k
2

)
and radius

√
k2 + l2

2
.

Section 9.3

1. F, T, F, T, F, T, T, T.

3. The θ-intercepts of the graph in the θr-plane
correspond to the places where the polar graph passes
through the pole. The location of the graph in the
θr-plane corresponds to the quadrant in which the
polar graph is drawn.

5. (a) All θ-intercepts of the graph in the θr-plane
correspond to the places where the polar graph passes
through the pole. (b) The points on the θ-axis
correspond to the points on the horizontal axis in the
polar plane. (c) All points on the vertical lines
θ = (2k + 1)

π

2
correspond to the points on the vertical

axis in the polar plane.

7. (a)
(

2, −π

3

)
(b)
(

2,
2π

3

)
(c) (−3, 5) (d)

(
2,

4π

3

)
(e) (−3, −5)

9. (a) r = 2 cos θ (b) r = 2 sin θ (c) r = sin 2θ

(d) r 2 = sin 2θ (e) r = sin 2θ ( f) not possible

11. A cardioid, a limaçon, and a lemniscate.

13. r = cos 5θ : symmetry about the horizontal axis and
rotational symmetry, five petals. r = sin 8θ : symmetry
about the x- and y-axes, symmetry about the origin,
rotational symmetry, sixteen petals.

15. Since cos(−2θ ) = cos 2θ the graph will be symmetrical
with respect to the horizontal axis.

17.

π

2
3π

2

θ

r

2

1

2ππ

I II III IV

19.

π

2
3π

2

θ

r
3

2

1

2ππ

I II III IV

21.

π

2
3π

2

θ

r

1

2ππ

I II III IV

23.

π

2
3π

2

θ

r

1

2ππIV I

IV

25.

x

y
π

2(1,    )

(2, π)

27.

x

y

(2, 0)

π

2(3,    )

3π

2(1,      )
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29. y

x
(1, 0)(1, π)

31.

x

y

(1, 0)

33. Use the interval [0, 10π ].

(1, 0)

y

x

35. Use the intervals
[
0,

π

2

)
∪
(

π

2
,

3π

2

)
∪
( 3π

2
, 2π
]
.

y

x
(5, 0)

π

2(13,    )

37. Use the interval [0, 24π ].

x

y

(2, 0)

π

2(3,    )

39.

x

y

(2, 0)

3π

2(4,      )

41. (a)
π

4
+ kπ for every integer k. (c) The curves intersect at

(0, 0) and
(√2

2
,
π

4

)
.

x

y

sin θ

cos θ

π

2(1,    )

(1, 0)

43. (a)
3π

4
+ kπ for every integer k. (b) Graph is shown

below. (c) The curves intersect at (0, 0),
(

1 +
√

2
2

,
3π

4

)

and
(

1 −
√

2
2

,
7π

4

)
.

1 � sin θ

1 � cos θ

x

y

(1, 0)

π

2(2,    )

(2, π)

3π

2(1,      )

45. (a)
π

4
+ kπ

2
for k = 0, 1, 2 and 3. (b) Graph is shown

below. (c) The curves intersect at (0, 0),
( 1

2
,
π

4
+ kπ

2

)
for

every integer k.

y

x
(1, 0)

cos2 θ

sin2 θ

π

2(1,    )

47. They are the mirror images of each other.

x

y

(1, 0)

1 � sin θ

1 � sin θ

π

2(2,    )
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49. When 0 ≤ b ≤ 3
2

the limaçon will be convex. When
3
2

< b ≤ 3 there will be a dimple. When b = 3 the curve
is a cardioid.

b � 6

b � 4

b � 3

r � 3 � bcos θ

x

y

b � 1

51. (a) x = 1
2

+ 1
2

cos t, y = 1
2

sin t, t ∈ R,

(b)
(

x − 1
2

) 2
+ y 2 = 1

4
, (c) r = cos θ

53.

55. We will prove the statement for f (θ ) = sin nθ . The
argument for f (θ ) = cos nθ is similar. Let (r, θ ) be a
point on the graph of f (θ ) = sin nθ . That is, r = sin nθ .
If n is a positive odd integer, then by the angle sum
identity for sine we have sin(n(θ + π )) = − sin(nθ).
Therefore the point (−r, sin(n(θ + π )) = (−r, − sin(nθ)
has the same location as (r, θ ). Thus, the graph traced
on the interval [π , 2π ]is the same as the graph traced
on the interval [0, π ].

57. Let (r, θ ) be a point on the graph of f (θ ) = sin nθ where
n is even. We have f (−θ ) = sin(−nθ ) = sin(2π − nθ) =
sin(nθ). Therefore, the point (r, −θ ) is also on the graph.
Thus, the graph is symmetrical with respect to the
x-axis.

59. Let (r, θ ) be a point on the graph of f (θ ) = cos nθ , where
n is even. It suffices to show that (r, π − θ ) is also on the
graph. We have f (π − θ ) = cos(n(π − θ )) = cos(nθ).
Therefore, the point (r, π − θ ) is also on the graph.

Section 9.4

1. T, T, F, T, F, F, T, F.

3. For a function r = f (θ ) in polar coordinates, θ is an
angular rotation. A small change �θ determines a
wedge-shaped slice of the region.

5.

β

α

(f (θk*), θk*)

θk*
x

y

r � f (θ)

�θk

7. To compute an area we need β > α for the limits of
integration in the integral. So that we don’t compute a
portion of the area twice, we need β − α < 2π .

9. It is often simpler to compute a known fraction of the
total area and then finish by multiplying by the
appropriate factor. Review Example 2 to see how this
may be done.

11. x = t, y = f (t)

13. The graph of the equation r = sin θ is a circle with

radius
1
2

. Since he integrated on the interval [0, 2π ] the
circle is traced twice, so he got the correct answer.

15. The expression computes the area inside the two circles

below. The area is
π −2

8
.

x

y

17. 1
2

∫ π

0
θ 2dθ = π 3

6

19.
∫ 3π/4

0
(1+

√
2 cos θ ) 2dθ −

∫ π

3π/4
(1+

√
2 cos θ ) 2dθ = 3+π

21.
∫ π/6

−π/2
((3 − 3 sin θ) 2 − (1 + sin θ ) 2)dθ = 8π + 9

√
3

23.
∫ π/3

0
(1 − sec 2 θ )dθ = π

3
−

√
3

4

25.
∫ π/4

0
(sec θ − 2 cos θ ) 2 dθ = 2 − π

2

y

x
�1

27.
∫ 2π

0

√
2 e θ dθ =

√
2(e 2π − 1)

29.
∫ 2π

0

√
1 + α 2 eαθ dθ =

√
1 + α 2

α
(e 2πα − 1)

31. 2
∫ π/4

0

√
4 sin 2 2θ + cos 2 2θ dθ ≈ 2.422

33. 2
∫ π/8

0

√
16 sin 2 4θ + cos 2 4θ dθ ≈ 2.145
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35.
∫ 11π/6

7π/6

√
(1 + 2 sin θ) 2 + 4 cos 2 θ dθ ≈ 2.682

37. 3
√

3+π

4

39. 3π

2

x

y

(2, 0)

π

2(1,    )

41. 1

y

x

43. 9π

2

y

x
(2, 0)

π

2(2,    )

45. The area is
1
2

∫ 2π

0 a 2 dθ = πa 2.

47. The circumference is
∫ 2π

0 a dθ = 2πa.

49. a 2
(

2π

3
−

√
3

2

)

51. The length of the central cross section of the kayak is
about 6.15 feet or about 1.87 meters. Annie should be
able to use just two widths of the fabric.

53. A = 1
2

∫ θ0+φ

θ0

r 2dθ = 1
2
φr 2.

55. For any positive integer n, the area is given by
n
∫ 2π/n

0 cos 2(2nθ) dθ = π

2
.

57. The length of the curve is given by the improper

integral
∫ ∞

1

√
1
θ 2

+ 1
θ 4

dθ which diverges to ∞.

Section 9.5

1. T, T, F, T, F, T, F, T.

3. See Definition 9.15

5. See Definition 9.19

7. Since a hyperbola is the set of points in the plane for
which the difference between the distances of the foci is
a constant, and there are infinitely many differences
which can be obtained in this way, there are infinitely
many different hyperbolas with the same foci.

9. (a)
√

A2 −B2

A
, (b)

√
B2 −A2

B
, (c) Since

√
A 2 − B 2 < A and√

B 2 − A 2 < B, (d) It becomes more circular. (e) It
elongates and flattens.

11. y = ± B
e

13. y

x

1 � cos θ
1

1 � sin θ
1

Both are parabolas with a focus at the origin;

r = 1
1+cosθ

opens to the left, the other opens down. All

parabolas have eccentricity one.

15.

2 � cos θ
2

2 � sin θ
2

y

x

Both are ellipses with a focus at the origin; r = 2
2+cosθ

has its major axis on the x-axis, the other has its major

axis on the y-axis. Each has eccentricity
1
2

.

17. α

β+γ sinθ
=

γ

β

α

γ

1+ γ

β
sinθ

19. The equation is equivalent to
(x+1)2

8
− (y+3)2

16
= 1. Its

graph is a hyperbola with center (−1, −3) opening to
the left and right.

21. The equation is equivalent to
(y−4)2

25
− 4(x+1)2

25
= 1. Its

graph is a hyperbola with center (−1, 4) opening up and
down.

23. y = 1
2

x 2 + 1
2

25. y = − 1
4

x 2 − 7
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27. y = 1
2(y1 −y0)

(x − x1) 2 + y0 +y1

2

29. y = − 1
8

x 2 + 2

31. y = − 1
2α

x 2 + α

2 33. x2

9
+ (y−1)2

4
= 1

35. 4x2

9
+ y2

9
= 1 37. x2

α2
+ y2

2α2
= 1

39. x2

6
− y2

30
= 1 41. y2

8
− x2

8
= 1

43. (y−5)2

4
− (x−3)2

12
= 1

45. y

x

47.

x

y

32

49. y

x
0.5

51. y

x
1

53. (a)
x2

1.000000112
+ y2

0.99986065522
= 1,

(b) r = 1.00000011
1+0.0167cosθ

55. Model your argument on the proof that the distance
from any point on the graph of the curve to the point

(0,
√

A 2 − B 2) is D1 = A2 −Cx
A2

.

57. Model your proof on the analogous argument for an
ellipse by showing that the distance from any point
(x, y) on the curve in the first quadrant to the focus

(
√

A 2 + B 2, 0) is D1 = Cx−A2

A
and the distance from

(x, y) to the focus (−√
A 2 + B 2, 0) is D2 = Cx+A2

A
,

where C = √
A 2 + B 2. Thus, the difference of the

distances is 2A for every point on the curve.

59. For an ellipse with equation
x2

A2
+ y2

B2
= 1 where

A > B > 0, the distance between the foci is 2
√

A 2 − B 2

and the distance between the vertices is 2A. We have
2
√

A2 −B2

2A
= e. The situation when 0 < A < B is similar,

as is the computation for a hyperbola.

61. Let P = (x, y) be a point in the first quadrant on the

hyperbola defined by
x2

A2
− y2

B2
= 1. The coordinates of

the focus on the positive x-axis is F = (
√

A 2 + B 2, 0)
and the equation of the directrix which intersects the

positive x-axis is x = A
e

. Let D be the point on the

directrix closest to P. Then DP = x − A
e

and

FP =
√

(x − √
A 2 + B 2) 2 + y 2. Use the fact that

y 2 = B2

A2
x 2 − B 2 to show that

FP
DP

= e.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 10

Section 10.1

1. F, T, F, F, F, T, T, T.

3. (a) y = 5 is a line parallel to the x-axis; x = −3 is a line
parallel to the y-axis (b) y = 5 is a plane parallel to the
xz-plane; x = −3 is a plane parallel to the yz-plane

5. (1, 1, 1), (1, 1, −1), (1, −1, 1), (1, −1, −1), (−1, 1, 1),
(−1, 1, −1), (−1, −1, 1), and (−1, −1, −1)

7. The set of all points in R
3 equidistant from a given

point (x0, y0, z0).

9. (a) A circle with radius 2 centered at the origin, (b) a
right circular cylinder with radius 2 centered on the
z-axis.

11. (−5, 6, −7)

13. (3, −7, 6)

15. There are three possible exchanges: x with y, x with z
and y with z. We will discuss the first of these. The
others are similar. If the placement of x, y, and z form a
right-hand coordinate system, then the axes can be
oriented to be superimposed on the graph below left.
Switching the labels on the x and y axes we obtain the
left-hand system below right. Exchanging two pairs of
the labels will give another right-handed system.

z

x

y

O

z

y

x

O
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17. The distance between the points (a1, a2, . . . , an) and
(b1, b2, . . . , bn) is√

(a1 − b1) 2 + (a2 − b2) 2 + · · · + (an − bn) 2.

19. (a) x > 0, y > 0, z > 3,
(b) (x − 1) 2 + (y − 2) 2 + (z − 4) 2 < 25,
(c) (x − 2) 2 + (y + 3) 2 < 25

21.
√

130 23.
√

14

25.
√

26 27.
√

51

29. (x − 3) 2 + (y + 2) 2 + (z − 5) 2 = 25

31. (x − 2) 2 + (y − 5) 2 + (z + 7) 2 = 49

33. (x − 2) 2 + (y − 5) 2 + (z + 7) 2 = 78

35. (x − 2) 2 + (y + 8) 2 + z 2 = 66

37.
(

x − 3
2

) 2
+ (y − 1

) 2 +
(

z − 5
2

) 2
= 53

2

39. Center
(

0, − 3
2

,
5
2

)
, radius

√
22
2

41. z

x
y

43. z

x
y

45. z

x
y

x

47. z

x
y

49. 3 − 2
√

2

51. Use the distance formula to show that the length of
each side of the triangle is

√
8.

53. Use the distance formula to show that the lengths of
the sides of the triangle are 7, 14 and

√
245. Since

7 2 + 14 2 = (
√

245) 2, the triangle is right. The area is 49
square units.

55.
(

x − 1
2

) 2
+
(

y − 1
2

) 2
+
(

z − 1
2

) 2
= 3

4
and(

x − 1
6

) 2
+
(

y − 1
6

) 2
+
(

z − 1
6

) 2
= 3

4

57. 4
3

59. The compass readings give the slopes of lines from her
boat to the respective peaks. Thus her boat is on the
line ( y − 4.0) = tan(75π/180)(x − 7.9) from
Constitution Peak, and it is on the line
( y + 3.4) = tan

(−10π

180

)
(x − 9.3). Those lines intersect

at (6.07, −2.83). Thus, she is 6.7 miles from Deer
Harbor.

61. a = ±3.81

63. Consider the regular tetrahedron with vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1) and (1, 1, 1) from Exercise 54. The
midpoint of the segment connecting the midpoints of

the opposite edges is the point
( 1

2
,

1
2

,
1
2

)
.

Section 10.2

1. T, F, F, F, T, T, T, T.

3. AC
−→

5. 0

7. 0

9. Algebraically, you add them “componentwise.”
Geometrically, you place the initial point of a vector w
at the terminal point of a vector v. The vector v + w is
the vector that has the same initial point as v and the
same terminal point as w.

11. 〈2a, 2b, 2c〉
13. (−1, 5, −1)

15.
( 5

√
14

14
, 3 + 10

√
14

14
, −2 + 15

√
14

14

)

17. (a) The set of all position vectors whose terminal points
are on the sphere of radius 4 centered at the origin.
(b) The set of all position vectors whose terminal points
are in or on the sphere of radius 4 centered at the origin.
(c) The set of all vectors whose initial point is (a, b, c)
and whose terminal point is on the sphere of radius 4
centered at (a, b, c).

19. Use vectors with 4 (or n) components. Algebraically,
you still add vectors component by component and
when you multiply a vector by a scalar you multiply
each component by that scalar.

21. The set of all position vectors whose terminal points are
on the sphere of radius 5 centered at the origin.

23. u + v = 〈8, −4〉; u − v = 〈−4, −8〉
25. u + v = 〈−2, 4〉; u − v = 〈4, −8〉
27. u + v = 〈3, −8, 13〉; u − v = 〈−1, 0, −1〉

29. 〈−6, −8〉 31. 〈0, −5, −7〉
33. 5 35.

√
3

3

37. ‖v‖ = 5,
〈 3

5
, − 4

5

〉
39. ‖v‖ =

√
34

15
,

15√
34

〈 1
5

,
1
3

〉

41. ‖v‖ = √
3,

1√
3

〈1, 1, 1〉 43. 5√
14

〈3, 1, 2〉
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45. 2√
117

〈8, −7, 2〉 47. 7√
53

〈1, 4, 6〉

49. 7√
53

〈1, 4, 6〉 51. − 3√
14

〈1, −2, 3〉

53. The magnitude of the force in the rope on the left is
50(3

√
2 − √

6) pounds and the magnitude of the force
in the rope on the right is 100(

√
3 − 1) pounds.

55. (a) 〈0, −2〉, (b) 〈√2, −√
2〉, (c) 〈√3 − 2, −√

3〉
57. u + v = 〈u1, u2, u3〉 + 〈v1, v2, v3〉 =

〈u1 + v1, u2 + v2, u3 + v3〉 =
〈v1 + u1, v2 + u2, v3 + u3〉 = 〈v1, v2, v3〉 + 〈u1, u2, u3〉 =
v + u.

59. c(u + v) = c (〈u1, u2, u3〉 + 〈v1, v2, v3〉) =
c (〈u1 + v1, u2 + v2, u3 + v3〉) =〈
c(u1 + v1), c(u2 + v2), c(u3 + v3)

〉 =
〈cu1 + cv1, cu2 + cv2, cu3 + cv3〉 = 〈cu1, cu2, cu3〉 +
〈cv1, cv2, cv3〉 = c 〈u1, u2, u3〉 + c 〈v1, v2, v3〉 = cu + cv.

61. (c + d)v = (c + d)〈v1, v2, v3〉 = 〈(c + d)v1, (c + d)v2, (c +
d)v3〉 = 〈cv1 +dv1, cv2 +dv2, cv3 +dv3〉 = 〈cv1, cv2, cv3〉+
〈dv1, dv2, dv3〉 = c〈v1, v2, v3〉 + d〈v1, v2, v3〉 = cv + dv.

63. Let u = 〈u1, u2〉 and v = 〈v1, v2〉 be two position
vectors. The vertices of the parallelogram determined
by u and v are (0, 0), (u1, u2), (v1, v2) and
(u1 + v1, u2 + v2). The midpoint of both opposite pairs

of vertices is
( u1 +v1

2
,

u2 +v2

2

)
.

Section 10.3

1. T, F, F, F, T, T, T, F.

3. See Definition 10.13.

5. When the angle between the sides with lengths a and b
is right, the Law of Cosines reduces to the Pythagorean
theorem since cos 90◦ = 0.

7. (a) Assuming none of the constants are zero, we need
α

a
= β

b
= γ

c
; (b) aα + bβ + cγ = 0.

9. (a) Let u = v = i and w = i + j; (b) u must be
orthogonal to v − w

11. The two vectors must be parallel and point in the same
direction.

13. Any position vector that lies in the yz-plane.

15. Any vector of the form 〈1, v2, v3〉.
17. (a) 〈1, m〉, (b) slope − 1

m
, 〈−m, 1〉,

(c) 〈1, m〉 · 〈−m, 1〉 = −m + m = 0.

19. (a) If there were a scalar c such that cv1 = v2, in order
for the first components to be equal we would need
c = 3, but 3v1 = 〈3, −6〉 �= v2. (b) 2v1 + 1v2 = 〈5, 1〉.

21. −1, cos−1
(

− 1√
1711

)

23. 38, cos−1
( 38√

2170

)

25. projuv = 0, compuv = 0, and the component of v
orthogonal to u is v

27. compuv = −2
√

14; projuv = v; and the component of v
orthogonal to u is 0

29. projuv = 0, projvu = 0

31. projuv = − 5
27

〈1, −5, −1〉 , projvu = 〈0, −5, 0〉

33. (a) −1; (b) cos−1
(

− 1

2
√

2451

)
; (c) − 1

38
u

35. (a) 24; (b) cos−1
( 24

√
2

50

)
; (c)

24
25

u

37. 48
83

√
166

39. π

2

41. cos−1
(√6

3

)

43. cos α = 1√
14

, α = cos−1
( 1√

14

)
, cos β = 2√

14
,

β = cos−1
( 2√

14

)
, cos γ = 3√

14
, γ = cos−1

( 3√
14

)

45. cos α = − 1√
18

, α = cos−1
(

− 1√
18

)
, cos β = 1√

18
,

β = cos−1
( 1√

18

)
, cos γ = − 4√

18
, γ = arccos

(
− 4√

18

)

47. Let v = 〈a, b, c〉. From their definitions, cos α = a
‖v‖ ,

cos β = b
‖v‖ and cos γ = c

‖v‖ . Thus,

‖v‖ ((cos α)i + (cos β)j + (cos γ )k) = ai + bj + ck = v.

49. cos γ = ±
√

2
2

51. cos β = ± 3
4

53. (a)αi = cos−1
( 1√

n

)
; (b) limn→∞ cos−1

( 1√
n

)
= π

2

55. (a) tan−1
( 1

4

)
, (b) 4

√
4/17 ≈ 1.9, (c) slightly more than

1 hour.
57. If v = 〈a, b, c〉, then v · i = a, v · j = b and v · k = c.

Thus, (v · i)i + (v · j)j + (v · k)k = ai + bj + ck = v.

59. Taking the absolute value of each side of
u · v = ‖u‖‖v‖ cos θ , we see that
|u · v| = ‖u‖‖v‖ |cos θ |. Since |cos θ | ≤ 1 we have our
result. In order to have the equality, the two vectors
must be parallel.

61. If either u or v is 0, then u · v = 0 and u and v are
orthogonal, since 0 is orthogonal to every vector. If
neither u nor v is 0, then u · v = ‖u‖‖v‖ cos θ by
Theorem 10.15, where θ is the angle between the
position vectors u and v. Since neither u nor v is 0, the
dot product is only zero if cos θ = 0, that is, if u and v
are orthogonal.

63. Assume that v = v‖ + v⊥ and v = v′
‖ + v′

⊥ are two sums
such that v‖ and v′

‖ are both parallel to u and v⊥ and v′
⊥

are both orthogonal to u. Then v‖ + v⊥ = v′
‖ + v′

⊥, so
v‖ − v′

‖ = v′
⊥ − v⊥. The difference on the left will also

be parallel to u and the difference on the right will also
be orthogonal to u. Thus, they are orthogonal to each
other. The only way for this to happen is if they are both
0. Therefore, the two decompositions are the same.
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65. Let u and v be two nonparallel position vectors. The
diagonals of the parallelogram determined by u and v
are the vectors u + v and u − v. The dot product
(u+v) ·(u−v) = u ·u−u ·v+v ·u+v ·v = ‖u‖ 2 −‖v‖ 2,
since the dot product is commutative. If the
parallelogram is a rhombus, then ‖u‖ = ‖v‖. Thus, the
dot product of the vectors forming the diagonals is zero,
so they are perpendicular. Conversely, if the diagonals
of the parallelogram are perpendicular, we must have
‖u‖ 2 − ‖v‖ 2 = 0 and ‖u‖ = ‖v‖, so the parallelogram
is a rhombus.

Section 10.4

1. F, F, T, F, T, T, T, F.

3. See Definition 10.25.

5. The cross product, u × v, is orthogonal to both u and v.
The magnitude of u × v is ‖u‖‖v‖ sin θ where θ is the
angle between u and v. The vectors u, v and u × v form
a right-hand triple.

