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ABSTRACT

APPLICATION OF GRAPH BASED DATA MINING

TO BIOLOGICAL NETWORKS

Publication No.

CHANG HUN YOU, MS

The University of Texas at Arlington, 2005

Supervising Professor: Lawrence B. Holder

A huge amount of biological data has been generated by long-term research. It is

time to start to focus on a system-level understanding of bio-systems. Biological networks

are networks of biochemical reactions, containing various objects and their relationships.

Understanding of biological networks is a starting point of systems biology.

Multi-relational data mining finds the relational patterns in both the entity at-

tributes and relations in the data. A widely used representation for relational data is a

graph consisting of vertices and edges between these vertices. Graph-based data min-

ing, as one approach of multi-relational data mining, finds relational patterns in a graph

representation of data.

This thesis will present a graph representation of biological networks including

almost all features of pathways, and apply the Subdue graph-based data mining system

in both supervised and unsupervised settings. This research will also show that the

patterns found by Subdue have important biological meaning.
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CHAPTER 1

INTRODUCTION

When Watson and Crick found the structure of nucleic acids, they defined the

results by making hand models with small plastic balls and wires [4]. For more than

60 years research has mainly focused on genomics and proteomics. After accumulating

many kinds of results regarding to genomics and proteomics and completing the Human

Genome Project, many biologists and computational biologists are focused on several new

challenges. One of the open problems is systems biology, which gives us a system-level

understanding of bio-systems. It is finally time to study their systems more comprehen-

sively based on results of 60 years. One of the main challenges of systems biology is

understanding biological networks. The biological network is a network of biochemical

compounds, proteins, other gene products and their relationships. As the Internet as

the network of networks has played a central role in computer science in the latter of

20th century, the biological network will play a major role in post-genomic bioinformatics

researche

Several efforts on the frontier of systems biology have been resulted in significant

achievement in genomics and proteomics [1]. Knowledge discovery in existed biological

networks should be a good resource for modeling unrecognized biological networks. A

graph has been used as a popular data structure to represent a wide variety of relational

data such as computer networks, social networks, and biological data [5]. A biological

network is another field to be represented as a graph.

The Subdue graph-based data mining system has been successfully applied to var-

ious areas such as security [6], web search [7] and protein structures [8]. In this research,

1
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a graph representation of biological networks is generated from the KEGG PATHWAY

database. The KEGG PATHWAY database is one of the major repositories of biological

networks. It has a standard file format, KGML, to distribute biological network informa-

tion. KGML defines objects of the biological network and their relationships as an XML

data structure. It had 271 species and 167 reference pathways in August 2005, and is

updated continuously. The first step of this research is converting KGML data to graph

form to be recognized by the Subdue.

After completing the graph representation step, the graph of biological networks

comprises several sets for experiments as a category of biological networks or a category

of species. Subdue is applied as two typical approaches of knowledge discovery: super-

vised and unsupervised. In supervised pattern learning, Subdue tries to find patterns

to distinguish two sets of biological networks. Two supervised mining experiments are

presented. The first distinguishes between one network of a group of some species and

another network of same group. The second approach tries to find patterns to distinguish

between a group of biological networks of one species and the same group of biological

networks of another species. Subdue can performs well on the first the first approaches,

but cannot distinguish well the sets in the second approach. It is the reason that biologi-

cal networks have few species-specific feature even though proteins and genes have many

species-specific features. Species-specific means pertaining to or limited to one species,

but not to general. In unsupervised pattern learning, Subdue is looking for common

patterns. First, it tries to find common substructures in one kind of biological network

across a group of species. Second, it is looking for patterns in a group of networks for

one species.

Chapter 2 provides a brief introduction to data mining and bioinformatics. Then,

multi-relational data mining is introduced along with some multi-relation data mining

approaches to bioinformatics. Chapter 3 describes the Subdue a graph-based data mining
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system. The main algorithms of Subdue are introduced along with several concepts.

Chapter 4 describes the biological networks data used in this research. First, essential

concepts of biochemistry and systems biology are explained. Then, the chapter will

give an overview of biological networks and databases of biological networks. Lastly

we explain the KEGG PATHWAY database and KGML KEGG Markup Language as a

way of representing and distributing the biological networks data. Chapter 5 presents

the main experiments. A graph representation of biological networks will be introduced.

Then supervised pattern learning and unsupervised pattern learning will be applied as

the main experiments. The results are presented and discussed in Chapter 6. Chapter 7

presents conclusions and future work.



CHAPTER 2

MULTI-RELATIONAL DATA MINING AND BIOINFORMATICS

In this chapter we provide a survey of related works. First, a brief introduction of

Data Mining will be provided. Then fundamental research areas in bioinformatics will

be described. Lastly we describe Multi-Relation Data Mining (MRDM) and its approach

to the biological domain. Logic-based data mining and graph-based data mining will be

given as examples of multi-relational data mining.

2.1 Data Mining

Data mining, which is also referred to as knowledge discovery in databases, is a

process of extraction of previously unknown and potentially useful information from large

databases or information archives [9, 10]. Mining data and knowledge from databases

has been a key research topic. The knowledge discovery process consists of an iterative

sequence of the following steps [10]: Data cleaning (to handle noise and inconsistent

data), Data integration (to combine multiple, heterogeneous data sources), Data selection

(to retrieve relevant data from the database), Data transformation (to transform the

data into the specific format for data mining), Data mining (to find interesting and

meaning patterns in the data), Pattern evaluation (to evaluate the patterns along with

the reasonable measure technique), and Knowledge presentation (to present discovered

knowledge to the user).

Data mining techniques can be classified according to different views such as what

kinds of knowledge to work on, what kinds of databases to be mined, and what kinds of

algorithms to be applied [9].

4
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This section categorizes data mining based on algorithms to be applied.

Mining association rules [9, 10] finds association rules like A1∧A2 ⇒ B1∧B2 from

the relevant data sets in a database. It is a example of association rule that the buyer

(A1) of beer (A2) will buy (B1) peanuts (B2), too. This association rule describes the

relationships among data in a given set.

Data generalization [9, 10] gives an understandable description of a large database.

using abstraction, summarization and characterization. A sentence, ”One who buys

beer will buy peanuts, too.”, is transformed to “Buy(x) ∧ Is(x, beer) ⇒ Buy(y) ∧

Is(y, peanuts) as simple logic form. This transformation is an example of data general-

ization. On-line analytical processing (OLAP) and data warehousing are also techniques

for data generalization.

Mining classification rules [9, 10] distinguishes a large test set of data into several

groups based on classification rules generated in the training set. The first step learns

classification rules in the training sets. The second step applies these classification rules

to the test set to classify them into each group. This approach is also called supervised

learning, because of the presence of a pre-classified training set.

Data clustering [9, 10] groups a set of data into clusters without any predefined

rules. This approach tries to maximize similarity in the same cluster and minimize

similarity between different clusters. This algorithm is called unsupervised learning in

contrast to supervised learning.

We described typical data mining algorithms briefly. There are several complex

types of databases such as a temporal databases, spatial database, multimedia database

and text database [10]. The domains of data mining have become broad such as business,

homeland security and biology domain. Each domain requires an appropriate data mining

algorithm.
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2.2 Bioinformatics

Bioinformatics is the application of computational techniques to analyze the in-

formation associated with bio-molecules [1, 11]. The huge amount of biological data

provides many challenges to researchers. Bioinformatics can be defined by four words:

Information, Organization, Analysis and Application [1]. This section consists of two

subsections. The first, information and organization, will introduce a variety of biologi-

cal information and its organization. The second, analysis and application, will describe

the ways to analyze data and their application.

2.2.1 Information and organization

Table 2.1. A variety of data used in bioinformatics

Data Data amount Bioinformatics Topic
DNA sequence 51,674,486,881 bases Sequence Alignment

in 46,947,388 sequence Separating introns and exon
in GenBank at NCBI Phylogenetic Prediction

Protein Sequence 195,589 sequence entries, Sequence Alignment or MSA
70852380 amino acids equence Alignment or MSA
abstracted from 134,391 references Protein Sequence Prediction
in the UniProtKB/Swiss-Prot

Protein Structure 33,065 Structures Protein Structure Prediction
Protein Function Prediction

Pathway 30,224 pathways generated Biological Network Modeling
from 246 reference pathways Systems Biology

Long-time cumulative biological research has generated various kinds and a huge

amount of data. GenBank, the largest gene sequence database, has 46,947,388 sequences

of genes, and UniProt, the largest protein database, has 195,589 sequences of proteins.

Table 2.1 shows a variety of the huge amount of biological data. It has become impossible

to analyze those data by the hands of biologists. There are many kinds of data for
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biological research such as raw DNA sequences, Protein sequences, Protein structure,

Genome data, Pathway data, Disease and Gene Expression data. These days literature

data which are databases of references for research become an important resource [11].

It is necessary to employ reliable and efficient methods to maintain this data because of

its huge amount and various kinds.

Table 2.2. Databases of Biological Information

Database Type Examples
Nucleotide Sequence GenBank http://www.ncbi.nlm.nih.gov

DDBJ : http://www.ddbj.nig.ac.jp
EMBL : http://www.embl.org

Protein Sequence UNI-PROT http://www.ebi.ac.uk/uniprot/
PROSITE http://au.expasy.org/prosite/

Protein Structure PDB http://www.rcsb.org/pdb/
Biomedical Literature PubMed http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

Distributed Annotation System http://stein.cshl.org/das/
Molecular Disease OMIM http://www.ncbi.nlm.nih.gov/Omim/
Gene Expression GEO http://www.ncbi.nlm.nih.gov/geo/

The biological data also has some special features: redundancy and multiplicity

[1]. An organism may have a huge amount of genes. Different gene sequences may have

the same structure or a single gene may have multiple functions. Also, many sequences

of genes and proteins give us redundant data. The simple store of biological data is able

to give few help to researchers. Therefore, organization of data is an indispensable issue

[1, 11, 12, 13]. Organizing biological data is a fundamental starting point of bioinformatics

research. It allows researchers to access existing information based on their features and

to submit new entries as they are produced by following the rules of database. From the

early days of bioinformatics many computer scientists and biologists have been focusing

on organizing and managing their data for future research, not simply storing. There are
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some examples of databases which contain biological data for this purposes in table 2.2 [1].

GenBank, EMBL and DDBJ databases contain DNA sequences used for transcription to

RNA sequences [14, 15, 16]. UniProt is the most comprehensive database of the protein

sequences which are translated from RNA sequences [17]. PROSITE, a database of

protein families and domains, contains biologically significant sites, patterns and profiles

for identification of protein families [18]. PDB, the Protein Data Bank, is a primary

database of 3D structures for macromolecules such as proteins, RNA, DNA and various

complexes [19]. PubMed, a web achieve of the National Library of Medicine, contains

links to the 15 million citations or other resources from most of life science journals for

biomedical articles from the 1950s to now [20]. DAS, Distributed Annotation System,

is a web service to exchang annotations on genomic sequence data [21]. GEO, Gene

Expression Omnibus, is a comprehensive repository of a gene expression including a

curated, online resource for gene expression data [22].

2.2.2 Analysis and application

The next step of bioinformatics is to understand bioinformatics data which are

organized well, and interpret and apply this knowledge in a biological meaningful manner.

To analysze biological data, various experimental techniques and analysis tools have

been developed. Pairwise Sequence Alignment is a basic algorithm to analysze gene and

protein data [23, 24, 25]. The algorithm of alignment has been used widely in BLAST

[26, 27], ClustalW [28] and MAS (Multiple Sequence Alignment) [29]. Hidden Markov

Models (HMM) are used in protein family studies, identification of protein structural

motifs, and gene structure prediction [30].

