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The Mathematical Foundations of Mixing

Mixing processes occur in a variety of technological and natural applications, with
length and time scales ranging from the very small – as in microfluidic applications –
to the very large – for example mixing in the Earth’s oceans and atmosphere. The
diversity of problems can give rise to a diversity of approaches. Are there concepts that
are central to all of them? Are there tools that allow for prediction and quantification?

The authors show how a range of flows in very different settings – micro to macro,
fluids to solids – possess the characteristic of streamline crossing, a central kinematic
feature of ‘good mixing’. This notion can be placed on firm mathematical footing via
Linked Twist Maps (LTMs), which is the central organizing principle of this book.

The authors discuss the definition and construction of LTMs, provide examples of
specific mixers that can be analysed in the LTM framework and introduce a number of
mathematical techniques – nonuniform hyperbolicity and smooth ergodic theory –
which are then brought to bear on the problem of fluid mixing. In a final chapter, they
argue that the analysis of linked twist maps opens the door to a plethora of new
investigations, both from the point of view of basic mathematics as well as new
applications, and present a number of open problems and new directions.
Consequently, this book will be of interest to a broad spectrum of readers, from pure
and applied mathematicians, to engineers, physicists, and geophysicists.
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THOMASINA:
When you stir your rice pudding, Septimus, the spoonful of jam spreads
itself round making red trails like the picture of a meteor in my astro-
nomical atlas. But if you stir backward, the jam will not come together
again. Indeed, the pudding does not notice and continues to turn pink just
as before. Do you think this odd?

SEPTIMUS:
No.

THOMASINA:
Well, I do. You cannot stir things apart.

SEPTIMUS:
No more you can, time must needs run backward, and since it will not,
we must stir our way onward mixing as we go, disorder out of disorder
into disorder until pink is complete, unchanging and unchangeable, and
we are done with it for ever.

Arcadia, Tom Stoppard
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Preface

Where is mixing important?

Mixing processes occur in a variety of technological and natural applications,
with length and time scales ranging from the very small (as in microfluidic
applications), to the very large (mixing in the Earth’s oceans and atmosphere).
The spectrum is quite broad; the ratio of the contributions of inertial forces
(dominant in the realm of the very large) to viscous forces (dominant on the
side of the very small) spans more than twenty orders of magnitude.

Theoretical and experimental developments over the last two decades have
provided a strong foundation for the subject, yet much remains to be done.
Earlier work focused on mixing of liquids and considerable advances have
been made. The basic theory can be extended in many directions and the pic-
ture has been augmented in various ways. One strand of the expansion has
been an incursion into new applications such as oceanography, geophysics and
applications to the design of new mixing devices, as in microfluidics. A second
strand is incursion into new types of physical situations, such as mixing of dry
granular systems and liquid granular systems (in which air is replaced by a
liquid). These applications clearly put us on a different plane – new physics –
since, in contrast to mixing of liquids, a complicating factor in the flow of gran-
ular material is the tendency for materials to segregate or demix as a result of
differences in particle properties, such as density, size, or shape. Mixing com-
petes with segregation: mixtures of particles with varying size (S-systems) or
varying density (D-systems) often segregate leading to what, on first viewing,
appear to be baffling results. This class of problems can also be attacked with
extensions of the basic theory.

The diversity of problems can give rise to a diversity of approaches and a
temptation to deepen work on application-driven tools. Specificity may dom-
inate the picture. One could, however, take the opposite approach. Are there

xiii
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concepts that are central enough that they should be developed in more detail?
Broadness competes with specificity. Would however this viewpoint allow
for a more encompassing view that may otherwise be lost by generation of
fragmented results?

Why is this book needed?

The purpose of this book is to focus on new developments in mathematics
and take this broader view point – the objective is on general results rather than
specifics. Even though the work is of a manifestly mathematical bent, we expect
that the presentation will resonate with a diverse set of readers. We are aware
however that the question ‘Is all this mathematics really necessary?’will surface
in many readers’ minds. The reason for the mathematics is to set a baseline,
a clear picture as to where things come from. We recognize however, that in
long stretches of the presentation things get manifestly technical, and we are
also aware that we have to persuade the reader that going through the material
is a good investment of time. We have therefore decided to provide help in
navigating the book. Periodically we insert physical and heuristic explanations
to go along with the mathematical descriptions. All chapters have mini-intros, a
distillation of the contents of the chapters, and connections to fluid applications
where possible.

What will this book cover?

It is also important to clarify what we will and will not do. Of all the compon-
ents of mixing we will focus on only one – the kinematical aspects of mixing
a fluid with itself. The objective here is to study a problem which is tractable
from an analytical as well as a computational perspective. The broad objective,
then, is to determine what characteristics of a flow enable it to efficiently stretch
material lines and surfaces, and to analyse the simplest possible flows capable
of ‘good mixing’. Making precise what we mean by ‘good mixing’ will occupy
us for at least one chapter of the book. We shall focus primarily on kinematics,
rather than on dynamics (in the sense of the dynamics of fluids). Our study is
an analysis of the motion due to an imposed velocity field; i.e. the study of the
following dynamical system:

dx/dt = v(x, t), x = X at t = 0.

In general, we shall study the motion by a sort of minimal flow – the
simplest non-trivial flow that encapsulates the characteristics of wide classes of
flows – and expose the characteristics which make them good or poor mixing
flows, rather than study the hydrodynamic forces which give rise to the flows
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themselves. The goal is to make recent dynamical systems theory accessible to
users interested in the mixing of fluids.

It is then clear that our presentation is a purposefully distorted view of mixing.
There is nothing in this view, for example, that accounts for turbulent flows. We
argue however, that the baseline presented here is crucial to the understanding
of more complicated cases of mixing.

At the starting point of any mixing process there exist two (or more) constitu-
ents which occupy distinct domains whose size is on the order of the system
size itself. The objective of the mixing process is to reduce the length scales of
these materials below a certain level, resulting in a ‘homogeneous’ system – a
mixture. This length scale and the level of homogeneity are of course depend-
ent upon the application in question. We distinguish three aspects. The first is
essential; the other two may or may not be present. (1) Mechanical mixing: This
is the stretching and folding part; the motion causes the interfaces between the
materials to stretch, creating inter-material area between highly striated struc-
tures. The system, which at first contained a blob of one fluid in another, now
appears as a stretched and folded filament with, in general, a wide distribu-
tion of striation thicknesses; (2) Breakup: If the filament has been sufficiently
stretched, differences in the interfacial tension on opposite sides of an interface
can cause the filament to break up into isolated droplets, reducing the length
scale even further; in this step the properties of the materials matter; in the case
of very viscous materials or in the case of very similar materials this aspect
may be absent; (3) Diffusion: If the fluids are miscible, Brownian motion of
individual fluid molecules, due to fluctuations in thermal energy, acts to homo-
genize the fluid at the molecular scale. This process does not take place if the
materials are incompatible.

Thus not all of these mechanisms need be present in a given mixing process
and, in many cases, breakup may be accompanied by its opposite – coalescence
or unmixing. As a specific example, consider the mixing of two polymeric
fluids with similar, but large, viscosities. Diffusion coefficients in such systems
can be on the order of 10−8 cm2/sec. In this case, both breakup and diffusion
are negligible, and the only means for mixing is stretching. In any case, the
time required for molecular homogenization, T , can be estimated from simple
dimensional analysis to be T = L2/D, where D is the molecular diffusion
coefficient and L is the length scale of the fluid domains. The most important
factor which affects the time scale for final homogenization is the length scale
of the fluid domains. The length scale is in turn determined by the extent of the
stretching of the material domains which occurs due to the imposed motion.
Thus, the most important part of understanding mixing is to understand how,
and what types of flows are able, to generate efficient stretching.
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How are the chapters related to one another?

The book is organized around the idea of the linked twist map (LTM). LTMs
provide a minimal picture of mixing and one case for which nearly everything
that can be known is known; for example, theorems from ergodic theory and
conditions that guarantee mixing behaviour, measures of complexity, and geo-
metrical properties. Results generally apply to infinite-time limits and one could
argue that reality does not correspond to this case. As with every theory care is
needed in interpreting its applicability. For example, a system having a horse-
shoe does not imply that good mixing will take place (by ‘good’ we invoke
the notion of ‘widespread’ as opposed to ‘localized’). On the other hand the
absence of a horseshoe guarantees that no good mixing will occur. Most of the
material presented is scattered throughout the mathematics literature. In par-
ticular we draw on four papers from the pure dynamical systems community,
Devaney (1978), Burton & Easton (1980), Wojtkowski (1980), and Przytycki
(1983) that were published around 25 years ago, mostly in arguably obscure and
hard to find conference proceedings. Moreover their intended audience was a
very different one from ours. Thus one of our main tasks, rather than to present
a host of original dynamical systems theorems, is to distil the papers into the
first unified and user-friendly presentation of these ideas and to show how these
results and the mathematical details within the now classical proofs relate to
contemporary mixing problems. The credit for the original pure mathematical
results rests with the five authors listed above. In Chapters 1 and 2 we con-
sider applications from a variety of fields; microfluidics, granular mixing as
produced by tumbling, and transport in geophysical flows, for example, but we
emphasize the ‘universality’ of the linked twist map approach to mixing across
disciplines.

The book starts in full in Chapter 3, entitled ‘The ergodic hierarchy’. This
chapter is necessary because smooth ergodic theory is a technical subject requir-
ing a mathematical background beyond that of most physicists, chemists, and
engineers, yet we believe it is poised to play an important role in the subject of
mixing in applications in the future. The situation is similar to that which exis-
ted for dynamical systems theory in the late 1970s and early 1980s. At that time
the subject was relatively mathematically abstract and it required substantial
extra effort on the part of physicists, chemists, and engineers to carry out the
transference between ‘abstract theorem’ to a technique that could unlock the
secrets of the specific nonlinear dynamical systems arising in applications. In
smooth ergodic theory such a transference is only now beginning, but it prom-
ises to be equally as fruitful. Consider a specific example of the type of issue
that techniques in smooth ergodic theory may address. The Smale horsehoe is
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the classic ‘chaotic dynamical system’, but it is only a set of ‘zero area’, and
one would therefore expect that the probability of ‘observing’ the dynamics
on this set would be zero. Experiments suggest otherwise – that the chaotic
dynamics may persist beyond a set of zero area. Dynamical systems theory
without smooth ergodic theory gives no indication that this might be the case.
Smooth ergodic theory provides a framework for making these notions math-
ematically precise, and provides the techniques for extending results to sets of
observational significance. In particular, the notion of the area of a set is dealt
with quantitatively through the notion of measure and measurable sets. These
notions allow one to give a probabilistic description of the dynamics, and also
to quantify the idea of ‘observability’ in a way that lends itself to computation.
Smooth ergodic theory also provides a framework for analysing a much more
practical question – ‘When does Smale horseshoe-like behaviour occur on a set
of non-zero area?’, or equivalently, ‘when is the horseshoe observable?’By now
Smale horseshoes have been shown to exist in literally hundreds of dynamical
systems spanning many diverse areas of applications. However, their influence
on ‘observable dynamics’ is unclear at best. One could view the linked twist
maps studied in this monograph as being an example of a dynamical system
exhibiting ‘horseshoe-like’ behaviour on a set of ‘full measure’, and ergodic
theory provides the tools for carrying out the necessary analysis that quantifies
this statement. But mixing is the motivating application for our studies, and
ergodic theory enables us to characterize the mixing process mathematically
and rigorously in a variety of ways. For example, it provides an ordered list
of behaviours of increasing complexity; from ergodicity, through (measure-
theoretic) mixing, to the Bernoulli property. We describe the main features of
ergodicity, mixing, and the Bernoulli property in detail, as these are the most
immediately applicable to the problem of fluid mixing. It should be noted that
these definitions are very technical and differences between them may not be
realizable in applications.

Chapter 4, ‘Existence of a horseshoe for the linked twist map’, builds on
the definition and construction of a linked twist map on the plane. The under-
lying structure of complicated behaviour that arises in LTMs is that of the
Smale horseshoe. This chapter presents a detailed construction of the horse-
shoe, and the implications of its existence for symbolic dynamics. The central
element is revealing the existence of the invariant set of the LTM by a care-
fully chosen pair of quadrilaterals in the intersection of the two linked annuli.
The invariant set is given by the images of the intersection of the quadrilater-
als under infinite forward and backward time. The way in which the image
of each quadrilateral intersects the original pair of quadrilaterals defines a
symbolic dynamics, which gives a measure of the complexity of the system.
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The horseshoe constructed is ‘classical’ in the sense that the chaotic invari-
ant set is uniformly hyperbolic having measure zero. In this sense the linked
twist maps provide a concrete example showing how nonuniform hyperbolicity
arises in this class of dynamical systems. In later chapters we show how it can be
analysed.

Chapter 5, ‘Hyperbolicity’, deals with one of the most fundamental aspects
of dynamical systems theory, both from the point of view of pure dynamical
systems – it represents one of the best-understood classes of dynamical system;
and from the point of view of applied dynamical systems – one of the simplest
models of complex and chaotic dynamics. We define uniform and nonuniform
hyperbolicity, and go on to describe Pesin theory, which establishes a bridge
between nonuniform hyperbolicity and the ergodic hierarchy. The theory of
Pesin is central to our analysis. It relates non-zero Lyapunov exponents and
nonuniform hyperbolicity. The method of invariant cone fields is introduced to
prove the existence of non-zero Lyapunov exponents on a set of full measure.
The special structure of the linked twist maps renders such calculations feasible.
Once nonuniform hyperbolicity is established the theory of Pesin paves the way
for conclusions about the existence of partitions into ergodic components and
the Bernoulli property.

Chapter 6 is entitled ‘The ergodic partition for toral linked twist maps’ and
discusses the application of Pesin theory in detail to linked twist maps defined
on a torus. Here, drawing on three key papers from the ergodic theory literature,
we give the proof that linked twist maps on the torus can be decomposed into
(at most a countable number of) ergodic components.

Chapter 7 centres on ‘Ergodicity and the Bernoulli property for toral linked
twist maps’. Here we apply a global geometric argument, again from the ergodic
theory literature, to extend the result of Chapter 6 to ergodicity and the Bernoulli
property on a set of full measure for toral linked twist maps. Conditions are
given such that these results hold. We give sufficient conditions for a toral
linked twist map to enjoy the Bernoulli property. A key point – of significant
practical importance – to notice is that different conditions are required for the
co-rotating and counter-rotating cases.

In Chapter 8, these results are extended to planar linked twist maps. Linked
twist maps on the plane are more directly applicable to fluid mixing, but
introduce new technical difficulties in the mathematics.

Finally, in Chapter 9, we discuss a number of open problems. The analysis
of linked twist maps only opens the door to a plethora of new investigations,
both from the point of view of basic mathematics, as well as new applications.
In fact, the latter drives the former as applications naturally suggest new types
of linked twist maps, which we describe in detail. The sufficient conditions that
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we derive in earlier chapters leading to ergodicity and the Bernoulli property
can be used as design parameters for optimizing mixing regions, and we show
how this can be done.

In closing we remark again that in some sense this book can be read at two
levels. Chapters 3 through 8 stand on their own as an analysis of the dynamics
of linked twist maps on the torus and on the the plane, containing all of the
necessary background and details. However, we believe that the real value of
this approach comes in when one considers that linked twist maps embody the
mixing paradigm of ‘crossing of streamlines’. When the range of examples
showing this in Chapters 1 and 2 is considered then it becomes apparent that
one has a new way of looking at the mixing process that leads to characterizing
mixing properties on large regions of the domain in a way that has not been
done before. The fact that the approach feeds immediately into optimization
and design makes it even more compelling.
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1

Mixing: physical issues

This chapter provides a brief review of physical considerations in the
analysis of mixing problems and several examples of problems that can
be framed in terms of the mathematical structure covered in this book.

Mixing is a common phenomenon in everyday life. A blob of white cream
placed in a cup of black coffee and gently stirred with a spoon forms, if one looks
carefully, intricately shaped striated structures, until the mixture of coffee and
cream homogenizes into a fluid that is uniformly brown in colour. This common
phenomenon serves to illustrate some of the key features of mixing; namely,
the interplay between advection and diffusion. If the coffee is at rest when the
cream is added (and assuming that the insertion of the cream into the coffee only
causes negligible disturbance of the surrounding coffee) then, in the absence
of stirring, the cream mixes with the coffee by the mechanism of molecular
diffusion. Experience tells us that in this particular situation the mixing takes
much longer than we would typically be willing to wait. Therefore we stir the
admixture of coffee and cream with a spoon, and observe it to homogenize very
quickly. This stirring illustrates the role that advection plays in homogenizing
the cream and coffee. In fact, in this particular example (as well as many others)
the role of molecular diffusion in achieving the desired final mixed state may
very well be negligible.

In this monograph we will concentrate exclusively on mixing via convective
motions or advection. This is the foundation upon which the entire subject of
mixing is built. Of course, the impact or lack thereof of molecular diffusion on
mixing is a fact that requires justification, and this justification occurs within
the physical context of specific mixing problems. The spectrum of problems
occurring in nature and technology where mixing is important is enormously
wide (see Figure 1.1). For example, in the subject of mantle convection (Kellogg
(1993)) it probably seems reasonable that diffusion has essentially no impact on
the mixing of ‘rock with rock’. At the other end of the spectrum, in the realm of
the very small, mixing in microfluidic devices is another area in which diffusion
may have a negligible effect. In this setting the goals are to mix quickly and in

1
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Figure 1.1 Spectrum of mixing problems. [Adapted from Ottino (1990).]

small spaces, and achieving these goals tends to make the effects of diffusion
negligible and to prohibit the creation of turbulent flows, which are well known
to enhance mixing. In fact the subject of mixing at the microscale is tailor made
for the mathematical approach of ‘chaotic mixing’ and the dynamical systems
approach, about which now there is a very large literature (see, for example
Ottino (1989a, 1990), Wiggins (1992), Wiggins & Ottino (2004)).

The dynamical systems approach to mixing, in the absence of diffusion, is
the central theme of this book. But more precisely, we develop the notion of the
linked twist map (LTM) as a paradigm for chaotic mixing in that it embodies the
kinematic mechanism of ‘streamline crossing’ as a mechanism for generating
chaotic fluid particle trajectories. But most importantly, the LTM framework
provides a way in which mixing can be optimized in the sense that one can give
conditions under which mathematically rigorous characterizations of strong
mixing occur on regions of nonzero area. Of course, the conditions leading to
strong mixing in regions of nonzero area do not guarantee fast mixing, some-
thing one wishes to produce in practice. However, not satisfying the conditions
guarantees that mixing will not be widespread, an outcome which is clearly
undesirable. Thus, in a strict sense, the conditions described in this book are
necessary conditions for effective mixing.
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Before developing this approach in some detail, and describing how LTMs
naturally arise in the context of a variety of mixing problems, we first consider
some general physical and kinematic considerations of mixing in general that
will provide rough, but essential, guides to understanding the issues relating to
‘good’ and ‘bad’ mixing.

1.1 Length and time scales

In any ‘mixing problem’ a consideration of length and time scales is fun-
damental as they provide an indication of the main mechanisms at work.
Dimensional quantities, such as length and time scales, often combine with
certain material parameters (e.g., molecular diffusivity, viscosity, etc.) to form
dimensionless ratios that provide rough guides to the relative importance of
competing mechanisms. The Reynolds number, Re, is the ratio of inertial forces
to viscous forces. If U and L denote characteristic velocity and length scales,
Re is UL/ν, where ν is the kinematical viscosity, which is the ratio of viscosity,
µ, and density, ρ, i.e, ν = µ/ρ. Small values of Re correspond to viscous
dominated (or laminar) flows, and large values of the Reynolds number corres-
pond to turbulent flows (see examples in Figure 1.1). The Péclet number, Pe, is
the ratio of transport by advection (or convection) and by molecular diffusion;
Pe is defined as Pe = UL/D, where D is the molecular diffusion coefficient.
Pe can be interpreted also as the ratio of diffusional to advective time-scales;
the time scale for diffusion is L2/D and the time scale for convection is L/U.
A large value of Pe indicates that advection dominates diffusion, and a small
Pe indicates that diffusion dominates advection, or, in terms of time-scales,
the fastest process dominates. The ratio Re/Pe is ν/D, the ratio between two
transport coefficients, the so-called Schmidt number, Sc = ν/D. Sc can be inter-
preted as the ratio of two speeds. The speed of propagation of concentration
is δD ∼ (Dt)1/2, the speed at which concentration gets smoothed out, whereas
the propagation of momentum is δV ∼ (νt)1/2, the speed that it takes for
motion to spread out or die. The ratio of these two speeds, (dδV/dt)/(dδD/dt)
is Sc1/2; thus if Sc � 1, as in the case of liquids, concentration fluctuations
survive without being erased by mechanical mixing until late in the process.
We will encounter these and other numbers in the following examples. As a
reference point the kinematic viscosity of water is about 0.01 cm2/s and of
air 0.15 cm2/s; somewhat surprisingly momentum spreads more quickly in air
than in water. The value of ν in liquids is highly dependent on temperature. The
diffusion coefficient of small molecules in water is about 10−5 cm2/s; thus a
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typical value of Sc for a liquid such as water is about 103. For gases Sc is of
order one.

Example: mixing in a coffee cup

Consider again the case of mixing of milk in a coffee cup. Assume that the cup’s
characteristic length is L ∼ 4 cm and that the typical speed is U ∼ 5 cm/s.
Then the Reynolds number is approximately 2,000, indicating that advection
is much more important than viscous effects; a few strategic turns of the spoon
get the job done. Even if the spoon is held in place the wake behind the spoon
mixes the fluid (the wake flow behind a stationary object being a well-studied
problem). Mixing of milk in golden syrup is another matter. The kinematical
viscosity of golden syrup at 15◦C is 1200 cm2/s, so Re ∼ 10−2. In this case
viscous effects dominate and one cannot rely on inertia; the spoon is removed
and the motion stops. An estimate of the time it takes for the motion to die
off is L2/ν. In the case of syrup the motion stops in a hundredth of a second
whereas in the case of milk the estimate is half an hour. Advection dominates
molecular diffusion in both problems, Pe ∼ 106 in the case of milk and syrup.
The time necessary for mixing relying solely on molecular diffusion is L2/D.
The estimate in this case is in the order of more than a day for either problem.

Example: flow in a small channel

Consider the flow of two adjacent streams of fluid in a channel of length L
along the z-direction having a cross-sectional area in the plane xy with a char-
acteristic length h describing the width of the channel in the cross-section. The
velocity in the z-direction is denoted vz(x, y) with a mean value U. In micro-
fluidic applications typical numbers are h ∼ 200 µm, and µ/ρ ∼ 10−2 cm2/s.
Take U as 1 cm/s. The Reynolds number in this case is Re = Uh/ν ∼ 2. This
small value of the Reynolds number implies that flows in microfluidic chan-
nels are typically viscous dominated. The no-slip boundary condition on the
walls of the channel leads to velocity profiles having parabolic shapes (i.e. at
a given cross-section, vz(x, y) is zero on the walls, and increases monotonic-
ally to a maximum near the middle of the channel). Consider now the Péclet
number. A typical molecular diffusion coefficient ranges between 10−5 cm2/s
at the high end (corresponding to a small molecule) and 10−7 cm2/s at the
low end (typical of large molecules; e.g. haemoglobin in water corresponds to
10−7 cm2/s). Thus, the typical values of advective to diffusional time scales
range between 103 and 105 indicating that advection is much faster than molecu-
lar diffusion. Thus, in spite of the small dimensions, molecular diffusion may
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not be counted on to homogenize the system to molecular scales in a reasonable
amount of time. This can be seen also by calculating time required for diffu-
sion, tD (i.e., neglecting advection) to move a particle the width of the channel,
tD ∼ h2/D. This is 40 seconds for D ∼ 10−5 cm2/s, to about one hour for
D ∼ 10−7 cm2/s.

Example: more on channel flow

Suppose that the two entering fluid streams flowing side by side in the channel
are miscible. Then molecular diffusion provides a mechanism for the streams to
penetrate into each other. The distance of penetration of one stream into another
due to diffusion, δD, at time t, is δD ∼ (Dt)1/2. Both fluids occupy the entire
width of the channel after they have flowed a distance UtD down the channel.
This distance ranges from 40 cm to 4000 cm depending on the value of D. These
distances may be prohibitively long for typical microfluidic applications.

These estimates lead to three related observations important in channel flows:

• First, let us revisit the notion of ‘penetration distance’ discussed above from
an alternate point of view. As we have seen, to reach δx = h solely relying
on molecular diffusion takes a time ∼ h2/D. So if the streams move with
speed U this process will have occurred after the streams have flowed a
distance L ∼ U(h2/D) along the channel (i.e., in the z direction). From the
definition of Péclet number given above, this gives L/h ∼ Pe. Given the
typical (large) values of Pe, this may be unacceptably high for microfluidic
applications.

• The second observation is that as diffusion takes place in the cross-section
of the channel (the plane x–y), particles experience a range of velocities
(recall that the flow is parabolic), resulting in concentration dispersion in
the z-direction and in a dispersion coefficient (Taylor dispersion) that scales
as 1/D. This means that fluid that disperses slowly in the cross-section will
disperse rapidly in the z-direction, and vice versa.

• The third and final observation is also a consequence of the parabolic
nature of the velocity field. The residence time distribution is a standard
diagnostic for quantifying mixing in channel flows. Roughly, it is a
probability density function consisting of the number of particles that reach
the end of the channel in a given time. Near the wall the velocity field is
linear with distance, vz ∼ γ̇ d, and thus a particle a distance d away from the
wall takes a time L/(γ̇ d) to reach L (hence γ̇ is the shear rate at the wall).
Therefore particles near the wall (as d → 0) take a long time to reach the
end of the channel. This would result in ‘long tails’ in the residence time
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distribution (RTD) for particles in the channel. Moreover the fluid near the
wall never co-mingles with fluid elements in the centre of the channel. The
result is that mixing is poor.

Putting all this together, it is then clear that the key to effective mixing in
a channel lies in the ability to mix material in the cross-section – to create a
large amount of contact interface between the two fluids. Material ‘sticking’
to walls is bad for mixing. Two advantages come with enhanced mixing in
the cross-section. The first is that if particles explore all of the cross-section
(i.e., x–y space) in a random manner they will experience all velocities (slow
near the walls, fast near the centreline) and on the whole the broadening of
the RTD is reduced. The second advantage has to do with transfer processes
between the surface of the device and the bulk of the fluid. If mixing is effective
diffusional processes are greatly accelerated; material that is near the wall goes
into the bulk and vice versa, thereby eliminating a slowdown due to diminishing
concentration gradients.

1.2 Stretching and folding, chaotic mixing

In the previous section there was essentially no explicit discussion of geometric
aspects of the mixing of two fluids. Geometrical considerations are motivated
by the fact that the objective of mixing is to produce the maximum amount of
interfacial area between two initially segregated fluids in the minimum amount
of time or using the least amount of energy. Creation of interfacial area is
connected to stretching of lines in 2D and surface in 3D. A fluid element of
length δ(0) at time zero has length δ(t) at time t; the length stretch is defined
as λ = δ(t)/δ(0); if mixing is effective λ increases nearly everywhere, though
there can be regions of compression whereλ < 1. In simple shear flow the fastest
rate of stretching, dλ/dt, corresponds to when the element passes though the
45◦ orientation corresponding to the maximum direction of stretching in shear
flow; for long times the stretching is linear in time, λ ∼ t, as the element
becomes aligned with the streamlines. In an elongational flow (e.g., a flow
where the velocity field depends linearly on the spatial variables and contains a
saddle type stagnation point) the rate of stretching is exponential, λ ∼ et . The
distance between striations is inversely proportional to the surface area and the
thinner the striations the faster the diffusion. Note that the effects of stretching
on accelerating diffusion enter in two different ways: more interfacial area
means more area for transfer; at the same time diminishing striation thicknesses
increases the concentration gradients and increases the mass flux.
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In order to conceptualize the growth of interfacial area (or perimeter in the
case of two dimensions), we can imagine small elements, area or line. If mix-
ing is effective, the small elements grow in area or length (ideally, this happens
everywhere in the flow; in practice some elements may get compressed). As
we shall see, the striation thickness, and stretching, are related in a deep way
to dynamical systems concepts – entropy, finite size Lyapunov exponents,
Smale horsehoe maps (discussed in Chapter 4), and the Baker’s transformation
(discussed in Chapter 3).

The key to effective mixing lies in producing stretching and folding; stretch-
ing and folding may be roughly equated with chaos as we will see in later
chapters. The simplest case corresponds to two dimensions. If the velocity field
is steady, the mixing is poor, stretching for long times is linear, as in the case of
a simple shear flow; i.e., the stretching rate of line elements or decays as 1/t (we
are restricting ourselves to bounded flows; that is, we are excluding unbounded
elongational flows). It is, however, relatively straightforward to produce flow
fields that can generate stretching and folding and hence chaos.

Experience over the past twenty years shows that a sufficient (heuristic)
condition for chaos is the ‘crossing’ of streamlines. That is, two successive
streamline portraits, say at t and t+�t for time periodic two-dimensional flows,
or at z and z+�z for spatially periodic flows, when superimposed, should show
intersecting streamlines when projected onto the x–y plane. In two-dimensional
systems this can be achieved by time modulation of the flow field, for example
by motions of boundaries or time periodic changes in geometry. In this mono-
graph we show that this criterion is encapsulated by linked twist maps (LTMs).
Figure 1.2 from Ottino & Wiggins (2004) shows a schematic representation of
a channel type micromixer constructed from the concatenation of basic mix-
ing elements. In this illustration we consider the minimal number of different
mixing elements, two. Cross-sectional streamline patterns at the end of each
mixing element are shown. The details of the shape and internal structure of
the channel are purposefully not shown. The point here is that they can be any-
thing that produces the desired cross-sectional flow. We illustrate the mixing
properties by placing red and blue ‘blobs’ at the beginning of the mixer and
observing how they mix as they travel down the length of the mixer. This mixer
can be analyzed with the LTM formalism, which provides sufficient conditions
for (mathematically) optimal mixing. It is significant to note that a (seemingly)
slight change in the streamline patterns can lead to a dramatic change in the
mixing properties.

Numerous experimental studies have revealed the structure of chaotic flows.
The most studied cases correspond to time-periodic flows. Dye structures of
passive tracers placed in time-periodic chaotic flows evolve in an iterative
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n = 0 n = 5 n = 10

(A)

(B)

(C)

Figure 1.2 (A) Schematic representation of a channel type micromixer constructed
from the concatenation of basic mixing elements. (B) The LTM mechanism causes
the flow to mix completely after passing through five periodic elements of the
mixer (where each consists of two of the basic mixing elements). (C) The LTM
conditions are not satisfied and the flow exhibits islands, which result in poor, and
incomplete mixing. [Figure taken from Ottino & Wiggins (2004).]

fashion; an entire structure is mapped into a new structure with persistent large-
scale features, but finer and finer scale features are revealed at each period of the
flow. After a few periods, strategically placed blobs of passive tracer reveal pat-
terns that serve as templates for subsequent stretching and folding. Repeated
action by the flow generates a lamellar structure consisting of stretched and
folded striations, with thicknesses s(t), characterized by a probability density
function, f (s, t), whose mean, on the average, decreases with time. The stri-
ated pattern quickly develops into a time-evolving complex morphology of
poorly mixed regions of fluid (islands) and of well-mixed or chaotic regions.
Islands translate, stretch, and contract periodically and undergo a net rotation,
preserving their identity returning to their original locations. Stretching within
islands, on average, grows linearly and much slower than in chaotic regions, in
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(a) (b) (c)

(d) (e) (f)

Figure 1.3 Panels (a)–(c) correspond to Poincaré sections of the cavity flow with
three different protocols for the motion of the top and bottom boundaries. Immedi-
ately below each Poincaré section is a dye advection pattern for the same protocol.
[Figure taken from Jana et al. (1994b).]

which the stretching increases exponentially with time. Moreover, since islands
do not exchange matter with the rest of the fluid (in the absence of diffusion) they
represent an obstacle to efficient mixing. Figure 1.3 from Jana et al. (1994b)
shows Poincaré sections and dye advection patterns in a cavity. The flow is
driven by moving the top and bottom boundaries according to a defined pro-
tocol. Three different protocols are shown, and each results in a different mixing
pattern. By comparing the Poincaré sections to the dye advection patterns one
easily sees that islands lead to poor mixing and chaos corresponds to ‘good’
mixing.

Now we consider a few aspects of mixing in a channel-like device: a duct
flow. Duct flows are a basic configuration for many mixing devices. However,
like steady two-dimensional flows, they are poor mixers. More precisely, duct
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flows are defined by the following velocity field

vx = ∂ψ

∂y
, vy = −∂ψ

∂x
, vz = f (x, y).

That is, a duct flow is a two-dimensional cross-sectional flow augmented by a
unidirectional axial flow. Note that in a duct flow, the cross-sectional and axial
flows are independent of both time and distance along the duct axis.

Duct flows can be converted into efficient mixing flows (i.e., flows with an
exponential stretch of material lines with time) by time-modulation or by spatial
changes along the duct axis. One example of the spatially periodic class, is the
classical partitioned pipe mixer (PPM). This flow consists of a pipe partitioned
with a sequence of n orthogonally placed rectangular plates. The cross-sectional
motion is induced through rotation of the pipe with respect to the assembly of
plates whereas the axial flow is caused by a pressure gradient. There is one
control parameter in the system: ratio of cross-sectional twist to mean axial
flow, β (Khakhar et al. (1987), Kusch & Ottino (1992)). The flow is regular
for no cross-sectional twist (β = 0), and becomes chaotic with increasing
values of β. In Figure 1.4 we show Poincaré sections from Khakhar et al.
(1987) for different values of β. The Poincaré sections are obtained by mapping
particles under the flow from the cross-section of the flow at the beginning of one
mixing element to the beginning of the next (see also Section 2.6). Notice how
dramatically the distribution and sizes of islands and chaotic regions can change
with β.

To give a few typical numbers, consider a striation thickness reduction, or
equivalently length stretch, where the initial length scales s(0) ∼ h is reduced
to a size s(tF) in an amount of time tF . According to the typical numbers given
earlier we take the typical shear rates in our device to be γ̇ = U/(h/2) ∼
102 s−1. Consider a typical striation thickness reduction s(0)/s(tF) or length
stretch λ ∼ 104; that is a reduction from 102 µm to 10−2 µm or 10 nm. At
10 nm molecular diffusion is fast at these scales, 10−7 s for D = 10−5 cm2/s,
to 10−5 s for D = 10−7 cm2/s.

How long does it take to accomplish this striation thickness reduction? In
simple shear, we have that s(0)/s(tF) ∼ γ̇ tF ; therefore the time needed to
accomplish this reduction is 104/102 s−1 = 102 s. An elongational flow on
the other hand can accomplish the same reduction with a much lower value
of elongational rate as compared with γ̇ ; in this case s(0)/s(tF) = eαtF . Thus
α = ln(104)/100 s ∼ 4 × 10−2 s−1. Elongational flows are not practical;
however a succession of simple shear flows with a periodic reorientation of the
line elements accomplishes the same objective.
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(a) (b)

(c) (d)

(e) (f)

b = 4.0

b = 1.0 b = 2.0

b = 6.0

b = 8.0 b = 10.0

Figure 1.4 Poincaré sections for the partitioned-pipe mixer for different values
of β. [Figure taken from Khakhar et al. (1987).]

1.3 Reorientation

Many chaotic flows may be imagined as a sequence of shear-like flows with
time-periodic random reorientations of material elements relative to the flow
streamlines. In all cases, the effect of the reorientation is an exponential stretch-
ing of material elements; roughly, the total stretch is the product of the stretching
in each element (see Equation (1.1) below). The interval between two successive
reorientations is an important parameter of such systems. In general there is an
optimum interval such that the total length stretch is maximum for a fixed time
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of mixing. In the limit of very small periods, material elements are stretched
and compressed at random, and hence the average length stretch is small (and
there is an unnecessarily large amount of energy expenditure). In the limit of
very large time periods, the flow approaches a steady shear flow and again the
total length stretch is small. The maximum in the average stretching efficiency
for simple shear flows and vortical flows corresponds when the strain per period
is between 4 and 5 (Ottino (1989a)). Similar results are obtained when there is
a distribution of shear rates.

The discussion so far has been in terms of average striation thickness; in prac-
tice there is a distribution of values. Computational studies indicate that within
chaotic regions, the distribution of stretches becomes self-similar, achieving a
scaling limit and approaches a log-normal distribution at large n. A rough argu-
ment is as follows. Let λn,n+1 denote the length stretch experienced by a fluid
element between periods n and n+1. The total stretching after m periods of the
flow, λ0,m, can be written as the product of the stretchings from each individual
period:

λ0,m = λ0,1λ1,2 · · · λm−1,m. (1.1)

The stretchings between successive periods (i.e., λ1,2 and λ2,3) are strongly cor-
related, however. The correlation in stretching between non-consecutive periods
(e.g., λ0,1 and λ4,5) grows weaker as the separation between periods increases
due to chaos (the presence of islands in the flow complicates the picture). Thus,
λ0,mis essentially the product of random numbers and

log λ0,m = log λ0,1 + log λ1,2 + · · · + log λm−1,m.

is a sum of random numbers. According to the central limit theorem, any col-
lection of sums of random numbers will converge to a Gaussian. Therefore the
distribution of λ0,m is log-normal.

1.4 Diffusion and scaling

In the context of the discussion above, we now consider the role of molecular
diffusion. Consider molecular diffusion across a thinning striation with stri-
ation thickness s(t) as it is followed in a Lagrangian sense along a mixer (the
arguments are similar to those in Ottino (1994); we correct a couple of typo-
graphical errors in the original paper). The initial thickness, s(0) ∼ h, is thinned
down according to a stretching function α(t) given by d ln(s(t))/dt = −α(t).
The stretching function is bounded by the shear rate; in chaotic flow the time
average of α is positive; in two-dimensional flows or duct flows it decays as
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1/t. As a rule of thumb the value of α is typically an order of magnitude smaller
than the typical shear rate, U/h.

In the frame of the striations the diffusion process is described by

∂c

∂τ
= ∂2c

∂ξ2
,

where c is the concentration, ξ is a striation-thickness-based spatial coordinate
normal to the striations, and τ is the so-called warped time, defined as:

ξ = x

s(t)
,

and

τ =
∫

D

(s(t′))2
dt′.

The penetration distance in the (ξ , τ) space is given by δξ ∼ τ 1/2 and
therefore in terms of x, t variables we have

δx

s(0)e−αt
=
[

D

(s(0))22α
(e2αt − 1)

]1/2

.

Thus, for long times the penetration distance stabilizes to δx ∼ (D/α)1/2. This
time may not be reached in practice, however, as striations fuse together due to
molecular diffusion. One can argue that the mixing is complete when δx = sf ,
the penetration distance growth catches up with the thinning striations after a
time tF . This happens when

1 =
[

D

(s(0))22α
(e2αt − 1)

]1/2

.

The value of α can be estimated as the inverse of the shear rate, i.e. α ∼ U/h
therefore Pe ∼ αh2/D. Therefore, if exp(2αtF) � 1, the necessary length for
mixing scales as

L

h
∼ log Pe.

Clearly this is much more efficient than the L/h ∼ Pe relationship uncovered
earlier.

1.5 Examples

In this section we will describe a collection of examples that come from diverse
areas of applications that span a wide range of length and time scales. Never-
theless, all of the examples embody the paradigm of ‘crossing of streamlines.’
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In the next chapter we will see that this paradigm can be realized in a rigorous,
mathematical framework as a linked twist map.

1.5.1 The Aref blinking vortex flow

The ‘blinking vortex flow’ was introduced by Aref (1984), with further work by
Khakhar et al. (1986). This is a seminal example in the field of chaotic advection.
It is the flow generated by a pair of point vortices separated by a finite distance,
that blink on and off periodically in an unbounded inviscid fluid. At any given
time only one of the vortices is on so that the motion of a fluid particle during
a period is made up of two consecutive rotations about different centres.

The velocity field due to a single point vortex located at the position (a, 0)
in a Cartesian coordinate system is given by (in polar coordinates)

ṙ = 0,

θ̇ = �

2πr
,

where � is the strength of the vortex and r = √
(x − a)2 + y2. The velocity

field can easily be integrated over the time t for which the vortex exists to obtain
the following twist map:

T(r, θ) = (r, θ + 2πg(r)),

where

g(r) = �t

4π2r
.

Now consider two identical point vortices located at (−a, 0) and (a, 0). We
imagine the situation where the vortex at (−a, 0) exists for time t, turns off, then
the vortex at (a, 0) turns on and exists for a time t, turns off, with the process
repeating in this way. We denote the twist map at (a, 0) by T+ and the twist
map at (−a, 0) by T− (which is obtained from T+ by letting a → −a). We will
see in the next chapter that the evolution of a fluid particle is governed by the
linked twist map T = T+ ◦ T−.

1.5.2 Samelson’s tidal vortex advection model

The ‘blinking vortex flow’ has been used to model a variety of flows. Here
we describe a type of blinking flow example that arises in a geophysical fluid
dynamics setting. Consider the situation of an ingoing and outgoing flow due to
the tides along a segment of shoreline having a headland. It has been observed
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x

y
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Γ − Γ
Alternating flow directions

Headland

Figure 1.5 Illustration of Samelson’s tidal vortex advection model.

(Signell & Geyer (1991)) that during this process eddies are sequentially gen-
erated on opposite sides of the headland. Understanding the mixing processes
in such situations is important for understanding a variety of environmental
and biological processes occurring in such coastal settings (see e.g., Signell &
Butman (1992)). Samelson (1994) has developed a kinematic model to study
mixing and transport by eddies shed from a headland as a result of tidal flow,
which we now briefly describe (see Figure 1.5).

The domain for Samelson’s model consists of a straight boundary along
y = 0 with a semicircular headland of radius 1 centered at the origin. The flow
is generated by a sequence of four flows:

1. Tidal flow modelled by a constant translation in the positive x direction.
2. Eddy advection modelled by a point vortex of strength −� located at

az + ibz.
3. Reverse tidal flow modelled by a constant translation in the negative x

direction.
4. Eddy advection modelled by a point vortex of strength +� located at

−az + ibz.

Samelson shows, through a sequence of conformal maps, that this problem
can be mapped directly onto the blinking vortex flow considered by Aref (1984).

1.5.3 Chaotic stirring in tidal systems

Here we describe another example that we feel can be studied fruitfully via
the linked twist map framework that we develop in this book (although some
crucial modifications will be required). Ridderinkhof & Zimmerman (1992),
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building on earlier work of Pasmanter (1988), developed a model to describe
mixing in a tidal basin that exhibits ‘streamline crossing’ as we have described.

Their model consists of the superposition of a tidal field, assumed to be a
spatially uniform oscillating current in one direction, and a residual current
consisting of an infinite sequence of clockwise and counterclockwise eddies.
The model is realized with the following (dimensionless) streamfunction:

ψ(x, y, t) = λT(t)y + λν

π
[1 + T(t)] sin πx sin πy,

from which the following velocity field is obtained:

ẋ = ∂ψ

∂y
= λT(t) + λν[1 + T(t)] sin πx cosπy,

ẏ = −∂ψ

∂x
= −λν[1 + T(t)] cosπx sin πy.

The dimensionless parameter λ is the ratio of the tidal excursion to the eddy
diameter and the dimensionless parameter ν is the ratio of the residual eddy
velocity to the tidal velocity amplitude. Both parameters are positive with λ

ranging up to 4 and ν up to 0.32 (see Beerens et al. (1994) for a thorough
discussion of the physical origin of these parameters and their values). The time-
dependence is given by the following function (Ridderinkhof & Zimmerman
(1992)):

T(t) =
{

1 for k < t ≤ k + 1
2 ,

−1 for k + 1
2 < t ≤ k + 1.

Hence, the model is a ‘blinking flow’. More explicitly, during each half cycle
the particles are advected by the following two velocity fields:

ẋ = λ + 2λν sin πx cosπy,

ẏ = −2λν cosπx sin πy, k < t ≤ k + 1

2
, (1.2)

and

ẋ = −λ,

ẏ = 0, k + 1

2
< t ≤ k + 1 (1.3)

In Figure 1.6 we show the streamlines of these two velocity fields for one spatial
period. If one superimposes Figure 1.6(a) and Figure 1.6(b) one clearly sees
the phenomenon of streamline crossing.
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Figure 1.6 (a) The streamlines of (1.2). (b) The streamlines of (1.3). We have taken
λ = 0.25, ν = 0.31.

If we let M1 denote the map obtained by letting particles flow for a time
1/2 under the velocity field (1.2) and M2 denote the map obtained by letting
particles flow for a time 1/2 under the velocity field (1.3), then the advection
of fluid particles is described by iteration of the map M = M2 ◦ M1. As a
consequence of the spatial periodicity in both directions this map is defined
on the two-dimensional torus. While M has the structure of the composition
of two ‘linked’ maps on the torus, it does not fit into the standard linked twist
map framework that we will describe shortly. Nevertheless, we believe it is a
new generalization that may be studied fruitfully by the same approach, and
yield some interesting new dynamics at the same time. One issue is that the
shear exhibited in Equation (1.3) is constant, i.e. it is the same on each stream-
line. For classical twist maps the particle speed will vary from streamline to
streamline.

1.5.4 Cavity flows

The flows produced in a region bounded by two opposing non-moving and
two opposing moving walls are referred to as cavity flows. This class of flows
have become an archetypal flow for experimental and computational studies
of chaotic flows. They were introduced by Chien et al. (1986), and developed
further by Leong & Ottino (1989) and Jana et al. (1994b). The mode of operation
is typically at low Reynolds numbers, so the streamline portraits contain no
information as to the direction of the flow (that is, all directions of the flow
can be reversed and the streamlines would not change). When operated in a
blinking mode (one wall is moved for a certain distance and then stopped, and
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(a) (b) (c) (d)

Figure 1.7 Streamline patterns in a cavity for different aspect ratios and boundary
motions (the arrows indicate different directions of the motion of the boundary).
[Figure taken from Jana et al. (1994b).]

then another wall is moved for a certain distance and then stopped), the system
can be interpreted as an LTM. Depending on the aspect ratio, shape of the cavity
(walls need not be parallel), and the addition of internal baffles, one can generate
a wide variety of streamline patterns, some of which are shown in Figure 1.7,
from Jana et al. (1994b).

1.5.5 An electro-osmotic driven micromixer blinking flow

Qian & Bau (2002) considered flows generated by electro-osmotic flow (EOF)
in cavities. Until recently EOFs have been used primarily as an alternative to
pressure-driven flow in microchannels, the simplest case corresponding to uni-
formly charged walls. However, several other scenarios are possible; an early
study considering the effects on nonuniform charge is by Anderson & Idol
(1985). Qian & Bau (2002) computed flow patterns for specific (nonuniform)
potential distributions on the walls of the cavity. Different potential distri-
butions gave rise to different cellular flow fields in the cavity, as shown in
Figure 1.8.

Qian and Bau also suggested that one could switch between different flow
patterns through ‘judicious control of embedded electrodes’ in the walls of
the cavity. In this way a blinking flow can be realized. Not surprisingly, they
demonstrated numerically that such flows can give rise to chaotic fluid particle
trajectories. Clearly, such a scheme also fits squarely within the LTM form-
alism. If we superimpose two chosen flow patterns that are rigid rotations of
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Figure 1.8 Figure 4 from Qian & Bau (2002) showing flow patterns they computed
for different ζ potential distributions on the walls of the cavity.

each other the structure of the linked twist map is clear. One way of applying
the results on LTMs is to choose annuli in one flow pattern and other annuli
in the other flow pattern such that the annuli intersect pairwise ‘transversely’
in two disjoint components. Then the switching time between patterns, T , is
chosen such that for each annulus the outer circle rotates twice with respect
to the inner circle during the time. We then need the twists to be ‘suffi-
ciently strong’, which will also depend on whether or not the chosen annuli
pair are co- or counter-rotating. If this can be done, then appealing to the
dynamical systems results described later, the flow will have ‘strong mixing
properties’ in the region defined by the chosen annuli. Of course, there are
numerous open problems. For example, which potential distributions lead to
the maximal region on which the linked twist map results hold? However,
such an analysis is possible using formulae for the flow patterns given by
Qian & Bau (2002).

1.5.6 Egg beater flows

Franjione & Ottino (1992) developed a model that encapsulates the essential
kinematic mechanisms for ‘good mixing’ in a large class of mixers. The model
was arrived at as a result of the accumulation of a great deal of experience
analyzing a variety of diverse mixing situations from the dynamical systems
point of view. Interestingly, and unrecognized at the time, the model is precisely
a linked twist map on the torus.
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(a)

(c)

(b)

Figure 1.9 (a) Schematic of the egg beater. In (b) a blade pushes a material line,
in (c) a second blade folds the line. [Figure from Ottino (1989b).]

We consider a unidirectional flow of the following form:

dx

dt
= v(y),

dy

dt
= 0.

These equations are easily integrated to obtain the following trajectories:

x = X + v(Y)t,

y = Y ,

where (X, Y) denote the position of the fluid particle at t = 0. At this point
we have not specified a velocity profile v(y). However, regardless of the form
of v(y), the mixing will be poor since the flow is steady, trajectories cannot
cross, and therefore material will tend to align with the x-axis. If we alter this
situation after a certain time by rotating the system by 90◦ then material that was
previously oriented parallel to the streamlines is now normal to the (rotated)
streamlines. This procedure of rotating the flow ‘back and forth’ between the
original flow and one oriented at a 90◦ angle with respect to the original can
be repeated indefinitely. Franjione & Ottino (1992) refer to this sequence of
orthogonally oriented flows as the egg beater flow since it represents a simplified
picture of the mixing mechanism in a hand held egg beater (see Figure 1.9). In
an egg beater there is no loss of material, and this is incorporated in this model
by assuming that the flow occurs in a domain that is periodic in both the x and
y directions. Hence, we consider the domain of the flow to be given by the box
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 and when a particle exits one side of the box it
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re-enters at the same point on the opposite side. In terms of the physical model
of the egg beater, this can be interpreted to be that whenever a blade of the egg
beater leaves one side of the domain, a new blade enters on the opposite side.
Mathematically, the flow is said to take place on a torus.

The flow described above can be more precisely expressed as a mapping.
Using the expression for the trajectories given above, a particle at (xn, yn) is
mapped in the horizontal direction after a time T by:

xn+1 = xn + Tv(yn),

yn+1 = yn,
(1.4)

where we can think of T as the length of time that the blade moves in the x
direction. Adopting a shorthand vector notation, we denote x = (x, y) and the
map by H so that (1.4) becomes:

xn+1 = Hxn.

The second mapping in the vertical direction is similarly easily found to be:

xn+1 = xn,

yn+1 = yn + Tv(xn),

and we adopt a similar vector notation to write the map more succinctly as:

xn+1 = Vxn.

The overall mapping describing the flow is then given by the composition of
these two maps:

xn+1 = VHxn.

Of course, there is considerable scope for generalization here. For example, the
horizontal and vertical flows could have different velocity profiles, and they
could also act for different times.

Figure 1.9 from Ottino (1989b) illustrates the key kinematical features of
the egg beater. Note the highlighted square in panel (a). A fluid line element in
the square perpendicular to a blade is deformed as shown in panel (b) as a blade
pushes through it. The other blade pushes through the line in a perpendicular
direction, as shown in panel (c). Parts of the line element that extend out the
top of the square later re-enter through the bottom.

If the blades are rotated alternately then the flow can be described by a
LTM. However, this is a LTM on the plane rather than a torus. Also, note that
the two blades are rotating in the opposite sense, i.e., the one on the left is
rotating clockwise and the one on the right is rotating counterclockwise. Fluid
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mechanicians might refer to this as a counter-rotating situation. However, note
that the blades are pushing through the highlighted square of fluid in the same
sense. This point is discussed further in Section 2.3.1.

1.5.7 A blinking flow model of mixing of granular materials

Over the past fifteen years there has been intense activity in the study of
granular flow. However, the study of granular mixing has received much less
attention. Mixing of granular materials is important in a variety of industrial
processes (e.g., in the pharmaceutical, food, ceramic, metallurgical and con-
struction industries), as well as natural processes such as debris flows and the
formation of sedimentary structures. Specific references can be found in Ottino
& Khakhar (2000). Unlike fluids, the flow in a mixer does not always lead to
mixing of the material. For example, particles can segregate as a consequence
of different particle properties (e.g. size differences and density differences, see
Jain et al. (2005)). Thus granular mixing provides a rich test bed for the study
of pattern formation and self-organization. The lack of any fundamental theory
indicates that there is tremendous scope for the development and analysis of
prototypical models.

It is shown in Khakhar et al. (1999), Hill et al. (1999a), and Hill et al. (1999b)
that the phenomena of ‘streamline crossing’ that we have described can occur
in a large class of convex mixers (Khakhar et al. (1999)). Here we describe how
this property can be exploited to derive a linked twist map that will describe the
flow of particles in a half-full rotating tumbler.1

For simplicity, we begin our discussion by describing a circular tumbler,
whose geometry is shown in Figure 1.10. A model for this flow under certain
operating conditions is derived in Khakhar et al. (1997), and we briefly describe
the essential points. The free surface, i.e., the boundary between the granular
material and the air, is essentially a straight line, and remains at a fixed angle
with respect to the horizontal. In the rolling regime2 the flow domain is divided

1 The shape of the mixer that we describe, e.g., circle or square, is that of the cross-section of
a long channel, where every cross-section has the same shape. Hence, we will be discussing
mixing in the cross-section or ‘transverse mixing’. Mixing in the axial direction could also be
considered. However, we will assume that there is no flow in the axial direction, and therefore the
only mechanism for axial mixing would be some sort of diffusive process, but that is an effect that
we will not consider here.

2 It is not hard to imagine that if the rotation rate is slow, then the material will accumulate in
a wedge on the left-hand side of the tumbler until it reaches a critical height, at which point an
‘avalanche’ occurs. For faster rotation rates this does not occur, and the material ‘rolls’ with the
rotation of the tumbler. Still, the rotation rate is typically slower than the dynamics of the
particles.
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Figure 1.10 Schematic view of the continuous flow regime in a rotating cylinder.
The solid straight line through the middle of the cylinder is the free surface, and this
layer length is 2L (δ(0) is denoted δ0). The heavy dashed curve connecting both
sides of the cylinder denotes the interface between the continuously flowing layer
and the region of solid body rotation. The mixer is rotated with angular velocity ω,
and the velocity profile within the layer, vx , is nearly a simple shear, as indicated in
the figure. The vy component is not shown. A typical particle trajectory is shown
as a dashed closed curve.

into two distinct regions. A flowing layer is defined by:

D1 = {(x, y) | − L ≤ x ≤ L, 0 ≤ y < −δ(x)} ,

where the thickness of the flowing layer is given by:

δ(x) = δ0

(
1 −

( x

L

)2
)

,

and a region outside this flowing layer is defined by:

D2 = {(r, θ) | 0 ≤ r ≤ L, 0 ≤ y < π} − D1,

where the particles are assumed to undergo solid body rotation. The boundary
between D1 and D2, denoted ∂1,2 is therefore given by:

∂1,2 = {(x, y) | − L ≤ x ≤ L, y = −δ(x)}.

The phase space (which is the physical space in this case) of this dynamical
system is defined on D1 ∪ D2. We need therefore to define the dynamics on
each region separately, and a matching condition at the boundary.
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On D1 the dynamics is given by:

D1 :




ẋ = vx = 2u
(

1 + y

δ

)

ẏ = vy = −ωx
(y

δ

)2

where

u = ωL2

2δ0
.

On D2 the dynamics is given by solid body rotation.
A particle starting in D1 or D2 is advected by the appropriate flow. When it

reaches ∂1,2, we then have to switch the advection rule. We need a quantity to
monitor along a trajectory to determine when to do this. The particle reaches
∂1,2 when y = −δ(x). Then we need to determine which region it will enter. It
suffices to monitor the x component for this simple flow. If a particle is on ∂1,2

and x > 0, then it is leaving D1 and entering D2. If it is on ∂1,2 and x < 0, then
it is leaving D2 and entering D1. Clearly, this formulation gives an integrable
model with closed ‘streamlines’ shown in Figure 1.11(a).

Fiedor & Ottino (2005) consider one way to operate the tumbler which breaks
integrability and leads to streamline crossing, and chaotic mixing; the case of
a tumbler with a circular cross-section, but where the rotation rate is varied
periodically in time. As we argued above, if the cross-section of the tumbler is
circular and the rotation rate is constant then the flow is steady (and integrable).
However, if the rotation rate varies periodically in time this leads to a changing
thickness of the flowing layer which results in a change in the streamline pattern
within the flowing layer. In Figure 1.11 (b) we show streamlines at two different
times (solid and dashed) that cross in the flowing layer. The different thicknesses
of the flowing layer at the two different times are shown with a light and a dark
shading.

The crossing of the streamlines at two different times provides the necessary
structure for creating a linked twist map. The LTM context has the advantage
that one could design for optimal mixing in a particular region of the flow.
Here we imagine a ‘blinking cylinder flow’ for granular mixing that would be
a model in the same way that the blinking vortex flow is for chaotic advection
of fluids.

Figure 1.12 shows results from Fiedor & Ottino (2005) for the cylinder having
a circular cross-section where the angular rotation rate is modulated periodic-
ally in time. The Poincaré section clearly indicates that the flow is chaotic. The
experiments reveal something quite different than the experiments with fluids,
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(a) (b)

Figure 1.11 (a) Streamlines for a constant rotation rate of the cylinder. (b)
Solid streamlines at one time and dashed streamlines at another time shown
superimposed. Streamline crossing occurs in the flowing layer.

LGS Poincaré
section

DGS

Figure 1.12 Unmixing in granular materials (from Fiedor & Ottino (2005)). Time-
periodic modulation in angular rotation leads to a chaotic flow structure captured
in the Poincaré section of the flow. However, as opposed to fluids, continual flow
leads to unmixing.

such as those of Figure 1.3. Dye experiments in chaotic mixing of fluids, primar-
ily in time-periodic flows, have been instrumental over the last two decades in
yielding insights into the working of chaotic flows. Strategically placed blobs,
after a few periods of the flow, produce persistent large-scale structures – rough
templates of the manifold structure – with additional periods revealing finer
structures of nested striations as shown in Figure 1.3. Thus, the dyes show the
chaotic regions and one ‘sees’ the islands as the regions where the dye does not
go. Something similar may be attempted in granular flows. However, forming
a blob in granular matter is hard and very quickly the blob becomes broken and
connectivity of the ‘dyed’ structure, as opposed to the companion fluid case, is
lost. Segregation experiments in granular matter, on the other hand, are easy and
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can be repeated multiple times. As indicated earlier a distinguishing feature of
flowing granular matter is its tendency to segregate; mixtures of particles with
varying size (S-systems) or varying density (D-systems) subject to flow often
segregate leading to what on first viewing appear to be baffling results. This phe-
nomenon occurs in dry granular systems (DGSs) and liquid granular systems
(LGSs; i.e., DGSs where all air is replaced by a liquid). One starts with a well-
mixed system and ‘mixing’ leads to unmixing, as shown in Figure 1.12. After the
experiment is done, one remixes the system by shaking (one has to be careful not
to unmix) and a new experiment is ready to go. The experiments of Figure 1.12
indicate that LGSs and DGSs produce similar segregation patterns. In the DGS
case the smaller particles are white and in the LGS the small particles are black.
Thus, as opposed to the case of mixing of fluids, the particles tag the location
of the largest islands in the flow. This is an area of active investigation at the
present time.

1.5.8 Mixing in DNA microarrays

The flows used in DNA microarrays display the signature of crossing of stream-
lines. The exploitation of this may be very significant since effective mixing
is crucial for the functioning of these devices. DNA microarrays are now an
essential tool for obtaining genetic information, and the key process in obtaining
this information is DNA hybridization. DNA hybridization is a mixing process
where speed is essential for a variety of reasons. DNA hybridization occurs in
a large aspect ratio (i.e., ‘thin’) mixing chamber with horizontal dimensions of
the order of 10 mm and depth of the order of 0.5 mm. The bottom of the chamber
consists of an array of probes each having an oligonucleotide (i.e. a small DNA
molecule composed of a few nucleotide bases) having a specified sequence. A
solution of labelled DNA is introduced into the mixing chamber and when the
labelled DNA combines with its complementary sequence on a probe, the probe
is said to be hybridized. The hybridized DNA can then be studied to determine
the degree of genetic similarity of the two species. In order to achieve a larger
sample of hybridized DNA it is important that the DNA samples can interact
equally with all probes in the array. Typically, molecular diffusion has been
relied upon as the mechanism for achieving this interaction. However, recently
it has been recognized that chaotic advection can make the process much more
efficient (McQuain et al. (2004), Raynal et al. (2004)). Here we show that the
mixing process in a DNA microarray can be modelled as a type of toral LTM.

In Figure 1.13 we show a schematic view of the hybridization chamber taken
from Raynal et al. (2004). Fluid flow in the chamber is induced by creating a
pressure differential between opposite holes. Practically speaking this means
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Figure 1.13 Schematic of the mixing chamber for the DNA microarray. The shaded
region contains the DNA probes. The black circles are points at which fluid is
introduced and extracted from the mixing chamber.
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Figure 1.14 Streamlines corresponding to fluid entering the chamber from 1 and
exiting through 3. The exiting fluid is re-injected into 1.

1 2

34

Figure 1.15 Streamlines corresponding to fluid entering the chamber from 4 and
exiting through 2. The exiting fluid is re-injected into 4.

that with a system of syringes and tubes fluid is:

1. injected from 1, and ejected into 3,
2. injected from 4 and ejected into 2,

and these two steps are repeated periodically.
Hole 1 is a source of fluid and hole 3 is a sink. Fluid that goes into the sink

(hole 3) is re-injected into the source (hole 1). The flow induced by a source
and sink can be solved exactly, and is completely integrable. The streamlines
for this ‘source-sink pair’ are shown in Figure 1.14. Similarly, hole 4 is a source
and hole 2 is a sink. The streamlines for this ‘source-sink pair’ are shown in
Figure 1.15.
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1 2

4 3

Figure 1.16 The crossing streamlines of the two different source-sink pairs. The
‘crossing’ occurs at two different times., i.e. the two different half-cycles of the
mixer.

