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Series Introduction 

Control systems has a long and distinguished tradition stretching back to nineteenth- 
century dynamics and stability theory. Its establishment as a major engineering 
discipline in the 1950s arose, essentially, from Second World War-driven work on 
frequency response methods by, amongst others, Nyquist, Bode and Wiener. The in- 
tervening 40 years has seen quite unparalleled developments in the underlying theory 
with applications ranging from the ubiquitous PID controller, widely encountered 
in the process industries, through to high-performance fidelity controllers typical of 
aerospace applications. This development has been increasingly underpinned by the 
rapid developments in the, essentially enabling, technology of computing software 
and hardware. 

This view of mathematically model-based systems and control as a mature dis- 
cipline masks relatively new and rapid developments in the general area of robust 
control. Here an intense research effort is being directed to the development of 
high-performance controllers which (at least) are robust to specified classes of plant 
uncertainty. One measure of this effort is the fact that, after a relatively short period 
of wark, 'near world' tests of classes of robust controllers have been undertaken in the 
aerospace industry. Again, this work is supported by computing hardware and soft- 
ware developments, such as the toolboxes available within numerous commercially 
marketed controller design/simulation packages. 

Recently, there has been increasing interest in the use of so-called 'intelligent' 
control techniques such as fuzzy logic and neural networks. Basically, these rely on 
learning (in a prescribed manner) the input-output behaviour of the plant to be 
controlled. Already, it is clear that there is little to be gained by applying these 
techniques to cases where mature mathematical model-based approaches yield high- 
performance control. Instead, their role (in general terms) almost certainly lies 
in areas where the processes encountered are ill-defined, complex, nonlinear, time- 
varying and stochastic. A detailed evaluation of their (relative) potential awaits the 
appearance of a rigorous supporting base (underlying theory and implementation 
architectures, for example) the essential elements of which are beginning to  appear 
in learned journals and conferences. 

Elements of control and systems theorylengineering are increasingly finding use 
outside traditional numerical processing environments. One such general area is in- 
telligent command and control systems which are central, for example, to innovative 
manufacturing and the management of advanced transportation systems. Another 
is discrete event systems which mix numeric and logic decision making. 

It  was in response to these exciting new developments that the book series on 
Systems and Control was conceived. It  publishes high-quality research texts and 
reference works in the diverse areas which systems and control now includes. In 



xii 

addition to  basic theory, experimental and/or application studies are welcome, as 
are expository texts where theory, verification and applications come together to 
provide a unifying coverage of a particular topic or topics. 

E. Rogers 
J. O'Reilly 
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Chapter 1 

Introduction 

1.1 THE LAGUERRE MODEL: PROCESS IDENTIFICATION FROM 
STEP RESPONSE DATA 

An identification experiment consists of perturbing the process input and 
observing the resulting response in the process output variable. A process 
model describing this dynamic input-output relationship can then be iden- 
tified directly from the data iself. In a process control context, the end-use 
of such a model would typically be for controller design. 

The step response test is one of the simplest identification experiments 
to perform. The test involves increasing or decreasing the input variable 
from one operating point to another in a step fashion, and recording the 
behaviour of the output variable. Step response tests are often performed 
in industry in order to determine approximate values for the process gain, 
time constant and time delay (Ljung, 1987). However, these experiments are 
widely viewed as only a precursor to the design of further experiments, the 
collection of more input-output data, and the subsequent analysis of this 
data using regression-based techniques to obtain a more accurate model. 
However, the simplicity of the original step response test provides the incen- 
tive to fully explore the extent to which an accurate model may be obtained 
directly from the step response data itself. 

Various methods are available in the literature for obtaining a trans- 
fer function model directly from step response data. For example, in Rake 
(1980) and Unbehauen and Rao (1987), graphical methods based on flexion 
tangents or times to reach certain percentage values of the final steady state 
are presented. An implicit requirement of these methods is that the step 
response data be relatively noise-free to the extent that the engineer can 
clearly see the true process response to the step input change. However, 
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this is not the case in many practical situations. 
Given the limitations of the graphical methods, we have chosen to ap- 

proach this problem from a different perspective. Our objective is to de- 
vise a systematic algorithm that works directly with the step response data 
to produce a continuous-time, transfer function model of the process wit h 
minimum error in a least squares sense. We are able to achieve this goal in 
Chapter 2 by taking advantage of the orthonormal properties of the Laguerre 
functions, which have received considerable attent ion in the recent literature 
on system identification and automatic control (Zervos and Dumont , 1988; 
Makila, 1990; Wahlberg, 1991; Wahlberg and Ljung, 1992; Goodwin et al., 
1992). 

The proposed method for estimating the parameters of this Laguerre 
model is simple and straightforward, involving only numerical integration of 
the step response data. One of the most important features of the Laguerre 
model is its time scaling factor, p. If this parameter is selected suitably, the 
Laguerre model can be used to efficiently approximate a large class of linear 
systems. Clowes (1965) illustrated how to select the optimal time-scaling 
factor for systems with rational transfer functions, assuming that an ana- 
lytic expression for the system's impulse response is available and that there 
is no delay present in the process. We extend Clowes' result to a general 
class of stable linear systems and propose a simple strategy for determining 
the optimal time scaling factor directly from the step response data. An 
analysis of the effect of disturbances occurring during the step response test 
on the model quality is also presented. We classify various types of dis- 
turbances based on their frequency content, and identify the types which 
have a significant impact on the quality of the estimated model. We also 
perform this analysis in the time domain and use this to show that a simple 
pretreatment of the step response data can greatly enhance the accuracy of 
the estimated model. 

The above analysis shows that, as long as the disturbances are fast rela- 
tive to the process dynamics, an accurate model can in fact be constructed 
from step response data. However, many processes are affected by slow, 
drifting disturbances that effectively mask the true process response. For 
these types of disturbances, the proposed Laguerre approach may produce 
process models with significant errors. In this case, other types of input sig- 
nals, such as a random binary input signal or a periodic input signal, should 
be used to enable the effect of the disturbances on the process output to be 
separated from the process response due to the input variable. 
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1.2 USE OF PRESS FOR MODEL STRUCTURE SELECTION IN 
PROCESS IDENTIFICATION 

When working with regression-based techniques for process model identifi- 
cation, one of the challenging tasks is to determine the most appropriate 
process model structure. In a linear model context, this would be informa- 
tion such as the number of poles and zeros to be included in the transfer 
function description. If the structure of the system being identified is known 
in advance, then the problem reduces to a much simpler parameter estima- 
tion problem. 

Cross-validat ion is often recommended in the lit erat ure as a technique 
for determining the most appropriate model structure (Ljung, 1987; Koren- 
berg et al., 1988). With cross-validation, the data set generated from the 
identification experiment is split into an estimation set, which is used to 
estimate the parameters, and a testing set, which is used to judge the pre- 
dictive capability of the model. This step is particularly useful in revealing 
the structure of a dynamic system subject to disturbances where it is be- 
lieved that the disturbance sequence will never be exactly duplicated from 
the estimation set to the testing set. 

There is another way to generate the prediction errors without actually 
having to split the data set. The idea is to set aside each data point, esti- 
mate a model using the rest of the data, and then evaluate the prediction 
error at the point that was removed. This concept is well known as the 
PRESS statistic in the statistical community (Myers, 1990) and is used as 
a technique for model validation of general regression models. However, to 
our knowledge, the system identification literature has not suggested the use 
of the P RESS for model structure selection. 

Chapter 3 presents the development of the PRESS statistic as a cri- 
terion for structure selection of dynamic process models which are linear- 
in-the-parameters. Computation of the PRESS statistic is based on the 
ort hogonal decomposition algorithm proposed by Korenberg et al. (1 988) 
and can be viewed as a by-product of their algorithm since very little addi- 
tional computation is required. We also show how the PRESS statistic can 
be used as an efficient technique for noise model development directly from 
time series data. 

1.3 FREQUENCY SAMPLING FILTERS: AN IMPROVED MODEL 
STRUCTURE FOR PROCESS IDENTIFICATION 

For the industrial application of multivariable model predictive process con- 
trol, the dynamic relationships between the manipulated inputs and con- 
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trolled outputs are typically expressed in terms of high order finite impulse 
response (FIR) or finite step response (FSR) models relating each input to 
each output. These models fall in a class which we will refer to as input -  
only  models where the process output is expressed as a function of only past 
values of the process input. The FIR/FSR models are popular because they 
fit very naturally into the predictive control algorithms and also because 
the types of multivariable processes on which these controllers are typically 
applied are not well represented by lower order transfer function models 
(Cutler and Yocum, 1991; MacGregor e t  al., 1991). The FIR/FSR models 
are also appealing because they are a straightforward represent at ion of the 
process dynamics. 

Despite these advantages, there are a few widely recognized problems 
associated with the identification of these FIR/FSR models from process 
input-output data. The first problem is their high dimensionality. The or- 
der of these models is equal to the settling time of the process (the time 
required for the process output to reach a new steady state after a change 
has been made in the process input) divided by the data sampling interval. 
Therefore, FIRJFSR model orders of at least 50 to 100 are not unusual. The 
second problem is that these model structures often result in ill-conditioned 
solutions when applying a least squares estimator. The optimal input signal 
for identifying an FIR model is one containing rich excitation at all frequen- 
cies (Levin, 1960). However, this kind of input signal is seldom used in 
the process industries. The types of test signal more often used consist of 
relatively infrequent input moves. As a result, the data matrices associated 
with the estimation of the FIR models are often poorly conditioned which 
inflates the variance of the parameter estimates and, as a result, leads to 
nonsmooth FIR models. 

To overcome these problems, MacGregor et al. (1991) have looked at 
biased regression techniques (e.g. ridge regression (RR)) and the projection 
to latent structures (PLS) method as alternatives to least squares. Ricker 
(1988) studied the use of PLS and a method based on the singular value 
decomposition (SVD). All of these approaches attempt to reduce the para- 
meter variances and improve the numerical stability of the solution wit h the 
tradeoff being biased models. 

Recognizing that the reason for lack of smoothness of the FIR models 
lies with the type of input signals used for identification experiments in the 
process industries, we have chosen to focus on an alternative model structure 
for process identification in Chapters 4 and 5. Our approach is fundamen- 
tally different from the RR, PLS and SVD approaches in the sense that 
we approach this problem by first performing a frequency decomposition 
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of the identified model, separating low and medium frequency parameters 
from high frequency parameters and then by choosing to ignore these high 
frequency parameters in the final model structure. This frequency decompo- 
sition is based on the frequency sampling filter (FSF) model, which is simply 
a linear transformation of the FIR model. Therefore, it maintains the main 
advantage of the FIR model in that it requires no structural information 
about the process, such as its order and relative degree. The FSF struc- 
ture was first introduced to the areas of system identification and automatic 
control by Bitmead and Anderson (1981), Parker and Bitmead (1987) and 
Middleton (1988). 

In the new FSF model parameter estimation problem, the delayed values 
of the process input that appear in the data matrices for estimating the FIR 
model are replaced by filtered values of the process input, where the filters 
have very narrow band-limited characteristics. Also, the discrete process im- 
pulse response weights, which represent the parameters of the FIR model, 
are replaced by the discrete process frequency response coefficients. These 
narrow band-limited filtered input signals separate the frequency compo- 
nents of the input signal and yield a least squares correlation matrix that has 
diagonal elements proportional to the power spectrum of the input. When 
the input spectrum has little content in the frequency range of estimation, 
the correlation matrix becomes ill-conditioned. Therefore, the problem of 
smoothing the step response estimates is converted into identifying the op- 
timal number of frequency sampling filters to be included in the FSF model. 
This optimal number can be found by examining the model's predictive ca- 
pability, e.g. as measured by the PRESS statistic presented in Chapter 
3. Alternatively, because the number of FSF model parameters needed to 
accurately represent many process step responses is often far fewer than the 
number required by an FIR model, and because this number is indepen- 
dent of the sampling interval, we have also found that we can safely fix the 
number of frequency sampling filters and hence the number of FSF model 
parameters to be estimated at a modest level, say 11 or 13, for a large class 
of systems. 

1.4 PID CONTROLLER DESIGN: A NEW FREQUENCY DOMAIN 
APPROACH 

The PID controller continues to be the most common type of single-loop 
feedback regulator used in the process industries. However, the tuning of 
these controllers is still not widely understood and, in fact, many still op- 
erate with their original default settings. Despite this, researchers continue 
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to strive to find relatively simple ways to design these controllers in order 
to improve closed-loop performance. However, it is safe to say that not one 
method in over 50 years has been able to replace the Ziegler-Nichols (1942) 
tuning methods in terms of familiarity and ease of use. 

More recent developments in the area of PID controller tuning fall into 
three categories: 

Model-Based Designs 

A structured model of the process (typically a Laplace transfer function) is 
used directly in a design method such as pole-placement or internal model 
control (IMC) to yield expressions for the controller parameters that are 
functions of the process model parameters and some user-specified para- 
meter related to the desired performance, e.g. a desired closed-loop time 
constant. These approaches to PID design carry restrictions on the allow- 
able model structure, although it has been shown that a wide range of types 
of processes can be accommodated if the PID controller is augmented with a 
first order filter in series. An example of this design approach may be found 
in Rivera et al. (1986). 

Designs Based on Optimization of an Integral Feedback Error Per- 
formance Criterion 

This approach can be applied to a wide variety of transfer function models. 
However, a numerical search procedure is required to find the optimal con- 
troller parameters. See, for example Zhuang and Atherton (1993). 

Designs Based on Process Frequency Response 

Perhaps motivated by the popular Ziegler-Nichols frequency response met hod 
which requires knowledge of only one point on the process Nyquist curve, 
ways have been developed to automate the Ziegler-Nichols met hod ( Astrom 
and Hagglund, 1984), to refine their tuning formulae (Hang et al., 1991) 
and to develop improved design methods which require only a slight in- 
crease in the amount of process frequency response information (Astrom 
and Hagglund, 1988; Astrom, 1991). 

From our point of view, each approach has its advantages. The first two 
model- based approaches have a more intuitive time domain performance 
specification than traditional frequency domain design met hods. However, 
the frequency domain methods require less structural information about 
the process dynamics. Chapters 6 and 7 present a new frequency domain 
PID design approach that we feel combines these advantages. This new 



Introduction 7 

design method begins with a time domain performance specification on the 
behaviour of the closed-loop control signal rather than a specification on 
the desired output signal or feedback error. The behaviour of the controller 
output is an important consideration when assessing overall closed-loop per- 
formance in a process control application (Harris and Tyreus, 1987). In 
addition, we propose to use only a limited number of points on the process 
Nyquist curve for controller design without requiring any structural infor- 
mation about the process dynamics other than knowledge of whether or not 
the process is self-regulating. Since we make use of points on the process 
Nyquist curve in the design, we address the question of which frequency 
response points have the largest impact on the closed-loop time domain per- 
formance and therefore which should be used in the design. Here, we exploit 
the connection between the frequency domain and the time domain made in 
our earlier work with the FSF model in Chapters 4 and 5. Straightforward 
analytical solutions for the PID parameters, or tuning rules, are also derived 
for first order plus delay and integrating plus delay processes in order to put 
our results on a comparable footing with other PID tuning formulae in terms 
of ease of use. These tuning rules contain a single closed-loop response speed 
parameter to be selected by the user. 

1.5 RELAY FEEDBACK EXPERIMENTS FOR PROCESS IDEN- 
TIFICATION 

The relay feedback experiment was made popular in the field of process 
control by Astrom and Hagglund (1984). This experiment was suggested as 
a means to automate the Ziegler-Nichols scheme for determining ultimate 
gain and frequency information about a process. Their approach followed 
directly from a describing function approximation (DFA) to the nonlinear 
relay element. The objective was to use the obtained process information 
for automatic tuning of PID controllers. 

Astrom and Hagglund's work (1984) has prompted research in several 
different directions. One of these directions, and the focus of Chapter 8, is 
in the area of process identification, where the objective is to obtain a more 
complete and accurate model of the process from data generated under relay 
feedback. Fitting a more complete process model (i.e. a transfer function 
model) normally requires knowledge of several points on the process Nyquist 
curve. Given that the standard relay experiment combined with the DFA 
identification technique is able to identify only a single point, fitting such a 
model either requires the availability of some prior process information (e.g. 
Luyben, 1987) or requires the user to conduct a series of relay experiments in 
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which the oscillation frequency is adjusted by incorporating various dynamic 
elements into the relay feedback loop (e.g. Li et al., 1991; Schei, 1994). 

In Chapter 8, it is shown that the frequency sampling filter (FSF) model 
along with a least squares estimator can be used in conjunction with the 
data generated from a standard relay experiment to quickly and accurately 
identify the process frequency response at the dominant harmonics of the 
limit cycle. A recursive implementation of the least squares algorithm is 
suggested for parameter estimation. This methodology is extended by in- 
troducing a modified relay experiment designed to enable the identification 
of a more complete process step response model from a single relay experi- 
ment. In this experiment, the error signal is switched back and forth between 
a standard relay element and an integrator in series with a relay. The gen- 
erated input signal is no longer periodic as in the case of the standard relay 
experiment, but instead is typically rich in the frequency range needed for 
accurate step response model identification. Because this met hod makes 
use of the FSF model structure, the only required prior process knowledge 
is an estimate of the process settling time and it will be demonstrated that 
even this information may be estimated directly from the modified relay 
experiment. 



Chapter 2 

Modelling from Noisy Step 
Response Data Using 
Laguerre Functions 

2.1 INTRODUCTION 

This  chapter introduces a method for building Laplace transfer function mod- 
els from noisy step response data. T h e  algorithm i s  based o n  the Laguerre 
functions and exploits their orthonormal properties t o  produce a simple, yet 
eflective approach. 

This chapter contains seven sections plus an appendix. Section 2.2 presents 
the Laguerre functions, describes how they may be used to develop a trans- 
fer function model of a process (called the Laguerre model), and defines 
the Laguerre coefficients in both the time domain and frequency domain. 
Sect ion 2.3 refines a classic optimization approach for selecting the time 
scaling factor in the Laguerre model. Section 2.4 introduces the step re- 
sponse modelling algorithm, in which the model coefficients and the optimal 
time scaling factor are estimated directly from the step response data itself. 
Sect ion 2.5 analyzes the statistical properties of the estimated coefficients, 
leading to the conclusion that their variances are related to the power spec- 
trum of the disturbance. Section 2.6 further analyzes the errors associated 
with the estimated coefficients in the time domain and proposes a simple 
data pretreatment procedure that can be applied to the step response data 
to improve the model accuracy. In Section 2.7, the modelling algorithm 
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is applied to step response data obtained from a pilot-scale polymerization 
reactor. 

Port ions of this chapter have been reprinted from Chemical Engineering 
Science 50, L. Wang and W.R. Cluett, "Building transfer function models 
from noisy step response data using the Laguerre network", pp. 149-161, 
1995, with permission from Elsevier Science, and from IEEE Transactions 
on Automatic Control 39, L. Wang and W.R. Cluett, "Optimal choice of 
time-scaling factor for linear system approximations using Laguerre models", 
pp. 1463-1467, 1994, with permission from IEEE. 

2.2 PROCESS REPRESENTATION USING LAGUERRE MODELS 

This section introduces the Laguerre model for representing the process 
transfer function. The basic idea is to approximate the continuous-time 
impulse response of the process in terms of the orthonormal Laguerre func- 
tions. The Laguerre coefficients themselves will then be defined in terms of 
both the process impulse response and its frequency response. 

2.2.1 Approximation of the process impulse response 

A sequence of real functions ll ( t) ,  l2 (t), . . . is said to form an orthonormal 
set over the interval (0, m) if they have the property that 

and 

A set of orthonormal functions li(t) is called complete if there exists no 
function f (t) with Som f (t)2dt < m, except the identically zero function, 
such that 

for i = 1,2,.  . .. 
The Laguerre functions (Lee, 1960) are an example of a set of complete 

ort honormal functions that satisfy the properties defined by Equations (2.1)- 
(2.3). The set of Laguerre functions is defined as, for any p > 0 

l2 (t) = f i ( -2pt  + 1) e-pt 
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Z 3  ( t )  = f i ( + 2 p 2 t 2  - 4pt + 1)  e-pt 
4 

Z4(t) = f i ( - - p 3 t 3  + 6p2t2 - 6pt + 1)  e-Pt 
3 
2 16 

15(t) = f i ( + - p 4 t 4  - -p3t3 + 12p2t2 - 8pt + 1)  e-Pt 
3 3 

. - 
(i - l )  (2p)i-2 ti-2 

Zi ( t )  = &[(- 
(i - l ) !  (i - 2)!  

+ (- l)z-l 
2! ( i  - 3)! 

The parameter p is called the time scaling factor for the Laguerre functions. 
This parameter plays an important role in their practical application and 
will be discussed in detail in Section 2.3. (Note: The set of Laguerre func- 
tions presented in Equations (2.4) differs by a factor of -1 for even values of 
i when compared with the set of Laguerre functions presented by Lee (1960). 
However, this does not affect the ort honormal properties of these functions.) 

Definition of Coefficients in the Time Domain 

With respect to a set of functions l i ( t )  that is orthonormal and complete 
over the interval (0 ,  m), it is known that an arbitrary function h ( t )  has a 
formal expansion analogous to a Fourier expansion (Wylie, 1960). Such an 
expansion has been widely used in numerical analysis for the approximation 
of functions in differential and integral equations. The idea behind using 
Laguerre functions to represent a linear, time invariant process is to take 
h ( t )  to be the unit impulse response of the process, where h(t) can be written 
as 

h(t) = clZl(t) + c2Z2(t) + . . . + ciZi(t) + (2.5) 

and { G )  are the coefficients of the expansion defined by 

Convergence Condition in Time Domain 

The expansion given in Equation ( M ) ,  in theory, requires an infinite num- 
bers of terms in order for it to converge to the true impulse response. How- 
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ever, the assumed completeness of the set of ort honormal functions ensures 
that, for any piecewise continuous impulse response function h (t) with 

and any E > 0, which is a measure of the accuracy of the approximation, 
there exists an integer N such that the integral squared error between the 
true and approximated impulse responses is less than E,  i.e. 

Therefore, we can use a truncated expansion xLl cEli(t) to closely approx- 
imate the unit impulse response h(t) with an increasing number of terms, 
N. 

2.2.2 Approximation of the process transfer function 

In parallel with the above time domain description, an approximation of the 
process transfer function using the Laguerre functions can also be developed. 
The Laplace transform of the impulse response h(t) in Equation (2.5) leads 
to the continuous- t ime transfer function of the process 

where the Laplace transforms of the Laguerre functions, also referred to as 
the Laguerre filters, are given by 

The process transfer function given by Equations (2.9) and (2.10) is called 
the Laguerre model. The Laguerre filters in Equation (2.10) have a simple 
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form that is easy to remember in that the filters have all their poles at the 
same location, -p, and all their zeros at +p. The first filter, Ll(s), is a first 
order low-pass filter. All other filters, Li(s), consist of a first order filter, 
Ll(s), in series with an all-pass filter [%]"l. (Note: The Laguerre filters 
presented in Equations (2.10) differ from the Laguerre filters presented by 
Lee (1960) in that the numerator of the general ith filter in Lee (1960) is 
(p - S)"-' instead of (S - p)"1. However, our presentation is consistent with 
that used by Zervos and Dumont (1988) .) 

Definition of Coefficients in the Frequency Domain 

Parseval's theorem (Desoer and Vidyasagar, 1975) states that, if two real 
functions X(T) and y (7) are bounded in the l2 space (namely Srm z ( T ) ~ ~ T  < 
m and y ( ~ )  2 d ~  < m),  then 

where X(jw) and Y (jw) are the Fourier transforms of X(T) and y ( ~ ) ,  and 
f * denotes the complex conjugate of f . Application of Parseval's theorem to 
Equations (2.1) and (2.2) gives the orthonormal properties in the frequency 
domain 

00 

1 J ~ ~ ( j w ) ~ d w = l  (2.12) 
2n -m 

and 

The coefficients {ci} defined by Equations (2.6) can be expressed as 

cl = & S:? G* (jw) Ll (jzu)dw 

Convergence Condition in the Frequency Domain 

Condition (2.7), that permitted the use of a truncated expansion to closely 
approximate the unit impulse response h(t), may also be given in the fre- 
quency domain by direct application of Parseval's theorem as 
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Figure 2.1: Laguerre network 

;a 
S+ P 

which implies that the process transfer function G(s) has all its poles strictly 
on the left half of the complex plane and has a strictly proper structure 
(i.e. lim,,, lG(jw)l = 0). The latter condition holds when the order of 
the transfer function numerator is less than the order of the denominator. 
Processes that satisfy this condition are referred to as L2 stable systems. 

2.2.3 Laguerre model in state space form 

Y (0 
4 

Figure 2.1 shows the block diagram of the Laguerre model (order N) de- 
scribed by Equations (2.9) and (2.10), where ~ ( t )  is the process input and 
y(t) is the process output. The process input passes through the Laguerre 
filters arranged in series and the filter outputs are weighted by their respec- 
tive Laguerre coefficients. The sum of these weighted filtered signals gives 
the process output y (t) . 

From this block diagram, we can derive the Laguerre model in its state 
space form. Defining the state vector 

S - P  

S +  P 
S-p 

S+P 

... + - 
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and assuming zero initial conditions of the state vector, then 

2.2.4 Generating the Laguerre functions 

It is important to be able to efficiently generate values for the Laguerre 
functions. There are several ways to do so and each way requires a different 
amount of computational effort. 

Method A. For low model orders, the Laguerre functions can be generated 
using Equations (2.4) directly. 

Method B. For higher model orders, a recursive approach proposed in 
Atkinson (1989) can be used. 

Method C. When MATLAB is available, the transfer functions of the La- 
guerre filters can be used to evaluate their unit impulse responses. 

Method D. The set of differential equations in Equation (2.16) can be 
solved numerically. 

We will now give more detailed information about Method B and Method D. 

Method B: Generating Laguerre Functions Using Polynomials 
Atkinson (1989) presents the following recursive relation between what are 
known as the Laguerre polynomials denoted here by Pi, where 

and, for any index number n 2 1, 
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We can now generate the Laguerre functions in Equations (2.4) by setting 
X = 2pt in the Laguerre polynomials 

. - .  . - .  
li (t) = f i - 1  (2pt)&ee-Pt 

Method D: Generating Laguerre Functions Using Difference Equa- 
tions 
By examining Equation (2.16), we find that the Laguerre functions in Equa- 
tions (2.4) satisfy the following set of differential equations 

[ ] - - 
h (t) 

with the initial conditions 

Hence, the solution of this set of differential equations yields the time domain 
Laguerre functions, which can be found numerically by iteratively solving 
the following set of difference equations 
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and At = ti+l - ti being the integration step size. As long as At is sufficiently 
small, this numerical scheme is stable and produces sufficiently accurate 
solutions. 

In theory, choice of the time scaling factor p does not affect the existence 
and convergence of the Laguerre model with respect to the model order N. 
The accuracy of the approximation increases wit h increasing model order. 
In practice though, a poor choice of p requires a high order Laguerre model 
in order to achieve a desired model accuracy. However, the estimation of an 
accurate Laguerre model from process data corrupted by noise and distur- 
bances becomes more difficult when using a large value for N. Therefore, 
one of the keys to the successful application of the Laguerre modelling ap- 
proach is to find a systematic method for optimizing the choice of the time 
scaling factor p. To demonstrate the importance of this issue, an illustrative 
example is given. 

Example 2.1. Consider the construction of a Laguerre model for the first 
order process described by 

where a > 0. The unit impulse response of this process is given by 

We can compute the coefficients of the Laguerre model using Equations 
(2.14) for a positive time scaling factor p 
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and 

Modelling using Laguerre Functions 

Therefore, the Nth order Laguerre model for this first order system is 

We can see from Equation (2.28) that this Laguerre model serves only as an 
approximation to the original system unless p = a. 

2.3.1 Modelling errors with respect to choice of p 

The integral squared error between the unit impulse response of the process 
and that of the Nth Laguerre model is defined as 

and the derivative of this integral squared error with respect to ci is given 

by 

Using the ort honormal properties of the Laguerre functions, Equation (2.30) 
is equivalent to 

and by setting = 0, we find that 

Equation (2.32) corresponds to the original definition of the Laguerre co- 
efficients in Equations (2.6). It can be shown that the solutions of the 
coefficients given by Equation (2.32) minimize the integral squared error in 
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Equation (2.29) because the second derivative of E with respect to q is 
always positive. 

The integral squared error in Equation (2.29) can be rewritten as 

where the expressions for the Laguerre coefficients given by Equation (2.32) 
and the orthonormal properties of the Laguerre functions have been used. 

Using Parseval's theorem, Equation (2.29) can be also represented in the 
frequency domain as 

The expressions for the Laguerre coefficients in Equations (2.14) in terms 
of the process frequency response can be derived by minimizing Equation 
(2.34). The error E can also be expressed in a form 
(2.33), where 

similar to Equation 

(2.35) 

The first term on the right-hand side of Equation (2.33) or Equation 
(2.35) is independent of the time scaling factor p and therefore only the 
second term is a function of p. Hence, for a given model order N, the 
minimum error E with respect to p corresponds to the maximum of C:, c: 
with respect to p. Therefore, the problem of searching for an optimal time 
scaling factor p is converted to finding the maximum of the loss function 
defined by 

N 

2.3.2 Optimal choice of p 

The optimal choice of the time scaling factor p described by Clowes (1965) 
is generalized here for any L2 stable system. 
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Theorem 2.1: Given that the Laguerre coefficients {ci} can be obtained 
from Equations (2.14), and assuming that the true system G(s) is Lz stable, 
then the derivative of the loss function V with respect to the time scaling 
factor p is given by 

To prove the theorem, we first require the following lemma. 

Lemma 2.1: For some p > 0, the Laplace transforms of the Laguerre 
functions given in Equations (2.10) satisfy the following equality 

Proof of Lemma 2.1: It can be readily shown that for i = 1 

and for i = 2 

Now assume that for i > 3, the following equality is true 

Therefore, we must demonstrate that 

Using Equations (2.10) 

S - P  Li (S) = Li-1 ( S )  
S + P  

we can write 
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and substituting Equation (2.41) into Equation (2.44) leads to 

S - P  d (L i ( s ) )  = [(i - l ) L i  ( S )  - (i - 2)Li-2 ( S ) ]  G - i-1 S 4 ~ s  
2p dp L ( ) ( s + p p  

= iLi+i(s)  - (i - l ) L i - l ( s )  

which proves the lemma by induction. 