Due to efficient analysis methods, a variety of research has bee pursued. Tran-

scription regulation is the research for understanding all aspects of genetic activity by

analysis of DNA-binding proteins and other transcription factors. Structural studies of
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Figure 2.1. Bioinformatics spectrum: An expansion of biological research in breadth and
depth [1].

macro molecules, especially proteins, are important to understand their functions by

analysis of binding with other molecules, structural taxonomy and the relation between

functions and structures [1]. Microarray analysis [31, 32, 33] has accumulated biological

data to study. Systems Biology is focusing on system-level understanding based on ge-

nomic and proteomic results. The study of biological networks, which are the networks

of biological reactions, is the main approach of systems biology [34].

The research by Luscombe and et al [1] introduced the bioinformatics spectrum

to describe the research ares of bioinformatics. We used the new bioinformatics spec-

trum which is updated to broad areas of bioinformatics to describe the application of

bioinformatics. The spectrum has two dimensions: depth and breadth. [1]. The depth

can be explained with possible approaches to the target like the drug design. This axis

shows that starting with gene sequences analysis. Gene sequences analysis results in
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identification of protein sequences. Protein structure can be predicted from there, and

protein function can be predicted based on its structure. Using this result along with

resources from other areas such as biochemistry, statistics, physics, computer science

and literature information, one can design a drug that specifically alters the protein’s

function. The breadth in biological analysis is from to compare a gene or protein with

others to construct phylogenetic trees. A phylogenetic tree provides a way to evolution-

arily compare two or more bio-organisms. Incorporation of a breadth study to compare

other genes, molecules and organisms, and depth research of target molecule including

sequence, structure, binding and altered materials, will provide a variety of knowledge to

understand bio-organisms along with references of other areas. This result allows us to

understand bio-systems at the system level. Finally system-level understanding will give

us the efficient application such as simulation of bio-systems, production of more specific

and utilizable drug, and one of the ultimate goal, prolongation of life.

2.3 Mulit-Relational Data Mining to Bioinformatics

2.3.1 Overview of Mulit-Relational Data Mining

Typical data mining approach focus on the single relational data. A variety of

data in the multiple relations are provided and need to be analyzed like the biological

data. Multi-relational data mining is the knowledge discovery technique in the multiple

relations. Multi-relational data mining is focused on not only data in the multiple tables

but also their relationships. First step of multi-relational data mining is to represent

the data along with its multiple relations. First-order logics and graph representations

are used for representation of multi-relational data. They used their rules to describe

the data and its relationship. Mutli-relational data mining algorithms find a interesting

associated rule in the representation for better understanding of multi-relational data.
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2.3.2 Multi-Relational Data Mining Approaches to Bioinformatics

Biological database not only have a huge amount of data but also multiple relations.

Therefore multi-relational data mining approaches are necessary to mine their data. For

a long time many biologists have doubted that only genetics and molecular biology could

solve the main problems in the biology. Biology is not just logic and engineering. Biology

is active and dynamic within multiple environmental conditions. If once a drug is created

from long time research, it could not be applied to humans directly. We still do not know

its side effect in vivo (living organism) with various conditions of patients such as food,

age, sex, constitution, climate and interaction with another drug. Therefore biological

data are more complex and systemic than we expect, and they require multi-relational

data mining methods.

There are several bioinformatics areas to apply MRDM approaches such as struc-

tural biology, literature discovery and biological networks. The common feature is that

they are constructed from multiple data types and their relations. It is necessary to

employ an efficient representation method of biological data and proper data mining

techniques for knowledge discovery.

First-order logics are one of the widely used representation method in multi-relational

data mining approaches [35]. Logic-based data mining, also called Inductive Logic Pro-

gramming (ILP), represents data using logic. ILP is generally used in biological data

[12]. Observed clauses and background knowledge are combined by using the ILP system

to generate resultant rule. Then the system can distinguish between positive examples

covered by the resultant rule, and negative examples [36]. Support-Vector ILP (SVILP)

using Support Vector Machines and ILP provides a new approach which not only cap-

tures the semantic and syntactic relation in the data but also gives the flexibility of using

arbitrary forms of structured and non-structured data coded in a relational method [37].
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SVILP is applied successfully in the systems biology area. Stochastic Logic Programs

(SLP) provide an efficient representation for metabolic pathways [38].

Graph is a pervasive data structure and widely used in a variety of areas. A lot of

biological problems are represented and solved by using graph such as DNA sequencing

and protein identification [39]. The next chapter will describe graph-based data mining

which is the focus of this research.

2.4 Summary

This chapter explains related works. We introduced briefly the concept of data

mining and its algorithms. Then, an introduction to bioinformatics was given along

with organization of biological data, and analysis and application of this data. Lastly

we described multi-relational data mining approaches to bioinformatics along with logic-

based data mining. The next chapter will contain graph-based data mining as another

approach to multi-relational data mining.



CHAPTER 3

GRAPH-BASED DATA MINING

3.1 Overview of Graph-Based Data Mining

Bioinformatics domains have a variety of structural data such as genomes, proteins

and biological networks. One of the most common ways of describing structural data is a

graph representation. The graph is an abstract data structure consisting of vertices and

edges which are relationship between vertices [39].

Graph-based data mining denotes a collection of algorithms for mining the rela-

tional aspects of data represented as a graph. Graph-based data mining has two major

approaches: frequent subgraph mining and graph-based relational learning [40]. Frequent

subgraph mining and graph-based relational learning introduced briefly in this section.

Then the Subdue graph-based relational learning technique will be described including

substructure discovery, unsupervised hierarchical learning and supervised learning.

3.1.1 Frequent Subgraph Mining Approach

Graph-based data mining is the approach to finding meaningful and understandable

graph-theoretic patterns in a graph which represents relational data [40]. This section

depicts several approaches, mainly technologies applied to bioinformatics domain.

Frequent SubGraph discovery, FSG, is the approach to find all connected subgraphs

that appear frequently in set of graphs represented data. FSG starts by finding all fre-

quent single and double edge graphs. During each iteration FSG expands the size of

frequent subgraphs by adding one edge to generate candidate subgraphs. Then, it evalu-

13
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ates and prunes discovered subgraphs with user-defined constraints [41]. This approach

has been applied to classifying chemical compounds [19].

Graph-based Substructure Pattern Mining, gSpan, uses the depth-first search and

lexicographic ordering. First gSpan sorts the labels, removes infrequent vertices and

edges and relabels the remaining vertices and edges. Next it starts to find all frequent

one-edge subgraph. The labels on these edges and vertices define a code for each graph.

Larger subgraphs map themselves to longer codes. If the code of B is longer than A, the

B code is a child of the A code in a code tree. If there are two not-unique codes in the

tree, one of them is removed during the depth-first search traversal to reduce the cost of

matching frequent subgraphs [42].

3.1.2 Graph-Based Relational Learning

Graph-Based Relational Learning (GBRL) can be distinguished from graph-based

data mining in that GRBL focuses on discovery of novel, but not necessarily most fre-

quent, substructures in a graph representation of data [43]. The main goal of GRBL

is not merely to discover patterns capable of compressing the data by abstraction with

instances of the patterns, but also to find conceptually important substructures to give

better understanding of the data [44]. The Subdue graph-based relational learning sys-

tem can perform unsupervised learning and supervised learning by substructure discovery

based on Minimum Description Length (MDL). Subdue can discover patterns using back-

ground knowledge given as predefined substructures. Subdue has been applied to several

areas such as Chemical Toxicity [45], Molecular Biology [8], Security [6] and Web Search

[7].
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(a) (b)

Figure 3.1. (a) Graph representation of Escherichia coli description (b) Graph file of
Escherichia coli description.

3.2 Substructure discovery

Substructure discover is the technique that can mine structural data that contains

not only descriptions of individual objects in a database, but also relationships between

these objects. Subdue accepts input data which is represented as a graph including

labeled vertices labeled directed or undirected edges between vertices. The objects and

attribute values of the data are usually depicted as vertices, attributes and relationships

between objects are represented as edges.

Figure 3.1 (a) shows an example of a high-level graph representation of Escherichia

Coli (E. Coli). E. Coli which is a bacteria is categorized as Gram Negative Bacteria,

which means that this bacteria is not stained dark blue or violet by Gram staining. In

Figure 3.1 (b) the input file shows the syntax of the graph, where v id label defines

vertices and d id1 id2 label defines directed edges. If u is used instead of d, the edge is

undirected.

3.2.1 Discovery Algorithm

Subdue’s discovery algorithm is shown in Figure 3.2. The algorithm starts with

three parameters: input graph, beam length and limit value. The beam length limits

the length of the queue and the limit value restricts the total number of substructures

considered by the algorithm. The initial state of the search is the set of substructures
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Subdue(Graph, Beam, Limit)
Q = {v | v is a vertex in Graph having a unique label}
bestSub = first substructure in Q
repeat

newQ = {}
foreach substructure S ∈ Q

newSubs = Extend-Substructure (S, Graph)
in all possible ways

Evaluate (newSubs)
newQ = newQ

⋃
newSubs mod Beam

Limit = Limit - 1
if best substructure in new Q better than bestSub
then bestSub = best substructure in Q

Q = newQ

until Q is empty or Limit ≤ 0
return bestSub

Figure 3.2: Subdue’s discovery algorithm

representing each uniquely labeled vertex and its instances. The Extend-Substructure,

operator extends the instances of a substructure in all possible ways by adding a single

edge and a vertex, or by adding a single edge if both vertices are already in the sub-

structure. The substructures in the queue are ordered base on ability to compress the

input graph as evaluated using the minimum description length (MDL) principle [46]

which is described below. The search terminates upon reaching the limit value, or upon

exhaustion of the search space.

Once the best structure is discovered, the graph can be compressed using the best

substructure. The compression procedure replaces all instances of the best substructure

in the input graph with a pointer, a single vertex, to the discovered best substructure.

The discovery algorithm can be repeated on this compressed graph for multiple iterations

as defined by the user.
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3.2.2 Minimum Description Length Principle

The discovery algorithm of Subdue is guided by the minimum description length

[47] principle. The heuristic evaluation by the MDL principle assumes that the best

substructure is the one that minimizes the description length of the input graph when

compressed by the substructure [46]. The description length of the substructure S is

represented by DL(S), the description length of the input graph is DL(G), and the one

of the input graph after compression is DL(G|S). Subdue’s discovery algorithm tries

to minimize DL(S) + DL(G|S) which represents the description length of the graph G

given the substructure S. The compression of the graph can be calculated as

Compression =
DL(S) + DL(G|S)

DL(G)
(3.1)

where description length DL() is calculated as the number of bits in a minimal encoding

of the graph [46].

3.2.3 Inexact Graph Match

Although exact substructure match can be used to find many interesting substruc-

tures, many of the most interesting patterns might show in slightly different forms. The

Subdue algorithm employs the inexact graph match technique given by Bunke and Aller-

mann [48] to allow minor differences between the instances and the substructure defini-

tion. In this inexact graph match approach, each distortion of a graph is assigned a cost.

An inexact graph match is a mapping f : V1 → V2 ∪ {λ}, where V1 and V2 are the set

of vertices of g1 and g2 sequently, and a graph g1 is a distorted version of a graph g2. A

transformation f(v) = λ, where the vertex v ∈ N1, represents a mapping from v to λ.

This mapping, where no vertex in g2 corresponds with v, is called deletion. A distortion

is described in terms of basic transformations such as insertion, deletion and substitution
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of vertices and edge. We define the cost of an inexact graph match cost(f) as the sum of

the cost of each transformations using f . Then, a matchcost(g1, g2) defined as the value

of the least cost(f) which maps g1 onto g2 are computed using a tree search procedure

[46].