7. The dot product is zero if and only if the vectors are
orthogonal.

9. Embed the vectors in R
3 as 〈1, 2, 0〉 and 〈3, −1, 0〉. The

cross product 〈1, 2, 0〉 × 〈3, −1, 0〉 = 〈0, 0, −7〉. The
norm of this vector is 7, which is the area of the
parallelogram in square units.

11. They are orthogonal.

13. Let u = 〈1, 0, 0〉, v = 〈2, 1, 1〉 and w = 〈4, 1, 1〉. If
u × v = u × w, then u is parallel to v − w.

15. As position vectors, the three vectors lie in the same
plane.

17. The cross product is not associative, so we must specify
whether we mean (u × v) × w or u × (v × w).

19. At least one of them is 0.

21. They are parallel.

23. 〈23, −4, 14〉, 〈−23, 4, −14〉
25. 〈−46, 3, −22〉, 〈−42, −30, −38〉
27.

√
213

29. 106 cubic units. No, they form a left-handed triple.

31. 〈25, 35, −10〉, 〈−25, −35, 10〉
33. 0, 0

35. 0

37. (a) 〈−24, 7, 15〉 (b) ± 1

5
√

34
〈−24, 7, 15〉, (c)

5
2

√
34.

39. (a) 〈20, −9, 30〉; (b) ± 1√
1381

〈20, −9, 30〉; (c)
√

1381
2

41. (a) k; (b) ±k; (c) 26

43.
√

850
2

45. (a) The lengths of the sides of a quadrilateral do not
determine the quadrilateral’s area. For example, a
square with side lengths 1 unit has an area of 1 square
unit, but a rhombus with side lengths 1 and opposite

interior angles of 30◦ has area
√

3
2

. (b) If you know the
side lengths and the length of one diagonal you can
decompose the quadrilateral into two triangles. (c) The
side lengths adjacent to the angle whose measure is
known determine a unique triangle. You may find the
length of the third side of the triangle, which is a
diagonal of the quadrilateral and use the reasoning
from (b).

47. 3
4

(√
759 + √

2079
)

49. 16
√

759 + 6
√

70

51. (a) Parallelogram, (b) 16 square units

53. (a) Not a parallelogram, (b)
49
2

square units

55. (a) PQ
−→ = SR

−→
but P, Q, R and S are not collinear,

(b) parallelogram, (b) 7
√

254 square units

57. (a) PQ
−→

and SR
−→

are parallel, (b) not a parallelogram,

(b)
7
2

√
146 square units

59. 4
√

2
√

2 − 2 ≈ 3.64 cubic centimeters

61. 30 foot-pounds

63. If A =
⎡
⎣ a b c

d e f
g h i

⎤
⎦, then

det A = aei + bfg + cdh − af h − bdi − ceg. Show that
when you exchange any two rows of A, you obtain the
negative of this sum.

65. If v = 〈a, b, c〉 and α is a scalar, then
v×(αv) = (αbc−αbc)i+(αac−αac)j+(αab−αab)k = 0.

67. Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉. Show that
c(u × v), (cu) × v, and u × (cv) are all equal
〈c(u2v3 − u3v2), c(u3v1 − u1v3), c(u1v2 − u2v1)〉.

69. Let u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉, the triple scalar

product v · (u × v) = det

⎡
⎣ v1 v2 v3

u1 u2 u3
v1 v2 v3

⎤
⎦. Show that

this determinant is zero.
71. (a) The volume of the parallelepiped determined by u, v

and w is the absolute value of the determinant of the
matrix in which the rows are the components of u, v
and w. Since each component is an integer, the
determinant and its absolute value are integers. (b) The
area of the parallelogram determined by i and j is 1. The
area of the parallelogram determined by i and j + k is√

2.
73. Divide the left and right sides of the equations

‖u × v‖ = ‖u‖‖v‖ sin θ and u · v = ‖u‖‖v‖ cos θ to
obtain the result.
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75. If u × v = u × w, then u is parallel to v − w and if
u · v = u · w, then u is orthogonal to v − w. Thus,
v − w is orthogonal to itself. This can only happen if
v − w = 0.

77. Let r = 〈r1, r2, r3〉, s = 〈s1, s2, s3〉, u = 〈u1, u2, u3〉 and
v = 〈v1, v2, v3〉. Show that both sides of the equality are
equal to r1s2u1v2 + r1s3u1v3 + r2s1u2v1 + r2s3u2v3 +
r3s2u3v2 + r3s2u3v2 − (r1s2u2v1 + r1s3u3v1 + r2s1u1v2 +
r2s3u3v2 + r3s1u1v3 + r3s2u2v3).

79. If r, s, u, and v all lie in some plane P , then the cross
products r × s and u × v are both orthogonal to P .
Therefore, these two vectors are parallel and the cross
product of two parallel vectors is 0.

Section 10.5

1. T, F, T, F, T, F, F, F.

3. A linear equation in three variables is an equation that
can be written in the form Ax + By + Cz = D, where A,
B, C, and D are real numbers. An example is
2x − 3y + πz = 12. The graph of every linear equation
in three variables is a plane.

5. Let P = (a, b, c) and Q = (α, β, γ ). The direction vector
for the line is ± 〈a − α, b − β, c − γ 〉. We will choose the
positive sign for this vector, and we may choose either
point P or point Q; we will choose Q. The equation of
the line as a vector function is
r(t) = 〈α + (a − α)t, β + (b − β)t, γ + (c − γ )t

〉
.

7. If the slopes of the two lines are equal, the lines are
either parallel or identical. Two lines in R

2 that aren’t
parallel or identical intersect in a unique point.

9. (a) r1(t) = 〈−1 + 2t, 3 − 4t, 7 + 9t〉
(b) r2(t) = 〈−1 + 4t, 3 − 8t, 7 + 18t〉
(c) x = 2t + 5, y = −4t − 9, z = 9t + 34

11.
(

0,
52
3

,
19
3

)
;
( 52

7
, 0,

27
7

)
; (19, −27, 0)

13. (0, −9, 1) ;
( 9

2
, 0, −17

)
;
( 1

4
, − 17

2
, 0
)

15. (−7, 0, 5). The line is parallel to the y-axis.

17. (a) x = 2 + 7t, y = 3 − 5t, z = 2t. (b)
x−2

7
= y−3

−5
= z

2
.

19. (a) r(t) = 〈4, 3 − 5t, t〉; (b) x = 4,
y−3
−5

= z

21. In slope-intercept form, y = −3x + 5. Next, x = 2t and
y = 5 − 6t. Eliminate the parameter t to obtain the
previous equation.

23. (a) r(t) = 〈t, 2t, −4t〉; (b) x = t, y = 2t, z = −4t;
(c) x = y

2
= − z

4

25. (a) r(t) = 〈2t − 1, 3, 4t + 7〉;
(b) x = 2t − 1, y = 3, z = 4t + 7; (c) y = 3,

x+1
2

= z−7
4

27. (a) r(t) = 〈2t + 3, 5t + 1〉; (b) x = 2t + 3, y = 5t + 1;

(c)
x−3

2
= y−1

5

29. (a) r(t) = 〈4t, −t, 6t〉; (b) x = 4t, y = −t, z = −6t;
(c)

x
4

= −y = z
6

31. (a) r(t) = 〈8t − 4, 11, 2t〉; (b) x = 8t − 4, y = 11, z = 2t;

(c) y = 11,
x+4

8
= z

2

33. (a) r(t) = 〈3t + 1, −t + 6〉; (b) x = 3t + 1, y = −t + 6;

(c)
x−1

3
= −y + 6

35. (a) r(t) = 〈(x1 − x0)t + x0, (y1 − y0)t + y0, (z1 − z0)t + z0〉;
(b) r(t) = 〈(x1 − x0)t + x0, (y1 − y0)t + y0, (z1 − z0)t + z0〉,
0 ≤ t ≤ 1

37. r(t) = 〈−2t + 1, −9t + 7, 2t + 3〉, 0 ≤ t ≤ 1

39. r(t) = 〈−4t + 3, 6t − 1, 5t + 4〉, 0 ≤ t ≤ 1

41. The lines are parallel. They are

√
117

7
units apart.

43. The lines intersect at (−8, 8, −9).

45. The lines are parallel. They are 5

√
61
21

units apart.

47.
√

1084
21

49. 4
√

5
5

51. (a) α = −3, (b) α = 15

53. To the nearest tenth of a kilometer, he is at an elevation
of 4.7 km and is 0.7 km east of the summit.

55. See the proof preceding Theorem 10.38.

Section 10.6

1. F, F, F, F, T, T, F, T.

3.
( d

a
, 0, 0
)

,
(

0,
d
b

, 0
)

,
(

0, 0,
d
c

)
. You can plot these three

points and construct the triangle with these points as
vertices to understand the plane that contains them.

5. If the vectors normal to the two planes are not parallel,
the two planes intersect in a line.

7. It means that the three points lie on a single line. Let P,

Q, and R be the points. If the two vectors PQ
−→

and PR
−→

are parallel, the points are collinear. If the three points
don’t lie on the same line, by definition they are
noncollinear.

9. Three noncollinear points determine a unique plane.
Any two distinct points on L along with P determine
the plane. Choose any point Q on L. Construct the

vector PQ
−→

. A normal vector to the plane is given by

N = PQ
−→ × d, where d is the direction vector for L. Use

P and N to find the equation of the plane. In R
3 there

are infinitely many different planes containing every
line.

11. Choose two distinct points on one of the lines and one
point on the other. These three points determine a
unique plane. (See the answer to Exercise 9.) Every
point on both lines lies in the plane determined by the
three chosen points.
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13. Let d and d′ be the direction vectors for the lines L and
L′, respectively. Since the lines are skew,
N = d × d′ �= 0. Any point from L along with N and
any point from L′ along with N determine the unique
pair of parallel planes.

15. The direction vector for L is d = 〈a, b, c〉 and the normal
vector for P is N = 〈α, β, γ 〉. The line and plane are
orthogonal if and only if d and N are scalar multiples.

17. Let Q be the point of intersection between L and P . If L
is orthogonal to P , then every line in P passing through
Q is orthogonal to L, and the angle between L and P is
π

2
. Otherwise, the angle described is the minimum

angle that L can form with any line in P through Q.

19. The formula builds upon the computation for the
component of a vector in the direction of a given vector.
We choose arbitrary points P1 and P2 on lines L1 and

L2, respectively, and |compNP1P2
−→|, where N is the cross

product of the direction vectors of L1 and L2. The
formula works because the skew lines lie on a unique
pair of parallel planes.

21. 4x − y + 5z = 0 23. 2x − y + 6z = 41

25. 12x − 5y + 19z = 61

27. y0z0x + x0z0y + x0y0z = x0y0z0

29. 3x + 7y − 7z = −26

31. The direction vectors for the lines 〈−5, 2, 4〉 and
〈15, −6, −12〉 are scalar multiples of each other, so the
lines are parallel; 14x + 55y − 10z = 137.

33. The point (7, −5, 14) is on both lines;
14x + 3y + 2z = 111.

35. r(t) =
〈
− 8

5
− 11t,

14
5

− 2t, 5t
〉

37. r(t) = 〈4, 3 + 2t, 5t〉
39.

√
2

41. The normal vectors are parallel, so the planes are

parallel. They are
29

3
√

38
units apart.

43. The direction vectors of the lines are 〈2, −4, 5〉 and
〈3, 2, 3〉. Since these vectors aren’t scalar multiples of
each other, the lines either intersect, or are skew. The
planes containing the lines are −22x + 9y + 16z = 81
and −22x + 9y + 16z = −97, respectively, so the lines

must be skew. The distance between the lines is
178√
821

.

45. cos−1
( 4

√
3

9

)

47. π

2

49. The line and plane are parallel. They are
13
15

√
30 units

apart.

51. They intersect at
( 143

7
,

3
7

, 0
)

at an angle of
π

2
− cos−1

( 7√
2738

)
.

53. (a)
1
2

x + 1
4

y +
√

11
4

z = 1, (b) 2x + 2y + z = 7

55. The plane of the beach is 3x + y − 16z = 400. The water
is about 25 feet deep at the buoy.

57. The planes are perpendicular if and only if their normal
vectors are orthogonal, that is if and only if
〈a, b, c〉 · 〈α, β, γ 〉 = aα + bβ + cγ = 0.

59. (a) Let P be the plane. By Theorem 10.39 the distance

from P to P is
|N·RP

−→|
‖N‖ , where N = 〈a, b, c〉 is the normal

vector to P and R is a point on P . At least one of the
constants, a, b, and c is nonzero. Assume c �= 0, the
other cases are similar. Since R is on P , it has

coordinates
(

x1, y1, − d+ax1 +by1

c

)
. Thus,

RP
−→ =

〈
x0 − x1, y0 − y1, z0 + d+ax1 +by1

c

〉
. So,

|N·RP
−→|

‖N‖ =
|ax0 −ax1 +by0 −by1 +cz0 +d+ax1 +by1|√

a2 +b2 +c2
= |ax0 +by0 +cz0 +d|√

a2 +b2 +c2
.

(b)
√

2

61. If L1 and L2 lie in the same plane, then they intersect,
are parallel, or are identical. If they are parallel or
identical then d1 × d2 = 0, so the result holds. If L1 and
L2 intersect, then d1 × d2 is orthogonal to every vector
in their plane, so again the result holds. Conversely, if
(P0 − Q0) · (d1 × d2) = 0, the vector d1 × d2 is
orthogonal to every vector connecting a point on line
L1 and a point on L2, so d1 × d2 is the normal vector to
the plane containing the two lines.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 11

Section 11.1

1. F, F, T, T, T, F, F, F.

3. The limit lim
x→c

f (x) = L means that for all ε > 0, there

exists δ > 0 such that if x ∈ (c − δ, c) ∪ (c, c + δ), then
f (x) ∈ (L − ε, L + ε).

5. The limit of vector-valued function is defined in terms
of the limits of the components of the functions. Each
component is a function of a single variable. These
limits are defined using an “epsilon-delta” definition.

7. The function r is said to be continuous at a point c in
the domain of r if lim

t→c
r(t) = r(c).

9. Since the functions x(t) and y(t) are both continuous
functions, by the Extreme Value Theorem each of these
functions has a minimum value and a maximum value
on the interval [a, b]. Let M be the largest of the
absolute values of these four numbers. The graph of r(t)
on [a, b] is contained within the circle x 2 + y 2 = 2M 2.
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11. Since the functions x(t), y(t) and z(t) are all continuous
functions, by the Extreme Value Theorem each of these
functions has a maximum value on the interval [a, b].
Let M be the maximum of these three maxima. The
graph of r(t) on [a, b] is contained within the sphere
x 2 + y 2 + z 2 = 3M 2.

13. r(t) = 〈cos 2t, sin 2t, 2t〉 , [0, π ]

15. We need lim
t→∞

y(t) = L, where L is the value of the

horizontal asymptote and one of the limits;
lim
t→∞

x(t) = ∞ or lim
t→∞

x(t) = −∞. For example, the

function r(t) =
〈
t, 5 − 1

t

〉
.

17. x1(t)x2(t) + y1(t)y2(t)

19.

x
�5 �2

y
3

1

21. y
3

1

�5

�3

�5 �3 �1
x

1

23. The graphs are the same. The rate at which the curve is
drawn is faster when k is large.

25. Every point on the graph of r(t) satisfies the equations
of both cylinders.

27. x(t) = 2 − sin t, y(t) = 4 + cos t.

5

4

3

y

x
2 31

29. x(t) = 1 + sin t, y(t) = 3 − cos 2t. The graph is the
portion of the parabola shown below. The motion starts

at (1, 2) and the particle moves to the right for t ∈
[
0,

π

2

]

and t ∈
[ 3π

2
, 2π
]

and to the left for t ∈
[

π

2
,

3π

2

]

4

3

2

y

x
21

31. x(t) = t, y(t) = t 2, z(t) = t 3

z

x
y4

22

2

4

6

8

33. x(t) = cos 2 t, y(t) = sin 2t

y
1

x

�1

0.5

35. 〈1 + t, 3t + t 2, 2t 3〉 37. 〈5 cos t, 5 sin t〉
39. 0 41. 0

43. 〈0, −1, −1〉 45. 〈1, 0, 1e〉
47. x(t) = tan t, y(t) = tan t − t + 1

49. Every point on the graph of r(t) satisfies both the
equation of the sphere with equation x 2 + y 2 + z 2 = 25
and the plane with equation 4x − 3z = 0.

51. A ≈ 24.7

53. These curves both lie on the cylinder with equation
x 2 + y 2 = 1. One progresses clockwise around it, the
other counterclockwise. Therefore, they must meet.

55. The parametric equations x(t) = t sin t, y(t) = t cos t and
z(t) = t satisfy the equation z = √x 2 + y 2. Therefore,
the graph of r(t) lies on the graph of the cone.

57. Let r1(t) = 〈x1(t), y1(t)〉 and r2(t) = 〈x2(t), y2(t)〉. The
components r1(t) and r2(t) are continuous. We know
that products and sums of continuous functions are
continuous. Therefore, the function
r1(t) · r2(t) = x1(t)x2(t) + y1(t)y2(t) is continuous. The
result follows from this.

59. See the proof in Exercise 57.

61. We know that products and sums of differentiable
functions are differentiable. Therefore, the function
r1(t) · r2(t) = x1(t)x2(t) + y1(t)y2(t) is differentiable.
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Section 11.2

1. F, F ,T, T, F, F, F, F.

3. The function is differentiable at c if lim
h→0

f (c+h)−f (c)
h

exists.
5. A vector function is differentiable at a point c if each of

its component functions is differentiable at c. The
differentiability of these scalar functions at a point has
already been defined.

7. Let r(t) = 〈t, |t|〉. The graph of this function is the same
as the graph of y = |x|. The corner at the origin means
that the function doesn’t have a well-defined tangent
vector at the origin.

9. Let f (x) be a function defined on the interval [a, b]. The
function is integrable if lim

n→∞
∑n

k=1 f (x∗
k )�x exists, where

�x = b−a
n

, xk = a + k�x, and x∗
k ∈ [xk−1, xk].

11. A vector function is integrable on an interval [a, b] if
each of its component functions is integrable on [a, b].
The integrability of these scalar functions on [a, b] has
already been defined.

13. 〈x′(t), y′(t), z′(t)〉
15. d

dτ
(r( f (τ ))) = r′( f (τ )f ′(τ ).

17. r′(t) = 〈3t 2, 15t 2, −6t 2〉. If t0 and t1 are positive real
numbers, then r′(t0) = 〈3t 2

0 , 15t 2
0 , −6t 2

0 〉 = 3t 2
0 1, 5, −2

and r′(t1) = 〈3t 2
1 , 15t 2

1 , −6t 2
1 〉 = 3t 2

1 1, 5, −2. Since r′(t0)
and r′(t1) are both multiples of the same vector, they are
scalar multiples of each other. The graph of r(t) is a
portion of a straight line.

19. They differ by a constant vector.

21. 〈cos τ , 2 sin τ cos τ , 3 sin 2 τ cos τ 〉

23.
〈
sin τ + τ cos τ ,

1
2
√

τ
, cos τ − τ sin τ

〉

25. x = e + 2et, y = t, z = 0; 2ex + y = 1 + 2e 2

27. x = 1 + t, y = 0, z = −4t; x − 4z = 1

29. x = 3t, y = 4t, z = t + π/2; 3x + 4y + z = π/2

31. v(t) = 〈(t + 1)et, 1 + ln t〉, a(t) = 〈(t + 2)et, 1
t 〉

33. v(t) = 〈cos t, − sin t, 4 cos 2t〉,
a(t) = 〈− sin t. − cos t, −8 sin 2t〉

35. 〈3τ 2, 6τ 2(τ 3 + 1), 9τ 2(τ 3 + 1) 2〉
37.
〈
− 1

τ 2
sec

1
τ

tan
1
τ

, 1,
1
τ 2

e1/τ (ln τ − τ )
〉

39. 〈−15 sin(15τ − 6), 20 cos(20τ − 8), 5〉
41. 〈− cos t + c1, sin t + c2, − ln | cos t| + c3〉
43. 〈0, 0, 2π 2〉
45. 〈 1

2
t 2 + 3,

1
3

t 3 − 4〉
47. 〈e t + 1 − e, t ln t − t − 5〉
49.
〈 1

3
t 3 + t + 2,

1
4

t 4 − 2t − 3
〉

51. 〈5t, −16t 2 + 5t + 26〉

53. (1, 1, 1)

55. The circles intersect at
( 9

4
, ±

√
63
4

)
. The angle of

intersection at both points is cos−1 3
4

radians.

57. The function is r(t) = 〈0, e t, 2e t〉. The graph is the ray
with parametric equations x = 0, y = s, z = 2s for s > 0.

59. (a) 〈−0.5dy(t), −9.8t − dy(t)〉, (b) − 9.8t+y′(t)
d ,

(c) x′(t) = 4.9t + 0.5y′(t), (d) 〈2.45t 2 + 0.5y(t), y(t)〉,
(e) No, he should not jump.

61. If a(t) = 〈0, 0, 0〉, then v(t) = 〈α, β, γ 〉, where α, β, and
γ are constants. We also have
r(t) = 〈αt + δ, βt + ε, γ t + λ〉, where δ, ε, and λ are also
constants. The graph of r(t) is a straight line.

63. We will prove the case where r(t) = 〈x(t), y(t)〉. The case
where r(t) has three components is similar. We have
kr(t) = 〈kx(t), ky(t)〉 and
d
dt

(kr(t)) =
〈 d

dt
(kx(t)),

d
dt

(ky(t))
〉
= 〈kx′(t), ky′(t)〉 =

k〈x′(t), y′(t)〉 = kr′(t).

65. Let r1(t) = 〈x1(t), y1(t), z1(t)〉 and
r2(t) = 〈x2(t), y2(t), z2(t)〉. Then
d
dt

(r1(t) · r2(t)) = d
dt

(x1x2 + y1y2 + z1 + z2)

= x′
1x2 + x1x′

2 + y′
1y2 + y1y′

2 + z′
1z2 + z1z′

2

= d
dt

(〈x1, y1, z1〉) · 〈x2, y2, z2〉 + 〈x1, y1, z2〉 · d
dt

(〈x2, y2, z2〉)
= r′

1(t) · r2(t) + r1(t) · r′
2(t).

67. Let r(t) = 〈x(t), y(t), z(t)〉. Then
d

dτ
(r(t)) = d

dτ
(〈x, y, z〉)

=
〈 dx

dt
dt
dτ

,
dy
dt

dt
dτ

,
dz
dt

dt
dτ

〉
=
〈 dx

dt
,

dy
dt

,
dz
dt

〉 dt
dτ

= dr
dt

dt
dτ

.

69. We will show that ‖r(t)‖2 is a constant. Since r is
continuous, this is equivalent. Taking the derivative we

have
d
dt

(‖r(t)‖ 2
) = d

dt
(r(t) · r(t)) = 2r(t) · r′(t) = 0.

Since the derivative of ‖r(t)‖2 is a zero, we must have
‖r(t)‖ is a constant.

71. Apply the result of Exercise 69.

Section 11.3

1. F, T, F, T, T, T, T, T.

3. All of these vectors have magnitude one. The unit
tangent vector points straight ahead. The principal unit
normal vector is orthogonal to the unit tangent vector
and points “into” the curve. Together these two vectors
determine the osculating plane that is the plane in
which the curve fits “best” at the point of tangency. The
binormal vector is normal to the osculating plane. The
tangent vector, normal vector and binormal vector form
a right-hand triple, so when the curve is bending to the
left, it points up, and when the road bends to the right,
it points down.

5. The unit tangent vector won’t exist at any point t0 at
which r′(t0) = 0.
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7. If r′(t0) �= 0, then they point in the same direction, but
T(t0) is a unit vector, and r′(t0) can have a different
length.