Proof of Theorem 2.1: Note that from Equations (2.14) 

Applying Lemma 2.1 gives 

which is equivalent to 

Considering that 

then applying the summation to both sides of Equation (2.48) gives 

which proves the theorem. 

Remarks: 

The problem of finding a maximum of C? with respect to p reduces 
to finding the zeros of either of the coefficients CN or c ~ + l  as a function 
of p and then checking that the value of C N C N + ~  changes sign from 
positive to negative as p increases. Each value of p corresponding to 
a maximum can then be used to evaluate the actual value of C: 

in order to determine the optimal time scaling factor p. 
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For a given model order N, Equation (2.37) tells us that we are looking 
for the value of p that corresponds to a zero of CN+~. Otherwise, the 
model order could be reduced to N - 1 without any change in model 
accuracy (i.e. CN = 0). 

From Equation (2.47), it can be verified that 

Both the first and second derivatives in Equations (2.47) and (2.51) 
are useful for applying numerical methods to find the zeros of the 
coefficients, once an interval is located in which a zero is known to 
exist. 

Example 2.2. Irrational transfer functions have been approximated in the 
literature using truncated infinite partial fraction expansions (Part ington et 
al., 1988) and the Lagrange interpolation formula (Olivier, 1992). Here, we 
will illustrate that this class of linear systems can be efficiently approximated 
by a Laguerre model based on the minimization of the frequency domain 
loss function in Equation (2.34). We will consider the following system 
(Partington et al., 1988) 

1 
G(s) = s + 1 - e - ~ - 2  (2.52) 

Our objective is to approximate this system using a 3rd order Laguerre 
model (N = 3). In order to find the optimal time scaling factor p, we have 
computed the coefficients c3 and c4 based on Equations (2.14) for a range 
of p values and have noted that the product c3c4 only changes sign from 
positive to negative in the interval (0.9,1.2). Hence, the optimal value of p 
is located in this region. Applying Newton's method, we found the optimal 
p to be equal to 1.09 with a corresponding value of c4 = -9.2849 X 1 0 ~ ~ .  
The first three Laguerre coefficients are given as 

leading to the following Laguerre model 
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Figure 2.2: Magnitude of frequency domain error for Example 2.2 

The quality of this model can be measured by its L, norm error 

or by its L2 norm error 

where 1 0 - ~  5 wi < 105 and we have used 500 logarithmically equally spaced 
frequencies in this region to evaluate these errors. Figure 2.2 shows the 
magnitude of the frequency domain error. It is interesting to note that 
although the Laguerre model is obtained by minimizing an L2 norm error, 
the resulting L, norm error is actually slightly smaller than the L, norm 
error of 7.9 X 10-~  associated with the 23rd order partial fraction expansion 
model given by Partington et al. (1988). 

The choice of the time scaling factor p is crucial in this example in terms 
of its effect on both the L, norm error and L2 norm error. For example, 
for p = 0.9, maxwi IG(jwi) - ~ ( j w 2 ) l  = 1.2924 X 1 0 - ~  and CE1 ! ~ ( j w ~ )  - 
G(jwi)12 = 4.559 X 1 0 - ~ ,  and for p = 1.2, maxwi IG(jwi) - G(jwi)l = 
1.2679 X 1V2 and CE1 (G(jwi) - G(jwi)l2 = 4.5826 X 1 0 - ~ .  
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2.3.3 Optimal time scaling factor for first order plus delay 
systems 

First order plus delay systems are commonly encountered in the process 
industries and therefore it is important to consider the choice of an optimal 
time scaling factor for this class of systems. Our intention is to derive some 
empirical rules based on the process time delay and time constant so that 
a near optimal time scaling factor can be found with little computational 
effort. 

Example 2.1 illustrated that the optimal value of p for a first order sys- 
tem is equal to the inverse of the process time constant. If the process is 
higher order but without time delay, satisfactory results can be obtained if 
p is chosen based on the dominant time constant of the process. However, 
the presence of delay can greatly affect the optimal choice of p. To examine 
this problem, we shall first derive an analytical solution for the Laguerre 
coefficients associated with a first order plus delay system and then find 
empirical rules for choosing the optimal time scaling factor p. 

Laguerre Coefficients 
The transfer function of a first order plus delay system is given by 

where K is the process gain, 2 is the process time constant and d is the 
process delay. The impulse response of the process is given by 

for t 2 d, and h ( t )  = 0 for 0 5 t < d.  In this case, it is convenient to 
evaluate the Laguerre coefficients in the time domain. Using the Laguerre 
functions in matrix form by defining X ( t )  = [ l l ( t )  l z ( t )  . . . lN( t ) lT  and 
the N X N matrix 

1 0  

A= (2.58) 

. . .  2 1 

the solution of Equation (2.19) leads to 

X ( t )  = exp( -pAt  ) X ( 0 )  
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with X(0) = f i [ 1  1 . . . 1IT. Thus, the Laguerre coefficient vector, 
C = [c, c2 . . . cNIT, is given by 

Using integration by parts 

1 Lm (t)dt = - e - a d ~  (d) - P-- A km e-"'X (t)dt 
a a 

(2.61) 

Therefore the analytical solution of the Laguerre coefficients for the first 
order plus delay process is 

Derivation of Empirical Rules 

The first step toward derivation of empirical rules for the optimal choice of 
the time scaling factor p is to reduce the number of variables in Equation 
(2.62) from 3 (a, p and d) to 2. To do so, we will choose to let y = ad and 
pd = pd. Then, combining Equations (2.59) and (2.62) gives 

We are interested in finding the zeros of the coefficient vector C with re- 
spect to pd for different values of y. The special structure of the A matrix 
in Equation (2.58) allows us to write down polynomial expressions in terms 
of pd for the coefficients, and from these expressions, to directly solve for 
the zeros of the coefficients. To determine the optimal p value, the roots 
corresponding to negative and complex values of pd are discarded and the 
optimal p is identified by examining the behaviour of CNCN+~. One addi- 
tional point to note from Equation (2.63) is that the gain of the first order 
plus delay process does not affect the optimal pole location. 

We have attempted to develop some empirical algebraic expressions for 
the optimal choice of p by examining the behaviour of C N C N + ~  up to N = 3. 
We have studied systems with 0 < y 5 1.5, e.g. a system with y = 1.5 
has a delay that is 1.5 times larger than its time constant. In the region 
0 < y 5 0.303, the optimal time scaling parameter is determined by one of 
the zeros of the third coefficient, while for 0.303 5 y 5 1.5, it is determined 
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by one of the zeros of the fourth coefficient. We have found that for both 
regions of y, the optimal time scaling factor p only changes slightly as the 
model order is increased beyond N = 3. Therefore, this value of p will 
be near its optimal value, regardless of the final order of the model. We 
have numerically obtained the optimal values of p for the two regions of y 
identified above and have then fit polynomials as a function of y to yield 
the following empirical solutions 

For y values greater than 1.5, we have found that it is better to select the 
optimal time scaling factor by examining the zeros of Equation (2.63) for 
the chosen value of N. 

Example 2.3. Consider the following 12th order process 

This system can be approximated by a first order plus delay model structure 
with a delay d = 20 and a = 1/50 directly from its step response shown in 
Figure 2.3. Thus, with y = 0.4 in this case, an estimate of the optimal 
time scaling factor p is obtained from Equation (2.65) as p = 0.063. The 
coefficients of the Laguerre model can be computed directly from the process 
frequency response G(jw) using Equations (2.14). Choosing N = 6 gives 
the following Laguerre model 

where A(s) = (S + 0.063)~ and B(s) = -5.6197 X + 2.8905 X - 

6.5453 X + 5.6715 X 10%~ + 1.5646 X 10% + 6.2345 X 10-~ .  The 
step response of this Laguerre model is compared with the step response 
of the true system in Figure 2.3 and the two are indistinguishable. The 
magnitude of the frequency domain error between the true system and the 
Laguerre model is shown in Figure 2.4. The maximum error is given by 
max, IG(jw) - ~ ( j w ) ~  = 2.88 X 10-~.  It is worth noting that the optimal 
time scaling factor for this example with N = 4, obtained by examining the 



2.3 Choice of the Time Scaling Factor 

Time (sec) 

Figure 2.3: Step response of the 12th order system for Example 2.3 
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Figure 2.4: Magnitude of frequency domain error for Example 2.3 
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zeros of ~ 4 ~ 5 ,  is equal to 0.0625. Beyond N = 4, we found that the optimal 
value for p did not change significantly and therefore the estimate obtained 
from the empirical solution is very close to the optimal one. 

2.4 ESTIMATION OF LAGUERRE COEFFICIENTS FROM STEP 
RESPONSE DATA 

Looking at Equations (2.6), impulse response data might appear to be an 
obvious choice for estimating the coefficients of the Laguerre model. An 
impulse response test required to generate such a data set involves the ap- 
plication of an impulse input signal to the process, which in theory is a signal 
with infinite amplitude for zero time duration. In practice, this type of sig- 
nal can only be approximately realized using a pulse signal with a very large 
amplitude and short duration. However, a large amplitude input change 
may not be realizable or acceptable. On the other hand, a small amplitude 
input move may result in a very low signal to noise ratio. For these reasons, 
the impulse response test is seldom performed in practice. 

In contrast, the step response test is frequently performed in the process 
industries. A step response test uses a step input signal defined by 

where the magnitude of the step change urn is chosen by the user. This test 
is simple and easy to perform. 

The relationship between the measured process step response ij(t) and 
the corresponding estimated process impulse response h (t) is given by 

Although we could use the estimate for h(t) presented in Equation (2.68) in 
place of h (t) in Equations (2.6), differentiation of the measured step response 
will amplify the noise effects and cause numerical problems. It would be 
preferable to avoid differentiation and work directly with the measured step 
response instead. 

Assume that for a unit step input change, the output response of a stable, 
linear, time invariant system is given by 
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where g(t) denotes the true process step response (in deviation form), and 
((t) denotes the output additive disturbance with l((t) l < oo. 

In a noisy environment, the process step response will not settle at a 
fixed steady state value. However, the mean of the new steady state value, 
gmean, can be calculated using gmean = J~~~~ ij(t)dt, where Ts is an 

T e n d  -Ts TS 
estimate of the time it takes the process to reach steady state, and Tend is 
the end time of the step response experiment. 

Replacing h(t) by g in Equations (2.6) gives the estimate for the ith 
Laguerre coefficient 

Applying integration by parts, Equation (2.70) becomes 

Since for any p > 0, limt,, li (t) = 0, and taking the initial value of the 
measured step response as ij(0) = 0, the first term on the right-hand side of 
Equation (2.71) is equal to zero. Thus 

This is the key equation for estimating the Laguerre coefficients from step 
response data, and it will be used subsequently for analysis of variance and 
bias of the estimates as well as for the development of a data pretreatment 
strategy later in this chapter. However, Equation (2.72) is still not in the 
final form to be used for computational purposes. Using the estimate of the 
process settling time Ts, Equation (2.72) can be rearranged into 

Replacing ij(t) in the interval (T, , oo) with gm,,, then 

The derivative of the ith Laguerre function from Equation (2.19) satisfies 

li (t) = - 2 ~ 1 ~  (t) - 2p12 (t) - - pli (t) (2.75) 
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Substituting Equations (2.74) and (2.75) into Equation (2.73) gives the es- 
timate of the ith coefficient as 

Ts Ts 
$ = 2 p l  B ( t ) l l ( t ) d t + 2 p l T s B ( t ) l r ( t ) d t + - + p i  B(t)li(t)dt+gmeanli(Ts) 

(2.76) 
The equations for estimating the Laguerre model coefficients using step re- 
sponse data can now be summarized as follows 

Remarks: 

During the derivation of the estimation algorithm, integration by parts 
is used so that the derivative is transferred from the step response 
g(t) to the Laguerre functions. Here, the Laguerre function is being 
used as a type of modulating function in that the approximation of a 
derivative from a noisy signal is avoided (Unbehauen and Rao, 1987; 
CO and Ydstie, 1990). 

This algorithm does not involve the inversion of an input-output data 
matrix that usually arises with the application of least squares based 
estimation algorithms. Therefore, any numerical problems associ- 
ated with inversion of this matrix when using a step input signal are 
avoided. 

Each estimated coefficient can be estimated independently from the 
values of the other estimated coefficients. Therefore, an increase or 
decrease in the model order N will not affect the previously estimated 
coefficients, for the same value of p. This differs from most other 
algorithms, where a change in model order would affect the values of 
all estimated parameters. 
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Estimation of Laguerre Coefficients from Discrete-Time Data 
The estimation algorithm given by Equations (2.77) consists of the solution 
of a set of integral equations. In a modern data acquisition environment, the 
measured output step response will be a set of discrete-time data. Therefore, 
the solutions must be implemented using numerical integration schemes. 

Let j(to),  ij(tl), . . . denote the discretized step response data with sam- 
pling interval At = ti+l - ti for all i, and to = 0. One approach for com- 
puting the Laguerre coefficients could be based on the rectangular rule. For 
instance, the integral equations found in Equations (2.77) would be approx- 
imated by 

where M = g. Alternatively, Simpson's rule could be used to obtain more 
accurate estimates of the integral expressions, where 

with M = &. 
Choice of p Revisited 
The first step in choosing the optimal time scaling factor p is to identify 
the interval in which it might be located. Using the estimate of the process 
settling time Ts, we can form an interval [pmin, pm,,], where the lower end 
of the interval, pmin = g 5 ,  is chosen to approximately correspond to 
the optimal value of p for a first order process with settling time T,. The 
upper end of the interval, pm,,, is chosen to be either 5pmin for a lower order 
Laguerre model fit (N 5 4) or lopma for a higher order Laguerre model fit. 
We have found that such an interval generally covers the region in which 
the optimal p lies for most processes. Then, this interval is divided into a 
set of discrete values for the time scaling factor. 

Using the process step response data and for a given model order N, the 
Laguerre coefficients EN and EN+i are estimated for each value of the time 
scaling factor in the interval. Then, the function EN EN+1 is evaluated at each 
value of p in the interval and the regions where ENEN+i changes sign from 
positive to negative are identified. For each region, a linear interpolation is 
used to find the value of the time scaling factor p that makes ENEN+l = 0. 
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Figure 2.5: Comparison of step responses for Example 2.4 (solid: true response; 
dashed: Laguerre model) 

That is, suppose EN ( p i ) E ~ + l  (p i )  > 0 and E N  (pi+l) < 0 for some 
pi and pi+l, then an approximate value of the time scaling factor p' in the 
interval [pi, pi+l] where EN (p1)  EN+ (p1) = 0 is equal to 

Among all candidate values of p' found from Equation (2.80), we can iden- 
tify the optimal p to be the one that produces the maximum value of C,"=, E; . 

Example 2.4. Consider the process described by the transfer function 

This is a high order process with severe nonminimum phase behaviour. Its 
noise-free unit step response is shown in Figure 2.5. This process step re- 
sponse is sampled with an interval At = 1.5 sec. The key to success with the 
Laguerre model for such a complicated process is to find the optimal time 
scaling factor p for a given model order N, particularly when the model 
order is small. Figure 2.6 shows a 3-dimensional plot of the loss function 
V = '& E; for N = 1,2 , .  . . , l 0  and 0 < p < 0.1, where the coefficients 
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Parameter p 

Figure 2.6: 3-dimensional plot of the loss function V = C:, t: for Example 2.4 

ti, i = 1,2, . . . , N are calculated using the algorithm given by Equations 
(2.77). This plot shows that the optimal time scaling factor p is found over 
a very narrow range when this complicated system is being described by a 
low order model. It also shows that as the model order N increases, the 
maximum of the loss function increases, i.e. the accuracy of the Laguerre 
model approximation improves. This increasing behaviour of the loss func- 
tion gradually levels off once the model order reaches 8. Also, as the model 
order increases, the range of choices for an acceptable p value widens. 

Suppose that we choose N = 8 to approximate this 14th order system. 
The optimal time scaling factor p can be found by examining the behaviour 
of EsEg over the chosen interval 0 < p < 0.1. Figure 2.7 shows this behaviour 
where it can be seen that e8?9 changes sign five times from positive to neg- 
at ive. After performing the necessary interpolations using Equation (2.80), 
the values of 2; are calculated for the candidate values of p, and the 
optimal time scaling factor p is found to be 0.0501. Using this optimal time 
scaling factor, an 8th order Laguerre model is estimated to approximate the 
transfer function in Equation (2.81) using the step response data shown in 
Figure 2.5. This same figure shows the comparison between the true step 
response and the step response of the estimated Laguerre model. Figure 2.8 
compares the frequency responses of the true process and the model. 
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Figure 2.7: E& as a function of p for Example 2.4 
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Figure 2.8: Comparison of frequency responses for Example 2.4 (solid: true re- 
sponse; dashed: Laguerre model) 
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2.5 STATISTICAL PROPERTIES OF THE ESTIMATED COEFFI- 
CIENTS 

The step response modelling method presented in this chapter gives excellent 
results when the step response data is relatively noise-free, as illustrated in 
Example 2.4. However, the true challenge of any modelling method occurs 
when the process step response data is corrupted by significant disturbances. 
This section provides statistical analysis of the Laguerre model parameter 
estimates in both the frequency and time domains. Our analysis in the 
frequency domain shows that the accuracy of the parameter estimates is a 
function of the frequency content of the disturbance relative to the process 
dynamics. The time domain analysis leads naturally to a simple strategy 
for pretreating the step response data that improves the accuracy of the 
parameter estimates when disturbances are present. 

2.5.1 Bias and variance analysis 

Bias analysis: We assume that the measured unit step response can be 
represented by 

m = 9 ( t )  + [ (4 
where g ( t )  is the noise-free step response and ( ( t )  is the additive disturbance. 
If the disturbance [ ( t )  has zero mean, then for any model order N > 1 and 
p > 0, the estimated coefficients 6 ,  i = 1,2, . . . , N are unbiased, i.e. 

where E[x] denotes the expected value of the variable X. Otherwise the es- 
timated coefficients are biased. 

Proof: The bias of the estimated Laguerre coefficient can be computed 
using Equations (2.72) and (2.75) 
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Then, unbiased results for the estimates follow from the condition that 
E[[(t)] = 0. It is also obvious that the estimated coefficients would be 
biased if E [[(t)] # 0. 

Variance analysis: We assume that the disturbance [ (t) has zero mean 
with autocorrelation function RtE (7) and power spectrum SFt (W). We also 
define vectors C = [cl c2 . . . cNIT to contain the true Laguerre coeffi- 
cients and C to contain the corresponding estimated coefficients. Then, the 
covariance of the estimated Laguerre coefficients is given 

~ [ ( c  - c ) ( C  - c ) ~ ]  = p 2 ~ ~ ~ T  

where Q is a symmetric matrix with its elements defined 

1 roo 

and A  is the N X N lower triangular matrix defined in 
particular, the variance of the ith estimated coefficient 

1 roo 

Equation (2.58). In 
is given by 

W here 

with 
e = 

P  
Proof: see the Appendix in Section 2.8. 

Remark: 

Equation (2.88) shows that, in the variance expression, W, (W) acts as 
a weighting function on the power spectrum of the disturbance Stt (W). 
We have plotted the weighting function v for i = 1, . . . ,4, in Figure 
2.9. The parameter p  acts as a scaling factor on both the frequency 
axis and the Wi(w) axis. Thus, its value does not change the general 
shape of W, (W). However, as p  is reduced, the amplitude and width of 
Wi(w) decreases. As p  is increased, Wi(w) expands along both axes. 
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4n 

Frequency as a multiple of p (radlsec) 

Figure 2.9: Frequency domain weighting functions (solid: i = 1; solid with (0': 
i = 2; solid with '+': i = 3; solid with l*': i = 4) 

In general, for a given disturbance spectrum Stt(w), the choice of a 
smaller value of p will reduce the variance of the estimated coefficients. 
The Laguerre coefficient index number i also affects both the shape 
and the maximum value of Wi(w), i.e. the maximum value and the 
width of W, (W) increases as i increases. Hence, for a given disturbance 
spectrum, the variances of the estimated coefficients increase with the 
index i. 

2.5.2 Some special cases of disturbances 

By imposing some assumptions on the power spectrum of the disturbance, 
we can obtain explicit expressions for the variances of the estimated La- 
guerre coefficients. 

Periodic Disturbances 
Assume that c(t) = D cos (wot + 0) with its corresponding power spectrum 
given by (Unbehauen and Rao, 1987) 

o2 
S,y(w) = -sb(w - wo) 

2 
(2.91) 
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for W 2 0, where 6 is the Dirac delta function. Hence, from Equation (2.88), 
the variance of the ith estimated coefficient is 

which indicates that the variance is proportional to the squared amplitude 
of the periodic disturbance and to the value of the weighting function Wi 
at WO. Since lim,,, Wi(w) = 0, for all i, periodic disturbances at higher 
frequencies where Wi(w) is small will produce small errors in the estimated 
coefficient ti even if the disturbance amplitude D is large. 

Disturbances with Band-Limited Spectrum 
Assume that [(t) is a disturbance with band-limited spectrum satisfying 

= k wl < IwI < w2 

= 0 otherwise 

Then the variance of the ith coefficient is given by 

Therefore, if the interval [wl, w2] is in a higher frequency region where Wi (W) 
is small, then the error in the estimated coefficient & will be small. 

White Noise 
If [(t) is a continuous-time white noise sequence with autocorrelation func- 
tion and power spectrum given by, for all T and all W 

then the covariance of the estimated coefficients is given by 

E[@ - C)(C - c ) ~ ]  = k p 2 ~ ~ T  (2.97) 

In particular, the variance of the estimate 6 is given by the ith diagonal 
element of Equation (2.97) 
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Figure 2.10: Comparison of step responses for Ezample 2.5 (noisy signal: mea- 
sured response; smooth signal: Laguerre model) 

Example 2.5. To illustrate the effect of disturbances on the accuracy of 
the Laguerre model coefficients, we examine the problem of estimating a 
Laguerre model from the following step response data 

where g( t )  is generated from the unit step response of the following process 

and [ ( t )  is generated by passing a white noise sequence with unit variance 
through a band-pass filter in the frequency range ( 0 . 4 ~ ,  0 . 8 ~ )  radianslsec. 
The process is sampled at an interval of 0.25 sec. The step response 9( t )  is 
illustrated in Figure 2.10. 

The first step in estimating a Laguerre model for this process from this 
step response data is to determine the time scaling factor p and choose a 
model order N. It is seen from Figure 2.10 that the process has an approxi- 
mate settling time of 100 sec, which gives us an estimate of the lower bound 
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Time scaling factor p 

Figure 2.11: i!& as a function of p for Example 2.5 

on the scaling factor as & = 0.05. The search interval is chosen to be 
0.05 < p < 0.25. Figure 2.11 shows the behaviour of &&. For a 5th order 
Laguerre model, the optimal time scaling factor is located at p = 0.13. 

Table 2.1 lists the estimated coefficients of the 5th order Laguerre model 
obtained from the step response data shown in Figure 2.10, along with the 
coefficients obtained from the noise-free step response. The step response of 
the Laguerre model obtained from the noisy step response data is compared 
with the measured step response data in Figure 2.10 and the model's fre- 
quency response is compared in Figure 2.12 with the true process frequency 
response. 

Since the disturbance power spectrum StF(w) in this example is limited 
to a narrow frequency band and it can be shown that the spectrum does not 
significantly overlap any of the weighting functions Wi (W) for i = 1, . . . ,5, 
it is expected from the variance analysis for the band-limited noise case 
(Equation (2.95)) that the accuracy of the estimated coefficients should not 
not be significantly compromised by the disturbance. This is confirmed by 
the results given in Table 2.1 and Figures 2.10 and 2.12 where it can be seen 
that the estimated Laguerre model gives a very accurate representation of 
the true process. 
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Coefficients 

Noise-Free Case Noise Case 

Table 2.1: Laguerre model coeficients for Example 2.5 

Figure 2.12: Comparison of frequency responses for Example 2.5 (solid: true re- 
sponse; dashed: Laguerre model) 
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The results of the previous section indicate that when the disturbance power 
spectrum is band-limited and does not significantly overlap the process fre- 
quency bandwidth, the estimated Laguerre model can be very accurate. 
However, the accuracy of the estimated Laguerre model will decrease if 
there is significant overlap. In practice, slow drifting disturbances are some- 
times encountered during a step response test. The question is, can we do 
anything to improve the quality of the estimated Laguerre model in these 
situations? To answer this question, we examine the errors in the estimated 
Laguerre coefficients from a time domain perspective. 

To look at the influence of disturbances on the estimated Laguerre coef- 
ficients in the time domain, we rewrite the estimate of the ith coefficient in 
Equation (2.72) as 

where ci is the true Laguerre coefficient and Aci is the estimation error 
caused by the presence of the disturbance [(t). Our objective is to reduce 
the value of Aci for a given disturbance in order to improve the accuracy of 
the estimates. 

From Equation (2.101) we can see that AG is an integration of the 
unknown disturbance E (t) weighted by ii (t) . How this weighting function 
behaves with respect to time determines the influence the disturbance has at 
different stages of the step response test on the estimated coefficient. Figures 
2.13-2.15 illustrate the behaviour of the weighting functions il (t) to is (t) , 
where the time scaling factor p has been chosen equal to unity. (When p = 1, 
the weighting functions can be regarded as functions of normalized time.) 
From these figures, it can be seen that the maximum absolute value of each 
weighting function occurs at t = 0, with the maximum value lii (0) 1 equal 
to pfi(2(i  - 1) + 1). The parameter p does not change the general shape 
of these weighting functions. However, the value of p does change the scale 
on the time domain axis and the amplitude of each ii (t) . For instance, as 
p increases, the weighting functions shrink along the time axis but increase 
in amplitude. Conversely, as p decreases, the weighting functions expand 
along the time axis but their magnitudes decrease. 

The weighting functions can be basically divided into three intervals 
with respect to the normalized time domain axis. The first time interval 
starts from pt = 0 and ends at the time that the weighting function makes 
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Figure 2.13: Weighting functions in the time domain (solid: Zt(t); dash-dotted: 
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Figure 2.14: Weighting functions in the time domain (solid: Z3(t); dash-dotted: 
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Figure 2.15: Weighting functions in the time domain (solid: &(t);  dash-dotted: 
l6 ( t ) )  

its first zero crossing. The second time interval continues from there until 
the weighting function makes its final zero crossing. The final time interval 
extends from the last zero crossing to the time that the weighting function 
vanishes to zero. 

During the first time interval, the weighting functions have relatively 
large magnitudes, and therefore disturbances at the beginning of the step 
response can be expected to lead to significant estimation errors. This is 
evident from Figures 2.16-2.18, where we show the products ii (t) X <(t), for 
i = 1,3,6, with ((t) taken to be a normally distributed, white noise sequence 
with unit variance. As the index number i increases, these products become 
larger in magnitude, especially during the respective first time intervals. 

During the second time interval, the weighting functions oscillate around 
zero but with smaller amplitudes as compared to their values in the first time 
interval. Therefore, the effect of disturbances during these time intervals 
can be expected to contribute less to the estimation errors. This can also 
be seen from Figures 2.16-2.18. In the final time interval, the weighting 
functions exponentially decay to zero and their amplitudes remain relatively 
small throughout the interval. Therefore, disturbances in the process step 

9 

4 I I I I I I I I 

- - - - -__ - -_____ - - - - - - -  - - m  

Normalized time 

-4 

-6 

-8 

-10. 

-12 

-14- 

-1 6 

- 

- 

t 
I 

I I I I I l I I 

0 1 2 3 4 5 6 7 8 



2.6 A Strategy for Improving the Laguerre Model 

Normalized time 

Figure 2.16: Pmduct of Z l  ( t )  and E(t) 

Normalized time 

Figure 2.17: Product of &(t)  and [ ( t )  
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Normalized time 

Figure 2.18: Product of Za ( t )  and t ( t )  

response during this final time interval contribute little to the estimation 
errors. 

Since the disturbances affecting the process output during the initial 
stage of the step response test make the greatest contribution to errors in 
the Laguerre coefficients, it would be most beneficial to eliminate the effect 
of these disturbances during this stage. However, in order to do this we need 
to be able to distinguish in some way between the true process response and 
the disturbance effect. Since many processes contain some amount of time 
delay, this separation can be performed to a degree. For instance, if there is 
some prior knowledge of at least a lower bound on the delay, the measured 
process output can be attributed completely to the disturbance up to this 
point in time. Therefore, a simple strategy from improving the accuracy of 
the estimated coefficients is to set the measured response identically equal 
to zero from the time of the step input until the lower bound on the delay 
has been reached. This will have the effect of eliminating the effect of the 
disturbances during this period on the estimation errors. 

For high order processes, the process response is often close to zero for 
an initial period referred to as an apparent delay, and therefore the same 
procedure can be applied. For low order processes with no time delay, a 
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Time (sec) 

Figure 2.19: Comparison of step responses for Example 2.6 (solid: measured re- 
sponse; dotted: Laguerre model; dash-dotted: true response) 

lower order Laguerre model is appropriate, in which case the disturbance 
effect on the estimates during the initial stage is less significant (see Figure 
2.16). Regardless though for either case, eliminating the disturbance effect, 
even for just a short time period at the beginning of the step response, will 
improve the accuracy of the estimated Laguerre model. 

Example 2.6. To illustrate the proposed data pretreatment strategy, we 
consider the step response of the process given in Equation (2.100) with the 
disturbance c(t) generated by passing a white noise sequence of unit variance 
through a lowpass filter in the frequency range of (O,0.27r) radianslsec. The 
results of attempting to fit a 5th order Laguerre model using this data are 
shown in Figures 2.19 and 2.20, both in the time domain and the frequency 
domain. Without any data pretreatment, the algorithm obviously fails to 
produce a good model. However, if we have prior knowledge that the process 
has a time delay at least equal to or greater than 15 sec, and we set g(t) = 0 
for t in the interval (0,15), the Laguerre model fit is greatly improved as 
seen in Figures 2.21 and 2.22 and from the estimated coefficients in Table 
2.2. It is important to note that this procedure does not require perfect 
knowledge of the delay, but only a lower bound on the delay. 
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Figure 2.20: Comparison of frequency responses for Example 2.6 (solid: true re- 
sponse; dash-dotted: Laguerre model) 

1 Noise-Free Case 1 No Pretreatment 1 With Pretreatment 

Table 2.2: Laguerre model coeficients for Example 2.6 (p = 0.13) 
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Time (sec) 

Figure 2.21: Comparison of step responses using pretreated data for Example 2.6 
(solid: pretreated data; dotted: Laguerre model; dash-dotted: true response) 

Figure 2.22: Comparison of frequency responses using pretreated data for Example 
2.6 (solid: true response; dash-dotted: Laguerre model) 
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Time (min) 

Figure 2.23: Step response test data from polymer reactor. Upper diagram: initia- 
tor Bow rate (ml/min); lower diagram: fraction monomer conversion 

An automated pilot-scale l-litre experimental polymer reactor system wit h 
facilities for on-line measurement of flow rate, temperature and density has 
been set up by Chien and Penlidis (1994a, b). These authors describe a 
set of open-loop process identification experiments and closed-loop control 
experiments performed on this system where monomer conversion is con- 
trolled in the presence of reactive impurities using the initiator flow rate as 
the manipulated variable. 