This flow can be modelled as a pair of alternating source-sink pairs – a type
of blinking flow. (Chaotic advection in a pulsed source-sink pair was studied in
Jones & Aref (1988).) The first source sink pair (i.e. 1 and 3) operates for time
T/2. Fluid flowing into the sink is re-injected into the source during this time.
After T/2 the other source-sink pair (i.e. 2 and 4) is ‘turned on’ for time T/2.
The streamlines for each half period ‘cross’, as shown in Figure 1.16.

This situation is interesting because it gives the structure of a linked twist
map on a torus. This can be seen as follows. Because fluid that exits a sink is
re-injected from the source at which it entered, we can view the source-sink
pair as ‘identified’ in just the same way that we identify the vertical edges of a
square of a fixed length to obtain periodic boundary conditions. We show this
in Figure 1.17.

Of course, there is a slight complication with this picture. In this analogy the
vertical sides of a square are being collapsed to a point. In other words, if a fluid
particle goes down a sink, what ‘direction’ does it come out of the source? We
must adopt some rule for this (e.g. it exits on a given streamline, at a random
angle, etc.). Also, the standard ‘twist condition’ on the ‘centreline’ connecting
source-sink pairs breaks down. Nevertheless, the LTM framework provides a
framework, and a variety of tools, for rigorous mixing studies of this system.

1.6 Mixing at the microscale

Mixing at the microscale is an increasingly important subject that can be ana-
lysed in detail by the methods developed in this book. Microfluidics is the term
that is used to describe flow in devices having dimensions ranging from milli-
meters to micrometers and capable of handling volumes of fluid in the range of
nano to micro litres (10−9–10−6 L).
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Figure 1.17 (a) The crossing streamlines of the two different source-sink pairs. (b)
The ‘crossing’ streamlines after blowing up hole 1 and hole 3 into to ‘horizontal’
lines (although here we draw the square in the same alignment as the original),
and then identifying them in the usual torus construction (i.e., periodic boundary
conditions). Similarly, holes 2 and 4 can be blown up into ‘vertical’ lines.

Mixing – or lack thereof – is often crucial to the effective functioning
of microfluidic devices (Knight (2002)). Often the objective is rapid mixing
between two initially segregated streams – rapid interspersion in the minimal
amount of space. Other times, however, the objective is to prevent mixing and
maintain segregation; for example, having two streams co-flowing side by side
and controlling or monitoring processes occurring at the interface between the
two fluids. There are excellent reviews of general aspects of microfluidics and
mixing is covered to various degrees in several of them (see for example Stone
et al. (2004) and Stroock & Whitesides (2001)). However, there appears to be
no review wholly devoted to mixing – how to enhance, how to control it, or
simply how to benefit from existing theory.

The key aspect about microfluidics is smallness, and smallness brings new
elements, not only quantitative, but also qualitative. The role of interfaces
becomes dominant. In solid-fluid interfaces, wettability and charge density
can be exploited in various ways; in the case of liquid–liquid or liquid–gas
interfaces, gradients of interfacial tension can have large effects. A lot of the
basic science involved in these developments is already established. What is
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important however is the possibility of invention of new designs by exploiting
boundary conditions that are simply ineffective at larger scales. Surface pat-
terning – a wall with small grooves oriented at oblique angles with respect to
the axis of the main flow (e.g. Stroock et al. (2002)) – suggests several possible
designs, as we show in Section 2.6.
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Linked twist maps: definition, construction, and
the relevance to mixing

In this chapter we give formal definitions of linked twist maps on the
plane and linked twist maps on the torus. We give heuristic descriptions
of the mechanisms that give rise to good mixing for linked twist maps,
and highlight the role played by ‘co-rotation’ and ‘counter-rotation’. We
show how to construct linked twist maps from blinking flows and from
duct flows, and we describe a number of additional examples of mixers
that can be treated within the linked twist map framework.

2.1 Introduction

The central theme of this book is that the mathematical notion of a linked twist
map, and attendant dynamical consequences, is naturally present in a variety
of different mixing situations. In this chapter we will define what we mean
by a linked twist map, and then give a general idea of why they capture the
essence of ‘good mixing’. To do this we will first describe the notion of a linked
twist map as first studied in the mathematical literature. This setting may at first
appear to have little to do with the types of situations arising in fluid mechanics,
but we will argue the contrary later. However, this more mathematically ideal
setting allows one to rigorously prove strong mixing properties in a rather
direct fashion that would likely be impossible for the types of maps arising in
typical fluid mechanical situations. We will then consider a variety of mixers and
mixing situations and show how the linked twist map structure naturally arises.
Most importantly, if one considers the common geometrical features of the
streamlines of each of the mixers and mixing situations that we consider it will
be clear that linked twist maps embody a paradigm for strong mixing properties,
namely, streamline crossing. This was first pointed out in Ottino (1990), and
it can involve streamlines crossing at different times (the blinking vortex flow,
Aref (1984)) or streamline crossing at different spatial locations (the partitioned
pipe mixer, Khakhar et al. (1987)). The abstraction of this property in the form

31
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of a linked twist map is crucial because it allows, for the first time, a quantitative
way to design and understand mixers that have mathematically strong mixing
properties on sets of positive measure. Significantly, for the design process,
attaining these strong mixing properties depends on geometrical properties of
the streamlines, and not the manner in which those geometrical properties are
realized.

2.2 Linked twist maps on the torus

Strong mixing properties of linked twist maps on a torus (sometimes referred
to as ‘toral LTMs’) were obtained in the works of Burton & Easton (1980),
Devaney (1980), Przytycki (1983), Przytycki (1986), and Wojtkowski (1980).
In this section we define what is meant by a linked twist map on the torus. We
do so fairly briefly in this section, and will give more details in Chapter 6 when
we discuss precise mathematical properties.

First we consider the two-dimensional torus T2 with coordinates (x, y)
(mod 1) (i.e., x and y are periodic of period one). On this torus we define
two overlapping annuli P, Q by

P = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y0 ≤ y ≤ y1 ≤ 1}
Q = {(x, y) : 0 ≤ y ≤ 1, 0 ≤ x0 ≤ x ≤ x1 ≤ 1}.

We denote the union of the annuli by R = P ∪ Q and the intersection by
S = P ∩ Q, as in Figure 2.1. It is often more convenient both visually and
graphically to consider the dynamics on the torus T2 with the torus represented
as the unit square with doubly periodic boundary conditions, i.e., where the top
and bottom edges of the square are identified, as are the left and right edges, as
shown in Figure 2.1. The annuli P and Q then become vertical and horizontal
strips in the square.

In order to define a linked twist map on the torus we first define a twist map
on each annulus. A twist map is simply a map in which the orbits move along
parallel lines, but with a uniform shear. In particular, we define

F : R → R

F = F(x, y; f ) =
{
(x + f (y), y) if (x, y) ∈ P
(x, y) if (x, y) ∈ R\P

where f : [y0, y1] → R is a real-valued function such that f (y0) = 0 and
f (y1) = k, for some integer k, and R\P means ‘all points in R, except for those
that are also in P’. So if F acts on a point (x, y) in R that is not in P, it leaves
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Figure 2.1 Representation of the torus on the unit square. The left and right ver-
tical boundaries are identified and the upper and lower horizontal boundaries are
identified, i.e., the domain is doubly periodic. The annuli P and Q are shown
shaded.

that point unchanged (in other words, F is the identity map, Id, on R\P). If
F is applied to a point (x, y) in P, the y-coordinate is left unchanged, but the
x-coordinate is altered by an amount dependent on the value of y. We insist that
k must be an integer in order that the two components of F (i.e., the component
of F defined on P and the component of F defined on R\P) should ‘join up’
at the boundary of P – that is, F should be continuous on the boundary of P,
denoted ∂P. This point is crucial mathematically and will be carefully discussed
in later chapters. In terms of fluids, it corresponds to systems where initially
connected blobs of fluid remain connected blobs, with no tearing or break-up
taking place.

In an analogous fashion, we define a twist map on Q:

G : R → R

G = G(x, y; g) =
{
(x, y + g(x)) if (x, y) ∈ Q
(x, y) if(x, y) ∈ R\Q

where g : [x0, x1] → R is a real-valued function such that g(x0) = 0 and
g(x1) = l, for some integer l. Again G = Id outside the annulus Q.

For obvious reasons we refer to k and l as the wrapping number of the twist.
If a twist has wrapping number 1 or 2, we may also refer to it as a single-twist
or double-twist respectively, again for obvious reasons. Note that in general k
and l may be positive or negative integers and so twists may wrap around the
torus in either direction. The choice of sign of kl makes a crucial difference to
the ensuing results and methods of proof for the mixing properties of the linked
twist map.
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Having ensured the continuity of F and G we turn to further smoothness
properties. Since the identity map is smooth (that is, infinitely times differenti-
able), the map F will be endowed with the same smoothness properties as the
function f only if these smoothness properties also hold on ∂P. Again, this will
have implications that we will discuss in detail later on.

There is much to be said about restrictions on the form of the functions f
and g, and this will be discussed in Chapter 6. For now we will assume that the
functions f and g are C2 – that is, twice differentiable with continuous second
derivatives (this assumption is for technical reasons that will become apparent
later on). Further we assume that we have

df

dy

∣∣∣∣
y
�= 0

dg

dx

∣∣∣∣
x
�= 0

for each y0 < y < y1 and each x0 < x < x1. This condition that the derivatives
of f and g do not vanish ensures that we have monotonic increasing or decreasing
twists. We now define the strength of a twist by considering the shallowest slopes
of f and g. Thus define for F:

if k > 0 α = inf

{
df

dy
: y0 < y < y1

}
,

if k < 0 α = sup

{
df

dy
: y0 < y < y1

}
(2.1)

and similarly for G:

if l > 0 β = inf

{
dg

dx
: x0 < x < x1

}
,

if l < 0 β = sup

{
dg

dx
: x0 < x < x1

}
. (2.2)

We call α and β the strength of the twists F and G. Both properties defined
above – the wrapping number and the strength of the twist – will be important
factors in the behaviour of a linked twist map. Thus we name, as in Przytycki
(1983), such a twist map F a (k,α)-twist, and such a twist map G a (l,β)-twist.

Finally the toral linked twist map H is defined by composing F and G:

H : R → R

H = H(x, y; f , g) = G ◦ F.

It is remarkable that, depending only on inequalities involving k, l, α, and β, H
can be shown to have extremely strong mixing properties on all of R (except for
a possible set of zero measure). What we mean by ‘strong mixing’ is defined
more precisely in Chapter 3. For the moment suffice it to say that ergodicity
with positive Lyapunov exponents is a central feature of our definition.
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2.2.1 Geometry of mixing for toral LTMs

In this section we give a heuristic description of how the mechanism behind a
toral linked twist map relates to ideas of fluid mechanical mixing. Making this
picture mathematically rigorous forms the core of much of this book.

The essence of fluid mixing via chaotic advection is stretching and folding
(Ottino (1989a)). This is now a familiar concept, and in practice such stretching
and folding is often created by the means of creating a fluid flow with inter-
secting streamlines. Of course streamlines, being defined as curves everywhere
tangent to the velocity of the flow, cannot cross in a given flow pattern, so in
applications flow patterns are frequently superimposed (either by introducing
time dependence or spatial dependence) so that streamlines passing through a
given point are at different times transverse to each other (see, for example,
the mechanisms described in this and the previous chapter. In particular, this
is the mechanism behind a flow commonly regarded as a paradigm example
for chaotic mixing – the Aref blinking vortex (Aref (1984)) described in Sec-
tion 1.5.1). This technique is now ubiquitous in mixing fluids with negligible
diffusivity effects; so much so that the idea of crossing streamlines has become
a mantra of fluid mixing.

In fact the link with dynamical systems is perhaps more directly found in
pathlines or streaklines. Recall that a pathline is defined as the curve followed
by a single tracer particle released into the flow, while a streakline is the curve
formed by particles released into the flow at the same point but different times.
For a steady flow, streamlines, pathlines and streaklines all coincide. These give
the direction in which a single particle will travel, and also the direction in which
a blob will align itself under the action of the flow. Thus the direction of flow
along the streamlines of a steady flow give the ‘characteristic directions’ for the
flow. In dynamical systems, providing the system has a special structure called
hyperbolicity, the corresponding characteristic directions are called unstable
manifolds. These will be defined rigorously in Chapter 5; roughly, the unstable
manifold of a stationary point is the set of points which tend asymptotically
(at an exponential rate) to the stationary point under backward evolution of the
dynamical system. There is a corresponding definition for the stable manifold
of a stationary point under forward evolution. Although unstable manifolds
are defined under backward evolution, they represent the characteristic direc-
tions for forward evolution, in that blobs of points under forward iteration align
themselves along unstable manifolds, analogously to blobs of fluid aligning
themselves along streamlines. Moreover, an important result in dynamical sys-
tems (the stable manifold theorem) extends these ideas from stationary points
to points which move around the domain (see Chapter 5 for more details). For
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more details on the link between unstable manifolds and fluid flow, see Beigie
et al. (1994) for a thorough and graphic account of the way unstable manifolds
form dominant structures in flows governed by chaotic advection. For now we
think of equating ‘unstable manifolds’ with ‘portions of streamlines’.

The definition of stable and unstable manifolds is such that an unstable man-
ifold may not cross another unstable manifold, or itself (and similarly for stable
manifolds). However, an unstable manifold may cross a stable manifold, and
this can generate great complexity in the dynamical system (see for example
Ott (1993) or Wiggins (2003)) and, in particular, produce mixing. The mech-
anism for such a crossing to occur comes from the fact that, typically, unstable
manifolds grow in length under forward iteration, whilst stable manifolds grow
in length under backward iteration. For an intersection to occur, we require
the stable and unstable manifolds, whilst growing, to go, roughly speaking, in
different directions (if they were parallel they would never cross). Thus the
corresponding mantra for achieving enough complexity in a dynamical sys-
tem so that mixing might occur is transversely intersecting stable and unstable
manifolds.

Linked twist maps on both the torus and the plane provide a paradigm model
for this to occur. Moreover, they provide a framework for rigorously:

1. establishing the existence of stable and unstable manifolds almost
everywhere1 – this gives the dynamical system the correct structure for
discussing stretching and contracting;

2. demonstrating that the stable and unstable manifolds grow in length under
the action of the dynamical system, and moreover showing that the
lengthening stable and unstable manifolds eventually intersect each other –
this results in complicated dynamical behaviour, and the fact that this
conclusion is valid for almost every point in the domain means that islands
cannot occur;

3. producing cases for which the the above two features are not guaranteed –
this gives conditions where mixing may fail.

In the following we give a heuristic description of the relationship between
linked twist maps and the kinematics of mixing in fluid flows. It is intended to
clarify the key aspects of the linked twist map relevant to mixing, and to provide
insight into the properties the mathematical work in later chapters will firmly
establish.

1 the phrase ‘almost everywhere’ has a technical definition which is defined and discussed in
detail in Chapter 3.
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(a) (b) (c) (d) (e)

Figure 2.2 An idealized steady shear flow in a horizontal annulus. Streamlines are
given in (a), and an initial blob of tracer particles in (b). Under the action of the
flow the blob is sheared into the images in (c), (d) and then (e). The sheared blob
becomes aligned along the direction of the streamlines, in this case horizontally.

Shear flows – toral twist maps
Imagine an idealized steady shear flow whose streamlines, pathlines and streak-
lines are represented by the arrows in Figure 2.2(a), where the left and right
edges of the square are identified (suspending for the time being concerns about
how such a flow might be created). The length of the arrows indicate that in unit
time a point in the flow nearer the top of the annulus moves further than a point
nearer the bottom. A blob of fluid, shown in Figure 2.2(b), is released into the
flow (it may seem unlikely to have a perfectly square blob of fluid, but it helps
to visualize what happens to vertical and horizontal lines). Under the action of
the flow it is deformed into the images in Figure 2.2(c), then Figure 2.2(d) and
finally Figure 2.2(e). The longer the flow is run (or equivalently, the stronger the
effect of the shear), the closer the alignment of the points in the blob gets to the
direction of the streamlines. This direction can be regarded as the most import-
ant for this shear, in that blobs are ‘attracted’ to it. This flow lacks the hyperbolic
structure necessary for this direction to be an unstable manifold (a key differ-
ence is that nearby trajectories are attracted to this direction only algebraically
fast, rather than exponentially fast), but nevertheless the horizontal direction
can be regarded as the characteristic direction for this shear flow.

Figure 2.3 shows an analogous shear flow in a vertical annulus, with top and
bottom edges identified. The shear is stronger at the right edge of the square
than the left edge. Clearly, the characteristic direction is a different one to that
for the horizontal shear. The two directions are transverse, and this is a crucial
factor in providing good mixing.

Superimposed shear flows
The Arnold Cat Map To create a flow with ‘crossing streamlines’ we need to
alternate the two flow patterns above. To do so we consider a flow on a torus,
so that both left and right sides, and top and bottom sides, of the square are
identified. Initially we widen the horizontal and vertical annuli until they are
the width of the whole torus (so the domain of each shear is the same). Then
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(a) (b) (c) (d) (e)

Figure 2.3 An idealized steady shear flow in a vertical annulus. Streamlines are
given in (a), and an initial blob of tracer particles in (b). Under the action of the
flow the blob is sheared into the images in (c), (d) and then (e). The sheared blob
becomes aligned along the direction of the streamlines, in this case vertically.

(a) (b) (c) (d) (e)

Figure 2.4 Idealized superimposed shear flows in a torus, alternating the horizontal
and vertical streamlines in Figures 2.2 and 2.3, where the annuli are widened to the
entire torus. An initial blob of tracer particles is shown in (a). Under the action of the
flow the blob is sheared first horizontally into the image in (b), and then vertically
into the image in (c). Continuing the process of alternating horizontal and vertical
shears produces the images in (d) and then (e). The resulting characteristic direction
is the direction of the unstable manifolds of the underlying map.

we create a flow by alternating horizontal and vertical shears. The fact that the
flow directions are orthogonal means that the streamline crossing is in some
sense the ‘most transverse’. The resulting dynamical system is a famous and
well-studied one, and one which we will refer to as a paradigm example in later
chapters, and in particular define fully in Section 5.2.1. The map is known as the
Arnold Cat Map (Arnold & Avez (1968)), and forms a fundamental example of
a dynamical system for which rigorous mathematical results about mixing can
be proved, and also has been used as a prototype for mixing in many applications
(see for example, Childress & Gilbert (1995), Thiffeault & Childress (2003) or
Boyland et al. (2000)).

The effect of alternating horizontal and vertical twists on a blob of fluid is
shown in Figure 2.4. The initial blob becomes stretched out, again aligning
itself with the characteristic direction for the system. A remarkable feature of
this system is that the combination of two integrable twist maps results in a
system with a hyperbolic structure, and this new direction is the direction of the
unstable manifolds for the system. In general an unstable manifold need not lie
along a straight line, and need not be the same for every point. However, for this
simple example, the unstable manifold at every point is a straight line pointing in
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(a) (b) (c) (d) (e)

Figure 2.5 Idealized superimposed shear flows on linked annuli, alternating the
horizontal and vertical streamlines in Figures 2.2 and 2.3. An initial blob of tracer
particles is shown in (a). Under the action of the flow the blob is sheared into the
images in (b), (c), (d) and then (e). The shearing effect only acts on the portions
of the blob which are within the relevant annulus. This results in segments of the
unstable manifold having differing gradients. Note however that the directions of
all the line segments lie in the same quadrant.

the same direction. Moreover, this direction has irrational slope, and so, under
forward evolution, the unstable manifold grows and wraps around the torus
indefinitely. If we ran the system backwards we would find similar a line for
stable manifolds, lying in a transverse direction. The fact that these manifolds
grow and wrap around the torus makes a transverse intersection inevitable.

Toral linked twist maps When forming a linked twist map, we again alternate
the action of the horizontal shear with the action of the vertical shear, but now
with the original ‘narrow’ annuli. This leads to portions of fluid in an annulus
being sheared, while other portions of fluid which lie outside the annulus are
left unsheared. This system shares some of the hyperbolic structure of the Cat
Map. The result of acting with this flow on an initial blob is shown in Figure 2.5.
Here the unstable manifold formed is not simply a straight line. It is however a
connected line consisting of line segments. These line segments are not arranged
randomly, but lie in directions whose slopes may vary between horizontal and
vertical. Crucially, however, all the slopes of the line segments (for this choice
of system) are positive, and so just as for the Cat Map, the lengthening (under
forward evolution) unstable manifold must wrap around the torus. In the next
section we discuss how this property may fail to occur.

Relative directions of the toral twists A key feature (indeed, one of the most
important features of linked twist maps) is the direction of the twists or shears in
relation to each other. For example, in the shears illustrated and discussed above,
the horizontal shear acts ‘left-to-right’ and the vertical shear acts ‘bottom-to-
top’. In other words, the shear increases with increasing coordinate for both
twists. Since the coordinates on the torus can be thought of as angles we call
this case co-rotating.
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... eventually homes  
in on one direction

horizontal shearInitial horizontal shear...vertical shear

Counter-rotating is equivalent to counter-twisting on the torus

Co-rotating is equivalent to co-twisting on the torus

Initial horizontal vertical horizontal vertical horizontal directions rotate

Figure 2.6 In the top figure we show the evolution of initial horizontal and vertical
arrows under alternate application of horizontal and vertical shears, in the co-
rotating/co-twisting case (in which both shears act in the same sense). The angle
between arrows decreases, until the direction of the unstable manifold is reached,
and the combined effect of the twists is to stretch areas in this direction. In the
bottom figure we show the evolution of the same initial arrows under the action
of a counter-rotating/counter-twisting system (in which shears act in an opposite
sense). Here the arrows do not grow in length and approach each other. No overall
expansion occurs because any stretching achieved by the horizontal shear is undone
by the vertical shear.

Figure 2.6(a) demonstrates how the final direction of the unstable manifold
is obtained. Beginning with the initial triangle on the left (we use this triangle
as the bottom and left edges, marked as arrows, are aligned in the coordinate
directions) we first see the result of the horizontal shear (ignoring the fact that the
triangle will also be translated to a different place in the torus). The horizontal
shear has no effect on the horizontal side of the triangle, but the vertical side
is, of course, sheared, and the angle between arrows is decreased. The vertical
shear that follows decreases the angle between arrows further (whilst the area
of the triangle remains constant). Continuing the process we see the arrows
lengthen and the sector formed by the arrows eventually closes to a single
direction. Because the twists complement each other in this way, and the effect
of the twists is to stretch in the same sense, we call this system co-twisting.
Note that for the linked twist map on the torus, a co-rotating system is also
co-twisting.

Consider now the case where we reverse the direction of the vertical shear,
so that it shears from ‘top-to-bottom’. We call this the counter-rotating case,
as now one twist acts with increasing angle, and the other acts with decreasing
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angle. Figure 2.6(b) illustrates the evolution of the same initial triangle. After
the first horizontal shear, the effect of the vertical shear is to shear downwards.
As we continue applying horizontal and vertical shears, we find that we do not
home in on one direction, but rather that the directions indicated by the arrows
rotate. This inhibits mixing, and indeed it is not difficult to find an example of
a counter-rotating system which, after six iterations of horizontal and vertical
shears, returns any initial blob to its original state. The combined effect of the
shears is that stretching achieved by the horizontal shear is counter acted by the
vertical shear, so the system is effectively beginning to mix, and then unmixing,
repeatedly. We call this counter-twisting. In order for a counter-twisting linked
twist map to produce the necessary expansion and contraction, the shears must
be sufficiently strong — stronger than for the co-twisting case.

Having established the existence of stable and unstable manifolds, and growth
of their images, the final task is to show that these images intersect. For the
Arnold Cat Map this was straightforward, as the images were straight lines
which inevitably wrapped around the torus. In the case of the linked twist map,
when parts of images of the initial blob fall outside an annulus, the effect of
a horizontal or vertical shear may be omitted. Consequently, the image of an
unstable manifold is a segmented line, in which some of the line segments may
have different slopes (this effect can be seen in Figures 2.5(d) and 2.5(e)).

In the co-twisting case, these slopes are all constrained to fall in the same
quadrant. Figure 2.7(a) shows a sketch of this. After a horizontal shear, the
resulting image lies in the quadrant shown, and after a vertical shear, the same
quadrant applies. Thus a simple geometrical argument shows that however line
segments with such gradients are combined, the result is a segmented line which
wraps around the torus.

For the counter-twisting case, shown in Figure 2.7(b), however, the shears
run in opposite senses, and while after a horizontal shear, the resulting image
lies in the positive quadrant as before, after a vertical shear, the directions lie in
a different quadrant. When such line segments are combined, it may be possible
that the resulting segmented line, although lengthening, is constrained within an
enclosed region, as in Figure 2.7(b), and fail to wrap around the torus. This may
prevent an intersection of stable and unstable manifolds. Chapter 7 provides an
argument to say that for sufficiently strong twists, this issue does not arise.

Key point: For linked twist maps on the torus, a co-rotating system is also co-
twisting, and simple conditions guarantee mixing behaviour. A counter-rotating
system is also counter-twisting, and in this case stronger conditions on the strength
of the twists are required to guarantee mixing.
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Figure 2.7 Summary of the effect of the sense of the shears in a linked twist map
on the unstable manifold. For the co-rotating case the shears run in the same sense,
and the unstable manifold is constructed of line segments all with positive gradient.
For the counter-rotating case, shears run in opposite senses, and the unconstrained
line segments may cause the unstable manifold to double back on itself and fail to
wrap around the torus.

2.3 Linked twist maps on the plane

The relationship between toral linked twist maps and fluid flows is probably far
from obvious. The first step in understanding this relationship is by considering
how linked twist maps on a subset of the plane can arise in fluid flows (and then
later consider the relationship between toral linked twist maps and linked twist
maps on subsets of the plane).

Consider a region of fluid, possibly a 2D cavity with solid boundaries or the
cross flow in a 3D steady flow in a channel with an axial flow in the direc-
tion normal to the page, containing a stagnation point surrounded by closed
streamlines, as shown in the top panel of Figure 2.8.

The fact that we are showing our region to be a (enclosed) square with circular
streamlines is unimportant for our conclusions. The horizontal and vertical
dashed lines are axes centred in the middle of the region and merely serve as a
(essentially arbitrary) reference point. The stagnation point is on the horizontal
axis, offset to the left of the centre. Imagine that at some later time, and by
some mechanism (the details of which are unimportant to the argument) the
flow pattern is altered. The alteration involves moving the stagnation point to the
right of the centre, as shown in the lower panel of Figure 2.8. We remark that the
flow domain could contain multiple ‘recirculation cells’, and our arguments can
be applied to any number of them. The flow cycles between the upper and lower
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Streamlines in the first half of the advection cycle

Streamlines in the second half of the advection cycle

Figure 2.8 Geometry of the flow patterns for the two half cycles of the advection
cycle.

patterns in a periodic fashion, which is the advection cycle of interest to us. The
cycling could occur as a result of the imposition of periodic time dependence in
a cavity flow, or as a result of the flow pattern changing periodically in the cross
section of a flow as in a discontinuous duct flow. The utility of this approach
is that it is independent of the details of how the flow is created, and depends
only on the geometry of the flow patterns. Clearly also the length of the period
of cycling will play an important role in the rate of mixing, and we will address
this later.

The fluid particle motion from the beginning of a half cycle to the end of the
same half cycle is described by a twist map. For the closed streamlines in each
half cycle let (r, θ) denote streamline coordinates (the actual trajectories in the
x–y plane need not be circular; they can be made circular by some nonlinear
transformation). That is, on a streamline r is constant and θ is an angular variable
that increases monotonically in time. The map of particles from the beginning



44 2 Linked twist maps

c-c
x

y

A2 

A1

ro
2

ri
2

ri
1

ro
1

Figure 2.9 Geometry of the annuli from each half cycle of the advection cycle that
make up the linked twist map.

to the end of a half cycle is given by S(r, θ) = (r, θ + g(r)). We will see that
the function g(r) is the key here. It provides the angular displacement along
the streamline during one half of the advection cycle. Typically it varies from
streamline to streamline, and it is from this property that the phrase ‘twist map’
arises. For example, g(r) may increase as r moves from the elliptic stagnation
point to a particular streamline (i.e., g(r) achieves a unique maximum), and
then it decreases monotonically to zero on the boundary.

We can now define a linked twist map over a complete advection cycle. Let A1

denote an annulus whose inner (denoted r1
i ) and outer (denoted r1

o ) boundaries
are streamlines centred at (c, 0) in the first half of the advection cycle. Let A2

denote an annulus constructed in the same way centred at (−c, 0) in the second
half of the advection cycle. We show the two annuli in Figure 2.9. The two annuli
must be chosen so that they intersect each other transversally in the sense that
they intersect each other in two disjoint regions, as shown in the figure.

An obvious question arises: How do we choose the annuli A1 and A2? Or,
which annuli A1 and A2 do we choose? Since there are clearly many such
choices of pairs of annuli that will satisfy the transversal intersection con-
dition. The theory of linked twist maps does not answer this question. It is
only concerned with the behaviour on a pair of annuli satisfying the trans-
versal intersection property, and some additional properties described below.
For mixing purposes, in a given situation we will need to find the largest and/or
largest number of annuli in the flow domain satisfying the hypotheses. We
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will next discuss these hypotheses on a given pair of annuli. In each half
cycle depicted in Figure 2.8 we are only showing one recirculation region,
i.e., one region of closed streamlines. In some applications a half cycle may
contain multiple recirculation regions (separated by heteroclinic and/or homo-
clinic orbits). This poses no difficulty in the application of the linked twist map
approach since we merely need to find transversally intersecting annuli in each
half cycle. However, it does raise questions about how many annuli can be
found and, as we shall see, the sense of rotation may also be important (i.e.,
the issue of co-rotation versus counter-rotation as discussed in the previous
section).

Let S1(r, θ) = (r, θ + g1(r)) be a twist map defined on A1 with dg1/dr �= 0
and g1(r1

i ) = 2πn, for some integer n. Then r1
o is chosen such that g1(r1

o) =
2π(n + k1), where k1 is a nonzero integer. Let S2(r, θ) = (r, θ + g2(r)) be
a twist map defined on A2 with and g2(r2

i ) = 2πm, for some integer m, and
g2(r2

o) = 2π(m + k2), for some nonzero integer k2. Furthermore, we suppose
that the annuli intersect transversally in two disjoint components in the sense
that r1

i ∩ r2
i �= ∅ and r1

o ∩ r2
o �= ∅, as shown in Figure 2.9. The map defined by

S2 ◦ S1 on A1 ∪ A2 is referred to as a linked twist map on a subset of the plane.2

Depending on the signs of k1 and k2, the strengths of the twists can be defined
in the same manner as in (2.1) and (2.2). Now the relationship between toral
linked twist maps and linked twist maps defined on a subset of the place should
be clear in the sense that each is created by defining a twist map on an annulus,
the annuli intersect (and some care must be taken here in the planar case), and
the linked twist map is the composition of two twist maps defined on each
annulus. However, the transference of the strong mixing results obtained for
toral linked twist maps to linked twist maps defined on a subset of the plane
is geometrically more complicated, but it can be done (one gets an idea of the
subtleties that may arise when one considers the fact that the two annuli on the
torus intersect in one component and the two annuli in the plane intersect in
two components).

We will see that for designing a flow with optimal mixing the key quantit-
ies we need to understand are gi(r), i = 1, 2, on the annuli of choice, since
these functions determines the rotation properties of the annuli, the radii of the

2 As discussed in more detail for the case of toral linked twist maps, strictly speaking, the
map S2 ◦ S1 is not defined on all of A1 ∪ A2 since S1 is only defined on A1 and S2 is only defined
on A2. In this situation we can define S1 (resp., S2) to be the identity map on the part of A1 ∪ A2
that is not A1 (resp., the part of A1 ∪ A2 that is not A2). Since S1 (resp., S2) is the identity map on
the boundary circles defining A1 (resp., A2) this extension of the maps to a larger domain can be
done smoothly. Conceptually, from the physical point of view, this point can be ignored. It says
nothing more than we consider S1 (resp., S2) only acting on A1 (resp., A2), and it does nothing to
points that are in the part of A2 (resp., A1) that does not intersect A1 (resp., A2).
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annuli, and the strength of the twist, which in the context of fluids, is the shear
rate. This is significant because the design of a mixer with strong mixing prop-
erties effectively reduces to the properties of one function describing closed
streamlines in each half cycle of the advection cycle.

Finally, there is a technical problem that must be addressed in applying the
currently known LTM results for the purpose of concluding that the mixing has
the Bernoulli property on the two chosen annuli. Let us describe the situation
above a bit more carefully. We are concerned with two flow patterns that altern-
ate (blinking flow); call them pattern 1 and pattern 2. Now the LTM formalism
and results as developed by mathematicians do not focus on all of pattern 1 and
pattern 2. Rather, they focus on one annulus (in isolation) in pattern 1 and one
annulus (in isolation) in pattern 2 that intersect ‘transversely’.

Hence, in the mathematician’s formalism, the LTM maps particles between
the annuli as we alternate applying the twist maps to each annulus, and the
theorems describe mixing of particles in the two annuli. Now in order for this
to make sense, the same particles must remain in the two annuli for all time. This
is not true for two arbitrarily chosen flow patterns. However, it is true if pattern
2 is a rigid rotation of pattern 1 (this is precisely what is done in the analysis of
the partitioned pipe mixer described in Khakhar et al. (1987)). Since the flow is
bounded, and we know where all the particles go, we suspect that some strong
mixing results can be proven in the case where this is not true. However, this
is a problem that awaits further mathematical analysis. Further, we remark that
if one is only interested in constructing Smale horseshoes we do not require
this condition since the invariant set associated with the horseshoe is directly
constructed in the overlap regions between two appropriately chosen annuli
(see Devaney (1978), Wiggins (1999), Khakhar et al. (1986), and Chapter 4
where Smale horseshoes are discussed in detail).

So LTMs on subsets of the plane mix ‘well’, where ‘well’ can be made math-
ematically precise. We will make a more explicit connection between LTMs on
a subset of the plane and the geometry of mixers with a number of examples
shortly. However first we give a discussion of the heuristics of fluid mechanical
mixing in planar linked twist maps analogously to that given in Section 2.2.1.

2.3.1 Geometry of mixing for LTMs on the plane

Briefly, precisely the same mechanism described in Section 2.2.1 is at work
for the case of linked twist maps on the plane, although here the curvilinear
coordinate system makes the analysis slightly more complicated. We have a pair
of shears again, each one taking place on an annulus in the plane. The two annuli
overlap each other, creating a pair of intersections on which points may be acted
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Figure 2.10 On the plane, a pair of co-rotating shears produce a counter-twisting
effect in the intersection, while a pair of counter-rotating shears produce a co-
rotating effect.

on by both shears. As for the toral case, we are interested in seeing the effect
of the shears on unstable manifolds. Again we would like the line segments to
lie in directions such that the lengthening unstable manifold will wrap around
an annulus rather than double back on itself. The same dichotomy presents
itself – that of co-rotating and counter-rotating systems. To be consistent with
the majority of the literature on shear flows, we define a co-rotating system to
be a system for which the shears either both act clockwise, or both act counter-
clockwise (that is, both with increasing angle or both with decreasing angle).
Note that this definition is the same as for toral linked twist maps. Similarly,
if the shears act in opposite senses, the system is a counter-rotating linked
twist map.

When considering the relative directions of the twists, however, care must be
exercised. The complexity in the dynamics takes place in the intersections of the
annuli – it is here that we have stretching in transverse directions. Consequently
we must inspect the behaviour of the shears within the intersections. In fact the
intersections of annuli on the place are locally the same as the intersections of
annuli on the torus.

Figure 2.10 illustrates the relationship between the direction of rotation of the
shears on the planar annuli to the direction of the shears within the intersection of
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the annuli. In Figure 2.10(a) we have a co-rotating system, in which the shears
both act in a counter-clockwise sense. However, inspecting the behaviour of
the shears within the upper intersection reveals that the shears are acting in a
counter-twisting manner (precisely the same conclusion can be deduced for the
lower intersection). On the other hand, if the planar shears run in a counter-
rotating sense (as in Figure 2.10(b)), the behaviour in the intersection produces
a co-twisting linked twist map.

As for the toral linked twist maps, stronger conditions are necessary to estab-
lish results for the counter-twisting (co-rotating) system on the plane then for
the co-twisting (counter-rotating) system.

Key point: A co-rotating linked twist map on the plane is a counter-twisting linked
twist map, while a counter-rotating linked twist map on the plane is a co-rotating
linked twist map.

2.4 Constructing a LTM from a blinking flow

As we have mentioned, one of the first flows that was demonstrated to pos-
sess chaotic advection was the blinking vortex flow (Aref (1984)). The idea is
simple. Consider a streamfunction ψA(x, y) that defines a particular flow pattern
(i.e., streamline structure), and another streamfunction, ψB(x, y), that defines a
different flow pattern. Imagine that we allow particles to evolve under the flow
defined byψA(x, y) for a certain time interval, then we ‘stop’ the flow defined by
ψA(x, y) and then let the particles evolve under the flow defined by ψB(x, y) for
some time interval. At the end of this time interval we ‘stop’ the flow generated
by ψB(x, y), and then repeat this cycle indefinitely.

Mathematically, we can make this more precise. Consider the streamfunction:

ψ(x, y, t) = fA(t)ψA(x, y) + fB(t)ψB(x, y),

where

fA(t) =
{

1 kT < t ≤ kT + T
2

0 kT + T
2 < t ≤ (k + 1)T

and

fB(t) =
{

0 kT < t ≤ kT + T
2

1 kT + T
2 < t ≤ (k + 1)T
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Then the velocity field is given by:

ẋ = ∂ψ

∂y
,

ẏ = −∂ψ

∂x
.

One sees from the form of the functions fA(t) and fB(t) that the flow ‘blinks’
periodically between the (steady) flow defined by ψA(x, y) and the flow defined
by ψB(x, y). Following the discussion in Section 2.3, we need to select annuli
defined by streamlines of ψA(x, y) and annuli defined by streamlines of ψB(x, y)
having the property that these two annuli ‘link’ in the manner described in
the discussion in Section 2.3. Of course, these annuli must also be chosen to
satisfy the conditions of the LTM theorems in order to guarantee good mixing.
However, the great variety of streamline topologies gives rise to many possible
choices for annuli, as well as pointing the way to many new areas of research
in extending the LTM framework. In Chapter 1 we gave some examples which
can be modelled by blinking flows. These also indicate new areas of research
for extending the LTM framework.

2.5 Constructing a LTM from a duct flow

Now we show how to rigorously obtain a linked twist map (LTM) from a
sequence of duct flows using results in Mezic & Wiggins (1994). Streamline
crossing occurred at different times in the blinking flows that we considered
earlier. In the duct flows ‘streamline crossing’ occurs as a result of spa-
tial periodicity in periodically displaced cross-sections of the flow along
the duct.

Recall that by a duct flow we mean a three-dimensional, steady, spatially
periodic flow where the axial flow does not depend on the axial coordinate, as
defined earlier. We refer to each spatial period as a cell, and the flow is described
by a mapping from the beginning of a cell to the end of a cell. This mapping
is the composition of two mappings, each a twist map (which is how the LTM
arises). The first twist map is the mapping of particles in the cross-section at
the beginning of the cell to the cross-section at the half cell. The second twist
map is the mapping of particles from the cross-section at end of the half cell
to the cross-section end of the cell.3 The cell to cell LTM obtained in this way

3 There is no reason that a cell should be divided into two ‘half cells’. It could be divided into
three, four, or n different sub-cells. In principle, the analysis can be carried out by the same
approach, but it would require a generalization of the classical LTM approach.
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will be discontinuous in the sense that each twist map is computed separately
and continuity at the half cell is not enforced.

Construction of the first twist map
We assume that we have a duct flow in the first half of the cell having the
following form:

dx

dt
= ∂ψ1(x, y)

∂y
,

dy

dt
= −∂ψ1(x, y)

∂x
, (2.3)

dz

dt
= k1(x, y).

Since the x and y components of the velocity field (i.e., the cross flow) do
not depend on the axial coordinate z we can consider transforming this two-
dimensional velocity field into standard action-angle variables. To do this, we
must make the following assumption.

Assumption There is some connected subset of the x–y plane, denoted D, in
which the level sets ψ1(x, y) = c are closed ‘streamlines’.

Action-angle transformation in the cross flow If this assumption holds, then
it is well known from classical mechanics (see, e.g. Arnold (1978)) in this region
there is a transformation

(x, y) �→ (r, θ)

satisfying the following properties.

1. r = r(c), i.e., r is constant on the closed streamlines in the cross flow.
2.
∮
ψ1=c dθ = 2π .

3. θ̇ = �1(r)

The action variable is given by (see e.g. Wiggins (2003))

r = 1

2π

∫
ψ1=c

ydx,

while the angle variable is given by:

θ = 2π

T(ψ1)
t,

where T(ψ1) is a period on the orbit in the cross flow (which is a level set of ψ1),
and t denotes the time along the streamline measured from a certain starting
point on the streamline.
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We assume that this action-angle transformation on the x–y component of
(2.3) has been carried out so that these equations subsequently take the form

ṙ = 0,

θ̇ = �1(r), (2.4)

ż = h1(r, θ),

where

h1(r, θ) = k1(x(r, θ), y(r, θ)).

We remark that there may be multiple regions of closed streamlines in the
cross flow separated by homoclinic or heteroclinic orbits, or even solid bound-
aries. In general, a separate action-angle transformation is required for each
such region of closed streamlines (and the different transformations may not be
simply related).

Action-angle-axial transformation in the half cell
Now we introduce a final change of coordinates that leaves the action-angle
variables in the cross flow unchanged, but modifies the axial coordinate so that
all particles on a given streamline in the cross flow take the same time to travel
the length of the half cell. We refer to these coordinates as action-angle-axial
coordinates (Mezic & Wiggins (1994)).

Suppose �1 �= 0 in (2.4). Then the transformation of variables

(r, θ , z) → (r, θ , a),

defined by

r = r

θ = θ ,

a = z + �z1(r)

2π
θ −

∫
h1(r, θ)

�1(r)
dθ ,

where

�z1(r) = 1

�1(r)

∫ 2π

0
h1(r, θ)dθ ,

then brings the system (2.4) to the form

ṙ = 0,

θ̇ = �1(r),

ȧ = A1(r),
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where

A1(r) = �z1(r)

2π
�1(r). (2.5)

Furthermore, the transformation is volume-preserving.

Explicit expression for the twist map Now a linked twist map can be con-
structed from the velocity field in (r, θ , a) coordinates. Let z = 0 be the starting
point of the channel. From the coordinate transformation above we see that the
beginning of the first half cell, z = 0, corresponds to:

a = �z1(r)

2π
θ −

∫
h1(r, θ)

�1(r)
dθ .

The end of the first half cell (beginning of the second half cell) is at z = L
2 ,

which corresponds to:

a = L

2
+ �z1(r)

2π
θ −

∫
h1(r, θ)

�1(r)
dθ .

The time of flight, T , from the beginning of the first half cell to the end is given
by solving:

a (T) = A1(r)T + a(0),

where

a(0) = �z1(r)

2π
θ −

∫
h1(r, θ)

�1(r)
dθ .

and

a(T) = L

2
+ �z1(r)

2π
θ −

∫
h1(r, θ)

�1(r)
dθ .

After some simple algebra we easily find that T = L/2A1(r). Therefore the
twist map for the first half cell is given by:

r �→ r,

θ �→ θ + L�1(r)

2A1(r)

or, using (2.5),

r �→ r,

θ �→ θ + πL

�z1(r)
.
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Construction of the second twist map
The construction of the twist map in the second half of the cell proceeds in
exactly the same way as the construction for the first half. We suppose the flow
in the second half is given by:

dx

dt
= ∂ψ2(x, y)

∂y
,

dy

dt
= −∂ψ2(x, y)

∂x
,

dz

dt
= k2(x, y),

where ψ2(x, y) describes the streamline pattern in the cross flow, and k2(x, y)
describes the axial velocity. We then proceed with the same series of transform-
ations as above.

2.6 More examples of mixers that can be analysed in the
LTM framework

All of the examples discussed in Chapter 1 are amenable to analysis via the
linked twist map approach. In this section we describe more systems that fit
within the framework. This is significant because, as we will see in the following
chapters, LTMs provide an analytical approach to the design of devices that
produce a mathematically optimal, and precisely defined, type of mixing.

We point out again that the first example of a chaotic flow, the blinking
vortex flow (Aref (1984)), is also the most transparent and the most immediately
analysable example. In this case the flow itself is already in the form of a linked
twist map on the plane and the appropriate functions can be controlled at will.
This connection was described in Wiggins (1999). It is remarkable that, in
some sense, this example encompasses, if not all, a large number of other
examples. The egg beater flows also have this ‘universal’ characteristic, and are
examples of linked twist maps on the torus. It is also important to stress that
the most conceptually efficient way to think about mixing is in terms of maps
and not in terms of deviations from integrability. Deviations from integrability,
by definition, lead to confined, as opposed to widespread, mixing. The most
useful heuristic is streamline crossing, i.e. streamlines in a bounded domain at
two different times must intersect. This is precisely the central message, and
mechanism, of the LTMs.
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Figure 2.11 Figure 2 from Stroock et al. (2002) showing the closed streamlines in
the cross-section of each half-cycle. Panel A shows the mixer and panel B shows
flow visualizations in the cross-section.

We consider a few examples, the first from recent devices intended for micro-
fluidic applications, others from older systems that illustrate mechanisms that
may be used in future microfluidic applications.

One possibility for flow manipulation is the use of patterned walls. Stroock
et al. (2002) built and conducted experiments in a micromixer consisting of a
straight channel with ridges placed on one of the walls of the channel at an
oblique angle with respect to the axis of the channel. When the fluid is driven
axially by a pressure gradient the ridges on the floor of the channel give rise to
a transverse flow. In the x–y plane or cross flow the streamlines are closed and
helical in three dimensions. If the ridges are arranged in a periodic pattern down
the axis of the channel, a herringbone pattern zigzagging to the right and to the
left, each period consists of two half-cycles, producing two cells. If the pattern
is such that the two cells are asymmetric with respect to the y-axis, and one
looks at the mixer along the axial path, then the elliptic points corresponding
to the centre of the cells switch positions after one cycle. The overall map then
consists of the composition of two maps: the maps between each half-cycle.
The map between cycles is a linked twist map. This is shown in Figure 2.11
from Stroock et al. (2002). The linked twist map results described here provide
a basis for design and analysis of rigorously defined mixing properties in such
flows.

Several extensions become apparent. For example, if the cross-section is
not mirror symmetric as is a rectangle, but is, for example, trapezoidal, a
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Figure 2.12 Micromixer with a periodically varying trapezoidal cross-section
driven by a grooved bottom wall. A and B denote the beginning of each half cell
where the cross-sectional flow is shown. [Figure from Wiggins & Ottino (2004)].

herringbone pattern is unnecessary. In this case a patterned wall is all that is
needed. The key idea is to shift the location of the elliptic point (see Figure 2.12).

There are many other examples that can be fitted within the LTM framework.
In fact, some of these examples are older, going back to static mixing concepts.
The Partitioned Pipe Mixer (PPM) of Khakhar et al. (1987) and analysed exper-
imentally by Kusch & Ottino (1992) is representative of a large class of spatially
periodic flows, and the first continuous flow that was shown to be chaotic. The
PPM consists of a pipe partitioned into a sequence of semi-circular ducts by
means of orthogonally placed rectangular plates (Figure 2.13).

A cross-sectional motion is induced through rotation of the pipe wall. At every
length L along the pipe axis, the orientation of the dividing plate shifts by 90◦.
Thus a series of two co-rotational flows is followed by two co-rotational flows
but shifted by 90◦. This particular geometry of the PPM is just one of three
possible spatially periodic configurations which could be realized. Franjione
& Ottino (1992) considered two variants of this flow. One that qualitatively
captures the motion in a sequence of pipe bends (the ‘twisted-pipe’ flow of
Jones et al. (1989)) – two counter-clockwise rotating vortices followed by two
counter-clockwise rotating vortices; the other a flow that resembles the motion
in a Kenics®static mixer – two counter-clockwise rotating vortices followed
by two clockwise rotating vortices. As discussed earlier in this article the PPM
design fits precisely the LTM formalism.
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Figure 2.13 The partitioned pipe mixer. The left-hand panel shows the duct and the
internal arrangement of plates. In the right-hand panel the top of the figure show the
cross-sectional flows for the PPM at the indicated locations, and the lower part of
the panel shows the cross-sectional flows that would occur for the Kenics®mixer.
[Figure adapted from Franjione & Ottino (1992).]

Static mixers try to mimic the Baker’s transformation (which is discussed
in Chapter 3). Static mixers invariably involve internal surfaces; two regions
have to be split and then reconnected (this tries to mimic cutting in 2D). This
is an issue that makes these systems complicated to build at small scales. Some
remarkably small mixers have been built (e.g. Bertsch et al. (2001)), but these
designs are scaled-down versions of a design commonly encountered in routine
large-scale applications. However, this need not be so and other design pos-
sibilities, more in line with current microfabrication technologies, should be
explored. Nevertheless large-scale applications may be a source of inspiration.
Consider the Rotated Arc Mixer (Metcalfe et al. 2006). The design depends
critically on a clever use of the cross-sectional flow. The system consists of two
hollow cylinders with a very small gap between them; the outer cylinder rotates
while the flow is driven axially by a pressure gradient. The inner cylinder has
strategically placed cut offs, exposing the flow contained in the inner cylinder
to the drag of the moving outer cylinder (Figure 2.14).

In the example in Figure 2.14 there are two cut offs per period, but obviously
the system can be generalized to any number of cut offs. With two cut offs
per period the system corresponds exactly to an LTM. The theory for the case
of more than two cut offs has not been yet developed. It is apparent that this
design can be implemented, at least in theory, by means of electro-osmotic flows.
Another variation on the cavity flow is to exploit time-dependent changes in
geometry by adding a secondary baffle (Figure 2.15).

This idea goes back to Jana et al. (1994a), and variations on this idea have
been patented in the context of polymer processing applications. In the original
case the cross flow was induced by an upper wall sliding diagonally. However,
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Figure 2.14 The rotated arc mixer. [Figure adapted from Metcalfe et al. (2006).]
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Figure 2.15 Micromixer with a periodic series of baffles driven by a grooved
bottom wall. A and B denote the beginning of each half cell where the cross
sectional flow is shown. [Figure from Wiggins & Ottino (2004).]

it is easy to see that the design will work if the driving is due to patterned ridges
as developed by Stroock et al. (2002). In this case the portrait changes from a
Figure-8 to another Figure-8 but where the location of the central hyperbolic
point has been shifted (Jana et al. (1994a)). In some sense this resembles two



58 2 Linked twist maps

LTMs, but the hyperbolic point changes the mathematical structure. The theory
for this case remains to be developed and the function g(r) has a double hump
structure. However, the same mathematical approach taken in the original LTM
papers should apply.

All the above designs are spatially periodic. For example, in the case of
the PPM mixer, we have a sequence of vertical and horizontal elements; in a
static mixer, a sequence of right-handed (R) and left-handed (L) elements; in
the Stroock mixer a series of elements zigzagging to the right and to the left.
Thus, in all of the above examples, when we assemble the mixer we have a
sequence of the form R–L–R–L–R, and so on. The idea is good, but it has
limitations. For example there may be unmixed regions that persist even with
an infinite number of elements and it is clearly possible for unmixed tubes to
exit the mixer without ever mixing with the surroundings. In the past the only
way to investigate the presence of islands was to propose a design and to resort
to computations. However, to the extent that a sequence R–L can be viewed as
a twist map, we can now be assured that mixing is effective in a region that
can be calculated a priori. The task therefore is to mix the well-mixed regions
with the unmixed regions. This can be accomplished by designing a suitable
follow-up twist map, say R′–L′, or by symmetry manipulations (Franjione &
Ottino (1992)).
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The ergodic hierarchy

This chapter establishes the mathematical foundations on which to build.
The key concepts and results from ergodic theory are given, forming
an ordered list of behaviours of increasing complexity, from ergodicity,
through mixing, to the Bernoulli property.

3.1 Introduction

We will mostly be interested in the simplest mixing problem: the mixing of a
fluid with itself. This serves as a foundation for all mixing problems. Practically,
we can think of placing a region, or ‘blob’ of dye in the fluid, and asking how
long it takes for the dye to become evenly, or uniformly, distributed through-
out the entire domain of the flow. We will need the mathematical machinery
to make this question precise and quantitative. We will first need a framework
to mathematically describe, measure and move regions of fluid. To do so we
will introduce simple ideas and definitions from topology, measure theory and
dynamical systems. In particular, notions of set theory from topology corres-
pond naturally to properties of an arbitrary region of fluid, such as its boundary,
interior and connectedness. Measure theory provides the tools necessary to
measure the size of a region in a generalized and consistent way. The basis of
the field of dynamical systems is the study of the evolution of some system
with time, and these ideas can be applied directly to the application of moving
fluid. These are by now all well-established techniques in the study of fluid
mechanics (see for example Ottino (1989a)).

To discuss mixing of fluid we will need the area of mathematics known as
ergodic theory. This provides a framework in which many physically relevant
pieces of the mixing problem can be fruitfully studied. We work our way through
the ‘ergodic hierarchy’. This is an ordering of behaviours of increasing com-
plexity; starting with ergodicity, which is a notion of indecomposability, and
means that typical trajectories traverse the whole region in question; through

59
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mixing, which has a technical definition that formalizes the intuitive idea of
mixing of fluids; and finishing with the Bernoulli property, which is the most
complex – in fact it implies that the system is statistically equivalent to a series
of random coin tosses.

From the point of view of an engineer, physicist, or applied mathematician,
modern ergodic theory may appear to be a highly technical subject. Moreover,
typical studies and advances frequently seem to have very little in common
with ‘real applications’. However, the same criticism could probably have been
levelled at the dynamical systems theory of the 1960s, and yet throughout
the 1980s, and continuing to the present day, dynamical systems theory has
developed a collection of techniques, tools, and ways of approaching problems
that have become indispensable to a wide, and diverse, range of disciplines.
We believe that ergodic theory will ultimately prove to be just as useful in
many different disciplines, and this monograph could be viewed as an attempt
to provide a guide to aspects of ‘applied ergodic theory’ by showing how certain
ideas from the subject can be put to immediate use in mixing problems that
arise in a number of different areas. Nevertheless, the reader will still find it
necessary, and useful, to consult the mathematical literature on the subject, but
this could prove difficult due to the level of mathematical background required
as a starting point. We will attempt to provide a bridge to the literature by giving
a more heuristic description of aspects of the theory and explaining why certain,
seemingly abstract, ideas are needed in the context of the problem of the mixing
of a fluid with itself. Examples of excellent and thorough textbooks on ergodic
theory are Arnold & Avez (1968), Halmos (1956), Keller (1998), Lasota &
Mackey (1994), Mané (1987), Parry (1981), Petersen (1983), Pollicott & Yuri
(1998), Sinai (1994), and Walters (1982), and many more undoubtedly exist.

3.2 Mathematical ideas for describing and quantifying
the flow domain, and a ‘blob’ of dye in the flow

We now develop some of the mathematical tools and terminology to describe
the structure and size of the flow domain and of a ‘blob’ of dye in the flow,
using elementary notions from topology and measure theory. Both the flow
domain and the blob is mathematically described by a chosen set of points.
The more applications oriented reader may regard some of the mathematical
abstraction in this section as unnecessarily distracting, and there probably is
some justification for this. However, a familiarity with the mathematician’s
way of writing about the subject is crucial for discovering what results in the
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abstract ergodic theory literature might be relevant for applications. For this
reason, some level of understanding of the mathematical language of ergodic
theory and dynamical systems theory is essential.

We will require some familiarity with basic elements of set theory and opera-
tions on sets such as union, intersection, complement, etc., and we will address
this in more detail later. First, in order to describe the relationship of blobs (sets)
and points in the flow domain (mathematically, also a set) we must endow our
domain with some additional mathematical structure. In particular, it will be
extremely useful (essential for our purposes, in fact) to be able to describe the
distance between two points. For this reason, we will require our flow domain
to be a compact metric space, which we define in the following section.

3.2.1 Mathematical structure of spaces

Mathematical analysis is underpinned by the very general concept of a space,
which formally endows a structure, or set of rules and relationships, on collec-
tions of points. In this section we give some details of the types of structured
space we will meet throughout the book. In particular, in order to use familiar
and fundamental mathematical ideas such as distance, length, angle, connec-
tedness, continuity and differentiation we will require constructs such as the
metric space, the vector space, the topological space and the manifold. These
definitions may seem technical and far removed from applications, but it is
the strength of many mathematical results that we shall quote that they hold
in extremely abstract circumstances, and require little specificity. In fact, as
we mention repeatedly, all the spaces we shall be concerned with are com-
mon spaces (such as Euclidean space Rn) which naturally satisfy the necessary
requirements. We give the following definitions in just enough detail to be able
to discuss later results. For further information the reader should consult any
good book on mathematical analysis, for example Munkres (1975), Conway
(1990) or Halmos (1950).

Metric space
A metric space is a space endowed with a distance function, or metric, which
defines the distance between any pair of points in the set. The metric is a
non-negative function, and has intuitive, yet important, properties.

Definition 3.2.1 (Metric) A metric d(x, y) is a function defined on pairs of
points x and y in a given set M, such that

1. d(x, y) = d(y, x) (i.e., the distance between x and y is the same as the
distance between y and x),
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2. d(x, y) = 0 ⇐⇒ x = y (i.e., the distance between a point and itself is zero,
and if the distance between two points is zero, the two points are identical),

3. d(x, y) + d(y, z) ≥ d(x, z) (the ‘triangle inequality’).

It is an instructive exercise to see that the three properties of a metric imply
that d(x, y) ≥ 0, so we never have a negative distance between two points.

Definition 3.2.2 (Metric space) A set M possessing such a metric is called a
metric space.

The most familiar metric space is the Euclidean space, Rn. Here the distance
between two points x = (x1, . . . , xn), y = (y1, . . . , yn) is given by the Euclidean
metric d(x, y) = √(x1 − y1)2 + · · · + (xn − yn)2. It is a simple task to confirm
that the Euclidean distance does indeed satisfy the three properties of a metric
given in Definition 3.2.1.

Vector space
A vector space V , also known as a linear space, is a set that is closed under
vector addition and scalar multiplication. Elements of V are called vectors.
We will not list explicitly all the properties that vectors are required to possess,
but these can be found in any textbook on linear algebra (for example, Halmos
(1974)). Again Euclidean space Rn is the standard example of a vector space,
in which vectors are a list of n real numbers (coordinates), scalars are real
numbers, vector addition is the familiar component-wise vector addition, and
scalar multiplication is multiplication on each component in turn.

Normed vector space
To give a vector space some useful extra structure and be able to discuss the
length of vectors, we endow it with a norm, which is closely related to the idea
of a metric. A norm gives the length of each vector in V .

Definition 3.2.3 (Norm) A norm is a function ‖ · ‖ : V → R which satisfies:

1. ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 if and only if v = 0 (positive
definiteness)

2. ‖λv‖ = |λ|‖v‖ for all v ∈ V and all scalars λ

3. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V (the triangle inequality)

It is easy to see the link between a norm and a metric. For example, the norm
of a vector v can be regarded as the distance from the origin to the endpoint of v.
More formally, a norm ‖·‖ gives a metric induced by the norm d(u, v) = ‖u−v‖.

Whilst the Euclidean metric is the most well known, other norms and metrics
are sometimes more appropriate to a particular situation. A family of norms
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called the Lp-norms are frequently used, and are defined as follows:

L1-norm : ‖x‖1 = |x1| + |x2| + · · · + |xn|
L2-norm : ‖x‖2 = (|x1|2 + |x2|2 + · · · + |xn|2)1/2

Lp-norm : ‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p

L∞-norm : ‖x‖∞ = max
1≤i≤n

(|xi|)

Here the L2-norm induces the standard Euclidean metric discussed above. The
L1-norm induces a metric known as the Manhattan or Taxicab metric, as it
gives the distance travelled between two points in a city consisting of a grid
of horizontal and vertical streets. The limit of the Lp-norms, the L∞-norm, is
simply equal to the modulus of the largest component. This is a norm we will
use frequently in later chapters.

Inner product space
An inner product space is simply a vector space V endowed with an inner
product. An inner product is a function 〈·, ·〉 : V × V → R. As usual, the inner
product on Euclidean space Rn is familiar, and is called the dot product, or scalar
product. For two vectors v = (v1, . . . , vn) and w = (w1, . . . , wn) this is given by
〈v, w〉 = v ·w = v1w1+· · ·+vnwn. On other vector spaces the inner product is a
generalization of the Euclidean dot product. An inner product adds the concept
of angle to the concept of length provided by the norm discussed above.

Topological space
Endowing a space with some topology formalizes the notions of continuity and
connectedness.

Definition 3.2.4 A topological space is a set X together with a set T containing
subsets of X, satisfying:

1. The empty set ∅ and X itself belong to T
2. The intersection of two sets in T is in T
3. The union of any collection of sets in T is in T

The sets in T are open sets, which are the fundamental elements in a
topological space. We give a definition for open sets in a metric space in Defini-
tion 3.2.6. The family of all open sets in a metric space forms a topology on that
space, and so every metric space is automatically a topological space. In partic-
ular, since Euclidean space Rn is a metric space, it is also a topological space.
(However, the reverse is not true, and there are topological spaces which are
not metric spaces.)
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Manifolds, smooth and Riemannian, and tangent spaces
The importance of Euclidean space can be seen in the definition of a manifold.
This is a technical object to define formally, but we give the standard heur-
istic definition, that a manifold is a topological space that looks locally like
Euclidean space Rn. Of course, Euclidean space itself gives a straightforward
example of a manifold. Another example is a surface like a sphere (such as the
Earth) which looks like a flat plane to a small enough observer (producing the
impression that the Earth is flat). The same could be said of other sufficiently
well-behaved surfaces, such as the torus. We will not be concerned with spaces
that are not manifolds.

The formal definition of a manifold involves local coordinate systems, or
charts, to make precise the notion of ‘looks locally like’. If these charts possess
some regularity with respect to each other, we may have the notion of differ-
entiability on the manifold. In particular, with sufficient regularity, a manifold
is said to be a smooth, or infinitely differentiable manifold. Again, for all our
purposes we will work with smooth manifolds.