Subdue has a threshold parameter that can be specified as a value between 0 and

1, where a value of 0 allows only exact matching, and a value of 1 considers any two

graphs as the same. A match threshold t between 0 and 1 implies that a graph can be

considered to be an instance of a substructure where matchcost(g1, g2) is no more than

t time the size of g2 (size(g2) > size(g1)). The size of a graph can be calculated as

size(g) = n(v) + n(e), where a graph g = (v, e), v is the vertex, e is the edge and n(x)

is the number of x [46].

3.2.4 Complexity

Computational complexity is the inevitable issue, because graph-based data mining

usually runs with a huge amount of data like biological domain. The discovery algorithm

of Subdue is computationally expensive. Subdue uses two constraints to maintain polyno-

mial running time: Beam and Limit. Beam constraints the number of best substructures

by limiting the length of newQ in Figure 3.2. Limit is a user-defined number of sub-

structures to consider in each iteration. Inexact graph matching is the most expensive

part in the Subdue algorithm. Subdue uses the branch-and bound search to guarantee

an optimal solution and also limits the number of search nodes considered by each call

to the inexact graph maches [46, 49].

3.3 Unsupervised Learning

As mentioned in the previous section, Subdue can iterate to find a new best sub-

structure after compressing the graph with the previous substructure until the graph
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cannot be compressed any more or on reaching user-defined the number of iterations.

Each iteration generates a node in a hierarchical, conceptual clustering of the input data.

On the ith iteration, the best substructure Si is used to compress the input graph, intro-

ducing a new vertex labeled Si to the next iteration. Consequently, any subsequently-

discovered subgraph Sj can be defined in terms of one or more Si, where i < j. The

result is a lattice, where each cluster can be defined in terms of more than one parent

subgraph.

3.4 Supervised Learning

The Subdue discovery algorithm has been extended to perform supervised graph-

based relational learning which needs to handle negative examples. Regarding negative

examples Subdue can work with two kinds of data. First, the data can be in the form of

numerous small graphs, which are labeled as positive or negative examples. Second, the

data can consist of two large graphs: one positive and one negative [40]. The first form

is closer to the standard supervised learning problem, because we have a set of clearly

defined examples. The main approach of supervised learning is to find a substructure

that appears often in the positive examples, but not in the negative examples. The

substructure value is increased when positive examples are covered by the substructure,

but is decreased where negative examples are covered. Positive examples not covered

by the substructure and negative examples covered by the substructure are considered

error. The substructure value is calculated by

value = 1 − error (3.2)
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where the error is calculated by

error =
#PosEgsNotCovered + #NegEgsCovered

#PosEgs + #NegEgs
(3.3)

#PosEgsNotCovered is the number of positive examples not covered by the substruc-

ture, and #NegEgsCovered is the number of negative examples covered by the substruc-

ture. #PosEgs is the number of positive examples remaining in the experimental set,

of which the positive examples that have already been covered in a previous iteration

were removed, and #NegEgs is the total number of negative examples, which is constant,

because negative examples are not removed [50].

Subdue can take two approaches to minimize error. Subdue can bias the search

algorithm toward a more characteristic description using the information-theoretic mea-

sure to look for a substructure that compresses the positive examples, but not negative

examples. By using definition of description length Subdue tries to find and a substruc-

ture S minimizing DL(G+ | S) + DL(S) + DL(G−) − DL(G− | S), where the last two

terms represent the incorrectly compressed negative example graph. This approach will

lead the discovery algorithm toward a larger substructure that characterizes the positive

examples, but not the negative examples.

Instead of using the compression-based evaluation measure with error measure,

Subdue can use the a set-cover approach. At each iteration Subdue adds a new sub-

structure to the disjunctive hypothesis and removes covered positive examples. This

process continues until either all positive examples are covered or no substructure exists

discriminating the remain positive examples from the negative examples [51, 50]
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3.5 Summary

This section described the Subdue graph-based data mining algorithm. Graph-

based data mining is defined as finding the relational patterns in a graph representation

of data. Frequent Subgraph Mining Approach and Graph-Based Relational Learning are

introduced as two approaches of graph-based data mining in the first section. Subdue’s

discovery algorithm is described along with minimum description length (MDL) and

inexact graph match. Then the supervised learning and unsupervised learning algorithms

of Subdue are also introduced. Next chapter will introduce the biological network and

related concepts as the domain of the Subdue application.



CHAPTER 4

BIOLOGICAL NETWORKS and KEGG

4.1 Biochemical Concepts

A biological organism has one ultimate goal: to continue the life of its species and

itself in the world. This goal requires two important activities. The first is to maintain

low entropy in the environment. The second is to reproduce [52, 53, 54]. To maintain

low entropy means that free energy needs to be conserved at a high level. Biological

organisms need to process digestion, perception, circulation, respiration, excretion and

acting to maximize free energy and minimize entropy.

Every biological organism consists of one or more cells. A cell is a functional

and structural basic unit of biological organisms. A cell is divided into two categories:

prokaryotic cell and eukaryotic cell. A prokaryotic cell, relatively small size, does not

have a nucleus. A eukaryotic cell, relatively large and full-functioned cell, has a nucleus

and most cellular organelles depend on an animal cell or a plant cell. Bacteria like E.

Coli and Salmonella germs are prokaryote organisms. Yeasts, plants and animals are

eukaryote organisms [52, 53, 54]. A cell carries most of the processes for maintaining

its life, because it is a functional and structural basic bio-organism by itself. The cell

generates some energy from nutrients to maintain its life and reproduce. Also, it needs

to protect itself against the outer environment and excrete garbages. Every activity of a

cell is carried out as metabolism.

Metabolism is a series of enzyme-catalyzed reactions that constitute metabolic path-

ways in a cell or organism [52]. Each consecutive reaction in a metabolic pathway makes a

specific biochemical change. Metabolism can be divided into two categories: Catabolism

22
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and Anabolism. Catabolism is the degradation phase in which organic nutrient molecules

are converted into smaller and simpler compounds, sometimes while releasing energy for

biological activity. Anabolism is called biosynthesis in which small and simple molecules

are built up into larger and more complex molecules, such as polypeptide, polysaccharide

and triacyglycerols [52, 55, 54].

4.1.1 Biochemical compounds

A cell and its organelles are composed of many biochemical compounds. Biochem-

ical compounds are a biochemical substance formed from two or more elements. For

example, H2O, O2, N2, and CO2 are examples of compounds. Some of these compounds

play a biochemically important role in a cell such as amino acid, glucose, lipid acid

and nucleic acid. These basic compounds constitute macro molecules, much larger com-

pounds, such as proteins, carbohydrates, lipids and genetic materials (DNA and RNA)

which are working as structural, energy-resource and functional molecules [52, 55, 54].

4.1.2 Biochemical reaction

A biochemical Reaction is a chemical reaction which takes place in all living organ-

isms. A chemical reaction is a process involving one, two or more compounds, which are

divided into substrates and products. A substrate is a chemical compound present before

a reaction, and a product is generated after a reaction. A reaction changes a substrate

into a product by a chemical change or transferring some chemical groups or electron

from a substrate to a product. Generally, a biochemical reaction is represented from left

(a substrate) to right (a product) like the next equation.

6CO2 + 12H2O + △E → C6H12O6 + 6O2 + 6H2(Photosynthesis) (4.1)
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If a reaction can proceed either way (⇀↽), the reaction is called a reversible reaction,

otherwise, an irreversible reaction [52, 55, 54]. In Figure 4.1 which describes the artificial

metabolic pathway we can see several biochemical reactions. A rectangle represents a

compound like a substrate and a product. In the left part of the Figure 4.1 Compound

A ⇀↽ Compound B represents the reversible reaction between compound A and B. Below

this reaction, Compound C ⇀ Compound D represents the irreversible reaction between

Compound C and D.

4.1.3 Enzyme

A catalyst accelerates the chemical reaction by providing lower activation energy

between the reactants (substrate) and the reaction products. An enzyme is a powerful

and specific catalyst in almost all every biochemical reaction. Except a few catalytic

RNAs, almost all known enzymes are proteins. This is the main reason why a protein

plays a central role in a cell or organism. A simple enzymatic reaction might be written

E + S ⇀↽ ES ⇀↽ EP ⇀↽ E + S (4.2)

where E, S and P represent the enzyme, substrate and product; ES and EP are inter-

mediate complexes of the enzyme with the substrate and with the product. Figure 4.2

shows that the reaction between Compound C and Compound D catalyzed by enzyme

CD represented by an eclipse.

In enzyme reactions, we should understand two concepts. First, one enzyme is

specific to one substrate, because the active site, which is the binding region of the

substrate, has a unique geometric shape that is complementary to the geometric shape

of a substrate. This is called “Lock(enzyme) and Key(substrate) Theory” in Figure 4.1

(a), because a key is used into only well-fitted lock [52, 54]. Second, an enzyme can
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(a) (b)

Figure 4.1. (a) Lock and Key Theory of Enzyme-substrate complex (b) Activation energy
comparing enzyme-catalyzed and uncatalyzed reaction .

catalyze a reaction by decreasing activation energy . Activation energy is the difference

between the energy levels of the ground state and the transition state. The rate (speed)

of a reaction reflects this activation energy. A reaction can proceed without an enzyme,

but it is too slow. Lower activation energy enhances reaction rates as shown in Figure

4.1 (b) [52, 55, 54].

4.1.4 Pathway

A pathway is a sequence of several biochemical reactions to transform a set of

substrates into a set of products [55]. From the view of computer science a pathway

is a network of biochemical reactions. It is similar definition to the Internet that is the

network of computer networks. It is necessary to process a series of biochemical reactions

to produce macro molecules, but not just a couple of reactions, because these molecules

which play central roles in the cell usually have large molecular weight and complex

structures. They are produced by a cooperation of various biochemical reactions and

compounds. There are always interactions among pathways. A product of a pathway

may be a substrate of another pathway [52, 55, 54]. Figure 4.2 shows two artificial
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Figure 4.2. Artificial metabolic pathway. This metabolic pathway consists of two
metabolic patway: Left part and Right Part.

metabolic networks (a left serial form and a right cyclic form). The Compound E is a

product of the left pathway is used as a substrate in the right pathway.

4.1.5 Regulation

A biological organism is the most efficient system on earth. A bio-organism always

chooses the most effective way to utilize its resources. For example, if a sugar level

in blood is maintained as the average, the pancreas does not increase or decrease the

production of insulin. If the sugar level comes down, more insulins are released from

the pancreas, and if the sugar level becomes higher than the average, the production of

insulin is regulated for a harmonizing concentration of sugar. An organism has a variety

of mechanisms to keep its balance such as feedback control, genetic control, competitive

control and allosteric control [52, 55, 54]. Moreover, all kinds of controls work in harmony

with other control methods to most efficiently using its resources.
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4.2 Systems Biology

Systems biology is an emergent field which aims at system-level understanding of

biological systems. System-level understanding is an abstract concept in itself [34, 56].

System-level understanding is not only to investigate bio-systems in detail, but also to

comprehend how they are working in a certain environment or situation. Finally we

should be able to design the bio-systems to work optimally in natural systems. With the

progress of genome sequence projects and range of other molecular biology projects that

accumulate a huge amount of knowledge of the molecular nature of biological systems,

we are now at the stage to seriously look into system-level understanding grounded

on molecular-level understanding [57, 34]. System-level understanding, the approach

advocated in systems biology, requires a shift in focus from understanding genes and

proteins to understanding a system’s structure and dynamics of celluar and organismal

function [57, 12, 34].