Two open-loop step response tests were performed on this system by 
stepping the initiator pump feed flow rate down from 4 ml/min to 2 ml/min 
at t = 243 min (referred to as Step Response l), and then stepping it up from 
2 ml/min to 4 ml/min at t = 484 min (Step Response 2) as shown in Figure 
2.23. F'rom this figure, it is clear that several noise spikes in the measured 
monomer conversion appear during Step Response 1. The noise spikes that 
occurred during the initial part of the step response are handled using the 
proposed data pretreatment procedure. The spikes that occurred during the 
dynamic part of the monomer response are replaced using a simple linear 
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interpretation. That is, suppose that two points along the monomer step re- 
sponse are deemed to be on either side of a noise spike denoted by (tl , g (t I ) )  

and (t2, g(t2)), then the noise-free monomer response for tl < t 5 t2 is given 
by 

Since the polymer reactor is known to be nonlinear and there are noticeable 
differences between the two step responses, two separate Laguerre models 
are estimated from the data. The model order is chosen to be 3 for both 
cases. 

Step Response 1 
The settling time of the first step response is estimated to be approximately 
200 sec and therefore the search interval for the optimal time scaling factor 
p is chosen to be (h, g). This interval is divided into 17 discrete values 
for computation of the Laguerre coefficients c3 and c4. The plot of e3E4 in 
Figure 2.24 shows that this product changes sign from positive to negative 
only once at p = 0.043. Using this p value, the resulting 3rd order Laguerre 
model is given by 

Figure 2.25 shows the comparison between the pretreated unit step response 
data and the step response generated from the estimated Laguerre model in 
Equation (2.103). 

Step Response 2 
Since both step responses have approximately the same settling time, the 
optimal pole location should lie in the same interval. For Step Response 
2, the plot of C3Z4 is shown in Figure 2.26 and indicates that the optimal 
time scaling factor is located at p = 0.05. The resulting 3rd order Laguerre 
model is given by 

Figure 2.27 shows the comparison between the pretreated unit step response 
data and the step response generated from the estimated Laguerre model in 
Equation (2.104). The two unit step responses obtained from the Laguerre 
models in Equations (2.103) and (2.104) are compared in Figure 2.28, where 
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it is clearly seen that there are some significant differences between the 
process dynamics that depend on the direction of the change in the initiator 
flow rate. 
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Figure 2.24: E& as a function o f p  for Step Response l 
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Figure 2.25: Unit step response corresponding to  Step Response 1 (solid: pretreated 
data; dash-dotted: Laguerre model) 
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Figure 2.26: &E4 as a function of p for Step Response 2 
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Figure 2.27: Uni t  step response corresponding t o  S tep  Response 2 (solid: pretreated 
data; dash-dotted: Laguerre model) 
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Figure 2.28: Uni t  step response comparison (solid: G1; dash-dotted: G2) 
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Derivation of Covariance Matrix for Laguerre Model 

Note that from Equations (2.72) and (2.75) 

Thus 
E[@ - C )  (c - qT] = p 2 ~ ~ ~ T  (2.  W )  

where Q is an N X N symmetric matrix with its elements defined by 

Since 

and letting T = t - t', we obtain 

Q@ = li (t' + T )  E[t(tl  + ~ ) ( ( t ' ) ] l j  ( t l ) d ~ d t '  (2.109) 

= J," E t '  li (t' + T )  RtF ( ~ ) l j  (t l)drdt '  (2.110) 

00 

= L* l j  ( t l )  / 0 li (S)&( (tl - s)dsdt l  (2.112) 

which gives the result in Equation (2.86). Let 
00 

~ ( t ' )  = L R<( (t' - s)li  ( s ) d s  

Then, Equation (2.112) can be written as 

and using Parseval's theorem 
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By substituting Equation (2.113) into the definition of the Fourier transform 
we have 

Combining Equations (2.1 15) and (2.1 19) gives the result in Equation (2.87). 
An equivalent result to Equation (2.85) can be obtained by taking the 

Laplace transform of the derivatives of the Laguerre functions. It can be 
readily shown that, from the state space representation of the Laguerre 
network in Equation (2.19) 

By substituting Equation (2.120) into Equation (2.85), we obtain another 
form of the covariance matrix for the coefficients as 

where 
Jzi; - jw  X L d j w )  
Jzi; - jw  X L ~ ( j w )  ] (2.122) 

Jzi; - jw  X L N @ )  

From Equation (2.121), the variance of the ith estimated coefficient is ob- 
tained as 

Let W i ( w )  = 2pl1 - j w w 1 2 .  In order to derive Equation (2.89), we 

will define 9 = tan-' , which leads to 
( P >  
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Equation (2.88) follows by noting that sin8 = -- ,/%F and that Wi(w) is 
,. 

an even iunction. 
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Chapter 3 

Least Squares and the 
PRESS Statistic using 
Ort hogonal Decomposition 

The previous chapter discussed the problem of estimating a transfer func- 
tion model from noisy step response data. Use of individual step tests to 
identify models for multivariable systems and systems with nonstationary 
disturbances is not always practical and may not lead to meaningjul results. 
In these situations, input signals with multiple and perhaps random moves 
are required. In the next three chapters, new system identification tools are 
developed and used to build models for dynamic processes. This chapter dis- 
cusses least squares parameter estimation using the orthogonal decomposition 
algorithm and proposes a simplified computational procedure for calculating 
the PRESS statistic using this algorithm. The PRESS is used extensively 
in this chapter and later chapters for structure selection of multivariable 
process models and disturbance models. 

This chapter consists of six sections. Section 3.2 introduces the ort hogonal 
decomposition algorithm proposed by Korenberg et al. (1988). Section 3.3 
describes the concept of the PRESS statistic. Section 3.4 shows how to 
compute the PRESS using the ort hogonal decomposition algorithm. Sec- 
tion 3.5 applies the PRESS statistic to the problem of model structure 
selection for dynamic systems. Section 3.6 shows how the PRESS statistic 
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can be used for disturbance model structure selection. 
Portions of this chapter have been reprinted from Automatica 32, 

L. Wang and W.R. Cluett, "Use of PRESS residuals in dynamic system 
identification", pp. 78 1-784, 1996, wit h permission from Elsevier Science. 

3.2.1 Least squares for dynamic models 

The least squares method for parameter estimation is a central technique in 
the area of process identification. The method itself is particularly simple 
to apply if the selected model structure has the property of being linear-in- 
the-parameters. In this case, the least squares parameter estimates can be 
found analytically. For example, consider a model of the following form 

where y(k) is the observed variable, 01, 02, . . . , On are the unknown parame- 
ters, 4l (k), 4 2  (k), . . . , 4n (k) are known functions and <(k) is an error term. 
The variables 4i(k) are called the regression variables or the regressors and 
the model in Equation (3.1) is called a linear regression model because it is 
linear with respect to its parameters. 

For a dynamic system, we assume that the discrete-time process input 
sequence {u(k)) and the discrete-time measured process output sequence 
{ y (k)), where k = 1,2, . . . , M enumerates the sampling intervals, are related 
by the linear regression model given by 

where OT = [01 O2 . . . On] is the vector of process parameters, g5(k)T = 

(k) $2 (k) . . . +n (k)] is the regressor vector with each element q5i (k) 
representing a linear or nonlinear function of present and past values of the 
process input and/or output, and <(k) is the disturbance term. If the re- 
gressors are linear functions of the input and output, then we are assuming 
a linear model for the process. If the regressors contain nonlinear func- 
tions of the input and output, we are using a nonlinear model to represent 
the process. The problem is to determine the correct model structure and 
estimates of the model parameters such that the output predicted by the 
model 

g(k) = q5(k)Te (3.3) 

is as close as possible to the measured output variable y(k) in a least squares 
sense. 
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Equation (3.2) can also be written in a matrix form as 

where yT = [ y ( l )  y (2)  

a =  

. . . y  ( M ) ]  contains the measured output values, 

is the data matrix, and cT = [(( l )  ( ( 2 )  . . . ((M)] contains the disturbance 
sequence. The sum of squared prediction errors can then be written as 

and is minimized by the parameter vector 9 satisfying 

If the matrix aT@ is invertible, the minimum of the least squares error is 
unique, with the estimated parameters given by 

The matrix aT@ is called the correlation matrix and the invertibility con- 
dit ion on this matrix is sometimes called the sufficient excitation condition 
for parameter estimation. 

3.2.2 Orthogonal decomposition algorithm 

The well known matrix decomposition theorem states that a positive square 
matrix P  can be decomposed as 

P  = LDU (3-8)  

where L and U are unit lower and upper triangular matrices, and D is a 
diagonal matrix with all positive elements. If P  is symmetric, then it can 
be shown that 

L = U ~  (3.9) 

and hence 
P =  U ~ D U  
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Since the correlation matrix aT@ is symmetric and positive definite under 
the assumption that it is invertible, it can be expressed as 

where T is a unit upper triangular matrix and Wd is a diagonal matrix with 
all positive elements. 

To derive the least squares solution using the ort hogonal decomposition 
result, we rewrite Equation (3.4) by inserting T-'T 

Then, letting W = QT-' and g = TB, we have 

where g is the auxiliary model parameter vector and W is the transformed 
data matrix. Now we can show the connection between the matrix W (di- 
mension M X n) and the diagonal matrix Wd. From the definition of W 

Noting that aT@ can be decomposed into TTwdT, then 

Since Wd is a diagonal matrix, W is an orthogonal matrix. 
Taking advantage of the orthogonality of the matrix W, the least squares 

problem can be solved in terms of the auxiliary parameter vector g and the 
transformed data matrix W. That is, based on Equation (%U), the vector 
g can be estimated from the least squares solution as 

which minimizes the loss function 

Since Wd is a diagonal matrix, Equation (3.16) does not require matrix in- 
version and can be solved on an element-by-element basis. The least squares 
estimate of the original parameter vector 0 is then obtained using the rela- 
t ion 

,g = ~ - l i j  (3.18) 

Because T is a unit upper triangular matrix, it is numerically well condi- 
tioned, and therefore its inversion is straightforward. 



3.3 The PRESS Statistic 

3.3 THE PRESS STATISTIC 

The conventional residuals from the least squares estimator in Equation 
(3.7) are defined as 

These residuals are measures of the quality of the model fit for the given 
data set, but do not assess the predictive capability of the model. Note that 
because both the output y(k) and the regressor $(k) are used to estimate 
8, ij(k) is not independent of y(k). In fact, the least squares procedure is 
designed to produce properties that will result in residuals e(k) that are 
smaller than the true prediction errors (Myers, 1990). 

In order to avoid the correlation that exists between the conventional 
residuals and process output data, it has been suggested in the dynamic 
system identification literature that the data be split into an estimation set, 
which is used to estimate the parameters, and a testing set, which is used to 
judge the predictive capability of the fitted model. The residuals associated 
with the testing set may be used for model structure determination and 
are referred to as the true prediction errors because, in this case, y(k) and 
y(k) are independent. This approach is useful for revealing the structure 
of a dynamic system subject to disturbances where it is believed that the 
disturbance sequence will never be exactly duplicated from the estimation 
set to the testing set. 

The use of a new data set or data splitting for the purpose of cross 
validation may not always be applicable or desirable. In addition, the results 
depend on the location of the split. An alternative is to define the prediction 
error as 

where e-k (k), k = 1,2, . . . , M, are called the PRESS residuals and has 
been estimated using the least squares algorithm without including 4(k) and 
y(k). The PRESS residuals e-k (k) represent the true prediction errors as 
y(k) and Q-k(k) are independent. In the same spirit as data splitting, the 
PRESS residuals give us information in the form of M cross validations in 
which the fitting sample for each cross validation is of size M - 1. 

It has been shown in the literature (see e.g. Myers, 1990) that through 
use of the Sherman-Morrison- Woodbury theorem, the PRESS residuals 
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e-k (k) can be calculated according to the following equation 

Then the mediction Error Sum of squares (PRESS) statistic is defined as 

M 

PRESS = e-k(k)2 
k=l 

and the average PRESS as 

Both the PRESS and PRESS,,, provide measures of the predictive capa- 
bility of the estimated model. 

3.4 COMPUTATION OF THE PRESS STATISTIC 

Computation of the true prediction errors eAk (k), k = 1,2, . . . , M, is a 
tremendous task in dynamic system identification where we typically face 
a large amount of data (M) and possibly high dimensionality (n) of the 
parameter vector 0. It will be shown here that by using the orthogonal 
decomposition algorithm, the computation of the PRESS residuals is sim- 
plified to an extent that its calculation can be viewed as a byproduct of the 
algorithm. The following theorem presents the cornerstone for computation 
of the PRESS statistic. 

Theorem 3.1: Let wi(.) denote the ith column of W and iji represent 
the ith estimated auxiliary parameter. Then the PRESS residuals e-k (k) , 
k = 1,2, . . . , M, for the original model with n parameters are given by 

e-k(k) = 
y(k) - E?=, wi(k)h 

wi (k) 
1 - E L  llWi,,2 

where l l ~ ~ l l  = Jw is the norm of Wi. 

Proof: From Equation (3.13), we can write the conventional residuals in 
terms of the orthogonalized data matrix and the auxiliary parameter esti- 
mates 

n 

e(k) = Y (k) - E wi (k)h (3.25) 
i= l 
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We also note that from the definitions of 4(k) and @ in Equations (3.2) and 
(3.4) we have 

From the definition of W, we obtain @ = WT which gives 

Hence 

( k )  ( T @ ) 1 4 ( k )  = diaSk(w (wTw)- l  WT) 

From the expression for the PRESS residuals ebk(k) in Equation (3.21), 
the result in Equation (3.24) follows. 

Remarks: 

It is seen from Equations (3. IS), (3.16) and (3.17) that the sum of 
squares of the conventional residuals for a model with n parameters is 
given by 

v, = (Y - w ~ ) ~ ( Y  - Wj) 
= Y ~ Y  - ijTwTy - yTwj + ijTwTwlj 
= Y ~ Y  - iTwTy - yTw@ + f iTwd~i lwTy 

Therefore, for a model of order n + 1 

which shows that the sum of squares of the conventional residuals is 
nonincreasing with respect to model order. However, the PRESS 
statistic defined in Equation (3.22) does not always decrease as more 
terms are added to the model. In fact, if a term is added to the model 
and the PRESS increases, this indicates that the predictive capability 
of the model is better without that term. 
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By examining Equations (3.24) and (X%), it can be seen that the true 
prediction errors e_k(k) are in fact a weighted version of the conven- 

tional residuals e(k). The weighting factor (1 - *,)-l gives 
large weights to conventional residuals associated wit h data points 
where prediction is poor. 

The computation of the PRESS residuals e-k(k) using Equation 
(3.24) only requires the orthogonal matrix W and the auxiliary pa- 
rameter vector 3. Hence, the value of the PRESS can be used to 
detect the significance of each additional term in the original model 
without actually having to compute e. This is a result of the structure 
of the T matrix and the relationship between ij and e. 

USE OF PRESS FOR PROCESS MODEL SELECTION 

This section illustrates application of the PRESS statistic for process model 
structure selection. Ljung (1987) used data collected from a laboratory-scale 
Process Trainer to illustrate various identification techniques and examined 
the sum of squared conventional residuals and Akaike's information theoretic 
criterion (AIC) for model structure selection. Two sets of input-output data 
collected from this process are available within MATLAB. We use the entire 
first set of data (M = 1000), called DRYER2 in MATLAB, for this study. 
Two different model structures are examined here, namely the ARX and 
FIR model structures, with the objective to find the model within a partic- 
ular structure that produces the smallest PRESS. 

ARX Models 
For a linear, time invariant system, the regressor associated with the ARX 
model is chosen to have the following form 

where d is the time delay of the process expressed as an integer multiple of 
the sampling interval. This arrangement ensures that an increasing number 
of terms in the regressor corresponds to an increase in the model order. For 
completeness, the process output y (k - i) and the process input u(k - d - i)  
always appear in pairs. The process output y(k) is assumed to have the 
following form 

~ ( k )  = $(WT@ f @l (3.32) 
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Table 3.1: PRESS values for ARX models using DRYER2 data set 

13 (best) 
1 

where $(k)T = [-y(k - 1) u(k - d - l) . . . . . . - y(k - nl) u(k - d - nl)]. 
For this model, the time delay d and model order nl must be determined in 
addition to estimation of the parameter vector 8. 

In order to determine the time delay d, we have calculated the PRESS 
statistic using Equation (3.22) for d = 1,2 and 3 over a range of model 
orders, as shown in Table 3.1. It can be seen that for d = 1 and 2, the 
PRESS values are similar for nl >_ 3. However, for d = 3, the minimum 
PRESS value corresponding to the best model order is significantly larger 
than the minimum PRESS for d = 1 and 2. Therefore, we can conclude 
that the time delay d for this system is either one or two sampling intervals 
which agrees with the results presented in Ljung (1987). 

From the results presented in Table 3.1, our conclusion is that the best 
ARX model, in terms of predictive capability, for the Process Trainer is 
either a 14th order model (28 model terms) with d = 1 or a 13th order 
model (26 model terms) with d = 2. The reason such high order models 
were selected is that, with low order ARX models, there must exist a mis- 
match between the assumed and actual noise structures. Evidence for this 
statement can be found in Ljung (1987) where the addition of a noise model 
was found to give improvement in terms of the AIC. In a similar situation, 
Kosut and Anderson (1994) have fit least squares ARX models using cross 
validation for model order selection and have found that high order ARX 
models are often necessary. 

If the model structure must be restricted, the above results also indicate 

2 
3 

1.4318 
10.598 
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Table 3.2: Comparison between PRESS and FPE using different data lengths from 
DRYER2 data set 

M 

200 
400 
600 
800 
1000 

that a much lower order ARX model could be used. Note that for d = 2, the 
change in the PRESS value going from nl = 3 (1.4895) to nl = 13 (1.4318) 
is small and therefore we could have selected nl = 3 without a significant 
decrease in the predictive capability of the model. 

In order to examine the consistency and robustness of the PRESS sta- 
tistic as a method for model structure selection and to compare it with 
a standard selection criterion, the best ARX model order for the Process 
Trainer has been determined using different amounts of data (M = 200, 
400, 600, 800, 1000) from the original data set (DRYER2). The best model 
order using the PRESS statistic was chosen based on the minimum value of 
the average prediction error PRESSave, which incorporates the data length 
effect. For comparison, the best model order has also been determined 
using the minimum value of Akaike's Final Prediction Error (FPE) crite- 
rion (Ljung, 1987) as calculated by MATLAB. A value of d = 2 was used 
throughout this comparison. 

Table 3.2 presents a summary of our findings. fiom this table, it can 
be seen that the PRESS statistic selects a model order which is close to 
the best order obtained using the complete data set ( M  = 1000) starting 
with M = 400. However, the FPE criterion does not select a model order 
close to the best order until M = 800. In addition, it is interesting to note 
that with the smallest data set examined (M = 200), the PRESS statistic 
also manages to select the best low order model (nl = 3), according to our 
earlier analysis, but this was not the case for the FPE criterion. These results 
show that, for this example, the PRESS statistic provides a consistent order 
estimate and is more robust than the FPE criterion in terms of sensitivity 
to data length effects. 

best nl (PRESS) 

3 
14 
14 
11 
13 

PRESSave 

4.18 X 10-~ 
4.10 X 10-~ 
3.84 X 10-~ 
3.81 X 1 0 - ~  
3.79 X 10-~  

best nl (FPE) 

7 
17 
7 
13 
13 

FPE 

1.57 X I O - ~  
1.59 X I O - ~  
1.42 X 10-~ 
1.41 X 1 0 - ~  
1.40 X I O - ~  
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Sampling instant 

Figure 3.1: Estimated step responses for Process Trainer (solid: ARX model; 
dashed: FIR model) 

FIR Models 
The regressor for the FIR model structure is of the form 

4(k)T = [u(k - 1) u(k - 2) u(k - 3) . . . u(k - N)] 

and the model parameters correspond to the discrete-time unit impulse re- 
sponse coefficients of the process. Note that estimation of the process time 
delay is not required in this case. 

The best FIR model, in terms of predictive capability, for the Process 
Trainer is a 27th order model (N = 27) corresponding to a PRESS of 
9.13. Figure 3.1 shows the step response of the best FIR model and the step 
response of the best ARX model with d = 2 where it can be seen that the 
estimated step responses from the two models are almost identical. 

In the areas of process identification (Ljung, l987), optimal stochastic con- 
troller design (Box and Jenkins, 1976) and controller performance assess- 
ment (Harris, 1989), it is often desirable or necessary to determine a model 
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from a single time series. The idea is to represent the time series, <(k ) ,  by a 
zero mean, white noise sequence, ~ ( k ) ,  filtered through a transfer function 

where E ( z )  and D ( z )  are polynomials in the backward shift operator z-' . 
E ( z )  is assumed to have its roots with respect to z strictly inside the unit 
circle. If [ ( k )  represents a disturbance term, we refer to Equation (3.33) as 
a disturbance model. Since ~ ( k )  is not measurable, the direct estimation of 
E ( z )  and the denominator D ( z )  based only on [ ( k )  is, in general, a nonlinear 
parameter estimation problem (Box and Jenkins, 1976). Here, we prefer to 
formulate this as a linear parameter estimation problem. 

We begin by replacing % by another transfer function of the form h. 
With the assumption that E ( z )  is stable, we can write 

where F ( z )  = 1 + flz-' + f2z-2 + - + f , ~ - ~ ,  for some finite value of m. 
Then, Equation (3.33) can be written in the following linear regression form 

[ ( k )  = - f l [ ( k  - 1) - f2<(k - 2 )  - - - - fm((k  - m) + ~ ( k )  

m) = 4f  (kIT6f + 44  (3.35) 

where 
(bf(k)T = [-[(/c - 1) - ( ( k  - 2) - .  - ( ( k  - 41 

and O f  is the corresponding parameter vector containing f f 2 ,  . . . , fm. The 
parameters of the model in Equation (3.35) can now be estimated analyti- 
cally using a least squares estimator based on the sequence < ( k )  . However, it 
is important to choose the correct model order m to ensure that an adequate 
approximation in Equation (3.34) has been achieved. This can be done us- 
ing a variety of measures such as the AIC, or by performing a whiteness test 
on the model residuals. 

The least squares estimator and the P R E S S  statistic are used here 
as a new way to estimate the best disturbance model in Equation (3.35). 
This is an ideal application because the objective is to choose the most 
parsimonious model (smallest m) while, at the same time, achieving a good 
approximation in Equation (3.34). An indication that a sufficient model 
order has been chosen is whether the residuals associated with the model 
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behave like white noise. Recall that the PRESS residuals give information 
in the form of M cross validations in which the fitting sample for each 
cross validation is of size M - 1. When the residuals become white for 
some model order m, there is no correlation structure remaining in the 
residuals. The PRESS statistic will indicate when this has been achieved 
by either resulting in increasing PRESS values or P R E S S  values that 
fluctuate around a constant value, for model orders greater than m. Our 
own rules for determining the most appropriate disturbance model order m 
are based on whichever of the following conditions is satisfied first: 

(a) select the model order to be m if the PRESS value associated with a 
model of order m + 1 (PRESS(m + 1)) is greater than the PRESS 
associated with a model of order m (PRESS(m)); 

(b) select the model order to be m if PRESS(m)-PRESS(m+l)  < 0.002. 
PRESS(m)  

The following simulation examples are used to illustrate the application of 
this approach to disturbance modelling. 

Example 3.1. Consider the disturbance model 

which has the exact form of with m = 3. For this simulation, the source 
of the disturbance ~ ( k )  is chosen to be a zero mean, normally distributed, 
white noise sequence with unit variance. The disturbance E(k) is generated 
by filtering ~ ( k )  through the disturbance model. To simulate the stochastic 
nature of the problem, ~ ( k )  is realized in MATLAB using seeds 1 through 
1000 in order to generate 1000 different realizations of the disturbance se- 
quence. Out of the 1000 simulation experiments, when the model order was 
chosen based on condition (a), m was selected to be 3 in 640 cases and 4 in 
229 cases. When the model order was chosen based on condition (b), the 
model order was selected to be 3 in 923 cases and 4 in 73 cases. 

For illustrative purposes, we examine a single experiment using seed 
number 888. Figure 3.2 shows the behaviour of the PRESS with respect to 
the disturbance model order m. This figure shows that the P R E S S  fluctu- 
ates somewhat randomly after the model order has reached 3, and eventually 
increases at higher model orders. The estimated disturbance model in this 
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0 5 10 15 20 25 30 
Model order 

Figure 3.2: Behaviour of the PRESS for Example 3.1 (seed 888) 

case is ~ ( z )  = 1 - 2.45372-' + 2.00742-~ - 0.55352-~. The autocorrelation 
function of the conventional residuals associated with this model is shown in 
Figure 3.3 with 95% confidence intervals. This figure illustrates an autocor- 
relation function that is well inside the confidence intervals after the zeroth 
lag, indicating that the residuals associated with this model are behaving 
like white noise. 

Example 3 -2. Consider the disturbance model 

Again, 1000 realizations of the disturbance sequence <(k) have been gener- 
ated by filtering a zero mean, normally distributed, white noise sequence 
~ ( k )  with unit variance through the disturbance model. Here the assumed 
model structure 1 is only an approximation the true disturbance model. F(4 
For this example, we applied our rule for determining the disturbance model 
order, i.e. choose m based on whichever condition (a) or (b) is satisfied first. 
Out of the 1000 experiments, a model order of 7 was chosen in 635 cases, a 
model order of 8 in 135 cases, and a model order of 9 in 229 cases. 

For illustrative purposes, we examine a single experiment using seed 
number 369. Figure 3.4 shows the behaviour of the PRESS. When the 
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Time lag 

Figure 3.3: Autocorrelation function of conventional residuals for Ezample 3.1 
(seed 888) 

model order increases from 7 to 8, condition (b) determines the model order 
of m = 7. The estimated disturbance model is 

The autocorrelat ion function of the conventional residuals associated wit h 
this model is shown in Figure 3.5 where it can be seen that the residuals are 
behaving like white noise. 
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Figure 3.4: Behaviour of PRESS for Example 3.2 (seed 369) 

Time lag 

Figure 3.5: Autocorrelation function of conventional residuals for Example 3.2 
(seed 369) 



Chapter 4 

Frequency Sampling Filters 
in Process Identification 

4.1 INTRODUCTION 

The next two chapters focus on  process identification using the frequency 
sampling filter (FSF) model structure. The  FSF model i s  obtained from a 
linear transformation of the F I R  model and, as a result, inherits the main 
advantage of the F IR  model, namely that the only prior information required 
from the user is  an  estimate of the process settling time. It  is  shown i n  this 
chapter that the transformation from the t ime domain F I R  model t o  the fre- 
quency domain FSF model permits a reduction i n  the number of significant 
model parameters. It  is  also shown that when using a least squares algorithm 
to  estimate the parameters of the FSF model, the associated correlation ma- 
trix has elements that are directly related to the energy content of the input 
signal used i n  the identification experiment. 

This chapter consists of six sections. Section 4.2 introduces the FSF model 
structure. Section 4.3 examines the properties of the FSF model with a fast 
data sampling rate. Section 4.4 introduces the concept of a reduced order 
FSF model. Section 4.5 discusses the use of least squares for estimating 
the FSF model parameters from input-output data. Section 4.6 examines 
the nature of the correlation matrix that arises when using a least squares 
estimator with an FSF model and the relationship between the elements of 
this matrix and the energy content of the input signal. 

Portions of this chapter have been reprinted from Automatica 33, 
L. Wang and W .R. Cluett , "Frequency-sampling filters: an improved model 
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structure for step-response identification", pp. 939-944, 1997, with permis- 
sion from Elsevier Science. 

We begin with the single input, single output (SISO) case and assume that 
the process to be identified is stable, linear, time invariant and can be repre- 
sented by the following discrete-time, finite impulse response (FIR) transfer 
function model 

N-l 

G(z) = C hiz-" 
i=O 

where N is the model order chosen such that 
hi = 0 for all i 2 N, and z-' is the backward 

the FIR model coefficients 
shift operator. The model 

order N can be determined from an estimate of the process settling time 
Ts, where N = 2 and At is the sampling interval. The FIR model is 
widely used in the field of process identification because it requires no prior 
knowledge about the process other than its settling time T,. 

To derive the frequency sampling filter (FSF) model, we first make use 
of the inverse Discrete Fourier 
process frequency response and 
that N is an odd number 

Transform (DFT) relationship between the 
its impulse response, under the assumption 

This relationship maps a set of discrete-time frequency response coefficients, 
.27rL 

G(eJF) ,  1 = 0, & l ,  3 ~ 2 , .  . . , 3Zv into the set of discrete-time unit impulse 
response coefficients, hi, i = 0, . . . , N - 1. Substituting Equation (4.2) into 
Equation (4.1) gives 

Interchanging the summat ions in Equation (4.3) gives the transfer function 
in its frequency sampling filter model form 



4.2 The Frequency Sampling Filter Model 

Figure 4.1: Block diagram of frequency sampling filter model structure 

where we have used the result 

We define the set of transfer functions found in Equation (4.4) 

for 1 = 0, f l, f 2,. . . , f , as the frequency sampling filters and we will 
refer to radians as the centre frequency of the lth filter, H' (4). 

Figure 4.1 shows a block diagram of the frequency sampling filter model 
being used to represent the process, where u ( k )  is the discrete-time process 
input, y ( k )  is the discrete-time measured process output and E(k) is the dis- 
turbance. In the figure, it is shown that the process input first passes through 
the set of frequency sampling filters arranged in parallel. Then, the output 
of each filter is weighted by the discrete-time process frequency response 
evaluated at the corresponding centre frequency. Finally, the weighted filter 
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Figure 4.2: Magnitude of the frequency response of the FSF filter with centre 
frequency at F (l = 4 and N = 201) 

outputs are summed to form the noise-free process output. The FSF fil- 
ters are narrow band-limited around their respective centre frequencies (see 
Figure 4.2). All the filters have identical frequency responses except for the 
location of their centre frequencies. 