9. N(t) = T′(t)
‖T′(t)‖

11. All of these vectors have magnitude one. The unit
tangent vector points straight in the direction of motion
of the curve. The principal unit normal vector is
orthogonal to the unit tangent vector and points “into”
the curve. Together these two vectors determine the
osculating plane that is the plane in which the curve fits

“best” at the point of tangency. The derivative
dN
dt

∣∣∣
t0

is

orthogonal to both the tangent vector and normal
vector.

13. At each point t0 at which r(t0) �= 0,
B(t0) = T(t0) × N(t0), where T and N are the unit
tangent vector and principal unit normal vector,
respectively.

15. It isn’t defined when r′(t) = 0.

17. Find r′(t0). If r′(t0) �= 0 continue. Find the unit tangent
vector at t0, T(t0). If T(t0) �= 0, continue. Find the
principal unit normal vector at t0, N(t0). Find the
binormal vector at t0, B(t0) = T(t0) × N(t0). The
osculating plane contains the point r(t0) and has B(t0)
as its normal vector.

19. 3 21. x = 1

23. 1√
144t4 +4t2 +25

〈2t, 5, 12t 2〉

25. 1
|sin(t)cos(t)

〈− cos 2 t sin t, sin 2 t cos t〉

27. 1
5

〈3 cos t, −5 sin t, 4 cos t〉

29. T(1) =
〈√

5
5

,
2
√

5
5

〉
, N(1) =

〈
− 2

√
5

5
, −

√
5

5

〉

31. T(π ) = 〈− sin απ , cos απ〉,
N(π ) = 〈− cos απ , − sin απ〉

33. T(π ) =
〈
− 3

5
, 0, − 4

5

〉
, N(π ) = 〈0, 1, 0〉

35. T(1) =
〈√

14
14

,
√

14
7

,
3
√

14
14

〉
, N(1) = 1√

266
〈−11, −8, 9〉,

B(1) = 1√
123

〈7, −7, 5〉, 7x − 7y + 5z = 5

37. T(0) =
〈

1
2

, − 1
2

,
√

2
2

〉
, N(0) =

〈√
2

2
,
√

2
2

, 0
〉
,

B(0) =
〈
− 1

2
,

1
2

,
√

2
2

〉
, −x + y + √

2z = 0

39. T
(

π

2

)
=
〈
− 2

√
5

5
, 0,

√
5

5

〉
, N
(

π

2

)
=
〈√

2
2

,
√

2
2

, 0
〉
,

B
(

π

2

)
=
〈
−

√
5

5
, 0, − 2

√
5

5

〉
, x + 2z = π

41. Normal plane: x − y + √
2z = 0. Rectifying plane:

x + y = 2.

43. (a) Their tangent vector is 〈1.5t0.5, 1.7 − 2t〉, so that their
speed is 4t 2 − 4.45t + 2.89. This is concave up, so their
maximum speed will occur when t is a maximum on the
interval at t = 1.7. (b) Approximately 〈0.95, −0.30〉.

45. For any two vectors a and b in R
3

‖a × b‖ = ‖a‖‖b‖ sin θ . If a and b are orthogonal unit
vectors, then ‖a‖, ‖b‖ and sin θ are all one. Thus, a × b
is a unit vector.

47. The three properties follow from the definition of the
three vectors and the geometric properties of the cross
product. Since T(t0) and N(t0) are orthogonal unit
vectors, their cross product B(t0) is another unit vector
and is orthogonal to them both. Furthermore, we know
that for any two nonparallel vectors a and b, a, b, and
a × b form a right-hand triple.

Section 11.4

1. F, F, T, T, F, F, F, T.

3. Informally, it means that for every unit change in the
parameter, a unit change occurs along the curve. For the
formal definition see Defintion 11.19.

5. There are more ways for a curve to bend. Think of a
spring. The concepts of “concave up” and “concave
down” are insufficient to describe how it is bending.

7. So that curvature has a consistent definition, the rate of
change of the tangent vector with respect to arc length
provides a relatively simple definition. Unfortunately, it
is often difficult to find an arc length parametrization
for a curve.

9. When you have an arc length parametrization for the
curve, use the definition. Use Theorem 11.23(a) when
you have a space curve and T′(t) is easy to compute.
Use Theorem 11.23(b) when you have a
twice-differentiable parametrization for the space curve.
Use Theorem 11.24(a) for a planar curve defined by a
twice-differentiable function y = f (x). Use Theorem
11.24(b) for a planar curve defined by a vector function.

11. (a) By Theorem 11.23, κ = ‖r′(t)×r′′(t)‖∥∥r′(t)
∥∥3 . So, if

r(t) = 〈a + αt, b + βt, c + γ t〉, then r′(t) = 〈α, β, γ 〉 and
r′′(t) = 〈0, 0, 0〉, so κ = 0. Since κ = 0, the radius of
curvature is undefined. (b) A straight line doesn’t curve,
so this is consistent with our concept of curvature.

13. Let (x0, y0) be a point on the curve. Find the curvature,
κ , at (x0, y0) using the appropriate part of Theorem

11.24. If κ �= 0, the radius of curvature ρ = 1
κ

. Find the
normal vector, N at (x0, y0). The radius of the osculating
circle is ρ. The center of the osculating circle is the
terminal point of the position vector 〈x0, y0〉 + ρN.

15. y′′ = 2 and by Theorem 11.24, κ = 2

(1+4x2)3/2 .

17. y

5

4

3

2

1

x
�3 �2 �1 1

19. y

10

5

x
3
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21.

2

y

x
2 4

23. 6π

25. 488
27

27.
√

3 (eπ − 1)

29. The arc length of the curve on the interval [0, 1] is
√

30;

r(s) =
〈
3 +

√
30

15
s, 4 −

√
30

30
s, −1 +

√
30
6

s
〉

31. κ =
√

2
4

y

4

2

x
�4 �2

33. κ = 1

3

2

1

π

2

y

x

35.
√

3
6

y

4

2

6

x
�4 2�2

37. ab(
a2 sin2 t+b2 cos2 t

)3/2 39. 1

2
√

2(1−cost)

41.
√

t4 +5t2 +8
(t2 +2)3

43.
√

t4 +(4+α2)t2 +4+4α2

(t2 +1+α2)3

45. ± 1
451/4

47. κ = a
a2 +b2

49. κ = t 3
√

t6 +t2 +4

(t4 +1)3 has the stated limits.

51. We differentiate:
d
ds

(B) = d
ds

(T × N) = dT
ds

× N + T × dN
ds

. Since the

quantities on the right exist at every point on C, the
derivative exists.

53. We differentiate:
d
ds

(N) = d
ds

(B × T) =
dB
ds

× T + B × dT
ds

= −τN × T + B × (κN) = τB − κT

55. 6+t2

4+t2 +t4

57. By choosing the coordinate axes appropriately we may
assume that the curve C lies in the xy-plane. Thus, the
binormal vector B(t) = ±k, and in either case is a

constant. Therefore,
dB
ds

= 0. Thus, the torsion is zero.

59. r(t) x(t)

x
21

y

0.1

�0.1

1

2
x

t
1 2

y(t)

t
21

y
0.15

�0.15

(b) When the x-coordinate changes slowly, that means
that the y-coordinate is changing quickly relative to it.
The greatest curvature should occur near the point
where the slope of the x-coordinate is smallest, while
the y-coordinate changes quickly. (c) The slope of the
first component of the curve is a minimum at about
t = 0.91, and the second component turns quickly at
about t = 0.92. We expect the curvature to be greatest at
about that point.

61. By Theorem 11.24 κ = |f ′′(x)|(
1+( f ′(x)

)2)3/2 . Let x be a point

of inflection of a twice-differentiable function, f . Since
f ′′(x) = 0 at each inflection point, we have κ = 0.
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63. Let r(t) be a twice differentiable vector-valued function
with graph C. By Theorem 11.23 the curvature at each

point on C is κ = ‖r′(t)×r′′(t)‖∥∥r′(t)
∥∥3 . But recall that

‖r′(t) × r′′(t)‖ = ∥∥r′(t)
∥∥ ‖r′′(t)‖ sin θ where θ is the angle

between r′(t) and r′′(t). Since the speed of the particle is
constant, by Theorem 11.12 r′(t) and r′′(t) are

orthogonal. Therefore, κ = ‖r′′(t)‖∥∥r′(t)
∥∥2 . But the

denominator of this expression is the square of the
speed, which we are assuming is constant. Therefore,
the curvature is proportional to the magnitude of the
acceleration.

65. Let r(t) = 〈t, f (t), 0〉. So, r′(t) = 〈1, f ′(t), 0〉 and
r′′(t) = 〈0, f ′′(t), 0〉. By Theorem 11.23

κ = ‖r′(t)×r′′(t)‖∥∥r′(t)
∥∥3 = ‖〈0,0,f ′′(t)〉‖

‖〈1,f ′(t),0〉‖ = |f ′′(t)|
(1+(f ′(t))2)3/2

.

Section 11.5

1. T, F, T, T, F, T, F, F.

3. When the downward acceleration due to the force of
gravity is smaller, an object takes longer to fall to the
ground. When the object is thrown horizontally, it still
takes longer to hit the ground. Therefore, it travels
farther.

5. You can include the wind velocity as a vector added to
the velocity vector of the projectile.

7. r(b) − r(a)

9. These are the magnitudes of the acceleration vector,
parallel to the tangent vector and parallel to the
principal normal unit vector, respectively. Their values

are given by aT = v·a
‖v‖ and aN = ‖v×a‖

‖v‖ .

11. The tangential component of acceleration always points
in the instantaneous direction of your motion, tangent
to the curve defined by your path. The normal
component of acceleration is orthogonal to your
direction of motion and points “into” the curve, so if
you are curving to the left, it points to your left; if your
are ascending, it points upward, etc.

13. (a) If you eliminate the parameter, the function may be
expressed in the form y = x 2. (b) This will occur when
‖r(t)‖ is a constant and more generally when
f ′(t)f ′′(t) + 4f (t)(f ′(t)) 3 + 4(f (t)) 2f ′(t)f ′′(t) = 0.

15. (a) 〈0, −π〉, (b) π , (c)
1
2

(π
√

π 2 + 1 + ln(π + √
π 2 + 1))

17. (a) 〈α sin β, α(cos β − 1), γ 〉,
(b)
√

α 2 − 2α cos β + 1 + γ 2, (c)
√

α 2β 2 + γ 2

19. aT = −27sin3tcos3t+64sin4tcos4t√
9cos2 3t+16sin2 4t

,

aN = |48cos3tcos4t+36sin3tsin4t|√
9cos2 3t+16sin2 4t

21. aT = √
3e t, aN = √

2e t

23. aT = 0, aN = 1

25. The values of t are the roots of 16t 4 − 129t 2 + 101 = 0.
These are approximately ±0.94 seconds and ±2.68
seconds. Only the positive values make sense in the
context of the problem. When t = 0.94, θ ≈ 14◦ and
when t = 2.68, θ ≈ 70◦.

27. (a) 10 meters per second, (b) 54 meters

29. (a) 0◦, (b) 292 feet

31. 86,000 meters

33. The function r(t) = 〈x(t), y(t)〉 =〈
(‖v0‖ cos θ ) t, − 1

2
gt 2 + (‖v0‖ sin θ ) t

〉
models the

motion of the ball. The ball will hit the ground when
the y-component is zero. This will occur when

t = ‖v0‖sinθ

g
. At this time it will have travelled

‖v0‖sinθ cosθ

g
units horizontally. Thus, the x-component

will be maximized when θ = 45◦.
35. If a(t) = 〈0, 0, 0〉, then the velocity vector is

v(t) = 〈α, β, γ 〉 for constants α, β and γ . The position
function will be r(t) = 〈a + αt, b + βt, c + γ t〉, where a,
b, and c are three more constants. The graph of r(t) is a
straight line.

37. Let r(t) = 〈t, f (t), 0〉. Then v(t) = 〈1, f ′(t), 0〉 and
a(t) = 〈0, f ′′(t), 0〉. We have v(t) × a(t) = 〈0, 0, f ′′(t)〉. At

a point of inflection we have aT = ‖v(t)×a(t)‖
‖v(t)‖ = 0.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 12

Section 12.1

1. T, F, T, F, T, T, T, T.

3. The graph of f is the set {(x, f (x))|x ∈ R}.
5. The graph of f is the set {(x, y, z, f (x, y, z))|(x, y, z) ∈ R

3}.
7.

x
1�1

y

z

y
x

1
1

(a) (b)

(c) The prefix hyper means above. The range of the
square root function is nonnegative real numbers.
x 2 + y 2 + z 2 + w 2 = 1. (d) Hypersphere, n, R

n+1.

9. A point (x, y, z) is on the graph of f if and only if (x, y) is
in the domain of the function f .

11. A point (x, y, z, w) is on the graph of f if and only if
(x, y, z) is in the domain of the function f .
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13.

y
x

z

15. z

y

x

17. See the answer to Exercise 13

19. See the answer to Exercise 15

21. z

y
x

23. −24, 5, Domain( f ) = R
2, Range( f ) = R

25. (1 + e)−1/2, 0, Domain(f ) = {(x, y)|0 < x < 1 and y >

0} ∪ {(x, y)|x < 0 and y < 0}, Range(f ) = R

27. 26,
49
36

, Domain(f ) = R
3, Range(f ) = {w ∈ R|w ≥ 0}

29. 1

31. sin(cos t)

33. cost+sint
sint+1−t

35. 〈1 − t, (1 − t) 2, (1 − t) 3〉
37. F(x, y) = √x 2 + y 2

z

y
x

39. F(x, y) = x 2 + y 2

z

y
x

41. F(x, y) = sin
√

x 2 + y 2

z

y
x

43. y

3
4

2

�1
�2

1

�3
�4

x
�1 1

45. y

2

�1

�2

1

x
�1

c � �2

c � 0

c � 3

c � 1

c � 2

c � �1

c � �3

1

47. y

2

�1

�2

1

x
�2 �1 21
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49. Only the level curves for c = −1, 0 and 1 are defined.
The level curves for c = −1 are the parallel lines defined
by x + y = −π

2
+ 2kπ where k ∈ Z. The level curves for

c = 0 are the parallel lines defined by x + y = kπ where
k ∈ Z. The level curves for c = 1 are the parallel lines
defined by x + y = π

2
+ 2kπ where k ∈ Z.

51. y

2

�1

�2

1

x
�1 1

53. The level surfaces are the planes with equations
x + 2y + 3z = c for c = −3, −2, −1, 0, 1, 2, 3.

55. The level surface
x

y−z
= c consists of every point on the

plane x − cy + cz = 0 except those points where y = z.

57. The level surfaces for c = −3, −2 and −1 are undefined.
The level surface x 2 + y 2 + z 2 = 0 is the origin. The
level surfaces x 2 + y 2 + z 2 = c for c = 1, 2, and 3 are the
spheres centered at the origin with radii 1,

√
2, and

√
3,

respectively.
59. I A 61. III B

63. Domain(V)= {(r, h)|r > 0 and h > 0},
S(r, h) = 2πr 2 + 2πrh.

65. V(x, y, z) = xyz, S(x, y, z) = 2xy + 2xz + 2yz,
Domain(V)=Domain(S)= {(x, y, z)|x > 0, y > 0 and z >

0}.
67. (a) From examining a plot, we can see that the caribou

are distributed up and down the valley along the line
y = −0.5x + 2. (b) From examining a plot, we can see
that the caribou are distributed up and down the valley
along the line y = −0.5x + 2. Thus the stream roughly
follows the bottom of the valley, 〈4, −2〉.

69. The graph of the equation z = ax + by + c is a plane.
The normal vector to the plane ax + by − z + c = 0 is
〈a, b, −1〉. When x = 0 and y = 0 we have z = c.

71. If c1 is not equal to c2, then since f is a function, f (x, y)
cannot equal both c1 and c2 for the same input (x, y).
Thus, c1 must equal c2 in order for the level curves to
intersect. But this implies that the level curves are
identical.

73. You may model your proof on the solution of
Exercise 71.

Section 12.2

1. T, F, T, T, F, T, F, T.

3. Nothing, the limit may or may not exist.

5. lim
(x,y)→(3,−7)

f (x, y) = 5, f (3, −7) could be any real number,

or could even be undefined.
7. When lim

x→c
f (x) = L, the function f must be defined on

(c − δ, c) ∪ (c, c + δ) for some δ > 0.

9. When lim
(x,y,z)→(a,b,c)

f (x, y, z) = L, the function f must be

defined on a punctured ball defined by the inequality
0 <
√

(x − a) 2 + (y − b) 2 + (z − c) 2 < δ for some δ > 0.

11. For f to be continuous at c, we must have
lim
x→c

f (x) = f (c). For the limit to exist, f must be defined

on (c − δ, c) ∪ (c, c + δ) for some δ > 0.

13. Along the x-axis lim
(x,y)→(0,0)

C

x2y
x4 +y2

= lim
x→0

x2 ·0
x4 +0

= 0. Along

the y-axis lim
(x,y)→(0,0)

C

x2y
x4 +y2

= lim
y→0

0·y
0+y2

= 0.

15. We say that lim
(x,y)→(a,b)

f (x, y) = ∞ if for every M > 0 there

is a δ > 0 such that f (x, y) > M whenever√
(x − a) 2 + (y − b) 2 < δ.

17. Let f (x, y) = x2

x2 +y2
and g(x, y) = y2

x2 +y2
then

lim
(x,y)→(0,0)

(
f (x, y) + g(x, y)

) = 1; but neither of the

individual limits exists as (x, y) → (0, 0). This does not
contradict the sum rule for limits of a function of two
variables since neither of the individual limits exists.

19. (a) The quotient of two continuous functions is
continuous, as long as the denominator is not zero.
(b) For every real number a, every open disk containing
the point (a, a) contains infinitely many points of the
line y = x. Therefore, the quotient is not even defined
for infinitely many points in any open ball containing
(a, a).

21. (a) Open, (b) {(x, y)|x ≤ 0 or y ≤ 0},
(c) {(x, 0)|x ≥ 0} ∪ {(0, y)|y ≥ 0}

23. (a) Closed, (b) {(x, y)||x| + |y| > 1},
(c) {(x, y)||x| + |y| = 1}

25. (a) Both open and closed, (b) R
2, (c) the empty set

27. (a) Open, (b) {(x, y, z)|x ≤ 0, y ≥ 0 or z ≥ 0},
(c) {(x, y, 0) | x ≥ 0, y ≤ 0} ∪ {(x, 0, z) | x ≥ 0,
z ≤ 0} ∪ {(0, y, z) | y ≤ 0, z ≤ 0}

29. (a) Closed, (b) {(x, y, z)|z �= 0} (c) the xy-plane

31. (a) Both open and closed, (b) R
3, (c) the empty set

33. 0 35. − 5
3

37. 9
2 39. does not exist

41. lim
r→0

r2 cos2 θ

r2
= lim

r→0
cos 2 θ . Since the limit is a

nonconstant function of θ , the limit does not exist.

43. lim
r→0

(r2 cos2 θ )(r2 sin2 θ )
r2

= lim
r→0

r 2 cos 2 θ sin 2 θ = 0.

45. lim
r→0

(rcosθ )(rsinθ )
r

= lim
r→0

r cos θ sin θ = 0.

47. Domain( f )= {(x, y)|x 2 �= y 2}. f is continuous on its
domain.

49. Domain( f )= {(x, y)|y ≥ −x 2}. f is continuous on the
set {(x, y)|y > −x 2}.
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51. Domain( f )= {(x, y, z)|x + y + z > 0}. f is continuous on
its domain.

53. Domain( f )= R
2. f is continuous everywhere.

55. Domain( f )= R
2. f is continuous everywhere.

57. The limit is zero. The pressure would decrease as the
gas cools off.

59. The limit is infinite. The pressure increases without
bound as the gas is compressed.

61. (a) y = 232
119

x − 4350
17

, (b) −40.38 feet, (c) There are many
possibilities. The surface might not be as planar as her
previous results led her to believe. She might have been
unlucky and hit a pocket or hole in the basalt. Or again,
there might be a joint in the basalt layer that would
cause a discontinuity in its depth.

63. x ∈ S if and only if x /∈ S c. x /∈ S c if and only if x ∈ (S c)c.
Therefore, S = (S c)c.

65. We prove the statement when S ⊆ R
2. The proof for R

3

is similar. First, assume S is open. Thus, for every x ∈ S
there is an open disk D such that x ∈ D ⊆ S. This
implies that x /∈ ∂S. Therefore, ∂S ∩ S = ∅. Now, assume
S is not open. There exists an x ∈ S such that for every
open disk D containing x, D ∩ S c is nonempty.
Therefore, x ∈ ∂S ∩ S.

67. We prove the statement when S ⊆ R
2. The proof for R

3

is similar. x ∈ ∂S if and only if for every open disk D
containing x, D intersects both S and S c. Since
S = (S c)c, this occurs if and only if x ∈ ∂(S c).

69. By Exercise 68, ∂S is a closed set, and by Exercise 66 the
boundary of a closed set is a subset of the set.
Therefore, ∂ (∂S) ⊆ ∂S.

71. The complement of ∅ in R
2 is R

2. By Exercise 70, ∅ is
both open and closed. Since the complement of an
open set is closed and the complement of a closed set is
open, R

2 is both open and closed.

Section 12.3

1. T, T, F, F, T, F, F, F.

3. The slope remains zero.

5. fx(x0, y0) and fy(x0, y0) represent the slopes of the curves
formed by the intersection of the surface and the planes
y = y0 and x = x0, respectively. The lines tangent to
these curves are also tangent to the surface.

7. (a) The graph of g is the “cylinder” created when the

graph of f is translated in the x direction. (b)
∂g
∂x

exists

for every value of x and y if y is in the domain of f .
∂g
∂y

exists for all values of x and y where f ′(y) exists. (c)
∂g
∂x

= 0 and
∂g
∂y

= f ′(y)

9. gx(0, 0) = lim
h→0

h2 −0
h

= 0 = lim
h→0

−h2 −0
h

= gy(0, 0). The

tangent line in the x direction is the x-axis and the
tangent line in the y direction is the y-axis. The plane
containing these two lines is z = 0.

11. fx(0, 0) = lim
h→0

f (h,0)−f (0,0)
h

= lim
h→0

0−0
h

= 0. The

computation for fy(0, 0) is similar. The function is
discontinuous at (0, 0).

13. fx(0, 0, 0) = lim
h→0

f (h,0,0)−f (0,0,0)
h

= lim
h→0

0−0
h

= 0. The

computations for fy(0, 0, 0) and fz(0, 0, 0) are similar. The
function is discontinuous at (0, 0, 0).