There are four aspects to study: [57]

System Structure: First of all, we need to understand the structures of bio-systems.

The primary bio-systems to be understood are the biological networks, such as the

metabolism network, regulatory network and protein-protein interaction. Also we need

to identify the physical structures of organisms and the mechanisms between intracellular

and multicellular systems.

System Dynamics : After bio-systems are identified, their dynamics or behavior,

also need to be understood. Fundamentally, we need to know how a system behaves

over time under various conditions through metabolic analysis, sensitivity analysis, and

dynamic analysis.

The Control method : For the purpose of application of the insights of system

structures and dynamics, we need to establish a method to control the bio-systems.

To maintain a bio-system in a effective life, the system is controlled optimally under
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various environments. The control mechanism needs to be fully described for system-

level understanding.

The Design Method : Ultimately, we would like to design and construct a bio-system

with the aim of simulating a real bio-system. It allows us to cure severe diseases and

produce a great harvest in medical science and agriculture. There are many potential

applications of a bio-systems, such as simulation of disease risk, drug design, organ cloning

and so on [34].

Systems biology is a new and emerging field in biology that aims at system-level

understanding of biological systems. System-level understanding requires a range of new

analysis techniques, measurement techniques, experimental methods, software tools, and

new concepts for looking at biological systems [34].

4.3 Overview of Biological Networks

For system-level understanding, computational modeling of biological networks is

a central research field. A biological network represents objects such as genes, proteins

and other biochemical compounds, and relationships between those objects. To model a

biological network allows us to fully understand not only those objects and relationships

but also the dynamics of the network [58]. Nowadays, we can finally focus on compu-

tational modeling of biological networks, since we have enough results of genomics and

proteomics by the means of development of new high-throughput technologies such as

microarray, mass spectrometry and 2D protein gel electrophoresis [31, 38].

There are three kinds of network to process modeling: Metabolic network, protein

network and genetic network. Metabolic Network represents the enzymatic processes

within a cell, which provide energy and create parts of the cell [59, 55]. Protein net-

work is the network of signal transduction networks or communication between proteins.

These protein-protein interactions are mainly involved in signal pathway [55, 60]. Ge-
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netic network is a regulatory network which refers to the functional inference of direct

causal gene interaction. By the following, DNA → RNA → Protein → function, gene

expression is regulated at many molecular levels [61, 55]. Three categories of biological

networks would be considered as two groups: Metabolic network and Protein-protein

Interaction. The first one is the network of various objects and their relations, but the

second one is the network of interactions between proteins [62].

4.4 Computational Analysis of Biological Networks

As mentioned in the previous section, the biochemical pathway is the complex in-

teraction between molecules such as biochemical compounds, protein and other genetic

materials. Efficient representation is needed for computerized analysis of biological net-

works. As described in the previous chapter 3 the graph-based representation would be

a good choice to describe objects and relationships of the biological network. Each ob-

ject like a protein, compound and gene would be a vertex and the relationships between

objects would be edges. The graph representation of biological domains is a popular

method. One of the most used RDBMS, Oracle, employs a Network Data Model (NDM)

which enables users to model and analyze data as a graph [5].

Detecting Frequent Subgraph can find quickly frequent patterns in biological net-

works from KEGG PATHWAY database [63]. But the graph representation of this

approach misses some features of KEGG biological networks. Mining coherent dense

subgraphs technology shows better performance than frequent subgraph mining in this

domain [64]. This approach compresses a group of graphs into two meta-graphs using

correlated occurrences of edges for efficiently clustering. However this approach is just

focused on interaction between proteins and gene products from microarray analysis.

Other approaches using the graph representation are also available. The large-scale

organization is used as a framework for modeling the biological networks based on the
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idea that the metabolic network has the same topological scaling properties and shows

striking similarities to the inherent organization of complex non-biological networks [65].

Analysis of pattern in biological networks using the topology of the network and the

directionality of its link is also tried based on large-scale topology [66]. PATHBLAST is

the BLAST algorithm for biological networks that identifies conserved network regions

[67].

Instead of graph theory, other approaches are used to analyze biological networks.

A graphical notation and a process diagram are used to represent the pathway network

[68, 69]. One approach using logic circuits tries to explain the transcriptional regulation

network [70]. Mathematical expression distance is used to describe the dynamics of a

cellular metabolic network [71].

4.5 Database of Biological Networks

Many computational technologies have given huge contributions to bioinformatics

research. Like other bioinformatics areas, biological networks also have a huge amount

of data. Especially, biological networks include not only many objects such as biochem-

ical compounds, proteins and genetic materials, but also relationships between those

objects. Therefore the database of biological networks has many cross-references with

other databases, which have the information of chemical compounds, proteins and ge-

netic materials. There are several databases of biological networks [62, 72, 73, 74] in the

web.

Unfortunately, some of databases in Table 4.1 do not have enough information.

They are still progressing to update data. Moreover they have few suitable formats to

represent and distribute their data. However, a couple of database have enough data

and proper format to research of biological networks. As the survey of this research,

KEGG and PathCase has relatively enough data. The PathCase Pathway Database
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System has 37 metabolic networks and 876 biological processes with related molecules.

They PathCase has visual browser to explore pathways with related molecules [74]. It

is difficult to analyze this data using user-specific methods, because their distributed

format is used on the only their own browser. The KEGG PATHWAY database has not

only sufficient and comprehensive data, but also a proper data format, KGML, based on

XML [62].

Table 4.1. Databases of Biological Networks

Database URL
KEGG http://www.genome.jp/kegg/pathway.html

PathCase http://nashua.cwru.edu/pathways
BIND http://bind.ca
DIP http://dip.doe-mbi.ucla.edu

BioCyc http://www.biocyc.org

4.6 KEGG and KGML

4.6.1 KEGG - Kyoto Encyclopedia of Genes and Genomes-

KEGG, Kyoto Encyclopedia of Genes and Genomes, from the Kanehisa Labora-

tory of Kyoto University Bioinformatics Center, is a database to understand systematic

function of the cell or the organism from its genomic information. KEGG has a hier-

archical structure of several bioinformatics databases. KEGG has four databases at the

first level, such as KEGG PATHWAY, GENES, LIGAND and BRITE [62, 2].

KEGG PATHWAY is a central database which has the information of five cate-

gories of biological networks. KEGG GENES is a collection of gene catalogs for com-

plete genomes and some partial genomes. It consists of GENES (high-quality genomes),

DGENES (Draft genomes), EGENES (EST consensus contigs), VGENES (complete viral
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genomes), and OGENES (complete mitochondrial genomes, plastid ge nomes and nucle-

omorph genomes). KEGG LIGAND is a composite database consisting of COMPOUND

(chemical compounds), GLYCAN (carbohydrate structure), DRUG (drug data), RE-

ACTION (chemical reactions), RPAIR (reactant pairs) and EZNYME (enzyme nomen-

clatur). Finally, BRITE is a collection of binary relations and hierarchies, which con-

sisting of KO (KEGG Orthology: Pathway-based classification of orthologs) and cross-

references to other databases [62, 2].

Biological networks, the object of this research, belong to the KEGG PATHWAY

database. The KEGG PATHWAY database is not completed, but still updated. The

KEGG PATHWAY database has 271 species and 167 reference networks (on August

2005). The KEGG PATHWAY database has two types of biological networks: a ref-

erence network and an organism-specific network. A reference network is a standard

network which is manually generated by biologists and biochemists based on long-time

accumulated experimental results. An organism-specific network is automatically gen-

erated by specific gene (coloring at Figure 4.3) in given organisms. Therefore, each

organism has various numbers of biological networks, based on which genes or genetic

product are found in current research [62, 2].

Of those databases, this research focuses on the KEGG PATHWAY which has

information of biological networks. KEGG PATHWAY has three ways to distribute its

data, graphic files, KEGG API and KGML. A first way of distribution is a graphic file

map which shows the picture of a biological network in the Figure 4.3. The map is

GIF format file which is generated by KEGG technician. This way is the easiest way

to explain the biological network. KEGG API is the way to access the KEGG database

by using SOAP technology over the HTTP protocol. The SOAP server also comes with

the WSDL (Web Services Description Language), which is a XML format for describing

network services, makes it easy to build a client library for a specific computer language.
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Figure 4.3. A graphic file map of TCA cycle biological network of Homo Sapiens [2].

This system allows users to make their own code to access the KEGG database [62, 2].

Last method is KGML which is the standard data format to express a biological network.

KGML will be discussed in the next subsection [3].

As the last part of the KEGG database section, I will depict the naming convention

used in the KEGG database. They usually use their convention name instead of biolog-

ical nomenclature. The names of KEGG biological networks consist of several alphabet

characters and several digits numbers. First, the KEGG PATHWAY DB has 271 species

and one reference species which is not biologically species but same level as species. Their

name is composed of three characters abbreviation of species name. For example, ref-

erence map is “map”, Homo Sapiens (Human being) is “hsa” and Escherichia coli, one

of the bacteria, is “eco”. Map, reference network has 167 biological networks and other

species has various number of networks based on research results of each species. But

each network in different species is basically same even though it has a few species-specific
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feature. Glycolysis in hsa is the metabolite to degrade sugar for energy generation, and

Glycolysis in eco is the almost same function, wherever this metabolite is identified and

stored in KEGG database. Each network is named using five digits number. For example

00010 means Glycolysis and 00251 represents Glutamate metabolism. By this manner

Glycolysis in Human being is named as hsa00010 and Glutamate in E. Coli has eco00251

as its name. When the biological network is referred from other network, it is shown as

with prefix “path” such as path:eco00010 and path:hsa00251. Other component in bio-

logical network has each convention for its name. Enzyme has a name composed of “ec:”

indicating enzyme as prefix and enzyme name like a.b.c.d such as ec:1.1.3.5 (Hexose ox-

idase) and ec:5.4.2.2 (Gulcose phosphomutase). Compound name consists of a prefix,

“cpd:” and its name composed of “c” plus five digits number such as cpd:c00001 (water,

H2O) and cpd:c00293 (glucose, C6H12O6). Other data in the KEGG database has each

own convention like its identification number and they have cross link to each other using

the convention name.

4.6.2 KGML - KEGG Markup Language-

The KEGG Markup Language (KGML) is an exchange format of the KEGG graph

objects, based on XML. KGML enables automatic drawing of KEGG pathways and pro-

vides facilities for computational analysis and modeling of protein networks and chemical

networks [3].

KGML is written in XML. XML contains the root element, which can contain other

elements. And theses elements can contain child elelemts and so on. Each element can

contain attributes for explain properties of the element [75]. Figure 4.3 shows some parts

of eco00020 KGML file which has pathway as root and three child elements such as entry,

relation and reaction.
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<pathway name=“path:eco00020” org=“eco” number=“00020”
title=“Citrate cycle (TCA cycle)”
image=“http://www.genome.jp/kegg/pathway/eco/eco00020.gif”
link=“http://www.genome.jp/dbget-bin/show pathway?eco00020”>
· · ·
<entry id=“15” name=“eco:b0615” type=“gene” reaction=“rn:R01323”
link=“http://www.genome.jp/dbget-bin/www bget?eco+b0615”>

<graphics name=“citF, ybdV” fgcolor=“#000000” bgcolor=“#BFFFBF”
type=”rectangle” x=“411” y=“393” width=“45” height=“17”/>

</entry>
· · ·
<relation entry1=“13” entry2=“14” type=“ECrel”>

<subtype name=“compound” value=“61”>
</relation>
· · ·
<reaction name=“rn:R00341” type=“reversible”>

<substrate name=“cpd:C00036”>
<product name=“cpd:C00074”>

</reaction>
· · ·

</pathway>
Figure 4.4: A example of KGML [2]

As shown in the Figure 4.4, KGML has the pathway element as a root element.