Since the FSF model is obtained from a linear transformation of the FIR 
model, as shown in Equations (4.1)-(4.4), it shares some features with the 
FIR model. For instance, the FSF model only requires prior information 
about the process settling time expressed in terms of N, and the number of 
unknown parameters in the FSF model is equal to the number of unknown 
parameters in the FIR model (N). However, there are two major differences 
between these models. First, the parameters of the FSF model correspond 
to the discrete-time frequency response coefficients, while the parameters of 
the FIR model correspond to the discrete-time unit impulse response coef- 
ficients. Second, with the FSF model, the elements of the regressor vector 
to be used later in this chapter for estimating the frequency response coef- 
ficients are formed by passing the process input through the set of narrow 
band-limited frequency sampling filters. On the other hand, with the FIR 
model, the regressor vector used for estimating the impulse response coeffi- 
cients contains simple delayed values of the process input. These two major 
differences give the FSF model some key advantages over the FIR model 
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from a process identification perspective. 
One other point worth making is the relationship between the FSF model 

parameters and the entire process frequency response. As stated earlier, 
the parameters of the FSF model are the values of the discrete-time process 
frequency response at W = wl = radians, where l = 0, f l, f 2, . . . , f v. 
Other process frequency response information can be readily obtained using 
the FSF model by letting z = eJw and evaluating 

When W = wc, it can be shown that HZ(ejW) = 0 for i # 1 and HZ(ejw) = 1 
for i = 1, where i is an integer like 1 in the range [-9, v]. In this case, 
the value of the process frequency response in Equation (4.7) reduces to the 
value of the process frequency response coefficient ~ ( e j  ) . 

4.3 PROPERTIES OF THE FSF MODEL WITH FAST SAMPLING 

It is well known that many discrete-time models obtained with a fast sam- 
pling rate have some undesirable properties. For example, the order of the 
FIR model in Equation (4.1) is inversely proportional to the sampling in- 
terval, i.e. N + oo as the sampling interval At + 0. With rational transfer 
function models, it was shown by astrijm et al. (1984) that a continuous- 
time process with no zeros or with zeros in the left half plane will often 
give rise to a discrete-time model having zeros outside the unit circle as the 
sampling period tends to zero. In addition, the poles of the discrete-time 
model will tend to the unit circle. By comparison, we will show here that 
the FSF model shares one of the major advantages of delta operator models 
(Middleton and Goodwin, 1990) in that the FSF model parameters converge 
to their continuous-time counterparts as At -+ 0. 

The properties of the FSF model with respect to choice of the sampling 
interval are summarized in the theorem below. 

Theorem 4.1. We assume that: 

the underlying cont inuous-time process is stable, linear and time in- 
variant with Laplace transfer function G(s) ; 

the underlying continuous- t ime process has a unit impulse response 
h(t) with finite settling time Ts such that for t 2 Ts, h(t) % 0. 
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We set the parameter N in the FSF model given by Equation (4.4) as N = g 
for a given sampling interval At > 0. Then, as At + 0, the parameters of 
the FSF model, ~ ( e j y ) ,  converge to G(jwl) at wi = F radiansltime. 

Proof: Taking the Fourier transform of h(t) gives the continuous-time fre- 
quency response of the process as 

= lim h(iat)e-jwdtat 
At+O i=o 

If we choose to evaluate the frequency response up to the Nyquist frequency, 
7r a radiansltime, in increments of g, then we can write for wl = radi- 

ansltime, l = 0, f1, f 2,. . . , f 9 

G(jwl) = lim 'C h ( i ~ t ) A t e - j F  
At+O i=o 

where hi are the discrete-time unit impulse response weights in Equation 
(4.1) and we have used the fact that hi -+ h(iAt)At as At  + 0. By compar- 
ing Equation (4.9) with the frequency response of the FIR model at W = F 
radians using Equation (4. l), we are able to conclude that 

Remark: 

The parameters of the FSF model correspond to the continuous-time 
process frequency response evaluated at W = 0, f $F, . . . , f & radi- 
ans/time for a fixed value of Ts. Therefore, as At decreases, the num- 
ber of parameters associated with the model increases, but only in the 
high frequency region. 
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Figure 4.3: Step response of the  3rd order plus delay sys tem for Example 4.1 

Example 4.1. This example compares a discrete- t ime, rational transfer 
function model with the FSF model in terms of the effect of sampling rate 
on the model parameters. Consider a third order system with time delay 
given by 

This system has a settling time of approximately 100 sec (i.e. T, = loo), as 
can been seen from its unit step response shown in Figure 4.3. We choose 
three sampling intervals (At = 0.5, 5, 10 sec) for the comparison. Convert- 
ing G(s) in Equation (4.11) to a discrete-time, rational transfer function 
model, assuming a zero order hold on the input, gives: 

At = 0.5 sec: 

At = 5 sec: 
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At = 10 sec: 

The parameters in the numerator of the discrete-time, rational transfer func- 
tion model are small when the sampling interval is small but increase in 
magnitude as the sampling interval becomes larger. In the context of system 
identification, these smaller parameters are difficult to estimate accurately 
when noise is present in the data. Also, both numerator and denominator 
parameters in these transfer function models vary dramatically as the sam- 
pling interval changes and the numerator parameters, at least, do not have 
an obvious connection with the parameters of the underlying continuous- 
time system. In addition, all of the discrete-time transfer function models 
have two zeros with one located outside the unit circle, whereas the under- 
lying continuous- time system has no zeros. 

The FSF model parameters correspond to the frequency response of the 
discrete-time transfer function models presented in Equations (4.12)- (4.14) 
at three sets of frequencies: 

(1) wl = 0, f k ,  . . . , &?r radians 
N1 

(2) wz = 0 , f  g,. . . ,h radians 

(3) WQ = O , f E , .  . . ,h radians 

where Nl = 201, N2 = 21 and N3 = 11 corresponding to N = % with 
N rounded up to the nearest odd number. Figure 4.4 shows the frequency 
response of the underlying continuous-time system and the FSF parameters 
for the three sampling intervals. These results illustrate that, as the sam- 
pling interval decreases, the parameters of the FSF model converge to the 
underlying continuous- time frequency response and, although the number 
of FSF parameters increases as the sampling interval becomes smaller, the 
additional parameters appear only in the high frequency region. Also, the 
variations in the FSF parameter values due to changes in the sampling in- 
terval are small compared to the changes observed with the parameters of 
the rational transfer function model. 
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Figure 4.4: Continuous-time frequency response (solid) and FSF model parameters 
for Example 4.1 ( l+ ' :  At = 0.5; '0): At = 5; '*): At = 10) 

4.4 REDUCED ORDER FSF MODEL 

The number of parameters in the FSF model in Equation (4.4) is equal to 
N ,  the same number associated with the impulse response model in Equa- 
tion (4.1). However, in Example 4.1 we see that the majority of the FSF 
parameters lie near the origin of the complex plane, i.e. they have small 
magnitudes. This is a result of the fact that the continuous-time frequency 
response for this example converges to zero at  high frequencies. The class of 
processes that have negligible frequency response magnitudes in the higher 
frequency region are those processes with transfer functions having a nu- 
merator order less than the denominator order, referred to as strictly proper 
transfer functions. Given that we have already assumed the process to be 
stable and if we further assume that its transfer function is strictly proper, 
then the continuous-time frequency response of the process (G(jw) l -+ 0 
as W -+ oo. Thus, based on the relationship between the FSF parameters 
and the continuous-time frequency response stated by Theorem 4.1, we can 
conclude that as At -+ 0: 
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there exists an odd integer n such that for all l where 9 < 111 5 
N;l, the magnitudes of the FSF model parameters, IG($?)~, are 
approximately equal to zero; 

n becomes independent of the choice of the sampling interval. 

Based on these properties, we will refer to n as the reduced order of the FSF 
model, which represents the number of significant parameters in the FSF 
model. We must qualify the use of the term "reduced order" to distinguish 
the number of significant parameters in the FSF model (n) from the order 
of the individual FSF filters (N). This reduced nth order FSF model can 
be written in the following form 

Due to the structure of the FSF model, the terms in Equation (4.4) that have 
been neglected in the reduced order model of Equation (4.15) (i.e. ~ ( e j y )  
for 9 < 111 5 v) always correspond to the high frequency dynamics of 
the process. For instance, in Example 4.1, with a choice of sampling interval 
At = 0.5 (N = 201), there are at most 9 FSF parameters (n = 9) that can 
be distinguished from the origin of the complex plane (see Figure 4.4). The 
remaining 192 parameters (201 - 9 = 192) in the high frequency region are 
very close to zero and can perhaps be neglected. 

Intuitively, it would seem that the reduced model order n is related 
to the properties of the underlying continuous-time system. For instance, 
it would appear that its value depends on how fast the magnitude of the 
process frequency response rolls off to zero. We will illustrate this point in 
the following example. 

Example 4.2. Consider the process transfer function 
,-ds 

G(S) = (Ts + 1 ) q  

where q = 1,2,3 and d 5 T.  The settling times Ts for these processes, 
including the effect of the time delay, are approximated as 6T, 8T and 10T 
corresponding to q = 1, 2 and 3, respectively. The frequency responses of 
these processes at wl = radiansltime are given by, for the first order 
system 
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Table 4.1: Reduced FSF model orders corresponding to  different truncation levels 

for the second order system 

and for the third order system 

The reduced FSF model order n corresponding to maximum truncation lev- 
els of 10%, 5% and 1% are listed in Table 4.1 for the above examples, where 
the neglected frequency response coefficients all have magnitudes less than 
the indicated percentage of the steady state gain. Note that the reduced 
orders given in Table 4.1 are independent of the time constant T. 

Effect of FSF Model Reduction on Process Frequency Response 
We can attempt to construct the process frequency response using the re- 
duced order FSF model given in Equation (4.15) by letting z = eJw and 
evaluating 

n- l 

. 2 = l  1 1 - e-jwN 
G(ejW) = G ( e J 7 ) -  

N 1 - & F e - j w  
(4.20) 

From the properties of the frequency sampling filters, there will be no errors 
at the respective centre frequencies of the filters, i.e. ~ ( e j ~ )  = ~ ( e j F ) ,  
for l = 0, f 1 ,  f 2, . . . , f 9. However, there will be errors at all frequencies 
other than the centre frequencies. These errors can be expressed in terms 
of the following equation with z = eJW 
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Figure 4.5: Construction of frequency responses using reduced order FSF models 
for Example 4.3 (solid: true response; dash-dotted: n = 3; dotted: n = 5) 

which represents a summation of the neglected FSF parameters weighted 
by the frequency responses of their respective filters. Given that the magni- 
tude of the frequency response of each filter decays as the frequencies move 
away from the filter's centre frequency (see Figure 4.2), the size of the error 
at a particular frequency depends on the distance from this frequency to 
the neglected high frequency FSF parameters and the magnitudes of these 
neglected parameters. Therefore, we would expect that, in the lower fre- 
quency region where the frequencies are far away from the high frequency 
region containing the neglected parameters, the error should be small. 

Example 4.3. Let us consider again the process given by Equation (4.11). 
We will choose At = 0.5 and N = 201 for this example. Figure 4.5 shows the 
construction of the process frequency response using two different reduced 
order FSF models in Equation (4.20). For n = 3, there are large errors in 
the constructed frequency response in the higher frequency region. However, 
with n = 5, the accuracy of the construction in the higher frequency region 
improves significantly. Also, it appears that for both n = 3 and 5, the 
truncated high frequency terms have similar but relatively little negative 
impact on the accuracy in the frequency region between W = 0 and &g. 
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4.5 PARAMETER ESTIMATION FOR THE FSF MODEL 

This section deals with the problem of estimating the parameters of a re- 
duced order FSF model from process input-output data using the least 
squares algorithm. 

Single-Input, Single-Output Systems 

We assume that the process being identified is stable, linear and time invari- 
ant and can be accurately represented by a reduced nth order FSF model. 
For an arbitrary process input u ( k )  and the measured process output y ( k ) ,  
the frequency sampling filter model can be written as 

where G ( z )  is given by Equation (4.15) and E(k) is a disturbance term. The 
process output can be expressed in a linear regression form by defining the 
paramet er vector as 

and the regressor vector as 

W )  = [f f (k)'  f (W' f (k)? f (k)-?lT 

where 

for r = 0, f l,. . . , &?. This allows us to rewrite Equation (4.22) as 

Note that: 

the elements of the parameter vector 8 are arranged in such a man- 
ner that the parameter associated with the zero frequency enters first, 
followed by the first complex conjugate pair of frequency parameters, 
followed by the second complex conjugate pair of frequency parame- 
ters, and so on; 

the elements of the regressor vector are generated by passing the 
process input through the corresponding frequency sampling filters. 
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In order to formulate the least squares solution, Equation (4.24) is written 
in a matrix form for M pairs of input-output data 

where yT = [y(O) y(1) . . . y(M - l)], CT = [@) t(1) ((M - l )]  
and 

The least squares estimates of the FSF model parameters are given by 

@ =  

which minimizes the sum of squared prediction errors 

- - 
f (o)O f (0)' f ( o r 1  S . .  

f ( 0 ) - 9  

f f (1)' f (1)-l S . .  

f 

f ( M  - 1)O f (M - l)' ( M  - 1 -  . . . f ( M  - 1 1 - 9  - 

where (*) denotes the complex conjugate transpose. 

Multi-Input, Multi-Output Systems 

Although we could extend the least squares estimation results for SISO 
systems directly to the p-input, q-output multivariable case, we prefer to 
treat these systems as q multi-input , single-output (MISO) systems. This 
way, we can take full advantage of the orthogonal decomposition algorithm 
developed in Chapter 3 for parameter estimation and structure selection 
of the p subsystems associated with each of the q outputs. This will be 
illustrated using an industrial data set in Chapter 5. 

For each process output, the p inputs are denoted as ul(k), u2(k),. . ., 
up (k), the times to steady state for the individual subsystems are given by 
NI, Nz,. . . , Np, and the reduced orders for each subsystem represented by its 
own FSF model are chosen to be nl ,  n2, . . ., n,. In the matrix representation 
for this MISO system, the first input ul(k) is passed through a set of nl 
frequency sampling filters based on Nl to form the first nl columns in the 
data matrix @, followed by passing the second input uz(k) through a set of 
n2 frequency sampling filters based on N2 to form the next na columns in 
the data matrix @, etc. The parameter vector 8 contains the nl  frequency 
response parameters associated with the first subsystem, followed by the n2 
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frequency response parameters associated with the second subsystem, etc. 
Using this matrix representation, the least squares algorithm can be directly 
applied to estimate the FSF model parameters associated with each of the 
p subsystems. 

The conditioning of the data matrix @ in Equation (4.25) provides infor- 
mation on the potential difficulties to be encountered in calculations based 
on Q. (The condition number for any matrix X is defined as E, where 
pmin and p,,, denote the minimum and maximum singular values of X ,  
respectively.) For instance, the worse the conditioning of the Q matrix, as 
indicated by a large condition number relative to unity, the greater the po- 
tential that small relative changes in the output data Y will result in large 
relative changes in the least squares paramet er estimates generated in Equa- 
tion (4.26) (Belsley, 1991). This follows from the fact that the covariance 
matrix associated with the least squares estimates is (Q* @)-'a2, where cr2 
is the variance of C. Instead of performing an examination of the condition 
number of the data matrix @, we choose to directly examine the relative 
values of the diagonal and off-diagonal elements in the matrix @*Q, referred 
to as the correlation matrix. The objective here is to see if this will pro- 
vide insight into whether the correlation matrix is ill-conditioned, resulting 
in blow-up of the covariance matrix and, in turn, large uncertainty in the 
parameter estimates. 

The elements of the correlation matrix in Equation (4.26) are given by 
M-1 f (k)'* f (k)q where r and q are integers in the range [-9, ++l. C k = 0  

The diagonal elements correspond to r = q and the off-diagonal elements 
correspond to r # q. We show in the following theorem that the elements of 
the correlation matrix are weighted sums of the energy contributions from 
different frequencies present in the input signal. 

Theorem 4.2: Let u(ejW;) denote the DFT of the input signal u(k) with 
W: = radians. Let ~ ' ( e j ~ i )  denote the frequency response of the rth 

Then, the diagonal elements of the correlation matrix are 
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and the off-diagonal elements are, for r f q 

with 

1 sin2 (y) 
. 

l 
1U(ejw;)l2 

szn 

(4.31) 
Proof: From Parseval's theorem, we can write the following relationship for 
the diagonal elements of the correlation matrix 

M-l  M- l  
C f (k)'* f (k)' = C 1~'(ej";)1~1U(&"~)l~ 
k=O I=O 

Then, Equation (4.29) follows from 

where we have used the identity 1 - cosa = 2sin2 (F). 
For the off-diagonal elements (r # q), similar analysis can be applied to 

obtain Equations (4.30) and (4.31). 

Remark: 

The value I U (ejW;) l2 is known as the periodogram of the input signal 
~ ( k )  and is a measure of the energy contribution of the frequency W; 
to the input signal (Ljung, 1987). Therefore, these results relate the 
elements in the correlation matrix directly to the periodogram of the 
input signal through a weighted sum relationship. 
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Weighting Function Associated with Diagonal Elements 
Let 

1 sin2 (v) 
W T  (W; )  = - 

N Z  sin2 ( w : - ~ % )  (4.36) 

denote the weighting function in Equation (4.29) associated with a partic- 
ular value of r .  The properties of these weighting functions determine the 
contributions that the input signal energy makes to each diagonal element. 

Property A. Magnitude at the centre frequency 
The magnitude of the weighting function at the centre frequency of the filter 
is equal to unity, i.e. 

lim WT = 1 
W;+% 

Property B. Zeros of the weighting function 
At W:  = F * 9, W T ( w ; )  = 0, where m is a positive integer. This means 
that the weighting function is zero at the centre frequencies of the other 
filters. The distance between the two zeros of W' (W;) closest to the centre 
frequency (W: = % k g) forms the bandwidth of the weighting function 
and is equal to g. 
Proof of Property A: At W: = F 

and 

Therefore, W T  becomes undefined at this frequency. Instead, we will return 
to the original expression for the weighting function given by Equation (4.32) 
and use the series expansion of H'(ejw;) to obtain 

where it can now be seen that 

lim HT (eiWi) = 1 
W;+.% 
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Hence Property A is true. 

Proof of Property B: At W: = 9 & F 

and 

Hence, Property B is true. 

Remark: 

Figure 4.6 shows one of the weighting functions W' with r = 4. For 
a different value of r, the shape of the weighting function remains the 
same, but the location of the centre frequency changes to F radians. 
It can be seen that W' has a very narrow bandpass nature and that 
it behaves like a delta function at the centre frequency. As a result, 
this weighting function yields a corresponding diagonal element in the 
correlation matrix that is largely determined by the energy content of 
the input signal in the vicinity of the frequency F. 

With a modest assumption on the periodogram of the input signal, we can 
obtain a simplified expression for the diagonal elements of the correlation 
matrix. 

Theorem 4.3: If we assume that the periodogram of the input signal is 
approximately equal to a constant value ( I U ( $ ~ ~ )  l2 x 0) over the narrow 
frequency region from to v, then 

Proof: Using Properties A and B, we know that W' achieves its maximum 
value of unity at the frequency 9 and is equal to zero at F f 9. We 
assume that the magnitude of W' outside this frequency interval is very 
small. Thus, the most significant contribution to the diagonal element comes 
from the frequency content of the input signal within the frequency interval 
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Frequency (rad) 

Figure 4.6: Weighting function associated with a diagonal element of the FSF 
correlation matrix (r = 4 and N = 201) 

---  2nT 2a < W' < 2*T + g. Therefore, 
N N -  l - N  

M-l M-l 
C f (k)'* f (k)' = C IH'($";) 121~(gwi) l 2  

where we have restricted the frequency range used in the summation to 
,;-2&=nr*& 

- M  . With the assumption that the periodogram of the 
input signal is constant over this frequency region, Equation (4.45) simplifies 

We now choose to approximate the weighting function by a symmetric trian- 
gle with height equal to unity and width equal to F. Then, the summation 
on the right-hand side of Equation (4.46) becomes equivalent to the area of 
this triangle (g). This concludes the proof. 
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Remarks: 

The diagonal elements of the correlation matrix are proportional to 
the data length M. 

The diagonal element corresponding to a particular value of r is pro- 
portional to the periodogram of the input signal in the vicinity of the 
frequency 9. Therefore, if the input signal does not contain signif- 
icant energy in the vicinity of the centre frequency for the rth filter, 
then the corresponding diagonal element will be small. 

Weighting Function Associated with Off-Diagonal Elements 

Let the weighting function in the upper bound on the magnitude of the 
off-diagonal elements in Equation (4.31) be denoted by 

1 sin2 (T) wT.yW;) = - w;-ql (w;-2q)l 
N 2 ~ s i n (  sin 

Figure 4.7 illustrates the weighting functions WTyq with r = 4 and q = 5, 6,  
7. The shape of WT,Q somewhat resembles that of WT, with two exceptions. 
It is actually bimodal in shape and its maximum value is less than unity. 
For lr - ql = 1, 2, 3 with r = 4, the maximum values of WT>q are approx- 
imately 0.4, 0.14, 0.09 and hence the maximum value decreases as lr - g1 
increases. Since the magnitude of the off-diagonal elements are bounded 
by the periodogram of the input signal weighted by WT.q, their values will 
decrease rapidly as lr - q1 increases, relative to the diagonal element WT. 
In general, the magnitudes of the off-diagonal elements are smaller than the 
corresponding diagonal element, in both the row and column directions, and 
their magnit udes decrease as their distance from the diagonal increases. 

Remarks: 

With the analysis of the diagonal and off-diagonal elements in the cor- 
relation matrix obtained when using a frequency sampling filter model 
structure, we can conclude that the magnitudes of the diagonal ele- 
ments approximately reflect the conditioning of the correlation matrix. 
In other words, if the ratio between the largest and smallest diagonal 
elements is large, then the correlation matrix is likely ill-conditioned. 
Therefore, an obvious way to attempt to improve the conditioning of 
the correlation matrix is to eliminate the frequency sampling filters 
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Figure 4.7: 

of the Correlation Matrix 

Frequency (rad) 

Weighting functions associated with off-diagonal elements of the FSF 
correlation matrix (r = 4 and N = 201: q = 5 (top); q = 6 (middle); q = 7 
(bottom)) 

that result in small diagonal elements relative to the large diagonal 
element S. 

To increase the magnitude of a diagonal element corresponding to a 
particular value of r ,  the periodogram of the input signal has to be 
increased in the vicinity of the centre frequency of the rth frequency 
sampling filter. 

Example 4.4. We will illustrate the properties of the diagonal and off- 
diagonal elements in the correlation matrix by comparing the FSF result 
with the correlation matrix that would result with an FIR model struc- 
ture using an identical input signal. Consider the process described by the 
transfer function 

This process has an approximate settling time of 199 sec and is sampled 
with an interval of 1 sec. Thus the parameter N is chosen to be 199 for both 
the FSF and FIR models. For the identification experiment, we have used 
a binary input signal with amplitude equal to unity. The input signal has 
been taken as a generalized random binary signal (GRBS) with probability 
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Figure 4.8: Elements of the correlation matrix using an FSF model structure (di- 
mension 199 X 199) for Example 4.4. Upper diagram: the diagonal elements of 
the correlation matrix; lower diagram: row sums of the absolute values of the off- 
diagonal elements 

of switching equal to 0.5 (Tulleken, 1990). This produces an input signal 
wit h frequency response characteristics close to white noise. 

This sequence was passed through all N frequency sampling filters to 
produce the correlation matrix for the FSF case with n = N. Figure 4.8 
shows the diagonal elements and the row sums of the absolute values of the 
off-diagonal elements. Given that the periodogram for this type of input 
signal is relatively constant over the entire frequency range, the diagonal 
elements of the correlation matrix are approximately equal. Strictly speak- 
ing, this correlation matrix is not diagonally dominant because the summed 
values of the off-diagonal elements shown in the lower diagram are not all 
less than the corresponding diagonal elements in the upper diagram. How- 
ever, we did find that the magnit udes of the individual off-diagonal element S 

are all smaller than the corresponding diagonal element. With these char- 
acteristics, we would expect t he correlation matrix to be well-condit ioned. 
In fact, this matrix is well-conditioned with a condition number of 4.72. 

The same input signal was passed through a set of simple delay elements 
up to z - ( ~ - ' )  to produce the correlation matrix for the FIR case. We eval- 
uated diagonal and off-diagonal elements of this correlation matrix and the 
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results are shown in Figure 4.9. The conclusion is that the individual el- 
ements of the correlation matrix in the FIR case do not provide us with 
any information concerning its numerical conditioning. This is evident from 
Figure 4.9 where it is seen that the diagonal elements are identical and the 
sums of the absolute values of the off-diagonal elements are all much greater 
than the diagonal elements. However, the condition number of the correla- 
tion matrix (4.72) is identical to that for the FSF case, as expected, because 
the full order FSF model is only a linear transformation of the FIR model. 

Index number 

Figure 4.9: Elements of the correlation matrix using an FIR model structure (di- 
mension 199 X 199) for Example 4.4. Upper diagram: the diagonal elements of 
the correlation matrix; lower diagram: row sums of the absolute values of the o f -  
diagonal elements 
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Chapter 5 

From FSF Models to Step 
Response Models 

5.1 INTRODUCTION 

The previous chapter introduced the frequency sampling filter model struc- 
ture in the context of process identification. This chapter pursues the topic 
further b y  focusing on the identification of step response models using the 
FSF model structure. 

This chapter consists of seven sections. Section 5.2 shows how to obtain 
an estimate of the process step response from the FSF model parameters. 
Section 5.3 discusses the topic of smoothing the step response estimate us- 
ing a reduced order FSF model. Section 5.4 analyzes the errors introduced 
by using a reduced order model. Section 5.5 derives confidence bounds for 
the process frequency response and step response estimates obtained from 
an FSF model. Section 5.6 presents a generalized least squares algorithm 
for identification of multi-input , single-output systems in which the P RESS 
criterion is used to determine both the FSF process model order for each sub- 
system and the number of terms to be included in the noise model. Section 
5.7 presents an industrial case study using data collected from the Sunoco 
refinery in Sarnia, Canada. 

Port ions of this chapter have been reprinted from Automatica 33, 
L. Wang and W .R. Cluett , "Frequency-sampling filters: an improved model 
structure for step-response identification" , pp. 939-944, 1997, with per- 
mission from Elsevier Science, and from Journal of Process Control 7,  
W.R. Cluett, L. Wang and A. Zivkovic, "Development of quality bounds 
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for time and frequency domain models: application to the Shell distillation 
column", pp. 75-80, 1997, with permission from Elsevier Science. 

5.2 OBTAINING A STEP RESPONSE MODEL FROM THE FSF 
MODEL 

Let gm denote the unit step response of the process at sampling instant m, 
m = 0,. . . , N - 1. Then, gm is related to the discrete-time unit impulse 
response coefficients hi, i = 0,.  . . , N - 1 according to 

From Equation (4.2) 

we can write 

Given that ~ ( e j y )  is independent of the index i, we can interchange the 
summations and rewrite Equation (5.3) as 

where we have used the 

Equation (5.4) gives an 
FSF model and the step 

relation 

explicit relationship between the parameters of the 
response coefficient S. The step response coefficients, 

evaluated using a reduced order FSF model, can be obtained from 

n-l  

. 2 x 1  1 1 - ej y ( m + l )  
g m %  G ( e J 7 ) -  - 2x1 

l= -  n-l l - $ 7  
2 
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where we have simply replaced N in Equation (5.4) by n, and thereby have 
neglected the high frequency parameters of the FSF model. 

Now the question arises as to how neglecting these high frequency para- 
meters affects the accuracy of the step response coefficients. To study this 
problem, we define 

that, for l # 0, has a real part 

and an imaginary part 

where wl = y. Therefore, Equation (5.6) can be rewritten in terms of its 
real and imaginary parts as 

Hence, SR (1, m) and SI (l, m) act as weighting functions on the respective real 
and imaginary parts of the process frequency response when generating the 
step response coefficients. Figure 5.1 shows the behaviour of the weighting 
functions SR(l, m) for N = 200 and 1 = 0, l, 2,7. At l = 0, this weighting 
function starts at for m = 0 and increases in a linear fashion until it 
reaches a value of 1.0 at m = 199. Figure 5.2 shows the behaviour of 
SI(Z, m) for N = 200 and l = 1,2,7. For l = 0, SI(l, m) is equal to zero for 
all m. For 1 > 0, both SR ( 1 ,  m) and SI (l, m) have their largest magnitudes 
when l = 1 and hence ~ ( e j g )  contributes most to the step response beyond 
G(ejo). The next most significant term corresponds to 1 = 2. The weighting 
functions for l = 7 indicate that as l increases, the contributions from the 
corresponding higher frequencies parameters of the FSF model to the step 
response coefficients decrease. 

Two examples are now given to demonstrate the construction of step 
response models from the FSF model structure. 
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Figure 5.1: Real part of weighting functions relating frequency response to step 
response (dotted: l = 0; solid: l = 1; dashed: l = 2; dash-dotted: l = 7 )  
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Figure 5.2: Imaginary part of weighting function relating frequency response 
step response (solid: l = l ;  dashed: l = 2; dash-dotted: l = 7)  
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Figure 5.3: Magnitudes of the FSF model parameters for Example 5.1 

Example 5.1. Consider the process given by the transfer function 

Using a sampling interval At = 0.5, we have calculated the parameters 
of the corresponding FSF model using a settling time estimate of 100 sec. 
Figure 5.3 shows that the magnitudes of the FSF model parameters decay 
very quickly for this process. We have constructed the process step response 
using Equation (5.6) for n = 3,5,7,9. The responses with n = 3 and 5 are 
compared to the true step response in Figure 5.4. For the different choices of 
n, the sum of squared errors between the true step response coefficients and 
the ones generated from the reduced order FSF models are: 0.5271 (n = 3) ,  
O.O508(n = 5) ,  0.0056(n = 7 )  and 0.0032(n = 9).  The responses with 
n = 7 and 9 have not been shown because they lie almost exactly on the 
true response. It is interesting to note that even a value of n = 7, which 
corresponds to a seemingly large truncation error of 10% in the frequency 
domain (see Table 4.1), produces an accurate representation of the step 
response. 