On a smooth manifold M one can give the description of tangent space. Thus
at each point x ∈ M we associate a vector space (called tangent space, and
written TxM) which contains all directions in which a curve in M can pass
through x. Elements in TxM are called tangent vectors, and these formalize the
idea of directional derivatives. We will frequently have to work with the tangent
space to describe the rate at which points on a manifold are separated. How-
ever, throughout the book our manifolds will be well-behaved two-dimensional
surfaces, and so tangent space will simply be expressed in the usual Cartesian
or polar coordinates.

Finally, if a differentiable manifold is such that all tangent spaces are equipped
with an inner product then the manifold is said to be Riemannian. This allows a
variety of notions, such as length, angle, volume, curvature, gradient and diver-
gence. Again, all the domains we consider here will be Riemannian manifolds
(or, as discussed in Chapter 5, a collection of Riemannian manifolds ‘glued’
together).

3.2.2 Describing sets of points

Once a metric is defined on a space (i.e., set of points), then it can be used
to characterize other types of sets in the space, for example the sets of points
‘close enough’ to a given point:

Definition 3.2.5 (Open ε-ball) The set

B(x, ε) = {y ∈ M
∣∣d(x, y) < ε},

is called the open ε-ball around x.
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Intuitively, such a set is regarded as open, as although it does not contain
points y a distance of exactly ε away from x, we can always find another point
in the set (slightly) further away than any point already in the set.

With this definition we can now define the notion of an open set.

Definition 3.2.6 (Open set) A set U ⊂ M is said to be open if for every x ∈ U
there exists an ε > 0 such that B(x, ε) ⊂ U.

Thus, open sets have the property that all points in the set are surrounded by
points that are in the set. The reader should check that this definition implies
that a union of open sets is an open set. The family of open sets give the required
topology for M to be a topological space. The notion of a neighbourhood of a
point is similar to that of open set.

Definition 3.2.7 (Neighbourhood of a point) If x ∈ M and U is an open set
containing x, then U is said to be a neighbourhood of x.

Definition 3.2.8 (Limit point) Let V ⊂ M, and consider a point p ∈ V. We
say that p is a limit point of V if every neighbourhood of p contains a point
q �= p such that q ∈ V.

The notion of a boundary point of a set will also be useful.

Definition 3.2.9 (Boundary point of a set) Let V ⊂ M. A point x ⊂ V is said
to be a boundary point of V if for every neighborhood U of x we have U ∩V �= ∅
and U\V �= ∅ (where U\V means ‘the set of points in U that are not in V ’).

So a boundary point of a set is not surrounded by points in the set, in the
sense that you cannot find a neighbourhood of a boundary point a set having
the property that the neighbourhood is in the set.

Definition 3.2.10 (Boundary of a set) The set of boundary points of a set V
is called the boundary of V, and is denoted ∂V.

It is natural to define the interior of a set as the set that you obtain after
removing the boundary. This is made precise in the following definition.

Definition 3.2.11 (Interior of a set) For a set V ⊂ M, the interior of V, denoted
Int V, is the union of all open sets that are contained in V. Equivalently, it is
the set of all x ⊂ V having the property that B(x, ε) ⊂ V, for some ε > 0.
Equivalently, IntV = V\∂V.

Definition 3.2.12 (Closure of a set) For a set V ⊂ M, the closure of V, denoted
V̄ is the set of x ⊂ M such that B(x, ε) ∩ V �= ∅ for all ε > 0.

So the closure of a set V may contain points that are not part of V . This leads
us to the next definition.
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Definition 3.2.13 (Closed set) A set V ⊂ M is said to be closed if V = V̄ .

In the above definitions the notion of the complement of a set arose naturally.
We give a formal definition of this notion.

Definition 3.2.14 (Complement of a set) Consider a set V ⊂ M. The comple-
ment of V, denoted M\V (or Vc, or M − V) is the set of all points p ∈ M such
that p /∈ V.

Cantor sets play an important role in chaotic dynamical systems. We will see
that the following definition is a key feature in the definition of a Cantor set.

Definition 3.2.15 (Perfect set) A set V ⊂ M is said to be perfect if it is closed,
and if every point of V is a limit point of V.

Given a ‘blob’ (i.e., set) in our flow domain (M), we will want to develop
ways of quantifying how it ‘fills out’ the domain. We begin with some very
primitive notions.

Definition 3.2.16 (Dense set) A set V ⊂ M is said to be dense in M if V̄ = M.

Intuitively, while a dense set V may not contain all points of M, it does
contain ‘enough’ points to be close to all points in M.

Definition 3.2.17 (Nowhere dense set) A set V ⊂ M is said to be nowhere
dense if V̄ has empty interior, i.e., it contains no (nonempty) open sets.

The notion of convergence of a sequence should be (relatively) familiar.

Definition 3.2.18 (Convergent sequence) A sequence {xn}n∈N in M is said to
converge to x ∈ M if for every ε > 0 there exists an N ∈ N such that for every
n ≥ N we have d(xn, x) < ε.

3.2.3 Compactness and connectedness

In ergodic theory a property of metric spaces called compactness often plays
an important role in certain constructions. We define this property.

Definition 3.2.19 (Compact metric space) Suppose M is a metric space and
let {Ui}i∈I denote a collection of open sets in M, where I is an index set, having
the property that

M ⊂
⋃
i∈I

Ui.
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If we can extract a finite number of open sets from this collection of open sets,
{Ui1 , Ui2 , . . . , Uin} such that

M ⊂
⋃
i�∈I

Ui� ,

then M is said to be compact. The collection {Ui}i∈I is said to be an ‘open
cover’ of M. So M is compact if every open cover has a finite subcover.

From this definition it can be proven that compact metric spaces are closed and
bounded. In fact, if the metric space is Euclidean (i.e., Rn with the Euclidean
metric) then it is compact if and only if it is closed and bounded (this is the
statement of the Heine–Borel theorem). This link between boundedness and
compactness is central to the work in this book. The boundedness property
of the flow domain is natural for us since we will be considering mixers with
boundaries. Even if we were to consider an ‘infinite’ channel, our interests
will be in the bounded cross-sectional flow. Also, all the theoretical results
we discuss in later chapters are formulated for compact metric spaces, and in
particular linked twist maps are defined on spaces which are naturally compact
and metrizable (i.e., possessing a metric).

The notion of ‘connectedness’ of a region of a flow should be intuitively
clear. Nevertheless, we provide a mathematical definition in the spirit of the
above.

Definition 3.2.20 (Connected set) A set V ⊂ M is said to be connected if there
do not exist two disjoint open subsets, A ⊂ M, B ⊂ M such that A intersects V,
B intersects V, and V ⊂ A ∪ B.

Definition 3.2.21 (Totally disconnected set) A set V ⊂ M is said to be totally
disconnected if the only connected subsets are sets consisting of a single point.

Key point: The dynamical systems we discuss lie on either the 2-torus, or a subset
of the plane R

2, both of which are naturally smooth compact connected Riemannian
manifolds and so possess all the structure we will require for later mathematical
results.

3.2.4 Measuring the ‘size’ of sets

We now return to the notion of quantifying specific blobs in the flow domain.
The area or volume occupied by the blob is an important quantity. This notion
fits into the much larger subject of measure theory. It is almost impossible
to approach the ergodic theory literature without some understanding of the
terminology and ideas of measure theory.
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A measure is a function that assigns a (non-negative) number to a given set.
The assigned number can be thought of as a size, probability or volume of the
set. Indeed a measure is often regarded as a generalization of the idea of the
volume (or area) of a set. Every definition of integration is based on a particular
measure, and a measure could also be thought of as a type of ‘weighting’ for
integration. To specify any function, including a measure, we must first specify
the domain of the function. It is not the case that any arbitrary subset of M can
be assigned a measure, and some restriction on the class of subsets for which
the notion of volume makes sense is required.

The collection of subsets of M on which the measure is defined is called
a σ -algebra over M. Briefly, a σ -algebra over M is a collection of sub-
sets that is closed under the formation of countable unions of sets and the
formation of complements of sets. More precisely, we have the following
definition.

Definition 3.2.22 (σ -algebra over M) A σ -algebra, A, is a collection of
subsets of M such that:

1. M ∈ A,
2. M\A ∈ A for A ∈ A,
3.
⋃

n≥0 An ∈ A for all An ∈ A forming a finite or infinite sequence {An} of
subsets of M.

In other words, a σ -algebra contains the space M itself, and sets created
under countable set operations. We shall see shortly that a σ -algebra contains
sets which can be measured. It is natural to ask how the open sets defined by
the metric on M relate to the σ -algebra. It can be proved that for any collection
of sets, there is a smallest σ -algebra containing that collection of sets (Rudin
(1974)). The σ -algebra obtained in this way is said to be generated by this
collection of sets. If we take as the collection of sets all open sets in M, then
the smallest σ -algebra containing the open sets is called the Borel σ -algebra,
B. The sets in B are called Borel sets. From Definition 3.2.22, open sets, closed
sets, countable unions of closed sets, and countable intersections of open sets
are all Borel sets.

Now we can define the notion of a measure.

Definition 3.2.23 (Measure) A measure µ is a real-valued function defined on
a σ -algebra satisfying the following properties:

1. µ(∅) = 0,
2. µ(A) ≥ 0,
3. for a countable collection of disjoint sets {An}, µ(

⋃
An) =∑µ(An).
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These properties are easily understood in the context of the most familiar of
measures. In two dimensions, area (or volume in three dimensions) intuitively
has the following properties: the area of an empty set is zero; the area of any
set is non-negative; the area of the union of disjoint sets is equal to the sum of
the area of the constituent sets. The measure which formalizes the concept of
area or volume in Euclidean space is called Lebesgue measure.

If µ is always finite, we can normalize to µ(M) = 1. In this case there
is an analogy with probability theory that is often useful to exploit, and µ is
referred to as a probability measure. A set equipped with a σ -algebra is called
a measurable space. If it is also equipped with a measure, then it is called a
measure space.

There are a number of measure-theoretic concepts we will encounter in
later chapters. The most common is perhaps the idea of a set of zero meas-
ure. We will repeatedly be required to prove that points in a set possess a
certain property. In fact what we actually prove is not that every point in a
set possesses that property, but that almost every point possesses the property.
The exceptional points which fail to satisfy the property form a set of measure
zero, and such a set is, in a measure-theoretic sense, negligible. Naturally, a
subset U ⊂ M has measure zero if µ(U) = 0. Strictly speaking, we should
state that U has measure zero with respect to the measure µ. Moreover, if
U /∈ A, the σ -algebra, then it is not measurable and we must replace the defin-
ition by: a subset U ⊂ M has µ-measure zero if there exists a set A ∈ A
such that U ⊂ A and µ(A) = 0. However, in this book, and in the applica-
tions concerned, we will allow ourselves to talk about sets of measure zero,
assuming that all such sets are measurable, and that the measure is under-
stood. Note that a set of zero measure is frequently referred to as a null set.
When referring to ‘all points except for a set of zero measure’, the phrase
‘almost every point’, or ‘almost everywhere’ is generally used, often abbreviated
to ‘a.e.’.

From the point of view of measure theory two sets are considered to be ‘the
same’ if they ‘differ by a set of measure zero’. This sounds straightforward, but
to make this idea mathematically precise requires some effort. The mathematical
notion that we need is the symmetric difference of two sets. This is the set
of points that belong to exactly one of the two sets. Suppose U1, U2 ⊂ M;
then the symmetric difference of U1 and U2, denoted U1$U2, is defined as
U1$U2 ≡ (U1\U2)∪ (U2\U1). We say that U1 and U2 are equivalent (mod 0)
if their symmetric difference has measure zero.

This allows us to define precisely the notions of sets of full measure and
positive measure. Suppose U ⊂ M, then U is said to have full measure if U and
M are equivalent (mod 0). Intuitively, a set U has full measure in M if µ(U) = 1
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(assuming µ(M) = 1). A set of positive measure is intuitively understood as a
set V ⊂ M such that µ(V) > 0, that is, strictly greater than zero. The support
of a measure µ on a metric space M is the set of all points x ∈ M such that
every open neighbourhood of x has positive measure.

Finally in this section we mention the notion of absolute continuity of a meas-
ure. If µ and ν are two measures on the same measurable space M then ν is
absolutely continuous with respect to µ, written ν & µ, if ν(A) = 0 for every
measurable A ⊂ M for which µ(A) = 0. Although absolute continuity is not
something which we will have to work with directly, it does form the basis of
many arguments in ergodic theory, and in particular underpins the main theor-
ems of Chapter 5. Its importance stems from the fact that for physical relevance
we would like properties to hold on sets of positive Lebesgue measure, since
Lebesgue measure corresponds to volume. Suppose however that we can only
prove the existence of desirable properties for a different measure ν. We would
then like to show that ν is absolutely continuous with respect to Lebesgue meas-
ure, as the definition of absolute continuity would guarantee that if ν(A) > 0
for a measurable set A, then the Lebesgue measure of A would also be strictly
positive. In other words, any property exhibited on a significant set with respect
to ν would also manifest itself on a significant set with respect to Lebesgue
measure.

3.3 Mathematical ideas for describing the movement of
blobs in the flow domain

In reading the dynamical systems or ergodic theory literature one encounters
a plethora of terms describing transformations, e.g. isomorphisms, automorph-
isms, endomorphisms, homeomorphisms, diffeomorphisms, etc. In some cases,
depending on the structure of the space on which the map is defined, some of
these terms may be synonyms. Here we will provide a guide for this terminology,
as well as describe what is essential for our specific needs.

First, we start very basically. Let A and B be arbitrary sets, and consider
a map, mapping, function, or transformation (these terms are often used syn-
onymously), f : A → B. The key defining property of a function is that for
each point a ∈ A, it has only one image under f , i.e., f (a) is a unique point in
B. Now f is said to be one-to-one if any two different points are not mapped
to the same point, i.e., a �= a′ ⇒ f (a) �= f (a′), and it is said to be onto if
every point b ∈ B has a preimage in A, i.e., for any b ∈ B there is at least one
a ∈ A such that f (a) = b. These two properties of maps are important because



3.3 Describing the movement of blobs 71

necessary and sufficient conditions for a map to have an inverse1 f −1 is that it be
one-to-one and onto. There is synonomous terminology for these properties. A
mapping that is one-to-one is said to be injective (and may be referred to as an
injection), a mapping that is onto is said to be surjective (and may be referred
to as a surjection), and a mapping that is both one-to-one and onto is said to be
bijective (and may be referred to as a bijection).

So far we have talked about properties of the mapping alone, with no mention
of the properties of the sets A and B. In applications, additional properties are
essential for discussing basic properties such as continuity and differentiability.
In turn, when we endow A and B with the types of structure discussed in the
previous section, it then becomes natural to require the map to respect this
structure, in a precise mathematical sense. In particular, if A and B are equipped
with algebraic structures, then a bijective mapping from A to B that preserves the
algebraic structures in A and B is referred to as an isomorphism (if A = B then
it is referred to as an automorphism). If A and B are equipped with a topological
structure, then a bijective mapping that preserves the topological structure is
referred to as a homeomorphism. Equivalently, a homeomorphism is a map
f that is continuous and invertible with a continuous inverse. If A and B are
equipped with a differentiable structure, then a bijective mapping that preserves
the differentiable structure is referred to as a diffeomorphism. Equivalently, a
diffeomorphism is a map that is differentiable and invertible with a differentiable
inverse.

The notion of measurability of a map follows a similar line of reason-
ing. We equip A with a σ -algebra A and B with a σ -algebra A′. Then a
map f : A → B is said to be measurable (with respect to A and A′) if
f −1(A′) ∈ A for every A′ ∈ A′. In the framework of using ergodic theory
to describe fluid mixing, it is natural to consider a measure space M with the
Borel σ -algebra. It is shown in most analysis courses following the approach
of measure theory that continuous functions are measurable. Hence, a diffeo-
morphism f : M → M is certainly also measurable. However, in considering
properties of functions in the context of a measure space, it is usual to disreg-
ard, to an extent, sets of zero measure. To be more precise, many properties
of interest (e.g. non-zero Lyapunov exponents, or f being at least two times
continuously differentiable) may fail on certain exceptional sets. These excep-
tional sets will have zero measure, and so throughout this book transformations
will be sufficiently well-behaved, including being measurable and sufficiently
differentiable.

1 The inverse of a function f (x) is written f −1(x) and is defined by

f (f −1(x)) = f −1(f (x)) = x.
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Measure-preserving transformations
Next we can define the notion of a measure-preserving transformation.

Definition 3.3.1 (Measure-preserving transformation) A transformation f
is measure-preserving if for any measurable set A ⊂ M:

µ(f −1(A)) = µ(A) for all A ∈ A.

This is equivalent to calling the measure µ f -invariant (or simply invariant).
If the transformation f is invertible (that is, f −1 exists), as in all the examples
that we will consider, this definition can be replaced by the more intuitive
definition.

Definition 3.3.2 An invertible transformation f is measure-preserving if for
any measurable set A ⊂ M:

µ(f (A)) = µ(A) for all A ∈ A.

For those working in applications the notation f −1(A) may seem a bit strange
when at the same time we state that it applies in the case when f is not invertible.
However, it is important to understand f −1(A) from the point of view of its set-
theoretic meaning: literally, it is the set of points that map to A under f . This
does not require f to be invertible (and it could consist of disconnected pieces).
We have said nothing so far about whether such an invariant measure µ might
exist for a given transformation f , but a standard theorem, called the Kryloff–
Bogoliouboff theorem (see for example Katok & Hasselblatt (1995), or Kryloff
& Bogoliouboff (1937) for the original proof) guarantees that if f is continuous
and M is a compact metric space then an invariant Borel probability measure
does indeed exist.

In many of the examples that we will consider the measure of interest will be
the area, i.e., the function that assigns the area to a chosen set. The fluid flow will
preserve this measure as a consequence of the flow being incompressible. For
two-dimensional blinking flows this is straightforward. For three-dimensional
duct flows a little more thought may be required. For a three-dimensional
incompressible flow it is perhaps not immediately obvious that the map of fluid
particles between cross-sectional elements gives rise to an area-preserving map.
However, for the duct flows that we consider this will be the case. Moreover, it
will also be true for the linked twist maps that we consider, and one can verify
directly that the LTMs we derived for duct flows in Chapter 2 are indeed area
preserving (i.e., their determinant is identically one).

Finally, we end this section by pulling together the crucial concepts above
into one definition.
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Definition 3.3.3 (Measure-preserving dynamical system) A measure-
preserving dynamical system is a quadruple (M, A, f ,µ) consisting of a metric
space M, a σ -algebra A over M, a transformation f of M into M, and a
f -invariant measure µ.

Key point: All of the transformations we will study will be sufficiently well-
behaved. In particular, we will have all the invertibility, measurability and differ-
entiability we require. Moreover, Lebesgue measure µ will be preserved, and we
will always have µ(M) < ∞, that is, M will be of finite measure.

3.4 Dynamical systems terminology and concepts

The following section reviews definitions that are needed in the rest of the book.
What we will say is mathematically rigorous; however, we will strive to not
make the presentation needlessly formal and occasionally we will offer phys-
ical interpretations of the definitions. The relevant background from dynamical
systems theory can be found in Wiggins (2003), and many other places as well,
while the kinematical aspects of mixing are covered in Ottino (1989a).

3.4.1 Terminology for general fluid kinematics

Mappings The motion of fluid particles is described mathematically with a
map, mapping, or transformation. Let M denote the region occupied by the
fluid. We refer to points in M as fluid particles. The flow of fluid particles is
mathematically described by a smooth, invertible transformation, or map, of M
into M, denoted by f , also having a smooth inverse. The particles are labelled
by their initial condition at some arbitrary time, usually taken as t = 0. The
application of f to the domain M, denoted f (M), is referred to as one advection
cycle. Similarly, n advection cycles are obtained by n repeated applications of
f , denoted f n(M). Let A denote any subdomain of M. Then µ(A) denotes the
volume of M (if we are in a 2D setting, read ‘volume’ as ‘area’). Thus µ is a
function that assigns to any (mathematically well-behaved) subdomain of M
its volume. In the mathematical terminology developed above, the function µ

is known as a measure, and the subdomain as measurable. Incompressibility
of the fluid is expressed by stating that as any subdomain of M is stirred, its
volume remains unchanged, i.e.,µ(A) = µ(f (A)). In the language of dynamical
systems theory, f is an example of a measure-preserving transformation. We will
assume that M has finite volume, which is natural for the applications we have
in mind. As described above, in this case we can normalize the function that
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assigns the volume to a subdomain of M, so that without loss of generality
we can assume µ(M) = 1. This will make certain mathematical definitions
simpler, and is a standard assumption in the mathematics literature.

Orbits For a specific fluid particle p, the trajectory, or orbit, of p is the sequence
of points {. . . f −n(p), . . . , f −1(p), p, f (p), f 2(p), . . . , f n(p), . . .}. So the orbit of
a point is simply the sequence of points corresponding to the point itself, where
the point has been (under the past advection cycles), and where the point will
go (under future advection cycles).

3.4.2 Specific types of orbits

The next four definitions refer to specific orbits that often have a special
significance for transport and mixing.

Periodic orbit An orbit consisting of a finite number of points is called a
periodic orbit (where the number of points is the period of the orbit). Such an
orbit has the property that during each application of the advection cycle each
point on the orbit shifts to another point on the orbit. Periodic orbits may be
distinguished by their stability type. In the typical case, periodic orbits are either
stable (i.e. nearby orbits remain near the periodic orbit), referred to as elliptic, or
unstable of saddle type (i.e., meaning that typical nearby orbits either move away
from the periodic orbit, or approach the periodic orbit for a time, but ultimately
move away), referred to as hyperbolic. If one is interested in the design of
a micromixer it may not seem particularly relevant to focus on particles that
undergo periodic motion during the advection cycle. However, they are often
the template of the global mixing properties. For example, elliptic periodic
orbits are bad for mixing as they give rise to regions that do not mix with the
surrounding fluid (‘islands’). Hyperbolic periodic orbits provide mechanisms
for contraction and expansion of fluid elements, and they can also play a central
role in the existence of Smale horseshoe maps, which may lead to efficient
global mixing properties.

Homoclinic orbit This is an orbit that, asymptotically in positive time (i.e.,
forward advection cycles), approaches a hyperbolic periodic orbit, and asymp-
totically in negative time (i.e. inverse advection cycles) approaches the same
periodic orbit. These types of orbits are significant because in a neighbourhood
of such an orbit a Smale horseshoe map can be constructed (the ‘Smale–Birkhoff
homoclinic’ theorem).

Heteroclinic orbits and cycles This is an orbit that, asymptotically in positive
time (i.e., forward advection cycles), approaches a hyperbolic periodic orbit,
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and asymptotically in negative time (i.e. inverse advection cycles) approaches a
different periodic orbit. If two or more heteroclinic orbits exist and are arranged
in a heteroclinic cycle, then it is generally possible to construct a Smale horse-
shoe map (this will be discussed in detail in Chapter 4) near the heteroclinic
cycle in the same way as near a homoclinic orbit.

Chaotic trajectory There is still no universally accepted definition of the
notion of chaos. Different approaches include the ideas of sensitive depend-
ence on initial conditions; positive Lyapunov exponents; positive topological
entropy; denseness of periodic orbits. We do not need to involve ourselves in the
discussion of which definition is the most appropriate–for our purposes, chaotic
behaviour is characterized by apparently unpredictable behaviour of increasing
complexity in which typical initial conditions close to each other are separated
at an exponential rate under the action of the dynamical system in question. Each
definition of chaos in the literature expresses this type of behaviour to a greater
or lesser extent. For us, the precision and rigour of definitions will appear in the
ergodic theory of mixing, which goes hand in hand with the notion of chaos.

3.4.3 Behaviour near a specific orbit

Lyapunov exponents are a ubiquitous diagnostic in the chaotic dynamics lit-
erature. We will discuss them rigorously in Chapter 5, and here give a brief
outline. It is important to understand that they are numbers associated with one
orbit. Additional information (such as ergodicity, to be discussed below) may
allow us to extend this knowledge to larger regions of the domain of the map.

Lyapunov exponents These are numbers associated with an orbit that
describes its stability in the linear approximation (i.e., the growth rate of ‘infin-
itesimal’ perturbations). Elliptic periodic orbits have zero Lyapunov exponents.
Hyperbolic periodic orbits have some positive and some negative Lyapunov
exponents. In incompressible flows, the sum of all Lyapunov exponents for an
orbit must be zero. It is important to realize that a Lyapunov exponent is an
infinite time average. Consequently, it can only be approximated in general.
Various people have considered so-called finite time Lyapunov exponents (see,
e.g., Lapeyre (2002)), however, it is important to understand that they are not
on the same rigorous mathematical footing as standard Lyapunov exponents
(Oseledec (1968)), and their applicability to mixing must often be assessed on
a case-by-case basis.

The limitations associated with the fact that Lyapunov exponents characterize
infinitesimal separations of orbits have been addressed with the development
of finite size Lyapunov exponents (see, e.g., Boffeta et al. (2001)). This
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is an interesting, and potentially important, development, but it should be
realized that, at present, there are no rigourous mathematical foundations for
this concept. It is mainly a computational tool whose effectiveness must be
addressed on a case-by-case basis although it should be noted that work of
Yomdin (1987) and Newhouse (1988) on the growth of curves in 2D flows, and
curves and surfaces in 3D flows, is certainly relevant to our needs.

3.4.4 Sets of fluid particles that give rise to ‘flow structures’

‘Flow structures’ are routinely and commonly seen in many flow visualization
experiments. The essential goal of flow visualization experiments is to capture
various types of flow structures. Dynamical systems theory provides a way of
describing what is seen in these experiments, and also predicting their evolution,
and dependence on parameters.

Invariant set Let A be a subdomain of M. Then A is said to be invariant
under the advection cycle if f (A) = A. That is, all points in A remain in A
under repeated applications of the advection cycle. Clearly, invariant sets strictly
smaller than M are bad for mixing (see the definition of ergodicity that we will
shortly give) since they represent subdomains of the flow that do not mix with
the rest of M, except via the mechanism of molecular diffusion (but we are
restricting our discussion solely to kinematical mechanisms for mixing). The
orbit of a point p and a homoclinic orbit are examples of invariant sets (but ones
with zero volume).

A dense orbit This idea may seem more appropriate in the category above
labelled ‘Specific types of orbits’. Indeed, it is a specific type of orbit, but its
character derives from its relationship to the ambient space which contains it.
In particular, to describe it we need the notion of an invariant set, which we will
denote by A. Consider an orbit of f in A (since A is invariant the entire orbit
must be in A; this is a key point). The orbit is referred to as a dense orbit if
it forms a dense set (see Definition 3.2.16) in A. Sometimes one just reads, or
hears, the phrase ‘dense orbit’. By itself, this is not adequate for describing the
situation. One must consider whether or not the orbit forms a dense set within
a particular set.

KAM theorem The Kolmogorov–Arnold–Moser (KAM) theorem is con-
cerned with the existence of quasiperiodic orbits in perturbations of integrable
Hamiltonian systems, or volume preserving maps. These orbits have the prop-
erty that they densely fill out tori or ‘tubes’. These tubes are therefore material
surfaces, and fluid particles cannot cross them. Consequently these tubes trap
regions of fluid that cannot mix with their surroundings (without molecular
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diffusion). The theorem may seem essentially useless for direct application in
the sense that it is rare to be in a situation of ‘almost integrable’. Moreover,
even if that were the case, rigorous verification of the hypotheses may be quite
difficult, and even impossible. The theorem does imply the existence of islands
in the neighbourhood of an elliptic periodic orbit (discussed below). In this
sense, the KAM theorem is surprisingly effective and describes a phenomenon
that has been observed to occur very generally in Hamiltonian systems and is
present in virtually every computed example of Poincaré sections in area pre-
serving maps. It has become traditional to refer to all such material tubes or
tori as ‘KAM tori’, even if they are observed in situations where the theorem
does not rigorously apply, or cannot be applied. Such tubes have been observed
experimentally (Kusch & Ottino (1992), Fountain et al. (1998)).

Island Elliptic periodic orbits are significant because, according to the
Kolmogorov–Arnold–Moser (KAM) theorem, they are surrounded by ‘tubes’
which trap fluid. Moreover, these tubes exhibit a strong effect on particles out-
side the tube, but close to the tube. In a mathematically rigorous sense, these
tubes are ‘sticky’ (Perry & Wiggins (1994)). The tubes and the neighbouring
region that they influence in this way are referred to as ‘islands’. Clearly, islands
inhibit good mixing.

Barriers to transport and mixing In certain circumstances there can exist
surfaces of one less dimension than the domain M that are made up entirely of
trajectories of fluid particles, i.e., material surfaces. Consequently, fluid particle
trajectories cannot cross such surfaces and in this way they are barriers to
transport. KAM tori are examples of complete barriers to transport: fluid particle
trajectories starting inside remain inside forever. Partial barriers to transport
are associated with hyperbolic periodic orbits. The collection of fluid particle
trajectories that approach the periodic orbit asymptotically as time goes to
positive infinity form a material surface called the stable manifold of the periodic
orbit. Similarly, the collection of fluid particle trajectories that approach the
periodic orbit asymptotically as time goes to negative infinity form a material
surface called the unstable manifold of the periodic orbit. Homoclinic orbits
can therefore be characterized as orbits that are in the intersection of the stable
and unstable manifolds of a periodic orbit. Similarly, heteroclinic orbits can
be characterized as orbits that are in the intersection of the stable manifold of
one periodic orbit with the unstable manifold of another periodic orbit.

Lobe dynamics As mentioned above, the stable and unstable manifolds of
hyperbolic period orbits are material curves and, therefore, fluid particle tra-
jectories cannot cross them. However, they can deform in very complicated
ways and result in intricate flow structures. The resulting flow structure is the
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spatial, geometrical template on which the transport and mixing takes place
in time. Lobe dynamics provides a way of describing the geometrical struc-
ture and quantifying the resulting transport. See Rom-Kedar & Wiggins (1990)
and Wiggins (1992) for the general theory, Camassa & Wiggins (1991) and
Horner et al. (2002) for an application to a time-dependent 2D cellular flow and
experiments and Beigie et al. (1994) for further applications and development.

3.5 Fundamental results for measure-preserving
dynamical systems

In this section we give two classical, and extremely fundamental results for
dyamical systems which preserve an invariant measure. The ideas are a found-
ation of much of the theory which follows in later chapters. We begin with a
theorem about recurrence.

Theorem 3.5.1 (Poincaré recurrence theorem) Let (M, A, f ,µ) be a
measure-preserving dynamical system (such that µ(M) < ∞), and let A ∈ A
be an arbitrary measurable set with µ(A) > 0. Then for almost every x ∈ A,
there exists n ∈ N such that f n(x) ∈ A, and moreover, there exists infinitely
many k ∈ N such that f k(x) ∈ A.

Proof Let B be the set of points in A which never return to A,

B = {x ∈ A|f n(x) /∈ A for all n > 0}.
We could also write

B = A\ ∪∞
i=0 f −n(A).

First note that since B ⊆ A, if x ∈ B, then f n(x) /∈ B, by the definition of B.
Hence B ∩ f −n(B) = ∅ for all n > 0 (if not then applying f n contradicts the
previous sentence). We also have f −n(B) ∩ f n+k(B) = ∅ for all n > 0, k ≥ 0
(else a point in f −k(B) ∩ f −(n+k)(B) would have to map under f −k into both
B and f −n(B) and we have just seen that these are disjoint). Therefore the sets
B, f −1(B), f −2(B), . . . are pairwise disjoint. Moreover because f is measure-
preserving µ(B) = µ(f −1(B)) = µ(f −2(B)) = · · · . Now we have a collection
of an infinite number of pairwise disjoint sets of equal measure in M, and since
µ(M) < 1 we must have µ(B) = 0, and so for almost every x ∈ A we have
f n(x) ∈ A for some n > 0. To prove that the orbit of x returns to A infinitely
many times, we note that we can simply repeat the above argument starting at
the point f n(x) ∈ A to find n′ > n such that f n′

(x) ∈ A for almost every x ∈ A,
and continue in this fashion.
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One of the most important results concerning measure-preserving dynamical
systems is the Birkhoff Ergodic Theorem, which tells us that for typical initial
conditions, we can compute time averages of functions along an orbit. Such
functionsφ on an orbit are known as observables, and in practice might typically
be a physical quantity to be measured, such as concentration of a fluid. On the
theoretical side, it is crucial to specify the class of functions to which φ belongs.
For example we might insist that φ be measurable, integrable, continuous or
differentiable.

We give the theorem without proof, but the reader could consult, for example,
Birkhoff (1931), Katznelson & Weiss (1982), Katok & Hasselblatt (1995) or
Pollicott & Yuri (1998) for further discussion and proofs.

Theorem 3.5.2 (Birkhoff Ergodic Theorem) Let (M, A, f ,µ) be a measure-
preserving dynamical system, and let φ ∈ L1 (i.e., the set of functions on M
such that

∫
M

∣∣φ∣∣dµ is bounded) be an observable function. Then the forward
time average φ+(x) given by

φ+(x) = lim
n→∞

1

n

n−1∑
i=0

φ(f i(x)) (3.1)

exists for µ-almost every x ∈ M. Moreover, if µ(M) < ∞, the time average
φ+ satisfies ∫

M
φ+(x)dµ =

∫
M
φ(x)dµ.

This theorem can be restated for negative time to show that the backward
time average

φ−(x) = lim
n→∞

1

n

n−1∑
i=0

φ(f −i(x))

also exists for µ-almost every x ∈ M, and
∫

M φ−(x)dµ = ∫
M φ(x)dµ

if µ(M)<∞. A simple argument reveals that forward time averages equal
backward time averages almost everywhere.

Lemma 3.5.1 Let (MA, f ,µ) be a measure-preserving dynamical system with
µ(M)<∞ and let φ ∈ L1 be an observable function. Then

φ+(x) = φ−(x)

for almost every x ∈ M; that is, the functions φ+ and φ− coincide almost
everywhere.

Proof Let A+ = {x ∈ M|φ+(x) > φ−(x)}. By definition A+ is an invariant
set, since φ+(x) = φ+(f (x)). Thus applying the Birkhoff Ergodic Theorem to
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the transformation f restricted to the set A+ we have∫
A+

(φ+(x) − φ−(x))dµ =
∫

A+
φ+(x)dµ −

∫
A+

φ−(x)dµ

=
∫

A+
φ(x)dµ −

∫
A+

φ(x)dµ

= 0.

Then since the integrand in the first integral is strictly positive by definition of
A+ we must have µ(A+) = 0, and so φ+(x) ≤ φ−(x) for almost every x ∈ M.
Similarly, the same argument applied to the set A− = {x ∈ M|φ−(x) > φ+(x)}
implies that φ−(x) ≤ φ+(x) for almost every x ∈ M, and so we conclude that
φ+(x) = φ−(x) for almost every x ∈ M.

The Birkhoff Ergodic Theorem tells us that forward time averages and back-
ward time averages exist, providing we have an invariant measure. It also says
that the spatial average of a time average of an integrable function φ is equal to
the spatial average of φ. Note that it does not say that the time average of φ is
equal to the spatial average of φ. For this to be the case, we require ergodicity.

3.6 Ergodicity

In this section we describe the notion of ergodicity, but first we emphasize an
important point. Recall that we are assuming M is a compact metric space and
that the measure of M is finite. Therefore all quantities of interest can be rescaled
by µ(M). In this way, without loss of generality, we can take µ(M) = 1. In the
ergodic theory literature, this is usually stated from the start, and all definitions
are given with this assumption. In order to make contact with this literature, we
will follow this convention. However, in order to get meaningful estimates in
applications one usually needs to take into account the size of the domain (i.e.
µ(M)). We will address this point when it is necessary.

There are many equivalent definitions of ergodicity. The basic idea is one
of indecomposability. Suppose a transformation f on a space M was such that
two sets of positive measure, A and B, were invariant under f . Then we would
be justified in studying f restricted to A and B separately, as the invariance of
A and B would guarantee that no interaction between the two sets occurred.
For an ergodic transformation this cannot happen – that is, M cannot be broken
down into two (or more) sets of positive measure on which the transformation
may be studied separately. This need for the lack of non-trivial invariant sets
motivates the definition of ergodicity.
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Definition 3.6.1 (Ergodicity) A measure-preserving (invertible) dynamical
system (M, A, f ,µ) is ergodic if µ(A) = 0 or µ(A) = 1 for all A ∈ A such that
f (A) = A.

We sometimes say that f is an ergodic transformation, or that µ is an ergodic
invariant measure.

Ergodicity is a measure-theoretic concept, and is sometimes referred to as
metrical transitivity. This evokes the related idea from topological dynamics2

of topological transitivity (which is sometimes referred to as topological
ergodicity).

Definition 3.6.2 (Topological transitivity) A (topological) dynamical system
f : X → X is topologically transitive if for every pair of open sets U, V ⊂ X
there exists an integer n such that f n(U) ∩ V �= ∅.

A topologically transitive dynamical system is often defined as a system such
that the forward orbit of some point is dense in X . These two definitions are
in fact equivalent (for homeomorphisms on a compact metric space), a result
given by the Birkhoff Transitivity Theorem (see for example, Robinson (1998)).

Another common, heuristic way to think of ergodicity is that orbits of typical
initial conditions come arbitrarily close to every point in M, i.e. typical orbits
are dense in M. ‘Typical’ means that the only trajectories not behaving in this
way form a set of measure zero. More mathematically, this means the only
invariant sets are trivial ones, consisting of sets of either full or zero measure.
However, as we shall see in Section 3.6.1, ergodicity is a stronger property than
the existence of dense orbits.

The importance of the concept of ergodicity to fluid mixing is clear. An invari-
ant set by definition will not ‘mix’ with any other points in the domain, so it
is vital that the only invariant sets either consist of negligibly small amounts
of points, or comprise the whole domain itself (except for negligibly small
amounts of points). The standard example of ergodicity in dynamical systems
is the map consisting of rigid rotations of the circle.

Example 3.6.1 Let M = S1, and f (x) = x + ω (mod 1). Then if

ω is a rational number, f is not ergodic,

ω is an irrational number, f is ergodic.

A rigorous proof can be found in any book on ergodic theory, for example
Petersen (1983). We note here that the irrational rotation on a circle is an

2 For topological concepts we refer to a topological space X (recall Definition 3.2.4), while
for measure-theoretic results we refer to a metric space M (recall Definition 3.2.2).
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example of an even more special type of system. The infinite non-repeating
decimal part of ω means that x can never return to its initial value, and so no
periodic orbits are possible.

Example 3.6.2 (Lasota & Mackey (1994)) Let U = [0, 1] × [0, 1] be the
unit square and consider the measure-preserving transformation f : U → U
given by

f (x, y) = (x + √
2, y + √

3) (mod 1),

which is known to be ergodic, but not mixing. The behaviour of this map is
illustrated in Figure 3.1. The first figure (a) shows the result of iterating a
single initial condition 2000 times. The ergodicity of the map can be seen by
the fact that the trajectory visits the entire domain. The incommensurate nature
of the map ensures that every trajectory is dense in the unit square. (The fact
that every orbit is dense means there are no periodic orbits, and so only one
invariant measure is supported.) However, there is no expansion or contraction
in this map (it has zero Lyapunov exponents in the language of later chapters).
This means that it has no mixing effect at all, despite the fact that individual
trajectories traverse the whole domain. Figures 3.1(b)–(f) show the result of
iterating 1000 points initially in [0, 0.1] × [0, 0.1] (as in (b) – the top 500
coloured blue and the bottom 500 red) for 1, 2, 3 and 4 iterates (c,d,e and f
respectively). While the ‘blob’ moves around the unit square, no mixing of red
and blue takes place.

There are a number of common ways to reformulate the definition of ergodi-
city. Indeed, these are often quoted as definitions. We give three of the most
common here, as they express notions of ergodicity which will be useful in later
chapters. The first two are based on the behaviour of observable functions for
an ergodic system.

Definition 3.6.3 (Ergodicity – equivalent) A measure-preserving dynam-
ical system (M, A, f ,µ) is ergodic if and only if every invariant measurable
(observable) function φ on M is constant almost everywhere.

This is simply a reformulation of the definition in functional language, and it
is not hard to see that this is equivalent to the earlier definition (see for example
Katok & Hasselblatt (1995) or Brin & Stuck (2002) for a proof). We will make
use of this equivalent definition later. Perhaps a more physically oriented notion
of ergodicity comes from Boltzmann’s development of statistical mechanics
and is succinctly stated as ‘time averages of observables equal space averages’.
In other words, the long-term time average of a function (‘observable’) along
a single ‘typical’ trajectory should equal the average of that function over all
possible initial conditions. We state this more precisely below.
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Figure 3.1 The behaviour of the ergodic map in Example 3.6.2. Figure (a) shows
200 iterates of a single initial condition. The trajectory is dense in the unit square.
Figure (b) shows 1000 initial conditions coloured red and blue in [0, 0.1]×[0, 0.1].
Figures (c)–(f) show the first four iterates of these initial conditions. No mixing
occurs, but the ‘blob’ moves (also on a dense orbit) around the domain.

Definition 3.6.4 (Ergodicity – equivalent) A measure-preserving dynamical
system (M, A, f ,µ) is ergodic if and only if for all φ ∈ L1 (i.e., the set of
functions on M such that

∫
M

∣∣φ∣∣dµ is bounded), we have

lim
n→∞

1

n

n−1∑
k=0

φ(f k(x)) =
∫

M
φdµ.
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This definition deserves a few moments thought. The right-hand side is clearly
just a constant, the spatial average of the function φ. It might appear that the
left-hand side, the time average of φ along a trajectory depends on the given
trajectory. But that would be inconsistent with the right-hand side of the equation
being a constant. Therefore the time averages of typical trajectories are all equal,
and are equal to the spatial average, for an ergodic system.

We have yet another definition of ergodicity that will ‘look’ very much like
the definitions of mixing that we introduce in Section 3.7.

Definition 3.6.5 (Ergodicity – equivalent) The measure-preserving dynam-
ical system (M, A, f ,µ) is ergodic if and only if for all A, B ∈ A,

lim
n→∞

1

n

n−1∑
k=0

µ(f k(A) ∩ B) = µ(A)µ(B).

It can be shown (see, e.g., Petersen (1983)) that each of these definitions
imply each other (indeed, there are even more equivalent definitions that can be
given). A variety of equivalent definitions is useful because verifying ergodicity
for a specific dynamical system is notoriously difficult, and the form of certain
definitions may make them easier to apply for certain dynamical systems.

3.6.1 A typical scheme for proving ergodicity

Ergodicity and topological transitivity are closely connected, and indeed for
continuous maps, ergodicity implies topological transitivity.

Theorem 3.6.1 Suppose a measure-preserving dynamical system (M, A, f ,µ)

is ergodic. Then f is topologically transitive.3

Proof Let A ∈ A be an open measurable set, so that µ(A) > 0. The union
B = ∪k∈Nf −k(A) is by definition an invariant set, and so by the ergodicity of
f has measure 0 or 1. Since µ(A) > 0 and f is measure-preserving µ(B) = 1.
Therefore for almost every x ∈ M, f n(x) ∈ A for some n ≥ 0. Since A is an
arbitrary open set, almost every x ∈ M visits any open set, and so we have a
dense orbit, and hence topological transitivity.

The converse of this theorem is not true – topological transitivity is a neces-
sary but not sufficient condition for ergodicity.4 One approach to proving

3 In fact this proof gives a stronger result, that ergodicity implies that almost every orbit is
dense, a property called minimality.

4 An example of a map which is topologically transitive but not ergodic is the complex
exponential map.
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ergodicity is based on Definition 3.6.3, to show that all invariant measurable
functions are constant almost everywhere. We first give the following definition.

Definition 3.6.6 (Locally constant almost everywhere) An integrable func-
tion φ is locally constant almost everywhere if there exists a null set N (recall,
a null set is a set of measure zero) such that for each x ∈ M\N, φ is constant
on almost every point in some neighbourhood of x.

With this definition we can prove the following.

Theorem 3.6.2 The measure-preserving transformation f is ergodic if

1. f is topologically transitive, and
2. for each continuous function φ, the forward time average φ+(x) is locally

constant almost everywhere.

Proof Since φ+(x) is locally constant almost everywhere, there exists a null
set N such that for any pair of points x, y ∈ M\N we can find neighbourhoods
V(x) and V(y) of x and y respectively such that φ+(z) is constant (say φ+(z) =
C) for almost every z ∈ V(x), and φ+(z′) is constant for almost every z′ ∈
V(y). Without topological transitivity we may have φ+(z) �= φ+(z′), but if f
is topologically transitive, then by definition f n(V(x)) ∩ V(y) �= ∅ for some
integer n. Then,

C = φ+(z) a.e. z ∈ V(x)

= φ+(z) a.e. z ∈ f n(V(x))

= φ+(z) a.e. z ∈ f n(V(x)) ∩ V(y)

= φ+(z′) a.e. z′ ∈ V(y)

Since this holds for almost every pair of points x and y, and for any locally
constant almost everywhere continuous function φ, this shows ergodicity by
Definition 3.6.3. See Figure 3.2.

Theorem 3.6.2 reduces the task of proving ergodicity to showing the two
conditions in the theorem. As we shall see in Chapter 5, linked twist maps
possess some extra structure (a hyperbolic structure) which helps to show both
topological transitivity and that time averages are almost everywhere locally
constant.

Key point: Ergodicity is a desirable property from the point of view of fluid mixing
as the indecomposable nature of an ergodic transformation means that islands can-
not be formed. However, ergodic is not synonymous with chaotic, and ergodicity
does not imply that regions of fluid will mix with each other.
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Figure 3.2 An illustration of how locally constant time averages combine with
topological transitivity to produce ergodicity. The time average φ+ is constant in a
neighbourhood of x, and since time averages are invariant under the transformation,
φ+ equals the same constant in the neighbourhood f n(V(x)) for each n. But by
topological transitivity, for some n, f n(V(x)) intersects V(y), and so φ+ equals the
same constant in a neighbourhood of y.

3.7 Mixing

We now discuss ergodic theory notions of mixing, and contrast them with
ergodicity. In the ergodic theory literature the term mixing is encompassed
in a wide variety of definitions that describe different strengths or degrees of
mixing. Frequently the difference between these definitions is only tangible in a
theoretical framework. We give the most important definitions for applications
(thus far) below.

Definition 3.7.1 ((Strong) Mixing) A measure-preserving (invertible) trans-
formation f : M → M is (strong) mixing if for any two measurable sets
A, B ⊂ M we have:

lim
n→∞µ(f n(A) ∩ B) = µ(A)µ(B)

Again, for a non-invertible transformation we replace f n in the definition
with f −n. The word ‘strong’ is frequently omitted from this definition, and we
will follow this convention and refer to ‘strong mixing’ simply as ‘mixing’.
This is the most common, and the most intuitive definition of mixing, and we
will describe the intuition behind the definition. To do this, we will not assume
that µ(M) = 1.

Within the domain M let A denote a region of, say, black fluid and let B
denote any other region within M (see Figure 3.3). Mathematically, we denote
the amount of black fluid that is contained in B after n applications of f by

µ(f n(A) ∩ B),
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A
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fn(A)

Figure 3.3 A sketch illustrating the principle of mixing. Under iteration of f , the
set A spreads out over M, until the proportion of A found in any set B is the same
as the proportion of A in M.

that is, the volume of f n(A) that ends up in B. Then the fraction of black fluid
contained in B is given by

µ(f n(A) ∩ B)

µ(B)
.

Intuitively, the definition of mixing should be that, as the number of applications
of f is increased, for any region B we would have the same proportion of black
fluid in B as the proportion of black fluid in M. That is,

µ(f n(A) ∩ B)

µ(B)
− µ(A)

µ(M)
→ 0, as n → ∞,

Now if we take µ(M) = 1, we have

µ(f n(A) ∩ B) − µ(A)µ(B) → 0 as n → ∞,

which is our definition of (strong) mixing. Thinking of this in a probabil-
istic manner, this means that given any subdomain, upon iteration it becomes
(asymptotically) independent of any other subdomain.

Like ergodicity, measure-theoretic mixing has a counterpart in topological
dynamics, called topological mixing.

Definition 3.7.2 (Topological mixing) A (topological) dynamical system f :
X → X is topologically mixing if for every pair of open sets U , V ⊂ X there
exists an integer N > 0 such that f n(U) ∩ V �= ∅ for all n ≥ N.

Note the relationship between this definition and Definition 3.6.2. For topo-
logical transitivity we simply require that for any two open sets, an integer n
(which will depend on the open sets in question) can be found such that the
nth iterate of one set intersects the other. For topological mixing we require
an integer N which is valid for all open sets, such that whenever n ≥ N , the
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nth iterate of one set intersects the other. Again the measure-theoretic concept
of mixing is stronger than topological mixing, so that the following theorem
holds, but not the converse.

Theorem 3.7.1 Suppose a measure-preserving dynamical system (M, A, f ,µ)

is mixing. Then f is topologically mixing.

Proof See, for example, Petersen (1983).

Key point: Mixing is the central theme of this book and its ergodic theory definition
is intuitively identical to the concept of mixing for fluids.

Definition 3.7.3 (Weak mixing) The measure-preserving transformation f :
M → M is said to be weak mixing if for any two measurable sets A, B ⊂ M
we have:

lim
n→∞

1

n

n−1∑
k=0

|µ(f k(A) ∩ B) − µ(A)µ(B)| = 0.

It is easy to see that weak mixing implies ergodicity (take A such that f (A) =
A, and take B = A. Then µ(A) − µ(A)2 = 0 implies µ(A) = 0 or 1). The
converse is not true, for example an irrational rotation is not weak mixing.

Mixing is a stronger notion than weak mixing, and indeed mixing implies
weak mixing. Although the converse is not true it is difficult to find an example
of a weak mixing system which is not mixing (such an example is construc-
ted in Parry (1981)). The difference between weak and strong mixing appears
unlikely to be distinguishable in applications.

It may seem that the notions of ergodicity and mixing are not suited for
application to fluid mixing, since they are characterized by definitions involving
infinite time limits, and we would like fluids to mix in something rather less than
infinite time! However, these are useful concepts since (as discussed above) the
existence of invariant sets and, in particular, ‘islands’, are typical mechanisms
by which ergodicity and mixing break down, and these inhibit good fluid mixing.
Moreover, in many areas of applications the decay of correlations of a scalar
field is used as a diagnostic for quantifying mixing. We now show how this
concept is related to the definition of mixing given above. First, we need a few
technical definitions and notation. For a region B in M the function χB, referred
to as the characteristic function associated with B, assigns 1 to a point that is
in B, and 0 to all other points. Then the volume of B can be written as the
integral

∫
χBdµ = µ(B) (think of dµ as the ‘infinitesimal volume element’ of

integration, and then integrating over the region B). Similarly χf n(A)∩B assigns
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1 to a point that is at the intersection of the nth mapping of A with B, and 0 to
all other points. So in terms of integrals over characteristic functions, the limit
in the definition of mixing above can be written as∫

χf n(A)∩Bdµ −
∫

χAdµ
∫

χBdµ → 0 as n → ∞,

and we can view this as an integral formulation of the mixing condition. This
expression can be written in a more useful form. First, note that:

χf n(A)∩B = χBχf n(A).

Now f n(A) is the set of points that map to A under f −n. Therefore

χf n(A) = χA ◦ f −n.

Putting all of this together, the integral expression derived above can be
rewritten as∫

χB(χA ◦ f −n)dµ −
∫

χAdµ
∫

χBdµ → 0 as n → ∞.

This last expression suggests a modification of the definition where we might
replace the characteristic functions with arbitrary functions (from a certain class
of functions of interest). So for functions φ and ψ (from the class of interest)
we define the correlation function:

Cn(φ,ψ) =
∣∣∣∣
∫

φ(ψ ◦ f −n)dµ −
∫

φdµ
∫

ψdµ

∣∣∣∣ .
In the language of ergodic theory, φ and ψ are referred to as observables, and
the decay of the correlation function for general observables is considered.
In applications, it is usually a specific observable that is of interest – one typic-
ally takes φ = ψ = ‘a scalar field’ (for example, concentration of a fluid), and
considers the decay of correlations of that scalar field. Of course, if the trans-
formation is not mixing then we should not expect the correlations to decay
to zero. If the transformation is mixing, however, then the rate of decay of
correlations is a quantifier of the speed of mixing. A study of the decay of cor-
relations of different classes of mappings is currently at the forefront of research
in dynamical systems theory. An excellent review is given by Baladi (2001).

Example 3.7.1 (Lasota & Mackey (1994)) Consider the transformation g :
U → U given by

g(x, y) = (x + y, x + 2y) (mod 1),

which is known to be mixing (and therefore ergodic). (This map is known as the
Arnold Cat Map and will be revisited in greater detail in Chapter 5.) Like the
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previous example it is an area-preserving map (the determinant of the Jacobian
is equal to one), and we illustrate its behaviour in a similar way. Figure 3.4(a)
shows a single trajectory of 2000 points. Again the orbit is dense on the unit
square. Observe however that the trajectory fills the square in a less ordered
way than for the previous example. Periodic orbits are possible in this map
(the origin is clearly an example of a period-1 point). Figures 3.4(b) shows the
‘blob’ of 1000 points in [0, 0.1] × [0, 0.1] as before, with its image under 1,2,3
and 5 iterates in figures (c), (d), (e) and (f). Here the red and blue regions are
quickly mixed up.

Another simple example of a (strong) mixing system is the Baker’s map. This
is a two-dimensional map defined on the unit square U = [0, 1] × [0, 1]. It is a
useful example as it is intuitive, and is immediately amenable to analysis.

Example 3.7.2 Example of mixing–the Baker’s map
Let B : U → U be a map of the unit square given by

B(x, y) =
{
(2x, y/2) 0 ≤ x < 1/2
(2x − 1, (y + 1)/2) 1/2 ≤ x ≤ 1

Note that this definition guarantees that both x and y remain in the interval
[0, 1]. This map can be found defined in slightly different ways, using (mod 1)
to guarantee this. The action of this map is illustrated in Figure 3.5. The name
of the transformation comes from the fact that its action can be likened to
the process of kneading bread when baking. At each iterate, the x variable is
stretched by a factor of two, while the y variable is contracted by a factor of one
half. This ensures that the map is area-preserving. Since the stretching in the
x direction leaves the unit square, the right-hand half of the image cut off and
placed on top of the left half. (This is similar to the Smale horseshoe discussed
in the following chapter, except that there the map is kept in the unit square by
folding (with a loss of material) rather than by cutting.)

Theorem 3.7.2 The Baker’s map of Example 3.7.2 is mixing.

Proof This is simple to see diagrammatically. Figure 3.6 shows two sets X
and Y in the unit square U. For simplicity we have chosen X to be the bottom
half of the U, so that µ(X) = 1/2, while Y is some arbitrary rectangle. The
following five diagrams in Figure 3.6 show the image of X under 5 iterations of
the Baker’s map. It is clear that after n iterates X consists of 2n strips of width
1/2n+1. It is then easy to see that

lim
n→∞µ(f n(X) ∩ Y) = µ(Y)

2
= µ(X)µ(Y).

A similar argument suffices for any two sets X and Y , and so the map is mixing.
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Figure 3.4 The behaviour of the mixing map in Example 3.7.1. Figure (a) shows
2000 iterates of a single initial condition. This trajectory is a dense orbit which fills
the domain in an apparently disordered way. Figure (b) is a region of 1000 initial
conditions coloured red and blue. Figures (c)–(f) show the image of the ‘blob’ after
1, 2, 3 and 5 iterations respectively. The red and blue regions are quickly mixed.

In general we cannot use this direct approach to prove mixing – in real
systems mixing typically goes hand in hand with a huge increase in geometrical
complexity and more subtle techniques are required.
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Figure 3.5 The action of the Baker’s map of Example 3.7.2. The unit square U is
stretched by a factor of two in the x direction while contracted by a factor of one
half in the y direction. To return the image to U the right-hand half is cut off and
placed on the left-hand half.
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Figure 3.6 Successive iterates of the Baker’s map on the set X, showing that the
map is mixing.
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Figure 3.7 The Kenics®Mixer of Example 3.7.3 (picture taken from Galaktionov
et al. (2003)). Blades positioned along a cylindrical pipe mimic the action of the
Baker’s map.

Example 3.7.3 The Kenics®Mixer
The Kenics®Mixer is a widely used static mixer based on the stretching,

cutting and stacking action of the Baker’s map. It consists of a cylindrical pipe
containing mixing elements in the form of twisted blades. A typical configuration
of the mixing elements is shown in Figure 3.7. Fluid is driven through the pipe,
and is effectively stretched whilst passing a blade, and then cut and stacked
at the interface between blades. Figure 3.8 illustrates this action in the cross-
section of the pipe (as with Figure 3.7, this is taken from Galaktionov et al.
(2003)). Figure (a) shows an initial concentration of fluid. The top half of the
pipe is filled with white fluid, and the bottom half with black fluid. The vertical
line represents the leading edge of the first blade. Figures (b), (c), (d) and (e)
show the effect of the fluid passing the first blade. With the twist of the blade,
the fluid is stretched until the original two stripes of black and white become
four stripes. In (e) the position of the leading edge of the second blade is given
as a dotted line. Figure (f) shows the start of the effect from the second blade.
The material is cut and again stretched until the number of black and white
stripes is again doubled, as in (g). This process continues, doubling the number
of material striations with each mixing element, as in (h).

We note that the definition of mixing involves choosing two sets A and B, and
then iterating one while keeping the other fixed. Mixing occurs if the iterated set
‘spreads itself’ over the domain. In the above examples, and in all subsequent
illustrations of mixing or lack thereof, we choose two sets and iterate them both.
The reason for this is that the ‘spreading’ of iterated sets can be as easily seen,
but it is also more intuitive from the point of view of applications to see two
blobs mix with each other.

3.8 The K-property

In reading the literature on ergodic theory and mixing it is almost certain that
one will encounter the notion of the ‘K-property’. The K-property fits between
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Figure 3.8 Concentration profiles for the Kenics®Mixer of Example 3.7.3 (picture
taken from Galaktionov et al. (2003)). With each mixing element the number of
material striations is doubled.

mixing and Bernoulli in the ergodic hierarchy, and we will make essentially no
use of it in this book. Nevertheless, it is worth mentioning the idea behind it,
even though there are technical issues.

First, ‘K’ stands for Kolmogorov, who invented this property (see Sinai
(1989) for a discussion of the history), and it is based on a notion of entropy.
Various notions of entropy play a major role in ergodic theory. Very roughly,
the different notions of entropy quantify the degree of unpredictability of a
system. But a proper discussion of the meaning of entropy in the context of
mixing is beyond the scope of this book, and since we will not require it, we
will omit a discussion of the K-property. Our work on showing that linked twist
maps are mixing will be based on the Pesin theory of nonuniform hyperbolicity,
whose use will allow us to conclude the stronger Bernoulli property. In fact, in
Chernov & Haskell (1996) it is proved that nonuniformly hyperbolic K-systems
are Bernoulli (this paper also contains a nice history of results on the Bernoulli
property for various systems).

3.9 The Bernoulli property

The ‘Bernoulli property’ is a property that is stronger than mixing. In this section
we will develop the framework in order to understand what it means for a map
to have the Bernoulli property. A fair amount of background material from the
subject of symbolic dynamics (the study of representing dynamics by shifts on
symbol sequences) needs to be developed first.
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As we have discussed, a dynamical system is a ‘space’, and a transformation
that maps the space into itself. Here we will define our space to be the ‘space of
(bi-infinite) symbol sequences’ (a good general text on symbol sequences and
symbolic dynamics is Lind & Marcus (1995)). We can equip this space with a
metric, and we can equip it with a σ -algebra and measure. Once we have done
this, we will define a transformation of the space into itself (the ‘shift’, ‘full
shift’ or ‘Bernoulli shift’) and we will derive some of its properties. After all of
this, we will finally be at the point where we can say what it means for a map to
have ‘the Bernoulli property’. We include this construction for the simplest of
dynamical systems in order to describe precisely what the Bernoulli property
is, to show the complexity that a Bernoulli system possesses, and because it is
instructive to see the mathematics that lies behind it. For the more complicated
dynamical systems in later chapters we do not repeat this argument, but rather
refer to theorems which have effectively extended the following ideas to a more
general class of system.

3.9.1 The space of (bi-infinite) symbol sequences, �N

Let S = {1, 2, 3, . . . , N}, N ≥ 2 be our collection of symbols. We will build
our sequences from elements of S, and the set of all such sequences comprises
the space of all symbol sequences, which we will refer to as �N . It is natural
to consider �N as a Cartesian product of infinitely many copies of S. This
construction will allow us to draw some conclusions concerning the properties
of �N based only on our knowledge of S, the structure which we give to S, and
topological theorems on infinite products.

�N is a compact metric space
We now give some structure to S; specifically, we want to make S into a metric
space, which can be done with the following metric, for a, b ∈ S:

d(a, b) ≡
{

1 if a �= b,
0 if a = b.

(3.2)

It is trivial to check that d(·, ·) is a metric (see Definition 3.2.1). The metric
(3.2) actually induces the discrete topology on S, i.e., the topology defined by
the collection of all subsets of S (see Munkres (1975)).

Since S consists of a finite number of points, it is trivial to verify that it is
compact. Moreover, S is totally disconnected, i.e., its only connected subsets are
one-point sets. We summarize the properties of S in the following proposition.

Proposition 3.9.1 The set S equipped with the metric (3.2) is a compact, totally
disconnected, metric space.
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We remark that compact metric spaces are automatically complete (i.e. con-
taining all their limit points) metric spaces (see Munkres (1975), Section 7-3,
Theorem 3.1).

Now we will construct �N as a bi-infinite Cartesian product of copies
of S:

�N ≡ · · · × S × S × S × S × · · · ≡
∞∏

i=−∞
Si where Si = S ∀ i. (3.3)

Thus, a point in �N is represented as a ‘bi-infinity-tuple’ of elements of S:

s ∈ �N ⇒ s = {. . . , s−n, . . . , s−1, s0, s1, . . . , sn, . . .} where si ∈ S ∀i,

or, more succinctly, we will write s as

s = {. . . s−n . . . s−1.s0s1 . . . sn . . .} where si ∈ S ∀ i.

A word should be said about the ‘decimal point’ that appears in each sym-
bol sequence and has the effect of separating the symbol sequence into two
parts, with both parts being infinite (hence the reason for the phrase ‘bi-infinite
sequence’). At present it does not play a major role in our discussion and could
easily be left out with all of our results describing the structure of �N going
through just the same. In some sense, it serves as a starting point for construct-
ing the sequences by giving us a natural way of subscripting each element of a
sequence. This notation will prove convenient shortly when we define a met-
ric on �N . However, the real significance of the decimal point will become
apparent when we define and discuss the shift map acting on �N and its orbit
structure.