15. (a) 2 2, (b) 2 3, (c) 2n

17. (a) 3, (b) 4, (c) n + 1

19. f (x, y) − g(x, y) = h(y), where h(y) is a function of y

21. f (x, y) − g(x, y) = C, where C is a constant

23. −2

25. ∂ f
∂x

= y2

z
,
∂ f
∂y

= 2xy
z

,
∂ f
∂z

= − xy2

z2

27. ∂ f
∂x

= e x(sin(xy) + y cos(xy)),
∂ f
∂y

= xe x cos(xy)

29. ∂ f
∂x

= yxy−1,
∂ f
∂y

= (ln x)x y

31. ∂ f
∂x

= sin y,
∂ f
∂y

= x cos y

33. ∂ f
∂r

= sin θ ,
∂ f
∂θ

= r cos θ

35. ∂ f
∂x

= y2z
(x+z)2

,
∂ f
∂y

= 2xy
x+z

,
∂ f
∂z

= − xy2

(x+z)2

37. (a) x = t, y = π

2
, z = π

2
t, (b) x = 0, y = π

2
+ t, z = 0,

(c)
π

2
x = z

39. (a) x = e + t, y = 3, z = e 3 + 3e 2t,
(b) x = e, y = 3 + t, z = e 3 + e 3t, (c) 3e 2x + e 3y − z = 5e 3

41. (a) x = 2 + t, y = π

3
, z = √

3 +
√

3
2

t,

(b) x = 2, y = π

3
+ t, z = √

3 + t, (c)
√

3x + 2y − 2z = 2π

3

43. ∂ 2f
∂x2

= e x(sin(xy) + 2y cos(xy) − y 2 sin(xy)),

∂ 2f
∂x∂y

= ∂ 2f
∂y∂x

= e x(cos(xy) + x cos(xy) − xy sin(xy)),

∂ 2f
∂y2

= −x 2e x sin(xy)

45. ∂ 2f
∂x2

= y(y − 1)xy−2,
∂ 2f
∂x∂y

= ∂ 2f
∂y∂x

= xy−1(1 + y ln x),

∂ 2f
∂y2

= (ln x) 2x y

47. ∂ 2f
∂x2

= 0,
∂ 2f
∂x∂y

= ∂ 2f
∂y∂x

= cos y,
∂ 2f
∂y2

= −x sin y

49. ∂ 2f
∂r2

= 0,
∂ 2f
∂r∂θ

= ∂ 2f
∂θ∂r

= cos θ ,
∂ 2f
∂θ 2

= −r sin θ

51. f (x, y) = h(y)

53. f (x, y) = xh1(y) + h2(y)

55. f (x, y, z) = h(y, z)

57. f (x, y, z) = xh1(y, z) + h2(y, z)

59. ∂g
∂y

= ∂h
∂x

, F(x, y) = e x cos y + y 2 + C
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61. ∂g
∂y

= ∂h
∂x

, F(x, y) = tan−1(xy) + C

63. xe y − 7y + C = 0

65. e x ln y + 1
4

x 4 + C = 0

67. ∂V
∂r

= 2πrh. This tells us how fast the volume changes

with a unit change in the radius.
∂V
∂h

= πr 2. This tells us
how fast the volume changes with a unit change in the
height.

69. (b) 0.04eπy/2 sin
πx
2

71. Both results follow from the Chain Rule (Theorem
2.12), the power rule, and the definition of the partial
derivative.

73. Both results follow from the Quotient Rule (Theorem
2.11) and the definition of the partial derivative.

75. ∂h
∂y

= g′(y), so
∂ 2h
∂x∂y

= 0. Similarly,
∂h
∂x

= f ′(x), so

∂ 2h
∂y∂x

= 0.

Section 12.4

1. T, T, F, F, F, T, F, T.

3. There are two unit vectors in R
1, i and −i. There are

infinitely many unit vectors in R
n when n > 1.

5. The directional derivative of f (x, y) at (x0, y0) in the
direction of the unit vector u = 〈a, b〉 is the limit

lim
h→0

f (x0 +a·h,y0 +b·h)−f (x0,y0)
h

, provided that this limit

exists.

7. Duf (v) = lim
h→0

f (v+hu)−f (v)
h

, provided that this limit

exists.
9. (a) Du = 3α − β, (b) 3kα − kβ, (c) The limit from part

(b) is different for each value of k. We want the value of
the directional derivative to depend upon the direction
of u, not its magnitude.

11. lim
h→0

f (c+αh)−f (c)
h

, α = ±1

13. See Definition 12.27.

15. If f (x, y) is differentiable at the point (a, b), all of the
lines tangent to the surface defined by f at (a, b) lie in
the same plane, so any two distinct lines in that plane
may be used to determine the equation of the plane.

17. If f (x, y, z) is differentiable at the point (a, b, c), all of the
lines tangent to the graph of f at (a, b, c) lie in the same
hyperplane, so any three non-coplanar lines in that
hyperplane may be used to determine the equation of
the hyperplane.

19. Let y = f (x) be a function of n variables defined on an
open set containing the point x0 and let
�y = f (x0 + �x) − f (x0). The function f is said to be
differentiable at x0 if the partial derivatives fxi (x0) exist
for each 1 ≤ i ≤ n and
�y = 〈fx1 (x0), fx2 (x0), . . . , fxn (x0)〉 · �x + ε · �x, where
ε → 0 as �x → 0.

21. −√
2 23. −11

√
10

10

25. −7
√

17
816

27. − 36
5

29. x = 2 +
√

2
2

t, y = 3 +
√

2
2

t, z = −5 − √
2t

31. x = −2 +
√

10
10

t, y = 1 − 3
√

10
10

t, z = −2 − 11
√

10
10

t

33. x = 4 −
√

17
17

t, y = 9 − 4
√

17
17

t, z = 3
2

− 7
√

17
816

35. − 18
13

√
26 37. − 33

40

√
5

39. For every unit vector u = 〈α, β〉,
lim
h→0

(1+αh)(−2+βh)+2(1+αh)−(−2+βh)−2
h

= 0.

41. For every unit vector u = 〈α, β〉, lim
h→0

αh(βh)2

h
= 0.

43. f has continuous first-order partial derivatives and is
differentiable at every point in R

2.

45. The function has continuous first-order partial
derivatives and is differentiable at every point in R

2

except when x 2 + y 2 = 1.

47. The function has continuous first-order partial
derivatives and is differentiable at every point in R

2.

49. The function has continuous first-order partial
derivatives and is differentiable at every point in R

2 at
which the product xy is not an odd multiple of

π

2

51. The function has continuous first-order partial
derivatives and is differentiable at every point such that
x > 0 and y > 0.

53. The function has continuous first-order partial
derivatives and is differentiable at every point in R

3.

55. 2(x − 1) + 6(y + 3) = z + 8

57. x + 9z = −6

59. πx + 4y + 2z = 4π

61. πx − 4y + 2z = 2π − 2

63. 9x − y + 6z = 18

65. 2(x − 1) − 10(y + 5) − 27(z − 3) = w + 1

67. (a) At about a 10 degree slope. (b) He must move in the
direction (0, 1) or (0, −1), due south or due north.

69. Let u = 〈α, β〉. By Definition 12.26,

D−u f (a, b) = lim
η→0

f (a−αη,b−βη)−f (a,b)
η

. If we let

h = −η, we have

D−u f (a, b) = lim
h→0

f (a+αh,b+βh)−f (a,b)
−h

= −Du f (a, b).

71. By Exercise 70, f cannot be differentiable at (a, b) if
Du f (a, b) = 1 for every unit vector u.
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Section 12.5

1. F, F, F, F, F, T, T, T.

3. e− sin t(2 sin t cos t − 3 sin t cos 2 t − cos 3 t + 3 cos 2 t
−3 sin 2 t − 4 cos t).

5. When n = m = 1,
∂z
∂tj

= ∂z
∂x1

∂x1

∂tj
+ ∂z

∂x2

∂x2

∂tj
+ · · · + ∂z

∂xn

∂xn

∂tj

simplifies to
dz
dt1

= dz
dx1

dx1

dt1
.

7. When n = m = 2,
∂z
∂tj

= ∂z
∂x1

∂x1

∂tj
+ ∂z

∂x2

∂x2

∂tj
+ · · · + ∂z

∂xn

∂xn

∂tj
simplifies to

∂z
∂t1

= ∂z
∂x1

∂x1

∂t1
+ ∂z

∂x2

∂x2

∂t1
and

∂z
∂t2

= ∂z
∂x1

∂x1

∂t2
+ ∂z

∂x2

∂x2

∂t2
.

9. (a) The level curves of f are the lines with equations

y = − 2
3

x + C where C ∈ R. (b) The vector 〈3, −2〉 may
be used as a direction vector for every level curve,
∇f (x, y) = 〈2, 3〉, and 〈3, −2〉 · 〈2, 3〉 = 0.

11. (a) The level curves of f are the lines with equations
y = − a

b
x + C where C ∈ R. (b) The vector 〈b, −a〉 may

be used as a direction vector for every level curve,
∇f (x, y) = 〈a, b〉, and 〈b, −a〉 · 〈a, b〉 = 0.

13. ∇f (a, b, c) · (〈x, y, z〉 − 〈a, b, c〉) = w − f (a, b, c).

15. The level curves are concentric circles centered at the
origin. The gradient vectors are orthogonal to the level
curves and point toward the origin. The gradient
vectors increase in magnitude as you get further from
the origin.

y

x

17. The level curves are hyperbolas. The gradient vectors
are orthogonal to the level curves and point toward the
x-axis and away from the y-axis. The gradient vectors
increase in magnitude as you get further from the
origin.

y

0

x

1

�1

19. Staying on a contour line means that you are always
staying at the same elevation, so the hike is relatively
easy. Walking perpendicularly to the contour lines
means you are always either ascending or descending,
making the hike more rigorous.

21. e t cos(e t) cos(t 3) − 3t 2 sin(e t) sin(t 3)

23. 2t cos(t 3 + 1) + (15t 2 − 3t 4) sin(t 3 + 1)

25. 1+4t3

2
√

t+t4

27. 2s 3t 2 cos s cos 3 t sin s + 3s 2t 2 cos 3 t sin 2 s

29. er sin θ (2r cos 2 θ + 2r sin θ cos θ + r 2 sin θ cos 2 θ

+r 2 sin 2 θ cos θ )

31. 2t sin(t 3) cos(t 4) + 3t 4 cos(t 3) cos(t 4) − 4t 5 sin(t 3) sin(t 4)

33. eρ sin φ sin θ (2ρ sin 2 φ cos 2 θ + ρ 2 sin 3 φ sin θ cos 2 θ

+ρ sin φ cos φ sin θ + cos φ)

35. 1
2

(1 + 4t 3 + 6t 5)(t + t 4 + t 6)−1/2

37. 〈2x sin y + y cos x, x 2 cos y + sin x〉
39. 1√

x2 +y2
〈x, y〉

41. 1√
x2 +y2 +z2

〈x, y, z〉

43. (a)
〈 3π

2
, 0
〉
, (b)

3π

2
, (c) −
〈 3π

2
, 0
〉

45. (a)
〈

2√
13

, − 3√
13

〉
, (b) 1, (c) −

〈
2√
13

, − 3√
13

〉

47. (a)
〈 2

3
, − 1

3
, − 2

3

〉
, (b) 1, (c) −

〈 2
3

, − 1
3

, − 2
3

〉

49.
√

10
10

51. 55
√

17
119

53. 9
√

7
14

55. f (x, y) = ln
∣∣∣ y

x3

∣∣∣+ C

57. f (x, y) = tan−1
( y

x

)
+ C

59. f (x, y) = x
x+y

+ C

61. (a) 〈0.5, −0.35〉, (b) ± 〈0.35, 0.5〉.

63. ∇f (x, y, z) =
〈

x√
x2 +y2 +z2

,
y√

x2 +y2 +z2
,

z√
x2 +y2 +z2

〉
, so

‖∇f (x, y, z)‖ =
(

x√
x2 +y2 +z2

)2
+
(

y√
x2 +y2 +z2

)2

+
(

z√
x2 +y2 +z2

)2
= 1
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65. We have z = f (x, y), x = u(s, t) and y = v(s, t). Assume
that u, v and z = f (u(s, t), v(s, t) are differentiable at a
point (s0, t0) and that x0 = u(s0, t0) and y0 = v(s0, t0). We

will show that
∂z
∂s

= ∂z
∂x

∂x
∂s

+ ∂z
∂y

∂y
∂s

. The remaining

equality is quite similar. By the definition of the partial
derivative at s0:
∂z
∂s

= lim
�s→0

f (u(s0 +�s,t0),v(s0 +�s,t0))−f (u(s0,t0),v(s0,t0))
�s

=
lim

�s→0

f (u(s0 +�s,t0),v(s0 +�s,t0))−f (x0,y0)
�s

= lim
�s→0

�z
�s

. Now,

when �s is sufficiently small, we may replace the
numerator in the equation above by
fx(x0, y0)�x + fy(x0, y0)�y. We now have
∂z
∂s

= lim
�s→0

fx(x0,y0)�x+fy(x0,y0)�y
�s

=
lim

�s→0

(
fx(x0, y0)

�x
�s

+ fy(x0, y0)
�y
�s

)
= ∂z

∂x
∂x
∂s

+ ∂z
∂y

∂y
∂s

.

67. ∂ f
∂x

= 0 = ∂ f
∂y

, so ∇f = 0.

69. ∇( f (x, y) + g(x, y))

= 〈 fx(x, y) + gx(x, y), fy(x, y) + gy(x, y)〉
= 〈 fx(x, y), fy(x, y)〉 + 〈 gx(x, y), gy(x, y)〉
= ∇f (x, y) + ∇g(x, y).

71. ∇( f (x, y)g(x, y)) = 〈 fx(x, y)g(x, y)

+ f (x, y)gx(x, y), fy(x, y)g(x, y) + f (x, y)gy(x, y)〉
= g(x, y)〈fx(x, y), fy(x, y)〉 + f (x, y)〈gx(x, y), gy(x, y)〉
= f (x, y)∇g(x, y) + g(x, y)∇f (x, y).

73. Use three component vectors rather than two
component vectors.

Section 12.6

1. F, T, F, T, F, T, T, T.

3. A critical point of f is a point at which either ∇f = 0 or
∇f does not exist. The only place a function can have an
extreme value at an interior point of its domain is at a
critical point.

5. A saddle point is a stationary point at which there is
neither a maximum nor a minimum.

7. The first derivative test for a function of a single variable
requires that you check the sign of the first derivative to
the left and right of a critical point. To use an analogous
test for a function of two variables, we would have to
check the sign of the directional derivative at infinitely
many points encircling each critical point.

9. If A and C have opposite signs then both terms AC and
−B 2 are negative, so their sum is negative.

11. g(x, y) = −f (x, y) from Exercise 10, so since f (x, y) has a
minimum at the origin, g has a maximum at the origin.

13. Plow through the algebra!

15. Plow through the algebra!

17. The distance from P to an arbitrary point on L is given
by

d(t) =
√

(x0 − x1 + at) 2 + (y0 − y1 + bt) 2 + (z0 − z1 + ct) 2.

To find the distance from P to L we may minimize the
function d(t).

19. f will have an absolute minimum at x = 0 if n is even
and an inflection point if n is odd. There are no other
possibilities.

21. −4e4x
23. − 3

4
s 4e t

25. cos 2 θ sin 2 φ − sin 2 θ cos 2 φ

27. 14
13

√
26 29. 8

13

31. f
(
− 1

2
, 0
)

= − 31
4

is the absolute minimum

33. f (−2, −1) = 33, local maximum; f (−2, 1) = 29, saddle;
f (2, −1) = 1, saddle; f (2, 1) = −3, local minimum

35. f (0, 0) = 0, saddle; f (4, 4) = −64, local minimum

37. f
(
− 3

2
, − 3

2

)
= −14, absolute minimum

39. f
( 1

2
,

1
2

)
= 6, local minimum

41. Every point of the form (0, kπ ) where k ∈ Z is a
stationary point. They are all saddle points.

43. There is a saddle point at every point of the form (0, kπ )
where k ∈ Z.

45. f (0, 0) = 1, saddle

47. f (0, 0) = −1, local maximum

49. f has an absolute minimum at every point of the form
(0, y) or (x, 0).

51. f has saddle point at every point of the form (0, y), a
local minimum at every point of the form (x, 0) for
x > 0, and a local maximum at every point of the form
(x, 0) for x < 0.

53. The box should have a square base measuring
10
9

3

√
81
5

feet on each side and a height of 3

√
81
5

feet.

55. By Theorem 12.36, Du f (x, y) = a fx(x, y) + b fy(x, y).
Taking the directional derivative, again, we obtain
Du(Du f (x, y)) = D 2

u f (x, y) = Du(afx(x, y) + bfy(x, y)) =
a 2fx x(x, y) + ab fy x(x, y) + ba fx y(x, y) + b 2fyy(x, y). Since
the function has continuous second-order partial
derivatives, the mixed second-order partial derivatives
are equal and we have the result.

57. Let (x, y) be a point on the line. The distance from
(x0, y0) to (x, y) is given by d = √(x − x0) 2 + (y − y0) 2

and the square of the distance from (x0, y0) to (x, y) is
given by D = (x − x0) 2 + (y − y0) 2. The gradients of
these two functions are
∇d = 1

2
√

(x−x0)2 +(y−y0)2
(2(x − x0)i + 2(y − y0)j) and

∇D = 2(x − x0)i + 2(y − y0)j. The critical points of these
two functions are the same and would have the same
minima.
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Section 12.7

1. F, F, T, F, F, F, F, T.

3. The function f represents the quantity we wish to
maximize or minimize. The constraint equation
provides an interrelationship between the variables of f .

5. We can either eliminate one of the variables by solving
the constraint equation for one of the variables, or use
the method of Lagrange multipliers.

7. (a) {(x, y)|x > 0}, (b) {(x, y)|x ≥ 0},
(c) {(x, y)|x 2 + y 2 < 1},
(d) {(x, y)|x 2 + y 2 ≤ 1}

9. (a) {(x, y, z)|x > 0}, (b) {(x, y, z)|x ≥ 0},
(c) {(x, y, z)|x 2 + y 2 + z 2 < 1}, (d)
{(x, y, z)|x 2 + y 2 + z 2 ≤ 1}

11. 4

13. fyy(x, y) = 12 and the discriminant of f is
det(Hf (x, y)) = 72(x + 3). (a) det(Hf (−6, 0)) < 0 so there
is a saddle point at (−6, 0). (b) det(Hf (0, 0)) > 0 and
fyy(0, 0) > 0 so there is a relative minimum at (0, 0). (c)
From Example 4 we already know (i) that f (0, 0) = 0 is
the absolute minimum of f on the region defined by
x 2 + y 2 ≤ 9 and (ii) the point (0, 0) is an interior point
to that region, so there is, at least, a relative minimum
of f at the origin. Since f (−10, 0) = −100 < 0 = f (0, 0),
the minimum is only relative, not absolute.

15. When y = −x we are looking for the critical points of
the function g(x) = −x 3. The only critical point of g is its
inflection point at x = 0.

17. When y = − a
b

x we are looking for the critical points of

the function h(x) = − a
b

x 3. The only critical point of h is
its inflection point at x = 0.

19. Find the extrema of the function f using the techniques
of Section 12.6. Choose only the critical points in R.
Evaluate f at the critical points. Use the results of
Exercise 18 to find the extrema on the boundary of R.
Choose the largest and smallest values of the function
in the interior of R and on the boundary of R.

21. Find the extrema of the function f using the techniques
of Section 12.6. Choose only the critical points in T .
Evaluate f at the critical points. Use the results of
Exercise 20 to find the extrema on the boundary of T .
Choose the largest and smallest values of the function
in the interior of T and on the boundary of T .

23. The Extreme Value Theorem guarantees that a
maximum and minimum of f occurs on R. If the
gradient exists everywhere and is never zero, f does not
have any critical points, so the maximum and minimum
must occur on the boundary of R.

25. f
( 8

√
5

5
,

2
√

5
5

)
= 2

√
5 is the maximum and

f
(

− 8
√

5
5

, − 2
√

5
5

)
= −2

√
5 is the minimum. Both exist

because the ellipse is a closed and bounded set.

27. f (2
√

2,
√

2) = f (−2
√

2, −√
2) = 4 is the maximum and

f (2
√

2, −√
2) = f (−2

√
2,

√
2) = −4 is the minimum.

Both exist because the ellipse is a closed and bounded
set.

29. f
( 32√

21
,

8√
21

,
2√
21

)
= 2

√
21 is the maximum and

f
(

− 32√
21

, − 8√
21

, − 2√
21

)
= −2

√
21 is the minimum.

Both exist because the ellipsoid is a closed and bounded
set.

31. The maxima and minima occur at the eight points(
± 8√

3
, ± 4√

3
, ± 2√

3

)
. When an even number of the

signs are negative the function has a maximum of
64

3
√

3
.

When an odd number of the signs are negative the

function has a minimum of − 64

3
√

3
. Both exist because

the ellipsoid is a closed and bounded set.

33. (1, 0) and (0, 1) 35.
( 1

4
,

1
4

)

37. (1, 0) and (0, 1)

39. (1, 1, 1) , (−1, −1, 1) , (−1, 1, −1) , (1, −1, −1)

41.
( ad

a2 +b2 +c2
,

bd
a2 +b2 +c2

,
cd

a2 +b2 +c2

)

43.
(
− 5

7
,

39
7

,
15
7

)

45. The maximum of 8 occurs at each corner of the square
and the minimum is 0 = f (0, 0).

47. The maximum is 1 = f (1, 0) = f (0, 1) = f (−1, 0). The
minimum is −1 = f (0, −1).

49. The maximum is 1 = f (1, 1). The minimum is
−1 = f (−1, 1).

51. x = d
3a

, y = d
3b

, z = d
3c

53.
( 6

5
,

12
5

,
6
√

5
5

)
55. The base should be a square 5 3

√
2/5 feet on each side.

The height should be 3
√

2/5 feet.

57. Maximize f (x, y) = xy subject to the constraint that
g(x, y) = 2x + 2y − P = 0.

59. The distance is d = √x 2 + y 2 + z 2 and the square of the
distance is D = x 2 + y 2 + z 2,
∇d = x√

x2 +y2 +z2
i + y√

x2 +y2 +z2
j + z√

x2 +y2 +z2
k and

∇D = 2x i + 2yj + 2zk. The system of equations
∇d = λ∇g and ∇D = λ∇g have the same solutions.

61. Rotating, scaling or translating the point and the circle
does not change the essential geometry of the system, if
P = (α, β) is not the center of the circle (a, b), the point
closest to P on the circle will be on the line containing
both P and (a, b).

63. Rotating, scaling or translating the point and the sphere
does not change the essential geometry of the system, if
P = (α, β, γ ) is not the center of the sphere (a, b, c), the
point closest to P on the sphere will be on the line
containing both P and (a, b, c).
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65. Let A > 0, use the method of Lagrange multipliers to
show that the function f (x, y, z) = 3

√
xyz has its

maximum value when x = y = z = A, subject to the

constraint equation g(x, y, z) = 1
3

(x + y + z) − A = 0.

Thus, 3
√

xyz ≤ 1
3

(x + y + z) when x, y and z are all
positive.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 13

Section 13.1

1. T, T, F, T, F, T, T, T. 3.
4∑

j=3

4∑
k=2

je k 2
.

5. 176 7. 3360

9. A definite integral is the limit of a Riemann sum of
function of a single variable f (x) over a closed interval
[a, b] as the number of subintervals goes to ∞. A double
integral is the limit of a double Riemann sum of
function of a two variables f (x, y) over a rectangular
region that has be subdivided into smaller
subrectangles in both the x and y directions as the
numbers of pieces in those two directions goes to ∞.

11. For each subrectangle R jk choose

(x∗
j , y∗

k ) =
( xj−1 +xj

2
,

yk−1 +yk

2

)
.

13. See Theorem 13.7.

15. To evaluate the integral first find an antiderivative for f
with respect to y. You use the FTC to evaluate the inner
integral by evaluating this function at d and c and
evaluating the difference. The result will be the definite
integral of a function of the single variable x. Use the
FTC to evaluate this integral, if possible.

17. 91

19. The first step in the integration will be fine, but the
resulting integral will be one without a simple
antiderivative. Say you integrate first with respect to y.

You will obtain
∫ π/2

π/4

1
x

(
sin (πx) − sin

(
π

2
x
))

dx. The

function
1
x

(
sin (πx) − sin

(
π

2
x
))

does not have a

simple antiderivative.