Pathway element has six attributes and three child elements. Six attributes are name,

org, number, title, image, and link. Name is the convention name of biological network

such as eco00010, hsa00020 and map00251. As mentioned above this convention name

is starting with “path:”. Org is the species name such as hsa, eco and map. Number

specifies a five-digit pathway biological network number such as 00010, 00020 and 00251.

Title specifies the title of this map. Image is the location of the graphic file of pathway

map. Link has the resource location of the information about this pathway map in the

KEGG web service [3].

The Pathway element has data has three major child elements: Entry, Relation,

and Reaction.
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Figure 4.5. An overview of KGML. The pathway element is a root element, and one
pathway element is specified for one pathway map in KGML. The entry, relation, and
reaction elements specify the graph information, and additional elements are used to
specify more detailed information about nodes and edges of the graph [3].

Entry element represent a object in the biological network such as enzyme, gene,

compound and so on. Entry element has several attributes which explain the property

of the Entry such as id, name, type, link, reaction, map. Id is the unique identification

number only in each biological network, but not in the entire database. It is used for

reference from reaction or relation. Entry name has the convention name as mentioned

above. This name can be used for reaching other linked database such as Compound,

Gene, Enzyme, and so on. Type indicates the type of Entry, which can be Enzyme,

Compound, Gene, Genes Group, and Map (a name of other biological network). Link is

the the resource location of the information about this entry. Reaction is the convention

name of the reaction catalyzed by this entry, absolutely included in the same biological

network. If this entry does not have any relationship with any reaction, this attribute is
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Table 4.2. Subtype node value and Subvalue node value of the Relation element [3]

Subtype value Subvalue value ECrel PPrel GErel

compound link to Entry for compound ∗ ∗
hidden compound link to Entry for hidden compound ∗
activation −− > ∗
inhibition −− | ∗
expression −− > ∗
repression −− | ∗
indirect effect .. > ∗ ∗
state change ... ∗
binding/association −−− ∗
dissociation − + − ∗
phosphorylation +p ∗
dephosphorylation −p ∗
glycosylation +g ∗
ubiquitination +u ∗
methylation +m ∗

not available. Map which is the Id of the map entry is specified if this entry appears in

another pathway map [3].

Relation is relationship between protein, gene, compound and map. Relation node

is a central node of relation part. Each Relation node has several attributes. First, two

attributes explain basic properties of the relation such as Type and Subtype. Type at-

tribute may have ECrel, PPrel, GErel, PCrel and maplink as an attribute value. Subtype

attribute may have several values as mentioned in Table 4.2. The Subtype value may

have link or its own value to give additional information of the relation. At Table 4.2.

first two rows of the Subtype have a link to another Entry. Other values of Subtype are

specific information dependent on the Type value of the relation. Second, the relation has

two or more Entry elements (protein, gene, compound or map) as its child elements. Re-

lation entry explains the relationships between these objects by using type and subtype

[3].
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Reaction represents a chemical reaction between one or more substrate and one

or more product catalyzed by one or more enzyme. Each Reaction has two or more main

entries like a substrate and a product. The other two attributes, type and name, describe

properties of the reaction. By a semantics of biochemistry, the enzyme is not included

as an attribute to Reaction entry. The enzyme entry has a pointer to Reaction entry to

catalyze as explained above [3].

4.7 Summary

This chapter described the domain of this research. Some important biochemical

concepts are explained for background of this research. Systems biology are introduced for

post-genomic bioinformatics research. As one of the approaches of Systems biology, the

study of biological networks is introduced with some examples of computational analysis.

Biological network databases are represented as the result of the traditional bioinformat-

ics research and the resource of the future work. Finally, the KEGG database which is

the most comprehensive archive of the biological network is introduced as the resource

of this research with its own distributed format, KGML. In the next chapter, we will

describe the graph representation of the KEGG biological network and the application

of the graph-based data mining as the main approach of this research.



CHAPTER 5

GRAPH-BASED DATA MINING FOR KEGG BIOLOGICAL

NETWORKS

The main goal of this research is to apply the Subdue, graph-based data mining

system, to biological networks data. Specially the goal of application is to identify how

useful Subdue can be used in the research of the biological networks.

Figure 5.1 shows a flowchart of this research. At the pre-processing phase KGML

data which is categorized by species was downloaded from KEGG ftp site. Every at-

tribute is converted to graph data as a node, and each relationship is converted as edge.

Because some names of entries posed potential problems when we run Subdue, this re-

search constructs two graph representations of a biological network: the named-graph

(at the Figure 5.2) and the unnamed-graph (at the Figure 5.3). The former has every

unique name from KGML data, and the latter does not have any unique names. In the

second representation each entry is described just by type, such as an enzyme, compound,

reaction, relation and so on, but not the unique name.

In the Graph-based data mining (GDM) phase 1 Subdue runs to find the patterns

in the unnamed-graph data. In this phase we run two kinds of experiments: supervised

learning and unsupervised learning. Supervised learning experiments focus on distin-

guishing two groups of biological networks. Unsupervised learning experiments try to

identify common substructure of groups of biological networks.

In the GDM phase 2 Subdue finds the patterns with the results of phase 1 as

predefined substructures. The goal of phase 2 is to find complete instances of the patterns

39
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from phase 1, which will have the unique names. The final result of this phase will be

used to explore biochemical meaning of patterns.

The experiments were conducted on Intel Pentium Xeon Dual Processor 2.8GHz

system running Linux kernel version 2.6.11.4 with 2GB memory.

In this chapter we will describe our approach to biological networks. The first sec-

tion will introduce our graph representation to depict KGML data. The second section

will explain the application of the supervised learning of the Subdue to biological net-

works. The last section will apply the unsupervised learning of the Subdue to biological

network.

5.1 Graph Representation

As mentioned above a graph representation is widely used for the biological network

as well as other biological domains. This section describes a graph representation for the

KGML data, an example of which is shown in Figure 5.2 and 5.3. We use a directed

graph, an ordered pair G = (V, E), where V is a set of vertices and E is a set of directed

edges. A directed edge e = (α, β) is considered to be directed from vertex α to vertex

β, where β is called the head and α is called the tail of the edge. Three main elements

and values of all attributes are represented as vertices, and attributes and relationships

between these vertices are shown as edges.

First, we will describe a detail representation with a named-graph. Then the al-

gorithm of the conversion program is provided. Finally we will depict the unique name

problem and an unnamed-graph representation.

5.1.1 A named-graph of Representation

This section gives a description of a named-graph representation of the biological

network at Figure 5.2. KGML has Pathway as its root element and three child elements:
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Figure 5.1. Flowchart: Application of Graph-based data mining to biological networks.
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Figure 5.2. The named-graph representation of a biological network.

Entry, Relation and Reaction. As a view of representation for graph-based data mining

the Pathway element is not useful to describe those elements and their relationships,

because the Pathway element describes only an overview of the pathway without focusing

on objects and relationships in network itself. Our approach to a graph representation

starts from the three child elements.

Entry may have six attributes to describe the property of the entry. Link is

not used in this research because it is a link to location of additional information. Id

which is the unique identification number is used to represent the biological network by

guidance, especially when the entry links to another entry or reaction. But it is not

shown as vertex on the representation. Two attributes, Name and Type are used to

mainly describe properties. These two values of Name and Type attributes represented

as vertices are connected to the Entry node by Name attribute edge and Type attribute

edge sequently. Reaction attribute is available only when the entry is the enzyme or

gene which catalyzes a reaction. When the reaction attribute is available, this attribute

is shown as E to Rct edge which is connected to that reaction. Every attribute is a

directed edge from Entry to the value of each attribute except E to Rct edge. E to Rct
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Figure 5.3. The unnamed-graph representation of a biological network.

edge is headed for the Entry, as a catalyst, from catalyzed the reaction. It is a general

idea in biochemistry that the enzyme is considered as an assistant to the reaction even

though it is almost always mandatory [52].

Relation shows the relationship between protein, gene, compound and map. The

Relation node has several attributes. Two value vertices of Type and Subtype attributes

are connected to the Relation vertex by a Type attribute edge and a Subtype attribute

edge respectively. As mentioned in the last chapter, the Subtype attribute may have a

subvalue or a pointer to another Entry. If Subtype has a subvalue, Subtype is represented

as a Subvalue vertex connected to the Relation vertex by a Subtype edge. In another

case where the Subtype has compound or hidden compound as its subvalue, the subvalue

vertex is connected to the Relation vertex by the Subtype edge, and then the Subtype

vertex is connected to another Entry by a Value edge as a pointer role. Relation element

has two Entry names, which are already represented as Entry vertices as above, as its

child elements. Usually these are same kinds of Entry, but they are ordered as first and

second. First and second vertices are connected to Relation vertex by a E to Rel edge
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and a Rel to E edge sequently. Every edges are directed from Relation vertex to the

value of each attribute. If Value edge is available, it is headed for the pointed Entry from

the Subtype vertex.

Reaction represents a chemical reaction between one or more substrate and one

or more product catalyzed by one or more enzyme. Reaction vertex has two attributes:

type and name. Values of two attributes as vertices are connected to Reaction vertex

by Type and Name edges respectively. Reaction element has two or more child elements

are categorized as a Substrate and a Product, which are already represented as Entry

as above. A Substrate vertex is connected to Reaction vertex by a S to Rct edge, and

as a Product vertex is connected by a Rct to P edge. As mentioned above, Reaction

entry is connected to the Entry which is catalyzing this Reaction by E to Rct edge. The

directions of all edges are headed for all attribute vertices and child vertices from Reaction

vertex.

5.1.2 Converting KGML to a Graph: KGML2Graph

In this research KGML2Graph was implemented to convert KGML data to a graph

using XML access technology since KGML is written by XML. To access XML we use the

DOM library in the Java Development kit (Version 1.4.2). The DOM is a platform and

language neutral interface which allows us to access and update the content, structure,

and style of documents. The DOM model not designed for just Java, but to represent

the content and model of documents across all programming language and tools [76, 77].

Using the DOM library, well-structured documents in XML can be accessed efficiently.

Figure 5.4 shows the algorithm of the conversion program KGML2Graph. The

algorithm starts by tracing the tree structure of the KGML document. First it visits

the root node, Pathway, which is not used in this representation. Then it visits each

child node, such as entry, relation and reaction. When it visits each child node, it
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gets the information of node and its attributes. Then this information is stored to the

queue. KGML2Graph has three major queues for three child elements. After completing

the storage of all information from the KGML, it starts to print the nodes and their

attributes as the vertices of a graph. Then it prints each relationship between vertices

and attributes as the edges of the graph.

Get Node from KGML DOM document
while Node is not null do

if Node.getNodeName() equals ”entry” then
Node.getAttribute()
Put Attribute data categorized by each entry into the Queue

if Node.getNodeName() equals ”relation” then
Get Attribute data for each relation from the Queue
Construct relation with entry

if Node.getNodeName() equals ”reaction” then
Get Attribute data for each reaction from the Queue
Construct reaction with entry

Print Node and Attributes from the Queue as the vertex
Print Relationships between vertices as the edges

Figure 5.4: KGML2Graph conversion algorithm

5.1.3 An unnamed-graph representation

A named-graph representation has almost all features of KGML biological net-

works. Some unique names of entries posed potential problems when we run Subdue on

the the named-graph, because KGML data has several unique names. For example an

enzyme with ec:3.1.3.9 as its name acts as D-glucose-6-phosphate phosphohydrolase in

the Glycolysis biological network. Generally this enzyme is found only in the glycolysis

pathway. Therefore if we try to find the best substructure to distinguish this network

from others, just one pattern, this name, is found by Subdue. There is less need to have

the unique name of each entry, because our research goal is to analyze patterns of biolog-



46

ical networks. For this reason this research constructs an unnamed-graph representation

of KGML data as well as the named-graph representation.