In order to discuss limit processes in �N , it will be convenient to define a
metric on �N . Since S is a metric space, it is also possible to define a metric
on �N . There are many possible choices for a metric on �N ; however, we will
utilize the following. Consider the sequences:

s = {· · · s−n · · · s−1.s0s1 · · · sn · · · },
s = {· · · s−n · · · s−1.s0s1 · · · sn · · · } ∈ �N .

The distance between s and s is defined as

d(s, s) =
∞∑

i=−∞

1

2|i|
di(si, si)

1 + di(si, si)
, (3.4)

where di(·, ·) is the metric on Si ≡ S defined in (3.2). The reader should verify
that (3.4) indeed defines a metric. Intuitively, this choice of metric implies that
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two symbol sequences are ‘close’ if they agree on a long central block. The
following lemma makes this precise.

Lemma 3.9.1 For s, s ∈ �N ,

(i) Suppose d(s, s) < 1/(2M+1); then si = si for all |i| ≤ M.
(ii) Suppose si = si for |i| ≤ M; then d(s, s) ≤ 1/(2M).

Proof The proof of (i) is by contradiction. Suppose the hypothesis of (i) holds
and there exists some j with |j| ≤ M such that sj �= sj. Then there exists a term
in the sum defining d(s, s) of the form

1

2|j|
dj(sj, sj)

1 + dj(sj, sj)
.

However, since sj �= s̄j,

dj(sj, sj)

1 + dj(sj, sj)
= 1

2
,

and each term in the sum defining d(s, s) is positive so that we have

d(s, s) ≥ 1

2|j|
dj(sj, sj)

1 + dj(sj, sj)
= 1

2|j|+1
≥ 1

2M+1
,

but this contradicts the hypothesis of (i).
We now prove (ii). If si = si for |i| ≤ M, we have

d(s, s) =
i=−(M+1)∑

−∞

1

2|i|
di(si, si)

1 + di(si, si)
+

∞∑
i=M+1

1

2|i|
di(si, si)

1 + di(si, si)
;

however, (di(si, si)/(1 + di(si, si))) ≤ 1/2 for all i, so we obtain

d(s, s) ≤ 2
∞∑

i=M+1

1

2i+1
= 1

2M
.

Armed with our metric, we can define neighbourhoods of points in �N and
describe limit processes. Suppose we are given a point

s = {· · · s−n · · · s−1.s0s1 · · · sn · · · } ∈ �N , si ∈ S ∀i, (3.5)

and a positive real number ε > 0, and we wish to describe the ‘ε-neighbourhood
of s’, i.e., the set of s ∈ �N such that d(s, s) < ε. Then, by Lemma 3.9.1, given
ε > 0, we can find a positive integer M = M(ε) such that d(s, s) < ε implies
si = si ∀|i| ≤ M. Thus, our notation for an ε-neighbourhood of an arbitrary
s ∈ �N will be as follows

N M(ε)(s) = {s ∈ �N |si = si ∀|i| ≤ M, si, si ∈ S ∀i}.
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We are now ready to state our main theorem concerning the structure of �N .

Proposition 3.9.2 The space �N equipped with the metric (3.4) is

(i) compact,
(ii) totally disconnected, and

(iii) perfect.

Proof

(i) Since S is compact, �N is compact by Tychonov’s theorem (Munkres
(1975), Section 5-1).

(ii) By Proposition 3.9.1, S is totally disconnected, and therefore �N is
totally disconnected, since the product of totally disconnected spaces is
likewise totally disconnected (Dugundji (1966)).

(iii) �N is closed, since it is a compact metric space. Let s ∈ �N be an
arbitrary point in �N ; then, to show that s is a limit point of �N , we need
only show that every neighbourhood of s contains a point s �= s with
s ∈ �N . Let N M(ε)(s) be a neighbourhood of s and let the symbol
ŝ = sM(ε)+1 + 1 if sM(ε)+1 �= N , and ŝ = sM(ε)+1 − 1 if sM(ε)+1 = N .
Then the sequence

{· · · s−M(ε)−2ŝs−M(ε) · · · s−1.s0s1 · · · sM(ε)ŝsM(ε)+2 · · · }
is contained in N M(ε)(s) and is not equal to s; thus �N is perfect.

We remark that the three properties of�N stated in Proposition 3.9.2 are often
taken as the defining properties of a Cantor set, of which the classical Cantor
‘middle-thirds’ set is a prime example. The following theorem of Cantor gives
us information concerning the cardinality of perfect sets.

Theorem 3.9.1 Every perfect set in a complete space has at least the cardinality
of the continuum.

Proof See Hausdorff (1962).

Hence, �N is uncountable.

�N is a measure space
We are now going to provide some elements of the proof that �N is a measure
space. This may strike the reader as a bit abstract and unnecessary for the
applications of mixing. Perhaps there is some truth to this. However, we will
want to show that the shift map defined on �N is measure-preserving and
mixing, and this will require these concepts.
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We need to equip �N with a σ -algebra and then define a measure on the
σ -algebra. We follow Arnold & Avez (1968), who construct a σ -algebra from
the following sets:

Aj
i = {s ∈ �N |si = j, i ∈ Z, j ∈ S}. (3.6)

In words, Aj
i is the set of bi-infinite symbol sequences that have j for the ith

entry. These sets generate the σ -algebra in the sense, described earlier, that there
exists a smallest σ -algebra containing these sets. From these sets we construct
the following sets (known as ‘cylinder sets’):

Aj1...jk
i1...ik

≡ Aj1
i1

∩ · · · ∩ Ajk
ik

= {s ∈ �N | si1 = j1, . . . , sik = jk},
where {i1, . . . , ik} are all different. (3.7)

These are essentially all the sets in the σ -algebra on �N in the sense that in
order to verify properties such as measure preservation and mixing, it suffices
to verify such properties just for these sets (see Katok & Hasselblatt (1995)).

Now we want to define a measure on �N . This is done in three steps. First
we define a normalized measure on S as follows:

for i ∈ S, we define µ(i) = pi, where pi ≥ 0, and
N∑

i=1

pi = 1.

Then we define the measure of the sets that generate the σ -algebra as:

µ(Aj
i) = pj. (3.8)

Finally, we construct a measure on �N by defining the measure of the
cylinder sets:

µ(Aj1
i1

∩ · · · ∩ Ajk
ik
) = µ({s ∈ �N |si1 = j1, . . . , sik = jk}) = pj1 · · · pjk . (3.9)

Of course, one needs to prove that the measure constructed in this way satisfies
the axioms of a measure, but we leave this to the interested reader.

3.9.2 The shift map

Now that we have established the structure of �N , we define a map on �N ,
denoted by σ , as follows. For s = {· · · s−n · · · s−1.s0s1 · · · sn · · · } ∈ �N , we
define

σ(s) = {· · · s−n · · · s−1s0.s1 · · · sn · · · },
or [σ(s)]i ≡ si+1. The map σ is referred to as the shift map, and when the
domain of σ is taken to be all of �N , it is often referred to as a full shift on N
symbols. We have the following proposition concerning some properties of σ .
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Proposition 3.9.3 (i) σ(�N ) = �N .
(ii) σ is continuous.

Proof The proof of (i) is obvious. To prove (ii) we must show that, given ε > 0,
there exists a δ(ε) such that d(s, s) < δ implies d(σ (s), σ(s)) < ε for s, s ∈ �N .
Suppose ε > 0 is given; then choose M such that 1/(2M−1) < ε. If we then
let δ = 1/2M+1, we see by Lemma 3.9.1 that d(s, s) < δ implies si = si for
|i| ≤ M; hence, [σ(s)]i = [σ(s)]i, |i| ≤ M − 1. Then, also by Lemma 3.9.1,
we have d(σ (s), σ(s)) < 1/2M−1 < ε.

We now want to consider the orbit structure of σ acting on �N . We have the
following proposition.

Proposition 3.9.4 The shift map σ has

(i) a countable infinity of periodic orbits consisting of orbits of all periods;
(ii) an uncountable infinity of nonperiodic orbits; and

(iii) a dense orbit.

Proof (i) The proof is standard (Wiggins (2003)). In particular, the orbits of
the periodic symbol sequences are periodic, and there is a countable infinity of
such sequences. (ii) By Theorem 3.9.1 �N is uncountable; thus, removing the
countable infinity of periodic symbol sequences leaves an uncountable number
of nonperiodic symbol sequences. Since the orbits of the nonperiodic sequences
never repeat, this proves (ii). (iii) To prove this we form a symbol sequence by
stringing together all possible symbol sequences of any finite length. The orbit of
this sequence is dense in �N since, by construction, some iterate of this symbol
sequence will be arbitrarily close to any given symbol sequence in �N .

Proposition 3.9.5 σN is measure-preserving with respect to the measure on
�N constructed in the previous section.

Proof First, we show that σN is measure-preserving on the Aj
i. It is easy see,

by definition of the shift map and the definition of Aj
i in (3.6), that we have

σ(Aj
i) = Aj

i−1, and therefore:

µ(σ(Aj
i)) = µ(Aj

i−1) = pj = µ(Aj
i).
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Applying this result to the cylinder sets (3.7) gives:

µ
(
σ
(

Aj1...jk
i1...ik

))
= µ

(
σ
(

Aj1
i1

∩ · · · ∩ Ajk
ik

))
,

= µ
(
σ
(

Aj1
i1

)
∩ · · · ∩ σ

(
Ajk

ik

))
,

= µ
(

Aj1
i1−1 ∩ · · · ∩ Ajk

ik−1

)
,

= pj1 · · · pjk = µ
(

Aj1...jk
i1...ik

)
using (3.9). (3.10)

Proposition 3.9.6 σ is mixing.

Proof We need to verify Definition 3.7.1. We do this first for the sets Aj
i, Am

n

defined in (3.6), and note that σ n(Aj
i) = Aj

i−n. The verification of Definition
3.7.1 is a straightforward calculation:

µ(σ n(Aj
i) ∩ Am

n ) = µ(Aj
i−n ∩ Am

n ) = pjpm = µ(Aj
i)µ(Am

n ).

Next, we verify Definition 3.7.1 for the sets Aj1...jk
i1...ik

, An1...nk
m1...mk defined in (3.7),

and note that, similar to above, σ n(Aj1...jk
i1...ik

) = Aj1...jk
i1−n...ik−n.

Again, the verification of Definition 3.7.1 is a straightforward calculation for
these sets:

µ
(
σ n
(

Aj1...jk
i1...ik

)
∩ An1...nk

m1...mk

)
= µ

(
Aj1...jk

i1−n...ik−n ∩ An1...nk
m1...mk

)
= pj1···jk pm1···mk

= µ
(

Aj1...jk
i1...ik

)
µ
(
An1...nk

m1...mk

)
.

3.9.3 What it means for a map to have the Bernoulli property

Consider a map f : M → M, and let V ⊂ M denote an invariant set of f ,
i.e., f (V) = V (V could possibly be M). Then f is said to have the Bernoulli
property on V if it is ‘isomorphic to a Bernoulli shift, mod 0’. More precisely,
this means that the following diagram commutes:

�N σ−−−−→ �N

φ

� φ

�
V

f−−−−→ V

where φ is an isomorphism. We can view φ as a ‘change of coordinates’ that
transforms f , on the invariant set V to the Bernoulli shift, σ = φ−1 ◦ f ◦ φ.
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This is significant because of the following result.

Proposition 3.9.7 A map having the Bernoulli property is mixing.

This is proven in Mané (1987). For us this is significant because Pesin’s
theory will enable us to deduce that linked twist maps are Bernoulli on a set of
full measure, and therefore mixing.

Key point: A system enjoying the Bernoulli property is statistically indistinguish-
able from a sequence of random coin tosses, and as such is at the top of the ergodic
hierarchy. In particular, showing that a system possesses the Bernoulli property is
sufficient to show that the system also displays mixing behaviour.

As an example we now show that the Baker’s transformation (recall
Example 3.7.2) has the Bernoulli property.

The Baker’s transformation has the Bernoulli property
Recall that an isomorphism is a one-to-one correspondence between points
in the space of symbol sequences and points in the domain of the map that
preserves the essential structures in both spaces. We construct it explicitly for
the Baker’s transformation B.

Every number in the unit interval [0,1] can be represented by a binary expan-
sion. In fact some points can be represented by two sequences, for example
1.000 . . . = 0.111 . . . in binary. These points however form a set of measure
zero, and so can be ignored from a measure-theoretic point of view. Throughout
this book sets of exceptional points with zero measure will be effectively dis-
regarded. Here we can, by convention, use each ‘half’ of a bi-infinite sequence
to form the binary expansion of a number in the unit interval as follows:

x =
∞∑

i=0

si

2i+1
, y =

∞∑
i=1

s−i

2i
.

This observation leads to a natural way for defining a map from �2 to points
in the unit square U = [0, 1] × [0, 1] as follows:

φ({· · · s−ns−n+1 · · · s−2s−1.s0s1s2 · · · sn−1sn · · · })

= (x, y) ≡
( ∞∑

i=0

si

2i+1
,

∞∑
i=1

s−i

2i

)
.

The goal now is to relate the shift dynamics on �2 to the Baker’s map on
U through the map φ. This is related to what we mentioned in our (informal)
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definition of an isomorphism concerning ‘preserving the essential structures’.
Mathematically, this is accomplished by ‘proving that the following diagram
commutes’.

�2 σ−−−−→ �2

φ

� φ

�
U

B−−−−→ U
In other words, if we take any bi-infinite sequence of 0s and 1s, s =

{· · · s−ns−n+1 · · · s−2s−1.s0s1s2 · · · sn−1sn · · · }, and we start in the upper left
hand corner of the diagram, then map to U by first going across the top of
the diagram, then down, we will get the same thing if we first go down, then
across the bottom of the diagram. In other words, we want to show that for any
sequence s ∈ �2, we have φ ◦ σ(s) = B ◦ φ(s). We will work out each side of
the equality individually and, hence, show that they are equal.

From the definition of the map φ we have:

φ ◦ σ(s) =
( ∞∑

i=0

si+1

2i+1
,

∞∑
i=1

s−i+1

2i

)
.

This was the easy part. Showing the other side of the equality sign requires a bit
more consideration. Note that the map is linear and diagonal on U. Therefore
we can consider the Baker’s map acting on the x component and y components
individually.

For x = ∑∞
i=0 si/2i+1 we have 2x = ∑∞

i=0 si+1/2i+1. For y = ∑∞
i=1 s−i/2i

we have (1/2)y =∑∞
i=1 s−i/2i+1 (which is smaller than 1/2 ), but this is not the

end of the story. With respect to the y-component, we need to take into account
the ‘cutting and stacking’ (i.e. the mod 1 part of the definition of the Baker’s
transformation). Note that in the expressions for 2x and (1/2)y the symbol s0 no
longer appears. Somehow it needs to be put back in, and taking proper account
of the cutting and stacking will do that. Now if s0 = 1 the x component is
greater than or equal to 1/2. This means that after mapping by the Baker’s
transformation this point is outside the square, and therefore it is in the part
that is cut off and stacked. Stacking means its y component is increased by 1/2,
i.e., (1/2)y = ∑∞

i=0 s−i/2i+1. Now if s0 = 0 this additional term contributes
nothing to the sum. Combining these facts, we have shown

B ◦ φ(s) = B

( ∞∑
i=0

si

2i+1
,

∞∑
i=1

s−i

2i

)
=
( ∞∑

i=0

si+1

2i+1
,

∞∑
i=1

s−i+1

2i

)
.

Now sinceφ is invertibleφ◦σ(s) = B◦φ(s) is equivalent to B = φ◦σ◦φ−1. This
looks very much like the formula for a similarity transformation for matrices.
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We know that if two matrices are similar, they share many basic properties.
The same is true in this more general setting. In particular, by composing this
expression for B with itself n times we have Bn = φ ◦ σ n ◦ φ−1. From this
we can conclude that there is a one-to-one correspondence between orbits of B
and orbits of σ . In particular, we can then immediately conclude that B has an
infinite number of (saddle-type) periodic orbits of all periods.

3.10 Summary

There is a rigorous heirarchy within ergodic theory. We have described above
the main features of ergodicity, mixing and the Bernoulli property in detail, as
these are the most immediately applicable to the problem of fluid mixing. Other
than the K-property, which we have mentioned in Section 3.8, there are many
other terms which can be found in ergodic theory textbooks (see Section 3.1
for a short list) which fit into this hierarchy (light mixing, mild mixing, partial
mixing, mixing of order n, weakly Bernoulli – the list is seemingly endless!).
However, these definitions are very technical and differences between them are
probably not realizable in applications. The key features of the ergodic hierarchy
can be summarized:

Bernoulli =⇒ K-property =⇒ (strong) mixing =⇒ ergodicity.
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Existence of a horseshoe for the linked twist map

The underlying structure of complicated behaviour in the linked twist
map is that of the ‘Smale horseshoe’. This chapter contains a detailed
construction of the horseshoe, and the implications of its existence for
symbolic dynamics.

4.1 Introduction

The main goal of the mathematical sections of this book is to show that linked
twist maps have the Bernoulli property on all of their domain (except for pos-
sibly a set of measure zero). Before discussing the theory that will be necessary
to attack this problem, we start with an easier, preliminary result. Namely, we
give Devaney’s proof of a theorem that a linked twist map has a Smale horse-
shoe (Devaney (1978)). This is a somewhat ambiguous, albeit commonly used
statement in the literature. The Smale horseshoe map is a homeomorphism
(it need not be area preserving) having the property that it has an invariant
set on which the map is topologically conjugate to the Bernoulli shift, i.e., it
has the Bernoulli property on an invariant set. A slight confusion may arise
since occasionally the invariant set itself is referred to as the horseshoe. Smale
horseshoe (or just “horseshoe”) maps are ubiquitous in the sense that they can
always be constructed near transverse homoclinic points. This is the content of
the Smale–Birkhoff homoclinic theorem. All of this is described in detail, and
from an elementary point of view, in Wiggins (2003).

From this description one might think that the theorem of Devaney that we
will describe in this chapter will provide all of the results that we have said that
we will prove in later chapters. After all, we have said that Devaney proved that
the linked twist map has the Bernoulli property on an invariant set. The key here
is the nature of this invariant set in Devaney’s case. It is a Cantor set of measure
zero, not the entire domain except for a set of measure zero. This is typical
of the standard horseshoe construction. The ‘chaotic invariant set’ that arises
from the construction is of measure zero. This raises the natural question of just
how relevant it is to the dynamics since the probability of choosing an initial

105
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condition in this invariant set is zero. Certainly the horseshoe has an effect on an
open neighbourhood of trajectories. However, quantifying this effect, or the size
of the open neighbourhood, is generally quite difficult. This is what makes the
results in later chapters so remarkable, and useful. One might think of them as
‘horseshoe theorems on sets of full measure’. Nevertheless, this is an important
result because it led Devaney to state that it is natural to conjecture that linked
twist maps are ergodic. In this sense Devaney’s result was a precursor to the later
results on ergodicity, mixing, and the Bernoulli property on sets of full measure.

It is not our intention to dwell on the existence and properties of horseshoes
in linked twist maps and their corresponding fluid flows. One reason for this
is that horseshoes have been studied in great depth, in a variety of contexts,
ranging from the very theoretical to the very practical, and it is not hard to
find good expositions of the topic (see for example Guckenheimer & Holmes
(1983), Ott (1993), Wiggins (2003), Lind & Marcus (1995)). More importantly
however, this is a book about measure-theoretic aspects of dynamical systems –
that is, properties which manifest themselves on sets of positive (or ideally, one
set of full) measure. Horseshoes are fundamentally topological objects, and by
their construction form a set of measure zero. There is no reason to believe,
a priori, that the complexity inherent in a horseshoe should be shared by all (or
almost all) points in a given domain. In Section 4.3 we see that this is indeed not
the case, and refer to an experimental demonstration in which islands appear
despite the presence of a horseshoe. Nevertheless, this chapter does have a place
in this book, partly for completeness in our survey of classical linked twist map
results, and partly because an understanding of the behaviour of the linked twist
map which results in the horseshoe will help the understanding of later results.

4.2 The Smale horseshoe in dynamical systems

The Smale horseshoe was born out of a topologist’s approach to dynamical
systems. It is very similar to the Baker’s map described in the previous chapter,
except that whereas the Baker’s map creates complexity via stretching and
cutting, the horseshoe map creates complexity via stretching and folding. Like
the Baker’s map it is a diffeomorphism of the unit square, and produces a natural
coding for symbolic dynamics. The classic reference is Smale (1967).

4.2.1 The standard horseshoe

A thorough description of the horseshoe map can be found in most textbooks
on dynamical systems, for example Guckenheimer & Holmes (1983), Katok &
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H1

H0

V1V0

(b)(a) (c)

U

f –1(U )

f 2(U )f (U )

Figure 4.1 Illustration of the behaviour of the Smale horseshoe. In (a) we show the
image f (U) of the unit square U, which forms a horseshoe shape, and shade those
parts which intersect U, giving a pair of horizontal strips H0 and H1. The preimages
of H0 and H1 are the vertical strips V0 and V1 respectively. In (b) we show the
second iterate of the map, which contains four horizontal strips, and (c) shows the
intersections of horizontal and vertical strips at the third forward and backward
iterate.

Hasselblatt (1995) and Robinson (1998), and so we give only a brief account.
Let the unit square be denoted by U = [0, 1]×[0, 1]. The action of the horseshoe
map f : U → U is most easily defined with reference to Figure 4.1. The effect
of applying f to U is to first stretch the square in the horizontal direction, then
fold the image over in a horseshoe shape, and finally place the folded image
back on top of the original U. As in Figure 4.1(a), some points fall outside U
(and in fact almost all points iterate outside U eventually), but we consider only
those points that remain in U by defining

H(1) = H(1)
0 ∪ H(1)

1 = f (U) ∩ U,

and similarly, iterating the original square n times and keeping only those por-
tions which remain in U, we double the number of horizontal strips at each
forward iteration:

H(n) =
i=n⋃
i=0

H(n)
2i−1

= f n(U) ∩ f n−1(U) ∩ · · · ∩ f (U) ∩ U.

The second iterate of the map is shown in Figure 4.1(b), giving four horizontal
strips. Since we are interested in finding a set which is invariant under forward
and backward iterations, it is natural to ask where the horizontal strips H(1)

came from. Note that it makes no sense to consider the preimage f −1(U) of the
whole square U, as points in U map outside U, and similarly points in U have
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preimages outside U. However, the construction of the horseshoe is such that
the preimages of the horizontal strips form vertical strips, as in Figure 4.1(a).
In particular, we have

V (1)
0 = f −1(H(1)

0 )

V (1)
1 = f −1(H(1)

1 )

and again, iterating further back we have

V (n)
i = f −n(H(n)

i ) for i = 0, . . . , 2n − 1.

So a point which is initially in V (n) will arrive in the horizontal strips H(n) after
n iterations. The invariant set ! of the map must consist of points which remain
in the horizontal strips H(n) under forward iteration, and the vertical strips V (n)

under backward iteration, for each n. Therefore, ! must be contained in the
four squares formed by the intersection

H(1) ∩ V (1) = (H(1)
0 ∪ H(1)

1 ) ∩ (V (1)
0 ∪ V (1)

1 )

and also in the intersections H(n)∩V (n). The intersections for n = 3 are shown in
4.1(c). In fact the invariant set ! is the intersection of a Cantor set of horizontal
lines with a Cantor set of vertical lines,

! = lim
n→ ∞ H(n) ∩ V (n).

Just as in the Baker’s map, we can specify a point by a bi-infinite sequence
which records the location of the point at each iterate. Thus, for each x ∈ !,
define a symbol sequence s = · · · s−2s−1 · s0s1s2 · · · of symbols si ∈ S, where

si =




0 if f −i(x) ∈ H(1)
0 ,

1 if f −i(x) ∈ H(1)
1 .

Note that for a given n, H(n)
i ∩ V (n)

j �= ∅ for each i, j ∈ [0, 2n − 1] – that is,
each horizontal strip intersects each vertical strip.
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4.2.2 Symbolic dynamics

The dynamics on the invariant set for the horseshoe map can be expressed
symbolically in a similar way to the Baker’s map. Recall that in Section 3.9
we showed that the Baker’s map possessed the Bernoulli property. The same
conclusions can be drawn about the Smale horseshoe. In the literature, symbolic
dynamics for horseshoe-type transformations are generally expressed in one of
two representations. One is referred to as an edge shift, and the coding is given
via an adjacency matrix. The other representation is a vertex shift, with the
coding given via a transition matrix. These two methods contain essentially
the same information, and indeed the definitions are frequently combined or
interchanged, depending on the viewpoint of a particular author. We give a brief
description of each.

Edge shift To create an edge shift we form a graph GE composed of a set of
n vertices VE = {VE

1 , . . . , VE
n } and a set of m edges between vertices EE =

{EE
0 , . . . , EE

m−1}. In this case the symbols in S are given by the edges, and the
dynamics is represented by sequences of edges traversed in a bi-infinite walk
on GE . An adjacency matrix A = (aij) encodes this information, and is given by

aij = number of edges between vertex VE
i and vertex VE

j , 1 ≤ i, j ≤ n,

so that A is a non-negative n × n integer matrix. In the case of the Smale
horseshoe, GE takes a very simple form, shown in Figure 4.2(a). Noticing that
the image f (U) forms two horizontal strips H0 and H1 which span the width
of U completely, we take a single vertex VE = {VE

1 } corresponding to U and
two edges EE = {EE

0 , EE
1 }, where EE

i corresponds to the horizontal strip Hi.
Thus A is a 1 × 1 matrix given by A = (2). It can be shown that this symbolic
system corresponds to the full shift on two symbols �2 (essentially this is
because either of the two edges EE

i can follow each other), giving the Bernoulli
property proven in the previous chapter for the Baker’s map.

H1

H0

H0 H1

U

(a) (b)

Figure 4.2 Two equivalent representations of the symbolic dynamics for the Smale
horseshoe. We show (a) the graph GE of the edge shift representation, and (b) the
graph GV of the vertex shift representation.
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Vertex shift To create a vertex shift we form a graph GV composed of a set of m
vertices VV = {VV

0 , . . . , VV
m−1} and a set of edges between vertices EV = {EV

ij }.
In this case the symbols in S are given by the vertices, and the dynamics is
represented by the sequence of vertices visited by a bi-infinite walk on GV .
A transition matrix T = (tij) encodes this information, and is given by

tij =
{

1 if there is an edge from vertex VV
i to VV

j

0 if there is no edge from vertex VV
i to VV

j

so that T is an m × m binary (i.e., consisting of 0s and 1s) matrix. We show
the graph GV for the Smale horseshoe in figure 4.2b). We have two vertices,
representing the horizontal strips H0 and H1 (and hence the symbols 0 and 1),
and edges representing the intersections Vi ∩Hj. Then T is a 2×2 matrix given
by T = (1 1

1 1

)
. The fact that T contains no zero entries means that there are no

forbidden transitions in the symbolic dynamics and again it can be shown that
this corresponds to the full shift on two symbols.

Robinson (1998) provides an algorithm for extracting a binary transition
matrix from an adjacency matrix. For each edge EE

j , let b(EE
j ) be the beginning

vertex of the edge, and let e(EE
j ) be the end vertex. Then the entries of the

transition matrix T = (tij) are

tij =




1 if e(EE
i ) = b(EE

j ),

0 if e(EE
i ) �= b(EE

j ).

Subshifts of finite type The presence of a zero in a transition matrix indicates
that there is a forbidden transition between particular symbols in a symbol
sequence. In other words, certain pairs of symbols cannot occur adjacent to
each other in a sequence. More precisely, if a transition matrix T has an entry
tij = 0, then the symbol i may not be followed by the symbol j in any symbol
sequence. Recalling the construction of the space of sequences of N symbols,
�N and the shift map σ in section 3.9, a subshift is the same shift on a subset
of �N , where the subset is described as all the symbol sequences not including
a forbidden sequence. A subshift is of finite type if the number of forbidden
sequences is finite. Since the forbidden sequences are given by the transition
matrix T , we can denote a subshift of finite type by �N

T . For more details on
subshifts of finite type, see Lind & Marcus (1995).
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H1

H1

H0

H2

H0

V0

V0 V1 V2

V1

(b)

U f(U )

(a)

Figure 4.3 Two generalized horseshoes.

(a)

10

1

2

0

(b)

Figure 4.4 The graphs GV for vertex shifts corresponding to the horseshoes in
Figure 4.3.

4.2.3 Generalized horseshoes

The above has described the simplest type of horseshoe,1 but there are many
different ways to construct more general horseshoes to produce similar dynam-
ical behaviour. Two such examples are illustrated in Figure 4.3. The first gives
an example of an orientation preserving horseshoe with two strips, while the
second gives an example of a horseshoe with three strips. Note that in both cases
the image f (U) does not produce strips which cover the entire width of U. For
this reason we cannot construct an edge shift with a graph GE using U as the
only vertex in the manner of the above, although we can construct a vertex shift
with a graph GV and give a binary transition matrix as before. Figure 4.4(a)
shows the graph GV for the horseshoe in Figure 4.3(a), and Figure 4.4(b) shows
the graph GV for the horseshoe in Figure 4.3(b). It is straightforward to see that
these horseshoes result in transition matrices T ′ and T ′′ respectively, given by

T ′ =
(

1 1
1 0

)
, T ′′ =


1 1 1

1 1 1
1 0 0


 .

1 We note that this horseshoe is orientation-reversing, and that arguably a
orientation-preserving horseshoe is simpler.
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and so these systems are conjugate to the subshifts of finite type �2
T ′ and �3

T ′′
respectively.

A final comment about horseshoes in general is that they can be examples of
Anosov systems – that is, they can be uniformly hyperbolic. Hyperbolicity will
be discussed in detail in the following chapter, but for now we simply note that
this property is a consequence of the stretching and contracting inherent in a
horseshoe.

4.2.4 The Conley–Moser conditions

Typically a dynamical system will not have such a straightforward geometry as
the horseshoe on the unit square described above, and hence symbolic dynamics
may be difficult to construct directly. A set of conditions for verifying that a
dynamical system contains a horseshoe was established in Moser (1973), and
described in detail in Wiggins (2003). These have been generalized in Wiggins
(1999). The Conley–Moser conditions are based on finding a foundation for
Bakers map-like symbolic dynamics. We give a brief, heuristic description,
based on Chien et al. (1986).

A transformation f contains a horseshoe if the following conditions hold.

1. There exists a quadrilateral Q such that the forward image f (Q) forms
‘horizontal’ strips which intersect Q and the backward image f −1(Q)

forms ‘vertical’ strips which intersect Q. In practice the strips need not lie
horizontally and vertically. We will refer to the strips in this way (as does
Moser (1973)) in order to make the connection with the theory for standard
horseshoes, but any orientation will suffice, provided the strips are
sufficiently transverse – that is, after a coordinate transformation to
Cartesian coordinates, the angle between vertical and horizontal
boundaries is sufficiently large. See Figure 4.5.

A
B

A

B

u

Figure 4.5 (Figure 5 from Chien et al. (1986)). The Conley–Moser condition for
the intersection of the forward and inverse mappings.
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2. The horizontal strips are the forward images of the vertical strips;
moreover, the vertical boundaries of the vertical strips must map onto the
vertical boundaries of the horizontal strips, and similarly for the horizontal
boundaries.

3. The forward image of each horizontal strip must contain a new horizontal
strip of width strictly less than the original strip. Similarly, vertical strips
must contain thinner vertical images under backward iteration.

Although we have omitted all technical details from the Conley–Moser con-
ditions, it is straightforward to see that they contain the essence of the Smale
horseshoe construction above.

4.3 Horseshoes in fluids

Horseshoes began as mathematical constructs designed to demonstrate the
existence of objects of great topological complexity in theoretical dynamical
systems. They have since become regarded as a foundation of chaotic dynam-
ics in many applications, to the extent that they have often been searched for
numerically, and even experimentally. Fluid flows are one such field in which
horseshoes may be observed, in diverse settings such as non-Newtonian cavity
flows (Anderson et al. (2000)) and oceanography (Maas & Doelman (2001)).
More examples of horseshoes in physical applications can be found in Moon
(1987). Detailed descriptions of methods for locating horseshoes in fluid flows
can be found in, for example, Ottino (1989a), Chien et al. (1986), Khakhar
et al. (1986) and Ottino et al. (1994).

Such methods are generally based on the Conley–Moser conditions discussed
above. The fact that these conditions can be verified for physical systems
demonstrates that the horseshoe is not simply a theoretical construction, but
actually manifests itself in practice. Chien et al. (1986) use experiments to
locate horseshoes for a periodically alternating cavity flow, which is itself a
form of linked twist map. Here in Figure 4.6 we reproduce Figure 10 from that
paper, which shows an initial blob (a) and its image after forward iteration (b).
In (c) the forward image is shown superimposed on a corresponding backward
image. Finally in (d) the location of a quadrilateral is given which contains the
horizontal and vertical strips required to satisfy the Conley–Moser conditions.
However, as noted in Chien et al. (1986), the presence of a horseshoe does not
guarantee good overall mixing, and some islands of unmixed fluid may persist.

Ottino et al. (1994) describes in more detail the challenges of experimentally
verifying the Conley–Moser conditions for the blinking vortex flow, which was
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(a)

(b)

(c)

(d)

Figure 4.6 (Figure 10 from Chien et al. (1986)). The location of a quadrilateral
containing horizontal and vertical strips satisfying the Conley–Moser conditions
for a cavity flow.

discussed in Section 1.5.1 in the context of linked twist maps. They also discuss
more general types of horsehoe in fluid flows. They conclude that the placement
of the initial blob is crucial to the success of locating a horseshoe. For example,
the initial blob must contain a periodic point; if not, the structure that develops
may contain strips which fail to cover the entire width of the quadrilateral,
violating the Conley–Moser conditions. The fact that it may be difficult to
confirm the existence of a horseshoe experimentally makes it desirable to be
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Figure 4.7 The annulus A, with inner radius ρ and outer radius 3.

able to prove the existence of such an object for a large class of systems, such
as linked twist maps.

4.4 Linked twist mappings on the plane

First we define the linked twist mapping on the plane that we will study, using the
notation of Devaney (1978). In order to do this, first we define a single-twist map.

4.4.1 A twist map on the plane

Let A denote the annulus in the plane, centred at the origin, with outer radius 3,
inner radius ρ (see Figure 4.7). We define the following twist map T : A → A
in standard polar coordinates (for which the counter-clockwise direction is the
direction of increasing angle):

T(r, θ) =
(

r, θ + 2π

(
r − ρ

3 − ρ

))
. (4.1)

The transformation T leaves the circles r = constant (ρ < r < 3) invariant,
rotating them through an angle 2π((r − ρ)/(3 − ρ)). It is easy to see that the
inner circle of A, r = ρ, is fixed by T , and the outer circle of A, r = 3, is rotated
by an angle 2π , so that points on the outer circle are fixed (mod 2π). Moreover,
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Figure 4.8 The intersecting annuli A1 and A2, centred at (1, 0) and (−1, 0)
respectively.

it is clear that the angle of rotation of the circles between the inner and outer
circles of the annulus increases monotonically with increasing r. Hence the
name twist map.

4.4.2 Linking a pair of twist maps

We construct a linked twist map from two twist maps of the form of (4.1) as
follows. Let A1 and A2 denote two copies of A centred at (1, 0) and (−1, 0)
respectively (see Figure 4.8). Note that with this choice of ρ and annuli centres,
A1 ∩ A2 has exactly two disjoint components.

Let Ti denote the twist map on Ai, i = 1, 2. Since Ti is the identity map on
the boundary of Ai, Ti can be extended to all of A1 ∪ A2 by defining Ti to be the
identity on (A1 ∪ A2)\Ai. We still refer to these maps defined on A1 ∪ A2 in this
way by Ti. Having extended the domains of Ti to A1 ∪ A2 we can compose T2

and T1. Thus for integers j, k �= 0 we define the resulting linked twist map on
A1 ∪ A2 as follows:

fj,k = Tj
2 ◦ Tk

1 : A1 ∪ A2 → A1 ∪ A2. (4.2)

In the remainder of this chapter we study the map fj,k for j, k > 0, with either
j > 1 or k > 1. The analysis is similar in the case when either j < 0 or k < 0,
but the case | j| = |k| = 1 must be considered separately for this particular
construction.
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4.5 Existence of a horseshoe in the linked twist map

We begin by stating Devaney’s theorem of the existence of an invariant set on
which fj,k is topologically conjugate to a subshift of finite type (i.e., existence
of a horseshoe map).

Theorem 4.5.1 (Devaney (1978)) There is a compact invariant hyperbolic set
!j,k ⊂ A1 ∪ A2 on which fj,k is topologically conjugate to the subshift of finite
type generated by the adjacency matrix

P =
(

α α − 1
α − 1 α

)
, (4.3)

where α = 2|j||k| − |j| − |k| + 1.

4.5.1 Construction of the invariant set Λj,k

This construction will be for j, k > 0. Construction of the invariant set for other
cases can be carried out with simple modifications of the argument to follow.

Let S+ denote the component of A1 ∩ A2 contained in the upper half plane,
and let S− denote the component contained in the lower half plane. We let A,
B, C, and D denote the vertices of S+, as shown in Figure 4.9. It should be
clear that the sides AD and BC are fixed by Tk

1 since, by definition, the inner
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Figure 4.9 The component of A1 ∩ A2 in the upper half plane, the vertices A, B,
C, and D, and the curves γ1, γ2, σ1, and σ2.
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boundary of A1 is fixed by T1 and the outer boundary of A1 is rotated through
an angle 2π . Similarly, the sides AB and DC are fixed by Tj

2.
Since the intersection of the annuli contains two components, S+ and S−,

we will construct an edge shift (in the language of section 4.2.2) with two
vertices. These vertices will be quadrilaterals Q+ and Q− contained in S+ and
S− respectively, and correspond to the quadrilateral required for the Conley–
Moser conditions. To make Q+ and Q− such that they satisfy these conditions
we define the following curves.

Let γ1 ⊂ S+ denote a curve beginning at D and terminating at a point on
AB so that it satisfies Tk

1 (γ1) ⊂ CD. This latter condition serves to define
the termination point on AB, and hence to uniquely define γ1. Note that the
existence of such a unique curve follows from the monotone twist property,
which is used in the construction of three additional curves. Let γ2 ⊂ S+
denote a curve beginning at B and terminating at a point on CD so that it satisfies
Tk

1 (γ2) ⊂ AB. Let σ1 ⊂ S+ denote a curve beginning at D and terminating at

a point on BC so that it satisfies T−j
2 (σ1) ⊂ AD. Finally, let σ2 ⊂ S+ denote

a curve beginning at B and terminating at a point on AD so that it satisfies
T−j

2 (σ2) ⊂ BC. These curves are shown in Figure 4.9. These curves form the
boundaries of a quadrilateral Q+ in S+, and referring back to the Conley–Moser
conditions and to the construction of edge shift graphs, it will shortly become
clear that these curves have been chosen in order that horizontal and vertical
strips cover the entire width of the quadrilateral, and do not merely intersect
from one side, in the manner of the horseshoes of Figure 4.3.

By removing the ends of these curves, as shown in Figure 4.10, we denote
the quadrilateral, Q+, in S+ with vertices given by a = γ1 ∩ σ2, c = σ1 ∩ γ2,
b = B, and d = D. Using the same procedure, another quadrilateral, Q−, can be
constructed within S−, with corresponding vertices denoted by a′, b′, c′, and d′.
It can also be obtained by rotating A1 until Q+ fits inside S−.

As a final technical point before constructing an invariant set, we note that
by choosing ρ close enough to 3 we can guarantee that T−k

1 (ad) ∩ S− = ∅,

T−k
1 (bc) ∩ S− = ∅, Tj

2(cd) ∩ S− = ∅, and Tj
2(ab) ∩ S− = ∅, and similarly for

the sides of Q−.
The invariant set that we will construct is the following:

!j,k =
∞⋂

n=−∞
f n
j,k(Q+ ∪ Q−). (4.4)

Certainly, by its very definition, this set is invariant (i.e., any point in this set
remains in the set under all forward and backward iterations). It is also compact
(i.e., for our purposes, closed and bounded). Perhaps it is not so obvious that it
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Figure 4.10 The quadrilateral Q+.
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Figure 4.11 The annulus A1 represented as a horizonal strip, periodic in the hori-
zontal direction. The intersections S+ and S− of A2 with the annulus are shown as
dashed lines. The quadrilaterals Q+ and Q− are marked with solid lines.

is non-empty, and has the structure of a Cantor set of zero measure. This will
follow from the inductive construction that we will describe.

Visualizing the action of fj,k on the quadrilaterals Q+ and Q− will be easier if
we consider each annulus individually, cut it open and represent it as a rectangle
with periodicity in the horizontal direction. This is shown for A1 in Figure 4.11.

We begin by considering the action of Tk
1 on Q+. By the construction of

Q+ (i.e., the definitions of γ1 and γ2), under Tk
1 the sides ad and bc of Q+ are

contracted and mapped into the boundary of A2, while Q+ is wrapped around
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Figure 4.12 Action of Tk
1 on Q+ for k = 1. There are no intersections with Q+,

and one intersection with Q−.
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Figure 4.13 Action of Tk
1 on Q+ for k = 3. There are two disjoint components of

intersection with Q+, and three disjoint components of intersection with Q−.

A1 almost k full times. What ‘almost’ means is described in the figures below.
We show the action of Tk

1 on Q+ in Figure 4.12 for k = 1, and in Figure 4.13
for k = 3. It should be clear that

Tk
1 (Q+) ∩ Q+ consists of k − 1 disjoint, parallel strips connecting ab to cd,

Tk
1 (Q+) ∩ Q− consists of k disjoint, parallel strips connecting a′b′ to c′d′.

The same arguments can be applied to the action of Tk
1 acting on Q− to

conclude that:

Tk
1 (Q−) ∩ Q+ consists of k disjoint, parallel strips connecting ab to cd,

Tk
1 (Q−) ∩ Q− consists of k − 1 disjoint, parallel strips connecting a′b′ to c′d′.
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Figure 4.14 The strips in Q+ and Q− from Figure 4.13 with k = 3 shown in A2.
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Figure 4.15 Intersection of Tj
2(q+) with Q+ and Q− in A2 for j = 2.

In summary, the action of Tk
1 on Q+ and Q− creates k+(k−1) = 2k−1 strips

in Q+ and 2k − 1 strips in Q−. Now we represent the annulus A2 as a rectangle
in the same way, as we illustrate in Figure 4.14 with the strips discussed above
shown for k = 3. Choose one of these strips (call it q+) in Tk

1 (Q+ ∪ Q−)∩ Q+,

and consider the action of Tj
2 on q+. In the same manner as above, Tj

2 wraps q+
around A2 almost j full times. In particular:

Tj
2(q+) ∩ Q+ consists of j − 1 disjoint, parallel strips connecting ad to bc,

Tj
2(q+) ∩ Q− consists of j disjoint, parallel strips connecting a′d′ to b′c′.

This is shown in Figure 4.15 for j = 2. Recall that we have chosen ρ such
that Tj

2(cd) ∩ S− = ∅, and Tj
2(ab) ∩ S− = ∅. This ensures that the image of

q+ ‘begins and ends’ outside the quadrilateral Q−, so that in adherence with
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Table 4.1. Summary of the locations of images of Q+ and Q− after the
application of Tk

1 , and then Tj
2.

Initial quadrilateral after Tk
1 after Tj

2

Q+ k − 1 strips in Q+ (k − 1)(j − 1) strips in Q+
j(k − 1) strips in Q−

k strips in Q− jk strips in Q+
k(j − 1) strips in Q−

Q− k strips in Q+ k(j − 1) strips in Q+
kj strips in Q−

k − 1 strips in Q− j(k − 1) strips in Q+
(k − 1)(j − 1) strips in Q−

the Conley–Moser conditions we have strips covering the entire width of the
quadrilaterals.

Similarly, choose one of the strips in Tk
1 (Q+ ∪ Q−) ∩ Q−, (call it q−) and

consider the action of Tj
2 on q−. In the same manner as above, Tj

2 wraps q−
around A2 almost j times. In particular:

Tj
2(q−) ∩ Q+ consists of j disjoint, parallel strips connecting ad to bc,

Tj
2(q−) ∩ Q− consists of j − 1 disjoint, parallel strips connecting a′d′ to b′c′.

Each of the strips formed by Tk
1 is acted on in this way, and so we can give

the combined effect of the linked twist map fj,k ≡ Tj
2Tk

1 on each of Q+ and Q−
as in Table 4.1.

Now consider fj,k(Q+) ∩ Q+ – that is, the intersection of the quadrilateral
Q+ with its image under fj,k . Referring to Table 4.1 we see that it contains
(k − 1)(j − 1) + jk = 2kj − j − k + 1 strips. Similarly, if we let

α = 2jk − k − j + 1,

we can summarize our conclusions as follows:

fj,k(Q+) ∩ Q+ consists of α disjoint, parallel strips,

fj,k(Q+) ∩ Q− consists of α − 1 disjoint, parallel strips,

fj,k(Q−) ∩ Q+ consists of α − 1 disjoint, parallel strips,

fj,k(Q−) ∩ Q− consists of α disjoint, parallel strips.
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Clearly, this procedure can be iterated, and

(Q+ ∪ Q−) ∩ fj,k(Q+ ∪ Q−) ∩ f 2
j,k(Q+ ∪ Q−) ∩ · · · ∩ f n

j,k(Q+ ∪ Q−),

will consist of (4α − 2)n strips, which get thinner as n increases, in line with
the Conley–Moser conditions.

Next we need to consider f −1
j,k , which is also a linked twist map. Proceeding

in exactly the same manner as in the argument above,

f −1
j,k (Q+) ∩ Q+ consists of α disjoint, parallel strips connecting ab to cd,

f −1
j,k (Q+) ∩ Q−consists of α−1 disjoint, parallel strips connecting a′b′ to c′d′,

f −1
j,k (Q−) ∩ Q+ consists of α − 1 disjoint, parallel strips connecting ab to cd,

f −1
j,k (Q−) ∩ Q− consists of α disjoint, parallel strips connecting a′b′ to c′d′.

We can also iterate this procedure:

(Q+ ∪ Q−) ∩ f −1
j,k (Q+ ∪ Q−) ∩ f −2

j,k (Q+ ∪ Q−) ∩ · · · ∩ f −n
j,k (Q+ ∪ Q−),

which gives (4α − 2)n strips, which get thinner as n increases.

4.5.2 The subshift of finite type

Now we can construct an edge shift in the same manner as for the standard
Smale horseshoe. We have two quadrilaterals Q+ and Q− and so the graph
GE has two vertices. The number of edges between vertices corresponds to
the number of strips in the intersection of each quadrilateral with each image,
as computed above. This results in the graph in Figure 4.16. The adjacency
matrix P = (

α α − 1
α − 1 α

)
from Theorem 4.5.1 is clearly the adjacency matrix

a

a−1

a−1
a

Q+ Q–

Figure 4.16 The graph that gives the symbolic dynamics of the invariant set !j,k .
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for the graph. We could follow the algorithm given earlier to construct a binary
transition matrix for a vertex shift for this system. However, recall that the
number of vertices in GV is equal to the number of edges in GE , and so a
transition matrix will be a (4α − 2) × (4α − 2) matrix of 0s and 1s.

4.5.3 The existence of the conjugacy

A conjugacy is a homeomorphism, φ, between !j,k and �2
P having the property

that σ ◦ φ = φ ◦ fj,k . This latter property ensures that orbits of the subshift σ
correspond to orbits of fj,k , and vice versa. In Devaney (1978) it is stated that
the conjugacy can be constructed using the methods in Moser (1973). This
is essentially correct, but may be a bit confusing to the beginner as Moser
(1973) does not deal with the case of subshifts. Nevertheless, with fairly easy
modifications these methods can be adapted to the case of subshifts, and this is
done in Wiggins (1988).

We will omit the details of the construction of the conjugacy here. It is
instructive to thoroughly understand the construction of the conjugacy for the
standard horseshoe map as described in, e.g., Wiggins (2003). Having done so,
it should be clear that the method for this more complicated case follow the
same pattern, although as is often the case, the details are intricate, and are
rarely worked out in full.

A final point to make is that !j,k is a Cantor set. This requires the transition
matrix to be irreducible, i.e., there exist some positive power of the matrix such
that all entries are non-zero. This is only true if |k| | j| > 1, for this particular
construction of an invariant set. In other words there may be other ways of
constructing an invariant set that weaken this requirement.

Key point: The presence of a horseshoe in a linked twist map indicates the presence
of complicated dynamics. However, a horseshoe is a set of zero volume, and so it
is possible that the complexity may not be shared by a set of points of full or even
positive volume.

4.5.4 Hyperbolicity of Λj,k

Finally, it must be shown that the invariant set is (uniformly) hyperbolic. Hyper-
bolicity considerations form a central part of the bulk of this book, and the
proof that !j,k is hyperbolic is a consequence of work that is required later on.
Therefore, we will refer back to this case in Chapter 6.
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4.6 Summary

Following the construction in Devaney (1978) we have defined a linked twist
map on the plane, and described an invariant set by analysing a carefully chosen
pair of quadrilaterals in the intersection of the two linked annuli. The invariant
set is given by the intersection of the images of the quadrilaterals under infinite
forward and backward time. The way in which the image of each quadrilateral
intersects the original pair of quadrilaterals defines a symbolic dynamics, which
gives a measure of the complexity of the system. In later chapters we extend
the symbolic dynamics from ‘subshift of finite type’, as in this construction, to
‘full shift’, and hence the Bernoulli property. Moreover, we will shortly describe
how the result given in this chapter for a set of zero measure can be extended
to a set of full measure.



5

Hyperbolicity

This chapter contains concepts and results from the field of hyperbolic
dynamical systems. We define uniform and nonuniform hyperbolicity,
and go on to describe Pesin theory, which creates a bridge between
nonuniform hyperbolicity and the ergodic hierarchy.

5.1 Introduction

Hyperbolic dynamics, loosely speaking, concerns the study of systems which
exhibit both expanding and contracting behaviour. Hyperbolicity is one of the
most fundamental aspects of dynamical systems theory, both from the point of
view of pure dynamical systems, in which it represents a widely studied and
thoroughly understood class of system, and from the point of view of applied
dynamical systems, in which it gives one of the simplest models of complex
and chaotic dynamics. However the pay-off for this amount of knowledge and
(apparent) simplicity is severe. While hyperbolic objects (for example certain
fixed points and periodic orbits, and horseshoes, like that constructed in the
previous chapter) are common enough occurrences, these are arguably of lim-
ited practical importance, as all these objects comprise sets of zero (Lebesgue)
measure. There are only a handful of real systems for which the strongest form of
hyperbolicity (uniform hyperbolicity) has been shown to exist on a set of positive
measure. Typically, uniformly hyperbolic systems tend to be restricted to model
systems, such as the Arnold Cat Map (Arnold & Avez (1968)), or idealized
mechanical examples, such as the triple linkage of Hunt & Mackay (2003).

Weaker forms of hyperbolicity have been studied in great detail, and powerful
results exist linking these to mixing properties, but still any sort of hyperbolicity
is not a straightforward property to demonstrate. Moreover, despite its preval-
ence as a concept, definitions, results and conjectures pertaining to hyperbolicity
in the literature can often be confusing, complicated, and even misleading. It is
the intention of this chapter not to give a complete exposition of the theory of
hyperbolic dynamical systems (such a project would probably require several

126
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volumes), but to give a clear and concise description of the ideas necessary for
use in theorems on linked twist maps. In doing so we shall quote many seminal
works, and refer to other illuminating texts.

We begin our discussion with the most restrictive type of hyperbolicity,
namely uniform hyperbolicity, in which rates of expansion and contraction
must have a constant bound that is valid for every trajectory. This very spe-
cial type of behaviour was arguably first observed by Henri Poincaré around
1890 in the guise of homoclinic tangles (Poincaré (1890)). Much of the early
inspiration behind hyperbolic dynamics came from geodesic flows, and the
work of Jacques Hadamard, Pierre Duhem, George Birkhoff, Eberhard Hopf
and Gustav Hedlund around the 1940s. See Hasselblatt (2002) for an excellent
history of the subject. A systematic programme of study was initiated in the
work of Dmitri Anosov, who was studying geodesic flows on surfaces of neg-
ative curvature (Anosov (1969)), and Stephen Smale, in the field of differential
dynamics (Smale (1967)). The work that followed was a tremendous success,
and mathematicians such as Anosov, Vladimir Arnold, Rufus Bowen, Yakov
Sinai, David Ruelle and others advanced the understanding of uniformly hyper-
bolic systems. In particular Anosov diffeomorphisms, as they are also known,
have been shown to be ergodic, mixing and to have the Bernoulli property.
However, such systems are rare. Part of the problem with Anosov diffeomorph-
isms is that not every manifold can carry such a system – for example it is
not possible for there to be an Anosov diffeomorphism on the circle or sphere
(Katok & Hasselblatt 1995).

In view of the rarity of uniformly hyperbolic sets of positive measure appear-
ing in applications, it is natural to wish to relax the stringent conditions. In 1977
Yakov Pesin published his seminal paper Characteristic Lyapunov exponents
and smooth ergodic theory (Pesin (1977)), and created the field now known
as Pesin theory, or the theory of smooth nonuniformly hyperbolic dynamical
systems. In it he studied nonuniformly hyperbolic systems, having released the
condition that growth rates must be uniform across the domain of a dynamical
system. This paper establishes a rigorous link between nonuniform hyper-
bolicity and the non-vanishing of Lyapunov exponents. Further, it begins to
construct the bridge between nonuniform hyperbolic systems and the ergodic
hierarchy, specifically proving the result that the domain of any dynamical
system displaying nonuniform hyperbolicity can be decomposed into a count-
able number of partitions on which the dynamics is ergodic. Also included
are results on ergodicity and a Bernoulli decomposition. We give a brief sum-
mary of Pesin theory here, but note that a more thorough, and very accessible
treatment is given in Pollicott (1983), and a recent account can be found in
Barreira & Pesin (2002).
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The link between nonuniform growth rates and Lyapunov exponents is a
crucial one for applied mathematicians. Using Pesin’s equivalent definition of
nonuniform hyperbolicity as systems with non-zero Lyapunov exponents, we
are faced with the challenge of formulating inequalities for infinite time limits
rather than growth rates for every consecutive iteration of a map. This is still a
non-trivial challenge, but the method of invariant cones discussed in Section 5.5
gives a well-known technique for extracting such exponents.

Also in this chapter we discuss some results from Invariant Manifolds,
Entropy and Billiards due to Anatole Katok, Jean-Marie Strelcyn, François
Ledrappier and Felix Przytycki (Katok et al. (1986)). This extends the results of
Pesin theory to systems with singularities. A singularity in this case is defined in
a precise way, and is different to the general notion usual in the applied mathem-
atics literature (that of a property tending asymptotically to infinity). In smooth
ergodic theory systems with singularities are systems which are not smooth at
every point in the domain, but have a set of points at which the diffeomorphism
loses some regularity. Provided such points are relatively uncommon, and the
lack of smoothness not too severe, similar results concerning ergodic partitions
and ergodicity can be formulated. Indeed Katok et al. (1986) goes further, and
gives a global geometric condition to show the Bernoulli property (this is at
least claimed as ‘doubtless’ in Katok et al. (1986)). This work was inspired by
the study of billards, a favourite class of system for ergodic theorists, which
typically have boundaries containing singularities. As we shall see in Chapter 6,
linked twist maps can also be examples of smooth maps with singularities.

5.2 Hyperbolicity definitions

We begin by clarifying our use of notation in this chapter and the chapters to
follow. We shall be interested in a transformation f : M → M (that is, a trans-
formation f from a space M to itself). We discussed in Chapter 3 that M should
be a compact metric space. Here we impose further restrictions on the structure
of M. As will be found in textbooks on hyperbolicity, in general we require M to
be a compact n-dimensional Riemannian C∞ manifold. These properties were
discussed in some detail in Chapter 3, but recall that a manifold is a topological
space which can be viewed locally as Euclidean; a manifold is Riemannian if it
is differentiable and has an inner product on tangent spaces; a Euclidean metric
space is compact if it is closed and bounded. We will be interested solely in the
torus and subsets of the plane, which are naturally compact Riemannian mani-
folds. For most of this chapter we will assume the transformation f is a smooth
diffeomorphism (that is, infinitely times differentiable), but in Section 5.4 we
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relax this condition somewhat and discuss the case in which f is continuous
everywhere but fails to be differentiable on a small subset of points (f is smooth
with singularities).

For a diffeomorphism f : M → M we represent the derivative of f with
respect to the variable x by Dxf (this is the Jacobian). If no confusion can
occur over which variable we are differentiating with respect to, we may use
the shorthand Df . The notation Dxf |x∗ refers to the derivative of f (with respect
to x) evaluated at the point x = x∗. For each point x ∈ M, the tangent space is
the space of all vectors tangent to M at x, and is written TxM.

5.2.1 Uniform hyperbolicity

We begin by looking at the simplest type of dynamical behaviour, that of the
fixed point. Recall that for a map f : M → M a fixed point is any point x ∈ M
for which f (x) = x.

Definition 5.2.1 (Hyperbolic fixed point) A fixed point x∗ of a map
f : M → M is a hyperbolic fixed point if none of the eigenvalues of Dxf |x∗
lie on the unit circle (that is, have modulus equal to one).

Example 5.2.1 Let f : [0, 1] → [0, 1], f (x) = rx(1 − x) be the logistic map
with r ∈ [0, 4]. This has fixed points at x1 = 0 and x2 = 1 − (1/r) (if r > 1).
The derivative is Dxf = r(1 − 2x) and so Dxf |x1 = r and Dxf |x2 = 2 − r.
Hence x1 is a hyperbolic fixed point unless r = 1, and x2 is a hyperbolic fixed
point unless r = 3 (recalling that x2 exists only if r > 1).

Example 5.2.2 Let g : R2 → R2, g(x, y) = (λx,µy) with 0 < λ < 1 < µ.
The only fixed point is (x∗, y∗) = (0, 0). Since Dg is the matrix

Dg =
(
λ 0
0 µ

)
we have eigenvalues λ and µ, and we have arranged that these do not lie on
the unit circle. Therefore (0, 0) is a hyperbolic fixed point. Figure 5.1 shows
the behaviour of trajectories near (0, 0). This illustrates the key idea of hyper-
bolicity – that of an expanding direction and a contracting direction (although
definitions of hyperbolicity in the non-measure-preserving case may include
the cases of entirely attracting or entirely repelling fixed points). We note here
that if λµ = 1 (and so the map g is area-preserving), the curves in Figure 5.1
are the hyperbolæ xy = const. This is the root of the term ‘hyperbolic’.

Definition 5.2.1 can be easily extended to give a definition of a hyperbolic
periodic point.
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y

x

Figure 5.1 Trajectories of the linear map with uniformly hyperbolic fixed point of
Example 5.2.2. The fixed point (0, 0) is attracting along the x-axis and repelling
along the y-axis. Although this is a discrete time map we have drawn the trajectories
as continuous lines to illustrate the hyperbolæ which give hyperbolic systems
their name.

There is a key difference between Examples 5.2.1 and 5.2.2. In Example 5.2.2,
g is a linear map and so the derivative Dg is the same at each point (x, y). This
fact allows us to extend the definition of hyperbolicity from fixed points to the
whole domain in the case of a linear map.

Definition 5.2.2 A linear map g : Rn → Rn is hyperbolic if none of the
eigenvalues of Dg lie on the unit circle.

It will be useful to describe the dichotomy of expanding and contracting
directions in a more mathematical way. Consider a linear map g : Rn → Rn

with eigenvalues λi, i = 1, . . . n, which a priori can satisfy |λi| < 1, |λi| = 1
or |λi| > 1. Define a subspace Es which is a subspace of TRn, and is the span
of all eigenvectors (or generalized eigenvectors) corresponding to |λi| < 1. We
term this the stable or contracting subspace and it contains all vectors which are
contracting under the linear map Dg. Similarly define an unstable or expand-
ing subspace Eu ⊂ TRn which is the span of all (generalized) eigenvectors
corresponding to |λi| > 1. The only remaining vectors are those which do not
have exponential expansion or contraction, but change at a slower rate, that is,
the (generalized) eigenvectors corresponding to |λi| = 1. We define a subspace
E0 to contain such vectors. Having included all possible vectors we see that
Es⊕Eu⊕E0 = Rn. This is called a splitting of the tangent space. An equivalent
definition of hyperbolicity is to require that E0 = ∅, so that all tangent vectors
are either exponentially expanding or exponentially contracting.
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In the more general case (that is, a map which is not linear) we cannot simply
create a global splitting of the tangent space in the above manner. For example,
referring to the logistic map in Example 5.2.1, we see that eigenvalues of Dxf
change depending on where the derivative is evaluated. Instead we must find a
splitting of tangent space at each point x.

Definition 5.2.3 (Anosov diffeomorphism) A diffeomorphism f : M → M of
a compact Riemannian manifold M is Anosov if there exist constants c > 0,
0 < λ < 1 and a continuous splitting of tangent space TxM = Es

x ⊕ Eu
x at each

x ∈ M such that

(A1)

{
DxfEs

x = Es
f (x),

DxfEu
x = Eu

f (x).

(A2)

{
‖Dxf nvs‖ ≤ cλn‖vs‖ for vs ∈ Es

x ,

‖Dxf −nvu‖ ≤ cλn‖vu‖ for vu ∈ Eu
x .

(5.1)

(5.2)

(5.3)

(5.4)

Condition (A1) states that Es
x and Eu

x should be invariant under the action of
the derivative Df . Thus stable subspaces map into stable subspaces, and unstable
subspaces map into unstable subspaces as we iterate the map. Condition (A2)
gives a rate of contraction for vectors v ∈ Es

x under forward iteration, and
contraction for v ∈ Es

x under backward iteration. One often sees in definitions
of Anosov diffeomorphisms Equation (5.4) given as

‖Dxf nvu‖ ≥ c−1λ−n‖vu‖ for vu ∈ Eu
x (5.5)

This version of the definition makes it explicit that while forward iterations
of the map contract vectors in Es

x , the same iterations expand vectors in Eu
x .