In comparison with the FIR model, the FSF model is able to represent 
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Time (sec) 

Figure 5.4: Comparison of true step response with those generated from reduced 
order FSF models for Example 5.1 (solid: true response; '0': n = 3; l*': n = 5 )  

the step response with many fewer parameters. For instance, even with a 
larger sampling interval of 2 sec, the FIR model would require at least 50 
parameters to capture the process dynamics with a similar degree of accu- 
racy. 

Example 5.2. Consider the process given by the transfer function 

where dl = 45, d2 = 75, K, = 0.8, R = 0.6, 71 = 5 and r2 = 10. Dynam- 
ics such as these arise with processes that have recycle streams. Choosing 
At = 1, we have calculated the parameters of the corresponding FSF model 
using a settling time estimate of 400 sec. Figure 5.5 shows how the ampli- 
tudes of the FSF model parameters decay very slowly for this process. Using 
n = 99 parameters (equivalent to 50 frequencies), we have constructed the 
process step response using Equation (5.6) and the result is compared to the 
true step response in Figure 5.6. The sum of squared errors between the 
true step response coefficients and the ones generated from the FSF model 
with n = 99 is 0.0023. 
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Figure 5.5: Magnitudes of the FSF model parameters for Example 5.2 

Figure 5.6: Comparison of true step response wdth that generated from a reduced 
order FSF  model for Example 5.2 (solid: true response; dotted: n = 99) 
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Remark: 

These two examples demonstrate that the number of parameters re- 
quired by the FSF model to accurately construct a step response model 
is determined by the underlying continuous-time process frequency re- 
sponse. If the process frequency response is relatively smooth and 
decays quickly to zero at higher frequencies, such as the process in 
Example 5.1, then the FSF model structure can capture the process 
dynamics with a very small number of parameters. If the frequency 
response is complicated and decays slowly to zero at higher frequen- 
cies, such as the process in Example 5.2, the number of parameters 
required in the FSF structure increases. Nevertheless, the FSF struc- 
ture provides an effective means to describe various types of process 
dynamics without the need for process structural information and is, 
in many cases, more efficient than the FIR model structure in terms of 
the number of parameters required to represent a process with a given 
accuracy. 

5.3 SMOOTHING THE STEP RESPONSE USING THE FSF MODEL 

This section is devoted to a simulation example that illustrates the problems 
associated with obtaining an estimate of the process step response using an 
FIR model and motivates the use of a reduced order FSF model instead. 

Example 5.3. Consider the process given by the transfer function 

This process is sampled with an interval of 2 sec, and the number of samples 
required to reach steady state (N) is set at 99. Total simulation time for the 
identification experiments described below is four times the process settling 
time. 

In the first experiment, a binary input signal with an amplitude of 1 
and switching probability of 0.5 is used. This type of input signal, which 
has the same spectral characteristics as white noise, was shown by Levin 
(1960) to be the optimal input signal for the estimation of an FIR model. 
The correlation matrix associated with the least squares estimates of the 
FIR model parameters is well-conditioned with a condition number of 10.8. 
Without any noise added to the process output, the corresponding estimated 
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Figure 5.7: Comparison of step responses estimated using an FIR mode2 and a 
white input signal for Example 5.3 (solid: true response; dash-dotted: estimate 
with output noise (a  = 0.1); dashed: estimate with output noise (a  = 0.3)) 

step response model obtained using Equation (5.1) is essentially identical to 
the true response of the process. However, with a white noise sequence of 
standard deviation (a) equal to 0.1 added to the process output during the 
identification experiment, the estimated step response model deviates from 
the true process step response as seen in Figure 5.7. When the noise level is 
increased to a standard deviation of 0.3, the estimated step response model 
is seen to deviate even more from the true step response in Figure 5.7. These 
simulation results illustrate that, although the above input signal leads to 
a well-conditioned correlation matrix, the estimated step response models 
obtained from the FIR model parameter estimates are very sensitive to the 
process output noise level. 

In the second experiment, we construct an input signal that is more typ- 
ical of that used in an industrial setting. The particular input signal used is 
binary with an amplitude of 1 and consists of 6 switch lengths with a dura- 
tion of about one half of the process settling time (50 samples) and 4 switch 
lengths with a duration of about one quarter of the process settling time 
(25 samples). The frequency content of this input signal is concentrated in 
the lower and medium frequency regions. The correlation matrix associated 
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Figure 5.8: Comparison of step responses estimated using an FIR model and a n  
input signal with slow switches for Example 5.3 (solid: true response; dash-dotted: 
estimate with output noise (0 = 0.1); dashed: estimate with output noise (a = 0.3)) 

with the FIR model is ill-conditioned with a condition number of 4001. The 
step response estimates obtained with the same two noise levels used in the 
first experiment are shown in Figure 5.8. The estimated responses are much 
closer to the true response as compared to the results in Figure 5.7 and yet 
they are not smooth. 

Now we study the problem further by trying to investigate the reason 
for the lack of smoothness in the step response estimates. We continue with 
the data from the second experiment. This time, the input signal is passed 
through 99 frequency sampling filters in parallel (corresponding to a full or- 
der FSF model structure) with centre frequencies %, for l = 0, &l ,  . . . , A49. 
The filter outputs are then used to form the full order FSF correlation ma- 
trix. The diagonal elements and the row sums of the absolute values of the 
off-diagonal elements are shown in Figure 5.9. It is seen from these plots 
that the diagonal elements of the correlation matrix for the FSF structure 
become very small after the first 13 terms because the input signal has very 
little high frequency content. Also the correlation matrix is not diagonally 
dominant. The condition number for the correlation matrix corresponding 
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Index number 

Figure 5.9: Elements of the correlation matrix using an  FSF model structure (di- 
mension 99 X 99) for Example 5.3. Upper diagram: the diagonal elements of the cor- 
relation matrix; lower diagram: row sums of the absolute values of the 08-diagonal 
elements 

to this full order FSF model is equal to 4001, the same as that for the FIR 
model. The least squares estimates of the FSF model parameters are shown 
in Figure 5.10. These plots show that the estimated frequency parame- 
ters are quite accurate in the low and medium frequency region despite the 
ill-conditioned correlation matrix, and all of the high frequency parameter 
estimates are poor. 

This suggests that the errors in the estimated high frequency parame- 
ters are the reason for the lack of smoothness in the step response estimates. 
To confirm this conjecture, we estimate step response models using various 
reduced order FSF models. The model orders selected are n = 99, 49, 25 
and 11. Figure 5.11 shows the estimated step response models for these four 
choices of n where it can be seen that, as more high frequency parameters 
are deleted from the estimated FSF model, the step response model becomes 
smoother. Also, as the number of estimated high frequency parameters is 
decreased, the numerical conditioning of the FSF correlation matrix im- 
proves. When n = 49, the condition number is 1684.7, with n = 25 the 
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Figure 5.10: Frequency response estimates obtained using a full order FSF model 
structure (N = 99) and an input signal with slow switches for Example 5.3 ('*': 
estimated FSF parameters; (0': true FSF parameters; solid: true response). Upper 
diagram: low and medium frequency region; lower diagram: high frequency region 
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Figure 5.11: Step response estimates obtained using various reduced order FSF 
models and an input signal with slow switches for Example 5.3 (a: n = 99; b: 
n = 49; c: n = 25; d: n = 11) 
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condition number is 289.4, and with n = 11, the condition number is 21.0. 

5.4 ERROR ANALYSIS 

It has been shown in the previous section that neglecting outputs of the fre- 
quency sampling filters with centre frequencies that are not present to any 
significant degree in the input signal improves the numerical conditioning 
of the correlation matrix and results in a smoother step response estimate. 
However, when we delete these filters outputs, we are effectively assuming 
that the corresponding FSF model parameters are zero. If they are not zero, 
then the least squares estimates of the remaining parameters will be biased, 
with the amount of bias depending on the magnitudes of the neglected pa- 
rameters. This section analyzes t he error associated wit h the estimated 
reduced order FSF model. 

Let us assume for this analysis that the data matrix @ corresponds to the 
full order FSF model and has dimension M X N. We will now partition @ 
into @, and aNAn, where an is an M X n matrix with columns given by the 
n filter outputs being retained in the reduced order FSF model, and G is 
an M X ( N  - n) matrix wit h columns given by the N - n filter outputs being 
neglected. Similarly, let 8, corresponding to the parameters of the full order 
FSF model, be partitioned into 8, and ON-,, where 8, contains the FSF 
parameters being retained and ON-n contains the neglected FSF parameters. 
Let us also assume that 8, contains the lower frequency parameters and 
ON-n contains the higher frequency parameters. The process output Y can 
then be represented accordingly as 

and, when using a reduced order FSF model to describe the process, the 
least squares estimate of the reduced order parameter vector, en, is given by 

Substituting Equation (5.14) into Equation (5.15) leads to 

Thus, if the disturbance sequence C is zero mean, the expected value of the 
estimate 8, is 
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Remarks: 

Equation (5.18) clearly shows that two factors determine the expected 
amount of error in the parameter estimates 8,. One factor is ON-, and 
the other factor is the matrix ( @ ~ @ ~ ) - ' @ z @ ~ - ~ .  With the FSF model 
structure, the magnitudes of the neglected higher frequency parame- 
ters in are generally smaller than the magnitudes of the retained 
lower frequency parameters in 8,. For many chemical processes, we 
have found that the magnitudes of the neglected parameters are small 
for n > 11. 

The elements of the matrix (@;@n)-l @;aN-n are small if the elements 
in the matrix @E@ N-n are small. @E@ N-n contains cross-correlation 
terms between the outputs of the retained filters and the outputs of 
the neglected filters. 

Now let us rewrite Equation (5.4), which converts the FSF parameters 
into step response coefficients, into a similar partitioned form 

where S, (m) = [S(O, m) S(1, m) S(- l ,  m) . . . ] correspond to the weight- 
ing functions defined in Equation (5.7) that are associated with the retained 
parameters On, and SN-,(m) are the weighting functions corresponding to 
the neglected parameters. Then the error between the true step response 
gm and the estimated im is 

Therefore, the expected error associated with the step response estimate is 

and substituting Equation (5.18) into Equation (5.21) gives 

which shows that the error in the step response estimate consists of two 
parts. The first term on the right-hand side of Equation (5.22) represents 
the error associated with the estimated FSF model parameters 8, and the 
second term comes from neglecting the higher frequency parameters ON-, in 
the calculation of the step response. Because the amplitudes of the weight- 
ing functions associated with the higher frequencies SN-,(m) are relatively 
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small as illustrated in Figures (5.1) and (5.2), the contribution of the sec- 
ond term to the step response error is likely to be small for most processes 
with a reasonable choice for n. On the other hand, the elements of Sn(m) 
have relatively large amplitudes, and therefore the error associated with the 
estimated FSF model parameters tends to dominate the error in the step 
response estimate. 

Input Signal Design for Accurate Step Response Models 

Our objective for input signal design is to reduce the expected error in the 
step response estimate ij, by reducing the expected error in the FSF model 
parameter estimates en through manipulation of the input signal's energy 
content. Recall the expected error given in Equation (5.18). First, the input 
signal chosen must have sufficient frequency content in the frequency region 
where the parameters are being estimated to guarantee a well-conditioned 
correlation matrix @E@,. Then, to reduce the cross-correlation terms which 
make up the matrix @EGN-n, the frequency content of the input signal in 
the frequency region where the parameters are being neglected should be 
small or zero. 

With an estimate of the process settling time Ts, the important fre- 
quency region for parameter estimation is the low frequency region up to 

radiansftime, where n can be safely selected within the range of 11 
Ts 

to 19 for many processes. One approach would be to choose the input signal 
such that it contains a set of equally weighted frequencies 0, g, . . ., 9. 
This can be realized using the multifrequency input signal design described 
by Schroeder (1970). This input signal consists of a sum of sinusoids with 
the user providing specifications for the amplitude and frequency of each 
sinusoid. The contribution of Schroeder (1970) was a simple formula for de- 
termining the phases of these sinusoids to minimize the overall peak factor 
of the resulting input signal. In principle, these types of input signals are 
well-suit ed to the identification of FSF models. However, a multisinusoidal 
signal is seldom used in the process industries as an input signal for process 
identification because it is more difficult to move the process outside of any 
initial nonlinearities such as valve backlash and stiction using a sinusoid- 
type signal, and because a binary signal is easier to implement. 

One approach to a more practical input signal design is to use a clipping 
technique to convert the multisinusoidal signal into a binary signal. With 
this procedure, all points of the multisinusoidal signal greater than its av- 
erage value are set to +l and all points below the average value are set to 
- 1. The following example illustrates this approach. 
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Figure 5.12: Shroeder-phased i n p u t  signal for Example 5.4. Upper diagram: mul -  
t isinusoidal inpu t  signal; lower diagram: clipped inpu t  signal 

Example 5.4. Suppose that the settling time of the process to be iden- 
tified is Ts = 100 sec with a sampling interval of At = 0.5 sec, and that 
the number of FSF model parameters to be estimated is n = 15. Using 
an amplitude of unity for each sinusoid, the corresponding Shroeder-phased 
multisinusoidal input signal is shown in Figure 5.12, along with the binary 
signal produced by applying the clipping procedure. 

Another approach to input signal design for the estimation of step re- 
sponse models is to select the switching intervals of a binary signal accord- 
ing to the estimated process settling time Ts. The basic idea is that, since 
the first harmonic for a periodic signal with period Ts is E, choosing the 
switching interval of a periodic binary input signal as 2 will ensure that 
a significant amount of the input signal energy is focused at the centre fre- 
quency associated with the first pair of FSF model parameters. This idea 
can be extended in order to excite the higher FSF frequencies by using 
shorter switching intervals. For example, a general input signal may consist 
of a mixture of switching intervals around 2, 2, % and %, which corre- 
spond to the first pair, second pair, third pair and fourth pair of FSF model 
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parameters beyond the zero frequency. The sequence of switching intervals 
can be randomized in order to ensure that energy is also present in the input 
signal at the zero frequency. 

5.5 CONFIDENCE BOUNDS FOR FREQUENCY RESPONSE AND 
STEP RESPONSE ESTIMATES 

The statistical properties for the least squares estimate 8 of the FSF model 
parameters given in Equation (4.26) are used in this section to develop sta- 
tistical confidence bounds for frequency response and step response models 
estimated using the FSF model structure. We begin by stating the key as- 
sumptions on which all of this analysis is based and then summarize the 
key properties of the least squares estimator, which may be found in Ljung 
(1987). 

We assume for the process being described in Equation (4.25) that: 

A 5.1 The process is stable, linear and time invariant with finite settling 
time Ts and the parameter N is chosen to be greater than or equal to 
G 
At 

A 5.2 The disturbance 5 is zero mean, normally distributed white noise 
with variance a2.  

A 5.3 n = N, or n is chosen such that the neglected frequency parameters 
are negligible in magnitude relative to the parameters being retained 
in the model. 

Based on these assumptions, we can state the following properties of the 
least squares estimate 9 obtained from Equation (4.26): 

Bias: The estimate 0 is unbiased, i.e. E[@ = 0. 

Variance: The covariance of the parameter estimates is given by 

Distribution properties: Since only a linear operation is involved 
in estimating the parameters, e will follow a normal distribution. 

If the variance, 02, of the disturbance is unknown, then a consistent estimate 
of a2 can be obtained from 
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Note that the normal distribution of the parameter estimates 0 is contin- 
gent on the data length M being sufficiently large. For short data lengths, 
the estimates follow instead a student-T distribution (Goodwin and Payne, 
1977) and converge to the normal distribution as the data length increases. 
It can be seen from Kreyszig (1988) that this will occur when the degrees of 
freedom associated with the estimate of the noise variance ( M  - n) exceeds 
100. 

Confidence Bounds in the Frequency Domain 

Theorem 5.1: Suppose that assumptions A 5.1-A 5.3 are satisfied. Then 
the distance between the true and the estimated frequency response at wl = 
F, l = 0,-+1, f 2,. . . , f 9, is bounded by 

with probability P(p), where oo,l is the standard deviation associated with 

~ ( e j y )  , found by taking the square root of the corresponding diagonal ele- 
ment in Equation (5.23), and P(l) = 0.683, P(2) = 0.954 and P(3) = 0.997 
according to the specified level of the normal distribution. 

Proof: Assumptions A 5.1-A 5.3 guarantee that the least squares estimate 
0 is unbiased and follows a normal distribution. Given that the parameters 
being estimated correspond to the process frequency response at wl = for 
l = 0, f l, &2, . . . , &v, then the result follows directly from the variance 
of the individual parameter estimates. 

Equation (5.25) tells us that the distance between the true and the esti- 
mated frequency response at wl = F will be less than ~ 0 0 , ~  with probability 

P(p) . Graphically, this means that, on the complex plane, if ~ ( e j  ) is used 
as the centre of a circle and poe,~ is used as the radius of this circle, then 

the true process frequency response ~ ( e j y )  must lie within this circle with 
a probability of P(p). As for the rest of the frequencies, an interpolation 
technique is used. Let the estimated process frequency response G(ejw) be 
represented by 

~ ( e j ~ )  = H(ejW)B (5.26) 

where 

with 
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being the frequency response of the lth filter. The following theorem presents 
the bounds within which the true frequency response lies at any arbitrary 
frequency. 

Theorem 5.2: Suppose that assumptions A 5.1-A 5.3 are satisfied. Then 
the distance between the true and the estimated frequency response at W ,  

-T 5 W 5 T ,  is bounded by 

with probability P(p )  , where 

and P ( l )  = 0.683, P(2) = 0.954 and P(3 )  = 0.997 according to the specified 
level of the normal distribution. 

Proof: Under assumption A 5.1, it is valid to represent the true process 
frequency response c ( e j W )  as 

Assumptions A 5.1-A 5.3 guarantee that G(ejw)  is an unbiased estimate of 
c ( e j W ) ,  i.e. ~ [ & ( e j ~ ) ]  = G(ejw)  and that G(ejw)  follows a normal distribu- 
tion since it is obtained from a linear transformation of the normally distrib- 
uted parameter estimate 6.  We can compute the variance of the estimated 
process frequency response at a specific frequency W from the covariance of 
the parameter estimates as follows. First we can write 

followed by 

( ~ ( e 3 " ) - ~ ( e j " ) ) ( ~ ( e ~ ~ ) - ~ ( e j ~ ) ) *  = ~(e j " ) (8 - I3 ) (9 -0 )*~*(e j~ )  (5.32) 

Hence, 

E [ I G ( ~ ~ " )  - c(ejw)12] = H ( e j w ) ~ [ ( 6  - 0)(6 - O)*]H*(eiw) 

which, by substituting Equation (5.23), leads to 

E [ I G ( ~ ~ " )  - c ( d W )  1 2 ]  = H(eJW)  ( @ * @ ) - ' H * ( $ ~ ) O ~  = ~ ( e j ~ ) ~  (5.33) 



118 From FSF Models to Step Response Models 

Therefore, from the properties of a normal distribution, we have 

with probability P(p) . 
Equation (5.28) indicates that the true process frequency response G (ejw ) 

lies inside the circle on the complex plane, centred at G(&") with radius 
equal to p X z(ejw). 

Confidence Bounds for the Step Response Model 
We have also been able to obtain confidence bounds for the step response 
model derived from the FSF model using Equation (5.4). The basic idea is 
to represent the step response coefficients as a linear transformation of the 
estimated FSF parameters, and then map the covariance matrix from the 
frequency domain to the time domain. 

Theorem 5.3: Let the estimated step response be represented by 

where S(m) = [S(O,m) S(1,m) . . . S(- 9, m)] with S(1, m) defined in 
Equation (5.7). Then, under assumptions A 5.1-A 5.3, the error between 
the true process step response weight g, and the estimated step response 
weight fim is bounded by 

with probability P@), where b(m) is given by 

Proof: Under assumption A 5.1, the true process step response can be 
represented by 

gm = S(m)o (5.38) 

From assumptions A 5.1-A 5.3, we know that is an unbiased and normally 
distributed estimate of 0. Therefore, 4, is an unbiased and normally distrib- 
uted estimate of gm. The variance of the estimated step response coefficient 
at the sampling instant m is given by 
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and the bounds in Equation (5.36) follow directly. 
Applying Equation (5.36), the trajectory of the true step response gm 

for m = 0,1,. . . , N - 1 lies inside the envelope given by gm f p X 6(m) 
with probability P(p). This envelope provides the confidence bound on the 
estimated step response model. 

In this section, we present an iterative algorithm in the spirit of the gener- 
alized least squares approach (Goodwin and Payne, 1977), for simultaneous 
estimation of an FSF process model and an autoregressive (AR) noise model. 
The unique features of our algorithm are the application of the PRESS sta- 
tistic introduced in Chapter 3 for both process and noise model structure 
selection to ensure whiteness of the residuals, and the use of covariance ma- 
trix information to derive statistical confidence bounds for the final process 
step response estimates. An important assumption in this algorithm is that 
the noise term E(k) can be described by an AR time series model given by 

where F(z)  = 1 + fiz-' + - + f m ~ - m  and { ~ ( k ) )  is assumed to be a zero 
mean, white noise sequence. 

The algorithm will be presented as a step-by-step procedure for identifi- 
cation of a MISO system. The user must first provide estimates for the times 
to steady state for the individual subsystems given by Ni, i = 1,2, . . . , p, 
the maximum values to be considered for the reduced model orders ni, 
i = 1,2,. . . ,p,  and the maximum noise model order m. 

Step 1: Assume F(z)  = 1. 

Step 2: Prefilter the process inputs and output with F(z) ,  namely ui, (k) = 
F(z)ui(k) for i = l , .  . . , p  and yf (k) = F(z)y(k). 

Step 3: Determine least squares estimates for the FSF process model pa- 
rameters using the P R E S S  statistic to select the model order ni for 
each subsystem. 

Step 4: Estimate the noise sequence = Y - ~ 8 .  

Step 5: From t, estimate the noise model F(z)  using the least squares 
method along with the PRESS statistic to determine the value for 
m. 
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Step 6: Check for convergence of the FSF model parameter estimates 9. 
If the parameters have converged, go to Step 7. Otherwise, return to 
Step 2 with the updated estimate of F(+ 

Step 7: Calculate the covariance of the parameter estimates and use it 
to calculate the statistical confidence bounds for the estimated step 
response models. 

5.7 INDUSTRIAL APPLICATION: IDENTIFICATION OF A RE- 
FINERY DISTILLATION TRAIN 

5.7.1 Process description 

The process used in this study is part of a distillation train in the BTX 
(Benzene, Toluene, Xylene) plant at Sunoco's refinery in Sarnia, Canada. 
The process flow diagram of the complete distillation train is illustrated 
in Figure 5.13. The plant consists of four distillation columns: Benzene, 
Toluene, mixed-Xylene (MX) and ortho-Xylene (OX). The bottoms prod- 
uct of the first three columns feed their respective downstream columns. 
Material is balanced in each of the columns by controlling the bottoms level 
through manipulation of the outlet flow. This means that the manipulated 
variable for controlling the bottoms level in one column is a disturbance to 
the following tower. The scope of the identification problem studied here 
includes the final two columns (MX and OX towers) of the distillation train, 
with the objective being to develop step response models for the design of 
a multivariable model predictive controller. Figure 5.14 is a more detailed 
schematic of these two columns. The operation of the process with reference 
to Figure 5.14 is described below. 

Feed from the Toluene tower is preheated (1) by the MX tower distillate 
product and then enters the MX tower (2) at approximately the middle tray. 
The MX tower overhead is totally condensed using heated water from the 
gas fired reboiler (3). Steam is produced in the condenser (4) and deliv- 
ered to a utility header. Flow of water into the shell side of the condenser 
is manipulated by a level controller. The condensed MX tower overhead 
material is collected in an accumulator (5). A level controller manipulates 
the reflux to the tower to maintain the accumulator level. The overhead 
product flow is set externally, either by an advanced controller or manually. 
At the bottom of the MX tower the flow is divided into two streams. One of 
the streams is circulated through the gas fired reboiler, where it is partially 
vaporized and then returned to the MX tower. The vaporization rate is set 
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Figure 5.13: Process flow diagram for distillation train 
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Figure 5.14: Process schematic of MX and OX distillation towers 
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externally and is cascaded to the fuel gas flow. The second stream feeds the 
OX tower (6) with the flow manipulated by the MX bottoms level controller. 
The reboil heat for the OX tower is provided by high pressure steam. Steam 
flow to the reboiler (7) is controlled by a temperature controller used to 
maintain a specified bottom tray temperature. Flow of the OX tower bot- 
toms product is controlled by a level controller for the reboiler. An air fin 
cooler (8) is used to totally condense the OX tower overhead material and is 
subsequently collected in an accumulator (9). A level controller manipulates 
the OX tower product flow to maintain the level in the accumulator. Unlike 
the MX tower, the reflux flow for this tower is set externally. 

The following variables were selected as the dependent variables (process 
outputs): 

y l :  o-Xylene product purity. 

yz: Cumenes concentration in o-Xylene product. 

y3: o-Xylene concentration in OX tower bottoms. 

The independent variables (process inputs), with the first three being des- 
ignated as manipulated variables, were then selected as: 

u l :  Overhead MX tower product flow; this variable indirectly manipulates 
the reflux flow to the MX tower through the accumulator level con- 
troller. 

u 2 :  OX tower reflux flow. 

u s :  Temperature setpoint at the bottom of OX tower; determines the steam 
flow to the reboiler. 

uq: Feed flow to the MX tower; a feedforward variable manipulated by a 
level controller on the Toluene tower. 

US:  Vaporization rate in the gas fired reboiler; a feedforward variable ma- 
nipulated by a separate controller for the reboiler. 

5.7.2 Dynamic response testing 

Following selection of the independent and dependent variables, a pre-test 
of the unit's regulatory control system was conducted. The objective of the 
pre-test was to collect information on the settling time of the process and the 
tuning of the regulatory controllers. Since the multivariable model predic- 
tive controller was to be eventually superimposed over the basic regulatory 
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Figure 5.15: Typical input  perturbation signal 

controllers, it was essential that these loops be well tuned. The pre-test also 
gave information on the quality of process signals and the size of step moves 
required to generate a sufficient response jn the dependent variables. 

Dynamic testing of the plant was conducted on a continuous basis over 
a 14 day period. During this test each independent variable was perturbed 
and the process data was recorded at one minute intervals. The selection 
of which variable to move and the direction of movement was made on the 
basis of maintaining products at specification and avoiding saturation of the 
underlying regulatory PID controllers. 

In addition to maintaining product specifications, it was essential to use 
different corrective actions in response to a particular control situation in 
order to avoid correlation between the independent variables. The control 
engineer on shift was responsible for ensuring randomness of the test. The 
engineer also recorded unusual occurrences that might impact negatively 
the test data. Examples of such events include heater upsets, analyzer and 
equipment failures and data acquisition errors. Approximately 20 moves 
were made in each independent variable. An example of a perturbation 
signal is presented in Figure 5.15. 
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5.7.3 Results 

The response test data was divided into 16 minutes intervals, and subse- 
quently averaged over the intervals. This resampling reduced t he amount 
of data and was justified because the concentration analyzer measurements 
were updated only every 15 minutes. 

As mentioned above, a number of unusual events may occur during the 
response test. One way to exclude this data from the analysis is by differ- 
encing the input and output data. This permits identification data to be 
selectively removed, without invalidating the entire response test. Another 
advantage of differencing is that the process does not have to be at steady 
state for the response test to start. This is very useful for industrial processes 
that often operate in a continuous dynamic state because of disturbances 
that drive the process away from product specifications. 

The remaining subsections will examine the results obtained using the 
FSF approach, FIR models obtained using the least squares method, and 
models obtained using DMI, a commercially available process identification 
software package. With this process, there are a total of 15 input-output 
relationships to be estimated. For brevity, we will only examine a subset of 
the results to highlight the features of the FSF approach. One key difference 
between the various approaches that needs to be mentioned at the outset is 
that the initial value of each step response model ( g o )  has been estimated 
with the FSF approach but has been set equal to zero with the FIR and 
DMI approaches. 

DMI is a commercial product of DMC Corporation (Cutler and Yocum, 
1991). The selection of DMI models is an interactive process that involves 
analyzing results for a number of different times to steady state. Smooth 
and non-smooth step response models, which in the latter case correspond 
to step response models generated from least squares estimated FIR mod- 
els, are presented graphically to the user for each input-output pair. A 
proprietary smoothing method is used to reduce the effect of noise on the 
non-smooth models while minimizing the residual errors in the fit of the 
data. A particular model is selected for a controller application if there 
is a reasonable match between the smooth and non-smooth curves, and if 
the response appears to have reached a steady state. The selected times to 
steady state for this system are summarized in Table 5.1. 

Estimates of the times to steady state are required for application of the 
FSF identification method. In order to compare with the DMI results, we 
have chosen the same times to steady state presented in Table 5.1. The 
reduced FSF process model orders that were selected through application 
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Table 5.1: Estimated t imes to  steady state ( in  minutes)  

Table 5.2: Selected FSF model orders 

of the iterative algorithm presented in Section 5.6 are summarized in Table 
5.2. 

5.7.4 Use of PRESS for model structure selection 

One of the key features of the proposed generalized least squares algorithm 
is the use of the PRESS for both process and noise model order selection. 
Figure 5.16 provides a graphical representation of the number of terms se- 
lected by the PRESS statistic for each of the five subsystems associated 
with the first output variable yl. The amount of reduction in the PRESS 
by each input variable and the number of terms selected are felt to be mea- 
sures of the quality of the input signal design, the signal-to-noise ratio and 
the existence of an input-output relationship. For example, Figure 5.16 
shows that u2 and us do not contribute significantly to the reduction of the 
PRESS for yl . More specifically, the PRESS is indicating that there is no 
relation between u2 and yl because even the addition of a single term causes 
the PRESS to increase. Although three terms have been selected for the 
ug to yl relationship, the PRESS was only reduced slightly. 