The unnamed-graph representation is not much different from the named-graph.

Three elements such as entry, relation and reaction have their own name represented as

the Name node and the Name edge. These nodes and edges are erased in the unnamed-

graph. By this way the unnamed-graph does not have unique label but contains other

properties of all elements (Figure 5.3).

The goal of this research is to find interesting and meaningful patterns of relations

between objects from biological networks. The unnamed-graphs has enough information

to explore the relations. After finding the patterns, the pattern is evaluated using the

named-graph representation.

5.2 Supervised learning

The main goal of supervised learning is to distinguish between two groups of net-

works. Graphs of biological networks are divided into two groups: positive examples and

negative examples. Subdue searches for some patterns which are presented in one group

but not in another group. In the supervised learning section, two kinds of experiments

are processed. First one is to distinguish between one network in some groups of species

and another network in the same group. It is a classification by kinds of biological net-

works. Second one is to distinguish between some groups of networks in one species and

same groups in another species. It is a classification by species.

Table 5.1 and 5.2 show the experimental sets in supervised leaning. Set represents

experimental sets. The name of a set consists of two parts, XP and XN, which represent

the network name of the positive examples and negative examples respectively. The

number of examples represents a number of positive and negative examples. Source in

Table 5.1 represents source groups of species. This table has three groups: Eukaryote
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Table 5.1. Experimental set used in classification by the biological network

Set Number of examples Source

(XP XN) (Pos./Neg.) (Species group)
00240 00230 17/17 Eukaryote
00230 00240 17/17 Eukaryote
00300 00310 9/16 Eukaryote
00310 00300 16/9 Eukaryote
00520 00530 14/17 Eukaryote
00530 00520 17/14 Eukaryote
00061 00010 15/17 Eukaryote
00010 00900 44/41 45 Set
00240 00230 45/45 45 Set
00251 00010 45/44 45 Set
00010 00510 31/44 45 Set
00010 00230 44/45 45 Set
00061 00010 44/41 45 Set
00010 00900 149/143 150 Set
00061 00100 140/149 150 Set

set, 45 Set and 150 Set. Each set has a different numbers of species. Eukaryote set

consists of all eukaryote species (17) in the KEGG PATHWAY database. 45 Set has 45

species and 150 Set has 150 species, which are from each species group. The number of

positive and negative examples is less than or equal to the number of each source group,

since the example network may not yet be constructed (or not presented) in the specific

species. For example all 17 species of the eukaryote cell have the 00010 network. But,

Encephalitozoon cuniculi (fungi) and Danio rerio (Zebra fish) do not have the 00061

network.

5.2.1 Classification by the biological network

First classification tries to find the patterns that are able to distinguish between two

groups of biological networks. In each experimental set we have one biological network
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Table 5.2. Experimental set used in classification by species

Set Number of examples

(XP XN) (Pos./Neg.)
hsa eco 139/103
hsa eco:25 25/24
eco sty 120/120
eco bsu 103/97
sce eco:25 24/24
mmu sce 90/150

in the one species group and another biological network in the same species groups. For

example 00061 00010:Eukaryote set has two groups: The positive example (XP) group

has the 00061 biological network in the Eukaryote species group. The negative example

(XN) group has the 00010 biological network in the same group. The table 5.1 shows

every set used in this experiment. The first six consist of pairs to identify difference of

accuracy when positive examples and negatives examples are exchanged to each other.

The experiment is processed by following the flowchart in Figure 5.1. Subdue runs

with a graph file containing all positive examples and negative examples in the one set

to find some substructures that are in the positive examples, but not in the negative

examples. This phase is called GDM phase 1. After finding patterns to distinguish

between the positive and negative examples, we run Subdue on the named graph data

with the result of phase 1 as the predefined substructure option in Subdue. It is phase 2.

Phase 2 is for getting whole patterns of the original biological network. After phase 2, we

are able to compare these patterns with the examples in phase 1 to find some biological

meaning.
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5.2.2 Classification by species

The second supervised learning experiment is to distinguish between a group of

biological networks in one species and the same group of biological networks in another

species. Two sets, the hsa eco:25 and the sce eco:25 use 25 biological networks sets, and

other use all biological networks in the species. This experiment is a classification by

species. The experiment process is the same as the first supervised learning experiment

except for the difference in the experimental set.

5.3 Unsupervised Learning

Unsupervised learning tries to find common substructures across several groups.

The ultimate purpose of applying clustering to biological networks is to gain a better

understanding of the networks by using hierarchical topologies.

In the unsupervised learning two kinds of experiments are processed. First one is

to find common patterns in one kind of network across a group of species. It is for finding

common substructures across all species to describe the biological network. Second trial

is to find a common substructures in a group of networks in one species. This experiment

allows us to understand what common structures the different networks have.

5.3.1 Clustering in species

Table 5.3 shows the experimental sets in clustering in species. Set represents the

name of experimental set. First part of the name represents the name of biological

network and second part represents the source group. Four source groups are used such

as eukaryote, 45, 150 and All (all species) set. The 00010 euk set is the set of 00010

networks from eukaryote species group. It has 15 examples out of 17 eukaryote species.

Every species does not have every biological network as mentioned in last section.
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Table 5.3. Experimental set used in clustering in species

Set Number of examples

(Network Src) (Positive examples)
00010 euk 17
00061 euk 15
00010 45 44
00230 45 45
00251 45 45
00510 45 31
00900 45 41
00061 150 140
00010 all 268
00061 all 246

Table 5.4. Experimental set used in clustering in networks

Set Number of examples

(Name of species) (Positive examples)
ath 102
dme 100
eco 103
rno 120
sce 90

mmu 130
hsa 139

This experiments finds a common structure in one sort of network across the a

group of species. After preparing some samples, GDM phase 1 is processed. Every

example in a set is placed as a positive example. Subdue runs on this example with the

10 iterations option. After phase 1, we can get a hierarchical tree of patterns. In the

GDM phase 2 we can recover the erased names for the most interesting pattern of phase

1 to know its biochemical meaning.
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5.3.2 Clustering in networks

This experiments finds a common structure in every network in a species. The

process follows the same way as the previous section. Table 5.4 shows the experimental set

in clustering in networks. Set represents a name of species. Positive examples represents

the number of biological networks in this species. For example, hsa set has 139 positive

examples from human.

5.4 Summary

This chapter described the graph-based data mining approach to biological net-

works from the KEGG PATHWAY database. We explained the graph representation

biological networks. We then described the supervised learning of Subdue and exper-

imental data sets. The last section provided the unsupervised learning approach and

experimental data set. Next we will give results of these experiments and discuss the

biological meaning of the results.



CHAPTER 6

RESULTS AND DISCUSSION

This chapter shows results from two approaches, supervised learning and unsuper-

vised learning, which are described in the previous chapter. Then the biological meaning

of the substructures which are found by Subdue are investigated based on a variety of

KEGG databases as mentioned in chapter 4. The motivation of this exploration is to

prove that the substructure found by graph-based data mining is biologically important

and meaningful. Each results also shows the accuracy (in the supervised learning) and

the running time. In this research we have more focus on finding meaningful patterns

than the issue of the running time.

6.1 Supervised Learning

Supervised learning using graph-based relational concept learning is for distinguish-

ing positive examples from negative examples. The ultimate goal is to find novel and

biologically understandable patterns to be able to classify the two groups.

The results of supervised learning experiments show quite different results between

two approaches. The first approach, classification by the biological network, allows us

to distinguish fairly efficiently between positive examples and negative examples. It is

reasonably clear in a sense that each biological networks has quite a different structure

for their functions. The second approach of distinguishing between two groups of species

does not perform as well. It is assumed that biochemical pathways dose not show species-

specificity, not like proteins. In this section we show the results of supervised learning

approaches and discusses the results.

52



53

Table 6.1. Results of classification by the biological network

Set Num. of Examples Size Accuracy Running Time

(XP XN:src) (Pos./Neg.) (V+E) (%) (sec.)
00230 00240:euk 17/17 75,086 100.00 166.22
00240 00230:euk 17/17 75,086 55.88 1455.36
00300 00310:euk 9/16 14,715 100.00 8.54
00310 00300:euk 16/9 14,715 64.00 12.44
00520 00530:euk 14/17 15,689 83.87 17.76
00530 00520:euk 17/14 15,689 100.00 8.72
00061 00010:euk 15/17 56,914 100.00 458.97
00010 00900:45 44/41 88,041 100.00 810.81
00240 00230:45 45/45 183,701 66.67 9420.11
00251 00010:45 45/44 129,187 60.67 14908.60
00510 00910:45 31/44 482,767 100.00 905.14
00010 00230:45 44/45 179,393 61.80 3679.12
00061 00010:45 44/41 117,582 48.19 12494.61
00010 00900:150 149/143 286,091 88.70 4253.33
00061 00010:150 140/149 371,032 48.44 13374.54

6.1.1 Classification by the biological network

As shown in Table 5.1, several experimental sets are used to process this approach.

For most cases Subdue can find a substructure to discriminate clearly between two ex-

amples.

We tried to use MDL and set-cover option as the evaluation method. In classifi-

cation tests set-cover is working better at the view of performance and accuracy. The

number of iterations parameter is set to the same value as the number of positive ex-

amples in an experimental set. to be sure to cover all positive examples, even though

Subdue usually iterates less than those times. The Limit value is set to 50 or 100, because

each experimental set has around twelve initial substructures. The limit value should be

greater than the number of initial substructures. But after this restriction limit value is

defined base on several trials.
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Table 6.1 shows the results of the classification by the biological network. Set

represents experimental sets. A name of set consists of three parts: XP, XN and src.

XP and XN represent the network name of positive examples and negative examples

respectively. Src represents source sets, as described in the last section. Number of

examples represents a number of positive and negative examples. The size of the graph

can be calculated as size(g) = n(v) + n(e), where a graph g = (v, e), v is the vertex, e is

the edge and n(x) is the number of x. The size in Table 6.1 is calculated as size(XP ) +

size(XN). Accuracy is calculated as (TP + TN)/(NXP + NXN), where TP is the

number of the positive examples containing at least one of the best patterns from any

iteration, TN is the number of the negative examples containing none of the best patterns

from any iteration, XPN is the number of positive examples, and NXN is the number

of negative examples.

Most cases have more than 60% accuracy. Usually Subdue can find substruc-

tures to distinguish two examples clearly except for a last couple of iterations. In the

00061 00010:150 set the substructures are found in the only positive examples before

last iteration. But, the substructure in the last iteration is found in the four positive

examples and all negative examples.

In these 00230 00240, 00300 00310 and 00520 00530 sets, the experiment ran twice

with a different way. At first trial 00230, 00300 and 00520 are set as positive examples,

and at second trial they are set as negative examples. At all cases, the second trials

yields 100% accuracy because these three networks, 00240, 00310 and 00530, have an

ortholog entry, but not in the negative examples. As the view of supervised learning,

this classification is successful. However this case is not the general case. Ortholog is a

gene that has the same function and origin in different species. Some biological networks

of which ortholog research is completed has ortholog entry. Even though Subdue can

distinguish easily, it does not generate special biological meaning.
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(a) (b)

Figure 6.1. Running time with graph size (a) all results, (b) sets with more than 80%
accuracy in classification by species.