21.
∫ 1

0

∫ 1

0

x−y
(x+y)3

dy dx = π

2
and
∫ 1

0

∫ 1

0

x−y
(x+y)3

dx dy =
−π

2
. This does not violate Fubini’s Theorem because

the function is not continuous everywhere on the
rectangle R = {(x, y)|0 ≤ x ≤ 1 and 0 ≤ y1}.

23. 20 25. −48

27. 1260 29. 15

31. 0 33. 15

35. 0 37. 26

39. 340
3

41. 0

43. 4− ln5
ln5

45. 9
2

− 8 ln 2 + 7
2

ln 7

47. 1
2

49. 18

51. 2
π

53. 1
2

55. − 1175650
3 57. e18 −e8 −10

4

59. 169
2

61. 4

63. 4 ln 5 + 12 ln 3 65. 2.288

67. 1.386

69. Approximately 64533.3 cubic feet

71. The result follows from the commutative property of
addition.

73. By Fubini’s Theorem∫∫
R

g(x)h(y)dA =
∫ b

a

∫ d

c
g(x)h(y)dy dx =

∫ b

a
g(x)
∫ d

c
h(y)dy dx =

(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)
.

75. Use the result of Exercise 73. The product (b − a)(d − c)
is the area of rectangle R.

Section 13.2

1. T, F, F, T, T, T, F, T.

3. A type I region is bounded below by a function g1(x),
above by a function g2(x), on the left by x = a and on
the right by x = b, for constants a < b. A type II region
is bounded on the left by a function h1(y), on the right
by a function h2(y), above by y = d and below by y = c,
for constants c < d.

5. Correct

7. Reverse dx and dy.

9. Correct

11. Correct

13. As a type I region, � is bounded below by the function

y = 1
2

x and above by the function y = √
x on the

interval [a, b] = [0, 4]. As a type II region, � is bounded
below on the left by the function x = y2 and on the right
by the function x = 2y on the interval [c, d] = [0, 2].

15. The area of � = ∫ b
a

∫ g2(x)
g1(x) dy dx = ∫ b

a

[
y
]g2(x)

g1(x) dx =∫ b
a

(
g2(x) − g2(x)

)
dx.

17. 4
3

19.
∫ 0

−3

∫ 0

−x3
dy dx +

∫ 3

0

∫ x3

0
dy dx =

∫ 0

−27

∫ 3√y

−3
dx dy

+
∫ 27

0

∫ 3

3√y
dx dy = 0
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21. (a)
∫ 1

0

∫ ex

0
f (x, y) dy dx,

(b)
∫ 1

0

∫ 1

0
f (x, y) dx dy +

∫ e

1

∫ 1

ln y
f (x, y) dx dy

23. (a)
∫ 2

−2

∫ √
4−x2

0
f (x, y) dy dx +

∫ 0

−2

∫ 0

−√
4−x2

f (x, y) dy dx,

(b)
∫ 2

−2

∫ 0

−
√

4−y2
f (x, y) dx dy +

∫ 2

0

∫ √
4−y2

0
f (x, y) dx dy

25. (a)
∫ π/4

0

∫ cos x

sin x
f (x, y) dy dx,

(b)∫ √
2/2

0

∫ sin−1 y

0
f (x, y) dx dy +

∫ 1

√
2/2

∫ cos−1 y

0
f (x, y) dx dy

27. (a)
∫ 0

−1

∫ x+1

−x−1
f (x, y) dy dx +

∫ 1

0

∫ −x+1

x−1
f (x, y) dy dx,

(b)
∫ 0

−1

∫ y+1

−y−1
f (x, y) dx dy +

∫ 1

0

∫ −y+1

y−1
f (x, y) dx dy

29.
∫ 1

0

∫ ey

1
f (x, y) dx dy +

∫ e

1

∫ 2

1
f (x, y) dx dy +

∫ e2

e

∫ 2

ln y
f (x, y) dx dy

x

y

21

5

31.
∫ 1

0

∫ π/2

sin−1 x
f (x, y) dy dx

π

4

π

2

x

y

1

33.
∫ 1

0

∫ sin−1 x

0
f (x, y) dy dx

π

4

π

2

x

y

1

35. e2

4
+ 10e − 49

4
37. 4π

39. 0 41. 4

43. 26
3

45. 2
9

(56
√

7 − 1). The function
√

1 + x3 does not have a
simple antiderivative.

47. 1. The function sec y has a simpler antiderivative when
integrated with respect to x than it does when
integrated with respect to y.

49. − 927
8

51. 101027
90

53. π

8 55. 1
2

(e − 1)

57. 2 59. 1
3

(e 8 − 1)

61. 3
110

63. 200 cubic meters

65. Using the notation of Definition 13.4, the equality holds

since
∫∫

R α f (x, y)dA = lim
�→0

m∑
j=1

n∑
k=1

α f (x∗
j , y∗

k )�A =

α lim
�→0

n∑
k=1

m∑
j=1

f (x∗
j , y∗

k )�A = α
∫∫

R f (x, y)dA.

67. Let R = {(x, y)|a ≤ x ≤ b and c ≤ y ≤ d} be a rectangle
containing �. From Exercise 65,∫∫

R αF(x, y) dA = α
∫∫

R F(x, y)dA, where
F(x, y) = f (x, y) on � and is zero everywhere else in R.
Thus, αF(x, y) = α f (x, y) for every point in � and is zero
everywhere else in R, also, so the statement holds.

69. The volume is given by the integral∫ a

0

∫ −b/ay+b

0

(
c − c

a
x − c

b
y
)

dy dx = 1
6

abc.

Section 13.3

1. T, T, F, F, F, F, T, T.

3. The values θ = α, θ = β, r = a and r = b provide
constant boundaries for the region.

y

x

b

a
β

α
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5.

�r

�θ

y

(rj*, θk)

x

7. In the rectangular coordinate system the integral
represents the area between the graphs of f1(θ ) and f2(θ )
on the interval [α, β]. In a polar system, the integral
represents the volume of the solid bounded above by

the function f (r, θ ) = 1
r

on the polar region bounded by
the two functions between the rays θ = α and θ = β.

9. Because the curve is traced twice on the interval [0, 2π].

11. For any positive integer n, the integral represents the

area of a sector of a circle whose central angle is
2π

n
.

This area would be
πR2

n
. The equation holds for every

nonzero value of n.

13. 2π

∫ b

0
x f (x) dx

15.
∫ b

−b

∫ √
b 2−x2

−√
b 2−x2

f (
√

x2 + y2) dy dx

17. From Exercise 16 we have the integral∫ 2π

0

∫ b

0
r f (r) dr dθ =

(∫ 2π

0
dθ

)(∫ b

0
r f (r) dr

)
=

2π

∫ b

0
r f (r) dr, which equals the answer to Exercise 14.

19.
∫ 2π

0

∫ b

a
r f (r)drdθ

21. 3π

2

(1, 0)

23. 9π

2

(2, 0)

25. π

4

3π

2(1,      )
27. The area between the inner and outer loops of the

limaçon is
3+π

2

2
2(     , 0)

2
2

π

2(1 �     ,   )

29.
∫ π

0

∫ θ

0
r dr dθ = π 3

6

31. 2
∫ 3π/4

0

∫ 1+√
2 cos θ

0
r dr dθ − 2

∫ 5π/4

π

∫ 1+√
2 cos θ

0
r dr dθ =

3 + π

33. 2
∫ π/6

−π/2

∫ 3−3 sin θ

1+sin θ

r dr dθ = 8π + 9
√

3

35. 2
∫ π/3

0

∫ 1

sec θ/2
r dr dθ = π

3
−

√
3

4

37.
∫ 2π

0

∫ 1+k sin θ

0
r dr dθ = π

(
1 + k2

2

)
. When k = 0, “the

limaçon” is a circle with radius one.

39. A sphere of radius 4 centered at the origin,
256

3
π .

41. The portion of the hyperboloid z = 4 − r2 above the
xy-plane, 8π .

43. The portion of the cone z = 6 − 2r above the xy-plane,
18π .

45. The cylinder formed by the outer loop of the limaçon

r =
√

2
2

+ sin θ with height 1,
3
4

(1 + π ).

47.
∫ 2π

0

∫ 2
√

2

0
(16 − 2r2)r dr dθ = 64π

49.
∫ 2π

0

∫ √
2/2R

0
(
√

R 2 − r2 − r)r dr dθ = πR3

3
(2 −

√
2)

51.
∫ 2π

0

∫ 4/5

0

(√
1 − r2 − 3

5

)
r dr dθ = 52

375
π

53.
∫ 2π

0

∫ √
3/2

0
(2
√

1 − r2 − 1)r dr dθ = 5
12

π

55.
∫ 2π

0

∫ h

0
(h − r) r dr dθ = 1

3
πh 3

57. 9π

8

59. π

4
e16

61. Approximately 14 wolves.

63.
∫ π

0

∫ 2R cos θ

0
r dr dθ = πR 2

65. 2
∫ 2π

0

∫ R

0

√
R 2 − r2r dr dθ = 4

3
πR 3

67.
∫ φ

0

∫ R

0
r dr dθ = 1

2
φR 2

69.
∫ 2π

0

∫ cos 2nθ

0
r dr dθ = π

2
for every positive integer n
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Section 13.4

1. F, F, F, T, F, F, T, T.

3. The area of �. The units are square centimeters.

5. The coordinates of the centroid of �. The units are
centimeters.

7. The first moments My and Mx. The units are
grams·centimeters.

9. The second moments Iy and Ix. The units are
grams·square centimeters.

11. The radii of gyration Ry and Rx. The units are
centimeters.

13.
∫ 2

1

∫ 2x−1

−x+2
x dy dx =

∫ 2

1

[
xy
]2x−1
−x+2 dx =

∫ 2

1
(3x2 −3x) dx =

[
x3 − 3

2
x2
] 2

1
= (8−6)−

(
1 − 3

2

)
= 5

2
.

15. This is the same integral as in Exercise 13, with an extra
factor of k.

17.
∫ 2

1

∫ 2x−1

−x+2
kxy dy dx = k

2

∫ 2

1
x
[
y2]2x−1

−x+2 dx

= k
2

∫ 2

1
(3x3 − 3x) dx = k

2

[ 3
4

x 4 − 3
2

x2
] 2

1

= k
2

(
(12 − 6) −

( 3
4

− 3
2

))
= 27

8
k.

19.
∫ 2

1

∫ 2x−1

−x+2
kxy2dy dx = k

3

∫ 2

1
x
[
y3]2x−1

−x+2 dx

= 3k
∫ 2

1
(x 4 − 2x3 + 2x2 − x) dx

= 3k
[ 1

5
x 5 − 1

2
x 4 + 2

3
x3 − 1

2
x2
] 2

1

= 3k
(( 32

5
− 8 + 16

3
− 2
)

−
( 1

5
− 1

2
+ 2

3
− 1

2

))
= 28

5
k.

21. Iy =
( 673

175

√
2 − 1

5
ln(

√
2 + 1)
)

k,

Ix =
( 821

2100

√
2 + 1

20
ln(

√
2 + 1)
)

k

23.
∫ 2 cos θ

sec θ

kr3 cos θdr = k
4

(
16 cos 5 θ − sec 3 θ

)
,

∫ π/4

−π/4

k
4

(
16 cos 5 θ − sec 3 θ

)
dθ

= k
60

(157
√

2 + 15 ln(
√

2 − 1)

25. 2
3

k, where k is the constant of proportionality

27. Ix = 2
15

k, Iy = 2
5

k, Rx =
√

5
5

, Ry =
√

15
5

, where k is the
constant of proportionality

29.
( 3

4
, 0
)

31.
( 5

3
, 0
)

33.
( 17

10
, 0
)

35. 17
6

k, where k is the constant of proportionality

37. Ix = 49
90

k, Iy = 43
5

k, Rx = 7
√

255
255

, Ry =
√

21930
85

, where k
is the constant of proportionality

39. 1
2

kb 2h, where k is the constant of proportionality

41. Iy = 1
4

kb 4h, Ix = 1
6

kb 2h 3, Ry =
√

2
2

b, Rx =
√

3
3

h, where
k is the constant of proportionality

43.
( 3

4
b,

1
2

h
)

45. (0, 0)

47. (0, 0)

49. 2
3
πk, where k is the constant of proportionality

51. Ix = Iy = 1
5

kπ , Io = 2
5

kπ ; Rx = Ry =
√

30
10

; Ro =
√

15
5

.

53. 2
3

k, where k is the constant of proportionality

55. Iy = 4
15

k, Ix = 2
15

k, Ry =
√

10
5

, Rx =
√

5
5

, where k is the
constant of proportionality

57.
( 3

2π
, 0
)

59. The masses of �1 and �2 may be treated as point
masses located at (x1, y1) and (x2, y2), respectively. The
center of mass of this two-point system is given by

x = m1x1 +m2x2

m1 +m2
and y = m1y1 +m2y2

m1 +m2
.

61.
( 5

6
,

5
6

)

63.
(

b2
1 h2 +b2

2 h1 −b1b2h1

2(b1h2 +b2h1 −b1h1)
,

b1h2
2 +b2h2

1 −b1h2
1

2(b1h2 +b2h1 −b1h1)

)

65.
(

0,
260
57

)

67.
(

0,
15
14

a
)

69. Approximately 1.79

71. We assume that 0 < c < a and leave the case where
0 < a ≤ c to you. Using the result of Exercise 70 we have

x =

∫ c

0

∫ d/cx

0
x dy dx +

∫ c

0

∫ d/c−a(x−a)

0
x dy dx

ad/2
= a + c

3

and

x =

∫ c

0

∫ d/cx

0
ydy dx +

∫ c

0

∫ d/c−a(x−a)

0
ydy dx

ad/2
= d

3
.

73. Use polar coordinates and the circle r = a, where a is a
positive constant. The first moments are

Mx =
∫ 2π

0

∫ a

0
r2 cos θ dr dθ = 0 and

My =
∫ 2π

0

∫ a

0
r2 sin θ dr dθ = 0. Therefore, the origin is

the centroid of the circle.
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Section 13.5

1. F, T, F, T, T, F, T, F.

3. The two summations contain the same summands,
although the summands are rearranged. By the
commutative and associative properties of addition,
they are equal.

5. For each subsolid Ri,j,k choose

(x∗
i , y∗

j , z∗
k ) =
( xi−1 +xi

2
,

yj−1 +yj

2
,

zk−1 +zk

2

)
.

7. A triple integral is the limit of a Riemann sum over a
rectangular solid R as the limit of the mesh of
subdivisions of R goes to zero. An iterated triple
integral is the result of three consecutive integrations in
the order specified by the placement of the variables of
integration.

9.
∫ b

a

∫ h2(y)

h1(y)

∫ g2(y,z)

g1(y,z)
f (x, y, z) dx dz dy,

∫ b

a

∫ h2(z)

h1(z)

∫ g2(y,z)

g1(y,z)
f (x, y, z) dx dy dz

11.
∫ 3

−1

∫ 2

0

∫ 7

2
ρ(x, y, z)dz dy dx,

∫ 2

0

∫ 3

−1

∫ 7

2
ρ(x, y, z)dz dx dy,

∫ 3

−1

∫ 7

2

∫ 2

0
ρ(x, y, z) dy dz dx,

∫ 7

2

∫ 3

−1

∫ 2

0
ρ(x, y, z) dy dx dz,

∫ 2

0

∫ 7

2

∫ 3

−1
ρ(x, y, z) dx dz dy,

∫ 7

2

∫ 2

0

∫ 3

−1
ρ(x, y, z) dx dy dz

13.
∫ 2

0

∫ 4−2x

0

∫ 3−(3/2)x−(3/4)y

0
ρ(x, y, z) dz dy dx,

∫ 4

0

∫ 2−(1/2)y

0

∫ 3−(3/2)x−(3/4)y

0
ρ(x, y, z) dz dx dy,

∫ 2

0

∫ 3−(3/2)x

0

∫ 4−2x−(4/3)z

0
ρ(x, y, z) dy dz dx,

∫ 3

0

∫ 2−(2/3)z

0

∫ 4−2x−(4/3)z

0
ρ(x, y, z) dy dx dz,

∫ 4

0

∫ 4−(4/3)z

0

∫ 2−(1/2)y−(2/3)z

0
ρ(x, y, z) dx dz dy,

∫ 3

0

∫ 3−(3/4)y

0

∫ 2−(1/2)y−(2/3)z

0
ρ(x, y, z) dx dy dz

15.
∫ −x−y+1

0
k(y2 + z2)dz

= k
(

y2(−x − y + 1) + 1
3

(−x − y + 1) 3
)

,
∫ −x+1

0
k
(

y2(−x − y + 1) + 1
3

(−x − y + 1) 3
)

dy

= k
6

(x − 1) 4,
∫ 1

0

k
6

(x − 1) 4 dx = k
30

17.
∫ −x−y+1

0
k(x2 + y2)dz = k(−x − +1)(x2 + y2),

∫ −x+1

0
k(−x − +1)(x2 + y2) dy =

k
12

(7x 4 − 12x3 + 12x2 − 4x + 1),
∫ 1

0

k
12

(7x 4 − 12x3 + 12x2 − 4x + 1) dx = k
30

19. The volume of �. The units are cubic centimeters.

21. The first moment Myz. The units are grams·centimeters.

23. The moment of inertia about the y-axis, Iy. The units
are grams·square centimeters.

25. 36 27. 145
48

29. 1
3

+ π

8
31. 162

33. 8

35. The rectangular solid given by
R = {(x, y, z) | 2 ≤ x ≤ 6, 0 ≤ y ≤ 5 and − 2 ≤ z ≤ 4}.

37. The “half-cube”:

x

3

3

3

z

y

39. The tetrahedron with vertices (0, 0, 0), (2, 0, 0), (0, 3, 0)
and (0, 0, 1).

41. A sphere with radius 3 centered at the origin.

43. The region bounded on the right by the paraboloid
x = 9 − y 2 − z 2 and bounded on the left by the
yz-plane.

45.
∫ 4

−2

∫ 5

0

∫ 6

2
f (x, y, z) dy dx dz

47.
∫ 3

0

∫ 3−z

0

∫ 3

0
f (x, y, z) dx dy dz

49.
∫ 2

0

∫ 3−(3/2)x

0

∫ 1−(1/2)x−(1/3)y

0
f (x, y, z) dz dy dx
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51.
∫ 3

−3

∫ √
9−z2

−√
9−z2

∫ √
9−x2−z2

−√
9−x2−z2

f (x, y, z) dy dx dz

53. 3k, where k is the constant of proportionality

55. 31412
315

k, where k is the constant of proportionality

57. (a) The centroid of a rectangular box is its midpoint.

(b) For example, x =
∫ 4

0

∫ 3
0

∫ 2
0 xdzdydx∫ 4

0

∫ 3
0

∫ 2
0 dzdydx

= 2.

59. (a) Since the density is proportional to the distance from
the xy-plane, the location of the x- and y-coordinates

will be the same as in Exercise 57. (b) z = 4
3

61. (a) The centroid of a rectangular box is its midpoint.

(b) For example, x =
∫ a2

a1

∫ b2
b1

∫ c2
c1

xdzdydx∫ a2
a1

∫ b2
b1

∫ c2
c1

dzdydx
= a1 +a2

2
.

63. (a) Since the density is proportional to the distance from
the yz-plane, the location of the y- and z-coordinates

will be the same as in Exercise 61. (b) x = 2
(
a3

2 −a3
1

)
3
(
a2

2 −a2
1

)

65. (a) x = a
4

. (b) The y-coordinate of the center of mass
will also be one-fourth of the distance from the xz-plane

to the point (0, b, 0), i.e., y = b
4

. Similarly, z = c
4

.

67. The mass of the tetrahedron is

m = ∫ a
0

∫ b−(b/a)x
0

∫ c(1−(x/a)−(y/b))
0 ky dz dy dx, where k is a

constant of proportionality. The center of mass is given
by (x, y, z), where

x = 1
m

∫ a
0

∫ b−(b/a)x
0

∫ c(1−(x/a)−(y/b))
0 kxy dz dy dx,

y = 1
m

∫ a
0

∫ b−(b/a)x
0

∫ c(1−(x/a)−(y/b))
0 ky 2dz dy dx, and

z = 1
m

∫ a
0

∫ b−(b/a)x
0

∫ c(1−(x/a)−(y/b))
0 kyz dz dy dx.

69. By Fubini’s Theorem
∫∫∫

R α(x)β(y)γ (z) dV

= ∫ a2

a1

∫ b2

b1

∫ c2

c1
α(x)β(y)γ (z)dz dy dx

= ∫ a2

a1
α(x)
∫ b2

b1
β(y)
∫ c2

c1
γ (z)dz dy dx

=
(∫ a2

a1
α(x) dx
) (∫ b2

b1
β(y) dy

) (∫ c2

c1
γ (z)dz
)

.

71. Use the result of Exercise 69. The product
(a2 − a1)(b2 − b1)(c2 − c1) is the volume of rectangular
solid R.

73. Using the notation of Definition 13.15, the equality
holds since

∫∫∫
R
(
f (x, y, z) + g(x, y, z)

)
dV

= lim
�→0

l∑
i=1

m∑
j=1

n∑
k=1

(
f
(

x∗
i , y∗

j .z
∗
k

)
+ g
(

x∗
i , y∗

j .z
∗
k

))
�V

= lim
�→0

l∑
i=1

m∑
j=1

n∑
k=1

f (x∗
i , y∗

j .z
∗
k )�V +

lim
�→0

l∑
i=1

m∑
j=1

n∑
k=1

g(x∗
i , y∗

j .z
∗
k )�V

= ∫∫∫R f (x, y, z) dV + ∫∫∫R g(x, y, z) dV .

Section 13.6

1. T, T, F, T, T, T, F, F.

3. x = x0 is a plane parallel to the yz-plane, y = y0 is a
plane parallel to the xz-plane and z = z0 is a plane
parallel to the xy-plane.

5. ρ = ρ0 is a sphere centered at the origin, θ = θ0 is a
vertical half-plane starting at the z-axis, and φ = φ0 is a
cone whose axis of symmetry is the z-axis.

7. r = √x2 + y2, θ = tan−1
( y

x

)
, z = z.

9. ρ = √x2 + y2 + z2, θ = tan−1
( y

x

)
,

φ = cos−1
(

z√
x2 +y2 +z2

)
.

11. ρ = √
r2 + z2, θ = θ , φ = tan−1

( r
z

)
.

13. dx dy dz, dx dz dy, dy dx dz, dy dz dx, dz dx dy, dz dy dx.
You make your choice based on the shape of the region
of integration.

15. ρ 2 sin φ dρ dθ dφ. Since ρ is usually expressed as a
function of θ and φ, this usually provides the simplest
order of integration.

17. The region of integration � usually determines the
coordinate system you choose. You usually start with
the coordinate system that provides the simplest
expression for �.

19.
∫ π/2

0

∫ π/2

0

∫ 1

0
kρ 2 sin φ dρ dθ dφ

= k
3

∫ π/2

0

∫ π/2

0
sin φ dθ dφ = πk

6

∫ π/2

0
sin φ dφ = πk

6
.

21. Mx z = ∫ π/2
0

∫ π/2
0

∫ 1
0 kρ 3 sin 2 φ sin θ dρ dθ dφ

23. Cylindrical (1, 0, 0), spherical
(

1, 0,
π

2

)

25. Rectangular (2
√

3, 6, 4), spherical
(

8,
π

3
,
π

3

)

27. Rectangular (0, 0, −8), cylindrical (0, 0, −8)

29. A plane parallel to the yz-plane, cylindrical r = 4 sec θ ,
spherical ρ = 4 csc φ sec θ .

31. A right circular cylinder centered on the z-axis,
rectangular x2 + y2 = 4, spherical ρ = 2 csc φ.

33. The half of the yz-plane in which y ≥ 0.

35. A sphere centered at the origin with radius 2,
rectangular x2 + y2 + z2 = 4, cylindrical r2 + z2 = 4.

37. The xy-plane, rectangular z = 0, cylindrical z = 0.

39. The region bounded below by the rθ-plane and
bounded above by the cone z = r on the circle with
radius 3 centered at the origin.