Definition 5.2.3 as given here appears the most commonly perhaps because, as
remarked in Robinson (1998), under forward iterations any vector containing a
contribution from Eu

x will be expanded exponentially, and not just vectors in Eu
x ,

and so forward iterates do not uniquely characterize the expanding subspace.
However Equations (5.4) and (5.5) clearly express the same type of behaviour,
as setting w = Dxf −nv in (5.4) gives ‖w‖ ≤ cλn‖v‖ = cλn‖Dxf nw‖ and so
‖Dxf nw‖ ≥ c−1λ−n‖w‖. Note that Dxfw ∈ Eu

f (x) by condition (A1). However
these growth rates are expressed, they encapsulate the key property of hyper-
bolic systems – that under iteration some vectors are expanded and others are
contracted, or equivalently that there are expanding directions under forward
iteration and (different) expanding directions under backward iteration.

Example 5.2.3 As in Example 5.2.2, let g : R2 → R2, g(x, y) = (λx,µy)
have 0 < λ < 1 < µ. In this case the subspaces Es and Eu are simply the
eigenvectors corresponding to λ andµ respectively – that is, (1, 0)T and (0, 1)T.
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It is simple to verify both conditions (A1) and (A2) of Definition 5.2.3. Note
also that a vector such as (1, 1)T expands under forward iteration, despite not
belonging to Eu.

The constants c and λ given above are the same for each point x (that is, are
uniform constants). For this reason Anosov systems are also called uniformly
hyperbolic systems. (In fact such systems are uniformly completely hyperbolic
systems. The term ‘completely’ refers to the fact that the splitting Es

x ⊕Eu
x spans

the entire tangent space TxM. However this term is almost always omitted from
given definitions, and often so is uniformly. ‘Hyperbolic’ has virtually become
a synonym for ‘Anosov’.)

The constant c > 0 can be taken to be c = 1 by a change of the norm, which
then must vary with x. Such a norm is called an adapted norm, or Lyapunov
norm. See for example (Robinson (1998), Chernov & Markarian (2003)). The
fact that the splitting should be continuous (that is, that the subspaces Es

x and
Eu

x depend continuously on x) is sometimes given as a separate condition (A3).
This is now for historical reasons, as the continuity actually follows from the
first two conditions (Chernov & Markarian (2003), Brin & Stuck (2002)).

Stable and unstable manifolds
Stable and unstable manifolds form the bedrock of hyperbolic behaviour as
they govern the behaviour of the dynamics starting in the immediate vicinity of
a given periodic point or trajectory. We begin with the standard definition of a
local stable manifold1 of a fixed point x∗, which defines for a neighbourhood
of x∗ the set of points which remain in that neighbourhood and lead to x∗ under
forward iteration. See for example Guckenheimer & Holmes (1983).

Definition 5.2.4 (local stable manifold) The local stable manifold of a fixed
point x∗ of a (C1) diffeomorphism f : M → M in a neighbourhood B(x∗, r) of
x∗ is given by

γ s(x∗) = {x ∈ B(x∗, r)|d(f n(x), x∗) → 0 as n → ∞}
where B(x∗, r) is the open ε-ball of radius r about x∗ defined in Definition 3.2.5.

Since we are concerned with diffeomorphisms, which are by definition invert-
ible, we can define a local unstable manifold in the same way, looking at
backward iterates:

Definition 5.2.5 (local unstable manifold) The local unstable manifold of a
fixed point x∗ of a (C1) diffeomorphism f : M → M in a neighbourhood

1 Strictly speaking, Definition 5.2.4 defines a local stable set. The fact that it is also a
manifold comes from Theorem 5.2.1.
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B(x∗, r) of x∗ is given by

γ u(x∗) = {x ∈ B(x∗, r)|d(f −n(x), x∗) → 0 as n → ∞}
The local unstable manifold may also be defined for non-invertible maps but

that will not concern us here (see (Robinson (1998))). The question of whether
such sets exist for a given fixed point, and what form they take, is answered by
the classical stable manifold theorem for fixed points.

Theorem 5.2.1 (Stable manifold theorem for fixed points) Let f : M → M
be a diffeomorphism, and let x∗ be a hyperbolic fixed point. Then there exist
local stable and unstable manifolds γ s(x∗) and γ u(x∗) of the same dimension
as, and tangent to, the subspaces Es

x∗ and Eu
x∗ respectively. The local manifolds

γ s(x∗) and γ u(x∗) are as smooth as f (so in particular, they are differentiable,
since f is a diffeomorphism). The size of the local stable and unstable manifolds
is given by the radius r of the neighbourhood B(x∗, r).

These ideas can be extended throughout the domain of an Anosov diffeo-
morphism to give stable and unstable manifolds at each point.

Theorem 5.2.2 (Hadamard–Perron stable manifold theorem) Let
f : M → M be an Anosov diffeomorphism. Then for each x ∈ M there exist
local stable and unstable manifolds

γ s(x) = {y ∈ B(x, r(x))|d(f n(y), f n(x)) → 0 as n → ∞}
γ u(x) = {y ∈ B(x, r(x))|d(f −n(y), f −n(x)) → 0 as n → ∞}

of the same dimension as, and tangent to, the subspaces Es
x and Eu

x respectively.
The local manifolds γ s(x) and γ u(x) are as smooth as f (so in particular, they
are differentiable, since f is a diffeomorphism). The size of the local stable
and unstable manifolds at x is given by the radius r(x) of the neighbourhood
B(x, r(x)), and moreover there is a uniform bound r ≥ r′ > 0 for all x ∈ M.

Having verified the existence of local manifolds, we define global stable and
unstable manifolds by taking unions of backward and forward iterates of local
stable and unstable manifolds.

Definition 5.2.6 (global stable/unstable manifolds) The global stable and
unstable manifolds at each x ∈ M, Ws(x) and Wu(x) respectively, are given by

Ws(x) =
⋃
n≥0

f −n(γ s(f n(x))). (5.6)

Wu(x) =
⋃
n≥0

f n(γ u(f −n(x))). (5.7)
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We now give a straightforward, but useful, result which shows that forward
time averages of continuous functions for a given point are equal to forward
time averages of that function for any point in the stable manifold of that
point. Recall Equation (3.1) for the definition of the forward time average of a
function.

Lemma 5.2.1 Let f : M → M be an Anosov diffeomorphism, and let φ : M →
R be a continuous function. For any x ∈ M, let y ∈ γ s(x). Thenφ+(y) = φ+(x).
Similarly, for any x′ ∈ M, let y′ ∈ γ u(x′). Then φ−(y′) = φ−(x′).

Proof By the continuity of φ, for any fixed ε > 0 there exists a δ > 0 such that
|φ(x) − φ(x′)| < ε whenever d(x, x′) < δ. By Theorem 5.2.2 we can choose
m such that d(f i(y), f i(x)) < δ whenever i ≥ m. Now for n > m we have

1

n

n−1∑
i=0

φ(f i(y)) − 1

n

n−1∑
i=0

φ(f i(x)) = 1

n

m−1∑
i=0

(φ(f i(y)) − φ(f i(x)))

+ 1

n

n−1∑
i=m

(φ(f i(y)) − φ(f i(x))).

Hence by the triangle inequality,∣∣∣∣∣1n
n−1∑
i=0

φ(f i(y)) − 1

n

n−1∑
i=0

φ(f i(x))

∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
m−1∑
i=0

(φ(f i(y)) − φ(f i(x)))

∣∣∣∣∣+ ε

and so since ε is arbitrary and the sum after the inequality is a finite sum we
have

lim
n→∞

∣∣∣∣∣1n
n−1∑
i=0

φ(f i(y)) − 1

n

n−1∑
i=0

φ(f i(x))

∣∣∣∣∣ = 0.

It follows that φ+(y) = φ+(x). An identical argument using backward iteration
can be applied to show that φ−(y′) = φ−(x′) for each y′ ∈ γ u(x′).

Results for uniform hyperbolicity
Anosov diffeomorphisms are among the best understood classes of dynamical
system. Moreover, they are closely linked to the ergodic hierarchy. A thorough
discussion can be found in Hasselblatt (2002). Briefly, geodesic flows of neg-
ative curvature (closely linked to Anosov systems) were much studied in the
early 1900s. These were shown to be ergodic by Hopf (an excellent descrip-
tion of this result can be found in Brin & Stuck (2002)), and to be mixing by
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Hedlund. When Anosov defined the class of systems which carry his name, he
built on this work and showed that these systems possess the K-property (recall
Section 3.8). The Bernoulli property for Anosov systems was shown in 1973 by
Ornstein and Weiss for uniformly hyperbolic geodesic flows (Ornstein & Weiss
(1973)), a result later generalized to more general Anosov systems (Ornstein &
Weiss (1998)).

Key point: Uniformly hyperbolic systems are a well-understood class of dynam-
ical system, and in particular they enjoy the Bernoulli property. Their definition
is based on uniform bounds for rates of expansion and contraction. However, they
are rare in applications. Linked twist maps possess hyperbolic behaviour, but in a
weaker form, which requires more work to draw similar conclusions.

Anosov diffeomorphisms are named after Dmitri Anosov. Anosov himself
termed such systems systems with a condition, which has led them to be called
C-systems, or sometimes Y - or U-systems (from a transliteration of the Russian
for ‘condition’). We will refer to Equations (5.3), (5.4) (and (5.5)) as Anosov
growth conditions.

The Arnold Cat Map
The hyperbolic toral automorphism now widely known as the Arnold Cat Map
is a canonical example of an Anosov map (see Arnold & Avez (1968) for more
details, and Hasselblatt (2002) for some intriguing history). We have already
seen numerically the behaviour of this map, but we will restate it here, and then
use it throughout this chapter to illustrate the results and ideas to follow. It is
of particular interest to us as linked twist maps on the torus are in some sense
a generalized nonuniform version of the Cat Map.

Example 5.2.4 (Arnold Cat Map) Let f : T2 → T2 be an invertible map
on the standard 2-torus given by f (x, y) = (x + y, x + 2y). The action of the
Arnold Cat Map is shown in Figure 5.2. The Jacobian Dxf is given by the
matrix

Dxf =
(

1 1
1 2

)
.

The Jacobian is identical for all (x, y) ∈ T2 so we will refer to it as Df . The
determinate of Df , |detDf | = 1 and so f is area-preserving and invertible. The
eigenvalues of Df are λ± = 3/2 ± √

5/2, with eigenvectors v± = (1, 1/2 ±√
5/2) respectively. As in Example 5.2.3 these eigenvectors give the stable
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The Cat Map mixes well

(a)

(b)

Stre
tch

Reassemble

Figure 5.2 Two illustrations of the action of the Cat Map of Example 5.2.4. In (a)
the unit square is first shaded in four parts as shown. The action of the Cat Map is
to stretch and squeeze the unit square into the parallelogram in the centre diagram.
Since the Cat Map is a toral map the shaded parts are re-assembled into the unit
square. In (b) we illustrate the mixing qualities of the Cat Map. Here the initial
unit square is shaded into quadrants, and their images shaded the same after one
iterate of the map. It is clear that even after a single iterate the shaded areas are
becoming mixed.

and unstable subspaces Es and Eu. Moreover, the Arnold Cat Map has one-
dimensional stable and unstable manifolds lying the direction of Es and Eu

respectively.

Key point: The Arnold Cat Map is a canonical example of a uniformly hyperbolic
system, and its dynamics forms a skeleton of the more intricate dynamics in linked
twist maps.

Uniformly hyperbolic trajectories
Uniform hyperbolicity is rare in applications, and in general difficult to estab-
lish. This is because the constants c and λ are required to be valid for all points
in the domain. Often we may have good information about certain points, but
less about others. For example, we may know much about points in the support
of a certain invariant measure, such as periodic orbits. Thus one frequently sees
definitions of (uniform) hyperbolicity for trajectories.
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Definition 5.2.7 (uniformly (completely) hyperbolic trajectory) A traject-
ory2 {f mx} of a diffeomorphism f : M → M of a compact Riemannian manifold
is uniformly (completely) hyperbolic if there exist constants c > 0, 0 < λ <

1 < µ and a continuous splitting of tangent space Tf mxM = Es
f mx ⊕ Eu

f mx such
that for each k ∈ Z and n > 0,

(UHT1)


Dxf kEs

x = Es
f k(x)

,

Dxf kEu
x = Eu

f k(x)
.

(UHT2)


‖Dxf nvs‖ ≤ cλn‖vs‖ for vs ∈ Es

f k(x)
,

‖Dxf nvu‖ ≥ c−1µn‖vu‖ for vu ∈ Eu
f k(x)

.

(UHT3)∠(Es
f k(x), Eu

f k(x)) ≥ c−1.

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

From this we can recover the definition of Anosov by demanding that all
trajectories of f are uniformly hyperbolic with the same constants c, λ and µ,
and replacing min{λ,µ−1} with λ. In condition (UHT3) the symbol ‘∠’ denotes
the angle between the stable and unstable subspaces, and so this condition
guarantees that these subspaces do not approach each other. Note that in this
definition forward iterations are used to define growth along the orbit in the
unstable subspace.

The difficulty of establishing uniform hyperbolicity makes it natural
to weaken the very strict conditions (A1) and (A2) of Definition 5.2.3.
This is done in two main ways – the uniformity of the constants c
and λ may be relaxed to give nonuniform hyperbolicity, or the com-
pleteness of the splitting of tangent space may be relaxed to give partial
hyperbolicity.

5.2.2 Nonuniform hyperbolicity

The idea of nonuniform hyperbolicity – that growth rates of tangent vectors
should vary from point to point – is simple enough, but it requires precise
mathematical statements to express it accurately. We begin by generalizing the
definition of uniform hyperbolicity for a trajectory to nonuniform hyperbolicity
for a trajectory.

Definition 5.2.8 (nonuniformly (completely) hyperbolic trajectory) A tra-
jectory {f m

x } is nonuniformly (completely) hyperbolic if there are numbers

2 The usual terminology for a trajectory, or orbit, is { f m(x)} or { f mx}. We will stick to this
use, except in subscripts when we may refer to a trajectory as simply f mx.
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0 < λ < 1 < µ and a splitting Tf m(x)M = Es
f m(x) ⊕ Eu

f m(x), and if for all
sufficiently small ε > 0 there exists a function c(x, ε) such that for each k ∈ Z

and n > 0:

(NUHT1)


Dxf kEs

x = Es
f k(x)

,

Dxf kEu
x = Eu

f k(x)
.

(NUHT2)


‖Dxf nv‖ ≤ c(f n+k(x), ε)λn‖v‖ for v ∈ Es

f k(x)
,

‖Dxf nv‖ ≥ c−1(f n+k(x), ε)µn‖v‖ for v ∈ Eu
f k(x)

.

(NUHT3) ∠(Es
f k(x), Eu

f k(x)) ≥ c−1(f k(x), ε).

(NUHT4) c(f k(x), ε) ≤ eε|k|c(x, ε).

(5.13)

(5.14)

(5.15)

(5.16)

Condition (NUHT1) is identical to condition (A1) (and (UHT1)). Conditions
(NUHT2) and (NUHT3) are also similar to their counterparts from uniform
hyperbolicity except that constants have been replaced by functions which
depend on the location on the trajectory. Condition (NUHT4) is the crucial,
technical part of this definition. It says that while the estimates on growth in
conditions (NUHT2) may get worse along a trajectory, they do so relatively
slowly.

To get the definition of nonuniform hyperbolicity for a diffeomorphism we
must recognise that not only the constant c can vary along a trajectory, but also
the constants λ, µ and ε may be different for different trajectories. Thus we
replace such constants by functions λ(x), µ(x) and ε(x).

Definition 5.2.9 (nonuniformly (completely) hyperbolic) A diffeomorphism
f : M → M is nonuniformly (completely) hyperbolic if there are (measurable)
functions 0 < λ(x) < 1 < µ(x), and ε(x) such that ε(f k(x)) = ε(x) (that is, ε
is invariant, or constant, along each trajectory) and a splitting TxM = Es

x ⊕Eu
x

for each x, and a function c(x) such that for every k ∈ Z and n > 0:

(NUH1)


Dxf kEs

x = Es
f k(x)

,

Dxf kEu
x = Eu

f k(x)
.

(NUH2)

{
‖Dxf nv‖ ≤ c(f k(x))λn(x)‖v‖ for v ∈ Es

x ,

‖Dxf nv‖ ≥ c−1(f k(x))µn(x)‖v‖ for v ∈ Eu
x .

(NUH3) ∠(Es
x , Eu

x ) ≥ c−1(x).

(NUH4) c(f k(x)) ≤ c(x)eε(x)|k|.

(5.17)

(5.18)

(5.19)

(5.20)
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Key point: Nonuniform hyperbolicity is a loosening of the strict conditions of
uniform hyperbolicity. Expanding and contracting behaviour is still present, but
now the rate at which such behaviour occurs can vary from point to point. This
remains a difficult property to demonstrate in applications, but we will see that
linked twist maps form a paradigm example of a nonuniformly hyperbolic system.

5.2.3 Partial nonuniform hyperbolicity

Hyperbolicity can be weakened further by removing the necessity for linearly
expanding and contracting directions to span the whole tangent space. In this
case the hyperbolicity is not complete, but partial. Although we do not use this
concept in this book, we mention the definition for thoroughness. This can be
given simply for a trajectory by replacing the numbers 0 < λ < 1 < µ with
numbers 0 < λ < min(1,µ) so that µ is not necessarily greater than 1. The
rest of the definition is the same. Similarly for nonuniform partial hyperbolicity
of a diffeomorphism we require functions λ(x), µ(x) and ε(x) such that 0 <

λ(x) < µ(x), µ(x) − λ(x) > ε(x) and 1 − λ(x) > ε(x) > 0.
Since Es and Eu do not generate the whole tangent space this is the situation

in which E0 �= ∅, that is, there are directions which are not linearly expanding
or contracting. The subspace E0 is called neutral, and vectors in it may contract
or expand but not exponentially. Finally we note that setting ε = 0 gives the
little-used concept of partial uniform hyperbolicity. See for example Brin &
Pesin (1974) and Barreira & Pesin (2002) for more information.

5.2.4 Other hyperbolicity definitions

Frequently one sees definitions for hyperbolic sets. Thus

Definition 5.2.10 (uniformly hyperbolic set) Let f : M → M be a diffeo-
morphism of a compact smooth Riemannian manifold M. An f -invariant set A
is a uniformly hyperbolic set if it is closed and consists of trajectories satisfying
the conditions (A1) and (A2) with the same constants c and λ.

It is clear that if A = M then f is an Anosov diffeomorphism. Similarly we
can define nonuniformly hyperbolic sets. Another term which is to be found
in the literature is Axiom A. This was coined by Smale (Smale (1967)), and is
similar to, but not quite synonymous with, Anosov.

Definition 5.2.11 (non-wandering) For f : M → M, a point x is non-
wandering if for every neighborhood U (see Definition 3.2.7) of x there is
an n such that f n(U)

⋂
U �= ∅. The set of all non-wandering points is the

non-wandering set �(f ).
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Definition 5.2.12 (Axiom A) A dynamical system is Axiom A if its non-
wandering set�(f ) is (uniformly completely) hyperbolic and its periodic points
are dense in �(f ).

It was thought for a long time that the two criteria for Axiom A were equival-
ent, but it was shown around 1978 that they are independent (Dankner (1978)).

5.3 Pesin theory

Pesin theory, or the theory of smooth nonuniformly hyperbolic dynamical sys-
tems, provides the framework for deducing results connected with the ergodic
hierarchy for many systems including linked twist maps. It is based on studying
Lyapunov exponents.3 These have already been mentioned in chapter 3 as a cru-
cial tool in applied dynamical systems giving a measure of the long-term rate
of expansion or contraction of tangent vectors. Here we define precisely this
quantity, and discuss their existence. Let f : M → M be a C2 diffeomorphism
(that is, a twice differentiable function with continuous second derivative4) on
a smooth manifold M with an invariant measure µ.

5.3.1 Lyapunov exponents

The Lyapunov exponent χ±(z, v) at a point z in direction v is given by

lim
n→±∞

1

n
log ‖Df n

z v‖ = χ±(z, v) (5.21)

whenever the limit exists. This caveat is very important. It is clear that when z
is a periodic point the limit does indeed exist. However for an arbitrary choice
of z (i.e., an arbitrary trajectory), the forward limit limn→∞ may not exist, the
backward limit limn→−∞ may not exist, or even if both limits exist they may
not be equal. Often, and especially in the applied dynamical systems literature,
this issue is ignored and Lyapunov exponents are defined only for forward time,
and assumed to exist. Fortunately a celebrated theorem exists which justifies
this, provided we have an invariant measure. This is due to Oseledec (1968)
and gives the conditions to guarantee that Lyapunov exponents exist almost
everywhere and that the forward and backward limits are equal. This is the
oft-quoted Multiplicative Ergodic Theorem.

3 These predate Pesin considerably, being named after Aleksandr Mikhailovich Lyapunov
(1857–1918), who contributed much to the study of stability of motions, and who first developed
the ideas of what are now called Lyapunov methods.

4 Actually C1+α , α > 0 is sufficient for Pesin’s results.
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Theorem 5.3.1 (Oseledec (1968)) Let f be a measure-preserving map f : M →
M such that

(OS)
∫

M
log+ ‖Df (−1)

z ‖dµ(z) < ∞ (5.22)

where log+(·) = max{log(·), 0}. Then Lyapunov exponents exist µ-almost
everywhere and χ+(x, v) = χ−(x, v) ≡ χ(x, v).

The condition (5.22) (that the integral of the logarithm of the absolute value
of the derivative is finite) is equivalent to requiring that log+ ‖Df ‖ be an L1

function, that is, integrable. (In fact if the space M is compact, this condition
is guaranteed if f has only finitely many discontinuities. Throughout this work
we will be concerned only with compact spaces.)

Lyapunov exponents and hyperbolicity are closely connected. Some of these
connections are plain to see. Suppose f : M → M is uniformly hyperbolic.
Then choosing any x ∈ M, and any v ∈ Es

x we see that from condition (A2) in
the definition of uniform hyperbolicity that

1

n
log ‖Df nv‖ ≤ 1

n
log(cλn‖v‖)

= 1

n
log c + log λ + 1

n
log ‖v‖

and so

χ+(x, v) = lim
n→+∞

1

n
log ‖Df nv‖ ≤ log λ < 0

(if the limit exists) since 0 < λ < 1.
However, the converse argument does not follow. From Lyapunov exponents

(defined as infinite time limits) being bounded away from zero, one cannot
recover the Anosov conditions (A2), which require uniform expansion and
contraction at each iteration. However, seminal work by Pesin (1977) linked
non-zero Lyapunov exponents with nonuniform hyperbolicity.

Example 5.3.1 The linear hyperbolic map g of Example 5.2.2 is perhaps the
simplest system for which to compute Lyapunov exponents. The fact that the
Jacobian Dg is the same diagonal matrix at every point on every orbit makes
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the computation trivial. To make this explicit, choosing v− = (1, 0)T we have:

χ+(x, v−) = lim
n→∞

1

n
log ‖Dgnv−‖

= lim
n→∞

1

n
log

∥∥∥∥∥
(

λ 0
0 µ

)n (
1
0

)∥∥∥∥∥
= lim

n→∞
1

n
log

∥∥∥∥
(

λn

0

)∥∥∥∥
= lim

n→∞
1

n
log |λn|

= lim
n→∞

1

n
log λn

= lim
n→∞ log λ

= log λ

and the same calculation gives

χ−(x, v−) = log λ.

Since λ < 1 this gives a negative Lyapunov exponent, representing the con-
tracting direction. We get a positive Lyapunov exponent corresponding to the
expanding direction by taking v+ = (0, 1)T, which gives the similar calculation

χ+(x, v+) = χ−(x, v+) = lim
n→∞

1

n
log

∥∥∥∥∥
(

λ 0
0 µ

)n (
0
1

)∥∥∥∥∥
= logµ.

Notice that in the area-preserving case λµ = 1 the two Lyapunov exponents
sum to zero. Choosing any other initial vector v = av+ + bv− will yield the
larger Lyapunov exponent (providing b �= 0).

Example 5.3.2 Consider the toral twist map t : T2 → T2, t(x, y) = (x + y, y)
(mod 1). This has Jacobian

Dt =
(

1 1
0 1

)
, Dtn =

(
1 n
0 1

)
.

It is straightforward to see that vectors of the form v∗ = (v1, 0) undergo no
expansion – thus, Dtnv∗ = v∗, while more general vectors v = (v1, v2) may be
stretched under the shear map, but not exponentially so, hence χ±(z, v) = 0
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for all points z and all tangent vectors v. This map forms the basis of a linked
twist map.

Example 5.3.3 Lyapunov exponents for the Cat Map (Example 5.2.4) can be
computed almost as simply. Diagonalizing the Jacobian matrix Df produces
the two Lyapunov exponents χ1 = log λ+ > 0 and χ2 = log λ− < 0, where
λ± are the eigenvalues of the Jacobian computed in Example 5.2.4.

The existence and nature of the invariant measure is crucial for Oseledec’s
theorem. To illustrate this we give the following example, which can also be
found in Chernov & Markarian (2003):

Example 5.3.4 (Chernov & Markarian (2003)) Let f : S1 → S1 be a map
on the circle given by f (x) = x + 1/3π sin 2πx. The map has fixed points at
x0 = 0 and x1 = 1/2. We have the Jacobian Df = 1 + 2/3 cos 2πx, so the
Lyapunov exponents at the fixed points are easily computed as

χ(x0) = log |Df (x0)| = log(5/3),

χ(x1) = log |Df (x1)| = log(1/3).

A simple stability analysis on the signs of the Lyapunov exponents shows that
points in between x0 and x1 (that is, p ∈ (0, 1/2)) tend to x1 under forward
iteration of f and to x0 under backward iteration (that is, f n(p) → 1/2 and
f −n(p) → 0 as n → ∞). Then for any non-zero vector v ∈ TS1 we have the
limiting behaviour:

lim
n→∞

1

n
log |Df nv| = log(1/3),

lim
n→∞

1

n
log |Df nv| = log(5/3).

and so the forward and backward limits are not equal. Putting this into the
context of Theorem 5.3.1 we note that Lebesgue measure is not an invariant
measure for the map (f is not area-preserving, but dissipative), and so we should
not expect Lyapunov exponents to exist Lebesgue-almost everywhere.

5.3.2 Lyapunov exponents and hyperbolicity

Theorem 5.3.2 (Pesin (1977)) A trajectory {f kx} is nonuniformly (completely)
hyperbolic if

χ(x, v) �= 0 for all v ∈ TxM.



144 5 Hyperbolicity

In other words, if the Lyapunov exponent computed from a given point for
any given direction is non-zero, then the trajectory starting from that point is
nonuniformly hyperbolic. This can be extended to nonuniform hyperbolicity
for a diffeomorphism.

Theorem 5.3.3 (Pesin (1977)) A diffeomorphism f : M → M is nonuniformly
(completely) hyperbolic if for almost every x ∈ M

χ(x, v) �= 0 for all v ∈ TxM.

Note that we only require non-zero Lyapunov exponents for almost
every x ∈ M. It may be that there are sets of zero measure with zero Lyapunov
exponents. The importance of this theorem is illustrated by the fact that
nonuniformly (completely) hyperbolic systems are frequently named systems
with non-zero Lyapunov exponents. Similar theorems also exist for partial
hyperbolicity.

Theorem 5.3.4 (Pesin (1977)) A trajectory {f kx} is nonuniformly partially
hyperbolic if

χ(x, v) �= 0 for some v ∈ TxM.

Theorem 5.3.5 (Pesin (1977)) A diffeomorphism f : M → M is nonuniformly
partially hyperbolic if for almost every x ∈ M

χ(x, v) �= 0 for some v ∈ TxM.

Note that the fact that partially hyperbolic systems are defined in terms of
subspaces which do not span the entire tangent space is made explicit in this
formulation.

5.3.3 Stable and unstable manifolds

Pesin theory extends the Stable Manifold Theorem (Theorem 5.2.2) to nonuni-
formly hyperbolic systems in the usual way – the uniformity of bounds in the
uniformly hyperbolic definition is replaced by a function which can vary along
the trajectory.

Theorem 5.3.6 (Pesin (1977), Bunimovich et al. (2000)) Let {f k
x } be a nonuni-

formly hyperbolic trajectory. Then there exists a local stable manifold γ s(x) in
a neighbourhood B(x, r(x)) of x such that for y ∈ γ s(x) the distance between
f k(x) and f k(y) decreases with an exponential rate. That is, for any k ∈ Z and
n ≥ 0

d(f k+n(x), f k+n(y)) ≤ Kc(f k(x), ε)λneεnd(f k(x), f k(y)) (5.23)
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where d is the distance induced by the Riemannian metric and K > 0 is a
constant.

Similarly one can show existence of a local unstable manifold. A crucial, but
very technical, difference between the local stable manifolds for a uniformly
hyperbolic system and a nonuniformly hyperbolic system is in the size of the
manifolds. Recall that for the uniformly hyperbolic case γ s(x) was defined5

in an ε-ball of radius r(x) about x, and that r(x) ≥ r′ > 0 for all x ∈ M. In
the nonuniform case the situation is different. Here the size of the γ s are not
uniformly bounded away from zero, but satisfy r(f k(x)) ≥ Ke−ε|k|r(x). Thus
the size of γ s(f k(x)) may become very small, and indeed may decrease at a rate
faster than that given by (5.23). Nevertheless these precise bounds allow many
important properties to be formulated for local stable and unstable manifolds for
nonuniformly hyperbolic systems (see Bunimovich et al. (2000), Pesin (1977)
and Barreira & Pesin (2002)).

Example 5.3.5 The twist map t : T2 → T2 of Example 5.3.5 has zero Lyapunov
exponents, and so the above theorem does not apply. Hence there are no local
stable and unstable manifolds for any points in T2. We shall shortly see the
effect this has on the ergodic properties of t.

5.3.4 Ergodic decomposition

If Lyapunov exponents exist, Pesin’s landmark theorem equates the set of
points (which we will call !) for which Lyapunov exponents are non-zero with
the set of points for which f is a nonuniformly hyperbolic diffeomorphism,
and guarantees the existence of stable and unstable manifolds. Furthermore, it
demonstrates that this set of points has an ergodic partition, the definition of
which is contained in the statement of the theorem:

Theorem 5.3.7 (Pesin (1977)) Let

! = {x ∈ M : χ(x, v) �= 0 for every v �= 0 in TxM}
and letµ(!) > 0. Then! is either a finite or countably infinite union of disjoint
measurable sets !0, !1, . . . such that

1. µ(!0) = 0, µ(!n) > 0 for n > 0,
2. f (!n) = !n,
3. f |!n is ergodic.

5 We abuse the notation here in order to convey the essence of the idea. In fact γ s(x) is
constructed via a map from B(x, r(x)) to the unstable subspace. The local stable manifold is then
the projection of that map under the exponential map.
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Here the notation f |!n symbolizes the restriction of the map f to the set !n.
We may refer to the sets !n as ergodic components. The significance of this
theorem is in the fact that we have only finitely or countably many ergodic
components in the partition. Any dynamical system can be partitioned into
an ergodic partition if an uncountable infinity of components is permitted –
trivially decomposing a system into its constituent trajectories creates a par-
tition consisting of uncountably many components of measure zero, and the
restriction of a dynamical system to a single trajectory is necessarily ergodic.
Moreover, suppose an area-preserving dynamical system has an elliptic fixed
point p. Then KAM theory tells us that a positive measure neighbourhood of
p contains trajectories which form invariant tori. Even after a perturbation a
positive measure set of invariant tori persists. This is another example of a
decomposition into an uncountable number of ergodic components. KAM tori,
commonly referred to as islands (especially in a fluid mechanics setting), serve
as barriers to ergodicity and therefore to mixing. Therefore Theorem 5.3.7 is
extremely significant – it guarantees that islands cannot appear in a (completely)
nonuniformly hyperbolic system.

Example 5.3.6 Since the Cat Map has non-zero Lyapunov exponents, we can
apply the above theorem to state that it is the union of at most countably many
ergodic components. We shall shortly see how to extend this to ergodicity on
all of T2.

Example 5.3.7 (Pollicott (1983)) The twist map t : T2 → T2 of Example
5.3.5 has zero Lyapunov exponents and so Theorem 5.3.7 does not apply.
Because there are no stable and unstable manifolds the action of this map
is to decompose the torus into an uncountable number of invariant circles
{(x, y)|x ∈ [0, 1] and y = Y, fixed} which are rotated by t through an angle Y.
Recall from Example 3.6.1 that the dynamics on each circle is ergodic if Y is
irrational, and not ergodic if Y is rational.

5.3.5 Ergodicity

In applications we are likely to at least want to know how many ergodic com-
ponents we have in the ergodic decomposition, and more probably would like
to show that we have a single ergodic component of full measure. For Anosov
systems we can use Theorem 5.3.7 together with the uniform nature of the local
stable and unstable manifolds to give a sketch proof of ergodicity. See Barreira
& Pesin (2002) for a more rigorous treatment of the argument.
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Theorem 5.3.8 (Anosov (1969), Barreira & Pesin (2002)) Let f : M →
M be a measure-preserving Anosov diffeomorphism on a connected compact
Riemannian manifold M. Then f is ergodic.

Sketch proof of ergodicity Since f is uniformly hyperbolic, local stable and
unstable manifolds exist and have size ≥ r′ for each x ∈ M. Assume that each
ergodic component !i is open (see Pesin (1977) or Barreira & Pesin (2002)
for a proof of this assumption). Because the dynamics on !i is ergodic, the
time averages φ+(x) of every measurable function φ+ exist and are equal for
almost every x ∈ !i (see Definition 3.6.3). This is true for each i, yet the time
averages might be different on each ergodic component; that is, we may have
φ+(x) �= φ+(y) for x ∈ !i, y ∈ !j, i �= j.

However, because γ s(s) and γ u(x) have size at least r′ > 0, we can find
xi ∈ !i such that γ s(xi)∩!j �= ∅. Recalling Lemma 5.2.1 we see that φ+(xi) =
φ+(xj) for all xj ∈ γ s(x) ∩ !j, and so time averages are equal on !i and !j.
Since M is connected, any two ergodic components can be joined by a path of
such local stable manifolds (called a Hopf chain), and so time averages on each
ergodic component are equal, and so the system is ergodic.

Comparing this proof with Section 3.6.1 we see that the uniformity of sizes
of local stable and unstable manifolds gives a way to link together sets (ergodic
components) on which time averages are locally constant. In the nonuniformly
hyperbolic case Pesin (1977) uses topological transitivity (Definition 3.6.2) to
achieve this.

Theorem 5.3.9 (Pesin (1977)) Let a diffeomorphism f satisfy the conditions
of Theorem 5.3.7. If f is also topologically transitive then f |! is ergodic.

Sketch proof Referring to Theorem 5.3.7, let!i and!j be two distinct ergodic
components such that µ(!i) > 0 and µ(!j) > 0. Because they are distinct
ergodic components we must have µ(f n(!i) ∩ !j) = 0 for each n ∈ N. Now
assume that!i and!j are open sets (see Pesin (1977) or Barreira & Pesin (2002)
for a proof of this assumption). Because f is topologically transitive we have
f m(!i)∩!j �= ∅ for some m, and so µ(f m(!i)∩!j)) > 0 (from the openness
of !i and !j). This contradiction implies that the initial definition of !i and !j

as two distinct ergodic components is not valid, and so there can only be one
positive measure component in the ergodic partition. Hence f |! is ergodic.

Both of the above proofs as we have given them are merely sketch proofs.
We have ignored a large technical issue based on the fact that while γ s(x)
and γ u(x) are as smooth as f (and so are differentiable for diffeomorphisms),
they need not depend differentiably on the point x. In order to overcome
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Figure 5.3 Global stable and unstable manifolds for the Arnold Cat Map are
straight lines wrapping around the torus, with irrational slopes. Because they fill
out a dense set on the torus, and go in different directions, they must intersect.

this difficulty, a property known as absolute continuity of local stable and
unstable manifolds must be established. This was done by Anosov (1969) for
Anosov diffeomorphisms, and Pesin (1977) for nonuniformly hyperbolic sys-
tems. We will not discuss this issue further, as for our purposes we can appeal
to theorems such as Theorems 5.3.7 and 5.4.1 directly. For excellent explana-
tions of absolute continuity in these situations, see Barreira & Pesin (2002) or
Brin & Stuck (2002).

Example 5.3.8 The Arnold Cat Map is topologically transitive. A formal proof
is given in Theorem 5.1 of Robinson (1998), based roughly on the fact that
stable and unstable manifolds of points in T2 have irrational slopes, and so
are dense in T2 (see Figure 5.3). Therefore by Theorem 5.3.9 the Cat Map
is ergodic. (Of course, we have already shown the Cat Map to be an Anosov
diffeomorphism, and so Theorem 5.3.8 gives this result automatically.)

5.3.6 Bernoulli components

Furthermore, Pesin also proves a result about the Bernoulli property,
known as the Spectral Decomposition Theorem for nonuniformly hyperbolic
diffeomorphisms.
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Theorem 5.3.10 (Pesin (1977)) For each n ≥ 1 we have

1. !n is a disjoint union of sets !m
n , m = 1, . . . , in, which are cyclically

permuted by f (that is, f (!m
n ) = !m+1

n for m = 1, . . . , in − 1, and
f (!in

n ) = !1
n),

2. f in |!m
n

is a Bernoulli automorphism for each m.

So each component in the ergodic decomposition can be repartitioned into
components on which some iterate of f restricted to that component is Bernoulli.
This result is not of immediate use for us as we are interested in the Bernoulli
property of the original map f on the whole domain. Shortly we will see the
result which allows us to deduce this, but first we motivate this with a very
brief sketch proof of the Bernoulli property for topologically mixing Anosov
diffeomorphisms.

Theorem 5.3.11 (Anosov (1969), or see Barreira & Pesin (2002)) Let f :
M → M be a measure-preserving Anosov diffeomorphism on a connected
compact Riemannian manifold, and let f be topologically mixing. Then f has
the Bernoulli property.

Sketch proof Assume the sets !m
n are open sets (again this is proved in Pesin

(1977) and Barreira & Pesin (2002)). Then the fact that f is topologically mixing
implies that the intersection f j(!m

n ) ∩ !m′
n′ �= ∅ for all sufficiently large j, and

moreover this intersection is of positive measure. From this one can deduce that
the Bernoulli property present on each !m

n extends to the whole domain.

Key point: Pesin theory equates a set of points giving rise to non-zero Lyapunov
exponents to nonuniformly hyperbolic behaviour. It also forms a bridge from hyper-
bolicity theory to the ergodic hierarchy, since it shows that the set of points with
non-zero Lyapunov exponents can be partitioned into at most a countable number of
components on which the dynamics is ergodic. If the system is topologically trans-
itive then the system itself is ergodic, without the need for a partitioning. Moreover,
each of the components can be partitioned further into components on which the
Bernoulli property is displayed.

5.4 Smooth maps with singularities

A further complication arises for the class of maps in which we are interested.
The derivative Df which we require to compute Lyapunov exponents only
exists at points for which f is differentiable. We shall see that certain linked
twist maps may contain a set of points (corresponding to the boundaries of
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the linked annuli) where differentiability fails (a singularity). However, such
points are rare compared to points at which the linked twist map is differentiable.
In such a case we turn to the extension of the Pesin result due to Katok and
Strelcyn (Katok et al. (1986)) for maps with singularities. This originated from
the recognition that ‘some important dynamical systems occurring in classical
mechanics ... have singularities’. In particular, systems of billiards, which have
been much studied by ergodic theorists, often contain singularities.

We must first define precisely what we mean by maps with singularities. Let
M be a compact metric space with a metric ρ. We can think of M as being the
union of a finite number m of compact Riemannian manifolds M1, M2, . . . , Mm

on which a diffeomorphism f will be smooth. The Mi are ‘glued together’
along a finite number of (C1) manifolds contained in G, a union of a finite
number of (C1) compact submanifolds. Our singularities will lie along such
‘joins’. Let V = M\G be an open dense subset of M (so that V is the original
domain with the ‘joins’ removed). Let µ be a measure on M with µ(M) < ∞
and let f be a µ-invariant, C2, one-to-one mapping defined on an open set
N ⊂ V into V . Denote singf = M\N (this is the set of ‘singular’ points).
Then f is a smooth map with singularities. This is a technical description of
the idea of removing parts of the domain on which differentiability fails. The
Katok–Strelcyn conditions which follow guarantee that the removed parts are
not too significant, and we shall see in Chapters 6 and 8 that for the systems
of interest to us, smooth maps with singularities which satisfy these conditions
are straightforward to define.

5.4.1 Katok–Strelcyn conditions

The work of Katok et al. (1986) is based on two key technical conditions.
Recalling the definition of an open ε-ball B(·, ε) (Definition 3.2.5) we have:

(KS1) There exist constants a, C1 > 0 such that for every ε > 0

µ(B(singf , ε)) ≤ C1ε
a, (5.24)

and

(KS2) There exist constants b, C2 > 0 such that for every x ∈ M\singf

‖D2f ‖ ≤ C2(dist(x, singf ))−b. (5.25)

Condition (KS1) ensures that the ‘number’ of singularities in our domain is
sufficiently small (in fact it implies that µ(singf ) = 0), and that the measure µ

is not concentrated too close to the singularities. Condition (KS2) concerns the
growth of f , and ensures that the second derivative does not grow too fast near
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singularities. Note that in Katok et al. (1986) three conditions are given. The
third is the Oseledec condition ensuring the existence of Lyapunov exponents
that we have given as (OS) (Equation 5.22).

5.4.2 Ergodicity and the Bernoulli property

The main theorem of Katok et al. (1986) pulls together most of the ideas in
this chapter for smooth maps with singularities. We introduce the terms Man-
ifold Intersection Property, and Repeated Manifold Intersection Property for
properties defined in the following theorem.

Theorem 5.4.1 (Katok et al. (1986)) Let (M, A, f ,µ) be a measure-preserving
dynamical system such that f is a smooth map with singularities as defined
above.

(a) Suppose f satisfies the conditions (KS1), (KS2) and (OS). Then for almost
every z ∈ M and for all tangent vectors at z, Lyapunov exponents exist, and
local stable manifolds γ s(z) and local unstable manifolds γ u(z) exist for each
z such that the Lyapunov exponents are negative and positive respectively.

(b) Suppose in addition all Lyapunov exponents �= 0 almost everywhere. Then
M decomposes into a countable family of positive measure, f -invariant pairwise
disjoint sets M = ⋃i=1 !i such that f |!i is ergodic and !i = ⋃n(i)

j=1 !
j
i where

for each j, f n(i)|
!

j
i

has the Bernoulli property.

(c) Suppose in addition for almost every z, z′ ∈ M there exists integers m, n
such that f m(γ u(z))∩ f −n(γ s(z′)) �= ∅. We call this the Manifold Intersection
Property. Then in the decomposition of M we have only one set !i = !1. This
implies f is ergodic.

(d) Suppose in addition for almost every z, z′ ∈ M and every pair of integers
m, n sufficiently large, f m(γ u(z))∩ f −n(γ s(z′)) �= ∅. We call this the Repeated
Manifold Intersection Property. Then all powers of f are ergodic. This implies
f has the Bernoulli property.

The proof of this theorem can be found in Katok et al. (1986), and is extremely
technical. We give the briefest of motivating arguments by showing that the
Manifold Intersection Property implies topological transitivity. This corres-
ponds to (c) in Theorem 5.4.1 since we have already shown that topological
transitivity implies ergodicity in this situation.

Lemma 5.4.1 Let the measure-preserving dynamical system (M, A, f ,µ) be
such that conditions (KS1), (KS2) and (OS) are satisfied, and Lyapunov expo-
nents �= 0 almost everywhere. Suppose we also have the Manifold Intersection
Property, i.e., for almost every z, z′ ∈ M there exists integers m, n such that
f m(γ u(z)) ∩ f −n(γ s(z′)) �= ∅. Then f is topologically transitive.
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Figure 5.4 Sketch of the construction of a chain from an open set V to an open set
U. The filled black circles represent the points p, z′ = f −k(p), s and z = f j(s). The
open circles represent the chain itself. This is t = f −j(y), y = f −m(a), a = f −n(y′),
y′ = f −k(q) so that q = f i(t) with i = k + n + m + j.

Sketch proof The general strategy of the proof is to construct a chain between
any two arbitrary open sets U and V , in the sense that U contains a point which
after some number i of iterations of f ends up in V . Such a chain is illustrated
in Figure 5.4 and we use the following facts to allow its construction:

(i) Open sets by definition contain ε-balls with positive measure.
(ii) Since the arbitrary set V is open and since γ s(x) exists for almost every

x ∈ M, there exists an ε-ball B1(p, ε1) ⊂ V about p of radius ε1 such that
γ s(p) exists.

(iii) For almost every z′ ∈ M, γ s(z′) exists and has size r(z′); that is, γ s(z′)
exists in an ε-ball B2(z′, r(z′)) of radius r(z′) (we are not quite rigorous
here, for the reasons described in Section 5.3.3). Then γ s(z′) has the
property that for all y′ ∈ γ s(z′) ⊂ B2(z′, r(z′)) there exists an integer k
such that d(f k(z′), f k(y′)) < ε1 (this comes from Equation (5.23)).

(iv) Now from the manifold intersection property, if z′ is such that γ s(z′)
exists, there exists a point y′ ∈ γ s(z′) such that f −n(y′) ∈ f m(γ u(z)) for
almost every z ∈ M. Call the intersection point a.

(v) Similarly to (i), for any open U there exists a point s such that γ u(s) exists
and there exists an ε-ball B3(s, ε2) about s of radius ε2 contained in U.

(vi) Similarly to (ii), for almost every z ∈ M, there exists an ε-ball B4(z, r(z))
of radius r(z) such that γ u(z) exists in B4(z, r(z)).

Now we use the above facts to contruct the chain, referring to Figure 5.4.
Given any open set V and a fixed ε1 > 0 there exists a point p and a point
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q ∈ B1(p, ε1) ⊂ V such that y′ = f −k(q) ∈ γ s(z′) = γ s(f −k(p)) for some
k. Similarly, given any open set U and a fixed ε2 > 0 there exists a point s
and a point t ∈ B3(s, ε2) ⊂ U such that y = f j(t) ∈ γ u(z) = γ u(f j(s)) for
some j. Then by the Manifold Intersection Property, q and t can be chosen so
that f −n(f −k(q)) = f −n(y′) = a = f m(y) = f m( f k(t)). Therefore, setting
i = k + n + m + j, we have t = f −i(q).

We have shown that for any pair of open sets U and V , there exists an
ε-ball contained in V of arbitrarily small radius containing a point q such that
f −i(q) = t, where t is contained in an ε-ball of arbitrarily small radius contained
in U. Therefore f −i(V) ∩ U �= ∅, and so f i(U) ∩ V �= ∅, proving topological
transitivity.

We note here that this is only a sketch proof because, as discussed in Section
5.3.3, we do not have uniform bounds on the sizes r(z) of local stable and
unstable manifolds, nor on the rate at which a point y ∈ γ s(z) approaches z.

Lemma 5.4.2 Let the measure-preserving dynamical system (M, A, f ,µ) be
such that conditions (KS1), (KS2) and (OS) are satisfied, and Lyapunov expo-
nents �= 0 almost everywhere. Suppose we also have the Repeated Manifold
Intersection Property, so that for almost every z, z′ ∈ M and every pair of suffi-
ciently large integers m, n, f m(γ u(z))∩f −n(γ s(z′)) �= ∅. Then f is topologically
mixing.

Sketch proof The repeated manifold intersection property ensures that we can
construct a family of chains in the manner of the previous proof such that for
any open set V , there is a point q ∈ V such that f −i(q) = t, where t is contained
in an arbitrary open set U, where i = k + n + m + j, for all sufficiently large n
and m. Therefore f i(U)∩V �= ∅ for all sufficiently large i, showing topological
mixing.

The result of Theorem 5.4.1, in the words of the authors of Katok et al. (1986),
is to ‘generalize Pesin’s results to a broad class of dynamical systems with
singularities and at the same time to fill gaps and correct errors in Pesin’s proof
of the absolute continuity of families of invariant manifolds’. The topological
conditions in parts (c) and (d) of the theorem are closely linked to the ideas
of topological transitivity and topological mixing, as the two previous lemmas
demonstrate.

Key point: Katok–Strelcyn theory allows the extension of Pesin theory for systems
with singularities, such as non-smooth linked twist maps, and adds a condition to
verify the Bernoulli property on the entire domain.
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Example 5.4.1 The Arnold Cat Map is a smooth map, so results for smooth
maps with singularities also apply to it. It satisfies all the conditions in
Theorem 5.4.1, and so has the Bernoulli property. Of course, we do not need
to appeal to machinery as heavy as the Katok–Strelcyn theorem to show this,6

but this is an important building block to understand similar results for linked
twist maps.

5.5 Methods for determining hyperbolicity

5.5.1 Invariant cones

To apply Pesin’s theorem, we must verify that Lyapunov exponents exist, and
then show that they are not equal to zero. Note that if we wish the ergodic
partition to cover the whole of our original domain we must have non-zero
Lyapunov exponents almost everywhere (that is, at least on a set of full measure).
For this we turn to the Anosov conditions for hyperbolicity above in Equations
(5.3) and (5.4). If these inequalities hold then Lyapunov exponents (if they exist)
have absolute value at least log |λ|. Demonstrating that these inequalities hold
equates to showing that the diffeomorphism is uniformly hyperbolic. As we
have seen, in simple systems such as the Cat Map, we might be able to produce
the desired splitting of tangent space directly, by knowing the exact directions
of stable and unstable manifolds. In general however, this is more complicated.
We do not usually know where Es and Eu lie. To overcome this we employ a
technique known variously as the method of invariant cones, invariant sectors,
or Alekseev’s method. The technique was devised in Alekseev (1969), and
also appears in Sinai (1970), Moser (1973), and was adapted in Wojtkowski
(1985). Discussions of the method can be found in, for example, Katok &
Hasselblatt (1995), Chernov & Markarian (2003), Brin & Stuck (2002) and
Robinson (1998).

The general idea is to find a cone, or sector, in the tangent space which is
mapped (strictly) into itself under forward iteration of the map (and its Jacobian),
such that vectors within that cone are expanded. Such a cone is called an unstable
cone. This idea was effectively discussed in Section 2.2.1, and there is a direct
analogy here with Figure 2.6. There we saw how a sector produced by a pair of
initial directions was contracted under forward iteration, and homed in on the
direction of the unstable manifold. Recall also how the ‘length’ of the iterated

6 For example, the method of Markov partitions can be used to extract the symbolic dynamics
directly. See, for example, Adler (1998).



5.5 Methods for determining hyperbolicity 155

vectors grew. This method will also work even if the unstable manifolds do not
simply lie in the same direction at every point, providing our initial choice of
cone encompasses all possible directions in which the unstable manifolds could
lie. Because for hyperbolicity we require linear contracting behaviour as well,
we must also find a stable cone which maps (strictly) into itself under back-
ward iteration, containing vectors which are expanded under those backward
iterations.

We will give the construction in more detail in the case of a two-dimensional
diffeomorphism f : R2 → R2. The generalization to maps on the torus and to
higher dimensional maps is relatively straightforward. First we define a cone in
general. For a point x ∈ R2 and tangent vector v ∈ TR2, let v = v1 + v2, with
v1 ∈ L, a subspace of TR2, and v2 ∈ L⊥, an orthogonal subspace of TR2 (in
two dimensions this simply means we write any vector v as a linear combination
of two chosen basis vectors).

Definition 5.5.1 (cone) (Katok & Hasselblatt (1995), Chernov & Markarian
(2003)) A cone of size γ at x ∈ R2 is defined to be the set

Cγ (x) = {v1 + v2 ∈ TxR
2 such that |v1| ≤ γ |v2|}.

Drawing such a cone in tangent space reveals why they are sometimes called
sectors. In higher dimensions the cones may have a more general geometry.

Now we define a cone for almost all x ∈ R2. Gathering together all such
cones we form a cone field (also called a sector bundle) C:

Definition 5.5.2 (cone field) The collection {Cγ (x)} given by

{Cγ (x)} =
⋃

a.e.x∈R2

Cγ (x)

is a cone field on R2.

Definition 5.5.3 A cone field is invariant under f if, for almost every x ∈ R2,

DfCγ (x) ⊆ Cγ (f (x)).

A cone field is strictly invariant under f if, for almost every x ∈ R2,

DfCγ (x) ⊂ Cγ (f (x)).

A cone field is eventually strictly invariant under f if, for almost every x ∈ R2,
there exists n ∈ N (which may depend on x) such that

Dxf nCγ (x) ⊂ Cγ (f
n(x)).

We will require two cones, one for the expanding direction and one for the
contracting direction. Thus we choose L = Es, L⊥ = Eu, and let v1 = vs,
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v2 = vu so that v = vs + vu has stable and unstable components. Now define
the pair of cones

Cs
γ (x) = {vs + vu ∈ TxR

2 such that |vu| ≤ γ |vs|},
Cu
γ (x) = {vs + vu ∈ TxR

2 such that |vs| ≤ γ |vu|}.

We observe that frequently such a pair of cones are referred to as horizontal
and vertical cones (see for example Katok & Hasselblatt (1995)). This is chiefly
to stress the transversal nature of the construction, but as we shall see in later
chapters, cones need not be centered around the horizontal and vertical axes
of tangent space. They key point is that they correspond to stable and unstable
directions.

Definition 5.5.4 A cone field {Cs
γ } is contracting, if for almost every x ∈ R2

and for all v ∈ Cs
γ (x),

|Df (v)| < |v|.
Similarly, a cone field {Cu

γ } is expanding, if for almost every x ∈ R2 and for all
v ∈ Cu

γ (x),

|Df (v)| > |v|.
A cone field {Cs

γ } is interior-contracting, if for almost every x ∈ R2 and for all
v ∈ int(Cs

γ (x)),

|Df (v)| < |v|.
Similarly, a cone field {Cu

γ } is interior-expanding, if for almost every x ∈ R2

and for all v ∈ int(Cu
γ (x)),

|Df (v)| > |v|.
Proposition 5.5.1 (see e.g., Brin & Stuck (2002)) Let f : M → M be a
diffeomorphism of a compact space. If there exist cone fields {Cs

γ } and {Cu
γ }

such that

1. {Cs
γ } is strictly invariant under f −1

2. {Cu
γ } is strictly invariant under f

3. {Cs
γ } is contracting

4. {Cu
γ } is expanding

then f is uniformly hyperbolic.
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Under these strict conditions for invariance and growth, compactness guar-
antees that there exists a constant 0 < λ < 1 such that the Anosov conditions
are satisfied. In this case the splitting of tangent space is given by

Es(x) =
⋂
n≥0

Df −n
f n(x)C

s
γ (f

n(x)),

Eu(x) =
⋂
n≥0

Df n
f −n(x)C

u
γ (f

−n(x)).

We can relax this classical theorem in one of two ways to produce nonuniform
hyperbolicity. The requirement of strict invariance under every iterate could be
relaxed to give:

Theorem 5.5.1 (Alekseev (1969)) Let f : M → M be a diffeomorphism of a
compact space. If there exist cone fields {Cs

γ } and {Cu
γ } such that

1. {Cs
γ } is invariant under f −1

2. {Cu
γ } is invariant under f

3. {Cs
γ } is contracting

4. {Cu
γ } is expanding

then f has non-zero Lyapunov exponents almost everywhere.

Alternatively we could relax the requirement of needing contraction (resp.
expansion) for all vectors in Cs

γ (resp. Cu
γ ) to give:

Theorem 5.5.2 (Alekseev (1969)) Let f : M → M be a diffeomorphism of a
compact space. If there exist cone fields {Cs

γ } and {Cu
γ } such that

1. {Cs
γ } is invariant and eventually strictly invariant under f −1

2. {Cu
γ } is invariant and eventually strictly invariant under f

3. {Cs
γ } is interior-contracting

4. {Cu
γ } is interior-expanding

then f has non-zero Lyapunov exponents almost everywhere.

The growth conditions for tangent vectors v in Definition 5.5.4 are not quite
the same as the Anosov conditions (5.3) and (5.4), since the Anosov conditions
require the growth of tangent vectors to have a uniform bound λ strictly greater
than one. However the fact that v lies in an invariant and eventually strictly
invariant cone allows the Anosov conditions to be deduced (heuristically, if we
wait long enough the growth will eventually be great enough).

Key point: The cone field argument is a crucial tool for demonstrating that
Lyapunov exponents are non-zero.
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Figure 5.5 Summary of results connecting hyperbolic systems with the ergodic
hierarchy.

5.6 Summary

We summarize the development of the links between the theory of hyperbolic
dynamical systems and the ergodic hierarchy in Figure 5.5. On the left in order
of decreasing strictness are the notions of uniform hyperbolicity, nonuniform
hyperbolicity and nonuniformly hyperbolic systems with singularities. On the
right in order of decreasing complexity is the ergodic hierarchy, in which the
Bernoulli property implies the K-property and mixing, which in turn imply
ergodicity, which is a special case of a partition into ergodic components. In this
chapter we have given some details of uniformly and nonuniformly hyperbolic
systems, and in particular discussed Pesin theory, which guarantees an ergodic
decomposition for nonuniformly hyperbolic systems, ergodicity for systems
which also possess topological transitivity, and a decomposition into Bernoulli
components. We have also given the results of Katok et al. (1986). These extend
the results of Pesin to smooth maps with singularities, and give the Manifold
Intersection Property (M. I. P.) as a condition for ergodicity, and the Repeated
Manifold Intersection Property (R. M. I. P.) as a condition for the Bernoulli
property.
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The ergodic partition for toral
linked twist maps

This chapter discusses the application of Pesin theory to linked twist
maps. Drawing on three key papers from the ergodic theory literature we
give the proof that linked twist maps can be decomposed into at most a
countable number of ergodic components.

6.1 Introduction

In Chapter 4 we gave Devaney’s construction of a horseshoe for a linked twist
map on the plane. The existence of the horseshoe and the accompanying subshift
of finite type implies that the linked twist map contains a certain amount of
complexity. However, topological features such as horseshoes may not be of
interest from a statistical, observable, or measure-theoretic point of view, as
they occur on invariant sets of measure zero. The subshift of finite type occurs
on just such an invariant set of measure zero and is therefore arguably not of
significant statistical interest. Nevertheless it is possible that similar behaviour
is shared by points in the vicinity of the horseshoe, meaning that complex
behaviour is present in a significant (that is, positive measure) domain. Easton
(1978) conjectures that this may indeed be the case, and that in fact linked twist
maps may be ergodic.

Three papers provide the framework for applying the results of Pesin (1977)
connecting hyperbolicity and ergodicity. In this and the following two chapters
we draw heavily on each of Burton & Easton (1980), Wojtkowski (1980) and
Przytycki (1983). After defining in detail different forms of toral linked twist
map, we begin with the work of Burton & Easton (1980), who consider the
simplest case – smooth co-rotating linked twist maps on a two-torus – which has
the advantages of allowing each twist map to be expressed in the same coordin-
ate system, and also allowing the system to be differentiable at all points. In

159
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Chapter 8 we see how the difficulties of the necessary coordinate changes in
the planar case can be overcome by appealing to Wojtkowski (1980). The result
proved in Burton & Easton (1980) is that the domain of smooth co-rotating
toral linked twist maps is the union of (possibly countably many) ergodic com-
ponents (an ergodic partition). Of course, this is still some way short of the
goal of showing that linked twist maps have the Bernoulli property on all of
their domain. In the next chapter we discuss the geometrical arguments needed
to deduce a single ergodic component, and the extension to mixing and the
Bernoulli property, using the argument in Przytycki (1983).

Just as in the Arnold Cat Map in Chapter 5 the key ingredients of the toral
linked twist maps are a pair of transverse directions, one in which regions of
phase space are expanded, or stretched, and one in which regions are contracted.
In the Cat Map, this expansion and contraction occurs at every iterate of the
map, while for linked twist maps only iterates landing in the appropriate annulus
result in expansion or contraction. Because of this fact, toral linked twist maps
can be viewed as a nonuniformly hyperbolic generalization of the Cat Map.
The basic strategy behind the proofs in this chapter is to show that toral linked
twist maps have non-zero Lyapunov exponents. This is more straightforward
for the co-rotating, co-twisting case, as here both twists result in expansion
in a common direction. By contrast, in the counter-rotating, counter-twisting
case, the vertical twist may contract the expansion achieved by the horizontal
twist, and so we require a condition on the strength of the twists to ensure the
necessary result.

6.2 Toral linked twist maps

We define here a general form of the toral linked twist map, similar to that found
in Burton & Easton (1980), Wojtkowski (1980) and Przytycki (1983). We have
already discussed some of the definitions here in Chapter 2 when putting linked
twist maps into the context of mixers, but we give the definitions again, with
some more detail, for ease and clarity.

Consider the two-dimensional torus T2 with coordinates (x, y) (mod 1).
Define two overlapping annuli P, Q by

P = {(x, y) : y0 ≤ y ≤ y1}
Q = {(x, y) : x0 ≤ x ≤ x1}.

Denote the union of the annuli R = P ∪ Q and the intersection S = P ∩ Q.
See Figure 6.1. (For reference, Burton & Easton (1980) take x0 = y0 = 0,
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Figure 6.1 The 2-torus T
2 with annuli P and Q. In the square on the right, the

upper and lower edges are identified and the left and right edges are identified to
create the torus on the left.

x1 = y1 = 1/2 so R is an L-shaped region covering 3/4 of the torus, while
Wojtkowski (1980) takes x0 = y0 = 0, x1, y1 arbitrary, so R is an L-shaped
region of arbitrary size. Przytycki (1983) defines his annuli as we have done.)
We will frequently need to refer to the boundaries of the annuli P and Q, and
so we give the following definitions.

Definition 6.2.1 [∂P0, ∂P1, ∂Q0, ∂Q1, ∂P, ∂Q] We denote the lower boundary
of P (that is, the line {(x, y) : x ∈ [0, 1], y = y0}) by ∂P0. Similarly we denote
the upper boundary of P by ∂P1 = {(x, y) : x ∈ [0, 1], y = y1}, the left
boundary of Q by ∂Q0 = {(x, y) : x = x0, y ∈ [0, 1]}, and the right boundary
of Q by ∂Q1 = {(x, y) : x = x1, y ∈ [0, 1]}. Finally we denote the unions
∂P = ∂P0 ∪ ∂P1 and ∂Q = ∂Q0 ∪ ∂Q1.