The PRESS clearly indicates that the correlations between these two 
inputs (u2 and u3) and the process output (yl) in this particular data set 
are weak. However, from a physical point of view, it is expected that these 
two input variables, OX tower reflux flow and temperature setpoint at the 
bottom of the OX tower, should have an effect on yl, the OX tower product 
purity. One possible explanation is that the settling times were overesti- 
mated for these two relationships (240 minutes each) combined with the 
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Figure 5.16: PRESS for process output yl 

fact that most switches in the input signals were spaced much larger than 
the estimated settling times. This would mean that not enough information 
was present in the data to identify the dynamic relationships. In general, 
if the model order selected by the PRESS is low (e.g. n < 7 )  for a given 
input-output pair, this may be an indication that the input signal lacks ex- 
citation in the medium frequency region (e.g. switches ranging from Net to 
NiAt) .  2 If the switching frequency is increased but the model order remains 
low, this is possibly an indication that there is either no relationship between 
this input-output pair or that the overall signal-to-noise ratio is very low. 
It is worth noting that the DMI analysis also indicated that there were no 
significant relationships between these variables in this data set. 

5.7.5 Use of noise models to remove feedback effects 

During plant tests, the input variables are sometimes adjusted by the opera- 
tor in order to maintain the product at its specification. Different corrective 
actions are taken in response to a particular control situation in order to 
avoid correlation between the independent variables. However, this type of 
operator intervention introduces feedback into the test data that can lead to 
significant bias in the estimated process models. To remove this effect, noise 
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Figure 5.17: Step response models relating 212 to  y2 (solid: FSF; dotted: 99% 
confidence bounds o n  FSF model; dashed: DMI (smooth); dash-dotted: F IR)  

models must be built and used in the design of prefilters for the input-output 
data used to estimate process models (MacGregor and Fogal, 1995). The 
FIR and DMI models assume a noise model where F ( z )  = (1 - z-l).  Our 
results show that the noise models are more complicated than this simple 
model. The biasing effect on the FIR and DMI models can appear as an 
inverse response because the initial value of the step response has been set 
equal to zero in these cases. For example, let us examine the results for the 
u2 to ya relationship presented in Figure 5.17. The FIR and DMI estimated 
step responses clearly show an inverse response. However, the FSF results 
indicate a time delay of approximately 20 minutes, which is believed to be 
closer to the actual process behaviour. 

5.7.6 Use of confidence bounds for judging model quality 

Another important role of the noise model in the iterative algorithm is to 
ensure whiteness of the residuals. This allows us to estimate the covariance 
of the FSF model parameter estimates and then to develop statistical con- 
fidence bounds for the corresponding step response estimates. In order to 
apply these results, it is important that the bias error in the model arising 
due to unmodelled dynamics be small relative to the variance error caused 
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by the presence of noise in the measured outputs. With our approach, we 
believe that the model order selected by the PRESS can be used as an 
indication of whether this condition holds. For instance, a low model order 
(e.g. ni = 3) indicates that the bias error is significant leading to a biased 
step response estimate. In this case, the bounds would not be expected to 
enclose the true step response and could only be used as a crude measure of 
possible responses. On the other hand, a higher order model (e.g. ni > 5) 
indicates that the bias error is relatively small compared to the variance 
error and, in this case, the bounds would be expected to enclose the true 
response at the confidence level chosen. 

For example, Figure 5.18 shows the estimated step responses for us to y2. 
The FSF model order selected for this input-output pair was 3 which means 
that the true response may not lie within the confidence bounds. Evidence 
for this is found by observing that the confidence bounds at time zero do not 
include zero as a possible value. However, for most processes encountered 
in the process industries, the initial value of the step response is known to 
be equal to zero. By comparison, for higher order models, the confidence 
bounds seem to always enclose zero as a possible value at time zero. For 
example, Figure 5.19 shows the estimated step responses for ul to yl that 
has a selected model order of 15. In this case, the bounds are believed to 
enclose the true response with a 99% confidence level. 
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Figure 5.18: Step response models relating us to ys (solid: FSF; dotted: 99% 
confidence bounds on FSF model; dashed: DMI (smooth); dash-dotted: FIR)  

Figure 5.19: Step response models relating ul to yl (solid: FSF; dotted: 99% 
confidence bounds on FSF model; dashed: DMI (smooth); dash-dotted: FIR) 



Chapter 6 

New Frequency Domain PID 
Controller Design Method 

This chapter presents a new PID controller design method based on  process 
frequency response information. The novel ideas lie in the way that the 
closed-loop performance is specified via the desired response of the control 
signal and i n  the use of only two process frequency response points i n  the 
design. The relationship between the process frequency response and its step 
response, developed i n  Chapter 5, is exploited here to determine the frequency 
information to be used for controller design. 

This chapter consists of seven sections. In Section 6.2, we present the de- 
sired closed-loop performance specification in terms of the controller output 
response for both stable and integrating processes. In order to gain some 
insight into the new design method, Section 6.3 discusses a least squares 
approach to the PID controller parameter solutions. From the least squares 
solution, we propose in Section 6.4 a simpler approach based on process in- 
formation at just two frequency points. Section 6.5 addresses the question 
of which two frequencies should be used in the design. Section 6.6 discusses 
the choice of a PI or a PID controller and provides some guidance with re- 
spect to the selection of the closed-loop performance parameters. Extensive 
simulation studies are performed in Section 6.7 and the results are compared 
with other design methods. 

Portions of this chapter have been reprinted from IEE Proceedings- 
Control Theory and Applications 142, L. Wang, T.J.D. Barnes and 
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W .R. Cluet t , "New frequency-domain design met hod for PID controllers", 
pp. 265-271, 1995, with permission from IEE. 

6.2 CONTROL SIGNAL SPECIFICATION 

One of the most common features of many PID controller designs is that 
performance is specified in terms of the trajectory of the desired closed- 
loop process output response to a setpoint change. Here, we propose to 
specify the closed-loop performance in terms of the desired behaviour of the 
controller output or control signal in response to a setpoint change. 

Consider the feedback system illustrated in Figure 6.1, where u and 
y are the control signal and measured process output, respectively, r is 
the setpoint, d is the load disturbance, and C and G denote the controller 
and plant transfer functions, respectively. We will assume that C has the 
structure of a PID controller given by 

or that of a PI controller given by 

where the proportional gain is 

the integral time constant is 

and the derivative time constant is 

The transfer function from the setpoint r to the 
by 

(6.6) 

control signal U is given 

(6.7) 
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Figure 6.1: Block diagram of the feedback control system 

Figure 6.2: Block diagram of a practical PID controller implementation 
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The transfer function from the setpoint r to the process output y is given 
by 

and the transfer function from the load disturbance d to the control signal 
U is given by 

Our approach is to specify the trajectory of the control signal in response 
to a setpoint change in order to take advantage of the characteristics of 
Equation (6.7). The reasons we choose to work with G,+, instead of either 
Gr+y or Gd+u are: 

the behaviour of the control signal is an important consideration when 
assessing overall performance of a PID controller in a process control 
application because it is often desirable or necessary for the control 
signal to have a smooth response; 

the transfer function that governs the control signal response to a set- 
point change, G,,,, is in some sense less dependent on the process 
dynamics, in that G(s) does not appear in the numerator as it does 
in both Gr+y and Gd+,. Therefore, a specification on G,+, can be 
given without requiring detailed knowledge about the process dynam- 
ics, such as the process delay and process zeros. 

Our expectation is that if the control signal responds in a smooth manner, 
the resulting process output response will also be smooth. Because 
Gd+, is simply the negative of G,+,, we believe our specification on G,+, 
will ensure both a smooth response in the process output to a setpoint 
change and a smooth control signal response to a disturbance. 

We now present our PID controller design specifications for two types of 
processes frequently encountered in the process industries. 

6.2.1 Specification for stable processes 

The type of control signal response to a step setpoint change encountered 
with a stable process under feedback control would be familiar to a process 
engineer. The first key feature is the immediate step change in the control 
signal when the setpoint value is changed. It is common practice to place 
the derivative term of the PID controller in the feedback loop so that it only 
acts on the filtered process variable to avoid derivative kick (see Figure 6.2). 
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Thus, the initial step change in the manipulated variable is solely due to the 
proportional control action. The second import ant feature is that because 
of the integral action and the assumed stability of the closed-loop system, 
the control signal trajectory, in terms of the deviation from its initial steady 
state value, exponentially converges to 6, where K is the steady state gain 
of the process and F is the value of the setpoint change. For processes with 
time delay, the controller output does not begin to converge to its final value 
until a time period equal to the process delay has passed. 

Bearing in mind these two key features, our objective is to develop a 
mathematical description of the desired control signal response to a step 
setpoint change. Let us begin by introducing two new design parameters: 
a, which is related to the desired initial change in the control signal for a 
given step setpoint change, and T ,  the desired time constant for the exponen- 
tial response of the control signal following the initial change. The desired 
trajectory of u(t) for a step setpoint change of F can then be described 
mat hemat ically as 

Figure 6.3 illustrates the desired control signal response to a unit step set- 
point change for a = 0.5,1,2, wit h a normalized time constant T = 1 and a 
steady state process gain K = 1. It can be readily shown that u(0) = 9 
and u(oo) = 5. Therefore, the parameter a determines the initial change 
in the control signal expressed as a fraction of the total change required 
to achieve the new setpoint. It also determines the relative response speed 
between the open-loop process and the desired closed-loop system. For in- 
stance, when a = 1, the speed of the desired closed-loop system is equal 
to the open-loop process response. When a < 1, the speed of the desired 
closed-loop system is slower than the open-loop response and when a > 1, 
the speed of the desired closed-loop system is faster than the open-loop 
response. Typical values of a might be in the range 0.25 to 1.5, which cor- 
respond to initial changes in the control signal of 25% to 150% relative to 
the final steady state change. 

The parameter T determines the speed of convergence of the control sig- 
nal to its steady state value. We show later that the choice of the parameter 
T can be related to a, meaning that we can reduce the number of design 
parameters from two to one. 

With the specification on the trajectory of the desired control signal 
given by Equation (6.lO), the transfer function relating the setpoint to the 
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Figure 6.3: Control signal trajectories in response to  a uni t  step setpoint change 
(solid: a = l ;  dash-dotted: a = 0.5; dashed: a = 2) 

desired control signal is given by 

and the desired closed-loop transfer function relating the setpoint to the 
process output is given by 

We can see that, with the control signal specification in Equation (6.1 l ) ,  a 
lead-lag element has been added in series to the open-loop process transfer 
function G(s) to form the desired closed-loop transfer function in Equation 
(6.12). 

As an aside, this approach to controller design can be considered from 
a pole-placement point of view. For a stable process under PID control, 
the only pole in the open-loop system that needs to be moved to achieve 
closed-loop stability is the one located at the origin of the complex plane in- 
troduced by the integrator in the controller. Therefore, we can think of the 
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proposed design method as an attempt to directly specify the closed-loop 
pole locations, with the open-loop pole located at the origin moved to - $ 
and the remaining open-loop poles left untouched. 

Choice of the Design Parameters 
With respect to the problem of choosing a and r for the control signal per- 
formance specification, we recommend that their values be related to the 
process dynamics in order to achieve a desired closed-loop response. Three 
examples are presented here to show how to choose a and r in such a way as 
to cancel the dominant process pole using the zero of the lead-lag element 
in Equation (6.11). 

A. First order plus delay model 

Here we will let ar = T in order to cancel the single pole in the transfer 
function G(s), which gives r = z. Then we can choose a according to the 
desired closed-loop response speed. For instance, a larger value of a will re- 
sult in a larger initial change in the control signal and, in turn, both a faster 
control signal response and process output response. From a pole-placement 
point of view, a larger value of a means a shift to the left of the closed-loop 

1 pole -;. 

B. Laguerre model 

In Chapter 2, it was stated that if the process is greater than first order 
but without time delay, a reasonable choice for the scaling factor p can be 
based on the dominant time constant of the process. In this case, we can let 
ar = 1 to cancel this dominant pole in G(s), which gives r = & allowing 

P 
us to choose a to bring about the desired closed-loop response speed. 

C. Step response model 
Suppose we have a step response of the process from which we can obtain 
an estimate of the process settling time Ts and time delay d. In this case, 
we can crudely approximate the response by that of a first order plus de- 

-d Then, we can vary a to lay process and select ar = Ts;d or r = d g ,  . 
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determine the closed-loop response speed. 
In some cases, a choice of a = 1, which corresponds to the specification of 

a step change in the control signal and therefore a closed-loop response speed 
equal to the open-loop response speed, may be desirable. From Equation 
(6.12), we can see that this choice of a does not require a choice for the 
parameter T .  

6.2.2 Specification for integrating processes 

The control signal trajectories for integrating processes under PID control 
are different from those used for stable processes. As with the stable case, the 
control signal will have an initial change due to the proportional action in the 
controller but then, wit h integrating processes, the signal will exponentially 
converge to zero due to the presence of the double integrator in the open- 
loop transfer function, assuming stability of the closed-loop system. In this 
case, the transfer function from the setpoint to the control signal is required 
to be at least second order. 

There are also some other characteristics that the closed-loop system 
must have when the open-loop transfer function contains a double integrator. 
Suppose that the process transfer function G(s) has the following form, with 
the stable part represented by H ( s )  

where K is the steady state value of the stable part of the transfer func- 
tion and yl is the second coefficient in the Taylor series expansion of the 
stable part after factoring out K. It can be shown that, for an integrating 
process under PID control, the moment expansion of the closed-loop transfer 
function GT+y 

where the first 
characteristics 

has the form 

coefficient is unity and the second coefficient is zero. These 
must be reflected in the specification of the control signal 

trajectories in order to arrive at a successful design. 
Suppose we choose the desired closed-loop transfer function relating the 

setpoint to the control signal to be of the form 
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where the time constant T and the damping factor C are the design parame- 
ters, and K and yl are the process parameters defined in Equation (6.16). 
Combining Equation (6.18) with the process transfer function G(s) gives a 
desired closed-loop transfer function in the following form 

where it can be shown through polynomial division that GT+,(s) satisfies 
Equation (6.17). 

Types of Integrating Processes 

We now divide the general class of integrating processes described by Equa- 
tion (6.16) into two types based on the sign of the parameter 71. In both 
cases, the trajectory of the desired control signal is scaled with respect to 
(yl(. A single tuning parameter P (P > 0) is introduced such that the time 
constant of the desired control signal response is given by r = Plyl l. This 
makes analysis and tuning straightforward. 

Type A: 71 < 0 
We refer to this type of integrating process as being lag dominant, which 
represents the majority of integrating processes encountered in the process 
industries. The time constant of the desired control signal is chosen as 

Then Equation (6.18) becomes 

We define s' = lylls as a scaled Laplace transform variable which allows us 
to rewrite Equation (6.21) as 

The scaling with lyll in the Laplace domain naturally leads to a scaling in 
the time domain with t  ̂ = h, where t  ̂ represents the normalized time. The 
desired control signal response for a given step setpoint change of magni- 

2 +l - tude F has an initial change of &T and then exponentially decays to 
zero following a second order response with a normalized time constant P 
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Figure 6.4: Desired control signal trajectory with P = 2 (solid: C = 0.707; dash- 
dotted: C = 1.0) 

and a damping factor c. For a Type A integrating process with its corre- 
sponding values of K and lyll, the choice of parameter P can be based on 
hard constraints on the maximum desired allowable change in the control 
signal and/or the desired response speed of the control signal. A smaller P 
corresponds to a higher performance specification (namely a faster closed- 
loop dynamic system response) leading to a larger initial change in the 
control signal. On the other hand, a larger P corresponds to a lower per- 
formance specificat ion (i.e. a slower closed-loop dynamic system response) 
and a smaller initial change in the control signal response. For this type of 
lag dominant process, we suggest the damping factor c be chosen as either 
1 or 0.707. The difference between these two choices for f in terms of their 
effect on the desired control signal trajectory for a unit step setpoint change 
is shown in Figure 6.4 with Klyll = 1. The effect of P on the control signal 
response is illustrated in Figure 6.5 with f = 1. 

Type B: 71 > 0 
This type of integrating process is referred to as being lead dominant. Here 
we select 

7 = P71 (6.23) 
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Figure 6.5: Desired control signal trajectory with C = l (solid: P = 2; dash-dotted: 
P = 4) 

Normalized time 

Figure 6.6: Desired control signal trajectory with P = 0.1 ('0': initial value for 
C = 5; l*': initial value for C = 5.025) 
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Then, Equation (6.18) becomes 

and its scaled form with respect to B = yls is given by 

In order to avoid an undesirable inverse response in the control signal, the 
requirement is that (2PC - 1) 2 0 must be satisfied. This condition dic- 
tates that, for a smaller choice of p, a larger value for c has to be se- 
lected. The poles of the second order system given in Equation (6.25) are 
- g(1 & J-). Therefore, as C increases, one pole becomes larger in its 
mapi t  ude while the other approaches zero. Under these conditions, the 
control signal response tends to a first order response with time constant 
equal to Y-- . 

C- JC2_1 
The desired control signal response for a given step setpoint change of F 

has an initial change of Our suggestion for choosing P and C is to 
first select p such that T 1s on the same order of magnitude as the larger of 
the dominant process time constant or delay, and then to adjust 5 to satisfy 
(2PC - 1) 2 0 and to determine the closed-loop response speed, with a larger 
C corresponding to a faster response. Figure 6.6 shows the trajectories of 
the desired control signal for a unit step setpoint change with C = 5 and 
5.025, P = 0.1 and Kyl = 1. These two trajectories are almost identical 
except in their initial responses to the setpoint change. This difference has 
a significant effect on the response speed of the closed-loop system, as will 
be illustrated in Section 6.7. 

The control signal trajectories presented in the previous section require rela- 
tively little information about the process to be controlled. For instance, the 
specification for stable processes cont ains only the steady state process gain 
K and the specification for integrating processes contains only K and yl. 
However, the design of the PID controller itself, with its limited degrees of 
freedom, will ultimately have to be based on some further process informa- 
tion. The information to be used here is given by the frequency response of 
the process, G(jw). From the desired transfer function of the control signal 
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response to a setpoint change, we can readily find the desired closed-loop 
frequency response GT+y (jw) as 

Our objective is to find the PID controller parameters such that the actual 
closed-loop frequency response is in some sense close to the desired closed- 
loop frequency response G,+ (jw) . However, the direct approach to this 
problem leads to a nonlinear optimization problem. Instead, we choose to 
work with the equivalent open-loop transfer function because, in this case, 
the problem becomes linear in the controller parameters, enabling us to 
consider a linear least squares approach to solving this problem. 

From the desired closed-loop frequency response, the desired open-loop 
frequency response can be obtained from 

The actual open-loop transfer function, (jw), for the process under PID 
control is given by 

Our task is to find the coefficients c2, cl and c0 such that the sum of squared 
errors between the desired and actual open-loop frequency response is min- 
imized over a set of frequencies {wi). We choose the loss function to be 

which can be rewritten as 

where 

and = [c2 c1 c01 

The minimum of this loss function V is given by applying the standard least 
squares result 
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6.3.1 Illustrative example 

The following example is used to give some insight into which frequency 
region is better for PID controller design by comparing the results obtained 
using a low frequency region in the solution of Equation (6.31) with results 
obtained using the crossover frequency region. Consider the system given 
by the following transfer function (Lilja, 1990) 

This process has an approximate settling time of 15 sec. Therefore, the lead 
element in the control signal trajectory specification for stable processes, 
a7, is chosen to be = 3, which is approximately equal to the dominant 
process time constant. Then we let T = 2 and tune the parameter a to 
determine the closed-loop response speed. The transfer function from the 
setpoint to the desired control signal is given by 

and the desired closed-loop transfer function relating the setpoint to the 
process output is 

The desired closed-loop process output responses for a unit step setpoint 
change are shown in Figure 6.7 for a = 1 and a = 6. With a = 1, the 
desired closed-loop response is identical to the open-loop step response. 

Use of the Low Frequency Region 
We now concentrate only on the case of a = 6 which corresponds to the faster 
closed-loop performance specificat ion. We have specified the frequency re- 
gion used in the design as 0.0001 < uti < 0.2 radianslsec. This region has 
been uniformly discretized to generate 200 frequencies. By applying the 
least squares algorithm in Equation (6.31), we obtain the PID controller 
parameters KC = 0.93, TI = 5.14 and TD = 1.80. The actual closed-loop 
frequency response relating the setpoint to the process output obtained us- 
ing these PID controller settings is compared with the desired closed-loop 
frequency response in Figure 6.8. The closed-loop frequency response fit is 
very good in the low frequency region, as expected. On the other hand, the 
fit in the higher frequency region is not as good. 
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Figure 6.7: Desired closed-loop process output responses to a unit  step setpoint 
change (solid: a = 1; dash-dotted: a = 6 )  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 
Real 

Figure 6.8: Comparison of the desired and actual closed-loop frequency responses 
using low frequency region (solid: desired; dash-dotted: actual) 



Ne W Frequency Domain PID Controller Design Method 
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Figure 6.9: Comparison of the desired and actual closed-loop frequency responses 
using crossover frequency region (solid: desired; dash-dotted: actual) 

Use of the Crossover Frequency Region 

For closed-loop stability, the Nyquist plot of the actual open-loop trans- 
fer function (jw) must not enclose the (-1,O) point on the complex 
plane. This time, we have investigated the PID controller parameter solu- 
tions using frequency information around the desired closed-loop crossover 
frequency. With a = 6, the crossover frequency is in the vicinity of W = 0.6 
radianslsec. Therefore, we have chosen 0.4 5 wi 5 0.8 radians/sec, dis- 
cretized using a step size of 0.001, for the design. Applying the solution 
in Equation (6.31), we obtain the PID controller parameters KC = 0.81, 
TJ = 2.30 and 70 = 3.34. Note that there are quite large discrepancies be- 
tween these parameters and those obtained using low frequency information. 
Figure 6.9 shows the desired and actual closed-loop frequency responses re- 
lating the setpoint to the process output for this new set of parameters. The 
comparison with Figure 6.8 shows dramatically different results, in that the 
closed-loop frequency response errors are significant in the low frequency 
region. As expected, the fit is quite good in the crossover region. 

Figure 6.10 presents the closed-loop simulations comparing the two sets 
of PID controllers for the case a = 6, with a unit step setpoint change at 
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Figure 6.10: Comparison of closed-loop responses (solid: use of crossover frequency 
region; dash-dotted: use of low frequency region). Upper diagram: controller output; 
lower diagram: process output 
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t = 0 followed by a negative unit step load disturbance at t = 60 sec. We 
have simulated the closed-loop system with the derivative action, includ- 
ing a first order filter with time constant equal to 0.170, applied only to 
the measurement (see Figure 6.2). From this comparison, we can see that 
the PID controller designed using low frequency information performs much 
better than the one designed using the crossover frequency information in 
terms of both setpoint response and disturbance rejection. It also yields 
performance that is much closer to the desired response (compare Figure 
6.10 with Figure 6.7). These results would seem to call into question the 
popular belief that the crossover frequency is the most important frequency 
region for PID controller design. 

6.4 PID PARAMETERS: USE OF ONLY TWO FREQUENCIES 

Let us begin by rewriting the loss function in Equation (6.29) in the following 
form 

where W(jwi) = and 
3 Wi 

where YR(w) and YI(w) are the real and imaginary parts of Y(jw), respec- 
t ively. 

We now focus our attention on the Y (jw) function. Note that from 
Equation (6.35) the frequency domain error between the desired open-loop 
frequency response GOl(jw) and the actual open-loop frequency response 

(jw) = C(jw)G(jw) is zero for all W if 

for a PID controller, or if 

for a PI controller. Hence, in order to guarantee a small frequency domain 
error, the structure of Y (jw) for a PID controller must satisfy, for wmin 5 
W 5 Wmalc, and some constants PO, Pl, and h, 
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or in terms of its real and imaginary parts 

Equations (6.41) and (6.42) indicate that the graph of the real part of Y ( j w )  
versus w2 should behave like a straight line with slope -a and intercept 
PO, and the graph of the imaginary part of Y ( j w )  versus W should behave 
like a straight line passing through the origin with slope PI for this error to 
be small. 

Through the next two examples, we examine how both the real and 
imaginary parts of the Y ( j w )  function behave as a function of frequency for 
two different processes. 

Example 6.1. Consider the first order system 

We let a r  = 1 and therefore T = i. Then the desired closed-loop transfer 
function from setpoint to the control signal is given by 

and Y ( j w )  from Equation (6.37) is given by 

Y ( j w )  = a j w  + a (6.45) 

with real part 
YR(w)  = Q 

and imaginary part 
YI ( W )  = aw 

Equation (6.46) represents a horizontal line wit h respect to w2 that intersects 
the ordinate axis at a, and Equation (6.47) is a straight line with respect 
to W through the origin with slope a.  By setting cl = c0 = a and c2 = 0 
(or equivalently KC = cl = a ,  TI = 2 = 1 and 70 = Q = 0), we obtain 

c 1 
a perfect fit between the desired open-loop frequency response GOl ( j w )  and 
the actual open-loop frequency response ( j w )  = C ( j w ) G ( j w )  at all fre- 
quencies, regardless of t he choice of a .  Therefore, any arbitrary closed-loop 
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performance may be achieved for this first order process using a PI controller. 

Example 6.2. Consider a first order plus time delay system 

The closed-loop performance specification G,+,(s) is chosen in the same 
form as Equation (6.44). However the desired closed-loop transfer function 
between the setpoint and the process output response is given by 

and therefore Y (jw) is given by 

It is obvious by inspection of Equation (6.51) that the real and imaginary 
parts of Y no longer exactly satisfy Equations (6.41) and (6.42). 

For instance, suppose that we choose a = 3 for the design. Figure 6.11 
shows that the real and imaginary parts of Y behave like straight lines 
against w2 and W, respectively, with a small time delay (d = 0.1) indicat- 
ing that it is possible to obtain a perfect fit between the desired open-loop 
frequency response and the actual open-loop frequency response at all fre- 
quencies using a PID controller. However, for a large time delay (d = 5), 
a good fit between the desired open-loop frequency response and the actual 
open-loop frequency response could only be obtained using a PID controller 
in the lower frequency region where the real and imaginary parts of Y be- 
have like straight lines. 

Proposed Solutions for PID Controller Parameters 
For Example 6.1, it is clear that any two frequencies could be used to con- 
struct straight lines to fit both the real and imaginary parts of Y. However, 
for Example 6.2, it would appear to be better to choose two frequencies from 
the lower frequency region to construct approximate straight line fits. Then 
the slope and intercept values of these straight lines give simple solutions 
to the parameters CO, cl and ca. Note that, if the trajectories of the real 
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Figure 6.11: Frequency response of Y for Example  6.2 (solid: d=5; dash-dotted: 
d=l; dotted: d=O.l). Upper diagram: real part of Y ;  lower diagram: imaginary 
part of Y 
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and imaginary parts of Y closely satisfy Equations (6.41) and (6.42), these 
simple solutions will be close to the least squares solution given by Equa- 
tion (6.31) within the frequency region where the two frequencies have been 
selected. 

In summary, given the process frequency response at two frequencies 
G(jwl) and G(jw2) with wl < wz, we can compute the parameters CO, cl 
and c2 from Y(jw) as follows: 

Slope of YR VS w2: 

l. 

Intercept of YR VS w2: 

Slope of YI vs W: 
YI (W1 ) 

C1 = - 
W1 

The values for these coefficients can then be substituted directly into Equa- 
tions (6.4)-(6.6) to obtain the final PID controller parameters. For a PI 
controller, the proportional gain and integral time constant remain the same 
and the derivative time constant is set to zero. 

In this section, we decide on exactly which two frequencies to use in Equa- 
tions (6.52)-(6.54) in order to solve for the PID controller parameters. Our 
ultimate objective is to produce a PID controller that achieves a close match 
between the actual and desired closed-loop performance in the time domain. 
Which frequencies to use for PID design has been and remains an interesting 
question. The well-known Ziegler-Nichols frequency response PID tuning 
method is based on the crossover frequency of the process. However, we 
have found that, although the crossover frequency is very important from 
a stability point of view, lower frequencies are far more important from a 
closed-loop performance point of view. 

Our goal for PID controller design is to achieve the desired closed-loop, 
time domain performance with respect to both the process output variable 
and the control signal responses. The key is to be able to link the fre- 
quency domain controller design with the time domain performance specifi- 
cation. To make this link, we examine the relationship between the desired 
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closed-loop frequency response Gr+y (jw) and the corresponding closed-loop 
response y(t) to a unit step change in the setpoint ~ ( t ) .  

We begin by assuming that the unit step response y(t) is approximately 
equal to unity for t > Ts, where Ts is the desired closed-loop settling time. 
We also assume that the closed-loop system is sampled with an interval 
At. It is well known that, at the sampling instants, the continuous-time 
step response is equal to the discrete-time step response. This property is 
called step response invariance with respect to discretization. Therefore, the 
results developed in Chapter 5 between the frequency sampling filter model 
and a discrete-time step response model can be applied. 

Assuming that the sampling instants correspond to to = 0, tl  = At, . . ., 
t ~ - ~  = (N - l)At, where N = g ,  we know from Equation (5.4) that the 
following relationship exists between the closed-loop step response and the 
closed-loop frequency response 

The approximation sign accounts for the fact that we have replaced the 
discrete-t ime frequency response by its corresponding cont inuous-t ime form. 
Equation (6.55) indicates that the closed-loop frequency response Gr+y ( j  W) 

evaluated at the set of frequencies, W = 0, e, . . . , & radiansftime, deter- 
mines the step response of the closed-loop system. In addition, from the 
analysis of the weighting functions in Equation (6.55) performed in Chap- 
ter 5, we found that the contributions of the frequency components to the 
construction of the step response decrease with increasing frequency. There- 
fore, in order to achieve the desired closed-loop time domain performance, 
the frequencies that are most important for controller design can be ranked, 
in descending order, starting from W = 0, W = E, W = E, and so on. 

Given that the desired closed-loop transfer function will match the ac- 
tual closed-loop transfer function at the zero frequency with the presence of 
integral action in the PID controller, we propose to use the frequencies E 
and radiansltime in our design. The computations for the coefficients 
CO, cl and c2 are summarized below, where wl = E and w2 = 2wl. 
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Summary of PID Design Method 

Step 1: Specify the desired closed-loop performance through choices of cu 
and T for stable processes, or P and C for integrating processes, to form 
the closed-loop transfer function relating the setpoint to the desired 
control signal response. 
Stable processes: 

Type A integrating processes (rl < 0): 

Type B integrating processes (rl > 0): 

Step 2: Choose the desired closed-loop settling time Ts in order to de- 
termine the frequencies to be used in the design. Given the process 
transfer function G(s), Ts can be determined by simulating the step 
response of the desired closed-loop transfer function = G,,,G. 