41. The region inside the right circular cylinder with
equation r = 2 sin θ , bounded below by the rθ-plane
and bounded above by the sphere with radius 4
centered at the origin.

43. The hemisphere below the xy-plane of the sphere with
radius 2 centered at the origin.
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45. The region inside the upward opening right circular
cone that has the z-axis as its axis of symmetry, height
3, and base with radius 3.

47. 48π −64
9

49. 2
√

3π

51. π

32 53. 16
3

π

55. 2
3
πR 3 (1 − cos α). If α = 0 the solid is “empty,” so the

volume should be zero. If α = π , the solid is a sphere,

so the volume should be
4
3
πR 3.

57. 1920π −3328
225

k, where k is the constant of proportionality.

59. (x, y, z) =
(

0, 0,
94

15
√

3+40π

)
.

61. 7π

1024
k, where k is the constant of proportionality.

63. 16π

3
k, where k is the constant of proportionality.

65. x = y = 0, z = 3
8

R (cos α + 1).

67. Approximately 31800 cubic feet

69. Since x = r cos θ = a, when we solve for r we have
r = a sec θ .

71. Since x = ρ sin φ cos θ = a, when we solve for ρ we
have ρ = a csc φ sec θ .

73.
∫ 2π

0

∫ R

0

∫ h

hr/R
r dz dr dθ =

∫ 2π

0

∫ R

0

(
hr − h

R
r2
)

dr dθ

=
∫ 2π

0

1
6

R 2h dθ = 1
3
πR 2h.

75.
∫ tan−1(R/h)

0

∫ 2π

0

∫ h sec φ

0
ρ 2 sin φ dρ dθ dφ

=
∫ tan−1(R/h)

0

∫ 2π

0

1
3

h 3 sinφ

cos3 φ
dθ dφ

=
∫ tan−1(R/h)

0

2
3
πh 3 sinφ

cos3 φ
dφ = 1

3
πR 2h.

Section 13.7

1. T, T, T, T, T, F, T, F.

3. It is a scaling factor. For example, in the simplest case
when the Jacobian is a constant, k, the area of the
domain set � is k times the area of the target set �′.

5.
∫ 1

0

∫ y+1

−y+1
x2 y dx dy +

∫ 2

1

∫ y+1

y−1
x2 y dx dy +

∫ 3

2

∫ 5−y

y−1
x2 y dx dy = 4

5
+ 17

2
+ 97

10
= 19.

7. x = u+v
2

, y = u−v
2

,
∂(x,y)
∂(u,v)

= − 1
2

9. 1
16

∫ 5

1

∫ 1

−1
(u + v) 2(u − v) dv du = 19

11. It translates the region a units horizontally and b units
vertically. The rectangle is translated to the rectangle in
the uv-plane where 3 ≤ u ≤ 4 and 4 ≤ v ≤ 6.

13. It would not be particularly useful because it only
translates the region and would not provide a simpler
expression for the limits of integration.

15. It scales the region by a factor of a units horizontally and
b units vertically. The rectangle is scaled to the rectangle

in the uv-plane where 0 ≤ u ≤ 3 and 0 ≤ v ≤ 1
2

.

17. If a < 0, in addition to a scaling factor, there is a
reflection about the vertical axis, and if b < 0 there is a
reflection about the horizontal axis. The sign of the
Jacobian changes if either a or b is negative, but it does
not change if both are negative.

19. x = (sin θ )u + (cos θ )v and y = −(cos θ )u + (sin θ )v,
∂(x,y)
∂(u,v)

= 1. The transformation rotates points about the

origin. It does not change the area of the region,
therefore the Jacobian should be, and is, 1.

21.
∫∫

�

1
(x+y)2

dA =
∫ 1

0

∫ 4−x

1−x

1
(x+y)2

dy dx +
∫ 4

1

∫ 4−x

0

1
(x+y)2

dy dx = ln 4

23. Area(�) = 15
2

square units and Area(�′) = 15 square

units, Area(�) = ∂(x,y)
∂(u,v)

·Area(�′)

25. The quotient
u
v

= xy · x
y

= x2. Therefore, x =
√ u

v
.

Similarly the product uv = xy · y
x

= y2. Therefore,

y = √
uv. So,

∂(x,y)
∂(u,v)

=
⎡
⎣

1
2
√

uv
1
2

√ v
u

− 1
2

√ u
v3

1
2

√ u
v

⎤
⎦ = 1

2v
.

27. The rectangle with vertices (0, 0), (2, 2), (1, 3) and

(−1, 1);
∂(x,y)
∂(u,v)

= 2.

29. The region in the first quadrant bounded by the

hyperbolas with equations y = 1
x

and y = 4
x

and lines

y = x and y = 9x,
∂(x,y)
∂(u,v)

= 2u
v

.

31. The right half of the circle with radius two centered at

the origin,
∂(x,y)
∂(u,v)

= −u.

33.

x

y

9431

9

4
3

1

	 u

v

124

6

�6

	'

2560
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35.

u

v

124

3

1

1
3

	'

2560

37.

x

y

52 3

5

3

2

	

u

v

85

7

1

	'

399
8

39. 81
2

41. 21
2

ln 2

43. 160
3

+ 6552 ln 3 45. 15
8

47. 5
64

49. 1100 cubic feet.

51. ∂(x,y,z)
∂(r,θ ,z)

= det

⎡
⎣ cos θ sin θ 0

−r sin θ r cos θ 0
0 0 1

⎤
⎦ = r.

53. Using the transformation in the equation ax + by = c
we obtain (aα + bγ )u + (aβ + bδ)v = c, which is a linear
equation, if the coefficients of u and v are not both zero.
This is the case when the Jacobian is nonzero.

55. u = 1
αδ−βγ

(δx − βy) and v = 1
αδ−βγ

(−γ x + αy)

57. Use the transformation given by x = au and y = bv. You
will transform the equation to the equation of the unit
circle centered at the origin.

59. Show that det

⎡
⎣

∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v

⎤
⎦ det

⎡
⎣

∂u
∂s

∂v
∂s

∂u
∂t

∂v
∂t

⎤
⎦ =

det

⎡
⎣

∂x
∂u

∂u
∂s

+ ∂x
∂v

∂v
∂s

∂y
∂u

∂u
∂s

+ ∂y
∂v

∂v
∂s

∂x
∂u

∂u
∂t

+ ∂x
∂v

∂v
∂t

∂y
∂u

∂u
∂t

+ ∂y
∂v

∂v
∂t

⎤
⎦.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.

Chapter 14

Section 14.1

1. F, T, F, T, T, F, F, T

3. A vector field in the Cartesian plane, or R
2, has domain

D ⊆ R
2.

5. Vectors in the Cartesian plane.

7. A vector field F is conservative if it is the gradient of
some function f .

9. For every point (x, y) ∈ R
2, F(x, y) and G(x, y) are

parallel; only for (0, 0) are they the same vector.

11. For every point (x, y) ∈ R
2, F(x, y) = −G(x, y); at (0, 0)

they the same vector.

13. G(x, y, z) = 〈2yz, 2xz, 2xy〉
15. Let F(x, y) = 〈f1(x, y), f2(x, y)〉. If f1,y �= f2,x, then F is not

conservative.
17. f (x, y) = x 3 cos y

19. g(x, y) = x 5 + xy − 3y 4

21. f (x, y, z) = xyz

23. g(x, y, z) = x cos y + y sin z

25. y

x
�1

1

�1

1

27. y

x
�1

1

�1

1

29. y

x
�1

1

�1

1
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31. y

x
�1

1

�1

1

33. ∂

∂y
(xy) = y �= ∂

∂x
(−y) = 0

35. ∂

∂y

( 1
x2 +y

)
= −(x2 + y)−2 �= ∂

∂x

( y
x

)
= −y

x2

37. ∂

∂z
(−z) = −1 �= ∂

∂y
(eyz) = zeyz

39. ∂

∂z
(yz) = y �= ∂

∂y
(z + 12)

41. Not conservative 43. g(x, y) = x2 + sin(xy) − y

45. f (x, y, z) = xye2z + x 47. Not conservative

49. (a) Since the fluid is moving at a constant rate, F(x, y)
should have a constant magnitude. Since the motion is
horizontal only, there is no j component to the field.
Since the motion is in the negative i direction, a
reasonable field is F(x, y) = −αi, for any positive
constant α. (b) F(x, y) = 〈−α, −α〉, for any real number
α > 0. (c) G(x, y) = −yi + xj

y

x
�1

1

�1

1

(c)

51. (b) It is conservative. Potential functions have the form

Q(x, y) = 0.9x − x3

3
+ 1

2
xy2 + k. This function represents,

in some sense, the amount of water that needs to get
through a passage, or if you prefer, the pressure of the
water that must pass through. (c) There are points of
land due north and due south of this channel, forcing
the water through a relatively narrower passage.

53. Suppose that f (x, y) and g(x, y) satisfy
∇f (x, y) = ∇g(x, y). Then

f (x, y) =
∫

fx(x, y) dx + Bf + αf

and g(x, y) = ∫ gx(x, y) dx + Bg + αg , where Bf is the
integral with respect to y of all the terms in fy(x, y) that
do not involve an x term, Bg is the integral with respect
to y of all the terms in gy(x, y) that do not involve an x
term, and αf , αg are arbitrary constants. Since
gy(x, y) = fy(x, y), Bf = Bg , and f (x, y) = g(x, y) + α.

Section 14.2

1. T, F, T, T, F, T, F, F

3.
∫ b

a
et7
√

1 + 4t2 + 16t6dt

5. F(x, y) = (x + y)i + xyj

7. F(x, y, z) = 〈xy2, xy − z, cos y〉

9.
∫

C
F(x, y) · dr =

∫
C

(−y) dx + x dy

11. ds = ‖r′(t)‖ dt 13.
∫ b

a
(4t2et + 2tet − e2t) dt

15. r(t) = cos ti + sin tj, 0 ≤ t ≤ 2π

17. r(t) = 〈2 cos t, t, 2 sin t〉 , 0 ≤ t ≤ 4π

19. favg(C) =
∫

C f (x,y,z)ds∫
C ds

21. 1
12

(173/2 − 1)

23. r(t) = 〈cos t, sin t〉 , 0 ≤ t ≤ 2π ; ‖r(t)‖ = 1,∫
C f (x, y)ds = 2π .

25. r(t) = 〈t, 2t, 3t〉 , 0 ≤ t ≤ 1. Then
∫

C f ds = √
14
∫ 1

0 e6tdt =
√

14
(
e6 −1
)

6
.

27.
√

2e (eπ − 1)

29. r(t) = 〈t, t2 + 1
〉
, r′(t) = 〈1, 2t〉,∫

C F(x, y) · dr = ∫ 10
5 (1 − 2t) dt = −70

31. 70

33. 0 since F(x, y) is conservative and C is closed.

35. π 37. ln π − π − 1

39. F is not conservative:
∂ f1

∂z
= −1 �= 1 = ∂ f3

∂x

41. 3 32 − 1, F(x, y, z) = ∇ (zxy); the integral is path
independent.

43. F is not conservative:
∂ f2

∂z
= 0 �= 1 = ∂ f3

∂y

45. 7
3
π 3

47. ‖r′(t)‖ = ‖ 〈sin t + t cos t, cos t − t sin t〉 ‖ = √
1 + t2,∫

C f (x, y)ds = 1
3

((16π )3/2 − 1)

49. F(x, y, z) = ∇f (x, y, z), where f (x, y, z) = exyz + 2x − y.
The intersection of the surfaces is an ellipse, in
particular a closed curve. So the integral is zero.

51. 4π 53. 112

55. −2π 57. 1
3

(ln2) 3 + ln 2 − 31
24

e−3

59. π2

12
61. 2πe

63. (a) No; (b) 0; (c) It is a measure of how much the
current helps or hurts Annie’s progress.
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65. Suppose that F(x, y, z) is a conservative vector field.
Then F(x, y, z) = ∇f (x, y, z) for some f (x, y, z). Let
r(t), a ≤ t ≤ b be a smooth parametrization of C. By the
Fundamental Theorem of Line Integrals,∫

C
F(x, y, z) · dr

= f
(
x(b), y(b), z(b)

)− f
(
x(a), y(a), z(a)

)
, which depends

only on the endpoints of C and not on C itself.

Section 14.3

1. F, T, T, T, F, T, F, T.

3. Surface integrals of multivariate functions only need to
account for the distortion of the surface’s area
compared to a comparable region in the parameter
plane (xy or uv); surface integrals of vector fields need
to account for the action of F(x, y, z) through the
surface, that is, in the normal direction.

5. dS =
√

a2 +b2 +c2

c2

7. r(x, y) = 〈x, y,
√

1 − x2 − y2〉.
9. r(u, v) = 〈k cos u cos v, k sin u cos v, k sin v〉 , 0 ≤ u ≤

2π , 0 ≤ v ≤ π .

11. n = −fxi − fyj + k 13. n = 2ti − j

15. favg(S) =
∫
S f (x,y,z)dS∫

S 1dS

17. ‖ru × rv‖ is the area of the parallelogram with sides ru
and rv; the area of this parallelogram approximates the
area of the portion of the tangent plane used to
approximate the area of S; in the limit, the analogy is
exact.

19. n = i − fyj − fz k 21. 12
√

2

23. 19π

6 25. 2
√

6

27. π − π

e 29. 0

31. 4e 2 + 14 33. 20
21

√
3

35. − 12
5

37. 240π

39. n = 〈2, −8, −10〉; ∫S F · n dS =
−2
∫ π

π

∫ 1
0 4z cos yz + 5z sin yz dA = −20π .

41. 0

43.
∫
S 1 dS = ∫ 3

0

∫ 2x
0 2

√
x2 + 1 dy dx = 4

3
(103/2 − 1).

45. 61
324

+ 2−2/3

ln2
− 1

2ln2
47. −832π

49. kπ
6

(173/2 − 1) 51. 3π

53. 596(373/2 +48)
5(373/2 −5)

55. 0.0643 square miles

57. Reversing the orientation of S means substituting −n
for n. Factoring −1 out of the integral gives the desired
result.

59. In both cases, the surface area is
∫

1dS with limits
determined by R. Computing dS for each surface, we
see that they are equal. (dS = √4x2 + 4y2 + 1)

Section 14.4

1. F, F, T, T, T, T, F, F.

3. The terms in the integrand are the mixed partial
derivatives of the component functions of the vector
field.

5. Work done by F moving a particle along C, flux
perpendicular to C.

7. Setting G(x, y) = ∂ f2

∂x
− ∂ f1

∂y
, allows the use of Green’s

Theorem to evaluate the integral.

9. At the point (x, y, z), div F will be negative.

11. At the point (x, y, z), div F will be positive.

13. − ∫∫R(sin x sin y + x2ey)dA, where R is the unit circle

15. − sin x sin y − x 2ey 17. 2xy + x sin y

19. 0

21. y√
1−(xy)2

+ 1
y+z

− 5
(2x+3y+5z+1)2

23. −
( 3

(2x+3y+5z+1)2
+ 1

y+z

)
i +
( 2

(2x+3y+5z+1)2
j

− x√
1−x2y2

k

25. 〈xzex y − xyex z, xyey z − yzex y, yzex z − xzey z〉
27. (cos(x − y) + sin(x + y))k

29. Using Green’s Theorem we have
∫ 2π

0

∫ 1
0 4r 3 dr dθ = 2π .

31. − 32
3

33. 1
4

(e2 − 2e + 3)

35. 0. Note that F is not conservative, so this is not the
result of applying the Fundamental Theorem of Line
Integrals.

37. 1
2

39. 16

41. 4 − 2e + (e2 − 1)(ln 2 − 1) 43. 1
ln2

− 1
e+1

45. 0

47. Work is given by
∫

C F · dr. Using Green’s Theorem to
evaluate the integral, we have W = −2π.

49. F is conservative, so W = 0.

51. (a) 0; (c) They tell us that there is no creation of water
inside the passage. The water flowing in and out is
balanced.
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53. (a) Since speed increases as we move left among the

lanes, we can say that
∂v2

∂x
< 0, while the fact that

v1 ≡ 0 means that
∂v1

∂y
= 0. This means that the curl is

always negative – the traffic tends to have a rotation to
it. If the curl is low, it means all lanes are running nearly
the same speed, but if it is high, then the variation in
speeds among the lanes is high. Generally, low curl is
safer. (b) The curl in this case is −α, so the area integral
on the right is approximately −0.00568α. The curve
integral on the left divides into four segments. Since dr
goes in opposite directions on the top and bottom and
the speeds are the same there, those segments cancel.
The integral on the left segment is

∫ 0
0.5 75 dy, while that

on the right is
∫ 0.5

0 (75 − 0.0113α) dy. Thus the integral
on the left is

∫ 0.5
0 −0.0113α, which ends up the same as

the other side. (c) These describe the average curl for the
traffic flow on this stretch of road, i.e., the circulation of
traffic on this stretch. The higher the number, the less
safe the road. The curve integral is what engineers
would be able to compute using road tubes they put
down to measure the number and speed of passing
cars. In other words, they could put road tubes along
y = 0 and y = 0.5 to compute the curve integral.

55. Directly computing div curl F, we find that div curl F is

∂ 2F3

∂x∂y
− ∂ 2F2

∂x∂z
+ ∂ 2F1

∂y∂z
− ∂ 2F3

∂y∂x
+ ∂ 2F2

∂z∂x
− ∂ 2F1

∂z∂y
= 0.

57. If F is a conservative vector field, then by the
Fundamental Theorem of Line Integrals,

∫
C F · dr = 0

for any closed simple smooth or piecewise-smooth
curve. By Green’s Theorem, we have∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA =
∫

C
F · dr = 0

Section 14.5

1. F, T, F, F, T, T, T, T.

3.
〈
− ∂g

∂x
, − ∂g

∂y
, 1
〉

and
〈
∂g
∂x

,
∂g
∂y

, −1
〉

5. By Stokes’ Theorem, both integrals are equivalent to∫
C F(x, y, z) · dr. So they are equal to each other.

7. SA = ∫C F(x, y, z)˙dr

9. The orientation of S determines the direction of travel
along C; in Stokes’ Theorem, C is traversed
counterclockwise with respect to n. If the orientation is
reversed, the integrals will change sign.

11. Any conservative vector field will have
∫

C F · dr = 0, so
any conservative vector field is an example of this.

13. Both notations refer to area. In the case of Green’s
Theorem, dA refers to ordinary area. In the case of
Stokes’ Theorem, dS keeps track of any distortion to the
area of the surface S caused by transforming a patch of
the uv-plane to parametrize S.

15. Answers will vary. When the line integral has a
piecewise-continuous boundary that requires the
evaluation of several smooth pieces, but by using the
right-hand side of Stokes’ Theorem, we can obtain the
same result with a single area integral.

17. Answers will vary. If a surface for an intended
application of Stokes’ Theorem is not smooth or
piecewise smooth, there is no guarantee that the
incremental application of Green’s Theorem in the
tangent planes is accurate, or even well defined.

19. 35
12

21. 0

23. 1
12

25. 16π

81

27. 320
3

. 29. 8π

31. 36π

33. F is not defined on the z-axis.

35. S is not smooth; in particular, n is not well-defined at
the cone point, (0, 0, 0).

37. This vector field is conservative, so
∫

C F · dr = 0.

39. curl F = 0

41. curl F = 0 43. −60π

45. (a) 0; (b) r = r(θ ) = 〈x(θ ), y(θ )〉 = 〈cos θ , sin θ〉. Thus on
∂R we have F = 〈0, 1.152 − 0.8 cos2 θ〉 and

dr = d
dθ

〈cos θ , sin θ〉dθ = 〈− sin θ , cos θ〉dθ , hence∫
∂R Fdr = ∫ 2π

0 (1.152 − 0.9 cos2 θ ) cos θ dθ = 0.; (c) They
tell us that there is no net circulation of water in this
zone.

47. Using Stokes’ Theorem to compute the integral gives
n = ±k, depending on the direction in which C is
traversed. The k component of curl F does not depend
on F3, so

∫
C F · dr does not depend on F3.

49. Since n = ±〈a, b, c〉 on all of the surface, and the partial
derivatives of F1, F2, F3 are all constants, curl F · n dS will
be some constant r. Then

∫
C F · dr = r

∫∫
S dA, which

depends only on area.

51. This is a direct consequence of Stokes’ Theorem. By the
theorem, both sides of the equation are equal to∫

C F(x, y, z) · dr.

Section 14.6

1. T, T, F, T, F, F, T, T.

3. No. Such surfaces have no interior (or infinite interior).

5. On the surface of the paraboloid, there is always a
well-defined choice of normal vector; intuitively
speaking, the graph has no sharp corners. The
rectangular solid, however, is (piecewise) comprised of
smooth planes, but the intersections of these planes
form sharp corners on the surface, which do not have
well-defined normal vectors.

7. (a) positive (b) zero 9. fxx + fyy + fzz

11. G(x, y, z) = 3i − 4j + 57k. 13. 〈x + yz, y + 2xz, z + xy〉
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15. Not possible: S is neither smooth nor
piecewise-smooth.

17. Not possible: F(x, y, z)is not defined throughout the
region enclosed by S.

19. Possible: this integral satisfies the conditions of the
Divergence Theorem.

21. div F = 3 23. div F = 3ex y z + 3xyzex y z

25. 3π 7 27. 0

29. 12π 31. 0

33. 21π

2 35. 675π

37. 36πe 39. 8
3

41. 18(e 5 + ln 5 − e) + 4320 43. 16

45. (a) 0; (b)
∫
∂R F · n dS = ∫ 2π

0 (1.152 − 0.9 cos2 θ ) sin θ dθ

= 0; (c) They tell us that the same amount of water
flows into the region as flows out. The fact that the
divergence vanishes everywhere in the region shows
that there are no sources or sinks of water in the region.

47. (a) No traffic can leave the roadway to either side, so
this means that there is a net flux of cars into this
stretch of road: traffic is slowing down. This condition
could not persist indefinitely, since the road will fill up.
(b) By the Divergence Theorem, it is the −0.0565
computed in part (a) divided by the area 0.0113 of the

road; i.e., −5. The divergence here is
∂v2

∂y
, which is the

acceleration along the road. Since this is negative, it
confirms that traffic is slowing down.

49. 12π 51. a + b + c > 0

53. Let S be the unit sphere and let
F(x, y, z) = 〈−2xz, 2yz, xy〉. Then F is not conservative,

since
∂ f1

∂z
= −2x �= y = ∂ f3

∂x
. However, div F = 0, so by

the Divergence Theorem,
∫∫

S F(x, y, z) · n dS = 0.