It is usual and natural to unwrap the torus T2 and represent it as the unit
square, as in Figure 6.1. The top and bottom edges of the square are identified,
as are the left and right edges. The annuli P and Q then become vertical and
horizontal strips in the square.

6.2.1 Twist maps on the torus

A twist map is defined by assigning to each annulus a shear. In particular we
define the function

F : R → R

F = F(x, y; f ) =
{
(x + f (y), y) if(x, y) ∈ P
(x, y) if (x, y) ∈ R\P,

where f : [y0, y1] → R is a real-valued function, called a twist function, such
that f (y0) = 0 and f (y1) = k, for some integer k. So if F acts on a point (x, y)
in R (the union of P and Q) but not in P, it leaves that point unchanged (in other
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P

P

P

P

F F

Figure 6.2 Illustration of the action of an F twist in both representations of the torus
T

2. In the upper row the boundaries ∂P of P are shown in bold. The thin line is a
line of constant x which will act as a line of initial conditions which are transformed
under one iterate of F into the thin line in the lower diagrams. Initial conditions
outside P remain where they begin while a line of initial conditions within P gets
wrapped around the torus. Here we have chosen k = 1 so the wrapping number is 1.

words, F is the identity map, Id, on R\P). If F is applied to a point (x, y) in P,
the y-coordinate is left unchanged, but the x-coordinate is altered by an amount
dependent on the value of y. We insist that k must be an integer in order that the
two components of F should ‘join up’ at the boundary of P – that is, F should
be continuous on ∂P. We illustrate this in Figure 6.2, which shows a sketch of
the image of a line of constant x under iteration of the map F. Points outside P
do not move, while the section of the original line inside P is wrapped k times
around the torus (in this figure we have taken k = 1). Since k is an integer, the
image is also a continuous line. (For ease of illustration we have drawn f as a
linear function, but this need not be the case. We will discuss this further in the
following sections).

We have an exactly analogous twist map assigned to Q:

G : R → R

G = G(x, y; g) =
{
(x, y + g(x)) if(x, y) ∈ Q
(x, y) if(x, y) ∈ R\Q,

where g : [x0, x1] → R is a real-valued function such that g(x0) = 0 and
g(x1) = l, for some integer l. Again G = Id outside the annulus Q. Applying
the map G to a line of constant y results in an image which wraps around the
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Q

Q

GG

Figure 6.3 Illustration corresponding to Figure 6.2 showing the action of a twist
G. The bold lines depict the annulus Q. Here we have chosen l = 2 and so the
section of the thin line of initial conditions within Q are wrapped around the torus
twice.

torus l times before joining up with line segments left unchanged. Figure 6.3
shows this for l = 2. For obvious reasons we refer to k and l as the wrapping
number of the twist.1 If a twist has wrapping number 1 or 2, we may also refer
to it as a single-twist or double-twist respectively, again for obvious reasons.
Note that in general k and l may be positive or negative integers and so twists
may wrap around the torus in either direction. The choice of sign of kl makes
a crucial difference to the ensuing results and methods of proof in the chapter.

Having ensured the continuity of F and G we turn to further smoothness
properties. Since the identity map is smooth, the map F will be endowed with
the same smoothness properties as the function f if and only if these smoothness
properties also hold on ∂P.

There is much to be said about restrictions on the form of the functions f
and g. For now we will assume that the functions f and g are C2 – that is,
twice differentiable with continuous second derivatives (this assumption is for
technical reasons later on). Further we assume that we have

df

dy

∣∣∣∣
y
�= 0

dg

dx

∣∣∣∣
x
�= 0

for each y0 < y < y1 and each x0 < x < x1. This condition, that the deriv-
atives of f and g do not vanish, ensures that we have monotonic increasing
or decreasing twists. We now define the strength of a twist by considering the

1 Note that this is similar to the concept of a winding number or rotation number of a circle
map (see for example Katok & Hasselblatt (1995)).
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shallowest slopes of f and g. Since the twist functions f (y) and g(x) will always
be functions of y and x respectively, we will write their derivatives as f ′(y)
and g′(x).

Definition 6.2.2 (strength of a twist) The strength α of a twist map F on a
horizontal annulus P is given by:

if k > 0 α = inf
{
f ′(y) : y0 < y < y1

}
if k < 0 α = sup

{
f ′(y) : y0 < y < y1

}
,

and similarly, the strength β of a twist map G on a vertical annulus Q is given by

if l > 0 β = inf
{
g′(x) : x0 < x < x1

}
if l < 0 β = sup

{
g′(x) : x0 < x < x1

}
.

Both the properties defined above – the wrapping number and the strength
of the twist – will be important factors in the behaviour of a linked twist map.
Thus we name, as in Przytycki (1983), such a twist map F a (k,α)-twist, and
such a twist map G a (l,β)-twist.

6.2.2 Linking the twist maps

Finally the toral linked twist map H is defined by composing F and G:

H : R → R

H = H(x, y; f , g) = G ◦ F.

The action of H is illustrated in Figure 6.4. Referring to this figure, it is worth
noting explicitly the role that the identity mapping in the definitions of F and G
plays as we iterate under H. Suppose an initial point (x, y) is in P. When the map
F is applied (the first component of the linked twist map H), the image remains
in P. If this image F(x, y) falls into the overlap S then the second component of
H (the twist map G) moves our point in a transverse direction, giving the image
H(x, y). In Figure 6.4 this is shown in black. Note now what would happen if
we applied H again. Our new initial point H(x, y) is in R\P, and so the first
component of H is simply the identity map, and this would be followed by an
iteration of G. Similarly suppose now that we chose an initial condition (x′, y′)
(shown in grey in Figure 6.4) in P which after an iterate of F does not lie in S.
Then the contribution from G is the identity map and F(x′, y′) = H(x′, y′). This
illustrates the two key elements of a linked twist map. First, during iteration a
point can be moved in one of two different (transverse) directions (in fact here
the directions lie at right angles but this is simply an artefact of the simplicity
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Figure 6.4 The action of the toral linked twist map H. An initial condition (x, y)
(shown in black) for which F(x, y) ∈ S is transformed by the twists F and G in
transverse directions. Frequently however, a component of H is the identity map,
for example the next iterate of H(x, y), or an initial condition (x′, y′) (shown in
grey) for which F(x′, y′) �∈ S. Then F(x′, y′) = H(x′, y′) since the contribution
from G is the identity.

of the toral framework. In Chapter 8 on planar linked twist maps we will see
that this is not necessary, as long as the directions are sufficiently transverse).
Second, in between moments when a point may be moved under the action of
either F or G, we may have times when the action of F or G is to leave a point
stationary. As we shall see, this is the crucial factor in the non-uniformity of a
linked twist map’s hyperbolicity.

The likelihood of encountering an identity transformation for a given iterate
is, roughly speaking, a function of the size of the annuli P and Q. It is clear
that in the case x0 = y0 = 0, x1 = y1 = 1 we have P = Q = S and so at
every iteration of H we have a twist from F and one from G and the identity
is never applied. Every iterate of H lands in S. This is a simpler system than a
toral linked twist map, called a toral automorphism. For the correct choice of
twist functions this is a uniformly hyperbolic system. In particular, the Arnold
Cat Map can be regarded as a linked twist map.

Example 6.2.1 (Arnold Cat Map as a linked twist map) If we set x0 = y0 = 0
and x1 = y1 = 1, then the annuli and their union and intersection all coincide
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on the torus: P = Q = R = S = T2. Setting the twist functions as f (y) = y
and g(x) = x, we have F(x, y) = (x + y, y) and G(x, y) = (x, y + x) for all
(x, y) ∈ T2. Then H(x, y) = G ◦ F = (x + y, x + 2y). This is the Arnold Cat
Map, which can be viewed as the composition of two shear maps. Although
it is possible to prove the Bernoulli property for the Arnold Cat Map directly
(using Markov partitions), the fact that it can be cast as a form of linked twist
map means that we can verify this property by proving the result for the linked
twist maps.

Key point: If we link together maps on annuli which are the width of the whole
torus, we get the simpler situation of a toral automorphism. Choosing the correct
twist functions then gives a uniformly hyperbolic system as the map is subject to
the same expansion and contraction at every iteration. In particular the Arnold Cat
Map is an example of such a system.

6.2.3 First return maps

In the case P �= S or Q �= S we will need to handle the situation in which some
iterates of F, G and H land in S and others do not. To this end we construct first
return maps.

Definition 6.2.3 [FS] The first return map FS : S → S is given by

FS(z) = Fm(z)

for each z ∈ S, where m = m(z) is such that Fm(z) ∈ S and Fi(z) /∈ S for
1 ≤ i < m.

Note that the integer m in the above definition is dependent on z. There may be
some points z ∈ S for which Fm(z) /∈ S for all m > 0. However, since F is a
rigid rotation on each circle y = constant, the set of such z is a subset of those
points z = (x, y) for which f (y) is rational, and so has measure zero.2 We define
similarly the first return map for G and H.

Definition 6.2.4 (GS) The first return map GS : S → S is given by

GS(z) = Gm′
(z)

for each z ∈ S, where m′ = m′(z) is such that Gm′
(z) ∈ S and Gi(z) /∈ S for

1 ≤ i < m′.

2 Due to the fact that a one-to-one function takes a countable set of points onto a countable set
of points.
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Definition 6.2.5 (HS) The first return map HS : S → S is given by

HS(z) = Hm′′
(z)

for each z ∈ S, where m′′ = m′′(z) is such that Hm′′
(z) ∈ S and Hi(z) /∈ S for

1 ≤ i < m′′.

The reader will find it straightforward to see that

HS = GS ◦ FS .

In the following we frequently drop the composition symbol ‘◦’ for ease of
notation. It is worth noting explicitly the relationship between H and HS . Applic-
ations of H form a chain of applications of F and G. If z ∈ P and F(z) ∈ S
then H ≡ GF (by convention composition of maps takes place on the left). If
z ∈ P and F(z) /∈ S then H ≡ F (as G ≡ Id outside Q). Similarly, if z ∈ Q\P
then H ≡ G (as F ≡ Id outside P). Applications of HS also form a chain of
F and G, but now HS is equivalent to a chain of Fs (until we hit S) followed
by a chain of Gs (until we hit S). Both H and HS represent the same long-term
dynamics, as can be seen in the following sample chain of maps, (remembering
the evolution of composition of maps reads right to left, and noting that here
we do not write any application of the identity map Id):

H︷︸︸︷
G

H︷︸︸︷
G

H︷︸︸︷
G

H︷︸︸︷
GF︸ ︷︷ ︸

HS

H︷︸︸︷
GF

H︷︸︸︷
F︸ ︷︷ ︸

HS

H︷︸︸︷
G

H︷︸︸︷
G

H︷︸︸︷
GF︸ ︷︷ ︸

HS

H︷︸︸︷
G

H︷︸︸︷
GF

H︷︸︸︷
F

H︷︸︸︷
F︸ ︷︷ ︸

HS

More precisely, take an initial z ∈ S. Let FS(z) = Fm0(z) (as defined above),
and let GS(FS(z)) = Gm′

0(FS(z)), so HS(z) = GS ◦ FS = Gm′
0(Fm0(z)) =

Hm′′
0 (z). Note that m′′

0 = m0 + m′
0 − 1. Denoting the orbit zi = Hi

S(z), we see
that FS(zi) = Fmi(zi), and similarly for G and m′

i, so that Hn
S = Hj, where

j =∑n−1
i=0 (mi + m′

i − 1). Of course, each of the mi, m′
i depends on the initial z.

We note here that Wojtkowski (1980) constructs sequences mi and m′
i for

each z, which count the number of iterates of F and G between visits to S for an
trajectory of H . These allow one to calculate explicitly the direction of stable
and unstable manifolds of z using continued fractions (see Chapter 7 for more
details).

Key point: When constructing a return map to the intersection region, the number
of iterations of the original map that is needed to return a point to the intersection is
dependent on the point itself. The fact that different points take different amounts
of time to return is the feature that makes the hyperbolicity of a linked twist map
nonuniform.
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6.2.4 Co-rotating toral linked twist maps

For a co-rotating linked twist map we require k and l to be of the same sign.
We assume throughout without loss of generality that for the co-rotating case
both k and l are positive. (If both are negative then either the transformation
(x, y) → (−x, −y), or reversing the direction of time, will recover our choice
of polarity.) Recall that on the torus co-rotating is the same as co-twisting.

6.2.5 Counter-rotating toral linked twist maps

When k and l are different signs the twists go in different directions. In all of the
following we assume without loss of generality that, for the counter-rotating
case, k > 0 and l < 0. The symmetry of the standard torus may suggest that
a simple transformation ought to render the co-rotating and counter-rotating
cases identical, but this is not the case, for the reasons described in Section
2.2.1, and developed in more detail in this chapter. Recall that on the torus
counter-rotating is the same as counter-twisting.

6.2.6 Smooth twists

To make the linked twist map smooth (for our purposes at least twice continu-
ously differentiable, except possibly at the boundaries of P and Q, where we
require only continuous differentiability) we require the following conditions
on f and g:

f ′(y0) = f ′(y1) = g′(x0) = g′(x1) = 0.

This ensures that on ∂P and ∂Q (the boundaries of P and Q respectively), the
value of the derivatives of f and g equal the value of the derivative of the identity.
Because we insist that f and g are monotonic, we also have (on the following
open intervals for the case k > 0, l > 0):

f ′(y) > 0 for y ∈ (y0, y1),

g′(x) > 0 for x ∈ (x0, x1).

Then the linked twist map is differentiable everywhere, including on the bound-
aries of P and Q. These are just the conditions on the twists assumed by
Burton & Easton (1980). An example of a smooth twist can be given by the
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polynomial f (y) = ay3 + by2 + cy + d, where

a = −2k

−y3
0 − 3y0y2

1 + y3
1 + 3y1y2

0

,

b = 3k(y1 + y0)

−y3
0 − 3y0y2

1 + y3
1 + 3y1y2

0

,

c = −6ky0y1

−y3
0 − 3y0y2

1 + y3
1 + 3y1y2

0

,

d = ky2
0(−y0 + 3y1)

−y3
0 − 3y0y2

1 + y3
1 + 3y1y2

0

.

These coefficients guarantee that f (y0) = 0, f (y1) = k, and f ′(y0) = f ′(y1) = 0.
We have corresponding cofficients for g(x) = a′x3 + b′x2 + c′x + d′. We show
this smooth twist function in Figure 6.5(b) for k = 1. Note that although we
have f ′(y) > 0 for y ∈ (y0, y1) and similarly for g, we have α = β = 0. This
is because the derivatives tend to zero on ∂P and ∂Q. However on an interval
[y′

0, y′
1] where y′

0 > y0 and y′
1 < y1 the infimum of f ′(y) is bounded away from

zero (assuming k > 0), and similarly for g. This is the basis of the technique
used in Section 6.3.1 to prove our desired result.

6.2.7 Non-smooth twists

If the requirement that the derivatives of f and g should vanish at the boundaries
of P and Q is released, then our linked twist map is no longer differentiable at
points lying on the boundaries of P and Q. Such points are called singularities
of the map, and the method of dealing with them is discussed in Section 5.3.
Since we assume throughout that section that f ′(y) �= 0 for y ∈ [y0, y1], and
g′(x) �= 0 for x ∈ [x0, x1], these conditions ensure that we can have α > 0, and
β > 0 in the co-rotating case, and β < 0 in the counter-rotating case.

6.2.8 Linear twists

The simplest non-smooth forms for f and g are linear functions, giving the
linear twist maps found in Wojtkowski (1980). Specifically these are

f (y) = k

y1 − y0
(y − y0),

g(x) = l

x1 − x0
(x − x0),
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Figure 6.5 (a) Linear twist function f (y) given in Section 6.2.8, with y0 = 1/4,
y1 = 3/4 and k = l = 1. Note the loss of differentiability at y = y0, y1.
(b) Everywhere-differentiable twist function f (y) given in Section 6.2.6 with
parameters as in (a). The function is differentiable in [y0, y1].

and in this case we have

α = k

y1 − y0
= df

dy
∀y ∈ (y0, y1),

β = l

x1 − x0
= dg

dx
∀x ∈ (x0, x1).

We show this linear twist function in figure 6.5(a). Note that while the derivative
of f (resp. g) is identical on the interior of [y0, y1] (resp. [x0, x1]), f (resp. g) is
not differentiable at the endpoints y = y0, y1 (resp. x = x0, x1) since the identity
maps outside the annuli have the derivative zero.

6.2.9 More general twists

It is possible for the functions f and g to have even more generality and for the
following theorems to still hold. For example it is possible for f and g to have
finitely many discontinuities or points of inflexion. We note here in particular the
work of Nicol (1996b), in which certain toral linked twist maps with countably
many discontinuities are shown to have the Bernoulli property, to have infinite
entropy and to be stable with respect to a class of random perturbations; and
Nicol (1996a), in which a Bernoulli toral linked twist map is constructed which
has positive Lyapunov exponents only on a set of zero measure. These scenarios
are unlikely to occur in applications however. The crucial feature here the twist
functions must possess is monotonicity. Without this the following theorems,
as they stand, are not valid.

In fluid mechanical applications it may be rare to see monotonic twist func-
tions. Often physical constraints such as non-slip boundary conditions result in



6.3 The ergodic partition for smooth toral LTMs 171

a non-monotonic velocity profile. In Chapter 9 we discuss some of the issues
connected with this.

6.3 The ergodic partition for smooth toral
linked twist maps

6.3.1 Co-rotating smooth toral linked twist maps

Throughout Section 6.3 we assume we have a smooth map on the whole torus –
that is, twists given by the general smooth twists defined in Section 6.2.6. The
following result was proved in Burton & Easton (1980).

Theorem 6.3.1 (Burton & Easton (1980)) For a toral linked twist map H
composed of (k,α) and (l,β) smooth twists in which k and l have the same
sign, then R = P ∪ Q has an ergodic partition (that is, R is a union of (possibly
countably many) ergodic components of positive measure).

To prove this result we follow the approach of Burton & Easton (1980), using
the everywhere-differentiable form of the twist in Section 6.2.6. This means we
can use Pesin’s results directly without needing to appeal to the Katok–Strelcyn
version for maps with singularities. The case with singularities will be discussed
in the following section. We proceed using the following lemmas. The basic idea
of the proof is to define a set for which we can show that the Lyapunov exponents
are non-zero (for all tangent vectors). Then Pesin theory (see Theorem 5.3.7)
can be applied to deduce an ergodic partition. To complete the proof we must
show that this set contains almost every point in R (that is, all points up to a set
of measure zero). More formally, let

! = {z = (x, y) ∈ R : χ+(z, v) �= 0 for each v �= 0, v ∈ TzR}.
This is the set of all initial conditions whose trajectory gives rise to a non-zero
Lyapunov exponent for any initial tangent vector. Pesin’s results state that !
has an ergodic partition. By considering the following sets and functions we
construct a set of points with non-zero Lyapunov exponents – that is, a set of
points contained in !. Note that Lyapunov exponents exist since the Oseledec
condition (OS) (see Equation (5.22)) is trivially satisfied as our map is smooth
and the torus compact.

Fix a number δ ∈ (0, 1) and define

A1(δ) = {(x, y) ∈ P : y0 + δ(y1 − y0)/2 ≤ y ≤ y1 − δ(y1 − y0)/2},
A2(δ) = {(x, y) ∈ Q : x0 + δ(x1 − x0)/2 ≤ x ≤ x1 − δ(x1 − x0)/2},
A3(δ) = {(x, y) ∈ A1(δ) : H(x, y) ∈ A2(δ)}.
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Q

PA1(d)

A3(d)

A2(d)

Figure 6.6 The strips A1(δ) and A2(δ), together with the set A3(δ), shaded. Points
in A3(δ) map into A2(δ) under a single iteration of H.

The sets A1(δ) and A2(δ) are strips of width (y1 − y0)(1 − δ) in P and (x1 −
x0)(1 − δ) in Q respectively. Here we note that although for the smooth toral
linked twist map we have α, β = 0, the derivatives f ′ and g′ are bounded away
from 0 for points in A1(δ) and A2(δ) for a fixed δ > 0. The set A3(δ) contains
all points in A1(δ) which map into A2(δ) under a single iterate of H (of course
this is the same as the sets of points in A1(δ) which map into A2(δ) under a
single iteration of F, since G leaves the x-coordinate invariant). See Figure 6.6.

Define the function χA3(δ) to be the characteristic function3 for A3(δ), so

χA3(δ) : R → {0, 1}

χA3(δ)(x, y) =
{

1 if(x, y) ∈ A3(δ)

0 if(x, y) /∈ A3(δ).

Finally define

A4(δ) = {(x, y) ∈ R : lim
n→∞

1

n

n−1∑
i=0

χA3(δ)(H
i(x, y)) ≥ δ},

so A4(δ) is the set of points in R whose trajectory under iterates of H lands in
A3(δ)with frequency at least δ (that is, returns on average at least once every 1/δ
iterations). Now we claim that points in A4(δ), for any fixed δ, have non-zero
Lyapunov exponents.

3 We have previously encountered the characteristic function in Section 3.7.
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Lemma 6.3.1 (Burton & Easton (1980)) If z = (x, y) ∈ A4(δ) and if v ∈ TzR
(v �= 0), then χ+(z, v) �= 0. Consequently A4(δ) ⊂ !.

Proof For any point z = (x0, y0) ∈ A4(δ), denote the iterates of z under H by
Hi(z) = zi = (xi, yi). Also we denote F(z) = (x′

0, y0), and similarly F(Hi(z)) =
(x′

i , yi) (note that xi = x′
i if Hi(z) ∈ R\P). Then

DH|z = DG|F(z)DF|z =
(

1 0
g′(x′

0) 1

)(
1 f ′(y0)

0 1

)
(6.1)

if z ∈ P and F(z) ∈ Q. If z /∈ P then the matrix DF is the identity matrix, and
similarly if F(z) /∈ Q then DG is the identity matrix. Therefore, using the chain
rule to compute the Jacobian along a trajectory, we have

DHn|z = DH|Hn−1(z)DH|Hn−2(z) · · · DH|H(z)DH|z
and so DHn|z is a matrix of the form

DHn|z =
(

1 an−1

bn−1 1 + an−1bn−1

)
. . .

(
1 a0

b0 1 + a0b0

)
,

where ai = f ′(yi) if zi ∈ P and ai = 0 if zi ∈ R\P. Similarly bi = g′(x′
i) if

F(zi) ∈ Q and bi = 0 if F(zi) ∈ R\Q. Hence each of the ai, bi ≥ 0 since we
have chosen k, l > 0. In particular, for a fixed δ ∈ (0, 1), when zj ∈ A3(δ), aj,
bj ≥ κ > 0 where

κ = min
{
f ′(y) : y ∈ [y0 + δ(y1 − y0)/2, y1 − δ(y1 − y0)/2],

g′(x) : x ∈ [x0 + δ(x1 − x0)/2, x1 − δ(x1 − x0)/2]} .

Note that κ is strictly positive as we have fixed δ > 0.
To compute Lyapunov exponents we must evaluate ‖DHn|zv‖ for a general

vector v = (v1, v2) in tangent space TzR. For the rest of this proof, for ease
of notation, we will drop the subscript z and write ‖DHnv‖. The idea behind
the argument is effectively an invariant cone field argument, although here
we give the details of computing Lyapunov exponents explicitly. We begin by
demonstrating that the first quadrant of tangent space is invariant and expanding,
in the sense that tangent vectors in this quadrant remain in the quadrant, and
have increasing Euclidean norm. The same is true of the third quadrant, and
these form the expanding cone in tangent space.

We first suppose v1, v2 ≥ 0. Then since the ai, bi ≥ 0, both components
of ‖DHkv‖ are greater than or equal to zero for each k, and we may show as
follows that ‖DHnv‖ is a non-decreasing function of n. (Note that this statement
is not true for the counter-rotating case kl < 0.) First observe the growth of
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‖DHnv‖ whenever an iterate falls into A3(δ). If Hk(z) ∈ A3(δ) for some k then
since ak , bk ≥ κ and v1, v2 ≥ 0, we have for DHkv = (w1, w2),

‖DHk+1v‖ =
∥∥∥∥
(

1 ak

bk 1 + akbk

)
DHkv

∥∥∥∥
=
∥∥∥∥
(

w1 + akw2

bkw1 + (1 + akbk)w2

)∥∥∥∥
=
√

w2
1(1+b2

k)+w2
2(a

2
k +(1+akbk)2)+w1w2(2ak +2bk(1+akbk))

≥
√

w2
1(1 + κ2) + w2

2(1 + 3κ2 + κ4) + w1w2(2κ + 2κ(1 + κ2))

≥
√
(w2

1 + w2
2)(1 + κ2)

=
√

1 + κ2‖DHkv‖.

If this growth occurred at every iteration the proof would be finished. We now
show that this growth occurs sufficiently often to deduce the result. Recall that
A4(δ) contains points whose trajectory lands in A3(δ) with frequency at least δ.
That means that in n iterations, δn of them land in A3(δ) on average. Although
this does not mean that in every n iterations we have at least δn landing in A3(δ),
a simple combinatorial argument will show that if we choose n sufficiently large,
at least δn/2 iterations land in A3(δ). In other words, there exists an n sufficiently
large that Hk(z) ∈ A3(δ) for at least l integers k between 0 and n − 1, where l
is such that l > δn/2. Hence

‖DzHnv‖ ≥ (
√
(1 + κ2))l‖v‖ > (1 + κ2)nδ/4‖v‖,

and therefore

1

n
log
∥∥DzHnv

∥∥ >
δ

4
log(1 + κ2) + 1

n
log ‖v‖

and so

χ+(z, v) = lim
n→∞

1

n
log
∥∥DzHnv

∥∥ >
δ

4
log(1 + κ2) > 0.

This has shown the result only for vectors v for which v1, v2 ≥ 0. For complete
nonuniform hyperbolicity we need it to be true for all vectors in TzR. Lyapunov
exponents have the linearity property χ+(z, sv) = χ+(z, v) for any real s �= 0,
and so setting s = −1 gives χ+(z, v) > 0 for all vectors v for which v1, v2 ≤ 0
(alternatively minor changes to the above argument will suffice). Thus to show
χ+(z, v) �= 0 for all v ∈ TzR we just have to demonstrate the result for v1 < 0,
v2 > 0 (the cases v1, v2 < 0 and v1 > 0, v2 < 0 follow by the linearity property
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with s = −1). If for some n, DzHnv has both components non-negative, then
we can apply the argument above to show that χ+(z, v) > 0.

The only remaining possibility is that DzHnv has a negative first component
and a positive second component for all n > 0. Consider w ∈ TzR with w1 < 0
and w2 > 0. Now letting z = (x0, y0) and F−1(z) = (x′

0, y0) we have

DzH−1w =
(

1 + f ′(y0)g′(x′
0) −f ′(y0)

−g′(x′
0) 1

)(
w1

w2

)
also has first component negative and second component positive. Moreover,
similarly to the above,

‖DzH−1w‖ ≥
√

1 + κ2‖w‖
and then a similar argument gives χ+(z, v) < −(δ/4) log(1 + κ2) < 0.

The above technique of computing Lyapunov exponents for linked twist
maps illustrates a fundamental idea. Equation (6.1) gives an expression for
the Jacobian of the map which is valid only for iterates which begin in the
intersection S and fall into S after the first twist F. If this is the case for every
iterate (as must happen, for example, if x0 = y0 = 0, x1 = y1 = 1, and we
have a toral automorphism – see Example 5.2.4), then the work is simple. The
logarithms of the eigenvalues of the matrix DH are also the Lyapunov exponents
for each point on the torus, and we have uniform hyperbolicity throughout. The
complication here stems from the fact that not every iterate falls into S every
time. The above lemma shows, in the co-rotating case, that providing each
trajectory falls into S sufficiently often, then the contribution from DH ensures
non-zero Lyapunov exponents. However the fact that the number of iterates
between visits to S may differ between individual points in R means that we
have nonuniform hyperbolicity.

Key point: For the smooth co-rotating toral linked twist map, Lyapunov exponents
are non-zero for all points falling into the overlap region sufficiently often. It is
possible to prove this because tangent vectors are expanded by both horizontal and
vertical twist maps every time an iterate hits the intersection, and this expansion is
not undone during times away from the overlap. Iterates visit the overlap sufficiently
frequently to allow Lyapunov exponents to be bounded away from zero.

To show that the whole region R has an ergodic partition, we must show that
! has full measure in R. Since A4(δ) ⊂ ! ⊂ R for each δ, in order to prove
this, it is enough to prove that the set⋃

{A4(δ) : 0 < δ < 1}
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has full measure in R. Before proving this result, we give two lemmas which
will be useful here and in later work. The first says that the orbit of almost every
point in R must hit S under forward iteration, and the second says that almost
all orbits that intersect S (or in fact any measurable set) under forward iteration
continue to do so, with positive frequency (a result similar to the Poincaré
Recurrence Theorem, Theorem 3.5.1).

Lemma 6.3.2 (Burton & Easton (1980))

(i) For almost every z ∈ P, Fn(z) ∈ S for some n > 0.
(ii) For almost every z ∈ Q, Gn(z) ∈ S for some n > 0.

(iii) For almost every z ∈ R, Hn(z) ∈ S for some n > 0.

Proof (i) Suppose z ∈ P. Then Fn(z) ∈ S for some n > 0 unless Fn(z) ∈ P\S
for all n > 0. However, since F is a rigid rotation on each circle y = constant, the
only points for which this occurs form a set of zero measure, namely, a subset of
the set {(x, y)|f (y) ∈ Q} (recall that a one-to-one function takes a countable set
of points onto a countable set of points). The proof of (ii) is precisely analogous,
and (iii) follows as a direct consequence of (i) and (ii).

Lemma 6.3.3 (Burton & Easton (1980)) Let V be a measurable subset of R
and define4

J(V) = {z ∈ R|Hn(z) ∈ V for some n ≥ 0},

that is, the set of points whose orbit hits V under forward iteration, and define

Z(V) = {z ∈ R| lim
n→∞

1

n

n−1∑
i=0

χV (H
i(z)) = 0},

that is, the set points who hit V with zero frequency on average. Then

µ(J(V) ∩ Z(V)) = 0.

In other words, J(V) and Z(V) coincide only on a set of measure zero, so
that almost all orbits that hit V under forward iteration continue to hit V with
positive frequency in n.

4 In fact, as in Burton & Easton (1980), this lemma holds for any compact metric space with a
Borel measure-preserving homeomorphism. Note the relation to Kac’s theorem, which gives the
average return time to a measurable set under an ergodic transformation (Pollicott & Yuri (1998)).



6.3 The ergodic partition for smooth toral LTMs 177

Proof First consider the set Z(V) ∩ V . We have

µ(Z(V) ∩ V) =
∫

Z(V)

χV (z)dµ

=
∫

Z(V)

lim
n→∞

1

n

n−1∑
i=0

χV (H
i(z))dµ

= 0.

Here the first equality follows from the definition of χV , the second is an applic-
ation of the Birkhoff ergodic theorem (Theorem 3.5.2), and the third follows
from the definition of Z(V). Now define

Zk(V) = {z ∈ Z(V)|Hk(z) ∈ V for some k ≥ 0 and Hi(z) /∈ V for 0 ≤ i < k},
that is, the set of points in Z(V) which take exactly k iterations to first hit V .
Now since the kth iterate of the set Zk(V) contains points which by definition
lie in V we have

Hk(Zk(V)) ⊂ Z(V) ∩ V

and so

µ(Zk(V)) = µ(Hk(Zk(V)))

≤ µ(Z(V) ∩ V)

= 0,

where the first equality follows since H is a µ-preserving map. However we
also have

J(V) ∩ Z(V) =
⋃
k≥0

Zk(V)

since the union of the Zk(V) contains points in Z(V) which hit V under some
forward iterate of H . Finally, a countable union of sets of zero measure is also
a set of zero measure, and so

µ(J(V) ∩ Z(V)) = 0.

Now we are in a position to prove the following:

Lemma 6.3.4 (Burton & Easton (1980))
⋃{A4(δ) : 0 < δ < 1} has full

measure in R.
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Proof Choose a monotonic decreasing sequence {δk} converging to zero and
define

Uk = J(A3(δk))\Z(A3(δk)).

Here we take J and Z as in the previous lemma, and choose V = A3(δk).
The orbit of a point z′ in Uk hits A3(δk) with some positive frequency φ > 0
(Uk is effectively all the points that hit A3(δk) at least once, minus all the
points that hit it with frequency zero). Hence the orbit of z′ hits A3(δk′) with
frequency at least δk′ for each δk′ < φ. Therefore z′ belongs to A4(δk′) and so
Uk ⊂⋃k{A4(δk) : 0 < δk < 1}.

Now set U = ⋃
k{Uk : k ≥ 0}. Since Uk ⊂ ⋃

k{A4(δk) : 0 < δk < 1}, we
have U ⊂⋃k{A4(δk) : 0 < δk < 1} also. This gives us

µ(∪k{A4(δk)}) ≥ µ(U)

= µ(∪k{Uk})
= µ(∪k{J(A3(δk))\Z(A3(δk))})
= µ(∪k{J(A3(δk))}) − µ(∪k{J(A3(δk)) ∩ Z(A3(δk))})
= µ(∪k{J(A3(δk))}) − 0 (by Lemma 6.3.3)

= µ(∪k{J(A3(δk))})
where all the unions are countable unions taken over 0 < δk < 1. Therefore it
is sufficient to show

⋃
k≥0{J(A3(δk))} has full measure in R in order to prove

that
⋃

k≥0{A4(δk)} has full measure. But
⋃

k≥0{J(A3(δk))} is by definition the
set of points which iterate into S for some iterate, and by Lemma 6.3.2 this is
a set of full measure.

Proof of Theorem 6.3.1 Lemma 6.3.1 shows that there is a set of points in the
domain of the toral linked twist map with non-zero Lyapunov exponents, and
Lemma 6.3.4 shows that this set contains almost every point in the domain.
Then we can appeal to Theorem 5.3.7 to complete the proof.

Key point: Almost every point falls into the overlap, and of the points which fall
into the overlap, almost all of them do so with positive frequency. These facts allow
us to deduce that for the smooth co-rotating toral linked twist map, almost all points
in the union of the annuli give rise to a non-zero Lyapunov exponent.

Example 6.3.1 Figure 6.7 shows a co-rotating system, for a smooth version
of the twist function, with x0 = y0 = 1/4, x1 = y1 = 3/4, and k = l = 1,
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Figure 6.7 Successive iterates of the co-rotating toral linked twist map (6.1), with
x0 = y0 = 1/4, x1 = y1 = 3/4, and k = l = 1 for the everywhere-differentiable
twist map. Initially (in the top left picture) we have blobs at [0.25, 0.3]×[0.25, 0.3]
and [0.7, 0.75] × [0.7, 0.75]. The next five pictures are the images of these blobs
under the first five iterates of the map. It is interesting to compare the behaviour
of this map with that of the Arnold Cat Map (see figure 3.4).
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for successive iterates of two initial blobs, which are the squares [0.25, 0.3] ×
[0.25, 0.3]and [0.7, 0.75]×[0.7, 0.75]. This shows the stretching and subsequent
intermingling of trajectories within the intersection S.

6.3.2 Counter-rotating smooth toral linked twist maps

The above arguments only hold for the co-rotating case. In the counter-rotating
version, we cannot apply the same argument to show that that all vectors in
tangent space are expanded (or contracted) by the Jacobian matrix at each
iteration of the map, since, for example, for a vector w = (v1, v2) with v1 > 0,
v2 > 0, ‖DzHnw‖ may not be a non-decreasing function of n. Later, in section
6.4.2, we will see how to construct non-zero Lyapunov exponents in this case,
but this requires stronger conditions on the twist functions.

Example 6.3.2 Figure 6.8 shows a counter-rotating system, for the smooth
version of the twist function, with x0 = y0 = 1/4, x1 = y1 = 3/4, and
k = l = 1, for iterates of two initial blobs, which are the squares [0.25, 0.3] ×
[0.25, 0.3] and [0.5, 0.55] × [0.5, 0.55]. Whilst the central cross-shaped region
is a region on which we appear to have ergodicity, near the boundaries of R we
do not.

Key point: Smooth counter-rotating linked twist maps are not open to the same
analysis as the smooth co-rotating version. This is because expansion due to a
horizontal twist may be undone by contraction due to a vertical twist, and so expan-
sion under the composed linked twist map cannot be guaranteed. Such expansion
requires extra conditions on the strengths of the twists.

6.4 The ergodic partition for toral linked twist maps with
singularities

Throughout Section 6.4 we assume we have the non-smooth twists defined in
Section 6.2.7. Referring back to the Katok–Strelcyn conditions in Section 5.3
we see that toral linked twist maps with singularities fit the required framework.
Our manifold (recall Figure 6.1) M is made up of rectangles S, P\S (possibly
two disconnected components) and Q\S (also possibly two components) ‘glued’
together along the lines contained in the set G = ∂S. Then the (open dense) set
V = M\G = M\∂S. The open subset N ⊂ V can be given to be N = int V =
int (M\G). Now H is a C2 measure-preserving mapping on N , since we have



6.4 The ergodic partition for toral LTMs with singularities 181

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

y

x

(a) (b)

(c) (d)

(e) (f)

Figure 6.8 Iterates of the counter-rotating toral linked twist map (6.1), with x0 =
y0 = 1/4, x1 = y1 = 3/4, and k = l = 1 for the smooth twist map. Initially
(in the top left picture) we have blobs at [0.25, 0.3] × [0.25, 0.3] and [0.7, 0.75] ×
[0.7, 0.75]. The next five pictures are the images of these blobs under the iterates
2, 5, 10, 30, 100 of the map.
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removed the points on which H is not differentiable. Finally, singH = M\N =
∂R ∪ ∂S.

6.4.1 Co-rotating toral linked twist maps with singularities

In this section we give the corresponding result to Theorem 6.3.1 for toral
linked twist maps with singularities. The computation of Lyapunov exponents
is simplified here as we have derivatives of the twists bounded away from zero,
having removed the singularity set singH.

Theorem 6.4.1 (Wojtkowski (1980), Przytycki (1983)) Let H be a toral linked
twist map composed of (k,α) and (l,β) twists in which k and l have the same
sign, and αβ > 0. Then H is a union of (possibly countably many) ergodic
components of positive measure.

To apply the Katok–Strelcyn theorem we must show that H satisfies the
Katok–Strelcyn conditions (see Section 5.3). In addition we must show that
Lyapunov exponents for H exist almost everywhere (i.e., show that the Oseledec
condition holds), and that these exponents are non-zero. In fact the Katok–
Strelcyn conditions for H hold very easily:

Lemma 6.4.1 H satisfies (KS1).

Proof B(singH, ε) = B(∂R ∪ ∂S, ε). An ε-neighbourhood around ∂R ∪ ∂S
consists of 4 rectangles around the top and bottom edges of P, and the left and
right edges of Q, each of width 2ε and length 1. Thus µ(B(singH, ε)) = 4×2ε,
and so Equation (5.24) is easily satisfied with C1 = 8 and a = 1.

This also implies that µ(singH) = 0.

Assumption 6.4.1 H satisfies (KS2).

This is not a severe restriction, in particular for applications. For example, if
the twist functions f and g are polynomials. Equation (5.25) is trivially satisfied.
Any continuous function on a compact interval can be approximated arbitrarily
closely by some polynomial function (the Weierstrass approximation theorem).
A function for which the second derivative grows faster near a singularity, for
example, f (y) = √

y near y = 0, also straightforwardly satisfies the condition.
The condition fails for function whose second derivative grows faster than any
polynomial, for example, f (y) = e1/y near y = 0.

To compute Lyapunov exponents of H we consider the first return map to S;
that is, the map HS defined earlier. It is simple to check the Oseledec conditions
for both maps HS and H:

Lemma 6.4.2 H and HS satisfy the Oseledec condition (OS).
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Proof ∫
S

log+ ‖DHS(x)‖dµ ≤
∫

R
log+ ‖DH(x)‖dµ

=
∫

V
log+ ‖DH(x)‖dµ

< ∞
where the first inequality follows because S ⊆ R, the equality follows since
µ(R\V) = µ(singH) = 0, and the second inequality because H is C2 on
V = intR\∂S.

Next we compute bounds on the Lyapunov exponents for HS .

Lemma 6.4.3 Lyapunov exponents for HS are non-zero.

Proof This follows essentially the same argument as Lemma 6.3.1. We have
for each z ∈ S

DHS = DGSDFS =
(

1 0
β̃ 1

)(
1 α̃

0 1

)
=
(

1 α̃

β̃ 1 + α̃β̃

)

where α̃ ≥ mα > 0, and β̃ ≥ m′β > 0, with m and m′ as in the definitions of
FS and GS (Definitions 6.2.3 and 6.2.4). Recall that m and m′ depend on the
point z. Let κ = minz∈S{mα, m′β} > 0.

Then by the same computation as earlier for w = (v1, v2) where v1, v2 > 0,

‖DHSw‖ =
∥∥∥∥
(

1 α̃

β̃ 1 + α̃β̃

)(
v1

v2

)∥∥∥∥
≥
√

1 + κ2‖w‖.

Because HS is the first return map to S this is valid for each iterate, and so

‖DHn
S w‖ ≥ (1 + κ2)n/2‖w‖

and hence

χ+(z, w) = lim
n→∞

1

n
log ‖DzHn

S (w)‖ ≥ 1

2
log(1 + κ2) > 0.

For other vectors in tangent space we proceed as in Lemma 6.3.1.

Working with HS instead of H simplifies the computation of Lyapunov expo-
nents as we fall into the intersection S under every iterate of HS . This means that
in fact HS is uniformly hyperbolic. Hence any points for which HS ≡ H (that is,
any points falling into the intersection on every iterate) form a uniformly hyper-
bolic set. This set is a set of measure zero however, and forms the horseshoe
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constructed in Chapter 4. However, we would like to show the (non-uniform)
hyperbolicity of H itself, and so finally we conclude that Lyapunov exponents
for H are also non-zero.

Lemma 6.4.4 Lyapunov exponents for H are non-zero almost everywhere.

Proof By Lemma 6.3.2 almost every z ∈ R hits S. Moreover almost every
z ∈ S returns to S with positive frequency δz > 0 by Lemma 6.3.3. Recalling
that Hj(z) = Hn

S (z) where l = ∑n−1
i=0 (mi + m′

i − 1) we have, using a similar
argument to Lemma 6.3.1, that for j sufficiently large, at least δz iterates of Hj

hit S. Therefore n > jδz/2. Then using Lemma 6.4.3 we have

1

j
log ‖DHjv‖ = 1

j
log ‖DHn

S v‖

>
1

j
log ‖DHjδz/2

S v‖

≥ 1

j
log(1 + κ2)jδz/4‖v‖

= δz

4
log(1 + κ2) + 1

j
log ‖v‖.

Therefore

lim
j→∞

1

j
log ‖DHj(v)‖ >

δz

4
log(1 + κ2) > 0.

Proof of Theorem 6.4.1 Lemma 6.4.2 shows that Lyapunov exponents for
H exist, and Lemma 6.4.4 shows that they are non-zero. Lemma 6.4.1 and
Assumption 6.4.1 show that H satisfies the Katok–Strelcyn conditions. Then
Theorem 5.4.1 completes the proof.

Example 6.4.1 Figure 6.9 shows such a co-rotating system, now for the linear
twist function of Section 6.2.8, with x0 = y0 = 1/4, x1 = y1 = 3/4, and
now for k = l = 2, for successive iterates of two initial blobs, which are the
squares [0.25, 0.3] × [0.25, 0.3] and [0.7, 0.75] × [0.7, 0.75]. This shows the
stretching of trajectories within the intersection S, and also the complicated
(non-differentiable) angular structure of orbits, as line segments lie over the
boundary of S. It is this geometric structure which we will have to analyse in
the next chapter to strengthen the ergodic property result into mixing results.
Note that already by the fifth iteration (in the final picture), a large majority of
the domain R appears to be mixed. A few iterates later the region of mixing has
spread to the entirety of R.
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Figure 6.9 Successive iterates of the co-rotating toral linked twist map (6.1), with
x0 = y0 = 1/4, x1 = y1 = 3/4, and k = l = 2. Initially (in the top left picture) we
have blobs at [0.25, 0.3] × [0.25, 0.3] and [0.7, 0.75] × [0.7, 0.75]. The next five
pictures are the images of these blobs under the first five iterates of the map.

6.4.2 Counter-rotating toral linked twist maps with singularities

The result for counter-rotating toral LTMs has been proved by Wojtkowski
(1980), who uses techniques based on the approach of Anosov and Sinai for
showing ergodicity of Anosov diffeomorphisms. These techniques predate the
work of Pesin and involve constructing expanding and contracting subspaces
directly. A major technical obstacle arises in this approach, namely, showing
the absolute continuity of stable and unstable foliations. This is necessary to



186 6 The ergodic partition for toral LTMs

overcome the problem that stable and unstable manifolds at a point z, being
defined in terms of infinite forward and backward iterations respectively, may
not depend differentiably on z. An excellent discussion of this issue can be
found in Brin & Stuck (2002). Using Pesin theory and the Katok–Strelcyn
theory allows us to avoid these difficulties. The following proof is based on
Przytycki (1983).

Theorem 6.4.2 (Wojtkowski (1980), Przytycki (1983)) For a toral linked
twist map H composed of (k,α) and (l,β) twists in which k and l have opposite
signs, and

|αβ| > 4, (6.2)

then H is a union of (possibly countably many) ergodic components of positive
measure.

Note that smooth counter-rotating toral linked twist maps cannot satisfy the
condition (6.2) and so as discussed earlier need not possess an ergodic partition.
A simple example from Wojtkowski (1980) demonstrates that some condition
on α and β is necessary.

Example 6.4.2 Choose the counter-rotating toral linked twist map given by
x0 = y0 = 0, x1 = y1 = 1 (so that we have a toral automorphism), with
linear twists. Take k = 1 and l = −1 so that α = 1 and β = −1. Then
F(x, y) = (x + y, y), G(x, y) = (x, y − x) give H(x, y) = (x + y, −x). Since
in this case the intersection S is the whole torus T2, the orbit of any initial
condition (x, y) is

(x, y) → (x + y, −x) → (y, −x − y) → (−x, −y)

→ (−x − y, x) → (−y, x + y) → (x, y)

and so every point is a period-6 point. Thus we have no ergodic behaviour in
this system.

The proof of Theorem 6.4.2 follows the same structure as the co-rotating case
(in particular the arguments for the Katok–Strelcyn conditions are identical),
but we need new lemmas for computing Lyapunov exponents of HS . We will
use the method of invariant cones described in Section 5.5.

For this proof we assume for simplicity of notation that we have linear twists
(see Section 6.2.8). This is justified since α and β are defined as the infimum
and supremum respectively of derivatives, and so taking f ′(y) = α for all y and
g′(x) = β for all x simply gives the case in which the minimum twist occurs at
every point. We assume further that α = −β. If not then a simple coordinate
change (x, y) → (x,

√|α/β|y) will suffice. We take α > 0 and β < 0, so that
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condition (6.2) becomes simply α > 2. Finally, we assume that at least one
of the inclusions P ⊆ T2 and Q ⊆ T2 is strict. If this is not the case, so that
P = Q = R = S = T2 then we have a toral automorphism which is uniformly
hyperbolic whenever the eigenvalues of DH = DGDF are off the unit circle.

Similarly to the above (for points in P which map into Q) we have Jacobians

DF =
(

1 α

0 1

)
and DG =

(
1 0

−α 1

)
and so

DGDF =
(

1 α

−α 1 − α2

)
where α > 2. This matrix is hyperbolic and has eigenvalues

λ± = 2 − α2 ± √
α4 − 4α2

2
.

Note that λ− is the expanding eigenvalue (|λ−| > 1), while |λ+| < 1 is the
contracting eigenvalue. The expanding eigenvector (u, v) satisfies

u

v
= −α

2
+
√(α

2

)2 − 1 = L.

At each point z ∈ R we define the pair of cones C(z) and C̃(z) in tangent
space TzR ≡ R2 by

C(z) = {(u, v) : L ≤ u/v ≤ 0}
C̃(z) = {(u, v) : u/v ≥ L + α}.

Since each cone has the same definition for each z ∈ R, we simply denote them
as C and C̃. Observing that since α > 2, we have −1 < L ≤ 0 and 1 < L + α,
these are shown in Figure 6.10. We first show that these cones are ‘pairwise’
invariant (and eventually strictly invariant), and then that we have contraction
or expansion for vectors in these cones. Since the cone C (resp. C̃) is the same
at every point z ∈ R, we denote the cone field by C (resp. C̃) as well.

Lemma 6.4.5 We have the inclusions

DF(C) ⊆ C̃,

and for an integer m ≥ 2,

DFm(C) ⊂ C̃.

Proof Suppose w = (u, v) ∈ C. Then w′ = (u′, v′) = DFmw, where

w′ =
(

1 mα

0 1

)(
u
v

)
=
(

u + mαv
v

)



188 6 The ergodic partition for toral LTMs
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Figure 6.10 The cones C = {(u, v) : L ≤ u/v ≤ 0} and C̃ = {(u, v) : u/v ≥ L+α}
in tangent space.

with

u′

v′ = u

v
+ mα ≥ L + mα

so for m = 1, (u′, v′) ∈ C̃, and for m ≥ 2, (u′, v′) ∈ int(C̃), giving the result.

Lemma 6.4.6 We have the inclusions

DG(C̃) ⊆ C

and for an integer m′ ≥ 2,

DGm′
(C̃) ⊂ C.

Proof Suppose w = (u, v) ∈ C̃. Then w′ = (u′, v′) = DGm′
w, where

w′ =
(

1 0
−m′α 1

)(
u
v

)
=
(

u
v − m′αu

)
with

u′

v′ = u/v

1 − m′αu/v
≤ −1

m′α
≤ 0

and

u′

v′ = u/v

1 − m′αu/v

≥ α/2 +√α2/4 − 1

1 − m′α(α/2 +√α2/4 − 1)

≥ α/2 +√α2/4 − 1

1 − α2/2 − α
√
α2/4 − 1

.
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For m′ = 1, a little algebra will show that this last expression is equal to L, and
so (u′, v′) ∈ C, while for m′ ≥ 2, we have (u′, v′) ∈ int(C).

Corollary 6.4.1 The cone field C is invariant and strictly invariant (unless
R = T2) under HS.

Proof This follows from the previous two lemmas. For each z ∈ R, HS(z) =
Gm′ ◦ Fm(z) (where m and m′ depend on z as in Definitions 6.2.3 and 6.2.4).
Thus C is mapped into C̃ under DFm, which in turn is mapped back into C
under DGm′

. The inclusion is strict as soon as one of m or m′ is greater than
one, which must occur since S �= T2.

Lemma 6.4.7 For any w ∈ C,

‖DGm′
DFmw‖ ≥ λ‖w‖

where λ > 1, for any pair of positive integers m and m′.

Before proving this theorem, we note that we require to find the norm of a
vector w. Earlier in this chapter we used the Euclidean norm. However there are
many possible choices of norm. A vector norm simply has to satisfy three con-
ditions of positivity, linearity and a triangle inequality (recall Definition 3.2.1).
Here, for simplicity, we use the norm defined by taking the maximum of the
moduli of each coordinate (the L∞-norm):

‖(u, v)‖ = max{|u|, |v|}
It is simple to check that this satisfies the conditions to be a metric.

Proof of Lemma 6.4.7: Let w = (u, v) ∈ C. Then ‖w‖ = |v| by the definition
of the cone C. Recalling that if w′ = DGm′

DFmw, we have

w′ =
(

1 mα

−m′α 1 − mm′α2

)(
u
v

)
=
(

u + mαv
−m′αu + (1 − mm′α2)v

)
.

Then

‖w′‖ ≥ ‖ − m′αu + (1 − mm′α2)v‖
= | − m′α u

v
+ (1 − mm′α2)||v|

≥ | − αL + 1 − α2||v|
= |λ−||v|
= λ‖w‖

where λ = −λ− > 1.
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Corollary 6.4.2 The cone field C is expanding under HS.

Proof Again, since HS(z) = Gm′ ◦Fm(z), this follows directly from the previous
lemma.

A contracting cone field can be found in an exactly analogous manner. Now
we are in a position to apply Theorem 5.5.1.

Lemma 6.4.8 Lyapunov exponents for HS are non-zero µ-almost everywhere.

Proof This follows directly from Corollaries 6.4.1, 6.4.2 and Theorem 5.5.1.

Finally we deduce the corresponding result for H itself.

Lemma 6.4.9 Lyapunov exponents for H are non-zero µ-almost everywhere.

Proof The proof is identical to that of Lemma 6.4.4.

Proof of Theorem 6.4.2 Lemma 6.4.2 shows that Lyapunov exponents for
H exist, and Lemma 6.4.9 shows that they are non-zero. Lemma 6.4.1 and
Assumption 6.4.1 show that H satisfies the KS conditions. Then Theorem 5.4.1
completes the proof.

Key point: For a non-smooth linked twist map, it can be shown that singularities
are sufficiently rare and well-behaved that Katok–Strelcyn theory may be applied.
Then co-rotating toral linked twist maps, and counter-rotating toral linked twist
maps with sufficiently strong twists, are nonuniformly hyperbolic, and so their
domain can be partitioned into at most a countable number of components on
which the dynamics is ergodic.

Example 6.4.3 Figure 6.11 shows an identical system to Figure 6.9, but for
the counter-rotating case k = 2, l = −2. Here again we see the whole domain
gradually being filled. Note the acute angles in the images of the blobs. These
will have a large part to play in the following chapter.

Example 6.4.4 Figure 6.12 shows a counter-rotating toral linked twist map
which violates the conditions given by Equation (6.2) of Theorem 6.4.2. Here
we do not see the blobs filling the whole region, but there is a large area of the
domain left unmixed. Even after 300 iterates of the map there is still a large
region untouched by iterates of the initial blobs. In fact the likely existence of
KAM tori shows that this region will never be filled.
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Figure 6.11 Successive iterates of the counter-rotating linear toral linked twist
map, with x0 = y0 = 1/4, x1 = y1 = 3/4, and k = 2, l = −2. Initially (in the top
left picture) we have blobs at [0.25, 0.3] × [0.25, 0.3] and [0.7, 0.75] × [0.7, 0.75].
The next five pictures are the images of these blobs under the first five iterates of
the map.
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Co-rotating

Figure 6.12 A counter-rotating toral linked twist map which violates the conditions
of theorem 6.4.2. Here x0 = y0 = 0, x1 = y1 = 3/4, and k = −l = 1. The first
five figures are 0, 5, 10, 20, 300 iterates of the initial blobs. The final picture,
for comparison is an identical co-rotating map after 20 iterates. The difference
between the behaviour of co- and counter-rotating tltm is striking.
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6.5 Summary

The above theorems collect together the key techniques required to prove the
existence of an ergodic partition for toral linked twist maps. The fundamental
result underpinning it all is Theorem 5.3.7 from the field known as Pesin theory.
To apply this theorem one needs to construct a set of points with non-zero
Lyapunov exponents. In many systems this is straightforward (for example the
toral automorphisms), but in the above we encountered some difficulties. First
of all, for the smooth toral linked twist maps, we had a lower bound on the slope
of the twist which was zero. This was overcome by taking a sequence of sets
which accumulated on the annuli P and Q. A similar technique could be used if
the functions f and g had inflexion points, but not turning points as we require
monotonicity.

Another issue to arise is that of singularities in the map. These can be over-
come by applying the extension of Pesin theory due to Katok et al. (1986). In
the systems above we had a simple situation of singularities only at the bound-
aries ∂P and ∂Q. It would be straightforward however to extend the above to a
situation with more singularities provided the Katok–Strelcyn and the Oseledec
conditions hold.

Finally we note the technique of constructing the first return map HS . This
map is uniformly hyperbolic, and has an invariant set of measure zero which
forms the horseshoe discussed in Chapter 4. Moreover it forms the basis of the
behaviour the nonuniformly hyperbolic original map H. The key idea here is
to show that we have certain properties for the induced map HS , and that these
properties are shared by H. It would be possible to work entirely with HS , but for
the problem, as Przytycki (1983) points out, that checking the Katok–Strelcyn
conditions for HS is not as simple as it is for H.
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Ergodicity and the Bernoulli property for toral
linked twist maps

In this chapter we apply a global geometric argument to extend the result
of the previous chapter to ergodicity and the Bernoulli property for toral
linked twist maps. Conditions are given such that these results hold.

7.1 Introduction

As discussed in Chapter 3, the property of ergodicity is a long way down in
the ergodic hierarchy. For the strongest mixing behaviour, we would like our
linked twist maps to possess the Bernoulli property. Fortunately, the Katok–
Strelcyn version of Pesin theory given in Chapter 5 gives conditions to show
exactly that. Recall that if the Katok–Strelcyn conditions are satisfied, and
Lyapunov exponents are non-zero for every tangent vector, and for almost every
point, we have the existence of local stable and unstable manifolds for almost
all points in our domain for a smooth dynamical system with singularities.
Furthermore, if some forward iterate of the local unstable manifold of some
point intersects some backward iterate of the local stable manifold of another
point, for almost every pair of points (the Manifold Intersection Property), then
the ergodic partition we showed to exist in the previous chapter has only one
component, and so our linked twist map is ergodic. Moreover, if every (far
enough) forward iterate of the local unstable manifold intersects some (far
enough) backward iterate of the local stable manifold, again for almost every
pair of points (the Repeated Manifold Intersection Property), then the linked
twist map has the Bernoulli property.

In this chapter we prove that both these conditions hold for toral linked twist
maps, following the work of Wojtkowski (1980) and, mainly, Przytycki (1983).
We will be concerned with manipulating pieces of local stable or unstable mani-
fold. We will, with a justification given, work exclusively with linked twist maps
with linear twist functions, in which case local stable and unstable manifolds
form straight lines, and we will refer to portions of them as line segments. The
geometrical argument is based on the fact that line segments contained in local
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unstable manifolds grow in length under forward iteration, while line segments
contained in local stable manifolds grow under backward iteration.

As usual, the theory for linked twist maps is anticipated by the simple case
of the Arnold Cat Map. Here global stable manifolds are infinitely long straight
lines and have the same slope at each point (because this system is linear and
uniformly hyperbolic). Hence line segments and iterates of them are also straight
lines with the same slope (recall Figures 3.1 and 5.3). Because they go in
transverse directions, an intersection is inevitable. This is a straightforward
result to show, but in this chapter we give rather more details than is necessary,
in order to elucidate the more involved method of proof for the linked twist maps.

The case of toral linked twist maps is more complicated for three main reas-
ons. First, iterates of line segments may straddle the boundaries of the annuli,
and so contain sharp angles. The idea behind the proof is to show that such
sharp bends do not prevent an intersection from occurring. As in the previous
chapter, the co-rotating case is relatively straightforward, while the counter-
rotating case is more complicated, and requires extra conditions. Second, the
nonuniformity of the hyperbolicity means that local stable and unstable mani-
folds, and therefore line segments may have different slopes for different points
(recall for example Figure 6.9). It is possible to compute the slopes of stable
and unstable manifolds for each point explicitly, as we describe shortly, but we
will only need to use the fact that stable and unstable manifolds at all points (for
which they are defined) are aligned within their appropriate cones in tangent
space. Third, if the twist functions are not linear functions, the iterated line seg-
ments will not be straight lines, but may be curved (recall Figure 6.7). Working
with linear functions makes the notation and geometric argument simpler, and
we give the justification in Section 7.2.2 for why these arguments also hold in
the nonlinear case.

Until Section 7.5 the ideas in this chapter are fundamentally very simple, and
are simply based on exponential stretching of line segments. This concept will
be very familiar to many readers, in the guise of stretching of fluid elements.
This has been a subject of interest in fluid mixing in its own right for many
years (Ottino (1989a)), and is currently a source of research from the topolo-
gical point of view. See for example Boyland et al. (2000), Thiffeault (2005),
Thiffeault (2004).

7.2 Properties of line segments

We begin by making the same simplifications as in Chapter 6 which will
serve to make the following arguments notionally, and notationally, more
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straightforward. First, we assume that the twist functions f and g are linear.
Second, we assume that the strengths of the twists are equal, i.e., |α| = |β|.
Third, we takeα > 0, so that for the co-rotating case we haveα > 0,β = α > 0,
and for the counter-rotating case we have α > 0, β = −α < 0.

Throughout this chapter we shall be concerned with the behaviour of iterates
of local stable and unstable manifolds. We concentrate on the behaviour of
unstable manifolds γ u under forward iteration, and note that all conclusions will
also hold for the behaviour of stable manifolds γ s under backward iteration.
In the linear case, a forward iterate of γ u, that is, Hi(γ u), forms a segmented line,
that is, a union of line segments. In the following section we clarify this idea.

7.2.1 Definition, iteration and orientation of line segments

Figure 7.1 shows a sketch of a line segment γ centred at a point z = (x, y).
We will need to measure the horizontal and vertical lengths of line segments,
and so for any line segment γ we define the following (Figure 7.1 also illustrates
the vertical and horizontal lengths of the local stable manifold at a point z).

Definition 7.2.1 (lh(γ )) For a line segment γ beginning at (xb, yb) and ending
at (xe, ye) we define the horizontal length lh(γ ) to be

lh(γ ) = xe − xb.

Definition 7.2.2 (lv(γ )) For a line segment γ beginning at (xb, yb) and ending
at (xe, ye) we define the vertical length lv(γ ) to be

lv(γ ) = ye − yb.

S = T2

(xe , ye)

g u(z)

z

(xb , yb)

lh (g u(z))

lv (g
u(z))

Figure 7.1 The line segment γ s(z), with ends (xb, yb) and (xe, ye) marked with
empty circles, and with horizontal and vertical lengths labelled with arrows.
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All of our line segments shall be oriented so that ye > yb, that is, so that lv(γ )
is always positive. However lh(γ ) may be positive or negative, depending on
the slope of γ .

We note here a technical point. Strictly speaking, in order to measure the
lengths of line segments which may wrap around the torus, we should do so in
terms of a lift. This is a map from the torus T2 to the real plane R2 and can be
thought of as the opposite of a projection. Thus given a map f : T2 → T2 and
a projection π : R2 → T2, the lift of f is a (non-unique) map F : R2 → R2

defined by π ◦F = f ◦π , so that f (x (mod 1)) = F(x) (mod 1). However, we
will ignore this technicality for three reasons. First, the horizontal and vertical
lengths of line segments are sufficiently intuitive concepts that introducing extra
notation would be unnecessary, second, we will be interested in the growth of
line segments only until they begin to wrap more than once around the torus,
and third, because working on the torus itself allows us to refer back to earlier
figures more directly. However, it should be noted that many ideas in this chapter
are more correctly formalized via a lift.