Running time varies by not only size of graphs but also other factors like the struc-

ture of the graphs. Running time of the 00230 00240:euk set is almost nine times faster

than 00240 00230:euk sets, because 00240 00230:euk has a clear pattern, the ortholog

vertex to distinguish two samples. Subdue runs in polynomial time with user-defined

Limit and Beam as described in the Chapter 3. When Subdue has hard time to find

substructure to distinguish clearly two examples, running takes more time. Figure 6.1

shows the running time with the graph size. It compares all results (a) with sets con-

taining more than 80% accuracy (b). Figure 6.1 (b) shows that Subdue’s running time

increased polynomially if it can distinguish clearly. Figure 6.1 (a) describes that running

time shows quite a different trend if Subdue cannot find the best pattern in just positive

examples, not negative examples.

One experiment, 00010 00900:45, will be given to discuss as an example. This set

has 100% accuracy, and it does not have any exceptional case. By discussing the result,

we try to prove that the substructure which is found by the Subdue has understandable

biological meaning. In this example Subdue runs four iterations, and at each iteration

it found the best patterns often found in positive examples, but not in the negative

examples. At the first iteration the best pattern (Figure 6.2) was found in forty instances
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Figure 6.2. First best patterns from 00010 00900 classification.

of forty positive examples, but not in any negative example. After GDM phase 1 we can

know the first best pattern means that one entry is related to two reactions. Because

E to Rct is the relation between reaction and enzyme (gene), the entry should be the

enzyme or the gene.

At the GDM Phase 2, Subdue run on the named-graph as of the same example of

00010 00900:45 set with the first best pattern (Figure 6.2) as the predefined substructure.

Subdue can find clearly all forty instances in the named-graph, too. By using Phase 2

we can add more vertices and edges which are erased in the unnamed-graph or are not

found at Phase 1. The substructure of Figure 6.3 is the updated pattern from the result

of Phase 1 and is the final result of this experiment. The vertices and edges marked by

“[ ]” are included from the original substructure from the GDM phase 1.

The pattern of the final result shows two reversible reactions, R01063 and R01061,

which are catalyzed by one enzyme from the gene, aae:aq 1065. In fact the location of

entry, aae:aq 1065 should be enzyme, not gene. However KEGG pathway shows the gene

instead of the enzyme when the enzyme is made from the ortholog gene. Ortholog gene

is the gene that has the same function and origin in different species. If the enzyme can

catalyze a reaction Ω in the species X, Y and Z, the enzyme α, β, γ are from the ortholog

gene. KEGG Pathway tries to describe the enzyme from the ortholog gene in this way.
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Figure 6.3. Updated substructure of first best patterns from 00010 00900 classification.

Thus gene aae:aq 1065 can be considered as enzyme. The original enzyme name having

ec:1.2.1.12 as id is glyceraldehyde-3-phosphate dehydrogenase. This enzyme catalyzed

two reactions R01061 (equation 6.1 and Figure 6.5) and R01063 (Equation 6.2 and Figure

6.6). These two reactions and the enzyme ec:1.2.1.12 are shown in the Figure 6.4 The

official name of the 00010 biological network is Glycolysis.

Glycolysis is a preprocessing reaction of the energy generating reaction which de-

grades a molecule of glucose (6 carbon) in a series of enzyme-catalyzed reactions to yield

two molecules of the three-carbon compound, pyruvate (equation 6.3). In the glycolysis

biological network the most important materials are NADH, NADPH and ATP since

they are energy-related compounds. When the bio-organism intakes nutrients, it digests

them into primary elements such as glucose, amino acid and lipid acid. Then each cell

degrades those elements to generate ATP which is energy material in the cell. Therefore

the reaction regarding three energy-related compounds is one of the most important reac-

tion biochemically. The glycolysis pathway is the starting point of the energy-generating

mechanism. The pattern which is found by the Subdue is the part of NADH and NADPH

related reactions which is placed in the 00010 networks, but not in 00900 network which
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Figure 6.4. A graphic file map of Glycolysis biological network of reference network [2].
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Figure 6.5. Reaction R01061 [2].

is Terpenoid biosynthesis. By the reason of this result, the substructure found by Subdue

can have understandable biological meaning.

C3H7O6P + H3O4P + NAD+ ↔ C3H8O10P2 + NADH + H+ (6.1)

C3H7O6P : D-Glyceraldehyde 3-phosphate

H3O4P : Orthophosphate

NAD+ : C21H28N7O14P2, Nicotinamide adenine dinucleotide

C3H8O10P2 : 3-Phospho-D-glyceroyl phosphate

NADH : C21H29N7O14P2

C3H7O6P + H3O4P + NADP+ ↔ C3H8O10P2 + NADPH + H+ (6.2)

NADP+ : C21H29N7O17P3, Nicotinamide adenine dinucleotide phosphate

NADPH : C21H30N7O17P3

C6H12O6+2NAD++2ADP +2Pi → 2CH3COCOO−+2NADH+2H++2ATP +2H2O

(6.3)



60

Figure 6.6. Reaction R01063 [2].

Table 6.2. Results of classification by species

Set Num. of Examples Size Accuracy Running Time

(XP XN:src) (Pos./Neg.) (V+E) (%) (sec.)
hsa eco 139/103 190,719 57.85 5960.06
hsa eco:25 25/24 60,840 71.43 199.44
eco sty 120/120 274,864 52.08 16227.67
eco bsu 103/97 144,751 52.50 2441.80
sce eco:25 24/24 54,897 54.17 278.18
mmu sce 90/150 164,956 38.33 13985.84

6.1.2 Classification by species

Table 6.2 shows the result of classification by species using the same way as de-

scribed above. Each experimental set consists of two species as positive and negative

example. In classification by species Subdue cannot find substructure to distinguish

clearly between two examples. At each iteration Subdue finds the patterns which are

not only in positive examples but also in negative examples. In the example of the

hsa eco set, Subdue finds the patterns which are found in both sets of examples except

one negative example. Accuracy of the results are shown at Table 6.2. Accuracy may

not look bad. However even though the result of classification by species has the same

accuracy as some in classification by network, it does not have the same meaning. In the
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approach by network most of set can distinguish between two examples before the last

couple of iterations. Only last one or two iterations have the best pattern which is found

in both sides. In the approach by species from first iteration to last iteration Subdue

cannot distinguish clearly, and the best pattern is found in both sets of examples at most

iterations.

The reason is explained as follows. Biologically species-specificity is one of most

important concepts. However species-specificity does not affect the biological network

of KEGG. Basically species-specificity is oriented from protein structure and gene se-

quence. Biological network is the system which is composed of proteins, gene products,

compounds and their relationships. Bacteria have 600,000 DNA base pairs, and humans

have 3 billions DNA base pairs. Also protein structure and sequences from those genes

are different across all species. However the glycolysis metabolic pathway is not quite as

different for each species. The difference in metabolic pathways in each species comes

from contained molecular structures, not from the pathway itself [52, 54]. Moreover the

KEGG biological networks of each species are generated automatically based on reference

networks and several specific molecules of the species [62]. Therefore KEGG pathway

does not contain species-specificity in each species.

Figure 6.7 shows the running time with graph size from Table 6.2. Even though

Subdue cannot distinguish clearly two examples, it runs in roughly polynomial time in

most cases. Since Subdue generates similar results as when the best patterns cannot

distinguish clearly all the cases, the trend of running time is similar.

6.2 Unsupervised Learning

In unsupervised learning all samples are placed as positive examples in the set graph

file. This experiment uses MDL to evaluate substructures. To get the hierarchical tree
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Figure 6.7. Running time with graph size in classification by species.

of substructures Subdue is iterated for twenty times. Unsupervised learning by Subdue

allows us to understand better the structure of the graphs.

6.2.1 Clustering in species

Clustering in species is to find the common patterns in one network across a group of

species. Because a biological network is a network of a variety of biochemical reactions,

there are easily assumed to exist several common patterns. After processing several

experiments Subdue can identify some common substructures of each group. Table 6.3

shows the result of clustering in species. Set represents a name of the network and the

source set. Positive examples means the number of examples in a set. Size of each set is

total size of graphs in a set. A size of the graph can be calculated as size(g) = n(v)+n(e),

where a graph g = (v, e), v is the vertex, e is the edge and n(x) is the number of x.

Iteration shows the number of iterations run by Subdue. Running time shows the time

to be taken to run Subdue on a set. Figure 6.8 shows the trends of Subdue’s running
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Table 6.3. Results of clustering in species

Set Positive examples Size Iteration Running Time

(Network Src) (Number) (V+E) (Number) (sec.)
00010 euk 17 28,516 10 425.03
00061 euk 15 28,398 10 566.23
00010 45 44 66,860 10 915.27
00230 45 45 112,893 10 3498.42
00251 45 45 68,327 10 1468.25
00510 45 31 15,907 10 32.42
00900 45 41 21,181 10 127.36
00061 150 140 147,874 10 3883.73
00010 all 268 413,885 10 57418.31
00061 all 246 249,331 10 13608.48

time of clustering in species. It shows polynomial running time. 00010 all set has the

largest size of the input graph and shows the longest running time. This size is 14 times

larger than 00010 euk and it takes 135 times longer than the shortest one.

Figure 6.9 (a) shows one best substructure which is found in 00061 150 (3,217

instances in 140 examples), 00061 all (5,494 instances in 246 examples) and 00230 45

(2,185 instances in 45 examples) at the first iteration, 00061 euk (436 instances in 10

examples) at the second iteration, and 00510 45 (306 instances in 7 examples) at the

third iteration. Figure 6.9 (b) is the best substructure found in 00010 euk (264 instances

in 17 examples), 00010 45 (740 instances in 44 examples) and 00010 all (4,609 instances

in 268 examples) at the first iteration and 00900 45 (127 instances in 7 examples) at

the fourth iteration. An observation of two pictures allows us to identify substructure

(a) as a part of (b). As a matter of fact, substructure (a) would be a basic model of a

biochemical reaction. This substructure describes an enzyme-related reaction, equation

4.2 in chapter 4. It is natural that all of biological networks have this pattern.
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Figure 6.8. Running time with graph size of clustering in species.

If we have additional patterns to basic pattern (a), the pattern would have another

biochemical meaning. Figure 6.9 (b) would be a good example. The best pattern in

the 00010 biological network across all species has a basic enzyme-related reaction and

a relation which has a maplink as its second entry. We run this pattern as a predefined

substructure in the GDM phase 2 to know the biological meaning, and get the updated

substructure in Figure 6.10. In the updated pattern the nodes and edges from Figure 6.9

(b) are checked with “[ ]”, because the checked nodes and edges are from GDM phase 1.

They are also shown in the Figure 6.9 (b). The pattern has two parts: one is the reaction,

R02740 (shown in the Equation 6.4 and the Figure 6.11), and another part shows the

relationship with other biological network, 00052, which is the Galactose Metabolism.

Galactose, a type of sugar, is a part of lactose with glucose. Lactose, a sort of milk, is

secreted from mammary glands [52].

Because the 00010 biological network, which is named Glycolysis, is an initial point

of several pathways to generate biochemical energy, the products and metabolites of of

glycolysis are used in a variety of other metabolism as starting or intermediate sub-
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(a) First best pattern from 00061 45 set (b) First best pattern from 00010 all set

Figure 6.9. The common best substructures in unsupervised learning.

strates. Metabolite is a intermediate in the metabolism. Moreover several enzymes are

related with other metabolic pathways. Glycolysis in Saccharomyces cerevisiae(sce) has

relationships with twenty-five other metabolic networks.