For answers to odd-numbered Skill Certification exercises
in the Chapter Review, please visit the Book Companion
Web Site at www.whfreeman.com/tkcalculus.
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absolute area, 375–376, 380–381
absolute convergence, 646

defined, 645
ratio test for, 647–648

absolute value, 39–40
function, 39

absolute volume, 995
abuse of notation, 904, 1100
acceleration, 157, 864–865

centripetal, 894, 896–897
defined, 865
normal components of, 893–894
tangential components of, 893–894

accumulation function, 317–318
area, 388–390

algebraic function, 35–43. see also
absolute value function; polynomial
function; power function; rational
function

defined, 35
algebraic rules

of exponents, 49
for logarithms, 49

alternating harmonic series, 642, 645
alternating series, 641–645

defined, 641
remainder, 644

alternating series test, 642, 645–646
annulus, 1018
anticommutative, 816
antiderivative, 252, 358, 559

defined, 195, 354
elementary, 358
of exponential function, 356
by guess-and-check, 358
and indefinite integrals, 354–355
of inverse trigonometric functions, 53
of logarithm function, 422
of power function, 355
of trignometric functions, 356, 446
vector function, 867

antidifferentiation, 355–358, 559
approximating
area under a curve, 329–330
centroid, 546
convergent series, 620–621
length of curve, 526
limits with tables, 133–134
with rectangles, 329–330
roots, 181–183
square roots, 181
surface area, 530
volume, 500–501, 514–515
volume of solid, 514–515
volume with rectangular solid, 1061

arc length
approximating, 526–527, 532–534
defined, 573
definite integral for, 527–528, 534–535
of parametric curve, 712–713, 719–720
parametrization, 882–886
of polar curve, 750–751
of vector curve, 882

arch, 719
Archimedes, spiral of, 737
arcsecx, see inverse secant function
arcsin x, see inverse sine function
arctan x, see inverse tangent function
area, 334, 378

absolute, 376
between curves, 377–378
of circle, 328, 1022–1023
elliptical annulus, 1076–1077
function, 394
line integral, 1101
polar coordinates, 749
polar curves, 749–750, 753–754
sector, 749
signed, 376
triangle, 822
between two graphs, 377
under a curve, 342–344

area accumulation function, 388–390
arithmetic function operations, 19
arithmetic mean, 987
arithmetic sequence, 581
associated slope function, 156, 159–160,

170
astroid, 715, 716
asymptote, 7, 39, 81–82, 141, 273
average, 243

radius, 515, 529
rate of change, 7, 12–13, 382
value, 378–379, 380
velocity, 159, 162–163, 364

b x, see exponential function
back-substitution, 414
ball

open, 919
base, 49
base conversion formula, 49
bell curve, 353
Bessel function, 681
binomial coefficients, 678
binomial series, 677–678
binomial theorem, 151
binormal vector, 875
bisection method, 122, 182
bob, 150, 234

boundary
defined, 922
point, 922
of set, 922

bounded
sequence, 583–585, 600
sets, 922

boundedness, 583, 601

calculating
definite integrals, 368
derivatives, 175–177, 187–196
indefinite integrals, 355, 357, 359
limits, 116, 132, 143, 144

Cancellation Theorem for limits, 125
cardioid, 739, 740

length, 757
carrying capacity, 564
Cartesian coordinate system, 778–787
Cartesian plane, 4
catenary, 228
Cauchy Mean Value Theorem, 304
center of mass, 545, 1035, 1047

and first moments, 1030–1032
pyramid, 1050–1051

centripetal acceleration, 894, 896–897
centroid, 432, 545–547, 552, 553, 558,

1032, 1033–1034
chain rule, 201–204, 205, 230, 358, 359,

391, 395, 408–409, 863, 868, 955–956,
960

change of variables, 408
Jacobian, 1069–1077

checking
accuracy of an approximation,

483, 486–487
binormal vector, 878
center of mass, 1035
continuity, 192
cross products, 821
definite integrals, 411
differentiability, 192
equations, 12
graphs of polar curves, 745
indefinite integral, 404
intersection points, 758
solution to exact differential equation,

941–942
volume of pyramid, 1050
volume of solid of revolution, 502

circular functions, 227
circular reference, see reference, circular
circulation, 1123
circumference of a circle, 535–536
Clairaut’s theorem, 936
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closed formula, 480, 580–581, 585
closed set, 919, 921, 925
codomain, 2
coefficient, 35, 36, 200
combining sums, 322
commutative, 20
comparison test, 471

for indefinite integrals, 475
series, 626–627, 629

complement, of set, 921
completing the square, 435, 462
components, 792, 829–830
compositions, 19–20, 24, 54, 57, 201, 911

limit of, 123
compound interest, 604
compression, 22
concave down, 264
concave up, 6, 264
concavity, 6, 264, 268–269, 483

parametric curve, 718
and second derivative, 266

concho-spiral, 874
conclusion, 64
concurrent, 845, 1041
conditional convergence, 645, 650
cone, 293

elliptic, 783, 784
surface area of, 293
volume of, 293

conic sections
defined, 758
degenerate, 758
eccentricity of, 764
focus-directrix definition of, 761
nondegenerate, 783
polar equations of, 763

cosh x, 227
cosh−1 x, 229, 357
conic section, 758–770

defined, 758
in polar coordinates, 763–766

conjugate, 137, 178
conservative vector field, 1089–1091,

1092
constant function, 15, 36, 188
constant multiple of functions, 19
constant multiple rule

for definite integrals, 345, 347
for derivatives, 189
for indefinite integrals, 357, 359
for limits, 123, 923
for sums, 319
for series, 608
for sequences, 596

constant term, 36
constraint, 281, 977, 979–980
continuous, 100, 109, 110, 111, 117, 123,

124, 131, 929
of area function, 389
everywhere, 925
function of two or three variables, 925
functions, 123
growth rate, 571
on an interval, 110
one-sided, 110

at a point, 109
on a set, 925
vector function, 855, 856

contrapositive 5, 65
convergence, 89, 312, 328, 468, 469,

470–471
absolute, 645, 646
conditional, 645
limit, 100
Maclaurin series, 684–686
power series, 681–691
sequences, 594–600
series, 607–610
tests, 617

converse, 64
converting between coordinate systems,

725–726, 1060, 1081
coordinate planes, 779
coordinate systems

conversion, 725–726, 1060, 1081
coplanar, 820
cosecant function, 51, 446
cosine function, 51
cost function, 282
cotangent function, 51
counterexample, 65–66
critical point, 200, 212, 240, 245, 253, 266

and local extrema, 241, 244, 967
cross product, 815

area, 821
cross-sectional area, 501–502
cube

sphere, 786–787
cubic polynomial, 36
curl, 1123, 1127–1128

of gradient, 1124
of vector field, 1123

curvature, 882, 884, 885–886
radius of, 886

curve sketching, 270–273
first derivative and, 256
strategies, 267–268

cycloid, 716
arc length, 719–720
tangent lines, 717–718

cylinder, 293, 782
graphing, 786
right, 780
surface area of, 293
volume of, 293, 500, 505

cylindrical coordinates, 1058–1059

decay, exponential, 48
decreasing

function, 7, 250–251, 254–255, 481
sequence, 582

definite integral, 329, 343, 346, 349,
350–351, 354, 364, 366, 367, 375, 376,
378, 379, 380–382, 402, 414–415, 426,
544–545

for arc length, 528–529
calculating, 411, 423
of cross-sectional area, 501–502
formulas, 346–348, 349, 485
properties of, 344–346

vector function, 867
for volume by shells, 516

degenerate
conic section, 758
quadric surface, 783

degree, 11
del operator, 1122
delta (δ), 90
delta-epsilon

and limit, 91
proofs, 102, 104

�x, 343
density

mass and, 542, 548–550
population, 1036–1037

dependent variable, 2
derivative, 156

of area function, 392, 393
chain rule, 201
of constant, 187
constant multiple rule, 189
defined, 79
directional, 946–948, 957–959
of exponential function, 212–214
exponential rule, 213
as function, 170
of hyperbolic functions, 227–228
of identity function, 187
of inverse functions, 216–217
of inverse trigonometric function,

225–226
limits for, 137
of linear function, 187
at local extrema, 240–241
logarithmic differentiation,

219–220
of logarithmic function, 214–216
partial, 933–935
of piecewise function, 179
at point, 169
of power function, 188
power rule, 188
product rule, 191
quotient rule, 191
of rational function, 191
reciprocal rule, 200
second, 175, 263, 264, 265, 266–267
second-order partial, 936
sum rule, 189
of trigonometric function, 224–225
units, 159
vector function, 862–863

determinant, 814–815
differ by a constant, 354
difference of two squares, 12
difference quotient, 159
difference rule

for derivatives, 189
for limits, 123

differentiability, 170–172, 948–950
of area function, 390
of exponential functions, 213
on an interval, 171
one-sided, 171
at a point, 170
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and partial derivatives, 948, 950
vector function, 862

differential, defined, 174
differential equations, 223, 402, 443,

559, 575
exact, 938, 941–942
separable, 560–561, 565–566
slope field, 561–562, 566

differentiating, 194, 217–218, 230
compositions of functions, 201–202
defined, 159
piecewise-defined function, 194–195,

218–219
power functions, 187
rules, 192, 215, 359

dihedral angle, 845
direct proof, 66, 68
direction angles, 812
direction cosines, 812
direction vector, 827
directional derivative, 946–948

gradient and, 957–959
directrix, 765

cylinder, 782
ellipse, 764, 770
hyperbola, 764, 770
parabola, 761, 763, 767

discontinuities, 117–118
defined, 110
improper integrals and, 469
infinite, 110, 111
jump, 110, 111
at a point, 110
removable, 110, 111

discontinuity
at a point, 110

discontinuous, 111
discriminant, 37, 969
disk, 502–503, 504–506, 514

defined, 500
open, 919

displacement, 797
vs. distance travelled, 893

distance, 364, 368, 543, 765, 766,
780–781

approximations, 318
defined, 503–504
formula, 159, 532, 781
origin to plane, 839
parallel planes, 839–840, 842
point to line, 810, 829, 832
point to plane, 838–839, 842, 973
skew lines, 839, 840, 843
travelled, displacement vs., 893

divergence
of curl, 1123, 1124
of harmonic series, 620–621
of improper integral, 468, 469,

470–471, 475–476
of p-series, 620–621
of sequence, 89, 312, 594–596, 598, 611
of series, 89, 607–608, 609
test, 617–618, 623
Theorem, 1143–1144, 1145–1148
of vector field, 1123

divisible, 63
DNA, 861
does not exist, 80, 81
domain, 2, 3, 8, 11, 25, 40, 53, 56

function of three variables, 907
function of two variables, 904

dominance, 311, 628
sequences, 598–599

doomsday model, 89, 150
dot product, 803–806

orthogonality, 806, 809
double helix, 861
double integral, 995

algebraic properties of, 1009–1010
applications of, 1029–1037
circle, 1022–1023
evaluation, 998–999
Fubinis theorem and, 997–998
general region, 1008–1009
iterated integrals and, 996–997
and moments of inertia, 1031–1032
polar coordinates, 1017–1021,

1023–1024
rectangular regions, 993–996

double-angle identities, 52, 446, 448
dS, 1112
du in terms of dx, 417
dummy variable, 389
dx, 343

e, 126–127
eccentricity, 764, 765
e kx, see exponential function
electric field intensity, 1148
elementary antiderivative, 358
ellipse, 759–760

directrix, 765
eccentricity, 764
focus, 759, 760, 764

ellipsoid, 773, 783, 784
elliptic cone, 783, 784
elliptic paraboloids, 785
Elvis, 99, 290
empty set, 921
epicycloid, 722
epsilon (ε), 91
epsilon-delta definition of limit, 91
equal vectors, 795
equation, 559
error, 481, 482, 484

from Simpson’s Rule , 486
escape velocity, 575
estimating instantaneous velocity,

162–163
estimating the slope of a tangent line,

161–162
Euler’s formula, 702
Euler’s method, 562–563, 567
evaluation notation, 365, 366
even

function, 22, 27, 52, 735
integer, 63
symmetry, 22

exact area, 349
exact differential equation, 941–942

exists, 80, 91
expanded sum, 321
exponent, 35
exponential

decay, 48
function, 47–48, 127–128, 212–214,

218–219, 356
growth, 48, 563
rule, 212, 356

extrema, 6
absolute, 966
global, 278, 280–281, 966
local, 240–241, 245, 252, 267, 966
relative, 966

Extreme Value Theorem, 113, 116,
242, 979

factorial, 151, 580
factorial-like, 634

sequence, 587–588
factoring, 11
family of antiderivatives, 354
Fermat’s theorem for local extrema, 241
Fibonacci sequence, 580
first moment, 1031, 1047
first-derivative test, 252–254, 266,

269–270
flaming tent, 284
floor function, 388
flux, 1108, 1117

of a vector field across a surface,
1112–1113

focus
ellipse, 759, 760, 764
hyperbola, 762
parabola, 761

foot-pounds, 543
for all, 63
force, 543

in cables, 799–800
fractals, 616
Frenet frame, 876
frustums, 529, 536–537
Fubini’s Theorem, 996–998, 1043–1044
function, 2-3, 8-9

absolute value, 39–40
algebraic, 35–43
area accumulation, 388–390
behavior, 10–11
composition, 19, 201–202, 911
concavity, 6
constant, 15
decreasing, 15
defined by integral, 390
differentiable, 170, 171, 172
domain, 3, 904, 907
even, 22, 27, 52, 735
exotic, 115
exponential, 47–48, 127–128, 212–214,

218–219, 356
graph of, 4
hyperbolic, 227–228
identity, 15
implicit, 203
increasing, 6
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function (Cont.)
inverse, 23–24
inverse hyperbolic, 229
inverse trigonometric, 53, 128,

225–226, 231
logarithmic, 49, 127, 214–216, 217–218
multivariable, 14
natural logarithm, 49
negative, 15
odd, 22
one-to-one, 5
periodic, 224
piecewise-defined, 13, 114–115, 131,

179, 194–195, 218
polynomial, 36–37
positive, 6
power, 35–36
quadratic, 433, 435, 485
range, 3, 904, 907
rational, 37–39
with same derivative, 251–252
scalar, 853
three variable, 906–907
transcendental, 47
trigonometric, 50–52
two-variable, 904–906
vector, 853

Fundamental Theorem of Algebra, 37
Fundamental Theorem of Calculus,

364–366, 367, 368–370
Fundamental Theorem of Line Integrals,

1100–1101, 1103

Gabriel’s Horn, 480
gas

ideal law, 932
constant, 932

Gauss’ Law, 1148
geometric mean, 987
geometric sequences, 581, 598, 602, 609
geometric series, 609–610

repeating decimals, 612–613
global behavior of a polynomial, 147
global extrema, 6, 114, 282
global maximum, 280
global minimum, 15
gradient, 961–962

defined, 957
and directional derivative, 957
and level curves, 959, 962

graph
defined, 4
function of three variables, 907
function of two variables, 905–906
of inverse function, 24, 29
level curves, 908
level surface, 909
polar curves, 733–735
of polynomial functions, 36, 37, 40–41
of position, velocity and, 160–161
of power functions, 35, 36
properties of, 5-7
of rational functions, 38, 41–42
space curves, 853, 857
window, 9-10

graphing calculator, 348, 534
gravity

Earth, 899
force, and motion, 891–892
Jupiter, 899
Mars, 899
moon, 899

greatest lower bound, 584
Green’s Theorem, 1125–1126

curl form, 1123, 1126–1127
divergence form, 1123, 1126–1127
Fundamental Theorem of Calculus

and, 1122
Green’s Theorem, curl form, 1140
Green’s Theorem, divergence form, 1140
growth, 48
guess-and-check method for integrals,

360
gyration, radius of, 1033, 1036, 1047,

1051

half-life, 571
harmonic series, 620

alternating, 642
headlights, 156
helix, 723, 854

conical, 857
graphing, 856

hemisphere, 908
Heron’s formula, 824, 986
Hessian, 969
higher order partial derivative, 935–936
hole, 38
horizontal

compression, 22
reflection, 22
stretch, 22
translation, 22

horizontal asymptote, 39, 82, 144
Horizontal Asymptote Theorem, 141
horizontal line test, 5
Human Cannonball, 894–896
hydrostatic force, 543–544, 550–552
hyperbola, 762–763

asymptotes, 762
directrix, 764
eccentricity, 764
focus, 762, 764

hyperbolic cosine, 227
Maclaurin series, 686–687

hyperbolic derivatives, 228
hyperbolic functions, 227–228, 357

derivatives of, 228
inverse, 229, 357

hyperbolic integrals, 450
hyperbolic sine, 229
hyperbolic tangent, 227
hyperboloid, 773, 783, 784–785
hyperplane, 916, 949
hypersphere, 791, 936
hypocycloid, 775
hypothesis, 64, 248

ideal gas law, 932
identities, 51, 52, 444–445, 447–448

identity function, 15, 187
if and only if, 65
if...then, 64
i, j, and k components, 822, 1099, 1123
implication, 64–65, 67–68
implicit differentiation, 203–204, 205–208
implicit function, 203, 204, 206–207
improper integrals, 467–468, 474–475

comparison Test for, 471
defined, 467
as limits of definite integrals, 472–473
over discontinuities, 469
over unbounded intervals, 468
of power functions, 470, 473–474

improper rational functions, 432, 433, 436
increasing function, 6, 7, 250–251,

254–255
sequence, 582

indefinite integral, 354–355
constant multiple rules for, 357–358,

359
sum rules for, 357–358, 359

independent of path, 1101
independent variable, 2
indeterminate form, 125, 139, 141, 146,

153, 306
L’Hôpital’s rule for, 303–304
logarithms for, 304–305

index, 318, 579
changing, 585, 613

induction, 321
inertia, moments of, 1032–1033,

1035–1036, 1047, 1051–1052
infinite discontinuity, 110
infinite limit, 80, 94, 138–139

at infinity, 80, 94, 139–141
inflating balloon, 296–297
inflection point, 6, 265–266, 268–269
initial edge, 50
initial-value problem applications of,

563–565
defined, 402
differential equations and, 559–560

instantaneous rate of change, 159, 169
instantaneous velocity, 79, 162–163
integer, 63
integrable function, 344, 995, 1042
integral, 355

definite, see definite integral
double, see double integral
of hyperbolic functions, 357
indefinite, see indefinite integral
improper, see improper integrals
iterated, 996–997, 1011–1013
iterated triple, 1043
as limit of Riemann sums, 344
numerical approximation of, 480–481
with respect to arc length, 1098
test, 618–619
triple, see triple integral

integrand, 355
integration

changing the variable, 1069, 1072
formula, 355–357, 404
limits of, 343, 346
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with spherical coordinates, 1061–1062
vector function, 867
and volume, 1001

integration by parts
for definite integrals, 423
formula, 420, 421
implementation strategies, 420–422

definite integral, 429
definite integrals, 426
formula, 424
more than once, 428
integration by substitution, 409, 412

and back-substitution, 414
for definite integrals, 411, 414–415
formula for, 408
selection, 413–414

Intermediate Value Theorem, 113, 114,
116, 117

intersecting lines, 758
and plane, 779

interval of convergence, 661–662,
664–667

inverse function, 23–24, 29
derivatives of, 216–217
hyperbolic, 229, 231, 357
secant, 53, 226
sine, 53, 226, 423
tangent, 53, 423
trigonometric, 53–54, 225–226, 356

involute, 722
irrational numbers, 115–116
irreducible, 37
irrotational, 1142
iterated integral, 996–997, 1011–1013

triple, 1043

Jacobian, 1071, 1073
jello, 549
joules, 543
jump discontinuity, 110

Kepler, Johannes, 772
first law of planetarymotion, 902

L’Hôpital’s rule, 302–304, 305–308
Lagrange multiplier, 977
Lagrange’s form for remainder, 683
Lagrange’s Identity, 816
lamina, 1030, 1031, 1115–1116
Laplace’s equation, 989
Laplacian, 1155
lateral surface area, 293
Law of Cosines, 804, 805
law of similar triangles, 294, 297
leading coefficient, 36
leading term, 36

of polynomial, 147
least squares, 989
least upper bound, 584, 590
Least Upper Bound Axiom, 113,

585
left continuous, 109
left derivative, 171
left differentiability, 171
left-handed systems, 779

left limit, 92
left sum, 332, 333, 336–337, 482
Leibniz notation, 173–175, 201, 202
lemniscate, 744–745
length

arc, see arc length
of curve, 531–532
parametric curve, 719–720
of vector, 794

level curves, 908, 912–914
and gradient, 959, 962

level surfaces, 909
limaçon, 738, 741–742

area, 752–753
limit, 78, 80, 84–85

of algebraic functions, 124
of average rate of change, 78–79
calculating, 108, 116, 123, 130–131,

132, 143–145, 308–309
cancellation theorem for, 125
and continuity, 109–110, 114–115, 131
of combinations of functions, 123–124
converges to, 100, 607
definition of
algebraic, 100
formal, 90–91
for derivatives, 137
evaluation, 928
examples of, 78–79
of functions, 79–81, 923, 924, 927
identifying, 82–83
indeterminate, 141–142, 146, 302, 303
infinite, 80, 94, 104–105, 138–139, 148
at infinity, 80, 94, 95–96, 139–140, 148
of integration, 343, 346, 415
non-indeterminate, 142
notation, 85
one-sided, 80, 92–93, 104–105
of partial sums, 606, 608
along paths, 928
of Riemann sums, 344, 345
rules, 129–130, 596
of sequences, 78, 100, 595, 600–601
squeeze theorem for, 125, 132–133
of sum, 323–324, 528
with tables of values, 82, 133–134
trigonometric, 142–143
two-sided, 81, 93
uniqueness of, 91–92
of vector function, 855, 858

limit comparison test, 478, 627–630
line integral

along closed curves, 1103–1104
Fundamental Theorem of, 1100–1101,

1103, 1129
of multivariate function, 1097–1098
of vector field, 1099–1100, 1102

line of intersection, 840
line segments, 526
linear approximation, 173, 181
linear equation, 827
linear function, 36, 187, 918
linear moments, 1031
linear transformation, 1080
ln x, see natural logarithm function

local extrema, 6, 240, 244
and critical points, 968
gradient at, 966–968
second-derivative test, 968–971

local linearity, 173, 181–182
local maximum, 6, 240
local minimum, 240
logarithmic differentiation, 216,

219–220
logarithmic functions, 49–50

algebraic rules for, 49
continuity of exponential and, 127
derivatives of, 214–216
graphs of, 50
natural, 49, 392

logarithmic growth, 50
logarithms

approximation, with Riemann sums,
397

to calculate limit, 308–309
for indeterminate forms, 304–305

logb x, see logarithmic function
logistic growth model, 442, 564
logistic model, 564
lower sum, 333

Maclaurin polynomials, 672–673, 675
Maclaurin series, 674, 675–676, 684

approximation, 690
convergence, 687
evaluation, 687
hyperbolic cosine, 686–687
integration, 696–697
manipulation, 684–686, 688
multiplication, 689–690
for sine function, 674, 683
Taylor series derivation from,

688–689
magnitude, 794
major axis, 759
mass, 150, 548–550, 1034–1035

center of, 545, 1030
defined, 542
first moment of, 1031, 1047
of lamina, 1030
of planar region, 1029–1030
of rectangular parallelepiped, 1049
of slice of cylinder, 1052
parallelepiped, 1063

mass of a lamina, 1048
matrix, 814
maximum,

absolute, 966
global, 6, 278, 966
local, 6, 240, 253, 267, 278, 966
relative, 966

mean
arithmetic, 987
geometric, 987

mean value, see average value
Mean Value Theorem, 242–243, 246

Cauchy, 304
for Integrals, 379–380, 382–383

median, of triangle, 1041
method of least squares, 989
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midpoint, 775
sum, 332, 333, 337, 483, 484,

487–488
trapezoid, 484

min, 105
minimum,

absolute, 966
global, 6, 278, 966
local, 6, 240, 253, 267, 278, 966
relative, 966

minor axis, 759
mixed partial derivative, 936
modelling, with polynomial functions,

40–41
moment

first, 1030–1032, 1047
linear, 1031
polar, 1032
second, 1033

moment of inertia, 1032–1033,
1035–1036, 1047, 1051–1052

monic, 441
monotonic, 481, 587, 601–602

function, 482
sequence, 582, 599–600
tests, 583

moving frame, 876
multiplicity, 38
multipliers, Lagrange, 977
multivariable function, 14
Möbius band, 1110

natural exponential function, 48
natural growth rate, 564, 571
natural logarithm function, 49, 391–392,