Arnold Cat Map
We illustrate the underlying idea with the Arnold Cat Map. The very special
structure (i.e., the linearity and the uniform hyperbolicity) means that the Cat
Map has local stable and unstable manifolds which are infinitely long lines,
wrapping around the torus, and filling it densely (see Example 5.2.1). This of
course gives us all the structure we need immediately, but to make a connection
with toral linked twist maps, and with stretching of individual fluid elements,
we note that any finite-sized line segment γ contained in γ u(z) (resp. γ s(z))
is a segment aligned in the direction of the unstable (resp. stable) eigenvector.
That is, writing u = lh(γ ) and v = lv(γ ) we have

γ ∈ {v/u = (
√

5 + 1)/2} for all γ ⊂ γ u(z)

γ ∈ {v/u = (1 − √
5)/2} for all γ ⊂ γ s(z)

for every z.

Toral linked twist maps
For the toral linked twist map things are slightly more complicated. Here local
manifolds only exist for almost every point, and they do not all share a common
direction. In Chapter 6 we used the idea of first return maps FS , GS and HS ,
and observed that the fact that the return maps may be different at different
initial points produced the nonuniformity in the hyperbolicity. Recall from
Section 6.2.3 that since the definitions of the return maps FS(z) = Fm(z) and
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GS = Fm′
(z) produce integers m = m(z) and m′ = m′(z), iterating along an

orbit gives a sequence of integers mi and m′
i, resulting from:

Hn
S (z) = Gm′

n−1 Fmn−1 Gm′
n−2 Fmn−2 · · · Gm′

1 Fm1 Gm′
0 Fm0(z)

where each mi, m′
i depends on the value of z along the orbit.

We note here, for completeness, that in the case of linear twists, Wojtkowski
(1980) uses just such a sequence to construct local stable manifolds explicitly.
For almost every z ∈ T2 define the continued fraction

H(z) = 1

−αm0 + 1

−βm′
0 + 1

−αm1 + 1

−βm′
1 + · · ·

The value of this continued fraction, which clearly depends on the point z,
gives the slope of the local stable manifold at each z. The slope of the
local unstable manifold at each z can similarly be computed precisely. See
Wojtkowski (1980) for more details. We simply observe that although local
unstable manifolds may lie in different directions at each point, these directions
are restricted. There is a crucial difference here between the co-rotating and
counter-rotating systems. Consider a point z = (x, y) to be a point for which
γ u(z) exists, and consider Hi(γ u(z)). This is typically a segmented line (see
Figure 7.2, or recall Figures 6.9 and 6.11), whose components have slopes given
by the invariant cones discussed in Chapter 6.

Co-twisting case Recall from Chapter 6 that each vector v = (v1, v2) in tan-
gent space with v1, v2 > 0 gave rise to a positive Lyapunov exponent, and

(a) (b)
Co-twisting Counter-twisting

P

Q

g ⊂ P ⇒ g   C+

P

Q

g ⊂ Q ⇒ g   C+

g ⊂ P/Q ⇒ g   C
g ⊂ Q ⇒ g   C

~

Figure 7.2 (a) For a co-twisting toral linked twist map, all segments in the seg-
mented line Hi(γ u(z)) lie in the cone C+. (b) By contrast, in the counter-twisting
case, γ ∈ C if γ ⊂ Q, and γ ∈ C̃ if γ ⊂ P.
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similarly for vectors with v1, v2 < 0. The same reasoning reveals that for
any z such that a local unstable manifold γ u(z) exists, it lies in the sector
C+ = {(u, v) : u/v ≥ 0}. Moreover any component γ of the segmented line
Hi(γ u(z)) also lies in this sector. That is, again by writing u = lv(γ ), v = lh(γ ),

γ ∈ C+ = {u/v ≥ 0} for all γ ⊂ Hi
S(γ

u(z)), for all i ≥ 0.

This is illustrated in Figure 7.2(a).

Counter-twisting case The situation in the counter-twisting case is slightly
more complicated. Recall from Chapter 6 and Figure 6.10 the definition of the
cones C and C̃:

C(z) = {(u, v) : L ≤ u/v ≤ 0}
C̃(z) = {(u, v) : u/v ≥ L + α}

where L = −α/2+√(α/2)2 − 1. These were a pair of cones such that DF(C) ⊆
C̃ and DG(C̃) ⊆ C. Again the same argument reveals that for a component γ
in the segmented line Hi(γ u(z) lying in Q (so that the map G has just been
applied), γ lies in the cone C. Conversely, for a segment γ which lies outside
Q (i.e., in P\Q, so that F was the last map to be applied), γ lies in C̃. This is
illustrated in Figure 7.2(b), and we can summarize this as:

γ ∈ C = {L ≤ u/v ≤ 0} for all γ ⊂ Hi
S(γ

u(z)) ∩ Q, for all i ≥ 0

γ ∈ C̃ = {u/v ≥ L + α} for all γ ⊂ Hi
S(γ

u(z)) ∩ P\Q, for all i ≥ 0

where, as in Chapter 6, L = (−α/2) +√(α/2)2 − 1.

Key point: A co-rotating toral linked twist map is co-twisting, which means that
segments of segmented lines all lie in roughly the same direction. Conversely, a
counter-rotating toral linked twist map is counter-twisting, and acute angles can
form between line segments.

With a line segment γ (z) defined as above we define for clarity the image
under the first return map.

Definition 7.2.3 (FS(γ (z))) Given a line segment γ (z) the image under the first
return map FS is

FS(γ (z)) = Fm(γ (z))

where m is such that Fm(z) ∈ S, Fi(z) /∈ S for 0 ≤ i < m.
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Thus the first return of a line segment is given by the first return of that
line segment’s centre point, and not by the first return of any part of the seg-
ment. We shall often refer to FS(γ (z)) as FS(γ ) for simplicity of notation, and
similarly refer to γ (z) as γ . Similarly we can define:

Definition 7.2.4 (GS(γ (z))) Given a line segment γ (z) the image under the
first return map GS is

GS(γ (z)) = Gm′
(γ (z))

where m′ is such that Gm′
(z) ∈ S, Gi(z) /∈ S for 0 ≤ i < m′.

Definition 7.2.5 (HS(γ (z))) Given a line segment γ (z) the image under the
first return map HS is

HS(γ (z)) = Hm′′
(γ (z))

where m′′ is such that Hm′′
(z) ∈ S, Hi(z) /∈ S for 0 ≤ i < m′′.

7.2.2 Growth of line segments

A very simple but key result which we shall refer to repeatedly throughout this
chapter is the growth of a line segment due to a single twist map. A horizontal
twist map F fixes the vertical length of a line segment γ and alters the horizontal
length by an amount depending on the vertical length, whilst a vertical twist
map G fixes the horizontal length of a line segment γ and alters the vertical
length by an amount depending on the horizontal length. In particular we have
the following obvious facts:

lv(F(γ )) = lv(γ ) (7.1)

lh(G(γ )) = lh(γ ) (7.2)

and the following straightforward lemmas:

Lemma 7.2.1 For γ ∈ C+ = {u/v ≥ 0},
lh(F(γ )) = lh(γ ) + αlv(γ ).

Proof Labelling the end points of γ as (xb, yb), (xe, ye) as in Figure 7.1 we have

lh(F(γ )) = (xe + f (ye)) − (xb + f (yb))

= (xe − xb) + (f (ye) − f (yb))

= lh(γ ) + α(ye − yb)

= lh(γ ) + αlv(γ )
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since for a linear function f (y), we have α = f ′(y) = (f (ye)− f (yb))/(ye − yb)

for all yb, ye.

Lemma 7.2.2 For γ ∈ C+ = {u/v ≥ 0},
lv(G(γ )) = lv(γ ) + αlh(γ ).

Proof Labelling the end points of γ as before we have

lv(G(γ ) = (ye + f (xe)) − (yb + f (xb))

= (ye − yb) + (f (xe) − f (xb))

= lv(γ ) + α(lh(γ ).

For the case of the Cat Map, the growth of line segments occurs at
every iteration, while for a linked twist map, the growth of line segments
only occurs for the portions of line segments which lie inside the rel-
evant annulus. Note that the above lemmas apply only for line segments
γ ∈ C+; that is, they only apply in the co-rotating case. We will need a
different growth criterion for the counter-rotating case, to be discussed in
Section 7.5.

The nonlinear case If the twist functions f and g are nonlinear functions
(defined as before with strength α as the minimum derivative), all the results
in this chapter hold, as we can replace every occurence of the above growth
lemmas with, for example

lh(F(γ )) = (xe + f (ye)) − (xb + f (yb))

= lh(γ ) + f (ye) − f (yb)

= lh(γ ) + f ′(y)(ye − yb)

for some y ∈ (yb, ye), by the Mean Value Theorem. Since f ′(y) ≥ α by
definition, we have

lh(F(γ )) ≥ lh(γ ) + αlv(γ ).

7.2.3 v-segments and h-segments

We are interested in proving that an intersection of Hm(γ u(z)) and H−n(γ s(z′))
must occur. Such an intersection could occur in many ways, but one
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way to guarantee it is to find h- and v-segments, which are defined as
follows:

Definition 7.2.6 (h-segment) A line segment in S joining the left and right
boundaries of S (that is, a line segment γ such that γ ⊂ S, γ ∩ ∂Q0 �= ∅ and
γ ∩ ∂Q1 �= ∅) is called an h-segment and is denoted γh.

Definition 7.2.7 (v-segment) A line segment in S joining the top and bottom
boundaries of S (that is, a line segment γ such that γ ⊂ S, γ ∩ ∂P0 �= ∅ and
γ ∩ ∂P1 �= ∅) is called a v-segment and is denoted γv.

Note that any h-segment must intersect any v-segment. Figure 7.3(a) shows a
v-segment intersecting an h-segment. Thus if we can show that Hm(γ u(z)) con-
tains an h-segment, and H−n(γ s(z′)) contains a v-segment, then an intersection
must occur and we have satisfied the Manifold Intersection Property.

We note here an issue with working on the torus. Figure 7.4 shows a line
segment γv which wraps vertically around the torus, connecting upper and
lower sides of the square. This, by definition, is a v-segment, but it also wraps
(partially) around the torus horizontally, cutting the left and right boundaries.

(a) (b)

y1 y1

y0 y0

x0 x0x1 x1

lh (gv)

lv (gh)

Figure 7.3 Diagram (a) shows an h-segment γh (solid line), and a v-segment γv

(dotted line), together with the horizontal length lh of γv and the vertical length
lv of γh. Diagram (b) shows an h-segment γh (solid line) and its image (dotted
line) under an iteration of G for l = 2 (a double twist). Note that G(γh) contains a
v-segment.

(a) (b) (c) (d) (e)

gv F(gv) H(gv) F(H(gv) H2(gv)

Figure 7.4 Diagram showing how after at most two iterates of the Cat Map, an
initial v-segment γv as shown in (a) must produce a v-segment which does not cut
the left and right sides of the square.
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This makes it possible to construct an h-segment (a line connecting left and
right sides) which does not intersect γv. (Alternatively, one could argue that a
v-segment as in Figure 7.3 might fail to cross an h-segment which wraps around
the torus vertically). We show diagramatically in Figure 7.4 that iterating any
v-segment (e.g., that in Figure 7.4(a)), must lead to a v-segment which connects
upper and lower sides of the square without cutting the left and right sides.

Figure 7.4(a) shows a v-segment γv. In this and subsequent figures, solid
circles mark points fixed by the map to be applied. Figure 7.4(b) shows F(γv),
after an iterate of the horizontal twist. This is a line connecting lower and
upper sides of the square which wraps horizontally around the torus more
than once (here ‘more than once’ means ‘some fraction more than one com-
plete wrapping’). Figure 7.4(c) shows the image of this line under G, so that
G(F(γv)) = H(γv) contains a line connecting lower and upper sides of the
square, wrapping twice vertically and more than once horizontally. Applying F
to this line, we get the image in 7.4(d). This is a line (marked solid and dashed)
connecting lower and upper sides of the square, wrapping twice vertically and
more than three times horizontally. Crucially it contains the line marked in
solid connecting the left and right sides which cut the lower and upper sides
of the square. In 7.4(e) we show only the image of the solid line, which must
necessarily contain a v-segment.

There are many similar ways to express this argument, including working
with the lift of the map, or using combinatorial or algebraic arguments. They
are all based on the fundamental premise that line segments for the Cat Map
continue to grow indefinitely under iteration of the map. The same argument
can be made for the co-rotating linked twist map, and the corresponding figure
to Figure 7.4 is shown in Figure 7.5. Note however that for the linked twist map
case, defining a v-segment to be a line entirely contained in S which joins ∂P0

to ∂P1 ensures that this issue does not arise.
We will use the same fundamental method of proof to show the Manifold

Intersection Property for the Cat Map, for co-twisting toral linked twist maps,

(a) (b) (c) (d) (e)

gv F(gv) H(gv) F(H(gv)) H2(gv)

Figure 7.5 Diagram showing how after at most two iterates of a co-rotating toral
linked twist map, an initial v-segment γv as shown in (a) must produce a v-segment
which does not intersect ∂Q0 or ∂Q1.
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and then for counter-twisting toral linked twist maps. Consider a line segment
γ ⊂ γ u(z). We aim to prove that we have a v-segment after some iterate of H.
We do so by showing the exponential growth of Hi(γ u(z)); that is, by showing
that lv(Hi(γ )) ≥ Kilv(γ ) for some constant K > 1. This exponentially growing
segment must result in a v-segment.

7.3 Ergodicity for the Arnold Cat Map

In this section we give a proof that the Arnold Cat Map satisfies the Manifold
Intersection Property. This, in effect, confirms that the Cat Map is ergodic (that
is, that the ergodic partition guaranteed by the fact that Lyapunov exponents
are non-zero has only a single component of positive measure). Of course,
this is a well-established result in its own right, and moreover, as discussed in
Chapter 3, we can show topological transitivity for the Cat Map directly. We give
this alternative argument as a precursor to the geometrically more complicated
arguments needed for linked twist maps.

Recall that the Arnold Cat Map can be written as H = GF, with F(x, y) =
(x + y, y) and G(x, y) = (x, x + y), so that α = 1. We have already shown that
for each z ∈ T2, the local unstable manifold γ u exists. Moreover γ u ∈ C+.
Then the above lemmas on growth of line segments produce the following.

Lemma 7.3.1 Let γ ⊂ γ u ∈ C+ be any line segment contained in a local
unstable manifold of the Arnold Cat Map H. Then

lv(H(γ )) = K1lv(γ )

where K1 > 1 is a constant independent of the choice of z and γ . Hence

lv(H
i(γ )) = Ki

1lv(γ )

for each i ≥ 0.

Proof Choose a point z = (x, y) and consider a connected subset γ of its
unstable manifold γ u(z). Since γ ∈ C+, we have

lv(H(γ )) = lv(G(F(γ )))

= lv(F(γ )) + αlh(F(γ ))

= lv(γ ) + α(lh(γ ) + αlv(γ ))

= (1 + α2)lv(γ ) + αlh(γ )

≥ K1lv(γ )
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where K1 = 1 + α2 > 1 (in fact here we have K1 = 2 since for the Cat Map,
α = 1. Hence the vertical length of line segments at least doubles at each iterate
of H). Since K1 is independent of the choice of z and γ we can apply this result
repeatedly to acquire lv(Hi(γ )) = Ki

1lv(γ ).

Lemma 7.3.2 The Arnold Cat Map satisfies the Manifold Intersection Property.

Proof Lemma 7.3.1 shows that the vertical length of Hi(γ ) for γ ∈ C+ grows
(exponentially) with i. Therefore there exists an n such that Hn(γ ) contains a
v-segment. Similarly, the horizontal length of Hj(γ ′) for γ ′ ∈ C− = {(u, v) :
u/v ≤ 0} grows (exponentially) with j, and so there exists an m such that
H−m(γ ) contains an h-segment. Since any v-segment intersects any h-segment,
the Manifold Intersection Property is satisfied.

Corollary 7.3.1 The Arnold Cat Map is ergodic.

7.4 Ergodicity for co-rotating toral linked twist maps

The corresponding result for co-rotating linked twist maps is notionally easy.
Line segments grow in a similar manner to the Cat Map. In particular, because
γ ∈ C+ for each γ ∈ Hi(γ u(z)), we have lv(Hi+1(γ )) ≥ lv(Hi(γ )). This
growth of line segments should lead to a v-segment as before, but there is
an additional issue here. Recall that linked twist maps, being non-uniformly
hyperbolic systems, have local unstable manifolds, the sizes of which are not
uniformly bound away from zero. This means that we must ensure that the rate
of growth of the vertical length of line segments is sufficiently great to ensure
a v-segment in finite time, no matter how small the initial γ u. We require
exponential growth (as we had for the Cat Map) to achieve this, and this can
be obtained using the result from Chapter 6 (Lemma 6.3.3) which implies that
any orbits hitting S do so with positive frequency.

Lemma 7.4.1 Let z ∈ S be such that γ u(z) exists. For each γ ∈ C+
lv(HS(γ )) ≥ K2lv(γ )

where K2 > 1 is a constant independent of the choice of z and γ . Hence

lv(H
i
S(γ )) ≥ Ki

2lv(γ )

until Hi
S(γ ) contains a v-segment.

Proof Since z is the mid-point of γ , at least half of (the vertical length of) γ is
acted on by FS . That is, letting γ ′ = FS(γ ),

lh(γ
′) ≥ lh(γ ) + α

2
lv(γ ).
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FS(z)

g� = FS(g (z))

S

z
g(z)

Figure 7.6 The line segments Hr
S(γ (z)) and FS(Hr

S(γ (z))), with chosen segments
γ and γ ′.

Moreover, since lv(γ ′) = lv(γ ), and FS(z) ∈ S, at least half of (the horizontal
length of) γ ′ is acted on by GS (see Figure 7.6). That is,

lv(HS(γ ) = lv(GS(γ
′) ≥ lv(γ

′) + α

2
lh(γ

′)

≥ lv(γ ) + α

2

(
lh(γ ) + α

2
lv(γ )

)
≥ K2lv(γ )

where K2 = 1 + α2/4 > 1. Since K2 is independent of the choice of z and
γ , we can continue this process so that lv(Hi

S(γ )) ≥ Ki
2lv(γ ) until we reach a

v-segment.1

Theorem 7.4.1 A co-rotating toral linked twist map H satisfies the Manifold
Intersection Property.

Proof Lemma 7.4.1 shows that the vertical length of Hi(γ ) for γ ∈ C+ grows
exponentially until it contains a v-segment. The same argument can be applied
to H−j(γ ′) for γ ′ ∈ C− to produce an h-segment. Since these must intersect,
the Manifold Intersection Property is satisfied.

Corollary 7.4.1 A co-rotating toral linked twist map H is ergodic.

Key point: The proof of the Manifold Intersection Property, and hence ergodicity,
in the co-rotating/co-twisting case is fundamentally very simple. Forward iterates
of unstable manifolds grow and wrap around the torus, while backward iterates of
stable manifolds grow and wrap around the torus in a different direction, making
an intersection inevitable.

1 Alert readers will recognize that this proof may fail for a trajectory which, for example,
approaches the top left corner of S. It can be shown that initial conditions producing such
trajectories form a set of zero measure in S.
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7.5 Ergodicity for counter-rotating toral linked twist maps

The counter-rotating case has an added difficulty, in that the counterpart to
Lemma 7.4.1 does not hold. In particular, observe that it is not necessarily true
that lv(H(γ )) > lv(γ ). This is because iterates of unstable manifolds, while
lengthening, may fold back on themselves and a priori fail to wrap around
the torus, producing h- and v-segments. Figure 7.7 provides a sketch of this, after
Przytycki (1983). Iterates of a segment of local unstable manifold γ u increase
in length but remain confined in a region of phase space. See Figure 6.12 of
Chapter 6 for this type of behaviour in a real numerical example (although recall
that this example also violates the conditions for non-uniform hyperbolicity).
These difficulties were overcome by Przytycki (1983), who gave an intricate and
ingenious argument to deduce exponential growth of line segments culminating
in an h-segment. We reproduce his proof.

First we note that the following arguments will require at least double twists;
that is, the wrapping numbers k and l will have modulus at least 2. This
immediately allows the following lemma:

Lemma 7.5.1 For a counter-rotating toral linked twist map with |l| ≥ 2, let
γ be a line segment. If F(γ ) contains an h-segment γh, then H(γ ) contains a
v-segment.

Proof Since |l| > 2 the map G wraps γh at least twice around the torus, with
the end points of γh fixed, as shown in Figure 7.3(b). Hence H(γ ) must contain
a v-segment.

We aim to show that, given γ ⊂ Hi
S(γ

u(z)) (i.e., a line segment in S aligned
in the cone C), either FS(γ ) contains a segment γ ′ such that

lh(γ
′) > δlv(γ ) (7.3)

Q

P S

Q

P S

Q

P S

Q

P S

Figure 7.7 Schematic diagram (after Przytycki (1983)) showing how iterates of
γ u in a counter-rotating map may grow but fail to form h- or v-segments. The
first diagram shows an initial line segment γ , and subsequent diagrams show the
images of γ under subsequent iterates of H.
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where δ > 1 is independent of γ , or FS(γ ) contains an h-segment. In the latter
case, we can appeal immediately to Lemma 7.5.1 to produce a v-segment. In the
former case we repeat the process, acting on the line segment γ ′ with GS , to
find a segment γ ′′ ⊂ GS(γ

′) such that

lv(γ
′′) > δlh(γ

′)

unless γ ′′ is already a v-segment. We continue this process to produce line
segments of exponentially growing length, which must eventually end with
a v-segment or an h-segment. To establish Equation 7.3 we first make the
following assumption.

Assumption FS(γ ) does not contain any h-segments.
Clearly if the assumption does not hold then we have our h-segment and can

appeal immediately to Lemma 7.5.1.

Lemma 7.5.2 A consequence of the assumption is that lv(γ )(L + α) < 2.

Proof We have γ ∈ C = {(u, v) : L ≤ u/v ≤ 0}, so Llv(γ ) ≤ lh(γ ) ≤
0. To guarantee that FS(γ ) may not contain an h-segment we must have
1
2 lh(FS(γ )) < 1 (this is because if 1

2 lh(FS(γ )) ≥ 1 then even if the ‘worst
case’ of S = T2 and FS(z) close to ∂Q we must have an h-segment). But
lh(FS(γ )) ≥ lh(γ ) + αlv(γ ) ≥ (L + α)lv(γ ). So a consequence of the
assumption is that (L + α)lv(γ ) < 2.

Let m1 be the first time Fm1(γ ) intersects S. There are four cases in which
such an intersection can occur:

1. Fm1(γ ) contains an h-segment γh.
2. The right-hand end of Fm1(γ ) intersects S (see Figure 7.8).
3. The left-hand end of Fm1(γ ) intersects S.
4. Both ends of Fm1(γ ) intersect S (see Figure 7.8).

In case (1) we may apply Lemma 7.5.1 on γh immediately. Cases (2) and
(3) are analogous. We investigate first (2). Divide Fm1(γ ) into intervals I1, I2,
I3, I4, as in Figure 7.8. We make the division so that Fm1(γ ) ∩ S = I4, but the
remainder of the division into I1, I2, I3 is arbitrary.

Lemma 7.5.3 There exists a periodic point p in I2.

Proof Along I2, f (y) changes by αlv(I2). (To see this label the end points of I2

as (Ixs , Iys) and (Ixe , Iye) and note the linearity of the twist gives f (Iye)− f (Iys) =
α(Iye − Iys) = αlv(I2).) Since f is continuous we can choose n > 1/αlv(I2)

such that there exists y ∈ (Iys , Iye) with f (y) a rational number m/n for some
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I3
I4

I1

I2

I''2I'2 I1

I3
I2 I2

P S

Q

Case (2)

P S

Q

Case (4)

p

p1 p2

Figure 7.8 (Figure after Przytycki (1983)) Case (2) shows the initial line segment γ
and the image Fm1 (γ ). We partition Fm1 (γ ) as shown into I1, I2, I3, I4. The segment
I2 contains a periodic point p whose orbit is marked with crosses. Case (4) has the
image Fm1 (γ ) intersecting S from the left and right.

integer m. This implies that there is an F-periodic point p ∈ I2 with period
n = 01 + 1/(αlv(I2))1. The distance between points in this periodic orbit is

d = 1/n ≥ 1/(1 + (1/αlv(I2))). (7.4)

The point p divides I2 into two parts which we call I ′
2 and I ′′

2 . Of the points
in the (periodic) orbit of p we label the last one to the left of ∂Q1 as p1, and the
first to the right of ∂Q1 as p2. Now call m2 the first time that Fm2(p) is between
p and ∂Q1. (Note that there must be such a point as the orbit of p a point in
γ ∈ S. The point could be p1, but needn’t be.) Let us now inspect I ′′

2 ∪ I3. Define

J0 = I ′′
2 ∪ I3

Jm = F(Jm−1\S) m = 1, 2, . . . , m2.

We define the sequence in this way, discarding any portions which intersect S
before applying F so that we only ever act on Ji with F, and never G. This
means we never introduce acute angles via the counter-rotation. However the
final element in the sequence, Jm2 may intersect S. We shall see shortly that in
fact it must. Similarly define

J̄0 = I1 ∪ I ′
2

J̄m = F(J̄m−1\S) m = 1, 2, . . . , m2.

Then we study the growth of (Jm2 ∪ J̄m2) ∩ S), since this is equivalent to the
growth of portions of I1 ∩ I2 ∩ I3 which have only been acted on by one twist
map, F, which finally intersect S. It is enough if this quantity satisfies the growth
criteria of Equation (7.3).
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Lemma 7.5.4 To have lh((Jm2 ∪ J̄m2)∩S) ≥ δlv(γ ) we need all of the following
inequalities to hold:

d ≥ δlv(γ ), (7.5)

αlv(I3) + lh(I3) ≥ δlv(γ ), (7.6)

αlv(I1) + lh(I1) ≥ δlv(γ ). (7.7)

Proof First we note that for m = 1, 2, . . . , m2,

lh(Jm) ≥ min{lh(I ′′
2 ∪ I3) + αlv(I

′′
2 ∪ I3), d + lh(I

′′
2 ∪ I3)}.

To see this recall that m2 is the first time that Fm2(p) is between p and ∂Q1. If Jm

intersects ∂Q0 then lh(Jm) is at least d + lh(I ′′
2 ∪ I3). If Jm does not intersect

S, then the usual growth of a line segment applies and lh(Jm) is lh(I ′′
2 ∪ I3) +

αlv(I ′′
2 ∪ I3). Now we examine lh(Jm2 ∩S). If Fm2(p) is between p and ∂Q0 then

lh(Jm2 ∩ S) ≥ d. If Fm2(p) ∈ S\{p1} then

lh(Jm2 ∩ S) ≥ min{d, lh(I
′′
2 ∪ I3) + αlv(I

′′
2 ∪ I3)}. (7.8)

Finally we have the case Fm2(p) = p1. If Equation (7.8) is not satisfied then
Jm2 ∩ S intersects ∂Q1 with its right-hand end and we have lh(Jm2 ∩ S) = τd
for some 0 < τ < 1.

A similar argument applies for J̄ giving

lh(J̄m2 ∩ S) ≥ min{(1 − τ)d, lh(I1 ∪ I ′
2) + αlv(I1 ∪ I ′

2)}. (7.9)

unless J̄m2 ∩ S intersects ∂Q0 with its left-hand end.
This gives

lh((Jm2 ∪ J̄m2) ∩ S) ≥ min{d, lh(I3) + αlv(I3), lh(I1) + αlv(I1)}. (7.10)

We would also have Equation (7.3) satisfied if

lh(I4) ≥ δlv(γ ). (7.11)

Lemma 7.5.5 There exists a partition, given below, of γ into I1, I2, I3, I4

satisfying all of Equations (7.5), (7.6) and (7.7), or Equation (7.11), if α >

max{α1,α2} = α2, where α1 = 5/2 and α2 ≈ 4.152643.

Proof From the definition of d (Equation (7.4)), Equation (7.5) is equivalent to

αlv(I2)

1 + αlv(I2)
≥ δlv(γ ).
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We can rearrange this to give

lv(I2) ≥ δlv(γ )

α(1 − δlv(γ ))
. (7.12)

This holds since 1 − δlv(γ ) > 0. To see this note that lv(γ ) < 2/(L + α) from
Lemma 7.5.2, and L + α = (α/2) + √(α/2)2 − 1 > 2 for α > α1 = 5/2.
Equation (7.6) is equivalent to

lv(I3) ≥ δlv(γ )

L + 2α
. (7.13)

This follows from the facts that γ ∈ C = {(u, v) : L ≤ u/v ≤ 0} and so
lh(I3) ≥ (L + α)lv(I3). We have a similar conclusion for lv(I1).

lv(I1) ≥ δlv(γ )

L + 2α
. (7.14)

Equation (7.11) follows if

lv(I4) ≥ δlv(γ )

L + α
(7.15)

again using lh(I4) ≥ (L + α)lv(I3).
Thus we need a partition of γ into I1, I2, I3, I4 such that either all of (7.12),

(7.13) and (7.14) hold, or (7.15) holds. Suppose

lv(γ ) = lv(I1) + lv(I2) + lv(I3) + lv(I4)

>
δlv(γ )

L + 2α
+ δlv(γ )

α(1 − δlv(γ ))
+ δlv(γ )

L + 2α
+ δlv(γ )

L + α
. (7.16)

Then we choose I1 such that

lv(I1) ≥ δlv(γ )

L + 2α

(which we can since δ < 1 and L + 2α > α1 + α > 1) and choose I3 such that

lv(I3) ≥ δlv(γ )

L + 2α

(again this can be done). Then Equation (7.16) implies that

lv(I2) + lv(I4) >
δlv(γ )

α(1 − δlv(γ ))
+ δlv(γ )

L + α

which means that either

lv(I2) >
δlv(γ )

α(1 − δlv(γ ))



212 7 Ergodicity and Bernoulli for TLTM

in which case we have all of (7.12), (7.13), (7.14) or

lv(I4) >
δlv(γ )

L + α

so (7.15) holds. Dividing (7.16) through by lv(γ ) gives the condition

1 >
1

α(1 − 2/(L + α))
+ 2

2α + L
+ 1

α + L

which is satisfied by

α > α2 ≈ 4.152.

Case (3) follows in exactly the same way. We now study case (4). This is a
slightly simpler arrangement.

Lemma 7.5.6 There exists a partition which gives lh(FS(γ )) > δlv(γ ) if α >

α3 ≈ 3.239.

Proof We divide Fm1(γ ) into I1, I2, I3 as in Figure 7.8. Clearly we would be
done if lh(I1) ≥ δlv(γ ), or if lh(I3) ≥ δlv(γ ). Moreover, it would be enough if
lh(F(I2))− lh(I2) ≥ δlv(γ ). As above these would be satisfied if any one of the
following inequalities hold:

(L + α)lv(I1) ≥ δlv(γ ),

(L + α)lv(I3) ≥ δlv(γ ),

αlv(I2) ≥ δlv(γ ).

This is satisfied by the partition

lv(γ ) =
i=3∑
i=1

lv(Ii) ≥ lv(γ )

(
2

L + α
+ 1

α

)
.

Dividing through by lv(γ ) gives the condition

1 >
2

L + α
+ 1

α

which is satisfied by

α > α3 ≈ 3.239.

Theorem 7.5.1 A counter-rotating toral linked twist map H with |k|, |l| ≥ 2
and αβ < C = α2

2 ≈ −17.24445 is ergodic.
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Proof We proved in Chapter 6 that H satisfies the (KS) and (OS) conditions,
and have positive Lyapunov exponents if |α|, |β| > 2. Lemmas 7.5.5 and 7.5.6
show that if α > α2 ≈ 4.152 then Equation (7.3) is satisfied. Since |l| ≥ 2
this guarantees a v-segment in Hm(γ u(z)) for some m > 0, for almost every z.
We can repeat this argument for backward iterations to conclude that there exists
an h-segment in H−n(γ s(z)) for some n > 0, for almost every z, and so the
Manifold Intersection Property is fulfilled. Then Theorem 5.4.1 proves that H
is ergodic.

Key point: The counter-rotating case requires a further condition on the strength
of twists to guarantee exponential growth of line segments.

7.6 The Bernoulli property for toral linked twist maps

Having established ergodicity for toral linked twist maps by verifying the Man-
ifold Intersection Property, our final task is to demonstrate that these systems
possess the Bernoulli property. Recall from Section 5.4.1 that in order to show
this, we must verify the Repeated Manifold Intersection Property, which is that
for almost every pair of z,z′,

Hm(γ u(z)) ∩ H−n(γ s(z)) �= ∅
for all large enough integers m and n.

As usual we illustrate the argument by giving a proof that the Arnold Cat
Map has the Bernoulli property. Again, this can be proved more directly, using
for example, Markov Partitions (Adler (1998)). The proof of this is given with
reference to Figure 7.9. Note that an alternative proof could be given by working
with the lift of the Cat Map, but we choose to work on the torus in order to
make the connection with figures such as those in Chapter 6. The proof of the
following is based on the earlier argument about v-segments.

Theorem 7.6.1 The Arnold Cat Map has the Bernoulli property.

Proof We have shown that after some iterate Hi of an initial γ , we have a
v-segment; that is, a line segment joining the upper and lower sides of the unit
square. We consider the next few iterates of γv in Figure 7.9(a), recalling that
the Cat Map can be regarded as the composition of a horizontal shear F and a
vertical shear G. In each figure, solid black circles indicate points which are fixed
under the map to be applied. Consider the initial v-segment γv. After F is applied
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Figure 7.9 Schematic diagram illustrating how a v-segment γv for the Arnold Cat
Map results in another v-segment after at most three iterations of H. Moreover,
after three iterations, the image of γv has wrapped around the torus sufficiently that
a v-segment is guaranteed for all future iterations.

(Figure 7.9(b)) , we have a line F(γv) joining top and bottom sides of the square
which wraps horizontally around the torus. After G is applied (Figure 7.9(c))
the image H(γv) includes a segment which joins top and bottom sides, and
cuts the left and right sides of the square. Note that here we disregard the
dotted parts of the image. Applying F to the solid line segment (Figure 7.9(d))
produces a line F(H(γv) connecting lower and upper sides of the square which
wraps horizontally more than once. Applying G to this (Figure 7.9(e)) gives
a line H2(γv) connecting lower and upper sides of the square wrapping twice
vertically and more than once horizontally. Recalling our earlier argument,
applying F to this line (Figure 7.9(f)) produces a line F(H2(γv)) connecting
lower and upper sides, wrapping more than three times horizontally, and twice
vertically. In Figure 7.9(f) we have drawn part of F(H2(γv)) with a solid line.
After applying G the image of this line (Figure 7.9(g)) creates a v-segment
which does not cut the left and right sides of the square. Note however, that
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(a) (b) (c)

(d) (e)

(f) (g)

Hi(g)

F

F

G

G

F G

F(gv) H(gv)

H2(gv)F(H(gv)

F(H2(gv)) H3(gv)

Figure 7.10 Schematic diagram illustrating how a v-segment γv for a co-rotating
toral linked twist map results in another v-segment after at most three iterations of
H. Moreover, after three iterations, the image of γv has wrapped around the torus
sufficiently that a v-segment is guaranteed for all future iterations.

we can now apply the same argument to H3(γv), and guarantee that Hi(γv)

contains a v-segment for all i ≥ 3.
As usual the same argument applies to backward iterations of local stable

manifolds, to produce an h-segment for H−j(γh) for all j ≥ 3. This verifies
the Repeated Manifold Intersection Property. Therefore by Theorem 5.4.1 the
Arnold Cat Map has the Bernoulli property.

Theorem 7.6.2 A co-rotating toral linked twist map H has the Bernoulli
property.

Proof Precisely the same argument as the above applies to iterates of a
v-segment γv of a co-rotating toral linked twist map. Figure 7.10 shows this
diagramatically.

In the proof of ergodicity in the counter-rotating case we required the condi-
tion |k|, |l| ≥ 2, that is, we needed double twists. This condition makes it easy
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to deduce the Bernoulli property for counter-rotating linked twist maps with
double twists.

Theorem 7.6.3 (Przytycki (1983)) A counter-rotating toral linked twist map
H with |k|, |l| ≥ 2 and αβ < C ≈ −17.24445 has the Bernoulli property.

Proof Theorem 7.5.1 shows that γv ⊂ Hm(γ u(z)) is a v-segment. Because
|k| ≥ 2, F(γv) contains an h-segment γh and since |l| ≥ 2, G(γh) contains a
v-segment (see Figure 7.3). Hence Hi(γv) contains a v-segment for all i ≥ m.
Similarly backward iterations ensure that H−j(γv) contains a v-segment for all
j ≥ n. Therefore by Theorem 5.4.1 H has the Bernoulli property.

Key point: This completes the proof of the Bernoulli property for toral linked twist
maps.

7.7 Summary

The geometrical argument above gives sufficient conditions for a toral linked
twist map to enjoy the Bernoulli property. The key point to notice is that dif-
ferent conditions are required for the co-rotating and counter-rotating cases. In
particular, if a linked twist map is co-rotating, we only require the conditions
from the previous chapter on the strength of the twists (that the twist functions
should be monotonic). A wrapping number of 1 (i.e., single-twists) is sufficient.
On the other hand, in the counter-rotating case, we require stronger conditions
on the strength of the twist (given in Theorem 7.6.3), and also that we have
a wrapping number of at least 2 (i.e., at least double-twists) to guarantee the
Bernoulli property.
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Linked twist maps on the plane

In this chapter we discuss the conversion of results for toral linked twist
maps into results for planar linked twist maps. These systems seem more
directly applicable to fluid mixing, but introduce new technical difficulties
in the mathematics.

8.1 Introduction

In Chapter 2 we discussed the connection between linked twist maps and fluid
flow, and observed that linked twist maps on the plane arise naturally in a
number of existing experimental constructions, such as blinking flows and duct
flows. However the extension of the results for toral linked twist maps to planar
linked twist maps is not entirely straightforward. The situation for toral linked
twist maps is relatively simple (at least in comparison to linked twist maps on
other objects) because we can express twist maps in two independent directions
in the same (Cartesian) coordinate system. The situation for planar annuli is
more complicated.

As in Chapter 4, annuli in the plane and twist maps on such annuli are
naturally described in polar coordinates. However, to create a linked twist map
we require a pair of annuli with different centres. There is no simple coordinate
system which then describes twist maps in both annuli. We therefore require
additional transformations to move from one coordinate frame to another.

The following work in this chapter is mainly due to Wojtkowski (1980).
This work predates Katok et al. (1986) by some six years, and so the author
could not appeal to the Katok–Strelcyn version of Pesin theory for systems with
singularities. Instead he constructs expanding and contracting segments of the
tangent space explicitly, and proves their absolute continuity. Then he appeals
to techniques in Anosov & Sinai (1967), Sinai (1970) and Weiss (1975) (which
predate Pesin (1977)) to deduce the ergodic partition (and in fact the partition
into K-components).

217
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Thanks to the Katok–Strelcyn theorem, our work is easier, in that we do not
have to concern ourselves with absolute continuity – this has been taken care of
in Katok et al. (1986). As in Chapter 6 our strategy is to establish the existence
of Lyapunov exponents, verify that any singularities allow the application of the
Katok–Strelcyn theorem, and finally show that Lyapunov exponents are non-
zero. To do so we use the construction of expanding and contracting sectors in
the tangent space computed ingeniously in Wojtkowski (1980).

8.2 Planar linked twist maps

In this section we give the domain and the functions required to define a linked
twist map on the plane, using the notation given in Wojtkowski (1980). Recall
that in Chapter 4 we have already defined such a linked twist map using the
notation of Devaney (1978).

8.2.1 The annuli

An annulus L in the plane R2 centered at the origin is most easily defined in
the usual polar coordinates (r, θ) as

L = {(r, θ) : r0 ≤ r ≤ r1}
where r0, r1 are positive constants. Recalling that Cartesian coordinates (x, y)
can be expressed as x = r cos θ and y = r sin θ we see that we can translate
L one unit to the left, that is, into an identical annulus centered at (−1, 0) in
Cartesian coordinates, by the transformation M1 : L → R2 given by

M1(r, θ) = (r cos θ − 1, r sin θ).

We give the annulus M1(L) the name R1. Similarly a transformation M2 : L →
R2 given by

M2(r, θ) = (1 − r cos θ , −r sin θ)

produces an annulus R2 = M2(L) centred at (1, 0).
The inverse transformations M−1

1 : R2 → L and M−1
2 : R2 → L are given by

M−1
1 (x, y) =

(√
(x + 1)2 + y2, tan−1 y

x + 1

)
and

M−1
2 (x, y) =

(√
(1 − x)2 + y2, tan−1 y

x − 1

)
.
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R1 R2

LS+

S–

Figure 8.1 The annulus L is marked with dotted lines. The transformed annuli R1

and R2 are marked with solid lines and are centred on (x, y) = (−1, 0) and (1, 0)
respectively. Because r0 > 1 and r1 < 2 + r0 the intersection R1 ∩ R1 contains
two disconnected components, S+ and S−, shaded in grey.

Note that the transformations M1 and M2 are related by the transformation
C : R2 → R2 given by

C(x, y) = (−x, −y),

that is, the central symmetry transformation. Then M1 = CM2 and M2 = CM1.
In other words, each annulus is the image of the other after reflection in both
x and y axes. Throughout we use polar coordinates to describe points in the
annulus L, and Cartesian coordinates to describe points in R1 and R2.

Choosing r0 > 1 and r1 < 2 + r0 ensures that every circle contained in
R1 intersects transversely every circle contained in R2, and that the intersection
R1 ∩R2 contains two distinct components S+ and S−. We define the intersection
of the annuli S = R1∩R2 = S+∪S− and the union R = R1∪R2. See Figure 8.1.

8.2.2 The twist maps

We define the twist maps on our original annulus L using the usual polar
coordinates. Define a pair of twist maps F1 : L → L and F2 : L → L by

F1(r, θ) = (r, θ + f1(r))

F2(r, θ) = (r, θ + f2(r))

where f1 and f2 are twist functions f1,2 : [r0, r1] → R with f1,2(r0) = f1,2(r1) =
0 (mod 2π) to ensure continuity at the boundaries of the annuli. As usual we
require the functions f1, f2 to be monotonic and C2, and we assume without loss
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of generality the strengths of the twists to be positive:

df1
dr

≥ c1 > 0 and
df2
dr

≥ c2 > 0.

We can fix wrapping numbers (defined as in Chapter 6) k and l for F1 and F2

respectively by setting f1(r1) = 2πk and f2(r1) = 2π l. The twist functions f1
and f2 may, but need not, be identical.

To create a twist map on one of the linked annuli we first move points to the
original annulus L, then perform the twist, and finally transform back to the
offset annulus. A twist map defined for points in the annulus R1 will therefore
have the form T1 : R → R where

T1 =
{

M1F1M−1
1 if (x, y) ∈ R1

Id if (x, y) ∈ R2\R1,

so that as before points outside R1 are left unchanged, and similarly for points
in R2 we have the map T2 : R → R given by

T2 =
{

M2F2M−1
2 if (x, y) ∈ R2

Id if (x, y) ∈ R1\R2.

Both twist maps F1 and F2 perform their twists in a counter-clockwise sense
(since f1, f2 > 0). An inspection of the action of M1 and M2 will reveal
that the twist maps T1 and T2 also act in a counter-clockwise sense. See
Figure 8.2.

M1
–1

M1 M2
F2

M–1 T2

(a) (b)

F1
T1

Figure 8.2 The action of twist maps T1 and T2. Figure (a) shows a point in R1

mapped into L under M−1
1 , sheared under F1 in L, and returned to R1 under M1.

The composition M1F1M−1
1 results in the transformation T1, with the twist in the

same sense as that of F1. In Figure (b) the action of T2 = M2F2M−1
2 for a point in

R2 is shown. Note here that the effect of both M2 and M−1
2 is to reflect in both the

x and y axes as well of a translation of one unit to the right. The transformation T2

is again in the same sense as that of F2.
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8.2.3 Linked twist maps

Now we can form a linked twist mapping by composing the twist maps, giving

T = T2 ◦ T1.

Recalling the geometrical argument in Section 2.3.1 we note that this co-rotating
linked twist map has a counter-twisting effect, since the dynamics in the inter-
sections is locally equivalent to the dynamics in the counter-rotating toral linked
twist map. A counter-rotating/co-twisting linked twist map can be formed by
composing T1 with the inverse of T2:

T̄ = T−1
2 ◦ T1.

By analogy with the results of Chapters 6 and 7 we might expect that the co-
rotating/counter-twisting system T to require stricter conditions on the twists
to guarantee an ergodic partition than the counter-rotating/co-twisting version
T̄ , and we shall see that this is indeed the case. For the rest of the chapter we
work with compositions of many maps, and for ease of notation we will drop
the composition symbol ‘◦’ and write, for example, T = T2T1.

As in previous chapters we will work with a first return map TS . Because the
twist maps F1 and F2 are defined in polar coordinates, we will give the first
return map in these coordinates. Thus for an initial condition (r, θ) ∈ M−1

1 (S)
define TS : M−1

1 (S) → M−1
1 (S) by

TS(r, θ) = M−1
1 Tm

2 Tn
1 M1

= M−1
1 M2Fm

2 M−1
2 M1Fn

1 M−1
1 M1

= M−1
1 M2Fm

2 M−1
2 M1Fn

1

where n is such that Fn
1 (r, θ) ∈ M−1

1 (S) and Fi
1(r, θ) /∈ M−1

1 (S) for 1 ≤ i < n,
and similarly, m is such that Fm

2 (r, θ) ∈ M−1
2 (S) and Fi

2(r, θ) /∈ M−1
2 (S) for

1 ≤ i < m. The first return map for T̄ , T̄S : M−1
1 (S) → M−1

1 (S) is defined
exactly analogously:

T̄S(r, θ) = M−1
1 T−m

2 Tn
1 M1

= M−1
1 M2F−m

2 M−1
2 M1Fn

1

where n is such that Fn
1 (r, θ) ∈ M−1

1 (S) and Fi
1(r, θ) /∈ M−1

1 (S) for 1 ≤ i < n,
and similarly, m is such that F−m

2 (r, θ) ∈ M−1
2 (S) and F−i

2 (r, θ) /∈ M−1
2 (S) for

1 ≤ i < m.
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Key point: Linked twist maps on the plane are defined using polar coordinates to
express a twist on a central annulus, and a pair of coordinate-change transformations
to move to the linked annuli in Cartesian coordinates.

8.3 The ergodic partition

To prove ergodicity results about T and T̄ we follow the same scheme as in
Chapter 6. We aim to show that all Lyapunov exponents, for almost every point
in our domain, are non-zero, and then to appeal to the Katok–Strelcyn version
of Pesin theory. We have defined the system in such a way as to make the two
(KS) conditions trivially satisfied.

Lemma 8.3.1 Planar linked twist maps T and T̄ satisfy the conditions (KS1)
and (KS2).

Proof B(singT , ε) = B(∂R1 ∪∂R2, ε). An ε-neighbourhood around ∂R1 ∪∂R2

consists of four annuli, two of inner radius r0 − ε and outer radius r0 + ε, and
two of inner radius r1 − ε and outer radius r1 + ε. These annuli have areas
π(r0 + ε)2 − π(r0 − ε)2 = 4r0πε, and π(r1 + ε)2 − π(r1 − ε)2 = 4r1πε

respectively. Thus µ(B(singT , ε)) = 8πε(r0 + r1) and so Equation (5.24) is
satisfied with C1 = 8π(r0 + r1) and a = 1. The same is true for T̄ .

The arguments in Assumption 6.4.1 apply here to show that T and T̄ satisfy
Equation (5.25) under very mild restrictions.

Moreover the Oseledec Multiplicative Ergodic Theorem again guarantees the
existence of Lyapunov exponents for both T and TS (and T̄ and T̄S).

Lemma 8.3.2 T, T̄ , TS and T̄S satisfy the Oseledec condition (OS).

Proof We have∫
S

log+ ‖DTS‖dµ ≤
∫

R
log+ ‖DT‖dµ (8.1)

=
∫

V=intR\∂S
log+ ‖DT‖dµ (8.2)

< ∞ (8.3)

where the first inequality follows because S ⊂ R, the equality follows since
µ(R\V) = µ(singT) = 0, and the second inequality because T is C2 on
V = intR\∂S. Again the proof is identical for T̄ and T̄S .
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All that remains is to show that the return maps TS and T̄S have non-zero
Lyapunov exponents. We do so by using the complementary invariant cone
technique discussed in Chapter 5 to derive Anosov conditions.

We use coordinates (β1,β2) = (dr, dθ) in the tangent space to L. Since
TS = (M−1

1 M2)Fm
2 (M−1

2 M1)Fn
1 (and similarly for T̄S), when studying the action

of DTS on tangent vectors we need to consider the effect of DFn
1 , DFm

2 and DF−m
2

for m, n ≥ 1, but also D(M−1
2 M1) and D(M−1

1 M2). The Jacobians DFn
1 , DFm

2
and DF−m

2 are straightforward to compute:

DFn
1 =

(
1 0

nf ′
1 1

)
, DFm

2 =
(

1 0
mf ′

2 1

)
, DF−m

2 =
(

1 0
−mf ′

2 1

)
,

where the derivatives f ′
1 and f ′

2 are evaluated at the appropriate value of r.
The Jacobians D(M−1

2 M1) and D(M−1
1 M2) require a little more effort. The

composition M−1
2 M1 is given by

M−1
2 M1(r, θ) = M−1

2 (r cos θ − 1, r sin θ)

=
(√

4 − 4r cos θ + r2, tan−1 r sin θ

r cos θ − 2

)
.

Note that M−1
1 M2 is identical, since M−1

1 M2 = M−1
1 CM1 = M−1

2 M1.
Referring to Figure 8.3, let (r, θ) ∈ M−1

1 (S) ∈ L. Then M1(r, θ)has Cartesian
coordinates (x, y) = (r cos θ − 1, r sin θ) ∈ S. Translating this point into R2 we
have, in polar coordinates, M−1

2 M1(r, θ) = (r̄, θ̄ ) (where a simple calculation

gives r̄ = √(1 − x)2 + y2 = √
4 − 4r cos θ + r2). Then by the chain rule,

DM−1
2 M1|(r,θ)

= DM−1
2 |M1(r,θ)DM1|(r,θ)

= DM−1
2 |(x=r cos θ−1,y=r sin θ)DM1|(r,θ)

=




x − 1√
(1 − x)2 + (−y)2

y√
(1 − x)2 + (−y)2

−y

(1 − x)2 + y2

x − 1

(1 − x)2 + y2


DM1|(r,θ)
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=




r cos −2√
(2 − r cos θ)2 + (−r sin θ)2

r sin θ√
(2 − r cos θ)2 + (−r sin θ)2

−r sin θ

(2 − r cos θ)2 + (−r sin θ)2

−(2 − r cos θ)

(2 − r cos θ)2 + (−r sin θ)2




× DM1|(r,θ)

=



r cos θ − 2

r̄

r sin θ

r̄
−r sin θ

r̄2

r cos θ − 2

r̄2


(cos θ −r sin θ

sin θ r cos θ

)

=



r − 2 cos θ

r̄

2r sin θ

r̄
−2 sin θ

r̄2

r(r − 2 cos θ)

r̄2


 .

Each element in this matrix can be expressed in terms of an angle α = α(r, θ),
defined to be the angle between lines joining (r, θ) ∈ S with the centres of R1

and R2. In particular we have sin α = 2 sin θ/r̄ and cosα = (r − 2 cos θ)/r̄.
See Figure 8.3 and caption for details. We note as in Figure 8.3 that α, measured
counter-clockwise, is positive in the upper half-plane, and negative in the lower
half-plane. The range of α governs the size of the intersection domain S. Thus
if (r, θ) ∈ M−1

1 (S+) then

D(M−1
2 M1)|(r,θ) =

(
cosα(M1(r, θ)) r sin α(M1(r, θ))

− sin α(M1(r, θ))/r̄ r cosα(M1(r, θ))/r̄

)

and if (r, θ) ∈ M−1
1 (S−) then

D(M−1
2 M1)|(r,θ) =

(
cosα(M1(r, θ)) −r sin α(M1(r, θ))

sin α(M1(r, θ))/r̄ r cosα(M1(r, θ))/r̄

)
.

Similarly we have, for (r, θ) ∈ M−1
2 (S+)

D(M−1
1 M2)|(r,θ) =

(
cosα(M2(r, θ)) r sin α(M2(r, θ))

− sin α(M2(r, θ))/r̄ r cosα(M2(r, θ))/r̄

)

and for (r, θ) ∈ M−1
2 (S−)

D(M−1
1 M2)|(r,θ) =

(
cosα(M2(r, θ)) −r sin α(M2(r, θ))

sin α(M2(r, θ))/r̄ r cosα(M2(r, θ))/r̄

)
.
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–1 10

r d

M1(r,u)

M2
–1 M1(r,u)

(r,u)

r

r

r

u u

a

–

–

Figure 8.3 For any point (r, θ) ∈ M−1
1 (S+) the image M1(r, θ) lies in S+. The

angle α(M1(r, θ)) is formed by subtending lines from M1(r, θ) to (−1, 0) and
(1, 0). The point M−1

2 M1(r, θ) is defined to have polar radius r̄, and so the lengths
of the subtended lines are given as r and r̄ respectively. To calculate α we add
the perpendicular of length d, from (1, 0) to the line subtended to (−1, 0). Then
sin α = d/r̄. But we also have sin θ = d/2 and so sin α = 2 sin θ/r̄. A similar
calculation gives cosα = (r − 2 cos θ)/r̄.

8.3.1 Counter-rotating planar linked twist maps

We turn first to the counter-rotating (co-twisting) linked twist map T̄ .
Let

η = sup
(r,θ)∈M−1

1 (S)

| cot α(M1(r, θ))|
r

Theorem 8.3.1 (Wojtkowski (1980)) The counter-rotating planar linked twist
map T = T−1

2 T1 is a union of (possibly countably many) ergodic components if

min(c1, c2) > 2η (8.4)

We prove this theorem using the following lemmas. We aim to find a strictly
invariant expanding cone field (recall Section 5.5), that is, a collection of cones
in the tangent space at each point such that all vectors within each cone are
expanded under DT̄S , and that each cone is mapped into the interior of the cone
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at the next iterate of the map. Taking the constituent mappings of T̄S in turn we
give cones U1, Ũ1, U2 and Ũ2 such that

DFn
1 (U1) ⊆ Ũ1

D(M−1
2 M1)(Ũ1) ⊂U2

DF−m
2 (U2) ⊆ Ũ2

D(M−1
1 M2)(Ũ2) ⊂ U1

for n, m > 0. The fact that at least one of the inclusions above is strict is enough
that DT̄S(U1) ⊂ U1.

Define first the cones

U1 =
{
(β1,β2) :

β2

β1
≥ −c1

2

}
,

Ũ1 =
{
(β1,β2) :

β2

β1
≥ c1

2

}
.

(Strictly speaking these cones are defined for each (r, θ) ∈ M−1
1 (S) so that

U1 = U1(r, θ) etc. However since U1 etc. will consist of the same tangent
vectors at each point we write U1 without confusion.)

Lemma 8.3.3

DFn
1 (U1) ⊆ Ũ1

for each n ≥ 1.

Proof Taking a point (r, θ) with tangent vector v = (β1,β2) ∈ U1, we form
v′ = (β ′

1,β ′
2) = DFn

1 (U1) as follows:(
β ′

1
β ′

2

)
=
(

1 0
nf ′

1(r) 1

)(
β1

β2

)
=
(

β1

nf ′
1(r)β1 + β2

)
Then

β ′
2

β ′
1

= nf ′
1(r)β1 + β2

β1
≥ nc1 + β2

β1
≥ nc1 + −c1

2
≥ c1

2

for n ≥ 1 and so v′ ∈ Ũ1. Hence DFn
1 (U1) ⊆ Ũ1.

Similarly we define the sectors

U2 =
{
(β1,β2) :

β2

β1
≤ c2

2

}
,

Ũ2 =
{
(β1,β2) :

β2

β1
≤ −c2

2

}
.
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Lemma 8.3.4

DF−m
2 (U2) ⊆ Ũ2

for each m ≥ 1.

Proof Taking a point (r, θ) with tangent vector v = (β1,β2) ∈ U2, we form
v′ = (β ′

1,β ′
2) = DF−m

2 (U2) as follows:(
β ′

1
β ′

2

)
=
(

1 0
−mf ′

2(r) 1

)(
β1

β2

)
=
(

β1

−mf ′
2(r)β1 + β2

)
.

Then

β ′
2

β ′
1

= −mf ′
2(r)β1 + β2

β1
≤ −mc2 + β2

β1
≤ −mc2 + c2

2
≤ −c2

2

for m ≥ 1 and so v′ ∈ Ũ2. Hence DF−m
2 (U2) ⊆ Ũ2.

We have not had to use the condition in Theorem 8.3.1 as these lemmas relate
only to twist maps in the original annulus L. We will need the condition in the
following lemmas.

Lemma 8.3.5 Given condition (8.4) of Theorem 8.3.1 we have

D(M−1
2 M1)(Ũ1) ⊂ U2.

Proof Let M−1
2 M1(r, θ) = (r̄, θ̄ ). First we assume (r, θ) ∈ M−1

1 (S+). We
consider D(M−1

2 M1)(Ũ1) by taking v = (β1,β2) ∈ Ũ1, and compute v′ =
(β ′

1,β ′
2) = D(M−1

2 M1)v. Then (to simplify the notation we write α instead of
α(M1(r, θ))),

β ′
2

β ′
1

= −1/rr̄ + (β2/β1)(cot α/r̄)

cot α/r + β2/β1

<
(β2/β1)(cot α/r̄)

cot α/r + β2/β1
(8.5)

= cot α/r̄

(β1/β2)(cot α/r) + 1

≤ cot α

r̄
(8.6)

<
c2

2
(8.7)
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In the above equations, inequality (8.5) holds provided the denominator,
cot α/r + β2/β1 is positive (since r, r̄ > 0). But since cot α/r + β2/β1 >

cot α/r+c1/2, this holds by condition (8.4). In the case of inequality (8.6) there
are two cases. If cot α > 0 we require (β1/β2)(cot α/r) > 0, but this is clearly
true since β1/β2 ≥ c1/2 > 0. On the other hand if cot α < 0 then we require
0 < (β1/β2)(cot α/r)+ 1 < 1. But (β1/β2)(cot α/r) > (2/c1)(−c1/2) = −1
providing c1 > 2η, which follows from condition (8.4). Finally inequality (8.7)
follows directly from condition (8.4).

An almost identical procedure governs initial conditions in the other
intersecting region. Assume (r, θ) ∈ M−1

1 (S−). Then

β ′
2

β ′
1

= 1/rr̄ + (β2/β1)(cot α/r̄)

cot α/r − β2/β1

<
(β2/β1)(cot α/r̄)

cot α/r − β2/β1
(8.8)

= cot α/r̄

(β1/β2)(cot α/r) − 1

≤ cot α

r̄
(8.9)

<
c2

2
(8.10)

Similarly to the above, inequality (8.8) holds since condition (8.4) implies
cot α/r − β2/β1 < 0. To verify inequality (8.9) we consider two cases. If
cot α > 0 we require (β1/β2)(cot α/r) − 1 < 0, but this holds because
(β1/β2)(cot α/r) < (2/c1)(c1/2) = 1, by condition (8.4). If cot α < 0 we
require (β1/β2)(cot α/r) − 1 < −1. But this is clear since β1/β2 > 0. Finally
inequality (8.10) is given by condition (8.4).

An almost identical proof applies to the final inclusion lemma:

Lemma 8.3.6 Given condition (8.4) of Theorem 8.3.1 we have

D(M−1
1 M2)(Ũ2) ⊂ U1

Combining the previous four lemmas we have DT̄S(U1) ⊂ U1. Thus the cone
field U+ = ∪

(r,θ)∈M−1
1 (S)U1 is strictly invariant, so that DT̄S(U+) ⊂ U+. Now

we must show that DT̄S expands vectors in U1. Since we are working in polar
coordinates we use the usual Riemannian metric ds2 = dr2 + r2dθ2, so that the

norm of a vector (β1,β2) in the tangent space at a point (r, θ) is
√
β2

1 + r2β2
2 .

The mapping M−1
2 M1 results in no expansion or contraction of tangent

vectors, as shown in the following lemma.



8.3 The ergodic partition 229

Lemma 8.3.7 Given a tangent vector v = (β1,β2) ∈ TpL we have

‖D(M−1
2 M1)v‖ = ‖v‖.

Proof Let (r̄, θ̄ ) = M−1
2 M1(r, θ). Then, writing α for α(M1(r, θ)), we have

D(M−1
2 M1)v =

( cosα ±r sin α

∓ sin α/r̄ r cosα/r̄

)(
β1

β2

)

=
(

β1 cos ±β2r sin α

∓β1 sin α/r̄ + β2r cosα/r̄

)

and so

‖D(M−1
2 M1)v‖ =

√
(β1 cosα ± β2r sin α)2 + r̄2(∓β1 sin α/r̄ + β2r cosα/r̄)2

=
√
β2

1 + r2β2
2

= ‖v‖.

An identical result holds for D(M−1
1 M2). These are to be expected as M1

and M2 are simply translations, and as such have no expanding or contracting
properties. The expansion and contraction comes, as before, from the twist
maps.

Lemma 8.3.8 F1 increases the norm of all vectors from U1 except for vectors
of the form (0,β2), that is,

‖DF1v‖ > ‖v‖,

for v ∈ U1 except v = (0,β2).

Proof Consider a point (r, θ) and a tangent vector v = (β1,β2) ∈ U1 so that

‖v‖ = ‖(β1,β2)‖ =
√
β2

1 + r2β2
2 . Let F1(r, θ) = (r, θ̄ ) (recall that F1 leaves r

unchanged). Then

‖DF1v‖ =
√
β2

1 + r2( f ′β1 + β2)2

=
√
β2

1 + r2β2
2 + r2f ′( f ′β2

1 + 2β1β2).

But f ′β2
1 +2β1β2 > c1β

2
1 +2β1β2 ≥ 0 (provided β1 �= 0) since (β1,β2) ∈ U1.