Step 3: Calculate the frequency response G(jw) and G,+., (jw) at wl = 2 Ts 
and wz = to form the desired closed-loop frequency response 

Ts 

Step 4: Evaluate the Y (jw) function at wl and w2 as 

where 

Step 5: Calculate the coefficients CO, cl and c2 using Equations (6.56)- 
(6.58). Convert these coefficients into the final PID controller pa- 
rameters using Equations (6.4)- (6.6). 



6.6 Ensuring a Positive Integral Time Constant 155 

Derivative action is naturally introduced with this design method depend- 
ing on the performance specification for the closed-loop response speed. A 
higher performance specification will likely require a PID controller while 
a lower performance specification will often only require a PI controller. 
This will be obvious to the user by looking at the sign and magnitude of the 
derivative time constant. When TD is negative, this indicates that derivative 
action must not be used and TD should be set equal to zero. The controller 
then reduces to PI only, using the calculated values of KC and TI. When 
F 5 0.1, it can be safely assumed that a PI controller is sufficient and again 
set TD = 0. 

The minimum requirement for a stable closed-loop system with a PID 
controller is to have a positive sign for the integral time constant. For a 
given process model, this requirement can be satisfied by a proper choice for 
the closed-loop performance parameters. (From our experience with the pro- 
posed PID design approach, the proportional gain of the controller almost 
always has the correct sign. Therefore, we focus our attention on ensuring 
the correct sign of the integral time constant .) 

Stable Processes 
Let us express the process transfer function G(s) using a Taylor series ex- 
pansion as 

G(s) = K ( l  + 91s + - m )  (6.64) 

and the transfer function relating the setpoint to the desired control signal 
in Equation (6.11) as 

Then 

and 
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Then we obtain 

lim Y(jw) 
w-ko 
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Therefore, the coefficient CO, which represents the intercept of YR versus w2, 
is given by 

1 
CO = -- l 

(6.69) 
K (91 + 7(a - 1)) 

To ensure a positive integral time constant 71, the parameter c0 must be 
positive for a positive controller gain and negative for a negative controller 
gain (see Equations (6.4) and (6.5)). Assuming the controller gain has the 
same sign as the process gain K ,  Equation (6.69) leads to the following 
condition on the performance parameters 

Integrating Processes 

Assume that the integrating process transfer function G(s) is expressed using 
a Taylor series expansion as 

and that the desired closed-loop transfer function from setpoint to control 
signal in Equation (6.18) is also expanded in terms of a Taylor series as 

which gives 

Then 

and 
1 

lim Y(jw) = -- 
l 

W+O K 2C~71 - r2 - y? + 7 2  
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Therefore, the coefficient CO, which represents the intercept of YR versus w2, 
is given by 

1 c()=--  1 
(6.76) 

K 2C~yl - r2 - '$4-  7 2  

To obtain a positive integral time constant, the control performance para- 
meters are required to satisfy the following condition 

For both stable and integrating processes, we can expand the stable part 
of the transfer function, given by the general form 

into its Taylor series expansion 

From this general expression, we can easily calculate g1 in Equation (6.64) 
for a stable process, and yl and 7 2  in Equation (6.71) for an integrating 
process. 

In this section, we present four simulation examples to illustrates the pro- 
posed PID controller design method and to compare it with other popular 
design methods found in the literature. We begin by studying two stable 
processes followed by two integrating processes. Both stable processes are 
first order plus delay systems, one with a deadtime to time constant ratio 
less than one (0.5) and the other with a ratio much greater than one (5.0). 
Both types of stable processes are frequently encountered in the process in- 
dustries and therefore represent a reasonable basis for comparison. 

Example 6.3. Consider the problem of PID controller design for the 
following plant transfer function model 

We have applied our design method using three 
and 1.5) to provide insight into the role of this 
rameter. In all cases, the parameter T has been 

different values of a (0.5, 1.0 
key performance-related pa- 
selected according to T = g, 
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Table 6.1: PID parameters for Example 6.3 

where T = 10 for this example. The desired closed-loop settling times Ts 
were estimated directly from the open-loop settling time of approximately 55 
and the choice of a! according to Ts = E. The PID controller parameters for 
these three cases are summarized in Table 6.1. The closed-loop performance 
for each PID controlled system was evaluated through simulations. For each 

KC 
TI 

TD 

case, a setpoint change of magnitude 1.0 was introduced at t = 0 and a step 
load disturbance of magnitude 1 was introduced at t = 200, entering at the 

IMC 
1 

12.5 
2 

process input. The closed-loop responses are shown in Figure 6.12. It is very 
clear from this figure that the responses closely match the desired responses. 
For instance, wit h a! = 0.5, the initial change in the control signal for a unit 
setpoint change is close to 0.5 and the settling time of the control signal is 
approximately equal to 5 X T = 5 X 20 = 100. Figure 6.12 shows that the 
speed of the process output response increases with increasing values of a 
as expected, but without any oscillations, even for a = 1.5. 

For comparison purposes, we have applied the design methods of Ziegler 
and Nichols (Z-N) (l942), Rivera et al. (IMC) (1986) (Case F) and Zhuang 
and Atherton (Z-A) (1993) to this example. The IMC method requires 
choice of the IMC filter time constant which we selected to be equal to 
10. (This performance specification is equivalent to a choice of cu = 1 for 
our design.) For the Z-A design, we have used their Table 7 for setpoint 
changes with the derivative action, including a filter, in the feedback path. 
The closed-loop responses are given in Figure 6.13. For the setpoint change, 
the initial change in the controller output is very large for the Z-N design 
(368%) and for the Z-A design (272%). In addition, the control signals 
for these two designs exhibit significant oscillations before reaching their 
final steady-state values. Both of these characteristics are undesirable in 
a process control context due to modelling inaccuracies, saturation of fi- 
nal control elements, wear on final control element S, interactions with other 
process variables, and operator distress (Harris and Tyreus, 1987). On the 
other hand, the IMC design and our designs are much less aggressive. From 
looking at the corresponding process output responses, the Z-N and Z-A 

a = 0.5 
0.421 
10.52 
0.414 

Z-N 
2.275 
8.59 
2.15 

a = l 
0.728 
10.93 
0.693 

Z-A 
1.993 
14.83 
1.92 

a = 1.5 
0.966 
11.20 
0.921 
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Figure 6.12: Setpoint and load disturbance responses for Example 6.3 (solid with 
( 7  o : a = 0.5; solid: a = 1; solid with '+ ': a = 1.5). Upper diagram: process output; 
lower diagram: control signal 
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Figure 6.13: Setpoint and load disturbance responses for Example 6.3 (solid with 
'0': 2-N; solid: 2 -A;  solid with l+': IMC). Upper diagram: process output; lower 
diagram: control signal 
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designs exhibit overshoot while the IMC design and our designs produce a 
monotonic rise to the new setpoint value. The load responses are consistent 
in that the Z-N and Z-A designs produce faster recovery times than the 
IMC design and our designs due to more aggressive changes in the control 
signals. Overall, the IMC design provides a level of performance which falls 
in between our designs of a! = 1.0 and 1.5. 

Example 6.4. Consider the problem of PID controller design for the 
following plant transfer function model 

For our design, we have used a conservative choice for the parameter a! of 
0.25 and T = = 40. This corresponds to a desired initial change in the 
control signal of 25% of its final value and an approximate settling time for 
the control signal of 160. The desired settling time for the closed-loop sys- 
tem (Ts) was estimated from the settling times of the control signal and the 
open-loop process to be 250. For this example, we are not going to compare 
our results with the Ziegler-Nichols method because Astrom et al. (1992) 
recommend against using this design method for processes of this type with 
delay to time constant ratios greater than unity. However, we do compare 
our results with the PID tuning rules proposed by Cohen and Coon (C-C) 
(1953) as suggested by Astrom et al. (1992) to be a reasonable alternative 
in this case. 

We also compare our results with the IMC-PID design proposed by 
Rivera et al. (1986) (Case F) and with the tuning suggested by Zhuang 
and Atherton (Z-A) (1993). To make the comparison fair between our de- 
sign and IMC, we specify the performance level to be the same in both cases, 
i.e. the value for the IMC filter time constant was selected to be equal to 
40. This satisfies the condition for Case F that the filter time constant be 
greater than one half the process delay. PID controller parameters for these 
four designs are summarized in Table 6.2. 

In each simulation experiment, a setpoint change of magnitude 1.0 was 
introduced at t = 0 and a step load disturbance of magnitude 1 entered 
at t = 500. The closed-loop responses are compared in Figure 6.14. The 
results show that both the IMC and Z-A designs produce more aggressive 
responses to the setpoint and load changes than our design, and the C-C 
design produces a more sluggish response. However, our design provides a 
much smoother response than the other three methods in both the control 
signal and the process output and we feel this is a direct result of our design 
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Table 6.2: PfD parameters for Example 6.4 

KC 

philosophy. For instance, note that in Figure 6.14, the control signal follows 
almost exactly the specified trajectory for a value of a = 0.25 and T = 40 
and it is this trajectory that produces the smooth process output response. 

One final point worth making is that the models in Examples 6.3 and 
6.4 were used in different ways by the five design methods. In our method, 
we used the model to calculate the process frequency response at the two 
frequencies wl and w2. In the IMC and Cohen-Coon methods, the transfer 
function model parameters were used directly in the respective formulae. 
For the Ziegler-Nichols and Zhuang- Atherton methods, the critical gain and 
period were calculated from the model. 

Example 6.5. Consider the integrating process 

a = 0.25 
0.275 

which has been used by Astrom and Hagglund (1995) to test their tun- 
ing met hods. Recall that in our performance specification for integrating 
processes we require process information in terms of K and 71. For this ex- 
ample, K = 1 and yl = -3, as determined by using the general expression 
in Equation (6.79). For this Type A (lag dominant) integrating process, the 
closed-loop transfer function from the set point to the desired control signal 
response is chosen to be 

The parameter is set to be 1 and P is used to adjust the performance, 
where the desired closed-loop time constant is yl l. Recall that a smaller P 
corresponds to a faster desired closed-loop system response speed. The PID 
controller parameters, calculated using an estimate of the desired closed- 
loop settling time given by Ts = ?Plyl 1 ,  are shown in Table 6.3 for three 
different choices for P. Closed-loop simulations are shown in Figure 6.15 

IMC 
0.538 

C-C 
0.517 

Z-A 
0.508 
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Time (sec) 

Figure 6.14: Setpoint and load disturbance responses for Example 6.4 (solid with 
l+ 7. . 2-A; solid: 

diagram: process 
-our  design; solid with (0': IMC; solid with l*': C-C). Upper 
output; lower diagram: control signal 

Table 6.3: PID controller parameters for Example 6.5 
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Figure 6.15: Setpoint and load disturbance responses for Example 6.5 (fastest 
response speed: P = 0.5; medium response speed: P = 1; slowest response speed: 
p = 3). Upper diagram: control signal; lower diagram: process output 
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6 

4 

2 

for a unit step setpoint change at t = 0 and unit step load disturbance at 
t = 75. From this figure, it is clear that P provides an effective means for 
adjusting the closed-loop performance. 

For 0 = 0.5, our PID controller parameters are approximately equal to 
the parameters obtained by Astrom and Hagglund using their maximum 
sensitivity parameter MS = 2.0 (Kc = 0.67, TJ = 7.6, 7-0 = 1.7). We have 
made a direct comparison of the performance of these two PID controllers 
in Figure 6.16, without using Astrom and Hagglund's additional setpoint 
weighting parameter. From this figure we can see that both PID controllers 
give about the same setpoint response and disturbance rejection. However, 
some oscillations in the closed-loop responses did appear wit h Astrom and 
Hagglund's settings that seemed to be avoided with our approach. 

1 1 I 

- 

- 

- 

o 1  I I 

Example 6.6. The following model of an integrating process is a modified 
version of the transfer function presented in EnTech (1993) for the dryer 
steam pressure associated with paper machine dryer cans. We have added 

0 50 100 
Time (sec) 
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Figure 6.16: Setpoint and load disturbance responses for Example 6.5 (solid: 
A s t r i i m - ~ l i ~ ~ l u n d  (Ms = 2.0); dash-dotted: ,B = 0.5). Upper diagram: process 
output; lower diagram: control signal 
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Table 6.4: PID controller parameters for Example 6.6 

5 seconds of delay to this transfer function to make it more challenging. 

This is a Type B (lead dominant) integrating process with K = 0.005 and 
yl = 300 - 20 - 5 = 275 determined using the general expression in Equation 
(6.79). We first apply our design method and then make some comparisons 
with the IMC-PID design. 

First, the parameter p is chosen to be 0.1, which makes r = 27.5 on 
the same order of magnitude as the dominant process time constant of 20. 
For a slow closed-loop response, we have set the initial change in the desired 
control signal response to a unit step setpoint change equal to zero (2PC = 1). 
This choice gives a value for C equal to 5. For a fast closed-loop response, 
we have set the initial change in the desired control signal response to a unit 
step setpoint change equal to which gives a value for C equal to 5.3. The 
desired closed-loop settling time Ts was approximated as 67 = 165 for both 
cases. The PID controller parameters for both C = 5 and C = 5.3 are listed 
in Table 6.4. For C = 5, the derivative time constant TD turns out to be a 
negative number and therefore is set equal to zero. These parameter values 
show that with a more aggressive control performance specification, a larger 
controller gain and more derivative action are required. Figure 6.17 shows 
the closed-loop responses for these two designs with a unit step setpoint 
change occurring at t = 0 and a unit step load disturbance occurring at 
t = 400. 

We have also examined the IMC-PID design from Rivera et al. (1986) 
for this example. These authors suggest that for processes with a left half 
plane zero, the PID controller should be augmented with a first order lag to 
cancel this zero. We have designed an IMC-PID controller using their Case 
R which is for a model of the form 

where, for this example, K = 0.005, d = 5, T = 20. We have added a first 
order lag with unit gain and time constant equal to 300 in series with the 
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Table 6.5: PID controller parameters for Example 6.6 (IMC design) 

PID controller to cancel the stable process zero and arrive at the process 
model structure in Equation (6.85). We based our choices for the IMC filter 
time constant E on the approximate process output settling times found in 
Figure 6.17. To compare with the slow response design, we estimated the 
settling time to be 400 and selected E = F. For the fast response design we 
selected E = 7. Table 6.5 summarizes the PID controller parameters for 
the IMC designs. Figure 6.18 shows the closed-loop responses for these two 
designs with the same setpoint and disturbance inputs used previously. In 
comparing the results, it is important to point out that the large discrepancy 
in the magnitude of the controller parameters results from the fact that two 
different process models have been used in the controller calculations, i.e. 
our design uses the true process model given by Equation (6.84) and the 
IMC design uses the process model given in Equation (6.85). It should also 
be noted that a series filter is required to implement the IMC design, but is 
not required with our design. Comparing Figure 6.17 with Figure 6.18, we 
can see that our design produces less overshoot to the setpoint change and 
faster disturbance rejection without oscillation. 
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Figure 6.17: Setpoint and load disturbance responses for Example 6.6 (solid with 
'0': C = 5;  solid: 6 = 5.3). Upper diagram: process output; lower diagram: control 
signal 
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Figure 6.18: Setpoint and load dzsturbance responses for Example 6.6 (solid with 
C o 7. . E = y; solid : E = F). Upper diagram: process output; lower diagram: 
control signal 
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Chapter 7 

Tuning Rules for PID 
Controllers 

This chapter introduces new PID tuning rules, derived from the general PID 
design method proposed in the previous chapter, for frequently encountered 
first order plus delay processes and integrating plus delay processes. 

This chapter consists of five sections. Section 7.2 presents the development of 
the PID controller tuning rules for first order plus delay processes. Sections 
7.3 and 7.4 illustrate the new tuning rules using simulation and experimental 
studies, respectively, and compares the results wit h those obtained using 
the IMC-PID tuning rules. Section 7.5 presents the development of the PID 
tuning rules for integrating plus delay processes. 

Portions of this chapter have been reprinted from IEE Proceedings- 
Control Theory and Applications 142, L. Wang and W.R. Cluett, "Tuning 
PID controllers for integrating processes", pp. 385-392, 1997, wit h permis- 
sion from IEE. 

Assume that the process can be described by the following first order plus 
delay transfer function 
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where K is the process gain, T is the process time constant and d is the 
process delay. For this stable process, we choose the closed-loop transfer 
function from the setpoint to the desired control signal to be 

leading to the following desired closed-loop transfer function from the set- 
point to the process output 

where g is the desired closed-loop time constant, which we denote as rC1. In 
order to derive the PID tuning rules, we define S = ds as a scaled Laplace 
transform variable, and the ratio of time constant to delay as L = $. The 
process transfer function in Equation (7.1) can then be expressed in a nor- 
malized form as 

n-$ 

and similarly the desired closed-loop transfer function in Equation (7.3) can 
be re-expressed as 

We refer to as the normalized desired closed-loop time constant and denote 
it as c l .  Therefore, the desired closed-loop time constant and its normalized 
form are related by rC1 = dFcl. For a step setpoint change, we would expect 
the process output to take approximately (SFc1 + l )d  = (5rCl + d) time units 
to reach the new setpoint value. 

The ratio of the process time constant to delay, L, is a measure of the 
difficulty in controlling a process (Astrom et al. 1992; Fertik, 1975). For 
instance, processes with a small L must have a slower desired closed-loop 
response speed for robustness reasons, while processes with a large L permit 
a faster desired closed-loop response speed. Since the parameter a reflects 
the desired closed-loop response speed for our design, a fixed normalized 
closed-loop time constant .icl = can be used for all L to achieve the same 
relative performance level. For example, at a given value of .icz, a small L 
automatically yields a small cu (slow response) and a large L yields a large 
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a (fast response). Therefore, .id forms the basis for specifying closed-loop 
performance in the context of PID tuning rules for this class of processes. 

To derive the PID tuning rules, we write the Y function defined in Equa- 
tion (6.36) in terms of the scaled variable i (or .li, = dw) 

The frequency response of Y( j6 )  is evaluated at cl = dwl = d g  and 
zir2 = 231 = 2dwl, where Ts is estimated from Equation (7.5) as (5.icl + 1)d. 
Given that the part of the denominator of Y (jw) involving W is dependent 
only on ?,l, then, for a fixed icl, we define for the first frequency wl 

and for the second frequency w2 

Then, Equation (7.6) can be written in terms of its frequency response at 
w1 and 2w1 

l w1 
Y(j-61) = -- 

Kd lull 
((sin41 - c o s 4 i ~ i L )  + j(cos4l + sin#q.uil L)) (7.9) 

We now develop new expressions for the PID controller parameters using 
Equations (6.56)- (6.58) and Equations (6.4)- (6.6). 

Proportional gain: 

where 
= kl + k2L 

is the normalized proportional gain 

kl = 

with kl and k2 defined by 
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Integral time constant: 

W here 

is the normalized integral time constant with 

Derivative time constant: 

TD = 

- - 

where 

is the normalized derivative time constant with 

Note that the normalized PID controller parameters K ~ ,  and ?D are only 
dependent on the ratio of the time constant to delay, L, and the normalized 
desired closed-loop time constant, +cl. 
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We can also express the actual open-loop transfer function in terms of the 
normalized process transfer function in Equation (7.4) and the normalized 
PID controller parameters 

It is clear from this expression that the open-loop transfer function is only a 
function of the ratio of the process time constant to delay, L, and the choice 
of -icl, and is independent of the actual process parameters. Therefore, for a 
given choice of icl, we are able to obtain the gain margin (GM) and phase 
margin (PM) of the designed system with respect to L only. Since the 
critical frequencies associated with Equation (7.27) are with respect to i, 
the actual crossover frequency W, is scaled by the process delay as W, = 

and the critical phase margin frequency is wp = 3. 
In addition to gain and phase margins, another important measure of 

robustness for the designed PID control system is the allowable time delay 
variation, i.e. the increase in the process delay that would bring the closed- 
loop system to the stability boundary. The closed-loop system reaches this 
critical stability boundary when the change in the delay, Ad, multiplied by 
the critical frequency wp equals the phase margin (in radians). That is 

which gives the allowable relative time delay variation (or relative delay 
margin) 

As with the gain and phase margins, the relative delay margin depends only 
on L and the choice of Fcl. 

Presentation of the Tuning Rules 
Although Equations (7.1 1)- (7.25) give analytical solutions for the PID con- 
troller parameters, it would be even more convenient for the user to have 
tuning rules requiring a minimum number of calculations. In order to present 
a range of desired closed-loop response speeds, we have chosen six different 
values for the normalized closed-loop time constant cl = 4, 2, 1.33, 1, 0.8 
and 0.67. The corresponding value of the parameter a can be simply calcu- 
lated as a = 4 and the actual desired closed-loop time constant is given by 

Tcl 
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rCl = d.icl. In this simplified form, the tuning rules will be on a comparable 
level with the Ziegler-Nichols and Cohen-Coon rules in terms of ease of use, 
with the added benefit of having several different performance levels for the 
user to choose from along with their respective stability margins. 

Table 7.1 lists the normalized PID controller parameters for each and 
the respective ranges of the stability margins for both PID and PI design (the 
settings for PI control are obtained from the same set of equations for PID 
with TD = 0). These stability margins were calculated for 0.1 5 L 5 100. 
Figure 7.1 shows the corresponding gain margins and phase margins, and 
Figure 7.3 shows the allowable relative time delay variation when a PID 
controller is used. Figure 7.2 shows the gain and phase margins, and Figure 
7.4 shows the allowable relative time delay variation with a PI controller. 
All of these figures only show the values of the margins for 0.1 5 L < 20 
because the margins remain unchanged for L > 20. Comparing Figure 7.1 
with Figure 7.2 and Figure 7.3 with Figure 7.4, we can see that, with a lower 
performance specification (4 5 Fcl < 1.33), there are not significant differ- 
ences between the PI and PID stability margins. However, the differences 
become significant with higher performance specifications (1 5 .icl 5 0.67). 
This suggests that for a lower performance specification, a PI controller is 
adequate while for a higher performance specification, a PID controller can 
provide larger stability margins and improved performance over PI. Another 
point worth noting is that when L is very small, the differences between the 
stability margins for PI and PID are insignificant regardless of the perfor- 
mance level. This means that a PI controller is sufficient for delay dominant 
systems. 

To apply the new tuning rules, the user must first identify the process 
dynamics in terms of K, T and d. Then, a value for the normalized desired 
closed-loop time constant .icl must be selected. This choice of would 
be dictated by the desired response speed of the closed-loop system (i.e. 
Ts = + 1)d) with due consideration for the acceptable stability mar- 
gins. This information is available for both PI and PID settings in Table 7.1 
and Figures 7.1-7.4. With the selected value for .icl and the value identified 
for L = 5 ,  the normalized controller parameters (K,, .iI, iD)  are calculated 
from Table 7.1. The final step is to evaluate the actual controller parame- 
ters for implementation according to Equations (7.11) , (7.15) and (7.21), i.e. 

K KC = +; TI = dFI; TD = dFD. 
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Table 7.1: Normalized PID controller tuning rules (subscript 1: PID margins; 
subscript 2: PI margins) 
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Figure 7.1: PID stability margins as a function of L (dashed: = 4; dash-dotted: 
FCl = 2;  dotted: FCl = 1.33; solid with '0': Fcl = 1; solid with l*': = 0.8; solid: 

= 0.67). Upper diagram: gain margins; lower diagram: phase margins 
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Figure 7.2: PI stability margins as a function of L (dashed: Fcl = 4; dash-dotted: 
= 2; dotted: Fcl = 1.33; solid with '0': FCl = 1; solid with l*': Fcl = 0.8; solid: 

Fcl = 0.67). Upper diagram: gain margins; lower diagram: phase margins 
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Figure 7.3: PID relative delay margins as a function of L (dashed: cl = 4; dash- 
dotted: = 2; dotted: Fcl = 1.33; solid with '0': = 1; solid with '*': = 0.8; 
solid: = 0.67) 

Figure 7.4: P I  relative delay margins as a function of L (dashed: Fcr = 4; dash- 
dotted: = 2; dotted: Fcl = 1.33; solid with '0': FCl = 1; solid with '*': Fcl = 0.8; 
solid: cl = 0.67) 
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7.3 EVALUATION OF THE NEW TUNING RULES: SIMULATION 
RESULTS 

Here, we illustrate the performance of the new tuning rules using the fol- 
lowing simulated example (Process A) 

Both PI and PID controllers have been designed for this process for three 
values of Fcl = 2, 1, and 0.67, which correspond in this case to desired closed- 
loop time constants rC1 of 10, 5 and 3.3, respectively. Table 7.2 presents the 
actual controller parameters for these choices of Figure 7.5 shows the 
closed-loop responses with PI control and Figure 7.6 shows the closed-loop 
responses under PID control, for a unit step setpoint change followed by 
a negative unit step load disturbance. The closed-loop system has been 
simulated with the derivative action, including a first order filter with time 
constant equal to 0. h, applied only to the measurement. 

These results illustrate that with the lower performance specification 
(Fcl = 21, there is little difference between the PI and PID performance. 
However, for the higher performance specifications (cl = 1 and 0.67), the 
PID performance is superior in that it produces less oscillatory control signal 
and process output responses. 

Comparisons with various existing PID tuning rules were carried out in 
Chapter 6 for a similar example and it was found that our design method 
consistently produced smoother control signal and process output responses, 
both of which are generally considered to be desirable in a process control 
application. In this section, we focus on highlighting some other distinctive 
features of the new tuning rules and we use the popular IMC-PID design 
rules of Rivera et al. (1986) for comparative purposes. 

Table 7.2: PID controller parameters for Process A using new tuning rules 
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Figure 7.5: Setpoint and load disturbance responses for Process A under PI control 
(solid: Fcl = 2; solid with '0': Fcl = 1; solid with 'X ': FCl = 0.67). Upper diagram: 
process output; lower diagram: control signal 
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Time (sec) 

Figure 7.6: Setpoint and load disturbance responses for Process A under PID 
control (solid: Fcl = 2; solid with '0': = 1; solid with 'X ': .icl = 0.67). Upper 
diagram: process output; lower diagram: control signal 
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Table 7.3: IMC-PID controller parameters for Process A 

Desired Performance Determines Required P, l and D Actions 
As can be seen from Table 7.1, all three of the normalized controller para- 
meters vary with the choice of Fcl. For Process A, Table 7.2 presents the 
actual controller parameters for the three different performance levels. For 
this example, the controller gain increases as ?,.l decreases, the integral time 
constant increases and then decreases as Fcl decreases, and the derivative 
time constant increases as .icl decreases. In addition, the amount of deriv- 
ative action relative to the integral action changes as a function of Tel. For 
instance, at Tcl = 2, EQ = 0.1 and at Fcl = 0.67, F = 0.24. 

71 

The IMC-PID controller settings for this process (Case F in Rivera et 
al. (1986)) are given in Table 7.3 for the same performance levels (IMC 
filter time constant E = rcl). From this table, it can be seen that only the 
controller gain K, changes with c l ,  and TI and TD remain unchanged with 
F = 0.22. In addition, it is actually the choice of approximation for the 
time delay term with the IMC design (e.g. first order Taylor series or first 
order Pade) that determines whether a PI or PID controller is selected (Case 
D versus Case F in Rivera et al. (1986)). With the new tuning rules, no 
approximations to the delay term are required and the appropriate amounts 
of all three controller actions are directly determined from the closed-loop 
performance specification. 

Smooth Transition from PID to P I  Performance as Filtering is 
Added 
When noise is present in the measured process output, any derivative action 
should be accompanied by a filter. However, the problem is often that, as 
the time constant of the derivative filter is increased to cope with the mea- 
surement noise, the closed-loop performance degrades, requiring re-tuning 
of the controller parameters. This problem is illustrated using the IMC-PID 
rules applied to Process A with .id = 0.67. Figure 7.7 shows the closed-loop 
responses to a negative unit step load disturbance with a derivative filter 
time constant equal to 0. l rD. Figure 7.8 shows the closed-loop responses 



7.3 Evaluation of the New Tuning Rules: Simulation Results 

-50 0 50 100 150 200 
Time (sec) 

Figure 7.7: PID control with derivative filter t ime constant of 0.170 for Process 
A (solid: new rules; dashed: IMC). Upper diagram: control signal; lower diagram: 
process output 
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Figure 7.8: PID control with derivative filter t ime constant of 1.070 for Process 
A (solid: new rules; dashed: IMC). Upper diagram: control signal; lower diagram: 
process output 
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IMC-PID -17.52 5.125 0.122 11 
Table 7.4: PID controller parameters for Process B 

to the same load disturbance with a derivative filter time constant equal to 
1.070. Clearly, the response goes from being only slightly oscillatory with 
little filtering to very oscillatory with more filtering. With IMC-PID tuning, 
the IMC filter time constant would have to be increased in order to reduce 
these oscillations. For comparison, Figures 7.7 and 7.8 also show the closed- 
loop responses under the same conditions using the new tuning rules with 
FcZ = 0.67, where there is only a slight deterioration in performance due to 
the increased derivative filtering action. In fact, as the amount of filtering 
is increased, the performance of the PID controller gradually approaches 
the PI controller performance (compare Figure 7.5 for PI with Figure 7.6 
for PID). This is a very desirable feature of the new tuning rules because 
re-tuning of the controller parameters is not necessary, regardless of the 
amount of filtering used. 

Fast Disturbance Rejection Provided with Large L 
The slow disturbance rejection properties of PID design met hods based on 
pole-zero cancellation has been pointed out by Chien and Fruehauf (1990). 
To illustrate this problem, we have modified Process A to have the following 
dynamics (Process B) 

- e-0.25~ 
G(s) = (7.31) 

5s + 1 

which has a relatively large L value of 20. For fast disturbance rejection, we 
have chosen Fcl = 0.67. PID controller parameters obtained for this process 
using both IMC-PID tuning rules and the new rules are shown in Table 
7.4. The resulting closed-loop responses are compared in Figures 7.9, for a 
negative unit step load disturbance. From Figure 7.9, it is clear that, when 
using the IMC-PID tuning rules, the process output takes a long time to 
return to its setpoint value. In addition, the control signal is not smooth 
due to the high controller gain K,. 

To circumvent this problem of slow disturbance rejection, Chien and 
Fruehauf (1990) have suggested that a first order plus delay process with a 
large L be remodelled as an integrator plus delay process. However, with the 
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Figure 7.9: PID Control for Process B (solid: new rules; dashed: IMC). Upper 
diagram: control signal; lower diagram: process output 

new tuning rules, fast disturbance rejection is achieved simply by choosing 
a small value for without the need for any remodelling of the process 
dynamics. Using the new rules, the process output is seen in Figure 7.9 to 
return very quickly to its setpoint value with a very smooth control signal 
response. 