C6H13O9P ↔ C6H13O9 (6.4)

C6H13O9P : alpha-D-Glucose 6-phosphate

C6H13O9P : beta-D-Fructose 6-phosphate

The pattern in figure 6.7 shows this relationship. CPD:C00668, alpha-D-Glucose

6-phosphate is used in Galactose metabolism, too. It is not simply sharing materials,

but system. Alpha-D-Glucose 6-phosphate is a metabolite in both networks. If this

compound is too sufficient in Glycolysis, Galactose metabolism tries to consume more.

Or if there is too much in Galactose metabolism, Glycolysis is catalyzed to use more.

Therefore the relation is needed at both biological networks. Unfortunately, the detailed
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Figure 6.10. Updated first best substructure of 00010 all set.

Figure 6.11. Reaction R02740 [2].

mechanism is not described in the KEGG pathway. Because we do not have the brilliant

method to describe the regulation of the enzyme relation, it would be a challenge to

many bioinformatics people.

6.2.2 Clustering in networks

Table 6.4 shows the result of clustering in networks. Set represents a name of species

in a set. Other columns shows the same information as described above. In contrast with

previous cases, the running time does not look polynomial. Especially, the average of

running time in last four cases is 8 times longer than the one in first three cases. This vast
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Table 6.4. Results of clustering in networks

Set Positive examples Size Iteration Running time

(Name of species) (Number) (V+E) (Number) (sec.)
ath 102 69,668 10 810.56
dme 100 61,180 10 785.89
eco 103 78,543 10 1393.51
rno 120 76,608 10 34869.27
sce 90 65,353 10 44133.98

mmu 130 99,603 10 35023.34
hsa 139 112,176 10 52858.71

Table 6.5. Results of learned pattern in Figure 6.9 (a)

Set Instances Examples Positive examples Frequency

(Name of species) (Number) (Number)(a) (Number)(b) (a
b
× 100)(%)

ath 1,261 97 102 95.09
dme 986 91 100 91.00
eco 1,466 99 103 96.11
rno 1,096 94 120 78.33
sce 1,091 84 90 93.33

mmu 1,545 104 130 80.00
hsa 1,725 107 139 76.98

gap can be explained with one aspect, the number of regulatory network. As described

above, biological networks of KEGG PATHWAY can be categorized into two groups:

Metabolic pathways and Regulatory pathways. Regulatory pathways include protein-

protein interaction and regulatory networks. Currently, most of regulatory pathways are

included into higher level species. Table 6.6 shows the number of regulatory pathways

in each species. While metabolic network mainly contains enzymatic process, regulatory

includes relation between two or more proteins and genes. Therefore structures of two

networks are more or less different. We ran Subdue on the hsa set without any regulatory

network. This set has 110 positive examples of metabolic networks. This run takes

960.13 seconds. In table 6.4 the entire set of hsa takes 52858.71 seconds. However,
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Figure 6.12. Parts of Hierarchical Clustering of biological networks in fruit fly.

Saccharomyces cerevisiae(sce) cannot be explained with this theory. We ran Subdue on

the sce set in the same way as the hsa set. But the running time is similar. If we set

Limit as 50, instead of 100, Subdue generates the same results in 375.96 seconds. This

means that we can decrease running time with the same results by using Limit and Beam

value as described in the chapter 4.

Table 6.6. Number of Regulatory networks

Set Regulatory Pathways

(Name of species) (Number)
ath 2
dme 8
eco 1
rno 24
sce 4

mmu 24
hsa 29
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Figure 6.13. Updated eighth best substructure of Hierarchical Clustering of biological
networks in fruit fly.

The approach of clustering in networks tries to find common patterns in all networks

of a species. Several species are prepared and Subdue runs with limit 100 and MDL

evaluation option for ten iterations. In the experimental sets Subdue finds the same best

patterns as Figure 6.9 (a) at the first iteration. Table 6.5 shows the number of instance

and examples in which the pattern in Figure 6.9 (a) is found. Frequency represents a

probability of the pattern found in examples of a set.

The result from the dme set draws a hierarchical clustering tree of substructures

in Figure 6.12. First best substructure, SUB 1 at the Figure 6.12, is the basic patterns

of all networks in fruit fly. SUB 3 is found in 3,688 instances of 48 examples at the

third iteration. SUB 4 found in 1,175 instances of 23 examples is the relation with ECrel

property. ECrel relation is enzyme-enzyme relation that two enzymes catalyze successive

reaction steps [3]. SUB 8 consists of two SUB 1, a SUB 3 and SUB 4 with several edges.

This pattern found in 268 instances of 5 examples contains one relation of two enzymes

which catalyze two successive reactions. Moreover, SUB 8 has one more meaning than

SUB 4. The key is the link edge. As mentioned in the graph representation of chapter

6, a relation may have a link to compound as its subtype when it is ECrel type. The
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Figure 6.14. A graphic file map of Galactose metabolism in fruit fly [2].

link points to a compound which is a product of the first reaction of this relation and a

substrate of second reaction at the same time.

Figure 6.13 shows an example of the pattern which is found in the 00052, Galactose

metabolism, network of the fruit fly and updated by GDM phase 2. As in the same as

previous example, the nodes and edges checked with “[ ]” are found at GDM phase 1,

others are updated through GDM phase 2 manually. The enzyme-enzyme relation has a

relationship of two reaction: R01092 (Figure 6.15) and R01105 (Figure 6.16). R01092 is

catalyzed by the enzyme of the gene, dme:CG5288-PA, and R01105 is catalyzed by the

enzyme of the gene, dme:CG9092-PA. The substrate of R01092 is the C05796 compound



71

Figure 6.15. Reaction R01092 [2].

(Galactin). The product of this reaction is C00124 (D-Galactose) is also the substrate

of R01092. R01092 produces C00446 (alpha-D-Galactose 1-phosphate) from the product

compound. The relation of this pattern has the link as pointer to C00124, because

this compound is the metabolite of two reactions of itself. The simple formula of those

successive reactions is shown at equation 6.5. Figure 6.14 shows the pattern in a graphic

file map of Galactose metabolism in fruit fly.

(C12H20O11)n+ec : 3.2.1.23 → C6H12O6+ATP +ec : 2.7.1.6 ↔ ADP +C6H13O9P (6.5)

(C12H20O11)n : galactin

C6H12O6 : D-galactose

C6H13O9P : alpha-D-galactose 1-phospahte

ec : 3.2.1.23 : beta-galactosidase from gene dme:CG5288-PA

ec : 2.7.1.6 :galactokinase from gene dme:CG9092-PA

ATP, ADP : biochemical energy materials
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Figure 6.16. Reaction R01105 [2].

6.3 Summary

This chapter showed the results of our approaches to biological networks. In super-

vised learning Subdue can clearly distinguish two groups in the classification by networks.

But it does not perform well in the classification by species because of the biochemical

features of biological networks. Unsupervised learning of Subdue can find the best sub-

structure in the both clustering in the same network across different species and in dif-

ferent networks of the same species. Moreover, the best substructures found by Subdue

have important biological meaning. Additionally, we discussed the complexity issue in

each section.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The results of chapter 6 clearly show that the substructure found by Subdue has

understandable biological meaning. The classification approach clearly discriminates two

examples if they have sufficient features to distinguish. The clustering approach generates

common substructures that allow us to better understand the biological network.

In this result we generate a graph representation of biological networks to describe

all properties of the network. Then we apply our graph-based relational learning system,

Subdue, to these graph representations. Unlike other graph-based data mining tools

which are focusing on frequent patterns, the graph-based relational learning of the Subdue

can focus on novel, useful and understandable graph-theoretic patterns. For this reason,

our approach can discover the biologically meaningful pattern that is able to explain

the meaning of the pattern and relationship with other substructures in the input graph

based on the background knowledge.

Systems biology plays an important and meaningful role in bioinformatics, based on

the huge amount of results which are accumulated by the extensive research in genomics,

proteomics and other biochemical areas. To express a variety of objects in the network

and complex relationships between objects, the graph representation is indispensable.

Especially to understand bio-organisms systematically, knowledge discovery should be

guided into finding biologically meaningful knowledge, not just frequent knowledge with-

out special meaning.

73
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(a) (b)

Figure 7.1. A graph representation of biological networks with nested graph concept, (a)
abstract model and (b) extended model.

This research shows that the Subdue graph-based relational learning technique is

applied successfully to the biological network domain. The substructures generated by

Subdue can distinguish between two groups of biological networks or guide us to get more

detailed knowledge of biological networks.

7.2 Future Work

Several challenges are available for future study. We categorize the challenges into

two aspects: new discovery algorithm and research of biological networks.

7.2.1 Discovery algorithm

Subdue is successfully applied to biological networks in addition to other areas

such as Chemical Toxicity [45], Molecular Biology [8], Security [6] and Web Search [7].

However, it is necessary to study continuously for better performance on more various

areas. Basically, biological networks consist of relations and reactions. Relations and

reactions have objects such as proteins and compounds in their attributes as well as

their relationships. For this reason, biological networks can be minimized with major
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objects (proteins) and their relationships [63]. But this approach misses several important

features in biological networks. Even though our approach includes almost all features in

biological networks, it also has some defects. First it does not show better performance

because Subdue covers so many vertices and edges. Second it handles objects and their

attributes in same manner. In our approach, entry vertex and its name vertex are

managed as the same vertices. Semantically, the name vertex is an attribute of the entry

vertex.

We introduce a new approach to Subdue not only for biological networks but also

for bioinformatics and other areas which need to be represented as a hierarchical graph.

Figure 7.1 shows an example of a graph representation of biological networks with the

nested graph concept. It represents an abstract model (a) and an extended model. The

abstract model provides a high level view of graphs. The extended model shows a lower

level view inside each subgraph which is a vertex in the abstract model. Because our

approach represents biological networks as a hierarchial graph, we can analyze biological

networks in two levels: upper level (a) and lower level (b). For this representation,

Subdue needs to be modified to find the patterns in two levels. By using this approach,

Subdue can find three types of relational patterns. First, Subdue can learn the relational

patterns on the entire graph in the same way as the current approach. Second, Subdue

can find the abstract patterns in the entire graph using the abstract model. This method

can provide a quick abstraction in the graphs. Third, local patterns can be found in each

subgraph such as protein subgraphs, compound subgraphs and reaction subgraphs. The

last method may not look useful on current data. But it can be a useful way to find

the relational patterns with specific structures of objects in biological networks if the

databases of biological networks can be integrated with a variety of data such as protein

structures, gene sequences and compound structures.



76

This approach can be useful to other areas. In bioinformatics areas it can be applied

to interactions between several cells. Cells have a variety of mechanisms intracellularly

and intercellularly. We can represent their relation as hierarchical graphs. Also we can

apply this approach to community ecology or social relationships between two commu-

nities. Because Subdue uses a general graph representation, more detailed research is

necessary for application of our new approach.

7.2.2 Research of biological networks

There are several areas to better understand biological networks. First, more back-

ground knowledge need to be combined to describe the biological network. Even though

the KEGG pathway database has sufficient information, it is not enough for system-level

understanding of bio-organisms.

Second, an enhanced representation method is necessary to express all features of

biological networks. Because biological data is redundant, knowledge representation is

an unavoidable challenge. Specifically, temporal and spatial concepts should be included

into the representation. The regulatory network plays a central role to maintain our body

in a peaceful and optimal state. The study of the regulatory network without concerning

dynamics is scarcely ever helpful to understand.

Third, background knowledge needs to be included into graph-based relational

learning. Even though Subdue can use the background knowledge as the predefined

substructure, it is still to be enhanced. If more knowledge is included into the learning

algorithm, more meaningful results can be generated. In this way, the database of the

substructures of biochemical functional groups will be helpful in addition to protein, gene

and compound databases.
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