Hence ‖DF1(β1,β2)‖ > ‖(β1,β2)‖ unless (β1,β2) = (0,β2).
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Lemma 8.3.9 F−1
2 increases the norm of all vectors from U2 except for vectors

of the form (0,β2), that is,

‖DF−1
2 v‖ > ‖v‖,

for v ∈ U2 except v = (0,β2).

Proof Similarly to the previous proof consider a point (r, θ) with a tangent

vector v = (β1,β2) ∈ U2 so that ‖v‖ =
√
β2

1 + r2β2
2 . Let F−1

2 (r, θ) = (r, θ̄ ).
Then

‖DF−1
2 v‖ =

√
β2

1 + r2(−f ′β1 + β2)2

=
√
β2

1 + r2β2
2 + r2f ′(f ′β2

1 − 2β1β2).

But f ′β2
1 −2β1β2 > c2β

2
1 −2β1β2 ≥ 0 (provided β1 �= 0) since (β1,β2) ∈ U2.

Hence ‖DF−1
2 (β1,β2)‖ > ‖(β1,β2)‖ unless (β1,β2) = (0,β2).

To take account of vectors of the form (0,β2) we give the following lemma:

Lemma 8.3.10 Vectors of the form (0,β2) are mapped into vectors of the form
(β1 �= 0,β2) under D(M−1

2 M1) and D(M−1
1 M2).

Proof Let v = (0,β2). Then

D(M−1
2 M1)v =

(
cosα ±r sin α

∓ sin α/r̄ r cosα/r̄

)(
0

β2

)

=
( ±rβ2 sin α

(rβ2 cosα)/r̄

)
.

Since r > 0 and β2 �= 0, the first component of this is equal to zero if and only
if sin α = 0. But for this we would require α = 0 or ±π , which cannot happen
since r0 > 1 and r2 < 2 + r0.

Now we can combine these to deduce expansion under the linked twist map T̄ .

Lemma 8.3.11 For vectors v ∈ U+

‖DT̄Sv‖ ≥ λ‖v‖ (8.11)

where λ > 1.

Proof Referring back to Proposition 5.5.1, we have given a cone field U+ which
is mapped strictly into itself under T̄S . Moreover T̄S expands all vectors v ∈ U+
(F1 expands all vectors except those of the form (0,β2). Vectors of that form
are mapped by DF1 into vectors of the form (β0 �= 0,β2). Then F2 expands



8.3 The ergodic partition 231

all vectors except those of the form (0,β2), and so in particular expands those
vectors not expanded by F1).

In a precisely analogous way we can construct a complementary cone field
U− such that DT̄−1

S (U−) ⊂ U− and such that DT̄−1
S expands all vectors in U−.

Lemma 8.3.12 For vectors v ∈ U−

‖DT̄S
−1

v‖ ≥ µ‖v‖ (8.12)

where µ > 1.

This gives the now familiar result that the first return map T̄S to the inter-
section region S is uniformly hyperbolic. The original map T̄ is nonuniformly
hyperbolic as different points take different numbers of iterations to return to
S. As in Chapter 6 our desired result follows directly.

Proof of Theorem 8.3.1 Lemma 8.3.1 shows that singularities in the system
are such that we can appeal to the Katok–Strelcyn theory. Lemma 8.3.2 shows
that Lyapunov exponents exist for both T and the first return map TS . The
Anosov conditions given by Equations (8.11) and (8.12) in Lemmas 8.3.11
and 8.3.12 guarantee that Lyapunov exponents for T̄S are non-zero. Our
usual argument applies to show that T̄ itself has non-zero Lyapunov expo-
nents. Then the result follows by the Katok–Strelcyn version of Pesin theory
(Theorem 5.4.1).

Example 8.3.1 Figure 8.4 shows an example of a planar counter-rotating
linked twist map T̄ which satisfies the conditions of Theorem 8.3.1. Here the
inner and outer radii r0 and r1 equal 2 and 3 respectively. We have single twists
(k = l = 1) and the twist functions f1 and f2 are linear. Two initial blobs of
10,000 points are shown in the first picture. The following pictures are images
of these initial blobs under 1, 2, 3, 5 and 10 iterates of T̄ . This example satisfies
the conditions of Theorem 8.3.1 since c1 = c2 = 2π , while η ≈ 0.383.

Example 8.3.2 Figure 8.5 shows an example of a planar counter-rotating
linked twist map T̄ which does not satisfy the conditions of Theorem 8.3.1 but
still appears (numerically) to mix well. Here the inner and outer radii r0 and r1

equal 1.1 and 3 respectively, and the intersecting region S is much larger than in
the previous example. We have single twists (k = l = 1) and the twist functions
f1 and f2 are linear. Two initial blobs of 10,000 points are shown in the first pic-
ture. The following pictures are images of these initial blobs under 1, 2, 3, 5 and
10 iterates of T̄ . However in this example we have c1 = c2 = 2π/1.99 ≈ 3.16,
while 2η ≥ 6.84. The map still appears to mix well despite violating the
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Figure 8.4 Successive iterates of the counter-rotating planar linked twist map T̄ ,
with r0 = 2, r1 = 3, and k = l = 1. The twist functions f1 and f2 are linear.
Initially (in the top left picture) we have blobs consisting of 10,000 points. The
next five pictures are the images of these blobs under the iterates 1, 2, 3, 5, 10 of
the map.

conditions of the theorem. Moreover, the domain of mixed fluid is much lar-
ger. This suggests, numerically, that the conditions in the theorem are not
sharp.

Key point: The ergodic partition for planar twist maps can be deduced in much the
same way as on the torus. Expanding and contracting cone fields can be constructed
which guarantee non-zero Lyapunov exponents.
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Figure 8.5 Successive iterates of the counter-rotating planar linked twist map T̄ ,
with r0 = 1.1, r1 = 3, and k = l = 1. The twist functions f1 and f2 are linear.
Initially (in the top left picture) we have blobs consisting of 10,000 points. The
next five pictures are the images of these blobs under the iterates 1, 2, 3, 5, 10 of
the map.

8.3.2 Co-rotating planar linked twist maps

Theorem 8.3.2 The co-rotating planar linked twist map T = T2T1 is a union
of (possibly countably many) ergodic components if

c1c2 − 2(c1 + c2)η > 4/r2
0 > 0. (8.13)

This is a more restrictive condition than that of Theorem 8.3.1. To see this
observe that c1c2 − 2(c1 + c2)η = c1(c2 − 2η)− 2c2η > 0 =⇒ c2 − 2η > 0,
and similarly c1 − 2η > 0. We proceed in the same manner as in the previous



234 8 Linked twist maps on the plane

section, defining the cones

U1 =
{
(β1,β2) :

β2

β1
≥ −c1

2

}
,

Ũ1 =
{
(β1,β2) :

β2

β1
≥ c1

2

}
,

U2 =
{
(β1,β2) :

β2

β1
≥ −c2

2

}
,

Ũ2 =
{
(β1,β2) :

β2

β1
≥ c2

2

}
.

Note that U1 and Ũ1 are identical to previously, whereas U2 and Ũ2 have
changed. Thus Lemma 8.3.3 still applies, but we need a new lemma to show
inclusion under DFm

2 .

Lemma 8.3.13

DFm
2 (U2) ⊆ Ũ2

for each m ≥ 1.

Proof Taking a point (r, θ) with tangent vector v = (β1,β2) ∈ U2, we form
v′ = (β ′

1,β ′
2) = DFm

2 (U2) as follows:(
β ′

1
β ′

2

)
=
(

1 0
mf ′

2(r) 1

)(
β1

β2

)
=
(

β1

mf ′
2(r)β1 + β2

)
.

Then

β ′
2

β ′
1

= mf ′
2(r)β1 + β2

β1
≥ mc2 + β2

β1
≥ mc2 − c2

2
≥ c2

2

for m ≥ 1 and so v′ ∈ Ũ2. Hence DFm
2 (U2) ⊆ Ũ2.

The new condition in Theorem 8.3.2 (Equation (8.13)) is required for the
inclusion lemmas for D(M−1

2 M1) and D(M−1
1 M2).

Lemma 8.3.14 Given condition (8.13) of Theorem 8.3.2 we have

D(M−1
2 M1)(Ũ1) ⊂ U2.

Proof Let M−1
2 M1(r, θ) = (r̄, θ̄ ). First assume (r, θ) ∈ S+. Let v = (β1,β2) ∈

Ũ1 and let v′ = (β ′
1,β ′

2) = D(M−1
2 M1)v. Then as in Lemma 8.3.5 we have

β ′
2

β ′
1

= −1/rr̄ + (β2/β1)(cot α/r̄)

cot α/r + β2/β1
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But Equation (8.13) gives

c1c2 − 2(c1 + c2)η > 4/r2
0

=⇒ −1/r2
0 + c1c2/4 > η(c2/2 + c1/2)

=⇒ −1

rr̄
+ β2

β1

c2

2
> η

(
c2

2
+ β2

β1

)
(8.14)

=⇒ −1

rr̄
+ β2

β1

c2

2
> −cot α

r̄

(
c2

2
+ β2

β1

)
(8.15)

=⇒ −1

rr̄
+ β2

β1

cot α

r̄
> −c2

2

(
cot α

r
− β2

β1

)

=⇒ −1/rr̄ + (β2/β1)(cot α/r̄)

cot α/r − β2/β1
> −c2

2
(8.16)

=⇒ β ′
2

β ′
1
> −c2

2

where inequality (8.14) follows since β2/β1 ≥ c1/2 and r, r̄ ≥ r0, inequal-
ity (8.15) follows by the definition of η, and inequality (8.16) follows since
cot α/r − β2/β1 > c1/2 − c1/2 = 0. A similar argument applies to
(r, θ) ∈ S−.

The final inclusion lemma follows almost identically.

Lemma 8.3.15 Given condition (8.13) of Theorem 8.3.2 we have

D(M−1
1 M2)(Ũ2) ⊂ U1.

Having shown the required inclusion properties we must prove the expansion
of vectors for U2 (the expansion of vectors in U1 is shown by Lemma 8.3.8).

Lemma 8.3.16 F2 increases the norm of all vectors from U2 except for vectors
of the form (0,β2).

Proof Consider a point (r, θ) with a tangent vector v = (β1,β2) ∈ U2 so that

‖v‖ =
√
β2

1 + r2β2
2 . Let F−1

2 (r, θ) = (r, θ̄ ). Then

‖DF2v‖ =
√
β2

1 + r2(f ′β1 + β2)2

=
√
β2

1 + r2β2
2 + r2f ′(f ′β2

1 + 2β1β2).
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But f ′β2
1 +2β1β2 > c2β

2
1 +2β1β2 ≥ 0 (provided β1 �= 0) since (β1,β2) ∈ U2.

Hence ‖DF2(β1,β2)‖ > ‖(β1,β2)‖ unless (β1,β2) = (0,β2).

Since Lemma 8.3.10 holds for the counter-rotating case, the counterpart to
Lemma 8.3.11 can be given:

Lemma 8.3.17 For vectors v ∈ U+

‖DTSv‖ ≥ λ‖v‖ (8.17)

where λ > 1.

Proof See the proof of lemma 8.3.11.

Again a complementary sector bundle U− such that DT−1
S (U−) ⊂ U− and

such that DT−1
S expands all vectors in U− produces

Lemma 8.3.18 For vectors v ∈ U−

‖DTSv‖ ≥ µ‖v‖ (8.18)

where µ > 1.

Proof of Theorem 8.3.2 Lemma 8.3.1 shows that singularities in the system
are such that we can appeal to the Katok–Strelcyn theory. Lemma 8.3.2 shows
that Lyapunov exponents exist for both T and the first return map TS . The
Anosov conditions given by Equations (8.17) and (8.18) in Lemmas 8.3.17
and 8.3.18 guarantee that Lyapunov exponents for TS are non-zero. Our
usual argument applies to show that T itself has non-zero Lyapunov expo-
nents. Then the result follows by the Katok–Strelcyn version of Pesin theory
(Theorem 5.4.1).

Example 8.3.3 Figure 8.6 shows an example of a planar co-rotating linked
twist map T which satisfies the conditions of Theorem 8.3.2. Here the inner
and outer radii r0 and r1 equal 2 and 3 respectively. We have single twists
(k = l = 1) and the twist functions f1 and f2 are linear. Two initial blobs of
10,000 points are shown in the first picture. The following pictures are images
of these initial blobs under 1, 2, 3, 5 and 10 iterates of T . This example satisfies
the conditions of Theorem 8.3.2 since c1 = c2 = 2π , while η ≈ 0.383.

Example 8.3.4 Figure 8.7 shows an example of a planar co-rotating linked
twist map T which does not satisfy the conditions of Theorem 8.3.2 but still
appears (numerically) to mix well. Here the inner and outer radii r0 and r1

equal 1.1 and 3 respectively. We have single twists (k = l = 1) and the twist
functions f1 and f2 are linear. Two initial blobs of 10,000 points are shown in
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Figure 8.6 Successive iterates of the co-rotating planar linked twist map T , with
r0 = 2, r1 = 3, and k = l = 1. The twist functions f1 and f2 are linear. Initially
(in the top left picture) we have blobs consisting of 10,000 points. The next five
pictures are the images of these blobs under the iterates 1, 2, 3, 5, 10 of the map.

the first picture. The following pictures are images of these initial blobs under
1, 2, 3, 5 and 10 iterates of T .

Key point: Just as for toral linked twist maps, stronger conditions are needed to
guarantee the ergodic partition for the counter-twisting case than for the co-twisting
case. On the plane the necessary conditions relate strength of twist to the cotangent
of the angle α.
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Figure 8.7 Successive iterates of the co-rotating planar linked twist map T , with
r0 = 1.1, r1 = 3, and k = l = 1. The twist functions f1 and f2 are linear. Initially
(in the top left picture) we have blobs consisting of 10,000 points. The next five
pictures are the images of these blobs under the iterates 1, 2, 3, 5, 10 of the map.

8.4 Ergodicity and the Bernoulli property for planar linked
twist maps

The geometrical argument of Wojtkowski (1980) and Przytycki (1983) dis-
cussed in Chapter 7 cannot be applied in the planar linked twist map scenario.
Recall that in the toral case, h-segments and v-segments can be shown to be inev-
itable by considering the fact that in the co-rotating case, acute angles between
segments of unstable manifold are not introduced, and in the counter-rotating
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case, taking sufficiently strong twists allows the intricate argument of Przytycki
(1983). In the planar case it is difficult to deduce the eventual existence of
h-segments and v-segments (defining such line segments in the appropriate
way on S+ and S−) because, as pointed out by Wojtkowski (1980), the Jacobi-
ans DT and DT̄ can change the orientation of line segments. Thus acute angles
between line segments may be introduced, and a more sophisticated argument,
possibly along the lines of Przytycki (1983), but necessarily more geometric-
ally complicated, would be required. However it is perhaps reasonable, based
on numerical experiments and an understanding of the behaviour of segments
of stable and unstable manifolds to make the following conjecture.

Conjecture 8.4.1 It is conjectured by Wojtkowski (1980), and this is supported
numerically, that under the conditions of Theorem 8.3.1 (resp. Theorem 8.3.2),
the linked twist map T̄ (resp. T) is ergodic.

If this is the case, and there are indeed integers m and n such that Tm(γ u(z))∩
T−n(γ s(z)) �= ∅ (and similarly for T̄ ) for local unstable and stable manifolds
at almost every z ∈ R, then the corresponding result for the Bernoulli property
follows naturally for the case with at least double twists.

Corollary 8.4.1 If a planar linked twist map is ergodic, and has k ≥ 2 and
l ≥ 2, then it possesses the Bernoulli property.

Proof Just as in Theorem 7.6.3, as soon as we have an h-segment or a v-segment,
the (at least) double twists of a linked twist map with k ≥ 2 and l ≥ 2 guarantees
that the h- or v-segment is wrapped around the entire annulus (at least) twice,
guaranteeing an h- or v-segment as appropriate at every iteration.

8.5 Summary

The above arguments give conditions for the co-rotating and counter-rotating
planar linked twist maps to have an ergodic partition. Again there is a difference
between the strictness of the conditions in the two cases. Numerical experiments
appear to suggest that stronger results may hold. For example, just as in the toral
case, there seems to be only one component in the ergodic decomposition (that
is, the system is ergodic). However, the global argument applied to the toral case
in Chapter 6 cannot be applied in the more geometrically complicated planar
case. Moreover, the conditions for the theorems for both co- and counter-rotating
planar linked twist maps to hold do not appear to be optimal. Examples have
been given which violate the theorems for both cases, which still appear to
mix well.
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Further directions and open problems

We conclude by identifying some directions in which this work could and
should be extended. In particular we discuss issues of optimization of
size of mixing regions, lack of transversality in streamline crossing, and
breakdown of monotonicity for twist functions.

9.1 Introduction

In this final chapter we discuss some of the open questions connected with the
linked twist map approach to mixing. It is apparent that in terms of designing,
creating and optimizing mixers this approach is still very much in its infancy.
Translating the ideas of previous chapters into ‘design’ principles is itself a size-
able task, and may result in the theory being extended in a variety of interesting
directions. We mention only a few here.

In Section 9.2 we consider the question of how to optimize the size of domain
on which the Bernoulli property is present. We have seen in previous chapters
that, providing certain conditions on the properties of the twists are satisfied,
the Bernoulli property is enjoyed by almost all points in the union of the annuli.
However, we have also seen that the required conditions on the twists are more
likely to be satisfied for smaller size domains. For example, recall that a counter-
rotating toral linked twist map with linear single-twists is periodic with period
6 when the annuli are equal in size to the torus (see Example 6.4.2), while a
linear counter-rotating TLTM may be Bernoulli for a choice of smaller annuli.
We formalize this dichotomy quantitatively by computing, for both toral and
planar linked twist maps with linear twists, the relationship between the area
of intersection and union of the annuli, and the width of annuli required to
guarantee that the system has an ergodic partition, is ergodic, and possesses the
Bernoulli property. These calculations are carried out for the case of linear twists
for simplicity. The case of nonlinear twists can be treated similarly. However

240
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the appropriate conditions relating the properties of the twist and geometry will
require numerical computation.

The existing theorems discussed previously have some clear limitations, in
that they require some conditions on the form of the twist functions and, in the
planar case, on the size and positioning of the annuli. Moreover these conditions
may be hard to fulfil in physical applications. For example, in the case of planar
linked twist maps, we had the requirement that the inner and outer radii of
the annuli were such that the intersection was composed of two disconnected
regions. In many applications it may be that this restriction is not naturally met.
In Section 9.3 we discuss the fact that the main issue in this instance is that of a
lack of transversality (i.e., breakdown of ‘crossing of streamlines’). We detail
where the results of Chapter 8 break down, and give some simple numerical
examples which suggest some obvious conjectures.

Another condition we have insisted upon throughout book is that the twist
functions should be monotonic. Again, it may be that in applications this is
not the case, for example because of boundary conditions or the rheological
behaviour of the fluid in question. In Section 9.4 we discuss this issue, again
explaining where the existing proofs fail. We give additional numerical exper-
iments illustrating the behaviour that can arise in systems with nonmonotonic
twist functions, which again suggest some natural conjectures. Both the issues
of transversality and monotonicity are fundamental to hyperbolicity, and in turn,
to mixing properties.

Finally in this chapter we close by mentioning several directions in which
this work could be extended, and some areas of current research which may
prove to have fruitful links to the theory of linked twist maps.

9.2 Optimizing mixing regions for linked twist maps

The results of the last few chapters have established conditions for linked twist
maps to have an ergodic partition, in the case of toral and planar linked twist
maps, and to enjoy the Bernoulli property, in the toral case. An immediate
observation is that the properties of ergodicity, mixing and Bernoulli are defined
in infinite time. In this sense they are necessary, but not sufficient, conditions for
‘good mixing’ in ‘finite time’. Practically, we are more likely to be interested
in the speed of mixing than in infinite time limits. As discussed in Chapter 3,
and touched on again, briefly, at the end of this chapter, this question is usually
discussed in the realm of decay of correlations, which are beyond the scope
of this book. However, there may be other constraints of which to be aware.
In applications we are likely to have a set of physical criteria, governed by the
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particular mechanism which creates the linked twist map structure. For example,
it may be of paramount importance to achieve mixing on the largest possible
domain, and so be desirable to maximize the area of the union of the annuli.
There may be space constraints in the geometry of a particular mixer which
necessitates making the area of intersection of the annuli as small as possible.
It may be that the most important factor governing the efficiency of the mixer is
the strength of the twist, or perhaps the wrapping number (defined in Chapter 6).

A complete survey of comparisons between different device criteria would
likely fill another volume. As an illustration, in this section we concentrate on
comparing the sizes of the intersection and union of the annuli, with the strength
of the twists. First for the toral case, and then the planar case, we consider the
twist functions as linear twists, in which case the strength of the twists are
directly related to the width of the annuli, and then investigate the mixing
properties of linked twist maps of different size. It can be seen by referring
back to the theorems that, roughly speaking, the play-off is between increasing
the size of the domain, which decreases the strength, but makes mixing less
likely, and choosing the strength large enough to guarantee mixing, but which
reduces the size of domain.

9.2.1 Toral linked twist maps

Co-rotating toral linked twist maps
Recalling the results of Chapters 6 and 7, we observe that the co-rotating toral
linked twist map (TLTM) requires few constraints to guarantee the Bernoulli
property on the whole region R. More precisely, a co-rotating TLTM composed
of (k,α) and (l,β) twists is Bernoulli if αβ > 0 (see Theorems 6.4.1 and 7.6.2).

Counter-rotating toral linked twist maps
Counter-rotating toral linked twist maps are more interesting from the point of
view of optimizing the size of the mixing region, as they are required to satisfy
the inequality |αβ| > 4 (see Theorem 6.4.2) to guarantee an ergodic partition,
and the stricter inequality |αβ| > C ≈ 17.24445 (see Theorem 7.6.3), plus the
condition of double-twists, that |k|, |l| ≥ 2 to guarantee that the TLTM have
the Bernoulli property.

For this simple illustration we consider a special case of the general counter-
rotating toral linked twist map discussed in Chapter 6, which we may call a
‘symmetric linear TLTM’. We assume we have a horizontal annulus P with
y1 = 1, and set y0 = r, a ‘radius parameter’ which we shall vary to produce
annuli of different widths. We have a corresponding vertical annulus Q with
x1 = 1 and x0 = r, so that the annuli P and Q are equal in size. We choose
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identical (but with opposite sign) linear twists for both annuli, so that the twist
on P is a (k,α) twist (with k,α > 0), and the twist on Q is a (−k, −α) twist,
recalling that in this case (see Section 6.2.8) the values of the derivatives (the
strengths of the twists) are |α| = |k|/(1−r), where k is the wrapping number of
the twists. Thus it is clear that the strength of a linear twist is entirely governed
by the size of the annuli, for a given wrapping number.

In this simple symmetric case the conditions for the counter-rotating TLTM
translate to

α2 = k2

(1 − r)2
≥ 4, (9.1)

for the ergodic partition and

α2 = k2

(1 − r)2
≥ C ≈ 17.24445, (9.2)

together with k ≥ 2 for the Bernoulli property.
The quantities to be optimized (the sizes of the union and intersection of the

annuli) are easily computed. The area of S = P ∩ Q is

A∩(r) = (1 − r)2

while the area of R = P ∪ Q is

A∪(r) = 1 − r2.

As we increase the parameter r towards 1, the sizes of R and S decrease, but at
the same timeα2 increases, making good mixing more likely. On the other hand,
choosing a small value for r in order to maximize the size of R and S results in
a small value of α2, and so mixing is more likely to fail in the sense that (9.1)
and (9.2) may not be satisfied. This information is illustrated quantitatively in
Figure 9.1.

The radius parameter r is varied on the horizontal axis from 0 to 1. The areas
of the union and intersection of the annuli, A∪ and A∩ respectively, are drawn
using the left-hand vertical axis. Using the right-hand vertical axis we plot the
inequalities (9.1) and (9.2). We mark horizontal lines to show the conditions on
the strengths of the twists to guarantee the existence of an ergodic partition, and
for the Bernoulli property on the whole region (in the case k ≥ 2). Also using
the right-hand vertical axis we draw the value of α2 for k = 1 (dashed line)
and k = 2 (dotted line). So considering the line for single-twists, we see that
choosing r < 0.5 may result in large areas for R and S, but we do not guarantee
even an ergodic partition, and so islands may occur (see Section 5.3.4). For
r ∈ [0.5, 0.75] we have sufficient strength of twist to guarantee an ergodic
partition, but not to guarantee that the partition only contains one component.
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Figure 9.1 Diagram showing how the areas of intersection and union of P and Q
depend on the radius parameter r for a symmetric counter-rotating TLTM, together
with criteria to guarantee results on ergodicity and the Bernoulli property. The areas
A∩(r) and A∪(r) are shown on the left-hand axis, while the right-hand axis displays
the inequalities (9.1) and (9.2).

The point at which a single-twist system gains an ergodic partition is marked
1 on the diagram. For r � 0.75 (marked 2) we cross the ergodicity condition
line, but we cannot conclude that we have the Bernoulli property on the whole
region as we only have single-twists. For the double-twist case, it is apparent
that the ergodic partition is guaranteed for any r > 0 – in other words, as soon
as we choose linear functions with double-twists we can be sure no islands will
appear for any size of region. However, we have to choose r � 0.55 (marked 3)
to be sure that we have ergodicity on the whole region. In this case, as k = 2,
we also have verified that the system is Bernoulli.

The behaviour of the symmetric counter-rotating linear toral linked twist
map can also be illustrated using the bifurcation diagram in Figure 9.2. This
diagram shows the type of behaviour exhibited at different parameter values.
On the horizontal axis we again vary the radius parameter r from 0 to 1, and
the areas of R and S can be read off the right-hand vertical axis. The left-hand
vertical axis gives different wrapping numbers, from single-twists up to k = 5.
The graph is then shaded according to the different mixing results which are
guaranteed. For example, for a single-twist, we see the behaviour depicted in
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Figure 9.2 Bifurcation diagram displaying the ergodic behaviour of the symmet-
ric counter-rotating TLTM, using r and the wrapping number k as parameters.
Superimposed are the areas of R and S on the right-hand axis.

Figure 9.1. For higher wrapping numbers, as might be expected, the Bernoulli
property is guaranteed for smaller values of r. In particular, it can be seen
that a wrapping number of 5 produces the Bernoulli property for any size of
annuli.

9.2.2 Planar linked twist maps

We can perform the corresponding analysis for the planar version of the linked
twist maps. Here the geometry of the system makes the calculations a little more
involved, but similar results can be achieved. As in Chapter 8 we assume we
have two identical annuli centred on (−1, 0) and (1, 0). We fix the outer radii
r1 = 3.0, and vary the inner radii r0 as a parameter between 1.0 and 3.0. We
assume as in the previous section that we have linear twist functions on both
annuli, and we will investigate both co- and counter-rotating systems.

Area of intersection of a pair of annuli
We first consider the area of intersection of two circles. As in Figure 9.3 take a
circle centred on O− = (−1, 0)with radius r and a circle centred on O+ = (1, 0)
with radius s. We label the two points of intersection of the two circles A (in the



246 9 Further directions and open problems
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Figure 9.3 The area of intersection between two circles can be computed by
subtracting the areas of triangles from the areas of sectors.

upper half-plane) and B (in the lower half-plane). To find the area of intersection
of these circles, referring to Figure 9.3, we find the areas of the sectors swept
out by the angles ∠(BO−A) and ∠(AO+B), and the areas of the triangles O−AB
and O+AB. The area of the light shaded part of the figure is the area of triangle
O+AB subtracted from the area of the ∠(BO+A)-sector, and similarly for the
darker shaded part.

Let C be the point of intersection of the lines AB and O−O+. The points A
and B lie on both circles, and so satisfy the equations

(x + 1)2 + y2 = r2

(x − 1)2 + y2 = s2.

Solving these gives the x-coordinate of the line AB as x = (r2−s2)/4 (of course
when the circles are of identical size the symmetry of their locations guarantees
that AB lies along x = 0). This immediately gives the lengths |O−C| = 1 +
(r2 − s2)/4 and |CO+| = 1 − (r2 − s2)/4, and then the Pythagoras theorem
gives

|AC| = |CB| =
(

r2 + s2

2
− (r2 − s2)2

16
− 1

)1/2

,
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and we have the angles

∠(BO−A) = 2 cos−1
(

1 + (r2 − s2)/4

r

)

∠(AO+B) = 2 cos−1
(

1 − (r2 − s2)/4

s

)
.

Now since the ratio of the area of a sector to the area of a circle is equal to the
ratio of the sector’s angle to 2π , we have

Area of sector BO−A = r2 cos−1
(

1 + (r2 − s2)/4

r

)

Area of sector AO+B = s2 cos−1
(

1 − (r2 − s2)/4

s

)
.

The areas of the triangles are straightforwardly

Area of triangle BO−A =
(

1 + r2 − s2

4

)(
r2 + s2

2
− (r2 − s2)2

16
− 1

)1/2

Area of triangle AO+B =
(

1 − r2 − s2

4

)(
r2 + s2

2
− (r2 − s2)2

16
− 1

)1/2

,

and so the area of intersection of the two circles is given by

A◦(r, s) = Area of sector AO−B + Area of sector AO+B

−Area of triangle BO−A − Area of triangle BO+A

= r2 cos−1
(

1 + (r2 − s2)/4

r

)
+ s2 cos−1

(
1 − (r2 − s2)/4

s

)

−2

(
r2 + s2

2
− (r2 − s2)2

16
− 1

)1/2

.

In particular, when the two circles have identical radii we have

A◦(r, r) = 2r2 cos−1(1/r) − 2(r2 − 1)1/2.

Now we can compute the area of intersection (consisting of two components) of
two annuli of inner and outer radii r0 and r1 (for the annulus centred at (−1, 0))
and inner and outer radii s0 and s1 (for the annulus centred at (1, 0)) as

A∩ = A◦(r1, s1) − A◦(r0, s1) − A◦(r1, s0) + A◦(r0, s0),
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Figure 9.4 Illustration of the four sets (shown hatched) in the formula for A∪.

and the area of the union of the annuli as

A∪ = π(r2
1 + s2

1 − r2
0 − s2

0) − A∩.

In Figure 9.4 we illustrate the four sets in the formula for A∪.
For our choice of identical annuli with r1 = s1 = 3.0 we have the

particular case

A∩ = A◦(3, 3) − 2A◦(r0, 3) + A◦(r0, r0)

A∪ = π(18 − 2r2
0) − A∩.

The cotangent of α

Recall that the conditions to guarantee an ergodic partition for both co- and
counter-rotating planar linked twist maps depend on the quantity η, which was
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Figure 9.5 The cotangent of the angle α can be computed by finding the lengths
of a and b, using the Pythagoras theorem. Then we have cot α = b/a.

given in Chapter 8 as

η = sup
(r,θ)∈M−1

1 (S)

| cot α(M1(r, θ))|
r

,

where α is the angle between lines subtended from a point (M1(r, θ) in S to
the centres of the annuli. We now give an expression for the cotangent of such
an angle α. Referring to Figure 9.5, we note that we require the cotangent of
the angle between sides of length r and s of a triangle whose other side is of
length 2. Drawing in a perpendicular to the side of length s, we have

cot α = 1

tan α
= b

a
.

To compute a and b we use Pythagoras theorem to give

22 = (s − b)2 + a2

r2 = a2 + b2,
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from which we can eliminate a and b to produce

a =
√

r2 − (r2 + s2 − 4)2

4s2

b = r2 + s2 − 4

2s
,

and hence

cot α = r2 + s2 − 4√
4r2s2 − (r2 + s2 − 4)2

.

From this expression η can be easily computed numerically by maximizing
| cot α|/r for r ∈ [r0, 3] and s ∈ [r0, 3].

Criteria for an ergodic partition
The conditions of the theorems in Chapter 8 are based on the strength of the
twists. Recalling the definitions from Section 8.2 we note that taking identical
linear twists for both annuli, we have the strengths

|c| = 2π |k|
3 − r0

,

where k is the wrapping number of the twist. Now the conditions in
Theorems 8.3.1 and 8.3.2 can be given for the symmetric case as

c > 2η counter-rotating/co-twisting case (9.3)

c2 − 4cη > 4/r2
0 co-rotating/counter-twisting case (9.4)

The counter-rotating planar LTM
Figure 9.6 provides the information for the symmetric counter-rotating/co-
twisting planar linked twist map described above, for wrapping numbers
k = 1, . . . , 4. We plot the areas of intersection and union, A∪ and A∩ as dashed
lines using the right-hand vertical axis as a scale. Using the left-hand vertical
axis we plot the inequality (9.3). The quantity 2η is plotted for each r0 as a thick
solid line, while values of c for each wrapping number are plotted as dotted lines.
Parameter values for which the strengths are larger than 2η give a system with
a guaranteed ergodic partition. The relevant crossing points where the theorem
applies are marked with circles. Note that unlike the toral case, simply increas-
ing the wrapping number does not automatically guarantee that the condition
for the theorem will be fulfilled. However, we recall that these conditions do
not appear, based on numerical experiments, to be sharp conditions.
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Figure 9.6 Diagram showing how the areas of intersection and union of two planar
annuli vary with inner radius r0, together with the criteria required to deduce that
the counter-rotating system has an ergodic partition. The areas A∪ and A∩ are
plotted as dashed lines using the right-hand vertical axis. The dotted lines give the
strength c of the linear twists for k = 1, . . . , 4, and the points where these exceed
the quantity 2η are marked with circles.

The co-rotating planar LTM
Figure 9.7 is the corresponding diagram for the symmetric co-rotating/counter-
twisting linked twist map. As above, the areas A∪ and A∩ are plotted as dashed
lines on the right-hand scale, and the inequality (9.4) uses the left-hand axis. The
thick solid line gives the quantity 4/r2

0 , and the dotted lines represent c2 − 4cη
for wrapping numbers k = 1, . . . , 4. Again the points at which the ergodic
partition theorem applies are marked in circles. Note that, as for the toral case,
the counter-twisting system is more restrictive than the co-twisting system, in
the sense that to guarantee the ergodic partition, the areas of intersection and
union are required to be smaller.

9.3 Breakdown of transversality: effect and mechanisms

As discussed in detail previously, and in for example Ottino (1989a), the fun-
damental principle behind chaotic mixing in fluids is that streamlines should
cross. Moreover, it is also crucial for many mathematical results that they should
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Figure 9.7 Diagram showing how the areas of intersection and union of two planar
annuli vary with inner radius r0, together with the criteria required to deduce that
the co-rotating system has an ergodic partition. The areas A∪ and A∩ are plotted as
dashed lines using the right-hand vertical axis. The dotted lines give the quantity
c2 − 4cη of the linear twists for k = 1, . . . , 4, and the points where these exceed
the quantity 4/r2

0 are marked with circles.

cross transversely. This is because, roughly speaking, we would like fluid blobs
to be pulled and stretched first in one direction, and then in a different direction.
Equally roughly, the more different these directions, the more mixed a system
is likely to become. These ideas can be given some rigour by considering some
situations for which the theorems of Chapter 8 cannot be applied.

The linked twist map on the torus has a very simple form, which we exploited
in Chapter 6 to prove results on the expansion and contraction of tangent vectors
with relative ease. This form is due to the fact that the two twist maps not only
act in transverse directions everywhere, but actually lie at right angles to each
other, so that they can be expressed naturally in a single Cartesian coordinate
system. Lack of transversality in the crossing of streamlines (stable and unstable
manifolds) was not a concern. On the plane we had to employ coordinate trans-
formations to express the two twist maps in a common coordinate system. In
this situation, streamlines did not always cross at right angles, but were guar-
anteed to be transverse by the construction of the annuli. Recall that two annuli
R1 and R2 were centred at (−1, 0) and (1, 0) respectively and each given inner
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R1 R2
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Figure 9.8 How transversality can fail in a planar linked twist map. On the left we
show a pair of annuli (marked with solid lines) for which the choice of centres and
inner and outer radii give an intersection consisting of a single component. The
point marked lies at the point at which the two dotted circles meet tangentially, and
so (in the counter-rotating case) the shears from each twist map act in the same
direction. By contrast, on the right, in the toral linked twist map case, the directions
of shears are at right angles at every point in the domain.

radius r0 > 1 and outer radius r1 < 2 + r0. This guaranteed that each circle in
R1 intersected every circle of R2 transversely. It can be easily seen that if we
allow the inner radius to be r0 < 1, then (if r1 > 1) R1 ∩ R2 consists of only a
single component. The same effect might be achieved by moving the centres of
the annuli further apart. In this situation there are now circles of R1 which inter-
sect a circle of R2, but tangentially rather than transversely. Alternatively one
could create a lack of transversality by allowing r1 > 2 + r0, or by moving the
centres closer together, which again produces a single component intersection.
See Figure 9.8.

To understand how and why a lack of transversality affects the mixing prop-
erties of a system, consider first the extreme situation of a pair of identical
annuli with the same centres. In this instance it is clear to see that the counter-
rotating case produces a system for which every point is a period two periodic
point (each point is rotated under F1 and then returned under F−1

2 ), while the
co-rotating case produces another twist map (each point is rotated on the same
circle under both F1 and F2). See Figure 9.9. Of course, a system in which every
point is periodic with period two has no mixing properties at all, while a twist
map on an annulus is exactly analogous to a twist map on a torus, discussed
in Examples 5.3.2, 5.3.5 and 5.3.7. Recall that in this example taking a vector in
the direction of the shear gave no expansion at all, and other vectors resulted in
expansion, but at a rate slow enough that the Lyapunov exponent was zero. This
results in a system which can only be decomposed into an uncountable number
of ergodic components, in the present case one for each circle r = constant in
the annulus.
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Figure 9.9 Illustration of the effect of creating a planar linked twist map from
two coincident annuli. On the left two co-rotating twist maps F1 and F2 results in
another twist map F2F1, while on the right two counter-rotating twist maps F1 and
F−1

2 results in a periodic map of period 2.

F2F1 F2
–1F1

Figure 9.10 Transverse and tangential intersections for a pair of intersecting annuli.
The figure on the left shows the co-rotating case, and the figure on the right the
counter-rotating case.

In the more general case in which R1 ∩ R2 consists of a single component
we have more complicated dynamics, but retain elements of the non-mixing
behaviour described above. In Figure 9.10 we show two such systems, and
illustrate some arrows depicting the directions of vectors tangent to the shears. It
can be seen that both the co- and counter-rotating versions possess points where
such vectors point in the same direction, or in the opposite direction. However,
there are still many points at which streamlines cross transversely, indicating
that some mixing behaviour might be expected. We shortly give numerical
examples illustrating this issue, but first seek to formalize these heuristic ideas.
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Loss of transversality strikes at the very heart of hyperbolicity. Recall that for
complete hyperbolicity we require a splitting of tangent space into subspaces Eu

and Es. These contain tangent vectors which undergo exponential expansion and
contraction (respectively) under iteration of the map. The subspace E0, which
contains vectors which may expand or contract at a slower rate, is required
to be empty. Pesin theory equates complete nonuniform hyperbolicity with
points giving rise to non-zero Lyapunov exponents for every vector in tangent
space, and partial nonuniform hyperbolicity with points giving rise to non-zero
Lyapunov exponents for only some vectors in tangent space.

Previously, in Chapter 8 we noted in Lemma 8.3.8 that the twist map F1

increased the norm of all vectors in an appropriate cone, except for the vec-
tor which lay in the direction of the shear; namely v = (0,β2). However,
Lemma 8.3.10 provided the result that this vector was mapped under a coordin-
ate transformation into a vector which was expanded by the second twist map F2

(or F−1
2 ). The proof of that lemma relied on the fact that the angle α (the angle

subtended from any point in the intersection to each of the annuli centres) was
not equal to zero or π at each point. Clearly, in the situation in which we have a
single intersection region, this proof does not hold. That is, a point lying in the
intersection on the y = 0 axis in Cartesian coordinates has α = π (assuming
the centres of the annuli are also on the y = 0 axis). This means that taking
such a point, a tangent vector of the form v = (0,β2) is expanded by neither F1

nor F2. Suppose a trajectory consists of only such points. Then that trajectory
has a zero Lyapunov exponent for this choice of v, and the system has only
partial hyperbolicity. Thus we cannot deduce a decomposition into countably
many ergodic components. Of course, such a trajectory may seem, and indeed
be, unlikely. However, if the goal is to rigorously prove nonuniform complete
hyperbolicity it cannot be ignored.

Moreover, the conditions in the theorems of Chapter 8, as discussed in the
previous section, rely on quantities related to the strength of the twists being
greater than some function of α. These conditions are less likely to be fulfilled
the greater the cotangent of α.

In many examples of fluid flows designed to promote mixing the effect of
breakdown of transversal crossing of streamlines is present. In the following
subsections we consider different situations where this can occur.

9.3.1 Separatrices

A situation in which we naturally see a loss of transversality occurs when there
is a separatrix in the flow. A separatrix in this context could be described as
a streamline which divides two distinct regimes of behaviour. We have seen
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Figure 9.11 An idealized model of streamlines in a blinking flow with separatrices.
The diagrams on the left give two streamline patterns, and on the right is the
superposition of the two.

examples of this in Chapter 2 in mixers such as the electro-osmotic driven
micromixer (Qian & Bau (2002)) shown in Figure 1.8; the ‘herringbone’ mixer
(Stroock et al. (2002)) in Figure 2.11; and the partitioned pipe mixer (Khakhar
et al. (1987)) in Figure 2.13. Figure 9.11 illustrates an idealized set of stream-
lines in a system with a separatrix. If the patterns on the left represent the
streamlines of a two-dimensional blinking flow (or the cross-sections of a duct
flow), then the superposition on the right gives the streamline crossing picture,
with many non-transverse intersections.

9.3.2 Planar linked twist maps with a single intersection
component

Recall the blinking flow described in Section 1.5.1. In the linked twist map
framework, this corresponds to a pair of planar annuli with inner radius zero,
corresponding to the fact that the vortices act on all points, however close to
the vortex.

The results for linked twist maps in the plane required that the two annuli
intersect in two disjoint components. Here we consider what may happen when
this condition is violated.
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We denote the centre of the annuli Ri by (xi, yi) (in Cartesian coordinates). All
of the previous theory relates to the case (x1, y1) = (−1, 0), (x2, y2) = (1, 0).
Here in Figure 9.12 we fix the inner and outer radii r0 = 0.2, r1 = 3.0, and fix the
strength of the (linear) twist α = 1.0. We fix the centre of R2 at (x2, y2) = (0, 0),
and vary the centre of R1. The left-hand column of the figure shows the evolution
of two initial blobs marked in red and blue in the top figure. The figures below
show the images of the blobs under 1, 3, 6 and 10 iterations of T̄ respectively. In
this left-hand column we set (x1, y1) = (−0.8, 0). Clearly after ten iterations the
blobs are poorly mixed. In the centre column we show the evolution of the same
initial blobs for the case (x1, y1) = (−1, 0). With the annuli separated slightly
(and hence a slightly smaller region of intersection) the mixing process appears
more effective. Finally the right-hand column shows the same experiment with
the annuli separated slightly more, with (x1, y1) = (−1.4, 0). After ten iterations
the blobs are well mixed.

Heuristically, this behaviour may be expected from the arguments above.
Mixing through chaotic advection stems from the crossing of streamlines, and
in general, the more transverse the crossing, the better. When the centres of
the annuli are separated only a small amount, the streamlines generated by the
twists in each annulus at each point run in roughly the same direction. The
angles between them become larger the more separated the annuli become.
At the same time, separating the annuli more means shrinking the size of the
intersection. This is what brings in a design issue here – how to maximize the
size of the intersection whilst achieving the desired quality of mixing.

9.3.3 More than two annuli

In the toral linked twist map framework, it is straightforward to extend results
to any number of linked horizontal and vertical annuli (Devaney (1980)). The
geometric complications of linked twist maps on the plane makes the corres-
ponding theory more difficult. However, it is a natural question to ask how the
introduction of another annulus (or more) may affect the quality of mixing.

Figure 9.13 illustrates how poor mixing may be improved by the introduc-
tion of a third annulus. The linked twist map for three annuli in the plane is
constructed in an obvious way. Thus for i = 1, 2, 3 we have three annuli Ri with
centres (xi, yi), each with a twist map Ti, where as usual the nature of a twist
map Ti is to apply a twist to points in Ri, and leave unchanged those outside.
We form the linked twist map T = T3T2T1 for the following numerics. In each
of the plots in Figure 9.13 we fix the inner and outer radii of all three annuli
as r0 = 0.2, r1 = 3.0, and fix the strength of each (linear) twist as α = 1. The
left-hand column shows the evolution of two blobs for two annuli with centres
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Figure 9.12 Numerical results for three experiments for planar linked twist maps
for which the intersection of the annuli has a single component. In each case we
have linear single-twists (strength α = 1), and each annulus has radii r0 = 0.2,
r1 = 3.0. In each case R2 is centred at the origin (0, 0), and we vary the centre of R1

in each of the three columns of the figure. Each column shows the evolution of two
initial blobs shown in the top figure under 1, 3, 6 and 10 iterations of the linked twist
map. In the left-hand column (x1, y1) = (−0.8, 0) results in poor mixing; in the
middle column the mixing is improved for (x1, y1) = (−1.0, 0); in the right-hand
column for (x1, y1) = (−1.4, 0) we have more much effective mixing.
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Figure 9.13 Numerical results for three experiments for planar linked twist maps
with three annuli. The first column is as the first column in Figure 9.12; that is,
α = 1, r0 = 0.2, r = 3.0 and offset −0.8. We show the images of initial blobs
under 1, 3, 6 and 10 iterations. The second column introduces a third annulus at
(−0.4, 0.4), and the third column places the extra annulus at (−0.4, 1.0).

(x1, y1) = (−0.8, 0), (x2, y2) = (0, 0). The initial blobs in the top figure are
shown under 1, 3, 6 and 10 iterations of the linked twist map. (This column
is the same as the left-hand column of Figure 9.12.) In the middle column we
show the evolution of the same blobs with the introduction of a third annulus,
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with centre (x3, y3) = (−0.4, 0.4). The right-hand column shows the same
experiment with R3 centred at (x3, y3) = (−0.4, 1).

Just as in the previous example, the change in the quality of mixing can
be understood heuristically by considering the angle between streamlines. The
introduction of a third annulus only becomes beneficial to mixing when it is
placed sufficiently far from the others to create enough transversality between
streamlines.

9.4 Monotonicity of the twist functions

Another key component behind the mathematical results for linked twist maps
is the requirement that the twist functions be monotonic. That is, the twist
functions must not have any turning points; if they have regions with positive
derivative, there must not be any regions with negative derivative. Recall that
points of inflexion can be dealt with using the technique of Section 6.3. The
reason monotonicity is so vital is that we cannot run the risk of any stretching
being undone, or reversed, by contraction at a later iterate. In other words, we
wish to prevent mixing for some iterates and then ‘unmixing’ for later iterates.

Suppose we have a linked twist map H made up of twist maps F and G,
where F has a nonmonotonic twist function f (y), while G has a monotonic
twist function g(x) such that g′(x) > 0 for each x. Consider an orbit beginning
at a point z0 = (x0, y0) for which f ′(y0) = α1 > 0. Then an initial tangent
vector v = (v1 > 0, v2 > 0) at z0 is expanded under DF, since

‖DFv‖ =
∥∥∥∥
(

1 α1

0 1

)(
v1

v2

)∥∥∥∥ =
∥∥∥∥
(

v1 + α1v2

v2

)∥∥∥∥ ,

which gives ‖DFv‖ > ‖v‖ as α1 > 0. Since G is such that g′(x) > 0 for
each x, the vector DHv = DGDFv = ṽ = (ṽ1, ṽ2) remains in the positive
quadrant of tangent space. Now suppose that GF(x, y) = (x1, y1) = z1 is such
that f ′(y1) = α2 < 0. Then

‖DFṽ‖ =
∥∥∥∥
(

1 α2

0 1

)(
ṽ1

ṽ2

)∥∥∥∥ =
∥∥∥∥
(

ṽ1 + α2ṽ2

ṽ2

)∥∥∥∥ ,

but since α2 < 0 it is now no longer true that ‖DFṽ‖ > ‖ṽ‖. This is illustrated
in Figure 9.14. Moreover it is straightforward to see that if G is also nonmono-
tonic then it is even easier for tangent vectors to be expanded or contracted
without regularity at each iteration. This illustrates the problem with construct-
ing invariant expanding (or contracting) cones for nonmonotonic linked twist
maps. While it is possible that a trajectory falls into the appropriate region of
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Figure 9.14 Sketch to illustrate how lack of monotonicity may cause expansion of
tangent vectors to fail. The twist functions f and g on the annuli P and Q are shown
as dotted lines – we take f to be nonmonotonic and g to be linear. In the first figure
the initial point z0 (in grey) is mapped under F while the initial tangent vector v
(also in grey) is expanded under DF. The second figure shows F(z0) and DFv (in
grey) and their images z1 and ṽ under G and DG respectively. The tangent vector
is again expanded under the Jacobian map. Finally the third figure shows the next
iteration of F and DF, which maps z1 and ṽ into the black point and vector. Under
this iteration the tangent vector is contracted by the Jacobian map.

1 2

34

1 2

34

Figure 9.15 The nonmonotonicity of a pulsed source-sink system. A set of tracer
particles leaving a source forms the velocity profile of the twist function.

a twist function’s domain to produce expanding behaviour at every iterate (and
hence a positive Lyapunov exponent), without a priori knowledge about the
behaviour of the trajectory it is impossible to deduce that this will occur for
typical trajectories.

In many examples however, it may be that nonmonotonic twist functions are
typical. Consider for example the DNA pulsed source-sink pair mixer described
in Section 1.5.8. Recall that we have a twist map structure on a source-sink
system because a fluid particle travels quickest from source to sink along the
straight line connecting the source-sink pair, while particles travelling along a
curved line on either side of this shortest path travel more slowly. Hence the twist
condition breaks down along the straight line path, as shown in Figure 9.15. This
lack of monotonicity means that the Bernoulli property cannot be guaranteed
in the whole domain, and that islands of unmixed fluid are possible.
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(a) (b)

Figure 9.16 Twist functions for the egg beater flow model, taken from Franjione
& Ottino (1992). The egg beater is modelled as a linked twist map in the form of
a nonmonotonic Arnold Cat Map.

Nonmonotonic twist maps have been studied as systems in their own right (for
example Howard & Humpherys (1995) studied perturbations of nonmonotonic
twist maps of the type described in this book), and can produce rich and complex
behaviour. In the context of linked twist maps as paradigms for mixers they are
interesting because prescribed boundary conditions may make them inevitable
components of the mixer in question. For example, consider the egg beater flow
(Franjione & Ottino (1992)) discussed in Section 1.5.6. This is modelled as a
composition of two twist maps. It could be viewed as a generalized version of
the Arnold Cat Map. Recall that the Cat Map of Example 5.2.4 is equivalent
to the composition of two linear, co-rotating twist maps on the whole torus T2.
The egg beater flow allows the twist functions to be more general, with the
restriction, for physical reasons, that they have non-slip boundary conditions.
Two typical twist functions, or velocity profiles, are shown in Figure 9.16,
taken from Franjione & Ottino (1992). This system can be made to exhibit
a wide variety of behaviours, from completely regular to completely chaotic,
depending on the details of the system. Such aspects, for example the relative
direction, and the even- and odd-ness, of the shears have been studied in detail in
Franjione & Ottino (1992), Ottino et al. (1992), Ottino (1989b). In the following
section we give a sample of the types of behaviour possible in nonmonotonic
toral linked twist maps.

9.4.1 Lack of monotonicity in toral linked twist maps

As stated earlier, a crucial element which allows the construction of all the proofs
in previous chapters is that twist functions are monotonic. This means there are
no turning points in the twist functions, and so we have a derivative which is
everywhere positive, or negative, but never a mixture of the two. A different
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approach may be required to prove similar results for systems in which the
twist functions are nonmonotonic. Here we give numerical evidence that again
an important factor governing the ergodic properties of such a map is a notion
of the ‘strength’ of a twist. Previously we have defined the strength of a twist
to be the shallowest slope of the twist function. Clearly if the twist function has
a turning point, the strength will be equal to zero. Instead, for nonmonotonic
functions, one might define the strength to be equal to the steepest slope, or
perhaps the average derivative.

We take twist functions to be the nonmonotonic functions f (y) = a(y −
y0)(y1 − y) and g(x) = b(x − x0)(x1 − x). Note that f (y) has a turning point
when f ′(y) = 0, which occurs at y = (y0 + y1)/2; that is, at the midpoint of
the width of the annulus P. Similarly the turning point for g(x) occurs at the
midpoint of Q. In Figure 9.17 we take x0 = y0 = 0 and x1 = y1 = 1 so that the
annuli P and Q coincide with the whole torus T2, and we study the symmetric
case a = b. Similar pictures can be obtained taking P and Q smaller than T2, but
as usual decreasing the size of the intersection makes good mixing more likely.
In this example the twist functions become f (y) = ay(1 − y) and similarly for
g(x), which many readers will recognize as the logistic map with parameter a.
This system could be viewed as a pair of alternating, or blinking, logistic maps
on the torus.

We investigate the ergodic properties of the map for different values of the
parameter a. Whilst the strength of the twist as we have defined it in Chapter 6
is clearly zero, due to the turning point in the twist functions, increasing a has
the effect of increasing the maximum slope of f and g, and also the average
of the absolute value of the derivative. Figure 9.17 shows the behaviour of this
system for four different values of a. On the left we show the twist functions
f (y) and g(x), while on the right we show a selection of trajectories. The island
structure is clearly visible in each of the first three figures, for a = 1.0, 1.3,
1.8. In the final figure, for a = 2.4, a single initial condition give a trajectory
apparently ergodic on the entire domain.

9.4.2 Non-slip boundary conditions with breakdown of
monotonicity

Suppose we wish to impose non-slip boundary conditions at both inner and outer
radii of a planar annulus. This may lead to a twist function which is nonmono-
tonic (ignoring the trivial case in which there is no twist anywhere). Allowing
the twist function to be nonmonotonic complicates the dynamics seriously, as
there are now regions of expansion and contraction in the same annulus, and
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Figure 9.17 Numerical results for toral linked twist maps with nonmonotonic twist
functions. Figures on the left show the twist functions, and figures on the right show
a selection of trajectories. The four parameter values are a = 1.0, 1.3, 1.8, 2.4.
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Figure 9.18 Figure (a) shows the twist function fi for α = 1, which is zero on
inner and outer radii (r0 = 1.0, r1 = 3.0), and reaches a maximum of 2π midway
between. Figure (b) shows an initial line (dotted) and its image (solid) under one
iteration of the twist map. Since α = 1 the point on the initial line midway between
inner and outer radii makes exactly one complete turn of the circle.

points can be taken either clockwise or anti-clockwise depending on their pos-
ition in the annulus. Some of the difficulties in introducing nonmonotonicity
are illustrated in this section, but we recall that even in the simpler case of toral
linked twist maps, the theory requires monotonicity in the twist functions.

Here we fix the twist functions to be

fi(r) = 8πα(r − r0)(r1 − r)

(r1 − r0)
2

so that fi(r0) = 0, fi(r1) = 0 and the twist reaches a maximum halfway between
inner and outer radii (that is, f ′((r1 + r0)/2) = 0). At this point we have
f ((r1 + r0)/2) = 2πα so that α = 1 corresponds to the point of greatest twist
making a complete circuit of the annuli. Figure 9.18 shows the twist functions
fi(r) and the image of an initial line in the annulus R1 under a single iteration
of Fi.

In Figure 9.19 we illustrate drastically different behaviour for planar linked
twist maps for which the twist condition breaks down. In each plot we fix the
outer radii r1 = 3.0, the strength α = 1, and the centres at (x1, y1) = (−0.7, 0)
and (x2, y2) = (0, 0). The only parameter we vary is r0. In the left-hand column
the inner radii are set to r0 = 0.2. As before the top picture shows two initial
blobs and the figures beneath show the images of the blobs under 1, 3, 6 and
10 iterations of the linked twist map. Whilst the blobs are spread over a large
region of the domain, it is clear that almost no mixing has taken place. Indeed
this appears more like a pair of distinct ergodic components than a single mixed
region. There are also isolated islands above and below the centres of the annuli.
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Figure 9.19 Numerical results for three experiments for planar linked twist maps
in which the twist condition breaks down. Each annulus has r1 = 3.0, and the
centres are at (x1, y1) = (−0.7, 0) and (x2, y2) = (0, 0). We take α = 1 and
vary r0. The three columns are for r0 = 0.2, 0.75, 1.5 respectively, and the initial
blobs in the top figures are shown under 1, 3, 6 and 10 iterations. Mixing seems to
improve on increasing the inner radii.

Increasing the inner radii in the middle column of Figure 9.19 to r0 = 0.75 we
see the mixing begin to improve, although the islands still persist, and for much
large inner radii (r0 = 1.5) in the right-hand column the system appears to
mix well.
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9.4.3 Non-slip boundary conditions

All the linked twist maps discussed above have the property that while points on
the outer radii are fixed (modulo the circumference), the outer radii themselves
are rotated by an integer multiple of the circumference. Many applications bring
in non-slip boundary conditions, which could result in outer (and inner) radii
being fixed, so that points on the circumference do not move at all. In order
to retain monotonicity in the twist functions fi we set the inner radii r0 = 0,
and fix

fi(r) = 2πα

(
1 − r

r1

)
so that there is no twist on the outer radii.

In Figure 9.20 we fix the centres (x1, y1) = (−1.2, 0), (x2, y2) = (0, 0), and
the outer radii r1 = 3.0. In this experiment we use linear twist functions and
vary the strength α of the twist. The left-hand column shows the behaviour of
the system forα = 0.5. The top figure demonstrates the action of the twist in one
annulus R1. The image of the initial red line after one iteration of F1 is shown in
blue. Beneath that we show two initial blobs, followed by their evolution under
3, 6 and 10 iterations of T̄ . Perhaps unsurprisingly, with this relatively weak
twist, there is little mixing. The middle column shows the same numerics but
for α = 1.0, and the right-hand column has α = 2.0. Of course, the stronger
the twist, the greater the quality of mixing. However, in applications, a stronger
twist would probably imply a greater input of energy, and so the design principle
would involve maximizing quality of mixing whilst minimizing the strength of
the twist.

9.5 Final remarks

The coverage of this book is manifestly focused: an examination of the Linked
Twist Map (LTM) as it applies to mixing. It is one issue meeting many. Mixing
problems are varied in scope and it is unreasonable to expect that an LTM-
focused perspective will answer all questions or even have something valuable
to contribute to all possible mixing – even if idealized – examples. In fact, in the
preceding paragraphs we highlighted a few of the mathematical issues that need
to be addressed to increase the scope of the LTM framework. All these caveats
notwithstanding, it is clear nevertheless that the LTM captures and formalizes
the central heuristic of mixing in 2D flow: the crossing of streamlines. We
believe that the potential for the application of the LTM formalism to mixing is
high, even higher than the preceding chapters may indicate. There are however
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Figure 9.20 Numerical results for three experiments for planar linked twist maps
with non-slip boundary conditions. Each annulus has r0 = 0.0, r1 = 3.0 with
centres at (x1, y1) = (−1.2, 0) and (x2, y2) = (0, 0). The top figures show the
effect (blue) of applying a twist to an initial line (red) in the cases α = 0.5 on the
left, α = 1.0 in the middle, and α = 2.0 on the right. Beneath these are, for these
values of α, two initial blobs and their images under 3, 6 and 10 iterations of the
linked twist map. Predictably, increasing the strength of twist increases the quality
of mixing.

several knowledge gaps and we have described a few of the mathematical issues
that need to be addressed to close them. This is a fertile area for research and
new mathematical directions, where the methods of ergodic theory and Pesin
theory can be used to guide quantitative modelling and analysis. We close by
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briefly mentioning a few other topics and areas that should provide fruitful
avenues for investigation.

Pseudo-Anosov maps and topological mixing In recent years techniques
from the study of the topology of maps of surfaces (Boyland (1994)) have been
applied to mixing in macroscopic flows by Boyland et al. (2000). These pseudo-
Anosov maps also have the Bernoulli property. A direct connection with LTMs
can be made through the blinking vortex flow (Kin & Sakajo (2005)). While
the mathematical language may appear formidable (and we will not go into
it here), once it has been translated into the context of a mixing problem it
becomes almost intuitive. This is a line of research that is being pursued vigor-
ously (see, e.g., Thiffeault (2005), Vikhansky (2004), and Finn et al. (2003)).
MacKay (2001) has written an instructive review of the topic. However, we
caution the reader that ‘topological notions’ are generally of a different char-
acter from ‘measure-theoretic’ notions. For example, general conditions do not
appear to be known in the nonuniformly hyperbolic setting for which the chaotic
invariant set that follows from the map being pseudo-Anosov has positive
measure.

Diffusion Numerous articles have dealt with the effect of molecular diffusion
on chaotic flows. A typical way of modelling the effect of molecular diffusion
is to add a noise term to the advection equations, see, e.g., Jones (1991), or
Camassa & Wiggins (1991). In recent years there has been great progress in
the development of the notion of a ‘random dynamical system’. Potentially this
could be used to gain new insights into the interaction of advection and diffusion
when coupled with the ergodic theory framework described in this book. See,
e.g., Arnold (1998), Kifer (1988), and Cowieson & Young (2005).

Decay of correlations As mentioned in Chapter 3 the decay of correlations
is in a rough sense a measure of the speed of mixing. Baladi (2001) gives a
review of the subject. While this is an area that is at the forefront of research in
ergodic theory, the systems examined to date appear to have little relevance to
fluid mechanical mixing problems. For example, there are no known results for
two-dimensional, area-preserving, nonuniformly hyperbolic maps. The linked
twist maps could be an ideal candidate for rigorous studies of the decay of
correlations for such systems.

Three-dimensional linked twist maps Thus far the linked twist map formal-
ism has only been applied to two-dimensional maps. However, there are obvious
generalizations to three dimensions using the action-angle-angle coordinates
and action-action-angle coordinates in Mezic & Wiggins (1994). These coordin-
ates are very much the same as the coordinates used in constructing the LTM for
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the duct flow in Chapter 2. Mullowney et al. (2005) have already constructed
an analogue of the blinking vortex flow in three dimensions (the ‘blinking roll’
flow).

We hope that this book serves as an invitation to explore an exciting area of
analysis and applications.
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