Comparing the controller parameters in Table 7.4, the IMC-PID design 
rules produce both a larger proportional gain and a larger integral time 
constant as compared to the new rules. However, it is primarily the smaller 
integral time constant associated with the new rules that produces the fast 
disturbance rejection. 

7.4 EXPERIMENTS WITH A STIRRED TANK HEATER 

This section presents experimental results that compare our new tuning 
rules and the IMC tuning rules. The apparatus used to carry out all of the 
experiments is a pilot-scale, continuous stirred tank water heater (see Figure 
7.10 for a process schematic). Hot and cold water streams are combined to 
produce the feed stream. The water in the tank is heated by a steam coil and 
the steam line is equipped with a control valve. The water is removed from 
the tank using a pump. The tank is also equipped with a level sensor and 
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TC: temperature controller 

Figure 7.10: Schematic of the stirred tank heater apparatus 

an overflow line. All experiments were performed with the tank operating 
at overflow and the inlet feed water valve set to a fixed position, except in 
the disturbance rejection experiments where a flow controller was used to 
maintain constant feed water flow when the hot water was turned off (the 
cascade level controller was not used in any of these experiments). The 
steady state relationship between the steam control valve and the outlet 
water temperature is nonlinear. During the experiments, the steam valve 
position was operated in an approximate linear region between 0-40% open. 

Simple first order plus delay models for this process were derived from 
step response tests. For controlling the temperature of the outlet water 
stream, the manipulated input variable is the steam valve position and the 
process output variable is the outlet water temperature, measured at one of 
three thermocouples located at different distances from the tank outlet. The 
tests involved introducing a step change in steam valve position, with the 
temperature controller in manual, and observing the response in the outlet 
water temperature at each of the three thermocouples. Simple graphical 
methods were used to calculate the parameters of the first order plus delay 
models. 
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The models are, for thermocouple 1 

for thermocouple 2 

and for thermocouple 3 

with the time constant and time delays in seconds. Clearly, the only differ- 
ence between the three models is in their time delays. PID controllers using 
both IMC tuning rules and the new tuning rules were calculated using the 
model for thermocouple 2. In order to achieve a fair comparison, the desired 
closed-loop time constant in both cases was set equal to 0.67 X 40 (ci = 0.67). 

Experiment 1: Disturbance Rejection 

In the first experiment, a step load disturbance was introduced to the process 
in order to observe which controller settings would provide better distur- 
bance rejection. This disturbance was created by switching off the hot feed 
water stream causing a sudden drop in the inlet temperature from approx- 
imately 17OC to 5OC. Figure 7.11 shows the experimental results, where 
we can see that the PID controller designed using the new rules brings the 
outlet water temperature back to setpoint faster than the IMC-PID settings, 
although the response with the new rules exhibits a larger initial deviation 
from the setpoint. 

Experiment 2: Robustness Comparison 

For the second experiment, the PID controllers were designed based on the 
model for thermocouple 2, but the controller itself was configured to mea- 
sure the outlet water temperature from thermocouple 3. This represents 
an effective doubling of the process time delay from 40 to 80 sec. Figure 
7.12 shows the results with the two controllers, where we have introduced a 
step setpoint change from l l °C  to 15OC. We can see from this figure that 
the closed-loop system using the IMC-PID tuning rules is closer to being 
unstable and the new rules provide more robust performance. 
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Experiment 3: Increasing Derivative Filtering 

In the third experiment, we designed and implemented both PID controllers 
from thermocouple 2 and then increased the amount of derivative filtering 
by increasing the derivative filter time constant from 0 . 1 ~ ~  (used in Figure 
7.11) to 1 . 0 ~ ~  shown in Figure 7.13, while introducing the same step load 
disturbance used in Experiment 1. We can see by comparing Figures 7.11 
and 7.13 that increasing the amount of derivative filtering yielded a some- 
what more oscillatory temperature response and control signal when using 
the IMC-PID design as compared to the new tuning rules. 

0 100 200 300 400 500 600 700 
Time (sec) 

Figure 7.11: Results from Experiment 1 (solid: new rules; dash-dotted: IMC-PID 
rules). Upper diagram: inlet water temperature (OC); middle diagram: deviation 
outlet water temperature VC); lower diagram: control signal (% steam valve posi- 
tion) 



7.4 Experiments With a Stirred Tank Heater 

Time (sec) 

Figure 7.12: Results from Experiment 2 (solid: new rules; dash-dotted: IMC- 
PID rules). Upper diagram: outlet water temperature P C ) ;  lower diagram: control 
signal (% steam valve position) 
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Figure 7.13: Results from Experiment 3 (solid: new rules; dash-dotted: IMC-PID 
rules). Upper diagram: deviation outlet water temperature P C ) ;  lower diagram: 
control signal (% steam valve position) 
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7.5 INTEGRATING PLUS DELAY CASE 

Assume that the process has the following transfer function 

For this process, yl = -d < 0, and therefore this is a Type A integrating 
process. The desired control signal specification is chosen as 

By letting i = ds, G,+,,(s) is scaled in the Laplace domain as 

and the desired closed-loop transfer function is given by 

From the desired closed-loop transfer function, the corresponding desired 
open-loop transfer function is obtained as 

This then gives 

The two frequencies used in the controller parameter solutions are wl = 

and w2 = where Ts is the desired closed-loop settling time, estimated 
Ts ' 

here as (6P+ 1)d. The corresponding normalized frequencies are cl = dwl = 
2" and w2 = 2c1.  We now define 

6P+ 1 
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where 

With our choice of Cl and 6 2 ,  Y is dependent only on the performance pa- 
rameters p and C, and is independent of the actual process parameters. We 
now derive new expressions for the PID controller parameters using Equa- 
tions (6.56)-(6.58) and Equations (6 .4)-(6.6) .  

Proportional gain: 

where 

Integral time constant: 

where 

Derivative time constant: 

W here 

Note that the normalized PID controller parameters K ~ ,  +I and .io depend 
only on the performance parameters ,B and C. 

In order to examine the stability margins of the integrating plus delay 
process under feedback control with a PID controller, the actual open-loop 
transfer function is formulated as follows 

Since the open-loop transfer function is only a function of the performance 
parameters, the gain and phase margins ( G M  and P M )  of the designed 
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closed-loop system are independent of the actual process parameters. How- 
ever, the actual critical frequencies are obtained by dividing the normalized 
critical frequencies with the process delay. We are also able to obtain the 
relative delay margin as 

where GP is the critical phase margin frequency. Note that the right-hand 
side of Equation (7.47) depends only on the performance parameters p and c. 
Presentation of the Tuning Rules 
From Equations (7.43)-(7.45), the normalized PID controller parameters 
can be calculated for a given set of performance parameters. In this case, 
tuning rules are more straightforward to derive than for the first order plus 
delay case because the normalized ?(jzir) is not a function of the process 
parameters. 

In the derivation of the rules, the damping factor c has been chosen equal 
to either 0.707 or 1 to produce two sets of tuning rules, with the parameter p 
being used to adjust the closed-loop response speed. The desired closed-loop 
time constant is T = pd. ,B has been varied for both cases from 1 to 17 and 
the corresponding normalized PID controller parameters KC, fi and .iD have 
been calculated. From this information, polynomial functions have been fit 
to produce explicit solutions for the normalized controller parameters as a 
function of p. 
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The actual controller parameters are obtained using the scaling Equations 
d K ,  TI = dFI and TD = dFD. The gain, phase (7.43)-(7.45), i.e. KC = h 

and relative delay margins for these PID tuning rules are shown in Figures 
7.14 and 7.16. In general, the choice of damping factor 5 = 0.707 produces 
smaller controller parameters in comparison to 5 = 1. The former choice also 
leads to larger gain and relative delay margins, but smaller phase margins, 
implying a faster closed-loop response. 

The settings for PI control with these rules are obtained from the same 
set of equations for PID with TD = 0. The gain, phase and relative delay 
margins for PI control are shown in Figures 7.15 and 7.17. 
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Beta 

Figure 7.14: Stability margins for PID tuning rules (solid: C = 1; solid with '0': 

C = 0.707). Upper diagram: gain margins; lower diagram: phase margins 
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Figure 7.15: Stability margins for PI tuning rules (solid: C = 1; solid with '0': 
C = 0.707). Upper diagram: gain margins; lower diagram: phase margins 
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Figure 7.16: Relative delay margins for PID tuning rules (solid: c = 1; solid with 
'0': c = 0.707) 

Figure 7.17: Relative delay margins for PI tuning rules (solid: c = 1; solid with 
'0': c = 0.707) 
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Evaluation of the Tuning Rules 
Consider the integrating plus delay process used in Tyreus and Luyben 
(1992) described by the transfer function 

where K = 0.0506 and d = 6. The desired closed-loop time constant T is 
chosen to be equal to d, 2d, 3d and 4d corresponding to P = 1, 2, 3 and 4, 
and the damping factor is selected to be 0.707. For the first two choices of 
p, a PID controller is used and for the latter two choices, a PI controller is 
used. The normalized controller parameters are calculated from Equations 
(7.48)-(7.50) and then the true parameters are obtained using the scaling 
Equations (7.43)- (7.45). Figure 7.18 shows the process output and control 
signal responses for a unit step setpoint change followed by a unit step load 
disturbance. 

In Tyreus and Luyben's (1992) work, their objective was to design a PI 
controller for integrating plus delay processes. Their performance specifica- 
tion was given in the frequency domain, where the peak value of the mag- 
nitude of the closed-loop transfer function Gr+y was chosen to be +2dB. 
A numerical procedure was used to find the normalized PI controller para- 
meters to achieve this performance specification. It is interesting to note 
that their final tuning rules for the PI parameters are presented in the same 
fashion as Equations (7.43) and (7.44), except that they are given for only 
the single performance specification. Their normalized proportional gain KC 
is equal to 0.487 and their normalized integral time constant 6 is equal to 
8.75. 

With our tuning rules, if we choose C = 1 and P = 3, then KC = 0.466 
and .21 = 7.19. Therefore, for this particular choice of closed-loop perfor- 
mance, our tuning rules correspond almost exactly to those presented by 
Tyreus and Luyben (1992). The key benefit with our tuning rules is that 
different values for P, depending on the control objective and desired stabil- 
ity margins, may be selected and used to easily calculate the corresponding 
PID controller parameters. 
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Figure 7.18: Setpoint and load disturbance responses for Tyreus and Luyben ex- 
ample (solid: ,B = 1; solid with '*': P = 2; solid with 'X ': P = 3; solid with '0': 
p = 4). Upper dzagram: process output; tower diagram: control signal 



Chapter 8 

Recursive Estimation from 
Relay Feedback Experiments 

This  chapter describes two new methods for obtaining frequency response and 
step response models from processes operating under relay feedback control. 
Both methods are based o n  the frequency sampling filter model structure and 
a recursive least squares estimator. 

This chapter contains three sections. Section 8.2 describes the approach to 
frequency response estimation using data generated from a standard relay 
experiment. In Section 8.3, a modified relay experiment is proposed for step 
response estimation. 

Portions of this chapter have been reprinted from Automatica 35, 
L. Wang, M.L. Desarmo and W.R. Cluett, "Real-time estimation of process 
frequency response and step response from relay feedback experiments", pp. 
1427-1436, 1999, with permission from Elsevier Science. 

Figure 8.1 is a block diagram of a relay feedback control system, where U is 
the relay output signal and e is the feedback error signal entering the relay 
element. A simple relay is a nonlinear element that switches between two 
levels, -d and +d, based on the sign of the error signal e and generates a 
square wave relay output signal U to the process. If the process output y is 
corrupted with noise, a hysteresis of width E is added to the relay. Adding 
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Figure 8.1: Block diagram for relay feedback control system 

hysteresis to the relay produces a dead-zone which is used to prevent the 
relay output signal from switching due to the noise. Only when the absolute 
value of the feedback error signal exceeds E will the relay output U change 
sign from its previous value. This nonlinear closed-loop system will exhibit 
a stable limit cycle for many processes. The period of this limit cycle is 
determined by the process dynamics, the amplitude of the relay d, and the 
width of the hysteresis E. It is well known that if the width of the hysteresis 
is equal to zero, then the oscillation frequency corresponds approximately 
to the critical frequency of the process, i.e. the point of intersection of the 
process Nyquist curve with the negative real axis. As the hysteresis width 
increases, the oscillation frequency decreases. Other frequencies can be ob- 
tained by adding a dynamic element, such as a linear filter, in series with 
the relay. If the linear dynamic element is a pure integrator, the frequency 
of oscillation corresponds to the point of intersection of the process Nyquist 
curve with the negative imaginary axis. 

Suppose that the process to be identified is placed under relay feedback 
control and oscillates with some period T. Using a sampling interval of At, 
the number of samples within a period is N' = -&. The periodic square 
wave ~ ( k )  generated by the relay output can be completely described over 
this period [0, T] using a discrete Fourier expansion (Godfrey, 1993) 
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for k  = 0,1, .. . ,NI - 1, where 

for l = 0, f l,. . . , f v. If the input signal is also symmetric and the time 
origin is taken at one of the relay switches, Al = 0 for l = 0, f 2, f 4, . . . . 
The magnitudes of the nonzero values of Al decrease wit h increasing 11 I. 

For frequency response estimation, we set the parameter N in the FSF 
model in Equation (4.22) to be equal to NI to capture the dominant periodic 
frequency components in the input and output signals. Thus the process 
output y ( k )  can be described by 

where [ ( k )  is the disturbance term. We now define the parameter vector to 
be estimated as 

(n- l )n n - l ) ~  
= [G(ejo)  G ( e j % )  ~ ( e - j ? ? )  . . . G ( $ T )  G ( e - j L , - ) r  

and its corresponding regressor vector as 

W here 

for r  = 0, f l ,  . . . , f 9. Therefore, the total number of frequencies included 
in this process output description is 9 + 1. 

If u ( k )  is a periodic and symmetric signal, the filter outputs for even 
values of r ( r  = 0, f 2 ,  &4, . . .) are equal to zero after one complete period N. 
In addition, the magnitudes of the nonzero filter outputs corresponding to 
r = f 1, f 3, . . . decrease as Ir I increases. Therefore, in this situation, the only 
terms required to accurately describe the process output y ( k )  in Equation 
(8.3) for processes with a monotonically decreasing frequency response may 
be those with r  = H, f 3 and f 5. However, because output disturbances 
and measurement noise are encountered in most practical situations, ~ ( k )  is 
seldom an ideal periodic and symmetric signal. In many cases though, u ( k )  
would be nearly periodic and the parameter N could be chosen based on 
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an estimate of the average period. In order to avoid biased estimates of the 
frequency response parameters in such circumstances, we suggest that all 
of the terms corresponding to r = 0, f l,. . . , f 5 be included in the process 
description. 

Given the process input-output data generated from the relay experi- 
ment, the parameter vector 6 can be estimated using a recursive algorithm. 
Here, we propose to use the recursive least squares algorithm (Goodwin and 
Sin, 1984) given as follows 

and 

P(k  - 1) = P(k - 2) - 
P*(k - 2)4(k)$*(k)P(k - 2) 

1 + V(k)P(k - 2)4(k) 
(8.6) 

where (*) denotes the complex conjugate transpose. We also suggest using 
the process input-output data from the first complete period with a standard 
batch least squares estimator to initialize &o) and P(- l). 

Bitmead and Anderson (1981) proposed the use of a recursive least mean 
squares (LMS) algorithm to estimate frequency response coefficients using 
the FSF model structure. These authors treated the problem as a collection 
of independent, or decoupled, estimation problems by assuming that the out- 
puts of the frequency sampling filters satisfy an approximate orthogonality 
property. This assumption allowed the authors to reduce the larger single 
estimation problem (Nth-order) to a collection of several smaller (one or 
two parameter) estimation problems, with their objective being to avoid the 
dimensionality and ill-conditioning problems known to be associated with 
the larger problem. 

Our choice of the more rapidly converging recursive least squares ap- 
proach to solve the larger single estimation problem is justified by the fact 
that we only need to estimate n parameters. Because we can choose n < < N, 
the dimensionality and ill-conditioning problems can be avoided. Also, the 
FSF outputs are only truly orthogonal if the input is either white noise or 
periodic (Goberdhansingh et al., 1992). Therefore, in practice, it is desir- 
able to solve the larger single estimation problem to avoid biased parameter 
estimates. 

One other point worth mentioning is that, if the input is periodic and the 
data length is an integer multiple of the fundamental period, the frequency 
estimates obtained from Equations (8.5) and (8.6) would be equivalent to 
those obtained using a DFT analysis. 



8.2 Recursive frequency Response Estimation 205 

Example 8.1. The following transfer function is representative of the 
dynamics typically associated with paper machine basis weight (EnTech, 
1993) 

The objective is to recursively estimate the process frequency response at 
the dominant harmonic frequencies generated under a standard relay ex- 
periment. A white noise disturbance sequence with unit variance has been 
added to the output. The relay amplitude was set equal to 2 and the hys- 
teresis level was set equal to 3 (3 times the standard deviation of the output 
noise). The process was sampled with a time interval of 0.67 seconds. Note 
that, although the hysteresis level is larger than the noise-free process out- 
put response to an input change of magnitude 2, a limit cycle still occurs 
due to the presence of the noise. 

Figure 8.2 shows the process input-output data generated under a stan- 
dard relay experiment. An estimate of $ was taken as the number of 
samples between the second and third switches of the relay. Figure 8.3 
illustrates how the real and imaginary parts of the parameter estimates be- 
have for the first harmonic (r  = 1) and the third harmonic (r = 3) over 
the duration of the relay experiment. The estimates of these parameters 
up until the third switch in the relay output (E 300 sec) are constant and 
equal to 8(0). Figure 8.4 compares the two estimated frequency responses 
after 500 sec with the true process frequency response. These latter two 
figures show that the parameter estimates have effectively converged after 
500 sec. This compares very favourably with the total process settling time 
of approximately 325 sec. 

The example used here is a first order plus delay process with very lit- 
tle roll-off at higher frequencies. For processes with more roll-off at higher 
frequencies, it may not be realistic to expect accurate identification at fre- 
quencies beyond t he first harmonic, depending on t he signal-to-noise ratio 
at the higher harmonics. 



Recursive Estimation from Relay Feed back Experiments 

2M) 460 B& 860 l d o o  12k 1 4 k  16'00 1800 2d00 
Time (sec) 

Figure 8.2: Data generated under a standard relay experiment for Example 8.1. 
Upper diagram: relay output; lower diagram: process output 
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Figure 8.3: Real and imaginary parts of the frequency response estimates come- 
sponding to the first (a$) and third (c,d) harmonics, respectively, for Example 8.1 



8.3 Recursive Step Response Estimation 

8 -06 -0:4 -0; 0:2 04 0:6 0:8 
Real 

Figure 8.4: Comparison of true and estimated frequency responses after 500 sec 
for Example 8.1 (solid with '+': true response; '0': estimated values) 

As discussed in the previous section, a standard relay experiment typically 
produces a limit cycle that is dominated by a single frequency. However, this 
information is not sufficient for the estimation of an accurate process step 
response model. This raises the issue of how to generate the appropriate 
information. One approach is to inject a dither signal while the process is 
under some sort of feedback control, either additively to the controller output 
or via the setpoint. However, this requires design of the dither signal, i.e. 
decisions must be made concerning its power spectrum. Another alternative 
is to make use of multiple relay experiments to generate frequency response 
informat ion at several frequencies. 

Our objective is to develop a single relay experiment to automatically 
generate the desired information. The proposed apparatus combines in par- 
allel a relay element and an integrator in series with a relay element. Figure 
8.5 provides a block diagram of this apparatus. The experiment is performed 
by alternatively switching the error signal between the relay path and the 
integrator-relay path. The design of the experiment then reduces to the se- 
lection of this switching sequence. The input signal generated from this type 
of relay experiment will no longer be dominated by a single frequency but 
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Figure 8.5: Block diagram for proposed relay apparatus 

will instead contain frequencies over a range corresponding to the process 
phase shift of -2 and - K  in the noise-free case, and over a slightly lower 
frequency range when hysteresis is added to the relay elements. 

The input-output data generated from this relay experiment can be used 
along with Equations (8.5) and (8.6) to recursively estimate the parameters 
in the FSF model, and then combined with Equation (5.6) to determine an 
estimate of the process step response model. However, in this case, N in 
Equation (8.3) must be chosen according to the process settling time. If 
prior information on the approximate settling time is available, then this 
may be used to preselect a value for N. However, it would be desirable to 
find a simple way to estimate even this parameter on-line during the relay 
experiment. When an integrator is placed in series with a relay that has zero 
hysteresis, the closed-loop system will oscillate at a frequency corresponding 
to the point of intersection of the process Nyquist curve with the negative 
imaginary axis. From a large number of simulation studies, we have ob- 
served that, for many processes, the discrete fkequency response at W = 
radians, corresponding to W = radians/sec, is located in the vicinity of 
this point of intersection. Therefore, if the relay experiment begins with the 
error following the integrator-relay path for at least four successive switches 
in the relay output such that a steady state oscillation is reached, an esti- 
mate of $ can be taken as the number of samples between the third and 
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fourth switches of the relay. In addition, 9(0) and P(- l )  can be estimated 
at this point time from the previous N sets of input-output data. 

The only remaining parameter to be chosen is n, the number of FSF 
model parameters to be estimated in Equation (8.3). In Chapter 5, a batch 
generalized least squares algorithm was presented in which the PRESS 
statistic introduced in Chapter 3 was used for selecting n. For the recursive 
approach proposed here, we suggest fixing the number of parameters to be 
estimated by preselecting n = 11, which we have found to be sufficient for 
a wide range of processes. 

8.3.1 Simulation case study 

Here, we study the performance of the proposed methodology for recursive 
estimation of the process step response using five examples, four of which 
have been selected from the test batch presented in Astrom and Hagglund 
(1995). 

Process A: 

Process B: 

Process C: 

Process D: 
1 - 0.2s 

G(s) = 
(S + 

Process E: 
e-' 

G(s) = 
s2 + 2 X 0.45s + 1 

Process E is not found in Astrom and Hagglund's test batch but we have 
added it to provide a case with underdamped dynamics. 

The quality of the estimated model is measured here by the amount 
of departure from the true impulse and step response coefficients. More 
precisely, we use the sum of the squared deviations from the true impulse 
response coefficients (Eimpulse) and the sum of squared deviations from the 



210 Recursive Estimation from Relay Feedback Experiments 

true step response coefficients (Estep) to quantify the closeness of the fit to 
the true model, i.e. 

N-l 

Eimpuise = C (hi - hi)' 
i=O 

The impulse response error, Eimpulse, focuses more on the closeness of the es- 
timated process dynamics to the true process dynamics with equal weighting 
at all frequencies, while the step response error, Estep, measures the accu- 
racy of the estimated model with more emphasis in the low frequency range 
(Dayal and MacGregor, 1996). 

For the siniulat ions, a white noise disturbance sequence wit h variance 
equal to 0.8' has been added to the process output. The relay amplitude 
has been set equal to 2 and the hysteresis level has been initially set equal to 
0.08. The relay experiment is started with the error following the integrator- 
relay path. Because of the averaging effect of integration, a small hysteresis 
level can be tolerated and is used here initially to obtain an estimate of 
the frequency response corresponding to the point of intersection of the 
process Nyquist curve with the negative imaginary axis, and in turn an 
estimate of N. The experiment is allowed to proceed until four switches in 
the relay output have occurred at which time the value of N is estimated. 
The hysteresis level is then fixed to a value of 2.5 (approximately 3 times 
the standard deviation of the output noise) and the error is switched to 
the relay path for one complete period (two switches). Then, the error is 
switched back-and-forth between the integrator-relay and relay paths, after 
2-3 switches in the relay output have occurred along a given path. Total 
simulation time for each case is approximately four times the process settling 
time. The sampling rate is adjusted for each case so that 3000 sets of input- 
output data are collected within the total simulation time. 

To illustrate the results, the estimated FSF model parameters have been 
converted into step response and impulse response coefficients at integer 
multiples of the process settling time. The values of Eimpuzse and Estep are 
summarized in Table 8.1, along with the estimated Ts values obtained from 
the relay experiment. These results show that the estimated models are all 
converging as the length of the relay experiment increases. 
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B (Ts = 31 sec) 
Eimpulse 

After T, Aft er 2T, After 3Ts I After 4Ts 

Table 8.1: Case study results 

Comparison with FIR Model 
We have selected Process A from the case study for further study and com- 
parison with results obtained using an FIR model. Figure 8.6 shows the 
process input-output data collected using the modified relay experiment. 
The estimated step response models are presented in Figure 8.7 along with 
the true step response. These plots indicate that as the data length increases 
the estimated step response models converge to the true step response. In 
fact, the estimated step response model changes very little after only two 
settling times of data. Figure 8.8 confirms that the estimated FSF model 
parameters after two settling times of data are very accurate in the low and 
medium frequency regions (r = 0, f l, &2) and the deviations in the higher 
frequency region (r = &3,*4, f 5) are modest but do not have a significant 
effect on the step response model accuracy. 

For the FIR model estimate, we decided to work with exactly the same 
set of data collected from the relay experiment. As a result, 662 parameters 
needed to be estimated based on the estimated value for Ts and the sampling 
rate for this process (i.e. N = 662). A batch least squares algorithm has 
been used to estimate these FIR model parameters. The estimated step re- 
sponse models are compared with the true step response in Figure 8.9. After 
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Figure 8.6: Data generated under modified relay experiment for Process A.  Upper 
diagram: relay output; lower diagram: process output 
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Figure 8.7: Step response for Process A (solid: true response; dashed: estimated 
response using FSF model after (a) Ts7  (b)  2Ts, (c)  3Ts7 and (d)  4Ts) 
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Figure 8.8: Frequency response for Process A (solid Zzne: continuous-time fie- 
quency response; '+': true FSF parameters; '0': estimated FSF parameters after 

0 5 10 0 5 10 
Time (sec) Time (sec) 

Figure 8.9: Step response for Process A (solid: true response; dashed: estimated 
response using FIR model after (a) T, (no model available), (b) 2T,, (c) 3T,, and 
(4 m )  



Recursive Estimation from Relay Feed back Experiments 

0) 

2 4 
- 2 oo 

I r Ith Filter 
2 4 
I r ph Fitter 

I r ph Filter I r bh Filter 

Figure 8.10: Diagonal elements of the correlation matrix for Process A after (a) 
Ts, (b )  2Ts, (c)  3Ts, and (d)  4Ts 

one settling time of data, the correlation matrix was singular and therefore 
we were unable to obtain an estimated model. It is evident from these plots 
that the estimated step responses obtained from the FIR model are unbiased 
but are also very noisy and could not be used directly for control system 
design. It is important to point out that a slower sampling rate would not 
have improved these results. 

This comparison confirms the results presented in Chapter 5, where the 
use of a reduced order FSF model has been interpreted as a means for ob- 
taining a smooth step response estimate. These results illustrate how the 
FSF approach improves the numerical conditioning of the parameter estima- 
tion problem by neglecting the higher frequency parameters that contribute 
significantly to the variance error but little to the bias error. It is also worth 
mentioning again that, wit h the FSF approach, the diagonal elements of the 
correlation matrix are proportional to the periodogram of the input signal in 
the vicinity of the FSF frequencies, and to the data length. Therefore, the 
accuracy of a particular FSF parameter is directly related to the magnitude 
of the corresponding diagonal element in the correlation matrix according 
to Equation (5.25). To examine the energy distribution of the input signal 
generated by the modified relay experiment for Process A, Figure 8.10 shows 
the magnitude plots of the diagonal elements of the correlation matrix cor- 
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responding to the FSF model with n = 11. After one settling time of data, 
the energy of the input signal is focused only at the first pair of frequen- 
cies (r = f l ) .  However, after two settling times, energy is clearly present 
at both the zero frequency (r = 0) and at the second pair of frequencies 
(r = &2), and to a lesser degree at the higher frequencies (r = f 3, f 4, f 5). 
This illustrates how the data generated from the proposed experiment leads 
to accurate estimates of the frequency response in the low and medium fre- 
quencies, including the steady state gain and, in turn, an accurate estimate 
of the step response via the FSF model. 

8.3.2 Automated design of an identification experiment 

The proposed relay device and FSF algorithm could readily be bundled 
together as a stand-alone apparatus for on-line process frequency/step re- 
sponse identification and subsequent controller design and tuning (see, for 
example, Hagglund and h t r o m ,  1985). However, the modified relay ex- 
periment on its own provides some interesting and new ideas about how to 
design input signals for process identification. One of the main benefits of 
the proposed methodology is that the design of an identification experiment 
suitable for obtaining an accurate step response model for stable processes 
has now been automated. A standard approach to the design of an iden- 
tification experiment involves first the off-line design of the input signal 
followed by the identification experiment itself. This off-line design typi- 
cally requires prior information on the dominant process dynamics and/or 
the desired power spectrum of the input signal. Under the modified relay 
experiment, the relevant frequency response information is automatically 
generated without the requirement of any prior process information except 
the sign of the gain. Here, a general input signal design algorithm suitable 
for process identification is proposed which does not require an actual relay 
device for implement at ion. 

Step 1: With the process initially at or near steady state, estimate the 
process output noise level by calculating its standard deviation (a)  
and set the hysteresis width E = 30. Preselect the amplitude (d) 
of the input signal where the input signal will switch f d around a 
nominal value fi. Designate the corresponding nominal value of the 
process output as the reference output value r. 

Step 2: Set the input signal u(k) = ii + d and start calculating the in- 
tegrated error signal according to er (k) = e(k) At + er (k - l), with 
e(k) = r - y (k) and the initial value of er = 0. 
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Step 3: At each sampling instant, calculate the currrent value of the input 
signal u(k) according to: 
If 

1e1 (k) l 2 E (8.15) 

then (for positive process gain) 

~ ( k )  = ii + d X sign(eI (k)) 

then (for negative process gain) 

else 

Step 4: Repeat Step 3 until three switches in the process input have oc- 
curred. 

Step 5: After the final switch based on Step 3, calculate the current value 
of the input signal u(k) according to: 
If 

l e (W 2 E (8.19) 

then (for positive process gain) 

then (for negative process gain) 

else 
u(k) = u(k - 1) 

Step 6: Repeat Step 5 until two switches in the process input have oc- 
curred. 

Step 7: Alternate between Steps 3 and 5 after 2-3 switches in the process 
input have occurred within a given step. At the beginning of Step 3, 
always set the initial value of er = 0. 
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