422
negative angle, 50
negative function, 15
net area, 332
net change, 366, 371
Net Change Theorem, 366–367
Newton’s Law of Cooling and Heating,

564, 567–568
Newton’s method, 181–182, 589–590
newton-meters, 543
newtons, 543
non-indeterminate form, 142
nonlinear equations, 978
nonorientable surface, 1110
norm, 794
normal component of acceleration, 894
normal distribution, 353
normal plane, 880
normal vector, 836
nth derivative, 175

octahedron, 790
octants, 780
odd

function, 22, 27–28, 735
integer, 63
symmetry, 22

one-sided continuity, 110
one-sided limits, 80, 92–93
open ball, 919

open disk, 919
open set, 920, 924
operator notation, 174
optimization, 278–286, 981
orientable surface, 1139
orthogonal curves, 806
orthogonal vectors, 806
osculating circle, 886, 887
osculating plane, 875, 877–878

p-series, 470, 619–620
Pappus’ Centroid Theorem, 558
parabola, 773, 774

directrix, 774, 781
focus, 774, 781

paraboloid, 760–761
elliptic, 761
hyperbolic, 761

parallel lines, 828
parallel vectors, 796, 816
parallelepiped, 815

volume, 819, 820, 822–823,
1048–1049

parallelogram, area of, 817
parameter, 708, 852

elimination, 710
parameterization, 227
parametric curve, 708, 711, 712, 718–720,

852
parametric equations, 707, 709–710,

716–717, 830, 852
parametrization, 712

arc length, 882–883
parametrized surface, 1109–1110
parity, 445
partial derivative, 936–938, 939

and differentiability, 948, 949, 950–951
of functions of two and three variables,

933–935
graphical interpretation, 934
higher order, 935–936, 940–941
mixed, 936

partial fractions, 433–434
partial sums, 328

sequence of, 606
parts, see integration by parts
path independent, 1101
periodic function, 224
permittivity, 1148
piecewise, 42
piecewise function, 13, 39, 42, 114–115,

131, 179, 194–195, 218
piecewise smooth, 1098
plane

coordinate, 780
general form, 837
point and line, 841–842
three points, 841

planetary orbits, 902
polar axis, 724
polar coordinates

circles, 726
equivalent, 725
plotting, 724–725, 727
representations, 728

polar curve
arc length, 751

polar equations
symmetry, 739

polar moment, 1032
polar plane, 733
pole, 724
polynomial function, 36–37, 147
polynomial long division, 433, 435, 436
polynomials

Maclaurin, 673
Taylor, 673

population, 218–219
density, 1036–1037
growth, 572

position function, 157, 159
position vectors, 792, 793
positive angle, 50
positive function, 6
potential function, 1089, 1090, 1093–1094
power function, 35, 40, 111, 355, 358,

470, 473–474
power rule, 188–189

for antiderivatives, 355
integer powers, 189
rational powers, 207–208

power series, 660–661, 662–664, 667–668
differentiation, 694–695
integration, 695–696
manipulation, 684–686

principal unit normal vector, 875
probability density function, 1040
probability distribution function, 1033
product notation, 640
product, of functions, 19
product rule, 359

for derivatives, 191
reversing, 420
for limits, 123
reversing, 420

projection
component, 807
vector, 806

proof, 66, 68
by contradiction, 67, 69
direct, 66, 68

proper rational function, 432, 434
properties of integrals, 346
proportional, 214
punctured interval, 90
Pythagorean identities, 52, 444, 447,

449–450
Pythagorean Theorem, 294

QED, 64
, see QED

quadratic, 485
formula, 12
function, 433, 435, 485
polynomial, 36

quadric surface, 783
quantifiers, 63, 64
quartic polynomial, 36
quintic polynomial, 36
quotient of functions, 19
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quotient rule,
for derivatives, 191
for limits, 123
reversing, 358, 359

radian, 50
radius of convergence, 662, 664–665,

666–667
radius of curvature, 886, 887
radius of gyration, 1033, 1036, 1047,

1051–1052
range, 3, 8

function of three variables, 907
function of two variables, 904

rate of change, 7, 214
ratio test, 583

absolute convergence, 647–648
series, 633, 635, 636

rational function, 37–39, 41
Horizontal Asymptote Theorem for,

141
improper, 432–433, 436
proper, 432–433

rational number, 37, 63
reciprocal rule, for derivatives, 200

rectifying plane, 880
recursion formula, 580, 586
recursive sequences, 580
recursively defined sequences,

580–581
reducing powers, 446, 448
reduction formula, 453
reference angle, 54
reference, circular, see circular reference
reflection, 22, 25
region between two curves, 547
regression line, 989
related rates, 291–298
remainder,

alternating series, 644
of convergent series, 621, 622
of function, 681
Lagrange’s form, 683
polynomial, 435

removable discontinuity, 111
repeated root, 41
repeating decimals as geometric series,

612–613
representative

disk, 505
slice, 506, 548, 549

restricted domain, 24, 28
reversing differentiation rules, 358
rhombohedron, 825
Riemann sum, 330–331, 553–554, 750,

994, 999
error bounds, 483–484
for functions of two variables, 1042
for functions of two variables, 995
left sum, 332, 333, 336–337
limit of, 995, 997
lower sum, 333, 334
midpoint sum, 332, 333, 336–337,

483–484
notation, 335

right sum, 332, 333, 335, 336
trapezoid sum, 334, 336–337,

483–484
upper sum, 333, 334
for volumes by shells, 515–516

right continuous, 109
right cylinder, 782
right derivative, 171
right differentiability, 171
right limit, 80, 92, 93
right sum, 332, 333, 335, 336, 344, 481,

482, 486–487
right-handed system, 778, 779
right-handed triple, 818
ripples in a pond, 295
Rolle’s Theorem, 241–242, 243,

244–246
root, 6
root test, 634–636, 637–638

modifying, 651
series, 634

rose, 742–744, 1021
area, 751–752

rotational symmetry, 22
R

3, 781
R

2, 781
ruling, 782

saddle point, 968
same derivative, 251–252, 354
scalar

defined, 792
function, 853
multiple, 792

sec−1 x, see inverse secant function
secant

function, 51
inverse function, 53
line, 158, 161–162

second derivative, 175, 264, 268–269
test, 266–267, 269–270

Second Fundamental Theorem of
Calculus, 390–391

proof of, 392–393
second moment, 1047
second-order partial derivatives, 936
section, 783
sector, area of, 750
semimajor axis, 772
semiperimeter, 824, 986
separable differential equation, 443,

560–561
separation of variables, 561, 565
sequence, 78, 161–162, 585, 586

analyzing, 587–588
arithmetic, 581
of average velocities, 162–163
bounded, 583–585, 587, 599–600,

601–602
convergence of, 89, 312, 594–599
decreasing, 582
divergence of, 89, 312, 594–599
dominance relationships for, 598
factorial, 580
Fibonacci, 580

geometric, 581, 598, 602
increasing, 582
indexing of, 585
limit, 78, 100
monotonic, 582–583, 587, 599–600,

601–602
notation, 581
of numbers, 579–580
of partial sums, 606, 607
patterns, 86
recursive, 580–581
subsequence, 597
tail of, 595
unbounded, 584
series, 89, 606
analyzing, 610–611, 636–637
algebra of, 608
alternating, 641–645
alternating harmonic, 642
approximating, 620–621
binomial, 677–678
comparison test, 626–627, 629
convergence, 89, 607–608, 617
convergent, 620–621
divergence, 89, 607–608, 617–618
evaluations for, 18
geometric, 609–610, 612–613
harmonic, 619–620
index of, 613
kth term of, 606
limit comparison test, 627–630
Maclaurin, 674
power, 493
of real numbers, 606
tail, 610
Taylor, 151, 674
telescoping, 610, 611

set
boundary, 922
bounded, 922
closed, 921
complement, 921
open, 920

set notation, 3
shadow from a streetlight, 297
shells, 514–520
Sierpinski triangle, 616∑

, see sigma notation
sigma notation, 318–320, 321–322
sign changes, 114, 117
sign chart, 11, 256, 271
signed area, 332, 344, 350, 364, 369–370,

376, 380–381
signed volume, 995
similar triangles, 293–294
simplifying before differentiating, 194
simply connected, 1087
Simpson’s Rule, 484–486, 488–489
sin−1 x, see inverse sine function
sine function, 51
sinh x, 228
sinh−1 x, 229, 357
sink, 1092
skew lines, 828
slant length, 529
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slice, 506
slope, 156

associated function, 170
field, 561, 562, 566
function, 156, 159–160
of parametric curve, 711
of tangent line, 158–159, 161–162

slope-intercept form, 173
smooth, 156, 1097

piecewise, 1098
curve, 1097
parametrization, 1097, 1110
surface, 1110

solid of revolution, 466, 502
solution, 559, 566
solving equations, 14
source, 1089
space curve, 852, 853–854, 865, 881–882,

887–888
speed, 865
sphere, 293, 781

cube, 786–787
surface area of, 536–537

spherical coordinates, 1059–1062
spiral, 856–857

of Archimedes, 737
splitting a sum, 320
spring, 234
Squeeze Theorem, 125–126, 132–133,

393
standard basis vector, 797, 821–822
standard normal distribution, 353
standard position, 50
stationary point, 967, 969, 971–972
Stokes’ Theorem, 1135–1139, 1145
strange gravity, 199
stretch, 22
strophoid, 756, 1027
subsequence, 597
substitution, 408, 412–413

definite integrals and, 411
selection of, 409–411, 413–414

sum
formulas, 320, 322–324, 347–348
of functions, 19
identities, 52
Riemann, see Riemann sum
of series, 607
telescoping, 367

sum rule, 923
for definite integrals, 345, 349
for derivatives, 189
for differentiation, 359
for double integrals, 995
for indefinite integrals, 357, 359
for limits, 123
for sequences, 596
for series, 607
for sums, 319
for triple integrals, 1042

summation
double, 993
triple, 993

supergrowth, 572
surface area, 466, 1110–1112

approximation, 529–530
definite integral for, 530–531, 537
formulas, 293
of sphere, 536–537

surface independent, 1156
surface integral, 1114–1115

of multivariate function, 1110–1112
surface of revolution, 529, 530, 912
symmetric difference quotient, 165
symmetric form, 828, 829–830
symmetry, 745

even, 22
odd, 22
in polar graphs, 735–739
rotational, 22
x-axis, 726
y-axis, 22
z-axis, 1062, 1064

synthetic division, 206

tail of a sequence, 595
tan−1 x, see inverse tangent function
tangent function, 51

inverse, 53
tangent line, 18, 156, 158–159, 161–162,

171, 172–173, 177, 206–207, 864
vertical, 711

tangent plane, 949, 951, 967
tangent vector, 870

unit, 874
tangential component of acceleration,

894
tanh x, 227
tanh−1 x, 229, 357
target, 2
Taylor polynomials, 673
Taylor series, 151, 674, 676–677

remainder, 681
Taylor’s theorem, 682
telescoping series, 610
telescoping sum, 367
term-by-term differentiation and

integration, 694–696
terminal edge, 50
tests for convergence and divergence of

series, 617–618
tetrahedron, 790
there exists, 63
thickness of shell, 515
3-space, 779
TNB frame, 876
torque, 825
torsion, 890
torus, 558
trace, 783
transcendental function, 47
transformation, 20, 22, 26–27, 1069

Jacobian for, 1071
linear, 1080

translations, 20, 25, 279
trapezoid sum, 334, 336–337, 484, 488
triangle inequality, 8, 72
trigonometric

antiderivatives, 356
derivatives, 224

fucntions, 50, 51, 57
identities, 52, 445, 447–448
limits, 142

trigonometric substitution, 454–463
triple integral, 1041–1053
triple scalar product, 820, 1072
trochoid, 722
twisted cubic, 862
2-space, 779
type I region, 1007
type II region, 1007

unbounded sets, 922
uniqueness of limits, 91–92
unit circle, 50

parametrization, 713–715
unit normal vector, 875, 876–877
unit tangent vector, 874, 876–877
unit vector, 796–797, 799
units of the derivative, 159
universal gas constant, 932
upper bound, least, 113, 584
upper sum, 333, 334
using algebra first, 358
u-substitution, 408

variable, 2
vector, 792

adding, 798–799
angle between, 808
components, 792, 806
curve, 853
initial point, 792
Laplacian, 1155
normal, 836
position, 792
projection, 806, 809
subtracting, 798–799
sum, 792
terminal point, 792
unit, 796–797

vector curl, 1123
vector field, 1087–1089, 1091–1092

conservative, 1089–1091, 1093
vector function, 827

continuity of, 855, 856
derivative, 862–863
integral, 867
limit, 855, 858
with three components, 853

vector triple product, 819, 826
vector-valued function, 852–853
velocity, 157, 160–161, 865

average, 159
curve, 318
definite integral of, 368
function, 157
instantaneous, 79, 162–163
vector, 869–870

vertex, 758
conic section, 758

vertical
asymptote, 39, 144
compression, 22
line test, 4
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reflection, 22
stretch, 22
tangent line, 171
translation, 22

volume, 296–297, 507–508,
1062–1064

absolute, 995
approximation, 500–501, 504–505
of cone, 293, 506–507
of cylinder, 293, 505
as definite integral, 501–502, 503
using polar coordinates, 1024–1025
pyramid, 1049–1050
of shell, 514–520

signed, 995
solid of revolution, 502
of sphere, 293, 500
and integration, 1002

washers, 502, 503, 506
water flow, 1130
weight, 542
weight of water, 543
weight-density, 543
wombat, 218–219
work, 513, 543, 544, 547–548,

1099
line integral, 1105

x-axis, 375–376
x-coordinate, 27, 1035, 1062
xy-plane, 779
xz-plane, 779

y-axis, 506-507, 519–520
symmetry, 22

y-intercept, 6
yz-plane, 779

z-axis, 1047, 1062, 1064
zero vector, 795
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ALGEBRA REVIEW

The Quadratic Formula

The solutions of ax2 + bx + c = 0 are of the form

x = −b ± √
b2 − 4ac

2a

Factoring Formulas

a2 − b2 = (a − b)(a + b)
a3 + b3 = (a + b)(a2 − ab + b2)
a3 − b3 = (a − b)(a2 + ab + b2)
an − bn = (a − b)(an−1 + an−2b + an−3b2

+ · · · + abn−2 + bn−1)

The Binomial Theorem

(a + b)n = an + (n
1

)
an−1b + (n

2

)
an−2b2 + · · ·

+ (n
k

)
an−kbk + · · · + ( n

n−1

)
abn−1 + bn,

where
(n

k

) = n!
k!(n−k)!

and k! = 1 · 2 · 3 · · · · · k

Definition of Absolute Value

|a| =
{

a, if a ≥ 0
−a, if a < 0

Inequalities and Distance

The following are equivalent:

� |x − c| < δ

� the distance between x and c is less than δ

� x ∈ (c − δ, c + δ)

The following are equivalent:

� |x − c| > δ

� the distance between x and c is greater than δ

� x ∈ (−∞, c − δ) ∪ (c + δ, ∞)

BASIC FUNCTION TYPES

Linear Functions

f (x) = mx + b

Power Functions

f (x) = Axk, where k is rational

Polynomial Functions

f (x) = anxn+an−1xn−1+an−2xn−2+· · ·+a2x2+a1x+a0,
where n is a positive integer

Rational Functions

f (x) = p(x)
q(x)

, where p(x) and q(x) are polynomials

Exponential Functions

f (x) = Ab x or f (x) = Ae kx, with A �= 0, b > 0, and
b �= 1, where

e = lim
h→0

(1 + h)1/h

Logarithmic Functions

f (x) = A ln x or f (x) = A logb x, with A �= 0, b > 0, and
b �= 1, where ln x = loge x and

logb(b x) = x for all x and b log b x = x for all x > 0.

Hyperbolic Functions

sinh x = ex − e−x

2
, cosh x = ex + e−x

2
, tanh x = ex − e−x

e x + e−x

Trigonometric Functions

for an angle θ in standard position,
sin θ = y cos θ = x tan θ = y

x

csc θ = 1
y sec θ = 1

x cot θ = x
y

(x, y)
(cos θ, sin θ)

θ

y

x

Inverse Trigonometric Functions

f (x) = sin−1 x, f (x) = tan−1 x, and f (x) = sec−1 x are
the inverses of sin x, tan x, and sec x, and thus

sin−1(sin x) = x for x ∈
[
−π

2
, π

2

]
sin(sin−1 x) = x for x ∈ [−1, 1]

tan−1(tan x) = x for x ∈
(
−π

2
, π

2

)
tan(tan−1 x) = x for x ∈ (−∞, ∞)

sec−1(sec x) = x for x ∈
[
0, π

2

)
∪

(
π

2
, π

]
sec(sec−1 x) = x for x ∈ (−∞, −1] ∪ [1, ∞)
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BASIC GRAPHS

Power Functions

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � x2

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � x3

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � �1x

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � �1
x2

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) �   x

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � |x  |�
2
3

Exponential and Logarithmic Functions

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � ex

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � e�x

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � ln x

Trigonometric Functions

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f (x) � sin x

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f (x) � cos x

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f (x) � tan x

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f (x) � sec x

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f (x) � csc x

3

2

1

y

�3

�2

�1

x
2πππ

2
3π

2
5π

2

f(x) � cot x

Inverse Trigonometric Functions
y

�2 �1 21
x

�

π

2

π

2

f (x) � sin�1 x

y

�2 �1 21
x

π

2

�
π

2

f (x) � tan�1 x

y

�2�3 �1 321
x

π

�π

π

2

�
π

2

f (x) � sec�1 x

Hyperbolic Functions

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � sinh x

3

2

1

y

�3

�2

�1
�2�3 �1 321

x

f (x) � cosh x

2

y

�2

�2 �1 21
x

1

�1

f (x) � tanh x

GEOMETRY

Pythagorean
Theorem

Law of Similar
Triangles Rectangular Solid Sphere Cylinder Cone

c
b

a B

D
H

h

b

d

yx

z

r

r

h

r

h

a2 + b2 = c2 h
b

= H
B

d
b

= D
B

d
h

= D
H

V = xyz

S = 2xy + 2yz + 2xz

V = 4
3
πr 3

S = 4πr 2

V = πr 2h

S = 2πrh + 2πr 2

V = 1
3
πr 2h

S = πr
√

r 2 + h 2 + πr 2

To test your understanding of these and other prerequisites to calculus, work through the Chapter 0
Review Exercises, in particular the Notation and Skill Certification sections. Those review exercises can
serve as a Diagnostic Test for precalculus and algebra comprehension.
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DIFFERENTIAL CALCULUS

Definition of the Limit

lim
x→c

f (x) = L means that:

For all ε > 0, there exists a δ > 0 such that
if x ∈ (c − δ, c) ∪ (c, c + δ), then f (x) ∈ (L − ε, L + ε).

Equivalently, in terms of absolute value inequalities,
lim
x→c

f (x) = L means that:

For all ε > 0, there exists a δ > 0 such that
if 0 < |x − c| < δ, then | f (x) − L| < ε.

The Extreme Value Theorem

If f is continuous on a closed interval [a, b], then there
exist values M and m in the interval [a, b] such that
f (M) is the maximum value of f (x) on [a, b] and f (m)
is the minimum value of f (x) on [a, b].

The Intermediate Value Theorem

If f is continuous on a closed interval [a, b], then for any
K strictly between f (a) and f (b), there exists at least one
c ∈ (a, b) such that f (c) = K.

Definition of the Derivative

The derivative of a function f (x) is defined to be the
function:

f ′(x) = lim
h→0

f (x + h) − f (x)
h

or, equivalently:

f ′(x) = lim
z→x

f (z) − f (x)
z − x

.

Derivative Rules
d
dx

(kf (x)) = kf ′(x)

d
dx

( f (x) + g(x)) = f ′(x) + g′(x)

d
dx

( f (x)g(x)) = f ′(x)g(x) + f (x)g′(x)

d
dx

(
f (x)
g(x)

)
= f ′(x)g(x) − f (x)g′(x)

(g(x))2

d
dx

( f (g(x))) = f ′(g(x))g′(x)

Rolle’s Theorem

If f is continuous on [a, b] and differentiable on (a, b),
and if f (a) = f (b) = 0, then there exists at least one
value c ∈ (a, b) for which f ′(c) = 0.

The Mean Value Theorem

If f is continuous on [a, b] and differentiable on (a, b),
then there exists at least one value c ∈ (a, b) such that

f ′(c) = f (b) − f (a)
b − a

.

Derivatives of Basic Functions
d
dx

(
x k) = kx k−1

d
dx

(
e kx) = ke kx

If b > 0 and b �= 1, then d
dx

(b x) = (ln b)b x

d
dx

(ln |x|) = 1
x

If b > 0 and b �= 1, then d
dx

(logb |x|) = 1
(lnb)x

d
dx

(sin x) = cos x

d
dx

(cos x) = − sin x

d
dx

(tan x) = sec2 x

d
dx

(cot x) = − csc2 x

d
dx

(sec x) = sec x tan x

d
dx

(csc x) = − csc x cot x

d
dx

(sin−1 x) = 1√
1 − x2

d
dx

(tan−1 x) = 1
1 + x2

d
dx

(sec−1 x) = 1

|x|√x2 − 1

d
dx

(sinh x) = cosh x

d
dx

cosh x = sinh x

d
dx

tanh x = sech2 x
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INTEGRAL CALCULUS

Definition of the Definite Integral

If f is defined on [a, b] then the definite integral of f on
[a, b] is ∫ b

a
f (x) dx = lim

n→∞

n∑
k=1

f (x∗
k ) �x,

if this limit exists, where �x = b−a
n

, xk = a+ k �x, and
x∗

k is any choice of point in [xk−1, xk].

Definition of the Indefinite Integral

The indefinite integral of a continuous function f is the
family of antiderivatives∫

f (x) dx = F(x) + C,

where F is any antiderivative of f .

Fundamental Theorem of Calculus

If f is continuous on [a, b] and F is any antiderivative
of F, then ∫ b

a
f (x) dx = F(b) − F(a).

Integrals of Basic Functions∫
x k dx = 1

k+1
x k+1 + C (for k �= −1)

∫
1
x

dx = ln |x| + C

∫
e kx dx = 1

k
e kx + C (for k �= 0)

∫
b x dx = 1

lnb
b x + C (for b > 0 and b �= 1)

∫
ln x dx = x ln x − x + C

∫
sin x dx = − cos x + C

∫
cos x dx = sin x + C

∫
sec2 x dx = tan x + C

∫
csc2 x dx = − cot x + C

∫
sec x tan x dx = sec x + C

∫
csc x cot x dx = − csc x + C

∫
tan x dx = − ln | cos x| + C

∫
cot x dx = ln | sin x| + C

∫
sec x dx = ln | sec x + tan x| + C

∫
csc x dx = − ln | csc x + cot x| + C

∫
1√

1 − x2
dx = sin−1 x + C

∫
1

1 + x2 dx = tan−1 x + C

∫
1

|x|√x2 − 1
dx = sec−1 x + C

∫
sin−1 x dx = x sin−1 x +

√
1 − x2 + C

∫
tan−1 x dx = x tan−1 x − 1

2
ln(x2 + 1) + C

∫
sinh x dx = cosh x + C

∫
cosh x dx = sinh x + C

∫
sech2 x dx = tanh x + C

∫
1√

x2 + 1
dx = sinh−1 x + C

∫
1√

x2 − 1
dx = cosh−1 x + C

∫
1

1 − x2 dx = tanh−1 x + C
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